Wireless World December 1968 Three Shillings

Universal component bridge Electrostatic headphones

ALL POINTSThere are more than a million variations of the 10 basic Keyswitch relays illustrated here; at least one of them EAVO D will suit your particular requirements.
A. They're all top-quality and top-performance, as demonstrated by an Y ㅇN A E impressive list of 'approvals' that includes Post Office, T every Keyswitch 'tailor-made' is also available in plug-in A (O)B AD form. So when you need the best relays, at comBE A Keyswitch Relays Ltd, London NW2 (01-452 3344; telex 262754)

KEYSWITCH RELAYS

1 MIL mechanically interlocked pair, operating A releases B 2 P33 plug-in version of P.O. 3000 at least 30 m operations 3600 compact version of P.O. 3000, up to 10A contacts 4 KTR replaces two P.O. 3000's in space of one,
30% cheaper
5 DA33 two independent armatures and contact assemblies 6 KR31 remanent latching, holds indefinitely 7 MRL latches mechanically, releases electrically,
up to 8 contacts
8 K700 miniature contactor, very sensitive coils, up to 30A contacts 9 P.O. 3000 meets full GPO specs, up to 30A contacts 10 MSW any of these relays fitted with up to 8 microswitches

KEYSWITCH RELAYS - WHERE THE ACTION IS - KEYSWITCH RELAYS

Wireless World

Electronics, Television, Radio, Audio

Fifty-eighth year of publication

Iliffe Technical Publications Ltd., Managing Director: Kenneth Tett Editorial Director: George H. Mansell Advertisement Director: George Fowkes Dorset House, Stamford Street, London, SE1

C) Iliffe Technical Publications Lid., 1968

Permission in writing from the Editor must first be obtained before letterpress or illustrations are reproduced from this journal. Brief extracts or comments are allowed provided acknowledgement to the journal is given.

This month's cover features the universal components bridge for which constructional details are given in this issue.

December 1968
Volume 74 Number 1398

Contents

Pay-TV Company to Disband

S.R.C. annual report

Radio Love
447 Direct Broadcasting from Satellites
448 Sound and Vision in the Queen Elizabeth II
450 Personalities
451 Microwave Semiconductor Devices
452 Conferences \& Exhibitions

470 Test Your Knowledge questions and answers by L. Ibbotson
471 December Meetings
472 A Flexible Expander/Compressor by M. B. Catford
Progress in Acoustics
Noise in Transistor Circuits- 2 by P. 7. Baxandall
Encoded Keyboard for Computers
Announcements
Wireless World Colour Television Receiver-7
Letters to the Editor
World of Amateur Radio
The Human Computer Reconsidered
Battery Developments

New Products
Literature Received
H.F. Predictions

The price is special, too!

Not quite, but the only rectangular $3^{\prime \prime}$ tube on the market...

Another example of Thorn-AEI's renowned production engineering techniques oa top-quality oscilloscope tube at a minimum price.
The Brimar D7-200GH is the only rectangular tube available in the 3 inch size. The tube has a relatively flat screen and employs a mono-accelerator for reduced power requirements. With an overall length of only 18 cm , it provides a $5 \mathrm{~cm} \times 4 \mathrm{~cm}$ display of waveforms or TV pictures.
The tube can also be supplied with a long persistence phosphor screen, making it particularly suitable for use with medical electronic equipment.
Features include electrostatic deflection and focusing. Good geometry is ensured by specially developed production control techniques. Small spot size and focus uniformity over the entire screen give good resolution at all points of the useful screen area. High-deflection sensitivities permit the use of inexpensive transistor circuits.
Applications include:
alpha-numerical readout devices, medical laboratory equipment, waveform monitors,
data processing equipment,
voltage and power output indicators,
educational equipment, etc.-
and of course, popularly-priced oscilloscopes.

$V_{\text {al }}+a 3+a 4$	800	1200	V
$\mathrm{~V}_{\mathrm{a} 2}$	50 to 150	75 to 225	V
$\mathrm{~V}_{\mathrm{g}}$ (for cut-off) -20 to -40	-30 to -60	V	

[^0]Editor-in-chief:
W. T. COCKING, F.I.E.E.

Editor:

H. W. BARNARD

Technical Editor:
T. E. IVALL

Assistant Editors:
B. S. CRANK
J. H. WEADEN

Editorial Assistant
J. GREENBANK, B.A.

Drawing Office:
H. J. COOKE

Production:

D. R. BRAY

Advertisements:

G. BENTON ROWELL (Manager)
J. R. EYTON-JONES
R. LAMBERT (Classified Advertisement Manager) Telephone: 01-928 3333 Ext. 538

Our New Master

When the Post Office Bill becomes law (albeit, we hope, in modified form in some respects) we in the United Kingdom will have a new master. No longer will the master of the Post Office (or to give him his more common title the Postmaster-General) be the overlord of radio communication. All telecommunications-and it would appear a great deal more in the field of communications-will come under the jurisdiction of the Minister of Posts and Telecommunications. The new Post Office, which is to become a public authority, will no longer be the controlling body in radio matters. The new "P.T.T." Ministry will "license radio stations, control frequency usage and regulate and co-ordinate the use of apparatus for transmitting and receiving". The Minister of Posts and Telecoms will also be responsible for the oversight of the new Post Office and will assume the present responsibilities of the P.M.G. for the broadcasting authorities.

It has frequently been suggested that the regulatory powers regarding frequency allocation should be withdrawn from the Post Office (because it is both user and arbiter) and that a British counterpart of the American Federal Communications Commission should be set up. The changes planned in the Bill, are, therefore, seen as a move in the right direction. But. . . .

Under the Wireless Telegraphy Act 1949 the Postmaster General has regulatory control of "apparatus generating, or designed to generate, or liable to generate fortuitously, electro-magnetic energy at frequencies of not more than three million megacycles per second". This upper frequency limit has been seized upon by the people who are organizing Radio Love (referred to in our "news" pages this month) who undoubtedly and justifiably considered that laser beams did not come under the control of the P.M.G. It was obvious, of course, that because of the gradual disappearance of the "generator gap" between radio and light waves (as pointed out in our review last month) sooner or later the upper limit of that part of the radio spectrum coming under the P.M.G's jurisdiction would be raised. It would appear, however, from Part IV of the new Bill that our new overlord is going to be a harder task master than his predecessor.

As the Bill stands at present the Minister will control without specifying frequency limits the use of "electric, magnetic, electro-magnetic, electro-chemical and electro-mechanical" energy for the distribution of sound and vision programmes "to inform persons of anything or to educate or entertain them". The mind bogles at the measure of control which could be imposed under such sweeping powers. Will the overlord try to license magnetic recording? One could, of course, say that our car trafficators and indeed traffic lights, railvay signals and a thousand and one other visual indicating devices (all using electro-magnetic energy in the optical part of the spectrum) are "to inform persons"! But, to be serious, it now seems that those who drew up the Bill are absolutely determined to make sure that no loop hole has been left in the regulations governing the Minister's monopoly of telecommunications. While such a monopoly is probably necessary in order to ensure that our telecommunications are controlled fairly, for the benefit of the whole community, one hopes that it will be used in a charitable manner and that the new Minister will not become a telecommunications dictator. (Never mind-there's always telepathy!)

Universal Component Bridge

R, L, C measurement to 1% accuracy with out-of-balance amplitude and phase indicated on a cathode-ray tube

by L. Nelson-Jones, M.I.E.R.E.

The component measuring bridge described here was designed with the emphasis on ease of use, and to this end it uses a miniature cathode-ray tube to display the balance state of the bridge on the capacitance and inductance ranges. This type of indicator enables both the amplitude and phase of the out-of-balance quantity to be displayed, and also indicates if the component has non-linear tendencies, as shown in the illustrations later in the article. The ability to see both the magnitude and phase of the out-of-balance enables the null to be found with much greater speed and ease than with an indication of amplitude alone. This is especially true with inductors of low Q value.

The instrument covers a wide range of values, as can be seen from the specification, and is generally in line with the performance and coverage of the majority of similar commercial instruments. Its accuracy depends on the resistor and capacitor standards used. With the values specified it is better than 1% on resistance, except at the extremes of the coverage, where indicator sensitivity limits the accuracy (see later). On the capacitance ranges the accuracy is also better than $I \%$, and the zero value of capacitance of the bridge may be reduced to a true zero as described later. On the inductance ranges the accuracy is in general better than $\mathrm{I} \%$, but at the extremes of the coverage it falls to about 2%, since the bridge is optimised for the capacitance

The completed component bridge, with a capacitor connected for measurement. (See front cover for details.)

ranges. Very low- Q inductors, especially ones of low inductance, also give a lower accuracy than the basic $\mathrm{I} \%$.

Basic bridge circuits

The basic bridge circuits used in the instrument are shown in Fig. I (a), (b), (c) and (d). On the resistance ranges the basic circuit used is the Wheatstone bridge, (a). Energization is provided from the h.t. supply via a potentiometer (shown here as a battery of 75 volts maximum with a series resistance). The arm R_{A} is the ratio arm, having values of I Ω to I $M \Omega$, and this same ratio arm is used for all other ranges, both capacitive and inductive. The arm R_{S} is the standard arm, which is of $10 \mathrm{k} \Omega$, while $R V_{1}$ is the calibrated balance arm. This balance arm is in fact a lo $\mathrm{k} \Omega$ potentiometer in series with a 750Ω fixed resistor, so that the values i $\mathrm{k} \Omega$ to ro $\mathrm{k} \Omega$ are covered fully, despite the 5% tolerance on the overall value of the potentiometer. Provision is made to switch out the 750Ω resistor, and the dial of the balance arm is calibrated with an additional $0-1$ scale at the lower end of the range only.
In practice it will be found that the lowest resistance range of the instrument, covering up to 1Ω, is of so low a sensitivity that it cannot usefully be used except with an external indicator of much higher sensitivity, and this is the reason for the resistance ranges being quoted as i Ω to I $M \Omega$, and not O.I Ω to I $M \Omega$ as would seem correct from the spread of the inductance and capacitance ranges. External galvo terminals are provided so that greater sensitivity can be obtained on the extreme ranges if required. Additional sensitivity could have been obtained by the application of the full h.t. supply to the bridge, but for reasons of personal safety this could not be justified, and in addition there would have been trouble with excessive dissipation on some ranges. The use of a push-button for the two levels of energization supplied to the bridge (see Fig. 2) enables a much higher sensitivity to be obtained from the instrument than the meter sensitivity of $100-0-100 \mu \mathrm{~A}$ might indicate. This is achieved by using the push-button as a tapping key and watching the meter pointer until it stops pulsating while adjusting the balance arm. Out-of-balance currents of

less than I μ A may easily be seen in this way, and in addition any out-of-balance inherent in the meter movement is of no importance with the method. $\mathrm{I} \%$ discrimination is possible (with the internal indicator) between 10Ω and $100 \mathrm{k} \Omega$.

On the capacitance ranges (Fig. I(b)) the ratio arm is as in the resistance measuring circuit, and so is the balance arm $R V_{1}$. The standard arm consists of a standard capacitance C_{1} of $10,000 \mathrm{pF}$ nominal value, together with the variable series-loss resistor $R V_{2}$ of $\mathrm{I} \mathrm{k} \Omega$. Use of this standard value of variable resistor is made possible by arranging the energization frequency to be $1,592 \mathrm{~Hz}$ (for which $\omega=2 \pi f=10^{4}$). Had the bridge used the usual frequency of I kHz the variable resistor would have had to be $1.592 \mathrm{k} \Omega$ for $Q=10$, the lowest value covered-a Q value chosen so that the error in the Hay inductance bridge configuration (Fig. I(d)) will not exceed $\mathrm{I} \%$. The instrument is not intended for the measurement of electrolytic capacitors, and therefore Q values of less than io are not allowed for on the capacitance ranges. There is no reason why the lower values of Q should not be catered for, if required, by switching in the parallel $100 \mathrm{k} \Omega$ used in the Maxwell inductance configuration for $Q s$ of $0-10$.
The main problem with the capacitance bridge comes from stray capacitances, especially across the balance arm $B-D$ of Fig. I(b). Stray capacitance to ground across this arm has the effect of making the standard capacitor C_{1} "look" as if it is lossy, so that the effective minimum value of the series-loss resistor is not zero. In the case of the present design a minimum value of about 20Ω was at first achieved, despite the use of a special low-capacitance screened coupling transformer for the bridge energization and the exercise of great care with the wiring layout. In many commercial bridges this problem is overcome by the use
of a lower impedance for the balance and standard capacitance arms (usually $\mathrm{Ik} \Omega$ and $0 \cdot 1 \mu \mathrm{~F}$), so that the effect of stray capacitance is greatly reduced and may be safely ignored. This solution was rejected because of the difficulty of obtaining capacitors of suitable type (silvered mica) having values above $10,000 \mathrm{pF}$, and also because it was felt that the resolution of the balance arm would be inadequate if it were of $\mathrm{I} k \Omega$ value. The solution eventually found to be fully successful was to inject into point B of the Fig. I(b) circuit a voltage which is in antiphase with that normally present at point C, and to inject that voltage through a capacitor nominally equal to the stray capacitance present. This capacitor is VC_{3} of Fig. 2.

The use of this balancing voltage has the additional effect of largely eliminating the small zero error in the readings of the lowest capacitance range. A fixed setting of the capacitor $V C_{3}$ can be used since the stray capacitance does not vary appreciably with the value of the ratio arm R_{A}. The only side effect caused by this correction technique, and also by the stray capacitance across arm $C-D$ is to make the optimum value of the standard capacitance C_{1} less than the nominal value of $10,000 \mathrm{pF}$ by about 60 pF , a value of $9,940 \mathrm{pF}$ being used in the prototype. The value needed is within the 1% tolerance of standard types of silvered mica capacitors, so that no difficulty should be experienced in finding the required value by selection on an accurate bridge. If this cannot be done an additional'small error will be present on the capacitance and inductance ranges so that the basic accuracy will only be about $1 \cdot 5 \%$ overall.

On the inductance ranges (Figs. I(c) and $\mathrm{I}(\mathrm{d})$), the Hay configuration is used for high- Q inductors (Q above 10) and the Maxwell configuration for low- Q inductors (Q below 10). The Hay arrangement uses the same components as the capacitance range with the balance and standard capacitance arms inter-changed. In the Maxwell arrangement the series loss resistor $R V_{2}$ is replaced by a parallel variable loss resistor of $100 \mathrm{k} \Omega$ with the addition of a i $\mathrm{k} \Omega$ fine control to make balancing easier with inductors of very low Q. In all other respects the two inductance bridge configurations are identical. The balancing voltage via $V C_{3}$ remains connected in the inductance bridges, across the balance arm $R V_{1}$. The value for $V C_{3}$ will not, of course, be identical for all the bridge configurations but the difference is not great. However, since the Q values of capacitors are in general much higher at 1592 Hz than the Q values of typical inductors, it is more important that the errors in the reading of the loss balance control are corrected on the capacitance ranges than on the inductance ranges, where, with lower $Q s$, the percentage error will be much less.

Power dissipation in \mathbf{R} bridge

Maximum dissipation in a resistance under measurement depends on the value of the resistance, and on the range, and setting of the balance control at the time. Worst conditions are with the balance arm at zero,

$R_{x}=R V_{1} \frac{R_{A}}{R_{B}}$

$$
C_{X}=R V_{1} \frac{C_{1}}{R_{A}} \quad Q=\frac{1}{\omega C_{1} R V_{2}}
$$

$L_{x}=R V_{1} R_{A} C_{1}\left(\frac{1}{1+1 / Q^{2}}\right)$
$Q=\frac{1}{\omega C_{1} R V_{2}}$

Fig. I. Basic circuits used: (a) resistance bridge (Wheatstone); (b) capacitance bridge (De Sauty); (c) low-Q inductance bridge (Maxwell); (d) high-Q inductance bridge (Hay)

Fig. 2. Full circuit of the R, L, C component bridge. (Press-button S_{4} at top right.)

Fig. 3. Circuit of the cathode-ray tube display, the Y and X amplifiers, the bridge energization oscillator, and the power supply
the range switch at the roo $\mathrm{k} \Omega-\mathrm{I} M \Omega$ range, and the sensitivity press-switch closed. Under these conditions maximum dissipation reaches a fairly flat maximum between 3 and $3.5 \mathrm{k} \Omega$ of 440 mW , but this is a condition unlikely to be met in practice. Assuming that normal balance has been established before the press-switch is closed, the maximum dissipation is at about $1.5 \mathrm{k} \Omega$ and reaches 180 mW , but this can be limited by keeping the press-switch closed for short periods only. Indeed it is for this purpose, as well as to allow for its use as a "tapping key", that such a biased switch is fitted. With the press-switch open, maximum dissipation is limited to less than 6 mW at a value of about $4 \mathrm{k} \Omega$.

As has been said above the voltage available at the terminals of the bridge is limited to 75 volts maximum by the use of a potentiometer across the h.t. supply, the values for which are also chosen to limit the current to a safe value. The guiding values used to determine these limits were the normal maxima allowed on Post Office line equipment-where 75 volts with respect to ground and a maximum current of 50 mA are the accepted safe limits. The voltage is limited to 75 volts, but the current is restricted to 22.5 mA to limit dissipation in the resistor under test. This point was felt
to be of importance in the design of the bridge, and is a matter that has not always received sufficient attention, especially in the earlier models of some commercial equipments-as the author has had painful cause to remember. In practice it is difficult to get a shock as it is not normal to both press the switch S_{4} and touch the insulated terminals or the component leads at the same time, and with S_{4} open the maximum voltage is only a few volts and the current does not exceed 2.2 mA .

Oscillator design

The oscillator used (Fig. 3) is a Wien bridge circuit with thermistor stabilisation, and there is no separate output stage. The output from the secondary of the output transformer is 1 volt r.m.s., and the frequency, as has been said, is nominally 1,592 Hz . In practice it is easier to set this to $\mathrm{r}, 600 \mathrm{~Hz}$ by forming a Lissajou figure against the 50 Hz mains, and the error in Q measurement is very small compared to the accuracy of the basic Q measurement, of about 5%.

The frequency is adjusted by means of a variable capacitor in the Wien bridge, but a variable resistor would serve equally if

Fig. 4. Examples of displays on the c.r.t. balance indicator: A display for balance condition; B out-of-balance on both L and C ranges; C at balance when measuring a barrier layer Hi-K ceramic capacitor, $0.22 \mu \mathrm{~F} 20 \mathrm{~V}$; D at balance with iron or ferrite cored inductor, showing the effect of variation of core permeability with flux level

preferred. When using the Lissajou method it is preferable to use the .50 Hz for the X deflection, with a small amount of 50 Hz (in quadrature) applied to the Y axis together with the $1,592 \mathrm{~Hz}$ from the oscillator, so that the forward and return traces are separated.

The design of the oscillator follows normal lines for a Wien bridge, and the only point which must be emphasised is that since an output transformer forms the load it is necessary to reduce loop gain at the high frequency end of the pass band of the amplifier to maintain freedom from spurious oscillation. This is achieved by the inclusion of a 47 pF capacitor from the anode of V_{1} to ground, and grid stoppers are also fitted to V_{1} and V_{2}. The screen of V_{2} and the supplies to V_{1} are decoupled and smoothed by an $8 \mu \mathrm{~F}$ electrolytic and a $33 \mathrm{k} \Omega 2$ resistor to reduce the hum content of the oscillator output, and to improve low frequency stability.

Y amplifier design

The first stage of the Y amplifier is a lownoise pentode, operated with "grid current" biasing, so that the cathode may be directly earthed to avoid heater-cathode hum troubles. For satisfactory operation in this mode a very low screen potential must be used (in this design around 12 V) and this is derived from a 60 -volt line stabilized by a miniature neon tube NEI. This use of a stabilized supply ensures additional stability of the output stage anode voltage since the screen potential of the output stage is also stabilized by the neon tube. However; the main factor contributing to the high stability of the current in the output stage is the fact that the cathode bias resistor of the stage is returned to the -330 V line so that this resistor rather than the valve characteristic determines the anode current. To ensure freedom from heater cathode breakdown on
switching on (when the valve is nonconducting) a diode is connected to catch the cathode potential at -0.6 volts. The gain of this stage is increased by a controlled amount by the cathode by-pass path consisting of $2.2 \mathrm{k} \Omega$ in series with a $1 \mu \mathrm{~F}$ capacitor. Some degree of cathode degeneration is necessary to linearize the transfer characteristic for the fairly large voltage swing required of this output stage, hence the $2.2 \mathrm{k} \Omega$ in this cathode bypass path.

Overall sensitivity of the Y amplifier is such that 2.5 mV r.m.s. causes I centimetre deflection of the c.r.t. spot. This represents a voltage gain of approximately 8,700 times in the Y amplifier.

X amplifier design

This stage is a straightforward long-tailed phase splitter with a degree of cathode degeneration caused by the two halves of the balancing potentiometer. The gain of the stage is set by the resistor by-passing this potentiometer. The long tail is returned to the -330 V line. The input to the stage is the output of the oscillator (I volt r.m.s.) and the output is connected directly to the balanced X deflection plates of the c.r.t. The value of the long tail resistor is chosen to achieve the same anode potential as that of the output stage of the Y amplifier, in order to avoid astigmatism of the c.r.t. spot. The balance potentiometer is set to centralize the spot on the c.r.t. screen in the X direction, hence the label " X-shift".

Cathode ray display

The ICP_{3} I tube used has asymmetrical Y deflection and symmetrical X deflection plates, and will operate anywhere between 350 and $\mathrm{I}, 000$ volts anode-cathode potential. The focus is automatic over this range. In the circuit described the tube operates at approximately 500 volts and auto-bias is used since the operating conditions of the tube are known to close limits, i.e., it is oniy required to operate on an ellipse within the screen diameter.

The only control is a potentiometer controlling the anode potential of the tube, which with an asymmetrical deflection system acts as the Y shift control.

Overall bridge circuit design

Selection of the bridge circuit required (Fig. 2) is achieved by S_{1} and the range of the bridge by $S_{2} . S_{1 a}$ and $S_{1 c}$ select the lower arms of the bridge. S_{Ib} connects the h.t. supply on the resistance range only. $S_{1 d}$ connects the low $-Q$ variable loss control in the Maxwell inductance bridge circuit. $S_{1 \mathrm{e}}$ connects the d.c. balance meter on the resistance range, and S_{11} shorts out the high- Q variable loss control in the Hay inductance bridge configuration and also serves to cut the gain of the Y amplifier to zero on the resistance range, by shorting the grid of V_{5} to ground.
In order to keep stray capacitance to a
minimum the d.c. balance meter is connected to the standard resistor rather than the rotor of S_{2}. The Y amplifier is permanently coupled to the top of the bridge, and all leads at this point are screened to cut down hum pick up. Stray capacitance at this point is of little consequence since it is across the input of the Y amplifier and does not affect the balance of the bridge. It is for this reason that the measurement terminal connected to the top of the bridge is called the "low" terminal, and the terminal connected to the right hand side of the bridge, the "high" terminal.

Energization to the bridge is via a lowcapacitance I:I transformer (fully described in the appendix). The transformer is connected so that the phase of the arm connecting to the standard capacitor is opposite to the phase of the oscillator output on the primary of this transformer. The capacitor $V C_{3}$ then connects between these points to provide the correction for stray capacitance as described above. The lead from the transformer to $S_{1 a}$ and $S_{1 c}$ is an insulated screened lead, with the screen used to connect the secondary of the transformer to the standard capacitor. This method of construction still further reduces the stray capacitance on the balance arm of the bridge.

Further phase correction is required on the two highest impedance ranges of the capacitance bridge. This correction is provided by $V C_{1}$ and $V C_{2}$. These capacitors are set using an air-spaced capacitor of low loss to give a zero setting of the loss control at balance. If the setting of the capacitor on either range is less than the minimum a small silvered mica capacitor should be placed across the whole centre-tapped range resistor, which will bring the capacitor within the range of adjustment. A capacitor of only a few picofarads will be needed. (A ceramic capacitor may also be used if silvered mica types of low value are not available.)

The range resistors are wire wound on the four lowest ranges, while on the three remaining ranges metal film resistors are used. Metal film resistors may, however, be used on all ranges. The standard resistor of the resistance range is also a metal. film resistor. Full details of suitable resistors are contained in the appendix.

The d.c. balance meter is protected from overload by the two diodes D_{1} and D_{2} together with the 560Ω resistor.

Using the bridge

Resistance Ranges. Select R on the switch S_{1} and rotate the balance control (with the $0-1 / 1-10$ switch to $1-10$). If a balance is not obtained rotate the switch S_{2} in a direction depending on the movement of the out-ofbalance with variation of the balance control. If the error increases with increasing balance arm reading, reduce the ohmic value of the range. If the error decreases with increasing balance arm reading, increase the ohmic value of the range. When a balance point is found press the d.c. sensitivity press switch S_{4} and using this as a "tapping key" find the exact null.

Capacitance Ranges. Select C on the switch S_{1} and rotate the balance control (with the $0-\mathrm{I} / \mathrm{I}-10$ switch to $\mathrm{I}-10$ and the Y gain control $R V_{5}$ set to a low gain). If a balance is not obtained proceed as with the resistance ranges in finding the correct range. As the balance is found, increase the Y gain until (with the use of the high- Q control) a horizontal line is obtained as shown in Fig. 4A, with the gain fully up. The 0-1/I-Io switch S_{3} may be used on the ro-100 pF range (the lowest) to provide a $0-10 \mathrm{pF}$ range of limited accuracy but nevertheless useful. As has already been said the zero error is negligible (due to the use of $V C_{3}$ to compensate for stray capacitance). Since the steps on the potentiometer are visible and represent about $0 \cdot \mathrm{I} \mathrm{pF}$ each, this extension of the lowest range is quite sensitive, and useful.

Inductance Ranges. Select either L (low-Q) or L (high-Q) as required and proceed as with the capacitance ranges. The $0-1$ switch is of little use on the lowest range of the inductance ranges since the secondary of the bridge supply transformer is deliberately, wound with resistance wire to prevent the oscillator being shorted out by the very low bridge impedance on the high capacitance and low inductance ranges (where the ratio arm is I ohm). The use of the resistive transformer winding reduces the sensitivity of the bridge on these extreme ranges, but the effect only becomes severe on the very low inductance range with a very low Q value. Consequently the $0-1$ range extension is not usable on this lowest inductance range because of the very broad null.

Calibration. This is best carried out using an accurate decade resistance box (preferably of $10,000 \Omega$ total value) on the $0-10 \mathrm{k} \Omega$ range, which is the most sensitive. The capacitance ranges may be checked with standard capacitors, or by measuring a range of capacitors on a known accurate bridge and then checking these on the bridge. The loss balance control may be checked by placing known values of resistance in series with a low-loss capacitor to make it lossy.. A similar method of connecting a resistor in series with an inductor of high- Q may be used to check the low- Q loss balance control. Some readers may prefer to calibrate the loss controls in terms of " D ", the loss factor ($D=1 / Q$). This gives a linear scale on the high- Q control whereas a Q scale gives a linear scale on the low- Q control.

Note. Before calibration the bridge must be set up for correct values of $V C_{1}, V C_{2}$ and $V C_{3}$. The bridge is set to the $1,000-$ $10,000 \mathrm{pF}$ range and a good quality silvered mica capacitor is connected for measurement. The bridge is balanced with the high- Q loss control set to infinite $Q(D=0)$. The capacitor $V C_{3}$ is then adjusted while maintaining balance with the balance control $R V_{1}$ until a setting is found where the oscilloscope display is a horizontal straight line (at exactly the same angle as that present when the bridge is switched to the resistance ranges). A horizontal line is

Fig. 5. Rear view of bridge front panel, showing the location of the X and Y amplifiers and the principal bridge components
scribed on the Perspex panel as an X reference line and the trace should be aligned to this using the X and Y shifts and rotating the tube while the bridge is switched to the resistance ranges). The bridge is next switched to the $100-1,000 \mathrm{pF}$ range and an air-spaced variable capacitor connected for measurement (the frame of the capacitor to the low terminal). A twin gang 365 pF or 500 pF is suitable with both gangs paralleled. The loss control is again set to infinite $Q(D=0)$ and capacitor $V C_{2}$ adjusted as above until a horizontal line is obtained at balance. This method is repeated using a smaller variable capacitor on the $10-100 \mathrm{pF}$ range and adjusting $V C_{1}$. Leads should be kept short, especially to the low terminal, in order to avoid hum pick up, which causes the trace on the tube to break up into a complex pattern, making balancing difficult. It is assumed in the above that the bridge frequency has already been set to the correct value of $1,592 \mathrm{~Hz}$ (or $1,600 \mathrm{~Hz}$ as described above).

Finally the calibration of the loss controls is part of the setting up procedure. This is carried out using either an accurate ohmmeter or bridge. The low- Q control is calibrated linearly from $Q=0, R=0$ to $Q=10, R=100 \mathrm{k} \Omega$. The high- Q control is calibrated to an inverse law $Q=\infty$, $R=0$, to $Q=10, R=\mathrm{r} \mathrm{k} \Omega$. The law being $R=1^{4} / Q$, or if calibrating in terms of " D ", $R=10^{4} D$ (since $D=\mathrm{I} / Q$).

The remainder of the article deals with constructional matters.

CONSTRUCTIONAL APPENDIX

Bridge components

$R_{1} \quad$ I $\Omega \quad 0.5 \%$ wirewound or metal film Welwyn 4015 D
$R_{2} \quad 10 \Omega \quad 0.5 \%$ wirewound or metal film. Welwyn 4015D
$R_{3} \quad 100 \Omega \quad 0.5 \%$ wirewound or metal film. Welwyn 4015D
$R_{4} \quad$ Ik $\Omega \quad 0.5 \%$ wirewound or metal film. Welwyn 4015D
$R_{5} \quad \operatorname{rok} \Omega \quad 0.5 \%$ metal film. Welwyn 4015 D
$R_{6} \quad 53.6 \mathrm{k} \Omega \quad 0.5 \%$ metal film. Welwyn 4015D
$R_{6} \mathrm{~b} \quad 46.4 \mathrm{k} \Omega \quad 0.5 \%$ metal film. Welwyn 4015 D
$R_{7 a} \quad 536 \mathrm{k} \Omega \quad 0.5 \%$ metal film. Welwyn
$R_{7 \mathrm{~b}} \quad \begin{aligned} & 4015 \mathrm{D} \\ & 464 \mathrm{k} \Omega\end{aligned} \quad 0.5 \%$ metal film. Welwyn
$R_{8} \quad$ Iok $\Omega \quad 0.5 \%$ metal film. Welwyn 4015D
$R_{9} \quad 560 \Omega \frac{1}{2}$ W 10% carbon
$R_{10} \quad 750 \Omega \quad$ I \% wirewound or metal film. Welwyn 4015D
$R_{11} \quad 560 \Omega+\mathrm{W} 10 \%$ carbon
$R_{12} \quad 15 \mathrm{k} \Omega$ IoW wirewound
$R_{13} \quad$ I50k Ω IW IO\% carbon
$R_{14} \quad 4.7 \mathrm{k} \Omega$ IW 10% carbon
$R V_{1} \quad$ 10 $\mathrm{k} \Omega 5 \%$ Colvern C.L.R. 7001/15S $R V_{2} \quad$ I $\mathrm{k} \Omega 5 \%$ Colvern C.L.R. $4001 / 15 \mathrm{~S}$
$R V_{3} \quad$ Ioo $\mathrm{k} \Omega \quad 5 \%$ Colvern C.L.R. $5001 / 15 \mathrm{~S}$ $R V_{4} \quad 1 \mathrm{k} \Omega$ 10\% Colvern C.L.R. $3001 / 15 \mathrm{~S}$
$R V_{5} \quad 250 \mathrm{k} \Omega \log$. carbon
$C_{1} \quad 0.01 \mu \mathrm{~F}$ nominal 0.5% silvered mica (selected preferably to 9940 pF)
$V C_{1} \quad 3-30 \mathrm{pF}$ airspaced trimmer! Mullard E7876 (or 7864/or)
$V C_{2} \quad 3-30 \mathrm{pF}$ airspaced trimmer! Mullard E7876 (or 7864/or)
$\mathrm{I}^{\prime} \mathrm{C}_{3} \quad 6-60 \mathrm{pF}$ airspaced trimmer. Mullard E7881 (or E7879)
D) OA200, iSizo, HSioio, etc.
D_{2} OA200, iSi20, HSioio, etc.
Meter $100-0-100 \mu \mathrm{~A}$. (Prototype uses Type SB. 305 from Henry's Radio Ltd.)
$S_{1} \quad$ Prototype uses three 6-way 2-pole Radiospares Maka-Switch Wafers with the index mechanism set to 4 -way, in order not to crowd the connections too much. (Similar switch available from Electroniques.)
S_{2} Radiospares Maka-Switch I2-way r-pole with index set to 7 -way. (Similar switch available from Electroniques.)
$S_{3} \quad$ S.p.s.t. toggle switch
S_{4} S.p.s.t. press to make
$T_{1} \quad 35 \mathrm{~mm}$ ungapped ferrite pot core, Mullard FX 2240. Primary: (wound on first) 42 turns 24 s.w.g. enamelled copper wire followed by copper foil screen. Low capacity filler then added to fill most of the remaining bobbin space (polyurethane foam was used in the prototype). Secondary: wound with 42 turns of 32 s.w.g. eureka, cotton covered or enamelled.
$T_{2} \quad$ See "Oscillator" section following

Making the wirewound resistors. The $\mathrm{I}, \mathrm{IO}, \mathrm{roo}, 750$ and $\mathrm{I} k \Omega$ resistors may be wound by hand if desired, as in the prototype, or metal film resistors may be used throughout. The wirewound resistors are wound on cards of $\frac{1}{16}$-inch thick paper base phenolic sheet, i inch square. Clearance holes are drilled near each corner for 18 s.w.g. tinned copper wires which are threaded as shown in Fig. 7 to form terminations. The three lowest values are wound non-inductively, by winding on a first layer equal to twice the required resistance and then winding on an equal length of wire

Fig. 6. Layout of oscillator and power unit chassis. (Connections to the X and Y amplifiers and the bridge circuit are made via a multi-way connection block on'top of the chassis)

Fig. 7. The specially made wire-wound resistors $R_{1}, R_{2}, R_{3}, R_{4}$ and R_{10}, showing the form of construction. Also in the picture are some of the metal film resistors forming the ratio arm. The common end of these resistors connects to a ceramic insulated terminal strip. R_{10} is mounted on S_{3}
in a' second layer, but in the reverse direction, the two windings being placed closely over one another. The upper layer is then trimmed on an accurate bridge to the required overall value. These three lowest values (1,10 , 100Ω) are wound with 24,32 , and 42 s.w.g. cotton covered eureka (cupronickel) wire. The two upper-value resistors are wound with a similar wire of 47 s.w.g. (enamelled) in a single layer. The reason for the non-inductive winding of the lower values is that, owing to the use of thicker wires for the lower values, the number of turns does not go down in relation to the resistance, so that the inductive component becomes of greater importance on the lowest values. The use of a flat winding also helps to reduce inductance by minimising the area of the winding. The prototype resistors were finally given paper labels and then several coats of a polyurethane varnish.

Oscillator. The capacitors of the Wien bridge are silvered mica of 1% tolerance. (Capacitors may be paralleled to obtain the required values.) The resistors are metaloxide in the prototype but carbon film would be an alternative. The thermistor is an S.T.C. Type A55, obtainable from Electroniques Ltd. The transformer, T_{2}, may be any good output transformer having a primary inductance of around 5 henrys (with up to 5 mA d.c.) and of $36: 1$ ratio. In the prototype the transformer was handwound using a $\frac{3}{4} \mathrm{in}$. stack of No. 74 laminations (Linton \& Hirst, Magnetic \& Electrical Alloys, Telcon, etc.) 0.014 in . silicon-iron fully interleaved. The primary is 1,600 turns of 40 s.w.g. enamelled copper wire. The secondary is 45 turns of 28 s.w.g. enamelled copper wire. Both windings are layer wound with interleaving and the primary is wound on first. Inductance of prototype 5.2 H (zero d.c.).
X and Y amplifiers. The construction of these is shown in the illustrations and only a few components need special mention. V_{4} is shown as a $6 \mathrm{BR}_{7}$, but many constructors will have the more common EF86, which may be used for V_{4} without any changes in
values, but the pin connections must be changed as the EF86 has totally different connections with the exception of the heater pins. Both types were tried in the prototype with equal success. The neon NEI may be Hivac Type 3L or 34L, American type NE2, Radiospares miniature neon (wire ended), or Thorn L.II61, 1163 or 1165 .

Silicon protection diodes fitted to V_{5} and $V_{3}(\operatorname{pin} 8)$ prevent the application of -330 volts to the heater cathode insulation of these two valves when they are first switched on. The diodes have no effect on the operation of the circuit after the valves have warmed-up, as can be seen from the normal d.c. voltage present; the diode at the cathode of V_{5} is reverse biased by 2.3 V ($1 \cdot 7+V_{f}$) and the diode at the cathode of V_{3} is reverse biased by $1.9 \mathrm{~V}\left(1 \cdot 3+V_{f}\right)$. The diodes may be any of the types quoted for D_{1} and D_{2} of the bridge circuit; in fact almost any silicon diode is suitable for this application.
C.R.T. display. The I-inch tube is mounted so that it can be rotated to set the X-axis horizontal. The tube is held by its base socket (B8G-Loctal) and by a clamp around the screen end of the tube. (Some soft material must be placed between the clamp and the tube, as the glass of the tube is relatively thin in such a small tube and is easily crushed.) In the prototype the tube base socket was fitted using slotted holes in the chassis plate, so that after rotating the tube the fixing screws could be tightened to hold the tube in the correct position.

Power supply

T_{3} : Radiospares "Economy Mains 250 V" $250-0-250 \mathrm{~V}, 75 \mathrm{~mA}$; $6 \cdot 3 \mathrm{~V}, 2 \mathrm{~A}$; 0-5-6.3 V, I A
$M R_{1-4}$: Westinghouse FCiI6 contact cooled 250 V', 60 mA (Henry's Radio), S.T.C. $\mathrm{C}_{2} \mathrm{D}$ contact cooled $250 \mathrm{~V}, 60 \mathrm{~mA}$ (Electroniques). Also Continental types E250, C50.
The $68-\Omega$ resistors "centre-tapping" the 6.3 V heater supply to ground are mounted on the base of V_{3}. The heater supply to the c.r.t. is connected to the cathode of the c.r.t. to reduce heater cathode leakage.

Note. The neon NEI may be used as a panel lamp if required as it is running at its normal brilliance and will therefore provide a suitable lamp. Beware, however, of using a self-contained neon lamp assembly designed for mains use, since this will normally contain a series resistor.

Cabinet construction. This may largely be to the taste of the individual constructor as no special precautions need to be taken. It helps greatly to use a reduction drive to the balance potentiometer, but otherwise the controls are all straightforward. The layout chosen places the controls very conveniently in that the hands do not obscure the main dial or the indicators when the bridge is in use. A left-handed person might prefer to transpose the whole panel left-to-right, however. The panel of the prototype is constructed in much the same way as those of the author's previous articles (see April

1968 W.W.) but in this case not all the dial markings are placed on the reverse of the perspex covering the metal front panel. To ease the problem of calibration a layer of stiff white card (of the sort sold by good stationers for artwork use) was placed behind the perspex and the calibrations marked on this in indian ink. The Perspex overlay then has clear panels left over these scales so that they can be read but are protected from dirt by the Perspex. The main balance control scale of the prototype has the Perspex cut away over its scale and a clear, and slightly domed Perspex cover fixed over this, cut out to allow clearance for the slow motion pointer of the drive to this control.
The bridge terminals are placed at the top of the panel so that bulky components may be placed on top of the instrument, and to this end a hard wearing Melamine laminate panel is fixed to the top of the case to prevent damage to the wooden case. (Warerite, Perstorp, Formica, etc.) The mains switch and fuse are also mounted in this Melamine top cover, but a small metal sub-panel is mounted in the cut out of the wooden panel behind this switch and is earthed so that in the unlikely event of an insulation breakdown of the switch or fuse, the switch dolly will not become live. Care should be taken to wire this type of panelmounting fuse holder so that the live incoming mains connection goes to the tip of the fuseholder and the connection to the transformer goes to the side connection. Thus, on removing the fuse, the carrier disconnects from the mains, before the metal parts of the carrier can be touched. If the side connection goes to the mains this is not so, especially if the fuse is not blown. Of course one shouldn't remove a fuse with the supply on, but people do just the same, and it is better to be safe than sorry.

B.B.C. Sound-in-Vision System

The. B.B.C. Research Department has developed an experimental sound-in-vision system for the single-line distribution of 625 -line television signals. Within each $4 \cdot 7 \mu \mathrm{~s}$ line synchronizing interval, a period of $3.8 \mu \mathrm{~s}$, symmetrically disposed with respect to the leading and trailing edge of the line synchronizing pulse, is occupied by a p.c.m. sound signal. The leading edges of the synchronizing pulses are preserved during transmission.

The sound signal is sampled at twice the line frequency allowing a bandwidth of 14 kHz to be transmitted. The two samples produced during each line period are converted to p.c.m. signals, delayed and compressed, and inserted into the video waveform during the next line synchronizing interval.

In order to provide room for the sound pulses throughout the full blanking interval it is necessary to extend alternate equalizing pulses from $2 \cdot 35 \mu \mathrm{~s}$ to $4 \cdot 7 \mu \mathrm{~s}$. On reception the sound pulses are extracted and reconverted to normal audio signals and the video waveform restored to standard form.

High-quality Electrostatic Headphones

Theoretical and constructional details for simple electrostatic units producing plane wavefronts, and operating from the push-pull anodes of a valve amplifier

by J. P. Wilson*, B.Sc., Ph.D.

The ability to hear sources of sound at their appropriate positions in space depends on several factors. The more familiar of these are the binaural cues; the nearer ear receives its message slightly earlier and, particularly at high frequencies, louder (Fig. 1). Other factors must also be involved because with binaural headphone listening all sounds appear to be within the head on a line between the two ears.

Two possible reasons for hearing sound sources out in space under normal conditions are motion parallax (the changes in the signals at the ears brought about by head and body movements) and the acoustic diffracting properties of the external ear. It was this latter factor which led the author to consider the present design.
The sound wavefront arriving from a source situated at some distance is nearly plane. It should be possible to stimulate this natural condition by providing a large flat radiator in which the signal is in phase all over its surface: in addition the radiator should be a poor acoustic reflector so that it does not re-reflect sound returning from the head and ears, nor form a semi-enclosed resonant cavity with the ear. An electrostatic device has characteristics which can approximate to these requirements.

Theory of electrostatic transducers

Hunt ${ }^{1}$ has shown that for linear operation an electrostatic device should be push-pull, and operate with a constant charge on its diaphragm. If, however, parts of the diaphragm can move independently, the constant charge principle will not hold on a local scale unless the parts are electrically independent. This can be achieved by using a very high resistance coating. ${ }^{2}$ The pressure at all points on the diaphragm will then be equal to the product of the field strength between the plates (produced by the signal voltage) multiplied by the charge density (derived from the bias voltage).

The motion of the diaphragm is controlled by the acoustic resistance of air at mid frequencies, by the mass per unit area at high frequencies, and by the tension of

[^1]

The finished units with headband.

Fig. 2. Constructional details of the units.

the diaphragm at low frequencies. ${ }^{2}$ The high frequency roll-off is well above the audible limit for diaphragm materials commonly used in electrostatic speakers. At certain low frequency the entrained mass of air and the tension of the diaphragn form a resonant system. ${ }^{1}$ This resonance determines the lower frequency limit of the device. It should not be made lower than required because this would limit the apparent sensitivity. ${ }^{2}$

The limitation on peak output imposed by the breakdown of air can be overcome by coating the plates with insulation. ${ }^{1}$ At low frequencies, however, the limit will be set by the diaphragm touching the plates.
Other features considered by Hunt ${ }^{1}$ to be desirable in an electrostatic speaker are concerned with altering the polar response and matching the impedance and are not applicable to a headphone design so will not be considered here.

A practical headphone design

The practical starting point was \mid an unpublished loudspeaker design by M. K. Taylor which gave many of the constructional details used here. It is proposed to deal with each of the elements in turn in such a way that the reader can modify design according to his own requirements.

The plates

These must be electrically conducting, acoustically transparent, non-resonant, rigid and flat. The first design ($7 \mathrm{in} \times 5 \mathrm{in}$) used perforated zinc which has excellent acoustic properties (55% hole area) but is not sufficiently rigid for practical purposes.

Experiments with various hole patterns in hardboard revealed that the holes should constitute at least 20% of the total area and that they should be spaced much closer than the shortest wavelength to be reproduced in order to avoid internal resonance and presumably also diffraction grating effects.

The dimensions of the plates are determined by two considerations. They should be large enough to overlap the ears all round and must be of the appropriate size ${ }^{\text {' }}$ to give the desired bass resonant frequency to the diaphragm. The present unit used perforated paxolin boards (Lektrokit: Chassis Plate

No. $4: 4 \frac{3}{4} \mathrm{in} \times 4 \mathrm{in}$) which provide insulation from the high voltages involved. These are rendered electrically conducting on their smoother sides as follows:

A stripe of high conductivity paint (Acheson Colloids Ltd.) is applied across the plate and brought out to a land for connection to the signal source (Fig. 2). The whole of the perforated area is then given a thick coating of colloidal graphite (Aquadag). In both cases care must be taken not to let any liquid run into the holes.

It is possible to dispense with the high conductivity paint (which is quite expensive) and make direct contact between the brass shims and graphite (Aquadag) lands on the plates.

When dry, the surface is polished with a dry cloth to remove any surface irregularities, or hairs, and blown thoroughly clean. A flame can be applied quickly to the surface just before assembly to remove any remaining dust or lint.

The spacers

These must have excellent insulating properties and be uniform in thickness. The actual thickness is not critical: thicker spacers will allow larger excursions at low frequencies but will require correspondingly greater signal and bias voltages to produce a given sound pressure.

Acetate sheeting of 0.04 in . thickness was used for the spacers and stuck to the plates with Evostick. This thickness was chosen partly to ensure uniform response in spite of small deviations from flatness in the plates and might with advantage be reduced to about 0.025 in . in less critical applications particularly if less bias and signal voltage is available. The holes required around the edges can be drilled after the spacers are fixed (Fig. 2).

A stripe of high conductivity paint (or Aquadag) is applied near the inner edge of the spacers for connection to the bias supply.

The diaphragm

This consists of a thin resistively coated film of stressed plastic of the type used by supermarkets for wrapping foodstuffs (Goodyear: Vitafilm). It is soft and acoustically dead, readily heat stressed, and is available in 0.0005 in . and 0.001 in . thicknesses.

The thinner material was chosen because it would be damped more readily by the acoustic loading.

The resonant frequency of the diaphragm will depend on size and shape, mass and tension. Too low a resonant frequency is undesirable because this will also necessitate using a lower bias voltage consequently lowering the sensitivity. It would also render the device more sensitive to any unwanted subsonic signal. The paxolin version has a resonant frequency of about 50 Hz in free space which when damped leads to a -3 dB point of about 30 Hz .

In practice the proximity of the ear and head reduces these frequencies by about half an octave presumably by increasing the effective mass of entrained air.

A conductive coating is needed on the diaphragm to allow it to charge up to the bias potential and to counteract any leakage of charge. But it should not be so conductive that charge can flow around during signal movements or linearity will be lost. A resistance within the range $100-10,000 \mathrm{M} \Omega$ measured between two parallel electrodes lin. long and separated by 1 in . would be satisfactory (a just detectable deflection on a $50 \mu \mathrm{~A}$ meter when fed from 250 V).

To prepare this coating the plastic sheet is pressed on to a piece of moistened glass using a rubber roller. When the upper surface is dry a little colloidal graphite is rubbed on with cotton wool. At first it wets the surface in a thick black layer which by further rubbing, using the same piece of cotton wool, is nearly all removed leaving a shiny surface just noticeably darkened.

When the whole surface is within the required resistance range it can be turned over and coated on the other side. (The water will not harm the first coating unless it is rubbed hard.)

The finished diaphragm can then be stuck with Evostick to the spacers on one of the plates and pressed between two flat surfaces to dry. Only the minimum of adhesive must be used so that it does not spread between the diaphragm and the conducting stripes.

Heat tensioning may be performed in several ways. The method of Taylor was to use a fan heater with restricted air flow: the method adopted here was to place the diaphragm assembly under a hot grill for a few seconds. The plastic goes soft and then the wrinkles shrink out: it can then be removed and the tension builds up further as it cools. The process may be repeated if for any reason it appears necessary.

The resonant frequency and therefore the tension appears to be constant for a given size of diaphragm. This ability to obtain a controlled tension is probably the chief advantage this material has over other plastics.

The two halves are next bolted together with 6 BA nylon nuts and bolts. Thin brass shims should be inserted in the appropriate
positions to make contact with the conducting stripes.

A single shim may be used for the bias supply if a small nick is made in the edge of the diaphragm allowing contact with the conducting stripes on both sides. Leads may then be soldered onto the shims and well insulated.

It is probably better to bind the three separate leads together at a few points only rather than twist them or use three-core cable, otherwise the capacitive load on the amplifier may be too great.

Acoustic damping

Without extra damping the response below 1 kHz is really quite irregular, as shown in Fig. 3. The plates themselves contribute a certain amount of damping as was deduced by comparing a similar diaphragm made on an open frame which had very characteristic drum-like properties.

Whilst it may be possible to obtain the desired damping by using plates with a very large number of minute holes this alternative was not pursued as the method adopted is simple and satisfactory, and in addition produces further electrical insulation. This consists of sandwiching the units between 4 mm layers of foam plastic attached with rubber bands, or sewing together the edges of the foam layers to form an envelope. Adhesive was not used because of the danger of filling the perforations and because it was thought desirable to be able to inspect the diaphragm from time to time.

The effectiveness of this treatment can be judged by comparing (a) and (b) in Fig. 3. Doubling the thickness does not lead to any further improvement.

Finally a headband is arranged to hold the units flat against the ears and just in contact. This can be a $12 \mathrm{in} . \times \frac{1}{2} \mathrm{in}$. strip of 16 gauge Duralumin bent to shape and given a slight twist at each end to hold the units flat against the ears. Owing to their light weight, lack of pressure and good ventilation these

Fig. 4. The electrical circuit for connecting the phones to a push-pull output valve amplifier.
headphones can be worn indefinitely in complete comfort.

Electrical considerations and maximum output

As the impedance of an electrostatic device is predominantly capacitive it presents its lowest impedance at maximum frequency. For optimum performance the source impedance should be sufficiently low to cater for the highest frequency. Below this the output will be constant and limited by the maximum output voltage of the amplifier down to the lowest frequencies where plate spacing further limits the maximum output.
As the capacitance of the headphone unit is only about 80 pF including leads it would be possible to utilise a step-up transformer between the anodes of a push-pull amplifier and the unit. However, the high inductance and low capacitance required to cover the whole audio frequency range in such a transformer would be difficult to achieve particularly in view of the high insulation required.
The output voltage available from push-pull anodes (Fig. 4) is adequate for most applications, however, and there would be little point in having much greater available output at medium and high frequencies than at low frequencies.

Besides its simplicity this method has the advantage that internal insulation of the plates is unnecessary unless the spacers are reduced to below 0.025 in because the breakdown of air is not reached. A high quality
output transformer may be used to step up the output of a transistor amplifier to a comparable voltage but separate provision would be needed for biasing.

Insulation of the plates would be necessary only for very high outputs and it would be practicable to obtain this only over a restricted frequency range.

After preliminary insulation tests to check construction the bias voltage should be applied. By observing the shape of objects such as a window opening or a fluorescent tube by reflection from the diaphragm it is possible to see that it is flat and not plastered against one of the plates.

The bias voltage should be set so that even when the diaphragm is blown towards the plates it will return to the central position by its own tension.

Using a Radford STA 15 (a 15W amplifier with h.t. supply at 375 volts) with no resistive load, the free field r.m.s. sound pressure is limited to 90 dB (rel. 0.0002 dynes $/ \mathrm{cm}^{2}$) from 30 Hz upwards by the voltage handling capacity of the amplifier. (As some amplifiers become unstable without a resistive load it would be safer to include this and accept the reduced output if stability cannot be checked by the user.) By reducing the spacers to 0.02 Sin the output above 60 Hz is increased to nearly 100 dB before the amplifier overloads but below 35 Hz the maximum output would be limited to less than 90 dB by the diaphragm excursion.

The actual sound pressure at the ears is about 10 dB greater than the free field pressure due to the reflective and sound gathering properties of the ear and head. This would also apply to loudspeakers, and indeed natural sounds, but not to headphones. The exact magnitude of pressure increase is dependent on frequency and on the direction of the source in space relative to the ear.

Performance tests

The units were tested for frequency response and square wave response using a B \& K 4133 microphone in contact with one of the plastic dampers.

This was done in several positions as uniformity cannot be assumed for the following reasons: uneven spacing between the

Fig. S. Square wave response at 150 Hz and 1.5 kHz for the two types of unit mentioned in the text.

plates causes variations in the signal field strength; tension controlled motion at low frequencies gives a curved deflection profile (with highest sound pressure in the centre) whereas air resistance controlled motion at high frequencies gives a constant displacement (apart from the extreme edges) and a uniform sound pressure; nodes and antinodes may be formed; a leakage path causes reduced sensitivity in this region.

Fig. 3 shows the frequency response under a number of different conditions: (a) shows the performance just off centre without the plastic dampers. There is a resonance at 50 Hz and a number of peaks and dips up to 1 kHz .

Curves taken in other positions (not illustrated) had the same main resonance but the frequencies of intermediate peaks and dips were quite variable. It is assumed that these were due to the formation of nodes.

Curve (b) taken at the same position illustrates that the effect of the foam plastic was to damp out all these irregularities. Curve (c) is an averaged response over an area of the diaphragm corresponding to the size of the ear.

Taking into account the lowering of resonance when in proximity to the ear (dashed line) the effective bandwidth is $25 \mathrm{~Hz}-25 \mathrm{kHz} \pm 3 \mathrm{~dB}$ without any sharp peaks or dips (all maxima and minima are plotted).

One of the interesting features of a device like this is the polar response pattern. If λ is the wavelength of sound, r, the radius of the generating surface, and x, the perpendicular distance from the centre, then for yery low frequencies when $\lambda \gg r$, the response pattern is a figure of eight.

Initially when $x \ll r$ pressure falls off slowly with distance but as x increases and becomes much larger than r, the response tends towards an inverse square law:

For very high frequencies, however, when $\lambda \ll r$, the device acts as a plane wavefront generator. Sound pressure is uniform across the beam (projected area of the diaphragm) and independent of distance but falls off rapidly outside the beam.

In practice, of course, much of the sound spectrum lies in the intermediate ${ }^{1}$ region ($\lambda \sim r$) and the characteristics will lie between the limiting cases outlined above.

It is obvious from these considerations that this does not form a suitable basis for a loudspeaker as the frequency response would vary greatly with distance and off-axis angle. This variation is reduced in full range electrostatic speakers by dividing up the frequency range and feeding the components into separate sections.

To illustrate the above points the frequency response has been plotted at 10 cm from the diaphragm in Fig. 3(d).

In headphones the condition that $x \ll r$ is easily satisfied and the wavefront should be nearly plane at all frequencies so that small changes of position or distance make little difference to the sound pressure. For reproducibility of psychoacoustic thresholds this represents a distinct advantage ovér conventional phones.

The square wave response is shown in Fig. 5 for the same microphone placement as Fig. 3 at 150 Hz and 1.5 kHz . This shows the

Fig. 6. (left). The effect of crossed soundpaths. Fig. 7 (right). Units put in parallel to simulate crossed soundpaths.
excellent phase characteristics of the units. The "ring" at 25 kHz indicates the internal resonance referred to above and is also apparent in the frequency response curves. Obviously at this frequency, so far outside the audible range, it is of no consequence.

Harmonic distortion was measured at a number of frequencies at a sound power level of 80 dB . The second harmonic ranged from about 0.5% at low frequencies (50 -200 Hz) down to about 0.2% at higher frequencies. Third and higher harmonics were less than 0.1% at all frequencies.

Different methods of assessing the transmissive and reflective properties of the units did not lead to consistent results. The reflection coefficient may be about 0.1 up to 1 kHz rising to about 0.5 at 6 kHz and perhaps falling above this.

With a probe microphone situated at the entrance to the ear canal it appears that the difference in response between using the electrostatic earphone and a source of sound at some distance, in a comparable direction, can be represented by a series of peaks and dips of $2-3 \mathrm{~dB}$ in the region of 2 kHz upwards. Although these are less than the fluctuations in response produced by the external ear itself (which in turn are dependent upon

The author wearing the headphones.

the direction from which the sound arrives) it should not necessarily be assumed that they can be neglected.

Subjective impressions

Several types of signals have been demonstrated to a number of observers including "hi-fi" enthusiasts, but not professional listeners. All were most favourably impressed by the smoothness and lack of coloration of white noise, the dead sound of clicks, and the naturalness and sense of presence of stereophonic music. They were unanimous in preferring this to any system of reproduction heard previously.

Distortion and other shortcomings in the signal source are of course also heard with greater clarity. Part of the increase in clarity is no doubt due to the absence of room reverberations.

Spatial effects

As the intention of the design was to simulate sound sources at a distance, the spatial effects are of particular interest. Although these effects cannot really be called natural they are far from disappointing.

Sounds appeared to be coming from many different distances as well as many directions, including, surprisingly, some above and below the horizon. Regrettably, however, a few sounds still persisted within the head or in close proximity to the ears. It was thought possible that part of this exaggerated impression could be due to the absence of the crossed soundpaths shown in Fig. 6.

A simulation of these was made by introducing two further units R^{\prime} and L^{\prime} connected in parallel with R and L respectively (Fig. 7). This did not effect any improvement, and it must be noted that these "crossed" paths would be deficient in low frequency components because of the distance of the units from the ears-see Fig. 4(d).

Furthermore, it must also be noted that the wavefront produced by a unit represents a single direction of sound only and will be inappropriate for other directions.

This limitation is shared by loudspeaker stereophony in which the illusion of sounds arriving from between the loudspeakers can be dispelled by rotating the head.

The great improvement in the externalization and spatial representation of sounds compared with conventional headphones, however, indicates that it is better to have
directional information which is sometimes inappropriate than none at all.

Further experiments using the larger perforated zinc units fixed in space to allow small head movements were also disappointing. It does not appear that motion parallax alone is the final requirement for realism.

Conclusions

The units described obviate some of the difficulties inherent in normal headphones for psychoacoustic work: variations of sound pressure with position on the ears and with efficiency of seal; poor response at low and high frequencies; and poor phase response.

On the debit side electrostatic headphones provide no sound isolation, and methods of overcoming this limitation tend to degrade the performance.

For music reproduction they provide greater fidelity than either conventional headphones or loudspeaker systems. They share with conventional headphones the absence of room reverberations but surpass them for spatial realism. They fall short of loudspeakers in providing spatial realism but provide greater clarity and separation.
Thanks are due to Mr. J. R. Ruscoe for constructing the units.

REFERENCES

1. Hunt, F. V., Electroacoustics, Harvard University Press, 1954.
2. Walker, P. J., Wide range electrostatic loudspeakers, Wireless World, May, June and August, 1955.

Our Next Issue

Speech Recognition. Part 1 of a two-part article on the automatic recognition of spoken English will investigate the elements of speech that can be differentiated most simply by a machine. These are called phonemes, and are not identical with syllables.
Digital Exposure Timer. A timer designed by a photographer for photographers, and built on digital elements, will be described with full details-theoretical and practical. The design meets the timing accuracy and range required in colour photography, whilst the components are cheap and readily available.
Circuit Ideas. We will be starting a new regula: feature--selections of original circuit ideas submitted by readers. These circuits were sent to us in response to the open invitation headed "Circuit Ideas" which appeared in the June and July issues of Wireless World. The request was (and still is) for functional 'bricks' which have proved useful to somebody at some time. Performance, originality of realization and economy of components are the most important criteria in selection. Five guineas will be paid for each circuit published.

News of the Month

Pay-TV company to disband

The boards of the Associated British Picture Corporation, British Home Entertainment Ltd and British Relay, all partners in Pay-TV Ltd, have unanimously decided that Pay-TV should cease to exist as an active company and should be run down as quickly as possible. This follows the Government's decision that the number of subscribers to Pay-TV should be limited to 150,000 and that the situation was to be reviewed again in 1976.

Subscription television began in the UK in 1963 and a pilot scheme was started in 1965 under a three-year licence. The directors of Pay-TV are convinced that coin-in-the-slot television experiment has proved to be successful and are willing to back their conviction with large sums of money if it were not for "impossible restrictions imposed by the Government".

Pay-TV have already invested about $£ 1 \mathrm{M}$ in the service which was confined to areas in London and Sheffield. To keep it running until 1976 would cost them another $£ 3 \mathrm{M}$. W'ith only 150,000 subscribers there would be no chance of recouping their investment and if in 1976 the Government decided to close them down they would be four times worse off than they are at present.

The Government decision was originally
A GEC-AEI test engineer setting up the i.f. amplifier of a 6 GHz transmitter-receiver using the microwave link analyser designed by Hewlett Packard. The G.P.O. has just placed a substantial order for this equipment for use $!y$ the Network Planning and Programming D:partment.

444
conveyed to the company on Julv 31st, 1968. Pay-TV Ltd replied, saving that the limit placed on the number of subscribers would make it impossible for them to continue to function. Pay-TV Lid received no reply and the next thing that happened was the October 25 th announcement in the House of Commons which stated that the Pay-TV experiment was to be terminated.
Later, at a meeting with the directors of Pay-TV, the Postmaster-General again reversed his decision and agreed that Pay-TV could continue. However, the unacceptable upper limit of 150,000 subscribers was insisted upon and as a result Pay-TV Ltd will now exist in name only in the hope that one day the Government will relax the restrictions.

Pay-TV Ltd have said that if the upper limit was raised to 450,000 subscribers the operation would become viable.

It could be argued that the number of subscribers required to enable the service to continue represents only a tiny percentage of the total viewing population and if these people want a coin-in-the-slot television service why shouldn't they be allowed to have it?

S.R.C. annual report

In its third annual report, out last month, the Science Research Council revealed that for the year ended last March $£ 38 \mathrm{M}$ of the Council's funds was devoted to basic research. Presenting the report, the chairman of S.R.C., Professor Brian Flowers, stated that almost all this money had gone into universities, either directly or indirectly. The report complains that fewer resources are available than are needed to carry out all the programmes which are desirable on "scientific grounds", and a system of priorities has been established. Most of the Council funds for the next few years will continue to be devoted to basic research; astronomy being given high priority at the expense of nuclear physics, but S.R.C. laboratories and university departments will be encouraged to look for applications resulting from basic research. Support will be given on a selective basis to particular fields of scientific and .technological importance. The number of academic and professional staff supported through research grants will be restricted in the hope of attracting trained manpower into industry or teaching. Substantial support for postgraduate training of scientists will
continue, with emphasis on training for in dustry. The falling proportion of the Coun cil's resources to be spent in the nuclear physics field will be put towards participation in the 300 GeV accelerator or a simila international project. Despite the Government's decision not to participate in the proposed 300 GeV European accelerator la boratory, the Council reaffirms its policy of recommending that U.K. participation in this or a like project will be essential to securs the long term future of elementary particls research in Britain, and the Council will continue to press for a reversal of the decision. Progress is being maintained in both optical and radio astronomy, and plans are prepared for work to be undertaken in the region between these two, infrared astronomy. Most of the radiation from the galaxies occurs at infrared frequencies and it has been agreed to devote increased effort to this field following recent interesting discoveries in America. In engineering research, the report gives examples of progress in the application of computers to engineering in various fields. Report of the Science Research Council for the year 1967-68 is available from H.M.S.O., price 7s 6 d .

Radio Love

A group of people intend to set up in London their own independent radio service, to be known as Radio Love. To avoid coming under the jurisdiction of the current Post Office licensing regulations (which cover frequencies up to $3,000 \mathrm{GHz}$) they intend to use a laser beam as the means of carrying information. The idea is to use a galium arsenide laser with a beam, shaped by a reflector, in the form of a horizontal disc inclined towards the horizon from a height of about 200 ft . The laser will be modulated with an r.f. sub-carrier carrying the audible information. The receivers will be conventional with the addition of a photocell, housed in a small reflector, that will feed directly into the aerial circuits of the receiver. A representative of Radio Love told us that it is their intention to house the transmitter on top of a tall building in London and to have similar repeater stations to cover shadow areas. The service is planned to start next year, Post Office permitting, covering a radius of three or four miles from Charing Cross.

COMSAT earth station

An earth station with a $97-\mathrm{ft}$ diameter rotatable paraboloid was brought into operation in September by the Communication Satellite Corporation. The station, which is situated in a mountain valley 50 miles south of Morgantown, West Virginia, is one of four identical stations being built by Philco-Ford under a $\$ 7.6 \mathrm{M}$ contract from COMSAT. The other three stations are at Cayey, Puerto Rico; Jamesburg, California; and Paumalu, Hawaii.

The stations which transmit in the $6-\mathrm{GHz}$ band and receive at 4 GHz for operating through the Intelsat satellite network, can work orbiting satellites from 5,000 miles to a synchronous altitude of 22,300 , statute miles. Up to 5,000 channels in each direction can be handled simultaneously--television

The 470-ton earth station built by PhilcoFord in West Virginia to operate within the Intelsat network.
signals occupy ten channels and telephone and telegraph signals use one channel only. The station is built in a valley to minimize interference from other electromagnetic signals.

One of the first tasks carried out by the station was the transmission of the Apollo splash down pictures, however that is another story which follows.

Satellite terminal designed and built in $\mathbf{1 6}$ days

A time limit of 16 days was set for the General Electric Company of America to develop and build a portable satellite terminal capable of transmitting colour television signals for Western Union International Incorporated. The terminal was to be installed on the aircraft carrier Essex so that live colour television signals of the Apollo 7 splash-down could be transmitted. The equipment, which was produced on schedule, consisted of a 6 -kW television transmitter, video processing equipment, power supplies, two-way audio transmission equipment, a 5 m diameter folding parabaloid aerial with associated gyro control and automatic tracking equipment.

The signals from the portable station were transmitted via ATS-3 to the West Virginia station and from there to the TV net work pool in New York for distribution to all parts of the world.

Radio communications in tunnels

The use of a tunnel as a sort of waveguide so that reliable communication can be established with moving vehicles in tunnels is being investigated by Bell Telephone Laboratories of America. The problems associated with using v.h.f. communications in tunnels are well known-low signal strength, dead spots, etc. It has been found that by placing a microwave transmitter near the entrance to
the tunnel and directing the energy into the mouth of the tunnel good communications can be established with moving vehicles even if the tunnel is a winding one. This is because the microwave energy is not absorbed by the tunnel walls, instead, the walls themselves act as very good reflectors which guide the waves, by reflection, down the length of the tunnel. Only at the open ends of the tunnel does the signal strength fall off as the waves spread out into space.

Tests were made in a tunnel at 11.2 GHz . A vehicle equipped with receiving and measuring equipment drove down the tunnel and the following facts were obtained. At $2,000 \mathrm{ft}$ from the transmitter signals had dropped only a few dB as against the more than $30 \mathrm{~dB} / 1,000 \mathrm{ft}$ associated with v.h.f. equipment. In fact for most of the length of the tunnel the received signal was 6 dB higher than if the vehicles were the same distance apart in free space! Tests were made over a wide frequency range, from 153 MHz to 11.215 GHz . For any given distance between the transmitter and receiver the higher the frequency the better the reception. To date, however, no theory exists that will explain the inter-relationship between distance, frequency and loss rate.

T.A.C. report

The case for retaining the existing 405 -line television services radiated in the v.h.f. band for at least seven years after the start of their duplication on 625 lines in the u.h.f. bands is set out by the Television Advisory Committee in its 1967 report. In concluding its recommendations on the eventual role to be played by the v.h.f. bands in the general pattern of frequency allocations, the report states that the ultimate objective of six services of national coverage (two on v.h.f. and four on u.h.f.) will be jeopardized unless additional channels for broadcasting can be made available above 216 MHz in Band III and above 854 MHz in Band V. The committee recommends that the possibility of securing additional channels be re-examined. Report of the Television Advisory Committee 1967 is a record of the background of the study of methods and timing of changing the definition standard (405 to 625 lines), which the Government accepted in February of that year. It is obtainable from H.M.S.O., price 2s 6d.

Computer-aided design
 centre

The latest development in the establishment of a Centre for Computer-Aided Design at Cambridge by the Ministry of Technology is that negotiations are taking place with International Computers Lid with a view to placing a contract for managing and running the Centre under Ministry of Technology direction. The contract will also enable I.C.L. to appoint consultancy staff who will be available to assist users of the system. I.C.L. supplied the Atlas 2 computer on which the Centre is based and already has teams on site concerned with commissioning and maintaining the computer.

The Centre is expected to be able to start work on Computer-Aided Design projects approved by the Ministry about mid-1969.

The Centre will provide multi-access facilities working largely through the medium of teleprinters but using displays and other devices in some instances. It is intended that at the outset a good deal of the work will probably use the multi-access facilities on site.

The Ministry's plans to set up the centre were first announced in July, 1967. It is expected that about $£ 2 \frac{1}{2}$ million will be required to cover the initial costs and running expenses for the first five years of operation.

B.A.C. to build two Intelsat IV satellites

The British Aircraft Corporation, as leading sub-contractors to Hughes Aircraft Corporation of America, will assemble two Intelsat IV satellites in the U.K. with the assistance of Compagnie Français Thomson-Houston of France and AEG Telefunken of Germany. In addition B.A.C. and the French and German companies will manufacture a good deal of the sub-system hardware for three of the space-craft.

The first satellite in the Intelsat IV series is planned to be launched in 1970. B.A.C. already have much experience in the technological and scientific satellite field. However, this will be the first task involving communications satellites.

Satellite-tracking laser

An experimental laser system for high precision tracking of artificial satellites has been developed by Hitachi Ltd, with subsidies from the Ministry of International Trade and Industry, Japan. Based on a ruby laser, the experimental tracking system is claimed to be ten times more accurate than conventional radio tracking devices. The artificial satellite is first sighted through a small telescope; the laser is then aimed at the satellite through a second more powerful telescope. A special reflector on the satellite bounces the laser beam back to the tracking system's receiver, which comprises a light collector and photo-multiplier. Very short pulses with peak power of 5 megawatts at an average repetition of one per second for a duration of six minutes are emitted by the ruby laser, providing pulse characteristics which allow highly accurate tracking. In its present de-

sign, the laser system can track satellites in orbit at $300-2,000 \mathrm{~km}$ altitudes and it will be put to work within the next six months to track a number of satellites fitted with a laser reflector.

'Nobel'' Prize for British Engineers

An annual presentation to be known as the "MacRobert Award", of $£ 25,000$ and a gold medal, is to be made to an individual, or team of up to five people, who contribute the most outstanding innovation in the fields of engineering or other physical technologies or in the application of physical sciences. This is a major award, from trusts formed by the late Lady MacRobert, which is intended to provide a balance in the U.K. with the renowned Nobel prizes for contributions to science. The MacRobert trustees intend that their funds should be used to enhance the national prestige and prosperity of Great Britain and entries for the prize will be confined to ideas which originate and grow in this country. Administration of the award will be handled by the Council of Engineering Institutions. When announcing the award scheme at a recent press conference, Sir Leonard Drucquer, chairman of C.E.I., said the award would not be made for an innovation purely on its commercial success but also on its benefit to mankind coupled with the effectiveness with which development problems had been overcome. In selecting prizewinners, MacRobert Trusts will be advised by a committee comprising a chairman and nine members. In the chair will be Lord Hinton of Bankside, and his committee will be made up of three members nominated by the Royal Society and the remaining six nominated by the C.E.I. Applications should be submitted to the Council in the period January to April inclusive each year and will be accepted from firms, organizations, laboratories or individuals. Presenta-
tion of awards will take place at the end of each year. Full details can be obtained from the MacRobert Award Office, Council of Engineering Institutions, 2 Little Smith Street, London, S.W.1.

Optical pumping now a Westinghouse patent

A patent that affects all concerned with any type of optically pumped laser was issued on September 24th to the American Westinghouse Electric Corporation by the United States Patent Office. The patent recognizes the fact that optical pumping, which is basic to lasers, was invented by Dr. Irwin Wieder at the Westinghouse Research Laboratories in the late 1950 s .

Fact finding tour

Earth stations, either completed or under construction, in Hawaii, Japan, Thailand, Australia and Italy will be visited over a period of about six-weeks by B. A. Lower director of experiments at Goonhilly. The object of the tour is to secure for the Post Office up-to-date technical knowledge about the way other countries are meeting the problems of earth station design, construction and operation.

Electronic surveillance aid

A compact television camera, equipped like a rifle with a telescopic sight and a stock is being tested, as part of a helicopter air surveillance system, by Marconi in co-operation with the British Army. In a recent trial, signals were successfully transmitted from the aircraft to a ground station. Results suggest that the camera, equipped with a zoom lens, provides a magnified bird's-eye view of operations on the ground, making information instantaneously available at a forward command post while a reconnaissance mission is being carried out. Using

Our contributor of "World of Amateur Radio", besides being a radio amateur with the call sign G6CL, is Alderman fohn Clarricoats, O B.E., f.P., Mayor of the London Borough of Enfield. He is seen here in both roles taking an active part in the "famboree on the Air 1968" at the Edmonton Venture Scouts'amateur station.

microwave radio link equipment,' signals ser. over distances of several miles were dis played on a monitor at the base, where clea steady pictures were obtained. Work is beink carried out on a camera and associate equipment for night viewing, which woulc further extend the usefulness of the systen for tactical surveillance purposes.

More on Explorer 38

Following our announcements in the two previous months concerning this satellite wi have heard from the National Aeronautic and Space Administration that the aerial: have now been extended to their full length The satellite is now five times larger than an: object placed in orbit and measures $1,500 \mathrm{f}$ in diameter.

The satellite is being used to monitos low frequency signals from space and the earth.

New Crystal Palace aerial

As part of the expansion of television trans. missions in the London area, a new u.h.f transmitting aerial was brought into service in August, on the B.B.C's 645 ft tower al Crystal Palace. At present radiating BBC-2 programmes, the. new aerial, supplied by E.M.I. Electronics, will later transmit the duplicated BBC-1 programme in the u.h.f band. A similar aerial currently being installed on the same tower is for I.T.A programmes duplicated in the u.h.f. band which will be brought into service concurrently with the start of the BBC-1 duplicated service. The aerials are mounted colinearly on a 63 ft extension to the tower and are enclosed in a 5 ft -diameter reinforced plastics cylinder. Each aerial will be able to radiate two programmes with maximum e.r.ps approaching 1000 kW .

Valve and
 semiconductor sales

The British Radio Valve Manufacturers' Association and the Electronic Valve \& Semi conductor Manufacturers' Association have announced the following total sterling value of their members' sales in the second quarter of 1968 :

Valves and tubes $£ 15.3 \mathrm{M}$.
Semiconductors $£ 10.4 \mathrm{M}$.

R.A.F. reorganization

On January 1st R.A.F. Signals Command will be renamed 90 (Signals) Group and will join Bomber and Fighter Commands as part of the new Strike Command. The responsibilities of 90 Group will be the same as those for Signals Command, the change being purely administrative.

"Codes and Code Converters"

We regret it has been necessary to delay the publication of Part 2 of "Codes and Code Converters" by N. M. Morris.
Tailpiece. Sales talks thinly disguised as technical consortia have been called "Tech-sortium" by the vice-president of Hughes Aircraft speaking at the E.I.A. autumn conference in America.

Direct Broadcasting from Satellites

A single satellite in geo-stationary orbit could replace the 44 television stations and numerous booster stations now in use in this country. This became clear at a recent I.E.E. colloquium called "Direct Broadcasting from Satellites" held in London. In such a system, which, we suggest, could be called DOMSAT, signals would be received and processed directly by a domestic television receiver and aerial installation instead of by an earth station for distribution as is the current practice.

The choice of frequency and modulation method used in such a system will be influenced by the need to keep the equipment at the receiving end as simple and as cheap as possible and at the same time not to place too many stringent requirements on the satellite.

Ideally, the satellite would transmit at u.h.f. using amplitude modulation and provide a signal strength equal to that of existing television transmitters. At u.h.f., and v.h.f., propagation conditions are practically as in "free space" and attenuation is negligible. However, if either horizontal or vertical polarization is used, a complication arises in that in passing through the ionosphere the plane of polarization is twisted due to Faraday effect. So it would appear that circular polarization would be the sensible choice. It has been established that to provide full television coverage, as far as the U.K. is concerned, a beamwidth of 1° is required. A u.h.f. system would require a space-borne aerial with a diameter of about 30 m , which is not beyond the bounds of possibility, and a transmitter power of 25 kW which would be very difficult, if not impossible, at the current state of the art. Another severe problem with u.h.f., as pointed out by T. Kilvington of the Post Office, is that the area of possible co-channel interference would reach to about half way down Africa.

Most speakers plumbed for the 11.7 to 12.7 GHz band allocated internationally to broadcasting as being the best solution as far as the satellite was concerned. At these frequencies the dish diameter is reduced to about 1 m . To provide good-quality television signals about 60 kW of transmitter power is required if amplitude modulation is employed and only 250 W if frequency modulation is used. Although the latter system is not so economical as far as bandwidth is concerned, 25 MHz as against 5 MHz for a.m., problems of satellite power supply and heat dissipation from the transmitter output stages are not so severe. Most of the figures
given here were presented in a paper by G. J. Phillips of the B.B.C.
G. K. C. Pardoe of Hawker-Siddeley Dynamics speaking on the subject of spacecraft design did not think that aerial size was a limitation and that very large aerials could be "grown" in space. His paper was intended to spread confidence amongst electronic engineers and stated that once it was known what was required of the satellite and what it had to carry it could almost certainly be done. On doubts expressed by some speakers regarding the satellite's ability to maintain the required pointing accuracy, 0.1° was mentioned, he said that space-craft with pointing accuracies of 1 second of arc had been designed for astronomical use. He urged electronics engineers to produce something concrete as soon as possible so that, as he put it, "space-craft designers would not be reading from another country's script".

Two papers dealing with satellite power supplies were given. A system based on very thin (125μ) silicon solar cells mounted on polyimide film with a power/weight ratio of about $50 \mathrm{~W} / \mathrm{kg}$ was described by F. C. Treble and R. L. Crabb of R.A.E. The solar cells, during satellite launch, are stacked in a container concertina fashion. They are extended by a telescopic tube containing a gas cylinder which is operated pyrotechnically.

A satellite in a geo-stationary orbit positioned to serve the U.K. would, during. certain times of the year, be in eclipse for periods of about 70 minutes around midnight. A continuous television service would require, if solar cells were the source of prime power, some form of power storage system which would be heavy and would incur high launch costs.

A brief review of the principles of thermoelectric and thermionic converters used with solar, radio-isotope and nuclear reactor heat sources was given by J. Myatt of A.E.R.E. Using these methods power/weight ratios of between 24 and $52 \mathrm{~kg} / \mathrm{kW}$ could be achieved. The solar heat source method would require a parabolic reflector that was continuously pointed at the sun and during periods of eclipse and energy could be stored in the form of hear. Safety problems in the event of an abortive launch could provide serious problems with the radioactive heat sources.

If the system is put into operation domestic television receiver designers will be asked
to provide a unit that will enable standard television receivers to use the satellite's signals. As the present vision signal is amplitude modulated at u.h.f. and as the satellite's signals will probably be at s.h.f. with frequency modulation the problems are not going to be small.
R. N. Jackson read a paper prepared by himself and P. L. Mothersole and S. J. Robinson (all of Mullard) that pointed out the obvious places for injection of the signal into a television receiver. These were the aerial socket, the i.f. amplifier input and the video amplifier input. These, in turn, require an amplitude modulated u.h.f. signal, an a.m. intermediate frequency at 35 MHz , and a video signal. A dish aerial of 1 m diameter was thought to be the best for the job with a microwave converter at the aerial. The converter, which would eliminate the need for a waveguide feed to the television receiver, would probably consist of a hotcarrier diode mixer and a Gunn-effect oscillator. In the paper, it was said that either a wide-band fixed-tuned or a tuneable converter could be used. If the fixed-tuned approach was made and the converter output was fed directly into the receiver's aerial socket the oscillator would have to be accurate to within $\pm 100 \mathrm{~Hz}$ (at microwave frequencies) and the system would possibly be subject to interference from ground stations. Tuning would be carried out at u.h.f. With the tuneable converter, problems and expense would be incurred in remotely tuning the converter at the aerial. With either of the systems it was stated that two mixers would be required to produce an output at i.f. to avoid second channel interference.

It was suggested that the satellite signal could include a pilot to lock the mixer oscillator to provide the necessary frequency stability. However, such a pilot would fall at the vision carrier frequency of the fourth or fifth channel away from the required one.
J. P. Penney of Radio Rentals proposed that the composite signal could consist of a 12 GHz carrier frequency modulated by a 35 MHz amplitude modulated video carrier. Such a signal would be down-converted at the aerial to about 100 MHz so that it could be fed via coaxial cable to an amplifier and discriminator. The output of the discriminator would be in standard form and could be fed straight into a television i.f. strip.

There are numerous problems to be solved if direct broadcasting from a satellite is to be achieved. How can a parabolic aerial, microwave converter and associated electronics be supplied at a cost acceptable to the general public ($£ 60$ was mentioned)? On top of this there is the cost of modifying existing television receivers and the cost of maintaining aerial-mounted electronics. The latter problem is alleviated to some extent by the fact that the aerial can be mounted adjacent to a window and need not be on a rooftop. The aerial problem may be solved by a sandwich wire planar array that was described by R. Graham of Elliott Automation if it could be economically manufactured.

The system may be ideal in newly developing countries starting a television service from scratch but not in the U.K. for many years.

Sound and Vision in the Queen Elizabeth 2

Passengers in Cunard's latest transatlantic liner will be served by a six-channel audio system which is part of a comprehensive sound complex embracing entertainment, emergency calls, crew orders and alarms. It is the first time that all these services have been combined with a ship's broadcasting system and the control equipment was specially developed and installed by Tannoy Marine Ltd. The connection of over 1,800 remote loudspeakers to the system and a total available audio power of 4.25 kW gives some idea of the scale of the operation.

Audio Equipment

The main control console and distribution equipment are housed in a single operations centre but there are also subsidiary systems for turbine control, machinery control, restaurant service and the ship's theatre. Priority criteria determine when the subsidiary systems are connected into the main complex for emergency calls. The amplifiers are built up to the required output with
combinations of two basic modules; one having 60 W output and the other 200 W output. These two standards of output power were chosen as being conveniently related to the different loudspeaker loads. In their construction, silicon transistors are used throughout.

The six-channel cabin entertainment provides for, (1) background music, (2) performance music, (3) an hourly four-language news service and (4,5 and 6) a selection of either "off air" radio programmes or control room originated material. It is possible for the passenger purser to break into all cabin and public room loudspeakers to make an announcement and, similarly, the crew purser can interrupt crew and officers programmes. Emergency calls from the bridge can override all programmes.
In the photograph of the equipment bank, two tape recorders can be seen just above the control desk, and at the top are just discernible, two f.m. tuners and two a.m. tuners. The left-hand tape recorder plays a continuous recorded tape which has a 23 hour capacity (not 24 -hour, to avoid the

Audio control desk and equipment racks

same music being played at the same time each day) for service (1). The right-hand recorder is used to provide the 15 -minute news service every hour in four languages, the translated recordings being made on the spot. The nightclubs have separate discotheque equipment and the theatre its own p.a. system from which the audio çan be taken for relaying over the ship's broadcast network.
A final requirement of the system is the provision of "at anchor" fog warning signals. These comprise an electronic gong at the stern and an electronic bell at the bows sounded through Tannoy high-power units (recordings of the bell and gong installed in the original Queen Elizabeth).

The only equipment which operates entirely independently from the general sound reinforcement equipment is the induction loop radio interpretation system which is installed in the theatre and which gives a choice of several languages plus one floor language. Again, the circuitry is solid-state and stand-by modules are incorporated in the equipment. All of the systems operate from 240 V 60 Hz a.c. and in the event of an a.c. failure the emergency call circuits of the system are switched automatically to an independent 50 V d.c. stand-by supply which will give 36 hours continuous operation. The main equipment is housed in the 12 metal racks shown in the photograph, installed in the air-conditioned control room.

Television System

Provision of television entertainment equipment is being handled by Marconi Marine Ltd. It comprises basically two multi-standard master television receivers feeding over 1,000 terminal units in cabins and public rooms. Although similar in layout to a conventional land-based relay system it differs in one important respect; the parameters of the received signal will vary according to the ship's sailing schedule as she moves out of range of one country's transmitters and into range of the next. Six vision programmes can be provided and these are likely to be picked up from transmissions in any of the television broadcast bands, I, III, IV and. V, either vertically or horizontally polarized and on any of the known system standards, except the 405 -line.

Starting therefore with the aerials, these
are a cross-polarized type designed by Marconi and built by J Beam Aerials. A separate aerial for each band is mounted on a common mast which is rotatable, the rotation being controlled by an operator in the main control room (the same room that houses the Tannoy audio system). Also mounted on the mast is a Band II aerial for part of the radio services. Television signals from the aerial cluster are applied to the Marconi master TV receivers which are adjusted locally to suit the signal parameters e.g. $625-50 \mathrm{~Hz}$ or $525-$ 60 Hz , positive- or negative-going video, a.m. or f.m. sound and appropriate intercarrier spacing. No provision is made for 405line reception since programmes using this mode of transmission in the U.K. will shortly be duplicated on 625 lines.

Vision output from the master receivers is IV positive-going and the sound output is at audio frequency. The sound and vision signals are extracted in these forms so that they can be suitably processed for feeding over a Rediffusion h.f. wired relay system which is the system employed for distribution to the remote viewing units. The vision signal is remodulated on to a $5.5-\mathrm{MHz}$ carrier and distributed to the viewing units via individual pairs. The accompanying sound channel is carried on the same cable at audio frequency.

The vision signal retains its original line standard when it is routed to the terminal units and at first it is surprising to learn that the terminal units are not switchable from one line/field standard to the other. They are Rediffusion terminal units designed ostensibly to operate on the $625-$ line $50-\mathrm{Hz}$ field standard but they are also expected to work on 525 lines at $60-\mathrm{Hz}$ field frequency without adjustment by the viewers. Any distortion of the picture geometry when the standard changes, because of the effect of the increased field scanning speed on the current through the field deflection coils,

Lincompex r/t transmit and receive terminals

GE.C. type RC/410/R. h.f. synthesized communications receiver.

is put right by electronic adjustment of the picture height by automatic correction circuitry. Channel selection on the terminal units, which are supplied to Marconi Marine on sub-contract by Rediffusion, is by a rotary switch. As well as "off air" programmes, a telecine machine with two projectors in the control room allows films to be shown without a break. Also a small television studio enables "live" interviews or similar programmes to be distributed. It is expected that about seven colour receivers will be ordered by the shipping line for use in public rooms and these will have to be dual-standard-N.T.S.C./PAL receivers.

Marconi Marine are also responsible for serving the cabins with a.m. radio signals from 150 kHz to 30 MHz and v.h.f./f.m. signals, for passengers who may wish to use their personal radio receivers. The a.m. signals are received on a whip aerial and the f.m. signals from the Band II aerial on the television aerial mast. They are distributed through the company's "Pantenna" system and are also fed to the Tannoy system's a.m. and f.m. tuners to provide its "off air" programmes. On the ship's operational side, electronic aids supplied by Marconi's include a recording echo sounder and visual depth meter, a weather facsimile receiver and chart recorder, an automatic direction finder and two lifeboat transceivers.

R/T Communication

Ship-to-shore radiotelephony communication services employed by the QE2 include the new link compression and expansion techniques (Lincompex) evolved by the G.P.O. The GEC-AEI Lincompex II incorporates these techniques and is used in QE2 in conjunction with GEC type RC/410/R synthesized receivers and International Marine Radio Company's transmitters.

In this system 300 Hz of the audio passband accommodates a control signal. Voice signals to be sent are compressed and the 300 Hz -wide control signal is impressed with the compression details. At the receiving end the control signal determines the amount of expansion to be applied to the voice signals to restore them to their original form. This process allows full use to be made of the transmitting power and a consequent improvement in the signal/noise ratio. The GEC RC/410/R receiver, which was described in Wireless World for February 1968, page 712 , covers $2-30 \mathrm{MHz}$ and features a built-in frequency synthesizer. Signal frequency is displayed digitally, the display being locked to the frequency synthesizer. A single knob allows the receiver to be tuned in 1 kHz or 100 Hz steps and frequency stability is said to be 5 Hz at 30 MHz .
I.M.R.C. has supplied four long-distance communication transmitters, which are stated to be "self-tuning". In reality, the transmitter exciters and remote tuning for the power amplifiers are located in the radio room while the power amplifiers are sited near the funnel, which carries the transmitting aerials. Selection of frequency is carried out on low power using two rotary switches and, on switching to high power, the power
amplifiers are brought into tune by a servo-driven system.

Three of the transmitters, type ST1430A, cover the range $1.5-25 \mathrm{MHz}$ and have a peak envelope power output of 1 kW . The fourth, type ST1400, covers $405-525 \mathrm{kHz}, 1.6-$ 3.8 MHz and from 4 to 25 MHz in seven bands, and has a $1500-\mathrm{W}$ p.e.p. output. Two v.h.f. transmitter/receivers by I.M.R.C., installed on the bridge, will be used for communication with the ship's launches, when in use, and for communication with tugs, harbour masters and other services, when entering and leaving port.
A modern contribution to the liner's communication efficiency makes use of expertise gained in the rival aircraft industry. The h.f. and v.h.f. aerials employed for ship-to-shore communication were supplied by the British Aircraft Corporation and were originally developed as notch aerials for use on highspeed aircraft. Although the aerials fitted to the QE2 cannot be accurately described as

Notch aerials mounted on the mast of R.M.S. Carmania.

notch aerials they are the products of a novel application of the notch principle and their small size (dimensions of the h.f. version are $150 \times 46 \times 76 \mathrm{~cm}$) enables four transmitter h.f. aerials to be mounted on the funnel structure and one receiving aerial on the wheelhouse adjacent to the radio room. Two v.h.f. notch aerials on the mast are for radio links between the bridge and the ship's launches and tugs. Notch aerials replace the conventional wire aerials with their attendant disadvantages, including fading due to screening and icing-up, when slung on the ship's superstructure, and damage from galeforce winds.

In our photograph of notch aerials on the mast of R.M.S. Carmania, which was used as a test bed for the QE2 equipment, the aerial mounted on the after side of the crow's nest is an h.f. type and the two aerials fixed fore and aft the mast above the crow's nest are v.h.f. type. V.h.f. notch aerials are normally mounted in pairs on opposite sides of the mast to provide 360° coverage and are coupled by an associated phase feeder system.

Personalities

C. D. Hannaford, B.Sc., Ph.D., aged 32, recently joined Ferranti Ltd, Dundee, as head of the Ferrite Group. For six years before joining Ferranti Dr. Hannaford was a lecturer in the Department of Electrical and Electronic Engineering at Leeds University. A specialist in electromagnetic wave propagation, Dr. Hannaford took his degrees in electrical engineering at Leeds University after five years in the Royal Air Force Radar Branch.

The Saarland Government has conferred on Dr. Walter Bruch, the inventor of the PAL colour television system, the title of Professor "in recognition of his outstanding scientific merits". The honour was conferred on him at the recent annual conference of the FernsehTechnische Gesellschaft e.V. (the German Television Society). Professor Bruch, who is 60 and is head of television basic development of AEG-Telefunken, received the Geoffrey Parr award of the Royal Television Society in London in 1967.

Peter Godfrey has been appointed director of automation by Standard Telephones and Cables Ltd. He joins S.T.C. from Plessey where he was manager of the Systems Application Division. Before that he held a number of senior research and engineering positions within Plessey. Mr. Godfrey replaces John Hill who has held the post for the past three

P. Godfrey

years and has left to take up an appointment in the United States.

Alan C. Palmer has joined the board of the Aircraft Supplies Group of Companies, Bournemouth. Mr. Palmer joins the Group following fifteen years with the Sperry Gyroscope Division, Sperry Rand Ltd. where he was assistant sales manager of the Aero Systems Group. He spent three and a half years at the Woomera Rocket range in Australia in charge of missile firing teams for Sperry, and also spent three years at the Royal Aircraft Establishment, Farnborough, on the development of specialized instrumentation. Aircraft Supplies. specialize in the overhaul and supply of flight instruments and also manufacture the MIDAS aircraft accident data recorder.

Philip L. Stride, F.I.E.E., has been appointed director and general manager of Ekco Electronics Ltd. He joined Ekco in 1948 and later became manager of the Malmesbury Division. Since 1960 he has been manager of the Aviation Division at Southend where he is succeeded by v. J. Cox, M.B.E., who has been deputy to Mr. Stride for some time.
D. R. Bell has been appointed chief engineer of Alma Components Lid., of Diss, Norfolk, and its subsidiary companies. He was previously with Painton \& Co. Ltd, and is chairman of the Technical Committee of the Radio \& Electronic Component Manufacturers' Federation.

Robert Taylor has joined Transitron Electronic Ltd, of Maidenhead, as senior product marketing engineer. After studying at the Northern Polytechnic, London, Mr. Taylor was a graduate apprentice with Pye Ltd and held various positions in the technical publications, sales promotion and technical sales departments. He was latterly with Texas Instruments as a product marketing engineer.

The new manager of the Data Systems Division of Standard Telephones \& Cables is D. R. W. Thomas, M.B.E., M.I.E.E. After service
in the Royal Corps of Signals Mr. Thomas was a general staff officer in the Ministry of Defence. He joined S.T.C. as chief engineer of the Data Systems Division just over a year ago. In his new position Mr. Thomas is responsible for the company's activities at Cockfosters, North London, which covers the supply of a "total systems" service in computer-based communications.

Three research scholarships have been awarded by the B.B.C. under a scheme "to provide the opportunity for selected honours graduates to work for a higher degree, the subject chosen for post-graduate study being within those fields of physics or engineering which have an application to sound or television broadcasting". A. M. Chitnis, who graduated in electrical engineering from the Imperial College of Science and Technology, University of London, in 1963, was subsequently awarded a three-year Science Research Council Scholarship to Undertake research at the College, on "computer simulation of data reduction schemes for the transmission of pictures". He has been awarded a one-year B.B.C. Research Scholarship to enable him to complete his work. M. J. Hawksford, an electrical engineering graduate from the University of Aston, Birmingham, has been awarded a three-year B.B.C. Research Scholarship to undertake research in the Department of Electrical Engineering, at the University. His study will be on "delta'modulation for television transmission". G. B. Lockhart, who graduated in electrical engineering from the University of Aberdeen in 1965 and in the following year was awarded an M.Sc. degree for his research into "the detection of signals in noise by the sequential estimation of channel conditions", has been awarded a one-year B.B.C. Research Scholarship to enable him to complete his Ph.1). studies. He is undertaking research at Imperial College, London, on the subject of "compatible single sideband modulation".

Brian J. Steel, who joined S.E. Laboratories four years ago, has been appointed sales manager of S.E. Laboratories (Engineering), of Feltham, Middx. Prior to joining the company Mr. Steel spent 14 years with British Aircraft Corp. where he was latterly engaged on the design and development of flight test instrumentation, notably for the BAC 1-11 and the VC 10.
J. P. R. West has joined Transitron Electronics Ltd, of Maidenhead, as European Marketing Manager. He will be responsible for co-ordinating the activities of the Transitron plant at Vernon, France, with those of the European engineering headquarters at Maidenhead. Mr. West was 11 years with Mullard, as a development engineer. For the past four years he has been engaged in semiconductor marketing in Europe, based in France.

The appointment of \mathbf{J}. Ford a manager of the Service Department Cairo Mill, Oldham, Lancs, i: announced by Ferranti Ltd. Mr Ford, aged 56 , joined the company in 1926 as a junior in the Meter Department. He was later in the Radio Service Department befors being appointed manager of the Instrument Service Department in 1939. Since 1949, he has been chief assistant to the manager of the Service Department.

Henry Davies, M.Eng., F.I.E.E.: formerly head of the sound group in the B.B.C. Engineering Designs Department, has been appointed technical consultant to Mellotronics Ltd. He will be particularly concerned with the manufacture of the programme effects generator developed by the B.B.C. Mr. Davies joined the B.B.C. in the Research Department in 1935.
M. G. McBride, B.Sc.(Eng.), F.I.E.E., has been appointed chief engineer of Sangamo Weston Lid. Mr. McBride, who is 55 , joined the company's engineering department in 1937 after studying at the City \& Guilds Engineering College, London. He left in 1950 to become chief engineer of the Record Electrical Company but in 1957 reioined Sangamo Weston as contracts manager, Instruments Division.

Surrey Printed Circuits Ltd, announce the appointment of Geoffrey A. Head as production control manager of their Hounslow factory. Mr. Head was previously with Mullard Ltd, and G. A. Stanley Palmer Ltd.

OBITUARY

Alfred Bernard Howe, O.B.E., M.Sc., A.R.C.S., F.I.E.E., who died on 17 September while on holiday, was assistant head of the B.B.C's Research Department when he retired in 1960. He joined the British Broadcasting Company in . 1924. He was one of the first to apply the principles of acoustics to the design of broadcasting studios, and became the first head of the acoustics section of the Research Department in 1929. In 1937 Howe transferred his interest to television, and was the Research Department representative at Alexandra Palace until the outbreak of war in 1939. He became the first Head of Television, Research Department, in 1946. From 1953 until his retirement he was assistant head of the Research Department. After retiring from the Corporation he joined the I.T.A. as a part-time assistant to the Chief Engineer and finally retired in 1966.

John Hopkins, for the past two years consultant to SGS-Fairchild for the audio market, died in mid September, aged 66. Prior to joining the company he had spent 21 years with Mullard after serving throughout the war in the Royal Air Force.

Microwave Semiconductor Devices

Experimental work on new solid-state generators for the GHz region revealed at MOGA 68 conference

Only a few years ago people were saying that the transistor would never displace the thermionic valve in applications which demanded the highest frequencies and the highest powers. Since then we have seen developments in the transistor, and in semiconductor technology in general, which have slowly but surely eroded the substance of that idea and may eventually disprove it altogether. Furthermore it has not been just a matter of unilateral developmenteither high power or high frequency. Although these two requirements are to a large extent mutually exclusive in semiconductor technology, we are nevertheless beginning to see the emergence of solid-state devices which can displace, for example, klystron tubes and medium-wave transmitter valves. A particular field of interest at the moment is millimetre-wave communications systems-the rest of the radio spectrum having been pretty well filled-and a number of organizations are exploring what can be achieved with semiconductor devices in transmitters and receivers at these frequencies As in other fields, the main benefits to be obtained from using solid-state devices are small size, reliability, long life and low voltage power supplies.

Some of the latest advances in this field were revealed at the recent MOGA 68 conference in Hamburg (see also November 1968 issue, p.393). When the previous MOGA conference was reported on in this journal* the Gunn-effect diode seemed the most promising experimental solid-state device for generating frequencies in the GHz region. Since then it has come on to the market as a commercial product, but in the meantime it has been superseded in the laboratory by a new type of diode which is capabie of operating at higher frequencies, and with higher power at any frequency, than all other solid-state devices. This is the "limited space-charge accumulation diode" or "l.s.a. diode" invented by J. A. Copeland of Bell Telephone Laboratories, U.S.A. Fig. 1 (a) shows the construction of the device, which, as can be seen from (b), is broadly similar to that of a Gunn-effect diode. The operating characteristic, however, is very different. The maximum frequency of Gunn diodes and other similar devices is limited by the transit time, which is the time taken by a space-charge (a concentration of electrons or

[^2]holes) to travel through the device. The smaller the transit time, the higher the frequency. Thus, higher frequencies can be attained in transit-time limited devices only by making the active region of semiconductor shorter. This in turn limits their power at high frequencies.

In the l.s.a. diode the space-charge is dissipated within the material (usually n type gallium arsenide) during each cycle before it builds up appreciably (hence the name "limited space-charge accumulation"). Radio frequency power can be generated by an l.s.a. diode because, above a certain threshold value of applied voltage and electric field, n-type gallium arsenide becomes a negative-resistance material. If a fixed bias voltage above this threshold level is applied to the diode, the negative resistance causes an oscillating voltage to be developed in which the total voltage across the diode swings first well above and then below the threshold electric field during each cycle.

The unique feature of the l.s.a. mode of

Fig. 1. Structure of the l.s.a. diode (a) compared with that of the earlier Gunn-effect diode (b) which must be relatively thin in the direction of current flow.

operation is that the oscillating field swings above the threshold field long enough to generate a negative resistance but not long enough for the carriers to rearrange themselves into space-charge waves or domains. When the field swings below threshold, any minor space-charge irregularities are smoothed out before the next cycle begins.

Because the diode is not transit-time limited, it can be made thick enough to withstand relatively high applied voltages. Practical devices are therefore made long in the direction of current flow and thin in a direction perpendicular to current flow, as shown in Fig. 1(a). Normally the operating frequency of the diode is determined by an external resonant circuit (not by the thickness of the semconductor material or by transit time), so the power generated is practically independent of frequency.

The performance of 1.s.a. diodes relative to other semi-conductor microwave generators is shown broadly in Fig. 2, which is taken from a review paper presented at Hamburg by C.A.P. Foxell of A.S.M. Ltd.

The operation of l.s.a. diodes under pulsed conditions at centimetre and millimetre wavelengths was reported on by B. Jeppsson, of Cayuga Associates, U:S.A. This worker claimed, for example, that 1.2 kW of pulse power had been produced at 8 GHz and several watts at 50 GHz , and said that, with a modification of the l.s.a. mode, useful c.w. power was obtainable above 30 GHz . A mer-cury-reed system was used for producing the fast rise-time pulses needed and the impedance of this device had to be adjusted to suit the diode impedance to prevent the diode from being destroyed. A typical duty cycle for the pulse operation was 10%. Jeppsson also described experiments with a "hybrid" mode of operation, which seemed to be a mixture of the normal 1.s.a. mode and the normal Gunn-effect mode. This, he said, gave frequencies higher than the transit-time frequency and significantly higher powers and efficiencies than with the normal modes. The diodes had been operated with bias voltages five times the threshold voltage and with pulse lengths between 50 and 400 ns , and, for example, with a bias of 200 V , oscillations of 1.6 GHz at a power of 130 W and an efficiency of 17% had been obtained. Another American worker in this field, at R.C.A., had reportedly obtained 140 W of r.f. power at 2.2 GHz with 27% efficiency.

A further variation on the straightforward

Fig. 2. Power and frequency performance of various solidstate generators of microwaves. (Information supplied by C.A.P. Foxell.)

Gunn and l.s.a. diode was described by S. Kataoka, of the Electrotechnical Laboratory, Tanashi, Tokyo. This was a relatively long and thin element of bulk GaAs (about 2 mm long and $50-200 \mu \mathrm{~m}$ thick) sandwiched between two sheets of barium titanate which were described as "dielectric loading". The effect of the barium titanate sheets, various shapes of which had been tried, was to suppress the normal Gunn mode oscillation (the suppression being more effective when the sheets were backed with metal). When this device was mounted in a resonant cavity and a bias voltage applied, oscillations at frequencies ranging from 10 MHz to 10 GHz had been obtained from the same element.

Fig. 3. Two microwave logic elements using the Gunn effect: (a) an AND gate; (b) a one-bit storage element.

(The characteristic Gunn-mode oscillation, without the dielectric loading, would have been a single frequency of about 100 MHz .) Kataoka claimed that the device had also been used for amplification at microwave frequencies. The mechanism by which the domain suppression took place was not understood, but a member of the audience suggested it was not due to short-circuiting of the Gunn-effect electric fields but to the effect of the capacitance, provided by the dielectric sheets, on the current through the device.

The use of Gunn diodes to form high speed logic elements operating at microwave frequencies was described by H. L. Hartnagel of Sheffield University, and an outline of this work was reported last month \dagger. As was explained, the leading edge of the pulses in these logic elements is formed by the sudden drop of current when an electricfield domain is formed, while the trailing edge of the pulses is the termination of the current drop that occurs when the travelling domain reaches the anode end of the device and is discharged. Fig: 3 shows two examples of logic elements constructed on this principle. In the AND gate (a), a steady bias voltage is applied across the Gunn diode through the inductor and the output load resistor R_{L}. The two input resistors permit the electric field applied to the diode to be raised above the threshold necessary for domain formation only when both input terminals receive a voltage signal simultaneously. If the input resistors are removed the device becomes an OR logic element. Diagram (b) in Fig. 3 shows a one-bit storage element obtained by using a Gunn diode in conjunction with transmission lines. The diode is normally biased below the threshold value for domain formation. When a signal is applied to the input terminal a domain is launched, and the output signal produced by it acruss R_{L} travels along the right-hand open-circuited transmission line, is reflected

[^3]back, and on returning to the diode triggers a further domain, so maintaining the "on" condition of the element and storing the input signal. Hartnagel said that such a memory element can be used in conjunction with AND elements to build up a shift register. In complete logic systems employing numbers of interconnected elements he claimed that the "fan-out" (maximum number of paralleled logic elements which -can be triggered reliably by a single logic element) can be as large as 7 .

One form of microwave signal amplifier is the parametric type, based on a mixing process in a non-linear reactance provided by a varactor diode. G. I. Haddad, of the University of Michigan, U.S.A., described an unusual type of device in which a series of varactor diodes (8 in one example) was mounted inside a transmission line to provide travelling-wave parametric amplification. The transmission line was of the ladder type as used in devices (e.g., travelling-wave masers) where slowly propagating electromagnetic waves are required. Alternatively an inter-digital line structure could be used. The energy for amplification was applied to the varactor diodes by a "pump" wave propagated along the line. Haddad claimed that such a device could provide a gain of 30 dB , tunable over a frequency range of about 500 MHz . A typical operating region was in the X band $(7-12 \mathrm{GHz})$.

Conferences and Exhibitions

Further details are obtainable from the addresses in parentheses

LONDON

Dec. 2-6
Olympia
Engineering Materials and Design
(Industrial and Trade Fairs, Commonwealth
House, New Oxford St., London W.C.1)
Dec. 4-12
U.S. Trade Centre U.S. Aviation Electronics Show
(The American Embassy, P.O. Box 1AE, Grosvenor Sq., London W.1)

overseas

Dec. 2-4
New York
Applications of Simulation
(J. Reitman, Norden-United Aircraft Corp., Norwalk, Connecticut 06856)

Dec. 2-4
Washington
Realibility Physics Symposium (I.E.EE., 345 E.47th St., New York, N.Y. 10017)

Dec. 3-6
Paris
Computers on board Satellites (Centre National d'Erudes Spatiales, 129, rue de l'Universite, Paris 7)

Dec. 4-6
Miami Beach Círcuit Theory Symposium (I.E.E.E., 345 E.47th St., New York, N.Y. 10017)

Dec. 9-10
Chicago
Consumer Electronics Conference
(D. Ruby, Zenith Radio Corp., 6001
W. Dickens Ave., Chicago, Ill. 60639)

Dec. 9-11
Chicago
National Electronics Conference
(Nat'l Electronics Conf., Oakbrook Exec.
Plaza 2, 1211 W. 22 St., Oak Brook, Ill. 60521)

Progress in Acoustics

Latest research reported at Sixth International Congress on Acoustics, Tokyo.

An interesting development at this year's international acoustics congress in Japan was the holding of two symposia, one before the zongress, at Sendai, and one immediately after at Kyoto. The Sendai meeting was on physical acoustics and was of a notably high standard. The other meeting was concerned with speech and was held at the international conference hall at Sakyo-ku, Kyoto, which is a most impressive building set in an enchanting location. These symposia enabled specialist groups to get together in a way not possible with a full-scale meeting, and is a pattern that should commend itself to future congress organizers. The following items have been selected from the 430 papers as being of particular interest to Wireless World readers.
Architectural acoustics. The non-linear properties of resonators and their utilization for improving the acoustic conditions in rooms were discussed by Czarnecki of Poland. Ingard has shown that the non-linear properties of Helmholtz resonators arise from the dependence of the effective resistance of resonators on the particle velocity in the neck. At values of particle velocity greater than $50 \mathrm{~cm} / \mathrm{sec}$ part of the radiated energy is lost through swirls at the edge of the aperture. Czarnecki has come to the following conclusions as the result of his experiments: 1. Because of the non-linear properties, the absorption coefficient may depend on intensity at high levels and the changes increase with sharp opening edges of the aperture.
2. Depending on the surrounding conditions of the resonator, the non-linear losses can cause an increase or decrease of the absorption coefficient.
3. The existence of resonance systems in rooms can be a cause of curvilinear sound decay on the logarithmic scale.
4. The non-linear properties of resonators may be applied to change the acoustic signal dynamics in halls, which can lead to an improvement of the intelligibility of speech.
Speech. Today research into speech is an interdisciplinary science involving linguistics, phonetics, physiology, physics, psychology and electrical engineering. Professor G. Fant of Sweden suggested that intensified investigations into the structure of speech signals and their production and perception should lead to a foundation for man-made communications, economy of digital speech encoding and to new methods and aids for communicating with the hard-of-hearing and deaf. The emphasis today was on the temporal dynamics
of speech structures and the development of models for prediction purposes. In psychoacoustics and hearing, computer modelling of the mechanical and neural activities of the ear had facilitated understanding of human perception and its relation to the physical properties of acoustic signals.
In a session devoted to speech recognition problems a paper which attracted much attention was one by Kersta, U.S.A., on speaker identification by voice prints. It is not a new idea to use voice prints in a similar way as fingerprints for identification purposes but now the procedure has apparently been put into operation in the U.S. and has led to criminal convictions being made. An interesting industrial development described by Koshikawa, Japan, was a real-time coloured display of sound spectrograms. In this system a coloured contour map is used to display the instantaneous spectrogram instead of the usual brightness modulation and it has proved very effective for signal detection in noise.
Ultrasonics. In this section were a number of papers concerned with various types of delay lines and, not unexpectedly, with the growing interest in surface waves. A contribution by Tournois and Lardat of C.S.F., France, for example, dealt with the use of Love waves* in dispersive delay lines. The lines had bandwidths of up to 30 MHz and compression rates of the order of 150 to 200 . The interesting feature of these Love waves is that the group delay curve has an inflection point, in the vicinity of which the curve linearity is very good for a relatively wide bandwidth. At present the lines suffer from rather large insertion losses due to the wave excitation being carried out at the surface. This loss may be avoided if the whole delay line is constructed from the same material without the use of a bonding agent. Lines made in such a manner are known as integrated or monolithic delay lines, and two papers on them were presented by a group of workers from an electrical communication laboratory in Tokyo. Ashida, Sawamoto and Toyoda described a delay line consisting of a thin piezoelectric circular ceramic disc with dot- and ring-shaped electrodes on both faces. By electrically "poling" the electroded parts in the thickness direction it was possible to generate cylindrical elastic waves on applying a suitable a.c. voltage. The annular ring between the electrodes served as a cylindrical elastic waveguide, and to avoid interference from the waves reflected at the disc circumference the dot and
concentric ring were located off-centre of the disc. In the other integrated delay line, described by Inamura and Ikeda, a longitudinal wave launched by a transducer is converted into a shear wave by reflection. Consequently the line is characterized by a rather long delay, and in the absence of adhesive bonds it has also a good mechanical stability.
Acousto-electronics. In transparent acoustoelectric materials optical probing provides one of the best methods to study acoustic properties, since measurements can be made at points within the specimen. Of the various optical techniques, Brillouin scattering gives the most detailed information and it has been utilized by Zemon and Zucker, U.S.A., to investigate the parametric amplification of acoustic waves in CdS. This amplification is due to non-linearity arising from the interaction of the bunched space charge associated with one acoustic frequency with the electric field associated with another acoustic frequency. For materials such as GaAs and GaSb, which are only transparent in the infra-red, other optical methods are more sensitive. A paper by Inuishi and Ishida, Japan, was concerned with the current oscillations of acousto-electric origin which are characterized by the propagation of an acousto-electric domain. The electrical properties of the domain structure were investigated using a capacitive probe, and Brillouin scattering was utilized to investigate the acoustic flux generated in the domain. The last-mentioned experiment enabled the time variations, the spatial distributions and the frequency spectrum of the acoustic flux to be studied.

An industrial exhibition of both audio and ultrasonic equipment was held during the period of the congress and the development of acoustical industries in Japan formed a significant part of the opening address to the congress by Junichi Saneyoshi, President of the Acoustical Society of Japan. Indicative of the magnitude of the industrial acoustical output is the fact that in 1967 the production of loudspeakers in Japan reached 88 million units. Some twenty-two manufacturers exhibited ultrasonic equipment of a wide variety. Ultrasonic applications in medicine are flourishing to such an extent that a Japanese Society of Ultrasonics in Medicine has been in existence for four or five years and has a current membership of over 200 people.
R. W. B. Stephens
*No connection with Radio Love (see p. 444).-ED.

Noise in Transistor Circuits

2. Noise figure : Negative Feedback : Measurements

by P. J. Baxandall* B.Sc. (Eng.), F.I.E.E., F.I.E.R.E.

The theoretical mechanisms producing noise in transistors have been thoroughly investigated by Van der Ziel and others in several important papers ${ }^{5,6,7,8,9}$. While these papers are by no means easy to read and understand, some quite simple and useful conclusions may fortunately be deduced from them.

Equivalent circuits representing the internal noise mechanisms of a transistor have usually been of the common-base T type ${ }^{1,8}$. However, the advantages of thinking in terms of the hybrid π equivalent circuit for noise purposes ${ }^{10}$ are considerable, just as they are, in the author's opinion, for other aspects of transistor circuit work. Further, a

* Royal Radar Establishment.
very welcome simplification of the noise theory as put forward by Van der Ziel can now be made, because the thermallygenerated leakage currents, which play a significant role in determining the noise performance of germanium transistors, can normally be neglected when silicon planar transistors are used, as will usually be the case nowadays.
With this simplification, and ignoring flicker noise for the time being, there are three significant noise mechanisms in a transistor, which are very easily remembered when described in the following manner:
(a) Johnson noise in the extrinsic base resistance $r_{b b}$.
(b) Shot noise on the base current.
(c) Shot noise on the collector current.

Fig. 9. Noise generators in the hybrid-n equivalent circuit.

 Fig. 9(a), without introducing any approximations, and this agreed exactly with equation (19) of reference II.
\ddagger At audio frequencies, as explained later, it is best, for good noise performance, to operate at a very low value of collector current, e.g. Io $\mu \mathrm{A}$. Even a fast silicon planar transistor, such as the BCiog^{2}, then has an f_{T} of only a few hundred kHz , so that the "low-frequency regime" only just includes the whole audio spectrum. However, in most r.f. applications, where flicker noise is not involved, it is better, from several points of view, to operate at much higher values of collector current. and then the "low-frequency regime" may extend up to some low-
MHz .
$\star \star$ By choosing the values of V_{N} and I_{N} correctly, together with the right degree of correlation between them, the noise of any linear amplifier, and its variation with source impedance, may be correctly represented. This is considered in more detail in reference II.

The problem is thus to convert Fig. 9(a) to the form of Fig. 10. The first move is to :ploit the fact that the right-hand noiseurrent generator in Fig. 9(a) may be :placed by the two 100%-correlated =nerators of Fig. 9(b), as indicated by the roken-line arrows. It will be found that lese two generators produce the same noise atput from the transistor, whatever source : load are connected to it, as does the single enerator from which they are derived. (It
interesting to find that, taking $r_{b^{\prime} c}$ as finite, the two generators cancel each ther as far as feeding noise current into the ase signal source is concerned-this ought) be so, because the single generator they spresent is purely in the output circuit.)
Now in Fig. 9 (b), since $r_{b^{\prime}}{ }^{e} g_{m}=\beta$ and ince $I_{c} / I_{b} \approx \beta$, the right-hand noise current enerator is of approximately $\sqrt{\bar{\beta}}$ times maller magnitude than the left-hand one nd can therefore be neglected without erious error.
*The next move, which will be seen later 0 be sensible, is to express all the remaining hree uncorrelated generators in Fig. 9(b) in erms of resistance values which would roduce the same magnitude of noise by one f the Johnson noise formulae (7) or (8); the ;enerator labelled $\sqrt{4 k T_{r o} \cdot B}$ is, of course, dready in that form. This can be done by atilizing the basic fact for a transistor that $: m=q I_{c} / k T$. Thus, substituting $i=k T_{g m} / I_{c}$ in the formula for the right.and voltage generator in Fig. 9(b), this弓enerator becomes $\sqrt{4 k T B\left(\mathbf{I} / 2 g_{m}\right)}$, i.e. as for the Johnson noise voltage in a resistance of $\mathrm{I} / 2 \mathrm{~g} \mathrm{~m}$.

Similarly, the current generator $\sqrt{2 q I_{b} B}$ in Fig. 9(b) becomes:

$$
\sqrt{\frac{4 k T B}{2 I_{c} / g_{m} I_{b}}}
$$

Taking I_{c} / I_{b} as being equal to the smallsignal current gain β-which is a more accurate approximation with some transistors than with others-the last expression becomes equal to:

$$
\sqrt{\frac{4 k T B}{2 \beta / g_{m}}}
$$

i.e. as for the short-circuit Johnson-noise current in a resistance of $2 \beta / \mathrm{gm}$.

We thus arrive at the approximate equivalent circuit of Fig. 9(c), and it will be seen that this is of the same form as Fig. 10, except for the presence of the noiseless resistance $r_{o b^{\circ}}$. However, it is shown in the Appendix that, provided $g_{m} r_{b 0^{\prime}}$ is $\ll 2 \beta$, the effect of rob may be neglected with little error. For a fairly typical modern transistor with $r_{b b^{\prime}}=200 \Omega$ and $\beta=200, g_{m} r_{b b^{\prime}}$ is less than a tenth of 2β for collector currents up to 5 mA . In all normal audio applications, and many others too, the working current will be well under this value, and we may then take the noise equivalent circuit as being nearly enough that of Fig. 9(c) without $r_{b b}$ ' and with no correlation between V_{N} and I_{N}.

The final conclusion is thus that, for many practical purposes, we may represent the

Fig. 10. Representation of amplifier noise by two generators right at the input terminals.

Fig. 1 I. Variation of Noise Figure with source resistance.
N.F.
(dB)

noise of a transistor (ignoring flicker noise) sufficiently accurately by means of two uncorrelated noise generators as shown in Fig. 10, where:
V_{N} is as for the Johnson-noise voltage in a resistance

$$
\begin{equation*}
R_{N v} \approx r_{b b^{\prime}}+1 / 2 g_{m} \tag{15}
\end{equation*}
$$

and I_{N} is as for the Johnson-noise shortcircuit current from a resistance

$$
\begin{equation*}
R_{N i} \approx 2 \beta / g_{m} \tag{16}
\end{equation*}
$$

It is the usual present-day practice to express V_{N} and I_{N} in terms of microvolts and microamps in a bandwidth of $\mathrm{IHz}, \dagger \dagger$ but their expression in terms of $R_{N v}$ and $R_{N i}$ seems very much preferable and has been strongly advocated by Dr. E. A. Faulkner of Reading University ${ }^{11,13}$. The full virtue of Dr. Faulkner's method will become apparent from what follows in the next section of the article.

Noise Figure

The noise figure of an amplifier, fed from a resistive signal source R_{S} as in Fig. 10, is a measure of the amount by which the total noise output exceeds what it would be if the amplifier were ideal and the only noise came from thermal agitation in R_{s}. Thus:

Noise Figure $=$

Total noise output power
Noise output power due to source only
(17)

[^4]This ratio is often expressed in dB , and when there is no correlation between V_{N} and I_{N} (Fig. 10), it is easily shown that:
N.F. $=10 \log _{10}\left[1+\frac{R_{N v}}{R_{S}}+\frac{R_{S}}{R_{N i}}\right] \mathrm{dB}$
where $R_{N v}$ and $R_{N i}$ have already been defined.

It is evident from the form of equation (18) that there must be an optimum value of R_{S} which will make the noise figure a minimum, i.e. give the best noise performance. Calling this optimum value of source resistance $R_{\text {Sopt }}$, we have, not surprisingly, the result:

$$
\begin{equation*}
R_{S o p t}=\sqrt{R_{N v} R_{N i}} \tag{19}
\end{equation*}
$$

It is also obvious from (18) that for a good, i.e. low, noise figure, $R_{N i}$ must be very much greater than $R_{N v}$. For example, if $R_{N v}=200 \Omega$ and $R_{N i}=20 \mathrm{k} \Omega$, it is immediately evident that a fairly good noise figure is achievable and that the optimum source resistance is the geometric mean of 200Ω and $20 \mathrm{k} \Omega$, which is $2 \mathrm{k} \Omega$. The ease with which these things may be seen at a glance when the transistor noise information is given in the form of $R_{N v}$ and $R_{N^{i}}$ values is a great advantage of the method when compared with the usual practice of quoting V_{N} and I_{N} values for a bandwidth of 1 Hz .

On substituting the value of R_{S} given by equation (19) in equation (18), we get the result:
$(\text { N.F. })_{\min }=10 \log _{10}\left[1+2 \sqrt{\frac{R_{N v}}{R_{N i}}}\right]$
and by further substituting the values of $R_{N v}$ and $R_{N_{i}}$ given by equations (15) and (16) into (20), we obtain:
(N.F. $)_{\text {min }}=$

$$
\begin{equation*}
=10 \log _{10} \times\left[1+\sqrt{\frac{1+2 g_{m} r_{b b^{\prime}}}{\beta}}\right] \tag{21}
\end{equation*}
$$

This gives the minimum noise figure that will be obtainable, at a given value of d.c. working current in the transistor, if R_{S} is adjusted (e.g. by suitably choosing the ratio of an input transformer) for optimum performance. However, we are also free in many cases to choose the value of the d.c. working current, and this may be varied, keeping R_{S} optimized all the time, to obtain the lowest possible value of minimum noise figure. This latter operation involves finding the minimum value of $\left(\mathrm{I}+2 g_{m} r_{b b^{\prime}}\right) / \beta$. Now $2 g_{m} r_{b b^{\prime}}$ normally reaches unity at a collector current somewhere in the region of $50 \mu \mathrm{~A}$, so no large improvement would be expected to result from reducing the collector current to a

Fig. 12. Variation of $R_{N v}$ and $R_{N i}$ with collector current.
very much lower value than this. Indeed, with some transistors, the fall-off in β at very low currents, say less than 1o $\mu \mathrm{A}$, more than offsets the slight further reduction in ($1+2 g_{m} r_{b b^{\prime}}$) achieved, and the minimum noise figure then gets worse again. However, in situations where flicker noise is significant, there is a marked overall advantage, as will be seen later, in operating at very low values of collector current, such as i $\mu \mathrm{A}$ or even less.

Sometimes, in practice, the value of R_{S} is fixed by circumstances over which the designer has no control, and the problem is to choose the value of collector current which will then give the minimum noise figure. On substituting the values of $R_{N v}$ and $R_{N i}$ given in equations (15) and (16) in equation (18), and then differentiating with respect to g_{m}, we find that the condition for minimum noise figure is $g_{m}=\sqrt{ } \bar{\beta} / R_{S}$. Thus, if $R_{S}=\mathrm{I} \mathrm{k} \Omega$, and $\beta=100$, we get $g_{m}=10 \mathrm{~mA} / \mathrm{V}$, which corresponds to $I_{\mathrm{c}}=0.25 \mathrm{~mA}$.
As an example of what can be achieved when we are free to choose the value of R_{S}, consider a transistor such as a BCiog running at a collector current of $10 \mu \mathrm{~A}$. Take $\beta=200, r_{b b^{\prime}}=200 \Omega^{12}$. The g_{m} value will be $0.4 \mathrm{~mA} / \mathrm{V}$, so that, from (15), $R_{N v}=1.45 \mathrm{k} \Omega$, and from (16), $R_{N i}=1 \mathrm{M} \Omega$. From equation (19) we then get $R_{\text {Sopt }}=38 \mathrm{k} \Omega$, and substituting this in (18), or from (20) or (21), we obtain a noise figure of 0.32 dB .

Noise figures not much greater than this are indeed achievable in practice with good modern silicon planar transistors at audio frequencies, but it is important not to overlook the fact that, having obtained a very good noise figure for the first stage of an amplifier, the second stage may easily contribute as much noise as the first, or even more.
With regard to the last point, the danger arises particularly when the second stage, as is often the case in practical designs, is run

Fig. 13. Contours of constant Noise Figure vs. collector current and source resistance for type BCiO9 transistor.

at a much higher current than the first. The trouble is caused by the current noist generator (see Fig. 9(c)) of the second transistor, which, because of the high working current, will be of relatively large magnitude. It may thus produce more noise current, particularly at low frequencies: because of flicker noise, than that coming from the collector of the (very-low-gm) first stage. Dr. Faulkner has recommended that the second stage of a low-noise amplifier should be run at the same low collector current as the first stage, though it is not always worth carrying things quite as far as this-some compromise with other requirements will often be struck, even in an enlightened design.

Fig. II is simply based on equations (18) and (19), and shows how the noise figure increases as R_{S} is changed from its optimum value $R_{\text {Sopt }}$. The important point is that provided the optimum noise figure is good enough, i.e. provided $R_{N i} / R_{N v}$ is large enough, the value of source resistance becomes very uncritical. Thus it may be worth aiming at a very good minimum noise figure not so much for its own sake but rather because it makes the amplifier capable of giving a tolerably good noise performance over a wide range of source resistance values.

Fig. 12, based on a contribution to Electronics Letters from Dr. Faulkner ${ }^{13}$, is a plot, on a "straight line approximation" basis, of equations (15) and (16), and also illustrates the meaning of equation (19).

A slight complication in all the above, which should now be mentioned, is that, according to reference (10), the value of $r_{b b^{\prime}}$ which gives the correct input impedance does not, in general, give the correct value for the noise generator. At low currents, however, $r_{b b^{\prime}}$ is in any case swamped by $\mathrm{I} / 2 \mathrm{~g}_{m}$ (see Fig. (12)), so uncertainty about its value does not matter much. But the true value of much of the above simple theory is not so much that it enables precise calculations to be made, but rather that it helps one to appreciate the principles involved and avoid misdesign caused by ignorance. It is often sufficient to obtain the correct order of magnitude of noise effects in the design stage, and to make experimental checks later if necessary.

Another method of presenting noise data for a transistor is shown in Fig. 13, and is self explanatory. (Taken from S.T.C. data sheet ; the Mullard data sheets do not give such detailed noise information.)

Flicker Noise ${ }^{1}$

Flicker noise, or " I / f " noise, is exhibited by all normal amplifying devices, and transistors are no exception. To quote from reference 10: "Flicker noise is known to arise from the generation or recombination of carriers on the surface, although other physical processes can also produce it. For example, it can also arise as a result of temperature fluctuations. Note that only $0.001^{\circ} \mathrm{C}$ fluctuation in temperature can cause 2 to 3 microvolts of fluctuation in voltage across a forward biassed diode."

From reference 14, on which the following
nformation is based, it would seem that, for - planar transistor, flicker noise can be epresented as an increase in the current oise generator (see Fig. 9(c)) below a sertain frequency, the voltage noise зenerator not exhibiting flicker effect. $\ddagger \ddagger$ Thus the resistance $R_{N i}$ representing the zurrent noise generator falls in value below a certain frequency, so we replace equation 16) by:-

$$
\begin{equation*}
R_{N i}=\frac{2 \beta}{g_{m}\left(1+\omega_{F} / \omega\right)} \tag{22}
\end{equation*}
$$

$\not \ddagger$ Actually there is evidence that $R_{N v}$ does exhibit Aicker effect, but its value does not begin to rise until a much lower frequency than ω_{F}.

Fig. 14. Input noise generators for a transistor exhibiting flicker noise.
$\beta=100$, rin $^{\prime}=100 \Omega, I_{\mathrm{C}}=100 \mu A$.

Fig. 15. Variation of $R_{N i}$ with frequency and collector current for selected 2 N3707.

Fig. 16. Negative feedback and noise.

Fig. 17. Equivalent input noise voltage and current vs. frequency, for a junction f.c.t.

Fig. 14 shows the variation of $R_{N i}$, $R_{N v}$ and $R_{\text {Sopt }}$ with frequency.
The parameter ω_{F}, the flicker-noise corner frequency, characterises the "flickernoisiness" of the transistor; it is a function of the collector current, I_{c}. Fig. 15 shows the behaviour of a transistor with regard to flicker noise, as a function of frequency and collector current. The lines are best-fit lines, of the same form as in Fig. 14, to a series of experimental measurements done at Reading University on a selected specimen of the low-noise transistor 2 N 3707 , and represent an exceptionally good transistor from the flicker-noise point of view. It will be seen that, for a collector current of I $\mu \mathrm{A}, \omega_{F} / 2 \pi$ is only about 60 Hz , and this particular specimen will give a noise figure of better than 1 dB from a $100-\mathrm{k} \Omega$ source over the whole frequency range 25 Hz to 40 kHz . Clearly it is particularly advantageous to operate a transistor at very low current when a good noise figure is required at very low frequencies.

Negative Feedback and Noise

Negative feedback as such has no effect whatever on the noise figure of an amplifier at any given frequency, though the passive components introduced for the purpose of applying the feedback may do so.

The golden rule for preserving good noise figure is to avoid introducing passive resistive attenuation of the signal.

Consider a resistive signal source, with a signal voltage V_{S} and a Johnson noise voltage V_{N}, as shown in Fig. 16(a). Now, as shown in Fig. 16(b), imagine an extra resistor of the same value as the signal source resistance to be shunted across. This shunt reduces by a factor of two the signal voltage appearing at the output leads shown, and does likewise for the source Johnson noise voltage, but it also produces its own Johnson noise voltage V_{N} which appears attenuated by a factor of two at the output leads. There are thus two uncorrelated noise voltage components of $V_{N} / 2$ at the output, so that the total output noise voltage is $V_{N} / \sqrt{2}$. The net effect of adding the extra resistor is thus to attenuate the signal by a voltage factor of two, but to reduce the noise voltage by a factor of only $\sqrt{2}$.

Clearly, to minimise the loss of signal-tonoise ratio caused by a shunt resistor, the resistor value must be much higher than that of the source. A practical example of a situation in which these issues arise is shown in Fig. 16(c) and (d), where, for good s / n,

Fig. 18. Variation of $R_{N v}$ and
$R_{N i}$ with frequency for $2 N 3684$ and ${ }_{2} \mathrm{~N} 3819$ f.e.ts.
$R_{F B}$ should be made several times R_{S} at least. The s / n, at any one frequency, will be just the same for the two circuits shown.

Another example of the same broad principle is shown in Fig. 16(e) and (f). Here the significant thing is that there is passive resistive attenuation of signal because the signal source is shunted by a resistor R_{e}; the fact that in the left-hand circuit the output current is allowed to flow through the parallel combination of R_{S} and R_{e} to provide negative feedback does not in itself affect the signal-to-noise ratio.

Noise in f.e.ts

The noise performance of an f.e.t., like that of an ordinary transistor or any other amplifying device, may be expressed in terms of V_{N} and I_{N} noise generators in the input circuit of an imaginary noiseless f.e.t.

Fig. 17, which is taken from Union Carbide Application Note AN-I (June 1965), shows experimental values of V_{N} and I_{N} (here called e_{n} and i_{n}) as a function of frequency. It is stated that the values of V_{N} and I_{N} are not very dependent on the d.c. operating current, provided the drain-to-source voltage exceeds the pinch-off value.

The same information as is presented in Fig. 17 is given in a form much easier to appreciate in Fig. I8 (full-line curves); this diagram also includes (broken-line curve) data on a specially-selected and unusually good sample of 2 N 3819 reported upon by K. F. Knott of Salford University. ${ }^{16}$
While the sample of f.e.t. giving the broken-line curve has a quite splendid noise performance, it is unfortunately the case, at present, that very large variations indeed in
flicker noise occur between different samples of nominally the same f.e.t. However, f.e.ts with a definite specification on flicker noise can now be bought-e.g. the Texas BFW56, which has an upper limit on $R_{N v}$ as indicated by the cross in Fig. 18. This transistor costs over $£ 3$ at present.
Comparing Fig. 18 with Figs. 12 and 14, it will be seen that an f.e.t. has an enormously greater ratio of $R_{N i}$ to $R_{N v}$ than an ordinary transistor, and it will also be noticed that flicker noise appears in the voltage generator (represented by $R_{N v}$) rather than in the current noise generator. Indeed the current-noise generator magnitude appears to fall off as the frequency is reduced, if one can believe this $R_{N i}$ curve. According to reference 17, the increased current noise at high frequencies is due to "induced gate noise", analogous to "induced grid noise'18 which appears at much higher frequencies in valves. Nevertheless it would seem that, at sufficiently low frequencies flicker noise on the gate current must become dominant, causing $R_{N i}$ to fall off again at very low frequencies.
However, because of the enormous ratio of $R_{N i}$ to $R_{N v}$ in an f.e.t., very low noise figures can be obtained under suitable operating conditions. For example, from Fig. 18, with a $1 \mathrm{M} \Omega$ source, which is about the optimum, being half way between $R_{N v}$ and $R_{N i}$ on the log scale, equation (I8)

Fig. 19. Technique for measuring noise figure. $T_{1}=$ room temperature $\approx 290^{\circ} \mathrm{K}$. $T_{2}=$ liquefied gas temperature.

Fig. 20. System used for generating white noise: (a) result from system shown;
(b) l.f. version with $T=$ Ios.

yields a noise figure at $\mathrm{I}, 000 \mathrm{~Hz}$ of 0.02 dB .
In many applications, with source resistances not exceeding a few hundred kilohms, only $R_{N v}$ need be taken into account, just as with the equivalent noise resistance of a thermionic valve.
The following simple formula is often quoted for the voltage noise of an f.e.t.:

$$
\begin{equation*}
R_{N v}=0.7 / g_{m} \tag{23}
\end{equation*}
$$

in which $R_{N v}$ is in $\mathrm{k} \Omega$ if g_{m} is in mA / V
Knott reports, as a result of measurements on large numbers of f.e.ts, that above about $10 \mathrm{kHz}, R_{N v}$ does in fact approach the value given by this formula-so that at these high frequencies increasing the working current does reduce $R_{N v}$-but that at much lower frequencies, where flicker noise is dominant, increasing the current increases $R_{N v}$. Since these effects are in opposite directions, there will be a frequency band over which varying the working current has very little effect on $R_{N v}$, and this may be the reason for the remark, in the Union Carbide Application Note referred to above, that V_{N} and I_{N} are not very dependent on the d.c. operating current.
An important point to appreciate is as follows. With ordinary transistors, whilst very good noise performance can be obtained at audio and sub-audio frequencies, the low collector current required necessarily makes the high frequency performance very poor, even using fast silicon planar transistors. With f.e.ts, however, the good lowfrequency noise performance is maintained up to frequencies of some MHz . Thus, using f.e.ts, it is possible to design an amplifier with a first-class noise performance over a very wide frequency band, to an extent which is quite impossible with a straightforward amplifier using ordinary transistors.

Measuring Noise Figures

In the opinion of the author, who has used no other method for over ten years, much the easiest and generally most satisfactory way of measuring the noise figure of an amplifier is to dip the source resistor in liquid nitrogen or other liquefied gas and observe the drop in the output noise level of the amplifier.*** A check should be made that the resistance value of the source resistor does not change significantly on cooling it down, though a normal wire-wound resistor will be found satisfactory in this respect. It is not essential to use a true r.m.s. reading output meter, as only the ratio of two mean squared output voltages is requiredindeed an AVO on an a.c. volts range will often suffice. The noise figure is deduced in the manner shown in Fig. 19.

This technique is particularly effective for measuring good noise figures, e.g. I dB , where slight uncertainties regarding noise bandwidths, or the calibration of noisegenerating diodes, often render more normal methods very difficult.

[^5]
Generating White Noise at Low Frequencies

Noise diodes, and several other methods of generating Gaussian noise for test purposes, suffer from the difficulty that unwanted flicker noise tends to be produced below, say, 100 Hz .
A technique which is quite free from this difficulty is to generate the noise at around some easy frequency, such as 100 kHz , and then heterodyne it down to zero frequency in the manner shown in Fig. 20. This is the technique that was used to generate the white noise shown in some of the earlier illustrations. The local oscillator and frequency changer were, in fact, part of a transistor b.f.o. designed at R.R.E. some years ago, and the high-gain amplifier was a general-purpose valve laboratory amplifier of even greater age! The same basic set-up is an inherent part of a "lock-in amplifier" system designed at R.R.E. by E. F. Good, and the lower recording in Fig. 20 was obtained with this equipment. The time base speed has been adjusted to have the same ratio to the noise bandwidth in both pictures, and it is interesting to note that, despite the enormously different absolute time scales, the general appearance is the same.

Needle Fluctuations of Noise Meters

In some noise measurements the noiseindicating meter will give a nice steady reading, whereas in other circumstances it may be found that the needle dithers about so much that it is difficult to decide what reading to note down.
The narrower the bandwidth of the noise being measured, the longer must be the effective time-constant of the rectifier and meter to produce a given amount of needle fluctuation. For the case where the noise bandwidth is determined by a sharp-cutting filter, the relationship between the quantities involved is as shown in Fig. 21. The factor " 2 " inside the square-root sign is different for other shapes of noise pass-band, but nevertheless the formula given will still give an answer which is of the right order, and this is usually all that is needed.

Gaussian noise is, of course, assumed in deriving this formula.

Some Noise Bandwidths

It is sometimes inadvertently overlooked that the noise bandwidth of a circuit is not, in general, the same as its " 3 dB down" bandwidth.

For an ordinary tuned circuit, as for the $C R$ lag in Fig. 22, the noise bandwidth is $\pi / 2$ times the 3 dB -down bandwidth.

With two equal lags, each of, timeconstant $C R$, not loading one another, the response will be 6 dB down at $\mathrm{I} / 2 \pi C R$, and the noise bandwidth is $\mathrm{I} / 8 \mathrm{CR}$.

With a simple $C R$ a.c.-coupling, giving a low-frequency cut which is -3 dB at $\mathrm{I} / 2 \pi C R$, the lower limit of the equivalent rectangular noise response will extend down to $\mathrm{I} / 4 \mathrm{CR}$.

Fig. 21. Noise-inetcr needle luctuations:
$\frac{: m . s . \text { reading fluctuations }}{\text { mean reading }}=\frac{I}{\sqrt{2 B T}}$
'e.g. for a bandwidth of 1 Hz , a moothing time constant of 50 is required to reduce the r.m.s. meter fluctuations to 10_{0}° of the mean reading.)

Fig. 22. Noise bandwidth. The area under the broken-line rectangle is the same as that under the curve.

Acknowledgement. The author would like to thank this colleague, Mr. S. W. Noble, for having helped him, over a period of many years, to acquire a better understanding of noise problems-and, in particular, for having shown that Fig. 9(a) is exactly equivalent to the usual T circuit at low frequencies, when the author had concluded, through a slip in algebra, that this was not strictly the case!

Thanks are also due to Dr. E. A. Faulkner, whose contributions on noise topics have been found very helpful and thoughtprovoking.

This article, which is based on an internal lecture given by the author at R.R.E., is contributed by permission of the Director. Copyright Controller H.M.S.O.

Appendix

Values of V_{N} and I_{N} in Fig. io to make Fig. 10 exactly equivaient to Fig. 9(c).

The problem is to find the values of the two noise generators in Fig. 10 which will make this circuit equivalent to Fig. 9(c) under conditions when the presence of $r_{\Delta b}$ cannot be neglected. These generators will necessarily be partially correlated, even though those of Fig. 9(c) are not. Their magnitudes, however, are easily obtained, since the noise e.m.fs seen looking back towards the source from the terminals of the noiseless amplifier must be the same in both circuits for the simple conditions of a short circuit, and an open circuit, across the source terminals.

In the circuit of Fig. 9(c), with a short circuit between ' b ' and ' e ', we see, looking to the left of the broken line, an e.m.f. ' E ' acting in series with $r_{b b^{\prime}}$ given by:
$E^{2}=4 k T B\left(r_{b b^{\prime}}+\frac{1}{2 g_{m}}\right)+\frac{4 k T B}{2 \beta / g_{m}} r_{b b^{\prime}}$
or
$E^{2}=4 k T B\left(r_{\Delta b^{\prime}}+\frac{1}{2 g_{m}}+\frac{r_{b b^{\prime}}{ }^{2}}{2 \beta / g_{m}}\right)$
For the Fig. 10 situation, with $R_{s}=0$, the e.m.f. seen from the noiseless amplifier input terminals is simply $V N$. For equivalence of the two circuits we therefore have:
$V_{N^{2}}=4 k T B\left(r_{b b^{\prime}}+\frac{1}{2 g_{m}}+\frac{r_{b b^{\prime 2}}^{2}}{\left.2 \beta / g_{m}\right)}\right.$

With an open circuit between ' b ' and ' e ' in Fig. 9(c), we see, looking to the left of the broken line, a current source of value:

$$
\sqrt{\frac{4 k T B}{2 \beta / g_{m}}}
$$

In Fig. 10, with $R_{s}=\propto$, we simply see I.․ . Hence:

$$
\begin{equation*}
I_{N}=\sqrt{\frac{4 k T B}{2 \beta / g_{m}}} \tag{ii}
\end{equation*}
$$

Looking at equation (i), it will be noticed that $V_{N}{ }^{2}$ involves, in the third term, the same noise current generator

$$
\sqrt{\frac{4 k T B}{2 \beta / g_{m}}}
$$

which appears in (ii), so that V_{v} and I_{s} are partially correlated. Provided, however

$$
\begin{equation*}
\frac{r_{b b^{\prime}}{ }^{2}}{2 \beta / g_{m}} \text { is } \ll r_{b b^{\prime}}+\frac{\mathrm{t}}{2 g_{m}} \tag{iii}
\end{equation*}
$$

the amount of correlation will be negligible. It is easily shown that the condition for the two sides of (iii) to be equal, is approximately:

$$
\begin{equation*}
g_{m}=2 \beta / r_{b b^{\prime}} \tag{iv}
\end{equation*}
$$

If $r_{n},=100 \Omega$ and $\beta=100$, (iv) gives $g_{m}=2000 \mathrm{~mA} / \mathrm{V}$, which corresponds to a collector current of 50 mA .

We have thus established that the last term in (i), which may be called the correlation term, may be neglected, for normal engineering purposes, provided the working current does not exceed, say, $5 \mathrm{~mA} . \dagger \dagger \dagger$ This condition will be satisfied with a large factor to spare, except in some highfrequency amplifiers.

Thus equation (15) may be used to determine $R_{. v v}$ in most practical design

[^6]wórk, but at high values of collector current, the expression becomes:
\[

$$
\begin{equation*}
R_{N v}=r_{b b^{\prime}}+\frac{1}{2 g}+\frac{r_{b b^{\prime}}}{2 \beta / g_{m}} \tag{v}
\end{equation*}
$$

\]

Equation (16) is, however, applicable even at high currents. Equations (v) and (16) are plotted in reference 15 as universal curves, though in terms of V_{N} and I_{N} for a I Hz bandwidth instead of in terms of $R_{\mathrm{N} v}$ and $R_{N i}$.

REFERENCES

5. "Theory of Shot Noise in Junction Diodes and Junction Transistors" by A. van der Ziel. Proc. I.R.E., Vol. 43, No. 11, pp. 1639-1646 (Nov, 1955).
6. "Theory of Shot Noise in Junction Diodes and Junction Transistors" by A. van der Ziel. Proc. I.R.E., Vol. 45, No. 7, p. 1011 (July 1957). See also Vol. 48, pp. 114-115 (Jan. 1960). (Letters).
7. "Shot Noise in Transistors" by G. H. Hansen and A. van der Ziel. Proc. I.R.E., Vol. 45, No. II, pp. 1538-1542 (Nov. 1957). 8. "Behaviour of Noise Figure in Junction Transistors" by E. G. Nielsen. Proc. I.R.E., Vol. 45, No. 7, pp. 957-963 (July 1957).
8. "Theory and Experiments on Semiconductor Junction Diodes and Transistors" by W. Guggenbuehl and M. J. O. Strutt. Proc. I.R.E., Vol. 45, No. 6, pp. 839-854 (June 1957). 10. "Characteristics and Limitations of Transistors" by R. D. Thornton, D. DeWitt, E. R. Chenette and P. E. Gray. Vol. 4 of Semiconductor Electronics Education Committee series. John Wiley (1966). Chapter 4 (44 pages), on noise in general and transistor noise in particular, though on the whole excellent, is recommended with some reservations, because the high-frequency noise treatment for transistors seems to have been simplified too far, and because the "noise temperature" concept is, used throughout instead of "noise figure"-this is perfectly sound and correct, but may be confusing to readers of the present article.
Ir. "The Design of Low-Noise Audio Frequency Amplifiers" by E. A. Faulkner. The Radio and Electronic Engineer (F.I.E.R.E.), Vol. 36, No. 1, pp. 17-30. (July 1968). Strongly recommended.
9. "Some Measurements on Low-Noise, Transistors for Audio-frequency Applications" by E. A. Faulkner and D. W. Harding. The Radio and Electronic Engineer, Vol. 36, No. 1, pp. 3 1-33 (July 1968). Very useful information for designers.
10. "Optimum Design of Low-Noise Amplifiers" by E. A. Faulkner. Electronics Letzers (I.E.E.), Vol. 2, No. 1I, pp. 426-427 (Nov. 1966).
11. "Flicker Noise in Silicon Planar Transistors" by E. A. Faulkner and D. W. Harding. Electronics Letters, Vol. 3, No. 2, pp. 71-72 (Feb. 1967). (See p. 176 of same vol. for errata.)
12. "The Influence of Transistor Parameters on Transistor Noise Performance-a Simplified Presentation" by M. C. Swiontek and R. Hassun. Hewlett-Packard Journal, Vol. 16, No. 7, pp. 8-12 (March 1965).
13. "Comparison of Varactor-Diode and J.-F.E.T. Low-Noise L.F. Amplifiers" by K. F. Knott. Electronics Letters, Vol. 3, No. II, p. 512 (Nov. 1967). See also March 1968, p. 92. 17. "Field Effect Transistors as Low-Noise Amplifiers" by P.O. Lauritzen and O. Leistiko. Fairchild Report AR93.
14. "Vacuum Tube Amplifiers" by Valley and Wallman. (M.I.T. Series). McGraw-Hill (1948). See p. 625.
15. "Spontaneous Fluctuations of Voltage"' by E. B. Moullin. Oxford Press (1938). This is a fascinating book, because it conveys vividly the atmosphere of achievement, technical difficulty, and occasionally sheer mystery, which accompanied the unravelling of the basic principles of electrical noise.

Encoded Keyboard for Computers

Based on the estimate that by 1975 some 75% of computer costs will be for peripheral equipment, mainly remote terminals, Honeywell Controls' Micro Switch Division set itself the task of developing an extremely reliable low-cost keyboard, envisaged as a terminal through which data can enter the complex network of peripheral equipment connected to a remote computer and for the extraction of information. Whereas in 1960 only a quarter of the cost of a computer system was spent on peripheral equipment, by 1967 this figure had risen to 43%.

It is expected that computers will play an increasing role in office routine and, because office staff have a working familiarity with typewriters, the new Honeywell keyboard is designed to resemble a typewriter keyboard. Communications between remote terminals could be so rapid that the enormous amount of mail passing between business locations might largely disappear.

A single major benefit of this alpha/ numeric keyboard is the elimination of moving contacts which, besides providing longer life and higher reliability, brings a number of other advantages. It is electrically compatible with logic devices in other equipment (voltage and current levels are of the same order) and the usual bounce gate and delay circuits are not required. Operating speed is virtually unlimited since it could be keyed at the same speed as the logic circuits themselves. Furthermore the output from each key is electrically identical and no compensation for variations in contact resistance from switch to switch is required.

The secret of this high-speed contactless operation lies in the use of the Hall effect as a function of the key switch. (Hall effect is Circuit diagram of the microcircuit showing the three distinct sections; Hall generator, trigger circuit and amplifier.

the variation of p.d. appearing round the edges of a specially treated semiconductor when it is passed through a magnetic field.) The special semiconductor is diffused into a silicon microcircuit which is inserted into the press-button key moulding itself and, when the key is depressed the microcircuit passed between two plastics magnets linked to form a U-shape. On the same silicon chip as the Hall generator is a trigger circuit followed by a Darlington pair providing an output of 3.5 V from each key when operated. A circuit diagram of the microcircuit and an enlarged photograph of the actual chip are shown. The chip terminals are bonded to the lead frame which is fastened to one of two printed circuit boards within the keyboard.

A discrete binary computer code is provided for each key, encoding being achieved by a second printed circuit board mounted below the key termination board. By a process of inter-connection between the two printed boards, the keyboard can be encoded to suit hardware using hexidecimal, Boudot, 6-way binary, USASCII, EBCDIC or special codes according to user requirements. In its quiescent output state the keyboard has $50 \mu \mathrm{~A}$ leakage current and in the operated state the maximum output current source is 10 mA . Either positive or negative output is possible.

No fixed price is available at present but by mid-1971 Honeywell expect the price to be less than $£ 60$. The keyboard components are being imported from America and assembled at Honeywell Controls' factory in Scotland until consumer demand allows manufacture of the complete unit in the U.K., except for the silicon chips.

Announcements

RCA-ICL joint venture. RCA Great Britain Lid and International Computers Ltd, have announced the formation of a jointly owned company RCA Magnetic Products Lid. The new company will manufacture tape and other forms of magnetic products in Great Britain for the British and export markets.

Member firms of the Association of Public Address Engineers and several other companies are staging a joint display at the Basle International Exhibition of Industrial Electronics (INEL.) which takes place from 4th-8th March next year. The Association's own threeday exhibition opens in Harrow, Middx., on 11th March.
Hunting Engineering Ltd., Electrocontrols Division, Dallas Road, Bedford, announce a marketing and manufacturing agreement with Automatic Timing and Controls of America. The agreement covers the complete range of weigh-cells and associated electronics.

A complete range of medical electronic monitoring equipment, manufactured by Harco Electronics Ltd, of Canada, is now available in the U.K. through S.E. Laboratories (Engineering) Ltd., 606 North Feltham Trading Estate, Feltham, Middx.

Marine television. A total of 41 vessels of Ellerman Lines Ltd., and Bibby Line, Lid., are to be equipped with multi-standard television receivers by Marconi Marine. The vessels are also to have aerial arrays, for the reception of transmissions in Bands I and III.

Racal Communications Limited, have received a $\mathcal{£} 27,000$ order for a consignment of their "Squadcal" s.s.b. manpacks for the Zambian Army.

Guest Electronics have been appointed sole U.K. representatives for the entire range of products manufactured by Theta Instruments Corporation of New Jersey, U.S.A.

Dual Electronics, British agent for Dual hi-fi equipment from Germany, are now also marketing the German Wega brand audio equipment. Wega Sales Division, Dual Electronics Ltd., Radnor House, London Road, London, S.W. 16 .

Aveley Electric Lid announce that their marketing interests of U.S.S.R. products will be confined to a few selected items of particular interest to British industry and not to the wide range of products publicized at the time of the recent Soviet Exhibition in London.

The sound and television distribution system for the 2,000 luxury homes in the City of London's Barbican development scheme will use the standard British Relay h.f. multi-pair system. Distribution to the first completed block of 114 flats includes BBC-2 colour.

A $£ 15 \mathrm{~m}$ contract has been won by Standard Telephones and Cables Ltd for the supply and installation of a broadband microwave telephone transmission system covering a route length of 1,600 miles in four Brazilian states-Rio de Janeiro, Espirito Santo, Minas Gerais and Sao Paulo. The microwave equipment will be of the latest solid-state 7 GHz type with channel capacities of 300,600 and 960 . Also included in the contract is 1,250 miles of coaxial cable and multiplexing and power equipment for 128 stations.

Standard Telephones and Cables Ltd have been awarded a contract worth $£ 150,000$ by the Indian Department of Civil Aviation, to supply instrument landing systems. Calcutta, Bombay and New Delhi airports will be fitted with the STAN 37/38/39 ILS which is capable of automatically landing suitably equipped aircraft in "zerozero" visibility conditions.

The Marconi Company have been awarded a contract worth nearly $f_{\frac{1}{2}} \mathrm{M}$ by the Telecommunications Department of the Malaysian Government for the installation of a two-way tropospheric scatter system to provide a telephone and telegraph service between East and West Malaysia.

For the supply of transportable h.f. stations, Racal (Canada) Lid, Ottawa, a subsidiary of Racal Electronics Ltd, of Bracknell, Berkshire, have been awarded a contract valued at almost $\$ 1.4 \mathrm{M}$ by the Canadian Department of Defence Production.

A comprehensive "nurse-call" communications system and television and radio relay have been installed by British Relay in the new ward block of King's College Hospital, London.

The Marconi Company has recently installed and commissioned a $£ 4,000$ closed-circuit television system in the Jessop Hospital for Women, Sheffield. The camera used. in the system, the Marconi V322B, has been designed specifically to meet the needs of educational closed-circuit television.

Three new 16 mm colour educational films are available from Mullard Ltd. The titles are "The Klystron", and "Atoms and their Isotopes" parts 1 and 2, dealing with naturally occurring isotopes and man-made isotopes respectively. The films may be hired or purchased from the Mullard Film Library, Kingston Road, Merton Park, London, S.W. 19

Douglas A. Lyons and Associates Ltd. have changed their address from 32 Grenville Court, S.E.19, to 8 Ryecotes Mead, Dulwich Common, London, S.E.21. (Tel 01-693-2855.)

Wireless World Colour Television Receiver 7. Intermediate-frequency amplifiers

Fundamentally, the i.f. amplifiers of a colour television receiver are substantially the same as those of a 625 -line monochrome set. They differ considerably from those for 405 -line television, however. For the British 625 -line system, the polarity of the vision modulation is the opposite of that used in the 405-line system; the tips of the sync pulses correspond to maximum carrier level instead of to minimum. Frequency modulation is used in the sound channel instead of amplitude modulation, and, of course, the bandwidth needed for the vision signal is some 5 MHz instead of only 3 MHz .

The addition of colour affects the requirements very little except to make the bandwidth requirements more stringent. It is necessary for the i.f. response curve of a colour receiver to be smoother and more precisely tailored than that of a black-andwhite set. It is also necessary that the shape of the curve should not change very much with variations in the setting of the gain control. It is usually said that the phase response of the amplifier is important for colour. This is true, but it does not normally have to be given much separate consideration. As long as minimum-phase networks are used, which is generally the case, the phase and frequency responses have a fixed relation and it is necessary only to consider the frequency response. Matters are helped, too, by the adoption in this country of the PAL system, which is less critical than the N.T.S.C. to defects of phase response.

The sound and vision signals are radiated on separate frequencies from separate transmitters. They are received on a common aerial and then amplified and converted to two separate intermediate frequencies in the tuner unit. The frequencies chosen are 33.5 MHz for sound and 39.5 MHz for vision. The vision signal is of the vestigial sideband type with a bandwidth of some 5 MHz , so that the vision i.f. amplifier requires to have a $-6-\mathrm{dB}$ response at 39.5 MHz and at about 34.5 MHz . The colour sub-carrier is 4.43 MHz and so falls in the i.f. amplifier at 35.07 MHz .

In monochrome reception an excessive drop in response around 35 MHz merely results in reduced definition in the final picture, which may hardly be noticed by non-critical viewers. In a colour receiver, however, the effect is much more drastic and cannot fail to be noticed, for it can mean the complete loss of colour!

This makes the tuning of a colour receiver much more critical than that of a monochrome set. The cut-off of the i.f. amplifier below 34.5 MHz has to be very sharp to avoid interference from the sound signal. Slight mistuning one way brings in sound interference, just as in monochrome. Slight mistuning the other way removes the colour completely from the picture, whereas in monochrome the drop in definition might well pass unnoticed.

There are two possible ways of treating the sound i.f. channel. One is basically the same as that necessarily adopted in 405 -line receivers. It is to have two separate i.f. amplifiers one for vision
and one for sound, with no more than, perhaps, a common first stage. This requires the use of a very stable oscillator in the frequency changer because of the narrow bandwidth of the sound i.f. amplifier. As the transmissions are at u.h.f. it is difficult to obtain the necessary stability.

Because of the adoption of frequency modulation for the sound channel on the 625 -line system an alternative is possible. This is the use of the so-called intercarrier sound. The sound and vision signals pass together through the 'vision' i.f. amplifier and the response curve is shaped so that the response at the sound carrier is at least 26 dB below that of the vision signal. At the video detector itself, or in a separate detector, the difference frequency of 6 MHz between the sound and vision signal is produced and bears the frequency modulation of the sound signal. It will necessarily be affected also to some extent by the amplitude modulation of the vision signal. This is not great, however, as long as the sound signal at the detector is always weaker than the vision signal. This is the reason for the relative attenuation of at least 26 dB of the sound signal in the i.f. amplifier. This is needed to ensure that on peak white and on saturated colour signals, when the vision signal reaches its minimum values, the vision signal is still stronger than the sound.

The $6-\mathrm{MHz}$ f.m. sound signal thus produced is taken from the detector and amplified in the sound i.f. amplifier, which is tuned to 6 MHz , and which ends in an f.m. detector, usually a ratio detector. Fairly high gain is needed for the $26-\mathrm{dB}$ loss in the main amplifier has to be made up and good limiting action is needed to remove any amplitude modulation of the signal produced by the video signal.

Fig. 1 shows the complete circuit diagram of the vision and sound i.f. amplifiers together with the vision a.g.c. amplifier, and the first video stage. There is a three-stage vision i.f. amplifier, with a diode detector and a unity-gain first video stage. This feeds the luminance amplifier from its collector through a

General view of the printed-circuit board which carries all parts shown in Figs. 1 and 2

delay line to equalize the transit times of the luminance and chrominance channels. It feeds the a.g.c. amplifier and the chrominance amplifier from its emitter.

A two-stage d.c. amplifier provides gain-control bias for the first i.f. stage and for the tuner. The intercarrier sound signal is taken from the video detector and fed to a two-stage $6-\mathrm{MHz}$ amplifier which culminates in a ratio detector.

The circuit embodies eight transistors and five diodes. All the transistors are silicon n.-p.-n. types and so require their bases and collectors to be positive with respect to their emitters. The transistors are thus like valves with positive grids in respect of the supply voltage polarity. However, Fig. 1 may seem a little confusing at first because it is the positive of the supply which is earthed to chassis.

It will be remembered from Part 4, Power Supply, that a common mains transformer winding provides, through separate rectifiers and smoothing circuits, two $20-\mathrm{V}$ supplies, one with its negative earthy and the other with its positive earthy. The first is used for the chrominance circuits, the second for the i.f. amplifiers. If this were all, there would be no reason why both supplies should not have their negatives earthy. However, certain stages in the chrominance circuits need a $40-\mathrm{V}$ supply, and by arranging the $20-\mathrm{V}$ supplies with one having a positive earth and the other a negative, the 40 V can be obtained across the two without any extra components.

Input circuit with traps

Although it appears to complicate matters the positive eartn of the i.f. amplifier supply does not really do so. To avoid getting confused it is best to regard the $-20-\mathrm{V}$ line as the base line and to measure all voltages from it.

Referring again to Fig. 1, the input tuned circuit has the coil L_{1}. The tuner culminates in a similar coil and is connected through a short length of coaxial cable to the bottom end of L_{1}. In effect, there are two tuned circuits, one in the tuner and one in the amplifier, which are bottom-end capacitance coupled by
a capacitor in shunt with the capacitance of the cable. This capacitor is not shown in Fig. 1, since it is fitted at the tuner.

The transistors used all have an input capacitance of about 45 pF . Ignoring the trap circuits for the moment, the tuning capacitance for L_{1} is C_{1} of 18 pF in series with the $45-\mathrm{pF}$ input capacitance of $T r_{1}$. The two form a capacitance potential divider across L_{1} so that, in effect, $T r_{1}$ is tapped well down the tuned circuit. The tuned circuit is thus less heavily damped than would at first appear by the base-feed resistor R_{1} of 470Ω in shunt with the input resistance of $T r_{1}$. This tapping down is needed to obtain proper damping of the tuned circuit, but it is also desirable because $T r$, has a variable base bias for gain control. Its input impedance varies with bias, and tapping down reduces the effect of this upon the tuned circuit. The resistance R_{0} in shunt with L_{1} provides some additional damping.

The other input circuits are wavetraps. The first and most important is $L_{2} C_{2}$ which is tuned to the sound channel of 33.5 MHz ; the next $L_{3} C_{3}$ is tuned to 41.5 MHz to reject adjacent-channel sound; and the third, $L_{4} C_{4}$, is tuned to 31.5 MHz to reject adjacent-channel vision (from a station on the other side, of course). Within the vision-channel pass-band $L_{2} C_{2}$ and $L_{4} C_{4}$ are both capacitive; their effective capacitance increases towards the high-frequency end of the pass-band and tends towards the sum of C_{2} and C_{4}, or 86 pF .. The other circuit $L_{3} C_{3}$ is inductive in the pass-band and to some extent offsets the capacitive loading of the other circuits.

The whole network is a complex one. In practice, the bandwidth of the whole amplifier is determined very largely by the $33.5-\mathrm{MHz}$ and $41.5-\mathrm{MHz}$ traps. The other circuits in the amplifier largely dictate the shape of the response within the pass-band, and they can reduce the bandwidth, but they cannot appreciably increase it above that set by the traps.

Basically, $L_{1} C_{1}$ and the tuned circuit in the tuner form a bandpass filter with a performance considerably modified by the traps on the secondary. The rest of the amplifier has single-tuned circuits as interstage couplings and the three circuits form a stagger-tuned triple with bandpass characteristics. The detector coupling $L_{7} L_{8}$ looks like a coupled pair, but the coils are so

Fig. 1. Circuit diagram of the vision i.f. amplifier, first video stage and automatic gain control system

Fig. 2. Circuit diagram of the intercarrier sound i.f. amplifier. It is built on the same printed-circuit board as the vision amplifier
ightly coupled that they act virtually as one and form a single :ircuit tuned to 37 MHz . The other tuned circuits are staggered, one at 35.5 MHz and the other at 38.5 MHz . These are the nominal requencies used in the initial line up; they are afterwards nodified experimentally to obtain the correct response curve.

In order to minimize the effect of variations in the output mpedance of Tr_{1} with gain control, the collector of this transistor s tapped well down the inductance L_{5}. The next transistor $T r_{2}$ is :apacitance tapped down the circuit, being connected to the unction of C_{9} and C_{11}, each of 220 pF . Because of the input sapacitance of $T r_{2}$ the tapping point is a little more than half-way down the circuit. This is the circuit tuned to 33.5 MHz .

Since Tr_{2} operates under fixed-bias conditions its collector need not be tapped down the next coil L_{6}, but the base of $T r_{3}$ is capacitively tapped down, and further than in the case of Tr_{2}, since C_{12} is 120 pF , while C_{13} is 220 pF plus some 45 pF input capacitance of Tr_{3}. Damping of the tuned circuits is provided by the base feed resistors R_{5} and R_{9} of 470Ω each, and each in shunt with the input resistance of the following transistor.

D.C. Conditions

The d.c operating points of $T r_{2}$ and $T r_{3}$ are well stabilized. In the case of $T r_{2}$, the base-feed resistance R_{5} is taken to the potential divider $R_{6} R_{7}$ across the supply. By Thévenin's theorem, this is equivalent to connecting R_{5} to the $-20-\mathrm{V}$ line through a resistance of $4.7 \times 5.6 / 10.3=2.5 \mathrm{k} \Omega$ in series with a battery of $20 \times 5.6 / 10.4=10.8 \mathrm{~V}$. So far as d.c. is concerned, therefore, the base is returned to +10.8 V (with respect to the $-20-\mathrm{V}$ line) through some $3 \mathrm{k} \Omega$. The emitter is returned to this same line through R_{8} of $1.5 \mathrm{k} \Omega$.

It is possible to deduce the operating conditions approximately in very simple fashion. The base current is likely to be very small compared with the collector current, and with a silicon transistor the base is always about 0.65 V positive to the emitter. If we further assume that the voltage drop in the $3-\mathrm{k} \Omega$ base feed resistance is small compared with the 10.8 V to which it is returned, the potential of the emitter relative to the $-20-\mathrm{V}$ line is $10.8-0.65=10.15 \mathrm{~V}$. Since R_{8} is $1.5 \mathrm{k} \Omega$, the emitter current is $10.15 / 1.5=6.8 \mathrm{~mA}$. Measurements, using the Model 8 Avometer on its $25-\mathrm{V}$ range, give 10.8 V for the base return and 10.15 V for the emitter, with 20.5 V for the supply. Current was not measured since this involves disconnecting components to insert a meter, and when a printed-circuit board is used one avoids this as far as possible.

In the case of Tr_{3} the circuit arrangement is the same but the component values are very different. The equivalent base circuit is a resistance of $2.2 \times 8.2 / 10.4=1.73 \mathrm{k} \Omega$ in series with 470Ω to make a total of $2.2 \mathrm{k} \Omega$ returned to $20 \times 2.2 / 10.4=4.12 \mathrm{~V}$. The emitter voltage is thus $4.12-0.65=3.47 \mathrm{~V}$, and as R_{12} is 470 , the emitter current is $3.47 / 0.47=7.4 \mathrm{~mA}$. The collectoremitter voltage, however, is $20-3.47=16.53 \mathrm{~V}$, compared with
$20-10.15=9.85 \mathrm{~V}$ for Tr_{2}. This is done because Tr_{3} has to give a larger signal output than $T r_{2}$.

The video detector, with diode D_{1}, is conventional and has a load resistance R_{15} of $3.9 \mathrm{k} \Omega$. The detector output comprises the complete video signal plus the $4.43-\mathrm{MHz}$ colour components plus the $6-\mathrm{MHz}$ intercarrier sound signal. This last is taken out by connecting the circuit $L_{12} C_{26}$ (Fig. 2) in series with R_{15}, the actual connection being made through a short length of coaxial cable.

The whole signal across the detector load is applied directly to the first video stage Tr_{4}. This has a $1-\mathrm{k} \Omega$ collector load R_{16} and the video signal appearing here is fed out through the $0.6-\mu \mathrm{sec}$ delay line to the luminance unit described in Part 6.

The main emitter load is the $560-\Omega$ resistance R_{17} which is shunted by a total of $3.8 \mathrm{k} \Omega$, making the emitter load effectively, about 490Ω. The collector load is about the same, so the stage gives slightly less than unity voltage gain between base and emitter and a gain of nearly the same between base and collector. This is because the delay line is terminated in about 1 k (1 in the luminance unit, which makes the total collector load about 500Ω allowing for the resistance of the delay line.

The whole detector circuil is returned to the junction of R_{13} and R_{14}, which is equivalent to returning it through a resistance of $15 \times 0.47 / 15.47=0.455 \mathrm{k} \Omega$ to $20 \times 0.47 / 15.47=$ 0.61 V .

The emitter potential is thus about $0.61-0.65=-0.4 \mathrm{~V}$, but the assumption of $\mathrm{V}_{\mathrm{be}}=0.65 \mathrm{~V}$ does not hold under these conditions and the emitter is actually just about at zero volts with respect to the $-20-\mathrm{V}$ line. The emitter current is thus about zero, so the collector-emitter voltage is almost 20 V . This is, of course, with no signal, and the detector output is always positivegoing.

A tapped tuned circuit is included in the emitter load. It comprises $L_{10} C_{20}$ and is tuned to the sub-carrier frequency 4.43 MHz . Its purpose is to increase the cathode load at this frequency and, by increasing the negative feedback at this frequency, to give a trough in the frequency response at the collector output of about 6 dB . This reduces the visible effect of sub-carrier frequencies on the picture. Such frequencies tend to produce a crawling-dot effect.

Another trap circuit, $L_{11} C_{21}$ is a series resonant circuit connected between emitter and collector, and tuned to 6 MHz . This reduces sound-channel interference in both outputs since at 6 MHz it tends to short collector and emitter together.

The trap is included mainly to reduce 6 MHz in the chroma output, for in the luminance output the delay line acts as quite a good filter at 6 MHz and alone reduces the $6-\mathrm{MHz}$ signal considerably.

The sound i.f. amplifier (Fig. 2) is fairly conventional with coupled pairs of circuits between the stages. The primaries are all tuned by $270-\mathrm{pF}$ capacitors. Except for the detector, the transistors are connected to the secondaries by a capacitance tap the
values being 390 pF and 680 pF . With 45 pF for the transistor input capacitance, the lower arm becomes 725 pF and in series with 390 pF this becomes 250 pF , so the total secondary capacitance is much the same as the primary. The tapping down is mainly to prevent the low input resistance of the transistors from damping the secondaries too much.
$T R_{7}$ is biased at the base through a resistor of $4.7 \mathrm{k} \mu$ returned to a potential divider, which is equivalent to a resistance of $15 \times 2.2 / 17.2=1.93 \mathrm{k} \Omega$ returned to $20 \times 2.2 / 17.2=2.55 \mathrm{~V}$. The emitter is thus at about $2.55-0.65=1.9 \mathrm{~V}$ and the emitter current is eome $1.9 / 0.47=4 \mathrm{~mA}$. There is a resistor of $2.2 \mathrm{k} \Omega$ in the collector unit which will give a voltage drop of $4 \times 2.2=8.8 \mathrm{~V}$, so the potential between emitter and collector is $20-1.9-8.8=$ 9.3 V . This assumes that the base current is negligibly small. In this case the base-circuit resistance is $4.7-1.93=6.63 \mathrm{k} \Omega$ so the approximation may not be too good.

In the second stage the potential divider resistors are much higher in value and there is no extra series resistor. The effective d.c. base return is through $12 \times 10 / 22=5.45 \mathrm{k} \Omega$ to $20 \times 12 / 22=10.9 \mathrm{~V}$. The emitter voltage is $10.9-0.65=10.25 \mathrm{~V}$ and so the emitter current is $10.25 / 2.7=3.82 \mathrm{~mA}$. In the collector there is only a $100-\Omega$ resistor which will drop only 0.38 V , so the collector-emitter voltage will be $20-10.25-0.38=9.37 \mathrm{~V}$. In spite of the very different circuit values, the actual operating conditions of the two transistors are virtually the same.

The final transformer is a discriminator feeding a ratio detector and is entirely conventional, the audio output being taken off through a blocking capacitor.

A.G.C. system

Turning now to the a.g.c. system, the vision detector produces an output which is positive-going on sync pulses and so does the video stage at its emitter. The no-signal emitter potential of Tr_{4} is about zero and it increases with signal up to a maximum of about 9 V . For anything much more than this the stage will bottom. The Set Signal Level control enables anything from the full emitter voltage to about one-half of it to be tapped off and applied to the base of Tr_{5}. The full range of base voltage of Tr_{5} is thus from zero minimum to 9 V maximum taking into account the control as well as the signal.

The emitter voltage of Tr_{5} will be about 0.65 V less, giving a range here of zero to 8.35 V and the emitter current in $1 \mathrm{k} \Omega\left(R_{22}\right)$ will be zero to 8.35 mA . Actually the emitter is biased positively by $20 \times 1 / 6.6=3 \mathrm{~V}$ through $5.6 / 6.6=0.85 \mathrm{k} \Omega$. Thus Tr_{5} is cut off until the base input exceeds 3.65 V . By adjusting the Set Level Control there can be at this point an initial delay to the start of a.g.c. action. When the input to $T r_{5}$ exceeds the delay this transistor draws current and its collector potential falls below the no-signal value, which is actually 10 V . As the collector load is $27 \mathrm{k} \Omega$ the maximum rollector current is 0.74 mA , and then bottoming occurs. However, the base input is the video signal and the maximum positive excursions correspond to the sync pulses. Although the mean current cannot exceed 0.74 mA , the peak current can do so, for it can flow into the capacitance C_{22} of $0.022 \mu \mathrm{~F}$. Peak currents of the order of the $8-\mathrm{mA}$ or so mentioned earlier can thus flow during the sync pulses without causing bottoming.

The net result is that the collector potential of Tr_{5} moves negatively with increasing signal. The collector is connected to the base of Tr_{6} through a voltage-dependent resistor and there are then resistors totalling $55 \mathrm{k} \Omega$ taken to 4 V below the $-20-\mathrm{V}$ line. Conditions here cannot be easily calculated because of the v.d.r. However, it can be seen that if $T r_{5}$ is bottomed on a very strong signal Tr_{6} is likely to be cut-off, whereas if Tr_{5} is cut-off on a weak signal, Tr_{6} will be drawing a large current. As the signal increases, therefore, the current in $T r_{6}$ will fall from its maximum no-signal value.

With no signal $T r_{6}$ is bottomed or nearly so, and its collector is nearly at the $-20-V$ line. The cathode of D_{2} is at $20 \times 180 / 1090=$ 3.3 V . The anode of D_{2} is taken to a point at $20 \times 0.47 / 2.88=3.26 \mathrm{~V}$ to $20 \times 0.97 / 3.38=5.75 \mathrm{~V}$, according to the setting of the Set I.F. Gain Control. Diode D_{2} is normally conductive and remains so until the current in T_{6} falls sufficiently to bring its collector potential above the delay voltage for which the Set I.F. Level Control has been adjusted. It then cuts off and thereafter leaves the bias on the i.f. stage at the value fixed by the Set I.F. Level Control. While D_{2} is conductive the variations of collector potential of Tr_{6} are conveyed through it as forward a.g.c. bias to $T r_{1}$.

The other diode D_{3} is connected the other way round, and its cathode is joined to a point at $20 \times 4.7 / 22.17=4.1 \mathrm{~V}$. Thus D_{3} is non-conductive until the signal level has increased sufficiently to bring the collector voltage of Tr_{6} above 4.1 V . The output from the cathode of D_{3} is then applied as a.g.c. bias to the r.f. stage in the tuner.

In broad outline what happens is this. Initially, there is a general delay on all a.g.c. because $T r_{5}$ is cut-off. As the signal increases $T r_{5}$ becomes operative and a.g.c. is applied through D_{2} to the first i.f. stage. At a certain higher level of signal D_{2} cuts off and thereafter the i.f. gain is kept at a fixed low level. At around this same point D_{3} conducts, and thereafter a.g.c. is applied only to the r.f. stage in the tuner.

Components

The circuit diagram gives details of component values. A $30-\mathrm{V}$ rating is sufficient for all capacitors but there is, of course, no objection to a higher value. Capacitors which are included in coil cans must be physically small, and those which are associated with tuned circuits should have low losses. This is not because low losses are always specially necessary, but to avoid a variable factor. The losses in 'lossy' types are likely to vary greatly from one specimen to another.

Suflex capacitors are a very suitable type for those used in coil cans, but they must be handled very carefully. The leads are rather fragile and are easily broken if subjected to rough handling. The thin leads are doubtless intended to protect the component against excessive heat when soldering, for too much heat can produce an internal short-circuit. This is a definite danger when only very short leads can be used, as when the components are fitted into the coil cans. It is essential to use a heat sink while soldering unless the external lead length exceeds $\frac{1}{4} \mathrm{in}$.

The same type of capacitor can be used for by-pass purposes but here small tubular ceramic types are equally suitable. A few $0.001-0.002 \mathrm{~F}$ of such capacitors additional to those shown on the circuit diagram may be needed as extra by-pass capacitors at points which may vary in individual cases. Two models of the i.f. amplifier have been built. The first was a hand-made model with copper foil stuck to a board and carved out rather laboriously by hand. When this had been proved a drawing was made and a second model built on a proper printed circuit. This second model needed rather fewer 'extra' by-pass capacitors, but on the strength of two models only it is not possible to predict just what is needed in every case.

All coils except the video detector coupling and the sound discriminator are wound on Brayhead P1011/1 formers with P1001 terminal bases and P5000 short cans and have Neosid screw cores $4 \times 0.5 \times 6 / 900$. The other two transformers use Brayhead P1003/1 formers with P1001 terminal bases and P5000 long cans. The discriminator has one core the same as the others, but the other core in this and the one in the video detector can are Neosid screw cores $4 \times 0.5 \times 12.7 / 900$.

Details of the layout, points in construction, and the alignment procedure will be dealt with next month.

Letters to the Editor

The Editor does not necessarily endorse opinions expressed by his correspondents

High input-impedance amplifier circuits

In his article "High Input-impedance Amplifier Circuits" in the July issue of IV'ireless W'orld Mr. Towers gives the

Fig. I. Complementary common-emitter amplifier

Fig. 2. Twostage commonemitter feedback amplifier

circuit shown above in Fig. I and labels it "complementary n-p-n/p-n-p compound emitter follower" (Fig. Ig). In fact this circuit is a complementary version of the two-stage common-emitter amplifier shown in my Fig. 2 above. In Fig. I transistor $T r_{2}$ is not operating as an emitter follower and the 2 -stage circuit does not invert the signal; it follows that $T r_{1}$ must be operating in the common-emitter mode.

The circuit does operate as a compound
emitter-follower however if the output is taken from the emitter circuit of transistor Tr ${ }_{2}$.
K. H. Green

Slough, Bucks.

Thank you for the interesting article by Mr. Towers on "High Input-impedance Amplifier Circuits" published in the July issue of Wireless World, which we very much enjoyed reading.

However, there is one point we would like to bring to your notice. That is, the circuits of Figs. 3(b), 3(d) and 4(a) will not function as he suggests. If we look at the equivalent circuit (our Fig.,I) it may be seen that, replacing the bootstrap capacitor by a short circuit (at the frequency of operation), the circuit reduces to that of Fig. 2 since $r_{c} \gg r_{r}$. The input impedance of this circuit is less than that for a conventional emitter follower, being

$$
r_{b}-\beta r_{c}+\frac{R_{E} R_{C}}{R_{E}+R_{C}}
$$

Readers may be interested in a possible modification to the Mullard circuit of Fig. 5(e). The circuit as it stands has an input impedance of ro 12 S at l.f. but this is shunted by the gate to drain capacitance of the BFX63. This gives an input impedance of about $250 \mathrm{M} \Omega$ at I kHz . This, however, may be improved by a factor of about 30 by boot-strapping the drain as shown in our Fig. 3.
R. Eberhardt and K. Lucas

The University,
Southampton.

Schmitt triggers

In his enlightening article in the October issue on the simplified design of Schmitt trigger circuits, Mr. Marshman, I feel, has omitted to state one fact which may lead the uninitiated into some minor difficulties. It is that by using the potential divider R_{1}, R_{2}, R_{3} to give reference to $V_{o n}, T r_{2}$ must never be saturated, which means the V_{0} should always be less than $V_{\text {ec }}-V_{\mathrm{on}}$.

The o.IV differential between the bases of $T r_{1}$ and $T r_{2}$, is probably due to the slight

Mr. Stackman's Schmitt trigger circuit in which $R V_{1}\left(R V_{2}=0\right)$ adjusts $V_{\text {off }}$ and $R V_{2}\left(R V_{1}=0\right)$ adjusts V_{on}.
difference between V_{BE} of $T r_{1}$, which can saturate at switch on, and $V_{\text {BE }}$ of $T r_{2}$, which is not allowed to run in saturation.

It is often required to define the $V_{o n}$ or $V_{\text {ore }}$ of a circuit to within very fine limits and design for very small hysteresis (ripple detectors etc.), and one simple method of doing this is to design a Schmitt circuit to the outside limits of tolerance, and insert a trimming resistor in the manner shown in the diagram.
A. D. Stackman

Calne, Wilts.

Low-distortion class B output circuit

The article under the above title in your April issue introduces some interesting and novel features of design.

It appears to the writer that the approach to symmetrical operation has been made by speeding up the switch-on of the output transistors, thus sharpening up the toe characteristic. However, a slightly different approach can be made which can, at a slight cost, give more nearly matching toe characteristics, so that one can approach class AB behaviour (but with a less pro-

Figs. 1, 2 and 3 (left to right) referred to in the letter from R. Eberhardt and K. Lucas commenting on Mr. Towers' article

This modified output section of the
Quad 303 power amplifier, originally described in our April issue, is discussed by H. W. Holdaway in his letter
nounced toe region than is usual). For purposes of discussion a modified circuit is outlined in Fig. I.

The principal proposal is to make R_{7}, R_{8} and R_{10} equal. Subject to the dissipation capabilities of Tr_{3} and $T r_{4}$ they can be made as low in value as convenient as this can improve conditions in switching $T r_{5}, T r_{6}$ at high frequencies, and improves linearity by partly offsetting effects of base current drive to $\operatorname{Tr}_{5}, \operatorname{Tr}_{6}$. For better symmetry R_{9} can also be made the same, but if some asymmetry in voltage distribution can be tolerated R_{9} may be reduced to zero with only moderate disturbance on performance. The effect of this change is that to switch on $T r_{5}$ the voltage at the collector of Tr_{1} has to fall an amount approximately equal to the sum of the switch on V_{BE} of Tr_{3} and $T r_{5}$. This more closely matches effects in the counterpart transistors $\operatorname{Tr}_{2}, \quad \operatorname{Tr}_{4}$ and $T r_{6}$.

A further benefit is better matching of the division of current at the collector of Tr_{1} to that at the collector of $T r_{2}$. Depending on the choice made for R_{7} and R_{10}, resistors R_{3} and R_{6} may be reduced in value. As it is now less vital to speed up switching on to quite the same extent resistors R_{4} and R_{5} and capacitors C_{2} and C_{3} may be introduced. Making $R_{4}=0.1$ of R_{3} and $R_{5}=0.1$ of R_{6}, say, one can make the performance of Tr_{1}, $T r_{2}$ less critical for variations in matching of the complementary pairs. Capacitors C_{2}, C_{3} can be chosen to partly offset the fall off in current gain of the output transistors at the higher frequencies.

Rather than using a string of diodes the writer has been using a form of silicon transistor bias (transistor $T r_{0}$). This permits setting the quiescent current of the output transistors independently of the d.c. reference level at the output point. The transistor used may be p-n-p or n-p-n but n - $\mathrm{p}-\mathrm{n}$ is cheaper and usually has higher current gain. For close compensation it can be similar to $T r_{1}, T r_{2}$ but quite low breakdown voltage types can be used. Close setting of quiescent current is possible by varying R_{1}.

The price paid for matching the toe characteristics will be a need to increase the
d.c. supply voltage by about I volt if R_{9} is zero, or about 2 volts if R_{9} is matched to R_{10}. The loss in efficiency is not too great, and still small compared to losses in class $A B$ valve circuits.
H. W. Holdaway

Ryde, N.S.W.,
Australia.

Television interference filter

Having been significantly involved in the testing of the Bovill Sporadic-E Filter objectively and subjectively during the last eighteen months or so, I should like to comment on the article "Combating Television Interference" (September issue) and Mr. Bovill's letter (November issue).

The efficiency of the Bovill interpretation of the filter is dramatically depicted in my "The Practical Aerial Handbook" (Odhams Books Ltd.) in terms of carefully controlled AB off-screen photos during a spell of particularly severe spring-time tropospheric propagation in the Torbay area. Without the filter the spurious information so confused the sync as to make locking highly critical, while degrading the picture to an unusable degree. With the filter in circuit normal sync performance was restored and almost all of the patterning was cleared from the picture, at the expense of no more than 500 kHz definition loss.

My lab tests have shown that Mr. Bovill's notch can improve on the rejection ratio of that described in the September issue* when carefully tuned, no doubt due to the reasons mentioned by Charles Bovill in his November letter. This sort of filter running in Band I relies on delicate tuning and balancing for success and when properly adjusted the rejection is so knife-sharp that it is almost possible to "blow away" decibels of rejection! Rigidity of the screened housing is thus a major design requirement and I, too, would query the efficiency of a filter of this kind when housed in a case with flexible sides and with a top cover of dubious and variable interconductivity, as suggested in the September issue.

The length of the coax lead can also be critical as I have proved time and time again in the field, and there is also the question of the lead acting as a stub at Band III frequencies, as brought up by Charles Bovill, depending on how well the set's tuner loads the lead and what sort of combining filtersif any-are used at the aerial end.

Finally, I would like to point out that the filter possesses other desirable attributes in wideband v.h.f. relays carrying a multiplicity of carriers in "notching out" unwanted beats, thereby deleting the quantum buildup of signal energy responsible for the progressive worsening of the crosstalk performance in an extended system, normally combated by diminishing the output levels of cascaded repeaters to maintain an acceptable end-of-line crosstalk ratio. A comb-filter for such applications is another interpretation under active consideration by Charles Bovill and his colleagues.
Gordon J. King
Brixham,
Devon.

* The last four "greater than" symbols in the specification on p. 329 should have been "less than" -ED.

Made in . . . ?

Reference your editorial in Wireless World for October, British manufacturers are not alone in using foreign made chassis.

I have a Schaub Lorenz "Tiny S". The case may possibly be made in Germany, but the inside is all Japanese.
J. Holding
H.Q., R.A.F.,

Germany.

Shades of Frankenstein !

Are we now driving our integrated circuits so hard that there is a danger of revolt by them and we must fit "mutiny correction" devices?

The caption to Fig. 1, p. 399, of the November issue would seem to confirm this. What was really meant?*

W. E. Blocksidge
 Wirral,
 Cheshire.

*The printer misspelt "muting connections". ED.

Volume 74 Index

The index covering the material published in Volume 74 (MarchDecember 1968) is in course of preparation and should be available in January.

Our publishers will undertake the binding of readers' issues | and details will be given when the index is published.

World of Amateur Radio

Slow-Scan Amateur TV Success

Two-way pictures were recently exchanged between A. Backman (SM0BUO), in Stockholm, and S. Horne (VE3EGO), in Ottawa, on 14.18 MHz . This was the first time twoway pictures had been exchanged across the Atlantic by radio amateurs, although in December, 1959, C. McDonald (WA2BCW) successfully transmitted pictures to the United Kingdom. Slow-scan TV has been authorized by the Swedish and U.S. licensing authorities, the former until June 30, 1969, and the latter until March 31, 1969.

Frequencies (in kHz) authorized are as follows:

Sweden	U.S.
$3600-3800$	$3725-3750$
$7050-7100$	$7150-7175$
$14100-14350$	$14175-14350$
$21100-21450$	$21000-21450$
$28100-29700$	$28100-29700$

Project Moonray

Nicholas K. Marschall (W6OLO/2), writing in the Dutch National Amateur Radio Society (VERON) V.H.F. Bulletin, describes proposals to have placed on the surface of the moon a small 2.25 kg lunar amateur translator package. This would be carried (if the authorities agree) on the third lunar module (LM-3) and the astronaut responsible would level, aim and turn on the transistor for what would be the first amateur moon-earth contact. Moonray project bulletins and progress reports are broadcast on 14.09 MHz on the first Monday of each month from 2300 to 2330 g.m.t. using the call sign K2SS. The transmissions are made by radio teletype followed at 2330 g.m.t. by an s.s.b. transmission lasting 30 minutes. Full details of the Moonray project can be obtained from Mr. Marschall, P.O. Box T, Syosset, Long Island, New York 11791, or from the European representative, H. Rifet, P.O. Box 13, Schiedam, Holland, who is editor of the VERON V.H.F. Bulletin.

Outstanding Services to R.S.G.B.

P. A. Thorogood (G4KD), who has been the manager of the R.S.G.B. annual radio exhibition for the past ten years and the society's London regional representative for an even longer period, has been awarded the Founder's Trophy by the council in recognition of his outstanding services to the society during the past 20 years. The Founder's Trophy was donated by the late

Rene Klein, who founded the society, as the London Wireless Club, in July 1913.

R.S.G.B. President 1969

J. W. Swinnerton (G2YS) is to succeed J. Graham (G3TR) as president of the Radio Society of Great Britain when the latter completes his term of office this month. Mr. Swinnerton has held a licence for many years and has been a member of the council of the society for the past ten years.

Interference on 70 cm

Following an approach by the R.S.G.B., the German commercial airline Lufthansa has agreed to restrict the use of certain radio altimeter equipment while their aircraft are in U.K. air space.

New German Certificates

The German National Society (DARC) has approved the issue of two new German amateur radio awards. The first, known as the C.W. Speed Certificate, is being issued by the Nordrhein district of the DARC and is designed to promote telegraphy activity. The second will be issued to those who prove contacts with DARC district R. Further details of the c.w.s.c. can be obtained from H. Trappenberg (DL1OW), D-4018 Langenfeld, Flurstr. 36, and of the w.d.r. from K. Tipp (DJ8CV), D-5603 Wüfrath, Düsselstr. 11.

V.H.F. National Field Day

The most popular annual v.h.f. contest organized by the Radio Society of Great Britain known at V.H.F. National Field Day took place this year during the weekend September 7-8 when 91 entries were received compared with 69 last year. For the first time an entry was received for work done in the 10 GHz band. Individual band winners were: on 70 MHz , the Cumberland and Westmorland v.h.f. group; on 144 MHz , the combined Worcester and Loughborough group; on 432 MHz , the Mid-Essex v.h.f./u.h.f. contest group; on 1296 MHz , the A.E.R.E. (Harwell) Amateur Radio Club; on 2300 MHz , the G3MCS contest group and on 10 GHz the Purley and Addiscombe (Croydon) group. The Mid-Ulster group and the Pennine v.h.f. expedition group were Northern Ireland and Scottish winners respectively. The combined Worcester and Loughborough group were Welsh group winners and runners-up in the overall results
total with the Surrey Trophy going to the Mid-Essex v.h.f./u.h.f. contest group as the leading entry from England.

Ealing Activity

The Ealing and District Amateur Radio Society gave a demonstration of amateur radio and television at the Hanwell Community Centre on October 26 and 27, when operation was carried out on all bands from 160 metres to 3 cm .

Nigeria News

First holder of the new Chair of Communications in the Electrical Engineering Department at Ahmadu Bello University is Prof. R. Sturley, who until recently was chief engineer, external broadcasting, B.B.C. Although not a licensed radio amateur Prof. Sturley has given an assurance that he will encourage the development of amateur radio among his own students in particular and among those in Nigeria in general. Four members of the Nigerian Amateur Radio Society are on the staff of the university where a concentrated effort is being made among students to encourage them to take up amateur radio as a hobby, to which end an s.s.b. station is operating under the call 5N2AAU. Morse code instruction classes are being run for the second year in succession and elementary radio theory classes are to be arranged if there is sufficient demand.

News from Otley

Meetings of the Otley Radio Society are held every Tuesday evening at the society's own premises in Otley, Yorkshire. The society operates its own station (G3XNO) on top band during club nights. Winner of the recent senior section home constructional competition was F. Pickard with an electronic time switch and binary readout. The junior section was won by P. Fox with a transistor stereo amplifier. Publicity officer is T. George-Powell (G3NND), 82 Forest Avenue, Starbeck, Harrogate.

New I.A.R.U. Member

The Association des Radio-Amateurs de la Principaute de Monaco has been elected to membership of the International Amateur Radio Union and has now applied for membership of I.A.R.U. Region I (Europe and Africa) Division.

Gift from A.R.R.L.

A Viking-Ranger transmitter, donated by the American Radio Relay League for training purposes, is at present under construction in Nairobi under the supervision of Andre Saunders (5 Z 4 KL). The transmitter will eventually operate under the call 5Z4RS with Fred Wade as first trustee of the station. Membership of the Radio Society of East Africa now stands at 110 .

Luxembourg Steady Growth

At the annual general meeting of the Luxembourg National Society (RL) it was reported that membership had increased to 111 compared with 98 a year earlier. Since 1965 membership has increased by 50%.

The Human Computer Reconsidered

A critical attack on a recent theory

by B. J. Conway, M. J. Hunt and G. J. Liston

In the May issue of this journal there appeared an article under the intriguing title, "The Human Computer". Its author, Mr J. R. Brinkley, proposed a non-linear mixer model for the human mind and a similar model for the process of conception.

The main features of this model are shown in Fig. 1 (reproduced from his article). Let us first decide what properties we expect in a black-box model of this type.

Fig. 1. The individual represented in terms of its information processing functions. $G=$ genetic information, $E=$ environmental information, $N L M=$ non-linear mixer.
(1) The model must be simpler than the original system. This, however, inevitably means that at some point it will break down.
(2) Since we know nothing of the internal workings of the system represented, we can only map the corresponding inputs and outputs of model and system.
(3) When the parameters used for these inputs and outputs are different in model and system (for example, not both voltages and currents), the correspondence between them must be clearly stated.
(4) The model must exhibit the well-known properties of the system it represents.

To be plausible, a model must satisfy points (1) to (4). To be useful however, it must also satisfy a further criterion, viz.,
(5) That it should make clear predictions which can subsequently be verified on the original system. This is the only true test of its validity.

Indeed, the sole raison d'être of such a model, which contributes nothing to our understanding of the internal processes of the system it represents is that it should go on to make further predictions of some practical value.
The authors are 2nd year undergraduates at St . Catherine's College, Oxford, all reading physics.

Let us now examine the article in the light of these considerations.

Confused Parameters

We first notice that the writer never makes clear the correspondence between the parameters of the two systems he compares. Indeed, the linkage appears quite arbitrary and varies from case to case. This leads to glaring inconsistencies. For example, he attributes the heightened perception reported under the influence of L.S.D. to a reduction in the non-linearity of the mixer. In the very next paragraph he goes on to associate genius with an unusually high degree of non-linearity. Different effects are dredged up to account for the heightened perception of colours, distortion of dimensions, detachment from environment, etc. The fact that by permuting the mappings in a different order totally different (and wrong) predictions would have resulted, shows that you can explain any effect on Mr. Brinkley's model, provided that you know the answers in advance. This carries versatility too far.

Even the most fundamental relationships are not preserved by the model. Throughout his discussion he treats Gout (see Fig. 1) as a function of $E_{i n}$ In other words, he says that experience gained in life is transmitted via gene modification to succeeding generations. He adopts this Lysenkoist viewpoint solely on the grounds of expedience, ignoring the fact that no experimental evidence has ever been produced to support this theory. Even in the Soviet Union, where strong ideological pressure exists to uphold this doctrine, it is now very much out of favour.
In fact, the author appears to have missed the central point of Darwin's theory. He dismisses random processes as being of secondary importance whereas they are, of course, essential to the whole process of evolution. There is no systematic selection of favourable characteristics-bad mutations simply die out.

He betrays a similar confusion concerning the processes involved in conception, and the need for his non-linear mixer in this case arises from this confusion. He maintains that twice the required amount of genetic information is present at conception and that the excess must somehow be removed. This is just not true: spermatozoa and ova each contain twenty-three chromosomes-exactly half the
number in a normal cell. It follows that at conception there is just sufficient information present to specify completely the genetic structure of the embryo.

The fact that children are not the mean of their parents was cited as further evidence for his model. In fact, this is a direct result of dominant and recessive behaviour in genes, which may even lead to the appearance in the child of characteristics dormant for several generations.

Mysticism

At times Mr. Brinkley waxes mystical. In a remarkable paragraph he purports to explain how a mysterious "life force" defeats the second law of thermodynamics. We do not underestimate the difficulty of proving rigorously that life and evolutionary processes obey the second law, but we maintain that you would have to consider all changes in the universe brought about by these processes and not merely surviving mortals, as Mr Brinkley implies. Clearly, the non-linear mixer does not disobey the second law, so that the author's statement that his model explains the violation of this law by life processes is wrong either way. Either the law is universal, and all systems behave similarly in this respect, or else Mr. Brinkley's model behaves contrary to the system it represents.

Much of the latter part of the article is devoted to the importance of low frequencies in biological processes. We are at a loss to understand the relevance of these frequencies to the transmission of genetic information, this being entirely a problem of molecular structure. Although their importance in the context of speech and vision is clear, our objection in this case is that the author feels obliged to seek an explanation of their origin at an atomic level.

We feel that this is misguided. To take an example, the vibration of vocal chords accounts perfectly for the low frequencies of the voice. Would the author attempt to explain the note produced by a violin in terms of the high frequency oscillations of the atoms in catgut?

In the same section the writer attaches exclusive significance to the elements $\mathrm{H}, \mathrm{C}, \mathrm{N}$, and O, dismissing the presence of others such as sulphur and phosphorus-equally vital-a merely adding "variety to the mix".

He tacitly rejects the modern theory of molecular spectra in favour of his own rather eccentric explanation in terms of the combination of atomic frequencies. To this end he assumes some simple relationship between these frequencies and the number of electrons in the outer shell of each atom, basing this view solely on the significance of the arithmetic sequence $1,2,3,4$ for the atoms $\mathrm{H}, \mathrm{C}, \mathrm{N}$ and O . If Mr. Brinkley's atomic frequencies are at all related to the electronic structure of atoms they must be frequencies of emitted electromagnetic radiation or (classically) those of electron rotation. The first are measured directly from spectra. In either case they are not in the simple ratios Mr. Brinkley would like for the atoms in question. Thus experimental evidence refutes his assertions.

The rest of what was conjectured about $\mathrm{H}, \mathrm{C}, \mathrm{N}$ and O and of the control by "atomic frequencies" of the temperature range within which life can survive, is likewise untrue. The range of temperature in which life survives is ultimately controlled by the rates of chemical reactions. These slow reactions have rate constants which vary by a factor of between 2 and 3 over a range of about 10 deg. C at normal temperatures, due to the exponential factor $\exp (-\mathrm{E} / \mathrm{kT})$ in the theoretical expression for the rate constant. The activation energy, E, must be provided by the total thermal energy of the molecules -what possible relevance can atomic frequencies of an electronic kind have to this problem of thermal energy? Atomic frequencies do not vary slightly with temperature as Mr Brinkley requires, but are grossly quantised. The main cause of temperature dependence of life processes is thus the exp (-E/kT) factor, which arises in the theory of statistical mechanics from purely thermodynamic arguments, these having no relation to any assumptions about atomic structure, let alone the nature of atomic frequencies.

Referring back to our original set of criteria for judging a model we must conclude that the author's model fails to satisfy the first four taken together. It now remains to see whether it satisfies the fifth: that of verifiable prediction.

Innocuous models might be excused a failure to satisfy our fifth criterion when they are first proposed-although one could have little faith in a black-box model until it had satisfied this criterion-but anything as wide in its scope as Mr. Brinkley's model, leaving a trail of discarded principles in its wake (Darwinism, genetics, molecular binding theory, etc.) must be most rigorously justified. We find, in fact, that the only prediction made by the author from his model is that "genetic and environmental information are of exactly equal importance to the generation of new information and hence to human progress". Since genetic and environmental information in the way that the author uses the terms, are so dissimilar in form it is impossible to equate them. His prediction, therefore, is unverifiable and provides no support for his model. Conisequently his conclusion that educationalists should "reconsider their ways" is worthless.

Hence, we conclude that the NLM model also fails on the final count and must be rejected as shedding no new light on the problems it seeks to resolve.

Battery Developments

The 6th International Power Sources Symposium was held at the Hotel Metropole, Brighton from September 24th to 26th. We have selected three papers, from those delivered, which seem of particular importance and interest to our readers. These are summarized below.

Cells with solid electrolytes

The limited shelf life, poor tolerance of temperature changes, and only moderate reliability of primary batteries, has hitherto ruled them out of consideration for a number of serious applications.

Early designs of solid state batteries (using solid electrolytes) resulted in units having long shelf lives, and good tolerance to temperature change, but having low electrical capacity and low current capability, due to the high electrolyte resistance.

However, a new class of solid state systems, with high conductivity electrolytes, has been designed in Americal. The potential of the individual cell units is 0.66 V , and they are capable of delivering $0.9 \mathrm{~A} / \mathrm{cm}^{2}$ when short circuited. Operation has been completely satisfactory over the temperature range- $55^{\circ} \mathrm{C}$ to $74^{\circ} \mathrm{C}$. At $25^{\circ} \mathrm{C}$ ninety per cent of the theoretical capacity can be drawn from the cells at a current density of $50 \mathrm{~mA} / \mathrm{cm}^{2}$.

Fast charging secondary cells

The possibility of rapidly recharging secondary cells greatly increases the variety of their applications. Where there are short intervals between successive discharges, as in some portable power tools, the ability to charge up quickly will allow smaller and lighter cells to be employed-though more frequent charging sessions will be required.

There has been a quest, again in America, for ways of safely recharging sealed nickel-cadmium cells, and batteries of such cells, in one hour or less ${ }^{2}$. Investigation over the past few years has revealed that rapid charging is made difficult only by the disastrous consequences of high level overcharging. As
soon as overcharging begins, heat and gas, internally generated, destroy the cell. Provided that the charging current stops precisely when the cell is fully charged, the whole process may be accomplished in one second at greater than 90% efficiency by delivering a 50 A pulse to 10 mAH cells. After 100 cycles of full charge and complete discharge there was no electrode damage. In practice fast charging rates are limited by the size and cost of the charging equipment required to deliver the high currents.

Fuel cell runs on gas

Development work is being done in England on a fuel cell running on natural gas ${ }^{3}$. A porous diaphragm, containing molten carbonates of lithium and sodium, separates the two electrodes. The anode (on the gas side), is of porous nickel, and the cathode (on the air side) contains silver, and oxides of copper and zinc.

The fuel to be oxidized can be a hydrocarbon mixture containing carbon dioxide, hydrogen gas containing carbon dioxide, or a mixture of steam and carbon monoxide. Carbon dioxide must also be present in the air for the cell to run properly.

A 'hot box' measuring $2 \mathrm{ft} \times 2 \mathrm{ft} \times 2 \mathrm{ft}$, with the active cells occupying one half and a gas processing complex the other, can produce 5 kW at 0.5 V per cell. The electrical efficiency is about 30%, but waste heat can be used to reform the gas and improve its quality.

REFERENCES

1. Paper 18. "Solid state batteries" by Argue, Croce and Owens, Atomics International (a division of North American Rockwell Corp.) Canoga Park, California.
2. Paper 29. "Rapid recharging of nickel cadmium batteries" by Hadley \& Carson Jr., General Electric Co., U.S.A.
3. Paper 39. "Theoretical consideration of a molten carbonate fuel cell running on natural gas" by Bannochie \& Clow, Energy Conversion Ltd., Basingstoke, Hants.

Test Your Knowledge

Series devised by L. Ibbotson* B.Sc., A.Inst.P., M.I.E.E., M.I.E.R.E.

7. Valves

1. The main advantage of the oxide coated cathode over tungsten and thoriated tungsten cathodes is that it
(a) can be indirectly heated and give reasonable emission efficiency
(b) is less susceptible to poisoning
(c) has a longer life
(d) is less easily damaged by ion bombardment
2. The material most commonly used to make anodes and grids for small thermionic vacuum valves is
(a) tungsten
(b) copper
(c) nickel
(d) iron
3. In a normal triode valve the grid is
(a) much nearer to the anode than to the cathode
(b) half way between anode and cathode
(c) very near to the cathode
(d) in contact with the cathode.
4. In a thermionic vacuum diode operating in the space-charge limited condition the anode current is not significantly dependent on
(a) anode voltage
(b) cathode temperature
(c) electrode areas
(d) electrode separation.
5. A diode with a tungsten cathode is operating in the temperature limited condition. Richardson's equation suggests that the current should not change as the applied voltage is increased; in practice we observe a small increase in current. This is due to
(a) a reduction of the effective work function of the cathode by the electric field at its surface
(b) tunnelling of electrons through the potential barrier at the cathode surface
(c) a rise in temperature of the cathode due to thermal expansion.
6. The potential at the centre of the space charge in a thermionic vacuum valve in normal use is
(a) lower than cathode potential

[^7](b) equal to cathode potential
(c) between cathode and anode potential
(d) equal to anode potential.
7. In a triode used as a small signal class A a.c. amplifier the alternating component of anode current is in phase with the alternating component of grid-cathode voltage
(a) under all conditions
(b) provided the anode load is resistive
(c) provided the frequency is not too high
(d) provided both the anode load is resistive and the frequency is not too high.
8. One of the following has the same order of magnitude in triodes and pentodes
(a) the amplification factor
(b) the capacitance between anode and control grid
(c) the mutual conductance
(d) the anode slope resistance.
9. For a triode or pentode there is usually specified a maximum value which the resistance of the external circuit between control grid and cathode must have when the valve is in use as a class A amplifier. This is
(a) so that the input impedance of the valve will not be too high
(b) to reduce the Miller effect
(c) to prevent oscillation
(d) so that positive ions captured by the control grid will not significantly alter its potential.
10. During normal operation secondary emission of electrons from the anode occurs
(a) in all thermionic vacuum valves
(b) only in indirectly heated valves
(c) in tetrodes and pentodes only
(d) in tetrodes only.
11. The potential relative to the cathode of the control grid in a thermionic vacuum valve
(a) is never allowed to become positive
(b) always becomes positive at some point in the cycle of input voltage
(c) is allowed to become positive in smallsignal amplifiers, but not in power amplifiers
(d) is allowed to become positive in large power amplifiers, but not in small-signal amplifiers.
12. During the operation of a large power amplifying valve the anode generally becomes very hot. This is mainly due to
(a) heat received by radiation from the cathode
(b) heat received from the cathode by conduction through the valve enyelope
(c) heat generated by the large anode current due to high resistivity of the anode material
(d) heat released when the electrons give up their kinetic energy on striking the anode.
13. When bottoming is allowed to occur during the operation of a pentode damage may be done to
(a) the anode
(b) the suppressor grid
(c) the screen grid
(d) the control grid.
14. For a pentode, having fixed grid voltages in the normal range, an anode current/anode voltage curve is plotted. If the screen grid voltage is increased and the curve| replotted the second curve is found to
(a) coincide with the first curve
(b) lie entirely below the first curve
(c) lie entirely above the first curve
(d) cross the first curve at an anode voltage equal to the original screen grid voltage.
15. A pentode will act as a good constant current generator; over a wide range of anode voltage the anode current changes very little. The physical reason for this is
(a) the space current is controlled almost entirely by the screen voltage
(b) the cathode emission is space charge limited
(c) the anode lead has a large resistance
(d) the suppressor grid current increases as the anode voltage increases.
16. A variable- μ pentode is designed for use as an amplifier with a gain which can be varied over a wide range. The variation of gain is achieved by varying
(a) the anode voltage
(b) the screen grid voltage
(c) the control grid bias voltage
(d) the heater current.
17. The beam tetrode construction can only be used satisfactorily in valves designed for power amplification. This is because
(a) the input impedance between the control grid and cathode is low
(b) a large space current is needed to drive secondary electrons back to the anode
(c) the beam forming action. only works when the anode voltage is high
(d) the large separation between the screen grid and the anode causes the electron transit time to be significant.

Answers and comments, page 479.

December Meetings

Tickets are required for some meetings: readers are advised, therefore, to communicate with the society concerned

LONDON

2nd. I.E.E.-Discussion on "Terminology for use in electrical measurements" at 17.30 at Savoy P1., W.C.2.
3rd. I.E.E.-"Representation of multi-variable system behaviour by loci in the complex plane" by Dr. A. G. J. MacFarlane at 17.30 at Savoy P1., W.C.2.
3rd. I.E.E.-Discussion on "Sampling techniques applied to signal recovery and display" at 17.30 at Savoy Pl., W.C. 2.

3rd. Inst. Electronics-"Electronics in automation" by J. Reed at 18.45 at the London School of Hygiene \& Tropical Medicine, Keppel St., W.C.1.

4th. I.E.R.E.-"Project technology-electronics in the schools" by G. B. Harrison at 18.00 at 9 Bedford Sq. W.C.1.

4th. S.E.R.T.-"Automatic train control" by I. Smale at 19.00 at the London School of Hygiene \& Tropical Medicine, Keppel St., W.C.1.

5th. I.E.E. Grads. - "On the future of world communication" by Prof. C. Cherry at 18.30 at Wimbledon Technical College, Gladstone Rd., S.W.19.

6th. R.T.S.-"The use and abuse of closed-circuit television in anatomical teaching" by Dr. E. H. Ashton at 19.00 at I.T.A., 70 Brompton Rd., S.W. 3 .

9th. I.E.E.-Discussion on "The use of digital computing in navigation systems" at 18.00 at the Royal Aeronautical Society, 4 Hamilton Pl., W. 1

10th. I.E.E.- "Corona tubes" by Prof. F. A. Benson at 17.30 at Savoy PI., W.C.2.

10th. I.E.R.E.-"Audio communication between divers" by B. Ray at 18.00 at 9 Bedford Sq., W.C.1.

11th. 1.E.E.-"Broadcasting stereophony" by D. E. L. Shorter at 17.30 at Savoy P1., W.C.2.

11th. I.E.R.E.-"Taking a close look at contacts" by Dr. T. Datvies at 18.00 at 9 Bedford Sq., W.C. 1 .

12th. I.E.E.-Discussion on "The role of thin and thick films in micro-miniature equipment" at 17.30 at Savoy P1., W.C.2.

12th. R.T.S.-"Television visual effects" by J. Kine at 19.00 at I.T.A., 70 Brompton Rd., S.W.3.

13th. I.E.R.E. \& I.E.E.-Colloquium on "The technology of modern micro-circuit digital equipment" at 10.30 at Savoy PI., W.C.2.

16th. I.E.E.-Discussion on "Electronic properties of the vitreous state" at 17.30 at Savoy Pl., W.C.2.

18th. I.E.E.-Colloquium on "Linear and non-linear device modelling for efficient design" at Savoy Pl., W.C. 2.

19th. I.E.E.-"Matricon cathode-ray tubes" by G. Heftman and D. S. Hills at 17.30 at Savoy PI., W.C.2.

BELFAST

2nd. I.E.E.T.E.-"The story of colour television-so far" by J. P. Hunt at 19.30 at Ashby Institute, Queens University, Stranmillis Rd.

5th. I.E.R.E.-"Metal oxide semiconductor transistors" by Prof. W. D. Ryan at 18.30 at the Ashby Inst., Stranmillis Road.

BRIGHTON

6th. I.E.E.-Christmas lecture: "There is more to electronics than meets the eye" by Dr B. H. Venning at 15.00 at the College of Technology.

BRISTOL

18th. I.E.R.E. \& I.E.E.-"Instrumentation tape recording" by T. Read at 19.00 at the University.

CAMBRIDGE

11th. S.E.R.T.-"Automatic test equipment" by K. Brewster at 19.00 at the Cambridgeshire College of Technology, Collier Rd.
-12th. I.E.R.E. \& I.E.E.-'Impact of microelectronics for circuit designers" by R. S. den Brinker at 20.00 at the University Engineering Laboratories, Trumpington St.

CARDIFF

6th. R.T.S.-"Modern picture source synchronisation" by J. L. Bliss at 19.00 at Broadcasting House, Llandaff.

11th. I.E.R.E. \& I.E.E.--"Circuit and systems design using digital computers" by J. S. Reynolds at 18.30 at the Unjversity of Wales Inst. of Science and Technology.
13th. S.E.R.T.-"The c.r.o. and its applications" by R. A. Watson at 19.00 at Llandaff Technical College, Western Ave.

CHELMSFORD

9th. I.E.E.-"The problem of maintaining complex electronic systems" by A. J. Wheeldon at 18.30 at the Lion \& Lamb Hotel.
12th. I.Prod.Eng.-"Developments in metrology" by A. C. Dawe at 19.00 at The Hoffmann Manufacturing Co., New St.

CHELTENHAM

10th. I.E.R.E.-"Air traffic control" by D. R. Evans at 19.00 at the Government Communications H.Q., Benhall.

EDINBURGH

11th. I.E.R.E.--"High power u.h.f. transmitters" by D. Ingle at 19.00 at the Napier College of Science \& Technology, Colinton Rd.

EVESHAM

9th. I.E.E.-"Concorde electrics" by H. Hill at 19.30 at the B.B.C. Training Centre, Wood Norton.

GLASGOW

12th. I.E.R.E.-"High power u.h.f. transmitters" by D. Ingle at 19.00 at the University of Strathclyde.

13th. S.E.R.T.-"A review of some developments in Post Office telecommunications" by A. Scott at 19.30 at the Y.M.C.A., 100 Bothwell St., C.2.

GLOUCESTER

12th. I.E.E. Grads.-"Video tape recorders" by G. Fry at 19.30 at the Technical College.

GUILDFORD

4th. I.E.R.E.-"Some circuit aspects of m.o.s. devices" by N. E. Broadberry and I. N. M. Edward at 19.30 at the Technical College.

HUDDERSFIELD

12th. I.E.E.T.E.--"Marine navigational aids" by G. J. McDonald at 19.00 at the College of Technology.

LEICESTER

4th. I.E.R.E. \& I.E.E.-"Reliable low-distortion transistor audio amplifier" by P. J. Baxandall at 18.30 at the Physics Lecture Theatre, the University.

4th. I.E.E.T.E.-"The Decca Navigator system-a radio aid for ships and aircraft" by A. Brooker-Carey at 19.30 at the College of Technology, The Newark.

13th. I.E.E.-"Solid state devices" by D. T. Davies at 19.00 at the College of Technology.

LETCHWORTH

4th. I.E.E.-Children's Christmas Lecture: "B.B.C radiophonic workshop' by D. Briscoe at 15.00 at the College of Technology.

LIVERPOOL

11th. I.E.R.E.-"Induction motor speed control" by D. R. Aubrey at 19.00 at the University Dept. of Elec. Eng'g. and Electronics.
11th. I.E.E.T.E.-"Communications by satellite" by V.C. Meller at 19.00 at the Building and Design Centre. Hope St.

MAIDSTONE

2nd. I.E.E.-"Colour television" by B. J. Rogers at 19.00 at the Royal Star Hotel.

MANCHESTER

4th. I.E.E.-"Computer aided design" by J. V. Oldfield at 18.15 at the University of Manchester Inst. of Science \& Tech.
19th. I.E.R.E.-"A pay television system and equipment" by Dr. G. L. Hamburger at 19.15 at the University of Manchester Institute of Science and Technology.

MIDDLESBROUGH

5th. S.E.R.T.-"Computer traffic control" by A. Gregory and H. A. Codd at 19.30 at the Cleveland Scientific Institute, Corporation Rd.

NEWCASTLE-UPON-TYNE

4th. S.E.R.T.-"Computer traffic control" by A. Gregory and H. A. Codd at 18.45 at the Charles Trevelyan Technical College, Maple Terrace.

11th. I.E.R.E.-"Film electronics in the seventies" bv J. C. Maddison at 18.00 at the Inst. of Mining \& Mech. Engrs., Westgate Road.

16th. I.E.E.- "Optical communications" by D. Williams at 18.30 at the Rutherford College of Technology.

NORWICH

- Sth. I.E.E. \& I.Mech.E.--"Men, circuits and systems in telecommunications" by J. H. H. Merriman at 19.30 at the Assembly House.

PORTSMOUTH

10th. S.E.R.T.-"Design and development of colour television components" by A. W. Lee at 19.00 at Highbury Technical College, Dovercourt Rd., Cosham.

PRESTON

11th. I.E.E.-"Colour television receiver design" by B. J. Rogers at 19.30 at the Harris College.

READING

Sth. I.E.R.E.-"Digital voltmeters" by G. W'. Boulton at 19.30 at the J. J. Thomson Physical Lab, the University.

REDHILL.

4th. I.E.E.-"Changing patterns in communications" by D. Wray at 19.30 at the Mullard Research Labs, Salfords.

RUGBY

3rd. I.E.E.-"On the future of world communications" by Prof. C. Cherry at 18.15 at the College of Eng'g Tech.

SHEFFIELD

4th. I.E.E.-"Operation of the Eurovision system" by A. R. Elliott at 18.30 at the University

10th. I.E.E.-Faraday Lecture "Microelectronics" by P. E. Trier at 19.30 at the City Hall.

SOUTHAMPTON

4th. S.E.R.T.-"Digital integrated circuits" by K. G. Nichols at 19.30 at the College of Technology, East Park Terrace.

TORQUAY

12th. I.E.E.-"Satellite communication" by J. M Brown at 14.30 at the Electric Hall.

Late November meetings in London

26th. I.E.R.E.--"Frequency modulation transducers" by J. Agar at 18.00 at 9 Bedford Sq., W.C.1.
27th. I.E.R.E.-"World telephone communication" by S. Welch at 18.00 at 9 Bedford Sq., W.C.1.
27th. B.K.S.T.S.--"The usable sensitivity of a radio receiver" by J. Moir at 19.30 at the Royal Overseas League, Park Pl., St. James's St., S.W.1.

29th. I.E.E.-Colloquium "Computer methods in network design and synthesis" at 09.30 at Savoy Pl., W.C.2.
29th. R.T.S.-Symposium "Television news techniques" at 17.00 at the I.T.A., 70 Brompton Rd, S.W.3.

A Flexible Expander/Compressor

A means of achieving loudness control by using a photo-electric potential divider

by M.B. Catford,* B.Sc.

Some years ago, during the early stages of the now widespread interest in the high quality reproduction of music from disc records, there was a general realization that some degree of expansion of the dynamic range of the recorded sound, within the reproducing circuitry, and automatic in action, could lead to enhanced enjoyment for the critical listener, since it could be used to counteract the peak limiting or compression unavoidable in disc recording. Many records were then unwittingly also records of how not to use a compressor, in that the results of its use were only too evident to the listener's ear. In the last ten years, the advances in techniques, including the universal re-taping and editing of original tapes before cutting the disc record, have made the life of the control engineer easier, so that the compression is today not so obvious. Many listeners to records made in recent times may question the advantage of any expansion of the dynamic range. But a few, super-critical perhaps, seeking the best possible reproduction of the sound as originally recorded, will notice that a passage for cello and oboe which has an average level only 10 dB down on that of the full orchestra, or who are repeatedly disappointed at the degree of surprise which the composer surely intended, at the sudden trumpet call in the middle of the William Tell

[^8]A view of the expander/compressor chassis showing the mounting of the main components. It is believed that the author had a frequency division network in his system, with a separate photoelectric control unit for each part.

overture, and are thereby forcefully reminded of the restrictions imposed by the recording process.

In the other direction, many a tape recording enthusiast must have longed for an easily adjustable compressor, which would look after the unrehearsed peak intensity in his own taping of a live performance.

Offers by manufacturers of a photo-resistive unit, comprising a filament lamp mounted in the same assembly as a photo resistor, may have prompted some of them to reconsider the published circuits for volume expansion, and experiments in that field carried out in days gone by. Those who find that dynamic range expansion or compression is either attractive or essential, may care to try the method used by the writer during the last two years.

The basic idea is simple. Replace the filament lamp as light source with an electronic light source like that of the C.R.O. screen. This has manifold advantages which are not immediately obvious, and can be done with great economy by using as the source, a tuning indicator, EM 84. This valve cum electron gun device needs no high voltage supply; it exhibits two fluorescent strips, normally separated by a considerable distance if input volts are zero, but the proximal end of these strips approach each other more and more closely as the grid input voltage is raised. The amount of light emitted by these strips is approximately proportional to their area. Inspected through a coloured filter, it will be found to contain a large amount of orange-red light, and it is this portion with which the photoresistor family are concerned. The earlier 'magic eye' indicator with its green fluorescence would not be perceived as a light source by any ordinary photo-resistor.

If an EM 84 indicator, to which the audio signal is fed at the triode grid, is placed in a dark box, which also contains a photo-resistor such as the RCA 7412, we can utilize the light-modulated resistance in a network involving only one other normal resistor, so as to form a potential divider which automatically responds so as to enhance signal peaks applied across the network, or to level out these peaks, according to whether the photo-resistor forms the 'top' part or the 'lower' part of the divider.

The photo-resistor so arranged will respond only to the general level of the light intensity within the box. This alone is not satisfactory, for the simplest calibrating test will show that the fluorescing strips of the indicator increase in : area in logarithmic relationship to the input signal voltage. This effect, achieved by suitably shaping and disposing the internal electrodes, is ideal for use as a tuning indicator, but as a light source for a volume expander would cause a large change of loudness for a certain input change at a low average signal level, and a very much smaller change in loudness for the same signal change if the average level was high. Clearly something must be done to at least straighten out this logarithmic response, and even, if possible, to reverse its direction. This is

very easily done. All that is required is that the photo-resistor shall be placed quite close to the screen of the indicator, and at a point mid-way between the two ends of the flourescent strips. When these are well separated, they still emit light, but this is all in the peripheral field of view as seen by the photo-resistor, which therefore almost ignores any small changes in the quantity of light. It is not until the ends of the strips come together, and are almost opposite the close spaced photo-resistor, that it sees them effectively. From that intermediate condition, the now decreasing response of the indicator, because of its logarithmic law, will have more and more effect on the photo-resistor, right up to the apparent point of saturation when the strips meet, and surprisingly, beyond this point, for an increased amount of light is emitted from the strips even when they overlap each other. Such a disposition of indicator and photo-resistor, with normal values of circuit components and supply voltage, can result, for a change of input signal of 20 volts, in a resistive change of 10 megohms to 0.1 megohm, or 100 to 1 . As an element in a resistive potential divider used as a volume control, this can be used if need be to occasion really violent loudness change.

Now we can review some of the advantages of such a system. Firstly, since the light flux changes are electronic in origin, and the phosphors used appear to be similar to those employed in the C.R.O., we certainly have instant response. It is in fact fast enough to 'catch' the beginning of a percussion sound, such as a drum tap or a piano note. Secondly, since the input signal is applied to an open circuit, comprising the triode grid of the indicator, it cannot be inadvertently destroyed by burning out. Thirdly, a most important advantage, the response law can be changed at will in a manner impossible with any other form of light source.

A description of a typical expander as used in the writer's equipment will show how this is done. The audio input signal for operating the expander is taken from the live end of the volume control in the pre-amplifier. This is at millivolt level, so it is passed through a one stage voltage amplifier, adjusted to achieve an output of some 25 volts average on the loudest audio passages. This is applied by way of a parallel fed potentiometer to a cathode follower, the potentiometer allowing adjustment of the degree of expansion. The cathode follower, through a double diode connection, feeds a resistance-capacity circuit and the indicator input grid. The time constant of this shunt circuit controls the decay envelope after expansion is cut

The circuit for audio control of the light intensity of the EM 84 when used as a light source for the photo-resistor. By inverting the potential divider feeding the main amplifier the unit's function may be inverted.

The disposition of parts in the unit. This may better be seen in the photograph.

off by reduction of the audio level. Values here are emphatically non-critical, and a time constant of 1 second is a good starting point for adjustments by trial.

The EM 84 is entirely satisfactory when used as recommended, although if need arises, it is capable of astonishing light output on higher voltage at anode and target. The photo-resistor, RCA 7412 is virtually placed with its envelope axis at right angles to that of the indicator, with a spacing of $1 / 16$ in to $1 / 8$ in between the two components. Virtually-because in practice it is a good idea to interpose a heat insulator in the form of a short light pipe. This consists of a 2 in length of clear glass rod about $1 / 4$ in diameter. This light pipe keeps the temperature sensitive photo-resistor away from the heater of the indicator. Without this precaution, the performance of the expander will gradually fall off during several hours of use. Ideally the ends of the glass rod should be flat and polished, but in practice a clean and chip free break surface works almost as well. Glass seems to be better for this purpose than a clear plastic.

Now the final refinement; a thin metal diaphragm is placed between the indicator and the glass rod light pipe. It is slit at a place opposite the end of the rod. The corners of the slit, and the width of the slit, are altered by snipping with fine scissors or by bending the metal foil with forceps, until trial shows that the mask so formed gives the desired, and stepless, response.

For the majority of the writer's records, the expansion is set at zero. Since those records in which its expanding action seem to be required are from different recording studios, controlled by various recording engineers, using different equipment, it would seem to be an impossible task to attempt an exact compensation for the compression used on any particular occasion. The mask outline, together with the expansion control, are therefore in theory a glorious compromise. In fact it is not a difficult job to adjust things so that even a very critical ear is unaware of just why the record sounds more realistic on this equipment than it does on another which has no expander. This, demonstration sessions apart, is its real function.

The expander can also be used to do some cheating. The dynamic range of a recording can be expanded by settings which result in hearing the loudest passages normally, but all others quieter than as recorded. One can argue about this being less faithful as a reproduction of the original sound, but the end result is very pleasant, since surface noise is inaudible at all times.

New Products

M.O.S. 'Tetrode'

A combination of important valve and transistor features are claimed by Mullard for the m.o.s. transistor type BFS28. With high input impedance and low distortion it can handle a wide dynamic range. It has high gain (18 dB at 200 MHz) and low noise $(2.7 \mathrm{~dB}$ at 200 MHz). All these features make it particularly suitable for use in the front-end of v.h.f. receivers. Cross modulation performance is improved and spurious response reduced to a minimum by the linearity of the device. Low feedback capacitance $(0.025 \mathrm{pF}$ at 10 MHz) ensures operating point stability and reduces oscillator feedthrough. The dual gate construction allows for linear mixing. Encapsulated in a TO-72 can, the maximum drain-to-source voltage is 20 V , and maximum drain current 20 mA . Mullard Ltd., Mullard House, Torrington Place, London W.C. 1
WW 331 for further details

Matched F.E.Ts

Semitron are now providing f.e.ts type C97E and C98E with the basic parameters matched to within 5% and with pinch volts selected to better than 5 mV . The f.e.ts are n-channel types and the main application for the matched pairs will be in differential amplifiers. Maximum drift over the temperature range $-50^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ is better than $50 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$. Semitron Ltd, Cricklade, Swindon, Wiltshire.
WW315 for further details

Step-recovery Diodes

Hewlett Packard have coined two new parameters for step-recovery diodes which they say will remove the need for component selection within a selected range by circuit designers. The transition from low- to high-impedance upon bias reversal is not a simple step function, but may include a more slowly rising ramp before the main transition and a rounding off of the trailing edge. Hewlett Packard now use the terms "ramping" and "rounding", specified as a percentage of total transition time, to describe these phenomena. Three new step-recovery diodes announced by Hewlett Packard are 5082/0200, /0201, and /0202 that have transition times from 85 ps to 300 ps , breakdown volt-

ages between 10 and 20%. The devices are available in a choice of two ceramic packages (0.3 pF and 0.4 nH or 0.2 pF and 0.5 nH) or in a DO-7 glass package (0.25 pF and 4 nH). Small quantity price is from about $£ 310$ s to a little over $£ 18$ per item. Hewlett Packard Ltd, 224 Bath Rd, Slough, Bucks.
WW 302 for further details

M.O.S.T. Shift Registers

Three new shift registers, one static and two dynamic, now augment the range of m.o.s.t. circuits available from SGS-Fairchild. The static device, the 3300 , is a 25 -bit, three phase, serial access shift register in a ten-lead TO-100 can. Designed for operation up to 250 kHz , it consists of 25 flip-flops arranged in three strings to give input and output access at 16,8 and 1-bit increments. The output of the last bit in each string is buffered to provide good capacitance driving ability. Characteristics of the 3300 include a noise margin of 1 V and a typical power dissipation of $2 \mathrm{~mW} /$ bit. Only one external clock drive is required as the other two phases are generated internally. The first of the dynamic registers is the 3303 which is a 25 -bit serial access shift register which is also in a TO-100 case. The register, which will operate from 10 to 500 kHz , consists of two 25 -bit serial strings of data storage elements controlled by two common shift lines. The more complex 3320, which is a 64 -bit shift register/ accumulator, will operate from 10 kHz to 2 MHz . It incorporates additional input logic to provide control of the loading of new data or the recirculation of existing information. SGS-Fairchild Ltd, Aylesbury, Bucks.
WW 335 for further details

Operational Amplifier

Designed to operate in either the inverting or non-inverting mode, with a wide range of power supply voltages, the Burr-Brown model 3038/25 universal operational amplifier has an f.e.t. input. Input inpedance is $10^{11} \Omega$ and offset current is 50 pA at $25^{\circ} \mathrm{C}$. Voltage offset drift is typically $\pm 15 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ at the input. Power supply voltages can be balanced or unbalanced and from $\pm 40 \mathrm{~V}$ to $\pm 135 \mathrm{~V}$ d.c. The amplifier's maximum output voltage swing is equal to the supply voltage less 20 volts in each direction. Output current can be as high as $\pm 20 \mathrm{~mA}$. Supply rejection is such that if both supplies vary from 40 V to 135 V at 120 Hz the ripple voltage at the amplifier input will be less than 1 mV . Up to 100 V commonmode voltage can be accepted with a d.c.-to -100 Hz common-mode rejection ratio of 90 dB . The slew rate is guaranteed to be $12 \mathrm{~V} / \mu \mathrm{s}$ (minimum) and rises with increasing power supply voltage. The encapsulated model weighs less than 120 g and measures $61 \times 45.8 \times 15.3 \mathrm{~mm}$. It requires a maximum of $\pm 10 \mathrm{~mA}$ quiescent current. Price of model
$3038 / 25$ is $£ 83$ in 1-9 quantities. A companion unit, model $3138 / 25$ has identical specifications, except that voltage offset is typically $45 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ and the price 559 . General Test Instruments Ltd., Gloucester Trading Estate, Gloucester, England. WW 329 for further details

Electronic Multimeter

An electronic multimeter introduced by Smith's Industries employs an f.e.t. chopper/amplifier measuring circuit and costs approximately $£ 70$ Overload protection is provided by a fast-acting electro-mechanical cut-out, a fuse, an input circuit flash-over path and various diodes. The meter is powered by four 1.5 V miniature cells that are claimed to have an average life of six months. The taut ligament movement is temperature compensated magnetically and has a basic sensitivity of $17 \mu \mathrm{~A}$. Voltage ranges (there are 13 a.c. and 13 d.c.) -start at 1 mV f.s.d. and finish at 1000 V f.s.d. in a $10, \sqrt{ } 10$ progression with a sensitivity of $1 \mathrm{M} \Omega / \mathrm{V}$ or $10 \mathrm{M} \Omega$ which ever is the lower. The dB ranges span -60 to $+50 \mathrm{~dB}, \mathrm{OdB}=0.775 \mathrm{~V}$. There are

14 a.c. and 14 d.c. current ranges with f.s.ds of $1 \mu \mathrm{~A}$ to 3 A . Accuracy on the current and voltage ranges at 50 and 60 Hz is $\pm 1 \%$ falling to $\pm 3 \%$ at 20 kHz . Resistance is covered in six ranges with f.s.ds from 500Ω to $50 \mathrm{M} \Omega$, centre scale of the upper and lower ranges being $1 \mathrm{M} \Omega$ and 10Ω respectively. The six capacity ranges have f.s.ds from 50 nF to $5000 \mu \mathrm{~F}$. The meter can be used in conjunction with an iron/constantin probe to measure temperature in two ranges 0 to $18^{\circ} \mathrm{C}$ and 0 to $180^{\circ} \mathrm{C}$. Smith's Industries, Kelvin House, Wembley Park Drive, Wembley, Middx.
WW $\mathbf{3 0 1}$ for further details

Portable Oscilloscope

Type 323 portable oscilloscope from Tektronix is semiconductor-built and may be powered by external a.c. or d.c. supplies or internal batteries. It is small, weighing approximately 4 kg with batteries, and has low power consumption. Bandwidth of 4 MHz is provided at $10 \mathrm{mV} / \mathrm{div}$. deflection factor. For low signal level applications a $1 \mathrm{mV} /$ div. deflection factor is provided at 2.75 MHz bandwidth. Sweep rates are $5 \mu \mathrm{~s} /$ div. to $1 \mathrm{~s} /$ div. A X10 sweep magnifier extends the fastest sweep rate to $0.5 \mu \mathrm{~s} / \mathrm{div}$. Single control knob automatic or manual level sweep triggering, positive or negative slope, is provided. With no input the automatic trigger mode provides a bright baseline reference at all sweep rates. The c.r.t. uses a low-power, directly heated cathode, providing a display two seconds after turn-on. A 6×10 div. internal non-illuminated graticule permits parallax-free measuring. (This instrument

is the first product of the joint venture between Tektronix Inc. and the Sony Corporation.) Tektronix U.K. Ltd., Beaverton House, Station Approach, Harpenden, Herts.
WW 322 for further details

Grey-scale Generator

Marconi Instruments' grey-scale generator type TF 2909 produces 625-line television test waveforms for the measurement of non-linearity distortion. Staircase (5, 7 or 10 steps) or sawtooth waveforms are provided at every fourth or fifth line. The other three or four lines may be switched from black- to white-level at a low frequency rate with manual, remote or internal operation. For the measurement of colour nonlinearity, a subcarrier can be superimposed on the staircase or the sawtooth, and 10 Hz of subcarrier reference burst is available on each line. The sub-carrier may be either internal (4.433 MHz) or provided externally from 0.5 to 5 MHz . To provide a composite video signal, the waveform can be triggered from an internal crystal oscillator, or by a television studio source. A version of this equipment for 525 -line use is available. Marconi Instruments Ltd., St. Albans, Hertfordshire.
WW 333 for further details

Instructional Equipment

A new teaching aid shown at this year's Manchester Institution of Electronics Show is in the form of a functional circuit diagram called Locktronics. Electronic components are mounted singly underneath carriers which are located via spring contacts between upright metal connecting pillars on a baseboard. The appropriate component symbol is marked on the upper side of the carrier so that when the assembly is completed the circuit diagram is reproduced on the baseboard. A specially con-
structed probe allows a current meter to be inserted anywhere in the circuit without first having to break the circuit wiring. A large number of circuit configurations are possible using standard kits and, for specialized circuits, blank unmounted carriers are supplied. A. M. Lock \& Co. Ltd., Prudential Buildings, Union Street, Oldham, Lancs.
WW 308 for further details.

Plastics Package for I.Cs

An inexpensive new power plastics package for integrated circuits, the P20, has been introduced by Plessey Microelectronics. Planned eventually to accommodate a variety of chips, the P20 has already made its commercial debut in colour TV receivers produced by the Rank Bush Murphy organization. This encapsulation, which is particularly suited to commercial applications, will also be used for the fully integrated Plessey car radio chip, and Plessey 3 and 5-watt audio amplifiers. Basically a 20 -lead in-line plastics package with an integral heat sink, it can be bolted to a further heat sink, or simply to an equipment chassis. The package is designed to dissipate at least 3 watts when used with a suitable heat sink. Lead spacing is standard 0.254 cm module, to facilitate use with printed circuit boards, although the electro-tinned leads are

equally compatible with wrapped wiring techniques. Plessey Microelectronics, Swindon, Wilts. WW 323 for further details

Printed-circuit Scriber

Present trends towards miniturization within the electronics industry and the increased use of microcircuits requires a method of producing accurate printed circuit masters quickly. The Tecam Master-Scriber is a two-axis manually operated co-ordinatograph designed primarily for this purpose and its overall accuracy is within ± 0.005 in. Used in conjunction with dual-layer scribing film it has a working area of $25.5 \times 20.5 \mathrm{~cm}$ illuminated internally by four fluorescent lamps. Movement along each axis is damped by a pad

three versions, the WC. 237 , WC. 247 and WC. 257 for three different logic options. All three devices are in plastics dual-in-line packages. Ultra Electronics (Components) Limited, Microelectronics Division, 35/37 Park Royal Road, London N.W.10. WW 303 for further details

Indicator Tubes with
 Decimal Point

Four new numerical indicator tubes announced by Mullard incorporate a decimal point that can be displayed with or without a numeral. Types ZM1174 and ZM1175 indicate the decimal point on the left of the Arabic numeral (0 to 9), and types ZM1176 and ZM1177 on the right. Tubes ZM1175 and ZM1177 are clear, but the ZM1174 and ZM1176 have red lacquer filters to improve contrast. Fine-wire anodes eliminate obstruction of the numeral. They also have the advantage of being better sputter guards than the perforated plate anodes often used in other tubes and, consequently, almost eliminate discoloration of the face with service. The numerals have a height of 15.5 mm , and the decimal point a diameter of 1.5 mm . The tubes operate with a minimum

supply voltage of 170 V and take a current of typically 2.5 mA when displaying a numeral alone; the decimal point current is approximately 0.5 mA . Mullard Ltd., Torrington Place, London, W.C.1.

WW 327 for further details

I.C. Power Switch

A power integrated circuit produced by Solid State Products Inc., and packaged in a TO-5 can, is able to switch a.c. ($1.5 \mathrm{~mA}-1 \mathrm{~A}$ at 200 V) at frequency of up to 20 kHz . It requires only 2 mA to turn it on. Various forms are available to meet different requirements. Agents: G. E. Electronics (London) Ltd., Eardley House, 182/4 Campden Hill Road, Kensington, London, W.8.
WW 325 for further details

Temperature-compensated Crystal Oscillators

The use of thin-film techniques has enabled Salford Electrical Instruments Ltd., to produce a $5-\mathrm{MHz}$ crystal oscillator, the first of a new range of temperature-compensated crystal oscillators, measuring approximately $3.75 \times 2.5 \times 1.0 \mathrm{~cm}$. Power consumption is 18 mW at 9 V d.c. The quartz crystal and the associated compensation network give a stability of ± 3 p.p.m. over the temperature range $-10^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$. The output is a sine wave of 500 mV into 50Ω. The frequency

range will eventually extend to 20 MHz . Salford Electrical Instruments Ltd., Barton Lane, Eccles, Lancs.
WW314 for further details

Power Amplifiers

H / H Electronic announce two new amplifiers, the TPA 50 and TPA 100 , which can deliver 50W and 100 W continuous sinewave, respectively, into loads between 8Ω and 15Ω. Total harmonic distortion at any power level up to full rated output, is said to be less than 0.2% between 30 Hz and 10 kHz for the TPA 100 , and less than 0.2% between 30 Hz and 20 kHz for the TPA 50. The power frequency response is flat from 20 Hz to $20 \mathrm{kHz} \pm 0.5 \mathrm{~dB}$ (ref. 1 kHz) for both amplifiers. They will both tolerate output short-circuit under full drive, and are unconditionally stable into reactive loads. Recovery from short-circuit is automatic and virtually instantaneous. Bench standing of 48 cm rack mounting versions of the amplifiers are available. The TPA 100 costs $£ 75$ and the TPA $50 £ 49$. H H Electronic, 147 High Street, Harston, Cambridge, Cambs.
WW 334 for further details

Dual-in-line Package Socket

A dual-in-line test socket, for mounting 14 -lead packages with wide ranges of lead lengths, is being produced by Varelco Ltd. The Series 8358 has double leaf contacts made from phosphor bronze with gold flash over a nickel plate. The contact tails are 0.063 cm square on a $0.253 \mathrm{~cm} \times 0.759 \mathrm{~cm}$ grid, and are suitable for making wrapped wire connections. The insulator is a one-piece moulding made of black or brown wood-flour filled phenolic. Varelco Ltd., Newmarket, Suffolk.
WW 319 for further details

Sealed Microswitches

A new environment-free type 165 series of microswitches now supplements the Plessey Licon range. Offering a dependable snap-action with ratings up to $10 \mathrm{~A}, 30 \mathrm{~V}$ d.c., 250 V a.c., its size ($2.2 \times 0.9 \times 2.54 \mathrm{~cm}$) enables design space to be conserved. Type 165 provides a one-piece glass-nylon housing with a positive "O" ring plunger seal and epoxy terminal potting to give environmental protection. The basic snap-action is the familiar type 16 which is available in single-pole double-throw or two-circuit versions, with solder, AMP or potted-lead terminations. The Plessey Co. Ltd., Titchfield, Hampshire.
WW 304 for further details

Constant-current Battery Chargers

Two adjustable constant-current nickel-cadmium cell chargers have been added to the range produced by Crowborough Electronics. Accommodating from 1 to 20 cells in series, having capacities up to 1 ampere hour, each of the new units will trickle-charge batteries up to 10 Ah . Model CESO is fully variable from 0 to 50 mA and model CE100 from 25 to 100 mA . Charging current is indicated on a front panel meter. The circuit, built with silicon semiconductors is un-

damaged by short-circuits or reversed battery connections. A mains fuse, neon indicator and 1.8 m of mains cable are included, together with a pair of 0.92 m battery leads. Both models cost $£ 17$. Crowborough Electronics, 3 Rotherhill Road, Crowborough, Sussex.
WW 318 for further details

Solid Dielectric Trimmers

Four miniature trimming capacitors with capacitance changes of $5,10,20$ and 60 pF have been introduced by Mullard for use in a.m./f.m. radio receivers and similar applications. The dielectric is a low-loss plastics film that is little affected by temperature changes. The trimmers are assembled in a coloured plastics moulding that will not suffer damage from normal soldering or commonly used industrial cleaning fluids. A slotted brass extension to the rotor shaft enables the capacitance to be adjusted with the tuning tool kept well away from the capacitor plates. Connections are placed to match the 2.54 mm (0.1 in) grid on circuit boards. Mullard Ltd., Torrington Place, London, W.C.1.

WW 337 for further details

Silicon-coated Resistors

Resistance tolerances between 0.05 and 3% over the range 0.1 to $250,000 \Omega$ are features of a new range of Acrasil wirewound resistors introduced by Sprague U.K. The silicon coating process

allows the use of very small diameter wire to obtain the high resistance values. The standard power ratings are from 1 to 10W. Sprague Electric (U.K.) Ltd., Trident House, Station Road, Hayes, Middx.
ww 317 for further details

BCD-to-decimal Tube Driver

The 70 V break-down voltage specified for these integrated circuits from Transtron Electronics is claimed to completely eliminate oscillation and unwanted background glow in indicator tubes. Two types of decoder/driver have been announced, the TDD1100 and TDD1101. Both can be housed in either 22 -lead hermetically sealed flat-packs or 16 lead dual-in-line plastic packages. Both also employ high-level transistor-transistor logic (h.1.t.t.t.1). Significant features from the specification are: $V_{I N(1)}=2 \mathrm{Vmin} ; V_{L X(0)}=0.8 \mathrm{~V} \max ; I_{C C}=18 \mathrm{~mA}$ (TDD1100); $I_{\mathrm{CC}}=20 \mathrm{~mA}$ (TDD1101). Transitron Electronics Ltd. Gardner Rd, Maidenhead, Berkshire.
WW312 for further details

Low-cost Decade Counter/ Display Module

An integrated circuit decimal counter with decoding and drive transistors is produced by APRLotus Electronics. The count is displayed on an in-line neon indicator tube which is available with or without decimal points. Counting is possible from d.c. to 2 MHz min. and 4 MHz typical. The anode of the display tube is brought out to the edge connector, so the display can be blanked if required. A store function can be incorporated. The tube requires $180 \mathrm{~V}(-5 \%+10 \%)$ at 2 mA , and the resistor transistor logic $+3.6 \mathrm{~V}-10 \%$

at 125 mA . Logic 0 output is 0.3 V max., and logic 1 1.5 V . Operating temperatures lie between 0 and $55^{\circ} \mathrm{C}$. The unit is 7.5 cm long, 6.5 cm high and 2 cm wide (including tube). The edge connector is 16 -way with 0.37 cm pitch. APR-Lotus Electronics Ltd., 41 Thunder Lane, Norwich, NOR 84S, Norfolk.
WW 313 for further details

Pulse Generator

The PG-22 pulse generator from Lyons Instruments will provide pulses variable in width from 10 ns to 1 s with a 2 ns rise-time at repetition rates from 0.1 Hz to 50 MHz . Output is variable up to 5 V into 50Ω or 10 V open circuit. Pulses can be delayed for up to 1 sec and normal/complement switching
is provided on the front panel. The input circuits of the generator permit external drive from d.c. to 50 MHz into 50Ω or high-impedance, synchronous start gating, manual "one-shot" operation or synchronization of the internal oscillator to external frequency sources with a frequency difference ratio as high as $100: 1$. Comprehensive slope, sensitivity and threshold controls are provided. The sync. output has a variable width control and sync. pulses can be of either polarity. The instrument can be operated in the temperature range 0 to $+50^{\circ} \mathrm{C}$ and is contained in a case

$9 \times 38 \times 35 \mathrm{~cm}$. The price is $\{395$. Lyons Instruments Ltd, Hoddesdon, Herts.
WW309 for further details

Precise D.C. Voltage Standard

Cohu Electronics have produced an active d.c. voltage standard accurate to 0.001%. This accuracy

is guaranteed for 30-day periods under standard reference conditions. Three decade ranges supply voltages from zero to more than 1100 volts at up to 50 mA . Two units may be connected in series. There is overload protection and selfchecking of linearity. Litton Precision Products, 95 High Street, Slough, Bucks.
WW 328 for further details

Connector for Printed Wiring

This connector, from McMurdo, saves time by making it unnecessary to strip the insulation from flexible printed wiring for connection purposes. The film strip is placed in the connector and the clamping screws are tightened. Gold plated teeth, two per way, cut through the insulation to make contact with the conductor without actually penetrating it. The illustrated

connector has nine ways and is designed for use with one-inch wide film strip cable. Current handling capacity is 5 A per way. McMurdo Instrument Company Ltd, Rodney Rd, Portsmouth.
WW 321 for further details

Vibrator Relay

A new resonant-reed relay suitable for remote control applications is being marketed in the U.K. by Leonard Wadsworth \& Co. of London. It is manufactured by Meson of New York and consists basically of a vibrating body of nickel-chrome-steel alloy which is clamped at one end and is dimensioned to resonate at a fixed frequency when subjected to a magnetic field which is varied by the application of an a.c. signal of the same frequency. The range of frequencies normally available is from 70 to 800 Hz . Resistance of the energizing coil is usually 600Ω but resistance values of $3.2-5,000 \Omega$ are available. The smallest level of input signal resulting in contact closure (threshold sensitivity), can be controlled by adjustment of a screw. Bandwidth and response time depend on input operating power. Leonard Wadsworth \& Co. Ltd., Broadway House, Broadway, London, S.W. 19.

WW 310 for further details

Pickup Equalizer

Although accurate R.I.A.A. equalization can be provided by top grade control units, a good standard average output from good-quality pickup cartridges is still $\pm 3 \mathrm{~dB}$ when using test records recorded to R.I.A.A. characteristic. A series of supplementary equalizer units to further correct the output and provide a final result of better than $\pm 1.5 \mathrm{~dB}$ has been developed by B \& W Electronics of Worthing, and will be produced to cover a number pickup cartridges now in use. Initially, type SE/A is available for use with either Quad 33/303 or Radford SC2 Series control units and the Shure V15/11 pickup cartridge. It comprises twin passive net-

works built on to connectors designed to plug into the base connector of SME. 3009 and 3012 Series pickup arms where it remains within the SME screening shield. B \& W Electronics, Littlehampton Road, Worthing, Sussex.
WW 306 for further details

Two-way Counters

Bi-directional counters available in standard units having 4,5 or 6 digit displays, all with sign indication, have been announced by A \& R Designs of Bath. Designated type 181 the new counters supersede earlier types and now have a front panel with adequate space for the inclusion of input and output interface circuitry. Maximum counting speed is 1 MHz (nominal) with

direction logic change in 100 ns (nominal). Sign change when passing through zero, without loss of count, is standard. As a result of this new design $A \& R$ have been able to construct a two-axis display counter type 1818 which is available with a 5 -digit X axis and a 5 -digit Y axis display, the X axis having reset to zero facility and the Y axis having any number preset facility. A \& R Designs Ltd., 1 Vineyards, Bath, Somerset.
WW332 for further details

Microwave Shottky Mixer Diode

Compared with point-contact diodes the Shottky diode, in mixer applications, offers an improved noise performance that is less sensitive to local oscillator drive level. It is apparently easier to produce a device of uniform characteristics with a form of construction to suit the requirements of hybrid thin film circuits. A Shottky mixer diode announced by Mullard is a gallium arsenide device that has a 6.5 dB noise figure when operated at X -band frequencies. The diode, which has the type number $148 \mathrm{CAY} / \mathrm{A}$, is mounted on a ceramic carrier $0.8 \times 0.35 \mathrm{~mm}$ with metalized "lands" for bonding to circuit substrates. The diode is available in matched pairs for balanced mixer applications. Mullard Ltd, Mullard House, Torrington Place; London W.C.1.
WW 336 for further details

Portable Field Strength

Meter

Interplanetric's VFM portable field strength meter employs silicon transistor circuitry and is complete with an all-band adjustable aerial. Two linear meter scales provide direct measurements in decibels and microvolts. An amplified audio signal is available from a phone jack on the front panel. The frequency range is spread across three bands $34-65 \mathrm{MHz}, 54-109 \mathrm{MHz}$ and $178-223 \mathrm{MHz}$. (A u.h.f. plug-in assembly extending the frequency range to cover $465-855 \mathrm{MHz}$ is available separately). The sensitivity is $3 \mu \mathrm{~V}$. The unit is supplied in a leatherette case and measures approximately $10 \times 11 \times 23 \mathrm{~cm}$. Interplanetric, 39-49 Cowleaze Road, Kingston upon Thames, Surrey.
WW 330 for further details

Digital Panel Meters

Single range digital panel meters for the measurement of voltage, current and resistance are to be produced by Advance Electronics in a series containing over 30 different models. Known as the DT340 series, it incorporates a dual slope integration technique for analogue to digital conversion giving accuracy characteristics of 0.1% of reading over extended time periods. Maximum resolution may be $10 \mu \mathrm{~V}$, 100 pA or 0.1Ω depending on the model. The display is by neon numerical indicator tubes, with over-range and polarity indication, fitted with a meter face measuring $6.4 \times 12.8 \mathrm{~cm}$. Models are available with remote control input and b.c.d. printer output. Price for quantities is

about $£ 100$ per unit. Advance Electronics Ltd., Roebuck Road, Hainault, Essex.
WW 307 for further details

Resistors with Heat Sinks

The C.G.S. Resistance Company are producing aluminium clad wire-wound resistors with values down to 0.1Ω and power ratings of

25W and 50W. This "HS" series is designed for direct chassis attachment, and the method of encapsulation affords complete humidity protection and insulation of the resistor. C.G.S. Resistance Co. Ltd., Marsh Lane, Gosport Street, Lymington, Hampshire SO4 9YQ.
WW 326 for further details

Mobile Radiotelephone

Integrated circuits (for i.f.), transmission line coupling between transistors, and u.h.f. printed circuits are among the advanced techniques used in the "Star" range of solid-state mobile radiotelephone equipment introduced by Standard Telephones and Cables Ltd. The first models to be available operate in the u.h.f. mobile band (450470 MHz), can be supplied for 25 kHz or 50 kHz channel spacing and use frequency modulation. The mobile set, available with up to five channels, measures $23 \times 18 \times 5 \mathrm{~cm}$ and weighs 2.25 kg (see picture), while the two other units-the base-station transmitter-receiver and a remote control unit associated with it-are not much larger. Power

output of the transmitter (both mobile and fixed) is 5 to 7 watts while the maximum frequency deviation is 5 kHz or 15 kHz . A noise-cancelling microphone is used, the receiver has a sensitivity of $1 \mu N$ for a s / n ratio of 12 dB . Its selectivity is 70 dB when tested with two input signals. Audio output is 2 W into a 3Ω loudspeaker, with less than 5% distortion. With a base-station aerial 50 to 100 ft above ground the equipment is said to give noise-free communication through large works, sites, airports, marshalling yards, etc. both inside and outside of buildings. Wireless World was given a demonstration with the mobile station in a van travelling through tunnels in Central London, and at no time was the signal lost or badly attenuated-showing that u.h.f. energy is effectively diffused by multiple reflections from buildings etc. Standard Telephones and Cables Ltd., Mobile Radiotelephone Division, Oakleigh Road, New Southgate, London, N. 11.
WW 341 for further details

Zener Diodes

Two new ranges of zener diodes have joined the products of S.T.C. Semiconductors. Both ranges are metal encapsulated and are available in the preferred values from 3.9 V to 200 V . The ranges are further subdivided into 5 and 10% tolerance types. Prefixes given to the diodes are as follows: $\mathrm{ZD}-1.1 \mathrm{~W}$ at $45^{\circ} \mathrm{C}$ amb., $5 \% ; \mathrm{ZM}-1.1 \mathrm{~W}$ at $45^{\circ} \mathrm{C}$, amb., 10%; $\mathrm{ZX}-15 \mathrm{~W}$ at $75^{\circ} \mathrm{C}$ stud temperature, $5 \% ; \mathrm{ZL}-15 \mathrm{~W}$ at $75^{\circ} \mathrm{C}$ stud temperature. S.T.C. Semiconductors, Footscray, Sidcup, Kent.
WW320 for further details

Wheatstone Bridge

Intended mainly for students use, this bridge has an accuracy of better than $\pm 0.25 \%$. The bridge has a measuring range from zero to $1.111 \mathrm{M} \Omega$ with a minimum sub-division of the decades equivalent to 0.01Ω. The integral galvanometer is shunted by diodes to protect it against overload and a variable sensitivity control is included. All resistors are non-inductive and each arm of the bridge is connected to independent front panel terminals. This latter feature makes it possible to connect the instrument as a simple L or C bridge using an oscilloscope as a detector. Educational Measurements Ltd, Brook Ave, Warsash, Southampton.
WW316 for further details

Answers to "Test Your Knowledge'"-7

Questions on page 470

1. (a). In respect of (b), (c) and (d) the reverse is true.

2. (c).

3. (c). If a high value of mutual conductance is required special constructional techniques are used to allow the grid cathode spacing to be made very small while avoiding, of course, actual electrical contact.
4. (b). The cathode temperature will determine the maximum anode current for which the space charge limited condition holds.
5. (a). This is the "Schottky effect". (b) occurs in high field emission which requires electric fields far greater tt an those occurring in valves.
6. (a). This is because electrons emitted from the cathode have initial velocities greater than zero.
7. (d). When the transit time of electrons between cathode and anode is a significant fraction of a cycle of the grid signal the anode current lags the grid voltage.

8. (c)

9. (d). Positive ions are continuously formed by collisions between electrons and gas atoms. Many of these ions flow to the control grid forming a continuous ion current. With the degree of vacuum which is usual in triodes and pentodes the size of this current is such that the grid circuit resistance should not exceed about $1 \mathrm{M} \Omega$
10. (a). The effect of secondary emission is only observed in the tetrode giving rise as it does to the kink in the anode characteristic. In diodes, triodes and pentodes the electric field at the anode always returns the secondary emitted electrons to the anode.
11. (d). To obtain maximum efficiency in class B or C operation the grid must generally be driven positive. Since this results in grid current flowing the valve must be designed for it.
12. (d). This "anode dissipation" is normally the limiting factor in determining how much power a valve can handle.
13. (c). When a pentode is used as a class A power amplifier the load line is usually chosen so that bottoming occurs at the low voltage end of the anode voltage cycle. As the valve runs into bottoming the screen current rises rapidly. Care must be taken that the maximum permitted screen power dissipation is not exceeded.
14. (c).
15. (a). Due to the presence of suppressor and screen grids the anode voltage has very little effect on the electric field near the cathode.
16. (c). The valve is deliberately designed to have a very curved mutual characteristic with a slope which varies from a high value at small negative grid bias voltage to a very low value for a large negative grid bias voltage.
17. (b). The electrons move across the valve in flat beams. The electron density in the beams must be sufficiently large to produce a potential minimum between the screen grid and the anode so that the secondary electrons return to the anode.

ENGRAVED IN ANY LANGUAGE - CHOICE OF FIVE LENS COLOURS © LOW OR MAINS VOLTAGE MODELS

A range of larger and more robust models is shown above and below. All have Satin Stainless Steel Bezels and Grey Crackle finished die cast bodies which hold the clip-in lamphoiders. More suited to heavy duty Machine Tool, Power Station and Automated Shipping controls they use the larger M.E.S., M.B.C., or S.B.C. lamps.

List Na: $0.871 / 2 / \mathrm{MBC}$

Lint No: $2 / 0.871 / \mathrm{MBC}$

List No: 3/0.871/MBC
Size $41^{\prime \prime} \times 2 \mathrm{H}^{\prime \prime} \times 2$ 。"

SEND FOR BROCHURE NO. 1512/C FOR DETAILS OF OUR FULL RANGE

A. F. BULGIN \& CO. LTD., BYE-PASS ROAD, BARKING, ESSEX.
 manufacturers of electrical and electronic components
 TELEPHONE: 01-594 5588 (12 LINES) Private Branch Exchange.

"What can go wrong with printed circuit soldering" is the title of a technical bulletin, TR-1020, which should be of value to every engineer. Produced by Alpha Metals, Inc., 1916 Tubeway Avenue, Los Angeles, RA 3-9044, U.S.A., it discusses and illustrates the causes of de-wetting, excess solder, icicling, webbing, white residues and blow holes. The bulletin is well produced and well written.
WW 375 for further details.
Relay users will be able to assimilate easily the condensed data provided in the new short-form catalogue from Keyswitch Relays. In all 22 relays, each representing a product group, are illustrated and described. Keyswitch Relays, Cricklewood Lane, London N.W.2.
ww370 for further details
Variable Transformers are the subject of a catalogue we have received from Claude Lyons. The catalogue (No. RV68) comes complete with a price list (No. RV 68/1), contains 24 pages, and lists a very large number of different types of variable transformers. There are those for single-phase and those for three-phase operation. There are single units, multiple ganged units and units with different voltage tappings. Also included in the catalogue are a number of suggested circuits. Claude Lyons Ltd., Hoddesdon, Herts
WW361 for further details.
Brief details of 16 pulse generators, 12 digital data generators and six output units are given in a "Condensed Catalog 1968-69" from Datapulse Inc. The U.K. Agents for Datapulse are Aveley Electric Ltd., Arisdale Ave., South Ockendon, Essex
wW362 for further details.
"Amateur Radio" is the title of a nicely presented 12 -page booklet that has been produced by the International Amateur Radio Union. The booklet has two main purposes; "to introduce amateur radio to those responsible in national administrations for the control of the amateur service and for those members of governments that decide how the amateur services shall be operated in the best interests of all who use the radio spectrum". The booklet presents some interesting facts about, and some of the history of, the amateur radio movement in general. John Clarricoats, Secretaryeditor, I.A.R.U., Region I Division, 16 Ashridge Gdns, London, N. 13.
wW363 for further details
Precision sliding mechanisms are described in a catalogue from Imhofs under their trade name "Accurides". Accurides do not employ wheel and track methods and are claimed not to wobble, bind or stick and have a constant coefficient of friction. Applications include sliding equipment cabinets, optical systems, X-Y platforms, drafting equipment, etc. Alfred Imhof Ltd., Ashley Works, Cowley Mill Road, Uxbridge, Middlesex.
WW364 for further details
"Solid State Optoelectronics" is a brochure describing a range of components for use in the visible and infra-red parts of the spectrum. Included in the range are gallium arsenide infra-red emitters and transceivers, silicon receivers, device and lens holders, and optical accessories. The brochure provides a brief technical description and a photograph of each item. M.C.P. Electronics Ltd., Alperton, Wembley, Middlesex.
WW366 for further details
Newsletter No. 38 of the British Amateur Radio Teleprinter Group contains a number of items that will interest the amateur r.t.t.y. operator. A letter from John Whittington, G3SHZ, describes how he modified a type 3 Creed teleprinter to conform to the I.T. alphabet No. 2 as used by the 7B Creed teleprinter. Membership of B.A.R.T.G. now stands at around 300. L. A. Crane, G3PED, 10 Crescent Road, Tollesbury, Maldon, Essex. WW367 for further details

A signal conditioning system that will accept inputs of up to $\pm 80 \mathrm{~V}$ from d.c. to 10 kHz is the subject of a leaflet from the electronics division of Wilmot Packaging Ltd. The system, which is of modular construction, includes amplifiers, attenuators, filters and a peak indicating unit that may be combined in such a way as to produce a "standard" output. The equipment could, for instance, be used to standardize the outputs from a variety of transducers. Wilmot offer a customer design service for the equipment. Wilmot Packaging Ltd., Electronics Division, Salisbury Road, Totton, Southampton.
WW365 for further details
Radiospares Catalogue for October to December 1968 follows the same format as earlier editions but is expanded. It is interesting to note that some of the panel meters supplied by RS come complete with a blank scale for marking by the user-a useful feature. From December 27th Radiospares phone number will be 01-253 9561. Radiospares, 13-17 Epworth Street, London E.C.2.
WW 368 for further details
"Component Applications Data 1969", also comes from Radiospares. This 64-page booklet gives fuller technical information on the products marketed by RS than the catalogue does. WW369 for further details
"Audio Talk" lists the definitions of over 1,000 terms and abbreviations used in audio and allied subjects. Prepared by the editorial staffs of $\mathrm{Hi}-\mathrm{Fi}$ News and Tape Recorder it is available from Link House Publications Ltd., Link House, Dingwall Avenue, Croydon, Surrey, CR9 2TA, and costs 2s 6d including postage.

H.F. Predictions-December

Compared with recent months northern hemisphere MUFs are higher by day and lower by night although some shorter routes have a subsidiary peak several hours before dawn. E, F1, and Es critical frequencies are lower and have little or no effect on FOTs (optimum traffic frequencies).
LUFs are prepared by Cable and Wireless, Ltd. for reception in this country of medium-power point-to-point telegraph services using directive aerials. They are a guide, by their relative proximity to the FOT, for all types of service.

The predictions are based on an Ionospheric Index (IF2) of 116; that predicted for last month was 122 and the measured value for December 1967 was 115 . The corresponding sunspot numbers are 104,102 and 115 respectively.

\bar{z}
 HITHI THITRENET THETHUWENTS

3. $\frac{10}{}=6.34 \mathrm{~mm}$. din detachab,e bis. Special remps. iram 250 e
Wcight 6.5 oxs. 184 grms.
 Special rempr. irom 250 c
Weight 7 ors. 193 grms .
5. OFFSET BIT SIZE $\frac{1^{*}}{} 12.7$ mon. dumecer.
6. RIGHT ANGLE BIT SIZE \& 12.7 mm .

BOTH AVALABLE IN THE
FOLLOWING TEMPERATURES

WE HAVE, FOR YOUR
CONVENIENCE. A HIGHLY CONVENIENCE. A IEE SPECIALISED SERVICE
SECTION. SO ORGAN SECTION. SO ORGANISED
AS TO MAINTAIN A PROMPT EXECUTION OF ALL REPAIRS OF EQUIPMENT OF OUR MANUFACTURE

ADCOLA
PRODUCTS LIMITED
(Regd Trade Mark)

ADCOLA HOUSE, GAUDEN ROAD LONDON, S.W. 4 Tel. 01-622 0291/3
Telegrams: SOLJOINT LONDON S.W. 4

Bib
 Ersin Multicore Solder Size 17
 Contains 30 ft . of
 40/60 Alloy, 18 s.w.g.
 wound on a handy spool.
 Suitable for all general Electrical repairs
 Price 5/-

Bib Precision Tape Cutters

Size M Set of four stainless steel cutters, with special plastic grip, for all types of magnetic
recording tape.
Price $2 / 10 \mathrm{~d}$. inc. P.T

Bib Tape Head Maintenance Kit Size E
Specially designed to maintain the tape heads and other parts of the tape recorder in clean condition. Suitable for reel to reel or cassette tape recorders. Contents: Bottle Bib Instrument Cleaner. Two blue Tape Head Applicator tools. Two white Tape Head polisher tools. 10 applicator and polisher sticks. Double-ended brush. Packet cleaning tissues. Instruction leaflet; all in a Folding Plastic Wallet. Price 16/6d inc. P.T Applicator and polisher tools and sticks are available separately.

Bib Professional Tape Head Maintenance Kit

Size K For Service Organisations, Recording and Broadcasting Studios. Contains bulk quantities of items listed under Size E. Price $£ 3.8 .5$. inc. P.T.

Bib Recording Tape Splicer Model 20
For quick and accurate editing. Precision made, chrome plated clamps, mounted on non-slip base. Complete with razor cutter Price $19 / 6 \mathrm{~d}$

Bib Ersin Multicore 5 Core Solder Size 12
For Service Engineers and Laboratories. Contains 90 ft of $18 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. Ersin Multicore Savbit Alloy on a plastic reel. Price 15/-

6707

Bib $\frac{1^{\prime \prime}}{2}$ Video Tape Splicer Kit Model 21 Suitable for editing video tapes made on Sony Recorders. Fitted with tape clamps. Complete with a packet of Size M cutters, Size E kit and Size L Hi Fusters in plastic box. Price £9.10.0.

Bib Instrument Cleaner

 Size AAnti-static, specially formulated for cleaning delicate instrument paneis, plastic, chrome, glass and printed surfaces. Non flammable, does not smear. 4 fl . oz. in plastic bottle. Price $4 / 6 \mathrm{~d}$.

Bib

Cabte \& Flex Shortener

Shortens audio cables and flexes without cutting. Pack of 4 plastic shorteners. Price $2 / 6 \mathrm{~d}$

All prices recommended retail U.K. only.

When is an Avo meter not an Avometer?

When it gives you (a) $\pm 0.3 \%$ accuracy, (b) (c) 100% solid state, (d) (e) (f) semiconductor characteristics data, (g) valve characteristics data, or (h) digital L/C/R measurements.

PRECISION AVOMETER Measures d.c. d voltage ($1.5-1500 \mathrm{~V}$ scales, $\pm 0.3 \%$ f.s.d. ${ }^{*}$), d.c. current $(1.5 \mathrm{~mA}-15 \mathrm{~A}$ scales, $\pm 0.5 \%$ f.s.d.*), a.c. voltage (3V-1500V scales, $\pm 0.75 \%$ f.s.d.), a.c. current (3mA-15A, $\pm 0.75 \%$ f.s.d.). ${ }^{*}$ meets B.S.S. $89 / 1954$ for precision-grade instruments.

1. MULTIMETER HI108 Battery-operated fully-transistorised, measures a.c/d.c. voltage ($100 \mathrm{mV}-1000 \mathrm{~V}$ scales, $\pm 4 \% / \pm 3 \%$ f.s.d.), a.c./d.c. current ($1 \mu \mathrm{~A}-3 \mathrm{~A}$ scales, $\pm 4 \% / \pm 3 \%$ f.s.d.), resistance ($2 \mathrm{k} \Omega-20 \mathrm{M} \Omega$ scales), power (-20 to $+60 \mathrm{db}, 9$ scales), r.f. voltage $(300 \mathrm{mV}-10 \mathrm{~V}$ scales, up to 250 MHz with external probe available separately).

MULTIMETER CT471A Battery-operC ated, fully-transistorised, sensitivity $100 \mathrm{M} \Omega / \mathrm{V}$, measures a.c./d.c. voltage (1.2 mV 1200 V scales, $\pm 3 \% / \pm 2 \%$ f.s.d.), a.c./d.c. current ($12 \mu \mathrm{~A}-1.2 \mathrm{~A}$ scales, $\pm 3 \% / \pm 2 \%$ f.s.d.) resistance ($12 \Omega-120 \mathrm{M} \Omega$ scales, $\pm 3 \%$ m.s.d.) h.f./v.h.f./u.h.f. voltage with multiplier (4V 400 V scales up to $50 \mathrm{MHz} ; 40 \mathrm{mV}-4 \mathrm{~V}$ up to 1000 MHz).

IN-CIRCUIT TRANSISTOR TESTER TT:164 Direct-reading, easy to operate, accurate measurements under static and dynamic conditions. Collector voltage: continuously variable, $0-10 \mathrm{~V}$. Collector cur rent: continuously variable $0-10 \mathrm{~mA}, 20 \mathrm{~mA}$, 30 mA . Measures beta ($150-300$ scales, $\pm 5 \%$) and leakage current ($300 \mathrm{nA}-1 \mathrm{~mA}$ scales).

TRANSISTOR \& DIODE TESTER C TT537 Measures both transistor and diode characteristics. Collector voltage: continuously variable $0-12 \mathrm{~V}$, stabilised. Collector current: $1 \mu \mathrm{~A}-1 \mathrm{~A}$. Base current $0.1 \mu \mathrm{~A}-50 \mathrm{~mA}$. Measures hfe ($50-1500$ scales, $\pm 3 \%$), leakage current ($50 \mu \mathrm{~A}-1.5 \mathrm{~A}$ scales), diode forward voltage drop (1.5-5V scales, $0-500 \mathrm{~mA}$ forward current) and breakdown voltage ($100-1000 \mathrm{~V}$ scales, $3 \mathrm{~mA} \& 200 \mu \mathrm{~A}$ currents limited on short circuit to $13 \mathrm{~mA} \&$ 1.3 mA).

f TRANSISTOR ANALYSER MK2 Avail1 able in both mains-powered and batterypoweredversions; provides accurate measu rements in grounded-emitter configuration; accommodates high-power and switching types. Collector voltage: $\mathbf{0 . 0 5 - 1 2 V}$ (up to 150 V external). Base current: 1.40 mA scales. Collector current: to 1 A in 5 ranges. Measures leakage current (from $2 \mu \mathrm{~A}$), hfe ($25-250$ scales), saturation voltage, turnover voltage and noise factor.

© VALVE CHARACTERISTIC METER O VCM163 The most comprehensive instrument of its kind ever offered by Avo. Provision for testing nuvistors, compactrons and other special types with up to 13 pin connections. No need to back off standing anode current before measuring mutual conductance, which is continuously moniored under all conditions. Heater voltage: $0-119.9 \mathrm{~V}$ in 0.1 V steps. Anode and screen voltages: $12.6 \mathrm{~V}-400 \mathrm{~V}$. Grid voltage: $0-100 \mathrm{~V}$ continuous. Measures gm: $\mathbf{6 - 6 0 m A} / V$ f.s.d. in 3 ranges.

Here are eight members of the Avo test equipment range that combine traditional Avo quality with some of the most advanced instrument technology available anywhere. Start your measurements with a standard Avometer, of course, but as your requirements develop and expand, remember the many other ways in which Avo can continue to help you. For full details, contact Avo Ltd, Avocet House, Dover, Kent. Telephone Dover 2626. Telex 96283.

AV Ω MEANS BASIC MEASUREMENTS ALL OVER THE WORLD

Aaders is the name-

 pleased top meter youNo matter what your meter requirements, we meet them. Fast. Anders holds the largest stocks in the U.K. for off-the-shelf delivery, so the meters you need yesterday, ordered today, can probably be with you tomorrow. In quantity, too. If you've got special problems like non-standard requirements, give us a ring. Our technical department creates panels to individual needs.

Anders offers the most comprehensive and efficient meter service - and we do mean service - available.
N.B. The variety of meters in our new catalogue is a revelation - and now we've got extensive new centralised premises for a better-than-ever service. Manufacture and distribution of electrical measuring instruments and electronic equipment. The largest stocks in the U.K. for off-the-shelf delivery. Prompt supply of non-standard instruments and ancillaries. Sole U.K. distribution of FRAHM vibrating reed frequency meters and tachometers.

ANDERS METER SERVICE

Anders Electronics Lid. 48-56 Bayham Place, Bayham Street, London, N.W. 1 Telephone: 01-3879092

English Electric now has a new TV camera tube, called an isocon, which can virtually see in the dark. The isocon operates on the principle of disregarding the specularly reflected beam of the image orthicon and using the beam scattered by the target. The magnitude of this beam increases with light level and, at low light level, gives a much better signal-to-noise ratio than that of an image orthicon. The dynamic range of the tube is also much greater, and noise in the darker parts of the picture is virtually eliminated.

Two experimental types are at present available - the $4 \frac{1}{2} "$ P850 tube for viewing low intensity X-ray fluoroscopic screens and the $3^{\prime \prime}$ P880 for low scene illumination in TV where good results are obtained when the photocathode illumination is only 10^{-4} foot candles. The P850 will, moreover, produce acceptable pictures even where the photocathode illumination falls as low as 10^{-6} foot candles.

Apart from its obvious applications for TV generally - both colour and black-and-white - the isocon can be applied to a whole range of specialist applications. The P850 for instance, when designed into an X-ray image amplifier, makes it possible to reduce the X-ray dosage to a fraction of that formerly used. In night surveillance and reconnaissance systems the P850 isocon has shown it will provide good pictures at incident light levels well below 10^{-4} foot candles which is the level of starlight illumination. Its application in astronomy is also extremely promising. It will enable medium sized telescopes to participate in deep space and cosmological programmes and it offers impressive results when used with much larger telescopes.

Further detailed information on the isocon is available on request. EEV also provides a complete technical service which includes assistance with the design or redesign of camera equipment.

EEV image isocon The tube that can see in the dark

Minicam VI-a great new Innovation that puts the world on the shoulders of a single cameraman!

Our Professional Products give you a better look at the world.

Proud new achievement in Professional

 Products from CBS Laboratories is the Minicam VI, a remarkable, portable television camera that gives you a closer look at the world. Minicam VI is a camera that can go anywhere: land, sea or air and bring you studio-quality color pictures live right from the scene of action. Captures fast-action sports events and fast-breaking news stories-whenthey happen. Minicam VI is just one more significant innovation from CBS Laboratories ...the organization which has researched, developed, produced and marketed such advances as the Masking Processor, the Image Enhancer and Mobile Television Vans. Look to CBS Laboratories for tomorrow's electronics today.

Masking Processor electronically corrects color distortion. Gives true color fidelity-automatically -without adding noise to the picture.

Image Enhancer "rides through" weaknesses and defects in home television receivers. Delivers amazing picture clarity... both in color and black-and-whitè.

Moblle Television Vans. Television coverage on the move! Goes anywhere. Sees everything. Takes two cameras or twelve. A van to fit your needs

English Electric Valve Company, pioneers of radar magnetrons, now offer their latest development vapour cooled magnetrons for heavy radar. These new magnetrons have several advantages over air or water cooled types. Vapour cooling stabilises the operating temperature much more efficiently than either air or water cooling. The more stable temperature enhances the stability of the operating frequency. Because the cooling system itself is less complicated than that of either of the other two methods it is both smaller and more reliable. The total radar system can therefore be mechanically
simpler, more compact, lighter, much quieter, and much more efficient. In certain cases such a radar system would be light and compact enough to be carried in aircraft. EEV is at present making two series of vapour cooled magnetrons - the M5046 for S-Band, and the M5051 for L-Band, brief data for which are given below. These new magnetrons are additions to EEV's extensive range of tunable and fixed frequency. CW and pulse magnetrons. Full details of the range or of any particular type are available on request. Enquiries are also invited for special types not in the current catalogue.

EEV announces new vapour cooled magnetrons for high power heavy radar

	Frequency ranges (MHz)	Peak output power $(\mathrm{MW} \mathrm{min})$	Duty cycle (max)	Peak anode current $(A$ approx $)$	Peak anode voltage (kV)	Max pulse length ($\mu \mathrm{s})$
Type	2700 to.2800	1.0	0.0015	70	30	30 to 36
M5046	1250 to 1310	2.0	0.0015	150	5.0	
M5051				35 to 45	5.0	

Newmarket Transistors' distributors have several distinguishing features

An eye for detail

little things like constant stock replenishment, reports on product development, new product pages for your Newmarket portfolio. Make sure you're on your area distributor's list.

A nose for reliability

Newmarket make a wide range of components with CV approval and sell them through selected distributors: that way service and product are equally reliable.

An ear for urgent calls

with all standard components
off-the-shelf and quantities of hundreds within 24 hours (thousands take a little longer).

Teeth to match

Newmarket equivalents of competitors' components are often less costly, more reliable.
All you need is the nerve to change. Ask for a Newmarket equivalent list

You're not dealing with a far-flung post of a mighty electronics empire when you talk to a Newmarket distributor. He's a member of the team. Experienced, resourceful,
 fully-informed and fully-stocked. Try him. Your business is tomorrow and your Newmarket distributor is in tune with it.

face tomorrow's pace with Newmarket Transistors

the specialist semiconductor engineers with the distinguished personal service network:
LONDON Lugton \& Co. Ltd., 209-212 Tottenham Court Road, W.I. Call MUSeum 3261/9 CAMBRIDGE Combined Electronic Services Ltd., P.O. Box 11 , Gloucester Street. Call 59101 OVENTRY Coventry Factors Lid., Coronet House, Upper Well Street. Call $21051 / 5$ MARLOW Sames St (HARLOW Standard Telephones \& Cables Lid., Electronic Services Division, Edinburgh Way. Call 26777 HARROGATE G.S.P.K. (Electronics) Ltd., Hookstene Park Trading Estate. Call 185415 .
HOUNSLOW Eastern Aero Electrical Services Letd., Building 44, London (Heathrow) Airport, North. Call SKYport 1314 PORTSMOUTH S.D.S. (Portsmouth) Lid., Hilsea Industrial Estate. Call 62332

EEV is Europe's largest maker of vacuum capacitors. Our present range includes glass and ceramic types, both fixed and variable, covering capacitances from 6 to 3000 pF and voltage ratings from 3 to 30 kV and they' re all subjected to stringent quality control. But although EEV now makes 63 types of vacuum capacitor, there are still some users who must have something special to meet their particular need. If you have this problem weill be glad to discuss it with you.

With all our experience it's more than likely that well be able to come up with the answer and make the capacitor that's just right for you. After all, we've invested a great deal of time and money to get the know-how to solve problems like yours-as a lot of users throughout the world have found to their profit. But first you can make sure that there's nothing in our present range that suits you-just send for EEV's latest book that gives full data on our range of vacuum capacitors.

We'll be glad to send you your free copy by return.

EEV vacuum capacitors

There are 63 types in our present range...

$10-500$ pf capocitames: low Vworkim
$C=\frac{2 \pi E}{\log _{e} \frac{D_{2}}{D_{1}}}$ farads/metre
\therefore capacitance $=200 \mathrm{ff} / \mathrm{cm}$

CHELMSFORD. ESSEX. TELEPHONE: 61777 TELEX: 99103 GRAMS: ENELECTICO, CHELMSFORD

Ferrograph New Generation Series7-

not a year old and already a classic

Ferrograph Tape Recorders, Series 1 to 6, have been famous since 1949, and although Series 7 was introduced only a year ago it is already acknowledged as a classic. No other recorder to-day gives you quality like this, reliability like this, and offers so many desirable facilities.
It has the finest specification-and when Ferrograph gives you a figure, it is a conservative minimum. Ferrograph guarantees it. Every instrument is finally individually adjusted for optimum performance. With Ferrograph you know where you are-exactly.
Available in Mono, and in Stereo with and without end amplifiers; embodying a unique range of 30 features including:

All silicon solid-state electronics with FET input stages and wide input overload margins. - Vertical or horizontal operation.

- Unit construction: The 3 individual units i.e. tape deck, power unit and amplifier complex are mounted on a single frame easily removable from cabinet for service or installation in other cabinets or racks.
- 3 motors (no belts).

3 tape speeds.

- Variable speed spooling control for easy indexing and editing.
- Electrical deck operation allowing presetting for time-switch starting without need for machine to be previously powered.
Provision for instantaneous stop/start by electrical remote control.
- Immediate access head block for editing and cleaning.
- Single lever-knob deck operation with pause position.
- Independent press-to-record button for safety and to permit click-free recordings and insertions.

Adjustable reel height control.

- Damped tension arms for slur-free starting.
${ }^{8 \frac{1}{4}{ }^{\prime \prime}}$ reel capacity.
Endless loop cassette facility.
Provision for signal operated switching units.
- Internal loud speakers (2)-1 each channel on stereo, 2 phased on mono.
4 digit, one-press re-set, gear-driven index counter.
- 2 inputs per channel with independenf mixing (ability to mix 4 inputs into one channel on stereo machine).
- Signal level meter for each channel operative on playback as well as record.
Tape/original switching through to output stages.
- Re-record facility on stereo models for multi-play, echo effects etc., without external connections.
- Meters switchable to read 100 kHz bias and erase supply with accessible preset adjustment.

Three outputs per channel i.e. (1) line out-level response. (2) line out-after tone controls. (3) power output-8-15 ohms.

- Power output 10 W per channel.
- Independent tone controls giving full lift and cut to both bass and treble each channel. - Retractable carrying handle permitting carrying by one or two persons.
- Available in several alternative presentations.
U.K. Retail prices from $£ 135$ incl. P.T. Please see next page for list of Ferrograph Stockists

Listen for yourself

To know the Ferrograph New Generation Series 7 you must look at it, listen to it, for yourself. You will find New Generation instruments soon in stock at many of the best tape-recording and Hi-Fi specialists in the country, including the following:

Ferrograph stockists

London Dealers
Telesonic Lid.
92. Tottenham Court Road London, W.I
Larg's of Holbom Lid. 76/77, High Holboin, London, W.C. 1
Nusound,
82, High' Holborn,
London, W.C.I
Nusound,
228 Bishopsgare
London, E.C. 2
Nusound,
360 Kilburn High Road
London, N.W. 6
Nusound,
36 Le wisham High Street. London, S.E. 13
Francis of Streatham, 169-171, Streatham High Road. London, S.W. 16
Hampstead High Fidelity Ltd., 91 Heath Street
The Recorder Company, 188. West End Lane London, N.W. 6
C. C. Goodwin Lid.
7. The Broadway.

London. N. 2 ?
Nusound,
2 Maryland Point Station.
Stratford.
London E15
Studio Tapes Lid.
199. Hoe Sireet.
Walihamstow E.I7
Aberdeen
Aberdeen Sound Centre
25a, Belmont Street.
C. Bruce Miller,

51, George Streer
Aberdeen Radio Ltd.;
9 Hadden Street.
Banstead
Raylec Lid., Barnsley
Geoffrey Barnard,
3. Pitt Strcet.

Barnstaple
O. Nicklin \& Son Lid.

The Square.
Bath
C. Milsom \& Son Lid.,

Northgate.
Birkenhead
James McKenzie Lid.,
Grange Road.
Birmingham
C. H. (High-Fidelity) Lid.

167/169, Bromsgrove Street
Birmingham, 5 .
Chas H. Young Lid.,
170, Corporation Slice
Griffin Radio Lid.
94, Bristol Sireet,
Birmingham, 5 .

Blackburn
Holdings of Blackburn Ltd., 39-41, Mincing Lane.
Blackpool
F. Benfell Lid.,

17, Cheapside.
Bolton
Harker \& Howarth (Music)
Lid.,
Golwin Street
Bolton, Lancs.
Bournemouth
Tape Recorders (Bournemouth) l.td.
874. Christchurch Road,

Boscombe, Bournemouth
Brighton
John King Films Ltd.
71, East Street.
Avery's Lid.,
77, St. James's Sircet.
Lanes Radio Lid.,
11. Gardiner Strce

Bristol
Tape Recorder and $\mathrm{Hi}-\mathrm{Fi}$
Centres Lid..
Stokes Croft.
Sound Selection Lid.
36/-363, Glourester Road,
Bristol 7.
Bromley
Bromley Sound.
22, Letchworth Drive
Bury
John Smith \& Son (The Rock)
184, The Rock.
Bury, Lancs.
Cambridge
University Audio.
l-2. Peas Hill.
K.P. Cameras Lid.,

12a, Kings Parade.
Canterbury
Canterbury Hi Fi .
St. Dunstan Street.
Cardiff
Sound Film Services Ltd.,
(Cinema Liaison Ltd.),
27. Charles Street.

Carlisle
Misons,
Cliadel Road.
Coventry
Coventry Tape Recorder
33, King William Street.
R.E.S. Lid.,

13, City Arcade
Crewe
28, Hishtown
28, Hightown.
Darlington
Geoffrey A. Williams \& Son
Ltd.,
Blackwell Gate.

Derby
Victor Buckland Lid.
41-49, London Road,
Doncaster
Tom Jaques Ltd.
16, Wood Street,

Edinhurgh
J. Nicholson (Hi-Fi Corner) Lid., 1, Haddington Place.
Edinburgh 7.
Epping
Chew and Osborne Lid.,
148, High Street.
Exeter
Electrosure Lid.,
162-163. Fore Street
Farnham
Lloyd \& Keyworth Lid.
26-27, Downing Street.
Farnham, Suriey.
Gerrards Cross
Edric Films Lid.,
34-36, Oak End Way.
Gerrards Cross, Buak's.
Gillingham
E. Hadaway,
Watling Street

Glasgow

McCormacks (Music) Ltd..
33 Bath Strect.
Glasgow, C.2.
Goodmayes
Unique Radio Ltd.,
6, The Facade.
Goodmayes, Essex.
Gravesend
Bennett \& Brown Lid.
$50,60 b$ \& 60c, Wrotham Road.
Gravesend, Kent
Great Yarmouth
Norfolk Radio.
12, Broad Row,
Gi. Yarmouth
Guildford
P. J. Equipments,
21. Onslow Sireet.

Huddersfield

J. Wood \& Son Lid:
67. New Sereet?

Huddersfield, Yorks.

Iford

Nusound,
87-100. Pioneer Markef.
llford Lane.
Ilford, Essex
Kirkcaldy
Caithness Brothers,
270, High Street.
Leamington Spa
W. M. Tysons,

Leamington Spa, Warks,
Leeds
Becketts Film Services Lid.,
The Headrow,

Leicester
United Film Services,
7, King Street.
Tape Recorder Centre
72a, Church Gate.
Linton
H. S. W. Speechley \& Co.

49, High Sireet,
Lintor, Cambs.
Liverpool
Beaver Radio (Liverpool) Lid.,
20-22, Whitechapel,
Liverpool, Lancs.
Luton
Coventry Radio Ltd.,
189. Dunstable Road,

Luton, Beds.
Maidstone
Sloman \& Pettit,
Pudding Lane.
Manchester
Lancs Hi-Fi Lid.
8. Deansgute.

Manchester, 3.
Godleys Radio \& T.V. Ltd.
Shude Hill.
Mansfield
Syd Booth.
Middlesbrough
McKenna \& Brown Lid.
122. Linthorpe Road.

Middlesbrough, Yorks.
Newcastle-upon-Tyne
Turners (Newcastle-upon-Tyne)
Camera House, Pink Lane
Newcastle-upon-Tyne.
J. G. Windows Lid..

1-7, Central Arcade.
Northampton
Audiocraft Lid.
Abington Square.
Nottingham
Petes Electronics Lid.
165, Arkwright Street.
Nuneaton
Taylors Pianos Lid.,
119, Abbey Sircet.
Oxford
L. Westwood, Lid.

George Sireet.
Plymouth
A. E. Ford Lid.

84, Cornwall Street.
Portsmouth
H. R. Knight
H. R. Knight.
71, Tangier Road.

Redcar
McKenna \& Brown Ltd.
135, High Street.
Redcar, Yorks.
Rugby
Berwick Hi-Fi Centre.
5, Shecps Sirees.
Rugby, Yorks.

Salisbury
Suttons Hi-Fi Centre Ltd.
50, Bhe Boar Row,
Salisbury, Wilts.
Skegness
Norman Throp Ltd.
68, Lumley Road,

Sheffield

Sheffield Photo Co. Ltd.
6, Norfolk Row,
Fargate.
Shrewsbury
Avon Hi-Fi Lid.,
13, Wyle Cop,
Shrewsbury. Salop
Southampton
Hamiltons Ltd..
35, London Road.
Southport
Wayfarers Radio Lid.,
Burton Arcate.
Stafford
Tom Reekie L.td.,
10, Bridge Street,
St. Helens
Harold Stott Ltd.,
18, Westficld Street
St. Helens. Lames
Stoke-on-Trent
Wilsons Radio Lid.,
30-32, Liverpool Road. Stoke-on-Trent, Staffs.
Stockport
W. J. \& M. Bayliss Lid. .

611, Gorton Road,
Reddish. Stockport
Swansea
W. J. Holt Lid.

Picton Arcade.
Teddington
Daytronics Ltd., Teddington Lock, Middx.
Truro
John Fry Lid.
6, Cathedral Lane
6, Cathedral Lane.
Truro, Cornwall.
Fords,
9 Pytar Street.
Winchester
Southern Recorder Service 34. St. Georges Sirect.

Woking
D. W. Hughes \& Sons Ltd.
5. Central Buildings

Chobham Road.
Worcester
Johnson's Sound Service.
Sidbury
Wilmslow
Transistor Centre,
Transistor Centre,
Green Lane.
Green Lane,
Wilmslow, Cheshire.
Worthing
Bowers \& Wilkins Ltd.,
I. Beckell Bulldings,

Littlehampton, Worthing.

If none of these is near cnough to you, in case of difficulty, or for free literature, send us the coupon, or give us a ring on WATerloo 1981.

To The Ferrograph Co Ltd Ferrograph House 84 Blackfriars Road London SE1
\square Please send me a free brochure on the

Eddystone

Amateur communications receivers

EA12

An amateur bands double-conversion superheterodyne receiver ${ }_{L}$ for a.m, c.w, and s.s.b reception. For all amateur channels between 1.8 MHz and 30 MHz in nine 600 kHz bands with 28 MHz to 30 MHz in four bands.
Primary features: Crystal-controlled 1st oscillator, 2nd oscillator with continuously variable selectivity to 50 Hz , muting switched or by external relay, twin noise limiters, for a.m/c.w, and s.s.b, shortterm drift better than 20 Hz and less than 100 Hz in any one hour, ' S ' meter calibrated in nine levels of 6 dB and dB levels beyond 'S9', two a:g.c time constants, deep slot filter, independent r.f, i.f, and audio gain controls with outputs for f.s.k and panoramic adaptor.

EC10 communications receiver

The fully transistorized EC10 communications receiver, supreme in its class, covers both mediumwave broadcasting and all shortwave service to 30 MHz . Incorporating the famous Eddystone tuning drive, with logging scale and auxiliary vernier, shortwave reception is particularly simple. Battery-operated or from optional a.c mains unit.

940 H.F communications receiver

An outstanding 13 -valve receiver with two r.f and two i.f stages, silicon diode noise limiter circuit and high quality push-pull output. Built to a professional specification, facilities include provision for c.w, a.m, and s.s.b reception over the range of 480 kHz to 30 MHz in five bands. Suitable for $110 / 125 \mathrm{~V}$ and $200 / 250 \mathrm{~V} .40-60 \mathrm{~Hz}$ a.c mains.

[^9]
The Lilliput Series

ULTRA MINIATURE, INVERTER, WIDE BAND, CARRIER MATCHING, DRIVER AND PULSE TRANSFORMERS, A.F. AND SMOOTHING INDUCTORS

Gardners Lilliput series of Ultra Miniature transformers has been specifically developed for compatibility with other wired-in modules used on printed circuit boards.
Exceptional performance has been achieved by a unique form of construction incorporating extremely thin (down to 3.2 microns) high permeability core materials and a very short length of coil turn. Transformers in this new series are particularly suitable for pulse and switching circuits with rise times of 10 nanoseconds or less

GT12A. Describes the Lilliput series of Uftra Miniature transformers and gives useful infor. mation and data on their application in transistor converter/inverter, wide band communication and high speed pulse circuits.

The Alpha Series

FILTERS, DELAY LINES, TRANSFORMERS, MODULATORS, HIGH STABILITY INDUCTORS, TUNED CIRCUITS, OSCILLATORS

A range of custom built components from simple or hybrid transformers and modulators to highly complex multi-section filters or complete active networks of exceptional stability hermetically sealed to DEF. 5214 Humidity Class H1.

GT 16. Gives a general description of the Alpha series assemblies and describes their suitability for wound components where a high degree of stability is required.

Low Voltage Isolating and Auto Transformers

A comprehensive range of conventional double wound and auto transformers for applications in industry and in the home. Nearly 200 types are available in six different styles and with outputs from 6 volts to 240 volts and from 5VA rating to 2 kilowatts. All types are normally held in stock in reasonable quantities for immediate delivery.

GARDNERS TRANSFORMERS LIMITED
Christchurch. Hampshire. Tel. Christchurch 2284
Telex 41276 A.B. Gardners Christchurch.

GT 17. Everyone in the electronics industry uses low voltage, isolating and auto transformers at some time or other and this booklet describes the complete Gardner range of this type of transformerin a convenient and presentable form.

The new 'WESTMINSTER' solid-state radiotelephone ...from PYE

designed for world markets

The new range of 'Westminster' solid-state radiotelephones is ready for operation anywhere in the world. Pre-production models successfully endured every possible combination of adverse climatic, regional, shock and vibration extremes for over a year. This exacting field-test programme has proved the 'Westminster' range of radiotelephones suitable for global operation.
The 'Westminster' range is type-approved in many countries; dash, universal or motorcycle versions are available.

Pye Telecommunications Limited, Cambridge, England
Telephone: 022361222 Telex : 81166

. . . take a look at this . . . it's the new portable
Transceiver from GEC-AEI. It's a beauty - powerful, completely

VHF
self-contained, compact and light in weight.

Four channels, closely spaced to latest Post Office specifications. Good capabilities of power and endurance. Endless applications, including use as a vehicle-mounted mobile or as an effective base station in conditions where it would not be possible to operate heavier, larger equipment.

GEC-AEI are major suppliers of VHF radio telephone equipment to the Home Office and independent Police Authorities.

Do you know all you should about GEC-AEI Communications equipment? Complete information and full technical specs. are readily available. Why not write to us today? Communications

Division

SEC

[^10]

Everything! It's what studio sound engineers have been looking (and listening) for. A portable twin-channel recorder, it can be used in the studio or in an outside broadcast van. Philips Pro' 12 meets the highest standards of sound quality and versatility, yet it is small and competitively priced.
Recording and playback quality of the Pro'12 is of a very high standard. Tapes prepared on a Pro'12 are suitable for immediate broadcasting. Even at the lowest

The Pro'12 gets everything tapead

Technical data
Tape speeds
$33 / 4$ and $71 / 2 \mathrm{in} / \mathrm{s}(9.5$ and $19 \mathrm{~cm} / \mathrm{s}$)

Tape

longplay ($1800 \mathrm{ft}-540 \mathrm{~m}$) or
doubleplay ($2400 \mathrm{ft}-720 \mathrm{~m}$)
Reels
Ciné type, max. 7 in (180 mm)
Playing time
for longplay tape on 7 -inch reel:
at $71 / 2 \mathrm{in} / \mathrm{s}: 45 \mathrm{~min}$
for doubleplay tape on 7 -inch reel:
at $71 / 2 \mathrm{in} / \mathrm{s}: 60 \mathrm{~min}$
Deviation on absolute tape speed
less than 0.8%
Wow and flutter
measured acc. to DIN 45507 with EMT 420, at $71 / 2 \mathrm{in} / \mathrm{s}: 0.08 \%$
at $3 \mathrm{3} / \mathrm{in} / \mathrm{s}: 0.1 \%$

Frequency response

acc. to DIN 45511 , playback
at $71 / 2 \mathrm{in} / \mathrm{s}: 60 \ldots 12000 \mathrm{~Hz}, 0-1.5 \mathrm{~dB}$

at $71 / 2 \mathrm{in} / \mathrm{s}: 40 \ldots 18000 \mathrm{~Hz}, 0-2.5 \mathrm{~dB}$ at $3 \mathrm{3} / 4 \mathrm{in} / \mathrm{s}: 60 \ldots 10000 \mathrm{~Hz}, 0-1.5 \mathrm{~dB}$ at $33 / 4 \mathrm{in} / \mathrm{s}: 40 \ldots 15000 \mathrm{~Hz}, 0-2.5 \mathrm{~dB}$ overall at $71 / 2 \mathrm{in} / \mathrm{s}$:
60 . . . $12000 \mathrm{~Hz}, 0-3 \mathrm{~dB}$ overall at $7 \frac{1 / 2}{} \mathrm{in} / \mathrm{s}$:
$40 \ldots 18000 \mathrm{~Hz}, 0-5 \mathrm{~dB}$ overall at $3 \mathrm{3} / 4 \mathrm{in} / \mathrm{s}$:
$60 \ldots 10000 \mathrm{~Hz}, 0-3 \mathrm{~dB}$
overall at $33 / 4 \mathrm{in} / \mathrm{s}$:
$40 \ldots 15000 \mathrm{~Hz}, 0-5 \mathrm{~dB}$
Signal-to-noise ratio
acc. to DIN 45405, weighted,
at $7 \frac{1 / 2}{} \mathrm{in} / \mathrm{s}:-56 \mathrm{~dB}$
at $33 / 4 \mathrm{in} / \mathrm{s}:-52 \mathrm{~dB}$

Imputs

a. line: $100 \mathrm{mV}, 100 \mathrm{k} \Omega$
b. microphone: -1 mV (unbalanced), suitable for microphones from 50 to 2000Ω
c. diode: $2-40 \mathrm{mV}, 20 \mathrm{k} \Omega$

Other inputs are available optionally
tape speed of $33 / 4 \mathrm{in} / \mathrm{s}$, the sound quality is at least equal to the DIN 45511 studio equipment specification.
It features: - Twin-track stereo, twin-track mono and dual-track mono operation on $6.25 \mathrm{~mm}(1 / 4 \mathrm{in})$ wide tape (standard version).

- Extra quarter-track stereo (special version). Tape speeds of 9.5 and $19 \mathrm{~cm} / \mathrm{s}(33 / 4$ and $71 / 2 \mathrm{in} / \mathrm{s})$.
- Unique "constant load" tape transport. - Microphone, diode and line inputs for each channel. - Facilities for mixing input signals of both channels. - Multiplay, sound on sound and echo effect. - Fade in and out and dubbing facilities. - Cueing and pause keys. - Line and monitoring outputs for each channel. - Monitoring with stereo headset or built-in loudspeaker, before or after tape. - VU-control of either channel. - End-of-tape switch. Remote control connection. • Horizontal or vertical operation.

Could you use an accurate D.C. source?

For Testing...

For Calibration...
For Development Work . . .

Bradley Calibrators and Precision D.C. sources have become accepted standards in Test Rooms and Development Laboratories and on Production Lines . . . Two models are available, each providing D.C. voltages up to 510 volts . . And both feature the unique Bradley Deviation Control, which by a simple adjustment enables the percentage error of the instrument under test, to be read directly . . .
The output of the Model 123B has an accuracy of 0.2%, sufficient for the setting up and calibration of most Analogue Instruments . . . Whilst the Model 127 provides an extremely stable output having an accuracy of 0.05%. . .

We shall be pleased to send details or arrange
a demonstration. Write, or phone

Why pay for more sophistication than you can use?

The majority of users of electronic test equipment require accuracy within a band of measurements that is common to many operators. The Dymar System of test instruments covers this need ideally. We have avoided the temptation to include more sophistication than the market wants. This means that your budget will stretch further yet cover your project development, research or quality control. Plus features are :-
(I) all instruments are energised by a master meter unit.
(2) the extreme flexibility of a proved plug-in system and
(3) the money-saving aspect.

Our explicit Short Form Catalogue will give you a run-down on our 700 Series - just complete the coupon or just pin it to your letterhead.

-

DTKAR

DYMAR ELECTRONICS LIMITED Colonial Way Radlett Road Watford Herts. Telephone: 2 1297/8/9.

Please send me a copy of your Short Form Instrument Catalogue.

NAME
POSITION
COMPANY
ADDRESS

FOR QUALITY, RELIABILITY AND WORLD-WIDE AVAILABILITY, RELY ON HALL ELECTRIC'S SPEED, INTELLIGENCE AND REPUTATION

HALTRON RADIO VALVES \& TUBES
 \author{ All enquiries to

}

Hall Electric Led., Haltron House, Anglers Lane, London, N.W.5.
Telephone: 01-485 8531 (10 lines). Telex: 2-2573. Cables: Hallectric, London, N.W.5.
VALVES FOR:
Radio and Television Manufacturers.
Radio and Television Service Departments.
Radio Relay Companies.
Audio Equipment.
Electronic Equipment.
In strumentation.
Computers.
Marine Radar:
Communication Equipment.
Research and Development.
Government Departmentis.
Aircraft Military and Civil.
Ministry of Aviation Approved Inspection.
Air Registration Board Approved
Inspection.

"Techinidins Marvel Over The Compleite Parfection

Model JR-500SE
CRYSTAL CONTROL TYPE DOUBLE CONVERSION COMMUNICATION RECEIVER

* Superlor stability performance is obtained by the use of a crystal controlled first local oscillator and also, a VFO type 2nd oscillator.
* Frequency Range: $3.5 \mathrm{MHz}-29.7 \mathrm{MHz}$ (7 Bands)
* Hi-Sensitivity: $1.5 \mu \mathrm{~V}$ for $10 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$ Ratio (at 14 MHz)
* HI-Selectivity: $\pm 2 \mathrm{KHz}$ at $-6 \mathrm{~dB} \pm 6 \mathrm{KHz}$ at -60 dB
* Dimensions: Width 13", Height 7", Depth 10°.

a product of TRIO Corporation, Tokyo,Japan.

Sole Agent for the U.K.

B. H. MORRIS \& CO., (RADIO) LTD

84/88 Neison Street, Tower Hamlets, London E, 1. Phone: 01-790 4824
Exclusive Distributor in European Continent
TRIO KENWOOD ELECTRONICS S.A.
160 AVE., Brugmann, Bruxelles 6, Belgium

Model 9R-59DE

BUILT IN MECHANICAL FILTER 8 TUBES COMMUNICATION RECEIVER

* Continuous coverage from 550 KHz to 30 MHz and direct reading dial on amateur bands.
* A mechanical fitter enabling superb selectivity with ordinary if transformers.
* Frequency Range: 550 KHz to 30 MHz (4 Bands)
* Sensitivity: $2 \mu \mathrm{~V}$ for $10 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$ Ratio (at 10 MHz)
* Selectivity: $\pm 5 \mathrm{KHz}$ at $-60 \mathrm{~dB}(\pm 1.3 \mathrm{KHz}$ at $-6 \mathrm{~dB})$ When use the Mechanical Filter
* Dimensions: Width 15^{*}, Height 7^{*}, Depth 10^{*}.

[^11]
Announcement:

Erie will begin production of Thick Film Integrated Circuits on Monday June 7th 1965

Yes 1965!

Erie were pioneers in thick film integrated circuits back in '65 and now have the lion's share of the market.
And yet many people are still unaware of these facts.
The reason is simple : despite continuous expansion we have always been able to sell more I.C.'s than we could make and so have never advertised them before. Now after three years of large volume production, further expansion has given us additional production capacity, and we plan to increase our sales accordingly. The technology of integrated circuitry has advanced to a stage of almost complete acceptance by the Electronics Industry. The advantages of hybrid circuitsminiaturisation, high reliability through reduced solder connections, ruggedness, and the economy of handling one part
rather than several-have resulted in the increasing use of I.C.'s.
Large volume production from our highly automated plant offers significant advantages to users of thick film I.C.'s.
Consistently high quality is combined with prices that we believe are the most competitive in the industry.
Your testing time is reduced by our own stringent factory testing procedure for every unit.

Our design team is able to offer you assistance in determining the best module layout for a particular circuit: a suggested layout can be on your desk, together with a quotation for prototypes and bulk production, within a short time of us receiving the necessary information. But there is a lot more to be said about our I.C.'s than we have room for here. If you would like to fill in the coupon, we'll send you details of our full range.

ces> Resistor Service
 saves you money

FULL SPECIFICATION OF WAYCOM CARBON FILM RESISTORS IS CONTAINED IN OUR NEW 150 PAGE ELECTRONIC COMPONENTS CATALOGUE. COMPLETE COUPON FOR YOUR COPY.

Tel: 022351471 for orders
Tel: 022359101 for other business

TO: COMBIMED ELECTRONIC SERVICES LTD. (formeity rs P.O. Box 11, Gloucester Street, Cambridge Please send me your new catalogue of components available by return NAME. ADDRESS

YOUCAN'T B AWRAPPED JOINT FOR
 RELIABLLITY
 Failure rates in service better than 0.0000007% per thousand hours. In twelve years Ferranti have made millions of joints

 without a single failure.For full details of Ferranti Wrapping Tools and accessories contact: FERRANTI LTD., ELECTRICAL CONNECTIONS GROUP, Dunsinane Avenue, Dundee. Telephone: 038289311

FERRANTI

KNOW ABOUT WIRE WRAPPING

CUT PRODUCTION TIMES! - benefit from the Versatility and Simplicity of our Systemised modere niak unire

* ATTRACTIVE FINISH AND MODERN STYLING * EX-STOCK DELIVERY AT COMPETITIVE PRICES
* GREAT VERSATILITY' OVER 1.000 COMBINATIONS POSSIBLE
* suitable for stan. DARD 19" RACK OR CASE MOUNTING
* FOR SPECIAL VARIATIONS CONSULT OUR DESIGN SERVICE

Find only tried Pinnacle first...

50

The widest ranging and most comprehensive valve catalogue available from any independent supplier.
PINNACLE ELECTRONICS LTD achlles street - new cross - lonoon s.E. 14
Telephone: All Departments-01-692 7285 Direct orders-01-692 7714
 \title{
Instruments
}
 \title{
Instruments
}

KIT K/IM-25
Ready-to-use A/IM-25
£48.10.0 p.p. $10 / 6$
£59.0.0 P.P. $10 / 6$

New Variable Control Regulated High Voltage Power Supply . . . IP-17

- Furnishes 0 to 400 volts D.C. @ 100 mA maximum with better than 1% regulation for 0 to full load and ± 10 volt line variation - Furnishes 6 volt A.C. @ 4 amperes and 12 volt A.C. @ 2 amperes for tube filaments - Provides 0 to - 100 volts D.C. bias @ 1 milliampere maximum - Features separate panel meters for continuous monitor for output current and voltage - Terminals are isolated from chassis for safety - High voltage and bias may be switched "off " while filament voltage is " on " Modern circuit board and wiring harness construction - $120 / 240$ volt A.C., 50 Hz operation.

Here's Value in Oscilloscopes!

5 " Wide-band General-Purpose Oscilloscope 10-12u KIT $£ 36.18 .0$ Ready-to-use $£ 46.16 .0$ P.P. $10 / 6$

Vertical sensitivity: 10 mV r.m.s. per cm at $\mid \mathrm{kHz}$. Frequency response (referred to $\mid \mathrm{kHz}): \pm 1 \mathrm{~dB}, 8 \mathrm{~Hz}$ to $2.5 \mathrm{MHz} ; \pm 3 \mathrm{~dB}, 3 \mathrm{c} / \mathrm{s}$ to $4.5 \mathrm{MHz} ;-5 \mathrm{~dB}$ at 5 MHz . Rise time: 0.08 microseconds or less. Input impedance: (at IkHz) 2.7 Megohms at $X 1 ; 3.3$ Megohms at $X 10$ and $\times 100$. Horizontal sensitivity: 50 mV r.m.s. per cm at 1 kHz . Frequency response: $\pm 1 \mathrm{~dB}, 1 \mathrm{~Hz}$ to $200 \mathrm{kHz} ; \pm 3 \mathrm{~dB}, 1 \mathrm{~Hz}$ to 400 kHz . Input impedance: 30 Megohms at 1 kHz . Time base generator: Range, 10 Hzto 500 kHz in 5 steps, variable, plus 2 switch-selected pre-set sweep frequencies range: Synchronising: automatic lock-in circuit.
> $3^{\text {" }}$ Portable General-Purpose Service Oscilloscope OS-2 KIT $£ 24.18 .0 \quad$ Ready-to-use $£ 32.18 .0$ P.P. $9 /-$
> Vertical amplifier: Frequency response: $\pm 3 \mathrm{~dB}, 2 \mathrm{~Hz}$ to 3 MHz . Sensitivity: 100 mV r.m.s. per cm . at I kHz. Input impedance: 3.3 megohm shunted by 20 pF . Horizontal amplifier: Frequency response: $\pm 3 \mathrm{~dB}, 2 \mathrm{~Hz}$ to 300 kHz . Sensitivity: 100 mV r.m.s. per cm , at 1 kHz . Input impedance: 10 megohm shunted by 20 pF . Time base generator: Range 20 Hz to 200 Hz . Automatic lock-in sync; Retrace blariking Voltage calibrator: I volt, peak-to-peak, 50 Hz . Controls: Brilliance and on/off switch, Focus, Astigmatism, Time base range switch and Fine Frequency, Vertical and Horizontal Gain, Vertical and Horizontal Position.

New Solid - State High - Impedance Volt - Ohm Milliammeter . . . IM-25

- 9 A.C. and 9 D.C. voltage ranges from 150 millivolts to 1500 volts full scale -7 resistance ranges, 10 ohms centre scale with multipllers $\times 1, \times 10, \times 100, \times 1 \mathrm{k}, \times 10 \mathrm{k}, \times 100 \mathrm{k}$, and $\times 1 \mathrm{meg} \ldots$ measures from one ohm to 1000 megohms - Il current ranges from $15 \mu \mathrm{~A}$ full scale to 1.5 A full scale - II megohm input impedance on D.C. - 10 megohm input impedance on A.C. A.C. response to 100 kHz - $6 \mathrm{in} .200 \mu \mathrm{~A}$ meter with zero-centre scales for positive and negative voltage measurements without switching - Internal battery power or $120 / 240$ volt A.C., 50 Hz - Circuit board construction for extra-rugged durability.

KIT K/IP-I7
£37.4.0 P.P. $10 / 6$

Ready-to-use A/IP-17
f46.0.0 P.P. $10 / 6$

Here's Value in a Signal Generator and VVM!

RF-IU
GEN.

Abstract

General-Purpose RF Signal Generator RF-1u KIT $£ 13.18 .0$ Ready-to-use $\mathbf{£ 2 0 . 8 . 0}$ p.P. 6/- Frequency range covers 100 kHz to 200 MHz in six bands. Band A, 100 kHz to 300 kHz ; Band B, 300 kHz to 1 MHz ; Band C, 1 MHz to 3.1 MHz ; Band D, 3.1 MHz to 10 MHz ; Band E, 10 MHz to 30 MHz ; Band F, 30 MHz to 100 MHz . Calibrated harmonics: 100 MHz to 200 MHz . Accuracy: 2%. Large accurately calibrated dise scales. Factory wired and aligned coil and band switch assembly. Modulated or unmodulated RF output. Output: Impedance, 75 ohms; Voltage, 100 mV . Modulation: Internal, $400 \mathrm{~Hz} ; 30 \%$ depth; External, approx. 3 V across 50 Kohms for 30%. Audio Output: Approx. 4V. Valve complement: 1-12AT7, I-ECF8O.

6" Valve Voltmeter, IM-13u

KIT £22.8.0
Ready-to-use 229.10 .1 P.P. $7 / 6$
Range D.C.: 7 Ranges: $0-1.5,5,15,50,150,500,1500$ voles full seale. Input Resistance: 11 megohms. Sensitivity: $7,333,333$ ohms per volt on 1.5 volt range. Circuit: Balanced bridge (push-pull) using twin triode. Accuracy: $\pm 3 \%$ full scale. Range A.C.: 7 R.M.S. Ranges: $0-1.5,5,15,50,150,500,1500$ r.m.s. full scale. Freg. Response (5 v, range): $\pm 1 \mathrm{db} 25 \mathrm{~Hz}$ to $\mid \mathrm{MHz}$. Accuracy: $\pm 5 \%$ full scale. Input Resistance Capacitance: $1 \mathrm{M} \Omega$. Ohmmeter: 7 Ranges: $\times 1, \times 10, \times 100 \times 1,000, \times 10 \mathrm{~K}$, $\times 100 \mathrm{~K}, \times$ IMEG. Measures 0.1 ohms to 1000 megohms with internal battery. Meter: $6^{\prime \prime} 200 \mu \mathrm{~A}$ movement.

HEATHKIT for High-Fidelity

NEW! For best Stereo Receiver Value, Solid-state

30 watt FM STEREO RECEIVER, AR-14

KIT K/AR-14 (less cabinet) $£ 54.0 .0$ p.p. $13 / 6$
Cabinet £4.10.0 extra
Ready-to-use A/AR-14 (less cabinet) £75.0.0 P.P. 13/6
Features 31 transistor, 10 diode circuit for cool, natural sound; 20 watts RMS, 30 watts IHF music power at \pm I db from 15 to $50,000 \mathrm{~Hz}$; preassembled and aligned wideband FM/FM stereo tuner; two power amplifiers and two pre-amplifiers; front panel head-phone jack for private listening; compact $3 \mathbf{7}^{\prime \prime}$ high $\times 155^{\prime \prime}$ ": wide $\times 1 \mathbf{1 2}^{\prime \prime}$ deep size; stereo indicator light; filtered outputs for beat--ree stereo taping; anodized aluminium front panel and fast circuit board assembly. Install in a wall, custom cabinet or either Heath factory assembled cabinets (walnut or teak finish extŕa $\mathbf{6 4 . 1 0 . 0}$.)

RECEIVER
AR-14

NEW! Low-cost Stereo Receiver, Solid-state
14 watt FM STEREO RECEIVER, AR-17
KIT K/AR-17 (less cabinet) $£ 39.0 .0$ P.P. $10 / 6$ Cabinet $£ 3.10 .0$ extra
Ready-to-use A/AR-17 (less cabinet) £59.0.0 P.P. $10 / 6$ Ideal for the budget bound, yet boasts state-of-the-art features like all transitor circuitry for natural transparent sound, cool instant operation and long unchanging life....wide 18 to $60,000 \mathrm{~Hz}$ response at $\pm 1 \mathrm{~dB}$ at full 5 watt continuous power per channel... 14 watts music power.. inputs for phono and auxiliary... able phase so you can cune he be.s stereo. panel controls... fast circuit board assembly ... and compact $9 ?^{\prime \prime}$ deep $\times 2 \frac{2}{8}^{\prime \prime}$ high $\times \| \frac{z^{\prime \prime}}{}$ wide size. Install in a wall. or either Heath factory-assembled cabinets (walnut veneer or teak finish extra $\in 3.10 .0$).

RECEIVER

AR-1 7

7 watt FM MONO RECEIVER, AR-27
KIT K/AR-27 (less cabinet) $£ 22.10 .0$ P.P. $10 / 6$ Cablnet $£ 3.10 .0$ extra
Ready-to-use A/AR-27 (less cabinet) £32.0.0 P.P. $10 / 6$ You just can't buy a finer mono receiver with these features at these modest prices. 13 transistor, 6 diode circuit for high-fidelity sound reproduction, long life, low 25 to $60,000 \mathrm{~Hz}$ at 5 watts. Input connectors for phonograph and auxiliary signals. Complete front panel controls. Flywheel tuning. Preassembled and prealigned Complete front panel controls. Flywheel tuning. Preassembled and prealigned Compact bookshelf size. 3-way installation ... wall, free standing or in a suitable cabinet. 117 V . AC, or $210-240 \mathrm{v}, \mathrm{AC}, 50 \mathrm{~Hz}$ operation. Heathkit factory assembled.

RECEIVER
AR-27 12 + 12 watt STEREO AMPLIFIER, TSA- 12 KIT K/TSA-12 (less cabinet) $£ 32.16 .0$ P.P. $10 / 6$ Walnut or Teak Cabinet $£ 3.16 .0$ extra P.P. N.C. Ready-to-use A/TSA-12 (incl. cabinet) £39.10.0 P.P. $10 / 6$ This luxury-quality amplifier utilises transformerless output circuitry using complementary transistors giving superior performance, lower phase shife, wider response and lower distortion. All power transistors are adequately heat-sinked for cool operation and long life. It delivers 12 wates R.M.S. per channel into 8 ohms over an extremely wide frequency range of 16 to $50,000 \mathrm{~Hz}$. A six-position source switch easily handles your records, radio or auxiliary inputs-stereo or mono. The output of one channel relative to the other may be varied by the Balance control and there are maxandald on the rear panel for gram and radio inputs. Its high-slass performance is matched only by its sleek and attractive low silhouette styling, with its brushed gold-anodised-aluminium front panel and matching brown knobs with spun-gold insets.
AND OF COURSE GARRARD PLAYERS SHURE CARTRIDGES AND
HEATHKIT LOUDSPEAKER SYSTEMS

FREE!

CATALOGUE

DAYSTROM LTD.; Dept. WWIZ

 GLOUCESTER Tel. 29451\square Enclosed is \mathbb{L} —— plus packing and carriage.
Please send model (s)
\square Please send FREE Heathkit Catalogue.
Nama
(Please Print)
Address
City
Prices and specifications subject to change without notice

SHOWROOMS: LONDON: Tottenham Court Road. BIRMINEHAM: St. Martins House, Bull Ring. GLOUCESTER: Bristol Road ww-032 For further detalls

Faithful Reproduction

with the

Grampian TC12 loudspeaker

The Grampian TC12 loudspeaker is a high quality twin cone unit at a reasonable price. The loudspeaker is built of high quality materials to a rigid specification and is eminently suitable for good. quality sound reproduction. Let us send you full details or better still go and hear one at your local dealers now

Design' for suitable cabinet available

Grampian manufacture high grade microphones, parabolic reflectors, windshields and accessories, also mixers and amplifiers.

Grampian sound equipment

Send for leaflet giving full details

Trainfortomorrow'sworld in Radio and Television at The Pembridge College of Electronics.

The next full time 16 month College Diploma Course which gives a thorough fundamental training for radio and television engineers, starts on 1st January 1969.

The Course includes theoretical and practical instruction on Colour Television receivers and is recognised by the Radio Trades Examination Board for the Radio and Television Servicing Certificate examinations. College Diplomas are a warded to- successful students.
The way to get ahead in this fast growing industry -an industry that gives you many far-reaching opportunities-is to enrol now with the world famous Pembridge College. Minimum entrance requirements: 'O' Level, Senior Cambridge or equivalent in Mathematics and English.

To: The Pembridge College of Electronics (Dept. ww6), 34a Hereford Road, London, W. 2 Please send, without obligation, details of the Full-time Course in Radio and Television.

NAME
ADDRESS

How many £90 AF Oscillators give you performance

like this?

 Just the one!

Typically, low priced oscillators give very low output, and dubious accuracy. But not the new M.I. A.F. Oscillator TF 2102/M1!
This fully transistorised instrument gives a full 10 volt output, complete freedom from amplitude bounce and a frequency range extending from 3 Hz to 30 kHz . All at $£ 90$.
Check these brief spec. points against
-any other A.F. oscillator in its price bracket. Then send for more information. You'll be even more convinced.

High Output : 10 volts across 600 ohms in 1 volt steps, with fine control giving continuous cover between steps with at least 5% over lap.

Wide Frequency Range: 3 Hz to 30 kHz in 4 decade bands.

Low Distortion: Harmonic content less than 1% : hum and noise less than -80 dB relative to full output.No Amplitude Bounce: A special circuit for automatic level control replaces the usual thermistor, entirely eliminating amplitude bounce and reducing potentiometer noise over the frequency range.

NOW-Knight-Kits quality at new lower prices!

. . and anyone can build them

Simple, step by step instructions enable you to build these right-up-to-date Knight-Kits hi-fi units at a much lower price than similar made-up units. Acclaimed by reviewers, the Knight-Kits range offers equipment to everyone's standards and specifications using professional components. Get your free Knight-Kit booklet now showing hi-fi units, 'scopes and test equipment, plus car tuning, photographic and other interesting electronic kits. Here are some typical examples.

KG 86550 Watts Stereo Amplifier ${ }_{1}^{25}$ watts 18 HF per channel Response ab. 18 to 30.000 Hz . All silicon transistors for stability and cleaner
sounds. Wide power band width 20 bo sounds. Wade power band width $\S 3419 \mathrm{~s}$. 6 d . Teak case extra $\$ 414 \mathrm{~s}$. 5 d . plus 13 s . 1d. tax. P'ostage 13. 011. complete kit. J. Okl. chase.

KG 980 Stereo F.M. Receiver Combined Stereo F.M. Recelver and amplifier with 25 watts I. H. F. channel. $\frac{\text { Frequency response }}{\mathrm{Hz} \text { Tuning range } 88 \text { to } 108 \text {, is to } 30.000}$ Hz Tuning range 88 to 108 MHz . Speaker
outputs for $4-16$ ohms. 8553 s . 6 d . Teak case extra 1 s . 6 d . plus 14s. Od. tax. Tuning Heart 866 s . pd. plus 8112 l . 8 d .

KG 795 Stereo Tuner All Silicon transistor Stereo F.M. Tuner. Frequency response $1 \mathrm{~dB}, 30$ to $15,000 \mathrm{~Hz}$, harmonic distortion less than 1%. 88 to 108 MHz tuming range. Matches KG 865 or othe
amplifiers. Automatic stereo swicch. \&20 16 s . da. Teak case extra 4414 s . 5 d . plus
13 s . 0 d . tax. Tuning Heart $\& 63 \mathrm{~s}$. 4 d . 138. Od. Lax. Tuning Heart 863 s . 4d. plus ${ }^{51} 1$ 12s. 8 d . tax. Postage 10s. Od. complete

Roamer 5 band shortwave receiver A deluxe A.M. receiver able to cover world Ham and R.T. conversations plus all the usual A. M. programmes. Covers 200 to 400
KHz and 550 KHz to 30 MHz in 5 bandswitched ranges with special features for needle sharo separation and maximum
sensitivity 10 microvolts for 10 dB signa sensitivity (10 milcrovolts or 10 dB signal to noise ratio). Automatic volume control
and noise limiter. \&21 19s. Od. Postigr 10. Oil

Battery Charger Kit Car battery oharger or easy winter prolonged battery life. Ruggedly life and easily portable. 49s.
Perestage is.
is. Electronic Science performance and more miles per gallon. You can perform actual road tests too. Self powered with lots of special
leatures. §23 175. 6d Poitur ins. 0 d
 Lab Kit. 100 in 1 Create over 100 projects with this components kit. Build crystal set radio. code buzzer, solar cel. without special tools.
156 page manual gives 156 page manual glves
full instructions on principle and practice ${ }^{\text {cli }}$ 2s. 2 s. 11 d .
plus 5s. id. tax. plus $5 \mathbf{5 s}$. id. ta
Code Oscillator Kit Code practice oscillatorr.
hand key, battery for code practice with fasher and speaker. Tdeal ror learning international morse code
is 195. 6d. Purinqu

New 960 page Hobbies Manual 12 Hobbies Sections - over 12,000 units \& components for dozens of Hobbies $16 / 6$

Please send me: Free Knight-Kits brochure \square
The new Electroniques Hobbies Manual (16/6)
\square Enclosed is a cheque/postal order for 16/6 (which ncludes the s) -pp) made payable to

Name
Address
KnI! K-KIE Quality built-in.
Electroniques (Prop. STC) Ltd.
Edinburgh Way, Harlow. Essex.

FAN-COOLED LOADING RESISTOR

Immediate delivery on all J.J. instrumentswhy wait for quality that cannot match ours?

decade capacitance box
All J.J. instruments are always immediately available from stock. And every J.J. instrument is made to the highest British standards of reliability and design. Prices are very competitive, too.
The range includes Laboratory Capacitators, Potentiometer Bridges, Volt Ratio Boxes, Galvanometers, Eddy Current Dynamometers, Decade Resistors and Inductors, and Power Loading Resistors. Please write for descriptive literature to the manufacturers.

J.J. LLOYD INSTRUMENTS LTD.

Brook Avenue, Warsash, Southampton Tel: Locks Heath 84221

Cut the operational and maintenance costs of your HF radio station right now -with STANFAST

prepare for tomorrow's world

Today there is a huge demand for technologists such as electronics, nuclear and computer systems engineers, radio and television engineers, etc. In the future, there will be even more such important positions requiring just the up-to-date, advanced technical education which C.R.E.I., the Home Study Division of McGraw-Hill Book Co., can provide.
C:R.E.I., Study Programmes are directly related to the problems of industry including the latest technological developments and advanced ideas. Students claim that the individual tuition given by the C.R.E.I. panel of experts in each specialised field is comparable in technological content with that of technical colleges.

Why C.R.E.I. Courses are best

No standard text books are used - these are often considerably out-of-date when printed. C.R.E.I. Lesson Material contains information not published elsewhere and is kept up-to-date continuously. (Over $£ 50,000$ is spent annually in revising text material.).
Step-by-step progress is assured by the concise, simply written and easily understood lessons.
Each programme of study is based on the practical applications to, and specific needs of, Industry.

Take the first step to a better job now-enrol with C.R.E.I., the specialists in Technical Home Study Courses.
C.R.E.I. PROGRAMMES ARE AVAILABLE IN:

Electronic Engineering Technology * Industrial Electronics for Automation * Computer Systems Technology * Nuclear Engineering * Mathematics for Electronics Engineers * Television Engineering * Radar and Servo Engineering City and Guilds of London Institute: Subject No. 49 and Advanced Studies No. 300.

C.R.E.I. (London), Walpole House,

173-176 Sloane Street, London S.W.1. A subsidiary of McGraw-Hill Inc.

POST THIS COUPON TODAY FOR A BETTER FUTURE
To C.R.E.I. (London), Walpole House, 173-176 Sloane Street, London, S.W.1.
Please send me (for my information and entirely without obligation) full details of the Educational Programmes offered by your Institute.
My interest is City and Guilds $\square \quad$ please tick \quad General \square
NAME
ADDRESS

EDUCATIONAL BACKGROUND
ELECTRONICS EXPERIENCE
WW113

JACKSON

THE BIG NAME IN PRECISION COMPONENTS

\star Minizture ${ }^{\boldsymbol{i}} \mathrm{in}$. square, .5 maximum heighe. \star Low loss P.T.F.E. dielectric. $\star 1500$ V test. * Low temperature co-efficient. - Adjustable from above or below * Smooth * Easy * Precise * Multiturn \star No locking required * 10pF swing, 2pF minimum t Low loss siliconed ceramic base \star More reliable than air.	
STAND-OFF INSULATORS	
	Jackson stand-off insulators are de signed to parform well in rigorous environments. Their insulation resistance exceeds 20 million meg ohms oven when atmospheric hums oven when atmospheric humy is high. (They meet Bricish Services sast specification DEF5334.) They will withstand fields. Forty different types: ask for catalogue.
\star Stoved-on sificone treatment: water repellent \star Ceramic bodies. - Silver-plated tags. \star No solder. No plastic. No \#dhesives.	

NEW FLEXIBLE SHAFT COUPLING

This new shaft coupling embodies the same well tried principles used in our Couplings. Only $\frac{z i n}{} \mathrm{in}$. diameter,䰻. long, permits constant velocity coupling and mis-alignmene of .005in. and 15°. Robust too. Can take 15 lbs in. torque.

CORD DRIVE
 TYPE "D"

The Trpe D slow-motion drive finds mariy uses, as two-speed Cord Drive and, nowadays, as direct/slow drive for panel mounting.

It's reliable if it's made by Jackson! Write for-literature

WIRELESS WORLD

ENQUIRY SERVICE FOR

PROFESSIONAL READERS

To obtain further details of any of the coded items mentioned in the Editorial or Advertisemetnt pages of this issue, please complete one or more of the attached cards entering the reference number(s). Your enquiries will be passed on to the manufacturers concerned and you can expect to hear from them direct in due course. Cards posted from abroad require a stamp. These Service Cards are valid for six months from the date of publication.
please use capital letters

Pour obtenir tout renseignement complémentaire sur les produits mentionnés dans les articles ou dans les pages publicitaires de ce numéros nous vous prions de remplir une ou plusieurs des cartes ci-jointes en inscrivant le ou les numeros de référence. Vos demandes de renseignement seront transmises aux fabricants intéréssés qui, en temps voulu, vous feront parvenir une réponse. Il est nécessaire d'affranchir les cartes postées à l'étranger. Ces cartes de service sont valides pendant six mois à partir de la date de publication.
priere d'ecrire en lettres majuscules

Weitere Einzelheiten über irgendwelche Artikel, die auf Radaktion-oder Anzeigen-seiten erscheinen, erhalten Sie, indem Sie eine oder mehrere der beigelegten Karten ausfüllen und die Kenn-nummer(n) angeben, Ihre Anfrage wird an den Hersteller weitergeleitet, und Sie werden dann direkt von ihm hören. Karten die im Ausland aufgegeben werden, müssn frankiert werden. Diese Service-Karten sind sechs Monate vom Ausgabetag gultig.

BITTE IN BLOCKSCHRIFT AUSFULLEN

Per ulteriori particolari in merito agli articoli menzionati nel testo o nelle pagine pubblicitarie di questo numero Vi preghiamo di completare una o più delle schede allegate citando il numero o i numeri di riferimento. La Vostra richiesta sarà inoltrata ai fabbricanti interessati che Vi risponderanno direttamente. Le schede dall'estero devono essere regolarmente affrancate. Questo scontrino di servizio é valido per sei mesi dalla data di pubblicazione.

SI PREGA DI COMPILARE LE SCHEDE
STAMPATELLO

Con objeto de obtenèr más detalles de cualquiera de los articulos mencionados en las páglnas editoriales o de anuncios de este número sirvase rellenar una o más de las unidas tarjetas citando el número o números de referencia. Sus consultas serán transmitidas a los fabricantes interesados de quines tendrán noticias directamente a su debido tiempo. Las tarjetas enviadas desde el extranjero requieren franqueo. Estas tarjetas de servicio son validas durante 6 meses a parir de la fecha de publicacion.
sirvase escribir con letras mayusculas

TEKTRONIX oscllioscopes FOR TELEVISIDN SYSTEMS

The Tektronix range of instruments for TV Studios and Transmitters includes

TYPE 528
MOD. 188 G
Waveform Monitor for use with camera outputs, video system output lines, transmitter video input lines, CCTV systems and educational TV systems. (Also available for use on NTSC standard.)
£ 379 plus $£ 62 \cdot 5 \cdot 0$ duty
TYPE 453 MOD. 127 C DC-to- 50 MHz Portable Sweep-delay Oscilloscope with built-in TV Sync Separator, solid-state design for highly-accurate work in tough environmental conditions.
£960

TYPE 520 MOD. 188 M Vectorscope with push button controls for quick accurate measurements. Chrominance Phase and Amplitude, Luminance Amplitude, Differential Phase and Differential Gain Measurements. Solid-state reliability. (Also available for use on NTSC standard.) £877 plus $£ 144 \cdot 2 \cdot 0$ duty

TYPE RM 529 MOD. 188D Multistandard Waveform Monitor - can be used on any of the 4 systems without internal adjustment to carry out the majority of television waveform measurements required
£ £ 21 plus $£ 102 \cdot 4 \cdot 0$ duty

TEKTRONIXU,K, LTロ Beaverton House \quad Harpenden \quad Herts

 Telephone: Harpenden 61251. Telex: 25559 For Overseas enquiries: AUSTRALIA: Tektronix Australia Pty. Ltd., 4-14 Foster Street, Sydnev, N.S.W. CANADA: Tektronix Canada Ltd., Montreal, Toronto \& Vancouver. FRANCE: Relations Techniques Intercontinentales S.A., 134 Avenue de Malakoff, Paris XVI. SWITZERLAND: Tektronix International A.G., P.O. Box 57, Zug. Switzerland. REST OF EUROPE AND THE MIDDLE EAST: Tektronix Litd..P.O. Box 36. St. Peter Port, Guernisey, C.1. All other territories: Tektronix Inic., P.O. Box 500, Beaverton, Oregon, U.S.A.

TIMERSMICRO SWITCHES IMMEDIATE DESPATCH

SYS MINI-TIMER

SYNCHRONOUS MOTOR \& CLUTCH
$\star 10$ MILLION OPERATIONS

* Instantaneous \& Timed out 3 AMP contacts.
\star Repeat Accuracy $\pm \frac{1}{2} \%$. 10 secs to 28 Hrs. May also be used as impulse start and automatic reset.
£11.0.0 approx. dependent on quantity.

TEMPERATURE CONTROLLER TYPE THP - Themmistor operated octal base plugin COMPACT
Yemperature ranges up to $280^{\circ} \mathrm{C}$
Output contacts . 4 amp
Repeat Accuracy 3\% full scale
Complete with Thermistor

FLOATLESS LIQUID LEVEL CONTROL
$\star 5 \mathrm{amp}$. OUTPUT CONTROL CONTACTS \star Solid State

* Octal Base plug-in

The most compact unit available, measures only $2 \frac{1}{2}{ }^{\prime \prime} \times 2 \frac{1}{2}{ }^{\prime \prime} \times 3^{\prime \prime}$.

Approx. $\mathbf{f} 4.0 .0$.

dependent on quantity.

SINGLE AND TREBLE STAINLESS ELECTRODES AVAILABLE.
 Matchbox size frontal area. Automatic re-set. \star PLUG-IN OCTAL BASE + INSTANTANEOUS AND TIMED OUT 2 AMP CONTACTS \star RANGES: 10 SECS TO 36 MINS. ap prox. $£ 5.0 .0$ each.

PROXIMITY SWITCH

+10 AMP 2 CIRCUIT $\star 5$ INCH FLEXIBLE ACTUATOR AS ILLUSTRATED
AS LOW AS $53 / 9$ EACH. five other standard types

YL2 GPA
\star For Batching, Conveyors, Machine Tool Control, Packaging, Sorting, etc. \star Senses ferrous objects. \star Needs no mechanical force or pressure to operate. \star Solid state sensing head includes constant voltage circuit.
\star Mains operated.
approx. $£ 12.10 .0$ dependent on quantity.
OTHER INDUCTIVE AND CAPACITY TYPES AVAILABLE

- 1 MILLION OPS.

5 amp c/o Sub-miniature Miero-switch. $2 / 6$ each per 1,000

LIMIT SWITCH

WL 10 FNJ AYAlLABLE
 SLB CAPACITY PROXIMITY SWITCH
Senses any object :
PACKETS BOTTLES
CARTONS BOXES
CANS CANS
empty or full, ferrous and non-ferrous materials.

STAINLESS PROBE remote from 240v AC Power Pack which
Incorporates own 5 amp relay. and level control of GRANULES POWDERS LIQUIDS
Approximately $£ 20.0 .0$ complete dependent on quantity.
U.L. APPROVED (Appr. No. 32667)
$\mathrm{V}-10-1 \mathrm{~B}$

* I MILLION

OPERATIONS:
$\star 10 \mathrm{amp} . \mathrm{c} / \mathrm{o}$.

* COMPARE OURSPEC.
\& OUR PRICES WITH

OTHER SIMILAR TYPES.
Screw Terms. 3/1 each per 1,000
V-10-1A Solder Tags 2/3 each per 1,000
VV-15 IC2 187 Amp Tags $2 / 6$ each per 1,000

NEW ! Approx. $3 / 3$ each per 1,000 .

CCR-5

Light force wire operated Micro-switch Designed for even more economical coin operation mechanisms.

Stockists: B.P.G. Ltd., Leicester 61460; Edmundsons Electronics Led., London, New X 9731; A. C. Farnell Ltd., Leeds 35111 ; Gordon Wilson Ltd., Blackburn 59921; G.D.S. Ltd., Bucks. Slough 30211

DISTRIB UTORS FOR EIRE: SOUTHERN ELECTRONICS LTD. CORK 26488

OMRON PRECISION CONTROLS
 DIVISION OF I.M.O. PRECISION CONTROLS LTD.

(Dept. W.W.9), 313 Edgware Road, London, W. 2
Tel. 01-723 2231

有

Coaxial Cables

 from $\frac{3^{\prime \prime}}{8}$ to $3^{\prime \prime}$foam or air dielectric with Connectors available from stock.
Larger sizes to order.

aNDREW ANTENNA SYSTIEMS

LOCHGELLY - FIFE
Tel. Lochgelly (059-278) 561
Telex 72491

NEW Series 500 Amplifiers \& Tuners

521 Stereo Amplifier (top photograph) A superb new transistor amplifier from Armstrong with a performance that is second to none. It is based in cirćuitry and internal layout on the highly successful 421 amplifier which it supersedes. Its got 25 watts power output per channel (continuous sine wave), a total of 50 watts, and all the facilities you could wish for in a top class amplifier. Inputs for magnetic and ceramic pickups, tape playback and radio, rumble filter, two treble filters. loudness control, tape monitor and headphone listening. Stabilised power supply. output transistor protective circuit and plug. in modules for easy servicing.

523 AM-FM Tuner (lower photograph) 524 FM Tuner
Two alternative tuners to match the 521 amplifier in looks and performance. Both tuners provide high sensitivity and top quality on the FM band and, with the optional M4 Stereo Decoder added, give wonderful results on stereo radio
For all those who want AM radio as part of their sound system, the 523 gives excellent coverage of the medium and long wavebands.
Each Series 500 model comes complete with high quality teak case, for which there is no extra charge.
The full Armstrong range of high fidelity products:

521 Stereo amplifier
£52 00
523 AM-FM Tuner
f51 100
524 FM Tuner
425 FM Tuner-amplifier
426 AM-FM Tuner-amplifier
M4 Stereo Radio Decoder
127 AM-FM Tuner-amplifier
M5 Stereo Decoder (for 127)
$£ 39100$
£78 $\quad 59$
\& $87 \quad 69$
£87 69
f9 100
42179
100

Have you read the review of Tuner-amplifier in the October Hi Fi News? If not we will gladly send you a copy. For full details and technical specifications of all models. plus stockists list. post coupon or write mentioning 12 WW 68

Armstrong Audio Limited
 Warlters Road, London, N. 7

Telephone: 01-6.07 3213

Name

Address

Rer
 TO AMBITIOUS ENGINEERS - the latest edition of engineering opportunities

Have you sent for your copy? ENGINEERING OPPORTUNITIES is a highly informative 132-page guide to the best paid engineering posts. It tells you how you can quickly prepare at home for a recognised engineering qualification and outlines a wonderful range of modern Home Study Courses in all branches of Engineering. This unique book also gives full details of the Practical Radio \& Electronics Courses, administered by our Specialist Electronics Training Divisionexplains the benefits of our Appointments Dept. and shows you how to qualify for five years' promotion in one year.

SATISFACTION OR REFUND OF FEE

Whatever your age or experience, you cannot afford t? miss reading this famous book. If you afford to miss reading this famous book. If you copy of "ENGINEERING OPPORTUNITIES'" today-FREE.

WHICH IS YOUR PET SUBJECT?

Radio
Television
Electronics
Electrical Mechanical Civil Production Automobile Aeronautical

Plastics
Building
Draughtsmanship B.Sc.

City \& Guilds Gen. Cert. of Education etc., etc.

PRACTICAL EQUIPMENT
 Basic Practical and Theoretic Courses for beginners in Radio TV Electronics itc Radio, TV, Electronics, etc. Radio Amateur's Exam.
 R.T.E.B. Certificate P.M.G. Certificate Practical Radio
 Radio \& Television Servicing Practica! Electronics
 Electronics Engineering Automation

 oratory traiting at home ith pracfical equipment. equipment.Ask for details.

-OST OOUPON NOW!

Please send me your FREE 132 -page "ENGINEERING OPPORTUNITIES" (Write if you prefer not to cut page)

NAME
ADDRESS

INCLUDING

BRITISH INSTITUTE

 OF ENGINEERING TECHNOLOGY(Dept. 303B), Aldermaston Court, Aldermaston, Berkshire
he specialist Elec. tronics Division of B.I.E.T. NOW offers you a real labTOOLS!

SUBJECT OR EXAM.
THAT INTERESTS ME

THE B.I.E.T. IS THE LEADING INSTITUTE OF ITS KIND IN THE WORLD

WW-045 FOR FURTHER DETAILS

Accurate and direct measurement of speed without coupling to moving parts
 FRAHMResonanantReedTACHOMETERS

for hand use or permanent mounting.
Ranges and combinations of ranges from 900 to 100,000 r.p.m.
Descriptive literature on FRAHM Tachometers and Frequency Meters is freely available from the Sole U.K. distributors:

> ANDERS METER SERVICE
> ANDERS ELECTRONICS LTD. 48/56 BAYHAM PLACE, BAYHAM STREET LONDON NW1 TEL: 01-387 9092. MINISTRY OF AVIATION APPROVED WW-046 FOR FURTHER DETAILS

WW-047 FOR FURTHER DETAILS

QUAD 50 is a single channel 50 Watt amplifier designed for Broadcast, Recording and other applications in the Audio industry, completely proof against misuse and giving the highest quality of reproduction.

INPUTS - 0.5 Vrms unbalanced with provision for an optional plug-in transformer for bridging 600 ohms lines.
OUTPUTS - isolated providing 50 watts into almost any impedance from 4 to 200 ohms. DIMENSIONS $-12 \frac{3}{4}^{\prime \prime} \times 6 \frac{1^{\prime \prime}}{} \times 4 \frac{1}{2}{ }^{\prime \prime}$

Complete the coupon and post today.

QUAD

for the

closest approach to the original sound

Please send me full details of the QUAD 50 Amplifier

NAME

POSITION.
COMPANY
ADDRESS
(BLOCK CAPITALS)
ACOUSTICAL MANUFACTURING CO. LTD., HUNTINGDON. Telephone: Huntingdon (0480) 2561/2

BuIlleros ceramics

for the ELECTRONIC INDUSTRY (and Electrical Appliance Manufacture)

Frequelex-for high-frequency insulation.

Refractorles for high-temperature insulation.

Bullers porcelain for general insulation purposes.

Meticulous care in manufacture, high quality material, with particular attention applied to dimensional precision and accuracy, explain the efficiency and ease of assembly when using Bullers die pressed products.

Write today for detailed particulars.

BULLERS LIMITED

Milton, Stoke-on-Trent, Staffs.
Phone: Stoke-on-Trent 54321 (5 lines)
Telegrams \& Cables: Bullers, Stoke-on-Trent London Office: 6 Laurence Pountney HIII, E.C. 4 Phone: MANsion House 9971

Solese mith He NEWEIMPROVED PRIMAX OR PRIMAXA SPOTLIGHT SOLDERING GUN

Distributors:

S. KEMPNER LIMITED

384A Finchley Road \cdot LONDON • N.W. 2

Tel: 01-794 2371-01-435 6365
wW-050 FOR FURTHER DETAILS

Do you find that your leads are always getting in the way? Then use the LUSTRAPHONE
"Radiomic" System and then you'll have no lead at all. Capable of providing a microphone link over distances of $\frac{1}{4}$ mile, the "Radiomic" in no way limits the performance of even the finest microphones. The perfect mates for the "Radiomic" are the LUSTRAPHONE 10 watt and 50 watt Amplifiers. By employing brilliantly simple and advanced circuitry, these amplifiers combine performance and reliability to a greater degree than ever before. Brief Specification:- Frequency Response $20 \mathrm{~Hz}-20 \mathrm{KHz} \pm 1 \mathrm{~dB}$. Total Distortion 0.5% at full power. Send for free illustrated leaflets giving full details of "Radiomic" Systems and 10 watt and 50 watt Amplifiers.

lustraphone

THE FOREMOST NAME IN MICROPHONES

controlled soldering starts with an Enthoven preform

The right amount of solder，in the right place，every time．The right alloy to suit the surfaces to be joined．The right flux for effective wetting．The right heat－source．Enthoven know about this kind of thing，will give advice，supply preforms－cored or solid．Controlled soldering means economical soldering．Soldering with Enthoven preforms saves solder， time and wastage．Cuts costs．Produces a stronger，cleaner job． Enthoven supply washers，rings，shims and strips in a wide variety of alloys，cored and solid，and design to meet special requirements．

レーーーー
Head Office and Sales Office
Dominion Buildings，South Place，London，EC2
Telephone：01－628 8030

Aspects no 3
 NEW 12 AND 40 WATT TUNER / AMPLIFIERS

The new S.N.S. Tuner Amplifiers are a marriage of the S.N.S. crystal controlled AM or FM Tuners and a new range of fully transistorised amplifiers, which have been developed for the distribution of radio programmes in Factories, Hospitals, Hotels, etc.
Two versions are at present available, one a $12 / 17$ watt unit and the other a $40 / 50$ watt unit, both available with or without an additional preamplifier which is complete with priority circuit for a low impedance microphone. These amplifiers are supplied mounted on a satin finished $19^{\prime \prime}$ panel with carrying handles. A cabinet, finished in black crackle, is available when the units are not rack mounted.
Both the CD12/T and CD40/T have full short and open circuit protection, 100 v . line ($0-50 / 0-50$) and low impedance output and have been designed for continuous operation under varying temperature and load conditions.
The following Tuner configurations are available

1. Single channel - Either Radio 2, or 3, or 4, or Local Radio:
2. Single channel - Either 208, or 247 metres Medium Wave.
3. Switched - Radio 2, 3, 4 or Local Radio.

For further details on these new units, or for any other of the products listed below please.write, phone or telex:
J. V. H. ROBINS, Marketing Director,
S.N.S. COMMUNICATIONS LTD.

851, Ringwood Road, West Howe, Bournemouth, Hants., England.
Telex 41224. Tel.: Northbourne 4845/2663.
Manufacturers of: Transistor Amplifiers, Crystal AM and FM Tuners, Radiomicrophones,
Cabinet and Line Source Loudspeakers, Loudspeaking Intercom Systems, Hotel Radio and Intercom Systems.

A member of the Firth Cleveland Group.

Latest release in the range of LM Microphones is the most sophisticated design yet. The robust, metal construction with its good back-to-front discrimination is ideal for speech reinforcement systems and recordings. Recommended retail price from $£ 12$ including built-in cable and quick release stand adaptor, depending on impedances. For details of the LM300 and other superb microphones in the LM range, please ring or write to:

182-4 Campden Hill Road, London.W.8. Telephone: 01-727 0711 (24 hour answering service) Telex 23894

M. R. SUPPLIES, LTD.,

(Established 1935)
Universally recognlsed ay suppliers of UP-TO-DATE MATERIAI, which does the Job properly. Instant dellvery. Batisfaction assured. Prices nett.
FAN FLOW EXTRACTOR FANS. Undoubtedly today's greateat bargain for dornestic or industrial uae. For $260 / 250$ volts A.C. $7,500 \mathrm{cu}$. it. per hour. Easily installed, fitted weatherprooi louvres
which open when motor is switched on and close when ofr. Only $6 \downarrow$ in. dia. Our nett price only £7/5/0. (despatch $5 /$-).
MINIATURE RUNNIMG TIME METERS (Sangamo). We have great demands for this remarkable unit and now can supply immediately from stock, $200 / 250 \mathrm{v}$. 50 c . synchronous. Counting ap to 9,999 hours, with $1 / 10$ th indicator. Only 1 lids. square, with cyclometer dial, depth 2 ins. Many induatrind and domestic applications to indleate the running time of any electrical apparatus, easy
to install, $63 /=$ (des. $1 / 6$). to install, 63
SYNCHRONOUS TIME SWITCHES. (Another one of our popular specialities) 200/240 $\vee .50 \mathrm{c}$. for accurate pre-set switching operations. Bangano 8.254 , proriding up to 8 on-off operations per
24 hours at any chosen times, with day-omitting device (use optional). Capacity 20 -amps. Compactly housed 4 in. dia., $3 \ddagger$ in. deep, $£ 6 / 4 / 6$ (dees. $4 / 6$). Also same excellent make new domestic model, no wiring and easy setting and linetallation. Portable with lead and 13 -amp plug, same
duty as abore (less day-omiting), $\& 4 / 14 / 0$ (des. 4/6). Full instructions with each.
ELECTRIC FANS (Papat), for extracting or blowing. The most exceptional offer we have yet
 SMALL GEARED MOTORS. In addition to our well-known range (List GM. 564), we ofer small
 projection each side and enclosed gearbox. Suitable for display work and many industrial uses.
Only $69 / 6$ (dce. $3 /$-). MINIATURECOOLIMG FANS. $200 / 250$ v. A.C. With open type induction motor (no interference), Overall 4 in . $\times 31 \mathrm{in}$. $\times 24 \mathrm{in}$. Fitted 6 -bladed metal impeller. Idcal for projection lamp cooling,
light duty extractors, etc., atili only $28 / 6$ (des. $4 / 6)$. light duty extractors, etc., dinl only $28 / 6$ (des. 4/6).
A1R BLOWERS. Highly effecent units fitted induction totaliy enclosed motor $230 / 260 \mathrm{v}$. 50 c .

SYNCARONOUS ELECTRIC CLOCE MOVEMENTS (as mentioned and recommended in many national 0 ournais). $200 / 250 \mathrm{v}$. $\delta 0 \mathrm{c}$. Self-starting. Fitted splindles for hours, minutes and central
sweep second bands. Central one-hole fixing. Dia. 2 \downarrow in. Depth behind dial only lin. With back dust cover, 35/- (des. 1/6). Bet of three brass hands in good plain style. For 5/7in. dia. 2/6 For $8 / 10 \mathrm{dia} 3 / 6$ set.
SYNCHRONOUS TIMER MOTORS (Sangamo), $200 / 260 \mathrm{\nabla} .50 \mathrm{c} / \mathrm{s}$. Self-starting 2 in . dia, $\times 1 / \mathrm{in}$. deep. Choice of following speeds: 1 r.p.m., 12 r.p.h., 1 r.p.h., 1 rev. 12 hourg, 1 rev. per dag.
Any one $39 / 8($ des. $1 / 6)$. Also high-torque model (G.E.C.), $21 \mathrm{in} . \times 2 \mathrm{in} . \times 11 \mathrm{in}$. 8 r.p.mı, $57 / 6$ Any one 38
(des, 1/6).
SMALL BENCE GRINDERS. 200/250 v. A.C./D.C. With two 3 in. diameter wheels (coarse and ane surfaces). Bench mount, very useful household or laduatrial units. $£ 7 / 17 / 8$ (dea, $8 / 9$). EXTRACTOR FANS. Ring mounted all metal construction. T/E induction motor, allent operation, 8in. blade, 10 in . max. dia, 40 $6 /$). max.
IMmediate delivery of Stuart Ceatrilagal Pumps, Including atainleas steel (most models).
M. R. SUPPLIES, Ltt., 68 New Oxford Street, London, W.C. 1 (Telephone: 01-636 2958)

and of course Goodmans are the makers of the world-acclaimed transistorised stereo amplifier, Maxamp 30, too, and the Stereomax tuner - the Goodmans record-player completes. Goodmans record-player completes.
the picture. All High Fidelity, all Stereophonic, and all with Goodmans reputation behind them.
THIS is the Audio Suite - send for a free colour booklet.

Goodmans for High Fidelity
 Goodmans for High Fidelity

1 NEW!MAMBO* $10 \frac{1^{* *}}{4} \times 8 \frac{3}{4} \times 8^{*}$ deep f17.18.0 + €4.0.5 P.T
2 MAXIM Mini-system. $10 \frac{1_{2}^{*}}{} \times 5 \frac{1}{2}{ }^{\prime \prime} \times 7 \frac{1}{2}$ "deep. $£ 16.7 .0+£ 3.13 .5$ P.T
3 NEW! MARIMBA For wall mounting. 19* x $13^{\prime \prime} \times 5 \frac{1^{\prime \prime}}{}$ deep. $£ 19.5 .0+£ 4.6 .3$ P.T.
4 MEZZO ${ }^{\text {II }}$ Flush fitted attenuator. $19 \frac{1}{2}{ }^{\prime \prime} \times 12^{\prime \prime}$ $\times 9^{\prime \prime}$ deep. £30.18.0.
5 MAGNUM-K. 3 speakers. 2 attenuators. $24^{\circ} \times 15^{\prime \prime} \times 1 \frac{1}{4}^{\prime \prime}$ deep. £40.2.0
6 ELEGANZIA II. $27^{\prime \prime} \times 20^{\prime \prime} \times 6 \frac{1^{\prime \prime}}{}$ deep. £30.0.0.
All finished in Teak or Walnut to order.
*Sold in ready matched pairs.

- Loudspeaker systems, that is - and go GOODMANS.
Choose a Goodmans loudspeaker for its looks - let Goodmans name be your guarantee of quality.
There are now six Systems in Goodmans High Fidelity range including Mambo and Marimba (NEW last month).
The choice widens - the quality remains the same. All offer the finest High Fidelity reproduction anywhere. Check for yourself - at your Goodmans dealer.
 Stereophonic, and all with Goodmans
m Works, Wembley, Middlesex. Tel. : 01-902 1200

 made by Smith Hobson Ltd., which uses five Telcon Mumetal strip wound toroidal cores.

TELCON METALS LTD., Manor Royal. Crawley. Sussex. Telephone: Crawley 28800. Meniber of the BICC Group of Companies.

Printed Circuits Big deal in Printed Circuits

When it comes to large quantity production you get the best deal from Printed Circuits Ltd. The production of all types of printed circuits, to customers' exact requirements, is covered by a fast, efficient design or prototype service.

Short runs present no problem, but capacity is available for fast quantity production, and the assembly of components.
If your project demands quality, quantity, speed and price control - ring Coventry 24155 today.

Printed Circuits Ltd.,

Spon Street Coventry CV1 3BR
Tel: Coventry 24155
A subsidiary of The General Electric Co. Ltd. of England
WW-058 FOR FURTHER DETAILS

WW-059 FOR FURTHER DETALLS

The capacitor that is undaunted by moisture and has no elaborate casing

The *Hunt's M310 miniature 'Polymite' metallised film tubular capacitor suffers no ill effects from high humidity conditions. There is a rapid recovery of insulation resistance after exposure to moisture. Physical size is down, and a useful range of capacitance values is available
Impermeable 'polyester' film dielectric with the exclusive 'castellated' metallising is used to produce a sound capacitor which is truly miniature, while offering good electrical parameters.

Capacitance range : 100 pf to 47,000 pf
Voltage ratings: 250 V.d.c. 500 V.d.c. 750 V.d.c

SOUTH DENES, GREAT YARMOUTH, NORFOLK

MILLIONS OF OPERATIONS FOR 6d!

The GEC type RCX dry reed capsule will switch a 5 W resistive load several million times and is suitable for fast low level applications where reliability and long life are required. It is hermetically sealed and has a contact resistance of not greater than 150 milliohms. A fully automated production unit
has been set up to produce high quality reeds to an extremely severe Post Office telephone exchange specification, and the same modern techniques are being used on this industrial version which is offered at 6 d in bulk quantities. Small quantities cost a penny or two more.

DARLINGTONS

DI6P4 SILICON PLANAR EPITAXIAL NPN DARLINGTON AMPLIFIER
Vсво $=40 \mathrm{~V}, \mathrm{~V}$ сео $=20 \mathrm{~V}, \mathrm{Vebo}=12 \mathrm{~V}, \mathrm{Pt}=320 \mathrm{~mW}$,

$$
\mathrm{TJ}=120^{\circ} \mathrm{C}, \mathrm{TO}-98
$$

B $\geqslant 20,000$ at $100 \mathrm{~mA}, 5 \mathrm{~V}$,
$B \geqslant 7,000$ at $2 \mathrm{~mA}, 5 \mathrm{~V}, 1 \mathrm{Kc} / \mathrm{s}$ $\mathrm{B} \geqslant 3$ at $2 \mathrm{~mA}, 5 \mathrm{~V} .20 \mathrm{Mc} / \mathrm{s}$
Recommended as a pre-amplifier

LI4B SILICON PLANAR NPN PHOTO DARLINGTON AMPLIFIER

V сво $=18 \mathrm{~V}$, Vceo $=12 \mathrm{~V}$. Vebo $=8 \mathrm{~V}, \operatorname{Pt}=150 \mathrm{~mW}$, $\mathrm{Tj}=85^{\circ} \mathrm{C}, \mathrm{To}-98$
$\mathrm{t}_{\mathrm{d}}=60 \mu \mathrm{~S}, \mathrm{t}_{\mathrm{r}}=250 \mu \mathrm{~S}, \mathrm{t}_{\mathrm{s}}=0 \cdot 5 \mu \mathrm{~S}, \mathrm{t}_{\mathrm{f}}=150 \mu \mathrm{~S}$
$\mathrm{IL}=100 \mathrm{~mA} \max . \mathrm{ID}=100 \mathrm{nA}$ max. $\mathrm{IL}=2 \mathrm{~mA}$ typ. (>0.5) at $\mathrm{VCE}=5 \mathrm{~V}, \mathrm{H}=2 \mathrm{~mW} / \mathrm{cm}^{2}$

```
PRICES:
D16P4 7/8 (1-99) 5/0 (100 up). EX-STOCK
L14B 16/6 (1-24) 14/0 (25 up) LONDON
```

RASTRA gectronics Lrd,
275/281 King Street, London,W.6. Tel: RIV 2960
" Q -maX" sheet metal punches FOR QUICK AND CLEAN HOLES

30 SIZES: Rounv:
$3^{3 \prime \prime}$ to $3^{\prime \prime}$
SQUARE:
$\frac{111^{\prime \prime}}{16}$ and $1^{\prime \prime}$
RECTANGULAR:
$\frac{211^{\prime \prime}}{32} \times \frac{15}{16}{ }^{\prime \prime}$

Full list on application

- Simple operation

- Quick, clean holes (up to $\mathbf{1 6}$ gauge mild steel)
- Saves time and energy
- Burr-free holes-no jagged edges
- Special heat treatment maintains keen cutting edge
- Anti-corrosive finish prevents rusting
- Used all over the world

Obtainable from Radio, Electrical and Tool Dealers, Wholesale and Export Enquiries to:-

 WW- 063 FOR FURTHER DETAILS
ANOTHER CLEVER SWITCH BY ニエアコン

Now IR introduces a unique thyristor rated at 80 amperes and offering performance capability as yet unmatchable by any other manufacturer． Now you can toss out complex firing circuits，get more power output per thyristor and the lowest cost system．The ACE thyristor allows low－amplitude soft firing and has the industry＇s highest di／dt rating（ 800 amps per microsecond），along with high－frequency performance to 10 kHz （ 250 amperes peak at 50 Hz and 190 amperes peak at 5 kHz ．）It＇s rated up to
 1440 volts（PTRV），provides $200 \mathrm{~V} / \mu \mathrm{s}$ dv／dt and fast turn－off．Advance specifications，application reports and devices available from

IR－The Current Slicers－ now．International Rectifier，Hurst Green， Oxted，Surrey． Tel ：Oxted 3215.

PHILIPS

Every aspect of microphone manufacture is covered by the makers of ten million of them-Philips. Presentation and directivity are made to suit requirements. In fact, whatever your needs, there's one in ten million for you. Please ask for full information.

PYE TVT LIMITED
PHILIPS SOUND
Addlestone Road, Weybridge Tel: Weybridge (97) 45511. Telex: London 262319

VARI-STAT

THERMOSTATIC

SOLDERING IRON

HIGH PRODUCTION MINIATURE MODEL D. 50 WATT

Weight ... 2 oz.
Heating time 50 secs.
Bit.Sizes .. $1 / 16^{\prime \prime}, 3 / 32^{\prime \prime}, 1 / 8^{\prime \prime}, 3 / 16^{\prime \prime}, 1 / 4^{\prime \prime}$
Nickel or Iron Plated
Voltage .. 250 to 12 volts
Price
60/6

HIGH PRODUCTION INSTRUMENT
MODEL H. 150 WATT

Weight .. 6 oz.

Heating time 1 min .45 sec .

Bit Sizes .. $3 / 16^{\prime \prime}, 1 / 4^{\prime \prime}, 3 / 8^{\prime \prime}, 7 / 16^{\prime \prime}$

Nickel or Iron Plated

Voltage .. 250 to 24 volts

Price

OTHER VARI-STAT IRONS:-

Miniature Model M 50 watt Push-in Bits $1 / 32^{\prime \prime}$, $1 / 16^{\prime \prime}, 3 / 32^{\prime \prime}$
Instrument Model B 70 watt Bit Size 11/64"
Industrial Model I 500 watt Bit Size $5 / 8^{\prime \prime}$
CARDROSS ENGINEERING CO., LTD.
Woodyard Road, Dumbarton
Phone: Dumbarton 2655

WW-066 FOR FURTHER DETAILS

LEVELL VOLTMETERS

VOLTMETER RANGES

$15 \mu \mathrm{~V}, 50 \mu \mathrm{~V}, 150 \mu \mathrm{~V}$.... 500 V f.s.d. Accuracy $\pm 1 \% \pm 1 \%$ f.s.d. $\pm 1 \mu V$ at 1 kHz .

dB RANGES

-100 dB to +50 dB in 10 dB steps. Scale
$-20 \mathrm{~dB} 10+6 \mathrm{~dB} 0 \mathrm{~dB}=1 \mathrm{~mW}$ into 600Ω.

FREQUENCY RESPONSE
Above $500 \mu \mathrm{~V}$: $\pm 3 \mathrm{~dB}$ from 1 Hz to 3 MHz . $\pm 0.3 \mathrm{~dB}$ from 4 Hz to 1 MHz On $500 \mu \mathrm{~V}: \pm 3 \mathrm{~dB}$ rom 2 Hz to 2 MHz . On $50 \mathrm{NV}: \pm 3 \mathrm{~dB}$ from 7 Hz to 1 MHz . On $15 \mu \mathrm{~V}: \pm 3 \mathrm{~dB}$ from 20 Hz to 200 kHz .

TYPE TM3B £63

Complete with battery and in. put lead.

OPTIONAL
EXTRAS
Leather Case
A.C. Power Unit

E7/10/-.

AMPLIFIER OUTPUT

150 mV at f.s.d. on all ranges. Will drive a load of $200 \mathrm{k} \Omega$ and 50 pF without loss.

POWER SUPPLY
One type PP9 battery, life 1000 hours; or A.C. mains when Power Unit is fifted.

$$
\star \star
$$

TYPE TM6A

285

Complete with battery and in put lead. OPTIONAL
EXTRAS
Leather Case
E4/10/.
A.C. Power Unit

TYPE TM6B $£ 99$
Complete with battery and input lead.
OPTIONAL
EXTRAS
Leather Case
A.C. Power Unit

E7/10/-
H.F. VOLTAGE RANGES
$1 \mathrm{mV}, 3 \mathrm{mV}, 10 \mathrm{mV} \ldots 3 \mathrm{~V}$ f.s.d. Square aw scales. Accuracy $\pm 4 \%$ of reading
$\pm 1 \%$ of f.s.d. at
H.F. dB RANGES
$-50 \mathrm{~dB},-40 \mathrm{~dB},-30 \mathrm{~dB} .+20 \mathrm{~dB}$.
Scale -10 dB to +3 dB . $0 \mathrm{~dB}=1 \mathrm{~mW}$ into 50Ω.
H.F. RESPONSE
$\pm 0.7 \mathrm{~dB}$ from 1 MHz to 50 MHz . Hz to 400 MHz .
L.F. RANGES

As TM3A and TM3B except for the omis sion of $15 \mu \mathrm{~V}$ and $150 \mu \mathrm{~V}$.

POWER SUPPLY
Cne type PP9 battery, life 1000 hours on L.F. ranges and 400 hours on H.F. ranges: or, A.C. mains when Levell Power Unit is fitsed.

Fully detailed leaflets are available on ou complete range of portable instruments

LEVELL ELECTRONICS LTD., Park Road, High Barnet, Herts. Tel.: 01-449 5028

PORTABLE INSTRUMENTS

LEVELL

at work and at home!

Jack Peters knows the quality and reliability of the Weller soldering equipment he uses during the dayso he naturally chooses Weller for all the soldering jobs around the house. The same technical know-how and perfection go into both.
The world's widest range of quality soldering tools offers :
TEMPERATURE CONTROLLED IRONS with iron plated tips which control temperature without limiting

Jack Peters uses a WELLER

performance. For mains or low voltage.
RAPID SOLDERING GUNS. Instant heat models. Just reach for the solder ... 4 seconds and the job's done.
LOW INITIALCOST. The range of Marksman Irons$25,40,80,120$ \& 175 watt,-all have pretinned nickel plated tips.
There's a Weller soldering tool for every job and every pocket. Send for full details of our range.

Weller Flectric Limited

REDKILN WAY. HORSHAM SUSSEX. Telephone: 040361747

and you keep coming back for more. In 1962 the SA520 changed the State-of-the-Art in digital counters. It set new standards of functional flexibility, accuracy and value for money. Six years later it has proved utterly reliable, probably the most reliable counter ever made. Still in production - still in demand. SA520 Digital Frequency Meter/Tachometer. $2 \mathrm{~Hz}-300 \mathrm{kHz}$. All transistor. Digital display. Mains/battery operation. Small ($7 \frac{5}{8}{ }^{\prime \prime} \times 6 \frac{1}{2}{ }^{\prime \prime} \times 7 \frac{1}{4}{ }^{\prime \prime}$). Lightweight -7 lb .

Racal Instruments Ltd., Crowthorne, Berkshire, England. Tel: Crowthorne 5652. Telex: 84166. Cables: Racal Bracknell

The new $V 51$ helical range of Sealed construction, proof MEC miniature wirewound potentiometers offers high resolution in very small size. 3,5 \& 10-turn units are available. Resistance values range from 220s, 3-turn, resolution 0.262%, to 220 K 10 -turn, resolution 0.017%. 3-turn units have continuous power rating $0.25 \mathrm{~W}, 5$-turn 0.5 W and 10 -turn 1 W at $70^{\circ} \mathrm{C}$. Telephone Woking 63621 against humidity, vibration, shock, altitude and acceleration to meet Def 5011 severities. Prices from 28/- depending on quantity.

Miniature Electronic

 Components Ltd., St. Johns Woking SurreyThe smallest helical potentiometer availabte in UK.

17-E-6

Trimmer Potentiometers
Wire-wound Resistors
Miniature Switches
Elapsed Time Meters

SANYO PORTABLES put you in the world class

Sanyo Campanetta 15H-860

I5 transistor 7 band portable. Long Wave, Medium Wave, 4 Short Waves and FM. Superb reception sensitivity through double antenna system. Excellent tone quality from large oval $4^{\prime \prime} \times 6^{\prime \prime}$ speaker. AFC control on FM stations. Fine tuning control. Battery (6^{\prime} D' size) or mains operation with adapter. Output power max. 2000 mW . Undistorted 1400 mW .
Recommended selling price $£ 66.3 .0$.

Even if you've a roomful of fixed hi-fi in your home, you'll still be impressed with the performance of these special SANYO portable radios and tape recorders. Everything about them is designed to give the highest possible
performance within a reasonable compass of size and price.
For further information write to:
Sales Manager, Marubeni-IidaCo.Ltd, 164 Clapham Park Road, LondonSW4.

WW-077 FOR FURTHER DETALS

MODEL 8 MK.'III

REPAIR SERVICE 7-14 DAYS
We specialise in repair, calibration and conversion of all types of instruments, industrial and precision grade to BSS. 89 .
Release notes and certificates of accuracy on request.

Suppliers of Elliott, Cambridge and Pye instruments

LEDON INSTRUMENTS LTD

76-78 DEPTFORD HIGH STREET, LONDON, S.E. 8
Tel.: 01-692 2689
E.I.D. \& G.P.O. APPROVED

CÓNTRACTOR TO H.M. GOVT.

The SM60 cannot be stereotyped-is equally at home in the studio or in the field-stand-mounted or hand-held-in uses as diverse as outdoor sporting events and elaborate variety shows. Small wonder that audio engineers have called it one of the most versatile omnidirectional dynamics they've ever encountered, for the SM60 is a unique combination of good-looks, strength, performance and economy.
The smooth, wide-range response provides cleanest, natural reproduction of both speech and music. A very effective built-in wind and "pop" filter protects against undesirable effects of close-talking.
Lustrous, non-glare metallic finish and tailored-to-the-
hand dimensions provide striking on-camera appearance and superior handability. Specially reinforced machined-steel case front is designed to take abuse that would ruin other microphones-you can drop it on its nose without damage to the internal structure! Efficient windscreen and front end are quickly and easily removable for cleaning.
Best of all, it is priced competitively with conventional "workhorse" microphones. Why not check out an SM60 now?

SHURE MICROPHONES
SETTING THE WORLO'S STANDARD IN SOUND

VERSATILE OMNIDIRECTIONAL DYNAMIC MICROPHONE

SHURE ELECTRONICS LTD., 84 BLACKFRIARS ROAD, LONDON, S.E.1, TEL:01-928 6361.

ce 1967 Shure Brothers, inc.

Specifically designed for radio, TV, motion pictures . . . matches well in sound with stand or desk mounted units. Smoothly-contoured, machined. steel case and recessed grille for minimum clothing noise. Exclusive snap-in mounting of microphone for greater convenience, security. "Positive Lock" lavalier goes on in an instant-provides simple, noiseless position adjustment. Extra-flexible, kink-free rubber cable is easily replaceable.

MODEL SM51 DYNAMIC LAVALIER

Loudspeakers for the Perfectionist

Celestion
 Studio Series

DITTON 15

Celestion's outstanding bookshelf system designed for the enthusiast. The sound reproduction of this proven enclosure is truly exceptional, the three radiators giving a smooth and effortless performance-from Bach to Basiea superb recreation of the original in your home.

DITTON 25

The true sound of music-you'll hear it as you have never heard it before every 'nuance' and 'timbre' is reproduced with breathtaking realism by Celestion's new Ditton 25. An elegant slimline High Fidelity system designed for luxury installations.

Fill in the coupon for free brochure detailing the complete Ditton
Series and explanation of the exclusive
Celestion Auxiliary Bass Radiator (ABR) which has revolutionised compact loudspeaker design.

> Please send free brochure to:-
> NAME
> ADORESS
> w/w/12

TELEPRINTERS • PERFORATORS REPERFORATORS • TAPEREADERS DATA PROCESSING EQUIPMENT

Codes: Int. No. 2 Mercury/Pegasus, Elliot 803,
Binery and special purpose Codes.

2-5-6-7-8- TRACK AND MULTIWIRE EQUIPMENT

telegraph automation and computer peripheral accessories
Picture Telegraph, Desk-Fax. Morse Equipment; Pen Recorders; Switchboards; Converters and Stabilised Rectifiers; Tape Holders, Pullers and Fast winders; Governed, Sychronous and Phonic Motors; Teleprinter Tables and Cabinets; Silence Covers; Distortion and Relay Testers; Send/Receive Low and High Pass filters; Teleprinter, Morse, Teledeltos Paper, Tape and Ribbons; Polarised and specialised relays and Bases; Terminals V.F. and F.M. Equipment; Telephone Carriers and Repeaters Multiplex Transmitters; Diversity; Frequency Shift, Keying Equipment; Line, Mains Transformers and Suppressors; Racks and Consoles; Plugs, Sockets, Key, Push, Miniature and other Switches; Cords, Wires, Cables and Switchboard Accessories; Teleprinter Tools; Stroboscopes and Electronic Forks; Cold Cathode Matrics; Test Equipment; Oscilloscopes; Miscellaneous. Accessories and Spares.
W. BATEY \& COMPANY

Gaiety Works, Akeman Street, Tring, Herts
Tel.: Tring 3476 (3 lines) Cables: RAHNO TRING STD: 044282 TELEX 82362

WW-082 FOR FURTHER DETAILS

SPECIALIST SWITCHES

are again giving

 the fastest switch service in the worldFROM THEIR NEW AND LARGER PREMISES IN CHARD, SOMERSET

Specialist Switches make Rotary and Lever switches, types H, DH, HC, and LO, to specification. There is one limitation (slandard 2 in. long spindles), but this is not important when you are gelting the fastest switch service in the world.

Delivery of 1-20 switches: 24 hours.
Up to 50 or so: 72 hours.
If you want around 250 or so: $7-10$ days.

Please note our address:
 SPECIALIST SWITCHES P.O. Box 3,
 CHARD, SOMERSET

Write for design charts and prices or TELEPHONE-CHARD 3439

Comprehensive range for civil and military authorities as well as domestic users in more than 50 countries.

Teonex now supplies a full range of British made valves and semi-conductors (or their Continental equivalents) to authorities operating stringent quality control, and to private individuals right across the world. Current price list and further particulars available on request from:

TEONEK LIMITEI

THE Qdarmis DE-SOLDERING TOOL

> Self-contained-does NOT require the use of air-lines or pumps
> Simple, light and inexpensive
> PERMABIT nozzle will not wear or become eroded by the solder
> Standard nozzle $\frac{5}{64} \mathrm{in}$. bore. Alternative, $\frac{3}{64} \mathrm{in}$. bore
> Mains or low voltages

Please ask for colour catalogue A/5

LIGHT SOLDERING DEVELOPMENTS LTD

WW-085 FOR FURTHER DETAILS

HOWELLS RADIO LTD. MINISTRY OF AVIATION INSPECTION APPROVED

TRANSFORMERS

STANDARD RANGE OR DESIGNED TO YOUR SPECIFICATION.
0-50KVA, "C"' CORE, PULSE, 3 PHASE, 6 PHASE, TOROIDS, ETC
Transformers for 20W Transistor Amplifier (W.W., Nov. 1966).
Driver 22/6 Carr. 2/-
$\begin{array}{lll}\text { Mains } & 29 / 6 & \text { Carr. }\end{array} 4 / 6$
L.P. Filter, Chassis Mounting 11/6. Carr. 1/-.
L.P. Filter, Printed Circuit Mounting 14/6. Carr. 1/-.

*MAINS TRANSFORMERS

350-0-350 v. 60 mA ., 6.3 v. 2 A. £1/15/-. Carr. 4/6.
500 v. 300 mA .6 .3 v. 4 A., 6.3 v. 1 A. £3/12/6. Carr. 5/6.
$500-0-500$ v. 0.25 A., 6.3 v. 4 Act., 6.3 v. 3 Act., 5 v. 3 A.
£4/10/6. Carr. 6/6.
$525-0-525$ v. 0.5 A., 6.3 v., 6 Act., 6.3 v., 6 Act., 5 v. 6 A. £5/5/-. Carr. 6/6.

*LOW VOLTAGE

$30-0-30$ v. 4 A. $£ 2 / 12 / 6$. Carr. 5/6.
28 v. 1 A., 28 v. 1 A., 28 v. 1 A., 28 v. 1 A., 30 v. 250 m A., £4/5/6. Carr. 5/6.
15 v. 6 A. $£ 2 / 1 /$. Carr. $4 / 6$.
15 v. 10 A. £2/15/-. Carr. 5/6.
TRANSISTOR POWER SUPPLY TRANSFORMER
0-2-4-6-8-10-20-30-40-50 v. 2 A. £4/10/-. Carr. 6/-.
*PRIMARIES 10-0-200-220-240 v.
CHASSIS, CABINETS \& PRECISION METALWORK
ELECTRONICS - DEVELOPMENT \& ASSEMBLY
CASH WITH ORDERS PLEASE
Carlton Street, Manchester 14, Lancashire
TEL. (STD 061) 226-3411

6 mm tubülar midget flange $56 / 8$ cap over-all length 14.5 mm .

It is one of the many Vitality Instrument and Indicator Lamps that are
made in an unusually large number of types, ratings and sizes. It may be just what you need for an existing or new project. If.not, another from the hundreds of types and ratings detailed in the Vitality Catalogue may well be.
*Many a product owes its success to the intelligent addition of an indicator light.

VITALITY BULBS

VITALITY BULBS LTD MINIATURE AND SUB-MINIATURE LAMP SPECIALISTS BEETONS WAY, BURY ST.EDMUNDS. SUFFOLK. TEL. BURY 2071. S.T.D. 02842071

VORTEXION

The CBL/7T solid state Tape Recorder uses 8 low noise Field Effects Transistors on its twin channel Mic., P.U. and Playback inputs to give low intermodulation distortion, and the 10 watts sine wave 15 watt speech and music amplifiers each have less than 0.05% harmonic distortion and less than 0.1% intermodulation distortion at 10 watts output. "Before and After" monitoring on phones and by internal or external speakers is catered for, and separate power amplifier volume controls allow the speakers to be independently controlled from the headphones. 30/50 ohms balanced line Microphone and P.U. inputs can be mixed with the other channel via crossmix and an echo control.

All the facilities of the valve model C.B.L. are provided plus a few extras . . . The series 7 deck has variable speed wind in either direction, solenoid operation, provision for an external switch for remote run or voice operated accessory, and still lower wow and flutter figures. Mono versions also available.

Speeds $1 \frac{7}{8} / 3 \frac{3}{4} / 7 \frac{1}{2}$ i.p.s. or $3 \frac{3}{4} / 7 \frac{1}{2} / 15$ i.p.s.
Weight 52 lb .
Dimensions $13 \frac{1_{2}^{\prime \prime}}{} \times 22^{\prime \prime} \times 9 \frac{3}{4}^{\prime \prime}$.

ELECTRONIC MIXERS. Various types of mixers available. 3-channel with accuracy within 1db Peak Programme Meter. $4-6-8-10$ and 12 way mixers. Twin 2-3-4 and 5 channel stereo. Tropicalised controls. Built-in screened supplies. Balanced line mic. input. Outputs: 0.5 v at 20 K or alternative 1 mW at 600 ohms, balanced, unbalanced or floating.

200 WATT AMPLIFIER. Can deliver its full audio power at any frequency in the range of $30 \mathrm{c} / \mathrm{s}-20 \mathrm{Kc} / \mathrm{s} \pm 1 \mathrm{db}$. Less than 0.2% distortion at $1 \mathrm{Kc} / \mathrm{s}$. Can be used to drive mechanical devices for which power is over 120 watt on continuous sine wave. Input 1 mW 600 ohms. Output $100-120 \mathrm{v}$ or $200-240 \mathrm{v}$. Additional matching transformers for other impedances are available.

30/50 WATT AMPLIFIER. With 4 mixed inputs, and bass and treble tone controls. Can deliver 50 watts of speech and music or over 30 watts on continuous sine wave. Main amplifier has a response of $30 \mathrm{c} / \mathrm{s}-20 \mathrm{Kc} / \mathrm{s} \pm 1 \mathrm{db} .0 .15 \%$ distortion. Outputs $4,7.5,15 \mathrm{ohms}$ and 100 volt line. Models are available with two, three or four mixed inputs for low impedance balanced line microphones, pick-up or guitar.

CP50 AMPLIFIER. An all silicon transistor 50 watt amplifier for mains and 12 volt battery operation, charging its own battery and automatically going to battery if mains fail. Protected inputs, and overload and short circuit protected outputs for 8 ohms- 15 ohms and 100 volt line. Bass and treble controls fitted.

Models available with 1 gram and 2 low mic. inputs. 1 gram and 3 low inputs or 4 low mic. inputs.

100 WATT ALL SILICON AMPLIFIER. A high quality amplifier with 8 ohms- 15 ohms and 100 volt line output for A.C. Mains. Protection is given for short and open circuit output over driving and over temperature. Input 0.4 v on 100 K ohms.

20/30 WATT MIXER AMPLIFIER. High fidelity all silicon model with F.E.T. input stages to reduce intermodulation distortion to a fraction of normal transistor input circuits, The response is level 20 to $20,000 \mathrm{cps}$ within 2 db and over 30 times damping factor. At 20 watts output there is less than 0.2% intermodulation even over the microphone stage at full gain with the treble and bass controls set level.
Standard model 1-low mic. balanced input and Hi Z gram.

Celestion

LOUDSPEAKERS -for all purposes

Celestion PA - for Public Address

for Guitars and Organs

Write for Catalogue No. RCS 162
Celestion ${ }_{\text {series }}^{\text {surio }}$ - for High Fidelity

Write for Catalogue No. RCS 163

Celestion

loudspeakers for the perfectionist

Rola Celestion Ltd.

Ferry Works, Thames Ditton, Surrey Telephone: 01-398-3402

SPECIFICATION TO OIN 45500. ANTI-SKATING. BIAS COMPENSATION. BUILT-IN CUEING OEVICE.
ELAC AUTOMATIC CHANGING MAGIC SPINOLE NO TORSIONAL RESONANCES. FOOL-PROOF PUSH BUTTON FEATHERWEIGHT. OPERATION. TRACKING FORCE 0-6 GRAMME VARIABLE.

BRITISH INDUSTRIAL AGENTS:
MITCHELL ENTERPRISES LTD
7 CUMBERLAND PLACE
SOUTHAMPTON - HANTS - Phone 21225

WW- 090 FOR FURTHER DETAM.S

METER PROBLEMS?

A very wide range of modern design instruments is available for $10 / 14$ days' delivery.

Full Information from:

HARRIS ELECTRONICS (London)

138 GRAYS INN ROAD, W.C. 1

We have developed a range of sound consoles to meet the increasingly sophisticated requirements for sound systems in the fields of industry, education and entertainment. Flexibility is ensured by the use of standard G.P.O. panels so that any desired combination of sound equipment can be incorporated. In addition to Audix high quality silicon transistorised integrated amplifiers and modular mixers, this may include gramophone turntables, tape decks, radio tuners, microphones, monitor speakers, metering and output controls as well as switching for the control of associated equipment. Constructed in afrormosia timber, the standard model illustrated can be supplied in various widths and is widely used in sound studios, lecture theatres and concert halls. Custom-built models can also be supplied where special configuration or design is required.

We shall be pleased to discuss your requirements with you and supply quotations for suitable equipment.

TECHNICAL TRAINING by ICS IN RADIO, TELEVISION AND ELECTRONIC ENGINEERING

First-class opportunities in Radio and Electronics await the I C S-trained man: Let IC 5 train YOU for a well-paid post in this expanding field.
IC S courses offer the keen, ambitious man the opportunity to acquire, quickly and easily, the specialized training so essential to success.
Diploma courses in Radio/TV Engineering and Servicing, Electronics, Computers, etc. Expert coaching for:

* C. \& G. TELECOMMUNICATION TECHNICIANS' CERTS.
* C. \& G. ELECTRONIC SERVICING.
* R.T.E.B. RADIO AND TV SERVICING CERTIFICATE.
* RADIO AMATEUR'S EXAMINATION.
* P.m.g. CERTIFICATES IN RADIOTELEGRAPHY.

Examination Students Coached until Successful.
NEW SELF-BUILD RADIO COURSES
Learn as you build. You can learn both the theory and practice of valve and transistor circuits, and servicing work while building your own 5 -valve receiver, transistor portable, signal generator, multi-test meter, and valve volt meterall under expert guidance. Transistor Portable available as separate course.
POST THIS COUPON TODAY and find out how IC S can help YOU in your career. Full details of ICS courses in Radio, Television and Electronics will be sent to you by return mail.
MEMBER OF THE ASSOCIATION
OF BRITISH CORRESPONDENCE COLLEGES.

든木分
 MODEL 2000
 PLINTH SYSTEM

Designed to house SME precision pick-up arms in combination with leading makes of turntable, the Model 2000 Plinth System combines high-quality workmanship with ease of assembly. The basic unit is finished in selected veneers of teak, straight grained walnut, or rosewood. A one-piece lid in heavy acrylic is reinforced with a polished stainless steel trim.

Motor boardu in matching veneers are ready cut and drilled for screw-driver assembly with the appropriate pick-up arm and turntable. The range, which will be added to from time to time, includes a blank board which can be cut to special order.

Four-point spring suspension adjustable for height and damping protects the motor board from acoustic feedback and.external vibration.

The Microphone with a Message

EV 635A

. . . a simple message. If you're looking for professional results, use a professional microphone.
Radio and TV media, film units and recording studios throughout the world demand the best and get it - in an EV 635A Omnidirectional dynamic microphone. It can be used on a stand, hand-held or as a lavalier and is practically indestructible under normal conditions of use. An internal shock absorber greatly reduces the pick-up of cable or other noises generated by external contact, and the steel casing provides excellent magnetic shielding. Used outdoors, the 635A withstands the effects of high humidity and temperature extremes, salt air and severe mechanical shocks. A four-stage pop and dust filter eliminates the need for an external windscreen.

Specifications

Element: Dynamic	Finish:
Frequency response: $80-13,000 \mathrm{~Hz}$	Non-reflecting matt satin nickel
Polar Pattern: Omnidirectional	Net weight: 6 ounces without cable
Impedance: Low (150 ohms)	Cable connector:
Output level:	Cannon XLR-3-12 complete
55 dB ($\mathrm{O} \mathrm{dB}=1 \mathrm{mw} / 10 \mathrm{dynes} / \mathrm{cm}^{2}$)	with 18' 2 -conductor shielded
El A sensitivity rating: 149 dB	broadcast type cable
Diaphram: EV Acoustalloy	Accessories:
Case material: Steel	Lavalier neck cord assembly
Dimensions: $\quad 6^{\prime \prime} \times 1 \frac{3^{\prime \prime}}{} \mathrm{dia}$.	and model 310 clamp

KEF
KEF Electronics Ltd.
Tovil - Maidstone • Kent
Telephone Maidstone 57258

In an article in the Journal of the Audio Engineering Society for July :967, Bart N. Locanthi, Vice-President, J. B. Lansing Sound Inc. describes the development of an ultra low distortion direct current audio amplifier. In it he says "...to get the highest accuracy possible, an English made RADFÖOD Low Distortion Oscillator was used which has less than 0.01% harmonic distortion at 20 kHz ."

LOW DISTORTION OSCILLATOR (Series 2)

An instrument of high, stability providing very pure sine waves, and square waves, in the range of 5 Hz to 500 kHz . Hybrid design using valves and semiconductors.

$5 \mathrm{~Hz}-500 \mathrm{kHz}$ (5 ranges). 600 Ohms. $0-110 \mathrm{~dB}$ continax.
0.005% continuously variable.
0.005% from 200 Hz to 20 kHz increasing to
0.015% at 10 Hz and 100 kHz .
Less than 0.1 microseconds.
Scaled $0-3,0-10$, and dBm .
Scaled $0-3,0-10$, and dBm
$100 \mathrm{~V} .-250 \mathrm{~V} .50 / 60 \mathrm{~Hz}$.
$17 \frac{1}{4} \times 11 \times 8 i n$.
25 lb . f150.

DISTORTION MEASURING SET (Series 2)
A sensitive instrument for the measurement of total harmonic distortion, designed for speedy and accurate use. Capable of measuring distortion products as low as 0.002%.
Direct reading from calibrated meter scale.

Specification

Frequency Range:
Frequency Range:
Distortion Range:
Sensitivity:
Meter:
nput Resistance?
High Pass Filter:
Frequency Response:
Power Requirements:
Size:
Weight:
Price:
$20 \mathrm{~Hz}-20 \mathrm{kHz}$ (6 ranges).
$0.01 \%-100 \%$ f.s.d. (9 ranges). $0.01 \%-100 \%$ f.s.d. (9 ranges)
$100 \mathrm{mV}-100 \mathrm{~V}$. (3 ranges). 100 mV .100 V . (3 ranges).
Square law r.m.s. reading. Square law r.
100 kOHms .
3 dB down at 350 Hz . 30 dB. down at 45 Hz . $\pm 1 \mathrm{~dB}$ from second harmonic of rejection frequency to 250 kHz . Included battery. 172×11
1516.
1516.
6120.

Descriptive technical leaflets are available on request.

> RADFORD LABORATORY INSTRUMENTS LTD.
> ASHTON VALE ROAD, BRISTOL 3
> Telephone: 662301/3

what sort of measuring instrument is THIS?

It's not. It's an h.f. receiver

Operating frequency is directly displayed, as you tune, on the electronic indicator of the RACAL RA. 1218 -first receiver of its type IN PRODUCTION in the world. Typical of RACAL leadership in H.F. Communications, the RA. 1218 represents a logical advance in H.F. Receiver technology which gives you ease of operation you could not have experienced before. Imagine bandsearching with constant tunedfrequency indication which is stable within 1 part in 10^{6} per month. Frequency indication $\pm 10 \mathrm{~Hz}$ - no need for calibrators.
Frequency range 1 to 30 MHz , extendable to 3 kHz , fully transistorised, with facilities for synthesizer or other external control; occupies only $5 \frac{1}{4}$ inches of standard 19 inch rack, full range of adaptors/ancillaries.
The RA. 1218 is one of the latest in the Racal range of transistorized receivers based on the RA. 217, which is now in use throughout the world. Send for full details of the complete range.

RACAL COMMUNICATIONS LTD BRACKNELL BERKSHIRE ENGLAND TEL BRACKNELL 3244. TELEX 84166

Linstead Instruments are designed for accurate yet continuous hard work. Here are shown just three in the range which are receiving such glowing comments as ". . . does everything that instruments costing several times its price can do" (letter available for inspection). These are products which can be relied upon time and time again. Below we give a brief specification of three.

S.I. Twin stabilised Power Supply

Controlled by silicon transistors. Two supplies each. 0 to $20 \mathrm{~V}, 0$ to 0.5 A . Fulf overload and short circuit protection. 445 nett U.K.
G.2. L.F. Signal Generator

10 Hz to $100 \mathrm{kHz} \pm 2 \% \pm 1 \mathrm{c} / \mathrm{s}$. Sine wave. $0-6 \mathrm{~V}$ low distortion. Square wave. $0-9 \mathrm{~V}$. No droop H.F. rise time I uS. I Watt into 3 ohms. $E 24$ nett U.K.

M.I. Electronic Voltmeter

15 A.C. ranges. 1 mV to 500 V . 10 Hz to 100 kHz . $3 \mathrm{D} . \mathrm{C}$, ranges. $0-400 \mathrm{~V}$. Input Impedance. 10 Mohms on A.C. and D.C. $£ 26$ nett U.K.

[^12]

The voice coil is the heart of a loudspeaker. This Peerless voice coil is wound around an aluminium former. It sounds so easy - but it is the result of years of experimenting and it represents a revolution within the field of tweeters.

The aluminium voice coil former enables the production of even more effective tweeters.

They can withstand 5 times greater input due to the Al-former conducting and giving off heat far better than the voice coil formers used until now.

They are far more reliable
due to the Al-voice coil former retaining its form far better than the voice coil formers used until now, and due to the good thermal conduetivity of aluminium which allows short great overloading without the coil annealing.

They are 3 times cheaper than other types of tweeters having the same load and sound characteristics because the Al-voice coil former enables the use of a lightweight and in every respect simple and thoroughly tested construction. It is emphazised that the new tweeters have an extraordinary flat frequency response, excellent spatial sound diffusion and low non-linear distortion. The new 5 watts tweeters fully comply with the intensified demands of modern times for modern advanced reproduction of sound,
both regarding quality and power capacity.
Peerless has more than 20 years experience in producing tweeters and our laboratories continue to place us in a leading position in their development.

[^13]THE TOA 'BLUE-LINE' RANGE
of solid state and valve amplifiers
SOLID STATE (AC/DC operation)
Model TA-266 (30 watts R.M.S.) £57.9.5 retail
Specification

THE PA-100
Background Music Machine incorporating a 15 watts R.M.S. amplifier and paging system.

Adaptability-Reliability

 -Design and QualityPush-in-and-out cartridge track selector.
4. 8, 160 hm plus 70 v and 100 v tappings. Microphone and phonograph input. £99.17.3 retail.

All in strong and attractive steel cases

Over 200 items in the range
including microphones, stands, megaphones
portable and rack-mounting equipment.

Sole importers and distributors:
AUDIO \& DESIGN (SALES) LTD., 40 QUEEN ST., MAIDENHEAD, BERKS. Telephone: Maidenhead 25204 Telegrams: AUDESIGN, Maidenhead.

WEYRAD

COILS AND I.F. TRANSFORMERS IN

LARGE-SCALE PRODUCTION for receiver manufacturers

P. 9 SERIES $10 \mathrm{~mm} . \times 10 \mathrm{~mm} . \times 14 \mathrm{~mm}$. Ferrite cores $6 \mathrm{~mm} .472 \mathrm{kc} / \mathrm{s}$ operation. Single-tuned I.F.s and Oscillator Coils.
P. 55 SERIES $12 \mathrm{~mm} . \times 12 \mathrm{~mm} . \times 20 \mathrm{~mm}$. Ferrite cores $4 \mathrm{~mm} .472 \mathrm{kc} / \mathrm{s}$ operation. Single-tuned I.F.s and Oscillator Coils.
T. 41 SERIES $25 \mathrm{~mm} . \times 12 \mathrm{~mm} . \times 20 \mathrm{~mm}$. Ferrite cores $4 \mathrm{~mm} .472 \mathrm{kc} / \mathrm{s}$ operation, Double-tuned 1st and 2nd I.F.s and Single-tuned 3rd I.F. complete with diode and by-pass capacitor.
These ranges are available to manufacturers in versions suitable for most of the popular types of Transistors. The Oscillator coils can be modified to enable specific tuning capacitors to be used provided that bulk quantities are required.

OUR WINDING CAPACITY NOW EXCEEDS 50,000 ITEMS PER WEEK

On the most up-to-date and efficient machines backed by a skilled assembly labour force for all types of coils and assemblies.

WEYRAD (ELECTRONICS) LIMITED, SCHOOL ST., WEYMOUTH, DORSET

This is an illustration of sixty-two difierent power units

Concealed behind this $4 \frac{3}{8}^{\prime \prime} \times 5 \frac{1^{\prime \prime}}{}$ front panel is a standard range of parts manufactured in large quantities, resulting in low production costs. The saving is passed on to you without affecting the superior performance and high reliability. For example, you can have a pre-set unit in the range 11 to 28 volts at 4 amps for as little as $£ 34$.

The 62 units in the new Series 30 range cover voltages from 0 to 500 with output currents up to 10 amps , depending on the voltage. A choice of protection circuits is available including 'crowbar' for your integrated circuits.

For complete details of this new approach to power supply design send for Series 30 full-colour folder and price list.

A.P.T Electronic Industries Ltd. Chertsey Rd., Byfleet, Surrey. Tel: Byfleet 41131.

The QUADRAC is an integrated a.c. semiconductor equivalent to two SCR's (thyristors) connected in inverse parallel plus, optionally, a built-in bidirectional triggering diode.
QUADRACS are available in a wider range of current and voltage ratings than other a.c. semiconductors - current ratings of 4,5,7,10, 15 and 25/40 A with Vbo ratings from 200 to 900 V .
Other important advantages of QUADRACS include protection against transients, high surge current capability, and electrically isolated construction, eliminating the need to isolate when mounting - in many cases the cabinet or other metalwork can be used directly as the heatsink.
Applications include voltage, lighting and motor speed control, static switching, temperature controls, household appliances and industrial control equipment. Wherever a.c. is being switched, modulated or controlled, QUADRACS can substantially reduce package size, lower component and assembly costs and increase circuit reliability.
Write for further information to Publicity Department, Hoddesdon,

NEFSWHETM Tentoritan STFANER SHATING

These superb new speaker systems make available even higher standards of performance in sound reproduction and uphold the high reputation gained by Whiteley Stentorian speakers throughout the world.
Attractively designed and soundly constructed, they are available in either Teak or Rosewood finish.

LC93

A $19^{\prime \prime} \times 12 \frac{1^{\prime \prime}}{} \times 8 \frac{1}{2}^{\prime \prime}$ completely enclosed acoustically loaded cabinet housing a $9^{\prime \prime}$ graded melamine paper cone with siliconized cambric suspension giving a frequency response of 60 Hz to 20 KHz .

LC94

A $29 \frac{1_{2}^{\prime \prime}}{}{ }^{\prime \prime} \times 23 \frac{3 \frac{3}{1 "}^{\prime \prime}}{} \times 6 \frac{1 \frac{1}{\prime \prime}^{\prime \prime}}{}$ acoustic Labyrinth enclosure fitted with acoustic resistance in the plipe, using the same highly efficient $9^{\prime \prime}$ speaker unit used in the LC93. Frequency response 45 Hz to 20 KHz .

LC95

The LC95 loudspeaker system is an acoustically loaded Bass Reflex cabinet, measuring $31 \frac{1}{2}^{\prime \prime} \times 20 \frac{3^{\prime \prime}}{} \times$ 132 $\frac{1}{2}^{\prime \prime}$ fitted with two loudspeakers and a crossover network. The bass loudspeaker being used is a newly developed $12^{\prime \prime}$ unit having a melamine treated paper cone with a cambric surround. The middle and high frequency unit is a new $8^{\prime \prime}$ loudspeaker having a melamine treated paper ribbed cone and surround.

Send for full Technical Specifications on these outstanding new additions to the fomous Stentorian Range.

Pinnacle the largest single valve independent

THIS IS WHAT

WE DO

Make available the widest range of valves for commercial and industrial use. Give a personalised service based on intelligence and speed.

Ensure that we only Supply valves made by the world's foremost manufacturers.

Provide valves selected for your special needs.
Help out rapidly with that "awkward" valve that nobody else seems to have heard of.

Specialise in European or American types which are not normally easily obtainable.
Rush you a small order, or quote for a bulk require-ment-1's or 1,000's are all the same to us.

IF I'D ONLY TRIED PINNACLE FIRST. . .

Every valve in either widespread or specialised use in the fields of Entertainment, Industry, Education and Research will be found in our catalogue, together with its main equivalents, classification, and the Pinnacle " P " number under which it may be ordered.

PINNACLE ELECTRONICS LIMITED ACHILLES STREET • NEW CROSS • LONDON S,E. 14
Telephone: All Departments-01-692 7285 Direct orders-01-692 7714

INSTRUMENTS LTD BURGESS HILL, SUSSEX, ENGLAND TELEPHONES: BURGESS HILL 2642-3 CABLES: RENDAR, BURGESS HILL

COLOUR TELEVISION

A BACKGROUND TO COLOUR ADJUSTMENTS FOR THE SERVICE ENGINEER

A Mullard Publlcation.
Price $17 / 6$
Postage I/
TELEX by R. W. Barton. 70/-
Postage $1 / 6$.
SOLUTION OF PROBLEMS IN ELECTRONICS \& TELECOM MUNICATIONS 38/-. Postage $1 / 6$.
TELEVISION TAPE FUNDA MENTALS by H. E. Ennes. 40/Postage $1 / 6$.
HI-FI IN THE HOME bý J. Crabbe 40/-. Postage $2 /$.
Inter. GEC TRANSISTOR MANUAL 7th edn. 21/-. Postage $2 /$ -LOW-NOISE MICROWAVE AMPLIFIERS by H. N. Daglish \& Others. $45 /-$. Postage $1 / 6$.
TRANSISTOR SUBSTITUTION HANDBOOK No. 8 Pub. F.; Sams. 16/-. Postage $1 /-$
AN INTRODUCTION TO MICROELECTRONIC SYSTEMS by Gosling 34/-. Postage $1 /$
COLOUR RECEIVER TECHNIQUES by T. D. Towers, 35/Postage 1/6.
THE DESIGNER'S GUIDE TO BRITISH TRANSISTORS by I. J. Kampel. 25/-. Postage 1/-.
NEW CATALOGUE 2/-.

THE MODERN BOOK CO.

BRITAIN'S LARGEST STOCXIST
of British and American Technical Books

19-21 PRAED STREET,

LONDON, W. 2
Phone PADdington 4185
Closed Sat. I p.m.
WW-156 FOR FURTHER DETALLS

OSMABET LTD.

WE MAKE TRANSFORMERS AMONGET OTEER TEINGB
AUTO TRAMSFORMERS, $0-110-200-220-240$ v. a.c, up or down, fully shrouded, fitted torminal blocks, $50 \mathrm{w} .25 / \mathrm{c} ; 75 \mathrm{w} .38 / 8 ;$
$100 \mathrm{w} .37 / 6 ; 180 \mathrm{w} .47 / 6 ; 200 \mathrm{w} .60 / \mathrm{F} ; 300 \mathrm{w} .80 / \mathrm{m} ; 400 \mathrm{w}$. $100 /-; 500 \mathrm{w} .115 /-; 600 \mathrm{w} .125 /-; 1,000 \mathrm{w} .180 / \mathrm{j}-1,500 \mathrm{w}$. $300 /-; 2,000$ w. $400 /-; 3,000$ w. $500 /-; 4,000 \mathrm{w} .600 /-$
MATNE ISOLATION TRAREFORMERS. Input $200-240$. $\mathbf{~ c}, \mathrm{c}$. $1: 1$ ratlo, $100 \mathrm{w} .80 /-: 200 \mathrm{w} .130 / \mathrm{F}$; $500 \mathrm{w} .290 / \mathrm{c}$.
MAINS TRANSFORMERS. Input 200-240 v.a.o. TX1, 425-0-425 7 .
 $250-0-250$ v. 100 Ma, 6.3 v. 2 a. ot, 6.3 v. 1 a., $47 / 6$; TX4, $300-0-$

 INSTRUMENT TRANSFORMER. Prim 200/250 v. a.c., OMT/4, tapped sec, $5-20-30-40-80$. giving 5 -10-15-20-25-30-35-10-55-60, $10-0-10,20-0-20,30-0-30$, 2 a.c., $\frac{1}{2} \mathrm{amp} 30 /-; 2 \mathrm{smp} 42 / 6$. OMT/5, Tapped sec., 40-50-60-80-90-100.110 v. giving, 10-20-30 $40-50 \cdot 60-70-80-90-100-110,10-0-10,20-0-20,30-0-30,40-0-40$
$50-0-50$ -,$~$反0-0-50 च. a.c. 1 amp 45/-.
HEATER TRANSFORMERS. Prlm 200/250 v. a.c. 6.3 v. 1.5 a

MIDGET MAINS TRANSFORMER. F.W. rectification, size
 12-0-12 v.
COLOUR TELEVISION WW: as specilied, choke L1, 60/-; transtormer T1, $57 / 6$. Field Output Transformer 80/-
OUTPUT TRANSFORMERS. Mullard $5 / 10$. UL. 60/-; 7 watt
stereo UL 50/ OP3ECL 86 stereo UL $50 /-1$ OP3ECL86, stereo tran, $21 /-;$ OP3, $30 /-$;
PR tran. $11 \mathrm{~K}, 21 /=30$ watt PP tran. (KT60 etc.), $3-15$ ohms, PP tran. $11 \mathrm{~K}, 21 /-: 30$ watt PP tran. (KT
$85 /-\mathrm{MRT} / 10,7 / 10$ watt multi ratio, $30 / \mathrm{F}$.
CHOKEs. Inductance $10 \mathrm{H}, 65 \mathrm{Ma}, 10 /-; 85 \mathrm{Ma}, 12 / 6 ; 150 \mathrm{Ma}$ 21/-; Aying leada, clamp construction.
Carriage extra all transformers trom $3 / 6 \mathrm{~d}$. each.
TRANSFORMERS WOUND TO YOUR SPECYYCATION.
BATTERYELIMINATORS. PP0, 200/250 v. a.c., 9 v. d.0. 150 Ma 45/-. PP3, ditto, 15 Ma, 17/6. p.\& D. $2 / 6 \mathrm{~d}$
FLUORESCENT LT LIGHTING. Input, 6, 12, 24 v. d.c., range fittings, inverters. B.A.E. liste.
BULK TAPE ERASER. $200 / 250 \mathrm{v}$. B.c., sultable any size apool 35/-. P. \& P. 3/-.
LOUDSPEAKERS. New stock, famous make, 3 or 15 ohms,
15 whtt, $£ 5 ; 25$ watt, $£ 5 ; 35$ watt, $£ 7$. P. \& P, $6 /$ each.
LOUDSPEAKERS. Ex equipment, perfect, Elac, Goodmann; Plessey, etc., 3 ohms, only, 5 in . $7 / 6 ; 6 \mathrm{ln}$. $10 /-; 7 \times 4 \mathrm{in}$., 7/6; 8 in ., 15/-; $8 \times 5 \mathrm{in} ., 15 /-$. F. \& P. $3 / 6$ each.
PRINTED CRRCUIT BOARD. Variety of sizes, trade enquirles only. B.A.E. all enquiries please. Mall Order only

46 KENILWORTH ROAD, EDGWARE, MIDDLESEX Tel:01-9589314

[^14]
TELFORD

MODULAR CONSTRUCTIONADD TO BASIC CAMERA AS REQUIREMENT ARISES

TYPE A OSCILLOSCOPE CAMERA

* VIEWING SYSTEMS INCLUDE PARALLAX-FREE VIEWING DURING EXPOSURE
* ADAPTORS FOR ALL POPULAR SCOPES
* LENSES $11.3, ~ f 1.5, ~ f 1.9, ~ f 2.8$, f3.5. CHOICE OF OBJECT/ IMAGE RATIOS
* ACCESSORIES INCLUDE SOLENOID OPERATION AND DATA RECORDING
- FILM BACKS

POLAROID © 10 SECOND
PRINTS: ROLL, PACK, OR CUT FILM ALL CONVENTIONAL PHOTO MATERIALS INCLUDING 35 mm .
© Registered trade mark of Polaroid Corp. U.S.A.

TYPE A. Illustrated; other types available
Full details gladly supplied on request

TELFORD PRODUCTS LTD. 4 WADSWORTH ROAD. GREENFORD, MIDDLESEX, ENGLAND. TEL 01-998 1011
THE bavale

PHOTO-OPTICAL COMPANY OF THE BENTIMA GROUP. WW- 158 FOR FURTHER DETAILS

RESLOSOUND microphones Precision engineered Give the finer acoustical performance required today

RBT

World famous Miniature Ribbon Type RBT For natural sound reinforcement and recording purposes where bi-directional pick-up is an advantage. Frequency response $40-16,000 \mathrm{c} / \mathrm{s}$ variable at will by fitting of acoustic corection pads.
Impedances and Prices
Low
$£ 13.2 .6$ $\begin{array}{ll}\text { Low } \\ \text { Medium and High } & £ 13.2 .6 \\ \text { Swithed }\end{array}$ Switched and E16.5.6

Broadcasting version type VRT also available with superiative reproduction over 30-16,000 c / s. As used by the BBC. Low and Medium impedances only.

CPD2

 Reslo CPD microphone. Most suitable for:High Quality Music Recording
General Sound Reinforcement.
Loud close singing or speaking if used easonable bass cul.
reque $70 \mathrm{c} / \mathrm{s}$ to $16 \mathrm{kc} / \mathrm{s}$. range. $70 \mathrm{c} / \mathrm{s}$ to $16 \mathrm{Kc} / \mathrm{s}$.
the front from $100 \mathrm{c} / \mathrm{s}$ to $1 \mathrm{Kc} / \mathrm{s}$ and over 14 dB from $1 \mathrm{Kc} / \mathrm{s}$ to $16 \mathrm{Kc} / \mathrm{s}$ dropping to 30 d 日 at upper presence frequencies or 600 ohms

CPD2/M-
Appropriate cable set to order,

VRT

 ع18.18.0.

$$
4 .
$$

UD1
An improved uni-directional (super cardloid) high output hand. or stand. microphone. incorporating an internal anti-pop filter. Supplied in a black presentation case with 18 ft . of directly connected screened cable. Available in low. medium and high impedances.
Recommended Retail Price:
UD1/L (50 or 600 ohms) UD1/M (200-300 ohms) UD1/H (High Impedance oniv)

NEW Matiouir STEREO AMPLIFIER

INTRODUCING A NEW ALL SILICON TRANSISTORISED HI-FI AMPLIFIER INCORPORATING TWO INDEPENDENT POWER SUPPLIES TO GIVE VERY LOW CROSSTALK AND A UNIQUE DESIGNED CIRCUIT WHICH ELIMINATES DISTORTION RISE AT LOW LEVELS. POWER-OUTPUT IS 15 WATTS R.M.S: INTO A 8Ω LOAD AND 10 WATTS R.M.S. INTO A 15Ω LOAD. INPUT FACILITIES TO COVER ALL TYPES OF PICK-UP, TUNER AND TAPE. SPECIFICATION AND PERFORMANCE FAR IN EXCESS OF PRICE RANGE.
detailed illustrated literature available ON REQUEST. TRADE ENQUIRIES INVITED.

EXTRACT FROM TYPICAL TEST CHART AT 1 KHz INTO A 8Ω LOAD.

OUT-PUT R.M.S.	TOTAL DISTORTION
15 W	0.1%
10 W	0.07%
5 W	0.06%
1 W	0.06%
0.5 W	0.05%
0.1 W	0.05%

PRICE 59 gns

COMPLETELY ENCLOSEDPANEL MOUNTING TEAK CABINET EXTRA.

OOK	FERRANTI designed hi-fi audio equip. MENT AVALLABLE IN KIT OR BUILT-UP
igher hillgate,	FORM. DETAILS AND PRICE-LIST
STOCKPORT, CHESHIRE 061-480 4	REQUEST.

FOR LOW COST RELIABLE ATTENUATION UP TO 100 MHz

NEW

HATFIELD
ROTARY
SWITCHED
ATTENUATOR
TYPE 708

Despite its low cost, this new Hatfield Attenuator will operate efficiently from DC to 100 MHz . The design features individual resistive sections, each selected in furn by a rotary switch mechanism. Careful attention to screening and the elimination of earth loops result in good accuracy being maintained throughout the frequency range.
Since individual π sections are used it follows that the attentuators in this range maintain a constant level of input and output impedance irrespective of setting. They may be used equally well, therefore, in equipment or inserted in lines without mis-match. Available Types: 708A (50 ohms) 708B (75 ohms) and 708C (600 ohms, under development).
Write now for fully detailed Data Sheet.

HATFIELD INSTRUMENTS LTD

Dept. WW, Burrington Way, Plymouth, Devon.
Telephone: Plymouth (0752) 72773/5 Cables: Sigjen Plymouth
MATFIELD BALUN

WW-113 FOR FURTHER DETAILS

LONDON microphones

Quality sound-at low cost
The London Microphone range offers you quality microphones, good characteristics-and good looks, too, at remarkably little cost. Made in Britain.

NEW to the range: LM300 dynamic cardioid microphone incorporating top-quality movingcoil capsule. Gives maximum front-to-back ratio over a frequency range of $50-15,000 \mathrm{~Hz}$. Elegant
styling, robust metal case, natural anodised finish.
Low imp. Dual imp.

LM 300 (Cardioid) £11 100 £12 100
LM 200S
LM 200 "

5519
6

£ 5196
£ 4196
£6 150

£6
$\subset 5$
5

$£ 5150$
$£ 3186$
Home or overseas trade enquiries welcome. Write or ring for details LONDON MICROPHONE CO. LTD.
182/4 Campden Hill Road, London, W.8.
Tel: 01-727 0711. 24 Hr. Answering Service. Telex 23894

Why buy
 a poor reproduction of this

> The original costs only $£ 85$!

When you can offer a completely portable universal bridge as versatile as the TF 2700 for only $£ 85$, you make a lot of friends. But, inevitably, some enemies. For every thousand satisfied users, there's the disgruntled competitor who has tried to follow our example. But there is still no other bridge at anything like its price offering anything like its specification in such a versatile, portable and easy-to-use package.

Versatile: A self-contained general purpose bridge with provision for using external special purpose auxiliaries.Bridge Drive Source: Internal} transistorised oscillator for L,C, and R (a.c.) at 1 kHz ; internal d.c. source for resistance measurement only: 20 Hz to 20 kHz using external a.c. source.
\square Transistorised Detector: For a.c. and d.c. measurements: may be used with internal or external bridge drive. An external detector can also be used.
\square Bias and Polarising: d.c. bias current or polarising voltage can be applied with a.c. measurements.
\square Portable: Powered from internal batteries; weighs only $8 \frac{1}{2} \mathrm{lb}$.

mi
An English Electric Company

The new automatic Deccalift brings you

armchair control for complete listening

Now - A completely automatic pick-up lifting device, operated by a hand held switch enables you to gently lower and raise the pick-up arm, at any time and at any. position on the record, from the listening comfort of your armchair. You, the listener now have, with the help of this unique device complete control of your recorded orchestra.
The Deccalift, easy to install and suitable only for transcription type decks, is supplied with 'remote' switch. If you would like further information on this unique aid to record preservation and listening
 enjoyment please complete the coupon and post it to

Si451 Millivoltmeter

* 20 ranges also with variable control permitting easy reading of relative frequency response

JES AUDIO INSTRUMENTATION

Illustrated the Si453 Audio Oscillator

 SPECIAL FEATURES:* very low distortion content-less than $.05 \%$ * an output conforming to RIAA reading characteristics * battery operation for no ripple or hum loop
* square wave output of fast rise time
-PRICE £35.0.0 ex works also available

Si452 Distortion Measuring Unit

* low cost distortion measurement down to . 01% with comprehensive facilities including L.F. cut switch, etc. -PRICE £25.0.0

Tel: Cleckheaton OWR62 2501
WW-118 FOR FURTHER DETALS

то: NOMBREX LTD Exmouth . Devon. England	NONABREX	brief Specification
Please forward leaflets of your full range to:- 5 pF to $100 \mathrm{\mu F}$		
NAME		- separate clear c \& r scales
		- POWER FACTOR MEASUREMENT 0-70\%
		- capacitor leakage indication
		- LUMINESCENT BALANCE INDICATOR
		- STANDARD BATTERY OPERATION
		- Robust and attractively styled
Please enclose 6d. stamps		- ALL-TRANSISTOR CIRCUITRY
Trade and Export enquiries please attach letterhead or Trade Card.	C. R. TEST BRIDGE 32 £10.10.0 TRANSISTORISED	Send coupon for full techrical leaflets of this and other
1268	Postage and packing-6s. 6d. extra	Nombrex transistorised instruments

From Claude Lyons-leaders in voltage control for over 30 years - an extensive new range of variable transformers employing the latest design techniques and providing unit ratings from 0.5 to 40 amperes.
The Regulac ${ }^{8}$ range of hundreds of models includes ganged assemblies for parallel and three-phase operation, dual-output, portable and oil-immersed models plus many high-frequency and special types, for manual operation or with motor drive.

Rapid delivery from Southern or Northern works. Send now for comprehensive new catalogue and rating guide to Publicity Department, Hoddesdon.

LINEAR MICROCIRCUITS

AVAILABLE FROM OUARNDON

					$\begin{aligned} & \text { Pria } \\ & 11- \end{aligned}$	
					s.	
$\mu \mathrm{A}$	702	C	WIDEBAND DC AMPLIFIER	2		3
$\mu \mathrm{A}$	703	C	RF-IF AMPLIFIER	2	1	3
$\mu \mathrm{A}$	709	C	OPERATIONAL AMPLIFIER	2	17	0
$\mu \mathrm{A}$	710	C	DIFFERENTIAL COMPARATOR	2	4	3
$\mu \mathrm{A}$	711	C	DUAL COMPARATOR	3	16	2
$\mu \mathrm{A}$	716	C	FIXED GAIN AMPLIFIER	4	2	6
$\mu \mathrm{A}$	719	C	RF AMPLIFIER-FM DETECTOR	1	19	0
$\mu \mathrm{A}$	726	C	TEMP. CONTROLLED DIFFERENTIAL PAIR	9	7	6
$\mu \mathrm{A}$	727	B	TEMP. CONTROLLED AMPLIFIER	12	7	6
$\mu \mathrm{A}$	730	C	DIFFERENTIAL AMPLIFIER	3	14	3
$\mu \mathrm{A}$	741	C	HIGH PERFORMANCE μ A 709 C	5	15	6

FOR IM.MEDIATE DELIVERY, TECHNICAL DATA, OR QUANTITY PRICES,

Contact:

QUARNDON ELECTRONICS

(SEMICONDUCTORS) LIMITED SLACK LANE, DERBY

ONE ${ }_{\text {.... }}$

. OR A THOUSAND

To your specification.... with quick delivery

AND femesidumer RELIABILITY

Whether your need is for a single instrument or a thousand (or even more) the Ernest Turner organisation is geared to give the same renowned service. From a very wide choice of movements and case styles we can provide precisely the instrument for your application, including the manufacture of special dials and provision of built-in or external units to permit indication of any electrical quantity.
We invite your specific enquiry for any number of instruments from one upward, and we should be pleased to send you a copy of our general catalogue $86 / 25$ on request.

required now for vital work in

Air Traffic Control

Join the National Air Traffic Control Service, a Department of the Board of Trade, and play a vital part in the safety of Civil Aviation. Work on the latest equipment in Computers, Radar and Data Extraction, Automatic Landing Systems and Closed-Circuit Television, at Civil Airports, Air Traffic Control Centres, Radar Stations and other engineering establishments in the South of England, including Heathrow, Gatwick and Stansted.

If you are 19 or over, with practical experience in at least one of the main branches of telecommunications, fill in the coupon now. Your starting salary would be $£ 828$ (at 19) to $£ 1,076$ (at 25 or over); scale maximum $£ 1,242$ (rates are higher at Heathrow). Non-contributory pensions for established staff.

Career Prospects. Your prospects are excellent, with opportunities to study for higher qualifications in this expanding field.

Apply today, for full details and application form.

National Air Traffic Control Service

B/A/G/A/L
Communications

Applications are invited for the following positions

TEST EQUIPMENT REPAIR \& CALIBRATION ENGINEERS

To carry out repair and calibration of high quality proprietary test equipment including spectrum analysers, oscilloscopes, signal generators, etc. Previous experience essential and it is expected that the successful applicants will be qualified to at least ONC level.

COMMUNICATION TEST PERSONNEL

Progressive position for electronic Test Engineers and Testers engaged on a wide range of communications equipment, including transmitters and receivers. Applicants should have technical knowledge equivalent to City \& Guilds with previous experience of testing commercial equipment.

Applications in writing, please, to:
Mr. P. Cousins, Group Personnel Manager, Racal Electronics Limited,
Western Road, Bracknell, Berkshire.

SIEMENS (UNITED KINGDOM) LTD

New Scientific Instruments Division

1. SALES ENGINEER-for Electron Microscopes, analytical X-ray equipment, Gas Chromatography and Process Control systems.
2. INTERNAL SALESMAN-for handling routine enquiries on above, correlating the work of area Engineers and progressing orders.
3. SERVICE ENGINEER-with electronic bias for servicing above equipment but specialising in Stabilisation, counting equipment and automatic control from computers.
Qualifications for position 1 and 3 normally HNC or equivalent and position 2 ONC but appropriate experience would be considered. Some knowledge of German would be an advantage but not essential. Good working conditions, generous car allowance scheme and other fringe benefits.

Apply giving brief details to:
Personnel Manager Siemens (UK) Ltd. Great West House, Great West Road, Brentford, Middlesex.

BEG Itv

YOUR HOBBY COULD BE YOUR PROFESSION

BBC Television employs many Film Recordists and Assistant Film Recordists in its Film Operations Department.
For young men between eighteen and twenty-eight, who are interested in imaginative, high-quality tape recording and are dedicated enthusiasts in the art of sound recording, there is a comprehensive training scheme which leads to a challenging and worthwhile career. Conditions of employment are generous and congenial and there are opportunities for travel at home and abroad.

For further details and application form, write to Head of Appointments Department, P.O. Box IAA, London, W.I. (quoting reference 68.G.960.W.W.).

Vacancies exist in the Royal Australian Air Force for men who are interested in being trained in the Technical Radio fields. Applicants should be United Kingdom citizens resident in the U.K. aged between 18 and 33 years. Qualified personnel up to the age of 43 years are also invited to apply.

Free passage to Australia is provided for families and pay commences from date of enlistment in London.

Further information can be provided by writing or phoning: RAAF CAREERS OFFIGER (Dept. WW) AUSTRALIA HOUSE STRAND, LONDON W.C. 2 Telephone No: 01-836 2435

IINUSTRILI COMPUTERS

A number of positions are available at all levels within the

TEST AND QUALITY DEPARTMENT

of our INDUSTRIAL COMPUTER DIVISION at KIDSGROVE.

Applicants should preferably have a sound academic background, with a minimum of O.N.C. (Electrical) or equivalent and experience in at least one of the following fields

Computer or Electronics Industry
Radio and Television or associated industry
Radar equipment installation, maintenance or servicing.
These are excellent opportunities offering good scope and prospects, an attractive salary commensurate with past experience and academic achievement, and a contributory pension and life assurance scheme.

Please write giving brief career details and quoting reference $W \mathbf{W} 0320 \mathrm{H}$ to the Personnel Officer, I.C. \& A., The English Electric Company Limited, Kidsgrove, near Stoke-on-Trent, Staffs.

INDUSTRIAL CONTROL AND AUTOMATION

UNIVERSITY OF BELFAST CHIEF TECHNICIAN (ELECTRONICS)

Department of Pure and Applied Physics
The successful applicant will be responsible for the design, construction and maintenance of special electronic equipment used in a large research group concerned with the study of atomic collision phenomena.

Possession of a Higher National Certificate or equivalent qualification together with considerable practical experience is essential for appointment to this post.

Salary range: $£ 1,294-£ 1,475$ and in special cases up to $£ 1,708$ p.a. Initial placing will be dependent upon experience.

Applications detailing age, qualifications and experience together with the names of two referees who have supervised previous work should be sent to The Secretary (T), Department of Pure and Applied Physics, The Queen's University, Belfast BT7 INN, as soon as possible.

MOOPTIEIECTRONICS Fram PROOPS

nnon

New Science Projects combine fascination of Optics with Electronics. INFRA-RED TRANSMITTERS \& RECEIVERS

Unique devices in a brand new electronic field that can be exploited in a wide range of applications. Miniaturized construction and solld state circuit design is combined with outstanding modulation and switching capabilities to provide infinite possibilities as short distance speech and data links, remote relay controls, safety devices, burglar alarms, batch counters, level detectors, etc., etc.

INFRA-RED PHOTO RECEIVER - MSP3

Ulira sensitive detector/amplifier for infra-red (Gallium Arsenide) or visible light optical links reception. Spectral response 9500 A . Robust, cylindrical package is coaxial with incident light to facilitate optical alignment and heat sinking.

85/post fee

MAX RATINGS
 Output Current intensity........100mA. Voltage........25V. Operating Temperature..........from Supplied complete

GALLIUM ARSENIDE LIGHT SOURCE-MGA 100 Filamenliess, infra-red emitrer in a robust, sealed cylinder coaxial with beam to facilitate optical alignment and heat sinking.

35/- positree
MAX RATINGS
Forward current If max. ${ }^{\circ}$ D.C....... 400 mA . Forward peak current If max. (pk)........ 6 A Power dissipation ${ }^{\circ}600 \mathrm{~mW}$. Derating factor for Tamb greater than $25^{\circ} \mathrm{C} \ldots \ldots . .7 .5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. Reverse voltage VA max 1 -OV.
When mounted on an aluminium heat sink, 1 in. $\times \frac{1}{4}$ in. $x \frac{1}{4} \frac{1}{2}$. Supplied complete with suitable len

MICRO-MINIATURE INFRA-RED DETECTOR - 31F2 silicon NPN photo-diode of passivated planar construction, suitable for punched card readers,
counters, film sound track, etc.

Infra-red devices (except 31F2) are supplied complete with suitable lenses, technical data and typical application information.

PHOTOCONDUCTIVE CELLS

CADMIUM SULPHIDE CELLS (Cds)
tnexpensive light sensitive resistors which require only simple circuitry to work as light triggering units in a wide range of devices, such as: flashing or breakdown lights, exposure meters, brightness controls, automatic porch lights, etc. Not polarity
conscious - use with A.C. or D.C. Spectral response covers whole visible light range,

MKY251

Epoxy sealed $1 \frac{1}{\frac{1}{8}}$ in. diam. $\times \frac{1}{\frac{1}{4}}$ in. thick. Resistance at 100 Lux -700 to 3.000 ohms. Maximum voltage 200 A.C. or D.C. Maximum current 500 mw .

12/6 post free
 MKY101-C
Epoxy sealed. $\frac{8}{8}$ in. diam. $x \frac{1}{6}$ in. thick. Resistance at 100 Lux -500 to 2.000 ohms. Maximum voliage 150 A.C. or D.C. Maximum current 10/6 post free

MKY71

Glass sealed with M.E.S. base. Glass envelope $\frac{s}{\text { s. in. diam., overal }}$ voltage 150 A.C. or D.C. Maximum current 75 mW . $8 / 6$. Post fre

CADMIUM SELENIDE CELLS (Cdse)
These have a higher dark resistance in a glven period than Cadmium Sulphide Cells, indicating much faster response. Suitable for all Cds applications plus applications in chopper, electronic musical instruments, computer and other sophisticated circuitry. Time response shown in megohms is derk resistance measured 10 secs. after 400 Lux
light intensity is intercepted. light intensity is intercepted.

MKB5H

Hermetically metal sealed. $\frac{1}{4} \mathrm{in}$. diam. $\times \frac{1}{3}$ in. thick. Time response 100 megohms. Resistance al $1,000 \mathrm{Lux}-1 \mathrm{Kohm}$ to 10 Kohms . 50 A.C. or D.C. Maximum current 10 mW : Continuous current 5 mW .

16/6 post free
MKB12H
Hermetically metal sealed in. diam. $x \frac{3}{1}$ in. thick. Time response 100 megohms. Resistance at 1,000 Lux - 100 ohms to 1,000 ohms. Resistance at 10 Lux - 1 Kohm to 10 Kohms. Maximum voltag
50 AC . or D.C. Maximum current 80 mW . Continuous 30 mW .

16/6 post free

PHOTOGENERATIVE CELLS

Selenium cells in which light energy is converted into electricity directly measurable on microammeter or used with amplifier as light trigger for alarm and counting devices, luminous fluxmeters, exposure meters, colorimeters, etc., Spectral response covers visible light range.

Type 1 - $1 \frac{1}{2} \times 1 \frac{3}{16}$ in. Output 1 mA at 0.6 volts at 1,000 Type 2 - $28 \times 18 \mathrm{~mm}$. Output 500 mA at 0.6 volts at 1.000 Lux

3/6 post free
Type $3-100 \times 50 \mathrm{~mm}$. Output 4 mA at 0.6 volt at 1.000 22/6 post free

FIBRE OPTICS

Highly flexible light guides that transmit light to inaccessible places as easily as lectricity is corducted by copper wires. Fibre optics make it possible to control, miniaturize, split, reflect or transfer light from one source to many places at once nd to operate photo devices, logic circuits. or inuminata in ways never before pos. sible. Proops offer both glass fibre optics or inexpensive Crofon plastic fibres for hundreds of experiments or serious applications in a fascinating new science.

RANK TAYLOR-HOBSON ENGINEERS KITS

All the basic components needed to demonstrate new ways to use light in serious applications with glass fibre optics consisting of thousands of
 erruled, optically polished ends. Kit includes 12 and 6 mm widths, 24 inch twin exit guide with $2 \times 1 \mathrm{~mm}$. outputs. Non-random ' Y ' guide with $2 \times 3 \mathrm{~mm}$. outputs, adaptors and battery operated light source. Supplied complete with card wallets containing technical data and Illustrated applications.
£16
LOW-COST CROFON FLEXIBLE LIGHT GUIDE
Newly developed plastic light transmitting media made by Du Pont and consisting of 64 special plastic fibres, each 010 in . diam. and bundled together in a tough, flexible sheath. Can be used for many serious projects and inexpensive prototype work. Ends can be ground flat, dyed or capped with Epoxy resin. Temp. range - 40° to $176^{\circ} \mathrm{F}$. No loss of light through bending. 12-page data and applications booklet supplied

$$
\text { Minimum order-2 } \mathrm{ft} \text {. }
$$

8/6 peet ooc posit toe

Other advanced Solid-State devices

RCA INTEGRATED CIRCUIT - CA3020
Complete Audio or Servo Amplifier in one tiny package
 Preamp, phase invertor, driver and power output function in a single package only 音 in, diam. and $\frac{3}{16} \mathrm{in}$. high. Operates from single D.C. supply of 3 to 9 volts; gives maximum output of more than $\frac{3}{2}$ watl for 22 mA consumption. Low distortion, high gain is coupled with built-in temperature compensation (-55 ${ }^{\circ}$ to $123^{\circ} \mathrm{C}$) and wideband operation. Complete with data and circuit applications.

42/-post free
RCA TRIAC - CA40432
uitable for light dimming and motor control circuits
Gate-controlled, full-wave, A.C. silicon switch with integral trigger that blocks or conducts instantly by applying reverse polarity voltage. Suitable for A.C. operation up to 250 volts: controls currems up to 1440 watts. Size only ${ }^{3}$ in. diam. $x^{\frac{3}{3}} \mathrm{in}$. high. Complete with heat sink, data and applications
45)-post free
 information.

52 Tottenham. Court Road, London WIP OBA Telephone: 01-580 0141

R.M.S QUEEN ELIZABETH 2 HAS 'TANNOY' SOUND EQUIPMENT INSTALLED THROUGHOUT

The Communications Complex for the R.M.S. Queen Elizabeth 2 represents the most advanced equipment of this type, incorporating all of the experience gained by the Tannoy Group during the 35 years it has been providing sound equipment for Ocean going Liners. This fully transistorised, fully comprehensive intercommunication and Ship's Sound Reproducing Equipment provides 11 basic facilities, with no fewer than 27 programme channels, including a multilanguage, pre-recorded hourly news service as well as an electronic 'at anchor' fog warning.
The Complex incorporates a general emergency passenger communications system - the first time that a ship's broadcasting system has been used to the exclusion of all other forms of alarm.

and the same quality is reflected in the

Change should be made for improvement - not just for the sake of change. This is why the TANNOY 'Monitor' Dual Concentric loudspeaker - accepted as the 'quality standard' most specified for professional use - has remained unchanged in basic conception for the past 21 years and in detail design for the past seven years. NOW, the gradual evolution of a perfected technical specification has resulted in the refinement of this supreme 'quality' speaker into a new design 'The Monitor GOLD' - a design which again will remain intact until a change can be proved worthwhile. Send now for leaflet giving complete details and full technical specification.
The new Monitor Gold now incorporates a Treble Roll Off Control and Treble Energy Contro enabling precise adjustments to be made for room acoustics and programme material.
Frequency Response 30-20,000 cps
Power Handling Capacity $15^{\prime \prime} 50$ watts, 12" 30 watts, III LZ 15 watts
Impedance 8Ω Nominal, 5Ω Minimum

TANNOY PRODUCTS LIMITED
Norwood Road, West Norwood, London, S.E. 27. Tel: $01-6701131$

TELEQUIPMENT LTD. 313 CHASE RD, SOUTHGATE, LONDON N14 TEL: 01-882 1166

The best reception for the new Queen

clearly comes from GEC

Cunard choose GEC High Frequency synthesised communications receivers for their stability of frequency - for their accurate frequency indication for their ease of operation... .These regal qualities - and many more - are available to all who need high quality H.F. reception. Please write or phone for full information.

SEC

Information Centre. GEC-AEI (Electronics) Limited Communications Division Spon Street Coventry CV. 3BR Telephone : Coventry 24155 A management company of The General Electric Company Limited of England

STAR UHF Ultra High Frequency mobile radiotelephone, by STC, signals a new era of product leadership in the expanding world of mobile radiotelephones.

STAR has been designed by a brilliant team of engineers and styled by one of Britain's leading industrial designers.

STAR is backed by world-wide planning, instaIlation and servicing resources.

For further details: Standard Telephones and Cables Limited, Mobile Radiotelephone Division. New Southgate, London N. 11.
Telephone: 01-368 1200 Telex: 261912

The trouble with radio telephony
 is...

Q. What gives a greater improvement in signal-to-noise ratio?
A. GEC Lincompex
Q. What offers the best method of continuous full transmitter loading at syllabic rate?
A. GEC Lincompex
Q. What eliminates intersyllabic noise interference?
A. GEC Lincompex
Q. What considerably extends the revenue earning time of international R.T. circuits?
A. GEC Lincompex

Your first step to solving your R.T. troubles should be to write or phone for full information.

SEC

plug in the smallest soldering iron available

Complete precision

 soldering kit

This kit-in a rigid plastic "tool-box" - contains everything you need for precision soldering.

- Model CN 15 watts miniature iron, fitted $\frac{3}{16}$ " bit.
- Interchangeable spare bit, $\frac{5}{32}$ ".
- Interchangeable spare bit, $\frac{3}{32}$ ".
- Reel of resin-cored solder
- Felt cleaning pad
- Stand for soldering iron
- Space for stowage of lead and plug
PLUS 36 -page booklet on "How-to-Solder"-a mine of information for a mateur and professional.
From Electrical and Radio Shops or direct from
Antex Antex.

CN 15 watts. Ideal for miniature and micro miniature soldering. 18 interchangeable spare bits available from $.040^{\prime \prime}$ (1 mm) up to $\frac{3^{\prime \prime}}{16^{\circ}}$. For 240 . 220, 110, 50 or 24 volts.
From Electrical and Radio Shops or direct from Antex.

G 18 watts. Ideal for miniature work on production lines. Interchangeable spare bits, $3 / 32^{\prime \prime}, 1 / 8^{\prime \prime}, 3 / 16^{\prime \prime}$, and $1 / 4^{\prime \prime}$. For 240 , 220 or 110 volts. $32 / 6$.

E 20 watts. Fitted with $1 / 4^{\prime \prime}$ bit.
Interchangeable spare bits $3 / 32^{\prime \prime}, 1 / 8^{\prime \prime}$. $3 / 16^{\prime \prime}$. For $240,220,110$ or 24 volts. $35 /=$

ES 25 watts. Fitted with $1 / 8^{\prime \prime}$ bit. Interchangeable bits $3 / 32^{\prime \prime}, 3 / 16^{\prime \prime}$ and $1 / 4^{\prime \prime}$. Ideal for high speed production lines. For $240,220,110,24$ or 12 volts. $35 /$.

F 40 watts. Fitted $5 / 16^{\prime \prime}$ bir.
Interchangeable bits $1 / 4^{\prime \prime}, 3 / 16^{\prime \prime}, 1 / 8^{\prime \prime}, 3 / 32^{\prime \prime}$ Very high temperature iron. Available for $240,220,110,24$ or 20 volts. $42 / 6$. Spare bits and elements for all models and voltages immediately available from stock.
31^{1-}
Model CN 240/2 15 watts- 240 volts
Fitted with nickel plated bit ($\frac{3}{32}^{\prime \prime}$) and in handy transparent pack. From Electrical and Radio Shops, or send cash to Antex.

PRECISION MINIATURE SOLDERING IRONS
Made in England

Antex, Mayflower House, Plymouth, Devon
Telephone Plymouth 67377/8. TELEX 45296
(Giso No. 258 1000)

a differential d.c.voltmeter with adifference

a built-in standard reference cell

Unlike other differential d.c. voltmeters, Marconi Instruments' new TF 2606 has a built-in standard reference cell, avoiding the need to rely on the stability of zener diodes for long-term accuracy. Simply by switching to the standard cell, calibration can be checked at any time.
Accuracy $\pm 0.02 \%$ between 1 V and 1100 V .
Three voltage ranges (0 to 11,0 to 110 and 0 to 1100 V) and five decade dials ensure high discrimination whilst reducing the need for frequent range changing. Temperature range $10^{\circ} \mathrm{C}$ and $35^{\circ} \mathrm{C}$.

Discrimination. Digital measurement discrimination is 0.0005% full scale. Overall discrimination on the $11 V$ range is better than $100 \mu \mathrm{~V}$.
High Input Resistance. Input resistance below 11 V is almost infinite; on other ranges $1 \mathrm{M} \Omega$
Overload Protection. TF 2606 will withstand considerable overranging
Analogue Output. An analogue output of 75 mV full scale is provided for a chart recorder-a separate digital to analogue converter is unnecessary Price 2252.

At half the cost of a 5-digit d.v.m. of similar performance TF 2606 allows even higher accuracy by reading to 6 significant figures.

So doesn't it make sense to go a bundle on them?

Wrap up all electronic assembly problems in one swlft operation.

We've done our best to make it easy for you by devising some 5,000 connecting devices of one sort or another. And backing them with an endless amount of ingenuity.

So whether you're connecting a printed circuit, fastening a chassis, or simply linking a plug and socket we'll show you the quickest and simplest way of doing it

And that goes for all your connecting problems - not just electronic, but mechänical and electrical as well. Our sort of ingenuity knows no bounds and accordingly, our range stops at nothing!

Go a bundle on it and you'll be helping yourself to the best connections in the business.

You can't do better than that now, can you?
the firm with the best connections

Complete system service Modular construction Exceptional reliability

- Integration and over-all station design meet full INTELSAT standard.
- Figure of merit G/T: Better than 40.7 dB at 5° elevation.
- Cassegrain type feeds - monopulse or conical scan available.
- Unique quasi-paraboloid reflector for high efficiency-aluminium or stainless steel surfaces
- Mounts: Fully steerable-elevation over azimuth. Hour angle declination - covers equatarial satellites.
- Transmitters: Either T.W.T or Klystron type - wide and narrow instantaneous bandwidth.
- Receivers: Helium-cooled parametric amplifier. Threshold demodulators.

The new EM1TAPE H Hfonic range of low noise tape

No other electronic voltmeter packs this much performance

Excellent zero stability: less than 4 mV deflection at full scale on all ranges for changes in mains supply voltage of as much as 10%Seven a.c. ranges: 300 mV to 300 V f.s. 20 Hz to 1.5 GHz Eight d.c. ranges: 300 mV to 1000 V f.s.Seven resistance ranges: 500Ω to $500 \mathrm{M} \Omega$ Input resistance: $100 \mathrm{M} \Omega$
Input capacitance: 1.5 pF
Multipliers available: extend range to 2 kV a.c. and 30 kV d.c.
£90-U.K. f.o.b. Price. Full technical details on request.

An English Electric Company.

$8+24=33$
 Sum edge connector

VERSATILE McMurdo edge connector cuts your printed circuit board terminal problems down to size. Any size! Just slice through any of seven special cutting positions and suddenly the 33-way edge connector becomes two connectors. An 8-way and a 24 -way. Or a 12-way and a 20-way. Or two 16 -ways! In fact there are sixteen ways you can cut it (losing a terminal with each cut) to give you almost any number of terminals.

McMurdo edge connector versatility doesn't end there, either! The terminal strip which you mount on the circuit board can be connected to terminals four ways - solderless tag connection, wire-wrap connection, soldering . . . or McMurdo's complete mating socket with polarising keys! This socket can also be cut to all the variations of the terminal strip from 4-ways upwards! That's the sum of our versatility. That's some versatility!

THE MCMURDO INSTRUMENT COMPANY LIMITED, RODNEY ROAD, PORTSMOUTH
TEL: 35361.
TELEX: 86112

[^15]

ACCESSORIES
A full range of accessories are available for PIDAM. Shown are the meter, scaled $0-9$, at
$35 / 6$. Test prods insulated and flexible with fine steel clips at the tip, red or black at $13 /$-. High speed resetting counter including bezel and socker, with speed of over 40 opera-
tions per sec . $165 /$. Plug-in tions per sec. $165 /-$. Plug-in changeover at i7/6. Not shown, 15 range test meter, 45/-.

PIDAM (Plug-in Digital and Analogue Modules) perform all the usuallogic functions, but, unlike other units, can be plugged in, using their B9A bases and can be quickly connected to the required configuration. To help learning, the module covers are easily removable for circuit examination and sets of components are available. single MONO for a tachometer, to over 300 units in a computer interiace; nevertheless, their greatest asset is breadboards superseded and any reader of "Wireless World "could with PIDAM, build up a low cost system for his own needs. 6 NEW modules-send for free information.

PIDAM
BROCHURE
Send for this complete explanatory
booklet showing de-
tailed tole booklet showing de-
tailed examplos of
use and oircuit dia. use sud circuit dia.
grame of all modgrami of all mad-
ulea. Examples and ules. Examples and
circuits given inclircuits given in
switch
soice-operated switch alarms,
fashers fashers, tacho-
meter.
timers meter. counters, te. $3 / 6$ post Iree.

NEW

PIDAM PLUG-IN MODULES,
PRICES
per module range from 8/- to 28/- and all necessary accessories are supplied. A com plete starting kit is only £20/19/6 (normally E23/12/6).

PIDEC
(Plug-in Digital Educational Circuit). This Pidec unit allows seven mor demonstration or mock-up without soldering Including internal power supplies, 370/-
BI (Bistable) module shows B9A base for ease of connection. Pins 7, 8, 9 are always power connections.

PRINTED
 CIRCUIT CHASSIS

 Printed circuit chasfist into 1277 or 16127 case, or type"Q" which can be mounted on an aluminium chassis. Both types take up to 20 boards and connectors on $\frac{1}{2}$ in. centres.
Prices from $42 / 6$ down to 37/- for down to

CONTIL CASES

Contil cases are mass-produced to give the lowest prices yet. In 21-gauge steel. Finished hammer blue, with 18 gauge front panel supplied with easy-to-strip protective covering for easy marking ous. For ease of ordering Concil cases are described by their dimensions, i.e. 755 is $7 \times 5 \times 5 \mathrm{in}$. Individually packed, inc, feet and screws. R a nge of chromium-
plated and Delplated and Delable with matching chassis, spar Panels, etc.

	ONE	FIVE
755	45/6	44
867 or 975	47/6	461
1277	53/-	51/-
16127	98/6	96/6
191010	133/-	130/-
Kit $\mathbf{¢ 1 1 / 1 9 / - ~}$	(14/12/	

now available with aluminium and NEW

NEW
BRIGHTLIFE NEONS
now available with alphanumeric caps.
$\mathbf{2 5 , 0 0 0} \mathrm{hr}$. average quantity down to life with high in- $1 / 8$ each. Neon tensity and resistor only, down to $5 \frac{1}{2} d$. in housing: either tin. or $\frac{1}{2}$ in. dia. Standard units 160 250 y , with 6 in. lead variants. 10 at $2 / 6$ each with 10
different caps
each.

We now supply ou standard neons in 110 volt nominal a the same prices.

We now supply Brightlife Fluorescent Starter Switches direct n minimum quantities of 50 off for $50 /$ - W.W. only Quantity prices down to 7 d . As supplied to leading manufacturers in large quantities.

SUB-MINIATURE NEON

(WH) WVET HYOE

WEST HYDE DEVELOPMENTS LTD.
30 HIGH STREET, NORTHWOOD, MIDDLESEX
Tel: Northwood 24941

SINCLAIR Z.12 12 WATT INTEGRATED HI-FI AMPLIFIER \& PRE AMP

12 watts R.M.S. continuous sine wave output

This is the recommended amplifier for those requiring greater power and a high degree of versatility. This eight special-transistor amplifier is the most successful of its kind ever designed. It has an excellent power to size ratio and is easily adapted to a wide variety of applications. The $Z .12$ performs satisfactorily from a wide range of voltages and it can readily be run from car batteries. This true 12 watt amplifier comes to you ready built, tested and guaranteed together with useful manual of circuits and instructions for matching the $Z .12$ to your precise requirements. Two may be used for stereo, when the Sinclair Stereo 25 will be found the ideal control unit for use with it.

Size $3^{\prime \prime} \times 1 \frac{33^{\prime \prime}}{} \times 1 \frac{11^{\prime \prime}}{}$. Class B Ultralinear Output: Frequency response from 15 to $15,000 \mathrm{~Hz} \pm 1 \mathrm{~dB}$: Output suitable for loudspeakers from 3 to 15 ohms impedance. Two 3 ohms speakers may used in parallel: Input 2 mV into 2 Kohms: Output 12 watts R.M.S. continuous sine wave (24 watts peak); 15 watts music power (30 watts peak) : Power require-

89/6 ments 6-20V.d.c. from battery or PZ. 4 Mains Supply Unit. Ready built, tested and guaranteed.

SINCLAIR STEREO 25

De Luxe Pre-amplifier and Control Unit for Z. 12 or any other good stereo assemblies. Switched inputs for P.U. (equalised to R.I.A.A. curve from 50 to 20.000 Hz within $\pm 1 \mathrm{~dB}$), radio, and auxilliary. Supplied ready built with very attractive solid brushed and polished aluminium front panel. Control knobs for Bass/Treble/Volume/Balance/Input are solid aluminium. Size- $6 \frac{1}{2}$ " $\times 2 \frac{1}{2}{ }^{\prime \prime} \times 2 \frac{1}{2}$ " plus knobs. Built, tested and guaranteed.
£9.19.6

SINCLAIR PZ. 4
 STABILISED MAINS POWER SUPPLY UNIT

Heavy duty transistorised power supply unit to deliver 18V.d.c. at 1.5 A . Designed specially for use with two 2.12 Amplifiers, etc., together with Stereo 25. Built. tested and guaranteed.

£4.19.6

SINCLAIR MICROMATIC

tunes over medium waves

- good quality magnetic power
- remarkable range and power

the world's smallest radio

This fantastic little British pocket receiver is available in kit form to build for yourself or ready built, tested and guaranteed. Its range, power and selectivity must be experienced to be believed; its quality everything you could wish for. The Micromatic tunes over the medium waveband and has A.G.C. to counteract fading from distant stations. Bandpass tuning makes reception of Radio 1 easier. The neat black case with aluminium front panel and tuning control give the Micromatic elegantly modern appearance. Makes a wonderful Christmas gift.
Kit in fitted pack with earpiece. solder \& instructions
49/6
Built, tested \& guaranteed
59/6
Mallro Mercury Cells RM. 675 (2 reqrd)
each. $2 / 9$

10.14

- ACOUSTICALLY CONTOURED SOUND CHAMBER
- FREQUENCY RESPONSE 60-15,000 Hz
- LOAD HANDLING CAPACITY UP TO 14 WATTS
- BRILLIANT TRANSIENT RESPONSE
- 8 OHMS IMPEDANCE
- of compáct and ORIGINAL DESIGN
- an all-british product
-

IDEAL IN CONJUNCTION WITH THE SINCLAIR IC. 10

the most challenging loudspeaker development in years

Price is no longer an obstacle to the enjoyment of high-fidelity loudspeaker reproduction; nor is size a problem either. In the Sinclair $\mathbf{Q} .14$ you will find a loudspeaker of such remarkable quality and so compactly and attractively styled that you will want to change to Sinclair as soon as you hear it. At Trade Exhibitions and both the 1968 Audio Fairs, experts have been greatly impressed on hearing the 0.14 against speakers costing many times more, proving beyond question that good reproduction does not have to be expensive. Tests by an independent laboratory with a Q. 14 drawn from stock show exceptionally smooth response between 60 and $15,000 \mathrm{~Hz}$ and well sustained output beyond both these figures. Its remarkable
transient response ensures beautifully defined separation of voices, instruments, etc. Much of the success of this Sinclair design comes from the use of materials quite different from those to be found in conventional speaker manufacture, and the unusual contours of the seamless, sealed pressure chamber allow the $\mathbf{Q} .14$ to be conveniently positioned on shelves, the floor, in wall corners or flush mounted. The Sinclair 0.14 is finished in matt black with solid aluminium bar trim on the front. Size: $9 \frac{3}{4}$ in. square $\times 4 \frac{3}{4}$ in. deep. Try it in your own home by sending off the order form today. If you are not satisfied your money plus the cost of posting the 0.14 back to us will be returned in full.

post free anywhere in the u.k. £7 , 19, 6

SINCLAIR GUARANTEE

Should you not be completely satisfled with your purchase when you receive it from us, your money will be refunded in full at once and without question. Full service lacillities avallable po all purchasers.
 SINCLAIR RADIONICS LIMITED Telephone: OCA3-52731

ORDER FORM BRINGS PROMPT DELIVERY SENT TO YOU POST PAID

[^16]REGORD MAINTENANGE TAKES ANOTHER BIG STEP FORWARD! With these latest advanced products

NEW HI-FI PARASTAT

a new
 Peak Sound hi-fi power amplifier

THE PEAK SOUND PA/
12-15 is a new power amplifier of excellent design and performance. Features include Class B output of 12 watts R.M.S. into 15 ohms

Equaliser assembly -36/- Speaker Unit-38/-: Pur. Tax-8/1d.: Cabi e6.15.0. TOTALCOST
£10.17.1 X-over for additional bass unit-22/6.

APEAK SOUND

 aids to economical hi-fiES/10-15 BAXANDALL SPEAKER

"Rolls-Royce standards"

SAYS RALPH WEST,

Hi-Fi News
OCTOBER, 1968

The immediate impression was of a thoroughbred
speaker, smooth and effortless . . . voices both speaking and singing were uncannily real Once again we see the possibility of Rolls-Royce standards from comparativelycheap components . . . when you know how." Hi-Fi News Test Report, Pages 1208/1211. Oct. 1968.

A REVOLUTIONARY ADVANCE IN DESIGN LOGIC

THE PEAK SOUND ES/10-15 is the designer-approved kit of the sensational loudspeaker designed and described by P. J. Baxandall in Wireless World (Aug. \& Sepq. 68). The frequency response extends from $60-14.000 \mathrm{~Hz}$. $(100-10.000 \mathrm{~Hz} . \pm 3 \mathrm{~dB})$. Everything is supplied to specification-the $18^{\prime \prime} \times 12^{\prime \prime} \times 10^{\prime \prime}$ afrormosia teak cabinet is cut and drilled for simple assembly; the equalising circuitry is ready-made for immediate installation. The finished product is completely professional. It will astonish and delight you beyond words. See what Hi-fiNews says in full in its detailed report in their October issue. It is hard to believe so modestly priced a speaker could get so glowing a report.

43 dB neg. feedback frequency response from 10 Hz to $45 \mathrm{~Hz} \pm$ 0.5 dB ; distortion at max. output less than 0.1%; input sensitivity400 mV : power requirement 45 V D.C. which can be obtained from the Peak Sound heavy duty power unit (price 55.5 .0). Size 5 " $\times 3 \frac{3}{4} " x$ $1 \frac{3}{8}$ ". Selected high gain closely matched transistors are used throughout. Full instructions are provided. This sensibly designed unit will appeal to all forwhom reliability and good design are important. Pre-amp details available.

Built, and tested £5.19.6 Kit. less heat sink (price 6/-) and matrix base board f3.19.6

From dealers or sent direct in case of difficulty, POST FREE.

PEAK SOUND (HARROW) LTD.

32 ST. JUDES RDAD, ENGLEFIELD GREEN, EGHAM, SURREY. EGHAM 5316
TO PEAKK SOUND
Please send
for which I enclose $£$

``` \(\qquad\)
```

NAME
ADDRESS

```


Mk 5 Series 3 for spool sizes up to \(8 \frac{14^{\prime \prime}}{}\) dia. Mk 510 Series 3 for spool sizes up to \(10 \frac{1^{\prime \prime}}{}\) dia. Prices from £45.18.0. including tax
Head assemblies to customer's specification
Take this opportunity of obtaining the same high quality deck as supplied to recording and broadcasting studios, including the BBC
```

* 3 outer-rotor Papst motors
* Large, balanced flywheel
* 4 tape speeds
* Accommodation for up to 4 heads
* Digital counter
* Extremely low wow and flutter content

```

Also available:
Complete tape recorders, amplifiers, etc.; for example:

\section*{The Brene// HI-FI Tape Link}
which has been specially designed for use with 3-headed tape decks and your high-fidelity installation


Write for full specifications
Choose Brenel/ for Recorders of unsurpassed reliability and performance

\section*{Brenell}

BRENELL ENGINEERING CO. LTD. 231/5 LIVERPOOL RD.. LONDON, N.1. Tel: 01-6078271 (5 lines) GD 480



The DORSET (600mW Output)
7-transistor fully tunable M.W.-L.W. superhet portable-
with baby alarm facility. Set of parts. The latest modulized and pre-alignment techniques makes this simple to build. izes: \(12^{\prime \prime} \times 8^{\prime \prime} \times 3\)
MAINS POWER PACK KIT: \(9 / 6\) extra.
Price 55.5 .1 plus \(7 / 6\) p. \& p. Circuit 2/6. FREE WITH PARTS
The ELEGANT SEVEN MK. III (350mW Output)
7-transistor fully tunable M.W.-L.W. portable. Set of parts. Complete with all components, including ready for foolproof construction.
MAINS POWER PACK KIT: \(9 / 6\) extra.
Price £4.9.6 plus \(7 / 6\) p. \& p.
Circuit 2/6. FREE WITH PARTS


50 WATT AMPLIFIER AC MAINS 200-250V
An extremely reliable general purpose valve Amplifier-with six electronically mixed inputs. Suitable for use with: mics, guitars, gram, cuner organs etc. Separate bass and treble controls.

Price 27 gins. plus 20/-p. \& p.

XIOIIOw. SOLID-STATE HI-FI AMP WITH INTEGRAL PRE-AMP.
Specifications: RMS Power Output (into 3 ohms speaker) 10 watts continuous (sine wave); I 3 watts music power. microamp). Total Distortion (at | KHz): At 5 watts \(0.35 \%\) i At rated output \(1.5 \%\). Frequency Response: Minus 3 db points 20 Hz and 40 Khz . Speaker: \(3-4\) ohms, ( \(3-15\) ohms may be used). Supply voltage: 24 v D.C. at 800 mA . \((6-24 \mathrm{~V}\).
 may be used). Price \(49 / 6\) plus 2/6 p. \& p CONTROL ASSEMBLY: (Including resistors and capacitors). I, Volume: Price 5/-. 2. Treble: Price 5/-. 3. Comprehensive bass and ereble: Price 10/.. The above 3 items can be purchased for use with the \(\times 10\). PO W
FOR THE \(\times 101\) : Flol \(M\) (for mono) \(35 /-\mathrm{p}\). \& p. \(4 / 6\) : P101 S (for 3 tereo) \(42 / 6\) FOR THE

\section*{The CLASSIC}

CONTROLS: Selector Switch. Tape Volume. Treble. Bass. 2 position seratch filter and 2 position rumble filter.
SPECIFICATION: Sensitivities for 10 watt output
at 1 KHz . Tape Head: 3 mV (at 3: i.p.s.). Mag. P.U.: 2 mV . Cer.P.U
80 mV . Radio: 100 mV . Aux. 100 mV . Tape/Rec. Output: 100 mV . Equalisation Control Range: Bass \(t 13 \mathrm{~dB}\) at \(60 \pm 2 \mathrm{~dB}\) (R.I.A.A.) from 20 Hz to 20 KHz . Tone Core 14 dB at 15 KHz . Total Distor. Signal Noise: \(<-60 d B\). AC Mains 200-250v. Teak finished case. \(\qquad\) Price 8 gms. plus \(7 / 6\) p. \& p.

\section*{The RELIANT IOW SOLID-STATE HIGH} QUALITY AMPLIFIER
Specifications: Output: 10 watts R.M.S. Sine-wave
 13 watts R.M.S. Music-power. Output Impedance: 3 to 4 ohms. Inputs: I. xtal mic 10 mV . 2, gram/radio 250 mV . Tone Controls: Treble control range \(\pm 12 \mathrm{~dB}\) at 10 KHz ; Bass control range \(\pm 13 \mathrm{~dB}\) at 100 Hz . Frequency response (with tone controls central): Minus 3 dB points are 20 Hz and
40 KHz . Signal to Noise Ratio: better than 60 dB . Transistors: 4 silicon Planar type and 3 Germanium type. Mains input: \(\mathbf{2 2 0 - 2 5 0 \mathrm { V } \text { . A.C. Size of chassis: } 1 0 ^ { \prime \prime } x}\) \({ }_{31^{p /}} \times 2^{*}\). A.C. Mains, \(200-250 \mathrm{~V}\). For use with Std. or L.P. records, musical instruments, all makes of pick-ups and mikes. Separate bass and treble lift control. Two inputs with control for gram , and mike. Built and tested. \(8^{n} \times 5^{\prime \prime}\) speaker to suit, Price \(14 / 6\) plus \(1 / 6\) p. \& p. Crystal mike Price 55.5. 5 plus 5/- p. \& p.
to suit \(12 / 4\) plus \(1 / 6\) p. \& p.

\section*{THE VISCOUNT}

SPECIFI Integrated High Fidelity Transitcor Stereo Amplifier
(20 watts 3 pos. stereo), P.U., Tuner, Tape and Tape Rec. Sensitivities: All inputs 100 mV , into 1.8 M ohm. Frequency response: \(40 \mathrm{~Hz}-20 \mathrm{kHz}+2 \mathrm{db}\). Tone controls: Ton controls flat (Baxandall type) separate bass and treble controls. Treble I 3 db lift and cut at 15 KHz , Bass 15 db lift and 25 db cut at 60 Hz . Volume controls: Separate for each channel. AC Mains input: \(200-240 \mathrm{v}, 50-60 \mathrm{~Hz}\).

\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
CYLDON U.H.F. TUNER \\
Complete with PC88 and PC8 F'ullvariabletuning. Wew and unused. Blze \(41^{\prime \prime}\) I \(51^{\circ}\) I \(11^{\circ}\). Complete with dir. cuit diagram.
\[
35 /- \text { p. } \& \text { p. } 3 / 6
\]
\end{tabular} & \begin{tabular}{l}
THREE-IN-ONE HI-FI 10 WATT SPEAKER \\
A complete Loud Speaker system on one trame, combining three matched cerame megnet apeakers with a low lose cross over network, Peak handling power 10 watts. Impedance 10 ohme. Flux density 11,000 gausi. Resonance \(40-60 \mathrm{c} / \mathrm{s}\). Fre quency range \(50 \mathrm{c} / \mathrm{s}\) to \(20 \mathrm{kc} / \mathrm{s}\). Size \(13 \frac{1}{\mathrm{l}} \times 8 \frac{1}{18} \times 41\) tnchel. By famous nuanifacturef. List price e7. Our price \(68 / 8\) plus \(5 /-\) p. p. Similar speaker to the above without tweeters in 3 and 15 ohme.
\end{tabular} \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
MOTEK \\
3 Speed 2 track Tape Deck complete with heads, takes 7in spool. Incorporating 3 motors. A.C. mains, 240 volts, listed at \(\{21,0.0\). \\
Our Price 59.19 .6 plus \(10 /\) p. 2 p.
\end{tabular}} \\
\hline
\end{tabular}

Goods not despatched outside U.K. Terms C.W.O.
All enquiries Stamped Addressed Envelope.

\section*{RADIO \& TV COMPONENTS (ACTON) LTD.} 214 High Street, Acton, London, W. 3 Also at 323 Edgware Road, London, W. 2 Ordars by post to our Acton address please.

- Wide operational bandwidth
- Better performance

The new Hatfield Hybrids Types N81 and N82 are passive couplers both covering a frequency range from 3 MHz to 200 MHz . With all outputs in phase, they are particularly suitable for coupling multiple antennae, and being bi-directional they can also be used to couple a number of signals to a common output, or to divide one signal between two or four individual isolated outputs.

One three-port unit (N82) used in conjunction with two five-port units (N81) provides a very efficient unit having eight outputs and an insertion loss of only 2.5 dB over most of the band. Write for full details on the complete Hybrid range. and other new developments.

\section*{HATFIELD INSTRUMENTS LTD.}

Dept. WW, Burrington Way, Plymouth, Devon.
Telephone: Plymouth (0752) 72773/4
Grams: Sigien Plymouth

\section*{HATFIELD EALUN}

WW-140 FOR FURTHER DETAILS

\section*{A.C. SOLENOID TYPE SRM}

Continuous Rating 7 lb . at \(1_{\frac{1}{2} \text { in }}\) Instantaneous up to \(14 / \mathrm{lb}\).


Smaller sizes available-also transformers to 8 kVA 3-phase.

\section*{ \\ KNAPPS LANE, CLAY HILL, BRISTOL 5. TELEPHONE 65-7228/9}

WW-141 FOR FURTHER DETAILS

\section*{Burgess instant heat solder gun}

Only the tip heats-but fast ! About 7 seconds I Pre-fncused lamp lights the job up. Exclusive fulllength trigger on pistol grip eases finger fatigue. Finger-tight is right for screw-in tips - no pliers needed. Kit complete with conical tip, chisel tip, 6 extension barrel, double ended probe, gun and solder. £4 126. Full details and nearest stockist from:

Burgess Products Co Ltd, Sapcote, Leicester LE9 6JW

\section*{} SOLID STATE-HIGH FIDELITY AUPIO EOUPMENT
Audio Equipment developed from Dinsdale Mk.II-each unit or system will compare favourably with other professional equipment selling at much higher prices.
COMPLETE SYSTEMS FROM
£15.5.0
THE FINEST VALUE IN HIGH FIDELITYCHOOSE A SYSTEM TO SUIT YOUR NEEDS AND SAVE POUNDS


All units available separately.
SEND FOR 16 PAGE BROCHURE (No. 21) TODAY! DEMONSTRATIONS DAILY AT '303' EDGWARE ROAD

Acclaimed by cererone THE MAYFAIR ELLECTRONIC

\section*{ORGAN}

UR 5 AII
A completely new development in portable electronic musical
instruments and a new field for the home constructor. The
MAYFAIR' produces a multitude of the most pleasing sounds
with a wide range of fone colours suitable for classic of popular music. The organ is fully polyphonic, that is full chords can be played over the entire keyboaro. Supplied as a kit of parts which includes 165 transistors, printed circuit panels, special fully sprung and depth of rouch adjusted keyboard, atractivo vynair covered cabinet with cary hande. A complete deread by purchasing the components packet by packet. All parts supplied are fully guaranteed. Fuil after sales service.

A new source of construction for the keen electronics fan either amateur or professional. Once bullt the 'MAYFAtR' will then provide TOTAL COST 99 GUS.
\begin{tabular}{lll} 
ORGAN COMPONENTS & Deferred terms available. & BUILT AND TESTED \\
We carry a comprehensive stock & COMPLETE KIT & Deposit £36.8.0 \& \\
of organ components for & Deposit £29.19.0. & 12 monthly payments of \\
TRANSISTOR ANO VALVE FREE & 12 monthly payments of \(£ 7\). & £9. Total \(£ 144.8 .0\). \\
PHASE designs. & TOTAL \(£ 113.19 .0\). & EXPORT ENRUIRIES
\end{tabular}


Ask for BROCHU
Call in. See it and piay it yoursalf.


\section*{BRITISH MADE CAR RADIOS}
rosd. So sasy to install and operate-and the price is oxactiv right. Hes quick puth
uning freilities button operstion for immediste station allection and choice of Madium or Long wave
motoring apeeds Price includes \(7^{\circ}\) 天 \(4^{\circ}\) spoaker; full accesssories and inatuctions.
POSITIVE OR NEGATIVE EARTH EASI-TUNE E12.12.0. pp.4/6 AUTOBAHN MANUAL as the EASI.
TUNE, but with a minglo MW/LW Push Button.
£10.10.0. pp. 4/8
CAR AERIALS * 3-Section Single Hole Wing or Boot Mounting 19/6 Brochure 15 Multi Section fully disappearing type with locking device, single hoie mounting 35/- Post free with Car Radio or pp. \(2 / 6\) separately.
(OPTIONAL MAINS UNIT PS. 20 62/2, P.P. 3-.) Illustrated Brochure No. 12.


NEW MODELS
NOMBREX
TRANSISTORISED TRANSISTORISED est Equipment PRICE Leaflet



MULLARD 1 WATT AMPLIFIER WITH VOLUME CONTROL Suitable \(7 \times 4\) inch 3 ohm speaker 17/6 Ideal for Portable Record Players. InterComms. Baby Alarms etc. \(45 /-3 \mathrm{pp}\).
For 9 Volts operation.

\section*{ITS SO EASY TO BUILD TO} PROFESSIONAL STANDARDS To got the bent out of your MAGNAVOX STUDIOMATIC
oECK Type 383 , you need MARTIN AECOROAKIT. Thio comprises a seacial high quality 6 value amplifier and pre-
ampliser which comes to you assembied on its printed amplifiter which comos to you essembled on its printed
circuis boord, together with necessary transformars, switches,
control knobu-in control knob-in fact sverything nesded down to the latit
scrow FOR MAKING SUPERB TAPE RECOROER, Which when built, will compare fovourbly with inntruments costing
twice sill much, yot you need no experience ou techricat akill to bring this sbout. THE INSTRUCTIONS MANUAL MAKES BUILOING EASY ANO SUCCESS ASSURED

WO TAACK. Deck, Amplitier, Cablnet and Speaker. pare spool. Todav' volue E55. OUR PRICE 38 gno. OUAR-TRACK. Deck, Amplifier. Cominet snd spoater.
Complete klta with MICROPHONE? it 120 it

ALL UNITS AVAILABLE SEPARATELY. Both modelis
ASK FOR BROCHURE B.


TRANSISTORS, RECTIFIERS, ZENERS, SCR': TUNNEL DIOQES, FIELD EFFECT TYPES, VALVES. CRYSTALS

New 1968 32-page Booklot Price 1 /- Post Paid Circuits with Data, Details and Prices of This booklet is a must for every enthusiast MANUFACTURERS - DISTRIBUTORS. We also publish a QUANTITY, SEMICONDUCTOR BULLETIN
Please write to us for your copy.

\section*{HIFI equipment to suit EVERY POGKET}

VISIT OUR NEW for Hi-Fi- Stock List Leaflet 16.17


\author{
R.S.T. VALVE MAIL ORDER CO.
}

\author{
BLACKWOOD HALL, 16A WELLFIELD ROAD
}

STREATHAM, S.W. 16
 \(\begin{array}{ll}\text { ACT9 } \\ \text { ARP38 } & \text { 13/- }\end{array}\) \(\begin{array}{lr}\text { AZ31 } & 9 / 6 \\ \text { BT19 } & 60 /-\end{array}\) \(\begin{array}{ll}\text { BT19 } & 60 /- \\ \text { BT79 } \\ \text { 57/- }\end{array}\)


C
CV
C
C \(\begin{array}{ll}\text { CV315 } & 80 /- \\ \text { CV354 } & 110 /-\end{array}\) CV370 300/-
CV372
57/CV408
CV 201 -
CV 429
350/CV1144 80/-
CV1385
140/-

\section*{CV15} CV1526 80/CV2306
CV2312 \(35 /-\)
CV CV4003 10/-
CV4004 10/-
CV4005 8/-
CV CV4006 18 CV4007
CV 4014
7/-
CV 4015
10/\(\begin{array}{ll}\text { CV4024 } & 8 /- \\ \text { CV4025 } \\ \text { CV } 4031 & 7 /- \\ \text { CV }\end{array}\) CV 4033
CV \(404 /-\)
CV 4045
10
CV CV4045 10/-
CV404640/-
CV 4048 12/6
CV403 17/8 \(\begin{array}{ll}\text { CV } 4062 & 17 / 8 \\ \text { CV } 4064 & 301- \\ \text { CY30 } & 18 / 3\end{array}\) \(\begin{array}{ll}\text { DAF91 } & 1 /- \\ \text { DAF96 } \\ \text { DOC90 } & 12 / 9 \\ \text { D }\end{array}\) DCT3 12/6
DET,
DE00/\(\begin{array}{ll}\text { DET19 } \\ \text { DET20 } & 7 / \\ 2 / 6\end{array}\) \(\mathrm{D}_{\mathrm{D}_{2} \mathrm{~T}_{22}}\) \({ }^{\text {DET23 }}{ }^{110}\) DET24 50/ DF91
DF96
\(8 / 9\) \(\mathrm{DHF}_{\mathrm{DH} 3 / 91}^{6 / 2}\) \({ }^{\text {DH63 }} 8\) 80/DH63
DH77
DK52 4



\section*{All valves brand new and \\ Special 24 Hour Express Mail \\ Postage 6d Service}

Mon.-Sat. 9 2.m.-5.45 p.m. Open Daily to Callers Tel. 01-769 0199/1649
\(\rightarrow\)
.

\section*{}

SEND S.A.E. FOR LIST of 6,000 TYPES


\section*{Ww-143 FOR FURTHER DETAILS}

\section*{TACHOMETERS}
* High linear output
* Low driving torque
* Bidirectional output to \(\frac{1}{6}\) of \(1 \%\) tolerance
* Brush life 100,000 hrs. or 10 years
continuous operation
* Temperature compensated * Ideal as speed transducers

Send for full details of these and other electronics products including speed control, speed indicators, etc., to:


\section*{NECO ELECTRONICS (EUROPE) LTD}

WALTON RD., EASTERN RD., LONDON OFFICE: NORTH ST., COSHAM, HANTS. CLAPHAM, LONDON, S.W. 4 COSHAM \(71711 / 5\)

TEL: \(01-6220141 / 3 \& 3211 / 5\)
WW-144 FOR FURTHER DETAILS

\section*{NEW 48" FOLDING MACHINES
SHEET METAL BENCH MODEL BY PARRER}


Forms channels and angles down to 45 degrees which can be flattened to give safe edge. Depth of fold according to height of bench.

One year's guarantee. Money back if not satisfied. Send for details:

\section*{A. B. PARKER}

Also the well-known vice models of
\(36^{\circ} \times 18\) gause capacity.
\(24^{*} \times 18\) gauge capacity.
\(24^{*} \times 18\) gauge capacity..........
\(18^{\text { }} \times 16\) gauge capacity......
C14:0
c 00
Carriage free
FOLDING MACHINE WORKS. UPPER GEORGE STREET.
HECKMONDWIKE, YORK
Telephone: 3997

WW-145 FOR FURTHER DETALS

\title{
DO YOU STILL USE A HAMMER AND CHISEL TO CUT A SQUARE IN SHEET METAL?
}

\author{
Don't any more
}

We have a Hand-operated Tool now to cut any straight sided shape. Square R/Angles slots for Louvres. All you do is simply mark out your shape and follow the lines. You can also convert the Tool to a Punch-Forming and Riveting Tool.

\section*{NO DISTORTION OF METAL. ON EITHER SIDE OF CUT \\ Also a number of Bench Type folding machines.}

EXPORT ORDERS DESPATCHED IMMEDIATELY
aVONLEA TOOLS, WOODEND MILL, MOSSLEY, LANCASHIRE. MOSSLEY 2687



Synchronous motor
CAM TIMERS
* QUICKER DELIVERIES
\(\star 1-12\) ADJUSTABLE CAMS
+ 10 amp. CHANGEOVER MICRO-SWITCHES
FITTED, SCREW OR . \(25^{\prime \prime}\) AMP TERMINALS * DESIGNED FOR CONTINUOUS OPERATION Special Cams and Programming to Customers' requirements Quotation for 50 and upwards

\section*{COMPLETE}

PHOTO-ELECTRIC SENSOR in one unit
\(\star\) REFLECTIVE TYPE WITH BUILT-IN LIGHT SOURCE
\(\star\) WILL ALSO OPERATE FROM REMOTE LIGHT SOURCE
* MATCHBOX SIZE
\(\star\) SENSES ANY OBJECTCOLOURS. THICK SMOKE

Operates from 12 V. A.C. Output signal 0.2 amp. 100 V Approximataly \(£ 5.10 .0\) dependent on quantity.

LATEST SOLID STATE
VARIABLE YOLTAGE CONTROL
* COMPLETELY SEALED
\(\star\) COMPACT
* PANEL MOUNTING

230 V. A.C. Input \(25-230\) volts output. 5 amp . model \(\mathbf{6 8 / 7 / 6}\) P. P. Exera

PORTABLE VARIABLE A.C. POWER Designed for engineers
whose requirements
SUPPLY UNIT whose requirements cation of volts applied. OUTPUT:
\(0-260\) V. \(1 \frac{1}{\frac{1}{2}}\) amps.
INPUT:
230 V. A.C. \(50 / 60\) c.p.s. Fitted with fuse, voltmeter, safety indicazor Size \(8 \times 5 \times 5\) in. high.


PRICE E.2.6. c. \& P. \(12 / 6\)


\section*{20 Amp. LT. SUPPLY} UNIT
As supplied to Min. of Defence and Crown Agents for overseas Govt. LATEST DESIGN HEAVY DUTY \(12 / 24\) VOLT D.C.
Output: Adjustable up to 20 AMPS. CONTINUOUS at \(12 / 24\) volts. FULLY FUSED, Neon indicator, \(0-20 \mathrm{amp}\). meter. Size \(16 \times 12 \times 20 \mathrm{in}\). high, in heavy gauge steel cabinet. Grey Hammer finish-Weight 50 lb . input: \(220 / 230 / 240\) v. A.C. 50 cycles. ONLY E32.10.0 Plus 40/- C. \& P. \(\begin{gathered}\text { G.B. (Inland) }\end{gathered}\)

30 Amp. LT. SUPPLY UNIT UP TO 24 v. D.C. WITH SMOOTH STEPLESS VARIATION Designed for CONTINUOUS use at max. loading * Fitted voltmeter and ammeter. \(\star\) Instantaneous overload cut-out. Input: Mains A.C. Robust construction, 2 tone finish, steel case.

\subsection*{555.0.0 C. \& P. 40/- G.B. (Inland). \\ Entirely suitable for plating plants,}

Laboratory supplies, etc.
5 AMP. A.C. \& D.C. VARIABLE SUPPLY UNIT Specification \(\{\) Input: \(240 \mathrm{~V}, \mathrm{~A} . \mathrm{C}\).
- Smooth stepless voltage variation from 0-Max. \& Current consistent throughout the controlled range. \& Ammeter and voltmeter fitted, and neon indicator. * Fully fused input and output.
Strong steel case, with carrying handle and rubber feet. \(11 \times 7 \times 14 \mathrm{in}\). high. £ 30.0.0 C \& P in England.
230.0.0 C. \& P. 40/- Gt. Britain (Inland).

CURRENT PRODUCTION-BUY DIRECT FROM MANUFACTURER
brand new pak • Just released
Replaces our very popular B.39 Pak. Brand new short ead components - All factory marked and mounted on printed clrcuit panels.
AVERAGE CONTENTS
80 TRANSISTORS \& DIODES
50 HIGH TOLERANCE
RESISTORS
20 various capacitors

\section*{mor}

\author{
lease state when ordering Pak P.1. 2/-P. \& P. with this Pak
}

\section*{PRE-PAKS}

Selection from our lists
\begin{tabular}{|c|c|}
\hline No. & \\
\hline B1 & 50 Ubmarked Trans. Untested \\
\hline B2 & 4 Photo Cella Inc. Book of Instructions \\
\hline B6 & 17 Red Spot AP Transistorm \\
\hline R6A & 17 White Bpot RF Transiators \\
\hline B9 & 1 ORP 12 Light Sensitive Cell \\
\hline H53 &  \\
\hline B54 & 40 . \(\quad\) " NPN To 5 Trape. Voltage \\
\hline B55 & \(40 . .\). NPN To 18 \& Gain Fallouts. \\
\hline B66 & 4 A .0 H NPN/PNP All Tested \\
\hline B68 & 10 Top Hat Recs. \(750 \mathrm{M} / \mathrm{A} 100-800\) PIV \\
\hline B69 & 20 Diodes. Gld-Bnd. Gern sll. Planer \\
\hline B74 & 5 Cld-End. Diodes. 2-0A9, 3-OA5 \\
\hline B75 & 3 Comp. Set. 2G371, 2G381, 2G339A \\
\hline C 2 & 1 Unijunction Translator 2N2160. \\
\hline C32 & 6 Top Hat Reca. 18100 Type \\
\hline C35 & 3 Unijunction Trans. - Lo 2 N 2160 \\
\hline A1 & 7 silicon Rectifiers BY100 Type \\
\hline A3 & 25 Mixed Marked and Tested Transistors. \\
\hline A21 & 5 Power Transistors 1-AD149/1-0C26 and others \\
\hline
\end{tabular}

\section*{BENSON'S BETTER BARGAINS}

\section*{Type 10XJ/XTALS}

16 FOR £1
YOUR selection, in the range from 4.75 MHz to 8.6 MHz in 10 KHz steps (or better). Order five xtals from 5, five from 6, four from 7 and two from 8 MHz bands. Please give four wide alternatives. Hermetically sealed or moulded (two screw) cases; state preference. Sequences in any "recognised band" subject to availability.
100 different our selection, all bands, \(£ 5\) (post 10/-). 1000 different our selection, all bands, £40 (post 10/-). Terms: Cash with order. Despatch A.S.A.P. Postage 1/6d. S.A.E., enquiries, please!
Post orders and callers to: Superadio (W) Ltd., 116 Whitechapel, Liverpool 1.

WW-147 FOR FURTHER DETAILS \\ \section*{\section*{TRANSFORMERS \\ \section*{\section*{TRANSFORMERS \\ \\ \\ coils \\ \\ \\ coils CHOKES CHOKES \\ \\ \\ LARGE OR SMALL QUANTITIES \\ \\ \\ LARGE OR SMALL QUANTITIES \\ \\ \\ TRADE ENQUIRIES WELCOMED \\ \\ \\ TRADE ENQUIRIES WELCOMED \\ \\ \\ SPECIALISTS IN \\ \\ \\ SPECIALISTS IN \\ \\ FINE WIRE WINDINGS \\ \\ FINE WIRE WINDINGS \\ \\ MINIATURE TRANSFORMERS \\ \\ MINIATURE TRANSFORMERS relay and instrument coils, etc. relay and instrument coils, etc. VACUUM IMPREGNATION TO APPROVED STANDARDS} VACUUM IMPREGNATION TO APPROVED STANDARDS}

\author{
ELECTRO-WIMDS LTD. \\ CONTRACTORS TO G.P.O., A.W.R.E., L.E.B., B.B.C., ETC \\ 123 PARCHMORE ROAD, THORNTON HEATH, SURREY 01-653 2261 \\ CR4.8LZ \\ EST, 1933
}
-.................-................
WW-148 FOR FURTHER DETAIL............................................

C PAE
Gilicon diodes mindature glans types, Anished black with polarity marked equivalents to OA200, OA202, BAY3139, DK 10, ete.
PRICE \(\& 51,000\)

MAXE A REV. COUNTER FOR YOUR CAR. THE "TACHO
BLOCK." Thif encapaulated block will turn any 0-1mA meter into perfectiy linear and accurate
rev. counter for any car. State 4 or f.cylinder
vo CONNECTION WITH ANY OTHER FIRM. MINIMUM ORDER 10/-, CASH WITH ORDER PLEASE. Add \(1 /\) - port
and packing per order. Overbeas ADD EXTRA FOR AIrMaIL

Germantum PNP type transhatoras, range. ,.e. 44, 45, 71, 72, 81, etc. PRICE 25 per 1000

\section*{IB PAX} Bilicon TO-18 CAN type transintore O OC200-1, \(2 N 706\), with equivalent B8Y27-29. PRICE \(85 / 5 /\) - per 500
PRICE 810 per 1000

All the above unteated packn bave an sverage of \(75 \%\) or more good sempeonductors. Free packs suspended with these orders.
Ordera munt not be less than the minimura amounts quoted per pack. \(\mathbf{P / P} 2 / 6\) Per Pack (U. K.)
All the above unteated packn bave an average of \(75 \%\) or more good semponductors. Free packs suspended with these orders.
Ordera munt not be less than the minimurn amounts quoted per pack. \(\mathbf{P / P} 2 / 6\) Per Pack (U. K.)


OWER TRANBISTOR
Stock Clearance of Manufacturers Rejects. Limited Number. UHF densors. All Coils and Comps etc: Price 10/- each. Post \& packing U.K. 2160 .

PIR8T EVER LOGIC KITs. Learn for yourself how coniputers work, even make one for yourself. Fuil instructions
 kit Benior' 216 . Details FREE.

\section*{}
rong
\(10 /\)
\(10 \%\)


This is a miniature transistorised B.F.O. unit that is tully tunable. It will add the pleasures of \(88 B / \mathrm{CW}\) to your listening. Compsact single hole fixing. So amall it will fit anywhere in the set. Ideal for all
types of receivers. Complete with fitting instructions 49/6. Postage \(2 / 6\).


Make your own aerial syatems. Ideal for transmitting and receiving on all bands, save pounds with thls
full kit of parts plus installation mountings. You can even bulld aerials of your own designo Only 55/ per kit. P.P. \(\%\)


Listen to the thrills of an sos at sea. Hear shipping from all over the world. Covers the complete maritime, trawler and amateur bands. A neat little uperhet. Attractive black crackle finish case approx. 7 in . \(\times 5 \mathrm{in} . \times 5 \mathrm{in}\). Fully transiotorised volt battery fits inside. speaker or headphone output. Brand new direct from makers, Carr ins C.w O CO.D.

TOP BRAND TRANSMITTER
A fully transistorised compact transmitter for Licensed Arnateur use. Fulfy portable. Sultable for
mohle use. Fully Tunable 1.8 to \(2 \mathrm{mc} / \mathrm{s}\). Contains moblle use. Fully Tunable 1.8 to \(2 \mathrm{mc} / \mathrm{s}\). Contains R/P output meter. Price \(£ 12 / 10 / 0\). carriage \(10 /\) G.P.O. Licetice required.

TELEVISION-LGGHTNG


A Superbly designed POWER CONVERTER (de-laxe model). A 12 -volt INPUT gives a \(200 / 240\) volt OUTPUT. Enablea you to run up to 220 watt AC/DC TELEVISION lighting and equipment. Thousands of uses. Indispeusable to caravanners, Workshops and Garages. The unit is contained in a compact louvred ateel case. Complete with conneeting leads, battery clipa and full inatructions. Ready to connect up and use. List Price over 230. Ous price while atocks last \(£ 6 / 19 / 6\), carriage \(12 / 6\). C.O.D. \(3 / 6\) extra.

TRANS/RECEIVERS AIR/SEA/RESCUE TYPE Must be dismantled or exported. Complete with mike/speaker aerial. Work up to 100 miles. Cost Gort. over £40 each. 88.10 .0 per set, 10/- P. \& P. 2 sets 85 , post tree.

\section*{STABILIZED \\ 구누․}
limalted quantity only. Famous manufacture. Input \(220 / 240\) volts A.C. Output \(0-30\) volts DC at 4 amps fully variable. \(A\) transistorised unit of blgh quality. Completely feolated, Fitted in a robust metal cabinet with easy view voltmeter. Input and output fused. Exceptionally gond smoothing and regulation. Brand new in maker's cartons. Must be worth 250 each. Our price \(£ 22 / 10 / 0\). Carriage and insurance \(30 /\)-. Ideal for Lab. or industrial use. MILL STREET, LEEDS, 9.

\section*{}

\section*{LASKY'S HI-FI SPECIAL}

TRIO Model TK-500E
SOLID STATE FM MULTI-
PLEX STEREO TUNER


Another grest Lasky special purchase-the TK. 500 E is as
TEIO-Japanie foremost producer of tranaistorised Hi-Fi equipment. The extremels sophisticated circuitry of the TK-500E Incorporates many unique TRIO features includlng Automatic electrical switching of FM Multiplex stereo and mono modes with stereo indicator beacon Inter-station noise muting circuit even in fringe area reception Nuvistor cascode front end and \(\mathbb{\$ I F}\) stages assure the highest sensitivity reception Pinpoint meter tuning on Low impedance stereo, mono and tape outputs. BRIEF SPECLFICA-
TION: 21 transistors, 15 Germanium and 8 silicon diodes and 1 Zener diode. 3 valves. Frequency range:
 mod, Capture \(\pm\) ratio: 2dB. Superbly styled and finiuhed hammer enamel and brushed alloy cabinet, size mod. Capture ratio: 2 dB . Superbyy styled and finiuhed hammer enamel and brushed alloy ca
\(15 \% \times 12 t \times 512 \mathrm{in}\). For \(110 / 240 \mathrm{~V}\). AC ( 50 or \(60 \mathrm{c} / \mathrm{g}\) ) operation. Today's comparative value over \(\varepsilon 65\),
Lasky's Price 38 Gns.
Carrhase and Packiog \(12 / 6\).

\section*{FOSTER CRITERION}

HI-FI BOOKSHELF
SPEAKER SYSTEM
This extremely high quality booksholf speaker system by the world tamous tweeter in a sealed infinite baffle enclosure with handsome oiled wainut finish. The performance of the Criterion is superior to many larger and more expensive
 bandling \(15 W .8\) impedance. Cablat constructed from 1 in. laminate with oiled walnut veneer finish; size 13 , \(X 7\) ing, square. Dark green woven
Lasky's Price £8.8.0
2 for \(£ 16\)


\section*{GARRARD RECORD PLAYERS}

\section*{AUTOCHANGERS}
\({ }_{2025}^{1025}\)
\(8 \mathrm{L95}\)
3000 LM with ste reo cart
AT60
A77.
AP75.
AP75
GARRARD BASES

SINGLE PLAYERS
£7/19/6 GARRARD SP25 Mk. II Heary turntable £12/19/6
TRANSCRIPTION DECKS
GARRARD 401.
\(28719 / 0\)
\(£ 30 / 9 / 0\)
CLEARVIEW PERSPEX COVERS WB4 \(£ 5 / 6 / 11\) : 1 PC1 \(£ 3 / 3 / 10\) SPC2 \(£ 4 / 4 / 4\) gPC4 \(£ 4 / 4 / 11\) Postage on all above 5/. extra.

\section*{SPECIAL TRANSCRIPTION MOTOR OFFER}

FAMOUS Connoisseur Classic 2 speed turntable List Price £15.15.7 LASKY'S PRICE \(\$ 9.19 .6\)
sCU. 1 pick-up arm and cartridge also available Llst Price e8.13.4 PACKAGE PRICE IF BOUGHT TOGETHER \(\$ 12.19 .6\)

\section*{SPECIAL INTEREST ITEMS!}

\section*{LASKY'S PRECISION}

\section*{PANEL METERS}
 SPECIAL QUOTATIONS FOR QUANTITIES


\section*{SPECIAL INTEREST ITEMSI}

FANTAVOX Model TV-1008 VHF AIRCRAFT BAND AND AM RECEIVER The first pocket gize Recelver of tis type allowing ground, "tue-in" anywhere to the entire air-tocovered by \(108-137 \mathrm{Mc} / \mathrm{s}\) in addition to full AM
medlum wave band cover of \(535-1605 \mathrm{Kc} / \mathrm{s}\). An medremely sensitive 10 transistor and 2 dlode. superhet clrcult, plus 1 variable capacitor and 1 thermister. Intermediate frequencles: AM-455
Kc/s; VHF-Io-7 Me/s. Output power: 200 mW \(\mathrm{Kc} / \mathrm{s} ;\) VHP-IO 7 Me/a. Output power: 200 mW .
2) Permanent Dynamic 8 ohm spealer, carphone 2) Permanent Dynamic 8 ohm speaker, earphone
also provided for "silent" listening. A built-in ferrite rod serial is provided for AM reception and a fully directional telescopic satenna for VHF reception-the latter when collapsed neatly cllps penlight cellis and a jack rocket for connection to a
sultable AC converter is also provided. The Model TV-1008 is extremely well made and finished in gres plastic with metallic blue speaker bathe, chrome telescopic antenna; attached wrist strap is also provided. Lasky's Price \(\mathrm{E}^{11}\).10.0 p. \&p. 5 /-
MIDLAND Model 10-502 VHF AIRCRAFT BAND CONVERTER An entirely new item for the radio enthusiast bringing instant reception of the
ground-to-alr, air-to-ground waveband. For use with any standard AM or FM radio covering 535 to \(1,605 \mathrm{Kc} / \mathrm{s}, 88\) to \(108 \mathrm{Mc} / \mathrm{s}\) respectively-with no electrical conversion or connection required. The Model 10-502 (self-powered by one 9V.
(PP3 type) battery) is merely placed close to the recelving set and then tuned over 110 to \(135 \mathrm{Mc} / \mathrm{s}\) which povers the whole aircraft communicatlona band. Volume and reception effectiveness it adjusted by moving both sets to the most favourable position and balancing the volume controle of each accondingly. The Model \(10-502\) has a smartly designed black plastic cabinet with brubhed (inc. knobs). Complete with battery and full lastructions.
Lasky's Price 79/6 Post 3/6


CAR OWNERS-THIS IS WHAT YOU HAVE BEEN WAITING FOR HITACHI SHORT WAVE ADAPTORModel WM-20
New from Hitach-world famous for high quality
transistor radios a push-button short Wave adaptor
enabling you to receive all foreign broudcasta in the \(3-28 \mathrm{Mc} / \mathrm{waveband}\). . The WM-20 adole for use with any make or model of AM car radio (covering the usual \(535-1605 \mathrm{Ke} / \mathrm{s}\) ) in any make or model of car ( 6 or 12 V .. positive or negatlve ground). The WM- 20 an will be seen has 10 push buttons which cover meter bands: \(13,16,19,25,31,41,49,60\) and 90 plus orf bution. Having selected the required band by pushing the appropriate button-fine station tuning is efrected by use of the parent radios tuning systemradlo dial. The double superhet 1 FM circuit is extremely zensitlve and the use of a Zenor diode and comspensating condenser, provides great stabilty. Switched adjustment is provided for 6 or 12 V and posititye or negative ground; external serial trimmer is also provided. Connection to the parent radio is via the aerial
jack, power in taken direct from the car AUX. supply with separate line fuse. All necessary mounting jack, power in taken direct from the car AUX. supply with separate line fuse. All necessary mounting
brackets, leade and jacks are provided with Instruction manual for installation and operating. The WM-20
 Lasky's Price £9.19.6 P. \& P. 5t-

\section*{NEW FOR CASSETTE RECORDERS|PLAYERS} TTC Model A. 1009 AM TUNER ADAPTOR PACK An amazingly ingenious AM Tuner that looks tike and if exnctly the
amene aize as a standad tupe cassette- which converts your tape cassette recorder/player instantly into a radiol The tuner park is a
completely self-contained unit with bullt-in ferrite rod aerial, power somplece (one minianture Ever-Ready type D. 23 ) giving approximately
150 hours operation. Au you do is take out the tape cassetie and sllp 150 hours operation. Aul you do is take out the tape cassette and slip
In the tuner. Tunable over \(535-1605 \mathrm{Kc} / \mathrm{s}\) (full Medium waveband). In the tuner. Tuaitable for use with all standard tape cassette

Lasky's Price 89/6 P. \& P. \(2 / 6\)


Branches
207 EDGWARE ROAD. LONDON. W. 2 Tel.: 01-723 3271
Oper.all day Saturday. early closing 1 pm Thursda
33 TOTTENHAM CT. RD., LONDON, W. 1 Tel.: 01-636 2605
Open all dav. 9 a \(\mathrm{m}-6 \mathrm{pm}\) Mondav lo Salurday
\(152 / 3\) FLEET STREET, LONDON, E.C. 4 Tel.: FLEet St: 2833 Open all day Thuisday, eariy closing 1 dm Satudav

High Fidelity Audio Centres
42 TOTIENHAM CT. RD., LONDON, W. 1 Tel.: 01-580 2573 Open all day Thursday. early closing ipm Saturday 118 EDGWARE ROAD, LONDON. W. 2 Tel.: 01-723 9789

ORGAN BUILDERS! SHICON N.P.N. TRANSISTORS, ALL INDIVIDUALLY TESTED IN PUBLISIIED DIVIDER CIRCUIT! GOLD-PLATED LEADS FOR EASY SOLDERING! Unbeatable value at \(1 / 6\) each or \(55 /-/-\) per 100

TRANSISTORISED FLUORESCENT LIGHT. 8 WATT 12 in . TUBE. Current drain only 700 mA ! Complete and tested \(£ 2 / 19 / 6\) only! Or in kit form:


TRANSISTORS
OC200, OC203, OC204, all at 2/- each.
ASY22, 2N753, BSY28, BSY65, 2G344A, 2G345A, 2G345B, 2G371A, 2G378A, all at \(1 / 6\) each.
Transistors similar to OC44, OC71 and OC72, all \(1 /-\) each
Unmarked, untested transistors, \(7 / 6\) for 50.
LIGHT SENSITIVE TRANSISTORS (similar OCP 71), 2/- each
30 watt transistors (ASZ17), 10/- each.
DIODES. Very low leakage. Make excellent detectors, also suitable for keying electronic organs, \(1 /-\) each, 20 for \(10 /-\)
RECTIFIERS
BY100, 800 p.i.v., \(2 / 6\) each, \(24 /-\) per doz., \(27 / 10 /\) - per 100 , \(£ 50\) per 1,000 . BYZ13, 6 -amp, 400 p.i.v., available on same terms.

\section*{MULLARD POLYESTER CAPACITORS} FAR BELOW COST PRICEI
\begin{tabular}{|c|c|c|c|c|}
\hline & & A & & COST PRICE \\
\hline \(0.001 \mu \mathrm{~F}\) & 400 volts & & 3d & \\
\hline \(0.0015 \mu \mathrm{~F}\) & 400 volts & & 3d & \(0.15 \mu \mathrm{~F} 160\) volts \\
\hline \(0.0018 \mu \mathrm{~F}\) & 400 volts & & 3d & \(0.22 \mu \mathrm{~F} 160\) volts \\
\hline \(0.0022 \mu \mathrm{~F}\) & 400 volts & & 3d & \(0 \cdot 27 \mu \mathrm{~F} 160\) volts \\
\hline \(0.01 \mu \mathrm{~F}\) & 400 volts & & 3d & \(1 \mu \mathrm{~F} \quad 125\) volts \\
\hline
\end{tabular}

VERY SPECLAL VALUE! Small Silver-mica, Ceramic, Polystyrene Condensers. Well assorted. Mixed types and values. \(10 /-\) per 100. PAPER CONDENSERS, MIXED BAGS, 0.0001 to \(0.5 \mu \mathrm{~F}\). \(12 / 6\) per 100.

RESISTORS! Give-away offer! Mixed types and values, to \(\frac{1}{2}\) watt. \(6 / 6\) per \(100,55 /-\) per 1,000 . Individual resistors 3d each. Also to 3 watt close olerance. Mixed values. \(7 / 6100,55 /-1,000\).
WIRE-WOUND RESISTORS. 1 watt to 10 watts. Mixed bags only. 16 for \(10 /\) -

\section*{RECORD PLAYER CARTRIDGES}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{C} \\
\hline GP & 67/2 & Mono. & 15/- complete with needles. \\
\hline GP & 91/3 & Stereo Compatible. & £1/-/- " \\
\hline GP & 93/1 & Stereo Ceramic & £1/5/ \\
\hline GP & 94/1 & Stereo Ceramic & £1/5/- \\
\hline Small & pick-u & rms complete with & and needle, 10/- only. \\
\hline
\end{tabular}

TRANSISTORISED SIGNAI. INJECTOR KIT R.F./I.F./A.F. 10/- only TRANSISTORISED SIGNAL TRACER KIT 10/- only. TRANSISTORISED REV. COUNTER KIT 10/-

\section*{VEROBOARD}

2 tin. \(x\) lin 0.15 in matrix \(1 / 1\) 3 in \(\times 2\) lin 0.15 in. matrix \(3 / 3\) \(\sin \times 2\) in 0.15 in matrix \(3 / 1\) \(\sin \times 31\) in 0.15 in matrix \(5 / 6\)
\(17 \mathrm{in} \times 2\) inn. 0.15 in . matrix \(11 /-\)
7 in \(\times 3\) in 0.15 in. matrix \(14 / 8\) 3 in \(\times 2 \frac{1}{2}\) in 0.1 in matrix \(3 / 9\)
3 in \(\times 3\) in 0.1 in matrix \(3 / 11\)
5 in \(\times 2 \frac{1}{2}\) in \(\quad 0.1\) in matrix \(3 / 11\) 9/6. Terminal Pins \(3 / 6-36\).
Spot Face Cutte
SPECLAL OFFER!
Five \(2 \operatorname{in} \times \operatorname{lin}\). Boards and a cutter \(9 / 9\).

MULTIMETERS. 20,000 ohms per volt.
Ranges: a.c. \(1,000 \mathrm{~V}, 500 \mathrm{~V}, \mathrm{Z} 00 \mathrm{~V}, 50 \mathrm{~V}, 10 \mathrm{~V}\)
d.c. \(250 \mathrm{~mA}, 2.5 \mathrm{~mA}, 50 \mu \mathrm{~A}\)
d.c. \(2,500 \mathrm{~V}, 500 \mathrm{~V}, 250 \mathrm{~V}, 50 \mathrm{~V}, 25 \mathrm{~V}, 5 \mathrm{~V}\) Special : \(0 / 60 \mathrm{k} \Omega\) and \(0 / 6 \mathrm{M} \Omega\). Special price \(\$ 4 /-/-\) only.

\section*{ELECTROLYTIC CONDENSERS}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \(0.25 \mu \mathrm{~F}\) & 3 volt & \(4 \mu \mathrm{~F}\) & 12 volt & \(25 \mu \mathrm{~F}\) & 6 volt & \(320 \mu \mathrm{~F}\) & 10 volt \\
\hline \(1 \mu \mathrm{~F}\) & 6 volt & \(4 \mu \mathrm{~F}\) & 25,volt & \(25 \mu \mathrm{~F}\) & 12 volt & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{\(400 \mu \mathrm{~F} \quad 6: 4\) volt}} \\
\hline \(1 \mu \mathrm{~F}\) & 20 volt & \(5 \mu \mathrm{~F}\) & 6 volt & \(25 \mu \mathrm{~F}\) & 25 volt & & \\
\hline \(1 \cdot 25 \mu \mathrm{~F}\) & 16 volt & \(6 \mu \mathrm{~F}\) & 6 volt & \(30 \mu \mathrm{~F}\) & 6 volt & & \\
\hline \(2 \mu \mathrm{~F}\) & 3 volt & \(8 \mu \mathrm{~F}\) & 3 volt & \(30 \mu \mathrm{~F}\) & 10 volt & \multicolumn{2}{|l|}{\multirow{3}{*}{All at 1/- each.}} \\
\hline \(2 \mu \mathrm{~F}\) & 350 volt & \(8 \mu \mathrm{~F}\) & 12 volt & \(50 \mu \mathrm{~F}\) & 6 volt & & \\
\hline \(2 \cdot 5 \mu \mathrm{~F}\) & 16 volt & \(8 \mu \mathrm{~F}\) & 50 volt & \(64 \mu \mathrm{~F}\) & 2.5 volt & & \\
\hline \(3 \mu \mathrm{~F}\) & 25 volt & \(10 \mu \mathrm{~F}\) & 6 volt & 64MF & 9 volt & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{20 assorted
(our \(\operatorname{selection)}\) 10/-}} \\
\hline \(3 \cdot 2 \mu \mathrm{~F}\) & 64 volt & \(10 \mu \mathrm{~F}\) & 25 volt & 10012F & 9 volt & & \\
\hline \(4 \mu \mathrm{~F}\) & 4 volt & \(20 \mu \mathrm{~F}\) & 6 volt & \(320 \mu \mathrm{~F}\) & 4 volt & & \\
\hline
\end{tabular}

SKELETON PRE-SET POTENTIOMETERS \(100 \Omega\) \(100 \mathrm{~K} \Omega\)
\(200 \mathrm{~K} \Omega\)
\(500 \mathrm{~K} \Omega\)
500K
PRE-SET SLIDERS
680K
SMALL TRANSISTOR OUTPUT TRANSFORMERS 2/6 each
SMALL TRANSISTOR DRIVER TRANSFORMERS \(2 / 6\) each. CRYSTAL OR MAGNETIC LAPEL MIKES. \(10 /\) each
CRYSTAL TAPE RECORDER MIKES. 12/- each.

Orders by post to:
G. F. MILWARD, DRAYTON BASSETT, NEAR TAMWORTH, STAFFS.
Please include suitable amount to cover post and packing. Minimum 2/-. Stamped addressed envelope must accompany any enquiries.
For customers in Birmingham area goods may be obtained from Rock Exchanges, 231 Alum Rock Road, Birmingham 8.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{I}_{\mathrm{N} 914} \\
& \mathrm{I}^{\mathrm{N} 914} \\
& \mathrm{I}_{\mathrm{N} 9120} \\
& \mathrm{r} 9120
\end{aligned}
\]} & \multicolumn{9}{|l|}{2/6 SEMICONDUCTOR DEVICES} & NKT403
NKT405 & \[
\begin{aligned}
& 15 / 0 \\
& 15 /=
\end{aligned}
\] \\
\hline & \(2 / 6\) & 2N3702 & 4. & BCl13 & & BFX43 & 8 & BSY & 4/- & NKT613 & 6/6 \\
\hline \({ }_{\text {IS130 }}^{18130}\) & \(2 / 6\) & \({ }_{2 \mathrm{~N} 3703}\) & \(4 / 6\) & BC118 & 6/6 & BFX 68 & 13/8 & BSY28 & 4/8- & NKT674 & \\
\hline \({ }_{\text {2N132 }}\) & \(2 / 6\) & 2N3704 & \(5 / 6\) & \({ }_{\text {BC125 }}\) & 13/6 & BFX68A & & B8Y29 & \(4 / 6\) & NKT677 & \\
\hline -2N404 & 6/6 & \({ }_{\text {2N3705 }}\) & \(4 / 8\) & BC147 & \(5 /\) & BFX84 & 81/ & B8Y38 & A/8 & NKT713 & 6 \\
\hline 2N697 & & 2N3706
2N 3707 & 48 & BC148 & \(4 / 6\) & BFX85 & 10\% & B8Y39 & 4/6 & NET733 & 6 \\
\hline 2N698 & 46 & 2N3708 & \(4 /\) & BC182 & \(4 / 8\) & \({ }^{\text {BFX }} 87\) & \(8{ }^{\circ}\) & & 16 & NKT781 & - \\
\hline 2N706 & 3/- & 2N3709 & 4/0. & BC183 & \(4 / 6\) & BFX88 & & BgY52 & 1016 & M & - \\
\hline 2N706 & 3 & 2N3710 & 6 & BC184 & \(4 / 6\) & BFX92A & 12/6 & B8Y53 & 9/6 & MP & \(9 \%\) \\
\hline 2N708 & 4/- & 2N3711 & 4/. & BCY30 & \(7 / 16\) & BFX93A & 15/\% & BEY54 & \(10 / 6\) & MPF105 & \\
\hline 2N726 & & 2N3819 & 10\% & BCY31 & \(4 / 6\) & BrYio & \(4 / 6\) & B8Y78 & 9/6 & OA5 & /6 \\
\hline 2N727 & 5/- & 2N4058 & \(7 / 6\) & BCY32 & T18 & BFY11 & 46 & B8Y79 & 916 & 049 & \\
\hline 2N743 & 4/6 & 2N4059 & 816 & BCY33 & \(5 / 6\) & BFY17 & 4/6 & B8Y81 & 11/6 & OA81 & 1/9 \\
\hline 2N744 & & 2 N 4060 & \(8 / 6\) & BCY34 & 4/6 & BFY18 & \(4 / 6\) & BSY82 & 10/6 & OA91 & \\
\hline 2N753 & & 2 N 4061 & \(6 / 6\) & BCY 38 & \(5 / 6\) & BFY19 & \(4 / 6\) & BSY83 & 11/6 & OA95 & 1/6 \\
\hline \({ }^{2} \times 14\) & \(3 / 6\) & \({ }^{2} \mathrm{~N} 4062\) & \(6 / 6\) & BCY39 & 816 & BFY41 & 10\% & B8Y85 & 12/6 & OA200 & \\
\hline 2N916 & & 2N4254 & 916 & BCY 40 & \(7 / 6\) & BFY43 & 13/6 & B8Y87 & 10/6 & OA202 & \\
\hline \({ }^{2} \mathrm{~N} 929\) & 516 & 2N4255 & 816 & BCY42 & \(6 / 6\) & BFY50 & \(5 / 6\) & B8Y90 & 11/6 & OC26 & 716 \\
\hline 2N930 & 6 & 28102 & \(8 / 6\) & BCY43 & \(6 / 6\) & BFY51 & \(4 / 6\) & BSY95A & 4/- & 0 C 28 & 716 \\
\hline 2 N 1131 & 9 & 28103 & 818 & BCY®4 & \(7 / 6\) & BFY52 & \(5 / 6\) & BY100 & \(4 / 6\) & oc3s & 716 \\
\hline \({ }^{2} \times 1132\) & 9 & 28104 & 6/6 & BCY 70 & \(6 / 6\) & BFY53 & \(5 / 6\) & BYX 10 & \(5 / 6\) & 0C36 & \\
\hline 2 N 1302 & & 28131 & 616 & BCY71 & 10/6 & BFY56 & 10/0 & BYZ10 & 9/0 & OC4 1 & \\
\hline 2N1303 & 4 & 28501 & 6 & BCY72 & 6/6 & BFY56A & 11/6 & BYZ11 & \(7 / 6\) & OC44 & \\
\hline 2N1304 & & 28502 & \(5 / 6\) & BCZ10 & \(4 / 6\) & BFY76 & 9/6 & BY\%12 & 6/0 & OC45 & 2/6 \\
\hline 2N1305 & 51 & 28503 & 16 & BCZ11 & \(4 / 6\) & BFY77 & 11/6 & BYZ13 & 5/. & \(0 \times 71\) & 2/6 \\
\hline 2N1306 & 6 & 40250 & \(16 / 6\) & BF115 & 4/6 & BFY90 & \(12 / 6\) & GET103 & 5) & OC72 & 2:6 \\
\hline 2N1307 & 6 & 40251 & \(17 / 6\) & BFl17 & 10/6 & B8740 & \(8 /\) & GET113 & 4/- & OC74 & 4/6 \\
\hline 2N1308 & 81- & 40253 & \(8 / 6\) & BF167 & 6/6 & B8741 & 8/- & NKT217 & 10/6 & 0c75 & \\
\hline 2N1309 & & 40354 & 10/6 & BF173 & \(7 / 6\) & BSX19 & \(5 / 6\) & NKT219 & 6/- & \(0 \times 77\) & 16 \\
\hline 2N1507 & 516 & 40360 & \(12 / 6\) & BF180 & \(7 / 6\) & B8X 20 & \(5 / 6\) & NKT229 & 6 & 0078 & \\
\hline 2N1613 & & 40361 & 12/6 & BF224 & 816 & BSX21 & 8\% & NKT240 & 6\%. & OC78D & /- \\
\hline 2 N 1711 & 616 & 40362 & \(14 / 6\) & BF225 & 8/6 & BSX28 & 10/6 & NKT241 & 8/6 & \(0 \mathrm{C81}\) & \\
\hline 2N1889 & & 40370 & \(8 / 6\) & BF237 & 8 & BSX27 & \(10 / 3\) & NKT242 & 6/- & OC81D & /- \\
\hline 2N1893 & & AA129 & \(2 /-\) & BF238 & 818 & H8x 28 & \(8 / 6\) & NKT244 & 5/6 & \(0 \mathrm{C83}\) & \\
\hline 2N2102 & 18/6 & AAZ13 & \(2 /-\) & BFW57 & 716 & B8X29 & 14/6 & NKT245 & \(5 / 6\) & OC139 & /6 \\
\hline 2 N 2160 & 14. & AAZ15 & \(3 / 6\) & BFW58 & \(7 / 6\) & B8X 60 & 19/6 & NKT261 & \(4 / 6\) & OC140 & \(8 / 6\) \\
\hline 2N2193 & \(5 / 6\) & AAZ17 & \(3 / 6\) & BFW59 & \(6 / 6\) & B8x 61 & \(12 / 6\) & NKT262 & \(4 / 6\) & OC170 & 6/- \\
\hline 2N2193A & & AC107 & 61. & BFW60 & 6/6 & B8x 78 & \(4 / 6\) & NKT264 & 4/6 & 0C171 & 3/- \\
\hline  & & AC126 & 41. & BFX12 & \(5 / 6\) & B8x 77 & 81- & NKT271 & \(4 / 6\) & OC200 & 16 \\
\hline 2N2218 & 10/6 & AC128 & 3 & \[
\begin{aligned}
& \mathrm{BFX13} \\
& \mathrm{BFX} 29
\end{aligned}
\] & \(5 /\) & B8x78 & 816 & NKT272 & 4/6 & OC201 & 5/6 \\
\hline 2N2219 & 10/6 & ACY17 & 51 & BPX30 & 15\% & B8Y11 & \(5 / 6\) & NKT274 & 4/6 & OC202 & \(8 / 6\) \\
\hline 2N2220 & 51. & ACY18 & 5/. & BFX 35 & 18/6 & BSY26 & 4/- & NKT275 & \(4 / 6\) & OC207 & \\
\hline 2N2221 & & ACY19 & & & & & & & & & \\
\hline 2N2222 & 5\% & ACY20 & \(4 \%\) & INTEG & ATED & CIRCUIT8. & \[
\text { i- L. } \theta
\] & (1)11/ & . 82 & 14/- & \\
\hline \({ }_{2}{ }^{2 N} 23297\) & \(8 / 6\) & ACY21 & 4/- & 8.C.A. & OA3014 & :3013, 3019 & 9, 302 & 301 & & & \\
\hline 2N2369 & 7 & ACY28 & 4/. & Data an & d appli & cation shee & ets 2/- & per d & & & \\
\hline 2N2369A & 716 & AD140 & \(8 \%\) & ZENER & DIOD & 8: & & & & & \\
\hline 2N2411 & 6/6 & AD149 & 8 & 1) watt & range & froma 3-70 & Volts & (3) \(4 / 6\) & & & \\
\hline 2N2412 & 816 & AD161 & \(7 / 6\) & Unmar & ed, un & ted tran & sistors & 60 for & & & \\
\hline 2N2483 & 5 & AD162 & \(7 / 6\) &  & OARD: & & & & & & \\
\hline 2N2484 & 51 & AF114 & 5\%. & 2 in . & in., 3 & 21 ln, & & 31 m & to. & 31/n & \\
\hline 2N2539 & 4 & AF117 & & 516. 17 & in. \(\times\) & D., 15 ¢/- & Cl & & & & \\
\hline 2N2540 & 4/8 & AF181 & 10/6 & IMFPD & OLY & & & & & & \\
\hline \({ }^{2} \mathrm{~N} 2646\) & \(12 / 6\) & AF188 & \(10 / 6\) &  &  &  & & & & & \\
\hline \({ }_{2}^{2 N} 2 \mathrm{~N} 2906\) & 8/6 & A8Y26 & \(4 / 6\)
\(8 / 6\) & \({ }_{3}\) Reatt, & 4d. & tt, & & & tt, & 5 wat & \\
\hline 2N2904A & 8\%- & A8Y28 & & , & as: 3 & , & & & & & \\
\hline 2N2905 & 81- & A8Y29 & & n., & 5 sin & 410 & & 12 in 。, & & & \\
\hline 2N2905A & 81 & AFZ12 & 516 & Post a & - 12 l Pack & & & & & & \\
\hline \[
\begin{aligned}
& \text { 2N2906 } \\
& \text { 2N2906 }
\end{aligned}
\] & \(81 /\) & \[
\begin{aligned}
& \text { ASZ21 } \\
& \text { BAX13 }
\end{aligned}
\] & & & ALL D & Vices & & L & ARAN? & & \\
\hline 2907 A & \(8 /\) & & & & & & & & & & \\
\hline 2 N 2926 & \(3 / 6\) & BAY38 & & & & & & & & & \\
\hline 2N3011 & 5/- & BC107 & 316 & 28 CR & (LE & OOD B & ROA & WAY & ON & ON, N. & \\
\hline 2 N 3053
2 N 3055 & \(7 / 6\)
\(19 / 6\) & \[
\begin{aligned}
& \mathrm{BCl} 188 \\
& \mathrm{BCl} 09
\end{aligned}
\] & \[
316
\] & TEL: 0 & |-452 & 0161 & & CA & LLER & WELC & \\
\hline
\end{tabular}


We supply B.A. Screws, etc. in brass, steel, stainless, phosphor bronze and nylon to laboratories throughout the Commonwealth.
We can also offer early delivery for many sizes of screws, etc. with Metric Threads

Please send for List W9/65 (WW)
WALKER-S PEICER COMPONENTS LTD.
5, High Street, Kings Heath, Birmingham, 14. Telephone: 021.4443155 (Sales) and 5278
WW- 150 FOR FURTHER DETALLS

\section*{}

Oxley PTFE ' Barb ' Insulators are unequalled for their electrical and mechanical performance. Serid for full details and samples of the comprehensive range.

OXLEY DEVELOPMENTS COMPANY LTD.
Priory Park, Uiverston, North Lancs,, Enigland.
Tel: Ulverston 2621. Cables: Oxley Ulverston. Telex 6541

\section*{SENSATIONAL R.S.C. HIGH FIDELITY STEREO PACKAGE OFFERS}

Special inclusive
price. Fully wired units ready o "plug-in." 75 Gns. EXTREMELY
ATTRACTIVE
AND VERSATI AND VERSATILE
PLINTHS PLINTHS Anished in Satin Teak
veneer. Tinted Pers. veneer. Tinted Pers.
pex hinged cover with
satin chrome handle.
'Package 1' 13 Watt System * Garrard SP25 Mk. II 4-speed Player Unit. t Goldring CS90 Ceramic P.U. Cartridge. * PA12 Amplifier in Teak veneer housing

* Goldring Transcription Turntable on Plinth.太 Super 30 Amplifler in Teak veneer, Special inclusive price. Fully
wired units ready to "plug-in".
Gns. Comparing favourably with equipment cost-
ing considerably more. Send S.A.E. for leaflet. AUDIOTRINE HIGH FIDELITY


LOUDSPEAKERS
Heat ana

xtended frequency range. Impedance
or \(15 \mathrm{ohms}, 40-15,000 \mathrm{c}\). p.a. Exceptional
Flease state 1 mp
HF501
\(5^{*} 10 \mathrm{~W}\)
EF \(80100^{\circ} 8 \mathrm{~W}\)

\begin{tabular}{l} 
Srices include carriage \\
\(57 / 9\) HF120 \(12^{*} 15 \mathrm{~W}\) \\
\(59 / 9\) \\
\(59 / 9 \mathrm{HF120D} 12^{\prime \prime}\) \\
\hline 15 W \\
\(79 / 9\)
\end{tabular}
 Cabinets of iatestatyling Satin Teak or Walnat aconaticelly
lined (and ported where appropriate). Credit termi avail abie on all units.
DORSET

15,000 e.p.a. Rating 8 -10 watts. Fitted
High fux \(8^{\circ}\) Dual conespeaker. 88.19 .9 STANTON IIIS ing 10 watts. Incorporating Fane 803 b and \(\mathbf{1 5 , 0 0 0}\) line magnet. ruhber surround ohms. Gives smouth realistic sound or 15 . 16 CnS. GLOUCESTER Rating lio wapeaker. Cross-over. unit and Tweeter \(40-20,000\) c.p.s. Impedance 15 ohme. \(12 \frac{1}{2}\) Gns. R.S.C. TA6 6 Watt HIGH FIDELITY SOLID
OQ Q 200-
Fre
20,0
mon
1 Mike, Gram, Radio or Tape. Input selector switch fully enclosed enamelled case. \(9 \frac{1}{} \times 2 \frac{1}{4} \times 5\) in. Attractive knobs. Complete kit of parts with full wiring diagrams
Or factory bullt with 12 months
and instructions. 6 Cns.
Carr. 7/6. 6 Gns. R.S.C. COLUMN SPEAKERS tone Rexine/Vynair, ideal for Vocalists and Public
Address. 15 ohm matching. Type C48, 30 watts. Fitted
four 8in. high fix 8 watt speakers 0 wrall size approx Address. Lo ohm matching. Type C48, 80 watts. Fitted
four 8 in. high fux 8 watt speakers. Overall size approx.
\(42 \times 10 \times 6\) in. 16 Gns. Or deposit \(65 /-\) and 9 mthly \(42 \times 10 \times\) bin. 16 Gns. Or deposit 65/- and 9 mthly
pmts. \(34 / 9\) (Total \(£ 18 / 17 / 9\) ). Cart. \(10 /-11,00\) ind Type C412s, 50 watt. Fitted four 12 in . 11,000 lines 15
watt speakers. 0 verall size \(56 \times 14 \times 9 \mathrm{in}\), approx. 24 ngs, Wr Deposit \(£ 4 / 13 / 6\) and 9 monthly payments Carr. \(15 \%\)

 Special inclusive price.
\(49 \frac{1}{2} \mathrm{Gns}\).
'Package 2' 30 Watt System * Garrard SP25 Mk. II Turntable on Plinth. * Super 30 Amplifier in Teak veneer housing. \% Pair of Stanton Loudspeaker Units.
AUDIOTRINE HI-FI SPEAKER SYSTEMS


 HI-FI 'SPEAKER ENCLOSURES







\section*{R-SC.TA12 13 WATT STEREO AMPLIFIFR}

R.S.C. BATTERY/MAINS CONVERSION UNITS
 replaces batterien supplyrax. 1.5 Completely,
rand 90
ver Perspex cover 3 ens extra. Or Dep. \(49 \frac{1}{2}\) ins. Total 9 mthiy. pmts. 85.4.0.

AGENT APPOINTED

 gntee. 15 GNSS . Or Dep. \(24 / 18 /-\) and 9 mthly. pymts. \(29 /=\) (Total 17 Gns.)
Or in Teak housing 3 mith.

\section*{}

KT77 , NKASSIOR. NKT275, NKT275, NKT274,





 coint to point wiring diagrams.
supplied tactory built, \(15 t\) Gne. Carr. 12/6. Terma: Derooe
 LEADHIG BRTTIBM MANUTACTURERS. BLACKPOOL (Agent) O \& C Electronics 227 Church St BRADFORD \({ }^{10}\) North Parade (Half-day Wed.). Tel. 25349 BRISTOL 14 Lower Castle St. (Hali-day Wed.). Tel. 22904 BIRMINGHAM \(30 / 31\) Gt. Western Arcade, opp. Snow DERBY 26 Osmaston Rd. The Spor (Halifday Wed.) DARLINGTON 18 Priestgate (Hall-day Wed.). Tel. 68013 EDINBURGH 133 Leith St. (Halifday Wed.).
GLASGOW \({ }^{326}\) Argyle St. (Hall-day Tues.). Tel. CIITy 4158 403 Sauchiehall St. (opp. Locarno) HULL 91 Paragon Street (Halifday Thurs.). Tel. 20505


HAIL ORDERS to: 102-106 Henconner Lane, Bramley, ceeds 13. No C.O.D. under C. Terms C.W.O. or C.O.D. \(5 / 9\) extra under 65 . Trade supplied S.A.E. with enquiries Open all day Sats. except Open all day Sats. except
High Holborn.

SOLD

\section*{}

COMPARABLE WITH UNITS


THESE UMITS ARE EHIHEITLY SUITABLE FOR USE WITH AHY MAKE OF

 (Total \(231 / 8 / 3\) ) A DUAL CRAMIEX VERSIOX OF THE SOPER 15. Employing Componente. CROss TALKK: 52 dB ance \(1,000 \mathrm{c}\) c.p. . .
COMTROL: S Volume Control Balance Control. 8tereo/Mono Switch. Tape Monitor
Switch Mains \&witch. IIPUT 80cKETB (Matched Pairs). (1) Magnetic Swith Mains 8witch. DAP UT SOCKETS (Matched Pairg). (1) Magnetic
P.U. (2) Ceramic or Cryatal P.U. (3) Radio/Aux. (4) Tape Head/
Microphone Operation of the Roput Selector Saltch Hete equalination. Rigid 18 .w.p. Chanais. 81ze approx. 12 inpropin. Wide,
3in. high and 8in. deep. Neon Panel indicator. Attrective Wacia 3in. high and 8in. deep. Neon Panel indicator. Attrective Facia
Plate and Spun siiver Matching Knobo. Above fecilites. etc., except

\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{4}{*}{). Or in Teak housing. 30 Ons. Carr. 15/- or Deposit £6/2/6 paymin., 64/- (Total RA4/18/6). Send S. A.E. for Leafter}} \\
\hline & \\
\hline & \\
\hline & \\
\hline
\end{tabular}
R.S.C. A11T 15 WATT HIGH FIDELITY AMPLIFIER


\[
12 \mathrm{in.} \text { High Quality LOUDSPEAK ERS }
\]
\begin{tabular}{|c|}
\hline In teak veneered cabinets. lines, 3 or 15 ohms. [5/15/= \\
\hline 20 Wett Model. 15 ohm. Size \(18 \times 18 \times 10 \mathrm{in}\). Gauss 10,000 lines. Rexine \\
\hline
\end{tabular}\begin{tabular}{l}
10,000 lines. Rexine. \\
covered \(10 /\) extre. \\
\hline
\end{tabular}

TWO-WAY PHONE AMPLIFIER
R.S.C. MAINS TRANSFORMERS

 \({ }_{16 / 12}^{1511}\)

\section*{ \\ \(300-0-300 \mathrm{v} .130 \mathrm{~mA}, 6.3 \mathrm{v}\). 4 a
For Muliard 510 Amplifer \\ \[
13
\] \\ S. \\  \\ \(\xrightarrow{250 .}\) \\ \(300-0\)
\(300-0\) \\ }







 SMoor Erra CHokes \begin{tabular}{l} 
SMOOTBDRG CHOKE \\
\(150 \mathrm{~mA}, 710 \mathrm{H}, 250 \mathrm{E}\) \\
\hline 1
\end{tabular}

32 High Street (Half-day Thurs.). Tel. 56420 LEICESTER 5-7 County (Mecea) Arcade, Briggate (Half-day Wed.) Tel. 28252 LEEDS 73 Dale St. (Half-day (Half-day Wed.) Tel. 28252 LIVEROOL 238 Edgware Road, W. 2 (Half-day Thurs.) LONDON 96 High Holborn, WCI. Tel. HOL 9874 (Half-day Sat.) (Half-day Wed.)
tel. CENtral 2778 Oldham stree tel. CENtral 2778 MANCiLS 15 R 106 Newport Rd. (Half-day 4709 MPDDLESBROLGH 41 Blackett Sereet (opp. Fenwicks NEWCASTLE UPON Store) (Half-day Wed.). Tel. 21469 TYNE 13 Exchange Street (Castle Market Bids.)
(Halffay Thurs.). Tel. 20716 SHEFFIELD




\section*{SERVICE TRADING CO}

LIGHT SENSITIVE SWITCHES Kit and parts including ORP. 12 Cadmium Circuit. Now supplied with new Siemens High Speed Relay for 6 or 12 vole operations. Price \(25 / \mathrm{F}\), plus \(2 / 6 \mathrm{P}\). \& P . ORP 12 and Circuit 10/- post paid.

220/240 A.C. MAINS MODEL incorporates mains transformer rectifier and special ircuit 47/6, plus 2/6 P. \& P. PHOTO ELECTRONIC COUNTER Can be set for counts of up to 500 per minute. 210-250 A.C. powered. Kit of Components, including photo cell, high speed non-resettable counter, transformer relay, etc., logether with clear circult diagram, \(63 / 2 / 6\) LIGHT SOURCE AND PHOTO CELL MOUNTING
Precision engineered light source
C with adjustable lens assembly and \(0=\) MBC bulb. Separate photo cell mounting assembly fo ORP. 12 or similar cell with optic window. Both unit are single hole fixing. Price per pair \(£ 2 / 15 / 0\) plus \(3 / 6\)
P. \& P.

\section*{ULTTRA VIOLET BULĒS \\ \section*{Easy to use source of U,V. for dozens of prastical and}} experimental uses
12 volt 36 watt A.C./D.C. SBC. 6/6. P. \& P. \(1 /\) Transformer to suit the above. Input 200-240 v A C 12 volt 36 watt, \(21 /\)-. P. \& P. 2/6. Input \(200-240\) 12 volt 60 watc \(27 /\). P. \& P. \(3 / 6\). Set of 4 Colours 12 volt 60 watt, \(27 /\)-. P. \& P. P. \(3 / 6\). Set of 4 Colours erise. In I ox. jars. Ideal for use with the above Uler


\section*{\(200 / 250\) Y. AC HORSTMAN 20AMP TIME SWITCH}

2 on/off every 24 hrs. at any pre-set time Fitced in metal case 36 hr . spring reserve Used but fully tested. Fraction of maker's
price, \(€ 3.19 .6\) plus \(4 / 6 \mathrm{~d}\), post and pack.
COPPER LAMINATE PRINTED CIRCUIT BOARD. Large sheet \(15 \frac{1}{2} \times 5 \frac{1}{2}\) in. Price \(3 / 9,3\) for \(10 /\) ost paid

\section*{ \\ SPEGIAL OFFEB \\ ELLIOTT PEN RECORDER \\ 230 series. Movement 1 ma Clockwork chart mechanism giving a chart speed of 12 in . per hour with 36 hours continuous and in sound working order. \\ Our price \(\mathrm{E} / 4 / 10 / 0\) ! B.R.S. 15/- \\ }

AUTO TRANSFORMERS Step UP AUTO TRANSFORMERS. Step up, step down \(110-200-220-240 v_{0}\). Fully shrouded. New. 300 was type, t3 each. P. \& P. 4/6. 500 ware type, \&4/2/6 each
P. \& P. \(6 / 6\). \(I, 000\) wate type, \(65 / 5 /\) earh. P. \& P. \(7 / 6\) 230 VOLT A.C. GEARED MOTORS Trpe DI5G 5 r.p.m. I.71b. inch, £2/9/6, P. \& P. 3/
 DRY REED SWITCHES
New special offer of Dry Reed Switches, \(\frac{1}{2}\) amp. concact \(1 \frac{1}{6} \times 1 \frac{1}{6} \mathrm{in} ., 4\) for \(10 / \mathrm{F}\), post pald.
SEMI-AUTOMATIC "BUG" SUPER SPEED
MORSE KEY
7 adjustments, precision tooled,
speed adjustable 10 w.p.m. to as speed adjustab

10 w.p.m. high as desired. Weight \(2 \frac{1}{2} 16 . £ 4 / 12 / 6\) post paid.

\section*{A.C. CONTACTOR}

\section*{2 make and 2 break (or \(2 \mathrm{c} / \mathrm{o}\) ) 15 amp . contacts. \(230 / 240\) v. A.C. Operation Brand new. \\ CONDENSERS \\ New at a fraction of maker's price \\ \(\begin{array}{lllllll}2,500 \mathrm{mfd} . ~ & 100 & \mathrm{v} . . & 12 / 6 & 4,000 & \mathrm{mfd} . & 25 \\ 10,000 \mathrm{mid} . & 35 & \mathrm{v} . . . & 15 / \mathrm{m} & 4,000 & \mathrm{mfd} & 50 \\ \mathrm{v}\end{array}\)}
elow are inland only. Fo overseas please anis for quotation. We do
insue a catalokue or
list.

\section*{220/240v. A.C. COOLING UNIT}

2,300 r.p.m. Gin. blade size. Smoorh powerful motor. All metal construc ion. Continuously rated. Individually ested. Offered at fraction of maker'


100 WATT POWER RHEOSTATS
(NEW) Ceramic construction, windEnamel, heavy duty brush assembly ntinuous duty AVAILABLE FROM STOCK IN THE FOLLOWING II VALUES: 5 ohm 2a., 50 ohm 1.42 ohm 100 hm . 10 ohm 3a., 250 ohm 7 a ., 500 ohm 45 a ., 1,000 ohm 280 mA ., \(1,500 \mathrm{ohm}\) 230 mA ., 2,500 ohm .2a. Diameter 3tin. Shaft length zin. dia. Ifin., \(27 / 6\). P. \& P. \(1 / 6\). 50 WAT \(1 / 5 / 10 / 25 / 50 / 100 / 250 / 500 / 1,000 / 1,500 /\)
2,500 ohm, 21/-P. \& P. 1/6.
25 WAT' \(10 / 25 / 50 / 100 / 250 / 500 / 1,000 / 1,500 / 2,500\) ohm, 14/6, P. \& P. I/6.

\section*{Srovelesprodelidione}

TWO EASY TO BUILD KITS USING XENON WHITE LIGHT FLASH TUBES. SOLID STATE TIMING + TRIGGER ING CIRCUITS. PROVISION FOR EXTERNAL TRIGGERNG. 230-2SOV. A.C. OPERATION
The Strobe is one of the mose useful and interesting instru-
ments in the laboratory or workshop. It is invaluable for ments in the laboratory or workshop. It is invaluable for can study of movement and checking of speeds. Many uses also in the entertanment business. It is used a great deal in
the motor industry and is a real tool as well as an interesting EXiensific device. er sec. All electronic components including Veroboard S.C.R. Unijunction Xenon Tube tinstructions \(\mathbf{8 5 . 5 . 0}\) plu S1.POUSTRIAL "ADVANCED" KIT. I to 80 Flash per
sec. IDEAL FOR LABORATORY OR SCHOOL USE. Fully isolated from the mains supply by specially wound trans
former. 500 v . FLASH CIRCUIT and stabilised ziming circuiz Higher output flash tube. Price 28.8 .0 plus \(7 / 6\).
INCH POLISHED REFLECTOR. Ideally suited for above Strobe Kits. Price \(8 / 6\) post paid.


\section*{PRECISION INTERVAL TIMER} From 0-30 seconds (reperitive). Jewelled Opanced movement. Lever re-sec switch. Brand New i7/6 plus 2/6 P. \& P.
\(\left\{\begin{array}{l}\text { INSULATED TERMINALS } \\ \text { Available in black, red, white, } \\ \text { yellow, blue and green. New } \\ 17 /- \text { per doz. P. \& P. } 2 /- \text {. }\end{array}\right.\)

50K 45 TURN PRECISION WIREWOUND CONTROL Fly leads. It \(\times \frac{1}{4} \times 1 / \mathrm{f}\), made by M.E.C. Ltd, \(10 /=\) post paid LATEST TYPE SELENIUM BRIDGE RECTIFIERS 30 volt 3 amp., \(11 /\), plus \(2 / 6\) P. \& P. 30 vole 5 amp., \(16 / \%\), plus \(2 / 6\) P. \& P.

MOVING COIL HEADPHONE AND MIKE Soft rubber ear-pieces with M/C Mike fitted 5-way plug as on No. 19 set. New, in maker's packing, \(16 / 6\) plus \(3 / 6 \mathrm{C}\) \& P .
A.C. AMMETERS 0-1, 0-5, 0-10, 0-15, 0-20 amp. F.R.

2inin. dia. Allar \(21 /-\) each.
A.C. VOLTMETERS \(0-25\) v., \(0-50\) v., \(0-150\) v. M.I \(2 \frac{1}{2} \mathrm{in}\). Flush round all at \(21 /-\) each. P. \& P. extra.
\(0-300 \mathrm{v}\). A.C. Rect. M-Coil \(2 \frac{1}{2}\) in. Ty.
\(0-300 \mathrm{v}\). A.C. Rect. M-Coil \(3 \frac{1}{2}\) in. Type 23 in

\section*{MINIATURE UNISELECTOR} 3 banks of 11 positions, plus homing bank. 40 ohm coil. 24-36 v. D.C. operation. Carefully tested. 22/6, plus 2/6 P. \& P.

UNISELECTOR SWITCHES
NEW 4 BANK 25 WAY 25 ohm coil, 24 V. D.C.
E5/17/6, plus 2/6. P. \& P.

8-BANK 25-WAY FULL WIPER
24 v. D.C. operarion, \(\mathbb{l} / 12 / 6\), Plus \(4 /-\) P. \& P.


\section*{SEALED RELAY}

230 VOLT AC COIL
Two change o

\section*{Plug-in I.O. Base}

Price \(14 / 6 \mathrm{~d}\). incl. base. Post Paid

\section*{SANGAMO WESTON}

Dual range voltmeter, 0-5 and \(0-100 \mathrm{v}\) D.C. FSD 1 mA . In carrying case with
tests prods and leads. \(32 / 6\). P. \& P. \(3 / 6\).

\section*{GALVANOMETER}

300-0-300 microamp. Calibrated
30-0-30. Mounted in sloping front case
E2/10/= P. \& P. \(3 / 6\) D.C. Voltmeter
\(0-3 \mathrm{~V}\) and \(0-15 . V 62\) plus \(3 / 6 \mathrm{P}\). \& P. D.C. Ammeter ching instrumen amp . \(62,3 / 6 \mathrm{P} . \& \mathrm{P}\). The set of 3 mac \(2230 / 250\) v. A.C. SOLENOID \(17 / 6\) plus \(2 / 6 \mathrm{p}\) erp. Approx. 31b. pull 12/24 v. D.C. SOLENOID Approx. 8 oz. push, \(8 / 6\) plus \(1 / 6\) P. \& P


VAN DE GRAAF ELECTROSTATIC 30 ERATOR, fitted with motor drive for 50,000 volts. Supplied absolurely complete including accessories for carrying out a number of inceresting experiments, and fult inseructions. This instrument is completely safe, and ideally suited for School demonstrations, Price
\(\& 7 / 7 /-\), plus \(4 /-P\). \& P. L't. on req.

\section*{L.T. TRANSFORMERS}

\section*{All primaries 220-240 vol}

Type No. 34 Sec . Taps
\(30,32,34,36 \mathrm{v}, 52\)
\(\begin{array}{ll}1 & 30,32,34,36 \\ 2 & 30,40,50 \\ 3\end{array}\)
\(10,17,18 \mathrm{v}\). at 10 amps .
\(6,12 \mathrm{v}\), at 20 amps.
\(17,18,20 \mathrm{y}\) at 20 mp
\(6,12,20 \mathrm{v}\). at 20 amps .
24 v, at 10 amps .
\(4,6,24,32 \mathrm{v}\), at



ALL MAIL ORDERS. ALSO CALLERS AT:
57 BRIDGMAN ROAD
LONDON, W.4. Phone: 951560

(Burndept B.E.352) 60 watt model. Supplied Brand New complete with stainless steel tank \(9 \frac{2}{4} \times 6 \frac{1}{4} \times 4 \frac{1}{2}\) in. £60. Carr, 20/-
2. FAST NEUTROR MONITORS (Burndept 1407C) for measuring neutrons in the energy range 0.15-15 mev. £100.
3. Radlatlon Monitors (Burndept BN 110 MK. V) \(0-5 / 50 / 500 / 5\) k. c.p.s. Brand new. £100. Alpha and Beta Gamma probes available at extra cost.
4. PORTABLE RADIATION MONITORS (BuIndept BN 132) \(0-5 / 50 / 500 / 5 \mathrm{k}\). c.p.s. With built-in Gamma probe. Brand new. \(£ 50\) complete with carrying harness.
S.A.E. for literature. 10\% discount for Educational Authorities.

LAAGE CAPACITY ELECTROLYTICS. \(2,000 \mu \mathrm{~F}, 150 \mathrm{v}\) \(4,000 \mu\) F. 90 v. \(7 / 6\) ea. \(6,300 \mu \mathrm{~F} .63 \mathrm{v} . ; 10,000 \mu \mathrm{~F} 30 \mathrm{v}\). \(16,000 \mu \mathrm{~F} .15 \mathrm{v} . ; 25,000 \mu \mathrm{~F} .15 \mathrm{v} .10 /-\) each. All \(4 \frac{1}{2} \times 2 \mathrm{in}\). screw terminals. P.P. 1/- ea.
SPEAKER BARGAINS. E.M.I. \(13 \times 8\) in. with double Tweeters \(15 \mathrm{ohm}, 65 /-\) - P.P. \(5 /\)-. As above less tweeters 3 or 15 ohm, \(45 /-\) ea., P.P. 5/-.
FANE 12 ln .20 watt (Dual Cone), 95/-. P.P. 5/-.
CAR RADIO SPEAKER \(7 \times 4 \mathrm{in} 3 / 5\).
CAR MADIO SPEAKER \(7 \times 4 \mathrm{in}\). \(3 / 5 \mathrm{ohm} .15 / \cdot\) өа. P.P. \(2 / 6\)

\section*{EXTRACTOR/BLOWER} FANS (Papst)
100 c.f.m. \(4 \frac{1}{2} \times 4 \frac{1}{2} \times 2\) in. 2800 r.p.m. Wonderful buy at 50/- өа.

SPEAKER SYSTEM ( \(20 \times 10 \times 10 \mathrm{in}\) ) . Made to spec from \(\frac{z}{z} \mathrm{in}\). board. Finished in black leathercloth. \(13 \times 8 \mathrm{in}\). speaker with twin tweeters complete with cross-over. \(50 \mathrm{c} / \mathrm{s}-20 \mathrm{k} / \mathrm{c}\). E7.10. P.P. 10/-.
PHOTOMULTIPLIERS 6262 and 6262b. £15 ea.
SILICON DIODES RS220af 2/- ea., f1 doz.; RS240 3/ea., 30/- doz.; RS280 4/- ea., 40/- doz.; IS103/BY100 4/- ea., 40/- doz.; RAS310af (avalanche) 6/- ea., 60/doz.; IS413 5/- ea., 50/- doz; RS610 10/- ea., RS640 20/- өa., RS812 40\%- ea., RS845 60/- ea.


centro off. 2 c/o each way \(7 / 6\)

DEAC BATTERY PACKS \(\left(5 \times 4 \frac{1}{3} \times 1 \frac{1}{2}\right.\) In.) containing 3 cells giving 4 volts at 5a.h. 35/-. P.P. \(5 /-\). SOLARTRON PULSE GENERAT
\(50 \mathrm{c} / \mathrm{s}-1 \mathrm{~m} / \mathrm{c}\). f 60 each. Carriage \(50 /\) -

WOBBULATORS TYPE 210 (Metrix) 0-220 M/c. Sweep width \(1 / 2 / 5 / 10 / 20 \mathrm{~m} / \mathrm{c}\). \(\mathbf{£ 4 0}\). Carriage \(30 /\)-.

\section*{THYRISTOR LIGHT DIMMERS}

500 watt Modula 45/-
1000 watt Module 60/-
These modules may be fitted into standard socket boxes and made up Into banks as required.

5 kW DIMMERS in metal cabinet E20 өа.

\section*{TRANSFORMERS}

3 PHASE L.T. TRANSFORMERS (Gardners ' \(C\) ' Core). Prim. 415 v . Sec. \(6.4 \mathrm{v}, 1 \cdot 8 \mathrm{~A} ; 20 \mathrm{v}, 1 \cdot 1 \mathrm{~A} ; 20 \mathrm{v}, 3.2 \mathrm{~A} ; 53 \mathrm{v}, ~ \cdot 18 \mathrm{~A}\).

L.T. TRANSFORMERS Prim. 200/250v. Sec, 0-1/0\(3 / 0-9 / 0-27 \mathrm{v}, 30 \mathrm{amp}\) E7.10. 15 amp. £5. P.P. 15/-.
L.T. TRANSFORMER Prim. 200/250v. Sec. \(0 / 25 / 35 v\) v 30 amp. £7.10. P.P. \(20 /\)
STEP-DOWN TRANSFORMERS Prim. 200/250v. Sec. 115 v . 1.25 amps, 25/- e日. P.P. 5/.
L.T. TRANSFORMERS Prim. 240v. Sec. \(8 / 12 / 20 / 25 \mathrm{v}\). 3.5 amp models 20/: 5 amp model 25/-. P.P. 5/6.
L.T. TRANSFORMERS Prim. 240v. Sec. 14 v .1 amp 10/* L.T. TRANSFORMERS Prim.
ea, \(1.8 \mathrm{amp} 15 /-\) ea. P.P. \(2 / 6\).

ELECTRIC SLOTMETERS ( \(1 /-\) ) 25 amp . L.R. 240 v . A.C. 85/- ea. P.P. 5/-
QUARTERLY ELECTRIC CHECK METERS, 40 amp. 240v. A.C., 20/- өa. P.P. 5/-

COPPER LAMINATE PRINTED CIRCUIT BOARD ( \(8 \frac{1}{2} \times 5 \frac{1}{2} \times \frac{1}{1}\) in.), \(2 / 6\) sheet, 5 for \(10 /-\) Also \(11 \frac{1}{2} \times 6 \frac{1}{2}\) in., \(4 /=8\) a., 3 for \(10 /=\)

\section*{BULK COMPONENT OFFERS \\ 00 Capacitors (latest types) 50 pF to \(.5 \mu \mathrm{~F}\) \\ 250 Resistors : and \(\frac{1}{2}\) watt. \\ 50 Hi -Stab Resistors, \(\frac{1}{4}, \frac{1}{2}\) and 1 watt. \\ 25 Vitreous W/W Resistors, 5\%. \\ 12 Precision Resistors . \(1 \%\) (several standards included). \\ 12 Precislon Capacitors 1 and \(2 \%\) (several standards included). \\ Electrolytics (minlature and standard sizes). ANY ITEM 12/6. ANY 5 ITEMS 50/-.}

\section*{TELEPHONE DIALS (New) 20/- ea.}

Amplifiled TELEPHONE HANDSET (706) 27/6. P.P. 2/6.

EXtension telephone (Type 706) Black or 2 tone Giey. 65/-. P.P. 5/-.
UNISELECTORS (Brand new) 25-way 75 ohm. 8 bank \(\frac{1}{2}\) wipe \(65 /-10\) bank \(\frac{15}{\frac{1}{2}}\) wipe 75/-.

COMPUTER LOGIC BOARDS. Containing 4 2G240, 10 2N1301, 2 2S103, etc. 30/-ea.
BOARD containing 14 BCZ11, 2 OC122, 2 trimpots, etc. 20/- ea.
CONTINUOUS LEVEL MONITORS (Bu\&ndept BE307) complete with Sensing Probe. E25.
Transistorised PROXIMITY SWITCHES (Burndept BE316) sensing speed 120 per min. £16.
LEVEL CONTROLLER (Burndept BE305). f8
LIGHT SWITCH. COUNTER. (Burndept BE290) 750 Interruption per min., comprises: Light Source, Sensing Head, Control Unit. £15

\section*{LATEST RELEASE OF} RCA COMMUNICATION RECEIVERS AR88


BRAND NEW and in original cases-A.C. mains input. 110 V or 250 V . Freq. in 6 bands \(535 \mathrm{Kc} / \mathrm{s}-32 \mathrm{Mc} / \mathrm{s}\). Output impedance 2.5-600 ohms. Complete with crystal filter, noise limiter, B.F.O., H.F. tone control, R.F. \& A.F. variable controls. Price £87/10/each, carr. £2.
Same model as above in secondhand cond. (guaranteed working order), from \(£ 45\) to \(£ 60\), carr. \(£ 2\).
SET OF VALVES: new, \(£ 3 / 10 /\) - a set, post \(7 / 6\); available with Receiver only. SPEAKER: new, £3 each, post 10/-. HEADPYONES: new, £1/5/- a pair, 600 ohms impedance. Post 5/-. AR88 SPARES. Antenna Coils L5 and 6 and L7 and 8. Oscillator coil L55. Price 10/- each, post 2/6. RF Coils 13 \& 14; \(17 \& 18 ; 23 \& 24\); and 27 and 28. Price \(12 / 6\) each. \(2 / 6\) post. By-pass Capacitor K.98034-1, \(3 \times 0.05\) mfd. and M. 980344 , \(3 \times 0.1\) mfd., 3 for \(10 /-\), post \(2 / 6\). Trimmers \(95534-502,2-20\) p.f. Box of 3, \(10 /\), post \(2 / 6\). Block Condenser, \(3 \times 4\) mfd., 600 v., £2 each, 4/-post. Output transformers 901666-501 27/6 each, 4/- post.


\section*{MARCONI SIGNAL GENERATORS}

\section*{TYPE TF-I44G}

Freq. \(85 \mathrm{Kc} / \mathrm{s}-25 \mathrm{Mc} / \mathrm{s}\) in 8 ranges. Incremental: \(+1-1 \%\) at \(1 \mathrm{Mc} / \mathrm{s}\). Output: continuously variable 1 microvolt to 1 volt. Output Impedance: 1 microvolt to 100 millivolts, 10 ohms \(100 \mathrm{mV}-1\) volt52.5 ohms. Internal Modulation: \(400 \mathrm{c} / \mathrm{s}\) sinewave \(75 \%\) depth. External Modulation: Direct or via internal amplifier. A.C. mains \(200 / 250 \mathrm{~V}, 40-100 \mathrm{c} / \mathrm{s}\). Consumption approx. 40 watts. Measurements: \(191 \times 12 \ddagger \times 10\) in. The above come complete with Mains Leads, Dummy Aerial with screened lead, and plugs. As New, in Manufacturer's cases, £40 each. Carr. 30/-. DISCOUNT OF \(10 \%\) FOR SCHOOLS, TECHNICAL COLLEGES, etc.

Phone: Tottenhom 9213

HRO RECEIVER. Model 5T. This is a famous American High Frequency superhet, suitable for CW , and MCW , reception crystal filter, with phasing control. AVC and signal strength meter. Freq. range \(50 \mathrm{kc} / \mathrm{s}\). to \(30 \mathrm{mc} / \mathrm{s}\)., with set of nine coils. Complete HRO 5T SET (Receiver, Coils and Power Unit) for \(£ 30\), plus 30 /- carr.
COMMAND RECEIVERS; Model \(6-9 \mathrm{Mc} / \mathrm{s}\)., as new, price £5/10/- each, post 5/-.
COMMAND TRANSMITTERS, \(\mathrm{BC}-458: 5.3-7 \mathrm{Mc} / \mathrm{s}\), approx. 25 W output, directly calibrated. Valves \(2 \times 1625\) PA; \(1 \times 1626\) osc.; \(1 \times 1629\) Tuning Indicator; Crystal \(6,200 \mathrm{Kc} / \mathrm{s}\). New condition- \(£ 3 / 10 /-\) each, 10 (Conversion as per "Surplus Radio Conversion Manual, Vol. No. 2," by R. C. Evenson and O. R. Beach.)

BC-433G COMPASS RECEIVER; Freq. \(200-1,750 \mathrm{Kc} / \mathrm{s}\). in 3 bands, suitable for aircraft, boats, etc. Complete with 15 valves, power supply input 24 v. D.C. at 2 amps. Receiver only \&5 each, carr. 15/-.

ROTARY TRANSFORMERS: 24 V . input, 175 v. at 40 mA output, \(25 /-\) plus \(2 /-\) post. 12 v . input, 225 v . at 100 mA output, \(25 /-\), plus \(3 /\)-post (All the
above are D.C. only).
ROTARY CONVERTERS: Type 8a, 24 V D.C., 115 V A.C. @ 1.8 amps \(400 \mathrm{c} / \mathrm{s} 3\) phase, \(86 / 10 /\) - each, \(8 /\)-post. Converter 12 v D.C. input, 110 v A.C. \(60 \mathrm{c} / \mathrm{s} @ 2.73 \mathrm{amps} .0 .300 \mathrm{KVa}, ~ £ 15\) each, carr. \(£ 1\). Converter 230 v D.C. input, 15 v output \(60 \mathrm{c} / \mathrm{s}\) @ 2.73 amps . 0.300 Kva , 15 each, carr. £1

CONDENSERS: \(10 \mathrm{mfd} .1,000 \mathrm{v} ., 12 / 6\), post \(2 / 6.8 \mathrm{mfd} .1,200 \mathrm{v}, 12 / 6\), post \(3 /-\) \(8 \mathrm{mfd} .600 \mathrm{v}, 8 / 6\), post \(2 / 6.0 .25 \mathrm{mfd} .2 \mathrm{Kv}, 4 /-\), post \(1 / 6.150 \mathrm{mfd} .300 \mathrm{v}\) A.C 8 \& \(7 / 10 /-\) each, carr. \(15 /-.0 .25\) mfd. \(32,000 \mathrm{v}\), \(87 / 10 /-\) each, carr. \(15 /-\).
AERIAL MASTS: 40 ft ., complete with base, \(£ 10\) èach. Carr. \(£ 2\).
RACK CABINETS: 6 ft . by 19 in ,, and 16 in . depth, with rear door and safety switch, £5, carr. £2.
AVO MULTIRANGE No. 1 ELECTRONIC TEST SET: \(£ 25\) each, carr. \(£ 1\).
AVOMETERS: Model 47A, £9/19/6 each, \(10 /\)-post. Model 7x, \(£ 13 / 10 /\) - each, 10/-post. Excellent secondhand cond. (Meters only). (Batteries and Leads extraat cost).
OSCILLOSCOPE Type 13A, 100/250 v. A.C. Time base \(2 \mathrm{c} / \mathrm{s} . \mathbf{- 7 5 0} \mathrm{Kc} / \mathrm{s}\), Bandwidth up to \(5 \mathrm{Mc} / \mathrm{s}\). Calibration markers \(100 \mathrm{Kc} / \mathrm{s}\). and \(1 \mathrm{Mc} / \mathrm{s}\). Double Bandwidth up to \(5 \mathrm{Mc} / \mathrm{s}\). Calibration markers \(100 \mathrm{Kc} / \mathrm{s}\). and Mc Me.
Beam tube. Reliable general purpose scope, \(£ 22 / 10 /-\mathrm{cach}, 30 /-\) carr.
Beam tube. Reliable general purpose scope, \(222 / 10 /\) - each,
COSSAR 1035 OSCILLOSCOPE, \(£ 30\) each, \(30 /\) - carr.

RELAYS: Relay Unit (with 9 American relays) 24 v. D.C, 250 ohm coils, heavy duty, M. \& B. \(30 /\)-each, \(4 /-\) post. GPO Type 600,10 relays @ 300 ohms with 2 M and 10 relays @ 50 ohms with 1 M . \(£ 2\) each, \(6 /\) - post.
12 Small American Relays, mixed types \(£ 2\), post \(4 /\)-.
CALIBRATION TACHOMETER Mk. II: Maxwell Bridge Type 6C/869 £25 each, £2 carr.
ROTAX VARIAC \& METER UNTT: Type 5G. 3281. Reading 0-40 v., 0-40 mA and 0.5 amps ., all on 275 deg. scales, \(£ 30\) each, \(£ 2\) carr.
HEWLETT PACKARD TYPE \(400 \mathrm{C}: 115 \mathrm{v} .[230 \mathrm{v}\). input \(50 / 60 \mathrm{c} / \mathrm{s}\). Freq. range \(20 \mathrm{c} / \mathrm{s}-2 \mathrm{Mc} / \mathrm{s}\). Voltage range: \(1 \mathrm{mV}-300 \mathrm{v}\), in 12 ranges. Input impedance 10 megohms. Designed for rack mounting, \(£ 30\) each, carr. \(15 /-\).
TCS MODULATION TRANSFORMERS, 20 watts, pr. 6,000 C.T., sec 6,000 ohms. Price \(25 /-\), post \(5 /-\).
AUTOMATIC PILOT UNIT Mk. 2. This complex unit of diodes and valves, relays, magnetic clutches, motors and plug-in amplifiers, with many other items, price \(87 / 10 /-\), £1 carriage.

FOR EXPORT ONLY: B.44 Trans-ceiver Mk. III. Crystal control, \(60-\) \(95 \mathrm{Mc} / \mathrm{s}\). AMERICAN EQUIPMENT: 5C-640 Transmitter, 100-156 \(\mathrm{Mc} / \mathrm{s}\)., 50 watt output. For 110 or 230 v . operation. ARC 27 trans-ceivers, 28 v. D.C. input. Also have associated equipment. BC-375 Transmitter BC-778 Dinghy transmitter. SCR-522 trans-ceiver. Power supply, PP893
GRC 32 A ; Filter D.C. Power Supply F-170/GRC 32 A : Cabinet Electrical CY 1288/GRC 32A; Antenna Box Base and Cables CY 728/GRC; Mast Erection Kits, 1186/GRC; Directional Antenna CRD.6; Comparator Unit, Erection Kits, 18 , Disectional Control CRD.6, 567/CRD and \(568 / \mathrm{CRD}\); Azimuth Control Units, \(260 /\) CRD. Test Set URM.44, complete with Signal Generator TS.622/U.

VARIABLE POWER UNIT: complete with Zenith variac 0-230 v.0 9 amps . 2 fin. scale meter reading 0-250 v. Unit is mounted in 19in. rack, £16/10/- each, 30/- carr.
SOLENOID UNIT: 230 v . A.C. input, 4 pole, 15 amp contacts, \(£ 2 / 10 /-\) each, post 6/-.
CONTROL PANEL: 230 v. A.C., 24 v. D.C. @ \(2 \mathrm{mps} .\), \& \(2 / 10 /-\) each, carr. \(12 / 6\). AUTO TRANSFORMER: 230-115 v.; 1,000 w. \&5 each, carr. 12/6. 230-115 v.; 300 VA , \& 3 each, carr. 10 -
OHMITE VARIABLE RESISTOR: 5 ohms, \(5 \frac{1}{\frac{1}{2}} \mathrm{amps}\); or 2.6 ohms at 4 amps . Price (either type) \(£ 2\) each, \(4 / 6\) post each.
POWER SUPPLY UNTT PN-12B: 230 V. A.C. input, 395-0-395 v. output @ 300 mA . Complete with two \(\times 9 \mathrm{H}\) chokes and 10 mfd . oil filled capacitors. Mounted in 19in. panel, \(\mathrm{E} 6 / 10 /-\) each, \(\mathrm{E1}\) carr.
TX DRIVER UNIT: Freq. \(100-156 \mathrm{Mc} / \mathrm{s}\). Valves \(3 \times 3\) C24's; complete wit . filament transformer 230 v . A.C. Mounted in 19in. panel, \(£ 4 / 10 /\) - each, \(15 /\) - carr POWER UNIT: 110 v . or 230 v . input switched; 28 v . @ 45 amps . D.C. output. Wr. approx. 100 lbs , \(£ 17 / 10 /\) - each, \(30 /\) - carr. SMOOTHING UNITS suitable for above \(£ 7 / 10 /-\mathrm{each}\), \(15 /\) - carr

\section*{SIGNAL GENERATORS:}

MARCONI TF-144G: freq. \(85 \mathrm{Kc} / \mathrm{s}-25 \mathrm{Mc} / \mathrm{s}\), internal and external modulation, power supplies \(200 / 250 \mathrm{v}\). A.C. (secondhand cond), price \(£ 25\) ea.; carr. 30/-.
CT53. Freq. range \(8.9-300 \mathrm{Mc} / \mathrm{s}\), with Calibration chart. Output \(1 \mu \mathrm{~V}-100 \mathrm{mV}\). internal square wave and sinewave modulation at \(100 \mathrm{c} / \mathrm{s}\)., external modulation \(50 \mathrm{c} / \mathrm{s}-10 \mathrm{Kc} / \mathrm{s} ., 230 \mathrm{v}\). A.C. Complete with chart, etc., price \(£ 27 / 10 /-\mathrm{ea}\). carr. £1.

MARCONI CT218: price 665 each, carr. 30/-
CT. 480 and 478: \(1.3-4.2 \mathrm{Mc} / \mathrm{s}\)., F.M. or A.M., price \(£ 75\) each, carr.

NIFE BATTERIES: 6 v .75 amps , , new, in cases, f 15 each, fl carr.; 4 v. 160 amps , new, in cases, \(£ 20\) each, \(£ 1 / 10 /\)-carr. L.R. 7 Cells, only 1.5 v .75 amps. , new, e3 each, \(12 /\)-carr. The above batteries are low resistance designed to give a heavy surge for starting and can be stored for long periods without any effect to their performance.
FUEL INDICATOR Type 113R: 24 v . complete with 2 magnetic counters \(0-9999\), with locking and reset controls mounted in a 3 in. diameter case. Price 30/- each, postage \(5 /=\).
UNISELECTORS (ex equipment): 5 Bank, 50 Way, alternate wipe, \(£ 2 / 5 /=\) ea. 6 Bank, 25 Way, alternate wipe, £2/2/6 ea., 6 Bank, 25 Way, £2 ea, 4 Bank,

FREQUENCY METERS: LM13 or BC-221; \(125-20,000 \mathrm{Kc} / \mathrm{s}\)., \(£ 25\) each., carr. \(15 /-\) TS. \(175 / \mathrm{U}, ~ £ 75\) each, carr. \(£ 1\). TS323/UR, \(20-450 \mathrm{Mc} / \mathrm{s}\)., \(£ 75\) each carr. 15/\%. FR-67/U: This instrument is direct reading and the results are presented directly in digital form. Counting rate: \(20-100,000\) events per sec. Time Base Crystal Freq.: \(100 \mathrm{Kc} / \mathrm{s}\). per sec. Power supply: 115 v ., \(50 / 60 \mathrm{c} / \mathrm{s}\), , 100 each, carr. £1.
CT. 49 ABSORPTION AUDIO FREQUENCY METER: freq. range \(450 \mathrm{c} / \mathrm{s}-\) \(22 \mathrm{Kc} / \mathrm{s}\). , directly calibrated. Power supply \(1.5 \mathrm{v} .-22 \mathrm{v}\). D.C. £12/10/-each, carr. 15/-.
CATHODE RAY TUBE UNIT: With 3 in . tube, colour green, medium persistence complete with nu-metal screen, \(£ 3 / 10 /\) e each, post \(7 / 6\).

APNI ALTIMETER TRANS./REC., suitable for conversion \(420 \mathrm{Mc} / \mathrm{s}\)., cómplete with all valves 28 v. D.C. 3 relays, 11 valves, price \(£ 3\) each, carr, 10/-

GEARED MOTORS: 24 v. D.C., current 150 mA , output 1 r.p.m., \(30 /\) each, 4/- post. Assembly unit with Letcherbar Tuning Mechanism and potentiometer, 3 r.p.m., £2 each, 5/- post.

MOTORISED ACTUATOR: 115 v. A.C. \(400 \mathrm{c} / \mathrm{s}\). single phase, reversible, thrust approx. 3 inches complete with limit switches, etc. Price \(£ 2 / 10 /-\) each, postage 5/- (ex equipment).
Actuator Type SR-43: 28 v. D.C. 2,000 r.p.m., output 26 watts, 5 inch screw thrust, reversible, torque approx. 25 lbs., rating intermittent, price \(£ 3\) each, post 5/-.
SYNCHROS: and other special purpose motors available. British and American ex stock. List available 6d.
Model PM-4: 28 v. D.C. @ 2 amps., 4,500 r.p.m., output 40 watts continuous duty complete with magnetic brake. Price \(\dot{\&} 2\) each, postage \(4 /\)-.
Model SR-2: 28 v. D.C. 7,000 r.p.m., duty intermittent, output 75 watts,
price \(25 /-\) each, postage \(4 /-1 / 300 \mathrm{H} . \mathrm{P} ., 3,000\) r.p.m. Capacitor \(1 \mathrm{mfd} ., 25 /-\) post
A.C. Motor \(115 \mathrm{v} .50 \mathrm{cs} .1 / 2\) A.C. Matmotor SC5, 28 v. D.C. at 45 amps; 12,000 r.p.m. output 750 W . (approx. \(1 \mathrm{~h} . \mathrm{p}\). ), brand new, \(22 / 10 /-\) each, post \(7 / 6\).

MARCONI NOISE GENERATOR TP-987/1; Used to determine noise factor of a.m. and f.m. receivers. Designed for 230 v . a.c. operation. In used condition, £20 each, carr. £1.
MARCONI TF-956 (CT.44) AUDIO FREQUENCY ABSORPTION WATTMETER; Large clear 6in. scale. 1 microw. MARCONI DIVERSITY RECEIVERS; Consisting of \(2 \times C R .150\) 's and associated equipment. £175 each. Carr. £5.
CANADIAN C52 TRANS/REC.: Freq. \(1.75-16 \mathrm{Mc} / \mathrm{s}\) on 3 bands. R.T, M.C.W. and C.W. Crystal calibrator etc., power input 12 V . D.C., new cond.,
complete set \(£ 50\). Used condition working order £25. Carr, on both types \(£ 2 / 10 /-\). complete set \(£ 50\). Used condition working order \(£ 25\). Carr. on both types \(£ 2 / 10 /-\) -
Transmitter only \(£ 7 / 10 /-\) (few only) Carr. \(15 /-\). Power Unit for Rec., new \(£ 3 / 5 /-\) Transmiter only \(£ 7 / 10 /-\) (few only) Carr. \(15 /\). Power Unit for Rec., new \(£ 3 / 5 /-\mathrm{C}\) Used power units in working order \(£ 2 / 5 /-\). Carr 10/-.

COAXIAL TESTE EQUIPMENT: COAXWITCH-Mnftrs. Bird Electronic Corp. Model 72RS; two-circuit reversing switch, 75 ohms, type "N" female connectors fitted to receive UG-21/U series plugs. New in ctns., \(66 / 10 /-\) each, post 7/6. Co-AX1AL \(M 1460-22,2\) pole, 2 throw. (New) \(\mathrm{s} 6 / 10 /-\) each, \(4 / 6\) post. 1 pole, 4 throw, Type M1460-4. (New) £6/10/- each, \(4 / 6\) post.
TERMALINE RESISTOR UNITS: type 82A/U, 5000 W , freq. 0-3.3 KMC Max VSWR 1.2 Type "N" female connectors, etc. Brand new, £30 each, carr. 15/-.
PRD Electromic Inc. Equipment: STANDING WAVE DETEGTOR: Type 219, \(100-1,000 \mathrm{Mc} / \mathrm{s}\). (New) \(£ 65\) each, post 12/6. FREQUENCY METER: Type 587-A, \(0.250-1.0 \mathrm{KMC} / \mathrm{SEC}\). (New) \(£ 75\) each, post \(12 / 6\). FIXED ATTENUATOR: Type 130, \(2.0-10.0 \mathrm{KMC/SEC}\). (New) \&5 each,
post 4/-. FIXED ATTENUATOR: Type 1157S-1, (new) 6 each, post \(5 /-\) -

NEW FROM ILIFFE

\section*{Colour Receiver Techniques}

\author{
T. D. TOWERS, M.B.E., M.A. (Camb.), M.A. (Glasgow), B.Sc., C.Eng., M.I.E.E., A.M.I.E.R.E., F.C.P.S.
}

This book is based on 12 articles printed in 1967 in the "Wireless World" and is one of the first publications to give an account of current U.K. practice in the design of colour television receivers.
The style of this book is simple and clear, with a minimal use of mathematics, presenting a logical, easily assimilated guide to the complexities of colour television receivers, starting with a clear exposition of the characteristics of the U.K. PAL "swinging burst" signal.
The general plan of a colour receiver is discussed thoroughly before dealing with the designers of individual sections (including the aerial-treated as part of the receiver). After a chapter reviewing the sections in relation to a complete receiver, the book concludes with two essentially practical chapters on colour test equipment and servicing procedures.

> ILIFFE BOOKS LTD.

42 RUSSELL SQUARE LQNDON, W.C.I

The Colour Television Signa The Colour Tube Colour Decoding "Matrix" Circuits Sorting out the Colour Signals Aerials for Colour Television Colour TV Test Equipment

\section*{CONTENTS}

Elements of the Colour Television Receiver Using a Three-coloured Pencil of Light Replacing the Missing Colour Subcarrier D.C. Power Supplies Circuit Round-Up "Setting-Up" a Colour TV Set

88 pp. 79 illustrations. 35s. net, 36 s. by post.

\section*{RADIO EXCHANGE CO. LTD.}

Solve your communication problems with this new 4-8tation Transistor Intercom system (1 master and 3 subs), in de luxe plastic cabinets for desk or wall mounting. Call/talk/ listen from Master to Subs and Subs to Master. Operates on one 9 v . battery. On/off switch. Volume control. Ideally suitable to modernise Office, Factory, Workshop, Warehouse, Hos pital, Shop, etc., for instant inter-departmental contacts. Complete with 3 connecting wires, each 66 ft . and other accessories. Nothing else to buy. P. \& P. 7/6 in U.K.



Same as 4-Station Intercom for two-way instant conversation from MASTER to SUB and SUB to MASTER Ideal as Baby Alarm and Door Phone. Complete with 66 ft . connecting wire. Battery 2/6. P. \& P. 4/6.

\section*{7-STATION INTERCOM}
( I MASTER \& 6 SUB-STATIONS) in strong metal cabinets. Fully transistorised. 31 in . Speakers. Call on Master identified by tone and Pilot lamp. Ideally suitable for Office, Hotel, Hospital and Factory. Price 27 gns. P. \& P. 14/6 in U.K.

WW-154 FOR FURTHER DETAILS


Why not increase efficiency of Office, Shop and Warehouse with this incredible De-Luxe Portable Transistor TELEPHONE AMPLIFIER which enables you to take down long elephone messages or converse without holding the handset. A useful office aid. A must for every telephone user. Useful for hard of hearing persons. On/off switch. hard of hearing persons. On/oft switch olume Control. Operates on one 9 V battery which lasts for months. Ready to perate. P. \& P. 3/6 in U.K. Add \(2 / 6\) for Battery.
Full price refunded if returned in 7 days.
WEST LONDON DIRECT SUPPLIES (W.W.),
169 Kensington High Street, London, W. 8

\section*{MORE TO CHOOSE FROM-LESS TO PAY}


A SUPERB NEW TRS MONO - STEREO F.M TUNER

This advanced design hi-fi mono/stereo FM tuner comes in easy-to-assemble prefabricated units engineered to the highest standards of efficiency and performance.
Valuable refinements include switchable A.F.C. automatic noise suppression, flywheel tuning, excellent audio response. Sensitivity better than 5 microvolts. Stereo can be added as required, Görler I.F. amplifier. Styled to match the TRS stereo 4-4. S.A.E. brings full
Kit to make MONO tuner 15 MS.
Add-on Stereo Unit and indicator light 10 gns. (p./p. 2/6)
Power Unit \(£ 2.5 .0\) (p./p. 2/6).
Add-on Stereo Unit and indical
Power Unit \(£ 2.5 .0\) (p./p. 2/6).
Simplex Cabinet \(\mathbb{K} 1.17 .6\) (p.ip. 2/6)
Total price (for mains operation)
TRS STEREO 4-4
INTEGRATED AMPLIFIER ATR.S. desige based on newly developed Mullard
4 wart modules with BC 108 pre-amp. Suitable for

 between controls and modules. metal chassis and T. R.S. simplex. teakended cabiner
for instant assembly. Stereo/Mono and Radio/PU switches. Complete kit inc. cablnet/
 T.R.S. Simplex Cablnet \(\mathbf{4}\) i. 17.6 (p/p \(2 / 6\) 4 prs. DIN plugs and sockets if purchased separately, 15

PLAYING UNITS BY GARRARD AND E.M.I. GARRARD LM 3000 Record Player with GARRARD AT. 60 Mk. II De-Luxa Auro hanger, diec SP. 25 De-luxe single record player, die-cast
turntable. Less cartridge. Ell.19.6 Brand ew in maker's cartons. Packing and carriage GARY one of above \(7 / 6\). WB.I. In fine Teak or any of above units. (Packing and carriage 5/-). \(65 /-\).

\section*{TO MAKE A BOOKSHELF SPEAKER}

A real bargain this-Matched speaker assembly comprising 5 in. bass unit with special cone suspension and powerful tweeter. Loads easily up to 6 warts. Response \(80-20,000 \mathrm{~Hz}\). Ideal for coday's small "bookshelf" cabinets or installation where maximum quality is \(\{3 \mid 96\)
required from a small space. GARRARD clear-view rigid perspex (carriage 4/6), 62/6. CARTRIDGE OFFER TO PURSTEREO' Sonotone 9TA/HC Ceramic with diamond 49/6; Decca Deram with diamond \(92 / 5\) M \(26 / 6\).
MX2M
EMI 4 speed single player, losin. T/table with separat
(p. \& p. \(5 /-)\).

\section*{TRS HEAVY DUTY MAINS SUPPLY UNIT}

A heavy duty unit for A.C. mains operation supplied ready built. Very compact measuring only \(3 \frac{1}{2} \times 2 \times 2 \mathrm{in}\). Available
in two models-PU. 12 giving 12 V . D.C. at I.5A. PU. 24 giving 24 V . D.C. at 0.75 A Recommended for latest TRS 4-4 and F.M. described in this adve.
as well as much other equip. 45/= as well as much other equipment. Either model (p. \& p. 2/6)

\section*{TRS FM DECODER}

This is a very efficient FM stereo decoder based on added to existing tuners. Built-in indicator. 6 transistor model, readily adaptable for use with valve tuners as well. For 9 -15 v. operation. Complete kit \&5 50 with Muld.
aligned.

\section*{TRS LISTS}

If you have not had one of our lists since September please send 6d. for lates copy. 8 printed, foolscap hard to get lines.

\section*{ \\ The finest materials are used by TRS in this famous range of valve-powered stereo and mono amplifiers. Well-styled knobs and plugs and sockets as necessary. S.A.E. brings
full technical details. \\ STERIO 10-10 A top-flight valve instrument with
ultralinear RMS output of 10 W . per \begin{tabular}{l} 
channel. Kit with valves and passive \\
control sysem. KIT \\
ElF \\
\hline 100
\end{tabular} BULT \(£ 2 \mathbf{1}_{\text {(corr, either, }} 12(6)\). \\ \(2+2\) VALVE PRE-AMP Push-button selectors for P.U. and radio steroolmono switching. etce. 13 gns. \\ PRE-AMPS \\ 5-10 MONO One of the most successful valve
amplifiers of all sime. Basic Kit, with valves. \(9 \frac{1}{2} \mathrm{gns}\). \\ \(11 \frac{1}{2} \mathrm{gns}\).(carr. \(7 / 6\) either). Buitct
Basic Kit with passive (carr. \(7 / 6\) eirher).
.
 PRE-AMP 2 VALVE \(\mathbf{5}\) postion selector. Kitene controls Built \(£ 8100\) (carr. \(5 / 6\) either). \& 2 VALVE PRE-AMP \(\underset{\text { Assembled. }}{\text { \& }} 2\) VALVE
} EXCLUSIVE TRS TAPE OFFER

7 VALVE AM/FM/RG CHASSIS
A deservedly popular unit for domestic use. This is a superbly powerful high performance instrument for keen enthusiasts,
Provides tuning on long, medium and F.M. wavebands. Also tone Provides tuning on long, medium and F.M. wavebands. Also tone
and volume controls and wavechange/gram switeching. Excellent
sensitivity. Permeability tuning on F.M. Large clean illuminated sensitivity. Permeability tuning on F.M. Large clean illuminated
dial 11 . 31 in., with station names. A.V.C. good neg. feedback. Magic eye \(3 W\). output. A.C. 220/250V. Circuit diagrams available.
Aligned, tested and ready for use (carr. 10/6). S.A.E. 613 Arings, tested and


\section*{TRS PRE-AMP GP. 1}

This efficient and very versatile general purpose pre-amp
by TRS has many applications, such as mic.,. P.U., guitar, etc. by TRS has many applications, such as mic., p.U., guitara etc. ses high gain BC 08 silicon transistor and assembtes on a
\(2!\times 1 \geqslant\) in. board. For 12 V . Operation. Complete with instructions. (P/P i/-
KiT 22/6
BULLT \(29 / 6\)

\section*{TRANSISTOR COMPONENTS}

Full miniaturised ranges of all you want for transistor MIDuipment buildingi Selection herewith: Std. range, all values 1 mid- 50 mid.
\(12 v / 15 v\) working each \(1 / 9.100\) mid \(12 \mathrm{~V} / 15 \mathrm{v}\) working each \(1 / 9\). \(100 \mathrm{mfd} 12 \mathrm{v} 2 / \mathrm{F}, 1000 \mathrm{mfd} 6 \mathrm{~V} 3 / 3\) Special Electrolytics for Transistor Mains Units
1000 mid 25416.2000 mfd \(50 \mathrm{v} 7 / 6\). 3000 mfd \(15 \mathrm{v} 6 /-\) \(1000 \mathrm{mId} 25 \mathrm{~V} 4 / 6\). \(2000 \mathrm{mld} 50 \mathrm{y} 7 / 6.3000 \mathrm{mfd} 15 \mathrm{~V} 6 /-1\)
VOLUME CONTROLS-Midget transistor type 5K with Switch complere with edge Control Knob, \(4 / 9\) ea.
Diteto less 5 witch, \(3 / 9\) ea.

6 VALVE AM/FM TUNER


Med. and V.H.F. -6 valves metal rectifier. Self-contained power unit. Magic-eye, \({ }^{3}\) push-button
controls. Diode and hish output sockets. Illuminated 2 -colour dial.
Chassis
 A.C. \(200 / 250\). Unbeatable



\section*{SPEAKER OFFERS}

We carry comprehensive stocks of loudspeakers by Goodmar's, W.B., Wharfedale, Fane, etc., as well as many bargain-priced units detailed in our latest impedances.

SINCLAIR PRODUCTS We scock all Sinclair products as available, including Micromatic, Q.14, PZ-4, Z.12, 1c. 10 , et

\section*{WIRE WOUND RESISTORS-COATED} TYPES Srand, values 25 ohms -10000 ohms, 5 w . \(1 / 6\),
\(10 \mathrm{w} .1 / 9,15 \mathrm{w} .2 / 3\). SPECIAL VALUES \(15 \mathrm{~K}-35 \mathrm{Kohms}\) 10w. 1/9, \(15 \mathrm{w} .2 / 3\). SPECIAL VALUES \(15 \mathrm{~K}-35 \mathrm{Kohms}\)

PRE-SET WIRE WOUND POTS. Slotted Knurled Knob T.V. Type 25 ohms- 30 Kohms \(3 / 3\). \(50 \mathrm{Kohms} 4 / 6\). Ditto carbon track \(50 \mathrm{~K}-2 \mathrm{Meg} \mathrm{3/3}\). SLIDER PRESETS \(\frac{1}{2} w\). \(10 \mathrm{~K}-2.2 \mathrm{Meg} .2 /\)-, 10 ohms \(-5 \mathrm{~K} 2 / 6\).
SKELETON PRESETS for P/circuit use. 100 ohms -2.5 Meg. \(2 /\).
STANDARD W/WOUND POTS. Long Spindle, 100 ohms- 50000 ohms each 6/-. 100,000 ohms each \(8 / 9\).
VOLUME CONTROLS 1 in . dia. Long Spindles Famous make. All values 5000 ohms- 2 Megohms Guaranteed 12 months. Log or Linear tracks. Less Tapped \(\frac{1}{2}\) Megohm Log. I Megohm less Sw. 5/Twin Ganged Stereo II dia., Long Spindles. Ali values 5000 ohms to 2 Megohms less Sw., eac. \(8 / 6\). All values 100 K to 2 Megohms with DP Sw., ea. \(10 / 6\). STEREO BALANCE CONTROLS
Log/Anti-Log 5K, \(\frac{1}{2}\) Meg., 1 Meg., 2 Meg., ea. \(9 / 6\). VEROBOARD-All standard sizes including
 and tools in stock.

CIR-KIT' Adhesive copper strip for circuic building. 60 in . spool, it in ., 2/-.
RESISTORS-Modern ratings, full range 10 ohms to 10 megohms, \(10 \%, \frac{1}{3}-\frac{1}{2} w_{1,} 4 d\). ea.; \(5 \%\) Hi-Stab 6d. ea.). \(1 \%\) Hi-Stab, t w., \(1 / 6\) ea. (below 100 meg


CONDENSERS Silver Mica. All values 2 pf. to \(1,000 \mathrm{pf} .6 \mathrm{~d}\). ea. Ditto ceramics 9d. Tub. 450 V 02 mf . to \(0.1 \mathrm{mfd} 500 \mathrm{v} .1 / \mathrm{mf}. / 350 \mathrm{~V}\). 10 C 5 TCE CIOSE TOL \(/ \mathrm{MiCs}\).c.c. \(1 / 8\) 500 pf. 8d. \(600-5000\) pf \(1 \% 1 \% 2\) pf \(100^{\circ} 5\) pp. \(500 \mathrm{pf} .8 \mathrm{~d} .600-5,000 \mathrm{pf} .1 /-1 \%{ }^{2}\) pf. -100 pf . 9 d
100 pf .9 d .100 pf. -500 pf . \(1 / \mathrm{dd} 375 \mathrm{pf} ..-5000 \mathrm{pf} .1 / 6\) ALUM. CHASSIS. 18g. Plain undrilled folded 4 sides, 2 in . deep. \(6 \times 4 \mathrm{in} 4 / .6 ; 8 \times 6 \mathrm{in} .5 / 9\)
\(10 \times 7 \mathrm{in} .6 / 9 ; 12 \times 6 \mathrm{in} .7 / 6 ; 12 \times 8 \mathrm{in} .8 /-\mathrm{etc}\). \(10 \times 7 \mathrm{in} .6 / 9 ; 12 \times 6 \mathrm{in} .7 / 6 ; 12 \times 8 \mathrm{in} .8 /-\) etc. EXPANDED ANODISED METAL-Attractive 5/-per sq. ft.
VINAIR-Latest I.C.I. speaker covering. Moteled Light Grey, Off-White, Fawn, Black, etc. 2/-persq.ft. BONDACOUST-Speaker Cabinet Acoustic Wadding. 18 in . wide, \(2 / 3\) per ft . \(6 /\) - per yard.

We gladiy send information when requested, but we must ask for your
enouiries to be accompanied by S.A. and about the items we advertise. WHEN ORDERING Plemese send deastl: .o.lercheaue


Phone:
\(1-6842188\) .0 a.m.- . . daily
6.0p. Weds. \(1.0 \mathrm{p} . \mathrm{m}\) A few moments from Thornton Heath Stn. (S.R. Victoria Section) Buses from all pares

\section*{}

Send S.A.E. for full lists. Other ranges available. Please include postage. Special quotations for quantities.

\section*{CLEAR PLASTIC METERS}


Type MR.38P. \(121 / 32\) in. square fronts


Type MR.52P. 2]in. square fronts.
\begin{tabular}{|c|c|c|}
\hline A & 58 & 10 \\
\hline \(50-0-50 \mu \mathrm{~A}\) & 4918 & 20V. D.C \\
\hline \(100 \mu \mathrm{~A}\) & 4916 & B0V. D.C \\
\hline 100.0-100 & 45\% & 300 V . D.C. \\
\hline \(500 \mu \mathrm{~A}\) & 42/6 & 15 V . A.C. \\
\hline 1 mA & 3716 & 300 V . A.C. \\
\hline 5 mA & 3718 & 8 Meter 1ma, \\
\hline 10 mA & 3716 & VU Meter \\
\hline 50 mA & \(37 / 6\) & 1 amp . A.C. \({ }^{\text {c }}\) \\
\hline 100 mA & \(37 / 6\) & 5 mmp A.C.- \\
\hline 500 mA & 3716 & 10 amp. \\
\hline & \(37 / 6\) & \\
\hline 5 am & 3716 & 10 \\
\hline
\end{tabular}

\section*{\(37 / 6\)
\(37 / 6\)
3716
3716
\(37 / 6\)
3716
3916
5916
3716
3716
3716
3716
371 \\ }

Type M.R.85P. \(4 \frac{1}{4}\) in. \(\times 4 \frac{18}{8}\) in. fronts.
\begin{tabular}{|c|c|c|}
\hline \({ }^{5} \mu \mathrm{~A}\) A & 80/6 & 15 mmp . \\
\hline \(50-0.501 / \mathrm{A}\) & 59/6 & 30 mmp \\
\hline \(100 \mu \mathrm{~A}\) & \(59 / 6\) & 20 V . D.C \\
\hline 100-0-100 A & \(59 / 8\) & 60V. D.C \\
\hline \(200 \mu \mathrm{~A}\) & 55/- & 150V. D.C. \\
\hline \(500 \mu \mathrm{~A}\) & 58/6 & 300 V . D.C. \\
\hline \(50000-500 \mu \mathrm{~A}\) & 49/6 & 15V. A.C. \\
\hline 1 mA & 49/6 & 300 V , A.C. \\
\hline 1.0 .1 mA & \(49 / 6\) & 8 Meter 1m \\
\hline 5 mA & \(49 / 6\) & V \({ }^{\text {U meter }}\) \\
\hline 10 mA & 49/6 & 1 amp . A.C. \\
\hline 50 mA & 49/6 & 5 amp A.C. \\
\hline 100 mA & 49/6 & 10 mmp . A.C \\
\hline 500 mA & \(49 / 6\) & 20 amp . \\
\hline & 49/6 & 30 amp . A \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 50 LA & 65\% & 20V. D.C. \\
\hline 50-0.50 HA & 52/6 & \(50 \mathrm{~V} . \mathrm{D} . \mathrm{C}\). \\
\hline \(100 \mu \mathrm{~A}\) & 52/6 & 150 V . D \\
\hline 100-0-100 \(\mu\) A & 49/6 & 15 V . A \\
\hline 500 \(\mu \mathrm{A}\) & 45/- & 50 V . A.C. \\
\hline 1 mA & 30/6 & 150 V . A.C. \\
\hline \(\mathrm{b}_{\mathrm{m}} \mathrm{A}\) & 30/6 & 300 V . A.C. \\
\hline 10 mA & 3916 & 500 V . A.C. \\
\hline 50 mA & 30/6 & 8 meter 1 m \\
\hline 100 mA & \(30 / 6\) & VU meter \\
\hline 500 mA & 39/6 & 50 ma A.C.* \\
\hline 1 amp & \(39 / 6\) & \(100 \mathrm{~mA} \mathrm{A.C.*}\) \\
\hline 5 amp & 39/8 & 200 mA A.C. \\
\hline 10 amp & 39/6 & 500 mA A.C.* \\
\hline 1s amp & \(30 / 6\) & 1 mmp . A.C.* \\
\hline 20 mpp & 39/6 & 5 mmp. A.C.* \\
\hline 30 smp & 39/6 & 10 amp A.C. \\
\hline 50 mmp & 39/6 & 20 mp . A.C. \\
\hline
\end{tabular}

\section*{We.}

BAKELITE PANEL METERS

 volts \(250 \mathrm{mV}-10,000 \mathrm{~V}\). ( \(10 \mathrm{meg} \Omega-110\) meg \(\Omega\) input). D.C. current \(10 \mu A\) amp. 25 (with R.F. measuring head up to \(250 \mathrm{Mc} / \mathrm{s}\) ). A.C current \(10 \mu \mathrm{~A}-25\) amps. Power output 50 micro watts-5 watts. Operation \(0 / 110 / 200 / 250\) v. A.C Supplied in perfect condition, complete with circuit lead and R.F. probe, £25. Carr. 15/-
\begin{tabular}{|c|c|}
\hline TYPE I3A DOUBLE BEAM OSCILLOSCOPES BARGAIN & AM/FM SIGNAL GENERATORS \\
\hline An excellent general purpase D/B oacilloscope. T.B. \(2 \mathrm{cps}-\) \(750 \mathrm{Kc} / \mathrm{s}\). Band width \(5.5 \mathrm{Mc} / \mathrm{s}\) Bensitivity \(33 \mathrm{Mv} / \mathrm{em}\). Operating voltage \(0 / 110 / 200 / 250 \mathrm{v}\). A.C. Supplled in excellent working condition, \(£ 22 / 10 /-\) Or complete with all accessories, probe, leads, Id, etc. 825. Carriage 30/- & Ocilator Test No. 2. A high instrument mada for the Ministry by Airmec. Fre-\(20-80 \mathrm{Mc} / \mathrm{s} . \mathrm{AM} /\) CW/FM, Incorporates precision dial, level meter, precision attenuator \(1 \mu \mathrm{~V}-100 \mathrm{Mv}\). \\
\hline ADMIRALTY Just releaned by B. 40 RECEIVERS & A.C. Size \(12 \times 8!\times 9\) in. Supplled in brand new condition complete with all connectors, fully tested, £45. Carr. 20/- \\
\hline \begin{tabular}{l}
tured by Murphy.
Coverage in \(\delta\) bands \(650 \mathrm{Kc} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{s}\). corporates 2 R.F. and 3 I.F. stages,
bandpass noise limiter, oryyB.F.O. callbrator Built-in speaker, Operation \(150 / 230\) volt A.C. Slze 191 \\
Weight 1141 h . Offered in good working condition. c22/10-1-carr. 30/. A few available brand new \(\mathrm{B} 41 \mathrm{~L}, \mathrm{~F}\). version of above, \(15 \mathrm{Kc} / \mathrm{s}-700 \mathrm{Kc} / \mathrm{s}\). 81\%/10/- Carr. 30/-
\end{tabular} & \begin{tabular}{l}
MARCONI CT44/TF956 AF ABSORBTION WATTMETER \\
\(1 \mu /\) watt to 6 wates 620 Carr. 10/-
\end{tabular} \\
\hline FIELD TELEPRONES TYPE L. Generator ringing, metal caases. Operate on 21.5
suppiled. Excellent condition. Carr. 10j. & \[
\begin{gathered}
\text { COSSOR DOUBLE BEAM } \\
\text { OSCILLOSCOPES } \\
\text { General purpose. A.C. Coupled } \\
\text { Type los3. } \\
\text { \&35 each. Carr. } 30 \text { /. }
\end{gathered}
\] \\
\hline \begin{tabular}{l}
CLASS D. WAVEMETERS \\
A ersstal controlled meter covering \(1.7-8\) Mc/s. Operation on 6 v . D.C. Ideal for amateur use. Avallable condition 85.19 .6 Carr. 7/6. Or brand new Carr. \(7 / 6\).
\end{tabular} & \begin{tabular}{l}
AVOMETERS \\
Supplied in excellent condition fully tested and checked. Complete with prods, leads and instructions. Model 47A £9/19/6 P. \& P. 7/6 each.
\end{tabular} \\
\hline
\end{tabular}

\section*{AMERICAN RECORDING TAPES} Firat grade quality America Mapes, Brade quality Americs
Brand new and guar
anteed. Discounta for quantitites. anteed. Discounta for quantitles.
3in. 225it. L.P. Acetate \(3 / \beta\)
 5 in. 600 ft . Std. plantic.
6 in
1 way, 2 c/o 7/8: 1 way, 2 c/o \(2 \mathrm{~b}, 7 / 8 ; 1\) way
4 c/o, \(8 /-; 2\) way, \(3 \mathrm{~m} ., 3 \mathrm{~m} .8 / 6 ; 2\) way, 2 c/o.
\(4 \mathrm{clo}, 8 /-\mathrm{c}\)
\(2 \mathrm{c} / \mathrm{o}, 8 / 6\).
NOMBREX TRANSISTORISED
TEST EQUIPMENT
All Post Pald with Battery


\(\underset{\substack{10 / 3 \\ 14 / 3}}{ }\)

LELAND MODEL 27 BEAT
FREQUENCY OSCILLATORS
\(-20 \mathrm{Kc} / \mathrm{s}\). Output 5 K or 500 ohme. \(200 / 250 \mathrm{~V}\)
A.O. Offered in excellent condition. \(812 / 10 /\)

\section*{MARCONI TEST EQUIPMENT} EX-MILITARY RECONDITIONED TF 144G STANDARD SIGNAL GENERATORS \(85 \mathrm{Kc} / \mathrm{s}-25 \mathrm{Mc} / \mathrm{s}\), 225 . Carr. 301 TF 885 VIDEO OSCILLATOR 0-5 m/cs \(£ 45\) Carr \(30 /\) T- \(40 \mathrm{kc} / \mathrm{s}\), 200/250 v. A.C. 220 . Carr. \(30 /\) TF 142 E DISTORTION FACTOR All above offered in excellent condition, fully test e20. Carr. \({ }^{20}\) TF 1100 VALVE VOLTMETER, Brand New, £50. TF 1207 TRANSMISSION TEST SET, Brand New, £75. TF1371 WIDE BAND MILLIVOLT METER, Brand New, £50

\section*{Variable Votitage Thansformelis}

Brand new, guaranteed and carrlage paid
High quality construction. Input 230 v. 50-60 cycles.
Output full variable from 0.260 volts. Bulk quantities available,
1 amp . \(-£ 5 / 10 /\)-; 2.5 amp . \(-£ 6 / 15 /-; 5 \mathrm{amp}\). \(-£ 9 / 15 /-\)
\(8 \mathrm{amp} .-£ 14 / 10 /-; 10 \mathrm{amp} .-£ 18 / 10 /-; 12 \mathrm{amp}\) - \(\mathrm{E} 21 ; 20 \mathrm{amp}\). E 37



\section*{MULTIMETERS for GUSRY purpose!}

\(€ 8 / 17 / 6\). Post paid.


MODEL 250J. 2,000 O.P.V. \(0 / 10 / 50 / 500 / 2,500\)
\(0 / 10 / 50 / 500 / 2,500\)
v. A.C. \(\mathrm{O} / 2\) \(\mathrm{Meg} . \Omega\).
\(0 / 250 \mathrm{~mA}\) -20 to +36 dB.
\(49 / 6\). MODEL TE-70. 30,000 O.P.V \(0 / 3 / 15 / 60 / 300 / 600 / 1.200\)
\(D . C\).
\(0 / 6 / 30 / 120 / 600 / 1,200\) A.C. \(0 / 30 \mu \mathrm{~A} / 3 / 30 / 300 \mathrm{~mA}\) /16K/160K/1.6M/16 Mes 0 25/10/-. P. \& P. \(3 /\)


No. 76 TRANSMITTER. \(2-12 \mathrm{Mc} / \mathrm{s}\). Crystal controiled (not supplied) 807 PA Operation 128 only. New Condition: 72/6. Carr. 12/6.

WS. 88 TRANS/RECEIVERS. AandB sets available Complete with valves, \(39 / 6\) each.

No. 10 MCROPRONE AND HEADSET. Moving

DUBILIER NITROGEL CONDENSER Brand new. 8 mid. 800 ₹. \(8 / 6\).
2 mid. 5,000 v. \(42 / 8\). P. \& P. \(5 /\).

LUCAS \(20 / 0 / 20\) AMMETERS. Brand new bosed
Suitable car/motor-cycle. \(18 / 6\). P. \& P. \(2 /\) EVERSHED VIGNOLES SERIES II 500 VOLT CT. 53 SIGNAL GENERATORS. 8.9-15.5 and 20 \(300 \mathrm{Mc} / \mathrm{s}\). Output, \(1 \mu \mathrm{~V}-100 \mathrm{MV}\). Mains opersted

ADVANCE TEST EQUIPMENT
Brand new \& boxed in original sealed cartons. VM.76. VALVE VOLTMETER. R.F. mesmeasurements up to 1000 v . with accuracy o \(\pm 2 \%\). D.C. range 300 MV to 1 KV . A.C.
range 300 MV to 300 V RMg. Resistance \({ }_{0} .02-500 \mathrm{M}\). Price \(£ 72\).
VM.78. A.C. MILLIVOLT METER. Tran aistorised. \({ }^{1} \mathrm{Mr}-300 \mathrm{~V}\).
to 1 Mc . \(\mathrm{Price} \$ 55\).
VM.79. UEF MOLLIVOLT METER. Trandistorised. A.C. range \(10 \mathrm{Mv}-3 V\). D.C.
current range \(0.01 / \mathrm{A}-0.3 \mathrm{Ma}\) Resistance 1 ohm- 10 megohms. \(£ 125\).
gis. AUDIO SIGNAL GENERATOR
\(15 \mathrm{c} / 8-50 \mathrm{Kc} / \mathrm{L}\), sine or gquare wave. Price \(15 \mathrm{c} / \mathrm{s}\)
230.
J1B. AUDIO SIGNAL GENERATOR Price 230 J2B. AUDIO SIGNAL GENERATOR. AA TTIS. TRANSISTOR TESTER. \(£ 37 / 10 /\) Carriage \(10 /\) per item.

WOODEN PLintirs for Gartand Serieb 1000 2000, 3000, etc., with - perapex cover, \(\& 4 / 10 /-2\),
P. \& P. \(4 / 6\).


硅
Transistorised intercoma, Ifeal for
home/ofice/ workshop, etc.
2.way
huzzer call
为 For desk or wail mounting. Bupplied
complete with con. necting wire, bat-
terien, inotructions. 2 stations, 59/6. P. \& P. 2/6. 4 station 88/12/6.
\begin{tabular}{lll}
26 & 6 \\
87 & 0 \\
19 & 8 \\
\hline
\end{tabular} 1000 Stereo... 1025 Mono Car
2000 Etereo.
2025 T/C Less Cart
2025 T/C Stereo.
A. 70 Mk. II Leess Cart.

47196
28 196
211196
\({ }^{\text {SP. } 25 \text { Mk. II Less Cart...... }}\) Carr. 716 ext



\section*{UNR-30 4 BAND}

COMMUNICATION RECEIVER
Covering \(550 \mathrm{Kc} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{s}\). Incorporates variable BFO for CW/SSB reception. Built-in speaker and phone jack. Metal cabinet. Operation \(220 / 240\) A.C. Supplied brand new, guaranteed with instructions. 13gns. Carr. 7/6,

NEW LAFAYETTE SOLID STATE


TRIO COMMUNICATION RECEIVER MODEL 9R-59DE 4 band receiver covering \(500 \mathrm{~K} / \mathrm{K}_{\mathrm{s}}\), to \(30 \mathrm{Mc} / \mathrm{A}\), con tinuzus 8 valve plue 7 diode circuit. \(4 / 8\) ohm output and phone jack. B8B-CW - ANL - Variable BFO O B meter.
 F. A.C. mains. Beautifully designedice size \(7 \times 15 \times 10 \mathrm{in}\). Carriage pald Trio Communication Type Headpiones. Norrually 25.19 .6 . Our price \(£ 3.15 .0\) ii purchased with
 ior fred frequency operation. Incorporates 4 INTE.
GRATED CIRCOITS. Built-in speaker and illuminated

\section*{LAFAYETTE LA-224T TRANSISTOR STEREO AMPLIFIER}

 \(\operatorname{Distortion~}^{0} 1 \%\) or less. Inputs 3 miv and 250 mv. controls. Treble and bass controls. Stereo phone fack. Brushed aluminium, gold anodised extruded front
 £28. Carr. 7/6.


GARRARD


\section*{RECORDING HEADS}

Reuter 1 -track. As fitted to Collisro Mk. IV and imp. erace. Brand new; 19/6 pair. Minifinu \(\ddagger\) track, Record.
Cosmocord \(\&\) track heads: Cosmocord \({ }^{\text {t }}\) track heads:
Record/replas.
 Marriotit track heads:
Record/Playback, high im Record
Erase, Iow Imp.

\section*{TWO-WAY} RADIOS
Superb quality, brand new and guaranteed. \({ }^{4}\) Tranistors Luxe Lafayette £12/10/- palr. Luxe Latayette £12/10/- pair 13 Transietor \(500 \mathrm{MW}^{2} 2\) channel 30 Gns. palr. Post extra.

\section*{TRANSISTOR FM \(*\)
TUNER}


TRANSISTORISED TWO-WAY TELEPHONE INTERCOM Operatlve over amazingly long
distances.
separate call and distances. Separate call and
press to taik buttons.
\(2-w i r e\) connection. \(10000^{\prime}\) s. of appljcatlons. Besutifully Guished
in ebony. Aupplled complete lth batteries and wall brackets.
with batter
\(88 / 19 / 6 \mathrm{p}\)

CREED MORSE REPER200/240 v. D.C. Brand New,

\section*{ELECTRONIC BROKERS LIMITED}

\section*{TRANSISTOR AND COMPONENT TESTER by Texas Instruments}

Utilizing digital programming and the functional block approach to perform a wide range of component testing.
The design theory used in the transistor and component test incorporates a universal programming system, a socket control unit, and a readout system, usable with a number of functional modules
The system can test any two or three terminal components within the physical and electrical limits of the tester. The system is capable of performing D.C. 1000 cycle pulse tests.
The programming facility is carried out by a rigld plastic card with holes punched out to indicate a bit of informatlon. Up to 24 card readers may b
THE TESTER CONSISTS OF THE FOLLOWING UNITS:
Control unit-158900-2
Thrree dipit tip card reader
Iniermediate storage urit
system)
system)
Standard rolay service penel (18 columns \(\times 12\)
\begin{tabular}{l} 
Standard rolay \\
indicators! \\
\hline
\end{tabular}
indintars)

Oigital voltmeler indicator
Amalogut to Diputal conventer and indicator Thise digil digital comparator and punch drive mee dight trip system Relay power supplies (contains thres independent
Test bias supplies and cur rent regulators
 COSSOR 1049 MK. III SANGAMO-WESTON DOUBLE BEAM OSCILLOSCOPE E45 NCANDESCENT FIUMENT TUBULIAR QUARTZ INFRA-RED LAMP
These limps comis of a single coil 11 emagien

 waneliagds bemeen \(7000 \%\) ane \(20.000 \% x\) Low thermd nexta immediate outauld adiant
 mass heatiogy buding of pirts erdic maxiap 1440 wint 250 vith
Lis price fe. Our Price 49/G.

\section*{LABORATORY STANDARD AC/DC VOLTMETER \(\mathbf{\$ 9 2}\)} Accurate to 0.1 per cemt of full scale 12 inch Vornier scale, magnetically shietod. Seff-contamed thermo-
meter, Spintit leval, meter. Spirit level, range 0 0.75. \(150, ~\)
300 . 300. List prite \(£ 150\) approx

\section*{STANDARD D.C} VOLTMETER SGG 0.20,50, 100200 ohms/y switched hange: 1. 2. 5. 10. 20. 50, 100. 200. 500. 1000. ADVANCE CONSTANT VOLTAGE TRANSFORMERS the most reliable way of stabilising A.C. voltage supplies.
\begin{tabular}{llll} 
& In put & Outpur & Werts \\
CV 15 & 190.260 & 240 & 15
\end{tabular}

CV 15
CV 25 \(\qquad\) \(\begin{array}{lll}\text { CV } 50 & 190-280 & 50 \\ \text { CONSTANT VOLTAGE TRANSFORMER by Sola }\end{array}\) 210-250-600 wats. \(\qquad\) SYNCHROVERTER NON-RESONANT SWITCH by ELLIOTT G1280. A mice 20/- \(\frac{1}{2} \frac{1}{2}\). 4 for 20 . electro mechanical chopper. 25/-. ERICSSON CHOPPER Type D N23432D 1 . Double Pole. Double Throw, 6.3 V .50 cycle.

\({ }^{h}\) Parameter attachment
\({ }_{h} \mathrm{~h}\) fo attachment
Test program panet
Sequence unit
Sequence unit
1000 cycle Oscillator
Two bay ETC enclosury size \(80^{\circ}\) high \(30^{\circ}\) deep. \(49^{\circ}\) wide
\(\qquad\)


PHOTOMULTIPLIER VMP11/44 (CV 2317) by 20 th Century
Electronics
Cathade sensitivity \(40 \mu \mathrm{H} / \mathrm{L}\) Operating voths for 10 Al 1100 wnis OARK current \(0.004 \mu \mathrm{~A} \mathrm{f} 12.10 .0\)
"MINICUBE" BLOWER Sub-miniature. only ith square
Operates on \(26 \mathrm{~V}-400 \mathrm{cp.s}\). input Operates on 2 pH. Output \(2.2 \mathrm{cf.n}\). at
power, 1 or 2 p. hige air w. it oz Brand new. Made by Saunders Associares. Offered at tenth of manufacturei's price f 12.10 .0


BARRYMOUNTS

EDGWARE, MIDDX

VENUE,

This is only part of the range of GERMANIUM TRANBIBTORs \& DIODES wheh we can apply. See our separate sudvertisement for gilicon trasistors a diodes and Electranlo All items offered for sale are Guaranteed to be First Grade only and are subject to the manu facturers guarantee where this applies to a specific Item. The prices atated below ase current at the time of going to press for this magazine. Where prices are changed, for any reaso Postage \& Packing is charged extra at the rate of \(1 /\) - per \(\&\) or part thereof. (Minimum charge \(1 /\). Customers living outside the United Kingdom may remit in the currency of their home country, adding \(10 \%\) of the total arnount to cover conversion charges.
Atr Matl postage is charged extra. (Average weight of package 1890 grams.)
0C71, 3/-each. 5 for \(12 / 6.25\) for \(58 / 2\).
AF106 The "UNIVKRSAL" V.H.F. Transistor-replacement
AF124 V.H.F. Preamplifier
\(7 / 8\) each (6/6)

\(7 / 6\) each \((6 / 4)\)
\(9 /-\) each \((7 / 6)\)
AF232 Low Noise U.H.F. Preampilifer
\(9 /-\) each \((7 / 6)\)
\(8 / 8\) each \((7 / 6)\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline ACl27 & 5/2 & NKT212 & \(4 / 6\) & 0 O 26 & 15/3 & 2G302 & 3/7 \\
\hline AC128 & 512 & NKT217 & 9/3 & OC29 & 21/9 & 2 G 371 & \(2 / 6\) \\
\hline ACY18 & 4/3 & NKT219 & \(4 / 6\) & OC35 & 15/3 & 29374 & 3/- \\
\hline ACY19 & 5/6 & NKT271 & 3/3 & 0С36 & \(18 / 6\) & 2N270 & \(9 / 8\) \\
\hline ACY20 & 4/- & NKT272 & 3/3 & 0 C 41 & 9/3 & 2N384 & 18/3 \\
\hline ACY21 & 5/3 & NKT274 & 3/3 & 0 C 44 & 516 & 2N388 & 5/8 \\
\hline ACY22 & \(2 / 6\) & NKT275 & \(3 / 3\) & 0 C 45 & 514 & 2N388A & 10/3 \\
\hline AD140 & 12/6 & NKT603F & 5/3 & 0 C 72 & \(5 / 4\) & 2N404 & 4/6 \\
\hline AD149 & 11/8 & NKT613F & 48 & 0 C 75 & \(5 / 4\) & 2 N 404 A & \(6 / 3\) \\
\hline AD161 & \(7 / 8\) & NKT674F & 4/3 & \(0 \mathrm{CO7}\) & 12/- & 2N406 & 4/4 \\
\hline AD162 & \(7 / 6\) & NKT675 & \(4 / 3\) & OC83 & \(3 / 8\) & 2N408 & \(5 / 5\) \\
\hline AFZ12 & \(21 / 9\) & NK T677F & \(3 / 9\) & OC139 & 12/- & 2N2147 & 16/- \\
\hline ASZ21 & 16/3 & NKT713 & 4/- & 0 OCl 40 & 1719 & 2N2148 & \(11 / 6\) \\
\hline AUY10 & 50/- & NKT773 & \(3 / 8\) & 00170 & 6/9 & 2N2869 & \(15 / 6\) \\
\hline NKT211 & 4/9 & OC24 & 27\% & \(0 \mathrm{Cl17}\) & \(7 / 3\) & 2N2870 & 32/6 \\
\hline
\end{tabular}

TRANSISTOR PAIRS SUITABLE FOR COMPLEMENTARE SYMMETRY
\begin{tabular}{|c|c|c|c|c|c|}
\hline NPN & PNP & Price per pair & \(\nabla_{\text {CE }}\) (MEM.) & \(\mathrm{I}_{\text {C (Max.) }}\) & Packare \\
\hline 2N1302 & 2N1303 & \(7 / 8(8.0 \mathrm{MHz})\) & 25 v . & 300 mA . & T0-5 \\
\hline 2N1304 & 2N1305 & 9/6 ( 5.0 MHz ) & 20 \%. & 300 ma . & T0-6 \\
\hline 2N1306 & 2N1307 & 12/ \(/ 10 \mathrm{MHz}\) ) & 15 v . & 300 mA . & T0-5 \\
\hline 2 N 1308 & 2N1309 & \(15 / 8(15 \mathrm{MHz})\) & \(15 \%\) & 300 mA . & TO-5 \\
\hline AC141 & AC142 & 8/- (Low Cost) & 40 v . & 1 Amp. & T0.1 \\
\hline 4 ACl 76 & \(4 \mathrm{Cl153}\) & 14/3 & 32 v . & 1 Amp. & T0-1 \\
\hline 4 Cl 87 & AC188 & 15/8 (High Gain) & 15 v & 1 Amp. & T0-1+ Heatsink \\
\hline AD161 & AD162 & \(11 / 6\) (0 Watts) & 20 v . & 2 Amp . & 80-5.5 \\
\hline 40396 & . 40396 & 14/6 & 18 \%. & 500 mA . & T0-1 \\
\hline
\end{tabular}

POINT CONTACT DIODES
\begin{tabular}{c|r} 
Msk. PI. \(\mathrm{\nabla}\). & Price \\
30 v. & \(2 /=\) \\
\(115 \mathrm{\nabla}\). & \(1 / 3\) \\
115 v. & \(2 / 0\) \\
45 v. & \(2 /-\) \\
\(25 \mathrm{\nabla}\). & \(14 / 9\) \\
& \\
70 v. & \(2 /=\) \\
25 v. & \(2 /-\)
\end{tabular}
\(\begin{array}{ll}\text { AAY42 } & \text { High Bpeed Bwitching Dlode } \\ \text { OA47 } & \text { High }\end{array}\)
High Bpeed Bwitching Diode
.P.O., 1.T.V. consracting Suppliers to Go
TERMS: C.W.O. (nett monthly to approved account holders)
M. R. CLIFFORD \& COMPANY (Dept. WW)
COMPONENT STOCKHOLDING SERVICES 66 OLD OSCOTT LANE, GREAT BARR, BIRMINGHAM, 22A

\section*{TRICKETT}

PARK ROAD • CONGRESBURY • BRISTOL SCHOOLS \(15 \%\) OFF. ALL CARRIAGE FREE ON GO0DS OVER 10/-

H/Duty Insulated Terminals F bid. ea., 5/- doz. B F Oil-filled 600 V IO 1 F 35 V Stantelum 1/- ea., \(10 /-\) doz. \(5 \mu \mathrm{~F} 12 \mathrm{~V}\) Stantelum 9d. ea., \(7 / 6\) doz. \(2 \mu\) F 150 V Tubs .. 9d. ea., \(7 / 6\) doz. \(0.1 \mu\) F I50V Tubes .. 6d. ea., 7/6 doz. \(50 \mu \mathrm{~F} 70 \mathrm{~V}\) Castanets .. \(1 / 6\) ea. \(140 \mu \mathrm{~F} 30 \mathrm{~V}\) Castanets 110 K Rectilinear Presets Valves: CV2298/EB91 85A1/75BI EF72/EC70
Transistors: OC470/2N706 BCY39/OC139

Relays: Londex 80.0880 .26484 P 2 way, G.E.C. M1492/1493/1495/1500/1502 High-s peed, Mag. Devices Led. 24 V . Belling Lee Min. Fuse Holders Midget Flange Lamps, 28 V . 04 A S/Hand Twin Stabilized P/U, \(22 / \mathrm{e} / 240 \mathrm{~V}\) Robot Recorder 36: 35 mm Camera System with Motor Transport/ Electric Booster/200it Magazinel Timer. New 8434 Now \(\mathbb{C} 125\) S/Hand Dynamically Controlled Welder, Model CPWA 296A, Texas
Instruments ..
\& 125 ALL GOODS GUARANTEED.

WW-163 FOR FURTHER DETAILS


\section*{ELECTRONIC BROKERS LIMITED}

MOTORS
HYSTERESIS CLUTCH MOTOR with integral clutch allowing the motor to drop
out of engagement with the gear train, thereby taclitating easy resetting when used in timers or

 1/12, \(5 / 12,4 / 11,1 / 10\) r.p.m. \(25 /-\)
HIGH TORQUE INDUCTION


Useful for cycle timers.
Motorised valves advertising
 1r.p.m.e.e. 2.5 wats. 240 volts
50 cyeles 30 r.p.m.. 20 r.p.m.
Right.
 LOW TORQUE HYSTERESIS MOTOR MA 23 Ideal
drives,
instrument
 low.
Having a hagh harting
torque torque o relatively high
tertia load can be driven.


 \(1 / 60\) r.p. .m., \(1 / 180\) r.p.
hour \(1 / 2\), r.p.... \(1 / 48 \mathrm{r}\)
\(2-2\) way friction, hysteresis reversible
MOTOR. Incorporating two colls. Each coll when enersized will produce opposite rotation of
the output shaft. 240 volt 50 cycle, 15 r.p.pm.
 to 30/-

\section*{RECORDING INSTRUMENTS}

ELLIOTT PORTABLE SINGLE PEN RECORDER TYPE 500

ELLIOTT BROS. \(3-7 / 8983\).
Recorder. 5 mA complete whh sweep and Record-

EVERSHED \& VIGNOLE RD 9B 2 PEN RECORDER, WITH AMPLI2 PEN RECORDER, WITH AMPLI-
FIER TYPE PA 10 . speeds \(t, 1,3,6\) in./sece. Full scale deflection of pens \(\pm 7-1 /\)
Movement \(2 \xi\) in. 0 ur price \(£ 49 / 10 /\)
KENT STRIP-CHARD INDICATING RECORDER.
Suitabie for the measure-
ment of anything that can be meangured in terms of an
eleectrical sigual. Chant
width 91

seasid. speed of operation
arale.
33 sec. for full-scule travel.
 ع49/10/=:
TRANSISTROL 2 POSITION INDICATING TEMPERATURE CON TROLLER BY ETHER, TYPE 990

 couple break junction con compensation. Chermocentigrade accuracy \(\pm 10\)
\(10 \times 5\).
 2 200 V. Control switching and Thernocouple connections all at back of case.
List price \(\varepsilon 49\). New oondition
EAC DIGIVISOR Mk. II DIGITAL READ.OUT DISPLA
Ideally sultable for use Ideally sultuble for use
In conjunction with
transistorised decade counting derices. need for ampliflers or or
relaya as only \(a\) few reiays as on a a few
milliwatte of power are requir red to charge the
dikit. The DIGIVIBOR
dince

\section*{LOW COST ELECTRONIC \& SCIENTIFIC EQUIPMENT \& COMPONENTS}
 out to separ rate multi-core leads which can be wired to any deck function or nuxlliary equipment,
Finished ln bruab-alurninium and ruatt-black. size: \(27 \times 26 \times 8 \mathrm{ln}\). Weight Fapstan motor speed 1,500 r.p., m. Nust have cost \(\ell 1,000\). Our price \(£ 65\). Now condition bat ex eequipment. VACUUM ABSEMBLY required for computer and data use. fi/10 extra. Beven Track record replay head, ex-computer, complete with guld
in. Tape, 2,400 ft. \(28 / 10 /\) - new. Empty
reels
\(25 /-\), in cassettes
\(45 /-\)
"V" SCAN DIGITAL SHAFT ANGULAR POSITION PICK-OFF ENCODER BY MOORE REED TYPE ML300 BS BY MACLAREN
size: \(8 \times 11 \times 6\) in
 Completelyitransistorised flecting units for lidicat-
ing and controlling ing and controiling
tempersture accurately
over a wide range. Over a mide range.
Suitable where trigal
can be converted into

 \(-19-\) EP 118
3 discs. size 18. Counta
524288 in
1024 revo shaft in V new in maker's original seale
approz. Our price \(£ 22 / 10 /\)

CONTROLS for ganging. Brand new z 20

MALLARD DIGITAL CORE STORER TYPE AW 511 E49 10/ AW \(510 £ 35\)

\section*{INSTRUMENT POTENTIOMETERS}

COLVERN CLR-7304-
 2 watte 30 k ., \(1 \times 1 \times 1 \mathrm{in}\). dia, \(301 /=\) CIIR2501/3-
 per turn. Res \(+2-1\) in
\(50 /=, 1.5-5\) Turn, \(45 /\)

BECKMAN MODEL A


COLVERN \(10-T\) URN
INSTRUMENT DIALS 10/6


BECKMAN MODEL,
\({ }^{10}\) Turn , 25 Ohm MODEL A
5 Turn, \(80 /\) -
BECKMAN 7216
10 Turn, it in. dia. 2 k ., B0/.
BECKMAN MINIATURE MULTI-

separate brak
splade,
\(45 \%\)

\author{
HELICAL MULTI-TURN OTENTIOMETERS
}

FERRANTI PRECISION CONTINUOUS WIREWOUND POTENTIO-
size 15, Seven sections. Ganged, give ing seven difter.
giving
determined values,
E25.

TEST EQUIPMENT-continued EVERSHED BRIDGE MEGGER

250 volt, 50 meg .
Insulation tester with
built-10 uult-1in four decade bridgen with ratio atris
giving ratios of \(100-10\) \(-1-0.1+0.01\) nd insulation, resistance and variety meas
ments. \(£ 28 / 10 /-\)


FEW ONLY TYPE 67008
EVERSHED BRIDGE MEGGER 600 volts Insulation 0-100 Meg. BrIdge \(0.01-999,900\)
hmms with facilities for "VARLEY LOOP TEST" hist price \(\varepsilon 120+\). Our price £69/10/EVERSHED VIGNOLES MEGGER CIRCUIT TESTER (Low reading Ohmmeter) Two ranges 0.30 .30 ohims. Complete with leather case. Our price \(£ 8 / 10\)
MARCONI VALVE VOLTMETER

\(\pm 2 \%\) o
TYPE.I3 A DOUBLE BEAM OSCILLOSCOPE
Time base 2 C/s.- 75 A.C.IS. Band width up to M.V./C.M. e25

SOLARTRON CD 523. D.C. to 10 M.C./S., I M.V./C.M. Maxi
"Y̌"
senalterity \(4,000,000\) : 1 time base
 purposa 'scope. £49/10/-

\section*{N ANALYSER} Frequency range 0.1
 /oto K c/s covering lectromechanica applications an \(\begin{array}{ccc}\text { servomechsnisms. } \\ \text { Resolves } & \text { network } \\ \text { Response } & \text { signal }\end{array}\) imultaneously tato Permits direct polar diagram plotiting of a system frequency response using cartesian co attenuation phase response and other servo charac teristice. Clives network phase/amplitude response
from 0.1 c/s to 1 K c/s. Deflection sense of two from \(0.1 \mathrm{c} / \mathrm{s}\) to \(1 \mathrm{~K} \mathrm{c} / \mathrm{s}\). Defection sense of tha
centre zero-meters gives immediate identifation centre zero-meters gives immediate identification o
vector quandrant involved. 40 db rejection vector quandrant involved. 40 db relection on
amplitude. High sensitivity \(50 \mathrm{mV} / \mathrm{fd}\). High accuracy measurement of true
price \(\angle 1,600\). Our price \(\$ 595\).


REFERENCE RESOLVER \(\mathbf{~} \times 746\) for use with Trans-
 itan diapplay of phase
angle. Three decade angle. Three decade
digital \(0-180^{\circ}\) with price \(£ 125\).


AC CARRIER CONVERTER 1X 67IA Provides modulation and demodulation to adapt systems. Frequency: \(50 \mathrm{c} / \mathrm{s}, 60 \mathrm{c} / \mathrm{s}, 200 \mathrm{c} / \mathrm{s}, 400 \mathrm{c} / \mathrm{s}\) Carrier supply 0-230 R.M.8. Our price \&95.
\[
\text { SERVO TEST SET } 1 \times 563
\]
 unskilled personnel. The unit consists of ans L.Fy unit under test via a preset attenustor, the output from the eservo being compared within the instrument against preset reference signals at chosen frequencies.
Oscllastor output: 10 volts R.M.S. unbalanced or 20 voltg R.M.s. balanced. Maximum current in load: 5MA. Oscillator frequencies any four from 0.5 cycles
-500 cycles. Servo output limits. Minimum 30 My - 500 cycles. gervo output limats. Minimuwn 30 MV to maxi
SOLARTRON AS 562 KLYSTRON SOLARTRON AS 562 KLYSTRON
POWER UNIT. Suitable for supplying low and triangular wave modulation facilitises provided. Precision reflector supply. L.T. 6.3 V.D.C. up to
 400V at \(50 \mathrm{M} / \mathrm{A}\) (Positive). Reflector supply \(00-400 \mathrm{~V}\)
(Negative) 8 witched. Morniation internal 50 cycle symmetrical triangular. \(3 \mathrm{Kc} / \mathrm{s}( \pm 50 \mathrm{cycles})\) sq. wave, \(3 \mathrm{Kc} / \mathrm{s}\) ( \(\pm 50\)
ع220. Our price 885.
SOLARTRON ANALOGUE DIGITAL CONVERTER
Bec Conversios Time, 10,000 conversion per second.
Full seale reading Impue imperd. 26 KK . Output code 12 bits Bian \(\pm 9.99\). Impue imped. 26K. Output code 12 bits Biaary
Coded Decimal plus pola rity. List price 2680 .
Our price \&195.

TEL. 01-958 9842
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|l|}{NEM STAMDAD} \\
\hline \multicolumn{8}{|l|}{CASES GHOMI U OU N} \\
\hline &  & & & & & & \\
\hline Type & Width
Dim. A & Height & \begin{tabular}{l} 
Dopth \\
Dim. \\
\hline
\end{tabular} & Type & \({ }_{\text {Wim }}^{\text {Wlath }}\) & \(\underset{\substack{\text { Helght } \\ \text { Dim. } \\ \hline}}{ }\) & Depth
Dim.
c \\
\hline & Inches & inches & inches & & inches & inches & inches \\
\hline 25A & \(6 \frac{1}{2}\) & \(4 \frac{1}{2}\) & \(4 \frac{1}{2}\) & 61 & \(15 \frac{1}{2}\) & & \(9 \frac{1}{2}\) \\
\hline 25B & \(6 \frac{1}{2}\) & \(4 \frac{1}{2}\) & \(6 \frac{1}{4}\) & 62 & \(17 \frac{1}{1}\) & \(8 \frac{1}{2}\) & \(9 \frac{1}{2}\) \\
\hline 26A & \(8 \frac{3}{3}\) & \(5 \frac{3}{4}\) & \(6 \frac{1}{4}\) & 63 & \(16 \frac{1}{2}\) & \(9 \frac{1}{2}\) & \(9 \frac{1}{2}\) \\
\hline 26B & \(8{ }^{3}\) & \(5 \frac{3}{4}\) & \(8 \frac{1}{4}\) & 64 & \(15 \frac{1}{2}\) & \(7 \frac{1}{2}\) & \(12 \frac{1}{2}\) \\
\hline 27A & \(12{ }^{\frac{1}{4}}\) & \(7 \frac{1}{2}\) & \(5 \frac{1}{2}\) & 65 & \(17 \frac{1}{2}\) & \(8 \frac{1}{2}\) & \(12 \frac{1}{2}\) \\
\hline 27B & \(12 \frac{1}{4}\) & \(7 \frac{1}{2}\) & 8 & 66 & \(16 \frac{1}{2}\) & \(9{ }^{\frac{1}{2}}\) & \(12 \frac{1}{1}\) \\
\hline 28A & 14 & \(10 \frac{1}{2}\) & \(6 \frac{1}{2}\) & 75A & 12 2 & \(5 \frac{3}{3}\) & \(6 \frac{1}{2}\) \\
\hline 2BB & 14 & \(10 \frac{1}{2}\) & \(8 \frac{1}{2}\) & 75B & 123 & \(5 \frac{3}{8}\) & 9 \\
\hline 29A & 10 & 4 & 6 & 76 A & \(12{ }^{\frac{5}{8}}\) & \(7 \frac{7}{7}\) & \({ }_{6}\) \\
\hline 29 B & 10 & 4 & 8 & 768 & 128 & \(7 \frac{7}{8}\) & 9 \\
\hline 30A & 12 & 5 & 6 & 77 A & 14 E & \(6 \frac{83}{3}\) & . \(6 \frac{1}{2}\) \\
\hline 30B & 12 & 5 & 8 & 778 & \(14 \frac{5}{8}\) & \(6 \frac{3}{8}\) & 9 \\
\hline 31 A & 14 & & & 81 & 4 & 4 & \(6 \frac{1}{1}\) \\
\hline 31 B & 14 & 6 & 8 & 82 & 5 & 5 & \(8 \frac{1}{81}\) \\
\hline 40A & \(4 \frac{1}{2}\) & & 6 & 83 & 6 & \({ }_{7}\) & \(10 \frac{1}{1}\) \\
\hline \[
\begin{aligned}
& 40 \mathrm{~B} \\
& 40 \mathrm{C}
\end{aligned}
\] & \(5 \frac{3}{3}\) & \(8 \frac{3}{3}\)
83
83 & 6 & 84 & 6 & 7 & 12 \({ }^{\frac{1}{8}}\) \\
\hline
\end{tabular}

Quotations gladily given for customers' own specifications and special requirements WRITE FOR FURTHER DETAILS TO
OLSON ELECTRONICS LTD., FACTORY NO. 8 5-7 LONG ST. LONDON E2

TEL: 01-739 2343

\section*{WW- 166 FOR FURTHER DETAILS}

\section*{ILIFFE BOOKS}

\section*{COLOUR TELEVISION} VOL. I: PRINCIPLES AND PRACTICE
P. S. CARNT, B.Sc.(Eng.), A.C.G.I., C.Eng., F.I.E.E., Leader of Colour T.V. Group Laboratories, R.C.A. Ltd., Zurich, and G. B. TOWNSEND, Ph.D., B.Sc., F.Inst.P., A.K.C., A.M.I.B.M., C.Eng., F.I.E.E., Head of Engineering Research, Thames Television Ltd.

A working knowledge of black and white television is assumed, and while the treatment is largely non-mathematical, the more advanced mathematics are given in the appendices. Most aspects of transmission and reception are discussed, though the emphasis is on the latter. . For the service engineer, chapters on fault-finding have been added which illustrate the practical approach. Block diagrams and full circuits are included.

\section*{CONTENTS}

Colour Measurements. Colour Picture Tubes. Cameras and Film Scanners. Transmitter Coding. Specification in N.T.S.C. Systems. Transmitter Coding Circuits. Introduction to Colour Receiver Design. Colour Receiver Amplifiers. Colour Receiver Decoding Circuits. Colour Receiver Reference Frequency Generators. Operation of the Shadow Mask Tube. Colour Receiver Test Equipment and Performance Measurements. Receiver Installation. Colour Receiver Fault Finding. Monochrome Reception on N.T.S.C. Signals. Shortcomings of N.T.S.C. Systems. Appendices.

487 pp. 233 illustrations. 16 pp . plates -8 ir colour.
85 s . net, 86 s . 8 d . by post.
ILIFFE BOOKS LTD.
42 RUSSELL SQUARE, LONDON, W.C. 1

\begin{abstract}
BOONTONSTANDARD SIGNAL GENERATOR MODEL 80. Frequency 2400 Mcls . In 6 ranges. AM., 400 and \(1,000 \mathrm{e} / \mathrm{s}\). and external modulation. Provision for
pulse modulation. Piston pulse modulation. Piston
type attenuator \(0 . \mathrm{i}_{\mu=100} \mathrm{mV}\) separate meter for modu. lation level and carrier level. Precision flywheel cuning. 117 v. A.C. inpue. With instruction manual, 695 . Carriage 30/-.
Ditto but military version
\end{abstract}


MARCONI SIGNAL GENERATOR TYPE TF \(144 \mathrm{G} .85 \mathrm{kc} / \mathrm{s} .25 \mathrm{Mc} / \mathrm{s}\). Excellent laboratory tested condition, scruction manual, \&45. P. \& P. 15/.

BC 221 FREQUENCY METERS. \(125-20,000 \mathrm{ke} / \mathrm{s}\). Accuracy \(0.01 \%\). Complete with individual Calibration book. In brand new condition with head phones and instruction book.
E45. P. \& P. \(20 / \%\) Mains P.S.U. for 445. P. \& P. 20/-. Mains P.S.U. for
above, E11/10/-. Carriage 5/-. Stabilised above, \(11 / 10 /-\). Carriage \(5 /-\). Sta
PSU for above \(£ 16\). Carriage \(5 /\).

MARCONI SIGNAL GENERAin 4 bands. Internal ac \(400 \mathrm{c} / \mathrm{s}\). I ke/s. External \(50 \mathrm{c} / \mathrm{s}\) to \(10 \mathrm{kc} / \mathrm{s}\). Output \(0-100 \mathrm{db}\) below 200 mV from 75 ohms source. \&85. P. \& P. 20/\%, including necessary connectors, plugs, and inseruction manual.

BROADBENT MICROWAVE SIGNAL GENERATOR TYPE 903. Frequency range \(6,800-11,000 \mathrm{mc} / \mathrm{s}\), directy calibrated. Pulse rate \(40-400\) \(\mathrm{c} / \mathrm{s}\) and X 10 multiplyer, delay \(3-300\) U/sec. Width .05 to \(10 \mathrm{U} / \mathrm{sec}\). Input lation. Output delayed and undelayed syneronised directly calibrated attenuator. 〔85. Carraige 30/-

DAWE VALVE VOLT METER TYPE 613B. Range 0.03 v to 300 v in nine ranges. Frequency \(20 \mathrm{c} / \mathrm{s}\) to 2 \(50 \mathrm{c} / \mathrm{s}\) E \(17 / 10 / \mathrm{O}\). Carriage \(30 / \mathrm{o}\)

\section*{SOLATRONLABORATORYREGULATED POWER UNIT MODEL} SRS 151 A. Variable voltage, positive output: \(20-250 \mathrm{v} ; 250 / 500 \mathrm{v} \times 300 \mathrm{~mA}\) (metered). Negative output \(0-170 \mathrm{v}\) (unmetered). Fixed negative output 170 v . Two separate 6.3 v and 5 amp outputs. Volts \(-m A\) meter switch.
H.T. Safetly suteut. \(200 / 250 \mathrm{v}\) A.C. 50 H.T. Safetly suteut. 200/
\(\mathrm{c} / \mathrm{s}\). \(£ 45\). Carriage \(30 /-\).

\section*{MARCONI VIDEO OSCILLATOR}

TF 885A. Sine wave output \(25 \mathrm{c} / \mathrm{s}\) to \(5 \mathrm{Mc} / \mathrm{s}\) in 2 bands, Squarewave output \(50 \mathrm{e} / \mathrm{s}\) to \(150 \mathrm{c} / \mathrm{s}\) in 2 bands. Freq. accur. \(\pm 2 \% \pm 2 \mathrm{c} / \mathrm{s}\). Power supply \(100 / 125\) /
\(200 / 250\) v. A.C. 555 . (Ditto but \(25 / 12\) \(\mathrm{me} / \mathrm{s}\) in 3 bands/885A/1). £85. Carriage 40/-.

PRECISION VHF FREQUENCY METER TYPE 183. 20-300 Mc/s with accuracy \(0.03 \%\) and \(300-1,000 \mathrm{Me} / \mathrm{s}\) with accuracy \(0.3 \% .{ }^{\text {Additional band }}\) on harmonics \(5.0-6.25 \mathrm{Mc} / \mathrm{s}\) with ac-
 \(10.120 / 220\) v. A.C. mains. \(£ 85\). Carriage \(\mathbb{C 2}\).

AIRMEC FREQUENCY STAND. ARD METER TYPE 761. 10c, 100c, 10ke, lookc, IMc. 880. Carriage 30/\%.

COSSOR OSCILLOSCOPE TYPE 1049. 445. Carriage 30/-

Fuller descriptions of the following upon request.
SIGNAL GENERATOR TYPE 62 COMPLETE WITH P.S.U. HEWLETT-PACKARD ELEC. TRONIC COUNTING UNIT.

MICROWAVE SPECTRUM ANALYZER TYPE SA 18 MANUFACTURED BY RACAL.
DAWE STORAGE OSCILLOSCOPE TOGETHER WITH TRACE SHIFTER

SIGNAL GENERATOR CT 218 (FM/AM) MARCONI TF 937. \(85 \mathrm{ke} / \mathrm{s}\) to \(30 \mathrm{mc} / \mathrm{s}\) in 8 ranges. Output level variable in I db steps from \(I \mu V\) to 100 mV into 75 ohms. Also I volt outputs down to \(0.1 \mu \mathrm{~V}\) into 7.5 ohms. Internal mod at \(400 \mathrm{c} / \mathrm{s}\), I ke/s, \(1.6 \mathrm{ke} / \mathrm{s}\) and \(3 \mathrm{ke} / \mathrm{s}\). Variable mod. depths and deviation. Crystal calibrator \(200 \mathrm{kc} / \mathrm{s}\) and \(2 \mathrm{mc} / \mathrm{s}\). F.M. at frequencies above
\(394 \mathrm{kc} / \mathrm{s}\). Monitor speaker for beat \(394 \mathrm{kc} / \mathrm{s}\). Monitor speaker for beat
detection. Panclimatic. 100 to 150,200 to 250 V A.C. \(45 \mathrm{to} 100 \mathrm{e} / \mathrm{s}\). Welght to 250 V A.C. 45 to \(100 \mathrm{e} / \mathrm{s}\). Welght
117 lbs . Measurements \(17^{\prime \prime} \times 201^{\circ \prime} \times\)


TAYLOR TYPE OUTPUT POWER METER. 5 mW to 5 W F.S.D., 2.5 to 20,000 ohms. E \(15 / 10 /\) -
Post and packing \(15 /\). Post and packing 15/-

BOONTON " A" METER TYPE 160A. Frequency range \(50 \mathrm{kc} / \mathrm{s}\) to \(50 \mathrm{me} / \mathrm{s}\). " \(Q\) " range \(0-250\) with mul tiplier of 2.5. Main'tuning capacitor \(30-500 \mathrm{pF}\) with separate \(\pm 3 \mathrm{pF}\) inter
polating capacitor. Power supply polating capacitor. Power supply
\(220 / 250 \mathrm{vAC}\), 675 . Carriage \(30 /\).

AVO VALVE TESTER MODEL 3. Measurement of mutual conductance \(0-100 \mathrm{~mA} / \mathrm{V}\) in four ranges. Screen \(0-300 \mathrm{v}\)., panelled \(0-400 \mathrm{v}\). grid \(0 /-100 \mathrm{v}\), Filament \(0 / 126\), Insulation \(0 / 10 \mathrm{~m}\) ohms. Rectifying valves and signal
diodes can be tested under load condiodes can be tested under load conditions, short circulting of electrodes
and cathode insulation can also be and cathode insulation can also be
measured. Complete with data book @ 445. Carriage 30/-.

FUAZEHILL SENSITIVE VALVE VOLTMETERTYPE 378 B/2. Accurate measuring AF and MF voltages up to
\(250 \mathrm{kc} / \mathrm{s}\) in the ranges 10 mV (full scale) \(250 \mathrm{kc} / \mathrm{s}\) in the ranges to divided. A do scale provided for \(0-20\) divided. A db scale provided for 0 db being 1 mV . Automatically set zero for every range. A jack is provided for monitoring the input signal if required. 220/250v. A.C. \(£ 27 / 10 /-\) Post and packing 10/.

END OF RANGE: MARCONI VALUE YOLT METER. Type T.F.428. E9. Carriage 10/-.

SIGNAL GENERATOR. C.T.53. 10. Carriage \(15 /-\).

EVERSHED \& VIGNAL \(500 \mathrm{~V}, 100\) Uohms meggers. ©15. Post and packing 15/.

VALVES




\section*{BI-PAK Gunainit filitabion or money BAck}


Code Nos. mentioned above are given as a guide to the type o

\section*{QUALITY-TESTED VALUE PAKS}
\(100 \mathrm{Mc} / \mathrm{s}\). 0 Red Spot AF Tran. OC44/45/81/81D

2 Assorted Germ. DDodes Marked
4 AO126 Gertn. PNP Tan
 4 Aclat Germ. PNP Trans.
1 ORP61 Photocond16 Wed Spot AF Trans. PNP5 Sillcon Rects. 3 A \(100-400\) PI210 A slicon Rects. 200 PIV2 OCl 140 Trans. NPN Switching112 A SCR 100 PIV8ii. Trans. 28303 PNP3 zener Diodes 250mW 300 Mels Sil. Trans. NPN BSY̌2b/273 200 Mc/s Sil. Trans. NPN BAY28/27
3 Zener Dlodes \(400 \mathrm{~mW} 33 \mathrm{~V} 5 \%\) Tol.
    4 High Current Trans. OC42 Equt.
        Power Transistors 1 OC26 1 OC35
        4 OC75 Transistors Mullard Type
        1 Power Trans. OC20 100 V .
        10 Power ranis. 8 Diodes Sub-min.
        2 Low Noise Trans. NPN 2 N929/30
        OA81 Diodes
        4 OC72 Transistors Mullard Type
        4 OC77 Transistors Mullard Type
        Metal Alloy Transistora Mat. Type
        EU. Rect
        OGET883 Trans, Equt. OC4
        2 2N 708 sil. Trans. \(300 \mathrm{Mc} / \mathrm{B}, \mathrm{NPN}\)
\(5 \mathrm{GT} 41 / 45 \mathrm{Germ}\). Trans. PNP
        GT31 LF Tow No......................
        PNP
        8 OA95 Germ. Dlodes sub-mim. IN69.
        NPy Germa Trans. NKT773 Eqvt
        0 C 22 Power Trans. Germ.
        OC25 Power Trans. Germ
        AC128 Trans. PNP High Ga
        2 AC127/128 Comp. pair PNP/NPN
        \({ }^{2 N 1307}\) PNP SW2H Germ. Diodihng Trans. .a.i... 10 ORP61 Photo-conductlve cell Silicon Rects. 100 PIV 750 mA ocs1 Type Trane 0c171 Trans, Mulard Type 5 2N2926 sil. Epoxy Trans. oc71 Type Trans. ..... 28701 sil. Transs. Texas 312 Volt Zeneras 400 mW 210 A 600 PIV SII. Rects. IS 45 R 3 BC108 8LI. NPN High Gain Trans. \(\begin{array}{ll}1 & 2 \text { N910 NPN Sil. Trans. VCBio } \\ 2 & 1000 \text { PIV 8il. Rect. } 1.5 \text { A R } 53310\end{array}\) 3 RgY P5A sil. Trans NPN Ro0 Mc/s 3 OC200 Sil. Trans. Mullard 2 Sil. Power Rects. ByZ13 1 Si. Power Trans. NPN \(100 \mathrm{mc} / \mathrm{s}\) TK201A.
Zener Diodes 3.15V Bub-min \({ }_{3}{ }_{2}^{2 N 1132}\) PNP Epitaxial Planar sitaxial Planar Trana 4 Germ. Power Trans. Euvt. Ocl6
1 Unluunction Trans. 2 N2648 1 Unljunction Trang. 2N2646
 1 Su1. Plan
BSY25. Planar
\(\mathbf{2 5}\)
B8Y25 Hnljunction Trans, 2 N 2160 TO2 sil. Rects. 5 A 500 PIV Etud Type. 2 Germ Power Trant. OC28/29. 110 A SU. Stud Rect. 800 PIV
1 Tunnel Diode AEY 11
1050 Mc 2 2N2712 Sil. Epoxy Planar HFE225 8 BY 100 Type su. Rects. 25 gin. and Germ. Trans. Mixed, a
FREE One \(10 /\) Pack of your own dind palued \(£ 4\) or over.

\begin{tabular}{|c|c|c|}
\hline L. RECTS TESTED & SCR's LARGEST PRAMEE & \\
\hline PIV 750mA 3A 10A 30A & PIV 1AMP7A 16 A ( 30 A & \\
\hline  &  & \(\mu \mathrm{L} 900\) Buffer © 11 \\
\hline  &  & \\
\hline  & \({ }_{300}^{200} \frac{1210}{151-201-251--}\) & lip Flop \\
\hline \({ }_{500}^{500} 41 /{ }^{8 / 6} 91680\) &  & circuits \\
\hline  &  & \\
\hline 8/- 10/- 17/8 50/- & & mullard \\
\hline & ASTIC PLANA & TAA26 \\
\hline PRINTED CIRCUITS & 8 FOR 10/-; 20 FOR & 促 \\
\hline X-COMP UTER & & \\
\hline red with \(\begin{gathered}\text { semicon. } \\ \text { ors and } \\ \text { components, }\end{gathered}\), & FULLY TESTED TRANS. & UNIUNCTION \\
\hline boaritg glve a gluaran- & & \\
\hline es. Our price 10 boardm & dd & \(8 / 6\) \\
\hline , & Order 10/- & 71 EACK \\
\hline
\end{tabular}
 150 Regent Street London, W. 1

\title{
ELECTROVILUE
}

\section*{RAPID MAL DRDER SERVICE}

\section*{all goods arano new attractive discounts}

NO SURPLUS OR SECONDS
* Unbeatable Value in New Semiconductors 30 watt BAILEY AMPLIFIER complement MJ 481 NPN
M matched pair output \(£ 2.19 .0 \quad 40361 \quad 12 / 6 ; 40362 \quad 16 / 9\) 40361 NPN
0362 NPN \(\}\) matched pair drivers 1.10 .3
BC125 12

Total for one channel \(£ 7.8 .0\) list; with \(10 \%\) discount only \(£ 6.13 .3\) Total for two channels \(£ 14.16 .0\) list
Power Supply Kit (single rail) \(£ 4.10 .0\)
G.E. 2 N 2926 plastic range: 18 V 200 mW

Red spot \(\beta=55\) to 1102 2/3 \(\quad\) Yellow spot \(\beta=150\) to \(3002 / 9\) Orange spot \(\beta=90\) to \(1802 / 6\) each, Green spot \(\beta=235\) to \(4703 /=\) 2 N 2926 , our choice of colour \(2 / 2\) each, 10 for \(21 / \mathrm{F}\).
High reliability/ ceramic types avalia \(4 / 3\)

Texas SILECT range

\(2 \mathrm{~N} 37 \mathrm{~B}=90\) to 330
\(2 \mathrm{~N} 3705=45\) to 165
25 V 200 mA PNP
2N3702 \(\beta=60\) to 300
2N3703 \(\beta=30\) to 150
small signal NPN
2N3707 low noise
small signal PNP
2N4058
FETs MPF105 25V max., gm = 2 to \(6 \mathrm{~mA} / \mathrm{V}\), low noise \(8 / \mathrm{F}\)
\(2 N 381925 \mathrm{~V}\) max., gm - 2 to \(6 \mathrm{~mA} / \mathrm{V}\), low noise \(10 /\).
Mini TRANSISTORS WITH mighty SPECIFICATIONS
2 N 4286 NPN 30 V hFE over 100 at \(10 \mu \mathrm{~A}\) to 1 mA fT 280 MHz typ
2N4289 PNP 60 V hFE over 100 at \(100 \mu \mathrm{~A}\) to 1 mA fT 170 MHz typ
2N4291 PNP 40 V hFE over 100 at 100 mA complementary driver
2N3794 NPN 40 V hFE over 100 at 100 mA output
2 N 4294 NPN 30 V UHF, N.F. 6 dB max at 100 MHz f
2 N 4294 NPN 30 V UHF, N.F. 6 dB max at 100 MHz fT 570 MHz typ
B5001 Power, 14.3 W at \(100^{\circ} \mathrm{C}\) base temp. Insulated base, T066 size.
Prices: 2N4285 to 2N4292, 2N3794 3/3; B500113/6.
RECTIFIERS 100 V PIV 3 A type TSI, \(2 /-5400 \mathrm{~V}\) PIV 3 A type TS4, \(2 / 9\).
850 V PIV \(\ddagger\) A type BY238 3/9; 1000 V PIV \(1 \cdot 5 \mathrm{~A}\) type 1 N5054 \(3 / 11\).
FOR FURTHER DATA on the above semiconductors and many others, see

\section*{ZENER DIODES}

3V to \(27 \mathrm{~V} 5 \% 400 \mathrm{~mW}\) all preferred voltages, \(4 / 6\) each.
+ PEAK SOUND PRODUCTS
GR-KIT No. 3 Pack, \(12 / 68\) adhesive copper strip, \(5 \mathrm{ft} \times \frac{1}{6}\) or \(\frac{1}{1 /} \mathrm{in}, 2 /-2\) \(23 \mathrm{in} . \times 3\) in., \(2 / 6: 2 \mathrm{in}\). \(\times 3 \mathrm{in} ., 1 / 9\).

> ALI. PEAK SOUND PRODUCTS AS ADVERTISED
* SUPER QUALITY NEW RESISTORS

Carbon film high stab, low noise:
\(\left.\begin{array}{ll}1 / 8 W & 10 \% \\ 1 / 8 W & 1 \Omega \text { to } 3.3 \Omega \\ 519 \Omega & \text { to } 1 \mathrm{M} \Omega\end{array}\right\} / 10 \mathrm{doz} ., 14 / 6\) per 100
\(1 / 4 \mathrm{~W} 10 \% 4.7 \Omega\) to \(10 \mathrm{M} \Omega 1 / 9\) doz., \(13 / 6\) per 100 .
IW \(10 \% 4 \cdot 7 \Omega\) to \(10 \mathrm{M} \Omega 4 \mathrm{~d}\). each, \(3 / 3 \mathrm{doz}\), \(25 / 10\) per 100.
\(1 / 6\) less per 100 if ordered in complete 100 's of one ohmic value.
Please state resistance values required.
QUALITY CARBON SKELETON PRE-SETS: \(100 \Omega, 250 \Omega, 500 \Omega\), \(1 \mathrm{~K} \Omega, 2 \mathrm{~K} \Omega, 25 \mathrm{~K} \Omega, 5 \mathrm{~K} \Omega, 10 \mathrm{~K} \Omega, 20 \mathrm{~K} \Omega, 50 \mathrm{~K} \Omega, 100 \mathrm{~K} \Omega\), \(200 \mathrm{~K} \Omega\) Available in horizontal or vertical mounting \(1 /\) - each

\section*{\(\star\) ELECTROLYTICS}

SUB-MIN., C426 RANGE ( \(\mu\) F/V): \(0.64 / 64,1 / 40,1.6 / 25,2.5 / 16,2.5 / 64\) \(4 / 10,4 / 40,5 / 64,6.4 / 6.4,6.4 / 25,8 / 4,8 / 40,10 / 2.5,10 / 16,10 / 64,12.5 / 25,16 / 10\), \(16 / 40,20 / 16,20 / 64,25 / 6.4,25 / 25,32 / 4,32 / 10,32 / 40,32 / 64,40 / 2.5,40 / 16\), \(50 / 6.4,50 / 25,50 / 40,64 / 4,64 / 10,80 / 2.5,80 / 16,80 / 25,100 / 6.4,125 / 4,125 / 10\),
\(125 / 16,160 / 2.5,200 / 6.4,200 / 10,250 / 4,320 / 2.5,320 / 6.4,400 / 4,500 / 2.5\). 125/16,
MINIATURE ( \(\mu \mathrm{F} / \mathrm{V}\) ): \(5 / 10,10 / 10,10 / 25,25 / 10,50 / 109\) d. each. \(25 / 25\), MINIATURE \((\mu \mathrm{F} / \mathrm{V}): 5 / 10,10 / 10,10 / 25,25 / 10,50 / 109 \mathrm{~d}\). each. \(25 / 25\),
\(50 / 25,100 / 10,200 / 10,1 /=\) each. \(50 / 50,2 /=.100 / 50,2 / 6.250 \mu \mathrm{~F} 25 \mathrm{~V} 2 / 6\). \(\star\) POTENTIOMETERS (short spindle): \(100 \Omega\) to \(10 \mathrm{M} \Omega \operatorname{lin}_{2} 5 \mathrm{~K} \Omega\) to 10/6d. each

\section*{ELECTROVALUE SERVICES INCLUDE}

COMPONENT DISCOUNTS: \(10 \%\) for total order value exceeding \(£ 3\) list.
Post and Packing: Up to \(£ 1-1 /-\). Free on orders over \(£ 1\).
OVERSEAS ORDERS WELCOMED-Carriage at cost.
CATALOGUE-SEND \(1 /-\) for our latest catalogue containing data on 200 up-ro-date semiconductors available from stock as well as many other experimenter and designer. Everything at best possible prices.
Stores Telephone No. EGHAM 5533 (STD 0784-3).

Dept. WW.11, 6 MANSFIELD PLACE, ASCOT, BERKSHIRE

\section*{ITMIEDIATE DESPATGH}


\section*{BC107,8 \& 9 2/9 \\ 1 WATT I.C.!!}

TIS43A
Unluanction transistor sim. 2 N 2646 BEN300 etc. Data on request \(2 \mathrm{j}-99 \mathrm{j} / 3 \mathrm{ad} 100+4 /\) -

PA234 @ 35-- ea delivers 1 watt output from a dual 1 in-line IC package.


20 Watt Power Amplifer Kit based on "AF11" Design £8/8/- complete (not case). Ti-F1 Preamplifer based on design note 21 . Le/10/3 complete (not case)
Send now for (ull details.

FAIRCHILD I.C'S




All Semiconductors offered by L.S.T. are fully to Manufacturers' specifications and bear the original ManufacTrade Mark. We do not sell devices of the "re-marked" type.

MULLARD
PHOTO-PhOTO-
RANSISTOR 2N3819fet 10/COMPONENTS

Heat Sink Compound 6/. Mica Washers etc. OC35 type \(1 / 3\) set Heat Sink for pair OC35 etc. \(6 /\) Solar Drive Motors run from IR Solar Batteries at 39/6.
Sun Cells B2M 12/6: B3M 15/-. S1M 19/-: S4M \(33 / 6\). Solar Cell Assortment Pack 9/11. DRR8 Reed Relay with PC Board mounting and diode etc. 10/-. Dialco Sub-Miniature 10 v . Panel lamps and holders only \(\frac{1}{4}\) in. \(\times 1 \frac{1}{2}\) in. long fixed by spring clip, \(12 /\) - dozen. 1404 Transducers \(40 \mathrm{kc} / \mathrm{s}\). Pair for £5/18/- with free circuit for transmitter and receiver.
\(\frac{1}{4}\) and \(\frac{1}{2}\) Watt High Stabs-low noise sub-min. resistors. Over 100 pieces Skeleton Presets, usual ranges \(1 / 6 \mathrm{ea}\). Mullard Miniature Electrolytics and Polyesters, ex stock in large quan-
 Booklet with transistor data etc. etc 29/6 each.
Veroboard 43/1504 3/3: 43/1503 3/11 46/1508 3/11: 45/1507 5/6.
All the above and more in our 1968 Catalogue \(1 / 6\).

LST COMPONENTS 7COPTFOLD ROAD BRENTWOOD ESSEX 7904

Apart from the abort selection of sILICON TRANGISTORS \& DIODES Hsted below, we can also supply a wide variety of Electronle Components, and Germanfum traneistors and diodes. facturers guarantee ternus, where thte to be First crade only and are subject to the manucurrent at the time of going to press for this mapgaine. Where prices are changed, for ang reason whatever, customers will be charged at the price current at the date of despatch.
Postage and packing is charged extra at the rate of \(1 /\) - per \& or part thereot. (Minimum charge \(1 / .-\).)
Customers lving outalde the United Kingdom, may remit in the currency of their horne country, adding \(10 \%\) of the total amount to cover conversion charge
Air Mail postage is charged extra. (Average weight of packuge is approxinately 90 grams.) gILIICON TRANSISTOR PACEAGE
AF10 and 2 diodes Ampifter package by FAIRCEILD. Matched set of 5 transistors .. .. SILICON DIODEs
 \({ }_{\text {ZF }}^{\text {ZERER }}\) DIODES .400 mW range. \(5 \%\) tolerance. 2.7 v to 33 v

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline transist & & & & & & & \\
\hline \({ }_{2 \text { 2N706 }}^{2 N}\) & 2/8 & \({ }_{2}^{2 N 324390}\) & 10/6 & 2N37707 & 3/10 &  & \(18 / 6\)
10 \\
\hline \(2 \mathrm{N706A}\) & 3/2 & \({ }_{2}\) N3391A & \% & 2N3709 & \(2 / 4\) & & \\
\hline 2N1711 & 8/3 & \(2{ }^{\text {N }} 3638\) & 5/6 & 2N3710 & \(2 / 7\) & \({ }^{\text {BCC125 }}\) & 13/6 \\
\hline 2 N 2102 & \(14 / 6\) & \({ }^{2 N} 3663\) & \(10 / 9\) & 2N3711 & 3/- & \({ }^{\text {BC126 }}\) & \(13 / 6\) \\
\hline  & \({ }_{6} / 4\) & 2N3703 & \(3 / 6\)
\(3 / 2\) & \({ }_{\text {2N }}\) 23855 & \%1/ & \({ }_{\text {BFY }}\) & \(4 / 4\) \\
\hline \({ }^{2}\) 23054 & 15/6 & \({ }^{2 N 3704}\) & 318 & 2N3856 & 776 & \({ }_{\text {BFY52 }}\) & \(5 / 3\) \\
\hline 2N3058 & 21/8 & - \({ }_{\text {2N }}^{\text {2N3703 }}\) & 3/2/8 & 2N3904 & \(7 / 9\) & \({ }_{\text {BEY95A }}^{\text {BFY }}\) & \(4 / 4\)
\(3 / 8\) \\
\hline
\end{tabular}

BULK SUPPLY ARRANGEMENTS
We can supply he iollowing kransistors in quantity, in order to meet YOUR Deveiopment and Production requirements.
Small quantity pricea are as \(\qquad\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Outline & Type & & & Price each & 1-24 & 25-99 & 100-499 & \(500+\) \\
\hline TO-18 & BC107 & & & .. .. & \(3 / 6\) & 3/- & \(2 / 8\) & \(2 / 3\) \\
\hline T0-18 & BC108 & .. .. & & .. . & 3/6 & 2/8 & 215 & 2/1 \\
\hline T0-18 & BC109 & & & .. .. & \(3 / 6\) & 3/- & 217 & \(2 / 2\) \\
\hline TO-92 & BC168 & & & ... & 2/6 & \(2 / 4\) & \(2 / 2\) & 2 - \\
\hline T0.98 & 2N2926 & GREEN . & & \(\cdots\) & 2/7 & 2/5 & \(2 / 3\) & 21. \\
\hline T0.98 & 2N2926 & YELLOW & \(\cdots\) & .. . & \(2 / 6\) & \(2 / 4\) & \(2 / 2\) & 1/11 \\
\hline
\end{tabular}

Quantity quotations for other types of transistors and diodes, will be given on request.
AVAILABILITY: normally EX-8TOCK. (All items.)
Suppliers to: Go
TERMS: C.W.O. (Nett monthly to approved account holders.)
M. R. CLIFFORD \& COMPANY (Dept. WW) COMPONENT STOCKHOLDING SERVICES 66 OLD OSCOTT LANE, GREAT BARR, BIRMINGHAM, 22A.

\section*{DUXFORD ELECTRONICS (WW)}

97/97A MILL ROAD, CAMBRIDGE
Tel: Cambridge 63687
MINIMUM ORDER VALUE 5/-
C.W.O. Post and Packing 1/-

DISCOUNT: 10\% over \(£ 2,15 \%\) over \(£ 5\)
CERAMIO DISC CAPACITORS (Hants) \(-500 \mathrm{~V} \pm 20 \% ; \mathbf{1 0 0}, 220,330 \mathrm{pF},-20 \%,+80 \%\) 0,680, \(1,000 \mathrm{pF}\), 5 . each.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{(all values in \(\mu \mathbf{F}\) )} & \multicolumn{5}{|l|}{Small (all value \({ }^{\text {in } \mu \mathrm{F}}\) )} \\
\hline 4V & 8 & 32 & 64 & 125 & 250 & 400 & 4 V & 800 & 1,250 & 2,000 & 3,200 \\
\hline 6.4 V & 6.4 & 25 & 50 & 100 & 200 & 320 & 6.4 V & 640 & 1,000 & 1,600 & 2,500 \\
\hline 10 V & 4 & 16 & 32 & 64 & 125 & 200 & 10 V & 400 & 640 & 1,000 & 1,600 \\
\hline 16 V & 2.5 & 10 & 20 & 40 & 80 & 125 & 16V & 250 & 400 & 640 & 1,000 \\
\hline 25 V & 1.6 & 6.4 & 12.5 & 25 & 50 & 80 & 25 V & 160 & 250 & 400 & 640 \\
\hline 40 V & 1 & 4 & 8 & 16 & 32 & 50 & 40 V & 100 & 160 & 250 & 40 \\
\hline 64 V & 0.64 & 2.5 & 5 & 10 & 20 & 32 & 64 V & 64 & 100 & 160 & 250 \\
\hline Price & 1/6 & 1/3 & 1/2 & 1/- & 1/1 & 1/2 & Price & 1/6 & 2/- & \(2 / 6\) & \\
\hline
\end{tabular}

Tubular \(10 \%, 160 \mathrm{~V}: 0.01,0.015,0.022 \mu \mathrm{~F}, 7 \mathrm{~d} .0 .033,0.047 \mu \mathrm{~F}, 8 \mathrm{~d} .0 .068,0.1 \mu \mathrm{~F}, 9 \mathrm{~d}\).
 \(400 \mathrm{~V}: 1,000,1,500,2.200,3,300,4,700 \mathrm{pF}, 8 \mathrm{~d} .6,800 \mathrm{FF}, 0.01,0.015,0.022 \mu \mathrm{~F}, 7 \mathrm{~d} .0 .038 \mu \mathrm{~F}\),
\(8 \mathrm{~d} .0 .047 \mu \mathrm{~F}, 9 \mathrm{~d} .0 .068,0.1 \mu \mathrm{~F}, 11 \mathrm{~d} .0 .15 \mu \mathrm{~F}, 1 / 2.0 .22 \mu \mathrm{~F}, 1 / 6.0 .33 \mu \mathrm{~F}, 2 / 3.0 .47 \mu \mathrm{~F}, 2 / 8\). Modalaf, metallised, P.C. mounting, \(20 \%, 250 \mathrm{~V}: 0.01,0.015,0.022 \mu \mathrm{~F},{ }^{2} \mathrm{~d} .0 .033,0.047 \mu \mathrm{~F}\),
\(8 \mathrm{~d} .0 .068,0.1 \mu \mathrm{~F}, 9 \mathrm{~d} .0 .15 \mu \mathrm{~F}, 11 \mathrm{~d}, 0.22 \mu \mathrm{~F}, 1 /=0.33 \mu \mathrm{~F}, 1 / 5,0.47 \mu \mathrm{~F}, 1 / 8.0 .68 \mu \mathrm{~F}, 2 / 3\).
OLYSTYRENE CAPACITORS: \(5 \%, 160 \mathrm{~V}\) (unencapsulated): \(10,12,15,18,22,27,33,39\) , \(56,68,82,100,120,150,180,220,270,330,390,470,560,680,820 \mathrm{pF}, 5 \mathrm{~d}\). 1,000 , \(1,500,2,200\)
\(22,000 \mathrm{pF}, 9 \mathrm{~d}\)
\(\%, 100 \mathrm{~V}\) (encapsulated): \(100,120,150,180,220,270,330,390,470,600,560,680,820 \mathrm{pT}\) 1. \(1,000,1,200,1,500-1,800,2,200,2,700,3,300,3,900 \mathrm{pF}, 1 / 6\). 18,000, 22,000, 27,000 \(150,39,00 \mathrm{pF}, 1 / \theta\). \(0.047,0,000,0.056 \mu \mathrm{~F}, 2 / 0.0 .068,0.082,0-1 \mu \mathrm{~F}, 2 / 3.0 .12 \mu \mathrm{~F}, 2 / 9\) OTENTIOMETERS (Carbon), miniatore, 1 in \(\times\) tin spindle. Lin, \(100 \Omega\) to \(10 \mathrm{M} \Omega\), Log. POTENTIOMETERS (Carbon), miniatare, \(1 \mathrm{in} . \times\) tin spindle. Lin. \(100 \Omega\) to \(10 \mathrm{M} \Omega\), Log. SKELETON PRE-SET POTENTIOMETERS (Carbon): Lin. \(100 \Omega\) to \(5 M \Omega\). Horizontal and mounting. Miniature ( 0.3 W),
ESISTORS (Carbon film), very low noise. Range: \(5 \%, 4.7 \Omega\) to \(1 \mathrm{M} \Omega ; 10 \%, 10 \Omega\) to
W ( \(10 \%\) ), 11 d (over \(99,1 \frac{1}{} \mathrm{~d}\) ), 100 ofl per value \(12 /\). \(1 \mathrm{~W}\left(5 \%\right.\) ), 2 d (over \(99,1 \frac{1}{2}\) d), 100 of
 SEMICONDUCTORS: OA5, OA81, 1/9. OC44, OC45, OC71, OC81, OC81D, OC82D, 2/-. TLICON RECTIFIERS (0.6A): 170 P.I.V., 2/9. 400 P.I.V., 3/-. 800 P.L.V., 3/3, 1,250 P.I.V.. 3/9. 1,500 P.I.V., 4/-.

PRINTED CIRCUIT BOARD (Vero)

 \(225 \mathrm{ft}, 4 /=, 5 \mathrm{in}, 900 \mathrm{ft}, 10 / 6\). \(5 \mathrm{fin}, 1,200 \mathrm{ft}, 13 /=7 \mathrm{in}, 1,800 \mathrm{ft}, 18 /=\).

Send S.A.E. for May, 1968 Catalogue

\section*{Wilkínsons F OR RELAYS} COMPETITIVE PRICES - VARIOUS CONTACTS DUST COVERS - QUOTATIONS BY RETURN Large stocks held of miniature sealed relays INCLUDING HIGH SPEED G.E.C. - SIEMENS - S.T.C. - ERICSSON • E.M.I. - BEST MAKES 25,000 IN STOCK - 150 TYPES - DETAILED LIST ON REQUEST

\section*{EQUIPMENT WIRE \(1 / 024\) and \(7 / 0076\) PVC
covered in various colours, \(80 /-\) oer \(/, 000\) yards. EQUIPMENT WIRE \(1 / 024\) and \(7 / 0076\) PVC
covered in various colours, \(80 /-\) per \(/ 1.000\) yards.
In 100 and 200 yard reels. Post \(6 /\).. In 100 and 200 yard reels. Post \(6 /\)...
LEDEX SOLENOID DRIVENWAFER SWITCHES} LEDEXSOLENOIDDRIVENWAFER SWITCHES
SIZE SS. From \(90 / \mathrm{m} .11\) Way and off. 3 to 24 Pole: SIZE 5S. From 90/- 11 Way and of
also 4 Pole 12 Way and 54 Pole on/off.
SOLENOIDS type \(3 E\) in stock at \(17 / 6\) each
SOLENOIDS type \(3 E\) in stock at \(17 / 6\) each.
CERAMIC AND PAXOLIN WAFER SWITCHES available from stock at keen prices, send for list. P.O. STANDARD RACKS 8ft U channel sides drilled for 1910 . panels heavy angle base, \(150 /\), cge \(20 /\). Desk Units for Racks 30/., ege \(7 / 6\).
HYGROMETER, rearling humidity, 4 in . round by Negretti and Zambra, scaled \(0 / 100\), \(65 / \%\), post \(3 /\).
MINIATURE BUZZERS. 12 v , with tone adjuster, \(7 / 6\). SPECIAL OFFER
SPECIAL OFFER
43,500 Condensers 0.1 mid 150 volts T.M.C.
wire ended E 15 per 1,000 or offer to clear lot. wirre ended E 15 per 1,000 or offer to clear lot.
AIR BLOWERS. \(200 / 250\) volt. A.C. cylindrical 7 in . 7 in. suitable for intake or extraction, \(1 / 50\) th h.p. Elo. 1/15th h.p. Ell. \(1 / 10\) th h.p. Ei4.
ELCOM STUD SWITCHES. 12 pole 2 way or 3 way types on 3 Banks, break before make actlon \(50 /\) ea.
GEARED MOTORS. 3 r.p.m. or 1 r.p.m. 4 watts very GEARED MOTORS. 3 r.p.m. or 1 r.p.m. 4 watts very
powerful, reversible 24 v. AC \(35 /\). post \(2 / 6\), can be powerful, reversible 24 v. AC \(35 /\). . post \(2 / 6\), can be
operated from \(230 v\) with our \(20 /-\) Transformer.
SUB-MINIATURE LAMPS. Flying leads 0.75 volts 50/-100.
BATTERIES. Portable Lead Acid 8 volts 125 amp hours. In metal case 16 in. by 111 n . uncharged \(\mathrm{E5}-10-0\), RATUAAM UNITS. Sullivan Sound powered type DHR, IT/6. Post 3/-.
MICRO SWITCH. Burgess MK 4 BR, robust die cast MICRO SWITCH. Burgess MK4BR, robust die cast casing, \(8 / 6\) each. Post \(1 /\)-. Others avallable.
BATTERY CHARGERS at speclal price
Westinghouse, worth \(£ 35\). Input price made by output 6 V 15 worth \(£ 35\). Input \(200 / 250 \mathrm{v}\). AC, outputed 15 amps 4 position with ammeter, fisten and sliding
regulatance. OUR PRICE \(170 / \%\).

PHOTOGRAPHICEQUIPMENT. Condenser lenses,
Plano-Convex optically ground and nolshed 18 in Plano-Convex optically ground and polished 18 in . dia 2 in . focus \(7 / 6\) post \(2 /-2 \frac{24}{} \mathrm{in}\). dia. 3 in . focus \(10 /-\) post \(2 / 8\).
6 in . dia. 10 in . focus \(35 / 6\) post \(4 / 8\). LAMP HOUSES with pair of \(61 \mathrm{n}_{\mathrm{o}}\) lenses mounted in a 9in. suuare case, With pair of 6inh lenses mounted in a pin. square case,
ideal spotlight \(70 /=\) ea. post \(10 /\). PROJECTION
LENSES Dallmeyer 33 mm . mount for G.B.L. 516 LENSES Dallmeyer 33 mm . mount for G.B.L. 516
Proj. 85 mm . 70/- ea. post \(2 /-\). PHOTOFLOODS Prod. 85 mm . \(70 /-\) ea. post \(2 /\). PHOTOFLOODS
G.E.S. \(230 \mathrm{v} .1,000 \mathrm{w}\). \(10 / \mathrm{ea}\), post \(7 / 8\). MIRRORS G.E.S. 230 v. 1,000 w. \(10 /-\) ea, nost \(7 / 8\). MIRRORS
optically kround and polished \(10 i n . ~\)
\(8 t i n . ~\) high Speed counters \(3 \frac{1}{2} \times 1\) in. 10
counts counts win. per
Becond with 4
flgures. The flgures. The
following D.C. following D.C vorataces \(12 \mathrm{\nabla}\). or 104 v

35- ea.
SUB-MINIATURE Microswitch Honeywell S.P.D.T type 11 SM1 TN 18 size "× \(1^{\prime} \times t^{*} 6 / 6\) ea. or mounted DIGITALINDICATOR. KGM M5 28 rt .0 to \(9,50 / \mathrm{ea}\). SPEAKERS ELAC 5in. ROUND. 9700 Gauss. 38 12/6. Post \(2 / 6\).
JACK PLUGS.
screw-on cover 2 Point with
with cord \(3 /-\) post \(1 / 6\).
PLUG-IN RELAYS tacts 28 y DCLAYS. Ondex 4 change-over HD conRELAYS. 24 V. D.C. 4 make 4 break HD \(12 / 6\) each

\section*{L. WILKINSON (CROYDON) LTD. LONGLEY HOUSE LONGLEY RD. CROYDON SURREY}

PO 3,000 RELAY COILS at special low prices for quantitles of 100 . Send us your enquirles. METERS GUARANTEED. Complete list available Microamps \(0 / 10021 \mathrm{in}\). MC \(40 /-\) \(\begin{array}{ll}\text { Microamps } 0 / 50022 \mathrm{n} \text {. MC } & 25 /- \\ \text { Mleroamps } 0 / 5002 \mathrm{in} \text {. MC } & 37 / 6\end{array}\) Mlcroamps \(0 / 50024 \mathrm{in}\). MC \(37 / 6\)
Milliamps \(0 / 5024 \mathrm{in}\). MC. \(35 /-\) Milliamps \(0 / 5024 \operatorname{lin}\). MC. Milliamps \(0 / 5003+\) in. M Amps \(60-0-602 \mathrm{in}\). Voles 5/0/5 2 tin . MC Volts \(0 / 202\) in. MC. Volts 0/10 A.C. 34in. \(37 / 6\) MICROAMPS \(0 / 50\) scaled in Rontgens \(2+\) in MC \(45 /\) LEAK DETECTOR A.E.I. mains powered \(£ 35\) ea. OORTABLE YOLTMETERS \(0 / 250\) Moving Iron AC ONE HOLE FIXING SWITCHES SINGLE POLE. Double Throw, 3
amp. 250 v. A.C. can be used as on/ amp. 250 V.A.C. can be used as on/ 18/- per dozen, 130/- per 100 .

CLOCKWORK MECHANISM. Precision made. Contacts making and breaking twice per second in sound18/6 post 6/-
VISCONOL-CATHODRAY" CONDENSERS mfd, \(10 \mathrm{kV}, 5 /-\) : \(002 \mathrm{mf} .15 \mathrm{kV}, 9 /-; .02 \mathrm{mf} .10 \mathrm{kV}\) \(9 /-: 6 \mathrm{kV}, 17 / 6 ; 0.5 \mathrm{mf}, 2.5 \mathrm{kV} .17 / 6: 1 \mathrm{mfd} .2 \mathrm{kV} .17 / 6\). RESISTORS, wire wound or carbon, uotentiometers, condensers, quantities ex-stock at low prices. BRIDGE MEGGERS SERIES I. With resistance box and leads, 1,060 5., 0-100 megohms. 660 ea.


TRANS/RECEIVER TWO-TWO
This is one of the Latest Releases by the Govt. of an extremely
 EF Conerols, Switched Meter for checking all parts of seer
Size 17 In \(\times\) Bin. \(\times 12\) in. Power required LT 12 volrs CC HT Size 17 in X Bin . X 12 in . Power required LT 12 valrs DC, HT
325 Voles D.C. Supplied Brand New and Boxed with Headphones \({ }^{\text {a }}\) Mike, also Two Spare Valves and Cireuit of set.
Few only at \(\{51!0 /\). Carr. \(30 /\). New Plugin Power Supply made by us for either 12 volts D.C. Input \(15 / 10 /\) or \(200 / 250\)

\section*{V.H.F. TRANS/RECEIVER}

THIS IS THE AFY VERSION WHICH CONTAINS A SQUELCH CIROTAL OF 18 EVERY THLVES MAKING A TO This is a modern self contained
tunable V.H.F. low powered frequency modulated trans/receiver for R.T. communication up to \(8-10\)
miles. Made for the Ministry of Supply at an extremely high cost by well-known Brilish makers,
using 15 midget B.G. 7 valves receiver incorporating R.F. amplifier. Double superhet and A.F.C.
Slow motlon tuning with calibrated in 41 channels each
\(200 \mathrm{k} / \mathrm{cs}\) 保 \(200 \mathrm{k} / \mathrm{cs}\) apart. The frequency
covered is \(39 \mathrm{mc} / \mathrm{s}-48 \mathrm{mc} / \mathrm{s}\). Also

has buite-in crystal canbrator
whives pips to coincide with marks on the tuning dial.
Power required Power required L.T. 41 volts, H.T. 150 volts, tapped at 90 volts
for receiver. Every set supplied complete with valves and crystals. New in carton, complete with adjustable whip aerial, and circuit. Price 44 los 0 d , carriage 10 s.

JOHN'S RADIO
OLD CO-OP, WHITEHALL ROAD, DRIGHLINGTON, BRADFORD

By Order of Radio Services Company, whose premises have been acquired by the Essex County Council
43/45 New Street, Chelmsford, Essex
HENRY BUTCHER \& CO. in conjunction with OFFIN RUMSEY \& HILLIARD (The James Abbott Partnership)
are instructed to offer for SALE BY AUCTION, in LOTS, at The Cathedral Hall, Cottage Place, Chelmsford, on THURSDAY, 5th DECEMBER, 1968, at, \(10.30 \mathrm{a} . \mathrm{m}\). , the

\section*{STOCK OF TELEVISION SETS \\ AND COMPONENT PARTS}
including 23 in .625 LINE CONTINENTAL TV SETS by "Ekco", and "Pye"; "FERGU. SON," "K-B," "AJAX" and "PAM" RADIO SETS; "COSSOR" OSCILLO. GRAPH CAMERAS; TAPE RECORDERS AND AMPLIFIERS; TUNING UNITS; PICKUP HEADS; CONDENSERS, TRANS FORMERS, CHOKES, CHRISTMAS TREE SETS; RECORDS \& VALVES; SUPPRESS ORS, RESISTORS, SOCKETS, SWITCHES; POTENTIOMETERS, RECORD DECKS, TOASTERS; VOLT AND TEST METERS, RELAYS, SPEAKERS; TELEVISION STANDS, LEGS AND TABLES; STEREO. GRAM CHASSIS; STYLI CLIPS, KNOBS, GLUGS, TERMINAL BOARDS; LAMPPLUGS, TERMINAL BOARDS; LAMP-
HOLDERS, HINGES, INSULATORS; SLEEVES; SHELVES; VIBRATOR UNITS; TELEPHONE SUB-STATIONS; CARBORUNDUM WHEELS AND ELECTRICAL COMPONENTS
Catalogues (when ready), price 1/- each, may be obtained of the Joint Auctioneers: Messrs. Henry Butcher \& Co., 73 Chancery Lane, London, W.C.2, Telephone: \(01-4058411\) ( 9 lines); and of phone: Ol-405 8411 (9 lines); and of Duke Street, Chelmsford, Essex, Telephone: Chelmsford 57127/53177/57128.

\section*{BAILEY 3OW AMPLIFIER.}

Parts are now available for this new unit. Printed Circuit Board fully drilled and roller tinned \(11 / 6 d\). postage 9d. Pre-Amp and power supplies are as for 20W Bailey design.

BAILEY 20W AMPLIFIER.
All parts in stock for this Amplifler including specially designed Princed Circuit Boards for preamp and power amp. Mains Transformer for mono or stereo
with bifilar wound secondary and special 218 V primary for use with CZ6 Thermistor, 35/6d., post 5/-. Trifilar wound Driver Transformer, 22/6d.,. post 1/-
Minlature Choke for Minlature Choke for treble filter, \(7 / 6 \mathrm{~d} .\), post 6 d P.C. Board Pre-Amp 15/o, post 9d. Power Amp. I2/@d. post \(9 d\).
Reprint of

DINSDALE IOW AMPLIFIER.
All parts still available for thls design including our new power amp. P.C. Board with power transistors and heat sinks mounted directly to P.C. All parts for stereo cost approximately \(£ 24\). We also supply a made-up version in chassis form with attractive tested and guaranteed for two years. Price \(£ 35\). Teak Case \(63 / 10 / 0\). P. \& P. \(10 /\) -
Reprint of articles \(5 / 6 \mathrm{~d}\)., post free.

MULLARD PI-MODE IOW AMPLIFIER.
P.C. Boards for power amp and later pre-amp using BC. 107 transisto
Mains Transformer Mono
25/0 post 5/2 All other parts in stock

47/6d. post 5/\%. S.A.E. please for all lists which are free.

\section*{HART ELECTRONICS, \\ 32I Great Western St., Manchester 14}

The firm for "quality".
Personal callers welcome, but please note we are closed all day Saturday.

CURRENT RANGE OF BRAND NEW L.T. TRANSFORMERS. FULLY SHROUDED (*excepted) TERMINAL BLOCK CONNECTIONS. ALL PRIMARIES \(220 / 240 \mathrm{v}\).

SELE LONDON, N.W.I
9 \& 10 CHAPEL ST., LONDON, N.W.I \(01.723-7851\)

Ol-262-5I25

\section*{MISCELLANEOUS .OFFERS}

COLVERN INSTRUMENT POTS. \(20 \mathrm{~K} \Omega 2 \frac{1}{2} \mathrm{in}\). dia., 8/6. P.P. 2/-
BERCO CERAMIC POTS. \(1.5 \mathrm{~K} \Omega\). I \(\frac{1}{2} \mathrm{in}\). dia., \(7 / 6\). P.P. 2/-.

SLIDING RESISTORS. Single tube. \(1004 \Omega\). I amp. 59/6. P.P. 7/6.
G.P.O. TYPE 3000 RELAYS. \(75 \Omega 3\) M. I C.O. I B 7/6. P.P. 2/-.
A.E.I. PVC EQUIPMENT WIRE. 14/0076. 100 yd . coils. 5 coils, different colours, 45/-. P.P. 7/6.
TEDDINGTON AIR PRESSURE SWITCHES. TyPE T8/A/A3. Single pole change over 15 amp .250 v .
A.C. switeh contacts, approx. \(\frac{1}{2} \mathrm{lb}\). pressure. 3 in . A.C. switch contacts, approx. \(\frac{1}{2} \mathrm{lb}\). pressure. 3 in . dia. 17/6. P.P. 3/6.
TEDDINGTON REFRIGERATION THERMOSTATS.
Type QI with control knob. I5/-. P.P. 3/6.
SMITHS SYNCHRONOUS MOTORS. 22-28 v. A.C. 1 rev . per day. 10/6. P.P. \(2 / 6\).
VENNER SYNCHRONOUS GEARED MOTORS. 240 v. A.C. 40 revs. per minute. 10/6. P.P. \(2 / 6\). CRAMER CONTROLS SYNCHRONOUS GEARED MOTORS. \(220-240\) v. A.C. 6 revs per minute. \(17 / 6\). P.P. 2/6.

HUNTS THERMINOL CAPACITORS. 13 mid . 250 v. A.C. wkg. six for 30/-. P.P. 7/6.
A.E.I. CAPACITORS TYPE PL 32A. 12. mfd. 250 v A.C. wkg. six for \(25 /\). P.P. \(7 / 6\).
T.C.C. CAPACITORS. 5 mfd. 400 v . A.C. wkg. \(5 /-\) P.P. 2/6. Twelve for \(47 / 6\). P.P. \(8 / 6\).
T.C.C. VISCONOL CAPACITORS. 1 mid. 600 v . D.C. wkg. at \(71^{\circ} \mathrm{C}\). Twelve for \(21 /\)-. P.P. \(5 /\)-. DUBILIER CAPACITORS. I mid, 5000 v. D.C. wkg. 6/-. P.P. 2/-. Six for 30/-. P.P. 6/-
G.E.C. CAPACITORS. 8 mid. 600 v. D.C. wkg. at \(71^{\circ} \mathrm{C}\). Six for 29/6. P.P. \(7 / 6\).
HUNTS BLOCK CAPACITORS. 2 mid. 100 v . D.C. wkg. Twelve for \(15 /\). P.P. \(3 / 6\).
\(240 \mathrm{v},-110 \mathrm{v}\). or 100 v . Completely Shrouded fitted with Two pin American Sockets or terminal blocks. Please state which type required.
\begin{tabular}{ccccccc} 
\\
Type & Watts & Approx. Weight & Price & & Carr. \\
1 & 80 & \(2 \frac{1}{l b}\) & \(£ 1\) & 17 & 6 & 4 \\
\hline
\end{tabular}
* Completely enclosed in beautifully finished metal indicator, on/off switch, and carrying handle.

\section*{HEAVY DUTY L.T. TRANSFORMERS}
| PRI 240 volts. Sec . Tapped, 4, 6, 11 volts, 150 amps. 13/19/6. Carr 15
2 PRI 220, 235, 250 volts. Sec. No. 1: 55 voits, 24 amps; No. \(2: 14\) volts, 10 amps; No, 3: 60 voles, 2 amps. Conservatively rated, cropically finished. 69/10/6. Carr. 15/-
PRI 240 volts. Sec. 24 volts, 12.5 amps . Conserva-
tively rated. \(85 / \mathrm{C}\). Carr. \(7 / 6\). tively rated. \(85 /-\). Carr. \(7 / 6\).
4 PRI 240 voles. Sec. Tapped. \(53 \cdot 6,55.2\) volts, 10 4 amps. "C" core. 75/-. Carr. 7/6.
6 PRI 220-240 volts. Sec. Tapped. 75, 80 volts, 2.4 amps and 6 vots, \(79 / 6\). P.P. \(7 / 6\).
7 PRI 240 volts. Sec. 45 volts, 25 n
8 PRI 230 volts. Sec. Tapped. 130,65 volts, \(85 \mathrm{~m} / \mathrm{A}\) and 6.3 volts, 5 amps, 6 volts, I amp. 17/6. P.P.5/-.
10 PR1 6.3 volts. Sec. \(2-0.2\) volts, \(4 /\) amps. 5000 volts working potted. 17/6. P.P. 3/6.
14 PRI \(220-240\) voles. Sec. 12 voles. 90 amps. Flying Carr. 17/6.

\section*{WODEN \& GARDNER TRANSFORMERS}

Primaries tapped \(200 / 250\) v. E.S. Secondaries:
Woden, \(315-0-315\) v., \(110 \mathrm{~m} / \mathrm{a}\)., \(175-0-175 \mathrm{v}, 25 \mathrm{~m} / \mathrm{a} .\), \(5 \mathrm{~V} .1 .9 \mathrm{~A} ., 6.3 \mathrm{v}, 3.1 \mathrm{~A} ., 6.3 \mathrm{~V} .4 \mathrm{~A} . \mathrm{C} . \mathrm{T} ., 6.3 \mathrm{v} .12 \mathrm{~A}\). C.T., 6.3 V.
\(50 /=. P . P .7 / 6\).

Woden, 50 V.. 4 A . and \(18-0-18 \mathrm{~V}\). 1 A . Tropically finished. 55/=. P.P. 5/
Gardner, \(350-0-350\) v. \(180 \mathrm{~m} / \mathrm{a} ., 6.3\) v. 3 A., 6.3 v. 2 A., \(2 \times 6.3\) v. 2.5 A., 6.3 v. .5 A. 5 v. 2.8 A., \(75 /\). P.P.P. \(10 / 6\). Gardner, \(350-0-350\) v. \(25 \mathrm{~m} / \mathrm{a} ., 6.3\) v. I A., 6.3 v. 6 A., 19/6. P.P. 5/6.

\section*{VARYLITE}

Will dim Huorescent or incandescent lighting up to 600 W . from full brilliance to out. Fitued on M.K. Fiush plate, seame size and fixing as standard wal, switch so may be fitted in place of this, or mount on surface. Price complete in heavy plastic box with control knob. £3.19.6.

THIS MONTH'S SNIP
"Dreamland" clock-switch will sutomatcally switch your blatket on and oft each evening. It's luminous, you can always see the time and \(\mathrm{tt}^{\prime} \mathrm{g}\) a realiy beautiful unit. An ideal gift. Can also control tape recorder, radio, lamp, etc. up to 600 W . Proper price E4.9.8 \(^{\text {a }}\)

Our price \(39 / 6\)

\section*{INFRA-RED}

\section*{HEATERS}

Make up one of these latest type heaters.
Ideal for bathroom, etc. They are atmple
to make from our easy-to-follow instructions
to make from our easy-to-follow instructions Price for 750 watts element, all parts metal casing us jlustrated. 19/6, plus \(4 / 6\) post and ins. Pull switch 3 - extra.


\section*{HI FI BARGAIN}

FULL F1 12 inch LOUDSPEAKER. This is undoubtedly one of of the country's most famous makers. It has a die-cast metal Irame and 1 s strongly
public address. 11,000 gauss-Total Plux 44,000 Maxwells-Power
Fiux Density
Handling 15 watts, R.M. 8 .-Cone Moulded Abre- Freq
Kandling 15 watts. R.M.S.-Cone Moulded tbre Freq. response



See in the Dark
INFRA-RED BINOCULARS


These infra-red binoculars then fed from a high voltage source will enable objects to be seen in the dark, provided
the objects are in the rays of an infra-red beam. Each eve tube contains a complete optical lens system as well as the infra-red cell. These optical systems can be used as lensesfor TV cameras-light cells, etc, (details supplied), The equipment). They are unused and believed to be in good woikment. They are unused and believed to be in good
wiving order wiold without a guarantee. Price \(£ 3 / 17 / 6\).
plurr. and ins. Handbook \(2 / 6\).


MINIATURE WAFER SWITCHES (1) -2 pole, 4 way-3 pole, 4 way- 2 pole 6 way -1 pole, 12 way. All at \(3 / 6\) each, \(36 /=\) dozen, your aseortment.


BLANKET SWITCH
Double pole with neon let into side so luminous in dark, ideal for dark room light or for
use with wateruroof element-new plastic case. \(5 / 6\) each. 3 heat model \(7 / 6\).

WHERE POSTAGE I8 NOT DEFINTTELY STATED A8
AN EXTRA THEN ORDERS OVER \&3 ARE POST EREE, AN EXTRA THEN ORDERS OVER \&3 ARE POST EREE,
BELOW \&3 ADD 2/9, S.A.E. WITH ENQUIRIES PLEASE.

ELECTRONICS (CROYDON) LIMITED
(Dept. W.W.) 266 LONDON ROAD, CROYDON, SURREY. (CRO-2TH) also ot 102/3 TAMWORTH ROAD, CROYDON, SURREY.

\section*{SLYDLOK FUSES 15 amp ., \(1 / 6\) ea., \(15 /\) per doz.}

HEADPHONES. Carbon H/Mics., 5/- ea. P. \& P. 2/6. DLR5 Bal. Armature, 9/6. P. \& P. 2/6. M/Coi with ear muffs and wired M/C mic., 12/6. P. \& P. 2/6. No. 10 Assembly M/Coil with M/Coil Mic. 12/6. P. \& P. 2/6.
TRUVOX LOUDSPEAKERS. Re-entrant type, ideal for public address, enclosed in waterproof wooden case, complete with steel baffle designed to produce directional r
SMALL MOTORS. \(12-24\) v. D.C., reversible, with gears attached, \(10 /-\) ea.; with blower attach ment, \(10 /-\) ea.; with fan assembly, \(10 / \mathrm{/e}\) ea.; each

TRANSMITTER. BC 625, part of T/R. SCR522 For spares only. Chassis only. Complete with valves except 832s and Relay. 21/- ea. Carr. 4/-
SIEMENS HIGH SPEED RELAYS. H96B type, \(50+50\) ohms. 6/- ea.; Type H69D, \(500+500\) ohms \(5 /\) ea.; Type \(\mathrm{H} 96 \mathrm{E}, 1,700+1,700\) ohms, \(5 /-\) ea
"TELE L" TYPE FIELD TELEPHONES. These telephones are fitted in strong steel case complete with Hand Gen, for calling each station. Supplied in new condition and tested. 50/-per pr. Carr. 7/6.
POST OFFICE TYPE RELAYS, 3,000 sers. \(2 \mathrm{c} / \mathrm{o}\) slugged coil only; \(2 \mathrm{c} / \mathrm{o}\), slugged coil 500 ohms. 6/-ea. Carr. \(1 /\)-.
MORSE KEYS. No. 8 assembly complete with leads, terminals and cover, \(6 / 6\) ea. Carr. 2/-.
VIBRATORS. 12 v. \(4 \mathrm{pin}, 12\) v. Plessey Type 12SR7. Syn. 7/6 ea. Carr. 1/-.
ELECTRO MAGNETIC COUNTERS. Register up to 9999 , coil res. \(300 \Omega\). 5/- ea. Carr. 1/-. not re-setable. Ex-equipment.
MODULATION TRANSFORMERS. 150 watts, suitable for pair 813 s , driving 313 s . Size \(6 \mathrm{in} . \times 5 \mathrm{in}\). LIGHTWEIGHT HEADSET (part of " 88 " W. Set Equipt.) complete with Boom mic., carbon made to highest Ministry Spec. Moving coil earpieces, Our price \(20 /-\) ea. Carr. \(3 /-\). Also Super Light-
weight hand set, \(10 /-\) ca. Carr. \(2 / \mathrm{l}\). weig
200 AMP. 24 v. D.C. GENERATORS. Type P3 ex-Air Ministry, \&9 ea. Carr. 10/6.
Generators. Type 02. 3,000 watts, 30 v. D.C. \(\mathrm{E}_{6} \mathrm{ea}\). Carr. 10/-.
Rotary Convertors. Type 8. D.C. Input 24 v , , A.C. Output \(115 \mathrm{v} .400 \mathrm{c} / \mathrm{s}, 3\) phase, 1.8 amps. Invertors. Type 201A (5UB6300). D.C. 25/28 v. r.p.m. 8,000, A.C. 115 v. \(1600 \mathrm{c} / \mathrm{s}\), single phase. sio ea. Carr. incl.
All above items ex
All above items ex-gov. stock, in used condition. P.C.R. 12 v. VIBRATOR POWER PACKS. Brand new, \(22 / 6\) ea. P. \& P. 5/-
CONDENSERS. . 1 mfd. 1,500 v. Sprague, paper. 9d. ca., \(7 / 6\) doz.
HEAVY DUTY TERMINALS. Ex-equipt. Bleck only, will take spade terminals and wander plug. \(1 / 6\) pr., \(15 /-\) doz. pairs. P. \& P. \(1 / 6 \mathrm{ea}\). doz.
FATIGUE METERS. 24 v. D.C. Consisting of \(6 \times 469 \mathrm{D}\) Relays. \(500 \times 500\) 』. \(6 \times 300 \Omega\) Electro \(6 \times 469 \mathrm{D}\) Relays. \(500 \times 500 \Omega\). \(6 \times 300\). 10 . Mag . counters, etc. \(£ 3 / 10 /-\mathrm{ea}\). Carr. \(4 / 6\).
AMERICAN AUTOPULSE 24 v . PUMPS for mounting between carb. and main fuel tanks as auxiliary pump. New-30/-ca. P. \& P. 5/-. 7 g.p.h. Size 7 in \(\times 2 \frac{1}{2} i n . \times 2 \frac{1}{2}\) in.
W. SETS, No. 19 Mk . III. New. . 55 , incl. carr. POWER SUPPLY UNITS, 12 v . for " 19 " Scts. \(30 /\) /, incl. carr. Complete Units, 19 Set, Variometer, 12 v. B.S. W/S REMOTE CONTROL UNIT "E," Mk. 2. As supplied with " 19 " W.S. \&1. P. \& P. \(7 / 6\).
W.S. 19 VARIOMETERS. 17/6. P. \& P. \(4 / 6\). S.T.C. MINLATURE SEALED RELAYS, TYPE 4184 G \(\mathrm{D}, 700 \Omega 24 \mathrm{v}\). (will work efficiently on 12 v . D.C.) (ex-equipment). 2 C/overs. 7/6. P. \& P. 1/-. 6 or more post paid.
SMALL D.C. MOTORS. \(2 \mathrm{in} \times 1 \frac{1}{2} \mathrm{in} . \times 1 \frac{1}{2} \mathrm{in}\). Rated. 24 V., will work on 12 v . \(\frac{1 i n}{2}\). length
shaft. Ideal for model makers, etc. \(10 / 6 \mathrm{ea}\).
CONDENSERS. 8 mfd .600 v . Brand New, Comell Dubilier Paper Condensers, \(4 \mathrm{in} \times 3\) itin. \(\times\)


Tel. BIRKENHEAD 6067
Terms Cash with Order.

Thanks to a bulk purchase
we can offer
BRAND NEW P.V.C. POLYESTER \& MYLAR RECORDING TAPES

Manufactured by the world-famous reputable Britlsh tape firm, our tapes are boxed in polythene and have fitted leaders, etc. Their quality is as good as any other on the market, in no way are the tapes faulty and are not to be confused with
imported, used or sub-standard capes. 24-hour imported, used or sub-standard capes. 24-hour despatch service
Should goods not meet with full approval, purchase price and postage will be refunded.
\begin{tabular}{|c|c|c|c|c|c|}
\hline S.P. & \(\{3 \mathrm{in}\). & 160f. & 2/- & 5 in . & 600ft. \\
\hline & 53in. & 900 ft . & 8/- & 7 in . & 1,200ft. \\
\hline L.P. & 3 3 in. & 225 ft . & 2/6 & 5 in . & 500ft. \\
\hline & \(5 \frac{1}{\text { in. }}\) & 1,200ft. & 101. & 7in. & 1,800ft. \\
\hline D.P. & 3 in . & 3501 t. & 4/6 & \(\sin\). & 1,200ft. \\
\hline & 5 \({ }_{\text {a }}\) & ,800ft. & 161- & 7in. & 2,400f. \\
\hline
\end{tabular}

Postage on all orders \(1 / 6\)
We can also offer, BRAND NEW PRE-RECORDED LANGUAGES COURSES in GERMAN, FRENCH, SPANISH AND ITALIAN

Each course consists of 26 step-by-step lessons recorded at 32 i.p.s. suitable for two- and fourtrack machines and supplied complete with

\section*{Our price \(19 / 6\) per course.}

\section*{STARMAN TAPES}

28, LINKSCROFT AVENUE, ASHFORD, MIDDX.


35ft AERIAL MASTS Seven 5ft. 8in. interlocking sections
of 21 n . dlameter heavy gauge steel tube, complete with swivel base csllbrated in degrees, nine nylon guy
lines and ground spikes. Finished hines and ground spikes. Fimished
ollve green. \(\& 16\). Carr, \(80 \%\). 70FT. MAST. 14 sections with 12 nylon guy lines and spolkes plus block and tackle. \(23 \% / 10 /=\)
Carr. \(80 /-\quad\)
MAKE YOUR OWN AERIAL MAST! MAKE YOUR OWN AERIAL MAST
fft. 8 In. sectlons as above 20/- per sectlon. Carr \(3 /\) esch. Nylon guy
linee with semi-automatic tensioner.
37 ft . \(7 / 6\) each; 50 ft. \(8 / 8\) each. 60 . 37t. \(7 / 8\) each; \(50 \mathrm{ft} .8 / 8\) each; 60 ft.
\(10 /=\) each. \(P\) \& \(2 /-\) each. Bwivel

\section*{/6 each P + \(1 / 8\) each \\ P1/6 each} 10/- each. P \& P \(2 /\) - esch. Swivel
base \(30 /=\), Carr. \(10 /\). Ground spikes.
TELEBCOPIC ARRIAL MASTS. Tubular ateel copperised apray finish, ring cam locking on each section provides for full or nny helght required. Suitable all fixinge and base
locations. Bottom section 1 fin. diameter.
 \(20 \mathrm{ft.}\),4 seetion plus 12 ft . Whip. Wgt. 17b. \(80 / \mathrm{e}\). Cart. \(15 /-\) HALLICRAFTER R19E/TRCL. A.M. 16 valve double Direct crystal frequency. Size \(19 \mathrm{in} . \times 12 \mathrm{in}\). \(\times 7 \mathrm{in}\). 115 v . A.O. Internal speaker and outiet socket for external speaker. Many other refinements. Circuit included. £25. Carr, 201-.
100 SETS OF ABIOL/TRC1 MAST EQUIPMENT. With guys and ancilliary parts. \(£ 25\) per set (ex. warehouse). MORPYY B40 NAVAL RECEIVERS. Tented \(£ 25\). Carr. 30/-, Untested as recelved from Ministry \(£ 12.10\).
Carr. \(30 \%\). B41 RECEIVERS. Tested £15. Carr. 30/-. Untested
as received from Ministry \(£ 10.10\). Curr. \(30 \%\). COLLNN (U.S.A.) RECEIVERS. 7 valve superhet. (Int. Octal
valves). Exceptionally stable for S8B. Frequency coverage
 \(1.5-12\) Mc/s. Power required 250. 88.10 .0 Carr. 1B/
Excellent condition. LAST

\section*{A.J.THOMPSON (Dept. W )}
"Eiling Lodge," Codioote, Eidtchin, Eerts. Phone: Codicote 242 Hours of business: Monday to Friday 8-5 Saturday 8-12 Prices correct at time of press but subject to increase. Terms of buainess: C.W.O. Minimum orders value 83.3 .0 . Carriage
charges apply to mainland only. (IT'8 CHEAPE R TF YoU CALLI charge sapply to ma

\section*{ALL GOODS GUARANTEED}

CONVERTOR/BATTERY CHARGER. Input 12 v .

 An extremely compact unit that will give many years reliable service, supplied with plug and lead. Only
E4/10/. P. \& \(15 /\) entra E4/10/-. P. \& P. \(15 /-\) extra.
As above-fully serviceab. As above-fully serviceable-perfect interior but
soiled exterior cases \(\in 3\). P \& . 15 . (1). extr.

DISTRIBUTED WIDE BAND AMPLIFIERS
Various types, e.g. E.M.I. type 2 C complete with
power unit. Frequency range \(50 \mathrm{c} / \mathrm{s}\). to \(100 \mathrm{mc} / \mathrm{s}\)., power unit. Frequency range \(50 \mathrm{c} / \mathrm{s}\). to \(100 \mathrm{me} / \mathrm{s}\).,
gain of \(12 \mathrm{e} / 10 / \mathrm{pe}\), p gain of 12 . \(68 / 10 /\) - P. \& P. \(\mathcal{E}\) extra.
DEKATRON
SCALERS/TIMERS
DEKATRON SC
models from \(£ 6-\varepsilon 12\).
madels from ERS Various typ
RATEMETERS. Val
DEKATRON COUNTER tubes type GCIOB, 15/- each. RESETTABLE HIGH SPEED COUN-4-DIGIT RESETTABLE HIGH SPEED COUN
TERS. 10 counts per second. 1,000 ohm coil \(36 / 48 \mathrm{v}\). TERS. 10 count
D.C., i7/6 each.
D.C.iARTROACh.

SOL10/-; AS517 300 y . P.U. eype AS5 16300 V .50 mA ., TRANISISTOR OSCILLATOR. Variable frequency. \(40 \mathrm{c} / \mathrm{s}\), to \(5 \mathrm{kc} / \mathrm{s}\). 5 volt square wave o \(/ \mathrm{p}\), for 6 to 12 y D.C. input. Size \(1 \frac{1}{3} \times 11 / \times 1 / 2 \mathrm{lin}\). Nor encapsulated.
Brand new. Boxed. \(11 / 6\) each. VENER encapsulated "flipp-flop" eype TS.2A. Complete with base \(21 /\) or 4 for \(\epsilon 3 / 15 /\) -
MULLARD pot cores type boxed). transformer 20 consisting of standard mains input (conservative): GEC b. 50 cycle; output 18 r . 4 amp rate 1 sec. timer sub-chassis with transistor STC type tacts 2 make tacts 2 make; lamps, fuse, switth etc., etc., in case size
\(10 \times 10 \times\) 5in. Ideal for battery charger, one second timer, transistor power supply, etc. Untested, but complete, \(62 / 10 /-\) P. \& P., \(15 /-\)
FAST NEUTRON MONITORS (Burndept type
1262B). Complete with new set of Mallory cells and 1262B). Complete with new set of Mallory cells and
carrying harness. \& 10 only. P. \& P. \(10 /\).
OSCILLOSCOPES. CT GEAR
OSCILLOSCOPES. Cossor DB 1035 E20; 1049 £30. Hartley 13 A DB 620 . \(144 \mathrm{G} 85 \mathrm{kc} / \mathrm{s}, 25 \mathrm{mc} / \mathrm{s}\). 620 ,
MARCON1 Sig. Gen. 14.
 E5/i01. . Carr. C1.
AIRMEC Valve millivolemeter 784. 6in. rectangular 200 micro amp. meter callibrated -10 db to +10 db ; and \(0-10 \mathrm{mv}\).; range \(-40 \mathrm{db} / \mathrm{x} / ;-20 \mathrm{db} / \times 10 ; 0 \mathrm{db} / \times 100\) £ 10 . Carriage \(15 /\).
CT49 AUDIO FREQUENCY METER fre. range \(450 \mathrm{c} / \mathrm{s}\). to \(22 \mathrm{kc} / \mathrm{s}\);, directly calibrated, Power supply
\(1.5-22 \mathrm{v}\). D.C. E6/io/-. Carr. \(15 /\) - (in original carton).

One only SOLARTRON PRECISION A.C. ranges. 1.5 mV .- 150 v. f.s.d. Gin. Linear scale calibrated in voles \& dBs. 30 M . ohm input resistance. AS NEW only \(£ 85\)

> VOX SPEAKER CABINETS. Brand new. All black with gold trim. Very attractive. Size \(21 \times\)
\(21 \times\) l0in. deep requires 1 I2in. speaker \(\ell 4\). Size \(18 \times 18 \times 9\) in. deep requires 11 Oin. speaker ES/10/-
> deep requiring 2 10in, speakers \& 11
> deep requiring 2 in, speakers \(£ 1\).
Stereo enthusiasts any pair \(\mathbb{L} /\) reduction

Brooks Crystals \(2 \mathrm{mc} / \mathrm{s}\). 7/6 each.
RELAYS
3,000 Series \(5 \mathrm{k} / 0 \mathrm{hms}, 2\) pole make H.D. contacts, 2/6 each
Siemens sealed HS 48 v. spco type M96E, \(3 /\) - each. Siemens min. With dust cover, 6 pole make or bre 1,250 ohms, brand new, boxed, \(4 / 6\) each. Bases \(2 /-\).
S.T.C. sealed 2 pole co. \(24 \mathrm{~V} / 48 \mathrm{~V}\). State which. Co plete with base \(6 /-\) each.

SELENIUM RECTIFIERS
Double bridge 12 V .6 amps continuous rating. Size \(3 \frac{1}{2} \times\) 3. \(x 212\) plate, 12 mps contin
Quad bridge 12 V .12 amps continuous rating, \(21 /\). TRANSFORMERS. All \(200 / 250\).
continuous rating tapped 9-0-9 at 1816 each 18 vp 12 amps at \(£ 3\) each.
H.T. TRANSFORMERS. Gardners 250-0-250. \(50 \mathrm{~mA} .6 .3 \mathrm{v} .1 \mathrm{amp} ; 6.3 \mathrm{v} .2 \mathrm{amp}\), size \(2 \frac{1}{2} \times 4 \times 4 \frac{1}{2} \mathrm{in}\). As new 25/- each. Matching choke 7/- each. GARDNERS Neptune series. Brand new. 460-435-\(410-0-410-435-460,230 \mathrm{~mA} .600-570-540-0-540-570-600\) v. 250 mA . Two separate windings. \(£ 3 / 10 /-\)
FRACTIONAL H.P. MOTORS. 240

FRACTIONAL H.P. Mrand Brand new. Ideal models, fans, etc. \(/ 6\) each.
E.H.T. CONDENSORS. 7.5 kV . working. 0.1 mfd , \(5 / 6\) each; 0.25 mfd \(8 / 6\) each.
BELLING \& LEE 10 pin plug/socket, \(3 / 6\) each Cash with order. Post paid over 10/-. CALLERS WELCOME

22, Sun Street, Reading, Berks.
l. No. Reading 65916 (9 a.m. to 10 p.m.)



SLIDEWIRE BRIDGE
£ 15.15 .0

Ratiery Powered Portable Resistance Bridge. Range 0.5 to
50 ohme with multipler settings of \(0.1-1-100-1000\) providng


SILICON POWER RECTIFIERS


\section*{THYRISTORS}


\section*{INTEGRATED CIRCUIT AMPLIFIERS}
R.C.A. TYPE CA3020 TO-5 encapsulated 12 lead Audlo Ampllaer equivalent to seven N-P-N Transistors, three diodea and eleven
resiators. Maximum Power Output 550 mW . Band width \(6 \mathrm{mac} / \mathrm{s}\). Total hammonic distortion \(1 \%\). Sensitivity, 3.5naw. Max. peak signal input \(\pm 3 \mathrm{~V}\). Max signal current drain 47 mA . Voltage

GENERAL ELECTRIC TTPE PAR82 Epoxy moulded four-in-line 8 pin package plus heat sink lead, equivalent to six N-P-N watt, into is ohms. No transformer required. Pull aignal current drain 115 mA from a 22 V вouree. PRICE \(40 /\) - P. and P. \(2 /-\)
Bupplied complete with application data.


DRY REED INSERTS
Glass dry reed Inserta npprox. tin. dia. X lin. long with axlal be opersted by permanent magnet or \(30-50\) Amp-turns relay coils. PRICE 18/- per doz., post free.
\begin{tabular}{|ccc|}
\hline \multicolumn{4}{|c|}{ PHOTOTRANSISTORS AND } \\
\multicolumn{4}{|c|}{ PHOTODIODES } \\
OCP71 & \(17 / 6\) & ORP61 \\
ORP12 & \(8 / 6\) & ORP90 \\
ORP60 & \(8 / 6\) & RPY25 \\
OR & \(2 / 6\) \\
\hline
\end{tabular}

\section*{HIGH QUALITY I.5\% ACCURACY
O.C. MOVING COIL PANEL METERS}

Type 70DA \(33^{\circ}\) equare flange
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(60 \mu \mathrm{~A}\) & 66/- & 40 mA & 46:- & 6V & 82/- \\
\hline \(100 \mu \mathrm{~A}\) & 82/- & 150 mA & 48/- & 40 V & 82/- \\
\hline \(250 \mu \mathrm{~A}\) & 54/- & 250 ma & 481- & 60 V & 82/- \\
\hline \(400 \mu \mathrm{~A}\) & 52/- & 400 mA & 48/- & 150 V & 82/- \\
\hline \(600 \mu \mathrm{~A}\) & 49/- & 600 ma & 481- & 250 V & 53/- \\
\hline 1 mA & 48/- & 1 A & 481- & 600 V & 58/- \\
\hline & & 2.5 A & 46/- & & \\
\hline \multicolumn{6}{|l|}{Type 120DA 4i'square flange} \\
\hline \(40 \mu \mathrm{~A}\) & 88/- & 60 mA & 58/- & 15 V & 62/- \\
\hline \(60 \mu \mathrm{~A}\) & 78\% & 14. & 58/- & 60 V & 62/- \\
\hline \(100 \mu \mathrm{~A}\) & 74/- & 1.5 A & 5810 & 100 V & 62\% \\
\hline \(250 \mu \mathrm{~A}\) & 85/- & 9.5A & 58/- & 250 V & 65/- \\
\hline \(600 \mu \mathrm{~A}\) & 60/- & 10.0A & 60/- & 400 V & 69/- \\
\hline 2.5 mA & 88\% & 40.0 A & 64/- & 600 V & 7\%/- \\
\hline 2.5 mm & 58/- & & & & \\
\hline
\end{tabular}

OUR.NEW CATALOGUE 1968/1969
IS NOW READY
semiconductor section has been considerably expanded by incorporation of outlines and dimensions of transistor. Transistor
substitution list has also been added to facilitate selection of equivalent types.


\section*{CLASSIFIED ADVERTISEMENTS}

\footnotetext{
DISPLAYED SITUATIONS VACANT AND WANTED: £6 per single col. inch
LINE advertisements (run-on): 7/- per line (approx. 7 words), minimum two lines.
Where an advertisement includes a box number (count as 2 words) there is an additional charge of \(1 /-\) SERIES DISCOUNT: \(15 \%\) is allowed on orders for twelve monthly insertions provided a contract is placed in advance
BOX NUMBERS: Replies should be addressed to the Boz number in the advertisement, c/o Wireless World, Dorset House, Stamford Street, London, S.E.I.
No responsibility accepted for errors.
}

\section*{SITUATIONS VACANT}

A PULL-TIME technical experienced salesman reA. quired for retall sales; write giving detalls of age, Henry's Radio, Ltd., 303 Edgware Rd., London, W.2.

CLECTRONICS AND INSTRUMENTATION for M cal Research. SENIOR TECHNICIAN is or interesting general electronics work on developing and maintaining equipment for use in medical research. Starting salary for an experienced electronics engineer with degree or H.N.C. Will be in the range \(£ 1,130-£ 1,475\). Applications in writing to the Secretary. Royal Postgraduate Medical School, Ducane Road,
London, W.12, quoting ref. \(8 / 218\).
GUATEMALA: Small radio station requires volunteer Tradio techntcian to assist in establishing relay stations and radio schools. Interesting post concerning the development of remote areas. Volunteer terms Write: lodging, pocket-money, fares, allowances. Q ADIO AND TAPE RECORDER TESTERS AND 1. TROUBLE-SHOOTERS required. Excellent rates of pay; 8 a.m. to 5 p.m. Five-day week. Elizabethan Electronics Ltd.. Crow Lane, Romiord, Essex. Lel.
Romford 64101 .
R EDIFON LTD, require fully experienced TELE R COMMUNICATIONS TEST ENGINEERS Good commencing salartes. We would particularly welcome nquiries from ex-Service personnel or personne detalls to-The Personnel Manager, Redifon Ltd. Broomhill Rd., Wandsworth, S.W.18.

\title{
CIVILIAN INSTRUCTIONAL OFFICERS, GRADE III RADIO AND TELEVISION SERVICING required at \\ H.M. PRISON, THE VERNE, Portland, Dorset and \\ H.M. BORSTAL, HATFIELD, nr. Doncaster, Yorks.
}

SALARY: Commencing salary \(£ 1,158\) (at age 26) to \(£ 1,330\) (at age 30 or over) rising to \(£ 1,462\). Salary scale revised on January 1 st, 1969 to \(£ 1,235\) (at age 26) to \(£ 1,420\) (at age 30 or over) rising to \(£ 1,565\). An additional allowance of \(£ 78\) a year is also paid. Prospects of pensionable employment.

HOURS: A 42 hour-revised on January 1st, 1969 to 40 hour-5 day week is worked with 18 working days annual leave a year in addition to the usual 9 public and privilege holidays.

QUALIFICATIONS: Full apprenticeship plus at least five years practical experience in the Radio and Television and/or the Electronics servicing industry. City and Guilds Certificate (or equivalent) is desirable. Teaching experience an added advantage.

DUTIES: The successful candidates will train inmates in Radio and Television servicing and prepare them for City and Guilds examinations. The candidate appointed to H.M. Prison, The Verne will in addition be required to perform some relief duty at other Prison Service establishments.

PLEASE WRITE FOR APPLICATION FORM TO: The Establishment Officer, Home Office, Romney House, R.227/29TI, Marsham Street, LONDON, S.W.1. Closing date for receipt of completed application forms: December 13th, 1968.

\section*{to Tle Rank Oryanisation}

BUSH MURPHY, market leaders in the Radio and Television field, require professional

\section*{salesmen}
well versed in modern marketing techniques. The present vacancy is in South Wales, but future expansion will create vacancies in South Yorkshire and London.
The successful applicants will have had at least two years in competitive selling and will be capable of convincing us that in addition to being outstanding salesmen they possess the capacity for future management developments.
Initial salary will be up to \(£ 1,600\) plus bonus, together with company car, free life assurance and other excellent fringe benefits.

If you are under 35 years of age and number yourself among the few leading salesmen in this country why not drop us a line. We could have the opportunity you are looking for.

Further Appointments
Vacant Advertisements appear on pages \(80 \& 81\)

Personnel Manager,
BUSH MURPHY DIYISION

Rank Bush Murphy, Power Road, Chiswick, London, W. 4.

\section*{Exceptional opportunities for WIRELESS TECHNICIANS}

The Home Office requires Wireless Technicians to work on installation and maintenance of V.H.F. and U.H.F. communications systems at various locations in England and Wales

\section*{WE OFFER}
* Starting salary of up to \(£ 1130\) (according to age), rising to \(£ 1304\) with additional allowances of up to £125 if working in the London area * Good prospects of promotion, the top technical posts draw more than \(£ 2300\) a year and staff who obtain professional qualifications may rise still further
* 40 hour week with overtime payable
* 18 working days paid holiday a year, rising to 30 days, plus public and privilege holidays amounting to \(81 / 2\) days
* Excellent prospects of qualifying for a pensionable post after one year's service

WE REQUIRE
* City and Guilds Intermediate Telecommunications Certificate or evidence of an equivalent standard of proficiency
* Sound practical experience of construction and maintenance of V.H.F. and U.H.F. equipment
* Working knowledge of modern workshop techniques

\footnotetext{
Further information, please, about the work, pay and prospects of a WIRELESS TECHNICIAN.

NAME.
}

REDIFON

\footnotetext{
A Member Company of the Rediffusion Organisation
}

\title{
NEW FRONTIERS IN ELECTRICAL AND ELECTRONC ENGINEERING
}

Our capital investment programme in the New Post Office will be about \(£ 2000\) million in the next five years. Much of this will be spent on advanced electrical and electronic installations. This expansion has created exceptional career opportunities for professional Electrical and Electronic Engineers who have vision, drive and ability.
We need engineers to do design, development and planning work on such problems as electronic switching systems, digital methods of transmitting speech, space communications and to carry out computer feasibility studies for the planning and management of engineering plant and systems. We also need engineers who are capable of taking responsibility for the management of plant provision and maintenance.


There is room for both the specialist and the generalist within the nation-wide network of the New Post Office. To be eligible you must have a degree in electrical or electronic engineering or allied sciences or be a corporate member of the IEE or the IERE. The normal upper age limit is 34 but well qualified older people with relevant experience will be considered.
Starting salaries can be almost £2000 (depending on age and location) and there are good opportunities for advancement to posts with salaries of over \(£ 3000\).

For fuller information please telephone (free of charge) by asking your local operator for FREEFONE 283.

\section*{Alternatively, post this coupon to:-} Richard Mayne,
B.Sc. (Eng.), C.Eng., MIEE, Post Office Appointments Centre, \({ }_{23}\) Howland Street, LONDON, WIP6HQ.

\section*{TMIE MEM}

PIST DFFILE

\section*{ASSISTANT CONTROLLER OF TELECOMMUNCATIONS \\ required by the \\ GOVERNMENT OF BRUNEI}

On contract for one tour of 36 months in first instance. Salary in scale B.D. 1220-2160 a month, equivalent to \(£ 1,987-£ 3,527\) a year, including Inducement Pay. (THERE IS NO PERSONAL INCOME TAX IN BRUNEI AT PRESENT.) Gratuity at rate of 124 per cent of total salary drawn. e60-Outhit Aliowance. Education allowance, free passages, geners as reasonable rental Contributory pension scheme available in certain circumstances.

Candidates, under 46, preferably qualified for exemption from I.E.F. examinations, must have had at least 6 years' practical experience in
one or more of.
Radio system, H.F., V.H.F., U.H.F., wide and narrow-band.
(b) Automatic exchange systems including
(c) External distribution and junction cable schemes.
Coupled with a basic knowledge of all three categories should be a knowledge of associated equipment such as teleprinters and V.F.T. equipment.
The selected candidates will be responsible for the planning, provision, installation and maintenance of one of the above categories.
Apply to CROWN AGENTS, M. Dept., 4 Millbank, London, S.W.1, for application form and further particulars, stating name, age, and quoting reference M2K/63300/WF.

HAS ANYONE DESIGNED/DEVELOPED a compact \(12 \mathrm{Mc} / \mathrm{s}\) Radio Telephone suitable for use on the Marine Band and are short of capital to manufacture/ market their design. If so, please write Box W.W. 2102. Wireless World.


\section*{SENIOR PROJECT ENGINEER}

We require a. Senior Project Engineer to take charge of our design and engineering dept. It is intended that he will be entirely responsible for the development of various projects. He should have a thorough knowledge of transistorised and SCR circuitry used for control and switching, A minimum qualification of HNC. The position offers a high salary and excellent prospects for advancement. Applications should be in writing to:

Mr. B. C. JOHNSON,
Solid State Controls Limited, Brunel Road, Acton, London, W.3.

\section*{TECHNICAL SALES ASSISTANT}

We have an interesting vacancy for a man with good basic electronic training and some commercial experience to act as an assistant in the furtherance of the sales of closed circuit TV and broadcast test equipment.

Applicants should preferably be single, as considerable travelling may be involved, aged about \(22-25\) and possess their own car, or at least hold a current driving licence.

A commensurate salary would be paid for a man of good education and experience who can show keenness in developing the sales of first class equipment.

Please send brief written particulars and availability for interview to:

The Personnel Manager
BOSCH LIMITED
Rhodes Way, Radlett Road, Watford Herts

4 pole-3 way \(3 / 6\) each or \(36 /-\) doz. Manufacturers inquiries invited for bulk quantities of these switches. COLLARO Auto-Record Player Arm fitted with Ronette Stereo turn-over cartridge 39/6. Nodark thermal cut-out Switches, 250V at 1.9A 15/ MULLARD Ferrox Cores LA1, LA2402 7/6; also ex-equipment \({ }_{\text {LA2 }}\) LA2503 \(12 / 6\), FX2240, 7/6, FX1653 15/-. VALVES N78 \(10 /-\) : EM84 \(5 /-\). STOP PRESS. We will shortly have avallable a wide selection of precision Ballbearings. For details see next issue. Elekon Enterprises, 30 Baker Street. London, WIM 2DS 01-486 5353 ( 24 hours a day).
THE IDEAL PANEL Mounting Meter Movement for F any Sensitive Test Meter, etc. 200 Micro Amp F.S.D. \(41^{\prime \prime} \times 4{ }^{5}{ }^{\text {m }}\) " in clear plastic case. Our speclal price only 39/6. \(\mathcal{P}\). \& P. Free. Limited number only. Walton's Wireless Stores, 55 A Worcester Street, Wolverhampton, Staffs
TRANSFORMERS, Range of outputs up to IKVA. Quotations by return. SOLENOIDS, ac or dc, subtrol (Farnborough) Lid., 28 Alexandra Road, Farnborough, Hants. Tel. 42590 .
SOLARTRON OSCILLOSCOPE CD1056. \(2 \mathrm{DC} / 25 \mathrm{~m} / \mathrm{c}\). \(S_{\text {in }}\) new condition \(£ 100\); Feedback Voltmeter Model VF252 £45. As new, TV'Sweep Generators Marconi
 "Mega Sweep" IIIA £45. Pattrick \& Kinnie, 81 Park Lane, Hornchurch, Essex. ROmford 44473 . [2100
VERY SUPERIOR POP-RIVET KITS including Gun and a supply of Rivets. Made in America, only 27/6 post 2/6. STEDMAN, 30 Victoria Road, Aston, Blrming.
ham.
[298
VIDEO TAPE: 3 in and lin Tape available on precision metal or plastic spools at very keen prices. Please write for detalls. Elekon Enter

\section*{TEST EQUIPMENT - SURPLUS} AND SECONOHAND
SIGNAL generators, oscilloscopes, output meters, wave voltmeters, frequency meters, multi-range meters ville Old Hall, Ashville Rd., London, E.11. Ley. 4986

\section*{FIELD SERVICE ENGINEER (PROFESSIONAL AUDIO)}

Sound Techniques wish to employ an Engineer of proven ability, to carry out servicing and liaison work on our installations. Must be fully conversant with Audio standards, transistor electronics and Professional Audio equipment. The position will be London based. Excellent salary plus car. Apply in writing giving details of experience to:
Vernon Morris, Sound Techniques Ltd., Unit 10, Industrial Estate, Mildenhall, Suffolk. Our Telephone number 3493.

\section*{Radiomobile}

BRITAIN'S CAR RADIO SPECIALISTS
Require

\section*{Iechincal staff \\ TECHNICAL SUPERVISOR}

A good knowledge of transistor theory, together with practical knowledge and experience of radio trouble shooting is essential
LINE SUPERVISORS
-with previous experience in the Electronic Industry.

\section*{RADIO REPAIRERS \& TECHNICIANS}

Previous transistor radio repair experience necessary.
All the above positions offer good promotional prospects together with competitive rates of pay and fringe benefits.

Please contact: The Personnel Manager,

\section*{RADIOMOBILE LIMITED,}

Goodwood Works, North Circular Road, London, N.W. 2. (GLA 0171)
\(\qquad\)

\section*{ASSISTANT SIGNALS OFFICER METEOROLOGICAL OFFICE MINISTRY OF DEFENCE (AIR FORCE DEPARTMENT)}

Applications are invited from men and women, aged at least 23 , for a post of Assistant Signals Officer at the Meteorological Office Headquarters in Bracknell, Berks.
DUTIES relate to the planning, provision and installation of meteorological landline and radio telecommunication systems embracing transmission by both low/medium/high speed data and analogue/digital facsimile, and including facilities for reception from satellites. A particular objective will be to automate the UK system making optimum use of computers.
QUALIFICATIONS: Either (a) Corporate Membership of the Institution of Electrical Engineers, the Institution of Electronic and Radio Engineers or the Royal Aeronautical Society, or exemption from their examinations, or (b) 1st or 2nd class honours degree in Electrical Engineering, Physics or Applied Physics, together with at least 2 years' training and experience in Telecommunications or Electronic Engineering. Wide knowledge of telecommunications and aptitude for planning, including some experience of planning for automation in telecommunications essential.
SALARY (national): \(£ 1,087\) at age \(23-£ 1,761\) at 34 or over (possibly higher if at least 35). Scale maximum \(£ 2,065\). Non-contributory pension.
WRITE to Civil Service Commission, Savile Row, London, WIX 2AA, for application form, quoting \(S / 6960 / 68\). Closing date 5th December, 1968. Candidates who have already applied should not do so again.

\section*{YORKSHIRE \\ IMPERIAL}

SCILLOSCOPES, portable signal generators, portable pen recorders, electrometers, resolved component badicators, electronic hund Air (Optronics) Lto 54A Tottenham Court Road, London, W.1. Tel 01-580 4532
require an

\section*{ASSISTANT ELECTRONIC ENGINEER}
to joln an established Electronics Laboratory situated at the Company's Headquarters at Leeds.

The successful applicant will be required to design and develop electronic instruments or assemblies for incorporation with measuring, non-destructive testing and control systems. The work will also involve participation in commissioning trials at any of the Company's factories throughout the U.K.
Candidates should possess H.N.C. or its equivalent or specialist experience of a high order, together with a minimum of 5 years experience in industry, the services, or a research or development establishment in a supervisory capacity. They should also be capable of preparing detail drawings and relevant technical descriptions and an expert knowledge of available components, circuit blocks and measuring techniques is desirable.
The Company offers attractive conditions of employment, including Pension, Life Assurance and Profit Sharing Schemes. Assistance with re-location expenses will be provided, if required.
Applications, giving full details of age, qualifications and experience and present salary should be marked 'Reference 38218-Confidential' and addressed to

The Senior Appointments Officer, Company Personnel Servlces, Yorkshire Imperial Metals Limited, P.O. Box 166, Leeds.

\section*{MINISTRY OF TRANSPORT \\ Electrical Engineering Assistants}

There are vacancies for Electrical Engineering Assistants (Grades II and III) in the Traffic Engineering Division of the Ministry of Transport, St. Christopher House, Southwark Street, ondon, S.E.1.

\section*{DUTIES}

To assist Professional Engineers engaged on the design and provision of signal and surveillance systems for motorways. This is an expanding fields of computing, data acquisition and transmission, and in optical, magnetic and radar detection systems.

QUALIFICATIONS AND EXPERIENCE
It is essential that candidates should have some nowledge in one or more of the fields referred o above. Candidates should hold technical qualifications in appropriate subjects (Ordinary National Certificate or equivalent). Candidates for Grade II posts should preferably hold higher qualifications.

\section*{SALARY}

Grade II £1,472 on entry rising by four annual increments to a maximum of \(£ 1,690\).
Grade III £1,065 (at age 21) to £1,331 (at ge 28 or over) to \(£ 1,472\).
Good working conditions. Five-day week Annual paid holiday allowance of 18 working噱
Applicants aged 21 or over may apply. Appli-
Applicants aged 21 or over may apply. Appls Stafing 3 Division, Room \(8 / 121\), Ministry of Transport, St. Christopher House, Southwark Street, S.E.1.

\section*{BICG}

\section*{TELEPHONE} CABLES DIVISION

The Division designs, manufactures and installs a wide range of telephone cables throughout the United Kingdom and Overseas. There are immediate vacancies in the Engineering organization at Prescot, Lancs.


An engineer is required by the Systems Department to make electrical measurements ranging from D.C. to \(50 \mathrm{n} / \mathrm{sec}\) pulse reflection, throughout the U.K. The post. is based at Prescot but considerable travelling will be involved and applicants must be prepared to spend extended periods on site. Applicants should be of graduate level in light current subjects and should preferably hold a current driving licence. Alternatively, they should be prepared to pass a driving test during the probationary period. A car allowance may be made available on satisfactory completion of training. There will be periods between site work when the engineer will work on a variety of technical problems in the Measurements Laboratory at Prescot.

\section*{SPECLAL \\ MEASIREMENTS \\ }

A further engineer is needed to undertake high 'frequency measurements on telecommunication cables of all types up to 1 GHz .
Opportunities will occur for comparison to be made between different techniques and for the development of new techniques and auxiliary apparatus.
Applicants should preferably be of graduate status but H.N.C. or C \& G Full Technological Certificate would be acceptable as minimum qualifications. Experience in the H.F. measurements fields is important and mathematical ability to degree standard is essential.
The post will be based at Prescot but occasional visits to other locations throughout the U.K. may be required.

\section*{都 \\ CABIE DESIEN ENGINEERS}

The vacancies are in the Design and Control Department. The successful candidates will be responsible to the Head of Cable Design for investigations into existing designs with the object of improving both their electrical characteristics and their processing properties. The work will also involve value analysis studies and design work on new cable types.
Applicants should preferably be of graduate level in Physics or Electrical Engineering. Previous experience in the Cable Industry is desirable but not essential.
The preferred age-range for the appointments is 21 to 30 years.
Telephone Cables Division is located in modern factory premises with its own laboratories at Prescot. Lancs. As part of the BICC Group we provide the conditions of service , of a large progressive Company, including a Profits Participation Scheme.


Please write, giving brief personal details including present salary to:
G. F. Turner (Ref. SA/32/86),

Telephone Cables Division,
British Insulated Callender's Cables Limited, PRESCOT, Lancs.

\section*{ELECTRONIC SYSTEMS SERUICE ENGINEERS}

\section*{THE JOB}

Systems Service Engineering on Advanced Training Aids for Aircraft. Radar Neiworks. Nuclear Reactors and Submarines.
THE MAN
Electronic Engineer preferably with O.N.C. or H.Ń.C.. having had practical experience of electronic devices with a keen desire to learn new techniques and applications.

\section*{THE REWARDS}

A salary within a range of \(£ 1.050-£ 1.450\). High job interest. Opportunity to work on complex systems incorporating digital and analogue computers, associated peripherals, colour television systems and servo systems, as a member of a team. Opportunity to fly and operate simulated aircraft and other equipments: High-quality training will also be given.

\section*{OTHER BENEFITS}

Our terms and conditions of employment are good and include contributory Pension Scheme, free Life Assurance etc.
We are not merely offering posts which will afford candidates opportunities of attaining a good job. Selected candidates will be offered long-term careers. Opportunities for travel at home and overseas. Apply quoting ref: SER/1
to: The Personnel Manager
REDIFON LIMITED
FLIGHT SIMULATOR DIVISION
 Telephone: Crawley 28811


A Member Company of the Rediffusion Organisation


\section*{WIDE-RANEING TROUBIE SHOOTERS for Radio and Electronics Testing}

These are jobs for the kind of men who can't stand repetition and routine. There's a wide variety of ground and airborne navigation and communications equipment to test and align. Senior Testers take on some trouble-shooting work from time to time to help out our quality assurance people.
Men aged 22 to 45 who have practical experience of electronics and radio testing would be welcome. ONC, electronics, or City \& Guilds, telecommunications, would be an advantage. These jobs would also suit ex-Servicemen with detailed maintenance knowledge gained in ground navaids or communications equipment.
If you've been looking for interesting work and a chance of progress with good money and working conditions-this is for you.
Write to or phone straight away:
Tom Anderson,
Standard Telephones \& Cables Ltd., Oakleigh Road, New Southgate, London N. 11.
Phone: 01-368 1234, Ext. 2578.

\footnotetext{
A vacancy occurs for one additional Instructor commencing in January, 1969, at the Wireless College, Colwyn Bay, North Wales, to assist in preparing students for P.M.G. examinations. The post is a junior one but with prospects of advancement, and the primary duty is practical instruction on marine radio equipment. Applicants should hold a P.M.G. certificate. Recent marine operating experience is desirable but not absolutely essential. Write in the first instance to the Principal.
}

\section*{RECEIVERS AND AMPLIFIERSH SURPLUS AND SECONDHAND}

HRO Rxss, etc.., AR88, CR100, BRT400, \(\mathrm{A}_{209,} 6640\), A tc.. etc., in stock.-R. T. \& I. Electrontcs, Ltd., Ashvile Old Hall, Ashville Rd., London, E.11. Ley.
[986.

\footnotetext{
NEW GRAM AND SOUND EQUIPMENT
CONSULT Arst our new 70-page illustrated equipment Catalogue on H1-Fi (5/6). Advisory service, generous terms to members. Membership \(7 / 6\) p.a.-Audio Supply Association, 18 Blenhelm Road, London, W.4. 01-995 1661. GLASGOW,-Recorders bought, sold, exchanged; Geameras, etc., exchanged for recorders or vicecameras, etc., exchanged for recorders or vice-
versa.-Victor Morrls, 343 Argyle St., Glasgow, C.2.
}

STC

Bush Murphy, market leaders In the radio and television field, are looking for a

\section*{TECHNICAL WRITER}

This is an opportunity to join a Company who are steadily increasing their brand share and whose plans for product diversification will provide every opportunity for its employees to use their initiative and ablity to the full. The successful applicant will probably be aged between 25-45. He will certainly have had previous experience as a radio or electronic Technical Writer and will probably possess a City and Guilds Certlficate in R. \& TV or equivalent. Starting salary will depend on past experience but will be generous for the right man.
Why not write to: The Personnel Manager, Rank Bush Murphy Limited, Power Road, Chiswick, W.4, for an Application Form. This may be the post you are looking for.


The Installation and Malntenance Division of E.M.I. Electronics Ltd., requires Installation EngIneers. New contracts for 1968 include the complete installation of equipment for T.V. studios, and of Robotug transport systems. Successful appllcants will be responsible for the planning and on-site supervision of Installation, for a wide range of commerclal electronlc equipment Including closedcircuit T.V. systems and automated systems, In addition to those already mentioned. Applicants should have a good knowledge of electronlc equipment, and preferably some experience of installation work. A sound knowledge of basic electrical and electronic theory is necessary.
CommencIng salaries and staff benefits are good, and relocation grants may be made in sultable cases.

\section*{}

Appllcailons, glving conclse career and personal detalls to:-
P. JONES - GROUP PERSOMKEL DEPARTMENT E.M.I. LIMITED.BLYTH ROAD.HAYES•MIDDX

\title{
Product Test Technicians
}

\section*{Career Opportunities with IBM Manufacturing}

We need high calibre men to fill vacancies created by promotion and programme expansion.
The job is to commission the latest IBM products and systems in production at the Scottish plant, near Greenock, and requires an intimate knowledge of the equipment under test, which can include computers, punched card and tape peripherals, magnetic disk and tape storage, high and low speed printers, visual display units, multiplexors, Teleprocessing and optical character recognition equipment. The products have to be tested thoroughly, and all faults traced and rectified. The work is interesting and absorbing, and the prospects for the right man are good.
Training will be a mixture of formal and "on the job" instruction. We will teach you all you need to know about IBM equipment-providing your basic knowledge is at the required level.

\section*{Pay and conditions will be excellent.}

Benefits include a non-contributory pension, immediate free life assurance and full sickness pay for up to 26 weeks in any 12 months. The 254,000 square feet plant is modern and situated in a pleasant rural valley. There is a subsidised restaurant.

Working conditions are excellent and there are good recreational facilities in the area. IBM will assist with removal expenses where applicable.
The man will be at least 18 and probably less than 30 and have a strong electronic background, with experience in, for example, the testing of electronic products, maintenance of radio, radar or TV or similar work in the armed forces.

He will probably have, or be near to attaining, a qualification such as HNC, ONC, first class PMG, final RTEB, or final City and Guilds (Course Nos. 47, 48, 49, 57, 300). A knowledge of transistor circuitry and the use of oscilloscopes will be a distinct advantage.

If you have what we need, and are keen to join a vigorous, expanding and up-to-the-minute industry, please write, giving details of your age, experience and qualifications, and quoting ref No. PT/WW/722 to: Personnel Selection Officer, IBM United. Kingdom Limited, P.O. Box 30 , Spango Valley, Greenock.



Burroughs are looking for young men aged 18-25 with get going potential. Young men who want to get out and work in freedom on their own initiative. It could be you. We want you to become an advanced Burroughs Technician so that you can ensure our machines are kept up to Burroughs standards of perfection. Our business is big business. We manufacture and market business equipment that ranges from simple adding machines to some of the world's largest computer systems.

You will be trained for the job and put on the road to promotion. All you need is enthusiasm and G.C.E. 'O' levels in 5 subjects and/or some O.N.C. study or experience in electro-mechanical devices.

A good initial salary will be paid, rapidly rising with training and experience.


\section*{ hilctronics Entinet}

\section*{Communications System Design}

The Company is engaged in the fields of aviation services and com munications, and manufactures a wide range of custom built communications systems
We are seeking an engineer to join a group engaged upon the design of communications systems for manufacture. The post will be based at our modern Head Office at Southall which is situated on the edge of the countryside between Hayes and Heston in easy access to the M4 Motorway.
The work involves the design of control units and consoles to provide integrated control of radio telephony, line telephony and telegraphy equipment. The designer starts with an operational specification and finally prepares drawings for manufacture of the complete installation. A good background knowledge of telecommunication's principles and practices is necessary. preferably with experience of applying them to systems design.
IAL is expanding fast and the post offers good career prospects. Fringe benefits include an excellent contributory pension and life assurance scheme and concessions on holiday air faires
Write giving full details of qualifications and career to date to
General Manager Personnel, (WW),
International Aeradio Limited, Aeradio House, Hayes Road, Southall, Middx.

INTERNATIONAL AERADIO LIMITED
AERADIO HOUSE - HAYES ROAD - SOUTHALL • MIDDLESEX

\section*{ELECTRONIC TEST ENGINEERS}

PYE TVT LIMITED,WEYBRIDGE DIVISION wish to appoint Engineers to work on a wide range of professional television equipment for a world wide market.
Engineers appointed would be required to work on colour and monochrome equipment incorporating the latest transistor/pulse circuitry techniques.
Previous experience of professional television equipment is not essential, but applicants must have a sound technical knowledge of transistor circuitry, plus experience of equipment testing.

We offer attractive salaries and conditions, making this a worthwhile career opportunity.

Apply to:
Personnel Officer
PYE TVT LIMITED
WEYBRIDGE DIVISION
Addlestone Road
Weybridge, Surrey

\section*{ELECTRONICS ENGINEER}

This is an interesting and challenging new appointment to the Regional Engineer's Staff of a Hospital Board. The most suitable candidate will be a Chartered Electronics Engineer with a sound knowledge of electronics covering a wide range of equipment, coupled with the ability to build and administer an efficient organisation to deal with the selection, installation and maintenance of such equipment for clinical and engineering use in hospitals. Though not essential preference will be given to engineers with experience of medical equipment. An engineer matching these requirements will qualify for a salary range of \(£ 2,335\) to \(£ 2,855\) p.a.
Full particulars and form of application available from the Secretary, Oxford Regional Hospital Board, Old Road, Headingtor, OXFORD, to whom applications are to be returned not later than 30 th November, 1968. (Quote V73/68K.)

\section*{GRANADA TELEVISION}

Sound Engineers for Operational Television.
There are vacancies at the TV Centre in Manchester for engineers in studio sound operations. Applicants should have a keen interest in sound, good technical knowledge and preferably practical experience of operational and recording techniques. There are a number of openings from Technical Assistant up to Engineer and starting salaries
range from \(£ 1295-£ 1876\).
Housing prospects in the Manchester area are excellent and we will give assistance with removal and housing expenses. Generous Granada Group pension and Life Assurance scheme.
Write full details, age, experience and qualifications to Andrew : Quinn, Granada Television Ltc., Manchester 3.

\section*{OFFICER I/C RADIO WORKSHOPS}
required by the ABU DHABI DEFENCE FORCE on contract terms of service for 3 years in tours of 10 months each approximately. Commencing salary married officer \(£ 3,255\) a year. Outfit allowance \(£ 210\). Free furnished quarters. Free air passages. Generous leave on full salary.
Candidates, aged \(25-35\) years, who will serve in the rank of Lieutenant, should be ex-Sergeants Class I Tradesmen/Radio Technicians (R.E.M.E. or Royal Signals) and should preferably be Artificers Radio or Tels. (R.E.M.E.), It would be an advantage if candidates had previous service in Arab countries and a knowledge of A14 (BCC 30) Radio and C11 (SSB).
Duties will include command of Radio Workshop, repair and maintenance of all Force communication equipment, the training of technicians and the ordering and storage of spares.
Apply to CROWN AGENTS, M Dept., 4 Millbank, London, S.W.1, for application form and further particulars, stating name, age, brief details of qualifications and experience and quoting reference M3P/680908/WF.

\section*{ASSISTANT TELECOMMUNICATIONS ENGINEERS}
required by the GOVERNMENT OF KENYA' Police Department, on contract for one tour of 24 months in the first instance. Commencing basis salary according to experience in scale equivalent to \(£ 1,225-61,620\) p.a. In addition an allowance, normally tax free, ranging from \(£ 778\) to EStg. 886 a year will be paid by the British Government direct to an officer's bank account in the United Kingdom. Gratuity 25 per cent of total salary
drawn or 45 per cent if no overseas terminal drawn or 45 per cent if no overseas terminal leave taken. Free passages. Accommodation allowances. Outfit allowance. Contributory pension scheme available in certain circumstances.

Candidates, up to 50 years of age, must have served an approved apprenticeship and possess the City and Guilds Telecommunications Techhad at least five years' experience in Telecommunications engineering including considerable practical experience with fixed, mobile and portable Telecommunications equipment operating in the H.F. (insluding S.S.B. and I.S.B.) and V.H.F. (A.M and FM) bands and associated aerial and mast installation plus a knowledge of transistorized and modern equipment. A knowledge ort. F. Multiplex equipment would be an advantage.

Apply to CROWN AGENTS, M. Dept., 4 Millbank, London, S.W.I, for application form and further particulars, stating name, age, . brief details of qualifications and experience and quoting reference M2K/61095/WF.

\section*{INDEPENDENT TELEVISION NEWS LIMITED intends to appoint a \\ trainee television engineer}

Applicants should have a keen interest in the technical problems of Television, and have had some previous practical experience of electronics. They should possess eicher recognised Engineering Qualification Training will be provided in the
Training will be provided in the various engineering sections of ITN covering the field of television broadclasses will be arranged.
Trainees, who successfully complete their period of training, will be appointed to the permanent staff where benefits include a Pension Fund and Free Life Insurance. With the expansion into colour television opportunities for promotion to more senior grades will exist.
Salary during the nine months training period will be at the rate of \(\$ 715\) per annum whilst under supervision, rising substantially on appointment to permanent staff.
Candidates aged \(18-25\) should telephone or write for application forms: Personnel Manager, Independent way, Lon News Limited, Television House, Kingsway, London, W.C.2. Tel.: 01-405 7690.

\section*{UNIVERSITY OF KENT AT CANTERBURY} the language centre
Applications are invited for the post of TECHNICIAN in the Language Centre. The person appointed will assist in the maintenance of the language laboratories and anclllary audio-visual equlpment, and will be required to carry out recording and editing techniques. An interest in foreign languages would be an advantage. The salary scale is \(£ 722\) to £1,007 p.a. Further particulars and application forms may. be obtained from the Registrar, Beverley Farm, The University, Canterbury-quoting reference \(T 68 / 11\).

\title{
TRAIN TODAY FOR TOMORROW
}

Start training TODAY for one of the many first-class posts open to technically qualified men in the Radio and Electronics industry. ICS provide specialized training courses in all branches of Radio, Television and Elec-tronics-one of these courses will help YOU to get a higher paid job. Why not fill in the coupon below and find out how?

Courses include:

\section*{- RADIO/TV ENG. \& SERVICING \\ AUDIO FREQUENCY \\ - CLOSED CIRCUIT TV \\ ELECTRONICS-many new courses \\ - ELECTRONIC MAINTENANCE \\ INSTRUMENTATION AND \\ SERVOMECHANISMS \\ - COMPUTERS \\ - PRACTICAL RADIO (with kits) \\ PROGRAMMED COURSE ON \\ ELECTRONIC FUNDAMENTALS}

Guaranteed Coaching for:

\section*{C. \& G. Telecom. Techns' Certs. \\ C. \& G. Electronic Servicing \\ R.T.E.B. Radio/TV Servicing Cert. \\ Radio Amateur's Examination \\ P.M.G. Certs. in Radiotelegraphy \\ General Certificate of Education}


\section*{TAPE RECORDING ETC.}
quality, durability matter, consult Britain's oldest transfer service. Quality records from your sultable
tapes. (Excellent tax-free fund raisers for schools, tapes. (Excellent tax-free fund raisers for schools,
churches.) Modern studio facilities with Steinway Churches.) Modern studio facim Ros, London, W. 4. Grand.-SO
\(01-995\)
1661.
Tape to disc transfer, using latest feedback disc cutters; EPs from \(211-;\) s.a.e. leaflet.-Deroy, High Bank, Hawk St., Carnforth, Lancs.

\section*{UNIVERSITY OF KENT AT CANTERBURY}

\section*{THE LANGUAGE CENTRE}

Applications are invited for the post of SENIOR TECHNICIAN in the LANGUAGE CENTRE, The person appointed will be required to maintain four language laboratories and further audio-visual aids, and to supervise and train two assistant technicians. The salary scale is \(£ 987-£ 1,225\) p.a. Further particulars and application forms may be obtained from the Registrar, Beverley Farm, The University, Canterbury-quoting reference T.68/12.

\section*{RADIO TECHNICIANS CAREER POSTS}

Opportunities exist for Radio Technicians to undertake interesting work involved with the maintenance and installation of equipment at airfields, inland and marine mobile networks, and. on North Sea Drilling Rigs.
Applicants should have experience in one or more of the following classes of equipment. VHF and UHF base station and mobile equipment employing both AM and FM techniques.
HF Receivers and Transmitters up to IKw with SSB, ISB, and FSK techniques. Remote control systems for Transmitters and Receivers operating over GPO land lines.
Teleprinters and Telegraph error correction equipment.
City and Guilds Certificate or equivalent level qualification is desirable.
Applicants should have a valid UK driving licence and be prepared to work outside normal working hours on a call out rosta bas is.
The posts offer excellent starting salaries commensurate with experience and good career prospects and will be based at our modern Head Office at Southall which is situated on the edge of the countryside between Hayes and Heston in easy access of the M4 Motorway. Fringe benefits include membership of an excellent contributory pension and life assurance scheme and concessions on holiday air fares. IAL are a fast expanding company covering the fields of communications, aviation services and engineering.
Please write stating brief details of age and career to date to

General Manager/Personnel
International Aeradio Limited,
Aeradio House, Hayes Road, Southall, Middx.


FOR HIRE-C.C.T.V. equipment including camera, monitor, video tape recorder and tape, from \(\mathbf{2} 25\) per day,-Detalls from Zoom Television Ltd., Amersham,
Bucks. Tel. Amersham 5001.

\section*{BEECHAM RESEARCH LABORATORIES \\ Brockham Park, Betchworth, Surrey. \\ require an \\ ELECTRONICS ENGINEER}

This is a responsible post and the engineer appointed will be required to work mainly on his own initiative in a small work-shop; to maintain equipment and construct electronic apparatus and controls to verbal instructions as required by the different laboratories. A working knowledge experience in medical electronics would be experience in advantage.
Academic qualifications are of interest, but the primary requirement is for a man of good practical experience and ability.
Beecham Research Laboratories is part of the Beecham Group, and is situated in a pleasant area of Surrey within easy reach of London. The success-profit-sharing and pront-sharing and mon. There are excellent dining facilities and a flourishing sports and social club Applicants, stating briefly age, qualifications and experience, should apply to the Personnel Oficer, Beehworth Surrey, or telephone BETCHWORTH \(\infty 2\).

\section*{The University of Aston in Birmingham Department of Chemistry}

\section*{BLCCTRONICS tichincian}

Applications are invited for the post of Electronics Technician to be responsible for the maintenance and repair of a wide range of electronic equipment and also for the construction of special instrumentation for research groups.
Applicants should have had suitable training, possess recognized! qualifications and have several years experience of working in this field.

Salary on the Chief Technician Special Grade Scale \(£ 1,532\) to \(£ 1,708\) per annum.
Application forms from the Staff Officer, The University of Aston in Birmingham, Gosta Green, Birmingham 4, quoting reference 0/411/WW.

\section*{SESSMIC OBSERVERS}
with analogue or digital field experience required for overseas service on land or sea, by

\section*{GEOPHYSICAL SERVICE INTERNATIONAL}
who offer a good salary and foreign bonus, ample leave on full pay and foreign bonus, medical insurance scheme, life insurance, profit sharing and a pension plan. Those interested please write to:

\author{
The Personnel Manager \\ Geophysical Service International Ltd. \\ Canterbury House, Sydenham Rd., Croydon, Surrey quoting ref. \(12 / 68\), or telephone 01-686 6511
}

\section*{Honeywell}

\section*{TEST ENGINEERS}

The continued growth of our E.D.P. division at Newhouse has created a number of vacancies in the Quality Control Department for Test Engineers who will assist in the checkout of H. 200 series peripheral equipment. Engineers who hold one of the following qualifications, O.N.C., R.T.E.B., P.M.G.. C. \& G.. or have had experience in radio or television servicing or radar/radio training in the services should apply stating brief details of age, experience and qualifications, to:

\footnotetext{
Employment Supervisor
HONEYWELL CONTROLS LIMITED
Newhouse Industrial Estate
Motherwell
Lanarkshire
}

\section*{An Australian Television Company seeks}

\section*{TELEVISION TECHNICIANS}

RIVERINA TELEVISION LIMITED operating Television Station, RVN Channel 2, Wagga Wagga, N.S.W., Australia, would be interested to hear from qualified television broadcasting technicians contemplating emigration to Australia.

Wagga Wagga is a leading city half way between Sydney and Melbourne with a moderate climate. It has a population of 27,000 people and serves a rich rural area of 140,000 people.

If you are experienced and qualified, write for information to RIVERINA TELEVISION LIMITED.
Applications in the first instance should be sent to:
ANDERSON JEFFRESS ADVERTISING
LTD. (Ref : RTV) 14, William IV Street, LONDON, W.C. 2.

\title{
Computer Engineering
}

NCR requires additional ELECTRONIC, ELECTRO-MECHANICAL ENGINEERS and TECHNICIANS to maintain medium to large scale digital computing systems in London and provincial towns.
Training courses will be arranged for successful applicants, 21 years of age and over, who have a good technical background to ONC/HNC level, City and Guilds or radio/radar experience in the Forces.
Starting salary will be in the range of \(£ 900 / £ 1150\) per anrium, plus bonus. Shift allowances are payable, after training, where
applicable. Opportunities also exist for Trainees, not less than 19 years of age, with a good standard of education, an aptitude towards and an interest in, mechanics, electronics and computers.
Excellent holiday, pension and sick pay arrangements. Please write for Application Form to Assistant Personnel Officer NCR, 1,000 North Circular Road, London, N.W.2, quoting publication and month of issue.

Plan your future with

\begin{abstract}
ARTICLES WANTED
TOROIDAL WINDING MACHINE WANTED. Small - size preferred. Particulars to: Hatfeld Instruments Limited, Burrington Way, Plymouth, Devon. Tel. Ply-
mouth 72773 .
WANTED, all types of communications recelvers Wand test equipment.-Details to \(R\). \(T\). \& I. Electronics, Ltd., Ashville Otd Hall, Ashville Rd., London, E.11. Ley. 4986.
WANTED Eddystone communication recelvers.pool, 4.P. Radio Services, Ltd., 51 County Rd., Liverpool, 4. Tel. Aintree 1445.
WanTED, televisions, tape recorders, radiograms, High St., Walves, transistors, etc. Sromwich. Stafts. Tel Willetts, 37
\end{abstract}

VALVES WANTED
WE buy new valves, transistors and clean new com-
ponents, Jarge or small quantities, all details,
quotation by return. Walton's Wireless Stores, 55 Worcester St., Wolverhambton.

\section*{SERVICE \& REPAIRS}

R with the latest test service department, equipped and futter meter and multiplex stereo signal generator is able to repair Hi Fi and tape recording equipment to manufacturers' standard.-Telesonic Ltd. 92 Tottenham Court Rd, London, W. 1 01-636 8177, [21 SMALL COMPETITIVE COMPANY requires high-class Sub-assembly Contracts. Vale Assemblies, Evendine, Colwall, Malvern, Worcs. [2104

\section*{CAPACITY AVAILABLE}

A IRTRONICS, Ltd., for coll winding, assembly and A wiring of electronic equipment, transistorised subunit sheet metal work.-3a Walerand Rd., London,
S.E.13. Tel, \(01-852\) 1706. S.E.13. Tel. 01-852 1706.

COILS, I.F. Transformers, all types of wave winding, Chokes and Pot Core assemblies. Small batch or large-scale production undertaken. Apply: Olson Elec E.2. Tel.: 01-739-2343.

\section*{BATH UNIVERSITY OF TECHNOLOGY}

School of Chemistry and Chemical Engineering
An ELECTRONICS TECHNICIAN is required for assisting research work within the Chemical Engineering group. Duties would include maintenance of a PDP. 8 Kent on-line computer and construction and design of electronic equipment associated with control leads and experimental rigs. Previous experience with computers is not a necessary qualification since the person appointed will be offered the opportunity of attending a short course on on-line computers.

The appointment will be at the Technician or Senior Technician level depending on qualifications and experience. The tenure of the appointment will be for three years but the successful applicant may be appointed subsequently to the permanent staff.
Salary in the range:
Technician £692-£1,007
Senior Technician £987-£1,225
Application forms from Registrar (S), The University, Claverton Down, Bath, quoting reference 68/62.

\section*{TEST TECHNICIANS} FOR MARINE RADAR

KELVIN HUGHES require additional Test Technicians to join their existing team which is testing the ever increasing range of sophisticated Marine Radar equipment at the Hainault, Ilford, Works. Previous experience in testing or maintaining modern transitorised electronic equipment in the radar, communications or television fields is essential. Salaries and conditions of employment are compatible with the degree of skill and responsibility the posts demand.
Written applications should be made to :-
The Employment Officer,

\section*{KELVIN HUGHES}

New North Road, Hainault, Ilford, Essex

\section*{SHIFT INSTRUMENT FITTERS}
required at BRADWELL POWER STATION

Candidates should have had good training and experience in industrial instrumentation maintenance, preferably including advanced electronic equipment. Training will be given in the specialised equipment. Housing may be available to successful applicants.
Gross weekly rate 224 18s. Ild. for a 40 hour 5 -day week on shift working, plus service increments after 2 and 3 years' service.
Good conditions and holidays, with sick pay and optional superannuation schemes; canteen and Sports and Social Club facilities. Applications, giving age, details of experience etc., should be sent to the Station Superintendent, Bradwell Power Station, Bradwell-on-Sea, Southminster, Essex, quoting Vacancy No. \(5165 / 68\) (W.W.).


THE QUARTZ CRYSTAL CO. LTD. Q.C.C. Works, Wellington Crescent New Malden. Surrey ( 01 -9420334 \& 2988)

\section*{ELECTRONIC ENGINEERS}

Service Engineers required for Offices, throughout the United Kingdom, of well-known Company manufacturing Electronic Desk Calculating Machines. Applicants should possess a sound knowledge of basic electronics with experience in electronics, Radar, Radio and TV or similar field. Position is permanent and pensionable. Comprehensive training, on full pay, will be given to successful applicants. Please send full details of experience to
the Service Manager, Sumlock Comptometer Ltd., 102/108 Clerkenwell Road, London, E.C. 1.

\section*{THE \\ CIVILSERVICE}

\section*{ENGINEERS Ministry of Defence (Army)}

Defence Communications Network
Engineer (Basic Grade) at H.Q. Defence Communications Network (Army Element), London, S.W.1: to assist in the planning, design and installation of radio relay and tropospheric scatter systems, and the preparation of specifications for new equipment. Previous experience in this type of work is desirable, and applicants must be prepared to undertake visits to overseas stations at short notice.
Qualifications: Applicants should have served a recognised engineering apprenticeship and be corporate members of the Institution of Mechanical, Production, Electrical or Electronic and Radio Engineers.
Salary: \(£ 1,304\) (at 25 )- \(£ 1,756\) (at 34 or over)- \(£ 1,989\).
Prospect of permanent pensionable appointment.
Application Forms from Ministry of Defence, CE 2g (ii) (AD), Room 339, Northumberland House, Northumberland Avenue, London, W.C.2. Please quote V. 1230.
\(7 / 0076\) R.F. Cable Black Sheathed Bicc ref. T3171 and equivalent. 100 yard coils @ 30/each including postage and packing. Price for larger quantities on application.
TRANSFORMER LAMINATIONS enormous range in Radiometal. Mumetal and H.CR., also "C" \& " E " cores. Case and Frame assemblies.
UNISTORS large quantities available \(£ 12\) per 1,000 types \(03 / 2\). \(03 / 5\) and \(08 / 5\). Full details and samples on request.

\section*{J. Black}


\section*{WE PURCHASE}

PLUGS AND SOCKETS, MOTORS, TRANSISTORS, VALVES AND KLYSTRONS, RESISTORS, CEAPACITORS, POTENTIO-
METERS, TEST EQUIPMENT, RELAYS TRANSFORMERS, METERS, CABLES, ETC. PROMPT PAYMENT \& COLLECTION TURN YOUR CAPITAL INTO CASH

ELECTRONIC BROKERS LIMITED
8, BROADFIELDS AVENUE, EDGWARE, MIDDLESEX.
TEL. 01-9589842

\section*{ELECTRO ACOUSTIC ENGINEER}

Experience in gramophone cartridge design or allied Electronic Acoustic products would be a distinct advantage. Qualifications required: Degree in Electro Acoustic Engineering or similar. This position would suit Engineer already controlling design team or ambitious junior engineer.

LOCATION: SOUTH COAST
Modern factory. Excellent amenities. Pension scheme. Salary open to negotiation. Box No. 5049, c/o Paper


MACHiNE ENGRAVING of control panels, etc., in lyte). Dolphin Froducts, 625 Blandford Road, Poole, lyte). Dolphin Products, 625 Blandiord Road, Poole,
Dorset.
METALWORK, all types cabinets, chassis, racks, Vo etc.; to your own specification, capacity available for small milling and capstan work up to lin bar.Lough borough.

\section*{TECHNICALTRAINING}

BECOME "Technically Quallfed" in your spare time, 3 guaranteed dtploma and exam. home-study courses In radio. TV, servicing and maintenance. R.T.E.B.. City \& Guilds, etc., highly informative 120 -page Guide-iree.-Chambers College (Dept. 837K), 148
Holborn, London, E.C.1. CITY \& GUILDS (Electrical, etc.), on "Satisfaction Cor Refund of Fee' terms. Thousands of passes, For detalls of modern courses in all branches of electrical engineering, electronics, radio, T.V., automation, (Dept. 152 K ), Aldermaston Court, Aldermaston, Berks.
P.M.G. Certificates, and Clty \& Guilds Examinations. Also many non-examination courses in Radio, TV and Electronics. Study at home with world famous ICS. House, London, S,W.11.
House, London, S.W.1..
R anio officers see the world. Sea-going and shore Grants available. Day and boarding students. Stamp Grants avaliable. Way and boarding students. Stamp
for prospectus. Wireless College, Colwyn Bay. STUDY radio, television and electronics with the Gullds. R.T.E.B home study organisation, City \& equipment. No books to buy. write for free prospectus to ICS (Dept. 442), Intertext House, London. S.W.11.
\(T V\) and radio A.M.I.E.R.E., City \& Gullds, R.T.E.B.; certs., etc., on satisfaction or refund of fee terms; thousands of passes; for full details of exams and home branches of radio. TV, electrontcs, etc., write for 132page handbook-iree; please state subject.-British Institute of Engineering Technology (Dept. 150K), Aldermaston Court, Aldermaston, Berks.

WE ARE BREAKING UP COMPUTERS COMPUTER PANELS (as Post free with min. 30 transistors. 00 for \(65 /=+\) P, \& F. \(6 / 6\); 1.000 for \(£ 30+\) carr.

EXTRACTER/BLOWER \(1 \frac{1}{} \times 2\) in. 2800 R.P.M. \(200 / 250\) volt A.C. \(35 /-\) each. P. \& P. \(5 /-\). POWER TRA NSISTORS sim. to \(2 N 174\) ex. eqpt. 4 for \(10 /\). P. \& P. \(1 / 6\)

OVERLOAD CUT OUTS. Panel mounting in the following values \(5 /\) - each: 1,1 , \(2,3,4,5,7,8 \mathrm{amp}\). TRANSISTOR COOLERS TOS. \(7 / 6\) doz. 03 18/-doz. P. \& P. 9d.
MINIATURE GLASS NEONS. \(12 / 6\) doz.
NEW MIXED DISC CERAMICS. 150 for \(10 /-\) \& P. 1/-
LONG ARM TOGGLE SWITCHES, ex. eqpt.
SPST 13/6 doz. DPST \(17 /=\) doz, DPD' 22/6 doz.
- đ~. All

ATn in dian screw tLECTROLYTICS
All at \(6 /\) - each \(+1 / 6\) each \(P\). \& \(p\)
\(5,000 \mathrm{mF}\) each \(+1 / 6\) d.c. wkg.
\(1.500 \mathrm{mF} \quad 150\) d.c. wkg.
\(4,000 \mathrm{mF} \quad 72 \mathrm{~V}\) d.c. wkg.
\(16,000 \mathrm{mF} \quad 25 \mathrm{~V}\) d.c. \(\mathbf{w k g}\).
\(\begin{array}{lll}16,000 \mathrm{mF} \\ 25,000 \mathrm{mF} & 25 \mathrm{~V} \text { d.c. wkg. Send } 1 /- \text { stam } \\ \text { d.c. wkg. } & \text { for list }\end{array}\)
REYTRONICS, 52 Earls Court Road,

WW-171 FOR FURTHER DETAILS

\section*{LOMDON CENTROL licadio starsfe}

MODERN DESK PHONES, red, Ereen, blue or tapaz, 2 tone rrey or black, with internal bell and bandset with 0.1 daa. 24/10/-, P.P. 7/6.
10-WAY PRESS-BUTTON IKTER-COM TELEPHONES In BakeIt case with function box handset. Thoroughly overhauled. Guaranteed. \(26 / 10 /-\) per unit. lite case with junction box. Thoroughy overhauled. Guaranteed, \(87 / 15 /-\) per Unit.
TELEPHONE DOILED HAND BET LEADS, 3 core, 5/6. P.P. 1/-, ELECTRICITY SLOT METER (1/- In slot) Lor A.C. mains. Fised tariII to your requirements. Suitable for hotels, etc. \(200 / 200 \mathrm{v}\).
\(10 \mathrm{~A} .80 /=15 \mathrm{~A} .90 /=, 20 \mathrm{~A} .100 /-\) P.P. \(7 / 6\). Other amperages avaliable. Reconditioned as new, 2 years' guarantee. QUARTERLY ELECTRIO CHECK METERS. Reconditloned as new, \(200 / 250\) v. 10 A. 42/6; 16 A. \(52 / 6 ; 20\) A. 67/6. Other amperages available. 2 years' guarantee. P.P. \(6 /-\). 8-BAME OMISELECTOR SWITCHES. 25 contacts, slternate wiping \(28 / 15 /-; 8\) bank hali wipe \(82 / 15 /=; 6\) bank balt wipe. WIRELESS \&ET No 38 A FT.
ing range 1 to 2 miles. Size \(104 \times 4 \times 6\) in in . Weight \(6 \% 1 \mathrm{~b}\) ing range to 2 miles. size \(10 \frac{x}{x} \times 6\) in. Welight 6 k b.
Includes power supply 81 b .-and spare valves and vibrator also tank aerial with base. \&7 per pair or \(£ 3100\) single. P.P.25/-. FIKAL EAD SELECTORs. Relaps. various callers, also 19 Recelvert in stock. All ior callers only
23 LISE ST. (GER 2889) LONDON W.C. 2
Closed Thursday 1 p.m. Open all day Saturday

\section*{ADJUSTABLE HOLE \& WASHER CUTTERS}

The right tool for trepanning holes I"- \(12 \frac{1_{2}^{\prime \prime}}{2}\) in diameter

In oup range of 17 Madels

Adjustable hole and washer cutters 18\% Tungsten High Speed Tool bits


Write for illustrated brochure of our full range with straight or Morse taper 1-4 or Bitstock shank.

All models available from stack
AKURATE ENGINEERING CO. LTD.
Cross Lane, Hornsey, London, N. 8
TEL. O1-348 2670
WW-172 FOR FURTHER DETALLS

\section*{TRANSISTOR SUBSTITUTION HANDBOOK}

AMERICAN, JAPANESE, BRITISH, ETC. NEW 8th EDITION. \(16 /-\quad\) P. \& P. \(1 / 3\) Radio Communications Handbook, by R.S.G.B. 63/-. P. \& P. 4/6. Colour T.Y. PAL System, by Patchett, 40/=, P. \& P. I/3.
Silicon Controlled Rectifiers, by Lytel, 21/.. P. \& P. 1/3.
Practical Oscilloscope Handbook, by Turner, 25/-. P. \& P. 1/3.
F.E.T. Circuits, by Turner, 25/-. P. \& P. 1/3.

PAL Colour T.Y., by Mullard, \(12 / 6\). P. \& P. 1/3.

Electronics Musical Instrument Manual new 5 th edn., by Douglas, 55/-. P. \& P. 2/-

Amateur Radio Techniques, by R.S.G.B., 12/6. P. \& P. 1/3. F.M. Multiplexing for Stereo, by Feldman, 30/-. P. \& P. 1/3.

\section*{UNIVRSAE:OOK GO. \\ 12 LITTLE NEWPORT ST., LONDON, W.C. 2 PHONE 01.437 4560}

WW-173 FOR FURTHER DETAILS

\section*{BICG Site Engineers}

\section*{TELEPHONE CABLE CONTRACTS}

\section*{Graduate Telecommunications or Light Current Engineers}
are required by Telephone Cables Division for Site Engineer posts in the Contracts Department.
The current programme of expansion of Trunk Audio and Coaxial cable systems offers opportunities for qualified engineers to join the field staff and supervise the installation of new cable networks which present an increasing technical challenge.

Contracts operate in various parts of the British Isles and Site Engineers must be prepared to move from one contract to another. They need to be technically competent, possess initiative and resourcefulness, and have managerial ability.

Successful applicants under the age of 30 will be given up to a year of training on site before undertaking Site Engineer responsibilities.

Attractive salaries and generous living-away allowances are offered, and a car or car allowance will be provided

Engagement will initially be for home contracts, but there will be opportunities to serve overseas

The type of person we are seeking can be assured of promising long term prospects for career development both within the Division and the BICC Group as a whole

Please write, giving brief details of qualifications, experience and present salary, to :-
C. F. Turner (Ref. SA/31/86), Telephone Cables Division,

British Insulated Callender's Cables Ltd., PRESCOT, Lancs.


\section*{RADIO \& TELEVISION SERVICING RADAR THEORY \& MAINTENANCE}

Vacancies regularly exist in industry for men with good knowledge of Radio, TV and Radar. Our one-year day courses provide effective training. Shorter day courses available for men with experience.
Write for details to: The Secretary, London Electronics College, 20 Penywern Road, Earls Court, London, S.W.5. Tel.: 01-373 8721.

\section*{ELECTRONICS INSTRUCTOR}

Due to our expanding interests in electronic calculating machines and small computers, we have a vacancy for an additional instructor to join our team based in Central London. After a comprehensive training period, he will assist in the progressive training of service engineers, both from the U.K. and overseas, on the digital techniques used in our equipment. He must also be prepared to carry out training courses abroad at a later date.

The successful applicant will not necessarily have had experience with electronic calculating machines, but he will have a sound knowledge of basic electronic principles and practical experience in electronics, radio, television, radar, or similar fields.

Previous experience as an instructor is not considered to be absolutely essential, but might well be an advantage. We are most anxious to find someone who has the ability and a real desire to teach fellow technicians.

Anyone interested in this vacancy is invited to send full details of his qualifications and relevant experience to Mr. D. D. Davies, Sumlock Comptometer Ltd., The Island, Uxbridge, Middlesex.

\section*{9.1}

We have Vacancies for Four Experienced Test Engineers in our Production Test Department. Applicants are preferred who have Experience of Fault Finding and Testing of Mobile VHF and UHF Mobil Equipment. Excellent Opportunities for promotion due to Expansion Programme.
Please apply to Personnel Manager, Pye Telecommunications' Ltd.,
Cambridge Works, Haig Road, Cambridge.
Tel. Cambridge 51351. Extn. 327.

\section*{FIELD SERVICE ENGINEER}
required to service transistorised Digital Voltmeters and ancillary equipment. Suitable experience and ability to rapidly diagnose and rectify fault conditions in digital and analogue systems essential; applicants without such experience will not be considered. Qualifications to H.N.C. standard and above would be useful.

Full staff status including contributory pension scheme and attractive salary would be offered to successful applicant.

\author{
Reply to Head of Test Section, FENLOW ELECTRONICS LTD., Whittet's Eyot, Jessamy Road, Weybridge, Surrey. WEYBRIDGE 48177
}

\section*{ENERGY CONVERSION LIMITED require EXPERMENTAL OFFICERS - EIECTRONC}
for prototype development work on fuel cell control systems. Applicants should be of H.N.C. standard, preferably with experience in the detailed design and specification of thyristor inverters and associated circuitry. Opportunities exist for developing own ideas for novel power control and instrumentation systems.

Please apply in writing to :-
Personnel Section, Energy Conversion Limited, Priestley Road, Basingstoke, Hampshire.

\section*{TUITION}

ENGINEERS.-A Techntcal Certificate or qualification will bring you security and much better pay. Elem. and adv. private postal courses for C.Eng., A.M.I.E.R.E.; A.M.S.E. (Mech. \& Elec.). City \& Guilds, A.M.I.M.I., A.I.O.B., and G.C.E. Exams. Diploma courses in all branches of EngineeringMech., Elec., Auto, Electronlcs, Radio, Computers, Draughts, Building, etc.-For full details write for FREE 132-page guide: British Institute of Engineering Technology (Dept. 151K), Aldermaston Court Aldermaston, Berks.

K INGSTON-UPON-HULL Education Committee. K College of Technology. Princlpal: E, Jones, M.Sc. F.R.I.C

FULL.TIME courses for P.M.G. certificates and the Radar Maintenance certificate.-Insormation from College of Technology, Queen's Gardens, Kingston upon
Kull.

\section*{BOOKS, INSTRUCTIONS, ETC.}
\(\mathrm{M}_{\text {wireless }}^{\text {ANUALS, circuits of alpment and instruments from original }}\) R.E.M.E. instructions; s.a.e. for list, over 70 types.R.E.M.E. Balley, 167 a , Mortat Road. Thornton Heath,
Wurrey CR4-8P7. Surrey. CR4-8PZ.


SWANCO PRODUCTSLTD.
a3mar AMATEUR RADIO SPECIALISTS g3pqe
NEW EQUIPMENT
Sommarkamp F-Series Equipment:
FR-DX-500 double conversion superheterodyne
with crystal tontrolled first mixer, \(180-10\) metres 130000 FL-DX- 500 SBB/AM/CW transinitter, 240 wats
PED, complete with bullain power supply and antenna relay .................................
FL-DX-2J00 Ilinear amplifier, 960 watts PEP
Sommorkamp FT-DX-500 transcelver, \(80-10\) metres \(\frac{110}{250} 00\) Swan Line Equipment:
Swan 500 S8B Tranceiver, \(80-10\) metres
Swan 350 83 Trancelver, 80-10 metres
Swan 350 83B Transceiver, \(80-10\) metres
Swan 230-XC Power supply
Swan 410 VFO and adapter
Hallicrafter Equipment:
Hallicrafter Equipment:
\(\$ \mathrm{X}-130\) Commusications receiver
\(\$ \mathrm{X}-122\) Communications receiver.
SX-122 Communications receiver....
SX-148 SSB Receiver, 80 -10 metres
SX-146 SSB Receiver, 80-10 metres
HT-46 SSB Transmitter, \(80-10\) metres
HA-1 Electronic Keyer
Eddystone Radio Lsd.:
Eddystone Radio Lsd.:
Eddyitone EA12 Ausateur Bands Receiver, 160-10
metres
Eddysione 940 Communications receiver
Eddystone 840 C Communatications recelver
Eddystone EC10 receiver
Eddyatone EB35 receiver
Eddynione EB38 receiver
Trio Communications Receivers:
Trio JR-60 14 tubeg amateur communications recelver, \(540 \mathrm{ke} / \mathrm{s} \cdot 30 \mathrm{Mc} / \mathrm{s}\), pliss \(142 \cdot 148 \mathrm{Mc} / \mathrm{s}\).
Trio \(9 R 59\) tube cournunlcations receiver..... Trio 9R59 tube coumunlcations receiver.
Trio 9R59DE 8 tube communications receiv Trio JR500SE Amateur banda recelver \(80-10 \mathrm{~m}\). Lalayette Communications Receivers: HA-500 A niateur bands recelver. 80-6 metres EA-700 Communications receiver (with product
HA-350 Amateur hands receiver. \(80-10\) metres
K.W. Electronian Lid.
K. W. 201 Aniateur Bands Recelver, \(180 \mathrm{~m},-10 \mathrm{~m}\).
K.W. 2000A 88 B Transcelver, \(160 \mathrm{ml}-10 \mathrm{ml}\). (with \({ }^{\text {PSUO }}\)
Moaley Electronics (Beams):
TA-3315. Triband three-element beam
TA-32Jr. Triband two element beam
TA-31/r, Triband dipole
\(\begin{array}{ll}\text { V-3JT. } \\ \text { TD-3jr. } & \text { Triband vertical } \\ \text { Wire Trap Dipole }\end{array}\)
Channelmanter rotators
Channelmaster rotators (automatic)
Park-Air Electronics Ltd.:
2-Metre Transmitier (complete with mic., etc.).
Jot Set Aircralt receiver.
Surer Aircratt, short, medium, and long wave Kurer Aircta
receiver..
SwancolCSE Equipment:
Swanco/CSE 2 Alo solid state transraltter
Swanco/CSE 2AE solid state receiver
weuco/C8E Type II A.T.M.A. mobile/axed/port-
SwancolCSE satety mobile tnicrophone Type MMiz
Halson Mobile antenna, new all weather all bands

Swanco Quad Spiders (wher than
Swanco Quad Spiders (per pair) .....
Echellord Communications Equipment
Echelford B1/4 transmitter for 4 metres
Echelford M1/4 tramamitter (mains or moblle)
Echelford C1/4 4 -metre converter range of Drake Equipment available to order.
Full range of Drake Equipmont available to order.
Full range of Eeath
Codar Radio Company
\begin{tabular}{|c|c|c|c|}
\hline OR.70A receiver & \(2{ }^{2} \times 10\) & \({ }_{0}\) & CR.45RB \\
\hline PR30 ........ & 510 & 0 & AT5 transmitter \\
\hline PR30X & 74 & 0 & 250 volt PSU .. \\
\hline R.Q. 10 & 615 & 0 & 12/MS P8U .. \\
\hline R, Q.10x & 88 & 0 & 12/RC controi.. \\
\hline CC. 40 & 610 & 0 & T28 recelver \\
\hline CR.45K & 910 & 0 & Mint-Clipper \\
\hline
\end{tabular}

Partridge Electronics: Shure Microphones: \(\underset{1}{2}\) Joystick std. . Type 3 tuner.
type 3A tuner
Type 4 tuner..
Type 4liF tuner


Shure 201
Shure 202
ghure 444
Shure 401A

SECOND-HAND EQUPMENT
stock facluding: LG300. K.
Many Jtems in stock inchuding: LG300. K.W. "Viceroy's," K.W. "Vanguard" Geiso 212TR, LG50, TIger TR100,
Viking "Valient", DX-100, sB10, K.W. "Valient," Viking " Valient" DX-100, SB10, K.W. "Valient," K.W. 76,
K.W.77. RA-1, Mohican, B-44MKITs, ECi0"s, 840A, \(840 \mathrm{C}^{\prime}\) s, etc. Your enquiries please.
Full Service Facilities - receivers re-aligned, tranomitters serviced, eto.
Illustrated Catalogue 7/6 post paid.
SWANCO PRODUCTSLTD.
Dept. W 247 Humber Avenue
COVENTRY
Telephone:
Coventry 22714 Hours: Mon.-Sat. 9a.m.-6p.m.

SALES
P.O. BOX 5 WARE, HERTS

Nowhers in the worid can you buy
semiconductors cheaper than from us. We are the largest purchasers of manufacturers' surplus stocks, and

We will, also buy Your surplus stock -Send
Ilses.


WW-174 FOR FURTHER DETAILS

\section*{FOREWAN/CHARREHAND}

Required by the Tape Manufacturing Company to supervise the manufacturing of professional magnetic tape, for computer, video and audio appliances. Duties include slitting, winding, testing and recording test data. Formal qualifications are not essential if the candidate has practical electronic knowledge. Supervisory experience in the electrical/electronic industry is desirable. Preferred age range 25-45. Staff position, 40 hour week.


Please apply to

M.S. COX - GROUP PERSONNEL DEPT • E.M.I. LIMITED - BLYTH ROAD - HAYES • MIDDLESEX TEL: 5733888 • EXT. 2887

GOOD NEWS! NEW MPX9 POWER SUPPLY
One of the world's smallest power supply MPX9. Well engineered with best components. Specifications: 240 v . A.C. -9 v . D.C. 50 ma . Size \(2^{\prime \prime} \times 2 \frac{7}{8}\) ". Weight : 3oz. Price 69/-

Makrao Electronics (Cambridge) Ltd. 270 MIII Road, Cambridge CB1 3NF

ENTHUSIASTS. Have you considered a career in Technical Authorship? If you have sound experience in electronics or communicacions and ability to write clear concise English we would train applicants as Technical Authors. The commencing salaries range from \(£ 1,450\) to \(\AA 1,800\) depending on experience, with the prospects of high future rewards and earnings.
Box No. 5046 .

\section*{EXCLUSIVE OFFERS}

LATEST TYPE, HIGHEST QUALITY 78 INCHES HIGH x 30 INCH DEEP TOTALLY ENCLOSED 19 INCH RACK MOUNTING
DOUBLE SIDED CABINETS
having the following unique feafures

- Double sided the cabinets will both aides, that is
back and lront back and lront
and \(t\) hey are
drilled smd tapped sil the way down every in. for this
purpose.
\(\star\) Fitted "Inatantl"" (World Patents)
lully adjuatable
rack panilmount rack panelmounts
both vertically and horizontally these allow the rack panols to be
recersed it desired -lor Instance, if the patals sre
fitted with profitted with pro-
jecting compojecting compo-
nents and it is dosired to onclose them by doors.
\(\star\) All edges and corners rounded.
\(\star\) All interior Attings, tropicalised and rust prooled and paitis.
* Built-in Cable Ducts-removable.
* Built-In Blower Dncts-removable
* Vontilated and insect prooled tops.
\(\star\) Detachable atde panels.
* Full length instantly detachable doors Atted espaguolette bolts a vaila ble if ordered with ca binets.
*Made in California, U.S.A., cost the American GovernFinithed in gres primer and in nem

\section*{OUR PRICE £26 100}
(Carriage extra)
(Yull length doort \(£ 5\) each oxtra).
Yon do not require doors if you are going to mount parela Iront and bsel and do not wish to enclose them.
```

40-page list of over 1,000 different items in stock
available-keep one by gou.

```

Computer Tape Recorder Reproducers of hishest quality in 8 tt . Cabinets-lull details and price on request


We bave a large quautity of "bits and pieces"
we cannot list-please send us your requirements
we can probably help-all enquiriea answered.

\section*{P. HARRIS \\ ORGANFORD - DORSET}

WESTBOURNE 65051
WW-175 FOR FURTHER DETAILS

\begin{abstract}
HARVERSON'S SUPER MONO AMPLIFIER A super quality gram amplifer using a double wound valve as audio ampliffer and power output stage. Impedance 3 ohms. Output approx. 3.5 watts. Volume and tone controis. Chassis size only 71n. Wide \(\times 3 \mathrm{in}\). deep \(\times 6 \mathrm{in}\)
helcht overall. A.C. naalns \(200 / 240 \mathrm{r}\). Supplied absolutely height overall. A.C. mialns \(200 / 240 \mathrm{y}\). Supplied absolutely good quality output transformer. LIMITED NUMBER ONLY. OUR ROGK BOTTOM
BARGAIN PRICE
OM/6

TRANSISTOR STEREO \(8+8\) Mk Now using silicon Transfetors in first ave stages on each channe resulting in even lower nolse level with improved sensitivity giving 8 watts push pull output per channel (16W. mono) Integrated pre-smp. with Bass, Treble and Volume controls, \({ }^{*}\) Suitable for use with Cersmic or Cryatal cartridges. Ointput parts supplied including drilled metal work. Cir-Kit board attractive front panel knobs, wire, solder, nuts, bolts-no extras to buy. Simple step by atep instructions cnable any constructor to bulld an ampliffer to be proud of. Briet Speci-
fication: Freq. response \(+3 \mathrm{~dB}, 20-20.000 \mathrm{c} / \mathrm{s}\). Bass bonk fication: Freq, response \(\pm 3 \mathrm{~dB}, 20-20,000 \mathrm{c} / \mathrm{s}\). Base bonst feedback 18 dB . over main amp. Power requirements 25 V . at . 6 amp. PRices: Amplitier Kit £10/10/0; Power Pack Kit £3/0/0; Clrcuit diagram, construction details and parts list (free with kIt) \(1 / 8\) (8.A.E.).
\end{abstract}


ETUGE POROEASE
Heavy 8 ịin. metal turntable. Low motor ( 90 v . tap). Complete with latest type inhtweight pick-up arm and mono cartridge with t/o styll fo

\[
\text { (1) } \quad P_{-} \& \mathbf{P}_{6 / 6}
\]

QUALITY RECORD PLAYER AMPLIFIER MK. II A top-quelity record player smplifey employing heavy duty
double wound maina iransformer. ECr 83 , EL84, EZ80 valves. Separate bass, treble and volume controls Complete with output
 ALSO AVAILABLE mounted on board with output tranamormer s. \& \(P\). \(P\). \(7 / 6\). ready to fit into cabinet below. PRICE \(97 / 6\).

DE LUXE QUALITY PORTABLE RECORD PLAYER CABINET Uncut motor board aize \(14 k \times 12\) in., clearance 21i. below,
in. above. Will take amplifer above ard any B.S.R. or GARRARD Autochanger or single Player Unit (except AT60
Or \(\mathrm{SP}^{P} 25\) ). Size \(18 \times 15 \times 8 \mathrm{in}\). PRICE \(£ 3 / 9 / 8\). Carr. 9/6. EIGH GRADE COPPER LAMTNATE BOARDS \(8^{\circ} \times 8^{\circ} \times\) it" \(^{\prime \prime}\)

HARVERSON SURPLUS CO. LTD. 170 HIGH ST., MERTON, LONDON, S.W. 19 Tel: 01-540 3985
S.A.E. all enquiries. Open all day Saturday (Wednesday I p.m.)

ENTHUSIASTS have you considered a career in Technical Authorship? If you have sound experience in electronics or communications and ability to write clear concise English we would train applicants as Technical Authors. The commencing salaries range from £1450 to £1800 depending on experience with the prospects of high future rewards and earnings. Box No. 5048.

\section*{AMERICAN \\ TEST AND COMmUNICATIONS EOUIPMENT * GENERAL CATALOGUE AN/103 1/- * Manuals offered for most U.S. equipments \\ SUTTON ELEGTRONICS Salthouse, Nr. Holt, Norfolk. Cley 289 \\ WW-181 FOR FURTHER DETALLS}

W-181 FOR FURTHER DETATS


\section*{VACUUM}

OVENS, PUMPS, PLANT, GAUGES, FURNACES, ETC., GENERAL SCIENTIFIC EQUIPMENT EXSTOCK, RECORDERS, PYROMETERS, OVENS, REHEATERS. fREE CATALOGUE.
V. N. BARRETT \& CO. LTD. 286A Lower Addiscombe Road, Croydon CRO7DH. Tel.: 01-654 6470,01-6543972.

WW-180 FOR FURTHER DETAILS

CAPSTAN AND AUTOTURNED PARTS
in all metals and plastlcs from your samples or diawings \(\frac{1}{\mathrm{i}} \mathrm{i}\). up to 1 ln . dia. small or large quantities.

\section*{KEEN PRICES}

EATON LTD. 78 Straford Road, Sparkbrook Birmingham 11. 021-772 0248.

WW-182 FOR FURTHER DETALLS

\section*{LAWSON BRAND NEW TUBES}

Complete fitting instructions The continually increasing demand for tubes of the very re supplied with every tube. Terms: C.W.O. Carriage and Insurance 10/.

\section*{LAWSON TUBES}

18 CHURCHDOWN ROAD MALVERN, WORCS. Tel. MAL 2100
highest performance and reliability is now being met by the new Lawson "Century 99 " range of C.R.T.s.
"Century 99 " are absolutely brand netw tubes throughout manufactured by Britain's largest C.R.T. manufacturers. They are guaranteed to give absolutely superb performance with needle sharp definition screen. of the very latest type giving maximum Contrast and Light output; together with high reliability and very long life.
"Century 99 " are a complete range of tubes in all sizes for all British sets manufactured 1947-1967.

12 YEARS FULL REPLAGEMENT GUARANTEE WW-185 FOR FURTHER DETALLS


12"-64:10:0 14"- \(55: 10: 0\) 17"- \(55: 19: 0\) 19"-E6: 19:0 \(21^{\prime \prime}-67: 15: 0\)

SPECIAL AUTUMN OFFER B.B.C.-2 \& COLOUR TV AERIAL 2nill -

45/-
For loft or roof fixing. Complete with mounting arm. State Channel required or nearest transmiter. Hundreds sold. Special low-loss required or nearest transmiter.
co-axial cable \(2 / 3\) yd. Socket \(2 / 6\).

SPEAKER BARGAIN!
Famous English \(12^{\prime \prime}\) high flux, heavy cone 10 response, 15 ohms (P.\&.I. \(4 / 6) 2\) speakers post free bass

35/-

\section*{ELECTRAMA}

Dept ww7l west street, eastbourne

\section*{DEMMOS เтd \\ TAPE RECORDERS FOR RESEARCH, INDUSTRY AND PROFESSIONAL AUDIO \\ BCORWALLLANE, HILLINGOON, MDX.}

WW-177 FOR FURTHER DETALLS

\section*{BAILEY 30 WATT AMPLIFIER}
( \(0.1 \%\) THD \(20 \mathrm{~Hz}-25 \mathrm{kHz}\)-November WW) 10 Transistors as specified \& Pcb \(\quad\) \&6.10.0 20 Transistors as specified \& 2 Pcb \(£ 12.10 .0\) R1-R27 \& Pot \(11 / 6\) CI-C6 (Mullard) \(9 / 6\) Mullard Capacitors \(2500 \mathrm{mFd} / 64 \mathrm{rw}\) 15/6 each Finned solid Ali Heatsinks \(4 \times 4 \mathrm{in}\). \(12 / 6\) each Drake Transformers \(22 \frac{1}{2}-0-22 \frac{1}{v}\) at 2a 45/Encapsulated Bridge Rects 200piv/2a 25/Photostats of May and Nov. articles \(8 / 6\) set MOTOROLA IC STEREO PREAMP ( \(0.1 \%\) THD) £3 (As described on page 332 September WW) Terms: Strictly Nett CWO-P \& P Paid A. 1 FACTORS, 72 BLAKE RD. STAPLEFORD, NOTTS.

WW-178 FOR FURTHER DETAILS

\section*{HIEH GLOSS METALLIG HAMMERED ENAMEL makes fantastic difference to panels 'Crack hule' pattern appears fike makic. on wood and metal. No undercoat. Air dries 16 MIN. to hard, , ,lo

 \\ PAINTS, Dept. W. \\ STOCKSFIELD. Tel. 2280. \\ } WW-179 FOR FURTHER DETAILS

\section*{ \\ MOST MANUFACTURERS' SURPLUS Stocks are solo to \\ UNITED ELECTRONICS \\ We pay the highest prices, cont \\ UNITED ELECTREDNICS LTD 12/14 Whitfleld Street, London, W. 1 Tel: 01-580 4532. 01-580 1116. 01-580 5151 Telex: 27931 WW-183 FOR FURTHER DETAILS}

\section*{[PPMPHAMATEAB ENTHUSIASTS}
for tape recording subscribe to the Magazine with the ZEBRA stripes! 25/- (U.S.A.) \$3.75) yrly. incl. postage. yriy. inel. postage.
PRESTIGE HOUSE, 14 -18 HOLBORN, LONDON, E.C. \(1.01-2424851\) WW-184 FOR FURTHER DETAILS

\section*{SURPLUS HANDBOOKS} 19 set Circuit and Notes H.R.O. Technleal Instructions 38 set Technical Instructions 46 set Working Instructions 88 set Technical Instruction Wavemeter Clasa D Tech. 18 aet Circutt and Notes BC. 1000 ( 81 set) Circuit and Note CR. \(100 / \mathrm{B}\).28 Circult and R. 107 Clrcult and Notes
AR.88D Instruction Manual
62 set Circuit and Notes Círcuit Diagram \(5 /\) - each posi 1 ree \(\because 0\) in \(6 / 6 \mathrm{p} / \mathrm{p} 6 \mathrm{~d}\). Circuit Diagram \(5 /\)-each post Iree. R.1116/A, R.1224/A, R. 1355
R.F. 24.25 and 26, A.1134, T.1154, OR.300, BC.312, BC. 342 BC. 348 J, BC. 348 (E.M.P.), BB. 624 . 22 get.
52 set Sender and Receiver circuits \(7 / 6\) post free.
Resistor Colour Code Indicator 2/8, p/o 6 d .
Resistor Colour Code Indicator \(2 / 8\), p/p 6 d.
S.A.E. with all enquirtes please. S.A.E. with all enquirles please
Postage rates apply to U.K. only. Mail order only to:
INSTRUCTIONAL HANDBOOK SUPPLIES Dept. W.W. Talbot House, 28 Talbot Gardens, LEEDS 8

WW-186 FOR FURTHER DETAILS

\section*{GODLEYS}

SHUDEHILL, MANCHESTER 4 Telephone: BLAckfriars 9432

Agents for Ampex. Akai, Ferrograph, Tandberg, Bryan, Brenell, B. \& O. Vortexion, Truvox, Sony, Leak, Quad, Armstrong, Clarke \& Smith, Loweher, Fisher, Goodmans, Wharfedale, Garrard, Goldring, Dual, Decca, Record Housing, Fitrobe, G.K.D., ete.
Any combination of leading ampliffers and speakers demonstrated without the slightest obligation

WW-187 FOR FURTHER DETAILS

BAKER I2in. DE-LUXE MKII LOUDSPEAKER

Suitable for any Hi-Fi System. Provides truly rich sound recreating the musical spectrum virtually flat from 25-16,000eps. Latest double cone with special. Flux density 14,000 gauss. Bass resonance \(32-38 \mathrm{cps}\). 15 watts British rating. voice coils availble 3 or 8 or 15 ohms.

\section*{Price \(£ 9\) Post Free}


\section*{MINETTE AMPLIFIER} For Hi-Fi Record Players A.c. Mains Transformer Chassis size \(7 \times 3 \frac{1}{2} \times 4 \mathrm{in}\). high. Valves ECL82, EZ8O. Two stage negative feedback. Quality output 3 ohm matehing. 8argain offer complete with engraved control panel, valves, knobs, \(7 / 9 / 6\) volume and tone controls, wired and cested. Post \(5 / 6\)

79/6

\section*{TRANSISTOR}

\section*{AMPLIFIER}

\section*{H\|-GA\|N}

Many uses, Intercoms, Baby Alarms, Guitar Practice, Telephone or Record Player Amplifier. 10 mV . input. ONE WATT OUTPUT. Wooden cabinet \(12 \times 9 \times 4 \mathrm{in}\). Four transistors, fitted \(7 \times 4 \mathrm{in}\). speaker. Volume conerol. Jack
 socket. Uses PP9 battery


> THE INSTANT BULK TAPE ERASER AND RECORDING HEAD DEMAGNETISER \begin{tabular}{l}  Leof250 A.C. \\ Leaflet S.A.E. \\ \hline \end{tabular} \(\mathbf{~ P 5 / - 2 / 6}\)

\section*{EXTENSION SPEAKER}

Cream flastic cabinet speaker with 20ft. lead for transistor radio, intercom, mains \(\begin{aligned} & \text { radio, tape recorder. } \\ & \text { Size: } 7 \text { tin. } x 5 \text { in. } x \text { in. }\end{aligned} \quad 30 /-{ }_{2 / 6}\) RADIO COMPDNENT SPECIAIISTS 337 WHITEHORSE RD., CROYDON. Tel.: OI-684 1665

\section*{ALEDてI}
1. Design of Artwork.
2. Photographic Service.
3. Prototypes supplied within 24 Hours.
4. Gold Plating.
5. Hot Roller and Electrotinning
6. Silk Screening.
7. Plated Through Holes.

ALBOL ELECTRONIC \&
MEGHANICAL PRODUCTS LTD.
2 Vine Lane, Tooley Street, London, S.E.1. Tel, 01-4074214

\section*{SURPLUS VALVES}

Offers invited for any or all these
ex-equipment valves

701-CV137-EAC91 110-CV4031-6.J6WA
tube 311 -CV858-6J8 267 -CV140.6AL5 1.112-CV1763-6J \(1,112-\mathrm{CV} 1763-6 \mathrm{~J} 4\)
\(1,912-\mathrm{CV} 5201-6 \mathrm{~J} 4 \mathrm{~S}\) 915-CV5311-6J4WA 408-CV354-DET23 73-CV397-DET24 215-4X150. 1.817-GV2932.2C
145-CV2349-EN30 Flash tube 86-CV4059-M8097 133-CV789-3C24 292-CV2312-T/R Cells 6-CV2282-Klystrons 40-CV6003-61-K350-280-4CX250F 723-4X150D 81-4X250B
\(20-1\) B49 New boxe

\section*{ELEY ELECTRONICS}

112, Groby Rd., Glenfield, Leicester. LE3-8GL

WW-194 FOR FURTHER DETAILS

\title{
 \\ symbol of quality \\ trade only for electronic components-by return
}

WW-188 FOR FURTHER DETAILS

\section*{WANTED-}

Redundant or Surplus stocks of Transformer materials (Laminations, C. cores, Copper wire, etc.), Electronic Components' (Transistors, Diodes, etc.), P.V.C. Wires and Cables, Bakelite sheet, etc., etc. Good prices paid J. BLACK

14 Green Lane, Hendon, N.W. 4
WW-189 FOR FURTHER DETAILS

\section*{DAMAGED METER?}

Have it repaired by Glaser
Reduce overheads by having your damaged Electrical Measuring lnstruments reparred by L. Glaser \& Co. Ltd. We specialise in the repair of all types and makes of IMSTRIMENT Motmeters, Ammeters, MicroIS Meters, Electrical Thermometers, REPAIRS \(\quad \begin{aligned} & \text { Recording } \\ & \text { Detectors, } \\ & \text { Temptruments, Controlers, all }\end{aligned}\) Detectors, Temp. Controllers, al types Bridges \& Insulation
Testers, etc.
As contractors to various Government Departments we are the leading Electrical Instrument Repairers in the Industry. For prompt estimate and speedy delivery send defective inst
to Dept. W.W.:-
L. GLASER \& CO. LTD:

1-3 Berry Street, London, E.C. 1
Tel.: Clerkenwell \(5481-2\)
WW-190 FOR FURTHER DETAILS

\section*{PRINTED CIRCUITS}

LARGE AND SMALL QUANTITIES.
FULL DESIGN AND PROTOTYPE FACILITIES AT REASONABLE PRICES. ASSEMBLY SERVICE ALSO AVAILABLE
K. J. BENTLEY \& PARTNERS,

18, GREENACRESROAD,
OLDHAM. LANCS.
Tel. 061-624 0939
WW-191 FOR FURTHER DETAILS


\section*{HORSTMANN2OAMP ELECTRICTIWESWITTOH 36HR SPRINGRESERVE \({ }^{20 \mathrm{amp} \text { conts }}\)} 200;250 volts,

ON/OFF TWICE every 24 hours at any manually pre set times, or alternatively
with Solar DIAL ON at dusk OFF at dawn. By-pass override dusk OFF at reserve, overcomes stoping in case of power cut. Used but perfect guapanteed. State dial required. MAKERS PRICE OVER \(£ 12\) OUR PRICE \(69 / 6\) p.p. \(4 / 6\) Waterproof metal case approx. \(6 \mathrm{in} . \times 3\) in. \(\times 3\) in. \(10 /-\) extra. WORSTMANM 15 DAY CLOCKWORK TIME SWITCH
HORTM Jewelled movement. Once ON/OFF every 24 hours at any manually pre-set times. Key and mounting bracket. Used but periect. S amp model. Fuly gurranteed. \(35 / 0 \quad\) P. \& \(\mathbf{P} .4 / 6\). VENNER 200/250 \(\begin{aligned} & \text { V. FLASHER UNITS containing mains geared } \\ & \text { motor. ON/OFF every second. } 200 \mathrm{~W}\end{aligned}\) motor. ON/OFF every second. 200W
contacts. Suppressed. Reconditioned.
\(39 / 6\)
Box 365, KINGSWOOD SUPPLIES (w.w. 20) Box 365, KINGSWOOD SUPPLIES (w.w. 20)
4, SALEPLACE, LONDON, W.2. Tel:01-723 8189.

WW-192 FOR FURTHER DETALLS

\section*{FOR YOUR ...
SYNCHRO \& SERVO REQUIREMENTS:}

SERVO \& ELECTRONIC SALES LTD.
43 HIGHST., ORPINGTON,KENT. Tel: 31066,33976 Also at CROYDON. Tel: 01.688 1512 and LYDD, KENT. Tel: LYDD 252
WW-195 FOR FURTHER DETALS

\section*{WE BUY}
any type of radio, television, and electronic equipment, components, meters, plugs and sockets, valves and transistors, cables, electrical appliances, copper wire, screws, nuts, etc. The larger the quantity the better. We pay Prompt Cash.

Broadfields \& Mayco Disposals, 21 Lodge Lane, London, N. 12

RING 4452713
4450749
958.7624

WW-196 FOR FURTHER DETAILS

We continue to complete export contracts for the supply of simultaneous translation systems to overseas governments.
Based on the combination of the famous Audac Radiomicrophone Systems, combined with a new range of R.F. Inductive Loop equipment, Audac Systems now offer considerable advantages over fixed installations.
The use of Audac equipment for this purpose demonstrates another example of the varied applications our Radiomicrophone Systems are fulfilling around the World.

\section*{AUDAC the most versatile Radio Microphones in the world}

AUDAC MARKETING COMPANY LIMITEO / CAREY ROAD / WAREHAM / OORSET / TELEPHONE WAREHAM 2245.


Portable Recetver Unit \(\mathrm{RX} / \mathrm{S}\) Size: \(4^{\prime \prime} \times 1 \ddagger^{\prime \prime} \times 6^{\prime \prime}\) \((102 \mathrm{~mm} \times 26 \mathrm{~mm} \times 127 \mathrm{~mm})\). Narrow of wide band operation.
Fitted into leather carning cass. Telescopic or strap aerial.

\section*{INDEX TO ADVERTISERS Appointments Vacant Advertisements appear on pages 126-141}


Printed in Great Britaln by Southwark Ofiset, 25 Lavington Street, London, B.E.1, and Publighed by the Proprietors, Ilifprg Techiriali Publications Ltd., Dorset House, Stamford St., London, 8.E.1, telephone
 SUPPLY: This periodical is sold aubject to the following conditlons, namely that it shall not, without the written consent of the publishers first given, be tent, resold, hired out or otherwise disposed of by way of Trade at a price in excess of the recommended maximum price shown on the cover; and that it shall not be lent, re-sold, hired out or otherwise disposed of in a mutilated condition or in any unauthorised cover by way of Trade or affixed to or as part of any publication or advertising, literary or pletorial matter whatsoever.```


[^0]:    For full technical data and prices, write or phone:
    THORN Thorn-AEI Radio Valves \& Tubes Limited
    7 Soho Square, London, WIV 6DN Telephone 01-4375233

[^1]:    * Dr. Wilson is involved in psycho-acoustic experiments in the Department of Communication at Keele University. His work concerns the spatial localization of sounds, and spectral and temporal aspects of auditory signal analysis.

[^2]:    *"Microwaves à la Mode", Wireless World, November 1966, p. 572.

[^3]:    $\dagger$ "Microwave Computers", Wireless World, November 1968, p. 401.

[^4]:    $\dagger \dagger$ Often the rather barbarian expressions "micro-" volts per root cycle" and "microamps per root cycle" -or ". . . per root hertz"-are used!

[^5]:    *** More conveniently, the amplifier input is switched between two resistors of equal value, one at a low temperature and one at room temperature.

[^6]:    $\dagger \dagger \dagger$ Reference II , in equation (21), gives a concorrect, appears to be unnecessarily stringent for normal practical purposes.

[^7]:    * West Ham College of Technology, London, E. 15.

[^8]:    *The Dept. of Scientific and Industrial Research, New Zealand. Mr. Catford died in January of this year, before disclosing full details of the circuitry. The details presented here were obtained from extra material supplied by Mr. J. A. Bourne after an examination of Mr . Catford's equipment.

[^9]:    Comprehensive information from your Eddystone distributor or: Eddystone Radio Limited, Eddystone Works, Alvechurch Road, Birmingham 31. Telephone: 021-475 2231. Telex: 33708.

[^10]:    

[^11]:    I TO: B.H. Morris \& Co., (Radio) Ltd.
    w w
    Send me information on TRIO COMMUNICATION
    RECEIVERS \& name of nearest TRIO retailer.
    NAME : -
    ADDRESS :

[^12]:     35 NEWINGTON $\operatorname{IFEEN}$, LONDON.N4B TEICL aBEE

[^13]:    Deruless
    PEERLESS FABRIKKERNE A/S • 2860 Sø日ORG KøBENHAVN

[^14]:    WW-157 FOR FURTHER DETAILS

[^15]:    Authorised Stockists:-LUGTON \& CO. LTD., 209/210 Tottenham Court Road, London W.1. Tel.: Museum 3261, SASCO, P.O. Box No. 20, Gatwick Road, Crawley, Sussex. Tel.: Crawley 28700 (also Chipping Sodbury 2641, Cumbernauld 25601 and Hitchin 2242) and agents in principal overseas countries.

[^16]:    TO: SINCLAIR RADIONICS LIMITED, 22 NEWMARKET ROAD, CAMBRIDGE.
    Please send POST FREE
    \| $\qquad$ NAME...............
    ADDRESS.
    $\qquad$
    $\qquad$
    | for which / enclose cash/cheque/money order. Ww. 1268

