2OW QUALITY AMPLIFIER DESIGN

NOVEMBER 1966 Three Shillings

Wireless World

The QT.8-A STANFAST transmitter amplifier

The QT.8-A is the latest of the STC QT Series of automatic transmitter amplifiers for use in the STANFASTHF communication system. It operates in the frequency range $4-28 \mathrm{Mc} / \mathrm{s}$ with a power output of 20 kW for single frequency working or 30 kW p.e.p. Being of the linear amplitude response type it is suitable for i.s.b. and d.s.b telephony or for single or multichannel telephony Its built-in automatic control and
tuning facilities enable the frequency to be set up locally or from a remote position making the amplifier suitable for unattended operation.

- Automatic tuning
- High reliability
- Automatic load correction
- Rapid fault location
- Solid state logic control circuits
- SWR monitoring
- Manual tuning facility provided

■ ISB techniques effect bandwidth saving and power economy - Negative feedback improves linearity and gain stability - Requires front access only - Meets CCIR requirements For further details write, phone or telex Standard Telephones and Cables Limited, Radio Division, Oakleigh Road, New Southgate, London N 11.
Telephone: ENTerprise 1234.
Telex: 261912。
"Wireless World"
Iliffe Electrical Publications Ltd.
Dorset House, Stamford Street ${ }_{\text {W }}$ London, S.E. 1

Managing Director:

W. E. MILLER, M.A., M.I.E.R.E.

Editor-in-chief:
W. T. COCKING, M.I.E.E.

Editor:

H. W. BARNARD

Technical Editor:
T. E. IVALL

Editorial:

F. MILLS
G. B. SHORTER, B.Sc.

Drawing Office:
H. J. COOKE

Production:
D. R. BRAY

Advertisements:
G. BENTON ROWELL
(Manager)
J. R. EYTON-JONES
(C) Iliffe Electrical Publications Ltd., 1966. Permission in writing from the Editor must first be obtained before letterpress or illustrations are reproduced from this journal. Brief extracts or comments are allowed provided acknowledgement to the journal is given.

Wireless World

ELECTRONICS, TELEVISION, RADIO, AUDIO

NOVEMBER 1966

541 "Electronics and the Future"
542 High-performance Transistor Amplifier-' by A. R. Bailey

547 Corona-generated Noise in Aircraft by C. E. Cooper
by E. J. Jordan
553 Titanium Cone Loudspeaker
565 Power Sources Symposium
567 Hybrid Computers-2
by P. W. J. Van Eetrelt

572 "Microwaves à la Mode"
579 More about Farnborough

SHORT ITEMS

546 Laser Television Display
560 Thin Films in Electronics

REGULAR FEATURES

	Editorial Comment		
561	World of Wireless		
562	November Conferences and Exhibitions	575 Letters to the Editor 578 H.F. Predictions- November 583 November Meetings 574 News from Industry	582 New Products 588 Real and Imaginary by "Vector"

VOLUME 72 No. 11
PRICE: 3s.

FIFTY-SIXTH YEAR OF PUBLICATION

[^0]

for audio, radio and hybrid television applications

Mullard now offer a comprehensive range of Silicon Planar Transistors for all new design requirements. These devices are outstanding in performance and are available at competitive prices.

Complete information is available to Design Engineers from:-
Mullard Limited • Entertainment Markets Division Mullard House . Torrington Place . London . W.C. 1
Tel: LANgham 6633 • Telex 22281

BC107
Low-frequency high-gain driver.

BC108

Low -frequency high-gain amplifier.

BC109

Low-noise high-gain A.F. amplifier.

BF 115
V.H.F. mixer and oscillator for television.

BF167

'Integrated Screen' transistor for television I.F. amplifiers (A.G.C.)

BF173

'Integrated Screen transistor for uncontrolled television I.F. amplifier stages.

BF 180

Low -noise R.F. amplifier for U.H.F. and integrated tuners.

BF 181

High-gain mixer and mixer/osc. for U.H.F. and integrated tuners.

BF 184

High-gain I.F. amplifier for A.M., F.M. and television sound.

BF185

R.F. and I.F. amplifier for portable radios.

Wireless World

ELECTRONICS,

TELEVISION, RADIO, AUDIO

"Electronics and the future"

THIS is the title ot the report on the industry by the Economic Development Committee for Electroncs which covers its hirst two years' work. In it the 22 -member committee» surveys the periormance and prospects of each of the three man sectors of the industry, namely: capital goods, consumer goods, and components. Conclusions are drawn from its investugauons on the problems tacing the industry and recommendations made as to how they should be overcome.

The Committee concentrated on imports and exports, "partly because these throw light on the vitality and competitiveness of our industry compared with those of other countries, and partly because reducing imports and increasing exports are important economic objectives in themselves." The conclusions on the whole are those which have been arrived at so otten by other committees and individuals as, for instance, this one: "There will be a rapid expansion in the use of microelectronic circuits, which will require quick changes in policy by the [capital equipment] industry" or this one on consumer goods: "Output is static and exports are low in all but a few fields."

The Committee's recommendations cover R. \& D., Government-industrial relations, export subsidies, provision of international standards to facilitate exports, etc., but we are tempted to ask: "Where do we go from here?" About one-third of the 36-page report is devoted to statistics giving some interesting facts and figures on production and exports in each of the main sectors, but for whose benefit?

Where do the findings of this Government-appointed committee fit into the overall plans of, for instance, the industry's sponsoring body, the Ministry of Technology? True, both the E.D.C. and the Ministry of Technology occupy adjacent sections of Millbank Tower, in London, but to the outsider there seems little liaison between them.

Recently the Ministry of Technology has set up a Technical Advisory Committee on Electronics under the chairmanship of Ieuan Maddock, deputy controller in the Ministry, whose terms of reference include: "to identify within the field of electronics both research and development projects relating to systems, equipments, components and production technologies, the exploitation of which is important industrially and commercially. In relation to these projects to identify areas where effort and available facilities are considered to be too fragmented or on too small a scale." From a perusal of the list of members \dagger it is obvious that it includes top level men in the industry who, incidentally, have been appointed in their personal capacity and not as representatives of their companies.

Are there not too many Government committees investigating the activities of the industry and offering advice or making recommendations? Looking down the "corridors of power" the number of committees directly or indirectly concerned with the radio and electronics industry is legion. It is to be hoped that Mr. Maddock's committee set up by our sponsoring Ministry will not be just one more "taking minutes and wasting hours." It is encouraging to see that the emphasis is "technical" for it is felt that all too often those who study our industry with a view to increasing its competitive power or strengthening its position know little, if anything, of the peculiarities of an industry based on a technology which is changing so rapidly.

[^1]

1. -DESIGN FOR A 20W POWER AMPLIFIER

HIGH-PERFORMANCE TRANSISTOR AMPLIFIER

By A. R. BAILEY, Ph.D., M.Sc.(Eng.), A.M.I.E.E.

0VER the past few years there has been a proliferation of designs for audio-frequency amplifiers, and the reader would be well justified in asking if any more were necessary. Unfortunately, transistor amplifier design has, for the most part, been inferior to that of the best valve amplifiers. Listener-fatigue is quite common and there are many inherent defects in circuits that can degrade performance without it being apparent from the specification of the amplifier.

Over two years ago the author was asked by a manufacturer to look into the design of transistor amplifiers and it has taken this length of time to come up with an answer that he feels can stand comparison with the best valve amplifiers available.

Part of the answer lies in the flood of relatively cheap planar epitaxial transistors that have just recently become available. The high current gain of these devices along with the high cut-off frequencies obtainable has greatly eased design problems. Even so there are design problems that seem to have been either overlooked or ignored in the past, particułarly that of overload capability. These have been examined in some detail in producing the present circuit, and this is why some parts are definitely unorthodox.

Initial considerations

Before discussing the circuit finally produced, it may be advantageous to examine the reasons for discarding certain circuits. Many circuits appear promising at

[^2]first sight but further investigation shows inherent defects in their performance. A typical example is the π mode class $A B$ system where the circuit is class A for small inputs but biases back to class \mathbf{B} with full sinewave drive. With an input waveform having a smaller ratio of peak-to-mean than a sine wave the circuit will bias back into class C under full drive conditions. As the bias conditions are modified to take care of these very square type of waveforms it can be shown that in the limiting case the bias becomes pure class A.

Similarly the pulse-width modulated amplifier appears to have many advantages, but in practice the spurious frequency generation produced in the demodulation process is excessive.*

Pure class A output stages give low distortion, but the heat dissipation becomes a serious problem and the heat sink size for the output transistors becomes excessive. In addition there is a far greater risk of breaking down output transistors in a class A stage by reactive loads. This is due to the greater transistor dissipation in this mode of operation.

Class B operation was therefore chosen using the normal series output connection so as to avoid the use of an output transformer. The drive to the output transistors is somewhat unusual in that a driver transformer is used. Purists may wince at the thought of using transformer drive but nevertheless a good transformer offers many advantages. The transformer removes the need for a phase-splitting transistor as this is done by balanced secondary windings. The low resistance of these windings greatly reduces the effect of leakage currents on the standing transistor currents. This gives very good temperature stability even when germanium output transistors are used.

Silicon or germanium ?

The complete circuit is shown in Fig. 1. Here it will be seen that the first stage is a conventional common emitter stage followed by a direct-coupled emitter-

[^3]

Fig. 1. Circuit of complete power amplifier.
follower. This drives the driver transformer and the output stage at low impedance, thus assisting the distortion and bandwidth properties of the amplifier.

The size of heat sink required for the output transistors depends on the ambient temperature range, the type of output transistor and the type of service considered. For example the most severe test is for germanium transistors tested under full load current conditions into a reactive load and at a high ambient temperature. Rather than deal with large heat sinks for arduous duty, the author feels that it is better to specify silicon output transistors where severe conditions are likely to be encountered. For normal domestic duty into loudspeaker loads the cheaper option of germanium transistors is perfectly satisfactory. In fact germanium transistors usually give far lower distortion due to their better linearity.

Two output circuits are therefore given, the silicon n-p-n circuit appearing in Fig. 2. The supply polarity is unchanged so that the same power supply will drive either configuration. The amplifier chassis is a perfectly adequate heat sink for the two circuits, although it is not wise to test the germanium circuit under odd load conditions for more than short periods.

Output stage protection

The protection of transistor amplifiers against load conditions is one of the factors that has restricted the use of these amplifiers in the past. Anyone who has experi,mented with power output stages will have discovered the extreme speed with which output transistors can be
destroyed. Indeed the author has a very large graveyard of power transistors that were sacrificed in trying to find a complete answer to the problem.

The protection system used in this amplifier is the best compromise that can be reached at reasonable cost. The author has not managed to blow up any transistors with the circuit given even under severe reactive loads, so 100% protection should be given to any accidental short-circuits of the loudspeaker leads. Performance

Fig. 2. Alternative output circuit for silicon power transistors.

D1: D2-IA SILICON DIODES (e.g. BYX22-200)

Fig. 3. Amplifier response to 100 cis square wave with 10Ω resistive load.

Fig. 4. Response to $/ \mathrm{kc} / \mathrm{s}$ square wave, 16Ω resistive load.
Fig. 5. Response to $10 \mathrm{kc} / \mathrm{s}$ square wave with 16Ω resistive lood.
Fig. 6. Response to $10 \mathrm{kc} / \mathrm{s}$ square wave with pure capacitance load of $0.47 \mu F$.
with electrostatic speakers is also good, and no power transistors have been lost due to the low reactance of such speakers at high frequencies.

The protection is split into two parts. First, the power output transistors are arranged to give automatic current limiting at about 130 per cent of rated peak output current. This is produced by the diodes strapped across the primary of the driver transformer. The dirive voltage to the output transistors is nearly directly proportional to the load current due to the voltage developed across the emitter resistors. Hence limiting the peak drive voltage automatically limits the peak output current available.

The second line of protection is that of conventional fusing. This fuse is in the speaker output lead, and is necessary to prevent over-dissipation of the output transistors, particularly at low frequencies. If the amplifier is driven hard into a short circuit, then the power dissipation in the output transistors will be high even with the limited current available. To prevent breakdown it is therefore necessary to remove the short circuit before the output transistor temperature rises to excessive limits. A standard quick-blow fuse gives quite adequate protection and blows in less than half a second under full-drive and short-circuit conditions. With the silicon transistors in the output this fuse may not be necessary, but it is felt advisable in view of the cost of power transistors.

Performance

The final performance of the amplifier is well up to the standards expected of the best valve amplifiers and it does not sound appreciably different. The transient response is perhaps slightly "cleaner" than the best valve amplifiers, but the difference is very slight indeed. There is no "transistor-sound" whatever, and very little listening fatigue even after long periods of listening. As the output stage runs effectively in class A for small inputs and the distortion rises slowly with drive, this effect might be expected. Far too many amplifiers run class B output stages at very low levels of quiescent current so as to economize on heat sink design. This gives rise to bad low-level distortion and consequent fatigue effects.

No attempt has been made to obtain very fast rise-times for the amplifier-after all the amplifier is designed to reproduce the audio frequency range rather than be a transmitter The stabilizing networks are therefore designed to give the best overall balance between h.f. distortion and stability and the rise-time was left to look after itself. Even so the results are very good as can be seen from the square-wave tests shown in Figs. 3 to 6.

The droop on the $100 \mathrm{c} / \mathrm{s}$ square wave is due to the size of the amplifier input capacitor. This droop is not important as is shown by the frequency response in Fig. 7.

The higher frequency square-wave tests are very satisfactory, the rise-time turning out at about 3.5 microseconds. The more important factor of h.f. stability is shown to be adequate as the worst case of pure capacitive load (about $0.5 \mu \mathrm{~F}$ in this case) gives fairly well damped oscillations. Unconditional load stability such as this is not common in valve amplifiers and is very unusual in transistor amplifiers.

The step-network in the collector of the first transistor cuts the loop gain at the high-frequency end of the spectrum and assists in the stabilization of the amplifier. The lower the frequency at which this cut starts, the better is the h.f. stability but the poorer is the h.f. distortion. The time-constants chosen in the circuit are about the optimum, as the distortion at full power output is only about $0.4^{\prime \prime \prime}$ ' at $32 \mathrm{kc} / \mathrm{s}$. The distortion characteristics are

Top and underside views of the complete chassis. Note the heat sink for the output transistors.

shown plotted in Fig. 8, where it is seen that full power output is obtainable up to over $40 \mathrm{kc} / \mathrm{s}$. The distortion over the range of $20 \mathrm{c} / \mathrm{s}$ to $20 \mathrm{kc} / \mathrm{s}$ is very low compared with normal valve and transistor amplifiers which generally have rapidly rising distortion characteristics at the extremes of the audio range. Indeed quite a few amplifiers are unable to deliver full power output at $20 \mathrm{kc} / \mathrm{s}$.
To obtain this performance it is necessary to have a well-regulated power supply so that the main h.t. is maintained under full drive conditions. After several attempts at various circuits it was decided to use an unregulated h.t. supply with a capacitor input filter. Provided that the transformer is of adequate size, then the regulation can be held to about five volts swing. This is quite adequate, and the complexity and cost of a regulated supply were felt to be unnecessary-particularly as two supply lines are involved.

Constructional notes

The driver transformer is wound with 200 turns of 30 s.w.g. d.s.c. trifilar wire on a $\frac{3}{8}$ in square core made of Radiometal. The author is not aware of any source of trifilar wire, so this means in practice that three wires are

Left:—Fig. 7. Overall response of power amplifier.

Below:-Fig. 3. Distortion characteristics of cascaded amplifier and preamplifier, 16Ω resistive load.

SPECIFICATION

Rated input for 20 W output into 16Ω load: 500 mV .

Distortion at rated power output at $1 \mathrm{kc} / \mathrm{s}$: $<0.1 \%$

Load stability: unconditional.
Hum and noise: $>80 \mathrm{~dB}$ down on full output. Rise-time: $<4 \mu \mathrm{~s}$.
Short-circuit load performance: proof against accidental drive into short-circuit loads for short time periods. For long overload periods there is a small region of continuous sine-wave driving level where the output transistors can be damaged by overdissipation. This is most unlikely to be met in practice, and with music or speech drive will not be significant.
wound on the core at the same time and as close together as possible. This method of winding gives an extremely low value of leakage inductance and in practice is negligible.
The emitter resistors of the output stage must be very low in inductance. A zig-zag of resistance wire is quite suitable, but a coil may double the distortion at $20 \mathrm{kc} / \mathrm{s}$. For this reason commercial wire-wound resistors are not suitable as they stand. Even one foot of straight wire in the emitter circuit produces a noticeable effect on the distortion at $20 \mathrm{kc} / \mathrm{s}$.
The size of the heat sinks for the output transistors will depend on the ambient temperature range and type of service. For laboratory use it would be advisable to use heat sinks having a thermal capacity of better than 3 deg C per watt, but this is felt to be unnecessary for music reproduction. Three inch squares of $\frac{1}{8}$ in blackened aluminium will be quite adequate, or alternatively the author's method of $\frac{1}{8}$ in blackened aluminium plate bolted to the amplifier main chassis enables the area to
be reduced below this figure. In this case, however, it is essential that thin mica washers, and silicone grease are used for insulation to prevent short-circuits.

The thermal stability of the output stage is best checked with a millivoltmeter across one of the emitter resistors. This voltage should not rise above 100 millivolts when the amplifier is undriven after a period of operation into its correct load. If this value is exceeded there is the risk that thermal runaway will result, and this indicates that the heat sink size is inadequate.
Caution must be taken with the wiring so as to avoid spurious feedback effects. In particular, the output stage emitter and collector leads must be kept as short as possible, and the main h.t. decoupling and smoothing capacitors as close as possible. The shorter the leads carrying these heavy current class B waveforms the better. If care is taken with the wiring, then there is no reason why the specification given should not be met.
(Details of a pre-amplifier design will be published next month.)

LASER TELEVISION DISPLAY

AN experimental television display system using deflection and modulation of a laser light beam instead of an electron beam has bcen developed by a group of workers at the Zenith Kadio Corporation, Chicago, U.S.A. The methods of deflection and modulation, which both depend on diffraction of a laser light beam in ultrasonic waves in a water cell, were outlined by Dr. R. Adler at the recent Sixth International Conference on Microwave and Optical Generation and Amplification sponsored jointly by the I.E.E. and I.E.R.E. at Cambridge (sees also p. 572). A helium-neon gas laser, producing red light, is used. Deflection angles achieved are small, but are sufficient to allow 200 picture points to be resolved along a scanning line and a $3-\mathrm{Mc} / \mathrm{s}$ video signal to be displayed on a screen.
In the deflection system, the laser beam is directed into a water cell through which ultrasonic waves of length Λ are propagated by a transducer driven from an 18 to $34 \mathrm{Mc} / \mathrm{s}$ sinewave source. The light rays, of wavelength λ, strike the water wavefronts at a narrow glancing angle, θ. The acoustic waves produce an optical diffraction "grating" in the water composed of strata of different refractive indexes (i.e. strata of different densities resulting from the compressions and rarefactions set up by the transducer). The spatial period of this "grating" is, of course, Λ, the acoustic wavelength. A diffracted beam of light (composed of the in-phase diffracted rays) emerges from the cell, and this also is at an angle θ to the wavefronts. In this phenomenon, called "Bragg reflection" after Professor Bragg's famous work that led to X-ray crystallography, the angle ${ }^{H}$ at which the emerging light is at maximum intensity is given by $2^{\theta}=\lambda / \Lambda=\lambda f / v$, where λ and Λ are as defined above, f is the frequency of the ultrasonic waves and v is the velocity of these waves in water. As can be seen from this law, variation of the ultrasonic frequency causes the angle of the emergent beam to vary, and it is this phenomenon which is used for scanning. The transducer drive frequency is, in fact, varied over the 18 to $34 \mathrm{Mc} / \mathrm{s}$ range mentioned above in a sawtooth function of time to give a line scan. Dr. Adler stated
that all the incident laser light could be diffracted with an electrical input of less than 1 watt.

For very small scanning angles the mechanism described above is satisfactory, but theoretically the water cell should be rotated with the deflection of the emergent beam, and to obtain the larger scanning angles needed for a television display this rotation is, in fact, necessary. In the Zenith system the effect of cell rotation is obtained by rotating the ultrasonic wavefronts as the transducer drive frequency changes, using a phased array of transducer elements. The number of resolvable light spots on a screen, N, which can be obtained by the system is given by $N=\Delta f . ;$ where Δf is the ultrasonic frequency change and τ is the transit time of the acoustic waves across the optical aperture.

Intensity modulation of the laser beam is obtained by a similar diffraction process in an acoustic cell, and this was first used by Scophony Ltd. in London before World War II, for modulating light from an arc lamp in a largescreen television system. ${ }^{\star}$ The basis of the method is that the intensity of the light beam diffracted by the acoustic cell is proportional to the amplitude of the ultrasonic waves in the water, so the video signal is used to amplitude-modulate the signal driving the cell transducer. The laser beam traversing the intensity modulating cell is made wide enough to encompass several picture elements, which travel across the beam at the velocity of the acoustic waves. As in the Scophony system, the horizontal beam deflection process nullifies the apparent motion of these elements and makes them stand still on the screen.

One of the British organizations working on deflection of laser beams is Mullard Research Laboratories. Both they and Zenith are interested in other applications besides television, such as information storage for electronic data processing systems.

[^4]
Corona-generated Noise in Aircraft

MEASUREMENT AND CONTROL TECHNIQUES

By C. E. COOPER

EITHER by charging action in the Van de Graff manner, or by the mere fact of its irregular shape in existing atmospheric electrostatic fields, an aircraft in flight can produce locally intense dielectric stress in the layers of air immediately adjacent to its skin. With sufficiently high stress the air dielectric becomes ionized, and resultant current flow or "corona" can generate radio noise which, coupled inte the aircraft's receiving aerials, is quite capable of totally disrupting communication and radio navigation.

The effect is usually most serious on the lowerfrequency systems, such as a.d.f. (automatic direction finding) which operates from $150 \mathrm{kc} / \mathrm{s}$ to $2 \mathrm{Mc} / \mathrm{s}$. In this system, the processed outputs of a loop (or goniometer search coil) and an omni-directional or sensefinding aerial are used to operate servo motors which drive the loop towards a null and remotely indicate this null position. The system provides both relative heading and homing facilities, and in the presence of noise the dial indicator may either "hunt" erratically or even (much worse) indicate a false bearing.

The frictional, or tribo-electrc, charging process results from the high-speed brushing of air or airborne particles past the aircraft skin. Charge magnitudes from this process can be substantially affected by the nature of skin finish materials, treatments and adulterants, but the highest charge rates occur where ice crystals are precipitating out from a very cold, moist atmosphere.
Charge magnitudes have been further extended by the widespread use of pure-jet engines, which gulp fantastic quantities of air (together with particle content and the occasional bird) past their internal surfaces, and so supplement charge generation from normal airflow over the aircraft skin. This tribo-electric charging by the engines is itself additional to that arising out of the combustion processes.

Fig. 1(a) shows a typical recording of charge rate during take-off and climb of a EAC 1-11 aircraft. The circumstances are of constant throttle setting, implying no local restrictions upon engine noise. Following takeoff, charge rate rises rapidly to a maximum after some few minutes (and thousands of feet) of climb. As automatic processes reduce fuel consumption rate with increasing altitude and speed, charge rate also decreases, but more slowly than it rose, becoming virtually constant by some $15,000 \mathrm{ft}$ of altitude. A marked step down can be seen where throttle setting is reduced at the top of the climb, some $26,500 \mathrm{ft}$ in this case.
C. E. Cooper is general manager of Chelton (Electrostatics) Ltd., manufacturers of aircraft aerials and aircraft static discharger systems. After working with Mazda on valve development he became a lecturer at South West Essex Technical College. He then joined Easco Electrical Ltd., becoming works technical manager. Before going to Chelton, he jointly formed two small service companies but later sold these interests "when lack of technical interest outweighed the financial advantages of company ownership' ${ }^{\prime}$.

In Fig. l(a) the greater part of the charge can be assumed to be due to combustion effects, with the climb being entirely through clear air, in which tribo-electric charging is at a minimum, though not non-existent. For comparison, Fig. 1(b) shows (to a different scale) the far more erratic variations in charge rate when the aircraft is in level flight through light precipitation conditions. In this case, with the jets throttled back, charge from combustion products is small.

However generated, charge becomes stored in the capacitance between the aircraft skin and some illdefined outer field boundary, stressing the air dielectric between them. Such stress may be either supplemented or opposed, depending upon the polarity of any existing atmospheric potential gradient, as is experienced when

Fig. 1. Corona current measured during flights of BAC 1 - 11 aircraft: (a) following take-off in clear air; (b) level flight in conditions of ice precipitation.

Dischorgers on troiling edge and tip of a wing on a Boeing 707.

Fig. 2. Section of corona current recordings made at two extremities in an HS. 125 twin-jet executive aircraft flying between chorged clouds (altitude $9,000 \mathrm{ft}$, air speed 150 knots). Each trace shows corona current through a single discharger mounted as shown. $\quad Z_{1}$ and Z_{2}, indicate periods of zero discharge.

the aircraft changes height or fies between charged cloud formations.

The trace recording of Fig. 2 provides indirect indication of the variations of electrostatic field as measured at two different extremitics of an HS. 125 aircraft flying obliquely between charged cloud areas. During the sixty-odd seconds of this recording, stress changes from maximum at the tail fin to maximum in reverse polarity at one wing tip, passing through a stage at " X " of considerable and equal but opposite stresses at these two measuring sites. At this instant, the net aircraft charge accumulation is zero, but because of aircraft span in the spatial field, intense dielectric stress exists in air layers adjacent to the aircraft extremities. Since the overall effects are similar, though not identical, to those frictionally produced, they are initially considered as a third form of aircraft charging.

No aircraft system at present used suffers from the mere existence of charge, but since the charging processes are typically of constant-current form, p.d. between aircraft and boundary rises continuously until limited by some form of dielectric breakdown. In extreme circumstances, this could be a minor lightning flash, but, far more commonly, limitation occurs at much lower potential by the process of atmospheric ionization, permitting release of current back into the atmosphere at a rate balancing that of acquisition.

The ionization condition, and consequent radio noise generation, can be reached in seconds and continuously maintained from the rates of charge which have to be anticipated for possibly $5^{\prime \prime}$, of total short-stage flying time. Consideration of the function of devices used to control these effects requires an understanding of how gradient magnification occurs.

Potential Gradient Between Spheres

With p.d. between two concentric spheres A and B, as shown in Fig 3, then immediately adjacent to the two spheres the respective gradients ϵ_{A} and ϵ_{B} will be in proportion to the surface areas, i.e. to the squares of the radii. An increase of outer sphere radius (only) will therefore increase the disparity between ϵ_{1} and ϵ_{B} in greater proportion than that of the spacing increase. This in turn means that to maintain constant gradient ϵ_{A} by the inner sphere requires an increase of p.d. which is less than proportional to the spacing increase. For a sufficient disparity of dimensions, the radius of a small object virtually fixes its immediately adjacent gradient in proportion to applied p.d., regardless of the distance across which it is applied and hence also of the shape of the field outer boundary.

For a spherical object, gradient is of course the same across any fixed distance radially from any part of the surface, but for any non-spherical shape, a constant applied potential will produce different gradients adjacent to every different radius. In adapting this principle to aircraft circumstances, aerodynamic shapes are such that consideration must initially be restricted to twodimensional forms. If potential applied between the flat circular disc (flying saucer?) of Fig. 4(a) and some. distant boundary is such as to produce ten units of gradient adjacent to any place on the edge, changing to the almost equilateral triangle of Fig. 4(b) might produce some 7 units at the centre of each flai side, and perhaps 40 units at each apex, depending upon their tip sharpness. As shown, the triangle at (b) can contain the iccalized outline of an older shape of aircraft; in (c) the triangle is reversed to contain a later aircraft shape. The significant difference is that, in the latter

Fig. 5. Equipotential contours and derived gradients (groups of four figures) for the Canberra aircraft.
case, one of the high-gradient positions looks in the forward direction, imposing practical difficulties not present when high-gradient positions look only aft or athwart.

In all these shapes, the relative gradients indicated are still only the mean values over some arbitrarily chosen distance from the outline. Fig. 5 shows how these mean values vary with span of measurement for a Canberra aircraft. Gradients (in purely relative units) are derived from the equipotential contours, and each now of four figures averages the gradients out to conmours $5,10,20$ and 40 respectively. The projection of the nose and wingtip pitot tubes from the main bulk produces adjacent gradients which are higher than for any other part of the aircraft.

The figures marked are best regarded as the local mean gradients, as determined by aircraft shape out of the general mean gradient existing around the aircraft as a whole (p.d. between aircraft and surroundings).

Consider a p.d. applied between two spaced equal spheres; provided the gap between them is smallish
relative to sphere radius then gradient will be constant across the gap. Halving the gap by moving the spheres closer together will result in the mean gradient being doubled without changing its constancy of division. The same doubling of mean gradient could otherwise have been produced by bridging half the gap with a sharp-pointed spike, but in this case the gradient immediately adjacent to the point may be up to hundreds of times above the mean, balanced by a more moderate reduction below the mean across most of the gap.

The degree of gradient magnification depends mainly upon the point radius, but is also affected by stem thickness behind the point, and by its projection length from the main bulk of conducting surface. This process of magnification can be utilized to control the positions at which local gradient is highest, and hence at which corona will start for the lowest possible aircraft potential. Corona is gaseous ionization, occurring when sufficient p.d. exists between electrodes whose shape and spacing are such as to produce intense local increase of gradient
above the average across the gap. Thus corona occurs adjacent to both electrodes in a point-to-point gap, but at only one in a point-to-flat surface gap. It can also occur at both extremities of an isolated conductor in an otherwise linear field, which represents the HS. 125 conditions at " X " in Fig. 2.

The radio interference produced by ionized gas or vapour in a neon tube is quite well known, but r.f. noise signals can be radiated from ionized gas without necessarily also producing visible light.

Noise signals are radiated directly from ionized gas, with a random frequency spectrum, and magnitudes tending to inverse relationship with frequency but often significant up to the v.h.f. band. After reception via a channel of finite bandwidth, the noise signals are comparable with a suppressed carrier modulated by white or random noise, producing a characteristic " hiss" after detection.
Where conditions produce a gradient only slightly above the ionization threshold, the corona discharge can have an interrupted or pulsed form, and this results in the received and detected noise having some predominant pitch of note. For increasing gradient around the threshold condition, this note typically changes from a "ticking" sound, through some very rough, guttural notes to a whistle of pitch eventually rising above audibility or response.

CONTROL METHODS

There is no effective method known to prevent the processes of charge acquisition by an aircraft, which, with a capacitance typically some hundreds of pF , will rise in potential at a rate of 100,000 volts per second from a charge rate of microamperes. Rates up to a milliamp or more have been recorded, still without including thunderstorm conditions. With potental rising at such rates, even the mythically smooth-outlined aircraft of publicity pictures must very quickly reach the condition where corona occurs from some or many parts of the aircraft.

Paradoxically perhaps, therefore, the simplest approach to noise control is to make corona occur more easily. This can be done by placing sharp projections at aircraft extremities to produce corona by large magnification of only quite low general gradient. With the corona path confined to dimensions comparable to the point radii, noise radiation is drastically reduced.

The numerous practical objections to an aircraft bristling with rigid sharp points have led to the development of the discharge tip shown in Fig. 6, which in various assemblies, has recently become virtually standard for almost all British and many other aircraft types. The tip comprises a small tuft of a hundred or so nichrome wires of about $\frac{1}{2}$ thou' diameter (51 s.w.g.), spread into a crown around a tiny plug inside a supporting tube. If allowed to bunch they would function only as single blunt point, so the flared polythene moulding is fitted to create turbulence in the airflow and so keep sufficient number of the wires separated to function as individual sharp points.

Release of corona via a very sharp point provides substantial, but still insufficient, reduction of r.f. noise generation, and the process is extended by inclusion of high series resistance. The actual value used is a compromise between greatest reduction of noise and the avoidance of undue restriction of the d.c. component of corona current. Major current restriction is provided by the gaseous corona path itself, with a slope resistance around $10^{9} \Omega$ for the tip of Fig. 6. Series resistance
additions of up to some $50 \mathrm{M} \Omega$ are therefore feasible without substantially restricting current. The series resistance appears both to reduce the ratio of noise-current-to-d.c. component, and also to act in conjunction with tip stray capacitance to reduce the length of path through which noise current flows, and so confine radiation principally to the ionized air. To have maximum. effect series resistance needs to be concentrated as closely as possible to the corona point.

A complete discharger device is constructed with the corona-tip supported on a 9 -inch tapered rod of glassfibre, surface coated with high resistance material. Some 10 to 40 dischargers of this type are commonly grouped in trailing or semi-trailing positions near to the various outermost extremities of an aircraft.

To maintain the essential semi-trailing position for the corona tip, forward facing assemblies have been produced recently; these units are designed to mount on pitot heads or the lightning diverter probe often fitted at the apex of a radome. The three discharger tips on each unit are critically angled, with spiral resistance tracks around the mounting cone.

Simulation and measuring equipment.-To optimize design and demonstrate performance of discharger devices, the equipment shown in Fig. 7 was constructed in simulation of an aircraft wing section. The high voltage generator is of the Cockcroft-Walton type, with 20 stages providing an off-load rectified output of some 120 kV from the $5 \mathrm{kV} 50 \mathrm{c} / \mathrm{s}$ available from the transformer, and adjusted by a Variac. The d.c. output voltage is measured by a 10 -microamp meter in series with a long chain of five-hundred $20 \mathrm{M} \leq 2$ resistors contained within about 50 ft of coiled-up polythene tubing.

High voltage is applied to the wing section through

Fig. 6. Cross-section of tip of discharger fitted to aircraft.

Wireless World, November 1966
a pair of microammeters set into the wing, separately measuring corona released directly via the wing or via lightly insulated inset tabs, on which dischargers under test are normally fitted. Measurements are gencrally in terms of the applied potential and other conditions which result in various standard values of corona current, ranging from threshold (taken as $1.0 \| \mathrm{A}$) up to $50 \mu \mathrm{~A}$ Comparative noise measurements are then made for the various conditions and currents.
Noise radiated during corona discharge is picked up by a capacitance type acrial, too small to approach resonance within the 0.5 to $5.0 \mathrm{Mc} / \mathrm{s}$ pass-band of the receiver aperiodic amplifier. This pass-band was chosen to overlap into the frequency ranges used for m.f. automatic direction-finding and h.f. communication, but subsequent interest has moved more towards the lower frequencies used by Decca and other long-range navigational systems.

Amplified r.f. output is conventionally rectified, passed via a calibrated attenuator to a transistor a.f. amplifier, and then switched to either a speaker or a noise meter. The whole receiving and measuring equipment is mounted in, or on, the wing section, since it all necessarily operates at the high potential of the wing.
The applied potential which will produce less than a microamp of corona from, say, an exposed bolt-head will produce perhaps 10 to 15 microamps from a typical discharger, but with a received noise level some 50 dB lower. Even this residual white noise will be less objectionable in form than the typically rough note due to corona from the bolt-head or similar minor projection.

Certain discharger designs show marked directional or polarization effects in their noise radiation, with fairly sharp nulls as the corona point is oriented. By optimization of this characteristic attempts have been made to secure even better than the 50 dB noise reduction mentioned, but there is considerable doubt over the possibility of maintaining or even knowing the true null positions in aircraft service. In fact, the noise level radiated by the discharger design shown has proved acceptable, and the major problem is to prevent even trifling corona current from starting elsewhere than at the dischargers.

The optimum installation is a complex function of discharger type, number and siting. It has to include such factors as air pressure differentials, exposure of sharp extensions during control-surface action, and the nature of the various normal projections, particularly aerials. It is quite possible for an m.f. system to collect and suffer from noise radiated during discharge off the aerial of, say, a v.h.f. system not itself affected by the noise.

The field configuration which will exist around a particular aircraft is most readily determined to a sufficient degree of accuracy by a few two-dimensional plots on resistance analogue paper. This graphiteimpregnated material has a fairly uniform resistance of about 3000 上 per square (i.e. between opposite edges of a square of any dimensions). A representation of the aircraft shape, or some section of it, together with a surrounding field boundary, shapes of aircraft.

Fig. 7. Block diagram of test and measuring apparatus mounted inside simulated aircraft wing section.
are first outlined in wax pencil, and then edged or filled-in solid with brush application of a highly conducting paint (Fig. 8). The material used is a dispersion of metallic silver powder in methyl iso-butyl ketone, which air dries to a few ohms per square, a negligible value compared with the paper resistance. It should be noted that most of the so-called "metallic" paints are in fact non-conducting. Contact to the conducting areas can conveniently be made via pieces of aluminium foil, held in place by small strips of self-adhesive tape, and brushed over by the conducting paint.

For present purposes the shape of the field boundary is immaterial, provided its minimum spacing to aircraft shape is not less than about half the aircraft's largest dimension (in scale, of coursej. At this minimum spacing, the field pattern adjacent to aircraft shape is substantially unaffected by boundary shape. Potential now applied between the shape and the boundary will

Fig. 8. Apparotus for ploting anoiogues of equipotential electric fields surrounding various
distribute itself across the intervening resistance paper areas as an analogue of the electrostatic field which would exist around similar shapes in air, or any uniform dielectric. The potential distribution can be explored with a high-resistance voltmeter, but is far better done by forming a suitable bridge circuit, and exploring for null balance against a series of potentiometer settings to produce equipotential contours.

Instead of random exploration, it has been found easier to explore along a series of lines normal to their origin at the aircraft shape, as previously marked onto the resistance paper in wax pencil (i.e. non-conducting). It is better still to mark these lines along the quite readily estimated direction of maximum gradient away from their origins, and so achieve the highest sensitivity of off-balance indication.

Use of a d.c. (9 V) supply for the resistance-paper bridge has been found useful in providing indication of the direction of probe movement needed to approach balance. The four-transistor d.c. amplifier used provides off-balance indication down to below a millivolt, with input resistance sufficiently high that an off-balance setting does not materially load the paper bridge to distort potential distribution.

Exploration is conveniently made by a probe formed of a ball-point pen tip (minus ink, of course) which can be rolled across the paper without need to lift and reapply. Located balance positions are then marked on, again in wax pencil, although better accuracy is achieved by using a sharp-pointed probe for exploration, which

Fig. 9. Potential gradients ot (a) wing and (b) tail of HS. 125 executive aircraft.
can then prick through the resistance paper to mark an underlying cartridge paper or similar. Joining up each series of equipotential positions provides contours as in Fig. 5 of correct shape but in purely relative terms, from which the relative gradients can be obtained by measurement either of the spacing out to a particular contour, or by interpolation to the contour reached by some constant spacing.

This last-mentioned is of most interest in order to provide the relative mean gradients effective over the length by which a discharger will project from the airframe. To obtain better accuracy across such a dimension, a final plot is made of each significant extension, using as field boundary one of the contours previously plotted, possibly with corrections to include effect of the third dimension, as estimated by comparison with plots in other planes. Since the contour boundary has true shape, there is no minimum spacing limit imposed, and the plot can be large scale.

In Fig. 9 the dotted line indicates the scaled dimension of discharger projection out from its mounting surface. Potential applied across the resistance paper from wingshape to contour boundary is set (by a series rheostat) to produce a convenient whole number of voltage at the discharger line where it most closely approaches the boundary, i.e. the position of highest gradient. Other gradients relative to the maximum can now be plotted for various distances away from that of maximum.

This information is then used in conjunction with that from graphs of discharger performance grouped at different spacings to produce an aircraft layout at graded spacings which will approach the ideal of equal current released by all dischargers at any given aircraft potential.

In-flight corona recordings are achieved by fitting special dischargers insulated from the airframe, each with a single wire brought in to a multi-channel strip paper recorder, with circuit completed to a common airframe connection. Each channel needs to be protected by shunt diodes against the excessive currents which will flow when in the vicinity of thunderstorm activity.

The measurement is one of fluctuating unidirectional current, with electrons normally leaving the discharger, i.e. the aircraft having negative polarity relative to its surroundings. As already indicated in Fig. 2, reverse direction of current flow is also possible, due to atmospheric gradients rather than aircraft charging. For this reverse polarity, the dischargers have closely similar threshold potential, but a rather higher slope resistance.

The area from which charge is released does not directly indicate the area or method of acquisition, but such information can, with experience, be derived from the pattern of corona variations with time and the differentials, if any, between corona in areas of known equal exposure.

To gain the necessary statistical information, an airline aircraft has for some months past been making corona recordings during its normal passenger flights over most of the European continent. Whenever practicable, the corona recordings are accompanied by taped observations of the ambient conditions, the radio noise level during discharges, and the overall effects upon particular navigational systems. The results of this programme are hoped to provide the first objective standards by which to make comparitive assessments of the susceptibility of different aircraft designs in experiencing static charge effects, and of the value of various discharge systems in minimizing the effects.

Titanium Cone Loudspeaker

EVOLUTION AND DESIGN
By E. J. JORDAN, Assoc.I.E.R.E.

SOME years ago a friend gave me a book which he had purchased for $6 d$ from an old bookshop. It was McLachlan's "Elements of Loud Speaker Practice" published in 1935. It makes fascinating and, for the author, somewhat sobering reading, inasmuch as that in over 30 years there has been so little apparent progress in loudspeaker development. Among the many possible loudspeaker types described are the full range push-pull electrostatic loudspeaker and the Blatthaller loudspeaker, forerunner of the French Orthophase. The last chapter is headed "Recent Developments" and introduces firstly the concept of a large moving-coil loudspeaker used together with a horn loaded tweeter iii conjunction with a crossover system, and secondly a moving-coil loudspeaker having a small auxiliary cone attached to the centre of the main cone to handle the high frequencies (Voigt, of course). The frequency response of the last-mentioned is comparable to that of many modern hi-fi loudspeakers and is reproduced in Fig. 1. For direct comparison the frequency response of a modern 12 in iwin-cone loudspeaker is shown in Fig. 2.
Undoubtedly one of the main reasons for the slow progress has been that at the time the book was written
loudspeaker design thinking was well ahead of the availability of suitable materials and engineering techniques with which to implement the ideas. Modern technology has now provided us with a vast range of metals, ceramics and plastics that allow us to realize the principles established so long ago.

Once valve amplifiers had reached the stage where a few relatively low distortion watts were available, the single paper cone moving-coil loudspeaker emerged as by far the most satisfactory compromise between quality and economics, and continues so to be. With the progressive improvement of broadcasting and recording quality there came a demand for a wider frequency range than could then be obtained from the single paper cone and crossover systems, and double-cone systems were extensively developed. In addition to Voigt, Goodmans Industries were largely responsible for the sophistication of double-cone techniques. This is apparent in their famous "Axiom" range. Many companies developed excellent crossover-systems and it is worth noting that, while widely varying techniques were used in tweeter design, the low frequencies were invariably handled by the ever faithful paper cone moving-coil loudspeaker.

The difficulty in obtaining a smooth

E. J. JORDAN, who recently joined Audio \& Design Ltd., of Maidenhead, as a director, started his career in the service department of G.E.C. He then spent twelve years with Goodmans Industries and in 1964 became technical director of JordanWatts Ltd. of Hayes, Middx., where he produced the first "modular" loudspeaker.
extended high frequency response from a single cone was practical rather than theoretical. As we shall show later it is necessary to use a flared cone in order to obtain a good high frequency performance, but because of their poor strength/weight ratio paper flared cones were prone to non-linear flexing at low frequencies, resulting in harmonic and intermodulation distortion. Metal cones were tried on and off right from the start but the highly resonant nature of metal precluded these as a satisfactory material for many years. A significant breakthrough in this respect was made by Hugh Brittain of G.E.C. Research Laboratories by using a 6 in straight sided Duralumin cone having a plastics (p.v.c.) edge termination which, together with a controlled deformation in the cone body, largely overcame the resonance problems associated with metal. This resulted in a loudspeaker with a very acceptable frequency response and a harmonic distortion level which was so low that it has not yet been improved upon. Details of this were published in Wireless World, Nov-

Above:-Fig. 1. Response curve of twin diaphragm m.c. loudspeaker (Voigt) with tractrix horn about 4 ft long and 4 ft square at mouth (Reproduced from "Elements of Loud Speaker Practice "-McLachian, 1935).

Right:-Fig. 2. Response, distribution and totol harmonic distortion curves of 12 in twin cone m.c. loudspeaker in enclosure.

Fig. 3. Performance curves of 8 in hyperbolic paper cone m.c. loudspeaker.
ember-December 1952 and January 1953.

Shortly after this the author worked on the problems associated with flared cones and discovered that the distortion could be reduced to acceptable proportions by the use of (a) a very flexible surround, and (b) a flare following a hyperbolic law. The resulting loudspeaker, now known as the "Axiette," is still marketed by Goodmans. Its response curve is shown in Fig. 3.
Throughout these years the improvement in materials was most apparent in the realm of permanent magnets, which, for a given total flux were a fraction of the size of their pre-war counterparts. Plastics technology was forging ahead and most loudspeaker engineers were keeping a very close watch on this industry, hoping for a plastics panacea to the problems of cone design. This came -not, however, to the protagonists of cone loudspeakers but to the fullrange electrostatic loudspeaker.

A direction in which remarkable advances have since been made has been the reduction in the overall size of loudspeaker systems. Theoretically efficiency may be traded for size for a given low frequency limit reductio ad absurdum. As usual, practical mechanical problems set a limit, but the vast majority of present-day hi-fi loudspeakers are very much smaller and less efficient than their earlier counterparts-an approach now made acceptable by the availability of domestic power amplifiers with outputs of up to 100 watts. This trend was started by Edgar Vilcher in the U.S.A. when he developed the "acoustic suspension system" which basically comprises a large massive bass cone loudspeaker fitted with a highly flexible suspension and housed in a small airtight enclosure. Implicit in this approach is the use of some
form of crossover system and separate radiators in the high frequencies.
The birth of the now well-known full-range electrostatic loudspeaker was announced in a series of articles in Wireless World in 1956 and a completely new standard in sound reproduction was established.
The most significant advantage of the electrostatic loudspeaker over existing loudspeakers was in its transient performance. The importance of transient response has been stressed often enough over the years by the pundits but it has been played down to a large extent by many manufacturers and grossly underrated by the hi-fi public generally. The reason for this may be due to the difficulties associated with making measurements of transient performance compared with simple frequency response curves.

Some indication of transient performance can be obtained from response curves ${ }^{1}$. For example, the ability of the moving system to allow sufficient acceleration to adequately reproduce transient sounds is directly related to its high frequency performance. The worst aspect of transient performance, however, is the prolonged "ringing" that can follow a transient. Any transient is composed of a series of harmonically related overtones and any sharp resonances in the system which fall into this range of overtones are of ten not very apparent on the response curve except to the experienced observer, who can recognize them as tiny, near vertical changes of level. Even this is not entirely reliable because such effects can be produced by other causes. The situation is illustrated by reference to the two hypothetical response curves shown in Fig. 4. It is extremely likely that loudspeaker A would reproduce sounds with a far higher degree of
accuracy than loudspeaker B. Even though B has the flatter curve, the transient ringing associated with the small sharp changes could result in extreme colouration and very poor definition. Curve B could well be described as " angry."

The electrostatic loudspeaker is a perfect example of the above argument. Its measured response curve is unusual and certainly not level (Fig. 5), but it has the one outstanding quality that renders its shortcomings relatively unimportant, and this is the complete lack of colouration (or, in the words of the advertisements, "this loudspeaker lacks character'"). It is a salutary lesson to listen to white noise on a loudspeaker comparator while switching between various high quality systems including the electrostatic loudspeaker. All the conventional cabinet systems have pronounced "vowel" sounds which are entirely absent from the e.s.l. (Incidentally, for purposes of educating the ear a good "live" white noise is the sound of car tyres on a wet road.)

All of which brings us back to about the present time. We have inherited a veritable fund of basic principles, the advantage of over 30 years of further development and an almost unlimited range of materials and techniques. Whither now? Faced with this situation, the author adopted the approach now to be described.

Design objective.--The problem was to recreate sound as accurately as possible within the confines of the listening area-in this case the domestic living room or lounge. As a starting point we will assume a medium room of 2,000 cubic feet. The programme material likely to make the greatest demands on the available sound power and frequency range is that provided by a full concert orchestra. We will assume the listening level to be such as to provide a peak intensity at the ears similar to that experienced in a typical seat in a concert hall, and finally we will let the low frequency limit be $30 \mathrm{c} / \mathrm{s}$. For domestic reproduction this frequency is quite low enough since very few recordings extend as low as this and the room dimensions limit bass reproduction to a frequency given by:

$$
f=\frac{560}{\text { longest dimension in feet }}
$$

\backslash From the above information can be calculated the total acoustic power required in the room and hence the
volume velocity (diaphragm area X excursion \times frequency) required from the loudspeaker (Appendix 1). It is necessary to choose a suitable ratio of diaphragm area to excursion. However, the choice of diaphragm dimensions must be determined in part by a number of other factors which we will now consider.

The loudspeaker diaphragm has to draw its energy from the electrical output of the amplifier and transfer it to the air in the form of sound waves. This transfer is profoundly affected by the impedance of the air load, which in turn is determined by the diaphragm dimensions and frequency. It is well known that the radiation resistance curve abruptly changes shape about the point where $k r=2^{\star}$. This corresponds to the frequency where, assuming a circular diaphragm, the circumference is equal to 2 wavelengths.

Although the entire radiation resistance curve may be exactly represented as a Bessel function, it is usually considered adequate to use the two approximate expressions given in Appendix 2 dealing with the parts of the curve above and below the "knee" respectively.

Consider first those frequencies below the "knee." It can be shown that for the radiated power to be independent of frequency the diaphragm must be rigid and either have a mechanical impedance that is very much lower than the air load or a mechanical impedance that is dominantly mass (known as the condition of mass control). Either of these conditions are realizable in practice but the condition of mass control offers a number of advantages:

1. It renders the low frequency performance less dependent on room acoustics.
2. Performance is less critically dependent on the position of the loudspeaker in the room.
3. It makes domestically acceptable enclosure systems which are necessary in order to secure an adequate low frequency performance.
Above the "knee" of the curve a mass-controlled diaphragm will cause the radiated power to fall as frequency rises at the rate of 6 dB per octave. The polar response becomes progressively more narrow as frequency rises. These two factors obviously render a mass-controlled

[^5]rigid diaphragm unsuitable for high frequencies. There are two solutions to the problem. One is to provide a smaller diaphragm and use some form of mechanical or electrical crossover system. The other is to cause the existing diaphragm to reduce its effective diameter as frequency rises. The effect of this is also to reduce the mass of the diaphragm, and since at these frequencies the radiated power is proportional to the effective area and inversely proportional to the square of the mass it follows that the smaller the cone the higher will be the efficiency, the mass and the area being directly proportional to each other (see Appendix 3). Provided the correct ratio of diameter to frequency could be maintained both the radiated power response and the polar response could theoretically be independent of frequency.

Again it is seen that a choice has to be made and it is clearly seen in theory at least that the second arrangement is to be preferred, inasmuch as it does not introduce any abrupt discontinuities in the system. Any arrangement using multiple diaphragm crossover techniques is likely to suffer from three serious drawbacks. First, at the crossover frequency the radiated power is shared between two diaphragms of different size and hence different polar response. This means that there must be an abrupt change in the power response if the axial pressure response is to be maintained, or vice versa. Secondly, the electrical impedance looking into a loudspeaker system incorporating electrical crossover networks must inevitably exhibit considerable phase change about the crossover frequencies. Crossover frequency networks are designed to be matched by constant resistance at all of their terminations, a condition which is never fulfilled in practice. The effects of such a load applied to

Fig. 4. Curve (b), olthough flatter, has the "ongry" appearance associated with a poor transient response and is less acceptable than curve (o).
the output of an amplifier may in many cases considerably affect the phase of the negative feedback voltages, thereby degrading the performance of the amplifier. Thirdly, the inevitably resonant nature of the crossover system will introduce transient distortion of the type discussed above.

Accepting then the desirability of the "reducing diameter" approach we find that one of the simplest ways of achieving this in practice is to apply the driving force at the centre of the diaphragm only. It can readily bc visualized that if the diaphragm were, for example, a stretched membrane of some low-loss material, at the higher frequencies ripples would spread out from the driving point and travel to the edge. If some damping media were applied to such a diaphragm the ripples would undergo severe attenuation as they moved outwards, so that the displacement at the point of application of the force was considerably greater than at any other point and most of the sound radiation would be from this central point. Clearly with such an arrangement as this the effective central working area would be a function of

Fig. 5. Performance curves of full range electrostatic loudspeaker.
wavelength and therefore frequency, thus giving us the type of operation we require.

It is fairly obvious at this point that we have talked ourselves willynilly into a fair description of the operation of a single-cone loudspeaker at high frequencies. The single-cone loudspeaker, by its very nature, has intrinsically the right sort of characteristics necessary for full range sound reproduction, and even the poorest examples of this type of loudspeaker provide very acceptable results. This was appreciated, in principle if not in detail, 40 years ago, and, as we have already indicated, this loudspeaker has by far the most satisfactory all round performance for general purpose applications. Its performance has been limited at low frequencies for the want of a good suspension system. The problem at high frequencies is that of producing a cone of such form, material and dimensions as will operate to the precise requirements.

In fact it is no less a problem to define the "precise requirements" in material terms. There has been no tractable mathematical approach for dealing with this other than the author's own very limited contribution which gives no more than an indication of the relationship between the various physical parameters of the cone. This is outlined in Appendix 3. Fig. 6 shows how the effective cone diameter reduces as frequency rises due to cone flexure. The expressions in Appendix 3 show that in order to secure a level response the first mode of flexure must start at
the "knee" frequency and that a flared profile is necessary to provide the correct rate of area reduction with rising frequency. By the choice of suitable profiles the radiated power response may be made to rise or remain level or to fall. The high frequency limit of a loudspeaker is reached when the radiating area has been reduced to a point where its effective mass becomes equal to that of the voice coil. The last-mentioned provides a non-reducing factor in the total moving mass and above this frequency the efficiency falls. It may be mentioned at this stage that the further loss of efficiency at high frequencies is incurred by voice coil inductance, but from what has been said it will be seen that this can be compensated by means of the cone design. In practice, however, the more we make use of the facility of increasing efficiency as frequency rises the more restricted will be the ultimate high frequency limit. The overall high frequency efficiency over the frequency range above the "knee" is largely a function of the material from which the cone is made.

Apart from the considerations of the response curve a high overall high frequency efficiency is extremely desirable, inasmuch as it permits the use of damping techniques to avoid transient ringing. Any form of damping reduces overall efficiency and the greater the intrinsic efficiency of the cone the more freely can we apply damping media to improve the transient performance.

Generally speaking the higher the velocity of sound within the material

the greater will be the efficiency and therefore the more extended may be the high frequency response. Further, high sound velocities are usually associated with materials having a high strength/weight ratio. This is also the property necessary to eliminate the distortion associated with flared cones. As we have previously said, the strength/weight ratio of paper is not particularly high and, in addition, paper is a relatively inexact and unstable material in mechanical terms. The reasons why the single-cone approach has not received greater attention are now becoming apparent.

We now see that we are faced with the problem of determining the cone material, shape and dimensions with very little mathematical assistance, yet in order to secure a smooth extended high frequency response devoid of colouration it is imperative to be able to determine these factors very accurately and further to retain this accuracy throughout manufacture. The approach has therefore to be entirely experimental. The tooling necessary to produce cones of almost any form is very complex, and such experimental work demands that cone tools be made and discarded until the correct parameters are obtained. Naturally one cannot afford to be haphazard in this approach, and each cone form tested must result from a logical assessment of the performance of the previous one. Nevertheless this work is very time-consuming and very expensive and it is easy to understand why this problem has not been previously tackled with any degree of thoroughness, especially when one considers that all there is to show at the end is a single-cone loudspeaker with little or no "gimmick value."

Some 12 years after developing the hyperbolic paper cone 8 in loudspeaker, the author experimented with small aluminium cones, which led to the development of the JordanWatts module. This cone had a hyperbolic flare which closely approached a pure radius. The frequency response of this unit is shown in Fig. 7. It will be noted that the axial frequency response is fairly smooth and level but the off-axis response is falling towards the high end. This indicates that the mean hemispherical power response (m.h.p.r.) is falling. The shape of the mean hemispherical power response is of far greater importance than that of the axial pressure response.

It was not until three years later that the author had the opportunity to experiment with a variety of alterrative flares, and he discovered that

Wireless World, November 1966
although he could raise the m.h.p.r. it was at the expense of the high frequency limit. An acceptable compromise is shown in Fig. 8, which is the response of a unit similar to the previous one but employing an aluminium cone with a flare given by the law $y=0.75 / x$. Although this curve does not appear to be as good as the previous one there was, on listening tests, considerably less colouration, and the improved transient performance gave the impression of a more extended top response. This range of experiments virtually exhausted the possibilities of aluminium as a cone material which, although it gave results considerably superior to those of paper cones, still left something to be desired, and again the search was on for a new material.

The clue was given in an advertisement by Imperial Metal Industries Ltd. describing titanium as having "a greater strength weight ratio than any other structural metal." Samples were immediately ordered and duly received. As a starting point one of the sample pieces was placed in the tool used for the previous aluminium cone and when pressure was applied the material immediately shattered; and the author's company was then faced with the agonizing prospect of having to find out how to tool for titanium before knowing if the metal was going to be satisfactory in any case. This was done, however, and the advantages of titanium became immediately apparent, and experiments were once again undertaken to determine the correct cone law. Shortly after this another breakthrough was made whereby it became immediately possible to obtain the correct flare in any material without any further tests.

This came as the realization that a stretched membrane displaced at its centre would follow a hyperbolic curve (Fig. 9). If the displacing force is oscillating the lines of stress and strain will lie along the natural hyperbolic curve and there will be no tendency whatever for the material to be displaced from this curve at any point. This is exactly the situation required in a loudspeaker cone to avoid unwanted "break-up," and not only shows the advantage of the hyperbolic law in principle but also tells us exactly how to achieve it in practice-i.e. a sheet of the proposed material, in this case titanium, is subjected to considerable tension, placed in an annular clamp and the centre displaced by a cylindrical tool. This is the technique now used in the manufacture of titanium cone loud-

Above: Fig. 8. Performance curves of 4 in dia. aluminium cone having a hyperbolic profile given by $y=0.75 / x$.

Right: Fig. 9. Showing the formation of a hyperbolic form by displacement at the centre of a stretched membrone.
speaker modules and systems marketed by Audio \& Design Ltd.

The metal titanium.-Out of interest readers may like to know that titanium is the fourth most abundant metal found in the Earth's surface. It is an element and the material used in loudspeaker cones is 99.9% pure. In addition to its exceptionally high strength/weight ratio it does not corrode and will withstand extremely high temperatures. It is produced in this country by Imperial Metal Industries (Kynock) Ltd., Birmingham, a subsidiary of I.C.I. It has become commercially available only during the past 10 years and, because of its properties, its principal applications are in the aerospace industry. In spite of the abundance of the crude ore the metal is expensive, owing to the very elaborate refining and milling processes required. The material is extremely difficult to work with and the rate of tool wear is high. In our application the grain size is of very great importance.

The coil.- The voice coil of the loudspeaker has to be as light as possible consistent with reasonable efficiency. Considerations of high frequency performance have led us to an actual cone (piston) diameter of about 4 in . From this we have calculated (see Appendix 1) a peak displacement of $\pm \frac{1}{8}$ inch in order to provide the required low frequency radiated power level, assuming reflex loading. Thus, in order to provide a constant driving force either the coil must be $\frac{1}{4}$ in longer than the depth of the magnetic

gap or vice versa. In the interests cf lightness the short-coil, deep-gap approach is used, and this incidentally also provides a higher magnetic efficiency.

Considerations of total magnetic flux and flux density led to the adoption of a magnetic gap diameter, and therefore coil diameter, of approximatcly $1 \frac{1}{2} \mathrm{in}$. The coil itself comprises a in aluminium winding on an aluminium former of thickness 0.0015 in . The winding is immersed into the centre of a $\frac{1}{2}$ in deep magnetic gap.

The mechanical attachment between the top of the coil former and the cone neck is of paramount importance and must be effected by means of a very thin layer of hardsetting adhesive. Any flexibility at this join will lead to three severe defects: (a) premature mechanical failure (the forces developed across the gluc line are very considerable); (b) attenuation of the high frequency response and colouration due to the resonance resulting from the mass of the cone and the compliance of the adhesive; and (c) harmonic and intermodulation distortion at high frequencies due to the inevitable nonlinearity of the compliance.

The flexible surround.-Since the cone is moving and the supporting framework is not, the cone must be supported at its edge by means of a flexible coupling which has to perform the following quite separate functions:

1. To permit complete freedom of the cone to move axially and to
restrict any sideways movement.
2. To provide an airtight seal between the edge of the cone and the enclosure. Further in this respect it must appear acoustically opaque to back-pressures emanating within the enclosure.
3. To provide a satisfactory termination to the cone at high frequencies in order to effect as "much as possible the complete absorption of the incident flexure waves arriving at the cone edge. Failure to do this will result in reflected waves, leading to interference effects and colouration.
4. The rim must be intrinsically non-resonant.
5. The rim must be made of a material that does not age and is mechanically stable under all conditions of climate.

One technique employed by the author was to use a composite plastics rim, attached to which was an annular metal spring. This spring had two natural positions, a normal and an inverted cone frustum, i.e., it
would always attempt to spring either up or down away from the flat position. When attached to the plastic rim, it was held against its will in the flat position, and by carefully balancing the force of the spring against the rim stiffness a cone surround was obtained that offered almost zero stiffness to axial movement and complied perfectly with the first two of the above requirements. However, extreme difficulty was experienced in meeting requirement 4.
The problems were finally overcome by the use of an impregnated polyether foam. The method of impregnation, which is novel, is such as to produce the effect of a "tapered" transmission line between the edge of the cone and the chassis.

Restoring force.-In the interests of mechanical stability it is essential that the cone assembly be provided with a restoring force to ensure that the coil always moves relative to a fixed mean position in the centre of

Above: Fig. 10. Performance curves of 4 in diameter titanium cone loudspeaker.

Left: Assembling a titanium-cane laudspeaker. The entire moving assembly is maunted on a detachable ring. The outer housing is vented.
the magnetic field. It is important for this restoring force not to be applied at the cone edge since this would incur cone flexing at low frequencies. The ideal position for the restoring force is at the rear of the cone where it acts also as a means of centring to maintain the coil in its correct axial position within the magnetic gap. If the axis of the cone is arranged in the horizontal position the location of the suspension system should be such as to support the cone and coil system at its centre of gravity (acknowledgement to Percy Wilson).

As a result of the restoring force the complete system will exhibit a resonance below which the condition of mass control will be no longer operative. The resonant frequency must therefore be near the lower limit of the required frequency range.

One very important requirement for the suspension system is that it must be completely linear over the full range of cone displacement. Failure to be so results in the very high harmonic distortion apparent in the extreme bass response of many loudspeakers. The suspension system itself must be mechanically stable, and this requirement led to the use of three tangentially disposed beryllium copper cantilevers (two of which are used to carry the voice coil current). The cantilevers are attached at their inner ends to a rigid insulating annulus surrounding the coil and attached to the coil via a "lossy" compliant medium the purpose of which is to ensure that the mass of the suspension system is decoupled from the coil at high frequencies.

Chassis.-In the loudspeaker described the entire moving assembly is built up on a removable top plate which in turn is screwed to four supporting members attached to the magnet system. The entire assembly is suspended in a vented housing via an insulating medium to avoid transmission of energy to the housing and mechanical resonances. The detachable moving assembly is readily replaced in the event of misuse or damage, as shown in the photograph. The entire assembly is produced under laboratory conditions in a state of clinical cleanliness. .

Enclosure.-The titanium cone loudspeaker module was designed for reflex loading which, if correctly designed provides an extended low frequency performance having a very low distortion level within an enclosure of acceptable domestic dimensions.

It can be shown that for optimum performance the Q of the funda-
mental cone resonance in free air snould be 0.62^{2}. If the internal volume of the enclosure is then such that the enclosed air stiffness is 1.62 of the suspension stiffness and the reflex vent is arranged to tune the enclosure to the free air resonance of the loudspeaker, the overall frequency response will be perfectly level down to that frequency. By an appropriate increase in enclosure size and retuning, the response can be extended to as much as an octave below this frequency with a response variation of not more than $\pm 3 \mathrm{~dB}$.

A source of difficulty sometimes encountered with reflex loading is that at very low frequencies, i.e. below $20 \mathrm{c} / \mathrm{s}$, the acoustic load applied to the cone falls very considerably and factors such as motor rumble cani cause very considerable cone displacement. A solution to this problem has been found in the provision of a semi-flexible plastics diaphragm spanning the inside of the enclosure between the loudspeaker and vent. This has virtually no effect upon frequency down to the enclosure resonance, but below this it provides a progressively increasing stiffness controlled load.
Performance data.-The power response, axial pressure response, polar response and distortion are shown in the composite curve in Fig. 10. Unfortunately the author had insufficient time to secure facilities for transient testing but the performance in this respect can be demonstrated by white noise tests.

The question of Doppler distortion is often raised in reference to small full-range loudspeakers. There has recently been some dispute about the significance of this type of distortion, but accepting for the moment that its significance is proved, it is normally applied to small loudspeakers on the assumption that very large cone displacements are necessary to produce adequate radiated power at low frequencies. In our case this is not so since, owing to the efficiency of the type of reflex loading employed, the cone displacement of the loudspeaker described is no more than that encountered in the cone of a conventional 12 in loudspeaker.
Final thoughts.-The most significant subjective advantages gained by the use of titanium as a cone material have been in the high frequency and transient responses. The author feels that at the moment there is no entirely adequate explanation for these subjective advantages in terms of the performance parameters normally discussed but that further light may be thrown upon the matter by an
examination of the property of mechanical hysteresis within the cone. It is reasonably obvious that titanium will have a lower hysteresis loss when subjected to alternating flexure than any other diaphragm material hitherto used, and in the not too distant future it is hoped to make a complete examination of the relationship between mechanical hysteresis and subjective and objective transient performance.

My thanks are due to Imperial Metal Industries Ltd. for their very considerable help and advice on tooling and their extensive tests to determine the optimum material characteristics for our purpose; to John Martin of Martin Watch Laboratories, Bracknell, for his development of the cone tooling described; and to my assistant Margaret Collett for her work on the experimental and production prototypes.

REFERENCES

1. "Loudspeakers" by E. J. Jordan, Page 49. Focal Press, London (1963).
2. As above, p. 154, eqns. 10.19 to 10.23.

APPENDIX I

Acoustic power P_{r} required to reproduce a full orchestra in a medium room ($2,000 \mathrm{cu} . \mathrm{ft}$.) at serious listening level (say 80 dB) is 0.002 watts. Assume an l.f. limit of $40 \mathrm{c} / \mathrm{s}$.
$P_{r}=v^{-} R_{11,1} \cdot 10^{-7}$ acoustic watts where $v=$ r.m.s. velocity of cone
$\therefore 0.002=v^{2} 2.18 \times 10^{-6} \times r^{4} \times 40^{2} x$ 10^{-7}

$$
v^{2, r^{4}}=\frac{0.002 \times 10^{-7}}{2.18 \times 10^{\prime \prime} ; \overline{40^{2}}}
$$

$\therefore v r^{2}=2.4 \times 10^{3}$
From considerations of h.f. response discussed in text, r was found to be 6 cm .

$$
\begin{aligned}
\therefore v & =\frac{2.4 \times 10^{3}}{36} \bumpeq 67 \mathrm{~cm} / \mathrm{sec} \\
\therefore v_{\text {peak }} & =1.11 \times 67=74.5 \mathrm{~cm} / \mathrm{sec}
\end{aligned}
$$

From which the peak-to-peak displacement at $40 \mathrm{c} / \mathrm{s}$

$$
\frac{74.5}{2 \times 40}=0.94 \mathrm{~cm}=0.366 \text { inch }
$$

(Symbols defined in footnote on p. 555).

APPENDIX 2

Approximate expressions for radiation resistance ($R_{M A}$) above and below the curve" knee " are:
When $k r \ll 2$

$$
R_{M .4} \bumpeq 2.18 \times 10^{-6 f^{3} r^{4}} \begin{array}{r}
\text { mech. } \\
\text { ohms. }
\end{array}
$$

When $k r \gg 2$
$R_{M, 1} \bumpeq 2.16 \vee 10^{5} r^{2}$ mech. ohms.
(Symbols defined in footnote on p. 555).

APPENDIX 3

Assume condition of mass control:-

$$
P_{r} \propto \frac{F^{2}}{\omega^{2} L_{M}^{2}} \cdot R_{M A}
$$

where $L_{M}=$ cone mass.
When $k r \gg 2 R_{M, 1} \propto r^{2} \propto A$
For a given cone thickness:-

$$
L_{M} \propto r^{2}
$$

$$
\therefore \quad \operatorname{Pr} \propto \frac{1}{f^{2} r^{4}} \cdot r^{2}
$$

If the effective cone radius were to remain independent of frequency, P_{r} would fall at $6 \mathrm{~dB} /$ octave. Including losses due to the voice coil inductance, this becomes $12 \mathrm{~dB} /$ octave. To compensate the above expression must vary as f^{4}.

$$
\begin{array}{r}
\therefore \frac{1}{f^{2}} \frac{r^{1}}{r^{2}} \propto f^{1} \\
\quad \therefore \frac{1}{r^{2}} \propto f^{13} \\
\\
\quad \text { or } \frac{1}{r} \propto f^{3}
\end{array}
$$

but r is a function of $\left(\frac{c_{e}}{f}\right)$
where c_{r} is the velocity of flexural wave motion in the cone.
Then $\frac{c_{r}}{f}$ must vary as $\frac{1}{f^{3}}$

$$
\text { or } c_{c} \propto{ }_{f}^{1}
$$

In a straight-sided cone, $c_{c} \propto 1 / f$ approx. Thus the above indicates the need of a flared cone.

Consider now the frequency at which the reduction of radius should start. This is given by

$$
f=\frac{c_{1}}{l_{c}}
$$

where l_{c} is length of cone side.
The frequency corresponding to $k r=2$ is

$$
f=\frac{c}{\pi r}
$$

where ${ }_{c}$ is the velocity of sound in air. These two frequencies should be coincidental
$\therefore \quad \stackrel{c_{r}}{l_{r}}=\frac{c}{\pi r}$
$\therefore \quad \begin{gathered}c_{1} . \\ l_{c} \\ \\ \pi\end{gathered}$
$\therefore c_{c} \cdot \sin \theta={ }_{\pi}^{c}=$ const.
where θ is the angle between the cone side and the axis.

While we are unable to calculate absolute values from the expressions, they do give a very good guide in experimental determination.
(Symbols defized in footnote on p. 555).

Thin Films in Electronics

SOME NOTES ON THE I.E.R.E.-I.E.E. CONFERENCE HELD EARLIER THIS YEAR

THE conference on thin film applications was organized because it was felt there was a need for us to take stock of the place of thin films in electronic engineering, the subject having generally taken a back seat compared to solid circuits.

One point that emerged from the conference was that the delegates were by no means all devotees of the thin film approach. Indeed, a speaker questioned the future of thin films since diffused integrated circuits were usable up to $300 \mathrm{Mc} / \mathrm{s}$ and above-apart from the obvious use of thin films as stable Rs and Cs in hybrid circuits. Perhaps this is the limited extent to which thin film circuits will be used, but much depends on the development of a usable and reliable thin film transistor. Another summed up the position by maintaining that thin film circuitry was not, as is often thought, competitive to diffused integrated circuits, but that the techniques were complementary.

COMPONENTS

Resistors.-A paper by Naylor and Fairbank (Ferranti) described results obtained from tantalum resistors and capacitors made by spluttering. It was stated that the use of the sputtering technique (in which tantalum atoms are "knocked" from a source to a substrate by bombardment with ions of an inert gas), rather than by thermal exaporation by heating or electron beams, resulted in better uniformity of film thickness.
Capacitors.-The two main advantages of thin film capacitors is that capacitance can be up to 1 pF for 0.001 in 2 with a high breakdown voltage and can remain voltageindependent. Tantalum pentoxide is attractive since for one thing its dielectric constant is 21 compared to $2-4$ for the more usual silicon oxides. Capacitors with good h.f. performance can be made with tantalum pentoxide (Naylor \& Fairbank) by making electrode resistivity low (rather than dielectric losses).
Inductors.-Little, relatively, was said on the subject of inductors, presumably because these are more difficult to adapt to thin film circuits than $R \mathrm{~s}$ or Cs . (For one thing, a conducting substrate near to the coil reduces inductance and increases losses.) But with in limits inductors with values around $1 川 \mathrm{H}$ are quite feasible, and a paper by Manfield and Windle (R.R.E.) indicated that inductances can be made up to 12 " H with a tolerance spread of 0.05% and high Q values. (Desired Q values can be achieved by adjustment of the plating thickness.)
Active devices.-Much work in the field of thin film transistors using evaporated layers of CdS or CdSe (field effect types) has been done by P. K. Weimer, who is well known for his work. Unfortunately, erratic variations in device characteristics have held back progress. Tickle, Swystun and Treleaven (Saskatchewan University) showed that device characteristics were strongly dependent on film thickness. Batch fabrication was thus used to reduce effects of random variations in deposition.
D. J. Page (Westinghouse, U.S.A.) described a heterojunction transistor (or dielectric transistor) which was produced by preparing a dielectric diode on a silicon p-n
junction. Most of such CdS-Si devices showed an exponential emitter characteristics. It was felt that if base recombination could be reduced then useful devices may be evolved.

APPLICATIONS

Many examples of the use of thin film techniques were given, including magnetic film memories, cryoelectric or superconducting memories, galvanometric devices, ultrasonic transducers, strain gauges and microelectric circuits. A number of complete equipments have been produced besides many circuit building blocks which use hybrid microelectronic techniques. Holland and Chapman reported on the thin film modules used in Marconi television equipment (see p. 58 February issue) and W. S. Whitlock (A.S.W.E.) discussed their use in radar receivers, using thin film inductors and capacitors in resonant circuits. According to the author, the thin film capacitor is something of an obstacle for narrow band receivers. The main difficulty appears to be the realization of high-Q LC circuits (>100) at frequencies around $30 \mathrm{Mc} / \mathrm{s}$. Series resistance of leads and electrodes was felt to be a contributory factor to low Q, and to minimize this, changes in geometry and material were suggested.

Active filters.-Avoidance of large-value inductors for I.f. work is given by the use of active filters (see p. 129 March issue). Adjustment of component values was necessary, as tolerances were too wide-scribing resistors with diamond gave adjustment to $\pm 0.1 \%$. Capacitor adjustment was provided by cutting the leads to small capacitors giving adjustment to about $\pm 2 \mathrm{pF}$. The authors concluded that hybrid microelecronics could be used for active filters in many applications.

Ultrasonic transducers.-A technique which has become well known in the last two or three years is that of vacuum deposition of CdS films for use as piezoelectric ultrasonic transducers and is due to the work of N. F. Foster (Bell Telephone). In the past, quartz has been used as the principal transducer material, but for frequencies above $100 \mathrm{Mc} / \mathrm{s}$, the material thinness required is not practical for bonding.
To overcome this and other problems the evaporated layer or thin film transducer was developed. In essence, an electrode is evaporated onto the propagation medium, covered with evaporated CdS and finally a further electrode is deposited. With this method losses can be as low as 4 dB at $200 \mathrm{Mc} / \mathrm{s}$ and 12.5 dB at $1.5 \mathrm{Gc} / \mathrm{s}$. Usually CdS is the material used for such transducers, but others have been tried, such as ZnS , CdSe and ZnO . Zinc oxide is the most attractive due to its greater electromechanical coupling coefficients and higher sound velocity. This last factor would mean that films would be thicker than those of CdS for the same λ. CdS films have been deposited by sputtering and efficiencies are similar to evaporated types, but the orientation is such that only longitudinal propagation is possible. Sputtered ZnO films have shown high efficiencies but the full potential has not been realized yet, partly due to lack of control of film orientation.

Colour TV Service and Servicing

TO keep television dealers and their servicing staffs abreast of the latest developments associated with the proposed start of a colour television service next year Mullard arranged a discussion meeting at the end of September for a small crosssection of the trade. They were addressed by F. C. McLean, B.B.C. director of engineering; David Attenborough, head of BBC-2; A. J. Kenward, secretary of S.E.R.T. and R.T.E.B.; and S. E. Allchurch, director of B.R.E.M.A.

Mr. McLean, dealing with the technical aspects of the colour TV service, stressed that the public is likely to be more critical of quality in colour than in monochrome. He cited experience in the U.S.A. and gave it as his opinion that the flow start of colour there was not only that receivers were expensive but that the colour picture seen on an average receiver was so very variable.

Of the programme side Mr. Attenborough made the point 1hat as 99% of viewers will be receiving the colour programmes on monochrome receivers for some time to come it is essential that the addition of colour should be "an enrichment of a good monochrome picture."

For the benefit of service technicians desirous of taking a course in colour TV servicing the Radio Trades Examination Board has prepared a list of nearly 60 colleges which are offering part-time courses. In answer to a questioner Mr . Kenward stated that the minimum equipment required for servicing colour receivers (additional to that on a wellequipped monochrome bench) is a pattern generator. Useful additions would be a sweep generator, PAL signal generator, degaussing equipment and e.h.t. measuring equipment.

There was the inevitable question regarding the introduct ion of colour on 405 lines in the v.h.f. band, but both Mr. McLean and Mr. Allchurch stressed that it would be a retrograde step, delay the start of a colour service and complicate receivers.

R.A.F. Engineer Branch

WITH the object of bringing before educationists the need of the Royal Air Force for young men of high calibre who are qualified in the applied sciences-particularly electricail, electronic and mechanical engineers-and the opportunities afforded in the Service, a two-day symposium was recently held at the R.A.F. College, Cranwell. Some 120 guests from the academic world attended.

During the symposium it was announced by the Minister of Defence for the R.A.F. (Lord Shackleton) that the Technical Branch will in future be known as the Engineer Branch. Within the Branch there will be a division between mechanical engineering and electrical engineering duties. The latter will cover communications, ground and airborne electrical and electronic equipment, instruments and surfacelaunched missiles.

The papers presented at the symposium and the tour of the college stressed the standard of technical training provided for cadets and specially for young post-graduates who enter the Service. The courses at the College vary from the $4 \frac{1}{2}-$ year engincer cadet course to the engineer officer (graduate) course of eight months and the age of entries varies from $17 \frac{i}{2}$ to 45 years.

Correspondence Courses

FOR several months the Cleaver-Hume Group of Correspondence Colleges has been operating from its new headquarters at Aldermaston Court, Berks, but it was not officially opened until September 23rd when the ceremony was performed by Sir Arnold. Lindley, chairman of the Government's Engineering Training Board.

The new centre, from which are regularly distributed the "lessons" for some 600 different subjects to over 100,000 students in the U.K., is also to be used at week-ends for seminars for selected students. Professor H. F. Trewman, for many years principal of the E.M.I. College of Electronics, is advisory principal at Aldermaston.

Among the members of the Cleaver-Hume Group is the British Institute of Engineering Technology which was founded in 1927. The B.I.E.T. brochure on the electronic engineering correspondence courses gives brief details of a radio and electronics construction course (the $£ 20$ fee covers the cost of a Radionic constructional kit and multimeter), several electronic engineering courses and a course on transistor circuitry.
H.R.H. The Duke of Edinburgh will officially open the Radio Communications Exhibition at Seymour Hall, London, W.1, at 12 noon on October 26th. The four-day exhibition, sponsored by the Radio Society of Great Britain, will be open daily from 1000-2100. Admission costs 3 s . There will be some 30 exhibitors and there will be displays and demenstrations by Royal Signals, Royai Navy and the Post Office.

Experimental colour television transmissions using the PAL system are radiated daily from Monday to Friday at set times during the normal BBC-2 trade tests from Crystal Palace (channel 33), and the relay stations at Hertford and Tunbridge Wells (channels 64 and 44). The daily schedule is:-1400-1415 test card in black \& white, $1415-1425$ colour bars, 1425-1500 colour slides; this sequence is repeated from 1500-1700. On Wednesdays, Thursdays and Fridays there is a further series of tests from 1810-1900. Users of 625-line u.h.f. monochrome receivers may find it interesting to see these transmissions to assess the compatibility.

150 ft radio telescope of the National Research Council of Canada at Algonquin Radio Observatory, Lake Traverse, Ontario. The electronics system for controlling the steerable paraboloid was supplied by A.E.I. Electronics. The compony's film "The Radio Sky", telling the story of radio astronomy, can be borrowed from A.E.I., 35 Grosvenar Place, London, S.W.I.
B.B.C. Research Scholarships.-The Engineering Division of the B.B.C. maintains six research scholars at United Kingdom Universities and is awarding one scholarship this year. The scholarships are intended to provide the opportunity to work for a higher degree, the subject chosen for post-graduate study being within those fields of physics or enginecring which have an application to sound and television broadcasting. This year's scholar is G. C. Goddard, who graduated with an upper second class honours degree in electronic and electrical engineering from Birmingham University this year. He has been awarded a three-year scholarship to undertake research on "A method of increasing, the data-handling capacity of underwater telemerry links", at Birmingham University, Department of Electronic and Electrical Engineering.

Philips' 75th anniversary is commemorated in the postmark on the first issue of a new Dutch airmail stamp.

BBC-2 in the North East:- The BBC-2 service from Pontop Pike will start on November 5th, on Channel 64 (sound $821.25 \mathrm{Mc} / \mathrm{s}$, vision $815.25 \mathrm{Mc} / \mathrm{s}$) with horizontal polarization. Test transmissions will begin on October 22nd and will normally consist of test card from 0900 to 1200 and 1400 to 1915 every day except Sunday. Some $1,700,000$ people in the north-east of England will be in the service area of the u.h.f. transmissions.

Some radio altimeters which operate in the $420-460 \mathrm{Mc} / \mathrm{s}$ band have been causing serious interference to observations made at the Mullard Radio Astronomy Observatory at Cambridge. The interference is caused by the local oscillator in the altimeter receiver (which operates in the radio astronomy band $406-410 \mathrm{Mc} / \mathrm{s}$) when the aircraft concerned is flying within radio line of sight of the Observatory. In a Board of Trade notice pilots of aircraft registered outside the United Kingdom carrying specified types of radio altimeter are requested not to operate them when flying within U.K. airspace.

The experiment kit for the 30 -week series of television lectures "First steps in physics" is being produced by the Communications Division of S.G. Brown Ltd. The course, which is nationally networked by I.T.A., is produced by ABC Television in collaboration with the National Extension College, Cambridge. The series, which started on September 25th and is presented by Professor James Ring, of Hull University, is intended to prepare vicwers, with little prior knowledge of the subject, for the G.C.E. " O " Level examination next June.
E.I.B.A.-Many companies and associations in the radio and electronics industry are listed among the donors in the annual report of the Electrical Industries Benevolent Association which assists " any deserving or necessitous person," excluding manual workers, who are or have been in any branch of the electrical industry. Among the associations listed are R.T.R.A., Radio Industries Club, R.E.C.M.F., VASCA, and B.V.A. During 1965 the Association's income went up by nearly $£ 18,000$ to over $£ 123,000$.
C.N.A.A. Degree Courses.-The Council for National Academic Awards, confers degrees "comparable in standard with those granted by universities" on students completing approved courses in education establishments which have not the power to award their own degrees. The council has recently issued a list of courses which lead to the award of its B.A. or B.Sc. degrees and the colleges providing them. It is obtainable from the C.N.A.A., 24 Park Crescent, London, W.1. The colleges providing electronics courses, as opposed to electrical courses with an electronic bias, are Staffordshire College of Technology, Northern Polytechnic (London) and Rutherford College of Technology (Newcastle-uponTyne).

The African Broadcasting Conference, which was convened by the International Telecommunication Union in Geneva in October 1964 but adjourned after a few days, resumed its work on September 19th, again in Geneva. The purpose of the Conference, attended by some 180 delegates from more than 60 countries was to draw up a mediumwave broadcasting plan for Africa and also examine the position as regards long-wave broadcasting on the African continent.

An information sheet, number 4002(4), detailing the 625line vision signal waveform, has been issued by the Engineering Information Dept. of the B.B.C., Broadcasting House, London, W.1. It includes all the characteristics with waveforms showing the line and field synchronizing signals and an r.f. response curve for an ideal receiver.

Stereo Test Transmissions.-In addition to the increased frequency of stereo broadcasts announced a few months ago, the B.B.C. transmits test signals to facilitate channel identification and adjustment of cross-talk. A $250 \mathrm{c} / \mathrm{s}$ tone is transmitted in the left-hand channel only from about four minutes after the end of the Third Programme until 2355 every night.

A one-day course on counter design with silicon integrated circuits is being held at John Dalton College of Technology, Chester St., Manchester, on October 31st (Fee £3 15s including lunch). The lecturer is K. J. Dean of Letchworth College of Technology.

Because of increased attendance at meetings of the Surrey Radio Contact Club they are in future being held at the "Blue Anchor," South End, Croydon. Meetings will now be held on the third Tuesday of each month at 2000. At the meeting on November 15 th an illustrated taped lecture on the American station W1BB will be given.

NOVEMBER CONFERENCES AND EXHIBITIONS

LONDON

Nov. 9-11
Savoy Pl., W.C. 2
Automatic Operation and Control of Broadcasting Equipment
(I.E.E., Savoy Pl., W.C.2)

Nov. 17-18
Savoy Pl., W.C. 2
Small-angle Scattering of Electrons and X-rays
(Inst. Phys. \& Phys. Soc., 47 Belgrave Sq., S.W.1)

OVERSEAS

Nov. 14-16
San Francisco
Engineering in Medicine \& Biology
(Dr. D. H. Lecroisset, Jet Propulsion Lab., Pasadena, Calif.)
Nov. 15-18
Washington
Magnetism and Magnetic Materials
(I.E.E.E., 345 E. 47th St., New York 10017)

Nov. 19-25
Milan
Automation and Instrumentation Conference \& Show
(Federazione delle Assoc. Scientifiche e Techniche, via Ripamonti 115, Milan 15/6)
S. S. Carlisle, M.Sc., F.Inst.P., M.I.E.E., director of the British Scientific Instrument Research Association, is the 1966/67 chairman of the Control and Automation Division of the I.E.E. He graduated with first-class honours in electrical engineering at Queen's University, Belfast, in 1940. After postgraduate study he was awarded an M.Sc. From 1942 to 1946 he served with the Admiralty in the experimental department of H.M.S. Excellent, Portsmouth, where he was engaged on gunnery, radar and fire control development. Mr.

S. S. Carlisle

Carlisle joined the British Iron and Steel Research Association in London in 1946 as the head of the instrument section of the Physics Department. From 1953 to 1958 he was head of the South Wales laboratories of B.I.S.R.A., and was head of the Physics Department of B.I.S.R.A. in London from 1958 until 1963 when he was appointed director of the British Scientific Instrument Research Association. Mr. Carlisle is past-president of the Society of Instrument Technology; vice-chairman of the United Kingdom Automation Council, and U.K. delegate on the International Federation of Automatic Control Components Committee.

Professor A. L. Cullen, O.B.E., Ph.D., D.Sc.(Eng.), who has occupied the chair of clectrical engineering at Sheffield University since it was created in 1955. has been appointed to the Pender Chair of Electrical Engineering at University College, London, where for nine years prior to his Sheffield appointment he was successively lecturer and reader in electrical engineering. Prof. Cullen. who was the 1965/66 chairman of the Electronics Division of the I.E.E.. graduated at Imperial College, London, in 1940 and was for six years at the R.A.E., Farnborough. The last incumbent of the Pender Chair was Dr. H. E. M. Barlow, who is now on the board of directors of Marconi Instruments and W. H. Sanders (Electronics).

Air Marshall Sir Walter Pretty, K.B.E., C.B., Deputy Chief of the Dcfence Staff (Personnel and Logistics), Ministry of Defence from 1964 until his recent retirement from the R.A.F., has been appointed to the board of directors of Redifon Ltd. Trained at the R.A.F. College, Cranwell, Sir Walter, who was knighted in 1962, became deputy director of radar in the Air Ministry in 1944. The following year he was appointed chief signals officer, Fighter Command, R.A.F., and in 1948 became DirectorGeneral of Navigational Services at the Ministry of Civil Aviation. In 1953 he was appointed Director of Electronics Research and Development (Air) in the Ministry of Supply. In 1958 he was appointed Director-General of Organization at the Air Ministry and from 1961-64 held the appointment of Air Officer Commanding-in-Chief, Signais Command.
G. H. Metson, M.C., D.Sc., Ph.D., M.I.E.E., director of research at the Post Office for the past two years, has retired on health grounds and is succeeded by W J. Bray, M.Sc.(Eng.), A.C.G.I., D.I.C., M.I.E.E. Dr. Metson, who is being retained as a consultant, joined the Post Office as a youth-in-training in the physics laboratory in 1925 . Later he transferred to Northern Ireland, where he carried out research on magnetron oscillations and received his M.Sc. and Ph.D. at Queen's University, Belfast. During the war he served with the Royal Corps of Signals. In 1946 he was back at Dollis Hill in charge of the thermionics group set up to study the causes of valve failure. Dr. Metson became deputy director of research in 1962. His successor, Mr. Bray, who entered the Post Office Engineering Department in 1934 as an assistant engineer in the Radio Experimental Laboratories at Dollis Hill, was chosen in 1961 to lead the newly formed Post Office Space Communication Systems Branch. Since 1963 he has lead a team

W. J. Bray
at Dollis Hill working on research connected with communication satellites and lasers. Prior to his concentration on satellite communications Mr. Bray was concerned primarily with iono-spheric- and tropospheric-scatter.

Commander Hugh St. A. Malleson has been appornted a director of SGSFairchild Ltd. During 16 years naval service he qualified in signals and was experimental officer, H.M. Signal School, Admiralty; and Commander on

Cdr. H. St. A. Malleson
the staff of the Director of Radio Equipment, Admiraity. From 1950 to 1964 Commander Malleson was head of the Government and Industrial Valve Division at Mullard Ltd.
R. H. Davies, C.B.E., B.Sc., M.I.E.E., deputy general sales manager, of Ferranti Ltd. for the past nine months has succeeded O. M. Robson, M.A., M.I.E.E., as general sales manager. Mr. Robson is retaining his seat on the board as sales director. Mr. Davies joined Ferranti Ltd. in 1946 after spending the later war years with the British Air Commission in Washington, D.C., on joint British/U.S. radar development. In 1947 he returned to the U.S.A. to become vice-president and general manager of Ferranti Electric Inc. (New York), a wholly owned subsidiary of Ferranti Ltd. He rejoined the parent company in 1963 but still remains a director of FerrantiPackard Electric Ltd. in Toronto and Ferranti Electric Inc. in New York.
J. M. Brunskill was recently appointed plant manager of the Mullard Research Laboratories, Redhill, Surrey, which he joined as administrative assistant in 1952. He previously served for 13 years in the Royal Corps of Signals, reaching the rank of Major.

Maurice Esterson, B.Sc.(Eng.), A.M.I.E.E., is appointed deputy manager of the Microwave Tube Division of English Electric Valve Company. He joined E.E.V. in 1941 as a development engineer in the magnetron section and in 1960 became manager in charge of

M. Esterson
high-power klystrons. When E.E.V. bought their plant at Lincoln, Mr. Esterson was appointed the managing director's special representative for integrating the Lincoln organization with that at Chelmsford.
E.A.G. Davis, D.S.O., who joined the Marconi Marine Company in 1959 as marine superintendent in which capacity he acted as the company's adviser ori navigational problems as related to electronic aids, has been appointed assistant general manager. In October 1962, he was appointed management executive and in 1964 became assistant to the general manager. During the war he served in the Royal Naval Rescrve and was promoted to the rank of Commander. On leaving the service in 1946 Mr. Davis took up a Government appointment.
D. L. Phillips, M.M., B.Sc., A.M.I.E.R.E., has resigned from the managing directorship of Mills \& Rockleys (Electronics) Ltd., printed circuit manufacturers of Skelmersdale, Lancs. Mr. Phillips was works manager of「echnograph Electronic Products Ltd.

D. L. Fhillips
before joining the Mills \& Rockleys group in 1958 as a consultant to set up an electronics subsidiary. During the war he served in the R.A.F. as a technical signals officer and immediately prier to joining Technograph was with Plessey at their components division at Swindon. He is setting up a consulting service on printed circuits.
L. C. Jesty, who two years ago went to the U.S.A. to join the Westinghouse Corporation, has had the degree of D.Sc. conferred on him by the London University for his work in the field of "The science of visual communication and display." Dr. Jesty was educated at University College, Southampton, and joined the G.E.C. Research Laboratories, Wembley, in 1927, where he spent 18 years. He then went to Cintel as head of the advanced development department. In 1949 he joined Marconi's as chief of the television research group. Seven years later he joined the Sylvania-Thorn colour television laboratories at Enfield, Middx., where until 1962 he was in charge of colour television research.

Roy R. Roper, has joined Racal Instruments Ltd. as sales director. For the past year he has been a director oi Weir Electronics and Weir Industrial Controls. For two years prior to that

R. R. Roper
he was generai sales manager of Cossor Communications Company, having previously spent seven years with Solartron and five years as a deveiopment engineer on submarine communication systems with Standard Telephones \& Cables. Mr. Roper, who is 36, started his carcer as a technician in the Post Office Engincering Department.
P. E. Leventhall, B.Sc.(Hons.), M.I.E.R.E., has joined Hudson Electronics Ltd. and International Marine Radio Company Ltd. (both S.T.C. subsidiaries) as technical manager and will be responsible for all development projects. He graduated in physics at Leeds University and has been chief engineer of Cossor Communications Ltd. for the last three years having previously been chief engineer of Murphy's radiotelephone division.
G. S. C. Lucas, O.B.E., F.C.G.I., M.I.E.E., has retired from A.E.I. Electronics of which he was director and group general manager. He started his career with the British ThomsunHouston Company (now part of A.E.I.) in 1915 and after serving his appreaticeship studied at the City \& Guilds (Engineering) College. In 1925 he went into the B.T-H. research laboratory and in 1932, as head of the electrical d•velopment section, became responsible for electrical measurements and developments in the audio engineering field. Mr. Lucas was appointed an O.B.E. for his contribution to the development of centrimetric fixe-control radar during the war. When the B.T-H. Electronics Engineering Dept. was set up in 1945 he was appointed manager. He became chief engineer in 1953, and has been director and general manager of A.E.I. Electronics, Leicester, since 1963.

OBITUARY

Sierd Sint Eriks, K.B.E., managing director of the Mullard Company and chairman of Philips Electronic and Associated Industries until his retirement for health reasons in 1964, died on September 27 th, aged 66 . Educated a: Rotterdam University he came to England in 1929 as general manager ot the Mullard Company before becomin! responsible for all N.V. Philip's interests in the United Kingdom. He became chairman of Philips Electronic and Associated Industries in 1955 and was personally responsible for starting: the Mullard Research Labcratorics near Redhill shortly after the war. Mr. Eriks, who in 1961 was appointed an honorary K.B.E. "in recognition of his valuable services to British official interests," felt that the company should play its part in the education of future scientists and technicians and instigated a number of endowments, including the Mullard Radio Astronomy Observatory at Cambridge University, the Mullard Cryomagnetic Laboratory at Oxford University and various readerships in science at a number of other universitics.
A. W. Martin; M.B.E., Assoc.I.E.E., technical director of E. K. Cole Ltd., died on September 23rd aged 59. He joined the company in 1926 becoming chief engineer in 1943 and technical director in 1952. During the war he was in charge of the company's radar development unit at Malmesbury, for which he was appointed an M.B.E. With the acquisition of E. K. Cole Ltd. by the Pye group Mr. Martin was appointed to the Pye board and assumed overall responsibility for the domestic sound radio and television engineering activities of the group. He was also chairman of Ekco Electronics Ltd.

Power Sources Symposium

SOME DEVELOPMENTS IN VARIOUS POWER CELLS, BOTH OLD AND NEW

AMEETING held at the same time as the Liberal Party Conference in Brighton, though not so much in the public eye, was the Fifth International Power Sources Symposium. This biennial symposium is arganized by the Joint Services Electrical Power Sources Committee and has been previously known as the Battery Symposium. The change of title led one to believe that more prominence would be given to sources of power other than electrochemical batteries, but the number of papers dealing with "unconventional" or non-electrochemical sources was in fact less than in 1964.

The symposium was attended by about 400 delegates from about 20 countries and during the three days 40 papers were read.

As on previous occasions many papers were intended for electro or physical chemists. For example, several of these dealt with the structure and properties of lead compounds present in the positive paste of lead-acid cells, in particular the two modifications of lead dioxide (α and β). These have not yet been fully explored and much work continues using various techniques of analysis. In these notes, however, only those papers which are felt to be of more practical and direct interest to readers are dealt with.

Secondary cells

Lead-acid types.-In both lead-acid and silver-zinc battery systems the plates are usually made by pasting an oxide on to a supporting grid and then, in the case of negative plates, reducing it to a metal. This is obviously a wasteful process as the raw material is metallic lead which is converted to oxide powder and then reduced back to metallic lead at a later stage. This, together with the fact that it is difficult to control the porosity (high porosity is one requirement for high plate efficiency) in a plate made by pasting and reduction (and also the porous material often has a low mechanical strength), has prompted investigation of other methods of manufacture. Work on the use of metal powders was reported by Morrell and Smith (Lucas) who considered for varicus reasons that the most satisfactory method was that of mixing the powder with a soluble removable filler which does not prevent cold welding (e.g. sodium chloride crystals or sodium nitrate). It was concluded that satisfactory zinc plates can be made from strength and electrochemical aspects. Preliminary results on lead plates are also promising. However, much more work on the subject is needed since little is known about factors which control plate capacity and the processes taking place during plate discharge. The effect of filler size has yet to be investigated.

Sealed Ni-Cd types.-For many years interest and activity in the field of high performance power sources has been growing due, in part, to the advent of the transistor and also to the space effort. At the same time, though, the more well-known electrochemical
storage batteries are steadily being improved. Turner, Howden, Ovinaka and McHenry (Bell Telephone) described developments leading to an improved battery design, and new techniques in electrode and separator fabrication. A new separator material developed consists of Teflon and zirconium oxide particles. High porosity ($60-80 \%$) is obtainable-necessary for sufficient passage of oxygen from the pasitive to the negative plate. Dr. Turner considered that the inherent capability of $\mathrm{Ni}-\mathrm{Cd}$ cells outmatched that of all other sealed rechargeable cells in terms of overall performance and cycle life (which can be >10 years). One paper, by Azulay and Kirkman (Alkaline Batteries Ltd.), contained many useful notes for the user, mainly on charging conditions and an interesting point was made concerning constant potential charging. Here, in a sealed cell, overcharge energy is dissipated as heat (as opposed to gas in an open cell). A rise in the battery temperature, consequently lowering the back e.m.f., would result in a higher end current for a fixed applied potential. This effect could result in a progressively rising overcharge

Fig. 1. Use of Ni-Cd cells as stabilizers.
current-or thermal runaway. Thus if the charging period is likely to be prolonged iadefinitely the constant potential method should be avoided.
Another piece of advice was that storage of sealed cells should be done in the fully discharged state since, under certain circumstances, gassing could occur when subsequently placed on charge.

If the eletrode pair in $\mathrm{Ni}-\mathrm{Cd}$ cells is replaced by a pair containing the same active material in both electrodes [e.g. $\mathrm{Cd}(\mathrm{OH})_{2}$] or if the positive electrode is replaced by an electrode free from active material, a type of cell is obtained in which an equilibrium is reached between oxygen evolution and reduction, and only little energy can be stored in such cells. These can be used as stabilizer cells since the cell voltage changes by only a small amount within a certain range of current. These cells are, incidentally, reversible-i.e. current can flow in either direction. An example of their use was given by F. Peters (Varta, Germany)-see Fig. 1: Apart from stabilizing the output voltage against mains variations the cells also act as a capacitor ($10,000-20,000 \mu \mathrm{~F}$) giving a low a.c. resistance practically independent of frequency. Further stabilization can be obtained by adding $n-1$ cells
giving virtual independence of mains variations. Temperature coefficient of voltage is about $1 \mathrm{mV} \mathrm{deg} \mathrm{C}^{-1}$.

Primary cells

Leclanché type.-In almost all chemical and electrochemical reactions the reaction rate decreases with temperature. The Leclanché cell, is no exception to this, the resistance and viscosity of the electrolyte becoming so high that cells are unfit for use at $-23^{\circ} \mathrm{C}$. Erämetsä and Karsila (Finland) reported on investigations of electrolytes which will operate down to $-42^{\circ} \mathrm{C}$ (at this temperature output is down to 15% of that at $+25^{\circ} \mathrm{C}$). It was shown that cells using electrolytes based on lanthium chloride (with $\mathrm{MgCl}_{2}, \mathrm{NH}_{4} \mathrm{Cl}$ and $\mathrm{H}_{2} \mathrm{O}$) gave a slightly greater capacity than standard commercial cells and a considerably better capacity than cells based on lithium chloride and bromide. $\mathrm{At}-42^{\circ} \mathrm{C}$ the cell capacity compared with a lithium chloride cell.

Air Cells.-These are primary cells in which the oxygen of air is the active material (serving as the cathode depolarizer) consumed by the positive electrode of the cell. These have been known for a long time, a typical cell having zinc anodes, a KOH electrolyte and a porous carbon cathode depolarized by oxygen diffusing through it to the electrode surface. Interest in these is due to the high energy density and the relative low cost. They are, however, only suitable for low discharge rates (e.g., C/700). ${ }^{\star}$

A new magnesium-air cell was described by Carson and Kent of the G.E. Company (U.S.A.), and is known as the Magair cell. It is capable of a much higher power operation than present air cells. The electrolyte used is common salt. The air cathodes in these cells are derived from those used in fuel cells and a catalyst (platinum black) is used. It is interesting to note that in the absence of oxygen the cell still produces power because the air electrode can still operate as a cathode, hydrogen now being evolved from the water in the electrolyte. In this condition a cell voltage of 0.3 to 0.6 V is obtained. Normally though, open circuit voltage is 1.6 V , dropping to 1 V at $60 \mathrm{~mA} \mathrm{~cm}^{-2}$. At " moderate" production rates, the cost of such cells is expected to fall to about $£ 3$ per watt, which for a service life of 1,000 hours would provide electricity at a cost of nearly ld per watt-hour-much cheaper than dry cells. Costs would be reduced further by using air electrodes without a platinum catalyst.

Solar cells

Further details of the UK3 satellite power system were presented in a paper by F. C. Tremble (R.A.E.). This satellite is the first to be built in the U.K. (by B.A.C.). The " solar" cells (made by Ferranti) are connected in two arrays, one supplying the load directly and the other charging the battery ($\mathrm{Ni}-\mathrm{Cd}$) for operation in dark periods. Battery charge is at constant current and then at constant voltage and at $40^{\circ} \mathrm{C}$ the charge is reduced to prevent overheating. Should battery voltage fall below 14 V it is disconnected from the load and put on trickle charge; should the voltage fall below 9 V , the battery is then assumed to be beyond revival and permanently disconnected. The load requirement is 5 W mean with a maximum of 15 W and this is supplied via. ± 6 and $\pm 12 \mathrm{~V}$ rails regulated to 1%.

Each of the load panels comprises six sets of 40 cells

[^6]in series and each of the 14 battery panels consists of six sets of 48 cells in series. These panels are connected in parallel via protective silicon diodes. In all there are about 7,400 cells. (Originally, it was thought that due to the Starfish high-altitude nuclear bomb the flux, integrated over one year, would be equivalent to $10^{\prime \prime}$ electron cm^{-2} at 4 MeV . But, the trapped radiation has decayed more rapidly than expected and is now thought that it will not exceed 10^{13} electron cm^{-2}. This would result in a cell current of 60 mA at 400 mV rather than nearer 52 mA .) Efficiency of the arrays, measured at $100 \mathrm{~mW} \mathrm{~cm}{ }^{-2}$ with a tungsten lamp, is about 8.9%.

Thermoelectric sources

A material becoming more popular for thermoelectric use is a $\mathrm{Si}-\mathrm{Ge}$ alloy, and the design of sources using such was discussed by W. Thorpe (Ferranti). (Si-Ge has the advantage, among others, of high relative efficiency at high temperatures.) Methods of preparation were described and a typical output was 0.2 V at 11 A for a sample $0.44 \mathrm{~cm}^{2}$ cross-sectional area and a temperature difference of 850 deg C. For higher current the area is increased and for higher voltages, units are placed in series. The number of alloyed connections can affect reliability and it was pointed out that by using an alloy with a higher Seeback voltage-achieved by decreasing the impurity (phosphorous n type and boron for p type)-the number can be reduced, but a reduced efficiency must be accepted.

Fuel cells

A low temperature hydrogen-oxygen fuel battery was described by Gillibrand and Gray (Electric Power Storage Ltd.). The 30 -cell battery provided an output of 1 kW at room temperature and was on load for 2,000 hours. Before such a battery would be commercially acceptable, however, the reliability of the cells and auxiliary equipment (electrolyte pump, cooling fan, valves and so on) would have to be improved. Faults in the experiment were found to be mainly due to mecnanical failures-seals and joints usually.

Low temperature cells usually use hydrogen as fuel but often this can be undesirable. An alternative is to use a methanol-water mixture, and at $200^{\circ} \mathrm{C}$ with a catalyst this produces hydrogen and carbon dioxide. A battery using such methanol-air cells was reported on by Clow, Bannochie and Pettinger (Energy Conversion Ltd.). The cell design provided an output of 55 W at 0.675 V . A battery of cells was proposed to give an output of 6 kW .

Economics.-Fuel cell costs were compared with costs of other power sources in a paper by Harrison \& Lomax (Electric Power Storage), although it was difficult to estimate future production costs. It is interesting to note that for a hydrogen fuel cell, as with a motorgenerator, little cost reduction is obtained for efficiencies greater than 40%.

It was stated that for electric cars, although fuel cells could provide attractive power densities, it was unlikely that they ever will be economically suitable, unless for instance, the price of hydrazine could be reduced drastically. Capital costs of $£ 100$ per kW would increase the cost of the power source in the A.E.I. Mini-car to $£ 1,000$. For other applications, such as remote radio repeaters, fuel cells can be attractive, where convenience is of prime importance. A typical example of the high price paid for convenience is the dry battery as used in torches, where costs are given as about $£ 9$ per kWh !

WHY THEY ARE NEEDED AND HOW THEY WORK

HYBRID COMPUTERS analogue + digital

2.-HARDWARE OF PARALLEL HYBRID MACHINES

By P. W. J. VAN EETVELT,* Dip.Tech.(Eng),Grad.I.E.E.

IN the previous article, by C. D. Dwyer, reference was made to the limitations of pure analogue computation systems and to the historical development of, and need for, hybrid techniques. It will thus be appreciated that the concepts of hybrid computation have been evolved over the past decade to a state where the commercial production of general-purpose hybrid computing systems is now technologically feasible. In the light of the applications experience gained on early systems it was realized that full emphasis must be placed on the needs of the computer user in the design of these generalpurpose hybrid systems.
The object of the present article is to introduce what is known as parallel hybrid hardware. A parallel hybrid computer may be defined in its broadest sense as an equipment in which a pure analogue computer is linked via suitable interface equipment to pure digital logic elements that operate in parallel (see Fig. 1). In a subsequent article illustration will be provided by short descriptions of' two commercial hybrid computation systems, and the use of such systems will be shown by their application to two specific problems.
In order to appreciate the capabilities of a parallel hybrid computer it is necessary to understand the operation and field of application of the elements from which it is constructed. These elements may be divided into four distinct groups as follows:-

1. Pure analogue elements.
2. Analogue elements incorporating digital control.
3. Analogue elements providing digital outputs.
4. Pure digital elements.

Let us now consider these groups of elements in more detail.

PURE ANALOGUE ELEMENTS

Present-day electronic analogue computers simulate systems by representing system variables in terms of voltages. In order to solve the equations describing the system, it is necessary to implement basic mathematical relationships between these voltages or machine variables. The basic mathematical operations which can be carried out on a pure analogue computer are as follows:

Fig. 1. Block schematic of a parallel hybrid computing system.

Fig. 2. Table of onalogue computing elements.
multiplication by a constant; inversion; summation, i.e. generalized addition and subtraction; integration ${ }^{\star}$; multiplication, division, etc.; nonlinear function generation; and variable comparison.

All these operations may be implemented in terms of machine variables by passive elements in association with operational amplifiers. In fact, electronic analogue computers are built around a complement of d.c. operational amplifiers.

* Electronic Associates Ltd.
\dagger Differentiation can be implemented direstly but is purposely avoided since the signal-to-noise ratio in the circuit can be unacceptable.

I will assume that readers are familiar with pure analogue computing equipment, but for reference purposes a table of analogue elements, symbols and their functional operation is given in Fig. 2. Logic graphical symbols used will correspond to those recommended by B.S. 530:1948, Supplement No. 5, as exemplified by previous articles on logic in Wireless World.
Referring to the bipolar quarter-square multiplier in Fig. 2, other types of multipliers do exist and have been used successfully in the field of analogue computers. The most notable is the servo multiplier, which has the advantage of enabling several inputs to be multiplied by a common single input. However, the servo multiplier is restricted by nature for low frequency applications, and is not usually found on hybrid computers, where the object is to solve problems at high speed.
The Fig. 2 table does not, of course, exhaust pure analogue elements nor indeed analogue techniques. It does, however, illustrate the basic capabilities of an analogue computer.
Modern general purpose analogue computers are built as an integrated unit comprising modular units mounted in a single, purpose-built console. These modular units are mounted directly behind the "patch bay" to avoid trunking, thus minimizing cross-talk, etc. The inputs and outputs to the modular units occupy a frontal position, allowing the use of patch panels. The patch panel usually occupies a central position on the computer console, and conveniently placed either side and below this are the computer mode control and readout facilities.

Mode control.-The modes of operation necessary on cither analogue or hybrid computation systems are given in the table below.

Mode	State of Computer	Function
Pot-set	Computer reference voltage off	Setting of potentiometers representing input data
Initial- condition	Computer reference voltage on	Setting of integrator initial conditions etc.
Hold	All machine variables held at previously achieved value	Inputs to integrators isolated
Operate	Computing	Solution or problems
Static test	Special reference available at patch panel	Checking out of computer set up
Rate test	Fixed voltage applied to all integrator inputs	Checking out of integrator time constants
Slave	Mode control slaved by external console	Slaving of several computers

In past analogue computer systems all mode control was achieved by the use of relays. This, however, produces problems in high speed computation, since relays are subject to three limitations which become increasingly important at high speeds of operation:

1. Relays are clectromechanical devices and the in-
herent electrical inductance and mechanical inertia produce time delays and limit speed of operation.
2. When several relay contacts throw in parallel the degree of simultaneity of contact is limited, and this causes "initialization" problems that increase with the size of computer installation.
3. Relay contact bounce introduces errors into a simulation which become increasingly important at high speeds of operation.
Thus a limitation is imposed on the speed of operation of relay mode controlled computation equipment, which limits the use of high speed subroutines, high speed iteration and other such techniques being used in current simulation problems.

All modern general purpose hybrid computing equipment utilizes the solid-state switch wherever possible to eliminate the above-mentioned limitations imposed by relays. The solid-state switch is not yet fully developed to the state where it completely replaces the relay, but it is sufficiently developed to enable it to perform important tasks in the field of hybrid computation.

Solid state switching implies the use of digital control which will now be described in the following section.

ANALOGUE ELEMENTS INCORPORATING DIGITAL CONTROL

The digital-analogue switch.-One of the requirements of hybrid computation is the necessity for high speed switching with switching times of the order of $1 \mu \mathrm{sec}$ or less. Since the fastest switching time which can be realized with electromechanical devices is several milliseconds, it is clear that electronic switching is essential. The d/a (digital-analogue) solid-state switch is a diode bridge assisted by bottoming transistors. The switching action is controlled by a binary logic signal such that a " 1 " causes conduction and " 0 " the non-conducting state. The d / a switch is connected directly to the summing junction of an operational amplifier at virtual earth. When the switch is non-conducting its input is switched to earth; thus the input impedance is independent of its state. When used to switch analogue input signals the switch is padded with a resistance which swamps that of the diode bridge itself. Thus transient variations of input impedance during switching are eliminated and also the summing accuracy is made compatible with the resistors commonly used as inputs.
The symbol adopted for the d / a switch does not indicate whether it is a straightforward solid-state switch

Fig. 3. Digitol-onologue switch: (o) conducting state with (b) equivalent circuit; (c) non-conducting stote with (d) equivalent circuit.

or whether ir is padded as mentioned; this ambiguity is however clearly resolved, since when used as a computational element the d/a switch is always of the latter type and is best illustrated in association with an operational amplifier as shown in Fig. 3, which also illustrates the equivalent circuits for the conducting and nonoonducting states.

The digital-analogue relay.-Where low-speed switching zan be implemented the reed relay can be used to advantage, e.g. initialization subroutines. Modern hybrid computation systems make provision for this facility in the form of a d/a relay. This is a reed relay driven by a relay driver stage, the input of the relay driver stage being controlled by a logic command. This logic command may be derived from a logic comparator to be described later. Thus analogue signals may be compared and a decision based on this comparison made via the relay contacts. This is shown symbolically in Fig. 4.

Digital-analogue relay driven by comparator.-In Fig. 4, when $E_{1}+E_{2} \geqslant 0$, contact is made from the arm via the " +1 " contact and when $E_{1}+E_{2}<0$ via the " 0 " contact. This convention is consistent with the logic output of the comparator. The d / a relay is used where switching times of the order of 1 msec are sufficient.

Electronic mode controlled integrator.-The relay mode controlled integrator commonly used in analogue computation systems is totally unsuited to the needs of bybrid computation. The electronic mode controlled integrator was developed when the concept of high speed subroutines was utilized to solve complex problems in an efficient manner.

The operation of this type of integrator can be seen from Fig. 5. When the voltage at B is low, i.e. logic state " 0 ," the outputs of the two " AND" gates winich it feeds, P and Q, are both logic " 0 ." Thus the base of the operational amplifier is isolated from the initial condition network and summing junction network, since their associated gates (solid-state switches) are non-conducting. The output of the d.c. operational amplifier thus remains at the value it achieved before B became low. Therefore when B is low the integrator assumes the "hold" mode. When B is high, i.e. logic " 1 ," the mode is determined by the logic input A. When this is high the initial condition gate is conducting and the "operate" gate nonconducting. A first order lag circuit is formed. The output of the amplifier thus achieves the initial condition value applied at the initial condition input as the limit or asymptote of an exponential rise. The timeconstant $C R$ is made as small as possible by making R mall while not causing excessive base current to flow. Therefore when A and B are high the integrator assumes the initial condition mode. When A is made low and B remains high the initial condition gate ceases to conduct and simultancously the operate gate conducts; thus an

Fig. 5. Simplified schematic of electronic mode controlled integrator.
integrator is formed and the output of the amplifier is dependent on the time integral of the inputs. Therefore with A low and B high the integrator assumes the "operate" mode. A summary of these statements and the programming symbol are given in Fig. 6.

Track/store unit.-The implementation of high speed subroutines on hybrid computation systems leads to a requirement for storage of analogue sample values. This was originally achieved by utilizing an integrator and restricting it to the initial condition and "hold" modes. Thus in the initial condition mode the input signal is tracked and in the "hold" mode the finally achieved output is stored or held. The two main disadvantages of this method are that the inherent time-constant of the initial-condition network limits the rate at which an analogue signal may be tracked. This may be improved upon by using smaller capacitor values in association with the integrator. However, this leads to a second disadvantage in the "hold" mode since the drift rate of the integrator output is enhanced by the smaller capacitor value used. These disadvantages have now been overcome in an extremely efficient manner in the track/store unit.

The method of operation can be seen from Fig 7. When the voltage at A becomes high the solid-state switch S_{n} conducts and an inverter is formed. Since the logic signals A and P are both low the two CR networks $C_{1} r_{1}$ and $C_{0} r_{2}$ are both earthed and thus are charged by the amplifier output. When A becomes low the switch $S_{\text {, ceases }}$ to conduct and the monostable element output M becomes " 1 " for a predetermined duration ($T \mathrm{msec}$). Switch S_{1} conducts simultaneously and thus the output is stored by C_{1}. When the monostable returns to logic " 0 " after τ msec state P becomes high and thus the output is stored by both C_{1} and $C_{2 .}$. Resistances r_{1} and r_{5} are small values purely

Fig. 6. Programming symbol and mode state table for electronic mode controlled integrator.
to limit the charging current derived from the amplifier output. C_{1} is very much smaller than C_{n}, so that C_{1} assumes the output value at a rate very much faster than $\mathrm{C}_{\text {,., }}$. The monostable is used to allow the charge on C ., to reach the output value on C , before closing the switch $S_{\text {., in }}$ ine store mode. The objective of the circuit may be clarified as follows. In the track mode the amplifier circuit tracks the input virtually instantaneously. In the store mode a CR circuit with a low time-constant, which has been able to achieve the final output, is used initially to store the amplifier output. After a predetermined time has elapsed say $r=10 \mathrm{C}_{2} \mathrm{r}_{2}$, the voltage on C_{0} will have reached 99.99% of this value and thus may be used to store the finally achieved output value. Since $C_{\text {. }}$ is very much larger than C_{1} the drift rate in the store mode is rendered almost negligible. Typical figures which refer to a system to be described later are a 300 nsec track time-constant and a $100 \mu \mathrm{~V}$ per second drift rate in the store mode.
The programming symbol for a track store unit is shown in Fig. 8.

ANALOGUE ELEMENTS PROVIDING DIGITAL OUTPUTS

These elements are extremely important since they provide lines of analogue feedback which may be used to

Fig. 7. Simplified schematic of track/store unit.

Fig. 8. Programming symbol for track/store unit.
effect control decisions of the digital field of operations. Since the digital logic signals are in fact voltage levels, the simplest possible element in this group is the voltage limited trunk in which an analogue voltage is either hard- or soft-limited to produce the voltage levels required for the digital system. This is usually lower than used in analogue systems. Here, for example, if the digital logic signals are such that logic " 0 " $=0 \mathrm{~V}$ and logic " 1 " $=+5 \mathrm{~V}$ we may arrange that an analogue signal which is negative produces a logic " 0 " and one which is positive produces a logic " 1 " via a voltage limited trunk. This element is only used when a crude form of comparator is needed and on most modern hybrid computation systems the electronic comparator has further useful features such as logic controlled latch facilities. Basically the electronic comparator is an operational amplifier in the high gain mode whose output is voltage limited to provide a logic signal of the right amplitude. The logical complement of this is derived using a single transistor inverter stage. These outputs are arranged to drive an asynchronous bistable multivibrator commonly referred to as a flip-flop, the output of which is the logical output. The drive circuit is arranged with OR-gate logic so that it is possible to override the analogue inputs to the comparator using logic inputs. The logic output may therefore be overridden or latched. Logic comparators are also produced so that the logic output may be used to drive a doublepole double-throw reed relay externally.

Logic comparators, as in Fig. 9, produce logic "0" when the sum of the inputs is negative and logic " 1 " when the sum of the inputs is positive. The analogue inputs may be overriden by the application of a logic " 1 " to logic inputs labelled $S+$ and $S-$. The output C can be made independent of the analogue inputs and can be forced to logic " 1 " or "0" by the application to logic " 1 " to $S+$ or $S-$ respectively. The full programmer's symbol is shown in Fig. 9.

The table below represents the state of the logic output C with respect to the sum of analogue inputs and $\mathrm{S}+$ and S -

$E_{1}+\mathrm{E}_{2}$	$\mathrm{~S}+\mathrm{E}^{\prime} 0^{\prime}$	$\mathrm{S}+\equiv{ }^{\prime} \mathrm{I}^{\prime}$	$\mathrm{S}-\equiv 0^{\prime}$	$\mathrm{S}-\equiv{ }^{\prime} \mathrm{I}^{\prime}$
$\geqslant 0$	1	1	1	0
<0	0	1	0	0

The $\mathrm{S}+$ and $\mathrm{S}-$ should not be made high simultaneously otherwise the output C is not clearly defined.

Finally, it is worthwhile mentioning the analogue-todigital (a/d) converter. A/D converter equipment may be used to convert analogue signals to either parallel or serial digital signals. They are only usually incorporated in fully integrated hybrid systems when the

Left:- Fig. 9. High-speed electronic comparator.

Below:- Fig. 10. Two-input AND gate and truth table.

complexity of the problems justifies their economic inclusion.

PURE DIGITAL ELEMENTS

Before discussing the hardware involved in this section, it is important to appreciate the advantages of synchronous digital elements over asynchronous ones. Early attempts at the development of hybrid computation systems brought out the main deficiencies of individual computing elements.

One of the major problems experienced was due to the use of asynchronous digital elements which had three main deficiencies:-

1. Since asynchronous elements cannot be sequentially controlled by manual step pulses, rigorous check-out procedures were made difficult if not impossible.
2. Inherent noise caused digital element outputs to change state randomly, introducing non-predictable errors into the final solutions.
3. Lack of sequential control causes the outputs of digital elements to become misaligned or out of phase with respect to each other, and can result in asynchronism with the main simulation.
4. A time-event or timing diagram could not be drawn up to establish correct operating sequence.

These problems may be eliminated by the use of parallel digital elements which are controlled in time sequence by synchronizing pulses. This type of digital element is referred to as synchronous logic. The synchronizing pulses are derived from a master clock, which generates a high frequency periodic pulse train. The higher the frequency, in fact, the more closely synchronous operation approaches that of asynchronous elements. The bandwidth of the individual elements dictates the maximum clock frequency permissible and in modern hybrid systems this is of the order of 1-10 Mc/s.

All present day hybrid computation systems incorporate synchronous digital elements, eliminating the problems posed by asynchronous equipment.

Let us now look at the digital elements used in parallel hybrid computation systems.

The AND gate.-This is the simplest element to be considered and its symbol and associated truth table are shown in Fig. 10.

As a basic element the AND gate may be used to build up OR, NOR and NAND gates, parallel halfadders, full-adders, etc., provided its complementary output is made available.* Thus general purpose AND gates are always provided with their complementary output as shown by the programming symbol in Fig. 10.

The AND gate does not require synchronization, its output being almost simultaneously determined by its inputs.

The flip-flop is the other basic element required in parallel hybrid computation systems. It is, in fact, a bistable multivibrator.

General-purpose flip-flops are provided with a logic output and its complement. The output is controlled by three inputs, these being "set," "reset" and "enable." With the "enable" input high, i.e., logic " 1 ," raising the "set" line high causes the output to go high on the next clock pulse, whereas raising the

[^7]

Fig. 11. Flip-flop with set/reset control. ($F=1$ when set=1; $F=0$ when reset $=1$. F does not change state if set and reset $=0$.)
"reset" line high causes the output to go low on the next clock pulse. If the "enable" line is low, the " set" and "reset" inputs are rendered inoperative.

All other pure digital elements are built up from these two basic elements. The units commonly incorporated in modern hybrid computation systems are as follows:-

General purpose shift-register.-A general purpose shiftregister comprises a number of flip-flops arranged so that the set line of each flip-flop is connected to the output of the preceding stage. If a bit is loaded into one flip-flop stage, then enabling the shift-register and raising the shift line high causes the bit to be propagated from one flip-flop to the next at clock rate. The flip-flops may, however, be used separately or may be loaded in parallel when set connected as a shift register.

Fig. 12. General-purpose shift register with control box, usable as four independent flip-flops, 4-bit shift register or binary up-counter.

Monostable multivibrator with variable "period."-This unit functions as follows. When the input A is raised high the output becomes high simultaneously and remains high for a preset period capable of adjustment from $1 \mu \mathrm{sec}$ up to 100 sec with thumbwheel switches and vernier adjustment.

Fig. 13. Monostable multivibrator set up to give an "on" time of 50 ms for a short input pulse at A.

Logic level differentiators.-These may be of two types, i.e., leading-edge differentiators or trailing-edge differentiators. The output of these elements produces a momentary blip, one clock pulse wide when the input

Fig. 14. Differentiator, producing a blip as a result of a level change at point A.

goes from low to high or high to low depending on which type it is. In practice differentiators are of the leading-edge type. When fed with a complementary output they function as trailing-edge differentiators.

"Microwaves à la Mode"

CAMBRIDGE CONFERENCE HIGHLIGHTS SOLID-STATE MICROWAVE OSCILLATORS AND AMPLIFIERS

DISGOVERER of the Gunn effect J. B. Gunn provided the keynote of the Sixth International Conference on Microwave and Optical Generation and Amplification, held in Cambridge in September, by the title of his paper " Microwaves à la Mode." Although this paper was in fact a "guided tour" of oscillation mechanisms in bulk gallium arsenide (including, incidentally, an excellent cine film showing travelling electric-field domains), the title could well have stood for the whole field of solid-state microwave amplifying and oscillating devices, in which there has been such rapid development recently. At the last MOGA conference, in Paris in 1964, the subject was not included, but at the Cambridge conference about 25 ", of the papers were devoted to semiconductor devices. The remaining papers were divided between vacuum tubes such as klystrons, magnetrons and travelling-wave tubes and quantum devices such as masers and lasers. -

Besides Gunn-effect (travelling-domain) devices, which have already been discussed in Wireless World ${ }^{1}$, there are gallium arsenide (GaAs) devices in which travelling domains do not appear but transit-time and negative resistance effects are significant; junction devices such as avalanche, tunnel and varactor diodes; devices producing oscillation and amplification by means of magnetoresistive elements made of indium antimonide; and "acoustic" amplifiers based on a t.w.t. type of interaction between microwave mechanical waves and current carriers in piezo-electric materials such as cadmium sulphide ${ }^{2}$. All these were represented at the conference.

Variety of oscillation modes

There seems to be some confusion about the use of the term "Gunn effect" in describing one group of devices. It is certainly confined to bulk-material, usually GaAs, (as distinct from junction) devices, but whether the term should be restricted to the exact phenomenon originally observed by Gunn, in which the applied potential was pulsed, or whether it may be extended to other oscillation modes in bulk materials subsequently discovered by other workers is very much an open question. Mr. Gunn himself, although giving an admirable lecture, only added to the confusion in the minds of the uninitiated by identifying seven different modes of operation in which travelling electric-field domains occur (quite apart from three nondomain modes!). These seven modes were divided into two classes: (a) modes in which the frequency was determined by the transit time of the drifting electrons and therefore by the length of the GaAs bar; and (b) modes in which an associated resonant circuit determined the frequency because the r.f. voltage in this circuit was large enough to control the nucleation, extinction or propagation of the travelling domains.

In this last-mentioned " resonant" class of modes came one of the highest power Gunn-effect microwave oscillators to be reported so far. This was an oscillator giving, in pulsed operation, 220 watts peak power at $1.1 \mathrm{Gc} / \mathrm{s}$, and was mentioned by Dr. D. G. Dow (Varian Associates;

[^8]U.S.A.) in a paper describing a whole range of experimental pulsed $\mathrm{Ga} A \mathrm{~A}$ oscillators. Other high peak powers obtained were 64 watts at $2.2 \mathrm{Gc} / \mathrm{s}$ and 1.5 watts at 7.65 Gc / s-the peak power in watts, P, being given approximately by the law $P=200 / f^{2}$, where f is the frequency in Gc / s. The outputs measured were all at frequencies lower than the natural (transit-time) frequency of the GaAs bar; tuning ranges of up to $1.5: 1$ could be obtained; and efficiencies up to about 8% had been achieved. Dr. Dow said that the principal obstacle to successful application of GaAs microwave oscillators was at present the quality of the GaAs raw material and he mentioned that developments were in progress to improve the quality.

Other bulk-material phenomena

Microwave oscillations produced by GaAs bars biased on the positive-resistance region of the static I / V characteristic at a point below the normal voltage for Gunn travelling-domain oscillations were reported by W. K. Kennedy (Cornell University, U.S.A.) in a paper read by L. F. Eastman. The oscillators had been tuned from 7 to $9 \mathrm{Gc} / \mathrm{s}$ by means of a waveguide cavity, and the maximum peak power observed had been 500 mW , with an efficiency of $2 \cdot 2 \%$. GaAs elements had also been operated as reflection type amplifiers, with a power gain of 16 dB over the $7-9 \mathrm{Gc} / \mathrm{s}$ range, the output power saturating at about 150 mW . Eastman described his own experiments on using GaAs Gunn-effect diodes (natural frequencies; 500 to $3,500 \mathrm{Mc} / \mathrm{s}$) for noise generation in the microwave spectrum. In general this was done by operating the Gunn diodes into circuits of higher impedance than those of the GaAs elements.
In the field of piezo-electric semiconductor devices, it appears that the one-time high hopes for acoustic microwave amplifiers have not, in the event, been fulfilled. Workers in this field seemed to agree that the conventional transistor amplifier had now overtaken the acoustic amplifier at microwave frequencies, and that the major

Fig. 1. Delay characteristic of experimental acoustic deloy line using Rayleigh surfoce waves-one possible step towards microwave integrated currents.
trouble with cadmium sulphide acoustic amplifiers was the lack of consistency in the performance of CdS samples. (It was suggested that this might be due to a lack of homogeneity in the crystals.) Tests on crystals reported by G. Robertson (University College, London), using a thin light beam as a probe, showed marked variations in conductivity and acousto-electric coupling along the length of the material.
O. Cahen and E. Dieulesaint (Thomson-Houston, France) described a CdS acoustic microwave amplifying equipment in which the acoustic gain was 45 dB at 700 Mc / s, but it turned out that, owing to losses in the thick quartz transducers and in the CdS, the overall electrical "gain" was -30 dB ! However, the authors said they were hoping to achieve net gain eventually by the use of thin-film transducers deposited on the CdS.

Microwave integrated circuits

In the meantime, it seems possible that these piezoelectric elements may prove useful as passive components in microwave systems, and a number of research organizations in the U.K. are studying possible applications very closely, particularly in the field of microwave integrated circuits. E. A. Ash (University College, London), for example, pointed out that whereas complete amplifiers for microwave integrated circuits could be fabricated on small silicon chips, no comparable progress had been made in the construction of the resonators, filters, etc., needed to interconnect the amplifiers. Since microwave integrated circuitry was primarily concerned with surfaces, he felt that the surface or Rayleigh acoustic wave was well adapted to this field of technology, particularly as there were now acoustic materials available with lower loss per wavelength (dB / λ) than that of e.m. waveguide. As a result of using acoustic techniques instead of conventional e.m. waveguide components, considerable size reduction should be possible-as much as 10^{5} times, in fact.

By way of illustrating the use of Rayleigh waves, Dr. Ash described an experimental delay line, such as might be used in pulse-compression radar, that had been constructed in his laboratory. This comprised an aluminium substrate, coated with a 0.3 mm Perspex layer to allow dispersive waves to be obtained, with a transducer at each end. The delay characteristic is shown in Fig. 1. , Similar work on the use of surface waves was reported by F. Mayo and C. P. Wen (R.C.A., Princeton, U.S.A.) and included descriptions of "two-dimensional" transducers evaporated on to the delay-line element.

Magnetoresistive elements

The use of the magnetoresistive properties of indium antimonide to give amplification, oscillation or attenuation at microwave frequencies was discussed by S. Kataoka and H. Naito (Japanese Government Electro-technical Laboratory, Tokyo) in a paper read by a colleague. The principle is that if d.c. is passed through an InSb magnetoresistive element which is subjected to the transverse magnetic field of a microwave signal (plus a constant, biasing magnetic field), a microwave e.m.f. is generated across the element as a result of the multiplying action between the current and the microwave magnetic field. If the element is placed in a cavity in a position where the transverse magnetic field is at maximum and the clectric field at zero, the element, in principle, absorbs no signal power. In this way the direct current can be converted into microwave r.f. energy. A description was given of a device based on this principle for operating as an amplifier or an attenuator at $9,840 \mathrm{Mc} / \mathrm{s}$. The cavity

Fig. 2. Power output and frequency performance of a commercial GaAs avalanche diode at different bias currents. (Power measured at $0^{\circ} \mathrm{C}$ and $47^{\circ} \mathrm{C}$; frequency at $27^{\circ} \mathrm{C}$.)
contained the InSb element and a tuning piston, and there was a common channel for the d.c. input and the microwave output. Gain or loss was controlled by the direct current or the biasing magnetic field.

In the field of junction-diode, as distinct from bulk material, devices, one of the latest fields of interest is the operation of silicon and gallium arsenide diodes in the avalanche mode, by suitable d.c. biasing, to produce negative resistance effects which can be utilized for oscillation on amplification. In such devices the usable frequency range is related to the transit time of the current carriers through the space charge depletion layer of the diode, which, for example, would be a few microns thick for operation at $10 \mathrm{Gc} / \mathrm{s}$. C. C. Shen and L. A. MacKenzie (Cornell University, U.S.A.) described some experiments using commercial gallium arsenide diodes with different doping levels in oscillation circuits. They stated that very wide operating frequency ranges had been achieved. One diode, for example, produced oscillations in the 2-4 Gc/s band in a coaxial system, in the $7-12 \mathrm{Mc} / \mathrm{s}$ band in X-band waveguide and at $50 \mathrm{Gc} / \mathrm{s}$ in millimetre waveguide. Results obtained with one diode, in terms of r.f. power output and frequency with varying d.c. bias current, are shown in Fig. 2. The authors had also examined the effects of temperature variation and had found that increasing temperature resulted in increasing power output (as shown in Fig. 2) but decreasing oscillation frequency.
Many of the devices described at the conference were very experimental, and it is hard to say at present which of them will prove successful in the microwave applications of the future and which will turn out to be little more than laboratory curiosities. It has been rightly observed, however, that this whole new field of bulkmaterial and transit-time phenomena. is reminiscent of the arrival of velocity-modulated and crossed-field devices in the valve field several decades ago, and that the coming era of development, as then, will result in important new commercial devices with substantial frequency ranges and power outputs.
The MOGA conference was sponsored jointly by the I.E.E. and the I.E.R.E., and the proceedings are expected to be available in two or three months' time.

COMPACT COMPUTER

OVER 20 million orders per minute can be processed by Myriad II, a new Marconi microclectronic parallel computer. A simpler version of Myriad I, it is a basic intrument using the techniques of modular construction, permitting extra units to be added to the computer with any or all of Myriad I facilities. Myriad II is also designed to be compatible with Myriad I in order that programmes may be interchangeable. This computer is contained in a desk and two cabinets. The control unit is mounted on top of the desk with additional equipment such as tape recorders, tape punches, magnetic drums and disc stores. It uses a 24 -bit word, and an order code in simple single address form, the orders being obeyed sequentially Two sizes of store unit are available with either 4,096 or 16,384 (24-bit) words, providing storage capacity up to a maximum of 32,768 words. The stores are coincident current, ferrite core types with a cycle time of $1.5 \mu \mathrm{~s}$, and access time of 0.5 , s . If required, magnetic disc or drum stores with average access times of 85 and 10 ms respectively can be added, and a maximum capacity of 2 million words is then available. It has been designed to form the centre. of complex data handling systems, such as industrial process controls, and all types of traffic control, and systems can be provided for small control centres which can be built up as the degree of automation is increased. Myriad I remains more suitable for highspeed applications.

An independent company has been formed to manufacture quartz crystal unirs and is known as Crystal Electronics Ltd. of 1 Shore Road, Hythe, Southampton. All U.K. military crystal holder styles are available within the frequency ranges 50 to $150 \mathrm{kc} / \mathrm{s}$, and 1 to $20 \mathrm{Mc} / \mathrm{s}$. Additional types include the U.S. military crystal holder styles, and flying lead alternatives to the plugin pin types. Quartz crystal for high grade filter applications will be supplied to customers' specifications. One of the company's principals, Mr. T. C. McKnight, who will supervise the technical process, has sixteen years' experience in the quartz crystal development industry.
The new $22,500 \mathrm{sq}$ ft Hertfordshire factory for Kerry's (Ultrasonics) Ltd. and P. G. Day (Electronics) Ltd., both subsidiaries of Kerry's Engineering \& Electronics Ltd., was officially opened on the 26th September. This new headquarters of the two companics is at Hunting Gate, Wilbury Way, Hitchin, Herts. With full production, and inte-

The EMU-4 electron microscope by the RCA Internotional Division, 30 Rockefeller Plaza, New York 20, N.Y., has automatic pumping operation for its vacuum system and an optional image intensifier device that "sees" the image via television and a light intensifier image tube, and displays it on a television picture monitor. Magnification is 200,000x with a resolution of $8 \AA$. For spot size control down to $2 \mu \mathrm{~m}$ there is double condenser operation.
gration of the Stratford, E.15, and the Basildon, Essex, departments, it is cstimated that about 100 staff will be employed. Ultrasonic equipment developed and produced by Kerry is used in industrial cleaning, the machining of hard and brittle materials, spot, seam, and ring welding of metals, the welding of thermoplastics, and biochemical research. In the field of microcircuit, semi-conductor, and integrated circuit production, ultrasonic welding equipment is available for welding aluminium conductors to gold film deposits on glass, and with the same equipment, copper, nickel and gold wires can be ultrasonically welded to rare and precious metal films deposited on glass or ceramic substrates.

The development of a new system for the disc recording of video signals is the objective of a newly formed company, Video Records of Wolverhempton. The video information is recorded on the photosensitized area of a 10 in disc.
A. N. Clark (Engineers) Ltd. of Binstead, Isle of Wight, manufacturers of telescopic masts, and Precision Metal Spinnings (Stratford on Avon) Ltd., specialists in the design and manufacture of microwave aerial dishes, have now joined the Coubro \& Scrutton group of companies. With other members of this group, who are Associated Aerials Ltd., and R. T Masts Ltd., Coubro \& Scrutton can offer a comprehensive aerial service from l.f. to microwave frequencies, including masts, supporting structures, and installation facilities.

Three u.h.f. transmitters have been ordered by the B.B.C. from the Marconi Company for installation in 1968 at a cost of $£ 300,000$. They have been
designed for completely automatic unattended operation except for occasional routine visits. From Caradon Hill in Cornwall, Sandy Heath, Beds, and North Yorks they will broadcast BBC-2 programmes and will be capable of handling colour. The 40 kW vision transmitter employs an English Electric 4 -cavity klystron valve and this section and its associated 8 kW sound section iransmit separately. Breakdown precautions take the form of multiplex facilities which provide automatic changeover to a combined sound and vision signal at reduced power on one section, should the other section fail.

A contract for a computer-controlled traffic regulation system for the City of Liverpool has been placed with the Plessey Company. The system, which covers the Mersey Tunnel approaches in the city centre, provides for the control of tunnel-bound traffic in such a manner that when there is a hold-up in the tunnel, the queues of vehicles in the approach roads are kept clear of main intersections to minimize interference with cross traffic. The system, employing an XL9 computer, utilizes buried inductive loop " presence detectors" at strategic intersections. It also provides for automatic emergency routing of appliances on the receipt of a warning of fire in any given sector of the city.

Texas Instruments Inc.; Fairchild Camera and Instrument Corporation, and SGS Fairchild (Fairchild's European affiliate) have entered into a cross licensing agreement for patents held by each company in the field of semiconductor manufacture. The ten-year agreement covers world patents except those in Japan.

The Editor does nọt necessarily endorse the opinions expressed by his correspondents

Organ Tuning

IN spite of Mr. Daniel's protestations (September issue), I still maintain that an average good tuner will avoid a too quick beat which would take place if the "temperament" was truly equal (i.e. ${ }^{12} \sqrt{ } 2$). We are of course talking about beats, where, in the case of a fourth they occur at exactly twice the rate of those caused in a fifth for each cycle of discrepancy from the pure (untempered) interval, and therefore a cycle here or there makes all the difference.

About eighteen years ago I tuned an electrophonic instrument to what I then called " mean beat tuning" (for want of a better name). It was an attempt to create a scale which is in my opinion the sort of scale a tuner would produce-which is very nearly a true progression, but not quite. The instrument when first tried in a shop containing a dozen or more organ builders of the old school, produced the unanimous exclamation "What have you done-this is the first time we have heard one of your machines sound something like a pipe organ."

I cannot quite see the relevance of $A=440 \mathrm{c} / \mathrm{s}$ when middle $C=261 \mathrm{c} / \mathrm{s}$. If $\mathrm{A}=440$, the C is $261.6256 \mathrm{c} / \mathrm{s}$. However, I have performed the mathematical task of $261 \times\left({ }^{12} \sqrt{ } 2\right)^{9}$ and this works out to 438.9479 . Oh yes, only a cycle or so, but several beats nevertheless, and these are the subtle differences \mathbf{I} intended to convey in my letter. Helmholtz is alleged to have described equal temperament as a " hellish din "anyway, and added "give me my justly tuned harmonium." It is instructive to tune an organ to a pure scale. It makes one realise to what dissonancies our ears have become accustomed.

Regarding Mr. Douglas's comment upon the Compton Rotofon speaker, I would say that Doppler effects plus certain phase reversals are exploited, whereas the rotating speakers of some organs which I have seen, do not, at least to the same extent.

LESLIE E. A. BOURN,
Technical Director.
The John Compton Organ Co., Ltd.,
London, N.W.IO.

The Engineer Shortage

MR. SCROGGIE'S thoughtful letter in your September issue is timely. Well may engineers puzzle over why engineering does not appear an attractive career to boys. The trouble is that all too few engineers do puzzle over it and even fewer attempt to put matters right.

The plain fact is that the public does not understand how vital engineering is to the country's future and consequently is not prepared to accord due recognition (including money) to engineers. The first difficulty for the pubfic is the confusion about the term "engineer," for not only do professionals and artisans alike use the same name but there are so many divisions in engineering.

It was an awareness of the difficulties made by fragmentation that caused the Institutions to create the Council of Engineering Institutions so that they could, where necessary, speak with one voice. The Council, with the valuable support of the Ministry of Techno-
logy, is doing much to endighten people, especially young people, abour the work of engineers and its vital contribution to our way of life.

As to "prospects," action in the field of individual salaries, pensions and conditions of service is not the concern of the C.E.I., but of the Engineers' Guild Ltd. Roughly speaking the relationship of the Guild to the C.E.I. is comparable with that of the British Medical Association to the General Medical Council. If more engineers of Mr. Scroggie's persuasion would join us, the Engineers' Guild would be in a stronger position to introduce reason and logic into the assessment of engineering salaries.

Engineers' Guild,
J. K. RICKARD

London, W. 1
(Hon. Sec.)

TV Research Today

"RADIOPHARE" asks why we have no one like Shoenberg to make dramatic innovations in television today. But is this the right question? A classical investigation of the theory of picture scanning was published in U.S.A. in 1934, and the existence of a body of telecommunication research workers in the Bell Telephone Laboratories must surely be an important factor. After the British invention of interlaced scanning, the next big step was colour on a sub-carrier frequency-interlaced with the main video signal: first R. B. Dome, then the N.T.S.C. system, and finally the present European wrangle over SECAM, PAL, SEQUAM and so on.

The French went ahead with 819 lines (on which I have commented favourably: see "More Lines Instead of Colour?", Wireless World, May 1956, p. 239), but it appears that 819 lines is being squeezed out by 625 . As there have been so few major television developments, should we really be distressed that Britain has not pulled another golden rabbit out of the hat?

For some years rescarch workers in U.S.A., Britain, France, Russia and Australia (and possibly elsewhere) have been seeking means of reducing bandwidth, but the statistical structure of the typical picture is against us: it has such infinite variety. Some of the more promising schemes have been set up and tested by the B.B.C. ${ }^{2}$. Too much is now known about picture-forming processes and about radio propagation for it to be easy to innovate. Turning to "Radiophare's" list of questions, I make the following comments:-
(1) Transmitters and receivers for quasi-optical frequencies. This in practice means laser technology, which is by no means neglected. Propagation is a very major question: is it worth pursuing a television system which would be available only on a piped basis and, therefore, only in densely populated districts? The natural field for the initial development of these techniques is in point-to-point telecommunication.
(2) Efficient wideband modulation methods. What does this mean if not " more efficient methods of packing information into the sideband? "
(3) More efficient methods of packing information into the sideband. This is the obverse of "bandwidth reduction," and the various schemes of colour television are
more or less successful examples of putting three pints in a one-pint pot without losing too much.
(4) Multiple interlace and bandwidth reduction. I have myself instigated a trial of frequency interlace ${ }^{3}$ and there is an extensive literature on bandwidth reduction. It is dangerous to say that anything is scientifically impossible, but equally dangerous to find oneself seeking to overcome some fundamental principle of nature such as the second law of thermodynamics. (Remember the Stenode receiver based on a denial of the existence of sidebands?) "Shannon theory" may be relevant, as was recently suggested in Wireless World'.
(5) Simple high-stability oscillators. I suspect that "Radiophare" means cheap high-stability oscillators, for use in receivers. Then I must ask two questions. (1) How much should a receiver manufacturer spend on how good an oscillator? (2) Are all present-day receivers equally unsatisfactory, or have some manufacturers already solved the problem?
(6) Local distribution of wideband video. What about Professor Barlow's work on waveguides? Again I assume that receiver cost is important, so p.c.m. is not likely to be practicable and there would be objections even to f.m.
(7) Improved resolution in camera pick-up tubes. I suspect that this could be provided if needed. What did the French do for 819 lines?
(8) \& (9) Improved c.r.ts and alternative forms of display. This is an interesting field because it does not appear to come into immediate collision with fundamental laws of nature. There are, however, some fairly basic limitations on c.r.t. brightness and focus because (a) the current-density in the spot is related to the current-density at the cathode and (b) the sharpness of definition of the spot is ultimately limited by the random (thermal-agitation) electron velocities transverse to the beam. I suspect that we could have a lot more if we paid for it, just as the performance and comfort of some expensive cars is a long way beyond that of the family car.
"If we paid for it" is the problem. It appears that since 1945 television has been regarded largely as a means of keeping afloat the domestic radio side of the industry. The laissez-faire economist would say simply that if the companies in the radio and television receiver industry cannot make a profit, they must either close down or make something else. The planning economist would say that if television is to be subsidized, we must know why. B.B.C. money comes from viewers and N.R.D.C. money from taxpayers, so does " Radiophare" honestly want to vote 10 s worth of TV licence or a pennyworth of income tax to television research? Even if he does, is he right? Machine tools, computers, nuclear reactors, and space vehicles are other applicants for our research money and manpower, and all would claim to have export potential. So the decision is really a politico-economic one.

The worst thing would be to pour out money in the vague hope that it would somehow generate ideas. But on the other hand I suggested in my first paragraph that the presence of an active body of research workers could contribute to the
generation of information and ideas. The way out of the dilemma is to be reasonably generous with money whenever there is any sign of long-range ideas. Unfortunately the Science Research Council appears at present to be limiting the amount of money available for long-range and fundamental research, perhaps on the ground that Britain's present economic situation demands urgent rectification of our alleged weakness in technological development in spite of brilliance in fundamental research. None the less I believe that if anyone has an outstanding idea it is still just possible for him to get sufficient support to develop it.
D. A. BELL

The University of Hull.

1. Pierre Mertz and Frank Gray, "A Theory of Scanning and its Relation to the Transmitted Signal in Telegraphy and Television," Bell S.T.7., Vol. 13 (1934), p. 464 .
2. G. F. Newell and w. . K. Geddes, "Tests of Three Systems of Bandwidth Compression of Television Signals," Proc. I.E.E., Vol. 109B (1962), p. 311.
3. E. A. Howson and D. A. Bell, "Reduction of Television Bandwidth 3. Frequency Interlace," f. Brit. I.R.E., Vol. 20, No. 2 (Feb. 1960), p. 127.
p. 127. O. Codon, "Communication Theory and Colour Television," Wireless World, May 1966, p. 243.

Simple Receiver for Low-voltage Operation

THE receiver described in the October issue utilises three r.f. stages and one a.f. stage. While this is the best strategy from the point of view of sensitivity, it is not the approach that leads to the lowest current consumption, since most transistors only work well as r.f. stages when they pass about 1 mA collector current.

The diagram below shows a circuit which works well with as little as $300 \mu \mathrm{~A}$ total battery current. Here the gain is concentrated in three a.f. stages. At the r.f. end, one high-beta transistor is used as a buffer between the tuned circuit and the detector diode. The tuned circuit may be connected directly to the base without appreciable loss of selectivity because of the high input impedance of the emitter follower. This arrangement provides an effective gain of around ten by dispensing with the usual step-down transformer to match the tuned circuit to the transistor. By itself, this is hardly enough, but the addition of a reaction winding of about three turns enables sufficient r.f. signal to be presented to the detector for reception of the Home, Light and Third programmes in the London area, using a ferrite rod aerial three inches long. The $100-\Omega$ resistor in the base circuit of the first transistor was put there to reduce interference from the local television station. It could probably be omitted in most areas.

The receiver is quite simple to operate, the only irri-

tating feature being that, if reaction is pressed to the limit, there is some backlash, and retuning is necessary after adjusting the reaction control. Earpieces with resistances between 60 and $2,000 \Omega$ may be used; the current taken rises to about 1 mA with a $60-12$ earpiece.

Croydon.
G. WAREHAM

Receiving Stereo Broadcasts

YOUR article under the above title in the September issue seems to paint a somewhat gloomy picture of the possibilities of stereo reception and, at the same time, appears to contain certain inaceuracies and a lack of appreciation of practical and operational requirements.

In the brief outline of the pilot-tone system, your author claims that, in a monophonic receiver, use is made of 90% of the available modulation. This is correct but surely results in a signal-to-noise deterioration of approximately 1 dB and not 4 dB as stated. It may well be that statistically the $L+R$ content of a typical stereo broadcast is some 3 to 4 dB down on the level of a comparable monophonic programme but this does not derive directly from a consideration of system limits. He goes on to say that for stereo reception the signal-to-noise ratio is worsened by about 22 dB but appears to accept the situation, without question, as a price to be paid. A simple qualitative explanation then, may not be out of place here. In a basic f.m. system the noise associated with the sidebands inherently increases rapidly as these sidebands become remoter from the carrier. (Hence the use of pre-emphasis in a monophonic broadcast.) The noise associated with modulation frequencies centred on 38 kc / s is thus relatively large. Although this is not heard directly because of its frequency range, it is translated down into the audio band by heterodyne action with the locally re-inserted $38 \mathrm{kc} / \mathrm{s}$ sub-carrier and at once becomes audible. It is, in fact, this latter noise, after normal de-emphasis, which accounts for the deterioration of signal-to-noise performance under stereo conditions.

It is not intended in this note to discuss decoders in detail, but concerning those employing a switching process it must be said that there is no need to use a 1:1 mark-to-space ratio rectangular waveform which, admittedly, does not yield adequate separation of the channels. On the contrary, sine wave switching with the angle of flow limited to less than 180° does, however, give excellent results.

Regarding the presence of a basic $38 \mathrm{kc} / \mathrm{s}$ signal in the audio outputs it will be appreciated that harmonics of this frequency are also present and thus twin-T filters may not of themselves provide adequate suppression. However, the $50 \mu \mathrm{~s}$ de-emphasis network will attenuate the $38 \mathrm{kc} / \mathrm{s}$ component by over 20 dB and its harmonics even more, probably making the inclusion of any additional filter unnecessary.

Finally, let it be said that the writer is not unaware of the theoretical considerations in the general field of stereo broadcasting but feels that in certain circumstances their importance can be exaggerated when applied to domestic entertainment.
Let your would-be stereo listeners take heart. Let them provide themselves with decent aerials, good average receivers and decoders and enjoy this new facility.

London, S.E. 19.
G. D. BROWNE

IT is true that, by itself, a 10% reduction in deviation would result in a 0.9 dB reduction in s / n ratio. But in the pilot-tone system, since the $L-R$ signal contributes to the deviation as well as the $L+R$ signal, the
$L+R$ or mono output will generally be less than it would be were the sub-carrier absent, by an amount depending on the lack of correlation between L and R channels. (Typically, the total loss would be about $4 \mathrm{~dB}^{\star}$.) Thus it is fair to say that as a result of using the pilot-tone system, in which the main channel deviation is limited to 90% of $75 \mathrm{kc} / \mathrm{s}$, the reduction in s / n ratio is 4 dB .

We are pleased that Mr. Browne raised a point on which we did not go into•detail. However, it should be said that reducing conduction usually means reducing output also. For instance, reducing conduction from 180° to 40° would reduce output by 13 dB and reduce the post-detection correction from 4 dB to less than $1 \mathrm{~dB} \dagger$. Mr. Browne's "good average receivers" calls for comment. According to one company who adapt receivers for stereo reception, nearly all the latest British tuners are "quite incapable" of producing the necessary bandwidth and detector linearity!-ED.
"See " Stereo Broadcasting and Reception" J. G. Spencer and G. J. Phillips, Radio and Electronic Einginecr, June 1964 (Appendix 1), ind " Determination of the effective teptin of monophonic programme transmitted on the pilor-tone system" D. E. L. Shorter, E.B.U. Review Part A Feb. 1963.
\dagger see "'Stereophonic FM-Receivers and Adaptors", D. R: von Recklinghausen, I.R.E. Trans. vol. BTR-7, Nov. 1961, p. 67.

Television Distribution

YOUR contributor, "Radiophare," seems to live in a strange world. It is as though each home was on a separate satellite with no possibility of physical contact between them. Reality is different: most of us live in towns and cities where the distance between one home and the next is but 15 yards. Having got sound and vision signals to the first home in a city the problem is how to extend it to the next. Any of your readers, if faced with this problem in the course of an ordinary day's work, would, I am sure, do the obvious thing and run a bit of cable to it. If they were then asked to extend the signal to the next home they would repeat the process and so on to the boundaries. Given a little time for reflection they would realise that their problem was to design for the maximum efficiency and lowest cost of the unit shown in the diagram. I have no doubt that they would soon conceive an h.f. wired network.

Once the problem is seen in this light the idea of equipping every home as a satellite reception station appears as the absurdity which it is; being, indeed, only one degree less absurd than enabling every home to accept from a distance of 15 yards picture signals containing no redundancy. "Cathode Ray" has already put the suggestion for 1,000 or 2,000 lines into its proper perspective and I will only add that if "Radiophare" should ever find himself in a position to decree this

marvellous thing, he could do it most easily and cheaply with a wired distribution system.
I hope that he may learn to see the problem of broadcasting in this light as it will restore his pride in his own country which leads the world in wired distribution. In contrast to the elaborate demonstrations of electronic expertise which "Radiophare" would inflict on the long-suffering public, high-frequency wired systems bear the true hallmarks of good engineering; they are simple, reliable and cheap.
Rediffusion Ltd.,
R. P. GABRIEL
London, S.W.1.

The Diode-transistor Pump

I AM sorry about the misprint in the opening paragraph of Mr. Waddington's article in the July issue but even the corrected version ("Letters" p. 458, September) does not help me to understand why one should be so concerned about the slope sensitivity of the simple pulserate discriminator. At an input-to-output ratio of $10: 1$ the basic differentiator and clamp will depart from linearity by about 0.7%. If this point is arranged to correspond with an input frequency of $300 \mathrm{kc} / \mathrm{s}$ (for a nominal centre frequency of $150 \mathrm{kc} / \mathrm{s}$) a 10 V step at the input will give an output of $\pm 0.25 \mathrm{~V}$ at very low distortion for a deviation of $\pm 75 \mathrm{kc} / \mathrm{s}$. Since this level is some 40 dB above the maximum input sensitivity of most pre-amplifiers, the programme signal at the discriminator is not likely to be degraded by the audio circuits.
The performance of the basic circuit is, of course, ruined by adding an integrating capacitor and this component must either be isolated in the way Mr. Waddington has done or dispensed with altogether. A moving-
coil meter placed in series with the differentiator will sense the mean level of the output current pulses without the aid of a capacitor and for f.m. receiver application the $50 \mu \mathrm{~s}$ de-emphasis function can be combined with the first stage of the pre-amplifier along with the equalizing networks for gramophone, tape and other inputs. The only point to watch here is the possibility of overloading the audio stages by the relatively large discriminator pulses.

Mention should be made of the f.m. receiver design by E. D. Frost ${ }^{1}$ which includes an inherently linear pulserate discriminator of a centre frequency of $300 \mathrm{kc} / \mathrm{s}$ for stereo operation. This receiver appears to combine the best of all worlds and probably represents the proper basis from which future developments should proceed. There still remain many points of detail to interest the circuit designer but the case for high discriminator output is, I suggest, not one of them.

Lee-on-the-Solent,

A. S. CHESTER

Hants.
' Frost, E. D., 'Pulse-counting F.M. Tuner'-W.W. Dec. 65

The author replies :-

From Mr. Chester's comments, it is obvious that he only visualizes one use for a frequency/voltage converter, namely that of discriminator for an f.m. tuner. While I concede that only a few millivolts of input are required for the "general purpose pre-amplifier," the discriminator may, and most probably will in the future, be called upon to drive a stereo decoder. These in general require a higher input. The discriminator may also be used for a.f.c. and for this a large d.c. output is desirable. However, as I tried to show in my article, there are also many other applications of frequency/ voltage converters where a large output voltage, coupled with good linearity, is an essential.

H. F. PREDICTIONS NOVEMBER

The higher daytime MUFs, characteristic of the winter months, are now becoming apparent for circuits predominantly in the Northern hemisphere. The Northern Auroral Zone passes roughly through Alaska, Hudson Bay, Iceland and Northern Norway. Radio paths passing through this zone are subject to additional absorption, and a correction is made for this in the calculation of the lowest usable frequency (LUF).

The prediction curves show the median standard MUF, optimum traffic frequency and LUF for reception in this country. Unlike the standard MUF, the LUF is closely dependent upon such factors as transmitter power, aerials, and the type of modulation. The LUF curves shown were drawn by Cable and Wireless Ltd. for commercial telegraphy and assume the use of transmitters of several kilowatts and aerials of the rhombic type.

More about Farnborough

NEW NAVIGATION AND GUIDANCE SYSTEMS AT 19 ó6 S.B.A.C. EXHIBITION

LAST month we were able to do little more than mention a few of the interesting items seen at the Society of British Aerospace Companies' exhibition ("Avionics at Farnborough," October issue, p. 487). The following is a continuation of the report, in itemized form, and contains photographs of the new Cossor secondary radar transponder, the S.T.C. improved I.L.S. and the Marconi mobile ground radar outlined last month.

Television target simulator.-As part of a general programme of work on visual factors in flying aircraft, the Royal Aircraft Establishment were demonstrating a simulator using television technique for studying problems in low level flying-in particular the task of looking for objects on the ground. A background scene, which can be a photograph of natural countryside taken from the air or a highly complex artificial scene specially constructed for the job, is televised and displayed on a television monitor. A small square target is superimposed on the background, and this target may be varied in contrast and size cither in steps or continuously in accordance with an exponential law. The contrasts in the background may also be varied, from a zero-contrast plain grey display, in conjunction with the exponential change of the target contrast. One recent study was on the contrast threshold of the eye. This, the minimum contrast at which the eye can see the target, is necessary for producing theoretical predictions of visual ability and has been investigated by many experimenters. In the past, plain backgrounds to the target have been used and the results have tended to prove optimistic when applied to the real-life situation. A demonstration on the simulator showed that much of this discrepancy could be explained by the existence of a textured background.

A further demonstration was concerned with the effect of noise on the television cisplay. R.A.E. are interested in the levels of noise which affect a person's performance in a specific task. Again it has been found
that the complexity of the background used in the experiment has a direct bearing on the effect of noise, and also that quite obtrusive levels of noise may be tolerated by the observer in his lask of searching for a small square tanget of near threshold contrast.

Television-aided missile guidance.Components of an Anglo-French air-to-ground missile system called MARTEL, using television for observing the target area, were shown by Marconi, the developers of the television equipment. A sensitive television camera is fitted into the nose of a missile carried by a supersonic aircraft and, after the missile has been launched, the picture from this camera is transmitred back to the aircraft, where the pilot views the target area on a c.r.t. monitor. A joystick enables the pilot to control the field of view of the camera. Once the target has been selected, control signals within the missile adjust the flight path io bring the major axis of the missile into alignment with that of the television camera. The missile itself is being developed by Hawker Siddeley Dynamics in conjunction with Engins Matra of France, and flight trials using the television system have already taken place.

Missile " miss-distance" indication.-

 Parts of two electronic systems for> Left, Integrated-circuit airborne transponder of the Cossor SSR 2100 secondary radar and I.F.F. equipment (see October issue p.487).
Below, Toctical navigotion beacon MR 343 made by Rank Bush Murphy, incorporating a u.h.f. homer facility.

indicating the "miss-distance" of a guided missile relative to a practice target were displayed by Ekco Electronics. One system uses a radioactive source fitted to the missile, and the miss-distance is determined by a gamma-ray monitor carried in the target. Another system operates on an acoustic principle in which the peak amplatude of the shock wave generated by the missile is measured in the target. With both systems the information cbtained in the target is telemetered to the towing aircraft, or to the ground, where it is processed to give miss-distance in digital form.
U.H.F. homer and transponder beacon.-The latest version of the MR343 tactical radar transponder beacon made by Rank Bush Murphy is fitted with a u.h.f. homer. The beacon is designed for parachuting to the ground with airborne assault forces, and as a secondary radar transponder operating in conjunction with Rebecca airborne interrogators it provides distance and homing signals for support aircraft. In the u.h.f. homer application, it provides a homing signal for aircraft fitted with homer equipment operating in the $225-240 \mathrm{Mc} / \mathrm{s}$ range. The homer uses a crystal-controlled m.c.w. transmitter giving a 150 mW peak power output. This is modulated at $3.5 \mathrm{kc} / \mathrm{s}$ and $1.7 \mathrm{kc} / \mathrm{s}$ by an electromechanical encoder, using a photo-

The $85 f i$ localizer aerial arroy of the S.T.C. improved I.L.S. equipment STAN.7/8/9 which meets ICAO's accuracy and reliability requirements for Category III operational performance (see October issue, p.487)
transistor, which can generate morse identification signals. Power is provided by a 12 V nickel-cadmium battery.

Loran C (and A) receiver.-The Desca Navigator Company were showing a compact airborne receiver, using solid-state circuitry, designed to make available to an aircraft navigator the full position-fixing facilities of both the Loran C and the Loran A navigation systems. Loran C (on which Decca have patents) has not yet been widely used for aircraft navigation, but it is stated that flight trials have shown it to be a promising system. Like Loran A it is a hyperbolic pulse system giving a pair of time-difference measurements in the aircraft, but instead of operating on a radio frequency of $2 \mathrm{Mc} / \mathrm{s}$ it works
on $100 \mathrm{kc} / \mathrm{s}$. This low frequency virtually eliminates aircraft altitude as a factor of range, and provides a greater ground wave range-which can extend to 1,200 nautical miles over water. Sky waves can be received at ranges up to $2,000 \mathrm{n} . \mathrm{m}$.

Because of the difficulty of transmitting sufficiently short pulses for accurate position fixing, the time difference measurement is based on phase comparison of selected r.f. cycles within the pulses. For this reason the Loran C receiver includes an "indexing" system to ensure correct selection of identical r.f. cycles in all received pulses. Once the master and both slave stations have been acquired, tracking is automatic on both slaves, and either of the two readings can be displayed on demand. Digital outputs are provided

Surveillance radar unit of the Marconi mobile radar for air traffic control or ground controlled interception (see October issue, p.487).
to allow the use of an airborne digital computer for converting the hyberbolic information into latitude and longitude readings or for operating an orthogonal map display. Two versions of the receiver are available, one in a single package, and another comprising three units.

Microminiature airborne computers constructed from integrated circuits were displayed by Elliott and Ferranti. Such computers are designed to reduce the workload on the crew of modern high-speed aircraft by performing on-line routine tasks of data assimilation. Using timesharing techniques, they accept inputs from navigation and other equipments, perform co-ordinate transformation and other data processing operations and feed information needed for navigation and aircraft monitoring to display units.

The Elliott computer, MCS 920M, is a general-purpose, parallel mode computer with a word length of 18 bits and a core storage capacity of 8,192 words, expandable to 65,536 words. For such on-line working it has four levels of interruption and order modification. The machine occupies a three-quarters short ATR case, weighs 27.5 lb and operates without forced-air cooling at ambient temperatures up to $70^{\circ} \mathrm{C}$. Mean time between failures is said to be at least 2,000 hours in an airborne environment. Servicing is a matter of replacing disposable integrated circuit modules, of which there are only 38 types in the whole computer. Techniques adapted from this computer are to be used in an advanced "head up" display system, incorporating Elliott's ceramic c.r. tubes in the display unit, which the company are supplying to the U.S. Navy.

Ferranti's microminiature computers on show were the types FM 1600A and FM 1600B, both derived from the company's Poseidon naval-action data automation computer used in H.M.S. Eagle. The FM 1600 A , the smaller of the two, is a 24-bit parallel machine with a $1 \mu \mathrm{sec}$ core store. The central processor, the 4,096 words of core storage, the input/output logic and the power supplies are contained in a long three-quarters ATR case with a volume of 0.7 cu ft . The FM 1600 B is also a 24 -bit parallel machine, designed with a philosophy of extensive "software" making up for minimum " hardware." NOR logic elements are used. The add/subtract time is $12 \mu \mathrm{~s}$ and the multiplication time is $38-46 \mu \mathrm{~s}$. A three-address programming system is used.

NOVEMBER MEETINGS

Tickets are required for some meetings : readers are advised, therefore, to communicate with the sociery concerned

LONDON

2nd. B.K.S.'T.S.-" Baird and television" by T. H. Bridgewater at 7.30 at Central Office of Information, Hercules Rd., S.E.I.

3rd. I.E.E.-Appleton Lecture "The Cambridge one-mile radio telescope" by Prof. Sir Martin Ryle at 5.30 at Savoy Pl., W.C.2.
th. I.E.E. \& I.E.R.E.-Colloquium on "Character recognition" at 2.30 at Savoy Pl., W.C. 2

9th. I.E.R.E.-" Radio and radar aspects of meteorology" by C. E. Goodison at 6.0 at 9 Bedford Sq., W.C.I.

14th. I.E.E.-Discussion on "Market research in relation to electronics design" at 5.30 at Savoy Pl., W.C. 2.
16th; I.E.E.-"Reflections from thin layers" by G. Millington at 5.30 at Savoy Pl., W.C. 2 .
"16th. I.E.R.E. \& I.E.E.-Colloquium on "Closed circuit television in medicine and biology" at 6.0 at Middlesex Hospital Medical School, Cleveland St., W.I.

16th. B.K.S.T.S.-"Titanium cone loudspeakers" by E. J. Jordan at 7.30 at Central Office of Information, Hercules Rd., S.E.I.

22nd. I.E.E., Television Soc., \& B.K.S.T.S.-Colloquium on ". Sound on film" at 9.30 at Savoy Pl., W.C.2.

23rd. I.E.E.-"Electronically assisted acoustics in concert halls" by J. Moir at 6.0 at Savoy PI., W.C.2.

23rd. I.E.R.E.-"Psychological aspects of acoustics" by Prof. J. T. Allanson at 6.0 at 9 Bedford Sq., W.C.1.

23rd. I.E.E. Grads.--" Travelling wave masers" by J. C. Williams at 6.30 at Savoy Pl., W.C. 2

23rd. B.K.S.T.S.-" Special effects" by Bernard Marsden at 7.30 at Central Office of Information, Hercules Rd., S.E.1.
24th. Television Soc.-"Interference to television in the u.h.f. bands" by A. S. McLachlan at 7.0 at I.T.A., 70 Brompton Rd., S.W.3.
28th. I.E.E.-Colloquium on "The use of electromagnetic waves in distance measuring" at 2.30 at Savoy Pl., W.C. 2 .

28th. I.E.E.-"Elementary particles and resonances" by Dr. F. Heymann at 5.30 at Savoy Pl., W.C. 2 .

30th. I.E.E.-Discussion on "Transferfunction measuring instruments" at 5.30 at Savoy Pl., W.C. 2 .

30th. I.E.R.E.-" The development of a pay-television system" by Dr. G. L. Hamburger at 6.0 at the London School of Hygiene and Tropical Medicine, Keppel St., W.C. 1 .

ARBORFIELD

24th. I.E.R.E.-" Digital radar simulator tor air traffic control" by D. Stoddars at 5.0 at Lecture Theatre, School of Electronic Engineering, R.E.M.E.

BASILDON

16th. I.E.R.E._" Gas lasers" by H. Foster at 6.30 at Barstable Grammar and Technical School, Timber Log Lane.

BEDFORD

7th. I.E.E.-" The education and training of technician engineers" at 7.0 at Bridge Hotel.

BIRMINGHAM

28th. I.E.E. \& I.P.O.E.E.-Forum on "Connections in electronic circuits" at 6.0 at M.E.B. Offices, Sunmer Lane.

BOURNEMOUTH

15th. I.E.R.E.-_" Transistor, sinusoidal, stabilized inverters" by C. E. S. Ridgers at 7.0 at the College of Technology.

30th., I.E.E.-"Introducing integrated circuits" by P. Cooke at 6.30 at College of Technology, Lansdowne.

BRIGHTON

8th. I.E.R.E.-" Thin film microelectronics" by T. Cummins at 6.30 at College of Technology.

BRISTOL

3rd. I.E.R.E., I.E.E. \& Inst. Prod. Eng. -_"Recent developments in satellite telecommunications" by Dr. H. C. Husband at 7.0 at Victoria Rooms, Clifton, Bristol 8.
7th. I.E.R.E. \& I.E.E.-" Television recording" by P. Leggat at 6.0 at Large Lecture Theatre, The University.

16th. Inst. Prod. Eng.-Viscount Nuffield Memorial Paper "A survey of microelectronics, including future developments" by Dr. I. M. Mackintosh at 7.0 at The University.

CAMBRIDGE

10th. I.E.R.E. \& I.E.E.-" Some problems in the design of electrical filters" by J. K. Skwirzynski at 8.0 at University Eng. Dept., Trumpington St.
24th. I.E.E.-" Speech compression" by Dr. J. Swaffield at 8.0 at University Eng. Dept., Trumpington St.

CARDIFF

4th. Television Soc.-"Microelectronics" by Dr. S. Forte at 7.30 at Angel Hotel.
9th. I.E.R.E.--"Latest developments in radio astronomy" by Dr. P. Williams at 6.30 at Welsh College of Advanced Technology.

CHELMSFORD

28th. I.E.R.E.-" The Watkins-Gunn effect: negative resistance in semiconductors" by B. K. Ridley at 7.0 at the Technical High School, Patching Hall Lane, Broomfield.

COVENTRY

28th. I.E.R.E.--" Electronic exchanges " by E. S. Grundy at 7.15 at Lanchester College of Technology, Priory Street.

CRANFIELD

22nd., I.E.E.-" Lasers \& associate devices" by Dr. McFarlanc at 7.0 at the College of Aeronautics.

DAGENHAM

16th. I.E.E. Grads.-" Electronic telephone exchanges" by L. R. F. Harris at 6.45 at South-East Essex Technical College.

EDINBURGH

8th. I.E.E. \& I.E.R.E.-"Scanning electron microscope and other electron probe instruments" by Prof. C. W. Oatley at 6.0 at Carlton Hotel, North Bridge.

24th. I.E.R.E. \& I.E.E.-_"Transducers in medical research" by Dr. D. C. Thomas at 6.0 at Carlton Hotel, North Bridge.

GLASGOW

7th. I.E.E. \& I.E.R.E.--" Scanning electron microscope and other electron probe instruments" by Prof. C. W. Oatley at 6.0 at the University of Strathclyde, C.1.

KINGSTON, SURREY

2nd. I.E.E. Grads.--"' Technical plans for starting colour on BBC-2 by J. Redmond at 7.0 at the College of Technology, Penrhyn'Rd.

LEICESTER

9th. Television Soc.-"Steam radiothe birth of broadcasting" by The Hon. Rowland Wyon at 7.15 at Vaughan College, St. Nicholas Strect.

LIVERPOOL

14th. I.E.E.-_" Variable specd drives using - - ni-indurtnr adjustable frequency inverters" by D. A Jones at 6.30 at Electrical Engineering Labs., The University.

16th., I.ER.E.-" Stereophonic broadcasting" by Dr. G. J. Phillips at 7.0 at the College of Technology, Byrom Street.

21st. I.E.E.-"Lasers" by J. C. North at 6.30 at Electrical Engineering Labs., The University.

LOUGHBOROUGH

15th. I.E.E.-" Field effect devices" by Dr. R. E. Hayes at 6.30 at Edward Herbert Building, University of Technology.

MALVERN

14th. I.E.R.E.-" There is more to colour than wavelength" by R. W. Brocklebank at 7.0 at the Abbey Ballroom.

NEWCASTLE-UPON-TYNE

9th. I.E.R.E.- Lasers and their applications" by Dr. G. W. Wilson at 6.0 at the Inst. of Wining and Mech. Engrs., Neville Hall, Westgate Road.

OXFORD

8th. I.E.R.F.--" Circuit design using digital computers" by E. Wolfendale at 7.30 at Clarendon Laboratory, Parks Road.

9th. I.E.E.-"Micro-miniaturization" by R. G. Dixen at 7.0 at S.E.B., 37 George Sitreet

PLYMOUTH

15th. I.E.E. \& I.E.R.E.--" Automatic driving of trains" by R. Dell at 7.0 at the College of Technology.

PORTSMOUTH

16th., I.E.E.-" U.K. 3 satellite electronics" by W. M. Lovell at 6.30 at the College of Technology, Anglesea Road.

SHEFFIELD

2nd. I.E.E.-" Hybrid computers" by Dr. H. B. Williams at 6.30 at Sheffield Industrics Exhibition Centre.

SOUTHAMPTON

8th. I.E.E-Colloquium on "What's new in integrated circuits" at 2.30 at the Lanchester Theatre, The University.
23rd. I.E.E-" Satellite control" by E. G. C. Burt at 6.30 at the Lanchester Theatre, The University.

SWINDON

9th. I.E.R.E. \& I.E.E.-_"Ballistic missile early waraing system" by B. S. Batt at. 7.0 at the College.

WHITBY

7th. I.E.E.-" Semiconductor integrated circuits" by C. S. den Brinker at 7.0 at Botham's Cafe, Skinner Street.

NEWPRODUCTS
 systems components

NUMERICAL CONTROL

FEEDBACK Limited who produce both servo and computer logic teaching equipment have now married both systems together to give an assembly which illustrates the principles of numerical control and can be constructed and understood by an average student during a single laboratory period. Described as a logic tutor the Feedback Logikit Primer LK. 255 with the additional plug-in elements and the Digital Encoder SE. 254 costs £200, and may be expanded to accommodate larger experimental developments for very little extra cost. Both d.c. and carrier servo systems can be controlled from the logic and, for authorities wishing to teach servo plus logic, under § 450 will equip a laboratory unit. In the simplest form, a position control system can be constructed which responds to a numerical demand in the form of a 3-bit binary number set on three switches. A digital encoder is coupled to the output shaft, and this produces a Gray code to identify any of eight equal angular segments within a 360° rotation. The logic circuits made up by the constructor from simple plugin elements convert the Gray code to natural binary and then compare the input demand with the encoder output. The differences (greater or less) in binary form are converted into an error signal suitable for the servo. This drives the encoder in the correct direc-
tion to reduce the differences to zero. Input demand, and the natural binary response are monitored continuously by a bank of indicator lamps. The student is thereby in no doubt of the accuracy and speed of the system response. The encoder SE.254, which is covered by a clear Perspex case, carries a mimic replica of the encoding disc, on the front. Its lamps and phototransistors are energized from the logic tutor by means of a long plug-in cable. The encoder can be used with any servo or other suitable mechanism which will respond to the error signal. It is specifically supplied with attachments to couple it directly to any Feedback servo system. Although the experiment illustrated in the photograph involves only a 3 -bit number, the encoder will produce up to five bits (32) as well as generating continuous impulses for speed control experiments.

The experimental scope of the Logikit primer includes simple functions of several variables, theorem application, binary addition and subtraction, cyclic binary numbers, a parity chain, decimal to binary-decimal translation, the use of NOR and NAND logic elements for basic operations, binary comparisons, and others, all of which are included in the handbook. Feedback Ltd., Crowborough, Sussex.

WW 301 for further details

Television Studio Camera

A MAINS operated transistor TV studio camera, has been developed by G.E.C. Electronics' Communications Group, of Spon Street, Coventry. Known as the type VCT $2 / \mathrm{S}$, it incorporates a 7 in electronic viewfinder which is easily removed for use separately as a picture monitor. The camera and viewfinder have separate power circuits. The camera can be supplied with a scanning/ field standard of either $625 / 50$ or $525 / 60$ and transmits over a bandwidth of $10 \mathrm{Mc} / \mathrm{s}$.

A vidicon tube is used in the camera, and a four-lens turret, which will take "C" mount or broadcast mount lenses, is fitted. A control knob at the side of the camera enables optical focus to be adjusted, or a remote control system can be fitted. The camera has a builtin sync pulse generator and all the principal circuits are contained in replaceable printed circuit modules, thus simplifying maintenance. To minimize the length of the signal cable from the vidicon tube, the video head amplifier module is mounted directly above the vidicon focus coil. A high signal/noise ratio of 36 dB peak-to-peak with a $0.2 \mu \mathrm{~A}$ signal is obtained from the video head amplifier. The "target voltage," "beam current," "electrical focus" and "black level" camera controls are normally preset but can be linked to a camera terminal unit to permit adjustments to be carried out remotely. The viewfinder's electronic circuits are also contained in printed circuit modules to facilitate easy servicing.
WW 302 for further detalls

Delay Relays

TIME delays of 3 to 180 seconds can be obtained from series 200 and series 300 time delay relays by Relay Specialties Inc. Style 200 (9 -pin miniature socket) and Style 300 (8-pin octal socket) are hermetically sealed in glass, flushed and gas filled, and both series are constructed to assure either on or off operation with single-pole, doublethrow contacts. All relay components including ceramics, wire, glass, steel and silver contacts are inorganic, and free from moisture. Standard tolerances on time delays arc $\pm 25 \%$ with closer tolerances available. These relays, thermally operated by a separate heating circuit, have standard heater voltages of $6.3,26.5$ and 115 V a.c. or d.c. Contact ratings are 115 V a.c. 3 A resistive, or 28 V d.c. 3 A resistive. Operating temperature range is 65° to $100^{\circ} \mathrm{C}$, and a minimum life of 100,000 operations is claimed for average operating conditions. Relay Specialties, 3 Godwin Avenue, P.O. Box 223, Fair Lawn, N.J., U.S.A.
ww 303 for further details

Dual Transistor

THE 2C444, a silicon planar dual transistor is available from SGS-Fairchild Ltd., Stonefield Way, Ruislip, Middlesex. This is a six terminal device giving low drift performance in d.c. amplifiers, and can be used in industrial applicaticns, power supplies, video and cascade amplifiers. The 2C444 replaces two C444 transistors, and it is stated that this is the first industrial transistor to have guaranteed $h_{F E}$ and $V_{B E}$ matching. Planar construction, and low leakage, offer a range of guaranteed hybrid parameters that allows flexibility in designing equipment. Maximum drift $30 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$, f_{T} is typically $350 \mathrm{Mc} / \mathrm{s}$, and $h_{\text {FE }}$ ratio 0.7 minimun.

WW 304 for further detaiss

CRYSTAL FILTERS

TWO filter units, the PFl and PF2, by Elisott Electronics, 3 Sandgate Avenue, Tilehurst, Reading, Berks, have been designed to improve the selectivity of existing receivers with i.fs of 455 to $470 \mathrm{kc} / \mathrm{s}$. They are also intended for incorporating into new receiver assemblies and single-sideband generators. The PFl is available in two versions, PF1/RX with a symmetrical passband for receiver applications and PFL/SB with an asymmetrical passband, and sharp cut-off on the l.f. or h.f. side for sideband generation. Input and output transformers are tapped to match into valve or transistor circuits with impedances of 1 to $2 \mathrm{k} \Omega, 10$ to $40 \mathrm{k} \Omega$ or 100 k ! upwards. The centre frequency can be 457,465 or $470 \mathrm{kc} / \mathrm{s} \pm 1 \mathrm{kc} / \mathrm{s}$. Price $£ 4$ ls. The PF2 is a simplified filter in which there are no matching transformers and it has been designed to couple directly (without centre tappings) to standard i.f. transformers which are tuned to the centre frequency of the filter. The centre frequency can be 459,467 or $472 \mathrm{kc} / \mathrm{s} \pm 1 \mathrm{kc} / \mathrm{s}$. The price is $£ 32 \mathrm{~s}$.
ww 305 for further details

Reversible Counter

THE Hewlett Packard reversible electronic counter 5280A counts at rates up to $2 \mathrm{Mc} / \mathrm{s}$, reverses in 250 ns and has a reverse counting rate of $1 \mathrm{Mc} / \mathrm{s}$. The instrument is intended for the precise control of automatic processes, where the counter's ability to operate in a temperature range from 0° to $50^{\circ} \mathrm{C}$ will also be useful. With its accompanying 5285 A universal plug-in unit it will count either of two input channels A or B, or count A upwards or downwards, depending on the polarity chosen for B, at the $2 \mathrm{Mc} / \mathrm{s}$ rate. It will count $A+B$ and $A-B$, at rates up to $1 \mathrm{Mc} / \mathrm{s}$. This last-mentioned mode has special value with laser interferometers and other kinds of transducers, to make precise measurements of length, or in $\mathrm{X}-\mathrm{Y}$ positioning. Model 5280 A will maintain accurate count, even if simultaneous signals should arrive at A and B channels in the $\mathrm{A}+\mathrm{B}$ or $\mathrm{A}-\mathrm{B}$ modes; an anticoincidence circuit is built in. This instrument will perform tasks that include reading pulses in remote control or telemetering systems, comparing frequencies, and
measuring length, thickness, angular displacement, flow rate, liquid level and weight (with appropriate transducers). The controls include a polarity switch to reverse input signal directionsensing and rrigger level settings with ± 100 volt range. Readout is 6 digits in-line with \pm sign; 7th and 8th digits are optional, with no decrease in maximum counting or reversing rate. Overflow is indicated by a front panel neon light. The inputs present 1 megohm in parallel with 80 pF to the external circuit. Sensitivity is 100 millivolts r.m.s. or 1 volt pulse of 0.2 , s minimum width. Either a.c. or d.c. coupling may be selected. For recording or to control other equipment, Model 5280A has fourline binary coded decimal outputs as standard equipment. Model 5280 A is priced at $£ 558$. The Model 5285A universal input plug-in unit is $£ 172$. Hewlett Packard Ltd., Slough, Bucks. ww 306 for futther details

THYRISTOR GATE SENSITIVITY METER

A GATE sensitivity meter is now available from Caltronics Limited of Hunting Gate, Hitchin, Herts. This thyristor gate sensitivity meter provides accurate and rapid measurement of the gate current-to-fire for a wide variety of thyristors. A Zener diode provides a stabilized anode-to-cathode voltage of 6 volts to the thyristor under test. The gating characteristics of the device under test are measured by applying half-wave rectified $50-60 \mathrm{c} / \mathrm{s}$ pulses between the gate lead and cathode of the device. A trigger network in the anode supply lead senses the turn-on point of the thyristor and energizes an electronic switch that removes the gating signal. A peak reading voltmeter circuit is utilized to give a direct indication of

the current or voltage level at which the thyristor fires. The gate current-tofire reading is obtained by driving the gate circuit through a set of precision resistors which form an adjustable $10-$ step current source. The gate voltage-to-fire reading is obtained by driving the gate circuit from an adjustable 3-step voltage source. Calibration potentiometers allow the sensitivity meter to be calibrated on both current and voltage. Terminals are provided for parallel remote operation of the instrument. Remote indication of the meter reading may be obtained from a pair of panel terminals which provide a 1 volt signal for full scale indication on the front panel meter. The full scale gate current ranges start at 0.010 mA , rising to 300 mA . The gate current accuracy is $\pm 3 \%$ of full scale, and the full scale gate voltage ranges are 1,3 and 10 volts with a gate voltage accuracy of $\pm 5 \%$ of full scale. The analogue output is C to 1 V d.c. into a $1 \mathrm{M} \Omega$ load. The input power requirements are $220-240 \mathrm{~V}$, $50-60 \mathrm{c} / \mathrm{s}$ single phase. The price is £195.

WW 307 for further details

Recording Tape Tester

TAPE testing assemblies which will test the full width of magnetic tape for "drop out" and other defects have been developed by Gresham Lion Electronics. Already available to tape manufacturers. it is now available to users of tape. A wide choice of tracking arrangements is offered, and a version for computer work provides a full width record head for $\frac{1}{2}$ in tape followed by a dual replay head stack with 7 and 9 tracks (type P.S. 79). Top or bottom edge tape guidance is provided by spring loaded ceramic guides, and head blocks are protected by an enclosed cover. Electrical and mechanical specifications can be drawn up to meet particular applications. The specification of one assembly-the seven and nine track replay head assembly for $\frac{1}{2}$ in tape-is as follows: the record head has a track width of $0.505 \pm 0.001 \mathrm{in}$., a gap length of 0.0005 in (nominal). The resistance is 25%, inductance 7 mH ,

Inductive Transducer

THE P/12/150 non-contact subminiature inductive transducer is 0.1 in diameter and 0.15 in long. Designed to be fully compatible with the range of Associated Engineering electronic units for measuring displacement and vibration, it can be used in temperatures from ambient up to $150^{\circ} \mathrm{C}$, and in acceleration fields up to 2000 g . It has a working range of 0.005 in , a resolution of $10 /$ in and a frequency response from d.c. $u p$ to $10 \mathrm{kc} / \mathrm{s}$, with extension to $60 \mathrm{kc} / \mathrm{s}$ for special applications. Asso-
and saturation current 33 mA p-p. The replay head with 7 tracks has a track width of 0.030 ± 0.001 in (9 tracks $0.040 \pm 0.001 \mathrm{in}$) and a gap length of 0.00025 in (9 track 0.00025 in); the resistance is 11.4Ω (9 tracks 12.5Ω) and the inductance is 5.6 mH (9 tracks 5.3 mH). Also being developed is a nine track assembly (T.S. 45) which will provide total surface checking of half an inch, high density tape (9 track, 3,200 flux reversals per inch). Gresham Lion Electronics Ltd., Lion Works, Hanworth Trading Estate, Feltham, Middx.

WW 308 for further details

Distress Beacon

BASED on the SARBE range of military beacons, the compact beacon BE355 is manufactured by Burndept Electronics Ltd., Erith, Kent. It will be of special value to yachtsmen and to business/ private aircraft flying over the sea, or thinly populated areas. It will transmit on the v.h.f./u.h.f. distress frequencies 121.5 and $234 \mathrm{Mc} / \mathrm{s}$. Power output is 100 mW mean and 200 mW peak. It will operate for 24 hours over the temperature range $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$ with a 13.4 V mercury battery, which is butt

mounted to the radio. A larger battery is available for 48 hours transmission. Both beacon and battery are encased in cans of drawn aluminium and they weigh 25 ounces complete. A sealed retractable telescopic aerial is also contained within the beacon housing when not in use. A function check is carried out by button and indicator lamp. When the beacon is required, extending the aerial initiates the transmission of a wobbulated signal two or three times per second. When not in use the BE355 is $5 \frac{3}{4} \mathrm{in}$ high, $3 \frac{3}{4}$ in wide and $1 \frac{1}{4}$ in deep. The price is expected to be about $£ 33$ to $£ 40$.

WW 309 for further details
ciated Engineering Ltd., Group $\mathrm{Re}-$ search and Development, Cawston, Nr. Rugby, Warwickshire.
WW 310 for further details

SUBMINATURE RESISTORS

ERG Industrial Corporation has produced a range of subminiature precision metal film resistors with dimensions from $0-145$ in $\times 0.045$ in upwards. Style RE-$0-125$ (illustrated) is rated for $\frac{1}{8} \mathrm{~W}$ at $100^{\circ} \mathrm{C}$. Temperature coefficients are from $\pm 0.0025 \% /{ }^{\circ} \mathrm{C}$ upwards and initial resistance tolerances of $\pm 0.1 \%$ are available. The operating temperature range is $-55^{\circ} \mathrm{C}$ to $+165^{\circ} \mathrm{C}$, and values between 2Ω and $2 \mathrm{~m} \Omega$ can be specified. Other styles with ratings from $1 / 20 \mathrm{~W}$ up to $\frac{1}{2} \mathrm{~W}$ at $100^{\circ} \mathrm{C}$ are available. Erg Industrial Corporation Ltd., Luton Road, Dunstable, Beds.
WW 311 for further details

A.F./R.F. Test Set

MODEL A 220 a.f./r.f. test set is an instrument manufactured by Amalgamated Wireless (Australasia) Ltd., and marketed in the U.K. by Livingston Laboratories. This receiver functions as a variable frequency generator, wideband receiver, high impedance volmeter, and modulation meter and it can be mains or battery powered for station or field operation. The generator provides frequencies from $100 \mathrm{c} / \mathrm{s}$ to $650 \mathrm{kc} / \mathrm{s}$ with a maximum output level of +13 dBm at switch selected output impedances from 75Ω to $1.2 \mathrm{k} \Omega$. The generator output can be amplitude modulated up to 80% by an internal $820 \mathrm{c} / \mathrm{s}$ oscillator, or from an external source between $200 \mathrm{c} / \mathrm{s}$ and $3.4 \mathrm{kc} / \mathrm{s}$. The wideband receiver fuaction measures signal levels down to -80 dBm over the frequency range $50 \mathrm{c} / \mathrm{s}$ to $250 \mathrm{kc} / \mathrm{s}$ with selectable balanced input impedances of 75,150 , 600 , and 1,200 ohms. Provision is made for monitoring by headphones or a.c. recorder, measuring distortion, intermodulation products, and filter bandpass characteristics. The generator will withstand a short circuit across the output terminals for up to one hour without damaging the instrument. Instrument Division, Livingston Laboratories Ltd., Livingston House, Greycaine Road, North Watford, Herts. WW 312 for further details

Film Resistor Networks

ENCAPSULATED cermet resistance networks made by Nexus Research Laboratory Inc. (U.S.A.) are available in a wide range of values, with standard tolerances of 1% and 0.5% and specially ordered resistance tolerances of 0.25% and 0.1%. They are intended particularly for users of operational amplifiers. Claimed advantages of these networks are small size, inherent reliability, and close thermal tracking of similar resistors fired on a common substrate. These networks are available to order, in special configurations including binary and b.c.d. related resistance ratios for use in digital/analogue interface converters. The thermal tracking (ratio between units on a common substrate) is ± 20 p.p.m. $/{ }^{\circ} \mathrm{C}$. Power dissipation
per substrate is 0.5 W . From Livingston Components Ltd., Livingston House, Greycaine Road, North Watford, Herts.

WW 313 for further details

A.C.-D.C. Converter

IN modern data processing systems, a frequent requirement is the conversion of a.c. data signals to d.c. signals that will drive suitable indicating devices and recording equipment. The TP-663 a.c. to d.c. converter made in the U.S.A. by Technical Products Company, is such an instrument complete with selfcontained regulated power supplies. Operator controls are not required, since the a.c. input voltage is converted directly to an average d.c. output. This instrument may be equipped with from one to eight channels. Two connectors are provided on the rear of the chassis for each channel. The two detectors (used in the conversion process) that are available with the converter are TP-663A and TP663B. The TP-663A
provides a 70 dB dynamic range over a frequency range from $5 \mathrm{c} / \mathrm{s}$ to $20 \mathrm{kc} / \mathrm{s}$, and a 60 dB dynamic range over the frequency range $4 \mathrm{c} / \mathrm{s}$ to $40 \mathrm{kc} / \mathrm{s}$. The RP-663B provides a 70 dB dynamic range over the frequencies $4 \mathrm{c} / \mathrm{s}$ to $40 \mathrm{kc} / \mathrm{s}$ and 60 dB from $2 \mathrm{c} / \mathrm{s}$ to $200 \mathrm{kc} / \mathrm{s}$. The TP-663A provides a response time of 0.5 s for 63% of final reading, while the TP-663B normally supplied with damping has a response time that is 0.2 s for 63% of the final reading. There is the option of faster response time with less damping. Marketed in the U.K. by Environmental Equipments Lid., Denton Road, Wokingham, Berks.

WW 314 for further details

WIRING BOARDS

PRECISION printed-circuit boards kncwn as ISEP-Veroboards are being made in eight sizes to fit the various sizes of 19 in ISEP sub-racks. Available from Electronic Services, S.T.C., Edinburgh Way, Harlow, Essex, the boards are supplied plain, or clad with narrow copper strips that connect entire rows of holes together horizontally to simplify component connection. Insulation between strips is at least $100 \mathrm{M} \Omega$. Strips can be interlinked or severed between holes to provide many variations of component interconnections. Boards are protected by a flux preservative, and are suitable for cutting out, and punching at room temperature. Claimed advantages of ISEP-Veroboards include ease of access to components, and ease of adaptability to suit changing requirements. Specially designed terminal pins
to fit the board holes (which are spaced out on a 0.1 in matrix) are available, as weil as a tool for inserting pins at the rate of 1,000 an hour, and a cutter for making breaks in the copper strip.
WW 315 for further details

Vibration Monitor

ALTHOUGH primarily designed to measure vibration levels at the engine bearings of jet airliners, the Vibration Monitor developed by the Plessey Dynamics Group will find many applications in marine and other industrial fields, where vibration can lead to fatigue of basic materials, or where vibration levels are excessive and therefore unacceptable for reasons of safety, reliability or accuracy. The equipment consists of two units, a display unit containing a bank of up to 12 vertical scale indicating meters, and a remotely located amplifier unit containing an amplifier for each transducer channel. The

amplifiers, completely interchangeable and identical with each other, are of the integral subminiature type housed in a single semiconductor can. The voltage gain is 100 dB up to $1 \mathrm{Mc} / \mathrm{s}$, and response is flat to 2 dB over the range $80 \mathrm{c} / \mathrm{s}$ to $200 \mathrm{c} / \mathrm{s}$, falling to -23 dB at $25 \mathrm{c} / \mathrm{s}$ to meet specified requirements. The gain of each amplifier can be varied by means of a preset adjustment. Maximum operating temperature rating is $75^{\circ} \mathrm{C}$. The equipment is provided with a built-in self-checking function: a two position switch spring-loaded to the "normal" position, tests all channels simultaneously when held in the "test" position. Normal " no faults" operating gives a mid-scale reading on the indicator, whereas -a short-circuited transducer gives no reading and an open circuit a full scale reading. Transducers, not included in the equipment, should be of a type conforming to ARINC 554 characteristics. Plessey Electrical Equipment Division, Eastern Avenue, Romford, Essex.

WW 316 for further details

Thin-Film Monitor

A NEW film thickness monitor from Genevac Limited, Pioneer Mill, Radcliffe, Manchester, is designed for measuring the total thickness and also the rate of deposition of vacuumdeposited thin films. This is achieved by collecting a portion of the evaporant stream on a quartz crystal mounted in a suitable position within the evaporator. Using the principle of the linear change of resonant frequency with increasing mass of the monitor crystal,
of the evaporation can be preset by using the instrument to operate an electro-mechanical shutter. The instrument can be used to control both laboratory and production depositions with a high degree of repeatability. The total mass deposited is indicated over four ranges of $1,5,10,50 \mathrm{kc} / \mathrm{s}$ full-scale deflection. Provision is made for backing off to zero between consecutive depositions; the crystal requires cleaning at intervals of approximately $60 \mathrm{kc} / \mathrm{s}$ shift. The control unit is housed in two cases both 9 in wide, 6 in high and 6 in deep; one case contains all the necessary power supplies and displays the mass deposited; the second case displays the rate of deposition. The electronic circuitry of the oscillator, which is in a separate unit, is placed close to the evaporator and connected to the monitor's quartz crystal through a coaxial vacuum seal.

WW 317 for further

INSTRUMENT CASE

MODERN style instrument cases are being manufactured by Vero Electronics Ltd., of Chandler's Ford, Hampshire. Plastic side frames incorporating handles are injection moulded in dove grey "Cycolac" polymer, which, with four substantial aluminium extrusions offer a strong, rigid frame. The cover panels are aluminium, coated with p.v.c. (charcoal grey or green). Parts can be packed flat in kit form, and assembly takes about 15 minutes using a screwdriver. One size oniy is available at the moment to accommodate a unit 19 in wide $\times 7$ in high, and 15 in deep.
wW 318 for further details

Crystal Oscillator

PLUG-IN crystal oscillators intended as medium stability frequency sources, are now available from the Marconi Co. Ltd. Each of the oscillators in this range possess a glass encapsulated quartz crystal, with the buffer output stage (solid-state) circuitry accommodated around it. Housed in aluminium tubes 1.125 in in diameter and mounted on international octal valve bases, type F3170 units cover the frequency range 1 to $115 \mathrm{kc} / \mathrm{s}$. The seated height will vary between 3.125 in to 5 in , depending on the frequency of the unit. Type F 3171 units, mounted on B7G valve bases, cover the frequency range $115 \mathrm{kc} / \mathrm{s}$ to $100 \mathrm{Mc} / \mathrm{s}$, and they can be housed in standard F3006 crystal ovens for enhanced frequency stebility. With a seated height of 3.125 in , these units are provided with $\frac{3}{4}$ in diameter cylindrical aluminium covers. Frequency stability of both types is better than 1 part in 10^{\prime} within the temperature range -20° to $+70^{\circ} \mathrm{C}$. The frequency of the units can be trimmed by an external capacitor located between a base pin and earth. The buffer output stage will maintain a frequency
the device indicates the change as a displayed d.c. voltage and likewise indicates the rate of change of this voltage. Feedback can be taken from the instrument and used to control the heat input to an evaporation source and hence the rate of deposition; also the end point stability of 1 part in 10° for a 10% variation in load impedance. The output impedance is $5 \mathrm{k} \Omega \pm 10 \%$ with an output of 2 V peak to peak. A 6 V supply is required. Marconi Co. Ltd., Chelmsford, Essex.

WW 319 for further details

Wireless World, November 1966

REED SWITCH

MOULDED reed switches of a new design are available from West Hyde Developments Ltd. The glass envelope is shielded by a brass sleeve, which in turn is completely encapsulated in a polypropylene moulding; it is thus claimed that the attendant risks to the normal fragile housing of such reeds are considerably reduced. It is stated that test switches have been working continuously for 5×10^{10} operations, at a rate of 100 operations/s. Applications for this moulded reed switch with hermetically sealed contacts include over and under speed monitors, flow and conweyor monitoring, routing control, counting, press tool protection and guards, position detection, timing, and proximity detectors. The switches will give aperations either directly, or through plug-in diode-transistor-logic modules an B9A bases including relay drivers, monostable Schmitt triggers, and AND gates. West Hyde Developments Ltd, 30 High St., Northwood, Middlesex. vew 320 for further details

2-Way CdS/CdSe Cell

THE photoconductive cell PH50 made by Photain Controls Ltd. has an element consisting of a mixture of cadmium sulphide and cadmium selenide, with resistance variations from $2 \mathrm{M} \Omega$ in the dark to $3 \mathrm{k} \Omega$ at 100 lux. It will operate in the range \quad o to 200 V d.c. with a permissible contunuous power dissipation of 200 mW . The glass encapsulation allows it to operate over the temperature range $-30^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$. Since it is sensitive to both side-and end illumination, it can be used in oil burner and flame failure controls, where a standard housing is required for mounting into the blast tube of a burner, whilst at the same time being suitable for end-on mounting on to the front plate of the boiler. Photain Controls Ltd., Randalls Road, Leatherhead, Surrey.
WW 321 for further details
 THE HOUSE OF BULGIN

AT YOUR SPRVICE

A LARGE RANGE OF MOULDED SWITCHES

Produced on our highly automated plant these switches are inexpensive, but completely reliable, giving a normal minimum life of 25,000 operations.

SM.445/TERM S.P.C.O Push-Pull Operation.

SM.265/TERM/PD S.P.C.O.
Toggle Operation.

SM. 446 S.P.C.O. Push-Pull Operation.

SM. 270/DB D.P.C.O.
Toggle Operation.

SM. 365 S.P.M.B
Push Operation

SM. 320 S.P.C.O. Key Operation.

SM.327/PD D.P.C.O Toggle Operation.

S. 780 D.P.C.O.
plus Centre OFF
plus Centre OFF

SRM. 265 S.P.C.O.
Push Successional Action

SM. 253 S.P.M.B. Semi-Rotary Operation

SRM.270/SQ D.P.C.O.
Push Successional Action.

S. 790 S.P.C.O.
plus Centre OFF
plus Centre OFF

Send for Technical details quoting this advert.

A. F. BULGIN \& CO. LTD.,

 Bye Pass Rd., Barking, Bssex. Tel: RIPpleway 5688 (12 lines)| NANUFACTUEERS AND SUPPLISRS OF RADIO AND ELECTRONIC COMPONENTS TO | | |
| :---: | :---: | :---: |
| admianty | minister of wonks | |
| WAn office | | |
| Ain minstay | ministhy of surply | \cdots |
| | nezgancm establiminints | |
| CROWM ACENTE | UK.a.eA | |

WW-123 FOR FURTHER DETAILS.

"Something Nasty in the Woodshed"

IT cannot have escaped your notice that just about everybody has been having a go at the great television controversy and getting all hot under the colour in the process. You will be:relieved to learn, I intend to stand aloof from the hurly-burly (largely because nobody would take the slightest notice anyway). Instead, I would like to take the opportunity of reminding my One Regular Reader of the root cause of all this 405-625-colour wrangle.

Knowing that television broadcasting is allegedly dedicated to serving the best interests of the viewer, the otherwise uninformed foreign visitor might reasonably suppose that the ruckus has been brought about by a revolt on the part of the proletariat. But if inflamed mobs are storming Pearlcasting House bearing banners inscribed "We demand the Black \& White Minstrels in colour!" or "Give us 200 extra lines! "all I can say is that the newspapers are keeping awfully quiet about it.

Drawing blank in this quarter, our visitor might then turn his attention to our various national Aunt Sallys. The Government, perhaps? Well, certainly the Conservatives gave us some action. They very kindly pledged about $£ 150 \mathrm{M}$ of our money to support a third service which the viewers didn't particularly want and most certainly couldn't afford. The Labour Government condoned this project, but in view of the national economic situation have taken the most rigorous steps to ensure that nobody can buy a new receiver to make use of the service. But, as everyone knows, no government has ever been known to act of its own volition, but only when someone is kicking it in the rear, so our hypothetical foreign visitor must look elsewhere for the culprit.

This brings the B.B.C., the I.T.A. and the programme companies under the bright lights for grilling. Here we have some circumstantial evidence, for the B.B.C. is already going ahead with the third service and promising colour, while the I.T.A. is going R G B with rage, envy and frustration. But stay. A moment's thought will produce the paradox that neither they nor the programme contractors really wanted another service or colour any more than elephants want wings. The B.B.C. took it on because it was told to, and because if it hadn't the opposition soon would have. If the roles had been reversed, the situation would have been a mirror image of the present one, in which the I.T.A. has to agitate for parity in the cause of preserving its programme ratings. Similarly, deep down in their cheque-books, the programme contractors and advertisers wish colour TV had never been invented, because it will undoubtedly cost much more but will sell no more soap powder or what have you. But if they don't go into colour they won't sell as much as they do now, so although they don't want it they must have it.

Personally, I don't think the commercial boys need get so het up as all that. It will be a long time before colour sets are in anything but a minority and they could well leave it to the B.B.C. to get the gremlins out before chipping inafter all, this worked on the black-and-white service. But that's a digression. The point to note is that neither the B.B.C., the I.T.A. nor the programme contractors started the agitation.

This leaves only one more suspect, namely the domestic radio industry itself. But what was the motivation?

The answer lies back in the early 1920's when sound broadcasting was born. The boom in domestic receivers and components which followed was completely unexpected. It happened because conditions were exactly right; there was the magic of conjuring voices from thin air; the fact that the cost of a crystal set did not overstrain even a modest pocket, and the circumstance that the home construction of simple receivers could bring a local kudos which was out of all proportion to the skill demanded. The situation was equivalent to the winning of a first dividend on the football pools.

Fair enough. But with the growth of the boom emerged the dangerous philosophy that it, like Tennyson's brook, would go on for ever, or even if it didn't, another first dividend would materialize in its place. The domestic receiver industry became addicted to pulling down its barns and building greater, regardless of the biblical warning concerning such conduct. Came the dawn, when, with overseas markets neglected and saturation point looming at home, the rosy dreams of yesteryear were ousted by nightmares about over-production.

Television was hailed as the saviour of the situation, but first dividends, like lightning, rarely strike twice in the same spot. This time the conditions were not precisely right. The price tag on the television receiver was too high, there was no crystal set equivalent and no home construction on a massive scale. The sales curve took a long time to get off the ground and when it did no vast fortunes were made in the domestic receiver industry. Nevertheless for some years television served to prevent the wolf from shouldering open the doors of many a factory.

But instead of using this period as a breathing space in which to rationalize the size of the industry to an off-peak demand, the receiver manufacturers have constantly attempted suicide, using the weapons of price-cutting and gimmickry. The public, too, has suffered; for example, the high-quality potential of the v.h.f./f.m. sound service has been nullified by cut-to-the-bone circuits and tinny 6 in loudspeakers; in the television field, very few have ever seen a 405 -line picture as it could be and should be and the accompanying sound reproduction leaves much to be desired.

The present appalling muddle has largely been brought about by the industry's frenzied lobbying to sustain an artificial level of demand. The u.h.f. television service has boomeranged to clonk the manufacturers on the side of the head with a dual-standard design requirement and Nature has very unsportingly refused to modify her laws of electromagnetic wave propagation to suit their desires. As for sales, there is patently no first dividend here even if there had been no credit squeeze. Colour? I don't think anyone is so wildly optimistic as to visualize an avalanche of colour receiver sales in the foreseeable future (and if the Earls Court Radio Show demonstrations were anything to go by, the hand of Providence is in that).

So, to end on a cliff-hanger note, we leave the villain of the piece, the receiver industry, still struggling wildly to get out of a pit of his own digging, while the American takeover tiger purrs smilingly down over the rim. Will he perish miserably at the bottom or will he find the foothold of rationalization in the nick of time? If so, will he be devoured by the tiger?

'don't monkey with success'

That's what they told us when we wanted to glamourize the Avometer's looks to match its modern-as-tomorrow internal circuitry and meter movement. 'Avometer', they told us, is the household word for a highsensitivity, accurate and super-rugged multirange meter. You, they told us, like the way Avometers handle, know you can trust their performance, have a genuine affection for them. OK, you win. Get your Model 8 Mk. III (illustrated) or Model 9 Mk . II (with International scales and
 symbols) from your local supplier or Avo Ltd., Avocet House, Dover, Kent. Telephone Dover 2626. Telex 96283.

(Photograph by courtesy of the G.L.C.)

...and in your own armehair

Not so far-fetched with electrostatic loudspeakers and stereo broadcasts.
Properly handled, stereo radio is a vital step towards the closest approach to the original sound.

Watch the Radio Times for that "S".
For details of the QUAD range (including the multiplex decoder for stereo broadcasts) send a postcard to: The Acoustical Manufacturing Co. Ltd., Huntingdon. Tel: Huntingdon 2561/2.
(G) (0) A) D
for the closest approach to the original sound

Tektronix
 U.K. Limited

Beaverton House - Station Approach Harpenden - Herts. Telephone: Harponden 61251 Telex: 25559

The exclusive Tektronix split-screen, bistable storage feature is now available in two oscilloscopes, the new DC-to- 30 MHz Type 549 and the familiar DC-to-15 MHz Type 564 .
Both offer the unique capability for simultaneous storage and conventional oscilloscope operation, plus general purpose convenience and plug-in versatility. These features and new, reduced prices for the Type 564/RM564 add up to the kind of value you can expect from Tektronix.
Tektronix Bistable Storage Offers
Contrast of a stored trace independent of viewing time
Brightness of a stored trace independent of viewing time Brightness of a stored trace independent of writing time
There is much more you need to know. Fill in the Reader Enquiry Card, write, telephone or telex and we will send you complete specifications. The Prices shown are free of duty-subject to Treasury Direction.

STORAGE SCOPE		TYPE 549	TYPE 564	TYPE 564 Mod 08
WRITING SPEED	NORMAL	$0.5 \mathrm{~cm} / \mu \mathrm{s}$	$25 \mathrm{~cm} / \mathrm{ms}$	$100 \mathrm{~cm} / \mathrm{ms}$
	ENHANCED	$>5 \mathrm{~cm} / \mu \mathrm{s}$	$>125 \mathrm{~cm} / \mathrm{ms}$	$500 \mathrm{~cm} / \mathrm{ms}$
ERASURE		SPLIT SCREEN FULL SCREEN REMOTE/AUTO	SPLIT SCREEN FULL SCREEN	SPLIT SCREEN FULL SCREEN
PLUG	N TYPES	ACCEPTS LETTER AND 1-SERIES	ACCEPTS 2 AND 3 SERIES TIME BASES AND VERTICALS	
PRICE		£981	£363	\&363

WW-005 FOR FURTHER DETAILS.

MINH-POWER RELAYS

 EX STOCK12 \& 24 VDC, 100 \& 240 VAC
LITTLE space required

Screw-Fix Quick-Change 1.7 sq. in
 2.0 sq. in.

KING size switching

$$
2 \mathrm{KVA} \quad 1.5 \mathrm{KVA}
$$

10 million operations (proof tested to 27 million).
Power transfer $=1: 1,500$.
Current gain $=1,400$ (coil to all contacts). LK2C (2 pole screw-fix type) $=10$ amps./ 400 volts per pole (1,000 VA max.).

3,000 TYPE RELAYS DELIVERED NOW

Ex Stock specially manufactured to meet general purpose requirements Fitted with standard twin silver contacts for 150 v. $/ 0.6$ A. a.c. 10.3 A. d.e. $2 \mathrm{e} / 0 ., 4 \mathrm{c} / 0$. and $6 \mathrm{c} / 0 .-500 \Omega, 1,000 \Omega$ and $2,000 \Omega-6$ to 110 v . d.e.

$\begin{gathered} \text { COIL } \Omega \\ +5 \% \\ \hline \end{gathered}$	BOLD FIGS. ARE D.C. VOLTS. ITALICS ARE m/A $\pm 5 \%$						
	CONTINUOUS RATINGS	DPDT		4 PDT		6PDT	
	Pull-in	6	12	8	16	9	18
500	Circuir Min.	8	16	11	22	12	24
	Circuit Limit (3W)			40	80		\cdots
	Coil Max. (7W)			55	10		
1,000	Pull-in	8	8	12	12	12	12
	Circuit Min.	11	11	16	16	17	17
	Circuit Limit (3W)			55	55		
	Coil Max. (7W)			80	80		
2,000	Pull-in	12	6	16	8	18	9
	Circuit Min.	16	8	22	11	24	12
	Circuit Limit (3W)			80	40		
	Coil Max. (7W)			110	55		

With coils from 0.1 ohm to 50,000 ohms. Any combination of contacts, light or heavy duty up to 36 springs (12 changeovers). Sensitivity: Approx. 10-40 milliwatts per contact set (light duty). Reliability: Up to 100 million operations on light duty contacts, one million on heavy duty. Variants available include: Plug-in, London Twin, Industrial 3 (10-30 A), Remanent, Latching, Solid State Timers (I sec. to 15 mins.), State Timers (l se
Transistorised Relays.
A.I.D., A.R.B., AND ADMIRALTY APPROVED

600 TYPE

Similar to the 3000 type, but smaller. Contacts for 300 mA to S.A. Coils: Maximum. 10,000 ohms. Insulation: Up to 650 V working.

A.D.S. RELAYS LIMITED

97 ST. JOHN ST., LONDON, E.C.I.
Tel.: CLErkenwell 3393. Cables: ADSRELAYS, London, E.C.I.

MINI G.P.

S 1500 PO. Minlature general purpose relay. Miniaturised version of PO 600 type with identical specification. $\frac{3}{4} \times 1 \frac{1}{4} \times 2 \frac{1}{4} \mathrm{in}$. (plus tags). Ideal for printed circuit work.

[^9]

a mountain of meters for Mahomet

(or just one if that's all you want)
We mean no disrespect, of course. We are merely underlining the fact that a 'mountain of meters' does exist. Here at Anders there are the largest stocks of standard and non-standard meters in the United Kingdom. Our aim is to give off-the-mountain delivery of the greatest variety of meters to the greatest variety of meter users. If you want a meter-or quite a lot of meters-standard or special-you needn't wear out your patience or your sandals. You needn't even come to the mountain. Just pick up the telephone.

Meters of all kinds from stockMeter calibration/Meter modification/Ancillary equipment Customdesigned meter circuitry and components \square Sole U.K. distributors of FRAHM vibrating reed frequency meters and tachometers and of the EKM range of portable voltmeters, ammeters and wattmeters.

ANDERS METER SERVICE

[^10]versutile!

The Erie 'Weecon' ceramicon range comprises sub-miniature rectangular plate capacitors in 5 sizes from 0.15 in. square to 0.5 in . square, suitable for operation in ambients up to $125^{\circ} \mathrm{C}$.
'Weecon' versatility is based on a fully comprehensive capacitance range of 6 pf to 54,000 pf, with a minimum tolerance of $\pm 1 \%$, available over 10 standard temperature compensating and 5 standard high permittivity dielectrics: there is the option of 100 V or 200 V working.
The high volumetric efficiency, performance and flexibility of the 'Weecon'
range makes it particularly suitable for compact systems such as communications, data processing, military equipment, test gear etc.
Erie's 'Weecon' range underlines their versatile and flexible approach to the demands of a fast moving and fast changing electronics industry. Past experience and forward research ensure that Erie are always abreast of current developments as they occur.
Weecon, ceramicon are Registered Trade Marks of Erie Resistor Limited.

Erie take a pride in Performance

Write for catalogue to:
ERIE RESISTOR LIMITED,
Gt. Yarmouth, Norfolk, England.
Telephone: Great Yarmouth 4911
Cables: Resistor Great Yarmouth Telex : 97421

actual

SIIIE

BRIEF SPECIFICATION

Ranges:
Four decades giving steps of $100 \mathrm{pF}, 1000 \mathrm{pF}, 0.01 \mu \mathrm{~F}$ and $0.1 \mu \mathrm{~F}$.
Minimum Capacity:
30 pF with all Switches set to zero.
Accuracy:
Better than 5\% at any setting.
Voltage rating:
250 V d.c. ($0.1 \mu \mathrm{~F}$ Decade 100 V d.c.)
Weight
$15 \mathrm{oz} .-440 \mathrm{~g}$.
Finish:
Green hammered enamel.
 siletion IIIIESS IIME atifes cosi INIISs spract

Developed by Hatfield Instruments Ltd. for use by design engineers for circuit tolerancing and in similar applications, the new Capacitor Decade Box Type $688 / \mathrm{A}$ provides a rapid means of capacitor selection over the range 100 pF to ${ }_{1} \mathrm{~F}$.
It is economical, dependable and occupies minimum berich space even when used in multiples, yet accuracy is better than 5% at any setting.

Write now for further information and we will gladly arrange for a Technical Representative to demonstrate this new unit.

hatfield Balun

HATFIELD INSTRUMENTS LTD., DEPT. W.W., BURRINGTON WAY; PLYMOUTH, DEVON
Telephone: Plymouth 72y73/4
Telegrams: Sigjen Plymouth

BSR UA70 now with cueing device

BSR add yet another plus feature to the remarkable UA70 automatic/manual turntable unit by including an integral mechanical cueing device - and without increasing the price. This cueing device allows the pick-up arm to be raised or lowered at any selected point on a record during manual play. Raising the cueing lever lifts the pick-up arm which may then be positioned above the record at the chosen point. The stylus is lowered gently to the groove by returning the lever to the rest position.
Now, more than ever, the UA70, with its wealth of outstanding design features, fine engineering and high performance, provides the selective listener with a turntable unit of quality unsurpassed in this price range.

THE WORLD'S LARGEST MANUFACTURER OF RECORD CHANGERS AND TAPE DECKS BSR LIMITED, MONARCH WORKS, OLD. HILL, STAFFORDSHIRE

Write for further details to: FERRANTI LTD., KINGS CROSS ROAD, DUNDEE, SCOTLAND Tel: (ODU2) DUNDEE 8714?

Brush Clevite Bandpass Filters are NOW made in UK and are NOW down in price!

Circuit suitable for filtars requiring 2.5 K terminating impedance is TL 205A, TL 408A, TL 6011A, TL B014A. TL 10016A

THE ANTEX RANGE -an iron for every precision need!

40W. Modelsfor 20 or 24 V (mains modelsavailable shortly) $\frac{5}{16}{ }^{\prime \prime}$ bit fitted-alternative bits available. 42/6d

ES

25W. Models for 12, $24,110,220$ or 240 V supply. $\frac{1}{8}^{\prime \prime}$ bit fitted3 alternative bits available. 35/=

E

20W. Models for 24, $1.10,220$ or 240 V supply. $\frac{1}{4}$ " bit fitted8 alternative bits available. $\quad 35 /$.

G

18W.Models for 110 , 220 or 240 V supply. $3 / 32^{\prime \prime}$ bit fitted - 3 alternative bits avail able. $\quad 32 / 6 \mathrm{~d}$

CN

15W. Models for 24 , $110,200,220$ or 240 V supply. $3 / 32^{\prime \prime}$ bit fitted - 17 alternative bits available. 32/6d.

HOURS of work reduced to SECONDS with the new ANTEX DE-SOLDERING TOOL

Soldered joints can now be easily, speedily and neatly unsoldered. A self-cleaning nozzle, exclusive to the ANTEX de-soldering irons, sucks up molten solder into stainless steel catcher. Operates by compressed air from airline or standard footpump. Type ESS for 240, 220, 110 or 24 volts. Type GSS for 240, 220 or 110 volts. Price complete with connecting tube, flexible lead and adaptors £4. 4, 0.

ANTEX LTD

Grosvenor House, Croydon, Surrey, MUNicipal 2774

WW-013 FOR FURTHER DETAILS.

LEVELL

PORTABLE INSTRUMENTS

Fully detailed leaflets are available on our complete range of portable instruments.

LEVELL ELECTRONICS LTD.

PARK ROAD, HIGH BARNET, HERTS. Telephone: 01-449 5028 ww - 014 FOR FURTHER DETAILS.

combines
progress
and quality

Exporters

HEIM - ELECTRIC

Deutsche Export und Importgesellschaft mbH 102 Berlin. Liebknechtstrasse 14 German Democratic Republic

The whole is no better than its parts
RFT carbon film resistors are made on automatic production lines. High-performance automatic grinders ensuring tolerances of less than $\pm \mathbf{2 \%}$ are an important constituent of modern production installations. This manufacturing accuracy is for the reliability and long service life of RFT resistors just as decisive as the use of high-grade materials and comprehensive tests.
This means that any piece of equipment with RFT components contains important quality factors. They ensure the reputation of the product and thus stimulate demand. Our customers reap the benefit.
The comprehensive RFT range encompasses

Resistors

Carbon film resistors, wire-wound resistors, potentiometers, rheostats. Capacitors
Plastic capacitors, paper capacitors, metallised paper capacitors, electrolytic. capacitors, high-voltage capacitors, interference suppression capacitors.

Sole Representatives:

Globus Commercial Enterprises (Britain) Ltd. MAPPIN HOUSE, 156 OXFORD STREET, LONDON, W.I Phọne: Langham 0978 Telex: LDN 21853 Cable: Globus London W.I

WW-015 FOR FURTHER DETAILS.

New from Plessey-PR155 MF/HF receiver speaks for itself

Glossy superlatives are out, here are the facts...

All transistor design for reliability and low power consumption.
Modular construction using printed circuit cards for easy maintenance.
Frequency range: $60 \mathrm{kc} / \mathrm{s}$ to $30 \mathrm{Mc} / \mathrm{s}$, continuous coverage.
Ease of operation: Two tuning controls.
Scale length: 70" per megacycle.
Resolution: Better than $100 \mathrm{c} / \mathrm{s}$.
Stability: $\pm 5 \mathrm{c} / \mathrm{s}$ short term, $\pm 30 \mathrm{c} / \mathrm{s}$ long term.
Reception modes: CW, MCW, DSB, USB, LSB.
Radiation: Less than $5 \mu \mathrm{~V}$.
AGC range: $120 \mathrm{~dB}-4 \mathrm{~dB}$ output.
Signal handling capacity: Better than 1V R.M.S. for low intermodulation. RF protection: 6 V R.M.S. without damage.

Write for full technical information to:

The Plessey Company Limited, Radio Systems Division, liford, Essex, England Telephone: Ilford 3040. Telex: 23166

PLESSEY Electronics

VALVES FOR: Radio and T.V. Retailers
T.V. Rental Groups Trade Service Radio Relay Companies Audio Equipment Electronic Equipment Instrumentation Computer Manufacturers Aircraft, Marine and Radar Communications Equipment

Public Corporations
Civic Councils
Educational Authorities Hospitals and Medical Schools Research and Development Government Departments AIR REGISTRATION BOARD AND MINISTRY OF AVIATION

APPROVED

ALWAYS PHONE

Pinnacle

 FIRST

PINNACLE ELECTRONICS LTD

THE LINTON - here you can see exactly what you get for your money when you buy the Linton, compact twin speaker system from Wharfedale. Remember Wharfedale speaker systems are the finest in the world - and the best value for money too!
For colour folder giving full details of the Linton write to Dept. wII. Selected by the DESIGN CENTRE LONDON.

Frequency range $40 \mathrm{c} / \mathrm{s}-20,000 \mathrm{c} / \mathrm{s}$
Impedance-Suitable for 8 or 15 ohm amplifier
Power handling capacity 10 watts rms (20 watts peak)
Size $19^{\prime \prime} \times 10^{\prime \prime} \times 10^{\prime \prime}$ Weight 18 lb
Finished in Zebrano, mahogany, walnut or teak veneers £18.12.7. (tax pald)

Wireless World

INFORMATION SERVICE FOR PROFESSIONAL READERS

To obtain further details of any of the coded items mentioned in the Editorial or Advertisement pages of this issue, please complete one or more of the attached cards entering the reference number(s). Your enquiries will be passed on to the manufacturers concerned and you can expect to hear from them direct, in due course. Cards posted from abroad require a stamp. These Service Cards are valid for six months from date of publication.

PLEASE USE CAPITAL LETTERS

Pour obtenir tout autre renseignement sur tout article mentionné dans l'Editorial ou dans les pages publicitaires de ce numéro nous vous prions de remplir une ou plusieurs des cartes ci-jointes en inscrivant le numéro ou les numéros de référence. Vos demandes de renseignement seront transmises aux fabricants Intéréssés qui, entemps voulu, vous feront parvenir une réponse. Il est nécessaire d'affranchir les cartes postées l'étranger. Ces cartes de service sont valides pendant six mois à partir de la date de publication.

PRIERE D'UTILISER DES CARACTERES D'IMPRIMERIE

Weitere Einzelheiten über irgeendwelche Artikel, die auf redaktionellen oder Anziegenseiten erschienen erhalten Sie, indem Sie eine oder mehrere der beigefügten Karten ausfüllen und die Kennummer(n) angeben. Ihre Anfrage wird an den Hersteller weitergeleitet, und Sie werden dann direkt von ihm hören. Karten, die im Ausland aufgegeben werden, müssen frankiert werden. Diese Service-Karten sind für sechs Monate vom Ausgabetag gültig.

BITTE IN BLOCKSCHRIFT AUSFULLEN

Per ulteriori particolari in merito agli articoli menzionat nel testo o nelle pagine pubblicitarie di questo numero. VI preghiamo di completare una o più delle schede allegate citando il numero o i numeri di riferimento. La Vostra richiesta sarà inolerata ai fabbicanti interessati che Vi risponderanno direttamente. Le schede dall'estero dovono essere regolarmente affrancate. Questo scontrino di servizio è valido per sei mesi dalla data di pubblicazione.

```
SI PREGA DI COMPILARE LE SCHEDE
```

STAMPATELLO

Con objeto de obtener más detalles de cualquiera de los artículos mencionados en las páginas editoriales o de anumcios de este número sirvase rellenar una o más de las unidas tarjetas citando el número o numeros de referencia. Sus consultas serán transmitidas a los fabricantes interesados de quienes tendrán noticias directamente a su deibo tiempo. Las tarjetas enviadas desde el extranjero requieren franqueo. Estas tarjetas de servicio son validas durante 6 meses a partir de la fecha de publicación.
sirvase escribir con letras mayusculas

10-12 Watts - 5 kVA
 DRAKE TRANSFORMERS

Mains Transformers
 Chokes

Audio Output Transformers
Audio Input Transformers
Saturable Reactors
Coils
Current Transformers
Transistor Transformers
Inverter Transformers

Screened Microphone
Transformers
Wide Band R.F. Transformers

Integrity in Instrumentation

IN STRICT TRAINING

Essential to the consistent quality of Sifam instruments is the inflexible rule that only fully competent, Sifam-trained staff can take part in the manufacturing process.
This obviously precludes any kind of "sit-in" training for new and transferred employees; therefore Sifam have a pre-production training school staffed by full-time training officers. Although completely separated from the main factory, the school echoes its organisation and facilities-trainee employees are able to carry out practical work in instrument manufacture as well as acquire theoretical knowledge from films and lectures.

The result of this rigorous policy over training is that every employee works consistently to Sifam's high standards . . . which, in turn, helps to maintain the accuracy and reliability for which Sifam instruments are acclaimed.
 PROCESS TIIERS

611 T Delay Relay * 2 secs. to 25 secs. Delay. * 15 amp. c/o. micro-switch fitted. \star LARGE RANGE OF A.C. \& D.C. OPERATIONS. From 39/11 each.	SYT MBNI-TAMTR * dial ranges 10 secs. to 6 hours. \star Mains operation. + 5 AMPS. DOUBLE POLE, DOUBLE THROW SWITCHING INCORPORATED. Accuracy $\frac{1}{2} \%$. From $£ 9.2 .3$ each.	sTP Sub-Mini Process Timer Eslug-in Octal base \star Mains operation. * Built-in 2 amp . $/ 0$ switching. $\rightarrow 10$ secs. to hour. From £5.1.8 each.

PROXIMITY SWITCH-TL 2 GNA

FLOATLESS LIQUID LEVEL CONTROLS

* To control or record liquid levels.
\star Stainless Electrodes switching minute surrent to Master unit for:
* Pumps, Motors, Alarms, etc.
* No moving parts.

Single and multi switching.

from

£4.19.7 eacin

LATEST DEVELOPMENT.....PROXIMITY HEAD YL-2GP-A Mains operated ... REQUIRES NO POWER PACK WHATSOEVER ... AVAILABLE DECEMBER NORTHERN STOCKISTS AND DISTRIBUTORS: GORDON WILSON (AUTOMATION) LTD. BLACKBURN 5992 I
(Dept. W.w.7) OMRON PRECISION CONTROLS

INSTRUMENTS FOR INDUSTRY

One of our "up to the minute" instruments for "up to the minute" requirements, available for speedy deliverance in a wide range of micro. ammeters, milliammeters and voltmeters both DC and rectified $A C$.

This is an actual size illustration of our model "SQ 2" in black moulded case. Further information on this range, and other modern stylings, will be sent on request.

HARRIS ELECTRONICS (LONDON) LIMITED

138 Gray's Inn Road, W.C.I.

'Phone Terminus 7937
wW-022 FOR FURTHER DETAILS.

Only S.M.E. Precision Pick-up Arms offer all these features - Choice of arm length Model 3009 (9 in .) or Model 3012 (12 in .) for still lowe, tracking error-of special importance with elliptical styli . Low inertia . High precision ball races and knife-edge bearings for minimum pivot friction - Linear offset chosen for lowest distortion . Automatic slow-descent with hydraulic control - Bias adjuster calibrated for tracking force . Exact overhang adjustment with alignment protractor . Precise tracking force from $\frac{1}{4}-5$ grams applied without a gauge - Shielded output socket . Low capacity 4 ft . connecting cable with quality plugs - Light-weight shell - Camera finish in satin chrome, gun-black and anodised alloy - Comprehensive instructions - Rational development-all improvements can be incorporated in any existing Series II:arm.

For sales and service ring Steyning 2228 ,
S.M.E゙. LIMITED - STEYNING \quad WUSSEX © ENGLAND

The hard-to-find man is the man with advanced technical knowledge

In the field of Electronics today the greatest demand is for men to fill the positions of skilled technicians and support engineers. These are the 'hard-to-find' men for whom the way ahead to rewarding and interesting jobs lies wide open.

CREI HOME STUDY COURSES offer advanced technical education to the man who realises that technical knowledge must be current and up-to-date if progress is to be made in a world in which new ideas, new techniques and new applications develop almost overnight.

CREI COURSES ARE AVAILABLE IN:-

Electronic Engineering Technology
Automation \& Industrial Electronic Engineering
Nuclear Engineering
Communications Engineering
Aeronautical \& Navigational Engineering
Television Engineering

PLEASE SENO ME (FOR.MY INFORMATION ANO ENTIRELY WITHOUT OBLIGATION) FULL OETAILS OF THE CITY \& GUILOS PROGRAMME. (C. \& G. SUBJECT 49)

CHASSIS and CASES

H. L. SMITH \& CO. LTD.

ELEGTRONIC COMPONENT DISTRIBUTORS 287/289 EDGWARE ROAD, LONDON, W. 2. Tel: PADdington 5891/7595
We shall be pleased to quote for all your component requirements ${ }^{*}$

BLANK CHASSIS

SAME DAY SERVICE

Of over 20 different forms made up so YOUR SIZE. (Maximum length 35 in., depth 4 in.)
SEND FOR ILLUSTRATED LEAFLETS or order straight away, working out total area of material required and referring to table below, which is for four-sided chassis in 16 s.w.g. aluminium
48 sq. in. $4 / 6 \quad 176 \mathrm{sq}$. in. $9 / 10 \quad 304 \mathrm{sq}$. in. $\quad 15 / 2$
80 sq. in. $5 / 10 \quad 208$ sq. in. $11 / 2 \quad 336$ sq. in. $16 / 6$
112 sq.in. $7 / 2 \quad 240$ sq. in. $12 / 6 \quad 368$ sq. in. $17 / 10$
$144 \mathrm{sq} . \mathrm{in} .8 / 6 \quad 272 \mathrm{sq}$. in. $13 / 10$ and pro rata.
$\begin{array}{lll}\text { P. \& P. } 2 / 6 & \text { P. \& P. } 2 / 9 & \text { and pro rata }\end{array}$
Discounts for quantities. More shan 20 sizes kept in stock for callers.
FLANGES ($1 \mathrm{in} ., \frac{7}{1} \mathrm{in}$) , 6d, per bend.
STRENGTHENED CORNERS I/- each corner.
PANELS: Any size up to 3ft. at 6/-sq.ft. 16 s.w.g.; (18 s.w.g. 5/3). Plus post and packing.

CASES

ALUMINIUM, SILVER HAMMERED FINISH

Type	Size	Price	Type	Size	Price
U	$4 \times 4 \times 4 *$	10/-		$8 \times 6 \times 6$	26/6
U	$5 \frac{1}{2} \times 4 \frac{1}{2} \times 4 \frac{1}{2}$	$15 / 6$	Y	$12 \times 7 \times 7$	41/-
U	$8 \times 6 \times 6$	21/-	Y	$13 \times 7 \times 9$	46/-
U	$15 \times 9 \times 9$	44/6	Y	$15 \times 9 \times 7$	48/6
W	$8 \times 6 \times 6$	21/-	Z	$17 \times 10 \times 9$	66\%
W	$12 \times 7 \times 7$	34/-		$19 \times 10 \times 8 \frac{1}{2}$	711-
W	$15 \times 9 \times 8$	44/-	* Heigh		-

Plus post and packing.
Type U has removable bottom or back, Type W removable front, Type Y all-serewed construction, Type Z removable back and front.

WW-025 FOR FURTHER DETAILS.

E=E: $1: 1: 8$ MINIFLUX

 MAGNETIC HEADS

Specialists in components for magnetic recording. Heads for tape $\cdot 8$ - 16 mm Film. Solid-state Record \& Playback Amplifiers. Class D erase \& bias Oscillators

MINIFLUX ELECTRONICS LTD. 8 Hale Lane. London N.W. 7.

MICROPHONES

their accessories TRANSISTOR SOUKD
and
"RADIOMIC" EQUIPMENT
top ranking quality for top ranking performance.
Full particulars from:

LUSTRAPHONE

St. George's Works, Regent's Park Road, London, N.W. 1 Tel : PRImrose 8844 WW-028 FOR FURTHER DETAILS.

ThE AuDV FIDEMTH STER30-33

A High Fidelity, All Transistor Stereo Amplifier providing 10 watts R.M.S. on each channel

OUTPUT PER CHANNEL
10 watts R.M.S. into 15 ohm load.
15 watts R.M.S. into 3.75 ohm load.
TOTAL HARMONIC DISTORTION
0.1% at 10 watts R.M.S. $\}$ Into 15 ohm 1,000 c.p.s. Into
load.
DAMPING FACTOR 20.
FREQUENCY RESPONSE
$\pm 1 \frac{1}{2} \mathrm{db} .20-20,000 \mathrm{c} . \mathrm{p.s}$.
HUM AND NOISE
-80 db .
CROSS TALK
-42 db . to -53 db .
MAINS INPUT SELECTION
100-110-120-200-210-220-240V.
50/60 c.p.s.
SEMI-CONDUCTORS (per channel)
AC107, OC44(3), OC812(2), OA5, OC1272 AD149(2)
INPUT SENSITIVITIES
(for 10 watts R.M.S. into 15 olims)
Pick-up Magretic $3.5 \mathrm{mv} .33 \frac{1}{\mathrm{~s}} \mathrm{r} . \mathrm{p} . \mathrm{m}$
Pick-up Crystal/Ceranuic 400 mv mv. 78 r.p.m.
Microphone 5 mv .
Tape Head 2 mv .
Aux. (Radio, Tape, Ceramic P.U. etc.) 100 mv . Above sensitivities will be doubled when output load is 3.4 ohms.)
BASS CONTROLS
+11 db . to -16 db , at $40 \mathrm{c} . \mathrm{p} . \mathrm{s}$.

Incorporation of the very latest
Transistors has made possible the really outstanding performance figures of this brilliant design.
Compare them with other leading makes currently ayailable.

RGTAIL $-\infty$ cice price

THE PRE-AMPLIFIER IS A COMPLETELY NEW DESIGN IT MINIMISES THE NECESSITY OF MATCHED INPUTS AND COMPLICATED SWITCHING arRangements. It also produces CONDITIONS OF MINIMUM NOISE AT HIGHEST SENSITIVITIES.

TREBLE CONTROLS

+15 db . to -15 db . at $10 \mathrm{kc} / \mathrm{s}$. EQUALISATION
Gram to standard R.I.A.A. characteristic. Tape head to standard C.C.I.R. characteristic SIZE $12 \frac{1}{2} \times 4 \times 812 \mathrm{in}$.
WEIGHT 12 ll h .
FILTER (Steep Cut) $7 \mathrm{kc} / \mathrm{s}, 11 \mathrm{kc} / \mathrm{s} ., 15 \mathrm{kc} / \mathrm{s}$ INPUT SELECTOR 33 f r.p.m., 78 r.p.m., AUX., Mic., Tape Head INPUT SOCKETS
Magnetic P.U., Crystal/Ceramic Pick-up. Allx., Tape Head/Microphone.

Designed for ease of fitting in cabinet or for free standing use. Tested for satisflactory operation in temperatures of up to $50^{\circ} \mathrm{C}$. $\left(120^{\circ} \mathrm{F}\right.$.).

Built to highest standards employing latest materials and techniques.

PLease send s.a.E. FOR LEAFLET EXPORT ENQUIRIES INVITED Designed and developed by the Audio Fidelity Group of Companies.

Manufactured and Distributed by LINEAR PRODUGTS LTD. EleGTRON works, ARMLEY, LEEDS.

With Lexor DIS-BOARDS. Over 1,000 combinations in all types of fittings and finishes. Available from stock.
Brochure and price list from:
LEXOR DIS-BOARDS LIMITED, ALLESLEY OLD ROAD, COVENTRY. Telephone: 72614.or. 72207

WW-030 FOR FURTHER DETAILS.

TRANSFORMERS colls CHOKES
 LARGE OR SMALL QUANTITIES
 TRADE ENQUIRIES WELCOMED
 SPECIALISTS IN

FINE WIRE WINDINGS
miniature transformers
RELAY AND INSTRUMENT COILS, ETC. VACUUM IMPREGNATION TO APPROVED STANDARDS ELECTRO-WINDS LTD.
CONTRACTORS TO G.P.O., A.W.R.E., L.E.B., B.B.C., ETC 123-5-7 PARCHMORE ROAD, THORNTON HEATH, SURREY LIVINGSTONE 2261 EST. 1933

WW-031 FOR FURTHER DETAILS.

with thenEWAntex PRECISION SOLDERING KIT

This is what the ANTEX Kit contains:

- Model CN240 15W Precision Iron with 3/16" bit, (used in electronic workshops and factories all over the world)
- Two spare Interchangeable Bits ($5 / 32^{\prime \prime}$ and $3 / 32^{\prime \prime}$)
- Reel of resin-cored Solder
- Handy Heat Sink - Cleaning Pad

PLUS

 36-page booklet on "How-to-Solder"-a mine of information for amateur and professional.
BRING YOUR WORKSHOP UP-TO-

 DATE with the new ANTEX KITObtainable from radio and electrical shops everywhere.

ANTEX LTD. GROSVENOR HOUSE,
CROYDON, SURREY. MUNicipal 2774/5

THE

PEMBRIDGE

COLLEGE

OF ELECTRONCS

 FOR TRANINGIN RADIO
AND TELEVISION

FULL-TIME COLLEGE COURSE IN RADIO AND TELEVISION

Our Course, of sixteen months' duration, provides a fundamental training for radio and television engineers. It includes theoretical and practical instruction on transistor television receivers, U.H.F. television receivers and colour television.
Exactly half the time is spent on practical work and the course provides excellent practical experience on valve and transistor radio receivers and high-fidelity equipment and all well known makes of television receivers.

The Course is recognised by the Radio Trades Examination Board (R.T.E.B.) for the Radio and Television Servicing Certificate examinations.
Next Course commences 4th January, 1967.
r_{0} : The Pembridge College of Electronics (Dept. P10)
34a Hereford Road, London, W.2.
Please send, without obligation, details of the Full-time Course in Radio and Television.

Name

Address

WW-034 FOR FURTHER DETAILS.

SUPERIOR PERFORMANCE Celestion

 Studio

 Studio Series Series

 LOUDSPEAKERS

 LOUDSPEAKERS}

The Ditton 10

The Ditton 10 is a compact high fidelity reproducer measuring only $12 \frac{3^{\prime \prime}}{4} \times 6 \frac{3^{\prime \prime}}{} \times 8 \times \frac{7_{4}^{\prime \prime}}{}{ }^{\prime \prime}$. We, along with many thousands of satisfied users throughout the world, consider it to be the finest loudspeaker in it's classsales certainly substantiate this.
If you are in doubt ask your audio dealer to demonstrate the Ditton 10 against any other comparable system.
Brief Specification
Power handling capacity
10 watts R.M.S.
Overall frequency response
$35-15,000 \mathrm{c} / \mathrm{s}$
15 ohms
Size $12 \frac{33^{\prime \prime}}{} \times 6 \frac{33^{\prime \prime}}{} \times 8 \frac{1_{4}^{\prime \prime}}{}{ }^{\prime}(323 \mathrm{~mm} \times 171 \mathrm{~mm} \times 203 \mathrm{~mm})$
Price $£ 19.6 .0$. inc. P.T. plus 5/7d. surcharge.

CX2012

When installed in a suitably designed enclosure the CX 2012 12" Co-axial loudspeaker provides truly professional sound quality.
A highly compliant cone surround allows maximum linear movement and minimises harmonic distortion.
Sensitivity of the co-axially mounted, horn-loaded, compression high note unit may be adjusted by means of the "Brilliance" control provided.

Brief Specification

Price
£17.10.0.

Power handling capacity
Overall frequency response
Impedance

20 watts R.M.S. $30-18,000 \mathrm{c} / \mathrm{s}$ 15/16 ohms

CX1512
A lower powered altepnative to Model CX 2012 。 Model CX 1512 provides the high standards of performance demandec by professional users.
Price £12.5.0. Brief Specification
Power handling capacity Overall frequency response Impedance

15 watts R.M.S. $30-15,000 \mathrm{c} / \mathrm{s}$

15/16 ohms

SMALLER ENCLOSURES

Celestion research engineers have now evolved two new enclosure designs of only 2.5 cu . ft: to accommodate the above co-axial loudspeakers. Their external dimensions (using $\frac{3^{\prime \prime}}{4}$ timber) are only $30^{\circ} \times 17 \frac{1}{2}^{\prime \prime} \times 11 \frac{1}{2}^{\prime \prime}$. Full details are given on the colour brochure.

I RADFORD

LOUDSPEAKERS

A RADFORD loudspeaker is not just another loudspeaker. It is something very special.

Reporting on the 1966 Audio Fair HI-FI NEWS said of the STUDIO model ". . . Radford amplifiers provided signals for a pair of STUDIO speakers, and the latter gave a purity of sound on singing voices never heard before

Similarly Donald Aldous commented in A.R.R. "The performance of this big loudspeaker reaches such a high standard of realism that it must be heard-no words can describe the quality.'

Four types of loudspeaker are avallable as described below. Each model has been designed to obtain the maximum possible performance within a size and price classification. In each category the RADFORD loudspeaker will outperform any other make.

BOOKSHELF

Uses two drive units, equalised and integrated by a ten element electrical network. Sealed enclosure loaded with a new sound absorbing material. Sensibly flat response from 60 Hz to 14 kHz . Size $21 \times 12 \times 8 \mathrm{in}$. ($53 \times 30 \times 20 \mathrm{cms}$.).

executive

This loudspeaker is identical with the Bookshelf model in respect of the drive units and integrating network; the difference being solely in the styling and size of the enclosure. The larger enclosure enables the low frequency response to be extended to 40 Hz . Delayed responses in the lower mid-range are also reduced due to the increased dimension from front to back. Sensibly flat response 40 Hz to 14 kHz . Size $25 \frac{3}{4} \times 15 \times 11 \frac{1}{2} \mathrm{in}$. $(65 \times 38 \times 29 \mathrm{cms}$. $)$.

MONITOR

Three drive units are used in this loudspeaker. The enclosure is identical with that of the Executive.
The moderate size and exceptional performance of this system makes it very suitable for use as a monitor for broadcast and recording where the most accurate low distortion reproduction is essential. All the drive units have a high power capability within their frequency range, and due to the precise filtering, relatively high sound pressure levels may be generated over the whole frequency band when used with amplifiers of sufficient power output. Sensibly flat response 40 Hz to 14 kHz . Size $25 \frac{3}{\frac{3}{6}} \times 15 \times 11 \frac{1}{2} \mathrm{in}$. $(65 \times$ 38×29 cms.).

studio

This loudspeaker uses four drive units. In order to extend the flat response below 40 Hz the rear of the bass driver is loaded with an acoustic transmission line. Sensibly flat response 30 Hz to 25 kHz . Size $35 \times 17 \frac{1}{4} \times 15 \mathrm{in}$. $(89 \times$ $44 \times 38 \mathrm{cms}$.).

Why not go to your dealer for a demonstration?

RADFORD ELECTRONICS Ashton Vale Road Bristol 3

M. R. SUPPLIES, Ltd.
 (Established 1935)

Knowa for many years as the most reliable source of the following specialised materialalways right up to date. Cireful pacting-immedlate dellivery. Prices nett.
THERMOSTATS. Open type. Made by Bunvic Controls for building in equipment Variable from 30 to 801 . 3 degree dili. 15 amps A.C. Switching. 6/6 ea. (des. 2/6.) EXTRACTOR FANS. Ring mounted all metal construction. T/E induction motor silent operatlon. 8° Blade, $10^{\circ} \max$ dia. 400 C.F.M. E5.15.0. (des. $5 /-$). Same model 10° Blade, $12^{\prime \prime}$ max dia. 500 C.F.M. $£ 6.6 .0$ (des. $5 /-$).
ELECTRIO GRINDERS, $200 / 250$ v. A.C. Fitted coarse and fine 3 in. grladingwheels. Very handy for many domestic and industrial uses. Foot mounted, overall length 7in. firl15\%(des. 3/6).
MINLATURE RUNNING TIME METERS (Gangamo). We bave great demands for thls remarkable unlt and can now supply lmmed lately from stock, 200/250 v. 50 c. synchronous. Counting up to 9,999 hours, with $1 / 10$ th indicitor. Only 1140 . square, with cyclometer dial, depth $2 \ln$. Many industrial and domestic applications to Indlicate the runuing time of any elect rical apparatus-atsy to install, 60/- (post paid).
SMALL GEARED MOTORS. In addition to our well-known range (List GM 564), we offer small open type S.P. undts, $200 / 250$ v. A.C., 1, 6, 12, 24, 60 r.p.m., approx. Bin. kong, with lin. shaft projection. Suitable for display work and many induatrial uses. Only 69/6 (des. 3/-).
SYNCHRONOUSTIMESWITCHES (Our very popular apeciality). 200/250 v. 50 e, for accurate pre-set switching operatlons. Sangamo 8.254 , providing up to 3 on-off operatlons per 24 hours at any chosen time with day-ouitting device (use optlonal). Capacity 20-amps. Compacty housed, 4in. dia. 3inn. deep. With full instructiona, $85 / 18 / 6$ (des. installation. portable, e4/9/6 (des. $3 /-$). Other ratings of Time 8 witches availuble for special requirements-please enquire.
MINIATURE VARIABLE TRANSFORMERS (Phllpg). Remarkable and very popular MINIATURE VARIABLE TRANSFORMERS (Philips). Remarkable and very popular
offer from stock. Open type-panel mount, only 3tin, dia. lnput $200 / 240$ v. Output offer from sthek. Cpen type-panel mount, only
$0 / 240$ จ. 0.6 amp. continuous, $\mathrm{f} 3 / 18 / 6$ (des. $2 / 6$).
AIR BLOWERS. Highly efficient units litted luduction totally eaclosed motor $230 /$ 260 v. 50 C .1 ph . Model SD. 26,80 CFM (Iree air) to 11.5 CFM at .15 WG (aize approx.)
 CFM (free air) to 127 CFM at $1.6 \mathrm{WG} 11 \times 8 \times 9 \mathrm{in}$., outlet Jin. 8 gq . £13/17/6 (des. U.K. 7/6).
SYNCHRONOUS ELECTRIC CLOCK MOVEMENTS (a mentioned and recommended in ruany natloual journals). $200 / 250 \mathrm{~N}, 50 \mathrm{c}$. Belf-starting. Fitted spindles for hours, minutee and central sweep reconds hands. Central one-hole fixing. Dia. u fin. Depth behind dial only lin. With back dust cover, $29 / 6$ (des. 1/6). Bet of three brass bands in good plain style. For $5 / 7 \mathrm{in}$, dlal $2 / 6$. For $8 / 10 \mathrm{in}$. dlal $3 / 6$ set.
SYNCH RONOUS TIMER MOTORS (Bangamo). 200/250 v. 50 ctg . Belf-starting 2in. dis. X 1 ?itzo deep. Cholce of fullowing speeds: 1 r.p.ta., 12 r.p.h., 1 r.p.h.. 1 rev. 12 hours., 1 rev. per day. Any one $39 / 6$ (des. 1/6). Also high-torque model (G.E.C.) $21 \times 2 \mathrm{in} . \times 1 \frac{1}{6}$. fi r.p.m. $57 / 6$ (des. 1/6).
IMMEDIATE DELIVERY of Stuart Centrifural Pumps, including stamless steel (most modela). Philips Variable Transiormers (all models).
M. R. SUPPLIES, Ltd., 68 New Oxford Street, London, W.C. 1 (Telephone: MUSeum 2958)

EDOYSTONE COMMUNCATION RECEIVERS

For the professional or Amateur user who likes the Best.

Communication receiver at a moderate price. MANUFACTURING STANDARDS OF THE HIGHEST ORDER, 8 B8A valves SuperbeteroSIANDARDS OF THE HIGHEST OR
dyne circuit. FREQUENCY RANGES:

Model No.	Cash	Price	Model No.	Cash	Price
Ec10.	¢48	00	EB35.	¢59	76
840c	¢66	00	940	8133	00

Hire Purchase Teims gladly arranged. Owing to frequent changes in the HP regulations we ape obliged to discontinute advertising these.
Please write for current rates. A 4 d stamp will bring you these and a full range of Eddystone Literature.

Carriage paid per passenger truin. SATIGFACTION GUARANTEED

Telephone: AINTREE 1445
send for hiteratore to
The Eddystone
Specialists
SERVICES LTD.
49/51 COUNTY ROAD LIVERPOOL, 4

ESTAB. 1935

WHERE THE GOING IS TOUCH, THE NEED FOR QUALITY VITAL GOVERNMENTS AGREE ON TEONEX VALVES.

Governments all over the world have chosen TEONEX Valves for vital civil and military roles requiring compliance to E.V.S. or M.I.L. standards. In spite of rising demand for these valves from government departments the world over, increased production facilities have made it possible to offer the TEONEX range (incorporating the entire range of British-produced valves or their Continental equivalents) for use outside the U.K. only.
Price list and technical specifications may be obtained from:-

TEONEX LIMITED

2a Westbourne Grove Mews, London, W. 11
England.

Expori Enquiries Only Please!

THE EIIHER REAY RACE!

Starters - many. Handicap - quality at the right price. Winners - Ether, because of their perfect changeover. Special Prize - awarded to Ether for bringing to the field two new low-cost miniature relays for either printed circuit or chassis mounting. Robustly designed and reliable for many applications such as domestic appliances or vending machines - but equally suitable for any application which requires inexpensive trouble-free relay performance.

Two-pole changeover types: up to 2 A (240 V a.c. or 24 V d.c.) Single-pole double make and break: up to 3 A (240 V a.c. or 24 V d.c.) Standard coil voltages: 6,12,18 and 24 V d.c.
Maximum operating power: 1W
Umpire - you, the user
66 TALK RELAYS WITH ETHER 99

ETHER LIMITED, General Products Division, Caxton Way, Stevenage, Herts. Telephone: Stevenage 4422. Telex: Ether Stevenage 82319

JOHN SMITH LTD.

209 SPON LANE WEST BROMWICH STAFFS TELEPHONE:WES 2516 (3 lines) WOODS LANE CRADLEY HEATH STAFFS TELEPHONE:CR 69283 (3 lines) WW-040 FOR FURTHER DETAILS.

Switch-on with ETHER power supplies

Pöwer supplies-an integral part of any electronic design-can be a headache. Consult Ether at the design stage of any project.
Specialist designs available in addition to a wide range of off-the-shelf equipment, all with power-in-reserve including:
High-stability units (single and multi-output) variable, plug-in and programmed equipment with wide choice of current and voltage ranges, a.c. voltage regulators, silicon or germanium units.

66 TALK POWER WITH ETHER 99

YOU CAN
 NOW BUY THE WORLD'S FINEST SPEAKER VALUE DIRECT FROM

The 700 Mark V Range

Specially designed to provide outstanding range, smoothness and uniformity of frequency response with freedom from self generated forms of distortion up to levels more than adequate for domestic listening. The speakers in this range all have a highly developed dual radiating system with optimum termination of both cones - voice coil impedence 15 ohms.

Power handling capacity in appropriate enclosures:-

780 Mk . V
Price £3.19.7
8 in. 6 watts r.m.s. 12 watts peak.
7100 Mk . V
10 in .8 watts r.m.s. 15 watts peak.
7120 Mk . V
12 in. 10 watts r.m.s. 18 watts peak. (No P.T. but Inc. P. \& P.).

Send for full technical data sheet with suggestions for enclosures to:

REPRODUCERS AND AMPLIFIERS LTD. Frederick Street, Wolverhampton England

LOUD SPEAKER MANUFACTURERS TO THE
RADIO INDUSTRY SINCE 1930

are widely used as standards. in many industries because:-

1) They are accurate (to $\pm 0.3 \%$ or $\pm 0.1 . \%$ as specified)
2) They are not voltage or temperature sensitive, within wide limits
3) They are unaffected by waveform errors, load, power factor or phase shift
4) They will operate on A.C., pulsating or interrupted D.C., and supere imposed circuits
5) They need only low input power
6) They are compact and self-contained
7) They are rugged and dependable

FRAHM Vibrating Reed Frequency Meters are avallable in miniature switchboard and portable forms, in ranges from 10 to 1700 cps . Descriptive literature on these meters, and on FRAHM Resonant Reed Tachometers, freely available from the sole U.K. distributors:-

ANDERS METER SERVICE

ANDERS ELECTRONICS LTD. 103 HAMPSTEAD ROAD LONDON NW1 TELEPHONE EUSTON 1639

MINISTRY OF AVIATION APPROVED.
WW- 044 FOR FURTHER DETAILS.

RASTBA
275/281 King Street, London,W.6. Tel: RIV 2960
WW-045 FOR FURTHER DETAILS.

DO YOU STILL USE A HAMMER AND CHISEL TO CUT A SQUARE IN SHEET METAL?

Don't any more

We have a Hand-operated Tool now to cut any straight sided shape. Square R/Angles slots for Louvres. All you do is simply mark out your shape and follow the lines. You can also convert the Tool to a Punch-Louvre Forming and Riveting Tool.

NO DISTORTION OF METAL ON EITHER SIDE OF CUT

Also a number of Bench Type folding machines EXPORT ORDERS DESPATCHED IMMEDIATELY AVONLEA TOOLS, WOODEND MILL, MOSSLEY, LANCASHIRE. MOSSLEY 2687

RACKS, PACKS and laboratory equipment

Chassis System

The well-known Lektrokit construction system, consisting of a range of simple, inexpensive items from which electronic chassis can be built up. using only screws and nuts.

GOODMANS HGH FDELITY

The FIRST British All-Silicon Transistorised Stereo Amplifier
"An excellent example of fundamental re-thinking in compact stereo amplifier design. Simple to set up and operate . . . there is no doubt that the Maxamp 30-with its high output in a small compass-is the best value-for-money product in this class which is yet available in the U.K." David Phillips and Donald Aldous "Audio and Record Review," April 1966.
"...The Maxamp 30 must rate par with the best valve circuits...the amplifier passed its test with flying colours . . . the arrangement of the facilities provided could not be better... The quality of workmanship in the amplifier is above criticism..." N. Hulley "HiFi News," July 1966.
"Clearly a real advance has been made . . . the standard is a high and creditable one; to the listener it means clear, firm and wall contained reproduction... this neat little amplifier is very much a successa significant contribution to modern solid-state equipment." Clement Brown "Records and Recording," May 1966.
"From the measurements taken it will be seen that the makers have been more than modest in their published specification. It is one of the quietest amplifiers I have used, has more than adequate reserve of power for all domestic conditions and a discreet elegance of design that reflect credit on all concerned." John Gilbert "The Gramophone," July 1966.

MAXAMP 30 can be used with any high quality loudspeaker, such as Goodmans MAXIM, MEZZO and MAGNUM-K systems (see opposite page), It is shown here with MEZZO.
Frequency response: $20 \mathrm{c} / \mathrm{s}$ to $20 \mathrm{Kc} / \mathrm{s} \pm \frac{1}{2} \mathrm{db}$.
Total Harmonic Distortion: Less than 0.3% for 15 watts per channel into an 8 ohm load at $1000 \mathrm{c} / \mathrm{s}$.
Loudspeaker Outputs: 4-8-95 ohms.
PRICE: $£ 49.10 .0$
Send the coupon for a free copy of 8 page colour booklet.

GOODMANS INDUSTRIES• Axiom Works Wembley -Middx•TEl; WEM 1200
A Division of Radio Rentaset Products 1 Lid.
yarIable d.c. POWER UWIT WITH accumulator performance froin

A.C. MAINS

EFFECTIVE RESISTANCE LESS THAN -1 ohm.

TYPE 250YRU/30/20 250VRU/60/10 PRICE \$131-5.0

FEATURES

0.30 VOLTS Variable up to 20 AMPS.
$0-60$ VOLTS Variable up to 10 AMPS also available.
RIPPLE CONTENT negligible, IMPEDANCE and REGULA-
TION equivalent to accumulator perfiormance. SILICON
RECTIFIERS. Inadvertent "SHORT" protection.
OVERLOAD CAPACITY 200% for short periods.

APPLIGATIONS

Operating and Servicing transistorised equipment. 12 v. Mobile radio/tel operation, D.C. Motors, relays, industrial power, etc. from any point of A.C. WITHOUT THE USE OF ACCUMU. LATORS.

12 v . or 24 v . FIXED OUTPUTS up to 24 Amps. also available. AVOID THE EXTRA EXPENSE OF SUPER REGULA. TION YOU MAY NEVER NEED. Prices $\{14-16-0$ to -131-5-0.

Please write to department C 3 b.
BROWELLS LANE, for current literature.

FELTHAM MIDDX
Tel.: FEL 4837-4242
VALRADIO and STEREOSONOSCOPE are the registered trade marks of VALRADIO LTD.

FRACTIONAL HORSEPOWER

ELECTRIC MOTOR

 MANUFACTURERSTHE HALL MARK OF QUALITY MOTORS

PROMPT \& PERSONAL SERVICE
WRITE TODAY FOR DETAILS

COMTEXITD

(DEPT. ww) 566 CABLE STREET, LONDON, E.1, ENGLAND
Telephone: Stepney Green 1400

WW-050 FOR FURTHER DETAILS.

WW-051 FOR FURTHER DETAILS.

GOODMANS HIGH FIDELITY

HIGH FIDELTY BOOKSHELF LOUDSPEAKER SYSTEM

Handies 15 watts of power-yetmeasures only $10^{\frac{3}{4}} \times 18 \frac{1}{4}^{* *} \times 8^{\prime \prime}$ deep-the MEZZO really will go on a bookshelf. The styling is restrained yet distinctive, making MEZZO an "easy" addition to any design -conscious furnishing scheme. The frequency range is a clear and clean 40 $20,000 \mathrm{c} / \mathrm{s}$ with a control and smoothness accounted for by two new specially developed and patented loudspeakers. The $8^{\prime \prime}$ bass unit is of very advanced design and construction, and is particu.

SPECIFICATION

Dimensions . .
larly notable for its very low distortion and extraordinary smoothness of performance. Itisclaimed to be thesmoothest bass reproducer of its size ever produced. The treble unit completes the quality picture to give an overall performance unrivalled in a reproducer of this size The L.C. crossover network operates at $2,200 \mathrm{c} / \mathrm{s}$. The distortion level is extraordinarily low. The perfectly controlled balance of the MEZZO sound makes itThe Loudspeaker to Live With.

Range.

PRICE £26.12.7. (inc. P.T.)
Also in Goodmans M range of Loudspeaker systems MAXIM MAGNUM - K
8 watts $10 \frac{1^{\prime \prime \prime}}{}{ }^{\prime \prime} \times 5 \frac{1}{2}{ }^{\prime \prime \prime} \times 7 \frac{1}{4}$ " deep same 25 watts $24^{\prime \prime} \times 15^{\prime \prime} \times 11 \frac{11^{\prime \prime}}{}$ deep. size as Maxamp 30, vet gives full range High Fidelity performance. £17.15.7. (inc. P.T.)

All 3 systems selected for the Design Centre. All meticulously finished in hand rubbed Teak or Walnut to order, and all can be used upright or horizontally.
See and hear them at your local Hi-Fi dealer. We will be pleased to tell you where your nearest stockist is.

GO0DMANS INDUSTRIES, Axiom Works, Wembley,Middx.Tel: WEM 1200 A Division of Radio Rentasat Products itd.

WW-052 FOR FURTHER DETAILS.

SOLDERING
With restyled moulded nylon handles

SEVEN SIZES, FROM 10 WATTS to 55 WATTS

- REPLACEABLE BITS, COPPER AND PERMATIP

EXCELLENT TEMPERATURE REGULATION
COOL, UNBREAKABLE HANDLE

- RAPID HEATING
- SIMPLE SERVICING
- ALL VOLTAGES
- LOW COST

LITESOLD instruments are compact and nicely balanced. Bits are spring-collet mounted for firmness and easy removal. Copper bits are standard, in sizes from $3 / 32 \mathrm{in}$. to $13 / 32 \mathrm{in}$. dias. PERMATIP bits are slightly slower, but eliminate bit face wear. LITESOLD elements are encased in specially pereoxidised wire for constant temperature regulation from new-less glamour but honest design, also apparent in the simple, unbreakable handle, with the element unit secured by two self-tapping screws (servicing couldn't be easier) and firm, springon clip. LITESOLD hollow-spindle construction prevents heat loss into the handle (which DOES stay cool) and improves performance. Useful LITESOLD accessories include HEAT GUARDS for elements, and BENCH STANDS.

Free details of the whole wide range of LITESOLD and ADAMIN soldering equipment in Brochure SP5. LIGHT SOLDERING DEVELOPMENTS LTD., 28 Sydenham Road, Croydon, Surrey. Tel.: CRO 8589 \& 4559 WW-055 FOR FURTHER DETAILS.

NOW UPGRADE YOUR TRANSMITTER CAPABILITY AT LOW COST!

15 \& 50 KW H.F. (4-26 M8) TRANSMITTERS FOR CW, F.S. RTT, ARO \& facsimile Featuring:

- Linear amplification. Forced air cooled EIMAC 3CX2500A3 tubes.

Servo drive mechanisms. Vacuum variable capacitors

- With F.S. Meyer, 10 channel crystal-controlled oscillator and variable master oscillator.
- ISB/SSE/DSE amplification with suitable exciter.
- ISB/SSE/DSB amp
- 600 ohm balanced transmission line output
- Spare parts and installation engineering services available.

Complete technical details on request.
the mediterranean communications equipment co. ltd.
P.O. BOX 54, GIBRALTAR

WW-056 FOR FURTHER DETAILS.

FERRANTI Space Vehicle Silicon Solar Cells
 TYPES MS20 AND MS21

These are blue-sensitive, radiation resistant, n on p cells which have been specially developed for electric power generation on space vehicles such as ESRO 2 and UK3.
Full design performance data is available showing the variation of load characteristics in space at different radiation levels up to $10^{16} 1 \mathrm{Mev}$ equivalent electrons/ sq. cm . dosages and temperature ranges from -120 to $+120^{\circ} \mathrm{C}$. In addition to guaranteeing the performance of complete satellite systems in known orbit radiation and temperature conditions, this data shows that FERRANTI cells possess the maximum known levels of radiation resistance for silicon solar cells, thus enabling known and maximum life to be obtained in orbital service.
This design data is available to system designers on request or via the complete satellite power system design service offered by the Ferranti Automation Systems Division.

RATINGS and CHARACTERISTICS

MS20

Symbol	Min,	Max.	Min.	Max.	
Isc	66	-	132	-	mA
I300	65	-	130	-	mA
I400	60	-	120	-	mA
Voc	530	560	530	560	mV
	45	-	45	-	$\%$
					$\%$
	45	-	45	0	$\%$
	-80	+100	-80	+100	${ }^{\circ} \mathrm{C}$

The illumination intensity is equivalent to $140 \mathrm{~mW} / \mathrm{sq} . \mathrm{cm}$. of Air Mass Zero and is obtained from an infra-red corrected Xenon arc lamp fitted with a Grubb Parsons filter type BA 123.

The following publications on Solar Cells are available on request: ESB21-SPACE VEHICLE SILICON SOLAR CELLS TYPES MS20 AND MS21.
ESA27-RADIATION RESISTANT HIGH EFFICIENCY SILICON SOLAR CELLS.

The Ferranti Automation Systems Division at Simonsway, Wythenshawe, Manchester, 22, telephone MERcury 5291, undertake the manufacture of cell arrays and power supplies to suit individual satellite systems requirements.
FERRANTI
First into the Future

Write now for details to: FERRANTI LTD. GEM MILL. CHADDERTON , OLDHAM . LANCASHIRE ENGLAND Telephone: (061) MAIn 6661
have a *name for it!

They call it
 *

INDICATIVE INTEGRATION

K.G.M. offer a greater variety of Digital Indicators thian any other manufacturer. For years they have been designing and making Mimic Diagrams and Control Consoles. Their combination of know-how and manufacturing resources deserves its own title. Ask for the Indicative Integration brochure and see what we mean.

KGM
 electronios limited BabDOLPH AD
 michmond Phone: RIChmond 7171

WW-058 FOR FURTHER DETAILS

Elcom complete mixing equipment is designed around th well known Elcom Electronic Fader which provides noise free stepless fade.

A wide range of equipment is available from the transportable four channel Mono/ Stereo battery/mains units to large multi-channel studio consoles.

Standard equipment can
 ments and submit quotations.

EICOMFor full details write or phone: ELCOM (worthampton) L(to. WEEDON ROAD INDUSTRIAL ESTATE NORTHAMPTON. TeI. Horthamplon 51873

[^11] WW-0.59 FOR FURTHER DETAILS.

ARE YOUR INSTRUMENTS ACCURATELY CALIBRATED?

The Bradley Calibrator 130B provides D.C. voltages up to 3,000 and A.C. voltages up to 511 at an accuracy of 0.2% for the rapid and easy calibration of all types of instruments.

This Calibrator provides a wide range of A.C. and D.C. precision voltage steps for testing of avometers, meter movements, transistor and valve voltmeters, oscilloscopes etc. All outputs have $\%$ error indication and are short circuit proof.
To enable you to test the 130B Calibrator yourself, we shall be glad to provide one on loan. In addition, the Bradley range includes precision current sources and programming facilities. May we send you full details of the Bradley range of calibrators? Write for the 'Calibration Equipment' booklet, publication No. 102.
G. \& E. BRADLEY LIMITED

Electral House, Neasden Lane, London, N.W.10. Telephone: DOLlis Hill 7811 Telegrams: Bradelec London N.W.10. Telex: 25583

FABBRICA ITALIANA APPARECCHI RADIO

 dipartimento elettronica professionaleMILAN (Italy)-Via G. B. Grassi, 93-Telephone: 306241/306841-Telex: 31295

PRODUCTION

Radar and ancillary equipment
Electronic military equipment
Ancillary navigational equipment
Antennae and accessories

Transistorised television repeater P 3149

Direction unit for large sound diffusion installations

Transistorised telecamera P 4814

WW-061 FOR FURTHER DETAILS

Have you sent for your copy? ENGINEERING OPPORTUNITIES is a highly informative 156 -page guide to the best paid engineering posts. It tells you how you can quickly prepare at home for a recognised engineering qualification and outlines a wonderful range of modern Home Study Courses in all branches of Engineering. This unique book also gives full details of the Practical Radio \& Electronics Courses, administered by our Specialist Electronics Training Divisionthe B.I.E.T. School of Electronics, explains the benefits of our Employment Dept. and shows you how to qualify for five years promotion in one year.

SATISFACTION OR REFUND OF FEE

Whatever your age or experience, you cannot afford to miss reading this famous book. If you are earning less than £30, a week, send for your copy of "ENGINEERING OPPORTUNITIES" today-FREE.
WHICH IS YOUR
PET SUBJECT?
Mechanica! Eng.,
Electrical Eng.:
Civil Englneering,
Radio Englneering,
Automoblle Eng.,
Aeronautical Eng.,
Production Eng.,
Bullding, Plastics,
Draughtsmanship,
Television, etc.
GET SOME
LETTERS AFTER
YOUR NAME!
Y.M.I.Mech.E.
A.M.I.C.E.
A.M.I.Piod.E.
A.M.I.M.i.
A.I.0.8.
B.SC.
A.M.i.E.R.E.
City \&. Guilds
Gen. Cert. of Education
Etc., etc.

BRITISH INSTITUTE
OF ENGINEERING TECHNOLOGY
(Dept. 303B), Alder maston Court, Aldermaston, Berkshire

PRACTICAL EQUIPMENT

Basic Practical and Theoretic Courses for beginners in Radio, T.V., Electronics, Etc. A.M.I.E.R.E. Cty \& Guilds Radio Amateurs' Exam. R.T.E.B. Certificate P.M.G. Certificate Practical Radio Radio \& Television Servicing Practical Electronics Electronics Engineering Automation

Pose covion: NoLTA

Please send me your FREE 156-page
"ENGINEERING OPPORTUNITIES"
(Write if you prefer not to cut page)

NAME

ADDRESS
\qquad

INCLUDING TOOLS!
 -

The specialist Eiectronics Division of $B . I . E . T . \quad$ NOU' offers you a real laboratory training at home witht practical equipment. Askfor details.
B.I.E.T. SCHOOL OF ELECTRONICS

Measures frequency, period, phase angle, pulse width, time, resistance, or capacity.
The basic instrument, with PCI plug-in module measures up to 10 MHz at romV AC or DC coupled input with trigger level and slope selection.
PC2 plug-in extends frequency range to 100 MHz at 50 mV .
PC3 plug-in measures resistance and capacity values to $\frac{1}{4} \%$.
Seven decade variable time scale enables results to be multiplied into usable units, e.g., r.p.m., galls/hr., ft./secs.

the most versatile British Timer/Counter on the market

PRICES :

TC3, $£ 600$	$\mathrm{PC} 2, £ 150$
$\mathrm{PC1}, £ 50$	$\mathrm{PC} 3, £ 100$

-but you can see this remarkable instrument, and try it, for nothing. Ask for a demonstration.

ADVANCE ELECTRONICS LIMITED Instrument Division. Roebuck Road, Hainault, Ilford, Essex. Telephone: 01-500 1000.

and you can recharge it - again and again . . .
Now power is self contained. All kinds of inst ruments, tools, appliances are no longer dependent upon wires and cables. A small DEAC sealed nickel-cadmium accumulator (of the type illustrated) can supply power from 20 to 3,000 milli-ampere/hrs. where and when it is needed. Recharging is simple and direct and there is no deterioration in storage. Other types up to 23 ampere/hrs. are available.

Designers, think Deac. Full details are readily available. Send for them now by completing the coupon below.
H (For the record, a slice of banana can produce 20 calories of energy. This cell, the same size, is many thousands of times more powerful.)

Please send me details of your rechargeable accumulators.
 NAME
 \qquad
 ADDRESS
 DEPT.

DEAC (Great Britain) Ltd., Hermitage St., Crewkerne, Somerset. Phone: Crewkerne 666. 'Grams: Tudorwerk Crewkerne. M\&PD2 WW-064 FOR FURTHER DETAILS.

N.C.BROWN LTD

MAIL ORDER DIVISION

pacesetters in storage equipment

36-DRAWER UNIT 'SPACESAVER' 36A. Overall size $42^{\prime \prime}$ high, $24 \frac{1}{2}{ }^{\prime \prime}$ wide, 12^{*}
deep. 36 drawers. In best quality steel, stove enamelled dark green. $£ 12.0 .0$.

12-DRAWER UNIT
POPULAR 12A
12 drawers in a
compact nest measuring $9^{\prime \prime}$ high, $35^{\prime \prime}$ wide, $12^{\prime \prime}$ deepan invaluable storage asset for the very economical price
 of only £4.15.0.

TO: N. C. BROWN LTD. Dept. E29 Heywood Lanes Tel. 69018 London: Dept. E29 5/6 Staple Inn, W.C Please send me a copy of your free illustrated catalogue. Please send me a 36A drawer unit 12A drawer unit Tick where applicable and. send cash with order. NAME
ADDRESS
WW-055 FOR FURTHER DETAILS

KONTAKT 60

int spam lemer FOR INACCESSIBLE CONTACIS

* KONTAKT 60 cleans and protects all contacts * Eliminates high transicion resistances
* Prevents ' creep ' currents * Does not affect plastic materials * In spray can with $5 \frac{1}{2} \mathrm{in}$. spray nozzle.

Other Kontakt products are:-

70 Protective Lacquer
72 Insulating Spray
75 Cold Spray for Fault Location 80 Special Siliconized Polish 100 Antistatic Agent for Plastics Write for full details of above complete range of Kontakt products to:-

SPECIAL PRODUCTS DISTRIBUTORS LIMITE
81 Piccadilly, London, W.1. GROsvenor 6482

B/A/G/ALD Digital counters combine versatility with economy

Racal SA. $550100 \mathrm{Mc} / \mathrm{s}$ Digital Frequency Meter

Direct Frequency Measurements from signal levels as low as 100 mV are possible without tuning or interpolation. Measurement capability can be extended by the use of the active probe unit type SA. 544 .
\square All Solid-State Design
$\square 8$ Digit Inline Display
$\square 0-55^{\circ} \mathrm{C}$. operating Ambient
\square D.C. Logic Switching
\square Digital Printout Facilities
\square Internal or External Standard
The SA. 540 Universal Counter Timer illustrated below is for time, period and frequency measurement up to $11 \mathrm{Mc} / \mathrm{s}$.

[^12]
and it's re-chargeable - again and again . . .
Now there's freedom for electrically powered tools, instruments and appliances. Neat, powerful DEAC sealed nickel-cadmium accumulators give manufacturers new scope for design, new potential for power that can come in pea-size packs (as well as a range of other sizes from 20 to 3,000 milli-ampere/hrs. capacity) with a notably flat discharge curve. Recharging is simple and direct, and there is no deterioration in storage. Other types up to 23 ampere/hrs. are available.

Talk to your designers about DEAC.
We have a folder full of vital information. Send for it now by completing the coupon below.
\Rightarrow (For the record, a pea can produce .5 of a calorie of energy. This cell, the same size, is many thousands of times more powerful.)

TELEPRINTERS - PERFORATORS REPERFORATORS • TAPEREADERS EDTING \& REPRODUCING SETS

Codesint. No, 2 mercury/Rerasus, zanot 803. Binery had special purposs Codea.

2-5-6-7-8 TRACK AND MULTIWIRE EQUIPMENT

telearaph automation and computer peripheral
Picture Telcgraph, Desk-Fax, Morse Equipment: Pen Recorders, Switchboards; Converters and Stabilised Pen Recorders, Switchboards; Converters and Stabilised Rectifiers; Tape Holders, Pullers and Fast winders; Governed, Synchronous and Phonic Motors; Teleprinter Tables and Cabinets; Silence Covers; Distortion and Relay Testers; Send/Receive Low and High Pass Filters; Teleprinter, Morse, Teledeltos Paper. Tape and Ribbons; Polarised and specialised relays and Bases; Terminals V.F. and F.M. Equipment; Telephone Carriers and Repeaters; Multiplex Transmitters; Diversity, Frequency Shift, Kefing Equipment; Line, Mains Transformers and Suppressors; Racks and Consoles; Plugs, Sockets; Key, Push,Minature and other Switches; Cords, Wires, Cables and Switchboard Accessories; Teleprinter Tools; Stroboscopes and Electronic Frisk; Cold Cathode Matrics; Test Equipment; Oscillascopes; Miscellaneous Accessories and Spares.

W. BATEY \& COMPANY

Gaiety Works, Akeman Street, Tring, Herts. Tel.: Tring 3476 (3 lines) Cables: RAHNO TRING STD: OHH 282 TELEX 82362

WW-069 FOR FURTHER DETAILS.

Neilson Equipment Cabinet 18 gns Housing Hi-Fi is our business . . turntables, tape recorders, loudspeakers, tuners, amplifiers, records, tapes . . . there's a RECORD HOUSING cabinet to suit your equipment. Send for illustrated catalogue giving full details of over 20 different cabinets, plus stockists list (U.K. only) to:-

RECORD HOUSING (Dept. WWHI)
Brook Rd, London, N.22. Tel: BOWes Park 7487.

 for the first time the reliability of metal oxide film at 50 parts per million temperature coefficient electrosil NC resistors

Type	DEF 5115.1 Rating	Ohmic Range	Max DC Volts	Length (Ins.)	Diam. (Ins)
NC.4	$\frac{1}{16} \mathrm{~W}$	$49.9-150 \mathrm{~K}$	200	0.281	0.098
NC.5	$\frac{1}{8} \mathrm{~W}$	$49.9-499 \mathrm{~K}$	250	0.416	0.148
NC. 6	$\frac{1}{4} \mathrm{~W}$	$49.9-1 \mathrm{Meg}$	300	0.593	0.200

The Electrosil NC resistor gives a lower temperature coefficient and tighter tolerances than ever previously available from a metal oxide resistor by a natural yield process. Made by the unique Electrosil glass-tin-oxide proçess, NC resistors introduce high-reliability into the high-precision resistor field. These resistors meet all conditions specified in pattern RFG7 of DEF 5115.1 and characteristic C of MIL-R-10509E.
[. Very low and consistent noise level

- Impervious to moisture
- Wide operating temperature range
Negligible voltage coefficient
Excellent high frequency performance
\square Extremely tight design tolerance

Send today for data sheet E2.05 which gives full details.

Electrosil Limited, P.O. Box 37. Pallion, Sunderland, Co. Durham.
Telephone: Sunderland 71481 Telex: 53273

STEREOSOUND

now with optional player unit B.S.R.UA. 70 or GARRARDSP. 25 52Gns complete with two speakers

Made by STEREOSOUND the specialists in StereoWhonic sollind Teak vencered apinet with 8IX watts phonle sound. Teak vencered cabinet with six watts Sphce for cassette tape recorder or radlo tuner. Two matching loudspeakers, each with 9 in. elliptical high fidelity unit and 4 im . tweeter. All for 52 gns .1 Ank your HS Fi speclalist, radio retailer, or department tore to demonstrite.

STEREOSOUND Productions Ltd
Capital Works, Brighouse.
Tol.: 1755
Lomdon diatributors:
HIGHGATE ACOUSTICS
$71 / 73$ Gt. Porlland St., W.t. Tel.: Museum 2901

WW- 072 FOR FURTHER DETARS

minitest MULTI-RANGE TEST SET 50uA movement 20,000 ohms per volt for only £7.17.6. (Trade price) (with leather case £8.12.6)

LOOK AT THESE FEATURES

* D.C. sensitivity 20,000 ohms per volt * A.C. accuracy maintained up to
* A.C. sensitivity 2,000 ohms per volt
* D.C. accuracy $\pm 2 \frac{1}{4} \%$ F.S.D. $20 \mathrm{kc} / \mathrm{s}$
* Additional decibel scale
* A.C. accuracy $\pm 2 \frac{3}{4} \%$ F.S.D. * Weight 18 ozs * 20 ranges

Fits into the pocket. The Salford Minitest, a highly sensitive test meter for the measurement of A.C. and D.C. volts, current and resistance. The clarity of the scale is exceptional and the knife edge pointer ensures accurate reading. Housed in a tough Melamine cover, the movement is built into a pressed steel case which effectively screens it from external magnetic fields.

[^13]$0-1,000$ are selected by

SALFORD ELECTRICAL INSTRUMENTS LIMITED
Peel Works * Barton Lane - Eccles • Tel: ECCles 5081 - Telex: 6671 London Sales Office: Brook Green, Hammersmith W.6. Tel: 01 - 6039292
A Subsidiary of THE GENERAL ELECTRIC COMPANY LTD OF ENGLAND

THE VARIAC* variable transformer is the most useful and versatile device ever developed for the control of a.c. voltage, or of current, power, heat, light, speed. It provides smooth continuous adjustment of output voltage from zero to line voltage and above, either handoperated or motor driven.
Only Variac has Duratrak*-a patented track surface giving longer: life, increased overload and surge capacity and maximum economy in maintenance.
There are over 600 Variac models and assemblies to suit virtually every possible requirement, ranging from small units for laboratory or instrument use to large ganged assemblies for high power 3 -phase operation. The range includes low-voltage, high-frequency, dual-output and narrow-range types, open, covered, portable, metalclad and oil-immersed constructions, plus many special models. This is the largest range of variable transformers available today.
The technical superiority and dependability of Variac are the result of over 30 years of development and refinement since the introduction of the first Variac models-the original variable transformers. " 'Variac' and 'Duratrak' are registered trade marks
Pariacs are made in England by The Zenith Electric Co. Ltd. London, and exclusvely distributed in the U.K., Eire and British Colonies by Claude Lyons Ltd,

the most useful and versatile device for controlling voltage, current, power, heat, light, speed

Write for comprehensive catalogue to Publicity Department, Hoddesdon
Valley Works, Hoddesdon, Herts Hoddesdon 67161 Telex 22724 76 Old Hall Street, Liverpool 3 MARitime 1761 Telex 62181

d'you hear
 WHITELEY forccousicichoods
 All noisy environments such as factories, workshops, department

 Ethere?.

Public Address

 is plain sailing with
Pamphonic

We manufacture a comprehensive range of high quality equipment for trouble-free sound reinforcement aboard ship, where information and instructions must be heard clearly and distinctly. Our Technical Advisory Service is freely available to assist in the planning of sound systems suitable for the acoustic peculiarities in ships at sea.

Damphonic for sound-naturally

Our Technical Advisory Serviče is freely available for your use.
Now Manufactured \& Marketed by:-

PYE TVT LIMITED

COLDHAMS LANE CAMBRIDGE P P.O. BOX 41
Telephone: Cambridge 45115 - Cables: TeeVeeTee, Cambridge • Telex 81103 WW-075 FOR FURTHER DETAILS.
stores and hotels require the facility of an acoustic hood which permits telephone conversations to be held without the interference of annoying background noises. Whiteley acoustic hoods are strongly made from resin bonded ply and finished in a cellulose enamel which makes thesesuitable for indoor or outdoor use.
 Also available with internal light andlor a storage shelf below hood \& directory holders

These attractive, and extremely functional directory holders will hold five directories neatly and securely, in individual swivel holders permitting easy identification and reference. The lower shelf provides additional storage space. The units are of cast alloy and are finished in an attractive grey epoxy resin enamel and constructed to strict G.P.O. design specifications.
Directory Holder Dimensions
$17 \frac{11^{\prime \prime}}{}$ " high $\times 13 \frac{1}{2}$ " wide $\times 13 \frac{3}{\frac{2}{2} " ~ d e e p ~}$

For further details please write or telephone.

WHITELEY ELECTRICAL RADIO CO. LTD Mansfield. Notts. Telephone: Mansfield 1762-5

Thorn Quick-Action Switch Units

Thorn Type S800 units will give up to 28,000 switching operations per hour dependent upon load and temperature. This rapid make and break action is fully maintained, without shimmying. Despite the small dimensions, the units can be used for rated loads up to 16 amps, AC or DC. Service life is at least 10 million switching operations. In fact, the units have been bench tested to 40 million repeat cycles without failure.
Thorn Type S800 units are designed as standard components for universal application throughout the entire control-gear field. for incorporation in all types of switchgear. And, because they can be actuated through
a variety of tripping means, they serve as impulse generators for digital counters, warning systems. regulating and monitoring equipment, and as switching elements in small-scale contactors, toggle and diaphragm-operated switchgear. etc.

The units are totally enclosed in transparent, dustproof housings which enable the state of the contacts to be examined at any time without dismantling. Standard contacts are of hard silver. Shown is the S 800 d . actual size.

For full details write to:

Bunlueres ceramics

for the ELECTRONIC INDUSTRY (and Electrical Appliance Manufacture)

Frequelex-for high-frequency insulation.

Refractories for high-temperature insulation.,

Bullers porcelain for general insulation purposes.

Meticulous care in manufacture, high quality material, with particular attention applied to dimensional precision and accuracy, explain the efficiency and ease of assembly when using Bullers die pressed products. Write today for detailed particulars.

BULLERS LIMITED

Milton, Stoke-on-Trent, Staffs.
Phone: Stoke-on-Trent 54321 (5 lines)
Telegrams \& Cables: Bullers, Stoke-on-Trent London Office: 6 Laurence Pountney Hill, E.C. 4 Phone: MANsion House 9971

5,000 catchy answers to one basic problem

(Here are some of them)

Whenever there's a problem of connection you'll find Carr Fasteners coming up with the answer. Currently they're working on 5,000 different answers and producing a total of 25 million parts a week. Most of them are small and simple, but what they lack in inches they make up for in ingenuity - so don't underestimate them. In fact you'll find them in anything from toys to furniture, from cars to electronic equipment. You could probably make use of them yourself.

the firm with the best connections

Stapleford, Nottingham Telephone Sandiacre 2661
CARR FASTENER Sates offices: Wembley, Birmingham, Sale, Glasgow
 WW-079 FOR FURTHER DETAILS.

NOW-the PLESSEY 700 radio telephone with $19^{\prime \prime}$ rack mounting

(and it's even easier to install and maintain)

A radio telephone link is cheaper, and easier to install, than a good quality copper wire circuit at 3 miles.
For emergency uses, or over difficult terrain, line systems may be impossible or too costly to install. In any situation Plessey can provide fully line integrated radio telephone systems with these benefits -
low installation costs, less maintenance, greater reliability.
And now a rack mounted version with even greater access - the front panel hinges down for routine maintenance checks. Full subscriber and
exchange integration facilities are provided by plug-in circuit cards which can easily be changed to meet different requirements. 5 watt amplifier, party line operation, subscriber check metering and coin box operation can also be incorporated. The 700 R operates in the frequency bands up to $470 \mathrm{Mc} / \mathrm{s}$, is fully transistorised and can be powered by batteries, ac/dc converter, thermoelectric or solar converters. Plessey offers a comprehensive system planning, surveying and installation service. For further information, contact: AT\&E (Bridgnorth) Limited, Bridgnorth, Shropshire, England. Telex: 33373.

PLESSEY Electronics

DECADE COUNTER AND DIGITRON DRIVE UNIT
A fundamentally stable divide by ten decade counter, thorough ly reliable and capable of directly driving a digitron type GR 10K Designed on a printed circuit board measuring only $7 \frac{1}{3} \mathrm{in} . \times 5 \mathrm{in}$. several units can be "plugged" into a cabinet using standard guide rails and edge connectors, thus creating an efficient and reliable digital counter at reasonable cost.
Power requirements: Plus 150 v . at 4.5 mA . Minus 70 v . at 150 mA Input requirements: Negative pulse not less than 100 mV . Max. freq. $40 \mathrm{Kc} / \mathrm{s}$.
Full details on request together with details of new low price D.C. output power supply units for transistor applications (as illlustrated above).

SOLARTRON

COMPONENT
RESOLVER VP. 748
Truly an instrument with fantastic capabilities, here, in one unit, is the means to monitor characteristics of loudspeakers, transformers, synchros and associated components; gas analysis. Frequency range 0.5 to $1,000 \mathrm{c} / \mathrm{s}$. and voltage ranges from 50 mv . to 150 V . Large thermo-couple meters (6in.) provide Reference and Quadrature outputs and $1.0 \mathrm{pk} / \mathrm{pk}$ output for oscilloscopes is provided on the front panel. Power requirements 115 v . or Power requirements
$200-250 \mathrm{v}$. 50 cycles. Priee E 250 .

SEFRAM RAPIDGRAPH

PEN RECORDER
Five Channel. Paper Speed. through $100 \mathrm{~mm} / \mathrm{sec}$. in ten steps with 40 mm . chart/channel. Penf/c max. D.C. $60 \mathrm{c} / \mathrm{s}$. Pen sensitivity. 6 mA at 2 v . for f.s.d. Event markers. Mains operated $240 \mathrm{v} .50 \mathrm{c} / \mathrm{s}$. Size 19 in . $\times 12 \mathrm{in}$. $\times 18 \mathrm{in}$. Weight 47 lbs. First class professional instrument in brand new condition at well under maker's list price. 1270.

SANGAMO WESTON

D.C. VOLTMETER

TYPE AL5442
A precision instrument especially designed for use in Srandards Laboratories for the calibration of D.C. voles $0-400$ at 1,000 ohms per volt. This unit has been calibrated to B.S.89 P.R. limits and has been designed to the highest Ministry specification. Mirror scaled, this unit cost the Ministry well over $£ 40$. Price $£ 17 / 10 /$-.

NOW READY-
OUR NEW PLUGS AND SOCKETS CATALOGUE
Greatly enlarged 72 page second edition-send for a copy now!

UND-AIR Mil

 53 Tottenham Court Road, London, W.I Telephone: LANgham 3653 (10 lines) Telex: 27931 TRANSFORMERS

MINISTRY OF AVIATION APPROVED INSPECTION.

TRANSFORMERS

STANDARD RANGE OR TO YOUR DESIGN TOROIDAL - 'C* CORE - PULSE - MATRIX

CHASSIS- CABINETS \& PRECISION METALWORK ELECTRONIC ASSEMBLY
HOWELLS RADIO LTD.
MULBERRY STREET, MANCHESTER, 15 MOSS SIDE 2000-2434

WW-082 FOR FURTHER DETAILS.

COIL WINDING MACHINES

for coils up to $6 \frac{1^{\prime \prime}}{}{ }^{\prime \prime}$ diameter to $6^{\prime \prime}$ long. 20-47 S.W.G.

Model " Q " standard.
The feed is fully automatic and the nut is in constant contact with the lead-screw. The reversal of the carriage is obtained by reversing the lead-screw rotation. Two lead-screws are used to give the large range of feeds and a lever on the carriage nut brings either into action. This lever has a neutral position which enables the carriage to be put at any position on the lead-screws. Ball bearing feed wheels are employed. This machine may be fitted for double coil and double end drive, also for
"Pyramid Winding."
Enquiries are invited.
ETA TOOL CO. (Leigester) LTD. 29A, WELFORD ROAD, LEICESTER. Telephone 56386

Record it... and hear the play-back simultaneously on the Brenell Mk5 Type M

-and be sure it sounds superb!

Loudspeaker tape monitoring, enabling you to check and adjust your recording as it is being made, is only one of the assets of this outstanding recorder. All the features the discriminating recordist has come to expect from Brenell tape recorders are here-and many others, too. Four speeds (frequency response 40$20,000 \mathrm{c} / \mathrm{s}$ at 15 i.p.s.), mixing, superimposing, hinged deck, pause control, safety erase lock, $8 \frac{1^{\prime \prime}}{}$ dia. spools, etc. The price? 93 gns. For the stereo enthusiast there is the STB2, £150.
Write for illustrated leaflet WWII

The key to Brenell's leadership-
 The Mark 5 Series 3 Deck

Used on all Brenell models mono and stereo. Provision for 4 heads. Four tape speeds. Wow and flutter content below 0.10 at $7 t$ i.p.s. Fast rewind and $8 \mathrm{t}^{\prime \prime}$ dia. reel accommodation. (Version available to take up to $10 \mathrm{i}^{\prime \prime}$ NAB reels) Price $£ 34,0.0$.

Arenell

BRENELL ENGINEERING CO. LTD. $231-5$ LIVERPOOL ROAD, LONDON, N.1. NOR 8271 (5 lines) GD611

PROTECT ELECTRONIC EQUIPMENT AGAINST MALFUNCTION OR BURNOUT...

No. KV.115/220 AC

Einnincoter CENSORVOLT AUTOMATIC VOLTAGE MONITOR

Guards primary power lines to prevent. equipment obuse in - RADIO-TELEPHONES - MARINE RADIOS -bROADCASTING TRANSMITTERS - TELEPHONE \& TELEGRAPH EQUIPMENT - AIRPORT RADIO INSTALLATIONS

Provides positive protection for all types of electronic equipment against high or low line voltage. Continuously monitors the primary line voltage and automatically disconnects the equipment when the line voltage reaches the preset cut-off point. Automati:ally reconnects the equipment when the line voltage returns to a safe level. Warning light and buzzer alarms.
Voltage damage or malfunction of electronic equipment can be costly . . . profect your electronic gear with Censorvolf.

Write Dep'IWW.for complete information

Two important new ILIFFE technical books

Transistors for Technical Colleges

L. Barnes M.Sc., Tech. A.M.I.E.E.

This book is the ideal student's guide to practical design aspects of electrical engineering. An easy-flowing text takes the reader swiftly through a whole range of devices and circuits-including the Zener diode and the thry-sistor-and he is encouraged to design simple circuits by a graphical approach. Separate reference and symbol sections area also included.
25s. net, by post 26 s . (limp covers), 192 pp. 87 illustrations.
42s. net, by post 43 s . Id. (case bound).

Feedback Circuit Analysis

S. S. Hakim, Ph.D., B.Sc:, A.M.I.E.E.

What are the real effects of feedback on the amplifier's circuit performance? The author, an experienced lecturer on feedback circuit analysis, examines the classical theory, discusses its limitations-and advances his own, more generalized explanation. He also refers to the problem of stability in detail. Electronic graduates and engineers everywhere will find this book both fascinating and factual.
95s. net, by post 97 s .400 pp. 306 illustrations.
obtainable from leading booksellers

ILIFFE Books Ltd.

DORSET HOUSE STAMFORD STREET LONDON S.E.I. WW-087 FOR FURTHER DETALLS.

THERE IS A SHURE ANSWER TO EVERY SOUND PROBLEM

COMMUNICATIONS 414A

Controlled magnetic hand microphone providing a clear, crisp, natural voice response of high intelligibility. Rugged and dependable, ideally suited for outdoor - indoor public address and communications. Frequency response 200 to $4,000 \mathrm{cps}$. High impedance and high out-

PROFESSIONAL RECORDING SM5A

Dynamic microphone for studio and location work. Cardioid directivity. Effectively rejects background noise and provides natural dialogue or vocal music pickup. Also suitable for scoring. Frequency response 50 to $15,000 \mathrm{cps}$. Perfectly balanced and dependable under all op. erating conditions.

AMATEUR RADIO 444

Designed for radio communications, providingoptimum performance from single sideband transmitters as well as AM and FM units. Response cuts off sharply below $300^{\circ} \mathrm{cps}$ and above $3,000 \mathrm{cps}$, ensuring maximum speech intelligibility and audio punch to cut through noise and interference.

PROFESSIONAL ENTERTAINER 585SA

Dynamic microphone with an effective filter to protect against wind and "pop". Features fine reproduction of music and voice. Ideal for use with high quality sourid systems and tape recorders. Eliminates squeal caused by feedback and overcomes poor acoustic conditions, indoors or out-

WIDE RANGE OF EQUIPMENT

FOR AUDIO + + IMPEDANCE +

+ FREQUENCY SWEEP + + + +

+ + FREQUENGY AND TIME +

+ + UHF MEASUREMENTS + + + +

IMPEDANCE
Universal Bridge TF 2700
Measures: Inductance: $0.1 \mu \mathrm{H}$ to 110 H Capacitance: 0.5 pF to $1,100 \mu \mathrm{~F}$.
Resistance: 0.01Ω to $11 \mathrm{M} \Omega$.
Price: $£ 85$

FREQUENCY SWEEP
20 MHz Sweep Generator TF 1099 Sweep Range: 100 kHz fixed to upper limit variable up to 20 MHz . Compensated probes for differential measurements. Price: £325

MARCONI INSTRUMENTS LIMITED

OFFER IMMEDIATE DELIVERY

AUDIO EQUIPMENT

TF 2160 Series Attenuators

0 to 111 dB . D. C. to 550 kHz
Prices: TF 2160 £120, TF 2161 £ 100, TF 2162155

Wide Range RC Oscillator TF 1370A 10 Hz to 10 MHz sinewave, 10 Hz to 100 kHz squarewave, Less than 1% distortion, 31.6 V output up to 1 MHz . Price: £275

MF Transmission Measuring Set TF 2333 Signal Source 30 Hz to 560 kHz , Attenuator 70 dB in 1 dB steps,
Level Meter -70 dBm to +25 dBm .
Price: f335

Sensitive Valve Voltmeter TF 2600 1 mV f.s.d. to 300 V f.s.d., 50 Hz to 5 MHz .
Price: £121

Wave Analyser TF 2330
(Selective Voltmeter), 20 Hz to 50 kHz tuning range, 6 Hz bandwidth, 65 db . rejection at 40 Hz off tune, $30 \mu \mathrm{~V}$ to 300 V voltage range.
Price: $£ 550$

RC Oscillator TF 1101 20 Hz to 200 kHz , Less than 0.5% distortion, 0 to 20 V into 600Ω. Price: £145

Distortion Factor Meter TF 2331 20 Hz to 20 kHz tuning range. Reads harmonics up to 100 kHz . Measures distortion down to 0.01%. Price: $£ 240$

Tunable Rejection Filter TF 2334 Increases rejection ratio of TF 2330. Can also be used for other purposes. 20 Hz to 20 kHz tuning range, 80 dB rejection ratio.
Price: £ 140

\star Wide frequency range $1 \mathrm{c} / \mathrm{s}$ - $100 \mathrm{Ke} / \mathrm{s}$.
\star Sine or Square wave thermistor stabilised output.

* Output continuously variable from 200 micro volts- 12 volts peak to peak.
\star Fully transistorised circuits.
\star Suitable for mains or battery operation.

Salas Engireers in London area and all parts of the U.K.

Eddystone

 SLOW MOTION DIALS
Catalogue No. 598 epicyclic dial

This full vision dial incorporates an epicyclic, ball-bearing drive mechanism of improved design

and giving a reduction ratio of approximately 10 to 1 . The movement is smooth and free from backlash. Dial escutcheon measures $6^{\prime \prime}$ long by $4 t^{\prime \prime}$ wide, finished ripple black. Four lines are provided on the semi-circular scale for individual calibrations, the outer line being marked from 0 to 100 over 180°. Supplied complete with black instrument knob 21" diameter.

Catalogue No. 898 gear driven dial

A high grade assembly for precision instrument applications. Gear driven, flywheel-loaded mechanism, with a reduction ratio of 110 to 1 , giving smooth, positive control.
Pointer travel is 7". A circular vernier scale, marked 0 to 100 , is read in conjunction with the lowest line on the main scale, which has five lines for individual calibration. Overall dimensions $9 \frac{1}{4}$ " by $5 \frac{7}{4}$ ". Diecast escutcheon finished glossy black to match $2 \frac{1}{\frac{1}{8}}$ diameter
instrument knob. Complete with fixing screws and mounting template.

Eddystone Radio Limited

Eddystone Works, Alvechurch Road, Blrmingham 31
Telephone Priory 2231 Cables Eddystone Birmingham Telex 33708
WW-092 FOR FURTHER DETAILS.
LTD/ED:

$\mathrm{N}_{\mathrm{E}} \mathrm{W}$

ORRTRONICS 8 TRACK DELUXE STEREO AUTOMOBILE TAPE PLAYER

Enjoy your favourite music played continuously in superb stereo hi-fidelity. Fully transistorized-no fade, no static. Beautiful black and chrome case matches all interiors. Only $7^{\prime \prime}$ wide and $23^{\prime \prime}$ high. Can be quickly and easily installed in any car, truck, boat or airplane with a 12 volt system. Completely automatic operation.
Simply insert a sealed plastic magazine tape cartridge and it plays continuously until shut off. Long-playing tape cartridges are tamper-proof, unbreakable and totally resistant to heat and cold. Choose from a vast library of Orrtronic tape cartridges featuring all types of music by your favorite artists. Write for free catalog and price schedule

MIORHAN

FXPOPIING CORPORATION
485 Broadway • New York, N.Y. 10013 - Cable: "Morhanex* WW-093 FOR FURTHER DETAILS.

Over 1001 R semiconductor devices are available from your dealer，many with free instruction manuals and project and experiment details．
Look for the floor－standing＇Semiconductor Center＇，or the counter－top＇Minicentor＇．
EXPERIMENTER SEMICONDUCTOR KITS MOUNTING KITS AND HEAT SINKS
SILICON BRIDGE RECTIFIERS
unijunction transistors selenium photo cells INSTRUMENT RECTIFIERS AUTOMOTIVE RECEIFIERS silicon solar cells SILICON RECTIFIERS GERMANIUM DIODES THYRISTORS（S．C．R．）
ZENER DIODES
TRANSISTORS
SELECNIUM STACKS

Write for the free illustrated catalogue and price－list，also the name and address of your nearest IR SEMICONDUCTOR CENTER

INTERNATIONAL RECTIFIER
 HURST GREEN－OXTED • SURREY TEL：OXTED 3215

Dealers－write for details of how you can start your own IR SEMICONDUCTOR CENTER．

I卫 semiconductor centers

WW－094 FOR FURTHER DETAILS

SOLID STATE AUDIO \＆ULTRASONIC TEST SET

AWA＇s（for Amalgamated Wireless Australasia，Ltd．） model A211 is geared to meet any test requirements． Completely portable，this Audio and Ultrasonic Test－ Set was designed to test broadcast，telephone and marine sonar sounding equipment．It provides all the facilities necessary to analyse and measure the characteristics of audio and ultrasonic networks in individual units，complete systems or separate stages within a single unit．Measurements can be made of the following characteristics：
－Output voltage versus input voltage as a function of frequency．
－Total power output versus input signal voltage as a function of frequency．
－Harmonic distortion and phase shift between input and output as a function of frequency and input／output level
－Noise output voltage signal input．
Put AWA equipment to the test．

For further information，contact your nearest AWA agent．Ask him for details on the complete line of AWA Test Equipment．
AMALGAMATED WIRELESS（AUSTRALASIA）LIMITED
P．O．Box 2516，Sydney，N．S．W．，Australia
livingston laboratories ltd．
canadian marconi company britain CANADA
WW－095 FOR FURTHER DETAILS．

RUDIO AMPTTHLR

12 Volt with 15 W . Output
Designed specially to give pleasing results on music and speech
Common emitter, class B output stages, with maximum efficiency choke coupling to 15 ohm speaker lines; temperature stabilised and direct coupled pre-amplifier stages with liberal feedback.
All output and input terminations are fully floating, thus enabling layman or skilfed engineer to be equally confident in the simple matter of coupling up for use.

FULL DETAILS OF THIS AND EQUIPMENT BY RETURN OF POST

E. K. ELECTRONICS (I.A.) LTD: Brotherton, Knottingley, Yorks.

WW-096 FOR FURTHER DETAILS.

An exceptionally compact, versatile and flexible ultrasonic transmitter and receiver, which can be mounted in any position, available for mains or internal/external battery power. Selective circuit avoids possibility of random response to other ultrasonic sources. Wide range of applications in production monitoring, counting, alarm and control systems of all kinds, with the dual advantage over photo-electric systems that receiver response is unaffected by fog, grit, dust, steam, etc, and that the equipment will "see" even translucent objects. External equipment such as counters, alarms, indicators can be operated remotely by the receiver.
Size: $\quad \begin{aligned} & \text { Transmitter } \\ & \text { Receiver }\end{aligned}\left\{\begin{array}{l}1 \frac{1}{2} \mathrm{in} . \times 2 \mathrm{in} . \times 3 \mathrm{in} .\end{array}\right.$
Price: \quad Model BO/I (Battery operated) 19 gns. Model MO/I (Mains operated) $£ 26$ (Set of TX and RX in each case)
Supply:
Consumption: Receiver 9 V. 2 mA . (15 mA . on full operation) Transmitter 9 V .4 mA .

The versatility of the equip: ment is extended by the feature that two modes of operation can be used, direct or reflected.

Direct
Transmitter and Receiver aligned to face each other. Range up to 30 feet-internal relay contacts close when transmitter ultrasonic beam is interrupted.

Reflected

Transmitter and Receiver in close proximity and facing same general direction. Range up to 12 feet-transmitter relay contacts close when beam is interrupted and reflected to receiver.

Manufactured by
BEULAH ELECTRONICS LTD.
A Member of the D.T.V. Group of Companies
Dept. WW, 126 Hamilton Road, London S.E. 27

WW-097 FOR FURTHER DETAILS.

NOM BREX ${ }^{\text {TRANSIITorisg }}$

27	.	..'		... $¢ 10.16 .9$
* Power Supply Unit 61	...	-*	...	E6.14.6
\star C.R. Bridge 62		c9. 6.9
Audio Generator 63		617. 1.9
ductance Bridge 66				<18. 6

All prices include bottery, past and packing. Prampt Delivery.
S.A.E. FOR TECHNICAL

TRADE \& EXPORT
LEAFLETS
ENQUIRIES INVITED

INDUCTANCE BRIDGE MODEL 66

NOMBREX LTD.
ESTUARY HOUSE, CAMPERDOWN TERRACE, EXMOUTH, DEVON. Phone: 3515

Dip-coated Silvered Mica Capacitors to humidity classification DEF-5312-H5 and BS. 2132 Part 1:1963-55/125-21... at dipped prices, too!

By means of a revolutionary new process, Dubilier have succeeded in producing dip-coated Silvered Mica Capacitors which, for the first time, meet DEF and BS humidity classification-and, moreover, at relatively low cost!
The capacitors are space and weight-saving,-offer standard wire spacing for printed circuit boards. To dip into our store of knowledge on the subject-ring ACOrn 8671.

Housing

Tough non-flammable thermosetting material.
Capacitance Range
At the preferred series values.
Type D10-15pF. to $1,000 \mathrm{pF}$. at 350 V d.c. peak.
Type D $20-100$ pF. to $4,700 \mathrm{pF}$. at 350 V d.c. peak. 200 pF . to $2,200 \mathrm{pF}$. at 750 V d.c. peak.

Capacitance Tolerance

$\pm 10 \%, \pm 5 \%, \pm 2 \%, \pm 1 \%$ and $\pm 0.5 \%$ (or $\pm 1 p F$. whichever is greater).
Temperature Range $-55^{\circ} \mathrm{C} .+125^{\circ} \mathrm{C}$.
Insulation Resistance
$<25,000 \mathrm{M} \Omega$ at $20^{\circ} \mathrm{C}$.

Power Factor

At $100 \mathrm{Kc} / \mathrm{s}$ to $1 \mathrm{Mc} / \mathrm{s}$.
$<0.1 \%$ above 100 pF .
WW-099 FOR FURTHER DETAILS.
$<0.2 \%$ above 50 pF . up to and including 100 pF . $<0.3 \%$ above 5 pF . up to and includling 50 pF .

Stability

0.05% or 0.1 pF . whichever is the greater.
Temperature Co-efficient
-10 to +50 p.p.m. $/^{\circ} \mathrm{C} .20^{\circ} \mathrm{C}$. to $+125^{\circ} \mathrm{C}$.
DUBILIER CONDENSER COMPANY (1925) LIMITED Ducon Works, Victoria Road, North Acton, London W.3. Telephone : ACOrn 8671.

DOBIGIEB

Leaders in capacitor development for more than fifty years.

The new teacher

English Electric Valves supply the vidicons for most of the closed-circuit TV cameras made in Britain, including those used in education. Their popularity with TV camera makers and users is because EEV vidicons give unusually high resolution, high sensitivity and short lag, besides being proved reliable. In many applications lives of more than 8,000 hours have been achieved. Such

reliability is essential if hundreds of school children are not to gaze at a blank screen halfway through the geometry lesson. EEV vidicons are available with two different values of heater current, $6.3 \mathrm{~V} / 600 \mathrm{~mA}$ and $6.3 \mathrm{~V} / 95 \mathrm{~mA}$, and with either separate mesh or integral mesh construction. For further technical information and the name and address of your nearest stockist write to:

Developed especially for the sophisticated amateur who knows enough to demand the finest. The DAVCO DR-30 is amateur-designed and professionally engineered to provide exceptional performance under extreme environmental conditions and combines advanced design with simplicity of operation. It provides all the latest state-of-the-art techniques in an ultra-compact unit (just $4^{\prime \prime} h \times 7.1 / 8^{\prime \prime} w \times 6^{\circ} \mathrm{d}$). Every DAVCO OR-30 is hand-crafted, inspected on the line during production no less than 60 times and put through rigorous final testing before serial number and warranty are

the ULTIMATE in sophisticated amateur equipment DAVCO cuwnurainur nemir

Compact, high performance, all solid-state receiver for amateur applications featuring FIELD-EFFECT TRANSISTORS

awarded. The OR-30 utilizes Field-Effect Transistors in RF stages to assure greater sensitivity, superior image rejection and unbelievable freedom from cross-modulation or strong-signal overloading. You'll dig out the weak ones with ease, even when the ham down the block is on with his KW. Today's crowded bands demand DAVCD DR- 30 performance. Ask the ham who is using one now, check the many plus features included at no extra cost and you'll discover why Davco is the leader in providing amateurs with the most advanced in solid-state electronits.

DAVCO

DR-30

\$38950

PRICE IN
U.S.A.

- Complete ham•band coverage 80-10 meters and portion of 6 meters - Standard-equipment 9.5-10.5 MC band provides WWV and 31 meter SWL band - Three position selectivity for optimum fidelity and ORM rejection. Crystal-controlled 8FO; separate AM and Product detectors; AF and RF gain controls. Full AGC with selectable
decay time; S-Meter; illuminated dial. Fly- battery operation when desired; AC supply wheel tuning drive with high-ratio split gears; available - Full transistorization, diode selecdirect calibration on all bands. Tunable rejec- tivity switching, plug-in module construction, tion notch filter; extremely effective noise highest quality components - Rugged, stable limiter - Transmitter type VFO; crystal con- extruded aluminum chassis for extreme statrolled first oscillator; built in crystal calibrator bility; textured grey metal cabinet; FULLY - Low power consumption, permitting 12 V GUARANTEED.

Highly dependable, this little lamp is extensively used wired direct to printed circuits or potted as an integral part of the equipment. In ratings from 0.75 w .0 .17 w . to 28 V .1 .12 w ., it is designed for an average burning life of 1,000 hours.
Write for catalogue of standard ratings to: -

VITALITY BULBS
 LTD

MINIATURE AND SUB-MINIATURE LAMP SPECIALISTS BEETONS WAY, BURY ST. EOMUNOS. SUFFOLK. TEL: 207T. ST0.0284/2071 WW-102 FOR FURTHER DETAILS.

ROYAL-D PLUGS

D Subminiature serles with crimp snap in contacts and "Little Caesar" RearRelease System. 9 to 50 contacts with mixed coaxlal layouts.

Cannon Electric
 (Great Britain) Ltd., Lister Road,
 Basingstoke, Hants.
 Tel: Basingstoke 3171

Registered Trademark

ONE OF A SERIES FEATURING VETERAN CARS - presented by the makers of todays most advanced mobile communications system

1897 Benz Single cylinder $3 \frac{1}{2}$ H.P. with Dog Cart body. Owned by Cmdr. Sir Hugh Dawson, Bt,, CBE., RN.

CALLING ALL CARS-WITH BCC $81!$

The BCC 81 is the perfect modern VHF transmitter-receiver for patrol cars, ambulances, taxis and the like. Extensive use is made of space-saving transistors-the whole unit fits neatly under the dashboard of almost any vehicle.
ECONOMICAL The BCC 81 has an extremely low current consumption, equal to just one instrument panel lamp on 'receive'.
RELIABLE The 81 set is backed by the full resources and the long-standing reputation of the British Communications Corporation.
TOP OF ITS CLASS An advanced design with single and six channel versions available with a 6 -watt A.M. output make the BCC 81 unbeatable in its class.

EXHIBITION GROUNDS, WEMBLEY, MIDDLESEX.
Telephone: WEMbley 1212. Telegrams: BEECEECEE WEMBLEY.

RADIO valve data

An invaluable reference book for everyone concerned with radio, television, telecommunications and electronic circuits. Now in its eighth edition it is completely revised and gives in tabular form the characteristics of approximately 7,000 types of British valves, transistors, semiconductors and rectifiers for radio, television, telecommunications and electronics circuits. Together with particulars of 300 cathode ray tubes for television applications.
To facilitate easy reference valves and semiconductors are now divided into two separate sections and transistors have been regrouped under four main headings. And, for the first time, drawings of valve base and transistor connections are given.
Have the facts on radio valves at your fingertips with RADIO DATA. No technical reference library is complete without one!
$11^{\prime \prime} \times 83^{\prime \prime} \quad 230 \mathrm{pp}$. approx. 9s 6d net. 10s. 3d by post

RADIO VALVE DATA
CHARACTEATSTIES OF SEVEN THOUSANO
CHARACTEATSTICS OF SEVEN THOUSANO VALVES - TRANSISTORS - SEMICONDUCTON

ILIFFE BOOKS LTD

DORSET HOUSE STAMFORD STREET, S.E. 1
Obtainable from leading booksellers

WW-105 FOR FURTHER DETAILS.

Miniature and Sub-Miniature Indicator Bulbs in sizes from 4.5 mm

Catalogue from
VITALITY BULBS LTD
MINIATURE LAMP SPECIALISTS beeton's way, bury st. edmunds, suffolk. Tel: 2071 STD 0284/2071 WW-106 FOR FURTHER DETAILS.

MICRO-D PLUGS

Versatile, highly reliable microminiature connectors designed for space and weight saving applications.

Cannon Electric

(Great Britain) Ltd., Lister Road, Basingstoke, Hants. Tel: Basingstoke 3171

Reglstered Trademark

9 GOOD REASONS

 for choosing the SERVISCOPE* type S51a- Compact as a portable typewriter, only $8^{\prime \prime} \times 7^{\prime \prime} \times 15^{\prime \prime}$ overall.
- Weighs only 16 lbs ; not just portable, but positively easy to carry.
- $5^{\prime \prime}(12 \mathrm{~cm}$.) flat-faced PDA tube.
- Bandwidth $3 \mathrm{Mc} / \mathrm{s}(-3 \mathrm{~dB}$ approx.). Sensitivity $100 \mathrm{mV} / \mathrm{cm}$.
- 5% Time and Voltage calibration.
- Auto sync. and trigger level control.
- Proven performance, 10,000 S 51 's in use throughout the world.
- Nation-wide maintenance and user advisory service available.
- costs only $£ 55$ (U.K. price).

Ask for a descriptive leaflet, and a copy of the Telequipment short form catalogue, which describes briefly the entire range of Telequipment Serviscopes* and portable laboratory 'scopes.
*Serviscope is a registered trade mark

Telequipment

Telequipment Ltd Southgate London N14 • Tel: FOX Lane 1166
"Wireless World"
Iliffe Electrical Publications Ltd., Dorset House, Stamford Street, London, S.E. 1

Managing Director:
W. E. MILLER, M.A., M.I.E.R.E.

Editor-in-chief:
W. T. COCKING, M.I.E.E.

Editor:
H. W. BARNARD

Technical Editor:
T. E. IVALL

Editorial:
F. MILLS
G. B. SHORTER; B.sc.

Drawing Office:
H. J. COOKE

Production:
D. R. BRAY

Advertisements:
G. BENTON ROWELL
(Manager)
J. R. EYTON-JONES
(c) Iliffe Electrical Publications Ltd., 1966. Permission in writing from the Editor must first be obtained before letterpress or illustrations are reproduced from this journal. Brief extracts or comments are allowed provided acknowledgement to the journal is given.

VOLUME 72° No. 11 PRICE: 3s.

Wireless World

ELECTRONICS, TELEVISION, RADIO, AUDIO

NOVEMBER1966

541 "Electronics and the Future"
542 High-performance Transistor Amplifier-:
by A. R. Bailey
547 Corona-generated Noise in Aircraft
iy C. E. Cooper
553 Titanium Cone Loudspeaker by E. J. Jordon

Hybrid Computers-2
by P. W. J. Van Eetvelt

572 "Microwaves à la Mode"
579 More about Farnborough

SHORT ITEMS

546 Laser Television Display
560 Thin Films in Electronics

REGULAR FEATURES

541	Editorial Comment
561	World of WIreless
562	November Conferences and Exhibitions
563	Personalities
574	News from Industry

575 Letters to the Editor
578 H.F. PredictionsNovember

581 November Meetings
582 New Products
588 Real and Imaginary
by "Vector"

[^14]
BC107

Low-frequency high-gain driver:

for audio, radio and hybrid television applications

Mullard now offer a comprehensive range of Silicon Planar Transistors for all new design requirements. These devices are outstanding in performance and are available at competitive prices.

Complete information is available to
Design Engineers from:-
Mullard Limited • Entertainment Markets Division
Mullard House . Torrington Place . London . W.C. 1
Tel: LANgham 6633 - Telex 22281

BC108

Low-frequency high-gain amplifier.

BC109

Low-noise high-gain A.F. amplifier.

BF115

V.H.F. mixer and oscillator for television.

BF167

'Integrated Screen' transistor for television I.F. amplifiers (A.G.C.)

BF173

'Integrated Screen' transistor for uncontrolled television I.F. amplifier stages.

BF180

Low-noise R.F.amplifier for U.H.F. and integrated tuners.

BF181

High-gain mixer and mixer/osc. for U.H.F. and. integrated tuners.

BF184

High-gain I.F. amplifier for A.M., F.M. and television sound.

BF185

R.F. and I.F. amplifier for portable radios.

tune . . . set level . . . select AM or FM

for Instant direct. reading of Modulation Depth or Deviation

Throughout its extensive measuring range, the Airmec Modulation Meter Type 210A has the sensitivity to handle low signal input levels. It will accurately measure $A M$ inputs trom 7 mV to 700 mV , and $F M$ inputs from 7 mV to 10 V .

Monitor outputs of both LF and IF are available at front panel terminals. The IF output is at 750 k / cs, and allows the modulation envelope of the input signal to be observed on an oscilloscope.

Limiting action is so effective that spurious frequency modulations on AM signals can be measured. Changes of mean carrier level when amplitude modulation is applied can also be measured to an accuracy of better than $\pm 1 \%$

Airmec Modulation Meter Type 210A

Airmec ${ }^{\text {tor papk petomanace }}$

LABORATORY INSTRUMENTS DIVISION-
High Speed Counters, Signal Generators, Oscilloscopes, Wave Analysers, Phase Meters, Ohmmeters, Valve Voltmeters etc.

AIRMEC LIMITED, HIGH WYCOMBE, BUCKS, ENGLAND
TELEPHONE: HIGH WYCOMBE 21201 (10 lines)

new MAZDA 16in. TV TUBE

The new MAZDA CME1601[A40-11W] has been specifically designed to meet the demand for a high-performance $16^{\prime \prime}$ tube for the 'second set'. Its weight of 8 Ibs., only half that of the $19^{\prime \prime}$ tube, and a length of less than $11^{\prime \prime}$, help to make the 'second set' compact and truly transportable. The big picture area of 125 sq. ins. is more than two-thirds that of the $19^{\prime \prime}$ tube. Light transmission is

Have a good look at your Associated Aerials array before it's installed

(There's one up there, somewhere, but nobody's seen it for years.)

Associated Aerials make aerial arrays and associated equipment for every kind of transmission and situation from compact RT aerials (for taxis and firebrigades, for instance) to huge broadcasting networks. Omnidirectional and directional aerials for remote territories; marine and ground-to-air; TV. and communications; VHF, UHF.
Aerials that you can rely on.
Aerials for places that are so high, cold, wet or plain miserable that you don't want to see them again for a long, long time.
Get details about Associated Aerials - the most easily forgotten aerials in the world.

For example, this is what the aerial up there on the mountain looked like when it was put up in 1961. It is a yagi aerial cut to a frequency of $165 \mathrm{Mc} / \mathrm{s}$ with excellent electrical characteristics, rugged mechanical construction to stand up to high winds and heavy ice loading, internal heating so that even severe icing cannot affect its performance.
Today, it looks the same; it works the same; it's just colder.

ASSOCIATED AERIALS LTD Knight Road, Strood, Kent, England. Telephone: Medway 78255 Telex: 96146
 a coubro a scrutton company

Britain's first overseas civil satellite communication ground station is being built by Marconi on Ascension Island for Cable and Wireless Limited. Marconi has also supplied Britain's first three military space communication stations.

Marconi space capability is based on long experience in all the elements required by communication systems via synchronous and random orbit satellites-computers for traffic handling and aerial direction, highly accurate aerial and servo control systems, ultra high frequency transmitters and extremely sensitive receivers. Marconi has a lifelong experience in planning, designing, manufacturing, installing and commissioning complete operational systems anywhere in the world.

Marconi Myriad computer-a vital part of many Marconi space communication system.

Marconi space communications systems

KEYSWITCH

why say Keyswitch？

It＇s a difference of quality，often not visible until you look at performance data． Keyswitch miniature and sub－miniature relays are exhaustively tested ．．．．each one individually．All conform precisely to a very fine specification．Their relia－ bility is proven．They have all the bene－ fits of Keyswitch delivery－and that＇s quick，every time．

TYPE MK2 Illustrated approx．actual size．Inexpensive double－pole double－throw midget power relay． 99.9% pure silver contacts switch to 7.5 A or 250 V d．c．$/ 500 \mathrm{~V}$ a．c．Operation and release $15-30$ milliseconds．Universal coil range to 250 V a．c．／d．c．This relay can cost as little as $11 / 0$ ．
TYPE MK3P Illustrated approx．actual size．3－pole plug－in version with clear cover，and complete with socket．Contacts de－rated．This relay can cost as little as $17 / 8$.
always to price \bowtie always to speclfication $\bowtie \triangleleft$ always on time
KEYSWITCH RELAYS LIMITED • CRICKLEWOOD LANE • LONDON • NW 2 • TELEPHONE：GLADSTONE 1I52－TELEX： 262754

NEW DOUBLE COAXIAL CONNECTOR

loop-free screening, lower shunt capacitance, effective noise cancelling. Free Plug, free socket, panel and bulkhead sockets available. Will mate with series L1637, pattern 15 B.N.C. connectors.

BELLING-LEE components

Write for leaflets P674 \& P675 or telephone Miss Woolgar at Enfield 5393 Ext. 27
Belling \& Lee Ltd. • Great Cambridge Road• Enfield • Middlesex • Telephone: Enfield 5393 • Telex: 263265 ww-hit for further details.

If you're casting around for new ideas in sockets and connectors get on the scent of McMurdo's new REDETTE range. These miniature versions of the well-known Red range are available now in 26 way size R.E. 26P Plug, R.E. 26S Socket. Max. current rating 3 amps . per contact, max. working voltage 700 v . D.C., other sizes in production soon - 16, 38 and 52 ways.
If your ideas are still at the design stage whistle us up to heip you solve your problems. If you are a holder of the Electronic Engineering Index see Lj 400 for connectors, Lj 470 for valve holders.

The McMurdo range includes: CONNECTORS - rack and panel, line and jumper, printed circuit and audio range. VALVE HOLDERS - plug-in relay sockets, decal 10 -pin valve holders. Crystal sockets. voltage selectors.

Further details from:-

there's nothing pocket-size about the performance of GEC's VHF pocket radiotelephones...

GEC fm Courier

A fully transistorised 3-channel transceiver designed to be inconspicuous in use, and allow full freedom of movement. It gives full operation fitted beneath clothing - microphone and earpiece-speaker units clip behind the lapels. Silicon transistors make the Courier extremely reliable, and suitable for a wide climatic range. Standard rechargeable battery gives 8 -hour shift endurance.
An intrinsic-safety version is also available - the first pocket set to be granted an Intrinsic Safety Certificate for use in hazardous atmospheres.

The equipment meets G:P.O. Specification W. 6346.
Service: F3 Telephony. Single or two-frequency simplex.
Frequency range (one, two or three channels): $71.5 \mathrm{Mc} / \mathrm{s}$ to $100 \mathrm{Mc} / \mathrm{s}$, or $156 \mathrm{Mc} / \mathrm{s}$ to $174 \mathrm{Mc} / \mathrm{s}$ ($25 \mathrm{kc} / \mathrm{s}$ spacing). (Other ranges to special order.)
Ambient conditions: Temperature $-20^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$. Altitude up to $20,000 \mathrm{ft}$. a.m.s.I. Relative humidity 0 to 90%.
Dimensions of Transmitter/Receiver: $6 \frac{7^{\prime \prime}}{10^{\prime}} \times 4 \frac{1^{\prime \prime}}{} \times 1 \frac{3^{\prime \prime}}{}$ Weight: With battery 23 oz . Less battery 16 oz .
Power Output : Nominally 500 mW or 400 mW . Modulation Capability: $\pm 5 \mathrm{kc} / \mathrm{s}$ deviation (maximum). Sensitivity: 15 dB signal/noise ratio for $1.5 \mu \mathrm{~V}$ e.m.f.
Selectivity: Pass Band $\pm 7.5 \mathrm{kc} / \mathrm{s}$ at 6 dB . Stop Band $\pm 23.5 \mathrm{kc} / \mathrm{s}$ at 65 dB min.

GEC am Courier

A fully transistorised 3-channel transceiver for pocket or hand-held operation.
Service: A3 Telephony. Single or two frequency simplex.
Frequency Range: 68-174 Mc/s Band.
Number of Channels: Maximum of 3 spaced within $\pm 250 \mathrm{kc} / \mathrm{s}$ of mean carrier frequency. (25 or $50 \mathrm{kc} / \mathrm{s}$ spacing.)
Dimensions: $6 \frac{5}{16}{ }^{\prime \prime} \times 3 \frac{1}{16}{ }^{\prime \prime} \times 1 \frac{\frac{1}{4}^{\prime \prime}}{}$ ($7 \frac{1}{16}{ }^{\prime \prime}$ over controls). (Including standard battery.)
Weight: 24 oz . (including standard battery).
R.F. Output Power: Adjustable 200 mW to 400 mW .

Modulation Capability: 100\% (250 mW carrier). 90% (400 mW carrier).
Sensitivity: $2 \mu \mathrm{~V}$ (e.m.f.) input modulated 30% at $1 \mathrm{kc} / \mathrm{s}$ for 13 dB signal to noise ratio and 150 mW output.
Selectivity: Pass band $\pm 7.5 \mathrm{kc} / \mathrm{s}$ at 6 dB . Stop band: $\pm 23.5 \mathrm{kc} / \mathrm{s}$ at 75 dB min . (2 signal method).
A.G.C. Characteristic: Rise in output less than 4 dB for signal change 2 V to 20 mV .
For full details of both Couriers, please contact us.

Spon Street, Coventry. Telephone: Coventry 22027
A subsidiary of The General Electric Company Limited of England

Everywhere Astralux Voltage Stabilising Transformers outperform and outdate conventional C.V.T. systems HERE'S WHY ASTRALUX V.S.I. IS REPLACING C.V.T. IN INDUSTRY AFTER INDUSTRY:

Better Performance. That means improved Output Voltage Stabilityoutput voltage maintained within \pm 0.5% for input voltage changes of + $10 \%-20 \%$. Even when the voltage fluctuation is as great as $+10 \%$ to 30% the V.S.T. will maintain the output voltage to within $\pm 1 \%$. Latest Materials. High temperature (Class F) materials give optimum reliability and increased safety margins on operating temperatures. Low external field. The latest techniques in magnetic core design glve improved performance, coupled with high efficiency, while still offering low external fields.

- Stable Voltage-Stable Prices.

ASTRALUX prices remain stable over long periods, so costing a job ahead is facilitated with this advanced system. -Over 10,000 models!TheASTRALUX V.S.T. Standard Range consists of ten basic models with over a thousand variations on each. No other manufacturer offers such a choice, or can offer such economical prices. Low Cost Specials. YoucanorderV.S.T. 'specials' at little more than the cost of standard units. Our design department will be happy to prepare prototypes to your specification, for incorporation into equipment under development.
Free illustrated booklet giving full details of ASTRALUX V.S.T. from

[^15]
- Vortexion quality equipment

The 120/200 watt amplifier can deliver its full power at any frequency in the range of 30 to 20,000 c.p.s. for which the response is accurate within I db with less than 0.2% distortion at 1,000 c.p.s. Noise level -90 db . It can be used to drive mechanical devices, i.e., synchronous capstan or projector motors, etc., for which the power is over 140 watts on continuous sine wave. A floating series parallel output is provided for $100-120 \mathrm{v}$. or $200-25 \mathrm{C} \mathrm{v}$., and additional matching transformers for other impedances are available. The input is for 1 mW .600 ohms.

30/50 WATT AMPLIFIER

The Vortexion 30/50 watt Amplifier can deliver 50 watts of speech and music or over 30 watts of continuous sine wave and the main amplifier has a response of 30 to 20,000 c.p.s. within 1 db . at 0.1% distortlon and outputs for 4, 7.5, 15 ohm and 100 volt line. Models are avaitable with two, three or four mixed inputs which may be low impedance balanced line microphones, P.U. or Guitar inputs. Price $\mathbf{6 7 0}$ with 4 mixed inputs.

120/200 WATT AMPLIFIER

ELECTRONIC MIXER AMPLIFIER

This high fidelity $10 / 15$ watt Ultra Linear Aimplifier has a built-in mixer and Baxandall tone controls. The standard model has 4 inputs, two for balanced 30 ohm mierophones, one for pick-up C.C.I.R. compensated and one for tape or radio input. Alternative or additional inputs are available to special order. A feed direct out from the mixer is standard and output impedance of 4-8-16 ohms or 100 volt line are to choice. All inputs and outputs are at the rear and it has been designed for cool continuous operation either on $19 \times 7 i n$. rack panel form or in standard ventilated steel case.

Size $18 \times 7 \underline{18} \times 9$ inin. deep.
Price of standard model $\mathbb{C 4 9}$

The 12 -way electronic mixer has facilities for mixing 12 balanced line microphones. Each of the 12 lines has its own potted mumetal shielded microphone transformer and Input valve, each control is hermetically sealed. Muting switches are normally fitted on each channel and the unit is fed from its own mumetal shielded mains transformer and metal rectiffer.
Also 3-way mixers and Peak Programme Meters. Price 660.
4-way Mixers from (40/8/6.
2×5-way stereo mixers with outputs for echo chambers, etc., available.

12-way electronic mixer

Price of standard model 698.

Full details and prices of the above on request

It's NEW! MODEL 633
 Guaranteed for 3 years

The 633 is the latest addition to the Ferrograph range and is intended for the serious home recor dist as well as the professional user. Eachal instrument is supplied with a test certificate. performance in the form of a performance in th with all Ferrograph inst 10 years.
Aninstrument Designed to a strict specification
Built to endure

* Three operational speeds:

Interested? Then complete and post this coupon
THE FERROGRAPH COndon, S.E. 1.
84 Blackfriars Road, Lond
84 Blackfriars Road,
\square Please send me the FREE-llustrated
Ferrograph leaflets. $633 \mathrm{H}-3 \frac{3}{4} .7 \frac{1}{2}$ and 15 i.p.s.

* Monitoring of recorded programme. * Comparison by " $A-B$ " switching. * Switched bias control. * Level meter reads on both record and playback. 1 enclose L -
my Ferrograph.
(Tick items required in box at left) * Mixing facilities with separmum * Modular construction
* Separate record and replay heads.
* Separate record and replay amplifiers. * Fully compensated input socket for magnetic pick-up.
米 Spot erase.
* 3 watts undistorted output.

Model 633 H
Ferroglaph

Another Milestone in Audio Engineering . . .

A Successor to the famous "Trough-Line II"

A Major Loudspeaker Invention: THE "SANDWICH" price $£ 39.18 .0$

": . This design must be regarded as a break-through of fundamental and fare reaching importance."

AUDIO AND RECORD REVIEW

STEREO 30 TRANSISTORISED AMPLIFIER price $£ 49.10 .0$
" People sometimes ask why there is any necessity to change to transistors, the elimination of the output tronsformer is, in our view, sufficient reason now that solutions of the problem of linearity in the response of the rest of the transistor circuit have been found. As additional bonuses we get smaller size, cooler running and the prospect of longer life."
"Last Autumn, during his presidential address to the British Sound Recording Association, H. J. Leak demonstrated a prototype highquality transistor amplifier which gave results indistinguishoble from those of his valve amplifiers."

WIRELESS WORLD EDITORIAL MAY, 1963

If you are interested in Hi-Fi equipment combining faultless presentation with audio eng ineering to Impeccable standards, offering studio quality reproduction at reasonable cost . . .
WRITE NOW FOR FULLY ILLUSTRATED AND DETAILED LITERATURE

AND NOW-STEREO RADIO

By adding the Armstrong Stereo Radio Decoder to any of the current range of Armstrong Stereo Tuner-Amplifiers and Tuners you can receive the BBC's new series of stereo broadcasts. The quality is superb, the stereo is excellent, it's what we have all been waiting for.
Whether you already have one of our models or are about to buy one, the addition of the Decoder is simplicity itself. All stereo models were designed with this in mind. Simply plug it in, plug in the stereo beacon indicator and fix the decoder to the tuner in the space provided-the fixing holes are already there.

M5 STERĖO RADIO DECODER £14.10.0

MAKES YOUR STEREO SYSTEM COMPLETE

Stereo now or stereo later, that's your choice with Armstrong Tuners. If you want only the VHF band then you need the 224 FM Tuner, but if you also want good quality medium waveband reception your choice would be the 223 AM-FM Tuner, In FM performance these tuners are identical. High sensitivity, wide bandwidth and an accurate centre-zero meter for spot-on tuning provide you with the best possible results from the BBC's FM broadcasts, whether stereo or mono.

To complete your system choose between the Armstrong 222 and 221. Both of these high fidelity amplifiers provide 10 watts per channel, more than enough for domestic use. 222 is designed for ceramic pickups, and the 221, as well as having certain other extra facilities, is also suitable for higher quality magnetic pickups.

224 FM TUNER
223 AM-FM TUNER (illustrated right)
222 STEREO AMPLIFIER
221 STEREO AMPLIFIER (illustrated left) OPTIONAL CASE. Teak and vinyl hide (As illustrated. All models).

A self-powered decoder (M12, $£ 15 / 7 / 6$) suitable for oldep Armstrong models fitted with multiplex connections will be available shortly.

For full details and technical speciflcations of all modele, post coupon or write, mentioning 11 WW66.

\qquad

SINCLAIR STEREO 25

A stereo pre-amplifier control unit designed to ensure high fidelity at its best

A COMPLETE HI-FIDELITY STEREO ASSEMBLY INCLUDING POWER UNIT FOR ONLY £22.18.0

A very high standard of reproduction can be obtained using Sinclair items in conjunction with first-class ancillary equipment. All that is needed is one Stereo 25 pre-amp.
 and one PZ. 3 Mains Power Supply Unit ($£ 3 / 19 / 6$) to possess the finest possible hi-fi stereo installation. As a very desirable optional extra, you could include the Micro FM $(£ 5 / 19 / 6)$. The overall saving in cash will prove considerable and as a result you will have an installation second to none irrespective of price.

ORDER FORM AND OTHER SINCLAIR'S DESIGNS WILL BE FOUND on the NEXT TWO PAGES

The Sinclair Stereo 25 pre-amp control unit has been designed specially to obtain the very finest results used in conjunction with two Sinclair Z.12s as described on the following pages. It can also be used for feeding into any other high quality stereo power amplifier. The best quality components, individually tested before acceptance, are used in its construction, ganged controls are carefully checked for matching, whilst the overall appearance of this very compact de-luxe pre-a mp and control unit reflects the professional elegance which characterises all Sinclair designs. The front escutcheon panel is in solid brushed and polished aluminium
with beautifully styled solid aluminium knobs. Mounting the unit is simple, and the generous output of the PZ.3 is more than enough to power the Stereo 25 together with two $Z .12$ s to provide stereo reproduction. Hi-fi enthusiasts seeking the ultimate in equipment for domestic listening will find all they want from this combination of Sinclair units, and with a Micro FM to provide the tuner, their installation will compare favourably with anything costing up to four times as much. The Sinclair Stereo 25 is easily fitted and it will grace any type of hi-fi furniture.

MAY BE USED WITH ANY HIGH QUALITY POWER AMPLIFIER

TECHNICAL SPECIFICATION

Performance figures obtained with the outputs of the Stereo 25 fed to two Z.12s and the entire assembly powered by a PZ.3.
SENSITIVITY for 10 wates into 1.5 ohms load per channel.
Mic, -2 mV into 50 K ohms.
Pick-up -3 mV into 50 K ohms.
Radio- $\mathbf{2 0} \mathrm{mV}$ into 4.7 K ohms.
FREQUENCY RESPONSE (Mic. and Radio) from $25 \mathrm{c} / \mathrm{s}$, to $30 \mathrm{kc} / \mathrm{s}$. $\pm 1 \mathrm{~dB}$ extending to $100 \mathrm{kc} / \mathrm{s} . \pm 3 \mathrm{~dB}$.
EQUALISATION-Correct to within \pm IdB on RIAA curve from $50 \mathrm{c} / \mathrm{s}$ to $20 \mathrm{kc} / \mathrm{s}$.

[^16]SIZE-6 $\frac{1}{2} \mathrm{in} . \times 2 \frac{\mathrm{i}}{} \mathrm{in} . \times 2 \frac{1}{2} \mathrm{in}$. overall, plus knobs

- FINISH-Frons panel in brushed and polished solid aluminium with solid aluminium knobs. Black figuring on front panel.

FULL SERVICE FACILITIES AVAILABLE TO ALL SINCLAIR CUSTOMERS

SINCLAIR RADIONICS LTD., 22, NEWRMARKET ROAD, CAMBRIDGE

Comment

from around the world

AUSTRALIA

"Congratulations on' your F.M. set. You certainty are the leaders in miniature electronics."
P.K., Vaucluse, N.S.W.
"The Micro-6 is tremendous and all 7 local stations here in Melbourne are easy to cune. I wish to congratulate you on your excellent design."
L.M.C., Bentleigh, Victoria. "I've found your Micro-6 excellent. The volume is more than adequare, with fantastic tone." S.M., Box Hill, Victoriat

JAMAICA

" The reception and sound is superb (Micro-6), and I found the instructions very clear."
R.R., Kingstown.

NEW ZEALAND

"I have received your Z. 12 amplifier. I am extremely pleased with its performance, and it is well worth the cost. Thank you for your prompt delivery."
B.R.L., Howick, Auckland.

SWAZILAND
"May I congratulate you on the Micro F.M The performance of this tiny radio has amazed friends who just cannot believe it works until demonstrated. I am roughly thirty miles from the station in mountainous terrain. and without any extra aerial a good signal is produced."
D.I.B., Mhlambanyat,

SOUTH AFRICA
"Much to my delight, the tuner (Micro FM) performs splendidly, fully justifying the modest outlay called for. The tuner picks up all the F.M. programmes. I am now anxious to purchase two 2.12 amplifiers."
P.E.R., Florida, Transvaal

UGANDA

"I am extremely pleased for having invested in this remarkable little box of power and it certainly lives up to its specification."
J.T.R., Kampula. U.K.
"I am extremely pleased with the Z.12 amp. (connected to the tape head). The amp. (connected to the tape head). The my esteem.
B.C., Glas gow.
" The finish and general quality is very good (Miero-6). It is fantastic that a transistor radio can be so compact.'
N.R.C., Bishop's Serortford.

35,000 CONSTRUCTORS
CAN'T BE WRONG
Something like thirty-five thousand Micro-6 kits have been bought and assembled by constructors ranging in experience from beginners to experts, for in size, design and performance there is just nothing like it in the world. We have simply lost count of the number of enthusiastic letters received from Miero-6 constructors. This set, together with the Micro FM, have firmly established entirely new trends in radio design. They have set the pattern that constructors everywhere are following with success all over the world.

Start building with Sinclair to-day

two Sets that have CHANGEETHE FACE: O F RADIO

MICRO FM

7 TRANSISTOR SUPERHET F.M.

The world's only combined

 pocket-sized F.M. Tuner and personal receiverThis unique, superbly engineered superhet FM will give you enormous satisfaction in building and using it. It is the only set in the world which can be used both as an FM tuner and as an independent FM pocket receiver just whenever you wish and its performance is fantastic used either way. Problems of allgnment which have previously made it almost impossible for a constructor to complete an FM set have been completely eliminated in the Micro FM. It is ready

Abstract

to use the moment you have buile it. The pulse counting discriminator ensures best possible audio quality; sensitivity is such that the telescopic aerial included with the kit assures good reception in all but the very poorest reception areas. The Sinclair Micro FM will give you all you want in FM receptlon and the satisfaction of building a unique design that will save you pounds. Use it with your Z.12

 assembly!
Technical Specification

THE SINCLAIR MICRO FM is a completely self-contained double-purpose F.M. superhet. It uses 7 transistors and 2 diodes. The R.F. amplifier is followed by a self-oscillating mixer and three stages of I.F. amplication which dispense with I.F. transformers and all problems of alignment. The final I.F. amplifier produces a square wave which is converted so that the original modulation is reproduced exactly. A pulsecounting discriminator ensures better audio quality. One output is for feeding to amplifier or recorder and the other enables the Micro FM to be used as an independent selfcontained pocket portable. A.F.C. "locks " the programme contained pocket portable. A.F.C. The telescopic aerial included is sufficient in all
 aerial.

MICRO-6

The smallest radio set on earth

A minutely sized receiver which will slip into a waistcoat pocket without even showing. It is the smallest set in the world, yet the Micro-6 is completely self-contained including aerial and batteries and it virtually plays anywhere. Its elever six-stage circuir (2 R.F., double diode detector, 3 A.F.) ensures all you want in a radio today-power, range, quality and selectivity. A.G.C. counteracts fading from distant stations, bandspread brings in Luxembourg like a local station. There is a great pleasure to be had in building the Micro-6, and it makes a highly acceptable gift once others have seen its white, gold and black case and heard its amazing performance.

FASCINATING TO BUILD NO ALIGNING NECESSARY SUPER QUALITY AND SENSITIVITY

SINCLAIR MICRO FM

Complete kit of parts inc. transistors, case, front panel assembly, all parts.
£5.19.6 carplece and instructions.

BUILD IT IN AN EVENING AMAZING POWER, RANGE AND SELECTIVITY

Complete kit of parts inc. transistors, case, eorpiece and instructions.

SINCLAIR RADIONICS LTd., 22 NEwMarket road, Cambridge

More power per square inch than any other amplifier in the world!
 - FANTASTIC POWER!

THE SINCLAIR Z. 12 is a powerful high fidelity amplifier of exceptional compactness complete with its own high gain pre-amplifier complete with its own high gain pre-amplifier power dives an out PER SQUARE INCH Of its Sotal size Per SaUARE NNCH of its total size-a standard of periormance unsurpassed by anything in its class. And because of its exceptionally small size, robust construction and unique circuitry, you can now use quality amplification in applications never before possible.
8 special H.F. transistors are used in a circuit in which generous negative feed back and ultra-linear class B push-pull output achieve the highest possible standards of quality

The $\mathbf{Z .} 12$ will operate from 6 to 20 v. d.c. and when not using a battery, the P.Z. 3 mains when not using a battery, the p. Cop . power supply unit will be found ideal Responses extend irom V (c $\neq 1 \mathrm{~dB}$ Input sensitivity 2 mV into 2 K ohms - Signal to noise ratio is better than 60 dB and the output may be fed directly into any load from 3 to 15 ohms, or two 3 ohm speak ers may be used in parallel The manual included with the $Z .12$ gives full details of matching tone and volume control circuits for mono and stereo together with multiinput switching facilities. For those requiring a completely assembled stereo pre-amp control unit there is the Sinclair Stereo 25 described on page 23 h .

चir
 COMBINED 12 WATT HI-FI AMPLIFIER AND PRE-AMPLIFIER

In this special Sinclair design original

 circuitry based on advanced transistorised techniques is used to achieve phenomenaliy good smoothing, thus assuring ideal operating conditions or the Z. 12 and Stereo 25 for which it was designed. Ripple is a barely measurable 0.05 v. The PZ. 3 will power two Z.12's and the Stereo 25 power ease. For A.C. mains. $79 / 6$$200 / 250 \mathrm{v}, 50 / 60 \mathrm{c} / \mathrm{s}$. $200 / 250$ v. $50 / 60 \mathrm{c} / \mathrm{s}$.

12 WATTS R.M.S. CONTINUOUS SINE WAVE (24 W. PEAK)
15 WATTS R.M.S. MUSIC POWER (30 W. PEAK)

- REQUIRES FROM 6 TO 20V.
\square FOR HI-FI, RADIO TUNER, ELECTRIC GUITAR, P.A., ETC.
- HI-FI PERFORMANCE AT A FRACTION OF THE USUAL COST

If you prefer not to eut this page, please refer to W.W. 10 when writing your order.

COMPACT REGULATORS FOR INFINITELY VARIABLE SPEED CONTROL... Berco HSR range

A new range of motor Speed Controllers for building into machinery, machine tools, conveyors and processing machines of all kinds. This speed control is light, convenient to install and enables shunt-wound machine characteristics to be fully exploited. SR controllers provide good speed/torque regulation with infinitely variable smooth variation from zero to full speed-complete reliability-minimum maintenance. More compact and economical than mechanical variable speed drives. Good delivery. Suitable for motors up to $\frac{1}{2}$ H.P.

Please phone or write for List MT 1645D

The British Electric Resistance Co. Ltd.
Queensway Enfield-Middlesex Telephone: HOWard 2411 Telegrams: VITROHM Enfield

©
 STOCKISTS

MODEL 8 МК. HI

MULTIMINOR MK. IV

REPAIR GERVICE 7-14 DAYS

We specialise in repair, calibration and conversion of all types of instruments, industrial and precision grade to BSS.89.
Release notes and certificates of accuracy on request.

Suppliers of Elliott, Cambridge and Pye instruments.

LEDON INSTRUMENTS LTD
 76-78 DEPTFORD HIGH STREET', LONDON, S.E. 8 TEL.: TIDeway 2689

E.L.D. \& G.P.O. APPROVED CONTRACTOR TO H.H. GOVT WW-130 FOR FURTHER DETAILS.

Parls Price list and casy bulld plans 2/-, (Free with kit.)

POCKET FIVE

* 7 stages - 5 transistors and 2 diodes. Covers Medium and Long Waves and Triwler Bands, a feature usually found in only the mont expensive radios. On teat. Horne, Light, Luxembourg and many Continental stations were received loud and clear. Deaigned round supersensitive ferrite rod aerial and fine tone 2 pin. moving coil speaker, built Into attractive black and gold case. size $54 \times 14 \times 31 \mathrm{im}$ (Ubes 1289 batcry, avialable iny-

where).
Total cost of all parts How only $42 / 6$ P. \& P. $3 / 6$. Parts price list and easy build plans $1 / 6$. (Free with KIt). All components used in our receivers may be purchased separatrly
srailabie separately at prices stated. OVENSEAS POST 10|-. ALL OTHER ITEMS AVAILABLE AS PREVIOUSL

NOW READY!
"POCKET 5 "
Med, and Long Wave ver.
alon wlth miniature epers-
ker. $29 / 6_{3 /- \text {. }}^{\mathrm{P} .} \mathrm{P}$. ALL OTHER ITEMS AVAILABLE AS PREVIOUSLY ADVERTISED

RADIO EXCHANGE

61 HIGH ST., BEDFORD. 'Phone : 52367
Callers side entrance Barratts Shoe Shop. Weekdays 9.5 p.m. Sats. 9.12 .30

Chapman stereosound

You may think you are hearing things and so you are. All the instruments, once unheard, brought to life as if you were there amongst the musicians. The new Chapman stereosound gives you this distinct impression in the comfort of your own living room.

In attractively finished units the Chapman range of High Fidelity stereo tuners and amplifiers are all fitted with multiflex decoders for stereo broadcast reception. Send for further details to:

DE-ICER, Controller Mk. 3. Contains 10 relays D.P. changeover heavy duty contacts, 1 relay $4 \mathrm{P}, \mathrm{C} / \mathrm{O}$. (235 ohms coil). Stud switch 30 -way relay operated, one five-way ditto, D.C. timing motor with Chronometric governor $20-30$ volts 12 R.P.M; geared to two 30 -way stud switches and $\$ 3$ each, post $5 /$ -
GEARED MOTORS (Reversible).
28 v. 150 r.p.m., $25 /$-, post $2 / 6$.
28 v. 150 r.p.m., $25 /$,, post $2 / 6$.
24 v . D.C. $1.4 \mathrm{r} . \mathrm{p} . \mathrm{m}$., reversible with two micro switches inside gear box, silent operation, 22 each, post $5 /$-.
A.C. Motor $115 \mathrm{v} .50 \mathrm{c} / \mathrm{s} 1 / 300 \mathrm{H} . \mathrm{P} ., 3000$ r.p.m. Capacitor $1 \mathrm{mfd} .25 /-$, post 3/-. Dalmotor SC5, 28 v. D.C. at 45 amps.; 12,000 r.p.m. output 750 W. (approx. 1 h.p.), brand new, $22 / 10 /-$ each, post $7 / 6$.
28 v. D.C., 200 r.p.m. (ideally suited for opening garage doors), current consumption approximately 6 amps. Price $£ 3 / 10 /-$, postage $7 / 6$.
AZIMUTH INDICATOR UNIT ID-260/GRD $115 \mathrm{v} .50 \mathrm{c} / \mathrm{s} .$, complete with Azimuth Bearing Indicator and suitable for aerial direction control,
2 in.tube with shield suitable for modulation percentage indicator or oscilloscope and 3 in. speaker that can be utilised as a sidetone mo
all valves in excellent condition
CRD6 DIRECTIONAL ANTENNA for use with the above Instrument, £5 each, carriage £1.
ment, \&5 each, carriage £1,
CM23 COMPARATOR SIGNAL. UNIT, $£ 4 / 10 /$-, carriage $15 /-1$
CONDENSERS. $10 \mathrm{mfd} .1,000 \mathrm{v} .12 / 6$, post $2 / 6.8 \mathrm{mfd}$, 1,500 volts, $17 / 6$, post $2 /-.8$ mfd., 1,200 volts, $12 / 6$, post $3 /-.8 \mathrm{mfd} .600$ volts, $8 / 6$, post $2 / 6$. 0.25 mfd ., 2 kv . $4 /$-, post $1 / 6$.
Vacuum condenser $50 \mathrm{pf} .32 \mathrm{kv} 30 /$.F , post $1 / 6.6 \mathrm{pf} .20 \mathrm{kv} .22 / 6$, post $1 / 6$. All the above are new in cartons.
HEADPHONES. DLR.5, 10/- pair, 2/6 post. No. 10 headset and microHEADPHONES. D
AUTOMATIC PLLOT UNIT Mk. 2. This complex unit of diodes and valves, relays, magnetic clutches, motors and plug-in amplifiers, with many other items, price $£ 7 / 10 /-, £ 1$ carriage.
U.S.A. DESK MICROPHONE CRV/51018/A. Complete with 7 yards of screened cable and universal jack (adjustable), $10 /=$ each, post $3 /$-.
AR88 SPARES: Vibrator Unit, 6 v. D.C. New 25/-, post 6/-. Block Condenser 3×4600 v. D.C. $25 /$-, post $4 /-.0 .01$ mfd. 400 v. D.C., 4 for $12 / 6$. Capacitor Air Trimmer, 2-20 pF., box of 3 10/-. Ceramic I.O. Valve Holder, box of $57 / 6$.
SIGNAL GENERATOR TS155c/UP (as new) price £75, carriage £1. TS125A, with leads, etc., price £25, carriage 10/-
ARC. 27 TRANS-RECEIVER. 1,750 Channels, price $£ 90$ each.
AN/UPA39A, Video Coder-Decoder, price £45 each, carriage 10/-
APNI ALTIMETER TRANS/REC, suitable for conversion $420 \mathrm{mc} / \mathrm{s}$ complete with all valves 28 v. D.C. Dynamotor and 3 relays, 11 valves, price 83 each, carr. 7/6.
RADIO TELEPHONE GR300 V.H.F. $75 \mathrm{Mc} / \mathrm{s}$. two channels, complete with control box and 12 v. D.C. supply, as new, £50, carr. £1. Control
 unit for the GR300, £ 3 each; also power supply unit 12 v. D.C., $\mathrm{E} 3 / 10 /-$ -
carr. $10 /$-.
BLOWERS MOTORS. 115 v. A.C., 50 or $60 \mathrm{c} / \mathrm{s} ., 1.80 \mathrm{~h} . \mathrm{p} ., 0.2 \mathrm{amps}$. 3,200 r.p.m., cont., duty, new in cartons £2/10/- each, post 5/-. Smaller type blower 24 V. D.C., $15 /-$, post $2 / 6$.
RELAYS SEMI ROTARY. ${ }^{3}$ pole DT., contacts suitable for 10 amps. (silver), coil 12 volts D.C., new in cartons $12 / 6$ each, post $2 / 6$.
TRANS/RECEIVER UNIT Mk. 3. Freq. 2 to $8 \mathrm{mc} / \mathrm{s}$., RT or CW., MCW., requires external power supply. Complete station $\mathbf{E 9}$, carriage $25 /-$. Trans-rec. only $£ 3 / 10 /-$, carr. $15 /$ -
RESISTORS. Variable 3 ohm . 10 amps ., $25 /$-, post $4 /-$
ROTARY TRANSFORMERS. 24 v . input, 175 v , at 40 ma . output $25 / \mathrm{\sigma}$, plus $2 /$-post. EICOR type, 12 v . input, 400 v . at 180 ma . output, $30 /=$, plus $4 /$ - port. 12 v . input, 225 v . at $100 \mathrm{~m} . \mathrm{a}$. output, $25 / \mathrm{I}$, plus $3 /-$ post. (All the above are D.C. only).
MICROPHONES Type T50. Fits the palm of hand with on/off switch and lead (Electro Dynamic) 35/-each, $2 / 6$ post. Tvpe T17 with lead and PL55 plug, $45 /-3 /-$ post.
CANADIAN C52 TRANS./REC., Freq. 1.75 to $16 \mathrm{mc} / \mathrm{s}$, on three bands. new condition complete set $£ 50$, carr. $£ 2 / 10 / \mathrm{l}$-., p sed condition in working order $£ 25$, carr. $£ 2 / 10 / \%$. 52 receiver only (less outer case), $\mathrm{£} 8 / 10 /=$, carr. $15 / \%$ Transmitter only \&7/10/ $/=$, carr. $15 /$. Power unit C52 rec., new carr, $15 /$. Üsed power units in working order $£ 2 / 5 /-$, carr. $10 /-$.
TRANSFORMERS. 230 to 115 v ., isolation 300 va , £ 4 each, plus 5/-, $230 / 115$ auto 300 watts, £3, post $6 / \mathrm{F} .230 \mathrm{v}$. pri. 24 v . at $2 \mathrm{amp} ., 22 / 6^{2}$, post 5/-.
RDO RECEIVER has complete metering of both RF and Audio Circuits. RDO RECEIVER has complete metering of both RF and Audio Circuits. Calibrated Accuracy: 1% approx. Video Output: 25 mV into 50 ohms, It utilizes the same plug in RF tuning units as the AN/APR-4 Receiver,
and is idealy suited for monitoring and measuring signals in the 38-4,000 and is idealy suited for monitoring and measuring signals in the $38-4,000$
me range. Receiver with three tuning units covering $38-1,000 \mathrm{mc} / \mathrm{s}$. and me range. Receiver with three tuning unit
Panoramic Adaptor. Price $£ 150$, carr. $30 /$ -
OSCILLOSCOPES. Type 1035, Cossor Mk. 1, in very good condition. £35, carr. £1. Hartley type 13a, £25, carr. £1. Type 1049 Mk . IV, excellent condition, price $\$ 50$ each, carr. \&1.
APN. 1 CIRSCALE METERS: 0-270 degrees, ideal for making rev. counters etc. Price $25 /$ - each, post $3 /$ -
CT. 53 SIGNAL GENERATOR. Freq. range $8.9-300 \mathrm{mc} / \mathrm{s}$. with calibration chart. Output $1 \mu \mathrm{~V}-100 \mathrm{mV}$. internal square wave and sinewave modulation at $100 \mathrm{c} / \mathrm{s}$, external modulation $50 \mathrm{c} / \mathrm{s}-10 \mathrm{Kc} / \mathrm{s}, 230 \mathrm{v}$. A.C. Complete tion at $100 \mathrm{c} / \mathrm{s}$, external modulation 50
with chart etc., price $£ 27 / 10 /-$, carr. $£ 1$.
MARCONI CR100/2 RECEIVER. Freq. $60-30 \mathrm{mc} / \mathrm{s}$, selectivity $100 \mathrm{db}-$ 30 db , complete with bandpass filter switch $100-300-1,200-3,000-6,000 \mathrm{c} / \mathrm{s}$, 2 RF stages, crystal filter etc., 230 v. A.C. power supply. Price £30 each, carr. £1.

HRO RECEIVER. Model 5T. This is a famous American High Frequency
 superhet, suitable for CW., and
MCW., reception crystal filter, with MCW., reception crystal filter, with
phasing control. AVC., and signal phasing control. AVC., and signal strength meter. Freq., range $50 \mathrm{kc} / \mathrm{s}$. to $30 \mathrm{mc} / \mathrm{s}$., with set of nine coils. Receiver only in working order, \&18/10/-, carr. 15/-. each. Set of nine coils $£ 12 / 10 /-$, available only
with set. Power unit for HRO., $100 / 240$ v. A.C., $£ 2 / 15 /=$, carr. $10 /-$.
CONVERTERS. Type 8a., 24 v. C., 115 v. A.C. at 1.8 amps 400 cycles, 3-phase, £6/10/- each, post $8 /$ -

DALMOTORS: (All ex equipment):

Actuator Type SR-43: 28 v. D.C. 2,000 r.p.m., output 26 watts, 5 inch screw thrust, reversible, torque approx. 25 lbs ., rating intermittent, price $\$ 3$ each, postage $5 /$-.
Model PM-4:-28 v.D.C. @ 3 amps 4,500 r.p.m., output 40 watts, continuous duty complete with magnetic brake. Price $£ 2$ each, postage cont
$4 /-$.
Mo
model SR-2: 28 v. D.C. 7,000 r.p.m., duty intermittent, output 75
watts, price $25 /-$ each, postage $4 /$-.
MOTORISED ACTUATOR: 115
v. A.C. $400 \mathrm{c} / \mathrm{s}$. single phase,
reversible, thrust approx. 3 inches complete with limit switches, etc. Price $£ 2 / 10 /$-each, postage $5 /$ - (ex equipment).
Price 2/10/-each, postage 5/- (ex equipment). Prim. Price $25 /$-, postage $3 /$ - (ex equipment).
GEARED MOTOR: 28 v. D.C. approx. 200 r.p.m. complete with grecision potentiometer, 40 k plus or minus $3 \%, 2.5$ watts linear plus or precision potentiometer, 40 k plus or minus 3%, 2.5 wa
minus 0.25%. Price $30 /$, postage $4 /$ - (ex equipment.)
TRANS/REC 510/A. This is a lightweight transmitter/receiver principally used for long range communications. Frequency, tunable $2-10 \mathrm{Mc} / \mathrm{s}$. and has facilities for VOICE or "CW" working. The operator can set up 4 crystal controlled channels within this band and select the required frequency by means of a switch on the panel of the transmitter. Power requirements $1 \frac{1}{2}$. and $90-7 \frac{1}{v}$. The power output is approx. 0.2 watts
for $"$ VOICE $"$ (unmodulated) and 0.5 watts for "C.W" Suitable for mobile units or can be used as a base station with improved aerial system. mobile units or can be used as a base station
In excellent condition. $\& 15$ each, carr. $10 /-$.
MARCONI TYPE TF-144G SIGNAL GENERATOR. Freq. $85 \mathrm{Kc} / \mathrm{s}$.$25 \mathrm{Mc} / \mathrm{s}$., internal and external modulation, power supplies $200 / 250 \mathrm{v}$. A.C. Price £25, carr. 30/-
TS535A/U, Hewlett Packard Co. Signal Generator: freq. on 4 bands $7-16 \mathrm{kc} / \mathrm{s} ., 15-36,34-80,70-160 \mathrm{kc} / \mathrm{s}$., with 400 cys . external mod., mi، rovolts $0-10$ and $0-20 \mathrm{Db}$., with a 2 inch cathode ray tube for visual indication. Power Supplies 115 v. A.C. Price £75 each, carriage £1.
MARCONI SIGNAI. GENERATOR NO. 13. 2 bands, $20-40 \mathrm{mc} / \mathrm{s}$ and $40-80 \mathrm{mc} / \mathrm{s}$. FM., AM., and CW. Mod. freq, 300/1000/1600/3000 and external mod. Output voltage is $0.1-10$. Power Supplies 110 v . or 250 v . A.C. Price £50, carriage £1.
MULTIPLIERS (CT54 valve voltmeter), £2/10/- each, post 3/-
HS RELAYS. 1,700/1,700 ohm coil, 17/6 each. 500/500 ohm coil, 15/each. Postage $2 /-$
TACAN Trans/Receiver, same as ARN21, British made, STC, TR9171 complete with five 2C39As with associated valve-holders. As new price £25. Used condition $£ 15$, carriage $£ 1$
CONTROL MOTORS. $115 / 115 \mathrm{v} ., 2$ pole 60 cys., output 5 watts, the tachometer 115 v .1 ph ., output volts per $1,000 \mathrm{v} .=6 \mathrm{v},, \times 3 / 10 / \mathrm{l}$, carr. $4 /$ each. Type R110-2B-B. $115 / 115 \mathrm{v} .400$ cys., $\dot{\text { £ } 2 / 10 /=, \text { carr. } 4 /- \text { each. }}$ TELEPHOTO UNITS (Trans-ceiver) Type CNP. Complete with tuning fork and power supplies 115 v. 50 or 60 cys., $£ 30$ carr. $£ 2$ each.
TELETYPEWRITERS. TT-4 TGXc-2. Also AN/PGC-1 and AN/ PGG-2, £35, carr. $£ 1$ each.
UNISELECTORS (ex equipment):
8 bank 25 way, 75 ohm coil, price $35 /$ - each, postage $4 /$ -
8 bank 25 way, 75 ohm col, price $35 /-$ each, postage $4 /-$.
3 bank 25 way, with one homing bank, price $25 /-$ each, postage $3 /-2$.
RELAY PANEL: with 4 Leach relays, 28 v., 135 ohm coil, 4.P. C/O, 10 amp . contacts, 4 relays, 28 v, , 235 ohm coil, 3 pole C/O plus high speed relay, $16,000 \mathrm{ohm}, 1 \mathrm{C} / \mathrm{O}$. Price $30 /$ each, postage $5 /$ -
TELEPHONES (PORTABLE) TYPE "F." Suitable for all outdoor activities up to a range of 5 miles, in excellent condition. Price, complete with batteries, £5/10/- per pair, carriage 10/-.
B. 44 MODULATION TRANSFORMER: Ratio $2: 1$ or as an output transformer 85: 1. Price 25/- each (new in cartons), postage 3/6.
FUEL INDICATOR Type 113R: 24 v complete with 2 magnetic counters 0 to 9999 , with locking and reset controls mounted in a 3 in. diameter case. Price 30/- each, post $5 /$-.
MACHMETERS: Range $0: 1$ and $0: 1.2,6 \mathrm{~A} / 3384$ and 5325 respectively, price $30 /-$ each, postage $5 /-$.
ALTIMETERS : 40 to 60,000 feet, the ideal instrument for making a barometer, price $\& 5$ each, post 5/-
BATTERY CHARGERS: 100-250 v. A.C. Input, 12 v. 15 Amp. Output (2-Rate Charger complete with Sun-vick thermal switch for fast or trickle charge), price £ $12 / 10 /-$ each, carr. $30 /-$
HEWLETT PACKARD ADAPTOR, Model X281A: Wave guide to coaxial adaptor, freq. $8.20-12.40 \mathrm{~km} / \mathrm{c}$., size $1 \times \frac{1}{2} \mathrm{in}$., price $30 / \mathrm{-}$, post $2 /-$.
AVOMETER MODEL 7: As new, complete with case and leads, $£ 15$; secondhand condition £12/10/-. Postage on both $7 / 6$.
COMMAND RECEIVERS: $190-550 \mathrm{kc} / \mathrm{s}$, as new, price £6/10/- each, post 5/-. Model $3-6 \mathrm{mc} / \mathrm{s}$ and $6-9 \mathrm{mc} / \mathrm{s}$, as new, price $£ 5 / 10 / \mathrm{e}$ each, post $5 /-$. BC-433-G COMPASS RECEIVER: Freq. $200-1,750 \mathrm{kc} / \mathrm{s}$. in 3 bands , suitable for aircraft, boats, etc. Complete with 15 valves, power supply input 24 v. D.C. at 2 amps . Receiver only $\& 5$ each, control box for receiver
\&1 each, carr. 15/-.

Complete Installations can be quoted for. Please write further detalls. List avallable 6d. S.A.E. for all enquirles.

THE ELECTRONICS \& SCIENTIFIC CENTRE

MAGNAYOX-COLLARO 363

TAPE DECKS

The very latest 3 -apeed model- 1 if, $3 \frac{1}{6}$, 7t l.p.s. svallable with either track of t track head. Femtures include: Pause control; digital counter; thast forward and rewind: new 4 pale tally screened inductop plate 13 , x 11 y 5ting. deep below unit plate. For 200 p 250 V. A.C. mains 50 e.p.s. operation. New, unused and fully guaroperation
snteed.
LIND-AIR PRICE
Itrack model $\quad 1$ track model
El0/10/-
Eariage and Packlog $7 / 6$ extra.
Carriage and Packlog $7 / 6$ extra

50V. SERVO SYSTEM

A unique offer of a palr 4 s0-rolt, 50 -cycle nots indication of agrular position to de made. These are weal for monitoring Wind Dlrections in the cousfort of the bome, or the position casting enthusiantu. The exact position of a roulette wheeb could be "guessed" by a magician usine our aystem.
It should be noted that 60 v . Is readlly obtainable, by uning the 200.260 -volt tap on any mains tranalormer.
Cobt of pair, 75/-, plus 5\% P. \& P

SELECTOR

 DRIVE 4 very interest. Ing litem with numerous appilof an electromagret and briase looth wheel. A witch water and contacts are couplod to this and are for the next 15. An amxulary contact la normally on, but oft for one in every 25 pulses: complete with suppressor resistors and a merke contact to tacilitite continuous operation. Abeolutely ldeal for window displays, owiching lamps ormodels, 12 or 24 v. D.C. Brand New and boxed, $12 / 6$ the. P e P
SINCLAIR SUPER MINIATURES Miero 6 miniature radio.... 82196 PZ3 Z-12 12 watt amp and pre-amp fully built …........... STEREO 25 pre-amy control $\begin{array}{llll} & 9 & 6\end{array}$ p. \& P. $3 / 6$ each

MODEL MAKER'S
Minlature D.C. Mohar. Ideal tor driving a gear system or can be used as a Tarhometer. gear syitem or can be used as a marhomeler. D. G. Housed In blacil ebonite case size $\frac{1}{1}$ in. x 1in. dla. ppindle tin. long x $3 / 64 \mathrm{in}$ d/2. 9/6. P. \& P. $2 / 6$.

MULTMETERS

C.1001. 20,000 D volt.. $£ 3$ 12 6
 N.H. 200. 20.000 Q/volt B.40. 10,000 Ω / rals 500. 30.000 日ivolt...... Reconditioned AVO Mod. 7 P14 14 P. 8/6 New AVO Meters from atock MNMAB \qquad

SUPER LIGHTWEIGHT PILOT'S HEADSET

'SMITH' I/IOth second RECORDING STOPWATCH UR REPEATABL AT ONLY 77/ Tlme those sporting events, records, flimg, etc., Fourself with this excellent ex-service tirmer, offered at rock battom bargain price. Pattern 3169, manu tactured to stringent government specisec. recorder, 0-15 min. register and functiona with three pressures (start, stop and return) os crown. 14 Days, Approval for Cash. 12 Montha' Guarantee.

FANTAVOX STEREOPHONIC

AMPLIFIER MODEL MG-333
The Stereo MG-333 is a compact and handsomely designed dual channel ampli fier for use with stereo record plagers and AM or FM tuners. The amplitier operates from a power source of $105-125$ (or 200 240) volts, $50 / 60$ cycle $A C$, and is equipped
with individual wolume controls for each with individual volume controls for each trol. and a stereo-monophonic mode troi. and a
switch. Price
$88 / 19 / 6$. P. \& P. P/ $8 / 6$.

SYNCHRONOUS CLOCK MOTORS

 ceared for 40 revolutions per hour, 230 v., 50 cycles.29/6. P.P. $1 / 6$.

TRANSISTORS

PLUGS, SOCKETS \& CONNECTORS
New 72-pape Catalogus now readyl Well over 150,000 different types of British and Arnerican manufacture. Standard Circular, Miniature Circular, Pygmy

 grad For your copy now

 IHeatioorniloe
 14tak. DEPT. Wwu
 53 TOTTBNRAM COORT ROAD, LONDON W.L. LANgham 3653

MANY MORE IMTERESTING BABGAIMS AVAILABLE AT THE SHOE
WW-133 FOR FURTHER DETAILS

High accuracy, wide range, low cost. These are among the many advantages of MINITIME. Comprising a pocket size black moulded case with contrasting MINITIME is designed to measure Mne is designed to measure the time interval between the opening and/or closing of concircuits. Range: 1 milti- 10 secs.

Send for explanatory leaflet to our Agents: Hird-Brown Led., Bolton; Sencom Ltd., London; Jiveco, Paris; S.P.R.L. Pol Francois, Belgium; or direct to A. G. BROWN ELECTRONICS LTD., LOWER MILLS, BUSBY, GLASGOW, SCOTLAND.

WW-134 FOR FURTHER DETAILS.

TECHNICAL TRAINING by ICS IN RADIO, TELEVISION AND ELECTRONIC ENGINEERING

First-class opportunities in Radio and Electronics await the I C S trained man. Let ICS train YOU for a well-paid post in this expanding field. ICS courses offer the keen, ambitious man the opportunity to acquire, quickly and easily, the specialized training so essential to success. Diploma courses in Radio/TV Engineering and Servicing, Electronies, Computers, etc. Expert coaching for:

- institution of electronic and radio engineers.
* C. \& G. TELECOMMUNICATION TECHNICIANS' CERTS.
- c. \& G. SUPPLEMENTARY STUDIES.
* R.T.E.B. RADIO AND TV SERVICING CERTIFICATE.
* radio amateurs' examination.
* P.M ©. certificates in radiotelegraphy.

Examination Students Coached until Successful.
NEW SELF-BUILD RADIO COURSES
Build your own 5 -valve receiver, transistor portable, signal generator and multi-test meter-all under expert tuition.
POST THIS COUPON TODAY and find out how ICS can help YOU in your career. Full details of ICS courses in Radio, Television and Electronics will be sent to you by return mail.
MEMBER OF THE ASSOCIATION
OF BRITISH CORRESPONDENCE COLLEGES.

Heathkit
 Instruments for Laboratories Test \& Service Workshops

Low prices. - Modern functional styling.

Well-proven circuitry.

Accurate and reliable performance.

3in. PORTABLE SERVICE OSCILLOSCOPE Model OS-2

Modern styling, lightweight and conmact size, make this the ideal 'scope for service man, laboratory technician, amateur radio enthusiast or hobbyist. " Y "" bandwidth $2 \mathrm{c} / \mathrm{s}-3 \mathrm{Mc} / \mathrm{s}$. $\pm 3 \mathrm{~dB}$. Sensitivity $100 \mathrm{mV} / \mathrm{cm}$. TB $20 \mathrm{c} / \mathrm{s}-200 \mathrm{kc} / \mathrm{s}$, in four ranges. Mumetal c.r.e. screen. Dimensions 5 in . wide \times

Kit. 23 .18.0 Assembled £31.18.0

Outstanding value in a low-priced 'Scope.

LOW-PRICED SIGNAL

GENERATOR. Model RFIU Provides extended frequency coverage on 6 bands on fundamentals and harmonics. Ideal for the alignment and trouble shooting of RF, If and audio circuits. Large easy-to-read dial. Pre-aligned coil and bandswiteh assembly. k k $100 \mathrm{Mc} / \mathrm{s}$ fundamentals, up to $200 \mathrm{Me} / \mathrm{s}$ harmonics. 400 cycle audio signal with 4 v . harmonics. Dimensions $9 \frac{1}{2} i n$. wide $x 6 \frac{1}{2} \mathrm{in}$. high $\times 5$ in. deep.

Kit......є13.18.0 Assembled $£ 20.8 .0$

LOW-PRICED RESISTANCE/CAPACITANCE BRIDGE.

Model C-3U
This compact, self-contained R/C Bridge is A.C. powered, and will be found equally valuable in the Laboratory, service workshop production line, etc. Measures capacitance from $10 \mathrm{pF}-100 \mu \mathrm{~F}$. Polarising voltages from 5-450 volts. Resistance 100 ohms5 Mohms. All readings are taken from large calibrated scales direct-no calculations required. Magic eye leakage indication. Dimensions: 9 tin wide $\times 6$ tin. high $\times 5$ in imensions: 9 tin wide $\times 6$ in. high \times Sin. deep.
Kit. $\mathcal{I} 1$.5.0 Assembled $£ 16.15 .0$

 See the full range of Heathkit models in the free catalogue

deep. Net weight 231 lb . Kit.page construction and operation manual.

ANALOGUE COMPUTER

Model EC-IU

Serves a variety of Educational and Industrial needs! Simple to build and use. Solves complex mathematical problems quickly. Excellent for Training Engineering, Physics and Maths students in the principles and applications of analogue computers.
Features include: $9 \mathrm{d.c}$. operational amplifiers with provision for balaneing without removing problem setup. 3 meter ranges, built-in power supplies incl, 3 initial condition supplies, repetitive oscillator, 5 co-efficient potentiometers. Assortment of components and leads included for problem setting up. Separate operational manual supplied with kit. Modern styling, compact size $19 \frac{1}{2} \mathrm{in}, \times 11 t \times 16 \mathrm{in}$. deep. Wt. 36lb.

> Kit.
. 197.8 .0
Assembled $\mathbb{1}$ 22.0.0

HARMONIC DISTORTION METER Model IM-I2U

Will give fase, accurate noise and distortion measurement in amplifiers, receivers, transmission lines, speakers, etc. Measurements are sion directly on large meter. High input
 impedance, precision components and Wien
and high accuracy in all applications. Freq.: 20 cycles to 20,000 cycles. Distortion: $1,3,10,30,100 \%$ f.s.d. Voltmeter; $0,1,3,10,30$ volts f.s.d. Input resistance $300 \mathrm{k} \boldsymbol{\Omega}$ Dimenslons $13 \mathrm{in} . \times 8 \frac{1}{2} \mathrm{in} . \times 7 \mathrm{in}$, deep. Weight 11 lb .

Kit..... . $£ 26.15 .0$ Assembled $£ 36.0 .0$

TRANSISTOR TESTER

Model IM-30U
Unmatched for quality and performance at the price.
Provides a complete d.c. analysis of PNP and NPN transistors and diodes. D.C. gain (Beta, Alpha) is read direct on calibrated scales. Four lever switches facilitate fast, easy, test selection. Internal batteries for tests up to 9 V . Provision for connection to ext. power supply for higher volcage and current tests. Modern functional styling. Size $5 \frac{1}{2} \mathrm{in}$. high $\times 10 \mathrm{j}$ in. deep $\times 102 \mathrm{in}$, wide.

Kit...... ©25.18.0 Assembled 36.10 .0

Many other models for Hi-fi enthusiasts, Radio Amateurs etc. See other page for details.

- Prices quated above are Mail Order prices - Prices include free delivery in U.K.

WW-136 FOR FURTHER DETAILS.

Enjoy the BBC stereo FM transmissions with the New De Luxe

TRANSISTOR STEREO FM

TUNER (Model TFM-IS)

Mono version TFM-IM also available.

Designed to harmonise and match the "International Class" de luxe transistor amplifier, AA-22U
\star Professional, elegant, slim-line styling.

+ Tuning range $88-108 \mathrm{Mc} / \mathrm{s}$.
* 14 Transistor, 4-diode circuit.
* Pre-assembled, pre-aligned RF Tuning heart
* 4 stage I.F. amplifier.
* Own built-in power supply.

Available for your convenience in separate parts and can be built for a
Total price kit Model TFM-IM (Mono) E20.19.0 incl. P.T.
Total price kit Model TFM-IS (Stereo) $£ 24.18 .0$ incl. P.T.
Optional extra: Walnut veneered cabinet E2.5.0.
Trim and brackets for cabinet mounting GMKI. \&1.18.0.

3+3 W HI-FI STEREO AMPLIFIER KIT Model S-33H

An inexpensive stereo-móno amplifier with the high sensitivity necessary for lightweight miniature ceramic pick-ups (e.g., Decca Deram). De luxe version of the $\$-33$ with attractive two-tone grey Perspex panel.
Kle €15.17.6 Assembled 21.7 .6 5 W HI-FI MONO AMPLIFIER KIT Model MA-5
A low-priced general purpose Hi-Fidelity amplifter based on the popular $\$-33$ for those who do not require a stereophonic system. Separate bass and treble controls Gram and Radio inputs. Suitable for most crystal plek-ups. A prinsed circuit simplifies construction. KIt Ell.9.6
HI-FI MONO POWER AMPLIFIER KIT Model MA-I2

A compact Hi-Fidelity power amplifier (Including auxiliary power supply). 12 watts output. Wide frequency range and low distortion. A variable sensitivity control is fitted enabling it to be used with an existing amplifier in a stereophonic system. Other applications includes stereophonic reinforcement systems, transmitter modusound reinforcement systems, transmitter modu-
lators, for use with tape recorders, also as a lators, for use with tape recorders, also as a
general purpose laboratory amplifier. Kit $£ \mathbf{2 . 1 8 . 0}$

Assembled $\mathbb{1} 6.18 .0$
STEREO CONTROL UNIT KIT

Model USC-I

Incorporates all worthwhile feacures for Hi-Fidelity stereo and mono. Push-button selec= tion accurately matched ganged controls to +1 dB . Negative feedback rumble and variable low-pass filters. Printed circuit boards. Accepts inputs from most tape-heads and any stereo or mono pick-up.
Kit $\{19.19 .0$
Assembled 227.5 .0
HEATHKIT-THOMAS (Transistorized) ELECTRONIC ORGAN KIT (with Color-Glo) Model GD-325E Can be built with no knowledge of electronics. Kit ©205.0.0 Bench §14.10.0 (Price includes carriage and duty)

AVAILABLE SHORTLY

Transistor FM Stereo Decoder, Model SD-I. Self powered. Can be used with any tuner having facilities for multiplex output. Kit £8.10.0 Assembled $£ 12.5 .0$ High Performance Car Radio, Model CR-I. Outstanding value for money and dependability. Total Price Kit (excluding speaker) $\{\mathbf{1 2 . 1 7 . 0}$ Full range of accessories also avallable.

HIFI EQUIPMENT CABINETS

\dot{A} range of equipment cabinets is now available. Designed for maximum operating convenience or for where room space is an over-riding consideration, this range includes easy-to-build kits or ready-assembled cabinets in the white for finish to own requirements. Prices from $\mathrm{f} I \mathrm{I} / / 8 / 6 \mathrm{kit}$.
" MALVERN " (Illustrated) Kit. $£ 18.1 .0$ (inc, P.T.).
Assembled (left in the white) £23.6.0.

How to Install Hi-Fi in YOUR home

If you are planning to install a Hi -Fi system in your home, and are uncertain of the type of equipment to use, our widely experienced technical staff will with pleasure put forward recommendations. All you have to do is state the type of installation contemplated, the price you are prepared to pay and give details of existing equipment you wish to include, if possible.

HI-FI STEREO AMPLIFIER

KIT Model S-99

18 w . output (9 per channel with 0.2 per cent. distortion at 9 w . per channel).
 It has ganged controls. Stereo/Mono
gram. radio and tape recorder inputs and push-button selection. Ultra-linear push-pull output. P.C. boards. Attractive Perspex front panel with golden surround and grey metal cabinet.
Kit $\mathbf{E 2 8 . 9 . 6}$
Assembled $\mathbf{3 8 . 9 . 6}$

Delerred Terms available on orders above £10

MONO CONTROL UNIT KIT

Model UMC-I

Ideal for use with MA-12 or similar amplifier. Output 0.25 v . Send for full details.
Kit $£ 9.2 .6$
Assembled $\mathbb{C l} 4.2 .6$
HI-FI SPEAKER SYSTEM KIT Model SSU-I
Ducted-port bass reflex cabinet "in the white." Frequency response is $40-16,000$ c/s. Power rating 10 watts. Matched speaker units 8 in. high flux (12,000 lines) with hyperbolic cone and 4 in. wide angle dispersion type for higher frequencies.

(inc. P.T.)

"COTSWOLD" SPEAKER

SYSTEM KIT

This acousticatly designed enclosure measures $26 \times 23 \times$ $14 \frac{1}{2}$ in. and houses a special 12 in . base speaker with 2 in . speech coit, elliptical middle speaker together with a pressure unit to cover the ull frequency range of $30-20,000$ c/s distribution makes it ideal for really H. Its polar. Delivered complete with really Hi-Fi Stereo. unit, level control gill speakers, cross-over white for finish to grife cloth, etc. Left in the pre-cut and drilled for ease of taste, all parts are Kit 625.120 for ease of assembly

Assembled $\mathbf{\$ 3 3 . 1 7 . 0}$

"COTSWOLD M.F.S." SPEAKER SYSTEM KIT

This model, based on the standard Cotswold, measures only 36 in hizh I6tin. wide by 14 in , deep. Particularly recommended to deep. who require the best results in who require the best results in Kis $£ 25.12 .0$

Assembled
$\$ 33.17 .0$

 DEPT. W.W.II, GLOUCESTER, ENGLAND

Member of the Schlumberger Group including the Heath Company. MANUFACTURERS OF THE WORLD'S LARGEST-SELLING ELECTRONIC KIT-SETS

THE QUALITY KIT-SETS

 ANYONE CAN BUILD

Costors or legs available az optionol extras.

A WELL DESIGNED

F.M. TUNER Model FM-4U

Tuning range $88-108 \mathrm{Mc} / \mathrm{s}$. Flywheel tuning. Attractive Plastic Front Panel in two-tone grey with golden trim surround and motif Thermometer eype visual tuning indicator. Prealigned. I.F. transformers. Three I.F. stages. with the AM/FM Tuner. and valves, $613 / 13 /$-. Sold separately.

Kit Total.

MULTIMETER KIT Model MM-IU

Provides wide voltage, current, resistance
and dB ranges 20 cover hundreds of applications. Sensitivity 20,000 ohms/volt D.C. and 5,000 ohms volt A.C. Ranges: $0-1.5$ V. to 1,500 V. A.C. and D.C.; $0-150 \mu \mathrm{~A}$ to 15 A. D.C. measures resiscance from 0.2Ω to $20 \mathrm{M} \Omega$. $4 \frac{1}{2} \mathrm{in}$. $50 \mu \mathrm{~A}$ meter. A polarity reversing switch eliminates transferring test leads when aiternatively measuring + and - voltages.
Kit $£ 12.18 .0$
Assembled $\mathbb{1} 18.11 .6$

OSCILLOSCOPE TRACE DOUBLER

Kit $£ 13.10 .0$

KIT Model S-3U
This device wlll extend the use of your single-beam oscilloscope and, at a nominal cost, will give you the advantages of a double (or other multiple) beam 'scope.

DECADE RESISTANCE BOX KIT Model DR-I U, Range $1-99,999 \Omega$ in 1Ω Steps. Ceramic switches throughour. Current rating from 500 mA to 5 mA . according to decades in circult. Polished wooden cabinet supplied complete.
Kit \&10.18.0
Assembled ©I4.18.0
AUDIO SIGNAL GENERATOR KIT

Model AG-9U

$10 \mathrm{c} / \mathrm{s}$. to $100 \mathrm{kc} / \mathrm{s}$., switch selected. Distortion less than 0.1%. 10 v . sine wave output metered in voles and dB's.

Kit $\mathbf{1 2 3 . 1 5 . 0}$
Assembled 631.15 .0
OSCILLOSCOPE ACCESSORY KITS Demodulation Probe kit 337-C E2.I7.6 Low-cap Attenuator Probe kit Pk-I 43.12 .6

"STARMAKER 33"

 TRANSISTOR PA/GUITAR AMPLIFIER Model PA-2This is a high performance amplifier whose size and weight allows easy transportation. Ideal for vocal and instrumental groups, P.A., electronic organs, guitars, etc.
Features include: 20 w . amplifier (33 watts. I.H.F.M.), two heavy duty speakers, 4 inputs on two channels, variable tremolo, modern elegant cabinet. Size: 18 in . h. $\times 29 \mathrm{in}, \mathrm{w} . \times 10 \mathrm{in}$. deep. We. 51 lb .
. 39.19 .0 Assembled 654.10 .0 Wide-band low distortion Ratio Detector. R.F. Unit, wired, cested and prealigned. Printed circuits for I,F. amplifiers and ratio detector. Built-in power suooly. Heathkit model SD* Stereo Decoder can be used with this tuner and
TUNER UNIT Model FMT-4U with $10.7 \mathrm{Mc} / \mathrm{s}$. 1.F. outpue. $\mathrm{C2} / \mathrm{l} 5 /$ - (inc. P.T. I.F. AMPLIFIER and power supply Model FMA-4U complete with case

BERKELEY Slim-line SPEAKER SYSTEM

A new concept in Heathkit loudspeaker design. The cabinet shell is assembled and finished in superb Queensland walnut veneer. Two specially designed speakers, 12 in . bass unit and 4 in . mid/high frequency unit and an L.C. cross-over network provide the smooth 30-17,000 c/s, frequency response. Ies professional cabinet seyling will blend with both traditional and contemporary decors. 15 ohm nominal impedance. Size $26^{\prime \prime} \times 17^{\circ} \times 7_{\frac{2}{2}}{ }^{\prime \prime}$ deep. Kit. $\mathcal{L 1 9 . 1 0 . 0 ~ A s s e m b l e d ~} \mathbf{2 4 . 0 . 0}$

"OXFORD" LUXURY TRANSISTOR PORTABLE Model UXR-2

This superb transistor radio is the ideal domestic or personal portable Medium and Long Wave receiver. Solid leather case ?nd handle. Easy-toread tuning scale. Extra large loudspeaker. Push-button L, MW and tone. 10 semi-conductors (7 transistors plus 3 diodes). Sockets for personal earphone, tape recorder, car aerial. Internal 9 volt battery (not supplied), lasts for months. Latest printed circuit techniques Comprehensive easy-to-follow, fully illustrated Instruction Manual.
$\rightarrow 1$
Kit. .

A.M./F.M. TUNER KIT

Tuning range $88-108 \mathrm{Mc} / \mathrm{s}$. (FM) $16-50, \quad 200-550,900-2,000 \mathrm{~m}$. Flywheel tuning. Attractive Perspex front panel in two tone grey with golden trim. Thermometer type tuning indicator, pre-aligned 1.F. eransformers. Switched wide and narrow A.M. bandwidths. TUNING HEART Model AFM-TI £4/13/6 (ine. P.T.) I.F. AMPLIFIER and Power Unit Model AFM-AI. Complete with metal cabinet and valves E22/11/6. Sold separately.

Kit Total $\mathbf{1 2 7 . 5 . 0}$
DUAL-WAVE TRANSISTOR PORTABLE RADIO KIT Model UXR-I

Presented in elegant real hida case with tasteful gold relief. Can be assembled in 4 to 6 hours and you have a set in the top flight of transistor portables. Pre-aligned I.F. eransformers, printed circuit and a 7 in . $\times 4 \mathrm{in}$. high flux speaker.
Covers both Long and Medium waves. Dimenslons $9 \frac{1}{2} \mathrm{in} . \times 7 \frac{1}{2} \mathrm{in}, \times 3 \frac{3}{3} \mathrm{in}$.

Kit $£ 12.11 .0$ (Inc. P.T.)

SINE/SQUARE GENERATOR
 Model IG-82U

Covers $20 \mathrm{e} / \mathrm{s}-$.1 Me/s. in 5 bands. Simultaneous

Sine and Square Wave outputs. Less than $0.15 \mu \mathrm{~S}$ rise time and on Square Wave. Less than 0.5% distortion on Sine wave. Up to 10 volts output. This attractively styled generator is designed for maximum operating convenience. Size $13 \mathrm{in} . \times 8 \frac{1}{2} \mathrm{in} . \times 7 \mathrm{in}$. deep.
Kic: $\boldsymbol{E} 5.15 .0$
Assembled $\mathbf{4 3 7 . 1 5 . 0}$

ELECTRONIC WORKSHOP KIT EW-I

20 exciting experiments can be made with this one kit. Kit $£ 7.13 .6$ (incl. P.T.)

- Deferred Terms available on all orders above $£ 10$.

Prices Include Postage U.K.

$4 \frac{1}{2} i n$. VALVE VOLTMETER KIT

 Model V-7AThe world's most popular valve voltmeter with printed circuit and I per cent. precision resistors to ensure consistent aboratory performance. It has 7 voltage ranges measuring respectively D.C. voles so 1,500 and A.C. to 1,500 r.n.s. and 4,000 peak to peak. Resistance measurements from 0.1 ohm to 1,000 megohms. with internal battery. D.C. input resistance is il megohms and dB measurement has a centre-zero scale. Complete with test prod, leads and standrdising batrery. Power requiremenes, $200-250$ stand-$40-60 \mathrm{c} / \mathrm{s}$. A.C. 10 wates.
H.V and R.F. Probes available as optional extras.

Kit $£ 13.18 .6$
Assembled $\mathbb{4} 19.18 .6$

6in. VALVE VOLTMETER

 Model IM-I3UModern styling. Many extra features. Unique gimbal braeket allows bench, shelf or wall mounting Measures A.C. and D.C. volts 0-1.5, ,15, 1,000 50, 1,500. Resist 12 1 to 000 MO Size 5 in. $\times 124$ in $\times 4$. with test prod and leads.
Klt $£ 18.18 .0$
Assembled $\mathbb{2 6}$.18.0

DECADE CAPACITOR KIT

Model DC.

Capacity values $100 \mu \mu \mathrm{~F}$ to $0.11 \mu \mathrm{~F}$ in $100 \mu \mu \mathrm{~F}$. steps. Preclslon silver-mica capacitors and minimum loss eeramic water swleches ensures high aceuracy. Kit $\mathbf{6 7 . 1 5 . 0}$

Assembled $£ 10.18 .0$

TELEVISION ALIGNMENT GENERATOR KIT Model HFW-I

Offers the maximum in performance, flexlbility and utility at the lowest possible cost. Several outstanding leatures have been incorporated in this model which are unusual in instruments in this price range. Frequency coverage $3.6 \mathrm{Mc} / \mathrm{s}$. to $220 \mathrm{Mc} / \mathrm{s}$. on fundamentals. Unique non-mechanical sweep oscillator system. High level outpuz on all ranges. Sweep deviations up $t 0$ $42 \mathrm{Mc} / \mathrm{s}$. Built-in fixed and variable marker generator ($5 \mathrm{Me} / \mathrm{s}$. erystal supplifed).
Kit $\not \mathbf{3 8}$.18.0
Assembled 449.15 .0

- Prices quoted are Mail Order Prices.

D 5 BD

DEPT. W.W.II, GLOUCESTER, ENGLAND
Member of the Schlumberger Group including the Heath Company. MANUFACTURERS OF THE WORLD'S LARGEST-SELLING ELECTRONIC KIT-SETS

AMATEUR TRANSMITTER KIT

Model DX-40U

Covers all amateur bands from 80 to 10 metres, crystal controlled. Power input 75 watts C.W. 60 watts ut 40 watts to aerial. Provision for VFO. Filters minimise T.V. interference. Modulator and power supplies are built-in. Single knob band switching is combined with a ol-network output circuit for complete operating convenience. A high-grade moving-coil meter indicates the final grid or anode current. Provision is made for the use of 3 crystals with access through a trap-door in the back of the cabinet. A 4-position switch selects the appropriate crystal or a jack for external VFO which can be usped instead crysta or a tack
of the crystal(s). Prices now reduced to :-

SINGLE SIDEBAND ADAPTER KIT

 Model SB-IOU

May be used with most A.M. eransmitters with certain provisions. Allows full use of existing equipment for SSB facilities. Band coverage: $80,40,20$, $15,10 \mathrm{~m}$. Unwanted sideband suppression; better than 30 dB . Carrier suppression: better than 40 dB . Power requirements: 300 V . D.C. 85 mA (averaze) 30 mA (standby). 140 mA (transmit), 6.3 v. A.C., 3.5 A. Meter: $2 \frac{1}{2}$ in. Scale edge reading, $200 \mu \mathrm{~A}$ movement, indicates carrier nulf and 43in deep. Limited stocks available, Kit . . $\mathbf{1 9 . 5 . 0}$ Assembled

E54.18.0

GENERAL COVERAGE RECEIVER KIT

 RG-IAn inexpensive communications type receiver specially designed for the short wave listener with many refinements found only in receivers costing much more. Freq. coverage $32 \mathrm{Mc} / \mathrm{s}-1.7 \mathrm{Mc} / \mathrm{s}$ in 5 ranges also M.W. band. Kit .. $£ 39$. 16.0

Assembled $£ 53.0 .0$ Optional extras available.
GRID-DIP METER KIT. Model GD-IU Functions as oscillator or absorption wavemeter. With plug-in coils for continuous frequency coverage from $1.8 \mathrm{Mc} / \mathrm{s}$ to $230 \mathrm{Mc} / \mathrm{s}$.
Kit. .Ell.9.6 Assembled. . $£ 14.9 .6$ Additional Plug-In Coils Model 341-U extend coverage
down to $350 \mathrm{ke} / \mathrm{s}$. With dial correlation curves. $17 / 6$.

TRANSISTOR INTERCOM KITS

Models XI-IU and XIR-IU
9 V . battery operated. Up to five remote stations can be operated wlth each Master. The Master unit can call any one, combination, or all five Remote stations and any Remote station can call the Master.

Model XI-IU (Master)
Kit . . £ 11.9 .6 Model XIR-IU (Rembled
Kit . . \&4.9.6 Assembled .. $\mathbb{4}$.I8.0
AMERICAN MARINE MODELS Prices include carriage, duty, Import levy, etc.
DIRECTION FINDER, MR-2IA
3WB transistor circuit. Kit .. £60.5.0
DEPTH SOUNDER MI-IIA
Soundings to 200it. Kit .. £38.10.0
FUEL VAPOUR DETECTOR MI-25 Transistor circuit. Kit .. $\mathbf{2 3 . 1 0 . 0}$
TACHOMETER MI-31A
6, 12, 24 or 32 v. D.C. Kit .. £14.0.0
Please send for detalis.

"MOHICAN"

GENERAL COVERAGE RECEIVER KIT Model GC-IU This fully transistorIsed receiver which includes 4 piezo-electric transfilters, is in the forefront of receiver design. it is an excel-
 lent portable or fixed station receiver. The R.F. "front-end " is supplied as a preassembled and pre-aligned unit. Its many features include a 10 -transistor circuit, printed circuit board, telescopic whip antenna tuning meter, and a large slide-rule dial giving a total length of approximately 70 inches, Housed in a steel cabinet and powered by two 6 vole dry batteries (not supplied). mounted internally, it gives frequency coverage from $580 \mathrm{kc} / \mathrm{s}$ to $30 \mathrm{Mc} / \mathrm{s}$. in five bands; thus enabling world-wide 'reception, Electrical bandspread covers the amateur bands from 80 to 10 metres-each band having a scale lenget of approximately 8 inches, BFO tuning and Zener diode stabiliser. Size $6 \mathrm{Zin} . \times 12 \mathrm{in}$. $\times 10 \mathrm{in}$.
Please write for specification leaflet.
Kit .. £37.I7.6 Asmbld .. £45.17.6
STABILISED POWER PACK Models MSP-IM and MSP-IW Specially recommended for induserial and laboratory use, meeting the need for a reliable and versatile stabilised power pack capable of a very high per-
formance. Input $200-250 \mathrm{v}$. formance. Input 200-250 v . $40-60 \mathrm{c} / \mathrm{s} .$, A.C., fully fused. Outputs: H.T
$200-410 \mathrm{v}$. D.C. at $0-225 \mathrm{~mA}$. $200-410$ V. D.C. at $0-225 \mathrm{~mA}$. in 3 switched ranges. Unstabilised A.C.. 6.3 v . at 4.5 A .
centre-tapped. Two
In. centre-tapped. Two 3in. "e easy-to-read" meters for reading voltage and current simultaneously. Separate L.T. and H.T. supply transformers. All output circuits are isolated. Size 13 in . $\times 8 \frac{1}{\frac{1}{2} \mathrm{in}, \times} 9 \frac{1}{2} \mathrm{in}$.

MSP-IM (with meters)
Kit .. £36.12.6 Asmbled .. $£ 43.12: 6$ MSP-IW (less meters)
Kit .. £29.17.6 Asmbld .. $£ 36.17 .6$
BALUN COIL UNIT KIT Model B-IU. Will match unbalanced cooaxial lines to balanced lines of either 75 or $300 s 2$ impedance. Frequency range $10-80 \mathrm{~m}$., input up to 200 watts. Kit . . 5.5 .6 Asmbld. . . $£ 5.18 .0$ TAPE PRE-AMPLIFIER KITS Models TA-IM and TA-IS The Combined Tape Record/Replay Amplifier
is available in both
phonic models. Model TA-IM can be modified phonic models. Moden a-IM can be modified to the stereo version with modification kit
TA-IC.
TA-IM Kit $£ 19.18 .0$ Asmbld $£ 28.18 .0$ TA-IS Kit $£ 25.10 .0$ Asmbld. $£ 35.18 .0$ TA-IC Kit .. $£ 6.15 .0$
All prices are mail order and include free delivery in the U.K:

Deferred Terms
are a vailable on all orders above $£ 10$

WELCOME TO OUR LONDON HEATHKIT CENTRE

See the British Heathkit range and a selection of American models etc.

233 TOTTENHAM COURT ROAD, W.I

Tel: MUSeum 7349
We open MON.-SAT., 9 a.m. -5.30 p.m. THURSDAY II a.m. $\mathbf{2 . 3 0}$ p.m. When you are In town we hape that you will visit us there.

AMATEUR TRANSMITTER KIT

Model DX-100U
 The World's most popular Amateur TX Kit

Completely self-contained. I50 w. D.C. input.
Built-in highly stable VFO and all Power Supplies.

The KT88 high-level anode and screen modulator stage gives over 100 watts of audio from less than | 1.5 mV . input. |
| :--- |
| |

- Keying on CW is via the VFO and buffer amplifier cathodes; the other RF valves are biased beyond cathodes
cut-off.
Provision has been made for remore control operation. Provision has been made for remote control operation.
Covers all Amateur bands up to $30 \mathrm{Mc} / \mathrm{s}$. phone or Covers
Kit .. £81.10.0 Assembled .. $£ 106.15 .0$

AMATEUR BANDS RECEIVER KIT

Model RA-I The ideal economically portable or mobile receiver covering the Amateur bands from $160-10 \mathrm{~m}$., each band separately calibrated on a
large illuminated slide-rule dial. Features: Signal strength meter, tuned RF amplifier stage, half-lattice filter, adjustable noise limiter. Freq. coverage $160,80,40,20,15$, 10 metre bands, I.F. $1620 \mathrm{kc} / \mathrm{s}$.
Kit . . $£ 39.6 .6 \quad$ Assembled . . . $£ 52.10 .0$

AMERICAN HEATHKIT SINGLE SIDE BAND EQUIPMENT

Transmitters, Receivers, Transceivers. Send for details of models. Fully illustrated American Catalogue of Heathkit range sent for only $1 / \%$, post-paid.

REFLECTED POWER METER KIT
Model HM-IIU Indicates, reliably but inexpensively, whether the R.F. power output of your transmitter is being. transferred efficiently to the radiating antenna. Kit . . \&8.10.0 Assembled $£ 10.15 .0$

VARIABLE FREQUENCY
 OSCILLATOR KIT. Model VFiU
 Specially designed to meet the demand for the maximum possible flexibility from an amateur Transmitter which would otherwise be subject to certain limitations imposed Amateur bands Calibrated for all Amateur bands $160-10$ metres.

 fundamentals on 160 and 40 m . Ideal for Heathkit DX-40U nd similar transmitters.Kit . © © 0.17.6 Assembled © 15.19 .6

Q MULTIPLIER KIT. Model QPM-I

A reasonably priced Q Amplifier or the amateur and short-wave enthusiast. This self-powered unit (200-250 \&. $50 / 60 \mathrm{c} / \mathrm{s}$) may be used with communications receivers to provide both additional selectivity
 and signal rejection.
Models QPM-I for $470 \mathrm{kc} / \mathrm{s}$. IF. QPM-16 for $1.6 \mathrm{Mc} / \mathrm{s}$, I.F. Kit, either model

C8. 10.0
Assembled
© 12.14 .0
AERIAL TOWER KITS. Model HT-I, HT-IG
Height 32 ft ., sq. section 3 ft . $\times 3 \mathrm{ft}$. at base (no stays required). Accessorics available as extras:
HT-IG Kit (galvanised) £43.15.0
HT-I Kit (red oxide) $£ 37.15 .0$

Please send me FREE CATALOGUE $\overline{(Y e s / N o) \ldots . . .]}$
Please send me FREE CATALOGUE $\overline{(Y e s / N o) \ldots . . .]}$
Full details of Model(s).
Full details of Model(s).
NAME
NAME
(Block Capitais)
(Block Capitais)
ADDRESS
ADDRESS

Valvesfully guaranteed mownouly packio

$\mathrm{AC/HL}$
$\mathrm{ACP4}$

RP19 RP19 ARPR $4 P^{2}$
$4 P_{4}$
$4 P_{7}$

B88
BT1

BT3 | 1355 | $25 /-$ |
| :--- | :--- |
| 145 | 150 | BT83

CC3L
CF23
CV71
CV77 CV4014 CO_{102} of 4040
or 31
D1
D41
D61
D74

D77

くิด
DET5
DET20
DET20
DF73
DF73
DF73
DF91
DF91
DF9
DK
DK
DL9
DL810
DY86
H.R. SENIOR TABLE MODEL TYPE M $50 \mathrm{Kc} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{s}$ with "S" meter and crystal filter in excellent fully checked and tested condition together with set of 8 general coverage coils and mains P.S.U. $110-220 \mathrm{v}$. E26/10/-. Carriage and packing 30/-
RACK MODEL also available at the same price. "S" Meter for H.R.O. Receivers, Brand new

TR $50 \times M$ TRANSMITTER/RECEIVER IN. STALLATION, four channel TX provision for crystal or master oscillator. Frequency $1.5-12 \mathrm{Mc} / \mathrm{s}$.
Output 50 w . Complete with all accessories, alternOutput 50w. Complete with all accessories, alternatively Dynamozor power unit for 12v. D.C. opera-
tion or P.S.U. $110 / 220 \mathrm{v}$. A.C. Full details and prices upon request.
TELEPHONE HANDSET. Standard G.P.O. type; new $12 /-$. P. \& P. 2/-.

INSET MICROPHONE for telephone handset
2 KW ULTRASONIC GENERATOR together with power supply unit for 200-250 v. A.C. Complete two chassis with interconnecting cables, Peak output 12 kw , average output 500 w Completely new with valves and manual, ©65, carriage paid U.K.
Large selection of mains and Heavy Duty L.F. TRANSFORMERS.
VARIOMETER for No. 19 sets, 17/6. P. \& P. 3/.
PANEL METERS
0.3 amp. R.F. 2 in . square............
100 mA A.C. 31 in . round..........
15 v . A.C. 2 in. round
150 v A.C. 2 tin in. square, black dial..

201-

20-480 MC/S FREQUENCY METER TYPE
20-480 MC/S FREQUENCY METER TYPE TS
$323 / U R$. High frequency version of BC221. Accuracy better than 0.05%. Battery operated (6 v . and 130 v.). In new condition with proper calibration charts. Laboratory tested and guaranteed. $£ 60$.

Frequency range $12-485 \mathrm{Mc} / \mathrm{s}$ in five ranges. Directly calibrated frequency dial. Qutput wavelorm: C.W.
sinewave A.M. pulse A.M. (from ext. source only) sinewave A.M., pulse A.M. (from ext. source only).
Internal modulation frequency $1,000 \mathrm{c} / \mathrm{s}$. Output: Internal modulation frequency $1,000 \mathrm{c} / \mathrm{s}$. Output: a, normal-continuously variable directly calibrated from $0.1 \mu \mathrm{v} .-0.5 \mathrm{v} . \mathrm{b}$, high ; up to I v. modulated for $2 \vee$. unmodulated, output impedance 50 ohms. Fine frequency tuning control, carrier on/of switch, built-in crystal calibration for $2 \mathrm{Mc} / \mathrm{s}$ and $10 \mathrm{Mc} / \mathrm{s}$. Stabilised voltage supply. In excellent "as new" condition. Laboratory checked and guaranteed. \&ll5. Carr. 30/=. Including necessary connectors, plugs and instruction manual.
MARCONI VALVE VOLT METER TYPE
TF 428-8
1.5 v. to ISO v. RMS in five ranges. A.C. and D.C. stabilised power supply. Complete with probe unit for RF measurements. In new condition and Laboratory tested, $£ 12 / 10 /-$. Carriage 10/-.
A.R.88D. RECEIVERS. Fully reconditioned, CS5. Rebuilt model ©85. Carriage paid U.K.

SPARES FOR A.R.88D. RECEIVERS
Ask for your needs from our huge selection.

P. C. RADIO LTD. 170, GOLDHAWK RD., W. 12

SHEpherd's Bush 4946

WELL PROVEN RELIABLE COMMUNICA-
TION RECEIVER P.C.R. 3
(Made by Pye) 3 bands, I medium wave, $2120-43 \mathrm{~m}$
3. ratio 10 dB at $6 \mu \mathrm{~V}$. Circuit incorporates an R.F. stage, two I.F. stages, tone control, A V.C. antenna trimmer, 6 V6 output. Set in new condition together with headphones. Speaker plug, $8 / 5 / 6$. With vibratory supply unit, $12 \mathrm{v} ., \in 10 / 4 / \mathrm{6}$. With specially buile in P.S.U. for 210-250 v. A.C., £il/I7/6. Carriage either set $10 /-$.
C.R. 100 RECEIVER. $60 \mathrm{kc} / \mathrm{s} .-420 \mathrm{kc} / \mathrm{s} ., 500 \mathrm{kc} / \mathrm{s}-$ $13 \mathrm{Mc} / \mathrm{s}$. In 6 bands, 2 HF stages, 3 IF stages, AVC on both phone and C.W. Excellent condition, correcty tuned and guaranteed, E31. Carriage 30/-
C.R.I50/2. Frequency coverage. I.5-22 Mc/s in
4 bands. Price $\$ 26$. Carriage $30 /$. A.C. P.S.U. 4 bands. Price 4
for above, $44 / 10 /-$.
ULTRA MODERN POWER SUPPLY UNIT. Supply voltage A.C.: $105,110,115,200,205,210$, $220,225,230,240,245,250 \mathrm{v}$. Available voltages D.C. (a) $1700-1900 \mathrm{v}$. Stabilised, adjustable approx. 1 mA . (b) HT2 approx. 45 mA .
(c) 260-350 v. stabilised, adjustable, approx. 45 mA . (d) 450 v . approx. 30 mA .
(e) 50 v . approx. 150 mA
(f) 4.5 v. A.C., 4.5 amp . common earth.
(g) 6.3 V. A.C., 4.5 amp. common earth.

5 valves, 7 silicon rectifiers, 4 Solenium HV rectifiers. Brand new, $69 / 10 / \mathrm{F}$. Carriage $12 /$.
PHASE MONITOR ME-63/U. Manufactured recently by Control Electronics Inc. Measures directly and displays on a panel meter the phase angle between two applied audio frequency signals within the range from 20-20,000 c.p.s. to an accuracy of $\pm 1.0^{\circ}$. Input signals can be sinusoidal or nonsinusoidal between 2 and 30 v . peak. In excellent condition together with handbook and necessary connector. © 45 . Carriage 30%.
32/44FT. AERIALS each consisting of ten 3 ft . $\frac{7}{8}$ in. dia. tubular screw-in sections; 14 ft . (7 section) $\frac{1}{8}$ in. dia. tubular screw-in sectial with adaptor to fit the in. rod, insulated whip aerial with adaptor to ftay plate and stay assemblies, pegs, reamer, hammer, etc. Absolutely brand new and complete,
ready to erect, in canvas bag, $£ 3 / 9 / 6$. P. \& P. $10 / 6$.

Open 9-5.30 p.m. except Thursday 9-1 p.m.

PORTABLE OSCILLOSCOPE CT. 52 A compact general purpose instrument with many unusual features. Size 9 in . high, 8 in . wide, $16 \frac{1}{2}$ in. deep. Time base $10 \mathrm{c} / \mathrm{s}$ to $40 \mathrm{Kc} / \mathrm{s}$. Y plate sensitivity 40 V per cm . Tube 2 ifin., Frequency compensated amplifier up to 38 dB gain. Bandwidth up to $1 \mathrm{Mc} / \mathrm{s}$. Single sweep facilities. Operates from A.C. mains $100-250$ voles $50 \mathrm{e} / \mathrm{s}$. Complete with all test leads, metal transit case, instruction book and circuit diagram, BRAND NEW.

BEATFREQUENCY OSCILLATORS MARCONI TF 195 M . Covers 10 cps . to $40 \mathrm{Kc} / \mathrm{s}$ in two sweeps. 0 to $20 \mathrm{Kc} / \mathrm{s}$ and 20 to $40 \mathrm{Kc} / \mathrm{s}$. Output 2 watts into 600 or 2,500 ohms. Panel meter indicates output voltage. A.C. mains operation 100 to 250 voles. First class condition. Fully rested. E 20 carr. $30 /$-.

EVERSHED BRIDGE MEGGER, 500 Volt. Varley and Loop tests. Complete in leather case and in as new condition. 535 .
MARCONI "Q" METER. Type '32sG. As new condition and in perfect working order. 665. Carr. 50/-.

BC-221 FREQUENCY METERS As new condition complete with crystal and valves. In perfect working order but WITHOUT calibration charts. $\mathbf{E 9 / 1 9 / 6 .}$ Carr. 10/6. Precise (0.001%) dial readings to your requirements at $2 / 6$ per frequency.

MICROAMMETERS

R.C.A. 0.500 microamps 2 tin . circular flush panel mounting. Dials are engraved $0-15 \quad 0-600$ volts. As used in the American

AR-88 SPARES

R.C.A. Headphones

Escurcheons (Windows)
Knobs. Medium size. Set of 8
Knobs. Large size
Block Condenser (3×4 mid.)
Mains Trans. (L.F.) (postage $6 / 6$)

$12 / 6$ $8 / 6$ $8 / 6$ $101-$ $51 / 7$ 12/6 42/6

AR-88D RECEIVERS

A good selection is available for callers at from $£ 30$. All are in good condition and are functioning perfectly. Realigned. A few BRAND NEW Elf.

LABORATORY pH METER

Marconi type TF.1093/1. Range $0-14 \mathrm{pH}$ direct reading. Full temperature compensation. Scale expansion providing discrimination. Scale expansion providing discrimina-
tion of 0.01 pH . A.C. mains operation. tion of new complete with electrode stand and manual. Full details on request. $£ 35$.

```
CINTEL OSCILLOSCOPE A 12 in . demonstration oscilloscope with all controls at rear. BRAND NEW \(£ 80\).
```


SANGAMO WESTON VOLTMETERS S61. Dual range $0-5$ and $0-100 \mathrm{v}$. D.C. FSD 1 mA . 3 in . scale. Recent manufacture. Ideal for schools. Complete in super quality canvas carrying case with lest BRAND NEW. Boxed 32/6. Post 2/6.

OSCILLOSCOPE TYPE 13A

Double beam. Time base $2 \mathrm{c} / \mathrm{s}$. $10750 \mathrm{Kc} / \mathrm{s}$. Band width up to 5 Mc / s. Calibration markers at $100 \mathrm{Ke} / \mathrm{s}$. and $1 \mathrm{Mc} / \mathrm{s}$. Cathode follower probe for H.F. testing. Operates from A.C. mains 100 to 250 volts. A completely reliable quality instrument. Supplied fully checked with all leads, graticule, visor, circuit etc. $\pm 22 / 10 /$-. Carr. $30 /$ -

PCR-1 and PCR-3 RECEIVERS

Brand new condition. 3 wavebands. R.F. stage, 6 valves PCR-I 860-2080 metres, $190-570$ metres, $5.6-18 \mathrm{Mc} / \mathrm{s}$. internal speaker. PCR-3 $190-570$ metres, $2.3-7.3 \mathrm{Mc} / \mathrm{s}$. 7.0$23 \mathrm{Mc} / \mathrm{s}$. required external 3 ohm speaker. Exeernal Power Supply required or can be fitted with internal Mains Puwer Supply for $t 2$ excra. Circuit supplied. Fully rested prior to despatch. $£ 8 / 19 / 6$. Carriage 10/6. Fuller details upon request. Brand new external Power Supply Units, Vibrator Unit for operation from 12 v . car battery, for caravans or boats $15 / 6$ or A.C. Mains Units $\mathbf{E 2}$. Carriage $5 / 6$.

HAMMARLUND SP-600-JX

20 valve dual conversion superhet receiver covering $540 \mathrm{Kr} / \mathrm{s}$ to $54 \mathrm{Mc} / \mathrm{s}$ in 6 bands This is a professional quality receiver of recent design with stability of 0.01% or berter. Second channel rejection 74 dB down and spurious responses are at least 100 dB down. Bandwidth from $200 \mathrm{c} / \mathrm{s}$ to $13 \mathrm{Kc} / \mathrm{s}$. Crystal filter with erystal phasing control. Operates directly from A.C. mains $90-260$ v. $50-60 \mathrm{c} / \mathrm{s}$. Original cost E 510 . Supplied overhauled and in first class working order $£ 100$. Fuller details on request.

CINTEL EQUIPMENT

ELECTROLYTIC CAPACITANCE AND INCREMEN TAL INDUCTANCE BRIDGE No. 36601 A modern instrument, all solid state, which accurately measures the capacity of electrolytic condensers from $0.1 \mu \mathrm{~F}$ to $\mathrm{I}, 000 \mu \mathrm{~F}$ under operating conditions. Leakage current and polarizing voltage are separately metered. Inductances from 100 mH to 100 H can also be measured with currents up to 100 mA A.C. mains operation. Unused with handbook. 100. WIDE RANGE CAPACITANCE BRIDGE. No. 1864. A niatching instrument to the above. All solid state. Mains operation. Measures from 0.002 pF to $100 \mu \mathrm{~F}$. Unused with handbook. $£ 100$.

HICKOCK OSCILLOSCOPE OS-8B/U A high grade general purpose instrument made to exacting U.S.A. Navy specification. Detachable cover with carrying handle. Compact $\left(13 \frac{1}{2} \times 6 \times 8 \frac{2}{3} \mathrm{in}\right.$.) weight 17 lbs. Green trace 3 in. tube. Bandwidth "Y"' amplifier D.C. to $2 \mathrm{Mc} / \mathrm{s}$ (D.C. coupled). Sensitivity $40 \mathrm{mV} / \mathrm{cm}$. "X" amp. can be used separately, similar spec. to "y" amp. Leads are housed in case. For A.C. mains 105 to 125 V .50 so $1,000 \mathrm{c} / \mathrm{s}$. BRAND NEW, tested and guaranteed. £25. Carr. 10/-. Auto transfarmer $15 / 6$ extra.

CHARLES BRITAIN (Radio) LTD.

II UPPER SAINT MARTIN'S LANE LONDON, W.C.2.

TEMple Bar 0545
Near Leicester Sq. Station.
(Opposite Thorn House)
Shop hours: 9-6 p.m. (9-1 Thursdays).
Open all day Saturday

AVO VALVE CHARACTERISTIC METER. This well known instrument comprehensively tests old and modern types. In very good condition, fully tested, together Testing Manual (1964 Edition) $£ 30$. Carr f1

PHASE MONITOR ME-63/U

(AN-URM-67)
Designed to measure directly the phase angle between two spplied audio frequency signals of from 20 to 20,000 c.p.s $+1 \%$. Direct indication on a panel meter Input can be sinusoidal or non-sinusoidal from 2 to 30 volts peak. Of recent manufacture (1957) by Control Electronics Inc. and ex-U.S.A. Air Force. In first class condition with handbook. A complex instrument with 19 valves. : 40 . Carr. $30 /$ -
T.C.C. METALPACK EONDENSERS. 0 . I mif. 500 v. D.C. wkg. at $70^{\circ} \mathrm{C}$. Brand new, polythene wrapped, $7 / 6$ doz., or $£ 2$ per 100 .
T.C.C. METALMITE 350v. D.C. wkg. T.C.C. METALMITE 350v. D.C. wkg.
$0.1 \mathrm{mfd} .(C P 37 \mathrm{~N}) ; 0.05 \mathrm{mfd}$. (CP35N); 0.01 mid. (CP. 32 N) all at $5 / 6 \mathrm{doz}$. or $32 / 6$ per 100 SPRAGUE METAL CASED CONDENSERS 0.01 mfd . 1,000 V. D.C. wkg., $5 / 6 \mathrm{doz}$., or $32 / 6$ per 100 .

T.C.C. VISCONAL CONDENSERS.

 8 mfd. 800 v. D.C. wkg. at $71^{\circ} \mathrm{C}$. CP 152 v . Size $3 \times 13 \times 5 \mathrm{in}$. high. BRAND NEW (boxed), $8 / 6$ each. DUBILIER NITROGOL 3 mfd. 350 v. D.C. wkg. at $71^{\circ} \mathrm{C}$. Size $1 \frac{3}{4} \times 1 \frac{1}{2} \times 4 \frac{3}{3}$ in. high. With fixing clips. BRAND NEW (boxed) $5 /-$ each. T.C.C. or DUBILIER. 4 mfd . each. T.C.C. or DUBILIER. 4 mfd600 v . wkg. CP IJOT or similar. $\left\lvert\, \frac{3}{4} \mathrm{x}\right.$ 600 v. wkg. CP 130 or ormilar $1 \frac{3}{4} \times$
$13 \times 4 z \mathrm{in}$. high. BRAND NEW (boxed), Iz $\times 4$ in. high. BRAND
$4 / 6$ cach. All post paid.

STANDARD TRANSFCRMERS

 Vacuum impregnated, interleaved, E.S screen, universal mounting. Size $4 \times 3 \frac{1}{2} \times$ 2 $\frac{1}{2}$ in. ALL BRAND NEW. 24/- each. Post 2/6.Type 1. $250-0-250$ v. 80 mA .6 .3 v .3 a tapped at i v. 4 a. 6.3 v 1 a. tapped at Type 2. As above but 350-0-350 80 mA .
Type 3. 30 ข. 2 a., tapped at 12,15 20 and 24 v. to give 3-4-5-6-3-9-10 v., etc.
Type 5. 0-6-9-15 v. 4 a. Ideal for chargers.

LOW CAPACITANCE BRIDGE MARCONI TF 1342. Range 0.002 pF. to 1.111 pF. Accuracy 0.2%. Three terminal transformer ratio arm bridge allows " in transiormer ratio arm bridge allows in measurements. Internal oscillator frequeney $1,000 \mathrm{c} / \mathrm{s}$. $12 \times 17 \times 8 \frac{1}{3} \mathrm{in}$. Weight $15 \% \mathrm{lbs}$. A.C. mains 200 to 250 and 100 to i5 $\mathrm{lbs} . \mathrm{A} . \mathrm{C}$. mains 200 to 250 and $150 \mathrm{v} .40-100 \mathrm{c}$. With leads and handbook. ABSOLUTELY BRAND NEW. £45.

WHAT EVERY CONSTRUCTOR, EXPERIMENTER AND DESIGNER SHOULD HAVE

THE NEW WONDER CIRCUIT SYSTEM

for making your own INSTANT circuits

Think what it means to be able to have just ONE printed circuit to the design you want and you will see immediately just how wonderfully CIR-KIT more than fills that long felt need. CIR-KIT is quick-you simply lay the self-adhesive strip on the board, drill holes for the components and you are ready to solder them in at once. CIR-KIT is clean-there are no chemicals, acids or etching processes involved. CIR-KIT is adaptable-you can amend a circuit again and again quickly and easily. Ideal for experimenters, this. CIR-KIT is economical-the No. 3 Constructor's Kit advertised here contains enough material to make up about 10 circuits and components may be closely mounted if desired. You can also repair damaged conventional printed circuits; you can experiment quickly and cheaply. In fact, CIR-KIT is the most revolutionary advance in circuit techniques since the printed circuit itself was invented and is already being used by many of the most famous houses in electronics.

No

CHEMICALS, ETCHING, HEAT, SPECIAL TOOLS OR RESTRICTIONS TO LAYOUT

Enough for about 10 circuits

CIR-KIT KIT No. 3 contains high quality mounting board (Bakelite laminate E.10) size 6in.x12in. with din. z 6in. CIR-KIT adhesive copper sheet and 15 ft . of tin. CIR-KIT adhesivecopper strip. Land areas and special shapes are cut from the
CIR-KIT sheet. The heat-resistant adhesive used will last indefinitely with normal use. With instructions.

PEAK SOUND (HARROW) LTD., IO, ASHER DRIVE, MILL RIDE, ASCOT, BERKS. Phone: Winkfield Row 3217 (S.T.D. Code OEH47)
Distributors to the Wholesate \& Retail Radio Trade in U.K.:
TECHNICAL SUPPLIERS LTD., 63 Goldhawk Rd., London, W. 12
Phone: 01-603-258f; 01-603-4794

This is Kit No, 3 complete with instruc.
tions, board and material in sealed polythene pack.

Industrial and overseas enquiries to the manufacturers, please.
To PEAK SOUND, 10, ASHER DRIVE, MILL RIDE, ASCOT, BERKS.
Please send. ... CIR-KIT(s) for which I enclose.
NAME \qquad
ADDRESS \qquad

Carr
HEAVY DUTY L.T. TRANSFORMERS ALL PRIMARIES 270 MINAL BLOCK CONNE VOLTS. *DENOTES SHROUDED TYPES No

ISOLATION TRANSFORMER

 Fully shrouded. Terminal block connections Pri. tapped 220-240 V. Sec. tapped 220-240 v $1 \mathrm{amp} .75 / \mathrm{F}$. Carr. $5 / \mathrm{F}, 2$ amps. $\mathbf{4} / 15 / \mathrm{F}$. Carr. 6/6. 3 amps. $47 / 19 / 6$. Carr. 7/6. 4 amps. \&8/10/Carr. 7/6
LOW RESISTANCE SMOOTHING
 CHOKES

Shrouded type $0.05 \mathrm{H}, 0.75 \Omega 2$ amps. $39 / 6$ P.P. 4/-, $0.03 \mathrm{H}, 0.4 \Omega, 4 \mathrm{amps} ., 49 / 6$. P.P. $4 / 6$ $0.02 \mathrm{H} .0 .25 \Omega, 8 \mathrm{amps}, 55 / \mathrm{-} . \mathrm{P} . \mathrm{P} .6 /-$

REDCLIFFE HT TRANSFORMERS Pri. tapped $200-250 \mathrm{y}$. Sec. 3 separate windings of $130 \mathrm{v} .450 \mathrm{~m} / \mathrm{a}$. Tropicalised table top connections 45/-. Carr. 6/-

HEAVY CURRENT TRANSFORMERS Output tapped $46-11$ voles, 200 amps. from 240 volts $\pm 10 / 19 / 6$. Carr. $10 /$ -

SPECIAL OFFER OF L.T. TRANSFORMERS ALL BY FAMOUS MAKERS. LIMITED NUMBER ONLY

Pri. 240 v. Sec. tapped $53.6,55.2$ v. 6 a. "C"' core, tropically finished, 75/-. Carr. 5/..
B. Pri, 200-240 v. Sec, tapped 6.2, 6.8, 7.3, 7.9. $9,9.5,10,10.6$ volts, 17 amps , and 36 volts 8 amps. £6/10/. Carr. $7 / 6$.
C. Pri. 220-240 v. Sec. tapped 75.80 v. 2.4 a . and 6 v. I a. "C" core, 75/-. Carr. 5\%.
D. Pri. 200-240 v. Sec. 17.5 v. 1 a. 3 times, 32/6. P.P. 4/m.
. Pri. 200-250 v. Sec. 8 v. 6 a. Suitable for Projector lamps, 19/6. P.P. 3/6.
Pri. 220-240 v. Sec. tapped 32.38 .44 v. 7 a. 701-. Carr. $7 / 6$.
G. Pri. 230-240 v. Sec. 4.5 v. 30 a., 8 v. I a., 4.5 v. I a., $£ 4 / 17 / 6$. Carr. $7 / 6$.
H. Pri. 230 v. Sec. tapped 65,130 v. 85 mA . and 6.3 v. 5 a., 6.3 v. 1 a., $17 / 6$. P.P. 3/6.
T.E.C.H.D. TRANSFORMER. Pri. 230-240 Sec. 76 v. 43.5 a. 2 only, 25. ex warehouse.

SMITH'S 4 MINUTE TIMERS
Switch contacts 15 amps. 250 volts A C., complete with
chrome bezel and control knob. Min. operation time
30 seconds, max. 4 minutes, Brand new. $17 / 6$, P.P. $2 / 6$.

SELENIUM F.W. HIGH CURRENT BRIDGE RECTIFIERS. Supplied brand new and guaranteed. Not to be confused with Government Surplus. All materials used are the latest design and highest grade PLATE SIZE 7 $\frac{3}{4}$ in. SQUARE
No. I. 36 v. D.C., 36 amps .
Price Carr.
No. 2. 36 v. D.C., 18 amps.
No. 3. 24 v. D.C., 54 amps
No. 4. 24 v. D.C., 36 amps.
No. 5. 24 v. D.C., 18 amps.
No. 6 . 12 v. D.C., 54 amps.
No. 7.12 v. D.C., 36 amps . No. 8. 12 v. D.C. 18 amps . No. 9. 12 v. D.C., 12 amps. PLATE SIZE 4 itin. SQUARE No. 10. 36 v. D.C.. 8 amps. No. 11.24 v. D.C. 8 amps.

No. 12.12 v.D.C. 8 amps. \qquad $\begin{array}{r}65 \\ 617 \\ 615 \\ 15 \\ \hline 5\end{array} 1876$ | 611 | 15 | 0 |
| ---: | :--- | :--- |
| 75 | $7 / 6$ | |
| 65 | 19 | 6 |
| $7 / 6$ | | | $\begin{array}{llll}63 & 19 & 6 & 7 / 6 \\ & 65 & 17 & 6 \\ 7 / 6\end{array}$ $\begin{array}{llll}63 & 19 & 6 & 7 / 6 \\ 1 & 19 & 6 & 316\end{array}$ $\begin{array}{llll}1 & 19 & 6 & 3 / 6 \\ 1 & 12 & 6 & 3 / 6\end{array}$

$\begin{array}{llll}2 & 19 & 6 & 3 / 6 \\ \mathrm{LI} & 19 & 6 & 3 / 6 \\ 19 & 6 & 2 / 6\end{array}$

EVERSHED \& VIGNOLES LTD.
A.C. Watt-Meters $0-500$. $6 \frac{1}{2} \mathrm{in}$. dia. Norminal voltage 250 v. Nominal current 2 amps. Flush mounting. Mirror scale. 65/IT/6. Carr. 5/-.

SPECIAL OFFER OF PARMEKO H.T. TRANSFORMERS. Primaries tapped 230 and 115 v . No. I $950-0-950$ v. 30 mA . and 575-0-575 v. 50 mA . r.m.s. Completely sealed. Chassis mounting. Brand new, 49/6. Carr. 6/\%. No. 2, 960 v. C.T. 500 mA . r.mis. Terminal block connections. Base mounting. Brand new, 57/6. Carr. 7/6. No. 3, 920 v.C.T. 100 mA. r.m.s. 6.3 v. 8 amps, Four times. 5 v. 6 amps., 5 v. 4 amps. Terminal block connections. Base mounting, 75/-. Carr. 7/6. No. 4, 500-$0-500$ v. 165 mA . Complerely sealed. Base mounting, $35 /$. Carr. $5 / \mathrm{m}$. No. 5, 30 v. $2 \mathrm{amps} ., 6.3$ v. 6.5 amps. 6.3° v. 1.1 amps., 6.3 v. 0.3 amps., 32/6. Carr. 4/-.

UNREPEATABLE OFFER. WESTING. HOUSE L.T. SUPPLY UNIT TYPE SXIII A.C. input tapped $200-250$ V. D.C. output 25.5 volts 8 amps., and a Separate tapped A.C. output of $6.2,6.8,7.3,7.9,8.5,9,9.5,10,10.6$ volts at 17 amps . Both outputs for temperate operating conditions. Completely enclosed in metal wall mounting case, size $15 \frac{1}{2} \times 9 \times 6 \frac{3}{2}$ ins. SupTION OF MAKER'S PRICE EB/IO/- Carr. $15 /$ -
NEOPRENE COVERED HOSE
Nitrate lined 1 in, bore $\times 2$ braid unused. Perfect
condition, fraction of maker price, 12 yard coils.
$17 / 6$, P.P. $5 /$.

WODEN DOUELE STEP-DOWN TRANSFORMERS. Pri. 240 v. Sec. 55-0-55 v. 200 watts, Completely enclosed, 75/-. Carr. 7/6.

RFS.CMal onozans 102 Henconner Lane, Bramley, Leeds, 13.
M-FI CERTRES LTD.
R.S.C. STEREO/20 HIGH FIDELITY AMPLIFIER OUTPUT ON EACH CHANNEL under $\mathcal{f} 1$. Postage $3 / 6$ extra under $£ 2,5 / 6$ extra under 65 Trade supplied. S.A.E. with all enquiries please. Personal shop pers welcomed at our HI-FI CENTRES a below OPEN ALL DAY SATURDAY
BRADFORD BRISTOL(Half-day Wed.) Tel.: 22904 BIRMINGNAM $30 / 31 \mathrm{Gt}$. Western Snow Hill station. Tel.: CENtral Opp 1279 (No half-day). Larger premises now open DERBY 26 Osmaston Rd, The Spot
(Hall-day Wed.). Tel.: 41361

Features Include:

Stereo Mono switch so that peak monaura output of 88 watts can be obtained. Separate "Bass" "uts" and "cat" and
treble "ilit" and "cnt " controls. treble "lift" and "cat " controls.

Landsome Perspex Frontplate.
 \qquad

Gend S.A.E. for Hllustrated leafiet

 RADIO OR TAPE. FOR HOME OR STUDIO. Employing vaves ECC83, LCCs3, ECLS8, ECL86, ECL86, ECL86, EZ81. Ontput transformers are high 5 ohnis speakere on each channel. FREQUENGY RESPONSE ± 2 dB.-30-20,000

R.S.C. STEREO/10 HIGH QUALITY AMPLIFIER Yatves R281, EOC83,
Separate hasa and treble controls
ELIVIng
EL84, and "boost." Benallivity 50 mV . 5 watts high quality output on each channel. Can be used a

DARLINGTON EDINBURGH 13 Post House Wynn
(Hall-day Wed) Half-day Wed.). 133 Leith Stre
(Half-day Wed.). GLASGOW 326 Argyle Street. Tel. HULL St Savile Street (Half-day IEICESTER 32 High Street (Half-
LEEDS $\quad \begin{aligned} & \text { 5-7 County (Mecca) Arcade } \\ & \text { (No halfoday). Tel.: } 28252\end{aligned}$ LIVERPOOL ${ }^{73}$ Dale St. (No halfLONDON 238 Ed dayare Ntral 3573 (Half-day Thursday) Tel. PADdington 1629
96 High Holborn
 (No half-day).
Tel.: CENeral 2778. MIDDLESBROUGH: NEWCASTLE 39 Blackett St. (Half-day Wed. Tel. 21469

13 Exchange Street, (Half-day Thursday)
Tel.: 20716 JASON VHF/FM TUNERS FMTI $£ 6.19 .11$
 atralght 10 watt amplifter. Controls: Stereo/
Monaural switch, ganged volume, ganged treble, Monaural switch, ganged volume, ganged treble,
ganged bass and balance. Output for 3 ohms speaker. Polnt-to-polnt wirling diagrams and
spled and tested 11 gns. Deposit 3 :- and 9 . Onthuppled ants of $25 / 5$ (Total £13/4/9).
28.15 .0

AUDIOTRINE HI-FI TAPE RECORDER KIT
Only 4 pairs of soldered joints phus mains E 50 a high quality recorder in the Can be assembled in one $26 \frac{1}{2} \mathrm{GnS}$. $19 / 6$ hour. 8.A.E. Lor leaflet. 4 track 3 Rns. extra ments of $59 / 6$ (Total 29t gus.). Cash price if
settled in 3 months. INCORPORATIVG sottled in 3 months. INCORPORATING
THE LATEST MAGNAVOX TAPE DECE.
 $17 \mathrm{t} \times 14 \frac{1}{2} \times 8$ in Portable Cabinet size approz
with Silver trim and chrome fittings. Connection dis-
gram for wring amplifler to deck provided FEATURES INCLODE * 3-SPEED FOR EACH SPEED + OUTPUT 4 WATTS $~$ MAGIC EYE RECORDING LEVE IDDICATOR + HEAYY DUTY MOTOR + TAPE MEASURING \& CALIBRATING DEVICE $*$ TAKES FULL Fin. DIAMITER RBELS OP TAPE $*$ NEGLIGIALE

ALL LEADING MAKES OF HI-FI EQUIPMENT

 STOCKED-CASH OR CONVENIENT TERMSHIGH FIDELITY LOUDSPEAKER ENCLOSURES. Ah types are or pleasing modern in alternative design acoustically lin
of light teak of light leak or medium walnut.
SEs. Designed for optimum performance with any $\mathrm{Hi}-\mathrm{Fi}$ 8in. speaker, $\$ 5 / 15 / 0$
Size $22 \times 15 \times 7 \mathrm{in}$. Carr. $7 / 6$. SE10. For 10 in . High-Fidelity Speaker with provision for tweeter.
Size $24 \times 15 \times 8 \mathrm{in}$. Carr. $10 /$ - $86 / 19 / 9$ $\$ E 12$. For outstanding performance with any $12 i n$. Hi-Fi speaker. A tweeter cut-out is provided. Size 24
 (Total 29/10/8). Carr. 10/FH E8, Folded Horn type. Size $27 \times 16 \times 10 \mathrm{in}$, Designed
for high flux 8 in. speaker with which exceptional quality an be obtained. Terms: Deposit $21 /=$ Carr. 9 Gns. and 9 mthly pyts, of $21 /=$ (Total 10 gns.) $10 /-9$ GnS.

HIGH FIDELITY LOUDSPEAKER UNIT8
MINI-8 8 watt rating. 3 or 15 ohm. Fre-MINI- 88 watt rating. 3 or 15 ohm. Fre-
quency response $50-13,000$ c.p.s. Specially designed high flux 5in. speaker with low fundamental resonance. Teak veneered cabinet, $8 \frac{9}{4} \times 6 \frac{1}{2} \times 7 \frac{1}{4} \mathrm{i}$. Carr. $7 / 686 / 19 / 11$ "PETITE" Size only $101 \times 6 \frac{1}{2} \times 7 \frac{1}{i n}$. Rating 10 watts R.M.S. Frequency range $45-20,000$ c.p.s. Cabinet beautifully finished in Walnut or light Teak. Fitted specially designed heavy cast 5 in. speaker with large pole pieces, extra long voice coil and rubber cone surround.
Impedance 3 or 15 ohms. Deposit $36 /=$ and 9 mthly. pyts. of $25 /$ (Total $213 / 1 /=$). Carr. $7 / 6.11$ GnS.
Following types have handsome " slim line" cabinets
finished in Satin Teak or Wainut, acoustically lined and perted.
The GLOUGESTER. $24 \times 20 \times 8 \mathrm{in}$. 12in. high flux 12,000 line speaker. Crossover unit, and Tweeter. Rating 10 watts smooth response 40-20,000 c.p.s. Impedance 15 ohms. Or Deposit $36 /-$ and 9 monthly pyts. 11 EnS.
of $25 /-($ Total $213 / 1 /-$. Carr. $15 /-$.
The DORCHESTER, Size $24 \times 15 \times 8$ in. Fitted Audiotrine HF100D Speaker. Rating 15 watts. Frequency response $30-20,000$ c.p.s. Carr. 15/-. 12 CIS. (Total $14 / 4 / 9$).
The BRONTE, Size $22 \times 15 \times 7 \frac{1}{i n}$. Fitted Wharfedale Super 8 RSDD Speaker, with Roll Surround and dual cone. Rating 6 watts. Impedance 15 ohms, Or Deposit $39 / 6$ and 9 mthly. payments 12 GIIS.
of $27 / 3$ (Total $814 / 4 / 9$). Cart $15 /-\quad 12$

R.S.G.SMPZR 1 S MRFI AMPLFIER R.S.C.SUFZR 3 OSTZREO AMPLIFIER

FULLY TRANSISTORISED
\star 200-250 v. A.C. Mains Operation

- OUTPUT R,m_8. CONTINUOUS

10 WATTS into 15 ohms.
15 WATTS into 3 ohms. Send B.A.E. - Max. Instantaneous Peak for leaflet. Power Output 28 watts.

- PRINTED CIRCUIT CONSTRUCTION
* LATEST MULLARD TRANSISTORS AD 149 (2), OC127Z, OC81Z (2), OC44 (3) AC107 (Total of 9)
\star E-POSITION INPUT SELECTOR SWITCH EQUALIZATION to Standard R.I.A.A and C.C.I.R. Characteristics for Gram
and Tape Heads.
\star FULL TAPE MONITORING FACILITIES
\star 8ENSITIVITIES: Magnetic P.U Crystal or Ceramic P.U. 400 mv
Microphone 4.5 mv . Tape Head $2.5 \mathrm{~m} . \mathrm{v}$. Radio/Aux. Ceramuc P.U. 110 mv
\star NEGATIVE FEEDBACK 52 dB.
+ FREOUENCY RESPONSE: $20-20,000$ ($221 / 13 / 6$) * TREBLE Control +15 dB . to -14 dB . at $10 \mathrm{kc} / \mathrm{s}$. * BASS Control +12 dB . to -15 dB . at $50 \mathrm{c} / \mathrm{s}$.
- HARMONIC DISTORTION AT 10 Watts R.M.S. 1,000 c.p.s. 0.3%. \quad HUM LEVEL

R.S.C. TYPE TFMI TRANSISTORISED VHF

为 ing diagramas and inatructions. Cirr. 10\%. Or tactory built, 15 ghns. Or 191 gna, Termas: Deposit
 Complete Kit of parts with full constructional de-
taills and point-to point wiring diagrams. Only
$10 \frac{1}{2}$ Gns.

\section*{| Onilt |
| :--- |
| bult tectiry |
| 141 |}

walnut

teak veneer-
ed cablnet

Deponit
£3/9/- and
9 mthly. pyt
$40 / 6$ (Total
40/6 (Total
e21/13/6)

S 75 dB .

FM RADIO TUNER
\star 200-250 r. A.c. Mains operation High Sensitivity
T Sharp A.M. Rejection

* Output ample for any amplifier (approz. 500 mV .)
* Simple alignment inutraction

TEGHNIGAL SPEGIFICATIONS COMPARE MOME THAN FAVOURABL WITH SIMILAR AMPLIFIERS OFFERED AT TWICE THE COST

AUDIOTRINE HI-FI SPEAKER SYSTEMS

Provides a smooth frequency response from $40-20,000 \mathrm{o} . \mathrm{p} . \mathrm{s}$. consistlig of 12 in . 12,000 line 15 ohm apeaker. Crossover tor use with any High-Fidelity Amplifler. 10 Watt Unit, 5 gas . Carr
 $5 / 6$ or deposit 15/- and 9 monthly payments of $11 / 6$ (Total £5/18/6). 20 Watt Unit £6/18/9. Carr. $7 / 6$.
 ($833 / 15 / 6$).

 AUDIOTRINE HI-FI LOUDSPEAKERS Heavy cast construction. Latest higb efficiency ceramiomagnets. Dual Cone for extended frequency range Plastic trated surfound giving low
renonant frequency. Response $30-20,000$ resonant Irequency. Response $30-20,000$
c.p.s. Impedance 3 or 15 ohms. Carr. $5 / 6$. HF811D sin. 10 WATT 4 gns. HF100D 10 in .15 WATT $85 / 15 /-$ HF121D 12 in .20 WATT $86 / 15 /-$ HF12TD 12in. 30 WATT 9 gns.

To visually match our super 15 and 30
 All parts, point-to-point wiring diagrams and detailed instructions

18 Gns.
Carr. 12/6.
Unit factory
built 25 gns. built 25 gns ,
or
$81 /-$ and 9 and

A DUAL CHANNEL VERSION OFTHESUPER15 Employing Twin

\star Matched Components.

t Close Tolerance Ganged Pots.
CROSe Tolerance Ganged Pots. 1,000 c.p.s CONTROLS: 5 Position Input Selector, Bass Control, Treble Control, Volume Control, Balance Control, Stereo/Mono Switch.
INPUT SOCKETS (Matched Pairs): (1) Magnetic P.U. (2) Ceramic or Crystal P.U. (3) Radio/Aux. (4) Tape Head/ Microphone.

* Operation of the Input Selecto assures appropriate equalization.
K Rigid 18 s.w.g. Chassis. Size $12 \times 3 \times 8 \mathrm{in}$ and Spun Silver Matching Knobs.
t NEON PANEL INDICATOR.
Above facilltiea, ete., except for Clanging and Balance Control apply also to Super 15. ALL HNGH GRADE COMPONENTS,
ETC. THBSE UNITS ARE EMINENTLY SUITABLE FOR USE WITE ANY MAKE OF PIGK-UP OR MICROPHONE (Crystal,
Ceramic, Magnetic Moving Coll, R Ceramic, Magnetic, Moving Coll, Ribbon, GUPERB SOUND
OUTPUT CAN BE OBTAINED BY USING WITH FIRST RATE pend of the same bigh standard of performance and reliabllity. The prewired tuning head faclllutes apeed and simplicity of construction. Printed cir. cnitry, only first grade transistors and componeats used. Our latest product giving you the best at halt the cost of comparable unlts.

OUTPUT CAN BE OBTAINE

aUdIOTRINE PLINTHS for Record Playing units. Teak finish cut for Garrard $1000,2000,3000$, AT6 Mk II,
AT60, SP25 or Goldring GL68. AT60, SP25 or Goldring GL68.
Or with clear Perspex cover as illustrated, $£ 5 / 19 / 11$ complete.
HI-FI SINGLE RECORD PLAYING UNITS Consisting of the popular Garrard SP25 turntable and Goldring CS90 High compliance Cartridge. Fitted on Plinth as above and complete with Clear Perspex cover, Ready to 'plug in' to any Hi-fin
amplifier. (Normal Price $(24 / 15 /-$) TERMS: Deposit 3 Gns. and 9 monthly payments TERMS: Deposit 3 C
43/7 (Total $22 / 16 / 3$).

NEWCASTLE - LOMDON
 LOUDSPEAKERS IN CABINETS 12 in .10 WATT, veneered Cablnet. $\begin{array}{r}\text { Stze } \\ 15 \times 15 \times 8 i n . ~ a p p r o x . ~ H i g h ~\end{array}$ quality 12 in . 10 watt 12,000 ohms $£ 4 / 19 i 11$. Carr. $7 / 6$. hly paymenta $11 / 9$ mon\&5/15/6).
 Quality HIgh Flux i/speaker. 15 ohms in Cabinet, finiuhed as above. Dize $18 \times 18 \times 8 \mathrm{in}$. $£ 7 / 19 / 11$: Carr. 10/6. (Or Deposit $24 / 6$ and 9 inonthis pryments of 17/3. (Total £8/19/9.)
 12in. 30 WATT. 17,000 lines in walnut finished cabinet 10 Gns. Carr. 12/6. Terins: Deponlt $32 /-$ and 9 monthly pisymenta of $22 / 4$. (Total COLOMN TYPE 40 WATT, with four 12 in . high COLOMN TYPE 40 WATT, with lour 12in, high 12in. 30 watt HEAVY DUTY LOUDSPEAKERS I5 ohm. $7^{\text {ons. }}$

SPECIAL PURCHASE of 15 in .30 watt
 15 in. 40 watt LOUDSPEAKERS
 FANE 122,1020 WATT HEAVY DUTY LOUDSPEAKERS 12in. 18 ohm . GNS.
 Yodel $122 / 10 \mathrm{~A}$ rilth Dial Cone 6 Gns.
R.S.C. 4 watt GRAM AMPLIFIERKIT Complete wet of parts to build a wood qualitry
compict untit kutable for ure with any recorit Buns bhd Treble eontrole Output for 59/11

POWER PACK KITS Fully smoothed out put 250 R. 60 mA . H.T. and L.T. 6.3 v., 1.5 rupe. Conisiste of chasestis, Doubie wound Maing

R.S.C. TRANSFORMERS

Fully Guarmiteed. Interleaved and Inpregtuted MAINS TRANSFORMERS. Primaries 200-250 MIDGET CLAMPED TYPE $2 t \times 2 t \times 2 t i n g$.
250 v .60 mA .6 .3 v .2 a.
FULLY SHROUDED. UPRIGHT MOUNTING
 $300-0-300$ v. 130 ma .6 .3
Mulard 510 Ampliber $\begin{array}{lll}50-0-350 & \text { F. } 100 \mathrm{~mA} . \\ 50-0-350 & \text { v. } 150 \mathrm{~mA} .\end{array}$ $25-0.425$ v. 200 mA $25-0-425 \geqslant .200 \mathrm{~mA}$.
OP gHROUDED DROP-THROUGH TYPE $50-0-250$ ซ. 70 mA., 8.3 ४. 2 t.., 0-5-6.3 ₹. 2 a $\begin{array}{ll}250-0-260 & \text { v. } 100 \mathrm{~mA} \text {. } \\ 250-0-250 & \text { v. } 100 \mathrm{~mA}\end{array}$ $50-0-250 \mathrm{v} .100 \mathrm{~mA}$. $50-0 \cdot 350$ จ. 80 mA ., 6.3 ₹. 2 в.., $0-5-6.3$ v. 2 it $300-0-300$ ₹. 100 mA ,
 for Mullard 510 Aropilher $550-0-350$ ₹. 100 mA ., 6.3 v. 4 ล., $0-5-6.3$ v. 3 is H_AMENT or TRANSIETOR POWER PACK TRANSFORMERS

AUTO (Step UP/Step DOWN) TRANGFORMERS .110/120 v. 200-230-250 v. 50-80 watts.....

HARGER TRANSFORMERS

$\begin{array}{ll}0-9.15 & \text { v. } 112 \\ 0-9-15 \\ 0.9-15 & 5 \\ \text { v. }\end{array}$
. 1319
$0-9-15$
$0.9-15$
0.6 a.
$0-9.15$
v.
25111
1818

UTPUT TRANSFORMERS

Itandard Pentode 5,000 @ to 3Ω or 7,000 to 3Ω ush pull 10.12 watts 6 EL 6 to or 150 Push puil $10-12$ watts to match 6 V 6 to 3 . Puah pul! ELs to 3 or 150 10.12 watts
Push pull Ultra Linear for Multiord 510 , ush pull Ultra Linear for Mullisrd 510 , etc. ush pull $15-18$ wat
etc., for 3 or 15Ω Push pull 20 watt high-quality, aectionally woun MOOTHING CHOHE
$250 \mathrm{~mA} .5 \mathrm{H} ., 100 \Omega \quad 12 / 9 \quad 80 \mathrm{~mA} ., 10 \mathrm{H} ., 350 \mathrm{Q}$

R.S.C. AIO 30 watt AMPLIFIER HIGH FIDELITY ULTRA LINEAR PUSH-PULL OUTPUT SIX VALVEE EF86, EF86, ECL48, 807, 807,
 separite Bass and Treble controls give both
"lift" and "cut." Two inputs with separate
vol. controls permit simultaneous use of "mils" pick-up, etc. etc. AN OUTPUT SOCKET WITH PLUG IS INCLUDED FOR tit form with easy to follow wirlng diagram. kit form with easy to follow wiring diagram.
Carr. 12 GMS months guarantee. 15 GNS. TERMS ON ASSEMBI 12 Carr. 2 SIS months guarantee. 15 GNS. TERMS ON ASSEMBLED
12/6.
 Type 807 output valves are used with High Quality Sectlonally Wound output dB. In main loop. GERTIFIED PERFORMANCE FIGURES ARE EQUAL TO c / s. Tone Controls. 12 dB . at $50 \mathrm{c} / \mathrm{s} .+12 \mathrm{~dB}$. to -6 dB . at $12,000 \mathrm{ch}$. hum and nolse 70 dB . down. Good quallty reliable components used. Chassis finish gold hammer. Overall stze $12 \times 9 \times 912$. approx. Power consumptlon 150 watts. For A.C. maina $200-250$ V. $50 \mathrm{c} / \mathrm{s}$. Ontput for 3 and 15 ohm speakers. EQUALLY SUITABLE FOR THE CONNOISEEUR OR FOR LARGE HALLS, CLUBS, OR OUT8IDE FUNCTIONS. DDEAL FOR USE WITR MUSICAL INSTRUMENTS, SUOZ AS GTRING BASS, ELECTRONIC ORGAN, GUITAR, etc, FOR 'POP' GROUPS at keen cash prices or on terms with amplifers, EXPORT EHOURRIES INVITED.
R.S.C. AII 12-14 WATT AMPLIFIER HIGH FIDELITY ULTRA LINEAR OUTPUT "BUELT-IN " TONE CONTROL PRE-AMP STAGES. Two imput sockets, with aseociated controls allow mixing of "mike" and gram., etc.
Bigh menstivity. Includes 5 valves EOC83. EOCs 3 , ELSA, EL84, EZ81. High quality Bection. ally wound output transformers specially designed for Ultra Linear operation. Reliable componcnis. INDIVIDUAL CONTROLS FOR BABS AND TREBLE " Lift" ind "Cut," Frequency reaponse $\pm 3 \mathrm{~dB}, 30 \cdot 20,000 \mathrm{c} / \mathrm{m}$. Six negatlve feedback loops. Hum level 60 dB , down ONLY 23 milivolts inPUT
required for FULL OUTPUT. For use with all types of pict ups and mikes required for FULL OUTPUT. For use with all types of pick-ups and mikes. INSTRUMENTS such as STRING BASS, GUITARS, etc.
OUTPUT SOCKET with plug provldes $300 \nabla .30 \mathrm{~mA}$. and $5.3 \vee, 1.5 \mathrm{a}$. For aupply of a RADIO TONER, 81ze approx. $12 \times 9 \times 7 \mathrm{hu}$. For A.C. tuains $200-250$ v. $50 \mathrm{c} / \mathrm{s}$.
Output for 3 and io ohms gpeakers. Kit is complete to last nut. Chasels is Output for 3 and 10 ohms speakers. Kit is complete to last nut. Chasels is
fuily punched. Full instructions and point-to-point wiring diagrams supplied
 9 monthly payments of $25 / 9$. (Total ell $3 / 8 / 3$). Perforated

COMMUNICATION RECEIVER RX 60 DE-LUXE 4 Band $535 \mathrm{ke} / \mathrm{s}$. to $30 \mathrm{Mc} / \mathrm{s}$. Blde Rule
Tuning Dial with Bandepread and ${ }^{\circ} \mathrm{g}$." Meter. A.V.C. Noise Llmiter, B.F.O. Phone Jack. Bult-in speaker. Stand-by 8witch Antemna for long range receptlon. High Sensiltvity. For $200-250$ v. A.C. mains.

(Totial £21/19/-) Cart. 11- aad 9 montaly payments $37 / 8$

WAVEMETERS TYPE 'D' No. I. Brand New, 59/11

4/5 WATT A5 HIGH GAIN AMPLIFIER
 and 6. Reberve power supply 300 V . H. T.
 Bpeaker outpat 3 ohms. Kit complete in every detail. $84 / 17 / 9$
Fully punched enamelled chiusis. point-to-polnt wiriog diagrame and instructione, Assembled ready for use. \&6/B/-. R.S.C. BATTERY ELIMINATORS Type BMI, Size $5 \frac{1}{2} \times 41 \times 2 i n$. approx. Completely
replaces batterles supplylng 1.5 v. and 90 v. replaces batterles supplylng 1.6 v . and 90 v.
where A.C. mains $200-250$ v. $60 \mathrm{c} / \mathrm{s}$. is availathe. For
 1.5 v. and 90 v. TAPE PRE-AMPLIFIER Lineax LPn swithed Egariostion Positions for Recording at $1 / \mathrm{lin}$. . 3in... 7 din . per sec., and Playback.
EM84 Jecording Level ladicator. Designed primarily am the Ink EM84 lecording Level lndicator. Designed primarily an the link

TRANSISTOR SALE Mullard Oc71 2/11. OC72 2/11. OC81
 HEAVY DUTY SELENIUM RECTIFIERS

19/9 SELENIUM RECTIFIERS F.W. (Bridged) All $6 / 12$ v. D.C. output. Max. A.C. Input 18v. 1 a. $3 / 11: 2$ a. $6 / 11$
HEAVY DUTY BATTERY GHARGER KITS Consisting of Mains Trans. 200-250 v., Rectifer. Ammetcr, Variabie
Charge Rate Sclector, Paneln. Plugs, Fuses and bolderg. Fuly puoched, $6 / 12$ v. 4 a. $49 / 1116 / 2$ v. 6 a. $69 / 11$

interest charges

 REFUNDED on credit s.it purchases settle
Switch on to Pitman books

Modern Electronic Components

G. W.A. Dummer 63s net

In this book the author has sought to present the first comprehensive survey of the more common components, together with information on their behaviour under the arduous environmental conditions to which they are often subjected. As an aid to the choice of the most suitable component for a particular purpose, this book should be of fundamental valuc to engincers concerned with the design, development, production and use of electronic equipment.

The Silicon Gate-Controlled Switch

edited by G. J. Pridham 12s 6d net Aimed at H.N.C. and higher level electronics students, this short monograph was originally presented as a symposium by experts from four major electronics companies at Enfield College of Technology. The device is a transistor-type mechanism, recently developed, which has found wide applications in computer and other electronic circuitry.

Connectors, Relays and Switches

G. W. A. Dummer and N. E. Hyde 50s net This is the latest volume in the series Radio and Electronic Components, by Mr. Dummer. The series has been designed to meet the needs of the rapidly expanding electronics industry for information about specific components. Connectors, Relays and Switches is the first book in the world covering electronic connections-a subject of extreme importance, because of improvements in reliability of conventional components and integrated circuits, necessitating similar improvements in connection methods.
available from all booksellers, or by post (add 2 s 9 d postage and I packing per book) from:

NEW ERA BOOKS LTD 14 NEWTON STREET LONDON W.C. 2.

S．C．R．（ $\left.\begin{array}{c}\text { SILICON CONTROLLED } \\ \text { REGTIFIERS }\end{array}\right)\left(\begin{array}{c}\text { HI－FI AND } \\ \text { ORGAN DEM－}\end{array}\right.$ IAmp 50 p．i．v． $7 / 6.100$ p．i．v． $9 / 6.200$ p．w．ONSTRATION 12／6． 300 p．i．v． $15 /-400$ p．i．v．（280 v．RMS）
$17 / 6.7 \mathrm{mpp} .400$ p．i．v． 25 ／－． $\begin{aligned} & \text { ROOM OPEN－} \\ & \text { ALL WELCOME }\end{aligned}$
（1）REGENT－6 MW／LW
POCKET RADIO TO BUILD POCKET RADIO TO BUILD
6－Transistor superhet．Geared tuning． Push－pull speaker output．Moulded cabinet $5 \times 3 \times 1 \frac{1}{2}$ in．Phone socket． $\begin{array}{lll}\text { TOTAL COST } & 69 / 6 \text { P．P．} \\ \text { TO BUILD }\end{array}$ TO BUILD
（2）SOLID SLATE IGNI－ TION As Sept． ＂P Electronics．＂ All parts $\mathrm{E} / / 19 / 6$ ， post $2 / 6$ ．
（3）FM STEREO DECODER KIT 7－Transistor printed circuit design with stereo indicator and pre－amp． For use with any valve or transistor FM tuner．Uses Ger．and silicon tran－ sistors and pot cores to Mullard design．PRICE $£ 5.19 .6$ P．P．
（4）BUILD A QUALITY 2 OR 4 TRACK TAPE RECORDER
NEW 3－SPEED VERSION．Using New＇363＇ Decks．＊TWO－TRACK．Deck E10／10／－ Martin Amplifier £14／19／6．Cabinet and Speaker 7 gns．Complete kits with FREE 7 in． 1．200it，tape，sparespool． 27 ghs．P．P．
Today＇s value 35 gns．
＊FOUR－TRACK．Deck $13 / 10 /$－．Martin Amplifier $£ 15 / 19 / 6$ ．Cabinet and speaker 7 gns． Complete kits with FREE 7in．1，200ft．tape， spare spool．
Today＇s value 40 gns ．
30 gns．
DEAC RECHARGEABLE BATTERIES 3.6 volt $500 \mathrm{~mA} / \mathrm{h}$

12／6 P．P．1／6 － 9.6 volt $225 \mathrm{~mA} / \mathrm{h} \quad \ldots .2 \mathrm{e} 20 / \mathrm{P} \quad$ P．P． $1 / 6$ DEAC charger for 3.6 and 9.6 volt packs， 45 ）． Also etiminator $67 / 6$ ．P．P． $2 /$－．
（5）VHF FM TUNER TO BUILD
87／105 Mc／s．＂ 5 transistor Superher．＂Geared tuning．Terrific quality and sensitivity．For valve or transistor amplifiers． $4 \times 3 \frac{1}{2} \times 2 \frac{\mathrm{it}}{\mathrm{in}}$ ． Complete with dial plate（The item 3 FM Decoder）．
TOTAL COST
TO BUILD
E6．19．6
（6）GARRARD DECKS—BRAND NEW，WITH HIGH QUALITY CARTRIDGES

$$
401 \text { less cart./arm } 627100
$$

AT6 mono．
道总号 $\begin{array}{llllllllll}1000 \text { mono } & \ldots & \epsilon 5 & 19 & 6 & \text { SP25 stereo } . . . & £ 10 & 19 \\ 1000 & \text { stereo }\end{array} \ldots$.
（7）GLOBEMASTER MW／LW／SW ORTABLE RADIO TO BUILD
Full 3－waveband tuning．Push－butzon wave－ Full 3－waveband tuning．Push－button wave－
change．Superhet printed circuit．Black－ change．Superhet 1 printed circuit．
chromed
cabinet $11 \times 7 \frac{1}{2} \times 3 \frac{1}{2}$ in．（SW $17-50$
 metres）．Ear
TOTAL COST
TOTAL BUILD
£7．19．6
P．P．
$3 / 6$
10 AND 20 WATT MONO AND STEREO TRANSISTOR AMPLIFIERS
（9）POWER AMPLIFIERS． 10 watts RMS outpue． 100 mV input． $30 \mathrm{c} / \mathrm{s}$ to $20 \mathrm{kc} / \mathrm{s} \pm \mathrm{IdB}$ ． 6－Transistor Push－pull．Panel size $4 \times 2 \frac{1}{2} \times$ lin． H／S $4 \times 4 \mathrm{in}$ ．
TPA10／3 3 －5 ohm speaker， $\mathbf{5 4 / 1 0 / \text {－．P．P．} 2 / 6}$ TPA10／15 12－16 ohm speaker 65／5／－．P．P．2／6 （Mains unit， 1 or 2 amplifiers，59／6．P．P．2／6）

The finest High Fidelity at
 Unbeatable Prices
 at

1） 25 WATT AMPLIFIER
8－Transistor design．Push－pull output for $7 \frac{1}{2}$ to 16 ohm speaker． 150 mV input． $30 \mathrm{c} / \mathrm{s}$ to $20 \mathrm{kc} / \mathrm{s} \pm 1 \mathrm{~dB}$ ．For use with valve or eran－ sistor preamplifiers as item（10）above． PRICE BUILT AND TESTED
£7．19．6 \quad \％．P． （Mains unit 79／6，P．P．2／6）
 ITI－2 20 kV 69／6 $500 \quad 30 \mathrm{kV} \quad \in 8 / 17 / 6$ EP20k 10kV $99 / 6$ EP100k 100 kV € $10 / 10 /-$
（15）GARRARD BATTERY 2－SPEED 9 VOLT TAPE DECK
Brand New with R／P head，erase／osc．head， cape cassette and instructions． 2 speed 2 － track． 9 volt operated．List price 13 gns． OUR PRICE $\mathbf{E 8 . 1 9 . 6 \quad P \quad \& \quad \mathrm { P }} \mathrm{3} / \mathrm{F}$ ．
（18）MINIATURE OSCILLOSCOPE

MODEL CT 52

High sensitivity＇scope，fully portable with Mullard DG7／5 2 zin ．tube． $10 \mathrm{c} / \mathrm{s}$ ．to $40 \mathrm{kc} / \mathrm{s}$ ． FREE running Time Base．Single Sweep Pulse Monitoring $50 \mathrm{~m} / \mathrm{sec}$ ．to $0.1 \mu \mathrm{sec}$ ． P － $2 \mathrm{Me} / \mathrm{s}$ ．and up to 35 dB ．Gain on Amplifier． Full input facilities and controls． 110 to 250 volt A．C．mains operated．Complete in portable case with leads．In new condition． E22．10．0 Carr．\＆Pkg．
FULL HANDBOOK AND CIRCUIT．
VHF FM TUNER FMT4I
Built Superhet． 6 transistor 3 diode 9 volt．All transistor．Ready to use．E8／I0／－p．p．2／．
WE CAN SUPPLY FROM STOCK MOST OF THE PARTS．SPECIFIED ON CIRCUITS IN THIS MAGAZINE．SEND FOR QUOTATION． FULL DESCRIPTIVE LEAFLETS AVAILABLE ON ALL ITEMS．

（8）TOURMASTER CAR RADIO

7－Transistor MW／LW Car Radio． 12 volt operated． 3 watt output．Push－button wave－ change．RF stage．Supplied built，boxed， ready to use with speaker and baffle．Car fixing kit and manufacturers＇current guar－ antee．Special Bargain Offer．Buy Now！ ist Price 15 gns．
£9．9．0 P．P．
（10）PREAMPLIFIERS． 8 input selector． Treble，bass，volume，filter controls． $1 \frac{1}{2} \mathrm{mV}$ Mains Unit Outpur up to 150 mV RMS MP2 Mono $9 \frac{1}{2} \times 2 \frac{1}{2} \times 2$ in． $65 / 10 /-$ P．P． $2 / 6$ （grey and gold front panel 8／6）．
SP4 Mono／Stereo， $9 \times 34 \times 1$ inin．，$\in 10 / 19 / 6$ ， P．P．3／6（front panel plate 12／6）．
\＆ALL UNITS BUILT AND TESTED
（12）MW／LW QUALITY
TRANSISTOR RADIO TUNER
Fully tunable superhet with excellent sensi－ sivicy and selectivity．Ourput up to $\frac{1}{\frac{1}{9}}$ vole peak．Complete with frone panel，etc， 9 vole operated．For use with any amplifier or tape recorder．
TOTAL COST
13.19 .6

P．P
TO BUILD
VHF FM TUNER
Supplied as 2 preassembled Panels，plus metal work．Superhet design，88－108 Me／s． 9 vole operated．
Total cost $£ 12 / 17 / 6$ ，p．p． $2 / 6$ ．
（16）NOMBREX TEST UNITS
t $\$ 50 \mathrm{kc} / \mathrm{s}-350 \mathrm{M} / \mathrm{cs}$ ．R．F．Generator，
E $10 / 10 / \mathrm{H} .11 \mathrm{Al}$ Transistor．
$* 10 \mathrm{c} / \mathrm{s} .100 \mathrm{ke} / \mathrm{s}$ ．Transistor．E16／19／6．
Audio Generator．
（17） 5 WATT AMPLIFIER
6－Transistor Push－pull， 3 ohms． 6 mV ．inco IK． $12 / 18$ v．supply． $2 \frac{1}{6} \times 2 \times 1 \frac{1}{2}$ in． BUILT AND TESTED （optional mains units $54 /-$－
Matching Preamplifier， 6 inputs，treble／bass／ selector／volume controls，6－10 mV ．output．

9－18 v．supply．79／6，p．p．2／－．
 9－18 For use with any Transistor Amplifier

1966 CATALOGUE \＃सा।

HAVE YOU A COPY？ Fully detailed and illus－ trated． 150 pages of components，equipment， etc．Over 5，000 stock items．PRICE 6／．，post paid．Free discount vouchers with every catalogue．
YOU CANNOT AFFORD

TO BE WITHOUT A
COPY OF THIS CATALOGUE．
SUPPLIERS OF QUALITY
COMPONENTS AND EQUIPMENT

BUILD THE WORLD'S FIRST ALL TRANSISTOR PORTABLE ORGAN KIT

t EASY TO BUILD WITH PRINTED CIRCUITS AND FULLY COMPREHENSIVE HANDBOOK
\& CIRCUITS USE 170 TRANSISTORS AND DEVICES * 10 SELECTED TONE COLOURS PLUS VIBRATO
\star PORTABLE TWO COLOUR CABINET WITH DETACHABLE LEGS, MUSIC STAND, SWELL PEDAL * THE ONLY COMPLETE KIT AVAILABLE IN THE WORLD-BRITISH DESIGNED AND MADE SPECIFICATION:

- TONE COLOURS (ROCKER TABS), 10 DIFFERENT TONES CAN BE SELECTED SWITCHED VIBRATO - 49 NOTE C C FULLY SPRUNG KEYBOARD 6 OCTAVES OF GENERATORS PRESET VOLUME CONTROL TONE COLOUR BLEND CONTROL FOOT SWELL PEDAL OUTPUT UP TO $\frac{1}{}$ VOLT $110 / 250$ VOLT MAINS OR 18 VOLT BATTERY FULLY POLYPHONIC O PLUG IN PRINTED CIRCUIT PANELS SIMPLE LOCKED-IN TUNING DETAGHABLE LEGS WITH STOWAGE CABINET SIZE $301 \times 15 \frac{1}{2} \times 9 \mathrm{in}$. W WEIGHT 35 lb . FULLY DETAILED INSTRUCTION HANDEOOK WITH PHOTOS, DRAWWINGS AND CIRCUITS
BUILD FOR YOURSELF-YOUR FRIENDS-CLUBS AND GROUPS-SAVE POUNDS

TO BUILD YOURSELF IN EASY STAGES. UNBEATABLE FOR PRICE, PERFORMANCE AND QUALITY

* COMPLETE KIT WITH CABINET ALL COMPONENTS \& HANDBOOK - ALL SOLD SEPARATELY PACKET BY PACKET 99 gns H.P. AVAILABLE FOR COMPLETE KIT - HANDBOOK SEPARATELY 20/- POST PAID

MAYFAIR PORTABLE ELECTRONIC ORGAN

detailed LEAFLET on request

GROUPS - CLUBS - HOBBYISTS - HOME ENTERTAINMENT - SCHOOLS

HENRY'S RADIO LTD.
ELECTRONIC COMPONENT SPECIALISTS
303, EDGWARE ROAD, LONDON, W.2, ENGLAND
PADdington 1008/9 (STD: 01-723-1008).
(Hours: Monday to Saturdoy, 9 a.m. $t 06$ p.m. Thursday, / p.m.)

transistor bias tables

E. Wolfendale, B.Sc.(Eng), M.I.E.E.

This collection of accurately computed tables has been compiled to assist anyone wishing to design or build a transistor amplifier. The tables can be used either directly, to provide the values of the three resistors required for the conventional bias circult, or alternatively, as a starting point for more detalled bias circuit analysis. Optimum values are not given in the tables as these depend on a number of factors outside the control of the author, such as the tolerance of the resistors to be used, the range of the ambient temperature over which the amplifier is to operate and the likely variation in the supply voltage. Sufficient information is provided however to enable the designer to arrive rapidly at values near the optimum for the conditions for which he is designing. The author has been closely associated with research into and development of transistors for many years and he is a well known lecturer on transistors and their applications.
$55 \mathrm{pp} \quad$ illustrated 21s net 22s by post
ILIFFE BOOKS LTD., Dorset House, Stamford St., S.E. 1

short wave listening
 J. Vastenhoud

A Philips paperback intended as a guide for the benefit of the increasingly large number of regular listeners to short wave transmitting stations, and also for radio amateurs who are interested in short wave listening.
112 pp illustrated 12 s 6 d net 13 s 5 d by post
available from leading booksellers
WW-143 FOR FURTHER DETAILS.

portable

nput 230 v. A.C. Output variable $0-260$ A.C. at 1.5 amp. Fitted in beautifully finished steel case. Complete with volt meter, pilot lamp, fuse, swiech, earrying handle.
88/10/=. P.\& C. 10/=.
Also 2.5 amp. as above 69/17/6. P. \& C. $10 /-$

OPEN TYPES

Designed for Panel Mounting
Input 230 v. A.C. 50/60 0.260 Output variable.

NO EXCUSES! NO DELAYS! FROM STOCK! VARIABLE VOLTAGE TRANSFOBWEBR

50 AMPS

I AMP.

INPUT 230 v. A.C. $50 / 60 \sim$ BRAND NEW. Carriage Pald. Buy direct from the importer, keenest prices in the from the importer, keenest prices in the
country. All Types (and Spares) from $\frac{1}{2}$ to country. All Types (and Spar
50 amp. availablefrom stock. $0-260$ v. at 1 amp. $£ 4100$ $0-260 \mathrm{v}$. at $2.5 \mathrm{mpss}$. . $E 5176$ $0-260 \mathrm{v}$. at 4 amps. 8878 $0-260 \mathrm{~V}, \mathrm{at} 5$ amps. 490 $0-260$ v. at 8 amps. $0-260$ v. at 10 amps. $0-260 \mathrm{v}$. at 12 amps. $0-260$ v. at 15 amps. $0-260$ v. at 20 amps . $0-250 \mathrm{~V}, \mathrm{at} 37.5 \mathrm{mmps}$. 6650 $0-260$ v. at 50 amps. 8850 15 different types available for immediate delivery.

5 Amp. AC/DC VARIABLE VOLTAGE

 OUTPUT UNIT
Input 230 . A.C.

 Output $0-260^{\circ}$ v. A.C. Output 0-240 v. D.C. Fitted large scale ammeter and voltmeter. Neon indicator, fully fused. Strong attractive metal case. 1 isin. x8 ain. \times bin. Weight 24 1b. Infinitely variable,
 smooth stepless volt tage variation over range. Price $£ 30$ C. \& P. $£ 2$. Also 7 Amp. A.C./D.G. Variable Output Power Unit Input 230 v. A.C. Output continuously VARIABLE from 0 to 260 v. A.C. OR 0 to 230 v. D.C. at 7 a . Robustly constructed in metal case, complete with safety fuse, neon indicator and voltmeter. Size $17 \mathrm{in} . \times 12 \mathrm{in} . \times 7 \mathrm{in}$. Weight 36 ib . Price $€ 34 / 10 /=$ meter. Size

FURMER
Input $185-250$ v. A.C. Output constant at 230 v. A.C. Capacity 250 watt. Attractive metal case. Fitted red signal lamp. Rubber feet.

100 WATT POWER RHEOSTATS

 (NEW) Ceramic construction winding heavy duty brush assembly designed for continuous duty. AVAILABLE FROM STOCK IN THE FOLLOWING 11 VALUES: I ohm 10a. 5 ohm 4.7a. 10 ohm 3 a.; 25 ohm 2 a.i 50 ohm 1.4 a.; 100 ohm I a.; 250 ohm .7 a. 500 ohm . 45 a. 1,000 ohm $280 \mathrm{mA.;} 1,500$ ohm 230 mA 2,500 ohm 2 a, ; Diameter 3 tin. Shaft length 7 in . dia. 3 isin. 27/6. P. \& P. $1 / 6$.NOW ALSO AVAILABLE IN 25 WATT 10 ohm 1.5 a.; 25 ohm 1 a.; 50 ohm .75 a.; 100 ohm $.5 \mathrm{a} . ;$ $250 \mathrm{ohm} .3 \mathrm{a}, ; 500 \mathrm{ohm} .2 \mathrm{a}$.; $1,000 \mathrm{ohm}$, is a.; 1.500 ohm ,

SLIDER RESISTANCES

1.2 ohm $14 \mathrm{amp} .27 / 6$; 36 ohm 6.5 to 2.8 amp. tapered winding, geared drive (less knob) 37/6. P. \& P. 3/6.

$\star 230 \mathrm{v}$. A.C. MOTOR \star

\& REDUCTION GEAR BOX
Reversible $\frac{1}{2}$ h.p. 1,450 r.p.m., lin. dia. lin. long shaft. Mounted in anti-vibration cradle.
Supplied complete with precision 20-1 reduction gearbox and pulleys.
Made to highest standard for computer work. Ex equip. First class condition. work. Ex equip. First class condition.

SERVICE TRADING CO

LIGHT SENSITIVE SWITCHES Kit and parts including ORP. 12 Cad mium Sulphide Photocell. Relay Transistor and Circuit. Now sup plied with new Siemens High Speed Relay for 6 or 12 volt operations. Relay for 6 or 12 volt ope $25 /-$, plus $2 / 6$ P. \& P.
ORP. 12 and Circuit $8 / 6$ post paid A.C. MAINS MODEL

Incorporates mains transformer, rectifier and special relay with $3 \times 5 \mathrm{amp}$. mains c/o contacts Price inc. circuit $47 / 6$, plus $2 / 6$ P. \& P.

PHOTO ELECTRONIC COUNTER Can be set for counts of up to 500 per minute, $210-250$ v. A.C. powered. Kit of Components including photo cell, high speed non-resettable counter, transformer relay, etc., together with
clear circuit diagram. $E 3 / 2 / 6$, plus $2 / 6$ P. \& P. clear circuit diagram. $\frac{\text { E3/2/6, plus }}{\text { LIGHT SOURCE }} \frac{2 / 6}{\text { AND PHOTO }} \frac{\text { \& }}{\text { CELL }}$ MOUNTING
Precision engineered light source with adjustable lens assembly and ventilated lamp housing, to take MBC bulb. Separate photo cell mounting assembly for ORP. 12 or similar cell, with optic window. Both units are single hole fixing. Price per pair $\mathbf{E 2 / 1 0 / -}$ units are single
plus $2 / 6$ P. \& P.
SOLENOID OPERATED MAGNETIC RELAY SOLENOID OPERATED MAGNETIC RELAY
Type Sc/3944, 4 pole c/o, 10 amp. contacts, 24 volt Type $\mathrm{Sc} / 3944,4$ pole c/o, 10 amp . contac
D.C. operation. $12 / 6$ each. P. \& P. $/ / 6$.
SIEMENS SEALED HIGH SPEED RELAYS H96A, 2.2 ohm +2.2 ohm, H96G, 50 ohm +50 ohm. H96C, $145 \mathrm{ohm}+145 \mathrm{ohm}$, H96E, $1,700 \mathrm{ohm}+1.700$ ohm. All at $12 / 6$ each. P. \& P. I/ on each Relay. Bases $4 / 6$ each.

P.O. RELAYS, Type 3000

 100 ohm 3 e/o, 2 make, 2 break. $200 \mathrm{ohm}, 6 \mathrm{c} / \mathrm{o} .500$ ohm,1 Heivy duty c/o. 500 ohm 4 Heavy dnty make. 16,000
ohm, 2 make, 2 break. All at $12 / 6$ each. 20,000 ohm, 2 ohm, 2 make, 2 break. All at $12 / 6$ each. 20,000 ohm, 2
Heavy duty make. Plus 1/P. \& P. SOLENOID. Overall length 3 tin., stroke tin. to $\frac{1}{1}$ in. Maximum push 8 oz. $12-24$ v. D.C. operation. D.C. resistance 35 ohm . Price 8/6. P. \& P. $1 / 6$. G.E.C. SEALED RELAYS

M1069 5,000 ohms, 2 c/o. M1084 180 ohm, 4 c/o. M1092 670 ohm, $4 \mathrm{c} / \mathrm{o}$. M1095 670 ohm, $2 \mathrm{~m}, 2 \mathrm{~b}$. Mll00 670 ohm, 2 c/o. Ex new equipment.
Ml492 670 ohm $4 \mathrm{c} / \mathrm{o}$

$$
\text { All at } 12 / 6 \text { each, plus } 1 /-P . \& P \text {. }
$$

14,000 OHM SEALED RELAY. High Speed single c/O. Platinum contacts. Super-sensitive, ideal for Transistor circuitry. Will operate on 1 milliamp, 25/-. P. \& P. 1/:
CARPENTER POLARISED RELAY. Type 5 A7TR $2 \times 1,900$ turns at 55 ohms. Including Base 25% P. \& P. 1/.

COMPACT HEAVY DUTY 6 volt DC RELAY

 $6-9$ volt D.C. operation 30 ohm coil $2 \times 10 \mathrm{amp}$. c/o contacts, will handle up to 250 volt A.C. Size $i \frac{7}{7}$ in. high $\times 2$ tin, $\times 1 \frac{1}{2}$ in. Price $7 / 6$, plus $1 /=P$. \& P. 3 for $20 /$-post paid.
LATEST HIGH SPEED MAGNETIC

COUNTERS
4 figure 10 impulses per second. Type $100 \mathrm{~A}, 500$ ohm coil. 18-24 v. D.C. operation. Type 100B, 2,300 ohm coil, 36-48 v. D.C. operation. Any type, $15 /$ each, plus $1 / 6$ P. \& P.
RESETTABLE HIGH SPEED COUNTER 4 figure 1,000 ohm coil, $36-48 \mathrm{v}$. D.C. operation. \& $3 / 10 /-$. P. \& P. I/6.
£ $3 / 10 /-. P_{\text {. }}$ \& P. I/6.
3 figure 700 ohm coil, 24 v. D.C. $2 / 2 /-$. P. \& P. 1/6. SEMI-AUTOMATIC "BUG" SUPER SPEED MORSE KEY. 7 adjusemenss, pre-
elsion tooled, speed adjustable 10 w.p.m. to as high as desired. Weight $2 \frac{1}{2}$ Ib. 44/12/6
TRANSISTORISED MORSE OSCILIATOR Fitted $2 \frac{1}{5}$ in. Moving Coil Speaker. Uses type PP3 or equiv. 9 v . battery. Complete with latest or equiv. 9 . battery. Complete with
design Morse Key. 22/6, plus $1 / 6$ P. \& P.

VENNER I4-DAY CLOCKWORK
TIME SWITCH
5 amp .230 v . contact, I on/off every 24 h . Fitced in metal case with key. Used but guaranteed. 47/:, plus $3 /-$ P. \& P.

Postage and Carriage show below are inland only. For
overseas please ask for ovarseas please ask for
quotation. Wa do not

230 v . A.C. RELAY. $2 \mathrm{c} / 0.2 \mathrm{amp}$. contacts,
$9 / 6$, ex new equip. P. \& P. $1 / 6$.
HIGH SPEED BLOWER UNIT
$200 / 250$ volt A.C. Powerful 2 -speed motor, $\$ 11,000$ and 13,000 R.P.M. 17/6 plus P. \& P. 2/6. AUTO TRANSFORMERS. Step up, step down. I $10-200-220-240 \mathrm{~V}$. Fully shrouded, New. 300 watt type $€ 3$ each. P. \& P. $4 / 6.500$ watt type 64/2/6 each. P. \& P. 6/6. 1,000 watt type £5/5/- each. P. \& P. 7/6.

A.C. These coils are also used for D.C. experiments. Complete with all accessorites as shown. ©I7 plus 10/-carr. Leaflet on request. WIMSHURST ELECTROSTATIC GENERATORS E13/17/6, carr. U.K. (B.R.S.) IO/-. Leaflet on request.

SENSITIVE

GALVANOMETER

Centre zero 300-0-300 microamp., 90 ohm approx. Callbrated $30-0-30$ in clear divisions. Mounted in sturdy
sloping front case with top sloping front case with top P. \& P. $2 / 6$.

Marching voltmeter calibrated $0-3$ v. and $0-15$ v. D.C. \& $4 / 10 /$. P. \& P. 2/6.
D.C. Ammeter 0.6 amp. and $0.3 \mathrm{amp}, \mathrm{C} / 10 / \mathrm{m}$ P. \& P. 2/6. Set of 3 matching instruments $£ 12 / 19 /$. P. \& P. $4 / 6$.

230 VOLT A.C. GEARED MOTORS Type D15G 5 p.p.m. 1.7lh, inch, f2/9/6. P. \& P. 2/6.

HELIPOT Becrana Model:A A, I,ooo onm: cision dial and Brake $£ 2 / 10 / \%$ P. \& P. 2/-.

NICKEL CADMIUM BATTERY. Sintered Cadmium Type, 1.2 v. 7 AH . Size: height $3 \frac{1}{2} \mathrm{in}$. width 2 in . x in. Weight: approx. 13 ozs. Ex-R.A.F. Tested, 12/6. P. \& P. 2/6.

UNISELECTOR

SWITCHES 5 ohm coil 24
D.C. 6 bank 25 position, 5 non-bridging, I bridging wiper; 5 bank 25 position, 4 non-bridging, I bridging wiper; 6 bank arranged to give 3 bank, 50 wiper; 8 waper; 6 bank arranged to give $\begin{aligned} & \text { bank arranged to give } 4 \text { bank, } 50 \text { wiper. These }\end{aligned}$ switches have been carefully removed from equipment. All at 35/-each. P. \& P. 2/6.

ULTRA VIOLET BULBS

Easy to use source of U.V. for dozens of practical and experimental uses.
12 volt 36 watts A.C./D.C. SBC. 6/6. P. \& P. I/-n 12 volt 60 watt A.C./D.C. SBC. B/6. P. \& P. $1 /-$ Transformer to suit the above. Input $200-240 \mathrm{~V}$. A.C. 12 volt 36 watts, $21 /-$ P. \& P. $2 / 6$. Input
$200-240$ v. A.C. 12 volt 60 . $200-240$ v. A.C. 12 volt 60 watt, $27 /$-. P. \& P. P. $3 / 6$. Set of Red, yellow, green and cerise. In I oz, jars. Ideal Red, yellow, green and cerise. In I oz, jars. Ideal
for use with the above Ulera Violet Bulbs, II/-, for use with the
plus $2 / 6$ P. \& P.

34R SILICON SOLAR CELL
$4 \times .5$ volt unit series connected, outpur up to 2 v at 20 mA in sunlight. 30 times the efficiency of selenium. As used to power Earth Satellites. $37 / 6, P$ \& P. 1/-.

JUST PUBLISHED *SOLAR CELL AND PHOTO-CELL EXPERIMENTERS' GUIDE ' Teaches the principles of light sensitive devices and their application. 26/- post paid.
 MOVING COIL HEADPHONES Finest quality soft chamois ear-
muffs. Superb reproduction. Complete with Jack plug 25/6. P. \& P. 2/6.
Similar with m/c microphone, with 5 -way plug as used in No. 19 Set, 30/-P. \& P. 2/6.

MULTI-RANGE TEST METER

Model B40. D.C. volt 0.5 v. 2.5 v. at 10,000 ohms per volt. Ideas for iransistor circult

 20 megohms, Repair service available. Price includes Test Leads, Battery, Instruction book, packing and post (U. K.). Price £8/2/6. Additlonal models available. Leaflet nent on request.
L.T. TRANSFORMERS

All primaries $220-240$ volts.

Price	Carr.
$63 / 5 / 0$	$6 / 6$
4550	$6 / 6$
63100	$4 / 6$
6417,6	$6 / 6$
$65 / 12 / 6$	$6 / 6$
$65 / 5 / 0$	$7 / 6$
$£ 3 / 15 / 0$	$5 / 6$

-240 volts. $\frac{23}{0-15}, \frac{15}{0}$
$-\frac{5 / 6}{}$
A.C. AMMETERS $0-1,0-5,0-10,0-15,0-20 \mathrm{amp}$. A.C. VOLTMETERS $0-25$ v., $0-50$ v. 0.150 v . M.I. $2 \frac{1}{2}$ in. Flush round all at $21 /$ each. P. \& P. extra $0-300$ v. A.C. Rect. M-Coil 2 in.
$0-300$ v. A.C. Rect. M-Coil $3 \frac{1}{2}$ in. Type W23
D.C. AMMETERS
$0-5$ amp, D.C. M.I. $2 \frac{1}{2}$ in. Rnd
0-500 Microamp, sub-min. Itin. dia. Scaled.

VAN DE GRAAF ELECTRO STATIC GENERATOR, firted with motor drive for 230 v. A.C. giving potential of approx. 50,000 volts. Supplied absolutely complete including acinteresting experiments, and full instructions. This instrument is completely safe, and ideally suired for School demonstrations. Price 66/6/-plus4/-. P. \&P. Lft. on request. Latest type SIEMENS MINI-
ATURE RELAY ATURE RELAY in Transparent Case, 4 c/o 700 ohm 14/6.
 size X 娄 \times Ifin. $15 /$-inc, base.
VARLEY TYPE VP4 (simllar to illus.), 5,800 ohm, $4 \mathrm{c} / \mathrm{o}$. New, $12 / 6$, less base.
Similar to above. Mid. by
GRUNER, 4 c/o, $2,400 \mathrm{ohm}$ coil. NRUNER, 4 c/o, $2,400 \mathrm{ohm}$ coil.
New, $12 / 6$, less base. INSULATED TERMINALS Available in black, red, white, yellow, blue and green. New 15/- per doz.
S.T.C. SILICON POWER RECTIFIERS
 RS330, 300 v. P.I.V. $6 /-\quad$ RS 360,600 v. P.I.V. $9 /-$ RS340, 400 v. P.I.V. $7 /$ R RS380, 800 v. P.I.V. $10 /=$ Seconds. Brand New Stock. Post paid.

20 WAY STRIP containing standard Post Office celephone Jack Sockers. Overall size liin. $\times 3 \frac{1}{2}$ in. x tin. NEW PRICE 15/-each. P. \& P. I/6.

INSULATION TESTERS (NEW) Test to I.E.E. Spec. Rugged metal construction, suitable for bench or Size Work, constant speed clutch
Sin., W. 4 in., H. 6 in Weight 6 ib .500 volt, 500 megohms. Price $\$ 22$ carriage paid. 1,000 volts, 1,000 megohms, $£ 28$ car
NEW SOUND POWEROPERATED
EXADMIRALTY HEAD EX-ADMIRALTY

Two such sets connected up will provide perfect Intercom. No batteries required, Will operate up to $\frac{1}{2}$ mile. Price $17 / 6$ each, plus P. \& P. 3/- or 32/6 per pair. P. \& P. 4/\%.

Special Quotations for Quantities

CLEAR PLASTIC METERS

Type MR.38r- 1 zi/ucan. square tronth.

Type MR.52P. 2\%n, square troats,

BAKELITE PANEL METERS

LELAND MOCEL 27 BEAT FREQUENCY OSCILLATORS Frequency $0-20 \mathrm{Kc} / \mathrm{s}$. on 2 ranges. Ontput 500Ω or 54Ω. Operition $200 / 250$ v. A.C. Supplied in perfect order eli2/10/Cart. 10\%.	R. 209 MK, 2 COMMUNICATION RECEIVERS Firnt-class receiver covering $\mathbf{1 - 2 0 ~ M c / m . ~ o n ~}$ 4 bands. A.M./C.W./F.M. Operates on 6 v. D.C. internal supply. Incorporates precigion vernler drive, BFO, Aerial
NATIONAL HRO COILS Set of 9 general coverage coils covering $50 \mathrm{ke} / \mathrm{s} .-30 \mathrm{Me} / \mathrm{s} . \mathrm{E} 10 / 10 /-\mathrm{Carr}$. $10 /$. Also HRO dials. 27/6. Р. \& P. 1/6.	trimmer and internal speaker. As new condition. 222/10/-, Carr, 20/.
LONDEX COAXIAL AERIAL CHANGEOVER RELAYS 24 volt D.C. Complete f unctlon bor as ued for TR 1935 TX. Brand new bozed. 39/6. Cart. 4/6.	Carbon mic, moving coll earplece. ExUBA Military. 40/6. P. \& P. 8/6.
No. 10 MOVING COIL HEAD- SET AND MICROPHONE High quality, rubber monided headect and hand mierophone with pressel switch. Low imp, new. 22/6. P. \& P. 2/6.	CT53 SIGNAL GENERATOR 8.9-15.5 Mc/s. and $20-300 \mathrm{Mc} / \mathrm{s}$. Variable prection attenuator. A.C. mains. Supplied In perfect order leps callbration chart. 812/10/-. Carr. 10/-

G. W. SMITH \& CO. (RADIO) LTD 3-34 Lisle St., London, W.C. 2 also see opposite page

MODEL 370-E MULTIMETER $0,000 \Omega$ /volt D.C. volte $01.8 / 2.5$. 10/50/250/1.000/5,000 7 ;
A.C. volts $0 / 2.5 / 10$; 50/250/1,000 v.
D. C. Current $0 / 50 \mu \mathrm{~A} /$

$1 / 10 / 50 / 250 \mathrm{ma}$. $1 / 10$	$1 / 10 / 50 / 250 \mathrm{~mA}$
amp	
$1 / 10$	C. Current $0 / 250 \mathrm{~mA} / \mathrm{l}$ $0 / 5 \mathrm{k} / 000 / 5 \quad \mathrm{meg} / 50$ megohm.

12/10f-. P. \& P. $3 / 6$
TE-900 $20,000 \Omega$ VOLT TE-900 20,000 $/$ VOLT
GIANT MULTMETER ${ }^{6 \mathrm{ln} \text {. full view meter. }} 2$ colour scale. $0 / 2.5 / 10 /$ $260 / 1,000 / 5,000$ จ. A.O. $0 / 25 / 12.5 / 10 / 50$
$250 / 1,000 / 5,000$
$2 / 5$. $0 / 50 \mu \mathrm{~A} / 110 / 100 / 500 \mathrm{~mA}$ 10 amp. D.C. $02 \mathrm{~K} /$ £12/19/6. P. \& P. 5/.

MODEL TE. 80.
O.P. $0 / 10 / 50 / 100 / 500 / 1,000 \mathrm{~F}$ $\begin{array}{lll}\text { A.C. } & \text { O/5/25/50/250/500 } \\ \text { 1.000 } & \text { v. } & \text { D.C. } \\ 0-50\end{array}$ $5 / 50 / 500 \mathrm{~mA} .0 / \mathrm{Bk} / 60 \mathrm{k} / 600 \mathrm{k}$.

TE-58. DE LUXE 20,000 VOLT MULTMETER. 0/6/30/L20/600/1,200 V. A.C. $01.6 / 6 / 30 / 120 / 600 / \mathrm{h}, 200 \mathrm{~V}$. D.O $0 / 60 \mu \mathrm{~A} / 6 / 60 / 600 \mathrm{~mA}$. D.C.
$0 / 10 \mathrm{~K} / 100 \mathrm{~K} / 1 \mathrm{M} / 10 \mathrm{Meg}$. $200 \mathrm{pF}-0.2 \mathrm{MFD}$
Ohmi
MODEL B00. 34,004 O.P.V $0 / .5 / 2.5 / 10 / 25 / 100$ $10 / 25 / 100 / 250 / 500$ 1.000 V. A.C. $0 / 50 \mu \mathrm{~A} / \mathrm{S} / 50]$ $00 \mathrm{~mA} .12 \mathrm{amp} . \mathrm{D.c}$ $\begin{array}{ll}0 / 60 / \mathrm{K} 6 . & \mathrm{Meg} . / 60 . \mathrm{Meg} . \\ £ 8 / 17 / 6 . & \text { Post paid. }\end{array}$

5/10/6.

MODEL TE-12 20,000 O.P.V. $010 . \mathrm{F} / 6 / 30 / 120 /$ $600 / 1,200 / 3,000 / 6,000 \mathrm{~V}$. | D.C. |
| :--- |
| 1,200 V. A.O. $0 / 60 \mathrm{uA}$ | 6/60,600 MA. 0/6K $600 \mathrm{~K} / 6 \mathrm{Meg} / \mathrm{B0} \mathrm{Meg}$

TE-51. NEW $20,000 \Omega /$ VOLT 0/6/60/120, 1,200 V. $/ 3 / 30 / 60 / 300 / 600 / \mathrm{V}$. A. 0 D.C. $0 / 60 \mu \mathrm{~A} / 12 / 300 \mathrm{MA}$ $85 /-$. P. \& P. $2 / 6$.

MODEL TE-70, 30,000 $\begin{array}{ll}\text { O.P.V. } & 0 / 3 / 15 / 60 / 300 / 600 / \\ \text { 1.200 v. D.C. } \\ 0 / 6 / 30 / 120 /\end{array}$ 1.200
$600 / 1,200$
V. A.C.
A.
0/30 $3 / 30 / 300 \mathrm{MA}$. $0 / 16 \mathrm{~K} / 160 \mathrm{~K} /$ 1.6 1/16 Meg. \%. $25 / 10 /-$ P. \& P. $3 /=$

MODEL $250 \mathrm{~J}, \quad \mathbf{2 , 0 0 0}$ O.P.V. $0 / 10 / 50 / 500 /$ 2,500 V. D.C. 0/10/50/ $500 / 2,500$. V . C .
0/2 Mes. C $0 / 2 \mathrm{Meg}$.
$0 / 250 \mathrm{~mA}$.
-20 to +36 db .
$49 / 6$. P. \& P. $2 / 6$.

MODEL PT-34. \quad,, 000
O.P. V. $0 / 10 / 50 / 250 /$ $500 / 1,000$ v. A.C. and
D.C. $0 / 1 / 100 / 500$ mA D.C. $0 / 1 / 100 / 500 \mathrm{~mA}$.
D.C. $0 / 100 \mathrm{KD} 89 / 6$. D.C. $0 / 100 \mathrm{~K}$
P. $\& P .1 / 6$.

MODEL U5OD. WITH METER PROTECTION. 20,000 O.P.V. 0/2.5/10/50/250/1.000 v. D.C. $0 / .05 / .5 / 5 / 50 / 250 \mathrm{~mA} .0 / 5 \mathrm{~K} /$ $50 \mathrm{~K} / 500 \mathrm{~K} / 5 \mathrm{meg} . \mathrm{g} . .0001-$.2 mifd.-20 -22 db ,
$\mathbf{\$ 5 / 1 9 / 6 . ~ P . ~ \& ~} \mathbf{P} .3 / \%$

LAFAYETTE HI-FI STEREO HEAD

 PHONES t Air oushicned headband t Frequeney response, 25 to 15,000 cycles. \star High sensitivity. Impedance 8 ohrns per phone. Supplied wircs, overload function bor and 3-comnection plug 79/6. P. \& P. 2/6.

SCILLOSCOPES

 High quality Portable 81n. cr.t. T/B; 3 esch 60 kc / s. \mathbf{X} Amp.: $0-500 \mathrm{kc} / \mathrm{L}$ I Amp.; $0-2 \mathrm{Mc} / \mathrm{s}$. Power requirernentg $105-125$ FA.C. Supplied in new cond., fully tested £25. Carr. 10%. Suitable

MODEL ZQM TRANSISTOR CHECKER

It has the fullest cap acity tor checting on \mathbf{A},
B and Ieo. Equally adaptable for checking diodes, etc.
Spec.: A: Bpec.: A:
B:
-200.
1co: 0-50 microanips.
Resistance for diode $200 \mathrm{n}+1$ MEG. Bupplied complete with instructions, battery and leade. £6/19/6. P. \& P. 2/6.

HEAVY DUTY AUTO

Step up er atep down. Tapped 0-116-230 volte

SILICON RECTIFIERS

200 v. P.L.V. 200 mA
200 v. P. LV 8 mm
400 v. P.L.V. 6 smp. .
1,000 v. P.1.V. 650 mA
800 V. P.I.V. .500 mA
400 V P.I.V. 500 mA
800 v. P.I.V. 5 amp.
70 v. P.I.V. 1 amp mi

TRANSISTORISED TWO-WAY TELEPHONE INTERCOM

Operative over amazingly long distances. Separate call and
press to talk buttons. 2 -wire press to
connections.
call cations. Beautifully finished in ebony, supplied complete £6/10/- pair. P. \& P. 3/6.

VARIABLEVOLTAGETRANSFORMERS			
Brand Now Gusranteed -			
Fully Shrouded. Input 230 v.			
$50 / 60 \mathrm{c} / \mathrm{s}$. Output 0-260 \%. Suctuly			
1 stnp.	84/10/.	12 amp .	
2.5 smp	55117/6	20 amp .	832/10
5 amp .	1298	$2.5 \quad 3 \mathrm{~m}$	
$8 \mathrm{amp} .$	$813 / 10 /-$	metal ca	with
10 amp.	$⿷ 17$	fuses, et	£911

VARIABLE VOLTAEE
 Fully Shrouded. Input 230 $50 / 60$ c/s. Output $0-260$

10 amp
\qquad
Discount lor quantities. Post ex
Rectfiers. 400 P.II.V. 3 amp. Control
R10/-

D

P.C.R. RECEIVERS

BRAND NEW CONBITION-FULLY TERTED AND CHBCKED BEFORE DEBPATCH. 3 WAVE-$860-2080$ metres, $190-570$ metres, $5.6-18 \mathrm{Mc} / \mathrm{s}$. Fitted volume control, tone control and aerial trimmerInternal speaker and output for low imp. phones £8/19/6, carr. $10 / 6$ with elrcult. Plug In externa power supplies. 230 v. A.C. $35 /$-, or 12 v. D.C. $19 / 6^{\circ}$

HA-63A COMMUNICATION RECEIVER, OUTSTANDING VALU High class receiver covering $550 \mathrm{lc} / \mathrm{s} .31 \mathrm{mc} / \mathrm{s}$. on
4 bands. Incorporntes 7 valves plus rectither, RF stage, illumlaated ' g ' meter, $1.5 \mu \mathrm{~V}$ seasitjvity, elec stage, illumhated on meter, $1.5 \mu \mathrm{H}$ seasitivity, electrical bandspread on the $80 / 40 / 20 / 15$ and 10 metre
bands, slide rule dial, aerial trintner, B.F.O., solge limiter. Output for phones or speaker. Operates on $115 / 220 / 240$ v. A.C. Bupplierl hrand new and guarau teed with manual. 24 gns. Carr. 10/\%

HA-55A AIRCRAFT RECEIVER

 108-136 Mc/s. High selectivity and sensitivity. Incorporates 2 RF stages including 6CW4 Nurlator, supply. adjustable aquelch control, plide rule dial. bulti-in 4in. speaker and front panel phone jack. 220/240 v. A.C. Supplied brand new and guaranteed. £19/17/6. Carr. 10/:- 108-176 Mc/s. Ground Plane

SKY KING AIRCRAFT RECEIVER

New high quallty transistorised portable recefver covering long and medium bands and aircraft band 108-136 Mcfe. 9 transistors and 6 semi-conductors. Built-in ferrite and teleacopic aerials. Complete with leather carrying caze, shoulder strap and carpiece. Large builtin speaker. Brand new and guaranteed $£ 20 / 15 /$ -
H.A. 350 10-80 METRE AMATEUR RECEIVER
A superb recelver. Dual conversion with mechantcal filter. 12 valvee, crystal controlled osc., product detector, 100 ke/s. crystal calibrator, crystal B.F.O., A.N.L. ' B ' meter. Rock like stability. Brand new and guaratheed. 75 GNS. B.A.E. fro full details.

HAMMARLUND SP600JX COMMUNICATION RECEIVER

Eigh quality professional dual conversion communcation receivers available for the first the a this country at a reasonable price. Frequency rangc $540 \mathrm{kc} / \mathrm{s} .-54$ Mc/s. in bande, variable tuning or 6 channef cryatal controlled. 2.5 watt output into 800 ohms. Input $110 / 230$ V. A.C.
 A.N.L., 8 meter, ete. size $19 \times 12 \times 2$ effered in excelient condition, fully tested and checked. 2100 each.

F.M. WIRELESS MICROPHONE 94-104 Mc/s. Tran sistorised. Operatem from 9 v. battery. Complete with sulditional вecret tie clip mierophon
L12/10/. ONLY. ONLY £7/10/P. \& P. 2/6.

MARCONT TF.195M BEAT FREQUENCY OSCIILATORS libboratory instrumenta offered at a iraction of cont. Ringe $0-40 \mathrm{kc} / \mathrm{s}$. Output bi00 Ω or 2500Ω. Incorporates output level meter, operation $200 / 250$ v. A.C. Excellent condition, fully tested and checked. $£ 20$. Carr. 30/

BARGAIN OFFER!

S.T.C. SILICON RECTIFIERS Brand new, guaranteed. 150 p.i.v. 25 amp 1866; 700 p.1.v. $100 \mathrm{amp} .49 / 6$. List price 410 (P P. P. extra)

GARRARD RECORD

PLAYERS

LAFAYETTE

 TWO WAY RADIOSSuperb quallty, Brand 3 Tranaistor guaranteed 6 Transibtor $817 / 10 /$ ${ }^{\text {pr. }}$ Transistor wleh range boost, $928 / 10 /=\mathrm{pr}$

AR.88D RECEIVERS

550 ke/g, to $32 \mathrm{Mc} / \mathrm{s}$. Onered In exceltent condition fully tested and checked before

LAFAYETTE TE-46 RESISTANCE
 $2 P F-3.00$ 200 megohms. 200 megohms. Asoo checks
impedance. tuper ratio.
tinsulation $200 / 200$ v. $\begin{array}{cc}\text { A.C. } & \text { Brand } \\ \text { New } & \text { £15. }\end{array}$ Now $\begin{aligned} & \text { carr. } 7 / 6 . \\ & \end{aligned}$

wave TE22 SINE SQUARE WAV
AUDIO GENERATORS

Sined 20 cps to $200 \mathrm{kc} / \mathrm{s}$. an 4 bands. Square 20 cps to $30 \mathrm{ke} / \mathrm{s}$. Output itapetance 5.000 Brand new and Guaranteed with instruction manual and leads, £15. Carr. 7/6

NUVISTOR

 GRID DIP METER Compact true one hand Compact true one handoperation: 7 Prequency operation.
range
1.7-180 Mc/s. 230 v. A.C. operation. Supplied complete with £12/10/- Carr. 5/.

MINIATURE CLEAR PLASTIC METERS 1tin. square fronts. Moving
coll. Single nut Hying

PRECISION COMBINATION VOLTMETER/AMMETER Two separate instruments housed in polithed
wood cuse, Bin. scales with knife cedge polnters. Ranges an follows: A.C. and D.C. Volty 0 -160-$300-600$ A.C. and D.C. Current: $6 \cdot-25-50-150-$
200 amps. Bupplied complete with shunte, Jeaus "200 amps. 8upplied complete with shunts, leads
and leather carsylng came. Brand new condtion. ned leather carrylig cane.
$\mathrm{f} \theta / 10 / 6$ each. Carr. $7 / 6$.

AMERICAN

 RECORDING TAPES

BARGAIN! 13A DOUBLE BEAM OSCILLOSCOPES

TE-20RF SIGNAL GENERATOR

Accurate wide range slgnal generator cover ing $120 \mathrm{ke} / \mathrm{s}--260 \mathrm{Me} / \mathrm{e}$ on 6 batide. Directly R.F. attenuator Operallion 200/240 v. A.C. Brand new with instructions £12/10/\%. P. \& P. 7/6. S.A.E. for details.

NOMBREX transistorised EqUIPMENT ALL Post Paid With Battery Tranalstorised 100,000 cherator 10 ع16ib/-. Transiatoribel Bignal Generator $150 \mathrm{kc} / \mathrm{s}$, 230 Mo Mo. $810 / 10 / \mathrm{l}$. Tranaistorised remiktance cap
$100 \mathrm{Meg} \mathrm{g} 1 \mathrm{pi}-100 \mu \mathrm{~F}$. 29. Transistorised Indaction bridge $1 \mu \mathrm{H}-100 \mathrm{H}$ £18. Mains operated Transistor power supply
unit, output $1-15 \mathrm{v}$. up to 100 mA . $86 / 10 / \mathrm{l}$

PORTABLE OSCILLOSCOPE CT. 52 A compact ($8 \times 8 \times 16 \mathrm{jin}$) geners purpose scope. T/B $10 \mathrm{c} / \mathrm{s},-$ Mullard DG7/5 24 CRT. For operation on $100 / 250$ V. A.C. Supplied complete with metal
 visor hood. Brand new aud guaranteed. £22/10/-. Carr. 10/-. Supplied
mplete with Instruction.

MINIATURE EDGEWISE

SINCLAIR TRANSISTOR All Post 212 amplifier 89/5. PZ.3 P.8.U. £3/19/6 X10 amptther bult co/19/6. Kil $\begin{aligned} & \text { 25/19/6 } \\ & \mathrm{X} 10 \text { power pack }\end{aligned}$ X20 amplifer bultt $£ 9 / 19 / 6$. Klt $8 / 19 / 6$. X20 power pack $£ 2 / 14 /-1 /$
Micro M radio kit $£ 5 / 19 / 6$.
 Micro Amp. 28/6; Micro injector 27/6;

TAPE DECKS
NEW MAGNAVOX 3633 SPEED TAPE
DECES. 2 Track $£ 10 / 10 / \%$ Track DECES. 2 Track $£ 10 / 10 /-$; 4 Track £13/10/-. Carr. Paid.
New Garrand 3 -npeed
Stereo Tape Deck. New Glarrand 3-mpeed
f29/10/-. Carr. Paid.

REUTER As fitted to Collaro Mk. IV and Btudio Decks
High imp. record/play back, low imp. erase Kigh imp. record/play back, Mon imp. erabe
Brand
new
19/6 palr. Also Mint set of 3, 2916; Bradmatic $\%$ track. set of 2 92/6. Post extra.

[^17]
Variable voltage transformers

Inset shows latest type brush Gear providing I volt variation.

20 Amp. L.T.SUPPLY UNIT
 LATEST DESIGN

NOT EX-W.D. G.B. (Inland)

HEAVY DUTY 12/24 VOLT D.C. Output: Adju
up to 20 amps. CONTINUOUS at $12 / 24$ volts plus trickle. Input: $220 /$
$230 / 240$ VAC 50 eycles. FULLY FUSED. Neon indicator, $0-20$ $16 \times 12 \times 20 \mathrm{in}$: $16 \times 12 \times 20 i n$.
high, in heavy gauge steel cabinet. Grey Hammer finish. Weight: 50 lbs. ONLY
£32.10.0

PORTABLE TRANSISTOR TESTER suitable for production \& laboratory use

CONSTANT VOLTAGE TRANSFORMERS
 AUTOMATIC MAINS STABILISER

Maintain " spot-on" " test gear readings at all times.
tNo Moving Parts *No Maintenance *No Attention.

Specification
Input: 240 y. A.C. $\pm 20 \%$
Output: 240 v. A.C
Accuracy: $\pm 1 \%$.
Capacity: 250 watts.
Size: $11 \times 6 \pm \times 6$ in. high
Wecuracy: 土 $\%$.
Weight: 21 Ibs. Fitted
signal lamp and switch.
2. 201 .
n in 2-tonected WAVE
Modern design in 2-tone grey hammer steel case with handle. Complete with lead and plug.

1,000 WATT MODEL

Input 240 v. A.C. $\pm 20 \%$, Output accuracy $\pm 1 \%$. Fitted signal lamp and switch.
C. 2 P. 25%
£41.0.0

DIELECTRIC BREAKDOWN TESTER VARIABLE HIGH VOLTAGE UNIT

* Range: Infinitely variable up to 3,000 volts.
0.1 mp.
* Entirely suitable for continuous testing.
* Automatic safety cut-out. Input: Mains voltage.

Input and test leads with clips.
Model T30 £32
WALKIE TALKIE '88' SET
Made by E.K. Cole \& Co. Weighs $5 \frac{1}{2}$ Ib. (approx.) and measures $3+\times 5 \frac{1}{2} \times 9 \frac{1}{2} \mathrm{in}$. Crystal controlled. Dry andtery-H.T./L.T. i.e. Vidor L5537).
Supplied to Overseas
Supplie
Govts.
onty $^{\mathrm{E}} 10$ EACH
 SPECIFICATION. Alpha 0.7 to 0.997 Beta 5-300
ICO 0.50 mA .5 mA . Capable of measuring GERMANIUM AND SILICON DIODES. DESIGNED WITH RESISTANCE SCALE 200 ohms to I Megohm as an ADDED FEATURE, Housed in heavy duty plastic case, c/w in ternal battery.
o.ly $£ 7.15 .0$ Plus 5/- C. \& P.

TRANSISTORISED MEGOHMMETER	
	$\begin{aligned} & \star \text { PUSH } \\ & \text { BUTTON } \end{aligned}$
	USE 1966 EQUIPMENT
\rightarrow	500 v - 1000 Megohms.
	Superb portable in- strument. Supplied c/w batteries, probes and carrying case.
	ONLY 0250.0
	C. \& P. $7 / 6$.

AC/DC Valve voltmeter

IMMEDIATE DESPATCH

FULL SPARES AND
SERVICE AVAILABLE

36 ft . AERIAL MASTS

NEW TUBULAR MART MAST Check these vital points:
\star Made from $6 \times$ lảin. dia. Sheradized steel sections, for durability and strength.
*Extra strong locating base.
*Top cap with fitted pulley and halyard.
K^{2} sets (8) Rotproof Guys.
*Rustproofed Steel Picketing
Stakes.
ONLY
£15.0.0 ${ }^{\text {ex }}$
Carr. 201-. Returnable wooden case 30/-.

NEW 4 section 20ft. Telescopic Masts. 7 // Carr Copperised Steel. Self - supporting. $J^{\prime}=$ Carr $\operatorname{la}_{\frac{3}{2}}{ }^{\prime \prime}$ dia, base. $\frac{3^{\prime \prime}}{4}$ dia. top. Weight I61bs.

PORTABLE VARIABLE A.C. POWER

 SUPPLY UNITDesigned for engineers whose requirements call for a visual indi-
cation of volts applied.
OUTPUT:
$0-260 \mathrm{v} .1 \frac{1}{2} \mathrm{amps}$
INPUT
230 v A.

230 y. A.C. $50 / 60$ c.p.s.

Fitted with fuse, voltmeter, safety indicator, on-off switch and lead. Size: $8 \times 5 \times 5 \mathrm{in}$. high.

$$
\text { Palce } £ 8.17 .6 \text { c.ap. 10) }
$$

5 AMP. A.C. \& D.C. VARI-
Specification:
Output: 0-260 V.A.C.
0.240 V.D.C.
*Smooth stepless voltage variation from 0-Max. tCurrent consistent throughout the contralled range.
and voltmeter eon indicator.
*Fully fused input and output.
strong steel case with carrying handle and rubber in l 4 in , high. MADE IN ENGLAND PRICE 53010 C. \& P. $40 /=$

30 Amp. L.T. SUPPLY UNIT
01018 V D.G. WITH SMOOTH STEPLESS VARIATION.
Designed for CONTINUOUS use at max. loading.

* Fitted voltmeter and ammeter.
* Input and output fully protected.

Input: Mains A.C. robust construction.
2 tone grey hammer finish. Steel case,
$\begin{array}{ll}\text { S55. } 1.0 & \text { C. \& P. 40/ } \\ \text { G.B. (Inland) }\end{array}$
ENTIRELY SUITABLE FOR PLATING PLANTS, LABORATORY SUPPLIES, ETC.

T.R.S.
 BARGAINS IN QUALITY KITS AND COMPONENTS

6 VALVE AM/FM TUNER UNIT

 Med. and VHF $190 \mathrm{~m}-650 \mathrm{~m}$., $88 \mathrm{Mc} / \mathrm{se}$ - $103 \mathrm{Mc} / \mathrm{A}$, , 6 valves and metal rectifier. Self-contuined power unitA.C. $200 / 250$ Voperation. Maric-eye indicator, 3 pushbution controls, on/on. Med., VHY. Dioden and ligh output Suckets with gain control. Ilumanated 2colour perspex dial 111 in . $\times 4 \mathrm{in}$. chassis size 111 in . \times 4 in . X Fifn. A recommended Fidellity Unit for use with Mullard ' 3 -3" or " 5 -10 " Amplifiers. Bargain Prize. Complete kit of parts. Jnc. Power Power Pack 10 Gns. Carr, 7/6. Clrcult and Const. detaile, 4.6. Free with hit.

MULLARD " 3-3" \& " 5-10" HI-FI AMPLIFIERS

$3 \mathrm{ohm} \& 15 \mathrm{ohm}$ output

" 3-3" Amp. 3 valve, 3 watt hi-f quality controls quallty eectional output transiormer, $40 \mathrm{c} / \mathrm{s} \cdot 35 \mathrm{kc} / \mathrm{s}+1 \mathrm{db}, 100 \mathrm{mv}$ for 3 W , lese than 1\% distortion. Bronze escutcheon Comple
 $12 "$ and tested £910/-.
MULLARD " 5 - 12 " AMPLIFIER. 3 vaives 10 W 3 and 15 ohms output. Mullard ramous circuit
Busic amplitier kit price $\mathbf{2 9 . 1 9 . 6}$ Curt. und Ins. 7/6. Ready built 11 gat
CONTROL PANEL KIT. Base, Treble and Volume controls with 4 -pooltion selector bwitch radlo tappe and 1 in. $x 4$ in. encutcheon panc
ANPLIFIER KIT AND CONTROL PANEL KIT, $£ 11 / 29 / 6$. Ditlo, reauly wired, $£ 14 / 19 / 6$. -
2-VALVE PRE-AMP UNIT. (For use with basic amplitier only). Based on Mullarl's famous awltch. size $9 \times 6 \times 24 \mathrm{fin}$. Complete Eit $86 / 12 / 6$. Carr. 5/6. Remb-buitt $88 / 10 /-$ Carr. $8 / 6$

29 gns TAPE RECORDER

 for ONLY E21 Carriage 3 speed twin track 3 watts Bargain of the Year OfferCancelled Export ContractFamous manufacturer's brand new, unused and factory teated 3 speed 11, 31, 71, twin track tape recorders. 3 Watt output. Tape position rev-counter, fast
forward and rewigd, tikes 7in. reels, mike and gram. input. Straight through amplifier facilities. Output sockets for ext. apeaker, moultor or exeye recording level ind maine meon indicators. Volume and lone controls 7in. $\mathrm{X} 4 \mathrm{j}_{\mathrm{n}}$. spealker. Attratively atyled cabinet, with detachable lid, malke and reel storage facilities. A.C. $200 / 250$ volts operation. Complete with erystal mlke tape, spare reel and sereen lead, etc.

RECORDING TAPE-Reduced Prices

Famous American Columbia (CBS) Premier Quality Tape at REDUCED PRICES. A genujne recommended Quality iape-TRY ITI Brand new, boxed and fully guaranteed. Fitted
with lender and wtop roll.

Lang Play
Foott. $17 / 6$
Double Play
$1,200 t \mathrm{t} .31 / 6$
$1.200 \mathrm{ft} .19 / 6$
$1,8001 \mathrm{t}$. $28 / 6$
$\begin{array}{ll}1,800 f t . ~ & 37 / 6 \\ 2.400 t t . & 47 / 6\end{array}$

SPECIAL BARGAN. 3in. Message Tape, 1501t. 3/9. addtional reel D.P. 3001t. 6/6.

Plastic Tape Reels. 3in. 1/3; 4in. 2/-; 5in. 2/-; 5/in. 2/-; 7in. 2/3
Plastic Reel Containern, Carkettes Bin., 1/9; 5 itm. 2/-; 7in. $2 / 3$.

We SINCLAIR KITS
We are Specialistp, and carry full etocks of
these world-famous all-Britieh desigus as these world-famous all-Britieh desigus a
aslyertised and give prompt delivery. salvertised and give prompt delivery
MICRO-6 sis atage vest-pocket revr. (kit) $\begin{gathered}\text { MICRO-FM } \boldsymbol{z} \text { transletor FM tuner- }\end{gathered}$ revr. (ktt) 2.12 combined 12 w.amp and pre \quad (5/18/6 STEREO bullt STEREO 25 de luze preramipl
control unit rewly buile
$59 / 6$
$25 / 18 / 6$
$89 / 6$
$\varepsilon 9 / 19 / 6$

GOERLER CONTINENTAL STEREO DECODER

A ready boilt and aligned factory Unit 6 transistor plus 5 diodes designed
to connofseur standards. Bize $4 i n . \times 3 i n$. ready for connecting to existing transistor tuner. Multiplex O/P. 12v.-18v. supply. Full techaical specification detaile s.A.E. Price $£ 8 / 10 /-$, , plus $8 / 6$ carr.

TYGAN FRET or Vynair spkr. fubric, $12 \times$ TYGAN FRET or Vynair spkr. fibbric. $12 \times$
$12 \ln .2 /-12 \times 181 \mathrm{n} .3 /-; 12 \times 24 \ln .4 /-$ etc.
BONDACOUST \quad Speaker Cabinet BONDACODST 8peaker Cabinet Aconstic Wadding, approx. lin. thick, 185 m . wide, hay
length cut $2 / 3 \mathrm{fl}$. $6 / \mathrm{y}$. EXPANDED length cut $2 / 3 \mathrm{ft}$. $6 /$ yd. EXPANDED
ANODIZED METAL . Attractive gitit Anish ANODIZED METAL. Attractive git Anish
$\frac{1}{6} \times 1 \mathrm{ln}$. diamond mesh $4 / 66$ sq. Multiples of 6in. cot. Max size 4 ft . $\times 3 \mathrm{it}$. $47 / 6$ plue cart.

DE-LUXE RECORD PLAYER KIT

Incorporaring 4 Sp . Garrard Auto-Slim unit and Mullard latest 3-watt printed circuit amplifier (ECLB6 and EZ80), vol., bass and ereble conerols, with 8×5 in. 10,000 line speaker. Contemporary styled two-tone cabinet, charcoal grey and off-white with matching blue relief. Size $17 \frac{1}{2} \mathrm{in}$. $x 16 \mathrm{in}$. $x 8 \mathrm{in}$. A stylish unit capable of quality reproduction. ICircuit, and const detajls 2/6 (free with kit).
COMPLETE KIT Carr, and ins. $12 / 6$.
£13.19.6
Ready wired 30/- extra Hluminated Perspex control panel escutcheon $/ 6$ extra. $10 / 6$; 9in. $11 / 6$; $12 \mathrm{in} .12 / 6$ per ser exera

COAX 80 OHM CABLE

 Folvigrade low loss Cellular air spuced cond. Famous mirs. Only 6d, sd. Barzain Prices-8pecial lengths; 20 yds. $9 /-$40 yds. $17 / 6$
$60 y \mathrm{yds} .25 /-$
Cosx Plugs 1/-,
$\begin{array}{lr}\text { Cosx Plugs 1/-, } & \text { Oockets } 1 /- \\ \text { Couplers } 1 / 3\end{array}$

Volume Controls-5K-2 Meg. ohme. 3in. solume Controls- Morganite Midget Type 1 tin. diam.
Guar. 1 year. 10 O or LIN. ratios leas $\mathrm{Sw} .3 / 6$
 DP. 8w. 5/-. Twin Stereo less 8w. $7 / 6$
100k to 2 M ohms with DP $8 w .6$. 100k to 2 M ohms with DP 8 w. $9 / 6$. LOg 5K BALANCE CONTRO
Log $5 \mathrm{~K}, \frac{1}{2}$. 1 or ${ }^{2}$ Meg, 9 - ea.
WAVECEANGE SWITCHES. 2 -way, 2 p. 6 -way, 3 p. 4-war, ip. 2 -way, $2 p$. 2-way, 2 p. 6 -way, 3 p. 4 wit,
3 -way, long spindle, $3 / 6$ ea.

7 VALVE AM/FM RADIOGRAM CHASSIS

Valve line-up ECC85, ECH81, EF89,
EABC80, EL84, EM81, EZ80.
Three Waveband and Switohed Gram.

 Philltps Continestal Tuniug Insert with
permeability tunling on Fs and compermeability tuning on FM sind com-
bined $A M / F M$
$1 F$
transformers. Kc / s and $10.7 \mathrm{Mc} / \mathrm{s}$. Dust core tuning all colle. Latest dircuitry includhug AVC and Neg. Feedback. Three wat output. Bensitivity and reproduction
of a very high staudard. Chansis aize

Vertleal pointer. Horlzoutal sfation rumes. Gold on brown background. A.C. $200 / 250 \mathrm{v}$. operation. Miagic-eye
tuning. Circutt dlagram now avallable.

Aligned and teathed rearly for use $£ 13 / 19 / 6$. Carr. \& Ina. $8 / 6$.
Comp. with Tape, output, ext. Bp ${ }^{2 k}{ }^{3} \mathrm{r}$ and P / U sockets and hadoor F.M. serial and 4 kiobswalnut or jvory to chojce. 3Ω P.M. Speaker only required. Recommended 8peakers 10tD. R.A $30 /-131 \times 8 \mathrm{in}$. E.M.I. Pidelity 42:6. 12in. H.A. with conc. Tweeter, 42/6. Cart, 2/6.

Elect. Condensers - Midget type 1 mFd . 50 mFd e: $: 3,1 / 9 . \quad 100 \mathrm{mFd}, 2 /-15 \mathrm{v}$. Whg. Condengers 150 v , working: $.01 \mathrm{mPd}, .02 \mathrm{mFd}$., $.03 \mathrm{mFd} ., .04 \mathrm{mFd} .10 d$.; . $05 \mathrm{mFd} ., .1 \mathrm{mFd}$. $1 /-.25 \mathrm{mFd} ., 1 / 3 ; .5 \mathrm{mFd} ., 1 / 6$ etc.
 $2 / 3 ; 50 / 50 / 350 \quad v_{1}, 6 / 6 . \quad 16+16 / 450 \quad v_{1}+5 / 6 ; 60 / 250 /$ 275 v., 12/6; $32+32 / 450$ v., 6/6; $100+200 / 275$ 12/6, ete. ete.

Terms: C.W.O. or C.O.D. post and packing $\frac{1}{2} / b, 1 /=, 1 / b, 1 / 9,3 / b, 3 /-, 5 / b, 3 / 9,8 / b, 4 / 6$, etc.
$\left.\therefore \Delta \Delta \begin{array}{c}\text { COMPONENT } \\ \text { SPECIALIST } \\ \text { EST. } 1946\end{array}\right)$ 70 BRIGSTOCK ROAD, THORNTON HEATH Only a few items are listed from our comprehensive stock. Write now for full bargain lists, 3d.

BARGAIN COLUMN

25 AMP. ON/OFE SWITCH. Mains heavy duty type rotary with control knob, 5/6 each.

MANS TRANSPORMER. Uprlght mounting with primary tapped $200,220,240$ r. H.T. secondary is
 ment), 15/-, plus 3 (o post urd insurance.

HI-FI SPEAKER BARGAIN
1210. Higs fidelity loudspeaker.
flux permanent
magh net type with elther ${ }^{3}$ or 16 ohm gepech ${ }^{\text {coll. Will handle up }}$ tio watte. Brand new by tamous buker.
Prlce 20/6, with builit. in tweeter 35%, plus

SPOT OR FOG LAMP

Made by Lucas. Flat or Pencil trearn, 36 watt. Sultable for car, boat, caravan. etc. Complete with 8 or 12 v . bulb, Aex. cablea and fixing bolt. Remarlable bargailu 12/6. plus 4/6 poas and tas.

LUMINOUS CORD SWITCH

This can hang on the end of a fex or it can be inserted Into oflex. It has as buth-tin meon which matres it luminous In the dark. Made for electric blankets but
ideal in darthroons, etce. Normally 10/6. Our price Ideal in darkrroms,
$8 / 6$ emeth, or $£ 3$ doz.

FINE

 TUNERS50 pt with long spladle, as
illastrated
1/6. Twintrated, 1/6. or 121 - doz. Twin 50 pfi, not quite ascib
a long spinde, $2 / 6$, or $24 /-$ as lon
doz.
doz

12v. INVERTER

Fully transietorised for operating a 20 .watt fluorescent

NO SOLDERING

 POCKET 3 Lota of fun 20 bulld andgoord resulta
when finashed -complete kit with detailled lnstructlons and
cryatal earplece batteries cryatal earpieee batterje
$1 / 2$ extra. es value. 1/2 extra. ples value. and insurance.

MISCELLANEOUS BARGAINS 5-smp. Car Battery Charger Rectiaer, 10/6. post 3/6. Reed Switch with Masnet, G/6. I Meg. Pols, $6 /$ doz.
 up with Cosmoconend cryetal cartridge sad aapphire stylus, 3/6. 4-Tranistor Audio Amplifer, $19 / 6$. Turret Tuner, lem but tom cover and valves, 7/8 each. Noons (Mildget), $1 / 6$ each: valve typer $10 / 6$ doz.
 Switoh, $2 / 3$. 30 -amp. Relay for controlling heating,
39/6. 80 watt Flucreeent Kit, 17/6. post $3 / 6$.

[^18]INFRA-RED
heaters
Make up one of these latest type heaters. Ideal for bathroom, etc. They aro simple to make from our casy-to-follow instructions-use siuca enclosed elements designed for the correct infra-red waveength (3 microns). Price for 750 watts clement, all parts.
trated, $21 / 6$, plue $4 / 6$ poet and ins. Pull swltch $3 /$ - exira.

> MULTI-MAINS BOX
> These are $4 \times 10 \mathrm{amp}$. vockets mounted on a metal box all ready for wiring to your power plug - intended for mountlag on bench or wall-
> displays, etc. They avold the use of dangerous bakelite mult:plugs and adaptors and other book-ups. Price only 19/6. plus $5 /$ post and ins.

SQUARE D ADJUSTABLE TIMER

This is a fine American made unit destgned for precision. The time period is adjusted by a knuried screw. The delay period can be set anywhere from hours or seconds.
 f^{\prime} rice $39 / 8$, plus $3 / 6$..

FINE RECORD PLAYERS ARE 'GARRARDS'

 record piajers for oo long, CARRARD are your best choice-big range always
in stock.
7/6 for post and ins.
LAB8O
SRP1
plate.

THIS MONTH'S SNIP

ELECTRIC BLANKET OUTFIT

A 13 yard, 70 watt waterproot element with temperature control by Thermal balance-and a double pole blanket switch in pastel blue bakelite-with en-
closed neon ON/OFF indicution-both items ldeal for renovating id defunct closed neon OS/OFF indication-both items ldeal for renovating a defunct
or doubtful blanket-supplied complete with layout and other instructions. or doubtrul blanket-supplied con.

FLUORESCENT SNIP

Your opportunity to instal non-fileker strip lighting at silly price-thls month we offer the famous A.E.I. (Mazda) instant start liehting translormer suitable for one 4 ft .40 watt tube or two 2 ft . 20 watt tubes. "This transformer la listed at over $\mathrm{c7}$, but this month you can buy the complete kit comprising iastant stari choke/14.B pius $3 / 9$ post and insu-don't mlss this tremendous bargain.

See in the Dark INFRA-RED BINOCULARS

These infra-red from a high voltagn source x-tll enable objects to be seen in the dark, providing the objects are in the rays of an lafra-red beam. Each eye tube contains a complete optcal lens
sytem as will as the infra-red cell. system an well as the intra-red cell.
Theee optical syttems can be used as lenser for T.V. cameras- light celle, ete.
(cletails supplied). The binoculars
 form part of the Army night driving (Tabby) equipment. They are unused and believed to be th good working order,
but sold without aguarantee. Price $£ 2 / 1 \% / 6$, plue $10 /-\mathrm{carr}$, and ins. Handbook $2 / 1$

FIELD TELEPHONE UNIT

Offclally known as remote control units No. 1 . essentiaily these are telephones with miditionai taclitites each unit contaling magneto type rlinger and bell-as well as trand tormer-
relay and switches. A pair of these will give you two way communkeation over dixtarices
up to five milles-unused and in goud condtion, $39 / 6$ each, plue 10/6 carr. itid ins.

MAINS/TRANSISTOR POWER PACK

Malns Power Pack designed to operate transistor sets und umpliflere. Adjustable
 prises mailns trandormer-rectifler, smoothing and lawi resistor. 5,000 and 500 mpdd condenser. Zener dlode and instructlons. Real snip at only 14/6, plus $3 /$ - post.

SELF REPAIRING FUSES

Sounds good doesn't it-we can't offer quite that but we can offer a fast acting overload tilp which will rave you having to repuir fues every time jou do momething which would normally blow a fuse. The trip works first und as you wonid Install this on or near your bench, ull you do is to switch on agatu. This is mazle
by Westinghouse. Regular price about $£ 10$ each. We offer them thls month ait 29/6, plus $8 /$ - pust and ins. Not many in stock, so hurry or you will be too late.

CONSTRUCTORS' COLUMN
NIM COMPUTER This copmputer whil play garnes tricks and will provide endless
amusement
 weil its education futo computerisation. Klt comprises all the components, the prituted front panel and full instructions. The boz is not included but this can be plus $3 / 6$ vost and ings.
SIMPLE RECEIVER FOR LOW VOLTAGE. A TRF translistor set powered from the Sun or a il ∇ dwitch off. 4 N.P.N. sificon transistor, diode and all other coruponeats necessary, to bulld this circult described in "Wireless World," Oct., are available as a kit. Price $30 /$-, plus $2 / 6$ post and lns.
ELECTRONIC CONTROL OF MODEL
ELECTRONIC CONTROL OF MODEL LOCOMOTIVES. A dovice to overcome jerky stopplag and starting it described in "Wireless world," Oct. All componente, tc., to bulld this circuit is avaliable tha a kit. Price es plas post and ins. 2/6.
NOUGETS AND CROSSES MACHINE. ThIs machive. described in Bept. '65, is imponsible to beat and wlli provlde endleas fun at home and considerable attrac emaploys 19 switches and 9 do's and fetes, etc. It other compres and the able. Price $84 / 10 /-$, post and fas. $3 / 6$.
Multi Purpose Neon Test Unit Robuat, ueeful and instructive-leats capscity-contlnuity-resistor-volume controls-also acts ar slgnal injector and L.T. fault finder-lilt comprises neon indicator- 4 -why wafer wwitchwith diagrara only 9/6, plus $2 /=$ post and ins.
STUPENDOUS OFFER-E11 for $£ 2$

ENGINE REV. COUNTER

or direct reading frequency meter Employing a special frequency discriminator the inatrument 18 just right for namy of the jobs you have wanted to do-it can be permanentiy Instailed as a
rev. counter or as a portuise insta ument it will do such rev. counter or as a portuise instu ument it will do such Jobs is measuring frequency of time base-pulse
generistor-fip-flop etc., etc. Kit comprises: metal front panel all prepared and stove enamelled, moving coily meter. 4 speciatly tested trunsistar and diodes and all the necessary resistorn and condensers and circuit diagram (separately 2/6) all for 49/6. plue $2 / 6$ post und ins.
OZONE OUTFIT-lor removing smella and generally improving any oppresuive atmuonphere. Kit consists of 18/6, plus $6 / \mathrm{Al}$ cart, and ins. SOLID STATE IGNITION. Big things are claimed of Electronic ignition systems and if you would like to try for yourself a circuit was deseribed in "Practical
wilectronles"s (Sept., 1966). Thls requires as silicon silectronics ${ }^{-8}$ (Sept., 1966). Thls requires as silicon
controlled rectifler, four transistors and other comcontrolled rectifler,
ponents availiable as a lit. Price $55 / 10 /-$, post free RAIN SENSER. Hereis a simple unit that will belp All the components and data, 39/6, port $2 / 6$. All the components and
S.C.R. LTGET DIMMER, Can alian be used to control critical instruments. Circuit recently described in to
ind "Practical Electronics." Mains operation, this uall fits Into 13 amp. socket outlet box. All the coms ponents including the allicon controlied rectiffer. Be first this year SEED AND PLANT RAISING soil heating wire and transtormer. 8uituble for utandard size garden frame. $19 / 6$.
plus $3 / 6$ post and ins.

ELECTRONICS (CROYDON) LIMITED

102/3 TAMWORTH ROAD, CROYDON, SURREY (Opp. West Croydon Station)

THIS IS VSMF

VISUAL SEARCH MICROFILM FILE

This VSMF installation contains over 300,000 pages of fully-indexed data.

VSMF IS INTERNATIONAL

Established 6 years in USA-now being produced in Britain and Japan-isoon to be produced in Europe.

VSMF IS EFFECTIVE

Average saving per installation in USA exceeds $\$ 23,000$ per annum, eliminates lost or misfiled data, always up-to-date.

VSMF IS COMPACT

Only 12 sq . ft . of floor space to store $\mathbf{3 0 0 , 0 0 0}$ pages of data.

VSMF IS UNIQUE

Copyright indexing method ensures rapid access to any item.

VSMF is now being produ'ed in Britain by Information Handling Ltd. ternational Publishing Corporation-The National Trade Press Led. and Kelly-lliffe Led. The system is in widespread use throughout the USA and has stood the test of six years' service in critical conditions in defence plants.

The first British file will contain indexed catalogue data on products used in the Electronic, Electrical and Mechanical Eng ineering Industries. If you manufacture such products VSMF offers an efficient and inexpensive means of placing your data before specifiers.
If you use such products then VSMF can improve your information facilities and cut design costs.

VSMF is now being produced in Britain by Information Handling Ltd., $161 / 166$ Fleet St, E.C.4. Telephone: Fleet Street S01I.
Please send information on how product data can
be inserted into VSMF
\square
Please send information on
the use of VSMF in industry. \square

NAME. POSITION.

COMPANY

Mail to Information Handling Ltd., 161/166 Fleet St., London, E.C. 4.

BRAND NEW AM/FM (V.H.F.) RADIOGRAM CHASSIS AT £15.15.0
 (carriage paid)

valves and O.P. Trans-
former. Tone Control fitted. Covers $1.000-1,900 \mathrm{M} ; 200-550 \mathrm{M} ; 88-08 \mathrm{Mc/s} ; 6-17 \mathrm{Mc} / \mathrm{s}$. Valve 280
 TERMS; 85/5/- down and 5 monthly payments of $82 / 5 / 4$. Totat e16/10-
NEW 6 PUSHBUTTON STEREOGRAM CHASSIS
M.W., S.W. 1, , $\mathbf{A}, \mathbf{W} 2$, V.R.F., Gram., Stereo Grahn. Two meparate channele for Stereo Grama, with balance control., Also operates with two spealsers on Ramio. Chasuserize
 EF89, $2 \times$ ECLs8, EM84 and Rect. $190-550 \mathrm{M}: 18-51 \mathrm{M} ; 60-187 \mathrm{M}: 86-100 \mathrm{Mc} / \mathrm{s}$. Priae
£19/19/-carr, paid, or $£ 6 / 13 /$ deposit and 5 mont hiy payments of $£ 2 / 16 / 6$. Total H.P. £19/19/-carr. paid, or $£ 6 / 13 /$ - deposit and 5 monthiy payments of $£ 2 / 16 / 6$. Total H.P.
price $£ 20 / 15 / 6$. Cream moulded escutcheon included. Curriage to N . Ireland $20 /$ - extra. TAPE AMPLIFIER FOR MAGNAVOX TAPE DECKS - 2 or 4 TRACK (4 TRACK 25/- EXTRA)

Chissais $12 \left\lvert\, \times 51 \times 4 \frac{1}{2} \mathrm{n}\right.$. high. Plastic front panel "gold" finlah- $12 \frac{1}{2} \times 4 \frac{1 \mathrm{in} .}{200-250 \mathrm{~A} . \mathrm{C}^{2}}$ Record/Plisback amp. switch; Off/On-Tone; Vol/Mlc; Vol/Gram; Mic. Input; Gram.
lnput; Monitor; Sptaker Sockets. Yalves 6BR7; 12AX7; EM84; EL84; 6X4. Beparate power pack. Complete amp. and power pack, f10/17/6 (6/-P. vis.).
REXINE COVERED CABLNET (TAN). $151 \mathrm{hn} \times 17 \mathrm{~m} . \times 9$ in. high with mpolag front for amp. Complete with two tweeter apenkers, spectal adapting brackets for Magavoor Deck, $85 /-$ ($8 /$ - carr.).
3-SPEED MAGNAVOX 2-TRACK TAPE DECK $£ 10 / 17 / 6$; 4 Truck £12/15/-. Complete Recorders (with speed compensation), 2-Track £29, 4-Track 832 (carta $26 /$). Worth s 10 more, on normal retall prices.

Send 6d. for 20-page illuntrated catalogue.

GLADSTONE RADIO

86 ELMS ROAD, ALDERSEOT, HANTS. Aldershot 22240, (1 min. Irom station and buses.) Closed Wednesday afternoon.

VALVES

SAME DAY SERVICE NEW! TESTED! GUARANTEED!

[^19]

Longlasting Precision...

 OXLEY DEVELOPMENTS COMPANY LIMITED ulverstonLANCASHIRE, ENGLAND
TELEPHONE: ULVERSTON 2567
CABLES: OXLEY ULVERSTON

stern-ㄷIMne $E[E G T$ MERCURY BRILLIANTNEW MODULAR HI-FI STEREO

With Garrard Autochanger, Solid State Amplifier, Free-Cone Speaker Systems The stern-Clyne Mercury is an lupportant new agproach to Hi-Fi sound reproductou in the horne. One crmpat,
 Plaser Unit/Amplifier Conimole and identical speaker systems ure superbly houbed in matching teak vencer cabmets, spectally deklgned to ilt existing furniture or shelf spuce, and nutech any afecor.

MERCURY SYSTEM

AUTOCHANGER AND PICK-UP
Garrurd High-grade. Model 3000, spectally equlpped with hglo-complispee, ceramic cartrldge fitted with Diamond AMPLIFIERS
 alenty constructed on a motular circuit board and subjected to scarching inspect lon and preciee matehing at each LOUDSPEAKER SYSTEMS
 suspenslon cone to provide the full blooded basta resportse usualls aseuciated whit murh larger unfitw.

SPECIFICATION

Power Supply 200/250 volta, b0 cycles A.
Output Impedance 15 ohms (other speakers of 8 to 18 ohms nay be used).
Frequency Respouse (Amplifere) $30 \mathrm{c} / \mathrm{s} .63 \mathrm{l}$ ke/s. ©itit (2 dB) at 1 watt, Harmonic Distortion Less than 1%,
Hum and Noise -55 dB below full output, tone controls level.
Cross taik between channels 48 uB at $1 \mathrm{ke} / \mathrm{s}$.
Bass Compensation $\pm 15 \mathrm{dR}$ at $40 \mathrm{c} / \mathrm{s}$.
Treble Compensallou $\pm 15 \| \mathrm{B}$ at $1 \mathrm{t} \mathrm{ke} / \mathrm{s}$.
ONLY FROM

MAGNAVOX

 IndustryHF/TR3 TAPE AMPLIFIER

363 TAPE TRANSPORTER

Manufactured to μ recise limits that permit recording and tape playback to the highest standard set by the Music

Simple, reliable design employs a single high-duty motor with heavy fywheel. Features include fast wind on and rapid rewind, pause control, 3-speed selection with interlock. Built-in revolution indicator, piano key controls. Speceds $12,3 \frac{3}{3}$ and $7!\frac{1}{j}$ i.p.s. Wow and flutter 0.15% on $7 \frac{1}{1}$ i.p.s. Max. spool size 7 in . Playing time up to 120 mins. per track from $1,200 \mathrm{ft}$. standard tape Size $13!\times 11 \mathrm{in}$, plus 5 j in. below mounting board.

$$
\text { With i track heads } \$ 10.10 .0
$$ With ! track heads $\mathbf{£ 1 3 . 1 0 . 0}$

Add 10/- carriage and instrance.
Balance Control Gangevi potentiumeter; either channei cian be fadell to zery without altecting the ot her. Tape Reoord Outlets 200 mb average, cach channel. Dimensions: Player Unit $18 \mathrm{f} \times 14 \times 8 \mathrm{fin}$, overill
Loudspenkers $13 \times 7 \times 8 \mathrm{im}$. (ench)

Fisily tho best complete tape amplifier as alluble to the bome bullder. Supplied already matehed for the Magnsvox siss tapealeck. Features fuclode ayitched efunalization for all speeds (CCIR standards at 7 i.p.e.). Treble loont incirporated doring Record, Base boont during playbuck, spraker ontpnt matehed for $8,7.5$ and 15 ohms, ndditional out puts for extenslon opeaker, phone smoaltowing on fecurd and HIF-Ni playback throurk exiating systems. Imput for Mice, phek-up aud VIt Radio. Valve: E1MB, ECCB3, ELS4, EMS1, EZB1. Stze overall:
 fin: Aup. Power puck. Kitt of parts $\quad £ 14.0 .0$

$$
\text { Assembled ind tested } \mathbf{\$ 2 0 . 5 . 0}
$$

Specially developed by Mallard Lalluwatoriey for use with high quadty replay syatems, and supplled specitically mat tohed for use with the 3agnavoì 363 tappedecik.
Features Include: Ferroxenbe pot core inductors tor trelde equallzation, push-pull oscillator incorporntig ferroxcube transformer, anflustable output for matchlag to exletlag high-rtuality amplifer systeme, inputa

 Preatasp. and power pack 1 rit of parts $£ 14.10 .0$

Assewbled and testell $£ 20.10 .0$
ddd $7 / 0 \mathrm{carr}$.
only from stern-Clyne
EThe Unique GRamstand

GRAMSTAND is a superb BSR Aulochanzer-with many added fiwilitieg-alruady nemembled
some, e日pectarly dexigmed hard wood pllath.
GRAMBTAND Is made exclusively for Btern-Clyne to meet the reyulrement of modern bookshelf mounted thes space limited H4-P1 systems.

Features inciede

- lightweight tubular arm.
- LATEST MONO/STEREO GERAMIC OARTRIDGE - DIAMOND STYLUS.
- heavt balanoed $10 j i m$. TURNTABLE
- BUILT.IN P.U. PLUG AND SOCKET AND
INTEGRAL GIt. MAINS LEAD.

New bookshelf size MEGAMITE speaker system

- full frequency ranae
- EMPLOYS SPECIALLY DESIGNED FREE-CONE
- includes matching tweeter and
- HANDLES 10 WATTS OUTPUT

Apecial sin. frececone bans unit usea edormously powerful Fervint magnet to obtann the exceptional cone movemunt peededt to get clean, deap-down biss response equal to much larger speaker pertormance. Mitching 4 in . tweeter and crossover ts housed with basa unit in heavily laggel. handsome teak vencered cabinet, size ouly $18 \times 7 \times 8 i n$. deep. Mounta vertically or horizontilly. Illeal for modern Mi-Fi ayatems where clean. unobtrusive appearance with high performance is retuired.
£8.19.6
VERITONE 3006 gns.
A smatl vermatile Gram. Amplilier with an output of 3-4 watts Ridio Tuner, idenlly sulted for a small domestic installation requirlay good quallty low output, output Impedance $\$$ ohuns, volume comatrol treble control, biase tontrol treble mirldte control. Valve llue-up: El84. EF80, FV80 Vme-lip: ELB4. EF80, FZZSO. Fmooth grey
finished chivmis, alze $8!x+x$ izin
with brushed alumiplum front panal, con
with brished alumiplum front pancl, con
trasting letters and knolug, front panel size 81×2 in. Find aswembled ind teated.

Announding Etern-디글 SCOTAN Solid State IntegratedStereo Amplifier

SPECIFICATION \& PERFORMANCE

The Stern - Clyne
ULAN represents a considerable advance in solid-state, high fidelity stereo amplifiers. Outstanding performance is hensive facilities, installation simplicity, and attractive functional styling.
SULTAN performance is a natural result of uperb desion incorporating the most ad vanced fully proved semi-conductors, and anced fuly proved semi-conductors, and nodular substage construction that permits searching quality control and precise matching at every stage of assembly. Particuar attention has been given to the provision of all the additional input, output, and power take-of facilities ever likely to be required. The compact sized, craftsman finished teak cabinet and restrained styling ensures unobtrusive, 38 Sils. Complete. Carriage 4 Insurance 8/6

Power Supply A.C. only. 200-250 v., 00 -60 c/s. (Alern. utive ratinge to special onler)
Power Consumption 48 watt neaxinnm.
Power Output 13 watts per channel RMB lato 15 whm

peaker Matching 8-14 ohtns fior 3-5 ohms use $2 / 3 \mathrm{ohm}$ wre-wound resistors in serlem with each L/R.
at full output. Frequency Respons
at 10 watts $+3 \mathrm{~dB}, 40$ watt $\pm 2 \mathrm{~dB}, 30-25,000 \mathrm{c} / \mathrm{s}$, Cross Talk better than 50 dB at 1 Kc
Hum and Noise better than 82 dB below futl output Inputs: P.U. $13.5 \mathrm{mV}, 47 \mathrm{~K}$ ohms impedance, R.I.A.A Radio $100 \mathrm{mV}, 220 \mathrm{~K}$ ohms impedance $\} \begin{aligned} & \text { eomperi- } \\ & \text { sated Flat }\end{aligned}$ Tape 100 mV , we0 K ohme Impedsince, Fhat
Aux. $250 \mathrm{mV}, 450 \mathrm{~K}$ ohme impedance, Flat
Dimensions $13 \mathrm{in} . \times 11 \mathrm{in} . \times 51 \mathrm{tm}$. Panel 12 in . $\times 4 \mathrm{itn}$. Bass Control Boost 14 dB at $40 \mathrm{Kc} / \mathrm{s}$. Cut 10 dB at $40 \mathrm{Kc} / \mathrm{s}$.
Treble Control Boost 12 dB -at $14 \mathrm{Kc} / \mathrm{s}$. Cot 18 dB at
14 Kefs.

MONOGRAM AMPLIFIER AND ACCESSORIES

Monogram Amplifier

Superb space and cost economy denign specially der eloped by Mullard Regearch Laboratories and quality constructed by stern-dgne. Anctualived outpue from ithy atandard xtal pick-up. Plus features faclude Base Roont and Treble Gut controle, panel illumination aud sperially wound output transformer. Size coly $10 \times 21 \times 4$ in. high. silver hammer chassis finlsh Katin uilver 1 linish engraved panel.
A ssembled and Tested 86.

Monogram Accessories

specially dengroed PC3 Carrying case takes Monogram Ampllier. 8×5 slliptical Sperker (illustrated) and any ktandard turntable or Antochanger. Size overall $18 \times 164 \times$ b'in., handsonuely finished in dark grey fabrle weave. PC3 Case £3/5/-

Carriagr $2 / 6$
 8×5 speaker $£ 1$.

Our Finest Ever Meter Value!

Duvidal ITI Multitester
72/6
P. \& P.

With Built-in Meter Protection:
Pocket size with wide-angle, Jewelled ineter movement, ceramic long-life, low loss switching, tough impact resisting case. Sensitivity 20,000 ohms/volt D.C 10,000 ohrus/volt A.C.

19 Ranges measure
$0-5-25-250-500-2,500$ volts D.C. $0-10-100-$ fin 1,000 volts A.C. $0-50 \mu \mathrm{~A}-2.5 \mathrm{~mA}-250$ mA. D.C. $0-6,000$ ohms- 6 megohms. $10 \mu \mu 50-$.001 mfd .1 mfd .20 to +22 dB .

Ememe Min sule Pace sinantioure

TENSILIZED - pre-stretched, extra strong.
- Full frequency spectrum response.
Guaranteed playing times.

STERN-CLYNE make huge bulk purchases of recording tapes from the world's biggest manufacturers and hand on the enormous price advantage to their customers. The quality is unequalled: Tensilized to ensure the most permanent type of base. Highly resistant to breakage, mois ture, heat, cold or humidity. Highly polished, splice-free finish. Smooth output throughout entire audio range TENSILIZED P.V.C.
$3 i n .250 \mathrm{ft}$. Long Play
5/6
inn. Goft. Standard. 5 in . 1 ,moft. Long Play ${ }^{8} 6$ Fin. 1, 200ft. Long Pla 10% Fin. 1,800ft. Long Play TENSILIZED POLYESTER
34 in. 600 ft . Double Play Sin. 1,200ft. Double Play. 5 2in. $1,800 \mathrm{ft}$. Double Play 5 in. $2,400 \mathrm{ft}$. Triple Play 7in. 2,400ft. Double Play. 7 in . 3,600 ft. Triple Play

SEND FOR CATALOGUE
A I/- P.O. brings new $100-$ page Sound and Science Catalogue packed with unique items ; profusely illustrated.

SUPERB NEW STERN-CLYNE F.M.I. VHF TUNER

Features sparkling performance-inherent stability

 Trom any H $1 \cdot F 1$ audio syeteal; superb btyling makes for harmonlous installation with existing equipment. Reliable, easily
 Preq- changer, 2 TFs , Noise Limiter and Katio Detector. Vaives
are $4 \times \mathrm{EF} 91$ plus 2 diodes. Input sens. 100 mV . for 40 dB . Dis. less than 1% at full deviation. Power treq. 200 v . at 20 mA . and 6.3v. at 1.8 A . Panel black and silveregres, size $8 \times$ bin. Chsaris: cadmium plated, overall depth 41 im .
FM1 Kit ol parts with lastruction Handbook, $87 / 9 / 6$ Carr. $4 / \%$ PM1 Assembled and tested, $810 / 9 / 6$
earriage $4 /$. Optional Power Pack Type D Kit of Parts. $£ 2 / 15 / 0$ Cart, $3 / 6$. Powec Pack Tyoe D, assembled and tested. $£ 3 / 10 / 0 C_{\text {arr. }}$, $3 /$. Handhook only $3 /-$ post free. Descriptice leaffet on reguest.

WE ARE FAMOUS FOR WIDEST RANGE OF HI-FI

All the best makes for you to see and hear in side-by side comparison in our Demonstration Roorr. No obligation. Sound advice free.

MAIL ORDER \& ALL ENQUIRIES TO DEPT. WW2, 3-5 EDEN GROVE, HOLLOWAY, LONDON, N.7. Tel. NORth 8161/5.
LONDON:
18 Tottenham Court Road, W.1. MUS 5929/0095 23 Tottenhan Court Road, W.1. MUSeum 3451 309 Edgware Road, W. 2. PADdington 6963 109 Fleet Street, E.C.4. FLEet Street $5812 / 3$ 162 Holloway Road, N.7. NORth 7941 © Camberwell Church Street, S.E.5. RODney 2875 220 Edgware Road, W. 2. PADdington 5607 CROYDON:
12 Suffolk House, George Street. MUNicipal 3250 BRISTOL:
26 Merchant Street, Bristol 1. Bristol 20261 LIVERPOOL: 52 Loṛd Street. Royal 7450 MANCHESTER:
20/22 Withy Grove, M/c 4. Blackfriars 5379/5246 SHEFFIELD: 125 The Moor. Sheffield 29993 NOTTINGHAM:
Eastown House, Lincoln Street. Nottingham 45889

Lhayys RADIO

LONDON'S LARGEST STOCKISTS OF HI-FI AUDIO EQUIPMENT

 by ALL THE
DEMONSTRATION STUDIOS

Lasky's Radio - established over 30 years offer you the most exciting and up-to-date chain of High Fidelity and Electronics Stores in London with the largest and most comprehensive stocks in Great Britain.
Our branches at 207 EDGWARE RD., W. 2 (newly remtyled and hodernisud); 33 TOTTENHAM COURT RD., W. 1 and $152 / 3$ FLEET ST., E.0.4, have henge stocles of everything la the " World of Flectronica," Mains and Transistor Radios, P.A. Equipment, Guitar and Hi-Fi Amplifters, Tuners, Speakers, Mierophones, Record Players. Radiograms, Communication Receivers, Test Equipaem, Componente, Tape Recorders, Tape, Walkie Talkies, Intercoms, Build Yoursell Construction Baragins, Domestle and Electrical Equipment. Transistors. Valves, etc., etc., \&nd thorkurds of hargnina eschusfoc 10 Lasky"s.
Our brinch at 42 TOTTENHAM COURT RD ${ }^{\circ}$, W. is London's most upetoolate High Fidelity gound Catre. There you ean hear and compare say combination of the finest equlpment by all the Wor lde most funous inames la Miyh Fidellty sourad reprotaction. Plus a whe range of high quality equipmutht cabinets and speaker enthasures to sutit all styles of decor.
Our branch at 118 EDGWARE ED., W. 2 has the widest selection In Oreat Britatin of Mathe and Thanalsturised Ratlos with over 400 different nodelg in stuck and over 100 mains and iranststorimen Tagne Recorlers-by all the nell-known British, Continental. Americun and Japanese manufaturers. filus TV, Hi-PI Audfo Equipment, Rallingrame, Record Playert, all the latest marvels in the " Worlat of Electronles " and a fill range of domest ic applancer.
If you cannot call at any of our branches please send details of your requirements 10 ur head office and we shall be pleased to quote without obligatnon. We operate the "Purchase Tar Free" scheme for overseas visitors. Full H.P. terms available.

RECORD PLAYERS

4-SPEED AUTOCHAMGERS B.S.R. Autochangers At brand new and fully guaranteou complete with cartridue and stylus. UA14 d-uped malns morle! If A 6 toy byed matins model UA.30 t-3perd minins mod

GARRARD AUTOCHANGERS AT LOWEST EVER PRICES!

Auto-blige Motus	8418	6	A50 leme cartridge			
AT6 Mrno	¢8 19	6	Al000 with GC8 cartrikge	£6		
AT6 Stereo		0	A:006 with cos matriolge	£6	6	
1000LM with stered un trydse .		6	GARRARD BASES			
A"Ti0 with steres Ponotone cart.	2109	6	WBL.. ${ }^{\text {c }} 128$ WH2	5	0	3
A70 less cartrilge.	E19 ${ }^{\text {a }}$	C				
Lab, A Minn/Btereo	81419	-	CLEARVIEW PERSPEX COVERS			
1atb. A ou plinth	£15 18	8	WB1 . 23100 WB2	¢4	17	6
TRANSCRIPTION SIOTORS			SINGLE PLAYERS			
GAREARD 501	$£ 3210$	0				
(GARPARD Latb. 80, less eart.	22419	6	omplete			
AARRARD 301 (Strobe)	$\underline{22} 19$		and crystal cartridge.			
GONNOISBEUT6 Craitsman 11		11	HMI with eltereo cartridge	23	19	6
Graftemana 115	82219	6	COLLARO JUNIOR t-apeed	£3	9	
Model B	E25 4	0				
LENCO GLIS	E17 1	E	Gambard grple	£4	7	6
LENCO GLIIS	¢18 10	7	GARRARD GRP10 mathi mofei	£4	18	6
LEENCO G88.	81515	0	OARRARDS 3 P10 battery molel	£4	19	6
LENCO G9s	E21 19	5	Carrard spres Mumo	£9	10	6
THORENS TD155 1	2265	0	GARHARD gimb Bleres	E10	19	6
		8	PFILIPS AG/1016	S12	12	c
THORENS TD130	£20 18	2	BRAUN PC4L Stereo	88	19	6

GREENCOAT RECORD PLAYER

 Complete with piek-up and fitted with crystal cartridge. glize only 7) $\times 6$ inh. Fitted with iuto. stop and stawt. Jdeal for uscwith miniature transistor anplifers. LASKY'S PRICE 59/6 poat $2 / 6$.

CRYSTAL PICK-UP CARTRIDGES LOWESt PRICES EVER

All complete with Styli L.P. and Standard, STEREO
fully guaranteed, Standard Fitting will
fit most P.U. Arms and Heads. Post $1 / \mathrm{m}$.
Garrand GCs
Carraril GC8
Garrand EV201A
Acos G.P. $67 / 1$
10/6 Fuil range of Goldring sad Phillps cartridges stocked.
TI. Mnno an LOWRR PRICES Save Money! Some of these cartridges are cheoper than styli
d.T.I. Mnno 2 sapphires.
Collaru 2 sapphires, stareo

TAPE RECORDER BARGAINS LASKYS \& COMMUNICATIONS SETS
 THE WIDEST RANGE AVAILABLE TODAY

TAPE RECORDERS

MAGNAVOX - COLLARO 363

TAPE DECKS

The very latert 8 opeed model- 1%, 3\}, if i.p.s. available with either \ddagger track or $\frac{\text { track head. Fea }}{}$ tures include: "piase control; digital counter; tas duction motor; interlocicing keys size of top plate
 fully guaranteed.
LASKY'S PRICE t track $\mathbf{~} 10.10,0$ Oarriage

 SPECLAL FOR OFERSEAS CUBTOMERS-the new Magnavox-Collaro 383 Deck 1or 110/2:0
50 or $60 \mathrm{c.p.s}$. mains now available, prices as above. Poat to any part of the world, $35 /$.

NEW MARTIN TAPE RECORD/REPLAY AMPS.

Now available
track model.
track model.
LASKY'S PRICE
.....LASKY'S PRICE £15.19.6
Optionn Extra: Cootrol panel eacutcheon to take deck and amplifer controls.
LASKY'S PRICE 18/6, Post \& Packing $2 / 6$.
A FEW EACH OF THESE OUTSTANDING BARGAINS STILL AVAILABLE AS PREVIOUSLY ADVERTISED.
FI-CORD 202A. List price $269 / 6 /-$
HARROW VR7R. List price 24 Gns.
LASKY'S PRICE 39 Gns. C. \& P. Wree cossor CR.1804. List price 39 Ons.

LASKY'S PRICE 18 Gns. O. \& P. $10 / 6$
JUST ARRIVED - "REFLECTOGRAPH" MODEL E/A AUTOMATIC CONTINUOUS TAPE PLAYER
This unt t, based on the famous "Reilletograph" deck, is designed for the con-
tinuous playing of pro-recorded bockground nuasic on twin track tape, automatically reverning at efther end of the
titpe and changing the playback heads. the reversing circuita are triggered by metal foils at the tape ends-during the reversal operation the tape transport mechanism is opened thus removing the tupe had from the capstan motor. The output from the deck must be fed into a suttable audio amplifler and loudspeaker
system. The model
H/A does not incorporate its own output stages or recording amplifter. The player may be

swituhed on mazually or remotely by a thme clock or switch (not supplied). A manual reverse conerol is provided; signal lamps indicate tape direction. Tech. detalls: Three motors - 338 i-p.a. two playback heads; N.A.B. equalization; output voltage 0.25 v. R.M.B. huto high imp,: for
use on $200 / 450$ v. 50 o.p.a. maina. The deck ts beautliully tinished in pale grey/green cnanoel use on $200 / 250 \mathrm{v} .50 \mathrm{ap}$ a.s. maine. The deck is
with walnut tiniah side panris. Slze: $20 \times 16 \times 91 \mathrm{n}$.
LASKY'S PRICE 27 GNS. \qquad

TAPE DECK MOTORS

High quality tape deck capstan motor made by Ew.M.I. Holland. Bi-direc thonal. Size 4in. dia. \times yin. bigh, line x tia. spindle.
LASKY'S PRICE 15/11 Poot $3 / 6$.
HI-FI TAPE RECORDER HEADS

TAPE POSITION INDICATOR

Oven type - as used by most makers. With re-set knob. 3 DIG1T 7/G. 4 DIGIT 10/6. poat ad. eath

MICROPHONES

THE VERY LATEST MARVELS OF ELECTRONIC MINIATURISATION
 TTC B4002 FM WIRELESS MIC.

Highly sensitive-guitable for either atatic or mobile use. Signal
can be picked up by any FM radlo or tuner which receives trequencies bet ween $96-104$ Mc/s. over several hundred yards. 81ze only $3 \times$ $21 \times 1 \mathrm{in}$. (In leather case). Operates on one PP3 type bat tery. (sin.1), and battery
LASKY'S PRICF 14 GNS. Post Free.
in the World

TTC 18/500. More powerful verslon of above-size $4 \times 1 \times 1 i n$. Operates on one PP3 type battery

COMMUNICATION RECEIVERS

MODEL KT 320 KIT

Supplied in aub-Asacmbtien for casy bullding. Covers ranges from 540 Kcfs to $30 \mathrm{Mc} / \mathrm{B}$ Ham Band is provided with ascale for direct reading and can
also be band sprcad. 9 valven. Facilitiea: A.N.I. also be band sprcad. 9 walven. Facilities: A.N.I. A.F.C. and M.X.C. o Maltiplier also serves as seositivity and melectivlty (bll colls and I.F.e are supplied pre-abigned). 2 Aerial Sockets. Standby pooition for use with a transmitter \& meter fitted. $200-280 \mathrm{v}$. A.C. mains, Steel cabinet, grey
crackle tinish. wize $15 \times 8 \times 10 \mathrm{~m}$, Dial $12 \times 4 \mathrm{in}$. ACVY'C DOPD
 NEW MODEL SR 150
Covers full medium waveband and $1.6-4.4 \mathrm{Mom}$. awitched biand spread ranges. Twose in separate an finternal loop and external telescopic are fitted include: B.F.O. Sensitivity. C.W, A.N. Controls awitch, receive/stand-by. is meter. Eass to tome A.C. 4 ralve pluth rectifing geale. For $200 / 200 \%$ peaker and socket for phe. Fitted with intermal Cablnet size $13!\times 8 y \times 5$ in. Complete with
LASKY'S PRICE £19.10.0
 gT1LL A FEVW at $£ 1 / 11 / 6$. Total H.P. $\mathbf{E z 2} / 11 / 6$. Post $10 /$
MODEL HE30 32 Gns. MODEL HE40 18i Gns. MODEL EE80 59 Gns.

TEST EQUIPMENT

NOMBREX TE8T EQUIPMENT MODEL 27 TRANSISTORISED SIGNAL
GENERATOR (illustrated)
Wire range- $150 \mathrm{kc} / \mathrm{s}$ to $350 \mathrm{Mc} / \mathrm{s}$. Accuracy better tham 2%. Drect calibration. AF. RF and MOD. Battery operated. Light welight and atrongly male. Conplete with teat leads and batt. LASKY'S PRICE £10.16.9 Pont Free.
MODEL 63. Wide range AUDIO GENERATOR $10-100 \mathrm{Kc} / \mathrm{s}$. $£ 17 / 1 / 8$ complete with buttery.
MODEL 66. Wide range INDUCTANCE BRIOGE

$1 \mu \mathrm{H}$ to 100 H in 4 ramgen. Measures Q . E18/8/9. complete with batters:
POWER SUPPLY UNIT 1 to 15 v. D.C. up to 0.1 amp. $230 / 250$ v. A.C. mame. $\$ 6 . T 4.6$
MODEL 62 RESISTANCE CAPACITY BRIDGE $£ 9.6 .9$ conuplete with baitery.
HIGH QUALITY TEST METERS Complete with test lends and batts. HAIKI 20,000 O.P.Y. £5 19 8 P-1 2000 O.P.V. \&\& 126

Complete range of Avo and Tayhor Metern in wtock.

MISCELLANEOUS

NOW AVAILABLE-OUR NEW BARGAIN BULLETIN.
pages packed with hundruds of bargatins for the "ham" "and wernice mno-exclusive to Lasky"s

TRANSISTORS
all brand new and guaranteed
GET B1 GET A5, GET B6 2 8; 837A, 874P. 3/6; OC45, OC71. OC81D. 4/6:0C44, OC70, 0C76, 0C81 (mate pair 1016); 5/6; AF117. UC200, 8/6; OU42, OL43, OC73, OC62D, 7/6: OC201, OC204, 15/-: 00205, OC2004. 19/6: 0c:28, 24/6: OC75, 8/-.
TRANSFILTERS
By bRUSH CRYSTAL CO. Available Irom stock.

GORLER UT 340 FM/VHF TUNING HEART
 cast metai case size $3 \times 21 \times 14 \mathrm{in}$. Circuli supplied.
LASKY'S PRICE $15 / 11$ Eccess valve, g/- extra. Post nnd Packing 2/.
INTERNATIONAL BRAND TAPE Fully Guaranteed at record low prices,
3in. Message tispe, 150 ft. 2/6 5 iin. Long play, $1,200 \mathrm{ft}$. Acetate bave.. $12 / 6$ 3 in Message tupe, 2351t. $3 / 9$ 5in. Btandurd play, 850ft. P.v.C. base $11 / 6$ ${ }_{3}$ in. Mn. Triple play. 6001t, Mylar base 3fin. Triple play. 6001t. Mylar base 5in. Double play, 1.200ft. Mylar base 5in. Long play !omott. Acetate babe 5 lin . Stindard play, G00ft. P.V.C. ba $\begin{array}{lll}5 i n . & \text { Triple play, 1.800ft. Mylar base } \\ & 8 / 6\end{array}$ 5 in. Dripie play, 1,800ft. Mylar base .. $35 /-\quad 71 \mathrm{~m}$. Double play, 2,400tt. Mylar base.. - Post extra per reel- 4 reals and over Post Free.

Full range of Philips pre-recorded cassettes-send S.A.E. for list.

LASKY'S FOR D.I.Y. CONSTRUCTION EARGAINS

MOREO FOR

CONSTRUCTORS' BARGAINS \& SPECIAL INTEREST ITEMS

CONSTRUCTORS BARGAINS

THE SKYROVER DE LUXE

SPECIAL INTEREST ITEMS!

TRANSMITTER-RECEIVERS, "WALKIE TALKIES"
All fully trinsistorised, battery operated with internal speaket and telescople serial. Hange varles
 FANTAVOX TR-1005-10 trandstors; size $7 \times 23 \times 1$ in. (each unit). Comp. with leather caise
and earphone.. AFCO 0810-10 trangetors; batt. level meters; size $8 \times 3 \times 1!\ln$. (cach unit). Comp. with earphone and whetst strap. PRICE 29 Gns. Post Free.
STANDARD SRK-22X-wize only is $\times 18$, \times lin. Comp. with earphone and wrist atrap. Price 40 Gns. Pomt Free.
MIDLAND 13-132B-16 translator high power madel. 2 switched channelm, output ind batt. Jevel
ARMSTRONG EOWPMENT ALI the latest models in stock-

M6 Sterco Multiplex Decoder.

SPECIAL PURCHASE-UHF/VHF/TV TUNERS

Well known British makers surpins stocks. Now available for the first time to the Home Constructor. Add 26 Post and Packing on each.
TRANSISTORISED UHF MINIATURE MODEL
Bhleldert metal rase, size only $31 \times 14 \times 3 \mathrm{n}$.
AF 130 transistorn. LASKY'S PRICE $39 / 6$.
VALVE UHF MODEL (illustrateal)
 TRANSISTORISED VHF MODEL 1
Miniature turret type fitted with 12 wets of volls and 3 Mulard AF'102 transletors. In motal care, size $4 \times 2 \times 3 \mathrm{im}$. LASKY'S PRICE $29 / 6$
TRANSISTORISED VHF MODEL 2

MAKER'S SURPLUS TELEVISION IF AMPLIFIERS
3s Mo/s. Contains a large number of conppouentr. IF tramslormers. resiators capaciors, etc, and the folowing ral es: $113 \times 3!\times 4 i n$. deep. Ideal for servicpmen and experimentene. Thim If amplifler whes used with the Valve motien IFH Toner (abuve)
provides suitable conrersion for B.B.C. 2 . No efrcuit avallable.
LASKY'S PRICE 39/6 Poot \& Parting 2/IG
SPECIAL PACKAGE BARGAIN OFFER
Free ntanding table cabinet, size $10 \pm \times 0 \times 5 i n$., thished in mediam Mahogany, Beale marked
21 to 68 (UHY band). Dhesigned to aceept the above IF Atoplifier with space tor : Valve UHF Tuner.
Special Package Offer: IF Amplifier, UHF

LASKY'S PACKAGE PRICE 89/6
Puxt and Pucking 6/f

MARTIN HI-FI AUDIOKITS

Using speciatly developed circuits, the very latest, trannfatora ind printed circuits-there kits are all KITY 1. \quad J-miang Matching Input Selector Tuilt

Pre-amplifier with yolume conimol
LASKY'S PRICE $2 / \% / 6$
3-Channel Mixer, with plug+in adaptors for individualiy thatehing each circuit. Adsptors $8 / 6$ enuth. Pre-ampliner with toaepolame control atanges. 10 and 3 Wati Main Amplifier 15 ohm version of Kit 5 .
Pourer supply for Kit 7
NIT is FM Head
UNIT 16 IF Amplifier Strip (FM).............
UNIT 17 Drive Aspembiy and Controln (Fi)

FULLY ENCAPSULATED MODULES
special function matulen-all one size $18 \times 1 \times 11 \mathrm{in}$. Complete with detabled function and inatala TYPE PA-1. Fublic aldress amp. for nee ath en theets.
microphones. 3Ω output imp. for ase with carbon, erseta or Dynamic
room. 30 ont put inone amp.-provides sufticicat. pawer to hill avernge
TYPE CO-1. Morac code
Y PAIC: 30 ICE 30\%
 30 to 240 beats per minute (lor use with 3Ω sperther) LASKY'S PRICE $22 / 6$
SINCLAIR SUPER MINAATURES We atorl the mompiete range.

LIMITED QUANTITY ONLY-EXPORT MODEL TV

 LASKY'S PRICE $£ 14.19 .6$ Cirr. a paching in U
A FEW AVAILABLE SLIGHTLY SHOP-SOILED, OTHERWISE PERFECT C9/19/6.

LASEY'S PRICE £3/19/6 LASKY'S PRICE £3/2/6 $\begin{array}{lll}\text { LASKY's PRICE } & \text { £5/12/6 } \\ \text { LASKY'S PRICE } \\ \text { £2/12/6 }\end{array}$ LASKY'S PRICE E2/12/6 $\begin{array}{lll}\text { LASKY'S PRICE } & \text { \&R/15/- } \\ \text { LASKY'S PRICE } & \text { £5/12 } 6\end{array}$ LASKY'S PRICE
LASKY'S PRICE
£5/7/6

LASEY'S PRICE £1'17/6
207 EDGWARE ROAD, W. 2.
Tel: PAD 3271118 EDGWARE ROAD, W.2. Tel: PAD 978933 TOTTENHAM CT. RD., W.1. Tel: MUS 2605
42 TOTTENHAM CT. ROAD, W.1. tel: Lan 2573 152/3 FLEET STREET, E.C.4. Tel: fLE 2833 Both the above branches Open all day Thursday. Close 1 p.m. Saturday ALL MAIL ORDERS TO 3-15 CAVELL STREET, E.f.

Naforiws LASKY'S FOR SPEEDY MAIL ORDER SERVICE

‘ELEGANT SEVEN MK. II

 Buy yourself an easy to build 7 transistor radio and save at least $£ 10$. Now you can build this superb 7 transistor superhet radio for under $\mathbf{4} 410 \mathrm{~s}$. Od. No one else can offer such a fantastic radio with so many de luxe star features.de luxe grey wooden cabinet size $12 \frac{1}{2} i n$. 8 tin $\times 3$ tin

* Horizontal easy to read tuning scale printed grey with black letters, size $11 \frac{1}{2} i n$. , $2 i n$
* High "Q" ferrite rod aerial.
* I.F. neutralization on each separate stage. \& D.C. coupled push pull output stage with separate A.C. negative feedback. * Room filling output 350 mW .
t Ready etched and drilled printed circuit
board back printed for foolproof construelion.

SPECIAL OFFER

* Fully comprehensive instructions and point-to-point wiring diagrams.
* Car aerial socket
* Fully tunable over medium and long wave 168-535 metres and $1,250-2,000$ metres.
* All components, ferrite rod and tuning assembly mount on printed board.
* Full after sales service.
* Parts list and circuit diagram 2s. Gd., free with parts. Price $£ 44 \mathrm{~s}$. Od plus $7 / 6$ postage and packing. .

For one month only, R. A. Tin. $\times 4 \mathrm{in} .9,000$ lines P.M. Speaker at no extra
charge. mains transformer, rectifier and smoothing condenser, A.C, mains 200/250 volts. Output 9 v .100 mA . 7s. 6 d . extra.

\square I nd
 -

'MAYFAIR' 5-Transistor TAPE RECORDER

 Capstan-driven, battery operated. $7 \frac{1}{2}$ and 3) i.p.s. Precision made. Push-button controll. High quality 2 tin. speaker. Push-pull circuit. Output: 400 mW . Frequencycinching circuit. Output: 400 mW . Frequency response: $200-7,000 \mathrm{kc} / \mathrm{s}$. Fast rewind up to I hour twin track playing time. Automatic erasing for re-recording. Dimensions; 8 in. X lin. x 3 yin. Weighs only 7lb. Takes Sin.
spools.
 ${ }^{5}$ pools.

 fin. \times fin., 2 tiepin holders.
starter and starter holder. P. \& P. $5 / 6$. $11 / 6$ Similar to above: 80W. Fluorescent Light
 starter and starter holder. P. \& P. . 6/6.17/6 Twin 40 W . Choke, instant start for two 2 ft . tubes. $17 / 6$, P. \& P. $5 / 6$.

CYLDON A.M./F.M. PERMEABILITY TUNER FOR ALL transistor operation
 facturer. A.M.-1.F. $470 \mathrm{kc} / \mathrm{s}$. F.M.-1.F. 10.7 Mc / s. A.M. coverage from $1,620 \mathrm{kc} / \mathrm{s}-525 \mathrm{kc} / \mathrm{s}$. F.M. coverage $108 \mathrm{Mc} / \mathrm{s}-88 \mathrm{Mc} / \mathrm{s}$. Circuit diagram 2/6. FREE with Tuner. Inst, ind, 3rd A.M.-1.F.s, 1 st, 2nd, 3rd and th F.M.-1.F.s. V.H.F. Csc. choke A.M.-F. trap. All the above are the R.F. end of an A.M./F.M. receiver car
radio, etc. radio, etc.

BSR MONARCH UA16 With FULL-FI HEAD

4-speed, plays 10 records, 12 in . 10 in . or 7 in . at $16,33,45$ or 78 r.p.m. Intermixes 7 in ., 10 in . and 12 in . records of the same speed. Has manual play position; colour, brown. Dimensions: $12 \frac{1}{2} \times 10 \frac{3}{2} \mathrm{in}$. Space required above baseboard $4 \frac{3}{2} \mathrm{in}$, , below
 turn-over crystal head.
Complete Amplifier Kit comprising E.C.L, 82 Mains transformer, metal rectifier, volume control, smoothing condenser, metal chassis, speaker, etc.
To the purchasers of the above changer, only $19 / 6$ plus $3 /-\mathrm{P}$. \& P.

CYLDON
 U.H.F. TUNER

Complete with PC. 88 and PC. 86 valves. Full variable tuning. New and unused. Size $4 \frac{1}{2} \mathrm{in} . \times 5 \frac{1}{2} \mathrm{in}$. $\begin{array}{ll}\text { x } 1 \frac{1}{2} \text { in. Com= } \\ \text { plate with cir- }\end{array} \quad 35 /=$ cult diagram Plus 3/6 P.\& P

MAGNAVOX COLLARD
Set of three Tape Deck Motors 240 V. A.C
P. \& P. 6/\%.

MULTIPLEX DECODER For receiving STEREO FM

Now is your chance to benefit in full from the new B.B.C. stereo transmissions with our Multiplex Decoder. Design features: Highly efficient Mullard vinkor pot cores. Two semi conductor diodes. Double purpose valve. Printed circuit type construction high input impedance. Specification: Cross talk minus 26 db . at I kc/s. Input requirements 0.5-1.5 RMS. Stability plus or minus 0.1\%. Voltage requirements H.T. $190-250$ volts. D.C. as 5 mA . heaters 6.3 volts. A.C. at 300 mA . Self powered unit shortly available, price to be announced. Size $5 \frac{1}{4} \mathrm{in}$. $\times 3 \frac{1}{2} \mathrm{in}$. X lin. Fully built and rested.

R\&TV FIRST QUALITY PVC TAPE
$5 \frac{1}{\mathrm{in}} \mathrm{in}$ Std. 850 ft . . $9 / \mathrm{F} \quad 5 \mathrm{in}$. LiP. 850 ft. in. Std. $1,200 \mathrm{fe}$. . $11 / 6$ 3 in. T.P. 800 ft. . $10 / 6$ 3 in . L.P. $240 \mathrm{ft} . . \mathrm{in}^{4 /-} \quad 5 \mathrm{in}$. T.P. $1,800 \mathrm{ft} . . .25 / 6$

 P. \&P. on each $1 / 6,4$ or more post free.

Fully Transistorised REV. COUNTER

Can be used for 4 or 6 cyl . engines. Would cost at lease $£ 8$ new but you can make one at a fraction of the price! This kit makes a modern efficient rev, counter-essential to your engine's welfare: contains moving coil movement and all parts including transistors and a circuit diagram Max. reading 8,000 rap m For 12 volt operation negative or positive earth.
Send for your kit today. \quad Price plus $2 / 6$ P. \& P. Send for your kit today. Price plus $2 / 6$ P. \& P.

Type E MOTOR
SILICON RECTIFIERS Small A.C. mains motor $230 / 250$ volts complete with gear- $15 /=$ P. \& P. 250 v. P.I.V. 750 milliamps.

Six for $7 / 6$

3 TO 4 WATT AMPLIFIER KIT

Comprising chassis 8 tin. $\times 2 \mathrm{tin} . \times$ lin. Double wound mains transformer, output transformer. Volume and tone controls, resistors, condensers, etc. 6 V 6 , ECC81 and metal rectifier. Circuit $1 / 6$, free with kit. $29 / 6$ plus $5 / 6$ P. \& P. The above Amplifier built and tested, $10 / 6$ extra.

TRANSISTORISED SIGNAL GENERATOR
Size $5 \frac{1}{\frac{1}{2} \mathrm{in} .} \times 3 \frac{1}{4} \mathrm{in} . \times 1 \frac{1}{2} \mathrm{in}$. For 1.F. and R.F. alignment and A.F: output. $700 \mathrm{e} / \mathrm{s}$, frequency coverage $460 \mathrm{Kc} / \mathrm{s}$ to $2 \mathrm{Mc} / \mathrm{s}$. in switched frequencies. Ideal for align-
mene co our Elegant Seven and Musette. Built and tested. $39 / 6$. P. \& P. $3 / 6$.

POWER SUPPLY KIT
A.C. Mains 200/250 v.

Incorporating " C " core type mains frantiormer, full wave metal rectifiction and smoothing condenser'.
Smooth our put $250 \quad 250 \mathrm{~mA}$ and Smooth output $250 \mathrm{v} ., 250 \mathrm{~mA}$ and 6.3 v. 4 amp. for Heaters.
$25 /-\quad$ P. \& P. $9 / 6$.

three important titles from

ILIFFE BOOKS

foundations of wireless

M. G. SCROGGIE, B.Sc., M.I.E.E. seventh edition This standard work covers the whole basic theory and, starting from the most elementary principles and assuming no previous knowledge on the reader's part, deals with receivers, transmitters, amplification, valves, transistors, aerials, power supplies and transmission lines. The treatment of frequency changers has been brought Into line with modern practice, while common-grid and cascode v.h.f. amplifiers, e.h.t. generators and transistor d.c. voltage raisers are also covered. 388 pp . illus. 21 s net 22 s 5 d by post.

television explained

W. E. MILLER, M.A. (Cantab.), M.I.E.R.E. Revised by Spreadbury, M.I.E.R.E., Editor, Electrical and Trader. Presents a step-by-step survey of the circuits of modern television receivers and aerial systems for multi-channel reception, assuming a knowledge of the ordinary sound radio receiver, but no previous knowledge of television circuits. it is non-mathematical, written in simple language, and comprehensively illustrated by many diagrams and photographs.
192 pp. illus. 12 s 6 d net $13 \mathrm{~s} 6 d$ by post.

Principles and Practice. A B.B.C. Engineering training manual. S. W. Amos. B.Sc. (Hons.), A.M.I.E.E. and D. C. Birkinshaw, M.B.E., M.A., M.I.E.E.
second edition Fundamentals, camera tubes, television optics. electron optics. Vol. I 297 pp. illus. 45 s net 46 s 3 d by post Video frequency amplification. Vol. 2 270 pp. illus. 45 s net 46 s 3 d by post. Waveform Generation. Vol. 3 224 pp. illus. 45 s net 46 s 3 d by post. General circuit techniques. Vol. 4 $278 p$. illus. 35 s net 36 s 3 d by post.

ILIFFE BOOKS LTD. DORSET HOUSE, STAMFORD STREET, S.E.I
WW-153 FOR FURTHER DETAILS.

EDDYSTONE EC10

ALL TRANSISTOR RECEIVER
55 to $30 \mathrm{mc} / \mathrm{s}$ continuous
Send for full specification
H.P. Dep. $\mathbf{1 6} \mathbf{6} 12$ mths (a) $\mathbf{E 2 - 1 7 - 4}$ (Tot H.P. ©50-8-0) $\mathbf{2 4}$ Mths Available Sensitivity 5 Microvolts for 15 dB S/N Ratio, lmage
I.F. Breakthrough 85 dB down Range $1-4,65 \mathrm{~dB}$ down Range 5 SOUTH COAST EDDYSTONE CENTRE

29 BEACH RD., LITTLEHAMPTON, SUSSEX. TEI: 877/8
EXPORT WELCOMED - FULL RANGE IN STOCK - COMPONENTS

WW-154 FOR FURTHER DETAILS.

MARCONI CANADIAN TRANSMITTER RECEIVER GROUND STATION No. 52

PRICE ONLY Above items also available separately (less 27/10/-. Carr. carrier). No. 52 Receiver only E9/19/6. $\begin{array}{llll}\text { E2/10/- (main: Carr. 20/\%. No. } 52 \text { Transmitter only E9/10/. } \\ \text { Carr, 20/, } & \text { No. } 52 \text { Power Unit only } 49 .\end{array}$ Carr. 201-,

NATIONAL HRO SENIOR

 RECEIVERS ST MODELIn excellent tested condition. Available with 9 coils coverage $50 \mathrm{kc} / \mathrm{s}$. to $30 \mathrm{Mc} / \mathrm{s}$.
complete with PSU, $£ 31 / 10 /$. Carr. $30 / \mathrm{l}$.

RCA AR88 RECEIVERS

Freq. $540 \mathrm{ke} / \mathrm{s} .-32 \mathrm{Mc} / \mathrm{s} .6$ waveband, mechanical bandspread with logging scale, auto. and manual vol. control, and Noise Limiter, BFO, Pitch and Var . HF Tone Controls. FR and AF Gain, Var. Selectivity with crystal filter. Used models. Fully tested MODEL LF, 35 . Carr. 22 on each.

R. 1475 RECEIVERS (TYPE 88)

Highly stable, especially accurate, calibrated Marconi design R.A.F. in $609 \mathrm{kc} / \mathrm{s}$. be reset by special panel trimmer $615,3-6 Q 7,686, Y 63$ cuning indicator and VRI50/30 voltage regulator. Two-stage I,F, with 8 tuned circuits. Xtal controlled B.F.O., 4 position selectivity with audio filters for narrow bandwidth. C.W. Fast and slow A.V.C. High and low suppression. A plug-in unit with additional mixer provides a "listening through "guard channel of either 2.4 or $47.5 \mathrm{Mc} / \mathrm{s}$. Receiver $16 \frac{1}{2} \times 9 \times$ llim. Very good condition. PRICE $\varepsilon 9 / 19 / 6$. Carr. $15 / 6$.

TELESCOPIC AERIAL MASTS
Tubular steel copperised spray finish, ring cam locking on each section provides for full or any height required. Suitable all fixings and base locations. Bottom section $1 \frac{13}{2} \mathrm{in}$. diameter, 20 ff . (4 seetion). Closed 5ft. 9in. Weighe 16 1b, 55/-. Carr. $5 /-$; 34 ft . (6 section). Closed 6 ft. 6 in. Weight 2016 ., 75/.. Carr. 5/-. Further height 'by adding 3-4ft. Whip sections, 13/6. Carr. 4/-. Special price for quantities.

ALL 19 SETS AND PARTS AVAILABLE
S.A.E, all enquiries.

List $1 / 0$
(Credit terms available, U.K. only)
A. J. THOMPSON
(DEPT.
"EILING LODGE," CODICOTE, HITCHIN, HERTS.
Tel. Codicote 242

WW-155 FOR FURTHER DETAILS.

BENTLEY ACOUSTIC CORPORATION LTD.

38 CHALCOT ROAD, CHALK FARM, LONDON, N.W. 1 THE VALVE SPECIALISTS

Telephone PRIMROSE 9090 47 NORFOLK ROAD, LITTLEHAMPTON, SUSSEX. Litrlehampton 2043 Please forward all mail orders to Littlehampton ALL GOODS LISTED BELOW IN STOCK

AERO SERVIGES LTD

PEN RECORDERS

Flliot purtable recording milliam－ As D．C．recorder： 1 mA ．FWD． As D．C．recorder： $1 \mathrm{mA}$. ．F\＄1
Ilovement realntance $1: 200 \mathrm{R}$ ． As A．C．current or voltage recorder 1800 a．Bensitivity 1 mA ．A．C． FSD． S teceibel meter：source impedance 600 n －lange +5 to -10 dB ． Trequency rebponse 50 efs to Chart drive： $\mathbf{3 3 0}$ v．A．C．at lin．and 6 im ，per hour，Movemrent Is itted with＂high＂and＂blow＂ajarm contacts which can be set for any value of the current．
strip chart 3 3in．wic Strip chatt $3!$ in．Wide．Curvilinear
trace．PrICl Packing ：udd carriage 10／．

RECORD PORTABLE RECORDING MILLIAMMETERS
Thene are simblar to the above but are somewhat matler and lighter，and D．O．resistance of the suovements is 400Ω ．Other
details as abmere．PRTCEE． Packiug abl cauthage lof－．

THOMSON VARLEY
POTENTIAL DIVIDERS
Non－insturtise t－dexade notuthit divider whth total resiatance of 70，000 ．Mindiuthn imput voltage $\$ 00 \mathrm{v}$ ．Built－in galvano－ meter $1 \mu \mathrm{~A}$ ．r＇s． D ．$£ 45$ ．

TYPE 108－1T MULTIMETER
24－rauge preclsfon portable meter ．000 o．p．v．D．C．Volts $2.5-10 \cdot 5 \cdot 0$－250． $500-2500$ V．A．C．Volts： $10-50-100-250$ $310-2500$ V．D．C．current $0.5 \cdot 5-50-500$ nA．Resistame：：$\quad, 000-20,000$ ohbus－2 -20 megolina．Power output calibra－ tion for 600 oltws lime，$£ 5 / 5 /-$ 7／6－Dinamsious： $78 \mathrm{in} . \times 6 \mathrm{in}$
3 inn．Weight $3!1 \mathrm{~b}$ ．

SPECIAL OFFER OF METERS

（Sulaject to remuining unsold）．
$200 \mu \mathrm{~A}$ D．C．M．C． 2 in ，round flange mounted．
 $500 \mu \mathrm{~A}$ D．C．M．C． 1 in ，round tush，nut Bxing，satell 0.1
$500 \mu \mathrm{~A}$ D．C．M．C． 2 in ．round fiush，nut fixing，sealed $0-5$ 500－0．500 $\mu \mathrm{A}$ D．C．M．C． 3 In．round thang mounted， ecaled sol－0－a\％，becond hand
1 mA ．D．C．M．C． 14 m ．round husi，pruel thounted
1 mA ．D．C．M．C．2in．round dush．sealed，zraled $0 / 3 / 30$／ 300
$10-0-10 \mathrm{~mA}$ ．D．C．M．C． 2_{4}^{2} Ia，round hiage mounted 30 mA ．D．C．M．C．${ }^{2}$ in．round flatige mounted
60 mA. D．C．M．C．
 75 mA ．D．C．SIC． $1 / \mathrm{in}$ ，round flush，panel monantel
100 mA ．D．C．M．C．Ifln．round tlush，pauel mounted 100 mA ．D．C．M．C． 1 in．roumd fusk，patimel 100 mA ．D．C．M．C． M / in ．round flange mounted 200 mA ．D．C．M．C． 2 in ，round tlange mounted 500 mA ．D．C．M．C． 2 in ．round flange mounted 500 maA ．DC．M．C．2； 1 ln ．round hange inaunted 500 mA ．R．F．Thernocouple 2 in．round plug－in 25 amps．D．C．M．C． $3!\mathrm{in}$ ，routsl projecting 100 anps．A．C．Milin．round fush flush phach mounted tion indicator，suppreseel zero．reading from 4.5 endi－
 20 r ．D．C．M．C． $2 \mathrm{Cli}$.8 square fange monnted 300 v．A．C．Rectifler Type，„！！a．nount thange nounted 15

＂ELECTRON＂OUTDOOR AERIAL

3 strong tubular light alluy ycutlons 3 ft ．long each on an Insulated astial base nited with wallmountig brucket．Com－
plete with down lead．PRICE，brand new，15／＝P．1＇．©／．

[^20]RADIO FREQUENCY THERMOCOUPLE METERS seated 0 to 1 AMP．bisim．ronned projectligg Packing and pustage $2 / 6$ per order．

POWER UNITS TYPE 234

1910 ，Fack maunted tully amoothed and fused for 230 v．A．C． imput．11．T．ontput arijuatable from $180 \mathrm{\nabla}$ ．to 270 v ．at 80 mA
 winding．L．T．output B． B ．A．C．Hit 4 ampus．P＇tted with M． 1
 tested．in rood wondithin
DITTO－model wltholt
pring madel whinit meter
23196
£3 10
Piacking aud carriage $35 /$

HEADPHONES

OLRR5，Low lmpedance，balancem mrmature．Earpieces can be uved as mund powered Microphone， $10 /$－
CHIE，High lmpediuce（2000Q per linet）， 15 －
No． 10 Assembly．
Moving Coll Hemiphones with moving coil Hand Microphone fitted with press－to－talk switeh．Rubber earpuals．Cord terninated with army eype
Low hupedance．Brand new． $20 /-\mathrm{Fen}$ ． Suall quautley savalable of second tand assembtles，checked in perfect order． $8 / 6$ ea．P．\＆P． $8 / 6$ per set．

MAGNETRONS				
4J30 ．．．．700／－	CV370．．	250／－	CV5117	200／－
4J53 ．．．250／－	Cal 500		JPTH－01	
5id $26 . . .500 i^{\prime}=$	Cv2est	160\％${ }^{\text {a }}$	M．548	1200\％
cvit6 ．．160，	CV0031	250\％－	QK338	1200\％
KLYSTRONS				
2Кざ5 ．．．．130／－	7204．	80\％	BL803	500／－
$2 \mathrm{K28}$ ．．．180／－	5721－	1000／－	C．1131	80／＝
2K41 ．．．． $400{ }^{\text {－}}$	${ }^{51848}$	500／－	CV：28	200＇－
6 BML ．．280\％－	6116	600\％	cve37	$80-$
	6470 ${ }^{\text {BLE }}$（	1500% 400%	Var20］	700／－

Voltuge		ZENER DIODES	
		Type	Power
3.9 V	$\pm .5 \%$	ZEA301	300 mW
4.25	$\pm 10 \%$	VR425B	0.95 W
4.30	士 15\％	OAzzos	260 mW
4.7	$\pm 5 \%$	OAY850	260 mW
4.7	士 10\％	OA\％ 209	260 mW
4.76	$\pm 8 \%$	VR4isb	3.250
5.1	$\pm 5 \%$	OAzal	2600 mW
5.6	\pm 5\％	OAV242	230 mW
5.6	$\pm 5 \%$	$0(\% \% 202$	2300 mW
5.76	$\pm 6 \%$	V125ブロ	2.45 W
6．2	$\pm 5 \%$	OAZz203	2460 mw
6.2	$\pm 15 \%$	OAZ210	260 mw
6.8	$\pm 5 \%$	OATz20	2801 mW
6.8	\pm 5\％	OAZ224	7.0 Watts
7.0	$\pm 8 \%$	Vk7A	2.25 W
7.5	\pm 5\％	OA7，205	2400 mW
7.5	$\pm 15 \%$	OAz211	280 mW
8.2	$\pm 5 \%$	OAZ208	2730 mW
9.1	土 5%	OAzz207	＊ 60 mW
9.1	$\pm 15 \%$	OAZ：12	080 mm
11.0 V	$\pm 5 \%$	vR11A	5.23 W
12.0 V	$\pm 5 \%$	1 8448	300 mw
12.0 V	$\pm 15 \%$	OAZ213	260 mW
13.0 V	± 10	V1213A	5.25 W
18.0 V	$\pm 10 \%$	HzY\％0	400 mW
20.0 V	$\pm 5 \%$	7NB？O	1.6 W
b0．0	$\pm 6 \%$	Hz1 11	200 mW
80.0 V	士 1 \％\％	BZY18	250 mW
TEXAS SILICON FULL－WAVE BRIDGE RECTIFIERS			

1 R201F10 100 p．i．v． 2 nnps．．dimensions $1.4 \times 1.4 \times .31$ s． $25 /-$ 1 Bloosilo，to p．i．v． 10 atmps．，dimerusions $2 \dot{2} \times 2!\times 1 \mathrm{fn}$ ． $85 /-$ Postage $1 / 8 \mathrm{prer}$ rectlier

GERMANIUM POINT CONTACT DIODES

1N31A	4／－	016：14	1／6	Da70	21.
1N38A	$41-$	GEX23	1／6	OA79	2／3
1 Nist	4／6	GEX 44	1／6	OA81	21－
1N72	4／－	GEX ${ }^{\text {d }}$	2／－	OAB6	$3 / 6$
1N81	$41-$	EPG6008	218	OAse	2／－
CG4E	2／－	OA5	$4 / 6$	0 － 91	$2 / 3$
CGIos	1／6	OA6	4．	0 O91	2／3
Cal2⿺	2／－	oa7	41	OA95	3\％
OC61 H	3i－	OA17	$4 / 6$	8917G	2／－

$$
\begin{aligned}
& \text { OF VALVES KLYRTRONS, ETC } \\
& \text { AND KNF } 30 / \text { PAD FOR EACH SURHRCT } \\
& \begin{array}{l}
\text { AND 2KV. } \\
\text { TO TVAT. }
\end{array}
\end{aligned}
$$

DECADE COUNTER TUBES
GCIOB－scale－ot－ten counter（1．0．）
GC101）Eeale－of－ten counter for single pulse（1．0．）
tion（1．O．）．． O810D bt －directionat 10 －wiy sciector tube（B1ab） GS10E bi－directional 10．way selector tube（B12E） G810H bi－directional 10 －way selector tube with routing guides（B17E）

S．T．C．SILICON JUNCTION 3 AMP．HALF WAVE POWER RECTIFIERS

R88320， 380 p p．iv．	51－	RS860， 840 p ．i．v．	8／6
Resseo ter p．t．v．	61^{-}	R	\％
H8340， 3 A\％p．i．s．	71	R	－
1ciss $50,700 \mathrm{p}$ p．iv．	$7 / 6$	118380，1120 p．i．v．	10\％

MISCELLANEOUS SILICON HALF．WAVE POWER RECTIFIERS

180012001 p．i．v．， 750 ma．Wire Ended
$18004409 \mathrm{p}, \mathrm{l}, \mathrm{v}$ ． 750 mA ．Wire Ended
18113 t00 p．i．v． 400 mA ．Wire Ended
18115600 p．i．v．， 400 mA ．Wire Ended

BYZts ：00 p．i．v．，if amps．Stud Mounted
BY゙ZIs，reverserl polarity version of BYZis
D1v006， 400 pui．v．， 500 mA ．Wire Bnded
DDOE58 800 p p．i．v．， 500 mA ．Wire Knded
Dnget 406 p．i．v．． 1 aup．Wire Ended
OA210 400 p．iv．， 000 mA ．Whre Ended
OA211 800 pi．v．， 400 mA ．Wite Binded
KistuAf 50 paiv．， 500 mA ．Wire Ended
Restiar 800 p．1．v． 100 mA ．Wire Ended REI7AFE tino p．i．v．， 100 mA ．Wire Ended
R89RAF 800 p．i．v．， 100 mA ．Wire Finded
RRe230AF 900 p．i．v．， 750 mA ．Wire Ender
8J1urd 100 p．i．v．． 2.4 amps，Stuil Muant

MICROWAVE DIODES

3，000	41－	10BR 12，000 mc／s．
1 Ne1 $1 \mathrm{~s} 3,00 \mathrm{mmc} / \mathrm{s}$ ，	6／－	CV101 6，000 me／s．
$1.12389 .375 \mathrm{mc} / \mathrm{m}$	4.	CV102 6，000 mc／a
1 N 23 B ¢， $376 \mathrm{me} / 8$.	6\％－	CV111 12.000 rac／e．
1NHBLR $9,37 \mathrm{mb} \mathrm{mc} / \mathrm{s}$	20／－	CV112 12，000 mc／u．
1825 1.000 me／s．	15／－	CV291 6，000 mac／e．
$1 \mathrm{~N} 2883.060 \mathrm{mc} / \mathrm{s}$ ．	20／－	CV22sed 12，000 mc／s．
CS2A $4,000 \mathrm{~mm} / \mathrm{s}$ ．	51－	CV2958 $12,000 \mathrm{me} / \mathrm{m}$ ．
Cos3a 10，000 me／s．	12／6	CV＇236 12，000 me／s．
C83B 12，000 me／s．	14\％	SIME 12，000 mc／e．
C8413 12，000 me／r．		S1M5 12，000 me／s
C810B 9．378 mefo．	70	VX3136 34，860 mim

CATHODE RAY TUBES

 510 V．F．H．T．（BieB）
31.7 sid．yeikw race，long persistence ocreen，E．H．T SGP1．3in．：green trace，nedium persisterace，E．W．T． 1，500 V．（URMM13）
 1,500 V．E．H．T．（ $\mathrm{B12A}$ ） GP4 white trace， 4 in ．，flat face inedlum persistene Whth P．D．A．； 4,000 V．E．H．T．（B12F）．．．．．．．．．．．．． P．D．A．：3，boo V．E．H．T．（B14A）
$5 \mathrm{BP}^{1}$ ．bin．，green trace，medinm persistezce，mas． E．H．T． 2000 V．（URM11）
5 BVPI sis．．green trace，flat face，medium perstotence，
F．D．A．，max．E．H．T．8，000 V．（B12F）…．．．．．．．．．．．
P．D．A．4，060 V．E．H．T．（B14A）．．．．．．．．．．．．．．．．．．．．

ธUP7，bin yellow trace loug perslsteace sercen，
MAGNETIC／DEFLECTION，electrostatic focusping． 7BP7，7in．S．T．（1314A）
MAGNETIC DEFLECTION AND FOCUSSING， $89,000 \mathrm{Jm}$ ．Huluble bearm，blue trace，flat face，short

 DG7－5．stin，green trwe，thedium pcrsistence， 800 V． E．H．T．（ 1396 ）
E4200／C／7，2tin．green trike，long yellow atter glow． E．H．T． 800 ，（131213）
09D 41 n ．twin besm，kreen trace，medium pervistence． 09 J is 04D but blue trace，short persistence（Biais） VCR188， 31 in ．，green trace．medium pergistence．
 Bases：U8M11 6／6：B12A 3／－；B12B $2 / 6$ ；B12D $3 / 6$

	TRANSISTORS														
0 OCl	25/	OC70	5/-	OC122	14/-	A0107	10\%	AFIL4	8/-	A8Y26	$6 / 6$	Matiol	816	2N1756	15/-
0 C 23	151.	0 C 71	5/-	OC139	81-	AC127	$7 / 6$	AF115	7/-	A8Y28	$6 / 6$	MAT120	710	2N21038	20/
0024	$17 / 6$	OC72	$51-$	OC140	101-	AO128	8/	AF116	7/-	A8Z20	$7 / 6$	MAT121	8/6	28002	20\%
OC25	$9 / 6$	OC73	9/-	OC141	$22 / 6$	AC176	716	AF117	8/-	A8Z21	15/-	8B240	18/	28003	20 V
00\%	8\%-	OC75	61-	OC170	8/-	ACY17	8/6	AP118	14/-	GET103	5/6	T1166	6/-	29004	201-
OC28	$15 / 6$	OC76	61-	0 Cl 171	6/-	ACY 18	5/6	AF124	8\%	GET113	5/4	T84	5/-	28006	50%
0 C 29	$14 / 8$	0077	81-	OC200	$7 / 6$	ACY19	$6 / 6$	AF125	$8 / 6$	GET114	4/-	V30/30P	20\%-	28006	201-
$0 \mathrm{C35}$	12/6	0 O 78	5/-	OC201	$17 / 6$	AGY20	51-	AF126	8/-	GET115	$8 / 6$	2N410	$3 / 6$	28012	140/-
0 C 42	5\%-	0C78D	51	OC202	13/6	ACY21	6/.	AF127	8/-	GET116	18/.	2N412	3/6	28012A	100\%
$0 \mathrm{C43}$	8/-	0c810	$5{ }^{5}$	OC204	10/6	ADP140	16/-	AFY10	22/6	GET870	9/6	2N697	13/-	28018	60\%-
OCAS	5/-	$0 \mathrm{C83}$	5/-	OC205	15/-	AD149	$161-$	AFZ11	17/-	GET880	12/-	2N1132	37/-	28103	25/m
uc4s	416	QC84	5/	OC20]	22/6	AF102	181.	AFZ12	12/6	JTX4A	6/6	2N1304	6/-	28104	321-

Our new catalogue of valves, tubes and semiconductors is now ready. Apart from listing prices of several shousand types we keep in stock it is a work of reference providing short specifications of semiconductors and special tubes. Please send. foolscap S.A.E. (6d. stamp please).

0 A 2 C	5D21 701-	$6 \mathrm{C4} \quad 2 / 6$	6817
0A3 10-	5R4GY 9/-	BCS	6837 7/-
OB2 61 -	5U4ab 6/6	${ }_{\text {acsa }}$	68K7 61-
OB3 8/-	5488	${ }^{6 C 6}$ 4)-	6SL7at 6/-
$0 \mathrm{C3}$ 6-	5V4G 816	$6 \mathrm{C8O}$	68N7C
013 6\%-	5W4日T	6C9 11/-	6897
1A3 4/-	5Y3GT 5/-	$6 \mathrm{C31}$ 12-	68 R 7 \%
1 AJGT 5 \%-	5Z3 7/6	$6 \mathrm{CB6}$ 5\%	6877 6/-
1A7GT 8/-	5740 71-	${ }^{6 C D 60}$	678 6/6
1AD4 14/-	8/3012 10/-	17/-	6T8A
1axa 10\%-	$6 \mathrm{~A} 312 /-$	aca $10-$	6v6at 6/6
183GT 8/-	647 101-	ach6	
$1 \mathrm{B24} 40 \mathrm{l}$	6A8 81-	${ }^{\text {bCL }} 8$	6x0GT 5/6
1B33A 254	6AB4 8/6	6CU6 11/-	6Y60
1869 60/	6 AB7 4/-	GCW4 12/-	786
$1 \mathrm{1R63A}$ 70/-	gacso	${ }^{\text {BCY } 5}$	786
1 CbGT	10\%-	6cy7 11	787
1Das 7/6	6aC7 4\%	6D3 7/6	$7 \mathrm{C} 511 /$
11108	6AD4 15\%-	6D4 15/-	$7 \mathrm{C6}$ 6/6
175	6AF4 $101-$	BD6	70781
1G4GT 8/-	6arbg 11/	$6 \mathrm{D8G}$ 10\%	$7{ }^{74} 81-$
16607 \%-	6acas $2 / 6$	6DC8 12/-	77.4 61-
1H49. 6/-	bagr b/-	8DK6 8/-	$8{ }^{12} 2$ - 3/6
1H5GT	6aH6 10\%	6DQ66 11	9BW
1148	6AJ5	6D84 15/-	$9{ }^{17}$
$12617 / 6$	$6 \mathrm{AK5} 510$	${ }^{\text {BESG }}$	10 Cl 7/
1N5GT 8/-	6AE7 6/-	GEVE 12	$100213 /$
INGG 13/-	6ALS 3/-	$6{ }^{61} 141-$	10D1
1950\%	6AM5 2/6	6F4 30\%	10F1
1 H 4	6amb	AP5G	10 F 3
1 R 5	6ans $17 / 6$	0 FBG	10FY 10\%
184	6an6 15/-	6 F 7 5 -	10 F 18 9/-
185 4/6	6ans 10/-	6F8G	10L1 7/6
1 T 4	6as4 5/-	8 F 11	$10 \mathrm{P13}$ 12/-
1754	6Ags - $5 / 6$	8P12	10P14 13-
$1 \mathrm{U}_{4} 5$ -	6ars	6F13 6/6	10 Y 15/-
10.1	6ar6	8 P 14	1108
1 V 5/-	6AR8 $17 / 6$	6 F15 11	1105
1v2 10/-	6485 5/-	$6 \mathrm{~F}^{17}$	11E2
1×28	6As6 6i-	8P18 716	11 Ez 42/-
1zi 35/-	6As79 151-	6 FP 20 l 10 -	12AC6
2 A 315	${ }^{\text {batb }} 46$	${ }^{62 \mathrm{~F} 22} 683$	${ }_{12406}$
9A815 80/-	6AU40T	${ }^{6823} 1010$	
2028A 71-	6ausgt	${ }^{6+24} 1818 /$	12aH7GT
23034	$201-$	${ }^{6 \times 25} 121 /$	-
${ }^{2} \mathrm{CH99}$ 8 80 -	${ }^{64 U 6}$ 6aU8 ${ }^{\text {5/6 }}$	${ }_{6}^{6 \times 28} 810 / 6$	12ALS
2C40 65/-	6AU8	${ }_{6732}$	12A05
$2 \mathrm{C42}$ 251-	6AV5G	${ }^{6 H 1} \quad 71-$	12AT6
$2{ }^{2464} 30 /$	11-	6H6 2/-	12AT7
$2 \mathrm{C50} 30 /-$	6av6 5/-	$6{ }^{4} 4$	12AU6
${ }^{2} \mathrm{C} 51$	6AWE		12av7 ${ }^{12 / 8}$
	6ax4 ${ }^{12 / 2 / 6}$		$\begin{array}{ll}\text { 12AV6 } & 5 / 6 \\ 12 \mathrm{AV7} & 8 /-\end{array}$
21021		657 91-	12AW6 $20 /-$
2E24 40/-	baxbet	8J8G 10/-	12AX7 6/-
2E\% $22 / 6$	$12 / 6$	6K69 6/-	12av7 10/-
2×24	${ }^{684 \mathrm{Ca}}$ 17/-	${ }_{6 K 8}^{61}$	1284A $9 /-$
3 A 4	${ }_{688} 687$	${ }^{8 K 8} 8$	12BA6 ${ }^{\text {12BES }}$
3 AS	${ }^{688}$	${ }^{6 \mathrm{KK}} 8 \mathrm{G}$ 4/-	128E6 516
3A8GT 8/-	${ }_{6888}^{6889}$ 2/6	${ }_{6 K 23}^{776}$	
		${ }_{6 \mathrm{LL}}^{6 \mathrm{~L}}$ 254\%-	${ }_{12 \mathrm{c}}^{12 \mathrm{BY7}} 10 / 6$
${ }_{3}^{3824} 88$.	$\begin{array}{ll}\text { 68A7 } \\ 68 \mathrm{BL} & 15 / 6\end{array}$		$\begin{array}{ll}1288 \\ 12 \mathrm{E} 1 & 4 / 6 \\ 201\end{array}$
$\begin{array}{ll}38288 \\ 3 \mathrm{~B} 29 & 40 /- \\ 40 /\end{array}$			1255 CT 3/-
sex 10010	$6 \mathrm{BF7}$ 15/-	6L6WGB	1217at 76
100/-	6вama $1 \mathrm{k} /$ -	17/6	
${ }_{3}^{3129}$ 60/-	6BH6 776		${ }_{12 \mathrm{~K}}^{12 \mathrm{~K} 7 \mathrm{CT}} 8$
$\begin{aligned} & 3 Q 4 \\ & 3 Q G T \\ & \hline 16 / 6 \end{aligned}$		6L12 51	${ }^{12 \mathrm{~K}}$ 127GT $5 / 6$
$3 \mathrm{B4}$ 5/-	6BK7a 0 -	6L18	128A7
$4{ }^{4}$ 6/-	6BL7at	${ }^{\text {8L3 }}$	128C7 4/-
4-85A 80/-		6LD20	128 Fs
4-400A	6BNG $7 / 6$	6N7	
320/-	6BQ6 11/-	${ }^{681}$ 11/-	$128 \mathrm{F7}$ 5/-
${ }_{4}^{41332} 880 / 4$	6BQ7A 7/-	${ }^{6125} 518$ -	12867 5/-
	$6 \mathrm{BR7}$ 11/-	${ }^{6 \times 28} 121816$	12847 4/-
4THA 8i-	68R8 5/-	60561510	12837 4/-
4 TSP 8/-	$6 \mathrm{B87} 17 \%$	607 \%	128K7
$4 \times 150 \mathrm{~A}$	68W6 7\%-	$6 \mathrm{6R} 7$ 81-	128L7GT
100;-	6BW7 10/-	${ }_{6887}^{684} 7$	
OB	6 BX 7 GT	${ }^{68 C 7}$ 9\%-	123N7C
120/-	15/-	69F5 8/-	16
2M	$6 \mathrm{Bz6}$ 6-	6857 7\%	128Q7 8/-
351-	6B27 11/-	68	12887 5/-

M

 ल न 品

7% $\begin{array}{ll}\text { N78 } & 16 / 8\end{array}$

ERSIN

in handy dispensers for easy use

The most useful aid to soldering produced for many years. The solder wire is ingeniously coiled within the dispenser for easy withdrawal, and at the same time keeping it tangle-free. Dispensers keep solder free from dirt and grease and often act as a third hand whilst soldering.

SIZE 5

Contains 12 ft . of $18 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. Savbit Alloy in a continuous coil. For general electrical work. 2/6 each (subject)

NEW! SIZE 15

Contains 21 ft . coil of $60 / 40$ Alloy, 22 s.w.g. Ideal for small components, transistors, diodes, etc. Bubble packed. 3/- each (subject)

Bib

Essential Accessories

MODEL 8 BIB WIRE STRIPPER \& CUTTER

Strips insulation without nicking wire. Cuts wire cleanly. Splits plastic twin flex. 8 gauge selector. Plastic covered handles. 8/6 each (subject)

BIB PROFESSIONAL RECORDING TAPE SPLICER

For quick and accurate editing.
Precision made, chrome plated, complete with razor cutter. 18/6 each (subject)

There is a full range of other special pre-packed Ersin Multicore Solder products and Bib Accessories available.
Details from your dealer or write to:

MULTICORE SOLDERS LTD

Hemel Hempstead, Herts.
Telephone: Hemel Hempstead 3636 WW-158 FOR FURTHER DETAILS.
re-settable high speed magnetic counters. ($3 \frac{1}{2} \times 1 \times$ fin.), 3 digit, $24 \mathrm{v}, 22 / 6$ each. P.P. $1 / 6$. HIGH SPEED MAGNETIC COUNTERS. $44 \times 1 \times$ lin.). 4 digit. $12 / 24 / 48 \times$. (state which), $6 / 6$ ean P.P. 1)/: SANGAMO GEARED MOTOR. I r.p.m. $240 \mathrm{v} ., 27 / 6$ ea. COPPER Laminate printed circuit board. ($8 \frac{1}{2} \times$ $5 \frac{1}{2} \times \frac{1}{1}$ in.), $2 / 6$ sheet. 5 for $10 /$.

BULK COMPONENT OFFERS

100 Capacitors (latest types), 50 pf. to $.5 \mu$.
250 Carbon Resistors, $\frac{1}{\frac{1}{2}}$ and $\frac{1}{4}$ watt (transistor rype).
250 Carbon Resistors, $\frac{1}{\frac{1}{2}}$ and 1 wate.
150 Hi Stab. Resistors, $\frac{1}{4}, \frac{1}{2}$ and I watt.
100 Capacitors (ceramic), 2 pf. to 1,000 pf.
ANY ITEM 10/-. \&2 THE LOT.
TIME SWITCHES (Sangamo S.251). 240 v. 20 amp. $50 \mathrm{c} / \mathrm{s}$. Brand new, with solar dial, $67 / 6$ each. P.P. 2/6.
SEALED RELAY (G.E.C.). 2 c/o., 670 , 24 v., 6/- ea. P.P. I/6.

LATEST TELEPHONE DESK SET WITH DIAL (New, boxed). Black or two-tone grey, 95/. P.P. 5/TELEPHONE HANDSET. (Latest type), 15/- ea. P.P. $2 / 6$. AMPLIFIED TELEPHONE HANDSET. Latest type with built-in transistor amplifier and volume control, 35/-. P.P. 2/6.
LATEST TELEPHONE DIALS (New and boxed), $17 / 6$ ea. MOVIMG COIL HANDSET AND MICROPHONE, 10/- set. P.P. $2 / 6$.
" 3000 " TYPE RELAYS. 10 for 25/-. P.P. 2/6
OSCILLOSCOPES. Cossor 1035, £22/10/-. P.P. £2/10/. LUSTRAPHONE MOVING COIL MICROPHONES. Type VC 152. (New, boxed.) Low or high impedance, 87/6 each. P.P. 2/6.
UNISELECTORS. 8 bank, 25 way, 50 ohm. (New and boxed), $50 /$ - each.
PRĖCISION RESISTORS. $1 \%, 10 /$ doz. (Several standard values included.)
VITREOUS W/W RESISTORS. 5\%. 25 for 10%.
POWER TRANSISTORS. OC16, 7/6 ea. 2S721, 10/- ea. DIODES. $\$ \times 632, \$ \times 781,2 /$ each. 20/- doz.

400 P.I.V. $\frac{1}{2}$ A. (unmarked diodes), 20/- doz.
SPEAKER BARGAINS E.M.I. (13×8 8in.) with double tweeters, 15 ohm, 65/-. P.P. 5/-.
As above, less tweeters, 3 or $15 \mathrm{ohm}, 45 / \mathrm{c}$. P.P. 5/\%. Fane 12 in., 20 wate, with tweeter (15 ohm), $95 / \%$. P.P. 5/-.

CONNECYORS. 13 WAY " IN LINE " gold plated pins, 4/6 pr. P.P. 6 d .
SILICON BRIDGE UNITS (GEX 541). 80 p.i.v. 10 amp., 37/6 ea. P.P. $2 / 6$.
PHOTOFLASH ELECTROLYTIC. $2,000 \mu$ f. 275 v., $17 / 6$ ea. P.P. $2 / 6$.

ELECTROLYTIC. $5,000 \mu$. 50 v., $7 / 6 \mathrm{ea}$. P.P. $2 / 6$.
BLOCK CAPACITORS. $2 \mu \mathrm{f}, 3,500$ v. $\left(9 \times 5 \times 3 \frac{1}{2} \mathrm{in}.\right), 40 /=$ P.P. 5/-. 50 ff. 150 v. 7/6. P.P. 2/6. Many others in stock.
"YINKORS" L.A. $2105,6 /-$ ea. P.P. 6 d.
COMPUTER BOARD, containing 10 transistors (OC72 or OC76) and 10 diodes type OA10, 10%. P.P. $2 / 6$.
COMPUTER BOARD. All components have long flying leads, and are 100% re-usable.
VOLTMETERS. METAL.CLAD. (6in. edgewise mirrorscale.) New boxed. $11-0-11$ and $110-0-110$ v. D.C. (f.s.d. 250 micro/amp.), 75/1. P.P. $7 / 6$.
E.M.I. WM5A OSCHLLOSCOPE. $£ 45$.
E.M.I. 3794 WAVEFORM MONITORS (Trolley mounted). 625.

SOLARTRON REGULATED POWER SUPPLY. 0.500 v . 200 mA. 6.3 v. 5 a., £ $£ 5$.
SOLARTRON TRANSISTOR POWER SUPPLY. 30-50 v. 10 amp., $£ 20$.
COUTANT TRANSISTOR POWER SUPPLY. $15-30 \mathrm{v}$. 20 amp., $£ 20$.
ELECTRIC SLOT METERS ($1 /-$), 25 amp. L.R. 240 v. A.C. 85/. ea. P.P. 5/-.
QUARTERLY ELECTRIC CHECK METERS, 40 amp 240 v . A.C., 20/- ea. P.P. 2/6.

TELEPHONE HAND MAGNETOS (70 v. A.C.). Trade enquiries welcomed.

All Goods Previously Advertised Still Available.

PATTRICK \& KINNIE

BI PARK LANE, HORNCHURCH, ESSEX Tel.: ROMFORD 44473

ERRIPE
SPEGIAL RADIO GHASSIS OFFERS

HI-FI CONTINENTAL
STEREOPHONIC RADIOGRAM CHASSIS

Magnificent "Continental " Stereophonic Radiogram Chassis with piano key switches, built-in ferrite rod aerial. Comes complece with ewo 10 in . elliptical loudspeakers, plus a mono/stereo 4-speed automatic record changer. Complete $£ 29 / 19 / 6$ (Units available separately if required. Chassis only $19 \frac{1}{2} \mathrm{gns}$). Special terms available of $(10 / 0 / 0$ deposit followed by 18 monthly payments of $£ 1 / 6 / 5$ (total H.P. of $£ 33 / 15 / 6$) plus $15 /-$ P.P. Send tiolis/0 now.

The Imperial stereophonic 4-waveband chassis has the most advanced specifications yet offered in this country. There is a built-in lerrice rod aerial, seven piano key butcons, Medium-Short-FM-ONIOFF The Gnit Lomg-Medium-Short-FM-ON/OFF. The unit comes complete with two lOin. elliptical loudspeakers plus a mono/stereo 4 speed automatic record changer. Complete $\$ 41 / 9 / 6$ Chassis only $29 \frac{1}{2}$ Gns.
Special terms available of $\{13 / 16 / 6$ deposit followed by 24 monthly payments of $€ 1 / 8 / 10$ (total H.P. $£ 48 / 8 / 6$) plus $17 / 6$ P.P. Send $\mathrm{f}, 14 / 14 / 0$ now.

AM/FM STEREOPHONIC CHASSIS

This mose advanced Radio-gram chassis with automatic push button selection covers short, medium and long wavebands plus V.H.F./F.M. Offered complete with 210×6 speakers, 4 speed Stereo/Mono autochanger. only $\mathbf{6 3 5} / 19 / 6$. Chassis only $25 \frac{1}{2}$ gns.
Special terms available of $\mathbb{E} 12$ deposit followed by 18 monthly payments of \&1/1|/7 (cotal H.P E40/8/6) plus 15/- P. \& P. Send (I2/15/0 now.
All Lewis Radio equipment including valves are fully guaranteed for one year. free of charge. Send your cheque or P.O. today while stocks last to Dept. W.106.

LEWIS radio

LEWIS RADIO, 100, CHASE SIDE, SOUTHGAIE LONDON, N.14. Telephonet PAL $3733 / 9666$

WW-160 FOR FURTHER DETAILS.

CLASSIFIED ADVERTISEMENTS

DISPLAYED: £5 5s per single col, inch.
LINE adverisements (run-on): $6 /-$ per line (approx. 7 words), minimum two lines.
Where an advertisement includes'a box number (count as 2 words) there is an additional charge of $1 /-$
SERIES DISCOUNT: 15% is allowed on orders for twelve monthly insertions provided a contract is placed in advance.

Advertisements accepted up to NOVEMBER 7 for the DECEMBER issue, subject

BOX NUMBERS: Replies should be addressed to the Box number in the advertisement, c/o to space being available.

Wireless World, Dorset House, Stamford Street, London, S.E.1.
No responsibility accepted for errors.

SITUATIONS VACANT

GLECTRONIC TECHNICIAN.

DO you enjoy playing around with electronic gadmets? Here's a chance to make a career of your hobby. We offer you interesting and varied work in the field of department is concerned with the design and application of electronic circuits required for testing of diesel engines and their fuel injection systems.
STAPF conditions are good and include sickness and contributory pension and life assurance schemes, restaurant facilities, etc.
in the first instance applicants should write in confidence, giving only brief personal detalls to:Oak Lane, East Finchley, London, N.2. FINcliley 2692, Extension 304.

โ1613

SOUTHAMPTON UNIVERSITY,

DEPARTMENT OF ELECTRONICS

CONTINUING expansion of the Department and a move to new buildings, give rise to the following vacancies: of a very wide variety of modern electronic equipment practical experience of electronics or radio required. JUNIOR TECHNICIAN to assist in the running of the laboratories; opportunities for training and day release Mistionlectronics. Three techntcal staff are required: tion of a dleital control system using modern digital integrated circuits; experience of digital circuits re-
2. Principally to take charge of and matntain a new ultra-high vacuum system; experience of vacuum techniques is required.
components; expertencember of projects on thin fim tronics is required.
THESE appointments may be made at TECHNICIAN OR CONTRACT ASSISTANT level for candldates with particularly relevant qualifications.
Contract Assistant in range $\boldsymbol{£} 9$
starting point according to qualifcations and ex-
Lerience.
Junior Technician $£ 326-£ 549$, starting point accordtag to age and qualifications. Day release facilities avallable, generous holidays, superannuation

APPLICATIONS giving details of age and qualifications, together with the names of two referees should be sent to the Deputy Secretary, as soon as possible. A N OVERSEAS CAREER with International Aeradio A Limited.
To meet the requirements of constant growth and expansion we invite applications irom technicians and engineers for an overseas career in North. West and East Africa, the Mediterranean area and the Arablan Gulf. If you have recently completed service in a trade such as Ground Wireless Fitter in the R.A.F.. R.E.M.E.. Army, or have other expertence in the maintenance of H.F. and V.H.F. communications, R.T.T. and navigational aids, we should be interested to hear from you. Successful candidates would normally spend six weeks at our Radio Engineering School, Southall, Middlesex. betore proceeding overseas, but in some may be offered immediate posting. Overseas staff recelve a tax-free salary with married and child allowances if appropriate and accommodation, bachelor or married, 15 provided free; other benefits include generous U.K. leave and membership of an excellent pension and life assurance scheme.
Intrmal Rd. Southall. Middteser HI-FI/tape recorder salesmen, senior and junior, Telesonic. Lit., 92, Tottenham Ct. Rd., London. W. Museum 8177 .

FOR

SALE AND WANTED ADVERTISEMENT FORMM TURN TO
PAGE No. 137

Solartron expansion-another factory being added at Farnborough. Our product range is widening. The newest and most exciting technologies are being used.
For a Technician, employment at Solartron could be an important career phase, and an interesting and valuable experience.

THESE ARE THE POSITIONS
Test Engineers - Systems Modules
Systems Test Engineers Instrument Service Engineers Systems Service Engineers Installation Engineers

THIS IS THE WORK

Fault diagnosis and rectification at the Production, Building, Installation and after sales stages.

THESE ARE THE EQUIPMENTS

High precision instruments, digital data acquisition systems, analogue and hybrid computing systems, military simulation systems.

Based at Farnborough; or in certain other areas of the U.K. involving travel. Financial help with moving house. Salaries based on assessment of ability and contribution to the Company's success. Conditions second to none. Enquiries welcomed from anyone interested in a career in electronics. Men from the services and the radio and T.V. industry fit in with as much ease and job satisfaction as men from more closely allied fields.

Send enough personal details for an interview to:-

C. S. J. Mardéll, Personnel Officer, The Solartron Electronic Group Farnborough, Hants.

cyclotron operation

The successful applicant will join a team responsible to a senior physicist for the operation of a cyclotron for isotope production and the maintenance of its associated high voltage, radiofrequency, high vacuum and target handling equipment.
Applicants should have served a recognised engineering apprenticeship and have had several years experience in electrical or electro-mechanical engineering. An O.N.C. or equivalent and a knowledge of high voltage radiofrequency or high vacuum techniques is desirable. Preliminary training in the operation and maintenance of particle accelerating machines will be given.

Salary $£ 1,015$ p.a. (at age 26 years) rising by annual increments to $£ 1,210$ p.a.
Assistance can be given with house purchase
There is a contributory superamuation scheme
Application to:
The Personnel Officer (Ref. T.27/45)

THE RADIOCHEMICAL CENTRE

Amersham

Bucks

DYE CAMBRIDGE WORKS. Ltd. Halk Rd.. Cam-- SINGLE sideband equipment

- SINGLE sideband equipment. radiotelephone equipment

WFI-FI reproduction equipment.
WF require trained personnel for production testing and fault finding of modern equipment. WE have limited vacancies for more senior and expertenced men with drive. who can lead small teams engaged on this work. experience who can be trained for such work. APPLI to the Personnel Manager.
3 Rirsh Antarctic Survey requires Wireless Operator con service in port stanley. Falkland Islands, on contract for 3 years in the first instance. Commencing salary \&710×£30 to 8860 per annum. Leave on full salary. Free passages. Candldates, $21-35$ years, must be single and able to transmit and receive at mini-
mum of 20 w.p.m. Applications to 30 , Gillingham St., London, S.W.1.
\qquad

DUE to continued expansion N.C.R. Tequire addlfor Conal Electronic and Electro-Mechanical Engineers wishing to become Site Engineers
TRAININC Courses are arranged for suitably qualifed men. H.N.C. Electronics. City \& Gulids Final or equivalent standard welcome. Knowledge of electronic or electro-mechanical equipment necessarys. Good Pen-
sion and Bonus flan in operation. PLEASE write for application form -to:-The Personnel Officer, The National Cash Register Co., Itd., 206/216. Marylebone Rd., London, N.W.1.
A FULL-TIME technical experienced Salesman reA quired for retail sales; write giving details of age. previous experience. salary required to-The Manazer, Henry's Radio. Ltd., 303 , Edgware Rd.. London. W.2.
EAMONN ANDREWS STUDIOS, Ztd.. 4. Henry St.. EAMONN ANDREWS have a vaconcy for a Recording engineer. starting not less than £1,000 p.a.-Write. or phone 49191.

TeChnocrats

We have vacancies throughout the Electronics Industry for QUALIFIED ENGINEERS and TECHNICIANS of all grades. Our service is comprehensive, confidential and free to the applicant.
Write or telephone for an appointment, which can be outside working hours.

DESIGN \& DEVELOPMENT
 FIELD TRIALS, INSTALLATION TEST \& SERVICE
 DESIGN DRAUGHTSMEN
 DRAUGHTSMEN TECHNICAL WRITERS SENIOR INSPECTORS
 £ 1,200-£2,400
 £950-£1,400
 £1,300-£1,750
 £1,000-£1,400
 £1,100-£1,400

Technocrats

52 Shaftesbury Avenue, London, W. 1
GERrard 5316-7
(1 minute from Piccadilly Circus, opposite Globe Theatre.)

TECHNICIAN

LONDON SCHOOL OF ECONOMICS

and POLITICAL SCIENCE

Applications are invited for the post of Technician in the Social Psychology Dept. Salary will be in the range $\{720-\mathbf{1 8 7 5}$ depending on age and qualification. Candidates should be aged $20-25$ years and possess ONC or HNC Electrical. The duties of the post will include routine maintenance of standard electrical and also design and development of more complex equipment. Experience on audio equipment or a knowledge of general electrical circuitry is required. Experience with psychological apparatus will be a considerable advantage. Applications to D. Nowell, Personnel Dept., London School of Economics Houghton Street, Aldwych, London, w.c.2.

[^21]
BERRY'S RADIO

Require
TECHNICAL STAFF, ENGINEERS AND
SALES ASSISTANTS
GOOD PROSPECTS, PERMANENCY
Write giving full details of experience, past situations, etc. in confidence to
25 HIGH HOLBORN, LONDON, W.C. 1

Space at the top!

Start now as an Assistant Executive Engineer in Electronic Exchange Planning, Circuit Design, Radio, TV and Space Communication, International Cable Systems

The rapidly expanding science of telecommunication engineering offers a stimulating and rewarding career to anyyoung man or woman, with security, interesting work and promotion to higher managerial level. If you have the required qualifications, the Post Office has the jobs - and the opportunities.
Training - Successful applicants have special courses in engineering and engineering management, on a "thin sandwich" basis extending over eighteen months.
Further Education - Opportunities to enter for a fulltime or "sandwich" degree course (during which fees and salary continue to be paid by the Post Office) are available to those most likely to benefit.
Good Pay and Conditions - Pay is between $£ 764$ and £1,638 per annum, depending on age and location,
with annual increases. Chances of promotion to $£ 2,400$ p.a. and beyond are excellent. Holidays are generous, superannuation and staff welfare arrangements are above average.
Qualifications - Candidates must be at least $17 \frac{1}{2}$ and under 25 on the Ist September 1966. They must have passed GCE "O" level in English language and gained either (1) HND or (2) exemption from all parts of the examination of either the IEE, IERE or IMechE or (3) a GCE with four other passes, including two at " A " level in mathematical and scientific subjects.
For full details, please write to MR. E. C. OFFORD, POST OFFICE ENGINEERING DEPT., (St. 8), (AEE/WW) 2:12 GRESHAM STREET, LONDON, E.C.2.

RADAR SIMULATION

We produce radar simulators for an expanding world-wide market and require:-

RADIO SIMULATOR TEST ENGINEERS

for factor; commissioning of simulators for civil and military air traffic control, precision approach radar and tactical and navigation marine radars.
Excellent opportunities for advancement in a new section and for overseas travel during installation.
Previous radar experience is not essential but a knowledge of transistors, pulse circuits and principles of analogue computation is desirable.
Excellent salaries are paid and we offer contributory pension scheme, life insurance scheme and good welfare services.
Write or telephone to:

Ipedfon

MR. H. C. Hall,
Personnel Manager,
REDIFON LIMITED
(Flight Simulator Division).
Gatwick Road,
Crawley, Sussex.
Tel: CRAWLEY 28811

ST. GEORGE'S HOSPITAL, HYDE PARK CORNER, LONDON, S.W.1.

Department of Medical Physics and Instrumentation

Two Electronics Technicians are required for the electrons section of the above department at St. George's Hospital, S.W. 1 and S.W.17. The work is interesting and varied, involving the design and construction of apparatus for use in research programmes, e.g. cardiac pacemaking, patient monitoring and radio isotope studies.

Candidates should have active minds, a practical knowledge of electronics and experience with light mechanical machines. The possession of the O.N.C. in mechanical or electrical engineering or its equivalent is essential.

Both posts are graded as Senior Physics Technician but the opportunity exists for one suitably qualified and experienced to be appointed on the Chief Technician Grade.

Applications with names of two referees to the Assistant Secretary at the above address not later than December 5th, 1966.

EDITORIAL ASSISTAMT

"Wireless World" requires an additional member for its editorial team. Applicants, preferably between 25 and 35 , should have an interest in and knowledge of radio and electronic engineering and an ability to write lucidly. Details of education and experience to the Editor-in-Chief, "Wireless World", Dorset House, Stamford Street, London, S.E.I.

WEST London Aero Club invite "A" and "B" sary licensed engineers with capltal and/or necessary equipment to commence Radio Workshop. Alter-
native propositions may be considered. Write full native propositions may be considered. Write ful
details to-White, Waltham Atrfeld, near Maldenhead details to-white, Waltham Airnela, hear Maidem 158.
Berks. BEST Encineer required for East Midlands area; ance interesting work on commissioning and maintenance testing of large scale broadcast relay vision and sound equipment and network, closed circuit television systems, including colour television, when it arrives; applications invited from enpineers qualined traininic. given locally and at a central training school: attractive salary. good prospects. penston scheme. up to three weeks holiday.-Please write or phone. Deputy Chief Engineer. Rediffusion (East Midlands) Ltd.. Castle Boulevard. Nottingham. Tel. 47411. [1611 TEST gear technician for the detall layout, construcof tion and wiring of test units for the electrical parts of our control and measuring equipments; the abinty must have some experience of the assembly and wlring of electronic type equipments and of the components used in them and will be expected to work with a minimum of supervision; salary \& 18 or upwards depending on experience,-Please write or preferably telephone
quoting reference ARN $/ 2$. Personnel Officer. Rank Pullin Controls, Great West Rd., Brentford, Middx. Isl 1212.

TELECOMMUNCATIONS

We have vacancies for Fault Finders, Testers, and Inspectors to work on interesting and advanced equipment including H.F. SINGLE SIDEBAND, V.H.F. RADIO TELEPHONES, U.H.F. MINIATURE EQUIPMENT.

Transistor experience is essential. Vacancies exist at all levels and training will be given where necessary.

Apply : Personnel Manager, CAMBRIDGE WORKS LTD, Haig Road, Cambridge.

$\mathbf{R}_{\text {tain }}^{\text {ADIO/Radar }}$ Fitters required to service and main R tain various airborne and ground installations at a fying unit in North West Wales, free singla hoste
accommodation; canteen facilltes; excellent working accommodation; canteen facilities; excellent workin conditions.-Apply: Short Brothers \& Harland. L+d.
R.A.E. Llanbedr, Merioneth.
TEST \& Service Engineer experienced in testing, state logic systems required by company manufactur state logic systems required by company manufactur cants who are prepared ${ }^{20}$ travel in U.K. and abroad should write to Box WW. 1605, Wireless World.
E LECTRONIC TECHNICIAN required, whose primary duties will be to supervise and maintain close clrcult television and videotape apparatus; work on the construction and maintenance of other electro-medica equipment may also be occasionally required; candldates
must have City and Gullds Certifcate. O.N.C. or equivalent qualiffcations; salary will be according to age experience and qualifications on the Whitley Scales (fo techniclans £1.069-£1.303 a year). Application forms which should be returned by October 26 th, 1966 may be obtalned from The Secretary, Institute of Psychiatry The Maudsley Hospital, Denmark Eill, London, S.E.S (Ref. DP/C.)

SITUATIONS WANTED

CHIEF petty officer. R.N. (Radio Branch), due foi release Dec, 5 th, 10 yrs. electronics (trade certi flcate), ${ }^{7}$ " "O", levels, ${ }^{29}$. single, personable, goo
appearance, clean licence; desires opportunity in appearance, clean licence; desires opportunity in saies welcome travel anywhere U.K./abroad.-C.P.O. Dufton H.M.S. Inskip, Nr. Preston, Lancs

[^22]
English Electric Leo Marconi

Computer servicing

English Electric Leo Marconi is Britain's foremost computer company. Ever increasing sales mean that we need more engineers to maintain computers on our customers' premises.

Experience in the development; testing or servicing of transistorised electronic equipment and the ability to understand the logic of advanced computers are the qualifications we are looking for.

Training, salaries and fringe benefits are all that you would expect from a leader in the computer field and prospects are limited only by ability.

Jobs exist in most parts of the country, but the greatest number of vacancies is in the London Area, the Midlands and South West Lancashire.

To obtain more information write to:The Personnel Officer, Dept. WW.M.16,
English Electric-Leo-Marconi Computers Ltd., 24, Minerva Road,
London, N.W.10.

Ingineer: Like to switch to computers?

We are looking for young men to traiń as IBM Data Processing Customer Engineers: men with ambition, personality and confidence, who will enjoy working largely on their own initiative (a quality rewarded particularly well at IBM). Here are the facts:-
 As a DPCE you will work with your own customers on some of the world's most advanced punched card and computer systems.
 You will get a really thorough training on data processing equipment during your initial three months, followed by advanced computer training later in the U:K., France, Germany or U.S.A.
 Starting salaries in the London area are in the region of £1100 a year (more if you have special aptitude or experience). Promotion and increases are on merit. As a DPCE you could be earning between $£ 1300$ and $£ 1750$ in three years.
 There are valuable benefits including a non-contributory pension scheme, free life assurance and sickness benefit.
 To qualify you should be between 21 and 29 with radar or telecommunications experience or ONC/HNC Electrical or Electronic. However, if you are between 18 and 22 and have a basic knowledge of electro-mechanics, we would still like to hear from you - there are opportunities to train as junior Customer Engineers.

Please write, giving details of age, experience and background to Miss S. A. Jones, IBM United Kingdom Limited, 101, Wigmore Street, London W.1. quoting reference DP/WW/524.

TEST EQUIPMENT MAINTENANCE HIGH FREQUENCY LABORATORY

Continual expansion has created a vacancy for an Assistant in the Equipment Laboratories. The duties will include the servicing of a variety of electronic equipment used in the factory and field for cable testing.
Applicants will preferably be ex service radar fitters or have similar experience and must be prepared to work on their own initiative.

The position offers the usual staff benefits including. a generous Life Assurance Scheme and salary will be commensurate to age and experience.

Please apply in the first instance, stating age and experience, to:

The Personnel Officer
Telephone Cables Limited
Chequers Lane, Dagenham, ESSEX.

OFFICIAL APPOINTMENTS NEWPORT and Monmouthshire College of Tech-ALLT-YR-YN Avenue. Newport, Mon.
APPLICATIONS are invited for the following new Applichtions are invited tor the following new posts: Electurer and Asssistant Lecturer in Electrical graduates with industrial or research experience and will be required to teach to post H.N.D. level. Preference will be rlven to candicates zor one of these posts offering the subjects of Electronic Circultry and Computer Technology. Salary Scales: Lecturer ${ }_{\text {E2 }} 1,875$ to with ailowance for qualifications and experience. Principal. to be returned within 10 dars. ㄷ. $\frac{H}{M}$. LOUDON:
CLERKS to the Governors.
1616 COUNTY Medical Physics Department, St. George's APPLICATIONS are invited for the post of Sentor Techniclan (Electronics or Blo-Engineerlig). deld but not necessarily in hospital. An approprlate qualification is required,
FURTHER particulars may be obtained from the Physicist-in-Charge.
APPLICATTONS Stating age qualifcations, and details of previous experience, together with the names of two referees, should be sent to the Hospital Secretary, St.
George's Hospital, Lincoln.

PUBLICAPPOINTMENTS
TELECOMMUNICATIONS Technical Officers, Board of postrade (Clvil Aviation).
POSTSS for men aged at least 23 for Installation and maintenance of navigational aids and communlations equipment at Clivil Aerodromes and other stations in the United Kingdom.
City and Guilds Intermed in Electrical Engineering, or munications (old syllabus i.e. subject No. 50) plu Radio II. or Intermediate Telecommunications Certif cate (new syllabus i.e. subject No. 49) plus Certificates in Mathematics B, Telecommunications Princlples B, and Radio and Line Transmission $\mathrm{B}_{\text {, }}$ or equivalent standard of lechmical education, and at least 5 years SALARY: (National): from $£ 955$ (at 23) to $£ 1,147$ (at 28 or over); Scale maximum $£ 1,295$ (somewhat higher in London). Prospects of promotion. Non-contributory pension. WRITE (preferably by postcard) to Civil Service Commission, Savile Row form , quoting $\mathrm{S} / 207 / 66$, Closing date November 1st 1966.

1 BOOKS, INSTRUCTIONS, ETC.
MANUALS. circuits of all British ex-W.D. 1939-45 R.E.M.E. instructions; $5 . a . e$. . for list, over 70 types.-W. H. Balley, 167a, Momat Road, Thornton Heath, Sur-

COMPUTER ENGINEERS

Due to continued expansion NCR require additional ELECTRONIC and ELECTROMECHANICAL ENGINEERS for Computer Maintenance. Posts are available for men wishing to become Site Engineers.
Training Courses are arranged for suitably qualified men. H.N.C. Electronics, City \&.Guilds Final or equivalent standard required. Men from Forces with radar experience welcome.

Knowledge of electronic or electro-mechanical equipment necessary. Good Pension and Bonus Plan in operation.
Please write for application form to The Personnel Officer, The National Cash Register Company Ltd, 206/216 Marylebone Road, London NW1.

Plan your future with

ELECTRICAL ENGINEERS

urgently required to fill vacancies in Ministries of Aviation, Defence, Public Building and Works, and Transport, the Diplomatic Wireless Service and Government Communications Headquarters. Yacancies in fields of (a) power, including building services, and (b) light currents and electronics.

QUALIFICATIONS: Degree or Dip. Tech. with 1st or 2nd class honours in Electrical Engineering or Physics, or have passed all examinations for A.M.I.E.E. or A.M.I.E.R.E.
SALARY (Inner London): £1,143 (at 25) - £1,718. Promotion prospects.
AGE: Normally at least 25 and under 35 on 31.12.66. Some extensions for service in H.M. Forces or Overseas Civil Service. (Reference: $\mathrm{S} / 85$)

POST OFFICE EXECUTIVE ENGINEERS

At least 60 posts in London and Provinces for electrical, electronic and mechanical engineers to develop and design communications systems and postal service equipment.
QUALIFICATIONS: Degree or Dip. Tech. in Mechanical or Electrical Engineering, Physics, or Applied Physics or, exceptionally, very high professional attainment.
SALARY (Inner London): £877-£1,806.
Promotion prospects.
AGE: At least 21 and normally under 35 on 31.12.66. Some extensions for service in H.M. Forces or Overseas Civil Service. (Reference: S/322)

ENGINEERING DRAUGHTSMEN

Vacancies in Ministry of Public Building and Works, Ministry of Defence, Post Office and other Departments for Engineering Draughtsmen in the fields of MECHANICAL, ELECTRICAL, and HEATING AND VENTILATING ENGINEERING.
QUALIFICATIONS: O.N.C. (or equivalent) in appropriate subject, three years' training and, in addition, at least one year's drawing office experience.
SALARY (Inner London) : $£ 790$ (at 20)- £1,220 (at 28 or over)-£1,338. Annual leave allowance 3 weeks and 3 days rising to 6 weeks.
AGE: At least 20. Promotion prospects. Where appropriate, time off for further technical study may be given. (Reference: $\mathrm{S} / 68$)

The above posts are pensionable and APPLICATION FORMS are obtainable from the Secretary, Civil Service Commission, Savile Row, London, W.1. Please quote appropriate reference.

If you have a basic knowledge of electronics, such as Radarl Radio/control equipment fitters course, telecommunications experience, BE or HNC (Electrical or Electronic) and are thinking of returning to Ireland, there could be a very worthwhile career for you as a data processing customer engineer with IBM.

The DP customer engineer has a challenging, stimulating and rewarding job to do-not only servicing existing data processing installations but also working in close collaboration with his own customers to extend and develop their equipment as the need arises. He is an 'ideas' man who works largely on his own initiative and deals with all levels of management. He is often the company's principal contact with customers and is therefore relied upon by customer staff, to advise on a great variety of data processing problems. Success then, will largely depend on individual initiative and drive-qualities which are recognised and rewarded well at IBM.
Opportunities are excellent as it is the IBM policy always to promote on merit and from within the company. Starting salaries will be based on individual merit, qualifications and experience and full training will be given.
This is a career with the acknowledged world leaders in data processing techniques and applications. It offers tremendous scope in the new and exciting computer industry, a high degree of personal satisfaction and invaluable experience with one of the fastest growing companies in the country. If you are between 21 and 28 , are looking for real opportunity and have the basic knowledge required, please write, giving details of age, experience, qualifications and background to: The Personnel Officer, IBM Ireland Limited, 28, Fitzwilliam Place, Dublin, 2, quoting ref. DP/WW/OI8. Initial interviews can be arranged in London and Dublin.

TESTINGen ofter ou r reverring cereer

 in the Test Department of
REDIFON LIMITED

Manufacturers of Radio-Telecommunications Equipment SENIOR TEST ENGINEERS

required

EXCELLENT STARTING SALARIES

Recently revised Staff Status. 37⿺辶 -hour week. Canteen. Sports and Social Club. Pension and Life Assurance Scheme.

Write or phone: The Personnel Manager REDIFON Ltd., Broomhill Road Wandsworth, London, S.W. 18 VANdyke 7281

Interviews arrañged to suit your convenience

medical research council

National Institute for Medical Research.
An excellent vacancy occurs in the Electronics Laboratory of the Engineering Division for a young Technician to undertake the construction and wiring of prototype instruments. Experience of electronic circuit assembly and preferably some knowledge of mechanical devices. Progressive salary and excellent working conditions offered to the successful candidate:
Apply to P.O.-N.I.M.R. The Ridgeway, Mill Hill, N.W.7.

[^23]
britans car radio spclallists RADIO
DEVELOPMENT ENGINEER
A vacancy has arisen for an additional Engineer in our Current Engineering Department. The variable duties will include dealing with post design and production problems, close liaison with suppliers as well as actual development activities.
An excellent salary and fringe benefits will be offered to the successful applicant who will hold H.N.C. in Radio Engineering. Preference will be given to a person with drawing ability and experience of vehicle radio receivers
Applications should be made in writing to:
Mr. W. A. Piuck Personnel Manager Radiomobile Limited Goodwood Works North Circular Road London, N.W.2. GLA 0171

NEWCASTLE GENERAL HOSPITAL

($1,040 \mathrm{Beds}$)
SENIOR ELECTRONICS TECHNICIAN
required in the Electronics Laboratory of the Regional Neurological Centre. Candidates will be expected to be of H.N.C. standard and to have had some experience in design and development work. Conditions of service governed by Whitley Council agreements. Present salary scale $£ 868-£ 1,106$ p.a.

Applications, with names and addresses of two referees, to Hospital Secretary, Newcastle General Hospital, Newcastle upon Tyne, 4, within two weeks.

SERVICES OFFERED

TLECTRONICON, Ltd-From draulng board to proE cuction with minmum delay; let us ve your re search development, design and prototype department Pilot production runs a speciality.-176, Lythalls Lane Coventry. Tel. Nuneaton 2353 or Coventry 86544.

Leave it to us.
FOR all electronic wiring, large or small, metal fabrlcation engraving, etc., competitive prices and excellent delivery.
APPLY Contracts Manager, Shirehall Electronics, Ltd. Station Yard, Borough Green, Sevenoaks, Kent. Tel
Borough Green 2612 .

TOROIDAL Coll Winding, transformers, transductors delivery chester, 1. Cen. 3031.
[159
TOIN Audio Supply Association, $7 / 6$ p.a. (65-page photographically lllustrated, non-advertising hle catalogues, 4/6; your best guide for safe buying. 10 ,

TELECINE OPERATOR

International Advertising Agency requires young man between the ages of 20 and 28 to operate and maintain television film scanning equipment Candidates should have intermediate " C of G " or equivalent, and previous experience on this type of equipment.
Excellent salary, five-day week.
Applications in writing to:
The Appointments Office,
J. Walter Thompson Company, Limited, 40 Berkeley Square, London, W.1.

WMAIL electronic units, sub-assemblies, prototypes W etc. speedily constructed, short or long runs. en qulries invited.-Ofishore Maintenance Co. Ltd., 15 Island Wall, Whitstable, Ken

VALVES

VALVE cartons by return at keen prices; send Ior all samples and list.-J, \& A. Boxmakers. 75 Godwin St.. Bradford,

VALVES WANTEO

We buy valves for cash, large or small quantities, by return.-Waltons Wireless Stores, 15, Church St. Wy return.-Waltons Wireless Stores, 15, Church St.

SERVIGE \& REPAIRS

B.B.C.2. TV, RADIO, TAPE REC. SERVICE SPAPE T.H.F./625, modify your set to B.B.C.2, 1955 to 196 models covered, manuiacturers' complete kits and tuners, send for free list. Special offer: Pye/Ekco u.h.f complete conversion kit incl. tuner, transistorised if pance accessories, circuits. etc.i normaily 18 . $8 / 10$ post $3 / 6$. exclusive offer of special manufacturers types' suitabl Lor KB, Ultra, Ferguson, HMV. etc., 75/-, new turret cuners, Brayhead $3001 / 3$ 58/6; Cyldon c/f $30 /=$; Brayhead $10,16.35 \mathrm{Mc} / \mathrm{s} 19 / 6$; KB $16,38 \mathrm{Mc} / \mathrm{s} 196$; Ekco 16Mc/s $12 / 6$; post $4 /$-. many others avallable. TV Signal Boosters, transistorised, Yye/Labgear B1/B3 and
 head 10 , 16 , 35 Mc s 19 , 16 for all popular make CRTS, 14, 17, 19 in from $84 / 5$ (callers only). Tape recorder belts, heads, motors, etc. Salvaged components. large selection transformers, scan coils, turrets, etc. Enquiries invited, c.o.d. despatch available. Manor Supplies. 64, Golders Manor Dr., London, N.W.11; callers 5898, High Rd.. N. Finchlev. N. 12 (near Gran
Wille Rd.). Hil. 9118 (day), Spe. 4032 (evg).

TAPE RECORDING FTC

SAVE on cos TAPE to disc transfer using latest feedback disc 32, Hest Bank Lane, Lancaster. "TAPE/DISC/TAPE transfer editing; dupllcating; - quality and durability matter (especially with LPS from your precious tapes), consult Britain's oldest transfer service.-Fund raising records published for schools, ductions. 10, Clifford St. London W.1. Reg. 2745.

CAMBRIDGE WORKS LIMITED
have vacancies in their expanding Test Organisation for men with experience of VHF Transmitters and Receivers,

Men with Service training in VHF equipment would be suitable.
Progressive rates of pay and promotion and good facilities for training are offered.

> Apply: Personnel Manager, Cambridge Works Limited, Haig Road, Cambridge.

VHF TEST

engineers

Q

\section*{
 A BREAKTHROUGH IN OPPORTUNITIES EXPERIENCED DESIGN AND DEVELOPMENT ENGINEERS REQUIRED BY COMPANIES IN THE HOME COUNTIES AREA
 We have registered at least 125 vacancies for engineers with the right experience. This group of jobs offers excellent opportunities and starting salaries.
 | ples. | Age 35 up | £2,000 |
| :---: | :---: | :---: |
| | 25 to 35 | £1,500- $£ 2,300$ |
| | 22 to 25 | £1,100-£1,600 |
 Design Experience required in following fields:-
 Communications, Radar, Computers (digital and analogue), Logic, Automation, Instrumentation.
 THIS IS A FIRST CLASS OPPORTUNITY TO WORK ON EXCITING PROJECT
 Minimum Qualifications, H.N.C., C. \& G. Full Tech. with at least 2 years in British Industry We have also vacancies for Testers, Writers, Draughtsmen, Salesmen and Production Engineers. Contact us any time day or night quoting reference WW/105E.
 ELECTRONICS APPOINTMENTS LTD.,
 Norman House, 105-109, Strand, London, W.C. 2 Tel.: TEMple Bar 5557-8}

AEROPLANE AND ARMAMENT EXPERIMENTAL ESTABLISHMENT, BOSCOMBE DOWN, NR. SALISBURY, WILTS.

ELECTRONIC TECHNICIANS

TECHNICIANS, aged at least 24, required to be responsible for the organisation and supervision of maintenance work on radio/radar equipment, including ground and aircraft installations. To assist in planning of future installations
QUALIFICATIONS AND EXPERIENCE. O.N.C., C, \& G. Final Certificate or equivalent or H.M. Forces 'experience such as R.A.F. Flt. Sgt.-Chief Technician, R.N. 3rd Class Artificer or Army Foreman of Signals. A good knowledge of electronics and supervisory experience of ground and airborne radio/radar equipment maintenance is required.
SALARY. A starting salary of up to $£ 1,009$ according to age with annual increments to $£ 1,129$ Good prospects of promotion and pension or gratuity if you leave after five years' service
TECHNICAL COURSES. These are sponsored for suitable candidates on day release,
APPLICATION FORMS. From the Manager, (PE 5031), Ministry of Labour, Professional and Executive Register, Atlantic House, Farringdon Street, London, E.C.4.

Redifon A MEMBER COMPANY OF THE REDIFFUSION GROUP

 require
SENIOR ELECTRONIC INSPECTORS

WITH EXPERIENCE

 OF HIGH-GRADE TELECOMMUNICATIONS EQUIPMENT SECURITYContinuing employment in an expanding company.
STATUS
Weekly paid Staff Pension and Life Assurance Schemes.
SALARY
Recently revised. Excellent earning potential-overtime available.

Call, phone or write
The Personnel Manager,
REDIFON LTD., Broomhill Road,
Wandsworth, S.W.I8.
VANdyke 7281.

A UNIQUE Tape Buy! Top brand, $7 \mathrm{in}, 2,400 \mathrm{ft}, 25 /-\mathrm{i}$

NEW GRAM AND SOUND

EQUIPMENT

GLASGOW.-Recorders bought. sold, exchanged: versa, cameras. etc., exchanged for recorders or vice-

DERSONA

HOUSE names in gold leat on wood, 4 in $\times 16 i n$. post

GONDON GENTRAG icanlo stortie

10-WAY PRESS-BUTTON MFTER-COM TELEPEONES in Hakclite case with junction box han
Guaranteed. $£ 6 / 10 /$ per Unlt.
20-WAY PRESS-BUTTON INTER-COM TELEPHONES
-Way PREss-BUNON Bakelite case with Junction bo
Guaranteed, $\mathrm{f} / \mathrm{ll5} /=\mathrm{per}$ Unlt.
WIRELESS SET No. 38 A.F.Y. Freq. range 7.3 to $9.0 \mathrm{Mc} / \mathrm{s}$. Working range 1 to 2 milles. Eize $101 \times 4 \times 6$ |in. Weight 6 itb. Includes power supply 81 b , -and spare valves and vibrator, also tank acrial with base. $£ 6$ per pair or $£ 3$ single. P.P. $25 /=$.
ELECTRICITY SLOT METERS $(1 /-$ in shot $)$ for A.C. mains. Fixed tarift to your requirementa. Suitable for hotuls, etc. $200 / 250 * .10 \mathrm{~A}, 80 /-15 \mathrm{~A} .90 /-, 20 \mathrm{~A} .100 \mathrm{H}$-. P.P. 7/6. Other QUARTERLY ELECTRIC CHECK METERS. Reconditloned as Rew, 200/250 v 10 A. $42 / 6 ; 15$ A. $52 / 6 ; 20$ A. $5 \% / 6$. Other mperages amalable 2 years purantee
TWIS GONG TELIMPONE, extenslons bells, 21/-
TELEPEONE TYPE EAND GENERATORS, 60 v . bell ringing, $9 / 6$ BRASS JACK STRIPS. 20 Jack sockets in.ench strip. Slze pprox. $11 \times$ silio. $17 / 6$. P. P. $4 / \%$
P.M. MOVING COIE SPEAKERS. 6ln. 9/6. Bia. 3 ohm $10 / 6$. laliptical 7×4 in. 3 ohm!10/6. P. P. $3 / 6$
MOVING COH EEADPHONES chamois leather earpiece, 25iP. P. $3 / 6$.

B-BANK UNISELECTOR SWITCEES. 25 contacts, alternate wiping e2 $2 / 15 /=8$ bank hal
25 contacts $47 / 6$. P.P. $3 / 6$
DESK PEONES. Black bakelite cares complete with hand set and Internal bell. 42/6. P. P. 6/•
ETGE-SPEED ELECTRO-MAGNETIC COUNTERS. EX-Govt. -999, $25 / 50$ r.D.C. Size $4 \times 1 \times 1 \mathrm{in}$. Single coil, $23,000 \Omega$. Single coil 000 2. 8/6- P.P. $3 / 6$
EX GOVT. BALANCED ARMATURE THROAT MIKES complete with plug, new. 7/6. P.I. $3 / 6$.
23 LISLE ST. (GER 2969) LONDON W.C. 2
Closed Thursuay 1 p.m. Open all day Salurday

Northern Polytechnic, Holloway, London, N. 7
The Governing Body invites immediate applications for appointment to the Department of Electronic and Communications Engineering as ASSISTANT LECTURER (Grade "B"). The lecturer will be concerned primarily with courses for Electronic Technicians covering the City \& Guilds of London Institute Examinations. He will be required to develop a wide range of original electronic experiments and industrial and/or teaching experience is essential. Salary scale-£1,025£1,695 with additions for qualifications; point of entry dependent on qualifications, training and experience.

Apply for form of application and further particulars
R. H, CURRELL, F.C.A. Clerk.

VALVE ENGINEERS

The Valve Division of E.M.I. Electronics Ltd. invite applications for the following vacancies in their Klystron Department:-

A Senior Engineer is required to pump, process and test high power microwave valves and to supervise the work of other Test Engineers engaged on similar work and operating low level test. benches.

Two Engineers are also required to assist with this work.

For the senior position the candidate should have H.N.C. and some experience with a valve manufacturing company is essential. For the more junior positions, experience in one of the technical branches of the Services would provide a suitable background. Some interest in vacuum systems, microwave work or modulation techniques is essential.

Please apply giving brief details of experience to:-

W. A. Garmston,

Group Personnel Department,
E.M.I. Ltd.,

Blyth Road
Hayes, Middlesex

HI-FI MAIL ORDER SPECIALISTS GOODS DESPATCHED BY RETURN CARRIAGE \& INSURANCE FREE! (UK) A selection from our extensive stock SPEAKERS
 Wharfedale Super 8, RB/DD Whartedale Super
 Coodmans Axiette 8 . Goodmans Magnum K system
 Quad Electrostatlo Speaker
 Tamoy 12in. Monitor DC Speaker Kelly Ribbon H.F., Mk. II
 Lowther P MOTORS
 Thorens TD150 AB, motor/arm/plinth Thareas 401 Transeription Unit Thorens TD124 Transeription Uni Connoissenr Classic, 2 -speed unit Garrard 8P25, motor and p/up arm AMPLCFIERS
 Leak Stereo 30 Transiator Amplifer Leak Stereo 20/ Varialope 2 Pre-amp. Quad 22 and 2 Qusd II Power ampe. Armstrong 222 Stereo Integrated Amp. Rogers Cadet III, stereo amp. and cont. Goodmans Maxamp Stereo Ampliffer Rediond SC22/STA15 Stereo Units TUNERS (8tereo Decoders extra) Quad AM II os FM Tuner, eact Leak Troughline III FM Tuner PIOK-UPS ARD CARTRIDGES Decca Deram Tranacription Cartridge Ortotion SLbTE Cartridge with trane

WORLD WIDE EXPORTERS

OVERSEAS ORDERS SENT FREE OF PURCHASE TAX AND SHIPPED PROMPTLY AT MINIMUM COST

Fully illustrated catologue 4/6. U.K. (Export 7/- or $\$ 1.00$
C. C. GOODWIN (SALES) LTD.
(Dept. W79) 7 The Broadway,
Wood Green, London, N. 22
Telephone: Bowes Park 0077/8
1 minute from Wood Green Underground
Open 9-6 Monday to Saturday (Thursday 9-1 p.m.)

TEST EQUIPMENT - SURPLUS ANDSECONDHAND

SIGNAL generators, oscilloscopes. output meters. Wave etc otc in stock R, etc., otc. in stock.-R. T. \& 1. Electroncs, Ltd., Ash
vilie Old Tall. Ashville Rd.. Lindon. E.11. Ley. 4986
CHAPMAN S5FM tuner, self powered, $16-50 \mathrm{M}$, 195 C $550 \mathrm{M}, 800-2.000 \mathrm{M}$ and $\mathrm{FM} 88-100 \mathrm{MCS}$, excellent performance and appearance: £35.-Tate, Greenflags. Limpsfield Common, Nr. Oxted, Surrey. Limpsfleld Chart 2181 eventngs.

RECEIVERS AND AMPLIFIERS-
 SURPLUS AND SEOONDHAND

HRO Rx5s, etc.. AR88, CR100. BRT400, G209. S640 H ete., etc. in stock. R. T, \& I. Electronics. Itd Ashville Old Hall, Ashvilie Rd., London, E.11. Ley.
4986.

MISCELLANEOUS

METALWORK, all types cabinets, chassis, racks, for small mllling and capstan work up to lin bar PHILPOTT'S METALWORKS, Ltd., Chapman Loughborough.

PACKAGING

CXPANDED Polystyrene mouldings for packaging, Ltd. Third Ave., E.12. Ilford 2699. Styester Plastics,

SPECIAL OFFER

watt S.T.C. $300 \mathrm{Mc} / \mathrm{s}$. N,P.N. Silicon Planar 100% Transistors. Limited stocks, f1 for six, with data
3/2 each. OC44, OC45, OC7U, OC71, OC8I, OC8ID, OC200, GETI6, GET20.

ZENER DIODES

$3 \cdot 9 \mathrm{v}$ to 26 v all votrs BETWEEN if $3 / \mathrm{k}, 1.5 \mathrm{w} 5 / \mathrm{m}$ 7 w 6/- each.
4/- each. AFII4, AFII5, AFII6, AFII7, OC170, OC171.
Send 6d. for full lists:-Inc. S.C.R., Zeners, etc. CURSONS,
78 BROAD STREET
CANTERBURY KENT
 As supplied to Gout. Depts., industry, schools.
SPECIAL DISCOUNTS FOR QUANTITY BUYERSI SPARE SPOOLS $3 \mathrm{in} .1 /=; 34 \mathrm{in}$. $1 / 6 ; 4 \mathrm{in} .1 / 8 ; 5 \mathrm{im}$, $2 /=; 5 \frac{3}{4} \mathrm{in}, 2 /=; 7 \mathrm{in}, 2 / 6 ; 8 \frac{1}{2} \mathrm{in}, 4 / 8 ; 10 \mathrm{in} .11 /=$ $2 /-; 5 \frac{3}{4} \mathrm{in}$, $2 /-j$ in. $216 ; 81 \mathrm{in}$, $4 / 6 ; 10 \mathrm{in}$.

An amazingly new ' spare age ' Interow sypterm
ned ing no sonnecting meding no conneeting
wiren between moits. simply plug into A.C. power point and talk.
communiation wins communieation being tarried through A.C. lower lines. Units cin
bee mored from ont locutlon to another without trouble. Incorparaten on/ani Foinme controf, push to zulk, Gimpiete "with operating lantruction
etc. 12 GNS. Palr. Pual free.

LAFAYETTE AIRCRAFT RECEIVER
LATEST IMPROVED MODEL HA-55A

Covers 108-136 Mc/m. Iister h, Alreraft Come.
municutions with thiz mumications with this
de luxe recelver. Two R.F. stanes with ocw Nuvistor for high senultivity. 11 vilive per: formance. Transinhorizel
mower supply. Built in power supply. Built-in
aqucheh. front panel phonte jack. Eaws read Iftuminated ollete
 $\times 7,1 \mathrm{~m}$. £19/T/6.

GARRARD RECORD PLAYER BARGAINS
rand new with maker' Cimarantee. Send S.A.E. for full list of other Garrard. units.

AUTO CHANGERS MODEL $9 \frac{1}{2}$ GNS. ${ }_{3}^{2} 0000$ EL 8 GNS. 3001 SPECIAL THIS MONTH
MODEL 1000
Mano or 5 GNS. SINGLE PLAYERS $\mathrm{MODEL}_{\mathrm{SP} 25}^{\mathrm{M}} 9 \frac{1}{2}$ GNS. MODEL 87/6 SRP12

87/6 Carr. $5 /$ - each. All
complete with $t / 0$ crystal cartridge.

15 LITTLE NEWPORT STREET, LONDON, W.C. 2

GER. 6794/1453
Open $9-6$ Mon-Fri.. 1 p.ni, Sat. Adjoining Leicester Square Tube

RADIO VALVE DATA

GHARACTERISTICS OF 7,000 VALVES TRANSISTORS - SEMICONDUGTORS DIODES AND RECTIFIERS CATHODE RAY TUBES
Compiled "WW" 8th edition. 9/6 Postage 1/.

PRINCIPLES OF LINEAR CIRCUITS, by E. A. Faulkner. 25/. Postage 1/6 PHASOR DIAGRAMS, by M. G. Scroggie. 27/6. Postage $1 / \mathrm{r}$.
INTRODUCTION TO RADAR, by D. Taylor 15/-. Postage
TRANSISTOR SUBSTITUTION HAND BOOK. 12/6. Postage $1 /$-. PRINCIPLES AND APPLICATIONS O BOOLEAN ALGEBRA FOR ELEC TRONIC ENGINEERS, by S. A.
HANDBOOK OF ELECTRONIC CIRCUITS by R. Feinberg. 50/~. Postage 1/6.
100 IDEAS FOR DESIGN '66, from Electronic Design. 15/-. Postage $1 /$-.
Inter: G.E.C. TRANSISTOR MANUAL 18/. Postage 1/9

THE MODERN BOOK CO.

BRITAIN'S LARGEST STOCKIST
of British and American Technical Books

19-21 PRAED STREET

LONDON, W. 2

Phone: PADdington 4185
Closed Sat. I p.m

K. Newton, M.C., B.Sc
A.C.G.I., A.M.Inst.C.E.
M.I.Mech.E., and
W. Steeds, O.B.E., B.Sc.
A.C.G.I., M.I.Mech.E

A standard and authoritative textbook for students. draughtsmen and ownerdrivers, providing an accurate but not unduly technical explanation of automobile engineering theory in a logical sequence. Both petrol and diesel engines are discussed in great detail, and the gas turbine as applied to vehicles is considered. It also includes sections on modern petrols, fuel and lubricating oils.

683 pp. 622 illustrations
63 s net. 66 s by post
From leading booksellers
Published by
ILIFFE BOOKS LTD., DORSET HOUSE, STAMFORD STREET, LONDON, S.E.I

EXCLUSIVE OFFER

PERMANENT OR TRANSPORTABLE STEEL 60-FOOT AERIAL TOWERS

As supplied to

 British and other Governments* Unique design.
* Scientific Construction.

Waving the following remarkable features.
\star Entirely self sapporting, requiring no kuys, staga, loun
dations, piakets or spikes, dations, piakets or spikes, or
ang attachment to any ${ }^{2}$ at
ground.

* Fitted with step ladder to th top and balcony with railine right round the top with both hands free.)
* 12 feet square at base taper ing to 6 leet square at top they are quite sale when ub ject to rale force winds and superficial area on top force of $60 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. They re quire around area of 20 feet square.
- Will support up to 2 tons ol equipment on top, the whol lowered to the ground by minutes mand raised in the same time.
erected and dismantled by 3 men.
* Breaks down lor orry lnto pats easily handled by 2 men; thy are no tnall loose parts, no nuts or bolts to get lost or dameged screws and adjustments are fully protected from rus and so designed to be free Irom damage when trans pored or left loose on the ground.
* Foolpronf-the Tower cannot be erected it not assembled correctly, No skilled labone is required and no apecia tools are necessary.
* Can be raised and lowered, erected and dismantled and renoved as many times an degired
* Everything necessary for the completo Tower to be pu no use and rissed and towered is provided; full drawing

These fine Towers were made in England by B.LC.C. and
oost the Government 22.200 each. They ore BRAND NEW and in naker's original packing. You can see one érected at our premises.

Cost $£ 2,200$
 Price Brand New £345

40-page list of over 1,000 different items in stock
a cuilable - leep one by you.

Carriage extra at cost on all above
We have a large quantity of "bits and pieces" we can probably help - all enquiries answered

P. HARRIS
 ORGANFORD - DORSET

WESTBOURNE 85051
WW-163 FOR FURTHER DETAILS

Radiospares Mtd. FOR ELECTRONIC COMPONENTS-BY RETURN

WW-164 FOR FURTHER DETAILS

BOARD OF TRADE (CIVIL AVIATION) TELECOMMUNICATIONS

The Board of Trade has vacancres for Radio Technicians at Airports, Air Traffic Control Centres, Radio Stations and other specialised Engineering Establishments throughout the United Kingdom.

The numbers and speed of air traffic today demands a complex, co-ordinated and reliable telecommunications system for airports, en-route navigation and air traffic control in order to ensure the highest standards of safety, The Department's Radio Technicians play a vital role in the installation, maintenance and technical operation of this system. Their duties embrace a wide range of equipment, including Primary Surveillance and Approach Radars, Secondary Surveillance Radars, Radio Navigational and Landing Aids, Radio and Line Communications, Electronic Data Displays, Closed Circuit T.V., Digital and Analog Computers.
Applicants should be aged 19 or over, of British nationality and possess a sound basic knowledge of Radio/Electronics with practical experience in at least one of the main branches of Telecommunications. The possession of formal qualifications would be an advantage.
Training on equipments and new techniques is provided at the Ministry's Civil Aviation Signals Training Establishment, Bletchley, Bucks.

Radio Technicians are encouraged to study for Technical and Professional Qualifications, and generous assistance, including past time and, in special circumstances, full time release, is provided.
There are good prospects of permanent pensionable posts and promotion to a higher class with a salary ranging from $£ 1,068$ per annum to $£ 2,227$ per annum.
Starting salary varies according to age; from $£ 747$ per annum at 19 to $£ 962$ per annum for entrants of 25 or over, and rises to $£ 1,104$ per annum. Annual leave is 3 weeks and 3 days, plus $8 \frac{1}{2}$ days for public holidays.
For further details apply to:-
Mr. J. J. Robinson, M.I.E.R.E., A.M.B.I.M.,
Board of Trade (Civil Aviation),
Room 754,
The Adelphi,
London, W.C. 2 .
radio communcations exhilition
(SEYMOUR HALL, OCT. 26-29th)

COME AND SEE US ON

MOST ITEMS AS ADVERTISED ON PAGE 118 OF THE OCTOBER ISSUE STILL AVAILABLE FROM sTOCK

P. F. RALFE

423 GREEN LANES, HARRINGAY,
LONDON, N.4. MOUNTVIEW 6939

Electronics

Provides a sound groundwork for understanding the basis of existing instruments and their applications; also of instruments which are likely to be invented in the future. A useful introduction for students of electronics, and a single course for students in other branches of science and engineering.
55 net by post 56 s 4 d 321 pp . 128 illustrations.
obtainable from leading booksellers

ILIFFE Books Ltd.

DORSET HOUSE, STAMFORD STREET, LONDON, S.E.I

TO ALL

Manufacturers, Wholesalers, Importers, etc. of the Radio and Electronic Industries
We are spot cash purchasers for all types of redundant and surplus stocks.
Phone or write Hillside 2713
Stonegrove 7624
Broadfields Disposals Ltd, 8, Broadfields Avenue, Edgware, Middx or
Mayco Products Ltd.,
21 Lodge Lane,
N. Finchley, N. 12

aABACITYAVAL-ABLE

 SOLARTRON D/B oscilloscope type CL A IRTRONICS. Ltd. for coll winding, assemb A wiring of electronic equipment, transistorised subunit, sheet metal work -3a, Walerand Rd., London, S.E.13. TEL LLECTRONIC MANUFACTURERS SER-sub-assemblies. wiring and transistorised electronic equipment.-Contact Wemscol. 60 , High st. Cowes.I.0.W. Tel. 3323 .

TEORNTCALTRADNINO

CTY \& Guilds (Electrical, etc.) on ". Satisfaction or details of modern courses in all branches of electrical details of modern courses in all brancies of electrica engineering i electronics, radio, T. ire. automation, etc, send for
152 K) Aldermaston Court, Aldermaston. Berks. [146 D.M.G. Certificates. City \& Guilds Examinations. radio, TV and electronlcs; study at home with world famous I.C.S.- Write for free prospectus, stating subject, to International Correspondence Schools (Dept「153

TRANSISTORISED TUNER CHASSIS

\star LONDON-10 Tottenham Courf Rd.
\& PORT8MOUTH-350-352 Fratton Rd. ㅊ SOUTHAMPTON-72 East St. * WORTHING-132 Montague St. K BRIGHTON-Devonian Court Parl.:25851 Alt Mail Order - Devonian Court, Park Crescent Place
BULK Order and 24-hour Robophone service Brighton 680722
BULK 1 sTEREO DECODERS (Arena 6 transistor complete), 7 Gna.
BUY = AM/FM STEREO RADIOGRAM CHASSIS (Normally 26 Gus.), 17 Gan.

TYPE FMTA1 Hight quality, low noise, battery or mains operation. Reproduction siands comparison with tuners costing 8 times as much. Come and hear it at any of our
branches of tend to Briphton woilhout delay as wee anticipate a branches of tend to Briphton wilhout delay as aee antieipate a
very heavy denand, This beautifull compact 6 Transistor machine (aize Bin. $\times 4 \mathrm{in} . \times 2$ in.), consists of a low noise frequency changer stage with smooth 2 gang tuning feeding. No less than thr ee IF Stages terminating ha double tuned discriminator and LF Stage giving ample output for all quality amplifiers. Operates with negligible drain for months of use from a P.P. 3 or any 9 volt battery.
Note Audio Amplifers of very interesting specfication in the course of preparation

MAGNETIC - TRL-90 - TAPE

Brilliant new range of fine quality Recording Tapes made for us by famous British Manufacturer to full specification, complete with leaders, trailers and stop foils.

FULLY GUARANTEED-ABSOLUTELY UNBEATABLE VALUE

Triple	Play (Polyester)	Double	Play (Polyester)	Long	Play	(P.V.C.)
3 in .	600ft. 12/9	3 in .	300ft. 5/9	3 in ,	225 ft .	4/3
4 in.	900ft. 17,6	4 in .	600 ft . 10/9	$4 \mathrm{in}$.	450 ft .	. 716
Sin.	1,800ft. 23/9	5 in .	1,200ft. 15/9	5 in .	900 ft .	11/6
$5 \frac{3}{7} \mathrm{in}$.	2,400ft. 29/9	57 in .	1,800ft. $19 / 9$	51 in .	1,200ft	ft. 13/9
7 in .	3,600ft. 39/9	7 in .	2,400fe. 23/9	7 in .	1,800ft	ft. 18/6
SPECIAL ECONOMY PACKS-STANDARD QUALITY P.V.C. (no Leaders, et						
	Long Play		Long Play		Double	e Play
3 in .	225it. 4 for 9/9	Stin.	1,200ft. 2 for $21 /-$	$5 \frac{3}{3} \mathrm{in}$.	1,800ft.	. 2 for 34/-
5 in .	9001ta 2 for 15/9		1,800ft. 2 for 26/-		2.400 ft .	. 2 for 42/-

NASH HOUSE ELECTRONICS

NASH HOUSE, NEW STREET, WORCESTER
Tel.: 26316

WW-167 FOR FURTHER DETAILS.

Thanks to a bulk purchase we can offer BRAND NEW

P.V.C. POLYESTER \& MYLAR RECORDING TAPES

Manufactured by the world-famous reputable British tape firm, our tapes are boxed in polythene and have fitted leaders, etc. The quality is as good as any other on the market, in no way are imported, used or sub-standard tapes. 24-hour desparch service.
Should goods not meet with full approval, purchase price and postage will be refunded.

We can also offer, BRAND NEW PRE-RECORDER LANGUAGE COURSES in GERMAN, FRENCH, SPANISH AND ITALIAN.
Each course consists of 26 step-by-step lessons recorded at $3 \frac{3}{3}$ i.p.s. suitable for and cwo- and four-track machines and supplied complete with handbook. Normal retail price $59 / 6$.

Our price, 19/6, per course.

STARMAN TAPES

28 LINKSCROFT AVENUE, ASHFORD, MIDDX. ASH 53020

WW-168 FOR FURTHER DETAILS

LAWSON HRAND NEW TELEVISION TUBES

LAWSON TUBES

18 CHURCHDOWN RD. MALVERN, WORCS.

Tel. MAL 2100.

FOR YOUR URGENT QUARTZ CRYSTAL UNITS

in styles B, C, D, J, K, and B7G (Glass) Holders

RING HYTHE 2735

50 kes to 150 kcs 1 mes to 20 mcs

Crystal Electronics Ltd. HYTHE, SOUTHAMPTON

WW-169 FOR FURTHER DETAILS.

Abstract

§TUDY radio. television and electronics with the City \& Guilds, R.T.E.B., etc.; also practical courses with equipment; all books supplied. Wr.te for free prospectus, stating subject, to I.C.S. (Dept. 442), Intertext House, Parkgate Rd., London, S.W.11. $\$ 102$ A.M.I.Mech.E.. A.M.I.E.R.E.. City \& Gutlds, G.C.E., pay and security. Thousands of passes. For details of Exams and Courses in all branclies of Engineering, Butlding, Electronles, etc., Write for 132 -page hand-book-free.-B.I.E.T. (Dept. 151K). Aldermaston Court. Aldermaston, Berks. Crthp learning

CLEEP learning and therapy; two revolutionary new techniques in their respective flelds of academic learning and mental heal possible by the invention of the modern tape recorder. possible dy the invention of the modern tape recorder, notice, master forelgn languages parts in plays or improve your mental powers: send now for free detalls of our sleep study recorder, time switch, pillow speaker, cassettes, induction and language tapes, and general information about these vital subjects.-Psycho'ogy information about these Vital subjects-Psycho Tapes Ltd., Dept. ATR. 16 , Kings College Rd., London, N.W. 3 Primrose 3314 . The foremost suppliers of Sieep-Learning Equipment in Britain.

The continually increasing demand for tubes of the very highest performance and reliability is now being met by the new Lawson "Century 99 " range of C.R.T.s.
"Century 99" are absolutely brand new tubes throughout, manufactured by Britain's largest C.R.T. manufacturers. They are guaranteed to give absolutely superb performance, needle sharp definition, screens of the very latest type giving maximum Contrast and Light output; together with high reliability and very long hife.
"Century 99 " are a complete range of tubes, in all sizes for all British sets manufactured 1947-1964.

Our stocks are very large and we can supply the EXACT tube you require by return. WW-170 FOR FURTHER DETAILS.

ROTARY TRANSFORMERS. Input 12 v. D.C. Output 275 v. 110 mA . Brand New, 27/6. Carr, 4/\%. 500 MICRO AMP. METERS. Panel mounting miniature type. 1 lin. dial. Brand New. $12 / 6$. VARIABLE TWIN GANG. Solid dielectric 190-210

11FT. WHIP AERIALS. 6 sections, copperized steel and painted. Dia. inin-fin. Complete with moulded base $21>3 / \mathrm{in}$. $9 / 6$ each. Post $1 / 6$.
TELESCOPIC AERIAL MASTS. Tubular Stee copperized spray finish. Ring cam locking on each copperized spray finish, Ring cam locking on each
section provides for full or any height required. section provides for full or any height required.
Suitable all fixings and base locations. 20 fr . -4 secSuitable all hxings and base locations. 20ft. -4 secSIGNAL GENERATOR
SIGNAL GENERATOR. Type 106. Coverage 5.5 Megs. to 55 Mers. Max. Sig. O/pus 10 M Molts. Brand New. Mandactured Salford Insts. £5. Carr. 10/3 KVA. AUTO TRANSEORMERS. 1101250 v . Mounted in steel case witn external hand voltag
regulator. 7 Taps. Brand New. $£ 12$. Carr. $10 /$.. HEADPHONES. Balanced armature, DLR5. Brand New. 9,6 pr Movias coil type, with ear muffs lor noise excluding. $12 / 6$ pr. Same fited-with moving coil mike, $17 / 6 \mathrm{pr}$. Carbon hand mike, 7/6 each.
TANNOY LOUDSPEAKERS. Ideal for all outdour uses enclosed in waterproof wooden case, complete with steel baffie designed to produce directional. reproduction at 5 watts. 7.5Ω. 27/6 each. Carr. $2 / 6$. R. 220 Mk.III RECEIVERS-Superhet complete with 302 ohm, built-in speaker 230-250 v. A.C. Mains power pack. Easily converted to amateur bands. Chassis only. Complete with valves. Less Xtal. £ $3 / 15 /=$ Carr. 5/-.
SMALL GEARED MOTORS. Working voltage 12-24 v. D.C. Overall size $4 \times 2 \times 2 \mathrm{in}$. $15 /-\mathrm{ea}$, Carr. $1 / 6$. Miniature blower motor $12-24$ v. D.C. 12/6 each. Carr. $1 / 6$. TRANSMITTER. BC 625, part of T/R. SCR522. Chassis only. Complete with valves, excepl 832's and Relay. Range $100-156 \mathrm{Mc} / \mathrm{s}$. 21/- ea. Carr. U.K. $4 / \mathrm{F}$. LINEAR ACTUATOR. 24 or 12 v. D.C. Will operate 100 lb . load in either direction. 3 in . travel through 38 SETS operated gearbox. $£ 4 / 10 /-$ eacb. Carr. $3 / 6$. 38 SETS - $6-9 \mathrm{Mc} / \mathrm{s}$. New condition. Complete with valves. Untested. 21/6 ea. Carr. 3/-. 37/6 pr. Carr. 5/-.
SIEMENS MINIATURE RELAYS, Size $1 \frac{1}{1} \times 1 \times$ ${ }_{4} \mathrm{in}$. Res. of coils 250 ohms. 2 pole 2 way contacts, contact rating up to 2 amps. 6/- ea. P.P. 1/-
SIEMENS HIGH SPEED RELAYS. H96B type 50 -50 ohms., 6/- ea. ; Type H96D $500+500$ ohms.,
$6 /$ ec..; Type H96E $1,700+1,700$ ohms, $7 / 6$ each. "TTELE L" TYPE FIELD TELEPHONES. These telephones are fitted in strong steel case complete with Hand Gen; for calling each station. Supplied in new condition and tested. 70/- per pr. Carr. 6/6.
POST OFFICE TYPE RELAYS. 3,000 sers. $2 \mathrm{c} / \mathrm{o}$: 2 m .: slugred coil 140 ohms.; 2 c/o: 2 m . coil 1,000 ohms: 2 c/o slugged coil 500 ohms. All at $6 /$ each. D.P.CO. AERIAL CHANGE-OVER RELAY. 12 v . D.C. coil, heavy silver contacts. American Surplus. 12/6 each, Carr. I/-
MORSEXEYS complete with leads, terminals and cover, 6/6 each
PRESSURE GAUGE. 2 in . round brass case,
0 - 160 lb . $9 / 6$ each.
MINIATURE PLUGS AND SOCKETS. 8 way Jones, $3 / 6$ pair.
VIBRATORS. 6 v. 4 pin, 12 v. 4 pin; 12 v. 7 pin. Syn. All 6/- each. ELECTRO MAGNETIC COUNTERS. Register up to 9999 , coil res. 30022 ohms. 5/- ea.
ELECTRIC PUMPS. $24 \times$ D.C. Overall size $7 \times 2 \frac{1}{2}$ $\times 2 \mathrm{jin} .7$ G.P.H. Brand New. 37/6 ea. Carr. 2/HYDRAULIC RAMS. Ministure. 200 P.S.I. WT. $\frac{1}{2} \mathrm{~b}$. Sin. travel 3 in, serewed extension. Gimbal fitting one end. 9in. lon, cylinder $2{ }_{3}^{3} \times 3 \frac{1}{2} \mathrm{in}$. Brand new, $30 /=$ es. incl. carr.
P.O. TYPE Desk Telephones, black only. Brand new, boxed, 27/6. Carr. 2/6.
P.O. TYPE TELEPHONE HAND GENERATORS. 38 v. A.C. In black wood cabinets. New. 6/\%. Carr. MODULATION TRANSFORMERS. 150 watts. suitable for pair 813 s , driving 813 s . Size: 6 in . $\times 55 \mathrm{in}$. $\begin{array}{ll}\text { suitable for pair } 813 \mathrm{~s}, & \text { driving } \\ \times 313 \mathrm{~s} . & \text { Size: Gin. } \\ \times 3 \text { Sin. Brand new, boxed. Price 27/6. Carr. } 2 / 6 \text {. }\end{array}$
S.A.E. all enquiries

OFRECT PRINTED CIRCUITS

Any quantity Top quality
All design work undertaken, sub contract division will assemble printed circuits and also build any Electronic equipment. Very handy service. Try it. Contact:

Ofrect Electronic Systems Ltd.
Hale Lane, Failsworth, Manchester. 061 FAi 6380 WW-173 FOR FURTHER DETAILS.

MAMUFACTURERS OF ELECTRONIC EQUIPMENT
Can we assist you by manufacturing Control Panels, Assemblies, Sub-Assemblies. Long or short runs. Quality guaranteed.
Rock : Taylor Ltd., Hayes Lane Trading Estate, Lye, Worcs. Tele:- Lye 2807/2822

WW-174 FOR FURTHER DETAILS.

DINSDALE AMPLIFIERS
Printed Circuits and parts for Mono and Stereo units "W.W." F.M. TUNER. Printed Circuits and all parts available, including R.F. Assembly.
MULLARD PI-MODE 10 W . AMPLIFIER. Official Mullard Board now available, also Printed Circuit Preamplifier for Guitar use with two channel input and tremolo. S.A.E. for lists.

HART ELECTRONICS
321 Great Western Street, Manchester 14
WW-175 FOR FURTHER DETALLS.

[^24]

TELECOM MK. II Pocket size V.H.F. 118-136 Mc/s AIRCRAFT BAND TRANSISTOR RECEIVER
complete with telescopic aerial, loudspeaker and battery. £26.0.0
carr. paid in U.K

BRITEC LIMITED
17 Charing Cross Road,
London, WC2
WHItehall 3070
WW-177 FOR FURTHER DETAILS.

M TANNOY. N

For Sound Sense

WEST NORWOOD LONDON SE27 GIPSY HILL 1|31
WW- 178 FOR FURTHER DETAILS.

The PUNCH you need!

 HOLE PUNCHESInstant Type
lin. diameter
Serew-up Type
15/32in. diameter Toggle switch
6/10 ea.

No extra charge for postage and packing in the

Tompkins \& Longman

237 GIPSY ROAD, WEST NORWOOD S.E. 27

Tel.: Gipsy 5000

Quartz Grystal Units

For
ACCURACY

RELIABILITY

PRICE ECONOMY

you can
DEPEND
Write for
illustrated
Brochure \&
on
THE QUARTZ CRYSTAL CO. LTD.
Q.C.C. Works, Wellington Crescent,

New Malden, Surrey (MALden 0334 \& 2988)

WW-180 FOR FURTHER DETAILS.

SILICON PLANARS

We can now offer high-gain planar epitaxials at reduced prices. NPN, 18 v., $200 \mathrm{~mW} ., 200 \mathrm{Mc} / \mathrm{s}$. a.f. noise 2.8 dB . 2 N2926 Orange ($\beta=90-180$ at 2 mA), 3/6; Yellow (150-300), 3/9; Green (23S 470). $4 / 6$.

Also Texas types: 2N3702 (PNP), 5/6; 2N3704 (NPN), 6/-; 2 N3707 (NPN low noise a.f.), 6/-; T1407" (NPN low noise v.h.f.), $1 /$.
COMPLEMENTARY MATCHED PAIRS for transformerless output stages. 2N2926/3702, 9/transformerless out
WIRELESS WORLD DESIGNS. For 1.5 v Receiver (October), 2N2926 Orange. For ransistor Millivoltmeter (March) use 2N3702 and 2 N3707. For pulse-counting discriminator (July) use any 2N2926
Cash with Order. U.K. Post Free over 5/AMATRONIX LTD. 396 Selsdon Rd. Croydon.
E.M.I. WM5 MEASURING OSCILLOSCOPE 230 v. mains Console model. Volts and Time $\pm 2 \%$ 230 v . mains Console model. Volts and Time $\pm 2 \% \%$
$100 \mathrm{mV}-500 \mathrm{v} . \mathrm{A}$. C. $/ \mathrm{D} . \mathrm{C}$. and $.02 \mu \mathrm{~S}-.1 \mathrm{~S}$. Balanced $100 \mathrm{mV}-500 \mathrm{v}$, A.C./D.C. and $.02 \mu \mathrm{~S}-.1 \mathrm{~S}$. Balanced
X and Y amp-, D.C. $25 \mathrm{Mc} / \mathrm{s}$. (Y). Time base X and Y amp., D.C. $25 \mathrm{Mc} / \mathrm{s}$. (Y). Time base
pulse \mathbf{O} / P. Signal delay . $1-.6 \mu \mathrm{~S}$. Variable EHT and pulse O/P. Signal delay . $1-.6 \mu \mathrm{~S}$. Variable EHT and extremely fast time base for transient studies, Stabilized power supplies, Complete scope weighs nearly 3 cwt. Price as New with service manual, C85
AVO 8, New 1965, £14.
FERRANTI STABILIZED POWER SUPPLY 230 v. mains. Outputs .7-2.4 Kv. Adiustable and 300 v. 120 mA ; 10 valves, metered; instructions used, £4.
G.P.O. SOLDERING IRON HEATER

For 230 v. 15 A supply. Contains carbon electrodes, 415a. low voltage transformer, circuit breaker, selector switch and timer. New condition, f 7.
200A MAINS TRANSFORMER
9 v , ex equipment, $90 /=$
MULLARD 510 amplifier. Built 1964, 100/-. MULLARD 2 valve pre-amp. Built 1964, 70/-. JASON FMT2 TUNER, recently completed, but faulty, 50/-.
HEATHKIT SSU1 SPEARER SYSTEM, enclosure unpainted, $85 / \mathrm{l}$.
All the above are surplus to requirements, due to business reorganisation, and are guaranteed sound. Offers welcomed for complete lot. All letters answered. WORKSHOP 1, BRYN, FOURCROSSES, PWLLHELI

WW-182 FOR FURTHER DETAILS.

RESISTANCE WIRES EUREKA - CONSTANTAN Most Gauges Available

NICKEL-CHROME MANGAN

 NICKEL-SILVER
COPPER WIRE

ENAMELLED, TINNED, LITZ, COTTON AND SILK COVERED SMALL ORDERS PROMPTLY DESPATCHED B.A. SCREWS, NUTS; WASHERS soldering tags, eyelets and rivets EBONITE and BAKELITE PANELS. TUFNOL ROD, PAXOLIN TYPE COIL FORMERS AND TUBES. ALL DIAMETERS SEND STAMP FOR LIST. TRADE SUPPLIED

POST RADIO SUPPLIES

33 Bourne Gardens, London, E. 4 Phone: Clissold 4688

WW-183 FOR FURTHER DETAILS.

PPECIAL OFFER! ARMSTRONG,
GARRARD, GOOD. VANS Units on $33 \frac{1}{7}$ Dep., Bal
nonths.
4.L. Stamford Ltd. 18 Weymouth Terr. London, E.2.

WW-184 FOR FURTHER DETAILS.

R \& R RADIO \& TV SERVICE

MAREET STREET. W.W.* BACUP, LANCS. valves

salvage valves						
BF^{13}	4/6	10P14	5	PLA?	3/6	$301 \mathrm{P16}$
$6 \mathrm{L18}$	4/6	20 P 3	0/6	U801	7/6	$1 \mathrm{CCOS4}$
EP80	1/6	SOP4	7/	101*1	1/6	PCL83
ECC82	3 -	$6 \mathrm{Fl15}$	$5 /-$	$20 \mathrm{~F}^{2}$	5/6	PY81
ECLL80	$3 /-$	E891	1/-	30 FLL	31-	U301
30 F 5	万)-	4F89	51	PY32	3i-	10 Pl 3
PL38	61.	H1337	61.	6 CHOT	51.	20DI
PUF80 \|	+1-	9013	6i-	${ }^{615}$	1/6	50P13
PL81	b-	30 PL 1	6i-	EY88	4/0	PY8\%
P730	B-	Plati	$6{ }^{6}$	20184	1/6	PY800

Speakers. Ex. TV. 6×4 in., $3 / 6$; 8 in . round $6 /-:$ post $2 /$.
 Sean Coils. etc. Quote model No. with all enquirics and money refundet. MW $43 / 60$ Tubes, GOOD EMIRgIOS el. CALLERS ONLY.

WW-185 FOR FURTHER DETAILS.

DAMAGED
 METER?

Have it repalred by Glaser
Reduce overheads by having your damaged Electrical Measuring Instruments repaired by L. Glaser \& Co. Ltd.

INSTRUMENT

REPAIRS We spectalise in the repair of all types and makes of Vollmeters, Anmeters, Microammeters, Multirange Test Meters, Electrical Thermometers, Recording Instruments, etc.
As contractors to various Government Departments, we are the leading Clectrical Instrument Repairers in the Industry. For prompt estimate and speedy delivery the Industry. For prompt estimate and speedy delivery send defective
to Dept. W.W.

L. GLASER \& CO. LTD.
 1-3 Berry Street, London, E.C. 1 Tel. : Clerkenwell 5481-2

WW-186 FOR FURTHER DETAILS

SURPLUS HANDBOOKS

19 set Circait \& Notes

 $46 \mathrm{p} / \mathrm{p} \quad 6 \mathrm{~d}$1155 set Cireuit \& Notes .
38 set Technjical Instructions
38 set Technjeal Instruetions
48 sef Working Instructions
88 set Technical Instructions.
BC. 221 Circuit \& Notes
Wavemeter Class D. Tech. Ime.
18 set Circuit \& Notes
BC. 1000 (31 set) Circuit \& Notes
CR $100 / \mathrm{B} 28$ Circuit \& Not
A.R.88D Instruction Manuai

62 set Circuit \& Notes
52 set Sender and Receiver Circuits
$6 d$
$6 d$

Circuit Diagrams 3/- each post free. 25 s . 26, A.11:34, T.1154
R.1116/A, R.1224/A, R.1355, BF. 24. (all models) BC 342, BC 312. BC 348J, E. M. P. R- BC B24. 22 SET Resistor Colour Code Indiostor, $1 / 6$, p/p fd .
Postage Rates apply to O.K. only.
Mail order only to:
INSTRUCTIONAL HANDBOOK SUPPLIES, Dept. W.W. TALBOT HOUSE, 28 TALBOT GARDENS, LEEDS, 8.

WW-187.FOR FURTHER DETAILS.

50 mxei
 wirsite TRANSISTORS
 masact

IDEAL EXPERIMENTS, KIT BUILDER, HOBBYIST
 POSTAGE \& PACKING $1 / 0$ VOLTAGE RANGE 50-400 PIV. I AMP (TO - 5) FREE SILICON CONTROLLED RECT. CIRCUIT diagrams.
BI-PAK SEMICONDUCTORS
8, RADNOR HOUSE, $93 / 97$ REGENT ST., LONDON, W.I.
WW-188 FOR FURTHER DETAILS.

TRANSISTOR BARGAINS

3/-EACH.OC44, OC45, OC71, OC72, OC75, OC8I, OC8ID.
4/-EACH. AFI|4, AFl|5. AF||6, AFI|7, AF||8, AFI26, AF127, AFI28, OCI70, OCI71, OCI72. ALL THE ABOVE ARE FULLY TESTEO ANO GUARANTEEO. Also available untested unmarked Translatory 40 for 10/A. MARSHALL \& SON

28 Cricklewood Broadway, London, N.W. 2 Tel. No. GLa 6161

WW-189 FOR FURTHER DETAILS.

ADJUSTABLE HOLE E WASHER CUTTERS

The right tool for trepanning holes $1^{\prime \prime}-12 \frac{1^{\prime \prime}}{2}$ in diameter In our range of 17 Madels

Write for illustrated brochure of our full range with straight or Morsetaper 1-4or Bitstock shank All models ovoilable from stock
AKURATE ENGINEERING CO. LTD. Cross Lane, Hornsey, London, N. 8 TEL. FITEROY' 2670

OSMABET LTD.

WE MAKE TRANSFORMERS AMONGST OTHER THINGS AUTO TRANSFORMERS, 200-220-240v. a.c. up or down, tully shrouded fitted trrminal blocke, 50w. 22.6; 75w. 27/6; 100w 32/6: 100w. 37/6: $200 \mathrm{w} .55 /-; 300 \mathrm{w} .70-; 400 \mathrm{w} .85 /-; 600 \mathrm{w}$ MAOFS ISOLATION TRANSFORMER
MAINS ISOLATION TRANSFORMERS, Double wound, 200 MAV, i.c., $1=1$ ratio. $200 \mathrm{w} .110 /-; 500 \mathrm{w} .240 / \mathrm{F}$

 tapped sec. $6 \cdot 10 \cdot 1 \overline{1}-20 \cdot 2 \sigma-31-35-40 \hbar \bar{\omega}-60,10-0 \cdot 10, \quad 20-0-20$, CHARGER TRANSFORMERS, PHm, $200 / 240 \mathrm{v}$, a.c., for charglag 2-6-12v., 1a., 15/-; \%it. 22/6; 4a. 28/-; 63. 32/6. Bridge contact 24v. TRANSFORMERS, Prim 200/240t. a.c., Sec. 3 a . $60 /=$ 24V. TRANSFORMERS, Prim 200
5 a.
82/6; 8a. 120/-; 12a. $157 / 6$.
Carriage extra all transformers $3 / 6$ each.
TRANSFORMERS WOUND TO YOUR SPECIFIOATION BULK TAPE ERASER and head demarnetiser, 200260 m anitable any size spool, any type head, 35% Leaflet S.A.E BATTERY ELIMINATOR, PP9, Input 200/250s. a.c., outpat 2x, d.c. 150 Ma., $45 /-;$ P1'3 $25 \mathrm{Ma}, 17 / 6$. Leatiet 8.'A.E.
 $30 /=$; 12ins. $27 / 6$; 12ins. with tweeter $32 / 6$. Carrlage all speaker CON DENSERS. Electralytice, 5000/50v., 15/-: $2500 / 50 \mathrm{v}, 7 / 6$; $5000 / 12 \mathrm{v} .4 / 6 ; 1000 / 25 \mathrm{v} .3 / 6 ; 500 / 330 \mathrm{v} .12 / 6 ; 600 / 50 \mathrm{v} .3 / 6$ $200 / 450 \mathrm{v} .5 /-; 100 / 350 \mathrm{v} .3 / 6 ; 100 \times 400 / 300 \mathrm{v}$. $5 / \% ; 100 \times 200$ 350 v . $5 /-$

12 volt FLUORESCENT LIGHTING
TRANSISTOR INVERTERS
Model Ll, Operates twin 4,6 or 8 watt fluorescenc mains tubes. 85/-, Carriage $2 / 6$.
Model L2, Operates singles 13 watt fluorescent mains tube, $82 /$-, carriage $2 / 6$.

FLUORESCENT LIGHT FITTING
Operates 2 ft . 20 watt mains fluorescent tube, less tube $66 / 10 /$: plus $3 / 6$ carriage.
Comprehensive range of inverters and fittings for 6. 12 or 24v. S.A.E. illustrated literature.
S.A.E. all enquiries please. Mail Order Oaly 46, KENILWORTE ROAD, EDGWARE, MIDDLESEX Tel. : STOnegrove 9314.

AMERICAN

TEST \& COMMUNIGATIONS EQUIPMENT AN/ARC-3 V.H.F. Transceivers.
AN/VRC-19 \& -19X Mobile F.M. Transceivers. Freq. $152 / 174 \mathrm{Mc} / \mathrm{s}$. P.O. 25W

Supply/V 24 and 12 respcctively, Price \&10 and £12.
AN/URC-4 \& AN/URC-11 V.H.F./U.H.F. "S.O.S." band "HandyTalkies."
AN/ARN-6 \& AN/ARN-44 Compass Receivers AN/ARN-14 Power supplies DY-66.
AN/FPN-13 X band Radar Beacons.
BC-1332 Transmitters (P.O. AN/MRN-3 I.L.S.).

CU-168/FRR $2 / 32$ Mc/s Antenna Couplers. T-216/GR XTL Controlled Signal Generator $225 / 399.9 \mathrm{Mc} / \mathrm{s}$.
LA-239 "Lavoie" Oscilloscopes. SM-26A/U Antenna Position Simulators. TS-268E/U Crystal Rectifier Test Sets. TS-27/TSM Precision R-C Bridges. TS-297/U General purpose Multimeters. TS-382D/U AF/RF Signal Generators, 20 $\mathrm{cps} / 200 \mathrm{kc} / \mathrm{s}$.
TS-147A/UP Radar Test Sets.
TS-917A/CG (Stelma TDA-2) Telegrapli Distortion Analysers
ME-22/PCM Decibel Meters-45/+25 DBM. DuMont 241 5in Oscilloscopes Price £19/10/-. Leeds \& Northrup Resistance Bridge Type 543A.
Tektronix $541 \& 543 A$ spare Tubes Type 5BHP2. Price £14.

* GENERAL CATALOGUE AN/102 $1 /-\star$

SUTTON ELECTRONICS
Salthouse, Nr. Holt, Norfolk.
Cley 289.

WW-190 FOR FURTHER DETAILS.

CAPACITY 15pf to $111 \mu \mathrm{~F}$ RESISTANCE 0.1Ω to $100 \mathrm{~K} \Omega$ INDUCTANCE 1 mH to 10 H VOLTAGE DIVIDERS and WHEATSTONE BRIDGES

LIONMOUNT \& CO. LTD. BELLEVUE ROAD, NEW SOUTHGATE, LONDON, N.II, ENGLAND. Tol: Enterprise 7047.

WW-191 FOR FURTHER DETAILS.

TRAIN TODAY FOR TOMORROW

Start training TODAY for one of the many first-class posts open to mechnically qualified men in the Radio and Electronics industry. ICS provide specialized training courses in all branches of Radio, Television and Elec-tronics-one of these courses will help YOU to get a higher paid job. Why not fill in the coupon below and find out how?
Courses include:

- RADIO/TV ENG. \& SERVICING
- AUDIO FREQUENCY
- Closed circuit tiv
- ELECTRONICS-many new courses
- ELECTRONIC MAINTENANCE
- INSTRUMENTATION AND SERVOMECHANISMS
- COMPUTERS
- PRACTICAL RADIO (with kits)
- NEW PROGRAMMED COURSE ON ELECTRONIC FUNDAMENTALS
Guaranteed Coaching for:
- Inst. Electronic \& Radio Engs.
- C. \& G. Telecom. Techns' Certs.
- C. G. Supplementary Studies.
- R.T.E.B. Radio/T.V. Servicing Cert.
- Radio Amateurs' Examination
- P.M.G. Certs. in Radiotelegraphy

THE ONLY
 COMPREHENSIVE range of record maintenance EQUIPMENT IN THE WORLD!

Send stamps value 9d. for 16 page booklet and supplementary data sheet Nos, I and 4 giving the fullest and latest information.
CEGIL E. WATTS LIMITED Darby House
Sunbury-on-Thames, Middx.
WW-192 FOR FURTHER DETAILS.

The specialists

in design and production of high grade sound equipment gramplan reproducers ltd Grampian Hanworth
Trading Estate. Feltham, Middx.
For straight dealing deal with Grampian
WW-193 FOR FURTHER DETARLS.

Closed Dec. Ist-Dee. 3Ise for Annual Holidays.
WW-194 FOR FURTHER DETAILS.

RADIO VALVE DATA

8TH ED. BY "WIRELESS WORLD"
Characteristics of approx. 7,000 types of British Valves, Transistors, Semiconductors, Rectifiers Valves, Transistors, Semiconductors, Rec
and Cathode Ray tubes. 9/6. P. \& P. 1/\%.

ABC's of Stlicon Controlled Rectifiers, by Lytel. 16/-: P. \& P. I/-,
Transistor Pocket Book, by Hibberd, 25/-. P. \& P. $1 / 3$.

Amateur Radio Handbook, by R.S.G.B. 34/-. P. \& P. 3\%-
R.S.G.B. Amateur Radio Call Book, 1967 ed. 6/-. P. \& P. 9d.
Transistor Specification and Substitution Handbook, by Techpress 1967 ed. 22/6. P. \& P. 1/-.

Beam Antenna Handbook, new 2nd ed., by W. Orr. 28/-. P. \& P. 1/3.
V.H.F. Handbook, by W. Orr. 22/6. P. \& P. $1 / 3$ Computer Circuit Projects You Can Bulid, by Boschen. 21/-. P. \& P. 1/-.

Where possible 24-hour service guaranteed

UNIVERSAL BOOK CO. 12 LITTLE NE WPORT ST., LONDON, W.C. 2

(Leicester Square Tube Station)
WW-196 FOR FURTHER DETAILS.

DEIMOS Lт TAPE RECOKDERS FOR RESEARCH, INDUSTRY AND PROFESSIONAL AUDIO single and multichannel 8CORWELLLANE, HILLINGOON, MDX.

WW-197 FOR FURTHER DETAILS.

BOOKS

R ADIO Designer's Handbook." Edior, F. Lang(U.S.A.), A.M.J.E. (Aust.), a comprehensive reference book, the work of 10 authors and 23 collaborating en gineers, containing a vast amount of data in a readily accessible form; the book is intended especially for those interested in the desngn and application of radio mission and industrial electronics have been excluded in order to limit the work to a reasonable size. $65 /-$ net from all booksellers. By post $67 / 9$ from Ilifte Books, Ltd., Dorset House, Stamford St.. London, S.E.I.
"WIRELESS Servicing Manual." W. T. Cocking. which since 1936 has been known to radio of a book Which since 1936 has been known to radio servicemen everywhere as a rellable thorough and comprehensive
guide to solving most of the problems that arise in the repait, maintenance and adjustment of the modern radio receiver. In the present edition a major addition is a chapter devoted to transisters and transistor sets. The author of "Wireless Servicing Manual" is well known to a wide circle of readers as former dustrial Electronics." His crisp, lucld style makes this hastrial Electronics, of His crisp, lucid style makes this amateur alike $25 /-$ net. $26 /-$ by post irom Iliffe Books Ltd., Dorset House. Stamford St., London. S.E.I.

Beat the Squeeze \star NO DEPOSIT TERMS 12 MONTHS TO PAY

We are pleased to offer all Radio, Gramophone and Tape, Hi-Fi Equipment on payment of the first of 12 monthly instalments. All goods guaranteed by us. Let us have a note of your current requirements. We will quote by return.

Part Exchanges: After Sales Service Send for latest Bargain List of Package Deals ex. dem. and second-hand equipment, selected items at a discount for cash.
NRS/WW 16 King's College Rd., London, NW3 Primrose 3314
WW-198 FOR FURTHER DETAILS.

RETURN OF POST DESPATCH
 Five Valves: ECH81. EP89, EBC81, EL84, EZ80.
12 Month guarantee. A.C. $200-250$ v. Ferrite Aerial A.V.C, 5 watts 3 ohm. Chassis $13!i n$. x 7in. high x bin. deep, Dial size 13in. $X 4$ in Two Pilot Lamps. Four Knobs, Aligned calibrated. Chassis isolated from mains.
"CONTINENTAL" AM-FM Stereo Chassis" e8a/lo/(Lasflets available for eaoh modeld)
FM TUMER 88-108 me/s. Six transistor Soperbet. Resdy built, Printed cirouit. Calibrated slide dial tuning. Size bin. 88 $\times 4 \mathrm{in}$. $\times 2$ 2in. Ready made and gnaranteed Leady builh. Printed circuit. Ferrite, acrial. Sizansistor Superbet. $\times 34$ in. $x 1$ in. Ideal ior tape recorders. Ready builit $79 / 6$ EIGE GAIN TV. PRE-AMPLIFIER BAND I B.B.C. Tunable channels 1 to 5 . Gain 18 dB . ECC84 valve Kit price $32 / 6$ or 55/- with power pack. Details 6d.
BAND Im LT.A.-same prices, Tunable channels 7 to 13 . Band I or III. Coils and cirouit prices, Tunable channels I or III. Coils and circuit only, $9 / 6$. Chassis $4 / 9$.
BLANK ALUMTNTUM CHASSIC. 18 moder ready built. 751-. BLANK ALUMINTUM CHASSIS. $18 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. 2tin. sides, $7 \times 4 \mathrm{im}$, 5/6; $8 \times 7 \mathrm{in} ., 6 / 6 ; 11 \times 3$ in. $6 / 6 ; 11 \times 7 \mathrm{in} .7 / 6 ; 13 \times 8 \mathrm{in}$. 8/6; ALOMINIUM PANELS 18 s.w.g. $12 \times 12 \mathrm{in}$. $5 / 6 ; 14 \times 9 \mathrm{in} .4 / 6$; 12×8 in. $3 / 6 ; 10 \times 7$ 7in. $2 / 9 ; 8 \times 6 \mathrm{in}$. $2 /-; 6 \times 4 \mathrm{in}$. $1 / 6$.

STELLA RECORD PLAYER AMPLIFIER 4 watt. 2 stage. 3 to 7 ohms. Neg. leedback UCL82, UY85, $200-250$ v. A.C. tapped inpat. Chassis size $8 \times 2 i \times 4 i n$. high. Polished Wood Panel $6 \times 2 \mathrm{in}$. Brand Now with $78 / 6$ maker's guarantec. Bargain price, P. \& P. 1/6, $78 / 6$

ADD-ON BABY ALARM UNIT All Transistor. For ans make of T.V. or Radio. Only three porided and instructions for use with all makes. Citcuit provided and instructions for use with anl maikes. $30 /=$
No battery tequired. Ready built and guranteed. No battery tequired. Ready built and gararateed.
Complete with miorophone.
Barrain price. Post free.

CLASSIFIED ADVERTISEMENTS Use this Form for your Sales and Wants

To "Wireless World" Classified Advertisement Dept., Dorset House, Stamford Street, London, S.E.I PLEASE INSERT THE ADVERTISEMENT INDICATED ON FORM BELOW

- Rate: 6/. PER LINE. Average seven words per line
- Name and address to be included in charge if used in advertisement.
- Box No. Allow two words plus 1/-.
- Charges etc., payable to "Wireless World" and crossed "\& Co."
- Press Day 7th November for December 1966 issue.
\qquad
\qquad
\qquad

Piease write in block letters with ball pen or pencil.
NUMBER OF INSERTIONS.

Solve your communication problems with this new 4-Station Transistor Intereom system (1 master and 3 subs). in de-luxe plastic cabinets Master to Subs and Subs to Master. Operates on Master to Subs and Subs to Master. Operates on one 9 v . battery. On/off Switch. Volume control. ideally suitable to modemise Omce, Factory, Workshop, Warehouse, Hospital, Shop, etc, for instant inter-departmental contacts. Complete with 3 connecting wires, each 66ft. and other acces-
sories. Nothing else to buy. P. \& P. $4 / 6$ in U.K.

Tracter IEPPHONEAMPITIER Usuollyben

Why not increase efficiency of Ofice, Shop and Warehouse with this incredible De-luxe Portable Wransistor TEIEPHONE AMPLIFIER which enTransistor TELEPHONE AMPLIFIER which enconverse without holding the handset. A status converse without holding the handset. A status symbol? Yes. but very userul one. A mustume every telephone user. On/on switch. Which lasis Control. Operates on one 0 v . battery which lasts P. \& P. $2 / 6$ in U.K. Add $2 / 6$ for Battery.

WEST LONDON DIRECT SUPPLIES (W.W.), 169 Kensington High Street, London, W. 8

INTERCOM/BABYALARM

This wondertul TWO-WAY TRANSISTOR INTERCOM consists of two units-Master and Subin Ivory plastic cabmets with chromum stands. Operates on one inexpensive battery. Call, talk or listen from Master to Sub and Sub to Master. On/off switch. Full Volume ControL IDEAL AS A BABY ALARM. Or communicate with your neighbour or listen for telephone bell in other room. Hundreds of other uses. Indispensable in Home, Shop, Nursery, Surgery and Office. A boon for spastics and disabled. Saves shouting and walking up and down the stairs. Complete with 60 ft , connecting lead. Battery $2 / 6$ extra. Ready operate. P. \& P. 2/6 in U.K.

INDEX TO ADVERTISERS

Appointments Vacant Advertisements appear on pages 121-130

TOTAL PERFORMANCE

illustrated
R300 BENCH STRIPPER

ILLUSTRATED
L64 IN PROTECTIVE SHIELD L700

For full information and sales apply direct to

ADCOLA PRODUCTS LTD ADCOLA HOUSE, GAUDEN ROAD, LONDON, S.W. 4.

CANADA
Ersin Multicore 5 Core Solder being used to solder Philco Auto Radios at the Philco factory, Don Mills, Ontario, Canada.

holland
Ersin Multicore Savbit Alloy is used by Bull Nederland N.V., Amsterdam, Holland, for the assembly of administration and statistics machines.

hollano
Ersin Multicore 5 Core Solder is used for soldering printed circuit boards by N. V. Eminent ${ }_{\mu}$ Bodegraven, Holland.

INDIA

A motor being assembled with Ersin Multicore 5 Core Solder in the factory of M/S A.E.I. Manufacturing Co. Lid., Calcutta, India.

DENMARK
Ersin Multicore 5 Core Solder being used for the manufacture of high quality electronic instruments at the factory of A/S Brüiel \& Kjaer, Naerum, Denmark.

FINLAND
Ersin Multicore 5 Core Solder being used in the hand soldering of printed circuit boards for Television Receivers on an assembly line at a factory in Finland.

(3) © © reliability

Engineers and technicians are invited to, write on their Company's letter heading for the booklet "MODERN SOLDERS" containing data ion melting points, alloys, etc.
MULTICORE SOLDERS LTD.,
Hemel Hempstead. Herts.
Telephone: Hemel Hempstead 3636. Telex: 82363.

[^0]: PUBLISHED MONTHLY (3rd Monday of preceding month). Telephone: Waterloo 3333 (70 lines), Telegrams/Telex: Wiworld lliffepres 25137 London. Cables: "Ethaworld, London, S.E.1." Telegrams Suleriptions: Home £2 6s Od. Overseas: $£ 215 \mathrm{~s}$ Od. Canada aad U.S.A. \$8.00. Second-class mail privileges authorised at New York N.Y. BRANCH OFFICES: BIRMINGHAM: 401, Lynton House, Walsall Road, 22b. Telephone: Birchfield 4838. BRISTOL: 11 , Marsh Street, 1. Telephone: Bristol $21491 / 2$. COVENTRY: 8-10 Corporation Street. Telephone: Coventry 25210. GLASGOW: 123, Hope Street, C.2. Telephone: Central 1265-6. MANCHESTER: 260, Deansgate, 3. Telephone: Blackfriars 4412.
 East 42nd Street, New York 10017. Telephone: 867.3900.

[^1]: * Uider the chairmanship of Sir Edward Playfair until May this year but now led by Sir Donald Stokes, deputy chairman and managing director of Leyland Motor Corporation.
 \dagger R. J. Clayton, managing director, G.E.C. (Electronics); P. D. Hall, director, I.C.T.; D. S. Ridler, technical director, S.T.C.; P. E. Trier, director, Mullard; A. J. Young, managing director, English Electric Valve Co.; Dr. G. G. MacFarlane, director, R. R. E., Malvern: W. Makinson, National Research Development Corp.; J. H. Merriman, deputy engineer-in-chief, G.P.O.; J. R. Mills, Electronics and Instrumentation Division, Ministry of Technology; Dr. W. H. Penley, deputy controller, electronics, Ministry of Aviation; A. W. Ross, Director of Physical Research (Naval), Ministry of Defence; and Mrs. M. Swaffield, Electronics and Instrumentation Division, Ministry of Technology, (Secretary, Dr. J. R. M. Granville, R.R.E.)

[^2]: Dr. A. R. Bailey, after taking his London B.Sc. degree at Bradford Technical College in 1953, stayed on to undertake research into precision three-phase a.c. voltage stabilizers under a D.S.I.R. grant. He then went into industry for a short time but returned to join the staff of the college, which became the Bradford Institute of Technology, where he is a lecturer in the Electrical Engineering Department. The Institute became the University of Bradford this month. Dr. Bailey is consultant to Radford Electronics Ltd.

[^3]: * " Distortion and Power Output of Pulse Duration Modulated Ampli-
 $\stackrel{\star}{ } \stackrel{\text { Distortion }}{ }$ E. C. Bell and T. Sergent, Electronic Engineering, August 1965.

[^4]: * "Scophony Television System," Wireless World, 23rd July 1937, p. 78. Also " The Supersonic Light Control and its Application to Television with Special Reference to the Scophony Television Receiver," by D. M, Robinson, Proc. I.R.E., August 1939.

[^5]: *Radiation resistance is the real part of the acoustic impedance of the air load. It is plotted vertically in normalized form $R 1 / A / \pi r 2 \rho c$ against normalized frequency $k r(=2 \pi r \lambda /)$ plotted horizontally (where $R M$, radation resistance in newton-seconds/ metre, r-diaphragm radius in metres; ρ--density of air in $\mathrm{kg} / \mathrm{m}^{3} ; c=v e l o c i t y$ of sound in $\mathrm{m} / \mathrm{sec}$ λ - sound wavelength in metres; and $k=2 \pi / \lambda)$.

[^6]: *C 700 signifies a rate that will discharge the cell in 700 hours.

[^7]: *See, for example, "Logic Without Tears"" by H. R. Henly, Wireless World, January 1965, pp. 44-49, and "Economical Logic," by the same author, October 1965, pp. 518-523.

[^8]: 1. "The Gunn Effect," Wireless World, August, 1965, p. 416.
 2. loc. cit. See also "Mechanical Microwaves," Wireless World,

 January, 1965, p. 57.

[^9]: WW-006 FOR FURTHER DETAILS.

[^10]: Anders Electronics Ltd - 103 Hampstead Road - London NW1 Telephone Euston 1639

[^11]: A member of the Painton group of Companies

[^12]: SA. 540

[^13]: A.C. Volts

 All ranges

[^14]: PUBLISHED MONTHLY (3rd Monday of preceding monsh). Telephone: Waterloo 3333 (70 If nes), Telegrams/Telex: Wiworld Iliffepres 25137 London. Cobles: "Ethaworld, London, S. E. 1." Annual Subscriptions: Home $£ 26 \mathrm{~s}$ Od. Overseos: $£ 215 \mathrm{~s}$ Od. Conodo and U. $\$. \mathrm{A} . \$ 8.00$. Second-class mail privileges authorised at New York N.Y. BRANCH OFFICES: BIRMINGHAM: 401, Lynton House, Walsall Road, 22b. Telephone: Birchfield 4838. BRISTOL: 11 , Marsh Street, ${ }^{\prime}$. Telephone: Bristol $21491 / 2$. COVENTRY: 8-10 Corporation Sireet. Telephone: Coventry Telephone: BristasGow: 123, Hope Street, C.2. Telephone: Central 1265-6. MANCHESTER: 260, Deansgate, 3. Telephone: Blackfriars 4412. East 42 nd Street, New York 10017. Telephone: 867-3900.

[^15]: WW-120 FOR FURTHER DETAILS.

[^16]: TONE CONTROLS Treble +12 dB to -10 dB at $10 \mathrm{kc} / \mathrm{s}$. Bass $+15 d \mathrm{~B}$ to -12 dB at $100 \mathrm{c} / \mathrm{s}$.

[^17]: Open 9 a.m.-6 p.m. every day Monday so Saturday. Trade supplied.

[^18]: Where postage is not definitely stated as an axtra then arders over $£ 3$ are post tree. Below f_{3} add $8 / 9$.

[^19]: READERS RADIO

 85 Torquay Gardens, Redbridge, Ilford, Essex. | CREE |
 | :---: |
 | 741 |

 Postage on 1 valve 9d. extriw on 2 valver or more, postage bd. per valve extra. Any Parcel Insured against Damage fu Transit 6d. extra.

[^20]: PLESSEY ELECTROLYTIC CAPACITORS
 $24 \mu \mathrm{~F}$ at $27 \overline{\mathrm{c}} \mathrm{J}$ V．
 $200 \mu \mathrm{~F}$ at 275 V V
 $\begin{array}{ll}2 / 6 & 100-400 \mu \mathrm{~F} \text { at } 275 \mathrm{~V} \text { V．} \\ 2 / 60-50-5-20 \mu \mathrm{~F} & (100-20\end{array}$
 $3 /-\quad a t 350$ V．j $5 \mu F^{2}$ at $50-160 \mu \mathrm{~F}$ it 975
 All voltages are B．C．
 3／－ 50 V． $25 \mu \mathrm{~F}$ ：ut 25 V．） $3 / 6$

[^21]: $\mathbf{R}^{\text {OYAL COLLEGE OF ADVANCED TECHNOLOGY }}$ SENIOR TECHNICIANS And TECHNICIANS, Salford). are a number of vacancies in the rapldans expanding Department of Electrical Engineering, for stain in both Techniclan and Senior Technician grades. Successful applicants may work in research prouns, and be concerned with building. maintaining and operating re-
 search equipment; or in an electronic workshop, where search equipment; or in an electronic workshop, where and maintalned. The posts will partlcularly appeal to those who have practical experience of a variety of electromechanical and electronic equipment and who prefer to work on their own initiative in a wide variety of fields. Current salary scales are $£ 705$ to $£ 960$ for
 Technician, and $£ 930$ to $£ 1,290$ for Senior Technician Technician, and £930 to $£ 1,290$ for Senior Technician posts, for which the desirable minimum educational starting points on the scales will depend on age, experience and qualifications. The posts are superannuable. Applications. kiving detatls of education and experience, should be sent to the Secretary, Royal Col31st October, 1966, quoting reference $\mathrm{E} / 76$. Lancs, by TEST gear enyineer to design test unlts and establish and measuring equipments and to assist in the runaing of the section which develop and constructs these test units; applicants should have practical industrial experlence of d.c. and low frequency apparatus and components but need not have formal qualifications; a starting salary of $£ 1,200$ p.a. or upwards will be pald depending upon experience and qualifications.- Write or Phoenix Works, Great West Rd. Brentford, Middx. Isleworth 1212, ext. 237 quoting Ref. ARN,1. [1619

[^22]: RADIO TECHNICIAN with a sound knowledge of at least three of the following types of equipment is required immediately for Meterological Office Ocean Weather Ships; Single Side-Band Transmitter, Radar (Navigational), Radar Height Finding, Echo Sounders, and Radio Receivers, Automatic D.F., V.H.F. and M.F. Low Voltage Servo Recorders. Digital Telemetering Equipment.
 Salary scale £678-£1,104 per annum according to age, plus $£ 120$ per annum overtime allowance. Free food and accommodation provided on board ship. Applicants must be natural born British subjects. Full details from Shore Captain, Ocean Weather Ship Base, Great Harbour, Greenock. Telephone Greenock 24291

[^23]: A BETTER deal for cash customers. We do not proA vide interest free credit but offer very generous Every Item of equipmente or 'phone-we will quote. sealed cartons. Agents for despatched brand new in tuners, motors, pick-ups, loudspeakers and tape recor-ders.-Audio Services, Lid., 82, East Barnet Rd., New Barnet, Herts. Tel. Barnet 6605 .

 ## ARTICLES WANTED

 WANTED.-Cash paid for valves. televisions. radios Wany quantity.-S. Willetts, 43. Spon Lane. West
 (2 METER required. TF 329G or similar any con Devon. or Tel. after $6 \mathrm{p} . \mathrm{m}$. Yealmpton 301 . Yealmpton,
 WANTED-Power supply unit with leads for a 1154 order transmitter; will pay up to $\mathbf{c 5}$ if in working Marder.-Apply Surrey. Advertiser, 75. Franks Ave., New
 WANTED, all types of communications recelvers Electronics test equipment.-Details to R. T, \& I. don. E.11. Ley. 4986.

[^24]: NYLON • P.T.F.E.
 ROD, BAR, SHEET, TUBE, STRIP, WIRE No quantity 200 small. List on application. BRASS COPPER BRONZ
 ALUMIN STAINLESS STEE ALLOYS STAINLESS STEEL
 H. ROLLET \& Co. Ltd.

 Howie Street, S.W.II. BATtersea 7872 ALSO AT LIVERPOOL, BIRMINGHAM.
 MANCEESTER, LEEDS, GLASGOW
 WW-176 FOR FURTHER DETAILS.

