PAGE 69 MULLARD AOVT. FOR SIAICON TRANSISTOR.

# Wireless World 

PAGE 98 MULLARD ADUT. AUTO-KEYING CIRCUIT TRANSISTORS.

## ELECTRONICS <br> Radio . Television

PAGE 288 SEMICONDUCTOR CELLS
PAGE 105 G.EC. ADVT. FOR TRANSISTORS
GERMANIUM

PAGE 294 FIELD EFEECTTETRODE SEMICONDUCTUR BELL LABORATORIES.

# high efficiency <br> with low cost 

Whatever the aerial or frequency there is a BICC cellular-polythene Downlead to suit every television requirement.

These cables are made under strict process quality control. Yet they are low in cest, providing the most economical method of ensuring high quality performance.

Publication No. 357 gives further technical details. May we send you a copy?


JUNE 1959

## Managing Editor:

HUGH S. POCOCK, M.I.E.E.

## Fditor:

F. L. DEVEREUX, B.Sc.

## Assistant Editors:

H. W. BARNARD
T. E. IVALL

VOLUME 65 No. 6
PRICE: TWO SHILLINGS

FORTY-NINTH YEAR OF PUBLICATION

## 255 Editorial Comment

256 Ferroelectrics-1
260 Improved Audio Input Circuit
262 Sporadic ' $E$ ' and the $F$, Layer

266 World of Wireless
267 Personalities
269
272
274

300 News from the Industry
302 Random Radiations
304 Unbiased
Simple Oscilloscope Camera

Pickup Arm Design
Displaying Valve Characteristics
Feedback Amplifiers as Filters
Elements of Electronic Circuits-3
Magnetic Matrix Stores Letters to the Editor R.H.F.

Electronics and the Phonetician

By 7. C. Burfoot<br>By R. C. Marshall<br>By T. W. Bennington<br>By A. f. Key

By " Cathode Ray"
By H. f. F. Crabbe

By R. G. Christian

By Thomas Roddam
By f. M. Peters
By W. A. Cole

Offices: Dorset House, Stamford Street London, S.E. 1 Pleasc address to Editor, Advertisement Manager. or Publisher, as appropriate

## Automatic-keying Circuit

Various modulation arrangements can be used with the $500 \mathrm{kc} / \mathrm{s}$ marine-distress transmitter (see previous advertisement). For c.w. operation a morse key can be connected in series with the base winding of the modulator transistor, together with an r.f. choke and a bypass capacitor to prevent r.f. voltages floating across the key.

Low-power modulation is used for radio telephony. The modulator transistor is biased into Class $\mathbf{C}$ operation, using a parallel CR combination, to a point where the output of the transmitter falls to half its normal value, and an a.f. signal is applied across the bias resistor.
The circuit shown here is for an automatic-keying device which generates the distress signal. A time interval of 0.1 sec was chosen for the duration of a dot and for the interval between successive dots or dashes. The duration of a dash is then 0.3 sec .
Transistors $\operatorname{Tr} 1$ and $\operatorname{Tr} 2$ form the dot multivibrator and the $\operatorname{Tr} 2, \operatorname{Tr} 3$ combination is the dash multivibrator. As the spacing between dots is the same as the spacing between dashes, no gate is required for mixing and so the output can be taken from the collector of Tr 2 , the common transistor. To square-off the waveform of this output an emitter follower Tr 4 is added. The output from Tr 2 is inverted by Tr13 to the negative-going pulses required for keying the transmitter. A positive line is provided for the combined multivibrator by connecting the three emitters to a suitably decoupled resistor R2. This ensures that the appropriate transistor ( Tr 1 or Tr 3 ) is definitely cut off by the sequence multivibrator which acts as an on-off switch in the base leads of Trl and Tr 3 . This multivibrator consists of transistors $\operatorname{Tr} 6$ and $\operatorname{Tr} 7$, which conduct alternately, switching the supply voltages across the base resistor R7 and R6 respectively. When Tr6 is on, $\operatorname{Tr} 5$ is off and the voltage across R9 (approximately $V_{\text {cc) }}$ appears across R7, the base resistor of Tt1, and three dots are generated. The timing of this sequence is mainly governed by the combination C9R11.
The capacitor $C 7$ reduces the switch-on time of transistor Tr 7 . If it is omitted, the inhibiting signal from Tr 7 does not reach the dash multivibrator soon enough and a spurious
dash precedes the dot-dash sequence. When $\operatorname{Tr} 7$ is on, $\operatorname{Tr} 8$ is off, the supply voltage appears across R6, and Tr3 generates three dashes. Transistors Tr 5 and Tr 8 are emitter followers which square-off the collector waveforms from Tr6 and Tr7. The sequence multivibrator is in turn controlled by the markspace multivibrator by connecting R13, the base-feed resistor to $\operatorname{Tr} 7$, across the emitter load of Tr9. The mark-space multivibrator is the only free-running one in the whole circuit. It controls the whole automatic timing circuit. Tr10 is an emitter follower which squares-off the collector waveform of $\operatorname{Tr} 11$. A buffer stage, $\operatorname{Tr} 9$, is required to reduce interaction between the mark-space multivibrator and the previous stage.
The resistor R 18 , in the base lead of Tr 10 , is necessary to prevent pulses, fed back from the sequence and dot-dash multivibrators, triggering the mark-space multivibrator. It also reduces the voltage developed across the emitter resistor, R17, thereby reducing the on-period of Trll. This time can be easily adjusted because it is the off-period for the complete timing circuit. If R22 is $270 \mathrm{k} \Omega$ and Cl 10 is $100 \mu \mathrm{~F}$, the space period between signals is about 15 sec.
Some of the timing components need careful selection; all the resistors for these circuits should be of high stability, and the capacitors should have low leakage currents. These capacitors should preferably be metallised paper types ( Cl , C2, C3, C5, C7, C12), and tantalum electrolytic for the others. All the transistors operate at less than $500 \mu \mathrm{~A}$ per stage; the total current drain from a 12 V battery is about 4 mA . The circuit operates satisfactorily with supplies down to about 10 V , and over a range of temperature from 0 to $60^{\circ} \mathrm{C}$. Taking into account the on-off power ratio of the combination of transmitter and keying circuit, a life of 50 hours can be expected from a 4 ampere-hour accumulator.
It cannot be emphasised too strongly that indiscriminate transmission of the international distress signal, whether licensed or not, is very undesirable. However, the principles of the design described can be used for the automatic keying of any morse signal, such as a call sign, by suitable adjustment of the timing components.


## Monodic Sound

THE current interest in stereophony, one might almost describe it as an obsession, has brought with it many headaches, not the least of which has been caused by the difficulty of finding a terse word to describe the other kind of sound reproductionthe one we used to enjoy before two-channel stereophony became a commercial proposition.

Most of the proposals to date have not been entirely satisfactory: some have been plainly ludic-rous-" monaural" and "monophonic," for instance.

No normal person would dream of listening to free-field sound from whatever source or sources except with two ears, and it is useless to argue that the sound might have been picked up by a single microphone, for in that case a better term would be "monomicrophonic."

As for "monophonic," this calls to mind only tuning notes, test oscillators and other uninteresting laboratory noises; certainly not the rich polyphonic sounds of music and well modulated voices which often come through reasonably well even on "non-stereophonic" equipment. Let us therefore dismiss " monophonic" as an abortive attempt by the stereophonists to denigrate a system of highquality sound reproduction of which we have by no means heard the last.

Thinking of why "monaural" and "monophonic" should sound so funny and out of context we chanced to remember a pedagogic dissertation on the origins of humour in which a high place was given to "the juxtaposition of the incongruous." False comparison, inadequate antithesis -here surely are the root causes of our trouble. "Monaural" is the ant thesis of "binaural" which, by common consent, refers either to the normal act of hearing or to a system using headphones separately excited by independent reproducing channels, "Mono" should not be associated with "phonic" because the first part describes the channel of transmission whereas the second refers to the nature of the information conveyed. With "stereophonic" we are on firmer ground, because not only does it pass muster by referring exclusively to the quality of the sound, but it is now so well established that no etymological argument is likely to displace it. Therefore all we have to do is to find the Greek antonym fo: " stereo "-or do we?

The opposite of solid is plane or flat, and good single-channel sound reproduction is far from being that. By the judicious use of reverberation
and by varying distances from the microphone the skilful broadcaster or recording technician can convey the impression of spaciousness in depth. In fact the best results could justly be described as "single-channel front-to-back stereophony." True, the use of two or more channels gives width in addition to depth, so one might call it "secondorder stereophony" to distinguish it from the "first-order stereophony" which we sometimes get from single channel.

Both systems have their strength and weakness. Obviously multichannel stereophony is best suited to orchestral and choral music, especially when this is written with antiphonal effects in mind; and single-channel "stereophony" should be best for solo instruments and voices with a subsidiary orchestral accompaniment. It is technically difficult to centre the virtual image of a voice, so that it seems to come from a point midway between two loudspeakers, but it can be done as Mr. Briggs demonstrated recently in the Festival Hall in London. The audience by a show of hands preferred two-channel stereophonic reproduction of the soprano voice to a single-channel recording, admittedly of a different singer but by the same recording company. Other experiences have shown that either system can beat the other at its own game when it is at the top of its form and the other is not. At the present stage of development it is therefore unsafe to try to draw a distinction based solely on the criterion of performance.

Until recently this journal has favoured the term "single-channel" for non-stereophonic systems, but since the B.B.C.'s revival of interest in stereophonic broadcasting the possibility that two audio channels may eventually be broadcast over a single radio channel introduces an element of ambiguity. Radio people can with some justification lay a prior claim to the use of the term channel and we see no reason why they should not keep it if they will allow us the use of "monodic" (suggested on p. 304 of this issue by our sometimes unruly but often inspired contributor "Free Grid") to describe the audio-frequency part of the chain. It is self-consistent in describing the system without reference to the nature of the information conveyed, and it enables us to make free and confident use of the contraction "mono" in the knowledge that if challenged to explain what it stands for we shall be spared the embarrassment of trying to justify " monophonic" or " monaural."

# FERROELECTRICS 

I.-THE PHYSICS OF A SINGLE DOMAIN

By J. C. BURFOOT,* Ph.D.

THE prominent property of a ferroelectric is that it has a spontaneous polarization $\mathrm{P}_{r}$ analogous to ferromagnetic remanence, and that this polarization can be reversed by applying an opposing electric field $E$ stronger than the coercive field $\mathrm{E}_{c}$ (Fig. 1). The name " ferroelectricity" was coined because of this similarity; there is no connection with "iron." The discovery of ferroelectrics is very much more recent than that of ferromagnetics. Weber's theory of magnetic substances in the middle of last century and Ewing's later extensions had led already in 1907 to the Weiss domain theory; the discovery of ferroelectricity in Rochelle salt was not made until 1921 (Valasek). Inevitably, progress in understanding the phenomenon has been more rapid, leaning on analogy with the magnetics. However, a closer look shows that the differences are at least as striking as the similarities, as I shall show in these articles.

About thirteen groups of ferroelectric materials are now known, and new ferroelectrics are being added constantly to the list. The physics of a ferroelectric material is most easily approached in terms of a single good crystal which is all one domain, though such a state may be difficult to maintain in practice; this first article deals with this topic. Later I shall consider the effect of multidomain structures on these basic properties, and then the even more complicated nature of polycrystalline materials. Ferroelectrics have been used for many years, usually in the form of ceramics, in a great number of piezoelectric devices and transducers, and in capacitors. After considering these, I shall examine work carried out in the last decade on the "dielectric amplifier" and associated modulation devices, and towards uses in digital computers, for storage and switching purposes.
Single Domains.-In view of the historical lag, it is not surprising that understanding of the basic phenomena is considerably less well advanced than in magnetics. But it seems too that the underlying facts are genuinely less simple. For it is possible to describe ferromagnetism by treating each atom as though it were an elementary magnet. Then the complications of alignment and domain formation are described in terms of those external properties of magnets which have been known since William Gilbert's study of them about 1600: (1) a magnet produces a dipole magnetic field in its neighbourhood, and (2) a magnet aligns itself with a magnetic field if it is free to do so; interactions between magners are described in terms of these two facts. At first sight this looks like describing ferromagnetism in terms of ferromagnets. But in fact the magnetic moment, or strength, of our elementary magnets undergoes no change in a field, and it is precisely such changes which are of interest (Fig. 1(a)) and

[^0]which we succeed in describing, in materials, in terms of our conception of the atom as a permanent dipole.

In ferroelectrics, permanent (electric) dipoles also occur, but one cannot usually identify a particular atom with the dipole, and certainly not a particular electron, as in magnetics. The "spinning " electron responsible for ferromagnetism is inside the atom, screened electrically from neighbouring atoms. But for ferroelectricity, the various structures which cause it are intimately associated with the bonds between atoms, so that even in the relatively simple crystalline form of solids it is difficult to find any conception of microscopic subdivision which will effectively isolate the essential dipoles. The complication is increased because the cohesive forces holding matter together are largely electrical in nature.

Three elementary magnets, the atoms of iron, cobalt, and nickel, largely account for ferromagnetics; but in ferroelectrics there are many possible elementary dipoles, and the same unit may behave quite differently in different materials. In many cases the unit involved is not yet known for certain. Also, induced dipoles become important in ferroelectrics; the polarizability of a molecule may well determine whether the material containing it is ferroelectric. Polarizability is the extent to which a particular atom or molecule can be given a dipole moment by an electric field.
Permanent Dipoles.-An electric dipole is a body which is electrically neutral, but with the effective entres of its positive and negative charges not at the same place. There is no reason to suppose that either of these charges is concentrated at a point, but it is sometimes convenient to think of the dipole as made up of two equal charges, $+q$ and $-q$, fixed at a

Fig. 1. Magnetic and electric hysteresis loops. The inductions are respectively $B=H+4 \pi l$ and $D=E+4 \pi P$, or in these materials, to a good approximation, $B=4 \pi l$ and $D=4 \pi P$.

separation 2 d , and then we define the electric dipole moment as $p=2 \mathrm{~d} q$. The axis of the dipole is the line joining the charges. If a molecule or a crystal cell in a crystalline solid behaves like a permanent dipole whose axis can be turned into any direction or into any one of a number of particular directions, spontaneous polarization might result from alignment of these dipoles in strings head-to-tail in some particular direction, and alignment of the neighbouring strings in the same sense. If the alignment is complete, and there are N dipoles in a unit volume, then $\mathbf{P}=\mathbf{N} p$. Such an alignment may have been caused initially by the application of a suitable external electric field E , subsequently removed. But it is retained by the internal fields due to the dipoles themselves. It is believed that such internal fields are very much greater than any practical value of applied E, and they are very important to an understanding of ferroelectricity. For at any reasonable temperature, random thermal motions, which we have ignored above, spoil the alignment (so that many $p$ are in wrong directions) unless there is some field $F$ to counteract it; this field can be the internal field. The way $P$ falls off if $F$ is too small is shown in Fig. 2(a).
Induced Dipoles.-The above ideas are common to both ferromagnetism and ferroelectricity, though the reasons for the existence of $p$ are very different in the two cases. But now turn your attention from permanent dipoles to the possibility of induced dipoles. That is, consider material in which the positive and negative centres of the units do coincide. The function of the field $F$ is to separate them, against the influence of the forces holding the unit together. And now we meet the following curious possibility. Because polarization produces internal fields, it is possible for a material containing no permanent dipole to exhibit a polarization. The polarization creates the field and the field creates the polarization-it is only necessary that the polarizability should be " large enough "; equation (2) below puts this condition more precisely.

In a small field $F$, the strength of dipole induced, $p_{i}$, will be proportional to $F$,

$$
\begin{equation*}
p_{i}=\alpha \mathrm{F} \tag{1}
\end{equation*}
$$

but in larger fields, $p_{i}$ approaches some maximum value set by the structure and cohesion of the unit. This is known as "saturation." See Fig. 2(b). $\alpha$ is the polarizability. It is clear from Figs. 2(a) and (b) that the effects of permanent and induced dipoles will be similar, though the values and temperature dependences will be different. Probably both types of effect occur.

It is worth while to compare the induced dipolar effects that can occur in magnetic materials. Our electric induced dipoles may be due to relative movements, in the field F , of atoms carrying positive and negative charges (" atomic" or "ionic" polarization), or to displacements of the electrons of an atom relative to the positive nucleus of the atom (" electronic" polarization); in either case, the dipole produced is directed with the field rather than against it, so that the susceptibility $\mathrm{I} / \mathrm{H}$ is positive, and we may even have a ferroelectric if the co-operative effect is large enough. In magnetics, induced dipolar effects are due to precessions of electron torbits about the field direction, and the

+ Not to be confused with electron spins.


Fig. 2. Polarization and field curves. In Fig. 2 (a), $P=N p\left(\operatorname{coth} \frac{p F}{k T}-\frac{k T}{p F}\right)$ for free dipoles; near 0 , this is $P \bumpeq N p\left(\frac{p F}{3 k T}\right) . \quad k=1 \cdot 381 \cdot 10^{-16} \mathrm{erg} /$ deg.
laws of magnetic induction are such that the result must oppose the applied field. So the associated susceptibility is negative, and materials in which this effect predominates are called diamagnetics rather than paramagnetics; such materials try to move away from, rather than towards, regions of high-field.

Two points of contrast with magnetics result: (1) In electrics we cannot distinguish permanent from induced dipoles by the mere sign of a force; the terms dia-electric and para-electric are hardly in use, in fact. (2) In ferroelectrics we cannot be certain that permanent dipoles underlie the phenomenon, for here induced dipolar effects do have the right sign to allow co-operative effects.
Spontaneous Polarization-Fig. 2 will not explain why spontaneous polarisation remains when $E=0$ unless we can identify the value of $F$ when $E$ is removed. To do this, let us first imagine that we do apply $E$ (which we shall later remove) and describe the behaviour of $F$ and $P$ on the same Figure 2. This is done by the full straight line $F=E+\beta P$ in Fig. 2(c). That is, the extra field at a point inside the material, due to the overall polarization P of the surrounding material, is written as $\beta \mathrm{P}$ where $\beta$ represents the strength of the cooperation. In ferromagnetics, exchange forces make $\beta$ very large indeed, perhaps 10,000 , but in ferroelectrics it is of order 1. The two full curves in Fig. 2(c) represent the two parts of the statement


Fig. 3. Spontaneous polarization in a single domain of barium titanate, in microcoulombs per $\mathrm{cm}^{2}$.
" polarization creates (some of the) field, and field creates polarization." The only state that satisfies both conditions at once is at the intersection X , which therefore determines F for that value of E . Now the effect of removing $\mathbf{E}$ is to slide the straight line towards the left to the dashed position, and $\mathbf{P}_{r}$ then gives the value of the spontaneous polarization.

On the same figure can be seen circumstances under which $\mathrm{P}_{\mathrm{r}}$ will be zero, so that the material is no longer ferroelectric. This happens if the straight line, whose slope is $1 / \beta$, is steeper than the slope of the curve at 0 , which we can get from $\mathrm{P}=\mathrm{N} p_{i}$ and $p_{i}=\alpha \mathrm{F}$. That is, the condition for ferroelectricity is that $\mathrm{N} \alpha$ should be greater than $1 / \beta$ or

$$
\begin{equation*}
\alpha>1 / \mathrm{N} \beta \tag{2}
\end{equation*}
$$

Temperature Variations.-Now in fact if the temperature is raised above some transition temperature $\mathrm{T}_{o}, \mathrm{P}_{r}$ again will be zero in the same way. It is most readily seen for the permanent dipoles, for which $\mathrm{T}_{0}$ is the temperature at which the thermal disordering overcomes the co-operation. For it is possible (but see next paragraph) to think of orientation of permanent dipoles in terms of a fictitious polarizability.

$$
\begin{equation*}
\alpha^{\prime}=\frac{p^{2}}{3 \mathrm{kT}} \tag{3}
\end{equation*}
$$

Then the slope of the curve at 0 is $\mathrm{N} \alpha^{\prime}$, and unless this is greater than the slope $1 / \beta, \mathrm{P}_{r}$ will be zero. That is, for ferroelectricity we need the equivalent of equation (2), $\mathrm{N} \alpha^{\prime}>1 / \beta$, which is now

$$
\frac{\mathrm{N} p^{2}}{3 \mathrm{kT}}>\frac{1}{\beta} \text { or } \mathrm{T}<\frac{\mathrm{N} \beta p^{2}}{3 \mathrm{k}} \quad \text { Thus the transition }
$$

temperature is

$$
\begin{equation*}
\mathrm{T}_{o}=\frac{\mathrm{N} \beta p^{2}}{3 \mathrm{k}} \tag{4}
\end{equation*}
$$

In the case of induced dipoles, the equation (2) shows no temperature dependence, and it must be supposed that the polarizability $\alpha$ decreases as the temperature rises, until equation (2) is no longer satisfied. Fig. 3 shows the way $P$ falls off, for barium titanate.
Equation (3) is based on the idea of a dipole free to rotate, and is not strictly correct, first because an electric dipole is probably not free, and second because for rotatable dipoles our treatment of $F$ is not quite correct. However, the equation will serve our purposes. Electric dipoles may be able to jump fairly freely between a number of alternative positions, and expressions for $P$ have been worked out similar to those in the caption of Fig. 2(a).

When alignment is not complete, $\mathbf{P}$ is less than $\mathrm{N} p$, say $\mathrm{N} p^{\prime}$, and the caption shows that near the origin, this $p^{\prime}$ is $p^{\prime}=\frac{p^{2}}{3 \mathrm{kT}} \mathrm{F}$, which by comparison with equation (1) gives equation (3). In these expressions, T is measured on the Kelvin temperature scale, so that $\mathrm{T}^{\circ} \mathrm{K}$ means $\mathrm{t}^{\circ} \mathrm{C}$ where $\mathrm{T}=\boldsymbol{t}+$ 273.

Hysteresis.-The hysteresis loop of Fig. 1(b) can be seen on an oscilloscope by applying a.c. across two capacitors in series, one of which (A) has the ferroelectric for dielectric. The spontaneous polarization induces charge on the plates of A . When P changes, some of the induced charge is liberated, and, passing to the ordinary small linear capacitor, is displayed as a proportional voltage on the $Y$ plates of the oscilloscope. The applied a.c. is connected to the X plates. In working with ferroelectrics, the plates or electrodes must be in exceedingly intimate contact with the material, because the dielectric constant is very high, say 5,000 in some cases. So an unsuspected air capacitor, only $\mathrm{d} / 5,000$ thick in series, halves the applied field, and in large-signal work will grossly distort the results. Evaporated electrodes or liquid electrodes are used. Notice that, just as in magnetics, the area of the hysteresis loop represents an energy loss per cycle, which we shall later have to take into account.
It seems that now we can explain the hysteresis loop, though we shall see later (see section on "Domains") that this is deceptive. Fig. 2(d) shows an extended version of $2(\mathrm{c})$, in which four stages of a


Fig. 4. Dielectric constants of potassium dihydrogen phosphote (divide e.s.u. by 900,000 to get $\mu \mathrm{F} . \mathrm{cm}^{-1}$ ). The c direction is the ferroelectric axis.
cycle of an alternating E are shown (1, 2, 3, 4). At some moments, three intersections of the graphs occur. Some will be unstable. I shall not discuss this, since domains will modify the results.
Thermodynamics.-Our subject matter is to be largely the dielectric and piezo-electric values in these ferroelectric materials, many of which values are anomalous, i.e. are unusually large or unusually small and show large variations as the temperature changes. These properties relate $S, X, P$ and $E$, where X is a mechanical stress applied to the material and $S$ is its relative change of size. The magnitude of a change of $P$ in response to an applied $E$ is represented by $\ddagger$ the dielectric constant $\epsilon$; change of $S$ in response to $X$ is elastic compliance; the other four possible relationships are all exhibitions of

[^1]

Fig. 5. One of the piezoelectric coefficients of a singledomain barium titanate crystal.
piezoelectricity, either "direct" (electrical changes caused by mechanical changes) or "converse" (mechanical changes caused by electrical), and it can be shown that they are equal in pairs; for example I shall use $d$ to indicate the value of the response of $P$ to $X$ (a "direct" effect), which is equal to the response of $S$ to $E$ (a "converse" effect).

Any one of these values may appear to be very different, in ferroelectrics, depending on the conditions of measurement. For example, one may measure a property "at constant E", i.e. with opposite faces of the material connected together through a low impedance rather than open circuited. Or $\epsilon$ may be measured "at constant $S$ ", i.e. with the material "clamped" rather than "free". But clamping may not be intentional. It will occur to some extent if there are domains present which restrict one another's expansions under field, and even without domains, clamping will occur if measurements are made by fields whose frequency is above the mechanical resonance frequency of the piece of material, so that inertia prevents the rapid expansions. This resonance frequency alters with the size and shape of the piece.

So in practice one must specify rather carefully all the conditions of measurement, and the formal methods of thermo-dynamics state the relationships between them and give the equalities above, and also show that if we can explain one or two of the anomalies, the rest may be deduced. Therefore I shall not explore all the inter-relations whose complexities I have hinted at, but shall content myself with a short examination of $\epsilon$ and $d$.
Dielectric Constant.-The d.c. dielectric constant is the slope of a line such as $a$ in Fig. 1(b), but usually of more interest is the incremental a.c. constant $\epsilon_{a c}$ defined, for example, when $\mathrm{P}=\mathrm{P}_{r}$, by the slope $b$. Lag effects make a slender ellipse of this line and cause losses, just as in ordinary dielectrics. If there is a bias B applied in addition to the small measuring field, the defining slope is $c$, and this alteration with bias is important in applications such as modulating devices. If the applied a.c. amplitude $\mathrm{E}_{m}$ is large, it is clear that the changes of $P$ do not vary linearly with E . If $\mathrm{E}_{m}$ exceeds $\mathrm{E}_{c}$, the loop is
traversed, and the apparent $\epsilon$ is an overall value, not very different from $P_{r} / E_{c}$, say $0.025 \mu \mathrm{~F} . \mathrm{cm}^{-1}$ for barium titanate crystals. In this case also, there is a large loss specific to ferroelectrics, equal to the loop area, of order 1 mW per cu.mm at $50 \mathrm{c} / \mathrm{s}$. $\epsilon$ varies not only with B , and with $\mathrm{E}_{m}$, but also with frequency $\omega / 2 \pi$, and with temperature T. In addition, it is different when measured by a.c. in different directions (anisotropy), and when measured free or clamped, as discussed above. Fig. 4 illustrates several of these points. $\epsilon$ reaches values 1,000 times greater than in normal dielectrics.

Above $\mathrm{T}_{0}$ the ferroelectricity disappears. The polarizability is no longer large enough to maintain the spontaneous polarization in zero field, but it is apparent that its value is still large, for the effect on P of an applied field still results in an anomalously large $\epsilon$. Above $T_{o}$, falls off, unlike most normal dielectrics, in which it rises. In many cases it falls off in such a way that its reciprocal (or strictly, that of $\eta$ ) is a straight line (Fig. 4(b)). This is known as a Curie-Weiss law. In equation (3) the polarizability varies as $1 / \mathrm{T}$, or, say, $\mathrm{N} x^{\prime}=\mathrm{C} / \mathrm{T}$, where I write $C$ for the constant $N p^{2} / 3 \mathrm{k}$. Then the earlier equations $P=N x^{\prime} F$ and $F=E+\beta P$ show that

$$
\begin{align*}
& \frac{\mathrm{E}}{\mathrm{P}}=\frac{\mathrm{T}-\beta \mathrm{C}}{\mathrm{C}} . \\
& \frac{1}{\eta}=\frac{\mathrm{T}-\mathrm{T}_{\mathrm{c}}}{\mathrm{C}} . .  \tag{5}\\
& . .
\end{align*}
$$

The constants $T_{c}$ and $C$ are known as the Curie temperature and the Curie constant. A similar derivation can be made in other cases where $x$ is proportional to $1 / T$. In this case based on equation (3) we see that $\mathrm{T}_{c}=\beta \mathrm{C}$, which from equation (4) is $\mathrm{T}_{c}=\mathrm{T}_{o}$. That is, as T falls, in the non-ferroelectric temperature region, towards the transition temperature $\mathrm{T}_{0}, \eta$ and $\epsilon$ rise towards a value which in principle is infinite at the transition temperature. In some ferroelectrics, $\mathrm{T}_{c}$ is several degrees below $\mathrm{T}_{n}$ (though still $\mathrm{T}_{o}$ is often called the Curie temperature), but in any case, though $\epsilon$ reaches a high value, it falls again in the ferroelectric region, either sharply, or more gradually as in Fig. 4(a). Now the spontaneous saturation of $P$ has left relatively little possibility of extra polarization being acquired under an applied field to show up as a high $\epsilon$ value.

The mechanisms responsible for $\epsilon$ under small voltages are not necessarily the same as those acting when voltages are large enough, below $\mathrm{T}_{0}$, to reverse P and cause a hysteresis loop. But where the values are anomalously large, it is probable that there is much in common. $P$ has taken up one direction,

Fig. 6. Piezoelectricity in ferroelectrics.

(a)

(b)

(c)
so it is not surprising that $\epsilon$ is very different in that direction. It is usually larger in the direction of $\mathbf{P}$ in materials 'where the cross-directions are not available as alternative easy directions for $P$.
Piezoelectric Constants.-Fig. 5 shows the anomaly of one of the $d$ values of barium titanate, associated with its dielectric anomaly. The $d$ states the fractional elongation $S$ resulting from a small field $E$; another piezo-coefficient $b$ states the $S$ resulting from a small polarization P. Several $d$ values (and several $b$, etc.) are needed to describe the piezoelectricity of any crystal, e.g. a field in direction $c$ may cause elongation in that direction and also shear effects in cross-directions. For simplicity I shall write only of the former, though in fact Fig. 5 is a cross-coefficient. Many piezoelectric materials are known and used, which are not ferroelectric, e.g. quartz. Ten of the 32 symmetry classes of crystalline solids, being centrosymmetric, cannot be piezoelectrics, and one other is not. Fig. 6(a) is drawn for an ordinary non-ferroelectric dielectric which happens to be piezoelectric; the slope is the coefficient $b$. Fig. 6(b) shows a non-piezoelectric; its slope is zero (for small P). But it is electrostrictive for larger values, and this we may approximate by $\mathrm{S} \propto \mathrm{P}^{2}$; such a curve could be found for most materials, and a similar one on an S-E plot, provided breakdown does not first occur.

All ferroelectrics are piezoelectric in the temperature range below $\mathrm{T}_{o}$ where they remain ferroelectric. It is convenient to divide them into two groups, A and $B$ respectively, according to whether or not they are also piezoelectric above $\mathrm{T}_{0}$. Group A we might describe as inherently piezoelectric, though in fact the ferroelectricity profoundly modifies $d$; this group includes Rochelle salt and potassium dihydrogen phosphate. I shall discuss group B, in which all the piezoelectricity is, in a sense, given to the crystal by the ferroelectricity; barium titanate is an example.

It is a harmless simplification now to think of $S$ as resulting from two steps: the applied $\mathbf{E}$ produces $P$ and this $P$ would produce $S$ if "inherent $b$ " existed or if $P$ were large enough to show the electrostrictive region. But in group $B$, this region is reached without any applied $\mathbf{E}$ because of the spontaneous $P_{r}$. So the working point is at $\mathbf{Q}$ (Fig. 6(b)), showing that the crystal has also a spontaneous deformation $S_{r}$. For example, the cell of barium titanate, which is cubic above $T_{o}$, is $1 \%$ larger in the direction of P , below $\mathrm{T}_{0}$. In a good crystal plate, this "c axis" is directed through the thickness of the plate. Now if an external $E$ is applied, the extra P drives the point Q up the curve, producing extra elongation $S^{\prime}$. So the effective piezo-coefficient $d$ is $S^{\prime} / E$, i.e. it is related to the slope of the curve at $Q$. The nature of this response is thus seen to be different from that of quartz, for example, Fig. 6(a). Because $P_{r}$ is large the effect can be large. The effect plotted against $E$ instead of against $\mathbf{P}$ is a butterfly loop traversed as shown in Fig. 6(c). From A to $\mathrm{B}, \mathrm{E}$ opposes $\mathrm{P}_{r}$ but does not reverse it till $\mathrm{E}_{c}$ is reached. Reversal reaches C and thus at that point the effective $d$ is changed in sign.
Acknowledgments: Fig. 4(a) has been drawn from a paper by G. Busch in Helv. Phys. Acta, 11, 269, 1938; Fig 4(b) from a paper by H. Baumgartiner in Helv. Phys. Acta, 24, 326, 1951; and Fig. 5 from a paper by E. J. Huibregtse, M. E. Drougard and D. R. Young in Phys. Rev., 98, 1562, 1955.

Books on crystalline form of ferroelectrics:
Helen D. Megaw, "Ferroelectricity in Crystals," Methuen (1957).
Werner Känzig, " Ferroelectrics and Antiferroelectrics," in Solid State Physics, vol. 4, Academic Press (1957).
(to be continued)

## Improved Audio Input Circuit

Use of Input Alternator Resistors at the Source<br>By R. C. MARSHALL, B.A., Grad.I.E.E.

DOMESTIC audio equipment must now accept inputs from an a.m. radio, f.m. radio, gramophone or tape recorder. Usually these inputs are selected by a switch, which is connected to the various sources by screened cables 2 to 5 ft long with a capacitance of 50 to 150 pF . Taking the latter case of 150 pF , for a loss of 3 dB at $20 \mathrm{kc} / \mathrm{s}$, which is an acceptable limit for one element in a high-fidelity system, the output resistance of the unit driving the cable is limited to $50 \mathrm{k} \Omega$. This is inconveniently low.

Furthermore the various inputs are at different levels, and attenuators in the control unit or alternatively an sode follower with different input resistors adjust the overall gains to the required values. These adjustments are rarely correct, as details of the sources are not accurately known when the control unit is built.

It has been shown ${ }^{1}$ that the anode follower or see-saw can be used to counteract the effect of cable capacitance by placing the input resistor at the source end of the cable, as in the circuit diagram.

This is convenient also as the resistor can then be adjusted to suit the source without affecting the control unit. Some experimental figures obtained with this arrangement are given in the tables. Overall gain and permissible cable capacitances are given for a range of values of the source resistor $R_{1}$. It can be seen that for $R_{2}=4.7 \mathrm{M} \Omega$ a 30 dB range of gains can be obtained with input resistors

|  |  | TABLE |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $2.2 \mathrm{M} \Omega$ |  | Load capa | F |
|  |  | Capacity | Maximum | Capacity |
|  |  | (pF) for | Height of | (pF) for |
| $\mathrm{R}_{1}$ (K) | Gain(dB) | -3 dB at | peak | -3 bB at |
| ${ }^{1} 178$ | Gain( ${ }_{31}$ ) | $20 \mathrm{kc} / \mathrm{s}$ | (dB) | $20 \mathrm{kc} / \mathrm{s}$ |
| 100 | 26 | 750 | 1 | 920 |
| 220 | 19.5 |  |  | 87 |
| 470 |  | 650 | 1.5 | 830 |
| 1000 |  | 630 | 1.5 | 800 |
| 2200 | 6.5 | 610 | 1.5 | 790 |
|  | 0 | 600 | 2 | 790 |



Improved input selector. The grid resistor of the following stage should be $\mid M \Omega$.
varying from $220 \mathrm{k} \Omega$ to $8.2 \mathrm{M} \Omega$, with adequate frequency response. The corresponding input resistance values in Table I are roughly half those in Table II, so that a proportionately larger capacitance is possible. The bandwith does not vary with the overall gain provided that there is appreciable feedback, and is theoretically equal to $A / 2 \pi R, C \mathrm{c} / \mathrm{s}$, where $A$ is the open loop gain, in this case 170 times (measured), and $C$ the cable capacity. This gives a figure in good agreement with the experimental results. The overall gain of the stage is approximately $R_{2} / R_{1}$. An analysis of this circuit, and bibliography, has already appeared in Wireless World ${ }^{2}$.

If the capacity of the lead is appreciable, a wider bandwidth is obtained and a "hump" in the

|  | $\begin{gathered} \text { TABLE II } \\ \mathrm{R}_{2}=4.7 \mathrm{M} \Omega \end{gathered}$ Gain (dB) | Capacity ( pF ) |
| :---: | :---: | :---: |
| $\mathrm{R}_{1}(\mathrm{~K} \Omega)$ | 36 | 450 |
| 100 | 31.5 | 330 |
| 220 | 25.5 | 280 |
| 470 | 19.5 | 270 |
| 1,000 | 13.5 | 260 |
| 2,200 | 6.5 | 260 |
| 4,700 | ${ }^{0}$ | 260 |
| 8,200 | -5 | 260 |
|  | TABLE III |  |
|  | $\mathrm{R}_{2 .}=1 \mathrm{M} \Omega$ |  |
| $\mathrm{R}_{1}(\mathrm{~K} \Omega)$ | Gain (dB) | Capacity (pF) |
| ${ }_{47}$ | 25 | 1,300 |
| 100 | 19.5 | 1,150 |
| 220 | 12.5 | 1,100 |
| 470 | 6 | 1,100 |
| 1,000 | 0 | 1,100 |
| 2,200 | -6 | 1,100 |

response may occur. This is characteristic of a feedback amplifier containing two lag circuits. For a 50 pF load, the maximum rise for any cable capacity, and the cable capacity for 3 dB loss at $20 \mathrm{kc} / \mathrm{s}$ are given in the last two columns of Table I. The other measurements were taken with negligible load capacity.

## REFERENCES

${ }^{1}$ T. G. Clarke, "An Electronic Transformer," Electronic Engineering, Sept. 1958, p. 545.

2 P. J. Baxandall, "Negative Feedback Tone Control," Wireless World, Oct. 1952, p. 402.

## V.O.R. AIRWAYS BEACON

THE Marconi Omni-directional Radio Range Beacon (V.O.R.),* with which the U.K. airways are to be equipped, operates on a spot radio frequency in the 112 to $118-\mathrm{Mc} / \mathrm{s}$ v.h.f. band and with a power output of 200 watts. The V.O.R. beacon transmits two signals on a single radio frequency, one modulated at $30 \mathrm{c} / \mathrm{s}$. One has a constant phase throughout $360^{\circ}$ of azimuth (the reference signal) whilst the other (the variable signal) has a phase which varies with azimuth. The former is radiated from an omni-directional aerial and the latter from a rotating loop and exciter system which produces a figure-of-eight radiation field. After detection in the receiver the latter produces a $30-\mathrm{c} / \mathrm{s}$ sinusoidal voltage.

Usually the system is arranged so that the phase of the rotating field pattern coincides with that of the reference signal's pattern, after demodulation, when the former passes through magnetic north, or zero degrees. At all other points in azimuth the positive maximum of the variable signal will be reached after the positive maximum of the reference signal. The fraction of the cycle between these two maxima at any point in azimuth gives the relative bearing of that point.

In the aircraft receiver the received signals are fed to a computor unit which compares the phases and displays the difference as a bearing to or from the V.O.R. ground beacon. Usually it is the magnetic bearing from the aircraft to the ground beacon. It is also possible to include a centre-zero meter which shows the aircraft's position to right or to left of a manually selected bearing. The latter provides facilities for track flying along a desired bearing to or from a V.O.R. beacon.
Marconi V.O.R. beacons also radiate a $1020-\mathrm{c} / \mathrm{s}$ tone signal keyed by a simple code sender at about $7 \mathrm{w} . \mathrm{p} . \mathrm{m}$. which is repeated every 30 seconds for beacon identification.

[^2]

The aerial system of the Marconi V.O.R. installea in an aerial tower. Above is the omni-directional radiator with the figure-of-eight exciter below it.

# Sporadic E and the $\mathrm{F}_{2}$ Layer 

By T. W. BENNINGTON*

0NE of the most mystifying of ionospheric phenomena is that of sporadic E . This is the name given to the relatively intense ionization "clouds" or "patches" which appear, in a sporadic manner, within the normal $\mathbf{E}$ layer. In the temperate and tropical zones this is largely a daytime phenomenon, and, though of a sporadic character, it has well defined seasonal variations which are rather more complex than is often supposed.

Speaking only of the sporadic E which appears in these zones, and leaving out that known as "auroral sporadic E," we may say that its cause, and the source from which its ionization comes, is at present unknown.
over, it had, in the southern hemisphere, a fluctuation of such different form from that in the northern hemisphere as to be more in the nature of a pronounced biannual fluctuation, then it might be supposed that the two phenomena were, in some way, interrelated.

It was remembered that the ionization of the $\mathrm{F}_{2}$ layer does have an annual fluctuation of different form as between the two hemispheres, and it was desired, therefore, to compare this with that of the sporadic E. Accordingly the noon monthly mean critical frequency values $f_{F 2}$ for Slough and Christchurch were read off for the years in question, and $\left(f_{F 2}\right)^{2}$ (to which the ionization of the layer is proportional)


Several different types of sporadic E are, in fact, observed. Among the possible causative phenomena which have, up to now, been suggested, are meteors, thunder clouds in the troposphere, corpuscles from the sun and ionospheric current effects; but none of these possibilities has the nature of a proven fact.

In the bottom curve of Fig. 1 are plotted the monthly values for the percentage of the total time when sporadic E with a critical frequency greater than $5 \mathrm{Mc} / \mathrm{s}$ was observed at noon at Slough. The curve shows a large peak in the incidence of sporadic $E$ centred approximately on June, i.e. near the summer solstice but it also shows a small but well defined secondary peak occurring year by year round about December. In the bottom curve of Fig. 2 similar data are plotted for Christchurch, New Zealand, a station having a somewhat similar latitude to that of Slough but in the southern hemisphere. We notice a striking difference in the curve as compared with that for Slough in that the secondary peak occurring in local winter (around June) is much larger, in fact often of amplitude almost equal to that for local summer (around December), producing, in fact, the effect of a biannual peak.
Returning to Fig. 1 it may be remarked that to correlate the main peak with any other ionospheric phenomenon would -indicate nothing much beyond the fact that they were both summertime phenomena. But if it could be shown that any other phenomenon also had a mall winter fluctuation, and if, more-

[^3]


In the top curve of Fig. 2 the $\Delta\left(f_{F 2}\right)^{2}$ values for Christchurch are plotted, and it is evident that the fluctuations are of a different character from those shown in the top curve of Fig. 1. In fact the curve shows, in general, a strong tendency for a biannual trough, which troughs appear to be connected with the peaks of the bottom curve. It is seen, in fact, that the major peak in the sporadic E curve is connected more often with a smaller trough in the $\Delta\left(f_{F 2}\right)^{2}$ curve than is the secondary sporadic E peak. (During a few months of 1955 no measurements were available for Christchurch but it was possible to estimate the $\left(f_{F^{2}}\right)^{2}$ values by interpolation; this was not possible for the sporadic $\mathbb{E}$.)
It is convenient, in order clearly to distinguish the annual variation, to regard each year as starting at the vernal equinox in both hemispheres, and the vertical lines in the graphs are used to divide the time into years in this way.

Similar results can be obtained for stations in other latitudes. Consider, for example, Fig. 3, in which the values of sporadic E percentage time and of $\Delta\left(f_{F^{2}}\right)^{2}$ for Canberra are plotted. There are several breaks in the data but the general features can be clearly seen. The secondary peak in sporadic $E$ is less prominent than is the case for Christchurch, but it appears to be connected with one of the biannual troughs (often the major one) in $\Delta\left(f_{F 2}\right)^{2}$.

In Fig. 4 similar data are plotted for White Sands, a station in the northern hemisphere with a lower latitude than that of Slough. Here the winter peaks in sporadic E are much larger than those for Slough (in fact they are sometimes of greater amplitude than the summer peaks). Correspondingly, the winter troughs in $\Delta\left(f_{F 2}\right)^{2}$ are much more pronounced than in the case of Slough, and the similarity between the peaks and troughs of the two curves of Fig. 4 is, all things considered, quite pronounced.
There is one further phenomenon which furnishes evidence of a like nature to that shown in the graphs. If one examines the sporadic $E$ data for local noon for a station near the magnetic equator (such as Huancayo, Peru or Ibadan, Nigeria) it is found that sporadic E with critical frequency greater than $5 \mathrm{Mc} / \mathrm{s}$ is present for from 90 to $98 \%$ of the total time during every month of the year. This effect is found to prevail in a narrow belt along the magnetic equator and within that belt a trough is found to exist in the geographical distribution of $\left(f_{F^{2}}\right)^{2}$. In other words the highest values of $\left(f_{F 2}\right)^{2}$ exist, at noon, a few degrees to the north

$\dagger$ Appleton, E. V., Naismith, R. and Ingram, L. J., "The Critical†Appleton, E. V., Nasmith, R, and Ingram, L. Josperic Ionization". Proc. Phys. Soc., Vol. 51, pp. 90-91, January 1939.
depletion corresponds approximately to the increase in the incidence of sporadic E . These facts may account, in some part, for the anomalous seasonal behaviour of the daytime $\mathrm{F}_{2}$.

The above facts seem to suggest that the dense ionization which appears in the $E$ layer, and is called sporadic E , comes in fact from the $\mathrm{F}_{2}$ layer, and that its occurrence leads to a depletion of the $F_{2}$ ionization in all cases. This might occur by reason of some sort of "subsidence" or downward drift of ionization from the $\mathrm{F}_{2}$ into the E . The difficulty is to see, if this be so, how the sporadic E would have the "thin layer" characteristics which it does, in fact, usually display. Even so there appears to be the possibility that, above the thin sporadic $E$ layer, phenomena such as a downward drift may be occurring but are not easily observable by ionospheric measurement techniques. As was first reported by Appleton and others in 1939 $\dagger$, a kind of downward drift is often observed during the formation of sporadic E . The ionization in these cases is first observed at the height of the $F_{1}$ layer and, during the course of several hours, it decreases in height and increases in critical frequency until the normal $\mathbf{E}$ layer height is reached. What physical process could occasion such a downward drift, and cause it to occur only sporadically, is a subject for speculation. But the facts mentioned here, and the evidence of the graphs, do suggest that sporadic E may come from the $\mathrm{F}_{2}$ layer.

A further possibility is that the coincident biannual peaks in the sporadic E and troughs in the $\mathrm{F}_{2}$-layer ionization are both due to some common cause of extraionospheric origin, though it is difficult to see how any ionizing agency could produce such effects. A more likely possibility would seem to be the presence of an ionospheric current, capable of causing interaction between the two layers.

# Simple Oscilloscope Camera 

Using Printing Paper to Record Stationary Traces

By A. J. KEY, B.Sc. (Eng.), Grad. I.E.E.

0NE often requires a record of a steady oscilloscope trace. As students, I remember, we used to trace the waveform on tissue paper obtained from a local plentiful supply, but the only merit of this method was cheapness. The alternative, an oscilloscope camera complete with shutter, film and driving motor, is an expensive improvement. I had thought of a contact printing process, which would involve holding contact paper against the tube face, but of course this would result in only a very blurred image. Some sort of focusing device is necessary; in fact a simple camera using printing paper as the film.

The camera and method of mounting the lens are shown in Fig. 1. The body of the camera is made from aluminium sheet rolled into a $2 \frac{1}{2}$-inch diameter tube, to suit, of course, a $2 \frac{1}{2}$-inch screen


Fig. 1. Construction of the camera tube and lens mounting system.
c.r.t. The length of the tube depends upon the focal length of an available lens and the required image size. The minimum length of the tube would be $4 \times$ focal length of the lens, giving a magnification of unity. However, in the interests of image brightness, it is as well to use a magnification of $\frac{1}{2}$. This requires a camera length of $4 \frac{1}{2} \times$ focal length of the lens, as is shown in the appendix.

The front end plate (also made from aluminium sheet) has a circular window, slightly smaller in diameter than the aluminium tube, but fixture to the tube can be made easier if three tabs are cut and bent away from the sheet before cutting the window. These tabs then fit into the tube, which fits flush with the end plate. The rear end plate has a rectangular window slightly smaller than the printing paper size. It can be fitted to the tube with four aluminium brackets, but the screw heads on the rear face of this end plate must be countersunk to enable the paper to lie flat upon the end plate. The backing plate is a plain piece of aluminium sheet which holds the printing paper during exposure against the window of the rear end plate, by being clamped to it with a pair of bulldog clips.
The lens is held by two rubber rings clamped between two aluminium "washers." These washers fit the inside of the tube, leaving a small clearance, and have apertures slightly smaller than the diameter of the lens. The washers are held together, sandwiching the lens between them, by three clamping screws. One of the washers has three tabs cut and bent from its edge to take the three 6 B.A. screws which project through axial slots in the tube. The lens zissembly can then be moved nearer


Fig. 2. Example of a 1,000c/s sine wave recorded by the camera.


Fig. 3. (a) Mirror image obtained of a differentiated square wave with a forward-running timebase, (b) the same wave with a backward-running timebase.


Fig. 4. Superimposition of two sine waves to show phase difference.
to or away from the screen to enable focusing adjustments to be made. Three sliding covers fit over the slots to prevent light ingress into the tube and the whole assembly is clamped by three $6 \mathrm{~B} . \mathrm{A}$. terminals. Although this may seem a rather complicated assembly, in practice it is very easy to make, requiring no tools other than a drill, a file and a pair of scissors. Finally, the inside of the tube is coated with a black matt paint (made actually from soot and nail varnish).

## Requirements for the Lens

The choice of lens will depend largely upon those available. In the interests of a bright image, the diameter (aperture) of the lens should be as large as possible, but if the lens is uncorrected for spherical aberration, a certain amount of blurring of the image will occur. The object lens from an old telescope is ideal. It will have a rather large focal length, making the camera rather long, but the spherical aberration will be reduced. If a simple uncorrected lens is used it should have a long focal length for this reason.
Contact paper does nol appear to be sensitive enough; bromide paper is far better, using a reasonable brightness level. Two to three minutes' exposure, followed by two minutes' development and subsequen: fixing, gave the results shown in Fig. 2 for a $1,000-\mathrm{c} / \mathrm{s}$ sine wave. As long as the paper is fitted into the camera in darkness, the exposure can be made in reasonable light conditions in the laboratory when the camera is fitted on to the oscilloscope. If trouble is experienced with fogging of the paper, draping a black cloth over the camera during exposure should cure the trouble. Synchronization must be used, of course, but the occasional jump does not affect the image.
The image produced will be a black trace on a white background, which is convenient when adding comments and making measurements. One snag, however, is that the image is a mirror-image (see Fig. 3(a), the trace of a differentiated square wave). This can be overcome by either reversing the $X$ plates (therebv reversing the timebase) or reversing the $Y$ plates (inverting the image) whichever is the more convenient. Luckily, on my oscilloscope, reversal of the X plates could easily be accomplished by a modification to the X selector switch. Otherwise, a double-pole double-throw switch could be fitted for this purpose. Fig. 3(b) is a trace obtained with a backward running tumebase.

These results were given by a green trace cathode ray tube and bromide paper, WFL.2D. It may be that other printing paper is more sensitive to green
light and that other colour traces require other grades of paper.
The system is quite useful for measurement of phase differences. Normally one needs a double beam oscilloscope for this, but even then the thickness of the tube face and lack of a zero line make the measurement only approximate. Suppose one wishes to measure the phase difference between two voltages occurring at points A and B in a circuit. The oscilloscope is synchronized from the voltage at A and an exposure is made for two minutes to the trace of this voltage. Another exposure, to the waveform of the voltage at $B$, is now made, retaining the synchronization from $A$. Finally, an exposure is made to the undeflected trace to obtain a zero line. The result for two sine waves is shown in Fig. 4. Of course, any number of waveforms may be superimposed in this manner.

The cost of each exposure is negligible. Cutting sheets of $3 \frac{1}{2} \mathrm{in} \times 4 \frac{1}{2} \mathrm{in}$ bromide paper into four makes each print about $\frac{1}{2} \mathrm{~d}$. The developer and fixer can be made up from powder and stored for two or three months.

## APPENDIX



Putting $u$ and $v$ as positive distances, for a double convex lens

$$
\frac{1}{f}=\frac{1}{u}+\frac{1}{v} \text { where } f \text { is the tocal length of the lens }
$$

Magnification $\mathrm{M}=\frac{v}{u}$

$$
\text { therefore } \quad \begin{aligned}
\frac{1}{f} & =\frac{1}{u}+\frac{1}{\bar{M} u} \\
\text { From which } u & =\left(1+\frac{1}{M}\right) \cdot f \\
\text { Total length } & =u+v \\
& =\left(1+\frac{1}{\bar{M}}\right) \cdot f+M\left(1+\frac{1}{\bar{M}}\right) \cdot f \\
& =\left(2+M+\frac{1}{\bar{M}}\right) . f
\end{aligned}
$$

Thus if magnification is $\times 1$, total length $=4 f$
It magnification is $\times \frac{1}{2}$, total length $=4.5 t$

## WORIID OF WIRELIESS

## Medical Electronics Conference

OVER 120 papers on the application of electronic techniques to medicine will be presented by experts from 18 countries at the Second International Conference on Medical Electronics to be held in the new U.N.E.S.C.O. headquarters in Paris from 24th to 27th June. A commercial exhibition of electromedical equipment will be held in the building at the same time. Subjects of the conference papers range from the measurement and telemetering of physiological data during space flight to the control of artificial limbs by muscle action potentials; from "radio pills," which are swallowed and transmit physiological data from inside the body, to the use of electronic computers for statistical methods of diagnosis. Registrations for the conference can still be arranged through the treasurer, B. Shackel, E.M.I. Electronics, Ltd., Feltham, Middlesex.

## MSF Standard Frequencies

IN calculating the frequencies of the $60-\mathrm{kc} / \mathrm{s}$ transmissions from the Rugby station MSF in terms of the caesium resonant frequency a value of $9,192,631,770 \pm 20 \mathrm{c} / \mathrm{s}$ will be assumed instead of the former value of $9,192,631,830 \mathrm{c} / \mathrm{s}$. The change is the result of the adoption of Ephemeris Time (ET) instead of corrected Universal Time (UT2). From March, 1959, corrections will be measured to

I.T.A. IN N. IRELAND.-Estimated service area of the new I.T.A. transmitter on Black Mountain, near Belfost. The station will radiate in channel 9 using horizontal polarization. The directional aerial atop the $700-\mathrm{ft}$ mast, giving a height of nearly $1,700-\mathrm{ft}$ above sea level, will have an e.r.p. varying from 20 kW to 100 kW . Fullpower test transmissions are planned to begin in August.
$\pm 1$ part in $10^{10}$ and the results will be published monthly, as usual, in our sister journal Electronic © Radio Engineer. For a detailed discussion of the background to the changes readers are referred to E. EOR.E. for March, p. 117.

## Receiver Production \& Sales

THE total turnover of the domestic receiver side of the radio industry during 1958 was just over $£ 90 \mathrm{M}$; about $£ 3 \mathrm{M}$ more than in 1957. Of this total $£ 3.4 \mathrm{M}$ worth of receivers was sold overseas. The export of sound receivers dropped from $£ 2.89 \mathrm{M}$ in 1956 to $£ 2.12 \mathrm{M}$ last year, while the overseas sales of television receivers rose from $£ 462,000$ to $£ 914,000$ during the same period and radio-gramophones from $£ 271,000$ to $£ 399,000$. The largest market for domestic equipment was Sweden, who purchased £329,809 worth, of which $£ 293,983$ was for television receivers. Well over a fourth of the value of radiogramophone exports went to the U.S.A. These figures are culled from the statistics section of the annual report of the British Radio Equipment Manufacturers' Association.
During 1958 the popularity of the 17 -in television screen continued to increase; accounting for approximately 83 per cent of all home sales-an increase of 11 per cent during the year. The percentage of models with 21 -in tubes fell from 8 to 5 and those with 14 -in tubes from 20 to 12 during the year.

## Dip. Tech.

THE number of students taking advance courses leading to the award of the Diploma in Technology has increased more than two-and-a-half times during the past eighteen months. The second report of the National Council for Technological Awards published on April 23rd records that 2,518 students, including 52 women, are now following 66 diploma courses at 20 colleges.
Lord Hives, chairman of the Council, in paying his tribute to industry in a foreword to the report, refers to the fact that $82 \%$ of the 2,323 students following sandwich courses leading to the Diploma in Technology have their fees paid by their employers.
In addition to the 56 courses ( 53 of which are sandwich type) referred to above, the Council has recently approved a further 21 and all the 87 courses are included in the latest list (No. 10) available from the Council at 9, Cavendish Square, London, W.1.

## "Trader Year Book"

FIRST published in 1925 the "Wireless and Electrical Trader Year Book" has become the vade mecum for the radio trade. A few of the features of the 1959 edition are:-condensed specifications of nearly 250 current television receivers and over 400 sound receivers; tables of television tuning frequencies (giving i.f.s of superhet receivers and sideband characteristics of both superhet and t.r.f. models) and also the i.f.s of sound receivers issued since 1946. It is also a valuable book of reference for trade names and manufacturers' addresses. The 416-page volume, issued by the Trader Publishing Co., costs 12s 6d.

Television Society Premiums have been awarded for outstanding papers read before the London meetings in 1957/58. For his paper "Transistors in Television Receivers," B. R. Overton, head of the television division of Mullard Research Laboratories, receives the Wireless World premium. The E.M.I. premium goes to Dr. R. Theile (Institut für Rundfunktechnik) for "Recent Investigations into the Operation of Image Orthicon Camera Tubes"; the Electronic Engineering premium to Dr. J. C. Parr (formerly Kelvin \& Hughes) for "Some Aspects of Waveguide Technique"; the Pye premium to L. J. Griffen (Kolster Brandes); for "Dressing Television: Gabinet Design"; the Mervyn "premium to $\mathrm{K} . \mathrm{H}$. Smith (Siemens Edison Swain) for " Performance of Television Receiver Turret Tuners"; and the Mullard premium "to J. Polonsky (Compagnie Générale de T.S.F.) for "A French Portable Television Camera."

Television Society Council-New members elected at the annual general meeting on May 8th, to fill the four vacancies on the council of the Television Society are: Dr. A. J. Biggs (G.E.C. Research); G. G. Gouriet (Wayne Kerr); B. R. Overten (Mullard Research); and Dr. J. D. McGee (Imperial College).
B.R.E.M.A.-The member firms of the British Radio Equipment Manufacturers' Association forming the new Council of the Association (with the firms' representatives in parentheses) are: A. J. Balcombe (E. K. Balcombe); Bush Radio (G. Darnley-Smith); E. K. Cole (G. W. Godfrey); Ferguson Radio Corp. (F. T. Holmes); G.E.C. (M. M. Macqueen); Gramophone Co. (F. W. Perks); Kolster-Brandes (L. R. Tyne); Philips Electrical (A. L. Sutherland); Radio \& Allied Industries (Bentley Jones); Trix Electrical (D. A. Lyons); Ultra Electric (E. E. Rosen); and Roberts Radio (H. Roberts). F. W. Perks and A. L. Sutherland have been re-elected chairman and vice-chairman respectively.
Outward Form.-An irternational cabinet-styling exhibition is again being arranged by B.R.E.M.A. It will be held from October 6th to 8th and will this year occupy both the North and South Halls of the Victoria Halls, Bloomsbury Square, London, W.C.1. Manufacturers of metal embellishments, plastics materials, glassware, fabrics, ornamental controls and aerials are being invited to participate in this "stockroom" exhibition.

University Scholarships.-Over 500 applications were received for the second series of 20 university scholarships offered by the English Electric Co. The scholarships, worth $£ 450$ a year, cover a three-year course at a university to study for an honours degree. Commenting on the applications, E. R. L. Lewis, Controller of Education in the English Electric group of companies, stated that the standard of entry was very high. About onethird of the entrants were interviewed, from these 40 were invited to attend a two-day residential selection board, and from these the 20 recipients were chosen.
Plastics materials are used so extensively in the radio industry that we make no apology for drawing readers' attention to the International Plastics Exhibition to be held at Olympia, London, from June 17th to 27th. Over 300 U.K. and overseas manufacturers of plastics materials and finished products and machinery are exhibiting at the show which is organized by British Plastics. A three-day convention (June 22nd to 24th) is being held in conjunction with the exhibition. Admission tickets to both the exinibition and convention are obtainable free from British Plastics, Dorset House, Stamford Street, London, S.E.1.

Institution of Electronics is offering four new premiums for papers published in the proceedings of the Institution, which is issued quarterly. They vary in value from 15 to 25 guineas.
"Transipack" Convertors.-The two semiconductor h.t. units described on page 248 in the May issue weigh 1 lb 2 oz and 1 lb 15 oz respectively and not 11 lb as stated.

Manchester Electronics Exhibition.-The 14th Annual Electronics Exhibition and Convention of the Institution of Electronics will be held at the Manchester College of Science and Technology from July 9th to 15th. There will be two main sections in the exhibition; one for manufacturers and the other covering scientific and industrial research. Further particulars of the exhibition and the associated convention are obtainable from W. Birtwistle, 78, Shaw Road, Rochdale, Lancs., from whom complimentary tickets may also be obtained.
Industrial Electronics.-From May 26th to 29th at the Rutherford College of Technology, Newcastle-uponTyne, Farnell Instruments Ltd., of Wetherby, Yorks, are holding their third industrial electronics exhibition. It will open daily at 10.0 and close at 5.30 on the first and last days and 7.0 on the two intervening days.

Receiving Licences.-During March the number of combined television and sound licences throughout the U.K. increased by 102,495 , bringing the total to $9,255,422$. Sound only licences totalled $5,480,991$ including 376,053 for sets fitted in cars.
I.R.C.M.S.-The duplicated bulletin of the International Radio Controlled Models Society is now available to non-members from N. R. Armstrong, 3 Lilburn Gardens, Newcastle on Tyne 3 (price 2 s 10 d ). The bulletin includes not only reports on the groups operating in different parts of the country, but also useful notes on radio control techniques.

Radio Control.-The annual contest of radio-controlled model boats, cars, etc., organized by the I.R.C.M.S., will be held on August 2 nid and 3 rd in East Park, Kingston-upon-Hull. Entry forms and copies of rules are obtainable from B. E. Veal, 33 Steynburg Street, Newbridge Road, Hull, Yorks.

Essay Competition.-To encourage and promote improved and more effective reports of scientific and technical work the Waverley Gold Medal Essay Competition is again being sponsored by Research. Details of the competition, entries for which must be received by July 31 st, are obtainable from the Editor of Research, 4 and 5 Bell Yard, London, W.C.2.

## Personalities

A. H. W. Beck, B.Sc.(Eng.), A.M.I.E.E., who was for some years in charge of the Vacuum Physics Division of Standard Telecommunications Laboratories at Enfield before joining the staff of the Engineering Department of Cambridge University last year, has been elected a Fellow of the American Institute of Radio Engineers "for contributions to the development of the thermionic valve." After graduating at University College, London, and undertaking a year's postgraduate work on secondary electron emission, he joined the research staff of Henry Hughes \& Sons in 1937. He was at the Admiralty Signals Establishment extension at Bristol during the war, after which he returned to Hughes, where he stayed until 1947, when he joined Standard Telephones and Cables. He has twice received a technical writing premium from the Radio Industry Council.
R. S. Medlock, B.Sc., A.R.I.C., A.M.I.E.E., technical and home sales director of George Kent Ltd., of Luton, Beds., is the new president of the Society of Instrument Technology. He joined the company in 1935 and was chief research and development engineer for five years before assuming his present position in 1956 . He is a past chairman of the control section of the Society. He succeeds J. F. Coales, O.B.E., M.A., M.I.E.E., reader in control engineering at Cambridge University, whose presidential address at the conclusion of his term of oficts dealt with the education of instrument technologists and control engineers.

Air Commodore W. C. Cooper, C.B.E., M.A., M.I.E.E., M.Brit.I.R.E., has had conferred on him by the City and Guilds of London Institute the Insignia Award in Technology (C.G.I.A.). Five of these awards are made each year in various branches of industry to "persons of distinction in recognition of their outstanding achievements in technology." He joined the R.A.F. in 1922 at the age of 16, was gazetted in 1926 and after taking a Specialist Officers' Signals Course at Cranwell he went to Cambridge University for the engineering tripos course. When he retired from the R.A.F. in 1946 he was Director of Communications, Research and Development in the Ministry of Aircraft Production. He then joined Ericsson Telephones as factory manager at Beeston, Notts., and in 1957 became chairman and managing director of Manlove, Alliott and Co., of Nottingham, who are engaged in the development of process control equipment.
Herman Baker, for the past six years Far East Regional Manager for Marconi's, has been appointed managing director of Marconi (South Africa) Ltd. He joined the company in 1930 as a student apprentice and on completion of his technical training remained in the Test Department until the outbreak of the war, during which he served in the Royal Artillery, attaining the rank of Major. Since 1951 he has been responsible for the company's activities in the Far East and took charge of a large-scale survey for the establishment of the main Malayan v.h.f. multi-channel telecommunications trunk routes.

Donald G. Fink, formerly editor of Electronics, has been appointed director of the research division of the Philco Corporation, which he joined in 1952. He was a member of the editorial staff of Electronics from 1933, except for a period during the war when he was granted leave of absence to join the Radiation Laboratory of M.I.T. where he subsequently became head of the Loran division. He was president of the I.R.E. for 1958.
H. de A. Donisthorpe has retired from the G.E.C., which he joined in 1926. He had been for some years deputy manager of the company's Valve and Electronics Department. He was for 11 years chairman of the Radio Industries Club prior to being elected president for the year 1948/49.
G. E. Spark is joining the Garrard Engineering and Manufacturing Company as sales manager of the division being formed to market the tape deck to be introduced by the company. Mr. Spark, who is chairman of Audio Fairs Ltd., was previously with M.S.S. Recording Co.
D. W. Rippin has resigned his position as export manager of Belling \& Lee to emigrate to Canada where he is joining the Astral Electric Company, of Toronto, who are Belling \& Lee's Canadian agents. J. E. Bailey, B.Sc.(Elec. Eng.), who has been with Belling \& Lee for two years, succeeds him as export manager. After graduating at Manchester University in 1948, Mr. Bailey joined the Navy for two years and was commissioned in the electrical branch. He then joined Marconi's as a graduate apprentice and subsequently worked on airborne and marine radar equipment. From 1954 to 1956 he was with Decca Radar.
M. T. Elvy, A.M.Brit.I.R.E., has been appointed joint manager and chief engineer of the R.F. Heating Division of Pye, Ltd., Cambridge. He was formerly chief engineer of the Industrial Electronics Laboratory of Redifon, Ltd.
D. C. F. Bartlett, B.Sc.(Eng.), has been appointed a director of Alma Components Limited, manufacrurers of precision wirewound resistors. He was formerly on the commercial manager's staff in the Components Group of Standard Telephones and Cables.
E. R. Deighton, recently appointed Assistant Superintendent Engineer, Television (Regions and Outside Broadcasts) by the B.B.C., has been assistant to the Controller, Television Service Engineering, since 1953. He joined the B.B.C. television service at the Alexandra Palace station in 1936. He succeeds W. D. Richardson, Assoc.I.E.E., who is retiring after nearly 30 years'
service.
G. D. Cook, A.M.I.E.E., is appointed by the B.B.C. Engineer-in-Charge (Television), Manchester, in succession to V. G. Hawkeswood, who, as announced in our February issue, has joined Southern Television. Mr . Cook joined the Corporation in 1946 and has been assistant to the Superintendent Engineer Television (Regions and Outside Broadcasts) since 1955.
J. J. S. Smith, A.M.I.E.E., works manager of British Communications Corporation, Ltd., was recently appointed to the board of directors.

## OUR AUTHORS

J. C. Burfoot, Ph.D., contributor of the article on ferroelectrics in this issue, is a lecturer at Queen Mary College, University of London. Educated at Christ's College, Cambridge, he obtained first-class honours in his tripos in 1949 after an interval of three years as a Signals Officer in the R.A.F. His doctoral thesis at Cambridge and subsequent research at Aberdeen University were on aberrations in electron lenses. Since 1955 Dr. Burfoot has been investigating ferroelectricity and computers.
R. G. Christian, A.M.Brit.I.R.E., Grad.I.E.E., who describes in this issue a circuit for displaying valve anode curves and their axes on a c.r. tube, is a teacher at the College of Technology, Liverpool. Before joining the staff at the College in 1954 he was for three years in industry. From 1946-48 Mr. Christian was in the Royal Army Educational Corps following which he was for three years a student at the Regent Street Polytechnic. He operates amateur station G3GKS.
W. A. Cole, B.Sc., author of the article on magnetic matrix stores, served with the R.A.F. as a Flight Lt. on ground radar during the war. Subsequently he attended London University, where he obtained a special physics degree. In 1951 he joined Mullard Research Laboratories, Salfords, eventually taking charge of a group working on magnetic storage devices. Recently, he transferred to the component division at Mullard House.

Jean Walton, who recently contributed an article on pickup design, discusses the design of a pickup arm in this issue. Miss Walton, who has had twelve years' experience in the development of audio equipment, has been with Cosmocord for the past 18 months.

## OBITUARY

Sir Stanley Angwin, K.C.M.G., K.B.E., D.S.O., M.C., who died on April 21st, aged 75, was for eight years engineer-in-chief of the Post Office before being appointed chairman of Cable and Wireless, Ltd., on the Government's acquisition of the company in 1947. He resigned in 1951 to become chairman of the Commonwealth Telecommunications Board, from which he retired in 1956. Sir Stanley joined the Post Office engineering department in 1906. "In recognition of his outstanding life's work in the field of telecommunication, both national and international," the I.E.E. granted him honorary membership in 1956. Three years earlier he had received the Institution's Faraday Medal. He was for some years a member of the Radio Research Board of the D.S.I.R. and was appointed chairman in 1947.

# Pickup Arm Design 

Requirements for Low Tracking Weight and Immunity from Vibration

THE following considerations arose in the course of the design of the $1-\mathrm{gm}$ pickup described recently in Wireless World (April issue, p. 182). A general reassessment of arm design was found necessary since most arms now available were designed when tracking weights were in the region of 5 to 10 gm , and side thrusts (intentional and otherwise) of about 1 gm seem to be quite common even after careful levelling.

The requirements for a suitable arm are that under operating conditions there should be:-
(1) Low side thrust. Side thrust may be produced by (a) pivot system friction, (b) an unlevel base, (c) the torque resulting from the head angular offset and friction between the stylus and both plain and modulated grooves, and (d) the "lateral" inertia of the arm acted upon by any eccentricities in both the disc and turntable. For 1 -gm tracking, the total side thrust should be under 0.1 gm .
(2) Constant and correct vertical stylus force. This force is affected by (a) the "vertical" inertia of the arm acted upon by any warps in the disc and turntable, (b) friction of the "vertical" pivot system and (c) stability of vertical balance. This stability is determined by the distribution of mass atove and below the vertical pivot, and any spring counterbalance which may be used.
(3) Immunity from vibrations. Such vibrations can be internal (rumble, etc.) or external. Excitation

Fig. 1 Basic principles of pickup arm construction:- (a) single pivot, (b) offset pivots with axle and weight counterbalance, and (c) offiset pivots with axle and spring counterbalance.

in any direction at the stylus or pickup base or both together should not produce undue vertical or lateral pressures at the stylus tip. Internal excitations are limited by disc and record player standards, whereas external excitation varies with the rigidity of the user's floor!
(4) Facility of use. There should be no need for weighing machines, spirit levels, etc.
There appears to be some scope for arm development to fulfil these requirements, and to this end


Fig. 2 Dimensions and weights in o typical single-pivor system.
the various principles of construction were reduced to the following:-
(a) Single pivot (including vertical pivots directly over lateral) as in Fig. 1(a).
(b) Axle and pivot (vertical pivots offset from lateral) as in Fig. 1(b), and
(c) Spring counterbalance as in Fig. 1(c).

Low Side Thrust.-As a result of measurements made on existing arms, low side thrust became the first consideration. It can be seen that friction at the lateral pivot is an almost constant minimum only in the case of the single-pivot system, since extra thrust on the side of the essential axle part in the other two principles of construction gives extra friction according to the balance moment required. An example will emphasize this point.
Consider a pickup to track at 1 gm with a head mass of 6 gm at a distance of 8 in from the lateral pivot. The three principles of construction then give the following results:-
(1) Single pivot as in Fig. 2.

Taking moments about the pivot we have:-
$(\mathbb{W} \times 2)+(10 \times 1)=(40 \times 4)+(5 \times 8)$
$\therefore \mathrm{W}=95 \mathrm{gm}$
$\therefore$ Total weight on pivot

$$
\begin{aligned}
& =95+10+40+5 \\
& =150 \mathrm{gm}
\end{aligned}
$$

$\therefore$ To a first approximation, frictional force at pivot $=150 \times \mu \mathrm{gm}$
where $\mu$ is the coefficient of friction.
If $\mu=0.2$ and the pivot tip has a radius of 0.02 n then, taking moments about the pivot, Maximum side thrust at stylus

$$
\begin{aligned}
& =150 \times 0.2 \times \frac{0.02}{8} \\
& =0.075 \mathrm{gm}
\end{aligned}
$$

(2) Offset pivots as in Fig. 3.

With a 2 -in offset and 2 -in axle we have, taking

[^4]moments about the vertical pivot
$$
(W \times 2)+(10 \times 1)=(30 \times 3)+(5 \times 6)
$$
$$
\therefore W=55 \mathrm{gm}
$$
$\therefore$ Moment about axle
\[

$$
\begin{aligned}
& =(55+10+30+5) \times 2+ \\
& =(10 \times 1) \\
& =210 \mathrm{gm}-\mathrm{in}
\end{aligned}
$$
\]

$\therefore$ To a first approximation, frictional force at extreme lower end of an axle even as unusually long as 2 -in

$$
=\frac{210 \times \mu}{2} \mathrm{gm}
$$

If $\mu=0.2$ as before, and the axle has a diameter of $\frac{1}{8}$ in then,

$$
\begin{aligned}
\text { Side thrust at stylus } & =105 \times 0.2 \times \frac{0.0625}{8} \\
& =0.164 \mathrm{gm}
\end{aligned}
$$

To this must be added the side thrust due to friction at the pivot at the top of the axle. If the pivot tip has a radius of 0.02 in then, from a calculation similar to that with a single pivot,
Extra side thrust at stylus

$$
\begin{aligned}
&=(55+10+30+5+10) \times \\
& 0.2 \times \frac{0.02}{8} \\
&= 0.055 \mathrm{gm} \\
& \text { t stylus } \\
&= 0.22 \mathrm{gm}
\end{aligned}
$$

$\therefore$ Total side thrust at stylus
(3) Spring counterbalance.

This can be arranged to have the same friction as the single pivot by countering the moment of the weight about the axle by the spring torque, using a rearward offset of the vertical pivot (see Fig. 1(c)). This, of course, is for only one value of the tracking weight.

The idea of using pivot friction to counter the side thrust caused by pickup head angular offset and friction between the stylus and groove was dismissed, since this thrust not only varies with the tracking weight required, but also with the recorded modulation as well as with the tracking error. It was thought that a considerable reduction in the side thrust would occur when tracking within the elastic limit of the record, because of reduced friction between the stylus and groove.

If British Standard 1928:1955, giving the allowable eccentricity of discs and turntables is taken as a basis, it can be shown that a pickup arm tracking a microgroove disc may find itself at rest occasionally. Thus it is clear that static as well as sliding friction must be taken into account in the lateral pivot. A figure of 0.05 gm static frictional force was designed for, and even lower values were attained in practice.

The worst feature of the two offset pivot systems is the extra necessity for levelling the arm base. If this is not done, the laterally unbalanced moment of the whole weight of the whole arm may produce a side thrust proportional to the sine of the angle of arm base tilt. Again the spring system could be elaborated to avoid this, but only conveniently for one value of the tracking weight. In a true self-levelling, single-pivot system (i.e., one in which the arm can freely rotate about the pivot in any direction) the side thrust is only equal to the actual stylus force multiplied by the sine of the angle of turntable tilt. Considering $1-\mathrm{gm}$ trackers, a $2 \frac{1}{2}^{\circ}$ tilt produces a side thrust of 0.044 gm for a true single pivot, and $0.044 \times \frac{1}{8}(6 \times 8+40 \times 4+10 \times 1)=1.2 \mathrm{gm}$ for example for the offset pivot case of Fig. 3.

If the effective stylus force is momentarily reduced by vibration or excessive modulation to less than the side thrust, then the stylus will ride up out of the groove. With an unlevelled offset system, due to the out-of-balance side thrust, the stylus will then skate with increasing momentum and destructive power across the record. With a true single-pivot system, owing to its " self-levelling" properties, the side thrust due to an unlevel turntable is only proportional to the contact force between the stylus and groove and thus falls to zero if the stylus leaves the groove. In fact the developed pickup, which incorporates a true single pivot, will not skate across the record under the most adverse conditions even at very low tracking weights.

Again consulting British Standard 1928:1955, it can be deduced that the combined allowable eccentricity of disc ( 0.002 in ) and transcription turntable ( 0.001 in ) will produce a lateral acceleration of $\left(2 \pi \times 33 \frac{1}{3}\right.$ $\div 60)^{2} \times 0.0015 \times 2.54=0.045 \mathrm{~cm} / \mathrm{sec}^{2}$, with a proportionate side thrust at the stylus tip according to the inertia of the arm about its lateral pivot. In this respect the advantage is with an offset pivot, but the reduction of side thrust with an offset rather than a single pivot is only about $30 \%$ comparatively, and absolutely the reduction is very small, being in this case only of the order of a few tenths of a milligram. For example, the equivalent effective head masses in the cases of the offset pivot of Fig. 3 and single pivot of Fig. 2 are 20 and 26 gm respectively, and at an


Fig. 3 Dimensions and weights in a typical offset-pivot system with axle and counterweight. The distance of the pickup head from the lateral pivot is the same as in Fig. 2.
acceleration of $0.045 \mathrm{~cm} / \mathrm{sec}^{2}$ these masses produce side thrusts of 0.9 and 1.2 mgm respectively.
Constant Vertical Stylus Force.-It is when considering the constancy of the vertical force on the stylus as determined by the disc flatness and vertical inertia of the arm that the only basic advantage of the spring system arises. Again the gain is comparatively small, being only a $50 \%$ change at most, for the inertia can ideally only be halved by the elimination of the counterweight.

A vertical offset between the disc and vertical pivot centre can cause friction bctween the stylus and groove to alter the stylus pressure, and an integration of the extra frictional impulses due to gioove modulation can then cause temporary changes in the stylus pressure.

The worst feature found on most arms is the difficulty of adjusting the pressure on fixed vertical pivots accurately enough to keep the pivot friction within a reasonable limit. Self-adjusting springloaded pivots should be used.

Where the centre of gravity of the arm is below that of its vertical pivots, "weighing" of the stylus force may be quite inaccurate if the arm is not in its usual playing position. Both this and the spring system must be weighed at disc level.
(Continued on page 271)

Immunity from Vibrations.-Let us consider the simplest example of vibration transmitted to the pickup base from the motor board when the pickup base moves vertically or laterally as one with the turntable spindle. Then, in the case of the spring-counterbalance system for vertical movement and both offset systems for lateral movement, due to the unbalanced inertia of the arm, an enormously greater variation in the force at the stylus tip is produced than with a balanced single-pivot system. In a singlepivot system with its centre of gravity below the pivot as is required for stability, longitudinal movement (along the arm length) can produce small variations in the stylus pressure.

If the pickup base moves while the turntable spindle remains fixed the advantage is with the unbalanced inertia systems, at least for small accelerations, since in a balanced system the stylus tends to move more with the pickup base. The problem of small movements of the pickup base in this way (for example internal vibrations) can be better tackled with elastic washers between the base and motor board. Large rotational movements of the base while the turntable spindle remains fixed hardly ever occur in practice.

The previously discussed advantages and disadvantages of the three principles of arm construction when acted upon by disc and turntable eccentricities and warps also apply to externally applied similar lateral and vertical motions of the turntable spindle relative to the pickup base.

Thus, considering all the requirements for a suitable arm, the single-pivet system appears to offer by far the most attractive prospects, and these were developed as follows.
Single-pivot System.-A true single-pivot system with rotational freedom in any direction is used. The fact that the angle of the stylus in relation to a tilted turntable in such a self-levelling system might minutely affect the separation and balance of a stereophonic pickup was considered to be less significant than the advantage gained of more equal pressures on the groove walls due to the reduction of side thrusts.

If the sideways balance is to be stable the arm must have its centre of gravity below the pivot. A


Fig. 4 Side-view sectional sketch of part of prototype arm showing stabilizing weight, damping medium, connecting wires and lifting mechanism.
stabilizing weight below the pivot was therefore added (see Fig. 4). This weight was kept to the minimum required to provide sufficient torsional inertia for a maximum force of 5 gm at the stylus. Keeping the stabilizing weight as small as possible also ensures the minimum possible movement from sideways vibration at the base.

To absorb any such resonant motion which could occur at the single pivot, this was designed both to retain a damping medium by capillary action and also to alternately push out and "suck in" the medium if the stabilizing weight swings from side to side (see Fig. 4).

To make accurate vertical balancing easy, and to eliminate sensitivity to longitudinal vibrations, the stabilizing weight was "uncoupled" by two pivots for vertical movement on opposite sides of the single pivot. The vertical pivots were springloaded to ensure correct pressure.

Sideways balance of the head offset is obtained in this design by adjustment of the lateral positions of the vertical pivots about the single pivot. Alternatively the pickup heads themselves could be made to provide sideways balance by suitable distribution of their mass in relation to stylus and arm, or an asymmetrical counterweight could be used. These alternative schemes were abandoned to ease the design and adjustment problems respectively.

If the linear offset of the arm is kept large, then due to the extra freedom of sideways balance, some of the vertical motion of the arm due to disc warping, etc., will be converted into rotational motion about the single pivot. If the rotational inertia is kept as low as possible, then this effect will play its maximum part in reducing stylus pressure variations. In fact the developed arm can be seen to rotate if the turntable is lifted suddenly whilst playing. An otherwise completely balanced system with spring pressure to provide the stylus force cannot conveniently make use of this principle.

In the case of the counterweight a compromise must be made between a long cylindrical shape which gives the minimum possible rotational inertia about the arm length as is required by the considerations of the last paragraph, and a thin disc shape which gives the maximum range of stylus pressures for the restricted length of movement available in a record player cabinet. Thus the optimum shape is approximately a cylinder whose height is equal to its diameter.

Calculation of both bending and torsion of a tubular arm shows that extremely large diameters are required to put all arm resonances above the audio range. It would therefore be desirable to have sufficient lateral and torsional inertia in the head alone if arm resonances are to be minimized. If the pickup is a one-gram tracker with a compliance of $15 \times 10^{-6} \mathrm{~cm} /$ dyne, and the bass resonance is required to be $15 \mathrm{c} / \mathrm{s}$, then, to inhibit the lateral arm resonances, the total mass of the head should be $\left(15^{2} \times 4 \pi^{2} \times 15 \times 10^{-6}\right)^{-1}=7.5 \mathrm{gm}$. Likewise,
considering that the compliance is usually inversely proportional to the tracking weight, about 40 gm would be required for a $5-\mathrm{gm}$ tracker. Accurate vertical pressures are ensured by balancing the arm and then inserting a calibrated pellet into the head.

The biggest problem was now that of the electrical connections. Various schemes were considered and rejected, and it was finally decided that a controllable torsion was preferable to the possibility of unseen foulings and erratic behaviour. Thus the connecting leads are brought visibly over the top of the pivot to an exit tube at the rear (see Fig. 4). By this arrangement, as the arm moves, the wires flex at only one
point instead of two as in the more usual arrangement with the flexing portion of the wire all on the same side of the lateral pivot.

A raising and lowering mechanism was thought desirable, and this is incorporated in the arm base (see Fig. 4) to lower the arm gently on to the disc. By altering the sideways balance, this lowering mechanism can be used to move the stylus between 5 microgrooves ahead and 10 microgrooves behind its previous position to an accuracy of $\pm 3$ microgrooves or better.

The arm produced has a measured side thrust of 0.02 gm and vertical friction of 0.05 gm . It should be eminently suitable for tracking down to 0.2 gm .

# Displaying Valve Characteristics 

Cathode-Ray Tube System for Presenting Anode Curves with Their Axes

By R. G. CHRISTIAN,* A.M.Brit.I.R.E., Grad. I.E.E.

AMETHOD of displaying valve characteristics on a single-beam cathode-ray tube has been described by Buckingham and Price ${ }^{1}$. The result is a trace representing the anode-current/anode-voltage curve of the valve for a given grid bias plotted on a screen without axes. Since valve characteristics were required to be demonstrated in a convincing manner to engineering students it was felt that the addition


Fig. I. Basic circuit for generating the $X$ and $Y$ axes for the display
of axes was essential. A further disadvantage of the method referred to above was the use of both d.c. and a.c. to feed the valve. In the apparatus to be described the valve characteristic is presented in the same way as it would be shown on a blackboard during lectures, and the circuit is simple and compact.

One beam of a dual-beam c.r.t. is used to trace the axes. The deflection voltage for the X axis is obtained by means of a half-wave rectifier so that the axis is only traced during one half-cycle. On the other half-cycle a similar half-wave rectifier, connected in the reverse direction, produces a halfwave pulse which deflects the spot in the $Y$ direction. The basic circuit to produce the axes is shown in Fig. 1.

The valve whose characteristics are to be displayed is fed by a.c. and conducts on one half-cycle only. The anode current produces a half-wave pulse across an anode resistor and this is fed to the second Y plate. It was found that a large anode resistor had to be used in practice in order to obtain suffi-

[^5]cient $Y$ scan for the second beam, which traces the valve characteristic. The X scan, which represents anode voltage, is supplied by the same half-wave rectifier which deflects the first beam to write the X axis. The basic circuit for displaying the characteristics is shown in Fig. 2, from which it will be seen that the X plate section is the same as that in Fig. 1.

It will be seen that the scan voltage used to represent the anode voltage is, in fact, the sum of the voltages across both the valve and the anode resistor. The error is small only if the anode resistor is small, which is not so in this case. There would be no error if the anode was used as a common earth reference but since the purpose of the circuit was to demonstrate the approximate shape of the valve characteristics it was not considered to be of importance. If accurate characteristics are required the X scan voltage must be that developed between anode and cathode of the valve.

The circuits of Figs. 1 and 2 are combined in the


Fig. 2. Basic circuit for obtaining the anode characteristics of the valve.
practical circuit of Fig. 3 which also includes d.c. supplies to the screen and control grids of the pentode under test, the control-grid bias being variable in the negative direction. The screen and control grid must be supplied by steady d.c., which accounts for the inclusion of the two capacitanceresistance smoothing circuits. This will be apparent


Examples of characteristics produced by the apparatus: (a) triode, (b) pentode, (c) tetrode, (d) set of triode curves (e) set of pentode curves.
if the effect of supplying the screen grid with halfwave pulses is considered, since the resulting variation in screen-grid potential would follow that in anode potential and a triode characteristic would result.

All the supplies are obtained from a transformer with two simple secondaries, one for the scan and bias voltages, and one for the three valve heaters. The component values are not critical and those indicated happened to be available at the time. The valve under test is an EF36, with which it was possible to demonstrate triode, tetrode and pentode curves quite satisfactorily, the change-over being carried out by switching. When the switches, which are ganged, are set to position 1, the screen grid is connected to anode, the suppressor grid to cathode, and the valve behaves as a triode. On position 2, both screen and suppressor grids are connected to the screen supply and the valve operates as a tetrode; while on position 3, the suppressor is connected to cathode and the valve operates normally as a pentode. The photographs show the results obtained with various values of grid bias and for different connections.

The possibility of showing a family of curves is interesting and is easily effected in the case of two curves by feeding the output from a square-wave generator into the control grid. The amplitude of the generator output controls the spacing between the curves, the bias control being kept operative so that both curves may be shifted smultaneously.

In attempting to demonstrate more than one pentode or one tetrode curve it was found that the return of the trace was along a different path from the initial scan, producing an effect reminiscent of a hysteresis loop. No satisfactory explanation has so far been developed, neither has any attempt been made to overcome the difficulty, since it was felt that the circuit did all that was required of it, at least for the present. It would probably be possible, with suitable electronic switching, to produce more than two curves. Two possible methods would seem to be either the use of a stepped waveform appliect to the grid or the use of an electronic switch to select different fixed values of grid bias. In the equipment described, however, no attempt was made to do this, since it was desired that the circuit should be as simple as possible.

The families of curves shown in the photographs were obtained by means of multiple exposure, which, while suitable for recording, is of no use from the point of view of live demonstration, which is the object of the apparatus. In this connection it is emphasized that the only purpose of the demonstration is to show practically and rapidly the general shape of the characteristics of triodes, tetrodes and pentodes and the effect of variation of control grid bias.

Thanks are due to V. Attwocd for carrying out the practical work, for incorporating some of his own ideas into the circuit, and for taking the photographs.


Fig. 3. Practical circuit for display of characteristics and axes. Direct-current supplies are included for the grids of the pentode test valve.

# Feedhack Amplifiers as Filters 

## Application of Familiar Principles to Feedback-synthesized Filters

By THOMAS RODDAM

IN the course of a study of a rather simple feedback amplifier recently I found myself confronted by some equations which looked familiar, though not in this context. Generally, of course, one does not do very much mathematics when designing feedback amplifiers: at any rate, I don't, because the amplitude and phase response plots, together with the filter $\mu \beta$ effect calculator, provide all the information needed for the usual task of making it flat, making it stable. As every schoolboy knows, quite a lot has been written on the design of particular feedback circuits with particular shapes of end characteristic but all the articles I can remember are of the kind which describe a circuit for a special job. As some hardened readers may know, I like to make one lot of analysis serve as many purposes as possible, even though this reduces the amount I can write on a given topic and thus gives more hope to the wolf which hovers outside my door, my door and everyman's.

The general feedback amplifier is shown in its old familiar form in Fig. 1. As that abominable


Fig. 1. The general feedback amplifier.
schoolboy of Macaulay's will point out, the gain of the whole system is:-

$$
\begin{equation*}
\mu_{\mathrm{t}}=\mu /(1+\mu \beta) \ldots \tag{1}
\end{equation*}
$$

We know that in a practical configuration with negative feedback both $\mu$ and $\beta$ will have the same sign so we need not indulge ourselves in the academic practice of writing $(1-\mu \beta)$ and then making $\beta$ negative. Sooner or later we shall be taking logarithms, to get ourselves into decibels, and as log $\mu_{\text {t }}$ is the same as $-\log 1 / \mu_{\mathrm{f}}$ we can rewrite Eqn. 1:-

$$
\begin{equation*}
1 / \mu_{f}=(1+\mu \beta) / \mu=1 / \mu+\beta \tag{2}
\end{equation*}
$$

This very simple equation is our starting point, for the behaviour of $1 / \mu_{f}$, or $-\log \left(1 / \mu_{f}\right)$ if you like, is the response of the feedback amplifier. As you see, it depends on two factors, $\mu$, or $1 / \mu$, and $\beta$. Usually we say cheerfully that $\beta$ is much bigger than $1 / \mu$, so the response is dominated by $\beta$, but of course this is no longer true at the edges of the working range when all kinds of things may happen. In many applications we manage to keep this region well away from the band which contains our signal and then our only interest is in the stability conditions which amount, more or less, to determining the phase of $\mu \beta$ when $\mu \beta=1$. Stability is a bit more complex than that, but it is true that usually we are so preoccupied with stability that we don't worry about the shape of the $\mu_{i}$ response in this region.

Suppose now that the amplifier-we might even call it the $\mu$-amplifier to show that we mean the upper box in Fig. 1-has only one stage and it is completely dominated by a single shunt capacitance. The response will then be that of the simple network shown in Fig. 2. We can easily see that we have:-

$$
\begin{align*}
1 / \mu & =\left(1 / \mu_{o}\right)(1+j \omega \mathrm{CR}) \\
& =\left(1 / \mu_{o}\right)\left(1+j \omega / \omega_{o}\right)=\left(1 / \mu_{o}\right)(1+j \Omega) \tag{3}
\end{align*}
$$

where $\omega_{o} \mathrm{CR}=1$ and $\Omega=\omega / \omega_{0}$.
Suppose, too, that $\beta$ is just a constant, that the $\beta$ network is made up of pure resistance elements. Then we have:-

$$
\begin{align*}
1 / \mu_{\mathrm{f}}= & 1 / \mu+\beta=\left(1 / \mu_{o}\right)(1+j \Omega)+\beta=\left(1 / \mu_{o}+\beta\right) \\
& +j \Omega / \mu_{o} \\
= & \left(1 / \mu_{o}+\beta\right)\left(1+j \Omega /\left(1+\mu_{o} \beta\right)\right.  \tag{4}\\
= & \left(1 / \mu_{o}+\beta\right)\left(1+j \omega / \omega_{o}\left[1+\mu_{o} \beta\right]\right)
\end{align*}
$$

I have churned through the transformation in the string of Eqn. 4 in order to arrive at that last expression: next time I shall leave out some of the steps. The final form is the product of two factors which we can call the gain factor ( $1 / \mu_{o}+\beta$ ) and the shape factor (which needs a line of its own). The gain factor is just what we expect and I do not propose to say anything more about it. The shape factor is rather interesting because if we write $\omega_{o}^{\prime}=\omega_{o}\left(1+\mu_{0} \beta\right)$ and $\omega / \omega_{0}^{\prime}=\Omega^{\prime}$ the shape factor becomes $\left(1+j \Omega^{\prime}\right)$.
This is exactly the same form as we had for the basic $\mu$-amplifier in Eqn. 3, except that whereas for the basic amplifier the response was 3 dB down at $\omega=\omega_{o}$ the new response is 3 dB down at $\omega=\omega_{o}^{\prime}$ and $\omega_{o}{ }^{\prime}=\omega_{o}\left(1+\mu_{o} \beta\right)=\left(1+\mu_{o} \beta\right)(1 / \mathrm{CR})$

It is easy to see that this sort of result should be expected. There is only one element, the C, in the whole system which can do anything to the frequency characteristic and the overall behaviour must therefore contrive to be what I find is convenient to call a first-order response. This result also contains the information that, for a first-order system anyway, the use of negative feedback does nothing to improve, or degrade, the gain-bandwidth product. There is a straight trade of gain for bandwidth which does not depend on a particular definition of bandwidth, because the shape is unaltered. What is more, if you can think of a suitable circuit configuration, the feedback can be positive without altering the terms of trade. From this we can go on to say that if we use enough positive feedback to make the gain infinite the bandwidth must be zero. Do you care? Well, if we replace the capacitance by a series inductance-capacitance pair and replace $\omega$ by $\Omega=\left(\omega / \omega_{o}-\omega_{0} / \omega\right) \omega_{o}$ we move the frequency at which we have infinite gain and zero bandwidth up from $\omega=0$ to $\Omega=0$ or $\omega=\omega_{o}$ This is the basis of the simple oscillator and the simple $Q$-enhancer.

Let us get back to the main line of our discussion and now consider the possibilities of second-order circuits. The term " second-order circuits" is a
rather formal way of saying circuits with two reactances in them. There are general possibilities here. The second frequency-dependent term can be added in the feedback network, as an isolated term in the $\mu$-amplifier or as a coupled term in the $\mu$-amplifier. One special form we can throw away immediately, especially as it's only an approximation, is when $\beta$ and $1 / \mu$ have the same shape term $(1+j k \omega)$, although with different values of $k$. This rapidly reduces to a single factor, so we are back in the firstorder class.

The most ordinary form we can take seriously is the form we find with a two-stage $\mu$-amplifier when each stage has a network of the kind shown in Fig. 2. If one network has components $\mathrm{C}_{1} \mathrm{R}_{1}$, and $\omega_{1}=1 / \mathrm{C}_{1} \mathrm{R}_{1}$, the other giving $\omega_{2}=1 / \mathrm{C}_{2} \mathrm{R}_{2}$, we can see that:-

$$
\begin{equation*}
1 / \mu=\left(1 / \mu_{0}\right)\left(1+j \omega / \omega_{1}\right)\left(1+j \omega / \omega_{2}\right) \tag{5}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
1 / \mu_{\mathrm{f}}=\left(1 / \mu_{0}\right)\left(1+j \omega / \omega_{1}\right)\left(1+j \omega / \omega_{2}\right)+\beta . \tag{6}
\end{equation*}
$$

We must, I am afraid, expand this and the most convenient form is, at first:-

$$
\left.\begin{array}{rl}
1 / \mu_{1}= & \left(1 / \mu_{o}+\beta\right) \\
& \left.k \omega^{2} / \omega_{1} \omega_{2}\right],
\end{array}\right]+j k \omega\left(1 / \omega_{1}+1 / \omega_{2}\right)-
$$

where

$$
k=\left(1 / \mu_{o}\right) /\left(1 / \mu_{o}+\beta\right)=1 /\left(1+\mu_{0} \beta\right) .
$$

We may now concern ourselves only with the shape factor, the expression:-

$$
1+j k \omega\left(1 / \omega_{1}+1 / \omega_{2}\right)-\omega^{2} k / \omega_{1} \omega_{2}
$$

This is the simple second-order characteristic and if we call it $S$ we need only devote ourselves to:-

$$
\begin{gather*}
|\mathrm{S}|^{2}=1+\left\{k^{2}\left[\left(\omega_{1}+\omega_{2}\right) / \omega_{1} \omega_{2}\right]^{2}-2 k / \omega_{1} \omega_{2}\right\} \\
\omega^{2}+k^{2} \omega^{4} / \omega_{1}^{2} \omega_{2}^{2} \quad \ldots \tag{7}
\end{gather*} . . \quad . \quad(7)
$$

The term in this which is of chief interest, as I showed in "Filters Without Fears"*, is the term in $\omega^{2}$. If the coefficient of $\omega^{2}$ is zero we have the Butterworth or maximal flatness response: if it is negative the response is of the Tchebycheff, or humped, type. Readers of "Filters Without Fears" will remember that it is not always possible to make expressions of this form give the Tchebycheff type of response because the coefficient of $\omega^{2}$ may be obstinately positive. Here, however, we can do a quick check by putting $\omega_{1}=\omega_{2}=1$ so that the coefficient of $\omega^{2}$ becomes just $4 k^{2}-2 k=2 k(2 k-1)$ Thus if we make $k=0.5$; or $\mu_{0} \beta=1$, we shall get the neat, square Butterworth response, while any more feedback, making $k<0.5$, will give us a bump before the response falls away. This is exactly what our experience with feedback amplifiers leads us to expect. Our experience also tells us that if $\omega_{1} \neq \omega_{2}$ we need more feedback, or a smaller value of $k$, before we reach this happy state. Sometimes we know that we want $k$ to have a particular value,


Fig. 2. The simplest frequency - response determining network for a forward poth.
say $1 / 10$, or 20 dB of feedback. If we also want a Butterworth response we can put the coefficient of $\omega^{2}$ equal to zero and solve for $\omega_{1} / \omega_{2}$. I have done

[^6]this on a separate piece of paper, to save filling th page with algebra, and the result is:-
\[

$$
\begin{equation*}
\omega_{1} / \omega_{2}=(1 / k)[(1-k) \pm \sqrt{ }(1-2 k)] \tag{8}
\end{equation*}
$$

\]

We also know that the response is 3 dB down at some value of $\omega=\omega_{o}$ where $k^{3} \omega_{0}^{4} / \omega_{1}{ }^{2} \omega_{2}^{2}=1$ so that $\omega_{1} \omega_{2}=1 / k \omega_{o}{ }^{2}$
The two equations, (8) and (9), enable us to fix the values of $\omega_{1}$ and $\omega_{2}$.

All this analysis, of course, applies equally well if we perform the simple frequency transformations on it, so that although this is the ordinary low-pass filter case, the same pattern appears for the high-pass

Fig. 3. The simplest frequency - response determining network for a feedbock path.

and band-pass cases. I have been into all that before and you can look it up.
A difficulty which occurs in using amplifiers as filters is that $\mu_{o}$ may vary. Obviously the response will vary too and there will be two effects. The coefficient of $\omega^{2}$ will no longer be what you hoped, which for the calculation we have just done is zero, and the coefficient of $\omega^{4}$ will also change, moving the asymptotic $12 \mathrm{~dB} /$ octave cut-off. When $k$ is small it is also very close to $1 / \mu_{0}, \beta$ and a 6 dB change of $\mu_{0}$ will move the asymptotic line by a factor of $\sqrt{ } 2$, which is a rather large variation. Feedback amplifiers of this kind which are designed as filters must therefore have the gain of the $\mu$-amplifier held constant by some means. One obvious solution is a fair amount of feedback in each cathode or emitter circuit. This is just another example of the fact that you cannot get anything free: if the feedback is used up in one function it cannot play its full part in another.

The other important way of introducing a second frequency dependent element is to put it into the feedback network. Since the basic type of filter we are considering is the low-pass filter the obvious form of feedback network to use is that shown in Fig. 3. For this the response will be:-

$$
\begin{aligned}
\mathrm{V}_{\text {out }} / V_{i n} & =j \omega \mathrm{CR} /(1+j \omega \mathrm{CR}) \\
& =\left(j \omega / \omega_{2}\right) /\left(1+j \omega / \omega_{2}\right) .
\end{aligned}
$$

Then the feedback term $\beta$ can be taken as:-

$$
\beta_{o}\left(j \omega / \omega_{2}\right) /\left(1+i \omega / \omega_{2}\right)
$$

and the overall performance with a single Fig. 2 network in the $\mu$-amplifier becomes:-

$$
1 / \mu=\left(1 / \mu_{0}\right)\left(1+j \omega / \omega_{1}\right)+\beta_{0}\left(j \omega / \omega_{2}\right) /(1+
$$

Without going into any details we can see that the shape of the response is going to depend on an expression of the form:-

$$
\left(1+j a \omega-b \omega^{2}\right) /(1+i c \omega)
$$

This is a system having a first-order cut-off, only 6 dB /octave, but it is complicated in the region of the transition from flatness to asymptote as you can see. The easiest way of analysing it is to notice that when we go over to decibeis we have the difference between the decibels corresponding to the numerator and the decibels corresponding to the denominator. The one is a second-order expression.


Fig. 4. Another firstorder low-pass network.
of the form we discussed immediately above, while the other is an ordinary first-order expression.

I do not want to go into any more detail on designing these circuits because you can look up some specific designs in the literature, or work out your own problem for yourself. The really important thing is to go back to Eqn. 2 again:-

## $1 / \mu_{\mathrm{f}}=1 / \mu+\beta$.

We can reasonably guess that this will be simplest if all the frequency dependent factors are in the $\mu$ term, as we discovered in the examples. Suppose, then, that we have:-

$$
1 / \mu=\left(1 / \mu_{o}\right)\left(1+j \mathrm{f}_{1}(\omega)+\mathrm{f}_{2}(\omega)\right)
$$

and immediately

$$
1 / \mu_{t}=\left(1 / \mu_{o}+\beta\right)\left[1+j \mathrm{f}_{1}(\omega) /\left(1+\mu_{o} \beta\right)+\right.
$$

When this is converted into the standard $\left(1 / \mu_{t}\right)^{2}$ form the coefficients of $\omega^{2 h}$ will contain factors which depend on $\left(1+\mu_{0} \beta\right)$. This is of the nature of an interaction parameter, and, as we have seen, it plays an important part in fixing the shape of the response. If we consider a system in which the network of Fig. 4 is in tandem with that of Fig. 2; but in which a buffer amplifier is used between the two, the shape of the overall response will be expressed by an expression of the form:-
$\left(1+j \omega / \omega_{1}\right)\left(1+j \omega / \omega_{2}\right)$.

This has a very limited range of shapes and at the best provides an extremely rounded cut-off. By rearranging the network elements so that the $L$ and $C$ are adjoining we know that we can get a more general second-order filter characteristic. The reason is that $L$ and $C$ can interchange their stored energy and it is this interaction between them which provides us with the one extra generality. In just the same way, in the feedback amplifier the $\left(1+\mu_{0} \beta\right)$ term represents the return to the first reactance network of energy which has passed through the second reactance network. One network can, as it were, see the other. Another way of looking at it is to regard it as a special form of coupling between the two networks. In band-pass filters this view gives us the possibility of three kinds of coupling: inductive, which falls with frequency; capacitive, which rises with frequency; and feedback, which in its basic form is independent of frequency.

The use of feedback as an energy interchange medium is of especial importance when the frequencies involved are low. By using feedback we store energy in a capacitor to return it to a capacitor; whereas without feedback we could only get the required interaction by using inductance-and large inductances for low frequencies are not easy to realise without excessive losses.

This short survey has, I hope, been enough to show that the kind of response you can get from a feedback amplifier is the same as that you can get from a conventional filter and that the algebra is consequently the same. It is always, to my mind, agreeable to find that one only need do the basic work once.

## Elements of Electronic Circuits

3 - Amplitude Limiting
By J. M. PETERS, B.Sc.(Eng.), A.M.I.E.E., A.M.Brit.I.R.E
$N$ order to eliminate unwanted fluctuation in the peaks of a waveform, or perhaps to discriminate between wanted or unwanted pulses, it is often necessary to limit the positive or negative excursions of such a wave. A further possible use is the derivation of rectangular pulses from a sinusoidal input. A common method of achieving amplitude limiting is by overloading a valve amplifier so that the peaks of the input are cut off by the flat regions of the dynamic characteristics. It is, therefore, possible to limit both the positive and the negative excursions by suitably biasing the amplifier.

In grid limiting the grid-cathode portion of the valve is operated as a diode. Grid current flows during the positive half cycles of the input wave, and if a resistor of the correct value is inserted in series with the grid the major part of the positive excursion of the input is developed across it instead of between grid and cathode. The positive-going anode current is thereby limited, as is also, of course, the negative-going anode voltage. This action is more fully explained later.

Simple Limiting.-As the diode provides the commonest example of amplitude limiting we will examine the simplest case first, i.e., with a sine-wave input. In the following circuits it is assumed that



the series resistor $R_{1}$ is large compared with the resistance of the valve $R_{a k}$ (not $R_{a}$ but $V_{a k} / I_{a}$ ) when the valve is conducting and small compared with the impedance of the valve when it is not. In Fig. 1, during the positive half cycles the voltage across the diode is limited. During the negative half cycles the voltage across $\mathrm{R}_{1}$ is limited (shown dotted). It follows, therefore, that if we wish to limit the negative peaks we take our output from across $R_{1}$. In Fig. $2 R_{1}$ is shown in the cathode circuit of the diode as an alternative position. Fig. 3 shows an alternative way of limiting negative peaks, by reversing the diode shown in Fig. 1. If we choose to bias the diode it will then not conduct until the input voltage exceeds the bias voltage; in other words, we have shifted the level at which the limiting action commences (Fig. 4). Similar reasoning will show that it is possible to extend this action to positive peak limiting.

Parallel Diode with Applied Square Wave.-The limiting action on a square wave (Fig. 5) is similar to that shown for the sine wave. The loss of voltage during the non-conducting period of the diode is determined by the load current and the value of $\mathbf{R}_{1}$.
It will be noted that the shape of the limited waveform is similar to the shape of an identical input after "clamping," i.e., the occurrence of d.c. restoration. The difference lies in the action of the CR coupling circuit immediately preceding the input (which for clarity is not shown in Fig. 5). The bias produced by choosing the correct time constant for the associated CR circuit is a necessary part of the action of a "clamping" circuit device, whereas

in limiting the CR coupling circuit time constant must be chosen so that no slide-back occurs.
Limiting Using Two Diodes.-If two diodes are coupled as shown in Fig. 6 and provided with bias voltages X and Y , it is possible to limit the applied waveform at the same time as permitting it to continue to alternate about zero. Limiting of the positive excursion by diode $D_{1}$ will not take place until the positive-going input exceeds the positive bias X . Similarly the limiting of the negative excursion by diode $D_{2}$ will not take placee until the negativegoing input exceeds the negative bias Y. The amount of bias determines the limit of the positive and negative excursions.


Series Limiting.-Here the diode is used as a "biased switch" in series with the applied wave. As an example let us consider the action of a sawtooth waveform applied to the circuit in Fig. 7. The diode is biased to 150 V while the amplitude of the sawtooth wave is assumed to be 300 V . All the time the applied wave is less than 150 V the diode is non-conducting; the "switch" is, therefore, "open." When the anode voltage of the diode exceeds 150 V the diode conducts, the " switch" is "closed" and the output voltage follows the input.

Grid Limiting.-As has been stated earlier, both positive and negative peak limiting can be achieved by driving an amplifier into the flat regions of the dynamic characteristic. So far as negative peak limiting is concerned, the point at which it occurs is determined by the cut-off bias and the amount of bias applied to the amplifier (see Fig. 8).
To obtain positive peak limiting a large amplifier load resistance is necessary so that $I_{a}$ reaches the upper bend condition at relatively low grid voltage swings. Owing to this and to the undesirability
of driving the valve far into the grid current region, grid limiting is often resorted to for restricting the positive voltage excursions.

Let us assume that a sine wave is applied to the circuit shown in Fig. 9. During the positive half cycle of input grid current $I_{g}$ flows and the gridcathode resistance $R_{g k}$ drops to a low value. As $R$ is large compared with $\mathrm{R}_{\mathrm{gk}}$ when the valve is conducting, most of the applied voltage is developed across it ( $I_{g} R$ ) and a negligible amount across $R_{g k}$.

During the negative half cycle of input no grid current flows and the input is applied directly between grid and cathode. However, the negative swing drives the grid beyond cut-off. The resultant $\mathrm{V}_{\mathrm{a}}$ waveform is, therefore, approximately square on both positive and negative excursions.


# Magnetic Matrix Stores 

## COMPUTER STORAGE SYSTEMS BASED ON <br> WITH RECTANGULAR HYSTERESIS LOOPS

By W. A. COLE,* B.Sc.

ANY computer, whether human, mechanical, electro-mechanical or electronic, requires a memory, or storage system, in which to store the numbers involved in the calculation, the operations to be performed on the numbers, the intermediate answers and the final answers. The storage system may be simply a pencil and paper used by a person doing arithmetic; or it may consist of some combination of punched cards, punched tape, magnetic tape, magnetic drums, delay lines, cathode-ray tubes, valves, transistors, magnetic cores, etc., with a storage capacity of up to several million numerical digits in the case of a large scale electronic computer.

The speed at which an electronic computer can complete a problem, once the required information and instructions have been supplied to it, is governed by two things: the speed at which it can do individual arithmetical operations, and the speed at which it can obtain the next piece of information or instruction from the store. The time taken by many machines to perform the addition or multiplication of two numbers, each consisting of many digits, is measured in microseconds. It is obviously desirable that a machine of this speed should also be able to obtain information from its store in a few microseconds. If the access time to the store was even as long as a millisecond then the arithmetic units of the machine would spend the greater part of their lives waiting for something to do.

## Wide Applications

Seven years ago the first magnetic ferrites to have substantially rectangular hysteresis loops were produced in the U.S.A. Since then the application of these materials to high-speed digital storage systems has been so successful that there is hardly any large, fast, electronic computer under development any-

* Mullard. Ltc


Fig. 1. Method of storing information by remanent magnetism in ferrite rings. (a) clockwise magnet zation and (b) anticlockwise magnetization.


A stack of 20 matrix storage planes in practical form for use in a computer. The capacity is 81920 digits.
where in the world which does not incorporate a magnetic matrix store. The capacity of these stores varies from a few thousand to a few million binary digits, and the cycle time, that is, the time to select an address, $\dagger$ read the information stored and rewrite information into the address, is usually in the range from five to fifteen microseconds.

In a magnetic store the individual memory cells consist of tiny ferrite rings of less than one-tenth of an inch diameter linked by an array of insulated enamelled wires. Each ring is capable of storing one digit or piece of information, bur in common with most devices used in computers, a magnetic memory works with numbers expressed in the binary system. In the decimal system, with which everyone is familiar, there are ten digits, namely 0 to 9 , and a number 4275 , reading from right to left, means $(5 \times 1)+(7 \times 10)+(2 \times 10 \times 10)+(4 \times 10 \times 10 \times 10)$. In the binary system there are only two digits, 0 and 1 , and a number 1101, again reading from right tg left, means $(1 \times 1)+(0 \times 2)+(1 \times 2 \times 2)+(1 \times 2 \times 2 \times 2)$. This is much easier to represent, as nature provides many devices with two stable states but it is difficult to find anythung with ten discrete stable conditions.
The ferrite rings store the information in the form of the remanent magnetization, which simply means that if the ring is left magnetized in a clockwise sense, as in Fig. 1 (a), it is storing a digit " 1 ," say, and if it is left magnetized in the opposite sense as in Fig. 1 (b), it is storing a digit " 0 ."
Fig. 2 shows a typical hysteresis loop of Ferroxcube Type D ferrite. When a magnetizing field of amplitude $+\mathrm{H}_{\mathrm{m}}$ is applied to the ring-shaped core, the resulting flux density will be $\mathrm{B}_{\mathrm{m}}$ and when the

[^7]

Fig. 2. Rectangular hysteresis loop, flux density against field strength, of a ferrite material.
field is reduced to zero the flux density will decrease to $\mathrm{B}_{\mathrm{r}}$. If a field of $-\mathrm{H}_{m}$ is now applied there will be a change of flux density of ( $B_{n}+B_{r}$ ) and the flux density will be $-B_{r}$ when the field is removed. A further application of a field of $-\mathrm{H}_{\mathrm{m}}$ will produce a flux change of only ( $B_{m}-B_{r}$ ). Thus the polarity of the remanent magnetization can be readily determined by measuring the change of flux density, or the e.m.f. induced in an output winding on the core, when the core is subjected to a magnetizing pulse of amplitude $-\mathrm{H}_{\mathrm{m}}$. The output voltages induced in the two cases are shown in Fig. 3.

Fig. 4 shows a single binary storage cell comprising a core with two windings. A digit " 1 " is written into the cell by applying a positive current pulse to the write/read winding. The information is read by applying a negative current pulse to the write/read winding. Since the cell is always left in the " 0 " state after a read pulse no pulse is required to write a further " 0 " into the cell. The reading process necessarily destroys the information stored in the cell; therefore it is necessary to rewrite the information if it is required to retain it.
A store with a capacity of 1024 digits would require 1024 cores, and have 1024 inputs and 1024 outputs, although a single common output winding could be used if the information were required one digit at a time. The selection of 1 in 1024 inputs is a difficult problem and the magnetic matrix store, as first suggested by Forrester in 1951, greatly simplifies this problem by making further use of the rectangular form of the hysteresis loop.


Above: Fig. 3. Output voltages obtained from a core when the polarities of remanent magnetization are different.

Right: Fig. 4. Binary storage cell consisting of ferrite core with two windings.


If a ring core in the " 1 " state with remanent flux density $+B_{r}$, is subjected to a magnetizing pulse of amplitude $-\mathrm{H}_{2 n} / 2$ the flux density falls to $\mathrm{B}_{1}$ and returns to $B_{2}$ when the pulse is removed. Repeated applications of pulses of $-\mathrm{H}_{\mathrm{m}} / 2$ take the core around a closed minor loop and there is no further reduction in the remanent flux density. Thus the ring core has the ability to discriminate between puises of amplitude $\mathrm{H}_{\mathrm{m}}$ and $\mathrm{H}_{\mathrm{m}} / 2$. The larger pulse is sufficient to change the direction of magnetization of the core whilst the smaller produces only a negligible change.
Fig. 5 shows 16 rings assembled in a $4 \times 4$ matrix. Each core is threaded by one horizontal and one vertical wire. To switch a given core from one state to the other, current pulses of amplitude $\mathrm{I}_{\text {in }} / 2$ corresponding to a magnetizing field of $\mathrm{H}_{\mathrm{m}} / 2$ are simultaneously applied to the horizontal and vertical wires linking that core. The selected core is thus subjected to a field of $\mathrm{H}_{\mathrm{m}}$ and will be switched while the other cores linked by the energized wires will only experience a field of $H_{: n} / 2$ and are not affected. The addressing problem is then reduced to selecting 1 in 4 and 1 in 4 wires to gain access to 1 in 16 cores. If 1024 cores are assembled in this way as a $32 \times 32$ matrix, only 1 in 32 and 1 in 32 wires need be selected to gain access to 1 in 1024 cores.

## Output Winding

Since only one core can be switched at one time, the output winding can be common to all cores. It takes the form of a single conductor linking all cores and is so arranged that the mutual inductance between it and any drive wire approaches zero. The output wire is also arranged to link half the partially energized cores in one sense and half in the other so that the small signals from these cores tend to cancel one another.
It is obviously much simpler to assemble such an array of cores if the windings are restricted to single conductors rather than multi-turn windings. This is possible if the cores are made sufficiently small so that the current pulses required are kept to amplitudes which can readily be obtained from valve or transistor circuits. The most commonly used memory cores have an outside diatneter of 0.08 in and inside diameter of 0.05 in and are 0.025 in thick, but during the last two years cores of only 0.05 in outside diameter, 0.03 in inside diameter and only 0.015 in thick have become commercially available, and in many cases these smaller cores are more suitable for use with transistor drive circuits.
The switching time T of the ferrites, that is the time for the reversal of the magnetic flux, is given by $\mathrm{T}\left(\mathrm{H}_{\mathrm{H}_{m}}-\mathrm{H}_{0}\right)=$ constant, where $\mathrm{H}_{1 n}$ is the applied field and $\mathrm{H}_{o}$ is the maximum field for which no switching occurs. For a material with an ideally rectangular hysteresis loop $\mathrm{H}_{\text {o }}$ would be equivalent to the coercive force of the material. Under the conditions of use in a coincident current matrix system the value of $\mathbf{H}_{m}$ is limited to approximately $1.7 \mathrm{H}_{\text {o }}$ so that the



Fig. 5. A matrix store formed by 16 cores with threaded vertical and horizontal wires.
switching time is determined by the coercive force of the material, and a materal of high coercive force will give a fast switching time and vice versa. For example, 0.08 in cores in Ferroxcube D2 material require a drive of 700 mA -turns to give a switching time of 1.5 microsecond and an output of 103 mV per turn, while similar size cores in Ferroxcube D3 require 450 mA -turns to give a switching time of 2.5 microseconds and an output of 60 mV .

In many computers it is necessary to have access to all the digits of a number at the same time. This can readily be achieved by taking as many planes as there are digits in the numbers to be stored and connecting them electrically in series as shown in Fig. 6. Each plane would contain as many cores as there are words to be stored. When a particular pair of horizontal and vertical wires is energized the core linked by those wires in each plane is subjected to a pulse sufficient to switch it. Thus to read the information stored in a particular set of cores linked by the horizontal wire number $x$, and the vertical wire number $y$, positive current pulses are applied to these two wires. Each matrix plane has its own output winding and the information stored in the selected core in each plane appears as a voltage on the output wire of the plane, a large voltage for " 1 " and a small voltage for " 0 ". To rewrite the information back into the cores the polarity of the current pulses is reversed. But this alone is insufficient since it would switch all the cores selected to the " 1 " state. Each plane, therefore, has an additional wire which links all the cores in that plane in the same sense. If a pulse of the same amplitude but of opposite polarity to the writing pulses is applied to this wire in a particular plane for the duration of the writing pulses, the selected core will remain in the zero state since the extra pulse inhibits the switching of the core. If no pulse is applied to this wire during the writing pulses then the selected core is switched to the " 1 " state.

As has been previously stated, in the coincident current system so far described, the signal appearing on the output wire is not only due to the flux change in the selected core but to the flux changes in the other cores on the selected row and column drive wires. Although the output from any one of these cores is very small, the sum of these outputs
can well be several times that of the selected core. To overcome this, the output wire is arranged to thread half the cores in each row and column in one sense and half in the other so that the unwanted outputs tend to cancel. As a result of this wiring arrangement the polarity of the output of the selected core depends upon its position in the matrix plane.

## Word Address Store

The word $\ddagger$ address matrix store used in the EDSAC II computer constructed by the Mathematical Laboratory of Cambridge University avoids the problem of unwanted outputs from half-selected cores by arranging the wiring so that there are no half-selected cores. The matrix consists of a single electrical plane with as many columns as there are words and as many rows as there are digits per word, as shown in Fig. 7. Thus one word is stored in the cores in one column and during the reading process the read drive pulse is applied to the selected column wire and the outputs appear on the row wires. In this way there is no output from any core other than the selected cores and the output circuit has only to discriminate between the largest " 0 " output and the smallest " 1 " output from any core. In addition the read pulse can be larger than that permissible in a coincident current read system, resulting in a larger and faster output from the selected core- To write information a half-amplitude write pulse is applied to the column wire, which, by itself, is too small to switch any cores. An additional half-amplitude write pulse is applied
$\ddagger$ A "word" in computer terminology is a group of binary digits which can be either a number or an instruction.


Fig. 6. Arrangement of matrix storage planes to give simultaneous access to all digits of a number.


Fig. 7. Word address system with switch matrix.


Typical $32 \times 32$ matrix storage plane.
to the row wires which thread those cores which are required to store a digit " 1 ."

The read pulses and the half write pulses applied to the store column wires are obtained via biased switch cores arranged in the form of a matrix. Each switch core has an output winding linking one column of the store matrix. To read the information from a given column of the store matrix the bias is removed from the appropriate row and a pulse is applied to the selected column of the switch matrix which switches the selected switch core and induces a read pulse in its output winding. When the bias is re-applied the switch core returns to its biased state and a half write pulse is induced.
In 1956 Rajchman of R.C.A. produced a modification of the core matrix store which uses ferrite plates 0.8 in square containing 256 holes of 0.02 in diameter. The areas of ferrite around the holes behave in much the same way as the separate ring cores of a conventional matrix store. The surface of the ferrite is metal-plated in such a way as to provide a conductor linking all the holes. This is equivalent to the "row winding" in the Cambridge University word address system. The plates are stacked one above the other and the column windings consist of straight wires threaded vertically through the equivalent holes in each plate as shown in Fig. 8. Two holes are required for each digit to be stored and a third hole is used as the switch core. Thus a store with a capacity of 256 words, each of 20 digits, would require 60 plates.

The two holes associated with one digit are equivalent holes in adiacent plates. The reading process leaves the material in the vicinity of both holes magnetized in the clockwise state, say. A digit " 1 " or a digit " 0 " is written in by applying a halfamplitude write pulse to the "column winding" threading both the holes, plus a half-amplitude write pulse to the plated conductor threading the upper hole or the lower hole respectively. Thus when the read pulse is applied the material around one or other of the holes is switched back to the clockwise state and the store presents an impedance which
does not depend upon the information stored. During the read process the plated conductors of the two plates concerned are connected in series opposition so that a "1" output appears as a positive pulse and a " 0 " output as a negative pulse.

## High Speed System

Quartly of Mullard Research Laboratories has recently produced a ferrite store with a cycle time of less than one microsecond. This employs two cores per bit, wired in a manner similar to the Rajchman system. In this fast store, however, the flux swing in the cores is limited to approximately $50 \%$ of the possible total by limiting the duration of the drive pulses. The two cores used to store a single digit are linked in the same direction by a drive wire and in opposite directions by the digit and output wires as shown in Fig. 9.

After a read process both cores are left in the same state. The main writing pulse is of large amplitude and fast rise time, but of short duration, so that the cores begin to switch rapidly, but the switching is incomplete. A digit pulse of the order of $10 \%$ of the amplitude of the drive pulse is applied at the same time as the writing pulse so that one core will undergo a larger flux change than the other. The reading pulse is of similar form but of opposite polarity to the writing pulse and returns both cores to their original states. The core which has experienced the larger flux change will give the larger output so that the polarity of the resultant signal appearing on the output wire will depend upon the polarity of the previously applied digit pulse.

Experiments have shown that a cycle time of less than one microsecond is possible using 0.05 in diameter cores in a low coercive force ferrite, with writing pulses of approximately 500 mA -turns and 0.1 microsecond duration.

To sum up, magnetic matrix storage systems have


Fig. 8. Matrix store made ub of berforated ferrite plates.

Fig. 9. High speed storage syslem based on two cores per digit.

the following advantages over most other forms of storage devices:-
I. Very short access time.
2. Information stored in any position in the store is available in the same short time.
3. Long life.
4. No moving parts.
5. Information stored indefinitely.
6. No regeneration of information required.
7. No energy required except to insert or extract information.

## REFERENCES

J. W. Forrester, 7. App. Physics, Jan., 1951, p. 44.
J. A. Rajchman, Proc. I.R.E.. Oct., 1953 , p. 146.
W. N. Papian, Proc. Eastern foint Comp. Conf., Dec. 1953, p. 37.
W. N. Papian, Electronics, Mar., 1955. p. 195.
M. A. Alexander et al., Electronics. Feb., 1956, p. 158.
A. A. Robinson et al., Proc. I.E.E., Supp. 103B, 1956, p. 293.
R. E. Merwin, I.R.E. Trans., EC5, Dec., 1956, p. 219.
J. A. Rajchman, Proc. Eastern foint Comp. Conf., Dec., 1956, p. 107.
C. J. Quartly et al., Proc. I.E.E., Supp. 104B, No. 7, 1957, p. 457.
D A. Ridler, ibid, p. 445.
W Kenwick, ibid, p. 436.
W N. Papian, Electrontcs, Oct. 1957, p. 162.
E. D. Foss et al., I.B.M. fournal, 1, April, 1957, p. 102.
V. L. Newhouse et al.. Proc. Nat. El. Conf., 1957, p. 641.
V. L. Newhouse et al., Electronics, 31, No. 41, Oct., 1958, p. 100.

## LETIIERS TO THE EDITOR

## The Editor does not necessarily endorse the opinions expressed by his correspondents

## Long Distance V.H.F. Reception

I AM not surprised that Mr. Terry (May issue) obtains more frequent sporadic-E propagation in Tangier than we do at Tatsfield. I would rather have expected this, but the fact that his peak year was 1957 is more difficult to explain. Also, over the shorter distance paths in the order of $1,500 \mathrm{~km}$ or less, there is difficulty in deciding whether the mode of propagation is sporadic-E or tropospheric. In v.h.f. Band II, it is assumed that reception must invariably be by the tropospheric mode since the highest critical frequency for sporadic-E seems too low for the refraction of signals as high as $90 \mathrm{Mc} / \mathrm{s}$.

Tatsfield.
H. V. GRIFFITHS.

## Masers and Caesium Resonators

"CATHODE RAY" appears to be keen on rhymes. How does he like the following?

In March, seven seven nought was taught, It used to end in eight three nought. And when a caesium beam is bent It's by magnetic gradient.
Harrow-on-the-Hill.
F. G. CLIFFORD.

## The author replies:

Not being in a poetic mood I will prosily thank Mr. Clifford for pointing out the revised figure for the frequency of the caesium clock. His specifying of it by the last three figures reminds me of the similar R.A.F. practice with regard to personal numbers. When, in accordance with this customary method of identification at pay parade, the N.C.O. demanded of the new recruit: "Last three?" He received the proud reply: "Ted, Margie and Baby!"
Since my account of the magnetic deflection of the caesium beam was not precise. it is as well to have Mr. Clifford's reminder that it is the non-uniformity of the field that deflects the atoms.
"CATHODE RAY."

## Printed Circuits

LAYING aside for the moment all reference to the difficulty of tracing circuits and identifying components, it seems to me that most correspondents have missed the most vital factor in connection with these gadgets. Quality! We of the service profession encounter all makes and kinds of sets: after enough expe:ience with them, we can begin to separate the electror: cheep from the goats. There are certain sets on the American market, using PC boards, which give very little trouble
with the PC boards themselves: a shining example of these is Westinghouse: so far, in three years, not a single case of true PC defects. On the other hand, two of our very largest manufacturers (who shall be nameless because I don't want to open any packages which tick!) persist in utilizing PC assemblies which, to me, are entirely too cheaply built. The , phenolic board itself is quite thin, and the "printing" is very, very thin. This leads to the inevitable thermal difficulties; the semi-rigid mounting of the boards causes breakage, and the hair is then firmly deposited in the butter, as far as the serviceman is concerned.

So, insofar as the serviceman is concerned, one major objection could be overcome by making the boards "just a little bit better," as one of our more obnoxious TV commercials puts it. If the perspiring technician were fairly certain that he had only "normal" part-failures to cope with he would not view the apparatus with such a jaundiced eye.

Mena,
JACK DARR.
Arkansas, U.S.A.

## Inexpensive Photographic Timer

I SHOULD like to suggest one or two improvements to Mr. J. H. Jowett's photographic timer (p. 385, August 1958 issue). With the time setting controls on zero the grid follows the cathode and the cathode load is shunted by $R_{13}$. If now. $S W_{B}$ is closed for focusing, say, the mains potential is applied to the valve anode via the normally closed contact of relay $\mathrm{RL}_{\mathrm{A}}$ and the latter will buzz under self-interruption.

This fault is easily corrected by using a switch for


SW ${ }_{\mathrm{R}}$ having changeover set connected as shown in the diagram.

The use of a normallv closed contact to light a mains voltage lamp of possi-l $l^{n} 0$ witts or more in such a timing ci-cuit is bad because the current rise in the winding causes the contaci pressure to be progressively
reduced to zero, at which point the relay operates. The least vibration, under these low-pressure conditions can result in serious burning of the contacts as well as modifying the lamp output.
A better arrangement is to employ a make contact of $\mathrm{RL}_{\mathrm{A}}$ to operate a relief relay on a local circuit, the latter relay carrying a normally closed contact suited to the load it serves, the contacts being preferably of Elkonite or similar material.
Although the type of relay used for $R L_{A}$ is not specified in the description, its winding resistance leads me to think that it is probably one of the Siemen's highspeed relays readily available on the surplus market. This type of relay is admirable for use in this way if a relief relay is added as described above, the high-speed relay being easily adjustable to operate on 3.5 mA as its normal test operate figure is about 4.5 mA . Its contacts, however, though of platinum, are not insulated for mains voltage and the relief relay should preferably be chosen for a lower voltage.

If a small transformer is used to supply 12.6 volts for the valve heater, this supply could be used for operating the relief relay with a simple 4 -plate selenium bridge rectifier.
New Barnet, Herts.
H. d'ASSIS FONSECA.

## The author replies:

Mr. H. d'Assis Fonseca's suggestion for modification of the "focus" switching arrangements is excellent and there is no reason why this should not be used. In practice, however, the conditions under which relay buzzing can occur are seldom realized, as the controls are set to a definite value during use.

The Siemens high-speed relay mentioned has in fact been used with the contacts directly connected to the mains and appears to withstand the ordeal satisfactorily; no deterioration of the contacts has occurred over a period of two years' use. A back-up relay (as mentioned in the original article) would obviously increase contact life, but at the expense of the simplicity achieved in the original circuit. J. H. JOWETT.

## TV Tes: Programmes

CANNOT the B.B.C. be prevailed upon to show "Test Card C" throughout their television test transmissions instead of interspersing tantalizingly brief glimpses of it between what appear to be someone's holiday snap-
shots (which are useless for setting-up purposes)? Perhaps things are better during the week: my experience is confined to Saturday mornings.

One wonders whether there is any supervision of what is transmitted during these periods, as recently a caption announcing a stereophonic transmission was kept on the screen for several minutes after the stereophonic experiment had ceased.

Incidentally, the pernicious practice of showing pictures instead of the test card has now spread to the I.T.A. Is this a further ramification of the plot (exposed by L. W. Turner in your last issue) to drive service technicians mad?

Surbiton, Surrey E. MANSFIELD

## All-purpose Receivers?

IS it not neglectful of television manufacturers not to. provide "pickup" and "extension loudspeaker" sockets on the combined TV/v.h.f. receivers they now produce? Such a set may well be the only source of radio and a.f. amplification (e.g., for record turntables) in some homes, and it is asking rather too much of the customer to buy a costly television-cum-radio set, only to find that he has also to buy another small radio or a.f. amplifier in order to enjoy his records or recording facilities. Lots of a.c./d.c. radio sets have these facilities provided, so why not a.c./d.c. television/ radio raceivers as well.
Paisley.
J. D. HAWORTH.

## $\mathbf{M c} / \mathbf{s}$ and Mc/ms

I DO have obiections to the unwieldv abbreviation $\mathrm{Mc} / \mathrm{ms}$ for $1000 \mathrm{Mc} / \mathrm{s}$, proposed by "Free Grid" in your February issue.

Isn't there an internationally agreed abbreviation for 1000? That is " $k$ ", so that the abbreviation would be $\mathrm{kMc} / \mathrm{s}$, that is kilomegacycles per second instead of megacycles per millisecond.

More than that, if the British would use the equally internationally agreed (was it at Scheveningen in 1935?) abbreviation Hz for $\mathrm{c} / \mathrm{s}, 1000 \mathrm{Mc} / \mathrm{s}$ would simply become kMHz .

Voice crying in the wilderness, however! The position of the British in the matter of measure units is quite hopeless!

Rome, Italy.
ALDO SUGLIA.

## NATIONAL GRAMOPHONE CONFERENCE

MANY of those present at the 1959 Conference in April at High Leigh, Hoddesdon, organized by the National Federation of Gramophone Societies, took part in the first gathering 21 years ago, as the chairman, Mr. W. W. Johnson, reminded his audience at the opening session.

The visitors had little time to relax as, from the Friday evening until the Sunday night, 11 sessions were presented by some eminent names in the audio world, in addition to excellent record recitals by the four companies, EMI, Decca, Philips and DGG. Always sure of a warm reception, the president, Sir Adrian Boult, who had just celebrated his 70th birthday, answered musical questions informally for two hours to the delight of his audience.

A welcome innovation at this year's Conference was an exhibition illustrating the history of recorded music from its beginnings to the advent of electrical recording around 1925, presented by Frank Morgan and G. Frow and other members of the Dulwich and Forest Hill Gramophone Society. Altogether 25 veteran machines were exhibited, and in most cases demonstrated. The technical highlight of the week-end was the daring experiment by F. H. Hugh Brittain, with colleagues of the G.E.C. Research Laboratories, in which he juxta-
posed "live" music with its reproduced counterpart. A specially composed "Sonata" by Eric Hughes (G.E.C.) for piano, drums, flute, clarinet and doublebass, was performed in front of the large audience, faced by two widely separated "Periphonic" loudspeaker enclosures (fitted with metal-cone bass units and two "Presence" units). The playback (from a Brenell deck) was started in synchronism with the performing musicians and then, one by one, in the manner of the players in the famous Haydn "Farewell". Symphony, they dropped out, to be replaced $\vdots y$ their previously recorded tape facsimiles substantially without any significant change in the quality or continuity. From a central listening position, at one point, the image of the drums did seem to wander slightly, which Mr. Brittain explained was caused by an inadvertent change in the level of one of the recording microphones. The original recording was made by Allen Stagg, of I.B.C. Studios, London.

The many problems encountered (from correcting mains voltage to obtain correct pitch on playback and locating the speakers in the room) can easily be appreciated, and Mr. Brittain is to be congratulated on this unusual demonstration.-D. W. A.

## LOOKING OVER OUR NEIGHBOURS' FENCE

WE electronicians (have the Americans thought of that one?) don't usualiy admit being impressed by the work of heavy old civil engineers, but we can hardly fail to admire the precision with which their steelwork leaps forth simultaneously from each side of some savage African gorge and meets in the middle without any embarrassing gap or misalignment. Much more remarkable is the corresponding feat performed in the bowels of the Alps, miles from the sight of their colleagues tunnelling from the other side. But it ought not to go unnoticed that radio engineers, who have been steadily working in one direction towards higher frequencies, are now making contact with physicists working in the opposite direction from visible towards longer wavelengths. The familiar spectrum diagrams displaying all known varieties of electromagnetic radiation (Fig. 1) have for long shown a gradually shrinking gap between "radio waves" and "infra-red." This gap may now be said to have been closed.

## Generating Signals

The meeting-point or boundary is a little vague. For one thing, is there a natural distinction between the two approaches? The difference between a radio engineer and a physicist gets less and less every day. But perhaps a distinction may be found in the ways in which they generate their "signals." Both of them, of course, cause their currents or radiation by making electrons vibrate at the frequencies concerned. The traditional method of the radio engineer is to produce continuous oscillation by some kind of positive feedback in a circuit. Before it is modulated it usually works on a single definite frequency. The limit to the frequency that can be generated is set by difficulties connected with the wavelength being small compared with any reasonable circuit structure. The highest radio frequency I have come across so far is $390 \mathrm{Gc} / \mathrm{s}(=390 \mathrm{kMc} / \mathrm{s})$, corresponding to a wavelength of 0.77 mm , obtained as a harmonic from a $23 \mathrm{Gc} / \mathrm{s}$ klystron oscillator. There are now klystrons available working at up to $75 \mathrm{Gc} / \mathrm{s}$ fundamental, and at least one firm offers waveguide "plumbing" for $140 \mathrm{Gc} / \mathrm{s}(\lambda=2.15 \mathrm{~mm})$. The practical limit would seem to be in the region of 1 mm
$(300 \mathrm{Gc} / \mathrm{s})$. Incidentally, the highest frequencies officially classified by radio engineers are "extremely high frequencies" (e.h.f.), from $30 \mathrm{Gc} / \mathrm{s}$ to $300 \mathrm{Gc} / \mathrm{s}$, corresponding to wavelengths of 10 mm to 1 mm .

The physicist, on the other hand, doesn't bother about circuits, but sets atoms and electrons vibrating by direct application of emergy, usually heat. So generally the resulting oscillations are not executed in step, with the military precision contrived by the engineer (and termed by him "coherence") but are more like an undisciplined rabble. Sometimes they do at least keep to a nearly equal rate-as for example in a neon tube, where a particular energy transition is stimulated in the gas atoms-but often even the frequency is random, as in a hot filament, which radiates energy over a very wide band of frequencies, with only a blunt maximum somewhere, depending on the temperature.

Here we come once again to the inevitable fact that the sizes of the parcels in which energy is handed out and taken in are fixed by the quantum relationship, which says that they are directly proportional to frequency:

$$
E=h f
$$

in which E signifies the silize of energy parcel or quantum (in electron-volts), $f$ is the frequency in $\mathrm{c} / \mathrm{s}$, and $h$ (Planck's constant) is $4.13 \times 10^{-15}$. As we have seen recently, at the frequencies of visible light this works out at several electron-volts per quantum, and even over the whole infra-red band known to photographers it is more than 1 eV ; but at the frequency of 1 mm wavelength ( $300 \mathrm{Gc} / \mathrm{s}$ ) it is little more than 1 electron-millivolt, and at what we look on as the very high frequency limit of $300 \mathrm{Mc} / \mathrm{s}$, it is about 1 electron-microvolt. So the physicist's problem in moving towards this (to him) unfamiliar territory is the difficulty in detecting such feeble lumps of energy, and distinguishing them from the general background generated by room temperature. At this year's Physical Society's Exhibition the R.R.E. demonstrated apparatus working at wavelengths as long as 0.11 mm , which was reckoned to be something rather special.
The two traditions meet in the maser (see the April issue) which is remarkable in taming molecular energy transitions and bringing them under the dis-


Fig. I. Outline of a universal spectrum diagram showing the frequencies and wavelengths of the main varieties of electromagnetic radiation. The symbol " $\mu$ " stands for "micron", which is 0.001 mm ; and " $\Omega$ " for "angstrom", which is $0.0001 \mu$.
cipline of the engineer, who trains them to amplify, and even to maintain continuous oscillation by positive feedback.

It looks as if we practitioners in electronics (if you prefer a more genteel British title) will have to be seeing a lot more of the physicists' point of view. We have been seeing quite a lot of it already if we have troubled to look into what goes on inside crystal diodes and transistors. Even if we have no intention of crossing over their boundary into the infra-red it will do us no harm to take a look at that neighbouring territory.
First, we shall have to consider nomenclature. The physicists' unit of wavelength, the micron, is denoted by the symbol-oh dear, yes ! $\mu$. Being equal to 0.001 mm , as regards magnitude it is quite convenient for the infra-red band, which begins at about $0.75 \mu$ and ends (if my arbitrary 1 mm is accepted) at $1,000 \mu$. But as we already use $\mu$ for at least three things it is not the happiest choice for us. Millimetres are too large, and angstroms are too small. I doubt whether frequencies in $\mathrm{MMc} / \mathrm{s}$ will be popular with physicists, but frequencies do at least have the merit of being unambiguous (provided that one is not travelling at high speed relative to the source of the waves), whereas wavelength depends largely on what the waves are travelling through.

And what will our authorities do who have, to date, ordained the use of the terms v.h.f. (very high frequencies), u.h.f. (ultra high frequencies), s.h.f. (super high frequencies) and e.h.f. (extremely high frequencies)? Seeing that the next step breaks through into the infra-red, and "infra-red", means "not quite red " or " reddish," and "ruddy" is defined as "reddish," there may perhaps be something to be said for r.h.f. (ruddy high frequencies).

The whole infra-red band stretches from our own boundary, say 1 mm or $1,000 \mu$ or $300 \mathrm{Gc} / \mathrm{s}$ or 0.3 $\mathrm{MMc} / \mathrm{s}$, to a frequency rather more than a thousand times greater- $0.75 \mu$ or $400 \mathrm{MMc} / \mathrm{s}$, where visible light begins at the red end (Fig. 2).


Fig. 2. Enlarged view of the part of Fig. I concerned with the infra-red band and its neighbours.

Historically one must begin at that (to us) far end. Sir William Herschel, the famous astronomer, investigated it 160 years ago and found that the invisible rays from the sun, beyond the red end of the light spectrum, were even more effective in heating than any of the visible ones. His detectors were pretty crude by present standards-just ordinary thermometers. Since then, the story has been very largely a search for better detectors. The problem of signal generators, which has always been so
present with radio engineers, hardly arose at first, since any hot body will do. However, we may be a bit hazy about this part of it, so let us begin there.
Everything above the absolute zero of temperature $\left(-273^{\circ} \mathrm{C}\right.$ or $\left.0^{\circ} \mathrm{K}\right)$ has its atoms and their component parts in a state of vibration, the intensity of which increases with the temperature. Any movement of mass means mechanical energy. This is obvious if the mass is something visibly large that hits us, but if it is of only atomic size we don't feel it in the same way. If, however, the atomic vibration of something we touch is enough to impart such strong vibrations to our skin and underlying flesh that physical and chemical changes (i.e., rearrangements of the atomic structure) are caused therein, we rapidly withdraw the affected part, remarking (possibly with embellishments) that that thing is hot.

Not only does heat increase the intensity of vibration (temperature) of cooler things in contact; it radiates heat energy to the surroundings, even across empty space. If other things in the room are cooler, it receives less radiation from them than it gives out, so its temperature falls and theirs rises, until all are at the same temperature-unless, of course, heat is being generated somewhere by release of energy, say by the atomic rearrangements we call burning.

## Temperature Frequencies

A very important question is how the intensity of heat radiation varies with frequency. In practical situations it is nearly always complicated by some degree of selectivity; for instance, a glass window acts as a filter by passing the higher heat frequencies but not the very low ones now being explored; and the gases in the atmosphere absorb radiation at certain frequencies with quite sharp selectivity. So for basic study one assumes complete absence of selectivity, in what is called "black-body" radiation (because it would happen with a theoretically perfect black surface).
Using statistical methods of calculation-the only way possible with systems containing such unimaginable numbers of moving parts-the physicists calculated how radiation f:om a black body at a given temperature would be distributed as regards frequency. Unfortunately, the differences between the calculation and the results of actual experiments were too great to laugh off as "experimental error," and it was not until 60 years ago when Planck put forward his revolutionary quantum theory that the two could be reconciled. Fig. 3 shows a few calculated frequency characteristics for different temperatures, which are well supported by experiment.

One important feature of these curves is that maximum energy is radiated at a frequency which is directly proportional to the temperature*. Another is that a higher temperature gives more radiationvery much more!-at all frequencies.

So you can see the difficulty in generating a strong signal at very low infra-red frequencies. If the temperature is lowered to place the maximum there, the intensity is too weak to be any good at all. For example, for our $1-\mathrm{mm}$ waves the temperature for peak signal would be $3^{\circ} \mathrm{K}$, or $-270^{\circ} \mathrm{C}$ ! The output here is negligible and would be entirely buried under interference from surroundings at higher temperatures. Raising the temperature brings the

[^8]peak farther away, but it does nevertheless increase the low-frequency strength, though very slightly for an enormous increase in total energy output. At $2,000^{\circ} \mathrm{K}$ (a bright white heat) the intensity at 1 mm is eight thousand million times less than at the peak wavelength ( 0.00144 mm ).
All this applies to the theoretical entirely aperiodic black ( $?$ ) body. In practical radiators the frequency characteristic is modified. For low infra-red frequencies (below $15 \mathrm{MMc} / \mathrm{s}$ ) a favoured source is a heated silicon carbide rod called a Glowbar. Another much used "signal generator" is the formerly famous Welsbach gas mantle, which emits strongly in the low-frequency infra-red as well as in the visible band.
That glass lenses are effective for infra-red radiation from the sun was seen by us all at an early age when we used them to set fire to pieces of paper or to make our unsuspecting neighbour in school jump and attract the unfavourable notice of the teacher. But their transparency extends to less than four times the longest visible wavelength. Beyond that, crystals of such halogen compounds as common salt are effective; but below $10 \mathrm{MMc} / \mathrm{s}$ there is a band where no materials are sufficiently transparent for (say) spectroscopes, and mirrors and gratings have to be substituted for lenses and prisms.
Coming to detectors, we realize that for serious scientific work our jumping schoolmate lacked both sensitivity and precision. Even Herschel's thermometers were limited to the near-visible infra-red, by opacity of the glass and poor sensitivity. Both these types of detector are examples of one of the two fundamental classes-thermodetectors, as distinct from photodetectors. That is to say, their indications depend on some indirect result of the heat, such as muscular or vocal activity, or thermal expansion. One has to wait until the detector material has heated up for such indications to occur, so even if the material to be heated is made very small it can hardly be expected to respond within micro-seconds-as is sometimes desirable.
On the other hand thermodetectors are not inherently frequency-selective, so can be used throughout the band, provided they are sensitive enough to respond to the weak low-frequency end, and are not limited by features such as glass.

## Thermodetector Principles

After thermometers came the first really effective thermodetector-the thermocouple; still, in greatly improved form, much used. The early thermocouples were just junctions between metals, which, when heated, give rise to a small e.m.f. Modern thermocouples are made from special semiconductor alloys and can detect as little as 0.0001 microwatt per square millimetre of absorbing surface.
An alternative is the bolometer, which responds to heat by varying its resistance. Bolometers originally used very fine metal wire, but nowadays the thermistor with its vastly greater temperature coefficient is far more sensitive, and faster in response.

A more recent thermodetector (second world war) is the Golay cell, in which the heat expands a small volume of gas, causing movement which is mechanically magnified. Rather surprisingly, this is quite sensitive and quicker in response (a few milliseconds).

An even more improbable thermodetector is the evaporograph, in which the received radiation causes a thin film of oil to evaporate, and the changes in thickness are shown up by an optical device. Although not so sensitive, it has the advantage that the distribution of heat over a surface can be observed as a "picture," rather analogously to the action of a television camera screen as regards light.

fig. 3. Distribution of heot radiation as regards frequency, from a perfectly aperiodic radiator ("black body"), at three different temperatures.

Detectors of the other main class are called photodetectors. This is not to suggest that they respond only to light, but because the packets or quanta of radiation-which are called photons whatever their wave frequency-produce an immediate effect by their action on the electrons in the detector. Because the energy of the photons is exactly proportional to the frequency, and electrons usually need a certain minimum injection of energy for any response at all, photodetectors are more or less limited to the high-frequency end. If the frequency is too low for a quantum to reach this minimum, it doesn't make any difference how much radiation is available. Billions of peashooters are no substitute for one anti-tank gun, if one wants to make an impression on an armoured vehicle.
The first kind of photodetector was photographic plate or film, in which the photons make instant chemical changes in the coating. The fact that the ordinary kinds (non-pan) can be developed by red light shows that they fail to respond to visible red frequencies, let alone the infra-red. Panchromatic film is specially sensitized to cover the whole visible range, and in infra-red film the principle is extended to still lower frequencies; but even now the extension is quite small. However, by using filters to cut out the visible light-more subject to scattering by haze-one can, among other things, take extensive land photographs from high-flying aircraft when ordinary photography would fail.

Another line of attack is to extend the range of emissive photoelectric cells. (For a review of photocells, sec August, 1958 issue.) Most surfaces need to be hit by quanta of at least several electron volts to give their electrons enough energy to kick some of them right out. So their response is mainly to ultra-violet or, at most, light near the violet end. But special surfaces, such as cæsium on silver, yield up to less violent photons, over the whole visible range and even into the infra-red.
Like photographic materials, photo-emission can
be applied to picture-making. If an infra-red image is shone on to an emissive surface, and the emitted electrons are drawn forward by a positive-going field, at the same time being kept in formation by suitable focusing fields, they can be projected on to a fluorescent screen with sufficient violence to make it glow, thereby reproducing the picture visibly. The difference between this image converter (as it is called) and a television tube is that all the screen is being bombarded all the time, instead of sequentially by a fine beam of electrons. The technique had obvious uses during the war for "seeing in the dark," and there are also scientific applications.

## Semiconductor Cells

The other kinds of photoelectric cells-photovoltaic and photoconductive-don't lend themselves to simultaneous picture formation, but only detection; on the other hand some of them work to considerably lower frequencies, though nothing like as far as the thermodetectors, which (with an exception to be noted later) are the only kinds available for two out of the three infra-red freauency decades. The interesting thing about them from our point of view is that they make use of semiconductors.
Of the two kinds, the photovoltaic have not so far proved themselves very useful, so I will mention only photoconductive types.
Most of them use semiconductor compounds, which are less familiar to students of transistors than the semiconductor elements, germanium and silicon. Here again the second war was a great stimulus to development. The German "lightspeaker" used thallium sulphide cells to receive a speech-modulated inf ra-red beam for secret communications. In another field of application, competition was keen to increase the sensitivity, of detectors, with the object of locating the enemy's aircraft (by the heat of its engines) before he located yours.
Other compounds used are the sulphide, selenide and telluride of lead. Some of them are extraordinarily sensitive, and also quick acting-e.g., less
than 100 microseconds. A commercial lead sulphide cell, without benefit of concentrating or focusing devices, or cooling for the cell, is said to detect the heat from an ordinary soldering iron at 100 yards. For the highest sensitivity, however, cooling by liquid air or even liquid helium is needed; the idea being to reduce self-generated noise. With a suitable mirror the range from the same source can be increased to about 10 miles.
And now we have indium antimonide, which is less sensitive but far faster.
The low frequency limits of these are all higher than $36 \mathrm{MMc} / \mathrm{s}$. If, however, we can remember our basic transistor physics we will know that the usual intentional impurities in germanium and silicon provide very small energy gaps-about 0.01 electron-volt, corresponding to quanta with a radiation frequency as low as $2.4 \mathrm{MMc} / \mathrm{s}$ or wavelength 0.125 mm . It is because the heat energy of the surroundings at ordinary temperatures is sufficient to excite nearly all the impurity electrons that transistor materials conduct. That state of affairs would obviously be no use for detecting infra-red radiation, any more than a coconut shy would be a fair test of marksmanship if all the coconuts had already been knocked off by swarms of small boys. So the detector material has to be cooled to a temperature at which most of the impurity electrons are unexcited, by keeping it in liquid helium-say $4^{\circ} \mathrm{K}$.
Although r.h.f. can certainly be used for communication (and radar), as we have seen, perhaps the most important applications are in research concerning molecular structure, by infra-red spectroscopy. That is far too big a subiect to embark on at this stage, and anyway rather off our beat, but perhaps if the maser is still in mind (April issue) it will give just a little clue to the sort of thing.
If anyone wants to know a lot more about all this, I can recommend the script of the Kelvin lecture on the subject by Dr. G. B. B. M. Sutherland (to whom I am indebted for much of the foregoing information), published in Proc. I.E.E., Part B, July 1958.

SHORT-WAVE CONDITIONS





THE full-line curves indicate the highest frequencies likely to be usable at any time of the day or night for reliable communications over four long-distance paths from this country during June.
Broken-line curves give the highest frequencies that will sustain a partial service throughout the same period.

BE POSSIBLE FOR $25 \%$ OF THE TOTAL TIME
BE POSSIBLE FOR $25 \%$ OF THE TOTAL TIME

-     -         - predicted average maximum usable frequency
—— Freouency below which communication should
BE pOSSIBLE ON ALL UNDISTURBED DAYS


# Electronics and the Phonetician 

Speech Analysis and Synthesis

By H. J. F. CRABBE

MODERN experimental phonetics is rapidly becoming an all-embracing subject which endeavours to comprehend the working of the human speech mechanism as a whole. Speech is an immensely complex phenomenon, involving linguistics, mental processes both conscious and unconscious, brain, nervous system, vocal tract, sound waves, and the hearing and understanding mechanism of the listener. The attempt to understand the nature of speech in this dynamic sense involves much research and some controversy, and it is becoming increasingly useful to construct electronic models of parts of the speech mechanism. Also the investigation of the acoustical aspects of speech involves a variety of electrical measuring instruments.
As a result, a stranger, coming by chance into a modern phonetics laboratory, might be forgiven for thinking himself in a department of physics or electrical engineering. Gramophones and tape recorders, still the everyday tools of the phonetician, are augmented by a range of electronic apparatus of considerable complexity. It is the purpose of this article to describe some of the devices and techniques used in this field, from the point of view of the electronic technician.
Nature of the Vocal Mechanism.-One of the more limited aims of the phonetician is to achieve a more detailed understanding of the acoustics of speech ${ }^{1}$, so it will be convenient to start with a brief description of the basic vocal machinery.
Most readers of $W$ ireless $W$ orld will be acquainted with the useful practice of producing electrical analogues of simple acoustic devices, such as loudspeaker enclosures, and it is a natural first step to produce a similar model of the human vocal tract However, the resulting circuit would be rather complex in its entirety, since nearly every element is continuously variable, so we must content ourselves with a simplified version (Fig. 1). Here it will be seen that the output of a tone generator of variable frequency and amplitude is fed to a load via a number of tune circuits of variable Q and resonant frequency. Also "white noise" can be fed to this same point, either directly or via the above resonators. Finally, these resonant circuits can be excited by single transient pulses of various widths.
The tone generator has a spiky waveform rich in
harmonics, and is equivalent to the larynx, which contains the vocal chords. The larynx interrupts the flow of air from the lungs, thereby producing a note whose loudness and pitch can be controlled at will. This signal first passes through the pharynx or throat cavity resonator, and then via the mouth and nasal passages into the radiation resistance of free air. Continual unconscious adjustments of these three cavities take place during speech, and the various vowel sounds which we recognize are determined by the groups of harmonics or formants which are passed as a result. The "white noise" simulates the various high-frequency hissing sounds, or fricatives, which can be produced at the back of the throat or between the teeth and lips. It is interesting to note how the "white noise" becomes "coloured" on passing through the throat and mouth, in much the same manner as 78 r.p.m. record surface noise is coarsened by a resonant loudspeaker system. The sounds (sh), (s), (th) and (f) bring the point of hiss injection progressively further for ward in our circuit, with a corresponding reduction of dependence on the shape of the mouth cavity for the final sound quality. The pulse generation corresponds to the production of various transient or plosive sounds such as ( $k$ ), ( $t$ ) and ( $p$ ), which are essentially short bursts of energy.
These processes, functioning in continuous and rapid succession with frequent complex transitions which almost defy analysis, constitute the raw material of phonetics from the acoustic poinı of view.

Speech Analysers.-Phoneticians spend much of their time filling in the details of the above picture. and to do this various analysing devices are necessary. The most useful of these is the sound specto-

Fig. 1 Electrical cnalogue of the human speaking mechanism.

graph known in one commercial form as the Sonagraph, which provides a tiree d'mensional visual display of sound patterns on electro-sensitive paper. A typical sonagram is reproduced in Fig. 2. The time and frequency dinensions are plotted horizontally and vertically respectively, and intensity is indicated by the density of the trace. The sound depicted is the word "master" and the characteristic formants of the two vowels are clearly displayed, with the (s) and ( $t$ ) as long and short bursts of high frequency noise. Only the ( m ) remains obscure, and many consonants are very difficult to define acoustically, as they appear to depend for their intelligibility almost entirely on the subect.ve interpretation of the listener and the linguistic context.

Machines which produce a disolay of this sort (see Fig. 3) will usually only handle a I mited quantity of material at one time. The words to be analysed are recorded on a magnetic drum and then replayed at a higher speed. Each revolution of the recording causes the writing pen to traverse the paper in the time dimension, while the signal from the replay head passes through a tuned filter, whose output amplitude is used to control the density of the trace. A lead screw causes the pen to move slowly up the paper on the frequency ordinate, at the same time changing the resonant frequency of the filter by moving the slider of the potentiometer. So each time the recording is scanned the writing pen draws a trace corresponding to the sound energy at a particular frequency and slowly a complete picture is built up. This means that it takes several minutes to analyse a sound passage lasting only a few seconds, and it is one of the aims of technicians in this field to design an instantaneous sonagraph which will produce a continuous analysis of material fed straight in from a microphone or tape recorder. To do this it is necessary either to scan the paper in the frequency dimension with very great rapidity, which is difficult both electrically and mechanically, or to produce a large number of traces simultaneously in the time dimension. At the resolution of Fig. 2 this latter would need fifty or more lines to the inch, which is not achievable with actual writing pens. One solution is to produce the display

Fig. 2. Sonagram of the word "master" illustrating the differing ways in which energy (indicated by the density of the trace) is distributed in the three types of consonant and two vowels.



Fig. 3. Essential features of a Sonagraph type of sound analyser. The magnetic recording and the drum carrying the paper rotate together with the lead screw, altering the input to the voltage-controlled filter and causing the writing pen to move slowly up the paper as the analysis proceeds.
on a c.r.t. and to photograph it continuously on moving film. Recording papers sensitive to various forms of excitation are now becoming available, but so far there is some practical objection to each for this application, so the matter remains one for continued research.

In addition to waveform analysis of the individual sounds of speech, it is sometimes interesting to investigate the general distribution of energy against frequency in various languages or dialects. By this method it may be possible to establish some general correlations between particular languages and their acoustic spectra. It is easy to imagine for instance that the excess of fricatives in German, or nasal sounds in French, would produce corresponding peaks in the response curves. The results would be largely statistical, however, since many speakers would have to be examined to swamp the effects of individual characteristics.
The problem here from the electronic point of view is to produce an integrator which will indicate the energy sum of a given length of recorded material at a large number of spot frequencies. A normal narrowband filter of variable frequency may be used for the latter, but the integrator itself has to meet somewhat stringent requirements. Periods of silence play an important part in speech, and it is essential to achieve an extremely low noise level and rate of drift
during these. Also the device must be linear over an input range of at least 40 dB . A Miller type of circuit cannot be made to perform this well, and one solution is to revert to the simplest of all integrators: a plain $R$ and $C$. In this arrangement the a.c. input is amplified up to several thousand volts peak and rectified by an e.h.t. diode The resulting d.c. is applied to the integrating condenser via a chain of high stability resistors, and the voltage across the condenser is measured by a long-tail pair in a starvation circuit to eliminate grid current. This scheme reduces drift and leakage to a minimum, and linearity is maintained by restricting the charge on the condenser to one per cent of the maximum applied voltage. On the completion of each charging period a Schmitt trigger circuit is used to register one digit on an electromechanical clock and to discharge the condenser ready for the next cycle. The instantaneous integral at any moment during a cycle is also indicated on a voltmeter, thus ensuring an accuracy of at least two figures on even very short speech passages.

An interesting "extra-phonetic" application of this type of analysis would be to discover the spectra of various commercial disc recordings of the same piece of music; also to study the high frequency attenuation resulting from record wear, which at the moment is a matter of subjective guesswork on all but pure tone test records.

Speech Typewriter.-A type of analyser which has a more dramatic and popular appeal than those discussed so far is one that converts the spoken word straight into a typewritten script; a sort of ideal shorthand typist. Several attempts have been made to produce such a machine and one of particularly advanced desion ${ }^{2.3 .3 .4 .3 .6 .1 .}$. is in use at
the Department of Phonetics, University College, London.
Reference to the diagram (Fig. 4) shows that the speech input is fed to a bank of filters, the outputs of which are rectified. Thus a number of d.c. voltages are obtained which vary continuously according to the sounds uttered. Ideally, for most speech units, or phonemes, there are at least two frequencies at which major concentrations of energy appear, corresponding to the formants mentioned earlier, and at each of these frequencies there will be an associated rectified filter output. For each sound in the machine's vocabulary the appropriate two voltages are multiplied together in a valve multiplier circuit, and at any particular instant one multiplication product will be greater than all the others and will represent the phoneme being spoken. This instantaneous "winner" is selected by a maximum detector carcuit and used to operate a key on an electric typewriter.

attempt to simulate this especially mental part of the speech-recognizing process, though at a very elementary level. The linguistic knowledge takes the form of a matrix of potentiometers on which are set voltages corresponding to the probabilities of any sound following any other sound in the machine's vocabularly. As a particular character, say ( $m$ ), is typed, so the machine "remembers" what the sound was by operating a self-holding relay. At the same time a voltage is applied to a column of potentiometers in the matrix appropriate to sounds following ( m ). The circuits used to multiply the pairs of rectified filter outputs are actually three-stage devices, the third inputs to which come from these potentiometers. This means that the next character to be typed will depend on three voltages, two derived from a frequency analysis of the input waveform, and one indicating the probability of following the previous sound. Thus the recognition of every succeeding sound is affected by the machine's knowledge of which phoneme is most likely to follow the one already identified, and of those which are impossible in that position.
This very simple one-stage memory arrangement greatly improves the performance of the apparatus and makes it noticeably less dependent on one particular speaking voice. The complete instrument, which is shown in the photograph, will correctly type $44 \%$ of words and $72 \%$ of individual sounds; and though it is limited to a vocabulary of 13 phonemes for the present, this is a third of all English sounds and provides the material for several hundred words. An extension of the principle of built-in linguistic knowledge to enable the machine to assess the sequential probabilities of sounds on the basis of the previous two or three characters would greatly improve the performance, but would involve the use of a large computer.
It would be unrealistic to hope that such a

machine could ever work perfectly with an unrestricted vocabulary, but it may be possible to achieve a reliable response to an agreed and limited range of words, such as telephone numbers or similar messages where the spoken word needs to be converted into a series of coded impulses. An instrument which could break down a complex speech wave to the forty phonemic units used in English would achieve an immense reduction of the bandwidths needed in communication channels, and if made to drive a corresponding synthesizer at the receiving end, it would provide a valuable advance in analysis-synthesis telephony methods".
Speech Synthesizers.-This brings us to synthesizers, which in one form or another have been in use now for some years ${ }^{\prime 0}$. Certain general principles of design have been established, though detailed circuit arrangements vary widely. It is convenient to make such a system in two functionally separate parts; one being a control circuit which will produce a succession of switching voltages of proper duration and sequence, and the other a generating circuit similar to Fig. 1, the output of which feeds a loudspeaker. In many synthesizers the control voltages are derived from a set of shaped patterns which are scanned in various ways. A design using a different method of control is in use at University College, and its basic layout is shown in Fig. 5 .
The sequence timer consists of a series of ten flip-flop circuits which trigger each other in succession. The operating time of each one can be adjusted separately, and each on period corresponds to the duration of one speech unit in a short sentence. Associated with each time unit is a column of potentiometers on a control panel (only one of the ten columns is shown in Fig. 5) and when a particular sound in the sequence has been reached, the appropriate column is energized with a d.c. voltage and a set of signals sent into the generating half of the synthesizer. The form of these signals is preset according to the type of sound to be produced, and the various parameters which can be varied are marked on the control panel (see Fig. 5). The larynx tone generator is an oscillator rich in harmonics, the fundamental frequency of which can be varied over the normal range of fundamental speech tones by means of a d.c. voltage. The formant filters are simply tuned circuits of an appropriate bandwidth, whose centre frequency can also be varied by means of a d.c. voltage. The amplitude of signal fed to each filter is determined by the gate units, and these will pass anything from full level to zero, depending on the applied voltage. The hiss generator produces continuous noise with a suitable spectrum.
If, for instance, one (Continued on p. 293)
wished to generate the sound (ee) as spoken by the average male, then reference to published data ${ }^{11,12}$ shows that the larynx frequency will be $136 \mathrm{c} / \mathrm{s}$ and the three formants will be at 270,2300 and $3000 \mathrm{c} / \mathrm{s}$ respectively. Also their relative amplitudes will be $0,-20$ and -24 dB . Thus, by setting seven knobs, the sound can be synthesized in a few moments. The rate of change of the amplitude and frequency of the sound can be set by a variable time constant circuit, but the requirements here depend on what precedes and follows the phoneme in question. If a fricative sound is required, then here again the amplitude and frequency content of the hiss signal can be adjusted in a similar manner. For plosives, short bursts of hiss will normally produce satisfactory results.

Although for economic reasons the machine is restricted to sequences of ten sounds, it can still pronounce short meaningful sentences like "How are you, baby?" and "Where are you, Sir?". As a tool for research it is very valuable, both for testing data derived from speech analysis and for determining the minimum information necessary to define speech sounds ${ }^{13}$ :

Interfering with Speech.-In the course of their investigations, phoneticians sometimes find it convenient to have independent control of the fundamental pitch, or larynx tone, in a continuous speech pattern, while leaving the other parameters unaltered. One way of achieving this is to adapt an instrument sometimes used in telephone systems and called a Vocoder ${ }^{14}$. This consists essentially of an analyser rather like the filter and rectifier part of the speech typewriter described previously, feeding a number of slowly varying control voltages through a communication channel to a corresponding synthesizer. The transmitted information relates to the changing distribution of energy in the spectrum. This is a less fundamental process than is involved in locating the actual phonemes, so the consequent reduction in bandwidth is not so great.

At a suitable point in the Vocoder an electrical signal corresponding to the instantaneous pitch can be intercepted and replaced by an artificial one under the control of the experimenter. Thus a speaker can talk into the system and, regardless of his own intonation, the output will vary in pitch according to the turn of a knob or the depression of key switches. The uninitiated might imagine from this that one could recite "John Brown's Body" into the microphone and produce an output of the same voice singing the same words. Alas, this easy conversion of soap-box orators into budding Carusos is not to be had! The characteristic formants associated with vowel sounds are, in singing, accompanied and even masked by others which are absent in ordinary speech ${ }^{15}$; so the result of this arrangement would be to produce a singing voice of very unnatural tone quality.

However, there is a useful application of this pitch control, as psychologists sometimes need to investigate the influence of intonation on the emotive content of words or sentences. For this a recording is made of a suitable sentence, and a number of painted patterns are produced corresponding to changes of pitch in various words or parts of words in the sentence. Each pattern is then scanned by a cathode-ray following device to produce an equivalent pitch control voltage in synchronism with the replayed recording. By this method the investigator


View of the complete speech typewriter outlined in Fig. 4. The control table carries the input material on recorded tape and also the typewriter. The racks from left to right contain the filters and rectifiers, multipliers and maximum detector, and memory and linguistic knowledge circuits respectively.
ensures that only the pitch is changed, which is important if listeners who are asked to assess the meaning or emotional content of an utterance are not to be misled by other variables introduced by a live speaker.
Another interesting way of interfering with speech is to upset the feedback loops in the human nervous system while the subject is speaking. This has become a very popular joke, and no doubt many Wireless World readers have submitted to it in the B.B.C. studios at the Radio Show in previous years. The voice is simply amplified, delayed by about one-quarter of a second on a tape loop, and fed back to the speaker's ears at high level via a pair of headphones. We normally unconsciously correct our speech as we go, but by this method we correct according to the wrong information and are reduced to a stuttering gibberish. Only the deaf can survive this experiment without loss of pride, as no amount of concentration will enable one to speak normally. Because of this it is a fairly reliable method of discovering whether a suspected malingerer is really deaf.
This short survey, hased on the work of one University Phonetics Department, does not claim to be exhaustive. No doubt many gadgets and techniques of importance have been omitted, and the Americans particularly, with their vast laboratories, can afford a tolerant smile. However, if Shaw's

Professor Higgins could see us he would certainly find much to admire; the crude acoustic devices of an earlier age have now been completely superseded by the electronic approach, to the advantage of all.
The author would like to thank Professor D. B. Fry for permission to publish many of the above details. It should be noted that authorship of this article does not imply responsibility for the design of any of the items mentioned, which are the product of a technical team. Particular credit should go to Mr. P. Denes, M.Sc., A.M.I.E.E., who is in charge of the Phonetics Laboratory, and to the writer's colleague Mr. J. E. West. Some of the work described in this article has been financed by the U.S. Air Force under Contract No. AF61 (514)-1176.

## REFERENCES

${ }^{1}$ H. Fletcher: Speech and Hearing in Communication, Van Nostrand, New York (1953).
${ }^{2}$ D. B. Fry and P. Denes: "Mechanical Speech Recognition", Communication Theory, ed. W. Jackson, Butterworths (1953), p. 426.
${ }^{s}$ D. B. Fry and P. Denes: "Experiments in Mechanical Speech Recognition", Information Theory, ed. C. Cherry, Butterworths (1956), p. 206.

- D. B. Fry and P. Denes: "On Presenting the Output of a Mechanical Speech Recognizer", f. Acous. Soc. Amer., Vol. 29, p. 364 (1957).
${ }^{5}$ D. B. Fry and P. Denes: "The Solution of Some

Fundamental Problems in Mechanical Speech Recognition ", Language and Speech, No. 1, p. 35 (1958).
${ }^{\text {b }} \mathrm{D}$. B. Fry: "Theoretical Aspects of Mechanical! Speech Recognition", f Brit. I.R.E., Vol. 19, p. 211 . (April 1959).
P. Denes: "Design and Operation of the: Mechanical Speech Recognizer at University College, London ", 7. Brit. I.R.E., Vol. 19, p. 220 (April 1959).
${ }^{8}$ C. Cherry: "Hearing and Seeing," Wireless World, Vol. 63, p. 164 (1957).
" "Analysis-Synthesis Telephony ", Wireless World, Vol. 62, p. 291 (1956).
${ }^{10}$ W. Lawrence: "The Synthesis of Speech from Signals which have a Low Information Rate", Communication Theory, ed. W. Jackson, Butterworths (1953), p. $4^{4 \kappa}$
${ }^{11}$ G. E. Paterson and H. L. Barney, "Control" Methuas used ma study of the Vowels", 7 . Acous. Soc. Amer., Vol. 24, p. 175 (1952).
${ }^{12}$ R. K. Potter and J. Steinberg, "Toward the Specification of Speech", f. Acous. Soc. Amer., Vol. 22, p. 807 (1950).
${ }^{13}$ G. F. Arnold, P. Denes, A. C. Gimson, J. D. O'Connor and J. L. M. Trim, "The Synthesis of English Vowels", Language and Speech, No. 2, p. 114 (1958).
${ }^{14}$ R. J. Halsey and J. Swaffield, "Analysis-Synthesis Telephony, with Special Reference to the Vocoder", Proc. I.E.E., Part III, Vol. 95, p. 391 (1948).
${ }^{15}$ D. B. Fry and L. Manén, "Basis for the Acoustical Study of Singing", f. Acous. Soc. Amer., Vol. 29, p. 690 (1957).


Aluminium-Backed Polyester Magnetic Tape for high-speed video recording or computer applications has been produced by the M.S.S. Recording Company. At high speeds a considerable static charge can build up on the normal polyester backing. This has been avoided by M.S.S. by spraying a very thin ( $10^{-3} \mathrm{in}$ ) coating of aluminium on the back of the polyester to produce a low resistance ( $\approx 50 \Omega / \mathrm{ft}$ for $\frac{1}{4}$-in tape). At slower speeds it is sufficient to treat the polyester with an anti-static agent, as is normally done with tape for audio recording.
Field Effect Tetrode is a new experimental four-terminal semiconductor device recently produced at Bell Telephone Laboratories. It is said to be capable of operating as a transformer, a gyrator, an isolator, or as a non-distorting modulator, The tetrode consists of a disc of semiconductor material with a diffused junction. A circular trench is cut and etched into each face of the disc, to within about 1 mil of the junction on either side. Two leads
are then attached to each face, one inside the trench and the other outside (see diagram). When a voltage is applied across the junction, the thickness of the depletion layer adjacent to it is increased or decreased, depending on the direction of the biasing voltage. This in turn increases or decreases the resistance of each "channel" between the bottom of the trench and the junction. One of the most important applications, according to Bell Telephones, may be as a distortionless modulator, or electronically controlled resistor for large signals. In this use, a relatively low frequency control

voltage varies the width of the depletion layer, and thereby the resistance of the device. Simple capacitors can act as high-pass filters to isolate the control voltage from the signal if the trequency ratio is maintained at a high level. The sigrial voltage does not appear across the junction and has no effect on the depletion layer. Consequently it can be magnitudes higher than the control voltage, without being distorted by self-modulation. For the same reason, it is not limited by junction capacitance.
High-Speed Counting Tube, capable: of operating at pulse rates up to $1 \mathrm{Mc} / \mathrm{s}$ has just been introduced by Mullard. Designated the ET51, it is actually a trochotron decimal stepping tube. As distinct from the Dekatron glow-discharge type of counter, the trochotron is a vacuum device depending on the deflection of an electron beam. It makes use of crossed electric and magnetic fields to form the beam between a thermionic cathode and any of ten groups of three electrodes mounted radially about the cathode. The electric field is provided by the interelectrode potentials within the tube and the magneti field by a cylindrical permanent magnet fitted externally around the glass envelope. Each group of electrodes consists of a "spade," which forms and locks the beam in position, a target, which makes the beam available as a constant current output, and a grid, for switching the beam from one spade to the next. When power is first applied, all spades will be equally positive with respect to cathode and,
due to the action of the magnetic field in preventing electrons reaching the electrode-groups, the tube will be in a cut-off condition, with no beam formed. If, however, the potential of any spade is reduced, by means of a high-speed pulse or a d.c. voltage, the beam will form on the electrode group associated with that spade, and an output will appear on the corresponding target. Once formed, the beam is held in this position by a combination of the spade series resistance and spade current until it is stepped to the next position by lowering the voltage on
speed of $3 \frac{3}{4} \mathrm{in} / \mathrm{sec}$, a loop 80 ft long has been successfully stored.
Fourier Transform Analogue Generator, developed as a specialized research tool by the B.B.C., is shown below. With this instrument any function can be set up in graphical

the associated switching grid. Since only the grid in its immediate vicinity will affect the beam, the grids are connected internally in two groups; the odd-numbered grids in one, the even-numbered in the other. This makes it possible to use a d.c. input for switching and still obtain single position stepping, thus avoiding the necessity for a pulse of critical width. The output characteristic of the trochotron is similar to that of a pentode valve, and in the ET51 over $80 \%$ of the beam current appears in the output, the remainder being used to form and lock the beam.

Tape Cassette consisting simply of a hollow cylindrical "pill-box" several inches in diameter but only slightly taller than the tape width has been devised for use in the Gate Electronics Continuous Tape Deck. Two narrow corridors protruding from the circular edge of the pill-box guide the tape in and out and keep its width parallel to the pill-box's height. Inside the pill-box the tape curls itself randomly into $S$-shaped lengths as may be seen from the photograph taken through the perspex end. With a $4 \frac{5}{8}$-in diameter pill-box and a tape

form by adjustment of potentiometer sliders on a calibrated panel and the resultant Fourier transform displayed on an oscilloscope. Each potentiometer is connected to one of twenty harmonically-related sinusoidal voltages, and the voltages on all the sliders are combined to form the signal which represents the Fourier transform. The equipment was developed for a programme of research work on lenses as a means of avoiding the tedious calculations which would otherwise be necessary to obtain Fourier transforms.
Microwave Infra-Red Detector recently developed by the GB Electronics Corporation in America makes use of r.f. energy, propagated in a waveguide system, to detect the changes which occur in semiconductor material when infra-red or other radiation is directed on to it. The resistance and dielectric constant of the semiconductor (a germanium crystal) are affected by the incident radiation, and these produce changes in the phase and amplitude of a wave reflected from a tuned cavity. Indication of these phase and amplitude changes is obtained by combining the wave in phase opposition with a corresponding wave reflected from an identical tuned cavity (also containing a germanium crystal but not irradiated). Normally cancellation occurs, but when the semiconductor causes phase and amplitude changes in the first wave an unbalance signal is produced. The system, described in

Electronics for 30th January, 1959, is said to be very sensitive and has the advantage of eliminating contacts to the semiconductor, which are normally a source of noise in conventional infra-red detectors.
Brazing Under Vacuum, at temperatures up to $1100^{\circ} \mathrm{C}$, was one of the requirements which had to be provided for by Edwards High Vacuum recently when designing a pumping plant for ceramic disc valves. At such high temperatures it was impossible to use normal sealing techniques, and metal seals had to be employed. At the same time the vacuum had to be extremely high because getters cannot be used in ceramic valves as they are in conventional glass valves. The pumping plant finally built by Edwards has a water-cooled vacuum chamber made of mild steel, inside which six ceramic valves can be moved round on a rotary work table. Movement is transmitted from outside the chamber to the work table via flexible metal bellows, to obviate the need for organic sealing gaskets. Similar metal bellows are used for raising and lowering the small brazing furnace, inside the chamber, on to each valve station in turn. Sealing between the cylindrical vacuum chamber and its baseplate is done by indium wire.
Mechanical Separation of Stereo Pickup Movements in two directions at $90^{\circ}$ by a simple method was described recently by S. Kelly. A flat strip and a cantilever link carrying the stylus at one end are joined together at right angles to form a cross as in the illustration. The flat

strip is also fixed at both ends and runs parallel to one of the two directions of motion. Motion in this direction at the stylus end of the cantilever then causes this end of the cantilever to hinge about its join to the strip so that the motion is not transferred to the other end of the cantilever. Motion at the stylus end of the cantilever in the other direction (at right angles to the paper in the illustration) causes the strip to twist and the motion is transferred to the other end of the cantilever.
New Units introduced by the Los Alamos Laboratory of California University, according to an advertisement in the April issue of Astronautics, include the Babe ( 20 keV ), Shake ( $10^{-9} \mathrm{sec}$ ), Jerk ( $10^{-16} \mathrm{ergs}$ ) and Zerk ( $10^{23} \mathrm{ergs}$ ).

# Manufacturers' Products 

## NEW ELECTRONIC EQUIPMENT AND ACCESSORIES

## Hybrid Car Radio

A SET of parts for the construction of a "hybrid" 12 V car radio receiver is now available from Mayra Electronics Ltd., 551, Holloway Road, London, N. 19

The receiver (to a S.T.C. circuit) uses five Brimar valves-two 12AC6, 12AD6, 12AE6, 12K5 and a Pye V15/10P transistor for the a.f. output stage. It is a superhet with an r.f. stage, which accounts for the excellent sensitivity and a.g.c. characteristic. Permeability tuning is employed, covering the medium and long wavebands and a printed-wiring panel for the receiver proper ensures consistent results. The output transistor is mounted on a heat sink on the back of the loud-


Mayra Electronic hybrid car radio receiver (case removed).
speaker and the heat sink is insulated from the circuit. Battery consumption is 1.5 A at 12 V .
The complete set of parts including the receiver case, loudspeaker, knobs and dial trim costs $£ 1310 \mathrm{~s}$.

## Tape Loop Cassette

FOR speeds of $15 \mathrm{in} / \mathrm{sec}$ or less, up to 200 ft of tape can be wound in an endless loop on the "Brittape" cassette. This cassette is bolted over one of the spool spindles of the deck, and it can be used with most tape recorders which can take 7 -in or larger-diameter spools. In the cassette the tape is wound on a central freely rotating 5 -in diameter spindle and, when in motion, unwinds from the inside and winds in from the outside. To allow this motion, the tape must be wound on the cassette clockwise or anticlockwise (from the inside out when viewed from the top) according as the direction of tape

> "Brittape " endless lood tape cassette.

travel is from left to right, or, as in the illustration with the Regentone recorder, from right to left. The direction of travel for the 200 ft of tape usually supplied with the cassette must thus be specified when ordering. The cassette costs $£ 612 \mathrm{~s} 9 \mathrm{~d}$ with tape and $£ 66 \mathrm{~s}$ without. The address of the manufacturer is Guy's Calculating Machines, Ltd., Truro Road, Wood Green, London, N. 22 .

## Miniature Plug and Jack

THE new Bulgin P519 plug and J30 jack are designed for use in modern miniaturized equipments and their small size makes them particularly suitable for this purpose. The plug is the familiar "concentric" type with a shank measuring $\frac{3}{16}$ in in diameter. It has a $\frac{1}{2}$ in diameter phenolic screw-on cap and with the plug seated this projects about $\frac{7}{8}$ in from the panel.

Phenolic insulation is Lsed for the jack which is fitted with a $\frac{5}{6}$ in diameter fixing bush which fits metal panels up to $\frac{1}{8}$ in thick. The fixing bush is also the contact for


Bulgin miniature P519 plug and J30 jack.
the shank of the plug and this will normally be "earthy." Two spring contacts are provided, one for the tip of the plug and another which mates with this spring when the plug is withdrawn. Maximum ratings are: current 1 A , voltage 50 , loading 10 W . Test voltage is 250 .

The makers are A. F. Bulgin and Co., Ltd., Bye Pass Road, Barking, Essex, and the prices are 2 s 6d for the plug and 3 s for the jack.

## New Rack-mounting Principle

THE convenience afforded by the 19 -in Post Office rack has made it an almost-standard form of mounting for electronic equipment; but it does suffer from several dis-advantages-these being mainly cost, due to the number of tapped holes necessary, and the difficulty of excluding dust from the apparatus or providing forced-air cooling.
The new Widney-Dorlec rack-mounting system (also see R.E.C.M.F. review, May isșue, p. 216) represents an effort to overcome the major disadvantages and, at the same time, it increases considerably the scope of the prefabricated cabinet system. The tapped-hole problem is overcome by the use of a pressed metal strip which holds against the front member of the cabinet at $1 \frac{3}{4}$ in spacing, rectangular nuts providing two threaded holes on $\frac{1}{2}$ in centres: these are used only where they are required for the mounting of units. Holes in the cabinet-frame strip are drilled using the backing strip as a guide and any desired thread may be fitted by using the appropriate nut: the nut may be retained, if necessary, by a screw passed into it from the rear, through the stamped strip.
This system can naturally be used with any suitable Widney-Dorlec assembly; but the new "cubicle" cabinet for which it was designed offers some advantages. If units are mounted with their front panels exposed, the


Left: View from inside of cabinet of new system. Note that it is necessary to drill holes in the front member only where they are required.

Illustration and (right) sketch of principal parts of Elac stereo pickup cartridge.

cubicle doors give side access to the chassis; however, by turning the cabinet through $90^{\circ}$ and fitting readydrilled bearers running from front to back equipment may be mounted so that the door closes on the front panels, still using the rectangular nut mechanism for securing the units. The makers are: -Hallam, Sleigh \& Cheston, Ltd., Oldfield Road, Maidenhead, Berks.

## Sub-miniature Relays

A hermetically sealed, miniature relay which measures $0.875 \mathrm{in} \times 0.8 \mathrm{in} \times 0.396 \mathrm{in}$ and weighs only 0.52 oz is now obtainable from C. P. Clare Ltd., 70 Dudden Hill Lane, London, N.W.10. This is the Clare Type "F" relay, and is made under licence from the C. P. Clare Co. of Chicago, U.S.A.

Type " $F$ " is a 2-pole 2-way relay with contacts rated at 3 A at 28 volts d.c. or 115 volts a.c., the nominal operating power being 250 mW . The "make" time is 3.5 msec and the "fall-out" time 1.5 msec . A balanced armature form of construction is adopted and the relay is claimed to withstand considerable shock and vibration.

The relay is designed especially for use in printed


Clare Type " $F$ " relay with a 3d coin outline for comparison of size. Cover cut away to show internal assembly.
circuits and the glass-to-metal seal contact tags are spaced 0.2 in apart in two rows also 0.2 in apart.

## Two Stereo Pickups

IN both the Elac stereo pickups types STS200D and STS300D there is a gap at each side of the square crosssection magnet so that a balanced system with two pairs of gaps is formed (see sketch). The compliance at the $0.7 \times 10^{-3}$ in radius diamond tip is stated to be $4.1 \times$ $10^{-6} \mathrm{~cm} /$ dyne for both these pickups, and they each produce about $4 \%$ intermodulation distortion for recorded lateral velocities less than about $22 \mathrm{~cm} / \mathrm{sec}$ (using 400 and $4,000 \mathrm{c} / \mathrm{s}$ with an amplitude ratio of 4 to 1 ,
and a tracking weight of 5 gm ). The crosstalk for the STS200D is given as about -20 dB at frequencies up to $5 \mathrm{kc} / \mathrm{s}$, rising to -10 dB at $10 \mathrm{kc} / \mathrm{s}$ : the crosstalk for the STS300D is about 4 dB less than these figures. The effective mass at the stylus tip is stated to be 2.5 mgm for the STS200D and 2.16 mgm for the STS300D. The STS200D costs $£ 17 \quad 17 \mathrm{~s} 7 \mathrm{~d}$ and the STS300D $£ 27$ 12s 10 d , both these pickups being distributed in this country by Thermionic Products (Electronics) Ltd., Hythe, Southampton.

## Plastic Cable Clip

THE illustration shows a nevel plastic cable clip of German design made of tough polystyrene. It is admirably suited for fixing television coaxial down leads and

extension-point cables, also the wiring to extension loudspeakers, to walls or wood surrounds.
Known as "Roka" plastic clips, they embody a captive hardened-steel nail, a feature which greatly facilitates fixing the clip in awkward places.
Clips are available for cables of from $\frac{1}{8}$ in to $\frac{3}{8}$ in diameter, and prices vary with size. For example, clips for a $\frac{3}{16}$-in diameter cable cost 2 s 5 d a hundred, while for $\frac{1}{4}$-in cable the price is 4 s 3 d a hundred.
Further details can be obtained from Perihel Ltd.. 146 New Cavendish Street, London, W.1.

## Ferrite Isolators

ABOUT 30 dB isolation at any selected frequency in three ranges ( 1.8 to $2.3,3.3$ to 5.5 and 8.1 to $12.5 \mathrm{kMc} / \mathrm{s}$ ) falling to about $20 \mathrm{~dB} 5 \%$ away from the selected frequency, is provided by a new range of isolators introduced by Marconi's. The power handling capacity is 80 W for isolators in the 8.1 to $12.5 \mathrm{kMc} / \mathrm{s}$ range and 20W for those in the other two ranges The cost of


Typical ferrite isolator (centre frequency $2 \mathrm{kMc} / \mathrm{s}$ ) in the new Marconi range.
each isolator is $£ 45$ or $£ 50$ depending on the frequency range, and they are manufactured by Marconi's Wireless Telegraph Co., Ltd., of Chelmsford, Essex.

## Multi-range Meter

IN the new Taylor model 100A a sensitivity of $100,000 \Omega / \mathrm{V}$ on the d.c. ranges has been achieved by using an $8 \mu \mathrm{~A}$ centre-pole movement. This movement can withstand a momentary overload of 100 times and a cut-out is incorporated, whose operating time and current have been used to determine the rating of all the meter resistors. Those resistors across which the voltage drop is measured on the ohms ranges are protected against the application of a.c. by a rectifier which produces a d.c. current to operate the meter cut-out, but
which does not conduct wher the internal battery is connected on the ohms ranges. All the d.c. and a.c. range scales are coincident except for the most sensitive a.c. range ( 10 V f.s.d.), thus avoiding most of the confusion produced by offset a.c. calibrations. This has been achieved by using a " half-bridge" rectifier on the a.c. ranges with selected loading resistors (the two resistors which replace two of the rectifiers in the full bridge). A double-section half-wave rectifier cannot be used, for on application of d.c. of incorrect polarity to one of the a.c. ranges, one section of the rectifier would short circuit the meter and render the cut-out inoperative. Another useful facility is a push-button for interchanging the connections to the meter so that inputs of the incorrect polarity can be measured without reversing the connecting leads. The 8 internal d.c. voltage ranges on this meter extend from 0.5 V to 2.5 kV f.s.d. and an external adaptor (available at extra cost) containing a $2.25 \mathrm{M} \Omega$ resistor enables measurements to be extended up to 25 kV f.s.d. The current ranges extend from $10 \mu \mathrm{~A}$ to 10 A d.c. f.s.d., and the ohms ranges from $20 \Omega$ to $2 \mathrm{M} \Omega$ centre scale. Decibel


Toylor multi-range meter model 100 A with $100,000 \Omega \mathrm{~V}$ sensltivity on d.c. ranges. and output ranges are also provided. This meter costs £31 10 s and is manufactured by Taylor Electrical Instruments Ltd., of Montrose Avenue, Slough.

# High-Speed Tuhe Production 

Continuous Seam Welding with R.F. Current

AMACHINE recently imported from America by Elm Engineering Ltd (one of the Antiference group of companies) is capable of welding together the edges of rolledaluminium or rolled-aluminium-alloy tube at speeds up to $400 \mathrm{ft} / \mathrm{min}$.

Aluminium strip is formed into tube by passing it through a series of rollers, each of which imparts an increased degree of curvarure to the strip until it forms a tube with a split in it corresponding to the edges of the original flat strip. About 50 kW of r.f. power at $450 \mathrm{kc} / \mathrm{s}$ is applied to the edges of the split by two copper shoes and then the tube passes through another pair of rollers which force the edges together. "As the r.f. current is discouraged from taking the "long" path round the circumference of the tube by a ferrous core, an intense heating effect, resulting in the melting of the edges is produced at the join. The squeezing action of the rollers expels nearly all the molten material giving a weld with only a small section of grain structure differing from that of the rest of the tube. After the welding process the expelled material over the weld is removed and the tube passes through a further set of rollers to bring it finally to size. The machine accepts strip of 14 to $22 \mathrm{~s} . \mathrm{w} . \mathrm{g}$., can produce tubes of outside diameter $\frac{1}{2}$ in to $1 \frac{1}{2}$ in and can weld metals other than aluminium and its alloys.

The welding process is known as the "Thermatool" process and it was developer, and the machine made, by the New Rochelle Tool Corporation, New York, U.S.A.

"Thermatool" tube-welding process in operation. Tube moves from right to left; picking up r.f. from copper shoes.

## NEW MARINE RADAR

## Details of the B.T.H. "Escort" Motion-Stabilized Equipment

ONE of the problems associated with the use of radar and similar complex electronic devices is that the large number of controls provided usually either scares away the non-technical user, or leads to inefficient operation of the equipment. In an effort to overcome this problem B.T.H. in their new "Escort" 3-cm, motionstabilized marine radar, have reduced the number of "user controls" to the absolute minimum-four relating to the motion-stabilized display, such as tide speed and direction; four for actually using the display (bearing graticule, range scale, etc.) which are mounted on the front panel, and eight subsidiary controls, e.g., marker brightness, i.f. gain, anti-clutter, etc. These last eight controls are mounted on the sides of the indicator unit and each has a differently-shaped knob for immediate and easy identification by touch.

The radar follows the general lines of any modern marine radar with a stabilized display (called "Chart Plan" by B.T.H.) but many small "convenience features" provide for ease of handling; for instance the bearing marker is differentiated from the heading marker by starting it from the continuously-variable range ring. This marker "paints" each time the radial scan


Aerial system of "Escort" radar. No parts other than turning gear and echo box are mounted with the aerial, so easing servicing problems.
passes over its position: normally the resetting of the marker occupies several revolutions of the aerial; but in the "Escort" the whole procedure is much simplified by ganging the electronic bearing-marker angular control to the parallel-ruled c.r.t. graticule. Thus it is necessary only to line up the graticule to line up the bearing marker; also a control knob and a scale are dispensed with, for the graticule has a scale calibrated in degrees round its edge. Another feature which should prove most useful is that, on switching from a "ship's-head-up" display to the compass-stabilized " north-up" display no manual realignment of heading and course markers is necessary-this is done automatically.
Five malfunction indicator lamps are fitted just below the c.r.t.--these automatically indicate an abnormal condition of the equipment. Another feature is that an echo box is joined permanently to the waveguide; but it is "disconnected" normally by a ferrite isolator: switching-in this provides a very quick check that the equipment is operating, a fact which need not necessarily be apparent in the absence of echoes.
The slotted-waveguide aerial, fairly high p.r.f. (1200) sec ) and short minimum pulse-length ( $0.12 \mu \mathrm{sec}$ ) combine to provide a high-definition picture on the 12 -in c.r.t. and the 45 kW transmitter peak-power output ensures that the smallest scale of 48 nautical miles can be used effectively The power input required is 1.3 kW and, as a motor-generator with an electronic voltage

Disploy and "ChartPlan" control unit of B.T.H. "Escort'" marine rador. Controls (such as local oscillator tuning) which should not need resetting during operation ore concealed by drop flap below "Chart Plan' control knobs.

regulator is used to supply the equipment practically any ship's mains can be used The "Escort" weighs about 1,000 lbs in all and the cost is in the region of $£ 3,000$, excluding waveguide, cabling and instăllation.

## Data-Handling at King's Cross

AT a main-line railway station information concerning the running of trains has to be passed from its source (the signal box) to several other people such as the enquiry-office staff, the station announcer and the arrivalindicator operators. In the past this has been done by telephone, which suffers from the disadvantages of demanding the whole attention of the users and of providing a considerable risk of cumulative errors.
In an effort to improve efficiency British Railways have arranged with Decca Radar Ltd. to install the Deccafax* system at King's Cross terminal station for a trial period.

The flying-spot transmitter unit is housed in the signal box and information is written on a prepared transparency. At the receiving units a change in the information recorded is announced by the ringing of a bell Apart from reducing the work in the signal box to the writing-in of times as they are received from stations down the line, the information is presented for as long as it is required and in such a way that it is possible to gain an overall picture of train movements into the station. The system uses the 405 -line, 50 -frame, posi-tive-modulation standard and the video signal is carried on coaxial cable at a level of about $1 \frac{1}{2} \mathrm{~V}$.


Station onnouncer at King's Cross reads details from Deccafax screen.

# News from the Industry 

Relay Exchanges Ltd.-The annual report of Relay Exchanges for 1958 reveals that the group's total assets are now over $£ 12 \mathrm{M}$, compared with $£ 7.6 \mathrm{M}$ at the end of the previous year. The value of television and sound receivers installed in subscribers' homes accounts for over $£ 9 \mathrm{M}$ of the assets. During last year the group, which includes the Rentaset companies, acquired the whole of the share capital of Goodmans Industries. After providing for taxation, the group's profit for 1958 was $£ 391,276$ against $£ 236,288$ the previous year.
T.C.C.-In his statement at the annual general meeting of the Telegraph Condenser Company the chairman, D. W. Aldridge, announced a net profit for 1958, after providing for taxation, of $£ 187,486$ compared with $£ 131,257$ the previous year. T.C.C.'s wholly owned subsidiary, the United Insulator Company, has since April last year operated as a division of the parent company.

Ferzanti's wholly owned Canadian subsidiary, Ferranti-Packard Electric Ltd., has developed an electronic seat reservation system which is being installed for Trans-Canada Airlines. The system uses a device known as a Transactor which is installed at each TCA booking office across Canada, and is used to send information to, and receive answers from, a central computer. The equipment will be available in this country and on the continent through Ferranti Ltd.
I.C.T.-International Computers and Tabulators Ltd. has formed a subsidiary, I.C.T. G.m.b.H., with headquarters in Düsseldorf. It will take over the existing business in Western Germany conducted through the Düsseldorf office of Powers-Samas Accounting Machines (Sales) Ltd. It is planned to open branch offices in Berlin, Hamburg, Hanover, Munich, Nüremberg and Stuttgart.

Plessey International Ltd. has set up a German manufacturing company to be known as Plessey Maschinen Elemente G.m.b.H. It will operate from Neuss, near Düsseldorf.

Elliott - Automation Ltd. has established a new subsidiary, The Swartwout Co. Ltd., to manufacture and sell the electronic control systems developed by the Swartwout Company, of Cleveland, Ohio. Two years ago, Elliotts entered into an agreement with the American Swartwout Company to handle their products in this country.
S. N. Shure, president and founder of Shure Brothers, Inc., of Evanston, Ill., manufacturers of microphones, pickups and recording heads, is arriving in this country on May 31st to investigate the possibility of establishing a factory here. Engineers and manufacturers interested in discussing such a project are invited to leave their names and addresses at the office of the Commercial Attache at the American Embassy, London.


FIFTEEN closed-circuit television channels in the new rolling mill of the Steel Company of Wales at Port Talbot provide a composite view of about 700 ft of railway track. This installation by Marconi's is for the remote observation of the conveyance of red-hot steel ingots from the soaking pits to the rolling mill.

Audio Fidelity gramophone records, produced in the U.S.A. by Audio Fidelity Inc., are now being made available in this country through its recently formed subsidiary, Audio Fidelity (England) Ltd., of 44 Crawford Street, London, W.1. The distribution of these records in London, East Anglia and South-East England is being handled by Scientific and Technical Developments, of Melbourne Works, Wallington, Surrey.

Ketay Ltd., manufacturers of synchros, resolvers, tachometer generators and other servo components, are now a Design Approved Manufacturer under the Ministry of Supply Instrument and Electrical Equipment Design Approval Scheme. The company is owned jointly by the Plessey Co., of Ilford, and Norden-Ketay Corp., of New York. Four Ketay synchros have been granted Certificates of Technical Approval by the Royal Aircraft Establishment.
Southern Instruments Ltd., of Camberley, Surrey, has made an arrangement with the Ampex Corporation of America and its U.K. subsidiary, Ampex Electronics Limited, for the manufacture and marketing of Ampex tape instrumentation equipment in Great Britain.
Winston Electronics' production during the year ended in February exceeded $£ 500,000$. F. W. Reynolds, the managing director, recalls that the first year's output ( $1950 / 51$ ) was £15,000.
Pye closed-circuit television equipment, including a new lightweight cylindrical camera, has been installed in the Conservative Party's television studio in London. The studio is employed mainly for the training of M.P.s and candidates in the use of the medium.
Leland Instruments' old address was given in the note on the Leroux measuring relays on p. 247 of our last issue. They are now at Abbey House, Victoria Street, London, S.W.1. (Tel.: Abbey 3585.)

Tube rebuilding service operated by C.R.T. Ltd., of Baldock, Herts, is to be known as C.R.T.'s TV Tube Exchange Service. The reduced prices recently introduced by C.R.T. Ltd. take into account the supply by dealers of an old tube for re-gunning.
Mayra Electronics Ltd., manufacturers of Maykit car radio kits, have moved from North London to 118, Brighton Road, Purley, Surrey (Tel.: Bywood 1263). The newly appointed general manager is Maurice Reed.

Mullard.-Two new laboratory blocks are being built on a site adjacent to the existing buildings of Mullard Research Laboratories at Salfords, Nr. Redhill, Surrey. An extra 45,000 square feet of floor space will be provided by the new buildings. They will house the electronics, telecommunications, tran:sistor applications and television laboratories. The company is also to build a new factory on a site next to their existing cathode-ray tube factory at Simonstone, Lancs. It will produce glass for the production of tubes, which is at present purchased as pre-fabricated parts.

Marconi's are to supply the Post Office with the equipment for a wide-band u.h.f./s.h.f. radio link between Birmingham and Norwich. The twin-path bi-directional link will carry the B.B.C. television programmes between the two cities and serve en route the transmitter being built at Peterborough. The equipment at these three centres and at the three repeater stations will employ English Electric Valve Company's travelling-wave tubes.
E.M.I. colour television equipment was used to enable a large audience at a recent Anatomical Society symposium in University College, London, to see, on a $4-\mathrm{ft}$ by 3 -ft screen, experiments being carried out under an electron microscope. The demonstration was arranged by Smith, Kline and French Laboratories Ltd.

Ekco airborne search radar has been ordered by British European Airways for six de Havilland Comet 4Bs now being built. B.E.A.'s flight of Comet 4 s is already fitted with Ekco radar.

Siemens Edison Swan supplied the marine radio equipment for the recently opened radio officers training school in the College of Technology, Belfast.

## EXPORT NEWS

Iran.-The v.h.f. multi-channel radiotelephone/telegraph system installed by Marconi's along the National Iranian Oil Company's 600 -mile pipeline from Abadan to Teheran is to be extended. The extension, which will link five new booster pumping stations with the main v.h.f. installation, calls for the supply of 20 multi-channel equipments together with aerial towers. The carrier equipment is being supplied by the Telephone Manufacturing Co.

Radiotelephones.-Pye Telecommunications have been awarded a contract by the Iranian Oil Operating Companies to install a 12 channel radio communications system between Kharg Island in the Persian Gulf and the oilfields at Gachsaran and Agha Jari, a distance of 160 miles.

Multi-chiannel Radio Link.-The Posts and Telegraphs Administration of Finland has placed a contract with Marconi's for the supply of s.h.f. radio terminals and repeaters for a single-path 600-channel twoway radiotelephone link between Pori and Tampere, a distance of 65 miles.

Computer for Australia. - An EMIAC II two-module analogue computer has been ordered from E.M.I. Electronics, Ltd., for installation in the Australian Government Aircraft Factory at Melbourne.

Film scanning equipment for a new commercial television station in Brisbane, Australia, which is scheduled to be opened later this year, has been ordered from E.M.I. Electronics.

Navigational Equipment. - Two Decca Navigator chains are to be erected in the Persian Gulf. It is planned that these chains will be brought into operation at the end of this year.

Radar Simulator.-The Royal Swedish Air Board has purchased a Solartron ten-target early-warning and height-finding radar simulator for the country's Air Force.
I.L.S.-The government of the Belgian Congo has ordered the Pye Instrument Landing System for Elizabethville and Leopoldville airports.

Telecommunication measuring equipment valued at $\$ 200,000$ has been ordered by the Canadian Department of Defence Production from Marconi Instruments through the Canadian Marconi Co. In all, nearly 200 instruments, including signal generators, portable frequency meters, oscilloscopes, wave analysers and transmission test sets are to be supplied.

Radar.-Seven double-ended ferry boats operating between Brooklyn and Staten Island, New York, are to be fitted with Decca Type D303 radar. Each boat will carry two radar sets.

Airborne search radar with Doppler drift measuring equipment is being supplied by Ekco Electronics for the Viscount fleet of Kuwait Airways.

Valves and C.R. Tubes.-As part of a drive to extend their sales of valves and tubes in North America, the M.O. Valve Co. has seconded F. T. C. Dixon to their agents, British Industries Corporation, of New York. Mr. Dixon was previously in charge of cathode-ray tube sales at the company's Hammersmith works.
Honduras.-Agencia René Sempé, of Apartado 219, Tegucigalpa, wish to represent a U.K. manufacturer of television receivers. A television service operating on the American 525 -line standard is starting shortly.

## $\overbrace{\text { New Trix }}$ Ribbon Microphone

Now smaller, this much acknowledged microphone gives unequalled performance and its directional qualities minimise feedback effects. The frequency response and sensitivity have also been improved.
This model-G7823-has its head tilted for easy use. It's normally supplied with low impedance output ( 30 ohms ) but is also available with high if required. The microphone is complete with screened connector, with locking ring, which fits directly to stand or base. If wanted, a switch adaptor can be used.


THE TRIX ELECTRICAL CO. LTD.
 Te! : MUSeum 5817 (6 lines). Cables \&


DHB,63.4

# RANDOM RADIITIIONS 

## By "DIALLIST"

## Improving East Anglian TV

TO those who live in East Anglia it is good news that a two-way radio link between Tacolneston and Birmingham is to be built. At present the Norwich station receives its television programmes by direct pick-up of the Crystal Palace transmissions at \& receiving station near Bury St. Edmunds, whence it is routed by a radio link to Norwich. Reception can be very good over a wide part of the area and it's much improved since Tacolneston's e.r.p. was raised. But one big disadvantage of a long-distance pick-up system is that it is apt to gather in other things besides the wanted signal. And once received interference has willy-nilly to be relayed. The result has been that under certain conditions pictures have been no better than fair to moderate. I'll willingly admit that interference bad enough to spoil the picture has been but rarely in evidence lately. But one is sometimes conscious that the picture, though worth looking at, ought to be better than it is. I understand that even after the introduction of the new link Tacolneston will still have to rely for some time on the direct pick-up of a main station but this time it's Sutton Coldfield. However, this will be dispensed with when the radio links have been completed. When the I.T.A. station at Mendlesham, with its huge mast and high e.r.p. gets going, too, East Anglia should find itself very well served by television.

## Peterborough, Too

In addition to linking Tacolneston with Birmingham, the proposed link will serve en route the B.B.C. station being built at Morborne Hill, near Peterborough. The project will be carried out in two stages. At the end of this year a u.h.f. twin-path oneway link will be installed between Norwich and Peterborough where a B.B.C. receiving point will pick up the Sutton Coldfield programmes which will then be sent along the link to the Tacolneston station. The final installation will consist of a twin-path bi-directional link over the whole distance with three intermediate repeater stations. At Peterborough back-to-back terminals will be em-
ployed which provide complete modems (modulation/demodulation facilities) making it possible to extract a programme at that point to feed the new transmitter or to feed in a broadcast originating in the Peterborough area.

## A New Use for Radar

READERS who were concerned with p.p.i. radar receivers at the beginning of the war may remember those mysterious, large illuminated patches which sometimes appeared on the screen, usually at night-time. They were specially in evidence during the spring and autumn months and often covered large areas of the screen. It was established that they weren't due to high flights of aircraft and some wag suggested that they must be echoes from flocks of angels winging their way over the sky. The name "angels" stuck. It was eventually established by using powerful telescopes on clear, moonlit nights that the fliers were not 'planes or angels, but birds. In spring and autumn birds migrate in vast numbers, and so dense are the flocks that they give rise to good radar echoes. For some little time now both p.p.i. tube and height-range radar have been in use for studying bird migration and quite remarkable results have been ob-
tained. The big snag is that individual species can't be identifiedthere's no ornithological equivalent of i.f.f.-but it's often possible to deduce the identity from the height, speed and size of the flocks, from the direction they are taking and from the fact that birds have previously been seen massing for migration in this place or that, or that tired incoming migrants are seen in certain areas on the following day.

## Transatlantic Television?

ALMOST the whole continent of Europe either is or can be linked up for television purposes and we get some very good and interesting programmes from distant parts via our cross-Channel link. What so many people would like to see realized is transatlantic television. The Americans already operate radio-links for their forces in Europe; but these are used for sound only, for so far it hasn't been possible to utilize channels wide enough for TV. There seem to be two possible ways in which it might be done. When the whole of France was served with views of the Fourteenth of July Ceremonies taking place in Algiers, the method successfully used to span the Mediterranean was to employ a circling aeroplane as a relay station.


A chain of aeroplanes circling over the Atlantic seems a possibilitythough only just, for weather conditions might make station-keeping very difficult and it would at times be a risky business. But I don't see why, if the money were available, ships shouldn't be used with captive balloons to extend their effective horizon. They would remain in their allotted positions, as the weather ships now do, picking up transmissions and relaying them on. I'm sure that transatlantic television will be a commonplace occurrence one day. May that day come soon!

## It All Helps

REDUCTIONS in taxation are always welcome, and I'm sure that all radio folk-manufacturers and their customers alike-were delighted by the lowering of the rates of purchase tax. This has made it possible to bring down the prices of sound and TV sets quite a bit, and it should make for increased business. Better still, to my way of thinking, is the removal altogether of purchase tax on replacement c.r. tubes. Before the budget announcement the position as regards rebuilt tubes was rather a queer one: if you got your own c.r.t. back duly renovated, it wasn't liable to tax. But should you receive one that had been someone else's, then the tax could be slapped on. Such a weird state of affairs must have meant a lot of extra work and expense in the way of checks and inspections, which couldn't have done anybody much good.

## A Record to Find All Records?

WRITING from Worcester Park in Surrey, a reader tells me that he has a Marconiphone Type 702 television receiver, which was made in 1938 or '39 and is still giving good reception for about five hours every day on the screen of its original tube. When bought second-hand in 1949 it had a number of faulty capacitors, the e.h.t. transformer was out of action and one valve was dud. Otherwise it was, as my correspondent puts it, in mint condition. It has given consistantly good service since, and despite its 20 or 21 years, it shows no signs of deterioration. My correspondent's only 'plaint is that with its $\frac{1}{8}-$ in steel chassis and plywood cabinet the set needs two strong men to lift it! By the way, the serial number of the cathode-ray tube is D26019, in case makers care to check its age.

## Every day brings fresh demands

The giant strides which are being taken today in the electronic fields of science and industry have quadrupled the number and variety of electrical components that are needed.


The BULGIN research and manufacturing division with its unrivalled skill and vast experience is solving many problems of today and tomorrow. Every day for over 35 years it has been helping manufacturers with their difficulties in the application of electrical devices. Let it help you.


## FuR MODERN COMPONENTS



PRECISION ELECTRONIC COMPONENTS


LIST No. F.19.


LIST Nos. P. 491 (Socket)
P. 490 (Plug).


LIST No. S. 358.


LIST No. D. 58.


LIST No. 5.530 .


LIST No. D. 250.


LIST No. 5.730.

## UNBIASED

Br FREE GRID

## Homostereo and All That

IN its early days, the B.B.C. had a well-deserved reputation of being a centre of learning and culture, and those members of the staff-other than engineers-who were not alumni of Oxford or Cambridge were apt to be looked at askance; in fact it was rumoured that even the "hewers of wood and drawers of water" were Cambridge poll men.
All that is past history, however, and today things are vastly different as can readily be seen by the B.B.C.'s patronage of a dreadful word like "monophonic" to designate singlechannel reproduction as distinct from its stereophonic counterpart.

The utmost that can be said in favour of monophonic is that it is somewhat less offensive than monaural; this latter word implies reproduction which is, in some way, specially adapted for those who have the misfortune to be totally deaf in one ear. The word monophonic is, however, not very much better. To my mind, monophonic reproduction -which means one-sound reproduc-tion-conveys the idea of a solo performance on, say, a triangle or big drum.
Many people who ought to know better are woefully ignorant of the precise meaning of words. I once knew a Cambridge man who didn't know the difference between an exhibitioner and an exhibitionist; now and again, of course, the former is |also the latter. At any rate, I do not hesitate to suggest that the correct word for single-channel reproduction is " monodic" ${ }^{\text {; }}$ it is surely le mot juste for it does literally mean single-channel. But I don't want you to think that I want to displace the familiar word stereophonic in favour of stereodic; obviously stereophonic -solid sounding-is the correct word.

The only possible objection that could be raised is that the word I monodic with its meaning of singlechannel may be needed one day to describe stereophonic broadcasting on a single radio channel.

There is, however, a far better word to describe such a system of broadcasting, and to emphasize the fact that the two "stereo" channels are sharing the same radio channel; obviously the word is "homodic"same channel. This would convey an unmistakable meaning. In actual practice I do not doubt that this system will come to be known by the name of "homostereo broadcasting " to distinguish it from ordinary stereo broadcasting on two radio

[^9]"hannels which might be called "heterostereo." May we expect that the Yanks, just to be different, will fuse Latin and Greek and call it " solo stereocasting"?

## Better Audio Fare.

IT is said that a rolling stone gathers no moss, but that is certainly not true of the Audio Fair of two months ago which again had a new home this year-the third in its brief historyand was as crowded as ever. Maybe, however, its organizers moved it away from the Strand area this year so that it should not gather so much Moss, with a capital $M$, in the form of waiter's dress, a subterfuge adopted in previous years by visitors unable to obtain an invitation card.
Even this year I was surprised at the extraordinary interest shown by the large catering staff of the hotel in which the Fair was held.
The highlight of the show was, as


Extraordinary interest
might be expected, stereophonic reproduction which is still a nine days' wonder. I was glad to see that the over-dramatized iuggling with railway trains and suchlike things-which were a feature of the Audio Hall at last year's Radio Show -had been, to a large extent, abandoned, but I did not find the audio fare provided in the demonstration rooms very convincing.
This was largely due to the limitations of space in an hotel bedroom. They may be roughly the size of an average living room, but certainly do not simulate the listening conditions of the home. As I explained to one exhibitor who tried to convince me to the contrary, even if he usually packs a dozen or more parspiring people in one half of his living room,

I certainly do not, and nor do most ordinary people.

The arrangements in most of the demonstration rooms seemed to me to be such that only one or two of the audience ware in a suitable position to perceive a stereophonic effect.

I think it would be far better if the exhibition authorities revised the order of things, and gave a separate bedroom to each manufacturer for his stand, and turned the exhibition hall into a properly fitted-up demonstration theatre. Each manufacturer could be allotted a certain period of the day for demonstrating his apparatus.

## Why Psi?

LAST December I was talking about $\psi$ (psi) waves, and I said that this symbol was probably used because it was the first letter of the word " psyche," which, among other things, means the basis of all things. " was ignorant at that time that "psi" was also used to describe such things as telepathy and other kinds of E.S.P. (extra-sensory perception), as well as ghost-hunting.

According to a book review I recently read under the title of "The Pursuit of Psi," it seems as if $\psi$ is the label applied to anything we know little about. I still think that the symbol "psi" is short for "psyiche" but I am certainly not sure. So if any of you classical "scolards" can help to lighten my darkness I shall be very grateful. I have a vague idea that $\psi$ may be the initial letter of a word unknown to me or even to our old friends Liddell and Scott.
Talking of psi reminds me of what may be an instance of it. I recently heard from somebody who is well known in the world of audio technology. He was asked to help in tracking down strange noises heard by two aged ladies which were inaudible to others.

On the face of it, one would say that the two ladies were suffering from aural hallucinations, but their doctor gives them a clean bill of health and says that all the usual causes of "hearing things" are absent. The recording apparatus is quite deaf to these sounds, and it has been suggested that the ladies may be able to hear frequencies which are lower than those normally audible.
Personally I wonder if they "hear" the noises telepathically and wrongly think they are coming in through their ears. I am hard at work to see if I can devise something to record telepathy.

# Indispensable... 



Using an AVO Multiminor to balance the D.C. component across the output transformer of a High Fidelity Amplifier.
D.C. Voltage: $0-1,000 \mathrm{~V}$ in 7 ranges. A.C. Voltage: $0-1,000 \mathrm{~V}$ in 5 ranges. D.C. Current: $0-1 \mathrm{~A}$ in 5 ranges. Resistance: 0-20,000, $0-2 \mathrm{M} \Omega$.

Sensitivity:
10,000 ohms per volt on D.C. voltage ranges.
1,000 ohms per volt on A.C. voltage ranges.

## Accuracy:

On D.C. 3\% of full scale value.
On A.C. $4 \%$ of full scale value.

Pocket size: $5 \mathrm{f} \times 3 \mathrm{3} \times$ litin.
Weight: Ilb. approx.
Lise price: $£ 9 / 10 /$ -
Complete with Test Leads and Clips. Leather case if required 32/6.

Whether you're building your own High Fidelity Amplifier or servicing a complete installation-for fault finding on anything frez pre-amplifier to speaker-you'll find the MULTIMINOR to be " just right."
You'll enjoy using this neat pocket instrument giving readings over nineteen ranges on a clear open scale.
A.C. and D.C. voltage, D.C. and Resistance measurements are made by means of only two sockets. The robust, easy-to-read range selector has a smooth, clean, positive action.
"Can you afford it? " Let's say rather-" Can you really afford to be without it? "

Use the coupon to obtain full details of this moderately priced, versatile instrument.

If you do not want to cut this magazine, then please write, quoting WW.

## AT(0) ITD

AVOC 92-96 VAUXHALL BRIDGE ROAD•LONDON S.W. 1

## POST THIS COUPON TODAY!

```
Cut out this coupon and attach to your notepaper or card:-
To AVO LTD.,
Sales Department
Avocet House,
22-96 Vauxhall Bridge Road,
London, s.W.I.
Please send illustrated leaflet describing the MULTIMINOR
```



The design and dimensions are to the international standard. With the sockets, backing plates can be supplied for complete insulation from the chassis. Please write for Leaflet No. 4992

## CINCH

## CARR FASTENER CO LTD

## STAPLEFORD•NOTTINGHAM

London: 197 Gt. Portiand St., Phone: Langham 3253/4/5 Manchester: 50 Newton Street, Manchester 1. Central 405 Birmingham : Filhill House, 2235 Coventry Road, Birmingham, 26. Sheldon 5208/9. Glasgow : 13 Queens St., Glasgow C.1. City 3202

## The best volt

## stabilisers in the world

Wide Current Range...
2 to 60 milliamps.

- Small Regulation Voltage...

Less than 9 volts.

## - High Stability...

Typical variation in burning voltage less than $\pm 2 \%$ in any 10,000 hours of operation.

Full data is readily available from the address below.


## gENERAL PURPOSE TYPE

The 75 CI is the best 75 -volt stabiliser available in the world for general purpose use in industry and communications. It has the same electrical characteristics as the M8225/CV4080 and like this British Services Preferred valve provides an exceptional combination of long life, stability and good regulation.

## BRITISH SERVICES PREFERRED TYPE

## M8225/OV4080

The high performance of the Mullard stabiliser ${ }_{75} \mathrm{CI}$ has led to the recent adoption of its Special Quality equivalent M8225/CV 4080 by the British Services as their Preferred 75 -volt stabiliser. The M8225/CV4080 is tested for specialised applications in which conditions of extreme shock and vibration are encountered.

## The world's

 finest-quality
## cominectores

- IN SUB-MINIATURE, MINIATURE

AND PRINTED-CIRCUIT RANGES
manufactured under lisence from Winchester Electronics Inc., U.S.A.
*

## GOLD-PLATED CONTACTS

made from spring-tempered phosphor-bronze provide
low contact-resistance, prevent corrosion and facilitate soldering
*
MINERAL-FILLED MELAMINE MOULDINGS
provide
high arc-resistance, high dielectric and mechanical strength

## NOW AVAILABLE



TYPE D2 TWO.POLE STACKABLE CONNECTOR

* Alternatlve contact arrangements $\pm$ Self-polarising stacks $* 0.3^{\prime \prime}$ centres for $0.1^{\circ}$ Grid applications

Catalogues on request:
ELECTRO METHODS LTD. Plug \& Socket Division, 12-36 CAXTON WAY, STEVENAGE, HERTS. Telephone: Stevenage 2110-7

## Printed Circuit Counter Panels



A complete range of transistorized counter panels of common size, fixing method and electrical connexion, designed to provide a flexible unlt system whereby any special requirements in the counting or data processing fields can be quickly built up.

A fully illustrated brochure giving complete performance and specification figures for every panel in the range is available on request.

50kc/s Scaler
$1 \mathrm{Mc} / \mathrm{s}$ Scaler
Input Amplifier
Gate Unit
10kc/s Oscillator
1Mc/s Oscillator
Power Unit
50kc/s Read-out Scaler
$1 \mathrm{Mc} / \mathrm{s}$ Read-out Scaler
4 Chainnel Output Unit
Read-out Unit
Meter Display Unit
Lamp Display Unit
Numerical Indicator Tube
Shift Register Stage
Shift Reglster Driver

## RANK CINTEL LIMITED

Worsley Bridge Road ' London ' SE 26
HITher Green 4600

[^10]
## The heart of the matter...



The formation of
a single silicon crystal ingot

FERRANTL HTD • GEM MILL CEADDERTON • OLDHAM • LHNCS • Telephone : MAIn 666l London Office: KERN HOUSE - 36 KINGSWAY W. C. 2 Telephone: TEMple Bar 6666

## ... the art of the matter

## FERRANTI

## offer the widest range of

# SILICON <br> Semiconductor Devices 

## in the United Kingdom

Ferranti Ltd. were the first company in Britain to introduce Silicon semiconductor devices as used in magnetic amplifiers, in aircraft, guided missiles, radar and computers. Until recently they were the only firm in the United Kingdom supplying silicon diodes in quantity. Commencing their programme of research and development in 1954, they have already made outstanding contributions to technique, and are now producing at Gem Mill, Oldham well over half-a-million silicon diodes annually
in the widest range offered by any British manufacturer.
Among the 120 or more different devices are rectifiers, fast diodes, zener diodes, tetralayer diodes and triodes, alloy junction transistors, diffused junction transistors, photovoltaic cells, voltage variable capacitors and many new ones.
Data Sheets, Application Reports etc., advice and assistance in techniques of application are freely available.

all angles . . this is a fine loudspeaker

| $\star$ Duplex desiga | $\star$ Dust-exeluding construction |
| :--- | :--- |
| $\star$ Full range reproduction | $\star$ Low fundamental resonance- |
| $\star$ Purpose-buill tweeter | $\star$ Smooth cross-over |
| $\star$ Heavy duty woofer | $\star$ Replaceable coue |
| $\star$ Generous magnet design | $\star$ Die-cast chassis |
| $\star$ Plasticised cone surround | $\star$ Instrument finiah |

DU120 DUPLEX COAXIAL FULLHANGELOEDSPEAKER
Price £19. 10s, 0d.
Vitavox Limited - Westmoreland Road, London, N.W. 9 - Telephone: COLindale 8671

## Bellows

# technology 

The Drayton catalogue gives full technical information on the physical and mechanical properties of Hydroflex seamless Metal Bellows. Separate sections are devoted to typical designs, the soldering of assemblies and the prediction of life under various operating conditions. Your copy is available on application to Dept. WW

# HYDROFLEX seamless Metal Bellows 



## will not change the characteristics of the GD 85 WR

C.v. (4516)

## MINIATURE RUGGEDIZED REFERENGE TUBE

Specially constructed for military and commercial service where tubes are to be subjected to severe shock and thermal extremes, this new tube will continue to operate satisfactorily beyond the point which is customarily associated with conventional tube structures.

## BRIEF DATA

| Nom. stabilized voltage | 85 V | Shock: | 5 g continuously |
| :---: | :---: | :---: | :---: |
| Striking voltage (total darkness or light) 125 V max. |  |  | 20 g short durations |
| Current range | $500 \mu \mathrm{~A}$ to 5.0 mA |  | 750 g impact |
| Max. Incremental resistance | < $1000 \Omega$ | perature | Range: $-60^{\circ} \mathrm{C}$ to $+90^{\circ} \mathrm{C}$ |

For full information write to: Technical Services Dept.
ERICSSON
TUBE DIVISION
BEESTON, NOTTINGHAM.

## BRITISH PHYSICAL LABORATORIES



MANUFACTURERS OF METERS OF ALL TYPES WITH SCALE LENGTHS VARYING FROM $1 \frac{1^{\prime \prime}}{2}$ to $18^{\prime \prime}$.

## RADLETT • HERTFORDSHIRE • ENGLAND



## the greatest international

 display of plastics materials, equipment and products ever presented under one roof
## international

 plastics exxhibition and convention
## GRAND, NATIONAL AND EMPIRE HALLS OLYM PIA 17-27 JUNE 1959

The International Plastics Exhibition at Olympia, London, 17-27 June will provide a complete up-to-the-minute picture of plastics progress in the industries of the world. Thousands of exhibits from some 15 countries will combine to present the newest plastics materials, the most up-to-date equipment and a comprehensive range of industrial and domestic finished products. Here you can talk plastics chemistry, mechanics and merchandising with experts from many countries-see plastics machinery in actiongather new product ideas and new manufacturing methodsstudy new techniques. Do not miss this vitally important event.

Exhibition organized every second year by BRITISH PLASTICS-an Iliffe journal


THIS IS AN EXHIBITION YOU MUST SEEI POST THIS TODAY
TO THE EXEIBITION MANAGER, DORSET HOUSE, STAMFORD STREET, LONDON SEI Please send me the 1959 Exhibition brochure, free season ticket, etc. NAME DATE $\qquad$ FIRM ADDRESS

## Model 1325

## Transistor

## tester



ACCURATE EASY TO OPERATE


## PORTABLE

Width: $5^{\circ}$. Depth: $5^{\circ}$. Height: $9 \frac{1}{8^{\prime \prime}}$. Weight: 6 lbs. Attractively finished in grey hammer enamel.

Outstanding characteristics of the Transistor Tester Model 1325 are accuracy of measurement and ease of operation. The instrument enables direct measurement to be made of the large signal current Amplification Factor $\beta$, the Collector Turnover Voltage $V i$ and the Collector-emitter leakage Currentl' ${ }^{\prime}(0)$, of $\mathrm{p}-\mathrm{n}-\mathrm{p}$ and $\mathrm{n}-\mathrm{p}-\mathrm{n}$ transistors. Two 8 ranges, combined with seven logarithmically stepped base current settings, cover alf types of erystal amplifying devices, including high-gain and power transistors. The value of the collector current at
a given base current can te oblained frem the $\beta$ readings; the small signal current Amplification Factor $\alpha^{\prime}$ can be deduced from a few readings of $\beta$. Crystal diode tests can be carried out using the facilities provided for Collector Turnover Voltage measurements. Advantage can be taken of the wide range of available base currents to measure the $l^{\prime} c(0)$ under the appropriate dynamic conditions. The meter of the instrument is fully protected ; momentary shorting of any pair of terminals will not damage the instrument.

Let us send you full details of Cossor Instruments or arrange for a represensatlye so discuss your special needs.

## COSSOR 'мsтrиuments ıто

The Instrument Company of the Cossor Group
COSSOR HUUSE, P.O. BOX 64, HIGHBURY GROVE, LONDON, N:5.


## the magnetic recording

tape with the highest
technical standards

* High sensitivity
* Low noise level
* Low 'print through' factor
* Anti-static
* Freedom from curl and stretch


E=M:I SALES \& SERVICE LTD (Recording Materials Division)
HAYES. MIDDLESEX Tel: SOUtha1: 2468


Permanent magnets are widely used to provide the field required in eddy-current braking systems.
Typical applications include integrating meters, speedometers, balance damping pots and timers, etc.
Braking effect is produced by the movement of a conductor in a magnetic fleld generating eddycurrents. Annealed copper of resistivity approximately $1.6 \mu \Omega / \mathrm{cm}^{3}$ or aluminium of resistivity approximately $2.8 \mu \Omega / \mathrm{cm}^{3}$ are the metals normally used. The braking effect on a disc rotating in a magnetic field, as illustrated in the diagram, can be calculated if the dimensions, speed and resistivity of the disc, and the magnetic field configuration are known.

Damping torque $=\frac{\mathrm{B}^{2} \cdot \mathrm{~A} \cdot \mathrm{t} \cdot \omega \cdot \mathrm{r}^{2} \text { dyne. } \mathrm{cm} .}{\rho \cdot 10^{9}}$
where $\mathrm{B}=$ flux density beingcut by the disc in gauss
$\mathrm{A}=$ area of magnetic fie in cm. $(d \times w)$
$\omega=$ angular velocity. of the disc in radians per sec.
$\mathrm{t}=$ thickness of the disc in cm .
$\mathbf{r}=$ effective radius of the disc in cm .
$\rho=$ resistivity of the disc.
$\mathbf{k}=a$ constant related to the length of eddy-current paths, and usually lies in the region of $2-3$.


In an eddy current braking system as illustrated above, the maximum braking occurs when the broad edge of the magnet poles are presented to the direction of movement of the disc.

Magnet systems of this type give an adjustable braking effect by merely rotating the magnet system as a whole and an infinite variation of braking adjustment can be obtained without the risk of mechanical or magnetic instability.

## Kllowatt Hour Meters

The performance and accuracy of Kilowatt Hour meters depends finally on the stability of the permanent magnet used for braking. The importance of this magnet and the fact that the accuracy of the meter depends on the square of the flux den-

## Eddy-Current Brake Effect

Advertisements in this series deal with general design considerations. If you require more specific information on the use of permanent magnets, please send your enquiry to the address below, mentioning the Design Advisory Service.
sity maintained by the magnet is not fully discussed here.

Probably the best type of design is one using two Ticonal ' $G$ ' magnets arranged one on each side of the rotating disc, or one magnet and a specially designed
yoke leaving sufficient clearance to allow for all normal contingencies of movement and wear during the life of the meter.
This system has the great advantage that it will tend to give uniform flux distribution in the gap, resulting in constant braking effect, since if the rotating disc moves due to sudden application of load, jewel wear, or any other cause, the braking effect tends to remain constant.


Ilustration of Watt Hour Braking System -by courtesy of Ferranti Limited.

## Speedometers and Tachometers

The indication on most of these types of instruments is obtained by eddy-current braking or drag effect. A typical design of this type is where a cylindrical magnet magnetised diametrically; rotates in an aluminium or copper cup with a pointer which is free to rotate against a return spring.

## Balances and Weighing Machines

In order to make fast and accurate measurements of weight, weighing machines need a high degree of frictionless damping.

In applications of this nature where a high and adjustable degree of frictionless damping is required, permanent magnet eddy-current damping gives the necessary control.

## Timers

There is a wide variety of timing mechanisms used in industry for purposes such as welding, exposure measurement and other fairly short duration process timing.
Considerable advantages can be gained in many of these devices by using permanent magnet eddy-current braking. The resultant assemblies give uniform and reliable timing, avoid friction and are comparatively unaffected by temperature. Magnetic damping devioes are replacing oil or air-filled 'dash pots' in equipment where accuracy and reliability is important.

If you wish to receive reprints of this advertisement and others in this series write to the address below:

THAT ELUSIVE WORKS MANAGER...


Selective Induction is saving time, money and worry in Offices, Factories, Hospitals, Hotels, Departmental Stores etc., all over the Country. All key personnel carry small transistorised receivers bearing a number. When they are wanted their numbered key is pressed on a small transmitter. Immediately they must respond to the URGENT 'PEEP PEEP' in their pockets which summons them and them alone to Action! A verbal message can be transmitted if desired.

- Covers areas indoors or out, up to $10,000,000$ sq. ft .
- Designed for the man who cannot afford to be tied to his office.
- Equally suitable for large or small concerns.
- Low purchase price-virtually no indoor wiring-low rental terms.

Write or 'phone for further particulars - we Can be found in ten seconds


## THE ONLY STAFF LOCATION SYSTEM WORTH INSTALLING

## MULTITONE ELECTRIC COMPANY LIMITED

12/20 UNDERWOOD STREET LONDON N.1. TELEPHONE: CLERKENWELL 8022



## From I.C.I. AMMONIA-

## Nitrogen and Hydrogen

## for Industry

I.C.I. Ammonia provides industry with a cheap and reliable source of pure nitrogen and hydrogen. And I.C.I. gas generating plants are available to convert ammonia into a wide range of nitrogen/hydrogen gas mixtures.

## Anhydrous Ammonia

with a guaranteed minimum purity of $99.98 \%$, to meet more exacting requirements, is offered in bulk and in a wide range of cylinder sizes.

Liquefied Ammonia (Industrial Quallity), a cheaper grade, is available in bulk and in two-ton containers for the larger consumer, and makes possible substantial economies in gas costs.

A bulk delivery of 10 tons of ammonia provides over $1^{\frac{7}{7}}$ million cu . ft of nitrogen.

Full information on request
IMPERIAL CHEMICAL INOUSTRIES LIMITED, LONDOH, S.W.1.


## YOUR EYE

says "That's a gay new box. Ah, 'scotcy' Brand Magnetic Tape. Eye can tell there's quality inside, just as everybody says."

## YOUR EAR

says "This 'sootce' Brand Tape certainly lives up to its reputation. It sounds perfect to me , and I'm an ear for music."

## YOUR COMMON-SENSE

says "The quality suits the sound engineer--the exclusive silicone 'dry lubrication' minimises wear on magnetic heads -the price suits the pocket--well, it's 'scotch' Brand for me every time!"

## 200 DOUBLE-PLAY

Tensilized Polyester is the wonderful new 'scotch' Brand Magnetic Tape. It's extra strong, and gives you double the playing time! Resists stretching. Keeps its high quality of reproduction year after year!



Ask your supplier for the ingen ous PLA YING-TIME CALCULATOR-it's free! Or write to our Head Office.

## THE B.B.C. USE

## ScOTCH

MAGNETIC TAPE

minnesota Mining and manufacturing co. ltd.


# Isolation at <br> <br> Microwaves 

 <br> <br> Microwaves}

## L324 X-band isolator

This isolator is a ferrite loaded waveguide component with unidirectional characteristics designed to isolate an X-band microwave source from reflections caused by mismatch. It is a versatile component suitable for incorporation in equipment or for use as a laboratory aid. It is tunable for peak performance over X-band.

For information on other microwave components including circulators, co-axial mixers, switches, folded tees, etc., write to the address below.



## The modern potting material

For the potting of capacitors, chokes, delay lines or similar components where protection against mechanical shock, vibration, moisture or corrosion is essential, 'Epikote' resins have proved exceptionally efficient. They adhere strongly to most materials, with minimum shrinkage on cure, are tough, withstand thermal cycling, and possess excellent electrical properties over a wide temperature range. Ask now for fuller details of how 'Epikote' resins can solve your potting problems. (Please quote No. EE.6.)

## EPIKOTE

## SHELL CHEMICAL COMPANY LIMITED

In assactatton votth Petrochemicais Limitod ased Styrene Products Limited

Divisional Offices: LONDON MANCHESTER BLRMINGHAM GLASGOW BELPAST

[^11]105-9, Strand, W.C.2. Tel : Temple Bar 4455. 144-6, Deansgate 3. Tel: Deansgate 2411. 14-20, Corporation Street, 2 Tel: Midland 6954. 124, SL. Vincent Street, C.2. Tel: Central 9561. 16-20, Rosemary Street. Tul: Belfast 26094. 33-34, Westmareland Street. Tel: Dublin 72114.



(3)

## A SERVICE

## FOR DESIGNERS

The possibility of a component change - due to shortage of supplies, increased costs or failure to meet specific conditions - is a problem facing every designer of electronic equipment. However, one basic component can be 'tailor-made' from the start, for LAB will supply the precise type of Resistor required, ex stock and at the right price. Write for full technical data, prototype samples and price schedules to :-

THE RADIO RESISTOR CO. LTD.A 50 ABBEY GARDENS, LONDON, N.W.8.

Telephone: Maida Vale 0888

| CARBON | WATTS | OHMIC RANGE | TOLERANCES土 |
| :---: | :---: | :---: | :---: |
| I. Solid <br> 2. Cracked <br> 3. * High Stability <br> 4. Variable <br> 5. V. High Resistance <br> 6. V.H.F. (Rods \& Dises) | $\begin{aligned} & 1 \& 2 \\ & 1 / 30-20 \\ & 1 / 10-3 \\ & t \\ & t-3 \\ & 1 / 10-1 \end{aligned}$ | $\begin{aligned} & 10-10 M \\ & 1-500 \mathrm{M} \\ & 1-50 \mathrm{M} \\ & 5 \mathrm{~K}-2 \mathrm{M} \\ & 50 \mathrm{M}-10^{13} \\ & 10-1 \mathrm{~K} \end{aligned}$ | $5 \%$ \& $10 \%$ <br> 5\% \& 10\% <br> $0.5 \%$ 1\% 2\% 5\% <br> - <br> $5 \%$ \& $10 \%$ <br> $1 \%$ \& $2 \%$ |
| WIREWOUND <br> 4. Rheostats <br> 9. Sliders <br> 8. Vitreous <br> 7. Cemented | $\begin{aligned} & 4-500 \\ & 3-15 \\ & 3-500 \\ & 1-15 \end{aligned}$ | $\begin{aligned} & 10-80 \mathrm{~K} \\ & 10-16 \mathrm{~K} \\ & 1-150 \mathrm{~K} \\ & 1-25 \mathrm{~K} \end{aligned}$ | $\begin{aligned} & \quad- \\ & 1 \% 2 \% 5 \% \\ & 5 \% \& 10 \% \end{aligned}$ |

- The ubiquitous blue ( $1 \%$ grey $(2 \%$ ) "HISTABS "

Do you KNOW
THAT the Sub-miniature $1 / 30$ th watt unit ( 2 ) is probably the smallest production Resistor made.
THAT almost non-inductive Resistors in cracked carbon are available up to 20 watts rating.


## These photocells give you the simplest photo-electric control possible

Photo-electric control with the Mullard ORP11 and ORP90 cadmium sulphide cells is the simplest possible because a photocell and relay form the complete circuit.
The unusual combination of high current capacity and extreme sensitivity of these Mullard cells enables robust relays to be operated direct-amplifiers are unnecessary.
Both cells can be operated from either a.c. or d.c. supplies, they are inherently rugged and have a wide range of applications in industry.
The usable response extends through the entire visible spectrum to the near infra-red.
The ORP11 differs from the ORP90 chiefly in being "end-viewing" and having a somewhat smaller photocathode area. This type of photocell is made available to simplify mounting problems encountered in certain applications-particularly in flame failure detectors in oil fired furnaces.
Data sheets giving further information are readily available from the address below.

ABRIDGED DATA

|  | ORP\\| | ORP90 |
| :---: | :---: | :---: |
| Required direction of incident light | End-on | Side-on |
| Area of photo-element | $1.25 \mathrm{sq} . \mathrm{cm}$. | $2.9 \mathrm{sq} . \mathrm{cm}$. |
| Average cell current at 10 V d.c., 5 foot candles and lamp colour temperature $2.700^{\circ} \mathrm{K}$. | 6 mA | 6 mA |
| Maximum ultimate dark current at 100 V d.c. | $5 \mu \mathrm{~A}$ | $<2.5 \mu \mathrm{~A}$ |
| Maximum cell dissipation at $25^{\circ} \mathrm{C}$. | 200 mW | 600 mW |
| Spectral response | Same for both cellssee curve. |  |

Mullard Limited
Mullard House, Torrington Place, London, W.C.I
Telephone: Langham 6633





The Semiconductors range of H.F./V.H.F. transistors allows complete transistorisation of all communications receivers operating up to $200 \mathrm{Mc} / \mathrm{s}$, radar and navigational equipment I.F. amplifiers, and low-level video stages. For mobile transmitters, special techniques allow power outputs as high as 100 mW to be obtained up to $70 \mathrm{Mc} / \mathrm{s}$.

Data sheets and Application notes are available for the whole range together with immediate assistance in your Application problems.

| Surface Barrier | TYPE | DESCRIPTION |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | SB345 | 5 V 10 mA 20 mW at $25^{\circ} \mathrm{C}$ General purpose R.F., I.F., video amplifier or oscillator to $15 \mathrm{Mc} / \mathrm{s}$. | TYPICAL POWER GAINS |  |  |  |
|  |  |  | 1Mc/s | $5 \mathrm{Mc} / \mathrm{s}$ | $10 \mathrm{Mc} / \mathrm{s}$ | 20Mc/s |
|  |  |  | 32dB | 25 dB | 18dB |  |
|  | SB346 | R.F. or I.F. amplifier for use up to $25 \mathrm{Mc} / \mathrm{s}$. | 32dB | $29 \mathrm{~dB}$ | $23 \mathrm{~dB}$ | 27 dB |
|  | S8087 | R.F. or I.F. amplifier to $40 \mathrm{Mc} / \mathrm{s}$. | 32 dB | 32 dB | 26dB | 20dB |
| Micro Alloy | MA393 | 6 V 50 mA 30 mW at $25^{\circ} \mathrm{C}$ <br> High-gain high frequency transistor particularly suited to video amplifier applications; gain $X$ bandwidth ( $\mathrm{Mc} / \mathrm{s}$ ) typically $100 \mathrm{Mc} / \mathrm{s}$. |  |  |  |  |
| Micro <br> Alloy <br> Diffused | $\begin{aligned} & 2 N 499 \\ & \text { 2N500 } \\ & \text { 2N502 } \\ & \text { 2N503 } \\ & \text { 2N504 } \end{aligned}$ | 15 V 50 mA 50 mW at $25^{\circ} \mathrm{C}$ <br> V.H.F. oscillator, min. R.F. power output 25 mW at $100 \mathrm{Mc} / \mathrm{s}$. V.H.F. osclllator, min. R.F. power output 20 mW at $200 \mathrm{Mc} / \mathrm{s}$. <br> V.H.F. amplifier, min. power gain 8 dB at $200 \mathrm{Mc} / \mathrm{s}$. <br> V.H.F. amplifier, min. power gain $1 / \mathrm{dB}$ at $100 \mathrm{Mc} / \mathrm{s}$. <br> Video Output Amplifier, 30 V rating, gain $\times$ bandwidth ( $\mathrm{Mc} / \mathrm{s}$ ) typically $60 \mathrm{Mc} / \mathrm{s}$. |  |  |  |  |
| sillicon Alloy | SA495 | 25 V 50 mA 150 mW at $25^{\circ} \mathrm{C}$., Tj max. $140^{\circ} \mathrm{C}$. <br> Low saturation resistance p-n-p silicon transistor for use as R.F., I.F., video amplifier or oscillator up to $5 \mathrm{Mc} / \mathrm{s}$. Alpha cut-off typically $15 \mathrm{Mc} / \mathrm{s}$. |  |  |  |  |

## Semiconductors Limited

C HENEY MANOR
SWINDONP WILTS
TELEPHONE: SWIMDON $6421 / 4$

5C. 16

## More seals than ever!

We are continually extending our range of standard metal-to-glass seals as more and more equipment designers realise their advantages. You will find these Ediswan seals in such devices as: indicating instruments, gyros, vibrators, transistors, crystals, relays, transformers and vacuum systems.

Increasing use is being made of them in the nuclear energy and guided weapon fields. These metal-to-glass seals have excellent electrical and mechanical properties with the added advantage of being available in a wide variety of standard designs which can be supplied promptly and
fitted easily-usually by soft soldering. Our present range of seals embodies the latest techniques and will almost certainly include types suitable for your needs. If your product calls for something out of the ordinary, let us know; we are always ready to develop new seals to meet special requirements where necessary.

Publication R. 1843 will give you full information about our standard range; you are welcome to a copy.


Thanks to recent big advances in our metal-to-glass sealing techniques, increased production capacity and highly developed systems of quality control, we can now supply first quality transistor headers at competitive prices. We are already supplying many well-known transistor manufacturers. If you are interested in cutting your transistor manufacturing costs, ask us to quote for the type of headers you are using and send you samples.

## EDISWAN



## New 8-decade numerical readout! New 5/10 ${ }^{8}$ per week stability!

## SPECIFICATIONS

(Basic 424D without plug-ins)
Frequency:
Range: 10 eps to 10.1 Mc
Gate Time: $0.001,0.01,0.1,1,10$ secs or manual
Accuracy: $\pm \mathrm{I}$ count $\pm 0.000005 \%$
Reads in: KC. Automatic decimal
Period:
Range: 0 cps to 10 KC
Gate Time: I or 10 cycles of unknown
Accuracy: $\pm 0.3 \%$ ( 1 period)
$\pm 0.03 \%$ ( 10 period average)
Stan. Freq. Counted: $10 \mathrm{cps}, 1 \mathrm{KC}, 100 \mathrm{KC}$. or 10 MC . or external
Reads in: Secs., msec, usec
General:
Registration: 8 places ( $99,999,999$ max.)
Stability: $5 / 100,000,000$. May be standardized with WWV or external 100 KC or 1 MC primary standard.
Dispiay Time: Variable 0.1 to 10 secs; or "Hold"
Input Voltage: I v min, 1.5 v peak. Rise time 0.2 seconds, max.
Input Impedance: Approx. I megohm; 40 $\mu \mu f$ shunt.
plus all these frequency and time measuring advantages :
Direct, instantaneous, automatic readings
Frequency coverage 10 cps to 220 MC
(with plug-in units)
Time interval I $\mu$ sec to 100 days
Resolution $0.1 \mu \mathrm{sec}$.
High sensitivity, high impedance
No calculation or interpolation.

New convenience of uniform 8-decade numerical readout without metersnew 5 parts in $10^{8}$ stability simplifying standards and other microwave measurements-this is the capsule story of the new -hp-524D Electronic Counter.

Electrically similar to the widely used $-h p-524 \mathrm{~B}$ Counter, the new 524D provides for full frequency measurements from 10 cps to 10 MC and period measurements from 0 cps to 10 MC . Low cost plug-in units extend frequency measuring range to 220 MC , permit period measurements of over 10,000 periods, and increase sensitivity for precise measurement of weak signals. Still another, plug-in provides for time measurements from $1 \mu \mathrm{sec}$ to 100 days with $0.1 \mu \mathrm{sec}$ resolution. When used with $-h p-540 \mathrm{~A}$ Transfer Oscillator, the 524 D will measure accurately to 12 KMC . For complete details, write or call your -hp-representative; or write direct.

HEWLETT-PACKARD<br>Represented by

COMPANY
 describes a digital decade voltmeter which, unlike the movingpointer types, provides a visual display of voltage measurements in decimal form. Besides featuring high operating speed and very high input impedance, the instrument is capable of measuring up to 10 V with an accuracy of $\pm 0.02 \%$.

Square-Wave Generators
This article reviews the modern trend in design of generators of square waves and pulses and is of generators of square waves and pulses and is
illustrated by examples drawn from current commercial practice.

Transistorized Pulse Amplifier
The design of a high-speed transistorized pulse amplifier is described. The circuit employs high-frequency drift transistors of a type specially developed for switching applications. ALSO
The unique monthly Abstracts and References feature compiled by the Radio Research ences feature compiled by the Radio Research
Organization of the Department of Scientific and Industrial Research

Original articles by leading authorities are a prominent feature of Electronic \& Radio Engineer. Regular readership will keep you in constant touch with progress in the entire field of electronics, radio and television.

## POST THIS COUPON TODAY

## ELEGTRONIG \& RADIO ENGINEER

TO: ILIFFE \& SONS LTD., DORSET HOUSE, STAMFORD STREET, LONDON, S.E.I.

Please enter my name as a subscriber to:- ELECTRONIC \& RADIO ENGINEER for 12 months commencing with the June issue. 1 enclose remittance $£ 2.9 .0$ (U.S.A. and Canado \$7.50)

NAME $\qquad$

ADDRESS


VFIIU VARIABLE FREQUENCY OSCILLATOR-\&10/12/-
For all Amateur Bands, $160-10$ metres. Ideal for Heathkit DX-40U and similar transmitters. Price less valves $\mathbf{E} / 19 / 6$.

## UJR-I DUAL WAVE TRANSISTOR RADIO-E2/16/6

This sensitive selective set is a fine introduction to electronics for any youngster. A fine present from Father!

PRICES INCLUDE FREE DELIVERY U.K.

## $\star$ FREE ON REQUEST!

WOULD YOU LIKE US TO SEND YOU A COPY OF OUR (BRITISH) HEATHKIT CATALOGUE?

## ENJOY BUILDING YOUR MODEL

 AND SAVE MONEY.DAYSTROM LTD.
DEPT. W.W. 6 GLOUCESTER - ENGLAND
A member of the Daystrom Group
MANUFACTURERS OF THE WORLD'S LARGEST-SELLING ELECTRONIC KIT-SETS

## Hermetic Sealing

STEATITE \& PORCELAIN NICKEL METALLISING<br>Quality Approved (Joint Service R.C.S.C.)<br>WILL MEET THE MOST EXACTING REQUIREMENTS

## METALLISED BUSHES

## Perfect Terminations

-made readily without special precautions by semi-skilled labour, employing simple hand soldering methods, R.F. Heating, Hot Plate, Tunnel Oven or similar mass production methods.

## STANDARD RANGE

Shouldered, Tubular, Conical, Disc and multi seals are included, assembled with stems if preferred.
send for Catalogue No. 47

## TECHNICAL SERVICE

Always available, do not hesitate to consult us. Samples for test will be supplied on request.

## STEATITE \& PORCELAIN PRODUCTS LTD.



## the name to remember for INDUSTRIAL TYPE TRANSISTORS

## BIDIRECTIONAL GERMANIUM TRANSISTORS <br> (Effectively symmetrical in significant parameters) TYPES TK 20 B, TK 25 B <br> For higli frequency switching circults ( $8 \mathrm{Mc} / \mathrm{s}$ and above with the TK 25 B), or small signal amplification. <br> TYPES TK 21 B, TK 24 B <br> For intermediate frequency, high voltage switching circuits, or small signal amplification. <br> ASYMMETRICAL'GERMANIUM TRANSISTORS <br> TYPE TK 23 A <br> For general purpose low and intermediate frequency applications, and telephone and telegraph carrler systems. <br> TYPE TK 40 A <br> For audio and Intermediate frequency oscillators and amplifiers requiring high gain and a power output of several hundred milliwatts. <br> SILICON TRANSISTORS <br> TYPES TK 70 A; TK 71 A <br> For amplification, switching and control in extremes of ambient temperature; and having excellent saturation characteristics at high collector currents, unusual in silicon transistors. <br> 

## Standard Telephones and Cables Limited

Registered Office: Connought House, Aldwych, London, W.C. 2
TRANSISTOR DIVISION: FOOTSCRAY • SIDCUP • KENT

## CHOOSING YOUR

Selecting a loudspeaker by audition is the most difficult problem confronting the purchaser of high quality equipment as it is necessary to differentiate the sound heard into two components-that due to the programme and that due to the speaker. The following procedure, whilst being by no means exhaustive, will help to ensure that the choice is the correct


POINTERS FOR YOU TO FOLLOW

Not more than four loudspeakers should be tested at one time in order to avold confusion and the listener should be symmetrically seated in relation to the loudspeakers.
Ask your dealer to feed a clean programme to one of the loudspeakers with all amplifier controls level. A good local studio VHF transmission is best for this test as very few records can be played on wide range speakers without some degree of filtering.
Adjust the volume level to give the correct perspective for the programme. (1.e., so that the volume is commensurate with the impression of distance in the programme.)

Listen to each loudspeaker in turn. In professional listening tests the greatest care is taken to pre-set the relative power fed to each loudspeaker as it is very important that they all operate at the same appathey all operate at the same appafitted up with this facility, then he or you will have to adjust the or you will have to adjust hand-as accurately possible.

Try to decide which loudspeaker is the most natural. Beware of sensationalism or "gimmtck" balances. If the sound is sensational, make sure it is the music that is sensational and not the loudspeaker.

Next take a modern recording or recordings of your choice (as sensational as you like this time). Using the loudspeaker previously selected as the most natural, play the recording and adjust the filters to reproduce the maximum quality inherent in the recording. With these same settings refer back to these same settings reier back to the one selected in the first test remains the best in the second test.

Should there still be doubt, try changing the relative positions of the loudspeakers in the room.

There are of course additional tests which should be made-adequate power output-adequate dispersion, etc. Best of all-but unfortunately seldom possible-is to borrow the seldom possible is to borrow the and try it at home.


The fact that the QUAD electrostatic shows up as first choice under these conditions does not invalidate the test procedure. It may be recommended for loudspeakers of all types, shapes and sizes.
for the closest approach to the original sound

ACOUSTICAL MANUFACTURING COMPANY LTD
HUNTINGDON, HUNTS. Telephone: HUNTINGDON 361

# RTDIO EXPORT 

## LUBES ONLY

2000 types of both receiving and transmitting tubes in stock In addition, a comprehensive range of crystals and some types of transistors and trustworthy tubes are available.

PRICE AND STOCK LISTS ON APPLICATION

Your specific enquiries for special types to CV. JAN and MIL specifications are invited.

Our organisation is A.R.B. approved.




Attroctive ideo tape Storage. Stoutly bound book containers in red, block and gold, with transfer numerals, holding two 7 -in. reels of tope. Price 7/6. Bookrack to hold six books, 17/6. Set of 6 books and rack 62/6

## Mastertape

MAGNETIC RECORDING TAPE BY
MSS RECORDING CO. LTD. Coinbrook, Bucks.
Telephone: Colnbrook 2431.
Showroom and Studio
21, Bloomsbury Street, London, W.C.I.
Telephone: MUSeum 1600.

## s.t.c.

The 4300 range of carbon film resistors is available where a reliable high stability close tolerance resistor is required for use in critical circuits.

The range comprises five main groups$1 / 10$ W., $1 / 4$ W., $1 / 2$ W., $3 / 4$ W., and 1 W . Within the limits listed below resistors are available in all preferred values. Other values can be supplied to Order.

## joint responsibility...



Enthoven preforms, such as cored solder washers, rings and pellets, are available or can be designed to meet the precision requirements of the most advanced manufacturing techniques:


Enthoven aluminium cored solder is the perfect medium for soldering aluminium to aluminium - or aluminium to copper, tinned copper, tinned and silver-plated brass and most other non-ferrous metals:

## ENTHOVEN*

The comprehensive Enthoven range of solder products comprises cored solder wire, solld solders, materials for soldering aluminium and for the processing of printed circuits, fluxes of all kinds, standard and special preforms and many othor special-purpose products. For technical information on all these items please send today for your copy of "Enthoven Solder Products" - or for more detailed technical literature on any soldering material in which you are specifically interested.

## enthoven solders limited

Sales Office \& Works : Upper Ordnance Wharf, Rotherhithe Street, London, S.E.16. Telephone: BERmondsey 2014
Head Office: Dominion Buildings, South Place, London, E.C.2.
Telephone: MONarch 0391

is the answer

Light alloy
sečondary surface gas-toair heat exchanger produced by aluminium flux bath braxing

We are specialists in heat exchange, heat insulation, and all types of brazing and welding

Fine gauge aluminium and its alloys can be satisfactorily joined-in the flux bath. In fact, the flux bath makes possible joints, and therefore components, that cannot be produced by any other method. Consider these points.

1. Heating in the liquid flux is uniform. This eliminates all but the barest minimum of distortion and makes it possible to join metal as fine as 0.006 in.
2. Any number of inaccessible joints can be designed with complete confidence.
These two simple statements reveal a whole new field of opportunity for designing in aluminium and aluminium alloys-but, naturally, a certain 'knowhow' is required.

We have this 'know-how.' If you are interested in using it, please consult us. We shall be equally happy either to design for you or co-operate with your own designers.

## Delancy Gallay ut

VULCAN WORKS, EDGWARE ROAD, LONDON, N.W.?
Telephone GLAdetone 2201

## VALVES

## FOR RADAR



The English Electric Valve Company supply a complete range of electronic valves for radar. Magnetrons, thyratrons, klystrons and rectifiers are among the different types manufactured, and users and others interested are invited to write to the company for further details. A few typical examples are shown below.

THYRATRON 5C22/HT4I5

A hydrogen-filled pulse modulator triode designed to discharge pulse forming networks in high power, high voltage pulse generators. Short deionisation time and low jitter provide for precise triggering at high repetition frequencies. A very full range of types is available.
hard-valve modulator CII $33 / 4 \mathrm{PR} 60 \mathrm{~A}$

This valve meets all the requirements of military and commercial specifications with the additional advantage of smaller bulk. Conditioning at 30 kV and rigorous testing ensure thoroughly reliable operation right up to the maximum peak anode voltage and current ratings of $25 \mathrm{kV}, 18 \mathrm{~A}$.


MAGNETRON $2 J 42$

Full details of this magnetron and others in the EEV range, which is the widest in Europe, will be sent on request. Magnetrons can be supplied packaged or unpackaged with peak output powers from 5 kW to 5 MW .


The full range of klystrons produced by EEV contains types which operate into Standard X-Band British Waveguide and others which use Standard Waveguide 16. The frequency coverage can be varied within certain limits to meet the requirements of equipment designers. All valves are supplied with integral resonant cavity.

## CATHODE RAY THBE PUMPIMG



The most modern Pumping Unit manufactured. Can be used singly, 3-position automatic straight line, multi-stage rotary from 6-positions upwards, as shown.

Safety Switch cuts out vapour pump and Isolation Valve should the tube leak.

* Thermal Switch cuts off Isolation Valve and Pump Heater should the water supply fail.


Our Engineers are available to help you, to lay out and to install the required Machinery and our Technical Dept. will assist you in any problems you might encounter in this field.

For the Reconditioning of C.R.T.s we supply the complete Outfit as an additional Service to our customers. This equipment can only be purchased with our Pumping Units and is not available for sale on its own.

* Vacuum Reading of tube before seal off, and for checking the Pumping System ofter refilling.
* Indicating Lamps on all Switches for visual notice should cut-outs occur.
* 

Seal Off movement spring assisted. On Multiple Units electric seal-off optional.

* We can supply all Auxiliary Equipment for the reconditioning of C.R.T.s.
$\star$ Demonstrations of completed equipment.
$\star$ Full Service facilities always available.

The Machines are designed to give the maximum protection to themselves and to the goods they produce. We design, manufacture and supply Vacuum Machinery to Major Companies in Gt. Britain and Overseas.

## VACWELI ENG. CO., LTD

WILLOW LANE. MITCHAM, SURREY - Phone MITcham $821 /$ (3 lines)


## with this TRANSISTORIZED TIME \& FREQUENCY MEASURING EQUIPMENT

 Type TSA 53- Frequency measurement up to $100 \mathrm{kc} / \mathrm{s}$.
- Period measurement from $0.0001 \mathrm{c} / \mathrm{s}$ to $10 \mathrm{kc} / \mathrm{s}$.
- Time measurement of any event from $1 / 10,000$ th of a second to $11 \frac{1}{2}$ days.
- Random pulse counting up to 100 K.p.p.s.
- Self-checking on the six output frequencies.
- Facility for printer operation.
- Variable display time, $\frac{1}{2}$ to 6 seconds or infinite.
- 0.1 second, 1 second and 10 seconds sampling times.
- No relays employed.
- Automatio decimal point.

Automatlo unit selection.

- Power Supply: $200 / 250 \mathrm{~V}$ A.C. $60 \mathrm{o} / \mathrm{s}$, or 12V O.C. as selected by switch at the back of the instrument.

VENNER ELEOTRONICS LIMITED Kingston By-Pass, New Maiden, surrey. Telephone: MALden 2442 A member of the Venner Group of Companies.

## Distortion Display

A visual indication of any type of distortion on a radio or line teleprinter circuit is given by A.T.E. Telegraph Distortion Measuring Equipment. The T.D.M.S. 5B, which is basically a test signal generator with variable distortion, also provides a display on a $23^{\prime \prime}$ C.R.T. derived from a circular time base which enables distortion of synchronous signals to be measured to an accuracy of $1 \%$.

The speed of incoming and outgoing signals can also be determined. The T.D.M.S. 6B is fitted with a C.R.T. actuated by a spiral time
base with variable duration to cater for most types of start-stop signals. Short start, long start and random distortion can be read directly. A circular time base, as in T.D.M.S. 5B, is also available for use with synchronous signals. Both 5B and 6B models are equipped for the testing of high speed relays. Neutrality, transit time and contact bounce characteristics are all interpreted by traces on the C.R.T. and can be measured. Either T.D.M.S. may be used independently. Together they cover a complete range of tests.

T.D.M.S. 5B

Sends an automatic test message, or characters, or reversals at any speed between 40-80, 140-160 bauds with or without distortion. The C.R.T. has a circular time base for distortion measurements on synchronous signals only. Weight 38 lb .17 .1 Kg .

## T.D.M.S. 6B

For distortion measurements on working circuits without interrupting service. Each element of a start-stop signal appears separately on a spiral time base display. Speed $40-80,140-160$ bauds. Weight 34 lb .15 .3 Kg .

You are invited to apply for a descriptive brochure.


r.D.M.S. Circular Trace.

## The Long and the Short

 and the 12 -feet tall
## For Microwaves

Yes-the newest recruit to the waverlex range of flexible waveguides is a WG 16 guide 12 feet in length, specially produced to meet a customer's requirements.

These guides are produced under exacting scrutiny and tested to rigorous Government specifications. Losses due to attenuation and Standing Wave Ratio are well within the limits set. They are entirely suitable for use in pressurised systems, remain stable when bent or twisted, and are unaffected by extremes of temperature. Power handling characteristics are excellent, and performance covers a broad band. "Type approval" has been given by the Royal Radar Establishment and by the Admiralty.

## Waveflex flexible waveguides are of three types:

Non-twistable
Flexible in the E and H planes.

## Twistable

Twistable about the longitudinal axis, as well as being flexible in the E and H planes, and the new
Premoulded Twisted
Flexible in E and ⿺ planes with a built-in longitudinal 'twist' which relieves strain on end flanges.

Standard lengths range from $1 \frac{1}{16}$ " to 36 ". All guides can be supplied with any standard type of flange, or special flanges made to your design. The many short (under 6") guides are particularly useful as malalignment units and mechanical decouplers.

Wherever wave transmission involves directional change or vibration, and movement will be encountered, Waverlex Flexible Waveguides offer the complete solution. Present production embraces WG 10, WG 10a, WG. 15 and WG 16 but planned extensions to other bands are already under way. Enquiries are particularly invited for the twistable, the premoulded twisted and the new twistable WG 22 waveguides. Write now for full technical details.

## GABRIEL MANUFACTURING CO. LTD.

Newton Road, Torquay, Devon. Telephone: Kingskerswell 3333 member of the tecalemit group of companies


The High Power Oscillator/Amplifier is an instrument which combines an L.F. oscillator operating over the frequency range $30 \mathrm{c} / \mathrm{s}$ to $30 \mathrm{kc} / \mathrm{s}$ with a power amplifier capable of delivering up to 150 watts into a wide range of output impedances. The amplifier output is monitored by means of a built-in Voltmeter and an input socket is provided for use with external signal sources (microphones, pick-ups, signal generators, etc.).

## A SOURCE OF POWER AND DRIVE



Frequency range: $30 \mathrm{c} / \mathrm{s}$ to $30 \mathrm{kc} / \mathrm{s}$ in 3 ranges. Calibration accuracy: $\pm 2 \%$ on all ranges.

## AMPLIFIER

Sensitivity: 0.1 volt r.m.s. input for full output.

## MAXIMUM CONTINUOUS

POWER OUTPUT (SINE WAVE):
150 watts from $50 \mathrm{c} / \mathrm{s}$ to $5 \mathrm{kc} / \mathrm{s}$.
100 watts from $30 \mathrm{c} / \mathrm{s}$ to $10 \mathrm{kc} / \mathrm{s}$.
50 watts from $30 \mathrm{c} / \mathrm{s}$ to $30 \mathrm{kc} / \mathrm{s}$.

## THERE'S NO END TO ITS APPLICATIONS

The instrument has a wide variety of uses of which the following are representative:-

* Power source for $40,400,1,600$ and $2,400 \mathrm{c} / \mathrm{s}$ equipments.
* Power Source for double voltage, double frequency testing on transformers in accordance with RCS. 214.
* Drive amplifier for A.C. servomotors.
* Energising source for moving coil vibrators.
* Modulation amplifier for Radio Transmitters.
* High Power Amplifier for Public Address systems.
* A power source for laboratory work on variable frequency filter response tests, variation of magnetic amplifier performance with frequency, etc.
* Drive for synchronous clocks


## HIGH POWER OSCILLATOR/AMPLIFIERS



# BRITISH COMMUWICATIONS CORPORATION LIMITED 

Second Way
Telephone Wembley 1212

Exhibition Grounds
Wembley, England Cables BeeCeeCee

## Only EImAC gives you ceramic "extras" in more than 40 tube types



SMALLER SIZE


VIBRATION SURVIVAL


EXTREME HEAT SURVIVAL


IMPACT SURVIVAL


EXACT DIMENSIONAL UNIFORMITY


LOWER DIELECTRIC LOSS

Write for literature on these incomparable ceramic reflex and amplifier klystrons, negative griod and travelling wave tubes.

## EITEL-McCULLOUGH, INC.

SANCABRLOS.CALIFORNIA. Einace Finst with ceramic tubes that can take it

## 

firs _ry


Here, within this one modestly priced instrument, are the essential facilities and the essential accuracy demanded for servicing radio and television receivers on bands I, II and III. But more than that, its excellent specification and wide range make the $63 \mathrm{FM} / \mathrm{AM}$ a valuable instrument for the electronic development laboratory.
net price in U.K.
18.5

MODEL 63 FM/AM SIGNAL GENERATOR


Full technical details in leaflet W/36, available on request.
 GD23


Every Company-and individual engineer-contemplating the use of PTFE* should send for a copy of our booklet entitled "PTFE ENGINEERING".

We were one of the first companies to process this unique material, and equally we were one of the first companies to develop methods of machining and otherwise fashioning it into a multitude of component forms.

Today we produce it in its raw material forms in very large quantities, and we have supplied many thousands of PTFE components to the electrical and allied industries.

Whether you require to buy PTFE in order to transform it into component forms in your own works, or whether you wish to buy small or large numbers of PTFE components, we should welcome your enquiries, and you would find advantage in utilising our accumulated resources of "know how" and experience in handling the material.

[^12]

## * DESIGNED TO HAR韄ONISE WITH ALL MODERN ELEGTRONIC EQUIPMENT

## * FIXINGS CONFORM TO ACGEPTED PRACTICE

 * PRIGES ARE highly competitiveFor utmost reliability all 'English Electric' miniature instruments have been designed with a higher-than-normal torque/weight ratio in combination with lower power consumption. All types have been successfully subjected to the following tests:
RESISTANCE TO IMPACT' SHOCK OF 200 g in any plane.
VIBRATION FATIGUE TEST-two million cycles at peak resonant frequency.
OSCILLATORY TEST-up to one million operations.

Above: $2^{x}$ square moving coil voltmeter

SPECIFICATIONS B.S: 89-1954 and other International Specifications.

TYPES
Moving coil for D.C. applications. Rectifier moving coil for A.F. applications.

Thermo-couple operated moving coil for R.F. applications.

SIZES
Square: $2^{\prime \prime}, 2 \frac{1}{2}^{\prime \prime}$ and $3 \frac{1}{2}^{\prime \prime}$ nominal scale length.
Round: $2 \frac{1^{*}}{}{ }^{\prime \prime}$ and $3 \frac{1}{2}^{\prime \prime}$ nominal scale length.
Rectangular: $5^{\prime \prime} \times 6^{\prime \prime}$ or $3^{\prime \prime} \times 4^{\prime \prime}$ nominal case size.

Design registrations pending.


Left: $2 \frac{1^{\prime \prime}}{2}$ round moving coil microammeter
Over 50 standard ranges in any of the seven case types.

Delivery ex stock for standard ranges.
Non-standard ranges to customer's specification within 21 days.

Literature available on request to The ENGLISH ELECTRIC Co. Ltd., Instrument Department, Stafford,

## 'ENGLISH ELECTIRIC'

The ENGLISH ELECTRIC COMpany Limitid, Marconi House, Strand, London, W.C. 2 Meter, Relay and Instrument Division, Stafford




The TF 8orD is the latest addition to the Marconi family of precision a.m. generators. With a frequency range of to to 470 $\mathrm{Mc} / \mathrm{s}$, its salient features include superfine tuning with crystal checking, and oscillator 1.t. regulation for maximum stability.
 Spurious f.m. is less than $0.001 \%$ of carrier frequency, and its high-quality 50 -ohm output has a v.s.w.r. better than $\mathrm{I} \cdot \mathrm{I}$.
Carrier level is continuously variable from $0 \cdot 1 \mu \mathrm{~V}$ to I volt and is stabilized by an automatic level control system. Sinewave a.m. up to $90 \%$ may be applied both internally and externally; pulse modulation may be applied externally in the p.r.f. range $50 \mathrm{c} / \mathrm{s}$ to $50 \mathrm{kc} / \mathrm{s}$.
Full details will be gladly sent on request-please ask for leaflet G142

## MARCONI

[^13]Prease address enquirles to MARCONI INSTRUMENTS ETD. at your neavest office i

London and the South :
Marconl House, Serandi Lóndon, W.C. 2
Telephone: COVent Garden 1234

Mrdlands:
Marcont. House, 24 The Paride, Leamlington Spa
Tetephone: 1408

## and now

A 4 SPEAKER SYSTEM FROM WHARFEDALE THE W4


With independent mid-range and treble controls to facilitate stereo operation with different speakers.

The W4 is a new 4-speaker system designed for stereo use in conjunction with an existing $9 \mathrm{cu} . \mathrm{ft}$. corner 3-speaker system or in pairs where identical speakers are required. It also gives superb results on single channel input.

Although primarily a corner design, it can be used along a wall side if required, since it is completely enclosed at the rear. The design is based on the Wharfedale 12 in . linear suspension unit type WLS/I2 which gives pure bass down to $30 \mathrm{c} / \mathrm{s}$, as shown by the waveform at 4 watts input.

A half section three way network is fitted cròssing over at $400 \mathrm{c} / \mathrm{s}$ to a pair of 5 in . units in parallel. A Super 3 is used for the extreme treble. The treble units are arranged for omni-directional radiation, giving the effect of a broad sound source in keeping with the large three-speaker corner system. The simllarity of treble radiation


Waveform of output at $30 \mathrm{c} / \mathrm{s}$ with 4 watts input ensures good balance when the latter is used in the opposite channel on stereo.

Other compact speaker systems are the W2

Cabinet $23 \frac{1}{2}^{\prime \prime} \times 14^{\circ} \times 12^{\prime \prime}$
Price $£ 29$. 10.0 tax free W3

Cabinet $28^{\prime \prime} \times 14^{\prime \prime} \times 12^{\prime \prime}$ Price $£ 39.10 .0$ tax free

Specification of the W4
Size $\mathbf{3 5 i n} . \times 24 \mathrm{in} . \times \mathbf{1 2} \mathrm{in}$. Weight 651b. complete. Impedance 15 ohms.
Max. input 15 watts.
Price in whitewood $547-5=0$.
Veneered and polished $=349=10=0$.
Choice of Walnut, Oak and Mahogany veneers.
Tropical model can be supplied at $£ 2 / 10 /-$ extra.

Descriptive folder on all 3 models avallable free on request.

Telephone : Idle 1235/6. Telegrams: ' Wharfdel,' Idle, Bradford

Whartedale
WIRELESS WORKS LTD IDLE BRADFORD YORKS


## BTH EXPERIENCE BRINGS OUT THE BEST IN SOUND REPRODUCTION

## Take an outstanding amplifier ...double it...and you have

## the finest instrument of its kind available today

## Mozant




HIGH FIDELITY IS A
SPECIALIST BUSINESS
Mettculous attention is paid to every detail. Exacting performance tests are carried out at every stage. Hand-finishing is by experts. The result is a range of instruments which are among the finestavailable intheir powerrating.

Tecnico 1 rd.,
Sydney, Australia.
Pye Limited, Auckland,
C.I. New Zealand.

Deutsche Pye G.m.b.H., Berlin-ZehlendorfWest,
Roonstrasse 2,
Germany,

PYE LIMITED, HIGH FIDELITY

TECHNICAL SPECIFICATION PER CHANNEL
PRE AMPLIFIER
Sensitivities P.U. 7 mV . Tape 100 mV . Radio 100 mV . Tape record output 300 mV at above specified input sensitivities.
Hum and Noise P.U. - 55 db . Tape - 60 db . Radio - 60 db .
Frequency Response Tape 20 to 20000 cycles $\pm 1 \frac{1}{2} \mathrm{db}$. Radio 20 to 20000 cycles $\pm$ $1 \frac{1}{2} \mathrm{db}$. P.U. Within $1 \frac{1}{2} \mathrm{db}$ of published relay curves.
Channel Sepapation between - 40 db and - 50 db overall.
Controls Volume: Continuously variable: Bass: +10 db to -15 db at 50 cycles. Treble: +10 db to -15 db at 10000 cycles. Balance: Variation of 6 db per channel. Illuminated Push/Push on/off switch.
Selector Switch 5 Position: Tape. Radio. 78 (all 78 records). Ls.P.O. (Pre 1956 recordings) L.P.N. (Recordings to R.I.A.A.).
Output 0.2 V into 100K for above stated input sensitivities.
Pick-up matching by "Dialomatic" compensation.
Control panel is identical in size and finish to the Mozart FM Tuner.

## MAIN AMPLIFIER

Sensitivity 0.2 V .
Output 10 watts per channel.
Distortion $0.3 \%$ total harmonic at 9 watts.
L.F. Power Output 8 watts at 40 cps

Loudspeaker Impedance 4, 8, and 15 ohms (with phase reverse switch).
Damping Factor 30.
Hum and Hoise - 70 DB with 100K input impedance.
Frequency Response 10-50,000 cycles $\pm 2 \mathrm{db}$.
Negative Feedback $27 \mathrm{db}(\ln 3$ loops).
Total Power Consumption 110 จA.
Mains 200 V to 250 V AC 60 cyoles. 110 V to 120 V AC $60 \mathrm{c} . \mathrm{p} . \mathrm{s}$. (Export model)

## PYEEIGERIDELITYSYSTEMS

DIVISION, FAIRVIEW ROAD, LONDON, S.W.IG

Svenska Pye A.B.
Landsvagen 47 , Sundbyberg, Sweden.
Pye (Ireland) Ltd.,
Dublin, Eire.

Pye Limited,
Mexico City.
Pye (Canada) Ltd.,
Northline Road,
ROAD

Pye Corporation of America,
149 Raritan Avenue,
Highland Park,
New Jersey, U.S.A.

Siemens Ediswan PTFE insulated instrument wire, developed for certain highly specialised services, has a wide potential field of application in modern electronic engineering. The physical and electrical properties of PTFE make it the best material available wherever the emphasis is on performance and complete stability. In brief, PTFE has these advantages:

- Stable at all temperatures from $-75^{\circ} \mathrm{C}$ to $+250^{\circ} \mathrm{C}$
- High dielectric strength
- Low dielectric constant
- High resistance to corrosives and solvents

E Non-chafing and self-lubricating

- Available in 11 colours
- Non-adhesive

PTFE is extremely difficult to form, but we have considerable pioneering experience in its processing and fabrication. As a result we are able to produce PTFE insulation by extrusion with concentricity guaranteed to close limits. We are anxious to extend the uses of this wire and will gladly supply interested manufacturers with samples for them to test. If we can help you with information on the use of PTFE in any shape or form, please let us know.


Send your enquiry to:
SIEMENS EDISON SWAN LIMITED An A.E.I. Company
PTFE SECTION (PDIT)
155 Charing Cross Road, London WC2
Telephone: GERrard 8660. Telegrams: Sieswan, Westcent, London

## N <br> TARGET

TELCON METALS<br>AND THE DE HAVILLAND FIRESTREAK



We are proud to be associated with de havilland propellers ltd., in the manufacture of the firestreak guided missile. The majority of electronic assemblies used in this missile embrace components which depend on our alloys - mumetal, radiometal and h.c.r.,- for their exacting operation.

Other Telcon alloys such as permendur, rhometal and beryllium copper-Cu.Be. 250 (DTD.900) are also widely used by the Aircraft Industry. We are manufacturers of super pure basic metals and alloys for the instrument, electronic and aircraft industries. Our range includes:

SOFT MAGNETIC ALLOYS

## Mumetal

Supermumetal
Radiometal
Super Radiometal Rhometal

Supermendur
Permendur

High permeability.
Nickel Iron Alloys for cores and laminations.

High permeability.
Cobalt-Vanadium.
Iron Alloys with high saturation for light-weight generators and vibration test gear.
HCR Altoy
H.S. Alloy

DUCTILE HARD MAGNETIC ALLOY
vicalloy
Permanent magnet alloy (Cobalt-Iron-Vanadium) of ductile and machinable quality.

BERYLLIUM COPPERS
CuBe 50, CuBe 100, CuBe 275. CuBe 250 to Specification DTD 900. High tensile strength. fatigue resistance, and conductivity alloys.

## THERMOSTATIC BIMETALS

Varlous grades for instrument protection, and compensationoverload protection of motors. synchros and similar electrical devices.

Most alloys are available as strip, rod, bar or wire, and enquiries are invited for ultra-thin magnetic materials for high frequency applications. A.I.D., A.R.B., and Admiralty approved.

## TELCON METALS

THE TELEGRAPH CONSTRUCTION \& MAINTENANCE CO. LTD.
Enquiries to: Metals Division. Telcon Works, Manor Royal, Crawley, Susṣex. Crawley 1560 Head Office: Mercury House, Theobalds Road. London WC1. Holborn 8711


## Are you using S S.S.BP?

Single Sideband HF Communication, with its advantages of increased effective power and reduced bandwidth, used to call for such elaborate installations that its use was confined to the large-scale communication organisations of the world. Intensive development effort has resulted in considerable reductions in the complexity of S.S.B. equipment, so that reliable, simple sets can now be made available for even the smallest communication systems.

With the object of making S.S.B. operation available to the greatest number of users, RACAL have designed a well-balanced range of S.S.B. transmitting and receiving equipment. The demand for the popular TRA.55, shown in full-scale production, has demonstrated clearly the great need for this equipment. The other members of the series have been designed to the same policy of maximum utility and minimum frills.

With this equipment, designed with the requirements of tomorrow in mind, RACAL offers you the solution to your HF communication problems today.

## Brief details of the TRA. 55 Radio telephone.

Frequency Channels:
Channels I \& 2-3 to $6 \mathrm{Mc} / \mathrm{s}$. Channels 3 \& 4-6 to $12 \mathrm{Mc} / \mathrm{s}$. (Channel 4 can be supplied as $7 \cdot 5$ to $15 \mathrm{Mc} / \mathrm{s}$ ).
Emission:
Single (lower) sideband suppressed carrier radio telephony.
Single sideband keyed tone.
(Carrier re-insertion is available
for pilot carrier or D.S.B. working).
Peak Envelope Power:
60 watts.
Input:
$100-125$ and $200-250 \mathrm{v} \quad 40 / 60 \mathrm{c} / \mathrm{s}$. 300 watts maximum.

The TRA.55B can also be supplied. This version has switching facilities to provide conventional D.S.B. reception and transmission in addition to S.S.B. working.

## BAGAL

## R A C A L E N G I N E E R I N G L I M I T E D

[^14]ESSENTIAL DATA NOMINAL SIZE PEAK POWER HANDLING CAPACITY

## cellefion

The COLAUDIO provides a new incentive to listening, creates a new realism in reproduced sound, adds a new beauty to music and the finer nuances of speech. Combining a 15 in . direct radiator bass loudspeaker with two direct radiator, pressure-type high frequency reproducers in column form, the COLAUDIO is the culmination of over thirty years research, development and manufacture of loudspeakers for all purposes. Its perfection of tone can be truly appreciated only by an aural test-once heard, you will never be satisfied until you instal one in your own reproducing equipment.

## COLAUDIO

Rola Celestion Led. thames ditton, surrey, england.

## FOR THE FIRST TIME IN BRITAIN


RESISTORS!


## HIGH GRADE RESISTORSAT LOW COST

A new Dubilier process makes available to the design engineer a power wire-wound resistor possessing highgrade characteristics which costs no more than an equivalent standard type. The resistance wire is uniformly wound on a silicone-processed fibre-glass core which is then sealed into a ceramic housing. The result is a remarkably stable resistor which is completely insulated except for the connecting wires.

## PERFORMANCE UNDER OPERATING CONDITIONS

* Resistance change less than $5 \%$ after 100 hours at $40^{\circ} \mathrm{C}$. ambient temperature and $95 \%$ relative humidity.
* Resistance change less than $2 \%$ after three times normal load for 5 seconds.
* Resistance change less than $5 \%$ after 500 hours at full load in $25^{\circ} \mathrm{C}$. ambient temperature.
* Resistance change less than $1 \%$ and no physical effects due to soldering.

MAXIMUM TEMPERATURE COEFFICIENT BETWEEN -55 and $+275^{\circ} \mathrm{C}$.

| TYPE | $0.05 \% /{ }^{\circ} \mathrm{C}$ | $0.03 \% /{ }^{\circ} \mathrm{C}$ |
| :--- | :--- | :--- |
| PW5 | $0.5 \Omega$ to $2.5 \Omega$ | $2.5 \Omega$ to $2.0 \mathrm{k} \Omega$ |
| PW7 | $0.5 \Omega$ to $8.0 \Omega$ | $8.0 \Omega$ to $6.5 \mathrm{k} \Omega$ |
| PW10 | $1.0 \Omega$ to $10 \Omega$ | $10 \Omega$ to $10 \mathrm{k} \Omega$ |

DOBITHEB
dubilier condenser co. (1925) Lid TELEPHONB: ACORN 2241

FIG. I. DERATING CURVE


FIG. 2. TEMPERATURE RISE/LOAD


| TYPE | PW5 | PW7 | PWIO |
| :--- | :--- | :--- | :--- |
| Wattage | 5.0 | 7.0 | 10.0 |
| Min. Value | $0.5 \Omega$ | $0.5 \Omega$ | $1.0 \Omega$ |
| Max. Value | $2.0 \mathrm{k} \Omega$ | $6.5 \mathrm{k} \Omega$ | $10 \mathrm{k} \Omega$ |
| Length | $7^{\prime \prime}$ | $125 / 64^{\prime \prime}$ | $17^{\prime \prime}$ |
| Width and height of oll three types ore $3^{\prime \prime}$ and $11 / 32^{\prime \prime}$ respectively. |  |  |  |

Catalogue R15A available on request.
ICTORLA ROAD
NORTH ACTON
LONDON W. 3 TELEGRAMS: HIVOLTCON WESPHONE LONDON DN 235A

## POTTED PAKONECTORS

## 18 WAY

* No cover and cable clamp worries. We connect your cable to plug or socket and put the assembly in polythene. * 18 connections in less than 1 inch diameter. * Standard B9A valveholder mounting. * Nylon loaded PF. mouldings. * Cadmium plated or gold pins and contacts.


## memurdo <br> ELECTRONIC


cover no. 9

Polythene Shrouded B9A. Valveholder for Television E.H.T. Rectifiers.

TC2


B9A E.H.T. VALVEHOLDERS BM9/UV

Send for full details to :-
The McMurdo Instrument Co. Ltd.,


14 WAY B27900I BLACK P.F. MOULDING

VOLTAGE SELECTORS

6 WAY XVS/6
NYLON LOADED P.F. MOULDING

## -mamurdo



VOLTAGE SELECTORS

6 WAY MINIATURE BMVS/6


4 WAY BVS/4
BLACK P.F. MOULDING

## now in quantity production



This latest ELAC deflection unit incorporates the new MULLARD Ferroxcube core Type FX 1981, enabling a " pull back " of 4 mm to be achieved without loss of sensitivity.
Line inductances of 5 to 30 mH with $\frac{2}{\mathrm{R}}$ RATIO OF .8 and frame impedances of 2 to 70 ohms are readily available. The standard model is supplied complete with TUNGSTEN steel picture centring plates, positive tube neck clamping device and a terminal panel well removed from adjustment points.

## TRANSFORMERS

All for 220/250 V. Input, Other Supply Voltages as required CONTINUOUS RATINE, Shorl Rating Transformers also available


E6/10/-
OUTPUTS:
12 V .40 Amps .
6-12-18-24-30 V. 12 Amps
5 V. 80 Amps.
18 V. 30 Amps.
$110-120$ V. 4 Amps. 55 V .12 Amps.
4 V .100 Amps.
6.3 V. 18 Amps. or 12.6 V .9 Amps.

5 V. 140 Amps. $6810 \quad 0$ $110-120$ V. 10 Amps. ...... $\leqslant 12100$ 40 V. 25 Amps. $£ 13150$ 5 V. 300 Amps. $£ 1500$ $6-12$ V. 50 Amps. 68100 12 V. 60 Amps. $£ 1000$ 12 V. 100 Amps. $£ 15100$ 50 V. 60 Amps. $£ 2100$ 110 V . Centre Tapped 55 V. 25 Amps ............. $£ 2600$ 10-15-25 V. 100 Amps.
6-8-10-18-24 V. 100 Amps.


VOLTAGE REGULATING TRANSFORMERS 416

Input 230/240 V. Output 50 V . to 250 V . In 16 steps of 12.5 V . at 25 Amps . These are Auto Transformers with Quick Make-and-Break Tapping Switches.


4 V., 5,000 Amps. $6100 \quad 0 \quad 0$ 2 V., 10.000 Amps. 69800 3.5V.,20.000Amps. $£ 12700$ 2 V., 30,000Amps. $£ 13000$ 10 V., 2,000 Amps.f 10300


## HIGH-VOLTAGE transformers

1450 V. 300 mA . 68100 3 kV .2 mA . ...... EA 0 © $10 \mathrm{kV} .23 \mathrm{~mA} . . . \quad 690$ $4 \mathrm{kV} .2 .5 \mathrm{~mA} . . . . ~ \& 5 \quad 0 \quad 0$

10 V. 1,000 Amps. 659 10 V. 500 Amps. $£ 38$ 10 V. 750 Amps. £48 9 V. 900 Amps. 649 12 V. 1,000 Amps. 664 15 V. 1,000 Amps. 675 20 V. 800 Amps. $£ 80$ 10 V. 300 Amps. $£ 28$


## METAL RECTIFIERS

Selenium Metal Rec. eifiers. Half wave, full wave, Single or Threephase. Any combination from 3 Amps. to 5,000 Amps.

WITH
SWITCHED
TAP CONTROL TAP CONTROL Available with one or more Switches. Ammeters, Fuses, etc TRANSFORMERS WITH INFINITELY VARIABLE

OUTPUT

Combinations of Transformer with attached Variac for very fine control.

MANY OTHER STOCK TRANSFORMERS

All for $200 / 250$ V. A.C. (Other supply Voltages

Rectifier Sets with D.C. Output Contro' Ry internal taps. D.C. Volss ON LOAD are stated. | $110 / 120$ V. D.C., 10 Amps. ... $E 29$ | 0 |
| :--- | :--- | $\begin{array}{llll}200 / 250 \text { V. D.C., } 10 \text { Amps. } & \text {... } 836 & 0 \\ 200 / 250 \\ \text { V. D.C. } 18 \text { Amps. } & \text {.. } & E 46 & 0\end{array}$ $35 / 38$ V. D.C. 50 Amps. 34 V. D.C. 10 Amps. 1,200 V. D.C., 200 mA 60 V. D.C., 5 Amps. 200/250 V.D.C. 9.5 Amps. 20 6.3 V. D.C. 13 Amp

V. D.C. 110 mA .


## VOLTAGE REGULATING TRANSEORMERS

Covering the range from zero Volts to supply Volts in 64 steps. This is achieved by switching

ON LOAD.

INPUT 240 V .
OUTPUT $0 / 240 \mathrm{~V}$.
Change per Step, $3.8 \mathrm{~V} .(1.6 \%)$
40 Amps.
60 Amps.
80 Amps .
659
659
689
60 Amps
688

## HARMSWORTE, TOWNLEX \& CO. 2 JORDAN STREET, MANCHESTER 15. CENTRAL 5069

LIST No $70 \frac{1}{8}$ BIT
THE tool for Electronic Circuits also by

## ADCOLA <br> (Regd. Trade Mark)

Soldering Equipment

SHARP HEAT FOR QUICK
jointing of transistors, resistors, and all classes of miniature components

SUPPLIED IN ALL VOLT RANGES

ADCOLA
"LONG LIFE" Bits
FROM STOCK

ILLUSTRATED ACTUAL SIZE

Electrical standards approved in all leading countries

Catalogues of the Adeola potented and registered design soldering equipment on request from

Head Office, Sales and Service

> ADCOLA PRODUCTS LTD. GAUDEN ROAD CLAPHAM HIGH ST. LONDON, S.W. 4

Telephones:-
MACaulay 4272 and 3101


Some people aim for the moon... we aim to solve your problems concerning REMOTE CONTROL or POWER TRANSMISSION

- Our engIneering staff will welcome the opportunity of co-operating with you.

THE
FIRST NAME IN FLEXIBLE SHAFTS

THE S. S. WHITE DENTAL MFG. CO. (G.B.) LTD.

Britannia Works,
St. Pancras Way, London, N.W.1.
R.C.s.


## Waveform monitoring

 at extremely low cost with the ICPIWaveform monitoring facilities can be incorporated in both existing equipment and new designs with extreme ease and economy with the ETEL cathode ray tube 1CP1.

The tube itself is inexpensive and the associated circuitry required is very simple. The operating voltage is so low that in most equipment suitable connection to existing HT lines is all that is required. Beam focusing is fully automatic and auto-bias is quite adequate.

Space problems rarely occur when the 1 CPl is usedit is only $4 \frac{1}{4}$ inches long and fits a normal B8G loctal socket.

If you are interested in the simplest and most economical method of waveform monitoring write to the address below for further details.

## Abridged data

$\mathrm{Vh}=6.3 \mathrm{~V}$
$\mathrm{Vh}-\mathrm{k}(\mathrm{pk})= \pm 250 \mathrm{~V}$ max.
Val $+\mathrm{a} 3=350 \mathrm{~V}$ min.
$\mathrm{Sx} \quad=\frac{95}{\mathrm{Va} 3} \mathrm{~mm} / \mathrm{V}$
Sy $\quad=\frac{110}{\mathrm{Va}_{\mathrm{a}} \mathrm{mm} / \mathrm{V}}$


## Cathode

ELECTRONIC TUBES LIMITED Kingsmead Works . High Wycombe • Bucks . Telephone High Wycombe 2020 (4) ETL3a

## Redifion

## produce a

## complete range



AFS. 13
Twinplex Frequency Shift Combiner
of

## Frequency Shift

 Terminal
## Equipment

Combinations of the equipments illustrated provide facilities including simplex or twinplex, diversity or non-diversity, fixed or variable tuning, radio or audio frequency shift. Redifon engineering division will be pleased to quote for complete schemes or for equipment for integration with existing systems.

## REDIFON LIMITED

Communications Sales Division,
Wandsworth, London S.W.18. Phone: VANdyke 7281


A Manufacturing Company in the Rediffusion Group

R. 145

High Stabilliy Communications Receiver


Frequency Shift Converter


6 Spot Frequency H.F. Receiver


## SIX TRANSISTOR PRINTED CIRCUIT medium wave receiver

Circuit Diagram. Complete assembly layout and separate component price list for building this receiver will be posted on receipt of 9 d . in stamps.

The Maxi-Q Transistor Six as shown on T.V. is offered assembled and aligned complete, contained in an attractive Personal Portable Book style case at $£ 13 / 17 / 6$ plus $£ 4 / 12 / 6$ P.T. or Chassis only assembled and aligned at $£ 12 / 15 /-$. plus $£ 4 / 5 /-$ P.T. Contained in hand-carved oak casket at $£ 15 / 7 / 6$ plus $£ 5 / 2 / 6$ P.T.

## HOME CONSTRUCTOR CHASSIS SERVICE

Our Chassis are made with new 16 s.w.g. heavy duty bright aluminium. Front Panels in 19 s.w.g. Stee with attractive Hammered Gold finish and clearly marked with neat control positions; all finishes and construction are made to enable constructors to match one unit with another.
Mullard Chassis.
Type "C", Tape Pre-Amplifier Chassis. ...................... $11 / 6$ Type "A" Prate and Screen for $5-10$ and " 5 -10A \& B" $19 / 6$ Type "B" Pre-Amp Chassis and Screens … ............... 816 Complete metalwork for T.C.C. "5-10" Printed Circuit. . 15/3 Valve 3 Watt Amplifier Chassis.............................. 10/6
" 20 Watt" Amplifier, Chassis, Base Plate, Transformer Ccvers Adacticn Flate and Screws.
"20 W att" Pre-Amplifier Chassis . . . . . . . . . . . . . . . . . . . . . 28 .
$\begin{array}{ll}\text { Tape Reccrder "Iype A" and "B" Pre-Amplifier Chassis, ea. } & 31 / 6\end{array}$ 7 W att AC/DC Chassis complete with paxolin and bracket 20/Ncte: Iransformer holes are not punched in chassis excepting " 20 Watt" Amplifier.
Mullard Frent Parels:
Type "C" Tape Pre-Amp. with EM81 Escutcheon cut-out, $11 \frac{1}{2} i n . \times 4 \frac{1}{i n}$.

Type "A" Pre-Amplifier, $4 \frac{1}{2}$ in. $\times 2 \frac{1}{2}$ in. . . . . . . . . . . . . . . . . 216
Type " B" Pre-Amplifier, 10 $\frac{1}{2} i n . \times 2 \frac{1}{2} \mathrm{in}$. . . . . . . . . . . . . . . 3/6

GENERAL. CATALOGUE covering full range of components send $1 / 4 d$, in stamps or P.O. PLEASE SEND S.A.E. WITH ALI ENQUIRIES

## 

## ....a higher $\alpha^{\prime}$ version of the recently announced OC200

The new Mullard silicon alloy transistor OC201 is similar to the recently introduced OC200, but with the average current gain increased from 20 to 30 and the minimum fo increased from 0.5 to $2 \mathrm{Mc} / \mathrm{s}$.

Like other transistors in the silicon alloy range now being introduced by Mullard, the OC201 has a low bottoming voltage and all the advantages of the well-known OC71 germanium series. In addition these silicon transistors feature a low collector leakage, reduced noise figure and high permissible operating temperature.

The maximum collector voltage of the OC201 is 25 V , but its low bottoming voltage allows it to be operated from supplies as low as 1.2 V . The linearity of current gain with collector current is well-maintained up to 50 mA .

The $2 \mathrm{Mc} / \mathrm{s}$ cut-off frequency and high permissible junction temperature rating of $150^{\circ} \mathrm{C}$ of this silicon transistor enable it to be operated at relatively high frequencies with a power dissipation of 100 mW at $100^{\circ} \mathrm{C}$.

The OC201 is now being put into large scale production and designers can depend on it to remain available for many years as a standard transistor. Write on your company notepaper to the address below for complete data.

## ABRIDGED DATA

## sllicon p-n-p alloy Junction transistor OC201




MULLARD LIMITED . SEMICONDUCTOR DIVISION MULLARD HOUSE • TORRINGTON PLACE LONDON • W.C. 1 - TELEPHONE: LANGHAM 6633

## Mullard

semiconductor division

## STEREO SOUND SUPREME BY

## Connoissarr

THE RESULT OF FOUR YEARS' PROGRESSIVE DEVELOPMENT

## THE STEREO PICKUP

for playing 45/4 5 record Miniature ceramic type with replaceable diamond stylus. Constant velocity output approximately 20 mV from each channel. Frequency range 20 to 16,000 cycles. Channel separation $20 / 25 \mathrm{dbs}$.
(Complete as illus.) 59 plus $£ 3 / 4 / 1$ P.T.

Head only $£ 5 / 10 /-$ plus $£ 1 / 19 / 2$ P.T.
Arm only $£ 3 / 10 /-$ plus $£ 1 / 4 / 11$ P.T.

## STEREOPHONIC AMPLIFIER AND PRE-AMPLIFIER

Twin channel amplifier and pre-amplifier for reproducing monaural and stereophonic sound from disc, radio and compensated tape.
Ultra linear push/pull output giving 7.5 watts peak from each channel.

Amplifier $£ 24,10.0$
Pre-amp. $£ 16.10$.0

## VARIABLE 3 SPEED MOTOR

 TYPE BOperates at $33 \frac{1}{3}, 45$ and 78 r.p.m. Nonferrous turntable. Built-in large stroboscope with internal light source. Precision ground and lapped spindles. Adjustable nylon graphite bearings. Synchronous motor.

$$
£ 20 \text {. } 10 \text {. } 0
$$

Plus £7/6/1 P.T.

Send for descriptive
leaflets
A. R. SUGDEN \& Co. (Engineers) Ltd.
Market Street, Brighouse, Yorks.
Telephone 2142



## MUREX

In this new B.P.L. Meter, Murex Sintered Magnets are used to meet the need for low leakage, high flux density and magnetic stability. For technical information on the design, performance and characteristics of Murex Permanent magnets, write for a copy of our magnet catalogue.
are used in the B.P. $L$ FULSCALE METER


MUREX LIMITED (Powder Metallurgy Division) RAINHAM, ESSEX.
Telex 28632. Telegrams: Murex, Rainham-Dagenham Telex. Telephone: Rainham, Essex 3322 London Sales Office: CENTRAL HOUSE, UPPER WOBURN PLACE, LONDON, W.C.I. EUSton 8265


## AUTOMATIC COIL WNNDING MACHINE

THESE MACHINES INCORPORATE THE FOLLOWING FEATURES:-
Infinitely variable wire gauge adjustment with easily read scale calibrated in .001".
Width of coil quickly adjusted within fine limits. Adjustable tailstock fitted with spring loaded live centre and quick release lever. Machines to stop automatically at a required number of turns can be supplied.
We will be pleased to send you an illustrated leaflet giving a full technical specification on request.
73 UXBRIDGE ROAD, EALING, LONDON, W. 5 EALIng 8322

## Elliott Brothers

## use

Patchcord Programming System and Taper Technique


Rear view showing harness em-
ploying Taper Pin Connection.

"FIMAC" Computer ot present in
"FIMAC" Computer ot present Elliott Brothers (London) Elliatt Brothars (London)
Limited, Boreham Wood.


Sront view of Programme 8oards.
Photographs by courtesy of Panellit Led., Member of the Elliott Automation Group.



TRADE MARK

WRITE NOW ABOUT THE CREATIVE APPROACH TO BETTER WIRING AIRCRAFT-MARINE PRODUCTS (GT. BRITAIN) LTD.
London Sales Office: Dept. 15, 60 Kingly Street, W.I. Telephone: REGent $2517-8$ and $3681-2-3$ Works: SCOTTISH INDUSTRIAL ESTATES, PORT GLASGOW, SCOTLAND

* Trade Mark of AMP incorporated U.S.A.

AP323-93

## Relays to specification



# POST OFFICE TYPE 3,000 AND 600 RELAYS 

A NEW DEVELOPMENT-illustrated here is our P.O. Type 3,000 Relay with sixteen changeovers with Light Duty Silver or Platinum Contacts. P.O. TYPE 600 RELAYS with Heavy Duty Contacts rated at 8 amps . also available. Complete range of both types manufactured to specification. Prototypes 24 hours. P.T.F.E. insulation now available. Speclalists in Tropical Finishes. Guaranteed to full A.I.D. and I.E.M.E. standards.

Approved by the Admiralty. Post Offlice and U.K.A.E.A. All relays guaranteed made in our own works.

## SIMMONDS

Manufacturers to H.M. Government Departments and leading Contractors.

## M. R. SUPPLIES, LTD

(Established 1935)

We ofier only frct-class material at the mosi attractive priees and with prompt delivery. Carefol packing. Satisfaction assured. Priees nett.
SHORT INTERVAL TTME \&WTTCHES (Smilth's) spring driven. Closed circuit pertor continuously adjustable from 1 to 15 minutes. 15 amp. ( 250 v. A.C.) switching. 2 in . dia., 24ln. long. Not calibrsted. Limited supply at only $17 / 6$ each (despateh 1/6). T.C. AMMETERS (for Miluvoltmeters). Suppled With external thermo-couple or mount. 17/6 (des. 1/6).
BLINKER SWITCHES or car R. \& L. indlentors. Compact untth or one-hole dash mount. Blinking period up to 15 seconds each setting with automatio " off." Single zwitch-arm control for elther R. or I.. Prectsion made, brand nen. remarkable value
 Aerofoll two-stage Fans, each fitted with two capacitori/induction Motora, $2200 / 250$ v. contained in cylindrical housing 28 in . long by 3 in. dia 400 C.F.M. at $\mathrm{\$ ln}$. W.G. These remarkable units are listed at approx fit5 each. We have a limited supply, new and perfeet, at culy £25 each (deepateh U.K.- maliland
SYNCBRONOUS TIME SWITCEES (Sangamo). For accurate pre-set ewitohtng operations on $200 / 250$ v. 50 c . Providing up to 3 on off opemations per 24 hours, pith day-omitting derce (use optional). Capacity 20 a. m.p.p. Apart frmm irrdustrial uses these aro eminenty suitable ior tape reconde, rado, immersion henter日res, etc. Compactly boured 4 in . dia. 3 ln . deep. With full instractions, $85 / 8 / 6$ ब-VOLT MOTOP tha. Very quiet running $13 / 6$ (dea. $2 /$-). (Piease noto that all complete blowery ar now sold).
SYMCHRONOUS ELECTRIC CLOCK MOVEMENTS. $200 / 250$ volts 50 cycles. Fitted with spindles for Hours, Mitnutes and seconde hands. Cent ral hole fixlng, allowing up to in. thickess of dial Dlameter 2tin., deptin boha an fin. With dus set, for 8110 in . dfal, $3 / 6$ set. 4 . 0.4 amps . D.c.-charge and dischars MINIATURE AMMETERS, scaled $4-0.4 \mathrm{amps}$. D.c.-cbarge and discharge. Dial
 BYNGHRONOUS INDUCTIN Body $4 \times 341 \mathrm{ln}$, with lin. shaft prod. With capacitor, $57 / 6$ (des. $2 / 6$ ). 150 CFM (free air), 50 CFM at 1 Hin. W.G. Overall length Sin. Dia inlet . let 2 in. Effcient, quiet running unite, very limited supply, $£ 4 / 15$ / (des. $3 / 6$ ) MANS RELAY8 (Magnetic Devices). 230 V . A.C. coll, with 2 -pole change-orer 4 amp. switching. Brand new, compact units, approx. 2thn. by $\mathbf{1 p} \mathrm{in}$. by lin. Limited supply at $22 / 66$ each (des. $1 /$--
ExTRAOTOR FANS. Very well made units at much lower than rormal price. 2001 230 v . A.O. induction motor, silent running, no interference. With mounting trame 25/5/ - 10in. trapeler, 240 cu it. /min., 85/12/6. Also new minor model with 6 in. tmpeller, 76 cu . $\mathrm{ft} . \mathrm{min}$., $£ 4 / 12 / 6$ (despatch of any one $3 /$ ).
Wo invite enquiries for Electric Pumps, B.P.L. Measuring Instraments, Vafiable Cransformers-immediate deivery.
M. R. SUPPLIES, LTD. 68 New Oxford Street, London, W.C. 1
(Telephone Museum 2958)


We cater chiefly to manufacturers of electronic equipment which demands components made to the highest standards. If your requirements are in this category do not hesitate to contact us.

Enquiries to:
STEWART TRANSFORMERS Ltd.
75 KILBURN LANE, LONDON, W. 10
LADbroke 2296/7


## Independent sideband

 receiver type GFR. 552. . developed to British Post Office specification and used on their international circuits.
This equipment is designed for operation on long distance, point-to-point short wave radio links forming part of the international trunk network. Special features of the GFR. 552 include a high order of oscillator stability and freedom from cross-modulation through which cross-talk between channels or intermodulation between wanted and unwanted signals might occur. Frequency range -4 to $30 \mathrm{Mc} / \mathrm{s}$. Noise Factor - better than 8 dB over the band.
A.F.C.- Motor driven with exceptionally high retuning speed and low residual mistuning.
Cross-talk attenuation between channels is greater than 45 dB for modulation frequencies above $200 \mathrm{c} / \mathrm{s}$.
Output - Variable up to +14 dB relative to 1 mW into 600 ohms.


A prooucr of
MULLARD EQUIPMENT LIMITED
COMNANY OF THE MUGLARO GROUP

Mullard House - Torrington Place London, W.C.I
Tel: Langham 6633



The name "Reliance," aptly chosen more than thirty years ago, record of long-life reliability. The standard range-the most comprehensive available-covers from 1 to 500,000 ohms and includes linear, log, semi-log and non-inductive types, and, depending on characteristics, ratings up to 20 watts.
GANGED MODELS available of TT, TW, PIW and TS on common spindle. Fully tropical and concentric spindles type
foremost for Quality, Performance and Reliability-

RELIANCE MANUFACTURING 0. (SOUTHWARK) Ltd, SUTHERLAND Rd. HIGHAM HILL, WALTHAMSTOW, LONDON, E. 17 GD 10


Elegance coupled with outstanding performance have already earned an enviable reputation for the Chapman 305 Control Unlt (illustrated above) and 305 Power Amplifier.

8
8
watts per channel at $0.1 \%$.
Direct from Tape Head CCIR
太 Arret from Tape Head CCIR.
\& Distortion negligible all levels.
$\star$ Spare power for Tuner.

* Main Amplifier only $12 \times 7 \times 5 \mathrm{in}$.
$\star$ Separate balance control.
* Elegant in black and gold.
* For shelf or cabinet mounting.

305 Control Unit 18 gns, Main Amp. 20 gns. Matching FM or AM/FM Tuners available.
Full specification from your hi-fi dealer or
C. T. CHAPMAN (Reproducers) LTD.

HIGH WYCOMBE • BUCKS.
Telephone : High Wycombe 2474

BROOKES
Custals

mean DEPENDABLE - Illustrated above are
Type G. 2 Crystal Unit. Frequency
$62 \mathrm{kc} / \mathrm{s}$. $62 \mathrm{kc} / \mathrm{s}$.
Tight: $G .1$ Crystal Unit. Frequency $100 \mathrm{kc} / \mathrm{s}$.


Brookes Crystals Ltd Suppliers to Ministry of Supply, Home Office, B.B.C., etc. LASSELL STREET, GREENWICH, S.E. 10 Phone: GREenwich 1828 Grams: Xtals, Green, London

## A TWO-FACED CIRCUIT!



## is a service man's dream

And we've made it come true. Mills \& Rockleys' technical skill and eye to progress will continually supply their clients with all the best and newest ideas on printed circuits : and our two-faced circuit (patent applied for) is just one very good example.

Not only the component numbers but the actual circuit is printed, in colour code if necessary, on to the upper surface of the panel, reducing circuit tracing to child's play.

The completion of new plant in Coventry, incorporating the most advanced techniques and up-to-date facilities-including automatic temperature and humidity control-enables any requirement however complex to be met efficiently and economically.


The House of Anders gives you the meter service supreme. Normal moving iron, moving coil, thermo couple, electrostatic and multirange meters of all well-known makes-including AVO, E.A.C., Pullin, Taylor, Turner, Weir, Weston-available at once. Special meters prepared specially for you; any desired kind, shape, size, voltage or current range; within $7-14$ days. All under the very personal supervision of the Chef. Customers' own instruments repaired.

Meters, Electronic \& Test equipment to individual specifications

## Anders electroncs

103 Hampstead Road, London, N.W. 1
Tel.: EUSton 1635


Motek is the core of many recording machines. Manufacturers build in Motekand then out of sight and mind-which is as it should be, for built-in Motek has built-up immense confidence from manufacturers and customers alike. And no wonder, with these five star features: Push Button Operation, Counter, Safety Erase Buttom, Pause Control, Three Speeds.

Details on request.
Patents Pending.

Wedmore Street, London, N. 19 Tel.: ARChway 3114 DEB 16353

## HI-FI EQUIPMENT

(CABINETS See page 152)
STEREO RADIO CHASSIS AM/FM Stereo Radio on one chassis (as illustrated) 8 valve and
2 separate 4 -watt outputs, with 2 separate 4-watt outputs, with STEREO AMPLIFIERS
Dulci SP44 Stereo power ampliDutci sp44 Stereo power ampli-
fier, two 4 -watt outputs 12 gns . fier, two 4 -watt outputs 12 gns.
Control units available for above
Empress Two 4-wats amplifier E8 00 Dulci Stereo ' $8^{\prime} 22$ gns.
 RADIO CHASSIS
Empress 9-valve de luxe AM/FM with two speakers ...... 26 gns .
Empress 6 -valve AM/FM with 10 in. speaker
Empress FM Tuner (with magic eye)
Empress 5 -valve AM
...................................
Armstrong PB 409 9-valve AM/FM 6-watt push-puil Stereo ' $12^{\prime}$ AM/FM $2 \times 6$ watt push-pull
Jubilee 9 -valve AM/FM push-pull
DULCI
H. 3 AM/FM 3 wavebands $\qquad$ 12 gns H.3.5 AM/FM Stereo
$\qquad$ $144^{3}$ ${ }^{28} 18 \mathrm{gns} 0$ 29 gns. H.3.S AM/FM Stereo $\begin{array}{rrr}£ 20 & 17 & 0 \\ \mathbf{~} 29 & 3 & 10\end{array}$ H.4.PP AM/FM push-pull 4 wavebands
$\qquad$ FuHDulei range in stock.


## AUTOCHANGERS

"BSR"' UA8 (as illustrated) is the latest
fiteed with ${ }^{4-\text { speed }}$ Ful-Fi Autochanger
turnover cartridge, $\varepsilon 6 / 19 / 6$. Stereo cart. ridge also available, $\epsilon 3 / 9 / 3$. COLLARO CONQUEST E7/19/6. Full range of Garrard equipment in stock.

Write for details of these and other equipment all available on easy terms.
LEWIS RADIO
120 (Dept. WW59), Green Lanes, Palmers Green, N.I3 (Nr. The Cock Tavern) Tel.; Bowes Park II55/6


# A complete test-bench in one hand 

USING PRECISION NASHTON ELECTRONIC INSTRUMENTS

## must IMPROVE laboratory and workshop EFFICIENCY

The Nashton labstand shown above holds any three Nashton instruments at eye-level for easy reading and operation. It frees bench-top space for operator use and is completely portable. Only one mains connector is required. Five instruments from the Nashton range are illustrated here; others available now or in the near future include the Resistance Capacitance Comparison Bridge, the D.C. $\mu$ A-Valve Voltmeter, the Universal D.C. Meter, the Shorted Turns Detector, the L.F. Quadrature Oscillator, the Transistor Tester, and the 0.5 Amp. Stabilised D.C. Power Pack. The last three instruments use transistor circuits. For full information fill in coupon below and send it ( 2 d stamp) to:

## Nash and Thompsom имmтed

OAKCROFT ROAD • CHESSINGTON • SURREY • Elmbridge 5252


A.C./D.C. Valve VoltmeterSix A.C. ranges from $1-300$ Volts f.s.d. up to $200 \mathrm{Mc} / \mathrm{s}$ and seven D.C. ranges from 1 1,000 Volts f.s.d. at high impedance. £59.10.0


Ohmmeter-A D.C. measuring instrument reading from 10 ohms-10,000 megohms with a high degree of accu-
racy.
£52.10.0


Flash Tester-Designed 10 meet the requirements of B.S. 816:1952 and givimg meter indication of both applied voltage and leakage current.
£26.0.0


## OUR <br> COMPARATOR

being an up-to-date version of a similar instrument which we were first to introduce. This instrument enables our customers to hear and compare various makes of tuners, amplifiers, record and tape reproducers. Hundreds of various combinations can, at the flick of a switch,


CTT SALF \& EXCHANGE TTR
93-94 fleet street, lowdon, e.c. 4 LOXDOM, E.C. 4 be achieved. This is the way to choose your system because you can compare yourself.
t
Write for fully illustrated catalogue showing all the latest equipment in HI-FI, STEREO AND TAPE RECORDING. Glacly sent on request er. closing 3d. postage.

## CITY SALE \& EXCHANGE LTD

93-94 FLEET ST., LONDON, E.C. 4
Phone: FLEet Street 9391-2

$\star$ AVAILABLE GRATIS ON REQUEST, UNIQUE CALCULATO: PROVIDING FULL RELAY SPECIFICATIONS

## A CUSTOMER PROVED

36 contact (C/0) Relay
Now being used in current production Not an experimental relay.

Enormous range of 3,000 P.O. Type Relays

CONTACT5: $300 \mathrm{~m} / \mathrm{A}$ to 8 amp COILS:

Up to $100,000 \Omega$
P.O. 600 and HighSpeed Type Relays. Built to Specification.
large stocks OF
KEYSWITCHES

THE KEYSWITCH COMPANY

2 Irongate Wharf Road, Praed Street, London, W.2. PAD: 2231'2/3 Coniratiors to Home and Oversen: Governments and $\mathcal{Z} . \mathrm{M}$. Orown $\mathbf{A g e n t s}$


The new Simet " $G$ "' series of medium power Silicon rectifiers is the first result of the recent licensing agreement between The Plessey Company Limited and the General Instruments Corporation, U.S.A. Plessey manufacturing techniques applied to the well-established General Instruments design, ensure a first class component capable of long term and stable operation at temperatures up to $150^{\circ} \mathrm{C}$.

Types 1G8 to 10G4, for direct wiring or stud mounting, are available from stock or for commencement of delivery within 14 days. Direct wiring types cover current ratings between 400 mA and 750 mA at $25^{\circ} \mathrm{C}$ ( 250 mA at $150^{\circ} \mathrm{C}$ ) and voltage ratings 100 to 1000 peak inverse volts; stud mounted types have increased current ratings in the order of $1 \frac{1}{2}-2$ Amps.

## STMET <br> Silicon Rectifiers

# G"Series 

 1N TYPES

| SIMET "G" SERIES SILIGON RECTIFIERS IN THE 1N RANGE |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Type No. | Peak inverse voltage (volts) | $\begin{aligned} & \text { DC Output } \\ & \text { Current (avg.) } \\ & \text { Amp }{ }^{\circ}{ }^{\circ} \mathrm{C} \end{aligned}$ |  | imum rev urrent at * below) | Mounting | Use |
| 1 N338 | 100 | 1.0 @ $150^{\circ}$ | . 2 | mA ⑮0${ }^{\circ}$ | Stud | Mag. Amp. |
| 1N340 | 100 | . $\mathrm{@}^{\text {a } 150}$ |  | mA@ $150^{\circ}$ | Stud | Mag. Amp. |
| 1 N342 | 400 | . 2 © $150^{\circ}$ |  | mA @ $150^{\circ}$ | Stud | Power Supply |
| 1 N 440 | 100 |  |  | $\mu \mathrm{A}$ @ $25^{\circ}$ | Wired | Mag. Amp. |
| 1 N 441 | 200 |  | . 75 | $\mu \mathrm{A}(2) 25^{\circ}$ | Wired | Mag. Amp. |
| 1 N 442 | 300 | . 30 @ $100^{\circ}$ | 1.0 | 榱@ $25^{\circ}$ | Wired | Mag. Amp. |
| 1 N 443 | 400 | . 15 @ $125^{\circ}$ | 1.5 | $\mu \mathrm{A}$ @ $25^{\circ}$ | Wired | Mag. Amp. |
| 1 N 444 | 500 |  | 1.75 | LA@ $25^{\circ}$ | Wired | Mag. Amp. |
| 1 N 445 | 600 |  | 2.0 | $\mu \mathrm{A}$ (9) $25^{\circ}$ | Wired | Mag. Amp. |
| 1N530 | 100 |  | 3.0 | HA @ $25^{\circ}$ | Wired | Power Supply |
| 1 N531 | 200 |  | 7.5 | HA © $25^{\circ}$ | Wired | Power Supply |
| 1 N532 | 300 | . 30 @ $100^{\circ}$ | 10 | HA (@) $25^{\circ}$ | Wired | Power Supply |
| 1 N533 | 400 | . 15 @ $125^{\circ}$ |  | मA © $25^{\circ}$ | Wired | Power Supply |
| 1N534 | 500 |  |  |  | Wired | Power Suppiy |
| 1 N535 | 600 |  | 20 | HA@ $25^{\circ}$ | Wired | Power Supply |
| 1 N 550 | 100 |  | 5 | HA © $25^{\circ}$ | Stud | Gen. Purpose |
| 1 N551 | 200 |  | 1.0 | MA@ $25^{\circ}$ | Stud | Gen. Purpose |
| 1 N552 | 300 | . 5 (3) $100^{\circ}$ | 1.5 | HA © $25^{\circ}$ | Stud | Gen. Purpose |
| 1 N553 | 400 | . ${\text { (3) } 125^{\circ}}^{\circ}$ | 2.5 | 山A@ $\mathrm{Sa}^{\circ}$ | Stud | Gen. Purpose |
| 1 N554 | 500 |  | 3.5 | HA © $25^{\circ}$ | Stud | Gen. Purpose |
| 1 N555 | 600 |  | 5.0 | HA@ $25^{\circ}$ | Stud | Gen. Purpose |
| 1 N 50 | 800 | . 25 @ $100^{\circ}$ |  | $\mu \mathrm{A}$ (9) $25^{\circ}$ | Wired | Power Supply |
| 1 N561 | 1000 | . 25 © $100^{\circ}$ | 20 | LA (3) $25^{\circ}$ | Wired | PowerSupply |
| 1 N 562 | 800 | . ${ }^{\text {(3) } 100^{\circ}}$ | 15 | HA (3) $25^{\circ}$ | Stud | PowerSupply |
| 1 N563 | 1000 | . 4 (8) $100^{\circ}$ |  | MA (3) $25^{\circ}$ | Stud | Power Supply |
| 1 1 1100 | 100 |  | . 2 | mA © $150^{\circ}$ | Wired | Gen. Purpose |
| 1 N 1101 | 200 |  |  | mA (a) $150^{\circ}$ | WIred | Gen. Purpose |
| 1 11102 | 300 |  |  | mA © $150^{\circ}$ | Wired | Gen. Purpose |
| 1 11103 | 400 | .25 @ $150^{\circ}$ |  | mA@ $150^{\circ}$ | Wired | Gen. Purpose |
| 1N1104 | 500 600 |  |  | mA@ 150 ${ }^{\circ}$ | Wired | Gen. Purpose |
| 1N1105 | 600 |  |  | mA (3) $150^{\circ}$ | Wired | Gen. Purpose |

For the convenience of engineers accustomed to specifying rectifiers from the "1N" notation, the types listed here are covered by the regular " $G$ " series range now in regular production.
Full details of the "G" series and all other Simet silicon rectifiers are obtainable on request. In addition, we would be pleased to include you on our mailing list to receive information on all new types as they are introduced.

Other Simet rectifiers include:
"B" SERIES

Up to 1000 piv. 2 Amp. half-wave

> "D" SERIES (diffused)

Up to 300 piv. 30 Amp. half-wave

THE PLESSEY COMPANY LTD
Chemical \& Metallurgical Division Woodburcote Way TOWCESTER NORTHANTS
Telephone: TOWOESTER 312-6 Telegrams: Plessey, Telex,

Towcester

[^15]
## BURNE - JONES



Super 90 Mk. $11 £ 1580$ Tangential $\underset{\in 4}{\operatorname{arm}} \mathrm{Tan}_{4}$ II

Stereo cartridge in shell with dia.st. $\& 800$ Cartridge only $\mathbf{E 7} 0$ Sonetta "twin speaker unit ......... 16 II
Top C " Tweeter $\begin{gathered} \\ £ 5\end{gathered}$ Alignment Protractor

## STEREO <br> COME AND HEAR THE NEWEST MODELS ON DAILY DEMONSTRATION

## GARRARD 4HF

SINGLE RECORD PLAYER

## PARTRIDGE,

 GILSON and WODEN IN STOCK
## "Q-MAX" CHASSIS CUTTERS



ROUND, SQUARE and RECTANGULAR
The easiest and quickest way of cutting holes in SHEET METAL.
LIST OF SIZES AND PRICES ON APPLICATION.

miniature multi-way

## PLUGS and SOCKETS

$2,4,6,8,12,18$,
24 and 33 WAY
40-Page FULLY ILLUSTRATED CATALOGUE of Electronic and Hi-Fi Stereo and Monaural Equipment 6d. POST FREE.


sound. No prevlous skill
or experience is needed.
Post coupon now for full details, without any obligation. Easy terms avallable.
Equipment includes:- Luxury Cabinets . Top Quality Amplifier sultable for stereo or non-stereo reproduction VHF/FM Racio Units . Record Player. Tape Recorder Hi-Fi Sneaker System.

## GREE [ROCHURE - POST TODAY

To: RADIOSTRUニTOR, Degt. H.36, 46 Market Place, Reading, Berks. Please send Brochure without obligation to :
Nome.

| Address |
| :--- |
| (304) |

## ALL YOUR TV COMPONENTS

 (direct) $\frac{V}{L}$ Replacements$\qquad$ Ambassador Argosy Armstrong Baird Banner Beethoven Bush
Champion
Columbia
Cossor
Decea
Deffant
Ekco
English Eloctric
Ferguson
Ferranti
G.E.C.

Griffin
Griffin
H.M.V.
H.M.V.
Invicea

Invicra
Kolster-Brandes
Marconiphone
Masteradio McMichael
Murphy Pam
Paro Scote Philips Piloc

Over 6,000 Time Base components in stock including many out-of-production components and many replacements of our own manufacture in which we have determined the cause of fault and rectified this in the new design.
Your customers will benefit from the faster service you will give them. You, too, will save time and trouble when ordering all your replacemer ts from this one source.

## SAME DAY DESPATCH ON ORDERS

 RECEIVED BEFORE 3 P.M.
alaces

138 Lewisham Way, New Gross, S.E. 14
Telephone; TIDeway 6666

## WE SEND THE BESTOF BRTAMSN HIFI EVERYWHERE



© SPEAKER SYSTEMS $\begin{array}{lllll}\text { Quad Electrostatic } & \text {........... } 852 & 0 & 0 & \$ 156 \\ \text { Wharfedale SFB/3 } & \ldots . . . . . . . . & 839 & 10 & 0 \\ \$ 113\end{array}$ Wharíedale SFB/3 Wharfedale Golden 10 Wharfedale Super 3 Tannoy 12 in . Dual Tannoy bin. Vitavox D
WB. 1016 WB. 1016
WB. 1012 Goodmans Tri Axiette Goodmans 300 Goodmans 400 Goodmans 15/4 Goodmans IB3 ... Khilips Dual Cone Kelly Ribbon Mk. 11 B. J. Tweeter complete ... $£ 55$ WB. 1016 ..................... $£ 80$ C.Q. Senior $\star$
Lenco GLGTS Trans. Unit
MOT-. UPS
E Lenco GL58/R \& Stereo P.U. Garrard 301 Garrard aHF/Stereo P.U.U. Garrard TA/Mk. II
Connoisseur Motor
Phillps P.U. Goldring $600^{\circ}$ Goldring 580 …............. \& $11131 \mathrm{gns}_{6}$ Garrard Arm and P.U........ $£ 516$ ORTOFON, LEAK, CON. Also available CONNOISEUR, COLLARO, etc changers with stereo or mono pick-ups.


## * AMPLIFIERS \& TUNEKS

(STEREO)
Quad 22-Control Unit..... €25 000
Quad II Amplifier
 Leak Point One Pre-Amp.... E21 $\quad 0 \quad 0 \quad \$ 60$ Leak Point One Pre-Amp. Avantic SPA 11
Pamphonic 3000 6298 629
631
10 Rogers Control Unit ........ $\mathbb{E} 1810$ 18 $\$ 90$ Rogers Control Unit ......... 1818 10 0 \$53
C.Q. Twin Four ............. 21 gns.

 Pulei DPA $10 / 2$........ $32 \mathrm{gns} . \quad \$ 96$ (SINGLE CHANNEL)
(SINGLE CHANNEL) 1818
Quad II Amplifier
E18 $180 \quad \$ 54$
$\begin{array}{lllll}\text { Quad II Amplifier } & \cdots . . . . . . . . . ~ & \text { £22 } 10 & 0 & \$ 64 \\ \text { Quad Control Unit }\end{array}$ Quad Control Unit ......... $\mathbf{E} 1910$ 10 0 . $\$ 56$
Rogers Cader

 Rogers Pre-Amp. ............. 68 o 0 © $\$ 23$ $\begin{array}{llllll}\text { Rogers } \\ \text { Rogers Switched } & \text { FM Tuner } \\ \text { E } & 15 & 17 & 2 & \$ 33\end{array}$ $\begin{array}{ll}\text { Rogers Switched FM Tuner } \\ \text { Quad FM Tuner } . . . . . . . . . . . . . ~ & 29 \\ \text { gns. }\end{array}$ Quad FM Tuner | Chapman AM/FM |  |  |  |
| :--- | :--- | :--- | :--- |
| Jason JTV Tuner |  |  |  |
| …............ 826 | E26 | 13 | 10 | Jason 1 TV Tuner ............. 24 19 10 - STEREO PICK-ÜSS Ortofon Head..

$63314 \quad 0 \quad \$ 69$
Ortofon Arm ................. $£ 14$ 0 11 \$37
Decca ........................ 822 0 0 \$45
Elac Stereo twin Cartridge $\mathbf{6 1 9} 17 \quad 7 \quad \$ 40$
Ronette ….....................
Ronette DC284
B.I. with arm E4 3
…….......... $888^{8} 0 \quad \$ 24$
Recent P/Tax reductions rec.. \&13 19 5 \$39 received too late to show

We carry extensive and up-to-date stocks of equipment, compo-
nents and accessories by'Britain's leading makers. Enquiries dealt with by return

164 CHARING CROSS ROAD, LONDON, W.C. 2 (3 shops from Tottenham Court Road Station Underground) Tel.: TEM 7587 \& $\operatorname{coz} 1703$.

Cables: MODCHAREX, LONDON

##  

## Bullers camms

 FOR INDUSTRY

We specialise in the manufacture of-PORCELAIN
for general insulation REFRACTORIES
for high-temperature insulation

High quality material and dimensional precision are attributes of Bullers die-pressed products.
Prompt delivery at competitive prices.


FREQUELEX
for high-frequency insulation
PERMALEX \& TEMPLEX for capacitors


## BULLERS LIMITED

MILTON • STOKE-ON-TRENT • STAFFS
Phone: Steke-on-Trent 54321 ( 5 lines) - Telegrams \& Cables: Bullers, Stoke-on-Trent Ironworks: TIPTON, STAFFS London Office: 6 LAURENCE POUNTNEY HILL, E.C. 4 Phone : Tipton 1691

Phone : MANsion House 9971

# Armstrong 

> THE NEW PCU27 STERED
> PRE-AMPLIFIER CONTROL UNIT £26.10.0
 Original in appearance, original in design, the new PCU27 provides every
possible facility for all sources of sound reproduction both now and in the future. In the standard of components used and in the provision of inputs and controls of unsurpassed flexibility the aim has been to provide a unit which is truly high fidelity. It will operate with A. 10 type amplifiers or any other power amplifier of comparable quality.
CONTROLS: (1) Selector Switch, controlling eight separate inputs, all for either stereo or monaural sound sources. (2) Bass Control. (3) Treble Control. (4) Balance Control. (5) Filter Switch. (6) Variable Slope $S_{\text {witch. (7) Rumble }}$ Filter Switch. (8) Volume Control. (9) Phase Switch. (10) Function Switch. PRE-SET CONTROLS: There are four. Two adjust the impedance of the pick-up inputs. The other two adjust the output from the two channels enabling dissimilar power amplifiers to be used. VALVES: Mullard, $4 \times$ EF8 6 pentodes, $3 \times$ ECC 83 double triodes.

## A. 10 Mk. II POWER AMPLIFIER $£ 21.10 .0$

Post ithis coupon or write for descriptive literature and details of Home Trial facilities, Hire Purchase Terms and Guarantee or call at our Hollowoay Showroom for full, unhurried demonstration and professional advice on your installation. Open 9-6 weekdays and 9-5 Saturdays.

NAME
ADDRESS

This unit, eståblished in the top rank of high fidelity amplifiers, is ideal for use with the PCU27. Use two A. 10 Mk . II Amplifiers for stereo or one for monaural with the facility of subsequent conversion to stereo by adding the second Amplifier. If a monaural system is required both now and in the future, the well-known Armstrong Control Unit Mk. II (illustrated here, price

## All rood labs use

 radiospares quality components for designt development and prototype work SerwidsEngine Engeneers!

Radiospares components are delivered absolutely "by return"

by S. W. Amos B. Sc. (Hons), A.M.I.E.E.
This book deals with the physical processes occurring in transistors, the main emphasis being on the application of these principles to practical problems of such quantities as input resistance, stage gain, optimum load, power output, values of coupling capacitors and transformer winding inductances. It provides an invaluable introduction to the design of transistorised equipment for professional designers, students and amateur constructors.
21s. net by post 21 s . 11 d . 167 pages
Illustrated

## from leading booksellers

Published for "Wireless World" by Iliffe \& Sons Ltd., Dorset House, Stamford St. London S.E. 1

## TWO NEW LINES

## by

Ev(0)Tatinn

## FIST MICROPHONE

Moulded in Nylon, this attractively designed unit is weatherproof and aimost indestructible under the most adverse conditions. It has a positive action Double Pole Changeover Switch, and is available with either Carbon or Electromagnetic Transmitter. When fitted with the $E / M$ Inset it also operates as a Receiver. For use on Mobile Radio, Walkie-Talkie, Police Motor-Cycle Wireless, etc.


We proudly draw attention to our newly designed FIST MICROPHONE and UNIVERSAL HANDSET, which find applications everywhere where quality, toughness and serviceability are major factors.

## UNIVERSAL HANDSET

Moulded in Propionate-one of the coughest plastic materials ever pro duced, this beautifully styled, robuse and lightwe ight instrument is designed to accommodate any known Transmitter or Receiver Inset. Built-in Double Pole Changeover Switch is also available. Standard insets: Moving Coil, Electro-magnetic, Single Carbon and Double Button Carbon. For use on Radio Stations, Mobile Radio. Walkie-Talkie, Police CarRadio, etc.


Handsets; Microphones; Headsets; Headsets with Boom Microphone;

Details of all S. G. Brown products sent on request. Headsets with Throat Microphone; Transmitter Insets; Receiver Insets; Hospital Headphones and Pillowphones; High Fidelity Headphones.

## NEW TYPE <br> STAND-OFF INSULATORS



There are already some 25 different types now available and these two new additions have many interesting features-namely Type "J," length $19 / 32$ inch, and " J-S," length $15 / 32$ inch. These give the same performance as type " C ," but have a smaller height and lower price.

The vee-shaped top terminal permits very rapid heating and rapid connection for two or more wires which may be simply laid in the groove, or clenched before soldering.

* it's reliable if it's made by Jackesons


PRECISION BUILT COMPONENTS KINGSWAY-WADDON, SURREY.
Phone: Croydon 2754-5. 'Grams: Walfico, Souphone, London.

## The

## Superspead soldering iron heats up from cold in 6 seconds

Designed on an entirely new principle, this lightweight, versatile iron is eminently suitable for soldering operations in the radio, television, electronic and telecommunication industries. For test bench and maintenance work it is by far the most efficient and economical soldering iron ever designed.

Activated by light thumb pressure on the switch ring. When pressure is released, current is automatically switched off-thus greatly reducing electricity consumption, wear on copper bit and carbon element.
Can be used on 2.5 to 6.3 volt supply ( 4 volt transformer normally supplied) or from a car battery.

More powerful than conventional 150-watt irons: equally suitable for light wiring work or heavy soldering on chassis.

\%
Simple to operate; ideal for precision work.
Requires minimum main-tenance-at negligible cost; shows lowest operating


Head Office :
Dominion Buildings, South Place, London, E.C.2. Tel.: MONarch 0391

Length, $10^{n}$; weight, $3 \frac{1}{2}$ ozs.

For best results with this iron use ENTHOVEN SUPERSPEED CORED SOLDER and ALUMINIUM CORED SOLDER

## we have them!

There's a Ful-Fi for stereo, there's a Ful-Fi for hi-n equipment and a Ful-Fi for the average low gain amplifier All give the fullest range and finest tone obtainable from any player. Ful-Fi cartridges and Sa, phire needles are standard fittings on every MONARCH and that's high praise indeed.
ful.fi Cartridges can be fitted into ALL STANDARD PICK-UP ARMS.
N.B. Maintain the standard of your Ful-Fi-always buy B.S.R Fu-Fi replacement needles. Diamond Type nozv available.
N. MIERS \& CO. LTD.

115 Gower Street, London, W.C.I
Tel: Euston 7515 \& 5811
LONDON AND SOUTHERN ENGLAND AGENTS FOR BIRMINGHAM SOUND REPRODUCERS LIMITED

## EXECUTIVESREQUIRE CRISP, CONCISE <br> REPORTS-DICTATE <br> THOSE DETAILS IN YOUR CAR! <br> valradio dc/ac <br> CONYERTERS <br> make dictating <br> MACHINES AND <br> TAPE RECORDERS MOBILE

For use too with Record
Changers. Radiograms,
Electric Gramophones Television
Receivers, and $T V$ from counery
house lighting plants. (Prices accord-
ing to instrumens.)
TNP ${ }^{\circ}$ ENTREES. ENTRADAS
6; 12, 24, 32, 50 . 110 or $200 / 250$ \%.
110 v . or 230 y . AC, 50 or $60 \mathrm{c} / \mathrm{s}$, 30 to 300 w Prices DC/AC Converters:
From $\mathrm{E} 3 / 18 ;$ - for Small Motors.
From $\mathrm{E} 12 / 15 /$ - Ior Radiograms (including 3 -speed Types).
Units complete and ready for use. VALRADIO. Write for descriptive folder, WWIC. ACCEPTED AS THE STANDARD by RADIO mANUFACTURERS, the Trade and the Aircraft industry.

Les rapports destinés aux cheís de service doivent être rédigés d'una iaçon bien concise-dictez les donc dans votre voiture!
Les corivertisseurs C.C./C.A "VALRADIO" consentent la mobilité àux machine: à dicter et aux enregistreurs sur bandes.
ils peuvent également être usilisés pour changeurs de disques, appareils combinés, électrophones, téléviseurs etc. partant d'installations d'élec tricicé parriculiéres.
Las relaciones destinadas a os retes tienen que redactarse de modo muy conciso-dictenlas en el coche!
Los inversores CC./C.A "VALRADIO" les prestan movilidad a las màquinas de dictar y a los z rabadores de cinta.
También peuden ucilizarse para cambiadores de discos radio-combinados gramó onos eléctricos aparatos de celevisión etc. aprovechando las in stalaciones eléctricas orivadas

Specialists in converters since 1937. VALRADIO LIMITED
BROWELL8 LANE FELTHAM - MIDDX. Phone: Foltham 4242/4837 OVERSEAS ENQUIRIE8 TO:- DEMANDE8 D'OUTRE-MER A:E.M.I. SUPPLPES LTD. HAYES, MIDDLESEX, E ENGLAND

## 100,000 o.p.v.

## OUTSTANDING FEATURES:

Sensitivity 100,000 o.p.v. D.C., 5,000 o.p.v. A.C
Current readings from 0.2 microamps- 10 amps . D.C. ( $10 \mu \mathrm{~A}$,
$50 \mu \mathrm{~A}, 250 \mu \mathrm{~A}, 1 \mathrm{~mA}, 100 \mathrm{~mA}, 1 \mathrm{Amp}, 10 \mathrm{Amps})$.
D.C. Volt readings from $10 \mathrm{mV}-2,500 \mathrm{~V}(25 \mathrm{kV}$ by probe)
( $0.5,2.5,10,25,100,250,1,000,2,500$ ).
A.C. Volt readings from $0-2,500 \mathrm{~V}$.
(10, 25, 100, 250, $1,000,2,500$ ).
Ohms from $0-200$ megohms in 4 ranges (self-contained)
5 Decibel Ranges.
5 Output Ranges. Many other advantages.
Accuracy $2 \%$ D.C. $\mathbf{3} \%$ A.C. $5 \%$ Ohms.
Ain. Mirror Scale meter.
Automatic Mechanical Cut-out protects against overloads.
Reverse Polarity facility
Robust and suitable for everyday use.
HIRE PURCHASE OR CREDIT SALE TERMS AVAILABLE


## ust price $\{31.10 .0$

Write for full details and free catalogue TAYLOR ELECTRICAL INSTRUMENTS LTD.

## Switch

## to Cold Cathode Tubes

 for the most modern electronic switching and control systemsHivac cold cathode tubes provide flexibility, economy, long life and reliability
the range includes
stable diodes
difference diodes triodes and tetrodes
our Technical Service Department is ready to provide further details of their characteristics or application.

# Arcolectric 

SWITCHES \& SICNAL LAMPS

T.225: Miniature Slide Switch Ideal T.V. mains switch

S.L.I66: Very small low cost mains neon indicator
T.280: Sensitive Snap Action Switch Popular switch for tape recorders
T.626: Double pole 3-AMP switch with tags to fit printed circuit boards


Samples to manufacturers
For design purposes
AT ONCE-WITHOUT CHARGE

## ARCOLECTRIC SW•TCMES.LTD



## The Best Manufacturers

 use Grey \& Marten 'Amalgam' solderGrey \& Marten make solders specifically for the Radio, Television and Electronic industries. Amalgam 'Resinact' Cored Solder with specially activated resin flux, to specification DTD 599, and B.S.441.

Amalgam P.C. Alloys for dip-tinning printed circuits (free service for checking analyses of metal in customers' baths).
Amaigam Fusible Alloys, made in all forms, for all uses. Fully approved A.I.D., C.I.A., G.P.O., I.R.C.S.C. and M.O.S.


GREY \& MARTEN LIMITED
City Lead Works, Southwark Bridge, London, S.E.r. Tel: HOP o414 and at Birmingham, Manchester and Ipswich

## RADIO • TELEVISION•TRANSMITTING \& INDUSTRIAL TUBES



## Cabinet racks for expensive instrumentation

This is the DYNATRON Cabinet Rack Type B, specially designed as a general purpose unit. With locking doors, or without doors. Can be built into bays of two, three or more units. Dynatron Cabinet Racks Type A, without doors, in three sizes. $3 f t ., 4 f t$., and $6 f t$. are also available.

All these points are important

* Hinged sides giving access to equipment for ease of servicing.
* Sides removable to enable bolting of cabinets together for assembly into bays of any length.
* Allowance made for all possible cabling.
* Ample ventilation.
* Provision for cooling unit if required.
* Finest quality materials and workmanship.
* Can be supplied in a variety of finishes.
* Mounting is for standard 19" Post Office type panels.


## DYNATRON <br> DYNATRON RADIO LIMITED FURZE PLATT, MAIDENHEAD TEL: 5151-5

# new and enlarged edition covering all the latest developments 



## RADIO CIRCUITS

## A step-by-step survey 4th edition

by W. E. Miller, M.A. (Cantab.), M.Brit.I.R.E., revised by E. A.. W. Spreadbury, M.Brit.I.R.E., associate editor of "Wireless ©" Electrical Trader."


#### Abstract

This standard introduction to superheterodyne receiver circuits has been greatly extended and brought completely up-to-date. The whole text has been revised in the light of the latest developments, and new chapters have been added on transistors, car radio and F.M: receivers. Although virtually a new book, it is still written in the same simple, nonmathematical style that has received such widespread acclaim.


## 75,000 copies of previous editions sold 15 s net by post 15s 10d 172 PAGES

from leading booksellers
Published by:-
ILIFFE \& SONS LTD. DORSET HOUSE STAMFORD ST. LONDON S.E. 1

> STABILIZE YOUR AC MAINS with the finest equipment, at a fraction of the normal cost:FERRANTI $7 \frac{1}{2}$-KVA MOVING COIL AUTOMATIC VOLTAGE REGULATORS
> Any stabilized output voltage in the range 200-250 v . can be selected by plug-board tappings. The selected output voltage is automatically maintained constant within $\pm \frac{1}{2} \%$, at all loads 0 to $30 / 37 \frac{1}{2}$ amps., when the supply voltage is varying over the range $+8 \%$ to -12\%
> Frequency compensated $45-55$ and $54-66 \mathrm{c} / \mathrm{s}$.
> Excellent output wave-form.
> - Can also be used as a variable transformer.

> Unused. Complete with spares and instruction book.
> P. B. CRAWSHAY

> 94 Pixmore Way, Letchworth, Herts. 'Phone 185I
> book

FOR
DETAILS OF
MINIATURE FILAMENT LAMPS
For Signal and Pilot lights, for Scale, Dial and Internal Illumination WRITE

## VItality bulbs <br> LTD.

Neville Place, London, N. 22
Tel : BOWes Pork 0016

TELEVISION AERIAL COMPONENTS DESIGNED FOR CONSTRUCTING BAND I \& BAND III T.V. AERIALS ELEMENT DIMENSIONS SUPPLIED FOR ALL CHANNELS Selecting at random from our new multi-page catalogue :
*. Band III Folded Dipoles (As illustrated)

* Reflector and director rod holders
* Masthead Fittings for $\frac{3^{\prime \prime}}{4}$, $\mathrm{I}^{\prime \prime}, 1 \frac{1^{\prime \prime}}{}$ and 2" Masts.
* Mast Coupling units for 2" Masts.
$\star$ Insulators, Both Rubber and Plastic
(As illustroted)
* Alloy Tubing for Elements, Cross boom and masting.

Send I/-P.O. for the revised, fully Illustrated catologue to:

FRINGEVISION LTD., Marlborough, Wilts.
Phone : 657/3



## They know...

that to obtain the full
benefit fram their
recordings they must have
a really first class
record player.
Garrard is the soundest
name in Sound Reproduction.

## Garrard

For forty years the finest record playing equipment in the world.

THE CARRARD ENGINEERING AND MANUFACTURING CO. LTD.
SWINDON • WILTSIIRR

## PIN POINT SOLDERING

Transistors - Printed Cirruits - Miniaturized Equipment


## actual size

interchangeable spare bits


## A.N.T.E.X limited

## WEYRAD P. 50 TRANSISTOR COILS AND I.F. TRANSFORMERS

## FOR 2-WAVE PORTABLE WITH PRINTED CIRCUIT AND ROD AERIAL

 P50/IAC M.W. OSCILLATOR COILS. For 176pF TUNING CONDENSER

PRICE 5/4d.
P50/2CC Ist and 2nd I.F. TRANSFORMER. $470 \mathrm{Kc} / \mathrm{s}$ OPERATION. " Q " $=150 \ldots \ldots \ldots .$. PRICE $5^{/ 7} \mathrm{~d}$.

P50/3CC 3rd I.F. TRANSFORMER. $470 \mathrm{Kc} / \mathrm{s}$ OPERATION. " $Q$ " $=170$

PRICE $6^{\prime} O \mathrm{~d}$.
RA2W L.W. and M.W. ROD AERIAL 6in. long, flying-lead connections. For 208pF TUNING CONDENSER

PRICE12/6d.
LFTDI DRIVER TRANSFORMER. Split Secondary Type, fully enclosed. With 6 connecting tagṣ PRICE17/6d.

PCAI PRINTED CIRCUIT PANEL, $2 \frac{3}{4} \times 8 \frac{1}{4} \mathrm{in}$. ready drilled with component positions and references printed on rear

PRICE $9 / 6 \mathrm{~d}$.
BOOKLET OF DETAILED ASSEMBLY INSTRUCTIONS AND CIRCUIT DIAGRAMS FOR 6-TRANSISTOR
LONG AND MEDIUM WAVE SUPERHET $\qquad$ PRICE 2'Od.

## ALL IN BULK PRODUCTION-TRADE ENQUIRIES INVITED

WEYMOUTH RADIO MFG. CO. LTD., CRESCENT STREET, WEYMOUTH, DORSET

## WAFER SWITCHES TO SPECLFILCATION

As we specialise only in the manufacture of small quantities of wafer switches (to individual specification) we guarantee competitive prices and fast delivery.
SWITCHES TOPUBLISHED DESIGNS (FROM STOCK)

| G.E.C. 912-PLUS |  | Mullard | pe | pli |
| :---: | :---: | :---: | :---: | :---: |
| S1 (14061/B1) [4/6 pair |  | Amplifier "A" |  |  |
|  |  | $\left.\begin{array}{l}\text { SS/567/A } \\ \text { SS/567/B } \\ \text { SS/567/C }\end{array}\right\}$ 32/6 the set |  |  |
| S2 (14062/B1) ${ }^{\text {d }}$ ( $/ 6$ pair |  |  |  |  |
| S4 (SS/556/1) | ... 11/6 |  |  |  |
|  |  | Amplifier "B " |  |  |
| 25 (SS/556/2) | ... 10/6 | SS/567/A | 16/6 |  |
| Write for Price List and Design Chart. |  |  |  |  |

## 23 Radnor Mews - Sussex Place London W2 - AMBassador 2308

Suppliers to the leading electronics, aeronautical and outomobile companies and to research institutions, the G.P.O. and Universities.

Send us your enquiries for all types of

## QUARTZ CRYSTALS

 for:RADIO FREQUENCY CONTROL FILTER PURPOSES ULTRASONIC PURPOSES
METALLIZED TO SUIT REQUIREMENTS. ANY SHAPE AND SIZE CUT TO SPECIFICATION.

> PIEZO LIMITED

26 St. Albans Rd., Watford, Herts. Tel: Watford 27808


# BRT. 430 \& BRT. 431 

# for <br> Radio-Telephony <br> and <br> Telegraphy 

otherwise be without comerion e.g. isolated police posts, survey and construction parties, forestry and similar authorities. The equipment can be operated on a temporary or semi-permanent basis, from either an a.c. (BRT.431) or 12 v . d.c. (BRT.430) supply. The transmitter operates in two bands in the frequency range $2-9.1 \mathrm{Mc} / \mathrm{s}$ and the receiver in four bands in the range $2-20 \mathrm{Mc} / \mathrm{s}$.

Total cost, including telegraph key, telephone handset, loudspeaker and headphones- 550 F.O.B.

Please address specific enquiries and orders to: ELECTRONICS DIVISION
THE GENERAL ELECTRIC COMPANY LIMITED OF ENGLAND
TELEPHONE, RADIO \& TELEVISION WORKS, COVENTRY, ENGLAND.

## EQUIPMENT, ACCESSORIES, MATERIALS

FROM LONDON'S LEADING STOCKISTS, ESTABLISHED 1943
Purchase Tox and Manufactureps' Price Changes passed on where applicable

$+23 \mathrm{~dB}+20 \mathrm{to}+37 \mathrm{~dB}$. Accur $\mathrm{mA}-20$ to $\pm 4 \%$ A C Mulsi-rang. Accuracy $\pm 3 \%$ D.C. Large clear dial, Leads E6/19/6. (P.\& P. 2/-).

METER CASES
STEEL, WITH ALUMINIUM PANELS


GOODS SENT TO ANY PART OF BRITAIN AND THE WORLD.


## Have you seen our NEW CATALOGUE?

Current Supplement and Bargain List gives full details of our wide range of Speakers, Cabinets, Tape Recorders, etc.

## "SYMPHONY" STEREOPHONIC AMPLIFIER <br> "Symphony" Stereophonic Ampliner with independent control not only of the treble and bass but the middle and bass but the middle frequencies also. <br> As reviewed in "The Gramo phone" March. <br> Price at present only 19 GN8 <br> (Carriage and packing by road or rail 10\%.)



## NORTHERN RADIO SERVICES

II King's College Road, Adelaide Road, London, N.W. 3
Business Hours 9-6 p.m., Monday zo Saturaay inelusive. PRImrose 3314

- SYMPHONY " INFINITE BAFFLE CABINET (R)

SYMPHONY" COLUMN CABINET.................... £I3 is
SYMPHONY" CONCERT GRAND EQUIP.
MENT CABINET
SYMPHONY " DE LUXE COMPLETE STEREO.
PHONIC REPRODUCER including two speakers $£ 88000$
SYMPHONY" DE LUXE CONCERT GRAND
STEREOPHONIC REPRODUCER incl. tape and
GOLDRING/LENCO TRANSCRIPTION UNIT...............................
$\$ 14000$
Model GL58 with Ronette TX88 and 2 Sapphires E22 36
With Ronette BF40 Stereo Cartridge and Diamond $£ 2716 \quad 6$
With Goldring 600 cartridge.....................................
With ELAC Stereo cartridge
$\mathbf{\$ 3 7 0} 0$
Model GL60 fitted with any of the above cartridges $£ 7 / 15 / 0$ extra to the above prices.

SPECIALLY RECOMMENDED SPEAKERS IN STOCK
GEDALE GODMANS
SPECIALLY RECOMMENDED CABINETS IN STOCK
Symphony
Nordyk
SPECIALLY RECOMMENDED RECORDERS IN STOCK
Truvox Ferrograph Grundig Telefunken Reflectograph

## Conversion to Stereo

Owners of "Symphony" amplifiers will be pleased to know that we can undertake the conversion to Stereo of their monaural amplifiers, promptly and at reasonable cost. Example.
No. 2. "Symphony" Amplifler Mark III or IV con- 10 gMS
verted to our latest'Stereo Amplifier
ed in the New Catalogue
send now for your c.opy
Free and Post Free

## $15 \mathrm{Kc} / \mathrm{s}$ at $33 / 4 \mathrm{l} / \mathrm{sec}$.

TYPE DR HEAD. Illustrated actual size is $\frac{7}{16}$ In. square by $\frac{5}{6} \mathrm{in}$. long, curved front 1 in. radius. Head available as medrum impedance 120 mH (paraliel connection (series connection).
This novel design of head possesses
many advantages over larger if-pes many advantages over larget ispes extremely good treble response*very low noise and hum pickup.
AN ERASE FREAD of the same dimensions also is available. our type " $D R$ " double field erase head.
This is not simply a double gap, but effectively two heads side by side giving complete erasure of any signal with modest power consumption. The power required is approximately 0.5 watt at $50 \mathrm{Kc} / \mathrm{s}$.
*Standard .0002in. gap gives response up to $10 \mathrm{Kc} / \mathrm{s}$ at 3 ivin. per sec.
.000lin gap available to special order, this extends treble response up to $15 \mathrm{Kc} / \mathrm{s}$ at 3 g in . per sec .
ENQUIRIES INVITED FOR QUANTITY qUOTATIONS. SEND FOR DETA:LS TO

[^16]

For use in miniaturised equipment, Q.C.C. TYPE MG QUARTZ CRYSTAL UNITS are available for the frequency ranges of 9 to 20 $\mathrm{kc} / \mathrm{s}$, and 65 to $130 \mathrm{kc} / \mathrm{s}$.
The illustration above is full size. For full particulars, please ask for leaflet MG.

When it's crystols, think of Q.C.C. first!
THE QUARTZ CRYSTAL Company Ltd.
Q.C.C. Works, Wellington Crescent, New Malden, Surrey

Telephones. MALoen 0334 \& 2988 Grams \& Cables. Quartzco, New Malden


No. I. Capacity 18 gauge mild steel $\times 36 \mathrm{in}$. wide.................. 6710 \& No. 2. Capacity 18 gauge mild steel $\times 24 \mathrm{in}$. wide 6550 No. 3. Capacity 16 gauge mild steel $\times 18 \mathrm{in}$. w d $65 \quad 50$ End folding attichments for Radio Chassis, Tray and Box Making...for 36in. model, $3 / 6$ per $1 t$. Other models $2 /$ - The two smaller models will form flanges. As supplied to Government Departments. Universities, Hospitals. One year's quarantee. Money refunded it not satisfied Send for details. A. B. PARKER, Wheatcroft Works, Wellington Street, Batley, Yorks. Tel. 426.

## 



High Quality-High Output and of the very highest standardTelefunken valves get the best possible performance from radio and television receivers - you can $r_{\text {ecommend }}$ them with confidence. Ask your wholesaler about Telefunken valves or send for full Telefunken availability list to: Sole British Distributor for all Telefunken Radios, Radiograms, Record Players.

Most types available from stock including:

| DAF 96 | EY 86 |
| :--- | :--- |
| DF 96 | PL 81 |
| DK 96 | PCF 80 |
| DL 96 | PCC 84 |
| ECL 80 | EF 80 |

All valves have usual full guarantee. New revised discounts now allow greater profit margin.

TELLUX LTD., 146 NEW CAVENDISH STREET, LONDON, W.1.
or order from your local wholescler

|  |
| :---: |
|  |  |
|  |  |
|  |  |
|  |  |

## EYELETTING and light PUNCHING MACHINES

AUTOPHOENIX No. 6A. A new and improved air-operated machine for the automatic insertion and closing of eyelets. The deep throat, high vertical gap and projecting base make this an ideal machine for the eyeletting of components in radio chassis even in the closest corners and, of course, for spinnings, cylinders and plastic mouldings. It can be supplied with built-in air compressor.

We manufacture a large range of hand and automatic Eyeletting and Piercing Machines and also stock eyelets which we can supply in small or large quantities. For illustrated brochure of the "Phoenix" machines, write for leaflet W.W.2.

## HUNTON LTD.

PHOENIX WORKS, 114-116 EUSTON ROAD, LONDON, N.W. 1
Tel.: EUSton 1477 (3 lines) Grams.: Untonexh, London


# Pye MICROWAVE Portable TV Links 

## Type PTC M1000

This transportable long-range television link is suitable for use with the N.T.S.C., C.C.I.R. or the British 405-line systems. A sub-carrier f.m. music link circuir is incorporated. The normal frequency range is 6875 to $7425 \mathrm{Mc} / \mathrm{s}$ but models can be supplied to cover the range of 5925 to $6425 \mathrm{Mc} / \mathrm{s}$. The r.f. power output is one watt.

The equipment can be operated back-to-back as a demodulator repeater for multi-stage transmission links. Dependent upon siting, each link is capable of transmitting a distance of 50 miles or more.
Transmitter and receiver, as well as an r.f. wavemeter and intercommunication circuits are all contained in four lightweight luggage-type cases. Spun aluminium parabolic reflectors are available in diameters up to 10 ft ., and all ancillary equipment can also be supplied.
Please write for details.

## As supplied to:

ASSOCIATED TELEVISION LTD. SCOTTISH TELEVISION LTD. TYnE-TEES TELEVISION LTD. CENTRAL REDIFFUSION SERVICES LTO. portuguese television service

ATOMIC WEAPONS RESEARCH ESTABLISHMENT
and many other users


0MICROWAVE LINKS

## Wirceloss World

ELECTRONICS, RADIO, TELEVISION

JUNE 1959

Managing Ediuor:
HUGH S. POCOCK, M.I.E.E.

Editor:
F. L. DEVEREUX, B.Sc.

Assistant Editors:
H. W. BARNARD
T. E. IVALL

VOLUME 65 No. 6
PRICE: TWO SHILLINGS

FORTY-NINTH YEAR OF PUBLICATION

255 Editorial Comment
256 Ferroelectrics-1
260 Improved Audio Input Circuit
262 Sporadic ' $E$ ' and the $F_{2}$ Layer
264 Simple Oscilloscope Camera
266 World of Wireless
267 Personalities
269 Pickup Arm Design
272 Displaying Valve Characteristics
274 Feedback Amplifiers as Filters
276 Elements of Electronic Circuits-3
279 Magnetic Matrix Stcses
283 Letters to the Editor
285 R.H.F.
289 Electronics and the Phonetician
294 Technical Notebook
296 Manufacturers' Products
299 New Marine Radar
300 News from the Industry
302 Random Radiations By "Diallist"
304 Unbiased

By 7. C. Burfoot
By R. C. Marshall
By T. W. Bennington
By A. 7. Key

By 7. Walton
By R. G. Christian
By Thomas Roddam
By f. M. Peters
By W. A. Cole

By "Cathode Ray"
By H. J. F. Crabbe

By" Free Grid"

Offices: Dorset House, Stamford Street London, S.E. 1
Please address to Editor, Advertisement Manager, or Publisher, as appropriate

(C)
Iliffe \& Sons, Ltd. 1959. Permission in writing from the Editor must first be obtained before letterpress or illustrations are reproducedfrom this journal. Brief abstracts or comments are allowed provided acknowledgment to the iournal is given.

PUBLISHED MONTHLY (4th Monday of preceding month) by LIFFE \& SONS LTD. Dorset House, Stamford Street, London, S.E.I. Telephone: Waterloo 3383 ( 65 lines). Telegrams: " Iliffepres, Sedist, London." Annual Subscriptions: Home and Overseas, £1 15s. Od. Canado and U.S.A., $\$ 5.00$. Second-class mail privileges authorised at New York, N.Y. BRANCH OFFICES: BIRMINGHAM: King Edward House, New Street. 2. Telephone: Midland 7191 COVENTR Y: 8-10, Corporation Street. Telephone: Coventry 25210. GL. ASGOW. 26B, Renfield Street, C.2. Telephone: Central 1265. MANCHESTER: 260. Deansgate, 3. Telephone: Blackfriars 4412. NEW YORK O-FICE: U.S.A.: 111, Broadway, 6 Telephone: Digby 9-1197.

## Transistor

## Automatic-keying Circuit

Various modulation arrangements can be used with the $500 \mathrm{kc} / \mathrm{s}$ marine-distress transmitter (see previous advertisement). For c.w. operation a morse key can be connected in series with the base winding of the modulator transistor, together with an r.f. choke and a bypass capacitor to prevent r.f. voltages floating across the key.

Low-power modulation is used for radio telephony. The modulator transistor is biased into Class C operation, using a parallel CR combination, to a point where the output of the transmitter falls to half its normal value, and an a.f. signal is applied across the bias resistor.
The circuit shown here is for an automatic-keying device which generates the distress signal. A time interval of 0.1 sec was chosen for the duration of a dot and for the interval between successive dots or dashes. The duration of a dash is then 0.3 sec .
Transistors Tr1 and Tr2 form the dot multivibrator and the $\operatorname{Tr} 2, \operatorname{Tr} 3$ combination is the dash multivibrator. As the spacing between dots is the same as the spacing between dashes, no gate is required for mixing and so the output can be taken from the collector of Tr 2 , the common transistor. To square-off the waveform of this output an emitter follower Tr4 is added. The output from Tr2 is inverted by Tr13 to the negative-going pulses required for keying the transmitter. A positive line is provided for the combined multivibrator by connecting the three emitters to a suitably decoupled resistor R2. This ensures that the appropriate transistor (Tr1 or Tr3) is definitely cut off by the sequence multivibrator which acts as an on-off switch in the base leads of Tr1 and Tr3.
This multivibrator consists of transistors Tr6 and Tr7, which conduct alternately, switching the supply voltages across the base resistor R7 and R6 respectively. When Tr6 is on, $\operatorname{Tr} 5$ is off and the voltage across R 9 (approximately $V_{c c}$ ) appears across R7, the base resistor of Tr1, and three dots are generated. The timing of this sequence is mainly governed by the combination C9R11.
The capacitor C7 reduces the switch-on time of transistor Tr7. If it is omitted, the inhibiting signal from Tr 7 does not reach the dash multivibrator soon enough and a spurious
dash precedes the dot-dash sequence. When Tr 7 is on, Tr 8 is off, the supply voltage appears across R6, and Tr3 generates three dashes. Transistors Tr5 and Tr8 are emitter followers which square-off the collector waveforms from Tr6 and Tr7. The sequence multivibrator is in turn controlled by the markspace multivibrator by connecting R13, the base-feed resistor to $\operatorname{Tr} 7$, across the emitter load of Tr9. The mark-space multivibrator is the only free-running one in the whole circuit. It controls the whole automatic timing circuit. Tr10 is an emitter follower which squares-off the collector waveform of $\operatorname{Tr} 11$. A buffer stage, $\operatorname{Tr} 9$, is required to reduce interaction between the mark-space multivibrator and the previous stage.
The resistor R18, in the base lead of $\operatorname{Tr} 10$, is necessary to prevent pulses, fed back from the sequence and dot-dash multivibrators, triggering the mark-space multivibrator. It also reduces the voltage developed across the emitter resistor, R17, thereby reducing the on-period of Tr11. This time can be easily adjusted because it is the off-period for the complete timing circuit. If R 22 is $270 \mathrm{k} \Omega$ and C 10 is $100 \mu \mathrm{~F}$, the space period between signals is about 15 sec .
Some of the timing components need careful selection; all the resistors for these circuits should be of high stability, and the capacitors should have low leakage currents. These capacitors should preferably be metallised paper types ( Cl , $\mathrm{C} 2, \mathrm{C} 3, \mathrm{C} 5, \mathrm{C} 7, \mathrm{C} 12$ ), and tantalum electrolytic for the others. All the transistors operate at less than $500 \mu \mathrm{~A}$ per stage; the total current drain from a 12 V battery is about 4 mA . The circuit operates satisfactorily with supplies down to about 10 V , and over a range of temperature from 0 to $60^{\circ} \mathrm{C}$. Taking into account the on-off power ratio of the combination of transmitter and keying circuit, a life of 50 hours can be expected from a 4 ampere-hour accumulator.
It cannot be emphasised too strongly that indiscriminate transmission of the international distress signal, whether licensed or not, is very undesirable. However, the principles of the design described can be used for the automatic keying of any morse signal, such as a call sign, by suitable adjustment of the timing components.



The proved reliability of the Brimar 'T' range of valves has been "built-in" as the result of experience galned from a programme of examination and testing. One of these tests is illustrated. Valves are placed in a rotor inside a chamber which is later evacuated. The rotor is then accelerated at high speed to simulate the effects expertenced by super high speed aircraft flying at high altitudes. The information derived from this and other tests on valves for special applications is used to Improve manufacturing techniques on commercial types: which makes Brimar the obvious choice when the demand is for a reliable valve.

## better make it

[HIMATI

## Standard Telephones and Cables Limited

Registered Office: Connaught House, Aldwych, London, W.C. 2
VALVE DIVISION : FOOTSCRAY • SIDCUP • KENT F FOOTSCRAY 3333


Acos products for better Iistening:


ACOStereo Type 73 Turn-over cartridge for stereo, LP and standard records.


## Acos

Changer Dust Bug Fits most arms. Increases stylus life up to six times.
Protects
your tecords.


Acos Styli x 500 tested, diamond and sapphire, for all Acos and many other makes of cartridge.

## Prince Igor and Princes Risborough

Prince Igor (Borodin) can come to life in Princes Risborough (Bucks). Polovtsi (dances, warriors and maidens) can drop in for tea at Polzeath (Cornwall): ACOStereo equipment plays a vital part in providing vivid stereo sound at a reasonable cost.
ACOStereo Type 7 t , costing only 52 s . rod. including a diamond stylus, converts many popular arms to stereo. ACOStereo Type 73, for stereo, LP and standard, is used in many leading instruments. Both types are an unqualified success at home and abroad.


## "BELLING - LEE " NOTES <br> PARAMETERS OF DESIGN Some problems of sealing

No. 6 of a series
Towards the end of the last article we implied that it was relatively easy to seal a can, but the difficulty arose when you tried to take some leads through it, and keep the container sealed indefinitely. Various synthetic rubbers have been tried with varying degrees of success provided the correct form and the most suitable grade have been chosen for a particular application, e.g. high temperature, oil resistant, etc.
Metallized ceramic has been used for quite a long time, but present designs are not as popular as they used to be and further development work is being carried out.
There are several types of glass to metal seals, some using too costly materials, some suitable only for small metal-glass interface, some too fragile. Glass to metal seals can be divided into two main groups, matched and compression.
A matched seal is where the coefficient of expansion of the glass and metal parts is matched. Such a seal can generally withstand a greater thermal shock i.e. sudden extreme changes of temperature, as when a soldering iron is applied to a centre conductor (1). In a matched seal, the metal parts can be thin, as they are not under tension but it is not so strong mechanically as a compression seal. Those manufactured by us, in general, stand up to the required specifications.
There are two tests (a) temperature cycling from $-65^{\circ} \mathrm{C}$ to $+20^{\circ} \mathrm{C}$ then to $150^{\circ} \mathrm{C}$ and in reverse several times (b) thermal shock, out of freezing water into boiling water and in reverse several times. In some cases the seals must withstand plunging into molten tin for tin-dipping.
There is an interesting mechanical problem in the drawing down of wire or tubing to be used as a conductor through a seal. Such a wire is reduced many times and is scored in the process. Such scores are small grooves (2), and these may be closed in during subsequent reduction stages, forming microscopic pipes or capillary tubes ( 3 and 4). Thus, an apparently sulid wire can, in fact, be porous along its length, and the same problem can occur in the walls of a tube (5). More about this next month.


## MAKING IN MILLIONS



## 35 YEARS OF 'KNOW HOW' BEHIND EVERY TERMINAL

We make millions of terminals in a most comprehensive range of types and sizes. In many cases, collar assemblies are interchangeable, thus making possible a wide variety of combinations. Where our range - extensive as it is - does not provide for your particular requirements, we are always prepared to 'make to measure'.
We are specialists in components. This is no empty phrase: it means that we have been engaged in the design and manufacture of precision-made components for some thirty-five years, and at Enfield we devote a very great deal of our time and space to research, forever seeking new and better methods of production, whilst ensuring that every component maintains ourhigh standard of performance.

(B)
Most " Belling-Lee " products are covered by patents or registered designs or applications therefor.

Telephone : Enfield 3322 - Telegrams: Radiobel, Enfield

## Marconi in Telecommunications

The post and telegraph authorities of more than 80 countries use Marconi equipment


# MARCONI 

## Aspects of design

This is the twelfth of a series of special features dealing with advanced problems in television and radio circuit design to be published by Siemens Edison Swan. The Ediswan Mazda Applications Laboratory will be pleased to deal with any questions arising from this or other articles, the thirteenth of which will appear in the July 1959 issue.

# 12 

VIDEO
AMPLIFIERS

Among the factors to be considered in designing a video amplifier for a television receiver are several in which the characteristics of the valves and cathode ray tubes are involved. The requirements and limitations imposed by the normal spread in these characteristics and their change during life are discussed in the following paragraphs in relation to a circuit designed to drive the cathode of the cathode ray tube. A simplified diagram is shown in Figure 1.


## ZERO SIGNAL BLAS CONDITIONS

The cathode bias voltage should be arranged so that, with zero grid signal, the anode current is low. The working point should, however, not be down in the very curved part of the anode current/grid voltage characteristics or compression of the synchronising pulse amplitude will occur and will tend to become more pronounced during the life of the valve. For valve types such as the Ediswan Mazda 6F23, 30F5 and 30FL1, a zero signal anode current of $4-5 \mathrm{~mA}$ is generally satisfactory.

Unless some of this bias voltage is derived by means other than cathode current feedback, the gain of the amplifier will be very low. The usual method is to drain current from the H.T. supply through a resistance, $\mathbf{R}_{2}$, compromising at about the same value as the cathode current. This retains a cathode resistance, $\mathrm{R}_{1}$, large, enough to use conveniently for H.F. compensation and does not require an expensive component for $\mathbf{R}_{\text {. }}$.

## CATHODE RAY TUBE DRIVE

During the life of a cathode ray tube, its emission tends to fall until it is necessary to drive it to near zero voltage between grid and cathode to obtain adequate highlight brightness. At this end-of-life condition, a picture signal of up to 70 volts peak may be required when the spread of raster cut-off voltage is considered. This corresponds to a peak-to-peak video signal, including synchronising pulses, of 100 volts. Thus, to ensure full use of the cathode ray tube, it is desirable that the video amplifier should be capable of delivering this output voltage when required.

## CHOICE OF ANODE LOAD

From the point of view of frequency response a low anode load resistance, $R_{3}$, is desirable, but the choice of values is restricted by the maximum output voltage requirement and the characteristics of the valve, as is shown in Figure 2. Load lines are drawn, each showing a peak swing of 100 volts from the zero signal condition, thus determining a locus of peak anode current against minimum anode voltage.

If a low resistance, $A$, is chosen, the required output may not be obtainable without driving the valve to a high grid current, resulting in clipping by reduction of the effective load of the preceding diode detector. This effect will become more apparent as the available peak current of the valve falls during life. On the other hand, a high anode load resistance, C , can also result in clipping or inversion of highlights when the voltage is driven below the "knee" of the anode characteristics. The correct choice, $\mathbf{B}$, is the lowest resistance which will give a peak anode current within the capabilities of the valve throughour its life and allow a margin for spread of knee characteristics and tolerances on both the anode and bias resistances.


## H.F. COMPENSATION

The previous paragraphs have considered the design almost entirely at low frequencies. The effective capacity, $\mathrm{C}_{3}$, at the anode due to the loading of the cathode ray tube, synchronising pulse separator and other circuits results in a loss of gain at higher frequencies. As long as the time constant $C, R_{3}$ is not excessive, an adequate bandwidth can be obtained by reducing cathode feedback at higher frequencies. For optimum compensation, $C_{1} R$, should be approximately equal to $C_{2} \mathbf{R}_{3}$, but experimental adjustment on a test picture is the simplest method.

## PRACTICAL DESIGN

From the considerations discussed above it will be obvious that the problem of obtaining sufficient maximum video drive for the cathode ray tube becomes increasingly more difficult as the H.T. supply voltage is reduced. Satisfactory component values for use with valve types 6F23 and 30F5 from an H.T. supply voltage of 190 volts are as follows:-

$$
\begin{array}{lr}
\mathbf{R}_{\mathbf{1}} & 270 \text { ohms } \pm 5 \% \\
\mathbf{R}_{2} & 33,000 \text { ohms } \pm 10 \% \\
\mathbf{R}_{3} & 8,200 \text { ohms } \pm 10 \%
\end{array}
$$

SIEMENS EDISON SWAN LIMITED An A.E.I. Company Technical Service Department, 155 Charing Cross Rd., London, W.C. 2 Telephone: GERrard 8660. Telegrams: Sieswan. Westcent. London

## NEW HIGH SLOPE R.F. PENTODE

## EDISWAN MAZDA 6F23

For a.c. or a.c./d.c. Television Receivers.
The 6F23 has similar characteristics to the 30F5 and can be used, for example, as an amplifier in sound I.F., vision I.F. and video stages and as a synchronising pulse separator. The 6F23 has the advantage of having a $6.3 \mathrm{~V}, 0.3 \mathrm{~A}$ heater.

Tentative Ratings and Characteristics
MAXIMUM DESIGN CENTRE RATINGS

Anode Dissipation (watts)
Screen Dissipation (watts)
Anode Voltage (volts)
Screen Voltage (volts)
Heater to Cathode Voltage (volts r.m.s.)
$\mathrm{p}_{\mathrm{a}(\mathrm{max})}$
$\mathrm{p}_{\text {g2(may) }}$
$\mathrm{V}_{\mathrm{a} \text { (max) }} \quad 250$
(V).th r.m.s.) Vh-k(max) r.m.s. 200** 10,000 grid to cathode circuit resistance not exceeding 10,000 ohms.
**Measured from cathode to higher potential heater pin. INTER-ELECTRODE CAPACITANCES (pF) $\dagger$

| Grid 1 to Earth | $\mathrm{Cin}_{\mathrm{in}}$ | 9.0 |
| :--- | :--- | :--- |
| Anode to Earth | Cout | 3.7 |
| Grid 1 to Anode | Cgl-a | 0.007 |

Grid 1 to Anode
$\mathrm{Cgl}_{\mathrm{gl}}^{\mathrm{a}}$
0.007
$\dagger$ Measured in fully shielded jig, without can.
MAXIMUM DIMENSIONS (mm)

## Overall Length <br> Seated Height

67.5

Diameter
22.2



TYPICAL OPERATION
Anode Voltage (volts)
Screen Voltage (volts)
Self Bias Resistance (ohms)
Anode Current (mA)
Screen Current (mA)
Mutual Conductance (mA/V)
Inner Amplification Factor
Equivalent Grid Noise Resistance (ohms)
Input Loss at $38 \mathrm{Mc} / \mathrm{s}$ (ohms)
Input Capacity Working ( pF )
Change in Input Capacity produced
by biasing valve to cut-off ( pF )
Figure of Merit (Valve only) (Mc/s)
Effective Figure of Merit (Valve and
Circuit) (Mc/s)
The two cethodes strapped and joined directly to
$\triangle$ Measured at $38 \mathrm{Mc} / \mathrm{s}$.
†Inter-electrode capacity with holder capacity balanced out.
$\ddagger$ Given by $\frac{g_{m} \times 10^{3}}{2 \pi \sqrt{C_{i n} C_{n u t}}}$. See "Aspects of Design" Article 1 for further details.


SIEMENS EDISON SWAN LIMITED An A.E.I. Company Technical Service Department, 155 Charing Cross Rd., London, W.C.2. Telephone: GERrard 8660. Telegrams: Sieswan, Westcent, Loondon.


Tentative Characteristic Curves of Édiswan Mazda Valve Type 6 F23


EDISWAN
MAZDA


## Sticking our necks out?

G.E.C. announce maximum junction temperature uprating to $85^{\circ} \mathrm{C}$ for their audio transistors. We know this claim isn't too tall because we have sound reasons for making it. Recently our manufacturing techniques have been improved to the extent that life tests show that we can now quote an $85^{\circ} \mathrm{C}$ continuous working maximum junction temperature for G.E.C. germanium audio transistors. As a result of this the already high maximum collector dissipation ratings have been increased even further. These new ratings, coupled with the typical alpha cut-off frequencies of about $1 \mathrm{Mc} / \mathrm{s}$, make the G.E.C. range of audio transistors unique.

## g.c.



|  | LOW NOISE | LOW POWER $\dagger$ |  |  |  |  | MEDIUM POWER $\dagger$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{gathered} \text { Maximum noise } \\ \text { factor }=5 d \mathrm{~s} \\ (f=1 \mathrm{kc} / \mathrm{s}, \mathrm{Rs}=500 \Omega \\ \mathrm{V} \text { ce }=-2 \mathrm{~V}, \mathrm{le}=0.5 \mathrm{~mA}) \end{gathered}$ | Maximum collector dissipation at $45^{\circ} \mathrm{C}=200 \mathrm{~mW}$ <br> at $55^{\circ} \mathrm{C}=150 \mathrm{~mW}$ |  |  |  |  | $\begin{gathered} \text { Maximum collector } \\ \text { dissipation } \\ \text { at } 45^{\circ} \mathrm{C}=800 \mathrm{~mW} \\ \text { at } 55^{\circ} \mathrm{C}=600 \mathrm{~mW} \\ \text { (on } 3^{\prime \prime} \times 3^{\prime \prime} \text { cooling fin) } \end{gathered}$ |  |  |
| Ie(pk)(A) | - | 1 |  |  |  |  | 1 |  |  |
|  | GETI06 | GETI14 | GET113i | GETIO3 | GET 102 $\ddagger$ | GETI04 | GETII5 | GETII6 | GET 105 |
| $\mathrm{Vce}(\mathrm{pk})(\mathrm{V})$ | 15 | 15 | 15 | $30^{*}$ | $30^{*}$ | 30 | 15 | $30^{*}$ | 40 |

## NET!  inRADIO\& ELECTRONICS

## You LEARN while you BUILD...

SIMPLE...PRACTICAL...FASCINATING...

ANNOUNCING - after many years of highly successful operation in the U.S.A. and in Europethe latest system in home training in electronics is now introduced by an entirely new British training organisation.
AT LAST-a comprehensive and simple way of learning-by practical means-the basic principles of radio and eléctronics, with a minimum of theory. YOU LEARN BY BUILDING actual equipment with the components and parts which we send you. You advance by simple steps using high quality equipment and performing a whole series of interesting and instructive experiments. No mathematics!
INSTRUCTION MANUALS and our teaching staff employ the latest techniques for showing clearly how radio works in a practical and interesting manner. You really have fun whilst learning! And you end by possessing a first rate piece of home equipment with the full knowledge of how it operates and-very important-how to service and maintain it afterwards. A full library of magnificent illustrated textbooks is included with the courses.
IN FACT, for the "Do-it-Yourself" enthusiast, the hobbyist, or those wanting help with their radio career training or to set up their own full or parttime servicing business-then this new and exciting instructional system is exactly what is needed, and it can all be provided at very moderate cost. Easy payments available. Post the coupon now, for full details. There is no obligation of any kind.

BUILD YOUR OWN:-

- RADIO EQUIPMENT - HI-FI INSTALLATION - TEST EQUIPMENT--AND LEARN AS YOU DO IT


Basic Ist stage
Servicing of
commercial receivers
receiver

## NoMathiematics!

TO RADIOSTRUCTOR (Dept. G.34) 46 Market Place, Reading, Berks.

# RADIOSTRUCTOR 

BRITAIN'S LEADING RADIO TRAINING ORGANISATION

Please send full details of your Radio Equipment Courses without any obligation to:



Camera Type 201 with panels removed illustrating accessibility

## A】工 Leads again with new TV Camera channel

A new vidicon camera channel, which offers considerable economy of operation, and has been specially designed to meet the needs of broadcasting organisations in the United Kingdom and overseas, has now been added to the E.M.I. range.
Known as the Type 201, the new camera channel utilises printed circuits and plug-in techniques to reduce size and weight to a minimum.
The Type 201 is particularly suitable for interviews, live news programmes and other studio work where the use of a larger Image Orthicon or CPS camera is not justified. It produces broadcast quality pictures on 405,525 and 625 line standards, and is designed for use with E.M.I. vidicon tube 10667S or equivalents.

Used in conjunction with E.M.I.'s control panel type 216 , the camera can be operated remotely, allowing several channels to be controlled from a single position.
The Type 201 camera channel has already been ordered by broadcasting organisations in the United Kingdom and overseas.
Type 201 camera channel features include:

* Four lens turret with precise detent indexing.
* Optional remote control of focus, turret, and lens aperture.
* Light weight and compactness. Built-in $7^{\prime \prime}$ viewfinder.
* Two isolated composite or non-composite outputs.
* Complete accessibility provided by use of detachable printed cards.


## The very best connections

# secured by <br> Plessey 

## SUB-MINIATURE COAXIAL CONNECTORS

As a contribution towards increasingly compact equipment, Plessey have introduced this new, highest quality and fully comprehensive range to allow a new approach on applications hitherto restricted by the limitations of existing connectors.
Designed for the matched impedance coupling of high frequency coaxial cables operating in the super high frequency bands, these connectors\& have a working voltage of 650 volts Peak at sea level, and matched impedance coupling of 50 ohm lines is accommodated.

* have hard gold plated contacts on silver plate to give maximum performance with minimum voltage drop.


ELECTRICAL CONHECTORS DIVISION • THE PLESSEY COWPANY LIMITED CHENEY MANOR • SWINDON • WILTS - TELEPHONE: SWINDON 6251

Wortexion


All models now have provision for Stereo or for easy conversion at a later date.
Conversion units are also available. The regular models are retained with additions and improvements. Our high standard which has made these recorders famous has been maintained, resulting in their being chosen for the foremost musical centre in this country.

## TWELVE-CHANNEL ELECTRONIC MIXER

This is similar to the 4 -channel, but is fitted with 12 hermetically sealed controls, 12 balanced line microphone transformers potted in mumetal boxes, and a mains transformer also potted in mu-metal. All components which can affect noise are tested and selected before insertion. It is supplied in standard steel case or 7 in . rack panel.

## 30/50 WATT AMPLIFIER

Gives 30 watts continuous signal and 50 watts peak Audio. With voice coil feedback distortion is under $0.1 \%$, and when arranged for tertiary feedback and 100 volt line it is under $0.15 \%$. The hum and noise is better than -85 db referred to 30 watt.
It is available in our standard steel case with Baxendale tone controls and up to 4 mixed inputs, which may be balanced line 30 ohm microphones or equalised P.U.s to choice.

## 120/200 WATT AMPLIFIER

Will deliver 120 watts continuous signal and over 200 watts peak Audio.
It is completely stable with any type of load and may be used to drive motors or other devices to over 120 watts at frequencies from 20,000 down to 30 cps in standard form or other frequencies to order. The distortion is less than $0.2 \%$ and the noise level - 95 db . A floating series parallel output is provided for $100-120 \mathrm{~V}$. or $200-250 \mathrm{~V}$. and this cool running amplifier occupies $12 \frac{1}{4}$ inches of standard rack space by 11 inches deep. Weight 601b.
Full details and prices of the above on request


# Is your amplifier qood enough for broadcasting and recording <br> ? 




Leak amplifiers were the first in the world to be marketed with a distortion content as low as $0.1 \%$, a claim received with incredulity in 1945 but which was subsequently confirmed by the National Physical Laboratory and has since become an accepted worldwide standard.

LEAK amplifiers are th: choice of professional engineers such as the B.B.C. (over 500 delivered), the South African Broadcasting Corporation ( 600 ), ITV and maniy other Commonwealth and overseas broadcasting and TV systems, who use them for transmitting and/ or monitoring (quality checking) the broadcasts to which you listen.

Also many of the gramophone records you buy are cut via LEAK amplifiers, This acceptance by professional studio engineers has led to a demand for Leak equipment from musiclovers throughout the world.


From long experience and by extreme attention to design details during development work on the preproduction models. we enable our craftsmen to achieve a high output per man-hour. The labour costs thus saved offset the increased costs incurred for high-grade materials, components and finishes, and this, together with quantity production (made possible only by a world-wide market), explains how quality products may be sold at reasonable prices.


The First Name in High Fidelity
H. J. LEAK \& CO. LTD., BRUNEL ROAD, WESTWAY FACTORY ESTATE,
LONDON, W.3, ENGLAND
Telegrams: Sinusoidal, Ealux, London Telephone : SHEpherds Bush $1173 / 4 / 5$. Cables: Sinusoidal, London

Ask your dealer for a demonstration of LEAK equipment including the NEW POINT ONE STEREO pre-amplifier and STEREO 20 power amplifier.


## There's nothing so good as building it



## with a

Jason|kilik

AUDIO-GENERATOR AG. 10

Jason offer a number of test-equipment designs in Kit form or ready built. All are designed to high standards of efficiency. Details gladly sent on request.

Capacity-tuned Wien Bridge gives excellent stability with low distortion. Output held constant over entire band. Model AG. 10 covers from 10 to $100,000 \mathrm{c} / \mathrm{s}$ in four ranges. A maximum of 10 V is available from cathode follower output stage. The attenuator gives a minimum calibrated output of 100 microvolts. Square wave output with an excellent rise-time makes the-instrument valuable for checking all audio equlpment. Output, level within IdB over whole range, available as sine or square wave as required. Square wave rise-time less than 2 microseconds at all frequencies.
This instrument is designed in conformity with other test instruments in the Jasonkit range, and is complete with case.

Kit complete with building and operating manual
£12-10-0
Kit built and ready for use 615-2.6

BIITISH DESIGNED TO HIGH TECHNICAL STANDARDS
THE JASON MOTOR \& ELECTRONIC CO., 3-4 (D) GT. CHAPEL ST., OXFORD 8T., LONDON, W. 1



## THE PARCOPAK

(built like a battleship)

D.C. to A.C. Mains Voltage From your Battery or House Lighting Plant

## ENJOY MOBILITY FOR

Dictating Machines, Tape Recorders, Radio, Television, Radiograms, Record Changers. * Input 6, 12, 24, 32, 48, 110 and 220 volts. $\star$ Output 250 volts, $50 \mathrm{c} / \mathrm{s}$., 200 watts (max.). * Fitted with remote control facilities or $0 / 0$ switch and watts output panel. Prices from $114: 9: 0$
WRITE FOR DESCRIPTIVE FOLDER: TRADE ENQUIRIES
Sole Manufacturers:

## P. A. R. LIMITED, TALBOT WORKS, TALBOT STREET, NOTTINGHAM

Telephone 46505/6. Telegrams Parco, Nottm.
it's NEW- it's miniature


TYPE 40 TRANSISTORISED SIGNAL GENERATOR net price $\{5,15.0$ post pait
BATTERY $2 / 6$ EXTRA CASH WITH ORDER OR C.O.D * TRADE AND EXPORT ENQUIRIES INVITED *

* Small enough to fit in your pocket-only $4 \frac{1_{2}^{\prime \prime}}{} \times 3 \frac{1^{\prime \prime}}{}$.
* Frequencies up to $20 \mathrm{Mc} / \mathrm{s}$ on fundamentals.
* R.F. and audio outputs, attenuated.
* Full standard specification.
* Light weight-low consumption.

Write for descriptive leaflet or order today from-
CHANNEL ELECTRONIC INDUSTRIES LTD. INSTRUMENTS DIVISION
DUNSTAN ROAD • BURNHAM-ON-SEA • 8OMERSET • Phone 3167


## Worldwide Export Service ELECTRONIC

## EQUIPMENT FROM U.S.A.

Frazar \& Hansen Ltd., internationally known since 1834, presents the latest advancements in electronics designed and engineered by leading U.S.A. manufacturers: many microwave and transistorized devices, components and complete equipment. A number of these are designed to meet military specifications.


## High Speed Pulse Generator

Model B-7. New low price unit for laboratory research. Repetition rates 20 cy . to $2 \mathrm{Mc} / \mathrm{s}$ from an internal oscillator. Pulse widths .05 to $1000 \mu / \mathrm{sec}$; pulse delays from o to 10,000 $\mu / s e c$. May also be triggered externally. Output pulse amplitude 50 V . positive or negative into a load of 50 ohms. Rise and fall time $.02 \mu / \mathrm{sec}$. Occupies only $8-\frac{3}{i n}$. of panel space.

RUTHERFORD ELEGTRONIES CO.

## 2.

## Line Fault Analyzer

Model 124A Line Fault Analyzer designed for rapid location of faults on transmission lines. Instantly pinpoints shorts, opens, grounds, and indicates nature of fault from $\frac{1}{2}$
 to 200 miles. Also avail-able-carrier frequency voltmeters, wave analyzers, specialized LF, HF, VHF, UHF test equipment, RF transmitters and power measuring equipment.
8JERRA ELECTRONIC CORP.

Also aluminum microwave and relay towers, AM transmitters, audio equipment. Digital voltmeters and data printers. High speed pulse generators. Signal generators. Spectrum analyzers, transistorized power supplies.

## Distributors Wanted

Overseas inquiries invited from electronic engineering representatives and manufacturers
FRAZAR \& HANSEN Ltd.
301 Clay Street - San Franclsco 11, Callt. Since 1834


## For the Finest Stereo

to beheardanywhere-themostmusical presentation-the most stable and convincing sound picture.

## d

## Twin Speaker Presentation

of single-channel records or radio that is almost unbelievable till you have actually heard it.

## USE

Davey Corner Reflector Speakers
with supporting equipment that really is good enough.

Particulars and Prices from


HANDMADE
GRAMOPHONES LTD
6 Nowman St London W. 1 - mus 9971

- The Heavenly Twins


CO-AXIAL CABLE FITTINGS

FOR COMMUNAL AERIAL SYSTEMS Cut installation costs to a minimum

Ease and speed of installation, cable economy, maximum screening qualities and performance specifications have all been acquired through long experience in building-up cable networks. Teleng cable fittings provide full screening against induction and ghosting in both indoor and outdoor versions of Junction, Tee, Splitter and Load units.

THE FULL RANGE INCLUDES . . . Surface or Flush Outlet Units with or without attenuators or loads and incorporating complete isolation of cable conductor and screens to fully safeguard system and users.

## Full lists and prices from

TELEFUSION ENGINEERING LIMITED one of the telefusion group of companies

Teleng Works, Church Road, Harold Wood, Romford, Essex.

Tel.: Ingrebourne 42901

## If it's Electronic

and you want it
Designed and Developed or produced * to your specification


## Coresult


\& COMPANY LTD. (formerly P.A.M. Ltd.)


This E.H.T. Cable Insulation Tester has been designed and made by Tyer \& Co. Ltd. for detecting and recording faults in the insulating coverings of cables during manufacture. The system permits a very high speed of operation.

Tyer \& Co. Ltd. Electronics division combines the technique
*Whichever stage of the struggle you've reached, we can save you time and trouble-maybe money toowrite or 'phone without delay. of several companies, longestablished in the Electronic field, with the extensive modern Compact Stabilised High Voltage Supply. Safe field, with the extensive modern and reliable supply for photo-multiplier cells Co. Ltd. Examples of recent and cathode ray tubes. Variable output between work are illustrated. $0-1250 \mathrm{~V}$ D.C. at 250 micro amps: Size $6^{\prime \prime} \times 4^{\prime \prime} \times 3^{\prime \prime}$.


## GOOIDMAINE

## Axiom 4.0

A twin-cone Unit of similar design to the Axiom 300, but having an even heavier ring type magnetic assembly producing a total flux of 195,000 Maxwells, with consequentaddition, the power handling capacity is higher.

Thus, the Axiom 400 will perform all the functions of the Axiom 300 and is additionally capable or High ridelty reproduction in very large rooms, public buildings, etc.
SPECIFICATION
Frequency Responsw:
30-16,000 c.p.1. Fundamental Resonance 35 c.p.s.
Maximum Power
Handling Capacity: 20 watts
Fux Density
17,500 gauss
Voice Coil Diameter
Impedance: I 5 ohms

## 

GOODMANS INDUSTRIES, LIMITED, AXIOM WORKS, WEMBLEY, MIDDLESEX.

## for High Fidelity

The most advanced twin-cone High Fidelity oudspeaker yet produced incorporating new developments which not only reduce distortion to a very low level, but also provide a smoother and more extended response than ever before achieved in this type of Unit. Both diaphragms are carefully terminated to prevent standing waves and spurious resonances and are driven by a long aluminium coil suspended in a total flux of 158,000 Maxwells, A robust cast chassis is employed and the construction is dust-proof.

SPECIFICATION
Frequency Response: $\quad 30-16,000$ c.p.s.
Fundamental Resonance: 35 e.p.s.
Maximum Power Handling Capacity: 15 watts
Flux Density: 14,000 gause
Voice Coil Diameter: ${ }_{12}$ ins.
Impedance: 15 ohms
Typical on-axis response curve for Axiom 300


Goodmans High Fidelity Loudspeaker Manual, which contains full informotion on Goodmans High Fidelity products, free on request.
.-.Europe's largest Manufacturers and the World's largest Exporters of High Fidelity Loudspeakers
Wembley 1200 ( 8 lines) Grams: Goodaxiom, Wembley, England

DEPENDABLE RELAY CO. LTD.

8A AINGER RD., CAMDEN TOWN, LONDON, N.W.3. PRImrose 8161 Head office, I2o Tottenham Street, W.I

## Have you a Relay problem?

## TRANSISTOR RELAYS

PACKAGED UNITS ready to connect to any A.C. Mains. Fitted $2 \mathrm{C} / \mathrm{O} .5 \mathrm{amp}$. and screw-type terminal outlets. Sensitivity 300 micro amps. and 3 micro amps.

> HUNDREDS OF USES including:-
> OVEN CONTROL
> CONTACT THERMOMETERS BRIDGE CIRCUITS
> PHOTO-ELECTRIC CELLLS
> - LIQUID CONTROL
> etc., etc.

## P.O. TYPE 3000 \& 600 RELAYS

Manufactured to your specification to Post Office or Interservice standards.

## Biver

variablehigh power



The SAVAGE 10KW AMPLIFIER is designed to meet the high power drive requirements of large vibrators. It has an output of 10 KW (continuous sine wave rating) over the frequency band $40 \mathrm{c} / \mathrm{s}$. to $10 \mathrm{Kc} / \mathrm{s}$. The output has eight secondary sections of $41 \frac{1}{4} \mathrm{~V}$. each which may be cross connected to give a range of output voltages from $41 \frac{4}{\mathrm{~V}}$. to 330 V . Accessibility of components and ease of installation are features of this very compact 10 KW amplifier.

## SAVAGE AMPLIFIERS

are suitable for driving 60 cycle American equipment; 400-2500 cycles for aircraft equipment; ultrasonic power supplies for cleaning, drilling, etc.

If you have any problems regarding amplifiers, consult our Technical Department.

## W. BRYAN SAVAGE LTD

Designers and manufacturers of amplifiers and vibrators for modern industry

> 17 Stratton Street, London, W. 1 Telephone: GROsvenor 1926

## Now what can



## you wouldn't know?

As a reader of this paper, you'll already be well aware of the importance of the British National Radio and Television Show. You'll know that unfailingly, year after year, it's an event that mustn't be missed. You'll know what to expect-eagerly.
You'll know that, again this year, there'll be developments of tremendous interest to you . . . in Radio and Television . . . in Records and Record-players (with increased emphasis upon the new sound-world of Stereo) . . . in the fields of Telecommunications and Electronics. You'll know that you're going to enjoy yourself more than ever before. And you'll be right.

## THE RADIO AND TELEVISION SHOW <br> EARLS COURT • LONDON

## AUGUST 26 TO SEPTEMBER 5



## For HICH SENSITIVITY! HICHEST FIDELITY! MAXIMUM RELIABILITY! REASONABLE COST!

The L45. A compact High Quality 4-5 watt amplifier
Size approx. $7-5-5$ fin. high. Sensitivity is 28 millivolts so that the input socket can be used for either microphone or gram. tape, radio ouner, eec. B.V.A. valves used are ECC83. EL84, EZ90, Conerols are: Vol. Treble and Bass with mains switch. The Tone controls provide full compensation for long playing records. Outpur matching for 3 ohm loudspeaker Retail price $\mathbf{\ell 5 / 1 9 / 6 \text { . }}$
THE LT45 TAPE DECK AMPLIFIER. A complete unit (power pack and oscillator incorporated) ready for connection to A.C. mains. 3 ohm loudspeaker and practically any make of deck. Negative feedback equalization adjustment by multi-position switch for $31,7 t$ and 15 in . per set. Retail price 12 gns.
THE LG3 GRAM AMPLIFIER. Overall size $6 t \times 4 t \times 2 \mathrm{fin}$. Controls: Vol. and Tone (with mains switch). Output for $2-3$ ohm loudspeaker. All above for $200-250$ v. 50 c.p.s. A.C. mains. Retail price 55/9.
15050 WATT AMPLIFIER. Size approx. $13 \times 9 \times 7 \mathrm{in}$. Sensitivity $25 \mathrm{~m} . \mathrm{v}$. Outputs for 3 and 15 ohm speakers. Retail Price 19 gns .
LI0 10.12 WATT HIGH FIDELITY. AMPLIFIER with separate pre-amplifier. Retail price 15 gns.
L3/3 STEREOPHONIC AMPLIFIER Sensitivity $150 \mathrm{m.v}$. Output 3 watts on each channel. Retail 7 gns.

Tel.: Leeds 63-0126 (3 lines)

## THE NU-LIFE TEL At your service!

## SERVICE "A"

The normal service you have enjoyed for so many years in which we rebuild the electron gun.

## GREATLY REDUCED

 PRICES12in. or 14 in . from $E 510 \quad 0$ 15in., 16in. or 17 in.
from ................ 67 0 0 2 lin. from ........... 10100

## SERVICE "B"

We supply a virtually new tube, new in every respect other than the bulb which is rescreened In every case and fitted with a new English gun. Aluminised tubes will be re-aluminised.

PRICES
12 in . or $14 \mathrm{in} \ldots \ldots . .6700$
(Aluminised 8710 0)
17in. ............... 88 8 0
(Aluminised $£ 8 \quad 17 \quad 6$ )

Trade discounts allowed.

## NOW A 12 MONTH'S GUARANTEE

Most makes and types of tubes supplied from stock. Bulk discounts arranged:

Our long experlence ensures first class workmanship coupled with full use of all the latest rechniques. Price list and further information from:

## NU-LIFE TELETUBES

## AUDIO OSCILLATOR TYPE AO50

 covering 20 cps to $200 \mathrm{kc} / \mathrm{s}$ in four ranges. £10 plus 4/6 carr./packing.VALVE MILLIVOLTMETER TYPE VV60 measiures 1 milli-volt to 100 volts rms over the range $20-200,000 \mathrm{cps}$.
£14 plus 4/6 carr./packing.

## CAPACITY AND RESISTANGE BRIDGE TYPE CR50

measures 10 pF to 100 mFd and 1 ohm to 10 Megohms plus capacitor leakage test.
£8/2/6 plus $4 / 6$ carr./packing.
All these instruments are complete with valves and instructions ready for use from $200 / 250$ volt 50 cycle supply.

Full details sent on receipt of stamped addressed envelope.
gRaYSHAW INSTRUMENTS

126 Sandgate High Street, Folkestone, Kent

Tol. : FOLKEsTONE 78818

## be TRANSISTORWISE! be POCKET-WISE !


-RECO" MIDDY TRANSISTOR ONE KIT iMed and Long or Med. and Bhort Waves). Bize: 4 hip $\times$ sifin. $\times$ In. Variable senzitivity cuntrol. High gain Vari Q ferrite rod aerial. "Sonotone" dynsmic min. earpiece Months of listening pleasure from pencell battery, 37'6. D.p. 2 -

## "RECO" PUSH-PULL FIVE. M/L WAVES

Indoors or outdoors this brilliant radio bringe Light, Home and Continental stationt to your Anger tips. 5 tranaintors including OC45 R.F. stage. Pale blue case with red apk. grille. Complete w/th $2 / \mathrm{hn}$. M/C apeakel (Celestion) $£ 8 / 7 / 6$, p.p. 2/6. Data $2 / 6$. Size: $6 \frac{1 \mathrm{jn}}{} \times 4 \mathrm{im} . \times 1 \mathrm{in}$

"RECO" TRANSIGEN THREE KIT
Med, and Long wapes or Med and Trawler Band), Size 5 inn. $\times 4 \mathrm{Jin} . \times 1 \mathrm{fin}$. Entirely self contained external aerial reg.). R.F. stage with Muliard OC 45 trankstor followed by two high gain transirtor etages On teat uspeu in Third, Home, Light, Radio Luxembours after dark and many othere at sood listenug level. The recelver was tested at appros, 50 miles irom nearept super dynamic min. earphone with insert or bal. $\omega \mathrm{rm}$. reproducer. Pencell bstters for montha of listening pleasure. $75 /$ - p.p. 2/8.

NEW "RECO" SUPER TRANSIGEN FOUR TRANSISTOR KIT
As above but with $2 j \mathrm{ha}$. Celeation moving coll speaker. $\Delta$ fine portable in jale blue polsstgrene case wlth contrasting red spkr. grille. Complete with pencell hatieriea,
easy bwild practical wiring dagrams. $98 / 6$, p.p. $2 / 6$.

"RECO" SUPER SPECIAL THREE KIT (Med. Long and two Short Wave bands). " Sonotone" min. earplece or bal. arm. reproducer which in ress of good slgnal reception may be mounted umder red contrasting grille. Bedsitivity control for distant stations. A fibe kit, complete
build diagrams. $75 /-$, p.p. $2 / 6$.
"RECO" PUSH-PULL FOUR KIT As above, but with peah-pull output stage snd $2 f i n$. moving coil apeaker which fits undor ren contrasting 1 itn. Complete with dats. 99/6, p.p. $2 / 6$. Practlcal wiring diagrams, parts price list. circuits. 1/3 each.

## AFTER SALES SERVICE

RADIO EXCHANGE CO. 27 MARPUR ST., BEDFORD. Tel. 2367. Closed I o/c Saturdays.
high performance dual impedance the

ribbon microphone
designed and manufactured in England

A worthy link in the chain between live sound and perfect recording, the Cadenza ribbon microphone has been designed to give performance of the level of studio equipment, while remaining in the medium price range.
It can be used as either a low or high impedance microphone to suitany type of equipment and to give almost unlimited cable length without line transformers.
The entirely new arrangement of ribbon and magnet gives an output which is flat to within close limits over the wide range from $50 \mathrm{c} . \mathrm{p} . \mathrm{s}$. to 12,000 c.p.s. This enables the user to record the full gamut of symphony orchestra, cathedral organ, or the strong rhythmic bass and percussive highlights which add so much to the drive of jazzeven the solo piano, normally the most difficult instrument, is faithfully reproduced.


Microphone with dual impedance head in presentation case, 8t gns.

Microphone (dual mpedance head) and tripod desk stand. with 11 ft _of cable, 10 gns .

Send now for Illustrated folder (FC6, or ask your radio dealer

## Simon Sound Service Lid

46-50 George Street, London W1 WELbeck 2371

## CONSTRUCTORS' PARCEL FOR TRANSISTOR POCKET RADIO

Size $5 \frac{1}{2} \times 3 \frac{1}{4} \times 1 \frac{1}{4}$ in SPECIAL PRICE 55/~ P.P. $2 / 6$ Component lists supplied.

* Attractive moulded cabinet (blue, red or cream) with gold, 12/6 $\star$ J.B. 208 and 176 pf screened tuning gang. $10 / 6$. $\star 3 \mathrm{ohm}$ miniature $2 \frac{1}{2} \mathrm{in}$. Speaker to ft . $21 / 6$. $\star 20: 1$ output Transformer to match Speaker. $10 /$ * 5 transistor printed circuit board, 5/6.
* Circuit of 5 transistor radio. I/-.

THE IDEAL BASI8 FOR A PỌCKET TRANSISTOR RADIO

## THE "TRANSISTOR-8" COMBINED CAR-RADIO/PORTABLE

$\star$ Medium and long wave tuning. $\star$ All EDISWAN transistors. * Internal Ferrite aerial. $\star 250 \mathrm{~mW}$ output push-pull. $\star 7 \times 4$ in. high flux speaker. $\star$ Ready drilled paxolin chassis. * Transistor holders supplied. * Point to point layout diagrams. $\star$ Economical and highly sensitive $\star$ Size $9 \times 7 \times 3$ in.; weight 41b.

Complete set of components including cabinet, speaker, etc.

£11. 10.0 P.P. $2 / 6$.

All parts sold separately.
Car Radio Conversion 8/-. AVC $4 / 3$. 325 mW version, $£ 13 / 10 /$. P.P. $2 / 6$.

PUSH-PULL
SUPERHET
Now in its third year!

## FULL COMPREHENSIVE INSTRUCTION BOOKLET FREE

## FOR USE WITH TRANSISTOR-8 ETC.

## CAR RADIO 2 Watt Amplifier

A permanent power transistor stage for your car etc.

* Works from 12 volt battery supply.
* Output up to 2 watts audio.
* Includes high flux $7 \times 4$ speaker.
* MAY BE USED WITH ANY BATTERY PORTABLE USING A 3 to 5 ohm SPEAKER. Complete set of parts 65/-. P.P. 2/6. Built and tested 77/6. P.P. $2 / 6$.

All components sold separately. Free diagram and list.

## THE TELETROH "TRANSIDYNE"


$\star 6$ EDISWAN TRANSISTORS * TCC printed circuit. * 120 mW output push-pull. * Med. and long waves. * Components identifred. * Long-life batteries. * Long-life batceries. * $2 \frac{1}{2}$ in. high flux Speaker.

Size $61 \times 3 \frac{3}{2} \times 1 \frac{1}{2}$ in. Weight 20 ozs
All components for construetion including cabinet, printed circuit, etc., can be supplied for
\&11.19.6 P.P. 2/6.
All parts sold separately.
SEND Sd, FORGIRCUIT, PLANSANDPRIGES

## SIX TRANSISTOR POCKET SUPERHET

$\star$ Medium and Long Wave tuning. $\star 6$ Selected Transistors.
$\star$ Easy to follow Printed Circuit.太 100 mW output on new push-pull. $\star$ Internal Ferrite Aerial. * 30 ohms $2 \frac{1}{2}$ in. Speaker.

* Comprehensive Instruction Booklet. t Low consumption on 9 -volt battery.
* Attractive Plastic Cabinet with gold (red, blue and white colours).
$\star$ Easy to Build.


This set is recommended as an ideal Portable Highly sensitive, selective, containing the latest features giving simplicity in construction with amazing results.

All items supplied special inclusive price of 29. 19 . 6 Р.р. $2 / 6$.

ALL COMPONENTS SOLD SEPARATELY. SEND FOR FREE LIST. Instruction Book, 5/6.

I. PIRANI CONTROL UNIT Includes:

* Sin . 1 mA . movement meter with mirrored scale.
\& Fully set Wheatstone Bridge.
* Complete in best quality caso.
* Built-in galvo-shunt.


## ONLY 55/19/6 P.P.5/-

Including Circuit diagram.
EVERSHED VIGNOLES WEE MEGGER 500 volt 50 Meg . BRAND NEW sealed in cartons with leather case and handbook.

812/10/- P.P. $2 / 6$
100 -volt type used but in new condition. With leather case.

$$
86 \begin{gathered}
\text { Post } \\
\text { fres }
\end{gathered}
$$

## 1355 RECEIVERS <br> Used condition. $27 / 6$

## RADAR UNIT TYPE 168

Complete with the following valves 2-6C40; 832A; 0829B; 2-5R4G; 3-6AC7; 6V6GTO; 931 A photo multiplier with associated network. Also 2-blower motors. Input $30-115$ volt 400 to $2,600 \mathrm{c} / \mathrm{s}$. ed 26 v. d.c. BRAND NEW and boxed.
£6/10/= $\begin{gathered}\text { Post } \\ \text { ree }\end{gathered}$
RCA $6 \frac{1}{2}$-inch P.M. SPEAKER in Cabinet. With vol. control and 600 ohm Line Trans.

27/6 P.P. 2/6
RF UNITS TYPE 25 Switched Tuning 30 to $40 \mathrm{Mc} / \mathrm{s}$. Includes 3 SP61's. Carriage $2 / 6$
Type 26: Variable tuninge, 50 to

## 10/-

25/-
$65 \mathrm{Mc} / \mathrm{s}$. Including 2 EF54's and
(Circuits in stock for both types 9d, each.)
Complete with: $6-$ EF50; 5 -EA50; SP61. Relays, etc. 35/- p.i/6

I82A INDICATOR UNITS 67/6 ${ }_{5 i-1}^{\text {p.p. }}$

Containing EA50, VR91, CV66, VR65, Relay Containing EAS, P.P. $2 /$ -

## BARGAIN OFFER <br> Unused U.S.A. 90-volt batteries. Tapped at $67 \frac{1}{2}$ volt, 45 volt, $22 \frac{1}{2}$ volt. For use with pportables, etc. <br> $$
\text { ONC. } 5 /=\text { each } \begin{aligned} & \text { P.P. } \\ & \text { ONLY } \end{aligned}
$$ <br> PACKARD BELL PRE-AMP.

Complete with screened case with 6SL7GT: 28D7; relay, leads, jack plugs; handbook, etc. Sealed in carton.

$$
\text { ONLY } 12 / 6 \mathrm{P} \mathrm{P} / \mathrm{F}
$$

ADMIRALTY TEST SET TYPE 229. $600 \mathrm{Mc} / \mathrm{s}$. Brand new, in cases. $£ 5 / 10 /$-. P.P. $7 / 6$.

SCR522 TRANSMITTER/RECEIVER
All complete in new condition less valves.
35/- P.P. 5/-

## QUARTZ CRYSTALS

A large range of frequencies in stock from 100 $\mathrm{Ke} / \mathrm{s}$. upwards. Fundamentals. 54th and 72nd harmonics, etc. Send for NEW free complete list.

2. PIRANI DIFFERENTIAL LEAK DETECTOR
Includes:

+ 2-arm Wheatstone Bridge.
* Masses of high quality switches and controls.
* Best quality wood case
* Galvo-shunt.
* Circuit diagram.
oner 59/6 p.p. 5/-

PYE $45 \mathrm{Mc} / \mathrm{s}$ STRIP TYPE 3583
Complete with 12 valves. 10-EF50; EB34. EA50, with modification data.

$$
39 / 66^{\substack{\text { carimg } \\ 5 / 68}}
$$

## " 372 " MINIATURE IF STRIP 9.72 Mc/s



The ideal F.M. conversion unit as described in May, 1957. Com lete with 6 valves three EF91's, two EF92's and one E891.I.I.F.T's, etc., in absolutely new condition With eircuit and conversion data
$12 / 6$ (less vilues) $37 / 6$ (with valves) Postage and Packing $2 / 6$ (either type). FM AT ITS CHEAPEST

## ROTARY CONVERTER

24 v. D.C. to 230 v. A.C. 50 cyeles. 100 watts. Brand new and unused.

## 426 CONTROL UNIT

Includes: 4-EF50; 2-SP61; EB34; multibank switches; pots; transformer, etc.

onty 30/- P.P.3/-



3. PYE SCALAMP GALVANOMETER Includes

* Pye Scalamp Galvo type 2000.

स Mains or battery operation.
स Mains or battery operation.
Sensitivity (typical) $33.5 \mathrm{~mm} / \mu \mathrm{A}$.
$0.670 \mathrm{~mm} / \mu \mathrm{V}$.
ONLY $312 / 10 /=$ P.P. 51-.
WAVE-GUIDE WATTMETER
Type W8921 10 cm . Complete in transit case BRAND NEW $95 / 10 /=\quad \begin{aligned} & \text { P.P. } \\ & 7 / 6\end{aligned}$
 100 to $120 \mathrm{Mc} / \mathrm{s}$. IF frequency $9.72 \mathrm{Mc} / \mathrm{s}$;
100 Bandwidth $40 \mathrm{Ke} / \mathrm{s}$, 4 channal erystal control-, led VHF airborne trans/rec. Complete with 21 valves, transmitting crystal and $24-\mathrm{v}$. rotary unit, all contained in metal case. In new condition with full circuit diagram. Circuits sold separately, $\quad\{8 / 19 / 6$ P.P.
$1 / 9$ post free.

1986. Frequency range $124.5 / 156 \mathrm{Me} / \mathrm{s}$. IF
frequency $9.72 \mathrm{Mc} / \mathrm{s}$ : Bandwidth $23 \mathrm{Kc} / \mathrm{s}$. frequency $9.72 \mathrm{Mc} / \mathrm{s}$; Bandwidth $23 \mathrm{Kc} / \mathrm{s}$.


IF Amplifier .... 476
24 v. Rotary unit
10 -way Control
10 -way Control
unit
All the above ara in absolute new condition. 9 d .
Full circuits available, $1 / 9$ post free.
Mn n
CRYSTAL CALIBRATOR For No. 19 Set $10 \mathrm{Ke} / \mathrm{s}$; $100 \mathrm{Ke} / \mathrm{s}$; I $\mathrm{Mc} / \mathrm{s}$; spot frequencies; erystal controlled oscillators; includes 5BRANDNEW HA/19/6 Post BRANDNEW S4/19/6 Post

## MIXER UNIT TYPE 79

Frequency range 172 to $190 \mathrm{Mc} / \mathrm{s}$. Comprising VCRI39A Cath. ray tubes: 7-EF50; EF55; 4 EA50; 2-EB91; 5U4; VU120 and EC52. 5 tandard main input $200-250$ volts $50 \mathrm{c} / \mathrm{s}$. Ideal Scope Basis.

## 25/10/

WALKIE/TALKIE TYPE 38 TRANSMITTER
Complete with 5 valves. In new condition These Sets are sold without Guarantee, but are serviceable. $22 / 6 ~ P . P . ~$
$2 / 6$
H/phone $7 / 6$ pair Junction Box 2/6. Throat Mike 4/6. Canvas Bag 4/\%. Aerial Rod 2/6.
TRANSMITTER
Army Type 17 Mk. II Complete with Valves, High Resistance Headphones, handmike and instruction Book and sircuit. Frequency
Range 44.0 to $61 \mathrm{Mc} / \mathrm{s}$
Range approximately
to 8 miles. Power
requirements : Stand
rd 120 . H.t. and
2 v. L.T.
Ideal for Civil Defence and com- 45/- P.P.
municarions. BRAND NEW 44-61 Mc/s. Calibrated Wavemeter. for same, 10/- extrs.
RADIO AND TV VALVES, ETC. OVER 400 DIFFERENT TYPES IN STOCK: SEND FOR NEW FREE LIST.


MUIRHEAD PRECISION， 4 bank．I pole， 24 position Stud Switch．Heavy duty eontacts，brand new，original boxes．Price 17／6 each．P．\＆P．I／－．


SOUND POWER TELEPHONE UNIT． No batteries required．Fitted with neon indicator lamp and high pitched buzzer， operated by built－in generator．Entirely self－contained，ex Admiralty．Rebuilt and guaranteed working．Effective up to half a mile，waterproof．
E3 Unit or $\mathbf{E 5 / 1 7 / 6}$ pr．Carr．7／6．Master Units to take five extensions also avaliable．$£ 4$ each．
SOUND POWER TELEPHONE HAND－ SETS．New， $17 / 6$ each．P．\＆P．2／－．

AERIAL AS ILLUSTRATED．Ideal for Car．Overall length 33in．，khaki， wish flexible shaft which enables the aerial to be fixed firmly in any position． Price $8 / 6$ ，plus P．\＆P． $1 / 6$ ．
NEW WIRE WOUND RHEO． STAT ON CERAMIC． 58 ohms， 50 watt，complete with instrument knob． Price 8／6．P．\＆P．1／6．

NEW 10 watt DUAL VOLUME CONTROL 25 ohms，plus 25 ohms． $7 / 6$ each．P．\＆P．1／6．

MUIRHEAD VENIER DRIVE．Scaled $0-180$ degrees，ratio 31／1，dia．3in．，as fitted to R．F． 26 units．Complete with lampholder．In manufacturers＇origina！ packing．New，8／6 each．P．\＆P．I／6．

TRIPODS．Solid wooden legs 38ins． long，metal top and metal roes．As new．
Price $10 / 6$ Price $10 / 6$ each，plus 3／－carr．

HIGH SPEED RELAY．Siemens，two bobbins， 1,000 ohms each．New， $10 / 6$ each． P．\＆P． $1 /$－．

U．S．A． 27 －volt 4 －pole CHANGE－ OVER RELAYS．Brand new and boxed， 5／6 each．P．\＆P．6d．

PACKARD BELL RELAYS． $12 / 24$ volt， 650 ohms coll， 2 pole chargeover， 1.5 amp contacts．Brand new．Price $5 / 6$ each．P．\＆P． con
$6 d$.


MINIATURE MOVING COIL DIFFERENTIAL RELAY．Two coils 350 ohms each．Operating current minimum 140 microamp，nominal 400 microamp，maxi－ mum 8 milliamp．One pole two way，or，centre stable． Two way contact current 100 mA at 50 V A．C．or D．C． Size $1 \frac{1}{4} \times \frac{2}{8} \times \frac{7}{3} \mathrm{in}$ ．Price： $22 / 6$ each．
EVERSHED AND VIGNOLES．Circuit testing Ohms Meter，pattern＂S＂ complete with testing prods． inst．book，etc．Two ranges： 0－3 and 0－30 ohms．Brand new，guaranteed periect，as itlus．Offered at fraction of maker＇s price．$\in 4 / 17 / 6$ each． P．\＆P． $2 / 6$ ．
EVERSHED AND VIG－ NOLES＂Wee Megger＂ 500 volt in leather case． Guaranteed perfect．Price f13／15／－．P．\＆P． $2 / 6$. TRIPLE RANGE VOLT－ METER，0－5 25－250V D．C． M／C 3 tin．meter 3 in ．scale， mounted in bakelite carrying case $7 \frac{1}{2}$ in．$\times 4 \frac{1}{2}$ in．$\times 3$ in．com－ plete with handle and test leads． $27 / 6$ each．P．\＆P． $2 /-$ ．

AUTO TRANSFORMERS，step up，step down， 110－200－220－240 v．Fully shrouded．Now．
300 watt type $£ 2 / 2 /$ each．P．\＆P．2／6． 500 watt type f3／3／－each．P．\＆P．3／9．1，000 watt type 64／4／－each P．\＆P．6／6．Also 60 watts， $19 / 6$ each．Plus P．\＆P．2／－．


CERAMIC PRECISION SWITCH 2 pole， 6 way， 4 banks．New in manufacturers＇boxes．Price： $10 / 6$ each． P．\＆P． $1 / 6$ ．


MUIRHEAD PRECISION KEY SWITCHES．LOW capacizance， 4 single pole e／o each side．Brand new． Chrome－plated bezel．Price $12 / 6$ each．P．\＆P，I／－．


20 WAY STRIP contalning standard Post Office tele－ phone Jack Sockets，overall size $11 \times 3 \frac{1}{2} \times \frac{1}{2}$ in．New． Price 15／－each．P．\＆P． $1 / 6$ ．


PLATE TRANSFORMER of very best U．S．A．make，brand new，original manu－ facturer＇s cases．Input tapped at 1901 $210 / 230 / 250 \mathrm{~V}$ ．Ourput $2250-0250$ centre tapped 400 mA Neo－2250， 761 l ．size 13 in 9 in ．Nett weight $66 / 10 /=$ saize $13 \mathrm{in} . \times 9 \mathrm{in}$ ．$\times 6 \frac{6}{2} \mathrm{in}$ ．Price 6／10／－each．plus carr． $10 /-$

## METERS BRAND NEW GUARANTEED PERFECT

## Charging Types

$2 t$ amp．DC M．I． 2 in ．fl．rnd． $7 / 6$ 5 amp ．D．C．M．I． $2 \frac{1}{2} \mathrm{in}$ ．fi．rnd． $11 / 6$ $7 \frac{1}{2} \mathrm{in}$ ．D．C．M．I． $3 \frac{1}{2}$ in．proj．rnd． $12 / 6$ 9 amp．D．C．Hot Wire W．R． 2⿺𠃊⿻丷木斤丶丶in，fl．rnd．

## Voltmeters

12 v．D．C．M．C． $2 \frac{1}{2}$ in．proj．rnd． 20 V．D．C．M．C． 2 in．pl．sq．．．．．．． 25 Volt D．C．M．C． 2 in ，fl．rnd． 30 Volt M．i．Jin．proj．rnd． 40 Vole M．C． 2 in．fl．sq．．．．．．．．． 250 Vole A．C．rectified moving 250 volt A．C．rectified moving 300 Volt A．C．M．I． 2 tin．fi．rnd 300 Volt A．C．M． 4 in．fl． Millammeters
5 mA ．M．C． 2 in ．f1．sq．．．．．．．．．．．． $12 / 6$ 30 mA ．M．C． $2 \frac{1}{7} \mathrm{in}$ ．f．rnd．．．．．．． 50 mA ．M．C． 2 in．M．sq． 200 mA ．M．C． $2 \frac{1}{2}$ in．fl．rnd． 500 mA ．M．O． $2 \frac{1}{2} \mathrm{in}$ ．fl．rnd． 1 MA．M．C． 2 in ，sq．fl．
0－1 MA Flush mounting Pullen M．C．Meter $\mathbf{4 " ~}^{\circ} 5^{5}$ ，correctly Scaled，Price．．

Thermo－coupled
350 mA ． 2 in ．rnd．plug－in．．．．．．3／6 500 mA． 2 in．rnd．plug－in．．． POSTAGE ON ALL METERS $1 /-$ U．S．A．PRECISION SERIES 834S MULTIRANGE TESTERS for A．C．and D．C．volts，ohms and milli－ amps．，basic movement 400 micro－ a mps．，in wooden carrying case，com－ plete with test prods，new batteries， guaranteed perfect．Price $65 / 19 / 6$ ． P．\＆P．2／6．


MIDGET ROTARY TRANSFORM ERS． 2 tin．dia．$x 4 \frac{1}{2}$ in．input II． 5 volt Ourput $310 / 365$ voits at 30 mA ．Brand new．12／6 each．P．\＆P． $1 / 6$
DYNAMOTOR（Rotary Converter） 6 volt in． 250 volt at 100 mA ．，ex new equipment，25／－each．P．\＆P．3／－， MICROPHONES－NEW．Th British，magnetic，4／6．P．\＆P．1／－． HEADPHONES． 4,000 ohms，im－ ported，new， $15 /=$


MINIATURE UNISELECTOR SWITCH, two banks of ten plus home contacts, one bank continuous of normal. 30 ohms coil for 24 volt operation. Brand new, manufacturers' packing. Price 22/6 each. P. \& P. 2/6. Illustrations above and below.


MINIATURE P.M. MOTOR $12 / 24$ ocle raversible, Itin. dia. New Price 9/6 osch. P. \& P. 1/-


TWELVE PLATE F.W. BRIDGE CONNECTED RECTIFIER mounted on 200/250 volt A.C. input eransformer. Output $36 / 40$ vole D.C. as 1.2 amps. New, perfect. Price 16/6. P. \& P. 3/6.

$200 / 250$. . A.C. MOTORS. New I/8O h.p., 2 drives, direct 6000 r.p.m., reduc-
tion 300 r.p.m. $22 / 6$ each. P. \& P. $2 / 6$.


VARIABLE VOLTAGE TRANSFORMERS, as illustrated above. Brand new in manufacturers' original cases. Inpur 230-vole A.C., ourpur variable from 0 to 270 volt at 9 amperes. Price \& 15 each, plus carr. 12/6.


NEW UNCHARGED UNFILLED 12 VOLT ACCUMULATOR 9 ampere in unspillable plastic cases. Comprises $6 \times 2$ volt separate coils connected by terminal strips. $6 \times 5 \frac{1}{\frac{1}{2}} \times 4 \frac{4}{4}$ in. over terminals. Price $19 /-$, plus P. \& P. 2/9. Wooden carrying case for same with lid and strap, price $3 / 6$.


VENNER 8-day clockwork Time Switch. Contacts I amp. 230 volt. 24 hour phase, $t$ hour divisions, allows setting for one make and one break to be made every 24 hours, complete with key. Used but guaranteed perfect. Price $27 / 6$ each. P. \& P. $1 / 6$.


CONSTANT VOLTAGE TRANSFORMER by Advanced Components Led., Type No. MT. 140 A. Input $190 / 260$ volt 50 cycles. Constant output at 230 volt 150 watt. Unused, guaranteed perfect. Price: $\mathbf{6} / 5 /$.. Carr. in England $6 / 6$.


NEW GALVANOMETERS, solid brass, 3 in . dial, in polished wooden case. 70 degree scale, 35 mA either side. 100 ohm coil. Price: $12 / 6$ each. P. \& P. $1 / 6$.


NEW CAR. PENTER'S PYPE POL ARISED REARISED RELAY 25 1,685 ohms. Price 22/6 ea P. \& P. $1 /-$

## NEW

 MOVING COIL HEADSETS, complete with Tannoy carbon hand microphone, with plug suitable for No. 19 set. Price: $12 / 6$ P. \& each p. ${ }^{\text {plus }}$

BRAND NEW SELENIUM FULL WAVE BRIDGE TYPE RECTIFIERS. in manufacturers' original packing. D.C. output 36 v . 10 amp., made up of $12 x$ 110 mm . dial plazes. These fitred in cooling funnel (removable), size 11 in. $x \sin . x$ $4 \frac{1}{2} \mathrm{in}$. Price 45/-. P. \& P. $3 / 3$.

WE ARE EXPERTS AT OVERSEAS PACKING AND SHIPPING! SERVICE TRADING Co.

PERSONAL CALLERS ONLY: 9 Little Newport Street, London, W.C.2. Tel; GER 0576 ALL MAIL ORDERS: (Early Closing Thursday) 47-49 High Street, Kingston-on-Thames. Telephone KINgston 4.585


All U.K. orders below $10 /-$, P. \& P. I/-; over 10/-, $1 / 6$; orders over $\mathcal{L 2}$ P. \& P. free. Overseas postage extra at cost.

BRAND NEW ORIGINAL SPARE PARTS
FOR AR88 RECEIVERS
Please see advertisement December issue.
Complete set of strong aerial rods (Ameri-
can). Screw-in type MP49, 50, 51, 52, 53. cotal length 15 ft . 10 in ., top diameter 0.615 in ., bottom diameter 0.185 in , together with matched aerial base. MP37 with ceramic insulator, ideal for car or roof insulation E2/10/-, post free.
High Resistance Headphones. 4,000 ohms. Brand new, ex W.D., boxed. $10 / 6$ per pair. P. \& P. I/-.

Low Resistance Headphones, brand new, type CLR, 5/=; Balanced Armature, 7/6. P. \& P. I/-.

Modulation Transformers (U.S.A. Collins), primary imp. 6,000 ohms. C.T., secondary 6,000 ohms, 20 W., $9 / 6$ each, post free.
Microphone Transformers. Balance input 30 or 250 ohms. U.S.A. manufacture. $7 / 6$. P \& P $P 1 / 6$
Complete installation ILS. Consisting of transmitter, receiver, control unit, aerial, plugs, etc., $£ 22 / 10 /$-. Post free.
Signal Generator Type TS.14/AP. 3,200$3,370 \mathrm{Mc} / \mathrm{s}$. Fully guaranteed, £85.

Avominors in leather case, with leads, fully tested, $65 / 10 /$. Packing and carriage $2 / 6$ 813 Ceramic Valveholders $3 /$ e each. P. \& P. $1 / 6$.

Marconi Signal Generator. TFI44G $85 \mathrm{kc} / \mathrm{s}$., $25 \mathrm{Mc} / \mathrm{s}$. Made up to new standard. $\mathbb{£ 7 0}$, delivered free.
Telephone Handset. Standard G.P.O. type. New, 10/\%. P. \& P. 1/.
American Aerial Tuning Unit type $B C$ 729 B from BC 610 TX covering $2 \mathrm{Mc} / \mathrm{s} .-8 \mathrm{Mc} / \mathrm{s}$. New £5. Post free.
Rotary Convertor Unit Input 11.5-12.5 v. D.C. Outpur 300 v. 200 mA . D.C. $30 / \mathrm{m}$, postage and packing 15/-
Transceivers Type 68T. $3-5 \mathrm{Mc} / \mathrm{s}$. together with aerial rods, microphones, H.R. head phones, key, In full working order. $£ 6 / 15 /=$ P. \& P. 5/

## P. C. RADIO LTD. 170, GOLDHAWK RD.,

W. 12 SHEpherds Bush 4946

Output Power Meter, Type TSIIBRF. Frequency $20-750 \mathrm{Mc} / \mathrm{s}$. Power 5.500 w . Full working-with manual, 445 .
Mains Power Supply Unit for No. 19 wireless set. Made by RCA of Canada. 115 v. A.C. Brand new, €15. P. \& P. \&1.

Johnsons Transmitting Variable Condensers. $500 \mathrm{pF} ., 2,000 \mathrm{v.} 17 /$,6 . $50 \mathrm{pF} ., 3,500 \mathrm{v}$. . 22/6. Both brand new. P. \& P. 2/6.
Projection Lamps, Osram. 250 v. 500 w. meas. of glass bulb dia, $2 \frac{1}{2} \mathrm{in}$., length $4 \mathrm{in} ., 7 / 6$. P. \& P

Vacuum Condenser. 32,000 V. 50 pF., 25/Post free.
1.F. TRANSFORMERS. 4-5 Mc/s. American made in black crackle finish housing, $6 /-$ P. \& P. I/-.

CARBON INSET MICROPHONE. G.P.O. type $2 / 6$. P. \& P. I/-
Miniature Lead Acid Accumulator. 2 v 1.5 amp . hr. at the 10 hour rate. Size tin. $x$ $1 \frac{3}{4}$ in. $x$ lin., price 6/- P. \& P. 2/-
Thermo-couple Heating Element. 75 amp . in Bakelite housing. Made for aerial current meters DW5 2 (G.E. made) or other purposes, $10 / \%$. P. \& P. $1 /=$

PERSONAL CALLERS WELCOME

## TRANSFORMERS

COILS
large or small quantities
TRADE ENQUIRIES WELCOMED CHOKES
SPECIALISTS IN

## FINE WIRE WINDINGS

MINIATURE TRANSFORMERS, PICK-UP
CLOCK AND INSTRUMENT COILS, ETC
VACUUM IMPREGNATION TO APPROVED STANDARDS
ELECTRO-WINDS LTD.
CONTRACTOR TO G.P.O., M.O.S., ..E.B., ETC 123-5-7 PARCHMORE ROAD, THORNTON HEATH, SURREY LIVINGSTONE 2261 EST. 1933

## Vitreous Enamelled Resistors

R.C.S.C. Style RWV4-L

FULLY R.C.S.C. TYPE APPROVED, $10 \Omega$ to 22K $\Omega$, our RWV4-L style resistors conform to Inter-Services Spec. RCS 111.
Other styles available. R.C.S.C. type approval applied for.

| RCSC Style | $\begin{aligned} & \text { CGS } \\ & \text { Style } \end{aligned}$ | Rating in watts |  | Range |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Service | Commercial |  |
| RWV4.J <br> RWV4-K <br> RWV4-L | VPF4 <br> VPFIO <br> VPFI4 | $\begin{aligned} & 3 \\ & 4.5 \\ & 6 \end{aligned}$ | $\begin{array}{r} 4 \\ 10 \\ 14 \\ \hline \end{array}$ | $5 \Omega$ to $8 \mathrm{~K} \Omega$ $5 \Omega$ to $68 \mathrm{~K} \Omega$ $10 \Omega$ to $100 \mathrm{~K} \Omega$ |

THE C.G.S. RESISTANCE CO. EVERTON, LYMINGTON, HANTS. Tel. Milford-on-Sea 269 London Office: 30 Clarendon Rd., Harrow, Mddx. Tel. Harrow 4147

## C.R.T. ISOLATION TRANSFORMERS

For Cathode Ray Tubes having Heater/Cathode shortcireuit and for C. . . Tubes with falling emission.
and $50 \%$. Tapped mains primaries.
 $50 \%$. Suitable for all Cathode Ray Tubes, $21 /$

20Rs. All preterred values. 20\% 10 ohms to
 10 mer Ditto $5 \%, 9 \mathrm{~d}$, to $5 \mathrm{meg}, 10 \%, 6 \mathrm{~d}$, to 10 5 watt 10 watt $\left.\begin{array}{l}15 \text { watt }\end{array}\right\}$ WIRE-WOUND RESISTORS 5 watt 25 ohms- 10.000 ohms

WIRE-WOUND POTS, 8 w. Pre-set Min. T.V. Type
Knurled Slotted
knob. all values 25 ohms to 25 K . 3/- ea., 30 K . 50 K , $4 /$. to 2 Meg . $3 /$-.

WIREWOUND POTS Standard size Pots, 24 in Spindle High Grade. All Values 100 ohms to 50 K .,
$6 / 6 ; 100 \mathrm{~K}$. $7 / 6$. 6/6;
W/W EXT,

E/ W/W EXT. SPEAKER
CONTROL $10 \Omega$. $3 \%$
O/P TRANSFORMERS. Eeavy Duty $50 \mathrm{~mA}_{\text {. }}$. $4 / 6$. Multi-Push-pull 10 watts, 15/6. MULLARD' ' 510 " 6 k or $8 \mathrm{k} 30 /$. C.F. GHOKES 15/10 10 H $150 \mathrm{ma} .14 / \mathrm{o} .5 \mathrm{~F} 250 \mathrm{ma}$. 16/6.
MAINS TRANSFORMERS $200 / 250$ v. A.C.
STANDARD $250-0-250,80 \mathrm{~mA} .6 .3 \quad$ ₹. 8.5 a
 or 4 v. 2 a . Ditto 3500350
MINTATURE 220 7. $20 \mathrm{~mA} ., 6.8 \mathrm{\nabla} .18$

STANDARD, $250-0-250.65 \mathrm{~mA} .6 .3 \mathrm{v} .3 .5$ à
ALADDEN FORMERS and cores, tin. $8 \mathrm{~d} . ; 3 \mathrm{in}$. 10 d .
0.3in. FORMERS 5937/8 and Cans TV/2. 2 in, sq.
and
SLOW MOTION DRIVES. Epicyclio ratio $6: 1,2 / 3$.
TYANA, Mjdget Soldering Iron. $40 \mathrm{w} ., 16 / 9$.
REMPLO INSTRUMENT IRON, $25 \mathrm{w} ., 17 /$
MAINS DROPPERS. $3 \times 1$ inn. Three Adj. Sidery, .3 mmp 750 ohms., $4 / 3.2 \mathrm{amp} ., 1,000 \mathrm{ohms}, 4 / 3$.
fine Cord. 3 amp., 60 ohms, per foot, 2 amp., 100 ohms.
CRYSTAL MIKE INSERT by Acos $6 / 6$

$\begin{array}{lll}\text { MIKE TRANSF, } & 50: 1,3 / 9 \text { ea.; } 100: 1 \text { Potted, } 10 / 6 . \\ \text { LOUDSPEAKERS P.M. } 3 \text { OHM. } \\ 21 \text { in. and 5in., } 17 / 6 .\end{array}$ in. $\times 4 \mathrm{in}$. Rola, $18 / \mathrm{F}$. $\mathrm{Tin}^{2} . \times 4 \mathrm{in}$. Goodmans $21 /$
 II FI TWEETERS, 25/-. 12 in . Plessey, $30 /$ 12in. Baker 15 wt. 3 ohm and 15 ohm models $105 /$ -
12 in . 15 ohm Plessey 10 wt . with Tweeter, $97 / 6$.

## I.F. TRANSFORMERS 7/6 pair

 $465 \mathrm{ke} / \mathrm{s}$, slug tuning miniature can $2 \frac{1}{2} \times 1 \times 1 \mathrm{~lm}$. Higb Woarite M800 I.F. Miniature $465 \mathrm{Lc} / \mathrm{s}, 12 / 6$ pair.RYSTAL DIODE G.E.C. 2/-, GEX34, 4/-. 40 Circuits, 3/I.E. HEADPHONES, 4,000 ohms, brand new, $16 / 6$ pair SWITCEP OLEANER Fludd, squirt spout. $4 / 3$ tin
TWIN GANG CONDENSERS. 385 pf . Miniature, 1 in
 $9 /-$ l less trimmers, $8 /-$. Midget, 7/6: Single $50 \mathrm{pf}, 2 / 6$
100 ol., $150 \mathrm{pt},. 7 /$. Solid Dielectric $100,300,500 \mathrm{pf.} 3 / 6.$, 00 ol., 150 pl . $7 /$ /-. Solid Dielectric $100,300,500 \mathrm{pf}$. . $3 / 6$.
 9d. B7G with can, $1 / 6 ;$ B12A, $1 / 3$. BQA with can, $2 / 6$

 WAVECHANGE SWITCHES,
2 p. 2-way, 3 p. 2-way, zhort spinatio
5 p. 4 -way, 2 water, long spindle
2 p .6 -way, 4 p. 2-wny, 4 p. 3 -way long spindle
3 p .4 -way, 1 p. 2 -way
p. 4-way, 1 p, 12 -way, long spinde Wave change "MaKITS" 1 water, 8/6; 2 wafer, $12 / 6$ 3 water 16/-; ${ }^{4}$ water $10 / 6 ; 5$ water 23/-; 6 water $26 / 6$.
TOGGLE SWITCHES. S.P., 2/- D.P. 3/6; D.P.D.T., $4 /-$ MORSE KEYS, good quality, $2 / 6$.
SUB-MINIATURE ELECTROLYTICS (15 v.), 1, 2, 4, 5, 8 25, 50 mit . 3/- each.

GOLTOP TRANSISTORS
AUDiov. $10 / 15$ a. for ampli- R.F. V.6/R2 for oscillators, flers, and output, stages up frequency changers and I.F. pull. PRTCE $10 \%$ average. PRICE $18 /$ Power V15/10P, up to 10W with heat sink 20/-

| I959 RADIOGRAM CHASSIS |
| :---: | :---: |
| FINEST VALUE |

## B.S.R. MONARCH UA8 4-SPEED aUtomatic record changers

Brand new and fully cuaranteed 18 month
OUR PRICE $£ 6.19 .6$ post free STEREO MODEL UA8, £9/19/6. UA12, $211 / 17 / 6$

## AUTOCHANGER ACCESSORIES

Suitable player cabinets (uncut boards) ... 49/6 Amplifier player cabinets with cut boards 63/2 valve amplifier and $6 \frac{1}{2}$ in. speaker for above $72 / 6$ 3 valve amplifier and $6 \frac{1}{2}$ in. speaker for above $95 /-$
Wired and tested ready for use.


Teletron Transistor Pocket Radios Designer's Specified Kits
COMPANION PRINTED CIRCUIT 3 Local station receiver kit, $4 \frac{1}{2} \times 3 \times 1 \frac{1}{2} \mathrm{in}$. $£ 4.19 .6$ 3 Mullard or Goltop transistors: plans 6d.

Transidyne Superhet SIX $6 \times 4 \times 1 \frac{3}{3} \mathrm{in}$.
T.C.C. Printed Circuit, internal Ferrite aerial, Rola loudspeaker, push-pull output. All parts, cabinet and 6 Mullard or Goltop transistors \&11.19.6 Plans, etc., ${ }^{9}$
reject transistors supplied
S.W. 16 m EBANDS
L. W. $800 \mathrm{~m}-900 \mathrm{~m}$. Short-Medium-Long-Gram.
Fied back. 4.2 watts. Chassis calibrated. Chassis
BRAND NEW £9.10.0 carr 4
TERMS: Depoait $£ 5 / 5 /-$ and 5 monthly payments of 81 .
MATCHED SPEAKERS 8 in. $17 / 6 ; 10 \mathrm{in}$, 25/ $; 18 \mathrm{in} .30 /-$
GARRARD 4-3PEED RECORD
CHANGERS RC121/D MKII MODELS ?

THE HI-GAIN BAND 3 PRE-AMP
Cascode circult using Valve ECC84. I7db
gain. Kit $29 / 6$ Jess power; or $49 / 6$ with power pack kit. Plans only 6d.
Also Band I version same Prices.
Volume Controls
Long Midget size:

No 8witch. D.P. Sw.
Linear or Log ${ }^{4 / 9} 9$ Tracks.
COAXIAL PLUGS 1
80 ChBme Coaxial

1/6 DOUBLE SOCKET 1/3 BALANCED TWIN FEEDER OUTLET BOXES $4 / 6$ TWIN SCREENED BALANCED FEEDER $1 / 6$ yd. 80 ohm . TRIMMERS, Ceramic, $80,50,70$ pt. 9 d . 100 pl ., 150 pl . $1 / 3.250$ pl., $1 / 6.600$ pl., 750 pf., $1 / 9$. Phillips, $1 / \mathrm{m}$. ea.
ALUMINIUM CHASSIS. $18 \mathrm{~s} . \mathrm{w} . g$. Plain, nudrlled with 4 sides, riveted corners and jattice firing holes,
 and $18 \times 16 \times 8 \mathrm{in} ., 16 / 6$
BLACK CRACKLE PANT. Air drying, $3 /$ - thn.
P.V.O. CONN, WIRE, 8 colours, single or stranded, 2d, yd. NEON MAINS TESTER SCREWDRIVERS, 5/0
CORED SOLDER RADIOGRADE 3 yds. 9d, thb, $2 / 6$.
PAXOLIN SHEET. 8 in . x 10in., $1 / 6$. ION TRAPS $5 /$.

## "GEVAERT GEVASONOR

50\% Extra Long Play Plastic Tape, 1,700ft. 7in. Real $35 / \%$, 850ft. 5in. Reel $21 /$ SUPERIOR $1,200 \mathrm{ft}$. 7in. Plastic Tape $21 /$ Spare Reels Plastic, all sizes $3 /$ - ea
"INSTANT" Bulk Tape Eraser, 200/250 V. A.G.
For any make and size of tape $27 / 6$
BENTERCEL RECTIFIERS E.H.T. TYPE FLY BACK
 50 c.p.s. Voltage $30 \%$ of above.
MAINS TYPE. RM1, 125 v., 80 mA , $5 /=$; RN2, 100 mA 6/- RM2, $120 \mathrm{~mA}, 8 /$; RM4, 250 \% ; $275 \mathrm{~mA}, 16 \%$ $30 \mathrm{~mA}, 7 / 6 ; 60 \mathrm{~mA} ., 8 / 6 ; 85 \mathrm{~mA} ., 8 / 6 ; 200 \mathrm{~mA} ., 21 / \mathrm{F}$ $300 \mathrm{~mA} ., 876$; Full Wave 120 ma ., $15 / \omega^{\circ}$. "QLl. Wearite " type aj. dust core from $4 /$ each. Osmor Midget "Q" type adj. dust core from $4 /$ - each. Aul ranges, FERRTTE $\operatorname{con}$ I. AFRTALS M. W., $8 / 8 ; \mathrm{M}$. \& I . $12 / 6$ T.R.F. COMS A/HF 7/F pair. H.F. CHOKES, $2 / 6$. JASON F.M. TUNER COIL SET, 26/-. H.F. coil, aerial
coil, Oscillator coll, two I.F transformers 10.7 Mc/s., coil, Oscillator coll, two I.F transformers $10.7 \mathrm{Mc} / \mathrm{s}$.
Detector, transformer and heater, choke. Circult and Detector, transformer and heater, choke. Circult and
component book using four 6 AMO
$2 /$. TComplete kit with Jason Calibrated dial and 4 valves. $£ 6 / 15 /-$ Mercury 8 witched FM Tuner 5 valve Kit, $28 / 19 / 6$.
Mullard $3-3$ quality Amplifer. Ready built, s7/17/6 Mullard $3-3$ quality Ampliker. Ready built, Ez7/17/6. COMDENSERS. New Stock. .001 mid. 7 kV . T.0... $5 / 6, ~$
Ditto $20 \mathrm{kV} .9 / 6 ; 100 \mathrm{pI}$. to 500 pf . Micas, 6d., Tubula

 SILVER MICA CONDENSERS. $10 \% ~ 5 \mathrm{pt}$. to 500 pt ., $1 /$ :
 $1 \%$ DO pi. to 815 pf . $1 / 9 ; 1,000 \mathrm{pf}$. to $5,000 \mathrm{pf}, 2 / 2$

NEW ELECTROLYTICS. FAMOUS MAKES
TUBULAR


FULL WAVE BRIDGE SELENIUM RECTIFIERS. 2,6 or

 NEW and boxed VALVES 90-day guarantee $\begin{array}{ll}\text { NEW and boxed } & \text { VALVE } \\ \text { 1R5 } & 8 / 6 \mid 6 \mathrm{~L} 6 \mathrm{G} \\ \text { 10/6|EA50 }\end{array}$ 1/6/6EZS1 6/6. HABC8


8/6. HVR2
8/6 HV $10 / 6$ MU14
10/6MU1
$10 / 6$ P61
$12 / 6$ PCC84
$11 / 6$ PGF82 10/6 PCL82 12/6.PEN25 $7 / 6$ PL82
10/6 PY80 5:6 PY81 8/6 PY82 10/6 UBC41 $5 / 6$ UCR42
$5 / 6$ UF\&1 $10 / 6$ UL41 $10 / 6$ UY41 Semi-air spaced Polythene
insulated 3 in. dia. Stranded core. Ideal Band III 9 d .
Losses cut $50 \%$ FRINGE QUALITY
 r

WESTON MODEL 772 TESTMETER



COSSOR DOUBLE BEAM OSCILLOSCOPE
TYPE 339
Operation $110 / 200 / 250$ volts A.C 120 watts. Time Base 10 posi tions. 6 cps. to $250,000 \mathrm{cps}$ Amplifier 10 cps. to $2,000,000$ cps. Sensitivity, YI.Y2.3.1 V D.C. 1.1 v. rms. $X .2 .25$ v. D.C. .8 v . rms.
Supplied in good working order complete with handbook and circuit. E27/10/- each. P/P 61

## AN/ARN-5D GLIDE PATH RECEIVERS


relays, etc. Operation from $24 / 28$ volt D.C. Size $5 \frac{1}{2} \times 6 \frac{1}{2} \times 14 \mathrm{in}$. Supplied brand new and boxed. ONLY $59 / 6$ each. P/P 5/-

300FT. COPPER AERIAL WIRE. Ex-U.S.A. 3/6 per reel. P/P /-
LEACH AERIAL CHANGEOYER RELAYS 12 v. D.C. double pole transmitter type. New boxed, $7 / 6$ each. P/P 9d.
MARCONI SIGNAL GENERATORS TF-517. Frequency Goverage $10-18 \mathrm{Mc} / \mathrm{s}$. $33-58 \mathrm{Mc} / \mathrm{s}$. and $150-300 \mathrm{Mc} / \mathrm{s}$. Operation $200 / 250$ volt A.C. Supplied in good working order. f12/10/-each. P/P 10/-.
750-WATT AUTO TRANSFORMERS. EXAdmiralty, fine jobs. Tapped from 110 to 230 HEAVY DUTY MAINS ISO HRANYFORMERS 230 ISOLATION TRANSFORMERS. 230 volt input. Output 230 volts 5 amps. Housed in ventilated metal case, unused, 25 each. P/P $10 /$

MUPRHEAD PRECISION STUD SWITCHES
 4 banks, 1 pole 24 positions each bank. Self cleaning heavy duty contacts. Brand new, $17 / 6$ each. P/P 1/-. Ditto 2-bank, $10 / 6$.
AMERICAN SUPER LIGHTWEIGHT HEADPHONES. Res. 50 ohms. Fitted with rubber earmoulds, extremely good quality deal if used for long periods. $15 /-$ per pair brand new boxed. P/P $1 / 3$.

## C.R. 100 SPARES KITS

Complete set of new valves $2 \times 66,2$ U50, 2 DH63, 2 KT63, 6 KTW61. Also set of resistors, condensers, pots, roggle switch and output transformer.
boxed. $59 / 6$ each. P/P $4 / 6$.

## FERRANTI TESTMETERS

 TYPE $Q$D.C. A.C. D.C. Obms.


 600 vi . 800 ₹.
500 ohm per volt on all ranges B.S.S. first-grade aceuracy on all self contained ranges. Supplied in perfect working order complete with leads. battery, instructions and rexine covered carrying case. Price 72/6 each P/P $2 / 6$.

## ROTARY CONVERTERS <br> 12 v. D.C. input. 230 voit A.C. 150 Warts 50 cycles output case and fitted with voltage control slider resistance, switch plugs and A.C. mains polt age output check meter. Supplied in perfect condition, individually tested $£ 9 / 19 / 6$ each. P/P 10/-.

PARMEKO MAINS TRANSFORMERS. In put 230 volts. Output $350 / 0 / 350$ volts 150 mA 6.3 v. 4 amp. 5 v. 4 amp . Brand new, $32 / 6$ each P/P $2 / 6$.
R.II55 "N", TYPE SUPER SLOW MOTION DRIVES. Brand new $12 / 6$ each. P/P I/-.


POST OFFICE TELEPHONE HANDSETS Std. type. New, boxed, 12;6. P/P 1/3.
CRYSTAL MICROPHONE INSERTS. Only 4/6 each. P/P 6d.

## ALKALINE NIFE ACCUMULATORS

 Banks of 10 cells giving 12 v. 45 A.H. Unused in wooden crates. $65 / 10 /$ each. P/P used in wooden crates$7 / 6$. Size $26 \frac{1}{2} \times 8 \frac{1}{2} \times 5 \frac{1}{2}$ in

MIDGET NPFE ACCUMULATORS. Single units, 1.2v. for models etc., $2 / 3$ each. P/P9d I2-VOLT MOBILE AMPLIFIERS. Ex-Ad miralty. Mic. or gram. inputs. 10 watts output to 3 or 15 ohm speakers. Not new but in good working order, C8/19/6 each. P/P 5/-.
RCA ET 4336 PLATE TRANSFORMERS. Special release, brand new in original transit cases. Primary tapped $200 / 250 \mathrm{v} .50$ cycles. Secondary $2.000 / 0 / 2,000 \mathrm{v} .400 \mathrm{ma}$. tapped $1,500 / 0 / 1,500 \mathrm{v}$. Price $\mathrm{E} 12 / 10 /$ each. P/P $\mathbf{I} 1$.

YORTEXION PORTABLE AMPLIFIERS Operation from 20 ( 250 volts A.C. or 1 volts D.C. Separate inputs for microphone or gram. Qutput matched to 7.5, 15, 250 or 500 ohms. incorporates volume control and full trol. Valve line-up:
$6 Q 7,615,6 \vee 6,6 \vee 6,5 Z 4$. Size $8 \frac{1}{2} \times 6 \frac{1}{2} \times 17 \frac{1}{2} \mathrm{in}$. not brand new but supplied in perfeet work ing order, fully tested. © $10 / 10 /$ each. P/P 6/..

## AMERICAN MULTI-RANGE TESTMETERS



1,000 ohms per vole, 400 microamp basic movement
A.C.VOLTS D.C.VOLTS $\begin{array}{ll}2.5 \mathrm{v} . & 2.5 \\ 10 \mathrm{v} . & \end{array}$ $\begin{array}{ll}10 \mathrm{v} & 10 \mathrm{v} \\ 50 \mathrm{v} & 50 \mathrm{v} \\ 250 \mathrm{v} . & 250\end{array}$ $\begin{array}{ll}250 \mathrm{v} & 250 \mathrm{v} . \\ 1,000 \mathrm{v} & 1,000 \mathrm{v}\end{array}$ $5,000 \mathrm{v}$. $5,000 \mathrm{v}$. D.C. CURRENT RESIST'CE $\begin{array}{ll}1 \mathrm{ma} & 500 \text { ohms } \\ 10 \mathrm{ma} . & 100 \mathrm{k} . \text { ohms }\end{array}$ 100 ma . megohm I amp. DECIBELS
ALL BRAND NEW. COMPLETE WITH INTERNAL BATTERY, TEST PRODS AND INSTRUCTIONS, $£ 5 / 19 / 6$ EACH. P/P $3 /$.

## FURZEHILL BEAT FREQUENCY AUDIO OSCILLATORS <br> Frequency range 0 to 10,000 cycles. Ourpur $0-5 \mathrm{v}$. at 10 ohms or -50 v . at 600 ohms Separate 50 cycle check Set zero control. 200/250 volt A.C. operation. Supplied in perfect work order, fully tested. f9/19/6 each. P/P. 10/.



200/250 Output 250 vols. Is input and 6.3 volts 6 amps. Fully smoothed double choke and paper condensers, fused and fitted with input and output plugs. Sockets are provided on the front panel for meter check. Housed in grey metal case for standard 19 in . rack mounting. Supplied brand new. 59/6 each. P/P. 7/6.

## tinsley d.c. PHOTOCELL CURRENT AMPLIFIERS

These special units will give an amplification of 10,000 , i.e. 1 microamp input. 10 ma. output. Circult VONOMETER, photocell, GTIc thyratron and a vacuum thermal relay. Operation is from $200 / 250$ volts A.C. Housed in metal case size $20 \times 15 \times$ Price $f 10 / 10 / \mathrm{e}$ each. Carriage $12 / 6$.


UNIVERSAL AVOMETERS. Few available, reconditioned and in perfect condition. MODEL 40, $£ 10 / 10 /-$ each. MODEL 47A, \& $10 / 19 / 6$ each. MODEL 7 , el2/19/6 each. ع $10 / 19 / 6$
P/P $4 /-$.

HOOVER MIDGET ROTARY TRANSFORMERS. $2 \frac{1}{4} \times 4 \frac{1}{2}$ in. input 12 v . D.C. OutFORMERS. $2 \frac{1}{4} \times 4 \frac{1}{2}$ in. input 12 v . D.C. Output 310 V. 30 each. P/P $1 / 3$.
each. PIP VIB. put $120 \mathrm{v}, 30 \mathrm{ma}$. Fully smoothed, uses standard put 120 v. 30 ma. Fully smoothed, uses standard
Mallory 4 -pin vibrator. New and boxed. 12/6 Mallory 4 -pin
each. P/P 2/-.


BARGAIN GRAM MOTORS. Garrard centre drive motors complete with turntable, $220 / 250$ v. A.C. Adjustable mechanically from $0-45$ r.p.m. Only $22 / 6$ each. P/P $3 /$-.

## MINE DETECTORS No. 4a

Complete equipment comprises Search Head
Amplifier Headset, Control Box, Telescopic Rods for Search Head, Search Head Test Uni and Test Depth Measure and Haversack.
Operation is from a standard $60 \mathrm{v} . / \mathrm{l} .5 \mathrm{v}$. combined dry battery. The unit will detect ferrous or nonferrous metals to a depth of 24 in . giving maximum serrous metals be used at greater depths giving lower ignal but can be used at greater depths siving iowler output. Ideal for tracing undergra
Complete equipment supplied brand new in original Complete equipmete with circuit and operatio transit cases complete with circuit and operating
instructions.

Carriage 10/6

100-WATT ROTARY CONVERTORS. Input 24 v. D.C. Output 230 v. A.C. 50 cycles, 100 watts. Housed in grey metal case with input/output plugs. Supplied brand new input/ output plugs.
92/6 each. P/P $7 / 6$.

AMERICAN MOBILE RIG POWER SUPPLIES. 6v. D.C. Input. Outputs 500 v . 200 ma . 250 v., 70 ma . Utilises rotary trans. and vibrator. Fully smoothed. Brand new boxed, $4 / 10 /$ each. P/P $10 /-$


PARMEKOTABLE TOP TRANS. TOP
FORMERS, TRANS: FORMERS, input
230 v .50 cycles. Output $620 / 550 / 375$; Output $620 / 550 / 375 /$
$0 / 375 / 550 / 620$ volts 250 mA . Also $2-5$ 250 mA . Also 2-5 volt 3 amp. windings. Size: $6 \frac{7}{2} \times 6 \frac{1}{2} \times 5 \frac{1}{2}$ in;
Brand new only $45 /-$ Brand new only
each. P/P 5/-.

FERRANTI POT TED FILAMENT TRANSFORMERS. Hermetically sealed ceramic terminations. All new and boxed, Type 1: 200/250 v. input. Output 6.3 v C.T. 5.6 a. tapped 5 v . 6.3 v. C.T. $4 . B$ a. tapped 5 v. 6.3 v. CT. 1 a., tapped 4 v., $19 / 6$ each. Type 2: Input 200/250 8.3 a., tapped 5 v. 6.3 v . CT, I a., tapped 4 v . CT.3 v. CT, 9 a. 6.3 v $\begin{array}{lll}\mathrm{CT}, & 6 & 2 ., \\ \text { P/P } & 15 / 6 & \text { each. } \\ \text { 2/,. each type. }\end{array}$

GRESHAM POTTED LT. TRANSFORMER.

Input 230 volts. Output rapped 80 v ., 75 v . and 70 v . at 4 amps. Supplied brand new, boxed, 42/6 each. P/P 3/6.

HALLICRAFTER S. 27 COMMUNICATION RECEIVERS. F.M. or A.M. coverage 27 to $143 \mathrm{Mc} / \mathrm{s}$ on 3 bands. Incorporates S meter, var, sel. B.F.O., etc., output for phone meter, var. sel. B.F.O., etc.: output for phone
or speaker. Operation 110 or 230 volc A.C. Supplied reconditioned in perfect working Supplied recol- $632 / 10 /$ each. P/P $10 /-$
order.
R.IIS5 COMMUNICATION RECEIVERS. MODELS L \& N. Both models incorporating the trawler and. Supplied in sup plied in perrealigned fully realigne
rested,
withis each. STANDARD MODEL B. Fited with improved $N$ type drive, perfect order with improved N type drive, periect order
re-aligned, etc., $\mathbf{c 7 / 9 / 6}$ each. Carriage $7 / 6$ both types. COMBINED PO WER PACKAND OUTPUT STAGE, to suit either models, $85 /$ extra. Illustrated instruction book with all extra. IIf
receivers.

EDDYSTONE MAINS POWER PACKS. 200 250 volts input. Output 175 volts 60 ma . and 12 volts 2.5 amps. Double choke and condense smoorhed, $5 Z 4$ rectifier. Housed in grey metal case. Supplied new and unused, $32 / 6$ each. P/P 3/6.
45 AMPERE NIFE ACCUMULATORS. Single cells 1.2 v., 12/6 each. P/P 2/POTTED MAINS TRANSFORMERS. Primary 230 volts Secondary $350 / 310 / 0 / 310 / 350$ voles 220 ma., 6.3 volts 13 amps ., 5 volts 3 amps., 49/6 each. P/P 3/-
R. 1294 V.H.F. RECEIVERS. Coverage 500 to $3.000 \mathrm{Mc} / \mathrm{s}$. Perfect condition, with handbook R 35 each. P/P $10 /-$.

PORTABLE PRECISION VOLTMETERS BRAND NEW instruments by famous manufacturer. Housed in polished reak case. Moving iron movement reading A.C. or D.C. volts on 2 ranges, $0-160 \mathrm{v}$. or $0-230$ v.,
mirror scale. Accuracy within $2 \%$. Supplied mirror scale. Accuracy within $2 \%$ Supplied
at a fraction of original cost, $\mathrm{ES} / \mathrm{I} 9 / 6$ each.

A.C. MAINS VOLTAGE REGULATOR TRANSFORMERS. Input 230 V . Output variable from 185 to 250 v at 24 amps . or $185-$
250 v . input. 230 v . output $\mathrm{c} / 2 / 10 /-$ each. P/P $10 /-\mathrm{l}$

## UNIVERSAL AVOMINOR TESTMETERS

Small, compact, accurate instrument. Resistance measurements from 0 to 20 k . ohms, D.C. volts from 0 to 500 v., A.C. volts from 0 to 500 v ., D.C. current from 0 to 500 mA . Supplied in perfect working order, complete with leather case and leads, $65 / 10 /-$ each. P/P $2 / 6$.


##  <br> YOU MUST VIIT OUR DTEREO \& Hi-Fil Demensthation

TNITINWINTNTI
| HIREPURCHASE
available. Call or write stating stating your requirements.
all makes of recording TAPE POBT FREE
Standard, L.P. and Double Play post free. Write for our Special
List.
TAPE BULK RECORDER, $27 / 6$
20,000 Valves. Brand new surplus and imported, also ful stocks of B.V.A. List post free.

ALL TYPES OF CHASSIS We hold the largest selection of leading makes includng ain
models ARMSTRONG, EMPRESS DULCI. etc. A.M. chassis, L.M.S. from 7 Gns. A.M.F.M. chassig from 14 Gns. A.M./F.M. 8TEREO fron 22 Gns.

## MOVING COIL

P.M. SPEAKERS
 10in. 29/6 ${ }^{6}$ in 17/6. 8 in 6 in. with transformer $7 \times 4 \mathrm{in}$. Elliptical
$10 \times 7 \mathrm{in}$. Eliptical $8 \times 5 \mathrm{in}$. Elliptical $10 \times 2 \mathrm{jin}$. Rectangular

## SNIP! THE LOWEST-PRICED RECORDER EVER OFFERED!

Limited number only, brand new In maker's cartons. 2 -spd. $3!$ znd $7 \frac{1}{2}$, twin track, 60 min . playing time at $31: 30 \mathrm{~min}$. at 7 f , Inputs for mike and tuner 5in speaker. Smart duotone blue/grey carrying case. Dimensions: $12 \frac{1}{8} \times 95 \times 7 \frac{1}{3} \mathrm{in}$. Weight npprox.: 6\} lbs.

## TODAY'g VALUE \&35.

LASKY'S PRICE including sin. Spoos of Tape and empty Spool

## 19 Gns.

Carr. \& Ins. 12/6.
Crysta! Hand Mike, $19 / 6$ extra.
Epecial Offer for this Recorder. A 2-station RADIO JACK supplied at 30/- extra.

## SAVE POUNDS ON THIS TRUVOX TAPE DECK

## SPECIAL OFFER RECORDING TAPE

Famulus make, P.V.C. base on lateet plastic spools Brand new, perfect, boxed and guaranteed. $1,200 \mathrm{ft}$. (7in.) $21 / \%$ 850 ft. (5in.) $16 / 6$.

GEVAERT L.P. PLASTIC 1,700ft. (7in.) 35/-. 850ft. (5in.) 18/6 210ft. (3in.), 6/6.
Post: 1 spool. 1/6. Orders over 60/-, post


## TAPE DECK OFFERS

collaro Tape Transcriptor Mk. III, with digitsl counter. Limited number COLLARO MK, IV £17/19/6.

TAPE RECORDER AMPLIFIER for uee with Collaro Tape Deck. Maker's surplus. Complete, $£ 7 / 19 / 6$. Poet 3 !
cOLLARO 4-spd, Transcription Turntables $4 \mathrm{~T} 200 / \mathrm{PX}$, with Studio trana. p.u.
IIST E19/10/. LASKY'S PBICE E16/G/ Carr paid.
tree LENCO, CONNOISSEUR

TAPE RECORDERS GRUNDIG, ELIZABETHAN BRENELL, TRUVOX, SOUND, VORTEXION, FERROGRAPH, ELON, HARTING, SIMON, REFLECTOGRAPH, STUZZI, TANDBERG TELEFUNKEN, STELLA, WALTER.
F.M. TUNERS

DULCI, QUAD, LEAK, JASON, ROGERS, etc.

## CABINETS

Wide choice including G-PLAN NORDYK and CAPRIOL.

MULLARD 510 AMPLIFIER KIT
Ali specifled components and your choice of transformers and chokes by Partridge, COMPLETE EIT and printed low ais Details on request.
$£ 9.9 .0$ Details ob request.
Printed Clicult be £9.9.0 Printed Clircult separately $22 / 6 . \quad \begin{aligned} & \text { Also } \\ & \text { arailable buit ready for } \\ & \text { uee. }\end{aligned}$ according to transformers used.

## 3-3 AMPLIFIER

Built to Mullard's exact specification, Fith 3 Mullard valves EL84, EF8B EZ82. complete with front $£ 8.8 .0$
panel.
Poost free.

MICROPHONE BARGAINS
ACOS MIC 39-1. Crystal Stick Miorophone for use as a hand, desir stand or foo tand wit a quality recording. LIST public addreas work. £5/5/-

LASKY's
PRICE
39/6 ${ }_{\text {Stand }}^{\text {Less }}$
With Stand
$49 / 6$.

ACOS type 33/1, Crystal hand or table Microphone. Incorporates Apecially $30-7,000$ c.p.s. Omni-directional. Attractive dark brown plastic ease. LIST 50/ LASKY'S PRICE
Post $1 / 6$.

29/6

## COMBINED AM/FM TUNER,

CONTROL UNIT AND PRE-AMPLIFIER
(Self-Powered)
Mdl. III Famous make Note these star festures:

* FM plus Long. Medlum and ghnr: * High Fidelity Pre-Amplifter
* Independent Bass and Treble Control: $\star$ Pick-up Matching Device and 8 witch Dositions for LLP and 78
* Tape Record and Replay taclitiea * For use with any Hi-Fy Amplifer * Magic Eye Tuning Indicator

For A.C. 200-250 w. 7 B.V.A. glask miniature valves, ECC85, ECH81, EBF89, two EF86. EM81, EZ81, and two matched Diodes. Glass dial, 111 in . 5 lin., fine depth 9 in . from dial front ( 10 ia . including knobs and spindies), height 7 in .
LISTED AT $£ 29 / 3 / 10$.
LABKY's
20 GNS.
Carr. and Ins. 12/6
Available on H.P. terms.

## 7-VALVE AM/FM <br> RADIOGRAM CHASSIS

Famous make, for 200-250 v. A.C. Oatjul 4 watts matched to 3 ohras speaker, 7
Falves: ECC85, ECH
7 EL84, EZ80, EM81, Magic eye tuning to dicator. Covers medium, long anć FM bands. Length 12 in ., height 7 stm , front to back 8yin. Limited number oniy. Brochure on request.
LISTED AT 22 GNS
LASEY'S PRICE
£16.19.6
Carr. and Ins. $12 / 6$.
Available on H.P. terms.

## PICK-UP CARTRIDGES

BELOW HALF PRICE!
Your cholce of ACOS HaP. 59, GARRARD GC2, B.S.R. "Tulfi" TC8, COLLARO Studio $O$ or $T$ turnover erystal p.u. Cartridges, complete with L.P. and LASEY'S PRICE
Post $1 /$.
$18 /=$
$\mathrm{A} \operatorname{CoS} \operatorname{GP} 43$ t.o. crystal cartridge complete with L.P. and standard styli $15 /=$
GARRARD GCEA ceramic cartridge complete with styli 19/6.
GARRARD TOM2 magnetic cartridge
LIST 57/- Lasky's Price 25/GARRARD turnover head shelle MPM

## STEREO PICK-UP CARTRIDGES

ALL MAKES AND TYPES IN STOCK. WRITE FOR BARGAIN LIST.

## 



BUILD THIS 6-TRANSISTOR POCKET RADIO FOR ONLY £9.19.6

Plus 3/6 Post.
Printed Circuit construction. FULL medlum and long wave superhet using latest components incluadng 6 tranalssors 2hli. moving coil apeaker and Ferrite $5!\times 3!\times 1 \frac{1}{2}$., welght 12 oz. Fuli agsembly tinstructions supplied.
All componerus available separately.
Arallable sesembled ready for use. Aralable \&esembled ready for use post.
BARGAINS IN 4-SPEED MIXER AUTO-GHANGERS


COLLARO RC.457. Manual and auto control, complete with studio crysta p.u. and sepphire stylus

Post $3 / 6$.
B.S.R. Type UA8, complete with latest B.S.R. "ful-fl plalk-up $86 / 18 / 6$.
B.8.R. Lateat type UAl2, wired for TTEREO, complete with stereo cartridge, £8/19/6. Post \& Pikg. 5/.

Garrard Auto Changers, Transcription Motors, Plok-ups, sli latest types in stock.


COLLARO "Janior " 4-bpd. motor and eparate pick-up complete with cartridge and atyli.
MOTOR only, $55 /$ - post free.
PICK-UP only, $20 / 6$ post free
SPECLAL OFFER. Motor and P.U. together, $75 /$ post free.

COLJARO 4/564 single player £6/9/6 post free
GARRARD 4 -spd. $26 / 19 / 6$ post free.

## CARRYING CASES

Large range of Cases for single players, suto-changers and tape decks at bargain

## Laskr's highly efficient EASY-TO-BUILD

 SETS : TUNERS : AMPLIFIERSCircuit Diagram and Building
Instructions, $1 / 6$ each, post fre Instructions, $1 / 6$ each, post free.

7-TRANSISTOR PORTABLE 200 milliwatts p.p. output. Printed Circuit, $6 \frac{3}{5}$ in. $\times 2 \frac{1}{2}$ in.

TRANSISTOR SUPERHET TUNER, used 3 R.F. transistors, 1 germanium diode, etc. Printed Circuit $3 \frac{7}{7} \mathrm{in} . \times 3 \frac{1}{2} \mathrm{in}$.

4-TRANSISTOR AUDIO AMPLIFIER, MK. II, 200/250 milliwatts. Output imp. 3 ohms. Size: $5 \frac{1}{4} \mathrm{in} . \times 2 \mathrm{in} . \times 1 \frac{1}{2} \mathrm{in}$.

4-VALVE SUPERHET PORTABLE. Medium and long wave mains/battery version, 9 gns. Battery
version
MIDGET T.R.F. for $200-250 \mathrm{v}$. A.C. mains. Uses two latest double-purpose valves. Plastic case, $8 \frac{1}{2} \times$ $4 \frac{1}{2} \times 5$ in.

LASKY'S F.M. TUNER. Printed Circuit version of the G.E.C. 912 "F.M. Plus," using 5 valves

PORTABLE GRAM AMPLIFIER, 2 watts. Uses EL84 output and $6 \mathbf{X} 4$ rect. Size $6 \frac{3}{4}$ in. $\times 3 \frac{3}{4}$ in. $\times$ 5 in . high

ALL JASON KITS IN STOCK. Send for Brochures

TURRET TUNERS
Cyldon and other well-known makers.
P.10L, (Series heatera), LF. $9-14 \mathrm{mc} / \mathrm{s}$., $59 / 6$.
 E.10.L. (Parallel heaters), I.F. $9-14 \mathrm{mc} / \mathrm{s}$. , $4 / 5 / 19 / 6$. Post $3 / 6$. All other types in stock. List on request.

## LASKYS

 RADIOCOMPLETE
Parcel
£9.19.6
Post $3 / 6$
25.12 .6

Post 3/6
-
$£ 3.19 .6$ Post $3 / 6$
\&7.7.0 Post 3/6

## £4.19.6

 Post $5 /-$£7.19.6
Post Free

49/6
Post 2/6
C.R. TUBE BARGAINS

ALL NEW, UNUEED AND TAX FREE 16in. METAL CONE, famous make, type T901/A. 16in. METAL CONE, famous make, hype 190 kmp . heater, E.H.T., wide angle, standard 38 mm . neck. Guaranteed. IIST $£ 16$. LASKY'S PRICE
£6.9.6
Carr. \& Ins. 21/- extra.
8.9.0 Maske,
able.

DIIVERSAL SOUND
MEER. 3 channels for use with all tape recorders and audlo amplifiers size $43 \times$ $\times$ simg 37/8. Poit ( 3 3nch 37/6. Pont-2/6.
 FERRANTI $8 \mathrm{in}, \mathrm{T} 9 / 3,4 \mathrm{v}$. heater, triode, octal base LASKY's PRICE 58/6. Carr. \& Insurance 12. FERRANTI 12in. types T12/44 and T12/54, LIST
MULTI-TEST METER BARGAINS FOR AMATEUR OR SERVICE ENGINEER FAMOUS MAKE. NEW AND UNUSED.


AN/27. As illustrated. Accurate, highly sensitlve 27RANGis Test Meter. 5,000 ohms per volt A.C. and D.C. In black leatherette-covered wood case, 7\% $\times 9 \times \times 3$ atin. deop, with carrying handle and ample room for amall tools LIST 15 GNS. LASKY'8 PRICE
£11.19.6
aVailable on easy terms
AN/20. Pocket size Mierotester. An accurate 18-RANGE Test Meter for all purposes. 5,000 ohms per volt A.C. and D.C. with accurate linear scales for the lower A.C. ranges. In black leather
-
LIST 9 aNS.
Post $3 / 6$. Leads $3 / 9$ extra.

## BUILD A CAR RADIO

Do you know that you can build Car Radio with all these star features?
$\star 12$ volt operation $\star$ New hybrid circuit $\star$ Transistor output $\star$ New type Brimar valves $\star$ No Vibrator, 12 volt H.T.\& L.T. $\star$ T.C.C. Printed Circuit and Con densers
$\star$ Tuned R.F. stage
$\star$ Medium and long waves
$\star$ Permeability tuning
*Small size. Will fit any car.
CAN BE BUILT FOR £12.19.6

Send 1/6 for Instruction Booklet giving full details, illustrations dimensions, circuit diagram and shopping list

## TRANSISTORS

AODIO P.N.P. Junctlon Types sultable for high galn and low freq. amplifiers, and for output stages up to 250 milliwatts. $7 / 6$ Double spot- yellow and green.) $/ 0$ 3 for $20 /-{ }^{6}$ for $37 / 6$, post free.
R.F. $\mathrm{P} . \mathrm{N.P}$. Junction Type suitable for medurn and low freq. osclllators, frea

(Double ppot-yellow and red


Transistors. OC44 301-; OC45 251 OC71, 15/-; OC72 or OC73 20/-; OC1 60\%.

BRIMAR Transistors. T81 or TS2 12/6; T83 15/-; T84 27/6; TP1 or TP2 40/TJ1 15-f TJ2 16/6; TJ3 19/6.
" GOLDTOP " POWER TRANSISTORS
All types in stock. Example:-
V15/i0p, ideal for output stage of ear radio, will give approx. 3 watts operating
from 12 v . Each, $15 /=$ post $f$ ree. Suitable Output Transformer for above correct ratlo, matched to 3 ohms, $9 / 6$. Driver Transformer, 9/6. Post, 1/-
MINIATURE INSTRUMENT SOLDERING IRONS Femous make, 230/250 v 25 N Famous make, $230 / 250$. F , 25 \%ratta with in handle. LIST 22/6.
LASEY'S PRICE
16/6
Special Otfer of lib, reels of Ersin LASKY's PRICE $10 /$-, Post $1 / 6$.
CONDENSERS, RESISTANCES. High stability Resistances, Electrolytics. values and sizes stocked.

SPEAKER COVERINGS. Latge atocke of Tygan and "someweave." Any size
piece out. Samples aud prlces poat free.

OPEN ALL DAY SATURDAY
Early Closing
Thurs., I p.m.
(Both addresses)

LASKY'S (HARROW ROAD) LTD.

## 42 TOTTENHAM COURT ROAD, W. 1. <br> Nearest Station Goodge Street <br> 370 HARROW ROAD, PADDINGTON, W.9. <br> (Opposite Paddington Hospital

 MUSeum 2605PROMPT POST SERVICE
Please address Mail Orders to Harrow Road


## 17"T.V.CHASSIS, 16 GNS. <br> TUBE \& SPEAKER

I7in. Rectangular Tube on modified chassis.
Supplied as single channel chassis covering Supplied as single channel chassis covering
B.B.C. channels $1-5$, or, incorporating Turret Tuner, which can be added as an extra, ret our special price to chassis purchasers at our special price to chassis purchasers
of $50 /$ giving choice of any 2 channels (B.B.C. and I.T.A.). Extra channels can be supplied at $7 / 6$ each. Chassis size $12 \times 14 \frac{1}{2} \times 11$ in. less valves. Similar chassis are used by wellknown companies because of their stability and reliability. With tube and speaker (less
valves). 16 guineas. Complate and working valves). 16 guineas. Complete and working with valves and turret tuner. 24 guineas; 12 months' guarantee on the tubes. 3 months guarantee on the valves and chassis. Ins. carr. (incl. tube) $25 /$ -

I4in. T.V. CHASSIS
11 GNS.
As above with 14 in . Rectangular Tube. 12 monchs' guarantee on tube, 3 months" guar antee on chassis and valves. Chassis with tube and speaker (less valves). II guineas. Complete and working with valves and turret tuner. 19 guineas, Ins, carr. (incl. tube) $25 /$ -
A T.V.CHASS1S at Clearance Prices The popular 12 in . Plessey Chassis $19 / 6$. A bargain for anyone wanting to make up their own T.V. at a very low cost. A chassis in one unit. Less valves and tube. Simply adapted for a 12 -channel Turiet fungr and can be modified to take a larger order. Carr. and ins, $10 / 6$
SOUND/VISION \& I.F. STRIP $5 / 9$ Salvaged. Complete sound and vision strip Eight valve holders. Less valves. I.Fs. 16 $19.5 \mathrm{Mc} / \mathrm{s}$. Size $8 \frac{1}{2} \times 4 \frac{1}{2} \times 4 \frac{1}{2} \mathrm{in}$. Drawings free with order. P. \& P, $2 / 6$

## TIMEBASE

4/9
Containing scanning coils, focus unit, line transformer, etc.; less valve
free with order. P. \& P. $2 / 6$.
POWER PACK \& AMPLIFIER $9 / 9$ Output stage PEN45. O.P. trans. choke. Smoothed H.T. 325 volt at 250 m.a. 4 v at 5 amp., 6.3 v . at 5 amp., 4 v . at 5 amp . centre tapped. Oulve base for rectifier. plugs. Less valves. Ins. tarr. $5 / 6$.
B.S.R. 4-SPEED BATTERY CHANGER. 6 volts or 9 volts. $109 / 6$, P. \& P. $4 / 6$. BATTERY AMPLIFIER (valve). $1 \frac{1}{2}$ volts L.T. 60 or 90 volts H.T. $39 / 6$. P. \& P. $3 / 6$ 3-TRANSISTOR AMPLIFIER. 9 volts, I control. 79/6. P. \& P. 3/6


## SUPER CHASSIS 79'6

Five-valve superhec P.M. speaker and valves. Four control knobs (tone, volume, tuning w/change switch) Four w/bands with position for gram, pu. and extension speaker. A.C. Ins. carr. 5/6. T.V. AERIALS 25/6 For all I.T.A. channels. Outdoor or loft. Three elements. P. \& P, 2/6.

## AERIALS

B.B. indoor type Folded dipole with 12 ft . co-ax. cable fitted. Post $1 / 9$.
T.V. AERIALS

7/9
For all channels. Complete with co-ax. cable. For use indoors or in the loft. Postage $1 / 3$. T.V. MASKS 17 in

White 9/9. Grey 10/9. Post 2/
12 in . Soiled. $1 / 9$. Post $1 / 6$.


## RECORD PLAYER CABINET 79/6

Stylish cabinet by famous manufacturer. Cloth covered in contrastins colours (red and grey). Grilled Size $15 \times 19$
8san deep. Beautifully made-a cabinet you can be really proud of. Takes 4 -speed B.S.R. Autochanger. 6tin. round or ellipsical speaker. Room for any amplifier of your own choice. Carr. and ins. $4 / 6$

ncorporating auto and man complete with turnover crystal p.u. and sapphire stylus.
COLLARO 4-SPEED
£7/19/6
AUTOCHANGERS
£8/9/6
MONARCH 4-SPEED MIXER
 COLLARR CONQUEST
STEREO AUTOCHANGER
11 Gns . T.U.9 B.S.R. 4-SPEED £4/9/6 P. \& P. on all the above $5 / 6$.

## * AMPLIFIERS *

12 months guarantee
PORTABLE AMPLIFIE
MARK D.1. $59 / 6$.
Brand new. Lates
design with printed circuit. Dimensions
$\times 2 \frac{1}{4} \times \operatorname{Sin}$.

only. Mains isolated. $2-3$ watts output incorporating EL84 as high gain output valve. Volume and tone controls. Knobs 2/6 extra. P. \& P. 3/6
STEREOPHONIC AMPLIFIERS $\quad \mathbf{E 7 / 1 9 / 6}$
Beautifully made for portable stereophonic record players. Latest design with printed circuit. Dimensions $3 \times 5 \frac{1}{4} \times 9 \frac{3}{6} \mathrm{in}$. A.C. only. Mains isolated. Twin amplifiers each side giving $3-4$ watts output. Incorporating ECL82 triode pentode valve. Full tone, volume and balance controls. Complete and ready to fit. Knobs $3 / 6$ per set extra. P.P. and ins. $4 / 6$.

* IDEAL FOR STEREOPHONIC SOUND.


## EXTENSION

SPEAKERS 19 '9
Polished oak cabinet
of attractive appear-

ance. Fitted with 8in. P.M. speaker, W.B. or Goodmans of the highest quality. Standard matching to any receiver (2-5 ohms). Switch and flex included. Ins. carr, 3/6 8in. P.M. Speakers 8/9. With O.P. trans. fitted $10 /$
$6 \frac{1}{2}$ in. P.M. Speakers $12 / 6$.
$4 \times 7$ in. Elliptical Speakers $19 / 6$.
$8 \times 5 i n$. Elliptical Speakers $22 /$
P. \& P. $2 / 9$.

## DUKE \& CO.

621/3, ROMFORD (DEPT. C.6)
TR RD., MANOR PK., E. 12
Tel. ILF 6001/3
TERMS AVAILABLE
Send for free cotalogue

## AMPLIFIERS PRE-AMPLIFIERS

COMPLETE KITS OF PARTS FOR THE "HI-FI" ENTHUSIAST Designed by MULLARD-Prasented by US strictly
to their specification

## MULLARD DESICNS <br> FOR THE HOME CONSTRUCTOR



MULLARD'S NEW 2-STAGE PRE-AMPLIFIER TONE GONTROL UNIT

MODEL 3-3/M
THE NEW MULLARD" $3-3$ " MAIN AMPLIFIER

Undoubtedly the most successful amplifier fet designed, and used in confunction with the Thew Mullard Pre-Amplliter, an undistorted power output of up to 10 watts is obtained. quallty home fomtallation In adiditon the verratillty of the equilpument raaker it quite suitable for une in smail halls, eto. We supply complete to MULIARD'S SPECIFICATION with givecified valves and components and bincluding the latest PARMEKO Ultra-
 Price for COMPLETE KIT OF PARTS
Alternatively we supply ASSEMBLED and TESTED
\&11.10.0
We also offer this " $5-10$ " incorporating the latest PATRIDGE ULTRA-LINEAR OUTPUT TRANSFORMER for £1/6/- extra.

A completely new design employing two EF86 valves, and to particular designed to operate with the Muilard range of Power Arapliflors, but aiso perfectly suitabla or other makes.

- Equaliantion for the latest R.I.A.A. characteristlce.

Imput for varlable reductance. Magnetic Pick-ups.

- Input for Crystal Pick-ups.

Input for Tape replay.
(a) Direct isom High Impedance Tape Head. - Sensitive Mlapephome Channel.

- Wide range BASS and TREBLE Contro
- Attractive Perspez front control panel.

Our Kit is etrletly to MuLLARD'S SPECIFICATION.
£6.6.0 Alternatively we supply ASSEMBLED AND TESTEDD ................. 88.8.0. 0
 (Carriage and Insurance ©;- extra)

Special Price Reductions

WE OFFER

Only NEW HIGH GRADE Components and
Mullard Valves are supplied with these kits-we DO NOT use "Surplus or Cheap" components
(B) THE COMPLETE KIT OF PARTS to bulld both the FIER-CONTROL UNIT ................. 312.10 .0
(b) THE COMPLETE KIT OF PARTS to bulld both the " $5-10$ " MATN AMPLIFIER and the 2-STAGE PRE-AMPLIFIEB-CON - $\$ 15.15 .0$ ALLL PRICES QUOTED FOR THE - 5 -10" ARE gUBJECT TO E1/6/-EXTRA IF THE PARTRIDGE TRANEF.

Please enolose S.A.E. IF ILLUSTRATED and DESCRIPTIVE PEAFLETS are required contalternatively the COMPLETE and yractical Drawings, etc., are available at $1 / 6$ each. (a) THE " $3-3$ " and the 2.STAGE PRE-AMPLIFIER both ASSEMBLED and TESTED.
\&15.0.0
E.P. TERMS: DEP. 83 and 12 monthly payments of E1/2/ or DRPP. £5 and 12 monthly payments of $18 / 4$. both ASSEMBLED and TESTED ...... \&18.18.0
H.P. TERMS DEP, E8/16/- and 18 monthly payments of £1/7/8 or DEP. £6/6/- and 12 monthly payments of $£ 1 / 3 / 1$.

When ordering please include an extra $7 / 6$ to cover the cost of carriage and insurance


We offer this popular and very successful design COMPLETE to MULLARD'S SPECI FICATION, but incorporating some improvernents in the general layout. HIGH QUALITY REPRODUCTION up to a maximum of 10 watts output. The CONTROL UNIT is separate illustration but, If it fo desired to une the unit remote from the Main Chassis. It ean be quite easily detached and used up to 2 yards distance. We incorporate SPECIFIED COMPON FNTS and NEW MULLARD VALVES. We also give the purchaser the cholce of two of the best ULTRA-LINEAR OUTPUT TRANSFORMERB made-first the latest by PABMEKO LTD., and also the latest by PARTBIDGE ( $£ 1 / 6 /-$ extra), which is generally recngnised as and the widest frequency range. We also supply the PARMEKO MAINB TRANSFORMER and this has extra power available to supply a Radio Tuning Unit amounting to 250 volts
 OF PARTS (PARMEKO TRANSFORMER) MODEL 510/RC .................. 81.10 .0
(Plus $6 / 6$ Cartiage and Jnsurance). (Plus $6 / 6$ Carriage and Tnsurance).
Alternativels we supply AS8EMBBIED and TESTED (plus 6/6) .......... \&13.10.0 He, TERMS: Dep. \&R/14/- and 12 monthly payments of $19 / 10$. COMPLETE ASBEMBLY MANUAL.
 TION AND EAVING AN ATTRACTIVE ENGRAVED PERSPEX FRONT PAYEL.
Price for COMPLETE KIT OF PARTS........................................... $87.10,0$
(plus $6 / 6$ cartiage and insurance).
£8.19.6
(Plus $6 / 6$ carriage and ineurance).
H.P. Terms deposit $£ 2$ and 8 monthly payments of $£ 1$.
Developed from the very popular 3-valve 3 -watt Ampiner designed in the Mullard Laboratorle our kit is complete to the Mullard apecification including supply of specified components, Faves and PARMEKO OUTPUT TRANSFOBMER. We also include switched inputs for available:- ISE ASSEMBIY MANUAL AVAILABLE FOR 1/6.

## the best value on the market

## Stern' $\int_{\text {TAPE }}$ "fidelity" REORDER

DIRECT-MANUFACTURER to USER
no "middleman's" discount is included in our prices
IT INCORPORATES:

- The latest COLLARO TRANSCRIPTOR TAPE DECK.
- The model HF/TR3 "Fidelity" AMPLIFIER. (Described below).
- HIGH QUALITY 7in. x 4in. P.M. Speaker.

1,200ft. reel High Quality Emitape.

- ACOS Crystal Microphone.

BEFORE CHOOSING YOUR TAPE RECORDER YOU SHOULD\} HEAR THIS MODEL-TRULY "Hi-Fi" RECORDINGS ARE OBTAINABLE and it is comparable to much higher-priced Recorders. ALTERNATIVELY send S.A.E. for ILLUSTRATED LEAFLET.

PRICE

## £49.10.0

Term:: Dep. E9/18 ments of $£ 3 / 12 / 7$ or Dep. E16/10/-
and in monlhly yments of £3:-/6

TEE LEGB NHOWN IN THE ILLUETRATION ARE READ ILY DETACHABLE AND
ARE AN OPTIONAL EXTRA
(Plus $\mathbf{\varepsilon 1 / 1 0 / \text { - carriage and insurance of which E1 is refunded on return of packing case.) }}$

## THE MODEL HF/TRZ TAPE AMPLIFIER

Incorporating
3-SPEED TREBLE EQUALISATION by means of the latest FERROXCUBE POT CORE INDUCTOR. PRICE for COMPLETE
KIT OF PARTS......... $12 / 15 /=$ FULLY ASSEMBLED \& $16 / 10 /=$ AND TESTED
HIRE PURCHASE: Deposit HIRE PURCHASE: Deposi
$E 3 / 6 / 6$ and 12 months at $\mathbf{~} 1 / 4 / 2$.
A very high quality amplifier based on the very successful Type " A" design completed in the MULLARD LABORATORIES. ONLY NEW HIGH-GRADE COMPONENTS are incorporated including MULLARD VALVES and a GILSON OUTPUT TRANSFORMER . . . other features are: Magic Eye Recording Hand Indicator-Effective Tone Control-Monitoring and Extension Speaker Sockets-has own Power Supply and can be used as independent Amplifier for direct reproduction of Gram Records or from
Radio Tuner. Overall size $11 \times 6 \times 6$ in. Truvox-Collaro-or Brenell - please specify which. Send S.A.E. for leaflet or $2 / 6$ for Assembly Manual.

THE NEW MULLARD TYPE "C"
TAPE PRE-AMPLIFIER-ERASE UNIT INCORPORATING NEW FERROXCUBE PHE CORE PUSH-PULL OSCIL. LATOR and 3 SPEED TREBLE EQUALISATION by means of the latest FERROXCUBE POT CORE INDUCTOR.
PRICES : INCLUDING SEPARATE SMALL POWER SUPPLY UNIT COMPLETE KIT £14.0.0 ASSEMBLED AND $£ 17.0 .0$ OF PARTS \&14.0.0 TESTED ALSO AVAILABLE EXCLUDING POWER SUPPLY UNIT FOR £11. 15.0 and \&14.10.0 respectively. (Carr. and Ins. 5/- exera) Send S.A.E. for leaflet or $2 / 6$ for Complete Assembly Manual. WHEN ORDERING PLEASE STATE MAKE OF TAPE DECK TO BE USED
We present this "Hi-Fi " Pre-amplifier strictly to Mullards specification, etc incorporating ONLY NEW HIGH GRADE COMPONENTS and the SPECIFIED NEW MULLARD VALVES. It comprises a COMPLETELY SELFCONTAINED UNIT, all components and valves being contained in a well ventilated Box-Chassis neatly finished in Hammered gold with a very attractively engraved PERSPEX FRONT PANEL


## TO ADD FULL TAPE RECORDING FACILITIES

To any modern " $\mathrm{Hi}-\mathrm{Fi}$ " AUDIO AMPLIFIER (such as our Mullard "5-10" and 2 NEED IS . THE TYPE "C"' PREAMPLIFIER and a TAPE DECK. . WE OFFER (a) The COLLARO Mk. IV TAPE DECK and the MULLARD

TYPE "C"PREAMPLIFIER \& Power Unit assembled, tested $\mathbf{\& 3 5 . 0 . 0}$ H.P. Deposit $\mathrm{E7}$ and 12 months $\mathbb{2 / / 1 / 4}$.
(b) As in (a) above but the Type " C " supplied as COMPLETE
(c) The TRUVOX Mk. VI TAPE DECK and the assembled Type " $C$ " Preamplifier and Power Unit..
£32.0.0
Type "C. Preamplifier and Power Unit..................
(d) As above but the Type " C " supplied as complete KIT
234.10 .0

C" PREAMPLIFIER and POWER UNIT
(f) As above but the Type ${ }^{\circ} \mathrm{C}$ ", and 12 months $63 / 7 / 16$. OF PARTS
£43.0.0
(Carriage and Insurance on above quotes 10/-extra.)
PLEASE ENCLOSE S.A.E. WITH ALL CORRESPONDENCE.

[^17]
## MODERNISE YOUR OLD RADIOGRAM

## It is CHEAPER and BETTER VALUE TO REPLACE YOUR OLD CHASSIS and GRAM UNIT

## ! ! RADIOGRAM CHASSIS ! ! ARMSTRONG "STEREO TWELVE" $837 / 16 / 0$ The most complete nnit yet produced for stereo giving 6 watts bigb fidellty push-pull output on each channel, 12 watts for monaral. Full VHF band, medium and long wavebands. Stereo and monaural inputs for records, tape and radio and a tape output for stereo and monaural tape recording. Comprehensive matching for all types of crystal plek-ups. The perfect basis lor a complete monarral reproducing system or for a complete stereophonic system now or later.



ARMSTRONG "JUBILEE"
An AM/FM chas-
kis with nine
\&29. 8.0 kis with nir valves and two diodes and with pushFull VHF mediura and long wavebands With automatic frequency control on FIM and ferrite arrial on AM. Tape
record and playback faclities, Cun be record and play back taclities. Can be
adapted for stereo at $2 n y$ time by the addition of our compact, easy-to-at converter amplifier.

## ARMSTRONG "STEREO 44"

£28/7/0
Provision is made for stereo and monaural playback from plck up or tape. Ontputs provided for stereo or Monaural tape recordiags, Alernative inputs enable (such as our most crystal pick-ups, C " unit). 8 watts ontpat. Radio covers med. waveband and the complete VEFF/ FM tranamission 87-108 Mc/e.

## DULCI " H4PP

£27/16/6
An 8 vaive AM/FM 4 waveband chassis giving 6 watts uitra linear output. Covers abort, and long wavebands. Tape outlet incorporated and suitable for 3 to 15 loudspeakers.
DULCI " H3"
£19/17/6
A 6 walve AM/FM chassis giving 4 watts output. Covers medium and long wavebands,
on which an lnternal aerial operates, plus the VHF/FM band. Full AVC on all waveon which an Internal aerial operates, plus the VHF/FM band. Full AVC on all wave-
bands and tape outtet incorporated.
NEW HIRE PURCHEASE TERMS are available on all above. Hlastrated leaflets avail-
able-send S.A.E

## AM/FM RADIO TUNING UNITS ARMSTRONG : ST. 3 <br> £27/6/0

 A self-powered high fidelity tuner covering full VHF, medium and long wavebands with automatic frequency control on VHF. Excellent in combination with our MULLARD enable this tuner to be used with virtually any amplifier avallable.DULCI " H4/T "
£23/15/8 A 4 waveband eelf-powered high fldelity tuner covering the VEF/FM transmissions plus the long, medium and short wavebands. Excelient periormance in combination
with our MULLARD AMPLIFIERS and aloo all high qually designs.
IHLUBTRATED LEAFLET showing recommended HIGH QUALITY LOUDSEAKERg

## STERN'S FOR STEREO

our popular mullard main amplifiers are recommended FOR USE WITH THE DULCI DUAL CHANNEL STEREO PREAMPLIFIERS The "STEREOEIGHT" $\mathbf{~ P 2 3 . 2 . 0 ~}$ (Carr. \& Ins.5/- extra)
 PREAMPLIFIER
(Carr. \&
Ins. 5/- Extra) Carr. \& Ins, 5/- Extra)
Both Preamplliers can be supplled to correctly operate with our very popular MULLARD " $3-3^{\text {" }}$ and " $\delta-10^{\prime \prime}$ MAIN AMPLIFIERS (deacribed on page 193). For Stereo reproduction TWO Main Ampliffers are necessary but for normal to operate with ONE Main Amplifier and the second Main Two are perfectly surtabler can then be added at any time thus translorming a standard "Hi-Fi" instal lation over to the Stereo.
WE OFFER PREAMPLIFIERS and AMPLIFIRR AT BPECIALLY REDUCED PRICES.

## STERN'S 12 VOLT

CAR RADIO
incorporating


## PRINTED CIRCUIT and POWER TRANSISTOR

a versatile design covering both LONG and MEDIUM WAVEBANDS, incorporating 2 volt car battery
We offer th on the UNIT ASSEMBLY BABIS . . consibting of
THREE SEPARATE FULLY WIRED, ALIGNED AND TESTED UNITS ALL FOR 815.0 .0 Only 12 solder joints are required to finish the
Send $1 / 6$ for masual containing complete data

## SPECIAL CASH ONLY BARGAIN

A bulk purchase enables us to offer this very useful INTERCOM SET or BABY ALARM For omly $£ 5.5 .0$ Consiats of MABTER UNIT $\begin{array}{ll}\text { (Illustrated) and } & \text { one EXTEN: } \\ \text { SION } & \text { providing } \\ \text { 2-was } \\ \text { TALK. }\end{array}$
 LisTEN facility. Complete in polizhed wood caser, sil

The LATEST MODELS are in Stock. Many at REDUGED PRICES!!! send 8.A.E. for ILLUSTRATED LEAFLET

## A FEW CASH BARGAINS

 B.8.R. MONARCH UA8 4.epd. Mixer $£ \mathbf{E 6 . 1 2 . 6}$ changer studlo "O" Pick-up. \&7. 10.0 The latest COLLARO "CONTINENTAL " 4 -
gpeed MXER Autochanger, Studio "O up $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . . .10 .0$
The collaro model $4 / 6644$-speed Single Record Plaser, Stadto ${ }_{\text {THE Nek -up }}^{\text {NEW }}$ NEW B.SR model UA12 is in stock. A4 $\because \mathrm{SPEED}$ OA12 also available Incorporating the B.B. R. STEREO Piek-ap plays L.P. and 78 records GARRARD RC121/4 4 -speed Autochanger itted with latest B.s.R. Model TU9 4-speed single record player, complete with


## HIGH FIDELITY UNITS IN STOCK

 The latest Garrard transcription motor " 301 " £26.14., 6 with stroboscoplcally marked turntable.........................The new GARRARD Model $4 H P$ High Quality single Record The new tayer fitted with the latest T.P.A. 12 pick -up arm and G.O. 8 Cryezal Cartridge £18. 9.9 GARRARD Model TAMIM in single Record Player Aited with \&8.15.0 Hgh output Crystal Plek-up, detachable head. ${ }^{\text {The }}$ GARRARD T.P.A. 12 TRANSCRIPTION PICK-UP ARM is available separately or with Crystal or Moving Colt Plck-up Heads. Send 8.A.E. for Leaflet

## SPECIAL CASH ONLY OFFER!!

Thl very attractive PORTABLE AMPLIFIER CASE together with a good quality GRAM AMPLFIER and a matched P.M. SPEAKER. ALL FOR ONLY 88.7. 6 (plus 7 $7 / 6$ carr. and ing.). The Arplifer
consists of
2 -stage deaign
incorporating the 3 modern BVA valves and has separate BASS and TREBLE CONTROIS. The Portabie Case will alao Rccommodate almosit finished in Grey colour Rexine-WE ALSO SUPPLY SEPARATELY:-
(a) The 2 -stage (plus Rectifer) AMPLIFIER (b) The portable carryimg $\begin{gathered}\text { CA } \\ \text { CAS } \\ 2\end{gathered} \mathrm{E}_{6}$
(c) Byin. P.M. SPEAKER
$\begin{array}{r}2317 \\ \hline 6 \\ \hline 18\end{array}$
(Carriage and insurance 4/- extra)
 We also have a smaller PORT
$£ 3 / 3 /$ - (plus carriage and inge.).

## ! ! HOME CONSTRUCTORS ! !

A RANGE OF "EASY TO ASSEMBLE" PREFABRICATED CABINET8 Designed by the W.B. "ETENTORIAN ". (COMPANY for "Mi-Fi." Loudspeskes
 Rlass reproduction and are well recommended. Models are aiso apaileble o ote accommodatc bigh-quality Amplifiers, Preamplififrs, Tuning Unite, Record Players, etc. Al modele are very easily assembled, in fact only a screevdriver is required. Fuly Mustrated leafiets are avalable Including complete sp
STENTORLAN LOUDSPEAKERS. Please enclose B.A.E.

STERN'S MK II " fidelity F.M. TUNING UNIT
(Pius 51- carr. and ins.)
IRE PURCHASE: Deposit PRICE
$£ 14.5 .0$
 HEART and the correeponding MULLARD VALVE LINE UP comprising ECCB5, 2 type

 2 type on 798 Germanium Dodes. A really first-class Tuner very attractively proonly 1.5 amps at 6.3 volte and $25 \mathrm{~m} / \mathrm{s}$ at 250 volts.

## HOME CONSTRUCTORS!

## YOU CAN BULLD THIS TUNING UNIT FOR ONLY

Plue St- carr. and hine.)
$\& 10.10 .0$
The JASON "MERCURY" switched F.M. TUNER IS IN STOCK PRICE ASSEMBLED \&13.10.0 AND TESTEDE Deposit $53 / 716$ CREDTT SALE Deposit $5: 3 / 7 / 6$ and 9 monthiy payments of f1/410 COMPLETE HOME CONBTRUCTORS KIT IS available for E9/19/8 (carr. and ins.

CAR BATTERY CHARGER A COMPLETE KIT OF
\&2.19.6
will char 0 olt batteries at max $2 \downarrow$ amps. The design incorporater Reliani Resistor and Fuse and we supply complete witb Metal Bor container. EASY TIONS ARE INCLUDED.


## SEND STAMP FOR SPECIAL BARGAIN L/ST!

METERS. We carry large stocks of
Meters from 50 microamps to $1,500 \mathrm{v}$. A few of the most popular types are:-
100 microamps $2 \frac{1}{2} \mathrm{in}$. Flush Round MovingCoil@ $45 /-; 500$ microamps 2 in . Flush Round Moving Coil @ IB/6: I mA. 2in. Flush Square Moving Coil Elliott, '1954 man. $25 /-; 50 \mathrm{~mA}$.
2 in . Flush Square Moving Coil $8 / 6$. Send stamp for complete list. We shall be pleased to quote for
meters to your own specification.

## -

- -TRANSISTORS!!! - SURPLUS-P.N.P.
- Application) (Audio/Experimental - Application)..................
to $2.5 \mathrm{Mc} / \mathrm{s}$.
- BRIMAR
- J.S.I

MULLARD

- MC16 Power 3 watt
- OC44
$\begin{array}{r}\text { OC45 } \\ 0.0 C 70 \\ 0 \\ 0 \\ \hline\end{array}$
OC/72 matched pair
NEWMARKET
NEWMARKET


A QUALITY RECORDER FOR 39 GNS.
Collaro Mark IV Tape
Transcriptor Deck $8 \times 6$ in loudspeake De Luxe Cabinet with gile fitcings
ollaro Mike (or similar) 1,200 t. EMI tape
total
OUR SPECIAL INCLU. SIVE PRICE ONLY 39 GNS. if all items purchased together. Terms:
$£ 4 / 19 /$ dep. and 12 monthly payments of $£ 3 / 3 /-$. C. \& p. 15/- extra. Full assembly instructions provided. Note: We - shall be pleased to wire the tape deckswitches at extra charge - of EI. Send stamp for further details.
 EXTRA SPECIAL OFFER!!

- A small three-valve PORTABLERE.
- mounted on baffle $12 \times 7 \mathrm{in}$. with High Flux $6 \frac{1}{2}$ in. Loudspeaker, Valve line-up ECC83, EL84 EZ80. Incorporates - Maxarate bass and treble controls. Max. output 3 watts. Will match all types of high impedance pick-up.
 - finished in two-tone Leatherette - Will accommodate above Ampli-- tion, also most types of Ancillary - Equipment. Overall size $18 \times 13 \frac{1}{2}$ $x 8 \frac{1}{2}$ in. Fitted with carrying
handle. $83 / 9 / 6$ plus $5 /-\mathrm{P}$. \& P. - NOTE. If both items pur - chased together they will be supplied at a special Inclusive - price of $£ 8 / 7 / 6$ plus $6 / 6$ P. \& P




## 162 HOLLOWAY ROAD, LONDON, N. 7

and
IB TOTTENHAM COURT ROAD, W.I.


CABINETS. We carry large stocks CABINETS. We carry large stocks of cabinets to suit all types of equip:
ment at prices ranging from $45 /$. This ment at prises ranging from $45 /$-. This cabinet is an example of the wonderful
new "RECORD HOUSING" range new "RECORD HOUSING" range
and is prieed at only $\$ 12 / 19 / 6$, plus and is priced at only $\$ 12 / 19 / 6$, plus
$20 /$-carriage and packing. Suitable for 20/-carriage and packing. Suitable for housing all types of turntable, tape deck, a mpliffer etc. Terms avaitable. if required. Send stamp for illustrated
leaflets of full range.

RADIO JACK. A recent addition to o
of equipment to build yourself. Covers local Medium Wave - Stacions yariably to build yourself. Covers local Medium Wave - only connection to aerial (no power supplies required) for first-- class reception when used in conjunction with your tape recorder - or high gain amplifier. All necessary components available at a - special inclusive price of only $19 / 6$ plus $1 / 6$ P. \& P.
 VALVES. We have perhaps the most up-to-date valve stocks in the trade. New imported valve types fully guaranteed and P.T. paid and all the usual surplus types at special prices. We also carry stamp for list. Note: Certain other American special purpose types can be supplied. Enquiries invited.

- ATRACTIVE POLISHED

WOODEN EXTENSION SPEA.

- KER CABINET (slight blemishes) - fitted with good quality Bin. loud-- speaker unit (for example: Goodman, - W.B., or similar). Supplied as High - impedance unit with volume control - easily converted to standard Low - impedance for matching domestic - Radio erc. Size approx. Ilin. x $/ 4 \mathrm{in}$. $x$ - $6 \frac{1}{2} \mathrm{in}$. These are reclaimed "Rental' - units in first elass working order and - are ONLY 16/6, complete, plus - 3/6 P. \& P.

EPEATA
OFFER


- PREO O O O O O - (To build yourself) - (To build yourself) Designed lor Test
bench and
produced
for us by
thefamous
puli in
Company,
thisinstrut
ment
$0-10,0-50,0.100,0-500,0-1000$ tage 0.2 .5 (All ranges 5000 ohms per volt). (All ranges 5000 ohms per volt),
A.C. Voltage $0-10,0-50,0-100$, - A.C. Voltage $0-10,10-50,0-100$,
$-0-500,0-1000$. (All ranges 5000 . - 0-500, 0-1000. (All ranges 5000 . - ohms per vole). D.C. Cusrent $0-200$ microamps. 0.10 ma, O- 100 . - ma., 0-250 ma., 0-500 ma., A.C.
 esistance, 0-200,000 ohms. (Easily extendible to 2 megohms.) Ac-
euracy, 3\% of F.S.D. on D.C. ranges. - curacy, 3\% of F.S.D. on D.C. ranges. $4 \frac{1}{2} \%$ on A.C. ranges, any frequency
between $15-20,000$ C.P.S. (Sine between $15-20,000$ C.P.S. (Sine
wave) $5 \%$ on resistance range. - wave) $5 \%$ on resistance range. - Positive Range selection by means - instrument is easily constructed, - full instructions being given with - each assembly. All necessary com-- ponents available at a SPECIAL - INCLUSIVE PRICE OF E7/5/-. - plus $2 / 6$ P. \& P. Illustrated leaflet - on request

PORTABLE GRAM AMPLIFIERS RC2A. Small PRINTED CIRCUIT single-valve high-gain amplifier for the smaller type of portable. Employs latest type ECL 82 valve. Full details on request. Price $59 / 6$ plus $2 /-$ P. \& P. RC3A. A superior quality 3 -valve amplifier employing EZ80, EL84 and ECC83. With separate bass and treble controls. Price $\$ 3 / 19 / 6$ plus $2 / 6$ P. \& P. O.P. Transformer avallable at $4 / 6$ extra.

is simple to assemble, extremely sensitive and may be installed in a matter of minutes. Completely SAFE employing a double wound mains transformer. Attractively finished in Red and Grey (washable) "Lionide" with cream
plastic escutcheon. Size only $7 \frac{1}{2}$ in plastic escutcheon, Size only $7 \frac{1}{2}$ in
$\times 3 \frac{3}{3}$ in. $\times 6 \frac{3}{3} \mathrm{in}$. Supplied in kit form complete with mike at ONLY $72 / 6$ plus $2 / 6$ P. \& $P$. or assembled and tested 89/6 P. \& P 2/6. Sultable mike flex available at 3d. a yard. Instruerion book and
price list separately $/ /$ - post free. price list separately $1 /$-post free.
A.C. $200-250 \mathrm{v}$.


TRANSFORMER SPECIAL. SUPerlor quality half shrouded drop thro' Mains Transformer. Input $20 / 250 \mathrm{y}$. Output $350-0-350 \mathrm{v}, 80 \mathrm{~mA} .6 .3 \mathrm{v}, 3 \mathrm{amps}$. $5 \mathrm{v}^{2} 2$ amps. Ex-equipment guara
$0 . \mathrm{K}^{\text {. Only } 9 / 6 \text { plus } / /-\mathrm{P} . \& \mathrm{P} \text {. }} \mathrm{l}$

## R.S.C. HI-FI TAPE RECORDER

For space conservation the lid is


The unit is housed in an attractive walnut veneered cabinet as illustrated. Size approx. $18 \times 17 \times 14$ in. high.

INCORPORATING THE LATEST MK. IV COLLARO TAPE TRANSCRIPTOR. THE LINEAR LT45 HIGH QUALITY TAPE AMPLIFIER AND A HIGH FLUX $8 \times 5 \mathrm{in}$. LOUDSPEAKER.
$39^{\frac{1}{2} \text { 霑 }}$
A spare tape spool and an 850 ft . reel of first quality L.P tape is included.

A Collaro Studio Microphone can be supplied with the recorder only at a special price of $37 / 6$.
YOU CAN PAY TWICE THE COST FOR THE SAME QUALITY. Full descriptive leaflet supplied on receipt of S.A.E.
H.P. TERMS. DEPOSIT 3 gns. and 12 monthly payments $£ 3 / 10 / 6$.

HI-FI 8 WATT AMPLIFIER $\begin{aligned} & \text { SPECIAL PURCHASE } \\ & \text { DUETO CANCELLED } \\ & \text { EXPORT ORDER }\end{aligned}, 4,0$ For 200-250 v. A.C. mains.

Carr. $7 / 6$
A REMARKABLE OPPORTUNITY!
Push-pull output. Latest high efficiency B.V.A. valves. Dual separately controlled inputs for mike and gram. Separate bass and treble controls. High sensitivity. Output for 15 ohm loudspeaker. Guaranteed brand new, tested, and in perfect working order.

## AUTO-CHANGER <br> COLLARO RC54 3-SPEED MIXER

Fitted Studio pick-up with turnover head. Brand new cartoned, but for 110 v. 50 c.p.s. A.C. mains. So that the unit can be operated from nortral 200-250 ₹. A.C. mains we are supplying free with every changer a suitable
auto-transformer with input and output voltage clearly auta-transformer with input and output voliage clearly.
marked. Lenited number only, $£ 5 / 19 / 6$. Carr. $\$ / 6$.

THE SKY FOURT.R.F.RECEIVER

$A$ design of a valve $200-250 \quad \mathrm{~F}$. eceiver with selen lum rectifer. For inclusion in cablnet Illustrated or wal
nut veneered type It employs tyalve 6K7, 8P61, BF6G designed for simplicity in wiring. Sensitivity and quallity are well up to standard. Point-to-point wiring dlagram. nstructions and parts list. 1/9. This receiver can be buil in brown or cream bakelite or veneered walnut.

## SIX TRANSISTOR POCKET RADIO RECEIVER

All parts including cream or coloured plastic case, printed superhet circuit, ferrite aerial. Transistors, $2 \frac{1}{2}$ in. P.M. speaker. Long and medium wavebands. Size of unit $5 \frac{3}{2} \times 3 \frac{1}{2}$ $\times 1 \frac{1}{2}$ in. Detailed construction booklet supplied.


## £9-19-6

Total cost of parts. A working unit can be demonstrated at our County Arcade premises. All items are available separately.


## EXTENSION

 SPEAKERSLimited number in handsome Walnut veneered cabinets. ${ }_{6}^{2-3}$ ohm speech | coils, | $6 \frac{1}{2}$ in. |
| :--- | :--- |
| $35 / 9$. | $29 / 9$. |
| 10 in. | $56 / 9$. |

DRY SHAVERS. Brand new in carrying case. Operation from 3 U2 batteries, fitted in case. Just the thing for travel. Only 59/6 (approx. half price).
R200f reels $14 / 9$ APE. 600 ft . reels, $8 / 9$. ELECTRIC SOLDERING IRONS with neon indicator. Lightweight type for radio neonk, indica.

## LINEAR L3/3 STEREO AMPLIFIER



Sensitivity 150
m.v. for 3 watts output on each channel. Ganged Vol. and Tone Controls. Pre-set balance control Out$\begin{array}{ll}\text { puts for two } \\ \text { matched } & 2-3\end{array}$ ohm speakers. (Can be used as straight 6-watt amplifier). Provides remarkably realistic output when connected to 200-250 v A.C. mains point. Stereophonic pick-up head and good quality speakers. Instructions and guarantee included. Carr. free. 7 gns.
Send S.A.

for leaflet. Or deposit $27 / 9$ and 5 monthly pryments of 27/9. COLLARO JUNIOR 4-SPEED RECORD PLAYER with separate plek-mp haring dual point sapphire stylus | Braly new. cartoned. |
| :--- |
| Only |
| A/ $10 \%$ |

## R.S.C. A12 STEREO AMPLIFIER KIT



Carr. \& packing 7/6.
watt) sterco amplifier providing really life-like reproduction. Suitable for use with all stereo, pick-up heads at present available. Ganged volume and tone controls. Preset balance control. Outputs for matched 2-3 ohm speakers, For $200-250$ v. A.C. mains. Astonishing value
W.B. "GTENTORIAN" HIGH FIDELITY P.M. SPEAKERS
HF1012, 10 watts 15 ohms (or 3 ohm) speech coil. Where a really good quality speaker at low price is required, we highly recommend this unit with an amazing performance. £4/10/9. Please state whether 3 ohm or 15 ohm required.


AM/FM RADIOGRAM CHASSIS, HIGH QUALITY. PUSH-PULL. 6-8 WATT OUTPUT. Current manufacture. 12 months guarantee. For 200-250 v. mains. Covers L. and $M$. wavebands plus F.M. Includes 8 latest type miniature B.V.A. valves. Only 22 gns. plus $7 / 6$ carr. Or deposit $£ 2 / 12 /-$ and 9 month iv navments of $£ 2 / 12 /$-.

COLLARO AC/4/564 4 Speed Single Players £6/9/6. Carr. 4/6.

## R.S.C. TRANSFORMERS

 FULLY GUARANTEED INTERLEAVED AND IMPREGNATED
## MAINS TRANSFORMERS

Primaries 200-230-250 v. 50 o/s.
FULLY SEROUDED UPRIGHT MOUNTISG $250 \cdot 0-250 \mathrm{v}^{2} 60 \mathrm{mAA}, 6.3$ v. 2 a., 8 v. 2 a.


 suitable for Mullard 610 Amplifler

## TOP SHROUDED DROP-THROUGH TYPE





## ELIMTHATOR TRANSFORMERS


$120 \mathrm{\nabla} .40 \mathrm{~mA}, 15-0.5 \mathrm{~F} .1 \mathrm{a}$.
$90 \mathrm{v} .15 \mathrm{~mA}, 60=0.6 \mathrm{\nabla} .250 \mathrm{mi}$
FLLAMENT TRANSFORMERS
$\begin{array}{lll}\text { Primaries } 200-250 & \text { v. } 50 & \text { c/e. } \\ 8.3 \text { v. } 1.5 \text { a } & \cdots . . . & 5 / 9\end{array}$ 8.3 v. 1.5
6.3 v. 2


## OUTPUT TRANSPORMERS

Midget Battery Pentode $66: 1$ for 354 , etc. ........ $3 / 6$
Small Pentore 5,000 to 30 Small Pentode $8,000 \cap$ to 30 Standard Pentode $8,000 \mathrm{O}$ to $3 \Omega$ Push-pull 8 watte 6 V 6 to 5 ohms Pusb-pull 10-12 wat to 6V6 to $3 \Omega$ or 150
Puab-pull 10-12 watts to match 6 V 6 to $3.5-8$ or
Push-puli ELSi to 3 or 15 ohms
Push-puil 15-18 watto, sectionally wound. $6 \mathrm{~L} \theta_{\text {, }}$
KT66, ett., or 3 to 15 orms....................
Push-pull 20 watt high -quality sectionally wound,
6L $\delta$, KT 66 , eto, to 3 or 15 .
smoothina chokes
$200 \mathrm{~mA}, 5$ H. 100 ohms
100 mA ., $10 \mathrm{H} ., 200$ ohme
80 mA ., 10 H., 350 ohms
$60 \mathrm{~mA}, 10 \mathrm{H},{ }^{4} 400$ ohms
$1 \mathrm{ampz} .0 .5 \mathrm{ohm} \mathrm{L.T}$.type

## PHILCO F.M. RADIO TUNERS

With self-contained power pack. A 6 -valve de luxe unit housed in beautiful walnut veneered cabinet. For 110-200-250 v. A.C. mains. Magic eye tuning indicator $12 \frac{1}{2}$ GNBrr. $5 /$

## R.S.C. A. 10 ULTRA LINEAR HIGH FIDELITY 12-14 WATT 30 WATT AMPLIFIER


gram, etc., etc., can be simultaneousiy applied for mixing purposes. AN OUTPUT SOCKET WITH PLUG IS INCLUDED FOR SUPPLI OF $300 \vee .20 \mathrm{~mA}$, and 6.3 v. 1.5 a . FOR A RADIO FEEDER UNIT. Price in kit form with easy-to-follow wiring diagrame.
ony 11 Gns.

Or Factory built with 12 months' guarantee $£ 13 / 19 / 6$. TERMS ON ASSEMBLED UNITS. DEPOSTT $24 / 9$ and 12 monthly payments of 24/9.
Type 807 output valves are used with High Quality Sectionally wound output transormer spectally designed for Ulitn Linear operation. Negative feedbach of $20 \mathrm{D} . \mathrm{B}$. in main loop. CERTIFIED PERFORMANCE FIGURES ARE EQUAL TO MOST EXPENSIVE
UNITS AVAILABLE. Frequency response $\pm 3 \mathrm{D} . \mathrm{B} .30-20,000$ e/cs., Tome Controls $\pm 12 \mathrm{D} . \mathrm{B}$, at $50 \mathrm{c} / \mathrm{cs} .+12 \mathrm{D} . \mathrm{B}$. to $-6 \mathrm{D} . \mathrm{B}$. at $12,000 \mathrm{c} / \mathrm{cs}$, hum and noise $70 \mathrm{D} . \mathrm{B}$. down Good quality rellable cormponents used. Chassis finish blue hammer. Overall size $12 \times 9 \times$ 9 in . approx. Power consumption 1150 Watts. For A.C. TMains 200-250-250 v. 50 c/8. Out-
puts for 3 and 15 ohm speakers. EQUALE. $\operatorname{SUITABLE}$ FOR THE CONNOISSEUR OR OR LARGE HALLS, CLUBS or OUTSIDE FUNCTIONS. IDEAL FOR USE WITE MOSICAL INSTRUMENTS SUCH AS STRING BASS, ELECTRONIC ORGAN, GUITAR
 inviTED.

INEAR " DIATONIO" 10 WATT EIGH FLDELITY AMPLIFIER. A compact attrac ively finlahed unit. 112 Gns. Cash. gend S.A.E. for leaflec. H.P. Terins. Dep. |22/3 and twelve monthly paymenta oi $22 / 3$.

LINEAR L45 MINIATURE $4 / 5 \mathrm{~W}$. QUALITY AMPLIFIER. Suitable for use with any record playing unit and most microphones. Negative feedback $12 \mathrm{D} . \mathrm{B}$. Bass and Treble controls. For A.C. malns input of $200-260 \mathrm{r}$. $50 \mathrm{c} . \mathrm{p.s}$. Output for $2 / 3$ ohm spenker. Three
minlature Mnllard valves. Size onlv $6 \times 5 \times 5 . \mathrm{in}$. high. Chassis fully isolated from mains: Guaranteed 12 months. Only $85 / 19 / 6$. Or Deposit $22 /$ and 5 monthly paymentis fuaranteed 12 months. Only $85 / 19 / 6$.

## LG3 MINIATURE 3 WATT GRAM AMPLIFIER

For $200-250$ v. 50 c.p.s. A.C. mains. Overall saze only 6$\} \times 4 t \times 2 t \mathrm{in}$. Fitted vol, and Tone Control with matns switch. Designed for use with any kind of single plaver or record chang ing unit. Output for $2-3 \mathrm{ohm}$ rpeaker. Guarantecd 12 months. Only 55/9.
R.S.C. A7 3-4 WATT QUALITY AMPLIFIER. Spec. exactly as A5 below with exception of output wattage. Complete kit of parts, diagrams and instructions £3/15/-, Cari. 3/6
R.S.C. A5 4-5 WATT HIGH GAIN AMPLIFIER

A highly senaitive 4 -valve quatity amplifier for the home, small club, etc. Only 50 milli volts infut la required for fall output so that ty is suitable for use with the latest high Idelity pick-up hends In addition to all other types of pick-nps and practically all mikes.
Separate Bass and Treble controls are provided. These sive full long playing record equatikation. Hum level is negligible being 71 D.B. down. $15 \mathrm{D.B}$. nf negative feedbrek is used. H.T.
of 300 v .26 mA . and L.T. or 6.3 v 1.5 a . is available or the supply of a Radio Feeder Unit or Tape Deck pre-ampilfer. For A.C. malns lopnt of 200 -230-250 $\mathrm{\nabla}$. 50 o/cs. Output for $2-3$ ohm speaker. Chassis is not alive. Kit is complete in every detall and includes
fully punched chassis (with baseplate) with the blue fully punched chassis (with baseplate) with the blue haminer finish, and point-to-point wiring diakram
and Instruetions Exceptional value at onls $\mathrm{EA/15} /$ or anmernbled ready for use $25 /$ - extra, plus $3 / 6 \mathrm{car}$. riage. Or Deposit. $22 /$ - and five monthly pasments of
22/- for assembled unlt

P.M. SPEAKERS

2-3 ohm $2 \frac{1}{2} \mathrm{in}$. Rola $17 / 9$. 51 n . Goodraans $17 / 9$. $7 \times 4 \mathrm{in}$. Goodmans Elliptical $19 / 9$. 6. in. Rola 19/9, 8 in. Rola 19/9. Sin. Goodmans 21/9, 10in. R.A $28 / 9.10 \times 6 i n$ Elliptical Goodmans
12,000 lines, $59^{\prime} 6$.

COLLARO 4-SPEED AUTO-CEANGERS. With studto pick -up with turnover head. BRAND NEW. Cartoned latest model. For 200-250 V. A.C. mains. Very limited number. Conquest $57 / 19 / 6$. Contsnental
9 kns. Carr $5 / 6$.

AcOS Crystal Microphone Inserts. Brand new. Only $5 / 11$ ea. Ex. Equip. $4 / 21$ ea ACOS HGP59 Hi Fi Crystal Cartridges. (Turnover type with sapphire stylus.)
standard replacement for Garrard and B.s.R. Only $10 / 9$.

## Radia Supply CG. (leeds) tio.

Personal Shoppers to 5 and 7 County Arcade, Briggate, Leeds, I. Mail Orders to 29-31, Moorfield Road, LEEDS, 12.
Terms: C.W.O. or C.O.D. No C.O.D. Under $£ 1$. Postage $1 / 9$ extra on all orders under $£ 2$ $2 / 9$ extra under $\mathbf{E S}$ unless carriage charge stated. Full Price List 6d. Trade supplied. Open to callers: 9 a.m. to 6 p.m. Wednesday until \| p.m. S.A.E, please with all enquiries.

## PLESSEY DUAL CON CENTRIC 12in. P.M. SPEAKERS

(15 ohme), consisting of a
high quallty l火in. speaker high qualty 12in. speaker of orthodox deslga support-
ing a small elliptical speak ing a small elliptical speak
er ready wired with choke er ready wired with choke tweeter. This high fidellty unit is highly recommended for use with our All or any
similar amplifier. Rating fo similar amplifer. Rating is
10 watts. Gaus 12000 lines. Price only $55 / 17 / 6$ lines. Price only $£ 5 / 17 / 6$.
Or Deposit $10 / 9$ and 12. monthly payments of 10/6.

RADIO SUPPLY CO. (LEEDS) LTD.
(Dept. D) 5 and 7, County (Mecca) Arcade, Briggate, Leeds, I

CO-AXIAL CABLE
feeder 11d, yard.
vOLUME CONTROLS with long splndles, all walues, less switch, 2/9; with B.P. вwitch, $3 / 9$.
RAX GOVT. STEP UP/STEP DOWN TRANSFORMERS Double wound, $10-0-100-200-220.240 \mathrm{v}$. to $9.0-110.122$
2 v. 16 A.H. EX GOVT. ACCUMULATORS. New, boxed. Oniy 5/6 each, 3 for $15 /$-, plus $2 / 6$ carr., 6 for 27/6. Cart 3/6.
D.C. SUPPLY EITS. Suitable for electric trains. Consists of mains trans. $200-250$ V. 50 c.p.s.; 12 v. lamp nelenium
rect. (F.W. Bridge); 2 fuseholders, 2 fuses, change direction switch, variable epeed regulator, partially drilled steel case, and circuit. Very limited number, $20 / 9$.
VIBRATORS. Oak and Wearite, synchronous 7 pin, 2 v 7/9, 6 v. $8 / 9$.
JUNCTION TRANSISTORS. R.F. type, 16/9. Audio type
7/8.

R3683 UNITS, Corapriaing chaseis and trong cover $16 \times$ $10 \times 8 \mathrm{in}$. Over 70 resistors (miny high stability) and
condensers, valve holders, IFTs, co-ax. sockets, controls, fuseholders, tagbosrds, etc., etc. Exceptional value a oniy $12 / 9$ carr. paid.

JACE PLUGS, Standard type eomplete with 4ft, ncreened lead. 1/11 each. New Jack sockets to suit (moulded type). 2/9 each.

## EX GOVT. MANS TRANSFORMERS

All 200-250 v. $50 \mathrm{c} / \mathrm{s}$. Input.
Pr. 0-110-200-230-250 v., 275-0-275 v. $100 \mathrm{~mA} ., 6.3 \mathrm{v}$ 7 в., 5 v. 3 з. $250-0-250$ จ. 150 mA .5 т. 3 a $350-0.350$ จ. 100 mA .6 .3 v. $5 \mathrm{a} ., 5 \mathrm{v} .3 \mathrm{~s}$ $22 / 9$ $400-0-400$ จ. 250 ma . 5 ₹. 2 ล., 5 จ. 2 ฉ. $450-0-450$ v. $250 \mathrm{mA}$.6.3 จ. 3 а., 6.3 v. 1 a.. 8 v. 6 a. 12.5 v. 3 a., 8 v. 3 a . $0-24-26-28$ ₹. 15 amps. A.C. conservative Govt. rating (marl ed with D.C. rating atter rectification) 69/9. Carr. 15/ $0-10-20-25$ r. 24 a. (Govt. rating) 79/6. Carr. 15/

SPECIAL OFFER Brand New Ex. 24 v. 15 amp. F.W. Bridge Selenium Rectifiers. Only 25/9 ea.

| EX GOVT. SMOOTHING CRORES |  |
| :---: | :---: |
| 250 mA ., 20 H., 150 chms | 19 |
| 200 mA ., 3-5 E, 50 ohms. Parmeko | 8/9 |
| 150 mA ., 10 H., 50 ohms |  |
| $120 \mathrm{~mA}, 12 \mathrm{H}, 100$ ohms |  |
| 100 mA ., 10 H ., 100 ohms | $6 /$ |
| 100 mA ., 5 H., 100 ohms, tropicalise | $3 / 11$ |
| 80 mA ., 20 F.. 900 ohms | $5 / 8$ |
| 60 mA ., $5 \cdot 10$ H., 250 ohms | $2 / 1$ |

EX. GOVT. CASES. Well ventilated, black orackle fulshed, undrilled cover. gize $14 \times 10 \times 81 \mathrm{in}$. high. TDEAL FOR BATTERY CHARGER OR INSTRU.
MENT CASE, COVER COULD BE USED FOR MENT CASE, COVER COULD BE USED FOR AMPLIFIER. Only $9 / 9$, plus $2 / 9$ post.

## SELENIUM RECTIFIERS

| L.T. Types |  |
| :---: | :---: |
| 2/6 v. $\frac{1}{2}$ a.h.w. | 1/9 |
| 6/12 v. $\frac{1}{2}$ a.h.w. | 2/9 |
| F.W. Bridgre |  |
| 6/12 v. 1 a. | $3 / 11$ |
| 6/12 v. 2 a. | 6/11 |
| 6/12 v. 3 a. | $9 / 9$ |
| 6/12 v. 4 a. | 12/3 |
| 6/12 v. 5 a. | 14/6 |
| 6/12 จ. 6 a. | 15/6 |
| $6 / 12$ จ. 10 a. | 25/9 |
| $6 / 12$ v. 15 a . | 35/9 |
| H.T. Type H.W. |  |
| 120 v. 40 mA . | 3/9 |
| 250 v. 50 mA . | 5/9 |
| 250 v. 80 mA . | $7 / 9$ |
| 250 v. 250 mA. | 10/9 |

BATTERY CH ASSEMBLED CHARGERS 6 v. 1 a. . . . . . . . . . 19/9 6 v. 2 a. 6/12 v. 1 a. ......... 27/9 $\begin{array}{lll}6 / 12 & \text { v. } 2 \text { a. ........ } & 38 / 9 \\ 6 / 12 & \text { v. }\end{array}$ Above ready for use with Above ready for use with
mains and output leads. mains and output leads. Cases well ventiated and hammer. Carr. \& pkg. $3 / 6$.

CHARGER
TRANSFORMERS 200-230-250 v. $50 \mathrm{c} / \mathrm{s}-$, $\begin{array}{lllll}200-230-250 & \text { v. } & 50 & \mathrm{C} / \mathrm{s}_{-3} ; \\ 0-9-15 & \text { v. } & 17 & \text { a., } & 11 / 9 ;\end{array}$ $\begin{array}{lllll}0-9-15 & \text { v. } & 14 & \text { a., } & 11 / 9 ; \\ 0-9-15 & \text { v. } & 3 & \text { a.; } & 16 / 9 ;\end{array}$ $\begin{array}{lllll}0-9-15 & \text { v. } & 3 & \text { a., } & 16 / 9 ; \\ 0-9-15 & \text { v. } & 5 & \text { a., } & 19 / 9 ;\end{array}$

HARGING EQUIPMENT
All for A.C. Mains 200-250 v. $50 \mathrm{c} / \mathrm{s}$

BATTERY CHARGER KITS Consisting of Mains Transformer F. W. Bridge. Metal Rectified, well ventilated steel
case. Fuses, fuse-holders case. Fuses, fuse-holders, grommets, panels and circuit. Carr. $2 / 6$ extra.
grommets, panels and circuit. 2 amps
Carr. $2 / 6$ extra.
6 v . or 12 v .1 amp... $22 / 9$ Fitted Amm 6 v. or 12 v. 1 amp... 22/9 Fitted Ammeter As above, with ammeter $32 / 9$ and selector plug 6 v .2 amps.......... $25 / 9$ for 6 v . or 12 v . 6 v. or 12 v. 2 amps. $31 / 6$ Louvred metal 6 v. or 12 v. 2 amps. case, finished at(inclusive of ammeter) $41 / 6$ case, finished at6 (inclusive of ammeter) $41 / 6$ tractive hammer 6 v. or 12 v. 4 amps. $53 / 9$ blue. Ready for BATTERY CHARGER KIT use with mains
$6 / 12 \mathrm{v} ., 6 \mathrm{amp}$, consisting of and output leads. $6 / 12$ v., 6 amp., consisting of and output leads.
F.W. Bridge Rectifier Mains Double Fused. Trans. and ammeter. 49/9. Only $4 / 9 / 9$

ASSEMBLED CHARGER 6 v . or 12 v Trans. and ammeter. 49/9. Only
Post $4 / 6$.

Guaranteed 12 months
ASSEMBLED 6 v . or 12 v .

## 4 amps.

Fitted Ammeter and variable charge selector. Also selector plus for 6 V . or 12 v . charging Double fused. Well ventilated steel case with blue hammer finish Ready for use
with mains and
$75 /=$ with mains and
output leads. Carr. $4 / 6$. output leads. Carr. $4 / 6$.
Or Deposit $14 / 11$ and five monthly payments 14/11.
As above but for 6 amp . charging, 5 GNS. Carr. 5/-. Or Deposit $19 / 9$
and five monthly payments of 19/9.

# FAMDUS RCA TRANSMITTERS TYPES ET 4336, K \& L 



Frequency $2 \mathrm{mc} .-20 \mathrm{mc}$.
Power output: 350 w . telegraph.
250 w . telephone.
Type of modulation-Class B high level.
Audio input impedance 500 ohms.
Power supply 190 to 250 v . single phase $50-60 \mathrm{c}$.
Tube complement: Crystal oscillators-807, Master oscillators-807,
Intermediate amplifier-807, Power amplifier-813(2), Modulator805(2), Rectifier-866A(4).
Complete with Master Oscillators, crystal multipliers, speech amplifiers, microphones, keys, instruction manual, etc.
We guarantee full supply of all replacement parts for a minimum of 5 years after purchase.

## P.C.A. RADIO

beavor lane, hammersmith, LONDON, W. 6

2.OP MULTMETERS, A.C. and D.C. volts. ito $2.5,10,50,250,1,000.8,00$; D.C. current
ito $1,10,100 \mathrm{~mA} ., 0-1 \mathrm{Amps}$. R Resiatance, 0 to 500 ,
 yer volt ( 400 microampe hasic). In tight nak case
it $\times 6 \times 4$ in., Including lid. Complete with test eade and prods, internal battery, and instruction nanual. All BRAND NEW and tested
lost $3 /$.

## A.C. MICROAMMETERS, Eilintt model 3700.

 0.200 microamps $50 \mathrm{c} / \mathrm{s}, 4 \mathrm{in}$. linear seale, Square case 41 in. Rectifier moring coil instrument.Industria! grade. NFe. Brand new $\mathbf{5 9 / 6}$. Post 2/6.

SDVANCE CONSTANT VOLTAGE TRANSTORMERS. Input $190-260$ volte $50 \mathrm{c} / \mathrm{s}$ A.C. Mains. | utput 230 v. 250 watt. 10 Gus. Carr. $7 / 6$. |
| :--- |
| SELENIUM BRIDGE RECTIFIERS. Funnel | cooled. A.C. Imput 45 V. RMS B. D.C. output

30 v. 10 amps. RRAND NEW. Boxed. $45 /-$. | 30 v. 10 amps. BRAND NEW. Boxed. $45 /$ - |
| :--- |

GEAVY DUTY L.T. TRANSFORMERS (Gresham). Latest type potted, oil alled, Pri. 230 . 50 c/s
Sec. $0-70-76-80$ v. 4 amps. Size $5 \frac{1}{4} \times 4 \frac{1}{2} \times 6 \frac{1}{2 n}$. high.


DUAL PURPOSE TRANSFORMERS (Gresham) Pri. 230/250 \%. Secs. $240-0-240$ ₹. 1.5 ampr. of \% 12.5 amps, $5 \nabla .1 .75 \mathrm{amps}$. Ideal for ISOLATING
TRANSFORMER, to obtain TWO 340 300 watt lines. Potted oilf-filled, $7 \times 7 / \times 10 \% 1 \mathrm{n}$. 3igh. Wt. 501 b . BRAND NEW. $£ 3 / 10 /-$.
Carr. 10/-.

MAINS ISOLATING TRANSFORMERS (Vortexdon). Fully-shrouded. For testing A.C./D.C. sets in
safety. 230 v . input Output 230 v .100 watts. safety. 230 v . in
$22 / 6$. Post $2 / 6$.

\section*{| ADMIRALTX H.T. TRANSFORMERS, Pri, |
| :--- |
| $230 \mathrm{v} .50 \mathrm{c} / \mathrm{s}$. Secs. $620-550-375-0-375-550-620$ |
| . |} ( 620 and 550 ₹. $200 \mathrm{~m} / \mathrm{amps} ., 375$ ₹. $250 \mathrm{~m} / \mathrm{amps}$.) plue two 5 v. 3 Amp. rectifier windings. Total rating 278 VA. Upright mte. Wt. 25 lb . Made 1953. BRAND NEW Original bozes. $45 /$

TRANSFORMER BARGAIN. Input $0.200 / 250$
 2 smps.: 6.3 V. ${ }^{2.5}$ amps. Upright motg. BRAND $50 \mathrm{c} / \mathrm{s}$. malus tranny for ONLY 18/6, post FREE. INSTRUMENT TRANSFORMERS. 230 V. A.C. mpuit. Outputs $0-65-130-195 \quad$ ₹. 85 m/amps., 6.3 .
5 amps., 6.3 v. 0.3 araps. Shrouded. Bize $3 \ddagger \times 3 \%$ 3 amps. high. $15 / \%$. post FREE.

MODULATION TRANSFORMERS. Collins type FERRANTI TYPE, for Tx 36, etc., push-pull 807's to plate and sereen modulate push-push s07' $\theta_{1}$ ratlo $2: 1$. Fully shrouded Wh. $611 \mathrm{~b} .17 / 6$.
Post $2 / 6$. Post $2 / 6$

ARS8D MAINS TRANSFORMERS. Lnput 110.240 v . Output $345-0-345$. $125 \mathrm{~m} / \mathrm{amps} .$, 6.4 $\% ., 4.5 \mathrm{amps}$., $5 \mathrm{v} .2 \mathrm{gmps} .43 \times 4 \frac{1}{} \times 5 \mathrm{tin}$. high. Wh. 12 lb . Potted,
Tag ends. ECA BRAND NEW. Bored. $29 / 6$. frag ends.


SANGAMO. WESTON VOLTMETERS S61. Dual range 0.5 and 0.100 v . 3in. scale. Recent manufacture. Ideal for schools. Complece in super quality canvas carrying prods and leads. ERAND NEW. Boxed 27/6. Pose $2 / 6$.

## MARCONI CR100

Completely overhauled Ln perfect working order LOOK LIKE NEW. \&21
Later model with Nome Limiter, $£ 25$.
Car. Eng. and Wales $30 /$-. Bend 8.A.E. for full detaite.
SPARES KITS. 15 valves, o.p.t. conds. pots., rea. drimn cord. etc.
Z MATCM! Cyldon $250+250 \mathrm{pFd}$. split stator double spaced BRAND NEW, hoxed, transmitting $19 / 6$. Post $2 / 6$.
WHEATSTONE BRIDGES. Poat Office olug-type. 1 to 10,000 ohms. 79/6. Post 3/6.

## MORE METER BARGAINS



MASIATURE 373 IF STRIPS. For FM tuner debcribed in " Practical Wireless." Complete with 3 of EF91, 2 of EF92 and 1 of EB91. A fresh release enables us to offer these once agsin. BRAND NEW. Complete reprint of conversion instructions and carcult supplied free. $37 / 6$. OR
less valves, $12 / 6$. Post, elther $2 / 6$.

## HRO SENIOR MODELS



Complete with ALL NINE general coverage plug-in consets for $50 \mathrm{Kc} / \mathrm{s}$, to $30 \mathrm{Mc} / \mathrm{s}$. Instruction booklet, and circuit, but less external power supply
unit. Table models, as new condition, 21 GNS. Rack mounting, 18 GNS. packing and carriage 22/- extra. Send B.A.E for further detailis.
HRO POWER PACKS. $115 / 230$ v. A.C. mains input. Tested, and in good HRO POWER PACKS. $115 / 2$
condition, $69 / 6$. Post $4 /$.

## MONITOR TYPE 61

 3in. C.R. Tube. A.C. maine power pack. Very modern design. Idealfor conversion to oscllloscope. full dsta supplied. Condition as new, ior coliversion to osc
£7/18/6. Carr. 15/.

## COLLINS TCS TRANSMITTERS

Cover 1.5.12 Me/a. ( $25-200$ metres) In 3 hands. Complete with 7 valres 3 of 12A6 Osc.: 1625 B ffer; 2 of 1623 PA ; 1625 Mod. VFO or crystsl controd WRAND NEW intervally and unused, but externally store soiled. E'7/I9/6. BRAND N

## R.F. UNITS

 RF27. $65-85 \mathrm{Mc} / \mathrm{s}$. Super slow-motion drive
Unhoxed, but as new condition. Post $3 / 6$.

## MINIATURE RELAYS

G.E.C. sealed, wire ends. 670 ohms. 2 H/D makes, M 1099 Mio.
G.E.C. sealed, wire ends. 670 ohms. 4 C/ovors, platinum, Mio92 G.E.C. seased, wire ends. 670 ohms. 4 C/overs, platinum, Mio92
G.E.C sealed, wire ends. 8000 ohms. 2 C/overs, platinum, M1052 G.E.C sealed, wire ends. 8000 ohms. 2 C/overs, platinum, M1052
S.T.O. size 1 I I $\mathbf{I}$ in. 250 ohms. 2 C/overs, double contacts. 3.t.O. size 1 I $I$ in. 250 ohms. 2 C/overs,

ALL BRAND NEW AND BOXED.

## CHARLES BRITAIN (Radio) LTD. 11 UPPER SAINT MARTIN'S LANE LONDON, W.C. 2. <br> TEMple Bar 0545

One Minute from Leicester Sq. Station (Up Cranbourne St.) Shop Hours: 9.6 p.m. ( 9.1 p.m. Thursday). Open all day Saturday

MULLARD C. \& R. BRIDGES. 0.1 ohm to 10 Megohms in 4 ranges; 10 pFd . to 10 mFd in 3 ranges; Callbrate.
Open Bridge and
\% ranges. 100/200
mains. Teated and
E\%/IO/-. Post $3 / 6$


MULLARD "3-3" QUALITY AMPLIFIER An ideal companion unit to the JAsON Tuner, A resily frat-class 8-valve 3-watt Amplifier
iving Ei-Fi quslity at a reasonable cost. Mullard's Latest circult. Valve line-up-EF88, Eiving Ri-Fi quality at a reasonable cost. Mullard's latest circuit. Valve line-upVariable treble cut and bass boost controls, nensitivity 100 MV for 3 -watt output. Frequency response + or $-1 \mathrm{db}, 40 \mathrm{o} / \mathrm{s}$ to $2 \mathrm{k} \mathrm{ke} / \mathrm{s}$.
Complete amplifer wired and tested with quality sectionalisel̉ output transformer to Mullard specilication.

Carr. and ins. $4 / 6$
$58 / 8 /=$
Wired Power O/put Socket with Additional Smoothing for F.M. Tuner 10/6 extra. Stereo version now under development.

JASON F.M. TUNER UNIT $87.105 \mathrm{mc} / \mathrm{s}$ Designer-Approved Kit of parts to build thls modern highly successful unit drifled
chassis and maperior type dial. Coils, cans and all quality components, ete chassis and superfor type dial. Coils, cans and all quality components, etc., for
only 5 gns., post free. Set of 4 spec. EF91 or equiv. ralves $30 /$ pont free. Illustrated handbook with full detalls $2 /$ pocst tree iree with Kit. 48 -hr. Alfgument Service $7 / 8$ and $2 /$-p. \& P. AND NOW-Jason " Mercury" Switohed F.M, Tuner, with A.F.C. Completc kit ouly 8 b gns., plus $2 / 6 \mathrm{p}$. \& p. Set of $3 \times$ E.F. 80 vaives, speclal price $21 /-$ NEW JASON FMT2 self-powered Tuner Uutt in shelf-mounting case. Illust. h/book,

RECORD PLAYER BARGAINS—New Reduced Prices
SINGLE PLAYERS, 4 -gpeed BSR (TU9), $92 / 6 ; 4$-speed GARRARD (4SP), $27 / 15 /-$ GARRARD TA/Mk. II De-luxe model, £9/5/-, carr, and ins, 3/6.
AUTOCHANGERS. 4-gp, BgR (UA8), £6/19/6, 4-gp. COLLARO, eg/19/6; AUTOCHANGERS. 4-8p, BER (UA8), £6/19/6, 4-Ep, COLLARO, E7/19/6;
GARRARD (RCI21/4D Mk. II) plug-in head, stereo adapted, 10 gna. B8R (UA12), latest stereofmomaural model, 10 GNS. All above unlta are latest 4 -gpeed modela Atted latest stereofmomaural model, 10 GNS. All above unita are latest 4 -speed models
lightweight crystal plekup and twin apphire styll. Complete and ready to nee. FINEST SELECTION AVAILABLE-BRAND NEW GUARAN TEED

80 OHM COAX. CABLE NOW ONLY 8d. YARD Elighest Quallity Cable low-loss Polythene Aeraxial bemi-air spaced feeder
losses cat $50 \%$. Standard 1 in dia. losses cut $50 \%$ standard tin. dia.
Btranded core 20 yda, $12 / 6$, carr. $1 / 8$. 40 yds. 22/6, carr. $2 /$., Coax. Plugs $1 / 6$. Coax. Sockets $1 /$ Bi Couplers $1 / 3$. Out-
let Boxes $4 / 6$. Bi-B3 Xover Unit $7 / 6$. VOLUME CONTROLS-GK- 2 Megohms, LONG SPINDLES MIGDET TYPE,
lifin. diam. Guar. 1 yr. Famous make 1 iin . diam. Guar. 1 yr. Famous make,
I.OG or LIN Ratios less $8 w .3 / \%$ D.P Sis. $4 / 9$. Twin gang controls i Meg. $\frac{1}{2}$ Meg. 1 Meg. all less Bw. each $8 / 0$.
Electrolytics All Types New Stoc TUBULAR CAN TYPES $25 / 25$ จ. 50/12 จ. $1 / 8$ $100 / 25 \mathrm{v}$. $1 / 450 \mathrm{v}$.
$8+8 / 450$.
$8+16 / 450 \mathrm{\nabla}$.
$16 / 450$ v.
$16+16 / 450 \mathrm{~V}$.
$32 / 350 \mathrm{\nabla}$.
$32 / 500 \mathrm{~V}$
$32+32 / 450$

HEW VAXD VALS


SPECLAL PRICE PER SET 1R5, 1T4, 185, or 384 or $3 \vee 4,27 / 6$ DK96, DF96, DAF96, DL98, 35/=.

## C.R.T. Heater <br> Isolation Transformers <br> New improved types-mains prim. 200/250 v. tapped.

 All Isolation Transtormers now sup-plied with alternative no boost, plun plied with alternative no boost, plus
$25 \%$ and plus $50 \%$ boost tups at no extra charge
extra charge
2 z
8.3 V . .6 A A.
10.8 V. . 3 A. type
13 V. 3 A type

Other voltagespe
tion. 8 mall size and course of produc.
easy fitting.
CONDENSERS Silver Mica. All prel values, 2 pl to 1,000 pi., $6 \mathrm{~d} . \mathrm{each}$ Dret.
ceramics 9 d .
Dach. Tubniars 450

 RESISTORS - FULL RANGE 10 R., $10 / 6$.
10 meghoms $20 \% ~$

 PRE-SET W/W POTS. T/V Type. 25 ohms30 K ohms $3 /$ (Carbon Track), $3 / 2$
$50 \mathrm{~K}-2 \mathrm{Meg}$ ( SPEAKER FRET-Expanded Bronz: ano
 $12 \times 12 i n$., $4 / 6 ; 12 \times 16 i n .16 / 24 \times 12 \mathrm{~m}$
$9 /-$ etc. Preterred sizes oniy.
TYGAN FRET (Murphy pattern), 12in. 12|noo $2 / \mathrm{l}$; $12 \times 18 \mathrm{in}$., $3 /-$; $12 \times 24 \mathrm{in}$. $4 /$

 Roia $17 / 8.61 \mathrm{n} . \mathrm{Elac} 18 / 6 ; 7 \times 4 \mathrm{n}$, Good
mans Ellptical $18 / 6 ; 8 \ln$ Rola $20 /-10 \mathrm{in}$
R. and A., 25/-; 10in. WB-HF1012, $90 / 8$ 12in. Pleasey 15 ohms with $6 \times 41 \mathrm{~h}$. Tweete
and Cross Over Filter, $9 \% / 6$. and Crops OVer FIter,
OUTPUT TRANSF. Quallty HI-FI TYp
with sectionalised and resistance balance primary windings. Super Silcor Lams. Bec. 3 and 15 ohms. Primsry Imp. to
Individual spec. Fully shrouded Btock lndividual spec. Fully shrouded Btnck
Types. Mullard $3.387 / 8$, Mullsrd 8 matat. 49/6. Ditto with ultra llnear taps, $52 / 6$

## RADID TRADERS LTD.

 23 WARDOUR ST., LONDON, W.I. (Coventry Street end) Phone No.: GERrard 3977/8 Grams: "Radiotrade" STOCKISTS OF CARR FASTENER COMPONENTS
## ALL POPULAR TYPES OF

COMPONENTS
SUPPLIED FROM stock

SPECIAL OFFER OF CURRENT MANUFACTURE ELECTROLYTIC CONDENSERS (tubular wire and P.V.C. sheathed). 8 mfd $450 \mathrm{v}, 2 / 6$ each; $16 \mathrm{mfd} .450 \mathrm{v} .3 /-; 32 \mathrm{mfd} .450$ y $4 /-.8 \times 8 \mathrm{mfd} .450 \mathrm{v} .3 / 9$ $8 \times 16 \mathrm{mfd} .450 \mathrm{v} .4 /$ - $16 \times 16 \mathrm{mfd} .450 \mathrm{v} .4 / 6 ; 32 \times 32 \mathrm{mfd} .350 \mathrm{v} . \mathrm{S}$
BIAS CONDEN SERS. $2,500 \mathrm{mfd} .3 \mathrm{v} .3 / 6 ; 250 \mathrm{mfd} .25 \mathrm{v} .2 /-; 100 \mathrm{mfd}$
$25 \mathrm{v} .1 / 6 ; 50 \mathrm{mfd} .12 \mathrm{v} .1 / 6 ; 25 \mathrm{mfd} .25 \mathrm{v} .1 / 6$.
ELECTROLYTIC CONDENSERS. Manufacturers' surplus, in perfect condition. $100 \mathrm{mfd} . \times 200 \mathrm{mfd} .350 \mathrm{v}$. surge $5 / 6$ each; $100 \mathrm{mfd} . \times 100 \mathrm{mfd}$. 425 v . surge $5 / 6$ each; 150 mfd .450 v . wkg. $5 / 6$ each
2 mfd 150 v . Size 2 in . $x$ Itin. suitable for crossover $1 / 9$ each or $18 /-\mathrm{doz}$.
TRANSISTORS: Junction type Red Spot by well-known manufacturers $10 /$ each.
TRANSISTOR CONDENSERS: Miniature Electrolytic Capacitors 32 mfd .3 v. 25 mfd .25 v., $25 \mathrm{mfd} .6 \mathrm{v} ., 16 \mathrm{mfd} .12 \mathrm{v}, 8 \mathrm{mfd} .6 \mathrm{v}$. $5 \mathrm{mfd} .12 \mathrm{v} ., 2.5 \mathrm{mfd} .25 \mathrm{v} ., 1.6 \mathrm{mfd} .6 \mathrm{v}$., 1 mfd . 12 v . All these types of condensers are $3 / 6$ each. SPECIAL DISCOUNTS FOR QUANTITIES.
AIR-SPACED TRIMMERS, 5, 10, 15, 25, 50 and 75 or pre-set and spindle types 2/- each. per dozen.
200 Assorted Moulded Mica Condensers, popular values 200 Assorted Silver Mica Condensers, popular values
200 Assorted Carbon Resistors, t, $\frac{1}{2}$ and I watt. Good sele...... $\Omega 1100$


T.V. TUBES. A limited quantity of 9 in . and 12 in . Magnetic T.V. Tubes, brand new and boxed, by famous maker. Specification: 12 in . will replace most MAZDA 12 in., 2 v. eubes. Flat face, white fluorescence eriode 1.5 a. heater current, anode voltage $10 \mathrm{kV} £ 8 / 19 / 6$ including mask. 9 in . Tube, round face, white fluorescence, 4 v , lamp heater,
 pkg.
W.W. RESISTORS. 5 watt 1/6; 10 watt 2/6; 15 watt 3/-; 20 watts $3 / 6$. We carry stocks of resistors from 2 watts to 150 watts W.W. Your enquiries invited.
HIGH STABILITY RESISTORS. $\frac{1}{2}$ watt $5 \%$ 6d.: $\frac{1}{2}$ watt $5 \% 9 \mathrm{~d}$. I watt $5 \% 1 /$. A few values in $1 \%$ and $2 \%$ still available.
ALL ORDERS FOR RESISTORS ${ }^{\circ}$ C.O.D. PLEASE, AS WE CANNOT GUARANTEE TO STOCK ALL VALUES.
WESTECTORS 1 gross assorted tin. to in..................................... $8 / 6$ SIGNAL LAMP HOLDERS. Panel mounting, complete with daz. 9 able Lamp Holder 2/- each..................................... per doz. 21/double pole $3 / 6$ each. SPECIAL PRICES FOR BULK QUANTITIES.

## A GIFT FOR THE SERVICE MAN. Brand new in wooden case.

 The Weston Model 772 Type 6 super sensitive analyserThis precision designed multi-range test instrument has a large visible finely divided scale giving some of the range shown.
Range: D.C. volts 20,000 ohms per volt or 1,000 per volt. 2.5 volt range 50,000 ohms. 10 volt range 200,000 ohms. 50 volt range megohm, 250 volt range 5 megohms. 1,000 volt range 20 megohms. Ohms: $0-3,000$ ohms. $0-30,000$ ohms. 0 $\mathbf{3}$ meg. $0-30 \mathrm{meg}$. D.C. milliamps: $10,50,2501 \mathrm{M} / \mathrm{A} 100$ micro amps. or 50 micro amps.
A.C. Volts: 1,000 ohms per volt. Price $\varepsilon 12 / 10 /$-. Post \& Pkg. $7 / 6$.

WEARITE COILS. PA4, PO4, PA5, PO5, $1 / 3$ each ......... per doz. $12 /$ 4WAY PUSH-BUTTON UNITS $2 / 6$ each. Knobs for same, 3d. each. POINTER KNOBS. Small black with white line, $7 / 6$ per doz. Smal white with black line $8 /$ - per doz. Both types $\ddagger$ in. spindle. Large price VALVE HOLDERS. Moulded B9A 7/6; B7G 6/-; Int. Oct. 9/-; Eng. Oct. 4/6. Valve holders fitted with lower can $1 / 6$ per doz. extra. SCREENING CANS for B7G and B9A 6/- per doz

CO.AXIAL PLUGS, SOCKETS AND CONNECTORS, PYE TYPE. $10 \mathrm{H} / 3911,1 / 6$ each; $10 \mathrm{H} / 701,1 / 6 ; 10 \mathrm{H} / 628,1 / 6$. con. $2 /$ - F. \& E. Type: JS-1-PF 2/-each; JP-1-250 e.c.e. 2/-; JS-1-BHF 4/6; PL259 DE 4/6. LARGE QUANTITIES AVAILABLE. SPECIAL PRICES FOR 100 and 1,000 lots.

JONES PLUGS AND SOCKETS. 4 pin $2 / 6$ pair; 6 pin $3 / 6$ pair; 8 pin $4 / 6$ per pair; 12 pin $6 / 6$ per pair. If cover required send $1 / 6$ extra per cover.
WANDER PLUGS. Red and black
PHILIPS TRIMMER TOOLS I/- each
$\begin{array}{ll}\text { doz. } & 2 /- \\ \text { doz. } & 10 / 6\end{array}$
CASH WITH ORDER OR C.O.D. ALL ORDERS DEPT. W.I
ALL ORDERS FOR LESS THAN $£ 2$ ADD POSTAGE
Wo invite your enquiries for items not listed.
Trade Counter open 9 to 6 Monday to Friday
Also 9 to 1 Saturday. Callers welcomed.
WHOLESALE MANUFACTURERS' AND EXPORT ENQUIRIES INVITED

# RADIO CLEARANCE LTD． 

| ENROURES | 27，TOTTENHAM COURT RD．，LONDON，W． 1 |  |
| :---: | :---: | :---: |
| INVITED | The oldest Component Specialists in the trade |  |

ELECTROLYTIC CONDENSERS—WE HOLD THE LARGEST STOCK OF ELECTROLYTICS IN ENGLAND
ABBREVIATIONS：C．Clip mounting tag ends．P．Prong mounting．T．Tag ended．S．Sleeved．W．Wire ended．

| SINGLES |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Capacity （Iㅛㅇds．） | Wle． <br> Volla | Size ${ }^{\circ}$ | Type | Price | Capacity <br> （MICd．） | Wkg． Volts | Size＊ | Type | Price | Capaeity （Mds．） | Wkg． Volts | 8 Size＊ | Tspe | Privo | Cabsolty （1） | Wkg． Volts | $8 i z 0^{\circ}$ | Type | Price |
| 1 | 275 | $\pm \times 1 \%$ | W／8 | 1／6 | 60 | 850 | $11 \times 2$ | T／8 | 216 | $8+16$ | 450 | 1x1\％ | w／8 | $8 / 6$ | $100+100$ | 12 | $1 \times 2$ |  | $1 / 6$ |
| 8 | ${ }^{6}$ | ＋$\times 1$ |  | $1 / 6$ | 84 | 275 | $1 \times 3$ | P | $2 / 6$ | $10+10$ | 400 | $1 \times 3$ | w／s | $8 / 6$ | $100+100$ | 275 | $11 \times 3$ | ${ }^{\text {O}}$ | $3 / 6$ |
| 8 | 12 | ${ }^{1} \times 1$ |  | $1 / 8$ | 64 | 350 | $1 \times 3$ | 0 | $3 / 8$ | 12＋18 | 375 | $1 \times 2$ | W． | $2 / \mathrm{L}$ | $100+800$ | 25 | $1 \times 2$ | ${ }_{\text {IP }}$ | $1 / 6$ |
| 8 | 50 | ${ }_{3} \times 1 \times 1 \frac{1}{6}$ | W | 1／6 | 70 （Res） | $3$ | 者× $\times$ 年 | ${ }_{0}^{8}$ | 1／6 | $12+12$ $12+12$ | 376 | 1×2 |  | 2／6 | 100 2000 | ${ }_{275}^{250}$ | $11 \times 4$ | C | $4 / 6$ |
| 8 | 80 | 者x書 |  | 1／6 | 75 （Rer） | 12 | $1 \times 3$ | O | 10d． | $12+12$ $12+24$ | 360 | $1 \times 2$. |  | 2／6 | $100+200$ $100+200$ | 275 360 | $11 \times 4$ $2 \times 46$ | c | 5／6 |
| 8 | 200 150 |  | $\stackrel{\text { W }}{\text { T／G }}$ | $10 \mathrm{1/-}$ | 75 | 12 450 | $17 \times 14$ | W／8 | 2／6 | $12+24$ $12+28$ | 278 | $1 \times 2$ $1 \times 2$ |  | 2／＊ | $100+200$ $100+250$ | 380 275 | $13 \times 4$ |  | ${ }^{616}$ |
| 4 | 150 | ｜x18 | w | 1／： | 90 | 350 | $11 \times 3$ | T／B | 2.6 | $18+18$ | 150 |  | － 8 | － | $100+300$ | 275 | $11 \times 4$ |  | 410 |
| 5 | 65 | $1 \times 1$ |  | $1 / 6$ | 100 | 12 | 1 $\times 14$ | W／B | 1／0 | 16＋18 |  |  |  | 1 | $100+400$ | 275 | $2 \times 4$ | C | $4 / 6$ |
| 5 | 100 | $1 \times 1$ |  | 1／6 | 100 | 25 | ｜x 1 \％ | T | 1／0 | $18+18$ | 350 | $1 \times 2$ | 0 | 3／6 |  |  |  |  |  |
| 8 | 12 | ｜$\times 1$ |  | $1 / 6$ | 100 | 25 | $\frac{1}{4} \times 11$ | T | $1 \%$ | $18+32$ $10+32$ | 275 | － $1 \times 2$ |  | 2／8 216 |  |  |  |  |  |
| 8 | 15 | 新x需 |  | 1／8 | 100 | 25 | $1 \times 17$ | T／8／8 | $1 / 3$ | $10+82$ $20+10$ | － 2750 | 1×8． | 1 | 2／6 | TR | RPLE | 3 Et |  |  |
| 8 | 26 | －1\％ | T．8 | 1\％ | 100 | 25 | ${ }_{1}^{4} \times 18$ | ${ }^{\text {W／8 }}$ | 10 d | $20+20$ | 150 | $1 \times 2$ | W／8 | 1／＝ | $8+8+8$ |  |  |  |  |
| 8 | 150 | $4 \times 13$ | W | 1\％ | 100 | 870 | $11 \times 2$ | $\stackrel{0}{0}$ | 88 | $20+20$ | 450 | $1 \times 3$ | W／8 | $3 / 9$ | $8+8+8$ | 3250 | $1 \times 2$ | P | $4 / 8$ |
| 8 | 150 200 | ${ }^{\times 1}$ | I | 98． | 100 | 275 | $11 \times 2$ | O／B | $8 / 6$ | $24+24$ | 275 | $1 \times 3$ |  | $2!6$ | $12+24+24$ | 275 | $1 \times 8$ |  | $8 / 3$ |
| 8 | 350 | ［ $\times 1$｜ | w | 1\％ | 100 | 273 | $1 \times 8$ | P／S | $2 / 6$ | $24+24$ | 350 | $11 \times 2$ | C | 3／－ | $16+8+4$ | 275 | $1 \times 2$ | P | 2／ |
| 8 | 450 | $11 \times 24$ | c | $2 \%$ | 100 | 900 | $1 \times 8$ | P | $2 / 8$ | $25+25$ | 300 | $1 \times 2$ | T | 2／－ | $16+16+16$ | 278 | $1 \times 2$ | 0 | 2 |
| 8 | 450 | －$\times 1$ | W／8 | 111 | 100 | 350 | $17 \times 8$ |  | 81 | $30+30$ | 18 | \％$x 14$ | W／\％ | $1 \%$ | $18+32+38$ | 275 | $1 \times 3$ |  | 28 |
| 10 | 15 | $1 \times 12$ | W／8 | $1 \%$ | 100 | 000 | $11 \times 3$ |  | $4 /=$ | $32+18$ | 200 | $1 \times 8$ | $\stackrel{\mathrm{P}}{\text { P }}$ | $1 / 6$ | $80+10+10$ | 350 | $11 \times 2$ |  | $3 \cdot$ |
| 10 | 25 | $\pm \times 1 \frac{1}{8}$ | W | 16 | 150 | ${ }^{25}$ | $1 \times 2$ | T ${ }_{\text {W }}$ | 1／6 | $32+18$ $32+32$ | 350 150 | 1×2 | T | $8 / 6$ | 20 $20+15+15$ | 450 | $1 \times 3$ | 4 | 3／6 |
| 10 | 450 | ＋$\times 2$ | W／8 | $1 / 8$ | 150 | 150 | $1 \times 3$ | W／8 | 1／6 | 32＋32 |  |  |  |  | $20+20+20$ | 250 | $17 \times 2$ |  |  |
| 12 | 25 | $8 \times 1$ |  | 116 | 200 | 6 | $\pm \times 1$ |  | $1 /$ | $32+32$ $32+82$ | 275 | $1 \times 2$ |  | 1／6 | $25+25+25$ $30+30+30$ | 275 | $1 \times 2$ | $0 / 8$ | $1 / 6$ |
| 18 | 150 | ｜$\times 1$ | T／8 | 11. | 200 | 25 | $1{ }^{1} 18$ | T | 10d． | $32+82$ $32+32$ | 275 |  | 0 | $2 / 9$ | 30 $+30+30$ | 275 | $11 \times 2$ |  | $2 / 3$ |
| 18 | 950 | $4 \times 14$ | －8 | $1 \%$ | 200 | 95 | $1 \times 14$ | T／8 | 10d． | $32+32$ $32+32$ | 278 380 | $11 \times 3$ $11 \times 2$ |  | 819 | $82-8+8$ $82+82+8$ | 275 | 192 | P | 3／6 |
| 16 | 275 | ${ }_{8}^{1} \times 2$ | T | 118 | 200 | 250 275 | 11×3 | $\mathrm{O}_{0}^{0 / 8}$ | 2／6 | $32+32$ $32+82$ | 330 350 | $11 \times 2$ $1 \times 3$ | ${ }_{-8} 8$ | 4／－ | $32+32+8$ $32+32+6$ | 275 275 | 1\％$\times 2$ | C |  |
| 16 | 300 880 | \％$\times 1 \frac{1}{2}$ | ${ }_{\mathbf{F}}^{\mathbf{F} \cdot 8}$ | 118 | 250 | 6 | － | T／B | $1 /$ | $32+82$ | 450 | $11 \times 3$ | W／S | $4 / 6$ | $39+32+8$ | 350 | $11 \times 2$ | 0 | 316 |
| 18 | 350 | 1×8 | T | 1／9 | 250 | 12 | $1 \times 18$ | W | 1／2 | $82+82 k / \mathrm{m}$ | 350 | $11 \times 2$ | 2 | 3／8 | $32+32+16$ | 175 | $1{ }^{1} \times 2$ |  | 2.6 |
| 18 | 350 | $1 \times 2$ | －8 | 16 | 250 | 12 | $1 \times 17$ | W／8 | 1／3 | $40+16$ | 250 | $1 \times 3$ |  | $1 / 6$ | $32+82+25$ | 275126 | $1 \times 3$ | T | 8 |
| 18 | 375 | $13 \times 41$ | 0 | 8 | 250 | 25 | \％$\times 2$ | 0 | 1／8 | $40+20$ | 150 | $1 \times 2$ | T | $1 /$ | $32+38+32$ | 850 | 1183 |  | $4 / 6$ |
| 16 | 450 | $1 \times 9$ |  | 8\％ | 250 | 25 | \％$\times 1$ | 0 | $1 / 8$ | $40+40$ | 150 | 1＊3 |  | $1 / 1$ | $52+200+50$ | 275 | $11 \times 4$ |  | $2 / 6$ |
| 18 | 450 | $1 \times 2$ | 0 | 2／－ | 250 | 25 | ［ $x 18$ | W／T | $1 / 3$ | $40+40$ | 100 | $1 \times 2$ | F／S | 1／0 | $32+300+70$ | 275 | $12 \times 48$ |  | 218 |
| 80 | ${ }^{\circ}$ | $1 \times 14$ |  | $1 / 6$ | 250 | 80 | 1＝2 | － | $1 / 6$ | $40+40$ $40+40$ | 278 300 | $17 \times 2$ | C／8 | $2 / 9$ | $40+20+20$ $40+30+20$ | 300 | $11 \times 2$ $1 \times 2$ |  | $3 / 9$ |
| 20 | 150 | $\underline{+1}$ | T／T | 1\％ | 250 （Rev） | 150 | 18표 | P | 1／3． | $40+40$ $40+40$ | 450 | $11 \times 3$ | W／s | $3 / 8$ | $40+30+20$ $40+30+20$ | 150 | （1x2 | P |  |
| 20 20 | 430 | $1 \times 2$ $2 \times 2$ | W／8 | $8 \%$ | ${ }_{500}^{400}$（Rev） | ${ }_{6}^{6}$ | 142 $4 \times 1 \%$ | $\stackrel{\mathrm{P}}{\mathrm{T}}$ | 10d． | $40+40$ $50+80$ | 150 | $1 \times 2$ | W／3 | 1. | $40+30+20$ $40+40+18$ | 275 | 1）$\times 2$ | P |  |
| 25 | 28 | ＋1建 | T／8 | 104 | 600 | 6 | $1 \times 2$ | 0 | 10 d | $50+50$ | 25 | $1 \times 2$ | 0 | 1／6 | $40+40+20$ | 275 | $11 \times 2$ |  | $2 / 6$ |
| 25 | 50 | －$\times 1 \frac{1}{1}$ | W／8 | $1 /-$ | 500 | 18 | ＋1818 | T | 1／0 | $50+50$ | 150 | $1 \times 8$ | W／S | 1／8 | $40+40+80$ | 275 | $1 \times 3$ | $P$ | 3／0 |
| 25 | 350 | $1 \times 1 \frac{1}{8}$ | W | $2 \%$. | 500 | 18 | $1 \times 2$ | T | 10 d | $50+50$ | 200 | $1 \times 3$ |  | 1／6 | $40+40-32$ | 275 | $11 \times 24$ |  | 219 |
| 30 | 12 | 新× ${ }^{\frac{8}{8}}$ | S | $1 / 6$ | 500 | 28 | $1 \times 2$ | 0 | $1 / 8$ | $50+50$ | 250 | $1{ }^{1} \times 2$ |  | $1 / 9$ | $40+120 \rightarrow 70$ | 275 | $11 \times 4$ |  | $2 / 6$ |
| 32 | 3 | ¢ $\times 1$ |  | 1／6 | 500 | 100 | $21 \times 41$ | C／8 | 1／6 | $50+50$ | 275 | $11 \times 2$ | P | $2 / 8$ | $44+44+6$ | 300 | $1 \times 9$ |  | 18 |
| 32 | 87. | $1 \times 2$ | 0 | $1 / 9$ | 1000 | 25 | $1 \times 3$ | 0 | 16 | $50+50$ | 278 | $17 \times 3$ |  | 219 | $50+24+24$ | 275 | $1: \times 2$ |  | $2 / 6$ |
| 32 | 275 | $1 \times 2$ | $P$ | 116 | 5000 | 6 | $1 \times 2$ |  | $3 \%$ | $50+50$ | 278 | $11 \times 2$ | ${ }_{\text {T }}$ | $2 / 8$ | $50+50+6$ | 275 | $11 \times 8$ |  | 218 |
| 32 | 330 | $1 \times 3$ | T／S | $21 /$ | 5000 | 12 | 1×8 | 4 | 4 | $50+50$ | 300 | $1 \times 2$ | P | 31 | $50+50+10$ | 150 | $1{ }^{1} \times 2$ |  | 1／－ |
| 40 | 150 | $1 \times 2$ | W／S | 1／－ | 6000 | 6 | 1\％$\times 3$ | － 8 | 4 | $50+50$ | 800 | $1 \times 2$ | T | 3／－ | $50+50+50$ | 350 | 1143 | P | $3 / 6$ |
| 40 | 350 | $1 \times 2$ | P | 26 |  |  |  |  |  | $50+50$ | 300 | $1 \times 3$ | P | 31. | $80+300+30$ | 278 | $1 x^{4}+\frac{1}{}$ |  | $3 / 8$ |
| 40 | 450 | $1 \times 3$ | W／8 | $8 / 6$ |  |  |  |  |  | $60+100$ | 275 | $1: 1 \times 3$ |  | $4 \%$ | $100+100+50$ | 900 | $11 \times 3$ |  | $3 / 8$ |
| 50 | 25 | （ $\times 17$ | T | 18 |  | DO | UBL |  |  | $65+100$ $60+200$ |  |  | ${ }^{\mathbf{P}}$ | $3 / 9$ | $100+200+200$ $100+250+250$ | （1） 275 | $11 \times 4$ |  | 516 |
| 50 50 | 50 | －${ }^{1}$ | T | 13 |  |  |  |  |  | $60+200$ $60+200$ | 275 | ${ }_{17}^{11} \times 48$ | 0 | 4／\％ | $100+250+250$ $100+400 \rightarrow 16$ | ＋ 275 | 2x ${ }^{2} \times 4 \frac{4}{4}$ | 0 |  |
| 50 50 | 50 150 | ${ }_{1 \times 2}^{14}$ | W／8 | 1.6 | $8+8$ $8+8$ | 275 350 | $1 \times 2$ $1 \times 2$ | T | $2 / 6$ | $60+200$ $60+250$ | 275 | 17 $\times 4$. | 0 | 5／6 | $100+400+18$ $100+400+32$ | 275 275 | $1 / 2$ $1 / \times 41$ |  | $4 / 0$ |
| 50 | 350 | $1 \times 2$ | W／8 | $2 / 3$ | $8+8$ | 450 | $1{ }_{1} \times 13$ | W／S | 310 | $80+300$ | 275 | $1{ }^{1} \times 4$ |  | $3 / 6$ | $200+2.50+250$ | O278 | $2+\times 4 \frac{1}{2}$ | 0 | 6／6 |
| 60 | 275 | $1 \times 3$ | W | 20． | ＋8 | 450 | $1 \times 2$ | W／s | 219 | $100+65$ | 250 | $11 \times 3$ | P | 4／0 | $40+20+10+1$ | 10350 | $1{ }^{1} \times 2$ | 0 | $3 / 6$ |

All voltages quoted are WORKING．STAMPED AND ADDRESSED ENVELOPE with any enquiry，please， please allow full postage and packing charges．
TERMS OF BUSINESS：CASH WITH ORDER OR C．O．D．ON ORDERS OVER 10／－

## SENSATIONAL OFFER－LIMITED QUANTITY ONLY SIX TRANSISTOR PLUS DIODE POCKET SUPERHET

12 Special Features ：
－Senstivity－ 1 my for 50 mm ．output．
－Power ourput－ 150 mW ．（no signal） 18 roa．
mean average aignal．
AF responese 25 to 5000 cycles．

Waveband coverage－MW and LW－530 $\mathrm{kc} / \mathrm{s}$ ．to $1500 \mathrm{kc} / \mathrm{s}$ ．$-130 \mathrm{kc} / \mathrm{s}$ ．to $270 \mathrm{kc} / \mathrm{s}$ －Mullard Transistore－0C44．OC45（2）．OC71． OCC2（malched nair），OA70．
Printed oircult

Internal bi－Q Ferrite aerlal． － 150 g 31 n ．loadspeaku －Push－pull output．
－Completely dotailed Instruction manual． Easy to bulld． OIROUTT LINE－UP
Mixer etage－two Puah－Puil outpu Al components，excludlag cabinet and batterles，supplled at apecial inclusive price of £7／19／6．Plue 2／6 Par．All parts sold separately．

Wth anything obtalnable．It embodies the latest design developments together with the utmost simplieity of constructlon thereby producing the most amaeling

WIMA TROPIDUR PAPER CONDENSERS Smail，non－Indactive，Insulated，blgh－grade capacitors，
 8 d, eacb． .022 mld ．， $10 \mathrm{~d}, 05 \mathrm{mfd} .11 \mathrm{~d} .1 \mathrm{mfd} 1 / 2$ .1 mid． 250 v．1／1． $25 \mathrm{mld} 1 / 6$ ． $.6 \mathrm{mld} 1 / 9$ ．

## VALVE HOLDERS

4 pin Brit．Pax．2d． 4 pin UX．Ampr 7d． 5 pin Brit．Pax 2 d ． 7 pin Brats Pax．6d．B7G P．T．P．E．Sd．B7G Cer．with zadde and ralve retalulng apring 1／e．B8A Pax．4d．B8A Amp．6d b8A Cer．8d．B9A Pax．6d．B9A Amp．8d．B9A Amp． with skirt 10d．B9A Cer．10d．B9A Cer．nith radal
 B9a printed clrcuite 1／－．B9A Valve Cane $6 d$.

## TRANSFORMERS

Audlo Oatpat Types． $4,500 \mathrm{n}$ to $3 \mathrm{R}, 5,000 \mathrm{D}$ to 3 B ． $2 / 8$ to $3 \Omega, 41$－． Low Voltage Types．Utulversal Chargiag Min capped priaar
 13 ．， $25 \%$ boost all tapa 1018．Filament trangformers． centre tapped， 6.3 \％．output． 1.5 smps．，5／9； 3 amps，



One of the most important hooks on television

## TELEVISION RECEIVING EQUIPMENT <br> 4TH EDITION

by W. T. Cocking M.I.E.E.

The book deals comprehensively with television receiving equipment and gives many practical details and design data. It assumes that the reader will have a fair knowledge of sound radio technique, and while the treatment is largely non-mathematical formulæ useful to the designer have been collected in appendices

30s net by post 31s 9d 454 pp illust from leading booksellers Published for "Wireless World" by Iliffe \& Sons Ltd Dorset House Stamford St London S.E. 1

## INSTRUMENT WIRES AND INSULATING MATERIALS <br> ENAMELLED, SILK and COTTON covared Coppe Wires, single or Stranded, also Tinnad, Paper Asbestos and Plastle Westofiex coverec RESISTANCE WIRES, LITZ WIRES. <br> MICA, MICANITE and BAKELITE in all forms. Heat Resisting Boards. Canvasite for Silent Gears. Oil Cloth, silk and Paper. Slot Insulations. Insulat ing Varnishes. Varnished Fabric and Plastic Sleeving. Moulded and Machined Pieces, atc.

## WEST INSULATING COMPANY LTD.

Telephone:
2 Abbey Orchard Street, Westminster, S.W.I.
Abbey 2814 \& 7352

## LYONS RADEO ITD.

I.F.F. UNITS. Contaln a wealth of usefut components including relays, 10 valves (6-68B7, 2-7193.2-AH8) and a rotary covnerter rated at 18 v. D.c. Input for (6-fisH7, 2-7193. 2-
480 v . D.C. oatput. With 12 and a rotary covnerter rated at 18 v. D.C. input for output is of the order of 250 . D.C. at 80 mA . One end of converter it 8tted with blower fan $A$ gear box to other end. Both easily removed. If desired. The converiar can slan be operated from 6 \%. D.O. Two driving shafte protrude from the gear boan asd rotate at approx. 4 and $16 \mathrm{r} . \mathrm{p}$.m. for 12 v . trput and about half thila speed for 6 . Input. An especially good buy for experimenter and model maker. PRICR ONLI 27/6. carriage 5/-
 at 2 A. tapped at 3. 4, 5. 6. 8, 9, 10, 12. 15, 18,20 and 24 .. All connections clearly
marked. Brand new and guaranteed. PRICE ONLY 29/6, post 2/-, Type 181 . Pri. 180/230 v. 60 c.p.s. Sec. 4.2 v. twhee at 10 A. Ex-Govt., as new. PRICE ONLY 17/6, post 3/6.
RECTIFIER UNTTS TYPE SE.8. Power units designed for malos operstion of such Installations as the SCRS2en, TR1430, oto. Input 200 r260 7.60 c.p.a. Maias output 300 F. at 200 mA . (H.T.). $150 \mathrm{\nabla}$. at 20 mA . (grdd bias) and 13 . at 5 A ., all fully and circult diagram. Selenfum rectifiers employed throughout for rectification. gize $20 \times 13 \mathrm{~K} \times 1 \mathrm{in}$. Weight approz 90 lb . In good condition. PRIGE ONLY e5/17/6, carrlage 19/6.
BARGADNS and VALVE LISTS now available. Stamped addressed envelope, please,
3 GOLDHAWK ROAD (Dept. M.W.), SHEPHERD'S BUSH,
LONDON, W. 12
Telephone: Shepherd's Bush 1729

#  Visit the City's new acoustically designed 

 HIl-Fill centreCOME AND HEAR THE LEADING MAKES IN AMPLIFIERS, TUNERS AND SPEAKER SYSTEMS

| AMPLIFIERS BY: |  | V.H.F. TUNERS BY: |  | HI-FI SPEAKERS BY: |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| VERDIK ARMSTRONG ROGERS DULCI | GOODSELL <br> QUAD <br> LEAK <br> W.B., etc. | ARMSTRONG LEAK QUAD <br> ROGERS, etc. | T.S.L. DULCI GOODSELL | GOODMAN PLESSEY WHARFEDALE LORENZ, etc. | $\begin{aligned} & \text { W.B. } \\ & \text { T.S.L. } \end{aligned}$ |

HURRY! NOW COMING TO THE END OF THIS WONDERFUL OFFER DUE TO CANCELLED EXPORT ORDER


Provision for tuner, bass and treble, 5-position. Provision for tuner, bass and treble, 5 -position

LOOK AT THIS AMAZING OFFER Easy to build 6 tran- ALL COMPONENTS sistor and diode pocket COMPLETE superher. Long and LESS CABINET med. wave bands; Prin- AND BATTERIES ted circuit; matched AT THE SPECIAL Mullard transistors ; built-in HiQ Ferrite Aerial: Ploull output; circuit and point to point layout diagrams. PR CE OF 87. 19.6 Post \& Pkg. 216. All parts sold Circuit Line Up: Mixer stage, 2-1:F. stages Germanium detector, A.F. driver and p/pulf outpur stages, 3 in . loudspeaker.

## LIMITED NUMBER SPECIAL OFFER

For the Hi-Fi enthusias -Collaro 4-speed transcription motor and p/up using the new TX88 OUR PRICE E Ci6/19/6.

[^18]
## LIMITED NUMBER AVAILABLE BRAND NEW AND GUARANTEED

## The Famous COLlARO Mk. 3 Tran-

 scriptor Tape Deck. Twin track, 2 record playback, 2 erase heads on 2 levels, pause control, digital counter, 3 speeds, 2 balanced motors of low watrage inpur. 15 gns.WHILE STOCKS LAST. Crating and WHILE STOCKS LAST. Crating and carr. 17/6.
Build yourself a HI-FI TAPE RECORDER.
The Collaro pre-amp and bias oscillator complete with power pack for the above deck, with instructions. Price $£ 12 / 19 / 6$. Post and pkg. 7/6.
The above two items at a special price of $£ 28 / 10 /$ Carr. ond pkg. $22 / 6$ the two units.
The Linear Tape Deck Amplifier with power pack and oscillator incorporated. Switched for $37,7 \frac{1}{\frac{1}{2}}$ and 15 in . per sec. Suitable for the Mk. 3 Deck. 12 gns. only. Post and pkg. 3/6.

## THREE ASTOUNDING T.V. TUBE OFFERS All brand new in famous maker's cartons. (1) Tin. rectangular aluminized 6.3 HTRS. . 3 A current; max. anode voleage 16 kV . <br> OUR PRICE E9/19/6. Crating and Carr. 15\%. <br> (2) Ferranti $T 12 / 44$ and $T 12 / 549$ 12in. mag netic whize fluorescence; $4 \vee$. heater: max anode 10 kV . As used in many T.V. receivers. Original price $\mathbf{6 1 7 / 5 / - .}$ OUR PRICE $£ 4 / 19 / 6$. <br> Crating and Carr. 12/6. <br> (3) Ferranti 9 in . Tube round white fluorescence, 4 y . heater, max. anode voltage 7 kV . <br> OUR PRICE $£ 2 / 19 / 6$. Crating and Carr. $11 / 6$.

AUTOCHANGERS AT BARGAIN PRIGES Collaro Conquest 4 -speed autochanger incorporating auto and manual control. Complete with Studio erystal pick-up and sapphire stylus. OUR PRICE E7/19/6, plus 5/- post.
B.S.R. UA8 4-speed mixer autochanger, manual and autochanger with latest Ful-Fi cartridge. E6/19/6, post and pkg. 5/5. Can be aleered for stereo.
4-speed Collaro $4 / 546$ single player with Studio t/over pick-up. OUR PRICE $6 / / 19 / 6$. Pose and pkg. 3/6.
Collaro Junior 4 -speed motor and $2 /$ table with Acos crystal t/over cartridge featherweight p/up. BUR PRIO 496 complete. Post and pkg. $3 / 6$ t/over cartridge. NOW $£ 4 / 10 /$. Post and pkg. 3/6.
JUST ARRIVED-New Garrard 4HF. 4 speed Hi -Fi motor and z/table with new GC8 cartridge. $£ 19 / 7 / 6$ plus $5 /$ pose and pkg. As above, using stereo cartridge, c19/17j6, plus 5/- post and pkg.
NOW IN STOCK IN LIMITED QUANTITY -B.S.R. UAI2 Stereo Autochanger, Collaro Stereo Autochanger and Garrard 121 Stereo Autochanger.

## STEREO

NOW IN STOCK AND DEMONSTRATING Rogers Stereo Control Unit, designed to Rogers Stereo Controisu
match RD Junior Units. Price $\mathrm{E} / 8 / 10 / \mathrm{F}$. mason JSA Stereo Amplifier, 4 w. $\mathbf{E 2 3 / 1 5 \%}$ Jason JAA Stereo Amplifier, 41 W ., $£ 23 / 15 \%$ Amplion Stereo Compact Amplifier, beautiAmplion Stereo Compact Amplifier, beautifully
gns.
gns
解
Duli Stereo 8 pre-amp., 22 gns.
Dulci Stereo SP44 amplifier, 12 gns .
Leak Stereo 20 pre-amp., 29 gns.
Leak Point I Sterso pre-amp., 20 gns
Elpico stereo compact amplifier. 15 gns . Armstrong stereo 12 radiogram chassis, 6 W . each channel, FM, p/pull, L. and M. bands, tape record and playback for stereo and monaural. $637 / 16 /$.

## ANOTHER SNIP OFFER



SLIGHTLY SOILED
AT THE LOW PRICE 29/6
and 4/post and packing. Surplus so manufacturers' requirements, well made 2 - tone colour portable player cabinets, will take non-auto player. Amplifier and 4 in , or 5 in . speaker.

## THE ALFA MULTI-RANGE POCKET METER

IDEAL FOR ROVING SERVICE MAN. Reslistance ranges
O-20K ohms. 0.2 Meg ohms.
Voltage ranges:
0-6 v. D.C., 0-12 v. D.C., $0-60$ D.C., a 300 v. D.C., $0-1,200$ $\begin{array}{lll}\text { D.C. } & 0-6 & \text { V. A.C. } \\ (23 & D^{-}-12 & \text { Y. A.C. }\end{array}$ ( 23 DB ), 0-60 V.A.C. ( 37 DB ), $0-300$ v. A.C., $0-1,200$ v. A.C. Current ranges:
0-300 V.A.D.C., 0-30 MA.-D.C.,
 0-300 MA.-D.C, complete with cest leads $66 / 19 / 6^{\prime}$ and batts. Potc and packing $3 / 6$.

## MULIARD LIMITED

Electronics (Fleet S..) Limited of $152 / 3$ Fleet Sereet, London, E.C.4, hereby apologise to Mullard Limized for having advertised in "Wireless World" and offered for sale under the name "Mullard" certain ampli. fying equipment not manufactured by Muliard Limited, in infringement of Muliard Limited's registered trade marks and have given an undertaking, inter alia, to dastroy all infring. ing equipment in their possession or under their control and not, in future, to infringe the said trade marks.

DEPT. B,
152/3 FLEET ST., LONDON, E.C.4.
Telephone: FLE 2833
Business hours: weekdays 9-6. Sazurdays 9-1.

## DEPENDABLE RADIO SUPPLIES LTD.

12a TOTTENHAM STREET, LONDON, W.I.
( 2 minutes Goodge Streat Station. Opp. Heols in Tottenham Court Road) Phone: LANghom 7391/2

Haurs of Business 9-6 Mon.-Fri. Callers welcome.

Terms: Cash with order or C.O.D.


## POST OFFICE RELAYS

TYPE 3,000
Type 600 also avallable

## COMPONENT PARTS ALL PLATED

Yokes, 3/- each. Top Plates, 3d. each. Fixing Screws, (with Armarures, 9d, each. Bottom Plates, 3d. insulator), 2d. each. Adjustable, $1 / 3$ each. Spindles, //- each. Armatures Screws, Buffer Blocks 6 d . Spindles, I/- each.

Armatures Screws, ench

BUILD UPS CONTACTS
COIL VALUES


SIEMEN'S HIGH SPEED C/O RELAYS
$250+250$ Ohm Twin Coils $6 / 6 \quad 1.000+1,000$..... $10 / 6$ $850+850$
"Postage and packing on all extra.
ROTARY TRANSFORMERS Delivery ex stock. Quotations on application.

| M.T. 31 |
| :---: |
| Input |
| OII. |
| Ourpur |
| V.at |
| V. |


| H.T. | 32 |  |
| :---: | :---: | :---: |
| Input | 11.5 | $v$ |
| Output | 490 |  |
| v. at | 65 | mA. |

AS SUPPLIED TO GOVERNMENT DEPARTMENTS AND LEADING MANUFACTURERS. NEW AND BOXED.

ROTARY TRANSFORMERS Made by DELCO. TYPE I $27 / 6$ P. \& P. $3 / 6$. TYPE 2, 37/6. P. \& P. 3/6. Type I. Dual voitage 12 or 24 v ., input 265 v ., 120 mA . output; 500 V., 26 mA output.
Type 2. $12 v$. input, $275 v_{0}$ 110 mA . outpue; 500 y., 50 mA. output.
Both types dual output.

MADE IN ס.S.A.


DYNAMOTOR ROTARY TRANSFORMER NEW \& BOXED
D.C. input 27 V . Output 285 V . at $75 \mathrm{~mA} ., 37 / 6^{\circ}$ D.C. input 12 v . Output 250 v . at 50 mA . $47 / 6$. Postage and Packing on each. $3 / 6$.

UNREPEATABLE OFFER LESS THAN HALF MANUFACTURER'S COST
Brand new single phase motor suitable for tape recorders, radiograms, workshops, etc., etc. Has many uses. Reversible $203-230$ v. 51n. oz. torque. 1,403 r.p.m. Capacitor start. Weight $4 \frac{1}{2} \mathrm{lb}$. Length overall 5 in ., spindle both ends. in. $x$ fin., inn. $x$ in. Price, incl. P.P. and capacitor, 55/-


## STEREO £7.7.0

Independent twin channel amplifler with excess of 3 watts per channel.
Concentric volume control (optimum balance arranged immediately without additional knobs).
Choice of volume and tone controls separately fixed or integral with chassis, and having continental styled knobs (brown and gold).
Stoved grey or blue hammer chassis $9 \frac{1}{2} \mathrm{in}, \times 5 \frac{1}{\frac{1}{i n} .} \times 6$ in.
Inpur suiting most modern erystals; ourput matching 3 ohm speaker each channel
For operation on AC mains $200 / 250$ v.

E.K.E.

BROTHERTON, KNOTTINGLEY, YORKS.
If in difficulty obcainable direct from Manufacturers, earriage 3/6.


## 48



## DONYロN

## Don't despair-let DONVIN repair hice

For the repair of that broken or damaged instrument call in the Donvin Repair 'Crash' Service and (subject to inspection) it can be put in sound working order and returned to you in 48 hours. All types-any make. Quotations by 'phone or wire if necessary.
DONVIN INSTRUMENTS LTD.
Midland Terr., Victorla Rd., London, N.W.10. ELGAR 7871



## AVOMETER MODEL 40

Just purchased from the Ministry of Supply, these famous A.C./D.C. Test Meters are a "snip" for anyone requiring a First-Grade Instrument. The overall size is $7 \frac{1}{2}$ in. $\times 6 \frac{1}{2}$ in. $\times 3^{3}$ in., indicarion being given on a 5 in . Mirror Scate. Thoroughty overhauled and complere with heavy Leather Carrying Case, Batteries and Inseructions. Provides 40 ranges of Current. Voltage and Resistance, as follows:

| $\begin{aligned} & \text { D.C. Yoltage } \\ & 60 \mathrm{mV} \text {. } \\ & 120 \mathrm{mV} \text {. } \\ & 600 \mathrm{mV} \\ & 1.2 \mathrm{~V} . \\ & 6 \mathrm{~V} . \\ & 12 \mathrm{~V} . \\ & 60 \mathrm{~V} . \\ & 120 \mathrm{~V} . \\ & 240 \mathrm{~V} \\ & 480 \mathrm{~V} \\ & 600 \mathrm{~V} . \\ & 1200 \mathrm{~V} . \end{aligned}$ | A.c. Yoltage 6 V. 12 V. 60 V. 120 V. 240 V. 480 V. 600 V. 1200 V. | $\begin{gathered} \text { D.C. Current } \\ 3 \mathrm{~mA} . \\ 6 \mathrm{~mA} . \\ 12 \mathrm{~mA} . \\ 60 \mathrm{~mA} . \\ 120 \mathrm{~mA} . \\ 600 \mathrm{~mA} . \\ 1.2 \mathrm{~A} . \\ 6 \mathrm{~A} . \\ 12 \mathrm{~A} . \end{gathered}$ | A.C. Current 6 mA 12 mA . 60 mA . <br> 120 mA . <br> 600 mA . <br> 1.2 A. <br> 6 A. <br> 12 A . <br> Resistance 1,000 Ohms. 10,000 Ohms 100,000 Ohms |
| :---: | :---: | :---: | :---: |

ONLY $\{10.19 .6$ Cariage, etc. $5 / 6$.
RCA AR 88 RECEIVERS. Re-conditioned and in perfect working order. 12.30 Model, Covers $75-140$ kes. and $1.2-30 \mathrm{mcs}$., ONLY E50. 'O Model,
covers 500 kcs.-31 mes., ONLY E55 Came
POWER UNITS TYPE 234: Primary $200 / 250$ v. 50 cycles. Outputs of 250 v. 100 mA , and 6.3 v .4 amps . Fitted double 5 moothing. For normal rack mounting (or bench use) having grey front panel size $19 \mathrm{in} x 7$ in. BRAND NEW. ONLY $59 / 6$ (carriage etc., 7/6).
H.R.O. MAINS POWER UNITS: Input $115 / 230$ v. A.C. Output 230 v. 75 mA . and 6.2 v. 3.5 Amps. Complete in black crackled case. ONLY $69 / 6$ (carriage 3/6).
SPRAGUE CONDENSERS. Meral cased, wire ends. New, . 01 mid. $1,000 \mathrm{v}$. , and I mid. 500 v . $7 / 6$ MAINS TRANSFORMERS. Normal. MAINS TRANSFORMERS. Normal.
Primaries $250-0-250 \mathrm{v} .80 \mathrm{~mA} .6 .3 \mathrm{v}$.


 $0-4-5$ v. 2 a., $20 /-; 0-30$ v. 2 a., tapp
to give 13 different volcages, $20 / \%$. to give 13 different voltages,
O/P. TRANSFORMER 5/-.
EHT TRANSFORMERS. 5.5 kV . (Rect.) with 2 v. I a., 79/6. 7 kV. (Recr.) with 2 v .1 a., $89 / 6.2 .5 \mathrm{kV}$. (Rect.) with $2-0.2 \mathrm{v}$. $1.1 \mathrm{a}, \mathrm{I}^{2-0-2} \mathrm{v}$. 2 a . (for VCR 97 tube etc.), $42 / 6$ (postage $2 /-$ per trans.).

## COMMUNICATIONS RECEIVER R. 1155

The farmous Bomber Command Recelver known the world over to be supreme In Its class. Covers 5 Wave ranges: $18.5-7.5$ mcs., $7.5-3.0$ mes.
$1,500-600$ kes., $500-200$ kce. $200-75$ kcs., and is easily and slmply dapted for normal mains use, full details being Eupplied. All sets thoronghly tested and in perfect working order bofore degpatch, and on demonstration to callers. Fitted with latest type Super slow Motion tuniog ansembly. Have had some use, but are in excellent condition. ONLY fy19/6. A.C. MAINS POWER PACK OUTPUT STAGE, in black metad case to
 De Luxe version with 8in. speaker $80 / 10$ -
DEDUOT $10 /$ IF PURCHASING RECMVE
DEDUOT 10/- IP PURCHASING RECEIVER AND POWRR PACK TOCETHER. send B.A. E. for lliust rated leaflet, or $1 / 3$ for 14 page booklet


|  | METERS |  |
| :---: | :---: | :---: |
| F.S.D. | SIZE ANDTYPE | PRICE |
| 25 microamps D.C. | 2 itn . Flush circular | 69/6 |
| 25 matcroamps D.C | 2 fln . Prob. circular | $59 / 6$ |
| 50 microarapa D.C. | 2 in . Flush eircular | $59 / 6$ |
| 60 microamps D.C. | 3 flm . Ftush circulsr | 80/- |
| 1 mA . D.O. | 2in. Flush square | 2246 |
| 1 mA . D.C. | 2 fin. Flush elrcular | 25/- |
| 1 mA . D.C. | 3yin. Finsh circular | $501 /$ |
| 150 mA . D.C. | 2 in . Fluah aquare | $7 / 6$ |
| 200 mA . D.C. | 2 fin . Flush odrcular | 12/6 |
| $20 \mathrm{amps}$. D.C. | 2in. Proj. circular | 716 |
| 40 ampm . D.C. | 2 in . Proj. circular | 716 |
| 15-0-18 amps. D.O. | 3 3)tm. Fluah equare | 25. |
| 300 volte A.C. | 2 ¢in. Fiush circular | 251- |
| 500 volts A.C. | 2 )nn. Flush circular | 25/- |

AMERICAN RECEIVER R45/ARR7
Has 6 switched Bands covering 550 kes.- 42 mes. Valve line up 4 of kCs.- 42 mes. 2 of $6 S A 7$, I ea. $6 \mathrm{H}_{6}$, $6 \mathrm{SQ7}$ 615, 6BA7, 6V6GT, OD3/VR150, 2 stages of RF \& 2 of IF. Controls include "S". Mecer, RF Gain, BFO. Audio Gain, Pitch, Automatic Noise Limiter, AVC, Phasing, and Selectivicy Control for Xtal or IF Adjustment to "Broad-Medium-Sharp," Output to Phones, Medium-Sharp," Ourput to Phones but more chan ample for Speaker exceedingly fine Vernier Tunlng, with directly calibrated dial of tremendous scale length. Also incorporates 24 v . Motor for driving unique pre-set Tuning Device. Power Supply required 6 v. \& 250 v. D.C. Size $10 \frac{1}{2 n} \times 72 i n . x$ 20in. BRAND NEW AND UNUSED ONLY E42/10/- (carriage etc., 20/-). RII55 SUPER SLOW MOTION TUNING ASSEMBLY. As used on all late model 1155 . Easily fitted to "A " sets ett. ONLY $12 / 6$.
ROLA $6 t i n . ~ P . M . ~ S P E A K E R . ~$ ROLA $6 \frac{1}{3} \mathrm{in}$. P.M. SPEAKER. Mounted in grey crackled metal cabinet $9 \times 9 \times 4 \frac{3}{4} i n$. and with volume control. BRAND NEW AND UN USED. ONLY $27 / 6$.
MAINS ISOLATINO TRANS FORMER. Manufactured by Vor. texion. Fully shrouded. Will provide true 1:I Ratio from nomina 230 v. Primary. Rated at 100 watts. BRAND NEW. ONLY 22/6 (post 2/6). 6 v . VIBRATOR PACKS. Output approx. 130 v . at 30 mA ., fully filtered and smoothed. Complete ONLY $12 / 6$

## HETERODYNE FREQUENCY METERS

 TYPE LMI4Designed and built to United States Navy specification, these Crystal Controlled instruments combine alt the advantages of the well known additional features which increase their usefulness.
$\star$ Frequency range $125-20,000 \mathrm{kc} / \mathrm{s}$. - in 2 bands.

* Accuracy better than $.02 \%$ in $125-2,000 \mathrm{ke} / \mathrm{s}$. band, and better than $.01 \%$ In 2,000-20,000 kc/s. band.
* Voltage stabilisation circuit enpower supply fluctuation.
* Separate power switches allow stand by fliament operation without HT supply.
* Modulation switch enables instrument to be used as a Signal
$\star$ Generator.
* Has corrector for WWV
※ Supplied with removable shock protection mounting.
t Size only $8 \frac{1}{2} \mathrm{in}, \times 8$ in. $x 8 \frac{1}{2}$ in. Weight $11 \frac{1}{2}$ Ib.
$\star$ Brand Now and Unused. Further details on application.


Mannfactured for the Admiralty in 1952 by . Burndept this utillses 4 valves 1 each
 tormers and Block Paper Bmoothing Condensers, Has A.C. Mains Packik for nouinal
$110 / 230$ volta. Provefon for 600 obarns or High Iumpedance Input, and bas Output $110 / 230$ volta. Frovielon for 600 dorros or High Inpedance Input, and has Output
to 600 olima Line. For normal use only requires changing Out put Translormer. Can to 600 ohm Lhe. For normal use only requires changing Out put Transiormer. Can
be necd for Speech or Music siving High Ouality Reprofuction. Output aporoxibe necd tor Speech or Music, giving High Qunilty Roproduction. Outpot aporoxi-
mately \& watte. Enclosed in metal case and designed for Standard 19ig. Rack

 Light, Fucs and Valves Inspection Panel. BRAND NEW IN MAKERS' PACKING
ONLY $84 / 9 / 8$ (earriage 10/6).

Cash with order please, and print name and address clearly
PLEASE ADD POSTAGE OR CARRIAGE COSTS ON ALL ITEMS

## HARRIS ELECTRONICS

(LONDON) LTD.
Radio Corner, 138 Gray's Inn Road, London, W.C. 1 Phone: TERMINUS 7937
Open until I p.m. Saturdays.
We are 2 mins, from High Holborn (Chancery Lane Station) and 5 mins. by bus from King's Cross

## Now NO PREVIOUS TECHNICAL PRACTICAL EQUIPMENT （INCLUDING TOOLS） GIVES YOU A REAL LABORATORY TRAINING

 in your own home，LEARN RADLO＝TELEVISION```
Practical Radio
Radio && Television
Practical Electroniesing
Electronics Engineering
Automation
Basic Practical and Theo-
retic Courses Ior begin-
ners in Radio, T.V., Elec-
trontcs, etc.
A.M.Brit.1.R.E.lds
Amateurs' Exam.
R.T.E.B. Certificate
P.M.G. Certificate
"NO PASS-NO FEE"
```

Radio \＆Television
Servicing
Practical Electronies Electronics
Automation Basic Practical and Theo－ nere in Radio，T．V．，Elec－ tronics，etc．
A．M．Brit．I．R．E．
City \＆Guilds
R．T．E．B．Certificat ＂NO PASS－NO FEE＂
＊The trained electronics engineer has a great career ahead of him．＂ －ELECTRONDES

## Valuable FREE Book shows how E．M．I．

 Institutes School of Electronics can train you for today＇s wonderful opportunitiesRadio，Television and Electronics provide a new and exciting fied of opportunity for the trained man－high pay，fescinating work，a prosperous future－or if you prefer it－independence in you own business．And，if you are trained at home by E．M．I．Institutes School of Electronics，you wil be in the hands of specialists who know iust what is needed and the quickest way to get you ready for one of the ever－growing number of fine jobs open to trained electronics－men．Whether you are complete beginner or an advanced student with an examination in mind，B．M．I．Institutes School of Electronics has a Course exactly suited to your needs－with or without practical equipment－ from electricity and magnetism to automation techniques．

## 

## We definitely Guarantee NO PASS－NO FEE

Full details of the Courses，Practical Equipment，convenient monthly pay－ ments，our Employment and Advisory Depts．and much other helpful infor mation is given in our Guide to Careers in Electronics．Write for your copy today．There is no obliga－
tion and the book will be sent tion and the book will be sent to yo quite free of charge．


## TECHNICAL TRADING CO． <br> SATISFAETION OR MONEY BAOX GUARANTEE on all goods（14 daya）

 1 WATT TRANSISTOR AMPLLFIERS．From 6 V －dry battery｜ 2 Transistors A．F．push puiti OETIS Power Transistors．Vol．and Tone．O．P．Trans．Amazing Gain，eq／19－
 T．V．TUBES Factory revacuomed．all goaranteed 6 months． 6501，6504，8505，CRM91，CRM 92 ，MW22／7，MW22／44．MW22／14C，M W22／17 £2．15．0 C12FM，CRM121，CRM121A，CRM122，MW31／7，MW31／14C，МW31／17 \＆3．5．0 3／16，3／31，108K，14KP4，14KP4A，141K，7201A，7202A，7203A，AW38／21 £3．15．0 6700A，${ }^{4 / 15, ~ 17 A R P 4, ~ 17 A S P 4 . ~ C 17 F M . ~ C R M I 71, ~ C R M 172, ~ K W 43 / 43 ~ S 4 . ~} 10.0$

 8／6；Contact cooled． 250 ष． 60 ma．，7／－： 250 v． 250 ma．，19／6： 250 v． 300 ma．， $23 / 6$ ． gdaranteed radio valves，24－Hour service


## TEST OF 0,000 VATVES \＆SNIPS 6.

Post $1 / 3 \mathrm{In} \mathrm{El}$ ．Min．9d．No C．0．D 10,000 sintes por Callers
350／352，FRATTON ROAD，PORTSMOUTH



FOR VALVES AND SERVICE

| EZ90 ... 8/- | PY83 ...10/- | UF85 ... $10 / 5$ | IR5 ...... 8/6 | 5/- | 7/6 | Q7 ... 8/6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| El\|48 ... 2/- | PZ30 ...19/11 | UF89 ...l0/6 | IS4 ......10/6 | 6D6 ...... 5/- | 6X5G ... 7/- | 1457 ...17/6 |
| $\mathrm{FCl}^{\mathrm{FCl}}$ ….. $6 / 6$ | PEN4VA 15/- | UL41 ... $10 / 6$ | IS5 ...... 7/6 | 6F6G ... 7/6 | 6×5GT... $7 / 6$ | 15D2 ... 7/9 |
| FW4/500 101- | PEN25 ... 6/- | UL84 ...11/6 | IT4 ...... 7/- | 6F6M ... 716 | 6/30L2 ...12/6 | 19AQ5 9/9 |
| GZ32 ...12/- | PEN46... $71-$ | UU6 ...19111 | IU5 ...... $7 / 16$ | 6F1 ......14/- | $787 \ldots 8 / 6$ | 2001... 16/ |
| H30 ...... 5/- | PEN220A 4)- | UU8 ... $26 / 6$ | $2 \mathrm{C} 26 \ldots \ldots$ | 6F13......14/- | 788 … 6.6 | 20P2 ...... 1716 |
| HL230D 8\% | PENA4 15/- | UYIN ...12/6 | 2×2 ..... 4/6 | 6F14 ...17/6 | 7C5 ...... 81- | 20P1 .. 26/6 |
| HL4I ... 3/6 | OP21 ... 7/6 | UY21 ...12/6 | 3A4 ...... 7/- | 6F15 ...14/- | 7C6 ...... 8/- | 20P5 ...15/- |
| K40N ... 91- | R16 ...... $26 / 6$ | UY41 ... $8 / 6$ | 3A8GT 6/- | 6H6 ...... 276 | 7D6 ......13/6 | 25A6G ... $11 / 6$ |
| KF35 ... 8/6 | R19..... 19/11 | UY85 ...10/- | 3D6 ...... 5/- | 6H6GT... 2/6 | 7H7 ...... 9/- | 25L6GT 10/- |
| KK32 .. $21 / 11$ | SP4(5pin) $10 / 6$ | VP13C 3/6 | 304 ....... 9/- | 615M ... $6 / 6$ | $707 \ldots . .9)_{-}^{-}$ | 25Y5G ... 9/9 |
| KLL32 ... 8/6 | SP4(7pin) $10 / 6$ | VR22 | 3Q5GT ... 9/6 | 616 ...... 6/- | 757 ...... 9/6 | $25 Z 4 \ldots 9 / 6$ |
| KT24 .... 5/- | SP41 ... 3/- | (PM2A) 3/- | 354 ...... 81- | 6J7G ... 6/6 | 7Y4 ...... 8/6 | $25 \mathrm{Z5}$... 9/- |
| KT33C 10/ | SP61 ‥34- | VP23 ... $6 / 6$ | 3V4 ...... 91- | 6J7M … 9/- | 8D2 ...... $2 / 9$ | $25 Z 6$ |
| KT55 ...11/ | T41 ...23/3 | VP41 ... $8 / 6$ | 4D1 ....... 3/- | 6K6GT... 7/- | 9D2 ...... 3/6 | 30 F 5 ... $10 / 6$ |
| KT61 ...14/- | TP22 ... 81 | VR105/30 8/- | 5R4GY... 9/6 | 6K7G ... 51- | 10FI | 30P4 ...17/6 |
| KT66 ...17/6 | TP25 ... $26 / 6$ | VRI16 ... 4/- | 5U4G ... 8)- | 6K7M ... 6/9 | (surplus) 15/- | 30FL $1 . . .10 / 6$ |
| KTW61 ...6/6 | U10 ......10/6 | VRISO/30 \%/- | 5V4 .....12/- | 6K8G ... 8/6 | 10C1 ... $17 / 6$ | $30 \mathrm{P} 12 \ldots 12 / 6$ |
| KTW63 716 | U22 ....... 8/- | VUI20A 3/6 | 5Y36 ... 8/- | 6K8GT 10/- | $10 \mathrm{C} 2 \quad \ldots . .17 / 6$ | 30PLI ... $12 / 6$ |
| KTZ41 ... 5/6 | U25 ......15/- | VY39(MU | 5T3GT... 8/- | 6 K 25 ...19/11 | $1246 \quad \ldots 6 / 6$ | 35L6GT 9/6 |
| MH41 ... $7 / 9$ | U26 ...... $12 / 6$ | 12/14) 8/9 | 5Z4G ...101- | 6KYGT 5/9 | 12AH8 ...10/- | $25 \mathrm{Y5}$... 999 |
| ML4 ... 8/6 | U37 ...... $26 / 6$ | VU111 ... 2/6 | 6A7 ......131- | 6L6G ... 8/- | 12AT6... $10 / 6$ | $35 \mathrm{~W} 4 . . .816$ |
| MSP4/5 $10 / 6$ | U45 .......15/ | W77 ... $8 / 6$ | 6A8G ...10\% | 6L7 $\ldots \ldots . .7 / 6$ | 12AT7... $9 /-$ | 35Z4GT 8/- |
| MSP4/7 10/6 | U50 ....... 81- | W729 ... $10 / 6$ | 6AC7 ... 616 | $6 L 18$...13/6 | 12AU6 $\ldots . .10 / 6$ | ${ }^{2} 2$ …… 8/- |
| N78......19/11 | U191 ... 11/6 | X65 ......11/6 | 6AG5 ... $5 / 6$ | $6 N 7 \quad . .7 / 6$ | 12AU7 $\ldots$.. 8/- | 35Z5GT 9/- |
| OZ4 ... 5/6 | U339 ...12/- | X78 ......16/- | 6AK5 ... $6 / 6$ | 607G ... 91- | 12AX7... 9/- | $50 \mathrm{C5}$...11/6 |
| P6I ...... 3/6 | U404 ...11/4 | Y63 ...... 9/- | 6AL5 ... $6 / 6$ | 6Q7GT 9/- | 12BA6 ... 9\%- | 50L6GT 8/6 |
| PCC84 ...10/- | U801 ...29/10 | Z309 ... 8/6 | 6AM6 ... $7 / 6$ | 6R7 ...... 9\% | 12BE6 ...10/- | 75 ...... $11 / 6$ |
| PCF80 ...13/6 | UABC80 $10 / 6$ | Z359 ... $9 / 6$ | 6AQ5 ... $7 / 6$ | 6SATGT 8/- | 12 CB ... 91- | 77 ...... 7/6 |
| PCF82 ...12/6 | UAF42 $9 / 6$ | 2759 ... 916 | 6AT6 ... 91- | 6SG7 ... 7/6 | $12 \mathrm{H6GT} 3 /-$ | 80 ...... 8/6 |
| PCL82 ...13/6 | UB41 ...12/- | 1A3 ...... 3/6 | 6AU6 ... $10 / 6$ | 6SH7 ... 6/- | $1215 G T$ 3/- | 1428 T ... $3 / 6$ |
| PCL83 ... $17 / 6$ | U8C41 10/- | 1A7 ......13/6 | 6B4 ...... 5/- | 6SJ7 ... $8 / 6$ | 1217 GT 1016 | $2100 \mathrm{DT} 4 / 6$ |
| PL36 ...17/6 | UBF80 9/6 | IA5GT 6/- | 688G ... 4/- | 6SK7 ... 6/- | 12K7GT 716 | $210 \mathrm{VPT} 3 / 6$ |
| PL38 ... 20/- | UCC84 19/11 | IC2 ......11/6 | 6BA6 ... $7 / 6$ | 6SL7GT 8/- | 12K8GT $13 / 6$ | 807 ....... 8/6 |
| PL81 ...16/- | UCC85 12/- | IC5GT ... I2/6 | 6BE6 ... 8/- | 6SN7GT $7 / 6$ | $1207 \mathrm{GT} 7 / 6$ | 954 ...... 2/- |
| PL82 ... $9 / 6$ | UCF80 ...21/11 | ID5 ...... 12/6 | 6BH6 ...10)- | 6SQ7 ...9/3 | $12567 . .716$ | 955 ...... 4/- |
| PL83 ...11/6 | UCH42... $10 / 6$ | ID6 ......12/6 | 6836 ... 9\%- | 6U4GT 12/- | $125 \mathrm{H7}$... 6/9 | 956 ...... 3/6 |
| PX25 ...12/6 | UCH81 11/6 | IH5GT 10/6 | 6BW6 ... 9/- | 6U5G ... 8/6 | 12517 ... 81- | 9001 ... 5/6 |
| PY80 ... 9/- | UCL82 21/11 | IL4 ...... 6/6 | 68W7 ...10/- | 6U7G ... 8/6 | $125 \mathrm{~K} 7 . . .6$ | 9002 ... 516 |
| PY81 ...10/- | UCL83 17/- | ILD5 ... 3/6 | $6 C^{4} \ldots \ldots$ 7/- | 6V6G ... 7)- | $125 L 7 \ldots$... 81- | 9004 ... 5/6 |
| PY82 ... 9/6 | UF41 ...10/6 | IN5 ...... $10 / 6$ | 6CSGT 6/6 | 6V6GT... $7 / 6$ | 125N7GT 17/6 | 9006 ... 5/6 |

Boost Transformers Mains Input. NR20A 2 volt, MR208 4 volt, NR2OC 6.3 v . all with optional $25 \%$ boost. $10 / 6$ each $\star$ Sin. P.M. Loudspeaker Units by Good. mans or Plessey $17 / 6$ ea. t 3 Core Line Cord, 2 amp. 100 ohms per foot, 3 amp .60 ohms per foot $1 / 9$ yd. \& Minlature I.F. Transformers $465 \mathrm{Kc} / \mathrm{s} 9 /$ pair $t$ Henley Solon Instrument Irons 25 watts $220 / 240$ r. 24/-ea. \& Full Range Warite 'P' Coils 3/- ea. * Jackson Bros. Drive for FM/VHF or Shortwave Converters, etc. type SLI6 $13 / 6$ ea. \& Acos Microphone, eype 39-1 Pencil Stick lisced $105 /$ o. our price $59 / 6$ t Coaxlal plugs and sockets $7 \frac{1}{2}$. each part t High Resistance Headphones rype CHR $13 / 6$ pair * Cyldon Aerial and Oscillator Coils (all channels, all frequencies), $7 / 6$ pair $t$ Cyldon Front Panel 8 Monarch UAB,4 speed automati record changer $66 / 19 / 6$ t One Pound Reels Solder, resin corad 76 per Ib. t Uine Output Transormer, type LO4 for Pye V4 V7, Invicta $118,119,120$, PAM 908 909. etc. $55 / 2$ each $t$ Wafer Switches 3 pole 4 way. I pole 12 way, 2 pole 6 way, erc. $3 / 1 /$ ea. $t$ Empty Tape Spoois, 3in.i3 3 , Westinghouse Metal Rectifiers 14A86, 14A97, 14A100, all $17 / 6$ each t Books: T.V. Faults by N. Seevens. Guide giving more than 60 fault with test procedure $5 / .+$ TCC Visconal, I mid. 7 Kv . $10 / \mathrm{e}$ each Philips Beehive Trimmers 0/30 pf lod. each t Ourlet Boxes for skirting board mounting $3 / 6$ ble Plug Fixed Socket 2 f

B7G B9A Ampenal Valve holders with or withous skirt 9d. each $t$ Screening Cans 6d. each t Crocodile Clips 3d. each $\$$ mary 63 ransformers Mains Pro amp. 101 : : W. W. HFiol2 IOin. 10 watts Universal Speech Coil Loudspeaker 99/9 * Mains Dropping Resistors a amp. 2,000 ohms, . 15 amp . 1,500 ohms. 5/3 each $t$ Push-on Knobs, cream, It in, dia., brown lizin, dia. 6 d . each t 2 gang 500 pf . Condensers Standard or Midget $7 / 6$ each $t$ Solid Dielectric Tuning

Keys $2 /$-each $* 5$ cored cable (I screened) $1 /$ - yard +12 volt 4 -pin UX Vibrators $2 / 6 \mathrm{ea}$. $4 \mathrm{BA} x$ lin. round head boles abd nuts 4/- gross $t$ Escutcheons for TV 12 in . and 17 in . $7 / 6$ each $t 25$ yard coils 23/26 3 core 7.R.S. Circular flexible 20/-coil $*$ Condensers wax tubular. 02 mfd. 750 v.. . 01 mfd. 350 v., 1 mid. $500 \mathrm{v}_{\mathrm{e}}$ all 4 d . each t Crystal diodes $1 /$ volts .3 amps. 4d. each $*$ Acos Mic 33-1 Desk or Hand Microphone liseed 50/- brand new and boxed $29 / 6$ * TRF Coils

## OUR 1959 FULLY ILLUSTRATED CATALOGUE

of components and accessories-invaluable for enthusiasts and engineers-is now available. Send $1 /$ in stamps for your copy.

> Condensers 300 pl . or 500 pl . $4 / 6$ each $*$ Co-axial Cable, semi airspaced 75 ohms 6 d , yard $t$ Headphone CLR low resistance $7 / 6$ pair * Paper based recording tape, 1.200 ft . on plastic spool, $12 / 6$ \& TRF Kit complete in every detail $6 / 10 \%$. circuit and shopping former for Regentone 177 12/6 each t STC Rectifiers RMI 5/6, RM2 6/9, RM3 7/6, RM4 16/6, RM5 19/6 * Ex Government Carbon Controls by Morganite brand new 250 K . $1 \frac{1}{4} \mathrm{in}$ spindle $/ / \mathrm{F}$ each $*$ Electrolytics for TV 100 mfd . 450 v. $3 / 6,100-200 \mathrm{mfd} .275$ v. $7 / 6$. 60250 mfd .275 v. $7 / 6$ ea. $*$ Morse
aerial and HF coil with circuit $7 /$ pair $*$ Collaro Conquest 4 spead automate record changer $E / 119 / 6$ + Mains Dropping Resistors SMD6 and SMD7 as used in Ulira Twin $505 / 3$ ea. $*$ Pointer Knobs available crearn, white. black and maroon 9 d , each * Elliptical speakers 7 in . $x$ 4in. by Plessey 1916 each t Multiratio Output Transformers Optimum Loads 3,000 to 12,000 ohms $5 / 9$ each $*$ 8 in. Loudspeaker Unit 3 ohms impedance with a matching output transformer suitable for 6V6 brand new but soiled, offered at a special price of $11 / 6$ each $*$ American Type T30 Throat Micro-
phone phone complete with strap and , $\frac{1}{2}$ and I wati popular values 100 for $12 / 6+$ Copper plated tubu lar rods $12 i n$. long, designed to plug into one another $/ /$ - doz. Monarch UAl2, the de luxe 4 -speed automatic record changer 69/9/- t Tyana Soldering Iron, Instrument Model $230 / 250$ 40 watts $16 / 9$ \& Acos Cartridges, Type HGP $37 / 37$ and HGP59/5C $18 / 6$ each $t$ Garrard 4 -speed Single Player, flted with the GC2 carcridge 66/19/6 $*$ Charger Rectifiers. Bridge type, 12 v 1 amp. 4/3, $2 \mathrm{amp} .7 / \mathrm{m}, 3 \mathrm{amp}$. $10 / \mathrm{mp} 4 \mathrm{amp} .12 / 6,6 \mathrm{amp} .15 / 9 \mathrm{t}$ ChargerTransformers, Universal Primary Secondary 2,6 and 12 v 2 amp . version $13 / \mathrm{m}, 4 \mathrm{amp}$. version 18/6 \& Reclaimed Richard Allan Relay Bafflette, $8 i n$, unit with volume control and output trans ormer $18 / 6$, post paid $\&$ Universal Booster Isolation Trans former, tapped Primary for 2, 6 and 13 v . Secondary with a fixed $25 \%$ boost, $13 / 6$ ea. \& Celestion Sin. x 5 in . Elliptical Loudspeaker Hi-flux Model, 25/6 $亠$ Ex Government 38 set, complete with headphones, throat micro phone, iunction box, whip aerial and canvas battery case, 65/carriage $7,6 \star$ Goodmans $10 i n$. Loudspeaker, $2 / 3$ ohms imped ance $25 / 6$ + Plessey $10 i n$. x 6 in. Loudspeaker Unit 25/6 * Line Output Transformer for Pye V14 $33 / 9$ * Contact Cooled Rectifiers by Westinghouse 14RA -2-8-3, I8RA-1-1-16-1, 9/- t Osmor Chassis Cutter, type 2 , holds lin. and I I inn., $21 / 6 \mathrm{ea}$. Crystai Microphone Insert, I\$in. diameter, $3 / 9$ each.

[^19]

## SOUTHERN TECHNICAL SUPPLIES

TRANSFORMERS FOR MULLARD AMPLIFIERS


OUTPET TRANSFORMERS (Secondaries Ior 3.75 and 15 ohms) T.44. $5-10$ amp. ultra linear, $8,000 \mathrm{ohm} .43 \%$ tappings. $30 / \mathrm{t}$. $\mathrm{P} / \mathrm{P}$ 2/T.100. 5-10 amp. LOW loading, 6,000 obm. 28/न, P/P $2 /$.
T. 142. 7 watt atereo amp. $9,000 \mathrm{ohm} .20 \%$ tapplage. $26 / \mathrm{m}$. P/P 2/T.140. 3 watt amp, and type A tape amp. $5,000 \mathrm{ohm}$. $12 / \mathrm{F}, \mathrm{P} / \mathrm{P}$ 2/.

MAINS TRANSFORMERS (Primaties 240-220-200; 0-10 \%. 50 o/m.)
T.55. $5-10 \mathrm{amp}$ and taner, $300-0.300$ v., 120 mA ., 6.3 v. 2.5 a. cT. 6.3 下. 2.5 s e., $6.3 \mathrm{v}, 1 \mathrm{a}, 32 /=\mathrm{P} / \mathrm{P} 2 / 6$.
T.56. 5.10 8mp. $300-0-300$ v. $100 \mathrm{~mA}, 6.3$ v. 2.6 a. cT. 6.3 จ. 1 a., 27/-. P/P 2/6 T.101. Two 5-10 ampe. Low loading. $300-0-300$ v., $150 \mathrm{mAA}, 6.3$ v, 4 a . cT., $6.3 \mathrm{\nabla} ., 1 \mathrm{~A}$. 341-. P/P $2 / 9$.
 All transformers fulls gusranteed, all shrouded upright mounting except T. 140 and T.B.

SPECIAL ORFER. T. 44 and T.E5 59/w, P/P 3/6. Recommended for "Bribond P.O."

## "POWER-PAKS*

T.A. Trans, and giemens contact cooled metal bridge rectifior dellvers 270 volte D.O. 100 mA . and 6.3 F. ©T. 3 a., $32 /-$ Plus $2 / \cdot$ P/P. 6. m. Trans. and siemens contact rooled meta.

SOUTHERN TECHNIGAL SUPPLIES, 83 Station Road, Portslade, Sussex

## PULLER

Electronics Limited

FULLY RECONDITIONED AND TESTED EQUIPMENT一 Offered at the lowest possible prices! SIGNAL GENERATORS
CT-53. CW/AM Pulse. Freq. $8-300$ mes, attenuated to 11 micro v. TF-948. CW/AM/FM Pulse. Freq. $20-80$ mcs. Crystal check. Variable TF-948. CW/AM/FM
deviation to 600 kcs.
TF-888, CW/AM. Freq, 50 kcs. -70 mcs. Crystal check. Also power output meter. 25 mcs
L.A.E. CW/Pulse. Freq. $500-1500$ mes. Piston attenuator
$5 \times-12-M .1 . T$. Design. 8- 12 cm . CW/Pulse.
TTX-10-RH M.1.T. Design. FM-3 CM test set and power meter. $1 \frac{1}{2} \mathrm{CM}$. Suitable for CW or modulated by separate source. Slotted line for S.W.R, measurement.
Cosser Ganger Oscillator.

## MICROWAVE EQUIPMENT

B.T.H. Type 8-C. Klystron power supply with bridged T selective amplifier. 3 kcs.
B.T.H. Type 7. Power supply.

TSX-4SE, 3 cm . spectrum analyser M.I.T. design.
T.B.N. 3-E.V. Direct reading thermistor $W$ bridge M.I.T, design. Airmec Type 698-B. Klystron power supply with square wave and saw-tooth modulation.
Echo Boxes. S and $X$ band.

## POWER METERS

Windsor. Receiver output meter.
VHF=UHF. 0-40 watts oil cooled load resistor in co-axial cavity.

## RECEIVERS

Ferris 32-A. Field strength meter 200 kes -20 mes. R-1 $294.500 \cdot 3000 \mathrm{mcs}$.
P-58. $300-600$ mcs. with R.F. stage.
AR-88. D. \& LF.
PULLER ELECTRONICS LTD Service Facilities for Most Types of Electronic Equipment
1A, WHITEHALL PARK, LONDON, N.19. ARChway 1678

## - Effaifinjom

 15, LITTLE NEWPORT STREET, LONDON, W.C.2. GER 6794/1453 ADJOINING LEICESTER SQUARE TUBE STATION - Open 9-6 Weekdays 9-I Sat.

TANNOY LOUD. HAILERS. With 180 ohm line transformer ance $7 \frac{1}{3}$ ohms, handling ance $7 \frac{1}{3}$ ohms, handling plete in slope-front plete in slope-front Wooden case. Brand P. \& P. 3/6. 2 for $42 /$. Post paid.

## D.C./A.G. ROTARY CONVERTERS

ROTARY CONVERTER. 230 v. D.C. input to 230 v. A.C. output at 230 watts. Brand new and unused. EIS. Carr. 10/-. 230 v. A.C. output, 50 eycl 110 V. D.C. input, Complete in waterproof steel case, $£ 3 / 17 / 6$.
Carr. 5/-. CONVERTER. 24 v. D.C. to 230 v. A.C. 50 eycles, 150 wates. Brand new and unused. £8/10/-. Carr. 7/6. Ditto, 100 watts, £6/9/6. Carr, 7/6. ROTARY CONVERTER. EX-Govt. 12 v . D.C. input 230 v. A.C. Output 50 cycles at 135 watts. Complete in carrying case with lid. Voltage control, sliding resistance, mains switch and $0-300$ v. A.C. Motor only, In good condition, \&10. Carr. A0,Motor oniy, without case,
unused, $£ 8 / 10 /$. Carr. 5/..

## ACCUMULATORS <br> Our price ORSR



12 v. 25 A.H. ACCUMULA. TORS. New and unused. Housed in strong wooden case for extra protection. 45/-. Carr. 7/6.


TEST SET TS-26/TSM. This volt ohmmeter is the correct tester for EE- telephones and all standard telephone equipment. Brand new and boxed with full technical data and calibration chares. E7/10/-
EVERSHED \& VIGNOLES. Series II-500 v Megger insulation Tester, with leather carrying case. Good order, £ $12 / 10 /$. Carr. 10/-.
RECORD MEGGERS. 500 v . insulation tester $0-20$ megohms. In leather case, good condition, 68 EVERSHED \& VIGNOLES WEE MEGGER 250 v . New and unused. $\subset 10 / 10 /-$. P. \& P. 3/- on each AVO TEST BRIDGE. A.C. mains operated from $200-250 \mathrm{v}$. Wilf test resistance from 5 ohms to 50 megohms and capacity from .00001 to 50 mids. A most useful instrument for everyday uses Our price ONLY $£ 7 / 19 / 6$. P. \& P. $3 / 6$.

ACCUM ULATORS. Bakelite cased. 2 v. 100 A.H., 75 actual. Ex Govt. New and unused. Complete with carrying handle. Size $6 \frac{1}{2} \times 6 \frac{1}{2} \times$ $3 \frac{1}{2}$ in., $15 /-$ each. Carr. 3/6. -3 sent for 50/-, or 6 for 65 , carr. paid.
Ditto 16 A.H., $5 /$. P. \& P. 2/-; 6 for $24 / \mathrm{F}$ P. \& P. $10 / \mathrm{F}$
Ditto 14 A.H. less handle, 5/-. P. \& P. 2/-; 6 for 24/-. P. \& P. 10/-.

## TRANSFORMERS

## E.H.T. TRANSFORMER.

 2.9 kVA. Pri. 230 v, $50 / 60$ cycles. Now at Enused. E25. Carr. paid.E.H.T. TRANSFORMERS. $3,850 \mathrm{v}$. at 50 mA . with two additional 4 v . L.T. windings for 230 v .50
 E.H.T. TRANSFORMER. $1,800-0-1,800$ at 1 kVA .230 v . 50 cycles primary. Fuily tropicalised. New and boxed. E8/151-. Carr. $10 /$ RCA MODULATION TRANSFORMER. Heavy duct. Pri. 10.400 ohms. Sec. 4,350 ohms. New and unused. E5. Carr. 10 -
RCA PLATE TRANSFORME RCA PLATE TRANSFFRMERS. 190 to 250 Y. primary. $50-60$ crcles. Secondary $1,500-0-$ 1,500 or $2,000-0-2,000$ at 1.75 kV
and boxed. $E 12 / 101$-. Carr.
Cot-.

HEAVY DUTY LT TRANSFORMER 230 v .50 cycles pri. 11 to 12.5 v . sec. at 70 mps 230 V .50 cycles pri. 11 to 12.5 r . sec. at 70 mpss .
Ditto 13 to $15 \mathrm{v} . \mathrm{sec}$ at at 60 amps ., also $17 \mathrm{v}. \mathrm{sec}$. at 35 amps. All
Ap at 35 amps. All capable of carrying
actual rating.
25
Perfect condition. Over
NLY
OV/actual rating.
20 each. Carr. 5- kVA AUTO-TRANSFORMER. 230 115 v. 50-60 eycles, by Jefferies Transformer Co. U.S.A. Perfect condition. \&15. Carr. fl. E.H.A. Perfect condition. TRANSFORMERS. i $100-0-1100$ at 350 E.H.T. TRANSFORMERS. $1100-0-1100$ at 350
M/A plus $4 \mathrm{v} . \mathrm{L}$. T. Pri. $200 / 250 \mathrm{v}$ at $50 \mathrm{c} / \mathrm{s}$. 65. M/A plus
COIr. $10 /$ -
$190-260 \mathrm{v}$. primary, sec. 115 v . at $1 \frac{1}{2} \mathrm{kVA}$. (listed at $190-260 \mathrm{v}$. primary, sec. II v . at $1 \frac{1}{2} \mathrm{kVA}$. (listed at
2 kVA ). Brand new and unused. $£ 25$ or $£ 45$ per 2 kVA ). Brand new and
pail. Carr. 20/-. each.

## heavy duty-all steei TRIPOD STANDS

| 9 ft . 6 in . when fully extended (Foldis up to only 4 ft . 6in. for storage). Suitabto for outdobr speakers, public address systemis. floodighting, etc., etr. OURPRICE\&3.10.0 Carr. $5 /-$ |
| :---: |
|  |  |
|  |  |

TRANSCRIPTION PICK-UP (E.M.I'S ANGEL) Model I7A. Brand New and Unused. Complete with L.P. head fitted diamond stylus for $33 \downarrow / 45$ r.p.m. Impedance I ohm at I,000 c.p.s.
List Price $\{17 / 17 /=$ OUR PRICE ONLY 95/w. P. \& P. 2/6. VERY LIMITED QUANTITY.
OLDHAM MINERS' LANTERN (all steel). $9 \frac{1}{2} \mathrm{in}$. tall, $3 \frac{1}{2} \mathrm{in}$. dia. Complete with bulb and rechargeable accumulator. Ideal inspection lamp for garages, outhouses, etc. 19/1I. Post $2 / 6$.
CONDENSERS. 4 mfd . at 11,000 wkg. 22 kV . test. Perfect condition. $£ 10$. Carr. El.

## MiNIATURE 5B RESISTORS (For

 Transistor equipment). Values available: 330 ohm, 470 ohm, 680 ohm, 750 ohm, 820 ohm, I,500 ohm $3.3 \mathrm{~K}, 10 \mathrm{~K}, 12 \mathrm{~K}, 47 \mathrm{~K}, 56 \mathrm{~K}, 82 \mathrm{~K}$, $100 \mathrm{~K}, 110 \mathrm{~K}, 150 \mathrm{~K}, 250 \mathrm{~K}, 270 \mathrm{~K}$, $330 \mathrm{~K}, 470 \mathrm{~K}, 750 \mathrm{~K}, 1.2 \mathrm{M}, 1.8 \mathrm{M}, 2.2 \mathrm{M}$, $2.5 \mathrm{M}, 3.3 \mathrm{M}, 4.7 \mathrm{M}, 10 \mathrm{M}, 7 / 6$ per doz. Pose 6d.MICROPHONE STANDS. 3 sections of $18 \frac{1}{2} \mathrm{in}$. per section. Extends to 56 in . Stands securely on 3 legs which fold together for carrying purposes. A robust job, only $21 /$ P. \& P. $2 / 6$.
l9in. G.P.O. RACKS. Heavy ducy $U$ channel, 6 ft . high. E4/19/6. Carr. I5/5 C.P.I CATHODE RAY TUBE. Sin. dia. (U.S.A. make), new and unused. $35 \%$ P \& P. 5/., Bases for same if required. 5/- extra.
AIRBORNE TRANSMITTER RE. CEIVER. Type 1986. A mobile 10. channel crystal controlled V.H.F. Tx: Rx. covering $124.5 / 156 \mathrm{Mc} / \mathrm{s}$. I.F band width $23 \mathrm{kc} / \mathrm{s}$. Complete (less external attachments) in metal case, with all valves and 24 -yole rotary power unit. Used, but in first-class condition. ONLY 88/10/\%. Carr, paid.
TWIN BARREL SLIDING RESISTOR 26 ohms at 6.5 amps, very liberally rated. Brand new and unused, 25/\% P. \& P. $3 / 6$. TRANSMITTER RECEIVER No. 19 Mk. II. Complete station comprising transmitter/receiver, power supply unit. aerial, variometer, control box, headphones and microphone and all connecting leads. Air tested, $69 / 19 / 6$. Carr. 20/Two complete stations $£ 20$ carr. paid. Any items available separately except Trans/Receiver.
AMPLIFIER. 12 v. D.C. for Mobile and Outdoor operation. Powered by Converter 2-EL35's or 6L6's in push-pull. verter $2-E$ wats 12 watts fitted for mike and gram inputs. A sound and practical unit in inputs. A sound and practical unit in good condition for only£10/10/-. Carr. 5/PLY UNIT. $110-230$ Y A C 50 yrle input, $100 / 110$ v D.C output max input, $100 / 110$ v. D.C. output max. 2 $\frac{1}{2}$ SELENIUM METAL RECTIFIERS FB 6 or 12 v. $1 \mathrm{amp} .7 / 6 ; 24$ v. 1 amp. $13 / 6$. 6 or 12 v . 1 amp. $7 / 6 ; 24 \mathrm{v} .1$ amp. $13 / 6$; 12 v. 2 amp . $10 / \mathrm{m} ; 24 \mathrm{v} .2 \mathrm{amp} .20 / \mathrm{s}$
$12 \mathrm{v} .2 \frac{1}{2} \mathrm{amp} .15 /-i 24 \mathrm{v} .2 \frac{1}{2} \mathrm{amp} .25 /-;$
 $\begin{array}{ll}12 \mathrm{v} .6 \mathrm{amp} .23 / 6 ; 24, v .6 \mathrm{amp} .35 /-: \\ 12 \mathrm{v} .10 \mathrm{amp} .40 /=; & 24 \mathrm{v} .10 \mathrm{amp} .80 /\end{array}$ TELEPHONE SETS (TELE © ${ }^{\text {F }}{ }^{\prime}$ ), Housed in bakellte cases, complete with Housed in bakelite cases, complete with built-in ringing generators and batteries. deal between two or more positions up to practically any distance. Tested $3 / 6$. 2 sent for $16 / 5 / \mathrm{c}$. Carr, paid. BATTERY CHARGER REGULATOR 12 ohm, 6 amp. resistor on porcelain base. Knob coninol. Ideal for Battery Chargers and all types of low voltage
 reguation, 12/b PLPMONE PLUC BOARDS: Standard G.P.O. fleting Now and unused in sealed carions. I5/= Naw and unused
ELECTRIC LIGHT CHECK METER. For $200 / 250$ vi AsC. mains, att. Sampso For $200 / 250$ vi Aic. mains, at. 5 amps, Capable of carrying $50 \%$ overload Good condition. Only $25 / \%$ P. \& P. $3 / 6$ C.M.G. 25 PHOTO CELLS (OSRAM) Brand new, $15 / \%$ P. \& P. 1/\%. MINIATURE 373 I.F. STRIPS for F.M. tuner as described in "Practical Wireless." Complete with all valves and circuit. BRAND NEW. ONLY $37 / 6$. TELEPHONE CABLE. Twin one-mile
drums (Don 8 ), £5. Carr. 20/ $=$. Single onedrums (Don 8 ), $£ 5$, Carr. 20/-. Single one.
mile drums (Don 3), $50 /$ Carr. $7 / 6$. RECCORDING WIRE, $\frac{1}{2} / \mathrm{b}$, spools, $3 \frac{1}{2} \mathrm{in}$.
dia. New and unused, $7 / 6$. P. \& P. $/ /$.


The heart of any amplifier is the output transformer. Savage of Devizes have been 'heart' specialists for over a quarter of a century-designing and constructing transformers to meet customers' individual needs.
No matter whether the circuit is new, calling for a specially designed prototype, or well tried requiring a conventional instrument of the first grade, Savage will produce it.
"Last fanuary I rook delivery of one of vour 3C67A outpul transformers which $I$ incorborated into a Williamson Amplifier using EL34's and modified by adding positive feedback. On test the performance is mbelievable; a response of $\pm 1 \frac{1}{3} D B$ from 6 cyeles to 60 kilocycles and a 14 wott output with $0.15 \%$ distornion maximum. A. W. W.. Bradford.

# H SAVAGE <br> TRANSFORMERS LTD. 

## NURSTEED ROAD DEVIZES, WILTSHIRE

Telephone: Devizes 932

## LTNDON CENTRRAL ixado stalis

AVO UNIVERSAL TEST METERS, Heeomnlitioued is trew. In porinot working order. Hodel $40 \$ 10$ 10/-.
 handset and hand miggneto ringtng. Completo is meta. case brep
 Slagte coil 2.300 O or single coll $800 \mathrm{Q}, 18 / 6$. VENNER TIME SWITCHES, for swithing oalof lightiug and power. Recondidoned as new. In Ironclad aases, 20 amp., $75 \mathrm{H} / 15$ amp., $85 / \mathrm{F} / 20$ amp. $25 / 5 \%$
PHOTO-ELFCTRIC CELLS, Type GS16. Thase colls are the gind-Mled type Fith aveedum Cathode. Made ing polts $100 \mathrm{D} . \mathrm{C}$ or peak A.C. Projected cathode srea 16 sq . cm . Soitable for 16 mm . Eome Cluema Talkie equipmens, safoty Device, Colour and Photo. Matching, Burglar Alarces, Automatic Counthag, Door Opening, etc. $30 /=$
TELEBPHONE DIALS. $0-9$. Suitable for fiter-oflice and factory instailations. With Axing mount, Gitted with connectiog laga 21\%.
ments), 200/250 A.C. Motors (geared metor move$3 \times 3 \times 3$ in., weight Ith.. $8 / 6$.
3-OHM Y. M. SPEAKERS. In good working order. 10in. 2\%/6; 8 in 9/6: 6in. 9/6; $5 \operatorname{in}$ 11/6.
ELECTRICITY SLOT METERS (1/- is alot) for A.C. mains. Fixed tariff to your requir rements. Suitable for hotels, etc. 10 A., $84 /-15$ A. 94/-. 20 A. 104/-. QUARTERLY ELECTRIC CRECR METERS RE QUARTERLS ELECTRIC CKCA HETERS. Re conditioned as new. 10 A. $42 / 8$,
$57 / 6$. Other arnperages avaiable.
MIREOR GALVO's. Instrument resiatances, 100 ohrn. Bxternal resistance 1,400 obm. Sensltivity 2,200
M.M.B. NEW, in woodon transt box. Slze $13 \times 6 \times$ M.M.B. NEW
$6 \mathrm{in} . ~ £ 3 / 15 /-$ 6in. £3/L5\%-
VENNER 8-DAY CLOCKWORK TIME SWITCHES. 230 volts, 1 amp., $34 \times 2 \% \times 2$ tin, with key and con necting socket, $27 / 6$
DESK PBONES, complete with hendset and dial 0.9. MOUTHG coll

HAND MKE. Type 7. 7/6.
23 LISLE ST. (GER. 2969) LONDON, W.C. 2
Closed Thursday 1 p.m. Open all day Saturday

## TRANSISTORS THEORY AND PRACTICE

This remarkable book sold over 30,000 copies since it was first published. Engineers, technicians, and experimenters everywhere have hailed it as the best practical book on transistors ever written. Now the author has completely rewritzen it. He cakes in all che new developmencs, including thyratrons, four-layer diodes, spacisters and phototransistors.
23/-
By R. P. Turner.

BASIC PULSE by I Gordieb 27/ Postage I/. . MODERN ELECTRONIC COM. PONENTS by G. W. A. Dummer 55/-. Postage $1 / 6$.
PRINCIPLES OFTRANSISTOR CIRCUITS by S. W. Amos. 21/-. Postage $1 /$. TELEGRAPHY by J. W. Freebody. 80/-. Postage free.
BASICS OF DIGITAL COMPUTE異S by 1. S, Murphy, Vols. 1, 2, 3, set 52/6. by 2.5 , Mur
Postage $1 / 6$.
HI-FI YEAR BOOK, 1959. $10 / 6$. Postage $1 /=$
THE RADIO AMATEUR'S HAND. BOOK, 1959 by ARRRL. $32 / 6$. Postage 1/9.
RADIO VALVE DATA, 6th Ed.
Compiled by "WW." 5/m, Postage 9d:

## THE MODERN BOOK CO.

 19-23 PRAED STREET LONDON, W. 2BRITAIN'S LARGEST STOCKISTS OF BRITISH AND AMERICAN TECHNICAL BOOKS
PADdingron 4185 . Open 6 days 9-6 p.m.

CABINETS
FOR ANY EQUIPMENT
CABINETS TO YOUR SPECIFICATION THE BUREAU
(2) THE BUREAU


LEWIS RADIO
120 GREEN LANES (Dept. WW5) PALMERS GREEN. LONDON N. 13
(Near the Cock Tivern)
Telephone: BOWes Park II55/6


## PORTABLE AMPLIFIER

Slize $\quad$ 힌．long， 5 in bigh， 2 zin．deep．Will suit any type of crystal pleli－up．Output triode．Cossor 142BT outpat pentode and contact－cooled rectufier．Fully trolated malns transformer for $250-250$ A．C．wasins．Bass， treble and volume controle． 49／6 Plua P． $\mathrm{P} / \mathrm{E}_{6}$ ． P ．
5＂SPEAKER WITH
O．P．TRANSFORMER
purchased with the above 18／6．Plus P．\＆P． $\mathbf{1} / 6$ ．

## F．M．TUNER UNIT

Permeability tuned，by famons German Manufacturer，Coverase $88-100 \mathrm{Kc} / \mathrm{s}$ ． Complete with BCC85．Blze $4^{\circ} \times 2^{\circ} \times 2^{\prime \prime}$ ．

## 25 ${ }^{\prime}$－Plus P．\＆P．1／a



8 WATT PUSH．AMPLIFIER COMPLETE WITH CRYSTAL MIKE AND 8 m ． LOUDSPEAKER
A．C．manns $110 / 250$ v．size 10 位．$\times$ elin．$\times$ Aiv．Incorporating 8 valves．I．．．．pen．，？ iriodes 2 output pens．．sold rectitler．For use with ail makes and typer of pick－up and mike． Ncgative feed back．Two tmpusa mike and gram－， and controts tor same．separate controls for Bass nusical tastrumants euch as Guftars，ete．

4．19．6 Flas．P．\＆P．7la．
Or $35 /$－deposit，Plus P．\＆P． 716 and 3 manthly paymente of $25 /-$


## PLAYER CABINET

Finwerd in 8 －tone leacherethe，will take B．S．B．UAS， with roum for acoptther and $7 \mathrm{~m} . \times$ 数．speaker． Overall size 16 tha $\times 18$ tin．$\times$ stin．


## 13 CHANNEL TUNER

34 to $38 \mathrm{Mc} / \mathrm{B}$ ．complete with PCF80 and PCC84．These have been removed from 23／－complete with knobs．

16－19，Me／s complete with knobs less valver． 13／：Plus P．\＆P．2／6


## AC／DC POCKET MULTI－METER KIT



Comprising 2 in ．moving coll meter，scale call brated in A．O．／D．C．volts，ohms and milliamps． Voltage range A．C．ID．C．0－50， $0-100,0.250,0.500$. Miliamps．0－10，0－100．Ohms range， $0-10,000$ ． Front panel．range switch，wire－wound pot
（for ohms zero setting）．toggle switch，resistore and rectilier．Basic movement， 2 mA In grey hammer finish case． 19／6 Plus B． $1 / 6 \quad$ Built and tested


## 6 watt PUSH－PULL <br> AMPLIFIER

A．C．mains $220 / 250 \mathrm{v}$ ．incorporating 4 valves and metal rectifler， 2 inputs，high and low， and controle for kame．Separate controls for Bass and Treble uft．Size of chaseis 11 in ． $\mathrm{X} 4 \mathrm{ifin} \times 2 \mathrm{ln}$

$$
59 / 6 \text { P. \&ive in . }
$$



## 4 WAVE BAND COIL UNIT

Compiete with tuning condenser Beparate sec－ tlons for short wave．Coverage $10-21 \mathrm{~m} ., 21-45 \mathrm{~m}$ ． $44-100 \mathrm{~m}$ ．and $100-545 \mathrm{ma}$ 1．F． 470 Kc ．，BRAND NEW by famous manufacturer．Completely assembled on sub－chassis． $18 / 6 \begin{aligned} & \text { Pluw } \\ & \text { P．\＆P．} 3 \% 6 .\end{aligned}$
With circuit diayram．

## CONSTRUCTORS＇ PORTABLE PARCEL

Compriank casc，chassis，rop plate，scale， $5 i n$. P．M speaier with O．P trans．twin gang， $2470 \mathrm{Kc} / \mathrm{s}$ ． L．F．s．，trimmers，four valve bolders，wavechange 39／6 Plus $3 / 6$ Portage and packing．

## LINE E．H．T．TRANSFORMER

盟 famous mantracturec．${ }^{14} \mathrm{~K}$ ．Complete with：bull th lino and width controls．


## MAINS TRANSFORMERS

 $5 \mathrm{v}, 2$ amp． $10 / 6$ ． $250 \cdot 0.850230 \mathrm{ma}, 6.8 \geqslant 7$ amp．． 5 v ． 2 amp ．ID 8 ．Postare arri paction on the above 31

RADIO AND T．V．COMPONENTS（ACTON）LTE． 23，ACTON HIGH STREET，LONDON，W． 3 GOODS NOT DESPATCHED OUTSIDE U．K．ALL ENQURIES S．A．E． TERMS OF BUSINESS C．W．O．

NEW GUN C.R.TUBES

1 Year Unconditional Guarantee

IMMEDIATE
EXCHANGE
SERVICE

All types except those tubes made of PYREX glass.

## SIZE

$12^{\prime \prime} \cdot 17^{\prime \prime} \quad £ 6-10-0$
$21^{11}$
£9-0-0

## U.K. CARRIAGE

\& INSURANCE 10/.

## TERMS C.W.O.

## $\star$

As a result of the abolition of purchase tax on replacement C.R. tubes we are now able to offer a genuine replacement service of tubes fitted with brand-new gun assemblies in which we have such confidence that we give 12 months' UNCONDITIONAL guarantee at the above prices. Consign your old tube to us at UPTON-ON-SEVERN Station including card stating name and address of sender.
For EXPRESS SERVICE wire M.O. and state requirements. Also add $\mathrm{f1}$ to the above prices for 12 in. to 17 in . tubes. This additional charge will be refunded to you immediately your old tube is received at Upton-on-Severn Station.

## $\star$

SABRINA. CR. TUBES CO.

UPTON-ON-SEVERN 464

## THIS MONTH'S OFFERS

TEST GEAR. British and American test gear, rebuilt, laborazory tested and guaranteed. STGNAL GENERATOR " "X " Band Type TS.I3/A,P. Frequency Range $9400 / 9600$ Me/s. incorporating resonant cavity wavemeter piston attenuator and thermistor bridge, mains operated. BEAT FREQUENCY OSCILLATOR. TYPE TF.195L/4 by Marconi Instruments: frequency range $10 \mathrm{e} / \mathrm{s}$. to $150 \mathrm{Ke} / \mathrm{s}$., low level input, micro-volt to 100 milli-volts continuous variable high levet, built-in attenuator.
TEST OSCILLATOR. Type TS.I7O/ARN. 5 ATTENUATORS with "T"' rype ladder network overall attenuation 80 db , arranged to give steps of $20 \mathrm{db}, 20 \mathrm{db} ., 20 \mathrm{db} ., 10 \mathrm{db} ., 5 \mathrm{db} ., 2 \mathrm{db}$., $1 \mathrm{db} ., 600$ ohms impedance input and output, in metal case with lid.
PYROMETER RECORDER. Type C.R. by Ether 2 -stage model 120 micro-amps full scale with 230 volt A.C. S.P. drive, bench or wall fixing.
CAMBRIDGE THERMO RECORDER. 2. station type, 70 micro-amps full scale, 24 hour clock spring drive, bench or wall fixing, black enamelled alladiecast case.
L.O. 50.A. By B.S.R. in two ranges, 0.600 cycles and $0.16 \mathrm{Kc} / \mathrm{s}$. Output impedance 600 ohms Metered.
WAYEMETERS. Type $724 . B$ by Gencral Radio. 16 Ke . $\mathbf{0} 50 \mathrm{Me} / \mathrm{s}$. Type TE. 149 by R.C.A. 200 Ke to $30 \mathrm{Me} / \mathrm{s}$. TS $69 / \mathrm{AP}, 300,1000 \mathrm{Mc} / \mathrm{s}$.
TEMPERATURE CONTROL OVENS. Admiralty type, 230 volts A.C. give stability of 2 parts in a million with sultable crystals, fitted thermostat and thermometer. Temperature adiustable 40160 degrees Cent.
E.T. 4336 TRANSMITTERS. Complete in working order.

## Leslie Dixon \& Co.

Dept. A, 214 Queenstowil Road, London, S.W.B. Telephone: MACaulay 2159

[^20]
## SOUTHERN RADIO'S SPECLAL BARGAINS

## TRANSPARENT MAP CASES. Plastic

 14 in . $x$ 10:3in. Ideal for Maps, Display, etc., $5 / 6$. STAR IDENTIFIERS. Type I A.N Covers both Hemispheres, $5 / 6$.CONTACTOR TIME SWITCHES. 2 im pulses per sec., in case, $11 / 6$.
REMOTR COONTACTOR. For use with above, $7 / 6$.
MORSE TAPPERS. Midgat type, 2/9; Standard, 3/6; Heary type on base, 5/6. ALL BRAND NEW. MORSE PRACTICE SET. TAPPER with BUZZER on base. Complete with battery, $12 / 6$. BRAND NEW.
MAGNETS. Strong Bar type, $2 \times \frac{1}{8} \mathrm{in} ., 1 / 6$ each. PACKARD-BELL AMPLIFIERS. Complete. BRAND NEW, with valves, relay, etc., etc., $17 / 6$ SPECIAL OFFER. 12 ASSORTED METERS. Slightly damaged. Mainly broken cases (perfiect movements). Including 3 BRAND NEW Aircraft Instruments. 12 for 45 /-.

SPECIAL OFFER
TRANSMITTER - RECEIVER TYPE 38 Mk 11

* WALKIE-TALKIE *


Complete in Metal Carrying Case. 91n. x $6 \frac{3}{g} i n . x$ 4in. Weight 61 b . Frequency 7.3 to $9 \mathrm{Mc} / \mathrm{s}$. Five valves. E1/2/6. Post paid.

These $T X$-Rs are in NEW CONDITION, but owing to demand they are nol tested by us and carry no guarantee, but should prove SERVICEABLE.
ATTACHMENTS for Type "38" Trans receivers. ALL BRAND NEW. Headphones 15/6; Throat Microphones 4/6; Junction Boxes 2/6; Aerials. No. $12 / 6$; No. $25 /-3$ Webbing 4/- Haversacks 5/-: Valves-A.R.P. 12 4/6; OFFER No. 2:
" 38 ," as above, complete with set of external attachments, $42 / 6$, post paid OFFER No. 3 :
Transmitter-Receiver " 38 " Mk. It. Brand new with complete set of external attachments including Webbing Haversacks and Valves,
$57 / 6$ post paid. Fully guaranteed.
RESISTANCES. 100 assorted useful values. New wire end 12/6. NEW.
CONDENSERS. 100 assorted Mica; Tubular, etc., 15/-. NEW
LUFBRA HOLE CUTTERS. Adjustable $\frac{3}{4} i n$. to $3 \frac{1}{4} \mathrm{in}$. For Metal, Plastics, ete , 7/-
QUARTZ CRYSTALS. TYpes F.T. 241 and F.T.243. 2-pin, tin. spacing. Frequencies between $5,675 \mathrm{kc} / \mathrm{s}$ and $8,650 \mathrm{kc} / \mathrm{s}$. (F.T.243), 20 $\mathrm{Mc} / \mathrm{s}$ and $38.8 \mathrm{Mc} / \mathrm{s}$ (F.T.241, 54th Harmonic) 4/- each. ALL BRAND NEW, TWELVE ASSORTED CRYSTALS, 45/-. Holders for both types 1/- each. Customers ordering 12 crystals can be supplied with lists of frequencies available for supplied wit
TRANSRECEIVERS. Type " 18 " Mark III Two Units (Receiver and Sender). Slx valves, Miero-ammeter, ecc., in Metal Case, untested, Miero-ammeter, ete., in Metal Case, untested,
without guarantee but COMPLETE, $£ 2 / 18 / 6$. without guarantee but COMPLETE,
ATTACHMENTS for "18" Transreceivers. ALL BRAND NEW. Headphones 15/6; Hand ALL BRAND NEW. Headphones $15 / 6 ;$ Hand
Microphone $12 / 6$; Aerials $5 /-$; Set of 6 Valves Micro
$30 /$.
TIII54 TRANSMITTERS. Complece in transit case. New condition, $£ 2 / 5 /$-.
RECORDING BLANKS. Brand new. "Emidisc." Ready for cutting. 13 in. 6/- each or 15 complete in metal case 44.
Post or carr. extra. Full list Radio Books, etc., 3d.
SOUTHERN RADIO SUPPIY, LTD. LONDON,' W.c.

5TREET,
GERrard 6653

## 

## SPECIAL THIS MONTH

## CONSTANT TORQUE VARIABLE SPEED HYDRAULIC GEARBOX

The robustly made oll-filled casing houses a hydraulic torque conversion unit origitorque conversion unit orisi-
nally precision made by Westnally precision made by Westinghouse from high quality materials for the U.S. Goveraexceeding $£ 150$ each.
Highly suitable for lathe head drive, workshop variable speed power take-off, speed/torque hoists, generators or pumps, transmission for midget cars, etc.
Basically the unit is a back-toback mounted, oil submerged, variable digplacement hydraulic pump (input shaft) feeding a pump (input shafic feeding a
reversible hydrauic motar (out-
put shaft) so
the pump displacement by manual control gives very fine selection of output speed at constant torque from zero up to $6 \%$ below input, speed,
while changeover valve in the supply lines to the motor provides instanwhile changeover valve in the supply lines to the motor provides instantaneous reverse at any speed.
Input speed $500-1,000$ r.p.m. maximum power $1 \frac{1}{2}$ k.p. Both shafts $f^{\circ}$ dia. with Woodruf key.
Tested and fully guaranteed, supplied complete with technical data, instructions, and input and output, speed, power, and torque $90^{\text {carriage }}$ performance charts for the remarkable price of only 120 paid.

## 3-INCH CIRCULAR SCALE MILLIAMMETER

American panel mounting "Radio Altitude" meter with modern (coil round magnet) movement giving beautifully steady defection to reading on large dial boldly marked 1 to 4 with sub-divisions in tenths. Supplied with suppressed zero which requires 6.5 mA . for full scale deflection ( $0=1.5 \mathrm{~mA}$.) but pointer is easily re-set to zero by moving conventional hair spring adjuster behind dial, when 5 mA . gives f.s.d. Rear housing incorporates on/off switch (operated by rotating small knob on front face) and 5 -pin plug, two pins direct to meter and two to switch. Brand New, boxed, 12/6, post free.

## APNI TRANSDUCER

Well known wobbulator unit. Brand new, 7/6, post free.

## 5-INCH MAGNETIC C.R.T.

Suitable for monitoring amateur television. Heater 6.3 v. at 0.6 A . Anode 7,000 v. Grid 250 v. Cut-off $25-75 \mathrm{v}$.
Brand new. Boxed, 15/-, post free.


## GEIGER COUNTER KIT

\&4. 17.6 (Guaranteed Performance)
Identical components to production model currently being supplied throughout the world.
Three ranges-highly sensitive-light-portable-visual and audible response-pulse output socket. Ideal for introduction to radiation measurement and nucleonic circuitry.
Circuit embodies U.K.A.E.A. patent. Specially moulded case locates components and standardizes wiring. Printed circuit plates for battery pack supplied. Batteries £2/15/3 extra. Spares, replacements and service permanently available. Supplied complete with fully illustrated assembly instructions and 40 -page manual specialiy written for student, experimenter and radio amateur.

TEST GEAR


TEST EQUIPMENT IR-19-A. Four piece set of modern, portable battery operated, American test gear in handsome black crackle cases covering 100-156 Mc/s.
(i) I-30-A. 5 -Valve Signal Generator with alternative crystal or master oscillator, either optionally modulated by $1000 \mathrm{c} / \mathrm{s}$ Hartley oscillator. Large directly calibrated dial with precision slow motion drive. Five step and variable attenuator.
(ii) I-95-A. Self-contained, tunable-input, valve-voltmeter with telescopic aerial and battery-fed diode rectifier and pentode voltage amplifier for measuring field strength, presence of modulation, and approximate frequency of transmitter. Compensating circuit for state of $1 \frac{1}{2}$ and 45 v . batteries.
(iii \& Iv) I-139-A. Shunted 1 mA . Test Meter in fully screened case with lead for plugging into signal generator as tuning meter, or measuring 1.t. and h.t. supplies.
BX-33-A. Battery pack case with loft. output cable and plug. All supplied in CH-93A, an extraordinarily robust transport and storage chest.
BRAND NEW OR $\mathbf{£ 7 . 0 . 0}$. The Whole Kit, plus $7 / 6$ carriage.
HARDLY USED
Circuit diagram supplied. Specially reproduced comprehensive technical data 15/- extra, by order only.
TEST KIT 25.
Set of 3 cm . Waveguides, coupling unit, tubular feeder, adaptor unit and waveguide connectors with 30 ft . of USA/British terminated co-axial cable and potted $230-110$ volt step-down transformer. Brand new.
£7/10/0 carriage paid.

## TS. 100 AP PORTABLE OSCILLOSCOPE.

Beautifully built, compact, modern, dual purpose unit with erystal controlled precision time base giving delayed, gated or continuaus circular traces accurate to $.02 \%$ and a separate linear time base giving delayed, triggered or repetitive sweeps for general purpose work. 10 valves. 115 or 230 volt $50 \mathrm{c} / \mathrm{s}$ mains. Comprehensive technical information and circuit diagram with all working voltages supplied. Brand New.
$£ 20$ carriage paid.
G. 93 WAVEMETER. 2,300-3,100 Mc/s.

Precision cavity in robust case with HRO type dial. Complete with calibration charts. £2.10.0 Plus 10/-packing and carriage. $^{2}$

## TS. 288. 'S' BAND WAVEMETER.

Exceptionally rugged silver plated micrometer tuned precision cavity covering 2,900-3, $150 \mathrm{Mc} / \mathrm{s}$. Resonanie shown on 100 microamp meter.

## MARCONI WIDEBAND WAVEMETTER TF643B

The " $B$ " is superior to earlier models with valve.
A modern professional plug-in coil absorption wavemeter covering 20 to $300 \mathrm{Mc} / \mathrm{s}$ in 4 fully calibrated bands with an accuracy of $1 \%$ up to $150 \mathrm{Mc} / \mathrm{s}$ and $2 \%$ from 150 to $300 \mathrm{Mc} / \mathrm{s}$.
Half-inch thick polished oak cabinet, immensely rigid inductors and ceramic body solder-and-brass-plate capacitor. ed-brass-plate capacitor.
50 microamp crystal 50 microamp rolmeter, 4 slow mo tion dial, terminals for phone monitoring.
Snap open compartment houses coils framed calibration charts.

Brand new in massive, sealed, rubber buffered transport case.
£5.5.0 carriage paid.


# EDOY'S mmi LTD. 

(Dept. W.W.)

## 172, ALFRETON ROAD NOTTIMGHAM

B.S.R. MONARCH 4-SPEED AUTOMATIC CHANGER, Type UA8. Complere with High fidelity Turnover Head. Capacity of 10 Records $100 \cdot 250$ v. A.C. E6/19/6. Plus carriage $5 /$-. TRANSISTORS. Yellow/Green Spot, 6/11. R.F. Yellow/Red Spot, 13/11. Post 4d.

ACOS CRYSTAL PICK-UPS.
2 Sapphire Styli), 29/11. Post 2/6.
SUB-MINIATURE TRANSISTOR CON DENSERS. 1.6 mid., 5 mid., 10 mid., 32 mfd . 2/6 each. Post 4d.
JACK PLUGS, Standard Type. $1 / 11$. Post 4d TUBULAR CONDENSERS, Wire End (not Ex-Govt.) $8 \mathrm{mfd} .450 \mathrm{v} ., 1 / 9 ; 8 \times 8450 \mathrm{v.1}, 2 / 9$ $16 \mathrm{mid} .450 \mathrm{v} ., 2 / 9 ; 16 \times 16450$ v. $3 / 9 ; 16 \times 8$ Post 9 d .
MORSE TAPPERS. Plated Contacts, Adjust able Gaps, Heavy Duty. 3/6. Post 9d. GERMANIUM DIODES. 1/- each; 10/- doz. Past 4d.
NEON MAJNSTESTER SCREWDRIVERS. 4/6 each. Post $6 d$.
DIMMER SWITCHES. Ideal for Train Speed Regulator. 1/11. Post 6d.
RECTIFIERS. Contact cooled, 250 v. 60 mA . 9/6. Pest 1/.
$25=28$ CONDENSERS. Size $\mathrm{lin}, 1 / 3$. Post 6 d . $50 \times 50$ mfds 400 v. D.C. Condensers, $5 / 6$ Post $1 /$.
ROTARY CONYERTORS. For Electric Trains. etc. Converts 200 v . D.C. to 12 v . D.C., $19 / 11$ $P$ \& $P$ 2
GUITAR PICK-UPS "THE PLECTRO" Super Hi -Fi Non-Acoustical Universal Fitting. Sin. $x$ lainh. $x$ fin. High output complete with Lead and Plog. Full and Easy instructions, 39/11. Post 1/.

## ALL ABOVE ARE NEW AND GUARANTEED

| NEW AMD SURPLUS GUARANTEED VALVESALL TESTED BEFORE DESPATCH |  |  |
| :---: | :---: | :---: |
| IC5GT 12/- | 65 |  |
| 105 100 9/6 | 6SH7M 5/- | AZ |
| 1 H5GT $10 \% 6$ | 6SN7GT 4/11 | AZ31 ... 9/6 |
| R5 ...... 7/6 | 6U4GT 11/6 | B36 ...... 9/6 |
| $155 . . . . .7$ 7- | 6V6G ... 5/l1 | CY |
| 1T4...... 5/11 | 6V6GT 6/6 | DAF96... 816 |
| $3 \mathrm{D6}$... 5/- |  | DF96 ... 8/6 |
| 324 ... 7/5 | 6×5GT 5/11 | DH77 ... 716 |
| 3QSGT 9/6 | $6 \mathrm{Z} 4 / 84$ 11/6 | DK96 ... 8/6 |
| $354 \ldots \ldots$ | $787 . . . . .81-$ | DL96 ... 816 |
| 3V4...... $8 / 6$ | 8) | DM70 |
| 5046 ... 6/6 | 719 | E141 ... 9/6 |
| $5 \mathrm{~S}^{36}$... 8/- | 7-17 ... 8/- | E142 ... 9/6 |
| 5Z46 ... \%/- | 757 …... 9/6 | EL84 ... 9/6 |
| 6A7...... 126 | 7Y4...... 7/11 | EL85 ... 12\|- |
| 6AC5 ... 5) | 10F1... 91- | EYS1 ... 1216 |
| 6ALS ... 4/6 | 1079 ... $10 / 6$ | EY86 ... $12 / 6$ |
| 6AM6 ... 5/- | 12AH7 7/6 | EZ80 ... 8/6 |
| 6886 ... 2/11 | 12AH8 9/6 | ETIC ... 96 |
| 68A6 ... 7/6 | 12AT6 9/6 | EZ81 ... 9/- |
| 6BE6 ... 9 - | 12 AT7 6/- | KT33C. 8/6 |
| 6316 ... 7/6 | $12 \mathrm{~A} \times 7$ 8/- | KT36 ... 916 |
| 6C4...... 4/6 | $12 \mathrm{K7}$... 7/6 | L63 |
| 6C6..... 4/6 | 1207 ... 716 | MUl4 ... 8/6 |
| 6CH6 ... 10/6 | 20P1 ...14/- | PCC84 81 |
| $6 \mathrm{D6}$... 5/- | 25A6G... 9/6 | PCF80 |
| $6 \mathrm{FI} \ldots$ | 25L6GT 9/6 | PEN46... 6/6 |
| 6FEM ... 7/6 | 2524G 9/6 | PL81 ... 14/6 |
| 6 Fl 3 ... 9 | 35L6GT 9\% | PL82 ... 8/6 |
| 6F15 ... 111- | 35W4 ... 7/6 | PL83 ... 9/6 |
| 6F33 ... $6 / 6$ | 35A5 ... 1016 | PY31 ... $8 / 6$ |
| 6H6M ... $2 / 6$ | 25Z3 ... 12/11 | PYB0 ... 8/- |
| $6 J 50$... 2/11 | 3524 ... 716 | PY81 ... 8 |
| 6JSGT 3/11 | 42 ...... $7 / 6$ | PY82 ... 8/6 |
| 6354 ... 4/6 | 80 ...... 6/6 | PZ30 ... 9/6 |
| $6 K 7 C$... 216 | 90AV ... 7/6 | U25 ... 18/- |
| 6K7M ... 4/11 | 1858T ... 16/- | U35 ... 916 |
| 6 KBG ... 6/11 | 807 (B).... 3/9 | UCH42 |
| $6{ }^{6} 28$... 11/- | 807 (U3A) |  |
| 6076.... 8/\$ | 76 | $\checkmark R / 150 / 30$ |
| 7- |  | 7/6 |
| SGEM 5/- | 955 ....... 3111 |  |

Any Papeel Lasured against damage in transit fo only 6d. exara per order. All uninsurad parce: at cuscomer's risk. C.O.D. or C.W.O. anly. S.A.E. wich all enquiries. Posrage and Pasking Gd. per
valve extra. Over Free.

Trade Enquiries Invited.


The Fidelia renge of hand bailt high fidelity equipment tneluday Reatio Tumera, Radio Tuners neornowating \& gramophame pro-afaplifier and tho obatrois, also hath gaality aodio amplithera bort tereophonic and single ohannel types.
Pifislia Major ABi/PM tunse unit with pre-smp., one contrale etc., R.F. stage on all waveliands, ariable selectarity etc Price $827 / 4 / \mathrm{m}$, or with the Matur amplifier. 842/14/-
Fidelia Imperial, VUF tuner. Price $815 / 5 /=$ or with pre-amp. and tone controls. 819 .
FideHa Preciton, awitehed VEF tuner. Price £14/6/4, or with pre-amp. and tone controls, \&19. Fidelia Precitot built as a VEF Radlogram dhasste. 8 wraten nutpnt, bass and trabie controles an deal smalt grallty unit.
Fidelta Major ampliter, E18.
Mdelia Mz. 1. Stereo amplitier with control unit, $\$ 25$.


Full detalls willingly oo request. (6d. for pratage isppreciated.) Prevedic Nr. Brighton.
-GEVEHOPMEMTS $\qquad$ а1к6

## TRANSISTOR POCKET RADF BY WELL-KNOWN MANUFACTURER. Cimam Plansic Cave $54 \times 3\} \times 1+$ in. Weight 12uz. Printed oirculit with 6 Transiitors and tested conmponents. You will be pleased to own this fine commercial seth stor10/-, P.P. hatery $2 / 3$. <br> FAMOUS MAKE LIGKTTWEIGHT PENOIL Bit $\operatorname{sOLDERING}$ IRON, 2201240 r .25 w . Indieator light in handle (list prioe 24/6). Price 16/6. P.P. <br> 8COOTER BATTERIES. 6 v. 10 A.H. Hard rubber case. Sive $5 \times 5 \times 1$ igin. Woight 3lb. 15/-. P.P. Also ideal for model use. <br> NEW AND BOXED COLLARO CONQUEST 4-SPEED RECORD AUTO OHANGERS. 200/250 v. A.C. E6/19/6. Carriage 5 /. <br> OUR FAMOUS TRANSFORMERS. Input 2n0/250. Output tapped 3 to 30 v. 2 a. or tapped $5,11,17 \mathrm{~V}$. 5 a. each. 24/6. P.P. 16 amp $53^{\prime} 6$. <br> F.W. METAL RECTIFIERS. $12 / 6$ volt, 1a., 7/6; 3 an, 13/-; 4 a., 17/6; 6 a., 27/6. P.P. <br> All teems new ond guaranteed.

 UNISELECTOR SWITCHES. SOP, 3B or 28P, 3 or 6 B, 50 v. D.C. $25 \ldots$. RELAYS. We hold large stoeks. Any conteat combination and operating coil volage suphlied from 3/-KEY SWITOHE $\delta$ frmm 3/-
TOGGLE SWITCHES DPDT $3 / 6$. MICRO SWITOHES M/B 5,6 .
${ }^{68}$ H7 VALVES ox equipment. All tested 6 for $10 \ldots$ P. P.

LISTS SENT ON REQUEST
Post orders only to
RADIO \& ELECTRICAL MART
27 PRINCES COURT, WEMBLEY, MIDDX.

## SAMSON'S

SURPLUS STORES LTD. - LONDON•S GREATEST DEALERS IN ADMIRALTY LTT. SUPPLY UNITS. TYPE W 139 . A.C. input $200-240 \mathrm{~V}$ D.C. output 36 v 18 amps. Completely fu sed, builtr-in metal cabinet 18 amps. Compleceiy fused., builz-in metal cabinet.
size aporox. $26 \times 19 \times 15 i n$. Brand new. size aporax. $26 \times$.
E17110t ex warehouse.
S. PE, FUEL PUMPS
S.p.E. FUEL PMPS. 1.200 g.p.h. P.S.I. 11 . Motor voleage $110{ }^{5}$. 3.25 amps. Submerged fitting. Approx, size $14 \times 8 \times 7$ in. $65 /$-. Carr. 50.

ROLLS-ROYCE COOLANT PUMPS. A heavy-duty turbine pump driven directly from a splined socker. $1.000-1,500$ g.p.h. 1 tin. bore outlet. Brand new in maker's cartons. AOMIRALTY HEAVY DUTY $15 O L A T I O N$ AOMIRALTY HEAVY DUYY $150 L A T I O N$
TRANSFORMERS. TyPe W191, 230 v .1230 v. C.T. Very conservatively rated at 4.6 kva . Pri. 230 v Sec. 230 v . Centre capped 20 amps . Tested to earth 2.000 . R.M.S. Completely enclosed in metal concaner. Weighc 31516. Supplied brand new and guaranteed, EITllof- ex warehouse.
ADMIRALTY THREEPASE TRANS. FORMERS. Pri. $400-440$ v. 50 cycles. Sec., 50 v. 6 amp. Completely tropicalised. Size $7 \frac{1}{2} \times 14 \times \sin$. Weight approx. 601b., $85 /-$. Carr. 7/6. Brand new in maker's cases.
BRAND NEW AMERICAN VARIAC TRANSFORMERS. Input 230 \%. OUTput $0-260$ v. 9 amps. Complete with control handle. Supplied in maker's sealed cartons. Limited number only E 15 . Carr. $10 \%$.
A.M. L.T. SUPPLY UNIT TYPE B15. A.C. input $200-250 \mathrm{v}$. O.C. output 24 v .26 a. Rating continuous. Ideal for charging 24 v . batteries at a high curreme Size ift. Bin. $\times$ ift. 7in. $\times$ If. Sin. E 15 ex warehouse.
SPECIAL OFFER. H.D. TWO CIRCUIT TYPE AUTO WOUND TRANSFORMERS. A.M. TYPE No. 2773. Input 225-230 V. with switch in run position. Output 225. 230, 235 , 240, 245, 250, 255, 260, 270 volts, 75 amps. With etcher switch in start position. Output No. I or 2. $270 \mathrm{va} 290 \mathrm{v}_{\mathrm{o}}, 310 \mathrm{v}, 100 \mathrm{amps}$. I minute in two hours. Other outputs as in run position but at 50 amps. The cransformers are buik in heavy mecal cabinets approx. weight 3t cw . with stoping desk front on which the startirun switches and $20-100 \mathrm{M} .1$. ammeters are mounted. With an alteration of the exterior wiring 100 volts at 35 amps can be obtained. t25 ex warehouse.
NUTS, BOLTS, WASMERS. Special bargain offer 5 - carzon of $2,4.6$ nuts, bolts and washers. P.P. I/- SLEEVING. mixed bundle, $1 t=4$ mil., various colours. Wonderful offer. 2/b. P.P. 9d. HEAVY DUTY SLIDING RESISTORS. $\begin{array}{lllllll}11 \Omega & 4.5 A & 12 / 6 . & 3 S 2 & 10 A & 12 / 6 \text {. I } 2 \Omega & \text { ISA } 10 / 6 .\end{array}$ $1 \Omega$ 12A $8 / 6$. Alt single tube slider control. $12 \Omega 4 A$ horizontal sweep control $12 / 6$. $26 \Omega$ 6 A double cube slider control $45 / \% 1.25 \Omega$ 20 A double tube slider conerol $27 / 6$. $0.4 \Omega$ 25 A geared drive $17 / 6$ 79 2.9-0.65A double cube geared drive $32 / 5$. $76 \Omega$ 6-0.5A slider control 22/6. Carr. on all resistors 3/-. We have one of the largest stocks of sliding resistors in the country. Let us know your requirements No Pri, 230 v. Sec, 50 y 50 amps adiustable by voltage regutator stud switch on primary. Buile in steel case with meter reading $0-100$. Mains switch and OP. sockets, will stand $100 \%$ overload. Supplied brand new E15. Carr, according to distance.

Pri. 230 v Sec. rapped 4 v., 6 v., 10 v. 200 amps.: $88 / 10 /=$ Carr. $7 / 6$.
No. 3. Pri. $200-250 \mathrm{v}$. Sec. 50 v .30 amps , $26 / 10 /$
No. 4. Pri, 200-250 v. Sec, rapped 28, 29, 30 31 volts, $21 \mathrm{amps}, \mathrm{E4} / \mathrm{lO} /=$ Carr. $7 / 6$. 28,30
 No:5. Pri
Na 7. Pri. 200-240 v. Sec. 45 v. 2 amps 25/
P.P. 3j-. Pri. 200-250 v. Sec. 6.3v. 15 amps. $27 / 6$
P.P. 3/- Pri. 200-250 v. Sec. 6.3v. 15 amps. $27 / 6$ No. 9. Pri, 200-240 v. Sec. 30 v. 1.2 amp , and 6.3 v. C.T. 3 amps. Tropically rated.

No. 10 . Powerstat variac transformers. Input 115 v. Output $0-130$ v. 7.5 amps. 85/-. Carr. $5 /$ Latest arrivals. Brand new STC Pri. 200-260 v Sec. 26-41 volts in 1 volt steps 15 amp, tropically rated and one HT winding tapped 120-136-152 168 volts $700 \mathrm{~m} / \mathrm{a}$. 64/5/-. Carr, 7/6. Pri. 220 240 volts. Sec. capped 42 v. 45 v, 48 v. 50 amps tropically rated. RCA Pri. $115-230 \mathrm{v}$. Sec. 5 V
13 amps, tropically rated, insulated for 15 kV 13 amps, tropically rated, ins
Brand new. 37/6. Carr. $7 / 6$
169-171 EDGWARE ROAO, LONDON, W. 2 TELEPHONE: PAD. 7851 or AMB. 5125

## Receivers - Test Equipment-H.F. V.H.F. Microwave

## hadar seaich beceiver



This Receiver is designed to determine the presence and measure the frequency of any radar or radio signals within the range of 38 to $2,000 \mathrm{Mc} / \mathrm{s}$. To determine what modulation may be present on these signals giving an identification of relative strength of these signals.

The equipment consists of:-
5 -stage If ( $30 \mathrm{Mc} / \mathrm{s}$ Amplifier provision is made to feed the If amplifier to a panoramic adaptor)
1 Detector
2 Stage Video Amplifier ( $100 \mathrm{c} / \mathrm{s}-1 \mathrm{Mc} / \mathrm{s}, \pm 2.5 \mathrm{db}$ )
I Beat frequency oscillator
The signal is fed through RF "plug in" heads consisting of types:TNI6 38-95 Mc/s I RF Triode first detector, I Oscillator.
TNI7 74-320 Mc/s Butterfly resonant circuit I diode first detector, I triode oscillator.
TNI8 $300-1,000 \mathrm{Mc} / \mathrm{s}$.
Butterfly resonant circuit.
1 Crystal first detector.
1 Triode oscillator.
The above three units are available now.
TNI9 950-2,000 Mc/s.
Tuneable cavity used for first detector and mixer.
Butterfly oscillator.
I Crystal detector.
I triode oscillator.
Accuracy of frequency calibration 1\%
Power Requirements:- $115 \vee 60-2,600 \mathrm{c} / \mathrm{s}$.
Also available to be used in conjunction with the above receiver AN/APA 10 Panoramic Adaptor, and AN/APA23 Injected Frequency Recording
Apparatus. AVAILABLE FOR INSPECTION. Price $\mathbf{2 6 0}$ complete with TNI6, 17, 18 .

## (DSCILLDSCABPE (U.S.A.) AN/ASM32

Screen size: $2 \frac{1}{2} \mathrm{in} . \times 2 \frac{1}{2} \mathrm{in}$.
Y Sensitivity: $100 \mathrm{mV} / \mathrm{in}$. $\mathrm{r} . \mathrm{m} . \mathrm{s}$. amplitude calibrated.
Frequency Response: $-\mathbf{2 d B}, 10$ c.p.s. microseconds.
Supplied with cathode follower-attenuator-detector test prods in grey metal housing.
Overall size: 9 各 $\mathrm{in} . \times 6+\frac{7}{8} \mathrm{in}, \times 16+\frac{5}{8} \mathrm{in}$.
Weight: Approximately 20 ibs.
NEW 125 Limited supply.

PLEASE NOTE : No. 27 Lsle Street is now re-opened for selfservice and we are reolly cutting prices on all types of receivers, test equipment and components to within your pocket margins. Come along to see us when in town at No, 27 Lisle Street.

## Full range of "HEATHKIT" equipment in stock.

 Please write for details.

Type 339. IMPROVED VERSION
of the OBSOLETE Type 3339.
Time Base Frequency. 6 to 250,000 e.p.s.
Amplifier. 43 mV RMS $/ \mathrm{mm}$. 10 to 100,000
Amplifier. 43 mV RMS $/ \mathrm{mm}$. 10 to 100,000 e.p.s., 3 dB . $1.3 \mathrm{mV}, \mathrm{RMS} / \mathrm{mm}$. 10 to 100,000 c.p.s., 3 dB (2 stage).

10 mV RMS $/ \mathrm{mm}$. m . 10 to $2,000,000$ c.p.s. 3 dB (2 stage).
Deflector Coils. $2 \mathrm{~mm} / \mathrm{mA}$ RMS.
Power Supply. $110-250$ A.C. 120 watts. Sensitivity. Y1, Y2, 3.1V D.C. I.IV RMS (volt $/ \mathrm{mm}$.) $\times 2.25 \mathrm{~V}$ D.C. 0.8 V RMS ( $\mathrm{volt} / \mathrm{mm}$ ), Screen Diameter. 114 mm .
£30
Also supplied Rebuilt to Laboratory standard and guaranteed for 3 months. Prices on request.

## FREDUENCN METERS <br> (1) Range $125 \mathrm{kc} / \mathrm{s}-20 \mathrm{Mc} / \mathrm{s}$ <br> In perfect condition

Also in stock : U.S.A. BENDIX LIVI SERIES
Aircraft version of $B C 221$.
TSI74 $40-250 \mathrm{Mc} / \mathrm{s}$.
TSI75/U85-1000 Mc/s.
Prices upon written request.


SIGNAL GENERATOR Q/DOSI
Frequency range: $30 \mathrm{kc} / \mathrm{s}-100 \mathrm{Mc} / \mathrm{s}$ in 8 ranges. Internal mod. $30 \%$ at 400 $\mathrm{c} / \mathrm{s}$. Audio output: 3 v . Provision for external mod., or external patrern mod. Force output of iv. or attenuator for $0-100$ millivolts. Double screened throughout. Carrler level meter. Calibration accuraey $\pm 1 \%$. Weight: 28 lbs, Size: $14 \frac{3}{2} \times 8 \frac{3}{4} \times 6 \frac{3}{3} \mathrm{in}$. A laboratory instrument at service. man's price. $£ 22$ mains model, battery model, $£ 17 / 10 / \%$, plus $10 /$-carriage.

## V.H.F. Sigmal Strength Meter Q/D151

This instrument consists of a sensitive Sup.Het Receiver $40-70 \mathrm{Mc} / \mathrm{s}$. Signal Generasor, $40-70 \mathrm{Mc} / \mathrm{s}, 0.0$. 1 v. output. A.C. mains and output power supply. A most useful instrument for $V \mathrm{HF}$ and TV aerial measurements. Price $£ 25$ each.

## MANUALS

For the following receivers:-
AR88LD-D, ART7E, R107, Hallicrafters, $\$ \times 24, \$ \times 28, \$ 20 R, \$ 20$, B2 Transmitter-Receiver. HQ120, HRO, Junior and Senior, $£ 1 / 7 / 6$ each. Set of main dial, bandspread and name plate for AR88D, $£ 1 / 10 / \mathrm{wet}$ of three.

## UNIVERSAL ELECTRONICS <br> 22.27, LISLE STREET, LEICESTER SQUARE LONDON, W.C.2. Tel: GERrard 8410 \& 4447

Shop Hours: $9: 30 \mathrm{a} . \mathrm{m}$. to $6: 0 \mathrm{pm}$. OPEN ALL DAY SATURDAY Thursdoy $9.30 \mathrm{a} . \mathrm{m} . ~$ to $1.0 \mathrm{p.m}$.

## TEST EQUIPMENT

BEAT FREQUENCY OSCILLATORS 0.10 kcs . Furzehill Na. 3.2 watte tato 10 or 600 ofms Metered output. Slzo $17 \times 9 \times 11$. 7 valves. TESTER T.M.S. NO. 1 Mk, 2.
Manufaotured by Suirhead. Incorporates a decade Bwitched audio sine wave oscillator frora 100 to 4,000 cps. with an $\times 10$ multipiter. I Law, output cootitored by a lamp bridge into 500 ohma: diatartion is 33 db . down on the sooond and chind harmoalca to mitand the Fange into 10 cps .840 .
OUTPUT METERS.
Windsor 160 A .0 .01 to $2,500 \mathrm{~mW}$. In 5 rangee To match ionds between 2.5 and 20,000 ohma $£ 12$. MARCONI.
Bignal Generators 85 kcs . to 25 mcs , $1 \mu \mathrm{~V}$ to 1 volt output. Tr144F E35. TFl440 e45.
suppllod with timpao leania, durgmy arrials and tnatruo Hon manuals. Wavenvetars T.P. 643. 20 to 300 mea tlons and spare valve. Incorporates a $50 \mu \mathrm{~A}$ meter. Brand new with transit cane 87.
All the above equipment preondutioned to vootk to originad speifisation.
Brand new s8P7A ar.T. with holder. Twin gre hat faced wth P.D.A. full data supplied $£ 22$. out up to 110 mes. Brand hew $\mathrm{f12/10} 720$ wath TESTED COMPONENTS NEW OR EX NEW EQUEP. MENT
8 Mi .430 V, If $\times 1 \% \times 21 \mathrm{n} .31 \mathrm{~m}$.
Metal rectilers. 340 V .40 mA .
Metal rectiders. 340 V. 40 mA . 5 x $3 / \mathrm{n}$. dia $3 / 6$. Rosistors 2,000 ulm $2 \%$ ww hobbin $1 / 3$ each of 9 for
50 ohm 5 watt wiw pots. Brand new $1 / 3$ each or 3 or $8 \%$
TRANSEORMER
Pri. $0-110-200-320-340$.
Sec. 24 V . CT 3 amp. 93 volts 3 times 0.1 amp .200 V . 60 ma . Many applications e.g. 100 watt aute or charger. Potted only 1216.

Trade enquiries welcome
Portland Pays Postage and Packing Terms Cash with Order

## PORTLAND ELECTRONICS

20, Portland Place, Stalybridge,
Nr. Manchester.
STA. 2148.

## POST OFFICE LINE EQUIPMENT

TE-EPRINTERS: Perforators, Heverinators, Trinnmitters 5 -unit system. New Condition. POWER SUPPLY RECTIFTERS: Mor Telegraph systems FLuTERS: Filters Band-Pame cut-of trequencles from 300 cps . to L12 $\mathrm{Ke} / \mathrm{s}$.
SPARES AND ACCES UINE EOUTPMENT: ATORIES OP ALL TYPES POR Recording Bridges, Telegraph Relay ${ }^{2}$, Spark Oap Protertors, Colis Lidguetaniee. Repeatige, Retardatioth SWTTCHBOARDS: P.O. Moble type ADD-1240 (3-6.8), FIELD TELEPHONES: Typez EE-8, D, $F$ and I carrier terminals and repeaters: $1+1$.
 Diversity Cownbing Units and epares
OHTUS 100 (Ground use)
 115 r. and 239 r. A.C. Spare Antenne Colls. WLRELESS 8ET No. 10: $2-8 \mathrm{Mc} / \mathrm{m}$ and $z 35 \mathrm{Mc} / 6$, alt ancllary equipment and R.F. Amplifiers No. 2. Mk. 2. WIRELESS 8ET No. 31: Manpack Walkie-Taikle WIRELESS SET No. 62: Llghtwétght Communication Set 16.10 Mote
WIRELESS SET No. 88: Manpads or Truck Wallde Tallhe $40 / 42 \mathrm{yc} / \mathrm{s}_{\mathrm{E}} 4$ Channel. SCR-288 40.75 watt output Radio Station HF. LOW POWER RADIO STATION9
(Airborne use)
SCR.522 4-Chanpel 100/156 Mols operating and test equipment $\mathrm{Mk}, \mathrm{Vmi}$,
 RADIO COMPASS SOR-2APG, All amelllartes and 8yares streked in large quantities 2 mld at 10.000 volts: Transformere, H ased up to Reculer various, Carbon Ryushes, Magstlo Bunters. Ball rares, Potentiometera Test Meters. TRANSHITTERS Redifm Type G12T-Outpat \& kilowatts C.W, 500 watto phone Frequency coverage volte 50 cycles zupply. V. K .0 . and aryetal control with owitch selection of 6 spme Frequenses. Air M/nlttry Type T11509-Outpot 300 watt A1, A2 and AS, Frequency coverage $1.500 \mathrm{Ko} / \mathrm{h}$ to $20,000 \mathrm{Kola}$. Operates
R. GILFILLAN \& CO. LTD.

## National Provincial Bank Chambers

29 South Street, Worthing, Sussex.
Te:: Worthing 8719 and 30181
Cables:
"GIL WORTHING" "BENTLEY'S

## VORTEXION Iftomous <br> P'A. Equipmant Per.onal Recgudings elc. <br> Tape to Tape/Disc Service <br> SALE OR MIRE <br> Griffiths Hansen (Recordings) Ltd. <br> 24/25, Folcy Street. London, Wi. suSevm 2771



NEST OF DRAWERS
Overall sige : 71h. Wde $\times 5$ in. doen 71110 . high. 12 ciramers, emab inom
 nonants, nulse, bolts and smali parts. Sbeot steyl. green eummelled. 201-. P. \& P. $3-$

HARMSWORTH, TOWNLEY
\& CO., 2 JORDAN STREET, MANCHESTER 15

## RADIO \& <br> TELEVISION.COMPONENTS

We operate a prompt and efficient MAIL ORDER Service. 3d. stamp (only) for catalogue.
James H. Martin \& Co. Finsthwaite, Newby-Bridge, Ulvarston, Lancashire.

## LEEVETS [ICH <br> MAGNETIC RECORDERS <br> AUDIO, INDUSTRIAL \& SCIENTIFIC APPIICATIONS <br> LEEVERS: RICH EQUIPMENT LTD.

Instrumentation at its best


SIFAM ELECTRICAL INSTRUMENT CO. LTD. LEIGH COURT - TOROUAY - Telephone 4547/


## A. K. \& L. G. SMITH LTD. CONSULTANTS \& AGENTS

For the sale Licensing and Explottation of Patents and Inventions.
38 Nunhead Lane, Peckham, London, 8.E. 15 Telephone: NEW Gross 7325

## ELEGTRONIO ENGINEERS

Applications are invted from Electronle Engiteers With expertence in the Deslgn and Development of Electronle Producunon Teet Equilpmont. Vacancies
also exist for Callbration Engineare. These are etail aiso oxist for calloration gagineare. Thase are etail
appointments and there are excollent opportunvilea or advancement. Tho successful candiditios will be invited to jots the Company's Buperannuation and Life Assurance soheme. Applcants please reply diviag full details, to THE EMPLOYMENT MANAGER

THE PLESSEY OOMPANY LIMITED,

## BUILD YOUR OWN



- HYBRID DESIGN- 5 VALVE SUPERHET, TRANSISTOR AND PRINTED CIRCUIT
- STANDARD SIZE $7 \mathrm{in}, x 2 \mathrm{in}$. -12 v . BATTERY ALL NEW COMPONENTS - AVAILABLE SEPARATELY OR IN COMPLETE PACK

First and best DO-IT-YOURSELF Car Radio. Uses new Brimar low volt. valves, no vibrator. Printed circuit and power transistor. Negligible "fade" and no buzz." Only 1.5 amp. consumption. Complete with chassis assembly, filter box, output stage including elliptical loudspeaker and detailed instructions. Service facilities available.
$\left.\begin{array}{c}\text { Can be builk } \\ \text { for }\end{array}\right\} 3.10 .0$ plus $5 /-p$ \& $p$ Cash with order
or write for BUY-AS-YOU-8UILD details Dept. Q, MAYRR EIECTHONICS LTD.
118 Brighton Rd., Purley. Tel.: Bywood 1263


## ELECTRICAL MEASURING INSTRUMENTS REPAIRED

$\qquad$ in your peer heade' 8. Orgent ortery given 2. Promps Quotaltons and 4. Ouarantee of saristoc. We specialise in the repair of all typos sud makes of Poltmotern. Ammoters, Microsmmeters. wiltirange Thest Fifeteri, Eleotrical Thermometeta, atc.
As contructors to the Ministry of Gupply, Clemeral alo the leadiog other Government Mepartmeata, we the Indastry. No enquiry the too big or too emoll. For prompt extimate and epeoty dellvery eand defeo-
iveo lastrument by regintercd poat, or writeto Dept. WWW
L. GLASER \& CO., LTD., 90-100 Aldersgate St., London, E.0.1. Tel. MON 6828

## RADIO\&ELECTRONIC ENGINEERS . . .

The MORSE CODE is stll, and always will be the basic Code for individual Signalling, whether on visual or telecommunication circuits. So add this simple and interesting subject to your qualifications. Apart from the pleasure derived from this extra knowledge, it counts for much when a step up the ladder is under consideration. FACTS rite CAN ore the how fascinaring the Candler method of teaching

CANDLER SYSTEM CO. (56W) 52b ABINGDON ROAD, LONDON, W. 8 Candfer System Co., Denvar. Colorado, U.S.A.


ROTARY CONVERTORS. $24 \nabla$ D.C. Input, 50 F . A.C. output. 200 watte, In steel case, hattery and ontput leads, switched and tused, spare ftues and prushes. 75/-. PP. $7 / 8$.
ADTO TRANSFORMER for same, lapped 6 steps, $50 / 250$ ₹ $32 / 6$. P.P. $5 / 6$.
ROTARY CONVERTORS. 24 V. D.C. input, 280 V. A.C. output. 125 watts, to besutiful wood case with 3 -pin output Plush socket made by Lancashire-Crypto. Absolutaly brand new. $87 / 15 /-$ P, P. 5/=
ROTARY CONVERTORS. 24 v. D.C. Input, 330 T. A.C. output, 125 watts. Brand new. \&4/17/6. P.P. 7/6. NIPE ALKALINE BATTERIE5, 25 A.H. 1.2 v. per cell. $8 / \mathrm{ea}$
P.P. 1/6.
HAND MICROPHONE MOVNG COIL No. 13, $2, \pi^{\prime \prime}$ DIAmeter with press thumb switch, brand new, 12/6. P.P. 1/6. Lnserts for kame 4/6. P.P. 6d.
MOVING COIL KEADSET. No. 9, with Tannoy
Microphone, brand new, 12/6. P.P. 2/6:
TANNOY MICROPHONE. Brand new. 7/6. P.P. $1 /$ TELEPHONE Enserts balanced armature No. 2/6. P.P. 6 d .
ROTARY TRANSFORMERS, 5 v . D.C. input 255 v D.C. output, 175 mA . Type 37, made by Hoover's. Absolutely brand new. 17/6. P.P. 1/6.
AMPLIFIEFR PAT 8092. 24 \%. D.C. $3 \cdot 35$ L6GT valres, Hoover Dynamotor, A.C. Motor Crene rator and a host of other components. 35/\%, Post, $2 / 6$.
CONDENSERS. "Pyranol" oil alled $10 \mu \mathrm{~F}, 2,000 \mathrm{v}$. D.O. (part of TX ET4336). 22/6 each. 'P.P. $2 / 6$ (Special price for quantities)
AERIAT FARIOMETERS for 19 Set MK. II. New 13NTENH
ANTENNA CURRENT INDICATORS. New 2in. Flush American. 8/6. Port 6d.
CONTROL ONIT (American). Aluminium case 12in. $x$
 Aerovox condensers 2.4 Pole relays and other components. 22/6. P.P. $\quad 2 / 6$.
CONTROL BOX (American). Fitted 2 in .1 mA . meter, ${ }^{2}$ Toggle switches and other components Only $12 / 6$. Post 1/-.
HEADPHONES. Ericson High Resistance 4,000 ohms. New 15/6. P.F. 1/.
HEAD ARD BRDAST SETS. DLR 5 Headphones with breast set Microphone. Complete in wood case. 10/6. P.P. 1/e. Headphones separate. 7/6. Mlero-
FM TUNER. Minkature $\mathrm{IF}_{\mathrm{F}}$ gtrip $9.72 \mathrm{Mc/s} 6$ valves, May, 1957 As new, $35 /$ Conrersion detaila "P.W." SPEAKERS. P.M. 6ini, brand new, round, $10 / 8$. P.P. 1/-.

CROSS POINT METERS, with 2100 Microamp movements Brand new 10/6. P.P. 2/-.
LEACH (American) SOLENOID CONTACTOR, 12 . Type 0088 NKE, silver contacts. New. 25/-, P.P.1/. LONDEX RELAIS, 24 v. D.C., 2 Pole, 2 make. $4 / 6$. WHIP AERIALS. 3.4ft, push in sections, 9/6, Carriage $1 / 6$.
AIRCRAFT OENERATORS, $K X, 02$, HX2, etc avallable your enquiries tavited.

TERMS. C.W.O. or approved monthly account.

## A. J. THOMPSON

"EILING LODGE," CODICOTE, HERTS.

Te!ephohe: CODICOTE 242

TELETRON Miniature Transistor Superhet coil kit (as illustroted) 42/-

$470 \mathrm{ke} / \mathrm{s}$. I.F. Transformers and Osc, coil in sereening cans $\frac{3}{4} \times$ tin. dia. Dual wave Ferrite rod aerial $5 \frac{1}{2} x$ sin. dia. For the TRANSIDYNE printed circult s/het.
Push-pull and single ended tape oscillator coils available for most decks at $8 / 6$ each. Bias rejector coils and top lift inductors. Dual range T.R.F. and Xtal diode coils, etc. 9d. stamps for complete lists and circuits.

The TELETRON Co. Ltd.
112B, Station Rd., Chingford, London, E. 4 SIL 0836

THE "ZEPHYR" (W) 2001250 volts. SHADED POLE MOTOA
Precision bult, 2.600 R.P.M. 6ixine luars). 2 2tin wide (over
 Sturdy and SILENT. Ground and polished sptndle ( 5132 in . diam.).
Suitabie for Fans, Extractors Fan Heaters, Prolector cool. ing, cupboard airing and all silence and freedom from radio and T.V. interference ts essential.
Price 37/6 $\begin{gathered}\text { post free } \\ \text { (motyo only) } \\ \text { accens }\end{gathered}$ ACCESSORIES
Bakelite $\mathrm{lan}, 8 \mathrm{in}$. diam. 7/8. Matal fan, 4in. diam. $5 /=$
THE BESTFREND ELECTRICAL CO., LTD.
BANSTEAD, SURREY
F.H.P. motor manulacturers or 30 gears

Quantiby enyuiries invited

## PRECIIION SHEET METALWORK -

We specialise $n$ manufacturing of
Chassis in all metals, large or smal quantities to your own specifications

## V. W. BEAMISH

Shardeloes Garage. Sharce.oes Rd., New Gros: Lonton. S.E. 14
Tolephone: TIDeway 4795

## GILSON TRANSFORMERS

ate used in high rellability recording equipment by film studios and the B.B.C. Enquiries for prototypes and production runs are invited from electronic equipment makers.
R. F. GILSON LTD, Phone

Phone:
Wimbledon
5695
St. George's Works, \$t. George's Road, Wimbledon, 8.W. 18

## FERROGRAPH RECORDERS

Tandberg Stereo, Harting, etc. Personal Recordings,

Tape to Tape/Disc Service GRIFFITHS VANPEN (Recordings) LTD. 24/25 Foley Street, London, W.I MUSeum 2771 W.

L 0 CKW 0 O D
enclosures
Used by every Broadeasting \& Television Authority in the British isles and Eire for High Quality Monitoring. LOCKWOOD \& CO. (Woodworkers) LTD. LOWLANDS BOAD. HARROW MIDDX


The finest method for cleaning records
Already over 200,000 enthusiastic users
ThE "Dust Jigu"
AUTOMATCG GRAMOPHONE RECORD CLEANER
PATENT APPLIED FOR
Price reduced to $17 / 6$ (plus $5 / 10$ purchase tax) from your local dealer or
CECIL E. WATTS LTD.
Consultant and Engineer (Sound Recordfing and Reproduction) Darby House, SUNBURY-on-THAMES, MIDDX


ENGINEERS!
Whatever 'ow age on experience, you musi read
"ENGINEERING OPPORTUNTIES," Full details of the easiest way to pass A.M.I.Mech.E., A.M.I.C.E 0 \& (Electricsl. Etc.). Gengral Cert. stc. on 144 PAGTS "Nop Pas - No peb terms and detalls of of Engineerlng Mechanieal. Electrica! Givil, Anto, Aero, Radio, etc., Building less than 220 a week tell 1 s what mterest you and write for your copy of "ENGINEER NG OPPORTUNI B.IE.T. 287 Colleze House, 29
31, Wrizht's Lane 81, Wright's
Enanon W.8


59 GNS.-"17"


A full specification $17^{\circ}$ Television Receiver to Spencer. West standards now avallable at your Dealers.

Remarkable performance and priced at 59 Gns. only complete.
For leaflet apply to:
SPENCER - WEST LTD. GT. YARMOUTH, NORFOLK

# SKILLED MEN! 

## USE YOUR KNOWLEDGE IN A WORTHWHILE JOB

VACANCIES FOR LINEMEN DRIVERS DISPATCH RIDERS
DRAUGHTSMEN DRIVER
ELECTRICIANS RADIO MECHANICS TECHNICAL STOREMEN TELEGRAPH MECHANICS OPERATORS in THE ROYAL SIGNALS

## Up to $£ 25$ tax-free Bonus plus

## first-rate wages for two weeks of your time

Are you in a skilled trade? Then you can probably add a tidy sum to your income by folning the Army Emergency Reserve. For one thing, you get pay and allowances at full Regular Army rates whilst in camp. And the more your skill's worth th civilian work, the higher your Army rank and pay. Better stin, you also get $£ 9-£ 25$ bonus tax-free.

For this you just spend 14 days a year at a camp, working on your own speciality. And money's not the only profit you get from that. You get a grand refresher course, giving you a lot of new ideas, and putting you right in touch with the latest Army developments. And you get a welcome break from the usual routine, with sports, games and a great social life. For the placeisfull of peoplewith the sameinterests
as yourself. Don't miss this chancel Send off the coupon now to: H.Q. A.E.R. (R. Sigs.) Blacon Camp, Chester.

## POST THIS OFF RIGHT AWAY!

Please send me-without obligation-the illustrated booklet telling all about the Army Emergency Reserve.

NAME $\qquad$

ADDRESS - $\square$

TRADE $\qquad$

## Training in Radio and Television Servicing

The Pembridge College of Electronics provides a full-time One Year course in the basic principles of Radio and Television for prospective servicing engineers. It is also suitable for those wishing to become proficient in the maintenance of all types of industrial electronic equipment.

The next course commences on 8th September, 1959 and enrolments are now being accepted. The following course will commence on 5 th January, 1960.

Home-study courses in Radio and Television are at present under preparation by our experienced staff and will be available soon.
For details of the One Year and other courses, write for prospectus and admission forms to: The Principal, Dept. PII
THEPEMERIDGECOLLEGEOFELECTRONICS $34 a$ Hereford Road

London, W.z.
Telephone: BAYswater 9117

## COTTAGE LABORATORIES LIMITED require <br> ELECTRONIC and ELECTROMECHANICAL EMGINEERS

with

good qualifications, and experience, capable of playing a senior part in the design and development of electronic equipments and associated control gear.

If you would like an interesting, permanent and progressive job in a small and lively company, backed by the resources of a large international group, then write or telephone:

> COTTAGE LABORATORIES LTD., PORTSMOUTH ROAD, COBHAM, SURREY.
> (Cobham 3191)

## TEST ENGINEERS

required for interesting work in connection with Radar, Computers, Machine Tool Control Units, Camera Channels, Microwave Links and similar electronic equipment.
Applicants must have a sound theoretical knowledge of Electronics backed by practical experience in H.M. Forces or industry. Staff positions and Superannuation Scheme. Single accommodation available. Saturday morning interviews by appointment.
Apply giving full details to
Personnel Department (CE21), E.M.I. Ltd., Hayes, Middx.

## DECCA RADAR LIMTITED <br> TECHNCAL RSSTRUCTOR

A Techpical Instructor is required by our Service School which trains newly employed service engineers on our equipments and introduces new radar equipments to existing staff Candidates must have a good knowledge of radio and radar principles, and should preferably have had experience of servicing and instruction. Please apply: 61 Webber St., S.E.1.

## FERRANTI LTD. MANCHESTER

## has vacancies in the

## for SUPERVISING ENGINEERS

COMPUTER DEPARTMENT
for post installation service to Ferranti Computers in this country and abroad. Applicants should have technical knowledge up to H.N.C. standard or equivalent. Favourable consideration will be given to applicants who have a good background of training and experience on Service electronic and radar equipment. Successful applicants will have the opportunity, if they so desire, to be considered for periods of service in this capacity on Ferranti Computers installed in many countries abroad.
The above appointments will carry salaries fully commensurate with qualifications and experience. The Company operates a Staff Pension Scheme and an Instalment Assurance Scheme.

Application is by form obtainable from:
T.J. Lunt, Staff Manager, FERRANTI LTD., HOLLINWOOD, LANCS.

Please quote ref.: KLS.

## ELECTRONICS RESEARCH LABORATORY STAFF

Senior qualified Electronics Engineers of Degree or Higher National Certificate standard are required for interesting work in connection with a number of projects in the field of Electronics, including the application of transistors to television and similar equipment. Applicants must have suitable academic qualifications and experience in laboratory procedure. They will normally be expected to be able to handle a project from its inception to its final conclusion. Box No. 1952, c/o " Wireless World."

## RADAR, WIRELESS and INSTRUMENT FITTER GIVILIAN INSTRUCTORS

(Male) required by Air Ministry in the provinces. Appointments unestablished, but good prospects of becoming pensionable. Trade training, practical experience and ability to teach are essential. Pay $£ 727$ at age 26 rising to $£ 900$. Apply to Air Ministry, C.E.4k
(CIV 78), London, S.E.1.

## Hawker Siddelêy culoso weapons DIVISION

A. V. ROE \& COMPANY LIMITED,

CHERTSEY RESEARCH AND DEUELOPMENT GROUP CHERTSEY, SURREY

Applications are invited to fill the post of

## HEAD of ELECTRONIC and SERYO GROUP

which will shortly become vacant due to the transfer of the present Head. Candidates should be qualified men who have had wide general electronic research experience with particular knowledge of Electronic and Electro-Mechanical Servo Systems. This Group, in addition to its own research work, provides an electronic service for the whole of the Research Department at Chertsey and hence the successful applicant will be expected to have a good general knowledge of available electronic instruments and electronic components.

Apply 10:-
A. V. ROE \& CO. LTD., HANWORTH LANE, CHERTSEY, SURREY.

## sffRY <br> INDUSTRIAL DIVISION

Due to continuing expansion at Brentord the Sperry Gyroscope Company has created a separate Industrial Division in which vacancies are occurring at all levels.

## DESIGN ENGINEERS

with experience in the following fields are particularly required:

1. Transistorised circuitry for analogue and digital servo applications
2. Small precision electro-mechanical mechanisms
3. Precision mechanical engineering
4. Hydraulics.

We feel we can offer Engineers an absorbing technical environment and the assurance that real ability is very quickly recognised and adequately rewarded. Engineers who would like to discuss these opportunities with the Engineering Manager are invited to write giving concise details of their experience, qualifications and present salary to:-

## The Personnel Manager,

Sperry Gyroscope Co. Ltd., Great West Road, Brentford, Middx.

## TECHNICAL ASSISTANTS

required for interesting work on special types of electronic valves, microwaves devices, and cathode ray tubes. Min. Qual. O.N.C. or Inter.-for more senior appointments B.Sc. or H.N.C. is necessary. Experience in this expanding field is not essential as training will be available for successful candidates. There are good opportunities for advancement in this branch of electronics.
Please write giving details of previous history and preference (if any) for type of technical work required. Quote TA/1:-

## Personnel Officer

## M.O. VALVE CO. LTD.

Brook Green, Hammersmith, W.6.

## MARCONI INSTRUMENTS LTD.

## Technical Personnel Required

SENIOR \& JUNIOR ELECTRICAL DESIGN ENGINEERS

## SENIOR \& JUNIOR MECHANICAL DESIGN ENGINEERS

DUTIES: To undertake the design of Test Equipment covering practically the whole electronic field. including Telecommunication, Guided Weapons and Nucleonics. Considerable personal responsibility and treedom is given, and there are no set rules regarding the number of people engaged on a project. the allocarion ol proiect leaders, etc.
QUALIPICATIONS: The ability to design equipment and aggressively progress a project through to the s.age where a model is made and the information is available for a production drawing office. Senior engineers are usually of B.Sc. standard with practical experience in measuring techmiques. while Junjor engineers are often Graduate Members of one of the Professional Institutions, or have similar qualifications. but this is in no way mandatory. The ability to progress the project through to a satisfactory conclusion is the prime requirement. Due to expanding activities, men with drive and injtiative can be sure of progressive advancement
Comprehensive pension and assurance schernes ase in operation, and Canteen and Social Club facilities are provided.
Call any day including Saturday mornings at,
MARCONI INSTRUMENTS LTD. LONGACRES, HATFIELD ROAD, ST. ALBANS, HERTS.
or write giving full details to Dept. C.P.S., Marconi House, 336/7, Strand, London, W.C.2. quoting reference WW 2970B.

## ELECTRICAL ENGINEER

Required to lead a small group which has an overall responsibility for the satisfactory operation of the

## POWER SYSTEMS OF AIR TO AIR MISSILES

developed and manufactured by the Company.
This group forms an important part of a large development organisation and can draw on a wide range of facilities from other sections within this organisation.
Experimental programmes to investigate the fundamental dynamic behaviour of power systems are undertaken by this group, and these may involve the production of experimental machines or other units.
No detail design work is carried out, although the applicant should be capable of appreciating fundamental mechanical design problems.
Applications are invited from graduate engineers with an interest in the design of small electrical machines and some knowledge of servo theory and electronics, and should be addressed to:
The Personnel Manager (Ref. 323),
 LIMilted, Hatield, Herts.

## UNITED KNNGBAM ATOMAC ENERGY AUTHOBITY INBOSTRILL GROUP INSTRUMENT MECHANICS

Windscale and Calder Works, the Experimental Reactor Establishment at Dounreay and Chapelcross Works require experienced men with knowledge of electronic equipment and/or industrial instrumentation for fault diagnosis, repair and calibration of a wide rarige of instruments used in nuclear reactors, radiation laboratories and chemical plant. This interesting work involves the maintenance of instruments using pulse techniques, wide band low noise amplifiers, pulse amplitude analysers, counting circuits, television and industrial instruments used for the measurement of pressure, temperature and flow:
Men with Services, Industrial or Commercial background of radar, radio, :elevision, industrial or aircraft instruments are invited to write for further information. Training in our Instrument School will be given to successful applicants.
Married men living beyond daily travelling distance will be eligible for housing after a short period of waiting. Lodging allowance is payable during this period. Working conditions and promotion prospects are good.

Applications to:<br>Works Labour Manager, Windscale and Calder Works, Sellafield, Seascale, Cumberland.

or
Deputy Works Labour Manager, Dounreay Experimental Reactor Establishment, Thurso, Caithness, Scotland. or
Labour Manager, Chapelcross Works, Annan, Dumfriesshire, Scotland.

## DECCA RADAR LIMITED

## Development Laboratory

Further vacancies have arisen for:

1. Senior Project Engineers
2. Senior Design Engineers
3. Project Engineers

## 4. Design Engineers

Candidates for the senior appointments must be graduate eleatronic engineers who will be prepared to assume responsibility under the Chief Development Engineer. Projects under develop. ment include True Motion marine radar, high-powered radars and ooherent systems.

The Project Engineers and Design Engineers should be of ONC standard and should preferably have had a broad practioal and theoretical experience of modern electronic design such as valve and transistor circuitry, hard and soft valve modulators, display and servo systems.
Applications should be addressed to: The Personnel Officer, 9 Davis Road, Chessington, Surrey

## RADIO \& TELEVISION

## A Senior Engineer

is required by a large manufacturing Company to carry out liaison duties between its development engineering department in a West London district and its factory on the south coast.
The successful applicant will be required to spend the first three months in the (London:) laboratories, and then be resident on the south coast.

A sound technical knowledge and experience of television is required, and some knowledge of production methods desirable. Initiative and organising ability, and the ability to solve technical problems as they arise in the factory, are essomtial qualifications.
The Company operates a good Pension/Life Assurance Scheme.

Please write (in strict confidence) giving full particulars of experience, qualifications, present salary level, to Box No. $3024 \mathrm{c} / \mathrm{o}$. "WIRELESS WORLD."

Young Electronic Engineer required to bead newly formed Electronics Section of Research \& Development Division of majur scientific instrument manufacturer. Originality and versatility essential. Knowledge of small electro-mechanisms desirable. Permanent, pensionable post with prospects. Box No. 3330 c/o "Wireless World."

## COMSULTING ENGINEERS

## Require a CHARTERED ELECTRICAL ENGINEER

With comprehensive experience in the Design and Operation of:

## RADIO TELECOMMUHICATLON SYSTEMS

Applicents must be Corporate Mem. bers of The lnstitution of Electrical Engineors and preferably have a Degree in Electrioal Engineering.
Salary aooording to qualifioations and experience with addition of bonus and pension schemes.
Applicants, giving full dotails of age, qualification and experience to:
PREECE, CARDEW \& RIDER
8,10 \& 12, Queen Anne's Gate, Westminster, London, S.W.L


## ASSISTANT ENGINEER

We have a vacancy in our

## FLIGHT TRIALS DIVISION

For an Assistant Engineer for work on the development of telemetry and associated equipment circuitry.
Qualifications are a degree or HNC standard with at least two years experience of design/ development of electronic circuitry. Must be capable of communicating technical knowledge verbally and in writing, as well as supervising the work of two or three juniors.
Applications are invited and should be addressed to:-
the personnel manager
(Ref. 296),
DE HAVILLAND PROPELLERS LIMITED • HATFIELD • HERTS.

## opportunities

A young but progressive company in North London requires Electronic Engineers for Development and Technical Sales Liaison work and preferably having general rather than specialised experience. The successful candidates will be those who in the Management's opinion, are capable of accepting responsibility with a determination to "get the job done" using imagination, hard work, and individual initiative. For this type of man there is a splendid future in this expanding organisation.
Write or telephone :
M.P.E. (Finchley) Ltd.

Dollis Mews, Dollis Park London, N. 3
Tel: FINchley 8104/3783

## TaNMOY

Tells you what's going on clearly
WEST NORWOOD • 5.E.27
Felephone: GIPsy Hill t|ll (7 lines)

## NEW BOOKS ON RADIO \& TELEVISION

The A.R.RUL Radio Amateurs Handbook 1959. Postage 1/9...... Radio Clrcuits by Milher, 4th edition.
Poseage 1/-
Princlples of Transisto............................... Amos. Postage 1/-
Jason F.M. Tuners Manual by Blundell. Postage 6d.
Practieal Radio Inside Out by Easterling. Postage 6d..................... Beginners Guide to Radio by Camm, revised edition. Postage 9d..
Wortd Radio Hand book by Johansen, 1959. Postage I/-
R.S.G.B. Amateur Radio Call Book
1959. Postage 6d. .............................
T.Y. Servicing by Patchett, Vol. 4. Postage 6d.
Radio Controlled Modeis by Camm. Postage 1/-
Radio Valve Data by iowireless $12 / 6$ World," 6th edition. Postage 8d.... 5/A full range of Slide Rules and Drawing Instrument Sets in Stock. Send for lists.

## UNIVERSAL BOOK CO.

12 LITTLE NEWPORT STREET
LONDON, W.C. 2 (adjoining Lisle Street)

## AUDIO EQUIPMENT

LEAK, QUAD, EMI, GRUNDIG, COLLARO, GARRARD, GEC, GOODMANS, WB, ETC.

PROMPT AND EFFICIENT
MAHL ORDER SERVICE

## 3d. stamp for lises.

C. V. NASH,

MERE, WARMINSTER, WILTS.

## T. 홍

## training to be COMPUTER ENGINEERS

Young men with G.C.E. "A" level in Physics and Mathematics (or equivalent) are offered training to become Electronic Computer Engineers in one of the Maintenance teams of a young and rapidly expanding organization. This is an excellent opportunity, for men between 18 and 25, to train from scratch to reach positions of responsibility in a rapidly expanding field. Applicants should write giving personal and education details, and an outline of any experience to:

Personnel Officer
LEO Computers Limited,
Minerva Road,
Park Royal,
London, N.W.10.

[^21]UTTING SOUARE HOLES

## TECHNICAL AUTHORS

are required by MARCONI'S at the following works:ST. ALBANS. To work in the Technical Literature (Telecommunications) Section. Applicants should have electrical engineering qualifications and some specialised knowledge, which might be in the design or developnient of electronic equipment
OHELMSFORD. To work on the preparation of handbooks on vision and sound transmitters and studio eqnipment and also on Radar subjects, including aerial tuning gear, displays systems, etc.
The dutles are varied and interesting and the posts provide permanent and pensionable positions in a well established Company.
Apply giving full detalls and quoting reference
WW29700 to Dept. C.P.S., Marconi House,
336-7 Strand; Londón, W.C.2.

ENGLISH ELECTRIC COMPANY LIMITED
WHETSTONE, NR. LEICESTER
has vacancies for an
ELECTRONICS TECHNICIAN
in the
COUNTING LABORATORY of the
ATOMIC POWER DIVISION
The work includes development of nuclear particle detectors, application of isotopes to industrial techniques and radiation protection investigations.

Applications, within the age limits of $23-30$, should be of about O.N.C. to H.N.C. standard in Applied Physics with experience of electronics and in particular of pulse counting techniques.

Please apply to Dept. C.P.S., Marconi House, 336/7, Strand, W.C.2, quoting reference WW1806D.

## SOUTHAMPTON COUNTY BOROUGH EDUCATION COMMITTEE SOUTHAMPTON TECHNICAL COLLEGE

Department of Electrical Engineering A three-year full-time course in COMMUNICATION ENGINEERING AND ELECTRONICS will be started in September, 1959. The course will prepare candidates for a College Diploma. The Final Examinations will be assessed by the British Association of Radio Engineers for exemption from their Graduateship Examination. Applicants with suitable academic qualifications and/or practical experience may be admitted to the second year of the course. Details of course, fees, etc., from the Registrar, Technical College, St. Mary Street, Southampton.

## BRADFORD INSTITUTE OF TECHNQLOGY

## Principal: E, G. Edwards, Yh.Dı, B:Se., F.R.IC.

Applications are invited for the post of Technician in the Electrical Engineering Laboratories

The principal dutues of the person appointed will be the maintenance and repair of apparatus, setiting up of laboratory experiments and lecture demonstrations and the testing of instruments, A knowledge of electronics would be an advantage Applicants should preferably possess a Final Certificate of the City of Guilds of London Institute in appropriate subiects or an Ordinary National Certiffcate or other surtable qualifications or experience
Salary scale $£ 445 \times £ 20$ to $£ 625$ per annum with efficiency bars at $£ 505$ and $£ 565$. Commencing salary according to qualifications and experience.
Purther particulars and forms of application may be obtained from the Registrar. Bradford Institute of Technology, Bradfrom 7 .
W. H. LEATHEM

Clerk to the Governors


## Wireless World Classified Advertisements

Rate $7 /$ for 8 lines of less and $3 / 6$ tor avery additional one or part thereol. average lines 6 words. Box Numbers
words plus 1/. (Address replios: Boz 0000 e/o "Wireless World" Dorsot House, stamford st., London, 8.E.1.) Trade
 aocepted tor errors.

## WARNING

Readers are warned that Government surplus components and valves which may be offered for sale through our displayed or classified columns earry no manufacturers guarantee: for special perpe items will have been unsuitable for special purposes making them unsuriable result of the conditions under which they hove been stored. We cannot undertake to deal with any complaints regarding any such items purchased.

NEW RECEIVERS \& AMPLIFIERS A M/FM stereo chassis, 6 output, cnly $\& 20$ N.19. Bel Sound Products, Marlborough Yard,
10182

## RECEIVERS AND AMPLIFIERS SURPLUS AND SECONDHAND

A R88-D with manual, in original packings, Prory Rd.. Wlmsiow, Cheshire. Lofthouse 19514 HRO Rx's. etc., AR88, CR100. BRT400. Service, Ashville Old Hail. Ashvile Rd., Lon-
don. E, L1. Ley. 4986.

TEST EQUIPMENT-SURPLUS AND CIGNAL generators, osciiloscopes, output
meters, valve voltmeters, frequency meters,
multi-range meters, etc. etc. in stock, R . T. multi-range meters, etc. etc. in stock, Rid.
\& I. Service, Ashville old Hall. Ashville Rd.
Condon, E.11. Ley 4986 . 0056

## NEW COMPONENTS

EOR sale, new and unused, toggle switches enobs K75 ( 50 of each), potentiometers type M 2 megohm (25) precision resistors 27 K ohm (100) capacitors 100 NF (25), 4uF (25), rectitiers RM1 (25), also neon lamps AM10E6 (250) Runnymead Ave., Brlstol. 4.

## COMPON.NTS-SURPLUS AND <br> SECONDHAND

DC/AC mains converter for radio, etc., virtuto Town Clerk, Civic Offices, Swindon for
particulars.
MAGSLIPS at low prices, fully guaranteed, $50 \mathrm{c} / \mathrm{s}$, unused each in tin, $35 /=$ post $2 / 1$ 50c/s, unused each in the
large stocks of these and other types. -P. B,
Crawshay, 94 , Pixmore Way, Lethworth, Crawshay, 94, Pixmore Way, Letchworth
Herts. Tel. 1851.
[0087
SAVE on repairs using our salvaged TV and (EHT, line, frame, speaker), droppers, sliders, EHT, line, frame, speaker), droppers, sliders, onsolete, unobtainable elsewhere at a fraction
of usual price: speakers $5 /-$ EF80, EF91, UF42, $3 / 6 ;$ EF50, Sp61, EB34, $2 / 6$.
TUBES: Mullard, Mazda. Emiscop
TUBES: Mullard, Mazda. Emiscope, etc., 9in0in. projection, $30 /-: \quad 12 \ln -14 i a, ~ £ 3 / 10 ; 17$ in sent subject to 7 days money back guarantee: for free list or with enquiries, s.a.e. please. Bat. 9838.

## NEW GRAMOPHONE AND SOUND

UR June recommendation, a Unimixer, 3 , go with the tape recorder you buy from us.-
[0und News.

CLASGOW,-Recorder's bought, sold, exrecorders or vameras, versa-Victor Morris, 406,
Argyle St., Glassow, C.2.
[0201 TAPE recorders: Ferrograph, Vortexion, raph, decks: Wearite, Brenell. Truvox, Brad mattc, Dulci-Harting, Amplifiers and, tuners eak, Quad, R.C.A." Dynatron, and Dulct Acos, Grampian, etc. all tapes and accessories, Audio service department and recording studio. ITRE purchase facinties avauable. AMBDA Record Company, Ltd., 95, Liver pool Rd., Liverpool. 23. Great Crosby 4012. EROICA" RECORDING STUDIOS (Est. by Ferrograph, series IV, etc,, Brenell Mark $V$ ocket way mixer, 23 posted; installation or industry and ine bome, tape/disc, etc. t. Preles Manchester. Eccles 1624 , Director Thirlow Smith, A.R.M.c.M.

UNDOUBTEDLY THE BEST . . . but cost no mre!


Output Transformers 5-100 Watts


P4076
Baxandall
5 watt Amplifier. Price 36/:
P4I3I
Mullard
10 watt Amplifer. Price 60/-.

## P5203

Mullard
20 watt Amplifier
Price 95/-.


TD5874 "AFN" Stereo Amplifier. Price 52/6.

Just
released
Transformers specified for Brimar 2/8P2 8 wott Stereo Amplifier.

| P4I36 | P4I37 |
| ---: | :--- |
| Mains | Output |
| Transformer | Transformer |
| Price 85/- | Price $52 / 6$ |

Available for immediate delivery, If any difficulty please fill in coupon fo name of nearest stockist.

Partridge Transformers Ltd.
Roebuck Road, Chessington, Surrey
| Please send to address below name and ad- | dress of my nearest Partridge stockist. Also
literature on standard range of transformers

## Nome

Address

NEW GRAMOPHONE AND SOUND EQUIPMENT
CINE-VOX disc recording mechantsme for 56 gns .; also complete cape/disc or direct channeis from 50 gns. 11128 ns .
DEMONSTRATIONS can be arranged in Lon-don.-For full detauls write to K.T.S. Ltd. Callers by appointment only

## GRAMOPHONE AND SOUND EQUIPMENT-

URPLUS AND SECONDHAND
A Lso from us! Post free, insured: Gevaer GMI-strd 1,200ft on strong Ferrospools, boxed 25/-: Truvox Mark III (guaranteed), 16 gns also available.-Sound News, see p. 180 May
6 trumpet-type speakers, mains 60 w amplifier 6 \& 20, nearest offer; battery-operated 12 v 15 w amplifier; microphones and equlpinent, etc.; also oscilloscope, valve voit meter; complete test equlpment.-Edmondson Mala ${ }^{\text {St., Miln. }}$
thorpe, Westmorland. Tel. Miln. 2210 . 8897

COMPLETE recording equipment from micro500ft phone to disc; comprising: ${ }^{\text {sen }}$ microphones mixer, Ferrograph $2 A$ tape recorder, Connols seur varigroove 3 -speed disc recorder, suction speaker. phones, tapes and discs, etc.; $£ 300-$ $Q_{\text {Tannoy }}^{\text {DAD }} 15 \mathrm{n}$ dual Unit, new valves, $£ 12 / 10$; 150 f6. £7/10; Trebax. £4/10; Goodmans $750 / 5000$ X. 0 \&4; or the above threr speakers with crossover in sandililed Klipschorn corner enclosure, a bargain, £55; Collaro transcription motor with pickup, £13/10; BSR. three-speed Motor wita Collaro studio pdckup. £5.-Apply Hampstead
0214 or Box 3385.

THE tape king scoops again with a new low-
 (list $35 /-$ ), $22 / 6$, p. \& ${ }^{\text {o }}$ p. $1 / 6$; 3 in L. P. Agfa various feading Eritish and continental makers
 $62 \mathrm{gns})$ 49gns or terms; second-hand Grundis TK 9 , 37 gns or terms; second-hand Quad It complete, $£ 32 / 10$ or terms; 20 second-hand E. C. G. KINGSLEY \& Co.. " Always First For Tape," 132 , Tottenham Court Rd. (corner of
Warren St.), London. W.1. Eus. 6500 . 10320

## TAPE RECORDING, ETO.

R ENDEZVOUS RECORDS offer comprehen-
 chester, 3 . from 19. Blackiliars St., Man- ${ }^{8168}$
TAPE to film striped film to tape your Filmm film striped and recorded-Edric Films, Ltd., $34 / 36$, Oak Tree End Way, Ger TAPE to disc recording: Microgroove LP 10124 147/6, 78 r-p.m. from $11 /-1$ also 45 r p. .m. 48-hour service; 5.a.e. for compre hensive lealet Little place, Moss Delph Lane, Auehton. Orms:
kirk, Lancs. Aughton Green 3102 . 8133
TAPE/DISC/TAPE transfer. editing, copying. with quality and With tain's oldest (not cheapest) full-time transfer service; dellvery $2-4$ days. At long last we can insure your tape recorder, T, V set, gramophone, to cover replacement of all components calls. free annual check in every part of Britain. state certlfled date of purchase for quotation.Sound News, 10, Clifitord St., London, W.1.
Seg. 2745.

## Valves

Valve cartons by return at keen prices: send makers, 75a, Godwin St., Bradiord, 1 . ${ }^{1 /-}$ [0172

Valyes wanted
NEW valves wanted. any quantity, best cash Lane, West Bromwich, Staffs. Tel, Wes. 2392.
 A transmitting and receiving: keenest cash or call Lowe Bros.. 9a, Diana Place, Euston or call Lowe Bros.e.9a, Diana Place, Euston
Rd., N.W.1. Tel, Euston 1636-7. R ADIO and F.V. valves wanted for cash; quantities, purchase all typease give all details, or small including quitce required in first letter, or lot of under price required in arst letter, or iot o
50 may be sent in 10 our valuation.-Waitar's
Wirelss Stores, 46 , 47,48 and 49 , Staford Wirelss Stores,
St. Wolverhampton.

## SOLIDEIRING EQUIPMENT HY <br>  <br> PRECISION SOLDERING for the ELECTRONICS INDUSTRY

- Comprehensive range
- Robust and Reliable
- Light weight
- Rapid heating
- Bit sizes $3 / 32 \mathrm{in}$. to $3 / 8 \mathrm{in}$
- 'PERMABIT' or Copper
- All voltage ranges $6 / 7 \mathrm{v}$.
to $230 / 250 \mathrm{v}$
- Prices from $19 / 6$

Illustrated is the 25 w 3/16in replaceable bit model with safety shield.

British and Foreign Patents. Reglstered designs. Suppliers to H.M. and Foreign Governments. Agents throughout the world. Brocture No. 5.5 sent ree on request
Sole proprietors and manutacturers
LIGHT SOLDERING DEVELOPMENTS LTD.
106 George Street, Croydon, Surrey Phone : CROydon 8589 Grams: Litesold Croydon

[^22]WANTED EXOHANGE, ETC.
RGENTLY needed as glit usable radtos, war
disabled cases.-Red CToss, Caernarvon. WANTED, bug key, any make considered.shaw, Reply staing make, type, price.-GrimA PROMPT cash offer for your surplus brand A now valves, speakers, components, tes Enstruments, etc.-R.H.S., 155, Swan Arcade,
WANTED all wpes of communtcations re-- cavers and test equipment.-Dewails t R. T. \& I. Service, Ashville Old Hall, Ashvill TROENTLY require any quantlty Type D. 102 Dynamotors or equivalent, input 13.5 volts output 285 volts at .075amps; reply stating
condition, quantity and price.-Box 2636 condition, quantity and price.-Box 2636.840
WANTED, BC610 Hallicrafters, ET. 4336 frequency meters and spare parts for all above best cash prices.-P.C.A. Radlo. Beavor Lane Hammersmith. W.6
URGENTLY wanted, manuals or instruction Ubooks. data, etc. on American or Estish Army, Navy or Air Force radio and electrical
equipment. - Harris, 93 . Wardour St. 1. equipment.-Harris, 93, Wardour St.
Gerrard 2504.

WANTED. Admiralty pattern 2070 switches. V large or small quantieies, good prices paid: write or Dhone stating amount available Rocks. Weymauth, Lel. 1552 . Rd. Lanehouse

WANTED, good quality communication RYB tape recorders, test equipment, comestic radios, record players, amphiners, vaives, components, etc. es ${ }^{2}$ b. 18 Years.-Call, send or pourt. Leicester Sa., W.C.2.
PROMPT cash for the purchase of surplus stocks of televislons, tape recorders. radios of every and domestic electrical appliance able.-Spears, 14 Watling St Shudehil Man chester Blackfrfars 1916. Bankers: Midlana Bank, Ltd. [0216
TAINS REPAIRS AND SERVICE

- AiNS transformers rewound. new transMOTOR rewinds and complete overh hauls; first F.M. ELECTRIC Co., Ltd., Potters Bldgs Warser

54898. 

## B <br> ENEON'S ETTER

HANDSETS, G.P.O. type, new, 10/6. CR100 Noise limiter assemblies, with valve, $3 / 6$; CR100 Power Trans., 30/-. BC434A Control boxes, 7/6. HEATERS, finned, 115 v. 200 watts, pair 4\% NEW M.C. METER8, $3 \frac{1}{2} \mathrm{in}$. round flush, $50 \mu \mathrm{~A}$., $70 / \div 100 \mu \mathrm{~A}$., $65 /=$ 1 mA , 55/-i 2 mA . (rectifed), 45/-. 21 m . $500 \mu \mathrm{~A} ., 27 / 6 ; 1 \mathrm{~mA} ., 22 / 6 ; 5 \mathrm{~mA}$, $7 / 6$. 2in. 100 mA . $200 \mathrm{~mA}, 300 \mathrm{~mA}$, each, $8 / 6,2+\frac{10}{}$ 20 v. A.C., $8 / 6 ; 2 \mathrm{in}, 40 \mathrm{v} .8 / 6 ; 300 \mathrm{v}$. A.C. $2 \mathrm{~km}, 15 \mathrm{~m}$, Crossover needle type $2 \times 1 \mathrm{~mA}$. 8/6. 2 in . square, $150 \mathrm{~A},-0-150 \mathrm{~A}$ (less shunt) $5 \mathrm{~mA}, 7 / 6$. VOLTMETERS $4 \frac{1}{2}$ in., switchboard type, 250 v., M.I. $500 \sim$, $10 \%$ COMMAND RECEIVERS, brand new, 6 valves, med wave (0.52-1.5 Mo/s), 97/6; used $82 / 8$ (post $3 / 6$ ). (0.52-1.5 Moss), 97/6; used $82 / 8$ (post $3 / 6$ ).
Conversion data and circ to CAR RAD1O, VIBRATORS, Mallory GA34C 12 v. 4-pin $7 / 6$. R11558, new, condition tested with handboot E7/10/- (Rail 10/-). SER522 Morlulation or Driver trans. sither $7 / 6$. CONVERTERS Driver Trans., either $7 / 6$. CONVERTERS (ROTARY), 24 V. D.C. to 60 V. A.C. A., 40/- (ral 7/6). MORSE TRAINER SET With buzzer and key wired for 4 名 v. battery, $8 / 6$. DRIVES: slow-motion Admiralty $200: 1$ ratio, scaled 0-100, 5/6. R1155 S.M. "N type, new. 10/6. VIBRAPAK, 6 v. D.C. to 250 v. 60 mA ., smootbed, cased, 22/6. 12 v. to 250 v. 100 mA ., $17 / 8$ (p.p. 7/6). DYNAMOTOR8 (post $3 / 6$ ); 12 v . to 250 v .60 mA . and 6.3 v . 2.5 A., $11 / 6 ; 6 \mathrm{v}$. to 250 v .60 mA . $11 / 6$. Type 2 A. Input 12 v . Outputs 300 v .240 mA ., 150 v. $10 \mathrm{~mA}, 6$ v. 5 A. filtered, cased, 25/-. F.M. Discriminator Transformer, with valve 185, new, 12/6. TRANSFORMERS, vibrator, input 11 v . output 265 v . (19 set type), 8/6. Morse Key, covered, with plug, $\$ / 6$. LIST AND ENQUIRIES: S.A.E. please. Terms, C.W.O. Postage extra. Immediate despatch.

Callers and Post W. A. BENSON (WW) 136, Rathbone Road, Liverpool, 15. SEF 6853

Callers SUPERADIO (Whitechapel) LTD. 116 Whifechapel Liverpool, 2.

ROY 1130
-RANSFORMERS to any speciflcation: quick and efficlent service, competitive prices, estimates by return of post, from:
MESSRS. Newman \& Son, 1, Grove Crescent,
South Woodford, E.18.
[0330
0330
$W^{E}$ undertake the manufacture of trans-
 months
LADBREKE Rewind Service, Led., 820a. Harrow Rd.. London. w.w.10. Tel. Ladbroke
O222
O914. R ENEW to stock your faulty speakers of all fields and cone assemblies min crophones, colis, felds and cone assemblles in cartons.-D. C.
Boulton, 134 , Thornton Rd.. Bradiord, 1.
Tolephone 22838 .

TRANSFORMERS.-Suppiters to B.B.C.. single or long runs, prompt delivery. home and export, rewinds to 811 mokes. | FORREST (TRANSFORMERS) |
| :--- |
| Solihull. Warwicks. Tel. Ehi. 2483. |
| [0128 |

I0128

## MISCELLANEOUS

RADIO, Television Books. Lelevision servicing Palmer (W). 32 . Neasden Lane, N.W.10. Fo2li METALWORK, all types cabinets, chassis, capacity avallable for small own speciling stan work up to lin bar. PHILPOTT'S METAL WORKS, Ltd., Chapman
St., Loughborough.

DANL PAINTS, CELLULOSE, ETC.
PANL, recognised for many years as the brush applied, no baking; avallable by post in $1 / 8$ pint cans at $3 / 9$ from: G. A. Miter.
255 , Nether St., London. N.3.

BUSINESS AND PROPERTY WANTED F trical or electronics trade; not retail: in order of $£ 10,000$.-Write to Accountants,
Box 2669.

## CLECTRONIC assembly CoA

CLECTRONIC assembly coil winding and Products. Marlborough Fard. London. Nound Tel Arc. 5078 .

10185
A SSEMBLY and wiring capacity available, vision or aircraft industries. Encapsulation, sheet metal work, engraving.-R.E.E. Telecommunications, Ltd., $15 a$, Market Sq., Crewkerne
Somerset.
Solif

## bRTAIN LEADS THE YORLD IN RADAR

## In their own small way

 A.A. BENDERS have helped.IF you would learn how they can help you - IF, having one already. you would learn how greatly its usefulness can be increased by the addition of further accessories, ask
for a FREE copy of our 6 page FOLDER.
A POSTCARD MAY PUT POUNDS IN YOUR POCKET.

This UNIQUEBENDER


Quickly and Accurazely Farms Angles, Channe's, Sections, Boxes, Lids, Trays, Chassis Brackets, Clamps, Clips,

## Something quite NEW! Type RO-20

For private research workers and small units This is similar in general design and finish to the RX-20 shown above, but is lighter and less expensive.
For 6 page Folder wr
A. A. TOOLS (w)

197a Whiteacre Rd. Ashton-u-Lyne

## ENCLOSURES, EQUIPMENT \& CABINETS by STAMFORD

BATISFACTION GUARANTEED OR MONEY RBFUNDED. Delivery England and Wa.
Scotland and Northern Ireland $25 /$.

## special offer WHILE STOCKS LAST

$\begin{array}{ll}847 & \text { Enclooure Atted } \\ \text { with } \\ \text { the Wharfedale. }\end{array}$ 3in. Bronze speaker. board and incorporating the Wharfedale acoustic Blter and lagzed as specilfed Ched
reneer and
Chate
ol CASH PRICE $£ 12 / 15$ or $38 / 6$ deposit and 9 55/9. payments of 2515.

Also supplied fitted with 51- extra super 8FB 45- extra.
Flush Base if preferred sifn. hlgh 14 hln. back

| EQUPMENT <br> Casd Priee Hire Purchase |  |  |
| :---: | :---: | :---: |
| SPEAKERS \& s. d. | Deposit | 18 Month |
| Axiom $300 \ldots$.... 11.59 | 33/6 | 12/4 |
| Axiette .......... ${ }_{6} 121$ | 191- |  |
| Triaxiom 12/20 ..... $25{ }^{6}{ }_{0}{ }_{0}$ | 75\%- | $2 \% 12$ |
| Holden 10/FS |  |  |
| Super 12/FS/AL .. 1 \% 100 | 52/6 | 191- |
|  | $751-$ | $27 / 2$ |
| AMPLIFLERS |  |  |
| Quad II ….. 4200 | 126/- | $45 / 8$ |
| Leak TL12 ${ }_{\text {Varislope in }}$ | ${ }^{176}$ |  |
| Stereo 20 …… 518 | 154/6 | 55/10 |
| Rogers Junior .... 28 |  |  |
| Cadet Amplitier . 10100 | $31 / 6$ | 11/5 |
| Dutci stereo 8 .... 2312 | $7{ }^{\text {O/- }}$ |  |
|  | $37 / 6$ | 13/9 |
| Garrard 301 .... 25 |  |  |
| 4 HF 31onaural .... 189 | 55/6 | 201 |
| TA Mark II ….. 988 | 28/- |  |
| Lenco CL58/580 ... 25810 | $761-$ | 278 |
| CHASSIS | 55/6 | 2013 |
| Armstrong PB409 ${ }^{28}$ |  |  |
| Armstrong stereo 4428 | 851- | $31 / 10$ |



GP62
GP62 3it. 2in. wide Motor boards 17 inn , wide, 161 n . Control
 monthly. Also eupplied on splay leg stool in place of record storage at $£ 22 / 10 /$ -
Write tor our illustrated catalogue or visit our High Fidelity Showrooms at
84/86/98 Weymouth Terrace, of Hackney Rjad LONDON, E.2. Telephone: SHO 5003
Directions: No 6 bus from Liverpool street Station to the
Odeon. Hackney Road, Walk back two turninge
A. L. STAMFORD LTD. (Dept. M. 4)

E iectronic equiment wirlig and sub-


## SITUATIONS VACANT

COMMERCIAL television.
TWW require a senior maintenance engineer at their Cardiff Studios. broadcast sound equipment, camera and telecine channels essential.
APPLY. giving full details of previous experiLtd., Pontcanna Studios, Cardiff. GOVERNMENT OF SINGAPORE.
ASSISTANT Controller of Telecommunications, Department of Telecommunications. for maintenance. installation and operation of telecommunications equlpment including multichannel carrier equipment, teleprinters and V.F. telegraph apparatus, overhead and underground plant. jailway signalling equipment,
multi-channel V.H.F. radar and microwave equipment and major receiving and transmltting radio stations.
CONTRACT appointment for 3 years; salary in the range £1.290-£2.338 according to experience, temporary variable allowance £210completion of contract; payable passages; quarters, if available, at low rent; generous home leave; candidates, not over 45 years of age, must be Corporate or Graduate members of the Institution of Electrical Engineers, or possess a tion from the Institution's examination and have at least 2 years' practical experience in telecommunications.
WRITE Director of Recruitment, Colonial offce, London, S.W.1, giving age, qualifications and experience, quoting BCD 133/25/03(B)
A SSOCIATED TELEVISION, Litd., have maintenance department at wembley THE work involved is of a particula ing character, concerned with the development design and maintenance of audio and video broadcasting equipment.
CANDIDATES must be thoroughly familiar with television broadcasting techniques, and THESE appointments carry salaries in accordance with the union scale ranging from $£ 840$ to $£ 1,260$ per annum. A pension scheme is in operation.
LETTERS of application should be addressed
to Personnel Manager. Associated Television L,td., Television House, Kingsway. London. W.C.2. quoting WW/DM.
"A " licensed radio engineer required: good Engineering Services, Ltd., Croydon Airport,
TILGER \& WATTS, Ltd., Scientific Instru--1 ment Makers, are extending thetr Electronics Department and are seeking men ex-
perienced in Drawing Electronic Wiring LayAPSLLCATIONS are also invited from men or women experienced in electronic wiring Who are able to work from circuit diagrams. FIVE day week, genero is pension and sick
pay schemes, Apply Personnel Officer, 123 ,

TELEVISION bench and feld engineers reparts of the British Isles; permanent positions applicants. $51 / 2$ day week.-Box 1757 .
[0251
A.B.C. Television require an engineer for experience camera control operating and maintenance is necessary.-Apply giving details of age and experience to The Technical Supervisor. A.B.C. Television. Litd.. Manchester, 20.
A SSISTANT engineer required for laboratory R.F. heating equipment; age under 30 ; GraduR.F or Higher National preferred.-Apply Persomnel Assistant. Redifon. Ltd.. Gatwick Rd.. Crawley Sussex. quoting reference C.L1. ${ }_{[8484}$ SENIOR draughtsmen for electronic and ments; permanent positions; ideal working conditions; 5-day-week all amenities; write or telephone.-Cottage Laboratories, Ltd. Portsmouth Rd., Cobham. Surrey (Cobham 3191).
UNIOR Technician required to assist in protocal electronic equipment. App:y giving age, experlence, and sadary required to Eo-ElectroMedical Supplies (Greenham). Itd.. 209b, Great Portland Street. London. W.I. Langham 5433.

8512
A SSISTANT Technical Writer required for perience in preparing copy for printing an advantage, Good starting salary and prospects. $5-$ day weck. Canteen, Welfare and social club
amenities.-App!y. quoting Ref. No. F 4578 to amenites.-Appiy, quoting Ref. No. Fa 4578 , to poration. Ltd., Gt. Cambridge Road, Enfield.

## Armotrong

STEREO - TWELVE CHASSIS
36 GNS


The most complete unit yet produced for stereo giving 6 watts high fidelity push-pull output on each channel, 12 watts total. Full VHF, medium and long wavebands. Stereo and monaural inputs for records, tape and radio and tape outputs for stereo and monaural tape recording. Comprehensive matching for all types of crystal pick-ups. The perfect basis for a complete monaural reproducing system of for a complete stereophonic system now or later.

## STEREO 44 CHASSIS <br> 27 GNS



A stereo and monaural chassis providing 8 watts output, 4 watts on each channel, and covering the full VHF and medium wavebands. Stereo and monaural inputs for tape playback and all types of crystal pick-ups and tape outputs for stereo and monaural tape recording Separate wide range bass and treble ganged controls together with dual volume control for ease of balancing. FM and $A M$ tuners and two separate amplifiers on one compact chassis.
JUBILEE CHASSIS
28 GNS


An $A M / F M$ chassis with nine valves and two diodes with push-pull output stage providing 6 watts. Full VHF, medium and long wave bands with automatic frequency control on FM and ferrite aerial on AM. Tape record and playback facilities.

Post this coupon or write for descriptive literature and details of Home Trial facilities, Hire Purchase Terms and Guarantee.

## NAME

ADDRESS
WJC
RRMSTRONG WIRELESS \& CO. LTD. Warlters Road, London, N. 7 Telephone: NORth 3213

## YOUR EARS AND YOUR PURSE WILL BOTH ENJOY DUODE SOUND

Duode Sound satisfies your ears, brings you long lasting pleasure in naturalness and eruth.

Duode units are the best long term investment in really good quality, with no hidden harmonics or resonances to emerge and annoy as you become more critical in your appreciacion.

And when you do feel like a change, the very lazest new Duode frame, cone and drive assembly can be fitted to your original magnet system ax moderate cost.

No Duode need ever be deadl
INSIST ON HEARING A NEW DUODE.
DUODE LTD.

## 24 Dingwall Road, Croydon, Surrey

## NYLON•P.T.F.E.

ROD, BAR, SHEET, TUBE, STRIP, WIRE No Quantity too Small. Last on Application.
BRASS. COPPER. BRONZE BRASS•COPPER•BRONZE H. ROLLET \& Go. Lid.

6 Cbeshan Place. S.W. 1 SLOane 3463
ALSO AT LIVERPOOL, BIRMTN
MANCEESTER, LEEDS.

## you can bulld a quality <br> TAPE RECORDER 'ASPDEN'

## Tape Recorder Kits

TAPE DECK KITS
Two models, 5 in . or 7 in . spools, -two speeds, twin track, ferroxcube heads, finest motor, and complete assembly instructions. Compact model 582 kit............... $58 \quad 50$ Assembled and tested $30 /$ ext.......

And the
RECORD/REPLAY AMPLIFIER KIT, $2 \frac{1}{2}$ watt, neon indicator, without valves, $65 / 18$. POWER PACK KIT for above, less valve, E2/18/6. Carf, extra.
Mr. R. White of Ireland writes:
The performance of the recorder is very good and I recommend it to all those who wish to get Ist class performance at approx. half cost.: NEW :- 'STANLEY' TAPE POSITION INDICATOR Clock Type E2/5/0.
Send STAMP for full particulars to:-
W. S. ASPDEN

Stanley Works, Clevedon Road Blackpool, Lancs.

## SITUATIONS VACANT

CNOINEERS with some five years practical E experlence of radio trequency desion work required tor interesting new project in
Iaboratory situated In South West outskits of laboratory situated in south West outskirts of ondon. pension scheme. - Write giving full particulars of experlence and salary required to
Box 2409 .
18433

TeChnician with general expertence in practice to maintain electronic and other equipment for medical research; salary between equlpment for medical research; salary between | qualiscations,-Apply Secretary, Postgraduate |
| :--- |
| Medical School, Ducane Rd., W.12. |
| 8522 |

A USTRALIA: Expertenced servicemen in field A and depot work required by large Televiston installation and maintenance company. Excellent opportunitles, Single imen preferred. Advise detaifs of TV service experience. Salary £1,100-e1,200 Austratian with adequate ad-
vancement possibilities. Apply Box 3312 r8509
PEySICIST of electronte engineer.-Young graduate required by small Medical Research Establishment for construction and maintenance of electronic devices; salary in
scales up to $\& 1,050$ or $£ 1,500$ p.a. accordıng scales up to $\begin{aligned} & \text { £1.050 or } \\ & \text { to } \\ & \text { qualificatlons and experiences. }\end{aligned}$ to the Records Officer. Anæsthetics Laboratory. Radcliffe Infrmary, Oxford. [8486
CLARENDON LABORATORY, University of (maximum \& 715 paca) and a Techniclan (maximum $£ 590$ p.a.) to work on electronics. Approprlate qualifications and experience essential. Excellent conditions, good holldays, generous penslon scheme.-Write glving fuli DAINTON \& Co., Ltd., Northampton, elecPaitcal component manufacturers. requilre an electro-mechanical designer to take charge of the design of small companents for the electronic Lndustry - Appucants should state age. and address to the Personnel Officer, Palnton
\& Co., Litd. Kingsthorpe, Northampton. $[8485$ A coustics engineer required by manufacequlpment. Appllcants must have B.Sc. or H.N.C. and have three years' experfence in this fied. Successful applicant will be required to spend some time in the United States after inittal period a home factory. Apply, giving
qualfications, age and salary required. to Box
B 8507
$R$ ADIO Technictans required by International neat and pensionable posts. Normally tax-free. neat and pensionable posts. Normaly eax-iree.
Inclusive salary in local currency varyigg with location, and additional marriage and child different1als O.K leave, iree air passages and
insurance. K O allowance. Qualifed candidates insurance. Kti allowance. Qualifed candidates to whom replies will be sent write to Personnel
Omicer. 0 . Park St. W.1. Omicer. 40, Park st., W. 1
$\mathbf{R}$ ADIO techatclans of all grades are invited R to apply for interesting and varied positions in cas radio serviciag a high standard of practical and theoretlcal knowledge is required:
excellent conditlons of service, 5 -day week, penexcelent conditions oi service, s-day week, pento sme wlth vacandeas also in all parts of the country-Write in strict confidence to The Stait Manager. S. Smith \& Sons (England
Letd. Cricklewood Work, London, N.W 2. quoting reference $S M / 170$.
HOUSING and good pay offered to electrical ation maintenance of electrical and electronle devices
THIS interesting post in an expanding department of an old-established paper-making company in Hampshire, is open to candldates under 40 years of rge who have experience of fault-
finding in electronic circuits.-Box 3424 . 18524 D RADGHTSMEN.-EE K. Cole, Ltd., Southmen in thelr development and engineering drawing office for men with experlence in desisn and production drawing for radio. TV and electronic apparatus, and for draughtsmen with experience of press tool design and tooling Tor automatic serew machines for posts in
their tool design section.-Write Personnel Manager.
S ENIOR technician or techniclan, with some quired in the Fharmacology Department. Royat Free Hosplital School of Med cine, Hunter Street. London, W.C. 1 Sales: Senior technician $£ 645 \times £ 20(1) \times £ 25(5)-£ 790$. Technician, $\underset{\text { Weighting. Superannuation benefits. London }}{\text { Five }}$ weeks ${ }^{\circ}$ holiday. Apply Secretary with names of
two referees.
$[8510$
A SCIENTIFIO Glass Blower is requited for development laboratorles of the Eritcsson Tube development laboratorles of the Ericsson Tube
Division. Experlence in the hand and machine manipulation of hard and soft glasses and in small glass-to-metal seals would be required
a knowledge of high vacuum technology would Also be an advantage. A good starting salary commensurate with experience in these fields is envisaged. The post would be a staff ap-
pointment, and the working condtions in modern well-equipped laboratorles are excellent. -Write in the first lnstance glving brife details of orerious experience to the Personnel Manager. Ericsson Telephones, Ltd.; Beeston, Not-
tingham, quoting reference LK/5.

## SELENIUM RECTIFIERS

40 ma . to $10 \mathrm{amp}, 6 \mathrm{\nabla}$. to $100 \mathrm{\nabla}$. Bridge, H. Wave or P.P.
WITH OR WITHOUT HIGHGRADE TRANSFORMER TO SUIT. These are new goods, best makes, not reconstructed Government surplus. Popular types, 6 v. 1 a., $4 /-, 2$ a., $7 / 6,12$ v. 2 a., $8 / 6,12$ v. 1 a., 7/6, 12 v. 3 a., $15 /-, 6$ a, alloyfinned type, $27 / 6,24$ v. 0.3 a ., 9/a. 0.6 a., $12 / 6,24$ v. 1 a., $13 / 6,2$ a., $15 / 6,24$ v. 3 a., $21 /-, 50$ v. 1 a., $24 /-$, 50 v. 2 a., $42 /-, 130$ v. 300 ma. h. wave, $38 / \mathrm{s}, 250$ ₹. 300 ma . do., $65 /=$, 110 v. 1 a. bdge., $48 /-, 130$ จ. 80 ma. bdge., 21/-. Postage 9d. extra each.

## CHARGER KITS



No. 1, a kit for 2 v., 6 v., 12 v.. forme ammeter, all high-grade new parts, not rubbish. 52/6, unique convector housing for
same, as illust., $12 / 6$, p.p. $3 /-$, ditto, but 2 amp., $43 /$, case $12 / 6$, p.p. $3 /$. Economy 12 v. 3 amp. kit, no ammeter needed, $34 / 6$, p.p. $2 / 6$, all with 12 months' guarantee.

## CHAMPION PRODUCTS

43 UPLANDS WAY, LONDON, N. 2 ! Telephone LAB 4457

JEFFERY TRANSFORMER Co.

## (Winders to the late GALPINS)

Leaflets sent on request
199 Edward Street, New Cross LONDON, S.E. 14

TIDeway 4458

## ODDIE FASTENERS

Pat. 507249


THE FASTENER WITH ENDLESS APPLICATIONS-SIMPLE-POSITIVE SELF-LOCKING. MADE IN A VARIETY OF TYPES AND SIZES. SPECIAL FASTENERS TO SUIT CUSTOMERS' REQUIREMENTS. WIDELY USED IN THE RADIO INDUSTRY
Illustrated brochure and ather information will gladiy be sent on request.
Oddie, Bradbury \& Cull ltod.,Scuthampton
 FACTORIES, GUILDING SITES PARMISG CIVIL ENGINEERING CAST UNITS AND OEFICES 2 perfects ind OFICES. 2 perfect sets in individual carrying cases, complete with long life
batteries, bells, ringer and batteries, bells, ring
looft. telephone cable.
87.10.0 per pair Carr. (G.B.) 9/6 Tele " $F$ " High Power as a bove but complete with

DON Mk. V TELEPHONES Few remaining, complete with $100 f$ t. telephone cable $55 / 11 /$ per pr. Carr. (G.B.) $9 / 6$. NEW, Mile drum, 85\%, Carr. $17 / 6$ CABLE, NEW. Mile drum, 85/-. Carr. $17 / 6$.

## AERIAL MASTS

IMPROVED TYPE 50 MK. 11 36ft. HIGH
Kits comprise - ${ }^{-6}$ 2ytu. dia.
Tubular Steel Bections Tubular Steel Rections of 8 tL .
length,
top-sectiou and hase Pickots, Guys and Fitungs. You can purchase this
numaly expensie $M A 8 T$ for a fraction of Hts oosth
Please add $f 1$ for (returnaYlease add 61 for (returna-
bie) wooden carrying case bia) woilen carrying case
The MAsT
is
partion-

 Mally COMMERCCAL) and has nany other 112e8. Extra
6it. sections can be
sit

17,8 per section E? . 10.0 ony | (Carr. |
| :---: |
| $1516)$ | U.S.A.-Type 45 ft . TELECOM AERIAL MAST. ( 7 sections, 6 ft . 8 in . $\times 2$ tin., guys, etc.). This entirely complete set in carrying

tase $12 \frac{1}{2}$ Gns. Carr. 17/6. Or 2 sets for $€ 25$. case $12 \frac{1}{2}$ Gns. Carr. $17 / 6$. Or 2 sets 10
Carr. extra. British Manufacture onlv.
ARMY TYPE 32 ft . MASTS similar to above but 10 lin . screw-sections, suitable above but for permanent lightweight installation. for permanent
Kit in canvas bag, $55 / 10 /$. TELEPRINTER EQUIPMENT CREED (BRITISH) Toleprinters 7B. CREED Reperforators Type 7 TR/3

## HICRO SAITCHES

## BURGESS BRAND NEW

 MINISTRY RELEASE$\qquad$
Compare this remarkable almos: half-price offer. $78^{\prime}=\begin{gathered}\text { PER } \\ \text { DOZ. (min. } \\ \text { duanzity) }\end{gathered} \frac{125}{} 100$ TRUVOX LOUD HAILERS
 BRAND NEW UNUSED, complete wilh istormer \& condenser. Impedance $7 \frac{1}{8} \Omega$ Handling cap. 8 wat's
Ideal for outdoor Ideal for outdoor
use off cars, boats, use
etc. Price 18/6 P. \& P. 3/6 42/. per pair post

SPECIAL QUOTATIONS ON QUANTITY \& EXPORT ENQUIRIES HATTER \& DAVIS (RELAYS) LTD.

2, IRONGATE WHARF ROAD
$\begin{array}{r}\text { PRAED ST., LONDO } \\ \text { PAD } \\ 2231 / 2 / 3 \\ \hline\end{array}$

Vacance situations vagant
$\checkmark$ Grade Arbourfield. Applicants shou:d be in the Trade Group (Radar), with theoretical and practical knowledge of Radar Tcchniques and current practical malntenance and repair of this ecuipment up to Armament Artificer level. Apply in writing to.-Offcer Commanding, 5 Radar) Training Battalion, R.E.M.E.: Hazebrouck
Barracks, Arbourfleld, Berks.
[8506,
A ${ }^{N}$ Electronic Engineer, with experlence in Investigate the application of the Tube Division's Investigate the application of the Tube Division's
products to specific problems. The technical liaison work involved may entall visits to customers' laboratorles. The post is a full staft appointment, carrying an attractive starting
salary. Superannuation scheme. Rlease send salary superanauation scheme. Rease senc detalls of age experience, qualifications quan
ing reference LK/ to-The Persontel Manager, Ericsson Telephones. Ltd., Beeston, Notting ${ }_{[850}$
$R$ ADIO operators.-Air Ministry have vacan$R^{\text {ADIO }}$ cies for temporary radio operators (male) ; good prospects of permanent, pensionable ap-
pointments and promotion; initial appointments in U.K. but subsequent tour of duty in Far East likely; trainees $£ 422 / 10$ to $£ 605$; qualified operators
rates are subject to a small deduction at
den provincial stations and a smay increase in London and overseas); special allowances payable for oversess servlce.-Apply Air Ministry,
C.E. 4 m ., Cormwall House, Stamford St., S.E.1. TNDEPENDENT Television News requires a electronic camera during transmission time and act as technical assistant outside transmission periods, constructing and maintaining equipment with minimum of supervision. Sound knowledge of electronic theory with practical
experience required. Junlor development engineer in radio or electronics would suit. Position temporary for approximately six months, with possibility of permanency.-Apply in
writing to the secretary. I.T.N., Television writing to the Secretary, I.T.N., Television
House, Kingsway W.C.2. A VACANCY has arisen in the design laboramechanical design of radio and television mechinical design or radio and television should have a good knowledge of designing recelvers for mass-production and preferably with experience of plastics and moulding techniques: an appointment will be made at a salary commensurate with age, experience and
qualifications. details of which should be forwarded in writing in the first instance to the Personnel Manager (R.17). Murphy Radio.
Ltd.. Welwy Garden City. Herts.
i8470
D.S.I.R. requires assistant experimental
 Hydraulics Research Station, Wallingford. Berks, on design and development of electronic
and mechanical instruments. Qualifications: G.C.E. "A" level in 2 science or maths. subjects. Over 22. E.N.C. in Electrical or Mechanical Engineering or equivalent generalis expected in Applicants should have active
interest in electronics and preferably some interest in electronics and preferably some experience in use of hand tools. Salary range:
$£ 382 / 10$ (age 18)- $£ 670$ (age 26)- $\$ 830$ (men). Five-day week. Promotion prospects. Housing faclities for married staff. Forms from M.L.N.S. Technical and Scientific Register (K) ${ }^{26}$. King St., London, S.W. 1 . quoting
D 196/9A. Closing date 12 June, 1959 . 18526

VACANCIES will shortly arise in the Valve bilision of Ericsson Telephones, Ltd, for qualified and experienced physicists or engineers to undertake development and technical control
of special valves and other electronic devices. These are senlor posts and the \&uccessful applicants will report directly to the headis of ether the Development or Technical laboratories. A good starting Ealary and a progressive career worsing conditions. in modern well-equipped laboratories, are excellent. The usual amenitles (penslon scheme, sorial activities, canteen faciutles, etc.) are avallable. Appilcations Which will be treated as strtctly confidential, gilal experience should be addressed to- The Personnel Manager. Ericsson Te.ephones, Ltd Pessonnel Nottingham, quoting reference LK. $1 / 3$
INSPECTOR of Police Grade II, with telecommunications ski11, required by Nyasaland Government; the post is a permanent and tion served on agreement: salary scale £705 rising to $£ 1,200$ a year; commencing salary according to expertence; outitt allowance $£ 50$; uniform allowance c18 a year; free passages, liberal leave on full salary: candidates mus physique, not below 5 ft 8 in in height and have normal vision without glasses; the educational qualification requlred of candidates is General Certicate of Education standard at Ordinary level in 5 subjects, which should include
Engllsh and Mathematics or Sclence; essential to have wlde practical experience in the equipment with city and Guilds Certificate if possible: candidates without prevjous police experience whll be required to undergo a 13-
week period of training in London before week period of training in London before proceedig to Millasaland. London. S.W.1. State age, name in block letters. full qualifcations and name in block letters, M an qualiacation


Specification: A.C. Input $100 / 280$ roits $45 / 65$ oycles 24 V . or trickle ESSENTLAL EQUIPMEENT for ELECTRONIC ENGINEERING CONCERNS, RESEARCH LABORATORIES, CHOOLS, eto., as BEAVY DUTY L.T. SUPPLY OMITS.
 ALL CIRCUTTE, OUTPUT METERED FOR 20 AMPS. Max. In grey metal cabinet $16 \times 24 \times 32 \mathrm{in}$. high. (These umis are more than $50 \%$ under-zaled by
 olfmates.)
ALL THIS FOR A
NOMINAL
Ex-Warehouse.
Itneludes etro. diaps. and instruclions which till be
VARIAC TRANSFORMERS


OUTPUT (2KVA) Completely Variable 0 to 270 Volts. 9 Amps.
INPUT 230 Volts, 50/60~
A SHROUDED FULLY YARIABLE TRANSFORMER FOR BENCH OR SIZE: PANEL MOUNTING SIZE:-APPROXIMATELY ${ }^{81}$ WEIG CUBE PRICE:-RIDICUILOUS-ONLY E15.0.0 PLUS $12 / 6$ CARRIAGE.

## gUPPLIED NEW AND BOXED <br> STABILIZE YOUR AC MAINS

FERRANTI 71-KYA MOVING COIL AUTOMATIC
YOLTAGE zEGULATORS.
Stabilized output rollage in ibe range $200-250$ - . Plug-board tappling. The selected output voiftage is constant withln $\pm \frac{1}{2} \%$ at aill loads o to $30 / 37$ amps.
wher the supply voliage is varytng over the range $+8 \%$ to -13\%. - Prequency compersied - Excellent uoutput wave-forni - Can be used as a Nariable transformen. ROTARY TRANSFORMERS
 input: dual voltage 12 or 24 V . Output: 265 v. $120 \mathrm{~mA} ., 500$ v. 26 mA .
HATTER \& DAVIS (RELAYS) ETD. 2 IRONGATE WHARF RD., PRAED ST. LONDON, W.2. PAD. 2231/2/3

# BRITISH NATIONAL RADIO SCHOCL 

PRINCIPAL: Mr. J. SYKES, M.I.E.E., M.Brit.I.R.E.

Britain's only Privately Owned and Conducted Radio Correspondence School
(Est. 1940)
Not the BIGGESTsimply the BEST for
City \& Guilds, Brit.I.R.E. and P.M.G. (Part 1)

Also Morse Code on Records
B. N.R.S., 66 ADDISCOMBE RD., CROYDON
Phone ADDiscombe 3341

## WEBB'S RADIO

invite you to hear the realism of STEREOPHONIC SOUND

Stereo Amplifiers by LEAK and ROGERS, Stereo pickups by TANNOY, ELAC, DECCA and RONETTE are in stock at
WEBB'S RADIO
14 SOHO ST., LONDON, W.I.
Tel: GERrard 2089/7308

## METERS

## WE CAN SUPPLY WITHIN 7-14 DAYS

a complete range of moving coilmoving iron-electrostatic-thermo. couple-also multirange meters-meggers-pyrometers and laboratory test instruments, etc.

All to B.S. 89
Instruments tested and standordised on our premises, and replacements supplied from our stock.

## REPAIRS

## Delivered 7-14 days

Our skilled craftsmen carry out repairs or convert anv types and makes of single and multirange meters.
Where desired repairs are accepted on contract.
THE V.Z. ELECTRICAL SERVICE 9, NEWPORT PLACE, LONDON, W.C.2. Telephone: GERrard 4861.
(Retail 2613)

## SITUATIONS VACANT

R ESEARCH engineers.-A, V. Roe \& Co., Rearch Grow oo Word, Cheshire, Systems Reinvites applications from junior engineers and Invites appicarions from junior engineers and
techniclans for laboratory research work on electronics, instrument design. servo-mechan1sms and mechamical engineering. applicants should have O.N.C. and be keen to. improve their qualifications; canteen and social facilithes are provided and there is a group pension
schome. Applicatlons, quofing reference No. schome. Appications, quaking rererence No Mr. W. Clover, A. 'v. Roe \& Co., Ltd., Woodford Cheshire.
[8487
MINISTRY of Supply Royal Aircraft Estahelectrishment, Bedford require experienced instrumentation worl in wind bunnesman Candidates must have served an appropnate apprentoosh1p and possess the H . N. C . (Elec.). Saiary ing meal br 3 akg ). Pald slck leave. 18 days hollday exoludito public holidays. Opportunities for promotion and to betome pensionable. House araiable withy reaonnable time for cand!dare appointed if married and not resident in district.-Appllogitons rating age,
ouats and exp. to Minstry of Supply,
 w C.2. or any Employment Exchange quoting Order Number Bedford 291. Closing date
June. 1959.
[8511
posts
A SSIsTANTS (sclentific)-Penstomable nosts mally under 25 on $1 / 1 / 59$ with appropriate educational or technical qualincadons fnormally G. C.E. with passes at "on or "rin level lis and a sclentific or mathematical subject or and a scientific or mathematicul subject or least 2 years experience in either: (1) engineering or physical sciences, or (ii) chemistry biochemistry or metallurgy, or (III) blologicat
sciences. or (iv) geology, meteorology. or skiled
. sciences. or (Iv) geology meteorology, or skilled
work in laboratory cratts such as glass-blow-
 £690. Promotion over). Maximuin (ay won genarally--Write Corvil Service Commission, 17 , North Audley St.f London, W.1. for application
form, quoting S. $89 / 59$.

## situations wanted

A MERICAN citizen 31, desires to work and Alive in Eng and. Co'lege graduate (business),
Technlcal School graduate (electrical). Ten years' expertence $1 n^{2}$ electronics industry in purchasing, sajas, field service, and techncal wring. Box 3302.
POSITION with manufacturer as sales manvager or assiftant sales manager required; vast expertence in all aspects of the trade.
administration, sales promotion, etc.; excellent character, appearance, sales record, contacts throughout ine country: licensed amateur:
strictly confidential.-Box 3032 .
[8490

## TECHNICAL TRAINING

LeARN radio and electronics the new pracmenting with and buiding radio apparatus "as you learn."-Free Brochure from: Dept. w.W. 10. Radiostructor. 46 . Market Place
Reading, Berks.
$\mathrm{B}^{\text {RIT.I.R.E. and City and Gullds Examina- }}$ Bations in Telecoms, Radio Amateurs and Radio Servicing (R.TE.B.).-Learn at home from world-famous International Correspondence schools.
CITY \& GUMLDS (electrical, etc.) on io No - For decalls of modern courses in all branches of electrical engineering. applied electrontes, automation. etc., send for our 148-gage Hand388A), 29, Wright's Lane. London. W.8. $\begin{aligned} & \text { Dept. } \\ & \text { [OO17 }\end{aligned}$

## TUITION

FULL-TIME courses for P.M.G. Certincates, Maintenance Telecommunteations and Radar College of Technology. Hull. W TRELESS. - See the world as a radio officer pertod, low tees, scholarshlps, etc., training boarding and day students: stamp for prospec boarding and day students; stamp for prospec-
tus.-WIreless College, Coiwy Bay.
[0018
A home-study methods. A.M.Brit.I.R.E., C.S. \& G. Telecoms; P.M.G. Cert. in Wireless. Telegraphy, Rado and TV Servicing, etc.Write for free prospectus: International Correspondence Schools. 71, Kingswas (Dept. 442A), London, W.C.2.
L EARN-AS-YOU-BUILD course in basle radio, electronic and electrical theory with prac-
tical training bu iding a
4 -vilve $T R F$ and 5 . tal raining buiding a 4-value and 5 . and high-qualit multi-tester: write for free book.-International Correspondence Schools. 71, Kingsway (Dept. 442), London, w.C.2.
HOW and Why " of radio and electrontes tical way easy by a new, non-maths, pracof experiments and equipment building carried out at home; new courses bring enjoyment as well as knowledge of this fasclnating sub-
ject. Free Brochure from: Dept. W W Radostructor, 46. Market Place, Reading Berks.

## COPPER WIRE

ENAMELLED, TINNED LITZ, COTTON AND SILK COVERED

## RESISTANCE WIRES

## EUREKA <br> CONSTANTAN

MOST GAUGES AVAILABLE NICKEL-CHROME - MANGANIN
B.A. SCREWS, NUTS, WASHERS,
soldering tags, eyelets and rivets, TUFNOL ROD, PAXOLIN TYPE COI FORMERS AND TUBES, ALL DIAMETERS. - latest Radio Publications

SEND STAMP FOR LIST. TRADE SUPPLIED.
G.E.G., B.T.H. \& WESTINGHOUSE GERMANIUM CRYSTAL DIODES
1/- each. Postage 3d.
Diagrams and three Crystal Set Circuits Free with each diode.
A large purchase of these fully GUARANTEED diodes from the manufacturers enables us to make this attractive offer.
POST RADIO SUPPLIES
33 Bourne Gardens, London, E. 4 Phone: CLlssold 4688

## RENFREW ELECTRONICS Andarson Drive, Renfrow REGUNNED C.R. TUBES

Your guorantee to cheaper viewing
17tn. Mazda Tube with now American Gun-mount
14tn. Mazda Tube with new Amerlcan Gun-mount
171n. Mullard Tube with new Americao Gub 100
14in. Mulard Tube with new American Cun-mount
For the first time avallable from uns
17in. Mullard Tube with new Mullard Gup-mpont
14in. Mullard Tube with new Mullard Gun-mount
58
sin. Muinard Tube with new Mullard Gan-mpunt 5
Cash with order. $1 / 6$ allowed on old tube returned in
carton supplied. Dealer's inquiriee invited.

## REPANCO

SEVEN TRANSISTOR CAR RADIO


- COMPLETE COVERAGE LONG \& MEDIUM WAVE BANDS.
- 2 WATT OUTPUT.
- SEPARATE R.F. STAGE.
- A.G.C. AND AUXILIARY A.G.C. CIRCUITS.
EASY WIRING PLANS AND $2 / 6$ (Post STEP BY STEP INSTRUCTIONS $2 / 6$ Free) Mall Order and Trade: Wholerale Enquiries and
RADIO EXPERTMENTAL
PRODUCTS LTD.
${ }^{\text {M Muoh Prik }}$ OOENTRY
Tel.: 62872 REPANCO, LTD 0 'Brieg's Buildings,
$203-269$ Folessinit Rd,

Tel.: 40694


ELECTRONIC COMPONENTS DISTRIBUTORS FOR OVER 25 YEARS

## BLANK CHASSIS

Precision made in our own works from commerclat quality half-hard Aluminium of 16 swe . $1 / \mathrm{n}$ in quality hali-hard Aluminium of 16 s.w.g. (1/16in. all it-in rockets!).
ame day service for ANY SIZE, to nearest $1 / 16 \mathrm{ln}$. and up to 17 ln ., of straightformard two, three or four sided chassis. Speriale dealt with promptly.
SOL DERED CORNERS
While there chassis, owing to their thickness, hardness nd efficient folding will carry components of con idemble weight and normally require no corner trengthening, we can do this by a special soldering techmque at 60 . extra for each corne

FLANGES
Hn., Iin. or \$1n. Aanges (tmesde or outside) 6d, extra fo
PRICE
PRICE GUIDE (normal chassis only)

Work out total area of materlal reyuired. Inoludln | Fraste, and refer to table below: |  |  |  |
| :--- | :--- | :--- | :--- |
| $48 \mathrm{sq} . \mathrm{in}$. | $4 /=176 \mathrm{sq} . \mathrm{in}$. | $8 /-$ | $304 \mathrm{sq} . \mathrm{in}$ |
| $80 \mathrm{sq} . \mathrm{in}$. | $5 /=$ | $12 /-$ |  |
| 208 | $\mathrm{sq} . \mathrm{m}$. | $8 /-$ | $336 \mathrm{sq} . \mathrm{in}$. |
| $19 /-$ |  |  |  |

 iscount for quantithe Trade enquiries invited pray anish arranged PANELS
se same material can we supplied for panels, screens, etc. Any size up to 3 ft at $4 / 6 \mathrm{sq}$. ft . (aq. ths. $\times$ ) Post, up to 72 sq . th. $9 \mathrm{~d} ., 108 \mathrm{sq} . \mathrm{in} .1 / 3,144 \mathrm{sq}$. in 1/6. 432 sq . In. 1/9, 578 sq . In. 3/-

Close Tolerance Wax-protected Silver Mica
Values stocked ( pF ):-
$\begin{array}{llllllllllll}5 & 22 & 47 & 75 & 180 & 180 & 270 & 370 & 515 & 635 & 815 & 3000\end{array}$
$\begin{array}{llllllllllll}10 & 28 & 80 & 80 & 135 & 200 & 280 & 386 & 533 & 670 & 820 & 3300\end{array}$ $\begin{array}{llllllllll}11 & 27 & 56 & 82 & 140 & 220 & 300 & 400 & 540 & 680 \\ 13 & 28 & 60 & 100 & 145 & 225 & 316 & 410 & 556 & 703 \\ 1500 & 4500 \\ 18 & 1500\end{array}$ $\begin{array}{llllllllllll}15 & 30 & 65 & 110 & 150 & 230 & 380 & 450 & 560 & 710 & 2000 & 4700 \\ 18 & 33 & 68 & 120 & 160 & 245 & 340 & 470 & 600 & 750 & 2200 & 5000\end{array}$ $\begin{array}{lllllllllll}18 & 33 & 68 & 120 & 160 & 245 & 340 & 470 & 600 & 750 & 2200 \\ 20 & 40 & 70 & 125 & 175 & 250 & 356 & 500 & 603 & 800 & 2500\end{array}$ Tol. up to 33 pF . 1 pF, over 38 pF . 1 per cent. PRICES: $5-300$ pF., $9 \mathrm{~d} . \mathrm{g} 316-820 \mathrm{pF}$.. $104 \mathrm{~d} .: 1,000$ $2,500 \mathrm{pF} .1 / 3 ; 8,000-5,000 \mathrm{pF} ., 1 / 6$. Spectai (limited number only), $0.1 \mathrm{mPd} .1 \%, 12 /=$ $10 \%$ tol, B-vear puarantce. Full apreferred value 10\% tol. $\delta$ oycar guarantce. Full preferred vaiue within $2 \%$, $8 /=$ pair
 $t$ watt
"ELECTROVOICE;", gusmanteed TRANSFORMER AND CHOKES. Individually tested. Pully shrouded Ured by leading laboratories. R6 typen to stock

## COOPER-SMITH HI-FI <br> AMPLIFIERS (Seep. . II8, Dec. issue)

## MODEL B.P.I

A better 10 -watt outfit at lower cose Main Amplifier Kit 12 gns. Built $\{14.17 .0$ Control Unit Kit E8.3.0. Built EII.3.0 THE 'PRODIGY
for the smaller room or bank balance. Kit $£ 13.7 .6$ complete. Buitt 16 gns . Full stage-by-stage constructional details, with price lists, etc., for either amplifier $2 / 8$ post free.

GARSBRIDAS CAPACITORS. 200 D. D.C. Whg sultable for ornesover unita etc. . 5 mF .. 4d. each 1 mF .6d, each: 4 mF . 9d. each.
InTATURE MANNS TRANSFORMER. PM. 0-200 $02-240 \mathrm{v}$. Secs. $250 \mathrm{v} .40 \mathrm{mAA} ., 8.3 \mathrm{v} .15 \mathrm{mmp}$. Stack GENERAL PGRFOEE LOW VOLTAGE TRANS FORMERE. Maias mput 200-230-250 $\nabla$. Outpute $3,4,6,8,8,9,10,12,15,18,24$ and 30 V , at $2 \mathrm{~A} .29 / 6$ B9A MOULDOD VALVE EOLDERS, with 2in. screed 18 emoh, I2-doz.
LAMNFA 6.3 Y. 3 A. $10 /-$ OUDSPEAKBA FABRIC, Brow with gold thread
2/6 per aq. ft.
POWER TRANEFORMERS. $300-0-300$ V. 100 mA 6.3 V. at 2.5 .A. 5 V. at 2 A. Mains input $200-280,240$ V 80 WATT AUTO TRANSFORMERS. 105-115-120. $210 \cdot 230 \cdot 240$ rै. 8/6.
DARE MAROON SPEAKER GRHLES. Moulded plastic, $7 \phi \times 4$. $x$., $1 / 6$ each.
BERLLDG-LEE L480
PROTECTIVE
SWITCEES $.3 \mathrm{amp} \cdot, 1 / 3$.
Please add approx. cost of postage. Lists avallable

## H. L. SMITH \& CO. LTD <br> 287/289 EDGWARE ROAD, LONDON, W. 2 Telephone Paddington 5891/7595

A.M.I.Mech.E., TUITION

A Guilds, G.C.E., etc., bring high pay and security: "No Pass-No Fee" terms; over 95\% successes.-For detalls of exsms and courses in all branches of engineering, buading electronies, etc. Write for 148-page HandbookLondon, W.8. [0118 T/V and Radso-A.M.Brit.I.R.E., City and -No Fee " terms: over $95 \%$ successes.-For details of exams and home training courses (including practical apparatus) in all branches of radio, T/V and electronics, write for 148 page Handbook--free-B.I.E.T. (Dept. 397A),
A UTOMATION. Authoritative courses are Computer Technology. Applied Electronics. Data Processing and Instrumentation up to professional lever by home study. Individual enrolment or industrial group scheme enrolments accepted. Syllabuses and prospectus
sent on request Write (Dept. S.E.11), E.M.I. Institutes School of Electrontcs, College NCORPORATED Practical Radio Engineers gineering study cournised by the trade as out standing and authoritacive, moderate fees to a limited number of students only, syllabus of instructiona, text is iree the Practical Radio
Engineer, jouraal, sample only $2 /=: 6,000$ alignEngineer, jouraal. sample only $2 /=: 6,000$ align-
ment peaks for supernets, $5 / 9$; membership and entry conditions bookste $1 /-$, all post free, from the Secretary. 1.P.R.E.. 20. Falrfleld
Rd., London N.8.
[0088 BOOKS, INSTRUCTIONS, ETC.
106 mint or clean $W / W s_{\text {, }} 1943$ onwards: -WIRELESS WORLD." Dec. 1942-May 1957. nore for sale-Ofers to Wright. 98. Avie more Way. Beckenham, Kent. 18483
THE Radlo Amateur's Handbook (39th edition - 1959), standard manual of amateur radio communication from the American Radio Relay League, now available at $32 /=$ post iree from Bamey bras. \& Swinien. Lid., West Central ${ }^{\text {L }} 843$ ?
Sondon.
W. 1
" R ADIO Designer's Handbook." Editor F. ber I.R.E. (U.S.A.), A.M.I.E. (Aust.), A com-
prehensive reference book, the work of 10 authors and 23 collaborating engineers, containIng a vast amount of data in a readily accessible form: the book is intended especially for those receivers or audio amplifiers. Television, radio transmission and industrial electronics have been excluded in order to limit the work to a reasonable size: $50 /$. net from all booksellers By post $52 / 3$ from Iliffe \&: Sons Ltd., Dorse House. Stamford St., S.E. 1

## METERS

All types
Any make


Single and Multi-range repaired and recalibrated
Meters $2^{\prime \prime}$ and $6^{\prime \prime}$ supplied from stock.
Scaled to requirements.
E.I.R. INSTRUMENTS LTD. 329 Kilburn Lane, London, W. 9

Tel.: LADbroke 4168


GOODMANS WESTREX WHARFEDALE JENSEN G.E.C. W.B. B.T.H. B.B.C. AMPLIFIER CONSOLE CABINETS QUALITY AMPLIFIERS CHASSIS LOUDSPEAKERS LP RECORDS
YOU CAN SEE YOUR CABINET BEING MADE $\mathbb{N}$ OUR WORKSHOPS
Demonstrations Without Open till 5.30
Appointment
Saturdays
A. DAVIES \& CO. (Cabinet Makers) 3 PARKHILL PLACE (off Parkhill Road), LONDON, N.W.3. GULLIVER 5775 Few minutes walk Belsize Park Underground

## G.E.C.

TRANSISTOR AUDIO AMPLIFIERS

250 mW Class B push-pull using GET114 transistors, operating from a 6 V supply. Class B single-ended pushpull (Transformerless) using GET114 transistors operating froma9Vsupply.

500 mW
Class B push-pull using GET114 transistors operating from a 6 V supply. Class B single-ended pushpull (transformerless) using GET114 transistors operatingfroma9Vsupply.

1 WClass B push-pull using GET114 transistors, op erating from a 6V supply. Class B single-ended pushpull (transformerless) using GET114 transistors operating from a 12 V supply.

Class B push-pull using GET116 transistors, operating from a 12 V supply.

Class B single-ended pushpull (transformerless) using GET115 transistors (mounted on $3^{\prime \prime} \times 3^{\prime \prime}$ fins) operating from a 12 V supply.

These are a selection from the range of audio amplifier circuits using G.E.C. transistors. For details of any of these circuits or information on the wide range of G.E.C. transistors, please write to:

## G.E.C. SEMICONDUCTOR DIVIIION,

School Street, Hazel Grove,
STOCKPORT, CHESHIRE.


## INDEX TO ADVERTISERS



[^23]

## UPRIGHT MOUNTING ELECTROLYTIC

 CATERING FOR THE UNUSUALThe saving of space resulting from the use of these Upright Mounting Electrolytic Condensers is one of the chief reasons for their popularity.

Type 526 is of particular interest to designers of rectifier units as a small and efficient substitute for large high voltage paper condensers, and will be suitable for the majority of circuits.

These condensers have high gain etched foil electrodes and are of "All-Aluminium" internal construction.

Mounting boss: $\frac{1^{\prime \prime}}{2}$ da. for $I^{\prime \prime}$ can, $\frac{3}{4}$ " da. for $1 \frac{1}{2}{ }^{\prime \prime}$ can. The maximum working temperature of all types is $60^{\circ} \mathrm{C}$. Capacity tolerance: $-20 \%$ to $+50 \%$.


THE TELEGRAPH CONDENSER CO. LTD

## PROFESSIONAL RECORDERS FOR HOME AND INDUSTRY

$\mathrm{R}^{\text {Eflectograph }}$ Model 500
Monophonic two track recorder and the Reflectograph Stereacorder Model 570 are both fitted with the exclusive Reflectograph variable speed deck, $8-3 \frac{1}{2}$ i.p.s., with neon-lit stroboscope showing precise speeds of $7 \frac{1}{2}$ and $3 \frac{3}{4}$ i.p.s.

Features include three Garrard motors, push button and lever controls including "pause" and "inching" facilities. Extra fast forward and rewind with sound if required. Provision for $84^{\prime \prime}$ reels. Clock-type tape position indicator. Bib tape splicer.
Both transportablecases are finished in pigskin and luxan hide colours.

Model 500 incorporates 2 matched loudspeakers. The lid of Model 570
is divided into two sections each containing a Goodmans monitor loudspeaker.
The separate record and playback heads and their associated amplifiers with a Tape/Input switch provide instant comparison, whilst recording, between the input signal and the signal recorded on the tape. Thus Model 500 incorporates 2 amplifiers and Model 5704 amplifiers. By connecting a gramophone pick-up they may be used for reproducing records either monophonic or stereo respectively. Overall response is strictly to C.C.I.R. specification.
Two input, two output sockets and a peak level record meter are incorporated in each channel. The separation of not less than 45 dB
between tracks on the Model 570 enables interference-free reproduction of each track of a two-track tape. Monophonic and two-channel recording are possible with this recorder with superimposition on one track. Full width, switchable erase head is fitted.
Model 500 is complete with $7^{\prime \prime}$ reel of tape, spare reel and splicing tape. Model 570 is supplied with an E.M.I. stereosonic demonstration tape.
All Reflectographs are guaranteed for one year (including valves). Service undertaken throughout the U.K. immediately by engineers of the E.M.I. Company, Home Maintenance Ltd. Annual Service Contract available for 20 years subsequent for small annual fee.


FOR THE TECHNICAL MAN
MODEL 500 Dimensions: $21^{\prime \prime}$ long $\times 14 \frac{1}{2}^{\prime}$ wide $\times 104^{\prime \prime}$ high; Weight 50 lbs .
MODEL 570 Dimensions: $29^{\prime \prime}$ long $\times 14 \frac{t^{\prime \prime}}{}$ wide $\times 11 \frac{t^{\prime \prime}}{}$ high; Weight 65 lbs .

Preamplifier: $\mathbf{2 0 0} \mathbf{~ m V}$. R.M.S. Inputs to Record Amplifier (High Impedance): Microphone 1 mV .: Radio or Pickup $50-200 \mathrm{mV}$.- for maximum record level. "Wow" and "Flutter": hetter than $0.2 \%$ R.M.S. as measured on the G.B.-Kalee Flutter Meter.

Conversion of Model 500 to a Model 570 can be undertaken by arrangement at Multimusic Works. Please write for cletailst of this service and illustrated full information of both morlsls.

BOTH MODELS: Frequency Response: $\pm \mathbf{2 d B} \cdot \mathbf{5 0}-10,000 \mathrm{c} / \mathrm{s}$ : $\pm \mathbf{3 d B}$. $\mathbf{4 5 - 1 2 , 0 0 0} \mathrm{c} / \mathrm{s}$. Overall Response: Strictly to C.C.I.R. recommended specifications. Signal to Noise Ratio: better than - 45 dB . (unweighted, including hum). Output from Playback


[^0]:    * Queen Mary College, London University.

[^1]:    $\ddagger$ See caption of Fig. 1. Permittivity D/E or dielectric constant is $1+4 \pi \eta$ where $\eta$ is the susceptibility $P / E$. But in ferroelectrics $P$ is 30 large that $\epsilon \sim 4 \pi \eta$ (or $\epsilon \bumpeq \eta$ in m.k.s. units) 30 that it is common to use the terms almoat aymonymously.

[^2]:    * Wireless World, Feb. 1959, p. 98.

[^3]:    * Research Department, British Broadcasting Corporation.

[^4]:    * Cosmocord Letd.

[^5]:    * Liverpool College of Technology.
    ${ }^{1}$ H. Buckingham and E. M. Price, " Principles of Electrical Measurements" (English Universities Press, 1955), page 304.

[^6]:    *Wireless World. Vol. 60 (1954), Dp. 367, 445, 561 and 603; (August. September. November and December.

[^7]:    + Addresse, are placts in the store where items of information t Addresse, are plates and are usually idenubed by numbers like houses in a street.

[^8]:    *The peak frequency in $\mathrm{MMc} / \mathrm{s}$ is approximately one-tenth the

[^9]:    * A contraction of monos (one or single) and hodos (a way, path or channel). In such combinations the " h " is usually dropped, e.g., electrode.

[^10]:    Sales and Servicing Agents: Atkns, Robertson \& Whiteford Ltd. Industrlal Estate, Thornllebank, Glasgow;
    McKellen Automation Ltd., 122 Seymour Grove, Old Trafford, Manchester, 16; Hawnt \& Co. Lid., 59 Moor St. Birmingham, 4.

[^11]:    "SHELL" and "EPIKOTE" are Registered Trade Marks. DUBLIN

[^12]:    * PTFE (Polyretrefluorothylene)-whe basic polymer is manufactured in this country by I.C.I. Led., under the trade name "FLUON".

[^13]:    AM \& FM SIGNAL GENERATORS - AUDIO \& VIDEO OSCILLATORS FREQUENCY METERS - VOLTMETERS - POWER METERS DISTORTION METERS • FIELD STRENGTH METERS TRANSMISSION MONITORS - DEVIATION METERS OSCILLOSCOPES, SPECTRUM \& RESPONSE ANALYSERS Q METERS \& BRIDGES

[^14]:    Western Road, Bracknell, Berkshire. Telephone: Bracknell 941 Telegrams/Cables: RACAL BRACKNELL BERKS N. ENGLAND AGENT: Farnell Instruments, Ltd., Wetherby Industrial Estate, York Road, Wetherby, Yorks. Tel: Wetherby 2544 SCOTTISH AGENT: A. R. Bolton \& Co., Ltd. 3A St. Vincent Street, Edinburgh. Tel: Edinburgh 32035 OVERSEAS : Agents operate in the majority of territories throughout the world.

[^15]:    Overseas Sales Organisation: PLESSEY INTERNATIONALITD Ilford • Essex • England
    Telephone: ILFORD 3040
    Overseas Telegrams
    Plessinter, Telex, Ilford

[^16]:    P. A. MARRIOTT \& CO.

    SUNLEIGH WORKS, SUNLEIGH ROAD, ALPERTO N, MILDLESEX Phone: Wembley 7493.

[^17]:    STERN RADIO LTD. 109 \& 115 FLEET ST., LONDON, E.C. 4

    Telephone: FLEET STREET 5812/3/4

[^18]:    STOP PRESS. Limited number of Brennell Tape Heads, erase and play record, 49/6 per pair. Post \& Pkg. 1/6.

[^19]:    TERMS: Cash with order or C.O.D. Postage and Packing charges extra, as follows: Orders value $10 /$ add $1 /=$; $20 /$ add $46 ; 40 /$ add $2 /-; £ 5$ add $3 /$. unless other wise stated. Minimum C.O.D. fee and
    postage $3 /$-. postage $3 /{ }^{\circ}$. of our catalogue.
    Personal Shoppers 9 a.m. to 5 p.m. Mon. to Friday. Saturday $10 \mathrm{a} . \mathrm{m}$. to i p.m.

[^20]:    NEW G.E.C.S.T.C.AND "WESTALITE" SELENIUM RECTIFIERS. range in Gt. Britain. ONLY Makers LATESTGOODS supplied NOT Surplus, S.T. \& C. E.H.T. K3/15, 5/-; K3/45, 9/4; $\mathrm{K} 3 / 50$, $9 / 10$; $\mathrm{K} 3 / 100$, $16 / \mathrm{B}$; all post 4 d . extra BRIDGE CONNECTED FULLWAVE. 17. v. I a., 13/4; 1.5 a. 26/6; 3 a., 30/6; 4 a ${ }^{0}$, $38 /-; 5$ a., 38/6, alt post 6d. 33 v . 1 a., 22/9; 1.5 a, $45 / \mathrm{F} ; 3$ a, $54 /-; 5$ a., $68 / \mathrm{m}$ all post $1 / 6$. 54 v. 1 a, $33 /-; 1.5$ a. $62 /-; 2$ a. 74/-; 3 a. 74/-; 5 a. $97 /-; 72$ v. 1 a. $42 /-; 1.5$ a. $78 /-; 2$ a. $95 /-;$ $112 /-; 2$ a. $134 /-; 3$ a. $134 /-5$ a. $180 /-;$ all post $112 /-$
    $2 /-$
    BRIDGE CONNECTED WITH 7 İin. SQUARE COOLING FINS 17 v .6 a 53/7; 10 a. $61 /-$; post $2 / 6$.
    BRIDGE CONNECTED HEAVY DUTY FUNNEL COOLED or $7 \frac{1}{c} i n$. SQUARE COOLING FINS. Both types, same price. $17 \mathrm{v} .20 \mathrm{a} .120 / \mathrm{m} ; 30 \mathrm{a} .172 /-; 50 \mathrm{a} .280 /-; 33 \mathrm{v}$ $6 \mathrm{a} .89 / \mathrm{F} ; 10 \mathrm{a} .102 / \mathrm{l} ; 20 \mathrm{a}, 202 / 6 ; 54 \mathrm{v} .6 \mathrm{a}$
     $100 \mathrm{v} .6 \mathrm{a} .227 / 6 ; 10 \mathrm{a} .270 / \mathrm{F}$; all post $3 /$. .
    "WESTALITE " (BRIDGE) $12-15 \mathrm{v}$. D.C. 0.6 a. 12/-; 1.2 a. $30 /-; 2$ a. $32 / 6 ; 5$ a. $37 / 6$; $10 \mathrm{a} .64 / 6 ; 20 \mathrm{a}$. $117 / 6 ; 30 \mathrm{a}$. $171 /=; 50 \mathrm{a} .278 / \mathrm{c}$ 24 v. 1.2 a. $30 / \mathrm{F} ; 5 \mathrm{a} .60 / \mathrm{f} ; 10 \mathrm{a}$. $109 / 6 ; 20 \mathrm{a}$ 208/-; 36 v. 1.2 a. $47 / 6$; 5 a. 82/6; 10 a. $154 / 6$ 100 v. 1.2 a. $82 / 6 ; 2.5 \mathrm{a}$. $154 / 6$; 5a. 195/6; $10 \mathrm{a} .391 / \mathrm{-}$; 170 v .1 .25 a . $135 /-$; 195 v .1 .25 a 144/6. Ali post extra $1 / 6-3 / 6$ E.H.T. Rects. 14D.134, 25/\%; 36 E.H.T. $6035 / 10 ;$ post 4 d . I mA. AC/DC meter rects. 14/6.
    "SALFORD" (BRIDGE), 6 and 12 v. D.C. 1 a. 7/6; 1.5-2 a. 8/6; 2.5 a. $11 / 9$; 3 a. $14 / 9$; $1 \mathrm{a} .7 / 6 ; 1.5-2 \mathrm{a} .8 / 6 ; 2.5 \mathrm{a} .11 / 9 ; 3 \mathrm{a} .14 / 9 ;$
    $4.5 \mathrm{a} .16 / 6 ; 6 \mathrm{a} .23 / 6 ; 10 \mathrm{a} .34 / \mathrm{F} ; 14 \mathrm{a} .42 /=;$
    
    
     Suitable Transiormers from 14/.. Post $1 / 6$. Wholesale and Recail.
    T. W. PEARCE

    66 Great Percy Street, London, W.C. 1
    of Pentonville Rovd. Between Eing's Cross and Angel

[^21]:    This new attachment will cut any shape quicklyfits any drill, electric or hand type. Invaluable for panel and baseboard cut-outs. Only 4/9. post free. JIG SAW ATTACEMENT. Fits any popular electric drill, supplied complete with blades for wood, metal,
     f m . shank, fa fated tool case. 7/6. Post $1 / \%$.
    K.E.P. PRODUCTS LTD.

    ASHMEAD WORES, ASHMEAD ROAD, LONDON, S.E.8. Prompt postal despatch callers welcomed.

[^22]:    AERIAL EQUIPMENT. Poles, Masts, Dipoles, Yagi, and Mierowave arrays. Iin. Dipoles to ISOft. Masts
    -CABINETS AND RACKS. 36in. 96 in . high, standard 19 in . wide.
    CONDENSERS up to $10,000 \mathrm{mfd}$. and
    FUSES. Cartridge and E.S. t amp. to 600 amps.

    - INSULATORS. 80 different patterns. LOUDSPEAKERS 3 in . dia. to 50 watt Thoatre Systems.
    - METERS 2 in . to $\mathbf{I} 2 \mathrm{in}$. dia. 120 differene types.
    POWER SUPPLIES. Generators, Rectifiers, Vibrators, Inverters, Dynamozors from 2 volts 100 amps. to $36,000 \mathrm{v} . \frac{1}{2}$ amp.
    - RECEIVERS. 80 types available from $15 \mathrm{ke} / \mathrm{s}$ to $600 \mathrm{mc} / \mathrm{s}$, including portable, D.F., Table Rack and Pedestal
    - TEST GEAR, American, over 100 different types, Meters, Calibrators, Signal Generators, etc.
    TELEPHONE AND TELEGRAPH
    EQUIPMENT. Single- and multi-channel apparatus, filters, switehboards, power supolies, perforators, printers
    TRANSFORMERS Audio and Power, 200 types from 2 volts to 18,000 voles and up to 15 kVA .
    OTRANSMITTERS. 60 different types rom UF-I Handle Talkie to G-50, 2,500 watts.

    FULL LISTS OF OVER 1,000 DIFFERENT ITEMS AVAILABLE
    All packing and shipping facilities

    ## P. HARRIS

    ## ORGANFORD, DORSET

    Telophone: LYCHETT MINSTER 212

[^23]:    
     New York 14

