

RELAYS

ex stock in 7 days

* C.S.a. approved in canada and great britain

made to measure
APPROVALS: C.E.G.B. No. $131 \& 92 \cdot$ B.R. POST OFFICE KRL • U.K.A.E.A.
P.O. 3000 RELAY
* Manufactured to full G.P.O. specification, also to
Industrial Standards
\star Contacts up to 30 amp

P33

PLUG-IN RELAY

* Plug-in version 10 BPO 3000 relay, made to measure for Industrial Applications
* Contact ratings up 10 10A/750V
\star Positive-lock
retaining clip
$\star 30$ million operations minimum
P.O. 600 RELAY

COMPONENT BOARD P304

\star Plug-in component board unit for low cost, easy chassis fabricatlon

* 151 FROM STOCK

CONTACTOR
K700 RELAY

* High-current/high. voltage 3000 -type relay
* Contact up 10 30 A 240 V a.c.
* Sensitivities down 1045 mW
* PTFE armature Uar/lifting rods

KEYSWITCH RELAYS LIMITED
120/132 Cricklewood Lane . London. NW2

Iliffe Technical Publications Ltd., Managing Director: Kenneth Tett Editorial Director: George H. Mansell Dorset House, Stamford Street, London, SE1

This month's cover. The tête-à-tête being overheard by a microphone, a scene from a production at the B.B.C. Television Centre, prettily introduces two features in this issue: 'Developments in Microphones' by H. D. Harwiod (p. 58) and a microphone supplement. The microphone on the boom is a moving-coil type with a cardioid characteristic, a kind used extensively in television work.

April 1968
Volume 74 Number 1390

Contents

51 Audio Myths, Maths \& Measurements
52 How Important is Detection? by R. C. V. Macario
57 H.F. Predictions
58 Developments in Microphones by H. D. Harwood
61 Wide-range General Purpose Signal Generator by L. Nelson-Jones
66 P.C.M. Copes with Everything
67 Low Distortion Class B Output
Microphone Supplement
68 News of the Month:
Numerical Control Advisory Service
Ministry Contracts Aid Microelectronic Research
Post Office Domestic relay System
71 Personalities
72 Simple F.E.T. Pre-amplifier by D.B. G. James
73 The Technician Engineering Scene
74 New B.B.C. Monitoring Loudspeaker-2 by H. D. Harwood
78 Electret Microphone
79 Protecting Meters with Semiconductors by T. D. Towers
82 Letters to the Editor
84 London Audio Festival
86 World of Amateur Radio
87 New Products
92 April Meetings \& Exhibitions
(C) Diffe Technical Publications Ltd., 1968 Permission is writing from the Editor must first be obtained before letterpress or illustrations are reproduced from this journal. Brief extracts or comments are allowed provided acknowledgement to the journal is given.

PUBLISHED MONTHLY (3rd Monday of preceding month). Telephone; 01-928 3333 (70 lines). Telegrams/Telex: Wiworld Iliffepres 25137 London. "Cables: "Ethaworld, London, S.E.1." Annual Subscriptions: Home; $\& 2$ 6s Od. Overseas; $\mathscr{L}_{2} 15 \mathrm{~s}$ 0d. Canada and U.S.A.; $\$ 8.00$. Second-Class mail privileges authorised at New York N.Y. Subscribers are requested to notify a change of address four weeks in advance and to return wrapper bearing previous address. BRANCH OFFICES: BIRMINGHAM: 401, Lynton House, Walsall Road, 22b. Tclephone: Birchfields 4838. BRISTOL: 11 Marsh Street, 1. Telephone: Bristol 21491/2. COVENTRY: 8-10, Corporation Street. Telephone: Coventry 25210. GLASGOW: 123, Hope Street, C.2. Telephone: Central 1265-6. MANCHESTER: 260, Deansgate, 3. Telephone: Blackfriars 4412. NEW YORK OFFICE U.S.A.: 300 East 42nd Street, New York 10017. Telephone: 867-3900.

Lock-fit transistors stay where they're put

Putting transistor leads through boards, cropping them and hoping they'll stay put until soldered is out of date. Now just push a Lock-fit transistor in and it stays there. The leads are shaped to grip.

And they won't bend or break. They're designed to pop straight into standard printed circuit grids and p.c. boards of both standard thicknesses.
The transistor itself-many of the
wide range of Mullard silicon types -is protected in an epoxy encapsulation which gives good heat conduction. The special epoxy used by Mullard maintains the low spreads of the silicon chip.The shape ensures that operators or machines put the transistor into equipment the right way round. So Lock-fit is easy to mount, gives better solderability and simplifies handling. Lock-fit will save you assembly time and costs.
For the full Lock-fit range story manufacturers should tick the coupon.

You may think capacitors inexpensive. But have you worked out the cost of a dud on your line?

We're not going to start the old price v. quality argument again. We'd just like to make sure that you're getting the whole picture. It's up to you to judge what's right for your particular job. But Mullard will help you as much as possible.
So bear in mind that, as well as price and technical information, Mullard can also give you the most detailed life/performance data.

Time well spent

There can't be many firms who've been in business as long as we have who have used the time to such advantage. Our past experience guides our future plans; provides us with an insight into the industry we serve ; allows us to anticipate needs and deploy our resources over the most fruitful areas of research and

CONSUMER ELECTRONICS DIVISION

This information is fundamental to us if our AQL* is to be maintainedhow else could we improve our products? And this information is available to you. Take electrolytics for example. We found that they represent about 70% of all capacitor failures in the life of a TV set. So we produced a detailed report and recommendations on the best way to use electrolytics. You're welcome
development-and thereby provide modern, technically excellent products ready for the demands of tomorrow. We have co-operated in
to a copy-it covers polyester capacitors too. Just tick the coupon. By getting all the information before you select you can be really sure that you are going to make savings by choosing the particular component to meet your design parameters.
*AQL = Acceptable Quality Level.
so many consumer electronics projects that it's quite likely we are working along similar lines to yours. So why not get in touch ?

[^0]
Audio Myths, Maths and Measurements

Editor-in-chief:

W. T. COCKING, F.1.E.E.

Editor:

H. W. BARNARD

Technical Editor:

T. E. IVALL

Editorial:

B. S. CRANK

Drawing Office:
H. J. COOKE

Production:
D. R. BRAY

Advertisements:

G. BENTON ROWELL. (Manager)
J. R. EYTON-JONES

The other day a highly respected audio equipment manufacturer told us he was obliged to extend the frequency response of his amplifiers far beyond the normal requirements of hearing because people insisted on testing his products with square waves and wanted to see nice right-angled corners on their oscillograms. This is a case of objectivity in measurement gone crazy, to the extent of bringing in irrelevant, visual subjective criteria.

The imminence of the London Audio Fair reminds us that audio engineering, of all the branches of electronics, seems particularly prone to this irrational type of approach. The very word "audiophile" suggests that the hardware possesses some kind of human personality, best understood through psychology rather than physics. Readers of this journal are not likely to be caught in such mental traps. But it is still possible for us to fall into rather narrow-and perhaps even misleading-ways of thinking about performance testing. The trouble is that the criteria in common use tend to arise from the types of instruments that can be readily manufactured. For example, we glibly talk of "frequency response"; but, as H. D. Harwood gently reminds us in the captions to his graphs (pp. 74-78 this issue), it is really output/input amplitude ratios we are measuring, at a number of different frequencies. Frequency response curves are in fact graphical representations of transfer functions (without the phase information), in terms of ω rather than $d / d t$. And the ω comes in because we are using the rather artificial sinusoidal form of excitation. Sine-wave testing is convenient and oscillations of adequate purity are easy to generate, but sine waves as such hardly ever occur in normal sound programmes —perhaps an occasional solo note on a flute. It's odd that we resort to them so much.

Also easy to generate are noise signals, and their use in testing audio equipment is now well established. This type of excitation, whether it be white, pink or what-haveyou noise, can, of course, be considered as providing simultaneously a wide range of frequencies (as can the step functions in square-waves) and herein lies its usefulness for rapid response /frequency testing. A more realistic way of looking at noise is simply as a random function of time. As such it is much more like the transients in music or speech than are sine waves. Its statistical properties can be utilized for testing by means of correlation computing techniques. With white noise excitation, the crosscorrelogram between the input and output time functions is, in fact, the impulse response (multiplied by a constant) of the device under test.

Computers are transforming not only measurement techniques but methods of system analysis. The current interest in state variables* is a case in point. Audio transducers, say, or filters, are often represented by second (or higher) order differential equations, but these can be difficult to handle by conventional methods, particularly if non-linearities are present. State variables are variables related to energy storage elements in a system (e.g. current through an inductor) and since these elements can be represented by first-order differential equations, the set of "state space" equations describing a device or system can be readily solved on analogue or digital computers. It remains to be seen how useful this approach will be in practical design work, but at least it opens another window to let us look at the old familiar scenery with a fresh eye.

[^1]
How Important Is Detection?

An alternative to the common envelope detector, using integrated circuits

by R. C. V. Macario,* b.Sc., Ph.D., M.I.E.E.

Abstract

A systematic study of the processes of detection in an a.m. receiver indicate that detection plays a bigger role in the final performance than one would deduce from the hardware and/or cost breakdown. Previously any departure from the simplest envelope detection schemes would have been uneconomical because of the relatively small performance improvement for the added circuitry, but with the advent of integrated circuits alternative approaches may hold promise. One of these alternatives is described in this article. The operation indicates that a fresh look can be taken at the ratio of linear gains in the i.f. and a.f. sections, as well as at the selectivity performance of these two sections. A practical system designed from the result is also described. This circuit can be added to existing receivers, and comparative listening tests have indicated better reception under selective fading conditions, in particular on short-wave bands. The improvement would be greater if one were prepared to add a carrier selection filter (with no phase shift) ahead of the system. The study also suggests further ways in which reception under selective fading conditions may be realized.

IT is not an undue exaggeration to represent a typical broadcast receiver by a block diagram along the lines of Fig. 1. The relative amounts of hardware are indicated for the two main sections, these being the selectivity and audio stages respectively. In terms of cost, the distribution would be even more remarkable. Considering how important a function is detection \dagger or demodulation, it is surprising how small a part of the receiver is allocated to this undertaking.

In this article a brief review of the principles underlying the process of recovery of the transmitted signal is made. The conclusions drawn indicate that certain changes in the familiar superheterodyne structure may well take place with the advent of more easily available complex circuits as a result of integrated circuit technology. A number of these features are illustrated experimentally. In particular, a scheme is described by which additional non-linear circuitry may be added to an existing receiver to provide faithful demodulation of low level signals.

Theory

One can reasonably assume that an a.m. signal leaving a transmitter consists of a stable carrier surrounded on each side by a pair of sidebands of fixed bandwidth, with a modu-

[^2]lation depth that never exceeds 100%. During propagation to the receiver the signal may suffer transmission impairment, which we assume is a linear function. That is, if we consider a carrier of frequency ω_{i}, two individual sidebands $\omega_{r}-\omega_{m}$ and $\omega_{r}+\omega_{\ldots}$, , and a modulation depth m, the received signal has the form
\[

$$
\begin{gathered}
\boldsymbol{e}_{" \prime}(t)=a \cos \left(\omega_{n} t+\Phi_{n}\right)+\frac{a m_{n}}{2} \cos \left(\omega_{r}+\overline{\omega_{m}} t+\Phi_{n}\right) \\
+\frac{a m_{\prime}}{2} \cos \left(\omega_{r}-\omega_{m} t+\Phi_{i}\right)
\end{gathered}
$$
\]

where
$a=$ carrier amplitude at receiver
$m_{u}=$ relative u.s.b. depth of modulation
$m_{1}=$ relative 1.s.b. depth of modulation
$\Phi_{c}, \Phi_{n,} \Phi_{t}$ are relative component phase shifts at the receiver aerial.
The general case of a broadband modulation signal is obviously more complex than that of the single tone as written here, but the latter suffices to demonstrate certain features we wish to show.

At the same time our wanted signal arrives surrounded by a very large number of similar transmissions, which are, we hope, at least separated in frequency by carrier differences of twice the minimum acceptable audio bandwidth.

Mixing

Assuming we have no cross modulation in the first stages of the receiver, a stage of mixing faces the signal. For a selfoscillating transistor mixer a type of square-law signal transfer

Fig. 1. Basic block schematic of a.m. broadcast receiver.
is employed, with the signal and a locally generated carrier $e_{o}=\cos \left(\omega_{o} t+\Phi_{n}\right)$, being superimposed, producing an intermediate signal $e_{\text {, }}$.

$$
\begin{aligned}
& \text { Writing } \\
& e_{i}=k \cdot\left(e_{n}+e_{n}\right)^{2} \\
\therefore e_{i} & =k\left\{\cos \left(\omega_{n} t+\Phi_{n}\right)+a \cos \left(\omega_{c} t+\Phi_{v}\right)\right. \\
& \left.\frac{a m_{n}}{2} \cos \left(\omega_{c}+\omega_{n} t+\Phi_{n}\right)+\frac{a m_{l}}{2} \cos \left(\omega_{c}-\omega_{n \prime} t+\Phi_{l}\right)\right\}^{2}
\end{aligned}
$$

The mixer stage is followed by a frequency selective amplifier. This last strange sounding description of an i.f. amplifier is brought in to give an excuse for mentioning how
he choice of the value of $\omega_{n}-\omega_{c}$ affects the etymology of he names given to receiver systems'. This is most easily lone by means of a table:

$$
\begin{gathered}
\text { Choice of } \omega_{n}-\omega_{c} \\
\left.\begin{array}{c}
\omega_{n} \neq \omega_{n} \\
\omega_{n}-\omega_{c}=\omega_{i}<\omega_{c} \\
\omega_{n}-\omega_{n}=\omega_{i}>\omega_{r} \\
\omega_{n}=\omega_{r} \omega_{i}=0
\end{array}\right\}
\end{gathered}
$$

The homodyne does not have a separate oscillator and is described below. Autodyne refers to a self-oscillating mixer and so does not constitute a complete receiver system.

Returning to our main discussion and the previous equation, assuming the i.f. amplifier is tuned to $\omega_{i}=\omega_{0}-\omega_{c}$, the only terms which will come out of the i.f. will be the cross product terms

$$
\begin{aligned}
& e_{i} \text { i.f. }={ }_{2}^{a} \cos \left(\omega_{n}-\omega_{r} t+\Phi_{n}-\Phi_{r}\right) \\
& \frac{a m_{n}}{4} \cos \left(\omega_{n}-\omega_{c}-\omega_{1 m} t+\Phi_{n}-\Phi_{n}\right) \\
& \frac{a m_{l}}{4} \cos \left(\omega_{n}-\omega_{c}+\omega_{m} t+\Phi_{1}-\Phi_{l}\right)
\end{aligned}
$$

There is thus no distortion. Departure from the square law will of course create intermodulation products, but of more concern are the other signals reaching the mixer. Each signal will undergo a similar process to the one just described and both the cross-product and square terms can give frequencies which will fall within the i.f. passband. This is the reason why in a review of broadcast receivers ${ }^{4}$ it was stressed that adequate selectivity before the mixer stage was in fact more important than selectivity after the mixer stage.

The main reason for having a sharp sided filter in the i.f. section is to improve the adjacent channel selectivity should one wish to receive a weak station close to a strong unwanted signal.

A way of reducing the r.f. selectivity requirement, however, is to have a linear switched modulator in which the local oscillator signal $\cos \left(\omega_{0} t+\Phi_{o}\right)$ effectively multiplies the incoming signals, then
$e_{i}=\cos \left(\omega_{0} t+\Phi_{n}\right) \cdot\left[a \cos \left(\omega_{r} t+\Phi_{r}\right)+\frac{a m_{n}}{2} \cdots+\frac{a m_{l}}{2} \cdots\right]$
leading to exactly the same result for the ideal square law device, but without the likelihood of interfering cross-product terms.

This, of course, advocates a separate local oscillator and a balanced on/off modulator, which could well be economic with integrated circuits ${ }^{5}$ and leads to better spurious signal immunity ${ }^{6}$.

Synchrodyne

It is worth noting that in the case of the synchrodyne we make $\omega_{n}=\omega_{c}$ and $\Phi_{o}=\Phi_{c}$, that is, mix with an oscillation which has exactly the same phase and frequency as the received carrier. The filtered output becomes

$$
\begin{aligned}
e_{\text {a.f. }}= & \frac{a}{2}+ \\
& \frac{a m_{u}}{4} \cos \left(\omega_{l, t} t+\Phi_{c}-\Phi_{n}\right) \\
& +\frac{a m_{l}}{4} \cos \left(\omega_{\ldots, t} t+\Phi_{r}-\Phi_{l}\right)
\end{aligned}
$$

Fig. 2. Conventional diode envelope detector.

$$
\text { Writing } m_{n}=m_{l}+ل m
$$

As it is rather unlikely that $m_{n}=m_{l}$ when $\Phi_{n}-\Phi_{n}-2 \Phi_{r}=\pi$, under extreme selective fading conditions, the ideal synchrodyne receiver will always recover an undistorted component of the modulation, but reduced amplitude. However, in practice it is rather difficult to derive a locally locked carrier without a phase error, and this leads to distortion of the recovered signal ${ }^{7}$. The distortion is very similar to that pertaining to a homodyne detection scheme described below, so further description will be delayed till then.

Detection

Let us suppose our signal arrives at the detector stage without further distortion. (This may be more difficult than one can easily suppose. For example, it is well known that in s.s.b. and i.s.b. transmissions the necessary curtailment of the low audio frequencies, and extra sharp filters, destroy speech quality.) Fig. 2 shows a basic envelope detector. The capacitance is assumed to be a short circuit to the r.f., but open circuit to the i.f. This is not practical for an i.f. of 465 kHz ; there is an error of about $10^{\circ} \%$, which means that the full modulation index range cannot be processed in this circuit.

Of more importance, possibly, is the nature of the signal recovered when it suffers transmission impairment and has a form similar to that assigned to $e_{" \prime}(t)$ above. Then it can be shown that the envelope is given by*

Apart from the fact that the envelope, which started with the form $a m \cos \left(\omega_{m} t+\Phi\right)$, certainly has changed its relative depth of modulation, harmonics of ω_{m} are also generated. These are more disturbing than loss of signal.

The distortion is further aggravated if the diode is not operated over its linear range. That the diode should operate in a linear mode is further required in order to gain the apparent demodulation of a weak signal by a strong one'. The degree of suppression for a linear diode is ${ }^{1,4}$
Wanted strong signal modulation
Unwanted weak signal modulation $\begin{gathered}\text { after } \\ \text { dtion }\end{gathered}$

$$
\frac{1}{2}\left[e_{\text {strong }} e_{\text {weak }}^{2}\right]_{\substack{\text { brfore } \\ \text { d'tion }}}^{2}
$$

This, as well known, explains why about an 18 dB adjacent

Fig. 3. Amplifier/diode envelope detector.

Fig. 4. Observed waveforms: (a) response of Fig. 2 circuit; (b) response of Fig. 3 circuit. In each case the 1 kHz detected envelope is superimposed on the $470 \mathrm{kHz} .80 \%$ modulated input carrier. adjusted so that waveforms have equal amplitude. The carrier level was 1 volt peak-to-peak.
channel selectivity in the i.f. of standard receivers is acceptable.

If the diode is operated at a low level on the other han 1 , its characteristic may no longer be linear and no apparent demodulation is obtained at all, ${ }^{9}$, in addition to the increased distortion just mentioned. Unfortunately, diodes with good linear characteristics usually have a forward conductance threshold. This can, however, be reduced by forward biasing. Another way is to use an amplifier/diode arrangement as shown in Fig. 3^{10}.

Fig. 4 compares the performance of these two arrangements for $1 V$ peak-to-peak 450 kHz carrier, modulated with a 1 kHz tone to a depth of 80%. The value of the smoothing capacitor C is chosen from the formula

$$
C=1 / R_{l}, \sqrt{ } \omega_{\mathrm{c}} \omega_{m}
$$

which gives about the optimum value.
Each illustration in Fig. 4 shows the recovered envelope superimposed on the input waveform. The diode circuit gave an 8 dB envelope amplitude loss compared with a gain of 3 dB for the amplifier/diode arrangement. The power gain difference is of course much greater due to the different source impedances. The distortion due to the unsupported diode at low carrier levels is easily seen. Both circuits distort, however, if the modulation depth is raised to 90% because of the necessary choice of the capacitor C.

Homodyne Detection

The distortion referred to earlier on the envelope of a severely impaired signal increases as the modulation depth is increased. In the homodyne system energy is put in at the same frequency (derived directly from the signal, not from a synchronized oscillator as in the synchrodyne ${ }^{1,3}$) an immediate result of which is to reduce the depth of modulation and hence envelope distortion. Crosby ${ }^{11}$ described a system along these lines as "exalted carrier reception," but the difficulties of selecting out the carrier with a crystal circuit and adding it to the signal with the proper phase relationship were not to be envied.

An alternative method of obtaining knowledge of the state of the instantaneous carrier is to note whenever the incoming signal crosses zero amplitude. A zero crossing detector does just this and usually produces a square wave with a fundamental frequency equal to that of the signal oscillation within the modulated envelope $E(t)$. This signal, however, differs slightly from that of the carrier $\cos \left(\omega_{g} t+\Phi_{r}\right)$, and is given by ${ }^{\star}$

$$
e_{z}=\cos \left(\omega_{r} t+\Phi_{r}+\psi\right)
$$

where $\psi=$
$\tan { }^{1}$

$$
\left[\begin{array}{c}
a m_{l} \sin \left(\omega_{m} t+\Phi_{r}-\Phi_{l}\right)-\frac{a m_{n}}{2} \sin \left(\omega_{m} t-\Phi_{n}-\Phi_{r}\right) \\
2+\frac{a m_{u}}{2} \cos \left(\omega_{m} t+\Phi_{n}-\Phi_{r}\right)+{ }_{2}^{a m_{l}} \cos \left(\omega_{m,} t+\Phi_{r}-\Phi_{l}\right)
\end{array}\right]
$$

This fixed amplitude carrier can be added to the signal and used to switch the detecting diode in an on/off mode and thereby operate faithfully up to 100% modulation level. The detected components are those remaining after product mixing, namely, multiplying $e_{\text {" }}$ by e_{z}, then

$$
\begin{gathered}
E_{:}(t)={ }_{2}^{a} \cos \psi+{ }_{4}^{a m_{n}} \cos \left(\omega_{m} t+\Phi_{n}-\Phi_{r}-\psi\right) \\
\quad \frac{a m_{l}}{4} \cos \left(\omega_{n \prime} t+\Phi_{1}-\Phi_{n}+\psi\right)
\end{gathered}
$$

The result is similar to that obtained for ideal synchrodyne reception, excepc for the term $\psi(t)$. (It can be reduced to zero if the sidebands are filtered off before zero-crossing detection, i.e. synchrodyne.)

At first sight the result looks rather different from the expression for the envelope of the original signal $E_{r}(t)$, but if one studies the two results for the important selective fading condition when the phase of the carrier is rotated
10° relative to the two sidebands, one finds they are similar For example, letting

$$
\begin{aligned}
& m_{n}=m_{l}=m \\
& \Phi_{n}=\Phi_{l}=0, \phi_{c}=\pi / 2
\end{aligned}
$$

hen $E_{r}=1 \quad\left(a^{2}+\frac{a^{2} m^{2}}{2}+\frac{a^{2} m^{2}}{2} \cos 2 \omega_{m} t\right)$
howing the modulation is reduced as well as doubled in requency.
For the zero crossing homodyne scheme we have:

$$
\begin{gathered}
E_{z}=\frac{a}{2} \cos \psi+\frac{a m}{2} \cos \left(\omega_{o n}+\frac{\Phi_{n}-\Phi_{l}}{2}\right) \\
\cos \left(\psi+\Phi_{c}-\Phi_{n \prime}+\Phi_{l}\right)
\end{gathered}
$$

which becomes

$$
=\begin{aligned}
& a \\
& 2
\end{aligned} \cos \psi-\quad \begin{gathered}
a m \\
\cos \omega_{m} \cdot \sin \psi
\end{gathered}
$$

-Clearly ψ will not have, nor can we choose, a value which will recover the modulation in all cases.

The actual value of ψ will be, for this case,
$=\tan ^{1}\left(m \cos \omega_{m, t} t\right)$

$$
=m \cos \omega_{t u} t-m_{3}^{3} \cos ^{3} \omega_{t / n} t+\ldots
$$

or, for small percentage modulations,

$$
=m \cos \omega_{r a} t
$$

If this value is substituted into the expression for E_{ℓ}, it can be shown that E_{r} is not dissimilar to the envelope $E_{r}(t)$. (In the synchrodyne case the distortion is missing, but so is the modulation.)

The result is more clearly illustrated by Fig. 5. The top waveform shows the unimpaired signal, the next waveform the detected signal when the carrier phase is rotated by 90° during transmission, and the bottom waveform shows the instantaneous phase angle ψ of the zero crossing waveform. (When there is no impairment $\psi(t)=0$, of course.)

The interesting feature of Fig. 5, is that though the modulation signal is missing from either detected signal, it is retained by the phase term. Clearly, if one were to use both the envelope and phase information, added in a proper manner, much of the familiar short-wave phase distortion could be reduced.

The remainder of this article is therefore devoted to a description of a circuit by which the zero-crossing waveform, and hence $\psi(t)$, may be realized in a receiver, and of a detector utilizing this signal to achieve a very linear performance over a wide dynamic range.

Practical System

A practical system by which a zero-crossing detection signal can be generated falls within the sphere of digital circuit technology; as a result a large number of alternative approaches can be contemplated. The one to be described, therefore, is mainly illustrative. Its primary purpose is to demonstrate the features necessary for the system to operate satisfactorily These features are: (1) the switching signal $e_{=}$must be free of amplitude modulation, and (2) should approach as nearly as possible an ideal square wave; (3) if the zero crossing signal fails during a deep fade or a 99° " modulation dip, no interruption signal appears in the signal path.

A circuit system which goes some way towards meeting the requirements just set down is shown in Fig. 6. The i.f. signal available in the existing receiver is picked off by a high gain amplifier. This amplifier need not have a linear charac-

Fig. 5. Calculated waveforms for 50% modulated a.m. signal. (Carrier phase rotated 90° during transmission.)

Fig. 6. Zero-crossing detection system.
teristic, but must limit symmetrically. The partially limited signal is then fully limited by a stage having a sharp threshold characteristic, viz., a Schmitt trigger ($\mu \mathrm{L} 914$) or a level comparator ($\mu \mathrm{A} 710$). The threshold levels of this circuit are arranged by proper d.c. levelling to correspond as closely as possible to the zero crossing level of the incoming i.f. signal point (1). The output then consists of a sharply rising on/off waveform constituting e - point (2).

If the input i.f. signal is at too low a level, however, and so fails to exceed the threshold of the Schmitt trigger, the output $e_{\text {: }}$ also fails. Since this interruption is effectively added to the wanted signal, when it is weakest, a balanced product detection arrangement is mandatory-point (3). A shunt modulator is shown, as this preserves knowledge of the input carrier level, i.e., d.c., which can be used for a.g.c. if a.g.c. is not derived elsewhere in the receiver. The diodes in the bridge operate as nearly ideal diodes, since they are switched by the strong derived carrier signal, $e_{;}$, and not the signal, i.e. the homodyne mode.

Fig. 7 illustrates the waveforms associated with a system such as Fig. 6 when using a Schmitt trigger. Fig. 7 (a) shows how the Schmitt waveform is almost completely free of modulation, and how the signal envelope is accurately preserved. If, however, the modulation depth is taken to 100% the Schmitt necessarily drops out, but, in the main, this is taken care of by the balanced drive to the diode ring.

The fact that the zero crossing detector has a threshold and that we are dealing with amplitude modulated signals whose level may well periodically pass through this threshold creates an interesting circuit problem.

Fig. 7. Waveforms associated with a system such as Fig. 6. using a Schmitt trigger: (a) modulation depth 90% : (b) modulation depth 100%. In each picture the top waveform is the input carrier, the middle one the Schmitt waveform and the bottom waveform the demodulated output.

For example, if we assume a usable i.f. signal is a.g.c. controlled so it only varies in carrier level by 20 dB , but on top of this we are to guarantee a 99% modulation range, this means the circuit must be able to handle at least a 66 dB dynamic range, above the threshold.

Between stations, or on a very weak station, because of the threshold the detector will be modulated at a rate equal to the
number of times the incoming signals cross the threshold (a few dB wide), and if the diode bridge is not balanced for a partial switching condition (at threshold) the noise breaks through into the audio stages-emphasised by the gain in the zero crossing loop!

The practical circuit given here, therefore, in addition to meeting the requirements set forth above, has the following features: (4) symmetrical limiting, (5) high sensitivity, (6) balanced pulse drive. The circuit is shown in Fig. 8.

The first module ($\mu \mathrm{L} 900$) acts as a symmetrically limiting amplifier, and has a low output impedance to drive the comparator ($\mu \mathrm{A} 710$). The comparator provides the principal sensitivity, producing a sharply rising square wave of approximately 3.6 V amplitude. A two-winding pulse transformer on a small toroid conveniently provides the balanced drive for the diode bridge (BAX52). For a $1: 1: 1$ winding and the drive resistances shown about 2 mA is available for switching the diodes, sufficient for input signals up to 5 volts peak. The primary inductance has to be at least $100 \mu \mathrm{H}$.

Performance

A measurement of circuit performance is shown in Fig. 9. The relative audio signal (after filtering) is plotted against input signal level, for various depths of modulation. At nominal signal levels a linear relationship exists. Any departure from a linear dependence is due to variation of the zero crossing pulse width. This tends to narrow at low signals as less drive is available to the $\mu \mathrm{A} 710$, and the diodes fail to switch at the same instant as the carrier crosses zero.

At low signal levels threshold breakthrough occurs, which is a function of any unbalance in the shunt detector circuit. Below this level the detector stops altogether, and all becomes quiet. This noise plateau has the effect of raising the noise level between stations. With more gain in the control loop of Fig. 8, however, it will move to a lower level. On the other hand, the detector operates at much lower signal levels, and hence the a.g.c. control is made more accurate, so that the circuit would nearly always operate at the nominal signal level of say 100 mV (r.m.s.) or less.

Listening Tests

The main interest with the circuit has, of course, been comparative listening tests on a.m. stations, subject to selective fading distortion.

Fig. 9. Dynamic performance of Fig. 8 circuit (i.f. $=470 \mathrm{kHz}$. a.f. $=1 \mathrm{kHz}$).

Fig. 10. Modulation depth curves.

Fig. 10 is included to show the difference between modulation linearity using the existing detector in a standard communications receiver (Eddystone Model 940) and the new system. Incidentally, when attempting to measure the distortion versus modulation percentage for the system on its own, the distortion was found to be below the distortion level quoted for the signal generator available.

The audio signals from Fig. 8, and from the receiver, were reproduced through the same good quality speaker system using a sharp cut-off audio filter. (This works as well as, or better than, narrowing the receiver i.f. bandwidth.) As might be expected, there is really no perceptible difference on a primary, say medium wave, broadcast, or to the operation of the receiver.

On the other hand, listening, for example, on the 15 MHz band, to speech broadcasts subject to the usual short wave distortions, it can be stated that the detection system described adds an extra sharpness and greater degree of intelligibility to the received signal, compared with the standard receiver. This may well be due to the more faithful following of the signal during carrier fade.
Acknowledgements. The writer wishes to acknowledge the interest of Dr. K. R. Sturley during the preparation of this article, Mr. B. Santaniello for assistance with many of the
practical circuits evaluated, and Mr. W. Liew for calculating the results in Fig. 5.

References

1. 'Homodyne Reception' Wireless World, Vol. 48, No. 4, April 1942, p. 87.
2. 'A New Receiving System' by W. T. Cocking. Wireless W'orld, Vol. 34, No. 12, 23rd March 1934.
3. 'The History of the Homodyne and Synchrodyne' by D. G. Tucker. J.Brit.I.R.E. April 1954, p. 143.
4. 'Broadcast Receivers: A Review' by N. M. Rusk, O. E. Keall, J. F. Ramsey and K. R. Sturley. 7.I.E.E. Vol. 88, Pt. III, 1941, p. 59. 5. 'Design and Development of Linear Circuits' by M. J. Gay. Plessey Components Technology Magazine, May 1967.
5. A Goal: Spurious-Signal Immunity of Solid-State AM/FM Tuners', 'by R. V. Fournier, C. H. Lee and J. A. Kukis. I.E.E.E. Trans. BTR-12, April 1966, p. 37.
6. 'The Synchrodyne as a Precision Demodulator' by D. G. Tucker and R. A. Seymour. Wireless Engineer 27, 1950, p. 227.
7. 'Pulses and Transients in Communication Circuits' by C. Cherry. Chapman and Hall, London (1949).
8. The Mutual Interference of Wireless Signals in Simultaneous Detection' by E. V. Appleton and D. Boohariwalla. Wireless Engineer, March 1932, p. 136.
9. Fairchild Semiconductor I inear Integrated Circuits Applications Handbook.
10. 'Exalted Carrier Amplitude and Phase Modulation Reception' by M. G. Crosby. Proc.I.R.E. September 1945, p. 581.
H. F. PREDICTIONS - APRIL

M Median standard MUF
M Median standard MUF
----- Optimum traftic frequency
----- Optimum traftic frequency
-.-.-.- Lowest usable HF
-.-.-.- Lowest usable HF

Predictions are based on an ionospheric index (IF2) of 132 and sunspot number 115. April/May is forecast as maximum of the current sunspot cycle.

Seasonal changes are evident on the two northern hemisphere routes, MUF curves are lower and smoother than recent months. On the transequatorial routes optimum frequencies remain around $25-30 \mathrm{MHz}$ throughout daylight hours.

LUF curves were drawn by Cable and Wireless Lid. for reception in the U.K. of point-to-point telegraphy. Their proximity to the optimum traffic frequencies is a guide to weak or no-signal periods on other types of service.

Developments in Microphones

A review of recent innovations in design

by H. D. Harwood,* B.Sc.

THERE has been a considerable amount of work on microphones during the last few years, resulting in improved frequency characteristics, better signal-to-noise ratio and smaller size. It is difficult to say at this stage whether all the variations are likely to endure or whether some will eventually predominate on the grounds of simplicity or price, but at the moment the spate of innovations shows no signs of slackening. \dagger

Capacitor Microphones

Perhaps the class of microphone which has changed most generally over the past few years is the capacitor type. Most of these changes are associated with the design of the head amplifiers and biasing.
Circuit Design.-For many years the capsule of a capacitor microphone operated into a triode valve and special quiet valves have

* B.B.C. Research Deparument.
+ It has been necessary from time to time to refer to specific makes as illustrations of trends, but it should be clearly understood that these are mentioned solely because they have some particular item of interest, and no comment on their performance is intended; on the other hand the exclusion of any make or type is not intended to reflect on its excellence in its own particular field.
Capacitor microphone incorporating an f.e.t. head amplifier (Standard Telephones and Cables type 4126).

been designed which achieve the very high input impedance required for this purpose; however, in practice, the valves became noisy after a period of time and the reputation of capacitor microphones has suffered accordingly. When the field effect transistor, with its very high input impedance, was developed, one of the first obvious applications was to this problem, provided the necessary requirements could be met. The electrical noise from a capacitor microphone consists of three bands, at low, middle and high frequencies respectively. The low frequency portion is that generated by the resistive component of the gate input impedance. This consists of the capsule and input capacitances in shunt with the resistance of the gate input circuit and has a "red" noise spectrum falling at 6 dB per octave with respect to white noise. The middle frequency portion consists of the pink noise from the f.e.t., while the upper frequency portion consists of white noise from the f.e.t. The position is thus strictly analogous to that obtaining with a triode, and the problem is one of securing adequately low noise levels and a high degree of reliability.-The red low frequency noise can be reduced to an insignificant level by increasing the input resistance of the amplifier; f.e.ts do not present any difficulty in this respect and the other two sources of noise therefore remain the main problem. The pink and white noise levels vary considerably from type to type, and although special low-noise f.e.ts are now made, it is usually necessary to resort to selection in order to find quiet enough specimens; this involves considerable expense.

One potential source of trouble which so far has not proved serious is dampness of the capsule, resulting in lowered resistance across the capsule terminals. In the old designs, with a valve close to the capsule, the heat was sufficient to dry the insulation but with the advent of f.e.ts fears were expressed that dampness would prove a problem. It is to the credit of the designers that because of the use of improved insulating materials and other measures no trouble seems to have been met. One disadvantage with some types of f.e.t. however, is that the gain appears to wander over a period of time. Users requiring extreme stability of gain should therefore check this feature.

It is a pleasure to be able to record that the first microphone employing f.e.ts was
made in this country by Standard Telephones and Cables, and this microphone, the type 4126, also has the claim of being the smallest on the market. The output is comparable with that of dynamic microphones. A later version, type 4136, has a higher output and uses a cable with only two conductors instead of the multicore cable required for the earlier model. This arrangement, which is, of course, operationally more convenient and reliable, has been adopted by the Neumann company with their whole range of f.e.t. operated microphones, (an example of which, type KM76, is illustrated). In this case the power is supplied down the lead, either direct to the microphone or via a d.c. converter built into the microphone itself. In either case the power requirements are low and can be supplied by batteries, especially for the direct supply condition for which a typical life is said to be 200 hours.
A.K.G. of Vienna have also entered this field with their model C451.

The noise levels claimed for capacitor microphones with f.e.ts are rather difficult to assess, as various weighting curves are in use in different countries (a matter which
(Left) Capacitor microphone with f.e.t head amplifier made by Neumann (type KM76).
(Right) Pressure type capacitor microphone, MKH110, mad by Sennheiser.

the I.E.C. could well look into), but at their best they appear to be slightly better than their nearest valve equivalents. With the continued development of transistors it may be expected that noise levels will cecrease still further and that f.e.ts will prove themselves to be more reliable than valves.

The second revolution which has taken place in capacitor microphones has been the reintroduction of radio-frequency biasing. It is interesting to note that in the early 1920s when it was difficult to obtain high input impedance amplifiers this form of biasing was used in various ways. Today it is usual to employ some form of bridge circuit and an r.f. of the order of 5 MHz .

In the absence of an acoustic signal the bridge should be balanced, and therefore if it is necessary to change the capsule the bridge must be rebalanced. On the other hand it is noteworthy that very low electrical noise levels are quoted by A.K.G. and Sennheiser for this form of circuit; the noise level claimed for the Sennheiser MKH104 and 105 omnidirectional microphones is so low that the air impedance is stated to affect the value obtained. Very efficient r.f. filtering is used to ensure that none of the carrier frequency is transmitted outside the microphone case. At these frequencies the impedance of the capsule is relatively low, of the order of $1 \mathrm{k} \Omega$, and it has been found necessary to gold-plate the capsule contacts to ensure that oxide contamination does not contribute to the noise level.
Capsules.-Progress has also been made in the design of capsules to go with the improved circuits. The axial frequency range has been extended and the directional properties made more constant with frequency. For example, the Neumann KM74 cardioid type is claimed to have a directional characteristic constant with frequency out to an angle of 135° from the forward axial direction. This feature is useful not only in widening the angle within which direct pick-up can be obtained but also in ensuring that the reverberation is not coloured so as to sound different from the direct pick-up.

The front-to-back ratio of cardioid type capsules has also improved and there is not now such a tendency for this to fall off at the bass. One manufacturer, S.T.C., actually claims a front-to-back ratio of 32 dB but it must require facilities of a very high order to measure this, let alone maintain it in production.

A very interesting capsule is used by Sennheiser in the type MKH110. This is of the pressure type but has been made with such a low time constant that the sensitivity is uniform down to about 0.1 Hz . As it uses the r.f. biasing system described earlier, which operates efficiently down to d.c., the full capabilities of the capsule can be exploited and it should be ideal for studying sounds such as sonic bangs which have prominent low-frequency spectral components.

Ribbon Microphones

Development work still proceeds on ribbon microphones, these having the advantage that their characteristics can be more accurately duplicated than can those of any other
type of microphone. The Japanese broadcasting authority's (NHK) research laboratories have brought out the NHK RVI-A, an instrument which is a modern version of an old R.C.A. device. It incorporates a ribbon, the rear of which is partially covered by a tube leading to an acoustic labyrinth. Omnidirectional, figure-of-eight and cardioid characteristics are available. Although much smaller than the old R.C.A. device, it is still fairly large by present-day standards, but on the other hand the performance is stated to be of very high quality.

Also worthy of note as the smallest unidirectional ribbon microphone on the market is the Beyer M160. The directional characteristic is of the hyper-cardioid type and an interesting point is that to achieve a higher sensitivity two parallel ribbons are used in the air gap; although this device has been suggested before, this is the only microphone in production in which it is used. It has significant advantages over using a ribbon of twice the thickness in that a lower resonance frequency and better control of the ribbon overtones can be obtained, but, of course, it raises a number of problems in production as the ribbons must never be allowed to touch each other.

The other ribbon microphone of interest is also from the NHK laboratories. This is the "group talk" microphone and appears to be an embodiment of patent No. 2,539,671 taken out by Olson in 1951. It consists of two figure-of-eight microphones at right angles to each other, the outputs of which are combined through a quadrature network. The polar diagram is in the form of a toroid generated by rotating a figure-of-eight about an axis at right angles to the principal axis. The object is to provide a device which is suitable for discussion groups while maintaining some directional properties in the vertical plane. However, the directivity index is of necessity low, $\frac{子 \text { or }}{}-1.8 \mathrm{~dB}$, as would be expected from a combination of two figures-ofeight, and it remains to be seen whether in practice it proves to be more useful than a cardioid with the acoustic axis vertical.

Moving Coil Microphones

The most interesting new moving coil microphone is a two-unit cardioid device, type D202, made by A.K.G. This is a development of the variable distance microphones introduced by the same firm and by Electrovoice in America. One unit is used for the low frequency end of the spectrum and another for the high frequencies. In this way it is possible to employ a much greater front-to-back path difference (about 14 cm) for the low-frequency unit than if it had to cover the whole frequency range and therefore the acoustic driving force is correspondingly greater. For this reason the suscepubility to mechanical vibration and wind noise is much less and so is the effect of close talking. The crossover frequency between the two units is at 500 Hz , and the front-to-back path for the highfrequency unit is only 1.2 cm , thus enabling a wide high-frequency range to be maintained; it is also claimed that the $\pm 90^{\circ}$ curves run parallel to the axial curve. The

Ribbon microphone incorporating an acoustic labyrinth, type NHK RV1-A, developed by the Japanese broadcasting authority's research laboratories.

Smallest unidirectional ribbon microphone on the market, the Beyer type M160, uses two parallel ribbons.

Noise cancelling moving-coil microphone for commentators, using two spaced tubes to pick up the sound (NHK/Sankon type ML/1).
models 200 and 224, designed for p.a. and studio use, complete the range of this type. It is interesting to note that for the first time the specification for this microphone quotes a value for the wind noise, and it is hoped that this practice will spread as soon as standards of wind speed and of weighting curves are agreed. In this connection it has been the practice for a number of years in the B.B.C. to measure wind noise at 10 m.p.h. for studio-type microphones and 40 m.p.h. for outdoor types; ASA weighting is used.

Another moving coil microphone of interest comes from the same stable, namely the type DX11. This has a cardioid characteristic but the unconventional feature about it is the inclusion of a reverberation unit of the spring type. It has been designed for dance band work and the reverberation time is controllable, with a maximum of 2.5 sec , by means of a button on the microphone

handie. The associated transistors are powered by batteries located in the microphone handle.

The NHK /Sankon type ML/1 moving-coil microphone is of a different kind. This is a so-called noise cancelling type designed for use at the Olympic Games in 1964. The object was to produce a commentator's microphone which leaves the user with both hands free for writing or holding field glasses and this has been achieved by mounting the microphone on a peaked cap. Sound is picked up by two tubes, the ends of which are about 2 cm apart and placed at the side of the head at a level between the nose and mouth. The tubes are each terminated acoustically at the entrance and communicate with a moving-coil element mounted near the user's ear. The tubes are on anti-vibration mountings and a wind shield can be fitted over the openings. The whole device is very light but the necessity of

Line microphone with capacitor transducer and r.f. biasing (Sennheiser type MKH804).

wearing the cap limits the use on many occasions.

The last kind of moving-coil microphone to be considered is the Lavalier type which has now become very popular. This type was first developed in the U.S.A., where R.C.A. have carried out a considerable amount of development work in this direction, producing some very small models having an axial response designed to compensate for the lack of high frequencies at chest level. However, miniaturization can carry with it high manufacturing costs, and the latest models from this company are rather expensive. Another approach to the problem has been made by A.K.G. who have produced a model, type D109, which is nearly as small as the latest R.C.A. device. The D109 carries a sliding clip which is depressed when the instrument is held in the hand and raised when used as a Lavalier microphone. In the first instance the axial frequency response is said to be almost uniform, while raising the clip has the effect of giving an appreciable increase in response at the higher frequencies, thus compensating for the reduction of this frequency band when used in the hanging position.

Line Microphones

Finally, we come to the highly directional line microphone. With a simple microphone of this type the directivity varies with frequency and approximates to that of a cardioid when the wavelength of the incident sound is twice the length of the tube. Modern line microphones, therefore, have transducers with cardioid characteristics at the bass so that the directional characteristic never becomes more omnidirectional than this.

Two examples of this design are the Electrovoice types 642 and 643 , with lengths of approximately 2 ft and 6 ft respectively. Each uses a moving coil transducer with a very large magnet and the correspondingly high signal to electrical noise ratio enables the directional properties to be fully exploited.

A third example is the Sennheiser type MKH804. This is unusual in that while the directional characteristic degenerates into a cardioid at the bass, that of the higher frequencies does not become progressively sharper with frequency but reaches a figure of about -10 dB at 90° away from the axis and maintains this over a wide frequency band. In this case the transducer is of the capacitor type and a good signal-to-electrical noise ratio is achieved by the use of the r.f. biasing circuit described earlier; this construction makes for a very light instrument.

A fourth type due to appear soon is made by A.K.G. as an attachment to the C45 1 f.e.t. microphone. The tube is about 2 ft long and the directivity varies with frequency. A lightweight version of each type will thus be available and it will be interesting to see which proves the more popular.

A feature common to all line microphones is the fact that they have an inherently good signal-to-wind-noise ratio, as the wind-noise at each opening adds up in an r.m.s. manner whilst the signal adds up linearly. Wind shields are provided but these are unnecessary except for use in high winds.

Wide-range General Purpose Signal Generator

A transistor instrument covering $150 \mathrm{kHz}-120 \mathrm{MHz}$ in six bands

by L. Nelson-Jones*, A.M.I.E.R.E.

$\mathbf{A}^{\mathbf{N}}$N r.f. signal generator is a most useful if not essential piece of test equipment so far as the amateur radio or electronics enthusiast is concerned. It is, however, also one of the most expensive, if an instrument of reasonable accuracy, and performance is required. The author found that the available commercial instruments fell into two main categories: Those with a means of monitoring the r.f. level and those without level monitors. In the second class there was in general an uncertainty in the generated r.f. level of at least $\pm 6 \mathrm{~dB}$. One such unmonitored instrument which the author had the misfortune to meet some years ago, changed its output by nearly 10 dB over a frequency change of $10 \%(41-45 \mathrm{MHz})$ on the highest frequency band.

The accuracy of the majority of monitored instruments was $\pm 2 \mathrm{~dB}$ overall though a few were good to only $\pm 3 \mathrm{~dB}$. The inaccuracies were in general spread about equally between the attenuators and the level monitoring circuit. The majority of the instruments studied had a maximum output of 100 mV into either 75 , or 50Ω, and nearly all quoted a frequency setting accuracy of 1%.

From these various specifications, and the facilities available to the author, a specification was drawn up for the instrument to be described.

```
Accuracy of frequency setting
Accuracy of level monitor
Accuracy of step attenuator
Attenuation range of step attenuator
Attenuation range of variable attenuator
Accuracy of variable attenuator callbration
Modulation level range
Accuracy of modulation level setting
Modulation frequency
Maximum unmodulated r.f. level
Output Impedance
```


$\pm 1 \%$

$\pm 1 \mathrm{~dB}$
$\pm 0.5 \mathrm{~dB}$ per 20 dB step
$\pm 0.5 \mathrm{~dB}$
0-20 dB calibrated
$\pm 1 \mathrm{~dB}$
$\mathbf{0 . 5 0 \%}$
$\pm 5 \%$ of indication
from 10-50\% modulation
$400 \mathrm{~Hz} \pm 50 \mathrm{~Hz}$
100 mV (terminated)
75Ω constant

R.F. Oscillator

The circuit used is shown in Fig. 1 and is basically the familiar Hartley oscillator with the earth point moved to give a grounded collector configuration. The advantages found for this arrangement were that one side of the tuned circuit is grounded, greatly simplifying switching and layout; that only a single tapped winding is used on each range; and since the windings are grounded at one end it is a simple matter to arrange that unused windings are both grounded and shorted out. This prevents unused coils resonating with their stray capacitance and causing peaks or troughs in the output of the other ranges. The effect is similar to that found with the grid dip oscillator and is due to the coupling between coils resulting from their proximity to one another.

The level of oscillation is controlled by variation of the bias

[^3]voltage applied to the oscillator. Further control of the level of oscillation, together with a reduction of harmonic content of the output, and some degree of equalization between ranges is provided by the degeneration produced by the unbypassed emitter resistor. Control of the oscillator by this means also saves changing the coil tapping point to find the correct degree of feedback for each range and makes it possible to use commercially available coils for the three lowest ranges. (For those with wave-winding facilities a tap at approximately $20-25 \%$ from the top of the winding is satisfactory.)

To improve the overall stability of the oscillator further and

The author's protype signal generator. The front panel is overlaid with Perspex lettered on the reverse side.

Fig. 1. The basic circuit of the r.f. oscillator employed.

Fig. 2. Oscillator output amplifier and attenuator arrangement.

Fig. 3. Graph showing output versus frequency for a constant setting of the r.f. level indicator.

Fig. 4. Circuit used to obtain the graph of Fig. 3.
to help in reducing any tendency to squegging an additional emitter resistor is added, which is bypassed to r.f. The value of the unbypassed emitter resistor is chosen to be as high as possible while maintaining an adequate level of oscillation throughout the range at the minimum battery voltage (in this case 8 V).

Output Amplifier and Attenuator

The oscillator described above generates a good sinewave signal, but at a level and impedence unsuitable for general use. In many commercial generators a coupling winding is placed on the oscillator coil to obtain a suitable output level, this is then applied to a low inductance potentiometer followed by an attenuator pad in order to ensure a reasonably constant output impedance at the highest level settings. The use of such a coupling coil necessitates the use of another bank of contacts on the range selection switch.

It was felt that this method, though it works well enough, is a rather crude way of achieving the required end. A more fundamental method, made possible by the availability of good u.h.f.
transistors, was therefore tried with considerable success. The method consists of feeding the variable attenuator, which is wired as a current-divider from a constant current generator. The result is a variable attenuator with a constant output impedance equal to the value of the potentiometer, providing that the output impedance of the current generator does not appreciably shunt the potentiometer.

The practical circuit used to achieve this is shown in Fig. 2. Level monitoring is achieved by the use of a diode voltmeter which measures the input to the current generator.

The current generator transistor operates in class A and a bias source is used rather than a potentiometer across the supply. The bias potentiometer, if used, would have to be chosen to give sufficient collector current at minimum battery voitage and would result in a very high collector current at maximum battery voltage, with consequently reduced battery life. The current in this stage must exceed:

$$
\left[\left(\mathrm{E}_{\text {out }} \sqrt{ } 2\right) / \mathrm{R}_{\text {LOAD }}\right] 10^{3} \mathrm{~mA}
$$

for class A operation. For 75Ω output impedance and 100 mV r.m.s., this gives:

$$
\left(0.1 \times 1.414 \times 10^{3}\right) / 37.5=3.77 \mathrm{~mA}
$$

$R_{\text {LOAD }}=37.5 \Omega$ since so far as the current generator is concerned the current divider, and load (both 75Ω are in parallel. A current of 5 mA is, therefore, adequate. In the circuit used (Fig. 5) the bias source is three forward biased silicon diodes, which provide approximately 2 V that is reasonably independent of supply voltage. This potential does, of course, vary with temperature, but for normal operating temperatures this is of little consequence providing that the collector current of the current generator is approximately 150% of the minimum as indicated above. The value of R_{E} depends on the voltage available from the oscillator and on the voltage required by the diode r.f. voltmeter for a reasonable value of d.c. output current for a level indicator. A value of 150Ω was found to be a reasonable compromise, giving a d.c. current to the indicator of $36 \mu \mathrm{~A}$. The meter semsitivity should not be lowered too much however or both the r.f. oscillator and the modulation measuring transistor will be unable to provide enough drive.

The performance of the output stage is illustrated in Fig. 3 which shows the variation of actual output for a constant reading of the level indicator (that is a constant input to the current generator stage). The circuit of the voltmeter used to measure this and terminate the output of the signal generator is shown in Fig 4.

The current divider potentiometer used is a solid moulded carbon type (Plessey type E), which is stable and has a long operating life. Deposited track carbon types are not suitable because of wear problems. The lowest value available is 100Ω but this can be reduced to 75Ω by connecting a 270Ω resistor across the potentiometer.

Attenuator

The majority of commercial generators use a ladder attenuator having either four, or five steps of 20 dB each. Owing to the difficulty of making a suitable screened enclosure and switch for such an attenuator it was decided to make a set of five separately switched attenuators. A suitable screened enclosure can then easily be made covering the complete attenuator and the output socket (see Fig. 7). The screen has intersection screening plates, each having a small slot to allow the coupling wire to pass through. The switches themselves are standard two-pole slide switches with a change-over action. Tinned steel sheet was used for the fabrication of the attenuator screen and all internal joints are soldered (in order to stop rusting the cut edges may be filed smooth and tinned also). The screen is made a close fit on to the aluminium front panel and secured with screws at frequent intervals.

$\left.\begin{array}{l}\text { All resistors - } 1 / 4 \mathrm{~W} \pm 10 \% \text { carbon composition } \\ \text { Capacitors - polyester tubular }\end{array}\right\}$ Unless otherwise marked
C.D. $=$ Ceramic disc

For details of attenuator
c.t. Ceramic tubular (or disc)
resistors see text

Fig. 5. Overall circuit diagram of the generator. Some reduction in cost may be realized by using the transistors marked with an asterisk in the components comments section.

Very good screening of each section of the attenuator from the others; of the output socket from the rest of the generator; and the generator from the outside world is essential if the attenuator is to have any sort of accuracy at high degrees of attenuation, especially at the highest frequencies covered.

It was at first thought that obtaining suitable resistors for the attenuator was going to be a major stumbling block, fortunately experiments showed that the commonly available solid carbon moulded resistors were surprisingly good for this application. Such resistors are usually available only in 10% tolerance, which means buying two or three times the quantity required, and selecting resistors. This is still a cheap way of obtaining attenuator resistors. Since the resistors will be required to dissipate only a small amount of power, stability should not prove a problem, but care should be taken in soldering them into position to minimize heat transfer to the resistors. A pair of
pliers gripping the lead between the resistor and the soldered joint, during soldering should suffice.

High stability cracked carbon, metal oxide, and other film resistors must not be used, since these will all have spiral tracks and will cause serious errors at the higher frequencies due to the inductive component of the resistor's impedance. Commercial attenuators do, in fact, use film resistors, but these are specially manufactured and do not have spiral tracks. Such resistors are expensive and not readily available, but if any reader is lucky enough to have such a source of non-spiral 15 and 62Ω resistors he should certainly use them. (Calculated values 15.15 and 61.35Ω).

A "T" configuration was chosen for the step attenuator sections since at high frequency stray capacitance is the most serious cause of attenuator error and as the value of the resistors used in the " T " are lower than in a " Π " arrangement the stray

Fig. 6. Internal view of the r.f. oscillator enclosure.

Fig. 7. Rear view of the instrument. The step attenuator is behind the metal case below the r.f. oscillator enclosure.

capacitances produce less shunting action. The values for the arms are 62Ω for the series elements and 15Ω for the parallel element. 15Ω is a standard value in the 10% range and suitable resistors may therefore be selected on a bridge. For the 62Ω resistors (a standard value in 5% resistors), 68Ω resistors (unselected) were each shunted with a resistor ranging from 470 to $1,000 \Omega$ to obtain a value, as measured on a bridge, which was as close to 62Ω as possible ($\pm 1 \%$). This method increases the shunt capacity of the series arms, but does not appear to have produced any serious error even at 100 MHz , with the " T " configuration. The resistors are soldered directly to the switches and all leads kept as short as possible. Earth tags are put under the fixing screws of each switch and the leads to them are kept as short as possible.

Modulation

The modulating voltage is applied to the base of the oscillator transistor (Fig. 1) through a high value resistor to avoid shunting the r.f. voltages, a d.c. blocking capacitor is placed in series with this resistor to avoid shunting the oscillator transistor bias circuit. The modulating voltage required to produce a given level of modulation is not constant but depends on the collector current in the oscillator transistor and this in turn depends on the operating frequency. At the higher frequencies the oscillator transistor has to pass a larger collector current because of the higher losses of the tuned circuits, the lower dynamic impedance of the high frequency tuned circuits (both factors requiring a higher loop gain to maintain oscillation) and reduction of the f with current in the oscillator transistor.

Logarithmic potentiometers are used for both the r.f. and modulation level setting controls to enable easier setting despite the wide variations in the requirements with frequency. Since the modulation depth cannot be measured by measuring the modulating voltage, it was decided to measure the audio component of the r.f. level detector output. To achieve this a resistor is substituted for the meter in the level detector and a transistor millivoltmeter measures the audio component across it with the level meter connected to the output of the audio millivoltmeter. The frequency response of the millivoltmeter is
limited to a few thousand cycles so that r.f. voltages cause no errors.

In the prototype instrument the 0-50 scale of the basic $50 \mu \mathrm{~A}$ meter indicates percentage modulation, as the degree of feedback is sufficient to linearize the scale of the millivoltmeter. With the circuit shown in Fig. 5, 50\% modulation corresponds to 15 mV at the input to the millivoltmeter.

The modulation depth was set (using an oscilloscope) to 33%, and the r.f. level carefully monitored also (this must, as is customary, be set correctly before setting the modulation depth). The sensitivity (feedback value) of the millivoltmeter was then set to give a reading on the meter of $33 \mu \mathrm{~A} .33 \%$ was chosen as being close to the commonly used figure of 30% modulation, but being easier to set up on the oscilloscope. The carrier is first set to 6 cm on the oscilloscope (peak-to-peak) and the modulation is increased until the trough of the modulation reduces the carrier to 4 cm , and the peak modulation increases the carrier to 8 cm , the modulation index is then 33%.

A simple LC oscillator was rejected for this application, although at first it might seem the most obvious choice. The main reason was the difficulty of maintaining a reasonable waveform and an adequate level of oscillation with varying battery voltage at all battery voltages, Stabilization of the supply voltage would cure this problem, of course, but this was felt to be too wasteful of battery power.

The circuit used consists of a multivibrator feeding a shaping filter which in turn drives a tuned output stage. This tuned output stage provides the necessary drive to the modulation input of the r.f. oscillator via the modulation level setting potentiometer. The main problem is to obtain an accurate inductance for the secondary of the tuned output transformer which has a value of 3 henries, in the prototype an ungapped 25 mm ferrite pot core was used. Two courses are open in order to get accurate tuning. (a) If a bridge is available, the secondary can be wound on first with excess turns, which are then removed until the correct value is obtained, and the correct number of primary turns calculated by dividing the secondary turns by 4.5 ; or (b) The transformer can be wound using the nominal turns given later and the tuning capacitor varied by trial. In either case the tuning is not critical as the Q is low. The effect of severe mistuning is a loss of output and increased wave-
form distortion. The values given for the multivibrator in Fig. 5 result in a modulation frequency of a little over 400 Hz (the prototype gave 430 Hz). The base resistors of this multivibrator can, of course, also be varied to bring the multivibrator to resonance with the tuned output transformer, providing that the tuned transformer is not too far from its correct frequency.

Calibration

The dial for the r.f. section of this instrument can be calibrated in two ways:

The output of the generator can be mixed in a diode mixer with the output of another signal generator with known errors. An audio amplifier and loudspeaker are connected to the diode mixer and the dial is calibrated by beating the fundamentals together and noting the dial reading for zero beat, using the $0-100$ scale printed on the Eddystone dial. The dial readings are then plotted on graph paper against the known frequency and a smooth curve drawn, from which to read off the exact readings for any desired frequency marking. This information is then transferred to the dial.

In the second method the output of the generator is fed into a receiver. The difficulty with this method is the gaps left, for instance, a receiver using a $460-470 \mathrm{kHz}$ i.f. will not cover this frequency. The range above 30 MHz is also rather a problem.

In both these cases checks of the calibration of the reference standard, whether it be another signal generator, or a receiver, can be made against a crystal oscillator or other frequency standard. The author used the 1 MHz standard described in the January 1968 edition of Wireless W'orld to check the calibration of a borrowed signal generator. The borrowed generator only covered up to 80 MHz so that harmonics were used above this, with a check using an f.m. receiver on the $88-108 \mathrm{MHz}$ band. No doubt the ingenuity of readers will find other ways of achieving an accurate calibration, and the lucky few may even have access to a high-frequency digital counter for a short while.

It may be found impossible to maintain oscillation at the low frequency end of bands 5 and 6 due to the very unfavourable L.C. ratio. This is of no consequence as there is considerable overlap between these bands. The phenomena is present on at least one commercial signal generator and need cause no concern.

In the initial stages of calibration the extremes of each range are first set by means of the dust cores of the coils, and the trimmer capacitors so as to obtain a small overlap of the lowest three ranges, and with the lowest range starting at about

Fig. 8. Modulation oscillator and modulation voltmeter chassis. The modulation output transformer is under the left hand of chassis and the voltmeter sensitivity adjustment potentiometer is under the right-hand edge of the chassis.

145 kHz . A greater overlap will be found possible on the upper ranges.

The coils specified for ranges one, two and three have their cores accessible only from outside the screened enclosure at a point lying behind the front panel, but as the normal adjuster is flexible no trouble was found in adjusting these cores. There is a space of some two inches between the panel and the oscillator enclosure to allow for the flexible coupling between the dial assembly and the tuning capacitor shaft.

Two Ever-Ready PP1 batteries or equivalent, are used in series to provide a 12 -volt supply which should give 300 hours life with average use. As has been said, no stabilization of their output has been used since no advantage was found, in accuracy, or in any other way from doing so.

Constructional Details

The prototype generator is housed in a plywood case finished in polyurethane varnish. The inside of the case is lined with tinned steel, the joints being soldered. The front panel is fixed to brackets soldered to this lining and additional spring contacts provide extra connection points with the front panel so as to form a second complete screen round the oscillator which is mounted in a metal case, in order to reduce stray radiation.

The use of batteries for power is of great assistance in reducing stray radiation since there is no need for elaborate filtering of mains leads where they pass through the outer casing. In the author's experience the mains lead of many signal generators is a major cause of such stray radiation. Another cause is the meter used for the level indicator, since this is connected to the diode r.f. voltmeter circuit. The body of the meter is in most cases of a plastic construction, and there is, as a result, a "hole" in the screen where the meter passes through the front panel. If this is found to be a source of an unacceptable level of stray radiation it will be necessary to fit a complete metal screen over the rear of the meter with feed-through capacitors for the connections. This is done in many commercial generators.

The front panel of the prototype is of $\frac{1}{8} \mathrm{in}$. Dural, but this is overlaid with a $\frac{3}{32} \mathrm{in}$. Perspex panel. This overlay has all the dial markings in Indian ink (in reverse) on the rear of the panel. A lettering stencil was used to letter the panel with a stylus pen, the stencil being reversed. After lettering, the rear of the Perspex overlay was painted with two coats of white cellulose paint. The result of the use of this overlay is a front panel of neat appearance which is easily cleaned, and from which the lettering will not rub off. The overlay is held in position by the dial assembly, the meter, the output socket, and the front panel screws. A further advantage of this overlay, is that it has enabled the various other component fixing screws to be hidden, the front panel being thick enough to take countersunk screws. In marking the Perspex with Indian ink it may be found hard to get clear lines due to lack of "wetting", but if the area to be lettered is first rubbed over well with a hard typing eraser and then cleaned well, the slight roughening will enable the lettering to adhere. The slight roughening will not show once the panel is painted white, provided it has been well cleaned after using the eraser.

The instrument described provides a standard of performance equal to many of the commercially available instruments costing many times the outlay required for its construction. It is hoped that this article will encourage others to construct their own instruments, and that it has shown the guiding principles which led to the successful conclusion of the author's design.

Coil details

Band 1; Electroniques MZT.8.
Connections, green to chassis, yellow to R^{\prime}, black to $S_{\text {iA }}$

Band 2; Electroniques MZT.9.
Connections, brown to earth, yellow to R^{\prime}, black to $S_{I A}$ Link blue to green.
The coupling winding, which is not used on Bands $1 \in 3$, is connected in series with the main winding on Band 2 to enable coverage of the $460-470 \mathrm{kHz}$ region.
Band 3; Electroniques MZT.10.
Connections as Band 1.
Band 4; 30 turns of 28 s.w.g. enamelled copper wire, tapped 6 turns from the top, close wound. Bottom of winding to earth, tap to R^{\prime}, top to $S_{i A}$.
Band 5; 8 turns of 24 s.w.g. enamelled copper wire, tapped 2 turns from the top, connections as Band 4. Close wound.
Band 6; one turn of 18 s.w.g. enamelled copper wire wound with a pitch of 0.2 inches. There is no tap on this coil as the lead inductance of the oscillator circuit provides a large part of the required inductance. The resistor R^{\prime} connects direct between $S_{I A}$ and $S_{i B}$. The lead from $S_{I A}$ wiper to the tuning capacitor stator is also very much part of the tuning inductance on this range and should be as short and straight as possible. The former is cemented to the single turn coil.
Bands 4, 5 \& coils are wound on formers which are of 6 mm internal diameter, and of 0.3 inches outside diameter such as Aladdin $8 A-6044-21 / 6 E$ moulded in bakelite with a square base. Suitable cores are Aladdin 9R-1044-81 which have a similar adjustment slot to the cores of the coils for bands 1, 2 © 3 . Both these items are also supplied by Electroniques. A suitable trimming tool type TT. 1 is also available from this source. Finish with a thin coat of the same polyurethane varnish as used on the case. The coil for former band 6 has the square base removed and the core may be cut in half if adjustment is difficult.
Modulation transformer; Secondary, 667 turns, primary 149 turns, 40 s.w.g. enamelled single silk covered wire. Core, 1 pair of Mullard FX 2240 ungapped cores. Former, Mullard DT. 2179 (mounting used in prototype, terminal board DT.2227; mounting clip DT.2228).

Component comments

Band switch; $S_{I A}$ wafer TSW/2/S. $S_{I B}$ wafer TSW6/2/-. Switch mechanism TSW/SH/2 $\frac{1}{2} / 2$. Studding 6 BA. TSW/ST/6/12 (12 inches). Spacers 0.5 inch TSW/SP/ $\frac{1}{2} \mathrm{~L}$ (4 off). Available from Electroniques.
Wafer S_{18} is assembled nearest to the front panel.
Tuning capacitor; Jackson Bros., type JB/5250/1/365.
Trimmer capacitors; (bands 4 \& 5 only) Jackson Bros., type JB/5440/8 or Mullard type E7850 or E7875. $2-8 \mathrm{pF}$ concentric type available from Henry's Radio who can also supply a 10 pF capacitor similar to the Jackson type named.
Variable attenuator; Plessey type E, 100Ω, linear. Available from Electroniques under part no. E/100/LIN.
Dial assembly and flexible coupling; Eddystone Radio type 598 with type 893 coupler or Jackson Bros., type JB/4693.
Resistors \mathbf{R}^{\prime}; Band $1-1 \mathrm{k} \Omega$; Band 2- 820Ω; Band 3$820 \Omega$; Band $4-680 \Omega$; Band 5- 390Ω; Band $6-68 \Omega$.
Attenuator resistors; Erie type 16, Morganite type S or Radiospares $\frac{1}{2}$ watt (see text).
Transistors; r.f. oscillator output stage-2N2369, 2N2369A, TIS49*, types BSX20 and BSX44 should also function satisfactorily. For the r.f. oscillator-2N2894, V405A or TIS50*.
Diodes; silicon Emihus HS1010 (high conductance with V_{f} less than 1 V at $I_{f}=50 \mathrm{~mA}$) most high conductance silicon diodes are suitable, e.e., $1 S 120^{*}$, OA200/202, CV7040. The germanium device in the level monitor circuit is Mullard GEX66 or 64. Most other germanium point contact diodes are unsuitable and give too large an error at the highest frequencies.
Semicinductors marked* are likely to be cheaper and easier to obtain than the others specified.
Feed-through capacitors; 1000 pF, Erie type 361.
Attenuator switches; (also used for ON/OFF and meter switch) Radiospares "slide switches".
Oscillator enclosure; S.T.C. die-cast case type 46R.C500.064.A00 available as type 46R.064.A. from many suppliers.

P.C.M. Copes with Everything

The recent introduction of 24 -channel pulse code modulation systems using 1.536 Mbits, carried by conventional telephone cables repeatered at 2000 yd intervals, is only the first step in an integrated system covering the whole country. This emerged from a colloquium at the I.E.E. at which the present state of p.c.m. was discussed by representatives of the Post Office and the communications industry. At present the larger capacity systems are only at the laboratory stage and some are little more than gleams in the eyes of the designers. The next step (according to A. C. Frost and K. W. Cattermole) will probably be 96 -channel systems using 6-8 Mbits. These will make the viewphone a practical proposition, probably causing an increased demand for communication links. It is visualized also that bit rates will be increased to between 100 and 1000 Mbits to accommodate future needs including television links. Signals with these high bit rates will probably be transmitted by microwave links either in waveguides or freespace, intercontinental links using satellite relay stations.

The subject of distortion was discussed at some length, and a recording of music, presented by D. E. L. Shorter of the B.B.C., very effectively demonstrated the increase in background noise when the number of quantizing steps is reduced. The quantizing noise gets less "white" and an audible interference pattern is produced. While 2^{7} levels are quite adequate for telephonic speech, 2^{11} or 2^{12} need to be used for high quality music. It is possible to accommodate 4 music channels in a 1.536 Mbit system normally used for carrying 24 speech channels. Television is more tolerant of quantization distortion than music and 2^{7} or 2^{8} levels provide a good quality picture. However, this results in a bit rate in excess of 100 Mbits .

The closing talk was given by A. H. Reeves, the inventor of p.c.m. Letting his imagination take over, he spoke of a world in the not too distant future where communication links will permit people to carry out many jobs from the comfort of their homes, conferences using closed-circuit television etc. For this, he said, reliable links capable of bit rates of the order of 10^{9} or 10^{10} bits will be required. Light is the most probable answer. At present the loss in glass-fibre guides is about $200 \mathrm{~dB} / \mathrm{km}$. The theoretical loss is of the order of 6 $\mathrm{dB} / \mathrm{km}$ so that fibres with losses of only 30 to $40 \mathrm{~dB} / \mathrm{km}$ should be practical in the near future. With these, repeatered cables using 30 or more fibres are possible for both land and transoceanic links. The repeaters will probably make use of gallium arsenide i.c. lasers.

He went on to predict that an electro-optical revolution is in the offing and that the sooner this was recognized and a start made the better, as it would be cheaper in the long run. His closing words were "I'm prepared to take a large bet that I'm right!"

Low Distortion Class B Output

New approach to the problem of cross-over distortion in transistor audio power amplifiers

FOR some time designers of transistor high-fidelity amplifiers have been restricted to a choice between three types of class B output circuit: (1) a pair of matched complementary transistors; (2) a pair of identical transistors in series cascade with a twin-secondary driver transformer; and (3) a quasi-complementary circuit using identical output transistors in series cascade but with complementary driver transistors. All three raise problems in design and manufacture, the best known ones being lack of circuit symmetry, difficulty of proper control of transistor quiescent currents and problems of the 1.f. roll-off. Now a new type of output circuit has appeared which, the designers say, overcomes these problems and makes possible a transistor power amplifier of exceptionally high performance. The circuit, shown in Fig. 1 in slightly modified form, has been developed by The Acoustical Manufacturing Company for a new power amplifier.

As will be seen from Fig. 1 the circuit is really a development of the quasi-complementary arrangement, but each half of the class B system contains three directly coupled transistors instead of just the usual driver and output. The first two, Tr_{1} and Tr_{2} are low power complementary types, the second two, Tr_{3} and Tr_{4}, medium power complementary types and the final two high power identical devices.

One reason for this arrangement is to avoid the distortion which normally occurs in the quasi-complementary circuit as a result of the asymmetry of the upper and lower halves of the output stage. In the Fig. 1 arrangement each of the transistor "triples" can be considered as an "emitter follower", as brought out in the much simplified form of Fig. 2. And each of these "emitter followers" has the usual characteristics of this device: high input impedance, low output impedance, and the voltage across the emitter resistor (and hence the current through it) following the base voltage independently of the characteristics of the active device. For these conditions to hold, of course, the loop gain of the "emitter follower" must be very high, and this is assured by the use of the three transistors--the overall current gain approaching the product of the three individual β values. The two units shown shaded in Fig. 2 can be considered as two "black boxes" exactly equivalent to a complementary pair of output transistors of very high current gain. The arrangement has, however, a very important advantage over a complementary pair when we come to consider quiescent current and temperature effects.

Ideally in a class B amplifier the two transistors should be biased so that one is completely cut off while the other is conducting. In practice this cannot be done because it results in cross-over distortion. It is necessary in fact to apply a small forward bias to the transistors to obtain a suitable value of quiescent current that will reduce this distortion to a minimum. The required quiescent current should be kept constant, but in many power amplifier circuits this is difficult to achieve because the quiescent current depends on the temperature of the base-emitter junction of the power transistors and this in turn varies from moment to moment due to variations of audio power and thermal storage time constants.

In the Quad circuit the voltage developed across the 0.3Ω resistors by the quiescent current is compared with a fixed reference voltage at the Tr_{1} and Tr_{2} base-emitter junctions. Since these are operating at very low power there is negligible change due to temperature resulting from varying audio power. Ambient temperature ckanges are exactly compensated by the same temperature changes in the diodes D_{1} and D_{2} providing the reference voltage. Thus the two "black boxes" can be seen to be the equivalent of a complementary pair with thermally isolated base emitter junctions.

The other two diodes, D_{3} and D_{4}, are limiting devices which prevent the output transistors from exceeding their current ratings. If, in either half of the class B circuit, the current through the 0.3Ω resistor attempts to exceed a given safe upper limit (approx. 3A) the increased voltage across the resistor will cause the corresponding diode to conduct and thus prevent the corresponding transistor (Tr_{1} or Tr_{2} from being turned on further by the incoming signal. As can be seen, the arrangement is symmetrical, providing limiting for both directions of output current swing.

IIIII

Fig. 1. (Above) The output section of the Quad 303
power amplifier
(slightly simplified) showing the two transistor triples.

Fig. 2. (Right) Simplified representation of the Fig. 1 circuit as two "emituer followers".

News of the Month

Numerical Control Advisory Service

"The use of numerically controlled machines in this country is growing but not nearly fast enough. This is partly due to the genuine difficulty of many firms in assessing the technical and economic value of numerical control for their machining requirements in comparison with conventional methods, and making the necessary investment appraisal. To assist industry in this I am establishing a Numerical Control Advisory Service," said the Minister of Technology, Mr. Anthony Wedgwood Benn, in reply to a written Parliamentary question. He went on to give brief details of the service. "The service will be provided by the Production Engineering Research Association under contract to my department and by the Royal Aircraft Establishment, Farnborough. P.E.R.A. will concentrate on the economic investment and production planning aspects of the adoption of numerical control, and will provide courses for senior management. It will also have the important task of providing a consultancy service for firms by carrying out appraisals of the suitability of numerical control in their works.
"The Royal Aircraft Establishment will provide courses with a technical bias for designers and production and planning engineers. It will also provide facilities and technical support for individual firms in the
programming, machining and inspection of components."

It has been estimated that the cost of this service to the Government over the next three years will be $£ 685,000$. This includes $£ 350,000$ for the provision of numerically controlled machine tools and associated equipment at R.A.E. and P.E.R.A., the remaining sum being used to offset the major part of the cost of the courses at P.E.R.A. and for meeting 50% to 90% of the cost of appraisals.

The Ministry is also supporting a complimentary establishment at High Wycombe set up by Airmec-A.E.I. Ltd. This centre is equipped with machine tools fitted with Air-mec-AEI control systems that will be used for educational purposes and for subcontract work on a commercial basis.

Ministry Contracts aid Microelectronic Research

The Ministry of Technology has placed contracts with Elliott-Automation Microelectronics Ltd and Ferranti Ltd under the Government's policy of support for the U.K. microelectronics industry. The Ministry will contribute half of the $£ 82,700$ which Elliotts are spending on their development programme and half of the $£ 175,000$ being devoted to development at Ferranti's Gem Mill plant near Oldham. The Elliott contract

Exhibition

 Control
Room

Part of the $£ 70,000$ control room on the stand of Radio
Rentals at the Ideal Home Exhibition (Olympia, London) where demonstrations where demonstrations
of colour and monochrome television chrome television
transmissions and locally generated material are being given
born, London W.C.1, by April 1st. The project should be suitable for a graduate studying for a Ph.D. and the proposal should give details of the degree of industrial collaboration; which is hoped will be substantial and could take many forms. For instance, the student could spend a proportion of his time with industry or a straight cash payment or equipment could be provided, facilities not normally available to a university could be made available by industry or industrial staff could take part in, or supervise, the project. Any firm interested in participating in the scheme should get in touch with those members of university departments most likely to be working in the field. Further information may be obtained from the Science Research Council.

Skynet Station

A fixed satellite communications terminal is to be installed in Southern England to operate in the British military Skynet satellite network. In addition, as part of the same programme, two existing stations in the Middle and Far East are to be modified. The two stations were part of a three-terminal network supplied by Marconi to a Ministry of Technology order for operation in the AngloAmerican Initial Defence Communications Satellite Programme (I.D.C.S.P.). They were partly experimental and represented the first U.K. practical examination of satellite communications for military purposes. The third terminal station of this I.D.C.S.P. network is in Christchurch, Hants, but this will not be used in the present skynet set-up although it will still be used for satellite work. A feature of the overseas stations is the ease with which they can be moved, each is capable of being rapidly dismantled, transported by aircraft, re-assembled and operational again within 24 hours.

The construction of the new U.K. terminal and the modification of the existing stations will be carried out by the Marconi Company who, following the collapse of World Satellite Terminals* seem to have completely cornered the U.K.-placed contracts of this type. The U.K. station, which will also be capable of being dismantled quickly, will consist of a 42 -ft diameter dish employing the now usual aluminium honeycomb and sheet method of construction. The aerial will have 90° freedom in elevation and 270° in azimuth; signals will be conveyed from the aerial to ground equipment at i.f.
*Consortium consisting of A.E.I., G.E.C. and Plessey

Post Office Domestic
 Relay System

A new village, Barmston, to be built as part of Washington New Town, Durham, is the site of the Post Office's first entry into the domestic radio relay business. Twin cables will be laid for this pilot scheme to each of the 300 houses under construction, one cable will be for normal telephone services and the other will carry radio and television signals from aerials mounted on a new telephone exchange. With an eye to possible future developments wideband cables have been used throughout the extensible system.

Perhaps these cables will eventually provide the long foreseen domestic, educational and closed circuit television systems, video-phone services, remote reading of gas and electricity meters, facsimile apparatus and computer access facilities.

Export Design Exhibition

Some details of the Design for Export project jointly organized by the British National Export Council and the Council of Industrial Design have been announced. It is to include an exhibition occupying the whole of the Design Centre and a series of seminars. The exhibition will be held between June 10th and July 13th and will include more than a thousand items. A special exhibition on a separate floor will trace the correlation between good design and successful export performance. Of the nineteen items selected for these case studies the electronics industry will supply five as follows: D-Mac Lid-cartographic digitizer; Elliott Flight Automation-Concorde autopilot control panel (see Wireless World March 1968, page 11); Pye TVT Ltd-television equipment; Wayne Kerr Co. Lid-B331 autobalance precision bridge (as part of a range); BSR Lid-Ua70 automatic/manual turntable unit and UA50 minichanger.

Programmed Instruction

Four schools belonging to the school district of Philadelphia in America have installed a computer network that provides a source of programmed instruction enabling tutorial staff to concentrate on backward students. The network has been installed by the Philco-Ford Corporation under a contract worth $\$ 1.3 \mathrm{~m}$. Teachers co-operated with computer programmers to write the programmes for the installation and, to assist in this, a language known as INFORM was produced. Using this language teachers can write programmes without having to study computer programming.

Each student has an electric typewriter and a television-type monitor, designated a SAVI, for Students Audio Visual Interface, equipped with a light pen. At the start of the day's work he types in an identification number that has been assigned to him and the computer starts presenting him with information in the curriculum from the point at which he finished the day before. This information can take the form of straight textual matter, diagrams, animated cartoons, or television pictures and is liberally punctuated with questions. The student may indicate his answer on the screen with the light pen or by using the typewriter. If the student is particularly fast and accurate he will be taken into the subject in greater depth than one who is just managing to cope. In the event of a wrong answer being given the computer will branch into a sub-routine and present the information in a different way until the student has understood the point. If this stage is not reached then the assistance of a human instructor is requested. At the end of a lesson a typewriter accessible to the teacher prints out a detailed record of the student's progress.

Each school has a "computer cluster"

A student about to answer, using the light pen on the SAVI, a question presented to her by the computer
consisting of a central processor, data storage and student terminals. These "clusters" communicate directly with a remotely situated computer which contains all the lesson programmes, school curricula and school and students records. The detailed records of individual class and student progress are transmitted to the central computer at convenient times and are used to update student and school files. At the start of each day each school "cluster" receives details of the day's work from the central computer and records them on a large disc memory with a 1 M bit capacity, this can be expanded to 16 M bits if required. The central computer is similar to several large scale machines developed and manufactured by the Communications and Electronics Division of Philco-Ford to form the basic processing power from the U.S. North American Air Defence Command (NORAD). It has a core memory of $32 k$, words of 48 bits each and employs sixteen magnetic tape stores. The use of this large machine frees the smaller "clusters" from a large amount of control and storage work so they can concentrate purely on tutorial matter

The system as a whole has the advantage over a "fixed wire" system of being completely flexible-for instance, instruction may be carried out on practically any subject in any language with appropriate programming.

Domestic Receiver Sales Up

Figures prepared by the British Radio Equipment Manufacturers' Association show that although the total radio and television receiver disposals to the trade was higher in 1967 than in 1966, it was well below that achieved in 1965. The Government's partial relaxation of rental and hire purchase terms during August coupled with the introduction of colour television are factors that combined to increase the 1967 figure. Rounded off totals show that of the 1.348 M television receivers delivered to the trade 30,000 of them were colour sets. TV sets showed an increase of 56,000 over 1966, but a reduction of 339,000 when compared to 1965. The combined figures for radio receivers and radiograms tell a similar story, the total delivered during 1967 was
$1.632 \mathrm{M}, 87,000$ higher than 1966, but 337,000 lower than 1965.

British Company Receives

American Award

The sales director of Decca Radar Lid accepted two awards on behalf of his company from the American National Marine Electronics Association. The first award, which Decca have won for three consecutive years, was for the best single product or model of equipment at the New York Boat Show based on performance and reliability. In 1966 and 1967 this award was received by the company for its D202 marine radar equipment. This year the award was made for the type 101 small boat radar. The second award, for continued excellence of design, performance and reliability for the main product line, was made for the Decca Transar series of marine radars. It is believed that this is the first time that both awards have been made to one company in a single year.

Applications are invited from students for a scholarship in the Department of Electronics at Southampton University by Advance Electronics Ltd., Roebuck Road, Hainault, Ilford, Essex. The successful applicant will receive a grant of $£ 1,000$ per annum for two years (not subject to any post-graduate conditions) to carry out research into a branch of electronics associated with instrumentation or control. Students who wish to apply should graduate this year and should expect to obtain at least a second class honours degree. This is the second scholarship to be granted by Advance Electronics. The first was awarded to a student who is engaged in evolving a new form of algebra for solving problems in digital circuits.

A flight INformation Display (FIND) system is to be installed at London's Heathrow airport by R.C.A. Great Britain Ltd., which has been developed by the company in collaboration with British European Airways. The system displays flight arrival and departure information on some 200 television monitors located at strategic points in B.E.A's offices. The input of a complete day's schedules is fed into the FIND store using punched tape that has been prepared on B.E.A's main computer complex. The information is read out of the store to an R.C.A. Divicon display system where it is converted into standard video format and modulated with an h.f. carrier prior to being distributed to the various television monitors. The main store can hold 1,000 lines of 56 characters and spaces of which 20 lines can be displayed at one time. Five keyboard inputs are provided for updating the stores and displays, and provision is made for new or altered information to flash on the screens for a period of time.

Further to our report last month on the preparations made to utilize the Intelsat network we understand that another station is to be built in Germany by Siemens. The existing earth station, also built by Siemens, at Raisting will also be expanded to enable it to handle Intelsat communications.

"WIRELESS WORLD" INDEX

The Index to Volume 73 JJan. 1967-Feb. 1968) is now available price 1s. (postage 3d.). Cloth binding cases with index cost 9s. 6d., including postage and packing. Our publishers will undertake the binding of readers' issues, the cost being 35 s per volume including binding case, index and return postage. Copies should be sent to Associated Iliffe Press Lid., Binding Department, c/o 4 Iliffe Yard, London, S.E.17, with a note of the sender's name and address. A separate note confirming despatch, and enclosing the remittance, should be sent to the Publishing Department, Dorset House, Stamford Street, London, S.E.1.

The European Space Research Organization has ordered from Elliott Automation two mobile check-out stations to test the control and experimental payloads of satellites. Elliotts will be responsible for the assembly of the various parts of the check-out system, for the manufacture of the necessary interface equipment and for providing the complete system. SONECTRO of France are co-operating with Elliotts in the integration of the system. The trailers, housing the equipment, will accompany the satellites from the factory to the test establishments in Europe and finally to the launching site where they will continue measurement and analysis throughout the count-down. The first trailer will be delivered to the European Space Technology Centre at Noordwijk in the Netherlands in time for the testing of the TD satellites in the spring (see Wireless World, February 1968, page 682.)

Apprentice Awards Each member company

 of the Telecommunication Engineering \& Manufacturing Association may enter one candidate in each of the three classes-grad-uate-in-training, student apprentice, and technician apprentice-for the Association's annual competition. Each entrant has to write a technical essay on some personal aspect of his training or work relating directly or indirectly to the T.E.M.A. side of his company's activities. This year's winners, who were presented with cheques and certificates at the annual dinner on February 6th, were A. J. W. Jackson, B.A., Marconi gradu-ate-in-training; M. R. Collyer, S.T.C. student apprentice; and P. G. O'Donovan, technician apprentice with Automatic Telephone \& Electric Co.
ANNOUNCEMENTS

A residential vacation school on "Electrical measurement practice" will be held from 15th to 26th July at the University of Manchester Institute of Science and Technology. The school has been arranged by the I.E.E. joint professional group on measurements in collaboration with the British Calibration Service and the I.E.R.E. Inquiries should be sent to the Secretary, I.E.E., Savoy Place, London, W'.C.2.

A three-day conference entitled "Modern aspects of research and development" will be held at Southall College of Technology commencing 8th April. Registration forms are available from The Department of Electrical Engineering, Southall College of Technology, Beaconsfield Road, Southall, Middx. (Fee 7 gn).
"An introduction to some aspects of digital computer design" is the title of a specialist short course of lectures to be held at Norwood Technical College. The six weekly lectures commence on 23rd April. Enrolment forms can be obtained from the Secretary, Norwood Technical College, Knight's Hill, London, S.E.27. (Fee 15 s).
A series of short lecture courses in selected mathematical topics are to be held at Twickenham College of Technology. These will take place on Mondays, Wednesdays and Fridays from 13th May to 28th June. Enrolment forms may be obtained from the Principal, Twickenham College of Technology, Egerton Road, Twickenham, Middlesex.

A colour television receiver has been installed in the Science Museum's Radio Demonstration Room. It forms part of a continuous demonstration of radio communications equipment.

Hand-soldered Joints in Electronics is the title of an eight-minute Mullard training film, in colour, now available for hire from the C.O.I., Central Film Library, Bromyard Avenue, London, W. 3.
Seven films produced by Educational Services Inc., U.S.A., as part of their advanced college physics film programme, are now available for hire through the Central Office of Information, Bromyard Avenue, London, W.3. The titles include (1) "Photo-emission of electrons", (2) "Thermionic emission of electrons" and (3) "Posit-ron-electron annihilation".
A short-wave communication system is to be built by Marconi to be used in controlling the new oil pipe-line between Dar-es-Salaam in Tanzania and Ndola in Zambia. Effective communications by day and night are required, to achieve this \log periodic arrays will be used at each end of the $1,000-$ mile line in conjunction with intermediary broadband dipoles.

Two unmanned radar stations, part of the NADGE (Nato Air Defence Ground Environment) radar chain, are to be equipped with transmitters from the Marconi $\mathbf{S} 600$ series. The contract is worth $£ 350,000$.

The Ministry of Technology has granted test house facilities approval to Transitron Electronic Ltd., Gardner Road, Maidenhead, Berks. This approval refers to the test and inspection of semiconductor devices to CV specifications.

Six companies active in the research, development and production of military infra-red equipment and components have formed the British In-fra-Red Manufacturers Organization (B.I.R M.O.). The companies are: Barr \& Stroud Lid., EMI Electronics Ltd., Hawker Siddeley Dynamics L.d., Hymatic Engineering Co. Ltd., Mullard Lid. and Standard Telephones \& Cables Ltd.

The British National Export Council have decided to co-operate with Kompass Register, an INI company, in publishing an export marketing guide entitled "British Exports '69". Designed for use by overseas buyers, the first edition is scheduled for publication in the Autumn.

Crompton Parkinson Lid., a Hawker Siddeley company, have agreed to acquire the plant, equipment and stocks of Vidor Ltd. and Burndept Ltd., part of the Royston Industries Group.

The Wired TV product group of Thorn Bendix have moved its sales offices and laboratories to the Industrial Electronics division at High Church Street, New Basford, Notungham. Thorn Bendix manufacture transistor wired television distribution systems.

Personalities

R. D. A. Maurice, Dr. Ing., F.I.E.E., assistant head of the B.B.C. Research Department since 1961, has become head of the Designs Department in succession to \mathbf{S}. N. Watson, F.I.E.E. who as recently announced, has been appointed chief engineer, television. Dr. Maurice joined the B.B.C. Research Department in 1939 and after some

Dr. R.D.A. Maurice
years in the receiver and measurements section transferred to the television group, of which he became head in 1958. Dr. Maurice has served for many years on the television study group of the C.C.I.R. and was chairman of the general characteristics sub-group of the European Broadcasting Union's ad-hoc group on colour television.
W. P. Williams, Ph.D., B.Sc. (Eng.), who joined the Marconi International Marine Company in 1964 as leader of a group working on echo-sounding and ultrasonic techniques and just over a year ago became assistant technical manager responsible for new product engineering, has been appointed deputy technical manager. A graduate of Nottingham University, Dr. Williams was awarded a research scholarship while studying for his doctorate. In 1963 he received the first Baird travelling scholarship from the Royal Television Society under which he toured Europe studying the Eurovision television network. He is 29.
T. H. Bridgewater, O.B.E., F.I.E.E., who retires this month from the B.B.C. joined the Corporation in 1932 before which he worked for four years with John Logie Baird. When the B.B.C. television service started in 1936 Mr . Bridgewater was appointed senior maintenance engineer at the Alexandra Palace station. After war service in the R.A.F. he returned to the B.B.C. in 1946 and was at one time superintendent engineer O.Bs. He has been chief engineer (television) since 1962.
F.C. Loveless, A.Inst.P., has been appointed to the Board of 20th Century Electronics Lid., but will continue as head of technical services having responsibility for all sales activities. Mr. Loveless, who is 38 , joined the Company in 1952 as a junior physicist to work on radiation detectors. After completing two years as assistant to the general manager he took over responsibility for the Company's technical sales in 1961.

Grants for the design, construction and maintenance of novel, unusual or much-improved types of physical instruments and apparatus for investigations in pure or applied physical science are made from time to time by the Paul Instrument Fund Committee which is composed of representatives of the Royal Society, the Institute of Physics \& Physical Society and the I.E.E. Among the recent recipients are Dr. A. P. Aaderson, lecturer in the department of electronic and electrical engineering in the University of Sheffield, who receives $\{2,000$ for the construction of an instrument for the measurement of energy in laser beams; Dr. W. J. Jones, demonstrator in the department of physical chemistry, University of Cambridge, $£ 1,500$ for the construction of a spectrometer employing frequency selective intensity modulation; Professor J. D. McGee, O.B.E., F.R.S., professor of applied physics at the Imperial College of Science and Technology, London, $£ 6,250$ for continuation of his work on the development of a photo-electronic image device for time images for which
in 1964 he received a grant of [8,100 over three years; and Dr. K. I. Mayne, senior lecturer in the department of natural philosophy in the University of Edinburgh, $£ 4,000$ for the construction of a polarized electron source.
A. G. J. Holt, Ph.D., M.I.E.E., reader in electrical engineering in the Department of Electrical Engineer, the University of Newcastle-upon-Tyne, has received grants totalling $\$ 8,779$ from the Ministry of Technology in aid of research work on computer methods in active network design and on thin-film RC communications networks. Dr. Holt has also received a contract worth $\{2,100$ from the G.P.O. for work on the design of RC-active electrical filter networks.

The appointment of two associate directors is announced by Gardners Transformers. They are R. P. Henegan, Assoc.I.E.R.E., who joined the company in 1964 becomes director and general manager and J. W. McPherson, B.Sc.(Eng.), M.I.E.E., who joined as technical manager in 1964 is now technical director.

Stanley Baker, B.Eng., A.M.I.E.E., has joined the magnetic recording head division of the Gresham Lion Group as a senior development engineer. A graduate of the University of New South Wales, Mr. Baker has submitted a thesis on "an investigation of crosstalk in multitrack recording heads" as part of his studies for a doctorate of philosophy. His University professor was Dr. C. B. Speedy who was technical director of Gresham before joining the staff of the University.
H. Stern, B.Sc., who contributed an article on digital voltmeter techniques to our November 1967 issue, has joined Fluke International Corp., as U.K. sales manager. A graduate of Queen Mary College, London University, he was at one time sales manager of Cawkell Research and Electronics and was latterly product manager for test instruments with Honeywell.

H. Stern

J. M. Tompsett, B.Sc., M.I.E.E., who has been with the English Electric Valve Company since 1952, has been appointed quality assurance manager. A graduate of Bristol University he began his career with the Admiralty Signals Establishment, Haslemere, in 1944. From 1948

7. M. Tompsett

until joining E.E.V. he was with Standard Telephones \& Cables. Mr. Tompsett was initially in the gas tube department of E.E.V. but later transferred to the travelling wave tube department of which he has been head since 1962.

Group Captain T. C. Imrie, M.I.E.R.E., who is to become air officer in charge of engineering, R.A.F. Coastal Command (with the acting rank of Air Commodore), at one time commanded No. 30 Maintenance Unit at Sealand, Cheshire, and later the Radio Engineering Unit at Henlow, Beds.
W. A. Jackson, B.B.C., engineer-in-charge, operations, Scotland, is to be head of engineering, Scotland, in succession to J. A. G. Mitchell who is retiring on 31st May, after more than 40 years of service. Mr. Jackson joined the B.B.C. in 1937 as a junior maintenance engineer at the Alexandra Palace television station. From 1941 he was engineer-in-charge of the Whitehaven transmitting station and in 1944 he joined the B.B.C. War Reporting Unit as engineer-in-charge of a mobile transmitter which served in France and Germany. After the war he re-joined the B.B.C. television service in London. For six months during 1967 Mr. Jackson was seconded to the Government of Iran in an advisory capacity to assist in the setting-up of a national television service. Mr. Mitchell joined the B.B.C. in 1927. He was appointed assistant engineer-in-charge of the B.B.C's war-time centre at Wood Norton, near Evesham, Worcestershire, in 1941, and later held a similar post in Birmingham. From 1950 he was regional engineer, Northern Ireland, and has been head of enginéering, Scotland, since September 1961.

Simple F.E.T. Pre-amplifier

Equalizing circuit for microgroove recordings

by D. B. G. James* B.Sc,

THE higher input impedance and lower noise figure of the field effect transistor ${ }^{1}$ compared with the normal bi-polar transistor suggests that one of its applications could be in the input stage of an audio pre-amplifier circuit for the reproduction of disc records.

An equalization circuit has to boost the bass frequencies and attenuate the high frequencies to produce a frequency characteristic which is the inverse of the recording characteristic. (The recording characteristic which has been used by most of the recording companies since 1954 is the R.I.A.A. characteristic ${ }^{2}$.) This assumes that the output frequency characteristic of the pickup used is identical with that of the recording characteristic, this is the case for most of the high-quality magnetic pickups now available ${ }^{3}$. It is for this form of output voltage-frequency characteristic that the f.e.t. equalization circuit which follows has been produced.

The gain of the basic f.e.t. amplifier of Fig. 1 is approximately ten, so it should just be possible to obtain the required bass boost using a feedback network over one stage, if the gain at 1 kHz is arranged to be approximately unity. Above 1 kHz the attenuation should increase until at 15 kHz it is approximately -17 dB . The values for the equalizing components to give the necessary equalization were found experimentally, and are shown in Fig. 2. The circuit gave a response which was within $\pm 1 \mathrm{~dB}$ of the ideal replay characteristic over the frequency range 50 Hz to 15 kHz . The first stage gain is approximately unity at 1 kHz and in order to increase the output voltage to a suitable value for input to a power amplifier, an additional f.e.t. stage is used. This second stage is similar to the basic amplifier stage of Fig. 1, but the gate resistor has been increased from $1 \mathrm{M} \Omega$ to $4.7 \mathrm{M} \Omega$. With an input of 15 mV the output of the second stage at 1 kHz was 195 mV , i.e., a gain of about 13 times.
*University College, Swansea.

Fig. 1. The basic f.e.t. amplier. All resistors of 10% tolerance.

Fig. 2. Two-stage amplifier with equalization. All resistors are of 10% tolerance.

Fig. 3. Frequency response of Fig. 2.

Fig. 4. Alternative equalization circuir using $100 \mathrm{k} \Omega$ gate resistor. All resistors are of 10% tolerance.

The results obtained with this circuit are shown in Fig. 3. It was found that varying the $15.6 \mathrm{M} \Omega$ within its $\pm 10 \%$ tolerance resulted in a change of only 0.2 dB and varying the $100 \mathrm{k} \Omega$ within the same limits caused an 0.6 dB change.

An alternative circuit is shown in Fig. 4 using a gate resistor of $100 \mathrm{k} \Omega$ instead of $1 \mathrm{M} \Omega$. This circuit should be suitable for pickups having an impedance of the order of $100 \mathrm{k} \Omega$ and again has a frequency response within 1 dB of the required equalization characteristic for micro-groove recordings.

References

"Field Effect Transistors" by L. J. Sevin. McGraw Hill.
BS 1928
3. "High Quality Sound Reproduction" by James Moir. Chapman and Hall, second edition (1961) p. 199.

Microphone Supplement

The following tables are intended to help the prospective buyer in making comparisons between microphones available in the U.K. To allow quick and easy comparison it has been necessary to restrict the information given on each type to the most important characteristics, such as physical structure, transducer type, directional properties and price.

The tables have been compiled with the co-operation of those suppliers who have responded to a questionnaire sent out by Wireless World.

One point about the "sensitivity" column in the tables: A common method of specifying sensitivity is in decibels relative to a sensitivity reference value, and a reference frequently used by manufacturers is $1 \mathrm{~V} / \mathrm{dyne}^{/} / \mathrm{cm}^{2}$ (or, with an equivalent unit of pressure, $\operatorname{IV} / \mu \mathrm{b}$). Since Wireless World has now adopted SI units, the pressure part of the reference value is shown in the tables in newtons per square metre, and $1 \mathrm{~V} / \mathrm{dyne} / \mathrm{cm}^{2}=10 \mathrm{~V} / \mathrm{N} / \mathrm{m}^{2}$. Some microphone suppliers prefer to use other methods of specifying sensitivity, and these will be noticed in the tables. Where several sensitivity values are listed for a microphone it will be seen that these correspond with the alternative impedances available.

Type No.	Trpe	Transducer	Impedance values (ahmi)	Directional Characteristic:	Front-toBack ratio (dB)	Sensitivity (dB) at 1 kHz (ref. $10 \mathrm{~V} / \mathrm{N} / \mathrm{m}^{3}$)	PIn Connections	Output Connector	Application	Price	Accestories not included in price
A.K.G. (Palit	$\underset{\text { Pencil }}{\substack{\text { bechna }}}$	d. ${ }_{\text {M. }} 182 / 4 \mathrm{Cam}^{\text {m }}$ (Pden Hill Roz	d, London, W.8.) Cardioid (3 variations)	15	$\begin{aligned} & 72.5 \\ & -54 \end{aligned}$	1-2 High Z 3-2 Low 2	3 pole DIN	Stereo version also available	47 15s	Sa. 14 Swivel stand adaptor
D12	Stand	M.C.	60 or 200	Cardioid (3 variations)	18	-81 -75	Free end cable	-	P.A.	630	-
D14S	Stand	M.C.	60 \& 50 k	Cardioid (3 variations)	14	-80 -82 -52	Free end cable	-	P.A. and tape recording	¢10 15s	St. 2 desk stand
DI9C	Pencil	M.C.	60 or 200	Cardioid (3 variasions)	16	$\begin{array}{r} -32 \\ -75 \\ -75 \end{array}$	1.3 Microphone 2 Earth	3 pole Din	P.A. ${ }^{\text {P }}$	¢18	St.l. desk stand
DI9E	Pencil	M.C.	$\begin{aligned} & 60,200 \& \\ & 50 \mathrm{k} \end{aligned}$	Cardioid (3 variations)	16	$\begin{array}{r} 80 \\ 75 \\ 74 \end{array}$	$\begin{aligned} & 3.460 \Omega \\ & 2.42001 \\ & 5-4 / 150 \mathrm{k} \Omega \\ & 1 \text { Screen } \end{aligned}$	5 pole Cannon XLR S.IIC	P.A.	622 10s	St.1. desk stand
D248	Pencil	M.C.	60 or 200	Cardioid (3 variations)	18	80 75	$\left.\begin{array}{c} \text { 1.3 Mis. } \\ 2 \text { Earth. } \end{array}\right\}^{B}$	3 pole DIN	Recording and studios	448105	
D258	Boom or stand	M.C.	60	Cardioid (3) variations)	18	-81	Freeend cable	-	Broadcasting and film	455	
D58	Miniature	M.C.	60 or 200	${ }_{\substack{\text { Fig. ol } \\ \text { talk }}} 8$, Close	-	$\begin{array}{r} 88 \\ \quad 82 \\ \hline 82 \end{array}$	1.3 Mierophone 2 Screen	3 pole DIN	Speech in noisy surr.	\&11 15s	MSH. 21 Flexible shats
D66 Stereo	Stand	M.C.	200	Cardioid	14	-73	$5-4$ Ise mic. $3-1$ 2nd mic.	5 pole DiN	Stereo eape recorders	412 15s	-
D109/60	Lavalier or hand	M.C.	60 or 200	Omni	-	84 -78 -78		Free end cable	-	112	-
DIl9Cs	Pencil	M.C.	200	Cardioid	16	-75	${ }^{1.3}$ mic.	3 pole DIN	P.A.	622	St.2. desk stand
DII9ES	Pencil	M.C.	60. $200,50 \mathrm{k}$	Cardiold	16	$\begin{array}{r} 80 \\ \quad 75 \\ 75 \\ \hline 54 \end{array}$	$\begin{aligned} & 3-4600 \\ & 2-4200 \\ & 5-1 / 150 \mathrm{k} \Omega \\ & 1 \text { screen } \end{aligned}$	5 pole Cannon XLR 5-IIC	P.A.	626	St.2. desk stand
D200C	Pencil	M.C.	200	Cardioid	18	-77	${ }_{\text {l }}^{1.3 \text { Mic. }}$ 2 Screen	3 pole DIN	Musicians	623	W4 windscreen
D202E	Pencil	M.C.	200	Cardioid	20	- 76	2.3 Mic. 1 Earth	3 pole Cannon XLR 3-1IC	Recording/ Studio	132	St.4. table stand
D501	Reporter	M.C.	60 or 200	Cardioid \& omni (switched)	15	-73	4 pole cable 2 for Mic. 2 for remote -	Free end cable	Reporting. P.A.	[13 10s	5t.2. able stand
D503	Flexible shaft	M.C.	60 or 200	Cardioid	15	73	2 pole screened	Free end cable	Paging	616	-
DSOS	$\begin{aligned} & \text { Mand } \\ & \text { Hand or } \\ & \text { stand } \end{aligned}$	M.C.	200	Hyper-cardioid	15	- 74	4 pole cable 2 for Mic. 2 for remote cont. sw.	Free end cable	P.A. \& closetalk reporting	413 10s	-
D507	$\underset{\substack{\text { Flexible } \\ \text { shaft }}}{ }$	M.C.	200	Hyper-cardioid	15	- 74	2 pole screened	Free end cable	P.A., paging close talk	116	
D1000C	Pencil	M.C.	60 or 200	Cardioid	20	-78 -72 -72	$1-3$ Mic. 2 Earth	3 pole DIN socket	Musicians, stage	629	Jack plug matching transformer
C_{61}	-	Capacitor M.C.	50 or 200	Cardioid. Change capsule	20	-64	-	-	Recording/ Bdcasting	685	Omni-directional capsule
CI2A	Stand	Capacitor M.C.	50 or 200	Cardioid, omni, Fig. 8 \& 6 . Intermediate pos.	20	-68	-	-	Studio Bdest. Recording	6130	Separate seloctor unit
C24 Stereo	Scand	Capacitor M.C. Stereo	50 or 200	Cardioid, omni. Fig. 8 a 6. Intermediate pos.	20	-68	-	-	Recording, Bdeasting	1250	-
DXII	Stand	M.C.	200 \& high	Cardioid	14	$\begin{array}{r} -74 \\ -52 \end{array}$	Twinscreened	Free end termination	Musicians, reverb. Mic.	630 10s	-

NOW MADE BY RESLOSOUND Chapman Transistorised Stereo Tuners

The High Fidelity Tuner units in the Chapman range are optionally fitted with multiplex decoders for stereo broadcast reception. Models FM 1000A/B and FM 1005 A/B illustrated are also available in chassis form for fitting in owners' cabinets.
£48 + P.T. $£ 9.13 .0$

* PRECISION ENGINEERED * REALISTIC REPRODUCTION * LOW MED. \& HIOH IMPEDANCES
* REASONABLY PRICED
* FINEST OF THEIR KIND AT THESE PRICES * BRITISH MADE

Resio also manufacture a complete range of public address amplifiers and loud-
speakers, cabinet, dine source and reflex horns.

Reslo Works, Spring Gardens, London Road, Romford, Essex: Romford 61926 (3 lines)

Type No．	Type	Transducer	Impedance （ohmes）	Directional Characteristic：	Front－to－ Back ratio （dB）	Sensitivity （dB）at I kHz （ref． $\left.10 \mathrm{~V} / \mathrm{N} / \mathrm{m}^{2}\right)$	$\xrightarrow[\text { Connections }]{\text { Pin }}$	Output Connector	Application	Price	Accessories not included in price
Acos－Cosmocord Led．，Eleanor Crose Road，Waltham Crost，Herts．											
Mic． 91	H／Table	Crystal	IM	Omni．	二	-50	二	Lead	二	$c_{62}^{2} 5850 \mathrm{~d}$	
Mic． 931	H／Table H / T able	Ceramic	${ }_{500.20 \mathrm{k}}$	Omni．	－	－ 74	二	Lead	－	$\mathrm{C2}_{2} 12 \mathrm{~s} 6 \mathrm{~d}$	
Mic． $93 / 15$ Mic． $95 / 50$	H／Table $H / T a b l e ~$	M．C．	500．20k $50 \mathrm{k}-2 \mathrm{M}$	Omni．	二	－ 54	－	Lead		$6^{3} 3580 \mathrm{~d}$	
Mic． 390	Stk．Neck	Crystal	${ }_{2} \mathrm{M}$－2M	Omni．	－	－61		Lead	－	$6^{3} 338000$	
Mic．70／1	Stk．／Neck	M．C．	200－10k	Omni．	－	－80	－	Lead	－		
Mic 70／4	Stk．Neck	$\xrightarrow[\text { M．C．}]{\text { Cryseal }}$	S0k－2M	Omni．	＝	-57 -50	二	Lead	－	${ }_{12} 2^{81} 8$	
Mic． 45 Mic． 60	Stand	Crystal	IM		－	－ 57	－	Lead	－	12 2s Od	
Ampex（Gt．Britain）Ltd．， 72 Berkeley Avenue，Reading．Berkn．											
3001	Stand	m．C．	50－250 100k	Omni	15	－	－	－	R．A．	$816 \mathrm{l6s}$	－
Audac Marketing Co．，Ltd．，Forest Works，Carey Road，Wareham，Do											
TX／M	Radio	M．C．	600	Omni	－	－55	－	－	－	635	
TX／MN	Radio	M．C．	600	Omni	－	－55	－	－	－	635	－
TX／D	Mic Radio	M．C．	600	Omni	－	－55	－	－	－	635	－
TX／IN	Mic．	M．C．	200	Omni	－	－70	－	－	－	660	－
TX／I	Mic． Radio	M．C．	200	Omni	－	－70	－	－	－	660	－
TX／C	Madic	M．C．	200	Omni	－	－70	－	－	－	660	－
TX／CN	Mic．	M．C．	200	Omni	－	－70	－	－	－	660	－
TX／4S	Mic．	M．C．	30	Cardioid	18	－78	－	－	－	670	－
TX／65	Mic． Radio	M．C．	30	Cardioid	18	－77	－	－	－	680	－
560 F	Mic	－	200	Omni	－	－70	Centre \＆	Min．jack	－	612	Wind Shield \＆f is od． POP Filier 62 los Od
570 F	Lavalier	－	200	Omni	－	－ 80	Centre and outer screen	$\begin{aligned} & \text { Ming iack } \\ & \text { plug } \end{aligned}$	－	637	
Audix B．B．Ltd．，Stansted，Essex											
S－500	Hand	M．C．	High or 150	Cardioid	－	－	${ }^{1} \& 2 \begin{aligned} & \text { \＆} \\ & 3\end{aligned}$	Cannon XLR－3－IIC	${ }_{\text {Prem }}^{\text {Broadcasting，}}$ P．	－	
${ }_{3}^{602}-\mathrm{C}$	Hand Hand	M．C．	Low	Cardioid Omni．	22	二	Flying lead Coiled flying lead	二	P．A．${ }_{\text {Mobile comm．}}$	－	－
＋2	Desk	－	5k	Cardioid	－	－	Coiled flying	－	P．A．	－	－
254x	Desk	M．C．	600	Cardioid	－	－	Flying lead	二	P．A．	二	二
252	Desk	M．C．	${ }_{\text {High }}{ }_{\text {H }}$	Cardioid	－	－	Flying ead Flying lead	二		－	
+50 440	Sesk		50 or 250	Omni．	－	－	Flying lead	－		－	
58	Lavalier	M．C．	High or 150	Omni．	－	－	Flying lead	－	P．A．		
4131	Measrms．	Capacitor	57pF	Omni．	－	－46	$1+$ guard ring case	Centre pin	$20 \mathrm{~Hz}-20 \mathrm{kHz}$	417	power supply
4133	Measrme．	Capacitor	20pF	Omni．	－	－60	$1+$ guard	Centrepin	$20 \mathrm{~Hz}-40 \mathrm{kHz}$	447	Cathode lollower and
4135	Measrme．	Capacitor	6．4pF	Omni．	－	－ 74	$1+$ guard	Centre pin	$30 \mathrm{~Hz}-100 \mathrm{kHz}$	647	Cathode follower ind
4138	Measrme．	Capacitor	3．5pF	Omni．	－	－86	$\begin{aligned} & \text { ring + case } \\ & \text { I truard } \\ & \text { ring trase } \end{aligned}$	Centre pin	$30 \mathrm{~Hz}-140 \mathrm{kHz}$	654	Cathode loilower and power supply
A．P．Besson \％Partner Led．，St．Joseph＇s Close，Hove，Sussex											
10	Insers	M．C．	2 k	－	二	-77 -71	二	Wire cails	－	－	
11 12	Insers	M．C．	2k	二	二	－73	二	Wire cails	－	－	＝
387		M．C．	4k	－	－	-77	－	P／C board			
M23	Lavalier	m．C．	200	Cardioid	－	$1.2 \mathrm{mV} / \mathrm{N} / \mathrm{m}^{2}$	－ $\begin{gathered}1 \\ 4\end{gathered}$	DIN	Close talking	［9 7s	
M64	Lavalier	M．C．	37．5－200	Cardioid	－	${ }_{-52 \mathrm{~dB}}^{2 \mathrm{mV} / \mathrm{m}^{2}}$	$\begin{aligned} & 183 \text { signal } \\ & 2 \text { earth } \end{aligned}$	DIN	P．A．，iecturing	$\begin{array}{lll}619 & 23 \\ 618 & 35\end{array}$	Goose neck and sta
M645 H	Stand	M．C．	37．5－200	Cardioid	－	${ }_{-52 d 8}^{2 m V / m^{2}}$	${ }^{1}$ and 3 signal	DIN	P．A．，lecturing Studio	${ }_{625}^{626}$	
M67	Hand	M．C．	37．5－200	Cardioid	16	2． $2 \mathrm{mV} / \mathrm{N} / \mathrm{m}^{2}$		DIN	Studio		
M69	Hand	M．C．	37．5－200	Cardioid	16	2． $2.4 \mathrm{mV} / \mathrm{N} / \mathrm{m}^{2}$		DIN	Studio		
M88	Hand	M．C．	37．5－200	Cardioid	20			Din	Scudio，etc．		
M100	Hand	M．C．	37．5－200	Omni	－	$1 \mathrm{mV} / \mathrm{N} / \mathrm{m}^{2}$	183 18 earch	DIN	Studio，ete．	$\begin{array}{ll}661 & 45 \\ 660 & 58\end{array}$	
M110	Lavalier	M．C．	200	Omni	－	$1 \mathrm{mV} / \mathrm{N} / \mathrm{m}^{2}$	${ }_{1}^{1} 833$ signal	DIN	－	528115	KTRI45／147－Clamps，
M119	Hand	M．C．	200	Omni	－	${ }_{-}^{2} 2.2 \mathrm{mV} / \mathrm{N} / \mathrm{m}^{2}$	$\begin{aligned} & n^{2} \begin{array}{l} 1 \\ 2 \\ 2 \text { earch } \end{array} \end{aligned}$	DIN	Studio	E15 14s	stands，clips，etc．
M130	Hand	Double	200	Bi－directional	Equal	${ }^{0.9 \mathrm{mV} / \mathrm{N} / \mathrm{m}^{2}}$	， $\begin{aligned} & 1 \\ & \text { \＆} \\ & 2 \\ & \text { earsh } \\ & 3\end{aligned}$	DIN	Studio		
M160	Hand	（enter	37．5－200	Super Cardioid	12－25	$1 \mathrm{mV} / \mathrm{N} / \mathrm{m}^{2}$	${ }_{1}{ }^{2} 82$ signal	DIN	studio	662 661 685 685	
M260	Hand	Ribbon Ribbon	37．5－200	Super Cardiold	12.20	$0.9 \mathrm{mV} / \mathrm{N} / \mathrm{m}^{2}$,${ }^{2}$ \＆arts signal	DIN	Tape record－	624113	
				Uni．	15	－ $2 \mathrm{mV} / \mathrm{N} / \mathrm{m}^{2}$	${ }_{2}^{2}$ earth ${ }^{\text {a }}$ signal	DIN	ing，Amareurs	624 623 138	
M610	Hand	M．C．	37．5－200	Cardioid		－ 52 dBm	2 earch		switch	¢23 14s	
${ }_{\text {Soundstar }} \times 1$	Stand	M．C．	200	Cardioid	－	$\begin{aligned} & 2 \mathrm{mV} / \mathrm{N} / \mathrm{m}^{2} \\ & -52 \mathrm{dBm} \end{aligned}$	${ }_{2}^{18} 8$ carth ${ }^{\text {cignal }}$	DIN	Seudio or Amateur	¢19 15s 6d	
version＂N Soundstar version HLM	Stand	M．C．	200－500－50k	Cardioid	－	$\begin{aligned} & 2 \mathrm{mv} / \mathrm{N} / \mathrm{m}^{2} \\ & -52 \mathrm{dBm} \end{aligned}$	$\begin{array}{ll} 2 & 8 r t n \\ 2 & 82000 \\ 2 & 8 \\ 2 & 1500 \Omega a \end{array}$ $25 k, 2 \text {-ground }$	DIN	Scudio or Amaseur． Impedance sel－ ector switch	¢21 18s	－

EMT, STUDER \& NEUMANN the best in professional sound recording equipment Sole U.K. Agents: F.W.O.BAUCH LIMITED Holbrook House, Cockfosters Herts.

Tel: 01-440 3277 Tlx 27502
WW-202 FOR FURTHER DETAILS

ONE OF A RANGE OF ULTRA ROBUST MUVING COIL MICROPHONES WITH FULL REMOTE CONTROL FACILITIES-Available From:-
HARTLEY ELECTROMOTIVES LTD., TAPERITER DIVISION, MONKMOOR, SHREWSBURY

Telephone: Shrawsbury 6343. Telex 35279 wW- 203 FOR FURTHER DETAILS

HOW TOCATCH ASOUND WAVE

Our "Series Four" microphones will catch anything without damage or distortion. No need to use transformers, each microphone is multi-impedance and will work into 25 Ohms, 200 Ohms, 600 Ohms and 50K Ohms. Imagine how useful that is when you change recorders.
These four microphones have been produced to extract the last drop of performance from your recorder or P.A. System. Combining Lustraphone dependability with superb performance and exciting styling. These instruments will give you pride of ownership for years to come.
4.20 Dynamic Omnidirectional 4.30 Dynamic Cardioid 4.40 Studio Ribbon 4.50 Professional Miniature Ribbon See the "Series Four" Microphones at leading Hi-Fi dealers or write direct to LUSTRAPHONE LTD for free illustrated literature giving full description and specification. A comprehensive "Selection and Instruction" pamphlet is also available free on request.

Iustraphone

THE FOREMOST NAME IN MICROPHONES
Lustraphone Limited,
Regents Park Road, London N.W. 1 01-722 8844

Sounds Original

In Room 355 at the Audio Fair, visitors
will hear original stereo recordings. These stereo recordings were made under domestic conditions using various pairs of Sennheiser microphones with a B and O tape recorder. By changing the microphones at regular intervals during the recordings sensible comparisons can be made regarding the quality and characteristics of these microphones. Microphones such as the MD 421 studio cardioid microphone, the MD 211 studio omni microphone (probably the finest moving coil omnidirectional microphone in the world). the MKH 405 RF condenser microphone and the MD 411 triple impedance dynamic microphone were used to make comparisons in these stereo recordings. All questions regarding microphone technique, acoustics and sound recording in general, relating to these recordings will be answered in the above room by our sound engineers

Audio Engineering Ltd

one switch to give you two mikes

The Philips P33 is a superb, professional microphone at a medium price, which provides cardioid or omni-directional characteristics - at the click of a switch.
The frequency response is 80 Hz to $15 \mathrm{Kc} / \mathrm{s}$ $\pm 3 \mathrm{db}$. It is flat over a wide range and remains flat in the low frequency range when used close up. In the cardioid mode sensitivity at the rear is 17 db less than at the front. Impedance is 500 ohms.
The P33 is mounted in a quick-release holder and can instantly be used as a hand-held microphone complete with a detachable, twin screened cable 16 feet in length. In addition an anti-vibration mounting is available, preventing transmission of rumble from the stand.

shore Mícrophoi

Public Address

Model 419B Ranger II. A smallsize noise-cancelling controlled magnetic microphone specially de signed to give superior speech intelligibility and rejection of unwanted noise. Ideal for outdoor and indoor public address and call systems in noisy areas. Low imp systems i

Model 58ISF
Unidyne
With this unidirectional
dynamic microphone. feer
back problems can be solve even in low -budget public address systems. Gives
1 quality reproduction al low cost. For hand or stand use. indoors or out. 25 s hm impedance, builtin on-of

Model 450 Controlled magnetic 'Dispatcher. New modern design fits every decor for paging use. Telescoping height adjustment for maximum conheight adjustment for maximum con-
venience. Switchable to low impervenience. Switchable to low imper-
ante or high, push-to-talk switch bar.

Model 414A

Ranger II. A hand weight of about half the size or phone, yet giving even microformance for miniaturized or portformance for
able outdoorindoor communications. munication
High jimHigh inpedance. Reconmended load 100.000 ohms or more.

Communications

Model THIO0 A controlled magnetic
 handset which allows the operator to expand or upgrade his equipment and to obtain a degree of privacy in radio communications and two-way converselions. Transmitter is high impedance. receiver low.

Model M62 Audio Level Controller. A transistor ied variable gain amplifier designed to keep electrical output constant even though the input signal from the microphone varies considerably. Permits greater freedom of distance when using a microphone, eliminates blasting and fadeouts, upgrades recording systems, re duces loud vibration noises.

'for all applications

Broadcasting \& Recording

SM SA

tonal boom films studio and location TV films studio and location work.
actively rejects background noise clively rejects background noise
gives a rugged. dependable formance under all conditions. formant
ohms

Model SM 50 A sturdy omnidiriec. tonal dynamic microphone built to withstand the severest field use. Withstand the severest field use.
Provides natural voice reproduction. Provides natural voice reproduction.
with freedom from breath noises. for with freedom from breath noises. for
remote interviews. news and sports remote interviews. news and sports
pick-ups and other field and pick-ups and other field and studio uses. Dual imp lance 150-250 ohm switchable to $30-50$ ohms.

Model SM5I a small light-werght dynamic lavalier microphone for use in TV. films. radio and similar applicatons where a small. wearable microphone of professional quality is reauired. Matches any low impedance input.

Entertainment

Model 565
Unisphere I. This unidirectional dynamic microphone solves practically every placement problem of the professional entertainer i suppresses pop. feedback and audience noise and can be used close up or at a distance. giving a natural. smooth response to voice and music. Dual impedance, choice of low impedance or high.

Model M68-2E Microphone Mixer. Five channel. completely transistorized, portable microphone mixer for use with public address systems and tape recorders. Four microphone inputs and one high level auxiliary input for tape, tuner and accessories. Individual volume controls to balance each of the five inputs.

Faithful Reproduction

with the

Grampian TC12 loudspeaker

The Grampian TC12 loudspeaker is a high quality twin cone unit at a reasonable price. The loudspeaker is built of high quality materials to a rigid specification and is eminently suítable for good quality sound reproduction. Let us send you full details or better still go and hear one at your local dealers now.

Design for suitable cabinet available.

Grampian manufacture high grade microphones, parabolic reflectors, windshields and accessories, also mixers and amplifiers.

Grampian SOUND EQUIPMENT

Send for leaflet giving full details

GRAMPIAN REPRODUCERS LTD
 Hanworth Trading Estate, Feltham. Middlesex
 Tel: 01 - $8949141 / 3$ Cables REAMP, FELTHAM

People in Search of Perfection Choose

FILM INDUSTRIES RIBBON MICROPHONES

Reprinted from a technical review of the Model M8. '...this microphone shows evidence of careful design, and the workmanship, technical performance, and styling are excellent. It can be thoroughly recommended for studio or semi-professional use, or for home use where the associated equipment can do justice to its very wide range of response."

From a review of the Model MBA.
"... The Film Industries M8A ribbon microphone has a most attractive appearance coupled with a performance which, in many respects, can stand comparison with the best designs at three or four times its price

Type M8 Misrophone

Write for full details

FILM INDUSTRIES LTD.

STATION AVENUE,
KEW GARDENS, SURREY.
Telephone: RICHMOND 8078
WW-210 FOR FURTHER DETAILS

New from Spembly-the HS. 4 Ilghtweight headset with bone transducer microphone and miniature loud speaker unit. Excellent reproduction-for airborne or ground use. Can be worn under most types of protective helmets. Send for leaflet to:
Sales Department,

Neumann KM73	(F.W.O. Studio	Bauch Led.. Capacitor	Holbrook 50 or 200	House, Cockfosters, Barnet, Herts.)			$\begin{aligned} & 182 \text { signal, } \\ & 3 \text { screen } \end{aligned}$	Tuchel T3261	-	c87 6s Od 678 16s 6d c73 18s 0d C92 is Od C83 19s 6d c79 is Od	According to ancillary equipment
				Omni	,	$30 \mathrm{mV} / \mathrm{N} / \mathrm{m}^{2}$					
KM74 or 75	Srudio	Capacitor	50 or 200	Cardioid	25	$30 \mathrm{mV} / \mathrm{N} / \mathrm{m}^{2}$	$\begin{aligned} & 182 \text { signal, } \\ & 3 \text { screen } \end{aligned}$	Tuchel T3261	-		According to ancillary equipment
KM76	Studio	Capacitor	50 or 200	Omni, card, Fig. ol 8	-	$26 \mathrm{mV} / \mathrm{N} / \mathrm{m}^{2}$	$\begin{aligned} & 1 \text { \& } 2 \text { signal, } \\ & 3 \text { screen } \end{aligned}$	Tuchel T3261	-	Cllo 6s Od (101 16s 6d C96 18s 0d	According to ancillary equipment
U77	Studio	Capacitor	50 or 200	Omni, card, Fig. of 8	-	$50 \mathrm{mV} / \mathrm{N} / \mathrm{m}^{2}$	$\begin{aligned} & 1 \& 2 \text { signal, } \\ & 3 \text { screen } \end{aligned}$	Tuchel T3261	-	$\begin{array}{r} 6118440 \mathrm{~d} \\ \mathrm{C} 10914 \mathrm{~s} 6 \mathrm{~d} \\ \mathrm{f} 10416 \mathrm{~s} 0 \mathrm{~d} \\ 69918 \mathrm{~s} 6 \mathrm{~d} \end{array}$	According to ancillary equipment
KM83	Studio	Capacitor	50 or 200	Omni	-	$5 \mathrm{mV} / \mathrm{N} / \mathrm{m}^{2}$	$\begin{aligned} & 182 \text { signal. } \\ & 3 \text { screen } \end{aligned}$	Tuchel 73261	-	$\begin{aligned} & 682 \text { 14s od } \\ & 674 \text { 7s } 0 d \\ & 667 \text { is } 0 d \end{aligned}$	According so ancillary equipment
KM84 or 85	Studio	Capacizor	50 or 200	Cardioid	25	$5 \mathrm{mV} / \mathrm{N} / \mathrm{m}^{2}$	$\begin{aligned} & 1 \& 2 \text { signal. } \\ & 3 \text { sereen } \end{aligned}$	Tuchel T326 1	-	68614 s Od $678 \mathrm{7s} 0 \mathrm{Od}$ 671 Is 0 Od	According so ancillary equipment
KM86	Studio	Capacitor	50 or 200	Omni. card, Fig. of 8	-	$7 \mathrm{mV} / \mathrm{N} / \mathrm{m}^{2}$	1 2 signal, 3 screen	Tuchel $T 3261$	-	c101 13s od c93 6s Od 186 Os Od	According to ancillary equipment
U87	Studio	Capaciror	S0 or 200	Omni, card. Fig. of 8	-	$8 \mathrm{mV} / \mathrm{N} / \mathrm{m}^{2}$	1 \& 2 signal, 3 screen	Tuchel T3261	- -	$\begin{aligned} & C 106 \text { 14s Od } \\ & C 98 \text { 7s Od } \\ & c 91 \text { Is Od } \\ & C 8811 s 00 \end{aligned}$	According to ancillary equipmens
KML	Lavalier	Capacizor	50	Cardioid	25	$10 \mathrm{mV} / \mathrm{N} / \mathrm{m}^{2}$	I \& 2 signal, 3 screen	Tuchel $T 3261$	-	E71 16s Od	-
U67	Studio	Capaciror	50 or 200	Omni Cardioid Fig. of 8	-	$11 \mathrm{mV} / \mathrm{N} / \mathrm{m}^{2}$ $20 \mathrm{mv} / \mathrm{N} / \mathrm{m}^{2}$ $14 \mathrm{mV} / \mathrm{N} / \mathrm{m}^{2}$	\| \& 2 signal. 3 screen	Tuchel T3080	- -	6138 6158 188	R.F.-proof type Cl46 14s
M269C	Srudio	Capacitor	50 or 200	Omni Cardioid Fig. of 8	-	$9 \mathrm{mV} / \mathrm{N} / \mathrm{m}^{2}$ $15 \mathrm{mV} / \mathrm{N} / \mathrm{m}^{2}$ $11 \mathrm{mV} / \mathrm{N} / \mathrm{m}^{2}$	1 \& 2 signal. 3 screen	Tuchel T3080	-	C158 18s 6158	-
M49C	Seudio	Capaciror	50 or 200	Omni Cardioid Fig. of 8	-	$4.5 \mathrm{mV} / \mathrm{N} / \mathrm{m}^{2}$ $6.0 \mathrm{mV} / \mathrm{N} / \mathrm{m}^{3}$ $8.0 \mathrm{mV} / \mathrm{N} / \mathrm{m}^{2}$	I \& 2 signal. 3 screen	Tuchel T 3080	- -	6156 13s	-
MSOC	Studio	Capacizor	50 or 200	Omni	-	$15 \mathrm{mV} / \mathrm{N} / \mathrm{m}^{2}$	3 screen	T3080	-		
KM53C	Studio	Capacitor	50 or 200	Omni	-	$15 \mathrm{mV} / \mathrm{N} / \mathrm{m}^{2}$	$\begin{aligned} & 1 \& 2 \text { signal, } \\ & 3 \text { screen } \end{aligned}$	Tuchel T3080	-	$2128) 188$ $C 139$	supply
KM253C	Studio	Capacitor	50 or 200	Omni	-	$15 \mathrm{mV} / \mathrm{N} / \mathrm{m}^{2}$	\| \& 2 signal, 3 screen	Tuchel T3080	-	$\begin{aligned} & \\ & \\ & C 148 \\ & 6186 \\ & 13 \mathrm{~s} \end{aligned}$	According to power Ssupply

The D 1000

A sophisticated, robust, easily serviceable Public Address Microphone available in 24 carat gold plated or matt grey finish; incorporates a three-position switch which changes the entire sound of the microphone: can be set to S for sharpest cardioid, M for extended flat response and B for extra bass response.

Recommended retail price $£ 29.0 .0$ (gold or grey).
Write for further details and try this and other $A K G$ microphones without obligation.

Type No．	Trpe	Transducer	Impedance Values （ohms）	Directional Characteristics	Front－to－ Back ratio （dB）	Sensitivity （dB）at I kHz（ref． iv／0．1 N / m（）	Pin Connections	Output Connector	Application	Price	Accessories not included in price	
Philips Electrical Lid．，Century House，Shaftesbury Avenue，London，W．C． 2												
EL1976	Hand／ table	M．C．	500	Omni	，	－69	15 Signal 2 2 Screen 3 Blank	3－pole DIN 180°	Use with Cassette Recorder	6312	－	
EL1979	Stereo． cable	$2 \times$ M．C．	2×500	Cardioid	16	－69	I L．H．Chan－ nel， 2 Screen， 4 R．H．Chann	5－pole DIN 180°	Recorder Use with EL3312． EL3575 TR	$¢ 10176$	－	
ELI980	Stick rable	M．C．	500	Omni	－	-70	1 Signal， 2 Screen， 3 Blank	3－pole DIN 180°	Use with Re－ corders N4305，N4306	63150	－	
EL3797／50	Hand	M．C．	500	Ommi	－	71	I Signal， 2 Screen， 3 Blank 15 witch．	$\begin{aligned} & \text { 3-pole DIN } \\ & 180^{\circ} \end{aligned}$	Use with Bate． Cassette Re－ corders	44100	－	
N8302	Stick／ zable	M．C．	500	Cardioid	43dB	－72	5 Switch I Signal． 2 Screen， 3 Blank	$\begin{aligned} & 240^{\circ} \\ & 3 . \text { pole DIN } \\ & 180^{\circ} \end{aligned}$	Use with Stereo Recor－ der N4408	6550	－	
Reslosound Led．，Spring Gardens，London Road，Romford，Essex												
$\begin{aligned} & \text { CHM/I } \\ & \text { CPD } \end{aligned}$	Hand Hand	Cryseal M．C．	$\begin{aligned} & \text { High } \\ & 40.250 .600 \end{aligned}$	Cardioid Cardioid	$10-20$	－88	$\begin{aligned} & 4 \text { core }+5 . \\ & 1+2 \text { L. } I+2 \\ & M, H \text { coaxial } \end{aligned}$	Cable Cable	Com．record． Recording	$\begin{array}{cc} 63 & 8 s \\ c 15 & 15 \mathrm{~s} \\ 6 \\ 616 & 16 s \end{array}$	Various stands Various stands	
EC． 1	Hand	M．C．	＋0．250－600	Omni	10 co 20	－88	1＋2 L， $1+2$	Cable	＇Close＇singing		Various stands	
PD	Pencil－	M．C．	40－250－600	Omni	－	－88		Cable	Recording	$\begin{array}{lll} 68 & 15 s \\ 69 & 15 s \end{array}$	Boom	
MMDI	Lavalier Lavalier hand	M．C．	$\begin{aligned} & 40 \\ & 40 \end{aligned}$	Ommi	二	－89 -88 -88	$\begin{aligned} & 1+2 \\ & 1+2 \end{aligned}$	${ }_{\text {din }}^{\text {dable }}$	Radio mic． Broadeast （roice）	$69 \mathrm{Bs}$	F．m．transmicter	
MPD2 VMC2	Hand Stand	M．C．	40 15	Ommi Omni	二	－88	$1+2$	Cable Cable	Public address		－	
THMI／L	Hand Hand	${ }_{\text {M．C．}}^{\text {Movingiran }}$	40 1000	Omni	＝	二	4 core＋S．	Cable Cable	Publicaddress Coms	$\begin{array}{ll}66 & 115 \\ 67 & 75\end{array}$	Twin mount for stereo Flexible stems	
${ }_{\text {CR2 }}^{\text {THMI／}}$ M	Hand Stand	Moving iran Ribbon	1000 $40-250.600$	Ommiold	15 to 20	－58			Coms	67 75 613 58 13	Flexible stems Boom	
RBT	Seand	Ribbon	40－250－600	Bi－direct	－	-58	$A+B L, A+B$ $250, A+C$ 000	Reslo plug cable	Recording public address		Flexible stems	
RBTS	Stand	Ribbon	40．250．600	Bi－direct	－	58	$\mathrm{A}+\mathrm{CH}$	Cable	Recording public address	${ }_{6}^{15} 585$	Flexible stems	
VRT S．RI	Scand Scand	（ Ribbon	40.300 40.300	Si－direct	二	－81 -73		Cable Cable	Broadcast Broadeast	$\begin{array}{cc} 18 \\ 629 & 10 s \end{array}$	Weather proof mount	
Sennheiser（Audio Engineering Led．， 33 Endell Street，London，W．C．2．）												
MKHIOS	Studio Hand	Capacitor	200 balanced	Omni	－	$1 \mathrm{~mW} / \mathrm{N} / \mathrm{m}^{2}$		Tuchel	High quality music record．	C68 15s 6d	Battery pack，windshield， shockmount，cable	
MKH405	Studio Boom	Capacitor	200 balanced	Cardioid	18	$1 \mathrm{~mW} / \mathrm{N} / \mathrm{m}^{2}$	1 \＆ 3 signal，	Tuchel	High quality speech \＆ music record．	C7918s od	Batcery pack，windshield， shockmount，cable	
						－37dB	2 case screen	Tuchel	High quality speech \＆	6104168 0d	Battery pack，windshield， shockmount，cable	
MKH805	Seudio	Capacitor	200 balanced	Uni	25	$1 \mathrm{mw} / \mathrm{N} / \mathrm{m}^{2}$		Tuchel	music record．	C36 17s 6d	Desk stand，windshield	
MD421	Seudio	M．C．	200 balanced	Cardioid	18	$\begin{aligned} & 2 m V / N / m^{2} \\ & 3 \mathrm{~dB} \end{aligned}$			speech a music record．			
MD4！	General	M．C．	$\begin{array}{r} 200 \\ 1000 \\ 25 k \end{array}$	Super Card．	20	$1.2 \mathrm{mV} / \mathrm{N} / \mathrm{m}^{2}$ $2.5 \mathrm{mV} / \mathrm{N} / \mathrm{m}^{3}$ $2.5 \mathrm{mV} / \mathrm{N} / \mathrm{m}^{2}$	$\begin{aligned} & L=2+3 \mathrm{HL} \\ & M=1+2 M \\ & H=1+2 \mathrm{HL} \end{aligned}$	DIN	Speech \＆ music	6151450 d	Windshield	
MD408	Stand	M．C．	200	Super－Card．	20	$1.3 \mathrm{mV} / \mathrm{N} / \mathrm{m}^{2}$		Tuchel	Speech	C22 5s 6d	－	
MD21	Hand	M．C．	200	Omni	－	$2 \mathrm{mV} / \mathrm{N} / \mathrm{m}^{2}$	$1 \% 3$ signal．	Tuchel	Speech \＆ effects	c25 10s 60	Windstield	
MD211	Hand	M．C．	200	Omni	－	$1.3 \mathrm{mV} / \mathrm{N} / \mathrm{m}^{2}$	screen	Tuchel	High quality speech \＆ music	C41 12s 6d	Windshield	
MD214	Lavalier	M．C．	200	Omni	－	$1.0 \mathrm{mV} / \mathrm{N} / \mathrm{m}^{2}$		Tuchel	Speech	63417860	－	
MD420	Hand N．C．	M．C．	200	N．C．Super－ Card．	20	$1.6 \mathrm{mv} / \mathrm{N} / \mathrm{m}^{2}$	$\text { 1\& } 2 \text { signal. }$ $3 \text { \& case }$	Tuchel	Speech	［18 18s 60	－	
MDSIN	Stereo	M．C．	200 per capsule	Super－Card．	20	$1.3 \mathrm{mV} / \mathrm{N} / \mathrm{m}^{3}$	！\＆ 3 signal 3 \＆case	DIN	Music，speech	63011598	－	
MD722	Hand	M．C．	500	Super－Card．	18	$1.2 \mathrm{mV} / \mathrm{N} / \mathrm{m}^{2}$	I \＆ 3 signal 3 \＆case screen	DIN	Music，speech	c6 16s od	－	
Shure Electronics Lid．， 84 Blackfriars Road，London，S．E．I．												
$\begin{aligned} & \text { SMSA } \\ & \text { SMSB } \\ & \text { SM } \end{aligned}$	Studio Boom Studio	M．C． M．C． Ribbon	$\begin{aligned} & 50 \\ & 150 \\ & 30-50 \\ & 150-250 \end{aligned}$	Cardioid Cardioid Super－ Cardioid	$18-20$ $18-20$ $15-20$	$\begin{aligned} & -84 \\ & -79.5 \\ & -87(a) 50 \Omega \\ & -81(a \\ & 150 \Omega \end{aligned}$	```2& 3 signal \| screen 2& 3 signal	screen```	Cannon XL－3－11 Cannon XL－3．11	Recording， Radio \＆TV Recording， stage，broad． casting	140 680	Desk stand 533 C Desk stand 533 P
SM50	Scudio	M．C．	$\begin{aligned} & 30-50 \\ & 150-250 \end{aligned}$	Omni	－	$\begin{aligned} & 15012 \\ & -85 @ 50 \Omega \\ & -79 @ \\ & 150 \Omega \end{aligned}$	$\begin{aligned} & 2 \text { \& } 3 \text { signal } \\ & \text { 1 case, screen } \end{aligned}$	Cannon XL-3-4	Recording， stage，broad－ casting	445	Desk stand S33P	
SM5	Scudio Lavalier	M．C．	50－250	Omni	$\stackrel{-}{-}$	${ }_{-81.5}$	Cable	－	Recording， stage，broad－ casting	638	－	
555w	Scand／ Boom	M．C．	$\begin{aligned} & 30-50 \\ & 150-250 \\ & 35 k \end{aligned}$	Cardioid	15－20	$\begin{array}{r} -84 \\ -78 \\ -57 \\ \hline \end{array}$	2 1 1 sicreen	Amphenol	P．A．，stage	632	Desk stand 536A	
SM56	Seudio	M．C．	$\begin{array}{r} 30-50^{\circ} \\ 150-250 \end{array}$	Cardioid	15－20	$\begin{aligned} & -83.5 \\ & 50 \Omega \\ & -76.5 \end{aligned}$ $150 \Omega 2$	2 \＆ 3 signal 1 screen	$\begin{aligned} & \text { Cannon } \\ & \times L=3-11 \end{aligned}$	Recording， broadcasting	650	－	
SM57	Scudio	M．C．	$\begin{gathered} 30-50 \\ 150-250 \end{gathered}$	Cardioid	15－20	$\begin{aligned} & 150 \Omega 2 \\ & -83.5 \\ & 50 \Omega \\ & 76.5 \end{aligned}$	2\％ 3 signal 1 screen	Cannon X_{L-3-11}	Recording， broadcassing	638	－	
SM58	Seudio	M．C．	$\begin{gathered} 30.50 \\ 150-250 \end{gathered}$	Cardioid	15－20	150Ω -83.5 50Ω \qquad -76.5 150.5 \qquad	2 \＆ 3 signal 1 screen	Cannon XL-3.11	Recording， broadeaseing	cso	－	
SM60	Studio	M．C．	50－250	Omni	－	－81．5	$\begin{aligned} & 2 \text { \& } 3 \text { signal } \\ & 1 \text { screen } \end{aligned}$	Cannon XL－3－11	TVinterview． recording	630	－	

Type No.	Type	Transducer	Impedance Value: (ohme)	Directional Characteristics	Front-toBack ratio (dB)	$\begin{aligned} & \text { Sensitivity } \\ & \text { (dB) at } \\ & \text { / kHz (ref. } \\ & \text { IV } 0.1 \mathrm{~N} / \mathrm{ml} \text {) } \end{aligned}$	Pin Connections	Output Connector	Application	Price	Accessories included in pric
Shure Electronics Led. (Cont.)											
SM76	Studio Pencil	M.C.	50-250	Omni	-	-80.5	2 \& signal 1 screen	$\begin{aligned} & \text { Cannon } \\ & \text { XL-3-11 } \end{aligned}$	Radio, TV. recording	665	-
201	Hand	Ceramis	Load imp. I-SM	Ommi	-	-55.5	Cable	XL-3	Moblle communications	[S 10s	-
202	Hand	M.C.	$\begin{aligned} & \text { Load imp. } \\ & \text { 1-5M } \end{aligned}$	N.C.	-	-50.5	Cable	-	P.A., call systems	16	-
2455	Hand/ Seand	M.C.	Load imp. I.5M	Cardioid	15	-59	Pin-signal Case-screen	Amphenol MCIF	Low-cost P.A.	613 iss	-
2755K	Hand	M.C.	Load imp. $1.5 M$	Omni	-	-59.5	Cable	M	Communications, amateur radio	65	. -
300	Studio	Ribbon	$\begin{aligned} & 30-50 \\ & 150-250 \\ & \text { High } \end{aligned}$	Bi-direct	Acsides down 15 20 dB from front \& rear	$\begin{aligned} & -87 \\ & -79.5 \\ & -\$ 7.5 \end{aligned}$	2 \& 3 signal I screen	$\begin{aligned} & \text { Cannon } \\ & \text { XL-3-11 } \end{aligned}$	Broadcaseing. recording	656	-
3155	Se./hand	Ribbon	$\begin{aligned} & 30-50 \\ & 150-250 \\ & \text { High } \end{aligned}$	Bi-direct	Atsides down 15. 20dBfrom	$\begin{array}{r} -89 \\ -82 \\ -59 \end{array}$	2\& 3 signal I case, screen	Amphenol MC3M	P.A., recording	634	-
330	St./hand	Ribbon	$\begin{aligned} & 30-50 \\ & 150 \\ & 250 \end{aligned}$	Super cardioid	15-20	$\begin{aligned} & -86 \\ & -80 \\ & -78 \end{aligned}$	$2 \& 3$ signal I case, screen	$\begin{aligned} & \text { Cannon } \\ & \text { XL-3-11 } \end{aligned}$	P.A., recording	645	-
$\begin{aligned} & 401 \mathrm{~A} \\ & 401 \mathrm{~B} \end{aligned}$	Hand-held	Controlled magneric	$\begin{aligned} & 100 \\ & 150-250 \end{aligned}$	Omni	二	$\begin{array}{r} -49 \\ -68 \end{array}$	Cable attached but replace. able	-	Comm.	$\begin{array}{cc} 66 & 10 \mathrm{~s} \\ \mathrm{C} 6 & 10 \mathrm{~s} \end{array}$	-
404B	Hand-held	Controlled magnetic	$\left\{\begin{array}{l}150-250 \\ 100 k\end{array}\right.$	Omni	-	-70.5 -50.5	Cable	-	Comm.	C 12 612	-
$\begin{aligned} & 414 A \\ & 414 B \end{aligned}$	Hand-held	Controlled magnetic	$\left\{\begin{array}{l} 100 k \\ 150-250 \end{array}\right.$	Omni	-	$\begin{aligned} & -14.5 \\ & -33.5 \\ & \text { Ref. } \mathrm{IV} / \mathrm{ION} / \\ & \mathrm{m}^{2} \end{aligned}$	Cable	-	Comm.	$\begin{aligned} & 62 \\ & 612 \end{aligned}$	-
$\begin{aligned} & 419 A \\ & 419 B \end{aligned}$	Hand-held	Conerolled magnetic	$\begin{aligned} & 100 \mathrm{k} \\ & 150-250 \end{aligned}$	N.C.	-	$\left.\begin{array}{l} -17 \\ -36 \\ \text { ReflV/IONI } \\ \mathrm{m}^{2} \end{array}\right\}$	Cable	-	P.A., comm.	$\begin{aligned} & 623 \\ & 623 \end{aligned}$	$=$
430SLF	Hnd./Sid.	Consrolled magnesic	250 or high	Omni	-	Low, - 82 High, -52	Cable	-	P.A., lecturing	622	-
444	Comm.	Controljed magneric	High	Semi-direce.	-	-53	Cable	-	S.S.B. comm.	612	-
444 T	Comm.	Contralled magnetic	1000	Semi-direce.	-	2 mV to 45 mV for $0.1 \mathrm{~N} / \mathrm{m}^{2}$ inpus	Coiled cord attached but replaceable	-	Transmitters lacking audio gain	\&14 10s	-
450	Comm.	Conerolled magnetic	50-250 or high	Semi-direcs.	-	$\begin{aligned} & \text { Low, }-73 \\ & \text { High, }-54 \end{aligned}$	Cable attached bue replaceable	-	Paging	61810 s	-
4888	Comm.	Consrolled reluctance	50-250	N.C.	-	-37	Coiled cable actached bus replaceable	-	Comm. where high background noise	¢21 10s	-
5335A	Mnd./Sed.	M.C.	High	Omni	-	-54.5	Pin, signal Case, screen	Amphenol MCIF	Paging, interviewing	618 10s	-

for high sensitivity at highly sensible prices
 MB
 MICROPHONES AND HEADSETS

MBI90 DYNAMIC MINIATURE PEN MICROPHONE
The luxury gold plated pen type housing encloses a miniature dy namic moving coil insert giving unique frequency range and response. Fre. quency range 100 to 10,000 c.p.s. Frequency response: ± 3.5 dB.

MBK85 DYNAMIC HEADSE De luxe Stereo headset with boom microphone. A brilliant headphone microphone combination with hardened steel headband, and cushioned foam rubber earpads. Fully adjustable microphone which is an anti-poise microphone, designed for true fidelity pick-up. Approved by Language Laboratories and Aeronautical Boards. Fre quency range (headphone): 20-17,000 c.p.s. Frequency range (microphone): 80 12,000 c.p.s.

Prices from 3 guineas.
SEE THE MB RANGE ON STAND 41 AND IN DEMONSTRATION ROOM 256 AT THE INTERNATIONAL AUDIO FESTIVAL AND FAIR, JUNE I8TH-2IST, HOTEL. RUSSELL, LONDON, W.C.I.
Sole U.K. Distributors

Type No．	Type	Transducer	$\begin{gathered} \text { Impedance } \\ \text { (alues } \\ \text { (ohms) } \end{gathered}$	Directional Characteristics	Front－to－ Back ratio （dB）	Sensitivity （dB）at I kHz（ref． $\left.10 \mathrm{~V} / \mathrm{N} / \mathrm{m}^{2}\right)$	Pin Connections	Output Conneztor	Application	Price	Accessories not included in price
Shure Electronics Ltd．（Cont．）											
T．H． 100	Tele－ phone handset	Consrolled Magnetic	$\begin{aligned} & \text { Trans.-High } \\ & \text { Rec.- } 125 \end{aligned}$	Omni	－	$\begin{aligned} & -13 \\ & \text { Rel. } \\ & 0.1 \mathrm{~V} / \mathrm{N} / \mathrm{m}^{2} \end{aligned}$	Coiled 4 fr Four con－ ductor cable		Two－way conversations \＆privacy	622	－
61 CP	Vibration Pick－up	Crystal	High	－	－	－	－	－	uired Research and	－	－
62 CP ．	Accelero－	Ceramic	High	－	－	－	－	－	Measuring low accel．	－	－
98A108A	Sound Level	Ceramis	High	Omni	－	-59.5	－	－	Sow accel． suremens．		
Spembly Electronics，Enham Arch，Newbury Road，Andover，Hants．											
Bonc Con－ duction	Contace	Var．reluc－ tance	300	－	－	$100 \mu \vee$	Twisted pair	－	－	622456 d	Solid－state in－line ampli－ fiers．
Standard Telephones \＆ables Led．，West Road，Temple Fields，Harlow，Essex．											
4136	Stu．Std． Boom Som	Capacitor	30 300	Cardioid	32	-60 -50 -54	$\begin{aligned} & 1 \text { earth } 2 \& 3 \\ & \text { signal } \end{aligned}$	$\begin{aligned} & \text { Cannon } \\ & \text { XLR } \end{aligned}$	Broadcasting	6110	
4126	Stand Boom	Capacitor	30 300 30	Cardioid	32	－84 -74 -74	$\begin{aligned} & 18 n a l \\ & 1 \& \text { signal } \\ & 3 \text { earth } \end{aligned}$	Tuchel 5 pin	Broadcasting	696	Batrery pack C19．Carry－ ing cases
4037A／C	Hand	M．C．	30	Omni	－	-76	$1 \text { erth signal }$ Earth＂G＂	STC 4069A	Broadcasting	C26	Wooden reansit case C3 17 s Wind shield C1 2 s 5 d
4021 J	Stand	M．C．	300	Omni	－	－81	$1 \% 2$ signal	STC 4069A	Measurement	620	Wooden transir case 6317 s
4105	Stand	M．C．	30	Cardioid	15	－ 83	$1 \% 2$ signal	STC 4069A	P．A．	625	4069 Ajack CI 4 s 9 d
4038	Stu．Sed． B．Sus．	Ribbon	30 300	Fig．or 8	－	-84 -76 -7		4069 A jack	Broadcasting	660	Wooden transit case
4104	N．C．	Ribbon	30 300	N．C．Fig．of 8	－	72 -62	$2 \text { conductor }+$	Flying leads	Broadcasting	675	Thin film amplifier 625
4115	$\xrightarrow{\text { P．A．／}}$	Ribbon	$\begin{aligned} & 30 \\ & 300 \end{aligned}$	N．C．Fig．of 8	－	－72 -62 -62	2 conductor + screen bal．	Flying leads	P．A．	630	Thin film amplifier $\mathbf{C 2 0}$
4112	Lavaller	M．C．	30	Omni	－	－84	2 conductor + screen bal．	Flying leads	P．A．	624	
4119	Hand	Dbl．ribbon	30 300 50 k	Hyper Cardioid	17	$\begin{array}{r} 90 \\ \quad 78 \\ -54 \end{array}$		5 pin Tuchel at mic．		629	On／of switch on 30／300 2 version El
4113	H. Sed. Sus.	Ribbon	$\begin{aligned} & 30 \\ & 50 \mathrm{k} \end{aligned}$	Cardioid Fig．of 8	15		$\begin{aligned} & 1 \& 2 \text { signal } \\ & 2 \text { earth } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 3Pin } \\ & \text { PREH } \end{aligned}$	P．A．，Amateur recording	611 11s	Stand adaptor Cl $^{\text {l }}$ los Desk stand $£ 1$ 10s
VItavox Led．，Westmoreland Road，London，N．W．9．											
B50 CN B50 CN 173 174	Hand	M．C．	25 25	Uni	二	-85 -85	＝	Lead	？		CN 168 Panel cradle
854 CN 277	Hand	M．C．	200	Uni	－	－85		Lead			CN 184 Desk cradle
854 854 854 CN 278 859	Hand	M．C．	500 10 k	Uni	二	-85 -85	－	Lead			CN 331 Lip quard
B54 CN 279 854 CN 280	Hand Hand	M．C．	${ }_{\text {cher }}^{\text {High }}$ Z	Uni	二	－85	－	Lead			
854 CN 281	Hand	M．C．	200	Uni	$=$	－85	二	Lead	Indecr P．A．		
854 CN 288	Hand	M．C．	500	Uni	－	－85		Lead			
854 CN 283	Hand	M．C．	10k	Uni	－	－ 55		Lead			
B54 CN 284	Hand	M．C．	High Z	Uni	－	－ 65	－	LeEd			
B60 CN 403	Hand	M．C．	25	Uni		－ES	＝	Lead			
860 CN 404	Hand	MC．	25	Uni	－	－25	＝	Lead			
B64 CN 417 B64 418	Hand Hand	M．C．	200 500	Uni	＝	－85 -85 -85	二	tar			
B64 CN 419	Hand	M．C．	10 k	Uni	－	－85		Lead			
B64 CN 420	Hand	M．C．	High Z	Uni	－	－85	－	Lead			CN 219 Stowage housing
864 CN 421	Hand	M．C．	200 500	Uni	二	－85	二	Lead	marine		CN 213 Stowag howing
B64 CN 422 864 CN 423	Hand Hand	M．C．	500 $10 k$	Uni	二	-85 -85	二	Lead			
B64 CN 424	Hand	M．C．	High Z	Uni	二	－85	－	Lead			
B80 CN 240	Bracket	M．C．	25	Uni	－	－85	Terminal	Lead			
M100 CN 335	5tudio	M．C．	25	Uni	－	－80	panel	Lead	weatherproof		
			200 $10 k$			$\begin{array}{r}-71 \\ -54 \\ \hline\end{array}$					
			High Z			－ 44					
Vox（Jennings Musical Industries，Ltd．，Unity House，Dartford Road，Dartford，Kent）											
VLI	Pencil $\mathrm{H} / \mathrm{Sed}$ ．	M．C．	$\begin{aligned} & 30-50 \\ & 50 \mathrm{k} \end{aligned}$	Omni	－	-76 -54	－	－	－	［1414s．	－
VL 2	Pencil H／Sed	M．C．	$30-50$ 50 k	Omni	－	-76 -54	－	－	－	f16 16s Od	－
VL 3	Stick	M．C．	30－50	Uni	18 at 4 kHz	－91	－	－			－
	H／Std．		50k		18al ${ }^{\text {kHz }}$	－58	－	－	conditions	¢1818s．	－

Seu．＝seudio，Sed．＝stand，B＝boom，N．C．＝noise cancelling，Sus．＝suspended，Sek．＝stick，H hand，P．A．＝public address

LONDON microphones

Quality sound－at low cost
The London Microphone range offers you quality microphones，good characteristics－and good looks， too，at remarkably little cost．Made in Britain．
LM 100 Dynamic Omni－directional microphone．
available in a range of impedances to suit many different input requirements including transistorised tape recorders．U．K．retail price range $£ 3 / 3 / 0$－ £3／18／6
Home and overseas trade enquiries welcome．Write or ring for details： LONDON MICROPHONE CO．LTD．
182／4 Campden Hill Road，London．W． 8 Tel：Park 0711．Telex 23894 WW－214 FOR FURTHER DETAILS

Electronics and Instrumentation

Robert L．Ramey
Provides a sound groundwork for understanding the basis of existing instruments and their applications；also of instruments which are likely to be invented in the future． A useful introduction for students of electronics，and a single course for students in other branches of science and engineering．
55s net by post 565 5d 321 pp 128 illustrations
obtainable from leading booksellers
ILIFFE Books Ltd．
DORSET HOUSE，STAMFORD STREET，LONDON，S．E．I

The Technician Engineering Scene

What are the prospects for 'non-chartered' engineers?

A strong spotlight is being thrown just now upon technician engineering manpower; recruitment, education, training, qualifications and status. Government departments, educational authorities and establishments, and industry in general, are devoting much time to these matters. Why should this be so? For many years industry has been perplexed over the "technician problem", so why only recently has it emerged as a frontline consideration?

In the electrical and electronics engineering industries there appear to be four main reasons for this:
(1) The growing concern expressed over the present shortage of technician engineering personnel, and the seemingly discouraging future recruitment prospects.
(2) The poor "image" of engineering as a career seen by school-leavers and parents.
(3) The part-time study route to corporate membership of institutions for chartered engineers having gradually been closing, soon to be blocked altogether (the I.E.E. and I.E.R.E. now setting their corporate membership standards at degree level will mean the end of H.N.C.-chartered engineers).
(4) The emergence of the concept of technician engineers and technicians as being people pursuing distinct careers of their own; with their own qualifications and status; their own qualifying bodies and learned societies.
The setting up of the Council of Engineering Institutions by 14 organizations for "professional" engineers, whose 150,000 members may now use the designatory "C.Eng." denoting a chartered engineer, has helped to bring things to a head. In our Editorial of last June, "Engineers-Professional and Technician", we drew attention to the need for recognition to be given to the status, work and qualifications of technician engineering personnel and letters subsequently received showed how much our view was shared by industry.

Until three years ago the future for nonchartered engineers, and technicians, appeared unenviable, to say the least. For many the path to chartered status was impracticable, yet often being well qualified to H.N.C. level, and having good practical experience, they were the Cinderellas of the electrical, electronics and radio industries.

Questions concerning their status, qualifications and career expectations were dealt with piecemeal: they had nowhere to go: nobody seemed to care. At the beginning of 1965, however, two new organizations for technician engineers and technicians were set up; the Society of Electronic and Radio Technicians and the Institution of Electrical and Electronics Technician Engineers each acting as a qualifying body.

These organizations hold differing views on the identification of technician engineering personnel. The I.E.E.T.E., contending that the H.N.C.-man is as much entitled to the description "engineer" as is the chartered engineer, recognizes two grades, the technician engineer and technician, but admits to membership only the first of these. The S.E.R.T. says that two classes are not required; only the technician being identifiable within the whole span of manpower between the chartered engineer and the crafisman. Both bodies have made good progress, and the qualifications derived from membership are becoming well recognized.

Last December the C.E.I., on the basis of non-commitment, called together 31 organizations wholly or partly having technician engineering grades of membership, to explore the possibility of establishing for them a common national qualification and title. On first consideration it appeared to be a hopelessly complicated business: 31 separate bodies covering a wide field of engineering interests (from agriculture to quarrying, building to lighting, automobiles to welding) and all manner of qualification standards for entry and grading of their members who total some 75,000 . However, the organizations split up into three groups thought to have like interests; each being asked to meet informally, and to offer conclusions to another C.E.I.-convened general meeting held on 23rd February. As a result of this meeting it was unanimously resolved that: "A Qualification Committee be formed to establish the qualifications of non-chartered engineers (a name to be determined) and that this Committee be formed of representatives of the bodies taking part in the discussions, together with representatives of the C.E.I., and such other members and observers as the Committee may co-opt". This resolution has now been referred back for consideration and ratification by the councils of the participating bodies.

One of the questions under discussion
has been a technician counterpart to the C.E.I. Reaction apparent so far indicales that opinion is divided on whether or not such a new body is required, though many recognize a need for unification; but some concede that if a national qualification for technician engineering people emerges from the present tangled skein of opinions and theories, then there must be an independent authority to maintain the general standards.

Against the background of all this, there have been two announcements of considerable significance: first the intention of the Engineering Industry Training Board to publish a report next Autumn on technician engineering training, and secondly the setting up by the National Advisory Council on Education for Industry and Commerce on Technician Courses and Examinations of a committee, under the chairmanship of Dr. H. L. Haslegrave, to examine the whole question of courses and examinations for technicians.

A closely related question, which undoubtedly will be examined by these bodies, is that of definitions (what is a Technician Engineer, or a Technician?): a number of attempts have been made, dating from the one* produced by the Conference of Engineering Societies of Western Europe and the United States (E.U.S.E.C.) in 1954 but, so far, none has been found fully acceptable.

The importance to industry of an adequate force of technician engineering personnel is now being "brought home" on all sides. Employers are becoming most concerned over where the trained and experienced manpower is coming from, both now and in the future. As more and more electronic and instrumentation techniques are introduced so, employers rightly say, more and more young people should be encouraged to enter technician engineering; but they realize that the sophisticated school-leavers of today will not do so unless they, their parents, and their advisors see good career prospects and status before them.

[^4]
New B.B.C. Monitoring Loudspeaker

2. Bass equalization: The cabinet: Frequency response characteristics of the units

by H. D. Harwood,* B.Sc.

IN a modern monitoring loudspeaker the choice lies in practice between two- and three-unit designs. In a two-unit loudspeaker one of the difficulties is that the high-frequency units available at present cannot be operated below approximately 1.5 kHz , so that the low-frequency unit must operate in a predictable manner up to about 2 kHz . In the past, reproducible operation of a low-frequency unit above about 500 Hz was not possible but the situation has been changed by the advent of the 305 mm plastic cone described in the March issue.

It is still difficult, however, to maintain the required frequency characteristics away from the axis of a two-unit design. At 1.5 kHz the wavelength of sound is about 220 mm and thus a 305 mm cone has a diameter considerably larger than a wavelength. It follows that the radiation will be directional at such frequencies and that even when the axial frequency characteristic is made uniform the off-axis curves will depart from this condition. On the other hand the highfrequency units used in B.B.C. monitoring loudspeakers, 58 mm in diameter, are small compared with a wavelength, and therefore nearly omnidirectional, up to about 6 kHz . The resulting axial and off-axis characteristics are typified by the curves in Fig. 10. To some extent the difference between the curves can be reduced by fitting a slot in front of the low-frequency unit, but, as will be shown later, this device is by no means wholly successful in overcoming the trouble.

The use of a three-unit system with crossover frequencies in the region of 500 Hz and 3 kHz allows these difficulties to be largely overcome, provided a suitable type of middlefrequency unit can be found. There is the extra advantage that, with a frequency range restricted to the band from 3 kHz upwards, the high-frequency unit will be able to handle a larger programme level than if it had to operate at 1.5 kHz . On the other hand an additional unit and a more expensive and elaborate crossover network are required.

Bass Equalization

In practice the axial frequency characteristics o. low-frequency loudspeaker units are not uniform. The reasons for this are that in the middle-frequency range the unit becomes directional, concentrating the sound energy increasingly in the axial direction, while at low frequencies over-damping of the bass resonance takes place, thus producing a bass cut; the resulting rise in axial response above the resonance frequency usually amounts to between 6 and 10 dB . This rise must be equalized electrically and in past B.B.C. designs, e.g. the type I.S3 1A loudspeaker, it has been carried out in the crossover network, thus enabling a standard amplifier with a

Fig.13. Response/frequency characteristics of bass-lift circuits.

Fig. 14. Circuit used for determination of acceptable distortion with bass-lift circuits.

uniform response frequency characteristic to be used. This method involves a considerable loss of power in the midband region: for example, if a 20 watt amplifier is employed and 10 dB of bass equalization is required, only 2 watts are available to drive the loudspeaker in the mid-band region.
An alternative method is to use equalization ahead of the power amplifier, but if an excessive degree of equalization is applied, over-loading of the amplifier will occur first in the bass and once again the usable mid-band power will be reduced. The question therefore arises as to whether the programme spectrum is such that it is possible to apply equalization before the amplifier without causing overloading in the bass. Experiments were accordingly designed to explore this possibility and to determine the optimum shape for the preemphasis curve. It will be seen that, in effect, the object of the experiment was to obtain the low-frequency equivalent of the high-frequency pre-emphasis employed in f.m. broadcasting.

Experimental details.-Various types of programme were examined to find those which had the highest power levels in the bass. Eleven recorded items were finally chosen, two of which were organ solos, three were light (pop) music and the remainder orchestral music, the total playing time amounting to about 13 minutes; details of the items are given in the appendix. In all cases the recording was arranged to peak to 6 on a peak programme meter, the peak occurring usually, although not necessarily, during the excerpt chosen.

The spectrum was examined by means of octave filters centred on frequencies ranging from 1 kHz down to about $50-$ Hz , the peaks in each band of frequencies being recorded by a peak counter reading in steps of 2 dB , due allowance being made for the insertion loss of the filters. Typical analyses are given in Fig. 11 and the overall peak levels for the whole range of items is plotted in Fig. 12; a smoothed curve of the peak spectrum is also shown in this figure. It will be noted that the smoothed curve passes below the point plotted for 68 Hz . This point represents a single note from a bass guitar which stood out considerably above the rest and was therefore ignored in drawing the smoothed curve as it was felt not to be representative.

Equalization was designed for the smoothed curve and for two similar but progressively more extreme conditions as shown in Fig. 13. The recordings were then replayed through the different circuits to see by how much the equalization increased the peak level of the complete programme as read on a peak programme meter; the results are given in Table 1.

TABLE 1
Effect of Bass Equalization on Peak Level of Programme

```c}\begin{array}{c}{\mathrm{ programme }}\\{\mathrm{ item }}```	peak levels on p.p. meter. (d8 above ' 6 ')			
	circuit condition (see fig. 13)			
	no bass boost	circuie ( ${ }^{\text {( }}$ )	circuit (ii)	circuit (iii)
a	-	-1 -1	$\begin{array}{r} -1 \\ 0 \end{array}$	$\begin{array}{r}-\frac{1}{2} \\ +1 \\ \hline\end{array}$
c	0	$+1$	$+2$	+3 +
d	0	0	0	+1t
$\mathrm{e}$	-14 -2	$\begin{aligned} & -2 \\ & -11 \end{aligned}$	$\begin{aligned} & -2 \\ & +1 \end{aligned}$	$\begin{aligned} & -1 \frac{1}{2} \\ & +2 \end{aligned}$
$g$	-11	$-1$	$-\frac{1}{1}$	+
h	$-3$	-3	$-3$	- 2
,	-4	-4	-4	-31
j	-2	-2	-2	$-11$
k	0	$\pm$	1 +	$\begin{array}{r}11 \\ \hline\end{array}$


(a)

(b)

Fig.15. (a) Response/frequency characteristic of unequalized low-frequency untit without slit at $0^{\circ}$ and $60^{\circ}$ to the axis. (b) Response/frequency characteristic of unequalized low-frequency unit with 100 mm slit at $0^{\circ}$ and $60^{\circ}$ to the axis.

It will be seen that the level of item (c) is increased by 1 dB even by circuit (i) and it was decided to determine whether this degree of overload at low frequencies would be audible with a typical amplifier using a considerable degree of negative feedback.

A circuit was set up as shown in Fig. 14, in which the peak clipping is arranged to occur in a separate amplifier followed by an attenuator which feeds a loudspeaker amplifier. The gain of the peak clipping amplifier was adjusted so that a 1 kHz signal of +8 dBm from the source was just clipped at the peaks. The bass-lift circuits were inserted in turn ahead of the amplifier and the programme items played through the system, allowance being made for the insertion loss of the circuits. It was found that when using circuit (iii) of Fig. 13 distortion was clearly audible on items (c) and (d), i.e. the organ passages, none being noticed on the remainder; when circuit (ii) of Fig. 13 was inserted, distortion was only just detectable on item (c) and it was therefore concluded that this degree of bass pre-emphasis is permissible. Any equalization required in excess of this must therefore be applied after the power amplifier.

## The Cabinet

Experience with the earlier B.B.C. monitoring loudspeaker type LS5/1A had shown that it had an adequate bass range. Calculations indicated that a similar range would be obtained with the new 305 mm plastic cone unit by employing a cabinet of only $0.085 \mathrm{~m}^{3}$ internal capacity, that is $60^{\circ} \%$ of the volume used for the LS5/1A.

Measurements were then made with an experimental cabinet to determine the vent resonance frequency giving the best combination of power handling capacity and frequency characteristic; this frequency was found to be 38 Hz , close to that employed for the type LS5 1A. Two types of cabinet were made, one floor-standing and the other for hanging from the ceiling, corresponding to the LS5/1A and the LS5 $2 \mathrm{~A}^{+}$respectively. The volume and front dimensions of each model were the same.
+Version designed to hang above picture monitors in television control rooms.

Use of Slit.-The next factor to be dealt with was the directivity of the units. Fig. 15 (a) shows the response on the axis and at $60^{\circ}$ from it for the unequalized bass unit in the cabinet. It will be noted that there is an appreciable difference between the two at the higher frequencies. This difference can be reduced by placing a slit in front of the unit; the diffraction from the edges of the slit will make the radiation more nearly omnidirectional in the horizontal plane. There is, however, a limitation to this device: the Helmholtz resonator formed by the mass reactance of the slit and the compliance of the air enclosed between the slit and the cone increases the output to an undesirable extent in the region of the resonance frequency, but acts as a low-pass filter above the resonance, severely reducing the output at high frequencies. The minimum slit width which could be employed without either of these two effects becoming excessive was found to be 100 mm and it would appear at first sight that this width, which amounts to only a third of a wavelength at 1 kHz , should be quite small enough for this purpose.
In the first instance the slit may be regarded as a source having uniform sound pressure all over its area, but with conditions of radiation intermediate between those for free space and those for an infinite baffle and there are three possible configurations which may be regarded as approximations to these conditions. Of these, a line source and a circular piston in a baffle may be shown ${ }^{1}$ to have directional patterns given respectively by

$$
R_{u}=\frac{\sin \left(\frac{\pi l}{\lambda} \sin a\right)}{\frac{\pi l}{\lambda} \sin \alpha}
$$

where $R_{u}$ is the sound pressure radiated at an angle $a$ between the direction of radiation and the axis, $l$ is the length of the source and $\lambda$ is the wavelength
and

$$
R_{. .}=\frac{2 \mathfrak{f}_{1}\left(\frac{2 \pi r}{\lambda} \sin \alpha\right)}{\frac{2 \pi r \sin \alpha}{\lambda}}
$$

where $r$ is the radius of the piston and $\mathcal{f}_{1}$ is a Bessel function of the first order and first kind. The directional pattern for a piston in the end of a semi-infinite pipe is more complicated ${ }^{2}$ viz.:

$$
\begin{aligned}
& R_{n}=\frac{4}{\pi \sin ^{2} a} \begin{array}{c}
\mathcal{J}_{1} k r \sin a \\
\begin{array}{c}
{\left[\left(\mathcal{F}_{1}(k r \sin a)\right)^{2}+\left(\boldsymbol{Y}_{1}(k r \sin a)\right)^{2}\right]^{3}} \\
\\
1-|\boldsymbol{R}|^{2}
\end{array}
\end{array} \\
& \exp \left[\frac{2 k r \cos \alpha}{\pi} P \times \int_{0}^{k r} \frac{x \tan -1\left(-\mathcal{Y}_{1}(x) Y_{1}(x)\right) d x}{\left[x^{2}-(k r \sin \alpha)^{2}\right]\left[x^{2}+(k r)^{2}\right]^{4}}\right] \\
& \text { where }|R|=\exp \left\{-\frac{2 k r}{\pi} \int_{0}^{k} \frac{\tan ^{-1}\left(-\mathcal{F}_{1}(x) / Y_{1}(x)\right)}{x\left[(k r)^{2}-x^{2}\right]^{!}} d x\right\}
\end{aligned}
$$

and $\mathcal{F}$ and $Y$ are real first order Bessel functions of the first and second kind respectively, according to the usual notation" and $k=2 \pi / \lambda$.

The calculated response at $60^{\circ}$ with respect to that on the axis is shown in Fig. 16 for these cases. As expected it will be noted that for slit widths up to $0.6 \lambda$ there is not much
$\dagger+$ In Reference $2 \mathrm{Y}_{1}(x)$ is denoted by $N_{1}(x)$ throughout.
difference between them (curves $(a),(b)$ and (c)), and for the proposed slit width of $\lambda / 3$ considered at 1 kHz , the mear difference between the axial and $60^{\circ}$ responses is net mort than about $1 \frac{1}{2} \mathrm{~dB}$

In contrast to this the actual frequency characteristics obtained with a 100 mm slit are shown in Fig. 15 (b). It may be observed by comparison with Fig. 15 (a) that, with the slit, the deviation from the axial response is almost unaltered up to about 700 Hz , although beyond this frequency there is an appreciable change; furthermore at 1 kHz the deviation with the slit is not $1 \frac{d}{d B}$ as calculated but nearly 6 dB . The measured deviation is replotted as curve (d) in Fig. 16 and it will be seen that it does not correspond to any of the three calculated cases.
This lack of improvement in directivity with the use of a slit was first noticed during the design of the LS5 1 A , when it was found that, reducing below 180 mm , the width of the slit in front of the 380 mm cone did not bring about a corresponding improvement in the off-axis curves.

One possible explanation which has been examined is that the distribution of energy across the slit is not uniform and the extreme case when all the energy has been concentrated at the two edges has been calculated and is shown in Fig. 16 as curve (e). Even under these conditions the directivity is not nearly as great as that experienced in practice with the low-frequency unit for small values of $d \lambda$, where $d$ is the width of the slit; furthermore, measurements show that although the pressure across the slit is not quite uniform it is actually higher in the centre by about 2 dB ; in addition the phase change across the slit is also small.
The further possibility arises that re-radiation from the edges of the cabinet might be responsible for the directivity. Taking the width of the front baffle as 350 mm , the actual values obtained for the deviation of the $60^{\circ}$ curve from the axial for the new values of $d / \lambda$ are plotted as crosses in Fig. 16. It will be seen that in fact the agreement with the theoretical curves is quite goed up to a value of $d / \lambda$ of 0.75 after


Fig. 16 Deviation of $60^{\circ}$ characteristics from axial characteristics for differing types of source: (a) line source (calculated); (b) piston source in infinite plane (calculated); (c) piston source at end of pipe (calculated); (d) measured values obtained with slit on low-frequency unit; (e) sound pressure concentrated at edges of slit (calculated); (f) measured values taking d asfront of cabinet.

Fig.17. Response/frequency characteristics of 110 mm diameter middle/ frequency unit at $1^{\circ}$ and $60^{\circ}$ to the axis.

which the loudspeaker is less directional. This value of $d / \lambda$ corresponds to a frequency of about 700 Hz , the frequency above which it was observed that the slit has an appreciable effect.

It appears therefore that up to $700 \mathrm{~Hz}^{* *}$ the directivity is largely determined by the width of the cabinet but that above this frequency the width of the slit plays a large part. That it does not fully determine the directivity even then is shown by the fact that the upper part of curve (d) of Fig. 16 does not lie in the region of the calculated curves. This discrepancy is further emphasized by the fact that in the final design the smaller middle-frequency unit employs the same width of slit, 100 mm , in the same baffle, yet the deviation of the $60^{\circ}$ curve from the axial curve at 1 kHz is different from that of the low-frequency unit, the value being 3 dB closer to the theoretical figure. Unexpectedly it appears therefore as though the size of the unit still affects the directional properties in spite of the slit and the exact mechanism accounting for the directivity for the values of $d \lambda$ greater than 0.75 is obscure.

## Details of units

As already mentioned, the bass unit employed is the 305 mm plastic cone unit described last month. A chassis with a more powerful magnet is now available and an increase in sensitivity of about 2 dB is thus possible. Further experience with the unit revealed a slight colouration in the 1.5 kHz region, and this is accentuated with a later material manufactured as a replacement for the type of Bextrene formerly used. It is however completely removed by painting the cone with a layer of polyvinyl acetate damping compound known as Plastiflex type 1200 P , even though this treatment does not cause any appreciable change in the frequency response. (The effect on colouration can easily be demonstrated by applying pink noise (i.e. random noise with equal power per octave) to the unit in a free-field room and making a tape recording of the output before and after painting the cone. The two conditions can then be compared sequentially and the improvement obtained by the treatment is evident.)

In spite of the use of the vent mentioned earlier some electrical low-frequency equalization is also necessary. As explained previously, it is best to apply this equalization mainly as pre-emphasis ahead of the power amplifier and to introduce the remainder in the crossover network. It is expected that, as with the LS5/2A loudspeaker, a further bass lift, amounting to about 3 dB at 40 Hz over that required for the floor-standing model, will be required for the hanging model, and this lift also is conveniently applied ahead of the amplifier. It will be seen from curve (ii) of Fig. 13 that this leaves about 4 dB available for the floor-standing model before the permissible amount of pre-emphasis is exceeded.

The frequency characteristics of the bass unit on the axis and at $60^{\circ}$ from it are those already shown in Fig. 15 (b).
Middle-Frequency Units.-No satisfactory commerciallyproduced middle-frequency unit is available, but at the time when the new loudspeakers were commissioned experiments on a 110 mm diameter unit were already proceeding in the B.B.C. Research Department. This unit used a 25.4 mm voice coil and a flared cone of Bextrene type 237, 0.4 mm thick, together with a surround made of p.v.c. 0.5 mm thick. The

[^5]

Fig.18. Response/frequency characteristic of 200 mm diameter middlefrequency unit without slit at $1^{\circ}$ and $60^{\circ}$ to the axis.

Fig.19. Response/frequency characteristics of 200 mm diameter niddlefrequency unit with 100 mm slit at $0^{\circ}$ and $60^{\circ}$ to the axis.

bass resonance, at about 400 Hz , was well damped, the intention being to employ this unit over the frequency range 450 Hz to 3.5 kHz . The frequency characteristics on the axis and at $60^{\circ}$ from it are shown in Fig. 17, and it will be seen that over the required frequency range the two are smooth and nearly parallel. Listening tests, however, showed a noticeable colouration in the 1.5 kHz region and choppedtone tests were therefore applied. In the region 1.2 kHz to 1.7 kHz these tests revealed three resonances with $Q$-factors of the order of 500 , some 40 dB below the steady-state condition. If in phase with the steady-state condition, these resonances represent irregularities of no more than 0.1 dB on the axial curve and can only therefore be measured by chopped-tone techniques. It was however shown that the application of a layer of Plastiflex type 1200P damping compound to both sides of the cone reduced the resonances to a marked extent; furthermore, the use of pink noise and the recording technique mentioned for the bass unit demonstrated a great improvement in the reproduction and the colouration was reduced to a very low level.

The sensitivity of the 110 mm unit is comparable with that of the bass unit described last month, but there is a growing demand for even greater sound levels from monitoring loudspeakers; whereas the sensitivity of the low-frequency unit could be increased, that of this middle-frequency unit could not, and it was therefore decided to make a 200 mm diameter unit of increased sensitivity as an alternative design.

The cone of the 200 mm unit is made from 0.4 mm thick Bextrene type 730 and, as with the 110 mm diameter unit, employs a surround of 0.5 mm thick p.v.c. The experience obtained in the design of the surround of the 305 mm unit was applied to this unit and in addition a heavily flared cone was used. The bass resonance frequency in free air is about 50 Hz , but to avoid reaction with the cabinet vent resonance the rear of the unit is confined in a small enclosure. The resulting frequency characteristics on axis and at 60 are shown in Fig. 18; with this unit the operational frequency range is 400 Hz to 3.5 kHz . It will be seen that the axial frequency characteristic over this range is smooth, but that the $60^{\circ}$ response diverges from it. As mentioned earlier a slit of 100 mm width is used to effect an improvement in this respect; the resulting characteristics are shown in Fig. 19. The cone was coated on both sides with Plastiflex 1200P to reduce slight colouration in the 2 kHz region and in this


Fig.20. Response/ frequency characteristics of high fux density 58 mm high-frequency unit at $0^{\circ}$ and $60^{\circ}$ to the axis.
regard listening tests show that the reproduction from the coated unit is remarkably " clean."

High-Frequency Units.-The 58 mm high-frequency unit employed in the LS5/1A has a smooth response/frequency characteristic and has proved to be very repeatable in production. At the request of the B.B.C. a further model has been produced employing the same diaphragm, and therefore having similar frequency characteristics, but with a stronger magnet giving an increase in sensitivity of nearly 2 dB .

A horn-loaded unit designed for the high fidelity market was also examined but was found to be inferior to the 58 mm unit mentioned above. A larger direct radiator was also tested and although this had a more extended axial frequency range than the 58 mm unit, the corresponding response curve was not so smooth and the increased size made the unit appreciably more directional at high frequencies.

The frequency characteristics of the improved but unequalized 58 mm unit mounted in the cabinet are shown in Fig. 20 at $0^{\circ}$ and $60^{\circ}$ to the axis.

With the units available three designs were possible. Design A was similar to the type LS5/1A construction and employed the plastic cone 305 mm unit and two of the 58 mm units; type B used the 305 mm unit for the bass, the 200 mm unit for the middle frequencies and a single 58 mm improved unit for the high frequencies; type C was similar to type B but used the 110 mm unit for the middle-frequency range. As it was nor possible to determine from a study of the units which would give the best reproduction it was decided to build a prototype of each and carry out final listening tests. The characteristics of the three designs will be discussed in the final part of the article next month.

## References

1. "Acoustical Engineering" by H. F. Olson, pp. 36 and 44. Van Nostrand, New York (1957).
2. H. Levine and J. Schwinger. Physical Reziew, 73, No. 4, 1948, pp. 383-406.

## APPENDIX

Musical Excerpts used for the Experiment on Bass
Equalization

Item No.	Title	Type of Music	Length of Excerpt
-	Götterdämmerung (Wagner)	Orchestral	35 sec
$b$	Schwanda (Weinberger)	Orchestral	55 sec
c	Prelude in G (Pierné)	Organ	1 min 41 sec
d	Fiat Lux (Dubois)	Organ	1 min 30 sec
e	The Gee Men (Swinger from Seville)	Saturday Club (pop)	1 min 41 sec
$f$	Billy J. Kramer with Dakotas	Saturday Club	1 min 12 sec
		(pop)	
g	Billy J. Kramer with Dakotas (We're doing fine)	Saturday Club (pop)	1 min 30 sec
h	Mars from Planets Suite (Hoist)	Orchestral	52 sec
!	Mars from Planets Suite (Holst)	Orchestral	25 sec
i	Jupiter from Planets Suite (Holst)	Orchestral	51 sec
k	Overture: Scapino (Walton)	Orchestral	$1 \mathrm{~min} 30 \mathrm{sec}$

## Electret Microphone

A capacitor microphone with a permanent electric charge built in has been developed as an experimental telephone transmitter by Northern Electric Laboratories of Ottawa, Canada. In conventional capacitor microphones the charge is, of course, produced by some kind of voltage source, but in this new transducer it is provided by an electret-that is a dielectric material to which a permanent electric charge has been applied during manufacture. (Electrets can be considered as electrostatic analogues of permanent magnets.) Here the electret takes the form of a $7.6 \mu \mathrm{~m}$ film of a granular polycarbonate material (the capacitor dielectric) metallized on one side with a $0.89 \mu \mathrm{~m}$ layer of gold (one plate of the capacitor). In the microphone this metallized film is placed with its insulating side in contact with the roughened surface of a rigid perforated backplate, which forms the other plate of the capacitor. The film has just enough tension to prevent wrinkles. Thus, when the air pressure on this diaphragm is varied the capacitance is changed and, since the charge is constant and $V=Q / C$, there is a corresponding variation of voltage across the capacitor-the output signal.

The transducer is a high impedance device, so its output is matched to the low impedance of the telephone line, and at the same time amplified, by a 20 dB solid-state pre-amplifier built into the microphone.

One advantage of this technique, regarding its application to telephones is, of course, that no voltage generator is needed for the capacitor microphone. And, because electrets can be made from very thin dielectric films, a higher capacitance per unit area than with conventional capacitor microphones is possible. The rate of decay of the charge is very slow, and the developers say that measurements at temperatures ranging from $90^{\circ} \mathrm{C}$ to $170^{\circ} \mathrm{C}$ have indicated that an electret life in excess of 100 years can be expected at normal temperatures. As a competitor to the carbon microphone used in telephones, the experimental microphone has the advantage, according to Northern Electric, that the built-in pre-amplifier requires less current than a carbon transducer.

Construction of the electret microphone.


# Protecting Meters with Semiconductors 

# A selection of simple circuits using transistors or diodes to protect moving-coil meters from electrical overloads 

'by T. D. Towers*, M.B.E., M.I.E.E.

$\mathbf{M}$OVING-COIL meters are expensive. They are easily damaged by accidental current overload from such things as wiong circuit connections, component failures or test prods slipping. An unprotected meter may not actually burn out on overload; it may end up with a bent pointer or, even worse, it may show no visible damage but have a gross reading error.

Modern semiconductors make it easy and cheap to protect your meters against current overloads. So much so, that in well run labs nowadays it is becoming the rule to fit to any meter, before putting it into service, a protection circuir similar to those to be described. It is simple insurance. A diode costing less than 2 s can protect a meter costing several pounds.
Moving-coil meter characteristics.-A moving-coil meter is a coil of very fine wire (down to 0.001 in. dia., 50 s.w.g.) which is suspended in the field of a strong permanent magnet and balanced on a pivot. In measurements, current passes through the coil and deflects it against the reaction of a spring. A pointer or "needle", affixed to the coil, indicates the magnitude of the current by the position it takes up over the scale. The coil, pivot, spring and pointer can each be damaged by current overload.

A meter coil must have some resistance and, at full scale deflection, the volt age drop across it usually lies somewhere in the range of $30-300 \mathrm{mV}$. Very exceptionally, values as low as 5 mV or as high as 500 mV may be met with. For ordinary, general-purpose meters used in laboratories you will find a 1 mA meter has somerhing like a 75 -ohm coil resistance (i.e. 75 mV f.s.d. voltage drop), a $100 \mu \mathrm{~A}$ meter 1,250 ohms ( 125 mV f.s.d.) and a $50 \mu \mathrm{~A}$ meter 2,500 ohms ( 125 mV f.s.d.). Typical of this is the Avometer 8 with 125 mV f.s.d. in its lowest, $50 \mu \mathrm{Af}$.s.d., range.
Overload current limits.-Meter failures can arise either from extremely high current pulses of short duration or from continuous high overloads. The short pulse rotates the moving-coil assembly so violently that the assembly or the pointer is damaged. The continuous overload leads to overheating under which the restoring spring or the fine coil wire melts and opens up like a fuse wire.

How much overload can you apply to a meter without materially affecting its accu-

[^6]racy? Little information has been published on this subject. One authority found an overload of $140-225$ times f.s.d. necessary to bend the pointer detectably in sample microammeters. I am nor aware of any commonly agreed acceprable overload limit. My own practice, based on years of sometimes-bitter experience, is to try to keep meter currents down to less than $20 \times$ f.s.d. value.

For typical $75 \mathrm{mV}, 1 \mathrm{~mA}$ meters, this " 20 $\times$ f.s.d. current" overload limit sets a maximum of 1.5 V permissible across the meter terminals. A good rule of thumb is thus: "Never let meter terminals see more than a volt."
Basic meter protection methods.-In essence you can shunt-or series-protect a meter. In shunt-protection you connect across its terminals an element that passes negligible turrent while the needle is on scale, and bypasses most of the excess current when the meter tries to travel off scale. In series-protection you fit in one lead to the meter an element which passes current up to the meter limit with negligible voltage drop, but presents a high resistance to excess currents. Of course, there is nothing to prevent you using both methods together in "belt-and-braces style".

## Shunt-Protection Circuits

A simple, cheap and effective way to protect a moving-coil meter against reasonable electrical overloads is to connect a semiconductor diode across its terminals, polarized as indicated in Fig. 1(a). When the meter is used to read current, the voltage drop across its coil forward biases the diode. Diodes can be selected whose forward current is negligible compared with the meter current up to the f.s.d. voltage of the meter $(30-150 \mathrm{mV}$ as noted above). Beyond full-scale the meter current continues to increase linearly with voltage, but the bleeder current through the diode increases exponentially. Thus the diode safely shunts more and more of the applied current progressively away from the meter coil.
Shunt diode selection.-In the days before transistors, meter protection diodes were


Fig. 1 Forward-biased diode shunt protection of moving-coil meter movements:-(a) singlediode for forward overload; (b) double-diode (for forward or reverse overload); (c) transistor collecior-base junction as diode; (d) transisior emitter-base as diode; and (e) transistor with collector and base strapped together.
usually copper-oxide or selenium rectifiers, whose basic leakage currents were too high for low-current meters. Nowadays, germanium and silicon diodes, with their intrinsic low leakage currents, can be used with even the most sensitive microammeters.

In modern silicon and germanium small diodes, the forward current, If, rises with voltage, $V_{f}$, roughly as shown in the table. This shows that germanium can give better overload protection than silicon. For example, when the voltage across the meter coil builds up to 0.45 V , a germanium shunt diode will bleed off 10 mA , but a silicon one only $10 \mu \mathrm{~A}$. Again on 100 mA overload, the voltage across the meter will be 0.55 V with germanium against 0.85 V for silicon.

On the other hand, on scale the higher leakage current of the germanium shunt diode is liable to give a greater error than silicon, particularly with sensitive, highresistance microammeters. In a $50 \mu \mathrm{~A}$ meter with 125 mV f.s.d., at $10 \mu \mathrm{~A}$ reading the voltage drop across the meter terminals would be 12.5 mV . At this level, the germanium diode could have about $1 \mu \mathrm{~A}$ leakage, significantly affecting the $10 \mu \mathrm{~A}$ reading. By

V.	0.05	0.10	0.15	0.25	0.35	0.45	0.55	0.65	0.75	0.85 V
Ir (S i)	0.00001	0.00001	0.00001	0.0001	0.001	0.01	0.1	1.0	10.0	100.0 mA
If (Ge)	0.001	0.001	0.01	0.1	1.0	10.0	100.0	-	-	-mA

contrast, the silicon diode would pass only $10 \mathrm{nA}(0.01 \mu \mathrm{~A})$ and would produce no visible error. With less sensitive meters, such as standard 1 mA movements, it is usually immaterial whether you use germanium or silicon.

Diode data sheets are oddly uninformative about forward currents at voltages below 250 mV . When you are contemplating using a shunt protection diode, you might go to the trouble of measuring the low voltage characteristics if you had suitable equipment, but this is hardly worth while. The practical answer is to pass about $1 / 10$ th full scale current through your meter and see whether the reading changes perceptibly when you connect the diode across it. Then increase to f.s.d. current and check once again by connecting and disconnecting the diode.

For any given forward voltage, the diode current rises with temperature. For most lab. requirements where meters are normally used near room temperature, generally this can be ignored. Typical readily available diodes used for simple shunt meter protection are OA81 germanium and 1 N 914 silicon.

## Shunt protection against reverse over-

 loads.-The simple diode circuit of Fig. 1(a) protects the meter only against forward overloads. It is equally important to protect against reverse overloads. You can do this quite simply by paralleling the first diode with a second diode oppositely polarized as shown in Fig. 1(b). This is just as important with a left-hand zero meter (where a reverse overload only drives the needle a short distance to the stop) as it is with a centre-zero meter (where overload in either direction drives full across the scale to the stop).Transistors as shunt protection diodes.Silicon transistors are now nearly as cheap as diodes and more plentiful around the bench, so engineers sometimes use one of the junctions in a transistor as a diode. Fig. 1(c) shows the collector-base junction of the pop-


Fig. 2 Reverse-biased "breakdown" diode meter shunt protection:-(a) low-voltage Zener diode; and (b) emitter-base diode of diffused transistor.
Fig. 3 Series current limiting elements protecting meter against overloads:-(a) reverse-biased large-junction-area germanium rectifier; (b) Base-open-circuit high-gain germanium power transistor; (c) n-channel f.e.t.; and (d) $p$-channel f.e.t.

ular BC 108 used as a subsititute for the diode of Fig. 1(a). In Fig. 1(d) the emitter-base junction is used. These substitutes are useful when you have some reject transistors to hand.

Another arrangement sometimes adopted is the "tridode" connection of a transistor shown in Fig. 1(e). Here the collector and base are strapped together and the emitterbase junction used. This has the advantage that the device has a lower voltage drop at high current than the emitter-base diode on its own.
"Breakdown" (Zener) shunt diodes.-So far, we have looked at forward-biased diode shunt protection circuits. But it is also possible to use reverse-biased shunt diodes.

In Fig. 2(a) a Zener diode is shown shunted across a meter. When the forward voltage across the meter is below the Zener breakdown voltage there is negligible leakage through the diode. When the meter voltage exceeds the Zener voltage most of the overload current is shunted away from the meter through the Zener. The main practical difficulty of this circuit is that Zeners working at less than about 3 V are unusual and expensive.

To get round this, I use the emitter-base junction of a p-n-p germanium post-alloy-diffused v.h.f. transistor such as the NKT677F or AF117, whose emitter breakdown voltage is usually between 1 and 1.5 V . The circuit is shown in Fig. 2(b). The emitter breakdown characteristic is very similar to a Zener diode, but at a lower voltage.

Using a Zener or a reverse-biased transistor emitter junction for meter protection has an additional advantage. In the earlier shuntdiode protection, a second oppositely polarized shunt diode had to be used to protect against reverse overloads. With the Zener, or Zenersubstitute, if a reverse current is applied to the meter, the device acts as a conventional forward biased shunt protection diode. Therefore the one element provides both forward and reverse overload shunt protection.

## Series Protection Circuits

The shunt protection circuits dealt with so far present to the meter a high resistance at shunt at low voltage and low resistance at high voltages. An alternative approach is to use a series element which presents a low resistance at low current and high resistance at high current. There are a number of ways of doing this.

Simple series diode meter protection.Fig. 3(a) shows a simple and effective meter protection circuit I have used for years in transistor test instruments where a high voltage can fall directly on a current meter if the transistor under test fails. This uses a large-area germanium power diode junction with a high reverse saturation current. Arranged in the reverse-biased direction in series with the meter as shown, the diode acts like a low resistance up to about 1 V . Thereafter the diode current begins to saturate and remains relatively constant as the applied voltage increases. The main difficulty in using this circuit is to find a suitable diode whose saturation current is about ten times the f.s.d. current of the meter to be protected.

Working in a transistor factory, I get round this by selecting a very high-gain power transistor such as the NKT405 and connecting it with base open circuit in series with the meter as shown in Fig. 3(b). Up to 60 V the leakage current of the 405 lies in the mA region, so that it is adequate to protect standard 25 to $100 \mu \mathrm{~A}$ meters.

You are probably not lucky enough to have a transistor factory at your back, and may be forced to turn to one of the f.e.t. current limiting series circuits described below.
Simple f.e.t series meter protection.-If the source and gate of an f.e.t. transistor are strapped together, the output currentvoltage characteristics are such that up to near the pinch-off voltage, $V_{P}$ it acts like a simple resistance. Above $V_{P}$ it acts like a constant current device up to the drain breakdown voltage. These quasi-pentode characteristics are most useful, particularly nowadays, when with low $V_{P}$ and low series resistance, $r$ ds, are readily available.

Fig. 3(c) shows an n-channel f.e.t. (with its gate and source strapped) in series with the meter to be protected. Fig. 3(d) shows a similar arrangement for a p-channel f.e.t. In the second case you will note that the source connection is to the right instead of to the left.

The characteristic requirements for such series-protection f.e.ts are that the pinch-off voltage should be less than 1 V and the Inss approximately ten times the meter f.s.d. current. The higher the drain voltage rating the better, because the f.e.t. protects the meter only up to the rated drain voltage. As an example, to protect a $25 \mu \mathrm{~A}$ meter, I use an NKT0213 n-channel f.e.t. (IDss $=200-600$ $\mu \mathrm{A}$ and $V_{P}=1 \mathrm{~V}$ typical). With this protection I have been able to connect the meter directly across $12-\mathrm{V}$ car battery terminals without damage.
Multiple series element protection.-In the case of diode or f.e.t. series circuits above, if you wish to protect against reverse overloads, you can add another diode or f.e.t. in series with the first but with opposite polarization. This corresponds to adding an oppo-site-polarity device in parallel in shunt protection circuits.

For one-way protection, other multiple series element arrangements are possible. Fig. 4(a) shows as f.e.t. with an adjustable resistance in the source lead by which you can preset the limiting current in the f.e.t instead of having to select a suitable f.e.t. with the right $I_{D D s}$.

Fig. 4(b) shows an arrangement of a transistor biased in a constant current mode by means of a battery which fixes the emitter current to a constant value given approximately by the battery voltage divided by the emitter resistance, always provided that the collectorbase voltage is more than a fraction of a volt positive. As soon, therefore, as the total voltage across the circuit exceeds $V_{\text {ref }}$ by about 250 mV , the emitter (and therefore the meter) current limits to $V_{\text {nef }} / R_{\text {e }}$. For a sensitive $25 \mu \mathrm{~A}$ meter movement, for example, a 1 V mercury cell can be used limiting the emitter current to around $200 \mu \mathrm{~A}$. If this is done, the drain on the battery is so low that no on/off switch need be provided. A practical multirange circuit using the above technique was described in "Meter Protection Circuit"


Fig. 4 Multiple series element protection cir-cuits:-(a) f.e.t. with preset Ios; and (b) fixedbiastransistor.

Fig. 5 Voltmeter protection circuits:-(a) Zener inserted im multiplier resistance; (b) basic transistor protection circuit; (c) pen recorder basic protection circuit using ap-n-p Ge-alloy transistor; and (d) pen recorder practical protection circuit.

by A. A. Mangieri in Electronics WOorld, January, 1965, p. 48.

## Voltmeter Protection Circuits

So far we have been looking at semiconductor protection circuits for a moving-coil meter where it is used to measure current. Frequent$1 y$, however, meters are used to measure voltage by inserting a multiplier resistance in series with the meter. Several arrangements are possible to protect a voltmeter additional to the circuits described above for the movingcoil meter on its own. In essence, in these we take the series multiplier resistor and split
it to insert some protection device at the junction of the two resistors.

Zener voltmeter protection.-One example of this is shown in Fig. 5(a) where the series resistor is made up of $R_{S I}, R_{S 2}$, and a Zener is connected from their common point to the negative meter terminal. The necessary resistance and Zener values can be calculated quite simply. Firstly $R_{s l}+R_{s 2}=E_{M} / I_{M}-$ $R_{M}$, where $E_{M}=$ f.s.d. voltage to be measured, $I_{M}=$ f.s.d. current of the meter and $R_{M}=$ meter coil resistance. Select a Zener of approximately $E_{M}$ breakdown voltage. Make $R_{s 2}$ approximately $20 \%$ of $R_{s t}+R_{s 2}$. This will mean that when the voltage applied to the voltmeter is more than about $25 \%$ above the voltmeter f.s.d. voltage, the Zener will begin to conduct and limit the current through the meter to some $25 \%$ above its f.s.d. value. Of course, when the meter is used without a series multiplier resistor in the lowest voltage range of the voltmeter (e.g. 125 mV in the $50 \mu \mathrm{~A}$ range of the Avo 8), this method of protection cannot be used as it clearly depends on having a multiplier resistance that can be split to insert the Zener.

Transistor voltmeter protection.-Fig. 5 (b) shows another voltmeter protection circuit that I use which depends on the fact that a silicon transistor does not begin to conduct until its base-emitter voltage approaches 500 mV . Here again $R_{s 1}+R_{s 2}$ represents the voltmeter series-multiplier resistance whose total value is fixed as in the prewious example. The individual resistor values are chosen so that the voltage across $R_{S I}$ is about 400 mV for the f.s.d. meter current. Beyond this current, the BC108 transistor is biased more and more fully on and and shunts off most of the excess current away from the meter movement on an overload.

An interesting meter protection arrangement used by Yates for pen recorder protection is shown in Fig. 5(c). In this the base of the transistor, whose collector and emitter are placed across the recorder terminals, is held at a small positive voltage. So long as the f.s.d. voltage of the recorder is not exceeded, the base-emitter junction of the transistor is reverse biased and the transistor is cut off. When the positive terminal of the recorder rises above this threshold voltage, the transistor begins to conduct and bypass excess current away from the movement. In Fig. 5 (d) the arrangement is shown fitted as a protective measure to a common type of pen recorder valve drive circuit.

## Miscellaneous Matters

The various protective circuits have been shown above in circuit diagram form, but there are some practical points to be considered.

Mounting meter protection circuits.With modern semiconductors, the devices are so small that in the case of passive networks (with no separate power supplies required) the circuits can be easily fitted permanently inside the meter case. An alternative is to mount them on a small printed circuit board with holes to fit the meter terminal spacings, so that the board can merely be slipped over
the terminal screws and bolted into place. Another approach is to "pot" the elements in some compound leaving only the two meter lead wires exposed. In the case of the commonest protection circuit, two parallelled opposite-polarity shunt diodes, "potting" can consist merely of strapping the two diodes together with Sellotape and twisting the leads together.

Other protection methods.-All or any of the various circuits described earlier can be used singly or together. However, they can all fail in the end if a sufficiently high voltage overload is applied. The only sure way of fail-safe protection is to incorporate either a mechanical cut-out or a fuse in series with the meter. Unfortunately, it is difficult to find readily available fuses below about 60 mA , but, provided a shunt diode is used across the meter with such a fuse, it can be most effective.

If you wish to go into more detail on semiconductor meter protection circuitry, you will find much relevant material in the following references:
"How to Specify Panel Meters" by A. D. Stephens, International Electronics, July, 1966, pp. 26-32.
"An Overload Protection Circuit" (Pen Recorder) by C. G. Yates, Electronic Engineering, March, 1960, pp. 172-173.
"Meter Overload Protection" (with metal rectifiers) by J. de Gruchy Wireless World, September, 1953, pp. 425-427 and December, 1953, p. 582, and by T. H. Francis, Wireless World, November, 1953, p. 529.
"Meter Protection-Design and Performance of Fine Wire Fuses" by F. R. W. Strafford, Wireless World, February, 1953, pp.90-92.

## Books Received

Precision Electronics by G. Klein and J. J. Zaalberg van Zelst (from the Philips Technical Library). The reader is presented with the basic principles of electronics design and with a number of worked examples. The most common components, methods of calculation and basic circuits in electroniics are described and general principles and methods are dealt with, particular attention being given to the limits in the design of electronic measuring equipment. Pp. 466. Price 138s. Macmillan \& Co. Lid., Little Essex Street, London W.C.2.

Electrical and Electronic Trader Year Book, prepared in collaboration with the staff of our sister journal Electrical and Electronic Trader. All sections of this, the thirty-ninth edition of the year book, have been revised and brought up to date and provide a wealth of information for all in the radio, television and domestic electrical fields. The first section of the book gives principal trade organization addresses, licence details, legal information, addresses of electricity boards, intermediate frequencies of commercial receivers, a comprehensive guide to the field strengths of f.m. and television transmissions and much other information. Other sections separately cover valve base diagrams, trade addresses and telephone numbers and the manufacturer's or agent's names of proprietary equipments and components. The technical literature section contains an index of all the Trader Service Sheets available and brief details of the contents of about 250 books are given. Other sections include classified buyers' guides for components and domestic radio, televison and electrical equipment. Pp. 495. Price 35 s . lliffe Technical Pub lications Ltd., Dorset House, Stamford Street, London, S.E. 1 .

# Letters to the Editor 

The Editor does not necessarily endorse opinions expressed by his correspondents

## "Portable 1-MHz Frequency Standard"

The recent article by $L$. Nelson-Jones (February issue) has been studied with interest. Although the instrument described is a useful one, its performance could perhaps be improved with the consideration of several factors.

In the receiver circuitry itself, limiting is used to "remove residual modulation". This, in fact, cannot be done generally. No matter how much one limits, one retains an amplitude-limited function which will have a time-varying nature due to the amplitude modulation imposed upon the original carrier. For that matter, amplitude variations in the entire signal due to variable propagation factors will also exhibit much the same effect. The time variation of the cyclic function after limiting can only approach zero if the points in time when the waveform first limits symmetrically approach the time when the value of the original function is zero. This may be seen in Fig. A.

The time-response of a phase-locked loop-particularly one in which a quartz resonator is included-is not, in fact, arbitrarily small due to the narrow bandwidth of the piezoelectric element.

The precise behaviour of an arbitrarilydefined phase-locked system is not generally known; in any case, an approximate analysis would involve many pages. However, this is not to say one cannot combine the rudiments of servomechanism theory and quartz resonator behaviour to a useful end.

The oscillator used in the standard described is a Colpitts type, with the typical inductor replaced by a quartz resonator and its associated series tuning capacitor. One could therefore argue that the resonator is operating in a quasi-parallel mode. However, using conventional circuit theory, the resonator and its associated circuitr may be represented as a series equivalent circuit as shown in Fig. B, where $L . R_{s}$, and $C_{c}$ represent the time-invariant elements in the oscillator circuitry and $C_{T}$ represents the time-variable tuning capacitor. Since the crystal $Q$ is very high and its series motional arm capacitance is very small, it is in keeping with an approximate analysis to assume the values of $L_{c}$ and $C_{c}$ are within perhaps an order of magnitude of the resonator values alone.

The resonant angular frequency may be shown to be

$$
\begin{equation*}
\omega_{0}=\left[\frac{1 / C_{c}+1 / C_{T}}{L_{c}}\right]^{\frac{1}{2}} \tag{}
\end{equation*}
$$

To examine the time response of the circuit to a time variation in the value of $C_{r}$, it is, of course, only necessary to partially differentiate the frequency expression with respect to time. Considering $C_{T}$ the only component which has a time-variable value, then

$$
\frac{\partial \omega}{\partial t}=-\left[\frac{1}{2 \omega_{\circ} L_{\mathrm{C}} C_{T^{2}}}\right] \frac{\partial C_{T}}{\partial t \ldots \ldots .(2)}
$$

The condition for the change in angular frequency with time to be a function of only slow changes in the value of $C_{T}$ is that the constant term be very small; certainly less than 1 . This implies that the denominator is large. For a circuit dominated by a high $Q$ resonator with a very large $L_{c} / C_{c}$ ratio, the demoninator is, in fact, very small. In the case under consideration here, perhaps $10^{-16}$ or so, depending on the crystal, is a realistic figure. Hence the rate of change of angular frequency is not only considerable for a corresponding change in tuning capacitance, but what is most important of all, directly proportional to the rate of change of tuning capacitance.

The application of this analysis here establishes that the quartz resonator will not, in fact, remove much of the time-


Fig. A. Condition for elimination of a.m. effects.

Fig. B. Oscillator equivalent circuit

varying component of the locking signal fed to the tuning element in the oscillator.

Philosophically, this is what one would expect; the quartz resonator, when held at a fixed frequency and presented with an input of varying frequency, will remove much of the time-varying components of the waveform (they may be regarded as sidebands which are "filtered out"). However, when the quartz resonator is placed in a circuit with a varying reactive component, the entire oscillatory circuit surely can be only as stable as the most unstable element.

If one considers the d.c. amplifier portion of the phase-lock loop one may deduce the open-loop time constant to be of the order of five to fifteen milliseconds; thus, when the loop is closed, if the gain is sufficient and the transfer function of the time-variable capacitor allows, the crystal resonator will be subject to perturbations in its frequency at a maximum rate of, say, rather more than five or ten hertz and to an extent determined by the capacitor.

The suggestion that this does, in fact, happen is reflected in the performance of the unit. The author quotes, during the condition of phase lock, a short-term stability (one second) of less than one part per million. In fact, a crystal resonator alone should, if placed in an oscillatory circuit with perhaps drive not exceeding five microwatts or so, exhibit a figure of the order of 0.01 part per million.

It is perhaps a pity that Mr. NelsonJones did not include a simple filter in the receiver portion of the device to remove the sidebands which, when present, perturb the frequency of the phase-lock loop. The device, however, achieves a most useful end in that the output has a long-term stability which is roughly that of the received signal. - A similar device was constructed here a year or so ago; it uses an $L C$ oscillator locked to Droitwich via a $\pm 5$ hertz bandwidth receiver. Its short-term stability (one second) is less than 0.01 part per million.
Mid-Essex Technical College,
Lewis E. Schnurr Chelmsford.

## The author replies:

I agree with much of what Mr. Schnurr has said, and indeed it is mostly in accord with my own understanding of the operation of the type of circuit described.

With regard to the ability of the crystal resonator to reject sideband interference in such a phase-lock loop system, I would agree that the degree of filtering is much less than would be expected from consideration of the crystal response bandwidth alone.

I think it is important to define the time scale within which one is speaking when talking about accuracies with this type of instrument, for instance, if one were to consider the pulse-to-pulse accuracy then the time scale would be $1 \mu \mathrm{~s}$, and say a $10-\mathrm{ns}$ shift of a single pulse would represent an accuracy of only 1 in 100 parts. However, such a shift of a single pulse in a period of 1 second would represent an accuracy of 1 in $10^{8}$. It is therefore true that Mr . Schnurr's mathematical treatment may
how an instantaneous frequency shift of nany Hz , but averaged over $10^{6}$ or more :ycles this may not represent any great :rror as measured say on a digital frequency neter.

Assuming that limiting is taking place is shown in Fig. 4 of my article (Fig. A of Mr. Schnurr's letter), the sampling pulse will stay within the time duration of the ise time of the trapezium waveform if _phase lock is to be retained. In fact the pulse does stay within this time interval in practice despite residual modulation. The total rise time of this waveform is approximately $1 \mu \mathrm{~s}$; therefore the maximum error that can occur in one second is 1 part in $10^{6}$.

I agree with Mr. Schnurr that a very narrow band filter would achieve the desired effect if placed in the receiving chain, but I would not agree that such filters are necessarily simple (or cheap) if a bandwidth of only a few Hz is to be obtained at 200 kHz . The suggested modification shown in Fig. 6 of my article achieves the same end, since it increases the time constant of the phase-lock loop from a few milliseconds to around 1 second. With such a long time constant the phase-lock loop is not disturbed by frequencies above 1 to 2 Hz .

As I said in the article it is not possible to achieve automatic phase lock with a long time constant when switching on, so that it is necessary to switch this extra capacitor i into circuit after the phase lock is established.

The only comparable commercial equipment to my own uses a phase-lock loop with such a large time constant. The loop is opened on switching on, and the lock indicator is used to show the difference frequency between the crystal oscillator and the received carrier. This frequency has to be reduced to a very low value (less than the cut-off rate of the phase-lock loop) or phase lock cannot be established. With respect to the makers of an otherwise excellent instrument, I personally found it to be a very "fiddling" method of setting up the equipment. To set up my own instrument it is only necessary to switch on and set the phase lock (if it has been disturbed)-only a few seconds is taken to do this. A period of 30 seconds is allowed for the time constant to charge up and then the switch is closed bringing in the larger capacitance.

My thanks to Mr. Schnurr for his most interesting comments, but we must agree to differ: he prefers to use a narrow band filter, and I prefer to use a long time constant. "You pays your money-you takes your choice." I think, however, that you will pay less my way.

## L. NELSON-JONES.

Bournemouth, Hants.

## Supply of Components to the Home Constructor

For three years I have been trying, without success, to obtain certain components, in particular dual potentiometers with particular resistance values. At last an apparent source came into view through a Distributor's advertisement in Wireless World. Neither the catalogue nor the advertisement offering it men-
tioned anything about restrictions on the type of would-be customer to be supplied. However, my order and cheque were returned with a printed letter suggesting that I obtain the parts via my 'local television/radio dealer who will be pleased to help!' A letter to the firm in question produced an apologetic reply with the information that certain retailers will be glad to order the components for me.

When searching for components, retailers have offered me from stock parts distributed by a service and distribution organization, but of unknown origin, at times dubious quality, and, I feel, at high prices. Manufacturers and importers are reluctant to supply small quantities to large account customers and small cash customers alike; this is reasonable. It seems that the stockist/distributor has grown up to fill the gap thus created, carrying extensive stocks of branded, high-quality components, and distributing them quickly to large areas of the country by post or van at reasonable prices. Most of these firms are very cooperative when asked to supply in small quantities to a private individual components not normally found in retail shops.

When faced with an unco-operative distributor of British components, what am I to do? Should I try to persuade my reluctant retailer to order the parts (and thus make it more expensive for me to buy them, yet probably not giving the retailer an adequate recompense for the trouble involved in dealing with a 'special'), or should I turn once again to the Americans and have the parts imported because a distributor is clinging to distinctions between trade and general public, which to most people are as out-dated and restrictive as resale price maintenance and 'who does what?' industrial disputes? It would at least be some help if advertisers would indicate if they are 'Trade only', but it would be much more helpful if they would be willing to supply to private individuals catalogues and a list of retailers who regularly deal with them.
P. W. Tomlinson

Leeds 16, Yorks.

## Electronic Music

I was surprised and pleased to see a review of the Queen Elizabeth Hall electronic music concert in the March issue of Wireless World. It is encouraging to find the subject treated seriously in a scientific journal; the people who are generally the most reactionary with regard to electronic music are electronics experts and musicians.

Your reviewer mentioned that the Royal College of Music is starting a pilot course on electronic music. I should like to add that we have already set up an Electronic Music Workshop at Goldsmiths' College, and that some 40 people have been attending courses here since January; these include established composers, students from the main London music colleges and people from other arts and sciences.

The workshop is designed both for the production of electronic music on tape and for the performance of live electronic music (which has so far been scarcely explored in this country). This latter genre was not represented at the above-mentioned concert, but a concert of electronic music to be given at the London

Planetarium on March 22nd (organized jointly by the Society for the Promotion of New Music and the Park Lane Group) will include a new composition combining tapes with live electronic performance, the first work realized in our workshop.

## Hugh Davies

Electronic Music Workshop, University of London Goldsmiths' College

## Corrections

Under our new printing arrangements the final checking of material is one stage earlier than under the old system and it is regretted that several errors crept into the March issue. Some cannot mislead, as for instance the "geranium" transistor on p. 6 (which one reader has suggested was for "flower power") but others must be corrected.

It is ironical that a major error occurred in Mr. Southall's article "Electronics in Typesetting"! In the fifth paragraph from the end the sentence beginning "One, from the width tables stored in the" should continue "main part of the memory, gives the character's width in half relative units ( 713 does all its calculations in half relative units)."

In Mr. Short's article (pp. 24/5) the end of the paragraph following the heading "oscillators" should read "measurements in a working low-frequency circuit showed $V_{i n} / V_{\text {out }} \approx 100$." It will be obvious from Fig. 1 that the low-pass switch connection to the common input-output line was omitted in preparing the drawing for Fig. 5.

The upper frequency limit of the d.c. converters and inverters described by Mr. Nowicki (p. 38) should, of course, have been given as 50 kHz in the subtitle and introduction. In equation (3) the term $V_{C}$ should read $V_{C E(S A T) \text {. Square brackets were omitted from }}$ the expression $\left\{I_{(\text {( } k)}+I_{(\text {min })}\right\}$ in equation 8 and the author omitted to define $I \cdot \frac{p k}{}$ which is five times $I_{l(\text { min })}$. In Fig. 11 component references $R_{2}$ and $R_{3}$ should be transposed, and, correspondingly, in the text describing the circuit. Definitions of $\mathrm{R}_{0}$, and $I_{M}$ are given in the author's earlier papers (References Nos. 3 and 4).

In the first line of the caption to the flight deck mock-up (p. 12) for "left" read "right".

## A Disclaimer

Mr. D. W. Stebbings has asked us to let it be known that he is not the author of the article "Doctoring Recorded Sound" published in the March issue (p.9).

# London Audio Festival 

## Hotel Russell, April 18-21

The annual festival of sound, which opens at the Hotel Russell, London, on April 18th for four days, has attracted even more exhibitors than last year's record breaking Fair. An additional area of the Hotel is being used to accommodate the extra booths necessary for the 98 exhibitors, the majority of whom will also mount demonstrations in private rooms. These demonstrations, many of which are given in rooms furnished to simulate the domestic atmosphere, are an essential part of the International Audio Festival \& Fair which has become the Mecca of the evergrowing number of audio enthusiasts.

As is usual, the Fair will hold some interesting surprises for visitors. First, the number of new participants; secondly that several manufacturers have diversified their interests-as for instance Audio \& Design who have entered the pickup cartridge field; and thirdly the considerable quantity of imported equipment which will be on show. The Fair has indeed become international; about a third of the exhibitors will be showing or demonstrating equipment from overseas.

We list below the names of the exhibitors and where overseas manufacturers are rep-
resented by their U.K. agents we give the latter's name in parentheses. We plan to include in our June issue a review of some of the latest developments in audio equipment as seen by members of the staff of Wireless World at the Fair. As a preliminary we illustrate on these pages some of the equipment which will be seen or demonstrated.

The Fair will open daily at 11.00 but admission on the opening day will be restricted to specially invited guests until 16.00 . It will close at 21.00 except on the last day when it will end an hour earlier.

Tickets, which will admit two people at any time after 16.00 on the opening day, are obtainable from exhibitors, audio dealers or the editorial offices of Wireless World. Please send a stamped addressed envelope large enough to accommodate the $5 \times 3$-inch tickets.

As with all major shows some companies, for one reason or another, prefer to hold their own exhibition and during the Audio Fair there will be independent shows at the Tavistock Hotel, Tavistock Square (B \& O, Radford and Sony) and the Grand Hotel, Southampton Row (Heathkit).

## LIST OF EXHIBITORS

A.K. G. (Politechna)

Acoustical Mftg. Co.
Agfa-Gevaert
Akai (Pullin)
Allan. Richard. Radio
Ampex Corporation
Arena (Highgate Acoustics)
Armstrong Audio
Audio \& Design
Audio \& Record Review
Audio Technica (Shriro)
Audio Tec
B.A.S.F.
B.A.S.F
B.B.C.
B.S.R.

Beyer (Fi-Cord)
Boosey \& Hawkes
Bosch
Braun (Fi-Cord)
Brenell Enginearing Co.
Celestion
Cosmocord
Decca Record Co.
Design Furniture
Diamond Stylus
Dual Electronics
Dual Electronic
Dynatron
Dynatron
E.M.I.

Elcom
Elizabethan
Euphonics (Elstone Electronics)
Fed. of Brit. Tape Recording Clubs
Ferranti
Ferrograph Co.

Field. N. \& S. B.. \& Co
Fisher Radio
Garrard Engineering
Goldring Mftg. Co.
Goodmans Loudspeakers
Gramophone
Grampian Reproducers
Grundig
Hi-Fi News
Hi-Fi News
Hi-Fi Sound
High Fidelity Magazine
High Fidelity Ma
KEF Electronics
KEF Electronics
Leak. H. J.. \& Co.
Leak. H. J.. \& Co.
Lowther Manufacturing Co.
Lugton \& Co.
Lustraphone
Magnetic Tapes
Medley Musical
Mikrofonbau (Denham \& Morley)
Minnesota Mining \& Mftg. Co. Mullard
Multicore
Okl (Denham \& Morley)
Ortofon (Metro-Sound)
Ortofon (Metro-Sound)
Parmeko
Philips Hi-Fi
Philips Tape Recorders
Pioneer Electronics (Swisstone)
Radionette (Denharn \& Morley) Rank Wharfedale
Recordaway
Records \& Recording
Reslosound
Richardson Electronics

Rogers Developments
S.M.E.

Sansui Electric Co. (Technical Ceramics)
Sanyo (Marubenl-Lida)
Sennheiser (Audio Engineering)
Shure Bros.
Sinclalr
Sonotone (Metro-Sound)
Siandard Telephones \& Cables
Stereosound Productions
Sugden \& Co.
Tandbergs (EIstone Electronics)
Tannoy Products
Tape Recorder Developments
Tape Recorder Spares
Tape Recording Magazine
Teac (C. E. Hammond)
Telefunken
Teleton Elektro
Thorens (Merro-Sound)
Thorens (Metr
Trio (Arnhold Trading Co.)
Truvox
University Recording
Vortexion
Whiteley Electrical Radio Co.
Williman. K. H.. \& Co.
Willi-Studer (C. E. Hammond)
Wilmex
Wireless World and Electrical \& Electronic Trader
Yamaha Europa


Audio EO Design are introducing this induced-field cartridge at the Fair. It has an output of $0.9 \mathrm{mV} / \mathrm{cm} / \mathrm{sec}$.


The module (Mk II) used in the fordanWatts loudspeakers to be shown by Boosey © Hawkes. The aluminizm diaphragn, with plastic surround, is mounted in a 6-in. square frame.

The S.T.C. type 4113 ribbon cardioid microphone which is available with a 30 -ohm or 50 k -ohm impedance.



One of the new Series 7 Ferrograph tape recorders. F.E.T. input stages are employed in the all-transistor amplifier. Separate motors are provided for each of three speeds.


Sansui stereo tuner-amplifier model 3000A. One of four new pieces of equipment to be shown by the U.K. agents, Technical Ceramics Ltd. of Swindon.

The pickup arm on the Goldring GL 75 turntable unit (right) is fitted with calibrated stylus pressure adjustment, bias compensation and is raised and lowered hydraulically.


A new single record playing unit (AP 75) introduced by Garrard Engineering. Fitted with a non-magnetic turntable and aluminium pickup arm with slide-in cartridge carrier.

Sennineiser MD 409 super-cardioid microphoe, introduced by Audio Engineering, provides steep attenuation at the sides as well as the back.


Rogers Developments' Ravensbourne 2 f.m. receiver, featuring an f.e.t. front end, is available with or without decoder


Grundig's RTV600 tuner-amplifier, which employs 53 transistors and 31 diodes, covers the v.h.f./f.m. band, the s.w. bands from $3.15-22.5 \mathrm{MHz}$, and ihe m.w. and l.w. bands. It incorporates a stereo decoder (with automatic mono/stereo switching) and has an output of 20 WU per channel.


# World of Amateur Radio 

## Illegal Walkie-Talkies

IN agreement with the Board of Trade, the Postmaster General has made an Order under Section 7 of the Wireless Telegraphy Act 1967, the effect of which is that the authority of the P.M.G. will be required, as from April 1st, by any person who wishes to manufacture or import radio equipment capable of transmitting on any frequency between 26.1 and 29.7 MHz or between 88 and 108 MHz . Some of the frequencies covered by the Order are used by radio amateurs and they will be authorized to build their own apparatus for use within the terms of their licence. The Order is aimed at putting an end to the indiscriminate sale to the public of small imported transmitters such as the 27 MHz walkie-talkies. The Post Office has warned in the past that the use of these sets cannot be approved in the United Kingdom because they are liable to interfere with authorized services and numerous people have been prosecuted for using them without a licence. The purpose of the Order is to deal with the matter at source and to protect the public from being offered sets which they cannot legally use.

E-M-E Test.-An Earth-Moon-Earth Test is due to take place during the period April $12 \mathrm{th}-14 \mathrm{th}$, on $1296 \mathrm{MHz} \pm 5 \mathrm{~Hz}$ when the Crawford Hill V.H.F. Club station W2NFA, located at Holmdel, New Jersey, U.S.A., will transmit with an output power of at least 200 watts into a $60-\mathrm{ft}$ parabolic reflector. The aerial has an estimated gain of 44 dB . Echo-testing will commence at moon-rise and continue for 30 minutes prior to any schedules. Moon-rise to moon-set times (G.M.T.) at W2NFA during the test period are 23.00 April 12th to 10.28 April 13th, and 00.18 April 14th to 10.57 April 14th. All correspondence concerning the tests is to be sent to Mr. R. Turrin, W2IMU, Box 45, R.R. 2 Colts Neck, New Jersey, U.S.A. 07722 . The official liaison station WB2NDH will operate on $14.235,21.385$ and 28.690 MHz .

[^7]score of 44563 points and Section 2, for 2-metre portable operation, by GC3WMS / P (Channel Islands) with a score of 52340 points. Another U.K. operator G3CMS (Leicester) with a score of 4022 points led in the section for $70-\mathrm{cm}$ fixed stations, while in the section for $70-\mathrm{cm}$ portables, U.K. operators occupied the first three places-GC3VXK /P (Channel Islands), 12118 points, G3NNG /P (Berkshire), 6991 points and G3MAR /P (Birmingham), 6419 points. In the section for $24-\mathrm{cm}$ fixed stations, G3CMS (Leicester) achieved his second success of the Contest by leading the field with a score of 1351 points. In the section for $24-\mathrm{cm}$ portables, U.K. operators-G3NNG /P ( 1003 points), G3MAR/P ( 878 points) and G3OBD /P of Dorset ( 845 points)-occupied the first three places.

Amateur Radio Licences.-At the end of December the number of amateur radio transmitting licences in force in the U.K. was as follows: Type A sound licences 15034 (including 2407 mobile); B licences for telephony only on 420 MHz 722 ( 22 mobile); and 177 television licences making a total of 15933 -an increase of 535 during the preceding six months. At the end of the year there were 12658 model radio control licences in force; a 1037 increase in six months.

## Amateur Facsimile now Authorized.-

 Following discussions between the Radio Society of Great Britain and the Post Office it has been decided that any licensed U.K. radio amateur may apply to the Radio and Broadcast Dept., G.P.O., Armour House, London, E.C.1, for permission to transmit facsimile (A4, F4 and allied modes). In the past this mode of transmission has not been among those permitted by the terms of Amateur Sound Licences. Recently there has been increasing interest in facsimile brought about by the availability of reproduction equipment.Derby and District Amateur Radio Society, which incorporates the Derby Wireless Club, now boasts 178 members including 86 holders of transmitting licences. The first wireless club in the United Kingdom was formed in Derby during 1911 and an experimental station was established that year in Old Bank Chambers, Irongate, with the call sign QIX. Mr. Fred Ward, G2CVV,
secretary of the present go-ahead society, has produced a short history of the original Derby Wireless Club, a copy of which he will send on receipt of a stamp for postage to anyone interested in the early days of wireless and the club movement. Mr. Ward's ؛ddress is 5 Uplands Avenue, Littleover, Derby, DE 3 7GE,

Iceland on 2 metres.-Mr. D. B. Collins, K2LME, of Paramus, New Jersey, has set up a 2-metre amateur radio station in Keflavik on the south west coast of Iceland from where he hopes to maintain schedules with amateur stations in the U.K. and other parts of Europe. The aerial is a 7 -element horizontally polarized Yagi, 30 feet above ground. The station is operating from a site close to the ocean with no obstructions looking east south-east. The transmit frequency is within 50 Hz of 144.1 MHz . Telegraphy will be used unless propagation supports the use of the single sideband mode. Mr. Collins is monitoring as much as possible for auroral occurrences and will appreciate receiving information on aerial headings used by U.K. operators during auroral QSOs. Transmissions take place for 15 minutes each evening from 20.00 G.M.T. on 144.1 MHz followed by a listening period for the next 15 minutes. The array is beamed on the U.K. and schedules for any hour of the day or night will be welcomed by Mr. Collins whose full address is c/o F.E.C./DYE 5, Box 4, U.S.N.S., Keflavik, Iceland.
R.F.C. Wireless Operators' Reunion.The Annual Reunion of Royal Flying Corps Wireless Operators will be held at the Victory Ex-Services Club, Edgware Road, on Saturday, March 30 th . Information is obtainable from Mr. E. J. Hogg, M.B.E., 57 Hendham Road, London, S.W. 17.

The Tenth Annual Reunion of the Radio Amateur Old Timers' Association is to be held at The Horse Shoe Hotel, Tottenham Court Road, London, W'.1, on Friday, May 3rd. Membership of the Association is open to any radio amateur who has held a United Kingdom amateur transmitting licence for an unbroken period of 25 years (including the war years) at the time of his application for membership. Further information from the Founder-Secretary, 16 Ashridge Gardens, London, N. 13.

Amateur Radio Teleprinting is well catered for in the U.K. by the British Amateur Radio Teleprinter Group who, through the medium of a quarterly News Letter, provide members ( 315 at the last A.G M.) with up-to-date information on all aspects of the subject. Editor of the News Letter is Mr. A. W. Owen, G2FUD, 184 Hale Road, Hale, Cheshire, and the secretary is Mr. D. J. Goacher, G3LLZ, 51 Norman Road, Swindon, Wilts. The annual subscription is 15 s .

Look out for EA6ITU.-During the Interim Meetings of the International Radio Consultative Committee (C.C.I.R.) to be held in Palma, Majorca, from April 29th to May 10 th, an amateur radio station will be operated under the call sign EA6ITU.

## Toggle Switch

Rated at 30,000 operations at 24 V d.c. 3 A this single-pole changeover switch (type TS $/ 1$ ) combines small physical size with high reliability. The body of the switch is 0.375 inches in diameter and protrudes 1 inch behind the panel on which it is mounted. It has an initial contact resistance of 5 $\mathrm{m} \Omega$ and the insulation resistance between the contacts and other parts of the structure is 10 $\mathrm{G} \Omega$, the test voltage between open contacts is 1.5 kV and between contacts and structure 2 kV . When used in a.c. applications the maximum current that can be handled is 1.5 A . Rendar Instruments Lid, Victoria Road, Burgess Hill, Sussex.
WW 335 for further details

## Digital R. F. Power Meter

An instrument that offers an instantaneous digital display of r.f. power on a linear or logarithmic scale has been announced by Pacific Measurements Incorporated, Palo Alto, California. The new instrument (Model PM 1009) is designed for both swept- and single-frequency power measurements from 10 MHz to 12.4 GHz . The three-digit standard readout is augmented by an over-range numeral, a unit annunciator and decimal-point indicator that minimize the likelihood of operator error. An analogue output is available for driving either an oscilloscope or $\mathrm{X}-\mathrm{Y}$ recorder. Five linear and three logarithmic operating modes are provided. Linear ranges are from $1 \mu \mathrm{~W}$ to 10 mW full scale. Logarithmic modes are DBM, DB, and DB NULL. All are selected using pushbuttons. In the DB and DB NULL modes an offset control allows the analogue output to be adjusted to zero for any input power level. Thus, any desired reference level can be established so that the gain of the oscilloscope or recorder can be increased to permit \& very small signal riding a large signal to be expanded and analysed in detail. The DB NULL mode is used for swept-frequency measurements where a d.c. coupled oscilloscope is used to display the response curve. Digital readout indicates the difference in dB between the REFERENCE and

NULL OFFSET. These two offsets can be used to bracket perturbations on the swept display and the digital readout will indicate directly in dB the magnitude of these perturbations. Outputs on the rear panel coded in b.c.d. are available. For computer use, the digital display rate may be triggered from an external source over a range of zero to 1,000 readings $/ \mathrm{sec}$. An auxiliary input is provided so that frequency markers may be added to the swept-frequency display or two instruments may be connected together to make ratio measurements. An internal calibrator provides precise power levels of 1 mW and $10 \mu \mathrm{~W}$ at 30 MHz for calibrating the instrument and verifying its operation. A thermistor in the detector mount provides temperature compensation from 15 to $45^{\circ} \mathrm{C}$.

The high-gain direct-coupled input amplifier is chopper stabilized and temperature-sensitive components are oven mounted to ensure negligible drift. A non-linear noise filter may be connected ahead of a "d.v.m." input by means of a frontpanel switch. This filter insures a clean display of noisy signals, yet allows relatively rapid response for large changes in signal level.
WW 306 for further details.

## Ladder Network

The cermet thick-film Series 811 ladder networks are designed for digital-to-analogue conversion applications over a wide temperature range. Eight standard models are available, depending on accuracy and temperature range required, with standard resistance values of 5,10 , or $20 \mathrm{k} \Omega$. Tracking is better than 1 p.p.m. $/{ }^{\circ} \mathrm{C}$ and settling time is typically less than 50 ns . Maximum output voltage ratio error is $\pm 122$ p.p.m. over the operating temperature range of -55 to $+125^{\circ} \mathrm{C}$. The units are less than 0.1 inch high, occupy one square inch of board space, and are fully sealed. The networks are constructed of cermet thick-film resistors of glass and precious metal fused to a $96 \%$ alumina substrate at temperatures above $1500{ }^{\circ} \mathrm{F}$. The identical material and processing for all resistors ensures uniform electrical characteristics and high stability. Because of the high thermal conductivity of

the alumina substrate, low thermal gradients are maintained throughout the network. All the passive elements are protected from moisture by a polymer conformal coating. Beckman Instruments Lid, Queensway, Glenrothes, Fife.
ww 318 for further details

## Word Generator

Many digital systems can be tested using a repetitive puise train which simulates the data normally handled by the system. The word generator WG 320 provides such pulse trains in a wide variety of different formats. Word length can be from one to sixty-four bits made up of four words of sixteen bits, or two words of thirty-two bits, or one word of sixty-four bits. Four channels each with two outputs are provided, the actual outputs being available in a number of different formats. (1) RZ fixed; return to zero after half basic bit spacing. (2) $R Z$ variable; return to zero after a switch-selected interval, which must be less than 0.7 bit spacing; intervals available are $0.1,0.5,5$ and $50 \mu$ and $0.5,5,50$ and 500 ms . (3) NRZ; Non-return to zero. Three operating modes are available and each may be used with

the internal or an external source of clock pulses. They are (A) Continuous mode; all outputs generated repeatedly. (B) Single bit mode; upon operation of a single-shot control or upon application of a negative pulse of 2 V minimum to the "EXT TRIGGER" socket, all words progress by one bit. Reset to first bit of word is achieved manually. (C) Single word mode; operation of the single-shot control or the application of a pulse to the "EXT TRIGGER" socket generates one complete word at all outputs. Output four may be delayed relative to the other outputs provided the delay is less than 0.7 bit spacing, delay intervals available are $0,0.1,0.2,2$ and $20 \mu \mathrm{~s}$, and $0.2,2$, 20 and 200 ms . Individual data bits are set in 10 the registers by means of 1 wo-position toggle switches. The following internal clock rates are available (switch selected on front panel) 2 MHz , $1 \mathrm{MHz}, 100,10$ and 1 kHz and 1 Hz . External clock inputs can be up to 2 MHz and can take the form of either sine or square waves. Output impedance is $50 \Omega$ and the rise and fall times of the output pulses are less than 15 ns . Two versions of the instrument are available the difference being in the polarities of the various pulses available. Price 6475 . Feedback Lid, Crowborough, Sussex.
WW 310 for further details

## Phase-Sensitive Detector

A set of measuring equipments known as the 400 range, is being introduced by Brookdeal Electronics Ltd, Myron Place, London S.E.13, at the rate of one a month during 1968, following a two-and-a-half year feasibility study. Each instrument will be fully compatible with all the others and will take the form of a system building brick, each brick being a complete instrument in itself. The first of these instruments is the phase-sensitive detector type 411. This instrument is built
around a full-wave balanced gate covering a frequency range of 1 Hz to 1 MHz . Zero drift has been kept to a low level and very linear operation ensures that zero errors due to asynchronous signals are no greater than the drift (d.c. drift of zero level referred to f.s.d. $<0.005 \% /{ }^{\circ} \mathrm{C}$ and with an in-phase input d.c. zero drift is $<0.02 \% /{ }^{\circ} \mathrm{C}$ ). This has been achieved by employing error-compensating circuitry and by applying a high degree of feedback at d.c. and over the frequency range rendering luning unnecessary and making swept measurements possible. The reference input signal can be varied over a $30-\mathrm{dB}$ range ( $<3 \mathrm{~V}$ peak-to-peak into $<10$ $\mathrm{k} \Omega$ ) with an output change of less than $0.01 \%$ f.s.d. Mark-space ratio changes similarly have little effect on the output. The instrument requires 1 $V$ r.m.s. input into $0.25 \mathrm{M} \Omega$ for a $10-\mathrm{V}$ d.c. output that can be used for driving digital

voltmeters, analogue-to-digital converters, potentiometric recorders, trigger units and galvometric recorders.

A wide range of fixed time constants is available (using plastic film capacitors) and zero offset is by a ten-turn potentiometer making slide-back measurements possible. Other features include a peak-reading overload indicator; two switched reference channels; a two-stage ladder filter for l.f. operation; provision for use as a balanced demodulator; sockets duplicated on rear panel for system use; and a reference-channel neon that indicates if sufficient amplitude of reference is being applied.
WW 328 for further details

## Thumb-wheel Switches

A range of decimal and binary-coded thumbwheel switches available with ten positions engraved $0-9$ or intermediate numbers of positions, in straight decimal or with any binary code (standard or special) are available from Kynmore Engineering Co. Lid, 19 Buckingham Street, London W.C.2. Stops are fitted to customers' specification. According to the manufacturers, an improvement has been made in the contact material. A layer of nickel is placed on the copper base and then a layer of gold, electrolytically bonded and stabilized. Thus a hard surface is combined with low and constant contact resistance. For computer programming circuits, special bridging or muting contacts are available as an overriding device. These contacts block the memory store during transient conditions and therefore prevent disruption of information when

switching from one position to another. Alternatively they may be used to initiate another process. The units are available with standard or extended 0.156 -inch printed circuit board terminators, with or without provision for diodes. Roller-tinned terminations are available to order. The delivery time for special codes is within four weeks.
WW 319 for further details

## Gunn Effect Source

A GaAs Gunn effect X-band source that provides an output in the $7-12 \mathrm{GHz}$ range is being manufactured by the Plessey Company, Edge Lane, Liverpool 7. The power output is 2 mW minimum with a typical value of 5 mW . Current drain is approximately 70 mA and bias voltage may be varied to allow a maximum dissipation of 1 W . Operating temperature range is -55 to $+85^{\circ} \mathrm{C}$.
WW 322 for further details

## Pulse Generator

Repetition rates of 5 Hz to 50 MHz , positive or negative d.c. coupled outputs from 10 mV to more than 10 V and single- or double-pulse operation are features of the pulse generator model 110B being manufactured by Datapulse Inc., 10150 West Jefferson Blvd., Culver City, California, a subsidiary of the System-Donner Corporation. Rise and fall times of the instrument are independently variable from 4 ns , d.c. baseline offset is variable over a $12-\mathrm{V}$ range and is held constant by a closed-loop system which detects and regulates the offset at the output of the instrument. The generator may be triggered externally or internally, synchronous and asynchronous gating is available and a synchronizing

trigger output is supplied for all modes of operation. Pulse delay is variable from 15 ns advance to 50 ms delay, pulse width is variable from 10 ns to 5 ms . Repetition rate, delay and width jitter errors are less than $0.05 \%$, while overshoot, undershoot, ringing and top slope aberrations are less than $\pm 3 \%$ at amplitudes of 300 mV and higher. Output stages cannot be damaged by any combination of panel-control settings, open or short circuits or back voltages of up to 10 V .
WW 327 for further details

## Data Transmission Test Set

The Datel Tester 1B has been designed under contract to the G.P.O. and is used for testing modems in the Datel service, checking data-transmission equipment and computer data links. It comprises a transmitter and receiver of d.c. signals in which the transmitter generates a range of test patterns and the receiver synchronizes those patterns to display peak distortion, bias distortion and error count. Peak distortion is indicated on a digital display from 0 to $49 \%$ early or late with an accuracy of $\pm 1 \% \pm 1$ digit. Bias distortion is indicated on a separate meter to an accuracy $\pm 3 \%$ with the scale indications in $2 \%$ steps. Any signal element greater than $49 \%$ is considered an

error. These are totalized and the stored count displayed up to a maximum of 2,047 counts. The error counter may be switched to display element counts or 511-bit pseudo random blocks in error. Trend Electronics Ltd, St. John's Works, Tylers Green, Nr. High Wycombe, Bucks.
WW 314 for further details

## Microcircuit Matched Transistor Pairs

DIFFUSED on a single silicon chip, using the planar process, this temperature stabilized matched transistor pair is intended for low drift d.c. amplifier applications. The device ( $\mu$ A726) is held at a constant temperature by a built-in active temperature regulator circuit that obviates the need for external ovens and individual heaters. Input offset voltage, at collector currents from 10 to $100 \mu \mathrm{~A}$, is 1 mV . Input offset current, at a collector current of $10 \mu \mathrm{~A}$ and a $V$ CE of 5 V , is 10 nA . Input voltage offset is $0.2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ : current offset drift being $10 \mathrm{pA}{ }^{\circ} \mathrm{C}$. The built-in temperature regulator consists of a transistor which acts as a heating element controlled by an amplified signal from a chip temperature sensing element. The system, which has a low standby dissipation, maintains the chip temperature at $130^{\circ} \mathrm{C}\left( \pm 3^{\circ} \mathrm{C}\right)$ at ambient temperatures between 0 and $85^{\circ} \mathrm{C}$. Applications of the $\mu \mathrm{A} 726$ include servo-amplifiers, instrumentation amplifiers, low level and low noise amplifiers and transducer amplifiers. It has been pointed out that the device may be used in conjunction with the SGS-Fairchild $\mu \mathrm{A} 709$ to produce a high performance amplifier with a gain in excess of $3,000,000$. The $\mu \mathrm{A} 726$ is contained in a low-profile TOS encapsulation. SGS-Fairchild, Planar House, Walton St., Aylesbury, Bucks.
WW 331 for further details

## Delay-line Module

A small-capacity memory module for data processing applications with integrated-circuit compatibility has been developed by Sealectro Lid, Farlington, Portsmouth, Hants. Designated Deltime Model 175A/RZ-90. The new module requires a gating signal, clock and power supply for operation. Information re-circulates serially, and in the absence of an erase signal, reads out

ontinuously. An address counter is not required or sequential write-in and readout of data, mak1 g the module suitable for c.r.t. display and uffer memory applications. The memory has a laximum storage of capacity of 10,000 bits at a elay of 10 ms and a clock rate of 1 MHz .
VW $\mathbf{3 0 7}$ for further details

## I.F. Amplifier

1 transistor amplifier with a frequency response rom 10 to 400 MHz at $\pm 1.5 \mathrm{~dB}$ capable of elivering 0.5 W into a $50-\Omega$ load is available rom Walmore Electronics Ltd, 11-15 Betterton itreet, Drury Lane, London W.C.2. The amplifier type AWP-400) is suitable for general laboratory ise with signal generators and power splitters. It an be used as an intermediate drive stage for ransmitters or as a power stage in a local-oscillatrr or harmonic-generator chain. Other applicaions that suggest themselves are in wide-band eceiver and pulse systems. Significant figures rom the published specification are output sower at $1-\mathrm{dB}$ gain compression point +27 dBm ninimum, temperature range -20 to $+71^{\circ} \mathrm{C}$, power input is 28 V d.c. at 560 mA and the case size is $3.5 \times 9 \times 1.75$ inches.
WW 315 for further details

## Wide Range Oscillator

A low-cost ( $£ 35$ ) oscillator that covers 10 Hz to 1 MHz in five ranges is being produced by Advance Instruments, Hainault, Essex. The generator, type SG67, will supply sine- or square-wave

outputs at up to 2.5 V r.m.s. - the square-wave rise time is typically 50 ns . The output level is selected by a four-position push-button attenuator and a variable control, the output frequency being read on a horizontal "easy-to-read" scale. Two internal PP9 batteries provide the power and these can be checked by means of a front-panel push button. If mains operation is required a battery eliminator is available for $£ 710 \mathrm{~s}$.
wW 311 for further details

## Dual Standard V.T.R.

This outfit consists of a video tape recorder model CV-2100CE, a dual-standard 19 -inch monitor model CVM2000, this also doubles as a normal dual-standard tv receiver, and a 625 -line camera model CVC 2000 CE. The retail price of the complete system is $£ 685$. The tape deck uses 0.5 -inch tape running at 11.25 i.p.s. ( $\pm 2 \%$ ) and employs helical scanning. One tape will run for 40 minutes and will rewind in 7 minutes. The tape speed settles down within six seconds of switch on. The recorder requires a composite video signal of 1.3 V peak-to-peak, negative sync. into $75 \Omega$. A choice of random or $2: 1$ interlace is available; signal-to-noise ratio is better than 40 dB and the resolution is better than 240 lines on 625 and 360 lines on 405 . The audio section has two inputs, Mic, at $600 \Omega$ unbalanced ( -60 dB ), and line- $10 \mathrm{k} \Omega$ balanced $(-20 \mathrm{~dB})$. The output is 5 $k \Omega$ unbalanced ( 0 dB ). Frequency response,

signal-to-noise ratio, and wow and flutter are: $80-10,000 \mathrm{~Hz}, \pm 6 \mathrm{~dB}, 5 \%$ and less than $0.25 \%$ r.m.s. respectively. The recorder incoporates 69 transistors and 34 diodes. Facilities include still frame, sound dubbing, duplication of tapes and automatic sound and vision level control. The camera is supplied with an $\mathrm{f} / 1.925-\mathrm{mm}$ lens and a tripod. Other accessories included are tape, carbioid microphone, desk stand, mains and microphone extension leads, lavallier cord and a carrying case. Sony U.K. Division, Eastbrook Road, Gloucester.
ww 320 for further details

## Miniature Trimmers

Using a high-permittivity film dielectric, a new range of miniature trimmer capacitors, type 809 , announced by Mullard have a maximum capacitance of 20 pF within a body only $6 \times 7 \times 8 \mathrm{~mm}$. Connections to the rotor are made by self-cleaning, silver-plated contacts; and the rotor and stator tags are spaced to match a $2.54-\mathrm{mm}$ ( $0.1-\mathrm{in}$.) grid on printed-circuit boards. An asymmetric outline ensures correct orientation. Change of capacitance is made via a slotted adjuster head. Three versions are available with maximum capacitances of $4,10.8$ and 20 pF , all have a $50-\mathrm{V}$ d.c. rating and operate in the temperature range -40 to $+120^{\circ} \mathrm{C}$. Mullard Lid, Torrington Place, London, W.C.1.
WW 316 for further details

## Standby Power Units

Two inverter standby power units for supplying 250 V at 50 Hz from 12- and $24-\mathrm{V}$ batteries are being produced by Ekco Electronics Lid, Southend-on-Sea, Essex. These units, which have sine-wave outputs, will supply signal generators, oscilloscope recorders and other laboratory equipment for mobile use. Provision is made for supplying the load directly from the mains with automatic changeover to inverter operation in the event of a mains-supply failure. Type E236 is available for 12 -or $24-\mathrm{V}$ battery operation, having a power output of 120 W . The $12-\mathrm{V}$ unit will also reverse to operate as a battery charger with
manual selection of the charge rate. Type E239 operates from a $24-\mathrm{V}$ battery and has a power output of 200 W . Current drawn from the batteries is switched by power transistors and fed to the mains output at any load up to full rating. The inverter circuit is protected against damage if the output is short-circuited.
WW 308 for further details

## Wire Stripper

The stripper consists basically of two articulated levers, operating against a return spring, one of which manipulates the cutting and stripping blades, and the other the gripping jaws. The cutting and stripping blades can be infinitely adjusted to strip wires from 0.3 mm to 4.0 mm O.D. The setting, by trial and error, is achieved with a simple lock nut and screw. The stripping blades are of toughened steel and are replaceable. A stripped length of up to about 15 mm can be

obtained. The Six-In hand wire stripper weighs 5 Oz and costs 50s. Henri Picard \& Frere Ltd, $34 / 35$ Furnival Street, London, E.C.4.
WW $\mathbf{3 1 3}$ for further details

## Oscillator and Selective Level Measuring Set

Two instruments have been introduced by the Testing Apparatus and Special Systems Division of Standard Telephones and Cables Lid. Known as the 74308 Oscillator and 74309 Selective Measuring set, they are companion instruments for testing a wide range of telephone transmission systems. Spanning the frequency range 250 Hz to 1620 kHz they may be used on audio, open-wire, balanced-pair, and coaxial systems of up to 300 circuits. One of the aims of the design has been to eliminate unnecessary switching when testing a particular system, and the five frequency bands have been chosen for this purpose; thus, audio and broadcast frequencies are covered in one band, coaxial supergroup No 1 in another, basic supergroup No 2 in a third and so on. Similarly three output impedances are available to cater for
the requirements of different systems. An automatic tracking signal from the oscillator can be used to obviate manual tuning of the s.l.m.s. when making loop measurements. During end-toend measurements, or when an external signal source is used the automatic tracking facility is not available. In these circumstances, a slight change of frequency in the signal being measured would normally seriously affect the level as measured by the equipment in the selective condition, owing to the steep slope of the narrowband filters in its input circuit. An alutomatic-fre-quency-control circuit is therefore provided. If this is selected and the equipment has been tuned to the signal, it will remain tuned even if the signal drifts by $\pm 300 \mathrm{~Hz}$ from its original frequency. In addition to making selective in-channel measurements in the presence of traffic in adjacent channels, the s.l.m.s. can also be used for making wideband measurements; e.g., for fault location on carrier systems taken out of service. An optional accessory is also available for making return-loss measurements. The oscillator has a slow-motion drive, and built-in frequency checking circuit for checking the calibration at intervals throughout the range. A further feature is the provision of an off-cycles facility which permits the frequency to be set accurately between the calibration points. Both instruments are portable and operate from either a.c. mains or an external d.c. supply of 19 to 21 V . Their dimensions are $22 \times 15 \times 8 \frac{3}{4}$ inches ( $559 \times 381$ $\times 222 \mathrm{~mm}$ ); their weights are $40 \mathrm{lb}(18 \mathrm{~kg})$ for the oscillator and $50 \mathrm{lb}(22.7 \mathrm{~kg})$ for the s.l.m.s. Standard Telephones and Cables Ltd, STC House, Strand, London W.C.2.
WW 317 for further details

## Illuminated Pushbutton Switch

The Licon 02-800 range of illuminated pushbutton switches, manufactured by the Plessey Components Group's Microswitch Unit, Titchfield, Hampshire, is an extension of the 01-800 series, and offers four additional features. These are, two stationary lamps which can be independently connected if required; horizontally or vertically split lens caps; "snap-on" switch modules, with momentary or maintained action; and "snap-on" solenoid units. The new series will fit the panel cut-out for the type 01-800. The new pushbutton switch has snap-in mounting and a combination bezel-barrier presentation and a choice of seven screen colours is offered. The switches are
suitable for horizontal or vertical matrix mounting requiring individual rectangular holes 1.00 in . by 1.14 in. for single units and additional 1.250 in. per switch for matrix mounting. One to four-pole momentary or maintained snap-on switch modules are available as standard, each pole being s.p.d.t. or two circuit. The basic twocircuit microswitches are rated at 10 A., $125 / 250$ V a.c., 30 V d.c.
WW 324 for further details

## Rotary Edge Switch

Low cost, coded in binary or decimal, legend to customers requirements, with or without internal illumination, modular design and simplicity of installation are features of a ten-way thumbwheel switch announced by Argos Instruments Ltd. The body of the switch is moulded in Styron 45 and measures $2.09 \times 0.433 \times 2.09$ inches. It

has a life expectancy in excess of 100,000 operations and a one-off price of 22 s . Argos Switches Lid., Island Farm Avenue, West Molesey Trading Estate, Molesey, Surrey

## 5\% Zener Range

A Family of zener diodes encapsulated in hard thermosetting epoxy resin, complementary to their glass encapsulated BZY88 series, has been recently introduced by Mullard. The diodes, BZX61 series, have a rating of 400 mW at temperatures up to $50^{\circ} \mathrm{C}$ and nominal voltages between 33 and 75 V following the logarithmic series of preferred values. With a junction temperature of $25^{\circ} \mathrm{C}$ the devices will withstand a surge of $50 \mathrm{~W}^{\prime}$ for a maximum of $100 \mu \mathrm{sec}$. Other maxima from the specification include a zener current of 250 mA and a junction temperature of $175^{\circ} \mathrm{C}$. The case outline is similar to the DO-7 but with 0.03 inch diameter leads to reduce the thermal resistance, the cathode connection being at the "coned" end of the encapsulation. It is of interest to note that this type of package has recently been granted CV approval. Mullard Ltd, Mullard House, Torrington Place, London W.C. 1.

## Display Decade

Incorporating integrated circuits and operating at speeds of up to 2 MHz , this unit includes a decade counter, a decoder and an indicator tube on a printed board $4 \times 1 \times 2.25$ inches. Provision is made on the circuit board for a buffer store to allow the read-out to hold a

numeral while the decade is still counting. The binary information in n.b.c.d. is brought out to solder-pin connections as are the reset line, hold and sample line and all power supplies ( +4 V and +250 V ). Units may be cascaded indefinitely. A.S.R. Designs Ltd, 1 Vineyards, Bath, Somerset.

WW 312 for further details

## Medium Torque Potentiometers

The Potentiometer Division of S.T.C. has announced a new range of medium torque potentiometers in six sizes ranging from 1.5 to 4.5 watts. Designed to conform fully with international frame size requirements, the new $Q R$ series makes use of a circular section former and offers many improvements over conventional types. A new dished slip-ring wiper contact is housed in an "L" shaped insulator which ensures rigidity and gives an operating life of better than $5 \times 10^{6}$ sweeps of the winding. Starting torque for the sealed types is 8.5 Ncm ( $12 \mathrm{oz} . \mathrm{in}$.) and $0.305 \mathrm{Ncm} \mathrm{( } 0.4 \mathrm{oz}$. in.) for unsealed types. Mounting is by means of servo, bush or three-hole fixing and a chromodized finish is standard. S.T.C. Potentiometer Division, Broad Lane, Leeds 13.

## Digital Readout

A monolithic silicon integrated circuit performs the decoding and indicator driving functions in the type TNR 70A readout unit produced by Litton Precision Products International Inc., 503 Uxbridge Road, Hayes, Middx. Measuring only 1.75 inches high, 1 inch wide and requiring 1.4375 inches behind the panel, the unit requires an n.b.c.d. (1, 2, 4, 8) input using the negative logic convention, 0 to +0.4 V for a 1

nd +1.5 V to +4 V for an 0 ; the neon indicator squires a power supply of +180 V d.c. $\pm 10 \mathrm{~V}$ t 2 to 3 mA . Small quantity price is in the region f $£ 11$ per unit.
VW 329 for further details

## -ogic Interface dlements

ligh voltage logic interface elements that ranslate standard 5 V logic levels to levels up o 30 V are available from the Microelecronics Division of Electrosil Ltd. The three :lements, just introduced, consist of the 8T18 lual two-input NAND gate, the 8 T80 quad twoinput nand gate and the 8 T90 Hex inverter. All are available in either 14 leads glass flat packages in two temperature ranges, $0^{\circ}$ to $+75^{\circ} \mathrm{C}$ or -55 to $+125^{\circ} \mathrm{C}$. The 8T18 is a aigh input voltage element that will accept input voltage swings of between 8 and 30 V and provide an output in standard 5 V logic. This gate operates from two power supplies, $20-30 \mathrm{~V}$ for the input stages and 5 V for the output stage, which has the active pull-up pull-down type of circuit making it suitable for line driving applications. The ST80 and ST90 are the low to high voltage interface elements. Microelectronics Division, Electrosil -Ltd., Lakeside Estate, Colnbrook By-pass, Slough, Bucks.
WW 330 for further details

## Tell-tale Temperature Detector

A small disk, no larger than 0.25 inches in diameter, that turns permanently black if exposed to a temperature within $1 \%$ of given value is

available from A. Levermore \& Co. Ltd, Broadway House, Broadway, Wimbledon, S.W.19. The disks, called Tem-plates, can easily be mounted within a product or externally as part of a nameplate, they are available in 42 increments between 100 and $500^{\circ} \mathrm{F}$. Picture shows disk with a match-head.
WW $\mathbf{3 0 3}$ for further details

## 16-Bit Memory

Housed in a standard hermetically sealed dual-in-line flat-pack, the MuL 9033 micrologic memory cell consists of 16 r.s. flip flops arranged in an addressable four-by-four matrix. The main application for this device is in high-speed "scratch pad" memory systems. It has a typical access time of 15 ns and requires a write pulse of 25 ns duration. Delay between addressing and reading a previously stored bit is less than 20 ns and not greater than 35 ns between reading and writing. Up to four locations may be simultaneously addressed without destroying the stored information. The component dissipates 310 mW and the output is capable of sinking up to 40 mA . Word expansion is relatively easy as the wired OR connection is possible (one external resistor being required to "pull up" linked outputs). SGS-Fairchild Ltd., Planar House, Walton Street, Aylesbury, Bucks.
WW 333 for further details


## THE HOUSE OF BULGIN

## AT YOUR SERVICE

## Vast Jacks \& JACK PLUGS <br> INCLUDING NEW MODELS IN NEW FINISHES



For a wide choice of well designed Jacks and Jack Plugs see the Bulgin range. The many varieties of Jack conform fully to B.S.666, except for the miniature model J.30, and practically every switching and contacting requirement is covered. The various Jack Plug designs give a wide choice of styles to the discerning buyer and both screened and non-screened types are available
The new side cable entry models illustrated top left have moulded, metallised screened covers which can be supplied in a polished Gold or Chrome plated finish, separate List Nos. apply.


SEE CATALOGUE NO. 206/C FOR FULL DETAILS—PRICE 5/- OR FREE TO TRADE LETTERHEAD

## A. F. BULGIN \& CO. LTD., <br> Bye Pass Rd., Barking, Jssex. <br> Tel: RIPpleway 5588 ( 12 lines)



[^8]
## April Meetings

Tickets are required for some meetings: readers are advised, therefore, to communicate with the society concerned

## LONDON

1sı. IE.E.-Colloquium on "Injection luminescence" at 14.30 at Savoy PI., W.C. 2

2nd. I.E.E-Discussion on "Microwave electrostatic watmeter' opened by Prof. H. E. M. Barlow at 17.30 at Savoy PI., W.C.2.

2nd. IERE. \& I.E.E.-Discussion on "Assessing computer performance" at 18.000 at the London School of Hygiene \& Tropical Medicine, Keppel St., W.C.1.

2nd. S.E.R.T.-"Field effect transistors" by E. F Munroe at 19.00 at Carshation College of Further Education, Nightingale Rd., Carshalton.

4th. I.E.E.-Graham Clark Lecture "Place of enginecring in relation to society as a whole" by Lord Jackson of Burnley at 17.45 at Savoy PI., W.C.2.

8th. I.E.E.T.E.- "Colour television" by G. G. Gouriet at 18.00 at the I.E.E., Savoy PI., W.C.2.

9th. I.E.E.-Colloquium on "Gyrators - theory and practice" at 14.30 at Savoy PI., W.C.2.

171h. IE.E.-Discussion on "Views on relativity and gravitation" opened by Dr. L. Essen at 14.30 at Savoy Pl., W.C.2.

18th. I.E.E. \& 1. Meas. Control-Discussion on "What theories are needed for computer control?" at 17.30 at Savoy PI, W.C.2.

18th. R.T.S.-Fleming Memorial Lecture "Digital methods in television" by A. V. Lord at 19.00 at the Royal Institution, Albemarle St., W. 1.
23rd. 1.E.E.-Colloquium on "Some aspects of speech recognition for man-machine communications" at 14.30 at Savoy P1., W.C. 2

23rd. I.E.R.E.-"Simulation safety and the air traffic engineer" by P. C. Haines at 18.00 at 9 Bedford Sq., w.C. 1 .

25th. I.E.E.-" Recent developments in meteorology and the world weather watch" by Dr. B. J. Mason at 17.30 at Savoy PI., W.C.2.

25th. I.E.R.E.-"A realistic appraisal of the higher national certificate" by Dr. H. L. Haslegrave at 18.00 at 9 Bedford Sq., W.C.I.

26th. I.E.E., I.E.R.E. \& R.T.S.-Colloquium on "Aspects of colour television engineering" at 9.30 at Savoy PI., W.C. 2.
29.th. I.E.E.-"Magnetic equivalent circuits for electrical machines" by Prof. E. R. Laithwaite at 17.30 at Savoy PI., W.C.2.

29th. I.E.E.-"Reed relays" by Dr. D. E. N. King at 17.30 at Savoy PI., W.C.2.

30th. I.E.E-Discussion on "A renaissance in automation? The future of computers and control" at 17.30 at Savoy P1., W.C. 2 .

## ABERDEEN

10th. I.E.E.-"Post Otfice towers and trunks" by J. H. H. Merriman at 19.30 at Robert Gordon's Inst. of Technology.

## BELFAST

26th. I.E.E.-Faraday Lecture "Medical Electronics" by D. W. Hill at 19.30 at the Sir William Whitla Hall, Queen's University.

## BIRMINGHAM

17th. R.T.S.-"Further thoughts on colour telecine" by C. B. B. Wood, at 19.00 at the Medical Inst., Harborne Rd., Edgbasion.
18th. I.E.E.T.E.-"The Birmingham Post Office Tower" by J. R. Tipple at 19.30 at the University of Aston, Gosta Green.
29th. I.E.E.- "Current electronic developments in the deep sea fishing industry" by R. Bennett at 18.00 at the M.E.B. Offices, Summer Lane.

## BRISTOL

9th. R.T.S.-"B.B.C. Colour TV-review of the first six months" by T. H. Bridgewater al 19.30 at the Reception Rooms BBC, Whiteladies Rd.
10th. I.E.R.E. \& I.P.P.S.-"Gunn effect phenomenon" by B. R. Pamplin at 19.00 at the University.

## CARDIFF

Sth. S.E.R.T.-"Decca system of navigation" by J. Davies at 19.30 at Llandaff Technical College, Western Ave.

## COLCHESTER

24ih. I.E.R.E.-"M.O.S. transistors" by G. G. Bloodworth at 19.00 at the University of Essex, Wivenhoe Park.

## CRAWLEY

25th. I.E.E.T.E.-"Electronic control in industry by M. C. Wooldridge at 19.30 at the Lecture Theatre, the College of Further Education, College Rd.

## DUBLIN

24th. I.E.E.-Faraday Lecture "Medical electronics" by D. W. Hill at 18.00 at Trinity College.

## DUNDEE

11th. I.E.E.-"P'ost Office towers and trunks" by J. H. H. Merriman at 19.00 at the University.

## EDINB URGH

9th. I.E.R.E.-"Electronic testing and control in the wool industry" by B. Hegley at 19.00 at the Dept. of Natural Philosophy, the University.

## EVESHAM

1st. R.E.E. Grads.-"Colour television" by G. M. Walker at 19.30 at the B.B.C. Engineering Training Centre.
22nd. I.E.E. \& I.E.R.E.-"Stereo broadcasting" by J. H. Brooks at 19.30 at the B.B.C. Club.

## GLASGOW

10th. I.E.R.E.-"Electronic testing and control in the wool industry" by B. Hegley at 19.00 at the Inst. of Engrs. and Shilbldrs., 39 Elmbank Cresc., C.2.

## HARLOW

3rd. I.E.R.E.-"Industrial design in the electronics industry" by M. Rowlands at 19.00 at the Technical College, The High.

## LINCOLN

2nd. IE.E.-"SemiConductors in television receivers" by P. L. Mothersole at 19.15 at the E.M.E.B. Showrooms.

## LIVERPOOL

1st. I.E.E.-Demonstration and lecture on "Colour television" by J. R. Sanders at 18.30 at the University.

## MANCHESTER

24th. I.E.E. \& I.E.R.E.-"Stereophonic transmission" by Dr. G. J. Phillips at 18.15 at the College of Science \& Technology, Altrincham St.

29th. I.E.E-Lecture/Discussion "The future education of electronic engineers" by Prof. G. D. Sims, Prof. W. A. Gambling and B. H. Venning at 18.15 at the College of Science \& Technology, Altrincham St.

## MIDDLESBROUGH

19th. I.E.E. Grads.- "Sound about the home" by D. Cook at 18.30 at the Cleveland Scientific Inst.

## NEWCASTLE-UPON-TYNE

1st. I.E.E.-"Applications of electronics to medical automation" by H.S. Wolff at 18.30 at the Rutherford College of Technology.

10th. I.E.R.E.-"Half megabit data transmission system" by R. E. Ross at 18.00 at the Inst. of Mining and Mechanical Engrs., Neville Hall, Westgate Rd.

## NORWICH

23rd. I.E.E.-"Blind landing of aircraft" by G. Harrison at 19.30 at the Assembly House.

## READING

30th. I.E.R.E.-"Modern techniques in digital voltmeters" by G. W. Bolton at 19.00 at the J. J. Thomson Physical Lab., the University.

## ST. AUSTELL

9th. I.E.E.T.E.-"Closed circuit television" by L.. Baldwin at 19.30 at the Restaurant, English China Clay Co. Lid., Cornwall.

## SALISBURY

2nd. IEE.-"Electromagnetic levitation" by Prof. E. R. Laithwaite at 18.30 at the Salisbury \& South Wilts College of Further Education.

## Sheffield

10th. I.E.E.-"The origins and growth of electronics" by F. A. Benson at 18.30 at the Royal Victoria Hotel.

## stone

22nd. I.E.E., I.E.R.E. \& I.P.O.E.E.-"Translating \& transcoding between different colour television systems having a common scanning standard" by S. M. Edwardson at 19.00 at the Post Office Engineering Training School.

## WOLVERHAMPTON

3rd. I.E.R.E.-"Specialised applications of electronics in medicine" by J. G. Davies and R. L. Howard at 19.15 at the College of Technology, Wulfruna St.

## April Conferences and Exhibitions

Further details are obtainable from the addresses in parentheses
L.ONDON

Apr. 8 \& 9
Imperial College
Thick Film Technology
(1.E.R.E., 9 Bedford Sq., London W.C. 1)

Apr. 18-21
Hotel Russell
Audio Festival \& Fair
(Rex Hassan, 42 Manchester Sq., London W'.1)
Apr. 22-24
I.E.E. Savoy II,

Interference Problems and Microwave Systems
(I.E.E., Savoy Pl., London, W.C.2)

## BELFAST

Apr. 1-3
Queen's University
Heavy Particle Collisions
(1.P.P.S., 47 Belgrave Sq., London S.W.1)

## CARDIFF

Apr. 18 \& 19
Cathays Park
Audio-Visual Aids Conference and Exhibition
(National Committee for Audio \& Visual Aids in
Education, 33 Queen Anne St., London W.1)

## DURHAM

Apr. 2\& 3
The University
Semimetals and Narrow Gap Semiconductors
(I.P.P.S., 47 Belgrave Sq., London S.W.1)

## LOUGHBOROUGH

Apr. 16-19
University of Technology
Modular Education for Industry
(I.E.E.T.E. Lid., 26 Bloomsbury Sq., London W.C.1)

## OXFORD

Apr. 1-4
Playhouse Theatre
Properties and Metrology of Surfaces
(Inst. of Mech. Engrs., 1 Birdcage Walk, London S.W.1)

## You don't have to smuggle an Avometer out of the IEA when you might win a brand-new one legally

ifyour entry in the big Win-An-Avometer Contest convinces the judges (not shown in the photograph above) that you've got the most unusual Avometer application in Britain. The way to convince them is (1) send them a half-plate glossy photograph clearly showing the Avometer and what it's doing and (2) complete the following assertion in 12 additional words or fewer: I like Avometers because To be eligible, the photograph must be suitable for publication in this journal, and your complete entry must be received no later than 30th April 1968 ; as usual, the judges' decision will be final.

Anybody who doesn't already have an Avometer may now buy one and discover its versatility for himself (or herself). There is practically nothing-amps-volts-ohmswise-that an Avometer can't do, and practically nowhere-from the equator to the poles-that an Avometer can't do it. Get yourself one, and find out. You might just get another one free!

Send your Win-An-Avometer entries (no limit on numbers) to Avo Ltd (Dept 710), Avocet House, Dover, Kent; the winner will be announced on Stand G. 35 at the IEA, Olympia and will be notified by post about 15 th May 1968.


## ONE



## ...OR A THOUSAND

To your specification.... with quick delivery

## AND Semendituree RELIABILITY

Whether your need is for a single instrument or a thousand (or even more) the Ernest Turner organisation is geared to give the same renowned service. From a very wide choice of movements and case styles we can provide precisely the instrument for your application, including the manufacture of special dials and provision of built-in or external units to permit indication of any electrical quantity.

We invite your specific enquiry for any number of instruments from one upward, and we should be pleased to send you a copy of our general catalogue $86 / 25^{\circ}$ on request.


## To catch a thief...

use EEV vidicons in CCTV

Closed circuit television is proving very sleuthful in keeping an eye on things. But when it comes to watching Rembrandts and Goyas it has to be reliable. This is where EEV high sensitivity vidicons should be used. These tubes can give up to 8000 hours viewing without dropping off in performance. They also provide unusually high resolution, high sensitivity and short lag. EEV vidicons are available with two different values of heater current, $6.3 \mathrm{~V} / 600 \mathrm{~mA}$ and 6.3 V ' 95 mA , and with either separate mesh or integral mesh construction. For further information and the name and address of your nearest stockist write to:


ENGLISH ELECTRIC VALVE COMPANY LIMITED

## See all these models, and many more...

## in the lafest free HEATHKIT Catalogue

LOW-COST TRANSISTOR STEREO AMPLIFIER, TS-23


Incorporates all the essensial features for good quality sound reproduction from record, radio and - Good frequency respunse - 3 wates r.m.s. (is ohms) each channel - 6 po-ition selector switch easily handles your record, radio or tape inputs-stereo or mono - Separate controls provide bass boost, treble cut, amplifier balance and volume - Printed circuit board construction - Compact, slimline styling - Measures 3 inn. high x 13 in . wide $\times 8 \mathrm{in}$. deep - Beautiful walnut vencered cabinet (optional extra) - Attractive Perspex front panel
KIT \&I7.15.0 (less cabinet) KIT \&18.19.0 (with cabinet)
Walnut vencered cabinet $\mathbf{4} \mathbf{2 / 5} /=$ extra. Ready to-use price on request

TRANSISTOR AM-FM STEREO TUNER, AFM-2

- 18 Transistor 7 diode circuir - AM-LW/MW, FM Stereo and FM Mono tuning - Automatic stereo indicator light . Seereo phase conerol for maximum quency conerul for positive "'lock-in " tuning - Auto quency concrul or positive ock-in tuning Auto assembled and aligned "front end" FM unit Separat : All and FM printed sircuit boards Selfpowered - Low-sithouette stylint-hatches AA-22U amplifier - Handsome fully finished walnue veneered cabinue, available as optional extra. Comprising: AFM- $2 T$ RF Tuning Heart kit $£ 7 / 17 / 6$ incl. P.T., AFM- $2 A$ IF Amplifier and power supply kis C24/9/6.

TOTAL PRICE KIT $\mathbb{3 2 . 7 . 0}$ incl. P.T.
Optional extra: Walnut veneered cabinet $62 / 5 /$ extra

TRANSISTOR FM STEREO TUNER, TFM-IS
(Mono version TFM-IM available)

- 14 rransistor, 5 diode circuit for cool instant
operation - Mono TFM-IM and Stereo TFM-IS models
available - Automatic frequency control - Stereo
phase control to maximise stereo separation. minimise
distortion - 4 -stage IF :ection ensures high sensitivity
and selectivity ; Filtered ousputs for direct "beat-
light - Prealigned, preassembled "front-end" euner
and one circuir board for fast, simple assembly. Cabiner $62 / 5 /$ - exera. Comprising: TFM-TI RF Tuning Heart Kit, E5/16/- incl. P.T. TFMA-IM (Mono) IF Amplifier, Power supply $615 / 3 / \%$. Kit or TFMA.IS (Stereo) IF Amplifier, Power supply $619 / 2 /$ - Kit. TOTAL PRICE KIT (Stereo) 220.19 .0 incl. P.T. TOTAL PRICE KIT (Mono) £24.18.0 incl. P.T.
Optional extra: Walnuz veneered cabinet 62/5/- extra.

All models must perform to published specification when assembled in accordance with the instruction manual. ALL MODELS COVERED BY MONEY BACK GUARANTEE.


BERKELEY SLIM-LINE SPEAKER SYSTEM

- Specially designed to obtain optimum periformance from the slim elegant cabinet - Beautiful walnut veneered, fully finished cabinet - Makes atrractive addition to any room srood on end uses only $17 \mathrm{in}, \times 7 \frac{1}{2} \mathrm{in}$. of floor space ${ }^{2}$ Two specjally designed loudspeakers give adequate power handling for most applications - 12 in . Iow resonance unit and 4 in . Mid/High frequency unit. covers $30-17,000 \mathrm{c} / \mathrm{s}$. Build it in an evening - Professional attractive styling - Use one for mono and a pair for stereo - Outstanding performance at a low price - Shell or floor standing - Use vertical or horizontal - Designed to harmonize with modern or traditional decor
KIT \&19.10.0 Ready-to-Use $\mathbf{2 4 . 0 . 0}$

LOW-COST SPEAKER SYSTEM SSU-I (not illustrated)

- Build is yourself in an evening All wooden parss accurately preecus, drilled and sanded Wide frequency response Two specially designed loudspeakers - Hi-Fi on a budget - Glue. sandpaper, etc. are included in kis © Use one for mono, two for stereg. Finish it so match your own furnishing 16 page instruction manual 7 in . or 15 in . legs optional extra, $14 / 6$ - Use vertical or horizontal

KIT CIJ.17.6 (less legs)
Ready to-use price on request

## LOW-COST SHORTWAVE RECEIVER, GR-64E

 - 4 bands- 3 short wave bands cover $1 \mathrm{Mc} / \mathrm{s}$ to $30 \mathrm{Mc} / \mathrm{s}$, plus $550 \mathrm{kc} / \mathrm{s}$ to $1,620 \mathrm{kc} / \mathrm{s}$ AM magnet speaker for a big, bold sound - llluminated 7 in . slide-rule dial with extra logging scale - Easy to read ighted bandspread cuning dial for precise seation selection - Relative signal strength indicator aids pin-point station tuning 4 -valve superhet sircuit plus two silicon diode rectifiers Variatle BFO cont for code SSB ran - Built-in external antenna connecrions - Built-in AM rod cransmission - Built-in external antenna connections © Buile-in AM rod antenna ". Fast, -charcoal grey cabinet, black frone panel, and green and white bind markings - Headphone jack for private listening. Power requirements: $115,230 \mathrm{v} .50-60 \mathrm{c} / \mathrm{s}$ A.C. 30 wates. Dimensions: $13 \frac{1}{2} \mathrm{in}$. wide $\times 6 \mathrm{in}$. high $\times 9 i \mathrm{in}$. deep. KIT ©22.8.0 Ready-to-Use E27.8.0GENERAL COVERAGE RECEIVER, GC-IU (not illustrated)

- Powerful 10 eransistor. 5 diode cireuit - Tunes 580 to $1.550 \mathrm{ke} / \mathrm{s}$ and 1.69 to 30 $\mathrm{Me} / \mathrm{s}$ in five bands. Bandspread on all banos - Fixed-aligned cermatic If transfilters for best selectivity © Pre-assembled and aligned "front-end" for fass, easy assembly Buile-in 6 in . Ain. speaker Tuning meter for pin-poins suning - Completely self-contained for portability.

$$
\text { KIT } \mathcal{C 3 7 . 1 7 . 6} \text { Ready-to-Use } 445.17 .6
$$



## Send for the Latest

 free catalogueNow with more Kits more colour. Fully describes these models along with over 150 models for Stereo/ Hi i-Fi, sest and laboratory instruments, amateur radio gear, intercom,
radio educational kits. Includes helpful information on Hi-Fi in your home and planning your Hi-Fi system. Mail coupon or write your Hi-F system. Main coupon or wr
Daystrom Led., Dept. WW3 Gloucester.
VISIT THE HEATHKIT CENTRES
233 TOTTENHAM COURT ROAD, LONDON, W.I Open Mon.-Fri. 9 a.m. 5.30 p.m. Sat. 9 a.m. 1 p.m. 17-18 ST. MARTINS HOUSE, BULL RING, BIRMINGHAM Open Tues.-5ar. 9 a.m.-6 p.m. inclusive.
BRISTOL ROAD, GLOUCESTER. Mon.-Fri. 9.0-S. 30 p.m.

## HEATHKIT

All mail orders and correspondence
To: DAYSTROM LTD., Dept. WW.4, Gloucester. Tel.: 29451

Please send model(s)
Please send me FREE Heathkit Cacalogue.
NAME ..
ADDRESS
CITY.

# Heathkit World-Leader in INSTRUMENTS • HI-FI • RADIO . Electronic kits 

The construction manual provided with the kit ensures successful assembly


5in. GENERAL-PURPOSE OSCILLO. SCOPE, $10-12 \mathrm{U}$

- " Y" sensitivity 10 mV . r.m.s. per cm . ar $I \mathrm{kc} / \mathrm{s}$. Bandwideh $3 \mathrm{c} / \mathrm{s}-4.5 \mathrm{Mc} / \mathrm{s}$. Frequency compensated inpur Two extra switch selected pre-set sweep frequencies in T/B range. T/B output approx. 10 v . peak to peak. Builtin IV calibrator © Facility ior " $Z$ " axis modulation • Electronically stabilised power supply - Power req. 200-250 v. A.C., $40-60 \mathrm{c} / \mathrm{s} .80$ watts Fused . Front panel, silver and charcoal grey - Cabinet, charcoal grey, size $8 \mathrm{f} \times 14 \times 17$ in. deep. Net weight 231b. 56-page conseruction and operation manual.
Kit $\mathbf{2 3 5 . 1 7 . 6}$. Ready-to-use $\{45.15 .0$
Attenuator and demodulator probes available as optional extras.

bin. VALVE VOLTMETER, IM-I3U - Modern styling - Extra features - The ideal VVM for the Electronic Engineer - Gin. Ernest Turner $200 \mu \mathrm{~A}$. meter with multi-coloured scales - Unique gimbal bracket allows bench, shelf or wall mounting - Measures A.C. (r.m.s.). D.C. voles $0-1.5,5,15,50,150,500,1,500$ - Resistance range action zero and ohms adiustment $\bullet$ Roller-tinned printed circuir - High input resistance ( $11 \mathrm{M} \Omega$ ) - Comprehensive assembly and operation manual Size $5 \times 12 H \times 4 \frac{1}{8} \mathrm{in}$. Complete with test prod and leads. Kit \&18.18.0. Ready-to-use $\mathbf{6} 26.18 .0$
$4 \frac{1}{2}$ in. Valve Voltmeter-V-7A (not illustrated). Kit $£ 13.18 .6$. Ready-to-use ¢19.18.6


Kit $\mathbf{2 3}$ 23.1.0. Ready-to-use $\mathbf{1 3 1 . 1 8 . 0}$

GENERAL-PURPOSE SERVICE RF SIGNAL GENERATOR, RF-IU

- Ideal for the alignment and crouble shooting or Rr, Large easy-to-read RF output of at least millivoles $100 \mathrm{kc} / \mathrm{s}=100$ $\mathrm{Me} / \mathrm{s}$. fundamentals up to $200 \mathrm{Mc} / \mathrm{s}$ harmonics - 400 cycle audio signal with 4 v . ourpur Dimensions $9 \frac{1}{2} \mathrm{in}$, wide $\times 6 \frac{1}{2}$, high $\times 5$ in. deep.


Kit $\mathbf{E 1 3} \mathbf{1 8 . 0}$. Ready-to-use $£ 20.8 .0$
AUDIO SIGNAL GENERATOR, AG-9U (not illustrated) Kit $\mathbf{6 2 3}$.15.0. Ready-to-use $£ 31.15 .0$


## See these and other Heathkit models in the FREE catalogue

NEW! PORTABLE STEREO TAPE RECORDER, STR-I

> Ot track stereo or mono record and playback at $7 \frac{1}{2}$, 3! and 1z i.p.s. 18 transistor clrcuit Record level indicator Digital counter with zero reset Stereo mic and aux. inputs. Speaker/headphone outpuss. Built-in audio amplifier glves 4 wats rms output per channel. Bin. $\times$ Sin. speakers. Versatile Recording facilities. So-easy-tobulld. Outstanding performance for price. Kit $\mathbf{1 4 5 . 1 8 . 0 .}$

THE CAR RADIO TO COMPLETE YOUR MOTORING
 PLEASURE CR-I
Complete your motoring pleasure with this small, compact, high output unit. Superb long and medium wave entertainmen whenever you drive. For $12 v$. positive or $12 v$ negative car earth systems.

- 8 latest semi-conductors ( 6 transistors, 2 diode circuit) - Powerful outpur (4 watts) will drive two speakers. Styled to harmonise with most car colou inc. P.T. If/Af amplifier kit Ell.3.6.

Total price kit (excl. LS). . . . CI2.17.0 inc. P.T.
L/speakers and accessories available as extras. Loudspeaker $£ 1.4 .5$ extra.

NEW! PORTABLE STEREO RECORD PLAYER, SRP-I

- Compact, economical stereo and mono record playing for the whole family - Mains operated * All " solid scate" - Detachable second loudspact seyling optimum stereo effecs Automatic playing of $16,33,45$ and 78 rpm records - Suitcase portability Two 8 in. $\times 5$ in speakers - Conerols: Volume, Balance and Tone. Dimensions: overall 27 in .
 wide $\times 14 \mathrm{l} \mathrm{in}$. high $\times 7 \frac{1}{2} \mathrm{in}$. deep.

$$
\text { Kit } \mathbf{1 2 7 . 1 5 . 0}
$$

"OXFORD" LUXURY TRANSISTOR PORTABLE, UXR-2
This superb transistor radio is the ideal domestic or personal portable Medium and Long Wave receiver - Solid leather case and handle, in black or brown Easy-to-read tuning scale - Extra large loudspeaker. Push button L, MW and sone - 10 semi-conductors ( 7 eransistors plus 3 diodes) Sockers for personal earphones, tape recorder, car acrial - Internal 9 -volt battery (not supplied) lasts for months - Latest printed circuit techniques Comprehensive, easy-to-follow, fully illustrated Instruction Manual.


Kit $\mathcal{C l} 48.18$ inc. P.T.

- Prices quoted are Mail Order, and include free delivery in U.K. Retail prices slightly higher.




## a unique sound mixing system...



臭

KONGSBERG VAPENFABRIKK KONGSBERG NORWAY

Head office and plant: Kongsberg, Norway
Tel.: Kongsberg 37, telex: 1491, cable: Vápenfabrikken, Kongsberg Osio olfice: Drammensveien 40, VII
Tel.: Oslo 5667 70, telex: 1114, cable: Konsern, Oslo
Central European office: Kongsberg Våpenfabrikk, Bonn
Walter Flex Strasse 1, West Germany
Tel.: Bonn 27 422; telex: 886505 , cable: Korakontor, Bonn

TYPE	TG66A	TG66B	TGI50	TGI50M	TGI50D	TGI50DM
FREQUENCY	0.2 Hz to 1.22 MHz .		1.5 Hz to 150 kHz			
ACCURACY	$\begin{aligned} & \pm 0.02 \mathrm{~Hz} \text { below } 6 \mathrm{~Hz} \\ & \pm 0.3 \% \text { from } 6 \mathrm{~Hz} \mathrm{to} 100 \mathrm{kHz} \\ & \pm 1 \% \text { from } 100 \mathrm{kHz} \text { to } 300 \mathrm{kHz} \\ & \pm 3 \% \text { above } 300 \mathrm{kHz} \end{aligned}$		$\pm 3 \% \pm 0.15 \mathrm{~Hz}$			
DISTORTION	$<0.15 \%$ from 15 Hz to 15 kHz $<0.5 \%$ at 1.5 Hz and 150 kHz		$<0.1 \%$ at $\mid \mathrm{kHz},<0.3 \%$ from 50 Hz to 15 kHz . $<1.5 \%$ below 50 Hz and above 15 kHz .			
SINE WAVE OUTPUT	Source voltage varlable from $30 \mu V$ to 5 V . Output impedance $600 \Omega$ at all settings.		Source voltage variable from $250 \mu \mathrm{~V}$ to 2.5 V , Output impedance $<250 \Omega$ above $250 \mathrm{mV}, 600 \Omega$ below 250 mV . Less than $1 \%$ variation of amplitude throughout frequency range.			
SQUARE WAVE OUTPUT	None		None		Variable up to 2.5 V peak. Rise time $1 \%$ of period $+0.2 \mu \mathrm{~S}$.	
OUTPUT METER	Expanded voltage scales and -2 dB to +4 dB . Scale length $3.5^{\prime \prime}$		None	$\begin{aligned} & 0 \text { te } 2.5 \mathrm{~V} \\ & \text { and }-10 \mathrm{~dB} \\ & \text { to }+10 \mathrm{~dB} \end{aligned}$	None	$\begin{aligned} & 0 \text { to } 2.5 \mathrm{~V} \\ & \text { and }-10 \mathrm{~dB} \\ & \text { to }+10 \mathrm{~dB} \end{aligned}$
POWER SUPPLY	4 type PP9 batteries, life 400 hours, or, A.C. Mains when:   selected by   batteries re-   panel control   placed by Power   Unit		2 type PP9 batteries, llfe 400 hours, or, A.C. Mains when batteries are replaced by Levell Power Unit.			
SIZE	$7^{\prime \prime} \times 10 \frac{1}{4 \prime \prime}^{\prime \prime} \times 7^{\prime \prime}$ Weight 12 lb .		$10^{\prime \prime}$ high $\times 6^{\prime \prime}$ wide $\times 4^{\prime \prime}$ deep. Weight 6 lb .			
PRICES	6150	6120	632	<42	635	445
$\begin{aligned} & + \text { Mains Power Unit } \\ & + \text { Leather Case } \end{aligned}$	included $<15$		67100			
	65	65	44100			

LEVEL ELECTRONILS LTD., Park Road, High Barnet, Herts. Phone 01 -448 5028


69 F Tantalum Capacitors are now made in Britain by EMIHUS Microcomponents Limited at their Glenrothes factory.
What does this mean to you? Plenty!
You are now assured of a regular and rellable source of supply-no import problems.
Then, the EMIHUS 69 F Tantalum Capacitors are smaller and less expensive than simllar
capacitors obtainable in Britaln. And these EMIHUS 65 F Capacitors give the lowest leakage current of all and are manufactured under the

strictest quality control conditions.
Approval to DEF 5134 A-4 is pending.
For full details write or 'phone to:
EMIHUS MICROCOMPONENTS LIMITED
Sales Office:
Heathrow House, Bath Road, Cranford, Hounslow, Middx.


# Pinnacle the largest single valveindependent 

## THIS IS WHAT <br> WE DO

Make available the widest range of valves for commercial and industrial use. Give a personalised service based on intelligence and speed.

Ensure that we only supply valves made by the world's foremost manufacturers.
Provide valves selected for your special needs.
Help out rapidly with that "awkward" valve that nobody else seems to have heard of.



## IF I'D ONLY TRIED PINNACLE FIRST...

Every valve in either widespread or specialised use in the fields of Entertainment, Industry, Education and Research will be found in our catalogue, together with its main equivalents, classification, and the Pinnacle " $P$ "' number under which it may be ordered.

Specialise in European or American types which are not normally easily obtainable.
Rush you a small order, or quote for a bulk require-ment-1's or 1,000's are all the same to us.

# A new science project combining the fascination of optics with electronics . . . the new field of 

Demonstrations of these devices operating as

SPEECH LINK $\stackrel{\text { and }}{\text { anf }}$ LINK ON/OFF LINK are being given daily at our only address,
52 TOTTENHAM COURT ROAD, LONDON, W.1.

These new devices offer features which can be exploited in an extremely wide field of applications. Their outstanding modulation and switching capabilities, coupled with completely solid state circuit design and small physical size make them ideally suited to such purposes as short distance speech and data links, remote relay controls, safety devices, burglar alarms, batch counters, level detectors, etc.

## MGA100

 206 Post freeTYPE MGA 100 General Purpose Gallum Arsenlde LIght Source
A filamentless, Gallium Arsenide infra-red emitter, only 5.54 mm .
dia. and 8.1 mm . long. Features a robust cylindrical package
coaxial with the beam, facilitating optical alignment and heat-
sinking.

> Reverse voltage $V_{F}$ max . ...... I-OV
> When mounted on an aluminium heat sink $\operatorname{lin} . \times \frac{1}{4} \mathrm{in} . \times \frac{1}{4}$ in
> Supplied complete with suitable lenses, full Technical Data and Application Sheets,ineluding Line of Sight Speech Link.

TYPE MSP3 Solid State Photo Receiving Device
An ultra-sensitive infra-red and visible light detector, this device is a complete silicon photo-electric receiver with a peak spectral response at 9500 A . Size only 6.4 mm . dia. and 25.4 mm . Iong, yet absolutely complete, the device will generate sufficient power to drive an external relay. Chiefly intended for use in optical links based on Gallium Arsenide Light Sources, they are equally suitable for systems based on visible light. Features a robust cylindrical package coaxial with the incident light facilitating optical alignment and heat-sinking.

MAX RATINGS
Total dissipotion (in free air, Tamb $25^{\circ} \mathrm{C}$ ) $\ldots \ldots . .100 \mathrm{~mW}$. Derating Factor........ $2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
Output Current Intensity ..... 100 mA . Voitage......25V. Operating Temperature...........from
Suppliod
Supplied complote with suitable lenses, full Techninal Data and Application Sheets, including Line of Sight Speech Link.

## 31F2x <br> Post Free

Type 31 F2 Micro-miniature Infra-Red Detector
Extremely small photo diodes of silicon NPN passivated planar construction and suitable for Punched Card Readers, Counters, Film Sound Track, etc.
Supplled complote with suitable lenses, full Tochnical Data and Application Shoets, including Line of Sight Speoch Link.

## PROOPS LIMITED

52 Tottenham Court Road, London, W.1. Telephone: LANgham 0141 ( $01-580$ 0141)
 Poss Free

## and these new solid state devices...

RCA TRIACS Type 40432
Intended primarily for phase control of A.C. loads in light dimming, universal and induction motor control, heater control, etc., these gate controlled full-wave A.C. silicon switches, with integral trigger, switch from a blocking state to a conducting state for elther polarity
of applied voltage with positive or negative of applied voltage with positive or negative
gate triggering.
Supplied complete with full Data and Application Sheets.

INTEGRATED CIRCUIT RCA-CA 3020 AF POWER AMPLIFIER \& PRE-AMPLIFIER (or servo-amplifier).
The RCA.CA 3020 is an integrated-circuit, Multistage, Multi-Purpose AF Power Amplifier on a single monolithic silicon chip, providing a stabilized direct-coupled amplifier, performing pre-amp., phase inverter, driver and power preatput functions without transformers, and with one power supply suitable for sound communications and control systems.
Supplied complote with full Data and Application Sheets.

$45^{\prime}-E A C H$
Post Free


## HUNTS <br> give designers the best of both worlds...

. . . all the advantages of a metallised polyethelene terephthalate film capacitor

## New <br> Hunts Type M314

gives high standards of reliability in a new range specifically designed for printed circuitry.
humidity resistant housing of tough, clean epoxy resin neatly styled to eliminate any moisture trap between terminations.



Temperature $-55^{\circ}$ to $+100^{\circ} \mathrm{C}$ Humidity Classification 21 days (H5 DEF 5011)

Hunts Type M314 Standard Capacitance Range

Capacitance Microfarads	160 V . d.c. List Number	250V. d.c. List Number	$400 \mathrm{~V} . \mathrm{d} . \mathrm{c}$. List Number
0.022			TMD 552
0.033			TMD 556
0.047			TMD 560
0.068		TMD 502	
0.1		TMD 506	
0.15	TMD 452		
0.22	TMD 456		
0.9		TMP 540*	
1.8		TMO 541*	

* These units are approved to Post Office Specification D2283

				Dimensions mm		
	$L$	$W$	$T$	$C$		
TMD	18	10	5	15		
TMP	31.75	22.23	7.94	27.5		
TMQ	31.75	22.23	10.72	27.5		

Please use the Reader Enquiry Service to obtain full technical information or contact us direct


A. H. HUNT (Capacitors) Ltd<br>Wandsworth, London SW18, Telephone VANdyke 6454, Telex 25640<br>Factories also in Surrey and North Wales<br>A member of the ERIE GROUP of COMPANIES

# CHASEAFORUTRLCUUL ANO MILITARY ROLET: UUERFORTY COUERIIIIEITS THROL FIOUT THE UORLD 



The same safeguards in manufacture and control that have won government contracts for TEONEX in over forty different countries apply equally to ensure top quality for private users too. When you require valves to comply with E.V.S. or M.I.L. standards - choose TEONEX. The TEONEX range (for use outside the U.K. only) incorporates the entire series of Britishproduced valves or their Continental equivalents, including a wide range of colour T.V. valves. Price list and technical specifications may be obtained from:-

## Export Enquiries Only Please! TEDIEK LIIITED

TEONEX

## VALUABIE NEW HANDBOOK Fite encliners

## Have you had your copy of "Engineering Opportunities"?

The new edition of "ENGINEERING OPPORTUNITIES" is now available-without charge-to all who are anxious for a worthwhile post in Engineering. Frank, informative and completely up to date, the new "ENGINEERING OPPORTUNITIES" should be in the hands of every person engaged in any branch of the Engineering industry, irrespective of age, experience or training.

## On 'SATISFACTION OR REFUND OF FEE' terms

This remarkable book gives details of examinations, and courses in every branch of Engineering, Building, etc., outlines the openings available and describes our Special Appointments Department.

## WHICH OF THESE IS YOUR PET SUBJECT ?

Electronic eng.
Advanced Electronic Eng. Gen. Electronic Eng.-Applied Gen. Electronic Eng.-Applied
Electronics - Practical ElecElectronics - Practical Electronics - Radar Tech.
Frequency
Modulation Transistors.

## ELECTRICAL ENG.

Advanced Electrical Eng. Gen. Electrical Eng. Installations - Draughtsmanship - Illuminating Eng. Refrigeration - Elem. Elecrical Science - Electrical Supply - Mining Electrical Supp
Eng.

CIVIL ENG.
Advanced Civil Eng. - Gen. Advanced Civil Eng. - Gen Civil Eng.—Municipal Eng.Structural Eng. - Sanitary Eng. - Road Eng. - Hydraulics - Mining - Water Supplv - Petrol Tech.

RADIO ENG.
Advanced Radio - Gen. Radio Radio E TV Servicing TV Eng. - Telecommunications - Sound Recording Automation - Practical Radio - Radio Amateurs' Exam.

MECHANICAL ENG. Advanced Mechanical Eng. Gen. Mechanical Eng. Maintenance Eng. - Diesel Eng. - Press Tool DesignSheet Metal Work - Welding - Eng. Pattern Making Inspection - Draughtsmanship - Metallurgy - Production Eng.

AUTOMOBILE ENG. Advanced Automobile Eng. Gen. Automobile Eng. Automobile Maintenance Repair - Automobile Diesel Maintenance - Automobile Mlectrical Equipment - Garage Electrical Equ.
Management.

WE HAVE A WIDE RANGE OF COURSES IN OTHER SUBJECTS INCLUDING CHEMICAL ENG., AERO ENG., MANAGEMENT, INSTRUMENT TECHNOLOGY, WORKS STUDY, MATHEMATICS, ETC.

Which qualification would increase your earning power?
A.M.I.E.R.E., B.Se. (Eng., $)$ A.M.S.E., R.T.E.B., A.M.I.P.E., $\begin{array}{llll}\text { A.M.I.E.R.E., B.Se. (Eng., A.M.S.E., R.T.E.B., A.M.I.P.E., } \\ \text { A.M.I.M.I., } & \text { A.R.I.B.A.B. } & \text { P.M.G., A.B.I.C.S., }\end{array}$ M.R.S.H.,' A.M.I.E.D. GEN. CERT. OF EDUCATION. ETC.

BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY 446A ALDERMASTON COURT, ALDERMASTON, BERKSHIRE

THIS BOOK TELLS YOU

* HOW to get a better paid, more interesting jab. * HOW to qualify for rapid pramotion.
* HOW to put some letters ofter your name and become a key man... quickly and easily.
* HOW to benefit from our free Advisory and Appointments Depts.
* HOW you can take advantage of the chances you are now missing.
* HOW, irrespective of your age, educotion or experience, yOU can succeed In any bronch of Engineering.


## 132 PAGES OF EXPERT CAREER-GUIDANCE

## PRACTICAL EQUIPMENT

Basic Practical and Theoretic Courses for begin ners in Radio, T.Y., Electronics, etc. A.M.I.E.R.E. City \& Gullds Radio mateurs' Exam., R.T.E.B. Certificate, P.M.G. Cer tificate, Practical Radio Radio \& Television Ser icing, Practical Elec Engineering, Automation.

INCLUDING TOOLS
The specialist Elecronics Division of B.I.E. T. NOW offers you a real laboratory iraining at home with pracrical equipmen

## B.I.E.T.

You are bound to benefit from reading "ENGINEERING OPPORTUNITIES," Send for your copy now-FREE and without obligation.



#  wath int oimins pir vurail at IHI <br>  



DITTON 10

## DITTON 15

Just listen to Gordon J. King's summary in a February 'Hi-Fi Sound' Review: "I have no reservations whatever in thoroughly recommending this outstanding loudspeaker to all wishing to obtain large-speaker sounds from a modest $21^{\prime \prime} \times 9 \frac{1}{2}{ }^{\prime \prime} \times 9 \frac{1}{4}^{\prime \prime}$ of enclosure". Suffice it to add that this is a 3 drive unit incorporating the famous ABR (Auxiliary Bass Radiator), $8^{\prime \prime}$ bass unit and the HF 1300 for treble notes. Full power response from 15,000 right down to 30 Hz -the threshold of audible sound.

## NEW FROM CELESTION -

We will be demonstrating a remarkable new loudspeaker at the Fair. Be sure not to miss the opportunity of being amongst the first to hear this superb new addition to the Ditton range.

So now you have an even greater choice of superb Ditton loudspeakers, from miniature bookshelf to professíonal standard. For the home constructor, Celestion offer a wide range of drive units.

## Celestion loudspeakers - for the perfectionist

See us ... HEAR US ... at the AUDIO FAIR, April 18-21
HOTEL RUSSELL, W.C.2. Booth 22. Demonstration Room 534

When you buy a British made Antex miniature soldering iron you are buying a specialised precision instrument that has proved its success in the majority of leading companies in the electronics industries throughout the World. These are professional irons for the man who wants the ultimate in precision soldering. The versatility and accuracy of an Antex iron will give you fingertip control over any soldering problem. Send for your Antex iron now. Or you may have our colour catalogue. Simply complete the coupon.

CN 15 watts. Ideal for miniature and micro miniature soldering. 18 interchangeable spare bits available from $.040^{\prime \prime}$ ( 1 mm ) up to $3 / 16^{\prime \prime}$. For 240 , $220,110,50$ or 24 volts.
From Electrical and Radio Shops or direct from Antex.



This kit-in a rigid plastic "tool-box" - contains everything you need for precision soldering.

- Model CN 15 watts miniature iron, fitted $\frac{3}{16}{ }^{\prime \prime}$ bit.
E Interchangeable spare bit, $\frac{5}{32}{ }^{\prime \prime}$.
- Interchangeable spare bit, $\frac{3}{32}{ }^{\prime \prime}$.
- Reel of resin-cored solder
- Felt cleaning pad
- Stand for soldering iron
- Space for stowage of lead and plug
PLUS 36-page booklet on "How-to-Solder"-a mine of information for amateur and professional

From Electrical and Radio Shops or direct from $49 / 6$ Antex.

PRECISION MINIATURE SOLDERING IRONS


G 18 watts. Ideal for miniature work on production lines. Interchangeable spare bits, $3 / 32^{\prime \prime}, 1 / 8^{\prime \prime}, 3 / 16^{\prime \prime}$, and $1 / 4^{\prime \prime}$, for 240 . 220 or 110 volts, $32 / 6$.


E20 watts. Fitted with $1 / 4^{\prime \prime}$ bit.
Interchangeable spare bits $3 / 32^{\prime \prime}, 1 / 8^{\prime \prime}$. $3 / 16^{\prime \prime}$. For $240,220,110$ or 24 volts. $35 /$.


ES 25 watts. Fitted with $1 / 8^{\prime \prime}$ bit.
Interchangeable bits $3 / 32^{\prime \prime}, 3 / 16^{\prime \prime}$ and $1 / 4^{\prime \prime}$ Ideal for high speed production lines. For $240,220,110,24$ or 12 volts. $35 /$ -

$F^{3} 40$ watts. Fitted $5 / 16^{\prime \prime}$ bit.
Interchangeable bits $1 / 4^{\prime \prime}, 3 / 16^{\prime \prime}, 1 / 8^{\prime \prime}, 3 / 32^{\prime \prime}$ Very high temparature iron. Available for $240,220,110,24$ or and voltages immediately available from stock.

## $\square$

To: Antex, Grosvenor House, Croydon, CR9 10E
Please send me the Antex colour catalogue
Please send me the following irons
Quantity Model Bit Size Volts Price
$\qquad$
I enclose cheque/P.O./cash value
NAME
ADDRESS

## What price performance like this?

## Direct gating at 100 MHz . .

costs just $£ 747^{*}$ in the Racal 801R Digital Frequency Meter
Like all 800 Series instruments, the 801 R , the latest in the line, is custom-designed for specific function, combining excellent sensitivity with high input impedance and exceptional stability. Gate times of 10 mS to 10 seconds and the RACAL patent dynamic readout give operational flexibilityinstant follow for fast turning or resolution of 0.1 Hz . Remote control and BCD output are options of particular value to the Production Engineer. Measuring to 500 MHz (resolving to 1 Hz in just over one second) the $801 / 802$ combination at $£ 1025$ *is value engineering at its best, true RACAL performance.
$\square$ Measures 10 Hz to 100 MHz

* price in U.K$1 \mathrm{M} \Omega \& 15 \mathrm{pF}$ input impedance, $10 \mathrm{M} \Omega$ with your 'scope probe
50 mV sensitivity
2 parts in $10^{9}$ daily stability
$\square 500 \mathrm{MHz}$ Resolution with fully automatic neterodyne converter 802
Remote control and BCD output options
-7 8-digit latched display
BAGAL



## what has changed?

Well, loudspeakers for one thing. Practically all loudspeakers designed in the last few years have (rightly) followed the trend towards lower efficiency and therefore require more power to drive them.
And pickups, too. The trend here is towards smaller and lighter moving parts producing lower outputs, requiring greater sensitivity and improved signal to noise ratio in the pre-amplifier.
QUAD has changed to accommodate both, and has also taken the opportunity of introducing other significant improvements in performance and facilities.


QUAD 33

## QUAD <br> for the closest approach to the original sound



## \& Armstrong the high fidelity sound

> Compare an Armstrong with any tuner, amplifier or tuner-amplifier of even remotely comparable price and you will find the Armstrong is not only the best value but the best.

## AUDIO FESTIVAL AND FAIR DISPLAY BOOTH 80 <br> DEMONSTRATION ROOM 538 <br> ENQUIRY ROOM 539



# OK! I know glass-tin-oxide is the best resistor-but why do I need three types? 

- because internationally famous TR, the finest general purpose resistor available, cannot quite meet ALL your needs. To meet increasingly exacting specifications in terms of TC and stability, Electrosil have added C and NC resistors to the range. They give you everything any other type of resistor can offer, with the added bonus of complete reliability.


## 50 ppm Type NC5

Meets DEF 5115-1 Pattern RFG7-0.125 and MIL-R-10509F Characteristic C. ( 49.9 ohms-499K) $0.5 \%$, $1 \%$ selection tolerance E96 and E24 series of
preferred values legend marked. A truly precision resistor which retains all the glass tin Oxide qualities of high reliability. excellent long term stability and environmental inertia.

## 100 ppm Type C5

The only resistor fully approved to DEF 5115-1 Pattem RFG5-E with a guaranteed 100 ppm temperature coefficient. 10 ohms-1 MOhm (Approved range 10 ohms- 470 K ) $1 \%, 2 \%$ and $5 \%$ selection tolerances E96 and E24 series of preferred values. Colour coded. A multiple rated resistor that provides RFG 5 versatility PLUS 100 ppm capability.

## 200 ppm Type TR5

Fully approved to DEF 5115-1 Pattern RFG5-E. 10 ohms-1 MOhm (Approved range 10 ohm-470K) $2 \%$ and $5 \%$ selection tolerances E24 series of preferred values. Colour coded. A truly low cost ( $31 / 3 \mathrm{~d}$ per 100) resistor. Probably the most widely used film resistor in the U.K. today. The originator of triple rating, now available at a new low price which make $2 \%$ resistors cheaper than competitive $5 \%$ type, and allows standardisation on ONE resistor type and ONE selection tolerance.

# This is an illustration of sixty-two different power umits 



Concealed behind this $4 \frac{3^{\prime \prime}}{}{ }^{\prime \prime} \times 5 \frac{1^{\prime \prime}}{}$ front panel is a standard range of parts manufactured in large quantities, resulting in low production costs. The saving is passed on to you without affecting the superior performance and high reliability. For example, you can have a pre-set unit in the range 11 to 28 volts at 4 amps for as little as $£ 34$.

The 62 units in the new Series 30 range cover voltages from 0 to 500 with output currents up to 10 amps , depending on the voltage. A choice of protection circuits is available including 'crowbar' for your integrated circuits.
For complete details of this new approach to power supply design send for Series 30 full-colour folder and price list.

A.P.T Electronic Industries Ltd. Chertsey Rd., Byfleet, Surrey. Tel: Byfleet 41131. WW-024 FOR FURTHER DETAILS


Jack Peters knows the quality and reliability of the Weller soldering equipment he uses during the dayso he naturally chooses Weller for all the soldering jobs around the house. The same technical know-how and perfection go into both.
The world's widest range of quality soldering tools offers :
TEMPERATURE CONTROLLED IRONS with iron plated tips which control temperature without limiting
performance. For mains or low voltage.
RAPID SOLDERING GUNS. Instant heat models. Just reach for the solder . . . 4 seconds and the job's done.
LOW INITIAL COST. The range of Marksman Irons$25,40,80,120$ \& 175 watt,-all have pretinned nickel plated tips.
There's a Weller soldering tool for every job and every pocket. Send for full details of our range.

# Eddystone 990R <br> BRITISH MADE 

## A NEW SOLID-STATE V.H.F RECEIVER



The '990R' when used in conjunction with the matching ' 990 S ' provides continuous AM/FM coverage from 27 to 870 MHz . A common Panoramic Display Unit is available for use with both receivers.

## FEATURES

- The '990R' tunes 27 to 240 MHz in four switched bands. 10 MHz markers from crystal calibrator for scale checking.
- A.M, F.M, and C.W reception; video output available at A.M, and F.M.
- Provision for crystal-controlled working on up to eight switched channels. Socket permits connection of external synthesizer for applications requiring high-stability operation coupled with flexibility in frequency selection.
- Stability one part in $10^{5}$ per ${ }^{\circ} \mathrm{C}$ or one part in $10^{6}$ per ${ }^{\circ} \mathrm{C}$ with crystal control.
- Stand ard 10.7 MHz I.F with 200 kHz and 30 kHz bandwidth—narrower bandwidths to order.
- Spurious responses 50dB down. (Three signal circuits prior to mixer stage).
- Low and high level outputs available from I.F channel; 10.7 MHz input provided for external converter.
- Noise factor of the order of 10 dB .
- Audio outputs for external speaker, headset and line. Built-in monitor speaker for convenience in rack installations.
- Audio response level within 6 dB from 200 Hz to 10 kHz . Output 500 mW .
- Operates from 12V D.C or 100/130V and 200/260V $40-60 \mathrm{~Hz}$ A.C supply.


MANUFACTURED BY NATIONAL SEMICONDUCTOR


1	Output Voltage Range	2 V to 20 V
2	Load Regulation	typ. $0 \cdot 1 \%$
3	Line Regulation	typ. $0 \cdot 1 \%$
4		
5		
5	Opert-Circuit Current Limiting	
6	Output Currents up to 5 A with external transistorstyp. 1 mA   7 Standby Current Drain	



## EAGLE ANNOUNCE AN IMPORTANT NEW TEST INSTRUMENT

MODEL KEW. 66 brilliantly designed and engineered for versatile,
accurate and dependable measurements.
10 overlapping voltage ranges on both $A C$ and $D C$ measuring from
1 to 1,000 Volts at 20,000 O.P.V. sensitivity.
4 overlapping resistance ranges measuring from 5 K to 5 meg ohm.
4 overlapping DC current ranges measuring from $50 \mu \mathrm{~A}$ to 500 mA .
Additional, decibels, inductance, capacitance and up to 350 mV measurements are provided. Features include Overload Protection Circuit,
$4^{\prime \prime}$ mirrored meter scale, and sealed operating components.
Each instrument is supplied in a fitted carrying case,
complete with test leads, battery and manual, Guaranteed 12 months.
Size : $79 / 32^{\prime \prime} \times 4^{\prime \prime} \times 147 / 64^{\prime \prime}$.


# Pinnacle 

## can assist all electronic valve users

OUR ORGANISATION draws upon the resources of electronic valve manufacturers all over the world. It responds immediately to your requiremenis. Our new catalogue of over 1,000 specific types is available to bona-fide users through the Wireless World reader service.

## ROUTINE

ECC83/12AX7 : 2D21/EN91: 6AK5W/ M8100 : ECF82/6U3.
We supply many thousands of these and similar everyday valves to both small and large equipment manufacturers.

## SPECIAL

CV4010:CV2578 : CV2134
The special needs of Government Establishments and Departments are regularly catered for by us. Our stocking policy ensures positive ability to supply even obscure types.


## DIFFICULT

6AW8A : 60 K6/8136:5643 : 12BY7A
Users of American instrumentation rely upon us to provide a speedy replacement service in valves not easily obtainable in this country.

## The largest independent specialist in valve distribution



Teiephone: All departments - 01-692 7285 Direct orders - 01-692 7714
wW-029 FOR FURTHER DETAILS

## ㄹl ADVANCED STATE-OF-THE-ART PRODUCTS

## 2-Phase Sensitive Voltmeter



Integrating Voltmeter Model 110
Applications for Model 110 include bridge measurements with simultaneous in-phase and quadrature null-detection. High sensitivity measurements are possible of inductance, capacitance and resistance and consequently of temperature, force, pressure, displacement, strain, creep etc.
There are also applications in radio astronomy, biological studies, oceanography, vibration analysis, pulsed nuclear resonance, thermal conductivity, Hall effect measurements, spectrum analysis and VSWR measurements.

## Features

* Recovery of signals 60 dB below white noise
$\star$ Hum rejection 100 dB
* Simultaneous IN-PHASE and QUADRATURE indication
* RC filters-no ringing-rapid recovery
* Adjustable selectivity
* Nuvistor input stage-low noise-high impedance
$\star 0.1$ nanovolt f.s.d. with input transformer (low temp.)
* Total signal indication with warning of overload

The instrument can be useful in any application calling for the recovery of signals buried in noise and where a reference signal is available.
ASL also manufacture a range of automatic and hand-set precision bridges and potentiometers based on synchronous detection and high accuracy inductive ratio-arms.
ASL policy is to develop and manufacture advanced state-of-theart measuring instruments and to maintain close liaison between the Company's Research and Development Department and National and University Research Establishments.
ASL is British owned and financed.

## Automatic Systems Laboratories Ltd

Ask us NOW for further information. Please quote Ref. W4/V


Only S.M.E. Precision Pick-up Arms offer all these features . Choice of arm length Model 3009 (9in.) or Model 3012 ( 12 in .) for still lower tracking error-of special importance with elliptical styli. low inertia. High precision ball races and knife-edge bearings for minimum pivot friction. Linear offset chosen for lowest distortion. Automatic slow-descent with hydraulic control. Bias adjuster calibrated for tracking force. Exact overhang adjustment with alignment protractor. Precise tracking force from $\frac{1}{4}-5$ grams applied without a gauge. Shielded output socket . Low capacity 4 ft . connecting cable with quality plugs. Light-weight shell. Camera finish in satin chrome, gun-black and anodised alloy. Comprehensive Instructions • Rational development-all improvements can be incorporated in any existing Series II arm.

## Goodmans welcome you



## ...to Room 434 at the Hotel Russell at the London Audio Festival 19th - 21st April (Trade and Export on the 18th)

See and hear for yourself how well-mannered High Fidelity can be
Handsome yet unobtrusive, truthful in the highest degree-handling your discs and favourite broadcasts with gentle precision-controlled power.
Technically superb - Goodmans Audio Suite is designed for the man who knows a good thing when he hears it - and who appreciates visual elegance - with technical excellence built-in.
Amplifier and Tuner design-and size-matched. Available in Teak or Walnut finishes to order. Transcription Record Player complete in the same elegant idiom and a choice of handsome loudspeaker enclosures to suit your ear and your living-room. All with the Goodmans reputation behind them and all top-flight true High Fidelity products.

Goodmans Loudspeakers Ltd • Axiom Works • Wembley • Middx • Tel : 01-902 1200


The Pye Pioneer provides a two-way radiotelephone link to the nearest telephone exchange in remote areas where land lines are impracticable or too costly. With the exception of very short distances, it is cheaper to specify the Pioneer than a conventional cable link which has copper conductors.


Radiotelephone

Provides normal telephone service Fully transistorised
Use with automatic or manual exchanges Designed for unattended operation over long periods
$\square$ Facility for fitting privacy equipment $\square$ Weatherproof cabinet

Optional single antenna operation


# IF THIS <br> IS NOT THE <br> ONE YOU <br> WANT WE STILL <br> HAVE A FEW <br> MILLION OTHERS 



Ministry of Aviation Approved Inspection. Air Registration Board Approved Inspection.

For quality, reliability and world-wide availability, rely on Hall Electric's speed, intelligence and reputation.

[^9]

# The British Trans-Arctic Expedition needed an utterly reliable battery which would operate in the sub-zero temperatures of the first surface crossing of the Polar Cap. 

## Mallory made it.

## What can we do for you?

Early in 1968 the British Trans-Arctic Expedition set out to accomplish the first surface crossing of the frozen Arctic. This Trans-Polar journey of 3,800 miles will take them approximately a year and half. In order to keep the four-man team supplied throughout this period, The Arctic Research Laboratory and Royal Canadian Air Force are making a number of supply drops.

A battery was needed to power the Elliott radio survival and homing beacon which is being used to transmit the location of the party-a battery upon which four men's lives could depend.

## Mallory made it.

The SKB 1064 is specially designed to work under a wide range of conditions. Tests have proved that this mercury system operates even at temperatures which will freeze sea-water solid. The capacity and performance of the Mallory mercury cell in hostile environments has meant that it has found many applications in equipment ranging from fingertip lighting for astronauts in space to deep-sea photography at a depth of 30,000 feet.

If you're considering a battery system for a new product, think of what Mallory can do for you. Our sales and application engineers are always at your service. Contact our Manager, U.K. Sales, at Mallory Batteries Limited, Gatwick Road, Crawley, Sussex-Crawley 26041 -or get in touch with our nearest industrial distributor.

Mallory Industrial Distributors:
BIRMINGHAM Messis. Hawnt \& Co.. 1121114 Pritchett Street, Birmingham, 6. Aston Cross 4301 BRISTOL Wireless-Electric Lid., "Wirelect House", St. Thomas St.. Bristol, 1. Bristol 294313 BURNHAM-BUCKS Gawt Distributor Services Lid. The Red House, High Street, Burnham Bucks. Orchard Giove 694
CARDIFF South Wales Wireless Installation Co. Lid., 121 City Road, Cardif. Cardiff 23636 COVENTRY Coventry Factors Ltd. . Upper Well Street, Coventiy. Coventry 21051
CRAWLEY S.A.S.C.O., P.O. Box 20, Gatwleh Road, Crawley, Sussex. Crawley 28700
GLASGOW British Electrical \& Mtg. Co. Lid., i83 St. Vincent Street, Glasgow, C.2. City 4131 Harper Robertson Electronics Ltd., 97 Si. George's Road. Glasgow, C. 3 , Douglas 2711 . 11 y 4131
S.A.S.C. O. Factory 13 B. Carbrain Industrial Estate, Cumbernauld, Glasgow. Cumbernauld 410 HARLOW Standard Telephones \& Cables Lid., Electronic Services Sub-DIvislon Edinburgh Way, Harlow, Essex. Harlow 26811
HITCHIN S.A.S.C.O., Hunting Gate, Wilbury Way, Hitchin, Herts. Hitchin 2242 Roberts Electronics Lid., 17 Hermitage Road, HitchIn, Merts. Hitchin $50551 / 2$
LEEDS A. C. Farnell Limited. 81 kIrkstall Road, Lis.
LEEDS A. C. Farnell Limited, 81 K1rkstall Road, Leeds, 3. Leeds 35111
LONDON Britlsh Electrical \& Mfg. Co. Lid.., 10 Rushworth Street, Lond on S. E. 1. WA Terl 007731 Cables \& Components Ltd., Coronation Road, Park Avenue, London N. W. 10 ELGar 2266 Lugton \& Co. Ltd. , Mr. Lun. Radio House, 209-212 Tottenham Court Rd., London W.1. Museum 3261 NEWCASTLE Britlsh Electrical \& Mig. Co. Ltd., Clavering Place, Newcastle-upon-Tyne. 1. Newcasile 22416
J. Gledson \& Co. Lid., Newbiggin Lane, Westerhope, Newcastle-upon-Tyne, 5. Newcastle 869033 NORTHAMPTONE.M.F. (Electrical) Lid., Dunster Steet, Northampton. Northampton 37316 POYNTON Sclentific Furnishings Lid., Electronlcs Division, Poynton, Cheshire. Poynton 2215 SHEFFIELD Needham Engineerlng Co. Ltd., P.O. Box 23. Townhead. Street, Shefield, 1.
SUNDERLAND Brltish Electrical \& Mig. Co. Lid., 16/17 Bridge St., Sunderland. Sunderland 70567




New free booklet describes the complete range of Enthoven Solder products preforms among them Ask now for your copy of 'Soldering with Enthoven'.

The right amount of solder, in the right place, every time. The right alloy to suit the surfaces to be joined. The right flux for effective wetting. The right heat-source. Enthoven know about this kind of thing, will give advice, supply preforms-cored or solid. Controlled soldering means economical soldering. Soldering with Enthoven preforms saves solder, time and wastage. Cuts costs. Produces a stronger, cleaner job. Enthoven supply washers, rings, shims and strips in a wide variety of alloys, cored and solid, and design to meet special requirements.



WW-036 FOR FURTHER DETALS


- HIGH PERFORMANCE COMPACT MODULAR CONSTRUCTION ORACK OR CONSOLE MOUNTING


## MODULAR AUDIO MIXERS

Model MXT/6 Assemblies offer a combination that witl fulfil every requirement for pre-amplifiers and mixing. From 4 to 22 channels can be utilised each with its own Independent Gain control and with overal Master Gain. Treble and Bass controls.

## MODULAR AUDIO AMPLIFIERS

Audio Power Amplifiers having outputs of from 10 to 80 watts and to operate in conjunction with MXT/6 Mixing Assemblies. Silicon Transistorised throughout--stablehigh performance overload and output protectiondistortion better than $.5 \% 20 \mathrm{~Hz}$ to $\uparrow 5.000 \mathrm{~Hz}$-outpur 15 ohm and 100 volt to line


For mounting in Cabinet Rack or Console on 19 standard panels-finished gun metal two tone blue or $t 0$ requirements-Microphone. Tape. Gramophone. Radio and Priority Tone Signal Modules.

Integrated Mixer/Ampliflers Models A25-30 watts. and A80-60 watts, having inputs for two Microphone Channels balanced at 30 ohm. Auxillary inputs for Microphone, Gramophone and Tape. each channel
independently controlled. Overall Master Gain Control Treble and Bass tone controls giving $\pm 12 \mathrm{db}$ lift and cut

# TIMERS PROCESS TIMERS 

# MICRO SWITCHES IMMEDIATE DESPATCH <br> latest addition to omron range 


$\star 2,5,15 \& 25$
secs. Delay.
$\star \quad 15$ amp. c/o
micro-switch
fitted
$\star$ LARGE RANGE
OF A.C. \& D.C.
COILS.

SYS MINI-TIMER


SYNCHRONOUS MOTOR \& CLUTCH

* 10 MILLION OPERATIONS
$\star$ Instantaneous \& Timed out 3 AMP contacts.
$\star$ Repeat Accuracy $\pm \frac{1^{\circ}}{2}{ }^{\circ}$. 10 secs to 28 Hrs . May also be used as impulse start and automatic reset.
$£ 9.15 .0$ approx. dependent on quantity.


TEMPERATURE CONTROLLER TYPE THP - thermistor operated - octalbase plugin - Compact

Temperature ranges up to $240 . \mathrm{C}$
Output contacts. 4 amp
Approximately EIS dependant on quantity STP Sub-Mini Process Timer SYNCHRONOUS MOTOR \& CLUTCH
 Matchbox sixe frontal area. Automatic re-set. *PLUG-IN OCTAL

BASE
*INSTANTANEOUS
AND TIMED OUT 2 AMP CONTACTS +RANGES: 10 SECS. TO 36 MINS. approx. $£ 5.0 .0$ each.

AT-10 PNEUMATIC TIMER - delay relay


* Fully adjustable up to 200 seconds. Fitted with 15 amp. S.P.D.T. switch.
* One model provides delay after energise or delay after deenergise.
approx. $£ 6.0 .0$
dependent on quantity.

PROXIMITY SWITCH
t FOR BATCHING, CONVEYORS, MACHINE TOOL CONTROL, PACKAGING, SORTING, etc. t SENSES FERROUS OBJECTS
t NEEDS NO MECHANICAL FORCE OR PRESSURE TO OPERATE

* SOLID STATE SENSING HEAD INCLUDES CONSTANT VOLTAGE CIRCUIT
approx. £11.0.0 dependent on quantity.
OTHER INDUCTIVE AND CAPACITY TYPES AVAILABLE



Photo reproduced by kind permission of Women's Journal

A well paid job, security and everything that goes with it can be yours. Look at the situations vacant columns in the newspapers; notice the huge demand for technologists such as electronics, nuclear and computer systems engineers, radio and television engineers, etc. There are many senior positions requiring just the up-to-date, advanced technical education which CREI Home Study Courses can provide.

CREI Programmes are specialised and job-related. Time spent on a CREI Technical Course pays immediate dividends in greater effectiveness and productivity on the job.

Take the first step to a better job now-enrol with CREI, the specialists in Technical Home Study Courses.

## $\overline{\text { CREI }})$ PROGRAMMES ARE AVAILABLE IN:-

Electronic Engineering Technology $\bullet$ Industrial Electronics for Automation - Computer Systems Technology Nuclear Engineering • Mathematics for Electronics Engineers - Television Engineering - Radar and Servo Engineering - City and Guilds of London Institute: Subject No. 49 and Advanced Subject No. 300.
C.R.E.I. (London), Walpole House, 173-176 Sloane Street, London SW1


A Division of Mc Graw-Hill Inc

For professional or private use:

## * INSTRUCTION

* EXPERIMENT
* DEVELOPMENT

An absorbing and exciting medium


Clear, simple versatile, this rugged system can build almost any electronic circuit. It is used by hundreds of educational establishments throughout the U.K.-Universities, Technical Colleges, Schools, the Armed Forces and Industry.
Selected by the Council of Industrial Design for all British Design Centres. Featured in Sound and Television broadcasts.

The system is beautifully engineered from top quality British components. No soldering. No mains. No prior knowledge needed. Simply arrange components on perforated transparent panel, position brass connecting strip underneath.
fix with 6BA nuts and circuit works with full efficiency. You can then dismantle and build another circuit. Your results are guaranteed by our Technical Department and News Letter Service. All parts available separately for conversion or expansion of sets.

No. 1 Set $66 \quad 0$ 2d. 14 Circuits (Earphone)
No. 2 Set 47 I 5d. 20 Circuits (Earphone)
No. 3 Set $411 \quad 2 \quad 7 \mathrm{~d} . \quad 22$ Circuits ( $7 \times 4 \mathrm{in}$. Loudspeaker out. put)
No. 4 Set 6153 8d. 26 Circuits (include 6 Transistor and reflex superhets)
Prices (Post Free)

AADIONIC CIECHTT SMEIT NO. 5307


Theoretical Circuit.
Practical Layout
Our 'E' Series of basic electronic circuits is ovailable seporately. (See Electronic Organ above)
SEND FOR DETAILS OF E/508-OUR DIGITAL COMPUTER
UNIQUE! Our "Nosoldering" printed circuit board for superhet portable. Simply insert components and tighten nuts.

Full details from:
RADIONIC PRODUCTS LIMITED
STEPHENSON WAY, THREE BRIDGES CRAWLEY, SUSSEX
Tel.: CRAWLEY 27028
Trade Enquiries invited


WW-041 FOR FURTHER DETAILS


## We make our monolithic capacitors in Britain

Monobloc ; an advanced product for sophisticated applications. A tiny component that has become the most exciting prodigy this side of the Atlantic. Its capacitance is vast, its size minute - up to 1 uf in $0.3 \times 0.3 \times 0.1 \mathrm{in}$. (nine times smaller than a postage stamp). This capacitance-to-volume ratio is achieved by the unique monolithic construction. Wafer-thin ceramic dielectrics and platinum electrodes are fused into a solid, layered structure, to give a volumetric efficiency 10 to

100 times that of conventional capacitors. It's a rugged little device. The layered construction gives excellent stability and resistance to every form of shock and environmental stress.
We manufacture a preferred range, concentrated on the individual requirements of the British designer. There are other configurations available for more complicated designs : glass-encased, precision moulded, phenolic coated, and unencapsulated chips for hybrid integrated circuits.

The monolithic capacitor is already a pretty important contribution to the progress of modern electronics - our Monobloc Ceramicon design caters for projects of the future.
Contact us for the full details. Technical Sales, Erie Electronics Limited,* South Denes,
Great Yarmouth, Norfolk.
Phone: 04934911
Telex: 97421
Monoblocs are to be featured in the 1968 edition 6 catalogue of S.T.C. Electronic Services. Monobloc and Ceramicon are registered trade marks.

[^10]
## Burlleres ceramics

for the ELECTRONIC INDUSTRY (and Electrical Appliance Manufacture)


Frequelex-for high-frequency insulation.


Refractories for high-temperature insulation.


Bullers porcelain for general insulation purposes.

Meticulous care in manufacture, high quality material, with particular attention applied to dimensional precision and accuracy, explain the efficiency and ease of assembly when using Bullers die pressed products.

Write today for detailed particulars.

## BULLERS LIMITED

Milton, Stoke-on-Trent, Staffs.
Phone: Stoke-on-Trent 5432। (5 lines)
Telegrams \& Cables: Bullers, Stoke-on-Trent London Office: 6 Laurence Pountney Hill, E.C. 4 Phone: MANsion House 9971


WW-O44 FOR FURTHER DETAILS

## "Techmicians Marvel Over The Complete Perrection



Model JR-500SE
CRYSTAL CONTROL TYPE DOUBLE CONVERSION COMMUNICATION RECEIVER

* Superior stability performance is obtained by the use of a crystal controlled first local oscillator and also, a VFO type 2nd oscillator.
* Frequency Range: $3.5 \mathrm{MHz}-29.7 \mathrm{MHz}$ ( 7 Bands)
* H . Sensitivity: $1.5 \mu \mathrm{~V}$ for $10 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$ Ratio (at 14 MHz )
* Hi-Selectivity: $\pm 2 \mathrm{KHz}$ at $-6 \mathrm{~dB} \pm 6 \mathrm{KHz}$ at -60 dB
* Dimensions: Width $\mathbf{1 3}^{\circ}$, Height $7^{*}$, Depth $10^{\circ}$.


## CTCD

a product of TRIO Corporation, Tokyo,Japan.
Sole Agent for the U.K.
B. H. MORRIS \& CO., (RADIO) LTD. 84/88, Nelson Street, Tower Hamlets, London E, I. Phone: 01.7904824


Model 9R-59DE
BUILT IN MECHANICAL FILTER 8 TUBES
COMMUNICATION RECEIVER

* Continuous coverage from 550 KHz to 30 MHz and direct reading dial on amateur bands.
* A mechanical filter enabling superb selectivity with ordinary IF transformers.
* Frequency Range: 550 KHz to 30 MHz (4 Bands)
* Sensitivity: $2 \mu \vee$ for $10 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$ Ratio (at 10 MHz )
* Selectivity: $\pm 5 \mathrm{KHz}$ at $-60 \mathrm{~dB}( \pm 1.3 \mathrm{KHz}$ at $-6 \mathrm{~dB})$ When use the Mechanical Filter
* Dimensions: Width $15^{\circ}$, Height $7^{\prime \prime}$, Depth $10^{\circ}$.

[^11]w w

Porcelain


Steatite


PARK ROYAL PORCELAIN CO LTD incorporating v.c. Porcelain co ltd

GORST ROAD
PARK ROYAL
LONDON, N.W. 10

Telephones: ELGAR 1411/7 Telex:
London 25589


WW-047 FOR FURTHER DETAILS


WW-048 FOR FURTHER DETAILS

## EDDYSTONE COMMUNICATION RECEIVERS

For the Professional or Amateur user who likes the Best.


840 C
666

## HIRE PURCHASE TERMS

model	$\underset{\text { Price }}{\text { Cash }}$		Deposit		$12 \underset{\text { of }}{\text { mthly. }}$		$\xrightarrow{\text { Tot }}$	Pral			$m^{t h 1}$			
EC10	¢53		815		£3 82	2	555	18	0 £	£1		2	¢62	
840 C	¢66		£16 10	0	¢4 85	5	c69	15	0	¢2	7	6	c73	
EB35	¢60		3 \&15	3	E4 0	7	¢63	13	3 ¢	£2	3	0	c66	18
940	¢133		¢34		¢8 173	3	\&140	7	0	¢ 4		9	¢147	14
EA12	¢185		547		¢12 7		¢195	7	0	¢6	12	3	¢205	14
Payments over 30 months if desired.														
Quotation on request.														
Delivered Carriage paid by Passenger Train.														
CARRIAGE PAID														

$\underbrace{}_{-2}$
Telephone: AINTREE 1445
$\frac{\text { The Eddystone }}{\text { Specialists }}$

SERVICES LTD.
51 COUNTY ROAD LIVERPOOL, 4

ESTAB. 1935

## M. R. SUPPLIES, LTD.,

(Established 1935)
 Thetant. inmery. Anlmaction asultrol. Procem nett.







 Ouly 68/6 (dlew, 3/-t.
SYNCERONOUS TIME SWITCHES. (Oar very pmanar speciallty)。 $200 / 25(1)=30 \mathrm{c}$. Ior mectuate






MINIATURE RUNNING TIME METERS (Slamgamo). We have gTeat demands for thia remarknble unit and can mow supply Imunediately from ntock. $900 / 250$ v. 30 c . mynchronous. Counting "ily
 Induntrial and domentic mpplical
easy to funtall, $60 /-$ (poot paict).


 1.0 Wh, $\times$ - x .


 For $8 / 10$ dia. $3 / 6 \mathrm{set}$.

 (rlew, 1/6).
 RECTIFIERS, full-wave bridgev elentum, D.C... delisery

 Phulps Varinbe tran
M. R. SUPPLIES, Ltd., 68 New Oxford Street, London, W.C. 1
(Telephone: 01-636 2958)

WW-049 FOR FURTHER DETAILS

## TOWNM的

## 工



INTERNATIONAL RECTIFIER

Quality Semi-Conductors.
Complete Rectifier Assemblies up to thousands of Amps, Diodes, Thyristors, Zeners, Encapsulated Bridges, Photocells, Klipsel Surge Protectors.

For experiment and teaching:ZENER KITS, THYRISTOR KITS

## Bibaik



PRINTED CIRCUIT DRAFTING AIDS

Save drafting time and costs. Selfadhesive shapes and tapes. Terminal circles-fillets - tees -elbows - universal corners and mounting holes.

ENGLISH ELECTRIC

for the protection of rectifiers and thyristors.

Bulletins and prices on request.


Rail Mounted Terminals and Terminal Blocks 0.5-250 Amps.

Bulletins and prices on request.
Bulietins and prices on request.


TRANSFORMERS
0.25 kVA to 300 kVA

1 phase and 3 phase


EQUIPMENT
DEPARTMENT


LOW VOLTAGE HIGH CURRENT TRANSFORMERS
with output currents of hundreds, thousand's and tens of thousands of amps.
1 phase and 3 phase.

## DC POWER SUPPLIES

For Magnets, Accelerators, Plating, Anodising, Spectroscopy, Plasma Arc, Toronto Arc, Electron Beams, Electrolysis, Welding, Quartz Lamps, Mercury Vapour Lamps. From 100 W to 200 kW .


VOLTMOBILES
64 steps on load switching AutoTransformers. I phase and 3 phase. 200-400 Amps.

Zero to $100^{\circ} \mathrm{i}$ Volts or $125^{\circ}$. of Input Volts
Voltmobiles are low-cost controllers, for furnaces, rectifier sets and other loads.

LET US HAVE YOUR SPECIFIC REQUIREMENTS

## $f^{*}$ <br> RADFORD

## AUDIO LABORATORYINSTRUMENTS

LOW DISTORTION OSCILLATOR (Series 2)
An instrument of high stability providing very pure sine waves, and square waves, in the range of 5 Hz to 500 kHz . Hybrid design using valves and semiconductors.

## Specification

Frequency Coverage:
$5 \mathrm{~Hz}-500 \mathrm{kHz}$ (5 ranges) Output Impedance: Output Voltage: Output Attenuation:
Sine Wave Distortion
600 Ohms.
10 Volts r.m.s. max. $0-110 \mathrm{~dB}$ continuously variable. $0.005 \%$ from 200 Hz to 20 kHz increasing to $0.015 \%$ at 10 Hz and 100 kHz .
Square Wave Rise Time: Less than 0.1 microseconds. Monitor Output Meter: Scaled 0-3, 0-10, and dBm.
Mains Input:
Size:
Weight:
Price:
Price: $f 150$
Rack mounting version available.

DISTORTION MEASURING SET (Series 2)
A sensitive instrument for the measurement of total harmonic distortion, designed for speedy and accurate use. Capable of measuring distortion products as low as $0.002 \%$. Direct reading from calibrated meter scale

## Specification

Frequency Range
Distortion Range: Sensitivity:
Meter
Input Resistance:
High Pass Filter:
Frequency Response:
Power Requirements:
Size:
Weight:
Price

Rack mounting version

VOLTMETER (new item)
A transistor operated voltmeter satisfying the requirements
for audio frequency measurement.
Specification
Sensitivity:
Calibration Accuracy:
1 mV .300 V . f.s.d. (12 ranges). 2\% f.s.d.
Frequency Response: Input Impedance:

Meter Scaled:
Power Requirements: Size:
Weight:
Price:
$20 \mathrm{~Hz}-20 \mathrm{kHz}$ (6 ranges). $0.01 \%-100 \%$ f.s.d. (9 ranges). $100 \mathrm{mV} .-100 \mathrm{~V}$. (3 ranges).
Square law r.m.s. reading.
100 kOhms.
3 dB down to 350 Hz
3 dB down to 35 Hz .
$\pm 1 \mathrm{~dB}$ from second harmonic of rejection frequency to 250 kHz Included battery.
$17 \pm \times 11 \times 8 \mathrm{in}$.
15 lb .
<120.
dB. $10 \mathrm{~Hz}-500 \mathrm{kHz}$.
1 MOhm. I mV. 300 mV $10 \mathrm{MOhm} .1 \mathrm{~V} .-300 \mathrm{~V}$.
$0-3,0-10$, and dBm .
Included battery
$11 \frac{1}{} \times 6!\times 6 i n$.
7 lb .
635.

there's a world of capability in ERMOGOMPDNENTS

HIGH TORQUE BATTERY MOTOR
Exceptional speed regulation over a wide Load/Voltage range. 8-12 Volts. High Efficiency. Low electrical interference. Many otherhigh quality motors both A.C. and D.C. available in the small F.H.P. range

EMICOMPONENTS are designed by professionals and used in professional applications ranging from rockets to hi-fi. They are used by EMI themselves in the design and development of systems and equipment where no compromise is permissible - in quality performance or value. This is the reason for their constant reliability. The EMICOMPONENTS range includes A.C. and D.C. Motors, PET Capacitors, Miniature Rotary and Illuminated Push Button Switches and Miniature Transformers with outputs up to 20 VA .
Send coupon for literature giving performance and dimensional details.

## EMI

EMI SOUND PRODUCTS LIMITED
COMPONENT DIVISION.HAYES.MIDDX TELEPHONE:01-573 3888-EXT: 667

Please send me details of the following EMICOMPONENTS A.C. \& D.C. MOTORS $\square$ PET CAPACITORS $\square$ MINIATURE ROTARY SWITCHES PUSH BUTTON SWITCHES MINIATURE TRANSFORMERS $\square$

Tick appropritite."square
Name
Company
Address
Tel. No.

# MAGNETIC RECORDING 

TYPE "A"


Standard 1/2 track, Record/Playback and Erase. Many special versions can be made to customers' requirements such as narrow track-raised trackor cut-away for cine use. Ideal head for dictating machines, etc. Size $\frac{7}{8} \mathrm{in}$. dia. by $\frac{5}{8} \mathrm{in}$. long. The round body makes for easy azimuth adjustment and takes up a minimum of space. Head has internal screen and fly leads for easy wiring.

TYPE "R"
Size is $\frac{7}{16} \mathrm{in}$. square at the front
 with body $\frac{J_{8}}{8}$. dia. by $\frac{5}{8} \mathrm{in}$. long. Curved front $1 \frac{1}{4}$ in. radius. This head is available in a wide range of Record Playback impedances. Also available as Erase. This novel design possesses many advantages over comparable types - higher output - lower losses-extremely good H.F. res-ponse-very low noise pick up-has internal mumetal screen. Round body aids mounting arrangementseasy azimuth alignment.

TYPE "DR"
Exactly as Type $R$ except body is $\frac{7}{16} \mathrm{in}$. square along its length provid. ing simple mounting arrangements. The Erase versions of $R$ and DR types are double field heads. These are not just double gaps but two Erase heads in one, giving better than 60 dB erasure of a saturation $(+6 \mathrm{~dB}$ on full record level), I k/e recording at $3 \frac{3}{\text { B i.p.s. }}$

## TYPE " $X$ "



1/1-1/2 - $2 / 2$ and $2 / 4$ Heads for $\frac{1}{4} \mathrm{in}$. tape. Record/Playback and Erase Heads for high quality tape recorders. Size only $\frac{1}{2}$ in. cube and available in a whole range of impedances. Excellent HF performance, efficient screening and very low crosstalk are features of the R/P head, Mounting brackets are available for twin or triple head assemblies.

SINGLE TRACK COMBO TYPE "X"
Designed as a combined Record Playback/Erase Head for the commercial market. such as telephone answering machines. Built into $\frac{1}{2} \mathrm{in}$. cube deep drawn mumetal case it incorporates the R/P features of RType head. The Erase track is made wider than the R/P track to ensure complete erasure and to overcome machine to machine alignment tolerances.

## TYPE " $Z$ "

A brand new concept in combination head design incorporating all the best features of the X-Type Head combined with integral erase facilities. Accurate gap alignment between tracks makes this head eminently suitable for high quality stereo use. The one-piece deep drawn mumetal case (only $\frac{1}{2}$ in. cube) ensures complete screening across the front as well as the sides.

## MULTITRACK

Available to special order in Two-Four-Eight or Sixteen tracks, or to specification. These tracks are located by precision machined slots and track dimensions and positions remain consistent. The track to fixing base dimensions are held to tight limits and any tolerances are non-cumulative as each track is indexed from the base. Special purpose optical equipment ensures a high order of accuracy in the alignment of the head halves. Erase heads, identically sized to the R/P head are available to special order.

## TYPE "W"ERASE

Designed especially for the Cassette Type Recorder using. ISin. wide tape. Built-in tape guides are a feature of this head. The Standard type now in production is $\frac{1}{2}$-track but a compatible Stereo version will soon be
 available. The high Q factor of Type W Erase gives maximum economy in battery applica. tions.

## TYPE "W"R/P.

The Record/Playback Head for Cassette Recorder incorporated in a deep drawn mumetal case ensuring complete screening. As an integral part of the head the mounting plate is of tempered Beryllium copper to
 provide a simple azimuth adjustment.
 The winding is centre tapped to give the option of presenting a lower impedance to bias and signal sources during recording.

# MARRIOTT MAGNETICS LTD. 

## WATERSIDE WORKS

## PONSHARDEN

PENRYN
CORNWALL
Telephone: Penryn 3591-3363
SPECIALISTS IN ALL TYPES OF HEADS FROM THE ECONOMY MASS-PRODUCED ARTICLE TO THE VERY HIGH QUALITY PROFESSIONAL HEAD FOR SOUND RECORDERS AND COMPUTERS. OUR TECHNICAL KNOWLEDGE MAKES IT POSSIBLE TO DEVISE, PLAN AND PRODUCE THE MOST VERSATILE RANGE OF HEADS IN BRITAIN-FOR EITHER TAILOR-MADE OR MASS-PRODUCED DEVICES IN ALL DIVISIONS OF RECORDING.

## TRO  of Instrument Cases available for rack mounting




WW-058 FOR FURTHER DETAILS

## METER PROBLEMS?



A very wide range of modern design instruments is available for $10 / 14$ days delivery.

Full information from:
HARRIS ELECTRONICS (London) LTD
138 GRAYS INN ROAD, W.C. 1 Phone: 01/837/7937

WW-059 FOR FURTHER DETAILS

VARIABLE-HIGH CURRENT SMOOTHED POWER SUPPLIES WITH accumulator performance DIRECT FROM A.C. MAIMS


TYPE 250VRU/30/20 provides ousputs of 0-30 v. D.C. continuously variable, up to 20A. Overload capacity 200\% for short periods Ripple Content, impedance and regulation equivalent so accumulator performance. Output protected. INCORPORATES HEAVY DUTY SILICON RECTIFIERS. Complete with volt and amp meters, free standing, but suitable for 19 in . racking.
USED BY MINISTRY OF TECHNOLOGY: Aircraft operators, for servicing 28 v , aircraft instruments, radio; within B.C.A.R.'s.
FIXED OUTPUTS ALSO AVAILABLE. Smoothed 12 or 24 v . up to 24 amps Applications. operating and servicing transistorised equipments, e.g. Y2-24 v . mobile r/telephone; production testing D.C. motors: heaters, wipers ignition C. Withous accumulators.

Avoid the extra expense of super regulation you may never need.
PRICES: from $631 / 4 /$ up to $\mathbf{\varepsilon 8 8 / 4 / \text { . }}$
We shall be happy to assist with your power conversion problems. Call, write, or Tel.: 01-890 4837.

## EXPORT ENQUIRIES INVITED

DEPT, PUI3
BROWELLS LANE,
FELTHAM,
MIDDLESEX.
ENGLAND.
TEL: 01-890 4242

## Valrodio

LIMITED

- DEMANDES CONCERNANT L'EXPORTATION SOLICITÉS. SE INVITAN CONSULTAS SOBRE EXPORTACION. EXPORTANFRAGEN ERBETEN.


## Vortexion


#### Abstract

CP50 AMPLIFIER. An all silicon transistor 50 watt amplifier for mains and 12 volt battery operation, charging its own battery and automatically going to battery if mains fail. Protected inputs, and overload and short circuir protected outputs for $8 \Omega-15 \Omega$ and 100 volt line. Bass and treble controls fitted. 1 gram and 2 low mic. inputs.

Price $£ 8400$ 1 gram and 3 low mic. inputs. Price $£ 9000$ 4 low mic. inputs ...... Price $£ 9200$




100 WATT ALL SILICON AMPLIFIER. A high quality amplifier with $8 \Omega-15 \Omega$ and 100 volt line output for A.C. Mains. Protection is given for short and open circuit output over driving and over temperature. Input 0.4 v . on $100 \mathrm{~K} \Omega$. Price $£ 7000$.


2030 WATT MIXER AMPLIFIER. High fidelity all silicon model with F.E.T. input stages to reduce intermodulation distortion to a fraction of normal transistor input circuits. The response is level 20 to $20,000 \mathrm{cps}$ within 2 db and over 30 times damping factor. At 20 watts output there is less than $0.2^{\circ}$ ointermodulation even over the microphone stage at full gain with the treble and bass controls set level. Standard model 1-low mic. balanced input and HiZ gram. Price $£ 3500$.

ELECTRONIC MIXERS. Various types of mixers available. 3-channel with accuracy within 1 db Peak Programme Meter. 4-6-8-10 and 12 way Mixers. Twin 2-3-4 and 5 channel stereo. Tropicalised controls. Built-in screened supplics. Balanced line mic. input. Outputs: 0.5 v . at 20 K or alternative 1 mW at $600 \Omega$, blanced, unbalanced or floating. Prices on application.
200 WATT AMPLIFIER. Can deliver its full audio power at any frequency in the range of $30 \mathrm{c} / \mathrm{s}-20 \mathrm{Kc} / \mathrm{s}=1 \mathrm{db}$. Less than $0.2^{\circ}$, distortion at 1 Kcs . Can be used to drive mechanical devices for which power is over 120 watts on continuous sine wave. Input $1 \mathrm{~mW} 600 \Omega$. Output $110-120 \mathrm{v}$. or $200-240 \mathrm{v}$. Additional matching transformers for other impedances are available.
3050 WATT AMPLIFIER. With 4 mixed inputs, and bass and treble tone controls. Can deliver 50 watts of speech and music or over 30 watts on continuous sine wave. Main amplifier has a response of $30 \mathrm{c} / \mathrm{s}-20 \mathrm{Kc} / \mathrm{s} \pm 1 \mathrm{db} .0 .15 \%$ distortion. Outputs $4,7.5,15 \Omega$ and 100 volt line. Models are available with two, three or four mixed inputs for low impedance balanced line microphones, pick-up or guitar.

## 1015 watt ELECTRONIC MIXER/AMPLIFIER.

This high fidelity 1015 watt Ultra Linear Amplifier has a built-in mixer and Baxandall tone controls. The standard model has 4 inputs, two for balanced $30 \Omega$ microphones, one for pick-up C.C.I.R. compensated and one for tape or radio input. Alternative inputs are available to special order. A feed direct out from the mixer is standard and output impedance of $4,7.5,15 \Omega$ or 100 volt line are to choice. Designed for continuous operation on $19 \mathrm{in} . \times 7 \mathrm{in}$. rack panel form or standard ventilated steel case.


## - VORTEXION LIMITED

## 257-263 THE BROADWAY, WIMBLEDON, S.W.I9

Telephones: LIBerty 2814 and 6242-3-4 Telegrams: "Vorlexion, London, S.W.19."

## TREND cards



## for mounting Integrated Circuits

These printed circuit boards have been especially designed to accommodate the 14 lead dual-in-line integrated circuit modules in common use. Two sizes of board are available, the $6^{\prime \prime} \times 3 \frac{1^{\prime \prime}}{4}$ accommodating 20 circuits and the $12^{\prime \prime} \times 4^{\prime \prime}$ accommodating 40 circuits. Each Printed Circuit Card has lead out wires to connect the terminations of the circuits to terminal pins. These pins may be interconnected using PTFE covered wire and normal soldering techniques. Alternatively, square pins may be fitted for wire wrap connections.

If you would like further details of this unique mounting assembly contact:


## Precision Russian instruments


*2, 3, 6, 12 point strip chart Recorders from £126
*Recording Ammeter and Recording Milliammeter at £47

* AC/DC Magnetoelectric Multimeter
* Milliammeters, Voltmeters, Resistance Boxes, Wheatstone Bridges \& Potentiometers.

ALL OFFERED AT PARTICULARLY COMPETITIVE PRICES

## DERRITRON EIECTRONICS LIIITED

Instruments Division, Sedlescombe Road North, Hastings, Sussex. Telephone Hastings 51372 Telex 95111

WW-063 FOR FURTHER DETAILS

## All TIED UP WITH MICROPHONE LEADS?



Do you find that your leads are always getting in the way? Then use the LUSTRAPHONE
"Radiomic" System and then you'll have no lead at all. Capable of providing a microphone link over distances of $\frac{1}{4}$ mile, the "Radiomic" in no way limits the performance of even the finest microphones. The perfect mates for the "Radiomic" are the LUSTRAPHONE 10 watt and 50 watt Amplifiers. By employing brilliantly simple and advanced circuitry, these amplifiers combine performance and reliability to a greater degree than ever before. Brief Specification:- Frequency Response $20 \mathrm{~Hz}-20 \mathrm{KHz} \pm 1 \mathrm{~dB}$. Total Distortion $0.5 \%$ at full power. Send for free illustrated leaflets giving full details of "Radiomic" Systems and 10 watt and 50 watt Amplifiers.


## lustraphone

THE FOREMOST NAME IN MICROPHONES
Lustraphone Lid., Regents Park Road, London N.W. 1
01.7223844

# The Lilliput Series 



ULTRA MINIATURE, INVERTER, WIDE BAND, CARRIER MATCHING, DRIVER AND


PULSE TRANSFORMERS, A.F. AND SMOOTHING INDUCTORS

Gardners Lilliput series of Ultra Miniature transformers has been specifically developed for compatibility with other wired-in modules used on printed circuit boards.
Exceptional performance has been achieved by a unique form of construction incorporating extremely thin (down to 3.2 microns) high permeability core materials and a very short length of coil turn. Transformers in this new series are particularly suitable for pulse and switching circuits with rise times of 10 nanoseconds or less

GT12A. Describes the Lillipul series of Ultra Miniature trans. formers and gives useful infor. mation and data on their application in transistor converter/inverter, wide band communication and high speed pulse circuits.

## The Alpha Series

FILTERS, DELAY LINES, TRANSFORMERS, MODULATORS, HIGH STABILITY INDUCTORS, TUNED CIRCUITS, OSCILLATORS


A range of custom built components from simple or hybrid transformers and modulators to highly complex multi-section filters or complete active networks of exceptional stability hermetically sealed to DEF. 5214 Humidity Class H1.


GT 16. Gives a general description of the Alpha series assemblies and describes their suitability for wound components where a high degree of stability is required.

## Low Voltage Isolating and Auto Transformers



A comprehensive range of conventional double wound and auto transformers for applications in industry and in the home. Nearly 200 types are available in six different styles and with outputs from 6 volts to 240 volts and from 5 VA rating to 2 kilowatts. All types are normally held in stock in reasonable quantities for immediate delivery.


GT 17. Everyone in the electronics industry uses low voltage, isolating and auto transformers al some lime or other and this booklet describes the complefe Gardner range of this type of transformerin a convenient and presentable form.


GARDNERS TRANSFORMERS LIMITED Christchurch, Hampshire

Telex 41276



AVON COMMUNICATIONS \& ELECTRONICS LTD 318 BOURNEMOUTH (HURN) AIRPORT Christchurch, hants. Tel. northbourne 3774 (P.8.X.)

WW- 067 FOR FURTHER DETAILS
WW-06s FOR FURTHER DETAILS

## AVONCEL

EQUIPMENT TROLLEYS Medium Duty from 617. Heavy Duty from $£ 35$. Wide range of Standard Models. Quick Delivery Special Models made to order.

## "AVONCEL"

Your choice of Live Sockets Instantly!

A Lexor DIS-BOARD gives you up to 6
sockets from sockets from one power outlet. Poriab
or permanent fixing, compact units, with safety neon. Over I.ooo socket combinations available from stock. All types of fittings and finishes. brochure from
LEXOR DIS-BO
AEXOR DIS-BOARDS LIMITED Alesiey Old Road, Coventr
Telephone 72614 or 72207


POWER SUPPLY 22 \&14 0 TRANSISTORISED

## NOMBREX

NEW STYLE IMPROVED INSTRUMENTS OTHER MODELS AVAILABLE-
R.F. GENERATOR 31 $E 1210 \quad 0$
C.R. BRIDGE 32 $E 1010 \quad 0$

- INDUCT. BRIDGE 33 $\qquad$ £20 0


## SEE PREVIOUS ISSUES FOR DETAILS

ALL IN FULL PRODUCTION POST \& PKG. 6/6 EACH EXTRA

A.F. GENERATOR $30 £ 19100$ T'RANSISTORISED


You get all these advanced features with this elegant unit:

- Diecast aluminium pick-up arm.
- Manual or automatic playing of single records.
- Single lever selects both record size and turntable speed.
- Slide-in cartridge carrier.
- Non-magnetic turntable.
- Calibrated, fine stylus-force adjustment.
- Calibrated pick-up arm bias compensation.
- Cue and pause facility.

As well as manual control, this unit offers the additional facility of automatic play of single records. A single operation starts the turntable, lifts the pick-up arm and lowers it on to the record, and when playing is finished, returns the pick-up arm to rest and stops the turntable. A single control lever selects both record size and turntable speed for $12^{\prime \prime}$ records ( 78 rpm ), $7^{\prime \prime}(45 \mathrm{rpm}$ ) and 12", $10^{\prime \prime}$ and 7 " $\left(33 \frac{1}{3} \mathrm{rpm}\right) .{ }^{*} \mathrm{E} 19.3 .0 \mathrm{~d} .+\mathrm{P} . \mathrm{T}$. 68/6d. Optional extras: teak-finish base WB4; rigid, clear plastic cover SPC4.
and just for the record


Garrard 401 is the ultimate in Iranscription turntables - magnetically shielded 4-pole induction motor: gear-cut stroboscopic markings illuminated by an integral, highintensity neon lamp; variable speed contral; heavy non-magnetic diecast turntable: antistatic mat: functional styling.

- £25.9.7d. + P.T. 91/2d.


Garrard LAB 80 Mk II is a transcription furntable with the facilities of an automatic record changer when desired - low resonance wood pick-up arm; pick-up arm bias compensator; calibrated, fine stylus-force adjustment; record-repeat adaptor : automatic play of single records, cue and pause facility.'E25.15.1d.+P.T. 92/1d Optional extras: teak-finish base WB2; rigid, clear plastic cover SPC2.


Garrard SP 25 Mk 11 a single-record playing unit giving exceptional performance at moderate cost. With pick-up arm bias at moderate cost. With pick-up arm bias compensator and calibrated. fine stylus-
force adjustment. Cue-and-pause control force adjustment. Cue-and-pause control
allows pick-up to be raised or lowered allows pick-up to be raised or lowered
at any boint. $£ 12.10 .8 \mathrm{~d}$. P . T. $44 / 10 \mathrm{~d}$. Optional extras; teak-finish base WB1; rigid. clear plastic cover SPC1

- Recommended retail prices.


## Re-Creates the finer shades of original sound

To re-create faithfully the finer shades of original sound, stored as complex mechanical patterns in the micro-grooves of modern records, calls for a cartridge in the precision instrument class. Goldring engineers have spent two years developing such a cartridge . . . the Goldring " 800 " Free Field Cartridge. At a comparatively modest cost this cartridge rivals the finest in the world, whilst at the same time guaranteeing the complete

# GOLDRING800 FREE FIELD STEREO CARTRIDGE 

 reliability for which the name "Goldring" has stood for sixty years in record reproduction.
## GOLDRING " 800 " FREE FIELD <br> Strate cafrivose $£ 12.7 .6$

## SPECIFICATION

Type
Frequency Response
Sensitivity
Separation
Load
Compliance
Stylus
Effective Tip Mass
Tracking Weight
Head Weight
Vertical Tracking Angle Head Weight
Vertical Tracking Angle
Mu Metal Shield for hum protection.

Magnetic-(Free Field)
$20 \mathrm{~Hz}-20 \mathrm{kHz}$
1 mv . per cm/sec.
25 dB at 1 kHz and nowhere
less than 15 dB
$100 \mathrm{k}-47 \mathrm{k} / \mathrm{ohms}$
$20 \times 10-6 \mathrm{~cm} /$ dyne
$0.0005^{\prime \prime}$ diamond replaceable
1 mg .
$1-3$ grms
8 grms .
$15^{\circ}$

AUDIO FAIR
APRIL 18-21
BOOTH 93
DEMONSTRATION
ROOM 402



GOLDRING MANUFACTURING CO. (GREAT BRITAIN) LIMITED 486-488 High Road, Leytonstone, London, E. 11

## TECHNICAL TRAINING by -C S IN RADIO, TELEVISION AND

First-class opportunities in Radio and Electronics await the ICS-trained man. Let IC S train YOU for a well-paid pose in this expanding field.
ICS courses offer the keen, ambitious man the opportunity to acquire, quickly and easily, she specialized eraining so essential to success.
Diploma courses in Radio/TV Engineering and Servicing, Electronics, Computers etc. Expert coaching for:

* INSTITUTION OF ELECTRONIC AND RADIO ENGINEERS.
* C. \& G. TELECOMMUNICATION TECHNICIANS CERTS.
* C. \& G. ELECTRONIC SERVICSNG.
* R.T.E.B. RADIO AND TV SERVICING CERTIFICATE.
* RADIO AMATEURS EXAMINATION.
* P.M.G. CERTIFICATES IN RADIOTELEGRAPHY.

Examination Students Coached until Successful.
NEW SELF-BUILD RADIO COURSES
Build your own 5 -valve receiver, Eransistor portable, signal generator and multi-test meter-all under expert tuition.

POST THIS COUPON TODAY and find out how ICS can help YOU in your career. Full decails of ICS courses in Radio, Television and Electronics will be sent to you by return mail.
MEMBER OF THE ASSOCIATION
OF BRITISH CORRESPONDENCE COLLEGES.


## $\star$ NEW STYLE HATFIELD HYBRIDS

- Wide operational bandwidth
- Better performance

The new Hatfield Hybrlds Types N81 and N82 are passive couplers both covering a frequency range from 3 MHz to 200 MHz . With all outputs in phase, they are particularly suitable for coupling multiple antennae, and being bi-directional they can also be used to couple a number of signals to a common output, or to divide one signal between two or four indlvidual fsolated outputs.
One three-port unit (N82) used In conjunction with two five-port units (N81) provides a very efficient unit having eight outputs and an Insertion loss of only 2.5 dB over most of the band. Write for full details on the complete Hybrid range, and other new developments.

HATFIELD INSTRUMENTS LTD.
Dept. WW, Burrington Way, Plymouth, Devon. Talephon: : Plymouth (0752) 72773/4. Grams: Sigien, Plymouth

HATFIELD BALUN
WW-073 FOR FURTHER DETAILS

# STUMPI a new connector for the weight-andspace race 



- a new connector specifically designed for a new Military project and for the race toward ever lighter, smaller equipment. It uses the very latest materials to achieve brand new standards in compact, efficient design. Just look at these features:

1. Glass filled Nylon housings and insulators for extreme light weight, high insulation properties and minimal fire risk.
2. Compact design and positive coupling with the tip of one finger - low height feature making it ideal for use on portable equipment or as low voltage, medium power connectors.
3. "Split shell" construction of cable unit housing for ease of wiring. Elimination of strain on cable joint by means of right-angle contacts.
4. Crimp type contacts in cable unit, with full width cable . clamp and sealing grommet.
The Stumpi range is a new conception in design, fully sealed, meeting the requirements of DEF.5325, and is initially available in three shell sizes with nominal contact ratings of 5 , 20,40 and 60 amps .


Approximately twice full size

THERE IS A THORN CONNECTOR FOR EVERY PURPOSE!


An MEC Elapsed Time Meter records the actual hours of use of your circuit, equipment or component.


This enables you to programme calibration and maintenance, perform use analysis, mean-time-to-failure tests and show warranty validation by actual use.

Range 2 to 25000 hours direct reading. Reversible, easily re-set, small and inexpensive.

Full details from -
Miniature Electronic Components Limited St. Johns Woking Surrey Woking 63621

$$
\boldsymbol{m}-e-c
$$

Trimmer Potentiometers Miniature Switches Wire-wound Resistors Elapsed Time Meters

See us at:The IEA Exhibition, STAND 6327

## HOWELLS RADIO LTD. <br> MINISTRY OF AVIATION IMSPECTION APPROVED

## TRANSFORMERS

STANDARD RANGE OR DESIGNED TO YOUR SPECIFICATION.
$0-50 \mathrm{KVA}, ~ " \mathrm{C} "$ CORE, PULSE, 3 PHASE, 6 PHASE,
TOROIDS, ETC.
Transformers for 20W Transistor Amplifier (W.W., Nov. 1966).
$\begin{array}{llll}\text { Driver } & 22 / 6 & \text { Carr. } & 2 /- \\ \text { Mains } & 29 / 6 & \text { Carr. } & 4 / 6\end{array}$
L.P. Filter, Chassis Mounting 11/6. Carr. 1/-
L.P. Filter, Printed Circuit Mounting 14/6. Carr. 1/-.

## *MAINS TRANSFORMERS

$350-0-350$ v. $60 \mathrm{~mA} ., 6.3$ v. 2 A. £1/15/-. Carr. 4/6.
500 v. 300 mA .6 .3 v. 4 A., 6.3 v. 1 A. £3/12/6. Carr. 5/6.
$500-0-500$ v. 0.25 A., 6.3 v. 4 Act., 6.3 v. 3 Act., 5 v. 3 A. £4/10/6. Carr. 6/6.
525-0-525 v. 0.5 A., 6.3 v., 6 Act, 6.3 v., 6 Act., 5 v. 6 A.
£5/5-. Carr. 6/6.

## *LOW VOLTAGE

30-0-30 v. 4 A.	$£ 2 / 5 / 6$.	Carr. $5 / 6$.
15 v .2 A.	$£ 1 / 12 / 6$.	Carr. $3=$
15 v .6 A.	$£ 2 / 1-$.	Carr. $4 / 6$.
15 v .10 A.	$£ 2 / 15 /=$	Carr. $5 / 6$.

TRANSISTOR POWER SUPPLY TRANSFORMER
0-2-4-6-8-10-20-30-40-50 v. 2 A. £4/10/-. Carr 6/-.
*PRIMARIES 10-0-200-220-240 v.
CHASSIS, CABINETS \& PRECISION METALWORK ELECTRONICS - DEVELOPMENT \& ASSEMBLY

CASH WITH ORDERS PLEASE
Carlton Street, Manchester 14, Lancashire
TEL. (STD 061) 226-3411
WW-076 FOR FURTHER DETAILS

## AMPLIFIERS Alusucov

SEMICONDUCTORS
*Designed to deliver full rated power to typical highquality loudspeaker loads.
*H.F. transistors with multiple feedback loops for controlled flat response from 15 Hz to 50 KHz .
*Low-noise preamplifier incorporated. 150 mV into 500 K Ohms for full rated output. (Typical).

Type 7/15. 7 Watts r.m.s. in 15 Ohms........ §5 0
Type 10/8. 10 Watts r.m.s. in 8 Ohms........ £6 0

(Ratings are continuous, with 36 Volt D.C. supply).
Terms C.W.O., or write for technical details to:
DRUMCRAIG DEVELOPMENTS,
266 High Street, Dalbeattie, Kircudbrightshire.
WW-077 FOR FURTHER DETAILS
A.C. SOLENOID TYPE SAM/T

Continuous Rating 14oz. at $\frac{3}{3}$ in Instantaneous up to $5^{\frac{1}{2}} \mathrm{l} /$.


Fitted with stainless steel guides-6 times the life. Larger and smaller sizes available-also transformers to 8 kVA 3-phase.


## Meter panel of speciallists



Here at Anders there's a panel of meter specialists daily creating panels of special meters. And just special meters on their own. For equipment manufacturers, research organisations, nuclear energy establishments. For anybody, in fact, whose meter requirements are a little out of the ordinary, like non-standard calibrations. Or a lot out of the ordinary,
like non-standard calibrations plus special modifications, plus...
well, you name it. Creating specials is an important part of Anders Meter Service.
Manufacture and distribution of electrical measuring instruments and electronic equipment. The largest stocks in the U.K. for off-the-shelf delivery. Prompt supply of non-standard instruments and ancillaries.

Sole U.K. distribution of FRAHM vibrating reed frequency meters and tachometers.

New comprehensive catalogue available free to manufacturers and bona-fide engineers.

## ANDERS METER SERVICE

Anders Electronics London • 48/56 Bayham Place • Bayham Street • London NW1 • Telephone 01-387 9092
Ministry of Aviation Approved

\#AST AUTOMATICALLY TUNED LOCK-IN AMPLIFIER
FIRST VLF TO RF MODLLAR PULSE GENERATOR
*FIRST COHERENT OR RANDOME GHz SAMPLING CONVERTER FIRST MODULAR PHYSIDLDGICAL STIMULATOR FIRST NON-HETERDDYNE TRACKING FILTER
00 FIRST VOLTAGE PROGRAMMED FILTER/DSCILLATOR


WW-080 FOR FURTHER DETAILS

## FOR LOW COST RELIABLE ATTENUATION UP TO 100 MHz



Despite its low cost, this new Hatfield Attenuator will operate efficiently from DC to 100 MHz . The design features individual resistive sections, each selected in turn by a rotary switch mechanism. Careful attention to screening and the ellmination of earth loops results in good accuracy being maintained through. out the frequency range.
Since individual $T 1$ sections are used it follows that the attenuators in this range maintain a constant level of Input and output impedance irrespective of setting. They may be used equally well, therefore, in equipment or inserted in lines without mismatch. Available Types: 708 A ( 50 ohms ) 708 B ( 75 ohms ) and 708 C ( 600 ohms, under development).
Write now for fully detailed Data Sheet.
HATFIELD INSTRUMENTS LTD
Dept. WW, Burrington Way, Plymouth, Devon. Telephone: Plymouth (0752) 72773/5 Cables: Sigjen Plymouth.

## VARI-STAT

## THERMOSTATIC

## SOLDERING IRON

## HIGH PRODUCTION MINIATURE

 MODEL D. 50 WATTWeight ... 2 oz .
Heating time 50 secs.
Bit Sizes ... $1 / 16^{\prime \prime}, 3 / 32^{\prime \prime}, 1 / 8^{\prime \prime}, 3 / 16^{\prime \prime}, 1 / 4^{\prime \prime}$
Nickel or Iron Plated
Voltage .. 250 to 12 volts
Price
55/-

HIGH PRODUCTION INSTRUMENT MODEL H. 150 WATT
Weight .. 6 oz
Heating time 1 min .45 sec .
Bit Sizes ... $3 / 16^{\prime \prime}, 1 / 4^{\prime \prime}, 3 / 8^{\prime \prime}, 7 / 16^{\prime \prime}$
Nickel or Iron Plated
Voltage .. 250 to 24 volts
Price

## OTHER VARI-STAT IRONS:-

Miniature Model M 50 watt Push-in Bits $1 / 32^{\prime \prime}$, 1/16", 3/32"
Instrument Model B 70 watt Bit Size 11/64"
Industrial Model I 500 watt Bit Size 5/8"
CARDROSS ENGINEERING CO., LTD. Woodyard Road, Dumbarton

Phone: Dumbarton 2655


Photograph by courtesy of Bristol Siddeley Engines Lid

## Silentbloc Delta Mountings designed to safeguard precious cargoes

©Silentbloc Delta Mountings were originally designed to protect heavy and delicate machinery from the hazards of road/ rail/air transport. It is a far cry from this very complicated application to their use in fairground electric runabouts where passengers and equipment are protected from collision impacts.

Even under the mcs- severe tests Delta Mountings contrcl rooverent to pre-determined limits of travel whle allowing sufficient flexibility to prevent damage to the protected apparatus.

If you, too, have ar unusual shock problem why not consult our design engineers.

## equipments

ranging from 6
channel modular
mixers to meet
the budget

to multi channel consoles of
broadcast quality

## See them at the Audio Festival \& Fair in room 249 and on booth 78

Elcom manufacture a full range of modules including input modules, output units, level amplifiers, equalisation units and p.p.m. units.
(NORTHAMPTON) LIM|TED

A MEMBER OF THE CAROM GROUP

ELCOM (NORTHAMPTON) LTD Weedon Rd Industrial Estate Northampton
Tel: 51873. Cables: Elcom

## TELEPRINTERS • PERFORATORS REPERFORATORS • TAPEREADERS EDITING \& REPRODUCING SETS



2-5-6-7-8- TRACKAND MULTIWIRE EQUIPMENT


TELEGRAPH AUTOMATION AND COMPUTER PERIPHERAL ACCESSORIES
Picture Telegraph, Desk-Fax, Morse Equipment; Pen Recorders; Switchboards; Converters and Stabilised Rectifiers; Tape Holders, Pullers and Fast winders; Governcd, Synchronous and Phonic Motors; Teleprinter Tables and Cabinets; Silence Covers; Distortion and Relay Testers; Send/Receive Low and High Pass filters; Teleprinter. Morse, Teledots Paper, Tape and Ribbons; Polarised and specialised relays and Bases; Terminals V.F. and F.M. Equipment; Telephone, Carriers and Repeaters Multiplex Transmitters; Diversity Frequency Shift, Keying Equip ment; Line, Mains Transporters and Suppressors; Racks and Consoles; Plugs, Sockets; Key, Push, Miniature and other Switches Cords, Wires, Cables and Switchboard Accessories; Teleprinter Tools; Stroboscopes and Electronic Forks; Cold Cathode Matrics; Test Equipment; Oscilloscopes; Miscel laneous Accessories and Spares

## W. BATEY \& COMPANY

Gaiety Works, Ackerman Street, Tring, Herts. Tel.: Tring 3476 (3 lines) Cables: RAHNO TRING STD: 044-282 TELEX 82362


WW-08S FOR FURTHER DETAILS


6 mm tubular midget flange S6/8 cap over-all length 14.5 mm .

It is one of the many Vitality Instrument and Indicator Lamps that are made in an unusually large number of types, ratings and sizes. It may be just what you need for an existing or new project. If not, another from the hundreds of Vitality types and ratings may well be. Catalogue 66 . free and post-free, details them all.
*Many a product owes its success to the intelligent addition of an indicator light.

## VITALITY BULBS

VITALITY BULBS LTD MINIATURE AND SUB-MINIATURE LAMP SPECIALISTS BEETONS WAY. BUAY ST. EDMUNDS, SUFFOLK. TEL. BUAY 2071.S.T.D. 02842071


## TANNOY PRODUCTS LTD

West Norwood, London, S.E.27, England Telephone: 01-670 1131.
A MEMBER OF THE TANNOY GROUP OF COMPANIES
MTANNOY

Change should be made for improvement-not just for the sake of change. This is why the TANNOY 'Monitor' Dual Concentric loudspeaker -accepted as the 'quality standard' most specified for professional use-has remained unchanged in basic conception for the past 21 years and in detail design for the past seven years. NOW, the gradual evolution of a perfected technical specification has resulted in the refinement of this supreme 'quality' speaker into a new design-"The Monitor GOLD"-a design which again will remain intact until a change can be proved worthwhile. Send now for leaflet giving complete details and full technical specification.


The new Monitor Gold now incorporates a Treble Roll Off Control and Treble Energy Control enabling precise adjustments to be made for room acoustics and programme material.

Frequency Response	$30-20,000$ cps
Power Handling Capacity	$15^{\prime \prime} 50$ watts
	$12^{\prime \prime} 30$ watts
	III 1215 watts
	$8 \Omega$ Nominal
Impedance	$5 \Omega$ Minimum

WW-087 FOR FURTHER DETAILS

# PLESSEY Broadcast standard CT80 Series <br> Heavy duty modular constructed units for endless- 

 Cartridge equipment loop cartridge operation are available in Record and/or Replay models for desk-top, recessed or standard rack mounting. Instant one-hand cartridge loading and unloading allows fast, simple operation. Tape drive is direct from the capstan motor which is modular constructed with the actuating solenoid and puck wheel assembly. Individual plug-in epoxy circuit boards are fully silicon solid state with telecommunication grade components. Head assemblies with vernier azimuth adjustment are pre-aligned plug-in modules. The modular construction of the CT80 Series allows fast, simple changeover of assemblies for maintenance purposes. Further details are available from your local Plessey office or agent.


Sales and Service - Technical Ceramics Limited Cheney Manor Trading Estate Swindon Wiltshire Telephone Swindon (OSW3)6251 Telex44375 Cable PIEZO Swindon or the manufacturer Plessey Components Australia Rola Unit The Boulevard Richmond Australia 3121 Telex30383 Cables ROLA Melbourne
WW-088 FOR FURTHER DETAILS



## mechanized handling can halve your

Are you hit by rising production costs and shrinking profit margins? Is competition getting steadily, tougher? Sales prospects bleaker? If these are your problems, can you ignore the productivity improvements resulting from systemized mechanization? There will be a multitude of new ideas and methods at the International Mechanical Handling Exhibition for boosting profits and increasing efficiency. It will be much more than just the world's biggest display of mechanical handling equipment - 500,000
square feet and 300 exhibitors - It will be a unique presentation of handling technology; new systems, equipment and practical ideas. An unrivalled opportunity for evaluating the latest developments in receiving goods and materials; storage inventory control; in-processing; packaging; transport; distribution; and ancillary services and equipment. Whether your company is large or small, you will find much of interest and value at this important event. Mail the enquiry now and note the date in your diary.

## operating costs!




# there is a standard <br> Claude Lyons voltage stabiliser <br> already built to <br> your specification <br> * and that includes price 

Claude Lyons make the most comprehensive range of voltage stabilisers available today. You will almost certainly find the stabiliser to suit your application in the Claude Lyons standard catalogue range. Distortionless servomechanical types from 1 to 120 kVA (and 360 kVA 3 -phase). Solid-state types from 400 VA to 10 kVA . Simple tap-changing types from 600 VA to 2.4 kVA . All very high quality. All very reasonably priced. Full facts and figures from Publicity Department, Hoddesdon.

Claude Lyons Ltd ■ Valley Works, Hoddesdon, Herts Hoddesdon 67161 Telex 22724 - 76 Old Hall Street, Liverpool 3. MARitime 1761 Telex 62181

# Presenting the new Monsanto Counter/Timer Model 100A 



Integrated circuit construction plus completely original design concepts, result in high-
quality 12.5 MHz counter/timer performance at
remarkably low cost

- MEASURES :

Average frequency, 5 Hz to 12.5 MHz
Frequency ratio, 1 to $10^{\circ}$
Time interval, 10 microseconds to $10^{\circ}$ seconds
Single period, 10 microseconds to $10^{\circ}$ seconds

- Totalises from 0 to $10^{\circ}$
- Crystal-controlled clock; aging rate better than 5 parts in $10^{7}$ per day, after 72 hour warm-up.
- Sensitivity, 50 mV , r.m.s.
- Full range of accessory modules available
- Price £295

ELECTRONICS
Write for full details to the exclusive agents
G. \& E. Bradley Ltd., Electral House, Neasden Lane, London, N.W.10. Telephone: 01-450 7811. Telex: 25583.

# Specifying electronic components made in the U.S.A. is your business. 



All over the world, designers and manu facturers of commer cial, industrial and military electronic equipment frequently find it necessary to specify Ámerican made components. Too often, however, the technical details and complex paperwork of international commerce have been thought of as costly, time-consuming obstacles in getting the components delivered promptly and accurately.

To help overcome those obstacles, Milo International offers its specialized facilities and years of experience as a leading world-wide supplier of electronic components. Whether you need only a few pieces of one component, or large quantities of many items, your order will réceive our complete all-inclusive service - from immediate price and delivery quotations to processing of all certificates, licenses and declarations to special export packaging and delivery expediting.

For immediate price and delivery quotations, contact Milo by mail, phone, cable or International Telex.

# coherent detection finds lost information 

Discover more of the '400 series' a new range of sophisticated instrumentation for signal recovery and linear information processing. Each instrument stands on its own as a valuable laboratory tool. Together they combine to form a variety of complex and powerful systems.

First in the Brookdeal 400 series-Phase
Sensitive Detector 411.


Frequency Range 1.0 Hz to 1.0 MHz
Non linearity $<0.05 \%$ of f.s.d.
Zero Drift $<0.005 \%$ of f.s.d.
Recovers signals 70 dB below noise
Brookdeal Electronics Limited, Myron Place, Lewisham, London S.E.13. Lee Green 7433/4


## Key to Britain's Future

Britain's future depends entirely on technological progress. The key industries to this vital progress are those concerned with instruments, electronics and automation.
At Olympia; London, you can see how these industries are forcefully backing Britain.
The 1968 International Instruments, Electronics and Automation Exhibition-the biggest of its kind ever staged-needs a quarter of a million square feet of stand space to demonstrate the dramatic advances in technology on which our future depends.
The International IEA presents, for instance, the entire picture of automation and automatic control ; how whole industries can be computer-operated and, at the other end of the scale, examples of small-business automation. A brilliant new allBritish computer costs only $£ 4,000$ and has no equivalent in the world.
Electronics holds the key to the future of all industry. Everything, from the smallest component to the greatest machine, can be seen at the International IEA at Olympia.

SEE THE KEY TO PROGRESS bEING TURNED

Times: 10 a.m. to 6 p.m. daily
00
INDUSTRIAL EXHIBITIONS LIMITED 9 ARGYLL STREET, LONDON, W. 1

MODEL 15
MICRO
SOLDERING INSTRUMENT


- EXTREME VERSATILITY

Range of 8 interchangeable bits, from $\frac{\sigma^{3}}{} \mathrm{in}$. (.047in.) to $\frac{3}{16} \mathrm{in}$, including new non-wearing PERMATIPS.

- ULTRA-SMALL SIZE

Length $7 \frac{1}{8}$ in. Weight $\frac{1}{2}$ oz.
Max. handle dia. $\frac{7}{16} \mathrm{in}$.

- EXTRA-HIGH

PERFORMANCE
Heating time 90 secs. Max.
bit temp. $390^{\circ} \mathrm{C}$. Loading 15
watts-equals normal 30/40-
watt iron.

- ALL voltages

The ADAMIN range includes five other models (5, 8, 12, 18 and 24 watts), Thermal Strippers (PVC and PTFE) and a De-Soldering Tool. Please ask for colour catalogue $A / 5$.

## LIGHT SOLDERING DEVELOPMENTS LTD

28 Sydenham Road, Croydon, CR9 2LL
Tel: 01-688 $8589 \& 4559$

## No other electronic voltmeter <br> 



Marconi TF 2604 Electronic Voltmeter


Excellent zero stability: less than 4 mV deflection at full scale on all ranges for changes in mains supply voltage of as much as $10 \%$Seven a.c. ranges: 300 mV to 300 V f.s. 20 Hz to 1.5 GHz Eight d.c, ranges: 300 mV to 1000 V f.s.

Seven resistance ranges: $500 \Omega$ to $500 \mathrm{M} \Omega$
Input resistance: $100 \mathrm{M} \Omega$
Input capacitance: 1.5 pF
$\square$ Multipliers available: extend range to 2 kV a.c. and 30 kV d.c.
£90-U.K. f.o.b. Price. Full technical details on request.


More than 70 distributors and associates throughout the world

## Fully APPROUED


A.D.S. P.O. 3000

SERIES


Through 30 years'
telephone service, and automation refinements, the world's most versatile relay: I to 4 coils in limitless permutations from $\frac{1}{2}$ milli-
amp to $20 \mathrm{amps}(0.1$ to 400 volts); Fast, slow, and A.C
versions: 1 to 16 contact units ( 36 springs max.): Standard contacts 0.3 to 1 amp ; Alternatives for switching Dry-state. Inductive, and 10 amp circuits. Insulation from 100 to 4,000 volts; Life up to 100 million operations: Plain or tropical finishes; Approx. dimensions $13{ }^{3}{ }^{\prime \prime} \times 3 \frac{3}{4}{ }^{\prime \prime} \times$ $2 \frac{1}{2}{ }^{\prime \prime}$ max. An A.D.S. 3000 Type to meet all specifications-G.P.O., E.I.D., C.E.G.B., ADMIRALTY, U.K.A.E.A., ALL COMMERCIAL, ETC.

## A.D.S. P.I. PLUG-IN 3000 TYPE

Plug-in version, enabling relays to be changed in seconds. Coils and contacts to G.P.O./R.C.S. and variations: Standard contact insulation is 250 V working: $400 / 750 \mathrm{~V}$ also provided: Bases available ex-stock for immediate production: Fully approved.
A.D.S. MINI G.P.

A.D.S. P.O. 600 SERIES Special ADS miniaturised 600 Type: Single or double windings; 1 to 8 contact units ( 24 springs max.); Ideally suited to printed circuit and general purpose uses; A sensitive miniature Relay built to suit each specific requirement; Minimum operation below 50 milliwatts ( 3 mA in $5,000 \Omega$ coil). A.C. coils available. Approximate dimensions: $\frac{3}{4} \mathrm{in} . \times 1 \frac{1}{4} \mathrm{in} . \times$ $2 \frac{1}{4} \mathrm{in}$. (plus tags).

Miniaturised 3000 with similar, but restricted specification; only $\frac{3}{4} \mathrm{in}$. chassis space (twelve= nine 3000 Type): 1 or 2 coils: 1 to 6 contact units ( 14 springs max.). Approx. $\frac{13}{16} \mathrm{in}, \times 3 \frac{5}{8} \mathrm{in} . \times 1 \frac{3}{4} \mathrm{in}$.

## A.D.S. LITTLE KING (at right)

Screw-Fix eype 1, 2, 3 and 4 pole. Quick. Change (Plug-in Type) 2 and 3 pole 12 and 24 v. D.C., 100 and 240 v. A.C. Ex-stock. Litsie space required: Screw-fix 1.7 sq. In., Quick-Change 2.0 s $q$. in. King size switehing: Screw-Fix 2 kVA. Quick change 1.5kVA, 10 million operations (proof rested to 27 million). Power transíer $=1,500$. Max. current gain $=1,400$ (coil to alt contacts). LK2C (2 pole screw-fix eype)- $10 \mathrm{mmps} . / 400$ volts ( $1,000 \mathrm{VA}$ max.) per pole.


A.D.S. RELAYS LTD.

97 ST. JOHN STREET, LONDON, E.C. 1.
Telephone: 01-253 3393
ww-098 For further details

## Pc

## PRINTED CIRCUIT

 PROCESSING EQUIPMENT\author{

- RESIST DIP COATING UNITS <br> with filtration and temperature control.
}
- DRYING EQUIPMENT
- WeIr developer Units with the unique Weir design for clean and rapid development.
- WASH UNITS
with air-knife incorporated.
- PRINTING UNITS

for double sided simultaneous exposures. U/V neon and zenon light source.
- RESIST STRIPPING UNITS


## AND

- A NEW RANGE OF BENCH MODEL UNITS FOR ALL PROCESSES.
specially designed for laboratory and small batch production. Board size 9 in. $\times 9$ in.

Phone or write:-


PROCIRC Co. LTD. Station Road, West Haddon, Nr. Rugby TELEPHONE WEST HADDON 605

WW-099 FOR FURTHER DETAILS

## Accurate and direct measurement of speed without coupling to moving parts <br> Frall <br>  <br> ResonantReedTACHOMETERS

for hand use or permanent mounting.
Ranges and combinations of ranges from 900 to 100,000 r.p.m.
Descriptive literature on FRAHM Tachometers and Frequency Meters is freely available from the Sole U.K. distributors:

## ANDERS METER SERVICE

anders electronics lto. 48/56 bayham place. bayham Street LONOON NWI TEL: 01-387 9092. MINISTRY OF AVIATION APPROVEO WW--100 FOR FURTHER DETAILS


## (HAB

A.N. CLAFK (ENGINEERS) LTD. EINSTEAD. ISLE DF WIGHT, ENGLANO.


#### Abstract

But if you DO want to raise an aerial of 200 lbs or to heights in excess of 100' CLARK Air Operated Telescopic Masts can help you do the job. The photograph on the left shows a nine pound TV camera supported by a CLARK OT series mast looking in on a fruit bat's night life. Should you have a telescopic mast requirement CLARK offer you the world's most versatile range of vehicle born, freestanding or trailer mounted masts.

Thirty countries use our masts and users range from airpon authorities. police and armed forces to ...fruit bat watchers.

Whatever the occasion a CLARK mast will rise to it. Write for further details


## so who wants to study fruit bats?

## TRANSFORMERS COILS CHOKES <br> TRADE ENQUIRIES WELCOMED <br> SPECIALISTS IN <br> FINE WIRE WINDINGS MINIATURE TRANSFORMERS RELAY AND INSTRUMENT COILS, ETC VACUUM IMPREGNATION TO APPROVED STANDARDS <br> ELECTRO-WINDS LTD. <br> CONTRACTORS TO G.P.O., A.W.R.E., L.E.B., B.B.C., ETC <br> 123 PARCHMORE ROAD, THORNTON HEATH, SURREY 01.653 .2261

## NEW 48" FOLDINGMACHINES

SHEET METAL bench model by parker


## WELWYN TOOLS



167-KIT - CN


For Inner Core Ejection and Heated Wirestripping Miniature Soldering and Electronic Instrument Work

USE W.T.C. Wire Ejecsors LUCO Electrically Heated Wire Strippers (sce illuseration), Finest Soldering Needies, Box Joins Miniature Cutters and Pliers including Tip Custin Pliers Printed Circuit Crimpin Pliers, Prused Pliers Torque and Cutting Plers, Torque Wrenches and Piercing Punches If you require quality tools ask for Catalogue $W W / 68$

STONEHILLS HOUSE WELWYN GARDEN CITY WELWYN GARDEN 25403

## \section*{SERVISCOPE TYPE D52}

This tough little doublebeam portable 'scope has $Y$ sensitivity of $100 \mathrm{mV} / \mathrm{cm}$. DC-6Mc/s: $10 \mathrm{mV} / \mathrm{cm}$., DC$1 \mathrm{Mc} / \mathrm{s}, 60$ nanosec rise time, 18 calibrated sweep speeds plus variable, full range of triggering modes including TV sync., and a 5 " flat-faced PDA tube for utmost clarity of readout. It weighs 24 lbs., costs $£ 99$. (United Kingdom only).

Serviscope* type D52 is one of thirteen low-cost oscilloscopes described in the current Telequipment short form catalogue. If the price is too high, or the performance limited for your purposes, have a look at the rest of the range; it extends from a basic oscilloscope at $£ 2310$ s to the comprehensive 3 -'scope, 8 -amplifier, $43 / 53$ system.

## TelequipmenT

Telequipment Ltd•Southgate•London N14•'Phone: 01-882 1166


Iliffe Technical Publications Ltd., Managing Director: Kenneth Tett Editorial Director: George H. Mansell Dorset House, Stamford Street, London, SE1


This month's cover. The tête-à-tête being overheard by a microphone, a scene from a production at the B.B.C. Television Centre, prettily introduces two features in this issue: 'Developments in Microphones' by H. D. Harwiod (p. 58) and a microphone supplement. The microphone on the boom is a moving-coil type with a cardioid characteristic, a kind used extensively in television work.

April 1968
Volume 74 Number 1390

## Contents

51 Audio Myths, Maths \& Measurements
52 How Important is Detection? by R. C. V. Macario
57 H.F. Predictions
58 Developments in Microphones by H. D. Harwood
61 Wide-range General Purpose Signal Generator by L. Nelson-Jones
66 P.C.M. Copes with Everything
67 Low Distortion Class B Output
Microphone Supplement
68 News of the Month:
Numerical Control Advisory Service
Ministry Contracts Aid Microelectronic Research
Post Office Domestic relay System
71 Personalities
72 Simple F.E.T. Pre-amplifier by D.B. G. James
73 The Technician Engineering Scene
74 New B.B.C. Monitoring Loudspeaker-2 by H. D. Harwood
78 Electret Microphone
79 Protecting Meters with Semiconductors by T. D. Towers
82 Letters to the Editor
84 London Audio Festival
86 World of Amateur Radio
87 New Products
92 April Meetings \& Exhibitions
(C) Diffe Technical Publications Ltd., 1968 Permission is writing from the Editor must first be obtained before letterpress or illustrations are reproduced from this journal. Brief extracts or comments are allowed provided acknowledgement to the journal is given.

PUBLISHED MONTHLY (3rd Monday of preceding month). Telephone; 01-928 3333 (70 lines). Telegrams/Telex: Wiworld Iliffepres 25137 London. "Cables: "Ethaworld, London, S.E.1." Annual Subscriptions: Home; $\& 2$ 6s Od. Overseas; $\mathscr{L}_{2} 15 \mathrm{~s}$ 0d. Canada and U.S.A.; $\$ 8.00$. Second-Class mail privileges authorised at New York N.Y. Subscribers are requested to notify a change of address four weeks in advance and to return wrapper bearing previous address. BRANCH OFFICES: BIRMINGHAM: 401, Lynton House, Walsall Road, 22b. Tclephone: Birchfields 4838. BRISTOL: 11 Marsh Street, 1. Telephone: Bristol 21491/2. COVENTRY: 8-10, Corporation Street. Telephone: Coventry 25210. GLASGOW: 123, Hope Street, C.2. Telephone: Central 1265-6. MANCHESTER: 260, Deansgate, 3. Telephone: Blackfriars 4412. NEW YORK OFFICE U.S.A.: 300 East 42nd Street, New York 10017. Telephone: 867-3900.



## Lock-fit transistors stay where they're put

Putting transistor leads through boards, cropping them and hoping they'll stay put until soldered is out of date. Now just push a Lock-fit transistor in and it stays there. The leads are shaped to grip.

And they won't bend or break. They're designed to pop straight into standard printed circuit grids and p.c. boards of both standard thicknesses.
The transistor itself-many of the
wide range of Mullard silicon types -is protected in an epoxy encapsulation which gives good heat conduction. The special epoxy used by Mullard maintains the low spreads of the silicon chip.The shape ensures that operators or machines put the transistor into equipment the right way round. So Lock-fit is easy to mount, gives better solderability and simplifies handling. Lock-fit will save you assembly time and costs.
For the full Lock-fit range story manufacturers should tick the coupon.

## You may think capacitors inexpensive. But have you worked out the cost of a dud on your line?

We're not going to start the old price v. quality argument again. We'd just like to make sure that you're getting the whole picture. It's up to you to judge what's right for your particular job. But Mullard will help you as much as possible.
So bear in mind that, as well as price and technical information, Mullard can also give you the most detailed life/performance data.

## Time well spent

There can't be many firms who've been in business as long as we have who have used the time to such advantage. Our past experience guides our future plans; provides us with an insight into the industry we serve ; allows us to anticipate needs and deploy our resources over the most fruitful areas of research and

CONSUMER ELECTRONICS DIVISION

This information is fundamental to us if our AQL* is to be maintainedhow else could we improve our products? And this information is available to you. Take electrolytics for example. We found that they represent about $70 \%$ of all capacitor failures in the life of a TV set. So we produced a detailed report and recommendations on the best way to use electrolytics. You're welcome
development-and thereby provide modern, technically excellent products ready for the demands of tomorrow. We have co-operated in
to a copy-it covers polyester capacitors too. Just tick the coupon. By getting all the information before you select you can be really sure that you are going to make savings by choosing the particular component to meet your design parameters.
*AQL = Acceptable Quality Level.
so many consumer electronics projects that it's quite likely we are working along similar lines to yours. So why not get in touch ?

[^12]
#  



## So doesn't it make sense to go a bundle on them?

Wrap up all electronic assembly problems in one swift operation.

We've done our best to make it easy for you by devising some 5,000 connecting devices of one sort or another. And backing them with an endless amount of ingenuity.

So whether you're connecting a printed circuit, fastening a chassis, or simply linking a plug and socket we'll show you the quickest and simplest way of doing it.

And that goes for all your connecting problems - not just electronic, but mechanical and electrical as well. Our sort of ingenuity knows no bounds and accordingly, our range stops at nothing!

Go a bundle on it and you'll be helping yourself to the best connections in the business.

You can't do better than that now, can you?
the firm with the best connections



- pioneers of S.S.B and I.S.B -announce the newest in an extensive range of receivers


## HYDRUS offers

$\star$ Exceptional versatility
$\star$ Very high reliability
$\star$ All solid-state, incorporating the latest field effect transistors
$\star$ High stability
$\star$ Frequency synthesis tuning
$\star$ Fast re-tune and change of operating mode
$\star$ Panclimatic operation
$\star$ Available for operation in many transmission modes


The Marconi Company Limited Radio Communications Division Chelmsford, Essex, England

AN 'ENGLISH ELECTRIC' COMPANY

## The new HYDRUS high quality <br> low-cost H.F receiver for international point-to-point services

FREOUENCY RANGE 1.5 TO 30 MHz I.S.B, S.S.B, D.S.B, F.S.K, C.W


## Ferrograph,1949-1967



## Now, another major event



WW-109 FOR FURTHER DETALLS

# BBC trains TV producers from overseas... 

At the BBC's Overseas Training Studio at Woodstock Grove, Shepherds Bush, London, training courses are held for television producers, vision mixers and other overseas broadcasting staff. Many of the recordings made during these courses are on Scotch Helical Scan Video Tape. The use of video tape for the recording of training productions enables them to be played back immediately. In this way students can see the results of their work and benefit from criticism by professional producers and others. While these training productions are on closed circuit television. the BBC also makes use of Scotch 'Quadrature' Tape for many of its broadcast telerecordings.

The new Helical scan Video Tape has an improved, low noise oxide formulation designed to give broadcast quality performance on helical scan equipment. The video signal-to-noise ratio can exceed 45 db . and dropouts are considerably reduced. There are two types. Type 351 has a 1 mil. polyester backing with a 210 microinch oxide coating and is a vailable in $\frac{t_{2}^{\prime \prime}}{}$ and $1^{\prime \prime}$ widths. Type 350 has a 1 mil . polyester backing with a 4.50 microinch oxide coating and is available in $l^{\prime \prime}$ and $2^{\prime \prime}$ widths.
Mare details? Certainly-just complete and post the coupon below for video ralk publications and for 'Scotch' video tape data sheets.


## 3 m minnesota mining and manuFacturing co. ltd.

Manufacturers of 'Scotch' Instrumentation Tape,
Professional Quality Magnetic Tape, Quadrature and Helical Scan Video Tape, Computer Tape.

3 M and 'SCOTCH'are trade marks of Minnesota Mining of Manufacturing Company

TO: MR. G. C. WRIDE, 3M HOUSE, WIGMORE STREET, LONDON W1 Please send me technical details and specifications on 'Scotch' Video Tape

NAME
ADDRESS


## Nothing

 matches Belling-Lee sub-miniature R F Connectors

- A low cost range of precision subminiature R.F. connectors.
- Impedance 50 ohms nominal.
$\square$ V.S.W.R. less than $1.1: 1$ at 400 MHz .
- Easily loaded with a variety of subminiature coaxial cables up to $0.067^{\prime \prime}$ overall.
- PTFE insulation and choice of gold or silver plated body.
- Three plugs and three sockets. Types available to suit all installation requirements.
- Available from stock.



## BELLING-LEE <br> COMPONENTS

connecting research to industry
BELLING \& LEE LIMITED,
GREAT CAMBRIDGE ROAD.
ENFIELD. MIDDLESEX.
Telephone: 01-363 5393 Telex: 263265
WW-111 FOR FURTHER DETAILS


There's a BRIMAR tube to meet the needs of every oscilloscope designer-ranging from general purpose tubes of medium bandwidth to tubes designed specifically for exacting applications requiring features such as short length, wide bandwidth or dual phosphors. Face plates range from $8 \frac{1}{2}$ " large displays to $1^{\prime \prime}$ types for numerical and indicator presentations including the latest $7 \times 5 \mathrm{~cm}$ rectangular size.

## PERSONALISEID TECHNICAL SERVICE

Every BRIMAR oscilloscope tube is backed by a firstclass technical service and assistance on any type of problem involving it-from special characteristics to circuit design. BRIMAR engineers are always available - contact is on a personal level. Just phone or write.

The BRIMAR D13-51GH is a modern Mesh P.D.A. $6 \times 10 \mathrm{~cm}^{2}$-area tube, which gives improved brightness, higher deflection sensitivities and higher ratios of screen to deflector voltage with no shrinkage of raster area. The D13-51 GH displays single phenomena up to 30 MHz bandwidth and is suitable for use with transistorised circuits. It needs fewer control voltages than other mesh tubes. Length is only $13 \frac{1}{4}{ }^{\prime \prime}$.

We shall be pleased to let you have full details of the BRIMAR D13-51GH and the rest of the interesting range of BRIMAR industrial cathode ray tubes.


Thorn-A.E.I. Radio Valves \& Tubes Ltd.
7 Soho Square, London W1. Telephone : 01-4375233

## 



PIDAM (Plug-in Digical and Analogue Modules) perform all the usual logic functions, bus, unlike other units, can be plugged in, using their B9A bases and can be quickly
connected to the required configuration. To helplearning, the module covers are easily removable for circuit exammodule covers are easily removable for circuic cxam- PIDAM PLUG-IN The 16 modules have an enormous range of use, from a MODULES, single MONO for a tachometer, to over 300 units in a computer interface; nevertheless, their greatest asset is extreme simplicity. Design time is cut and elaborate breadboards superseded and any reader of "Wireless Warld" could with PIDAM, build up a low cost system for his own needs.
 supplied. A complete

BI (Bistable) module shows B9A base for ease of connection. Pins 7, 8, 9 are always power connections.
starting kie is only
$620 / 19 / 6$ (normally 23/12/6).


PIDEC
(Plug-in Digital Educational Cir cuic). This Pidec unit allows seven modules 10 be interconnected for demonstration or mock-up withour soldering. Includin internal power supplies. 370/

## CONTIL CASES

## PRINTED

 CHASSISPrinted circuit chas Sis eype "P" which fits into 1277 or
16127 case, or type "Q" which can be mounted on an alu-
minium chassis. Both types take up to 20 boards and connec-
tors on tin. centres tors on $\frac{1}{2}$ in. centres.
Prices from $45 / 6$ down eo 37/- for
quantities.
Consil cases are mass-produced to give the lowest prices
yee. In 21-gauge steel. Finished hammer blue, wish 18 -
$\begin{aligned} & \text { gauge front pancl supplied with easy-co-strip protecsive } \\ & \text { covering for easy marking out. For ease of ordering }\end{aligned}$
Concil cases are described by their dimensions, i.e. 755
is $7 \times 5 \times 5 \mathrm{in}$. Individually packed, inc. feet and screws.

digital computer modules
Digital computer modules
are available including bi-
stables flip flops compara-
tors (coincidence gate) neon
driver $5 N O R$ 2NOR $\times 2$
SNAND, and RESET. Also
available are neons for drive
by transistors, display boards,
divide boards, together with
escutcheons that only re-
quire round holes.


## Po

REED SWITCH
The West Hyde Reed Switch works at up to 2,000 times a second for more than fifty thousand million
operations. Ideal for: over and under speed monitors. counting. timing. switching, rev counting, etc. Hermetically sealed and moulded. Prices from 14/- each so 8/- each per thousand.
We now supply Q-Max sheet metal punches in tin. sizes up to 1 tin. and tin. sixes up to 2 in .

DIVIDE BOARD The Contil divide oard can be used or decading from bistables giving ${ }^{2}$ Includes resetting and decoding diodes and switches. Type

"BRIGHTLIFE" NEONS
$25,000 \mathrm{hr}$. average
ife with high in censity and resistor in housing: either lin. or $\frac{1}{1}$ in. dia. Standard units 160 .
variants. 10 lad variants. 10
$2 / 6$ each with 10 different caps. In quantity down to 1/8 each. Neon only, down to $5 \frac{1}{2}$ d. each.
We now supply our standard neons in 10 volt nominal at


CONTIL LOW COST PRINTED CIRCUIT BOARDS $\begin{array}{llll}\text { Standard transistor board } \ldots . . . . . . . . & 8 / 6 & 7 / 6 & 7 /-\end{array}$ Standard transis
Half board B9A B7G or B9A boards inc. their four Bespective bases Connectors, 20-way
$\begin{array}{lll}9 / 6 & 8 / 6 & 8 /- \\ 9 /- & 8 / 6 & 8 /- \\ 5 /- & 3 / 6 & 4 / 6\end{array}$
 Princed circuit kit: including case, normally $614 / 8 / 6$ for only E $11 / 19 / 6$.

We now supply Brightlife Fluorescent Starter Switches direct in minimum quantities of 50 off for $50 /-$ C.W.O. only. Quantity prices down to 7d. As supplied to leading manulacturers in large quantities.

## SUB.MINIATURE NEON PLEASE NOTE



WEST HYDE DEVELOPMENTS LTD.
30 HIGH STREET, NORTHWOOD, MIDDLESEX
Tel: Northwood 24941


## 



Floodlights, aerial arrays, flue stacks;
we support them all cheaply,
handsomely and efficiently.
We are accredited manufacturers of the 'Tubewrights' range of tubular steel tripoles, towers and headframes. Heights from 20 ft . to 155 ft . Alternatively we will design towers for any special requirement. Warning! We are habit-forming Customers tend to standardise on our towers.
Unifab Structures - the Tower People - provide uplift, easy on £.s.d.

## Unifab Structures Ltd

Gale Road,
Kirkby Industrial Estate,
Liverpool.
Phone: 051-546 3401.

## TELETON COMES TO THE U.K.



Already highly successful in Belgium, Germany, Switzerland, Molland, France, and Italy, we now proudly present the finest integrated Solid-State Hi-Fidelity Equipment for your approval. Ultra-modern designs have been created according to European technical standards and popular requirements. These outstanding products are supplled exclusively to us by MITSUBISHI Shoji Kaisha of Japan.

Superbly styled in oiled walnut, TELETON Tuner/Amplifiers include AM/FM Multiplex facilities, comprehensive flters, four inputs and up to fifty watts RMS output, at prices to suit even the most modest pocket.

The TELETON SRQ $302 x$ (illustrated) with Solid-State AM/FM Multiplex Stereo Tuner and integrated Amplifier ( 20 watts RMS) is an example of unsurpassed value retaliing at only 64 guineas.

In addition there are over fifty other TELETON products in the range including Stereo Tape Recorders, Cassette Recorders, Transcelvers, Stereo Loudspeakers, etc., competing favourably in quality and price. A home based Service Department implements a full 12 months Warranty.
TELETON units are available from high-class specialist dealers, or from selected wholesalers. Brochures and price lists are available to bona-flde trade enquirers. A display of our products may be seen in our Showroom by arrangement.

## SEE US AT THE AUDIO FAIR

Booth 64.
Demonstration Room 158.
Or write or telephone for further details to:-
TELETON ELEKTRO (U.K.) CO., LTD., 66-68 Margaret Street, London, W.I.

Telephone: 01.6366491

# HIGH-FIDELTY DESIGNS FROM SINCLAIR 



## SINCLAIR MICROMATIC


the smallest radio in the world

## PLAYS

 ANYWHEREAs easy to take with you as the wrist watch you wear. The Micromatic is amazingly powerful and better than ever in quality now that its output feeds to the hi-fi quality magnetic earpiece supplied with it. It tunes over the medium wave band bringing in RADIO I and many other stations to make it the best of all personal radios ever. This smaller-than-a-matchbox radio is in a tiny black case with aluminium front panel and matching slow-motion tuning control.

## 

MALLORY MERCURY CELL RM. 675 (2 required) $2 / 9$.
YOUR SINCLAIR GUARANTEE
Should you not be completely satisfied with your purchase when you receive it from us, your money will be refunded in full at once facilities available to all SINCLAIR PURCHASERS.
If you prefer not to cut this page, please quote WW468 when writing your order.

## SIMCLAIR RADIOMICS LIMITED <br> 22 NEWMARKET RD., CAMBRIDGE Tel: OCA3-52996



## A BRILLIANTLY EFFICIENT LOUDSPEAKER

When Sinclair Radionics decided so design and manulacture a new loudspeaker, it was required from the start that its performance should be worthy of to-day's best high fidelity standards and be so reasonably priced that the greatest numbers could afford it. By using ultra-low resonant materials to form its acoustically contoured housing, outstandingly brilliant performance resulted. Furthermore, the unusual form of the Q. 14 meant it could be used as a free-standing shelf speaker, as a wall-corner sound radiator or flush mounted singly or in multiple units on a flat surface such as a wall. The correctness of the design of the Q .14 has amply proven itself since within a few months of its introduction, it is already amongst the four most demanded loudspeakers irrespective of price. Independent laboratory tests have already shown that the Q .14 has amazingly good performance characteristics. As a judge of good sound yourself, your ear will confirm this instantly. At its price, there is nothing to stop you changing to Sinclair at once.

- RESPDNSE-Exceptionally smooth from 60 to $16,000 \mathrm{~Hz}$ - MAXIMUM LOADING-In excess of 14 watts.
- IMPEDANCE-IS ohms.
- $512 E$ AND FINISH- $9 \frac{1}{2}$ in. square $4 \frac{\mathrm{in} \text {. deep. Matt black with solid }}{}$ aluminium bar embellishment.
- ALL-BRITISH MANUFACTURE

Testef and guaranteed in
fitted carton. (Your money and fitted carton. (Your money and postoge refunded if not sotis fied.

## £6.19.6

IDEAL FOR BATTERY OPERATION

## SINCLAIR

## COMBINED 12 WATT HI-FI AMP \& PRE-AMP

No contructor's transistor amplifier has ever achieved such success as the Sinclair Z.12. It favours the user in so many ways-with fantastic power-tosize ratio, with far greater adaptability, with freedom to operate it from batteries or mains power supply unit (the new PZ. 4 is ideal for this) and with the opportunity to obtain superb stereo reproduction for very little outlay. Countless thousands of Z .12 s are in use throughout the world in hi-fi installations, electronic guitars and organs, P.A. installations, intercom. systems etc. This true 12 -watt amplifier is supplied ready built, tested and guaranteed together with the $\mathbf{Z} .12$ manual which details a number of control circuits enabling you to match the $Z .12$ to your precise requirements. For complete listening satisfaction, use your $Z .12$ system with Q. 14 loudspeakers. It assures superb quality with substantial savings.

## SINCLAIR STEREO 25 <br> PZ. $4^{\text {STABILISED HEAYY DOWER UNIT }}$ DUTY <br> De luxe pre-amp/control unit


or 2.12 or other stareo systems. Brushed and polished aluminium Comp built.
£9.19.6

## Designed specially for <br> 2.12 astemblies. De <br> livers I8 Y.D.C. at $1.599 / 6$ amps. from A.C. mains $99 / 6$ supply.

If you prefer not so cut this page, please quote WW468 when writing your order.

TO: SINCLAIR RADIONICS LTD., 22 NEWMARKET ROAD, CAMBRIDGE
Please send POST FREE
NAME
AOORESS.


AUDIOEAIB
To understand why BRENELL hi-fi equipment is so consistently chosen by connoisseurs...


Look and listen to their outstanding tape recorders and decks and the versatile mono/stereo tape link. Brenell equipment offers the enthusiast unrivalled features and professional performance at realistic prices.

## Brenell

Hotel Russell, April 18th-21st. - your dealer has free tickets.

BRENELL ENGINEERING CO. LTD., 231/5, Liverpool Road, LONDON N.1. 01-607 8271 (5 lines) GO212

WW- 120 FOR FURTHER DETAILS


WW-121 FOR FURTHER DETAILS

## Now available Mullard 1968 Data Book <br> 136 pages of data, including for the first time, colour-coded sections for quick reference-covering comparables and equivalents and all current Mullard semiconductors, valves, tubes and components for Radio, TV, Audio and HiFi applications. PRICE $3 / 6$ from your local TV retailer OR direct from Mullard-cash with order, plus 9d for p. and p.




The extensive range of Oxley Air and Solid Dielectric Trimmer Capacitors have proved over the years their ability to withstand and fulfill the requirements of manufacturers of high quatity Electronic Instruments and telecommunication equipment.
The range includes

* Air Dielectric Trimmer Capacitors from 3 to 100 pF.
$\star$ Temperature compensating Trimmer Capacitors.
* Tubular Capactiors with P.T.F.E. and Quartz as the dielectric medla.
- Differential and Butterfly type Capacitors.

Most types are available for printed Circuit and Module board applications.
Write for technical details of Oxley products.

## Longlasting Precision

SEE US AT STAND G335A, I.E.A. EKHIBIYION, OLYMPIA 13-18 MAY


OXLEY DEVELOPMENTS CO. LTD. ULVERSTON, LANCASHIRE
Telephone Ulverston 2621 Cables Oxley Ulverston WW-123 FOR FURTHER DETAILS

## Talie any

## Andio Techmica

## Cartridge ...

 and you take an important step towards PERFECTION in Stere® ReproductionAn already proven statement, which will be again demonstrated by Shriro (U.K.) Ltd., during the 1968 International Festival and Fair at the Hotel Russell, London. Rooms 201 and 202 will be the venue to hear a new and even more advanced range of quality cartridges from the Audio Technica Corporation.

## SHRIRO (U.K.) LTD.

8 BUSH LANE, CANNON STREET,
LONDON E.C.4. Telephone 01-626 4711


Linstead instruments are designed for accurate yet continuous hard work. Here are shown just three in the range which are receiving such glowing comments as ". .. does everything that instruments costing several times its price can do" (letter available for inspection). These are products which can be relied upon time and time again. Below we give a brief specification of three.

## S.I. Twin stabilised Power Supply

Controlled by silicon transistors. Two supplies each. 0 to 20V, 0 to 0.5 A . Full overload and short circuit protection. 845 nett U.K.

## G.2. L.F. Signal Generator

10 Hz to $100 \mathrm{kHz} \pm 2 \% \pm 1 \mathrm{c} / \mathrm{s}$. Sine wave. $0-6 \mathrm{~V}$ low distortion. Square wave $0-9 \mathrm{~V}$. No droop H.F. rise time ius. I Wate inco 3 ohms. 624 nete U.K.

## M.I. Electronic Voltmeter

$15 \mathrm{~A} . \mathrm{C}$. ranges. 1 mV to 500 V . 10 Hz to 100 kHz . 3 D.C. ranges. $0-400 \mathrm{~V}$. Input Impedance. 10 Mohms on A.C. and D.C. E26 ners U.K.

[^13]WW-125 FOR FURTHER DETAILS

## FRULT LICATION



KONTAKT "Cold Spray 75" For rapid and effective fault location Non-toxic, non-inflammable, Cold Spray 75 is a chemically inert coolant capable of producing temperatures of down to - 42 centigrade. It can also be used to prevent heat damage during soldering processes, for the rapid freezing of small articles for biological and technical purposes and the prompt location of hairline cracks and other faults in temperature dependent components.
Other Kontakt products:
Kontakt 60 and Kontake 61 for relay contact cleaning. Plastic Spray 70, cransparent protective lacquer Insulating Spray 72.
Kontakt WL. Spray Wash.
Antistatic Spray 100. Antistatic agent for plastics.
Politur 80. Polish and cleaner. Fluid 101. Dehydrating Fluid.

Details from UK distributors.

## SPECIAL PRODUCTS DISTRIBUTORS LTD.

81 Piccadilly, London, W.1.
Tel: 01-629 9556
WW-126 FOR FURTHER DETAILS


Send your FREE BROCM. NAME
IURE $\square$ or Send $\square$ (now ADDRESS
I many) Budget Storage Units
iii [15.19s. in green
Dep
Lopt.WW Eagle Steelworks, Heywood, Lancs. Tel: 69018

WW-127 FOR FURTHER DETAILS

RECEPTION SETS R220/R220 These comprise ewo erystal controlled AM receivers and can be operated independent of $60-100 \mathrm{Mc} / \mathrm{s}$., with buile-in monitor speaker. They are housed in one metal cabines, size $21 t \times 12 t \times 18 t i n$, and ready for immediate mains operation ( $200-250 \mathrm{v}$. $50 \mathrm{c} / \mathrm{s}$.). Supplied BRAND NEW in original crate, complete with spares and manual, 120 . Carr. $50 /$. OWER UNIT TYPE 24 FOR R. 216 RE. CEIVER. A.C. operazed $100-125$ or $200-250$ voles $50 \mathrm{c} / \mathrm{s}$. BRAND NEW AND BOXED C9/I9/6. Carr. $10 / 6$.
FILTER VARIABI
FILTER VARIABLE BAND PASS No. I. Dual channel unit. each channel has variable lot Irequency of $500-900 \mathrm{chs}$. . $1,200-1,600 \mathrm{c} / \mathrm{s}$ put, monitor input and high impedance output jacks. Standard rack mounting 3 fin. deep panel. Mains operation 200/250 v. $50 \mathrm{c} / \mathrm{s}$. BRAND NEW. 65/it/4. Carr. 10/-
MRO TUNING METER. 0.1 ma . New and boxed $25 /$. Post $2 /$.

BC-22! FREQUENCY METERS Complete with erystal and valves. In perfect
working order but WITMOUT calibration working order but WITHOUT calibration
chares. cy/19/6. Carr. $10 / 6$.

> X'TALS $100 / 1,000 \mathrm{Kc} / \mathrm{s}$. $10 X$ size 3 -pin, as used in Class D Wavemeter. Brand New, boxed. $21 /-$ each. Post $1 /-0$ $200 \mathrm{ke} / \mathrm{s}$. American G.E.C. tin. pins suitable lor crystal calibrators, etc. Brand new, boxed, $7 / 6$ each. Post $1 /-$.

## V.H.F. SIGNAL GENERATOR

 MARCONI TF-80IA/I, Covers 10 to 310 $\mathrm{Me} / \mathrm{s}$. (4 bands). DIRECTLY calibrated. Ine. Mod. at $400,1,000$ and $5,000 \mathrm{c} / \mathrm{s}$. Ascenuatedor force ouepue. Guaranteed overhauled, accurate and in perfect working order. 2ccurate Carr. fl .

BEAT FREGUENCY OSCILLATORS. MARCONI TF-195M. Covers 10 cps . to $40 \mathrm{kc} / \mathrm{s}$. in two sweeps. 0 to $20 \mathrm{kc} / \mathrm{s}$. and
$20 \mathrm{to} 40 \mathrm{kc} / \mathrm{s}$. Oueput 2 warts into 600 20 or $2,500 \mathrm{ohms}$. Panel meter indicates outpus or 2,500 ohms. Panel meter indicates output
voltage. A.C. mains operation 100 to 250 voles. Firss class condition. Fully cested. ©20. Carr. 30/-.

AMERICAN HEADSET TYPE HS-30-U 600 impedance. BRAND NEW and boxed, 15/. poscage $2 / 6$.

## DISTOATION FACTOAMETEN

 MARCONI TF-142E. This inserumene measures the percentage of total harmonic discortion in the fundamental frequency range 100 co $8,000 \mathrm{c} / \mathrm{s}$. The lowest scale engraving is $0.05 \%$. Will handle 2 wates (continuous) and will give sasisfactory readings Ouspus impedance 600 ohms. Very sood condition. E29. Carr. 20\%.
## MICOOAMMETERS

R.C.A. 0-500 microamps. $2 \neq \mathrm{in}$ circular flush pandl mounting. Dials are engraved
$0-15,0-600$ voles. As used in the American $0-15,0-600$ voles. As used in the American
version of the No. 19 set. BRAND NEW version box $15 / \mathrm{F}$. P. \& P. $1 / 6$.
and box

$$
\begin{aligned}
& \text { AR-ss SPARES } \\
& \text { Knobs, Medium size, } 5 \text { or of } 8 \\
& \text { Knobs, Large size } \\
& \text { Condenser ( } 3 \times 4 \text { mid.). Post } 4 / 6 \\
& \text { Mains Trans. (L.F.) (postage } 9 / \text { ) } \\
& \text { Escurcheons (Windows) ........ }
\end{aligned}
$$

## MINIATURE RELAYS

240 V. A.C. Coils. Coneact assembly makes "and I C.O. 5 amps. Size $2 \times 17 \frac{1}{x}$ lin. Unused and removed from brand new equipment $/ / /$ pose paid

> MOVING COIL PHONES. Finest
> quality Canadian wish chamois ear-mulfs and leather-covered headband. With lead and jack plug. Noise excluding and supremely comlortable. 22/6. As above but complece wish moving coil microphones $25 /-$. DLR-5 Low impedance headphones with ateached throat microphone. $12 / 6$. All these leems BRAND NEW. Postage extra $2 / 6$.

CINTEL NUCLEONIC SCALERS Nos. 36402 and 36411 : Unused with hand

PACKARD-BELL PRE-AMPLIFIER Fitted with $65 L 7 G T$ and 2807 Valves. Brand new
$4 / 6$.

Cat Type 89D as used in the Cossor 1035
Oscilloscope. Brand New $59 / 4$. P. \&. $4 / 6$.

## ADVANCE TEST EQUIPMENT


#### Abstract

H1B Audio Signal Generator J1B Audio Signal Generator £30 0 J2B Audio Signal Generator TT1S Transistor Tester VM76 AC/DC Valve Voltmeter VM77C AC MIllivoltmeter VM78 AC Millivoltmeter (transistorised) 10 £72 0 VM79 UHF Millivoltmeter (transistorised) $\$ 1250$ These are current production, manufactured in U.K. by Advance Electronics Ltd. (not discontinued models). Showing a saving of approxImately $33 \frac{1}{3} \%$ on nett trade price. BRAND NEW, all In orlginal sealed carton. Carr. 10/- extra per item. Special offer of $10 \%$ discount for schools and technical colleges, etc.


#### Abstract

compace CW WIRELESS SET No. 7 of a Pierce cryseal only crystal controlied transmister. Consises Both are cachode osclllator (807) and a Power Amplifier (807) channels are available in the frequency range of 2 to $12 \mathrm{Mc} / \mathrm{s}$ (Crystals not included.) Aerial current is indicated on a pane meser and two spare valves are supplied. Operates from 12 v car battery via internal rotary eransiormer. RF output wats Contained in seeel case $12 \times 12 \times$ oin. Weight 30 ous. Ideal for and working order. Circuit included. $84 / 5 / \mathrm{F}$. Carr. $10 / \mathrm{F}$.


## HRO RECEIVER $\mathbb{1 3 0}$

The octal valve version. In mint condition. Complete with all nine general coverage coil sets covering $50 \mathrm{kc} / \mathrm{s}$. to $30 \mathrm{Mc} / \mathrm{s}$ Instruction Booklet and circuit, but less external power supply Carriage 30/-. Complete manual available at $30 /$ - exera.

PRICES NOW REDUCED CINTEL EQUIPMENT ELECTROLYTIC CAPACITANCE AND INCNEMENTAL INDUCTANCE BRIDGE No. 36601
A modern instrument, all solid state, which accurately measure the capacley of electrolytic condensers from $0.1 \mu \mathrm{~F}$ to $1,000 \mu \mathrm{~F}$ under operazing conditions. Leakage current and poiarixing voleage are saparately metered. Inductances from 100 H can also be measured with current up so 100 mA . A.C mains operasion. Unused wish handbook. Liss price $\mathbf{1 2 2 0}$. Our Price 670.
Price hange CAPACITANCE BNIDGE. No. 1864 A matching instrument so the above. All solid state. Main operation. Measures from $0.002 \mathrm{pF} t 0100 \mu \mathrm{~F}$. Unused wish hand book. Llist Price $\mathbf{6} 250$. Our Price 175

## MARCONI TEST EQUIPMENT

## PORTABLE FREOUENCY METER TYPE TF. 1026 SERIES

 TF. $1026 / 4$ 2,000/4,000 Mc/s., TF. $1026 / \mathrm{s} \quad 1,800 / 2,200 \mathrm{Mc} / \mathrm{s}$., TF. $1026 / 6 \quad 3,800 / 4,200 \mathrm{Mc} / \mathrm{s} .0$ TF. $1026 / 7 \quad 1,700 / 2,100 \mathrm{Mc} / \mathrm{s}$. TF. $1026 / 9$ 2.425/2.525 Mc/s. 440 each00 WIDE BAND MILLIVOLTMETER TYPE TF. 137
VACUUM TUEBE VOLTMETEN TYPE TF. 1300 A.C. measurement 0.05 to 100 V., $20 \mathrm{c} / \mathrm{s}$. 10 W $300 \mathrm{Mc} / \mathrm{s} . \mathrm{D} . C$. ohms, $50 \Omega$ so 5 mf in 2 ranges. G4s

SENSITIVE VALVE VOLTMETER TYPE TF.II00 $100 \mu \mathrm{r}$ to 300 r . A.C. in 12 ranges. $10 \mathrm{c} / \mathrm{s}$. to $10 \mathrm{Mc} / \mathrm{s}$. Can also be used as a wide-band amplifier, DELAY GENERATOR TYPE TF.I415
Provides sweep-delaying faclitisles when used in conjunction with the TF. 1330 (series) or similar oscilloscope. Alsernatively 635.

TF. 867. A Standard Signal Generator. . . . . . . . . . . . . . . . . . $\mathbf{~} 200$ TF.890.A/I. R.F. Test Set .....
TF.1020.A/2 R.F. Power Meter ...........
TF. $1066.8 / 2$ Heterodyne Frequency Meter.
TF. 1102 Amplitude Modulator.
TF. 1221 Hekerodyne Unit.
TF. 1274 V.H.F. Bridge Osci
TF. 1274 V.H.F. Bridge Oscillator
TF. 1275 V.H.F. Bridge Detecsor.
TF. $1350 / 1$ Power Unit for TF. $1346 / 1$
TF. 1400 Double Pulse Generator
Detailed technical specifications supplied upon request.
Offered BRAND NEW at fraction of orisinal cost

## CHARLES BRITAIN (Radio) LTD.

II UPPER SAINT MARTIN'S LANE LONDON, W.C.2.

01-836 0545
Near Leicester Sq. Station.
Shop hours $9-6$ p.m. ( 9.1 Thursday)
(Opposity Thorn House)

## PCR-I RECEIVERS

Covers 860-2080 metres, $190-570$ meeres, $5.6-18 \mathrm{Mc} / \mathrm{s}$. I R.F. and $21 . F$. seages, 6 valves. Insernal speaker, requires exsernal Power supply. Circuir supplied. Fully eested prior o despasch. 67/19/6. Carr. 10/6. Fuller Power Supply Uniss, Vibrator Unit for operation from 12v. car bastery, for caravans jor boats $15 / 6$ or A.C. Mains Units C2. Carr. 5/6.

AR.se VIBRATOR POWER SUPPLY
UNIT. Operates from 6-8 vole D.C. supply. Ousput 300 voles, 90 ma . Brand new, boxed, complete with leads. 15/-. postage $7 / 6$.

ADVANCE POWER UNIT TYPE DC4 12 volts D.C. 4 amps output. A.C Mains Boxed, 20 . Carriage $10 / 6$.

INDUSTRIAL METER. Iron clad. $0-300$ volts A.C. $50 \mathrm{c} / \mathrm{s}$. Moving iron, Gin. scale

SIGNAL GENENATOR CT-218 (FM/ AM). MARCONI TF ${ }^{3} 37$.
Covers $85 \mathrm{Kc} / \mathrm{s}$. $80 ~ 30 \mathrm{Mc} / \mathrm{s}$. in 8 swicehed ranges. Effective length of film scale is Sort. Outpur level variable in I dB steps from $1 \mu$
to $100 \mathrm{mV}(75 \Omega)$. Also iv Outputs down $t 0.1 \mu \vee$ from an ouelet as $7.5 \Omega$. Ine. mod. at $0.1 \mu \mathrm{~V}$ from an ouelet as $7.5 \Omega$. Int. mod. at
$400 \mathrm{c} / \mathrm{s} .1 \mathrm{Kc} / \mathrm{s} ., 1.6 \mathrm{Kc} / \mathrm{s}$. and $3 \mathrm{Kc} / \mathrm{s}$. FM at $400 \mathrm{c} / \mathrm{s}$., $\mathrm{Kc} / \mathrm{s} ., 1.6 \mathrm{Kc} / \mathrm{s}$. and $3 \mathrm{Kc} / \mathrm{s}$. KM at Trequencies above depsh and devlation. Crystal calibrator 200 $\mathrm{Kc} / \mathrm{s}$ and $2 \mathrm{Mc} / \mathrm{s}$. Monitor speaker for beat detection. Fully metered, blower cooled Panclimatic. A.C. mains 100 to 150 and 200 to 250 voles, 45 to $100 \mathrm{c} / \mathrm{s}$. $17 \times 20 \frac{1}{\mathrm{~s}} \times$ 17 iln. Weight 117 lbs. Fully cested and guaranteed. Fraction of original cose. $\langle 65$ Carr. SO/-.
T.C.C. METALPACK CONDENSERS 0.1 mfd .500 v. D.C. wkg. at $70^{\circ} \mathrm{C}$. Brand new. polyshene wrapped, $7 / 6$ dox., or 12 per 100 T.C.C. METALMITE 350 v. D.C. wkg. 0.1 mid. (CP37N): 0.05 mfd . (CP35N); $0.91 \mathrm{~m} / \mathrm{d}$ (CP.32N) all az $5 / 6$ doz. or $32 / 6$ per 100. SPRAGUE METAL CASED CONDEN SERS 0.01 mid
T.C.C. VISCONAL CONDENSERS. ${ }^{8} \mathrm{mid}, 800 \mathrm{v}$. D.C. wkg. $2871^{\circ} \mathrm{C}$. CP 152 V Size $3 \times 1 \frac{1}{2} \times 5 i n$. high. BRAND NEW (boxed), $8 / 6$ each. DUBILIER. 600 v . wkg. CP 130T or similar id $\times$ it $\times$ 4ifin. high. BRAND NEW (boxed), $4 / 6$ each All pose paid.

## WESTINGHOUSE PULSE TRANS FORMER CAT. NO. 4 P43 L421741 Primary 5.5 kV . Secondary 22 kV . 0.5 to $2.5 / \mathrm{sec}$. Pulse. Brand new and boxed 65 . 2.5/sec. $7 / 6$. Postage

## THOMSON-VARLEY TYPE POTENTIAL DIVIDER <br> Non inductive. 4 decades- 70,000 ohms resistance. Accuracy $0.01 \%$. 350 v. maxi mum voliage. Brand new and boxed. $\mathbf{L 3 0}$ Carr. 10/-.

STANDAMD TRANSFORMERS Vacuum impresnated, inserleaved. creen, universal mouncing. Size $4 \times 3 \& \times$ ANO NEW, 24/-each. Poss $4 / 6$ 250-0 250 v .80 mA .6 .3 v .3 .5 Trpe 2. As above bue $350-0-350$ v. 80 mA Type 3. 30 r .2 a, tapped at 12 , is, 20 and 24 v . to sive 3-4-5-6-8-9-10 r., etc.
Type 5. 0-6-9-15 v. 4 a. Ideal for chargers.


LOW CAPACITANCE BRIDGE
MARCONI TF. 1342 . Range 0.002 pF. to 1.111 pF. Accuracy $0.2 \%$. Three terminal transformer ratio arm bridge allows "in situ"

 With leads and handbook. ABSOLUTELY BRAND NEW. Lise Price $\mathbb{C} 120$. Our Price $\mathbf{t 4 5}$.

#  

MOS-FIELD EFFECT TRANSISTORS

$\begin{array}{lc} 3 N / 28 & \text { N } \\ 3 N 140 & \text { N dualgate } \end{array}$	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.0(8) \end{aligned}$	$\begin{aligned} & 5-30 \\ & 5-30 \end{aligned}$	$0.05$	$\begin{aligned} & 100 \\ & 150 \end{aligned}$		$\begin{array}{ll} 000 & 800 \\ 000 & 300 \end{array}$	5.8/0.2	$\begin{array}{ll} \text { i } & 0 \\ \text { C } & 2 \end{array}$	4
Thyristors	$\begin{aligned} & \text { PIV } \\ & \text { Volts } \end{aligned}$	If cont A	If peak A	$\lg _{A}$	$\begin{gathered} \text { Pc-G } \\ W \end{gathered}$		$\lg t$ $m A$	Vgt Voles	$\begin{aligned} & \text { tho } \\ & \mathrm{mA} \end{aligned}$	Price	
C106-YI	30	2	25	0.2	0.1		0.5	$0.5-0.8$	8	1610	
TIC3I	400	4	125	2	5		25	$\begin{aligned} & 0.25-3.5 \\ & 0.7-1.5 \end{aligned}$	25	1200	
2N4441	50	8	80	2	5		30		40	194	
2N4442	200	8	80	2	5		30	0.7-1.5	40	(1)69	
2N4443	400	8	80	2	5		30	0.7-1.5	40	1170	
2N4444	600	8	80	2	5		30	0.7-1.5	40	c] 150	
MCR2304-6	400	8	100	2	5		20	0.2-1.5	25	1253	
MCR2305-6	400	8	100	2	5		20	0.2-1.5	25	1282	
Triac's											
40527 no diode	400	2.5	25	0.5	0.15		10	2.2	5	4170	
40430 no diode	400	6	80	1	0.2		20	1.0-2.2	30	1253	
40432 with diode	400	6	100	I	0.2		-	20-40	30		
MAC2-6	400	8	100	2	10		30	0.9-2.0	30	$4{ }_{4} 117$	

Trigger diode: MPT32 for Triac types: 40527, 40430 and MAC2-5. 11/4.
Silicon Diodes

	$\begin{aligned} & \text { PIV } \\ & \text { Volts } \end{aligned}$	If cont	If peak   A	$\begin{aligned} & \text { Ir } \\ & m A \end{aligned}$	$\begin{aligned} & \text { Vf } \\ & \text { Volts } \end{aligned}$		
ESK1/10	800	$1(0.8)$	50	0.1	1.2	3	2
ESKI/02	125	$1(0.8)$	50	0.1	1.2	3	0
ESK 1/06	400	$1(0.8)$	50	0.1	1.2	3	I
ESKI/12	900	$1(0.8)$	50	0.1	1.2	3	3
IN400\|	50	I(0.7)	30	0.05	1.1	4	8

## LINEAR INTEGRATED CIRCUITS

CA 3000 Differential amplifier, TO-5. Bandwidth $0-30 \mathrm{Mhz}$. Gain $37 \mathrm{~dB} / 10 \mathrm{Mhz}$. Max. Output 6, 4 volt peak-peak. Price $\mathbf{4 3} / \mathbf{1 8} /-$.
CA 3012 High Frequency Amplifier, TO-5. Bandwidth $100 \mathrm{Khz}-20 \mathrm{Mhz}$. Gain $55-61 \mathrm{~dB} / 10,7 \mathrm{Mhz}$. Price $\leqslant 1 / 18 /-$.
CA 3018 Includes: 2 single transistors, TO-5 I cascade pair Application = High Frequency Amplifier/Mixer/Oscillator Gain cascade pair $=1500-3500$ Gain single transistor $=30-67$.

Price 1//19/-.
CA 3020 Low frequency amplifier Bandwidth 6 Mhz, TO-5. Gain max. $52-58 \mathrm{~dB}$. Sensitivity 35 mV . Output max. 700 mW . Input Impedance 40 Kohm . Output impedance $65+65$ ohm (push pull).

Price 62/6/6.
PA 222 Low Frequency Amplifier. Bandwidth 20 Khz (dual in line). Gain typ. 50 dB . Sensitivity 65 mV . Output max I Watt. Input impedance $40-55 \mathrm{Kohm}$. Output impedance 22 ohm (single ended push pull).

Price 12/19/.
MC 1429 G Differential amplifier TO-5. Bandwidth $0-250 \mathrm{Khz}$. Differential gain $\mathbf{4 5 - 7 5 d B}$. Max. Output swing 5 Volt pp. Price $\mathbf{1 3} / \mathbf{1 3 / -}$.
MC 1430 P (dual in line) Differential input, single ended output. Bandwidth $1,3 \mathrm{Mhz}$. Gain 75 dB max. Offset Voltage $2 \cdot 10 \mathrm{mV}$.
Input Impedance 5-15 Kohm. Output Impedance 25-50 ohm. Output voltage max. 2.5 Volt pp. Price $\mathbf{~} \mathbf{4} / 1 \mathbf{1 3} /$.
UA 702 c TO-5 Differential input, single ended output gain max. 2000-6000. Bandwidth $0-30 \mathrm{Mhz}$. Price $\mathbf{\ell 3} / \mathbf{4} / \mathbf{3}$.
uA 703 TO-5 High Frequency Amplifier, bandwidth 150 Mhz . Gain $36 \mathrm{~dB} / 10,7 \mathrm{Mhz}$. Gain $20 \mathrm{~dB} / 100 \mathrm{Mhz}$. Price $\mathbf{£ 2} / 16 /=$.
MIC 709 e TO-5 Differential amplifier, bandwidth $0-500 \mathrm{Khz}$. Voltage gain $45,000 \mathrm{typ}$. Output voltage max. 13 Vpp . Price $\mathbf{C 4} / 6 /-$.
DIGITAL INTEGRATED CIRCUITS. (All circuits dual-in-line)
RTL-series (resistor-transistor-logic)


## SPECIAL OFFERS:

Kit: Complete Decade Counter. Max. counting frequency 10 Mhz . Noise immunity I Volt or better. Required input: square wave 3.5 Volt. Output 3,5 Volt. Including Printed Circuit, Integrated Circuits. Diode Matrix, Nixie drivers, Nixie tube with socket, Circuit diagram, mounting schematic, etc. Price $\mathbb{K} 1 \mathbf{1 / 2 /}$.

Silicon Transistors: BC 171 b Vee 45 Volt. Ic 100 mA . Pc 200 mW . Hfe $\mathbf{2 5 0 - 5 0 0} \mathrm{Ft}$. $\mathbf{3 0 0}$ Mhz. Price $\mathbf{2 / 6}$ BC 172 c same items except Hfe 470-900. Vee 20 Volt. Price $\mathbf{2 / 6}$. Both types pro 100 pieces. Price $\mathbf{\&} 10 / 15 /$.
The noted prices include all taxes etc.

## NEW! SOLID STATE HIGH FIDELITY EQUIPMENT

POWER AMPLIFIERS - PRE-AMPLIFIERS POWER SUPPLIES-BRITISH MADE


COMPLETE FULLY ILLUSTRATED BROCHURES NO. II \& 21 FREE ON UEST

We proudly present this new ranct of Audio Equipment devoloped from Dtasdale Mr. Is eah unit or sytem will compare favoutably with other prolesilonsl equlpment selling at much higher prices. Briel detalls are below

SYSTEM	COMPRISING	SYSTEM PRICE
- $A$	5 watt mono for 3 to 5 ohm speakers	\&10.3.0
1	12 watt mono for 3 to 5 hm speakers.	\&13.17.6
+ 2	12 watt mono for 12 to 16 ohm speakers.	\& 14.12 .6
+ 4	24 wett mono two channel for 12 to 16 ohm speakers.	¢20.15.0
8	20 wate monolstereo for 12 to 16 ohm speakers.	¢24.0.0
- 9	24 watt mono/stereo for 3 to 5 ohm speakers.	E26.15.0
* 14	40 watt monolstereo for it to 16 ohm speakers.	<29.10.0

AUTO.BAN TRANSISTOR CAR RADIO. Britiah Made

G.Transistor MW/LW Car Radio 12 volt operated. 3 watt output built, boxed, ready to use with Speaker and Baffle. Car fixing kit and manufacturers' current guarana
tee. Special Bargain Offer. Positive or Negative Earth.
 Push - buttonver-
Ask fer Brochure 15. BUILD A QUALITY TAPE RECORDER WITH MARTIN RECORDAKITS \& TWO-TRACK Deck £10/10-Amplifier

 * FOUR-TRACK Deck $£ 13 / 10 /$. Amplife S15/19/8. Cablner and apeaker 7 kin. Complete kles with Mica
1.200ft. (ape, apare mpool. Today'ı $\quad 32$ gns.
SERVICES TYPE 4185 SOUND
GARRARD DECKS
all the LATEST MODELS


COMPLETE RANGE IN STOCK fROM £5.19.6 Send for thuntrated Brochure 18\&17

TRANSISTORS -SEMICONDUCTORS COMPLETELY NEW 1968 LIST OF 1000 1ppen a valipble from riock. Send
FREE COPY TODAY (Livt No. 36).

* S.C.R.'B, 1 rom 5
* FIELD EFFECTTRANSISTORS, from $8 / 6$ - POWER TRAMSIBTORS. Arom 5/94 pase Illastrated Brochafe as above Includices, $1 /$ - poit paid


## NEW LIST OF

## VALVES or CRYSTALS

 24 PAGE BOOKLET /MARTIN FM TUNER
 Mullard 6-Transistor design. Response $30 \mathrm{c} / \mathrm{s}$ to $15,000 \mathrm{c} / \mathrm{s}$ Automatic frequency counter. Factory built and alizned unizsJust interconnect.

- 9 Volt Battery Operated. ( 12 mA Send for Brochure No. 8 .
FOR USE WITH ANY VALVE OR TRANSISTOR AMPLIFIER BUILD A:-


## rated circuit

F.M. TUNER

Using the R.C.A. CA3014 Module urilising 15 transistors and diodes. Total cost of all parts $99 / 6$, post $2 / 6$ Clrevit and layout diagrams $1 /$ (free with parts)
Ask for List 40A

PRECISION WIREWOUND GEARED PRESET CONTROL Gearine approximately 46 turns ol end screw to cover full track. Low noise.
Full sealed with 3-lead our wires or tags and two hole fixing. Overallsiz $1+\times \frac{1}{6} \times \frac{1 n}{}$ Made by M.E.C. Led $10,20,50,100,200,250,500$ ohm look ohm. 10/. each

SALFORD 193A XTAL CHECKER $110 / 250 \mathrm{u}$ A.C. In new conditio C12.10.0 plus carriage 10


Auk for Brochure 5
 To BOLLD $£ 3.19 .6_{\text {P.P. P/8 }}$ 87/108 MHF FM TUNER TTAnintor Superbet
 senaitivits. For valve or tranelisto amplitere. $4 \times 3 \times 2 / \mathrm{in}$. Complete with dial plate. 5 Mulhard Tranibitory
plum 4 Dlodes. Aik lor Brochure 3 . ${ }_{\text {TOTAL }}^{\text {TOULDS }}$ E6.19.6 p.P. $2 / \mathrm{B}$ 7 Mullard Transistors, Printed Clr. cuit Design with Stereo Indicator For use with any FM. or $\mathbf{U}$. cores to Mullard design and ger, and design and ger. and Asit
\&5. 19.6
COMPLETE KíT PRICE
Ask for Brochure 4
P.P. 2/6

PORTABLE GEIGER COUNTERS
FOR MEASUREMENT OF RADIO.ACTIVITY. Supplied complete with instructions, haversack, cables and probe. List price $\mathbf{\text { c70 }}$. OUR PRICE, NEW, TESTED.


SPARE BATTERIES 15/- PAIR. POST 5/-


240 pages
The most COMPREMENSIVE - CONCISE . 6000 items -CLEAR - COMPONENTS CATALOGUE 1000 illustrations

Complete with 10/- worth discount vouchers FREE WITH EVERY COPY. $\$ 20$ pages of transistors and semlconductor devices, valves and crystals.
$\star 150$ pages of components and
equipment.
$\star 50$ pages of microphones, decks and
Hi-fi equipment.


## Send today $8 / 6$ paid

TOTAL COST TO BULL 99 GNS, VALVE FREE PHABF * Buald thin initrumant atege by stape in your owa home. EXPORT PRICES * Fully TRANSISTORISED POLGPRONIC, Britiah denisn. ON APPLICATION

SEND FOR FULL DETAILS ON THESE BRITISH MADE ADVERTISED PRODUCTS. FREE ON REQUEST
HENRY'S RADIO LTD.
(18)

303 EDGWARE ROAD
LONDON, W. 2

WE CAM SUPPLY EROM STOCY MOST IN THIS MAGAZINE. SEND LIST FOR
QDOTATION. PRONE O1-7


## IUWUEDIATE DESPATCH Ful spares and SERVCE Nvalabste



## 20 Amp. LT. SUPPLY UNIT

As supptied so Min of Defence and As supplied to Min. of Delen LATEST DESIGN HEAVY DUTY 1224 VOLT D.C. Output: Adjustable up to 20 AMPS. CONTINUOUS at $12 / 24$ volts. FULLY FUSED, Neon indicator. $0-20$ amp. meter. Size $16 \times 12 \times 20$ in high, in heavy gauge steel cabinet. Grey Hammer finish-Weight 50 lb . input: $220 / 230 / 240$ v. A.C. So cycles.


## 30 Amp. LT. SUPPLY UNIT

UP TO 18 v. D.C. WITH SMOOTH STEPLESS VARIATION Designed for CONTINUOUS use at max. loading $\star$ Fitted voltmeter and ammeter. $\star$ instantaneous overload cut-out. Input: Mains A.C. Robust construction, 2 eone finish, steel case.
£55.0.0
C. \& P. 40/- G.B. (Inland).

Entirely suitable for plating planes.
Laboratory supplies, etc.
5 AMP. A.C. \& D.C. VARIABLE SUPPLY UNIT Specification: Ouepue: 0.260 v. A.C. $0-240$ v. D.C. * Smooth stepless voltage variation from D-Max.

Current consistent throughout the controlled

* Amme. indicator.
Fully fused inpue and output,
Serong steel case, with carrying handle and rubber fees. Serong steel case, with carrying handle
II $\times 7 \times 14$ in. high. Made in England

£30.0.0
C. \& P. 40/-. Ge. Britain (Inland)

CURRENT PRODUCTION - BUY DIRECT FROM MANUFACTURER

## VARIABLE VOLTAGE TRANSFORMERS



Modern styling for modern equipment
SLIDE-TRANS' \& 'SLIDUP' MODELS
Fully rated current consistent
at all points along the winding
AVAILABLE ONLY FROM I.M.O.

* SMOOTH CONTINUOUS ADJUSTMENT
- ALL MODELS SHROUDED FOR SAFETY (IDEAL FOR EDUCATIONAL AUTHORITIES) $\star$ BENCH OR PANEL MOUNTING
* UP TO 260v. AVAILABLE FROM ALL MODELS

All models $230 v$. A.C. $50 / 60$ c.p.s. Input

I Amp.	$£ 5 \cdot 15.0$
2.5 Amp.	$£ 6 \cdot 17 \cdot 6$
5 Amp.	$£ 9 \cdot 19 \cdot 0$
8 Amp.	$£ 14 \cdot 15 \cdot 0$
10 Amp.	$£ 18 \cdot 10.0$
12 Amp.	$£ 21.10 .0$
20 Amp.	$£ 38.10 .0$

C. \& P. EXTRA

TRANSISTORISED MEGOHMMETER
$\star$ PUSH BUTTON TO READ
500 \%. - 1,000 Megohms. Superb portable instrumene superb batteries, probes and carrying

ONLY £25.0.0 c. \& P. 7/6

## 36 FT. AERIAL MAST

NEW tutest patern
Check these vital points
$\star$ Made from $6 \times$ finin. Sheradized steel secrions, for durability and strength.
$\star$ Extra strong locating base.

* Top cap with fiteed pulley and halyard.
$\star 2$ sets (8) Retprool Guys.
* Rustprooled Seeel Pickering Scakes.
ONLY £15.0.0 ex works
Carr. 20/-. Recurnable wood case 40\%.


## VARIABLE HIGH VOLTAGE SAMPLING TESTER <br> <br> DIELECTRIC BREAKDOWN TESTER

 <br> <br> DIELECTRIC BREAKDOWN TESTER}* Range: Infinitely variable up so 3,000 volss 0 . amp.
- Entirely suitable for continuous testing
* Automaric safecy cut-ous. Input: Mains voltage Input and rest leads with clips.
Model T30

CONSTANT VOLTAGE TRANSFORMERS
AUTOMATIC MAINS STABILISER

$\star$ Noattention
$\star$ No Maintenance
$\star$ No Moving Parts
$\star$ Corrected Wave
Input: 190-250 v. A.C. Output: 240 v. A.C. Accuracy $1 \%$ Capacity: 250 wates. Maintain " spot-on " lest lamp and swiesh. Size: $11 \times 6 \frac{1}{2} \times$ Gin. high.

$$
\mathbf{\$ 1 2 . 1 0 . 0}{ }^{\mathrm{C} \cdot \mathrm{c}_{20} 0^{\mathrm{P}} \mathrm{P}^{\mathrm{P}} .}
$$

## COMPLETE PHOTO ELECTRIC SENSOR

 IN ONE UNIT* REFLECTIVE TYPE WITh BUILT.IN LIGHT SOURCE * WILL ALSO OPERATE FROM REMOTE LIGHT SOURCE $\star$ MATCHBOX SIZE
* SENSES ANY OBJECT-IN CLUDING THICK SMOKE Operates from 12 V . A.C. Output signal 0.2 amp. 100 V Approximately $25 / 10 /$ - dependent on quantity.

LATEST SOLID STATE VARIABLE VOLTAGE CONTROL

* COMPLETELY SEALED $\star$ COMPACT AND COMPLETE - PANEL MOUNTING

230 voles A.C. Inpur $25-230$ voles outpue. Samp. model $\mathbf{6} / 7 / 6$ 10 amp. model $613 / 5 /$.

PORTABLE VARIABLE A.C. POWER Designedfor engineers SUPPLY UNIT whose requirement cation of voltes applied. Cation of vo
$0.260 \times$. It amps
INPUT:
230 V. A.C. $50 / 60$ c.p.s. Fitted with fuse, volemeter, safety indicator on-ot swiech and lead ize $8 \times 5 \times 5$ in. high.


PRICE
£9.2.6

PORTABLE TRANSISTOR TESTER
suitable for production \& laboratory use SPECIFICATION:
Alpha 0.7 to 0.997
Beta 5-300
ICO $0-50 \mu \mathrm{~A} .5 \mathrm{~mA}$.
Capable of measuring GERMANIUM AND SILICON
DIODES.
DESIGNED WITH RESISTANCE SCALE 200 ohms 50 I Megohm as an ADDED FEA-
TURE Housed in heavy ducy TURE. Housed in heavy duty plastic case, c/w incernal

f6.19.6
Plus $7 / 6$ C. \& $P$.

##  <br> 

## DON'T MISS THIS!

Lasky's Birthday Draw
The followink 85 numbers have been drawn lor priket io our 35th Birthdas Draw. Please refer to Pafe thor our Catalogue for details of entry if your number (on the Pront Page of sour Catalogue) it among

000013	(013 333	(mertiol	aocioin	me1414	(rasacis	П30844	038212
	${ }^{5}$	疗					
000823	001310	002313	011217	\%21500	0	031010	${ }_{5}$
coorpy	cotick	(4)2414	0287	\%23064	H293,	,	2
09	001711	0 O 2178	012772	024444	(reps	03517	04678
0 0	601777	cosatios	013426	12481\%	(2)9686	03411	0477
0974	coleor	mistrio	015800	128985	(129400	1335900	O+8001
	1911	crescro	-	(2)13	(r29900	O36600	
${ }_{\text {coi }}$	001922	008161					
001	00	005615	cremates	2801	03074.4	0381	

The first 10 correct entries to be opened will receive 65 Lasky's Gift Vouchers, the next 25 will receive fil vouchers and the next 50 will receive $10 / 6$ Vauchers

HAVE YOU GOT YOUR LASKY'S CATALOGUE?
FREE
Second Great Reprint lssue Jow Ready

## COMMUNICATION RECEIVERS

TRIO JR-500SE
This high periormance recelver is made especially to corer the emateur bands and utinises a cryatal
controlled double beterod yne circuit for extra




 omplete layout-Anibhed in dark grey. Cablne
Lasky's Price 661.19 .0 Carriage and Packing 12/6.


Lasky's Price $\mathbf{E 3 6 . 1 5 . 0}$

## CONSTRUCTORS BARGAINS

THE SKYROVER DE LUXE


 16M. 19\%. andon. The coll pack and turing heart is factory
Seation Alectlons.
ansembled. wired and tented. Superhet 470 Kc/s. Mullard Trannilotors. Wises 42 Uititeries. Sin. Ceratnic Magnet Pu, M. Speaker.
500 MW Output. Teleacopic Aerial and Ferrite Rod Aerial Tone Cliruit in wood cabinet, nize $114 \times 6!\times 3 \mathrm{in}$. covered with

H.P. Tecme: $60 /$ - dep.. 11 mems. at $12 / 9$. Total H.P.P. Data 2 6. Refunded if you purchase parcel. Four U2 bath. 3/4 extra. All components avad. meparately. A mumple additional circult provides coverage of the $11.00 / 1950 \mathrm{M}$. Lons Waveband. All necesary componetis

## LASKY'S PRECISION PANEL METERS



TMK Model 500
A compact and reliable instrument designed for use in the proequion, servicing and maintenance of electronic, radio currents, resistance and audio power. Specification: Movement sensitivity $30 \mu \mathrm{~A}$. D.C. volts range: $0-0.25,1,2.5,10,25,100$,
$250,500,1,000$ volts at 30 K OPV . A.C. volis ranges: $0-2.5$, ranges $25,100,250,500,1,000$ volts at 15 K OPV. dB scale: 6 ranges $-2010+56 d \mathrm{~B}$. D.C. current: $0-50 \mu \mathrm{~A}, 5,50,500 \mathrm{~mA}$.
12 A .
Restance ranges: $0-60 \mathrm{~K}, 6,60 \mathrm{M} / \mathrm{c}$. Test buzzer for Lasky's Price $£ 8.17 .6$ Post

Model C-I000 Mili Tester
A really tiny meter with " big " meter performance. Brief Specification: Movement sensitivity $400 \mu \mathrm{~A}$ : DC volts ranges: $0-10,50,250$, 1,000 volts $4 \%$ fsd at 1 K OPV. DC current: $0-1,100 \mathrm{~mA}$. Resistance range: $0-150 \mathrm{~K}$ ohms. Size 2 in. $\times 3 \mathrm{in}$ in. $\times 1 \mathrm{in}$.
Lasky's Price 39/6

TRANSISTOR SIGNAL
INJECTOR MODEL C-3003
Self-contained 1 in. dia. Sin. long, with light and finding in radios, amplifiers, etc. Complete with
batteries and extension probe.


Lasky's Price 29/6 $\begin{gathered}\text { Post } \\ \text { Free }\end{gathered}$
FIELD STRENGTH METER
Designed for checking the
radiation from adjacent radiation from
radiacmitter. transmitter. A sensitive and compact unit that
requires no battery or othe power supply. Frequency Telescopic aerial extends to 91 in ${ }^{\text {In }}$ metal case.
Size: $31 \times 2!$
with $\times 2$ in., also earpiece for audible check. Magnet in base, for Lasky's Price 45 NEW SPECIALISED TEST GEAR


RF SIGNAL GENERATOR Model TE-20
A new higb quality tactory tested and callibrated RF
Signal Generator oflering a full frequency tange cover
 Dual Hight Low RF output terminals provitled and separate
 on on plion light thtedr. Ariel specilication Frequency



 Lasky's Price $£ 12$.10:0 Post 5 / AUDIO GENERATOR Model TE-22

A new factory tested and callibrated low diatortion Bine
ave and Bquare wave Audio Generator sultable for une

 Output voltage: low impedance 1 M/ohm. 7 than $2 \%$ lond impedance $10 \mathrm{~K} /$ ohm 5 V . (max.) Varlable output
amplitude control. Valve line-up $: 6 B 38.12 \mathrm{AT7} .6 \mathrm{Xf}$. crackle with leather carry ing handle. Power . on in prey
cilot

## Lasky's Price $£ 15.0 .0$ <br> Post 5



VALVE VOLT METER - Model TE-65

## An ensential them tor all service workshops and laboratories. An extremely sophistcated instrumient permitting


 Lasky's Price $\mathbf{£ 1 5 . 0 . 0}$ Post 5.

## Branches 207 EDGWARE ROAD, LONDIN. W. 2 Tel.: $01-7233271$ Open all day Saturday, early closing $1 \rho \mathrm{~m}$ Thursday 33 TOTENHAM CT. RO., LONDON. W. 1 Tel.: $01-6362605$ $152 / 3$ fLEET STREET, LONDON, E.C. $4 \quad$ Tel.: FLEet St. 2833 Open all day Thursday early closinn 1 pm Saturday <br> High Fidelity Audio Centres <br> 42 TOTIENHAM CT. RD., LONDON, W. 1 Tel.: 01-580 2573 <br> Open all day Thursday. early closing 1 pm . Saturday <br> 118 EDGWARE ROAD, LONDON, W. 2 Tel: 01-723 9789 <br> Open all day Saturday, early closing 1 p.m. Thursday

TRANSISTOR STEREO $8+8$






 PRICES:
 Cabinet (an illin.). £2/10/-, PsP $5 / 6$
 Clreutt diansant, conotruction detallo and parts liat teree what

HSL "FOUR" AMPLIFIER KIT


 2 stagen enaurc himh oufput he exeellent quality wht very how fintortion fiector. \$ Quitable fut uee with fultat, rmierophone or record player. © Prorinlon for remote mounting nf controik
 enable even the limexparienced amateur to conatruct with $100 \%$



VIBRATORS
Large nelection of 2, s. 6, and 329 voll.
10- P. $8 \mathrm{H} .1 / 0$ per vibrator, 8.A.F. with
S.T.C. SILICON AVALANCHE HALFWAVE RECTIFIERS


10/14 WATL ER-FI AMPLIFIER KIT A atylinty finimbed mon.
 Super reproduct lich with nuefligitle hum Separate Inputy for mike and gram allow record
and announcementa thlow each other. Ful athrouded section woun output transtormes to
matct
$3.15 \Omega$
apeaker tme controle and separate haem and trebie controle are providel



3-VALVE AUDIO AMPLIFIER MODEL HA34

recorda. Ar. Fl teproduction on Remdy buils on plated heaperstion.
 ELLA, EzAO valver. Heary dus, double wound tuains transpormer
and output tranalormet matelied for
 bark line. Output of wate. Front pancol cenn be detached und heen epecialiy desifned for ua and nur quamiliy oriter enuhlem us

BRAND NEW 3 OHM LOUDSPEAKERS
 ix in. with high Hux ceranx tmarnet 42/- (10 nani 45/-

BRAND NEW
lut pice at 88/6. P. P. 30 w . E8/8/-.
SPECLAL OFFER: PLEBEEY TYPE 4P IT: TUEING GANG EW ONLY: SIEMENS MiMIATORE RELAYY. D.P.C. 0 HARVERSON SURPLUS CO. LTD. 170 HIGH ST., MERTON, LONDON, S.W. 19 Tal: 01-540 3985
S.A.E. all enquiries. Dpen all day Saturday (Wednesday I p.m.)

HIGH GAIN 4-TRANSISTOR PRINTED CIRCUIT AMPLIFIER KIT Type TA1 Peak ourpur in excema of lo watta. All ntandard brition
 ranutormer apped for 3 ohin and 10 ohm apeakern. Tranaio OTa (OET 14 or 81 Mullard OCS1D and inatched pair of OC8 lipa solder, eweraton. Comprebentive eayy to tollow laspruc
 parately: SPECLAL PRICE

FM/AM TUNER HEAD
Beaulfully dengred and preclolon engineered by Dormer and Fadoworth Lidd. supplied ready Hited with twing . 0008 tunlang ondenaet for AM, connection, Preailgned inpletection cover At.12) valve and full circult diagram of turner head. Another
pecial bulk purchane crablea uo to ofter thene at $87 / 6$ each *P. 3/0 Order quyckls

4-SPEED RECORD PLAYER BARGAINS Mains models. All brand now in maker's or O7 12 Slugle Player with mono Cart Aes Changer with mono Cart.

Al plus Carrigte and Paoking B/B
LATEST GARRARD MODELE
atypes avallable 1000, 2000, 3000. AT60. te, Send S.A.E. for
QUALITI RECORD PLAYER AMPLIFIER MK. II I top-quality recond player nmplifier employing heavy wuty eparate bana, treble and volusie controle. Complete with outyul npuker. slze iln. w. $\times 3 \ln$. d.
 ind apeaker reasly wo at into cabinct oll righe. PRICE 87/6

DE LUXE QUALITY PORTABLE RECORD PLAYER CABINET

 E.M.I. $3 \frac{1}{2} \ln$. EEAVY DUTY TWEETERS

## NO EXCUSES! NO DELAYS! FROM STOCK! varidable voltace thansformers  <br> Double Wound Variable <br> Transformers Fully isolated, low tension Secon- dary winding. Input 230 y. A.C. UUTPUT CONTINUOUSLY <br> $0-36 \mathrm{v}$. at 5 mmp . £9.12.6- <br> P. \& P. 8 $1.0 .0-$ <br> 50 AMPS <br> 5 Amp. AC/DC VARIABLE VOLTAGE OUTPUT UNIT -nooh isisely variable. <br> 7 Amp. A.c./D.C. Mk. II Variable Output Power Unit Input 230 V. A.C. Ousput continuously VARIABLE from 0 to 260 v . A.C. OR 0 to 230 v. D.C. at 7 a. Robustly constructed In meralase, complese with salety luse, neon indicator, voltm and ammeter. Size $17 \mathrm{in} . \times 12 \mathrm{in}$. $\times 7 \mathrm{in}$. Weight 36 ib <br>  <br> $\qquad$




## OPEN TYPES

## Designed for Panel

Mesigned for Panel
Mounting.
nput 230 v. A.C. 50/60
Output variable.
$\begin{aligned} & 0.260 \mathrm{v.} \\ & \$ \mathrm{amp} . . . . \\ & \text { E3 } 100\end{aligned}$

$\begin{array}{lllll}1 & \mathrm{amp} . . . . & 65 & 10 & 0 \\ 21 & \mathrm{mmp} . . . & 66 & 12 & 6\end{array}$
2) $2 \mathrm{mp} . \ldots$... $7 / 6$



SERVICE TRADING COMPANY

36 volt 30 amp . A.C. or D.C. Variable L.T. Supply Unit

INPUT 220/240 V. A.C. OUTPUT CONTINUOU8LY VARIABLE 0-36
Fully isolated, Fitted in robust metal case with Voltmpter. Am. meter, Panel Indicator and chrome handles. Input and Output fully fused. Ideally suited for La Industri
similar
illustrat

LEASE NOTE: P. * P LYTOUK, OMLY, P ON OVERSEAS ORDER GHARGED EITRA.

## SERVICE TRADING CO

 Posiage and Carrlare ahownbelow are Inlagd onis. For Overisas please $11 \underline{k}$ yupiation. catalouse or

LIGHT SENSITIVE SWITCHES Kit and parts including ORP. 12 Cadmium Sulphide Phorocell. Relay Transistor and
Circuir. Now supplied with new Siemens High Speed Relay for 6 or 12 volt oper ations. Price $25 / \%$ plus $2 / 6$ P. \& $P$
ORP 12 and Circuit $10 /$. post paid
A.C. MAINS MODEL
incorporates mains transformer rectifier and special relay with ${ }^{3} \times 52 \mathrm{mp}$. main
circuit $47 / 6$, plus $2 / 6 \mathrm{P}$ \& P .
————————————————
PHOTO ELECTRONIC COUNTER Can beset for counts of upto 500 per minute. $210-250 \mathrm{~V}$.
A.C. powered. Kit of Components, including photo A.C. powered. Kit of Components, including photo
sell, high speed non-resetzable counter, transformer, relay, etc., together with clear circuit diagram, \&3/2/6,
plus $3 / 6$ P. \& P. With resettable counter, $£ 4 / 2 / 6$, P. \& P. plus
$3 / 6$.
LIGHT SOURCE AND PHOTO CELL MOUNTING
Precision engineered light source
with adjuscablelens assembly and with adjustable lens assembly and
ventilated lamp housing to take定 MBC bulb. Separate phoro cell mounting assembly for
ORP. 12 or similar celf with optic window. Both units ORP. 12 or similar cell with optic window. Both units
are single hole fixing. Price per pair $\mathbf{£ 2} / 15 / 0$ plus $3 / 6$ are single hole fixing. Price per pair $\mathbf{E 2 / 1 5 / 0}$ plus $3 / 6$
P. $\& \mathrm{P}$.


A complete com posite apparatus,
comprising a robust ly buile Transformer and electro-magnet
with removable coils and pole pieces, coil tapped for 230 v .
$220 \mathrm{v.i} 110 \mathrm{v},. 115 \mathrm{v}$.
 also used for D.C. experiments. Complete with all acces
elis plus $15 /-$ carr. Leaflet on request.

PHOTO MULTIPLIER
Type CV337, this supersedes Type 931 A , complete with special P.T.F.E. base and divider network, 57/6, incl. P. \& P.

-     -         -             -                 -                     -                         -                             -                                 -                                     -                                         - 

RESETTABLE HIGH SPEED COUNTERS 3 figure, 24 v. D.C. Operation (illustrated). Similar to above, but may be preaset to any number up 60999 reduc
Either type $32 / 6$, P. \& P. $2 / 6$.
Either sype $32 / 6$, P. \& P. $2 / 6$.
4 fizure, 1,000 ohm coil, $36-48$

-     -         -             -                 -                     -                         -                             -                                 -                                     -                                         - 

LATEST HIGH.SPEED MAGNETIC
COUNTERS (NON-RESETTABLE)
4 figure. 10 impulses per second. Type $100 \mathrm{~A}, 500$ 4 figure. Ty impulses per second. Type 100A. 500
ohm coil. Type $100 \mathrm{~B}, 2,300$ ohm coil. Either $15 /$. ezch. ohm coil. Type
plus $1 / 6$ P. \& $P$.

-- - - - -
Manufactured by M.E.C. 50 k., 45 zurn. Fly leads. Manufactured by M.E. sealed construction. $10 / 6$. Plus $1 / 6 \mathrm{P} . \& \mathrm{P}$ SEMI AUTOMATIC "BUG"
SUPER SPEEDMORSE KEY"
SUPER SPEEO MORSE KEY
adjustable $10 \mathrm{w} . \mathrm{p} . \mathrm{m}$, to ${ }^{25}$ high as
desired. Weight 2 t 1 b . $4 / 12 / 6$, post paid
TRANSISTORISED MORSE OSCILLATOR. FItted $2 \frac{1}{2} \mathrm{n}$. Moving Coll Speaker. Uses type PP 3 or equiv. 9 y. battery. Complete with latest design Morse key 22/6, plus $1 / 6$ P. \& $P$

- 34R SILICON SOLAR

$4 \times .5$ volt unir series con nected, output up to 2 v .
at 20 mA . in sunlighe,
30 30 times the efficiency of
selenium. As used in power


## Earth Satellites, 39/6. P. \& P. $1 / 6 \mathrm{~d}$.

-     -         -             -                 -                     -                         -                             -                                 -                                     - $-\infty$ "SOLAR CELL AND PHOTO-CELL EXPERIMENTERS' GUIDE'
Teaches the principles of lighe sensitive devices and their application. 26/, post paid

THYRISTOR 400 piv, 5 amp ., $14 / 6$ post paid.
THYRISTOR 400 piv, 8 amp ., $28 / 6$ post paid THYRISTOR 400 piv, $8 \mathrm{amp} ., 28 / 6$ poss paid. GENUINE NEW MULLARD GAM SILICON
BYZ13 200 PIV
$\qquad$ BYZ 12400 PIV
BYZ10 800 PIV
BYZII 600 PIV 9/-sintered Cadmium Type 1.2 v BATTERY Sintered Cadmium Type l. 2 v. 7 AH . Size: height 3 in., width $21 \ln , x / 1$ in. Weight: approx. 13 ozs.
Ex-R.A.F. Tested $12 / 6$. P. \& P. 2/6.

100 WATT POWER RHEOSTATS

(NEW) Ceramic construcsion, wind-
Enamel, heavy duty brush assembly designed for continuous duey. AVAILABLE FROM STOCK IN 1 ohm 10a., 5 ohm 4.7 a ., 10 ohm 3 a . 25 ohm 2a., 50 ohm 1.4a., 100 ohm la., 250 ohm 7a., 500 ohm 45 a, , 1,000 ohm 280 mA ., 1,500 ohm
230 mA . 2,500 ohm .2a. Diamecer 3 tin. Shaft 230 mA . 2,500 ohm 2 Za . Diamecer tin. Shat length tin. dia. Iin. 27/6. P. \& P. 1/6.
so WATT $1 / 51025 / 50 / 100 / 250,500 / 1,000 / 1,500$ 25 WATT IO/2S/50/100/250/500/1,000/1,500/2,500 ohm, 14/6, P. \& P. 1/6.


Mozor, fired with gold brushes and drawing only 800 microamp ae 24 v . D.C. drives two precision pots with including miniature slipping clutch. combined with two sub-miniature pots for callibrating the electrica
bridge circuit. The 3in. calibrated dial, with a number aperture indicating one rev. per revolution of pointer of approx 30 in OHered at fraction of Manufacsurer's price: $\mathbf{3 2 / 6}$, plus $6 /-P$ \& $P$

## SANWA mult range meters

Acknowledged throughout the world as the ulrimate in test meters. TESTER, 20,000 O.P.V. MIRROR TECTION. Ranges: D.C. voles: 100 mV ..
 Complete with batteries $\$ 7.5 .0$ and test prods.
 Post paid 220/240v. A.C. FAN UNIT 2,300 r.p.m. 6in. blade size. Smooth
powerful motor. All metal construcpowerful motor. All metal construc.
tion. Continuously rated in units. ndividually tested. Offered at fraction


VAN DE GRAAF ELECTROSTATIC GENERATOR, fiteed with motor drive for 230 V. A.C. Siving a potential of aporox.
50,000 volts. Supplied absolutely complete including accessories for carrying out $z$ including accessories for carrying out ${ }^{2}$
number of inceresting experiments, and full completely safe, and ideally suited
for School demonstrations. Price
$\mathbf{6} 6 / 6 /-$ plus $4 /=$ P. \& P. Lfi. on req.

## SANGAMO WESTON

 Dual range volemeter. $0-5$ and $0-100 \mathrm{v}$. D.C. FSD । mA. In carrying case with AUTO TRANSFORMERS. SEE UP, SEAP down. $110-200-220-240 \mathrm{v}$. Fully shrouded. New. 300 wat200 ohm 1.25 SLIDERRESISTANCES
ohm $10 \mathrm{amp} .37 / 6$. P. \& ${ }^{2}$ \& $3 / 6$
230 v. A.C. RELAY. 2 c/0 2 amp. contacts., $9 / 6$
ex new equip. P. \& P. $1 / 6$. LATEST TYPE SELENIUM BRIDGERECTIFIERS 30 volt 3 amp ., $11 /$, plus $2 / 6 \mathrm{P}$. \& P .
30 volt $5 \mathrm{amp} ., 16 /$., plus $2 / 6 \mathrm{P}$. \& P. soft rubber ear-pieces with M/C Mike fitced S-way Soft rubber ear-pieces with M/C Mike fitted S-way
plug as on No. 19 sez. New, in maker's packing, $16 / 6$, plug as on No.
plus $3 / 6 \mathrm{C}$. P .
A.C. AMMETERS $0-1,0.5,0.10, \overline{0.15}, 0-20$ amp. F.R. Ain. dia. Altar
A.C. VOLTMETERS $0-25$
v.,
$0-50$
v.,
$0-150$
v. M.l 2tin. Flush round ali at $21 /$ e each. P. \& 'P. extra.
$\begin{array}{lll}0-300 \text { v. A.C. Rect. M-Coil } 2 \frac{1}{2} \text { in. } \\ 0-300 \text { v. A.C. Rect. M-Coil } 3 \frac{1}{4} \text { in. Type W23 ...............55/- } & \text { 29/- }\end{array}$ — - Latest type VARLEY MINIATURE RELAY in Transparent Case. 4 cio
700 ohm , $15 \%$ Base $4 / \mathrm{m}, 2 \mathrm{c} / \mathrm{o} 700$
 ine. base. VARLEY 5 ohm 4 cPa (similar to
New, $12 / 6$, less base.
Similar to above. Mid, by GRUNER $4 \mathrm{c} / \mathrm{a}, 2,400 \mathrm{ohm}$ coil. New, $10 / \%$,

UNISELECTOR SWITCHES
NEW 4 BANK 20 WAY
25 ohm coil, 24 Y. D.C. operation.

- 8-BANK 25-WAY FULL WIPER

STANDARD SIZE UNISELECTOR SWITCHES USED
75 ohm coil, 24 v. D.C., 6 bank 25 position, 5 non bridging, I bridging wiper. 3 bank, 50 positions ex-equip 6 bank arranged to give 3 ba
ment, $35 /$ each. $P$ \& \& $P, 2 / 6$. MINIATURE UNISELECTOR SWITCH
 Type D15G 5 r.p.m. l.71b, inch, 62/9/6, P. \& P. 3/
Type B16G 80 r.p.m. Type D16G 13 r.p.m. I.45Ib. Inch, $\mathrm{C} / 17 / 6$. P. \& P. $3 / \mathrm{m}$

## GALAVANOMETOR

300-0.300 microamp. Calibrated 30-0.30. Mounted in sloping front case $62 / 10 /$. P. \& P. 3/6. D.C. Voltmeter $0-3 \mathrm{~V}$ and $0-15$. V G2 plus $3 / 6 \mathrm{P}$. \& P. D.C. Ammeter,
$0-6 \mathrm{mp}$. and 0.3 amp. $62,3 / 6 \mathrm{P}$. \& P . The set of 3 mat . 0.6 amp. and $0-3$ amp. $62,3 / 6$ P, \& $P$. The set of 3 mat
ching instruments $66, P, \&$ P. $6 / 6$.

SOLAR OIL-FILLED CONDENSER.
240 mid. for 230 V.A.C. or 600 vole D.C. "\$ Overall size 14 in. x 9 in. $x 5$ tin. Dlus feet.
Weizht 46 lb . Guaranteed perfect. Manufac. curer's packing. Price $67 / 10 /=$. Carriage $15 /$

-     - DRYREEDSWITCTES
- Contace, I $x$ orer of Dry Reed Switches, $\frac{1}{2} \mathrm{mp}$

NEW SOUNDPOWER OPERA. TEDEX-ADMIRALTYHEADAND BREAST SETS
Two such sets connected up will
provide perfect intercom. No batteries required. Will operate up to $\frac{1}{2}$ mile.
Price $17 / 6$ each, plus P. \& P. $4 / 6$, or Price $17 / 6$ each, plus P. \&
$32 / 6$ per pair. P. \& P. $6 / \%$.
S.T.C. SILICON POWER RECTIFIERS
 $\begin{array}{llll}\text { RS310, } & 100 & \text { v. P.I.V. 4/\% RS350, } 500 & \text { v. P.I.V. 8/ } \\ \text { RS330, } 300 & \text { v. P.I.V. } / \% & \text { RS } 360,600 & \text { v. P.I.V. } 9 / \%\end{array}$ 4 can used to make 3 RS 380,800 V. P.I.V. No/
'Plan 3' 30 Watt System - shupe Marnetic P Curnidge - Super Masnetic P. 30 .
 - E8 Equipment Cabinet. special inclunive price. Fulty $79 \frac{1}{2}$ Raving $\mathrm{E1R}$ on total cont. send GIS
'Plan 2' 30 Watt System

- Garrard 9p2s Mk. II Turntable.

Goldring Cs90 Ceramse P.U. Cartrldge

- Super 30 Ampilaer.

FR f.quilpment Cabinet.

* Pair stanton Mk. Ills L/Speaker Unita
speeial Inclusure price. Fully witred $69 \frac{1}{2}$
unltn ready to " plug in." saving 818 GnS.

 able) mounted on and plugs and fitted foldring cs
compliance ceramic
cart of Dorset Speaker Unita. Special inclumise price saving 812 on total cost. Carriage $25 \%$. 46 Gns Perapex cover 59/6 extra with above onis. or Dep. £7/6/- a





SE8. For optimum ner. 5 Gns.
 1. For ourtanding perto 9 mont bs guarantee. 15 Ons. R.S.C. HIGH FIDELITY SPEAKER SYSTEMS FRIa

ne beosh
Bmoth



 Aux 11.000

 E5.19.9

FR2 10


Dintortion $0.3 \%$ at 1,000 c.p.s. Separate Bang and Treble
 closed emamelled cane, 9$\} \times 21 \times 5\} \mathrm{in}$. Attractive brumbed
 paid 8 rne. Car $\qquad$
HI-FI LOUDSPEAKER ENCLOSURES


HIGH FIDELITY SOLID STATE AMPLIFIER Emplorlar Iatent type Tran. Einorr. cizors ${ }_{\text {maina }}^{200-250}$
II Gns.

(2) Hum and Noise -70 dB . $\$$ Senafichty
mV. $\&$ Handwome brubted

## R.S.C. STEREO/20 HIGH FIDELITY AMPLIFIER

 Realonse: $\neq 2$ dB $30-20,000$ c.p.s. Hum Level 65 dB down. Senaitivity: 20 millivolth max. Ear monic Distortion: (each channel): $0.2 \%$. Font$\$$ witch, $\$$ Stereo/Mono switch. $\star$ Neon panel indi-
 Basa and Treble controla. Output translormer. point-to-point
High-quality nectionally wound. Outpute for 3 and wiring diagrama Carr. $\mathrm{I}_{2 / 6}$. Or factory axsembled with our usual 12 monthn enarantee 19 ros. Carf. 12/6. O

## ALL LEADING MAKES HI-FI EQUIPMENT AND FURNITURE IN STOCK. <br> ALL LEADING MAKES HI-FI EQUIPMENT AND FURNITURE IM STOCK.

## RSC. TFM1 TRANSISTORISED VHE/FM RADIO TUNER



LINEAR LP/I TAPE PRE AMPLIFIER

 Tap onekp. Termn $10 \frac{1}{2} \mathrm{Gns}$.

## INTEREST CHARGES

 REFUNDED
## R.S.G. SUPERIS WHFIAMPUFISR

## FULLY TRANSISTORISED $200 / 250$ V. A.C. OUTPUT 10 WATTS R.M.S. cont. into is ohms

OUTPG 10 WATTS R.M.S. cont. into 15 ohmb LATEST MULLARD TZANSISTORS. AD149. OC1272. OC817, OCH4. OC $44,00812 . ~ O C$
5 POSITION INPUT SELECTOR SWITCH EQUALISATION to Rtandaril R.i.A.A. anil C.C.I.R Chararter istics for Grain and Tape Heads,
PELL TAPE MONITORING FACILITIES SENSITIVITIE
FREQUENCY RESPONS TREBLE CONTROL BASS CONTROL: 12 dB to -15.18 dB at $10 \mathrm{Ke} / \mathrm{m}$. NEG. FEEDBACK: $50 \mathrm{c} / \mathrm{m}$. HUM LEVEL.



THESE SOLID STATE UNITS ARE EMINENTLY SUITABLE FOR USE WITH AMY MAKE OF PICK-UP OR MICROPHONE (Crystal, Ceramic, magnetic, Dynamic or Ribbon) CURRENTLY AVAILABLE-SPECIFICATIONS COMPARABLE WITH UNITS AT ALMOST TWICE THE COST

BRISTOL 14 Lower Castle St. (Half-day Wed.) Tel. 22904
BIRMINGHAM $30 / 31$ Gr. Western Arcade opp. Snow HillStation DERBY 26 Osmaston Rd., The Spor (Half-day Wed.) Tel. 41361
DARLINGTON 13 Poss House Wynd (Hall-day Wed.)
EDINBURGH ${ }_{576}{ }^{33}$ Leith Street (Half-day Wed.) Tel. Waverley GLASGOW ${ }^{326}$ Argyle St. (No Half-day) Tel. CITy 4158

HULL ${ }^{9}$

high standard and supplied by lead

HIGH FIDELITY LOUDSPEAKER UNITS
 OMped Ance 3 or 15 ohman. Frequency remponce $\quad 12 \frac{1}{2}$ Gns. GLOUCESTER STAMTON
R.S.C. AIIT 15 WATT HIGH FIDELITY AMPLIFIER DUAL PUAPOSE P.A. or
 shto 9 Gns

A DOAL CHANNEL VERSION OF THE SUPER 15. Fmploying
Twin Printed Circulte, Clome tolernace Ganged Potn. Matched ComTwin PFInted Circulte, Clone tolerance GEaged P ponenta. CROSS TALK: - 52 dB at $1.000 \mathrm{c} . \mathrm{P}$.s. Volume Control, Ralance Control, Stereo/ Mono \&witch, Tape Monitor Switch. Mainh Switch.
INPUT SOCKETS (Matched Pairs), (1) Marnetic P.U. (2) Ceramik or
Cryntal P.U. (9) Railo/Aux. (1) Tape Head/Milerophone. Operation
 put ample for any amplider (approx. $500 \mathrm{~m} \boldsymbol{\mathrm { V }}$.). $\rightarrow$ Simple aligament instractions. \# Oatpat avaliable for feeding taning meter. Watput lor leediar stereo Multiplezer \# Tuner bead uaing Silicon Planar Tranniatora. © De-
signed for atandard 80 ohm cooaxial inpus

 gate ancliliary EqOIPMENT. All required barth, point to point. wiring

 abRITISH ManOFACTURERS.
32 High Street (Hali-day Thurs.) Tel. 56420

LEICESTER

5-7 County (Mecta) Arcade Briggate (No hali-day) Tel. 28252LEEDS

73 Dale Se. (No half-day) Tel. CENeral 3573 LIVERPOOL 238 Edgware Rd., W2 (Half-day Thurs.) Tel. PAD 1629 LONDON 96A-60 OOIdham St. (No halif-day) Tel. CEN Nral MANCHESTER 106 Newport Rd(Hali-day Wed) Tel. 47096 MIDDLESBROUGH 41 Blackett St. opp. Fenwicks Store NEWCASTLE UPON 13 Exchange Street, Cassle Marker Bldgs. SHEFFIELD

HI-FI TAPE RECORDER KIT Consist ing of Magna vox 3 speed Tape
Deck, Matched $4-5$ watt Tape Amp$24 \frac{1}{2}$ Tape, empty Tin. spool High guality dynamic miero phone. $7 \times$ tin. Loulspeaker and circuit. F'ull record and playluack facilities, Magic eye level indicator. Equalization for each speed. Twin track. Only 4 pairy of soldercd joints plus mains. save approx.
10 Gins. on package deal. 4 track version, 27 Gns.
R.S.C. COLUMN SPEAKERS

 $42 \times 10 \times \sin$ Or Or Pepo.
9 inonthly
payment $34 / 9$.


$501-$ TTotal $286 / 3 / \mathrm{F}$
I2in. HIGH QUALITY LOUDSPEAKERS
$\square$
 $\begin{aligned} & \\ & \\ & \\ & \\ & \\ &\end{aligned}$ 10 Gns.
Terma avalleble. 80 Watt Model. Rexine covered Linulted
litat price. Iraction of
impedince.

5 GNS.
66.19.9

Tormalls Watr dual CON

R.S.C. Al0 30 WATT HIGH FIDELITY AMPLIFIER
senalitive. Puako Pull Mythouts put with Pre-amp./Tone Controt
stanet
Perrormance

 Beparate Bzen and Treble Controles Senutivity 12 millvolte

 Pte. For ure with Eliotronit Organ, Gulter, Itring Man, etc.,
(iramo. Redio or Tape. Two Inputs with suociated volume

 guarantet for 15 ran. Tormat: Deponit $84 / 13 / \%$ and 9 montuly

R.S.C. BATTERY/MAINS CONVERSION

R.S.C. MAINS TRANSFORMERS





 $250-0.250 \mathrm{~N} .100 \mathrm{~mA}$
$350 \cdot 0.350 \mathrm{~V} .150 \mathrm{~mA}$

 TOP 8HROODED DEOP-THROVGB TYPI
 ${ }^{2} 250.0-2500.1200 \mathrm{~m}$



$350-00.350 \mathrm{v} .100 \mathrm{~mA}$. 6.3 V . 4a. 0.5 B .6 .3 v . 3 z




 OUTPOT TEAMTVORERZ
Standard Pentode $5.000 \Omega$ or $7.000 \Omega$ to $3 \Omega$



Puhtipul wo wat high quaiiot sectionaliy wound. sMoOTHMa choirs
180 mA . $7.10 \mathrm{H}, 250 \mathrm{~B}$
$100 \mathrm{~mA} .10 \mathrm{H}, 200 \mathrm{O}$
$80 \mathrm{~mA}, 10 \mathrm{H}, 8500$
$80 \mathrm{~mA} .10 \mathrm{H}, 350 \mathrm{n}$
$80 \mathrm{~mA} .10 \mathrm{H} .400 \mathrm{\Omega}$
$12 / 9$
8711
$4 / 11$
RTSC

## NEARLY 1,700 CIRCUITS \& DIAGRAMS

PLUS FULL REPAIR DATA FOR
800 POPULLAR
ceiou MODELS


## Radio \& TV Servicing

Big time-saving repair library
to step up your earnings.
Now off the Printing Presses-a great new edition of RADIO \& TV SERVICING, to save your time, to boost your earningpower. Packed with CIRCUITS, REPAIR DATA and vital information it covers all the popular 1965-1968 TVz, Radios, 'Grams, Record Players and Tape Recorders-including latest data on COLOUR TV. Thousands of sets of previous editions sold. Now you can examine this big NEW edition free for a week. 3 handsome volumes-over 1,500 pages written by a team of research engineers-there's no other publication like it. Speeds up repair work for year after year. Hurry-send no money. . . . There can be no reprint once stocks are sold and there's absolutely no obligation to buy under this free trial offer.

Full Data \& Circuits for repair of Televisions including COLOUR TV


Component layout diagrams


Drive-cord diagrams


Block diagrams
IT'S YOURS BY POST: OH 7 DAYS'
FREE TRIAL

## - Radios•Radiograms • Car Radios

- Record Players • Tape Recorders


## SERVICING DATA FOR ALL THESE MAKES

Aiwa, Alba, Baird (including colour TV), Beogram, Beolit, Bush, Carousel, Cossor, Dansette, Decca, Defiant, Dynaport, Dynatron Eddystone, Ekco, Elizabethan, Ever Ready, Ferguson, Ferranti, Fidelity,
G.E.C. (including colour TV , Grundig, H.M.V., Kolster-Brandes, Hitachi, Invicta, McMichael, Marconiphone, Masteradio, Motorola, Murphy, National, Newmatic, Pam, Perdio, Peto-Scott, Philips (including colour TV), Portadyne, Pye, Radiomobile, R.G.D., Regentone, Roberts' Radio, Sanyo, Sharp, Smith's Radiomobile, Sobell (including colour TV), .T.C., Sony, Standard, Stella, Stereosound, Teletron. Thorn, Trans Arena, Ulira, Van Der Molen, World Radio.
Plus latest developments in Radio and Television
Including-Integrated Tuners, Stereo Multiplex Broadcasting-The Zenith-G.E.System, Receiver, Decoder and adjustments, Aerial, etc. Colour TV Receivers, Colour TV Test Card F, Servicing Transistor Equipment, Chemical Aids to Servicing, Batteries and Rechargeable

Over 1,500 pages, packed with circuits, component layout diagrams, printed panel diagrams, tables and wave form graphs, handsome binding.



MODEL, \& MK


## REPAIR SERVICE

 7-14 DAYSWe specialise in repair, calibration and conversion of all types of instruments, industrial and precision grade to BSS. 89 .
Release notes and certificates of accuracy on request.

Suppliers of Elliott, Cambridge and Pye instruments

## LEDON INSTRUMENTS LTD

76-78 DEPTFORD HIGH STREET, LONDON, S.E. 8 Tel.: 01-692 2689
E.I.D. \& G.P.O. APPROVED CONTRACTOR TO H.M. GOVT

## the information is here-

## Electrical \& Electronic Trader YEAR BOOK 1968

All sections of the new edition have been revised and brought up to date in this important reference book to the radio, television and domestic electrical industries, the aim of the publishers being to assist traders to keep abreast of constant changes in the industries.
CONTENTS
technical sections, legal guide
TECHNICAL LITERATURE
GENERAL INFORMATION, SERVICE DEPOTS
WHOLESALERS BUYERS' GUIDES
PROPRIETARY NAMES, ADDRESSES
35s. net by post 36s 9d 496 pp.
obtainable from leading booksellers
Published by
ILIFFE TECHNICAL PUBLICATIONS LTD.
DORSET HOUSE STAMFORD STREET LONDON SEI

## LIND-AIR COMPONENT BAREANS

TRANSISTORS •VALVES•DIODES
 1 N 23
17341
24301
100
20130
$1115:$
 (1120s
(115:Ts
 2113:T10 4018 m

 (1)

th H.P. MAINS MOTOR


SYNCHRONOUS CLOCK MOTORS
 uni.Y 28/6.
delay action time switch


$\begin{aligned} & \text { lupuly } \\ & \text { Stavi. } \end{aligned}$		
\%swi.	82178	
	E2 150	
200	83	0. $300 \%$ \% atap.
3011 w:		
	8419	
	258	Pomt 4xim.
MAINS TRANSFORMERS		

$\qquad$


## GEE LIND-AIR OPPOSNE

#  

25 \& 53 TOTTENHAM CT ROAD LONDON W. 1.
Tel: 01-580 4534/7679
ALL POST ORDERS TO Dept. WW468 25 Tottenham Court Road, London, W. 1

Open $9-6$ p.m. Monday to Saturday inclusive.

Open Thursday until 7 p.m.

## COMPLETE HI-FI STEREO SYSTEM

ALL TRANSISTOR G WATTE PER CHANNEL STEREO HI-FI GYSTEM OFFERINO APER FORMANCE EQUAL TO IF NOT BETTER THAN BIMLLAR SYBTEMg COBTING UP TO DOUBLF THE PRICE, Modern BTEREOMONO DIAMOND CARTRIDOE will play all sizes of records. (6 speeds 78, 45, 33h, 16 8.p.m.) Will play up to 9 records automaticars, Bimpre Treble, Volume and Balance controla and On/Of Oram/Radio, Mono/8tereo allde switchen. TWO IDENTLCAL LOUDSPEAKER 8Y8TEM8 each incor
 reproduction and are complete winh 10ft. leadn and pluga for connection to ampliner. Wil fit aeasly on th
 Tape Recorder. Loudnpeaker 8ybterna. Teak finlih. 8ixe (eesh) $13 \times 7 \times 8$ in. Rupplied complete with Inatruction booklet. Ready to plug in and play. 8END YOUR ORDER NOW OR CALL ASD HEAK THIS MARVELLOUS Hi.FI BTEREO 8Y8TEM. Only 59 Ens. plua $20 /$ ( Cartiage and Innurance



LINEAR AMPLIFIEAS
Latest A.C. Malns Models offering LTB6. All Tranalator 12 watedestereo. Inputs for Tuner, Gram, Mike. Separate Basa. Treble, Balance Chae t3/20/ exutra. All Tranulator, is wath Mono
 Two volume controls, £15/15/\%, Carr. 7/月. Teak case, er, Gramn.. Buas. Treble and Volume confrols, $\mathbf{2 6 / 1 9 / 6}$. LT45. 2 VALVE 5 wate Mono. Inputs for Tuner, Grann... Bum,
Cart. $5 / 8$. Metal cover $15 /=$ extra. Full detals nent on requent.



## MODELTTC. 1080.

50,000 O.P.V. D.C. Volth,
0.2 . $32.60,120,900$,
$600,1,200 \mathrm{v}$. A.C. volte, 8, $30,120,800,3,200 \mathrm{v}$. D.C. mA. . $09-3$ (4). Whin prodn and cartying cane. ONLY ell/19/6. P.


## UNREPEATAELE EARGAINS!



$\qquad$ | FANE, $122 / 17$ |
| :--- |
| Hin. 28 WAT | DUTY H1-FI

L O U D
SPEAKER
WIth high
efnciency Antistropic Ferrite
magnet. 17,000 gagnet. 17,006
gliunt price 212.8 ohrrs. Brand new and guarantee List price 212 . emi combination L/BPEAKERS
$131 \times 8 i \ln$. Elliptical with sjin. dia. Tweeter. 1 mp . 8 ohma. Poxer handiling 10 watte. Brand new and guaranteed. Last price e8/5/. LIND-AIR PRICE 89/6. P. S. P. 7/6. (Aloo avallable without Tweter


Fane 3013 kn . TWEETERS Imp. 3-5 olhms. 17,000 gaus. 12 watt. Brand new and quarateed. Llat price R3/18/., LIND-AIR
PRICE $5 \theta / 6$. P. 4 P. $3 / 6$. OOODMANS BPEAKER BGNS $8 \mathrm{in} .3 \mathrm{ohm} .15 / 8 ; 6 \mathrm{in} .3 \mathrm{ohm}, 28 / 6 ; 8 \mathrm{ln}, 3 \mathrm{ohm}$


SEE OPPOSNE


Bulk nine different projects from one basic kllainple instructiona, no mechanical knowtedg nogie, Morac Code amplifer, Flectrunic Mannager W/T Tranmmitter, Radio Telephone, One tran-
anintor Radlo, Two trambintor Railo, Electronis Munde Kit. Completely uste-iperated on 9 V PPS battery. Houry of fun for boys and dadn of all aget. Complete with ail parth and simple $\delta 1 /$

AERIALS. TVIUHFIVHFISTEREO
CRESTA Room Aerial Band $1 / 1 / / I I I$. Cream VEEMASTER Table Top VHF/UHF Tunable Yagal. All Channel Table Top Aerlal, BBCl/2/ HLbe3 LOFT AERIAL. HILO V +3 for verteal Band
$53 /=$.
IIII. Wlth mounting arm ald bracket

NEW MAJOR 10-element BBC2 Aerinal for loft or outdoor fixing. Wh: roller bracket fo VANTENA Table Top V Aerlal, BBC/ITV, 26/6 H1 HUNTER. 13 element BBC 2 Aerlal an above El EXPLORER, 18-element BBC2 Aerial. as above, 68/-

LOFT six. 8-element BBC2 Aerlal for loft or
outdoor fixing. With arm and brecket. $37 / 6$. J-BEAM. A-element outdoor Band II VHF/FM Pleare add 4 /. pontage.

STEREO HEADPHONES



TEAK FINISK PLINTHS with
 Agents for Thorens. Dua

## GARRARD DECKS

3000 with Bonotone gTAHC Btereo Cartildge.	$¢ 818$
3000 with Sonotone 9TAHC Dismond Stereo Car.	
	81018
AT80 Mk. I lena cartridge	81019
AT60 Mk. If whl Decea Deram stereo Cartridse	21714
SP. 25 3x. II lens cartrdge	81018
SP. 95 Mx. II wlin Decen Deram stereo Cartrid	81514
AP75 leas cartridge	29211
80 mk. II less	£24 18


TRAWESTOR E.M.TVUES	
	Save $£ 2.2 .0$
Fe.w.	
\% 6	\%ow
Emina	



## CMAMTIN TAPE AMPLIFIERS

FOK UBE WITH ABOVE TAPE DECKB.


## BARGAIN OFFER! FANTAVOX CASSETTE TAPE PLAYER



Spesially desizned to replay the well-known and popular Musicassettes-prerecorded tape cassatte offering a wide choise of all types of music from pop to classical. Up to 40 minutes of quality reproduction through built-in speaker. Simple off/play and volume controls. Fully transistorised operating on 6 penlighs batteries. Modern compact styling with ear. plece socket and wrise strap. Size $6 t \times 4 t \times 2 \mathrm{in}$.

LIND-AIR PRICE £9.19.6 Carr., Pkg. \& Ins. 5/-

ORGAN BUILDERS! N.P.N. Sil. Planar Transistors. All Tested, 1/6 each or $\mathbf{5 5 . 0 . 0}$ TRAN8ISTOR BARGAN SALE! NEW STOCK AT UNBEATABLE PRICES! $\begin{array}{lll}\text { OC44, OC } 45,0 \mathrm{OC} 1 \mathrm{D} \text { now only } & 1 / 6 \text { each! } & \$ 8.0 .0 \text { per } 100 \\ \text { OC71, OC } 72 \text { equivalent } & 1 /=\text { each! } & \$ 3.0 .0 \text { per } 100\end{array}$ $\begin{array}{llr}\text { OC71, OC } 72 \text { equivalent } & 1 /- \text { each! } & £ 3.0 .0 \text { per } 100 \\ \text { ASY22 Switching Transistors } & 2 / 6 \text { each! } & £ 10.0 .0 \text { per } 100\end{array}$ 2N753 N.P.N. Silicon Planar, 300 mW . $250 \mathrm{Mc} / \mathrm{s}$. High speed switching BSY28 N.P.N. Silicon Planar, Epitaxial, $300 \mathrm{~mW}, 300 \mathrm{Mc} / \mathrm{s}$ BSY65 N.P.N. Silicon Planar, Epitaxial, 800 mW . $100 \mathrm{Mc} / \mathrm{s}$
mplifier AFZ12 P.N.P. Germanium Alloy Diff.
Complete sets of transistors for radio:
$2 \mathrm{G} 344 \mathrm{~A} / 2 \mathrm{G} 345 \mathrm{~A} / 2 \mathrm{G} 345 \mathrm{~B} / 2 \mathrm{G} 37 / \mathrm{A} / 2 \mathrm{G} 378 \mathrm{~A} / 2 \mathrm{G} 378 \mathrm{~A}+$ diode GET120, 2 watts. Heat sink included
Transistor Driver Transformers
Transistor Output Transformers (suitable for our kits above) OC28
BYZ13, 6 amp rectifiers
Light sensitivity transistors similar to OCP 71
RS TO CLEAR
AR $2 / 6$ each! UNMARKED, UNTESTED TRANSISTORS $1 /-$ each; 20 for $10 /-$
BY100 type rect ifiers. SPECIAL REDUCED PRICE! ONLY $2 / 6$ each; $24 /-\mathrm{doz}$.
$\$ 7.10 .0$ per $100 ; ~ £ 50.0 .0$ per 1,000 .
ELECTROLYTIC CONDENSER FANTASTIC SELECTION;


VERY special Value: shlver Mica, Ceramic, Polystyrene Condensers.
Well manorted. Mixed types and valuea, $10 /$ per 100 .
Well manorted, Mixed types and valuea, $10 /$ per 100 .
RESISTORS. Give-away offer Mixed types and values, $\ddagger$ to $\frac{1}{2}$ watt,
$8 / 6$ per 100 or $55 /$ per 1,000,
Also to 3 watt clone tolerance
Mixed vaiues, $7 / 6$ per $100 ; \mathrm{ss} / \cdot$ per 1,000 .

## WIRE-WOUND RESISTORS

1 watt. 3 watt, 6 watt, 8 d each, 7 watt and 10 watt 9 d each.
CONNECTING WIRE. THIN, P.V.C. INSULATED
$10 \mathrm{yd}, 1 / \cdot ; 100 \mathrm{yd}$, 7/6; 800 yd , $25 /=$ (pont 4/6): $1,000 \mathrm{yd}, 40 /=$ (post $8 /-$ ).
VALVES. BRAND-NEW AND BOXED, ROCK-BOTTOM PRICES;
DY87

## EABC80

E.C82
ECc83

ECL80
ECLB8
ECL8
EF80
EF85
EF183
EF183

EF184 | 7/6 | EY86 |
| :--- | :--- |
| $7 / 4$ | EYB |
| $7 / 4$ | PABC80 |
| $7 / 1$ | PC97 |
| $8 / 5$ | PCC84 |
| $7 / 1$ | PCF89 |
| $7 / 1$ | PCF86 |
| $9 / 5$ | PCL82 |
| $9 / 5$ | PCL83 |

A further $10 \%$ discount
RECORD PLAYER CARTRIDGES

slgnal Iajector Kit, 10/-. Signal Tracer Klt. 10/*.
VEROBOARD. All sizes in stock.

$2 ; \ln \times 1 \mathrm{~lm}$	0.15 matrix	..	..	$1 / 1$	$17 \mathrm{ln} \times 3 \mathrm{l}$ ln	0.15 matrlx		
$21 \mathrm{in} \times 3 \mathrm{in}$	0.15 matirix		$\ldots$	3/3				
$2 \mathrm{ln} \times 5 \mathrm{j} \mathrm{in}$	0.15 matrix	.	..	$3 / 11$	$5 \mathrm{in} \times 5$ tin	0.1 matrix		$3 / 1$
3 l in $\times 3 \mathrm{il}$ in	0.15 matrix	.	.	$3 / 11$	$3 \mathrm{in} \times 21$ in	0.1 matrix		3/8
$3{ }^{3} \mathrm{in} \times 6 \mathrm{~mm}$	0.15 matrix			8/6	5 in . $\times 3 \mathrm{3} \mathrm{in}$	0.1 matrix		$5 / 2$
$17 \ln \times 24 \mathrm{~m}$	0.15 matrix	.		11/.	$3 \mathrm{gin} \times 3 \mathrm{gln}$			

SPECLAL OFFER!
Cutter and 5 Boarda $24 \ln \times 1 \ln , 9 / 9$. Cutter only, 7/6. Pin Insert Tool, 9/6. Terminal Plos. Packet of

## BARGANN OFFER!

Few only Multimetern, 1,000 $\cap$ per volt, 45/-; 20,000 $\cap$ per wolt, $80 \%$.
Orders by post to:-

## 6. F. MLLWARD, 17 PEEL CLOSE, DRAYTON BASSET, Staffs.

Please include suitable amount to cover postage. Stamped addressed envelope must be included with any enquiries.
231 Alum Rock Road, Birmingham 8. goods may be obtained from Rock Exchanges 231 Alum Rock Road, Birningham 8. (All POST orders to Drayton.)

All overseas enquiries \& orders please address to:
COLOMOR (ELECTRONICS) LTD.
170 Goldhawk Rd., London, W.I2.
Tel. (01) 7430899

## MARCONI SIGNAL GENERATOR TYPE TF 8018/3/S



Frequency range $12-485 \mathrm{Mc} / \mathrm{s}$ in five ranges. Directly calibrated
frequency dial. Output waveform: C.W. sine wave A.M., pulse A.M. (from exe. source oniy). Internal modulation frequency $1,000 \mathrm{c} / \mathrm{s}$. Output: a, normal-continuously variable directly calibrated from $0.1 \mu v-0.5$ v.i b, high-up to $1 v$. modulated for 2 v . unmodulated, output impedance 50 ohms. Fine frequency cuning concrol, carrier bration for $2 \mathrm{Mc} / \mathrm{s}$ and $10 \mathrm{Mc} / \mathrm{s}$ bration for $2 \mathrm{Mc} / \mathrm{s}$ and $10 \mathrm{Mc} / \mathrm{s}$. tene "as new " condition. Laboratory checked and guaranceed. fils, Carr. 30/including necessary connectors, plugs and instruction manual.

MARCONI SIGNAL GENERA. TOR TF 801/A/1. $10-300 \mathrm{Mc} / \mathrm{s}$. in 4 bands. Internal at $400 \mathrm{c} / \mathrm{s}$. I kc/s. 0.100 db below 200 mV from 75 ohms source. E85. P. \& P. 20/\%, including necessary connectors, plugs, and instruction manual.

MARCONI SIGNAL GENERA. TOR TYPE TF $144 \mathrm{G} .85 \mathrm{kc} / \mathrm{s} .-25 \mathrm{Mc} / \mathrm{s}$. Excellent laboratory tested condition, with all necessary accessories with in-
struction manual, E45. P. \& P. $15 /$.

SIGNAL GENERATOR PORTABLE TS 13/AP, with self-contained wavemeter and power monitor. Freq.
$9305-9445 \mathrm{Mc} / \mathrm{s}$. Peak power output, 9305-9445 Mc/s. Peak power output,
CW pulsed $50 \mu \mathrm{~W}$ per $\mathrm{F} . \mathrm{S.D}$. Pulsing CW pulsed $50 \mu \mathrm{~W}$ per $\frac{1}{4}$ F.S.D. Pulsing
$1-2 \mu$ sec. wide, delay $5.200 \mu \mathrm{sec}$. PRR $1-2 \mu \mathrm{sec}$. wide, delay $5,200 \mu \mathrm{sec}$.
$350-4,000 \mathrm{c} / \mathrm{s}$.
$\mathbf{c 5 0} . \mathrm{P} . \& \mathrm{P} .20 / \mathrm{m}$

BC 221 FREQUENCY METERS. $125-20,000 \mathrm{kc} / \mathrm{s}$. Accuracy $0.01 \%$. book. In brand new condision wish headphones and instruction book E45. P. \& P. 20/-. Mains P.S.U. for above, $\mathrm{f} 11 / 10 /-$. Carriage $5 /$-. Stabilised PSU for above $£ 16$ Carriage $5 /$ -

## TEST SET TS I2AP STANDING

 WAVE INDICATOR EQUIP. MENT. Used for testing 3 cm . circuit components. Should be used with described TS 13 Signal Generator. E25. P. \& P. 10/-.MARCONI VIDEO OSCILLATOR TF 885A. Sine wave outpus $25 \mathrm{c} / \mathrm{s}$ to $5 \mathrm{Mc} / \mathrm{s}$ in 2 bands, Squarewave outpur $50 \mathrm{c} / \mathrm{s}$ co $150 \mathrm{c} / \mathrm{s}$ in 2 bands. Freq. accur;
$+2 \%+2 \mathrm{c} / \mathrm{s}$. Power supply $100 / 125$ j $20 \%{ }^{20} \pm 2 \mathrm{c} / \mathrm{s}$. Power supply 400

SIGNAL GENERATOR TYPE TS 418. Signal frequency $400-1.000 \mathrm{Mc} / \mathrm{s}$. ( $\times 1$ or $X \mid 0$ ) pulse delay variable, less than $3 \mu \mathrm{sec}$. to more than $300 \mu \mathrm{sec}$. Pulse width variable less than lusec. to Pulse width variable less than kusec . to
more than $10 \mu \mathrm{sec}$. Polarity-internal more than $10 \mu \mathrm{sec}$. Polarity-internal
or external sources, positive or negative pulses. AM \& CW. Output atsenuasor $0.2 \mu \mathrm{~V}$ to 200 mV continuously variable. In fully tested condition, t150. Carriage paid.

PRECISION YHF FREQUENCY METER TYPE 183. 20-300 Mc/s with METER TYPE 183. 20-300 Mc/s with
accuracy $0.03 \%$ and $300-1,000 \mathrm{Mc} / \mathrm{s}$ accuracy $0.03 \%$ and $300-1,000 \mathrm{Mc} / \mathrm{s}$
with accuracy $0.3 \%$. Additional band on harmonics $5.0-6.25 \mathrm{Mc} / \mathrm{s}$ with and curacy $+-2 \times 10-4$. Incorporating calibrating quartz $100 \mathrm{kc} / \mathrm{s}+-5 x$ $10-120 / 220$ v. A.C. mains. $£ 85$ Carriage E2.

## PHASE MONITOR ME- $\mathbf{6 3} / \mathrm{U}$. Man

 ufactured recencly by Control Elec cronics Inc. Measures direcely and displays on a panel meter the phase angle between ewo applied audio frequency signals within the range from 20 20,000 c.p.s. to an accuracy of $\pm 1.0^{\circ}$. input signals can be sinusoidal or non excellent condition tozether with hand book and necessary connector. 445 , Carriage $30 /$.V.H.F. CIRCUIT MAGNIFICA. TION METER TYPE TF 886A. Apart from directly reading $Q$ in the
range $15-170 \mathrm{mc} / \mathrm{s}$ (in 4 bands) range $15-170 \mathrm{mc} / \mathrm{s}$ (in 4 bands) this in. strumens may be used for indirectly measuring induction of coils, phase defects of capacitors, dielectric losses, etc. by resonance methods. Magnifica. Test Circuit Capacitor 12 , 05 pF , 200 brated in IpF divisions, with additional interpolating dial. Power supply 200 eo 250 v . and 100 to 150 v . C9s. Carriage 30\%.

NOISE GENERATOR MARCONI TYPE TF IIO6. The TF 1106 provides standard noise outputs for determining the noise factor of A.M. \& F.M. receivers at any frequency from I to $200 \mathrm{mc} / \mathrm{s}$. It is calibrated directly in noise factor. making measurements a routine operation. Noise output calibracion 0-30 | in four ranges. Accuracy $\pm 0.5 \mathrm{~dB}$. |
| :--- |
| Frequency range |$-200 \mathrm{mc} / \mathrm{s}$. impedance 52 or 71 ohms. Power sup. ply 100-125 v. or 200-250 v. C55.

AVO VALVE TESTER, with instruction book, C45. Carriage 30/-

END OF RANGE ITEMS Offered at special low prices as only a few left, all are in fully tested guaranteed condition. VALVE VOLTMETER TS 428B/I. c10/10\%-. P. \& P. 5/

BOONTON STANDARD SIGNAL GENERATOR MODEL 80. Frequency $2 \cdot$ 400 and $\mathrm{i}, 000 \mathrm{c} / \mathrm{s}$. and exter. 400 and $1,000 \mathrm{c} / \mathrm{s}$. and exterpulse modulation. Piston type attenuator $0 . i_{\mu-100 ~ m V}^{m}$ separate meter for modulation level and carrier level. Precision flywheel cuning. 117 v. A.C. input. With inseruction manual, 695. Carriage 30/-.

P. COLRADIO LTD.
170 GOLDHAWK ROAD, W. 12

SHEpherd's Bush 4946
VALVES









 1 ©








HARNESS E"A" "B" control units.
 2 w into 8000 ohms above $20 \mathrm{c} / \mathrm{s} 50 \mathrm{~mW}$ into 8000 ohms below $20 \mathrm{c} / \mathrm{s}$. Harmonic content ${ }^{\circ} \mathrm{n}$ Weight 83 lbs. 445 Carriage 30 /
D.C. MOVING COIL METERS
$50 \mu \mathrm{~A} .2 \mathrm{in}$. round proj
$200 \mu \mathrm{~A} .2 \mathrm{in}$. round panel, sealed calibro-30
750-0-750 uA. 2 in . round plug-in

## ImA. 2tin. square panel

$1 \mathrm{~mA}, 2 \mathrm{in}$. round panel sealed
5 mA .2 in . round clip-fix panel or proj
5-0-5 mA. Itin. round panel
$10-0-10 \mathrm{~mA} .2 \frac{1}{2} \mathrm{in}$, round panel
$0-30 \mathrm{~mA} .2 \frac{1}{\mathrm{i}} \mathrm{in}$. round panel
$10 \mathrm{~mA} .2 \ddagger \mathrm{in}$. sq. panel
2.5 mA . 2 2 in. sq. panel

50 mA . 2 itin. sq. panel
$5 \mathrm{~mA} .2 \frac{1}{2} \mathrm{in}$. plug in
100 mA . $1 \frac{1}{\mathrm{~s} i n}$. prol
100 mA . $1 \frac{1}{2} \mathrm{in}$. round panel
$100 \mathrm{~mA} .2 \frac{1}{2} \mathrm{in}$. round panel
2 amp . 2 in . round panel
$5-0-5 \mathrm{amp}$. $2 \frac{1}{2} \mathrm{in}$. round panel
8 amp. $2 \frac{1}{2} \mathrm{in}$. round panel
25 amp . $3 \underline{i} \mathrm{in}$. round proj.
$50 \mathrm{amp} .2 \frac{\mathrm{in}}{}$. round panel
20 VDC 2 in . square panel
BOVDC 2 in, round panel
50 VOC 4 in . round panel
1.5 KV with res. 2 in . round panel
o-1500 v. $2 \frac{1}{2}$ in. elects. plug in. round panel
MOVING IRON METERS
15 VAC 2 in. round panel
500 VAC 2 tin. round clip fix

LABORATORY TYPE VOLT HETERS. 160 v. A.C.ID.C. 8 in . mirror $x 3$ in. with carrying handle, brand new
32/.. P. \& P. 3/..
Miniature meters. General Electric $1 \frac{1}{2}$ in, round flush, elip mounted: mA D.C., 22/6
25 mA D.C., 20/-. P. \& P.
65 mA . D.C.. $18 /$
150 mA . D.C.. 15
"S" METER FOR H.R.O. RECEIVERS
SUB - MINIATURE "PENNY SIZE" METERS.. Jin. round. flush brated $0-1 \mathrm{mA} 20 \$.$% . P. \& P. 3/-$
RONTGENS/HOUR MICRO AMMETERS. FSD $100 \mu \mathrm{mmp} .3 \mathrm{in} . \times 3 \mathrm{in}$. $\times \operatorname{lin}_{\text {P. }}$. widsh
COMPLETE V.F.O. UNIT from TX53. Freg. range in 4 switched bands
from $1.2 \cdot 17.5 \mathrm{Mc} / \mathrm{s}$. Two V.T. 501 l as oscillasor and buffer. 807 as driver. ewo 5130 s as voleage stabilizers. Output sufficient to drive two 813s in parallel. Slow motion drive directly calibrated in Mc/s. Provision for cryseal conerol. metering of buffer and driver stage. Power requirements 400 v . and 6.3 v . transmister. In excellent condition
$27 / 6$ with valves and circuit diagram.

CRISO RECEIVER, $2 \mathrm{Mc} / \mathrm{s}-60 \mathrm{Mc} / \mathrm{s}$. .
with specially built P5U for mains,
$\mathbf{4 9 / 1 0 / .}$.
SPARESFOR AR. 8 D. RECEIVERS Ask for your needs from our huge Ask for
selection.
813 CERAMIC BASES 7
VARIOMETER fOR NO. 19 sers, $17 / 6$. P. \& P. 3/-

TELEPHONE HANDSETS. Scan-
INSET MICROPHONE for tele-
LIGHTWEIGHT, LOW RESIST-
ANCE, HEADPHONES. Type H.S.
33. Largely used by pilots. Brand new.
27/6. P. \& P. 3/\%.
FIELD TELEPHONES TYPE "F" Excellent for communication in and Excelent for up to 10 miles. For pair including batteries and $1 / 6 \mathrm{th}$ mile field cable on drum. Completely new,
$66 / 101$. Slightly used, $\& 5 / 10 /$. Carriage 10/-
FIELD TELEPHONES TYPE "L""
As above but in portable metal cases.
Per pair including batteriss and $1 / 6$ th
mile field cable on drum. $64 / 10 /=$. Carriage $10 \%$.
FIELD 10 LINE MAGNETO TELE.
PHONE SWITCHEOARD (YA.
conditions. Price on application.

29/4IFT. AERIALS each consisting of en 3 ft . in . dia. cubular serew-in sections. Ilft. ( $6-8$ ecticn) whip aerial
with adzptor to fit the 7 in . rod, insulated base, stay plate and stay assemblies pegs, remmer, hammer, etc. Absolutely hrand new and complere ready so erect. in canvas bag, 63/9/6. P. \& P. 10/6.

## FOR EXPORT ONLY

Installation Kity for CIl/R2l0 Sets 53 TRANSMITTER made up ro " as COLLINS TCS. Complete installa-

FIELD TELEPHONE SETS TYPE cropical climases.
R.C.A. TRANSMITTEA TYPE ET 4336. $2.20 \mathrm{Mc} / \mathrm{s}$., complere with M.O., Fully tested and guaranteed. All spares available.

BC $610 E$ \& $8 C \quad 6101$ TRANSMitters. Complete with speech BC 939A, exciter units, tank coils, esc. Fully tested and guaranteed. All spares available.

No. 19 HP.S SETS. Amp output increased to 25 wates. Complete
installacions supplied.

## P. C. RADIO LTD. 170, GOLDHAWK RD., W. 12

ALLTEST \& COMMUNICATION EQUIP. MENThas bean fully qualified Electronic Engineers.

COLOMOR (ELETLTonics)
170 Goldhawk Rd., London, W. 12 Tel. (01) 7430899

## VIKING AMPLIFIER

50 WATT AMPLIFIER An extremaly reliable zeneral purpose valve omplifier. Its rugged and design makes it by far she best
TECHNICALSSPECIFICATIONS - electronically mixad channels, with 2 inpurs per channel, onables the use of 8 separate instruments at the same time. The volume controls
保 SENSITIVITIES AND INPUT IMPEDENCES
CHANNEL 1

CHANNEL 3200 mV . AT 1 m . . Suitable for moss high output inseruments INPUT SENSITIVITY RELATIVE FO (Eram, runar, organ etc).
TONE CONTROLS ARE COMMON TO
BASS BOOST + 12 dB AT $60 \mathrm{~Hz} / \mathrm{s}$. BASS CUT -13 dB AT $60 \mathrm{~Hz} / \mathrm{s}$. TREBLE OOST + 11 dB AT $15 \mathrm{KHz} / \mathrm{s}$. TREBLE CUT -12 dB AT $15 \mathrm{KHz} / \mathrm{s}$. WND 20 KHz AND TREBLE CONTROLS CENTRAL - 3 dB POINTS ARE $30 \mathrm{~Hz} / \mathrm{s}$ AND POWER OHz/s.
FOR SPEECH AND MUSIC 50 WATTS RMS. 100 WATTS PEAK.
FOR SINE WAVE 38.5 WATTS RMS. NEARLY 80 WATTTS PEAK TOTAL DISTORTION AT RATED OUTPUT $3.2 \%\}$ AT $1 \mathrm{KHz} / \mathrm{s}$.
TOTAL DISTORTION AT 20 WATTS $0.15 \%$ OUTPUT TO MATCH INTO 8 OR 15 OHMS SPEAKER SYSTEM. NEGATIVEFEED BACK 20 dB AT I KHz/s. SIGNAL TO NOISE RATIO 60 dB . MAINS YOLTAGES. Adjustable from 200-250 V A.C.
$50-60 \mathrm{~Hz} / \mathrm{s}$. A protective fuse is located as $50-60 \mathrm{~Hz} / \mathrm{s}$. A protective fuse is located ac che rear of unit.
VALVE LINE UP: Double purpose ECC83 $\times 3, E L 34 \times 2$
and GZ 34 .

STAR SR 150 COMMUNICATIONS RECEIVER
Frequency range $535 \mathrm{kc} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{f}$ four wave bands, four valve plus metal rectifier superhet circuit incorporates B.F.O. band spread tuning, " $S$ " meter external telescopic serial-ferrite aerial, builtoin 4 in . speaker, easy co read dial For 240 v . A.C. operation, complese brand new with full Inseruction manual. $\quad$ c17/17/ $+10 /-$
 p. \& p .


PRICE:

Circuit and parts list 2/6,
free with parts. arts

## NEW! The DORSET <br> TRANSISTOR PORTABLE RADIO

with BABY ALARM Facilities
Special offer-Power Supply Kit to purchasers of Dorset Portable Radio parts incorporacing mains ersnsiormer, rectifier and smooching condenser, AC 600 milliwatt solic state 7 transisior plus diode and thermistor. leaturing complementary N.P.N. and P.N.P. output stage.

The comprehensive easy-to-follow drawings supplied make this the easiest-ever transiscor radlo set of parts, with the following features

## * Simpla connections co only 6 tags on <br> - Righ $Q$ internal ferrite rod aerial

 the R.F./I.F. module, 3.1.F stages, osc. coll and 3 eransistors which, with thair associated components are Onily 4 connest. on boch wavebands.$\star$ Only 4 connestions on the A.F. 600 milli-wate solid state amplifier - Pre-aligned R.F.II.F. module buil $\star$ and cested.

* A.F. module buile and sested.
* Fully sunable over M.W. and L.W. bands. M.W. $540-1.640 \mathrm{Ke} / \mathrm{s}$. ( 557 ( $2.000-1,100$ merres).
t Incermediate Frequency $470 \mathrm{Kc} / \mathrm{s}$.
$\star$ Sensiriviry: M.W. as $1 \mathrm{Me} / \mathrm{s} 10$ microvales plus or minus 3 dB plus or minus 4 de 40 mierovo
* Class " 8 " modulised outpue stage wish thermistor controlled heat stabilization. Class "8 "" output stage ensures long battery life. Current drain is proportional to the output level. Total current drain of the receiver under no signal conditions is $10-12 \mathrm{~mA}$. As rasonable
listening level $20-30 \mathrm{~mA}$. - Exrension sockers for
- Excension sockats for car aerial input, tape recorder output (inExp. Speaker.
- All componencs (except spazker) mount on the printed clrcult board. Easy to follow inserucsions. Size of cabiner 12 in . long, 8 in . high and 3 in. deep.


## bRESGES Geared Motor

240 V. A.C. Mains 50 Hz . 0.49 amp ( 65 watc). Ungeared speed 2,750 R.P.M. Geared speed 80 R.P.M. Constant Gear ratio 35: I. Reversible. Spindle dia. 12 mm . ( 0.473 in. ). Spindle lengeh Ifin. 7 if in. long $\times 4 / \mathrm{in}$. wide $\times 4 / \mathrm{in}$. deep. Cose E 20 ,
our prise $\mathrm{ET} / \mathrm{I} / \mathrm{h}$. $7 / 6 \mathrm{P}$. \& P.

RADIO AND T.V. COMPONENTS (ACTON) LTD
2IA HIGH STREET, ACTON, LONDON W. 3
SHOP HOURS 9 a.m. to 6 p.m. EARLY CLOSING WEDNESDAY.
Terms C.W.O. Goods not despotched outside U.K. All enquiries stomped add. envelope. 323 EDGWARE ROAD, LONDON, W.2. Early closing Thursday. PERSONAL SHOPPERS ONLY.
All orders by post must be sent to our Acton address.

## ‘ELEGANT SEVEN' MK III SPECIAL OFFER



Buy yourself an easy to build 7 eransistor radio and save at least $\mathbb{\text { L }} 0$. Now you can build this superb transistor superhet radio for under $64 / 10 \%$, No one else can offer such a de luxe star facures.


## TAPE

POST \& PKG $\begin{array}{lll}850 \mathrm{fr} . & 10 / 6 \text { ON EACH } \\ 600 \mathrm{ft} . & 10 / 6 & 1 / 6 .\end{array}$ $\begin{array}{rr}600 \mathrm{ft} & 10 / 6 \\ 1,800 \mathrm{ft} . & 25 / 6 \\ 2,400 \mathrm{ft} . & 32 / 6\end{array}$ 1/6. 4 OR MORE
POST FREE.

X 101. IO WATTS (RMS) SOLID-STATE HI-FI AMP. WITH INTE incercom. to a modern Mi-FI STEREO AMPLIFIER (two are required for Stereo). The $\times 101$ is a brilliant new addition to our highly successful range of products. Its professional performance and advanced solid-staze circuicry sechniques ensures rellabilizy combined with hith fidalicy reproduction, at an unbeazable price of $49 / 6+2 / 6 \mathrm{P}$. \& PD SPECIFICATIONS: R.M.S. WAVE). SENSITIVITY. (music power). IOW (SINE ohms load FREQUENCY RESPONSE. minus 3 dB points are 20 Hz and 40 K Hz . TOTAL OISTORTION SO IK Hz for rated outpuz $1.5 \%$ for 5 F output $0.35 \%$. used). SUPPLY VOLTAGE: $24 V$ D.C. (A) 800 mA
 ( $6-24 \mathrm{~V}$ may be used) outpuc ac 14V D.C. supply with 3 SIVE INSTRUCTION MANUAL DOES NOT ON IV SHOW FULLY COMPREHENCIRCUIT DIAGRAM AND CONNE NOT ONLY SHOW THE BASICS, SUCH AS EASY-TO.UNDERSTAND CONNECTIONS, BUT ALSO GIVES PRACTICAL STANDARD EOUA CONVENTIONAL INPUTS THEY INCLUDE. TAPE HEAD MAG XTAL P.U., TUNER, MIC. ETC. CONTROL ASSEMBLY (includine XTAL P. U., TUNER, MIC., ETC. CONTROL ASSEMBLY (including
 P 101/S (for Stereo), 42/6, p. \& p. 2/6.
A High Quality, Monaural Pra-amp PRIOI/M and Control Unit, particularly suitable for use with che $X 101$ if a ready-buile, comprehensive, multi-input system is desired. CONTROLS. Selector $\$$ witch, Tape $\$$ peed Equalisation $\mathbf{S w i t c h}$ ( $3 \mathrm{z}, 7 \mathrm{f}$ and 15 i.p.s.). Volume. Troble, Bass, 3 position scratch filter and 3 position rumble filter. SPECIFICATION: Sensitivities for 200 mV ouput @ IKHz. Tape Haad: $3 \mathrm{mV}(@ 3$ it.p.s.). MAG. P.U.: 2 mV . CER.P.U.: 80 mV RADIO:
100 mV . AUX.: 100 mV TAPE/REC. OUTPUT: 100 mV . Equalisaion for 100 mV . AUX.: 100 mV TAPE/REC. OUTPUT: 100 mV . Equalisation for each
inpus is correct to within 2 dB (RIAA) from $20 \mathrm{~Hz}-20 \mathrm{KHz}$ TONE CONTROL RANGE. BASS $\pm 13 \mathrm{~dB}$ Q 60 Hz . TREBLE: $\pm 14 \mathrm{~dB} @ 15 \mathrm{KHz}$. TOTAL OIS.

 HIGH QUALITY SOLID-STATE AMPLIFIER (M switched inputs for TAPE HEAD, MAG. P.U. CER MAINS INPUT 220-250 Y AC SO Hz THE CER. P. RADIO and AUX. OF THE ABOVE OESCRIBED ITEMS (XIOI PIOIM MON CHASSIS. ITS PERFORMANCE AND SPACE ARE STYLING MAKES THE IDEAL CHOICE FOR THE VALUE-CONSCIOUS HI-FI ENTHUSIAST.
Available within 4 weaks, 8 gns. P. E. P. FREE.

## 600 mW SOLID STATE <br> Features NPN and PNP Complementary Symmetrical Out-

## 4-TRANSISTOR AMPLIFIER

 pur Scage. $2 t \times t \times$ in. Speaker ouspus impedance 12 ohms.Frequency response -3 dB points $90 \mathrm{c} / \mathrm{s}$. and $12 \mathrm{kc} / \mathrm{s}$. Price $15 / \mathrm{p}$ plus $1 /-\mathrm{P}$. \& P .
3 TO 4 WATT AMPLIFIER
$3-4$ watt Amplifier, built and eested. Chassis size $7 \times 3 \pm \times 1 \mathrm{in}$. Separate bass, treble and volume control. Double wound mains spesker. Valves ECC8I and $6 \mathrm{~V} 6, \mathrm{E2} / 5 / \mathrm{p}$ plus $5 / 6 \mathrm{P}$. \& P . 3 ohm

## $2 \frac{1}{2}$ WATT ALL TRANSISTOR AMPLIFIER

A.C. mains 240 v . Size 7 in . $\times 4 \mathrm{in}$. $\times 1 \frac{1}{2} \mathrm{in}$.

Frequancy response $100 \mathrm{c} / \mathrm{s}-10 \mathrm{Kc} / \mathrm{s}$.
Semi conductors, two OC 75's, iwo AC 128's and two stabilizers AA129.
Tone and volume controls on flying leads. $£ 2 / 10 /-+$ P. \& $P$. $3 / 6$.
Suitable $8 \mathrm{in} . \times 5 \mathrm{in}$. 10,000 line high flux speaker. $18 / 6$ plus $2 /=$.

BSR TAPE DECKS 200/250v.

## A.C. mains

 Type TDIO, 2-erack, 3 speed, plus rev Trpe TDiO, 4 -crack, 3 speed, plus rev. counter, $59 / 5 /=$. P. \& P. on each sype, $7 / 6$.


AC MAINS MOTOR

I400 R.P.M.
Price $9 / 6^{\text {P. \& }}$ 3/- $P$.

MINIATURE WAFER SWITCHES

 WATERPROOF HEATING ELEMENT Wh yardn length 70w. Seif-rgylating
temperature control, $10 /$ poat tree.

## SPECIAL BARGAINS

so OHM SO WATT WIRE WOUKD POT-METER. 8/6 ${ }^{2}$ ench. meo miniature. in mpa Milliture ot-meter Blorganite prenet ocrew RE-BET 100K by Welwyn with intrical bakelite knob,

 olrcule, mili open phould blanket owerheal. 4/8 eachi

 $\frac{8,}{8 / 8}$ eache switch bargain. 20 amp. 250 v . normal One hole fitthng. $2 / 9$ ench, or $30 /$ per doz.
ELEOTRIC LOCK. $24 \%$, coll, but rewlidable to other COMPRESSION TRIMMERS. TwIn 100 pF . 1/- eacli. PRECISION wheatstone bridoe. Opportunlty io
 En. PM LOUDPEAKER. ${ }^{8}$ ohm. $12 / 8$. 80 ohm. $13 / 6$, long wave colle $7 / 8$ each.
SLIDE SWITCH. $8 u b \mathrm{minin}$
ouble pole changeover Vnouym clonner Flex. Son-kinkable ritbed rubber, Moot


 EDOEWISE cONTROL Morgante, an Heted tnany 24/- per dozen.
 SLICON RECTIFIER equiv. BY100 780 mA .400 V . 1 Mor RO/OTRE PICKOP for \%In. records made by Conmecode,
 E4 doar neons for malne indicatore, etc. $1 / 3$ each o






PP3 Eliminator. Play your pocket radio trom the malno! Save fs. Counplete component kit comprines \& rectiners-malns dropper resis. tapcen, ofmoothing condenver and inatructions. Only $8 / 6$ plus $1 /$ pont.
PHOTO-ELECTRIC KIT
All part! to make light operated wittch/burglar nlann counter, etc. Kht compriaed printed cliccuit. Lamminazed Photocell and Hood, 2 Tranilatorot, cond. Terminal block plantic of 10 photo.electric covice Including auto. car parklng
 mlarm-projector lamp atabliser etc., etc.
Onls $38 / 8$.

## THERMOSTATS





 $8 / 6$ plus $2 / 6$ port and
ingurance.
Type "D". We call this the Ise-ntat an it cuts in and out and

 Type " $E$ ". This is atandard refrigerator thermostat. Sphindie adjuatmente
Tyoe "FF". Glase encaved for controlling the temp. of liquidheld (hail uubmerged) by rubber uucker or wire cilip-ldeal tor that tanks-developers and chemical batho of all typen
Adjuitable over range $50^{\circ}$ to $150 \%$. Price $18 /$, plua $2 /-$ pont


Be first this year SEED AND PLANT RAISING
goll heating wire and transformer. frame. 18/8, plua $3 / 8$ post and lims.


\section*{BATTERY OPERATED TAPE



\section*{DECK

## DECK <br> Ith Capotan control. Tha unlt to extremen well made and

heasures approx. $8 \times 8 \times 2 \mathrm{~m}$. deep. He Absee plano key
apecial heavy duty type infended for operation on
volto. Supplied complete wthe 2 spools ready to innal.
 meurance $4 / 6$.


PHOTO ELECTRIC CONTROL SYSTEM
Compriaen a Hght rource unit with optlonal Infra Red
 or bench or wall mounting and there is stentetvity control
 sed and as such It will operate as a burglar alarm, or will open doors, etc. Also in confunction Price $£ 8 / 19 / 6$, plun portage and lnaurance, 8 /.

## RECORD PLAYER KIT

4 epeed, gram. motor with 11 ghtwelght
pick-up, motor electronicelly belancel and pick-up, motor electronically belanceal and
free from wow and futter. Speed change by
or

 poit and insurance. FREE THIB MoNTH


## SOLID STATE IGNITION

Bie things are claimed of Electronte signillon systems and ly you would like to try for your.


CASSETTE LOADED DICTATING MACHINE


8HAND MICROPHONE Dynamio type. Low linnedinces, moving lon
 mulcroptonic coupling to hapule. Fixtra smal

 conatructime
blower, heater, etc.
Ciock Motor 230 -. B0 C. p. . aynchronona-self-utarting $8 / 6$ Poatodo Output Trazsformar-standart dien e $40-1$, ex equip henit but E.R.T. Condoaber. 1 mid 3 kV ., $8 / 6$ each. Noon Maing Tentor $1 / 3$ each, $12 /$ dozen. $26 \%$, primary Power Paok
$9 / 8$ each.


 ununed (re
filunirance.

## FLUORESCENT CONTROL KITS

Each kit comprives aeven teema-(hioke, ${ }^{2}$ tube
 tubee or the new, "Orolux" tubes for Roh tanke
und Indoor planta. Choket are uupronlent. motly






MAINS TRANSISTOR POWER PACK


 plut $3 / 8$ porara


RELAY SWITCHES. Thene enable micro switchen, delicate thermontato or other low current device to oontrol up to 30 amps.-Idcal to witch bermal atage heaterimotors. etc., made by the buy h you hurry at a very keen price of $38 / 6$ each and we will include diagrama and date
Mounted on panel size approzimately $8 \times 7 \times 2 \ln$. deep.

## ALL PRICES GREATLY REDUCED

Type	Price	Tvpe	Prica	$\begin{aligned} & \text { Typ. } \\ & \text { So. } \end{aligned}$	Price
2N1727	15/.	OAS	\%	0 C 75	3/-
$2 \times 1728$	10/.	0al0	\%	$0 \mathrm{C76}$	-
2 N 1742	25/-	0 O47	$31 \cdot$	0077	-
2N1747	$85 /-$	OA70	$8 \cdot$	0078	
$2 \times 1748$	10\%	OA79	86	0778D	$3 \cdot$
ACl0\%	81-	OA81	28	$0 \mathrm{OC81}$	$3 /$
ACl27	41.	OA85	2/8	OCBAD	$3 /$
ACY17	$8 / 6$	OA90	$2 / 6$	${ }^{0} \mathrm{C88}$	-
AOY18	5/6	OA81	$2 / 6$	$0 \mathrm{OC82D}$	31
ACY19	8/6	OA200	$3 / 3$	$0 \mathrm{C88}$	$41^{-}$
ACY20	$5 / 6$	OA202	$4 / 3$	$0 \mathrm{OC84}$	8
ACY21	6/-	OC30	12/6	OC139	崖
ACY22	48	0022	101.	$0 \mathrm{Cl140}$	12/6
AF114	$4 /$	0 C 23	8/-	OCl70	
AFIIS	$4 \%$	0c24	18/*	$0 \mathrm{Cl171}$	
AF116	4.	OC25		00300	
AF117	$4 /-$	OC26	718	$0 \mathrm{OC21}$	126
AF118	$4 / \cdot$	OC28	$8 /$	OC202	$13 / 8$
AF139	12/6	$0 \mathrm{C29}$	$17 / 3$	$\mathrm{O}^{0} \mathrm{CO} 23$	$1{ }^{18}$
AF188	176	OC36	10/\%	OCP71	88
AFZ12		OC36		ORP12	$8{ }^{8}$
Aez21	15/0	OC38	18.6	ORP60	10/8
BC107	14/6	$\mathrm{OCH}^{\mathrm{O}}$	${ }^{616}$		$8 / 8$
BY100	$4 / 8$ $7 / 8$	${ }_{0}^{0 \mathrm{OCH}}$	3/-	88305 88261	8/6
$\begin{aligned} & \text { BYZ13 } \\ & \text { MAT100 } \end{aligned}$	8/6	${ }^{\circ} \mathrm{C} 46$	3	${ }^{8} 8140$	\$/
Matiol	$7 / 6$	0c70	3/-	8 S141	16
Mat120	$6 / 8$	OC71	$3 / 0$		
MAT121	$6 / 8$	OC72			

## GANGED POTS

standard type and vize with good
 $100 \mathrm{~K}-100 \mathrm{~K}-500 \mathrm{~K}-500 \mathrm{~K}$ aill now and unued. Pant $2 / 9$

When pontage is not definitely otated an an extri
 Seml.conductors ade 1 al. po
B.A.E. with enquirien please.

ADMIRALTY B. 40 RECEIVERS




F.M. WIRELESS MICROPHONE 4.10t Me/f. Trannioturimer
 Connplete with adidi hanal
 $28.15 \mathrm{~F}, \mathrm{P} . \mathrm{x}$


TWO-WAY RADIOS
SUPERS QUALITY, BRAND NEW \& GUARANTEED
 is TRANSISTOR 28126 IAFAYETTE

## MARCONI TEST EQUIPMENT

EN.MLLITARY RECONDITIONED, Kis Kc/s.2is Mr 's. 2.25. carr THF329G "O"METER. HRAND NEW, COMPLETE WITH ALI. ACCESSORHES, 875, carr. 36 T.F.113.M, 13EAT FREOHENCY OSCHLATOR





LAFAYETTE LA-224T TRANSISTOR STEREO AMPLIFIER


30 waits at N ohuls. Respoise $: 3(3)-20 .(\mathrm{Mm})=2$
 fpparatel., and K. volume coltrolm. Trebld



## HUSIDEN DIIO4S 2-WAY

 STEREO HEADSETSEach headphone contains a 2 tin wooter and a tin. tweeter. Builc-in
individual level concrols. $25-18,000$ c.p.s. 8 תimp. with cable and stereo plug. $55 / 19 / 6$, P. \& P. 26.

LAFAYETTE HI-FI STEREO HEADPHONES


GARRARD DECKS   THREE SPECIAL OFFERS:   Brand new and guaranceed. A70 Mk. II less carcridge $512 \quad 120^{\circ}$ Carr. $7 / 6$ LAB 30 Mk. $11 \begin{gathered}\text { less carcridge. } \\ \text { E23 } \\ 10\end{gathered}$   223100 Carr. $7 / 6$  

$\star$ TRANSISTORISED FM $\star$ TUNER




## Variable Voltage Thandrinduris

High , fuality constrimetorn. luput き3





## GEM PANEL METERS

Send S.A.E. for full lists. Other ranges available. Please include postage CLEAR PLASTIC METERS


Type Mar.38P. $121 / 22 i n$. square fronts

$50 \mu \mathrm{~A}$.........37/6	750 mA
50-0-50 $\downarrow$ A . . . . . 35/-	1 mmp
$100 \mu \mathrm{~A}$. ..... 35/-	2 mmp
$100 \cdot 0-100 \mu \mathrm{~A} . . .32 / 6$	${ }_{\text {3v. D.C }}$
$200 \mu \mathrm{~A}$........32/6	10V. D.C.
$500 \mu \mathrm{~A}$....... 3776	20V. D.C
$500-0.500 \mu \mathrm{~A} . . .29 \%$	50 b.c.
1 mA . ${ }^{\text {a }}$....295-	100\%. D.C
	150V. D.C.
2mA ..........25-	300\%. D.C.
	$500 \%$ D.C.
10 mA	750V: D.C.
20 mA ....... ${ }^{\text {25 }}$	15V. A.C.
50 mA ....... $25 \mathbf{4}^{\text {d }}$	50V. A.C.
100mA ........ 25.	1504 . A.C.
150mA ........950	soov: A C
	500 V AC
500 mA ....... .25	8 meter 1 m.s. 89816
500 mA .........es/	VU meter
Type MR.45P. 2in. square fronts.	
$8_{50 \mu \mathrm{~A}}$.........48/6	10v. D.C
	20V. D.C.
$100 \mu \mathrm{~A}$. $\ldots$. 3.3916	501. D.C. ...... $27 / 6$
100.0-120 2 A . . . 3510	300V. D.C....... $87 / 6$
${ }^{500 \mu} \mathrm{~A}$....... .2916	15V. A.c........ $27 / 6$
1mA ...........978	300 V . A.C. . . . . $27 / 6$
5mA ..........27/8	8 meter ImA . 3518
10 mA ....... $27 / 6$	VU meter $\cdot$....42/6
	5 m mp. A.C.C. 10 mmp A. a/76
1 amp .........27/6	20 mpp A.C.C . 2776
5 mmp ......... $27 / 6$	30 mmp A.C*... $27 / 6$

Type MR 52P. 2tin. square fronts.
 $100 \mu \mathrm{~A} .10 \mathrm{H}$ $200 \mu \mathrm{~A}$
$500 \mu \mathrm{~A}$ $800-0-500 \mu$
$1 \mathrm{~mA} . .$.
 5 mA
10 mA
50 mA
100 mA 100 mA
$\mathbf{5 0 0 m A}$
$1 . \mathrm{mmp}$.

Type MR.65P
$50.0-50$
$100 \mu \mathrm{~A}$. 500 HA
${ }_{5} \mathrm{lmA}_{\mathrm{mA}}$

10 mA
50 mA
1

50 mA
100 mA
500 mA
00 mA
1 anıp
anrp
10 mpp
15 mmp
0 amp
30 amp
50 amp
10 v ng



15 smp.
30 amp.

## 371 871 871 371 371 371 391 891 371 371 371 371 3

## $.49 / 6$ .4916

.
150. D. D.
${ }_{300 \mathrm{~V} . ~ A . C . . . ~}^{2}$
A Yeter 1 mA
V . meter.
1 amp.

30 amp .
30 amp .
31 in. fronts.

. 651	20V. 1.0
.52/6	50 V . 1.C
.52/6	150 V . 1.
.49/6	
45/-	30 V . A.C
. 2816	150V. A.C
. 915 6	300 V . A.C
. 36	300 V . A.C
.346	a nuter 1
. 396	50 m .4 A.
. 386	$100 \mathrm{ma} \mathrm{A}$.
. 3 月 6	200 mA A
. 396	smoma A.
. 396	1 mmp . A.
.396	5 amp. A.c
. 396	10 anp . A.C.
398	${ }^{2} 0$ anty. A.C.
. 3916	30 antp. A

## BAKELITE PANEL METERS



Morias arob, all other moring coll.


TE-20RF SIGNAL GENERATOR


Aecual generate range ing $120 \mathrm{kc} / \mathrm{s}-260 \mathrm{Mc} / \mathrm{s}$. on 8 bands. Directly R.F. Opersition $200 / 240 \mathrm{v}$. A.C. Brand new with
Instructions
E18/10/
P. \& P. 7/6. B.A.E. for detalls.

NEW RANGE OF "SEW EDGEWISE METERS
MOIVEL PE 70 . Dimensions $3 \quad 1 / 132 \times$ $111 / 32 \times 23 \mathrm{in}$ deep overall ivailable as $\begin{array}{llll}\text { follows: } \\ 50 \text { mincramp .. } & 57,6 & 200 \text { microamp } & 52 / 6\end{array}$


 microamp . . 52/6 Post extra.

Trpe MR.AS abin. equare fronts. ${ }_{30}^{25} \mu \mathrm{~A}$.

$00-0 \cdot 100 \mu$
$000 \mu \mathrm{~A}$
1 1rinA.
man
10 mA
8018 A
100 m
800 mA
18 mp
1 smp .
15 mmp.
30 mmp.


D.
A.C.
A.
A.
ni. A.
nup.
amp.
amp.
ning.
meter

 MODE
O.P.V.
0 / 10 / 50 / 100 / 500 / 1,000 V.A.C. $0 / \bar{s} / 25 / 50^{\prime}$
$200 /: 000: 1,000 ~ V . ~ D . C . ~$ $0-50 \mu \mathrm{~A}$. $5 / 501500$ n. \& 4176 . P.P. 3.'-



EW MODEL 500.30,000 O.P.V. with overload protection Mirror scale. $0 / .5 / 2.5 / 10 / 25 / 100 /$ $\begin{array}{lllllll}250 & \text { / } 500 / 1,000 & \text { v. D.C. } \\ 0 & 2.5 / 10 / 25 & / 100 \text { / }\end{array}$ $\begin{array}{lllll}0 / 2.5! & 10 / 25 / 100 / \\ 250 / 500 / 1,000 \text { v.A.C. }\end{array}$ $0 / 50 \mu \mathrm{~A}$, $\mathrm{J} / 50 / 500 \mathrm{~mA}$ $0 / 50 \mu A$, i $/ \mathrm{CO} / 500 \mathrm{~mA}$. Meg. /60 Meg. S. $88 / 17.6$. Post paid.

MODELS AVAll



MANY OTHER MODELS $39 / 6$.
NEW LAFAYETTE MODEL HA700 AM/CWSSB AMATEUR COMMUNICATION RECEIVER
8 valves, 5 bands incorporating 2 MECHANICAL
Hity. Frequency coverage on 5 bands 150 -
$400 \mathrm{Kc} \mathrm{s} ., 550-1,600 \mathrm{Kc} / \mathrm{s}$. $1.6-4.0 \mathrm{Mc} / \mathrm{s} . \quad 150-1.8$
$14.5 \mathrm{Mc} / \mathrm{s} ., \quad 10-5-30 \mathrm{Mc} / \mathrm{s}$. Circuit incorporates R.F. stage, aerial trimmer, noise limiter, B.F.O. product detector, electrical bandspread, $S$ meter, slide rule dial. Output for phones, low to $2 \mathrm{~K} \Omega$ or speaker 4 or 8 ohins. Operation 2201240 vol A.C. Size $\overline{7}$ in $\mathrm{C} \times 15 \mathrm{in}$

hew. and suaran. with handion 26 GNS. Carr. $10 /$. S.A.E. for leaflet.

## LAFAYETTE MODEL HA-500 SSB/AM/CW

80 THROUGH 6 METER RECEIVER


New outstanding Ham Bands only receiver covering New outstanding $80 / 40 / 20 / 15 / 10 / 6$ metre bands. Incorporates 10 valves, product detector, two mechanical filters, S.F.O. noise limiter, aerial trimmer, I.F.s $2,608 \mathrm{Mc} / \mathrm{s}$. and $455 \mathrm{Kc} / \mathrm{s}$. Output 8 ohms and 500 ohms . Operations $220 / 240$ volts A.C. Supplied brand new and guaranteed with handbook 22 Gns. Carr- 10\%. $100 \mathrm{Kc} / \mathrm{s}$. crystal, $35 /-$.

OrLN

## P.O. TYPE

LEDEX SOLENOID DRIVEN WAFER SWITCHES. SilE. BS. From $90 / \mathrm{m} .11$ Way and off, 3 to 24 Pole; also 4 Pole 12 Way and 54 Pole on/of.' Commutating SuItch section and control waters available.
Transformer 1 \&15.
LINEAR TRANSDUCERS IT-1-4F $\mathbf{£ 3}$. MINIATURE BUZZERS (as illus.), 12 volt with tone adjuster, $7 / 6$.
HIGH NOTE BUZZERS 24 v. A.C.D.C. with tone adjuster, $2 \$ \mathrm{in}$. dia. Bakelite case 10/6, Post $2 /$ MICRO SWITCHES
SUBMINIATURE HONEYWELL 11SMI-TN13. S.P.D.T Size:.78lin + 250 in . $+350 \mathrm{in}, 6 / 6$ each. casing 8/6 eacl. Burgess MKiBR, robust die cast Casing, $8 / 6$ each. Post 9 d .

KEY SWITCHES (3 position)
4 C Non Lock/4 C Non Lock, 16/6.
${ }_{2}$ C Lon Lock/6 C Lóck, 20/•.
4 C Lock/4 C Lock, 17 (6.
Stop/4 C Lock, $12 / 6$.
Stop/8 C Lock $17 / 6$.
Stop/8 C Lock 17/6.
Low Capacitance 8.
Low Capacitance 8 C Muirhead, 17/6. Stop/2 C Lock, 7/6.
2 C Lock/8 C Lock, 10/6.
REOTIFIER UNIT A.C. to D.C. Input $200 / 250$ v. A.C. Output 6 v. D.C. at 15 amps, full regulation. Meter, Fuses
Westinghouse, $£ 8 / 10$. Canr. $20 /$.


IMHOF MAINS BLOWERS. FOR coollng 1 in. rack mounted equip. ment, with glassfibre filter and directional duct, $\mathbf{\varepsilon 1 2}$. Blower only $\varepsilon 10$. earpieces and cord. Type DHR, i7/8. powt $2 / 6$.

ABz20 7\%	2 ${ }^{\text {c } 688}$	5/.	$8 \times 88$	4/8	OAln
GET875 8/6	2N1304	3/-	$8 \times 845$	15/•	OA01
$0 \mathrm{CH} 4 \quad 3 / 6$	2N1907	5/.	SX841		OAZ 24
OCA5 3/0	2\$1305		2810.A		VRE2S
0C71 3/-	$2 \$ 1813$	4/.	ZT8.9	118	ECCs 1
0 Cr 00 7	2N1598	28\%	18181	2	fracc
28002 15/.	V30.301	15\%	DDOOH	8/	128H7
SMALL MAGNETIC COUNTERS					
$3 \frac{1}{3}+1 \mathrm{in},{ }^{\text {a }} 10$					
counts, per					
second with					
following D.C.					
voltages are					
available, 6 v .					
$50 \text { v. or } 100$					

MULTI-INDICATORS KGM Iype M5. DIGITS 0109 illuminated by 28 v . . 08 amp. cartridge cap lamps, $50 /=$ each.
P.O. STANDARD RACKE Oft. U channel sides drilled for ioin. panels, heavy angle base $150 /$ cge. $20 /-$. LIGHT TYPE 5ft. high, 25.
JACK PLUGS. 2 Point, with screw-on cover, $2 / 6$, post 9 d .
PO 201 with cord, $3 / 0$, post $1 / 8$.


PLUG-IN RELAYS. Londex 4 change-over HD contacts 28 V. D.C. or 240 V. A.C. with base and cover, RATIO ARM UNITS. Sullivan $600 \Omega+600 \Omega, 50 / \%$

METERS GUARANTEED. Complote list available
 Microamps $0 / 100$ 2tin. MC 40/. Mieromps $0 / 5002 \mathrm{in}$. M.C. 25/Microamps $0 / 5002 \mathrm{tin}$. MC $37 / 6$ Millamps $0 / 502 \mathrm{fin}$. MC $35 /$ Millamps $0 / 500$ 3 2 in . MC $84 /$ Ampt $0 / 52 \mathrm{in}$. MC. .
Volits
$B / 0 / 5$
$2 \frac{1}{2} \mathrm{in} . ~ M C$. $\begin{array}{ll}\text { Volt } \\ \text { Volt } & 0 / 20 \\ \text { V } \\ \text { 2/n. MC. }\end{array}$ Volts $0 / 10$. $\mathrm{C}_{2} \mathrm{~min}_{2}$........ SE HOUR COUNTERS $99999 \cdot 9 \cdot 230$ volts A.C. $3 \frac{1}{2}$ in. flush round, $\mathrm{E5}$.
Mieroamps $0 / 50$ scaled in Milli Rontgens 21 in . MC $45 / \mathrm{m}$ Mllivolit $350 / 0 / 350$ ( $3.5 / 0 / 8.5$ ) MilliA 2\}in. MC 35 . PORTABLE YOLTMETERS. $0 / 250$ Moving Iron A.C./D.C 6in. scale, in polished wood case, $£ 7 / 10$. PORTABLE VOLTMETERS $0 / 160$ Moving Iron A.C./D.C Bin. mirror scale, in polished wood case, 99/6. Post $6 /$ PORTABLE AMMETERS, 0/3A.C./D.C. 3in., 35/\%, D. 3/ AYOMETERS. Model $7 .\{13 / 10 / \%$, post $7 /-$ FREQUENCY METERS. $45 / 65$ cycles per second 230 volts: Bin. Flush Round. Brand new, E10/10/-CELL-TESTING VOLTMETERS. $3 \cdot 0-3$ volts D.C. In leather case with prods. $35 /-$ each. Post $8 / 6$. HOUR COUNTER8 9999.9. 230 volts A.C. Sin. flush round, \&5. DIAL THERMOMETER. 3in. with capillary tube $70 / 160^{\circ} \mathrm{F}$., $35 /-$. Post 2 .
HAIR HYGROMETER. 4 in . round by Negretti \& Zambra, scaled $0 / 100$ reading relative percentage humid ity, 6E/:. Post $3 /$.

MIRROR GALVANOMETERS BB 3000. N:E.P MIRROR GALVAN
Focal length 20 cm . $£ 18$.
BLUE LINE Heavy Duty Switches by Kraus \& Naimer, Code AAL213 with extras. also C16 Sutliches available from stock at less ihan maker's
price.

## ADVANCE TEST EQUIPMENT

VM76 Valve Voltmeter
R.F. measurements in excess of 100 mHz and d.c. measurements up to $1,000 \mathrm{~V}$ with accuracy of $\pm 2 \%$. D.c. range- $300 \mathrm{mV}-1 \mathrm{kV}$ f.s.d. A.c. range- $300 \mathrm{mV}-300 \mathrm{~V}$ r.m.s. Resistance in 8 ranges, 0.02-500 Megohms.
Manufacturer's price £90: Our price $£ 72$
VM78: A.C. Millivoltmeter
Transistorised. $1 \mathrm{mV}-300 \mathrm{~V}$ in 12 ranges. Freq. $1 \mathrm{c} / \mathrm{s}-1 \mathrm{Mc} / \mathrm{s}$. Input impedance 2 Megohms 60 pf. Calibrated in r.m.s. for sine wave and input dB.
Manufacturer's price £70: Our price $£ 55$
TT1S: Transistor Tester (CT472)
Suitable for measuring medium and low powered transistors. Current gain (B) can be measured in range 10 to 500 for p.n.p. and n.p.n. types, either in circuit using the clip-on probes provided. Small, compact instrument.
Manufacturer's price £57: Our price £37/10/-

VM79: UHF Millivoltmeter
Transistorised. A.c. range $10 \mathrm{mV}-3 \mathrm{~V}$ f.s.d., 10 ranges. D.c. current range $0.01 \mu \mathrm{~A}-0.3 \mathrm{~mA}$ f.s.d. 10 ranges. Resistance $1 \mathrm{Ohm}-10 \mathrm{Megohms}$ in 7 decade ranges. Complete with probe.
Manufacturer's price £180: Our price £125
Audio Signal Generator
$15 \mathrm{c} / \mathrm{s}-50 \mathrm{kc} / \mathrm{s}$ in 3 ranges. Output 600 Ohms, $0.1 \mathrm{~mW}-1 \mathrm{~W}$ ( $0.25-24 \mathrm{~V}$ ), variable. Attenuation $20 \mathrm{~dB}-600$ Ohms (Attenuator is incorporated), output 10 mW ( 2.5 V ). $100-250 \mathrm{~V}$ a.c.
Manufacturer's price £46: Our price £30
J2B: Audio Signal Generator
Same specification as for the J1B except that this model has an additional 2 in . meter calibrated $0-40 \mathrm{~V}$ a.c.
Manufacturer's price £50: Our price $£ 35$
H1B: Audio Signal Generator
$15 \mathrm{c} / \mathrm{s}-50 \mathrm{kc} / \mathrm{s}$ in 3 ranges. Sine wave $200 \mu \mathrm{~V}$ 20 V r.m.s. Square wave $1.4 \mathrm{mV}-140 \mathrm{~V}$ peak to peak (approx.). 100-250 V a.c.
Manufacturer's price £42: Our price $£ 30$

Special offer of $10 \%$ discount for schools and Technical Colleges, etc. These were manufactured in U.K. by Advance Electronics Ltd. BRAND NEW, all in original sealed carton. Carr. 10/- extra per item.

## SIGNAL GENERATORS:

MARCONI TF-I44G: freq. $85 \mathrm{Kc} / \mathrm{s}-25 \mathrm{Mc} / \mathrm{s}$, internal and external modulation, power supplies $200 / 250$ v. A.C. (secondhand cond), price $£ 25$ ea.; or available in transit case, complete with spares, in first class condition, 830 ea. carr, on both 30/- ea

TS155c/UP (as new) : price £75 each, carr. £1.
CT53. Freq. range $8.9-300 \mathrm{Mc} / \mathrm{s}$, with Calibration chart. Output $1 \mu \mathrm{~V}-100 \mathrm{mV}$. internal square wave and sinewave modulation at $100 \mathrm{c} / \mathrm{s}$, external modulation $50 \mathrm{c} / \mathrm{s}-10 \mathrm{Kc} / \mathrm{s} ., 230$ v. A.C. Complete with chart, etc.a price £27/10.- ed., carr. £1.
MARCONI TF801A/1 Freq. $10-300 \mathrm{Mc} / \mathrm{s}$, 4 bands, output 200 mV , Atienuator $0-110 \mathrm{~dB}$. Input 75 ohms . £65 each, carr. £1.
MARCONI TF516-F/1: Covering $10-18 \mathrm{Mc} / \mathrm{s}$., 33-58 Mc/s., $150-300 \mathrm{Mc} / \mathrm{s}$. £12/10/-each, carr. £1.
MARCONI CT218: price £65 each, carr. 30 -
CT. 480 and $478: 1.3-4.2 \mathrm{Mc} / \mathrm{s} .$, F.M. or A.M., price 875 each, carr. $30 \%$

HRO RECEIVER. Model 5T. This is a famous American High Frequency superhet, suitable for CW, and MCW., reception crystal filter, with phasing control. AVC and signal strength meter. Freq. range $50 \mathrm{kc} / \mathrm{s}$. to $30 \mathrm{mc} / \mathrm{s}$., with set of nine coils. Receiver andy Set of nine coils, $12 / 10 /$, available only with set. Power unit for HRO $100 / 240$ v. A.C., £2/15/-, carr. 10 .
SPECIAL OFFER: Complete HRO SET (Receiver, Coils and Power Unit) for £30, plus 30/-carr.
HRO-M-SETS available with UX type valves; secondhand cond., with 5 coil and power unit, $£ 20$ each, carr. $30 \%$.
COMMAND RECFIVERS: Model $3-6 \mathrm{Mc}$ 's. and $6-9 \mathrm{Mc} / \mathrm{s}$. , as new, price ¢5/10/- each, post 5/-

BC-433G COMPASS RECEIVER: Freq. 200-1,750 Kc's. in 3 bands, suitable for aireraft, boats, etc. Compleie with 15 valves, power supply input 24 vid.C. at 2 amps. Receiver only 55 each. Carr. 15/-
RECEIVER TYPE S.27: UHF: freq. $35-143$ tunable Mc/s., AM/FM 100/250 A.C. $£ 25$ secondhand cond., $£ 50$ as new, $30 /$ - carr.
AIRCRAFT RECEIVER TYPE 1392: freq. 100-150 Mc/s. tunable, with power unit for $200 / 250$ v. A.C. mains. In serviceable cond., $£ 10$ each, carr. 25/-.

ROTARY TRANSFORMERS: 24 v . input, 175 v . at 40 mA output, $25 /-$, plus $2 /$-post. 12 v . input, 225 v . at 100 mA output, $25 /=$. plus $3 /-$ post (All the plus 2 - post. 12 v. in

ROTARY CONVERTERS: Type $8 \mathrm{a}, 24$ v. D.C., 115 v. A.C. (in 1.8 amps $400 \mathrm{c} / \mathrm{s} 3$-phase, $\mathbf{5} 6 / 10 / \cdot$ each, $8 /$ post. Converter 12 v . D.C. input, 110 v. A.C. $60 \mathrm{c} / \mathrm{s}$ output, $\& 15$ each, $£ 1$ carr.
AVO MULTIRANGE No. 1 ELECTRONIC TEST SET: \&25 each, carr. \&1.
AVOMETERS : Model 47A, £9/19/6 each, $10 /$ - post. Model $7 \mathrm{x}, \mathrm{£} 13 / 10 /$ - each, 10\% post. Excellent secondhand cond. (Meters only). (Batteries and Leads extraat cost).

OSCILLOSCOPE Type 13A, 100/250 v. A.C. Time base 2 c/s,-750 Kc;s Bandwidth up to $5 \mathrm{Mc} / \mathrm{s}$. Calibration markers $100 \mathrm{Kc} / \mathrm{s}$. and 1 Mc 's. Double Beam tube. Reliable general purpose scope, $£ 2210 / \cdot$ each, $30 /$ - carr
COSSAR 1035 OSCILLOSCOPE, £30 each, $30 /$ carr.
COSSAR 339 OSCILLOSCOPE, double beam, \& 10 each, $30 /$ carr.

RELAYS: Relay Unit (with 9 American relays) 24 v. D.C., 250 ohm coils. heavy duty, M. \& B. $30 /$ e each, 4 - post. GPO Type 600,10 relays (a. 300 ohms with 2 M and 10 relays $(a 0$ ohms with 1 M ., $£ 2$ each, $6 /-$ post.

CALIBRATION TACHOMETER Mk. II: Maxwell Bridge Type 6C/869, £25 each, £2 carr.
ROTAXVARIAC \& METER UNIT: Type 5G.3281. Reading 0-40 v., 0-40 mA and 0.5 amps., all on 275 deg. scales, $£ 30$ each, $£ 2$ carr.
MARCONIIMPEDANCE BRIDGE, TF-373: inductance $5 \mu \mathrm{~h}-100 \mathrm{H}$ in 5 ranges capacity $5 \mathrm{pF}-100 \mu \mathrm{~F}$ in 5 ranges, resistance .05 meg. 1 meg., power supply 250 v . A.C., £37/10/- each, carr. $15 /$.

HEWLETT PACKARD TYPE 400C: 115 v . 230 v . input $50 / 60 \mathrm{c} / \mathrm{s}$. Freq range $20 \mathrm{c} / \mathrm{s}-2 \mathrm{Mc} / \mathrm{s}$. Voltage range: $1 \mathrm{mV}-300 \mathrm{v}$. in 12 ranges. Invut impedance 10 megohms. Designed for sack mounting, $\mathbf{£ 3 0}$ each, carr. $15 /=$
TCS MODULATION TRANSFORMERS, 20 watts, pr. 6,000 C.T., sec. 6,000 ohms. Price $25 /-$, post $5 /$ -
AR88 SPARES. Antenna Coils L5 and 6 and L7 and 8, Oscillator coil L55 Price $10 /$ - each, post $2 / 6$. By-pass Capacitor K. $98034-1,3 \times 0.05 \mathrm{mfd}$. and M .98034 $4,3 \times 0.01$ mfd. 3 for $10 /-$, post 276 . Trimmers, $95534-502,2-20$ p.f. Box of 3 ,
$10 /-$, post $2 / 6$. Block Condenser, $3 \times 4$ mfd., $600 \mathrm{v.}$,22 each, 4 - post. Filter $10 /-$, post $2 / 6$. Block Condenser, $3 \times 4$ mfd., 600 v.
Choke, L45 and $50, \mathrm{~K} 901433-501,25 /-$ each, $4 /-$ post.
CONDENSERS, $10 \mathrm{mfd} .1,000$ v., $12 / 6$, post $2 / 6$. 8 mfd ., 1.200 volts, $12 / 6$, post $3 /-.8$ mfd. 600 volts., $8 / 6$ post $2 / 6$. $0.25 \mathrm{mfd}, 2 \mathrm{kv}, 4 /-$ post $1 / 6$.
AUTOMATIC PILOT UNIT Mk. 2. This complex unit of diodes and valves, relays, magnetic clutches, motors and plug-in amplifiers, with many other items price $£ 7 / 10 /-$, $£ 1$ carriage.

## TELEPHONE EQUIPMENT:

DESK TELEPHONES with dial, in excellent secondhand cond. \&2:10. a pair, 10/-post.

TELEPHONE WIRE: 220 yds ., $£ 1$ a ro!l, post 6 -
GPO TERMINAL BI.OCKS, 7,6 each, FUSE AND PROTECTOR, 7.6 each. Post on both $2 / 6$.

TELEPHONES (PORTABLE) TYPE "F ${ }^{\prime \prime}$. Suitable for all outdoor ctivities up to a range of 5 miles. Price $\$ 7 / 10$ - each, als new, complete with carrying case. Price $\mathbf{5 / 1 0}$. each, secondhand. Carr, 10 .

TELEPHONE EXTENSION CORD. Brown, 3-way; come in lengths of 6 ft . and $14 \mathrm{ft}, 7,6$ and 15 - respectively. Post $2: 6$.

NIFE BATTERIES: 6 v. $75 \mathrm{amps} .$, new, in cases, $£ 15$ each, £l carr.; 6 v. 160 amps., new in cases, £25 each, $£ 110 /$ carr.; 4 v .160 amps , new, in cases, C 20 cach, $£ 1 / 10 /-$ carr.
L.R. 7 Cells, only 1.5 v. 75 amps., new, $\mathbf{£ 3}$ each, $12 /$ - Carr

The above batteries are low resistance designed to give a heavy surge for starting and can be stored for long periods without any effect to their performance.
WAVE GUIDES FLEXIBLE CG-182/APM40. Length 18 inches. Price $£ 2$ each, post 4 /.
MACHMETERS: Range $0: 1$ and $0: 1.2,6.4338$ and 5325 respecrively, price 30/- each, postage 5 -

FUEL INDICATOR Type 113R: 24 v . complete with 2 magnetic counters $0-9999$, with locking and reset controls mounted in a 3 in . diameter case. Price 30 - each, postage 5 -
DRY BATTERIES, No. 1. HT 90 v. and 7 v. size $2!\mathrm{in} . \times 3!\mathrm{in} \times 5 \mathrm{in}$. 5/- each, or 5 for $£ 1$, post $4 /-$ and $7 / 6$ respectively.
BATTERY NO. 4 (suitable for bells, ctc.). $4!$ V., size $4!$ in. 6 in. $\times 2$ in., 5/- each, post 3 .

UNISELECTORS (ex equipment): 10 Bank 50 Way, alternate wipe, $£ 2 / 5$ 4ark 25 Way alcernate wipe, 2/2/6 ea. 8 Bank, 25 W'ay, £2/5/-ea. 6 Bank, 25 Way, 22 ea. 4 Bank, 25 Way, 35 - ea. All the above are 75 ohm coil. Postage 4/- per uniselector.
FREQUENCY METERS: 1 M 13 or BC-221; 125-20,000 $\mathrm{Kc} / \mathrm{s}$, $\mathbf{~} 25$ each., carr. 15j-. TS. $175 \mathrm{U}, £ 75$ each, carr. £1. TS323/UR; 20-450 Mc/s., £75 each. carr. 15/. FR-67/U: This instrument is direct reading and the results are presented directly in digital form. Counting rate: $20-100,000$ events per sec. Time Base Crystal Freq.: $100 \mathrm{Kc} / \mathrm{s}$. per sec. Power supply: 115 v ., $50 / 60 \mathrm{c} / \mathrm{s} ., \mathrm{£} 100$ each, carr £1.
CT. 49 ABSORPTION AUDIO FREQUENCY METER: freq. sange $450 \mathrm{c} / \mathrm{s}$ $22 \mathrm{Kc} / \mathrm{s}$. directly calibrated. Power supply $1.5 \mathrm{v} .-22 \mathrm{v}$. D.C. $£ 12,10 /$ - each, carr. 22 K
$15 /-$
AMERICAN EQUIPMENT: Power supply, PP893/GRC 32A; Filter D.C. Power Supply F-170/GRC 32A: Cabinet Electrical CY 1288/GRC 32A; Antenna Hox Base and Cahles CY $728 / G R C$; Mast Erection Kits, 1186 GRC; Receiver type 27 8B; Directional Antenna CRD.6: Comparator Unit, CM.23; Directional Control CRD.6, 567/CRD and 568,CRD; Azimuth Control Uits, $260 / \mathrm{CRD}$. Test Set URM.44, complete with Signal Generat or TS.622/U, £100 each, £2 carf.
CATHODE RAY TUBE UNIT: With 3 in , tube, colour green, medium persistence complete with nu-metal screen, $£ 3 / 10 /$ each, post 7/6.

TRANSMITTER/RECEIVER TCS -12: Freq. $1.5 \mathrm{Mc} / \mathrm{s}-12 \mathrm{Mc} / \mathrm{s}$., output 25 W , complete stations available with antenna equipment, mast, and petrol generator. Trans-receiver, complete with 12 v. D.C. Power Unit and A.T.U., $£ 25$ each, Trans-receiver, complete with Unit for the above $£ 20$ each, carr. £3. Complete aeria! systems, $£ 10$ each, carr. $£ 2$.
TACAN. Trans./Receiver, same as ARN21, British made, STC, TR9171 complete with five 2C39As with associated valve-holders. As new price, £25. Used plete with five 2C39As with
condition, \&15, carriage £1.
APNI ALTIMETER TRANS. REC., suitable for conversion $420 \mathrm{Mc} / \mathrm{sin}$ complete with

GEARED MOTORS : 24 v. D.C., current 150 mA , output 1 r.p.m., 30/- each $4 /-$ post. Assembly unit with Letcherbar Tuning Mechanism and potentiometer, 3 r.p.m., $£ 2$ each, $5 /$ - post.
MOTORISED ACTUATOR: 115 v . A.C. $400 \mathrm{c} / \mathrm{s}$. single phase, reversible, Morust approx. 3 inches complete with limit switches, etc. Price $\boldsymbol{\AA 2 / 1 0 / - ~ e a c h , ~}$ postage 5/- (ex equipment).

Actuator Type SR-43: 28 v. D.C. 2,000 r.p.m., output 26 watts, 5 inch Actuator Type SR-43: 28 V. D.C. $2,0 \mathrm{lbs}$., rating intermittent, price $£ 3$ each, post 5
28 v. D.C. 200 r.p.m. current consumption approximately 6 amps. Price ¢3/10/-, post $7 / 6$.
FRACTIONAL MOTORS \& FANS: Low ineria Motor 5UD/5361, Type $903,24 \mathrm{v}$. input D.C., $£ 2 / 10 /$ - each, $5 /$ - post.

Model PM84: 28 v. D.C. a 2 amps., 4,500 r.p.m., output 40 watts continuous duty complete with magnetic brake. Price $£ 2$ each, postage 4 -
Model SR-2: 28 v. D.C. 7,000 r.p.m., duty intermittent, output 75 watts,
 A.C. Motor 115 V. 50 , 28 v. D.C. at 45 amps; 12,000 r.p.nı. output 750 W'. (approx. 1 h.p.), brand new, $£ 2 / 10 /$ each, post $7 / 6$.

# HI-FI, AUDIO AND TAPE RECORDER 

CHESHIRE Stockport

AUDIO CENTRE   We stock the full rante of Hi-Fi Tape Recorders and   special Transistor Radios.   Fairbotham and Co., Ltd., 58/62 Lr. Hillgate, Stockport. iel: 4872 SPECIALISTS IN HI-FI rURNITURE

## CHESHIRE Wilmslow

> go scandinavian hi-fi. . . Dynatron, Bang and Olufson, Arena, Sony, $\begin{aligned} & \text { Normende, Leak, Armstrong, Ferrograph, } \\ & \text { Saba, Fisher, Rogers, Ferguson, Audio, Eddy- } \\ & \text { stone, Grundig, Wharfedale, Eagle, Bryan, } \\ & \text { Tandberg, Pioneer } \\ & \text { the hi-fi and tape recorder lounge } \\ & \text { (R. S. BIRD. A.I.P.R.E.) } \\ & \text { CEXPERT STAFF QADICE SERYICE PART EXCHANGE } \\ & \text { CULLAFTE-SALES SERVICE CDEMONSTRATIONS DAILY } \\ & \text { GREEN LANE, WILMSLOW; CHESHIRE } \\ & \text { For personal attenion ring I'ilmslow } 24766 \\ & \text { and ask for Mr. Bird }\end{aligned}$

## DERBYSHIRE Derby

## THE MIDLANDS HI-FI SPECIALISTS buckiand's of derby

90 fe. Frontage-3 Floors of Sound Recording Seudios-Manufaceurers' HI-Ft 41/49 LONDON ROAD, DEABY. Tel. 48425/6/7

## ESSEX Epping

EPPING - ESSEX
CHEW a OSBORNE LTD
AKAI - AMPEX - ARENA - ARMSTRONG - AUDIO TECHNICA-B\&O-BRYAN-CELESTION-FISHER GARRARD - GOLDRING - GOODMANS - HACKER KEF - LEAK - PHILIPS - RADFORD - ROGERS SHURE - SONY - THORINS - TRUVOX WHARFEDALE - WINDSOR Home and Showroom Demonstrations: Arter Sales Service - H.P. Facilities.

Ilford


## Romford

Romford Sound \& Vision Service Itd.
78a BRENTWOOD RD., ROMFORD.

TEL.: ROMFORD 41644 OR COME \& SEE

GLAMORGANSHIRE Cardiff
J. GOUGH \& CO. LTD.

DESIGNERS OF THE FAMOUS GOUGH LOUDSPEAKERS THE LARGEST STOCKIST OF HI-FI STRATION IN SOUTH WALES
148-154 NORTH ROAD, CARDIFF
Te!ephone: 28473

## GLOUCESTERSHIRE Bristol

## BRISTOL \& WEST RECORDING SERVICE LTD.

6, PARK ROW, BRISTOL, I. ALL LEADING MAKES OF HI-F参 AUDIO EQUIPMENT TAPE RECORDING AND SERVICING SPECIALISTS IN TAPE TO DISC SERVICE

- Phione: Bhistol 20 O.

HAMPSHIRE Petersfield
for everything Hi-Fi
Agents for all leading makes of HI-FI- AND TAPE RECORDERS

## Petersfield camera centre lid.

Lovont Street, Petersfield 2651/2. Hompshire
Part Exchanges, Credit \& H.P. Terms Photographic equipment taken in Exchange for $\mathrm{Hi}-\mathrm{Fi}$ etc.

## Southampton



## HERTFORDSHIRE Barnet

## AUDIO SERVICES

The Specialists with the Hi-Fi Know How Famous for their Dynastatic and Dynasonic Loudspeakers.
Contact
Audio Services Hi-Fi Ltd.
82, East Barnet Road, New Sarnet, Herts.
Arents for all heding Hi- Fi and Audio Equipment

## KENT Canterbury

## CAMTERBURY CHEF

- Tape, Hi-fi Cabinets and Accessories
- Comfortable Stereo Listening Lounge
- Free Home Demonstrations \& Installation

26 St. Dunstan's Street, CANTERBURY
TEL: 65315

## Gravesend

## GRAVESEND HI-FI CENTRE

BENNETT \& BROWN ${ }_{1925}^{\text {Fit. }}$ 60B WROTHAM RD., GRAVESEND, 3245-3060
Visit our Mi-Fi Showroom and Demonstration Room. All leading makes scocked, including Tandberg, Armstrong, Leak, Quad, B. © O. Rogers, Truvox, Thorens. KEF, Goodmans, Hacker. Girundig. etc.

## LONDON

Davis \& Kays Hi-Fi Centres
at II5, Kingsway, W.C.2. 405-0446 5, Turnpike Parade, N.15. Bow 9291 857, High Rd., Finchley, N. 12 Hill 3319 4, High St., Walthamstow, E. 17 Cop 4121 Part-exchanges Welcomed. Immediate Demonstrations.

## HI-FI MAIL ORDER SPECIALISTS

C. C. GOODWIN (SALES) LTD. 7 THE BROADWAY, WOOD GREEN, LONDON, N. 22
TEL: BOWES PK. 0077/8
All leading makes in stock.

FOR THE fINEST HI-FI EQUIPMENT, A WIDE SELECTION OF RECORD PLAYERS \& RADIOgRAMS, AND UNIQUE 'TOP OF THE POPS' dISC DISPENSER COME TO:

# HARRODS <br> KNIGHTSBAIDGE SWI 

Stockist for all the lcading makes of Hi-Fi Audio Equipment	
33 TOTTENHAM CT. RD. W.I	01.6362605 01.723
207 EDG WARE ROAD, W. ${ }^{2}$	$\begin{aligned} & 01.7233271 \\ & 01.3532833 \end{aligned}$
	- 01.7239789

## YOUR GOOD HI-FI SHOP

Right for stocks - everything you want Right for service - our own department Right for price - come olong, ond see Modern Electrics (IRetail) Ltd. 120, Shaftesbury avenue. london, w.I

## H. L. SMITH \& CO. LTD. <br> Comprehensive stock of equipment by oll leading mokers. <br> 287.9 EDGWARE ROAD, <br> LONDON, W.2. <br> Tel.: 01-723 5891

## TAPE RECORDER HI-FI CENTRE  SPECIALISTS IN TAPE RECORDERS. ACCESSORIES HOUR CENTRE FOR FRIENDIY HELP. SALES AND 3 - 4 STATION PARADE, <br> SHEEN LANE, SHEEN, <br> Tel. 8760985 <br> LONDON, S.W. 14 <br> Opposite Mortlake Stotion, S.R.

## MIDDLESEX

## Teddington



DAYTRONICS LTO.
liga high street,
TEDDINGTON
MIDDX. O1-977 1324

Carefully selected equipment always available. Daily demonstrations Early closing Wednes.m. arly closing Wednesday Open all day Sat. No parking restrictions
Pertonal attention of S. J.Day, Sales \& Technical W. H. SMITH, Sales, Tech nical \& Service.

## DEALERS AROUND THE BRITISH ISLES

## NOTTINGHAMSHIRE Nottingham

For all High-Class Hi-Fi equipment in the Nottingham area.
Nottingham Tape Recorders Limited 11 Burton Street (next to Trustee Savings Bank, corner of Trinity Square). Nottingham 4522?

## LANCASHIRE Bolton

Harker \& Howarth (Music) Ltd.,
7 The Arcade, Bradshawgate, Bolton, Telephone: 26623/4
Main HI-FI Stockists

## Bury

## D.SMITH \& SON

HI-FI EQUIPMENT - STEREOGRAMS TAPE RECORDERS - 2 SHOWROOMS B. B. Oynatron, Hacker, Quad, Leak, Radiord Armstrong, Ferrograph, Revox. Truvox, Uher Comparator Dems - Closed all Tuasday Specialists in 'SOUND' for 36 years 242 184 THEROCK, BURY, TEI: 1242

## Manchester

RARE RECORDS LTD.
STORKISTS LEAK, ARMSTRONG, B. 20.
GARRRARD, HACKER, ETC.
36 JOHN DALTON STREET MANCHESTER, 2
Tel.: 061-832 7344/5

## IN MANCHESTER

godLeys
2-10 Shudehill, Manchester. Tel: BLAckfriars 9432 (5 Innes)

Lancs. High Fidelity Lid.
8 DEANSGATE

## MANCHESTRR 3

Next to the Grosvenor Hotel LEADING STOCKISTS OF ALL MAKES

## SUSSEX Brighton

## LANES (RanO1) LTD.

largest stockist of all his FI EQUIPMENT IN THIS AREA 11, GARDNER ST., BRIGHTON TEL. 681773

Worthing

## Hi-Fi in SUSSEX <br> A UNIQUE SERVICE <br> BOWERS \& WILKINS LTD. <br> BECKET BLDGS. LITTLEHAMPTC. 1 RD. WORTHING 5142

ALL OUR BRANCHES CARRY A FULL RANGE OF THE LATEST HI-FI EQUIPMENT
 Opan all day Sats. blimmoram:
(adyord. 10 North Parace Are gTiTOL: lílcmer Cartlo streat DA Limeroit is pont Rown Wyad. DCEBY: \% Os.antitou Roud. The Spol GLADOOW: is dar rylo urtet 103 suuchiehull Stroet

HOLL: 91 Paragon strot
IWPD: $3 / 7$ Connty ( (locea) Arcal IICEFTER: 28 High siteol
LIV ERPOOL: 73 Dala frrent
LOMDOR: 238 Eds ware Rosd, w. 8
98 Hies Holborn, W.C.I.
 MEWCASTK: il Bleckett street 8EWCAIDLD: 13 Exchang Streot

ARMSTRONG, LINEAR, LEAK, QUAD, JASON, RDGERS, TRUYOX, TANDBERG, FELROGRAPH. COMOISSEUR GOLDRING, FANE, WHMOISSEUR WB, GOODMAN, WHARFEDALE, GRAMPLIAN, RESLO, BRENELL, etC. Cash or Credit Terms.
102 Menconner Lane, Bramley Leeds, 13.

NORTHUMBERLAND
Newcastle

SOUND EQUIPMENT SPECIALISTS Morton sound

Tel. 2-6902

TAPE TO DISC
12 OXFORD STREET
NEWCASTLE UPON TYNE I

Newcastle
J. G. Windows Ltd. 1/7 Central Arcade
Newcastle upon Tyne I Telephone: 21356
ALL LEADING MAKES OF HI.FI E AUDIO EOUIPMENT

## OXFORDSHIRE Oxford

HIGHEIDELITYINOXFORD
SIX SOUTH PARADE OXFORD
HORNS
Information - Demonatration - Inatallation

## Henley

HENLEY-ON-THAMES AND READING DISTRICT G. O. MOORHEN high fidelity specialist
190 READING ROAD, HENLEY. Tol.: 4163 Appointed Agent for
GANG $\&$ OLUFSEN, FISHER, TANBERG, REVOX
ARMSTRONG, FERROGRAPH, LEAK, QUAD ROGERS, K.E.F., WHARFEDALE, ETC., ETC.


WORCESTERSHIRE Worcester
HI-FIDELITY SPECIALISTS JOHNSONS SOUND SERVICE

43 Friar St., Worcester Worcester 35740

WARWICKSHIRE Birmingham

## GRIFFIN RADIO LTD.

 M10 135994 Bristol Street • Birmingham, 5
$\star$ Complete advisory facilities for all makes of equipment.
$\star$ Full range of Classical and Light Music LPs.

## Coventry

Coventry's 100\% tape recorder specialists for service and sales, tape recorders and hi-fi.

Stocking

> - Bang \& Olufsen
> - Sony - Ferrograph Tandberg
> - Akai National Sanyo - Sharp

## Coventry Tape Recorder Service

33 King William Street - Coventry Teleohone: Coventry 29668

## Coventry

## ELECTRONIC SERVICES

HI-FI SPECIALISTS
33 CITY ARCADE COVENTRY

TEL: 24632

YORKSHIRE Halifax

HALIFAX
Tape Recorder Centre (Halifax)
30 KING CROSS STREET
Telephone: Halifax 04226632
LEADING HI-FISTOCKISTS

## SPARKSOUND

## LEAK SONY B \& O

 ARMSTRONG \& MANYOTHER LEADING MAKES LTD. (INDUSTRIAL ELECTRONICS) 41 BOROUGHROAD. TEL.: 2851

York
CUSSINS \& LIGHT LTDD. KINGS SQUARE, YORK

TEL. 55666
For first cluss service


## WEYRAD

## COILS AND I.F. TRANSFORMERS IN

LARGE-SCALE PRODUCTION FOR RECEIVER MANUFACTURERS
P. 9 SERIES $10 \mathrm{~mm} . \times 10 \mathrm{~mm} . \times 14 \mathrm{~mm}$. Ferrite cores 6 mm . $472 \mathrm{kc} / \mathrm{s}$ operation. Single-tuned I.F.s and Oscillator Coils.
P. 55 SERIES $12 \mathrm{~mm} . \times 12 \mathrm{~mm} . \times 20 \mathrm{~mm}$. Ferrite cores $4 \mathrm{~mm} .472 \mathrm{kc} / \mathrm{s}$ operation. Single-tuned I.F.s and Oscillator Coils.
T. 41 SERIES $25 \mathrm{~mm} . \times 12 \mathrm{~mm} . \times 20 \mathrm{~mm}$. Ferrite cores $4 \mathrm{~mm} .472 \mathrm{kc} / \mathrm{s}$ operation. Double-tuned 1st and 2nd I.F.s and Single-tuned 3rd I.F. complete with diode and by-pass capacitor.

These ranges are available to manufacturers in versions suitable for most of the popular types of Transistors. The Oscillator coils can be modified to enable specific tuning capacitors to be used provided that bulk quantities are required.

## OUR WINDING CAPACITY NOW EXCEEDS 50,000 ITEMS PER WEEK

On the most up-to-date and efficient machines backed by a skilled assembly labour force for all types of coils and assemblies.

WEYRAD (ELECTRONICS) LIMITED, SCHOOL ST., WEYMOUTH, DORSET

## SUPERIOR QUALITY NEW RESISTORS

High Stability
Carbon Film
$1 / 10$ doz. mixed; $14 / 6$ per 100 mixed W $5 \%$ E24 series $5.1 \Omega$ to 390 only, as above but dd. extra per resistor IW $10 \%$ E12 series $47 \Omega \Omega$ to $10 \mathrm{M} \Omega \mathrm{I} / 9$ doz. mixed; $13 / 6$ per 100 mixed. IW $5 \%$ E24 series 4.752 to $10 \mathrm{M} \Omega 2 / 2$ doz. mixed; $17 /$ per 100 mixed. I W $10 \%$ EI2 series 1052 to IOMS 4d, each; $3 / 3$ doz. mixed.
$1 / 6$ per 100 less when ordered in 100 's of one ohmic value.
PLEASE state your choice of values in mixed quantities.
Quality carbon Skeleton Pre-sets, fit 0 . 1 in . matrix: $100,250,500 \mathrm{ik}, 2 \mathrm{k}$, $2.5 \mathrm{k}, 5 \mathrm{k}, 10 \mathrm{k}, 20 \mathrm{k}, 25 \mathrm{k}, 50 \mathrm{k}, 100 \mathrm{k}, 250 \mathrm{k}, 500 \mathrm{k}, 1 \mathrm{M}, 2 \mathrm{M}, 2.5 \mathrm{M}$ 5M $10 \mathrm{M} \Omega$. All values available in horizontal or vertical mounting, $/=$ each.
Volume Controls: $100,250,500 \Omega$ and series co $10 \mathrm{M} \Omega$ linear, $2 / 3$ each. (Carbon track) $5 \mathrm{k}, 10 \mathrm{k}, 25 \mathrm{k} \Omega$ and series to $5 \mathrm{M} \Omega$ log., $2 / 3$ each.
Electrolytics: 5, $10,25,50 \mu \mathrm{~F}$ 10V 9d. 50V Ceramics: . $01, .02, .05 \mu \mathrm{~F}, 5 \mathrm{~d}$.
Mullard electrolytics, sub-min. C426, whole series stocked.
PICK OF THE NEW SEMICONDUCTORS
silicon, many types including
BC 10745 V 8125-500, 4/-
BC 10820 V 日125-900, 3/11
BC108 20V $8125-900,3 / 11$
BCI 6820 V ह125-900 $2 / 6$
BC109 and BC169 are low noise eypes. BC169 20V $8240-9002 / 9$
BC109 and BC169 are low noise iypes. BC167, -8, -9 are plastic Best value in High Power: $2 \mathrm{~N} 3055117 \mathrm{~W} 100 \mathrm{~V}, 16 / 6$.
Best value in Field Effecs: MPFIO5, $\mathrm{gm}: 2$ to $6 \mathrm{~mA} / \mathrm{V}, 10 \%$ Also: 2N3702, 3, 4, -5, 4/- each. $2 \mathrm{~N} 3707,5 /-262926$ from $2 / 6$. Germanium, many types including:
Low noise: 2G308, 6/9; 2G309; 7/9; NKT275, 3/8. 1305 (PNP), 4/- each Best in High Power: NKT403, 16/3; 2N2147, $16 / 9$.
Miniature Silicon Diodes: $15940,30 \mathrm{~V} 75 \mathrm{~mA}$, $1 / 3$.
Other Diodes: OA47 (gold bonded), 1/9; OA91 (115V 50 mA ). $1 / 3$.

## PEAK SOUND PRODUCTS

CIR-KIT No. 3 Pack, 12/6; adhesive copper: Sic. $x$ tin. or $\frac{1}{5 i n}$, , 2/-: 100/t., 30/-
 Transistorised Stereo Amplifier Kit sype 5A8-8, $\mathbf{6 1 0 / 1 0 / \%}$
Cabinet, $£ 3$; Power Supply Kit, $£ 3$. Pose ${ }^{2}$. ALL GOODS BRAND NEW NO SURPLUS FAST DELIVERY DISCOUNTS: $10 \%$ over $\mathbf{C 3} ; 15 \%$ over (10. P. \& P. $1 /-$; Iree over 61. Send I/- for 1968 Catalogue. Contains data and equivalents.

## ELECTROVALUE

6 MANSFIELD PLACE, ASCOT, BERKSHIRE.

## VALVES

SAME DAY SERVICE NEW! TESTED! GUARANTEED!

SETS 1R5, 1S5, 1T4, 3S4, 3V4, DAF91 DF91, DK91, DL92, DL94. $115,1 S 5,1 \mathrm{~T} 4,3 \mathrm{~S} 4,3 \mathrm{Y} 4$, DAF91, DF91, DK91, DLO2, DL.
Set of 4 for $18 / 9$. DAF96, DFY6, DK 96 , DL96 4 for $25 /-$.


#### Abstract

 $\left\{\begin{array}{l}10 \mathrm{Fl} \\ 10 \mathrm{Pl} 13\end{array}\right.$ $\left|\begin{array}{ll}10 \mathrm{Fl} & 18 / 0 \\ 10 \mathrm{P} 13 & 14 / 6 \\ 12 \mathrm{AT} & 3 / 9\end{array}\right|$  

\section*{READERS RADIO}

85 Torquay Gardens, Redbridge, Ilford, Essex. $\begin{gathered}01.550 \\ 7441\end{gathered}$


Postage on 1 valve 9d. extra. On 2 valves or more, postage $6 d$, per valve extra. Any parcel Insured against Damage in Transit 6d. extra.

## Are you keeping up with the Jones's?



## Space Age version of the most popular connector of all



Attractive two-tone grey moulded cover. All moulded cable clamp - no tools required. Front release snap-in pin and socket contacts. Complies with European Safety Requirements. Plus Jones simplicity, versatility and rugged reliability.

Literature available from
『®ig

## P.S.P. ELECTRONICS LTD

228 Preston Road. Wembley, Middlesex Tel: 01-904 9521

THE CONNECTOR SPECIALISTS
M.O.T. Approval Number 12638
and
A.W.P. ELECTRONICS LTD

Rowan House, Smallfield Road, Horley. Surrey Tel: Horley 5481

## HAMMERLUND SPGOOJX COMMUNICATION RECEIVER




 Rerfeet workhing onler, £125 +x wirkm

roog communication receiver
crioo marconi communication receiver. ho kelw
 1. 40 /

CR $300 / 2$ MARCONI COMMUNICATION RECEIVER ${ }^{15}$ ked


340 MURPBY COMMUNICATION RECEIVER
Higle quallt



BCe21 FREQUENCY METERS. $1: 25$ to 20 Mc/m, withi milit int

t.f.s018/a/s marcont stanal oenerator. Frequency ratige $12 \cdot$ - $85 \mathrm{Mc} / \mathrm{m}$ in tive rangen. Ditrectly callibratel ifrequency
 sble directily callurate. 1 from $0.1 \mu \mathrm{~V}-0.5 \mathrm{~V}: \mathrm{b}$, wigh-up to 11

 ct 218 marconi signal aenerator t.f.937. Cinetw




 veight 117 mm . E65. P. \& P. 80 /.

## tFbs marconi video oscillator



dOUbLE BEAM oscilloscope type ba. Thue lawe



collins t.c.s. transmitter and receiver.
 canadian marconicso. Fifeil. $1.75 \mathrm{Me} / \mathrm{a}$, tol til Mc/w in
 31 SETS MK, II TRANS-RECEIVER V.h.F. to th t M M.W.C.



No. so receivers. first class condition. tested inverters, leland airborne products.

standco vibratina reed frequency meter, ang th

beckman expanded scale voltmeter

cornell dubilier radio noise filter. 14 ampe "to


elapsed time indicators.



electronic speciality co., voltage sensor sealed.
cutler \& hammer relays. sealed. 3 p.s.t. 100 amp.


1 P.S.T. 50 AMP. CONTACTS. Im V. 11.c: 20.
3 P.S.T, 25 AMP. Contacts. 2 m Y. 19,C: 30
1 P.S.T. 200 AMP. CONTACTS
$\qquad$

a. a.a. of america time delay relay, p.d.t. Hange Pr, 3/f.



WE have a selection of miniature synchro. reCEIVERS. TRANSMITTERS, TORQUE CONYERTERS AND variable resistors. It nitume 4 nuluw. 17/6.

Smithe s-day wall clocks.

SEND 3/6 P.O. FOR CATALOGUE

## G. BURT

13 PROSPECT PLACE,
HYTHE,
NR. SOUTHAMPTON,
HAMPSHIRE

WW-133 FOR FURTHER DETAILS


We supply B.A. Screws, etc. in brass, steel, stainless, phosphor bronze and nylon to laboratories throughout the Commonwealth.
We can also offer early delivery for many sizes of screws, etc. with Metric Threads Please send for List W9/65 (WW)
WALKER-SPENCER COMPONENTS LTD.
5, High Street, Kings Heath, Birmingham, 14. Telephone: (021 for STD) HIGHBURY 3155 (Sales)

## JJ JUNIOR DECADE BOXES

resistance BOXES ACCURACY $0.4 \%$

FROM STOCK

Suicable for use at high frequencies
MODEL
115 Decade 0 to $1,111,100$ ohms
$!25$ Decade 0 to 111,110 ohms
144 Decade 0 to 111.100 ohms
144 Decade 0 to 11,110 ohms
163 Decade 0 to 1,1100 ohms
 MODEL
MC1 100 pf to 0.111 uf
JC2 30 to 10,140 pf
J. LLOYD INSTRUMENTS LTD., Brook Ave., Warsash, Southampion




 CUT Your Electractiv bills by
 3000 WATTS BEAT. Vary the hest of your
ELHCTHIC FTREs. Ideal for ELECTRIC
HLANKETS BLANKETS. hounehold IRONS. whume
 intightnexa of all homehold LAMPS, fron Ellimuser to full brishtherse. Dilcal for SPOT

 DERS HOOD MIXERS, VACUUM
CLEANERS. WABHINA MACHINES GPIN DRYERS, HEDRE CUTTERS WILL CONTROL ALL AC/DC MOTOR P. TO \% H.P. Thene nolts mint not be millumed what orilluary rempentancen anit

COLLAPSIBLE AERIAL
in 5 SECTIONS CLOSED 13 CLOSED 13
OPEN 5-6







 mointied fir improved performanice:



TVILEUSION-LGGHTNG


Superbly denirned POWER CONVERTER (de OUTPUT. Buablex you to rina no in 20 wat

 compact Ionvern meel cane. Cinnplete with come


$\qquad$
$\qquad$
$\qquad$
MGIOBE SCMEMTIFICLID
DEPT W.W.S. 24 CAWOODS YARD.
MILL STREET, LEEDS, B.
BENTLEY ACOUSTIC $C O R P O R A T I O N$ LTD. 38 CHALCOT ROAD, CHALK FARM, LONDON, N.W. 1 THE VALVE SPECIALISTS 47 NORFOLK ROAD, LITTLEHAMPTON, SUSSEX. Littlehompton 2043 Please forward all mail orders to Littlehampton

O	5/2	6B87 16/8	6V60 3/8	$20 \mathrm{r} 211 / 8$	306	D	8/-	
OH2	6/-	6BW6 $7 /$	$6 \times 4 \quad 3 / 8$	$20 \mathrm{L1} 13$	807 11/9	DM70	8/-	
OZ 4	$4 / 3$	6 BW 7 3/8	$6 \times 509$	211P1 17/6	956 2-	DM71	$9 / 8$	SCH35
1 A 3	26	4C8 8/8	6 Y 7 G 128	$20{ }^{3} 3 \quad 18 /=$	1821 10/6	DW4/3t0		
1 AO	91/	6C9 10/9	$7 \mathrm{B6} \quad 10 / 8$	20P4 17/8	5763 10/-		$8 / 8$	${ }_{\text {cher }}$
1A7G	$7 / 6$	6CD60 19/6	$7 \mathrm{B7}$ 71-	2015 17/-	7193 10/6			ECHR3
1c5	419	$\stackrel{\text { ® }}{ }$	7 CL	25a60 7/8	$2475 \quad 216$			8
$1 \mathrm{D}^{\text {d }}$		6CW4 12	708	$25 \mathrm{L6G} 48$	11834 20--			
1Df	$9 / 6$	6D3 76	${ }^{\text {¢ }} \mathrm{H} 7$		AC2PEN ${ }^{\text {d/- }}$	DY8	4/-	
1PD1	6	${ }^{6 D 6}{ }^{3 /-}$	7R7 18/6	$25 Y 5086$	AC2PEN19/8	E83F	24/-	ECL84
1 FD9	$3 / 3$	${ }_{61}^{681}$		$\begin{array}{ll}25240 & 8 / 3 \\ 2575 & 7 /\end{array}$	AC2PEN/8	E880CC 12	12\%-	ECL85
${ }_{1}^{106}$	${ }_{7}^{8 /-}$	${ }_{6 F 12}^{681 / 2}$	$\begin{array}{ll}7 \times 4 & 8 / 6 \\ 98 W & 8 / 6\end{array}$	${ }_{25760}^{25 \%} 818$	AD $19 / 8$	E180F 17	17/8	FCL88
1 L	2/6	$6 \mathrm{Fl} 3^{3 / 6}$	9D7 7/6	30 C 1	ACSPEN4/9	EA50 1	1/8	EC
1LD5		3F14 15/-	10 Cl 9/-	30 Cl 51316	AC/PEN ${ }^{\text {(5) }}$	EA76		
10xs	4/6	$6 \mathrm{FFi5}$ 10/9	10C2 12/-	30 C 17 13/-			3/3	EF3if
INSG	$7 / 8$	$6_{6}^{6 F 17}$ 12/8	$\begin{array}{ll}10 \mathrm{D} 1 & 7 /- \\ 10 \mathrm{D} 2 \\ 11 / 8\end{array}$	$\begin{array}{ll}30 \mathrm{Cl8} & 9 / 8 \\ 30 \mathrm{~F} 5 & 11 / 6\end{array}$	AC/PEN 19/6	EAF42	$7 / 8$	EF
18.	4/9		$10 \mathrm{~F}{ }^{10 \mathrm{l}} 1$	${ }^{30 \mathrm{~F}} \mathrm{~L} 1 \mathrm{l}^{151 / 6}$	$\mathrm{AC} / \mathrm{TH} 1$	EB34	7/8	EF
186	3/8	$6 \mathrm{~F}_{2} 4$ 10/-	10 Fg 8/-	$30 \mathrm{FL12}$ 15/-	C. ${ }^{\text {10/- }}$	E141		EF40
104	${ }^{5} 8$	8F28 10/6	$10 \mathrm{Fl} 8^{\text {9/- }}$	30FL1412/6	$\mathrm{AC}_{4 \mathrm{~T}}{ }^{\text {19/8 }}$	Eb91		
U	$5 / 3$	$6 \mathrm{Fr32}^{\text {2/- }}$	10LD1110/-	30 LI 81-	11/-	EBC4	$7 / 8$	0
${ }_{341}$	$3 / 8$	${ }_{8660}^{\text {BH6GT }}$ 1/6	$\begin{array}{ll}10 \mathrm{P} 13 & 15 / 6 \\ 10 \mathrm{P} 14 & 15 / 6\end{array}$	$30 \mathrm{L1}$	ATP4 $2 / 3$	Ebc81	8/3	EF54
3A4	$3 / 6$   $8 /-$   1	${ }_{\text {8H5GT }}$	12 A 3/-	30P4 11/6	AZ1 8/-	EBC90	3/8	EFi3
$3 \mathrm{B7}$	$5 /$	6J86T 4/6	12AC6	$30 \mathrm{P4} 4 \mathrm{R}$	A23!	EBC	5/-	
3 D 6	3/9	RJ 6	12ADE 9/-		AZ41 6/6	${ }_{\text {EBF }}$		
304	5/3	${ }^{6 J 70} \quad 4 / 9$	$\begin{array}{ll}\text { 12AES } & 7 / 6 \\ 12 \mathrm{ATB} & 1 / 8\end{array}$	30P12 11/-	CL33 19/6	EBF	/9	F86
3050	$8 / 8$	${ }_{\text {6J7GT }}^{\text {6JGGT }}$ S/-	$\begin{array}{lll}\text { 12ATB } \\ 12 \mathrm{AT} 7 & 1 / 8 \\ 3 / 6\end{array}$	$30 \mathrm{PL1}$ 18/-	cve 10/6	EBL21 10		
4	,	6K70 1/3	12AU6 $4 / 9$	$30 \mathrm{PL} 1315 /$	Cy1C 6/6	ECS5	4/3	EF91
${ }^{6} \mathrm{H} 40$	$8 / 9$	6K70T 4/8	AU7 $4 / 6$	$30 \mathrm{PL14} 15 /-$	CY31 7/8	EC53	$12 / 6$	
SU46	4/8	6 KHC	12AVB ${ }^{\text {B/8 }}$	$30 \mathrm{PL15} 15 /-$	${ }_{\text {D63 }} 18$ \%/	EC7	19	
5 V 8	8-	6K8GT 78	$\begin{array}{ll}\text { 12AX7 } & \text { 4/6 } \\ 12 / 8\end{array}$	${ }_{351 \mathrm{LOT}} 8 / 3$	D7\% 2/3	EC86 11	$11 / 6$	EF183
$5 \mathrm{z3}$	7/6	6L18 7/6	12BAB 5/-	35 W 4 4/6	$\mathrm{DAC32}^{7 /}$	EC88 11	11/-	
57.40	7.6	6L19 18/-	12BE6 5/8	${ }^{3523}{ }^{10}$				
6/30L2		$6^{61 L^{2} 20}{ }^{8 / 6}$	12 EL 17/6	${ }_{35256 T}^{35246}$	DAF96 8 8/-	ELC31 1	15/6	EL33
6 ABG	7.6	${ }_{60770 T}^{7 /-}$	$12170 T$   12 K   $8 / 8$	50 As 21/10	$\mathrm{TDD4}^{10 / 8}$	ECC32	$1 / 6$	EL34
¢AC7 8 AG7	3/-	681    6825 $18 /-$   $12 /-$		5085 8/3	DDat 12/6	EOC33 28	29/1	EL35
6AG7 GAKS	$4 / 9$	${ }_{6 P 26}^{12 /-}$	$12 \mathrm{KgGT}^{7 / 8}$	500c5 5/9	DDT4 $7 / 6$	EOCs 29	2916	EL36
6 AK6	6/ $=$	6P28 25/-	12Q70T $3 / 6$	50CDBG41.	$\mathrm{DF33}^{7 / 9}$	Recis	4	ELa
${ }_{6 \text { ALL }}$	2/3	${ }^{6070}$ 5/-	8/9	${ }_{72}^{50160 T}{ }^{8 /-}$				E1/2
6AM4	18/6	6Q76T 8/9		$\begin{array}{ll}72 \\ 85 A 2 & 8 / 6 \\ 8 / 6\end{array}$	DF97 10/-	EOC82	//E	ELP1
AAM6	33	6R7G ${ }^{\text {68A/6 }}$	$\begin{array}{ll}128 \mathrm{C7} & 4 /- \\ 188 \mathrm{H} & 8\end{array}$	90AO $67 / 6$	DH83 3-	Ecc83	4/6	EL83
BAQS	20/9	${ }_{6887}^{\text {68A7 }}$ 8/6	$\begin{array}{ll}12817 & 8 /-\end{array}$	90ay 67/8	DH76 3,6	ECC84	8/-	EL84
6 ATb	3/8	6807 7/9	$128 \mathrm{~K}^{3 /-}$	90C0 34-	DH77 1/8	EOC85	\%	EL85
OAUB	3/6	68H7 3/-	128976T8/-	00 CV 33/6	DH81 10/9	Fax	7 7-	EL
6AV8	51	6837 5/-	128R7 3/-	$90 \mathrm{Cl} 18 /-$	${ }^{\text {DK32 }}$ DK40 ${ }^{\text {P/6 }}$			EL9
${ }^{6 B A 6}$	4/8	68K7 4/6	$\begin{array}{ll}12 \mathrm{Y} & 8 /- \\ 14 \mathrm{H7} & 8 / 8\end{array}$		${ }^{\text {DK }}$ D 9101818		27/-	Ll80
68 BEB   68 H	4/3	68L7GT 4/9	$\begin{array}{ll}14 \mathrm{H7} & 8 / 8 \\ 1487 & 19 / 6\end{array}$	$\begin{array}{ll}161 & 18 /-\end{array}$	DK92 716	ECFP0	$7 /$	EM71
6 RJ6	7-	68Q7ct $61 /$	18 12/6	188BT 350	DK96 6,6	ECP82	$8 / 9$	EM80
GBQ5	4/6	$68 T 7{ }^{12 / 6}$	19 10/6	301 201-	DL33 8/8	ECF	$8 / 6$	EM8
$\mathrm{GBQ7A}^{\text {b }}$	71	6UTGT 9/6	194Q5		DL35 4/9			
BRT	9/-	6U56 8/-	20D1		DL94 5/6			EM87



> Y8
EY81
EY8
EY8
EY4
EY8B
EY91
EZ35
EZ40
EZ41
E780
EZZ1 - O.O.
 aliy
 handle mannutacturers' seconds nor
but have a limited and unreliable iff


## BARGAIN OPPORTUNITIES FROM

## TRS

Amplifiers
IN KIT FORM AND COMPLETE


With pre-amp, tapped
o/p transformer ${ }^{3}$ and
$15 \Omega$ all conerols, H.T. and L.T. ourlet, mono, stereo and speaker phase swisching. Complete with escutcheon, knobs, plugs, etc. Ready
buils.
(p. \&
\& $2 / 6$ ) In kis form with chassis. © 17 . 10 . 0 knobs, plugs, etc.
(p. \& p. 12/6)


SPECIAL MULLARD $2+2$ PRE-AMP Stereo pre-amp and control unit. Complete with valves and instructions.
BUILT- 13 gns . (P. \& P. $7 / 6$ ).

SHOPPING BY POST
Please send cash with Order or pay C.O.D Please mention "Wireless World"
POSTAGE. Unless stated add $1 /$ on $1 / \mathrm{b}$. orders, $1 / 9$ on 116 .. $3 / 6$ on 216 . $5 / \mathrm{F}$ on 61 b . 6/6 on 101 b .
$8 / \mathrm{on} 141 \mathrm{~b}$. Over, $10 / 6$.

amplifier ilt $£ 9 / 10 /$ -

## TAPE AMPLIFIER BARGAIN

 Wired. complete with record/playback owitch.
£6.5.0.

## FREE TAPE WALLETS

Whth each reel of tape we give you PREE




## 6 VALVE AM/FM TUNER

Med. © F.M. Push button and tuning controls.
 chaor Complete Kit 11 Ons.

7 VALVE AM/FM RG CHASSIS Powerfill high pertorruance instrument for keen
enthutauta, Long. med. and F.M. Permeability enthutants, Long. med. and Fivi. A.v.C. good
 letated and ready for use (Carr. And
g.A.E. bringe full detais.
f13/18/B.

SINCLAIR LINES AS ADVERTISED
FOR ONLY od.


PEAK-SOUND STEREO AMP.
 quallity ceramic p.u. Unusually ensy to buld by foliow-

 ever oferedl. ${ }^{W}$.
modern nt

MODER SLIMLINE WOOD CABINET
COMPLETE ASSEMBLY. \&14/10/- powt

## SPECIAL SPEAKERS AND ENCLOSURE OFFER

Owing to demand for our previously offered as an even better bargain as a "Pack Flat" kit which easily assembles to a fine professional looking enclosure. All wood accurately machined. Sease if
for IOin., or 8in. unit. Cus-out for bassunit
$\mathbf{7 2 / 6}$ and sweeter included.

72/6
15 OHM UNITS Suitable for above $\begin{array}{lllll}\text { Goodmans } 8 \text { in. Axiette } & \text { c6 } & 0 & 0 \\ \text { Goodmans } 8 i n . ~ T w i n ~ A x i e t t e ~ & \text { C } & 16 & 0\end{array}$ Goodmans Bin. Twin Axiette Goodmans Axiom 10 WB HF1012 E.M.I. 3 in. Tweeter 3 or $15 \Omega$

At the obove prizes while stocks las
NEW "CLR-KIT" STRIP \& BOARD
Cir-Kit " 0.1 in . Matrix Bard. More fexible and


## TRS RADIO <br> COMPONENT <br> SPECIALISTS

70 BRIGSTOCK RD., THORNTON HEATH, SURREY.
Telephone: Hours 9 a.m. -6 p.m. Few doors from $01-6842188$ (I p.m. Wednesday) Thornton Heath Stn.

GARRARD UNITS AND PLINTHS

## at keenest prices-bee




 of above $7 / 16$ extr:
Ontror fillth Type wB. 1
 rard
readily aut any hita set oup.
in the Teak. Cartage and pack, 5/... 75 /-



## CARTRIDGES

at special prices co pur chasers of ony item
above
mokn
17718.
${ }^{17218: M}$
STEREO
Sonertone TA/HC with dia
mond. 47/6.
stylus. Lut 9 si/6. Our price
$78 / 6$.
M.S.E. FOR QUALITY COMPONENTS AT COMPETITIVE PRICES . . . ALL GOODS NEW \& UNUSED PLESSEY "MULTIWAY" CONNECTORS 80-WAY PLUG \& SOCKET. For Teleprinter \& V.F. Rooms-Railway Signalling Systems-Television Equipmens-Radio \& Radar assembliesTelephone a Line Equipment
PLUG. Pr. No.: 2CZ10860S. S.R.D.E. No.: YA 11030.
SOCKET. Pr. No.: 2 CZ 108602 . S.R.D.E. No.: YA 11035
Coneacts Silver-Plated. Spigotting ensures that connections cannot be reversed

## WORKING DATA:

Flash Test Volrage: 1.500 Voles D.C
Working Voleage: 250 Volts D.C. or 180 Volts A.C.
Insulation Resistance: 100 megohms as 500 Volss D.C. Insulation Resistance: 100 megohms at 500 Voles D.C.
Contact resistance: Less than I milliohm.
Temperature range: $40^{\circ} \mathrm{C}$ to $700^{\circ} \mathrm{C}$
150'- post free
Plugs can be supplied separately at $100 /$ each. No spare Sockets available. Both units supplied complete with high grade Polythene protective caps
PLUG dimensions: Length 4.120in. Depth 2.740 in .
SOCKET dimensions: Length 4.840 in . Width 1.440 in .
Special quotations for quantities of 10 pairs and over. For mulsicore cable to S.R.D.E. spec. TS/B34A and can also accept smaller multicore and unicore cables.
Miscellaneous PLESSEY Components:-
CZ 49229 25-way Fixed Sockee, Mk. 1A, 10/6d.
$508 / 1 / 00111$ 26-way Socker assy. Series $220.5 / 6 \mathrm{~d}$.
508/1/08808 Plug 2-way G.P.O. Type 51, 10/-doz, plus 1/6 P. \& P
5 mall quantitles of Mark 6 connectors available. Please apply for details.

## CANNON CONNECTORS

RSK-19-315L. 19-pole Socket, wall mounting receptacle 25/- each RFK-37-22C-fin. 37 -pole Straight Plug with pin inserts, $45 /$ each RLK-A50-22C-1". S0-pole Straight Plug with pin inserts, 55/- each GK-53-2IC-t". 3-pole Straight Plug with Socket inserts, 20/- each $\left.\begin{array}{l}\text { M.S.3106E-16-11.5. 2-pole free plug socket inserts. } \\ \text { M.S.3102.E-16-11.p. 2-pole fix receptacle pin inserts }\end{array}\right\} \quad$ 22/6 pair post free.
PAINTON CONNECTORS, "Multicon" series
31118624 -way Plug with Panel flange $\quad 15 / 6$ pair plus We aliso hold stocks of HEAVY DUTY MULTICONS \& STANDARD SERIES Connectors

MANUFACTURERS ... Any surplus to requirement or Re dundant STOCKS! WE PAY TOP PRICES. Kindly forward Tenders or Lists.
M.S.E. 36 WINCANTON ROAD, NOAK HILL, ROMFORD, ESSEX

PAINTON BOURNS "TRIMPOT" SUBMIN IATURE ADJUSTABLE POTENTIOMETERS. TYpe 22 curn scre meets specificationer adjustment-completely sealed and Operating temperature 65 C to 175 C . We 0.1 oz 224S-1-101. Solder Lugs 100 ohms $15 / 6$ each
2245-1-503. Solder Lugs 50 K ohms. 20/- each.
224L-1-101. Flying Leads 100 ohms . $15 / 6$ each.
224P-1-102. Prinsed Cir. pins. I Kohms. $15 / 6$ each 224P-1-503. Printed Cir. pins. 50 Kohms. $20 / 6$ each
$\qquad$
M.E.C. "MECPOT" MINIATURE TRIMMING POTENTIOMETERS
Flat mounting type. I watt. 45 turn screw-driver adjustment. One piece Aluminium anodised case. Operating 037L. Flying lead type Values
. Fiying lead type. Values available:-
18/-each. Kohms- 2 Kohms- 5 Kohms- 10 Kohms. All
0375. Solder Lug rype. 50 Kohms. 20/. each. Post free. 040. Princed circuit pins, plastic case. 20 ohms. $16 /$ each Post free.
062L. Dual sype with flying leads. 200 ohms/5 Kohms.
$30 /$ - each. Post free. - each. Post free.

Also available:-PLESSEY Miniazure qualification approved POTENTIOMETERS.
Type "G"Mk. 2. Qualification approved to RCL 122 B. Types MHI Qualification approved to DEF 5122.
Types MHI and MH2. All available from 1.5 Kohms to I megohm. Please send for details for the above items. WELWYN subminiature Potentiometers. Type P. 31 only in 100 Kohms. $2 / 6$ each
ANCILLARY DEVELOPMENTS. Pre-set wire wound Resistor- 250 ohms I watt. 5/- each
RELIANCE. Subminiature potentiometer 5 Kohms. Wire
ends, $I^{\prime \prime} \times \frac{1}{3} 8 /-$.
MCMURDO "RED RANGE" CONNECTORS. RPB and RS8 $11 / 6 \mathrm{pr}$. RS16 and RP16 19/. pr. RP24 and RS24 24/- pr. RP32 and RS32 31/- pr. Covers available or these at $4 / 6$, post free.

BURNDY "BANTAM" CIRCULAR BAYONET COUPLING TRI-LOCK CONNECTORS. Meets specification to MIL-C-0026482A.
BT02E-14-19P. 19-pole $W_{\text {all }}$ mounting receptacle Pin inserts.
BTO6EC-14-195. 19-pole
socket inserts with clamp.

MULLARD							J.E.D.E.C.		WIRELESS WORLD DIGITAL COMPUTER
(10)	14,6	${ }_{\text {Hexil }}^{\text {Hex }}$	${ }^{10}$	(0x)2	${ }_{4.3}^{4.8}$		29385/		
	${ }_{8}^{68 \%}$	cicy	¢0,	ors	${ }_{3 / 6}^{4 / 3}$				Send for our complere part
-	12/8			Onde	4/-				list. Competitive prices for all components. Transistors,
ADP4*	${ }_{\text {11/6 }}^{11 / 6}$			OCisar	${ }_{12 / \sim}^{12 /}$		(exill		-
-	${ }_{78} 78$	STMYH1.15016		-	6 6/-				Neons, Veroboard, ete.
${ }^{\text {Actry }}$	3/8			(0.1\%)	6/-	Suctar			
$\mathrm{Aly}_{21}$	4.-	byzie		O<u	6\%	${ }_{\text {Adtina }}^{\text {Sidair }}$			
${ }_{\text {AFPr }}^{\text {ALI }}$	${ }^{218} 10$	$\underbrace{\text { BYZ }}_{\text {BYZ }}$		Oc:	130/-				FAIRCHILD AF 11
${ }_{\text {AFPIP }}$	$11 / 8$		$12 /$	Oestis	8/-				ID
AF10,	18/9	${ }_{\text {BYX }}^{\text {BYO }}$-200		Oexid	${ }^{111 / 6}$	Eancrar	स्य147 -17\%		1
${ }^{\text {AFPIS }}$	4,9		54	Ocpil	1818	Eaincrue	(ex		AMPLIFIER KIT
AFH:	$4 / 9$		104		8\%\%	integrated		SEMRINDRTI	
	12.0.	cincis	${ }_{5}^{10 \%}$		18/-			1	£8.8.Od Complete
	${ }_{12}^{12 \%}$		3/- 33/- 13/-	(eation	18/6		PLANAR   BARGAIN		
Asymat	5	-		-1.	4/-		expegh y 110 w		
Astz	8/-	-	10/.	-	${ }_{1 / 6}^{1 / 6}$		4lor 10/- New G.E.		Resistors, Capacitors, Heat
ATz10	${ }^{38 / 6}$	-			${ }_{1 / 6}^{1 / 6}$		Over 2.0000 meranis-		ank and short circuit pro.
	${ }_{4}^{268}$	(en			${ }_{1 / 6}^{1 / 6}$		(tar mad diode types		ection components. S.A.E.
	4/3	${ }^{\text {O }}$		Onask	$1 / 6$	Reistom: Wate			or details
1scyo	$20 \%$	OCa		O.я41\%	1/8	note	May		
	${ }^{22 / 1}$	OM,		-nısk	${ }_{2 /-1}^{1 / 6}$				1968 catalogue
	$8 /-$	OCus		ORay	${ }_{2 / 8}^{2 / 8}$				34 pages +
Y33	${ }_{6}{ }^{\text {8,- }}$	OCiz		${ }^{\text {aximi }}$	${ }_{7}^{716}$	Pricect potenionietem	meatiami of sulur		NOW AVAILABL
	819-9		${ }_{5 / \sim}^{3 /-}$	$\underbrace{8 \times 80388}$	12.	Mitamature trpee	rance.		Send 1/6 stamps
,	10 -	${ }^{\circ} \mathrm{OH}$		s\%zac	133/-	30\%.			
1以\%:1	151.	0csal	$3 / \sim$	avict	19/9	er 12 orl 1 lume			POST \& PACKING 9d. per order EXPORT ENQUIRIES WELCOME
								CPTFOLD ROA	transistor manuals
gUARANTEE: All the above-listed semi-conductor devices are Brand New, First Grade, and								3RENTWOOD ESSEX	6.1. New Elition 29,6d,
								BRENTWOOD 7904	
curry the Mand								24 HOUR POSTAL SERVICE	
offer for sale devices often described as "new and fested "or bearing re-marked type num-									retail and wholesale SUPPLIED.



Here are a fow examplen from our stock of over 2,500 typer.

		Priven lut U.s. dollarw.				ivinit	
OA:	0.69	引1\%13	0.45	abea	0.28	"xat	
0 O	0.5	514!	0.58	6B6ab	0.70	$810 \lambda$	2.52
U03	0.32	¢Y:30?	0.42	fesst	0.58	311.1	3.50
11835		3z+11	0.49	nics	0.45	3 328.1	
cia	7.70	37.41:	0.52	$\mathrm{n}_{\mathrm{H} 4}$	0.73	329.1	
2021	0.45	RAK3	0.42	1iJ36	0.42	807	
3182 M	3.50	BARA6	1.40	$1{ }^{1}$	0.28	818 A	
SHP1	5.80	${ }_{\text {¢ }}$	0.22	${ }^{\text {H2,60C }}$	0.58		
36:24	8.30	"8819	1.50	48Litit			
304	0.35	billals	0.21	f8siat			
rull	ExPO	T PR	LIST	VAIL		RE	




Save Life. No danger of shocks. No current can pass until the lid is closed.

Save Time. No need to fit a plug for testing-connect your apparatus to the Rendar Safebloc

Indispensable on testing lines and for all concerned with electrical demonstrations.

Double-Safebloc available for 3-phase applications


INSTRUMENTS LTD. BURGESS HILL. SUSSEX, ENGLAND TELEPHONE: BURGESS HILL 2642.3 CABLES: RENDAR, BURGESS HILL

## NEW!!!

 1968 EDITION WORLD RADIO TV HANDBOOK42/-
Postage 1/-

## RCASILICON POWERCIRCUITS

 MANUAL 20\%. Postage 2\%.RCA TRANSISTOR MANUAL
Postage $2 /$
ZENER DIODE HANOBOOK by Motorola 6/-. Postage 1/.
AERIAL HANDBOOK by G. A. Briggs with R. S. Roberts. 15/., Postage 1/.
COLD CATHODE TUBES by J. B. Dance. 5/-. Postage 1/
COLOUR TELEVISION. Pal System by G. N. Patchett. $40 /$. Postage $1 / 3$.

BASIC THEORY \& APPLICATION OF TRANSISTORS by U. S. Depl. of Army. $12 /$. Postage 1/.
RADIO VALVE DATA. 8th ed. compiled by "WW". 9/6. Postage I/-.

## THE MODERN BOOK CO.

britain's largest stockist
of British and American Technical Books 19-21 PRAED STREET LONDON, W. 2
Phone: PADdington 4185
Closed Sot. I p.m.

## Photo fiectrlc control sysiem

Comprise a light mource unit whit opt ional Indra Red filter snd lens aystem to force the light. Also is photovelnctric Relay control unit. Both housed in metal cance for betich or
walj anounting. senultivity control, malins on. of switch Works from $230 / 240$ v. A.C. Mainu. Can be used au a mlmple on-ofl wwitch by breaking the heam of tight (Invinible if Infra Red fiter is uned) and as auch it will operate as a burglar alarm, or will open doors, etc. Also in conjunction with a counter or other equipment it will periorm many
functions in the factory or warehoune.
price $\mathbf{6 9 . 1 9 . 6}$

## F.M. WIRELESS

$9.4-104 \mathrm{Mc} / \mathrm{m}$. Tranelatorised Operates from 98 . battery, Complete with additiona Lint $\varepsilon 12 / 10 \%$
ONLY
66.15.0 ONLY E6.15.0 These
in U.K. be operated

## TRAMSISTORISED FM

 TUMER6 TRANSISTOR HIGH QUALITY TUNER. 812 LE
ONLY $6 \mathrm{in} . \times 4 \mathrm{in} . \times 2 \mathrm{in}$, ONLY
3 In. $\times 4 \mathrm{in}$. $\times 2 \mathrm{itm}$
Double tuned ditecriminator. Ample output to tived mos ampliflem. Operates on
9 volt battery. Coverage 88-108 Mc/a. Ready bullit ready for une, 1


LODDSPEAKERR. 2- $9 / 6$ 12* TWIN cone $1035 /$ TWEETER 16 otm 29 10 watt, 18 K -CPS
CROSSOVER NETWORK CROSSOVER NETWORK
 over 11 Poot Free, C. O. D.
$3 / 6$.


DURHAM SUPPLIES
175E Durham Road, Bradford 8, Yorkshire


TU. 25 REFLEX HORN SPEAKERS Strong and durable Weatherproof
waterproof whockproof. 20 and dia. 25 watts out put. 15 ohns im-
pedance.
Frect. pedance. Fred
response
100 response $\quad 100$
10,000 c.p.s. Give excellent reproduction of speech and (TU.35, 35 watt
model, $20 /$ - extra)

## £11.19.6



Y S - 5 REFLEX HORN SPEARERS
(illus. with Mighty .inget above). 5 ill dia. 8 ohms imp. 5 watts output. 3 gins. Each
Freq. responsc $400-6,50$ c.p.s.

BARGAIN TELEPRONE SYSTEM
World fanous Tele 'F' No. 1 Mk . Il telephone
set giving conmunica set giving communica-
tions up to 5 miles. Robust, heavy duty complete with wooden storbatterie; ready to use. Will last alifetine. Mint condition
ONLY £6.10.0 pair,
carr. $15 / \mathrm{F}$. Sold singly at
$\mathrm{f} 3 / 10$ each, carr. $/ \mathrm{t}$.


AUTOMATIC AERIAL ADDS LUXURY TO ANY CAR
Today's value 15 gns . Tamper proof, electrically operated car radio aerial 4 section telescopic, extends automatically to 48 in . and retracts to 1 in . at the flick of a switch. Depth below wing 15 in Robustly made heavy chrome finish 12 V. D.C. operation. Quickly and easily fitted, supplied with cable, ONLY \&7.19.6 P \& $P$ par

G.P.O. STANDARD 19in, Heavy
Duty EQUIPMENT RACKS.
Channel uprights, heavy duty
base, 4ft. 9in. \&4/10;-; Bft. E\%.
Carr. 20/-each.



TRANSISTOR WIRELESS INTERCOM An amazingly new 'space age'
Intercom system needing no Intercom system needing no connecting wires between units. Simply plug into A.C. power peing carried, communication Power lines. Units can be moved from one location to
another without trouble. Incorporates on/afi volume Control push to talk, lock switch and pilot light complete with operating instructions. Ideal for office home etc. 12 gns . Pair. Post free.

## GEE BROS. RADIO

I5 LITTLE NEWPORT STREET, LONDON, W.C. 2

GER. 6794/I453
Open 0 - 8 mon-Eri., 1 p.m. Sat. Adjoining Leicester Square Tube


HOURS 9.30-6 OPEN ALL DAY SAT

END 6d. STAMP FOR LIST


HEAVY DUTY L.T. TRANSFORMERS PR1 190. $210,230.250$ volts. Sec. 55 voles, 50 amp Size $10 \times 8 \times 8$ in. $618 / 10 / \%$ ex warehouse. PRI $220-240$ volss. Sec. 12 volts 90 amps. Flying lead
$15 /$.

SOLATION TRANSFORMERS FULLY SHROUDED. TERMINAL BLOCK CONNECTIONS
Pri. Tappod 220-240 v. sec. Tapped 220-240 amp.o price $64 / 10 \%$, carriage $6 / 6 ; 2$ amps $\mathbf{i 8} / 5 / 5$ carriage $8 / 6$; 3 amps. price $69 / 12 / 6$, carriage $10 / 6$ 4 amps, price $\mathrm{fll} / 12 / 6$, carriage $10 / 6$.

ANY ' SPECIALS ' MADE TO ORDER UP TO ISOOVA. OOUBLE WOUND.

FULLY SHROUDED LOW RESISTANCE SMOOTHING CHOKES
0.05 H 2 amps $0.75 \Omega$, price $£ 2 / 1 / 6$, carriage $5 / 6$
 0.02 H 8 amps $0.25 \Omega$, price $63 / 12 / 6$, carriage $7 / 6$
$0.01 \mathrm{H} 10 \mathrm{amps} .15 \Omega$, price $£ 4 / 5 /$., carriage $7 / 6$. $0.01 \mathrm{H} 10 \mathrm{amps} .15 \Omega$, price $64 / 5 /$-, Carriage $7 / 6$

BRAND NEW TWICKENGAM HEAVY DUTY L.T. TRANB FORMERS.
 gec. No. 2. 14 volts 10 amps. Sec. So. 3, 60 volts, 2 amps. Ain connection. Bize H9. W, T, D 7 inches, welght 65 tbs. Fraction
of maker's price, $£ 9 / 18 / 6$, cart. $15 /$. Brand New L. T. smoothing Choken.
8 MH. 24 a mpn. t ropically Anivheila Rize HB w $4!$ D 3 inches. Welght
 ${ }_{9}^{2} \mathrm{MH} .24$ atmps. trop.

BRAND NEW SURPLUS L.T. TRANSFORMERS. ALL BY PRI $240 \mathrm{\nabla}$. Sec. $0.5 \mathrm{v}, 4 \mathrm{f}$ ampl. conservalivety top connections. Open type construetion. $85 /-$ Carr. $7 / 6$. PRI 240 v. Sec. 24 v. 12.5 amps. As above 85/-. Carr. 7/8. and 8 r. 1 arnp. open type table top cornection. $27 / 6$
 b. PRI cornectlon, 25/. P.P. $200 / 6$. 8 . 8.2, 6.8, 7.3 . 7.9. 8.5, 9, 9.5. 10. 10.8 v. 18 ampa, open type 6. PRI 240 v. Bec. Lisped 53.655 .2 ソ. 10 mmps., " C " core T.B 7. PR1220-240 v. Bec. Lapped 75, 80 v. 2.4 amps.
 8. 1A tabie top connections. Fully shrouded. $75 /-$ carr. 76.
 PRI 240
core. $15 /$
core, 230 - P. Pec. 70 . 4.15 amps , open type T.B. connection One only, $\mathrm{£6} / 10 /=$, Carr. $12 / 6$.

$20 \mathrm{c} / \mathrm{s}$ to $20 \mathrm{Kc} / \mathrm{s}$ in a Single Sweep Logarithmic $\begin{array}{ll}\text { Scale Callibration. Accuracy } \pm 1 \% ~ \pm 1 ~ c / s . ~ \\ \text { Power supply } 110 & \text { v. and } 200-250 \\ \mathrm{v} \text {. Dimensions: }\end{array}$ $19 \times 12 \times 13$ ins. 5upplied Brand New with In seruction Manual. Less than half Maker's Price El25, ex Warehouse. Send 6d. Stamp for Data
 A.C.
$200-240 \quad$ inpues D.C. Out put tapped to
give 12 or 24 volts 8 amps. cont in uous. rating. Fitted with panel fuse mains on/off switch and D.C. output socket. Built in strong metal case. Size $15 \times 6 \times 6 \mathrm{in}$. An ideal general purpose L. 10/\%.
A.C. inpur $200-240 \mathrm{~V}$. D.C. output 50 volts 5 amps . Buile in metal case, size $15 \times 6 \times 6$ in. Fitted with carr. 10/.

```
L.T. SUPPLY UNITS TYPE S.E. 5
```





## ADVANCE COMPONENTS LTD.

 $\pm 1 \%$ at full lowd with supply voltage sariation up to $\pm 15 \%$ Rlpphe leas than $1.5 \%$ R.M.S. of total output. Supplied brand

Sultable for wideo. Brand new in maker's gealed cartona. Lhat
Price $\& 18 / 10 /=$ Our Price $£ 3 / 18 / 6$. P.P. $5 /$.

## SPECIAL OFFER OF WOOEN TRANSFORMERS

No. 1. PRI Lapped $200 \cdot 250$ v. E. B. Se Sec. Tapped 8-15-25-28-30-33. $35 \mathrm{v}, 15 \mathrm{amps}$. Troplcally finibled table top cornects, $£ 5 / 17 / \beta$


 Sec. 5. 8.8 v . CT4A. Sec. $6.3 \%$. CT12A. Bec
Core table top connectlona. $50 \%$ P.P. 7/6.
P.O. 20-WAY TELEPHONE JACK STRIPS. Type 320BN.

SPECIAL OPFER OF BRAND NEW HUNTS ELECTROLYTIC CAPACITORS Can trpe $130+60+10$ mid. 350 w. Wkg$\qquad$

T.C.C. 100 MFD .50 VOLTS ELECTROLYTICS TYPE CE. 324 DE

SEND 6d STAMP FOR OUR LATEST PRICE LIST OF TRANSFORMERS, AND ELEC. TRONIC COMPONENTS, OVER 250 ITEMS LISTED, AND OFFERED AT A FRACTION OF
MAKER PRICE. PLEASE NOTE, NO IN. MAKER PRICE. PLEASE NOTE, NO IN.
CREASE OF PRICES OF SURPLUS TRANS. CREASE OF PRICES OF
FORMERS. BUY NOWI


## AIRFLO A.C. 220-240 v BLOWERS

Capacity 80 cu . ft. 2 tin. dia outlet. Overall size $6 \times 6 \times 7$ in Brand new. E65/- Carr. 5/

BERCO REGAVOLT VARIABLE
TRANSFORMERS TYPE $31 A$.
Input max. 250 V., output $0-250 \mathrm{~V}$. Current rating. Mounted on heatsink. I amp. max. Unmounted 0.75 amp . Size Jin. dia.. D. 2 in . Spindle length 18 in

## SPECIAL OFFER OF BRAND

Fraction of maker's price. All tapped primaries 200-250 v. Tabfe top connections. Enclosed zype GARDNERS
No. 1. Sec. $500-0-500$ v. 200 mA .6 .3 v. 4 A. 6.3 No. 2. Sec. $450-0.450$. 5180 mA. 6.3 v. 3 . $7 / 6.3$

 No. 1. $\begin{aligned} & 5 \text { ec. } 450-0-450 \text { v. } 95 \mathrm{~mA} .6 .3 \text { v. } 3 \text { A. } \\ & 3 \text { A. } 6.3 \text { v. } 2 \text { A. Sv. } 3 \text { A. } 65 / \% \text { P.P. } 7 / 6 .\end{aligned}$ No 5. Sec. $400-0-400 v, 85 \mathrm{~mA} .250 \mathrm{v}, 50 \mathrm{~mA}, 6.3$ 5 A. 5.3 v. 4.75 A. 6.3 v. 0.5 A. 6.3 v. 0.2 A N3. 6. See $250-0-250$ v. 50 mA .6 .3
No. 7. Sec. 300 v $37.5 \mathrm{~mA} .300 \mathrm{v} .37 .5 \mathrm{~mA} .47 / 6$ P.P. 5/. 4 kV D.C. wkg. 4 v. 1 A. 4 kV . D No. 8. Sec. 225 v. $100 \mathrm{~mA} .6 .3 \mathrm{v} .2 .5 \mathrm{~A}, 6.3 \mathrm{v} .1 \mathrm{~A}$ No. 9. 5 ce e. $45 \mathrm{P} . \mathrm{V} .87 \mathrm{~mA} .6 .3 \mathrm{v} .4 .5 \mathrm{~A} .6 .3 \mathrm{v}$
No. 10 Sec, rapped $450-470$ A. 275 . P.P. 4//
GARDNERS LOW TENSION ISOLATION TRANSFORMERS
PRI 6.3 v . Sec. $2-0-2 \mathrm{v} .4 \mathrm{amps}$. $5,000 \mathrm{v}$. wkg. Potted type $17 / 6$. P.P. $3 / 6$

## Miniature relays

Omron Type Mk. 224 v. D.C. 2 heavy CO contaces. $8 / 6$. P.P. $1 / 6$. Siemens plug-in Type 15,000 ohms 4 CO contacts, with base. $8 / 6$. P.P. $1 / 6$. G.E.C. sealed type M1096 670 ohms IM IB contacts 8/6. P.P. 1/6. Typc 10794 ohms. 2B. 2M. contacts 10/6. P.P. 116 ype 1500670 ohms. 28 2 M contacts 3 M iB coniacts. $6 / 6$. P.P. $2 / \mathrm{F}, 500$ ohms ICO IM contacts. 5/6. P.P. 2/\%.

SPECIAL OFFER OF BLOCK CAPACITORS
SPECIAL OFFER OF IN MAKER CARTON
G.E.C. 8 mfd 600 v . D.C. wkg. at $71^{\circ} \mathrm{C}$. Six for $29 / 6$. 17/6. Carr. $7 / 6$. $5-25 \mathrm{mid} 660 \mathrm{v}$. A.C. wkg., three for 22/6. Carr. $7 / 6$. Aerovox I mid 600 v. D.C. wkg.
six for $12 / 6$. P.P. $4 / 6$. T.M.C. 2 mfd. 100 v. D.C. wkg. six for 12/6. P.P. $4 / 6$.
six for 7/6. P.P. $4 / 6$.

## BRAND NEW W.D. TELEPHONE CABLE single D3. + of a mile drums, ideal for outside teleSingle $\mathrm{D3}$. $\frac{1}{}$ of a mile drums, ideal for outside cele- phone systems, fracsion of maker's price. $50 / \mathrm{m}$ Carr. 7/6.

## WATER TANK

THERMOSTATS
Sunvic Type TQP. $70-190^{\circ} \mathrm{F}$
250 V. A.C. ISA.NC.SAMP. No
0.1 A D.C. max $29 / 6$ P.
$0.1 A$ D.C. max. 29/6. P.P. $4 / 6$.


## BUILD YOURSELF A QUALITY TRANSISTOR RADIO!



TRANSONA FIVE MED. LON \& TRAWLER BAND, ferrite monl serial, tuning con. denser, volline control, $3 / \mathrm{th}$, tireaker, $\operatorname{Bj} \times 4 \| \times 1 j$ lin, Total Buildink Costs 42/6. P. \& 1 ; 3/8. Plans antel
(free wifl part MELODY SIX, MED *
LONG WAVES, if tranidgtor* LONG WAVES. fif trantiditurs. put, tualug condenser, ferrlte fi: $\times 3!\times 1 \mathrm{fin}$. Total Building
 Plans tud pirt- list 2/- (Iree whh parte).

RADIO EXCHANGE CO. LTD.


OCKET FIVE. MED. MED WAYE BAYD MED. WAVE BAND. roud aerial turing anmente Tiu, preker es $51 \times 11$ 1). गpeaker, etc. of $x 1 /$ - Tolaisulding Conte 39/6


SOPER SEVEN. MED SUPER SEVEN. MED,
LONG \& TRAWLER BAND 7 Iramistors and 2 dholen 3 hin. spenker, 2 R.F. sages. punlli pull out put, etr. $71 \times$ $3!\times 1 \% \mathrm{~m}$. Total Building Conts 6916. P. \& P. 3/8. Planm and

61 High Street, Bedford.

ROAMER SEVEN MiK. 4. ${ }^{7}$ ' uave
 Transintors inad 2 dioden, $F^{\prime}$ er
rite rod perial and telemer rite rod aerial and telencope thi, mppaker, Airspaced uan $t$ tinh.ng contenser, etc. Size $9 x \frac{7}{8} x$ fin. Totsl Building Coata $£ 5 / 18 / 6$.


roamer six. WW1. MW2. 8W1, Swis. LW and Trawler Mand. 6 transintors and diodee. Ferrite rod and telewtop aerials. 3it, mpeaker. Top grade com Building Conts 78/6. P. 4 P. $3 / 4$. Plans and parts ligt $2 / 0$ (free with 'Phone: 52367

parte).
Callern aide entrance Barrates shoe Shop
Open 9-5 р.m. (Sat. 9-12.30 ロ.m.)
"SKANDIA" VHF/UHF AM/FM
Handy / Portable / Mobile / Stationary Transceivers

"Mariner', 6 Ch . VHF FM, RF Output power 1 W , Portable Transceiver
other items offered!

* Cassette stereo tape recorders, w/AM/ FM Stereo receiver, Portable \& Home
* Stereo 8 player w/FM Stereo receiver, Automotive \& Home


## Tomura Bussan Kaisha, Limited

C.P.O. Box No. 118 Nagoya, Japan Cable add.: "SKANDIA" Nagoya

## ZONOON CENTRAR iadlo stotiss

FRACTIONAL H.P. MOTORS. A.C. $200 / 250$ with rears $6 /$ /P. \& P P 2/6.
10-WAY PRESS-BUTTON INTER-COM TELE. PHONES in Bakelite case with junction box handsel.
 PHONES in Bakelite case with junction box. Thoroughly overhauled. Guaranteed, $£ 7 / 15$, , per Unit,
MODERN HAND SETS with coiled lead, white and black, 22/6. P.P. $3 / \%$ HAND SET LEADS,
TELEPHONE COILED HAND 3 core 5 6. P.P.
MODERN. with internal bell and handset with $0-1$ rey or hlack. $84 / 10 /$.
di WIRELESS SET No. 38 A.F.V. Freq. range 7.3 to 9.0 Mc (We. Working range 102 tiles. Size $102 \times 4 \times$
 £6 per pair or $£ 3$ single. P.P. $25 /-$ ( $1 /-$ in slot) for A.C
ELECTRICITY SLOT METER mains. Fixed tariff to your requirements. Suitable for
hotels, etc. $200 / 250$ v. 10 A. $80 /=15$ A. $90 /, 20$ A. hotels, elc. $200 / 250$ r. $10 \mathrm{~A} .80 /$-. $15 \mathrm{~A} .90 /-, 20 \mathrm{~A}$
$100 / \%$ P.P. $7 / 6$ Other amperages available. Recon-
 Reconditioned as new. $200 / 250 \mathrm{v}$. 10 A. 42/6: 15 A Reconditioned 18
$52 / 6 ; 20 \mathrm{~A} .57 / 6$. Other amperages available. 2 years g-BANK UNISELECTOR SWITCHES. 25 contacts, alternate wiping $£ 2,15 /-; 8$ bank, half wipe
$£ 215-: 6$ bank half wipe. 25 contacts $47 / 6$, P.P. $3 / 6$. DESK PHONES. Black Bakelite cases. complete with hand sel and internal bell with 0-1 dial, 42/6, P.P. $6 /$ /
HIGH-SPEED ELECTRO-MAGNETIC COUNTERS. Ex-Govt. 4 dirit, $25 / 50$ y. D.C. Sire $4 \times 1 \times$ lin. Single coil. 2,300 2. Single coil $500 \Omega 8$ 8/6. P.P. ${ }^{3 / 6}$.
EX. COVT. BALANCED ARMATURE THROAT MIKES complete with plug, new, 7/6. P.P. 3;6.

$$
\text { DESK PHONES from } 35 / \text { - Various types in }
$$ stock iq inal End Selectors. Relays, various caller

also 9 Receivers in stock. Alf for callers only.

23 LISLE ST. (GER 2969) LONOON W.C. 2 Closed Thursday 1 p.m. Open all day Saturday

## AMERICAN <br> TEST \& COMMUNICATIONS EQUIPMENT

suitable for navigation or Scope conversion, price from E5. S.A.E. for detalls.
AN/ARC-33 Transceivers $225 / 399.9 \mathrm{Mc} / \mathrm{s}$. AN/VRC-19 F.M. Transceivers. 152/174
AN/URC-4 \& AN/URC-11 "Handy-Talk AN/ARN-6 \& AN/ARN-44 Compass Re-AN/TRC-8 U.H.F. Radio Relay Sets. AN/FPN-13 X band Radar Beacons. CU-168/FRR $2 / 32 \mathrm{Mc} / \mathrm{s}$ Antenna Couplers AN/PSM-2A "Megger" Insulation Testers $500 \mathrm{~V} \mathrm{O-1,000} \mathrm{Meg}$.
AN/URM-30 Test Set for AN/URC-4s. AN/PSM-6 Multimeters $1 \mathrm{~K}-20 \mathrm{k} \Omega / \mathrm{PV}$. AN-URM-6! Signal Generator $1 \cdot 8 / 4 \mathrm{Gc} / \mathrm{s}$. TS-47 Test Oscillator $40 / 500 \mathrm{Mc} / \mathrm{s}$. T-216/GR

225/399.9 Mc/s. Gener AN/UPM-11A ${ }^{2}$ 22 $\mathrm{Mc} / \mathrm{s}$. AN/USM-24A X Band Range Calibrators. TS-413C/U Signal Generators $75 \mathrm{Kc} / 4$ $\mathrm{Mc} / \mathrm{s}$. Generators $75 \mathrm{Kc} / 40$ TS-497B/UUR Signal Generator $2 / 400 \mathrm{Mc} / \mathrm{s}$. TS-147A/UP Radar Test Sets. TS-917A/CG (Stelma TDA-2) Telegraph Distortion Analysers.
ME-22/PCM Decibel Meters-45/+25 DBM
Tektronix 541, 543 \& 545 spare Tubes Type 5BHP2A. Price $£ 14$.
AN/APN-9 Loran Receiver Indicators, AN/UPM-19B Test Set for AN/APW-11 I-177B Valve Tester,
$\begin{array}{ll}\text { L-193C } & \text { Relay Test Sets. } \\ \text { L.A-230 } & \text { Measuring Oscilloscope, }\end{array}$ BC-614() Speech Amplifier.

NEW GENERAL CATALOGUE
$\star \quad$ AN/103 1/-
SUTTON ELECTRONICS
Salthouse, Nr. Holt, Norfolk. CLEY 289.

4STATION TNTERCOM


Solve your communication problems with this new 4-8tation Transistor Intercom system ( 1 master and 3 subs), in de luxe plastic cabinets for desk or wall mounting. Call/talk/ listen from Master to Subs and Subs to Master. Operates on one 9 v . battery. On/off switch. Volume control. Ideally suitable to modernise Office, Factory, Workshop, Warehouse, Hospitai, Shop, cte., for instant inter-departmental contacts. Complete with 3 connecting wires, each 66ft. and other accessories. Nothing else to buy. P. \& P. 7/6 in U.K.


Same as 4 -Station Intercom for two way instant con versation. Ideal as Baby Alarm and Door Phone. Complete with offt. connecting wire. Ibattory $2 / 6$. J'. \& P. 3/6.

## 7-STATION INTERCOM

( 1 MASTER \& 6 SUB-STATIONS) in strong metal calinets. Fully transistorised. $3 \frac{1}{2}$ in. Speakers. Cali on Master identified by tone and Pilot lamp. Ideally suitable for Office, Hotel, Hospital and Factory. Consplete with 50 yards cable and batteries. Price 21 gns . P. \& P. 12/6 in U.K.


Why not increase efficiency of Office, Shop and Warehouse with this incredible De-Luxe Portable Transistor TELEPHONE AMPLIFIER which enables you to take down long telephone messages or converse without holding the handset. A useful office aid. A must for every telephone user. Useful for hard of hearing persons. On/off switch. Volume Control. Operates on one 9 v . battery which lasts for months. Ready to operate. P. \& P. $2 / 6$ in U.K. Add $2 / 6$ for Battery. Full price refunded if returned in 7 days.

WEST LONDON DIRECT SUPPLIES (W.W.). 169 Kensington High Street, London. W. 8

## CLASSIFIED ADVERTISEMENTS

DISPLAYED SITUATIONS VACANT AND WANTED: £6 per single col, inch. ZINE advertisements (run-on): 7/- pes line (approx. 7 words), minimum two lines:
Where an advertisemont includes a box number (count as 2 words) there is an additional charge of $1 /$ SERIES DISCOUNT: $15^{\prime \prime}$, is allowed on orders for twelve monthly insertions provided a contrac
is placed in advance.
BOX NUMBERS: Replies should be addressed to the Box number in the advertisement, $5 / 0$ BOX NUMBERS: Replies should he addressed to the Box n No responsibility accepted for errors.

Advertisements accepted MA to APRIL 5 for the beling avallable.

## T1TATIONS VACANT

TV Pleld Service Enalneer. £1.000, London area A FULL-TIME technscal experienced salesman te
 $\mathbf{R}^{\text {ADIO }}$ s.ad tape recorder testers and trouble R shooters required: canteen, excellent rares of pay g a.m. to 5 p.m.. S-day week.-Elizabethan Electronles.
Ltd.. Crow Lane, Romiord. Essex. Tel. Romford 64101 . 11999 West London Aero Club invite A A and ar Be
sary equipment to commence Radio Workshop. Alter sary equipment to commence Radio Workshop. Alter
native prupositions mas be considered. Write ful
保 native propositlons may be čonsidered. Write
detal's to-White. Wallham Alrtid. near Maidenhead.
Borks. THE Royal Free Hospltal. Gray's Inn Rd., London, charge of electronics workshop. Duties will be to maintain and modify medical electronic equipment and to build new apparatus for elinical proects. Further particulars may, Ee obtained of salary will be paid. -Applications. stating age, qualifications and experi-
ence and giving the namies of two referees to the
11993 Administrator.
TECHNICAL Officer. Home Office--POst for man or II in the Instruments Dlvision of the Central Research Estabilshment. Aldermastun. Beris. Duties. concerned instruments used in ana'yicical chemistry, development of tographs and spectrographs. the design and production of research rigs. Quallications: O.N.C. in Mechanical or cilectrical Enginesring or equivalent or higher qualification; wide range of mechanical and electrka! esszntlal: experience of electronles an advantase. Salar cl: 8 . El, 490 . Promotion prospects. Non-
contibutor pension. Write: Civil service Commis-
 THE Agricultural Resarch Council Radiobiolorical mental Officer or Experimental Officer in its Electronics mental which is responsible for the provision and operation of equipment used in tracer studies both with sta'jle and radioactive isotodes. The successful candiof equlpment, and should have experlence of pulse techniques, linear amplifiers. analogue and digital cir-
cultry. data recording and processing. Minimum cultry data recording and Drocessing. Minimum
aualificetions; pass degree or. if under 22, O. E. A. 2. level in 140 sublects. or equivaien imaximum starting sylary at age 26 or over £1.017): E.O. \&1.365 to logical Laboratory. Letcombe Reals. Wantage. Berk. THE Geners posi omee vas vancles for THE General Post Omce has vacancies for Radio cations are invited from men between 21 and 35 vears of are who must liold either the Postmaster Gencral s
First or Second Clas Certificate of Competence in Radiotelegraphy or an equivalent certincate issued by a Commonwtath Admintstration or the lrish Republic. The nosts, which will be temporary in the first in-
stance, carrs a salary scale of $£ 730-\kappa 1.075$, depending on age at entry. but successius applicanis will be
eligible to enter tise open competitive selection for permanent appointment to be held in the spring of this Year. Applicants slould write 10: The Inspector of
Wirelexs Telearaphy. Union House. St. Martin's-leGrand. London. E.C.I. or teleplsone London HEAd-
(S.T.D $01-432$

## BOOKS,INSTRUCTIONS, ETC.

## MANUALS, circuits of all British ex-w.D. 1939-45



##  <br> 

 ELECTRONIC DESIGN \& DEVELOPMENT ENGINEERS (ALL GRADES) SALARIES UP TO £2,800 P.A ELECTRONIC TEST \& SERVICE ENGINEERS (ALL GRADES) SALARIES UP TO £1,600 p.a TECHNICAL SALES ENGINEERS (EXPERIENCED) SALARIES UP TO $£ 2,500 \mathrm{p} .2$ TECHNICAL AUTHORS (ALL GRADES) SALARIES UP TO £1,800 p.a ALSO
DRAUGHTSMEN, PRODUCTION ENGINEERS


(5)ELECTRONICS APPOINTMENTS LTD. Norman House, 105-109, Strand, W.C. 2 TEMple Bar 5557-8.


## RADIO \& TELEVISION SERVICING RADAR THEORY \& MAINTEMANCE

 Vacancies regularly exist in industry for men with good knowledge of Radio,TV and Radar. Our one-year day courses provide effective training. Shorter day courses available for men with experience.
Write for details to: The Secretary, London Electronics College, 20 Penywern Road, Earls Court, London, S.W.S. Tel.: 01-373-8721


## The Civil Service

Professional and Technical appointments

## RADIO AND ELECTRONIC ENGINEERS BOARD OF TRADE (CIVIL AVIATION)

Qualified engineers required as Assistant Signals Officers in the field of Civil Aviation for the provision and installation of adyanced electronic equipment-including the latest type of radar, telecommunications, navigational dids, etc
QUALIFICATIONS: Degree with 1 st or 2nd class honours in Electrical Engineering or Physics, or have passed all examinations for M.I.E.E., A.M.I.E.R.E. or A.F.R.Ae.S
AGE: 23 and normally under 35 on 31se December 1968 (extension for Forces and Overseas Civil Service). SALARY (Inner London): On the scale $£ 1,160-£ 2,092$ depending on age and qualifications. Pensionable appointments. Good prospects of promotion
(Reference: $\$ / 85^{\prime} \mathrm{ASO}$ )

## EXECUTIVE ENGINEERS AND ASSISTANT EXECUTIVE ENGINEERS

 POST OFFICEEXECUTIVE ENGINEERS are required for rescarch, development and design work for electronic telephone exchanges, satcllite communications, submarine telephony, novel line and radio transmission systems, electro acoustics, mechanical aids and postal mechanisation. Most of these posts are in London
There are also posts in engineering management to direct and control the provision and maintenance of communications installations and plant. These posts are available in London and in a number of provincial centres.
ASSISTANT EXECUTIVE ENGINEERS are required in London and provinces for work on the development and design of communications systems and postal service equipment
QUALIFICATIONS: Executive Engineer: Degree or Dip. Tech. in Mechanical or Electrical Engineering or Physics or Applied Physics, or have achieved Corporate Membership of the I.E.E., I.Mech.E., or I.E.R.E Final year students may apply. Assistant Executlve Engineer: G.C.E. (or equivalent) pass in English language, and one of the following: H.N.D. in Electrical or Mechanical Engineering or Applied Physics a pass in (or exemption trom) Parts 1,2 and 3 of the examinations of i.E.E., or I.Mech.E.; a pass in (or of the examination of the Council of Engineering Institutions, in subjects acceptable to one of the Institutions of the examinat
SALARIES (national): Executive Engineer: £906 (at 21)-£1,677 (at 34 or over)-£1,884. Assistant Executive Engineer: $£ 734$ (at 18 or under)- $£ 1,097$ (at 25 or over)- $£ 1,631$.
Salaries increased for officers serving in London. Non-contributory pension. Promotion prospects to higher grades with maxima of $£ 2,484$ and $£ 3,105$.
AGE: Execurive Engineer: At least 21 and under 35 on 31 st December 1968. (Some extensions for ervice in on 31 st December 1968. Applications for both posts from well qualified older candidates will be con(Reference: S/353)

APPLICATION FORMS are obtainable from the Secretary, Civil Service Commission, Savile Row, London, W.1. Please quote appropriate reference.

# Product Test Technicians <br> <br> Career Opportunities <br> <br> Career Opportunities with IBM Manufacturing 

 with IBM Manufacturing}

We need high calibre men to fill vacancies created by promotion and programme expansion.

## The Job

Is to commission the latest IBM products and systems in production at the Scottish plant, near Greenock, and requires an intimate knowledge of the equipment under test, which can include computers, punched card and tape peripherals, magnetic disk and tape storage, high and low speed printers, visual display units and multiplexors. The products have to be tested thoroughly, and all faults traced and rectified. The work is interesting and absorbing, and the prospects for the right man are good.

## Training

Will be a mixture of formal and "on the job" instruction. We will teach you all you need to know about IBM equipment - providing your basic knowledge is to the required level.

## Pay and conditions

Men selected for this work will start at not less than $£_{1,050}$ per annum. We can pay more for proven ability and good relevant experience.
Benefits include a non-contributory pension, immediate free life assurance and full sickness pay for up to 26 weeks in any 12 months. The 254,000 square feet plant is modern and situated in a pleasant rural valley. There is a subsidised restaurant.
Working conditions are excellent and there are good recreational facilities in the area. IBM will help you find somewhereto live and pay your removal expenses.

## The man

Will be at least 18 and probably less than 30 and have a strong electronic background, with experience in, for example, the testing of electronic products, maintenance of radio, radar or TV or similar work in the armed forces.
He will probably have, or be near to attaining, a qualification such as HNC, ONC, first class PMG, final RTEB, or final City and Guilds (Course Nos. 47, $48,49,57,300$ ). A knowledge of transistor circuitry and the use of oscilloscopes will be a distinct advantage.
If you have what we need, and are keen to join a vigorous, expanding and up-to-the-minute industry, please write, giving details of your age, experience and qualifications, and quoting ref No. PT/WW/336 to: Personnel Selection Officer, IBM United Kingdom Limited, P.O. Box $3^{0}$, Spango Valley, Greenock


# STAFFORDSHIRE COUNTY COUNCIL <br> Education Department FIELD SERVICE ENGINEERS <br> (Two additional Posts) 

Applications are invited from suitably qualified and experienced persons for these posts. Ability to main. tain, repair and demonstrate all types of audio visual equipment, is essensial.
in Television should hold the final R.T.E.B. cersificate in Television and Telecommunication engineering and have had considerable experience in the servicing of
radio and television receivers, record players, rape recorders, and sound film projection equipmens.
Applicants must possess a current driving licence
The Salary will be in accordance with Technical Grade III ( $£ 860-$ £1,020 per annum). The posts are superannuable.
Assistance may be given in approved cases towards removal expenses and a lodging allowance may be payable.
Further particulars and forms of application may be obtained from The Director of Education (Admin.) whom completed applications should be returned whemin 14 days of the appearance of this advertisement within 14 days of the appearance of this advertisement.

## INSTRUCTOR

required to lecture on theory and practice Radar background Television. Marine Radio/ Apply BST, 20 Penywern Road, Earls Court, Apply BST, 20 Penywern Road, Earls Court, tions.


[^14]36th (Eastern) Signal Regiment (Yolunteers)

## T \& AVR <br> WANSTEAD E II

Vacancies exist for voluntecr technicians to service and repair modern Army communication equipment (Radio and Line) in Electronic Workshops. Training given, but Int. Cert. C. \& G. in Telecommunications desirable. Full Army rates of pay. Bounties up to £85 per annum. Camp in Germany every three years. Training night every Thursday, 19.30-21.30 hrs.

Contact Capt. (T.O.T.) K. A. Christian, ERD, Signals Housc, Selsdon Road, Wanstead, E.11. Tel. 01-989-5131. Similar vacancies exist at CAMBRIDGE, BRENTW'OOD, GILLINGHAM NORWICH, BEDFORD and COLCHESTER

## RADIO TECHNICIANS

A mumbiver of multably, qualithed candilatea are requirmol for

 Apphicanta minet be 19 or ovir mitht he Iamiliar "ith the ine of
 experiente. Preference will be givell to cabdublated win cin offer
 nical Intermediate Certiticate wr equisubut teelinkal quiliteatons.
Pay scorling to age. c.g. at $10-8828$, at $28-81,071 \mathrm{i}$ (lifglicut age pay on entry).
Proppects of promotion to srades in salary range $81,159$. \&1,941. There are a few poat carryink higlier wlarives Annual leave allowance of 4 weeka 3 faym riwhag ta 4 werka 2 alayn. Normual Civit service alck leare regilathom nopuly:

Application forms avaliable from:-
Recruitment Oflcer (RT).
Goverament Communications Headquarters.
akiey, Priors Road
Cheltenham. Glob.

## BOROUGH POLYTECHNIC

Borough Road, London, S.E. 1
The Borough Polytechnic is centrally situated in London, between Waterioo and London Bridge stations. In association with other colleges, it has been proposed for designation as "The Polytechnic of the South Bank, London,"

Applications are invited for the appointment of:一

## TWO SENIOR LECTURERS

in the Department of Electrical and Electronic Engineering. This Department will be completcly rehoused in the summer of 1969 in a large building, now nearing completion.

It is intended that appoinrments shall date from 1st September, 1968. Candidates should hold honours degrees in Electrical Engineering and pref. erably also be corporate members of the I.E.E. or I.E.R.E. They should have relevant industrial or research experience in addition to teaching experience.

Candidates able to offer the following subjects, up to at least final degrec level, are particularly sought:-

HIGH VOLTAGE ENGINEERING
(Ref. E.13)
COMMUNICATION ENGINEERING
(Radio and Line Communication) (Ref. E.14)
SALARY SCALE (for Senior Lecturers in London):-
£2,350 p.a. rising by annual increments of $£ 60$ and $£ 65$ to $£ 2,665$ p.a.

Further details and application forms are obtainable from The Clerk to the Governing Body, Borough Polytechnic, Borough Road, London, S.E.I with whom completed applications should be lodged within two weeks of receipt, but not later than 15 th April, 1968.

## ENGINEERS

## IBM will train you for a responsible career in data processing

To become a successful IBM Data Processing Customer Engineer, you need more than engineering qualifications. You need to be able to talk confidently and well to any level of customer management, and to have a pleasing personality in your work. As a DPCE, you work in direct contact with your customers, on some of the world's most advanced data processing equipment.

You must have a sound electronic and electromechanical background, such as ONC/HNC Electronic or Electrical, or Radar/Radio/Instrument Fitters course in the Armed Services.

You will get thorough training on data processing equipment throughout your carecr. Starting salaries depend on experience and aptitude, but will not be less than $£ 1,100$ a year. Salary increases are on merityou could be earning $f_{1} 1,900$ within $3-5$ years. Drive and initiative are always well rewarded at IBM; promotions are made on merit and from within the company.

If you are between 21 and 31 and would like this chance to become part of a rapidly expanding and exciting computer industry, write to IBM.

However, if you are between 18 and 21, IBM can offer you the chance of a challenging career as a Junior Customer Engineer.

You need five G.C.E. 'O' levels, an aptitude for mechanics, a good understanding of electrics, a clear logical mind, and the ability to get on well with people.

Send details of training, experience and age to Mr - D. J. Dennis, IBM United Kingdom Limited, 389 Chiswick High Road, London $W_{4}$, quoting reference E/WW/262.

IBM

## REDIFFUSION TELEVISION FAULTFINDERS

We have vacancies for experienced television faultfinders in our Production Test Departments. R.T.E.B. Final Certificate or equivalent qualifications or experience are required, a knowledge of transistor circuitry will be an advantage. These positions will be staff appointments with all the expected benefits.
Applications to:

Works Manager, Rediffusion Vision Service Ltd., Fullers Way South, Chessington, Surrey (near Ace of Spades). Phone: 01-397-541I

## THE CITY UNIVERSITY

Applications are invited for the post of EXPERIMENTAL OFFICER in the
LASER APPLICATIONS GROUP
Applicants should possess at leaśt a Higher National Certificate and have considerable practical ability. The officer will be responsible for the modulators under a research contract and will receive full initial training.
The appointment will be for three years with a prospect of permanency.

Salary scale: $£ 1,300 \times £ 75$ to $£ 1,450$ p.a. Apply in writing, stating qualifications and experience, to Professor P. F. Soper, Department of Electrical and Electronic Engineering, The City University St . John Street, London, E.C.1.

WESTMINSTER 10 spindle tully automatic transleaving and provision for parting off colls by rotating blede. exceptional condition: very reasonable. -102 . Parrswood RC. Manchester 20. Tel. Rusholme 3553. A Better deal for cash customers. We do not provide A interest free credti but ofter a generous discount of $15 \%$ for cash. Equipment despatclhed brand new in sealed cartons on recelpt of remittance with order. Agents ior Write or phone. Callers welcome. Open all day saturday Thursday hall day.-Audto Services. Lid.. 82. East Bamet Rd.. New Barnet. Herts. Tel.

## E A ARTICHESWANTED

$\mathbf{R}^{\text {ETAILER }}$ requires surplus items,-Lists to Hennikpp Wanted privately an Eddystone communications Wrecelver. prefer Model 940 HF but consider other model.-Tel. 8748656 eveninss. 7364634 daytime.
WANTED, all types of communicatlons recelvers Electronics. Led.. Ashville Old Hall. Ashvilie Rd.. Lon dectronics. Lid.. Ashv

## GRANADA TELEVISION

## Electronic Engineers for <br> Operational Television

We have a number of vacancies at the TV Centre in Manchester for men with a good knowledge of television engineering to work in all aspects of Granada's production and transmission operations.

These cover studio sound and vision, videotape, telecine, transmission switching and maintenance of equipment.
Entry points and salaries depend on experience and qualifications and the grades open are Assistant Engineer at £1566 pa and Engineer at £1857 pa.
We will also consider as Technical Assistants, young men with the right qualifications and the ability to learn. This is a training grade with a salary of $£ 1282$ pa.
Housing prospects in the Manchester area are excellent and we will give assistance with housing and removal expenses. Generous Granada Group Pension and Life Assurance Scheme.
Write full details age and experience and qualifications to Andrew Quinn, Granada Television Manchester 3

CLASGOW.-Recolders bought, sold, exclianked: Ecameras. etc., exclanner tor recorders or vice-

V ALve cartons by revirn af keen prites: send
 Godwin 3t.. Bradtorct.

## We buy new valves. Transistors and clean hew comquotallons by rerarn- Wialtons quantiles. Wheless Storex. 5 Wotathol] by rriarn.-Walton's Worcester St., Wolreriounaton. <br> CAPACITY AVAILABLE

A IRTRONICS, zidd., for coll winding, assembly and unit sheet metal work.-Sa. Walerand Rd.. London.

## TUITION

$\mathbf{R}^{\text {ADIO offlcers see the world Sea-golng and shorn }}$ September. Grants avallable. Day and boardine


## CROWN AGENTS

## ENGINEERS

The Crown Agents' Engineering Departments, which embrace all disciplines, carry out a wide range of activities on behalf of their overseas Principals, including the design, purchase and inspection of diverse plant, structures, machinery and equipment, in addition to providing advisory and consultancy services, and members of their staff in some Departments have opportunities to visit factories and sites abroad.

The Crown Agents is not a Department of the British Government ; nor are itsstaff Civil Servants, although their salaries and conditions of service are based on those of the United Kingdom Civil Service

The following appointments are available:
ASSISTANT INSPECTING ENGINEERS
(TELECOMMUNICATIONS)
Candidates, not over 30 years of age, should be (a) Associate Members of the Institution of Electrical Engineers or (b) Graduate Members of the Institution of Electronic and Radio Engineers (in which casc appointments would be considered in the Assistant Engineer Grade), or (c) possess a suitable H.N.C. or equivalent qualification (when appointments would be available in one of the Technical Officer grades). They should have had at least 5 years practical experience in the manufacture or design of telecommunications equipment and should preferably be conversant with quality control and assurance procedures. Some knowledge of broadcasting equipment and practice, or experience of telephone exchange or transmission equipment would be an advantage.

Duties will include visiting manufacturers' works to advise and assist in maintaining required standards, carrying out inspection and acceptance tests and preparing technical reports on a wide range of telecommunications and electronic equipment. Officers appointed will be required to live in the Greater London area in the first instance.

Appointment will be on the following terms:
(1) On probation for 2 years for admission to the permanent and pensionable establishment. $O R$
(2) On contract for $3-5$ years, with a $25^{\circ}$. , addition to the salary scales given below.

Candidates must be prepared to serve overseas. SALARIES

Assistant   Engineer	$£ 1,367$ (age 25)-   $£ 2,019$	$£ 1,317$ (age 25)-   £1,969
Technical   Officer   Grade I		
Grade II	$£, 615-£ 1,967$	$£ 1,565-£ 1,917$
Gras- £1,615	$£ 1,358-£ 1,565$	

Please write for application form and further particulars, quoting reference M22/OFFICE/VI and title of post to: CROWN AGENTS, "M" DEPARTMENT, 4, MILLBANK, LONDON, S.W.1. Candidates must be resident in the U.K. or anticipate being so in the near future.

A PERMANENT OVERSEAS CAREER

## RADIO

TECHNICIANS

You will be interested in the following focts.

1. A permanent overseas career with accompanied overseas tours. Tax free salary. Free accommodation. Furnishings supplied. Educational allowances. Substantial rebated holiday air fares. Free medical facilities.
2. Our staff has increased by 74 technicians in the last two years and we need a further 72 skilled technicians in 1968 alone to meet our expansion requirements.

Our business is telecommunications. We are a thriving company covering the fields of communication, aviation servlees and Air Traffic control with over 50 bases throughout the world.

The men we seek will be preferably qualified to $C . \& \mathrm{G}$. level. You should have a sound practical experience of HF and VHF communications. Knowledge of Navigational alds and RTT would be an advantage. Every encouragement will be given to you to continue your studies. Could you be one of the men for us? If so don't delay. Write now for application form. You will receive a prompt reply.

General Manager, Personnel (WW/RT),
International Aeradio Limited,
Aeradio House, Hayes Road,
Southall, Middlesex.

## WANTED

By manufacturer of Tape Recorders,
Record Players and Radios.

## young capable audio design engineer

Must have experience of low cost design on Mono and Stereo amplifiers.

Salary according to experience, in the range of $£ 1,000$ to $£ 1,500$ per annum.

Very good prospects.

Apply to the Managing Director,

> FIDELITY LIMITED,

OLAF STREET, LONDON, W.11. PARk 0131.

## Project

As a result of the steady expansion of our Radar Simulation business we are about to embark on the design and construction of digitalised electronic systems. We are therefore looking for a project manager, project engineers and systems design engineers with the following qualifications.

## PROJECT MANAGER

The chosen man will have a sound engineering background and will be expert in one of the following fields: System design involving radar techniques, digital computers and interface design, or simulation. He must be able to plan and manage a complex electronic project within a well defined budget.

## PROJECT ENGINEERS

We are looking for engineers with a sound knowledge of electronics and experience of radar techniques and analogue or digital computers. They must be able to organise the paperwork and be responsible for the detailed execution of contracts on the project from the planning through to the commissioning stage.

## SYSTEMS DESIGN ENGINEERS

We require Senior and Junior design engineers to devise electronic systems tor the slmulation of radar effects. They should have experience in the use of linear and logic integrated circuits, and be familiar with digital or analogue computing techniques and interface problems. Recent work on Air Traffic Control or Marine Radar techniques would be an advantage.

The team chosen for this project will be working for a Company producing sophisticated electronic equipment in an assured and expanding market. The Company offers good conditions of service, including contributory pension scheme and a free life assurance.

## Applications to: General Manager,

REDIFON LIMITED
RADAR SIMULATOR DIVISION
Kelvin Way, Crawley, Sussex. 'Phone: Crawley 23422 A Member Company of the REDIFFUSION Grouo

RADIO OPERATOR preferably with PMG 2 Certificate required immediately for duty on Meteorological Office Ocean Weather Ships.

Salary scale $£ 792-£ 1,230$ per annum according to age, plus $£ 143$ overtime allowance. Free food and accommodation provided on board ship. Applicants must be natural born British subjects. Full details from Shore Captain, Ocean Weather Ship Base, Great Harbour, Greenock. Telephone Greenock 24291.

## LLECTRONIC ENGINEERS

Service Engineers required for Offices, throughout the United Kingdom, of well-known Company manufacturing Electronic Desk Calculating Machines. Applicants should possess a sound knowledge of basic electronics with experience in electronics, Radar, Radio and TV or similar field. Position is permanent and pensionable. Comprehensive training, on full pay, will be given to successful applicants. Please send full details of experience to
the Service Manager, Sumlock Comptometer Ltd., 102/108 Clerkenwell Road, London, E.C.I.

## Airborne Electronics <br> SERVICE TECHNICIANS

RCA Great Britain Limited, is an International Electronics Company with diverse interests in the field of electronic engineering. Our Service Division operating at A \& AEE. Boscombe Down, Wiltshire is engaged on servicing and maintalning airborne electronic equipment, particularly AIRBORNE RADARS, ELECTRONIC NAVIGATIONAL AIDS, and HF, VHF and UHF COMMUNICATIONS.

A number of inceresting vacancies have arisen which offer excellent opportunities for developing the initiative and furthering the career of young men between 22 and 35. They must have relevant experience preferably on the specific equipment mentioned above.

These positions carry monthly paid staff status with excellent fringe benefits, including three weeks paid holiday each year. A competitive salary will be paid and there are excellent promotion prospects.

Please write or 'phone for an application form to:-


Mr. A. Freemantle,
RCA Great Britain Limited,
Lincoln Way, Windmill Road
Sunbury on Thames, Middlesex.
Telephone Sunbury on Thames 85511, Ext. 105.
A SUBSIDIARY OF RADIO CORPORATION OF AMERICA.

## UNIVERSITY OF STIRLING

## Electronics Technician

Applications are invited for the post of Electronics Technician, to assist the University electronics engineer with maintenance of equipment and in the development of new equipment. This post is the first technical appointment in this section and while qualifications to O.N.C. level or equivalent are desirable, preference will be given to applicants with proven experience and ability in the general field of electronics.
Salary on or within scale £653 rising to £968 (bar at £766); placing according to age, qualifications and experience; pension scheme.

Applications by letter, giving names and addresses of two referees, to the Secretary, (W.W.), University of Stirling. Stirling, by 29th March.

```
KINGSTON-UPON-HULL Coltge of Technology, Princlpation F.R.I.C.
K. Principal E. Jones. M.Sc. radar maintenance certificate. aiso in ectificates and the radar maintenance certificate. also in electrical and
electronis engineertng.-Information from College of Teclanology, Queen's Gardens. Kineston-upon-Hull. STUDY radito. televiston and elpetronics witll 1118 City wh Gulds. R.T.E.B.. elc. Also pratical courses with equipment. No books to buy. Write for free orospectus to ICS (DeDt. 442). Intertext House. London. SW11.
FREE to ambltious engineers! 132-page Guide to CIty \&.Sc.(Eng.). A.M.I.E.R.E...A.M.S.E.E A.M.I.M.I.. Satisfaction or Refund . A.R.ins. thousands ol passes -over 600 Home Study Courses in all branchts of Enkineering. Buldiny, Radio. Electronics. etc.-Write: B.I.E.T. (Dept. 151K). Aldermaston Coust. A!dermas-
ton. Berks.
```

Start training TODAY for one of the many first-class posts bpen to technically qualified men in the Radio and Electronics 'industry. ICS provide specialized training courses in all branches of Radio, Television and Elec-tronics-one of these courses will help YOU to get a higher paid job. Why not fill in the coupon below and find out how?
Courses include:

## - RADIO/TV ENG. \& SERVICING <br> - AUDIO FREQUENCY <br> - ClOSED CIRCUIT TV <br> - ELECTRONICS-many new courses <br> ELECTRONIC MAINTENANCE <br> - INSTRUMENTATION AND <br> SERVOMECHANISMS <br> - COMPUTERS <br> - PRACTICAL RADIO (with kits) <br> - Programmed course on <br> ELECTRONIC FUNDAMENTALS

Guoranteed Cooching for:
Inst. Electronic \& Radio Engs.
C. \& G. Telecom. Techns' Certs.
C. \& G. Electronic Servicing
R.T.E.B. Radio/T.V. Servicing Cert.

Radio Amateur's Examination
P.M.G. Certs. in Radiotelegraphy

General Certificate of Education

INTERNATIONAL   CORRESPONDENCE SCHOOLS   Dept. 230 Parkgate Rd., London, S.W.Il.   Please send FREE book on
Name
. 1 ddress.
. . . . . . 4.

# Goveromment of Malawi REQUIRES <br> <br> TELECOMMUNICATIONS <br> <br> TELECOMMUNICATIONS ENGINEER 

 ENGINEER}
on contract for one tour of $24-36$ months in the first instance Commencing salary according to experience in scale: (including overseas addition) fits rising to $\mathcal{L}$ byon a year. A supplement of fice) a year is also payable. Gratuity (free of Malawi tax) $25 \%$ of total salary drawn for tour of 30 montis or over or $15 \%$ for a tour of 24 but less than 30 months. Outfit allowance £30. Free passages. Liberal leave on full salary. Gienerous erlucation allowances. Quarters at low rental. Contributory pension scheme available in certain circumstances.

Cameliclates, preferably aged 20-4.5 years, must have at leasi 5 years experience in either of
the following branches of telecommunications engincering, after completion of two years' approved training; Carrier and V.H.\&: B., puipment: HF Radio and A.R. Q. Equipment. 'they must possess at least one appropriate: City and Guilds Certificate. Previous overseras experience and experience in training and supervivion ut subordinate staff would be advantageous.
Apply to CROWN AGENTS, M. Dept., 4 Millbank, London, S.W.r. for application form and further particulars, stating name, age, brief details of qualifications and experience and quoting reference $M_{3} B / 626{ }_{4} 8 / W . F$

# Govermment of Swaziland REQUIRES TELECOMMUNICATIONS TRAINER 

For the Pusts and Telecommunications Department. on contract for one tour of three years in the first instance. Commencing basic salary according to qualifications and experience in scale Rands 2340 rising to Rands 3204 a year ( 6 Stg. 1365 -£Stg. 1869 ) plus Inducement Allowwance Rands $3: 8$ rising to Rands 450 a vear ( E Stg. $159-£$ Stg. 225 ). Gratuity $25 \%$ of total salary drawn. Free passages. Liberal leave on full salary. Quarters provided at low rental (or allowance paid in lieu). Generous education allowances. Contributory pension scheme available in certain circumstances.

Candidates must possess a City and Guilds Intermealiate Group Certificate or equivalemt.

Experience in another African Telecommunications Service ivould be an advantage. The duties will involve the training of local students in theoretical subjects up to level of ist Year City and Guilds in Engineering Service, Elementary Telecommunications Practice, etc., and the supervision of the practical application of elementary Telecommunications practice in laboratory and field.

Apply to CROWN AGENTS, M. Dept., 4 Millbank, London, S.W.1. for application form and further particulars, stating name, age, brief details of qualifications and experience and quoting reference M3B/6I561/W.

## ELECTRONIC SYSTEMS SERVICE ENGINEERS

THE JOB

Systems Service Engineering on Advanced Training Aids for Aircraft. Radar Networks, Nuclear Reactors and Submarines. THE MAN
Electronic Engineer preferably with O.N.C. or H.N.C., having had practical experience of electronic devices with a keen desire to learn new techniques and applications.

THE REWARDS
A salary within a range of $£ 950-£ 1,450$. High job interest. Opportunity to work on complex systems incorporating digital and analogue computers, associated peripherals, colour television systems and servo systems, as a member of a team. Opportunity to fly and operate simulated aircraft and other equipments. High quality training will also be given. OTHER BENEFITS
Our terms and conditions of employment are good and include contributory pension scheme, free life assurance, etc.
We are not merely offering posts which will afford candidates opportunities of attaining a good job. Selected candidates will be offered long term careers. Opportunities for travel at home and overseas
Apply: Personnel Manager,
REDIFON LIMITED
flight simulator division
Gatwick Road, Crawley, Sussex. Phone: Crawley 28811 A Member Company of the REDIFFUSION Group

## CAMBRIDGE

## PYE T V T LIMITED

Can offer the following opportunities:-

## INSTALLATION ENGINEERS

Senior and Assistant Engineers to install and commission Colour T.V. Transmitting equipment at home and abroad. The posts offer opportunities for travel.
Applicants for the SENIOR ENGINEER posts should have an H.N.C. or equivalent, but candidates without such qualifications who have considerable experience of installation of T.V. broadcasting or other transmitting equipment will be considered.
Applicants for the ASSISTANT ENGINEER posts should have an O.N.C. or equivalent trade or services qualification in electronic engineering. Some experience of installation work on electronic equipment would be an advantage.
Attractive salaries will be paid, according to experience and qualifications. Travelling expenses are paid in addition.

## ELECTRONIC DEVELOPMENT ENGINEERS

Engineers for development of Colour Television Transmitters and associated equipment. The vacancies fall into two categories:-
Applicants for the first category are expected to be aged between 24 and 34, with H.N.C. or equivalent qualifications and design experience in at least one of the following activities :-

1. Video and radiofrequency amplifiers up to 1 GHz using solid state and microwave tube techniques.
2. Amplitude and phase equalising networks.
3. High power coaxial networks and feeders.
4. Other work connected with television transmitters.

Applicants for the second category will be aged between 20 and 26 , with O.N.C. or equivalent, with some experience in the electronics industry.
Attractive salaries will be paid to Engineers able to provide immediate contribution to a comprehensive work programme.

## TRANSMITTER TEST ENGINEERS

Senior and Assistant Engineers to test Colour T.V. Transmitting equipment. This includes a wide range of U.H.F. Transmitters of powers up to 40 kW .
Applicants for the SENIOR ENGINEER posts should have an H.N.C. or equivalent, but candidates without such qualifications who have considerable experience of T.V. Broadcasting or other Transmitting equipment will be considered.
Applicants for the ASSISTANT ENGINEER posts should have an O.N.C. or equivalent trade or services qualification in electronic engineering. Some experience of test work on electronic equipment would be an advantage.

Attractive salaries will be paid, according to experience and qualifications.

Enquiries should be addressed to the Personnel Officer, Pye T V T Limited, Coldham's Lane, Cherry Hinton, Cambridge. Write or telephone Cambridge 45115.

# Govermment of MALAWI REQUIRES RADIO TECHNICIAN 

10 scrue as Inspector of Police (Signals) on contract for one tour of 24-36 months in the first instance. Commencing annual salary according to experience in scale rising to $£ 1590$ (including overseas aldition). A supplement of 100 a year is also payable. Gratuity (free of Malawi tax) $25 \%$ provided a tour of at least 30 months is served, otherwise $15 \%$. Outfit allowance £ 30. Free passages. Liberal leave on full salary. Gencrous children's education allowances. Contributory pension scheme available in certain circumstances.

Candidates, up to 45 years, should have at least 5 years practical experience in radio,
preferably in a Police Force or the armed forces. Preference will be given to candidates who possess City and Guilds Intermediate Telecommunications Certificate or equivalent. A good knowledge of transistor circuitry, multi-channe carrier telephone equipment and or diesel plant and petrol/electric alternators would be an advantage.

Apply to CROWN AGENTS, M. Dept., 4 Millbank, London, S.W.I., for application form and further particulars, stating name, age, brief details of qualifications and experience, and quoting reference M3B/64949/

# Computer Engineers 

Due to continued expansion NCR require additional ELECTRONIC and ELECTRO-MECHANICAL ENGINEERS for Computer Maintenance. Posts are available for men wishing to become Site Engineers.
Training Courses are arranged for suitably qualified men. H.N.C. Electronics, City \& Guilds Final or equivalent standard required. Men from Forces with radar experience welcome.
Knowledge of electronic or electro-mechanical equipment necessary. Good Pension and Bonus Plan in operation
Please write for Application Form to The Personnel Officer.
NCR, 1000 North Circular Road, London, NW2, quoting Publication and month of issue.
Plan your future with


Our activities in the field of telecommunications are substantially increasing, and as a result we have a need for a number of Production Test Engineers capable of fault finding on V.H.F and U.H.F. mobile equipment involving both transistorised and valve circultry. There are also a limited number of vacancies for Systems and Microwave Engineers. Selected applicants will be based either in Cambridge or Haverhill (Suffolk), and realistic salaries will be offered for these positions.

All enquiries initially should be made to:
THE PERSONNEL MANAGER, PYE TELECOMMUNICATIONS LTD., NEWMARKET ROAD, CAMBRIDGE. Telephone: Cambridge (OCA3) 61222

## Trained in electronics? Interested in aircraft?

Combine both these interests at the Marconi London Airport Service Depot.
Technicians at the depot undertake major servicing of all types of Marconi airborne electronics equipment including navic!ational aids and V.H.F and U.H.F communication systems. During 1968 there $n$ ill be an expansion into a new building giving excellent opportunities for rapid promotion.

Applicants should possess a City and Guilds Certificate in tele communications, equivalent qualification or experience.

## Marconi ${ }^{8}$ 禺

Please write quoting reference WW/AV/7, giving details of age, qualifications and relevant experience to: Mr B K Overy, Divisional Personnel Officer, c/o Directorate of Personnel, English Electric House: Strand, London WC2.

The Marconi Company Limited
an english electric' company

## TECHNICAL JOURNALIST/WRITER

Electrical \& Radio Trading, a weekly magazine in the International Publishing Corporation, has a vacancy for a technical journalist capable of writing knowledgeably about electrical appliances, TV and allied goods. Must be able to understand servicing data.
Rewarding fosition for man around 25-35 Please write, giving details of experience, age and salary required to the Editor, ERT, 33-39 Bowling Green Lane, I.ondon, E.C.I.

## Television Development Engineers


E.M.I. Electronics has vacancies for Engineers in its new Television Group, which has been formed to consolidate and develop the Company's capability in the field of colour and monochrome T.V. Equipment.

The positions involve work on the development of transistor circuits for professional T.V. Equipment, and applicants should possess practical experience of T.V. techniques and the design of transistor circuits. Some experience with colour T.V. would be a definite advantage.

Excellent commencing salaries and staff benefits. Please apply, giving details of experience and qualifications to:-

EMI P. JONES • PERSONNEL department - e.m.i. Limited blyth road - hayes - middlesex

## VACANCIES IN THE <br> USA

Leading firm in the American Electronic Industry have vacancies for:
(a) Design/Development Engineers to work on solid (b) Engineers of various cypes.
(b) Engineers and Scientists wish specialised experience in various aspects of transistor manufacture
fields involved include:
involved include
Metallisation/Encapsulation of medium/high power devices.
Process Control for Diffused devices
iii Surface passivation, sputtering techniques, etc. Vapour Phase synthesis. erystal growth rechniques.
For further details, contact
TECHNICAL STAFF APPOINTMENTS LTD. 25 Victoria Street, London, S.W.l. Telephone: 01-222-7611 (24-hr. service)

## BERRY'S RADIO

## require

Tape recording and Stenorette ENGINEER
\& LEARNER (Amateur Enthusiast)
5 day week, L.Vs., PERMANency 25 HIGH HOLBORN, LONDON, W.C. 1

TV and radio. A.M.I.E.R.E.. City \& Gullds. R.T.E.B., thousand of passes: for full detalls of exams and home trainank courses (Including practical equipment) in ali branches of radto. TV. electronics. etc. Write for 132 page handbook-free; please state subject.-Britsh Institute of Enginearing Technology (Dept. D
Aldermaston Court. Aldermaston, Berks.

> TEST EQUIPMENT - SURPLUS ANOSECONDHAND
> MINIATURE scope CT52, £15; slenal generator SIGNAL generators, oscilloscopes, output meters, wave S voltmeters. trequency meters. multi-range meters. $\begin{aligned} & \text { etc. etc. in stock, } \\ & \text { ville Old Hall, Ashville Rd., Loncon, E.ll. Ley. } 4986\end{aligned}$

MANUFACTURERS of transistor portables, radiogramophones and record players of the highest possible standard seek conscientious

## TECHNICIANS

or production testing, inspection and faultfinding. First class opportunity to gain excellent practical experience in a progressive organisation.

HACKER RADIO LIMITED<br>Norreys Drive, Cox Green, Maidenhead, Berks.

## SUDAN AIRWAYS

require ' $A$ ' and ' $B$ ' and ' $A$ ' or ' $B$ ' Licensed Aircraft Radio Engineers, all with Radar endorsements, for flight and base overhaul duties in Khartoum.
Details of salaries and conditions may be obtained from:-

> Chief Engineer,
> Sudan Airways,
> c/o 69 Piccadilly,
> London, W.1.

## ALL GOODS <br> GUARANTEED

AIRMEC OSCILLOSCOPES
3 in . tube TB $40 \mathrm{c} / \mathrm{s} 40 \mathrm{kc} / \mathrm{s}$ 50-0-50 Micro/amp meter calibrated for $Y$ deflection. Y amplifier
to $2 \mathrm{~m} / \mathrm{cs}$. Size 19 in , wide $\times 5 \times 15$. Normal $200 /$ $t 02 \mathrm{~m} / \mathrm{cs} . ~ S i z e$
250 vin, wide
$50 \mathrm{c} / \mathrm{s}$ input. Mint condition. Only

CONVERTOR/BATTERY CHARGER
Input 12 V DC-output $240 \mathrm{~V} 50 \mathrm{c} / \mathrm{s} 170$ watt max.
Input $240 \mathrm{~V} 50 \mathrm{c} / \mathrm{s}$-output 12 V 5 amp . D.C. Fully fused with indicator lamps. Size $91 \times 10 \times 4$. Weight 19 lbs. An extremely compact unit that will
give many years reliable service. supplied with plug give many years retiable service
and leads. Only $\mathbf{\varepsilon} / \mathbf{1 0} /-$. P. $\&$ P. 15/-extra.
DISTRIBUTED WIDE BAND AMPLIDISTRIBUTED WIDE BAND AMPLI:
FIERS available. Various types, e.g. EMI
 DEKATRON SCALER/TIMERS various models from \&6-£12.
BINARY / DECIMAL SCALERS 99 scaled on neons followed by 4 digit resettable counter
RATEMETERS. Various types available with or without EHT Power supplies.
SCINTILLATION equipment available. Units or complete assemblies.

WRITE FOR DETAILS.

TRANSISTORS-Not remarks.


BROOKS
$10 /-$ ca.

## RELAYS

American miniature gold contacts 4 pole co 48 V , brand new, boxed, $6 / 6$ ea.
Carpenters type 51A1/50. 200T 0.75 ohm 200T 0.75 ohm , brand new, boxed, $8 /$ - ea.
3000 Series $5 \mathrm{~K} / \mathrm{ohms}, 2$ pole make HD contacts, $3 / 6$ ea. 3000 Series 1000 ohms, all multi bank, $3 / 6$ ea. 30 .
state min. requirement,
Siemens sealed HS 48 V - ea. spco type $\mathrm{H} 96 \mathrm{E}, 3 /-$ ea Siemens miniature with dust cover, 6 pole make or break 1,250 ohms. Brand new, boxed, $4 / 6$ ea. American miniature 4 pole co $12 / 24 \mathrm{~V}$. 200 ohms, sealed, $5 / 6 \mathrm{ea}$.
FRACTIONAL H.P. MOTORS $240 \mathrm{~V} .50 \mathrm{c} / \mathrm{s}$. Brand new, Ideal models, fans, etc. $8 / 6 \mathrm{ca}$.
TRANSFORMERS. All 200/250 inputs, tapped 0-6-12-18, $3 \mathrm{amp}, 15 /-\mathrm{ea}$. ; 7 amp . $30 / \mathrm{-ca}$.
INVERTOR TRANSFORMERS. CT primary High and low impedance feed back windings for use with $0 C 35 / 36$ transistors with $0-200-250$ volt isolated output windings 200 W . rating, $\mathrm{E} / 5 / 5 /-$ 400 W . rating, $£ 3 / 10 /-$
H.T. TRANSFORMERS. e.g. $450-400-0-400-450$, 250 ma . $3 \times 6.3-3 \mathrm{amp}$. $1 \times 5 \mathrm{SV} 3 \mathrm{amp}$. Potted Parmeko/Gardiners, as new, $50 / \%$ Potied EHT also available.
Write stating requirements.
SELEENIUM RECTIFIERS.
Double bridge 12 V. 6 amps. continuous rating,
Quad bridge 12 V . 12 amps . continuous rating, 21/- ea.
NEW DIODES Mullard genuine OA81, 1/6 ea. CV448/425, 1/-ea.
METROSILS. Ideal pulse suppression, $2 / \cdot$ ea. EHT CONDENSORS. 7.5 KV working, with clips. $0.1 \mathrm{mfd}, 5 / 6$ ea.; $0.25 \mathrm{mfd}, 8 / 6$ ea.
Cash with order. Post paid over 10/-

## CHILTMEAD LTD.,

22 Sun Street, Reading, Berks.
Tel. No.: Reading 65916 (9 a.m. to 10 p.m.)

LAWSON BRAND NEW TELEVISION TUIES

Complete fitting instructions are supplied with every tube.
Terms: C.W.O. Carriage and insurance 10 /.

## LAWSON TUBES

18 CHURCHDOWN ROAD MALVERM, WORCS

Tel. MAL 2100

The continually increasing demand for tubes of the very highest performance and reliability is nowo being met bv the new Lawson "Century 99 " range of C.R.T.s.
"Century 99" are absolutely brand netv tubes throughoug manufactured by Brisain's iargest C.R.T. manufacturers. They are guaranteed to give absolutely superb performance with needle sharp definition screens of the very latest type giving maximum Contrast and Lighs output; logether evish high retiability and very long life.

12"-64:10:0
14"- $25: 10: 0$
17"-65:19:0
19"-66:19:0
21"-67:15:0

RADIO TECHNICIAN with sound knowledge of at least three of the following types of equipment required immediately for Meteorological Office Ocean Weather Ships: Single Side-Band Transmitter, Radar (Navigational), Radar Height Finding, Echo Sounders, Radio Receivers, Automatic DF, VHF and MF Low Voltage Servo Recorders, Digital Telemetering Equipment.

Salary Scale $£ 745-£ 1,242$ per annum according to age, plus $£ 120$ overtime allowance. Free food and accommodation provided on board ship. Applicants must be natural born British subjects. Full details from Shore Captain, Ocean Weather Ship Base, Great Harbour, Greenock. Telephone Greenock 24291.


## DEVELOPMENT ENGINEERS

Aged 22 to 30 required to work on the design of wire broadcasting equipment for systems distributing several colour TV programmes.
Apply in confidence to:-

Managing Director,<br>REDIFFUSION RESEARCH LTD.,<br>187 Coombe Lane West,<br>Kingston-upon-Thames,<br>Surrey.


R.S.T. Valve mail order co. 146 WELLFIELD ROAD, STREATHAM, SSW. 16

\author{

## Put your radio knowledge to good use in The National Air Traffic Control Service candidates who hold City and Guilds <br> <br> 

 Telecommunications Technician Intermediate Certificate or other qualifications of equivalent or higher standard. <br> - Age 19 or over. <br> Salary From $£ 828$ (at 19) to $£ 1,076$ (at 25 or over); scale maximum £1,242 (rates are somewhat higher in London). Non-contributory pension for established staff. - Career Prospects Radio Technicians are encouraged to study for higher technical and professional qualifications. They are helped in this by part-time and, in special cases, full-time release. Once qualified, there are excellent prospects of established posts and promotion to higher grades. Department of the Board of Trade. Opportunities <br> exist for work on:and Data Extraction, Automatic Landing Circuit Television. Work at the Civil Control Centres and other Establishments at the <br> Board of Trade is vital and interesting. There are vacancies for men in the Bournemouth, Gatwick <br> Practical experience in at least one of the main <br> Telecommunications. <br> Preference will be given to <br>  <br>  <br> \footnotetext{on
} <br>  <br>   <br>  <br>  <br>  the Civil Aviation Computers, Radar Systems, Closed Airports, Air Traffic <br> South of England including Heathrow, and Stansted. <br> \section*{Qualifications} branches of <br>  <br>  <br>  <br> 

}


All valves brand new and Special 24 Hour Express Mall Order Service

$$
\begin{array}{l|l}
8 & 4 \\
8 & 4 N \\
8 & 4
\end{array}
$$

 EABC80


$$
8
$$



## 



KT81
(AEC) $35 /-$
KT88 $87 / 4$
KT WH110/-
EBB

4
 C.Eng., M.I.E.E., Room 754, The Adelphi, John Adam Street, London W.C. 2 marking your envelope "Recruitment EJ/6702/RT3"

NAME

SEND S.A.E. FOR LIST of 2,000 TYPES

## Editorial Assistant

INDUSTRIAL ELECTRONICS (a leading monthly journal for users of electronics) require an editorial assistant to fill a vacancy in their team. The work is interesting and stimulating; it involves a combination of desk work and visits to industrial plants.
Applicants should be able to write clearly and should preferably have had some formal training in electronics.

Applications should be made to:<br>The Editor, "Industrial Electronics"<br>Dorset House . Stamford Street . London, S.E. 1<br>(Phone: 01-928 3333 ext. 178)

## RECEIVERS

EDDISTONE 77 O.L. 2, AM'FM. 150-500 Mc's. 6 Bands. As new. $£ 100$.
EDDYSTONE 770.R/1. AM/FM, 19-165 Mc/s. 6 Bands. $£ 80$. A.R. 88 L.F. £30. A.R. 88D. £45. EDDYSTONE 840 A. £35.
R.D.D RECEIVER with 2 Tuning Units $30-300 \mathrm{Mc} / \mathrm{s}, 600-1,000$ $\mathrm{Mc} / \mathrm{s}$. 50 .
PANORAMIC ADAPTOR. Model RCX. Input Freq. 450-475 Kc/s. £ $\mathbf{3 0} 0$.
R.209's. As new. 12 volt. $1-20 \mathrm{Mc} / \mathrm{s}$. 4 Bands. Internal Speaker. Complete with headset and spare valve kit. £15. MARCONIB. 29 15-260 Kc/s. 4 Bands $£ 6 / 10 /$.
CR.300. $15 \mathrm{Kc} / \mathrm{s}-25 \mathrm{Mc} / \mathrm{s} .250 \mathrm{v}$. H.T., 24v. Heaters. Require power unit, £12.
R.52 and Transmitter. E55. R107. Good selection \&15. PCR RECEIVERS. L.M.S.S. Wave, ER. Large selcecion inoperative 19, 22 and 31 Scls
AERIALS \& MASTS. Various sizes up to 3 in . diameter and 50 th . complete with guys and pegs.
WAVEMETERS. Standard Telephone R.502, complete with charts. $100 \mathrm{Kc} / \mathrm{s}-480 \mathrm{Mc} / \mathrm{s}$. covered by 9 plug-in coils. $£ 10$.
MARCONI "Q" METER. Type TF.329G, New boxed with manual, $£ 70$.
VALVE MILLIVOLTMETER. Type VM. 6351 by B.P.L. $£ 12$. AVO ELECTRONIC TESTMETER. 0-250v. A.C./D.C. $10 \mu \mathrm{~A}-$ 1 Amp. A.C./D.C. $50 \mu \mathrm{~W}-5$ watts. $£ 20$.
PHILIPS VALVE VOLTMETER. Types GM. 6010 and GM. 6014 and others. From 113.
PROCESS TIMERS by Chamberlain \& Hookham, 83.
TRANSMITTER. By G.E.C. 75a. AM/FM. Frequency 277.1 $\mathrm{Mc} / \mathrm{s}-282.8 \mathrm{Mc} / \mathrm{s}$. 10 Channel. Mains Power Unit, as new, £9. Receiver to match, $£ 9$.
GALLENKAMP LABORATORY CENTRIFUGES, 18.
GALLENKAMP LAB OVENS. Various. VACUUM OVENS. complete with Edwards 1 S 50 Pump, internal size 2 ft . 3 in . $\times$ 18ins. diam.
EDWARDS OIL DIFFUSION PUMPS. 1 in . and 2 in .
OSCILLOSCOPES. Cossor 1035 and 1049 Mk. III, Philips, Furzehill, Solartron, Nagard.
M.A.C. LTD.,

SHOP: 38, MEADOW LANE, LEED'S
Tel.: 26026
WORKS: TROY ROAD, MORLEY

## mis

An English Electric Company

## PUBLICITY ASSISTANT

Britain's leading growth Company in the field of Microwave Measurement is creating a new position which will involve producing technical data sheets, laying out advertising, coordinating and writing press releases and other duties normally associated with Publicity. Also involved will be the writing of instruction manuals for our wide range of Microwave Instruments.
To be able to bring the necessary technical background to the work it is likely that the suitable candidate would have, at the least, an O.N.C. (Electrical) or equivalent.

To apply send a brief outline of career to date to the Directorate of Personnel (WW2792.A), The English Electric Company Limited, Strand, London, W.C.2, or telephone Mr. M. G. Amos, Personnel Manager, on Stevenage 2311.

## GODLEYS

SHUDEHILL, MANCHESTER 4
Telephone: BLAckfriars 9432

## Sole Manchester Distributors for world famous BRYAN

 AMPLIFIERSAgents for Ampex. Akai, Ferrograph, Tandberg, Brenell, B \& O, Vorcexion, Truvox, Sony, Leak, Quad, Armscrong, Clarke \& Smith, Loweher, Fisher, Goodmans, Wharfedale, Garrard, Goldring. Dual, Decca, Record Housing, Fitrobe, G.K.D., ect.
Any combination of leading amplifiers and speakers demonstrated wishout the slightest obligation.

## ADJUSTABLE HOLE \& WASHER CUTTERS

The right tool for trepanning holes I"-12 $\frac{1}{2}$ in diameter in our range of 17 Models


Write for illustrated brochure of our full range with straight or Morse taper 1-4 or Bitstock shank AKURA All models avallable from stock

GINEER
Cross Lane, Hornsey, London, N. 8
TEL. FITZROV 2670

## TRANSFORMERS

 MAINS TRANSFORMERS IVA TO 2.5 KVAAUTO TRANSFORMERS
20 watts to 5,000 watts
Trade and Professional Enquiries Only OLYMPIC TRANSFORMERS LTD 224 HORNSEY ROAD LONDON. N. 7 NOR 2914

> REDUNDANT OR SURPLUS RADIO - ELECTRONIC STOCKS WANTED OSMABET LTD.

46 KENILWORTH ROAD, EDGWARE, MIDDX TEL: STOMEGROVE 9314

## RESISTANCE WIRES

EUREKA-CONSTANTAN
Most Gauges Available
NICKEL-CHROME MANGANIN NICKEL-SILVER

## COPPER WIRE

ENAMELLED, TINNED, LITZ, COTTON AND SILK COVERED
SMALL ORDERS PROMPTLY DESPATCHEDB.A. SCREWS, NUTS. WASHERS, SOLDERING TAGS, EYELETS and RIVETS
EBONITE and BAKELITE PANELS
TUFNOL ROD, PAXOLIN TYPE COIL FORMERS AND TUBES. ALL DIAMETERS

SEND STAMP FOR LST. TAADE SUPPLIED
POST RADIO SUPPLIES 33 Bourne Gardens, London, E. 4 Telephone 01-254-4688


ENTHUSIASTS
for cape recording subscribe to the Magazine with the ZEBRA stripes! 25/- (U.S.A.) \$3.75) yrly. incl. postage. COPY ON REQUEST PRESTIGE HOUSE, 14-18 HOLBORN, LONDON, E.C.I. 01-2424851

## DEIMOS 4

 TAPE RECORDERS FOR RESEARCH, INDUSTRY AND PROFESSIONAL AUDIO single and multichanne 8CORWALLLANE,HILLINGOON,MDX. Hares 3561
## WORLD RADIO \& T.V. HANDBOOK

By JOHANSEN
1968 ED. 42/- P.\& P. $/=$
The Practical Aerial Handbook, by King, radio and T.V. $35 /-$, P. \& P. $1 / 3$.

Silicon Controlled Rectifiers, by Lytel, 21/-,
P. \& P. I/-

Circuits for Comput.
Warrinters for the Amateur Constructor, by Colour T.V.P. P. \& P. 1/\%.
1.3.

Traneistor substicucio 15/-. P. \& P. 1/-
Aerial Handbook, New 2nd Ed., by Briges, 15/P. \& $P$. $1 /=$
cording for the Hobbyist, by Zuckerman, 26/-. P. \& P.1/-

## Where possible 24 -hour service guaranteed

## UNIVERSAL BOOK CO.

12 LITTLE NEWPORT 8T., LONDON, W.C. 2
(Leicester Square Jube Station)


## TRANSISTORS <br> 1,000,000 SOLD 1,000,000 LEFT

BRITISH MANUFACTURERS SURPLUS Owing to the reorganisation and expansion by the manufacturers of these transistors, it has been necessary to clear them as surplus to requirements. These devices would normally be tested several times into different groups, approx. $50 \%$ would be
used as good industrial transistors and a further $35 \%$ would make diodes. The remaining $15 \%$ would be disposed of as scrap rejects.

Offering these devices in varied quat
Offering these devices in varied quantities make RADIO HAMS and for EXPERIMENTAI USE IN SCHOOLS, COLLEGES and INDUSTRY.
All transistors are in mixed lots, mainly PNP but some NPN, all are Germanium type. Prices and
quantities as follows:-

100 pieces (approx. count by weight).
300,
500,
500
1,000
Larger quantities by negotiation"
TERMS:-CASH WITH ORDER, all goods sent by return. Please add $2 /-$ towards Post \& Packing orders up to £3, over £3, 5/-. Monthly accounts for Education Authorities, etc. on receipt
of an Official Order.

EXPORT ENQUIRIES WELCOME
All correspondence, cheques, Postal Orders, etc. dIOTRAN SALES, P.O. Box 5, 63 High St., WARE, HERTS.

Tel.: WARE 3442

## GENUINE ARTICLES ONLY!

NOT" seconds ", NOT " re-marks ", but BRAND NEW, PERFECT and GUARANTEED to spec. DISCOUNT prices (in brackets) for 5 OR MORE SAME TYPE.

| AD161 | $\ldots$ | $7 / 9(6 / 4)$ | BF225 $\ldots$. | $5 /-(4 /-)$ |  |
| ---: | :---: | ---: | ---: | :--- | :--- | :--- |
| D162 | $\ldots$ | $7 / 9(6 / 4)$ | $2 N 706$ | $\ldots$ | $3 / 4(2 / 7)$ |
| AF239 | $\ldots$ | $10 /-(8 / 6)$ | 2N2926 | $\ldots$ | $3 /-(2 / 6)$ |
| BC107 | $\ldots$ | $3 / 11(3 / 1)$ | 2N3707 | $\ldots$ | $5 /-(4 / 3)$ |
| BC109 | $\ldots$ | $3 / 6(3 / 6)$ | 2N4058 | $\ldots$ | $5 / 6(4 / 7)$ |
| BC168 |  | $2 / 6(2 / 6)$ | IS44 | $\ldots$ | $1 / 9(1 / 4)$ |



CWO. Mail order only . Orders over 10/- U.K post paid.

AMATRONIX LTD. (Dept WW4) 396 Selsdon Road, Croydon, Surrey, CR2 ODE

## Quartz Crystal lnits

For
ACCURACY
RELIABILITY

## PRICE ECONOMY

you can
DEPEND
illustratec
Brochure \&
on
THE QUARTZ CRYSTAL CO. LTD.
Q.C.C. Works, Wellington Crescent,
New Malden, Surrey (01-942 $0334 \& 2988$ )

## WE BUY

any type of radio, television, and electronic equipment, components, meters, plugs and sockets, valves, and transistors, cables electrical appliances, copper wire, screws, nuts, etc. The larger the quantity the better. We pay Prompt Cash.

Broadfields \& Mayco Disposals, 21 Lodge Lane, London, N. 12
RING 4452713
4450749
9587624
9589842


## TELECOM MK. II

Swiss Portable Transistor Receiver
with R.F. preselector stage, designed especially for the V.H.F. aircraft-band 118 $136 \mathrm{Mc} / \mathrm{s}$.

625 IOs Od carriage paid U.K. including internal loudspeaker, telescopic aerial and battery.

BRITEC LIMITED
17 Charing Cross Road, London, WC2
01.9303070

SEMICONDUCTOR DEVICES							
Fully guaranteed devices at competitive prices							
2 N 404	$8 / 6$	28	$7 /$	Bry	58	NKT245	5/6
2N696	5	28103	7/6	BFY51	\$/6	NKT281	1/8
2N697		24104	$7 / 6$	BFY52	5/6	NKT262	1/6
2N698	4/6	28131	$6 / 6$	BFY53	516	NKT264	4/8
2 N 706		28.601	$5 / 8$	BEX 19	5/6	NKT271	4/6
$\bigcirc \mathrm{N} 70 \mathrm{~mA}$	4/8	28802	$5 / 6$	B8X20	818	NKT272	4/8
${ }^{2} \mathrm{~N} 708$	S	28503	5/6	B8Y10	$3 / 6$	NKT274	4/6
2 N 226	$5 /-$	28781	4/6	Reyll	5/8	NKT275	*
2 N 27	3-	28732	4/6	B8Y26	4/6	NKT281	3/6
2 N 743	4.6	28733	4/6	B8Y27	46	NKT608	
2N74	4.8	AC107	8/-	B8Y28	4/6	ミKT613	8/6
2N753	4/8	AC126	4/-	88Y29	4/6	NKT674	${ }^{6}$ j-
2N914	$8 / 8$	AC127	4/-	BEY38	4/6	NKT67\%	
2N916	6/6	ACl28		BEY 39	4/6	NKT713	5/6
2N929	$8{ }_{\text {i- }}$	ACY17	1/-	B8Y95a	4/8	NKT734	6/8
2N930	8 8-	ACY 18	4/-	BY100	$4 / 6$	NKT736	
2N1040	8/6	ACY19	4/-	BYZ10	9/6	NKT773	5/6
2N1091	$8 / 6$	ACY20	$5 / 8$	BYZ11	$8{ }^{8}-$	NKT781	
2N1131	$9 / 6$	ACY21	$5 / 6$	BYZ12	$8 / 8$	OAS	
2 N 1132	$9 / 6$	ACY22	4/-	BYZ13	5/8	OA9	
2N1302	4/8	ADY28	4/-	OET102	4/-	OA47	1/6
2 N 1303	$4 / 6$	AD140	8 8-	GET103	41	OA81	$1 / 8$
2 N 1304	$5 / 6$	AD149		GET113		OA83	1/6
2N1305	818	AF114		GET116	8/6	0A182	
2N1306	$8 / 8$	AF115		OET118	41	OA200	
2 N 1307	$8 / 6$	AF116	4/-	OET119	4/-	0A202	27-
2 N 1308	8 8-	AF117		GET120	$8 / 6$	$\mathrm{OCz}^{2}$	
2N1309	81-	AF118	4/-	aet573	$8 /$	0 C 23	8
2N1507	$8 / 8$	AFZ12	3/6	OET587	$8 /$	OC24	$8 /$
2 N 1613	6/8	A8221	${ }^{5 / 6}$	GET873	$3 /-$	OC25	8/6
$2 \times 1711$	$8 / 8$	BC107	$4 / 9$	GET881	$1 / 8$	OC28.	$8 / 8$
2 N 1893	$81-$	belos	$4 / 8$	GET88\%	4/6	OC28	$8 / 6$
2N1899	$8 /-$	BC109	4/8	GET889	4/6	OC30	$8 /-$
2N2193A	8/6	BCY10		GET890	4/6	OC35	B/8
2 N 2194 A	8/6	BCY1\%	$8 / 6$	OET896	1/6	OC36	${ }^{8}$
2 N 2220	5 5-	BCY30	$7 / 8$	GET807	$4 / 8$	CO38	10/8
2 N 2221	$31-$	BCY31	$7 / 6$	aET898	4/8	OC44	3/-
2N2222	$5 /-$	BCY32	718	NKT125	$8 /$	$0 \mathrm{CA5}$	2/8
2N2297	8/8	BCY33	$3 / 8$	NKT126	${ }^{-}$	OCls	3/-
2N2368	B/-	BCY34		NKT135	8/6	$0 \mathrm{C7O}$	
2N2369		BCY38	$5 / 8$	NKT2 10		OC71	8/8
2N2369A	$81-$	BCY39	$8 / 6$	NKT211	$8 /-$	0072	$2 / 8$
2N2411	8/8	BCY 54	$7 / 8$	NKT212	5/6.	0075	$2 / 6$
$\mathrm{2N}^{2} 412$	8/6	BCY70	$8 / 6$	NKT213	B/-	${ }^{0} 76$	I
2 N 2483	8/8	BCy 7	$10 / 6$	NKT214	4/6	${ }^{0} 778$	/-
2 N 2484	5/6	BCY72		NKT215	$4 / 8$	0078	
${ }^{2} \mathbf{N} 2696$	8/8	BFils	4/6	NKT217	$10 / 6$	OC78D	-
2N2904	8 8/-	BFX 12		NKT219	8 8-	$0 \mathrm{C81}$	-
2 N 2904 A	$8{ }^{81}$	8 BX 13		NKT223	$81-$	OC81D	-
2N2905	8 8/-	BFX84		NKT224	$\mathrm{B}_{1}$	$0 \mathrm{OC8} 2$	
2 N 2900 A	81-	BFX85	101-	NKT225	8-	$0 \mathrm{Cd2D}$	8/-
2N4906	8 8-	BFX88	8/-	NKT229	$\mathrm{C}_{6}$	$0 \mathrm{C83}$	-
2N2906A	8 8-	BFX 87	101-	NKT238	${ }^{6}$	OCX4	
2 N 2907	$8 /-$	BFX88		NKT239	$0 \cdot 1-$	OC200	${ }^{6 / 6}$
2 N 2907 A		BFY10		NKT240	6	00201	8/8
2N3011	5/6	BFY11		NKT241	$6 / 8$	OC202	16
2 N 3053		BFY18		NKT242	8,-	OC203	818
2N3055	21/8	BFY19		NKT246	8/8	0 C 204	8/6
VEROBOARD:   2 in. $\times 3$ in. $3 / 6 ; 2$ in. $\times 3$ in. 4/3; Cutter 9/Pose \& Packing $1 / 8$ per order. Quantity discounts available. Send S.A.E. for List.							
A. MARSHALL E SON (LONDON) LTD. 28 CRICKLEWOOD BROADWAY, N.W. 2   Tel.: 01.452 0161   Dept. WWI7							

LOOK - TRANSISTORS 1/. EACH AnICON \# PLANAR *N.P.N. P.N.


ALL TEGTED AND OUARANTERD TRANSIRTORSpak rante.

## PRE-PACKS


 puters work, even mate one for yourveif. Yull intructione
for noughta and croses machine, blary countera, timera, etc. L1 5 sni., L2 10 zas. No need to purchase both kltu. you can Atart with L2 which incoryoraten L1. DETALLS FREE.

## SEMICONDUCTORS DISTRIBUTED EXCLUSIVELY BY 222-224 WEST ROAD, WESTCLIFF-ON-SEA, ESSEX

 EXCITING NEW PAKS FOR AMATEURS, PROFESSIONALS, FACTORIES. ORGAN BUILDERS AND THOSE PEOPLETHAT JUST USE LARGE QUANTITIES OF TRANSISTORS AVAILABLE.| pak | XB PAK GAN | xc pak |
| :---: | :---: | :---: |
| Gerrmanlum PNP type trangitora, | Slicon TO-18 CAN type tranitors | Silicon diculen mulumitu |
| ronge, l.e. 44, 45, 71. |  | When black with |
| 1 mm | $88 Y 27.29$. | $D \mathrm{D}$ 10. |
|  | Price e5/5/ per | mice e $51 . \mathrm{m}$ |



'FREE' $\star \star$
Packs of your own choice to sthe value of $10 /$ with
$2 l l$ orders over 44 .

LARGE RANGE - LOW PRICE SILICON CONTROLLED RECTIFIERS. SEND FOR FULL RANGE AND CIRCUIT DIAGRAMS.
FREE OF CHARGE.

GREAT NEWS $t+$ We now give a written guarantee with a
semi-conduetors.
make a rev. counter for your car. the 'tachoblock." Thls encapsulated block will turn any 0.1 mA meter Into a perfectiy linear and accurate
rev counter for any car. state 4 or 6 ccyllinder 20/- each
no connection with asy other firm. mingum order 10/, Cash with order please. Add $1 /$. poo and packity per nofler. OVEREEAS ADD EXTRA FOR
airmail.

## TRANS/RECEIVER TWO-TWO

This is one of the Latest Releases by the Gove. of an extremely recent R/T set covering $2-8 \mathrm{Mc} / \mathrm{s}$ in two switched Bands, containing 13 Valves (3 EL32s in TX Out put) which can be used for Morse CW or R/T. Also has Netting Trimmer, BFO RF \& EF Controls, Switched Meter for checkin Power required LT 12 volts $D C$ Power required $H 25$ Volts D.C. Supplied Brand Now and Boxed with Headphones Now and Boxed with Headphones Circuic of set. Few only at $\mathrm{E5} / 10 / \mathrm{c}$ Carr. 30\%. New Plug in Power Supply made by us for either 12 volts D.C Input $\$ 5 / 10 /$ - or $200 / 250$ Volts A.C 83/17/6.

## LARGE QUANTITY OF SARAH V.H.F. TRANS/RECEIVERS

is normally carr ried in the life jacket of Airmen is is a complete miniatur ligheweighe radio Trans/Receiver, which is used to give a Beacon plus two way speech com munication coding unit and a power supply either Battery OR Transistor. These three items are permanenty inter-

connected and all units are completely sealed and watertight using a combined speaker/Mike, Press to calk or listen butcons, Fold up aerial, a cotal of three Valves are used, power required 6.3 Volts LT 90 Volts and 435 Volts DC RT. Frequency $243 \mathrm{Mc} / \mathrm{s}$. Transmitter output


FAMOUS ARMY SHORT-WAVE TRANSRECEIVER

Thia net is make up of 3 neparate unitn: (1) a $t$ wo valve
 covering $2229-241$ Mc/B uning 4 valven: (3) the mainshort
wape tranmmitier/recelver coverlng in two awitched banda. junt below $2 \mathrm{Mc} / \omega-4 \mid \mathrm{Mc} / \mathrm{m}$, and $4 / \mathrm{Mc} / \mathrm{m}-8 \mathrm{Mc} / \mathrm{s}$ (Approz. 160.37.5 metren) using 9 valven. For R.T.C.W. andM.C.W.The receiver is superhetrod yne having 1 R. . detector, A.V.C. End output stage. A B.F.O. meluded for C.W. or single side-band reception. T.X. output Welve 807, other ralven octal hanses. Many extras, e.g. netting hwitch, quick thick dial eettings. squelch. etc. D.C. HT transmitter 500 woits D.C., Alze approz. 17 x .71 I 11 inn . Every set supplied In new or as new 24/10/- or Grade 2 mightlg used $50 \%=$ or Grale 3 used but complete. 35/-. Car. ALL. 15/* WE MARE metal case to plua direct into net power nocket to run (1) receiver.
poat $7 / 6, ~(3)$
12 volt D.C. P.U. (original) falr condition. $^{(2)}$ 40 -. Carr. $\mathrm{B} / \mathrm{w}$. A charge of $10 \%$ - to unpeck and test the recelver of these nete is made only 18 requented. Head-

This is a modern self conpowered frequency modulaced transreceiver for R.T. communication up to 8.10 miles. Made for the Ministry of Supply at an extremely high cost by well - known midget B. G. 7 valves, receiver incorporasing R.F, amplifier Double superher and A.F.C Double superher and A.F.C. The frequency covered is dial. Power required L.T. 41 voles, H.T. 150 voles, tapped at 90 volts for receiver. Every set supplied complete with valves and crystals. New in carton, complete with adjuscable whip aerial, and circuit. Price $4410 s$ Od carriage 10s.


JOHN'S RADIO old co-op, whitehall road,
Tel،: DRIGHLINGTON 2732
DRIGHLINGTON, BRADFORD.

## ELECTRONIC BROKERS LIMITED

PRECISION HELICAL \& CONTINUOUS INSTRUMENT POTENTIOMETERS
BECKMAN MODEL J. Continuous 2 in . dia. 10 k . Res. col. $5 \%$. Lin. col. $+0.15 \%$. 35/- Brand new. Colvern CLR 7304-5 k. Continous. $30 /$-. Colvern CLR 6505 -i k., 100 k., 35/-, C.C.L. 301 BECKMAN MODEL A - 10 surn, 100 ohms. 100 k ., $50 /$ /-, BECKMAN MODEL A- 10 Turn, 25 ohms +25 ohms. $80 /$-, Colvern CLR $2402 \pm 10 \pm$ Turm; 2 wates 30 k ., $1 \times$ łin. dia., $30 \%$. Colvern CLR 2501/3-10 Turn, 5 wats. Tropically sealed $5000 \mathrm{hms}, 5 \mathrm{k} ., 30 \mathrm{k} ., 50 \mathrm{k} ., 100 \mathrm{k} ., 45 /$. Colvern $2601-10$ Turn, 0.4 wates per turn. Res. $+2 \% / \ln .+0.1 \% 1 \mathrm{k} .3 \mathrm{k}, 30 \mathrm{k}, 100 \mathrm{k}, 50 / \mathrm{F}, 1.5 \mathrm{k} .-5 \mathrm{Turn}, 45 \%$. BECKMAN $7210-10$ curn 7 in . dia. 2 k , $60 /$. Beckman Miniature Multi-Turn Dial, adjustable up to 15 zurn, with
SINE/COSINE POTENTIOMETER. By Kelvin \& Hughes, SCP4 32 k . Brand new, $\mathbf{6} 12 / 10 / \mathrm{m}$. Colvern $10 \mathrm{k.}$, Colvern CLR 960250 wate continuous potentiometers, $25 \mathrm{k} .$, c6/10\%. Ferranti Precision Consinuous Wire Wound Potensiometer. Type P4A. Size 15, Seven Secsions. Ganged, giving seven different pre-derermined values, $\mathbf{E 2 5}$ PULLIN D.C. MOTOR PM/I, 24 v., 45/.
SPERRY L16951 A.C. Tacho., with 600: I gearbox
SPERRY LI8477 A.C. Tacho., E12/10/-
MUIRHEAD SYNCHRO, II CT4c- 26 vols, E6:10/-
MUIRHEAD SYNCHRO II CX4b-26 vole, $66 / 10 /$
PLUG-IN PRECISION DUAL SPEED DRIVE D.S.D. 7
$0.1^{\circ}$ accuracy (dial calibrasion). Readings one from $0^{\circ}$ so $360^{\circ}$ on two concentric dials, coarse incre. menss of $10^{\circ}$ and fine incremencs of $0.1^{\circ}$. Miniasure coupling provided to transmic rosacion to a synchro. This precision drive permits rapid positioning and extremely accurate reposisioning of rocational components such as synchros and resolvers; which can be mounced directy to the frame
of the drive, also available DSD 40 Gear rasio $10: 1$, E $19 / 10 \%$.

"MINICUBE" BLOWER. Sub-miniature, only lin. square. Operases on 26 V . $400 \mathrm{c} . \mathrm{p.s}$. input power, I or 2 pH . Oucpuc 2.2 c.f. $n$. as free air wt. It
Saunders Associates. Offered as tenth of manufaccurer's price $66 / 10 /$.

GEAR BOXES. By Vactric. Size 11 . $149.1: 2$ and $300.2: 1 \mathbf{4 / / 1 0 / .}$
INSTRUMENTS FOR DYNAMIC ANALYSIS
 LOW FREQUENCY RESOLVED COMPONENT INDICATOR BY SOLAR-TRON-Type VP 253.2A for the analysis of Dynamic Response of systems and components to the highest accuracy with rejection of harmonics and noise over the frequency range. Used for the measurement of cransformer magnetising and core loss. Performance of synchros and fractional motors and other electro mechanical units. Also design and cescing of Feedback Amplifier, Filsers, etc.
This instrumens willindicate by means of two centrezero in. scale meters she resolved components of a signal voltage with respect so the applied reference energisation.
Frequency Range: $0.5 \mathrm{c} / \mathrm{s}-1 \mathrm{Kc} / \mathrm{s}$. Frequency Range: $0.5 \mathrm{c} / \mathrm{s}-1 \mathrm{Ke} / \mathrm{s}$.
Signal Voltage Ranges: $50 \mathrm{MV}, 150 \mathrm{MV}, 500 \mathrm{MV}, 1.5 \mathrm{~V}, 5 \mathrm{~V}, 15 \mathrm{~V}, 50 \mathrm{~V}$ and 150 V with either balanced or unbalanced Input. Signal Input Resistance: IOM $\boldsymbol{M}$ unbalanced. $20 \mathrm{M} \Omega$ balanced. Reference Input.
Four-phase reference energisasion is required, each phase having a level of 10 V r.m.s. with respect co virtual earth. Reference Input Resistance: $6.2 \mathrm{M} \Omega$ per Phase.
Harmonic and Unrelated Frequency Discrimination better than 40 dB . Mains voltage $90 / 130$ or $230 / 240 \mathrm{~V}$. Standard Rack Panel, 19in $\times 12 \mathrm{fin}$ high, 6175 new condition, complete wich manual.
MINIATURE PRECISION SAMPLING SWITCHES, 100-CHANNEL. COnsisting of 4 eracks of 25 contaces, each running at 80.2 r.p.m. Driven by a Vaceric P. 238 6.3V.D.C. ( 5,000 r.p.m. shrough a Vactric gearbox 11 H 7 ). Gear ratio 80.2 : 1 . Max. corque 2 lb . inch, ( S .

48-CHANNEL. Consisting of 2 tracks of 24 contaces
gearbox, 6.3 V D.C. through a E.M.I. $\$ 31$ gearbox, $\mathrm{E} 6 / 10 \%$.

HIGH TEMPERATURE PRESSURE TRANS DUCER-Type NT4-317, by Solareron. Highly accurate and stable periormance. Suitable for uses in explosive and mining, research, moulding, pressing and extrusion research. High temperature environmental instrumen Gation, etc. Available in the following pressures only 0.75 p.s.1.. $100,150,160,250.500$ absolure. 1,000. 500 5.000 p.s.1. Gauge $0 \pm 150$

SOLARTRON PRESSURE SCAN
NING VALVE NT.999.3-This unit enables a single pressure transducer to be used to measure up to 24 separate pressures in one second. For inler pres sure ending on which iransducer is used The eransducer is housed inside the value and is exposed to the unknown pressures in order. This unit is offered with Vactric synchronous motor 400 cycle $30 / 60 \mathrm{~V} .8,000 \mathrm{r} . \mathrm{p} . \mathrm{m}$., with gearbox ratio of 149.06 ; I. New condition, in manufacturer's original packing Offered at a fraction of the original cost
$\mathbf{4 9} / 10 \%$. 449/10/
A variety of size 11 motors and gear heads can be fitced instead but we regre this will have co be undertaken by the intended purchaser.
SE LAB. LINEAR ACCELERATION TRANSDUCER. Type SE SS/A $\pm$ IG. \&1I/10/.. Brand new SE $150 / B / 5945 \pm 5$ p.s.i. with Demodulator amplifier 2910.
J. LANGHAM THOMPSON TI0370. Pressure Inductive Transducer $0-2500$ p.s.i. $69 / 10 /$. Also $584 / 0-30$ p.s.i. $612 / 10 /-$. Accelerometer Type ITI-4F - 5 to +30 G \&4/10/:.
MARCONI VALVE VOLTMETER TF 428B/1. Frequency response on probe $10 \mathrm{Kc} / \mathrm{s} / 3.100 \mathrm{Mc} / \mathrm{s}$. Five separate Voltage Ranges Overload Projeation 100 -250

FIVE DIGIT COUNTER, complete with Sangamo 57 FIVE DIGIT COUNTER, complete with Sangamo
synchronous motor $200 / 250-1 / 10$ th rev per hr. $55 /$, only synch
New.
PEN RECORDER. Two pens activated mechanically by $6 K \Omega$ S.P.S.T. Relay Deviasion 0. lin. Chart width 1.3 in
Driven by Synchronour Motor Sangamo Weston 57 Oriven by Synchronour Motor
Motor $\&$ rev. per hr:* $£ 7 / 10 /$

- It should be noted a wide range of chars speeds can be -It should be noted a wide range of chart spee
achieved by the replacement of she Motor
TF329C. MARCONI Q METER CIRCUIT MAG. NIFICATION. Freq. range $1.5-50 \mathrm{Mc} / \mathrm{s}$. $50-1500 \mathrm{Kc} / \mathrm{s}$. Magnification u $\mu \mathrm{F}$ 699/10/-

SELENIUM "KLIP-SEL" TRANSIENT VOLT. AGE SUPPRESSOR. Type KLGDBF 234 V 15 amp size 2 in. sq. 25/-
PEN RECORDEAS
Evershed \& Vignole Single Pen Recording Ammeter, "Murday system." No. 440972 . 15-0.15 M/A, $£ 20$. Everett \& Edgcumbe "Inkwell Dwarf" Recorder, 0.1 a 0.2 seconds F.S.D. S00yA $\frac{1}{2}$. -12 in . per hour or $\frac{1}{2} \mathrm{in} .6$ 2 in . per minute. Sin. chart. Brand new. Single Pen $£ 45$. Everett \& Edgcumbe "Inkwell Minor " Grapher Single Pen F.S.D. 185 My D.C. Sin. chare. 220 v. D.C. $\$ 35$ Elliott Bros. 3-7/8983. A Single Pen Recorder. 5 mA Complete with Sweep Evershed \& Vignole 12 Pen Recorder TD6804/2, 445 outhern Instrumenis Two Pen Recorder. Complet outhern Instruments Two Pen Recorder. Complete Kelvin \& Hughes Two Pen Recorder, $\mathbf{6 8 9}$.
EMI PROFESSIONAL TAPE CONSOLE, $7 \frac{1}{3}$ in. ISin. Excellent condition. A must for the prolessional user or Recording Studio. E99/IO/-. Original cost over user or
6700.
FIVE DIGIT ELECTRO MECHANICAL TOTALLING COUNTERS. Composed of a coil, a Five-wheel black on white figures councing mechanism and a pushwhack indow stepping speed will respond is provided having a speed of 6 steps per second. Brand new. Price having a speed of 6 steps per second. Brand new. Price
per quansity $1.9,25 /-$ each; $10-99,20 /-$ each. Size: $4 \frac{1}{1} \times 1 \frac{1}{16} \times \mathrm{lin}$. We. $4 \frac{1}{4} \mathrm{oz}$. Coil voleage 2.5 k . or 500 ohms.
HAYDON ELAPSED TIME INDICATOR. TYPE D22543.P4. 40 V., 50 cycles.
VEEDER-ROOT SMALL RESET RATCHED COUNTER FIVE-DIGIT, Type 1341. Adds one for each oscillation through 40 . Reset by knob. Size of igures 0.166 in . high. $1.3 \times 1.25 \times 0.96 \mathrm{in}$., finished black SYNCHROVERTER NON RESONANT SWITCH by ELLIOTT GI280. A miniature S.P.D.T hermetically sealed electro mechanical chopper, $25 /$ Pole, Double Throw, 6.3 V. 50 cycle. Twin Coil, $30 /$ each. WE PURCHASE
PLUGS AND SOCKETS, MOTORS, TRANSISTORS, VALVES AND KLYSTRONS, RESISTORS, CAPACI TORS, POTENTIOMETERS, TEST EQUIPMENT, RELAYS TRANSFORMERS, METERS, CABLES, ETC.
PROMPT PAYMENT AND COLLECTION
TURN YOUR CAPITAL INTO CASH

ELECTRONIC BROKERS LIMITED 8, BROADFIELDS AVENUE, EDGWARE, MIDDX.

## TELFORD oseiliasenpt Camenis

## TYPE 'E'

- Oscillograms in 10 secs.
- Employs Polaroid* films up to 3.200 A.S.A.
- Designed for the smaller Oscilloscope
- Economy size film $2 \frac{1}{2} \mathrm{in} \times 3 \frac{1}{4} \mathrm{in}$.

Specially designed for selected Oscilloscopes of the smaller type. Incorporates Polaroid processing unit which enables a photographic record to be produced in 10 seconds. The camera provides for viewing before exposure. No focusing necessary. Shutter operation by simple lever action.

Registered trade mark of Polaroid
Corp. U.S.A.

Full details gladly supplied on request.

TELFORD PRODUCTS LTD
4. WADSWORTH ROAD GREENFORD, MIDDX.
Telephone No. 01-998 1011
MEMBER OF BENTIMA GROUP
WW-135 FOR FURTHER DETAILS

MINIATURE KEY SWITCHES. (P.O. Lever Type 1000), centre off. 2 c/o each way. $7 / 6$ ea.
 HIGH SPEED MAGNETIC COUNTERS $(4 \times 1 \times l$ in. $) 4$ digis. HIGH SPEED MAGNETIC COUNTERS ( $4 \times 1 \times$ In.)
$6 / 12 \mathrm{v} .24 / 48 \mathrm{v}$. (scate which), $6 / 6$ ea., P.P. $1 /$.
SOLARTRON OSCILLOSCOPES. CD7IIS. 650 carr. $70 /$-: CO643 650, carr. 70/-; QD910 675, carr, 65. Ail units in first class condition. Complete with
manuals.
R.F. AMMETERS 3 in . Rnd. $0 / 6 \mathrm{amp}$. $10 / \mathrm{es}$. P.P. $2 / 6$.

COPPER LAMINATE PRINTED CIRCUIT BOARD ( $8 \frac{1}{2} \times 5 \frac{1}{2} \times$ trin.), $2 / 6$ sheet, 5 for $10 /$.
Also $11 \mathrm{l} \times 6 \mathrm{tin} .4 /$. ea., 3 for $10 / \mathrm{F}$

## BULK COMPONENT OFFERS

100 Capacitors (latest types) 50pF to .5,4F
250 Resistors $\frac{1}{4}$ and it watt.
150 Hi-Stab Resistors, $\frac{1}{4}$, $\frac{1}{2}$ and I wat
25 Vitreous W/W Resiscors. 5\%.
12 Precision Resistors . $1 \%$ (several standards included).
12 Precision Capacitors 1 and $2 \%$ (several standards included).
12 Electrolytics (miniature and standard sizes). ANY ITEM 10/-. ANY S ITEMS 62

YENNER LIGHTWEIGHT ACCUMULATORS (I oz. If $x$ $1 \frac{1}{2} \frac{1}{2}$ in.) $2 \mathrm{r} .1 .5 \mathrm{a} . \mathrm{h} ., 12 / 6 \mathrm{ea}$. (with electrolyte and charging inst.).
CARPENTER POLARISED RELAY 18.000 turns at $4000 \Omega$ 15/- (with base). ALL Types of G.E.C./SIEMENS/

MAINS RELAY ( 240 V. A.C.) 12 H.D. make contaces,
REED RELAYS (2 Herkons) S.T.C. 2426-582-15, 2 make. $10-15$ volt coil. $15 /$ ea.
" 3000 " TYPE RELAYS (Ex. New Equip.) 10 for 25/(our choice), p.p. 5/-.
COMPUTER LOGIC BOARDS containing 14 BCZII, 2 OC122, 2 trimpots 20\%* ea.: board containing 9 BCZII, tantelum saps. etc. $10 \%$ ea.
TELEPHONE HANDSET (Type 706) $17 / 6$ ea., P.P. $2 / 6$.
ZENER DIODES 3 to 50 vole. $5 \%$. 1.5 wate, $3 / 6 ; 10$ watt, 5/0 ea.
TELEVISION TUBES (Brand New) I9in. M47/10W 66 ea : 23 in . A59/10W 88 ea. Carr, \& ins. 20/. These tubes
THYRISTOR LIGHT DIMMER/SPEED CONTROL modules and kits. 200 watt kit 27/6, module 35/-; 500 watt kit $37 / 6$, module 45/\%; 1000 watt kit $52 / 6$, module
$60 /$. P.P. $2 / 6$.
SILICON CONTROLLED RECTIFIERS (Thyristors) BTY87 ( 100 r ) 100 p.i.v. $12 \mathrm{amp.g} 15 / 0$ ea.: TBY91 (150r) 150 p.i.v. 16 amp., $20 / \cdot ;$ CRS25/10 100 p.i.v. 25 amp.,
$30 \%$ CRS25 $/ 40400$ p.i.v. 25 amp. $60 /$. CRS1/20 30/-: CRS25/40 400 p.i.v. 25 amp., 60/-: CRSI/20 200 P.i.v. $1 / 4$ amp.. CR 5 /40 400 p.iv. 3 amp., $10 / \mathrm{ea}$.
SILICON DIODES RS220af 2/- ea., fI doz.; RS240 3/- ea., 30/- daz.; RS280 4/: ea.. 40/ doz.; IS $103 / \mathrm{BY} 100$ 4\% ea., 40/: doz.: RAS310al (avalanche) o/* ea.. 60/- doz.: IS413 5/- ea., S0/- doz.; RS610,
RS640 20/- ea. RS812 40/- ez.; RS845 60/- ea.
CAR RADIO SPEAKER $7 \times 4 \mathrm{in}$. $3 / 5 \mathrm{ohm}$. $15 / \mathrm{e}$ ex. P.P. 2/6. OSCILLOSCOPES Cossor 1035, £17/10/\%: 1049. $£ 20$; Solartron D300, 620, P.P. any unit $62 / 10 \%$.
E.M.I. MINIATURE RELAYS (24v. $1 \mathrm{c} / \mathrm{o}$ ) $\frac{1}{1} \times \frac{1}{1} \times \mathrm{in}$. Wr. \& oz. $7 / 6 \mathrm{ea}$.
RECORD LEVEL METERS (by Smiths) $1 \frac{1}{2} \times \frac{1}{2} \mathrm{in} .15 / \mathrm{ca}$. P.P. $2 / 6$.

SILICON BRIDGE UNITS. GEX54I 80 p.i.v. 10 a., 37/6 EIIBD-RC 100 p.i.v. 10a., 37/6; GA3I-A (Germ). 200 p.i.v., 2a., 20/-.
SORENSON VOLTAGE REGULATORS. Type LT-1000-2S. 625 ea .
P.C. CONNECTORS (13 way in-line), 4/6 pair

LARGE CAPACITY ELECTROLYTICS. $2,000 \mu F$. 150 v .: $4,000 \mu$ F. $90 \mathrm{v} .7 / 6 \mathrm{ea} .6 .300 \mu \mathrm{~F}, 63 \mathrm{v}$; $10,000 \mu \mathrm{~F} 30 \mathrm{v}$.
$16,000 \mu \mathrm{~F} 15 \mathrm{v} .25,000 \mu \mathrm{~F} 15 \mathrm{v}$. $10 /$. ea. All $44 \times 2 \mathrm{in}$. $16,000 \mu$ F isv.i $25,000 \mu$ Fisv. 10/. ea. All $4 \frac{1}{2} \times 2$ in
SPEAKER BARGAINS. E.M.I. $13 \times 8 \mathrm{in}$. with double Twecters 15 ohm, 65/-, P.P. S/-. As above less

FANE $12 \mathrm{in}, 20$ wate (Dual Cone), 95/., P.P. $5 / \%$
TRANSFORMERS L.T. SOv. at 5 amp . 19-0.19v. $\ddagger \mathrm{amp}$ 25/., P.P. S/\%.
TRANSFORMERS H.T. $625-0.625 \mathrm{v}$, at $110 \mathrm{~m} . \mathrm{a}, \mathrm{6} .3 \mathrm{v}$. at 2a., 6.3v. at 3a. c.e. Parmeko Neptune series, 35/P.P. 5/\%.

ELECTRIC SLOTMETERS ( $1 /$. ) 25 amp L.R. 240v. A.C. 85/- ea., P.P. 5/.
QUARTERLY ELECTRIC CHECK METERS, 40 amp. 240 v.
STEP-DOWN TRANSFORMERS. PRI. 200/250v. Sec. I. 115 v , at 1.25 amps ; Sec. 2. 25 v . at 5 amp .. 25/. ea.
P. $5 / \mathrm{m}$. P.P. 5/=

## PATTRICK \& KINNIE

8I PARK LANE, HORNCHURCH, ESSEX
Tel.: ROMFORD 44473.

## FOR SALE-

3 Westminster Multiwinders, 10-way Automatic Interleave.
PRICE: $£ 100$ each and carriage. Can be viewed by arrangement.
Large range of
TRANSFORMER LAMINATIONS
in Radiometal, Mumetal \& H.C.R. "C' and "E " cores-Case and Frame Assy's. Please send for list.

## J. BLACK

44 Green Lane, Hendon, N.W. 4
Tel. : 01-203 1855 \& 3033


#### Abstract

TECHNIGAL TRAINING CITY \& GUILDS (Electrical. etc.) on "Satistaction For detalls of modern courses in all branches of electrical engineering. electronics. radio. T. ie automation (Dept. 152 K ). Aldermaston Court. Aldermaston. Berks BECOME "Technically Qualifed" in your spare time, in radio. TV, servicing and maintenance. R.T.E.B  $\begin{array}{ll}\text { Gulde-s ree. Chambers Colleke (Dept. 837K). } & 148, \\ \text { Holborn. London. E.C.1. }\end{array}$ D.M.G. Certincates, City \&e Guilds and I.E.R.E P.M.G. Certifcates, City \& Guilds and I.E.R.E In Radio. TV and Electronics. Sudy at home with world tamous ICS. Write for free Prospectus stating subject to-International Correspondence Scluools (Dept 

\section*{olas} $R_{\text {ADIO Designer's Handbook." Editor F. Lang* }}^{\text {sord-Smith. B.Sc., B. E. Sentor Member I.R.E. }}$ (U.S.A.). A.M.I.E. (Aust.) comprehenstve reterence gineers, containing a vast amount of data in a readily accessible formi the book is intended especlally for recelvers or audio amplifters. Television radio trans mission and industria electronics have been excluded in order to limit the work to a reasonable size. 65 fif Buoks, Lid.. Dorset House. Stamford St. Eondon. s.E. 1



collins (U.S.a.) RECEIVER. 7 valve nuper-
het (Int. Octal walven). het (litt. Octal valven).
tixeeptionally stable for 8813. Pixceptionally stable for 8818 .
Frequency coverage $1.5 \cdot 1$.
 fixeellent emilitivn. £12.
fanous No. 19 SET TRANS/RECEIVER.
 wranomle 800 F. D.C. slightly uned. $55 /-$. Selectell conditious.



 or eryotal controlled. 12. v. D.C. operation. $818 / 10 /$ R.C.A. CRg TRANSMITTER RECEIVER. Mc/n. Cmmplete

 section, $70 /-$. 32tt., a a ahove with It
eection, $90 /=$.
MAKE YOUR AERIAL MAST:
5 ft . $8 \mathrm{Im} . .2 \mathrm{in}$. dia. interlocking nteel sections (a sections make a3it. mast). 20 - per wection.
NYLON GUY ROPES, with seml-antomatic teusiouer. 33tt., 6/6. 5011 . 7/6. GOTt. $8 /-$ BRS BY HOOVER. 12 v. II.C. input.
ROTARY TRANSFORMERS Output 250 v. D.C. at $125 \mathrm{~mA} . .25 /-, 12$ v. D.C. hiput, Output REJECTOR UNIT. FOr rejecting unwantel slynals. Bwitehent A ramgen. 1.2-10 Me/g. 30/ (A.T.U.). 160/30/40 metrea, 25/*
R. F. ANTENNA TUNER MOVING COL HEADPHONES. Noft rubber earimadn. $18 / 6$. DL.R. BALANCED ARMATURE KEADPHONES. 12/6. 22/6. ER. $1.75 \cdot 16 \mathrm{Mc} / \mathrm{a}^{2}$.
 300 thi output. I
circuit.
\& $7 / 10 / \mathrm{s}$.
ALL ITEMS CARRIAGE PAID MAINLAND ONLY Lines giving fuller details of these and many other surplus barga
A. J. THOMPSON (Dept. WW)
"EilinE Lodxs," Codicote, Ritehin, Herts. Tel.; Codicote 242 Hours of Business: Monday to Friday 8-5 Saturday 8-12.

# EXCLUSIVE OFFER 

Latest type highest quality 6ft. 6in. high totally enclosed rack mounting

## CABINETS

having unique features.

* "Instantit" (World l'atent) fully adjustable rack panel mounts onabling the panels to be mounted Hush or recessed as desired and drilled and tapped for all sized panels.
$\star$ Full length rear door instantly cletachable and fitted espagnolette bolts and lock.
$\star$ All corners rounded.
$\star$ Built in cable ducts.
* Built in blower ducts.
* Made in California U.S.A. cost the U.S. Government $£ 107$ before devaluation
Finished in grey primer and in new condition.


## OUR PRICE $£ 2900$

40-page list of over 1,000 different items in stock avaliable-keep one by you

grial Indicators $0 / 96$	
$\star$ Circuit Breakers 25 amp	10
$\star$ Illuminated 4 section switches	¢1
*Stelma Logic Units Oetal base	\&1 10
* Beckman Heliopots 30K \& 50K	10
*Nixie la	c2
$\star$ Teletype 5 track tape	1210
* Uniselectors 10 Bank 25 Way	£1
$\star 7$ Track Tape Readers	12
$\star 7$ Track Tape Punches	11210
*T-200 Pandaptors 450/470 K	c30
*A-1 Multi-Core Cable Testers 2	£40
+ Narda 500 w. Ultrasonic Clea	¢85
* Sliding Shelves rack mounting	¢3
*Marconi S.S.B. Receivers HR-22 2/32 mc/s	880
*R.C.A. $420 \mathrm{Mc} / \mathrm{s}$. Yagi 5 el. Beams . . . . .	2210
*Model 15 Teletype Page Printers	22910
* Metro-Vickers Vacuum Pumps 230 v. A.C.	210
*Precision Mains Filter Units	10
*E.M.I. Recording Bridges	$£ 1210$
* Avo Geiger Counters	2710
*Philco W.S. No. 43 Trasmitters 350W.	£75
*E.M.I. 3784 Wavelorm Monltors on trolleys	¢45
$\star$ Motorols 6v. Mobile Transmitters $30 / 40$ $\mathrm{Mc} / \mathrm{s}$.	£12 10
* Pen-type Personal Dosemeters	15
* Monitor Type 56 and Power Unlts	7
* Marconi TF 1053 Noise Meters	£45
*AN/UPM 17 Spectrum Anslysers 10/16000 Mc/s.	P.U.R.
*AN/URM-33. 34, 35 Signal Generstors $1000 / 10000 \mathrm{Mc} / \mathrm{s}$.	P.U.R.
Collins 478H-1 Test	P.U.R

Carriage extra at cost on all above.

We have a large quantity of "bits and Dieces" we cannotlist-please send us your requirements we can probably help-all enquiries answered.
P. HARRIS

ORGANFORD - DORSET
WESTBOURNE 65051

## 

CURSONS TRANSISTORS ALL GUARANTEED

1/- each. BAY31, BAY50, DK10, OA70, OABI. 2/- each. XA101, XA102, OC71, OC72, OC81,
OCBID, OC44, OC4S, GET 16, FST $3 / 1$, ACY22. 3/- each, OC139, OC140, 2N706, $2 \mathrm{~N} 708,2 \mathrm{~N} 2894$, BY100, RAS310AF, 2N914, BSY26, BSY27, BSY 95 A, AFZ 12, BFYIB, BFYI9, BFY 26 .'
7/6 each. RASSO8AF, CRS3/40, BLY10, BLY11, ZENER DIODES
3.9 v .1026 v CURSONS, 78 BROAD STREET CANTERBURY, KENT.

## DUXFORD ELECTRONICS (PE)

DUXFORD, CAMBS.

## C.W.O. P. \& P. 1/- Minimum order value 5/-

CAPACITORS (Tubular, Axial Leads) Electrolytic (Mullard): $10 \%$ to $+50 \%$ $4 \mathrm{~V}: 8_{\mu, ~} \mathrm{~F}, 32_{\mu} \mathrm{F}, 64 \mu \mathrm{~F}, 125_{\mu} \mathrm{F}, 250_{\mu} \mathrm{F}, 400 \mu \mathrm{~F}$. $6.4 \mathrm{~V}: 6.4 \mu \mathrm{~F}, 23 \mathrm{~F}, 50 \mu \mathrm{~F}, 100 \mu \mathrm{~F}, 200 \mu \mathrm{~F}, 320 \mu \mathrm{~F}$ $10 \mathrm{~V}: 4 \mu \mathrm{~F}, 16 \mu \mathrm{~F}, 32 \mu \mathrm{~F}, 64 \mu \mathrm{~F}, 125_{\mu \mathrm{F}}, 200 \mu \mathrm{~F}$. 26V: $2.54 \mathrm{~F}, 10 \mu \mathrm{~F}, 2 \mathrm{~F}, \mathrm{LF}, 40 \mu \mathrm{~F}, 80 \mu \mathrm{~F}, 125 \mu \mathrm{~F}$. $25 \mathrm{~V}: \mathrm{l}^{6}, 6 \mathrm{FF}, 6,4 \mu \mathrm{~F}, 12.5 \mu \mathrm{~F}, 25 \mu \mathrm{~F}, 50 \mu \mathrm{~F}, 80 \mu \mathrm{~F}$
$40 \mathrm{~V}: 1 \mu \mathrm{~F}, 4 \mu \mathrm{~F}, 8 \mu \mathrm{~F}, 16 \mu \mathrm{~F}, 32 \mu \mathrm{~F}, 50 \mu \mathrm{~F}$,
 All values $1 / 3$ each
POLYESTER (Mullard): $10 \%$
$160 \mathrm{~V}: 0.01 / 4 \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 6 \mathrm{~d}, 0.033 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}, 7 \mathrm{~d}$ $0.068, \mu F, 0.1 \mu \mathrm{~F}, 8 \mathrm{~d} .10 .15 \mu \mathrm{~F}, 10 \mathrm{~d}, 0 \mathrm{~d} .22 \mu \mathrm{~F}, 11 \mathrm{~d}, 0.33 \mu \mathrm{~F}, 1 / 2$. 0.47, FF, $i / 5,0.68 \mu F, 2 / 1$. I $\mu \mathrm{F}, 2 / 6$. $400 \mathrm{~V}, \quad 0.001_{\mu} \mathrm{F}, 0.0015 \mu \mathrm{~F}, 0.0022 \mu \mathrm{~F}, 0.0033 \mu \mathrm{~F}, 0.0047 \mu \mathrm{~F}$, $00068 \mu \mathrm{~F}, 0.01 \mu \mathrm{~F}, 6 \mathrm{~d} .0 .015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 7 \mathrm{~d} .0 .033 \mu \mathrm{~F}, 8 \mathrm{~d}$. $0.047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 9 \mathrm{~d} .0 .1 \mu \mathrm{~F}, 10 \mathrm{~d} .0 .15 \mu \mathrm{~F}, 1 / \mathrm{I} .0 .22 \mu \mathrm{~F}, \mathrm{I} / \mathrm{s}$ POLYSTYRENE: $2 / 1,0.47 / 6$. $2 / 6$
POLYSTYRENE: $15 \%$. $160 \mathrm{~V}: 5 \mathrm{pF}, 10 \mathrm{pF}, 15 \mathrm{pF}, 22 \mathrm{pF}$
 $3,300 \mathrm{pF}, 4,700 \mathrm{pF}, 5,600 \mathrm{pF}, 7 \mathrm{~d}$. $10,000 \mathrm{pF}, 8 \mathrm{~d} .15,000 \mathrm{pF}$. 22.000 pF .9 d .

POTENTIOMETERS (Carbon): Long life. low noise. W as $70 \mathrm{C} \quad 20 \%$ iM. $30 \%$. iM . Body dia., in. Spindle, lin. $\times$ tin. $2 \%$ - each. Linear: $100,250,500 \mathrm{hms}$, esc., per decade co lom. Logarithmic: 5k, lOk, 25k, esc., per decade co $5 M$. PRE-SET POTENTIOMETERS
SKELETON SKELETON PRE-SET POTENTIOMETERS
(Carbon): Linear: $100,250,500$ ohms, ece., per decade Co SM.
 P.C.M.) mounting. $1 /-$ each. $\quad 20 \% \quad$ IM, $30 \%>1 \mathrm{M}$. Horizoncal ( $0.4 \mathrm{in} . \times 0.2 \mathrm{in}$. P.C.M.) or Versical $(0.2 \mathrm{in} . X$ RESISTORS (Carbon F. Film) mounting.
RESISTORS (Carbon Film): High scability, very low noise, IW ac 70 C . Body in. X tin. Values in each decade: $10,11,12,13,15,16,18,20,22,24,27,30,33,36,39,13$, each, $1.2 \mathrm{M}, \mathrm{I} .5 \mathrm{M}, 1.8 \mathrm{M}, 2.2 \mathrm{M}, 2.7 \mathrm{M}, 3.3 \mathrm{M}, 3.9 \mathrm{M}, ~ 4.7 \mathrm{M}$, SEMI-CONDUCTORS (all new): OA5 OABI, I/6 OC44, OC45, 1/9. OC71, OC72, OC73, OC81, OC8ID. OCA2D. OC170. OC171, 2/3. OC140, AFIIS. AFII6, AF117, J/
SILICON RECTIFIERS: 0.5 A at $70^{\circ} \mathrm{C} .400$ P.I.Y., 3/800 P.I.V., 3/3. 1. 250 P.I.V., 3/9. I. 500 P.I.V., 4/.. SEND S.A.E. FOR JANUARY 1968 CATALOGUE

## WANTED-

Redundant or Surplus stocks of Transformer materials (Laminations, C, cores, Copper wire, etc.)
Electronic Components (Transistors, Diodes, etc.) Electronic Components (Transistors, Diodes, etc.)
P.V.C. Wires and Cables, Bakelite sheet, etc., etc (jood prices pard

## J. BLACK

44 Green Lane, Hendon, N.W. 4
Tel. 01-2031855 and 3033


PRINTED CIRCUITS
LARGE ANO SMALL QUANTITIES.
FACILITIES ATREASONABLE PRICES
ASSEMBLY SERVICE ALSO AVAILABLE
K. J. BENTLEY \& PARTNERS,

18, GREENACRES ROAD.
OLDHAM. LANCS.
Tel. $061-6240939$
Tel. 061-624 0939
Frequency Meters TS174, TS175, TS175AU, FR6/V; Signal Generators TF801/A, LAE, LR2, LP5; Oscilloscopes brand new TS34, Cossor 339, OS8/U; Receivers including AN/APR 4, multimeters and many other small items. GOLDMAN
6-36 West Heath Road, London, N.W. 3 Tel. HAMpstead 2663

## WANTED

G.E.C. Relays, with change over contacts, in any condition. Also notched relay contacts s.a.e. for details of new higher prices

ELEY ELECTRONICS
112 Groby Rd. Glenfield Leicester

## STAYNOR SUPPEEES

Specialists in printed circuit layout design. Full scale masters quickly, efficiently. Send details of your requirements for a quotation to
Ref, W.W/1, 558a KINGSTON ROAD, LONDON, S.W. 20

## DAMAGED METER?

Have it repaired by Glaser
Reduce overbeads by having your damayed Electrical Measuring Instruments repaired by L. Glaser \& Co. Ltd. We specialise in the repair of all types and makes of INSTRUMENT Ammeters, Multirange Test Meters, Electrical thermometers, REPAIRS $\begin{gathered}\text { Dectectors, Temp. Controlers, all } \\ \text { types } \\ \text { Bridges }\end{gathered}$ types Bridges \& Insulation
Testers, etc. As contractors to various Government Departments we are the leading Eliectrical Instrument Repairers in we are he lear For prompt estimate and speedy delivery
the Industry. .
send delective Instruments by registered post, or write send delective instruments by registed post
to Dept. W.W.:-
L. GLASER \& CO. LTD.

1-3 Berry Street, London, E.C. 1
Tel.: Clerkenwell $5481-2$

## DINSDALE MK II AMPLIFIERS

Printed circuizs and parts for mono and stereo versions. Special new power amp. printed board BAILEY 20 WATT AMPLIFI BAILEY 20 WATT AMPLIFIER, All parts available for this unit including Radiometal-cored wound Mains Transformer.
MULLARD IOW. A.B. TRANSISTOR AMPLIFIER MPECIAL CLEARANCE.
Printed Cireuit Boards to Mullard specification, fully drilled and fluxed. Price $4 /-$ each or $7 /$ - for two post free.
Layout Diagrams 9d. each. All other parts available. Please send S.A.E. for all Lists.

HART ELECTRONICS
321 Great Western Street, MANCHESTER 14

	THE ONLY
COMPREHENSIVE	
RANGE OF RECORD	
MAINTENANCE	

RECEIVER, TYPE 1933A



[^15]
## SWANCO PRODUCTSLTD.

G3NAP AMATEUR RADIO SPECIALISTS

NEW EQUIPMENT					
					d.
Sommerkanip F-Seriea Equipment					
FR-DX-5 io mambe monverai					
antenna relay  					
				x	0
Swan Line Equipment:Swan 600 matramelver,				250	0
				218	
8wan 410 VFO and ulapler				49	
					0
Fallicratter Equipment:					
SX-130 Comnumbeation rm					0
SX-122 Conининicathona re				148	
SX-248 88B kecelicer, M0-10 metr				137	0
HT-48 \$818 Transwiter, M0.10 me				182	0
HA-1 E'				215	0
Eddystone Radio Lid.:    unetres					
Eddyatore 940, ${ }^{\text {a }}$ -				88	
				53	0
Eddytone Eb35 recelver				80	
Eddjatone EB36 reerlver				54	7
Trio Communications Rec					
Trio JR-60 14 tuben anatenr commumbat inns  					
					0
Trio 9R59 tube cumunnicathnw receliver .......					
Trio 9R59DE tube combumbentiont revelwar.....				3815	
Leta jette Communications Receivera:					
				44	0
detector)					
HA-350 Amateur banda recelver, 耳0-10 met K. W. Electronica Litd.					
K.W. 201 Anateur lianula Brec					0
K.W. Vespa Mk. II tramanmeer (with imu).				128	0
K.W, 2000A 88 is Tranmedver, 1800 m.-10 mi. (vith PgU)					
				220	0
Mosley Electronics (Beamas)					
TA-33Jr. Trihand three-elemen			-a,		0
TA-31Jr. Triliant ilpole					0
V-8Jf. Trihaue	vertical				
TDeajr. Wire Trap Dipol				${ }^{1}$	
Chanveimaster rotators				1313	
Channelmaster rotitors (au				1818	0
2-Metre Tranmmitter (corn)					
Sky Bandit Aireraft recelver					0
Kurer Alrcraft, short, meillum, and long wave reselver				1	6
Swanco/CSE Equipment:SwBaco/CSE 2A10 solid mate (ranmithe					
					0
SwancolCSE 2 AE wolli ftate rece					0
able antemna					
Swanco/CSE matety mobile inicrophone Type MM2 Halson Mobile antonn, usw all weather all bande				21	
				17	
Swanco Quad Spiders (per pair) ...at........... 610					0
Esbelford B1/4 transmitter for 4 metren					0
Echellord C1/4 t-nuetre converter .........					
				1010	0
Full Fange of Drake Equipment avallable to orter. Finl range of Reatheit Equipment avallable for under.					
Codar Radio Company					
CR.70A recelicer	1910	0	CR.4sR		
PR30	510	0	ATS tranamitter	1610	
PR30X		0	250 volt PSD .		
R. Q .10	615	0	12/MS PMU ..		
L.Q.10x		0	12/RC contrul..		
cc. 40	610	0	Te8 recelver		0
CR.45K	910		Mint-Clipper		8
Partridze Electronics:			Sture Microphones:		
Joyatick wht					d.
			Slure sul	410	0
			Whure turs		0
Type a enlicir.					
Type 3 a thaterType 4 entier	412	${ }^{6}$	Shlure 4 at	1012 510	8
		0	S1ıre 275sk	42	8

Hay SECOND-haND EQUIPMENT


 Illuatryced Casalogne $\% / 6$ post paid

SWANCO PRODUCTS LTD.
Dept. W 247 Humber Avenue COVENTRY

[^16]Coventry 22714 Hours: Mon.-Sat. 9a.m.-6p.m

SELMER TRANSISTOR AMPLIFIER


SMITHS PRECISION SIX MINUTE DELAY
ACTION SWITCH Clock work actuated
$10 / 6 \begin{gathered}\text { EACH } \\ \text { Poss 2/6 }\end{gathered} \quad \begin{gathered}\text { (3 or more } \\ \text { post (Iree). }\end{gathered}$
Separate switching up to 6 mins. 15 amps. 250 voles. deal photographic timer, sequence switching operations te., etc. Brand newunits at a fraction of their value.

SPECIAL PURCHASE STELLA RECORD PLAYER Amplifier and Loudspeaker-all eransistor $-60 p$ periormance of
dises as $33 t, 45$ and 78 r.p. m . LP xeal' careridge. Smart red or blue plastic cabinet. WORTH DOUBLE



THE INSTANT BULK TAPE
ERASER AND RECORDING HEAD
DEMAGNETISER
$\begin{aligned} & \text { 200/250 A.C. } \\ & \text { Leafer S.A.E. }\end{aligned} \quad 35 /={ }_{2 / 6}^{\text {Post }}$
TRANSISTOR BOOSTER-
DOUBLE YOUR VOLUME!
Black plastic cabinet speaker with 20 ft .
lead for transistor radio, intercom, mains
radio, tape recor der.
Size: 7 tin. $\pm 5$ tin.


RADIO COMPONENT SPECIALISTS
337 WHITEHORSE RD., CROYDON. Tel: 01-684-1665

Thanks to a bulk purchase we can offer
BRAND NEW
P.V.C. POLYESTER \& MYLAR RECORDING TAPES

Manufactured by the world-famous reputable British tape firm, our tapes are boxed in polythene and have fitced leaders. etc. Their quality is as good as any other on the market, in no way are imported, used or sub-scandard tapes. 24-hour despatch service.

Should goods not meet with full approval, purchase price and postage will be refunded.

S.P.	3 in .	160ft.	2/-	Sin.	600ft.	\%
	5 in.	goort.	$8 /$.	7 in .	1,200ft.	9/\%
L.P.	3 in .	2251 t.	2/6	Sin.	soort.	$8 / 6$
	5tin.	1,20016.	10/-	7in.	1,800tt.	13/-
D.P.	3 in .	350\%t.	4/6	Sin.	1.200ft.	12/-
	5tin.	1,800fe.	14.	7in.	2.400 f .	20.-

We can also offer, BRAND NEW PRE-RECORDER LANGUAGES COURSES in GERMAN, FRENCH SPANISH AND ITALIAN.

Each course consists of 26 step-by-step lessons recorded at 37 i.p.s. suitable for two- and four track machines and supplied complete with handbook. Normal retail price $59 / 6$.

Our price $19 / 6$ per coursc.

## STARMAN TAPES

28, LINKSCROFT AVENUE, ASHFORD, MIDDX Ashford 53020

SLYDLOK FUSES 15 mmp .230 v. D.C. 4v 04AC 1/6 es., 15/- per doz.
HEADPHONES. Carbon H/Mics., 5,- es. P. \& P 2/6. DLR5 Bal. Armature. 966. P. \&P. 2/6. M/Coil
 P. \& P. 4/6.

TANNOY LOUDSPEAKERS. Re-entrant type, ideal for public address, enclosed in waterproof wooden cass, complete with steel baffe designed top produce directional re
SMALL GEARED MOTORS, $12-24$ v. D.C., reversible, with rears arteched. 15/- eis. $:$ with blowe TRANSMITTER. BC 625, part of T/R. SCR5 For spares only. Chassis only. Complete with valve except 832s and Relay. 21/- ea. Carr, U.K. 4 -. SIEMENS HIGH SPEED RELAYS. H96B typé, 50

"TELE L" TYPE FIELD TELEPHONES. These teiephones are fitted in strong steel case complete with telephones are fitted in strong steel case complete with
Hand Gen. for calling each station. Supplied in new condition and tested. 70/- per pr. Carr. 7/6.
POST OFFICE TYPE RELAYS. $3,000 \mathrm{sers} 2 \mathrm{c} /$. 2 mm . slugged coil 140 ohms: $2 \mathrm{c} / \mathrm{o}$, slugged coil 500
 $1 \mathrm{br}, 2 \mathrm{mpe}$ c/o plus $3 \mathrm{clos} 12 / 6$ ea. $2,000 \mathrm{~m}^{2} 4 \mathrm{c} / \mathrm{overs}$
 MORSE KEYS. No. 8 assembly complete with leads. vIBRATORS. 12 v. 4 pin: 12 v. 7 pin. Syn. All 6/- each. Carr. 1/.
ELECTRO MAGNETIC COUNTERS. Register
up to 9999 , coil res. $300 \Omega$ 5/- each. Carr, $1 /$. Ex . equipment.
MODULATION TRANSFORMERS. 150 watts, suitable for pair 813 s. driving 313 . Size 6 in. $\times 5$ in,
$\times 3$ in. ${ }^{3}$ Brand new, boxed. Price $27 / 6$. Carr. $4 / 6$. MEGGER INSULATION TESTER 500 v , with Contest range from 0.1 ohm to infinity. Bakelite case with hand
sioc
CUT OUT. 12 v. or 24 v. operation. Heavy duty silver
contacts $(5 \mathrm{c} 849), 7 / 6$ ea. Catr contacts (5c 849). 7/6 ea. Carr. 1/6.
LIGHTWEIGHT HEADSET (part of " $88^{\circ}$ "W. Set Equipt.) complete with Boom mic., carbon made to highest Ministry Spec. Moving coil earpieces. Opr
price $35 /-$ set
Surr
3/. Also Super Lightweight hand price $35 /-$ set. Carr. 3/.. Also Super Lightweight hand set, 17/6 ea. Carr. 2/-.
200 AMP. 24 v. D.C. GENERATORS. Type P3 ex-Air Ministry, £9/10/- ea. Cart. 10/6.
P.C.R. 12 V. VIBRATOR POWER PACKS. Brand new, 22/6 ea P. \& P. 5
CONDENSERS. Paper Sprague il mid. $500 \mathrm{v}$. , 5/doz. I mid. 1,500 v., $7 /-$ doz. (incl, P. \& P.).
HEAVY DUTY TERMINALS. Ex-equipt. Black only. will take spade terminals and wander plus. $1 / 6 \mathrm{pr}$.
$15 /-$ doz. pairs. P. \& P. $1 / 6$ ea doz. FATIGUE METERS. 24 v. D.C. Consisting of $6 \times$ 496 D Relays. $53 / 10 /$ es. Carr $4 / 6$. Electro Mas. RELAYS. 3.000 Series $2 \mathrm{C} / \mathrm{O} 2 \mathrm{M} .140 \Omega$ slugged $500 \Omega 2 \mathrm{C} / \mathrm{O}_{3}$ slugged coil. $6 / \mathrm{m}$. P. \& P. $1 /$ - ea. item. Also a few Ericsson Telephone 3,000 types in stock. AMERICAN AUTOPULSE 24V PUMPS for mounting between carb. and main fuel tank as a uxiliary
pump. New-30/-ea. P. \&e P. $5 /=.7 \mathrm{~g} . \mathrm{p} . \mathrm{h}$. Size pump.
7 in. $\times 2 \operatorname{lin} \times \times 2$ in
in
W. SETS, No. 19 Mk. III. New. $55 / 10 /$-, incl. carr. POWER SUPPLY UNITS, 12 v . for " 19 " Sets. 35/-, incl. carriage.
Complete Units, 19 Set, Variometer, 12 v.B.S. Control
Box. H/Phones and Leads. 10 GNS. incl. carr. W/S REMOTE CONTROL UNIT "E," Mk. 2 As supplied with " 19 " W.S. 25/-. P. \& P. 6/W.S. 19 VARIOMETERS. 17/6. P. \& P. 4/6. S.T.C. MINIATURE SEALED RELAYS TYPE $4184 \mathrm{GD} \mathrm{D}, 700 \Omega 24 \mathrm{v}$ v (will wiorkefficiently on 12 v. D. C.)
(ex equipment). 2 C/overs. $7 / 6$. P. \& P. $/ \% .6$ or (ex equipment).
more post paid.
SMALL D.C. MOTORS. $2 \mathrm{in}, \times 1 \mathrm{lin}, \times 1 \mathrm{gin}$, Rated 24 v ., will work on 12 v . lin. length drive shaft. Ideal for model makers, etc. $10 / 6 \mathrm{ca}$.
POCKET TRANSISTOR SETS-6 Transistor Med. Wave. Complete with earpiece and plastic carrying
casc. Boxed, brand new, 12 ea. P. \& P. $5 / 0$. S.A.E. all enquiries.


Tel. BIRKENHEAD 6067
Terms Cash with Order.

## 'Hike-Mike' really started so ...the finest range of radio microphone systems in the world <br> From the very successful general purpose unit Hike-Mike has developed a whole range

 of special purpose microphone transmitters each one precision made for precision performance. Suitable for both hand-held and Lavalier operation. Write now for descriptive literature of these and the full range of Audac Audio Equipment. Demonstrations with pleasure AUDAC radio microphone and sound reinforcement systems audac mafketing company limiteo / carey road / wareham / odaset / telephone wabeham 2245 . C

WW-137 FOR FURTHER DETAILS

## INIDEX TA ADVEIRTISEIRS

Appointments Vacant Advertisements appear on pages 117-129

Acoustical Meg. Co. Ltd.	17
Adcola Products, Lid.	Cover ${ }^{\text {IH }}$
A.D.S. Relays, Litd.	70
Adler. B. \& Sons	24
Advance Electronics. Lid	45
Alm Electronlcs. Litd.	58
Akurate Eng. Co., Lt	129
Amatronix. Ltd.	130
Ampex (Great Britain) Lid	73
Anders Electronics. Lid.	57. 70
A.N.T.E.X. Ltd.	
A.P.T. Electronic industries Led.	20
Armstrone Audio ..........	
did	
dio	
Audio	
Au	2
Automatic Machine Services	26
Automatic Systems Lab., Lud	26
Avo, Ltd.	
Avon Communicat	52
A.W.P. Electrontc	
Barrett. V. N	02
Batey. Wm	
Balich. ${ }^{\text {c }}$	
Aelciere	50
Beling ${ }_{\text {Bentley }}$ \& Lee Leuste Corn	79
Bentley Acoustle Corpn.. Lt	34
	126
Bi-Pak Semiconductors	
B1-Pre-Pak, Lid.	31
	- ${ }^{133-134} 65$
Brennell Engineering \& Co., Ltd.	84
Britain. Chas. (Radio)	
	30
British Elec. Resistance Co.. Ltd.	58
British Institute of Engineering Technoloky	13
Brookdeal Electronics, Ltd.	${ }_{86}$
Brown Nio and Electrical stores	135
Buck Ingham Press. Ltd. .	95
Bulkin. A F., \& Co., Lid.	Edt 91
Bullers. Ltd.	
Burt. ${ }^{\text {a }}$ L.	110
Cardross Ene., Ltd.	
Cathodeon Crystais, Lid.	
Chambers College	${ }_{127}^{132}$
Chiltmead. Lid (Engineers), Lt	71
Clark. A. N. (Engineers), Li	36
Cursons. B, W.	134
avis, Jack (Rela	82
Daystrom. Led	
Deimos. Ltd	
Denham st Morlev. Lid	50
Derritron. Lt dition.	150
Drumerair Developments	56
Durham Supplles .....	114
Duxiord Electrontes	134
Dynatron. Ltd. ....	134
Eddystone Radio. Ltd.	
Educational Measurements	110
Elcom. Ltd. ..........	60
Electrolube. Ltd	
Electronic Brokers. Lid.	132
Electronics (crosil. Ltd.	19
Electrovalue	102
Electro-Winds. Lid	
EMI Sound Products. Lid.	48
Emihus. Ltd. ${ }_{\text {Elich }}^{\text {Electric }}$ Valve co.. Lid	${ }_{3}$
	31
Erie Resistors. Lid.	38
	20
Ferranti. Ltd	63
Ferrorraph. Ltd	77
	$12{ }^{\text {x }}$
Foamair. Ltd. ............	22
Gardners Transformers. Ltd.	51
Garrard Engineering, Ltd.	53



## Post Radio Supplies

## Procirc. Lid. <br> Proops Bros $\because$ id

Pye Teleommunications, Lid
Quartz Crystal Co.. Lid
Raaco
Racal Instruments Lid.
Radio \& T.V. Components (Acton) Ltd
Radio \& T.V. Services. Ltd.
Radio Exchange
Radionic Product
Radiospares. Lid. Ltd
Radlo Traders
Ralfe. Wharfedale Lid
Rank-Whartedale, Lid.
R.C.A.

Rendar Instruments
Rola Celestion L
R. S. C. (Hi-Fi Centres). Ltd

Saltord Elec. Inst. Co. Ltd.
Sallis. Arthur. Radio Control, Ltd
Sallis. Arthur. Radio Control,
Samsons (Electronics). Ltd.
Samsons (Electronics
S.D.C. Products
S.D.S.A. Trading Co

Service Trading Co
Shriro (U.K.). Lid.
Sllenibloc. Ltd.
Sinclatr Radionics. Ltd.
butors. Ltd
S.M.E.. Ltd. W. (Ridio). Lid

Starman Tapes
Super Electronics Inc
Super Electronics
Superior Electronic
Sutton Electronics
Sutanco
Tannyy Products, Ltd
Tape Recordlng Magazine
Taylor Elec. Inst... Ltd.
Technical Ceramics.
Techncal Trading
Telford Electronics
Teonex. Ltd
Thorn-AEI Radio Valves \& Tubes. Ltd
Thorn Spectal Products. Ltd
Tomura Eussan Klesha.
Trend Electronics
Trio Corporation
T.R.S. Radio

Turner. Ernest. Elec. Insts.. Lid
Unifab
Valradio. Ltd
Vero Electronics. Ltd
Vitality Bulbs.
Vortexion. Lid.
Walker-Spencer Components
Watts, Cecll E.. Lid.
Weller Electric. Ltd.
Welwyn Tool Cooroptd. . Ltd
West London Direct Suppli
Weyrad (Electronics). Lid.
Whyrad Electronics). Electrical Rado Co. Lid
Wilkinson. L. (Croydon).
Wingrove \& Rogers Ltd.
Yukan Products
Z. \& I. Aero Services, Ltd.

## $\bar{Z}$ <br> HITHI सHITHET DIFTITUMENTS

1. Si. SiA -3.2 mm . dia. detrechatle

2. fitundirs mm. diza derachable bie.
 Weizhe 6 ors. 170 grms .
 Sectial remos. rom 250 c-
Weithe 6.5 ors. 18 grms.
3. $\mathrm{A}^{2}-7.9 \mathrm{~mm}$. dia, derchazble bit. Spesith cemps. from $250 \mathrm{c}-110 \mathrm{e}$.
Weicht 7 oys . 19 grms .
4. OFFSET BIT SIZE ! 12.7 mm . diameter
5. RIGHT ANGLE BIT SIZE $\mathrm{f}^{\circ} 12.7 \mathrm{~mm}$
$\qquad$


WE HAVE, FOR YOUR CONVENIENCE, A HIGHLY SPECIALISED SERVICE
SECTION, SO ORGANISED AS TO MAINTAIN A PROMPT EXECUTION OF ALL REPAIRS OF EQUIPMENT OF OUR MANUFACTURE



## ERSIN



## Ersin Multicore Solder helping operatives in 4 of the 60 Countries



In some of these 60 countries cored solder is produced locally

However, it is the consistent high quality of ERSIN MULTICORE SOLDER, that provides the utmost reliability of soldered joints, making it advantageous for manufacturers to import this British made product.

If in Britain or overseas you make or service any type of equipment incorporating soldered joints and do not already use ERSIN MULTICORE SOLDER it must be to your advantage to investigate the wide range of specifications which are available

Besides achieving better joints - always - your labour costs will be reduced and substantial savings in overall costs of solder may be possible.

Solder Tape, Rings, Preforms and Pellets - Cored or Solid - and an entirely new type of cored disc, can assist you in high speed repetitive soldering processes. If you solder printed circuits, our complete range of chemicals, fluxes and extra pure alloys can help you

Engineers are invited to apply on their Company's notepaper for a comprehensive copy of the 30 page, seventh edition, of "Modern Solders". Ask us to help you with your soldering problems.


## Multicore Solders Ltd.,

Hemel Hempstead, Herts.
Tel. Hemel Hempstead 3636.
Telex 82363

> See us at the Paris Electronics Component Show, where our technical staff will be happy to give you full information on interesting new developments applicable to soldering April 1 st-6th. Section Z. Allée 9 . Stand 11


[^0]:    Please send me
    Lock-fit transistor information $\square \quad$ Capacitor report $\square$
    Name
    Position
    Company
    Address

    Mullard Limited, Consumer Electronics Division, Mullard House, Torrington Place, London W.C. 1.

[^1]:    - The concept of state, first used explicitly by Newton in laws of motion, was later developed into a method of analysing dynamical systems by Poincare for his work on celestial mechanics.

[^2]:    *Division of Electrical Engineering, University College of Swansea.
    $\dagger$ H. S. Black has suggested the word "remodulation" for product detectors and the like, but keeps to "detector" for the simple diode circuit.

[^3]:    *Plessey Automation Ltd.

[^4]:    * An engineering technician is one who can apply in a responsible manner proven techniques which are commonly understood by those who are expert in a branch of engineering, or those techniques specially prescribed by professional engineers. ... The techniques employed demand acquired experience and knowledge of a particular branch of engineering, combined with the ability to work out the details of the task in the light of wellestablished practice. An engineering technician requires an education and training sufficient to enable him 10 understand the reasons for and purposes of the operation for which he is responsible.

[^5]:    ** At the vent resonance frequency the output from the vent is in quadrature with that from the cone but, as most of the erergy is radiated from the vent and both sources are very close together, the loudspeaker is omnidirectional. Above this frequency the sound radiated from the vent is rapidly attenuated and the phase difference between the two outputs becomes zero. The vent therefore has little influence on the directivity at any frequency.

[^6]:    *Newmarket Transistors Lid.

[^7]:    U.K. Successes in International V.H.F. Contest.-The German National Amateur Radio Society (D.A.R.C.), organizers of the 1967 I.A.R.U. Region I V.H.F. Contest held last September, report the receipt of 924 logs, including 831 from 2-metre stations, 81 from $70-\mathrm{cm}$ stations and 12 from $24-\mathrm{cm}$ stations. Section 1, for 2-metre fixed station operation, was won by IICZE (Italy) with a

[^8]:    WW-113 FOR FURTHER DETAILS

[^9]:    Hall Electric Ltd., Haltron House, Anglers Lane, London, N.W.5.
    Telephone: 01-485 8531 (10 lines). Telex: 2-2573. Cables: Hallectric, London, N.W.5.
    WW-034 FOR FURTHER DETAILS

[^10]:    - Formerly Erie Resistor Limited.

[^11]:    I TO: B.H. Morris \& Co., (Radio) Ltd.
    Send me information on TRIO COMMUNICATION RECEIVERS \& name of nearest TRIO retailer.

    NAME:
    ADDRESS

[^12]:    Please send me
    Lock-fit transistor information $\square \quad$ Capacitor report $\square$
    Name
    Position
    Company
    Address

    Mullard Limited, Consumer Electronics Division, Mullard House, Torrington Place, London W.C. 1.

[^13]:    INNETEAD ELEOTONLOE
    os NEWINFTON CREEN, LONOON. NAS TBCLI GEEE

[^14]:    RADIO AND SPICACE Research Council Ditton Park, Slough, Bucks
    Experimental Officers/Assistant Experimental Officers
    Experimental/Assistant Experimental Officers are required to assist in work on the propagation of radio waves through the ionosphere and troposphere.
    Duties will include the design and development of apparatus and analysis of the results of experiments. apparatus and analysis of the results of experiments.
    Current work includes studies of the upper atmosphere and ionosphere with apparatus in rockets and satellites, investigation of wave propagation through the ionosphere and troposphere using an 82 -foot steerable aerial, study of the propagation of millimetre and sub-millimetre radio waves, and use of lasers for studies of the lower atmosphere. Programmers are also required for duty with a large computer now being installed.

    Qualifications:
    University or C.N.A.A. degree H.N.C. or equivalent including two science or mathematical subjects at "A" level (or equivalent).
    Salaries
    A.E.O. between $£ 584$ and $£ 1,243$.
    E.O. between £1,365 and £1,734.

    Send for details to:-
    The Secretary, S.R.C. Radio and Spmec Researdil Station, Ditton Park, Slough, Bucks.

[^15]:    TECHNICAL TRADING CO.

    * LONDON- 10 Tottenham Court Rd. Tel.: MUS 2639
    * PORTSMOUTH- 350.352 Fratton Rd.
    \& SOUTHAMPTON- 72 East St
    * WORTHING-132 Montague St. Tel.: 25851 * 8RIGHTON-Devonian Court, Park Crescent Place BULK STEREO DECODERS (Arcuat fi limunice Brighton 680722
     F.M.

    TRANSISTORISED TUNER CHASSIS TYPE FMT41 High quality, low noive, battery or maing operation. Reproduction atand comparison witb tuners costing 3 times as
    
     of a low noise trequency compazer atage with smooth 2 gung tuning leediga. No less than three if lor all quality ampliters. Operates with nerligible drain lor montha of use from a P. P. 3 or say 9 volt bathery.

[^16]:    Telephone:

