W

 \begin{tabular}{c} ireless W

a

\hline
\end{tabular} Radio . Television

Wirelless World

ELECTRONICS, RADIO, TELEVISION

Ina This Issue

VOLUME 64 No. 1
PRICE: TWO SHILLINGS

FORTY-SEVENTH YEAR OF PUBLICATION

Offices: Dorset House, Stamford Street, London,
S.E.1.

Please address to Editor, Advertisement Manager or Publisher, as appropriate.

Telephone.
WATerloo 3333 (60 lines)
Telegraphic Address. "Ethaworld, Sedist, London".

1 Editorial Comment
2 World of Wireless
6 Telephone Automation
7 Reception on Band V
11 Television Aerials for Bands IV and V By F.R.W. Strafford
14 Band V on a Turret Tuner
By P. R. Stutz
17 Some Special Magnetrons
22 Letters to the Editor
23 Short-wave Conditions
24 Cathode-Coupled Flip-Flop
28 Magnetism in Materials-1
31 Technical Notebook
33 Starting Tape Driving Mechanisms
36 Car Radio Receiver Design
By J. C. Beckley
40 A Pickup To Track at 2 Grams
41 Valves, Transistors and Efficiencies By "Cathode Ray"
45 Manufacturers' Products
46 News from the Industry
47 January Meetings
48 Random Radiations
50 Unbiased
By T. G. Clark By D. H. Martin

Transistor

R.C. Coupled Amplifier Stages

Although it is desirable to design a universal standard transistor amplifier stage, this is not possible because signal level, supply voltage and maximum working ambient temperature each introduce problems which must be overcome in different ways. It is possible however to design and publish typical amplifier stages for several supply voltages, assuming a maximum working ambient temperature, making a compromise between gain and output.
The first stage in an amplifier must be designed to provide as high a ratio of signal to noise as possible, because the accumulated input and circuit noise will give a very impure output over a number of stages. In all other stages the requirement is maximum gain for minimum distortion at the required output level. The recommended circuit using a Mullard OC71 transistor, with capacitive coupling produces a good gain for a relatively distortion free output., - The circuit is suitable for use with supply voltages of $\sigma \mathrm{V}$, 9 V and 12 V , stabilised up to $45^{\circ} \mathrm{C}$ ambient working temperature. Some modifications are indicated below for the user's guidance. It is important when modifications are made to ensure that the collector current should not go below 0.3 mA , otherwise the input resistance and collector-emitter gain \propto^{\prime} become very non-linear. The distortion and gain data shown in the accompanying table are typical for one OC7I stage from a series of

CIRCUIT VALUES AND GAIN FOR SOME TYPICAL OC71 TRANSISTOR STAGES

$\begin{aligned} & v_{c \mathrm{c}} \\ & \text { (i) } \end{aligned}$	$\underset{(\mathrm{mA})}{I_{c}}$	$\begin{gathered} R_{1} \\ (k \Omega) \end{gathered}$	$\begin{gathered} R_{2} \\ (k \Omega) \end{gathered}$	$\underset{(k \Omega)}{R_{0}}$	$\begin{gathered} \mathbf{R}_{c} \\ \left(\mathrm{k} \Omega_{1}\right) \end{gathered}$	$\frac{I_{\text {out }}}{I_{\text {in }}}$	'our*
6	1.0	39	10	1	2.2	23	200
9	10	62	10	1	3.9	28	260
12	1.0	82	10	1	5.6	31	270

* For 5\% total distortion
identical ones in cascade. The source impedance $\mathbf{R}_{\text {source }}$ is assumed equal to the collector resistance R_{C}. A resistance of $r .5 k \Omega$ is used to shunt R_{C}, this value is equivalent to the input impedance $\mathrm{R}_{\mathbf{L}}$: of the following stage. The current flowing in this $1.5 k \Omega$ is the output current considered in the distortion and gain measurements tabulated below. The gain figures apply to a transistor with average collector-emitter gain \propto^{\prime}. These component values have been carefully chosen such that in each case the transistor operates satisfactorily up to an ambient temperature of $45^{\circ} \mathrm{C}$. It will be seen from the table that the useful output current, for 5% total distortion, and stage gain increase with supply voltage. This distortion is predominantly second harmonic.

The performance obtained with $I_{c}=\mathrm{ImA}$ should be adequate in most cases, however the stage gain can be increased by reducing (not below 0.3 mA) the collectorcurrent, thisisonly worthwhile at the lower supply voltages. For instance $\mathrm{I}_{\mathrm{c}}=0.5 \mathrm{~mA}, \mathrm{Re}=$ $2.2 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{c}}=3.9 \mathrm{k} \Omega$ gives 20% increased gain. Increased output can be obtained for a given distortion by increasing the collector current to, say, 1.5 mA , altering circuit values accordingly. For minimum distortion it is preferable to keep the collector current in the range $\mathrm{I}-2 \mathrm{~mA}$, inany case it should not be reduced below o.3mA, and to keep the source impedance as high as possible.

Training Technologists

" In the absence of natural resources commensurate with the size of its population, this country lives by trade and by the skill and efficiency of its industry, which must be sustained and expanded by the infusion of the best brains that can be found, trained and stimulated to work with enthusiasm."

THE truth of this typical aphorism is by now universally acknowledged; it is also axiomatic that existing channels of supply do not provide scientists and technologists in sufficient numbers for present, let alone future, requirements. For the sheer spadework of detail design and development the number of vacancies has long exceeded the supply; and at the top there will always be more than enough room for the Faradays and Blumleins of this world.
Where do the "star" men come from? According to Lord Hives, who spoke recently on the occasion of the introduction of the first. report* of the National Council for Technological Awards, there is no evidence to show that any one educational channel is more likely than another to throw up the man of exceptional ability. The important thing is to open up as many channels as possible, so that no one who has the will to apply himself may be debarred by force of circumstance from proving his ability by the acquisition of a universally recognized qualification.
One of the reasons why the technical colleges of this country have been less well supported than the universtities is the absence of a generally accepted degree or diploma (other than an external degree from London University) to set the seal on a sustained course of study. This has now been remedied by the Diploma of Technology (Dip. Tech.) which has been established by the National Council for Technological Awards, set up by the Ministry of Education.

Will Dip. Tech. be as good as a degree? For the purpose of qualifying for a post in industry it may well be better. An essential feature of the scheme is the freedom of colleges to develop their Diploma courses in consultation with industry, so that students will be well fitted for the industries they serve. In most cases work will be integrated in sandwich courses with industrial training. Teachers are to be encouraged to return periodically to industry, and it is proposed that senior members of industrial staffs should be given a special status in colleges which will enable them to take part in the academic activities. By these means it seems likely that a Dip. Tech. man will be more quickly useful than a man with an academic degree who may take some time to shake down in an industrial environment.

[^0]Although the composition of the Dip. Tech. courses will show wide variations, there is little doubt that the standard required will be uniformly high. We are impressed by the stiffness of the requirements laid down by the Council and the fact that more than half of the courses originally submitted for approval have been rejected. The governing body is not lacking in academic attainment, but is drawn mainly from industry and has acted and spoken with a sense of realism which is often absent from the pronouncements of professional "educationists."
It is not the business of the Council to initiate courses-these are prepared by individual colleges -so it cannot be made responsible for what appears to us to be an insufficient emphasis on the importance of electronics. Only one course (at the Northern Polytechnic) on the "Physics and Technology of Electronics" appears in the list of recognized courses in Appendix III of the report, though there are eight courses labelled "electrical engineering" and three "applied physics." No doubt these general subjects include some electronics, but they are now so wide and complex that any attempt to cover them completely in three or four years must surely run counter to the aims and objects of Dip. Tech. Essentially, this new qualification is a matter of expediency and has been created by the need for efficiency. There must be the broadest possible fundamental training at the beginning of the course, but specialization in the final years is inevitable and must tend to become even more narrow as the range of a subject increases with expanding knowledge.

The growing importance of electronics in the national economy is sufficient justification for the strongest possible representation on the Boards of Studies appointed by the Council. The collective experience of the Brit.I.R.E. should be added to that already available from the I.E.E., and many associations of specialists would have useful contributions to make. A separate Subject Panel in electronics should then be appointed, and this in itself would encourage the submission of more courses in electronics. We would also urge the larger electronics firms to use their influence with local colleges to submit more courses of a type appropriate to the needs of their industry.
Fears have been expressed that the advantages of a liberal education will be lost to those who elect to study for Dip. Tech. This need not be so, for the development of the critical faculty and a capacity for concentrated effort, resulting from the mastery of any one subiect, are the best preparation for the continuous process of learning by which a liberal education is acquired.

WORLID OF WIRELIESS

Technological Education

ON the recommendation of the National Advisory Council on Education for Industry and Commerce the Minister of Education set up in 1955 the National Council for Technological Awards as an independent self-governing body "to create and administer technological awards . . . available to students in technical colleges who successfully complete courses approved by the council." The council's first report (covering the period from December 1955 to July 1957) was presented by Lord Hives, the chairman, at a meeting early in December.

The first award to be introduced by the council is the Diploma in Technology (Dip. Tech). The first of the 965 students now taking approved courses in a variety of technologies at e'even colleges will be taking their "finals" next June. There is some flexibility in the standards required of students for admission to a course but in general it is either five subjects in the General Certificate of Education or a good Ordinary National Certificate.

It is pointed out that approval of a course is not granted solely on its academic content but also on the general facilities available at the college. Moreover; the majority of the 50 approved courses are of the sandwich type with integrated college and works training.
The Dip. Tech., which is equivalent to a university honours degree, is the first award to be instituted by the council, which is now considering what postgraduate awards it should introduce.
The council, which has offices in 9 Cavendish Square, London, W.1, has two Boards of Studies, one covering engineering and the other technologies other than engineering.

Helicopter Aids S.H.F. Tests

THE Post Office Engineering Department has recently been carrying out propagation tests from a remote site five miles from Langholm, Dumfriesshire. It took six days to transport the mast, aerials, transmitting and receiving equipment, test hut and engine generator to the site over a mile of peat bog using a caterpillar tractor towing a sledge.

Air-lift for a section of the mast used for the Post Office s.h.f. tests referred to above.

In the light of this experience a helicopter was used for the return journey, the total time taken being only seven hours, spread over two days. Mast sections, paraboloid, and other heavy or bulky equipment was suspended from the machine.

Subscription Television

WE have heard a good deal about proposals for "subscription-TV" from the U.S.A. but not until October did the Federal Communications Commission lay down rules under which applications for operating such a service would be considered. Trial installations are to be limited to cities which already have four "grade A" television services.

Although these rules do not cover closed-circuit systems-the F.C.C. has no jurisdiction over wire transmission-it is of considerable interest to learn from Rediffusion, Ltd., that they have signed a 21 year agreement with the Skiatron International Corp., for the " survey, installation, supervision and maintenance of closed-circuit television systems in the Western Hemisphere."

At the recent luncheon of the Relay Services Association of Great Britain, Mr. Ness Edwards, a former P.M.G., said, "I hope that subscription television is going to be developed by this association." This, however, would need a major change in the P.M.G's licence under which relay companies operate.

Student Exchange

SINCE its formation in 1948 the International Association for the Exchange of Students for Technical Experience has arranged for nearly 5,000 students from 36 British universities and colleges to gain experience in industry abroad during their summer vacations. The annual report of the Association records that 34,602 students from 23 countries have participated in the scheme during the past 10 years.

By far the largest number of students among the 5,934 "exchanged" during 1957 came from Germany (1,219). The next highest being Austria (763) with Great Britain third (731). Of the 21 countries receiving students Germany accepted most $(1,195)$ with Sweden second $(1,160)$ and Great Britain third (784).
In the summaries of industrial and academic "spheres of influence" no mention is made of electronics, but it is obvious from the names appearing in the lists of participating companies and organizations, both in this country and abroad, that many of the students were in this field. The number of industrial and other organizations which received students in 1957 totalled 2,761 compared with 413 in 1948.

The secretary for the U.K. is J. Newby, Imperial College, Prince Consort Road, London, S.W.7.

Whilst on the subject of student exchange mention should be made of the Imperial College Vacation Work Scheme. A booklet "Vacation Training " has been issued by the College giving details of the scheme and a list of companies offering to accept students for vacation work.

Television trade tests to assist the industry and dealers are now radiated by the B.B.C. each weekday from $10 \mathrm{a} . \mathrm{m}$. to 1 p.m.. Also all stations now use full power for these tests. Should it be necessary to operate a station on reduced power during the tests the words "reduced power" will be shown on Test Card C or a ho-izontal bar pattern accompanied by a $250-\mathrm{c} / \mathrm{s}$ tone will be transmitted for one minute in every five.

Popularizing V.H.F. Broadcasting.-The next in the series of demonstrations being conducted jointly by the B.B.C., B.R.E.M.A. and R.T.R.A. to foster v.h.f. broadcasting will be in East Anglia. Staged in the Samson \& Hercules Hall, Norwich, on January 15th and 16th, it will include in addition to demonstrations an exhibition of v.h.f. receivers.

Wenvoe is to radiate the Third Programme and Network Three on v.h.f. in addition to its existing transmissions of the Light Programme and Welsh and West of England Home Services. The fourth service, which will be radiated on $96.8 \mathrm{Mc} / \mathrm{s}$ with a e.r.p. of 120 kW , is hoped to be introduced before the end of 1958. The temporary low-power v.h.f. transmitter at Bristol, which has carried the Third Programme since October, will then close down.
V.H.F. in Scotland.-With the opening of the v.h.f. station at Kirk o'Shotts on November 30th the B.B.C f.m. service is extended to over 80 per cent of the population of Scotland. Kirk o'Shotts radiates on 89.9, 92.1 and $94.3 \mathrm{Mc} / \mathrm{s}$, with an e.r.p. of 120 kW . The first Scottish v.h.f. station is at Meldrum, Aberdeen. A third station, at Rosemarkie, near Inverness, is planned to be opened in the spring.
B.B.C. Television.-Two new permanent television transmitters have been brought into service by the B.B.C. during December-Douglas, Isle of Man, and Sandale, Cumberland. Bcth replace temporary lowpower transmitters. Douglas operates in Channel 5 with vertical polarization (e.r.p. 2.8 kW), and Sandale in Channel 4 with horizontal polarization (e.r.p. 16kW).

Receiving Licences.-During October the number of combined television and sound receiving licences increased by 125,886 , bringing the total to $7,524,071$. Sound-only licences (including 326,161 for car radio) totalled $7,153,541$, making an overall total of $14,677,612$ at the end of October. The figures for October, 1956, were, television and sound $6,291,072$, sound only 8,128,669 (including 310,301 for car radio), making a total of $14,419,741$.
R.S.G.B. Membership.-Last year for the first time since 1948 the membership of the Radio Society of Great Britain increased. The number of members at June 30th was 8,495 compared with 8,102 the previous year. Nearly two-thirds of the members $(5,490)$ hold transmitting licences.

Patents Digest.-A weekly summary of patents in the fields of electrical, electronic and nuclear power engineering is now published by Hunter Digests, Ltd., of 41, Whitehall (T.L.O.), London, S.W.1. "British Electrical Patents Digest," as it is called, costs 10 guineas for six months.
C.I.R.M.-The London office of the International Maritime Radio Committee, of which Col. J. D. Parker is secretary-general, has been transferred from Ludgate House, Fleet Street, to Shipping Federation House, Minories, E.C.3. (Tel.: Royal 1419.)
"Nearest Approach Calculator" (October issue, p. 175). We have been asked to point out that this device is the subject of Patent Application 27407/56 by R. V. Brass and T. P. McLelland, who were mainly responsible for the development work.

[^1]

Transistorized personal portable, SONY TR63. which is made in Japan, is now being soll on the Continent. It measures $4 \frac{1}{2} \times 2 \frac{7}{4} \times 1 \frac{1}{d} \mathrm{in}$, weighs $10 \frac{1}{2} \mathrm{oz}$ and costs about El7 (in Germany 198 DM). It covers the medium-wave band using a ferrite rod aerial and selectivity is claimed to be -15 dB at 10 kc .s off resonance.
"E.B.U. Review" is the new title under which the Bulletin of the European Broadcasting Union is being issued from January. It will be published from the Technical Centre, 4 rue de la Vallée, Brussels, in two parts (a) technical and (b) general and legal, the parts being issued in alternate months. The annual subscription for part (a) is 150 Belgian francs or 300 Belgian francs for both parts.

The "sunspot number," which is a measure of the number and size of disturbed areas on the sun, for October was the highest since records have been kept (about two centuries). The figure was 263. September also produced a high figure, 244. The Royal Society states that the previous highest record was 239 in May, 1778. September also provided a record in terrestrial magnetic activity; there were six great magnetic storms.

International Standardization.-Plans for the first plenary session of the International Organization for Standardization to be held in this country are in the hands of the British Standards Institution. The headquarters of the two weeks' conference (opening on June 9th) will be at the Royal Hotel, Harrogate.

Analogue computation methods (differential analyzers, rheo-electrical analogies, network analyzers, simulators, special calculators, etc., and their applications to science and industry) will be covered at the second International Analogy Computation meeting which is being organized by the Association Internationale pour le Calcul Analogique. Originally planned for June it will now be held from September 1st to 9 th in Strasbourg, France. Further information is obtainable from F. H. Raymond, 138, Boulevard de Verdun, Courbevoie (Seine), France. The representative of the Association in this country is Professor S. C. Redshaw, Deparıment of Civil Engineering, the University, Edgbaston, Birmingham, 15.
A Data Processing Section was recently formed by the Society of Instrument Technology (20 Queen Anne Street, London, W.1) and a series of meetings is being held in London. The next meeting is on January 28th when M. P. Atkinson, of the National Physical Laboratory, will speak on digital codes and coding. The secretary of the Section is W. T. Bane, 137 Kenilworth Court, London, S.W. 15.
Information Engineering.-A graduate course in information engineering will again be held at the University of Birmingham in the 1958-59 session.

Applicants wishing to be considered for a D.S.I.R. grant, covering the fee of $£ 81$ and a maintenance allowance, should apply to the electrical engineering department of the University before February 3rd. Copies of the syllabus of the course are obtainable from the Supervisor of Graduate Courses, the Electrical Engineering Dept., The University, Birmingham, 15.

Servicing and maintenance of sound and television receiving equipment is covered by the course opening at the Wesley Road Evening Institute, Stonebridge, London, N.W.10, on January 6th. The fee for the course, which will be held on Mondays and Wednesdays until July 2nd, is 25 s .

Communication Networks.-A course of lectures on modern electric network theory and design will be given by Dr. W. Saraga on six consecutive Wednesday evenings from January 22nd at the South East London Technical College, Lewisham Way, London, S.E. 4 (fee 10s).

Southall Technical College introduces three new series of evening lectures in January. They are, "Sound Recording and Reproduction" (12 lectures), "Colour Television" (9 lectures), and "Design and Usage of C.R. Tubes" (12 lectures). The fee for each course is £1. The first course begins on 13th and the other two on 15th.

Personalities

B. St. J. Sadler, managing director of Redifon, Ltd., has retired after 13 years with the company. He was commercial manager of Marconi's Wireless Telegraph Co. before he joined Redifon. He is succeeded by F. Youle, B.Sc., A.C.G.I., A.M.I.E.E., who joined the company as sales manager in 1942 and became a director four years later. Since last July he has been general manager responsible for the factories and laboratories at Wandsworth and Crawley. Following his training in electrical engineering at the City \& Guilds of London Institute, his industrial career began in 1921 with Marconi's where he spent some time in the development laboratories. He later became television sales manager of Marconiphone. From 1940 to 1942 he was in the Ministry of Aircraft Production.

F. YOULE

H. C. PRITCHARD
W. H. Apthorpe has retired from the managing directorship of Cambridge Instrument Company with which he started his career in 1900. After a few years he left to continue his technical education and returned in 1914 to take charge of the company's testing department. He is continuing with the company as deputy chairman. His successor is H. C. Pritchard, B.A., who, after graduating at Oxford, joined the Air Ministry and in 1939 was appointed head of the Navy section of the Royal Aircraft Establishment. After the war he became head of the Blind Landing Experimental Establishment at Martlesham and in 1949 was seconded to the Australian Government as chief superintendent of the Woomera rocket range where he stayed for three years. He subsequently left Government service and has been for the past four years with Elliott Brothers, latterly as group manager at Rochester. He is a Fellow of the Royal Aeronautical Society.

Sir Robert Watson-Watt has been awarded the Elliott Cresson medal of the Franklin Institute of America "for his contribution to the conception of pulsed radar and his leadership in its development." Sir Robert, now living in Canada where he runs the consultancy organization Adalia, Ltd., has recently completed his autobiography which is inevitably a virtual history of radar. It is entitled "Three Steps to Victory" and is being published by Odhams in February. Sir Robert is soon revisiting this country and will be addressing the Radar Association on February 12th on "The Early Days of Radar."
Dr. J. C. West has been appointed to succeed Prof. P. L. Burns, who is retiring from the chair of electrical engineering in Queen's University, Belfast. Dr. West graduated at Manchester University in 1943 and after service in the Royal Navy returned in 1946 to join the staff of the University's department of electrical engineering and was appointed senior lecturer in 1953. His early researches were in the field of electron optics but he has subsequently specialized in non-linear servomechanisms, and as a result of this work he has received the degrees of Ph.D. (1952) and D.Sc. (1957). Prof. Burns has been at Belfast since 1924, having entered the teaching profession at Hull in 1918. During the first world war he was at Manch sster University where he was associated with Lord Rutherford on submarine detection.

Dr. T. G. Pickavance, at present deputy head of the general physics division of the Atomic Energy Research Establishment at Harwell, has been appointed by the National Institute for Research in Nuclear Science as director of its Rutherford High Energy Laboratory 'Harwell). Dr. Pickavance, who is 42 , is at present officer in charge of the group responsible for the design and supervision of the construction of the new large accelerator for the Institute. He has been at Harwell since 1946 and in his present position since 1955.

Major C. Collaro, O.B.E., who, as announced last month, resigned his position as chairman and managing director of Collaro, Ltd., has joined Camp Bird Industries, Ltd., as chairman. He succeeds John Dalgleish, who will continue as charman and managing director of Camp Bird, Ltd., the parent company. Camp Bird Industries controls the electrical, electronics and communications group of the parent company. This group includes Ambassador, Hartley Baird and E-V (Sapphire Bearings).
C. E. Payne, B.Sc.(Eng.), M.I.E.E., chief engineer and a director of Ferguson Radio Corporation Ltd., has been co-opted to the governing body of Enfield Technical College. He has been closely associated with the college for some time on the educational and training schemes operated by the parent company Thorn Electrical Industries.

Clive Barwell, general publicity manager of Mullard, has completed 25 years service with the company. He was at one time production manager of one of the company's valve factories, but has been mainly concerned with publicity and public relations.
G. R. Scett-Farnie, M.Brit.I.R.E., has been appointed managing director of International Aeradio, Ltd., in succession to Air Commodore C. S. Cadell, C.B.E., M.A., M.Brit.I.R.E., who has resigned to join The Times. Both of them were members of I.A.L. on its formation in 1947. Mr. Scott-Farnie, who for the major part of the war was on special signals duties in the R.A.F. and from 1944 to 1945 was signals intelligence officer on General Eisenhower's staff, joined the company as operations manager. He operates amateur station G5FI.

G. R. SCOTT-FARNIE

R. E. ROBINSON

Three assistant managing directors have been appointed by the G.E.C. They are T. W. Heather, M.C., Comp.I.E.E., who will be responsible for the general products group, A. L. G. Lindley, the engineering group, and R. E. Robinson, M.I.E.E., the telecommunications group. The company has also appointed two new directors, D. G. W. Acworth, M.A., M.I.E.E., and W. J. Bird. Mr. Heather, who has been with the company 44 years, was elected to the board in 1938 and is also on the board of a number of other companies, inclading M.O. Valve Co. and Salford Electrical Instruments. Since 1944 he has been chairman of the G.E.C. education and training committee. Mr. Lindley, a mechanical engineer, joined G.E.C. as an apprentice in 1918. Mr. Robinson has concentrated on telecommunications throughout his industrial career which began in 1903 when he joined the Western Electric Company in London. In 1905 he went to the Bell Telephone Company in Antwerp and in 1908 became chief engineer of the Peel-Conner Telephone Works, then a G.E.C. subsidiary. Mr. Robinson, who was appointed director in charge of telephone and radio works in 1945, is a past chairman of the Tele-communication Engineering and Manufacturing Association.

John Dyer has resigned from the position of public relations officer for E.M.I. Electron:cs, Ltd., to which he was appointed in 1954, and has joined the staff of the British Electrical \& Allied Manufacturers' Association as technical editor of BEAMA fournal. He was with the Philco organization for some time before the war and again from 1950-54. Mr. Dyer was at one time editor of Wireless El Electrical Trader.

Sergeant Edward J. Gane has been seconded by the R.A.F. to be senior wireless operator at the Royal Society Antarctic base at Halley Bay for 1958. He has sailed in M.V. Tottan which, after visiting the Norwegian base and Halley Bay, will be bringing home some members of the advanced party. Among them will be chief technician Ronald Evans, R.A.F., who has been senior wireless operator during the past year.
B. V. Baliga, chief engineer of All India Radio, is the new president of the Indian Institution of Telecommunication Engineers. He has been vice-president of the Institution since its formstion in 1953.

Dr. James R. Killian, president of the Massachusetrs Institute of Technology since 1948, has been appointed by President Eisenhower to the new post of Special Assistant to the President for Science and Technology. Dr. Killian, who is 53, has been closely associated with government research in the U.S. and was a member of President Truman's communications policy board.

Dr. A. W. Hull, consultant to the General Electric Research Laboratory, Schenectady, U.S.A., is to receive the Medal of Honour, the premier technical award of the American Institute of Radio Engineers. Dr. Hull, who is credited with creating a greater number of new types of valve thin any other man, receives the award "for outstanding scientific achievement and pioneering inventions and development in the field of electron tubes."

OUR AUTHORS

J. C. Beckley, B.Sc.(Eng.), author of the article on the design of car radio receivers, graduated at London University in 1954 and since then has been on the staff of the Applications Research Laboratory of the Mullard Radio Valve Company. His work there is concerned with the design and development of valves and circuit techniques at radio frequencies.
T. G. Clarke, A.M.Brit.I.R.E., contributor of the article on the cathode-coupled flip-flop, is seniordevelopment engineer with Decca Radar where he has been responsible for the electronic design of several types of marine and windfinding radar. He is at present engaged on investigations into the use of storage tube systems in radar. During his military service he was a warrant officer in the R.E.M.E. and served as an instructor at various training establishments both in the United Kingdom and overseas.
Dr. D. H. Martin, the first part of whose article on magnetism in materials appears in this issue, is a lecturer in physics at Queen Mary College, University of London, where he is engaged in research into superconductivity and spectroscopy in the very far infra-red. He graduated with first-class honours in physics at the University of Nottingham in 1950 where for four years he undertook post-graduate research into the domain strucrure of ferromagnetic metals, concentrating on domain nuclear processes.
P. R. Stutz, B.Sc.(Eng.), A.C.G.I., Grad.I.E.E., author of the article on turret tuners for Band V, has been with Kolster-Brandes, Ltd, for the past nine years. He is a senior eng:neer in charge of a section engaged on television research and development, and represents the firm on the U.H.F. Working Party of the British Radio Equipment Manufacturers' Association. He graduated at the Imperial College of Science and Technology with an honours degree in electrical engineering in 1948.

OBITUARY

A. Cecil Barker died on December 10th, aged 58, at his home. The Close, Hurst Wickham, Hassocks, Sussex. He was trained as a singer and broadcast in the 1930s, and his interest in sound reproduction took the practical form of designing the "Duode" loudspeaker. This was patented in 1936 and manufactured during the pre-war period by Magnavox (Benjamin Electric). During the war Mr. Barker served in the Admiralty (A.S.R.E.) and in 1947 started the business of Duode, Ltd.

Frank S. Allen, works director of E. K. Cole, Ltd, and a director of Egen Electric and Ekco Electronics, died on November 20th aged 56. He joined the Ekco organization in 1941 as assistant works manager and four years later became general works manager of the radio division.

telephone AUTOMATION

AAN electronic switching system taking the place of trunk-zall telephone operators is to be installed by the Post Office at Bristol as part of their nat:onal scheme for "automatization" of the telephone service. Known as GRACE (from Group Routing And Charging Equipment), it will enable subscribers to dial trunk calls just as they do local calls on the automatic system. The equipment, which is based on cold-cathode tubes, has been des-gned and developed in co-operation with the General Electric Company. It will register a dialled number, select a route to the distant exchange, ring the wanted number, and, when the distant subscriber answers, record the appropriate charge on the caller's local exchange meter. The word "Group," incidentally, derives from the new system of grouping exchanges which comes into force on 1st January.

To make an automatic trunk call the caller dials the national number of the distant subscriber. The first digit of all national numbers is " 0 ," and receipt of this causes the call to be connected to a "call charger" equipment. The remaining digits of the number are received and stored in a register: Of these, the first 1,2 or 3 dig.ts identify the distant "Group." A "translator" equipment then inspects these digits and deduces from them the route and charge rate for the call. The translator incorporates a permanent store giving details of the routes and charge rates for calls from the originating exchange to all other "Groups" in the country.

The informat:on passed back from the translator to the register is in the form of a charging rate dig.t and several routing digits. To avo.d having to provide storage capacity for all these dig.ts at once, they are passed to the register one at a time as required. The register uses a digit supplied by the translator to further the setting up of the call and then makes a fresh demand for another digit. The time taken by a register to use a digit is far greater than that required by the translator to supply it. The translator is therefore freed between demands for use by any other register, and it may serve up to 40 registers altogether.

The first digit returned to the reg:ster from the translator is used to select the appropriate charging rate in the call charger. Subsequent digits are used by the register to operate switches in the originating and distant exchanges to complete the connection. When the connection has been completed the register is released and made available for use with other call chargers in setting up further calls. The call charger remains connected throughout the call and, when the distant subscriber answers, levies the charge by operating the caller's exchange meter periodically, at intervals depending on the distance between the two "Groups" concerned.

Another equipment, developed by the Automatic Telephone and Electric Company and somewhat similar in function, was put into operation recently at the Lee Green (London) automatic exchange. This, however, is not dealing with trunk calls but replaces some of the electromechanical equipment in the automatic system. Moreover, it is based on a magnetic drum storage system, which provides the registers for the dialled numbers on some of its tracks and the information for translation into routing directions on a "library" of other tracks.

The associated electronic equipment here makes use of thermionic valves. One important part of it is a

The magnetic drum director at the Lee Green exchange showing the actuai drum in the right-hand cabinet.
"scanner," driven by synchronizing tracks on the magnetic drum. This scans the subssribers' lines and, where dialling pulses are present, causes the dialled numbers to be put in the appropriate register on the drum. This scanning provides a means of keeping a rumning record of the state of each of the subscribers' lines, and the record is kept up to date merely by putting the most recent state in place of the old one. In this way the electronic equipment and the drum can be time-shared over any 114 subsiribers ${ }^{2}$ lines in as little as 17 milliseconds each. Morsover eazh of the 114 lines can be rescanned every 17 milliseconds, so that changes of state of up to 60 changes per second are recognized. This permits considerable economies in apparatus and is one of the reasons for developing the trial equipment.

MSE TBENSMESSEONS

A NEW edition of the pamphler* describing the U.K. standard frequency service has been issued by the National Physical Laboratory. These transmissions are radiated almost continuously from the Post Office station MSF at Rugby on behall of the N.P.L. Both the carriers ($2.5,5$, and $10 \mathrm{Mc} / \mathrm{s}$) and the modulation frequencies are maintained to ± 5 parts in 10°. The MSF frequencies are now based on the resonant frequency of the caesium atom ($9,192,631,830 \mathrm{c} / \mathrm{s}$).

The transmitted power on eadh of the carriers is 0.5 kW . A bottom-fed mast radiator is used for the lower frequency and quadrant dipoles for the other two.

The accuracy obtainable from MSF is, however, limited by propagation conditions which can cause changes in the received frequency amounting to ± 2 parts in 10^{7}. An additional transmission is therefore radiated daily for one hour (1429 to 1530) on $60 \mathrm{kc} / \mathrm{s}$ with a power of 10 kW .

The results of daily measurements made by the N.P.L. at Teddington on the MSF transmissions are given in our sister journal Electronic \& Radio Engineer each month.

[^2]
Reception on Band V

An Introduction to Circuit Techniques for the Ultra High Frequencies

THE announcement in last month's W ireless W orld that the B.B.C. has started transmitting on an experimental basis sound and vision signals in Band V must give rise to speculation on the kind of problems likely to be encountered in designing receivers for $650 \mathrm{Mc} / \mathrm{s}$.
The Band-V receiving problems are certain to be a little more difficult to solve than those encountered when Band III was first opened to television, but they are not likely to be exceptionally troublesome. Band V has been in use for television in the U.S.A. for a few years now and we are in the fortunate position of being able to study the circuit techniques adopted on that side of the Atlantic.

Some new valves had to be developed and while British prototypes have been made in this country it may be some time before they become generally available. However, the Band-V transmissions are only experimental, and who can say when a regular service will be inaugurated? Suitable valves are bound to be available to all when the time arrives.
R.F. amplification on $650 \mathrm{Mc} / \mathrm{s}$ is not ruled out by any means, but if the current practice in the U.S.A. can be taken as a guide the r.f. amplifier is a luxury rather than a necessity on this band. Where it is used it takes the form of an earthedgrid amplifier usually with line-type circuits and one such arrangement is shown in Fig. 1. It would be justifiable to draw the inductors $\mathrm{L}_{1}, \mathrm{~L}_{2}, \mathrm{~L}_{2}, \mathrm{~L}_{1}$ and L_{5} in the familiar helical form, but it is desired at this stage to emphasize one of the main differences that will often be encountered in tuned circuits on u.h.f. On these frequencies coils, as we know them, are in most cases replaced by straight pieces of thick wire, by a hairpin, or even a strip of metal, while

Fig. I. Basic circuit of a u.h.f. earthed-grid r.f. amplifier.

Fig. 2. Coaxial line (a) and balanced line (b) tuning elements for use on u.h.f.
an alternative would be sections of coaxial or twin wire transmission line as shown in Fig. 1(a) and (b) respectively. These lines are tuned by small capacitors, C in Fig. 2 and $\mathrm{C}_{1}, \mathrm{C}_{5}$ and C_{6} in Fig. 1. In the case of Fig. 2(b) the open ends of the two metal strips can be joined together to form a hairpin, with the capacitor in its centre, or joined to the grid and anode of a valve.
Fig. 1(a) is sometimes called a trough-line circuit. The case \mathbf{A} is usually "earthed" to the chassis but true earths are difficult to locate in u.h.f. equipments. The way out is to avoid as far as possible including any parts of containers or chassis in the tuned circuits. For this reason Fig. $1(\mathrm{~b})$ is to be preferred for u.h.f. oscillators as the container is merely a screen.
The rod D in Fig. 2(a) is screw threaded and serves for adjusting the capacitor C. These troughs or boxes are invariably closed by a lid or cover-plate. The best material for these circuit elements, where the highest attainable Q is required, is silver, but as this is impracticable
silver-plated copper, or silver-plated brass is generally employed. Plain copper is the next best.
Fig. 1 has some shortcomings as a practical arrangement as it may need neutralizing. However, this does not invalidate it as an example of the basic principles involved. The component marked "crystal mixer" will be dealt with later.

A special type of valve is required for the r.f. stage in Fig. 1. R.F. pentodes are unsuitable at u.h.f. (at least existing types are) and triodes are invariably used at the higher frequencies. The BandIII cascode r.f. amplifier is a case in point. Cascode stages do not seem to be satisfactory at Band-V frequencies and the only alternative seems to be the earthed-grid triode. Ordinary triodes are not suitable, the requirements being very small spacing of electrodes to reduce transit time, unusual rigid construction to give frequency stability and multiple connections to some electrodes, but particularly the "earthed" electrode, as it is essential to eliminate as far as possible impedance common to two or more circuits.
Special valves have been available for some time

for use as earthed-grid amplifiers, but the form of construction has been too costly for use in domestic equipments. A cheaper form of assembly has recently been evolved and is typified by the G.E.C. A2521 which was described in "Technical Notebook" in the January, 1957, Wireless World. There are other makes in existence but the supply position is at the moment a little vague.
When an r.f. stage is not used the signals received on the aerial are fed via an r.f. pre-selector, consisting of a pair of coupled tuned circuits, to a crystal mixer. A crystal is generally used, one might say invariably, in u.h.f. "front ends," since crystals are more efficient for this function than a valve, unless it be a special type, and in general the noise level is lower. The crystal used in this position is a pointcontact silicon type similar to those developed for radar receivers and exemplified by the B.T.H. CS2A and similar models, or the American 1N82. There are probably other types that would be equally suitable, but it is essential (and this cannot be overemphasized) that a low-noise type be employed.

The u.h.f. oscillator is possibly one of the most difficult problems in the design of Band-V equipment. Assuming the output from the Band-V mixer is to be fed into a standard television i.f. amplifier, with the sound on about $38 \mathrm{Mc} / \mathrm{s}$ and the vision on
about $34 \mathrm{Mc} / \mathrm{s}$, then the local u.h.f. oscillator must be about $36 \mathrm{Mc} / \mathrm{s}$ higher in frequency than the signal; say between 686 and $690 \mathrm{Mc} / \mathrm{s}$. It will be realized that a very special valve is required for generating oscillations on this high frequency. However, the ability to oscillate in the region of $700 \mathrm{Mc} / \mathrm{s}$ is only part of the problem involved; of equal or possibly more importance is the frequency stability of the oscillator.

Many factors are involved in the frequency stability of a u.h.f. oscillator. There are the interelectrode capacitances of the valve and the effect of temperature on their capacitance values, also the capacitance of the valveholder and the effect of temperature on the inductor rod or rods. The variable tuning capacitor also has a temperature coefficient. Most of these will be positive, a rise ia temperature bringing about a decrease in frequency since their individual values, whether of inductance or capacitance, increase. The customary way of compensating for this is to include one or more capacitors in the circuit having a negative coefficient of temperature and to connect it, or them, in the position which as near as possible gives an overall zero coefficient of temperature. Another factor influencing frequency stability is the steadiness of the h.t. voltage, any fluctuation being reflected in the stability of the oscillator. Thus a stabilized, or closely-stabilized, h.t. supply for the oscillator is essential.
A typical u.h.f. oscillator circuit is shown in Fig. 3. This circuit is based on the use of an all-glass type valve such as the EC93 with a B7G-arrangement of base pins. This is a special u.h.f. triode and should be generally available in the near future. The valve is also made on the Continent and there are some equivalents with different type numbers in America. In Fig. 3, L is a parallelline tuning inductor of the kind shown in Fig. 2(b), the open ends being connected direct to the valveholder pins, or if this is thought to be a little too drastic, by very short lengths of flexible copper braid. Direct connection is quite feasible but it demands careful assembly. C_{1} is the tuning capacitor and s:nce it is a split-stator type each half will need twice the capacitance of the single capacitor C in Fig. 1(a) to give the same capacitance coverage. The capacitance change of the disctype capacitors is very small indeed until the two plates get very close. There are some very tiny commercial variable capacitors in existence which would be ideal for this purpose but they are difficult to acquire outside manufacturers' channels of supply.
Capacitors C_{2} and C_{3} are alternative positions for a negative-temperature coefficient capacitor for frequency stability control. Sometimes one at either end of the line is desirable and sometimes one only connected somewhere across the line will suffice. It is a matter for experiment. Bi-metal strip has been used as a compensating capacitor with one end soldered to one rod-and the other end close to, but not touching, the adiacent rod.
Whilst it is not the purpose of this article to explain how to find one's way around the u.h.f. bands, it must be fairly obvinus that a yard-stick of frequency is essential. Those who contemplate experimenting on Band V would be well advised to lose no time in providing themselves with a wavemeter covering say 500 to $1,000 \mathrm{Mc} / \mathrm{s}$. It is ex-
tremely tedious trying to find the frequency of an unknown oscillator, especially at u.h.f., if one has to rely on heterodyning by a much lowerfrequency oscillator.
A serviceable absorption wavemeter is not a complicated or costly piece of equipment. In its simplest form it consists of a small, say $10+$ $10-\mathrm{pF}$, split-stator capacitor with a short length of heavy-gauge wire or copper stríp looped across the fixed sets of vanes. An indicator of resonance is required, the simplest arrangement is to use one of two oscillators as the "indicator" and listen to the beat note in telephones in one of them. When the absorption wavemeter is loosely coupled to one of the u.h.f. oscillators and tuned through resonance a sudden change in beat-note takes place. So much for the indicator, there are better types, but this will suffice in many cases.

Cal:bration of an absorption wavemeter is easily effected by rigging up two parallel wires terminated at one end in a single-turn loop loosely coupled to the rods B_{1} and B_{2} (Fig. 3). These wires (Lecher lines they are called) should be about 4 ft long and rigidly spaced about lin apart. Standing waves will appear on this line with current (and voltage) maxima and minima spaced at equal intervals along the line. Two adjacent maxima (current or voltage) will be exactly a half-wavelength apart, so that it needs only some kind of sensitive r.f. indicator run along the line and points of maximum reading marked on a paper strip below the lines. While any two adjacent maxima will suffice, we have always found it best to include three or four, ignoring the one nearest the pick-up coil at the end of the line. At $650 \mathrm{Mc} / \mathrm{s}$ the two maxima will be 23 cm apart and by taking half-a-dozen measurements a very serviceable calibration of the oscillator will be available for calibrating an absorption wavemeter. How to make the absorption wavemeter is another story, but it is by no means an involved one.

All the items needed for a simple Band-V front end have been briefly discussed and it is now
U.H.F. OSCILLATOR

Fig. 5. Harmonic generator for a u.h.f. frequency changer.
possible to combine them into a serviceable unit. A simple type is perhaps one in which there is no r.f. stage and with the mixer output fed direct to the i.f. amplifier stage in a television receiver. It is not necessarily an ideal arrangement but it serves to illustrate the make up of a Band-V front end. The circuit is shown in Fig. 4. The signal picked up by the aerial is injected via the loop L_{1} into the line indicator L_{2} which is tuned by C_{4}. The line inductors L_{2} and L_{4}, in conjunction with their respective tuning capacitors C_{1} and C_{4}, form a band-pass, pre-selector filter coupled by the loops L_{3} and L_{5}. The capacitors C_{2} and C_{3} are for padding each pre-selector circuit and in practice consist of small strips of copper soldered to the inductors and brought close to one side of the screening compartment.
Local oscillations from a u.h.f. oscillator are injected into the pre-selector circuit $\mathrm{C}_{4}, \mathrm{~L}_{4}$ via the crystal mixer and loop L_{s} in the oscillator compartment. C_{s} is one way of showing a lead-through capacitor, this incidentally is of small capacitance since it is in parallel with part of the i.f. coil L_{g}. This coil is tuned by C_{11} and damped by R_{3} to give the required i.f. bandwidth. L_{10} is a coupling coil feeding the i.f., at low impedance, to the main i.f. amplifier. The unfamiliar symbol C_{10} is a stand-off capacitor. It is essential that all u.h.f. bypass capacitors should be of this or lead-through types as even a $\frac{1}{2}$-in length of wire at these frequencies has appreciable impedance.

The reason it was stated that Fig. 4 is not an ideal arrangement is that with the front-end comprising only an r.f. filter and crystal mixer the i.f. output will usually be very small indeed and the first i.f. amplifying stage should have exceedingly low-noise characteristics. In most receivers this stage is fitted with an r.f. pentode which is not the best type in the circumstances, so that the Fig. 4 frontend circuit ought to be followed by a cascode, or equivalent lownoise amplifier.

As the B.B.C.'s experimental television transmissions in Band V conform initially to the British 405-line standard, reception can be effected by adding a simple front-end, like Fig. 4, and switching the Band-III cascode r.f. am-

plifier for use as a $34-38 \mathrm{Mc} / \mathrm{s}$ i.f. stage. The BandIII oscillator can be switched off. With a turret tuner this is quite easily arranged.
Another scheme is to employ double frequency conversion and obtain the local oscillations for the first frequency changer from an harmonic of the Band-III oscillator. There are objections to double conversion as although only one oscillator need be employed interference can be produced by it and its family of harmonics.
Unless the oscillator stage is exceedingly rich in harmonics, which in a well-designed set it should not be, a harmonic generator has to be employed. One of the simplest is a crystal with a resistancecapacitance network in series and this is used quite extensively in the U.S.A. The circuit is very simple and is shown in Fig. 5, the circuit L, C being tuned to the desired harmonic. The Band-III cascode r.f. stage continues to function as such, but it might have to be tuned to a frequency different from the usual and possibly outside Band III in order to avoid interference from harmonics and fundamental of the oscillator.
It should be remembered that any system involving two frequency conversions for receiving television necessitates the correct choice of oscillator frequency for the first mixer; in the cases under discussion the crystal mixer. In most superheterodyne receivers conversion to i.f. can be effected with the local oscillations either higher or lower in frequency than the signal, since when extracting the difference, or beat, frequency of the two it matters not which is the higher. However, when two signals, such as sound and vision, are involved the i.f.'s that emerge will be transposed when the local oscillator is shifted over to the alternative beat.
It has been recommended by B.R.E.M.A. that the sound and vision i.f.'s should be about $38 \mathrm{Mc} / \mathrm{s}$ and $34.5 \mathrm{Mc} / \mathrm{s}$ respectively which requires that the local oscillator be higher in frequency than the signal.

When double-frequency changing is employed the first conversion must be made with the local oscillator on the low frequency side of the signal. The reason for this is best explained by means of a block schematic diagram such as Fig. 6. The frequencies marked against each stage are not necessarily those which would be employed in a practical case since the likelihood of interference from oscillator harmonics has not been taken into consideration. The example given here is to illustrate the basic principles involved.

We are indebted to Kolster Brandes, Ltd., and to Mullard, Ltd., for information on some of the principles and problems likely to be encountered in reception on Band V.

VALVE LIFE

IF asked the question "how long do the valves last in your radio or television receiver" few listeners, or viewers, would venture an answer. It is also doubtful if many users of commercial radio equipment would commit themselves. Would $30,000 \mathrm{hrs}$. be too long?

A trial system of multi-channel radio equipment was installed in 1949 between the Marconi works at Chelmsford and a site at Woolwich for the purpose of compiling data on the reliability of equipment, which means primarily the reliability of the valves employed. The system operated continuously for 24 hours each day.
The original valves were removed in 1953, a log having been kept of any replacements required in the interim period. Many of the valves employed are ordinary receiving types found in domestic sets and the data relevant to their performances are given in the table here. This data was originally published in the October, 1957, issue of the Marconi journal, Point to Point Telecommunications.

Valve Type	Total Number Used	Failures		Average Working Time of all Valves (hrs.)
		Total Number	Average Life (hrs.)	
EF91	138	3	28,000	31,900
EB91	4	-	-	32,600
EAC91	2	-	-	32,600
ECC91	6	4	9,250	19,560
ECC32	8	1	26,500	29,000
KT66	12	9	-	32,600
SU4G*	16	9	4,600	5,000
U52*	16	32	6,060	8,090

*Alternative types were used during the trial.
"F.M. Discriminator Bandwidth." We regret that a sentence, which should have referred to cochannel interference, beginning "Fortunately, this has been anticipated. ." on line 17, right-hand column of p. 572, December 1957 issue, was transposed. It should have followed the words ". . to the same programme," five lines before the bottom of the preceding column.

Television Aerials For Bands IV and V

ADVANTAGES OF THE CORNER

 REFLECTOR DESIGN FOR U.H.F.SINCE November last, and for several months to come, the B.B.C. is radiating still and motion video transmissions on a frequency of $654.25 \mathrm{Mc} / \mathrm{s}$ in Band V with a view to assessing all the technical factors involved should it be decided, at some future date, to provide a regular service in this band or in Band IV. During the spring the definition will be increased from 405 lines to 625 lines. It is uncertain whether the improvement noticed on a closed circuit between transmitter and receiver will be maintained under conditions of space propagation and one of the objects of the tests is, presumably, to check this doubt.

In order that a television picture shall maintain the original quality delivered from the camera it is essential to retain, throughout the entire transmitting and receiving system, the correct amplitude and phase relation of each picture element in relation to the next. The manner in which this is achieved is within the control of the circuit designer, but he cannot control the vagaries of propagation. True, a line-ofsight experiment over an open space, free from any sources of reflection, will closely simulate closed-circuit conditions but would take no account of the practical conditions of terrain variations, built-up areas, and isolated structures involved in providing a public service.

In considering the radiation of electromagnetic energy from an aerial it is desirable to regard the aerial as a point source. The energy will spread out into space and flow through a hemispherical boundary of ever-increasing radius. At a radius of a few hundred wavelengths a small area of this hemispherical boundary can be regarded as being perfectly flat so that all the energy flowing through any selected small aperture in space is in equiphase and plane-wave propagation prevails. Departure from plane-wave conditions is caused by adverse effects which worsen as the frequency of the wave energy is increased. At low frequencies, say $100 \mathrm{kc} / \mathrm{s}$, the earth appears as a mirror-like surface. If the wave were endowed with human faculties it would be unable to recognize anything smaller than the high mountains. Trees, buildings and hills would be invisible and so, apart from a slight tilt imparted to the wavefront by virtue of energy absorption by the resistance of the earth, plane-wave propagation is preserved over considerable distances in daytime. At night-time the effect of reflections from the ionosphere viriates the conditions.

As the frequency is increased the earth no longer retains its mirror-like properties and at, say, $1 \mathrm{Mc} / \mathrm{s}$ hills and large structures are becoming visible in varying degrees. At frequencies of the order of $100 \mathrm{Mc} / \mathrm{s}$ small structures and trees become visible

until, at several hundred megacycles per second, the fine detail of structures and the foliage of trees are clearly outlined.

This "visibility," increasing as it does with frequency, is responsible for such effects as absorption, reflection and diffraction, and their combined effects tend to diffuse the wavefront of the energy and so disturb the equiphased front originally radiated from the transmituing aerial. Thus the relative phase and amplitude of the picture elements transmitted in the sidebands will be disturbed and loss of definition will result. Multi-path propagation produces displaced images (ghosts) and it is now well known that these tend to be worse on Band III than on Band I and may be expected to deteriorate further with a threefold increase in frequency.

At first thought it might seem that little can be done to correct for these effects but a directive receiving aerial will reject most of the multi-path reflections since it is known that the more serious reflections emanate from objects at the side and rear of the aerial.

The effects of departure from plane-wave conditions can be minimized by using as small an area as possible for the aerial consistent with providing useful gain. For example, a pair of half-wave dipoles spaced several wavelengths apart and fed in phase to the receiver might show loss of both gain and definition as compared with the same arrangement spaced at one half wavelength. As a somewhat crude analogy, if one wishes to view a distant object through a small gap in the foliage of a tree a wider spacing of the eyes could result in only one eye being able to see the object with consequent impairment of brightness and detail. Because an aerial will possess different characteristics when operating under diffused-wavefront conditions it is customary to refer to the plane-wave characteristics as being under the ideal conditions.

If a radiating oscillator is set up some fifty wavelengths from a receiving aerial on flat ground quite clear of buildings and obstructions the gain and directivity of any experimental aerial may be compared with that of a simple half-wave dipole. If the oscillator is replaced by a powerful transmitter beyond the horizon, and the tests are repeated in a built-up area, lower gain and a change in the directional characteristics of the experimental model invariably result. The change in gain is due to departure from plane-wave propagation, and the change in directivity to reflections from buildings and other reflecting objects.

This accounts for the fact that certain types of aerial do not appear to live up to their plane-wave performance in some fringe areas while others, with

[^3]
ally favourable sites close to the transmitter. Aerials unsuitable for the above reason, together with their inability to function correctly under diffusedwave conditions, will include H and Yagi types, and the small loop. Rhombic and other long wire aerials, are omitted on account of their length relative to the plane-wave gain achieved, and the need for resistive termination at the remote end for one-way direc-
Fig. I. Variation with spacing (R) of radiation resistance and gain for a corner reflector aerial.
inferior plane-wave characteristics, are the better performers!

A further requirement of a suitable aerial is that it will maintain its gain and directivity, not only over the sideband frequency range, but throughout the whole band allocated to the service. Finally, there should be no serious mismatch of impedance between the aerial and its feeder. A reasonable standard would be a mismatch of not greater than two to one.

Before reviewing aerials in terms of satisfying the foregoing requirements for Bands IV and V an examination of the table will be helpful.

Band	Coverage (Mc/s)	Mid-frequency (Mc/s)	$\pm \%$ deviation
it	$41-68$	54.5	25
iv	$174-216$	195	10
v	$610-585$	527.5	11

The widest deviation occurs on Band I where experience has proved that H and Yagi type aerials employing parasitic elements must be optimized dimensionally for each channel.

On Band III it is just possible to maintain good characteristics over two neighbouring channels. With some compromise three channels may be covered, but, ideally, the Yagi type of aerial is really only suitable for a single channel if full use is to be made of its properties. Such an aerial, if optimized on a single channel, might reverse its directivity in some part of the band.

These arguments apply equally to Bands IV and V, but there is a further fact which tends to make the Yagi type of aerial unsuitable for these elevated frequencies, and that is the dependence on planewave conditions for obtaining useful gain and directivity. Since the present tests are radiated with horizontal polarization there is good reason to assume that any future service will be based thereon so that consideration of possible aerials will be based on this assumption.

As a general consideration u.h.f. aerials with a gain of less than 3 dB and front-to-back ratio of less than 6 dB should be discarded except for exception-
need transforming to of 300 ohms-did not which frequency selectivity introduced by the impedance transformer restricts its original broadband characteristics.

The helical aerial ${ }^{1}$ has excellent gain and directivity for its compactness but it is equally responsive to both vertical and horizontal polarization and a pair, oppositely wound, must be used to receive one plane of polarization only. Such an aerial would present packaging problems if mass-produced, but there is no real technical argument against its use as it has all the desirable characteristics including that of broadband.

This leaves the corner reflector aerial ${ }^{2,3}$ in which is located a half-wave dipole at a point \mathbf{R} from the apex. (Fig. 1.) If the angle of the reflecting sheets is 90° the interesting characteristics of Fig. 1 are

obtained. These are for infinite sheets but it has been shown that sheets ${ }^{3}$ one wavelength wide and two wavelengths long give results surprisingly close to the ideal. In fact, the dimensions may be reduced further without serious loss of performance. It will be observed that, up to $\mathrm{R}=\lambda / 2$, the radiation resistance rises from zero through 72 ohms up to 120 ohms. From $\mathbf{R}=\lambda / 4$ to $\mathbf{R}=\lambda / 2$ the mismatch to a 75 -ohm feeder will not exceed 1.6 to 1 , so that if the dipole is located at $R=3 \lambda / 8$ good matching will be maintained over a frequency deviation of plus or minus 33%. Also Fig. 1 shows that the gain will be closely maintained over this range of deviation from the design frequency. These characteristics are ideally suited to Bands IV and V because relatively compact and simple mechanical structures, without dependence on close-limit manufacturing tolerances, can be readily achieved. It is a pity that the corner reflector becomes rather unmanageable, on account of size, on Band III, and quite impossible, for both size and economy, on Band I, for it possesses all the desirable properties of a first-class general-purpose aerial.

The practical construction of the corner-reflector aerial permits of considerable latitude in the hands of the designer. The reflector may be of sheet, continuous, or perforated to reduce windage, or wire mesh may be used provided that the size of the mesh does not exceed about $0 \cdot 1 \lambda$. According to Moullin ${ }^{3}$ the screening or reflecting properties of a conductive mesh are at least 90% as good as a continuous sheet of the same material. Kraus ${ }^{2}$ has shown that a row of rods may be used to make a corner reflector grid, and if these are spaced not much greater than 0.1λ a very convenient and attractive aerial results. Such an aerial was constructed about a design frequency of $654.25 \mathrm{Mc} / \mathrm{s}$ as shown in the sketch of Fig. 2. The overall dimensions of each reflector grid are 10 in wide by 18 in long.

A " bow-tie" type of dipole is used as it has the required broadband characteristics. Fat cylinders could be used instead but they do not give a smooth impedance transfer at the feeder connections. Measured data of this type of aerial, taken under carefully controlled plane-wave conditions, gave the following results:-

1. Power gain relative to half-wave dipole, 8.7 dB .
2. Half-power beam width, 64°.
3. Front-to-back ratio, 15 dB .
4. Minima in excess of 40 dB , at $90^{\circ}, 140^{\circ}, 220^{\circ}$, and 270°.

5. Mismatch ratio to 75 -ohm feeder, 1-4.

These characteristics varied very slightly over a range of $\pm 30 \mathrm{Mc} / \mathrm{s}$. It was not possible to extend the measurements over the whole of Band V, but the results indicate that the performance is most likely to be maintained, and this is a matter for further experiment. A simple quarter-wave balun was included in the design but its removal during the course of tests did not appear to have much

Fig. 3. Polar diagram of the corner reflector aeriai.
effect. If much larger reflectors had been used, with a consequent increase in front-to-back ratio, the balun would probably prove an advantage, since it reduces the effects of pickup on the feeder which shows up as a reduction in the overall front-toback ratio.

The directional response in the azimuthal (E) plane is shown in the polar plot of Fig. 3. Plotted in decibels it gives the false impression of poor directivity because of the size of the side and rear lobes. Had this diagram been plotted in voltage ratios, or better still, in voltage squared (power) ratios, the amplitude of the rear lobes, relative to the main lobe, would appear to show improved directivity. An examination of the diagram will reveal that, over the rear 180° of the aerial, the response is never less than 15 dB below that of the main beam. As an integrated effect it probably averages 25 dB below the main lobe.

It might be a good idea to standardize the amplitude scale of a polar co-ordinate graph say, in five steps of 10 dB with 50 dB coinciding with the centre of the chart and 0 dB on the circumference. The appearance of the curve would then line up with the degree of directivity found between samples.

A pair of these aerials may be mounted side by side a little over a half-wavelength between centres. Provided that the respective outputs are connected in phase the gain will be increased by 3 dB and the half-power beam width reduced to about 55°.

It is hoped to publish the results of practical tests with this aerial on the B.B.C.'s transmissions after both standards of definition have been used.

Acknowledgement. This article is based on work done on behalf of Kimber-Allen, Ltd., to whom thanks are due.

REFERENC:S

' J. D. Kraus. Proc. I.R.E. vol. 36, p. 1236, 1948.
2 J. D. Kraus. Proc. I.R.E. vol 28, $513,1940$.
3 E. B. Moullin. "Radio Aerials," (Clarendon Press, Oxford).

BAND V ON A TURRET TUNER

ADAPTING AN EXISTING BAND I - BAND III FRONT END FOR U.H.F. TELEVISION

BY P. R. STUTZ*, B.Sc. (Eng.) Hons., A.C.G.I., Grad. I.E.E.

W
HEN the decision was taken to begin television test transmissions in Band V at a vision carrier frequency of $654.25 \mathrm{Mc} / \mathrm{s}$, the problem arose of providing television sets capable of receiving these signals.
The type of receiver which has been adapted for u.h.f. reception uses the well-known turret tuner for channels in Bands I and III. The r.f. stage of this tuner is a double triode connected as a cascode amplifier which is followed by a triode-pentode frequency changer. A separate set of coils is used for each channel, mounted in a twelve-position turret.

In order to receive the u.h.f. transmissions, special coil strips or inserts are mounted in the turret \dagger. To obtain satisfactory results these inserts use the double superhet principle. This necessitates a rather more complex insert than the type used on the lower frequencies of existing television channels in this country. A schematic arrangement of the u.h.f. inserts is shown in Fig. 1.

The incoming u.h.f. signal is first frequency con-

Kolster-Brandes.

tThe units are of American design and have been modified to $75-\mathrm{hm}$ aerial ingut and to suit the frequency of the test transmission.
verted to an intermediate frequency lying in the $135-\mathrm{Mc} / \mathrm{s}$ region using a u.h.f. germanium diode mixer. This signal is amplified by the cascode valve in the tuner. The signal is then frequency converted again, using the pentode mixer, to the normal 34.65Mc / s vision intermediate frequency of the receiver. A harmonic of the triode local oscillator is used for the first frequency-changing operation and the fundamental for the second frequency conversion. For this particular channel, the third harmonic of the local oscillator is used: this harmonic is generated by a germanium diode from the fundamental and is selected by a resonant circuit.

As a result of using a harmonic selector circuit, the mixing diode obtains a local oscillator voltage with the unwanted harmonics and the fundamental reduced to a minimum. This ensures that a good noise factor is obtained and reduces unwanted responses.

The circuit diagram of the inserts is given in Fig. 2. The aerial input is for a 75 -ohm unbalanced feeder, the same as is used on Bands I and III. The feeder is matched into the primary of a mutually coupled band-pass circuit tuned to the u.h.f. channel fre-

Fig. I. Block schemotic of the u.h.f. inserts for the tuner.

Fig. 2. Circuit diagrams of the two u.h.f. inserts.
quency. The output is matched into the diode mixer by means of a tap on the secondary tuned circuit. The i.f. output from the diode mixer is coupled into the grid circuit of the cascode amplifier using an im-pedance-matching transformer tuned to $135 \mathrm{Mc} / \mathrm{s}$. The diode used for obtaining the third harmonic of the triode oscillator is connected to one side of the local oscillator winding via a biasing network. As this diode is mounted on the frequency-changer section and its output has to be fed to the harmonic selector on the aerial section, a special link is required between the two sections of the u.h.f. inserts. This link between the two sections can be seen on the photograph of the inserts in position in the turret tuner. On the frequency-changer section, there is the coil connected in the anode circuit of the cascode amplifier which, together with the other coil connected to the grid of the pentode mixer, forms a band-pass coupled circuit tuned to a centre frequency of about $135 \mathrm{Mc} / \mathrm{s}$. The local oscillator coil on this frequency-changer

Fig. 3. Frequency response of the u.h.f. tumer, measured from the aerial input to the pentode mixer stage.
section is designed for a fundamental frequency of $172.225 \mathrm{Mc} / \mathrm{s}$.

The circuits on the aerial section are tuned by means of the trimmers shown in the photograph. The coils on the frequency-changer section are tuned by adjustment of the end turns, except for the local oscillator coil which has a brass core accessible from the front of the tuner, in the same manner as with the coil strips for the existing television channels. Constructional details of the inserts can be seen in another photograph on the next page.

In assessing the performance of these u.h.f. inserts, one of the more important considerations is
probably the noise factor. This type of unit was found capable of a noise factor of about 17 dB ; this figure compares quite well with other types of tuner which do not use a stage of u.h.f. amplification before the mixer diode.
The overall selectivity of the arrangement is quite adequate, as can be seen from the curve of

Responses from an insert tuned to $654.25 \mathrm{Mc} / \mathrm{s}$ vision.

Oscillator Harmonic (Mc.s)	Vision Frequency (Mc/s)	Sound Frequency (Mc/s)	Measured Amount Down on Required Response (dB)	Comments
	137.575	134.075	28	Ist i.f.
Fundamental 172-225	$\begin{gathered} 34.65 \\ 309.8 \end{gathered}$	$\begin{gathered} 38 \cdot 15 \\ 306 \cdot 3 \end{gathered}$	$\begin{aligned} & 65 \\ & 53 \end{aligned}$	Final i.f.
	$\begin{aligned} & 206.875 \\ & 482.025 \end{aligned}$	$\begin{aligned} & 210 \cdot 375 \\ & 478 \cdot 525 \end{aligned}$	$\begin{aligned} & 63 \\ & 35 \end{aligned}$	
3rd harmonic 516.675	$\begin{aligned} & 379 \cdot 100 \\ & 654 \cdot 250 \end{aligned}$	$\begin{aligned} & 382.60 \\ & 650.750 \end{aligned}$	$\begin{array}{r} 40 \\ 0 \end{array}$	Required channel.
4th harmonic $688 \cdot 90$	$\begin{aligned} & 551 \cdot 325 \\ & 826 \cdot 475 \end{aligned}$	$\begin{aligned} & 554.825 \\ & 822.975 \end{aligned}$	$\begin{aligned} & 38 \\ & 46 \end{aligned}$	
5th harmonic 861•125	$\begin{aligned} & 723.550 \\ & 998.700 \end{aligned}$	$\begin{aligned} & 727.050 \\ & 995 \cdot 200 \end{aligned}$	$\begin{aligned} & 49 \\ & 55 \end{aligned}$	
$\begin{gathered} \text { 6th har- } \\ \text { monic } \\ 033-350 \end{gathered}$	$\begin{array}{r} 895.775 \\ 1170.925 \end{array}$	$\begin{array}{r} 899.275 \\ 1167.425 \end{array}$	45 Not measured.	

Showing the construction of the two u.h.f. inserts and how they are linked together when
tioned. Owing to the fact that the triode local oscillator is used for both frequency - changing operations, there is a relationship between the oscillator harmonic chosen and the first i.f. Also, to avoid reversing the relative positions of the sound and vision carriers, the first frequency conversion must be done with the local oscillator low. This leads to:

$$
\begin{aligned}
& f_{o}=f_{i f(1)}+f_{i f(2)} \\
& f_{o}=\frac{f_{u h f}+f_{i f(2)}}{\mathrm{N}+1}
\end{aligned}
$$

Fig. 3. Unwanted responses due to oscillator harmonics are sufficiently down on the main response to be considered negligible, as can be seen from the measurements given in the table. Rejection at the $135-\mathrm{Mc} / \mathrm{s}$ i.f. is sufficient for all normal purposes. The value of the rejection seems to be controlled by stray coupling from the aerial input to the cascode amplifier grid.

It is thought that with future units it may be possible to improve this figure if necessary, as the layout of the units used was originally intended for a 300 -ohm balanced aerial input.

The voltage gain of a tuner using these u.h.f. inserts is somewhat less than that of the same tuner working on Bands I and III, owing to the loss of gain in the aerial section. The difference in gain of the tuner between Band V and Band III will be about 10 dB .

The stability of the local oscillator is obviously important for convenience of operation. The drift was found to be about three times greater than that experienced on Band III, but was found in practice to be tolerable.
The range of the fine tuner control is about three times greater than that on Band III channels but, despite this, it was found perfectly simple to tune in the picture on a receiver.
The considerations leading up to the choice of $135 \mathrm{Mc} / \mathrm{s}$ as the first i.f. have not yet been men-
where $f_{u h f}=$ frequency of Band-V channel $f_{o}=$ oscillator fundamental frequency
$\mathrm{N}=$ harmonic of the oscillator used
$f_{i f(1)}=$ the first i.f.
$f_{i f(2)}=$ the second i.f. ($34 \cdot 65 \mathrm{Mc} / \mathrm{s}$ vision)
It was considered desirable that the frequency of the local oscillator fundamental and the first i.f. should be chosen so that they were located berween Bands I and III and cleared the band allocated to v.h.f. radio transmissions. This led automatically to the choice of the third harmonic of the local oscillator for this particular channel and a value of $135 \mathrm{Mc} / \mathrm{s}$ for the first i.f.

A small practical point worth mentioning is the care that had to be exercised in the choice of mains isolating components for the aerial feeder. If this is not done and unsuitable values and layouts are chosen, the noise factor and sensitivity of the receiver will be impaired.

The performance of the u.h.f. inserts on the test transmissions came fully up to expectations, the pictures obtained being free from any unwanted beats or patterning. In practice these inserts were fitted to an unused channel position in the turret, thus leaving the receiver free to receive the normal transmissions in Bands I and III as well as the u.h.f. transmissions.

Books Received

The B.B.C. Riverside Television Studios: The Architectural Aspects, by E. A. Fowler. B.B.C. Engineering Monograph No. 13 includes an appendix on the sound proofing, and the acoustic treatment used to secure the optimum reverberation time. Pp. 25; Figs. 10.
The B.B.C. Riverside Television Studios: Some Aspects of Technical Planning and Equipment, by H. C. Nickels and D. M. B. Grubb. B.B.C. Engineering Monograph No. 14 includes description of television and sound studio and distribution apparatus and also telecine equipment. Pp. 32, Figs. 18. The above B.B.C. Engineering Monographs are each priced 5s and may be obtained from B.B.C. Publications, 35, Marylebone High Street, London, W.l.

Glossary of Abbreviations, compiled by S. T. Cope, covers names of technical, scientific, industrial and professional organizations, with particular reference to the
telecommunications industry. Pp. 38. Price 2s 6d. Marconi's Wireless Telegraph Co., Ltd., Baddow Research Laboratories, West Hanningfie!d Road, Great Baddow, Essex.
Electronic Voltage Stabilizers for Laboratories, Computors and Control Systems, by J. Miedzinski, B.Sc., and S. J. Kgorski, describes series valve stabilizer with twin-triode amplifier and gas discharge voltage reference tube to give up to 50 mA at 320 or 400 V . Pp. 19; Figs. 8. Price 12s 6d. Elecirical Research Association, Thorncroft Manor, Dorking Road, Leatherhead, Surrey.
The " Mercury" Switched F.M. Tuner, by G. Blundell, gives description and constructional details for a new Jason circuit incorporating a.f.c. and a FosterSeeley discriminator. Pp. 20, Figs. 9. Price 2s. Data Publications, Ltd., 57, Maida Vale, London, W.9.

Some Special Magnetrons

-AND HOW THEY ILLUSTRATE BASIC IDEAS

THE magnetron consists essentially of an anode and cathode which are concentric cylinders. The anode has a number of subdivisions, usually referred to as segments, in which high-frequency oscillations can be produced. These segments generally take the form of resonant cavities so that oscillations are essentially only possible at a number of discreet frequencies. Power from the oscillations is generally coupled out from a single segment, a wide variety of methods being used.

The cathode is at a high negative d.c. potential relative to the anode. A powerful magnetic field in the direction of the anode and cathode axis prevents more than a small proportion of the electrons emitted from the cathode from reaching the anode under static conditions, most of them being returned to the cathode.

Under dynamic conditions, the r.f. field produced by the oscillations gives energy to electrons whose phase with respect to

Fig. I. Linearity of tuning in voltage tunable magnetron. this field is favourable. This enables them to reach the anode where they give up their potential energy to sustain the oscillations. The field also produces a " bunching" effect ${ }^{1}$, or in other words tends to concentrate electrons as they proceed to the anode into groups with a favourable phase. Those electrons for which this does not occur soon return to the cathode, and bombarding it, increase its temperature.

The anode segments generally have a constant phase difference between individuals. This phase difference may be thought of as being produced by r.f. waves travelling round the anode, when the phase change in distance round the anode will be related to the phase change in time of the travelling r.f. wave.

We can thus draw a useful analogy with the travelling wave tube ${ }^{1}$. The magnetic field (by the left-hand rule) imparts an angular motion to the electrons about the anode and cathode axis.- This motion will not be essentially modified by the r.f. fields, and the electrons will stream past the anode segments either individually or in bunches as they approach. By analogy with the travelling wave tube we will expect maximum interaction to occur when the electron bunches and r.f. waves have the same velocity.

Relationships between Operating Parameters. -

 The need for this equality between the velocities of the electron bunches and r.f. waves gives a relationship between the operating voltage, magnetic field, and[^4]frequency. The frequency is also usually largely fixed by the resonant properties of the anode segments.

By adopting certain simplifying assumptions it is possible to obtain this relationship in a quantitative form which is close to that obtained by more sophisticated methods.

The electrons can be assumed to leave the cathode with zero velocity and to proceed towards the anode under the influence of the static electric and magnetic fields only, until the r.f. field becomes significant. Here, for optimum interaction, the angular velocity round the anode of the electrons and the r.f. field must be the same. We then assume that from here outwards the electrons become "locked" to the r.f. wave, so that their angular velocity remains constant until they reach the anode ${ }^{2}$.

When the r.f. field is negligible, the electric field will be entirely in a radial direction. The angular equation of motion for an electron of mass m and charge e may then be written

$$
\begin{equation*}
\frac{m}{r} \frac{\mathrm{~d}}{\mathrm{~d} t}\left(r^{2} \frac{\mathrm{~d} \theta}{\mathrm{~d} t}\right)=e \mathrm{H} \frac{\mathrm{~d} r}{\mathrm{~d} t} \ldots \tag{1}
\end{equation*}
$$

Integrating this equation we obtain

$$
\begin{equation*}
r^{2} \frac{\mathrm{~d} \theta}{\mathrm{~d} t}=\frac{e \mathrm{H}}{2 m}\left(r^{2}-r_{c}{ }^{2}\right) \ldots \tag{2}
\end{equation*}
$$

where r_{c} is the cathode radius, and the constant of integration is obtained by putting $\mathrm{d} \theta / \mathrm{d} t=0$ at $r=r_{c}$. If r_{1} is the radius at which the electrons become locked to the r.f. wave, equation (2) gives the corresponding angular velocity ω, as

$$
\begin{equation*}
\omega_{1}=\frac{e \mathrm{H}}{2 m}\left(1-r_{c}^{2} / r_{1}^{2}\right) \ldots \tag{3}
\end{equation*}
$$

It is reasonable to assume that when oscillations are only just sustained the energy fed into the electrons is as small as possible. If this is the case nearly all of the energy will be used to keep the electrons in a circular orbit locked to the r.f. wave, and there will be only a small amount left to provide radial motion. Thus we can neglect the rate of change of the radial component of velocity. The radial equation of motion can then be written as

$$
\begin{equation*}
-m r\left(\frac{\mathrm{~d} \theta}{\mathrm{~d} t}\right)^{\mathrm{s}}=e \mathrm{E}_{r}-\mathrm{Her} \frac{\mathrm{~d} \theta}{\mathrm{~d} t} \tag{4}
\end{equation*}
$$

where E_{r} is the radial field. Integrating this equation from $r=r_{1}$ to $r=r_{n}$ (where r_{n} is the anode radius), and remembering our assumptions that $\mathrm{d} \theta / \mathrm{d} t=\omega_{1}$, and that radial r.f. fields are negligible we obtain

$$
\begin{equation*}
e\left(\mathrm{~V}-\mathrm{V}_{1}\right)=\left(\mathrm{He} \omega_{1}-m \omega_{1}^{2}\right)\left(\frac{r_{a}^{2}-r_{1}^{2}}{2}\right) \tag{5}
\end{equation*}
$$

where V_{1} is the voltage at $r_{1} . \quad V_{1}$ can be obtained very simply from the conservation of energy since we are assuming that r.f. fields are negligible inside r_{1}.

[^5]Thus, equating the potential energy lost to the kinetic energy gained, we obtain

$$
\begin{equation*}
e V_{1}=\frac{1}{2} m r_{1}^{2} \omega_{1}^{2} \tag{6}
\end{equation*}
$$

Substituting equation (6) in equation (5) to eliminate V_{1}, and then using equation (3) to eliminate r_{1}, we obtain

$$
\begin{equation*}
2 \mathrm{~V}=\mathrm{H} \omega_{1}\left(r_{a}{ }^{2}-r_{c}{ }^{2}\right)-\omega_{1}{ }^{2} r_{a}{ }^{2} m / e \tag{7}
\end{equation*}
$$

Finally, we must obtain a relation between ω_{1} and f the oscillation frequency. In the idealised case where the r.f. field has a simple sine wave variation both in angle and time, the r.f. potential at a point between anode and cathode can be written

$$
\begin{equation*}
\mathrm{V}_{r \cdot f \cdot}=\mathrm{V}_{r \cdot f} \cdot(r) \cos 2 \pi n \theta \cos 2 \pi f t \tag{8}
\end{equation*}
$$ where $V_{r . f}(r)$ is a function of r only, and n the number of repeats of the field pattern round the anode. Since the magnetron anode is closed upon itself (unlike the newer backward wave oscillators ${ }^{3}$) n must be a whole number. (This restriction on n is one of the reasons why the magnetron can only oscillate at certain frequencies.) Equation (8) can then be rewritten as

$V_{r . f .}=\frac{V_{r . f .}(r)}{2}[\cos 2 \pi(n \theta+f t)+\cos 2 \pi(n \theta-f t)]$
which represents two progressive waves travelling round the anode in opposite directions with angular velocity $2 \pi f / n$. Actually the angular variation of the r.f. field is more nearly a set of square pulses whose steps occur at the discontinuities in the anode produced by the segments (see for example Fig. 6). This was discussed in detail by Hartree, who showed that there were a number of other possible angular velocities for the r.f. waves. These are of the form $2 \pi f /(k \mathrm{~N} \pm n)$ where k is a positive integer and \mathbf{N} the number of segments. Substituting this set of values for ω_{1} in equation (7) we obtain finally

$$
\begin{equation*}
\mathrm{V}=\frac{\pi f \mathrm{H}}{k \mathrm{~N} \pm n}\left(r_{a}^{2}-r_{\mathrm{c}}^{2}\right)-\frac{2 \pi f^{2} r_{a}^{2}}{(k \mathrm{~N} \pm n)^{2}} \frac{m}{e} \ldots \tag{10}
\end{equation*}
$$

This is, in fact, the well-known Hartree threshold relationship ${ }^{4}$, and is generally confirmed in practice to within a few per cent.
Voltage Tunable Magnetrons.-It has been mentioned that anode structure resonances usually restrict oscillation to a number of discreet frequencies. Other types of microwave oscillator, such as the backward wave oscillator ${ }^{3}$, have been developed to avoid this restriction. It is not however a fundamental limitation of the magnetron, and nonresonant anode structures have also been used to obtain wide-band operation.
If we refer to equation (10) it can be seen that, when there are no other restrictions, for a given mode of oscillation (i.e. a given k, n), the frequency is determined only by the voltage and the magnetic field. The field cannot be varied conveniently, so that in such magnetrons the frequency is varied by varying the voltage. For a sufficiently large magnetic field H , equation (10) moreoever shows us that the frequency will be proportional to the voltage, and

[^6]a fuller analysis ${ }^{5}$ confirms this. This is a very useful characteristic, for example, in obtaining undistorted frequency modulation. In practice a "sufficiently large" field in this context is not particularly high compared with usual magnetron fields.

To avoid resonances a structure consisting of two sets of interlocking fingers (interdigital) has generally been used. In this case all major frequency sensitive elements except the capacity between the two sets of fingers are removed from the interior of the valve; and the exterior cavity can more easily be made nonresonant. For example, this type of structure lends itself to direct mounting in waveguide, the fingers lying across the narrow dimension. In this arrangement ideally the guide only imposes its cut-off property in the valve.

A description of such a magnetron is given in a paper by J. A. Boyd ${ }^{6}$, of Michigan University. Fig. 1, taken from this paper, shows the linearity of the voltage-frequency relationship.

The power output of such magnetrons is very dependent on the total shunt impedance of the r.f. circuit, and this should be as high as possible. Here a limiting factor is the capacity between the two sets of fingers. Boyd used rounded digits in order to reduce this capacity as much as possible. Another model of similar structure, but with this capacity doubled, showed a greatly inferior performance.

As regards the external circuit, it is difficult to give this a high shunt impedance over a wide band. Thus a compromise must be made between power output and band-width. Boyd was able to obtain powers of the order of half a watt over $2,000 \mathrm{Mc} / \mathrm{s}$, or four watts over $200 \mathrm{Mc} / \mathrm{s}$.

Boyd also found that in order to produce coherent oscillations it was necessary to limit the anode current by keeping the cathode temperature low. This disagrees with some other observations of voltage tuning using a different structure discussed later. Such temperature limitation is, however, certainly useful in keeping the anode current, and thus the output power, approximately constant. The extent to which this can be achieved in Boyd's valve is shown in Fig. 2 (also taken from reference (6)). Boyd found that in c.w. operation, owing to variations in the electron bombardment of the cathode, temperature limitation could not be obtained unless a. directly heated cathode was used. The total cathode heating power required is greater for such a cathode so that the bombardment is a smaller fraction of this power.

When there are no powerful frequency determining elements noisy operation is likely. However

[^7]

Fig. 2. Constancy of anode current and output tower with temperature limited emission.

Fig. 3. G.E. Company of America voltage tunable mognetron.
when used as a local oscillator Boyd's valve had a noise figure only $\approx 3 \mathrm{~dB}$ worse than a klystron.

In normal magnetrons the r.f. field is at rightangles to the cathode axis, from one cavity to the next. In interdigital valves, however, this field is parallel to the cathode axis from one set of fingers to the other. Because of this asymmetry of the cathode with respect to the r.f. field resonance and electronic interaction effects due to the cathode structure are more serious and difficult to avoid in interdigital valves.

A version of this type of magnetron only about half an inch long has been developed by the G.E. Company of America ${ }^{7}$, and is shown in Fig. 3 reproduced from page 244 of Electronics for October 1956. The spiral cathode is offset from the interaction space. This is possibly to reduce the effects due to the cathode discussed above. This offsetting would also decrease the electron bombardment which was troublesome in the Michigan valve. The extra, shaped, electrode may help to focus the emitted electrons into the interaction space.
Scaling.-The remaining two types of magnetron we shall discuss were developed to produce the highest frequencies.

In considering these magnetrons it is necessary to elaborate the Hartree threshold relationship a little. We have not introduced the fact that there will be a minimum voltage at which a magnetron can oscillate. This is that voltage for which electrons at the anode have just given up all their potential energy in order to attain the angular velocity of the r.f. field with which they are interacting, so that no energy is left to build up oscillations. The minimum voltage is also that voltage at which, under static conditions, the electron orbits just graze the anode, so that the r.f. field necessary for them to reach the anode can be vanishingly small. From the first definition, the minimum voltage V_{0} is given immediately by

$$
\begin{align*}
e \mathrm{~V}_{0} & =\frac{1}{2} m r_{a}{ }^{2} \omega_{1}^{2} \tag{11}\\
\text { i.e. } \stackrel{\rightharpoonup}{ } \mathrm{V}_{0} & =\frac{2 \pi^{2} m r_{a}^{2} f^{2}}{(k N \pm n)^{2}} \tag{12}
\end{align*}
$$

The first definition of V_{0} also gives an immediate upper limit for the efficiency. To give output, only the potential energy from the d.c. field is useful, the kinetic energy being wasted. Thus, considering a single electron, the efficiency will be at most

[^8]one minus the minimum possible kinetic energy at the anode divided by the potential energy obtained from the d.c. field,
i.e. $\eta \leqslant 1-V_{0} / V$

Remembering that there will be further losses in the output circuit, it is thus usual to operate at several times the minimum voltage.

Another useful concept which follows rapidly from the definition of V_{0} is that of "scaling." If we substitute V_{o} for V in the Hartree threshold relationship (equation (10)) we can obtain a corresponding value H_{n} for H . Equation (10) then reduces to the simple form

$$
\begin{equation*}
\mathrm{V} / \mathrm{V}_{0}=2 \mathrm{H} / \mathrm{H}_{o}-1 \tag{14}
\end{equation*}
$$

Of the most fundamental conditions of operation only the anode current requires a corresponding I_{o} to be defined. Several such definitions have, in fact, been proposed. The simplest is that current which would be drawn at zero magnetic field when the magnetron is acting simply as a diode, although this is much greater than any operating current so that it does not correspond to any minimum. I_{0} is then given by the relation

$$
\begin{equation*}
\mathrm{I}_{0}=\frac{8 \sqrt{2}}{9} \pi \sqrt{ } \overline{e / m} \frac{\mathrm{~V}_{\varrho}^{3 / 2} l}{r_{a}} \tag{15}
\end{equation*}
$$

where l is the anode length,
$\beta=u-\frac{2 u^{2}}{5}+\frac{11 u^{3}}{120}-\frac{47 u^{4}}{3300}+\ldots$,
and $u==\log _{e}\binom{r_{u}}{r_{c}}$.
Since the early days of magnetron development much use has been made of the fact that if, using $\mathrm{I}_{0}, \mathrm{~V}_{0}, \mathrm{H}_{0}$ as units, we operate under the same conditions, then the efficiency and stability are similar for different designs of magnetron, provided that the anode segments remain of similar shape. In this way by altering the size of a successful design it can be "scaled" to work at a different wavelength.
Minimum Voltage Magnetrons.-Returning to our immediate problem, from equation (12) we can see that if we wish to obtain higher frequencies we must either reduce r_{a}, increase V_{o}, or increase ($k \mathrm{~N} \pm n$). We will consider the third possibility later. As regards the other two possibilities, it is clear that there will be practical limits to decreasing r_{a} or increasing V. A less obvious consideration which arises in c.w. operation is that the anode power, and hence current, at which oscillations begin must be sufficiently low. This will also in practice limit the maximum voltage and minimum size. Reducing the size of the anode also reduces the possible power dissipation.
Another possibility is to operate nearer the minimum voltage. Looking at this the other way round we can then increase V_{0} (for a fixed V), and thus increase f. It is however clear from equation (13) that the efficiency will fall.
In the sense that operation remains based on the equalization of velocities we have described, no essential change is produced by working near the minimum voltage. However, the bunching influence of the r.f. field which we have also discussed will

[^9]largely disappear, and this leads to considerable practical differences.

It will be necessary to provide the required equality of the electron and r.f. wave velocities as far as possible even in the static case in order to do without the help of the r.f. field. If we return to equation (2) we can see that if r_{c} the cathode radius is small, then the angular velocity varies only slightly with changing r. In this case we have a stream of electrons at various radii but with the same angular velocity which can interact with an r.f. wave with this velocity.

We can develop this point more exactly when we realise that in such a valve there will be an optimum value for the radius at which velocity equalization occurs. If this is too small, the r.f. fields will be too weak, and little interaction will occur. On the other hand, if this is too large, insufficient interaction can occur before the electrons reach the anode.

Substituting equation (3) in equation (7) to eliminate H, and then using equation (11) to eliminate ω_{1}, we obtain the relation

$$
\begin{equation*}
\frac{\mathrm{V}}{\ddot{\mathrm{~V}}_{o}}+1=2\left[\frac{1-r_{c}^{2} / r_{n}{ }^{2}}{1-r_{c}^{2} / r_{1}{ }^{2}}\right] \tag{16}
\end{equation*}
$$

We can see that if r_{1} is fixed, as V approaches V_{0}, r_{c} must approach zero. This agrees with our earlier general reasoning. When V becomes large r_{c} tends to r_{1}. Thus r_{1} / r_{g} can be obtained from a knowledge of the optimum r_{r} / r_{a} for normal operation of the magnetron when scalled to operate at some lower frequency. If we wish to operate somewhat above V_{n} equation (16) can then give us the optimum r_{c} / r_{a}. Conversely, equation (16) suggests that, for a given r_{c} / r_{a}, there will be an optimum operating voltage V to establish velocity equalization at r_{1}. Thus we can expect operation of this type to occur over a fairly limited range of voltage and thus also of magnetic field.

This limited range of operation was observed in the original G.E.C. work on the subject ${ }^{9}$. When the voltage was varied more than about 10%, operation occurred in a number of " modes" (different n

Fig. 4. G.E.C. (British) spotial harmonic magnetron and anodes.
numbers in equation (10)). This was clearly seen by changes in the oscillation frequency. The different modes will of course have different minimum voltages. They may also have different values for the optimum radius r_{1} for velocity equalization, due to the different r.f. field patterns.

These properties of limited range of operation and wide degree of mode selection are quite different from those of normal magnetrons. Here operation is generally in the $n=\mathrm{N} / 2$ mode (π mode), over a wide range of voltages.

Results obtained at Columbia University Radiation Laboratory, New York ${ }^{10}$, using cathodes of different sizes support the general result of equation (16) that the operating voltage approaches the minimum as the cathode size is decreased. These results also suggest that the proportional range of voltage in which operation is possible also decreases as the cathode size is decreased.

In later G.E.C. work ${ }^{11}$ only the π mode was observed. This could have been due to the use of narrow-band output coupling arrangements: wideband coaxial coupling was used in the original experiments. At higher anode currents considerable increases in efficiency were obtained, for example, up to $\approx 30 \%$ overall in valves operating around $V_{0} / V=$ 0.6. In view of output coupling losses, this must represent nearly the theoretical limit of 40%. There was no sign of any falling off in efficiency for currents up to $0.08 \mathrm{I}_{0}$. A practical feature of this type of operation is that the cathode has to be very accurately centred; any slight off-centring produces a marked fall in efficiency and increase in back-bombardment of the cathode.
Spatial Harmonic Magnetrons.-In our search for higher frequencies we must now return to the other possibility shown by equation (12) we have already mentioned, that of increasing $(k N \pm n)$. Magnetrons are generally designed to operate in the π mode where the phase difference between adjacent resonators is π, and which correspond to $n=\mathrm{N} / 2, k=0$. Modes corresponding to smaller n numbers are well known, but modes with $n>N / 2$ (corresponding to harmonics of the individual resonators) have only rarely been observed, and seem unimportant in magnetron operation. ${ }^{12}$

We are thus left with the possibilities of increasing N , the number of resonators, or operating with nonzero values of k. However, if the number of resonators is increased, the relative wavelength separation for the various modes is decreased. Interference between such modes is then more likely. The limit in this direction has already practically been reached in conventional designs.
We must now consider operation with non-zero values of k, that is spatial harmonics of the r.f. pattern round the anode. Early attempts to observe this operation, using values of $\left(k+\frac{1}{2}\right) N$ of 12 or more and anode diameters greater than 0.1λ were unsuccessful. This is probably because the r.f. field fell off too rapidly from the anode to produce any interaction. An analysis shows that, at least in the absence of space charge, this field is proportional to
(Continued on page 21)

[^10]

Fig. 5. Magnetic coupling to load in a spatial harmonic magnetron.
$\left(r / r_{a}\right)^{M-1}\left[1-\left(r_{c} / r_{a}\right)^{2 M}\right]$ where M is the value of $(k N \pm n)$. Thus the successful G.E.C. workers ${ }^{13}$ were led to the use of anodes of 4 or 2 segments only, with operation with M values around 6 .

Although this approach thus does not give an increase in $(k N \pm n)$, it does result in a considerable simplification in the mechanical and electrical structures of the anodes used. Considering, for example, the case where $k=1$ and $\mathrm{M}=3 \mathrm{~N} / 2$, the form of the spatial harmonic of the r.f. field concerned is the same as that of the r.f. fundamental in a valve with 3 N segments. In some ways we can consider that we are using a valve with 3 N segments, but in which 2 N of them are " missing." In this case the problem of distributing the segments round the anode is considerably eased. Some of the asymmetrical anode structures used very forcibly suggest this idea of missing segments, an example being shown at the top left of Fig. 4. In this case, in fact, there would not be room for the full number of segments (12) round the valve.

Fig. 4 also shows a complete valve for operation at about $9,000 \mathrm{Mc} / \mathrm{s}$, and illustrates the neat construction possible using an ordinary B7G valve base and glass envelope.

The first experiments were made with asymmetrical anode structures. Another example is shown at the

Fig. 6. Typical anode and associated r.f. wave in spatial harmonic magnetron.
bottom of Fig. 4. (This is not to the same scale as the other anodes in Fig. 4.) Unfortunately the results obtained were not very repeatable owing to difficulties in accurately machining the long narrow slots used in the design. Consequently a change was made to symmetrical anode structures of two and four segments as at the right of Fig. 4.

The use of a symmetrical anode structure permits a very simple magnetic coupling to the load by means of the current circulating round one of the cavities as shown in Fig. 5 (taken from reference (12)). In the case of the original asymmetrical anodes this simple coupling is not so easy to obtain. Oscillations in the two adjacent cavities are out of phase so that the couplings for the two cavities tend to cancel out. This may be avoided by slightly rotating the segments as in the anode at the bottom left of Fig. 4, for in this case coupling occurs mainly to one segment. In the original anodes a radiating probe between the cavities parallel to the cathode was used, as can be seen at the bottom of Fig. 4.

We assume, as before for simplicity, that the r.f. wave round the anode can be represented by a set of square pulses whose steps occur at the discontinuities at the anode gaps. An example is shown in Fig. 6 (taken from reference (12)) for one case in a 4 segment asymmetrical anode. In this case the r.f. wave can be Fourier analysed into a set of component sine waves of different amplitudes. These sine waves correspond to different values of ($k \mathrm{~N}$ $\pm n$). In this way it is possible to predict the types of interaction that can occur. Modes have been observed which are not predicted by this analysis, but this is attributed to slight constructional asymmetries. Conversely it is possible to design anode structures suitable for working in particular modes. This is done essentially by altering the angular position of the gaps. In the case of symmetrical anode structures this involves altering the thickness of the vanes between the segments.

A performance chart of one of the asymmetrical anode valves is shown in Fig. 7 (taken from reference

Fig. 7. Performance chart of spatial harmonic magnetron.
(12)), the numbers showing the relevant values of ($k \mathrm{~N} \pm n$). Owing to the simpler anode resonance structure of such valves with few segments it is possible to achieve a useful tuning range by coupling the valve to a simple external-cavity tuner. The simple anode structure also permits pulse operation with very short oscillation build up times. Preliminary measurements suggest that the limit in this
direction is less than $0.1 \mu \mathrm{sec}$. The limit is set so far by the shape of current pulses that can be generated with existing apparatus.
Reference to Fig. 7 shows that, in a given mode, if the voltage is increased the power is increased up to a certain point, where it suddenly drops to zero. This is because at high anode currents the space charge forces in the electron bunches defocus these bunches. Interaction is then no longer possible. Spatial harmonic operation of valves is much more prone to this type of "drop out" than normal operation.

If the coupling of the valve to the load is made very heavy the normal resonances are suppressed and voltage tuning becomes possible. Again in these valves the simple anode structure permits this to be more readily carried out, and 2 to 1 frequency ranges have been achieved. The power available is however very much less than in normal operation. Although temperature-limited emission was not used operation was not noisy. This contradicts previously mentioned results on such voltage tuning obtained by Boyd ${ }^{6}$, of Michegan University.
M.G.L.

LETTHERS TO THE EDITOR

The Editor does not necessarily endorse the opinions expressed by his correspondents

"Do it Yourself" Interference

I SHOULD like to allay the fearsome forebodings of your correspondent Douglas Walters regarding the subject matter of my recent "Build your own Radio Set" programmes.

Early on in the series I told viewers that I was receiving letters from dealers, and from boys who had been told by their dealers, pointing out that the set would not oscillate. It was suggested that I had wrongly specified a reaction capacitor of $0.0001 \mu \mathrm{~F}$ whereas that specified by the makers of the coil was $0.0003 \mu \mathrm{~F}$. My reply to viewers was that this was done deliberately as the smaller size just gave enough feedback to increase the volume, but no oscillation over the band was possible. It was pointed out that a reacting receiver could cause interference in other sets and to obviate this dealers were asked to keep to the specification and the lower value.
I have made up three models of the receiver concerned and can only obtain a "squeal" with a new battery at the lower end of the medium waveband. I find the DAF 96 valve difficult to persuade to oscillate and cannot believe that its 69 volts and couple-ofhundred micro-amps is going to make it a very powerful transmitter even if some enterprising lad gets it going well. In the indoor aerial conditions under which most of these builders are using it, I find the radiation from the receiver difficult to detect in the next room
From many letters I have received since the series ended, it is apparent that most builders of the set are getting good reception and I hope that I have added over 25,000 youthful enthusiasts to those of us who love the hobby. Perhaps I may use this opportunity to thank the B.B.C. Engineering Staff, various manufacturers and thousands of dealers for their interest and help both to myself and to many novice set-builders (of both sexes!).

Kenton, Middlesex.

GILBERT DAVEY.

ALTHOUGH I agree with your correspondent Douglas Walters that the type of receiver to which he refers is very likely to lead to a lot of curious noises on medium wavelengths, I cannot see why he is so worried about it.
Having been chased off the long and medium wavebands by the scream of a hundred line timebase oscillators which made reception unenjoyable when not actually impossible, I am now using v.h.f., and, so to speak, "fireproof."

So far as oscillations on these wavelengths are concerned, those who watched the programme were, for the most part, "doing it themselves" with a vengeance! Surely any interest in the well-being of the medium waveband is somewhat belated. I doubt whether the youngsters will be noticed among the noises already there.
Worksop.
H. S. CHADWICK
(G8ON).

Interference Suppression

WHILE one must approve of the laws regulating ignition systems, the question is "Why only motor vehicles?" What is being done about electric shavers, hair driers, trolley buses, and, in the country, electric fences?

While I suffer to some extent from motor interference, it is only a very small part of the sum total of interference from which one suffers.

I am contemplating the purchase of an electric cooker with a simmerstat. I understand the simmerstat is quite unsuppressed, and is apparently quite legal.

Although I am a very considerable user of short waves, being an amateur radio transmitter, and suffer considerably from interference of all kinds, I do feel that too much attention is being paid to car ignition and too little to the multitude of other causes of interference which now plague us. Let us start a propaganda drive to suppress all these other sources.

London, N.W.3.
E. M. WAGNER.

TV Whistle

YOUR Editorial in the October issue on the subject of the "ideal" receiver has prompted me to make a general complaint about one aspect of television receiver design -the noisy line output transformer.
I think I can truthfully say that I have not yet come across a receiver with a line output transformer which was inaudible at normal viewing distance.
I may be unusual in that at 35 I still have good sensitivity at about $10 \mathrm{kc} / \mathrm{s}$, but what about the hordes of children who view television? Does the whistle not annoy them? My last visit to the Radio Show two years ago was spoilt by the whistle pervading (so it seemed) the whole building.
It has taken 35 years to get rid of the whistle from sound broadcasting (FM be praised) and I wonder if it will take as long to produce a whistle-free TV receiver, for I will have no other in my home.

Cardiff.
D. A. THOMS.

Optical " Noise" Filter

THE reference to the above in "Technical Notebook" (October issue) reminded the writer of an effect noted in school at the age of $12 / 13$ years. It was observed that if the blackboard were viewed through a small aperture (actually a curled up forefinger) the writing became much clearer. Possibly the effect is similar to that of a pin-hole camera, although it is recalled that the physics master thought that the reason in this case was rather more obscure.
At this time the writer was in need of spectacles although, through lack of a comparative standard, un-
aware of the fact. It was the above-mentioned observation that provided the comparative standard and, subsequently, the spectacles.

It would seem that an effect similar to the triangular frequency response utilized in, for example, a camera head-amplifier occurs. Perhaps a reader having knowledge of optical effect would be able to comment further on this subject.

East Molesey.
T. G. CLARK.

IS not this effect due to the physical nature of the iris of the eye which automatically opens wider when it is shielded from extraneous light by the tube held over it?

Norwich.
E. R. SLAUGHTER.

Genesis of Sound Reproduction

THE British Sound Recording Association has offered to try to help supplement the national collection of sound recording and reproducing apparatus and other acoustic and electro-acoustic equipment in the Science Museum, South Kensington.

Our main appeal is to and through members of the Association, but if any non-members have equipment which they would like to give to the B.S.R.A. Historic Collection, I should be very pleased to have details from them at the address below.
I should make it clear that we are not collecting recordings of historical interest, the proper repository for which is the British Institute of Recorded Sound, 38 Russell Square, W.C.1.

Disley House,
Carlton Road, Reigate, Surrey.

How Little Distortion Can We Hear?

IT is a pity that Mr. Lazenby (September, 1957, issue, p. 435) gave little attention to more practical conditions for distortion detection. The results quoted showed that the simplest (single frequency sine wave) signals were not the most suitable for the detection of distortion, as slightly more complex signals (containing two or more frequen-
cies) allow the formation and detection of intermodulation products. Although I realize that not everyone will agree with this, some of the results using speech and music suggest that for still more complex signals one's sensitivity to distortion is decreased again. There is an example of this on the Vox record "This is High Fidelity," where the same amount of distortion sounds much less objectionable in a complex orchestral passage (mainly strings) than in a simple piano or horn solo. Another point is that significant distortion in the reproduction of music is only likely to occur at peaks of sound, and in such peaks the signal wave form is almost always very complex.

Edgware.
D. J. KIDD.

Help for the Blind

NO doubt many of your readers know of the existence of a library of "talking books" for the blind. These have been recorded on long-playing records and are reproduced by portable battery- or mains-operated gramophones specially designed for the purpose. Such is the demand for these reproducers that there is at present a normal waiting period of about one year for new readers.
There are a number of problems in operating and maintaining these sets. Most of the readers are old and many have never seen or previously handled a set of this nature. In one distressing case a reader had been listening to the needle scratch for days, not realizing that the equipment had to be switched on. In another, the set which had ceased to function was returned to London, and smashed in transit, all because of a faulty flex lead, which had in any case been left behind, unseen, in the house.

Helpers with a knowledge of audio amplifiers are urgently needed in London and in many other areas in England to instruct new readers in the use of their sets and to investigate cases of faulty performance.

If you would like to assist or would like further information, please write to me at J. Gladstone \& Co. Lid.,

Galashiels. D. FINLAY-MAXWELL.
Honorary Organizer of
Voluntary Helpers, Nuffield
Talking Book Library for the Blind.

SHORT-WAVE CONDITIONS Prediction for January

Cathode-Coupled Flip-Flop

A Reliable Design Procedure

By T. G. CLARK,* A.M.Brt.I.R.E.

THE science of electronics is too frequently practised as an art, even by quite senior engineers, and, with a minimum of "know how," circuits are " bodged" to meet design requirements. In general, however, it is possible to produce a paper design that, when assembled practically, will produce a result within 5 to 20% of that predicted. Furthermore, less time is wasted by proper design methods. The introduction of feedback techniques into the design will render the operation stable and predictable. Having designed a circuit to within reasonable limits final adjustment may be effected by means of pre-set controls.

The cathode-coupled mono-stable multi-vibrator (shown in Fig. 1) is used extensively as a generator of pulses having durations ranging from microseconds to minutes. It is the object of this article to show that, using 5% tolerance components and the published valve characteristics, it is possible to design such a flip-flop to an accuracy of the order of 10%. Moreover, provided that a standard configuration is accepted, further design reduces to the simple equation

$$
t_{0}=\mathrm{KCR}
$$

It is not proposed to discuss the effect of tolerance variations upon the end result, for, as previously indicated, a pre-set control will take full account of such variations.

The information required to initiate the design is as follows:-
(1) Pulse duration, or durations.
(2) Pulse amplitude.
(3) Pulse polarity.
(4) Available h.t. supplies.

Circuit Operation.-Referring to Fig. 1, the grid resistor R of V 2 is returned to a positive potential, Eg , whilst the grid of V1 is returned to a lower positive potential. The design is such that the anode current of V 2 flowing in R_{5} creates a potential that, in conjunction with the potential upon V1 grid, causes V1 to be cut off. The initial stable condition then, is that V 2 is conducting heavily whilst V1 is cut off.

Trigger pulses of suitable polarity, as indicated in Fig. 1, upset the stable state as follows:-Positive pulses at V1 grid cause negative pulses at the anode and these are communicated through C to the grid of V2, thus causing the common cathode to drop. This switches on V1 thereby enhancing the original negative fall at the anode. The action is cumulative and results in V2 being switched off and in V1 being switched on for a period determined by the recovery time of V2 grid circuit. When the grid of V 2 has recovered to a point within the grid base of the valve, essentially the same cumulative action resets the circuit to the stable state.

Since R_{5} is common to V1 and V2 it will be seen that \mathbf{R}_{3} must be greater than R_{4} in order to produce a drop at the common cathode during the operative period.

Typical waveforms and voltage levels are shown in Fig. 2. These waveforms are self-explanatory and of a type given in many text-books. For present purposes it is sufficient to note that, in terms of the total potential grid excursion, i.e. from -50 V to +Eg , the grid base of the valve is negligible. In addition, the difference between the quiescent potentials of V2 grid and the common cathode is also negligible. "Cut on" then occurs at the common cathode potential obtaining during the pulse. This potential may be varied by means of the potential at V1 grid, thus providing control of the pulse duration. Outputs of opposite phase may be taken from anode and cathode, the cathode output being at a relatively low impedance. It is not desirable that outputs should be taken from the anode of V1 or the grid of V2, since the loading of the external circuit will affect the predicted performance. However, if a negative going pulse of approximately 150 V is required, then an output may be taken from V2 grid, provided that the external circuit is of high impedance.

The simple description given earlier may be modified by a number of effects. For example, the trigger pulse should be of

[^11]adequate amplitude and duration having regard to the rise time of R_{3} and the total stray capacity, $\mathrm{C}_{31}+\mathrm{C}_{38}$. Previously, it has been stated that an essential to the operation is that the common cathode must fall at the moment of initiation. If, in fact, the cathode does not drop adequately during the duration of the trigger pulse due to the effect of C_{k}, then regeneration will not occur and the circuit will behave simply as a cascaded amplifier. When using a trigger amplifier d.c. coupled into the anode of V1 the pulse duration will tend to be longer than that calculated, since V1 anode will fall by an amount dependent upon the anode current of V1 with the addition of an increment from the trigger amplifier.

The circuit operation depends upon the anode currents flowing during the respective "on" periods, so that design stability will be improved if these are subjected to negative current feedback. This may be accomplished by ensuring that the valves are operated during the respective "on" periods within the valve grid base, i.e. at a grid bias of about -1 V , and also by choosing an adequately large value for R_{5}. Valve V1 may be readily operated in the specified conditions by choosing a suitable value for its grid potential. For most purposes this is sufficient, but for more precise applications it is necessary to ensure that the quiescent grid potential of V 2 is also within the grid base. (Normally, V2 grid is operated at zero bias due to grid current flowing in the grid resistor R.) The clamping diode, V3, in conjunction with the potentiometer R_{8} and R_{7} can be used to ensure that the grid cannot move more positive than the potential at the junction of R_{8} and R_{7} this potential being chosen to give the desired conditions. In order to ensure satisfactory clamping the parallel impedance of R_{6} and R_{7} must be very much lower than that of R. In addition, the capacitor C_{1} should have a value very much greater than C in order to supply a re-charging pulse to C at the moment of clamping. In the absence of this capacitor a spike would occur on the lagging edge of the output pulse as the grid overshoots the clamp potential and then returns at a rate dependent upon $\mathrm{C}, \mathrm{R}_{6}$ and R_{7}.
In general, it is required that the rise and fall times of the output pulse should be as short as possible and, for this reason, the resistors across which outputs are taken are made as small as possible consistent with the limitation of valve anode dissipation. For a $12 \mathrm{AT7}$ working at an h.r. potential of +250 V this means that, from Fig. 3, the sum of R_{4} and R_{5} should not be less than $6.8 \mathrm{k} \Omega$. Thus, if it is decided that the cathode resistor R_{5} should have a value of $3.3 \mathrm{k} \Omega$, then the value of R_{4} should not be less than $3.6 \mathrm{k} \Omega$. However, if the design requirement does not require fast edges to the output pulse, then $\mathrm{R}_{4}+\mathrm{R}_{5}$ may be made larger than this minimum value, thus achieving economy in the operating current.
Introduction to Design.-The principles underlying the design may be summarized as follows:-
(1) The conditions in the two valves are considered separately during the respective operative periods.
(2) The valve V1 is operated within the grid base, i.e. at a bias of -0.5 V to -1 V , in order to obtain current stabilization.
(3) Grid current onset in V2 is assumed to occur at $\mathrm{V}_{g}=0$, and the anode current at this

Fig. 2. Cathode coupled flip-flop waveforms with typical voltage levels.

Fig. 3. Characteristic curves of ECC81:I2AT7 with loadines used.
point is assumed to be moderately constant from valve to valve.
(4) The grid base of V 2 is assumed to be negligible compared to the potential grid swing.
(5) For more precise applications, a clamping diode V3 is used to maintain V2 within the grid base during the quiescent period, in order to obtain current stabilization.
(6) A clamping diode may also be used when the value of R would cause excessive grid current at $\mathrm{V}_{g}=0$.
(7) A positive-going pulse of amplitude $i_{2} \mathbf{R}_{4}$ may be taken from the anode of V2.
(8) A negative-going pulse of amplitude $\left(i_{2}-i_{1}\right) R_{5}$ may be taken from the common cathode.
(9) All components shown in Fig. 1, except C_{1}, should be 5\% preferred values.

For present purposes R_{3} will be $33 \mathrm{k} \Omega$ and R_{5} $3.3 \mathrm{k} \Omega$. \mathbf{R}_{4} will be chosen having regard to the required amplitude of the output pulse, the maximum anode dissipation of the "normally on" valve, and the requirement that it should be smaller than R_{3} in order that the common cathode may fall adequately during the pulse. It may be observed here that \mathbf{R}_{4} may be zero if a negative pulse only is required.

Consider, now, the load line for $V 1$, the $36 \mathrm{k} \Omega$ line of Fig. 3. For a bias of, say, -0.5 V a current i_{1} flows, and this is the current in R_{5} when V2 is cut off. The potential at the grid of ${ }^{5} 1$ will be given by $\left(i_{1} R_{5}-0.5\right) \mathrm{V}$, and the ratio $\mathrm{R}_{2} /\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)$ is established. Actual values may be chosen having regard to a convenient current flow and preferred values of resistors. The effective negative bias on V1 when V2 is conducting will be given by $i_{2} R_{5}-\left(i_{1} R_{5}-0.5\right)=R_{5}\left(i_{2}-i_{1}\right)+0.5 \mathrm{~V}$. This value is dependent upon the difference between the two operating currents and must be greater than the grid base of V1.

If it is required to operate V2 within the grid base the ratio $R_{7} /\left(R_{6}+R_{7}\right)$ must be chosen to operate $V 2$ at a suitable negative grid bias relative to the cathode. Additionally, as we have already mentioned, the parallel sum of R_{6} and R_{7} must be very much less than the lowest value of R in order to ensure effective clamping.
Calculation of Pulse Duration.-Now that the operating conditions during the respective operative periods have been established it is possible to calculate the generated pulse width. Consider Fig. 4.
The amplitude of the exponential curve, relative to point A at any time t, is given by:-

$$
\mathrm{E}(t)=\mathrm{E}\left\{1-e^{-\frac{t}{\mathrm{~T}}}\right\}
$$

where $T=C R$

$$
\text { Therefore } e^{-\frac{t}{\mathrm{~T}}}=\frac{\mathrm{E}-\mathrm{E}(t)}{\mathrm{E}}
$$

$$
\text { and } \frac{t}{\mathrm{~T}}=\log _{e}\left\{\frac{\mathrm{E}}{\mathrm{E}-\mathrm{E}(t)}\right\}
$$

Giving $T=C R=$

$$
\begin{equation*}
\frac{t}{\log _{e}\left\{\frac{\mathrm{E}}{\mathrm{E}-\mathrm{E}(t)}\right\}} \tag{1}
\end{equation*}
$$

Putting the required time interval as t_{0} and the value of $\mathrm{E}(t)$ to the "cut on"point as E_{o}, we have then, from Fig. 6,

$$
\begin{aligned}
& \mathrm{E}=\mathrm{Eg}+i_{1} \mathrm{R}_{3}-i_{2} \mathbf{R}_{5} \\
& \mathrm{E}_{0}=i_{1} \mathrm{R}_{3}-\left(i_{2}-i_{1}\right) \mathbf{R}_{5}
\end{aligned}
$$

Since the grid potential of V2 during the quiescent period is very nearly equal to the common cathode
potential and the grid base of V2 is negligible compared to the total potential grid excursion (to $+\mathrm{E}_{2}$).
Thus $\mathrm{CR}=\frac{t_{o}}{\log _{6}\left\{\frac{\mathrm{Eg}+i_{1} R_{3}-i_{8} \mathrm{R}_{5}}{\mathrm{Eg}-i_{1} \mathrm{R}_{5}}\right\}}$
whence $t_{o}=\mathrm{KCR}$
where $\mathrm{K}=\log _{e}\left\{\frac{\mathrm{Eg}+i_{1} \mathrm{R}_{3}-i_{2} \mathrm{R}_{5}}{\mathrm{Eg}} \frac{i_{1} \mathrm{R}_{5}}{}\right\}$
and this is a constant for a given configuration in which only t_{o} and CR are variables.

For convenience equation (4) may be re-written

$$
\begin{align*}
\mathrm{K} & =\log _{e}\left\{\begin{array}{l}
\mathrm{Eg} / \mathrm{R}_{5}+i_{1} \frac{\mathrm{R}_{3}}{\mathrm{R}_{5}}-i_{2} \\
\mathrm{Eg} / \mathrm{R}_{5}-i_{1}
\end{array}\right\} \tag{5}\\
& =\log _{e}\left\{\frac{i_{3}+i_{1} \frac{\mathrm{R}_{3}}{\mathrm{R}_{5}}-i_{2}}{i_{3}-i_{1}}\right\} \ldots \tag{6}
\end{align*}
$$

$$
\text { where } i_{3}=\mathrm{Eg} / \mathrm{R}_{5}
$$

It may be shown that the circuit operation is less sensitive to variation of the individual components within the bracket if the bracketed term is made as large as possible consistent with other requirements. In the design to be discussed the value of this term is approximately 1.5 . This value is quite suitable, and since the function is logarithmic, an optimum value cannot be given. From equation (6) it may be inferred that R_{5} should be small. However, this contradicts the requirement for current stability.
As i_{3} will be greater than i_{1} it can be seen that, for the bracketed term to be positive, we must have $i_{3}>i_{2}-i_{1} \frac{R_{3}}{\mathrm{R}_{5}}$
i_{3} should be made large by using a high value for Eg. This is in accordance with the conception of having a large potential grid movement (returning to $\mp \mathrm{Eg}$) in order that, (a) the grid base may be considered negligible and that, (b) the rate of change of the grid movement through the grid base shall be fast, thus minimizing time jitter on the back edge of the pulse.

Apart from the basic design considerations previously discussed there are a number of factors establishing limits to the circuit values. These may be enumerated as follows:-
(1) C should be not less than about 100 pF in order to obviate the modifying effects of the stray capacitance C_{823} unless a cathode follower is interposed between V1 and V2.
(2) R should not be less than about $0.5 \mathrm{M} \Omega$ in order to limit grid current, except when a clamping diode is used. However, a low value of R will reduce the a.c. gain of V1.
(3) R should not exceed $10 \mathrm{M} \Omega$ from considerations of component stability and circuit leakage.
(4) When operating at high duty ratios C should have adequate time to recover. A time equivalent to at least $5 \mathrm{CR}_{3}$ should be allowed, and it may be that this consideration will dictate the choice of C and hence R.
(5) Components must be adequately rated. Cer(Continued on page 27)
tain components will have a dissipation dependent upon the duty ratio; this should be considered when designing a flip-flop of variable duration.
(6) Positive trigger pulses capacity coupled to V1 grid should not drive this valve into grid current, otherwise the recovery of the grid coupling capacitor will modify the circuit operation.
Practical Design.-As an example, the following specification will be discussed.
Pulse width $\quad . \quad 100 \mu \mathrm{~s}$
Output +50 V
H.T. Supply .. +250 V

Other considerations Variable duration not required. Fastest possible pulse edges consistent with using a standard valve type 12AT7. Extreme precision not required.
The design procedure then runs as follows

$$
\begin{aligned}
& \mathbf{R}_{3}=33 \mathrm{k} \Omega \quad, \quad \mathrm{Eg}=+250 \mathrm{~V} \\
& \mathbf{R}_{5}=3.3 \mathrm{k} \Omega, \mathrm{~V}_{3} \text { not required } \\
& \text { Try } \mathrm{R}_{4}+\mathrm{R}_{5}=6.8 \mathrm{k} \Omega
\end{aligned}
$$

From the characteristic curves of Fig. 3,

$$
\begin{aligned}
& i_{2}=14 \mathrm{~mA} \text { at } \mathrm{Vg}=0 \\
& \therefore \mathrm{R}_{4}=\frac{50}{14}=3.6 \mathrm{k} \Omega
\end{aligned}
$$

agreeing sufficiently with our values for R_{5} and $R_{5}+$ R_{5}.

If this trial had been unsuccessful different values for R_{4} and R_{5} would have been tried. There would be no objection to varying R_{5} within reasonable limits.

From the characteristic curves,

$$
i_{1}=4.5 \mathrm{~mA} \text { at } \mathrm{Vg}=-0.5 \mathrm{~V}
$$

Therefore $i_{1} \mathrm{R}_{5}=+14.8 \mathrm{~V}$
and the voltage at V 1 grid is given by

$$
i_{1} R_{5}-0.5=14.3 \mathrm{~V}
$$

Therefore

$$
\begin{aligned}
& \frac{\mathbf{R}_{\mathbf{2}}}{\mathbf{R}_{\mathbf{1}}+\mathbf{R}_{\mathbf{2}}}=\frac{14.3}{250} \\
& \text { i.e. } \frac{\mathbf{R}_{\mathbf{1}}}{\mathbf{R}_{\mathbf{2}}}=16.5
\end{aligned}
$$

This ratio is obtained if $R_{1}=240 \mathrm{k} \Omega$ and $R_{2}=$ $15 \mathrm{k} \Omega$, both of which are preferred values.

$$
\text { Proceeding, } \begin{aligned}
\mathrm{CR} & =\frac{100 \times 10^{-6}}{\log _{e}\left\{\frac{250+(33 \times 4.5)-(3.3 \times 14)}{250-(3.3 \times 4.5)}\right\}} \\
& =250 \times 10^{-6} \\
\text { Let } \mathrm{C} & =250 \mathrm{pF} \\
\text { Then } \mathrm{R} & =1 \mathrm{M} \Omega
\end{aligned}
$$

The pulse amplitude and duration of this design were 53 volts and $97 \mu \mathrm{~s}$ as measured on a Cossor oscilloscope.

Another flip-flop was designed by the same method but to a different specification. The durations measured on the same instrument were as follows:-

Calculated	Measured
406 ms	380 ms
263 ms	270 ms
128 ms	125 ms
73 ms	70 ms
41 ms	38 ms
26 ms	26 ms

All components shown in Fig. 1, except C_{y}, have

Fig. 4. Detail of V2 grid waveform.
an effect upon the circuit operation. Final trimming may be achieved by varying any such component.

The circuit of Fig. 1 has been used in production equipment as the heart of a decade counter with complete success. Greater precision than the basic circuit offers was obtained by utilizing an amplitude-limited negative pulse stream applied to V1 grid as terminating pulses.

A method of design has been offered which permits the engineer to design a flip-flop without excessive trial and error, and to achieve results within normal experimental error. The design formula for an established configuration has been reduced to $t_{0}=\mathrm{KCR}$.

Dates for Your "Wireless World" Diary

ANNOUNCEMENTS have already been made of the dates of many of this year's exhibitions and conventions, but for the convenience of readers we give below a list of the principal events in 1958.
Television Society Exhibition

$$
{ }^{n}, \ldots
$$

Royal Hotel, Woburn Place, London, W.c.i.

International Instrumentes Show
Caxton Hall. Westminster, London, S.W.I.
Electrical Engineers' Exhibition (A.S.E.E.)... ... March 25-29 Earls Court, London, S.W.S.
Convention on Radio Aids to Navigation March 27-28
I.E.E., Savoy Place, London, W.C.2.

Components Show (R.E.C.M.F.) April 14-17
Grosvenor House and Park Lane House, Park Lane. London, W.I.
Instruments, Electronica and Automation Show... Olympia, Landon, W. 14.
Audio Fair...
April 16-25
Waldor' Hotel, Löndon, W. W.c. 2 .
International Convention on Microwave Valves May 19-23 I.E.E., Savoy Place, London, W.C.2.

Netional Radio Show (R.I.C.) Earls Court. London. S.W.S.
Farnborough Air Show (S.B.A.C.) Sept. I-7
Electronic Computer Exhibition Nov. 28-Dec. 4 Olympia, London, W.I4.

OVERSEAS

Symposium on Reliability and Quality Control ...
Jan. 6-8 Washington, U.S.A
I.R.E. National Convention and Show March 24-27 New York, U.S.A.
British Electrical Conference May 16-17 Brussels, Belgium.
Solid State Physics in Electronics and Telecommunications (Conference) Brussels, Belgium.
International Analogy Computation Mesting ... Strasbours, France.
International Congress of Cybernatics Sept. 3-10 Namur, Belgium.

Magnetism in Materials

I.-The Physical Basis of Dia-, Para-, Ferro- and Ferri-Magnetism

BY D. H. MARTIN, Ph.D.

ALTHOUGH only four of the elements-iron, nickel, cobalt and gadolinium-are ferromagnetic, there is to-day available to the electrical engineer a remarkable range of magnetic alloys and compounds from which he must select the most appropriate for his particular application. In these articles I plan to examine more closely what conditions led to the distinctive and useful phenomenon of ferromagnetism, and then to illustrate how the bewildering variety of magnetic behaviour may be understood in terms of a few basic ideas.

All substances become magnetized when subjected to a magnetic field though sensitive apparatus is needed to detect the induced magnetization except in the case of the ferromagnetics. Most materials are either paramagnetic or diamagnetic. A specimen of the former kind will move, when placed in a non-uniform magnetic field, to the point where the field is most intense. This is because the induced magnetization is in the same direction as the field, as it is in the case of the fcrromagnetics. The intensity of magnetization, however, is at least a million times less than that which would be induced in a ferromagnetic sample. Specimens of a diamagnetic material, on the other hand, move to where the applied field is least intense, for example, away from the pole-pieces of a magnet. This is because the induced magnetization is opposite in direction

Fig.I. Oppositely magnetized super-lattices illustroting the spontaneous magnetizotion within each domain of a ferrimagnetic moterial.
to the applied field; it is of the same order of magnitude as that in a paramagnetic sample. Almost all organic materials are diamagnetic and, among the elements, copper, silver, gold and hydrogen are examples of diamagnetics, and oxygen, aluminium and platinum of paramagnetics.

Materials are magnetic because atoms themselves behave as magnetic dipoles, that is exactly as minute bar magnets or as minute electric current circuits. This, of course, is not surprising since it is well known that electrons circulate within each atom around its nucleus. There is, moreover, experimental evidence of a direct nature for the dipolar properties of individual atoms. In a non-uniform field a dipole experiences a translational force proportional to its dipole moment and in the 1920s Stern and Gerlach directed a beam of atoms, which had been evaporated from a metal in a furnace, through the pole gap of an electromagnetic which produced a non-uniform field. The beam was deflected and the deflection was registered by condensing the atoms on a cold plate where, after a time, they left a visible trace. In this way precise measurements of atomic dipole
moments were made and much was learnt about atomic structures.

A point of particular interest for our present purpose is that atoms of iron, nickel and cobalt do not have dipole moments which are very much larger than those of other atoms. The extreme ease with which a ferromagnetic may be magnetized to a high degree is certainly not due to its atoms possessing peculiarly high magnetic moments. It must, therefore be due to a particular kind of arrangement of the atomic dipoles, and I shall discuss this arrangement in some detail later. First I must describe briefly what happens in paramagnetic and diamagnetic materials.

Diamagnetism.-The several electrons in each diamagnetic atom or molecule move in orbits which are so directed that they give rise to a zero resultant magnetic moment in the absence of an applied field. There is a fundamental reason for electrons in atoms adopting such a balanced distribution and so diamagnetic materials are by no means uncommon. In an applied field, however, the magnetic forces which act on the electronic currents within each atom distort the orbits and thus induce a resultant magnetic moment, which is always opposite in direction to the applied field. This may be looked upon as an example of ordinary electromagnetic induction and the negative direction of the induced dipole corresponds to Lenz's law, which governs the direction of induced e.m.f. This process is diamagnetism.

Paramagnetism.-A paramagnctic atom, on the other hand, has a permanent dipole moment regardless of whether a field is applied or not. The magnetic fields due to the moving electrons in each atom do not cancel one another out. In the absence of an applied field the energetic thermal vibrations of the atoms in a paramagnetic sample cause their dipole moments to be directed in a completely random way, and the direction of each dipole changes rapidly with time. The overall magnetization of a sample is, therefore, zero. The fields attainable in practice are sufficiently intense only slightly to disturb this completely random arrangement. In the presence of an applied field each atomic dipole spends slightly more of its time in directions having components parallel to the applied field, and less time in directions opposed to the field. The sample as a whole, therefore, exhibits a weak magnetization and this is paramagnetism. In a hypothetical field of sufficient intensity the dipoles would approach a saturated condition, each being almost parallel to the field. This stage would be expected only if the magnetic potential energy of an atom became comparable to the energy of its thermal vibration. That is to say if

$$
\mu \mathrm{H} \approx k \mathrm{~T}
$$

where μ, k and T are respectively the dipole moment of an atom, Boltzmann's constant, and the
absolute temperature. Now μ is of the order 5×10^{-20} e.m.u. and k is $1.38 \times 10^{-10} \mathrm{erg}$ per ${ }^{\circ} \mathrm{K}$, and H cannot in practice exceed about 100,000 cersteds. Even with such intense fields, therefore, saturation effects should not be observable except at very low temperatures, a few degrees above absolute zero. Such effects have, in fact, been recorded recently in experiments conducted at about $4^{\circ} \mathrm{K}$, that is $-269^{\circ} \mathrm{C}$. At more normal temperatures the intensity of magnetization, I, is strictly proportional to the strength of the applied field, H , and the ratio I / H, that is the susceptibility, is of the order 10^{-5} e.m.u. for most paramagnetic materials at room temperature. This is in contrast with susceptibilities of more than 10^{3} in most ferromagnetic materials.

Ferromagnetism.-The characteristic feature of ferromagnetism is the attainment of a high intensity of magnetization in comparatively small fields, and even the retention of an intense magnetization when the field is switched off. As the field applied to a demagnetized specimen is increased the intensity of magnetization rises rapidly until saturation is attained when no further increase in magnetization is possible, however much the field may be increased. This occurs in fields of less than a few hundred cersteds, for some materials in fields of only an œersted or so. The saturation value of magnetization is just about what would be expected if nearly all the atomic dipoles were aligned parallel to one another. This is in fact the situation that exists in a saturated ferromagnetic material and the problem of ferromagnetism is to explain how this comes about in such small fields, in spite of thermal vibrations.
It is known that a sample of ferromagnetic material is made up of small contiguous regions, called domains, within each of which almost all the atomic dipoles are aligned exactly parallel to one another even in the absence of an applied field (see Fig. 3). This alignment is known as spontaneous magnetization and its direction in each domain is different from that in the neighbouring domains. Spontaneous magnetization is the basic characteristic feature of ferromagnetism. It can be destroyed only by heating the specimen above a critical temperature called the Curie point, which for iron is $770^{\circ} \mathrm{C}$, for nickel $358^{\circ} \mathrm{C}$, for cobalt $1,120^{\circ} \mathrm{C}$ and for gadolinium $16^{\circ} \mathrm{C}$.

The arguments of the previous section on paramagnetism therefore indicate, since saturation effects persist at these high temperatures, that whatever force it is that aligns the atomic dipoles to give spontaneous magnetization, it must be equivalent to a large internal magnetic field of some ten million cersteds! It was not until 1928 that the nature of these forces was discovered by Heisenberg. They are clearly too large to be ordinary magnetic forces and in fact they are due to an interaction, between neighbouring atoms, which requires the language of modern quantum physics for a full description. An atomic electron spins about its own axis as well as moving in an orbit round the nucleus. The elementary atomic dipole moments in ferromagnetic materials are in fact due entirely to the spin motions of certain of the electrons, the moments associated with the orbital motions cancelling out. Now a full quantum description of a spinning electron shows that between any two electrons there is an interaction, known as exchange interaction, which tends

Fig. 2. Variation of the spontaneous magnetization I_{s} of iron, nickel and cobalt, with temperature T. Iso is the spontaneous magnetization at absolute zero of temperature and T_{c} is the Curie temperature. Curve (a) is given by the simple Weiss theory, (b) by an improved Weiss theory and (c) records the experimental values of iron, nickel and cobalt.
to set the spin dipole moments either parallel or antiparallel to each other, depending on the details of the situation. The effects of exchange interactions in simple molecules are well established, but a metal consists of many millions of interacting atoms and the theory has not yet been fully worked out in rigorous detail. There is no doubt, however, that spontaneous magnetization is due to an alignment of the spin motions of certain electrons in the material under the action of exchange forces.

It is argued that the alignment will be parallel rather than anti-parallel if the number of interacting atoms is large and if the radius of the electron orbits is relatively small compared with the distance between the atoms. Now the electrons in an atom are arranged in "shells" at different distances from the nucleus. In an atom of an element belonging to the group known as the transition metals the resultant dipole moment is due entirely to the electrons in an inner shell known as the 3d shell. The magnetic effects of the other electrons cancel out. Of these metals, iron, nickel and cobalt have the smallest ratio of 3 d radius to atomic separation. That they are ferromagnetic is therefore in accord with the conclusion above. It is of great interest to note that manganese and chromium, both of which are transition metals, but paramagnetic when pure, can be rendered ferromagnetic by alloying them with certain other metals, thus altering the interatomic distances. For example the Heusler alloys are ferromagnetic. They contain manganese, copper and aluminium but no iron, nickel or cobalt. Compounds of manganese with arsenic, with bismuth, with tin, and several other elements are ferromagnetic. Chromium compounds containing antimony, arsenic, platinum, or a number of other elements are ferromagnetic.

Gadolinium is the only pure element other than iron, nickel and cobalt which is known to be ferromagnetic, though it is suspected that dysprosium might be at very low temperatures. As in the transition metals, the atomic dipole moment of gadolinium is due solely to the electrons in an inner shell.

There is a group of non-metallic materials which exhibits properties resembling those of the ferromagnetic metals. They are intimate mixtures of iron oxide and oxides of divalent metals and have recently gained commercial recognition mainly because of their high electrical resistivity, as I shall discuss in more detail in a later section. They are known as ferrites, and the term ferrimagnetic has been coined for the rather different arrangement of atomic dipoles in these materials. They resemble ferromagnetics in that they are spontaneously magnetized and have a domain structure, and they are often included under that title. A ferrimagnetic must be a compound because two kinds of dipole are involved. Nearly all the dipoles of the one kind are aligned parallel to each other, while the others

P preferred OR EASY DIRECTIONS

Fig. 3. Example of the arrangement of spontaneous magnetization in a domain structure. The alignment of atomic dipoles is illustrated in two of the domains.
are also aligned but in the opposite direction. The situation is illustrated in Fig. I. Spontaneous magnetization results from this anti-parallel arrangement since one kind of dipole is more numerous and/or has a larger dipole moment.

The general formula for a ferrite is $\mathrm{Fe}_{2} \mathrm{MO}_{4}$ where M is any divalent metal, for example copper, silver, magnesium, manganese, lead, zinc, etc. The crystal structure is of the type known as a spinel, that is the oxygen atoms are arranged on a close-packed cubic lattice and the metallic atoms occupy the interstices between the oxygen atoms. There are two kinds of interstice and they are known as tetrahedral and octahedral sites. A metallic atom in a tetrahedral site is surrounded by four oxygen atoms and in an octahedral site by six.

The elementary dipoles in a ferrite are the metallic atoms, those in one kind of site forming one spontaneously magnetized super-lattice and those in the other forming the oppositely directed superlattice. There are twice as many octahedral as tetrahedral sites and so an overall spontaneous magnetization results. Exchange forces are again responsible for the spontaneous magnetization, but whereas in a ferromagnetic metal the interaction favours parallel alignment, in a ferrimagnetic the interaction of predominant importance is that between a metallic atom in a tetrahedral site and its neighbours in octahedral sites, and this interaction is negative, favouring anti-parallel alignment, and the two oppositely magnetized super-lattices result. The intensity of spontaneous magnetization in a ferrite is, of course, considerably smaller than that in a ferromagnetic metal.

Only at absolute zero of temperature does the magnitude of the spontaneous magnetization in ferromagnetic materials correspond exactly to complete alignment of the elementary dipoles. Above this temperature thermal vibration of the atoms always causes a few dipoles to be unaligned. At the Curie point the thermal agitation is sufficient to override even the strong exchange forces and full disorder sets in with the complete disappearance of spontaneous magnetization.

The variation of the intensity of spontaneous magnetization, I_{2}, with temperature is shown for iron, nickel and cobalt in Fig. 2. Long before Heisenberg, in 1928, identified exchange interaction as the force producing spontaneous magnetization, Weiss had shown (1908) how the phenomenon could be understood in terms of a hypothetical molecular field and he derived an expression for the dependence of I_{s} on temperature which to a first approximation agrees well with the observed variation. He supposed that each elementary dipole behaved as if acted upon by a molecular field, which he assumed to be proportional to the mean magnetization of the specimen. The molecular field is now recognized as an approximate representation of the exchange forces, since the exchange force tending to set an atomic dipole in a particular direction is greater the larger the number of its neighbours already set in that direction, that is the larger the magnetization, I, in the material surrounding the dipole. Weiss used this assumption in elaborating upon the Langevin theory of paramagnetism which showed that the intensity of magnetization of a paramagnetic specimen depended upon H the applied field, and T, the absolute temperature, according to the relation:

$$
\mathrm{I}=\mathrm{I}_{0} \tanh (\mu \mathrm{H} / k \mathrm{~T})
$$

μ and k are the atomic dipole moment and Boltzmann's constant respectively, and I_{0} is the magnetization which would be observed if all the atomic dipoles were perfectly aligned. The presence of T reflects the effect of thermal vibrations. For H Weiss substituted WI, where W is the molecular field constant, thus

$$
\mathrm{I}=\mathrm{I}_{0} \tanh (\mu \mathrm{WI} / k T)
$$

This relation contains the dependence of I upon T. Since the applied field is zero, I is here the spontaneous magnetization, I_{3}. The relation above is plotted in Fig. 2 with the experimentally observed variation. The Weiss theory is only an approximation to the real state of affairs, and the fuller theories are complex and not yet fully worked out.

The molecular field representing the exchange forces proves to be of the order 10 million cersteds. It will be clear, therefore, that the fields used in practice, which seldom exceed 10,000 œersteds, are negligible in comparison and cannot change the magnitude of the spontaneous magnetization by a significant amount. The complicated changes in the overall magnetization of a specimen which occur when it is subjected to an applied field must therefore be due to changes in the direction of I_{5} in the domains of the sample. Recent studies of such changes have contributed enormously to our understanding of ferromagnetic behaviour and I shall describe the main features of domain theory in the following sections.
(To be continued)

Gold Dip-Plating, using "Atomex" solution developed by the Baker Platinium division of Engelhard Industries, is claimed on a variety of metals, including copper, zinc, nickel, iron, steel and pewter. The plating takes place by ionic displacement so that no electric current is necessary. Thus there is no possibility of electrical shielding and a uniform deposit even in recesses is obtained. Control of temperature and pH is necessary, particularly when depositing on copper and for obtaining consistent colour in decorative work. The solution may be operated between $60^{\circ} \mathrm{C}$ and boiling point, except for deposition on copper, when the range is from 45° to $75^{\circ} \mathrm{C}$. The pH is initially between 7 and 8, and should be kept in this region during deposition by adding small amounts of ammonia. Otherwise the solution becomes slightly acid and the pH drops to 6 . All the gold in the bath can be used and the spent solution thrown away. Suitable container materials are polyvinyl plastics or glass.
Gas Electrochemical Cell using hydrogen and oxygen (or air) has been developed by the National Carbon Company of America, and is described in the October 1957 issue of Electronics. Each gas is fed at a. pressure of about one atmosphere into a hollow porous carbon rod surrounded by potassium hydroxide as the electrolyte. The reaction produces water, which is removed by evaporation. As this is the only byproduct the cell theoretically has an infinite life. About one volt is developed, and it is hoped to produce as much as 1 kW per cubic foot of cell volume.

Photocell-Powered Ohmmeter, using a selenium cell as the source of electric current for a resistance bridge, has been developed by the Fairey Aviation Company for testing the firing circuits of guided missiles. The idea is to ensure that the electrical energy applied to the missile remains below the safety margin so that there is no danger of accidental ignition. Hitherto current or voltage limiting devices have been used, but of course these can break down.

With the selenium cell the output under any condition of light saturation or failure cannot exceed a shortcircuit current of 10 mA or an opencircuit voltage of 0.7 V . The bridge itself will measure $0-10 \mathrm{k} \Omega$ in four ranges with a fundamental accuracy of $\pm 0.3 \%$. The actual accuracy achieved, however, depends on the measurement sensitivity, which in turn depends on the current resulting from the light falling on the photocell. The light intensities required to produce detectable galvanometer currents with different range and scale settings and a $\pm 10 \%$ change of the "unknown" element vary between 0.7 and 13 foot candles. These are sufficient to give a measurement accuracy of approximately $\pm 5 \%$.
Ultra-Violet Galvo Recorder seen recently in operation at the Radar Research Establishment combines the sensitivity of galvanometer indication with the ability to give directly written records. This is achieved by using mirror galvanometers to reflect ultra-violet radiation from a mercury vapour lamp on to ultra-violet-sensitive recording paper. The trace is developed simply by exposure to daylight, and becomes visible immediately with low writing speeds and in less than ten seconds with high speeds. Made by New Electronic Products, the instrument provides six recording channels and has paper speeds of $0.2,0.6,2$ and 6 inches per second. A trace velocity as high as 10,000 inches per second can be obtained, and the galvanometers will operate over a frequency range from d.c. up to $2 \mathrm{kc} / \mathrm{s}$. The records are said to
be permanent unless exposed for a considerable time to strong daylight, and will remain stable for weeks under normal room illumination and hold indefinitely if filed away in the dark. For real permanence they can be fixed by standard photographic methods.

Valve Matching Circuit-D.C. amplifiers commonly consist of balanced push-pull stages. Drift can take place if variations in heater voltage affect one valve of a pair more than

the other. A new circuit described by D. J. R. Martin in the December issue of Electronic and Radio Engineer makes it possible to adjust the sensitivity of a valve to heater-voltage changes. Pairs of valves can then be matched so that balance is maintained even when the heater voltage varies. The matching principle depends on the fact that when heaters are supplied from a high-impedance source, changes in heater currens have a muzh greater effect than do changes in voltage when the valves are supplied from a low-impedance source. Differential adjustment of the source impedance "seen" by pairs of heaters in balanced amplifiers can therefore be used to equalize the sensitivities of the heaters to supply variations. In the circuit diagram, adjustment of R_{3} alters the source impedance. For example, with the slider in the extreme right-hand position, r_{2} is connected directly across a transformer winding, and therefore "sees" a very low source impedance, while r_{1} " sees " an impedance made up of R_{1} in parallel with something in excess of R_{3}. The left-hand valve is then supplied with heater power from a high-impedance source, so that it is? affected more by power-supply variations than the

right-hand valve. By adjusting R_{3} the sensitivities of the valves can be equalized.

Transistorized Timer recently introduced by Venner Electronics uses 46 transistors but has a consumption of only 1 watt at 12 V . It it constructed from nine packaged stages and has a range of time measurement of 0.1 msec to 27.8 hours. The basic time reference is a transistorized crystal oscillator operating at a frequency of $10 \mathrm{kc} / \mathrm{s}$. Pulses from this are passed via a gate to four decade counters, and thence to a mechanical counter. The division ratio given by the four decades is 10,000 , so that the mechanical counter receives 1 pulse per second. The elapsed time can be read in seconds from the mechanical counter, with four decimal places taken from meters, calibrated $0-9$, connected to the decades. The gating is arranged so that the open or closed times of contacts can be measured, or the time between one pair of contacts opening or closing and another pair opening or closing. Operation by

pulses is also catered for. Another timer has been developed by Venner for measuring the speed of road vehicles. This gives the time interval between the operation of two pressure switches which are actuated by the vehicle crossing two rubber tubes laid across the road at a known spacing. The switches open and close a gate which allows cycles of a $2.5-\mathrm{kc} / \mathrm{s}$ signal (obtained by frequency division from a $10-\mathrm{kc} / \mathrm{s}$ crystal oscillator) to be counted by three decades and displayed on three meters with digital scales. The frequency and rubber tube spacing are chosen so that the vehicle speed can be quickly calculated from the meter indication.

Helical Magnetization Patterns in magnetic wires, produced by the application of coincident circular and longitudinal fields, may provide the basis of a new kind of matrix store which is simpler and cheaper to manufacture than existing ferrite-core and magnetic-cell types. Exploratory work is being done by A. H. Bobeck at Bell Telephone Laboratories. The idea is that the matrix shall consist of arrays of vertical magnetic wires interwoven with horizontal copper
wires. Current passed through the magnetic wires produces the circular fields around them and current through the copper wires the longitudinal fields. The preferred direction of magnetization in the magnetic wires can be shifted from the normal longitudinal path to a helical path by mechanical torsion or perhaps eventually by processing during manufacture. The storing of a binary digit requires two coincident current pulses -one in a magnetic wire and the other in a copper wire. Reading out is accomplished by applying a strong longitudinal field in the reverse direction, and the read-out signal is detected across the magnetic wire. It is thought that at least 10 binary digits per inch could be stored without interaction on a magnetic wire formed by coating a conductor with magnetic material. Transistors could probably be used for the drive circuits.
Integrated Tuning Assemblies giving a simultaneous change of capacitance and inductance are being developed by Plessey for u.h.f. tuners. They consist of variable capacitors with stators incorporating inductive loops. When the rotor (which has no connections made to it) is unmeshed from the stator it becomes in effect a short-circuited secondary coupled to the inductors, thereby reducing their inductance at the same time as the capacitance is reduced. This system has been known as a "butterfly" resonator in the past because of the particular shape of the rotor vanes.
Superconductive Storage Element devised by International Business Machines and mentioned in our November, 1957, issue (p. 547) depends on the magnetic flux produced by circulating currents induced in a superconductive lead sheet. (The superconducting condition being obtained by operation at extremely low temperatures below $10^{\circ} \mathrm{K}$.) The lead film deposited on an insulator, has a hole cut in it with a lead bar metallized across. When a current pulse is sent through the drive conductor the resultant build-up of magnetic flux links with the superconductor and induces currents in it, as shown in the next column. These circulate indefinitely because of the zero resistance and set up their own magnetic flux. Whether a " 1 " or a " 0 " digit is stored is determined by the direction of the induced currents. Actually, the initial buildup of induced current is quite complex because the presence of a magnetic field affects the threshold of superconductivity and the induced magnetic field opposes the driving field. Reading-out is achieved by sending a current in the reverse direction along the drive conductor. This causes the induced currents to collapse, and the resultant change of magnetic flux induces a current pulse of one direction or the other in the sense conductor. An experi-

mental element described in the IBM fournal of Research and Development for October, 1957, is said to operate about 100 times faster than ferrite-core stores and to require less than a half of their driving current.

Thermal Delay Relay with greater rigidity and resistance to shock than conventional bi-metal strips has an actuating element which is fixed at both ends and expands longitudinally when its heater is energized. A simple mechanism (shown diagrammatically in the sketch) multiplies the difference in expansion between this element and a similar passive element so as to move the contact arm towards or away from the fixed contact. Ambient temperature changes expand the two elements equally and so do not move the contact arm. The time delay is set by the adjusting screw and arm, which determine the initial contact gap and consequently the time required for operation. Made by G.V. Controls, the relay is available from Mercia Enterprises in various types and ranges, with time delays from 0.5 to 180 seconds.

Wireless World, January 1958

Sturting Tape Driving Mechanisms*

MECHANICAL DESIGN TO AVOID LOO? FORMATION AND SNATCHING

IN magnetic recorders used for analogue signals (including broadcast programme material) the tape mechanism can be divided into three parts, the takeoff or feed reel and tension device, the take-up reel and drive, and the drive capstan and pinch wheel.
Such a combination is shown in Fig. 1 in which the tape tension on the feed side of the capitin is provided by means of a reel motor connected to exert an anti-clockwise torque as viewed from above. Ideally, the operation should be that the reeling devices set the desired tape tension and that the capstan is concerned only with tape motion. Practical considerations, however, set limits to the extent to which

Fig. 1. Typical tape driving mechanism.
this ideal may be achieved, the most important being (a) the inertia of reels, reel motors and tape, and (b) the variation of the outside radius of the tape on the reels throughout the paying time.

Under running conditions the effect of the variation of the radius of the reeled tape may be minimized by using reel motors with suitable torque/ speed characteristics, but the effects of inertia and of tape radius during the starting period cannot be modified without considerable elaboration of the mechanism. Consequently. it is difficult to avoid the formation of loops on the take-off side when the pinch wheel engages the tape with the rotating capstan. The formation of loops is generaliy followed by snatching as the take-up reel regains control. This irregularity of take-up tension can lead to undesirable effects such as uneven reeling, local stretching of the tape and, in bad cases, tearing.

Alternative Solutions.-One way of tackling the difficulty is to pass the tape through low-inertia "reservoirs" (e.g., vacuum boxes) on each side of the capstan and to control the reel motors by servomechanisms responsive to the position of the tape in each of the reservoirs. This method is often adopted if very fast start and stop times are required (e.g., for digital information in data processing equipment).
Another method is to tolerate the time required for acceleration of the reels and to engage the pinch wheel when the tape motion has reached its correct speed, i.e., when the tape soeed is substantia'ly equal to the peripheral speed of the capstan. While the tape

[^12] Ltd.
is being run up to full speed, it must be prevented from touching the capstan. It is also possible to engage the pinch wheel before energizing any of the motors, but the time required to reach steady speed conditions will then be unduly long because of the inertia of the capstan flywheel. If the drive motor is of the synchronous type, the settling time will again be increased. Fig. 1 shows a flexible coupling between the drive motor and the capstan flywheel; these form a mechanical :ow-pass filter. Transient oscil.ation in this coupling on starting can add further to the deay in reaching the steady state.

The following proposals make use of the second method suggested above, in which the acceleration tine is tolerated, first, for the simple case where the desired tape speed has only one value and, secondly, for the more complex case where provision is made for more than ons tape speed. In each case, the pinch wheel is actuated by an electromagnet, which is, in turn, energized via a relay. In each case, also, the tape speed is sensed by passing the tape over an auxiiiary wheel, called a tape wheel, which has a speed-measuring device fitted to its spindle.

Single Speed Operation.-In the simple case, as shown in the block diagram of Fig. 2, it will be seen that an analogue of the speed is compared with a fixed reference, and when the difference drops below a threshold level, the relay is energized and the pinch wheel engages the tape with the capstan.

One convenient form of speed-measuring device consists of a magnet and an eddy current disc (or cup) such as are connonly used in indicating tachometers. One can imag:ne a tachometer, the hair spring of which is so biased that the needle is normally held aga:nst the zero stop until the speed reaches the required value. If the needie operates an electrical contact as soon as it moves away from the stop, a relay can be energized and this in turn can operate an electro-magnet which moves the pinch wheel to i:s overative position (Fig. 3).

Another speed-sensitive device which may be used is a tacho-generator, preferably of the permanent magnet type, arranged to give either a d.c. or an a.c. output. In either case, the output voltage is an analogue of the speed and, in the a.c. case, the frequency of the output is also an analogue of the speed.

Fig. 2. Basic principle of pinch wheel control.

Fig. 3. Eddy current speed indicator.

left: Fig. 4. Tacho-generator for de, iving speed analogue.

Right: Fig. 5. Parallel tuned ci-cuit as - frequency sensitive relay shunt.

Fig. 6. Optical generation of speed analogue.

Fig. 7. Centrifugal switch.

A very straightforward embodiment of this principle, in which the speed analogue is the output vortage, uses the minimum value of operating current for the relay as a reference and so avoids the need for the separate reference shown in Fig. 2. Hence, all that is needed is to connect the generator direct to the relay but. in the a.c. case, a rectifier is necessary if the relay is not sensitive to a.c. (Fig. 4).

When the output frequency is used to provide an analogue of the speed, the resonant frequency of a parallel-tuned circuit may be used as a reference as shown in Fig. 5. At low tape speeds, the impedance of this circuit will be low compared with that of the series resistor, and the relay, which must be sensitive to a.c., is virtualiy short-circuited. However, as the speed approaches the required vaiue, the effective impedance increases and eventually the relay becomes sufficiently energized to operate. A series resonant circuit can be used in much the same way, the internal inductance of the generator being tuned by a series capacitance.

It will be realized that each of the methods so far described involves loss of energy which is obtained from the tape driving motors, via the tape. The tape will experience a drag from this cause, in addition to that due to the inertia of the system. This may be obviated by the use of a more refined transducer which modu'ates an auxiliary power supply. Fig. 6 shows an example using this principle: power is suppiied to the relay by light from an exciter lamp falling on a photovoltaic cell via a chopper, consisting of a low-weight slotted disc carried on the spindle of the tape wheel. The a.c. output from the cell is at a frequency which is an analogue of the speed. The reference may be a tuned circuit, of either the series or parallel type, as already described.

A centrifugal switch requiring a low operating torque and adding only a moderate inertia to the system may also be used. Fig. 7 shows a very useful form of this device in which two spring contacts are held apart by an insulated pad bearing on the lower spring. As the speed increases, centrifugal force acting on a pair of weights aistorts the springs which carry the weights and relieves the pressure on the spring contact so that the pinch-wheel relay circuit is closed when the tape speed is correct. The frictional torque is very small because the load on the rotating parts is applied along the axis of rotation.

As the value of the speed analogue approaches that of the reference, the pressure of the operating contacts is at first so light that "chatter" is to be expected with each of the devices so far described. Therefore, the reference va'ue must be so chosen that the pinch-wheel relay operates at a tape speed which is rather less than its final value, but not so much less that engagement of the pinch wheel causes the take-off tension to fall to zero. As the pinch wheel engages the tape, it is rapidly accelerated to full speed and the pressure of the operating contacts is thereby increased to a satisfactory value.

Multiple Speed Operation. Provision is often made for a choice of more than one speed, and accordingly the block diagram of Fig. 2 must be amended as shown in Fig. 8. It will be seen that the fixed reference must be replaced by a correct analogue of the capstan speed, assuming that the diameter of the capstan is not changed. If the capstan spindle speed is kept constant for both values of the tape speed by changing the capstan diameter, the fixed reference system remains suitable.

Fig. 8. Modified block diagram for multi-speed operation.

Fig. 9. Differential speed control of pinch wheel.

Fig. 10. Mechanical speed comparator.

Fig. 11. Electrical speed comparator.

Because the input quantities are both of the same form, i.e. rotating spindles, a differential gear train is a suitable form of comparator, and an example of this is shown in Fig. 9. A simple differential will give an output speed proportional to the difference between its input speeds and an output torque equal to the difference between the input torques. The particuiar arrangement shown in Fig. 9 makes the speed difference zero and utilizes the torque difference to provide contact pressure. Accordingly, the difference between the capstan speed and the tape wheel speed is absorbed in a friction coupling, and it is the reversal of friction, which occurs when the latter speed overtakes the former, which causes the contact operating arm to move to its alternative position.

Several other mechanical systems designed on lines simi'ar to that of Fig. 9, or closely related thereto, could be used but, since they all involve the use of siipping coupings, they cause drag on the tape wheel. These examples are by no means exhaustive and further devices, based on duplication of the simple schemes already discussed, are possible. For instance, a double version of the system shown in Fig. 7 cculd take the form shown in Fig. 10. The comparator then takes the form of a pivoted lever with the pressure pads of two centrifugal governors so arranged as to operate, one on each end of the lever.

The comparison may also b: obtained electrically by duplicating the system of Fig. 4 as shown in Fig. 11. In this case, two d.c. generators are connected in series opposition to the pinch-wheel relay. When the tape wheel generator output equals that of the capstan generator, the current in the relay falls to zero, releases the armature and completes the circuit to the pinch-wheel magnet. Because the differential voltage becomes small, or vanishes, the drag on the tape under running conditions is low.

CLUB NEWS

Birmingham.-At the annual dinner of the Slade Radio Society the president, C. H. Young (G2AK), announced that 42 members had been enrolled during the year, bringing the membership to 112 . The club meets on alternate Fridays at 7.45 at the Church House, High Street, Erdington. At the January 3rd meeting N. R. Nicholl (vice-chairman of the British Interplanetary Society) will speak on the instrumentation of space vehieles. Sec.: C. N. Smart, 110 Woolmore Road, Erdington, Birmingham, 23.

Bury.-The January meeting of the Bury Radio Sosiety will be held at 80 on the 14th, when members will hold a debate on "Phone versus CC.W." Meetings are held at the George Hotel, Kay Gardens. Sec.: L. Robinson, 56 Avondale Avenue, Bury, Lancs.

Prestatyn.-Meetings of the Flintshire Rad:o Society are held on the first Monday in each month at 7.30 at the Railway Hotel. Sec.: J. Thornton Lawrence (GW3JGA), Perran Porth, East Avenue, Prestatyn, Flint.

Rochdale.-A new club, to be known as the Roch Valley Radio Club, has been formed in the borough. Meetings are being held each Tuesday at 8.0 in the Windmill Hotel, Sudden. Enquiries to D. J. Power, 2 Clement Street, Rochdale, Lancs.

Wellingborough.-At the January 30th meeting of the Wellingborough and District Radio and Television Society, L. Parker (GSLP) will speak on "This DX Business." The club meets each Thursday at 7.30 at the Silver Street Club Room. Sec.: P. E. B. Butler, 84 Wellingborough Road, Rushden, Northants.

Fig. 1. Heat sink and output stage assembly.

HYBRID CIRCUIT FOR 12-VOLT
OPERATION WITH TRANSISTOR OUTPUT

By J. C. BECKLEY,* B.Sc.(Eng.)

Car Radio Receiver Design

IT has been appreciated for many years that it is possible to obtain acceptable performance, in terms of voltage gain, from thermionic valves operated with low anode voltages such as are available from car batteries. However, it is not possible to obtain from a practical valve operating at low anode voltage anything like sufficient audio output power to drive a loudspeaker. Consequently, until quite recently, all car radio receivers and similar mobile equipment have incorporated standard mains valves and a vibrator, or d.c. convertor, to provide a high linevoltage.

The recently introduced power transistor is an excellent solution to the output power problem,
because a suitable transistor with a $12-\mathrm{V}$ supply can provide several watts output. Many of the present types of mains valve give a useful performance with an h.t. of only 12 V , but a new range of valves specially designed for this application is now available.

A hybrid design for a car radio has a number of distinct advantages over all-valve and all-transistor receivers. The present cost of transistors makes an all-transistor receiver for this particular application expensive, but a relatively inexpensive hybrid recciver may be designed employing four valves plus one power transistor. The great superiority of the
*Mullard Ltd.

Fig. 2. Theoretical circuit of the hybrid car radio receiver with on OC16 power transistor in the output stage.

hybrid receiver is that the vibrator h.t. supply is dispensed with. Speaking generally, both the transistor and the valve have much longer working lives than the vibrator, and the potential reliability afforded by the hybrid design is therefore very much greater. Vibrator supplies usually involve an expensive transformer and, also, careful filtering of the d.c. output is necessary to avoid introducing interference from the vibrator. The characteristics of the new valves permit the design of receivers having the same performance as those equipped with normal h.t. operated types, so that nothing is sacrificed by omitting the vibrator pack. Moreover, the current drain of the hybrid receiver is about two or three times less than that of a conventional car radio.

A $12-\mathrm{V}$ car radio receiver is described here for medium- and long-wave operation and it is designed around a normal production car radio tuning unit incorporating permeability tuned aerial, r.f., and oscillator circuits. The output stage is constructed as a separate unit mounted with the loudspeaker.

The new range of valves for application in hybrid receivers are the Mullard ECH83, EBF83, and EF98. The ECH83 is a frequency convertor of the well-known triode-heptode type. The ECH83 heptode section is also applied as r.f. amplifier and the triode section as a.f. voltage amplifier. The EBF83 is a double-diode pentode and combines the functions of i.f. amplification, detection and a.g.c. The EF98 is a straight pentode which has been designed to provide sufficient power output (a few milliwatts) to drive the transistorized output stage.

The output transistor is the Mullard OC16 power transistor, which can be operated at a high value of collector dissipation providing an output of about 2.5W.

Receiver Design.-The audio output obtainable with a single OC16 is considered to be sufficient for normal purposes. Push-pull operation has not
A.F. AMPLIFIER DRIVER OUTPUT

been considered here because this design is intended to apply to an inexpensive receiver.
The quality of a car radio depends to a large extent upon the effectiveness of the a.g.c. since rapid and intensive variations of field strength may occur when the car is moving. In the hybrid car radio with a low anode supply voltage the control voltage is obviously small. In order to obtain effective control, therefore, the grid base of the controlled valves is kept small. In this receiver a.g.c. is applied to the r.f. and mixer valves only. No a.g.c. is applied to the i.f. valve as this would reduce the available control voltage.
The r.f., mixer and i.f. stages are operated with grid current bias. The values of grid leak chosen are a compromise between circuit damping and valve operating slope. The valves in the above stages have a high internal impedance ($>500 \mathrm{k} \Omega$) so that normal r.f. coils and i.f. transformers are employed. The oscillator drive voltage required by the ECH83 mixer is much less than the value required for this type of mixer operating at high anode voltage. Thus, normal, medium- and long-wave permeability tuned oscillator coils may be used in the hybrid receiver, although the effective slope of the ECH83 oscillator section is not as high as ordinary types. The Output Stage.-In order to obtain sufficient power output from the single OCl 16 (about 2.5 W), it is necessary to operate the transistor at a high collector dissipation. The junction temperature must be limited by the use of an efficient heat sink. Fig. 1 shows the arrangement employed; the OCl 6 is mounted directly on $2-\mathrm{mm}$ thick aluminium bracket approximately 300 sq cms in area. The transformers associated with the output stage are also mounted on the heat sink. The case of the OC16 is connected to the collector, the heat sink is therefore at collector potential and must be insulated from the main chassis.

The terminal voltage of a car battery varies considerably due to variations of load and charge conditions. A battery of nomunal 12 V is reckoned to have an average voltage of 14 V and a possible maximum of 15 V . Hence, the output stage is designed for a normal voltage of 14 V and safe operation at 15 V .

The circuit is designed for continuous operation at ambient temperatures up to $45^{\circ} \mathrm{C}$. At $45^{\circ} \mathrm{C}$ the junction temperature does not exceed $75^{\circ} \mathrm{C}$, the normal limit mentioned in published data. Operation at junction temperatures up to $90^{\circ} \mathrm{C}$ is possible for short periods (life expectancy at junction temperature of $90^{\circ} \mathrm{C}$ is greater than 200 hours) without serious effect upon the transistor. This allows occasional operation at ambient temperatures up to $60^{\circ} \mathrm{C}$. The circuit is safe from thermal runaway at a battery voltage of 15 and junction temperature of $90^{\circ} \mathrm{C}$.

Circuit Description.-The circuit of the receiver, which is shown in Fig. 2, is designed to permit direct connection to a car chassis; the positive line is therefore earthed.

The tuning unit provides separately tuned aerial circuits, L_{1} and L_{2}, for medium and long waves and a single tuned r.f. coil, L_{3}, with an additional loading coil, L_{4}, for long waves. The input circuits are designed to match a low-capacitance aerial. The r.f. amplifier is the heptode section of an ECH83 and is operated with grids 2,3 , and 4 at h.t. potential. The valve has a grid leak of about $1.5 \mathrm{M} \Omega$ taken to
a point 1.5 V positive with respect to the cathode.
The EC.H83 is operated as a multipli-ative mixer with a Colpitts oscillator. The oscillator circuit incorporates a single tuned coil, L_{5}, for mediumwave operation, an additional loading coil, L_{6}, being switched into circuit for long waves. The triode anode is connected to h.t. positive via a choke, L_{7}, which involves negligible d.c. voltage drop, but provides sufficient inductance to avoid restricting the normal frequency swing of the oscillator. An inductance of about 25 mH is adequate for this receiver. The mixer section is operated with a grid leak of about $2.5 \mathrm{M} \Omega$ connected to 1.5 V positive. An additional positive bias is applied to the grid via a $10-\mathrm{M} \Omega$ resistor taken to the plus 6 V point on the heater chain.

The EBF83 is grid-current biased by a $3 \cdot 3-\mathrm{M} \Omega$ resistor returned to the cathode. A resistor, \mathbf{R}_{2}, in the cathode circuit provides the positive voltage which is applied to the grid resistors of the r.f. and mixer stages. No a.g.c. is applied to this stage.

Detector and a.g.c. diode loads, \mathbf{R}_{3} and \mathbf{R}_{4} are returned to the EBF83 cathode. The detector load, \mathbf{R}_{3}, is used as the volume control. The a.g.c. voltage is derived from the anode of the i.f. valve and is delayed by the positive voltage across the cathode resistor, further delay being applied to the mixer valve by the $10-\mathrm{M} \Omega$ resistor, R_{1}, taken to plus 6 V . In this way the control characteristics of the r.f. and mixer valves are lined up to give optimum signal handling.

Standard medium-impedance $470-\mathrm{kc} / \mathrm{s}$ i.f. transformers are used in this receiver.

The detector output is fed into the triode section of the first ECH83. The triode is biased by grid current with $R_{g 1}=10 \mathrm{M} \Omega$. It functions as an a.f. voltage amplifier.

The EF98 a.f. driver stage is operated as a tetrode with g_{3} connected to the anode. The output is transformer-coupled to the output stage. A low value resistor, R_{3}, is included in the cathode circuit across which negative feedback is applied from the output stage.
Output Stage.-The OC16 transistor is used in the earthed-emitter mode with a series emitter resistance R_{6}. Base bias is derived from a resistor R_{7} in series with the heaters of the valves. The non-linear voltage-current characteristic of the heaters, decreases the effect of battery voltage varia-

Fig. 3. Reflected load lines of output transistor on $V_{a} l_{a}$ curves of EF98 driver valve.
tions on the bias voltage. A resistor of about 2Ω is required in the heater circuit in any case to drop the voltage across the heaters to about 12.6 V with a nominal battery voltage of 14 V . The low value of base bias resistance, and the use of an emitter resistor wound with copper wire (which has a small positive temperature coefficient), give effective stabilization of collector current with temperature. A fuse is included in the collector supply as protection against accidental short circuits between the heat sink, which is at collector potential, and the chassis.
Matching Driver Valve to Transistor.-As the input characteristic of the transistor is non-linear, the reflected load on the driver valve is similar. The performance of valves is generally expressed in relation to resistance loads, therefore it is necessary to determine a resistance load equivalent of the transistor input characteristic. Fig. 3 shows dia-

Fig. 4. Relationship between power output and distortion for 0C16 transistor.
grammatically how the load line of a low-limit transistor appears on the EF98 $\mathrm{V}_{\mathrm{n}} / \mathrm{I}_{\mathrm{n}}$ curves. Low-gain transistors generally have a low input impedance, thus the matching transformer ratio is chosen so that maximum power is available from the valve to drive low-impedance transistors. However, the optimum ratio is a compromise between perfect impedance matching and the primary inductance obtainable in an acceptable size transformer.

It is important that the matching transformer is phased so that increase of collector current corresponds to increase of anode current. This enables maximum power to be obtained from the valve and also helps to minimize second harmonic by partial cancellation of that generated in the valve and trans.stor. Negative Feedback.-As previously menuoner negative fzedback voltage from the OC16 collector is applied across a resistor, \mathbf{R}_{5}, in the cathode circuit of the EF98. The feedback does not increase the drive requirements of the transistor. In addition to decreasing the distortion, the gain spread of the output stage, due to the relatively large spread of transistor characteristics, is considerably reduced by the application of feedback.
(Continued on page 39)

The negative supply to the valves' cathodes is filtered by an r.f. choke, L_{8}, of about 40Ω d.c. resistance. The transistor supply is taken directly from the battery.

Decoupling of individual stages was not found necessary in this receiver. The choke L_{8}, together with a total capacitance of $100 \mu \mathrm{~F}, \mathrm{C}_{1}$ and C_{2}, across the valve supply will generally provide sufficient decoupling, but if it should prove inadequate R_{g} and C_{3} may be included.
Receiver Performance.-(i). R.F. Stage (ECH83 heptode section).-The measured r.f. gain at several frequencies is given in Table 1 together with the r.f. circuit impedance.
(ii). Mixer Stage (ECH83).-Measured conversion gain at $1 \mathrm{Mc} / \mathrm{s}=17$ times. I.F. transformer transfer impedance $=87 \mathrm{k} \Omega$. Conversion slope of $\mathrm{ECH} 83 \bumpeq$ $200 \mathrm{~mA} /$ volt. Measured oscillator grid voltage $=1.0$ to 1.5 V rms.
(iii). I.F. Amplifier (EBF83).-Measured gain at $470 \mathrm{kc} / \mathrm{s}=52$ times. I.F. transformer transfer impedance $=55 \mathrm{k} \Omega$. EBF83 operating slope $=$ $0.95 \mathrm{~mA} /$ volt.
(iv). A.F. Voltage Amplifier (ECH83 triode section).Measured gain at $1,000 \mathrm{c} / \mathrm{s}=6$ times. Output voltage for 5% distortion $=1.8 \mathrm{~V}$ rms.
(v). Driver Stage (EF98). -The optimum load of the EF98 operating with $\mathrm{V}_{a}+g_{9}=12.0 \mathrm{~V}$ and $\mathrm{V}_{q 2}=$ 12.6 V is $4.5 \mathrm{k} \Omega$. The valve is grid current biased with $R_{g 1}=10 \mathrm{M} \Omega$. Under these conditions a maximum power output of 13 mW is obtained for 10% distortion.
Table 2 gives the EF98 input voltage required to drive the output transistor to full output and also for IW output. Sensitivities are quoted for both average and low-limit gain transistors.
(vi). Output Stage.-
(a) Heat Sink:-The arrangement of Fig. 1 gave a total thermal resistance of $4.5^{\circ} \mathrm{C} /$ watt when tested in the laboratory. However, as the thermal resistance would vary, depending on the circulation of air and other local conditions, it is important to measure the thermal resistance under actual working conditions. A total thermal resistance of $4.5^{\circ} \mathrm{C} /$ watt (or less) under working conditions is essential for operation of the OC16 at the conditions mentioned here.
(b) OC16 Operating Requirements:-

Supply voltage $=14 \mathrm{~V}$.
Collector current $=475 \mathrm{~mA}\left(\right.$ Preset by $\left.\mathrm{R}_{7}\right)$.
Collector dissipation $=6.6 \mathrm{~W}\left(25^{\circ} \mathrm{C}\right.$ to $\left.45^{\circ} \mathrm{C}\right)$.
Collector load $=25 \Omega$.
Base Voltage $=1.14 \mathrm{~V}$ to 1.37 V .
Base current $=6 \mathrm{~mA}$ to 30 mA .
Output power $=2.4 \mathrm{~W}$ at start of clipping. (Into transformer primary) 2.9 W at 10% distortion.
(Fig. 4 shows the variation of distortion with transistor output power.)

Overall Receiver Pericrmance,-

Heater Chain $\bumpeq 1.1 \mathrm{~A}$ at 14 V .
Measured Sensitivity.-Sensitivity figures are quoted for an a.f. output of 1 watt with an average transistor and a modulation depth of 30%. (See Table 3).
I.F. Selectivity.-The overall i.f. response is approximately $7 \mathrm{kc} / \mathrm{s}$ for 6 dB down.

Fig. 5. A.G.C. characteristic of the receiver.
A.G.C. Performance (See Fig. 5).-The a.g.c. curve shows that a delay is maintained up to an input of about $100 \mu \mathrm{~V}$ at the grid of the r.f. valve. The maximum signal handing of the receiver corresponds to an input of approximately one volt at the r.f. valve grid.

The receiver was tried in a modern car and no difficulty was experienced with interference from the dynamo or ignition system. It is possible that as the receiver has valve cathodes floating, interference may be introduced from the heaters. In this case it may be necessary to filter the heater supply by inserting a low resistance choke in series with the resistor R_{7}.
table I

Frequency	Circuit Impedance	Gain
$1,000 \mathrm{kc} / \mathrm{s}$	$67 \mathrm{k} \Omega$	55 times
$11.40 \mathrm{kc/s}$	$48 \mathrm{k} \Omega$	40
$60 \mathrm{kc/s}$	$92 \mathrm{k} \Omega$	76
$200 \mathrm{kc} / \mathrm{s}$	$37 \mathrm{k} \Omega$	31

* Measured 'rom r.l. valve grid to mixer srid. The above values of gain correspond co a valve slope of approximately $0.83 \mathrm{~mA} / \mathrm{V}$.

TABLE 2
$\left.\begin{array}{|l|l|l|l|}\hline \hline & & \begin{array}{c}\text { Low-gain } \\ \text { transistor }\end{array} & \begin{array}{c}\text { Average } \\ \text { transistor }\end{array} \\ \hline \begin{array}{l}\text { Input for } \\ \text { transistor output }\end{array} & \ldots\end{array}\right)$

TABLE 3

Frequency	Aerial Input*	R.F. Valve Grid Input
$1,400 \mathrm{ke} / \mathrm{s}$	$1.5 \mu \mathrm{~V}$	$10 \mu \mathrm{~V}$
$1.000 \mathrm{ke} / \mathrm{s}$	1.0 V	$7 \mu \mathrm{~V}$
$600 \mathrm{k} / \mathrm{s}$	$1.0 \mu \mathrm{~V}$	$4 \mu \mathrm{~V}$
$20 \mathrm{ke} / \mathrm{s}$	$3.0 \mu \mathrm{~V}$	$12.5 \mu \mathrm{~V}$

*Measurements o the aerial sensitivity were made with a 47-pF capacitor between the signal generator and the aerial input.

The receiver covers the medium and long wavebands only. It has been found that short-wave operation is possible if capacitive tuning is employed.

The results obtained with the hybrid receiver proved highly successful and very promising, not
only for car radios, but also for the future development of other mobile communication equipment fed from a low-voltage supply source.

The author is indebted to L. H. Light for the design of the output stage, and for his advice in the preparation of this article.

A PICKUP TO TRACK AT 2 GRAMS

THE design of barium titanate transducer pickups with tracking weights of two grams or less was described at the 1957 I.R.E. National Convention by W. E. Glenn of the G.E. Company of America. A sketch of the cartridge is shown in Fig. 1. The 2 -mil barium titanate sheet is fastened on one side to a stainless steel wedge. Thus, if this wedge is bent, it will strain the barium titanate and so generate a voltage between its surfaces. The 7 -mil diameter $20-\mathrm{mil}$ long diamond or sapphire stylus is forcefitted into a hole in the 0.7 -mil stainless steel quillshaped tip, and further secured with a small drop of Araldite cement.
The cartridge is attached to the arm by butyl rubber to allow it to retract before the cartridge or record can be damaged if the pickup is dropped. The vertical bearing of the arm contains grease which damps the low-frequency resonance between the stylus compliance and arm mass, and also renders the pickup less susceptible to external vibration. The moment of inertia of the arm is reduced by the
 same factor as the tracking weight to secure the same stability with warped records as for a standard arm.
The small section of the vertical wedge between the quill and barium titanate provides the lateral stylus compliance. The thickness of the quill is chosen so that the vertical compliance is about one-fifth of this. Vertical motion of the stylus does not produce any output because of the lateral symmetry of the quill.

The upper frequency of resonance f between the effective mass at the stylus tip and the groove wall and stylus compliance is proportional to t / L^{2}, where t is the wedge thickness and L the wedge length. The charge Q developed across the barium titanate is proportional to FL^{2} / t^{2} where F is the flexing force. For a given resonance frequency f and tracking weight (which fixes F), this becomes $Q \propto f / t$. Thus to secure the maximum possible output, t is made as small as possible, and I then chosen to give a suitaably high resonance frequency f. To avoid the necessity for an input resistance of more than $1 \mathrm{M} \Omega$ the capacity of the barium titana:e element is made about 1000 pF by choosing a suitable width.

Cartridges with different stylus compliances corresponding to tracking weights from $\frac{1}{2}$ to 2 gm . have been made. The effective mass at the stylus tip for the $2-\mathrm{gm}$ version is 0.1 mgm . The output after

Fig. 2. Frequency response with Cook IO-LP record.
compensation to the R.I.A.A. frequency characteristic is about 40 mV . The frequency response using a Cook 10-LP record run at 33$\}$ and 78 r.p.m. is shown in Fig. 2, from which it is seen that the upper resonance frequency is about $40 \mathrm{kc} / \mathrm{s}$.

New Avo Multiminor

THIS new 19 -range instrument has a maximum d.c. current sensitivity of $100 \mu \mathrm{~A}$ f.s.d. The meter series impedances are $10,000 \Omega / \mathrm{V}$ and $1,000 \Omega / \mathrm{V}$ for the seven d.c. and five a.c. voltage ranges respectively. Potentials up to $1,000 \mathrm{~V}$ a.c. or d.c. can be measured. Two resistance ranges (0 to $20 \mathrm{k} \Omega$ or 0 to $2 \mathrm{M} \Omega$) are provided, using an internal $1 \frac{1}{2}-\mathrm{V}$ U12 cell with an adjustment to compensate for ageing. The full-scale error does not exceed 4%. Ranges are selected by a highquality rotating switch, the 18 fixed silver-plated contacts being wiped by a double contact arm. Some of the resistors are printed; one on a switch-plate forming an integral part of the selector switch mechanism, and another forming the universal meter shunt. Two models at the same price of $£ 910$ s are available, one for use in very humid climates. The address of the manufacturers is 92-96, Vauxhall Bridge Road, London, S.W.1.

Valves, Transistors and Efficiencies

By "CATHODE RAY"

0NE of the little puzzles for the beginner is how it can be that a valve (or transistor) is heated less by a given number of watts put into it when it is working hard than when it isn't working at all. This is so contrary to our own experience, which is that the harder we work (physically) the hotter we get.
Take for example an audio output stage driving a loudspeaker, as in Fig. 1. Suppose it is receiving 40 mA at 250 V . That, of course, is an input power of $250 \times 40 / 1000=10$ watts. If the grid is receiving no signal, so that the anode current is pure d.c., the whole of this 10W goes into the valve, which is heated accordingly. But if now the grid is made

Above: Fig. 1. If o constant d.c. power is supplied, why does the valve s share become less when the grid is made alte nately more negative and positive?
Right: Fig. 2. Variations of current and voltoge in a typical example of Fig. 1 during one whole cycle.

alternately more positive and negative at audio frequency (and assuming for simplicity that the valve's characteristic curves are perfectly straight over the parts concerned, so that there is no distortion) the average anode current and voltage are just the same as before, yet some of the 10 W of power is going into the loudspeaker. So the power going into the valve is that much less and it doesn't get so hot.

Fig. 2 shows the sort of thing that is happening during one cycle of the a.f. signal. The sine wave at the bottom represents the grid voltage being swung above and below a -20 V bias level. The anode current I_{a} increases and decreases in time with it, with an amplitude (shall we say) of 30 mA , that it touches 70 mA at maximum (A) and drops to 10 mA at minimum (B). Suppose the impedance of the load at the frequency concerned is $5 \mathrm{k} \Omega$, purely resistive. Then when the anode current rises by 30 mA there is a drop of $30 \times 5=150 \mathrm{~V}$ across the load, so the voltage at the anode falls by that amount to 100 V . Similarly at the current
minimum it rises to 400 V , as shown in Fig. 2. As we see, the average current through the valve is the same as when there is no alternation, and this goes too for the voltage across it. Why, then, is there less power being dissipated as heat in the valve?

We can get a clue if we calculate the power at various phases, say for a start the peak points A and B. At A the power going into the valve is $100 \times 70 / 1000=7$ watts, and at B it is $400 \times 10 /$ $1000=4$ watts. If the signal swing were sufficient to reduce either I_{a} or V_{a} to zero, then obviously the power into the valve at those instants would be zero, no matter how large the other factor might be. The aim, then, is to make either factorcurrent or voltage-as near zero as possible while the other is high.

The average power during each whole cycle can most easily be found by reckoning how much is going into the load and deducting that from the total supplied-10W. The power in a resistance load is of course equal to the product of the r.m.s. values of current through and voltage across it. With a sine wave the r.m.s. value is equal to the peak value divided by $\sqrt{ } 2$. So in our example the power is $150 \times 30 / 1000 \div 2=2.25 \mathrm{~W}$. The valve dissipation is thus reduced from 10W to 7.75 W . And the efficiency (useful power power supplied) is 0.225 , or $22 \frac{1}{2} \%$.

This, incidentally, though not an impressively high figure, is pretty good going for a triode, if there is to te only moderate distortion. But why be content with this; why not drive it harder, so that both I_{a} and V_{a} touch zero at the peak minima, the load resistance being adjusted to make this possible? The answer is provided by the I_{a} / V_{a} characteristic curves (Fig. 3), which are essential for finding out the best working conditions. Even although the triode curves here shown are somewhat idealized (I have never seen such good ones

Fig. 3. Rather better than lifelike triode characteristic curves with "load line" corresponding to Fig. 2.
belonging to any real triode) it is clear that the power that can be put into the $5 \mathrm{k} \Omega$ load-or indeed any load resistance-could not be materially increased without encroaching into the positive grid-voltage region or the bottom bend region, both of which would cause a quick rise in distortion.

The " $\mathrm{V}_{g}=0$ " curve is a particularly irksome restriction, because it prevents us from getting V_{a} down to anywhere near zero. This is one reason for the popularity of pentodes and kinkless tetrodes, whose curves have shapes that allow wider voltage swings (Fig. 4). Even so, in valves of the 10 W order there is usually a useless minimum voltage of at least 50 V .

Transistors present a much more attractive picture in this respect. Fig. 5 shows a typical set of I_{c} / V_{c} curves, which are spaced beautifully evenly and have a useless minimum of only about 0.2 V ! Even allowing for the working V_{c} being much lower than the corresponding V_{7}, this is a vast improvement. It is so near perfection that there is more than merely academic interest in enquiring into the efficiency of a perfect output stage-one in which both current and voltage touch zero. Fig. 6

Fig. 4. Typical tetrode or pentade curves for comparison with fig. 3, showing reason for higher power efficiency.

fig. 5. Typical transistor curves, showing reason for still higher efficiency.

Fig. 6. Load line for an ideal output amplifier, restricted only by inability of current and voltage to be negative.
shows the load line in such a case. Current and voltage swing up and down from the working point P. For equal swings in both directions, obviously $\mathrm{I}_{\operatorname{mnx}}=2 \mathrm{I}_{0}$ and $\mathrm{V}_{\max }=2 \mathrm{~V}_{o}$. The output power, calculated as before, is thus $I_{o} V_{n} / 2$; and the input is $\mathrm{I}_{0} \mathrm{~V}_{\emptyset}$. So the efficiency is exactly 50%.

That is for "Class.A" amplification, in which the power fed in is the same for all amplitudes, because current and voltage swing equally up and down so that their averages are constant. If the efficiency is to be raised any higher, severe distortion is unavoidable, because even in this perfect device the current and voltage are assumed not to be able to go less than zero. That may seem to bar the way to even tolerable a.f. reproduction, let alone " hi fi." But what can be done is to amputate one half of every cycle completely, because that kind of distortion enables the efficiency to be increased very substantially, and although the distortion is drastic it can be put right by simultaneously amplifying the other half of each cycle and bringing the separate halves together into whole cycles. The method of doing this is known as "Class B" push-pull, and as we are at the moment considering only the power efficiency aspect I must assume you know all about the actual method. In essence it consists in adjusting the bias so that instead of the current starting from the half-way mark (I_{1} in Fig. 6) it starts from zero. So the voltage starts at maximum and works downwards.

These conditions are shown for the working halfcycle in Fig. 7. The r.m.s. current through the load (as well as through the valve) is $\mathrm{I}_{\max } / \sqrt{ } 2$, and the r.m.s. voltage across the load is equal to $V_{\max }$ minus the voltage across the valve, so is $\mathrm{V}_{\text {max }} / \sqrt{ } 2$. The output power is the product of these, namely, $\mathrm{I}_{\max } \mathrm{V}_{\text {mar }} / 2$. The input power is equal to the product of the supply voltage (assumed constant) and the average current, which for a half sine wave is $2 \mathrm{I}_{\text {mar }} / \pi$; result, $2 \mathrm{I}_{\max } \mathrm{V}_{\max } / \pi$. So the efficiency is $\mathrm{I}_{\max } \mathrm{V}_{\max } / 2 \div 2 \mathrm{I}_{\max } \mathrm{V}_{\max } / \pi=\pi / 4=78 \frac{1}{2} \%$. During the second half cycle of this half of the amplifier there is zero current all the time, consequently no power at all; but the other half of the amplifier is doing its $78 \frac{1}{2} \%$, so that is the theoretical efficiency of the whole output stage.

At the present time, the power that a transistor
(Contznued on page 43)
can safely dissipate is its most serious limitation as far as a.f. amplification is concerned, so this matter of efficiency is particularly important. Suppose the maximum rated dissipation for a particular type is 0.25 W . Then with Class A amplification the maximum theoretical sine-wave output (the efficiency being 50%) is also 0.25 W . But in Class B only $100-78 \frac{1}{2} \%=21 \frac{1}{2} \%$ of the power put in is dissipated in the transistor, so the output is $0.25 \times$ $78 \frac{1}{2} / 21 \frac{1}{2}=0.91 \mathrm{~W}$-nearly four times as much as in Class A.

So much for sine waves; what about square waves? For them, r.m.s. and average and peak current are all the same and could therefore all be equal to $I_{m a x}$. The voltage across the load-the output voltagecould be $\mathrm{V}_{\text {max }}$ throughout the half-cycle, and consequently the voltage across the valve would be zero all the time. This last fact is enough to establish that the efficiency would be 100%. In practice, of course, such a figure is unobtainable. As Fig. 5 shows, even a transistor has a certain minimum collector current (which increases steeply with temperature) at one end of the load line, and a minimum collector voltage at the other end. And then there is base current. But efficiencies over 90% are possible, so a very small transistor can generate quite a lot of square-wave power.

One aspect of this is that a transistor output stage would not (as one might have thought) be overheated by turning up the volume excessively far. On the contrary it would run cooler, because the sound programme would be distorted into approximate square waves, resulting in exceptional efficiency (regardless of the unprintable thoughts of any hi-fi exponents within earshot!)

Transitor D.C. Converters

Another aspect is the remarkably high performance of transistor d.c. converters. These are d.c. voltage raisers working on the same principle as the vibrator systems used for supplying power to car radio, except that they do the job electronically instead of mechanically. This is not the cue for an exhaustive treatise on these devices, but for the sake of any who are totally unacquainted with them (I did begin this time with beginners) I will explain the general idea.

When current is made to flow through an inductor (which is the thing you call a coil) a certain amount of energy is stored in it. Before the current can be stopped, that energy must somehow be released. This can be demonstrated with apparatus represented by the simple circuit diagram, Fig. 8. It consists of a car battery (or such like) and a coil with a large number of henries-say a winding on a large transformer. When the connection is made, energy is built up and stored in the magnetic field. The current may take several seconds to reach nearly its full value. Then break the circuit. But take care not to hold the wires in your bare hands, for I have no desire to be the defendant in a case of manslaughter. The release of energy much faster than it was built up makes it break out as a high voltage across the newly formed gap, resulting in a spectacular spark, far exceeding what one would get if an equal but non-inductive resistance were substituted for the coil.

In d.c. converters this relatively high voltage (which can be stepped up still further by means of a
secondary winding on the core) is brought under control and rendered useful by adding a rectifier and reservoir capacitor, as in Fig. 9. The rectifier is connected in such a way that it prevents any current passing through it from the battery. But the voltaga induced by L at " break" is in the opposite polarity, so finds it easier to send current throaga the rectifier to charge C than to put on a show of fireworks at the switch contacts.

Obviously, if one is to be able to draw a continuous flow of current from C it is necessary to replenish it at frequent intervals by turning the switch on and off. In vibrator units the switch is a mechanical one, operating on the same principle as an electric bell. The rate of replenishment cannot in practice be much more than about $103 \mathrm{c} / \mathrm{s}$ or its hum would be too audible and its rate of wear excessive. Besides acoustic noise to be muffled, its electrical noise has to be suppressed.

A valve oscillator could be used, but a valve is an inefficient switch. Even although in this role the question of distortion does not arise, so that a complete " off" can be obtained by using sufficient negative grid voltage, no amount of positive grid voltage achieves a complete "on "-the valve's resistance is always substantially more than none. And if the grid is driven positive it, too, uses up quite a bit of power.

But a transistor, as we have seen, is at its best when working as a switch. By means of a feedback winding on the transformer it can be made into a blocking oscillator, which in effect turns itself on and off at almost any desired frequency. Because it can replenish C many times faster than a vibrator, it has only a small fraction as much power to handle during each cycle. Even at that rate it is completely silent and hardly wears out at all. I am assured that the overall efficiency-which takes account of losses in the transformer as well as the transistor-can be

Fig. 7. Current and voltage conditions du:ing the working half-cycle in an ideal Class B amplijier.

Fig. 8. The basic principle of yibrator and transistor d.c. converters or voltage raisers is the alternate storage and discharge of energy in the form of a magnetic field.

Fig. 9. If the inductive energy in Fig. 8 is transferred periodically to a capseitor it is available for drawing off contınu. ously.

as high as 85%, but even the less efficient specimens seem to be much better than vibrators. So it looks as if the vibrator is doomed to extinction.

The transistor d.c. converter is more adaptable, too. It can be used to generate very small amounts of power, for which a vibrator would be clumsy. I very much doubt whether a vibrator would be satisfactory for running an oscilloscope from a lowvoltage battery, but visitors to recent exhibitions have seen an all-transistor oscilloscope demonstrated. I suspect, too, that transistors are or will be in brisk demand for radiation counters, which the way things are going look like becoming standard household equipment!

During this digression in praise of transistor d.c. converters, the beginners I imagined to be puzzling over the problem of the unexpectedly cool valve may by now be puzzling over something else. They may have come fresh from being instructed to the effect that a power generator yields its greatest output when the resistance of the load is equal to that of itself, the efficiency then being 50%. This is a most important law, applying to all generators and loads. Another lesson showed them that valves (and transistors, if the teacher had got around to them) are equivalent to power generators. I have been talking about efficiencies of 80% and 90%, without a word on matching the resistances. So . . .!
Where is the fallacy?
There are really two (at least). One, of course, is jumping to the conclusion that the condition for maximum output is the most efficient condition. And if you say, in a superior way, that even a beginner wouldn't jump to any such thing, I would mention that in the early days of electricity supply the foremost engineers were very confused on this issue.

Numerical Illustration

A simple example ought to make the matter clear. The dotted line in Fig. 10 encloses an equivalent generator, giving an e.m.f. of 100 V and having an internal resistance of 50Ω. Let us calculate the output and efficiency for three values of $\mathrm{R}: 10 \Omega, 50 \Omega$ and 250Ω. The output power is $I^{2} R$, and I being $\mathrm{E} /(r+\mathrm{R})$ it comes to $\mathrm{E}^{2} \mathrm{R} /(\mathrm{R}+r)^{2}$. The efficiency is this output power divided by the generated power, EI. Working these out we have:

Load resistance, R	\ldots	10Ω	50Ω	250Ω	
Output power..	\ldots	27.8 W	50 W	278 W	
Efficiency	..	\ldots	16.7%	50%	83.4%

So the output power is reduced equally from its maximum-50W-by either dividing or multiplying R by 5 (the same applies to any figure), but dividing reduces the efficiency whereas multiplying increases it. If you worked out the algebra from the foregoing you will have arrived at the very simple formula for efficiency- $\mathrm{R} /(\mathrm{R}+r$)-which clearly increases continuously as R is increased (or r reduced). To get a high efficiency, then, see that R / r is as large as possible.

The other fallacy is that all this is really irrelevant! (But worth noting on the side.) We had been discussing the efficiency of valves and transistors as converters of d.c. to a.c., and although the "equi-
valent generator " is a very useful idea, having a very general application to things such as valves and transistors, it relates to the "signal" only and does not concern itself with the d.c. "feed" needed to bring the valve etc. to its most suitable working point. It is failure to appreciate this distinction that gets people into a muddle over the direction of current in the valve equivalent generator. They think that because the feed current flows (according to standard convention) from anode to cathode there is some obligation to take that as the reference direction for the signal current in the equivalent generator. But feed current has nothing whatever to do with the equivalent generator.

There is a related misconception that beginners

Fig. 10. The dotted line marks the boundaries of an "equivalent generotor' supplying a lood, R.

should beware of in connection with the maximumoutput or matched-load law. An essential part of that law is constancy of the generated voltage, E in Fig. 10. In a valve equivalent generator $\mathrm{E}=-\mu v_{g}$, where v_{g} is the signal voltage applied between grid and cathode. Generally speaking, with an output stage one is chiefly interested in the greatest output that can be obtained, without putting any fixed restriction on v_{g}. The really important restriction is the amount of distortion that can be tolerated, and the usual assumption is that v_{g} is kept adjusted to the point where the maximum tolerable distortion occurs. Where that point lies depends not only on the amount of d.c. power fed in but on the shape of the characteristic curves. We have found the efficiencies for full-sine-wave and half-sine-wave reproduction assuming perfect shapes- 50% and 78.5% respectively - so we know the maximum theoretical output power of these waveforms, given the d.c. input. Because valve characteristic curves, and even transistor curves, are not perfect, the actual efficiencies, and therefore outputs for given inputs, are less; in some cases such as thermionic triodes, much less.

V.H.F. Sound Receiver I.F.

WHEN v.h.f. sound broadcasting started in this country, set manufacturers adopted an i.f. of $10.7 \mathrm{Mc} / \mathrm{s}$ as this was in use in the U.S.A. and on the Continent. Further consideration has recently been given as to the suitability of this frequency, mainly so far as interference to and from other services is concerned.
Whilst on purely technical grounds certain other frequencies showed a marginal improvement over 10.7 Mc / s, it is considered that those advantages would not justify abandoning this almost universally adopted frequency and the British Radio Equipment Manufacturers' Association has, therefore, endorsed its Technical Committee's recommendation that $10.7 \mathrm{Mc} / \mathrm{s}$ should be confirmed as the preferred i.f. for receivers used in the U.K., with the oscillator frequency on the low side of the signal frequency.

Manufacturers' Products

NEW ELECTRONIC EQUIPMENT AND ACCESSORIES

Oak Rotary Switch

A NEW Oak rotary switch known as the Model DQH, and replacing the existing Model QH , has been in:roduced by N.S.F., Ltd., 31-32 Alfred Place, London, W.C.1.

It incorporates an improved form of notched stator plate which is said to completely eliminate trouble due to loosening of the contact clips as a result of overheating during soldering operations.

The Model DQH has a 30° throw making available a maximum of 12 positions on a single wafer and any combination from 1 pole 12 positions to 6 poles 2 positions (on-off) can be provided.

Illustrated is a typical 3 -section switch and this can be supplied fitted with an a.c. switch, but the rear two wafers are then omitted.

New N.S.F. Model DQH Oak switch.

Arcoiectric miniature 10 -amp switch.

Miniature 10-amp Switch

RECENTLY introduced by Arcolectric (Switches), Ltd., Central Avenue, West Molesey, Surrey, is an exceptionally compact double-pole on-off switch rated at 10 amps at 250 volts a.c. Known as the Type $S 254$ it is designed on the snap-action, micro-gap principle, has silver contacts and is claimed to have been tested up to 250,000 operations at full rated load. A long pensshaped "dolly" is fitted and the price is 5 s .

Improved P.V.C. Cables

A NEW range of electrical wiring cables suitable for ambient temperatures up to $750^{\circ} \mathrm{C}\left(167^{\circ} \mathrm{F}\right)$ has been introduced by Permanoid Ltd., New Islington, Manchester, 4. They are insulated by p.v.c. compounded with a new long-chain polyester plasticizer known as "Diolpate" with a molecular weight of the order of 7,000 . This has virtually no volatility at temperatures below that of decomposition, and as a result there is no migration. The insulation is also less affected by immersion in oils.

Calibration Tape

FREQUENCY response measurements and tape recorder replay head alignment can be performed with the aid of a new "Scotch Boy" twin track test tape. On one track eleven constant frequencies from $40 \mathrm{c} / \mathrm{s}$ to $10 \mathrm{kc} / \mathrm{s}$ (inclusive) are recorded to within $\pm 1 \mathrm{~dB}$ of the C.C.I.R. specification. Each of these frequencies
lasts about ten seconds and is preceded by an announcement. On the other track is recorded a continuous $7 \frac{1}{2}$ kc / s tone for head alignment purposes. This $150-\mathrm{ft}$ tape costs 49s 6 d and is marketed by the Minnesota Mining and Manufacturing Co. Ltd., Wigmore Street, London, W.1.

Expanded Polystyrene

A CELLULAR structure is given to polystyrene in "Polyzote," a product of Expanded Plastics, Ltd., 675, Mitcham Road, Croydon, Surrey. This material is supplied in granular form for moulding with a chemical additive which forms a gas on heating, and fills the mould with a cellular mass, which on cooling has high strength and low density ($1 \frac{1}{l} \mathrm{lb} / \mathrm{cu} \mathrm{ft}$).

Although used chiefly for heat insulation, the dielectric properties are good (resistivity $>10^{\prime \prime} \mathrm{M} \Omega$, permittiviry 1.05 , loss factor, $\tan \delta,<0.0005$) and it has considerable passibilities in radio and radar. One known application is for the casing of a high-altitude balloon radar sonde transponder where its light weight and transparency to radiation (the aerial system is enclosed) have obvious advantages. Not so obvious perhaps is the fact that the batteries retain their normal temperature and so function longer in the low ambient temperatures of high altitude.

Moulded Resistance Elements

PRECISION resistance elements consisting of tracks of high-grade phenolic of the type used in some of their precision volume controls, can now be obtained from the Plessey Company to meet specific requirements. So far they have found applications mainly in industrial control equipment, but they are equally suitable for use wherever a stable, close-tolerance resistance is required for the variable element in precision equipment.

Elements have been produced in resistance values ranging from 25Ω to $10 \mathrm{M} \Omega$, at present with a tolerance of $\pm 5 \%$ and with a linear or logarithmic resistance law. They are made in a variety of shapes and are said to maintain their stability when operated at temperatures ranging from $-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$.

The illustration shows two of the forms they can take; one is a curved element, the other is a series of straight elements, each of $10 \mathrm{k} \Omega$, placed end-to-end. A sine/ cosine moulded track unit has also been produced for a special type of potentiometer. It is stated that a moulded carbon brush is the most suitable type for the wiper.

The units are supplied to customer's individual requirements by The Plessey Co., Ltd., Swindon Components Division, Kewbrey Street, Swindon, Wilts.

Examples of moaided carbon track elements mode by Plessey.

News from the Industry

Anglo-American Agreement.-The Radio Corporation of America has arranged to acquire from Marconi's techn.cal information on the Doppler navigation system which will be used in the design of R.C.A. equ:pment for civil airlines. Marcon's have been producing Doppler equipment for the R.A.F. tor the past three years and introduced a new type (AD2300) for civil use last June (see W.W., August, page 396).
Solartron Expans:on.-Work has begun on the first section of a new factory being built for the Solartron group at Tower Hıll, Farnborough, Hants. This section of the onestorey buitd.ng will have an area of 50,000 square feet and is planned to be in use by next August. The whole factory on the 15 -acre site, wh.ch will include a helicopter landing space, is scheduled to cover 350,000 square feet.

Eico Electronics, Ltd., designed and installed the complete nuciear instrumentation and control circuitry for PLUTO, the atom:c research reactor which recentiy commenced operation at Harwell. Ekco are now working on similar equipment for the Austral:an HIFAR reactor at Lucas Heights and the DMTR reactor for Dounreay, Scotland.

Audio Group.-Three companies in the electro-acoustics fie:d-Audio Amplifiers, Ltd., CQ Audio, Ltd. (formerly R.G.A. Sound Services), and Romagna Audio, Lid.-have formed what is to be known as the Audio Group of Companies. The directors are Stanley Kelly and A. R. Neve. The headquarters are at 2, Sarnesfield Road, Enfield, Middlesex (Tel.: Enfield 8262). Stewart Hullman, formerly with Cosmocord, has joined the group as general sales manager.

Aerialite, Ltd., recently celebrated the:r silver jub:lee and to mark the occasion the staff made prese-tations to the chairman (L. S. Hargreaves) and his co-directors. The staf, which was two in 1932, is now 2,000.

Peto Scott Electrical Instruments, Ltd., announce that A. T. Black has been appointed to its board. Mr. Black, who was unt:l recently director of electronics production (munitions) in the Ministry of Supply, is also a director of Pena Copper Mines, the parent company, the title of which is being changed to Pena Industi:es, Ltd.
Decca airfield control radar (Tyoe 424) has been installed by RollsRoyce at their filght test airfield at Hucknall, near Nottingham.

Wayne Kerr have developed at their Tolworth, Surrey, laboratories an electronic instrument for detecting and measuring the water content in aircraft jet fuel. The equ.pment is designed to detect, whilst the aircraft is in flight, as little as five parts of water in one million parts of fuel. The icing-up of fuel filters at h.gh altitudes presents a very ser:ous threat to air safety and the Wayne Kerr instrument au;omatical.y switches on tan's de-ic.ng equipment if moisture is detected.

Modera Acoustics, Ltd., of Manor Way, Boreham Wood, Herts., a subsid.ary of the Plessey Co., are to produce a new range of plugs and sockets. They will be manufactured under licence from Tuchel Kontakt of Germany. The world marketing rights outs:de Europe for the Tuchel des:gn have been ass.gned by Plessey to their subsidiary.

EXPORTS

Thailand.-A report on the domestic rezeiver marset in Thailand, prepared by the British Embassy in Bang:rok, shows that during 1956 only about 4% of the imports were purchased from the United Kingdom. Nearly 50% of the receivers came from the Netherlands, 25% from Germany and about 15% from Japan. The U.K. had a greater share in Thai'and's purchase of radio componen:s and accesso:ies - Japan, the Netherlands and Great Britain having $18 \%, 17 \%$ and 16% respectively. The U.S. supplied 24%.
Honduras Agency.-Agencia Acorda, Apartado 15, San Pedro Sula, Honduras, are interested in representing U.K. manufaciurers of high-fidelity reproducing equipment, receivers and radio-grams.

Mobile radio-telephone transmitting and receiving equipment worth approximately $£ 23,000$ has been ordered from Marconi's by the Kuwait Oil Co. Five 50 -watt base transmitters and associated receivers will be installed at one site (Ahmadi) and two 50 -watt transm.tters and receivers at two others (Raudhatain and Se:smic Camp). The company's fleet of 37 vehicles is being fitted with 10 -watt trans-m.tter-receivers.

NEW ADDRESSES

Brighton Laminations, Ltd., makers of Bribond thermosetting and thermoplastic mouldings and printed circuits, have moved their headquarters to Burgess Hill, Sussex, but are retaining their Brighton works. The company has changed its title to Bribond, Ltd.

Farnell Instruments, Ltd., the instrument distributors of Leeds, have moved to Wetherby Industrial Estate, York Road, Wetherby, Yorks. (Tel.: Wetherby 2541). The:r service department has been expanded and they are now in a position to undertake the development and manufacture of instruments to customers' requirements. The works manager is Mr. Sidebotham, who unt:l recently was in the aircraft industry as head of an electronics research department.

Allen Components, Ltd., manufacturers of sound and television equipment, have moved from Richmond to 38, Felsham Road, London, S.W. 15 (Tel.: Putney 3032).
H. W. Forrest (Transformers), Ltd., of 349. Haslucks Green Road, Shirley, Solihull, Warwickshire, have introduced a range of transformers (from 200 mW to 20 W) for use with a.f. transistors.

VENNER ELECTRONICS have developed for the Road Research Laboratories of the D.S.I.R. an electronic vehicle speed measuring instrument which is being tested by the Metrcpolitan Police. Basically, the device is for measuring small inte:vals of time and it is started and stopped by the front wheels of the vehicle passing over rubber tubes laid in the road (see page 32). The occuracy is plus or minus $\frac{1}{2} \%$ at 30 m.p.h.

JRNTREX

LONDON

9th. Television Society.-" A French portable television camera" by J. Polonsky at 7.0 at 164 Shaftesbury Avenue, W.C. 2 .

17th. B.S.R.A.-" The electrical production of music" by Alan Douglas at 7.15 at the Royal Society of Arts, John Adam Street, Adelphi, W.C.2.
17th. Institute of Navigation. -
"The influence of atmospheric conditions on radar performance" by Dr. J. A. Saxton at 5.15 at 1 Kensington Gore, S.W.7.
22nd. I.E.E.-" Special problems of broadcasting in Sweden" by E. Esping at 5.30 at Savoy Place, W.C.2.
23 rd. Television Society.-Fleming Memorial Lecture "Crystal valves" by T. R. Scott (S.T.C.) at 7.0 at the Royal Institution, Albemarle Street, W. 1

24th. R.S.G.B.-Presidential Address followed by "The human machine as a radio operator" by F. J. H. Charman (G6CJ) at 6.30 at the I.E.E., Savoy Place, W.C.2.

27 th . I.E.E.-" An enquiry into the specification of transistors" by F. F. Roberts at 5.30 at Savoy Place, W.C.2.

28th. I.E.E.-Symposium on " Longdistance propagation above $30 \mathrm{Mc} / \mathrm{s}$ " (a) "Ionospheric forward scatter propagation" (at 2.30), (b) "Tropospheric propagat:on beyond the horizon" (at 5.30) at Savoy Place, W.C.2

29th. Brit.I.R.E.-" Ultra-high-speed oscillography" by I. Maddock at 6.30 at the London School of Hygiene, Keppel Street, W.C.1.

ABERDEEN

10th. I.E.E.-" The remote and automatic control of semi-attended broadcasting transmitters" by R. T. B. Wynn and F. A. Peachey at 7.30 at the Robert Gordon's Technical College.

BIRMINGHAM

21st. Institute of Physics.-"The computer and its uses" by C. Robinson (English Electric) at 7.0 at the Birmingham Exchange and Engineering Centre.

27th. I.E.E.-" Transistor circuits and applications" by Dr. A. G. Milnes at 6.0 at the James Watt Memorial Institute, Great Charles Street.

BRIGHTON

15th. I.E.E.-" The B.B.C. sound broadcasting service on very-high frequencies" by E. W. Hajes and H. Page at 6.30 at the Technical College.

BRISTOL

13th. I.E.E.-" The B.B.C. sound broadcasting service on very-high frequencies" by E. W. Hayes and H. Page at 6.0 at Bristol Unuversity Engineering Laboratories.

CARDIFF

22nd. Brit.I.R.E.-" Applications of magnetic recording" by J. CunninghamSands at 6.30 in the Department of Physics, University College.
22nd. Society of Instrument Tech-nology.-" The use of computers in process control" by W. G. Proctor (Metropolitan-Vickers) at 6.45 in the Physics Lecture Theatre, Cardiff College of Technology.

CHATHAM

23 rd. I.E.E. Graduate and Student Section.-"Colour television" by A. Harris at 7.0 at the Medway College of Technology.

MEETINGS

DUNDEE

9th. I.E.E.-" The remote and automatic control of semi-attended broadcasting transmitters" by R. T. B. Wynn and F. A. Peachey at 7.0 in the Electrical Engineering Dept., Queen's College.

EDINBURGH

20th. I.E.E.-" Some aspects of halfwave magnetic amplifiers" by G. M. Etringer and "Some transistor input stages for high-gain d.c. amplifiers" by Dr. G. B. B. Chaplin and A. R. Owens at 7.0 at the Carlton Hotel, North Bridge.

21st. I.E.E.-"The importance of research in hearing and seeing to the future of telecommunication engineering" by Dr. E. C. Cherry at 7.0 at the Carlton Hotel, North Bridge.

FARNBOROUGH

8th. I.E.E.-"Colour television" by C. J. Stubbington at 6.30 at the R.A.E. Technical College.

GLASGOW

9th. Brit.I.R.E.-" Electronic calculator circuitry" by F. Baillie at 7.0 at the Institution of Engineers and Shipbuilders, 39 Elmbank Crescent.

21st. I.E.E.-" Some aspects of half-wave magnetic amplifiers" by G. M. Ettinger and "Some transistor input stages for high-gain d.c. amplifiers" by Dr. G. B. B. Chaplin and A. R. Ovens at 7.0 at the Royal College of Science and Technology, George Street, C. 1 .

LIVERPOOL

3rd. Institute of Physics.-" Radio astronomy" by Dr. H. P. Palmer (Jodrell Bank Experimental Station) at 7.0 in the Department of Electrical Engineering, University of Liverpool.

20th. I.E.E.-"Ferrites" by W. A. Turner at 6.30 at the Royal Institute, Colquitt Street.

MALVERN

$31 s t . \quad$ Brit.I.R.E.-Annual General Meeting, followed by "Digital computers by R. Deighton at 7.0 in the Winter Gardens.

NEWCASTLE

8th. Brit.I.RE.-" The earth satellite project" by P. H. Tanner at 6.0 at the Institution of Mining and Mechanical Engineers, Westgate Road.

15th. Society of Instrument Tech-nology.-"Modern types of electronic reco:ders" by F. A. Bergen (Cambridge Instruments) at 7.0 at King's College, Stephenson Building.

20th. 1.E.E. -"Ferrites" by Dr. F. Brailsford at 6.15 at King's College.

PRESTON

6th. I.E.E.-" The B.B.C. sound broadcasting service on very-high frequencies" bv E. W. Hayes and H. Page at 7.15 at the Electricity Board Demonstration Theare, 19 Friargate.

RUGBY

29th. I.E.E.-" Recent developments in X-ray and electron-microscopy with some applications to radio and electronics" by C. W. Oatley and Dr. V. E. Cosslett at 6.30 at the Rugby College of Technology and Arts.

WOLVERHAMPTON

8th. Brit.I.R.E.-" Instrumentation of space vehicles" by N. R. Nicoll at 7.15 at the Wolverhampton Technical College, Wulfruna Suree.

THE MICROPHONE ILLUSTRATED is our new type G7850, a dynamic microphone of outstanding contemporary design. It is finished in bronze black, carries a ringlocking plug connector and is suitable for hand and stand use. Owing to its exceptional top response characteristic, it gives particularly good reproduction of speech and this, allied to its distinguished looks. will make it a welcome and handsome addition to our range of Sound Reproducing Equipment. (Dimensions: Head diam. 1 lֶin.; Overall length 8 fin.)

Price: 15 gns.
Please write for full details of our complete range of Sound Reproducing Equipment.

a product of

TRIX ELEGTRICAL COMPANY LTD.
1-5 Maple Place, Tottenham Court Road, London W. 1

Tel: MUSeum 5817 Grams: Trixadio Wesdo London

By " DIALLIST"

Forward Scatter

IN the B.B.C.'s Annual Report for 1956-57 great concern is expressed about the encroachment by forward scatter transmissions into some sound and TV wavebands. I don't wonder, for forward scatter has been causing horrible interference with television reception in some parts of the country. As the report says, further developments of sound and television services may well be adversely affected, unless action can be taken to resist encroachment into bands allotted to broadcasting by international conferences. It's strange how unlooked-for interference so often arises in both sound and television. With the coming of highpower sound broadcasting stations there arrived the Luxembourg Effect; nobody expected that the Caen TV station would interfere with reception along our south coast, or that there'd be trouble with Liège when Norwich went up to full power. And there's another possible source of worry looming ahead. The Government of Southern Ireland has decided that the Republic must have a television service. It may not be easy to fit its station or stations in on channels where they don't cause despondency and dismay to viewers in some of our westerly districts*.

[^13]
Light and the Metre

FOR 75 years now the world's standard metre has been " M," the plati-num-iridium bar housed at Sèvres, near Paris. But a change has been decided upon and as soon as it has been accepted by the International Committee of Weights and Measures, due to meet next October, it will be officially adopted by all countries. The new measuring rod is to be a wavelength of light, an idea which was first suggested 130 years ago. The light is that of an orange line in the spectrum of the 86 isotope of krypton- ${ }_{3} \mathrm{Kr}^{\text {s4 }}$. Multiply its length by $1,650,763.73$ times and you have the new standard metre, which is more than 100 times as accurate as that derived from the old metal bar. With such a precise metre to work from it should be possible, one would imagine, to find an exact and
universally accepted value for the velocity of light and wireless waves. A vast amount has been done on this problem by physicists and mathematicians, but no two solutions have ever been exactly the same. Admittedly, the differences are very small; but still they are differences and since the velocity of light is a widely used constant, they shouldn't be there.

Hills and Plains

WRITING from near Colne in Lancashire a reader tells me of the difficulties experienced in that hilly part of the country in receiving Band III television transmissions. Such frequencies, he feels, are quite unsuitable for any but the flatter parts of this country of ours. He has an interesting suggestion to make, though I'm afraid it's hardly a practicable one. Draw a line, he says, through Nottingham from coast to coast: to the south of it there are few hills worth mentioning: to the north it's nothing but hills. He'd like to see all transmission north of this line made in Band I and all those south of it in Band III. Even if his assumptions were correct, what a hullaballoo there'd be should such a change be made! Can't you imagine the tumult and the shouting? Thousands of TV receívers of the Band I only type would become useless in the south unless they were converted. Millions of aerials would have to be
changed. And neither the B.B.C. nor the I.T.A. would be enthusiastic about altering their transmitters. Even were all this done, would it work out? I don't think so, I'm afraid, for there's quite a lot of hilly country south of this imaginary line. Much of the Welsh mountain country, Exmoor, Dartmoor, the Cotswolds, the Chilterns, the Quantocks and other areas that are far from flat lie there. It's an ingenious idea, but it just wouldn't do.

Canada's TV Problem

CANADA has already a publiclyowned television system which serves about two million owners of receiving sets. "This," wrote George Ferguson, editor of the Montreal Star, in a recent Canada Supplement of The Times, " extends at the moment from the Prairie Provinces in the West to Halifax, Nova Scotia. There remain the links with Newfoundland and British Columbia, but these will be pressed forward." The main question, I gather, is who is going to pay for the service and how? The service is run by the Canadian Broadcasting Corporation, which, unlike our B.B.C., is not financed from licence fees. The proposal to introduce receiving licences was met by the firmest possible opposition. Instead, the Government put a 15 per cent tax on both sound and television receiv-

ing sets. This, together with its income from commercial programmes, produces far less than is needed to keep the C.B.C. going and meet the huge capital expenditure envisaged in the next six years. It should be added that Canada has in addition to its growing C.B.C. network a number of privately-owned commercial TV stations.

Making Satellites Work

A NOVEL suggestion for getting further useful work out of artificial satellites was made recently by R. J. Hitchcock, head of a section in the department of the engineer-in-chief of Cable and Wireless, Ltd. Sputnik II is said to be working already by recording a variety of measurements of conditions outside our atmosphere and sending them back to earth; but Hitchcock's idea is something quite different. Briefly, it is that satellites could be used to store communications from one part of the world and later to transmit them to another part. It should, he says, be possible to feed to a satellite in a few minutes all the telegraph traffic normally passing in a whole day between, say, this country and the antipodes. Three-quarters of an hour later the satellite would have reached a point in its orbit from which the messages could be transmitted at high speed to their destination. All this presupposes that some form of power supply, constandy replenished by solar energy, will be developed-and there is nothing unlikely about that. We'd also need satellites which would stay pur, once they'd been started in larger orbits, and not come flaming back to earth in a matter of weeks or months.

It Won't be Easy!

There would also be the problem of precession, but that might not matter all that much, for a great number of moonlets would be needed to deal with world-wide communications and the ones in the right sort of orbits at a given moment could be used to deal with particular services. In the light of our present knowledge, the cost of putting such a scheme into practice would be staggering; but we're only at the very beginning of the satellite era and as the years go on cheaper and more effective methods of launching and equipping them will doubtless be discovered. Nevertheless, there are going to be some pretty knotty problems for solution.

Electronic components FOR ALL INDUSTRIES

(FUEL-OIL AND SPIRIT)

Used by the principal Oil-producing and Refining Companies in all parts of the world, BULGIN Electronic Components are helping to overcome problems of control, as in all the Scientific and Industrial fields, giving faithful and reliable service. The Bulgin research department and manufacturing units, with their unique skill and experience, build good electronic components on which you can depend.

Over 10,000 different components are available.
$\star \quad$ For full details of Bulgin Components send for fully illustrated Catalogue 198/WW (free to trade letterheading or order).

BARKING, ESSEX. BARKING, ESSEX.
MANUFACTURERS OF RADIO AND ELECTRONIC COMPONENTS

UNBIASED

Irritating Irrationalities

WE are all aware that, throughout the world, voltages, whether those of the grid system or those in our homes, are rated in multiples of 11. Thus in the U.S.A. the standard domestic voltage is 110 and over here we had 220. The grid deals in voltages of $11,000,33,000,66,000$ and so on. All these are multiples of 11 , instead of the more obvious ten. There are, of course, odd voltages scattered about, such as 130 and 160 on the Continent and, of course, 230 , 240 and others in this country, which don't seem to be based on anything.
"Diallist" once told us that he believed the basing of voltages on 11 instead of ten was due to the fact that originally the e.m.f. of the standard Clark cell, which is 1.1 volts, was taken as a starting point. I believe " Diallist" to be correct in his opinion but if any egghead knows better let him say so.

It would be too difficult to alter
corders in use to alter the speeds to $2,4,8$, etc., in $/ \mathrm{sec}$. It would be perfectly easy, however, to follow the example of the sailor who calls a nautical m.p.h. a "knot" (not a knot per hour!). Let us call $1 \frac{7}{3} \mathrm{in} / \mathrm{sec}$ one "Stille." Better still, to allow for slower and slower speeds in the future, let us call it 100 Stilles (or should I say Stillen?) I hope no W.W. reader is so sunk in ignorance as to wonder what the word "Stille" signifies.

Callee-Coming Indicator

JUST lately we have heard a lot about the progress of automation in the telephone service but not a single mention has been made of one grave defect in our 'phone system which could be so easily remedied by radio technique.

Like myself, many of you have probably experienced the mortifications of hearing the telephone ring just as you have got into the bath. It always seems to be at a time when there is nobody else in the house.

It may be only a call from your tailor with a polite reminder about his overdue bill. But it may be a call from your favourite blonde, and consequently you spring out of the bath and rush downstairs, wrapping a towel around your midriff as you run, for the
all this now by changing voltage ratings all over the world. Surely, however, we could get round the difficulty by a similar ingenious dodge to that which we use to make ourselves get out of bed earlier in the summer. All we do is to say it is 7 a.m. when it is really 6 a.m. Could we not therefore abandon the volt and adopt the "Clark" as the unit of e.m.f.?

There is one irritating irrationality or insane illogicallity which is of such comparatively recent birth that it can and should be altered. I refer to the irritating speed rating of tape recorders where we have to write clumsy fractional speeds like 1 Ifin/ $\mathrm{sec} .3 \frac{3}{3} \mathrm{in} / \mathrm{sec}$ and so on.

Soon, I believe, we are to have a still slower speed for office work, namely $\frac{15}{}$ in $/ \mathrm{sec}$. I suppose these absurdities arose because in the pioneer days of magnetic recording $30 \mathrm{in} / \mathrm{sec}$ was used and then this was halved. When it was halved again the trouble started.

There are far too many tape re-
sake of Mrs. Grundy's feelings, even though you know you are alone in the house.
Just as you are a few paces from the 'phone it ceases ringing and, as you squelch your way back to the bathroom, you are left wondering who had rung. It has so often happened to me that I determined to do something about it. As the result of my labours, the distant caller receives a definite indication that his callee is coming so that he hangs on rather than hangs up.
Strictly radio principles are used in my device and the beauty of it is that no breach occurs of the P.M.G.'s regulations which forbids subscribers to fix attachments to the telephone. Over the handset of the desk telephone I have placed a modification of a model grab crane such as is used in those automatic machines on seaside piers in which you are invited to risk a penny trying to get the crane to pick up a trumpery trinket. By the side of the crane I have placed a small tape
machine fitted with a short endlessband tape.

The apparatus is connected to the output of a tiny s.w. receiver of the type used in radio-controlled model planes and boats. On my person I have one of the small transmitters sold for model control. Incidentally, these little transmitters now require a licence from the P.M.G. but the cost is only $£ 1$ for five years.

An impulse from the transmitter first sets the crane in motion. It grabs the handset, lifts it and transfers it to the table with its mike near the loudspeaker of the tape machine which is then triggered off and repeatedly bellows out "Hello caller; your callee is coming."

I have designed the tiny transistorized transmitter to fit in an old bowler I always wear when in and around the house, even in the bath.

Tongue Tinglings Explained

IN reply to my request for suggestions for a literally self-contained battery to supply a few volts in my proposed "Torso Two" receiver, I have had an interesting letter from a reader who writes from Orpington.
He points out that when dentists fill a cavity they have to be careful to match the metal filling with any others which already exist in the mouth. The reason is that if dissimilar metals are used, a small e.m.f. is generated and the resultant current causes unpleasant tongue tinglings.
As I have replied to him, I am afraid that many dentists are careless in this respect and probably that is why grandfather usually keeps his denture on the mantelpiece rather than in his mouth. It also accounts for the sharp taste I have with everything I eat and I must try to devise a suitable earthing system.

My correspondent suggests that use might be made of this effect to give me the volts I want. Unfortunately, however, I don't think the voltage would be high enough although the potentialities of such an arrangement ase certainly worth the attention of the research worker who is seeking a permanent battery for a hearing aid. There is already a hearing aid combined with a pair of spectacles and so dentists might as well be brought into the syndicate.

So far as women and gum-chewers are concerned it would be only necessary to couple a simple generator to their jaws as the constant movement would keep it going. Actually, I believe this has been suggested before for another purpose. The idea then was that the constant movement of the jaws would steadily build up a high ootential in a capacitor which would finally discharge and so give the female tongue wagger a sharp shock to signal the QRT to her.

19 Ranges

D.C. Voltage A.C. Voltage

	o.c.
Resiscance	A
0 0 0	: $0=100$

List Price: $\quad 30 / 108$

complete with Te:s Leads and Clip Size: $51 \times 34 \times 17$ inches Weighe: | lb. approx. modest price, suitable for use on modern electronic apparatus as well as for radio and television receivers, motor vehicles, and all kinds of domestic appliances and workshop equipment.
Readings are obtainable quickly and easily on a very open scale, and range selection is by means of a robust clearly narked rotary switch of the characteristic AvoMeter typs. Measurements of A.C. and D.C. Voltage, D.C. Current, and Resistance are made by means of only two connection sockets.

Sensitivity: $10,000 \Omega / \mathrm{V}$ on D.C. voltage ranges. 1,000 " A.C.

Accuracy:

3% of tull scale value on D.C.
4%.. A.C.

MULTIIINOR

Leather Cose if required 32/6

Designed and Manufactured by

A germanium junction P.N.P. transistor available in quantity for industrial and d.c. converter applications in computing, switching and instrumentation.

The new Mullard transistor OC76 is related to the well-known OC72 but is specially tested for nonsinusoidal industrial and d.c. transformer applications.

The pentode type knee of the OC76 characteristic is carefully controlled to give a low and uniform "bottoming" voltage. Its collector will withstand 30 volts d.c. in grounded base. In grounded emitter 30 volts d.c. may also be applied when the total base-to-ground impedance is less than $1 \mathrm{k} \Omega$ or the collector current is cut off by a reverse base bias.

This transistor is particularly suited for d.c. converters. For example, two OC76's in push-pull can be used to convert low input voltages to high output voltages with a d.c. to d.c. efficiency greater than 75% at power levels up to 700 milliwatts.

As a power oscillator, efficiencies of over 90% are possible with the OC76, while the high peak current of t amp can be used to close large relays and operate small motors.
The OC76 is available in quantity. Full data is available from the address below.

Limiting values (absolute ratings)

Max. collector voltage	\ldots	\ldots	32 V peak	32 V d.c.
Max. collector current...	\ldots	\ldots	250 mA peak 125 mA d.c.	
Max. junction temp.	..	\ldots	\ldots	$75^{\circ} \mathrm{C}$ continuous opreation.
				$90^{\circ} \mathrm{C}$ intermittent operation
	(total duration 200 hours max.)			

[^14]

MULLARD LIMITED . MULLARD HOUsE TORRINGTON PLACE • LONDON W.C.I
(7) MVT328r

SPACE ECONOMY

is one of the prime considerations
in all branches of electrical engineering today.
Well over 100,000 of our

MINIATURE and CARTRIDGE RECTIFIERS

for current ratings of up to 5 milliamperes and voltages as high as 6,000 volts have performed excellently in a multiplicity of applications and might be the answer to your problem.

FULLPARTICULARSFROM
R.H.COLE (OVERSEAS) LTD.

2, Caxtonsireet. Wesiminster. London S.W. 1

INCREMENTAL INDUCTANCE BRIDGE

Designed to measure the value of iron cored chokes and similar inductors in the range 0.01 H to 1000 H of Q value not less than 2.

Provision is made for passing any current up to I Amp d.c. through the winding and selectable a.c. excitation voltages of $1,2,5,10$ and 20 V r.m.s. are provided.

Full technical information is available on request.

Hawnt \& Co. Led., 59 Moor Streer, Birmingham 4
McKellen Automation Led., 122 Seymour Grove, Old Tcafford, Mancheaster 16 Atkins Robertson \& Whiteford Lid., Induserial Eatate. Tharnllebank, Glasgow

A SELECTIVE MEASURING SET $30 \mathrm{kc} / \mathrm{s}$ - $\mathbf{3 0 ~ M c / s}$ H.F. WAVE ANALYSER Type 853

Can be employed
(a) To measure insertion gain and loss.
(b) To measure field strength and interference.
(c) For harmonic analysis.
(d) As a selective Voltmeter.
(e) As a Bridge Detector.
(f) As a Heterodyne Wave Meter.

SPECIFICATION

Frequency Range: $30 \mathrm{kc} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{s}$ in 7 ranges.
Amplitude Range: $30 \mathrm{kc} / \mathrm{s}-20 \mathrm{Mc} / \mathrm{s}: 1 \mu \mathrm{~V}$ to 120 db above $\mathrm{I} \mu \mathrm{V}$ $20 \mathrm{Mc} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{s}: 4 \mu \mathrm{~V}$ to 120 db above $4 \mu \mathrm{~V}$.
2nd harmonic 70 db and 3 rd harmonic
Harmonic
Measurement:

Selectivity:

Attenuators:
db down can be measured.
$3 \mathrm{ke} / \mathrm{s}$ bandwidth.
R.F. Attenuator $0-60 \mathrm{db}$ in 20 db steps.
L.F. Attenuator $0-60 \mathrm{db}$ in 10 db steps and a 10 db variable attenuator.
Input Impedance: 75 ohms. A high input impedance probe unit is also provided.

OSCILLATOR Type 858

The Oscillator Type 858 is designed primarily for use as a calibrating Oscillator for the Wave Analyser Type 853, and as such provides fixed levels of output for setting up the instrument. It may however, be used separately as a c.w. oscillator of low harmonic distortion and stabilised output level.

SPECIFICATION
Frequency Range: $30 \mathrm{kc} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{s}$ in 7 ranges.

Frequency
Stability:
Harmonic
Distortion:
Output Level:

Outputs:
 mains change of 25%.

In general better than 1\%. Remains constant within ± 1 db over entire frequency range.
$500 \mathrm{mV}, 100 \mathrm{mV}$ and 1 mV stabilised. A slidewire attenuator enables a continuous coverage to be obtalned from $500 \mu \mathrm{~V}$ to 500 mV .

Full details of these or any other Airmec instrument will be forwarded gladly on request.

Extended range of connectors and extrusions means

IMLOK NOW MORE VERSATILE THAN EVER!

See what you can do with the unique Imlok system-think how it can save you money. Precision cases, cabinets, and other structures can all be quickly built to your own design-and using unskilled labour. The system is ideal for research and prototype work as well as for production runs. Various corner connectors and strong, light alloy extrusions lock together to form the framework required. Where fixed panels in the sides, top, back and base are required, they are retained in a groove in the extrusion specially designed for that purpose.

Scope for design unlimited

The Imlok extrusion is now available in five alternative strengths to suit almost every application and the extended range of components means unlimited scope in shapes and sizes. Special jigs for quick, accurate cutting and filing also supplied. May we send more details?

Economical, too:

The material's cost of the framework for this Heavy Duty Double Bay Rak, size 6' x $3^{\prime} 6^{\prime \prime}$ $x 1^{\prime} 9^{\prime \prime}$, using the Heavy Duty components illustrated. is little over £30. Using general duty components, i.e., IE/1001 90° Casting, IE/2024 90° strengthened Extrusion, IE/1004 Spacer Bar Casting, IE/2008 Spacer Bar Extrusion and IE/1009 Cruciform Junction, the material's cost for the framework only is just under $£ 20$.

ALFRED IMHOF LIMITED Dept. M.I. 112-116 New Oxford St., London WCI Tel: MUSeum 7878

Rectangular hysteresis Loop Nickel-Iron Alloy for magnetic amplifiers and reactors.

DUCTILE HARD mAQNETIC ALLOY
Cobalt-Iron-
Vanadium Alloy

vicalloy
Permanent magnet alloy of ductile and machinable quality.

All alloys available in strip, rod, bar and wire

BERYLLIUM COPPER to Specification DT0900 2\% Beryllium Alloy. For Springs, Fuse Clips. Contacts, Meter Pointers and Valve Clips.

CU BE250 High tensile strength and fatigue resistance.
Beryllium Copper Alloys of other compositions are available for special requirements.

TELCON THERMOSTATiC BIMETALS
In various grades for instrument protection and compensation and overload protection of motors.
synchros and similar electrical devices.
Typical characteristics of Telcon Thermostatic Bimetal

Type	Deflection constant* per ${ }^{\circ} \mathrm{C}$ (d)	Resistivity microhm-cms. at $20^{\circ} \mathrm{C}$	Range of maximum sensitivity ${ }^{\circ} \mathrm{C}$	Useful Range ${ }^{\circ} \mathrm{C}$
Bimetal $140 . .$.	$14.0 \times 10-0$	76	20-230	-70 to 350
Bimetal 400...	12.0×10.	70	70.320	-70 to 400
Bimetal 15...	9.5×10.0	16.7	20-160	-70 to 220
Bimetal $75 . .$.	$6.8 \times 10{ }^{-1}$	57	150-460	-70 to 550

- The defection constant (d) is defned as the deflection of a strip of wanil lensth and unid thickness for each ${ }^{\circ}$ Crise in the temperature ouer the linear part of the deflection curpe.

New additions to the TELCON range of

MUMETAL SHIELDS

 for Cathode Ray tubesPrecision Cathode Ray Tubes demand perfect screening. Telcon's high permeability low-loss magnetic alloy mumetal has proved in practice to be many times more effective for this purpose than any other material of equal thickness.

The Telcon Metals Division is pleased to announce that it has now in production a standard range of mumetal Shields for Cathode Ray Tubes of the more popular types made by leading manufacturers such as CINEMA-TELEVISION, COSSOR, EDISONSWAN, ELECTRONIC TUBES, G.B.C., MULLARD and 20 Th CENTURY ELECTRONICS LTD. Details and drawings are available on request. Special Shields can be made to customers' specifications.

Rubber Masks are available from The Standard Insulator Co. Ltd., Camberley. Surrey, for use with these Mumetal Shields.

Enquiries to :
THE TELEGRAPH CONSTRUCTION AND MAINTENANCE CO. LTD Metals Division, Telcon Works, Manor Royal, Crawlev. Sussex. Telephone Crawley 1660

TAYLOR TUNNICLIFF Nllakers of Preplain Sredulation

 IMPORTANT ROLE IN ELECTRONIC DEVELOPMENT.

focus cores of accepted sizes are available, and also a range of thin
high permeability dises for computor and delay-line applications.
We will be pleased to receive details of your special magnetic material problems, and to send you further particulars on request.

SALFORDELECTRICALINSTRUMENTSLIMITED

 (COMPONENTS GROUP)TIMES MILL - HEYWOOD • LANCASHIRE Tel: Heywood 6868 London Sales Office: Tel: Temple Bar 4669 ASUBSIDIARYOFTHEGENERALELECTRICCO.LTD.OF ENGLAND

world-wide approval

Pye Telecommunications Limited are now marketing the widest and most modern range of V.H.F. fixed and mobile radio-telephone equipment available in the world. This range of equipment has been designed to expand the application of Pye Radio-Telephones already in constant use all over the world.

Pye Ranger V.H.F. equipment has now received approval from the British G.P.O. for Land and Marine applications employing A.M. or F.M. systems, type approval from the Canadian D.O.T. and type acceptance of the F.C.C. of the United States of America.

Pye V.H.F. equipment is designed to meet the approval of authorities throughout the world. No other Company holds so many approvals for this range of equipment, which now covers every conceivable equipment.

We can offer

FREQUENCY RANGE

All frequencies from 25 to 174 Mc/s.

POWER RANGE

All powers up to I Kilowatt.
CHANHEL SPACING
All channel spacings including 20 and $25 \mathrm{kc} / \mathrm{s}$ in full production.

MODULATION

A.M. or F.M.

No matter what your V.H.F. requirements are, Pye Telecommunications Ltd., can fulfil them. Your enquiries are invited.

WHAT MAKES A GOOD TAPE RECORDER ? Winning the treblechance9 тне нar刀 war

While one tape recorder motor, properly designed for the purpose, can be shown to have advantages over a three-motor system, the same need not apply to loudspeakers. Three speakers can be better than one.
Not that the idea of a multi-loudspeaker system, with a view to maintaining efficiency over the entire frequency range, is new. But the installation of a multi-speaker system in a portable tape recorder is new. It is a recent departure pioneered by Grundig to maintain three-directional distribution of Sound at all frequencies - and has been widely praised.

WHY THREE LOUDSPEAKERS? THE GRUNDIG LOUDSPEAKERS

Simply, to avoid the effect of "listening to a box". A specially designed, single speaker unit may well be able to reproduce the whole frequency range, but the upper register will be projected in a pronounced beam, (as light from a car headlamp) causing the ear unerringly to locate the source and so destroy the sense of reality. The reproduction of the treble frequencies from three units, however, provides the same distribution that is inherent in the bass notes. If the walls of the room are used to enhance the effect, as shown in the sketch, the apparent source of sound now becomes an area instead of a point.

To a large extent the primary purpose of the portable tape recorder cabinet must be to house the machine and to be compact, stylish and efficient. If, as in a Grundig, the cabinet must also house three loudspeakers, it calls for design and production skill of a high order - and unusually efficient speaker units of a special kind. The method of feeding the audio power to the three units is shown in the accompanying circuit diagram.

GRUNDIG

Makers of the finest tape recorders in the world

 Four stage amplifier weighing under $3 / 4$ ounce

The new Multitone Hearing Aid is considered to be the smallest in the world incorporating Automatic Volume Control.
The Orette is a four stage transistor amplifier with built-in microphone and battery (Mallory Type R.M. 625) which powers it for over 100 hours. It can be easily worn in the hair by a woman as it weighs under $\frac{3}{4}$ ounce, and a man can clip it behind his ear. It can be fitted with either air conduction or bone conduction receivers. Very many deaf people able to use conventional aids without Automatic Volume Control, find a headborne instrument with linear amplification totally unacceptable. The reasons for this are:-

* Aids specifically designed to be headborne have a smaller maximum power output than a substantial body aid. Distortion therefore sets in much earlier.
Owing to the position of the aid the users' own voice sounds much louder through the aid than through an instrument worn on the person.
* The effect of high pitched background noises, such as clapping in a theatre, is greatly exaggerated when the aid is worn on the head. These noises can easily become intolerable without Automatic Volume Control, as incorporated in the Orette hearing aid.

The ORETTE is the aid which has been designed to be headborne.

multitone ORETTE

Muktitone Electric Co. Ltd. I2/20 Underwood Street, N.I. Telephone: CLErkenwell 8022 (Branches: London, Birmingham, Dublin, Edinburgh, Glasgow, Brighton, Cardiff, Torquay and Agents throughout Great Britain and the Worid.)

The
 finest seat in the house...

From perhaps just one seat in the concert hall will the sound intensity and tonal relationship of the different instruments suit perfectly your own hearing characteristics. With the new Pye Mozart this one seat is reserved for you indeflinitely-in the comfort of your own home. There you can create the music of your choice, free from distortion or audience distraction, and exactly adjusted to your own individual needs

PI Mozant

Pye Limited, Aucktanil 0.1 . Hew Zealand.

Pye Pit, Lid, Melbourne, Australia

Pye Corporathan of Amerita, 1149 haritata Avenue,
Alopland Pukk,
New lersby, 0.8.a.
Pye Radro and Tolowision
(Pty.) Ltd.
Iohannesburg, South Africa.

The Pye Mozart is available in a metal openwork case or chassis form, illustrated above - weighs 8t lbs, measures $33^{\prime \prime} \times 10 \frac{1}{2}^{\prime \prime} \times 5^{\prime \prime}$ and gives 10 watts output.

Dialamatic 8elector

The Mozart has input facilities for records, tape, and radio. New 'dialamatic' pickup compensation unit gives instant matching for most types of pickup.

On/off Push Button

This is completely separate from the volume control and eliminates all mains interference.

Simplified Circuitry

This brilliantly simplified printed circuit uses only 3 valves, a metal rectifier and a minimum of capacitors and resistors, allowing a great saving of space.

The latest in the Hi -Fi range

The Elac 4 inch Tweter

A further addition to the "Elmag " High Fidelity range, this 4in. cone cype Tweeter is the finest of its class yet produced. Response to transients is exceptionally good and the absence of undesirable peaks results in clear and smooth reproduction.
for best results it should be used with a suitable cross-over filter in conjunction with 1 or 2 larger units.

Frequency response within 5 dB from 5.000-17.000 cps. only $7 \frac{1}{2} \mathrm{~dB}$ down at 20.000 cps.

OVERALL SIZE : 4 in . DIA. $\times 2$ 2in. DEEP.

POWER HANDLING: 2 W. Peak A.D. INPUT.

VOICE-COIL IMPEDANCE : 6 ohms at 5,000 cps.

PRICE : 29 I0 inc. P.T.
Trade Terms $33!\%$.

A NEW CATALOGUE OF
 has just been published by NORTHERN RADIO SERVICES

II Kings College Road, London, N.W.3. Phone PRImrose 3314
Send twe 3d. "tamps for your copy naso-it may well save vou pounds.

Amplifiers. Tuners, Cabinets etc., at Manufacturers' prices

- Demonstrations: Monday-Saturday inclusive, 10 a.m.-6 o.m. without appointment. Technieal Guidance Service by our Chief Engineer personally or by return post free. Let us have your enquiry now.
- Single items or complete instaflotions from stact. We can supply any regular item advertised in this iournal.
- Complete satisfaction or goods exchanged Deferred terms axallable. Below we lis: iust a few of our 1,001 lines

Concere Grand Cabiner

The N.R.S. CONCERT GRAND REPRODUCER KIT comprising:
Symbhony 12^{*} Bass Reflex cabine:

No. 2. Symphony Amplifier with Remote Control Studio Pre-stage
Lenco GL50 Transcription Unit with transcription quality pickup cartridge
Swit.ched F.M. Tuner
Truvox Mark IV Tape Deck with revolution counter
Truvox Tape Amplifier
Concert Grand Cabinet, with pneumatic lid-stay
Lorenz Triple Cone Loudspeaker with condenser
Symphony $12 i n$. Bass Reflex Cabinet in notething veneer and contemporary style
$E 19190$
6330
E21 176
€ 15 IS 0 to 62980
$\mathbf{f 3 0} 9 \quad 0$
$617 \quad 17 \quad 0$
E19 00
CIS 46
Ell 100

All rems avallable separately
Combination can be varied to suit individual requirements.
Cabinet available in sapele mahogany, walnut or oak.

SYMPHONY 'CONTEMPORARY' REPRODUCER KIT comprising:

No. I Symphony Amplifier with Remote Control $\quad 614$ 14 0
Symphony F.M. Tuner and Power Pack $61815 \quad 6$
Lenco GL50 gramophone unit with transcription careridge
18156
Nordyk Tygram Cabinet wit.l legs
$E 21$ IT 6
Nordyk Tygram Cabinet wit, legs
Switened F.M. Tuner can be substituted
if preferred.

SYMPHONY DE LUXE TAPE RECORDER

Type A with built-in revolution counter 52 gns.
Type B as abova but in Rexino covered Portable casa Recommended Microphone-Ronette... 63

No. 2 SYMPHONY AM/FM TUNER $26 \mathrm{gns}$.
 SYMPHONY AMIFM RADIOGRAM

CHASSI; complete with Goodmans
high-flux 10 in . loudspeaker.
SPEAKERS DY
WiarfeJare Goodmans, Whiteley (WB)
Lorsnx, Grampion, etc.
TAPE EQUIPMENT by
Trunox, Cullaro, Grundig, Wearite, Ferrograph, Brennei. TAPE —all makes stozked
H.P. and CREDIT SALE TERMS AVAILABLE

CABINETS by W. B. \& Record Hous eg (Nordyk) - tull range stocked.

STEREOPHONICTAPE EQUIP.

 MENT and the portable recordsr by STECTO Stoc ed. Demonstration of stereo sy appointment only. Every*hing efse without appointment

Image Orthicon Tubes and Vidicons manufactured by English Electric Valve Company Limited are in operation in nearly all countries of the world enjoying a television service. In the United Kingdom, all outside broadcast cameras use English Electric Vaive Company Image Orthicons, which are also the heart of the majority of cameras operated in British studios. English Electric Valve Company Image Orthicons, and more particularly Vidicons, are in use wherever television cameras are employed as electronic aids, such as in the fields of defence, surgery, industrial processes and many other diverse applications.

'ENGLISH ELECTRIC"

The range inciudes:

E.E.V. type	Anerican equivalent	Descriprion
P. 807	-	3^{*} Image Orthicon
P.810	6198	Vidicon for industrial use
P.8II	-	$4!$ Image Orthicon
P.813	6326	Vidicon for film pick-up
5820	5.820	$3^{\prime \prime}$ Image Orthicon
P. 817	6774	3" Image Orthicon for colour pick-up

Write for full tedmical data of the complete range

AM \& FM SIGNAL GENERATORS - OSCILLATORS • VALVE VOLTMETERS • POWER METERS • Q METERS • BRIDGES WAVE ANALYSERS • frequency standards . WaveMETERS - TELEVISION AND RADAR TEST EQUIPMENT

Curie Point Curves for MUTEMP HTC and LTC Magnetising Force 100 oersteds

Measurement of the change in characteristics with temperature.

MUTEMP compensotor to a domestic kWh meter.

MUTEMP: a temperature-compensating alloy

This alloy, for use in electric instruments subject to wide variations in temperature, is now available in two distinct grades. The two grades ensure satisfactory coverage for a wide range of temperature change. It will be seen from the curves that MUTEMP LTC has characteristics suitable for the low temperature and HTC for the higher temperature ranges. MUTEMP is supplied in hot-rolled sheets up to 18 in . wide and in thicknesses ranging from $\cdot 125 \mathrm{in}$. to 020 in .

Full details may be obtained from our current catalogue, where its temperature characteristics are set out at three standard magnetizing forces, 2, 18 and 100 oersteds.

RICHARD THOMAS \& BALDWINS

LAMINATION WORKS: COOKLEY WORKS, BRIERLEY HILL, STAFFS. MIDLAND SECTION OFFICE: W!LDEN, STOURPORT-ON-SEVERN, WORCS. HEAD OFFICE: 47 PARK STREET, LONDON, W.I
Our Cookley Works is one of the lorgest in Europe specializing in the manufacture of laminations for the electrica! industry.

First in the world -best in the world

The first
subminiature valves
were designed and manufactured by

INDIRECTLY HEATED SUBMINIATURES

DESCRIPTION
H.F. Pentode
H.F. Pentode
H.F. Triode

Gas Tetrode
H.F. Twin Triode
cV
EQuIV.
465
466
468
474

The longest experience backed by continuing development, the most modern equipment and the finest techniques still maintain Hivac supremacy.

Perfection in miniature

Please write for further details STONEFIELD WAY - SOUTH RUISLIP • MIDDLESEX • ENGLAND Telephone: Ruislip 3366

Cables: "Hivac, Ruislip"

[^15]
I must have

Phrfegiton

It is the eternal quest of the female, Madam.

But if it is audio perfection you are seeking, you need travel no further. The first loudspeaker we made twenty-five years ago was perfection itself and our standards have risen year by year. Response curve?

Straighter than the straightest die. Frequency response? From absolute zero to frequencies beyond the limit even of canine hearing.

Distortion? Perish the thought.
But why not listen for yourself, Madam?
It sounds quite good too.

> VITAVOX

DU120 DUPLEX COAXIAL
FULLRANGEEOUDSPEREER
£19-10s.

WODEN TRANSFORMERCOLLTD
 m OXLEY BOAD BILSTON OTAFFS Phone: BILSTONAIQSQ

The huge tabular icebergs passed in the Weddell Sea at 76° South, on Jan. 29th, 1956.

Amid the hazards of Antarctica "Advance" E2 Signal Generators are playing their vital part in helping to maintain the all-important "communications." Their selection by the technicians of Dr. Fuchs' TransAntarctic Expedition is a measure of their confidence in the reliability of these world-famous instruments. By the same token you'll find instruments from the comprehensive "Advance " range in the tropics too, and indeed in all places throughout the world where accuracy and reliability must be sustained irrespective of climatic conditions.
The Advance E2 Signal Generator covers $100 \mathrm{kc} / \mathrm{s}$ to $100 \mathrm{Mc} / \mathrm{s}$. Write for leaflet W42.

To keep the resonant frequency of the isolator low is not a complete answer. In fact there is, as yet, no complete answer. But by far the nearest approach is today provided by "BARRYMOUNT"

Isolators, the principlc of which is the complementary performance of non-linear springing and air-damping. Even at resonance
"BARRYMOUNT" Isolators offer quite
spectacular freedom from vibration, as the accompanying un-retouched oscillographs of transmitted acceleration show.
We shall be happy to tell you all you want to know about "BARRYMOUNT" Isolators. We shall be even happier to mount your "problem unit", in your presence, and give it "the works".

Your equipment rides safely on the

[^16]Isolatar "B" with little damping, but with Tubbit buffers to reduce shock a renonance (I5 cfa.i.). Hioh frequency transuents reduced far same input.
0.020.
"barrymount" and "barry b mount" are Registered TradeMarks cementation (muffelite) itd. 20 albert embankment, london, S.e. II telephone reliance 6ss6

The range of Cinch " J " type plugs and sockets includes 4, 8, 12 and 20 way types. Both plugs and sockets are suitable for cable connecting or for inter-chassis connection as unitors.
The specially designed contacts each have 12 resilient fingers which engage with the corresponding plug blade, resulting in high electrical efficiency matched by consistent smoothness of operation.

CARR FASTENER CO LTD • STAPLEFORD • NOTTINGHAM
Leaftet 4331 with full technical data available on request to representatives:

UNIVERSAL BRIDGE Type TF 868A

Measures inductance or capacitance at 1 or $10 \mathrm{kc} / \mathrm{s}$, resistance at d.c. Measurement Ranges: $1 \mu \mathrm{H}$ to 100 benrys, $1 \mu \mu \mathrm{~F}$ to $100 \mu \mathrm{~F}, 0.1$ ohm to $10 \mathrm{M} \Omega$. Q Range: 0.1 to 10 at $\mathrm{kc} / \mathrm{s}, 1$ to 100 at $10 \mathrm{kc} / \mathrm{s}$. Tan δ Range: 0.001 to $0.1 \mathrm{at} 1 \mathrm{kc} / \mathrm{s}, 0.01$ to 1.0 at $10 \mathrm{kc} / \mathrm{s}$.

[^17]

Pickup Testing
"Why $A R A R B$ is besr" series No 10
THE very latest equipment is used for testing components for Garrard quality gramophone units. The automatic machine illustrated above was designed and made in our own laboratory and performs in one operation three tests on crystal cartridges for Garrard pickups. Every turnover cartridge is tested each side for voltage output on 78 and $33 \frac{1}{3}$ r.p.m. and at the same time a wave form check for frequency distortion is made. One more reason why Garrard units are the finest in the world.

Garrard
 $\mathrm{A} U \mathrm{D} \mathbb{O}$ PERFECTION

> New addition to the Thorn family of miniature indicator lampholders designed to use the Atlas midget panel lamp which is only $0.575^{\prime \prime}$ in length and $0.249^{\prime \prime}$

in diameter

INTRODUCING THE

ROTARY SHUTTER

LAMPHOLDER

SHORT AND LONG SHANK VERSIONS

This lampholder represents an outstanding advance in space-saving-the outside diameter of the complete device is only $\mathbf{g}^{\prime \prime}$. Here, then, is the smallest of all dimmer indicator lamps. The cap contains a rotary shutter with built-in stops to restrict rotation between the fully-shuttered and the fully-open positions. When fully shuttered there is sufficient illumination for night vision. Glass lenses are engraved with the direction of rotation and letters indicating night and day conditions. The short shank version is designed for panel fitting where there is no "Plasteck" panel intervening between the indicator cap, and the lampholder. The long shank version is for use where a "Plasteck" panel intervenes and/or where the extended length may be necessary to suit special installations. Both components are designed to screw into the standard lampholder body used for Plasteck lighting L/H body 80/10/0063 earth return. This can be supplied as double pole version if required. Colour of cap: red, green, amber, blue or clear. Can be supplied with $28^{\vee}, 12^{\vee}$ or 6^{V} bulb.

AND THE MINIATURE PRESS-TO-TEST

FITTING

Extreme compactness has been achieved in this new "Press to Test" component. For installation a round hole 部" diameter is all that is necessary in the mounting panel. The component can be extracted from either the front or from the back of the panel. There are two versions one with 3 terminals (solder or screw 1 terminal common) and the other with 5 tag terminations, solder (1 terminal common). The internal contact assembly are so arranged as to be free from normal aircraft vibration conditions and pre-determined contact pressures are maintained in the design technique. The front indicator plate can be engraved "Press to Test" or for any other engraving to suit operational requirements. The lampholder cap may be either the indicator or rotary shutter type. Colour of cap: red, green, amber, blue or clear. Can be supplied with $28^{\mathrm{V}}, 12^{\mathrm{v}}$ or 6^{V} bulb.

For full information write:
AIRCRAFT COMPONENTS DIVISION THORN ELECTRICAL INDUSTRIES LTD GREAT CAMBRIDGE ROAD, ENFIELD MIDDLESEX. TEL: ENFIELD 5353

Designers and users of radio and electronic equipment know that they can rely implicitly on the efficiency and dependability of "Cyldon" Capacitors and Tuners. They know too that the exceptionally wide variety of types in the standard "Cyldon" range covers most day-to-day requirements, but that when special types are needed the full resources and specialised experience of the manufacturers are entirely at their disposal.

SYDNEY S. BIRD

> \& SONS LTD.

NDON SALES \& TECHNICAL LIAISON OFFICE, 3 PALACE MANSIONS, PALACE GARDENS, ENFIRLD,MIDDX. Telephone : Enfield 8571-3. Telegrams: "Capacity, Enfield."

Head Office: POOLE DORSET.

Contractors to Ministry of Supply. Post Office. and other H.M. Govt. Depts.

Equipment manufacturers are invred to write for literature covering Cyldon "Teletuners" and Cyidon Trimmers, together with details of our complete range of Variaole Capacitors and Ilst of Agents for Home and Overseas.

GOLD-PLATED CONTACTS

made from spring-tempered phosphor-bronze provide low contact-resistance, prevent corrosion and facilitate soldering.

MELEMINE MOULDINGS

conforming to B.S.S. 1322
provide high arc-resistance, high dielectric and mechanical strength.

> Full technical data and illustrated leallets forwarded on request: ELECTRO METHODS LTD.

12-36 Carton Way, Stevenage, Herts. Telephone: Stevenage 780

BO MICRO-OHMS TO 10,000 MEGOHMS . 0002 PICOFARAD

 TO 100,000 MICROFARADS, 5 MILLIMICROMENRIES TO INFINITY- Accuracy to 0.25% is achieved with complete stability. - Two decades and a continuously variable control irdicate independently the resistive and reactive terms to four significant figures. - Adaptors for measurement of conductivity, dielectric constant and loss factor of solids and liquids.

The B. 221 is a righly accurate transformer ratioarmbridge of very advanced design. It provides facilities for the two. three, or four-terminal measurement of impedance or transfer admittance over an extremely wide range at an operating frequency of 10.000 radians/sec. ($1592 \mathrm{c} / \mathrm{s}$).

Measurement is unaffected by the impedance of the tist leads, which can therefore be of any leng th. Consequently the instrument is ideally suitable for the determination of temperature coefficient of components under test conditions or, in fact, any remote in
situ measurement. A novel mechanism automatically displays the cyphers. decimals and units of measurement. This gives direct reading and avoids any confusion which might be caused by the large multiplying factors invalved.
The basic range of the instrument covers Impedances from $10,000 \mathrm{megohms}$ to 10 ohms and this is extended to 50 micro-ohms by the use of the Low Impedance Adaptor. Other adaptors have been designed for measurement of conductivity, dielectric constant and loss factor of sollds and liquids.

THE WAYNE KERR LABORATORGS LIMITED, ROBBUCR ROAD, CHESGINGTON, SURREY. TELEPHONE: LOWER HOOK IT3I

Quantity production of the 5BKP1 by ETEL is making it an economic proposition for more designers to incorporate a high precision oscillograph tube in a wider range of applications than has previously been possible.
This five-inch tube employs a two-stage distributed post deflection accelerator. High P.D.A. ratios may be used, and the distortions caused in normal P.D.A. systems largely eliminated, with consequent advantages in brightness and deflection sensitivity. With a P.D.A. ratio of $5 \frac{1}{2}: 1$ the maximum pattern distortion is 2% and the maximum deviation from deflection linearity is 2%.
As can be seen from the adjacent data the 5BKP1, with its high sensitivity and low plate input capacitances is specially suitable for wide-bandwidth oscillography. Full data is available on request.

Abridged data

Screen Metal backed P1 green fluorescent medium persistence. Other screens available to order.
Heater $\mathrm{Vh}=6.3 \mathrm{~V} \cdot \mathrm{Ih}=0.55 \mathrm{~A}$
Capacitances x^{\prime} to $x^{\prime \prime}$. . . . 2.3pF . y^{\prime} to $y^{\prime \prime}$. 1.7pF
One x plate to all other electrodes less other x plate 3.6 pF
One y plate to all other electrodes less other y plate 1.65 pF

Typical Operation

ETEL

Cathode Ray Tubes

ELECTRONIC TUBES LIMITED

Kingamead Works, High Wycombe, Bucks . Tal: High Wycombe 2020

QUALITY Paded ly experience

Other products include PULSE GENERATORS CAPACITY COMPARATORS TAPE RECORDERS STABILISED POWER SUPPLIES PHOTOCELL AMPLIFIERS

INSTRUMENT CASES

Attractively constructed of seam welded steel, these strong instrument cases are well ventilated and stove enamel finished in various colours. Available in four standard sizes or to your own specification.

HANDLES

Made in standard range (4in., 6 in ., 8 in . and 10 in . centres). A wide variety of other sizes can be made to special order.

AMP-CHECKS

Invaluable device designed to facilitate current measurements. Installed in series with an electrical (or electronic) circuit to all points where measurements or checks are required without open carcuiting.

Metal components available to customer's specification and small or batch quantities undertaken.

Experienced in research projects and prototype construction. sub-Contractors for sheet metal or assembly and wiring. AID and ARB approved.

PHILLIPS \& BONSON LTD

Reg. Offices: IMPERIAL hOUSE domimion ST. MOORGATE LONDON EC2 Telephone: MOMARCh 5481.5 Works: pono works 8 milfilelos road hackney london es telephone: amherst 4331

technical data
 on the NEW Type 515 Oscilloscope

DC-TO-15 MC PASSBAND

High in performance, but low in size, weight, and cost, the Type 515 fits a relatively new requirement area. Besides its extra capabilities in applications requiring vertical response out to 15 megacycles, it occupies less space and is easier to handle than most other general-purpose laboratory oscilloscopes.

Risetime of the dc-coupled vertical amplifier is less than 23 millimicroseconds. Sensitivity is accurately calibrated, $0.1 \mathrm{v} / \mathrm{cm}$ to $50 \mathrm{v} / \mathrm{cm}$ in nine steps. A variable control adjusts the sensitivity between calibrated steps and out to $125 \mathrm{v} / \mathrm{cm}$. To help avoid accidental inaccurate readings, a warning light indicates an uncalibrated condition when the variable control is in use. A balanced network delays the signal $0.25 \mu \mathrm{sec}$ to permit observation of the leading edge of the waveform that triggers the sweep. Direct input capacitance of approximately 36 $\mu \mu \mathrm{f}$ is reduced to approximately $10 \mu \mu \mathrm{f}$ by use of the 10 x attenuator probe supplied with the instrument.

SIMPLIFIED SWEEP CONTROL

All 22 of the Type 515's accurately calibrated sweeps are selected by the same control knob. This knob also indicates the sweep time-per-centimeter when the 5x magnitier is in use, making mental calculation of time intervals unnecessary. The normal sweep is
 expanded to 50 centimeters by the magnifier, and the horizontal-position control has sufficient range to display any 10 centimeters of the magnified sweep. To maintain uniform bias on the control grid of the ca-thode-ray tube for all sweep speeds and repetition rates, the unblanking waveform is dc-coupled.

Calibrated fixed sweeps extend from $0.2 \mu \mathrm{sec} / \mathrm{cm}$ to $2 \mathrm{sec} / \mathrm{cm}$. A variable control makes the sweep range continuous from $0.2 \mu \mathrm{sec} / \mathrm{cm}$ to $6 \mathrm{sec} / \mathrm{cm}$. Here again a warning light indicates an uncalibrated condition when the variable control is in use.

AUTOMATIC TRIGGERING

Automatic triggering is a real convenience in a great many oscilloscope applications. This one position, without further adjustment of the triggering controls, permits signals of widely differing frequencies and amplitudes to initiate the sweep, and provides a reference trace on the screen in the absence of an input signal. The automatic circuit operates at a natural rate of about 50 cycles, but synchronizes readily with incoming signals from 60 cycles to 2 megacycles.

Triggering versatility is one of the many highly-useful qualities of the Type 515. You can trigger the sweep from either the positive or negative slope of an internal, extermal, or line-voltage signal. On any of these signals, you can trigger the sweep at a selected amplitude level. You select
either ac or dc-coupling through the trigger circuitry. You can synchronize the sweep with sine-wave signals up to and beyond 20 megacycles. You can block out the low-frequency component of a composite signal, permitting the high-frequency component to trigger the sweep. These complete triggering facilities make possible a steady display of just about any signal you are likely to encounter.

LARGE DISPLAY AREA

A full 6-centimeter by 10 -centimeter linear display can be presented on the screen of the new Tektronix cathode-ray tube, Type T55P, developed especially for this instrument. Characteristics of this new tube help make possible the
 wide signal-handling range and excellent transient response of the Type 515. Accelerating potential is 4000 volts. A T55P2 is normally supplied, but a P1, P7, or P11 screen is available on request at no extra cost.

PORTABILITY

It's a bit unusual for higher performance to come in an oscilloscope that's smaller and lighter than previous models. But this combination of compactess and performance makes the Type 515 most convenient for those more-exacting field applications. Handling ease and simplified controls are characteristics also desirable in the increasing number of production-line test stations where high performance is a new requirement. The Type 515 weighs only 40 pounds and measures $93 / /^{\prime \prime}$ wide, $131 / 2^{\prime \prime}$ high, $211 / 2^{\prime \prime}$ deep.

OTHER CHARACTERISTICS

Many of the other features you'd expect to find in any Tektronix Oscilloscope are part of the Type 515. Squarewave amplitude calibrator, sweep sawtooth and gate available at front panel, illuminated graticule, and electroni-cally-regulated power supply are some of the "standard equipment". New style cabinet with removable sides speeds any maintenance that may be necessary.
TYPE 515 ... $\$ 750$ (F.O.B. Portland. Oregon)
£290.0.0 (Delivered in England)

The above prices are exclusive of duty.
Represented in Great Britain by
LIVINGSTON LABORATORIES, LTD.
Retcar Street, London N. 19
Archway 6251

Close tolerance characteristics

Close tolerances of standing current, slope, balance and cut-off add to equipment reliability and life.

Low impedance

High anode current at zero bias and low anode voltage provide high speed capabilities.

High slope - controlled cut-off

A high slope of $12.5 \mathrm{~mA} / \mathrm{V}$ and a short grid base ensure small drive requirements.

Low cross capacitances

Sections are physically screened, thus materially reducing cross capacitances and permitting sections to be used independently.

The employment of a frame grid construction in this valve is largely responsible for its outstanding characteristics. This also enables a good noise factor to be achieved in r.f. or i.f. input applications thus making the E88CC suitable for use in Radar, Communications, Television Studio Equipment, etc.

Further teohnical information concerning the E88CC is 3vailable on request.

E88CC

a new

high speed

Double

 Triode forcomputing, switching and scaling
ABRIDGED DATA

$\mathrm{Vh}=6.3 \mathrm{~V}$ ih $=300 \mathrm{~mA}$
Computer operation

$\overline{\mathrm{Va}}$ (b)	150 V
$V g(12=100 \mathrm{~mA})$	$-7.0 \pm 1.5 \mathrm{~V}$
$\mathrm{Vg}(12=5.01 \mathrm{~A})$	-15V
Vg difference $\left(\mathrm{Vg}_{0}^{\prime}-\mathrm{Vg}^{\prime \prime} \text { at } l a=100 \mu \mathrm{~A}\right)$	A) <-2.0V
Cascode amplifier	
Vb	100 V
Vg (b)	+9.0V
Rk	680 ohms.
12	$15 \pm 0.8 \mathrm{~mA}$
gm	10.5 to 15 mANV
Noise factor ($(1=200 \mathrm{Mc} / \mathrm{s}$)	4.6d8
Req (r.f.)	300 ohms.
Base	89A

Mullard Limited, Mullard House, Torrington Place, London, W.C. 1

LIMITED

EXNING ROAD, NEWMARKET, SUFFOLK

[^18]

> precision and craftsmanship

Take a look at your wristwatch. The odds are a hundred to one that in small lettering on the dial you will find the words "Swiss Made". Throughout the world Switzerland is recognised as the centre of craftsmanship in precision mechanisms. When you consider the service your watch gives you day after day -and the price you paid for it-you may well conclude that "Swiss Made" also means sheer value for money. It was by no accident that Goldring turned to Switzerland
for a transcription gramophone motor. Modern record reproduction calls for a craftsmanmade mechanism of more than average precision and reliability. And modern strains on purses call for nothing short of real value for money.

The Goldring-Lenco Transcription Motor is designed and made entirely in Switzerland. There are three versions (from $£_{17}$. 10.4. to £23.7.0. including P.T.) which incorporate the Lenco transcription arm and the Goldring " 500 ". Your dealer will be happy to show them to you -or we will gladly send you a descriptive leaflet on request.

GOLDRING-LENCO

Goldring Manufacturing Co. (Great Britain) Led. 486 High Road, Leptonstone, London, E.II

have these outstanding features

* Pot core design facilitating rapid assembly
* Small size
* High value inductance
* Low losses resulting in high Q values
* Very fine setting accuracies
* Operative over a wide frequency range
* Controllable temperature coefficient

Wherever high quality pot cores are required, there will be a Mullard type available to meet the specification, furthermore, they can be supplied wound to customers individual requirements.

Write now for full details of the comprehensive range currently available.

G.G.C. CATHODE RAY TUBES

The recently advertised 4GP., 5BHP and 6EP cathode ray tubes are only three of a wide range of instrument tubes marketed by the G.E.C.

The range includes both electromagnetic and electrostatic deflection tubes and all are generally available with any one of six standard screen phosphors. Other screen phosphors can be suplied to special order.
Should you have any cathode ray tube problems-consult the M-O Valve Company. You will most probably find a tube in the range which is ideally suited to your particular application. If not, the Company with its wealth of experience and technical facilities may be able to make a special tube for you.

Products of the M-O Valve Company Limited, Brook Green, Hammersmith, W. 6 a subsidiary of
THE GENERAL ELECTRIC COMPANY LIMITED, MAGNET HOUSE, KINGSWAY, LONDON, W.C. 2

prove to

yourself

IT DOES THE JOB EVEN better.-

ANHIFERENCE STANDARD

 Coaxial Plug E Socket\star MADE TO RECMF SPECIFICATION

* ROBUST CONSTRUCTION

One-piece Polystyrene interior, no small parts to dismantle, no soldering troubles.

* FULLY INSULATED

Neoprene insulating sleeve for safety.

* EFFICIENT IN OPERATION

Pressure on copper braid over a large contact area ensures positive and secure contact.
\star SIMPLE TO FIT-FITTED IN SECONDS:

3 new

high voltage xenon rectifiers

SHORT HEATING-UP TIME. WIDE AMBIENT TEMPERATURE RANGE . NO "CONDITIONING" ON INSTALLATION

Recent developments in the Mullard 1.25A range of xenon rectifiers have led to improved hold-off characteristics and higher reliability. These improvements, together with the already widely recognised advantages of xenon rectifiers, strongly recommend these valves for power supplies in transmitters, r.f. heaters and similar equipments.

Xenon rectifiers can be operated over a wide ambient temperature range, they are not restricted to vertical mounting, they have a short heating-up time and require no "conditioning" on first being put into service. These features make for great
operational convenience and the valves are suitable for use in both fixed and mobile equipment under all climatic conditions.

Two of the valves can be used as plug-in replacements for mercury types: the RR3-1250-B in place of the RG3-1250; and the RR3-1250A in place of the RG4-1250 (CV5) in applications where the peak inverse voltage does not exceed 13 kV . Write on your company notepaper to the address below for a free booklet "High Voltage Rectifiers" which gives full data on these and other xenon rectifiers together with details of mercury-filled types.

Mullard

COMMUNICATIONS AND INDUSTRIAL VALVE DEPARTMENT
abridged data

Type No.	Base	(iv)	(if $^{\text {(})}$	$\begin{aligned} & \text { P.I,V. } \\ & \text { max. } \\ & \text { (kV) } \end{aligned}$	$\begin{aligned} & \text { Ik (pk) } \\ & \text { max. } \\ & \text { (A) } \end{aligned}$	$\begin{gathered} \text { Ik (av) } \\ \text { max } \\ \text { (A) } \end{gathered}$	$\left\|\begin{array}{c} \text { Heating-up } \\ \operatorname{Timecs}^{2} \end{array}\right\|$
RR3-1250/4832	B4F	5.0	7.0	10	5.0	1.25	30
RR3-1250A	Goliach Edison Screw	4.0	11.0	13	5.0	1.25	30
RR3. 12508	Goliath Edison Screw	4.0	7.0	13	5.0	1.25	30

MULLARD LTD• MULLARD HOUSE•TORRINGTON PLACE• LONDON WCI

- More than fifty civil airlines and over thirty air forces fit Marconi radio, radar or navigational aids. Airports all over the world rely on Marconi ground installations - The armed services have entrusted radar defence networks, both at home and overseas, to Marconi's - The broadcasting authorities of 75% of the countries of the world operate Marconi broadcasting or television equipment - 80 countries have Marconi equipped radio telegraph and communications systems - All the radio approach and marker beacons round the coasts of Britain have been supplied by Marconi's.

aLECTRONIC ENGINEERS,

MARCONI

on land, at sea and in the air

Technical Ceramics Limited, Wood Burcote Way, Towcester, Northants Telephone Toweester 312

The up-to-date fishing craft carries electronic echo sounders to locate the most promising fishing grounds. This equipment has to cope with supply voltages that fluctuate over a very wide range. In order to obtain reliability, and to safeguard the life of electronic components it is essential to stabilise the applied voltage.

How is this achieved?

A typical trawler wheel-house showing the Kelvin Hughes Fishing Echo Sounder M.S. 29 and KH Kingfisher Scale Expander.

.. straightened out by AdWance

In the Kelvin Hughes Models M.S. 28 and M.S. 29 Fishing Echo Sounders, 'Advance' Constant Voltage Transformers are incorporated to ensure reliable long-life performance, even where, as on the smaller vessels, the supply may vary between -10% and $+30 \%$.
'Advance' Constant Voltage Transformers provide a.c. voltage stabilisation of $\pm 1 \%$ for input variations of up to $\pm 15 \%$ at maximum load. For power requirements from 4 to 6,000 watts, they are automatic and contain no moving parts.

Technical cetails and deseriptive Leaflet W28 glosly sant on request.

CONSTANT VOLTAGE TRANSFORMERS

Connoisseur
 3 SPEED MOTOR

The turntable with a 4% variation on all three speeds.
The Connoisseur motor is made for the perfectionist. It is one of the finest turntables in the world.

The speed change is arranged mechanically and gives a 4 per cent variation on all speeds. A synchronous motor, which is virtually vibrationless with low noise level and hum indication, maintains a constant speed at all settings. There is no braking action to obtain speed change.
The I2in. turntable is lathe turned in non-ferrous metal. The main spindle, which is precision ground and lapped to mirror finish, runs in phosphor bronze bearings.
A sound, precision engineering job, the Connoisseur motor provides the foundation for perfect reproduction.

Price 620, plus P. Tax $\mathbf{6 8 / I I / - .}$

Matehing Connoisseur Pick-up Mark if with a frequency range from 20-20.000 cycles:
Pick-up complete with I head fitted with Diamond armature 18/19/- plus P. Tax ©3/16/6.

A. R. SUGDEN \& CO. (ENGINEERS) LTD.

WELL GREEN LANE, BRIGHOUSE, YORKSHIRE. Phone: Brighouse 2397. Grams: Connoiseur, Brighouse.

[^19][^20]FULL LOAD 5TABILITY
Up to 100 K .ohms the resistance change at full load with an ambient temperature of $70^{\circ} \mathrm{C}$. is less than 0.75% (average 0.25%) after 1,000 hours operation At I Megohm the change is less than 1% (average 0.75%).
N.B. On D.C. loading the maximum voltages stated in RCL 112 should be observed.
AGEING AND 5HELF DRIFT.
U_{p} to 100 K.ohms the average change is 0.25% In 12 months (never greater than 0.75%). For I Megohm resistors the average change is 0.6% in 12 months (never greater than 1.25%).
CLIMATIC
Exposure to the two cycles of H.I. humidity as laid down In RCS 112 shows a change of less than 0.7% (average 0.4%) up to 100 K .0 hms. At I Megohm the change is less than 1% (average 0.7%).
TROPICAL EXPOSURE
Elghty-four days exposure to the standard $25^{\circ} \mathrm{C} . /$ $35^{\circ} \mathrm{C}$. 100% humidity cyclling shows a change of less than 1% (average 0.5%) up to 100 K. ohms. At Megohm the change Is less than 2% (average 1.6%).
TEMPERATURE COEFFICIENT
The temperature coefficient is less than $0.04 \% /{ }^{\circ} \mathrm{C}$.
up to 100 K .0 hms . At I Megohm the coefficient is approximately $0.055 \% /{ }^{\circ} \mathrm{C}$.
NOISE
Noise which is generated In a resistor, as the result of a dlrect voltage applied across It, varies according to the ohmic value of the resistor, the noise decreasing as the ohmic value increases. The nolse is also Influenced by factors such as the slae of the resistor.
For noise which falis within frequency range of 0 to 10 Kc . $/ \mathrm{sec}$., the Painton high stabillty resistors have noise levels which are between 0.05 and 0.4 microvolts of noise per applied direct volt, when the resistor is dissipating power at its maximum wattage rating.
VOLTAGE COEFFICIENT
Not exceeding 0.002% per volt D.C

DERATING FOR AMBIENT TEMPERATURES EXCEEDING $70^{\circ} \mathrm{C}$

TYPE	RESISTANCE RANGE (ohms)		values outside this range may be quoted for separately.				
72	$\begin{array}{lr} \pm 1 \% & 4-700 \mathrm{~K} \\ \pm 1 \% & 4-1.0 \mathrm{M} \\ \pm 1 \% & 20-2.0 \mathrm{M} \\ \pm 1 \% & 20-3.0 \mathrm{M} \\ \pm 1 \% & 20-5.5 \mathrm{M} \\ \hline \end{array}$		$\pm 2 \%$	$\begin{aligned} & 4-1.0 \mathrm{M} \\ & 4-2.0 \mathrm{M} \end{aligned}$		$\pm 5 \% \quad 4-2.5 M$	
73			$\pm 2 \%$			5\% 4-5.0M	
74			$\pm 2 \%$	20-4.0M		$\pm 5 \% 20-10.0 \mathrm{M}$	
75			$\pm 2 \%$	20) -5.0 M		$\pm 5 \% 20-10.0 \mathrm{M}$	
76			$\pm 2 \%$	$2 \mathrm{H}-9.0 \mathrm{M}$		$\pm 5 \% 20-50.0 \mathrm{M}$	
	TYPE		72	73	74	75	76
	Normal Commercial Rating $70^{\circ} \mathrm{C}$-watts		\pm	1	1	1	2
	R.C.5.C. style		RC2.E	RC2-D	RC2.C	RC2.8	RC2-A
	R.C.5.C. Rating at $70^{\circ} \mathrm{C}$-watts		1	1	7	1	$1 \pm$
	R.C.5.C. Rating at $100^{\circ} \mathrm{C}$-watts		1	1	1	1	1
	DIMENSIONS IN INCHES	A	1	18	$1 \frac{18}{18}$	11	218
		B	A	,	3	1	1
		C	11	1	11	$1 \pm$	1

COMMERCIAL terating curve

values outside this range may $\pm 2 \%$ 4-I.OM $\quad \pm 5 \%$ 4- 2.5 M $\pm 5 \% \quad 4-5.0 \mathrm{M}$ $\pm 5 \% 20-10.0 \mathrm{M}$ $\pm 5 \% 20-10.0 \mathrm{M}$ $\pm 5 \% \quad 20-50.0 \mathrm{M}$
WATtAGE RATING/AMBIENT TEMPERATURE GRAPH

Manufacturers are invited to write or telephone for full information on this governor controlled constant speed motor. Only slightly larger than a match-box, the StaarKinder Motor presents a noiseless power unit of extremely low current consumption.

The standard unit is for 6 v . operation, but the motor can be supplied for usage at other voltages up to 12 v .

The Staar-Kinder Moter avalloble anly to manufaceurers.

Staar Electronics Lud.,

Ormond House, 26/27 Boswell Street, London, W.c.I
Telephone: CHAncery 8953-4-5-6.
Telegrams: Asterisk, London
 constant turntable speed within 2% whatever the applied voltage between 7.5 v . and 4.5 v .

Available to Manufincturers only-write for full detall.

Staar Electronies

Led.

Ormond House, 2k/27, Boswall Sereet, Londari, W.C.I TClemhome: CHAncery 8953-4-5-6 Telegrams: Aszerisk, London

Valuable aids to the RADIO SERVICE ENGINEER

120 PAGE POCKET BOOKLET

A 120 page pocket-size booklet gives summarised data i.e. characteristics, operating conditions, base diagrams relating to Ferranti valves and cathode ray tubes. Included also is a comprehensive valve equivalents list. Free copy supplied on request.

TECHNICAL HANDBOOK

This Handbook contains the fullest information about all types of Ferranti valves and cathode ray tubes. Complete data such as physical details. base connections, ratings, operating conditions, etc. Price 7/6.

Send now for both publications to:-

FERRANTL

GEM MILL • CHADDERTON OLDHAM : LANCASHIRE

London Office: KERN HOUSE, 36 KINGSWAY, W.C. 2.

It pays to specify

EGEN
 POTENTIOMETERS

Egen potentiometers can be relied upon. Every part, from the tag to the track, is the very best of its kind. Add outstandingly intelligent design and you see why more and more engineers specify EGEN.

NEW 14" RANGE

Measuring $14^{\prime \prime}$ diameter, Type 181 is without a switch. Type 183 has a double-pole Q.M.B. switch and Type 243 a heavy-duty double-pole Q.M.B. switch specially designed for Television. These controls are available with tappings at $33 \%, 50 \%$ or 60% of slider rotation, also with terminations suitable for printed circuits.

NEW wire-wound pre-set for group assembly

Among recent additions to the EGEN range is Type 189. It has an easily replaceable wirewound track with good heat dissipation and can be grouped with Type 166 carbon preset controls on a common panel.

EGEN

ELECTRIC LIMITED
CHARFLEET INDUSTRIAL ESTATE
CANVEY ISLAND•ESSEX•ENGLAND

Great Developments at Bis'ey in Printed Bircuits

 P.C.D. LTD.
 (PRINTED CIRCUIT DEVELOPMENTS) AND
 PHOTO PRINTED CIRCUITS LTD

announce that they have ioined forces, so that under the vigorous management of P.C.D. Ltd., the production facilities at Bisley will be geared up to give a new and better service to the trade.

THESE FACILITIES INCLUDE:-
| 48 hour potot; pe service from 1 : 1 transparencies.
2 Speedy production follow up.
3 Full facilities for blanking, piercing, and ass-embly-plating in Rhodium. Silver or Gold.
4 Consistency, reliability economy in time, weight, space, material.
5 Complete development facilities.
Try us out - AND SEE THE DIFFERENCE

PRINTED CIRCLII DEVELOPMENTS
(INCORPORATING PHOTO PRINTED CIRCUITS LTD)
GUILDFORD ROAD, BISLEY, SURREY. TEL: BROOKWOOD 2200
A member of the Camp Bird Industries Group

The first

 of the
S.E.C.

range of

 SILICON JUNCTION DIODESFor High Temperature Operation with extremely high ratios of forward to reverse resistance.

SX641 SX642 ; SX643 sX644

These diodes utilise a recently
developed glass - pure copper seal which has made possible the production of devices
with really outstanding thermal properties.

Lower voltage types | higher voltage types

sX641 sX642

Suitable for use as Second
Detectors at frequencies of up to $10 \mathrm{Mc} / \mathrm{s}$ and for the majority of other low power circuit functions, including Magnetic Amplifiers.

	Circuit Arrangement	Number of Diodes	$\begin{gathered} \text { Max. } \\ \text { Rectified } \\ \text { Current }(\mathrm{mA}) \end{gathered}$	R.M.S. Input Voltage (V)		D.C. Output Voltage (V)	
				S×643	5×644	S $\times 643$	5×644
	Half-wave	1	100	64	106	90	150
	Bi-phase	2	200	64-0-64	106-0-106	90	150
	Bridge	4	203	128	212	180	300

CITY SALE \& EXCHANGE LTD
 The High Fidelity
 Specialists

Our Ma:l Orc'er Service is siperb. L.P. Records, Diaтond needles ant Tape accessories guaranteed by return of post.

LOWTHER T.P.I. CORNER REPRODUCER

This is a very compact speaker and preserves to an amazing degree true relationship between fundamental and harmonics whether it be low or high frequency. Speech is smooth, forward, and gives a feeling of the presence of the artist. Strings, brass and percussion alike have a clarity comparable to a concert hall performance.

Price £95. 0.0
Part Exchange is our speciality. We will give you a fair offer for your present proprietary radio goods against the purchase of either new or secondhand apparatus. This allowance can be used as deposit or part deposit.

If you want a really fine amplifier to go with this speaker, why not the Lowther L.L. 16 with Master control unit for same. Prices are $£ 40$ and $£ 24$ respectively. We can assure you that a demonstration will leave no doubt in your mind that they are well worth it.

The matching F.M. unit has high sensitivity, negligible radiation and a full dynamic range. Price $£ 30,15 / 7$.
All the Lowther equipment mentioned above and that of leading makes, such as Leak, Rogers, Quad, Wharfe dale, etc., are on demonstration in our Fleet Street showrooms.

93-94 FLEET STREET, LONDON, E.C. 4
Phone: FLEet St. 9391/2

An A.C. voltage regulating problem? Here's the ready-made answer-

Write or telephone for further details

PHILIPS Stepless Variable Transformers

There are many applications for these handy transformers! Both bench and panel mounted types are avai.able for use in the laboratory or for incorporation as standard components in manufacturers' equipment.

- Continuously variable from zero up to $\mathbf{2 0 \%}$ above input voltage
- Toroidally wound
- Extremely low "no load" losses
- Can be mechanically coupled for series, parallel or 3-phase (star connected) operation
- Generously rated
- Fully tropicalized
- Individual units rated up to 2 kVA

2-3 kW channelised transmitter

The versatility and reliability of this new, tropicalised Mullard transmitter make it eminently suitable for h.f. en-route, ground-to-air services and point-topoint communication networks. The GFT.560/2 is of unit construction and consists of three basic cabinets-r.f. unit, modulator unit and power supply units - which can be used in combination for multifrequency working and a number of types of emission.

There are ancillary units available that permit remote control of the transmitter over telephone circuits.

Frequency Range 1.5 to $30 \mathrm{Mc} / \mathrm{s}$. Frequency Stability to Atlantic City 1947 standards.
Power Output 3kW. c.w., 2kW m.c.w. or r/l.

Types of Emission c.w., m.c.w.. telephony, frequency shift (with external keying unit), A1, A2, A3, FI.
Output Impedance 600 ohms balanced.
Power Supply $400 \mathrm{~V}, 50-60 \mathrm{c} / \mathrm{s} 3$-phase.

Mullard
EQUIPMENT DIVISION

Specialised Electronic Equipment MULLARD LIMITED Equipment Division Mullard House. Torrington Place London - W.C.I

(in) ME592a

TRANSISTOR A.F. AMPLIFIERS
D. D. Jones, MSC., DIC, and R. A. Hilbourne, BSC. This book, the first of its kind to be published in Great Britain, deals systematically with the design of transistor audiofrequency amplifiers, and gives the circuitry and design details of a versatile range of amplifiers, including both those for high fidelity reproduction and for public address systems. Essential to engineers designing transistor audio amplifiers for the first time.
21 s net by post 21 s 10 d
WIRELESS SERVICING MANUAL
W. T. Cocking, miee. This, the ninth edition of a standard work which has come to be recognised as a reliable and comprehensive guide for amateur and professional alike, has been thoroughly revised and set in a larger and handier format. Essential testing apparatus is described, and logical methods of deducing and remedying defects are explained.
17 s 6 d net by post 18 s 8 d
SECOND THOUGHTS ON RADIO THEORY Cathode Ray of " Wireless World." Forty-four articles reprinted from the popular "Wireless World" series, in which the author examines various aspects of elementary radio science, explains them clearly, and shows that there may be more behind them than is apparent from the usual textbook. This volume deals with basic ideas; circuit elements and techniques; circuit calculations; and some matters in lighter mood.
25 s net by post 26 s 4 d

ADVANCED THEORY OF WAVEGUIDES

L. Lewin. Sets out the various methods that have been found successful in treating the types of problems arising in waveguide work. The author has selected the number of topics as representative of the field in which the micro-wave engineer is at present engaged.
30 s net by post 31 s

BASIC MATHEMATICS FOR RADIO

 AND ELECTRONICSF. M. Colebrook, BSC, DIC, ACGI. Revised and enlarged by J. M. Head, ma (Cantab). Presents in readable form a complete course in basic mathematics for engineering students of all kinds and leads on to the more advanced branches of mathematics of increasing importance to radio engineers. In this revised edition the chapter covering the application of mathematics to radio has been enlarged, and many new subjects are included.
17 s 6 d net by post 18 s 6 d

ABACS OR NOMOGRAMS

A. Giet Translated from the French by H. D. Phippen and J. W. Head. This book not only demonstrates the many and varied applications of the abac or nomogram, but shows how even those without highly specialised mathematical knowledge may construct their own charts. It deals with both Cartesian abacs and alignment charts and contains a large number of practical examples in mechanics, physics and electrical engineering.
35 s net by post 36 s

Overseas Guyers!

 pay for your American Type Valves

More and more the world's governments makers . . . laboratories are standardizing on American types, valves which are obtainable anywhere in the world, valves which you can get from BRIMAR without
 expending dollars.

BRIMAR valves are readily available everywhere, and with their crafes-
manship, precision of manufacture, are amongst the finest obtainable.

Components of a wareguide system which are to be manufactured by die-casting must have their walls tapered slightly to permit the removal of the tool. As a result, a waveguide section becomes hexagonal instead of rectangular.

An article in the December issue of Electronic \& Radio Engineel shows how the proper dimensions of such an hexagonal guide can be determined.

Original artıcles by lcading authorities are a prominent feature of Electronic \& Radio Engineer. Regular readership will keep you in constant touch with progress in the cntire

ARTICLES IN JANUARY ISSUE WILL INCLUDE

NEW TYPES OF D.C. AMPLIFIER
In part 1 of this article an amplifier is described which has a response from d.c. to $20 \mathrm{kc} / \mathrm{s}$ with a longterm drift of $100 \mu \mathrm{~V}$ referred to the input. Two amplifiers in a new cascade-balance circuit are employed.

POLYPHASE OSCILLATATORS

A discussion of various forms of RC oscillators of types which permit several outputs of different phases to be obtained. Their stability and harmonic content are considered.
field of elcctronics, radio and television.
. Ilso the unique monthly Abstracts \& References feature compiled by the Radio Research Urganiz. ation of the Lepartment of Screntilic and Industrial Research

POST THIS COUPON TODAY

ELEGTRONIG \&

 RADIO ENGINEERTO : ILIFFE \& SONS LTD., DORSET HOUSE, STAMFORD STREET, LONDON, S.E.I

Please enter my name as a subxcriber to:-
ELECTRONIC \& RADIO ENGINEER for 12 months commencing wit's the Janmary asue. I enclose remuttance t2. 9s.

NAME...
ADDRESS \qquad
\qquad

ORDERS CAN ALSO BE BE PLACED THROUGH ANY NEWSAGENT.

IMMEDIATE DELIVERY

Most Basic Ranges available ex-stock for immediate despatch. Special rangesdelivery 7/14 days.
Round, Square or Rectangular patterns available, also full range of Industrial Switchboard Instruments. Portable and Laboratory Instruments.
We can supply Meters with Non-Standard Ranges in Current, Volts or Ohms. To B.S. 89. Industrial or Precision Grade accuracy. We are now able to accept customers' own Meters for Scale Drawing and Lettering.
Clients are invited to inspect the display of instruments at our New Offices and Showrooms.

Weston Model SI 57 Rectangular Flush $5^{\prime \prime} \times 4^{4 \prime}$ approx.

Stockists of Meters by Weston, Turner, Baldwin. E.A.C., Weir and other leading manufacturers.

THE LINEAR 'DIATONIC’

a high firelity ultra limear amplifier with integral pre-amp

A special feature is the compactness of the unit. Full advantage has been taken of latest component miniaturisation developments to produce a 10 -watt $\mathrm{Hi}-\mathrm{Fi}$ pushpull amplifier incorporating tone control preamplifier stages within the measurements of $9 \times 7 \times 6 \frac{1}{3} \mathrm{in}$.

In addition two high impedance input sockets are provided for microphone and gram, etc. Each input has its associated vol. control, five B.V.A. valves are employed ECC83, ECC83, EL84, EL84, EZ81.
H.T. and L.T. power supply point is included for a radio tuner.

L45 MINIATURE $4 / 5$ WATT
LAS MINIATY AMPLIFIER

 Goparate Bas and Treble Controm For 200-250v. 50 cpa A.C. Matna AD ideal unit for uer Tith orm. or Mike: Output machung for $2-3$ obm suoukers

LT/45 TAPEDECK AMPLIFIER
A complete unit rendy for connection to 200-250w,
 any make of lieck Negutive loedheck. equullewtion adjuatment by mulli-poailion

LG. $2 / 3$ WATT GRAM AMPLIFIER
Orerall dize of $x+1 x+2 f$ th. Por 200 - 250 N . 50 e.p.e.

SIZE ONLY 9-7-61 ${ }_{2}$ ins.
Weight. $12 \frac{1}{2} \mathrm{lb}$. Power consumption 90 watts For 200-230-250\%. 50 c.p.s. A.C. mains. Outputs for 3 and 15 ohm speakers.
Chassis stoved Grey-Blue or Gold hammered finish.

RETAIL Attral L ENS Chromium carrying handles now available at $17 / 6$.
from your locel stockist or. if in difficulty. diroce from us Send S.A.E. :or descriptive literature. TRADE AND EXPORT ENQUIRIES
to

FREQUENCY RESPONSE ± 2 d.b.. 30-20,000 c.p.s.
MAXIMUM POWER OUTPUT In excess of 14 watts.

RATED OUTPUT 10 WATTS. SENSITIVITY

Volume (1) 22 millivolts for rated output.
Volume (2) 220 millivolts for rated output.
TREBLE LIFT CONTROL
Continuously variable +6 d.b. to -13 d.b. ar 12,000 c.p.s.
BASS CONTROL
Continuously variable $+13 \mathrm{~d} . \mathrm{b}$. to -18 d.b. at 50 c.p.s.

HUM LEVEL

Referred to max'mum output and including integra pre-amp -60 d.b.

HARMONIC DISTORTION
0.19% measured at 6 watts.
NEGATIVE FEEDBACK
Toral 32 d.b. macluding 24 d.b. in main loop.
5-9 MAUDE STREET, LEEDS, 2.

Acoustical

For the closest approach to the Original Sound that your enjoyment
 and appreciation of music may be unimpeded

Please ask for illustrated literature describing the QUAD II Amplifier, FM Tuner and Electrostatic Loudspeaker.

ACOUSTICAL MANUFACTURING CO. LTD. HUNTINGDON, HUNTS. HUNTINGDON 36I.

\& ALLIED EQUIPMENT

List No. 68
adCOLA Lone Life bits 4VAILARLE fROM 8TOCK

CATALOGUES HEAD OFFICE SALES \& SERVICE
ADCOLA PRODUGTS LTD. GAUDEN ROAD. CLAPHAM HIGH ST. LONDON, S.W.4.

TELEPHONES: MACaulay 3101
\& 4211

OHMS? RATING: TOLERANCE? it's easy with ${ }^{\text {B }}$

Continuous Storage Units

Thousands of LAB Continuous Storage Units are daily solving the problem of control and storage of the great range of resistors. Compact, and capable of storing up to 720 separate resistors, LABpak make selection positive, simple and speedy. Now that Ceramicaps, Histabs and Wirewound resistors have been added to the carded range, the usefulness of LABpak storage units is enhanced.

FREE with any purchase of the LABpak range, these units are the complete answer to the storage problems of small production units, laboratories, etc.

MAKE UP YOUR ORDER TODAY - DELIVERY EX-STOCK

All LABpak resistors are carded in ohmic value, rating and tolerance, colour indexed and tabbed for easy selection.
The LAB Continuous Storage Units are available from your normal source of supply, but more detailed information and Ilterature can be obtained from:
THE RADIO RESISTOR CO. LTD.
50 ABBEY GARDENS LONDON•N.W. 8 Telephone: Malda Vale 5522

MASS PRODUCED TO FINE LIMITS

Sound Value for only £32 complete

Armstrong

HICㅌ FIDELITY AMPLIFIER \& PRE-AMPLIFIER CONTROL UNIT

BRIEF SPECIFICATION Output: 10 watts rated; 20 wates peak. Frequency Response: $10-100,000$ c.p.s., within IdB IS-30,000 c.p.s. Distortion: less than 0.1%. Damping Factor: 40. Hum Level: Better than 80dB down. NFB: 3 loop, main overall loop 28dB. Sensitivity: 8 mV (Gram input A) for 10 watcs. Spare Power Supplies: $320 \mathrm{v}, 45 \mathrm{~mA}$ and $6.3 \mathrm{v}, 2 \mathrm{~A}$. Valves: Pre-amp ECC83, EF86. Amplifier GZ34, ECC8S, EF86, $2 \times$ EL34's. Controls: I. INPUT-Mic, Radio, Tape, Gram (in conjunction with 4 position piek-up marching selector). 2. EQUALISER-6 position. 3. FILTER-6 position. 4 \& 5. BASS \& TREBLE (borh liff \& cut 15 dB). 6. VOLUME. Tape Output Socket on rea, of Control Unir.
Matching VHF Tuner-FM61-622/1/0.

aVailable from leading high fidelity dealers throughout the country Write for free descriptive lieteraure to Dept. wwl. Armstrong Amplifiers Ltd., warlters ro., holloway, london. n. 7 1

LEEVERS RICH MAGHETCC RECORDERS

 forPROFESSIONAL, INDUSTRIAL \& SCIENTIFIC APPLICATIONS
The Series E Recorder has been introduced as a high-quality general-purpose machine for audio work such as master recordings for transcription to disc, and also radio or TV. Special versions are available for such purposes as recording sub-sonic phenomena, stereo recording, and multi-channel instrumentation. A unit plug-in amplifier system is available covering a wide field of application. The Series E mechanism is also adaptable for special control systems giving wide speed range or extreme accuracy of linear speed over long periods.
 * AUDIO PERFORMANCE OF A HIGH ORDER

* STABLE OPERATION OVER LONG PERIODS
* ROBUST DESIGN AND CONSTRUCTION
* EASY ACCESS FOR SERVICING
* ADAPTABLE FOR ALL MOUNTING POSITIONS \star UNIVERSAL SPOOL ACCOMMODATION * PRECISION TIMING METER
\star PROTECTED FOR TROPICAL USE

NEW 600

This new Mullard development will be of particular interest to broadcasting authorities with requirements for fixed or mobile music links.
It has an obvious potential in OB applications, particularly in areas where the lower VHF bands are overcrowded.

Frequency band
660 to $665 \mathrm{Mc} / \mathrm{s}$. Audio response
Modulation system Deviation $50 \mathrm{c} / \mathrm{s}$ to $\mathrm{IO} \mathrm{kc} / \mathrm{s} \pm 2 \mathrm{~dB}$. . . $35 \mathrm{kc} / \mathrm{s}$
Transmitter output power Io watts Audio input Odbm (Alternatively a local handset may be used.)
Output + Io dbm (Alternatively 0.5 W into loudspeaker). Power supplies . $110-120$ \& $200-250$ volts A.C. mains

MULLARD LIMITED EQUIPMENT DIVISION MULLARD HOUSE TORRINGTON PLACE LONDON W.C. 1

IEPEs ${ }^{\text {I }}$ the precision Tape Unit

combining superb performance and presentation. The brilliant new

High Fidelity Tape Unit

Here's something that everyone interested in sound reproduction will want to see and hear . . . a completely new Tape Unit all ready for addition to an existing Hi - Fi system. It's packed full of attractive features! Recording amplifier is incorporated with erase and bias oscillator. Playback equaliser and pre-amplifier is integrated with the deck.
The control panel is superbly styled in modern high impact polystyrene to give a streamlined design. And note these refinements! A precision numerical position indicator, electronic recording level band indicator, plus a bias control and erase cut-out switch. This allows compensation for characteristics of any tape, plus advantage of superimposition without automatic erasure.

55
GNS.
including cape and

2 speeds - $71^{\prime \prime} / \mathrm{sec}$. and $34^{\%} / \mathrm{sec}$

SUPERIOR
TAPE UNIT FOR THE SERIOUS ENTHUSIAST

With calibrated compensating control, for various tape chariacteristics.
Control for superimposition of new recording over old - recaining both.

For use in conjunction with existing audio equipment.

THE DULCI COMPANY LTD., 97.99 VILLIERS ROAD, LONDON N.W.2. WILLESDEN 6678/9

INTRODUCING THE COMBINED POWER THE "MAXI-Q" PRE-SET OR VARIABLE OFFERS YOU A COMPLETE RECEIVER

Full constructional details, point-to-point wiring diagrams and alignment instructions for building the "MAXI-Q" COMBINED POWER PACK AND AMPIIFIER, PRE-SET F.M. TUNER and also the VARIABLE TUNED version are given in Tecnnical Bulletin WTB.8, 16.

POWER PACK AND AMPLIFIER. This unit consists of Mains Transformer, EZ8n and ECL82 valves, Volume Control complete with mains on/off switch and is housed in a gold-finist ed case. Power supplies available for any tuner-Hester 1.5 amps at 6.3 V . H.T. from 220 V . at 50 mA to 365 V . at 20 mA .
The unit is available completely wired and ready for use at $£ 5 / 10 /-$, plus $2 / 6$ carriage or available in kit form at E5.
PRE-SET F.M. TUNER. Completely punched chassis, screens and bronze-finisbed cover, 19/-. Station Indicator Plat, 1/1. Three-position switch, 4/3. Station Condenser Trimmers, 3-9 pF. 21-.
RATIO DISCRIMINATOR TRANSFORMER. RDT 1/10. 7 Mc is. Secondary winding of bifilar construction, iron dust core tuning, polystyrene former, silver mica condensers. Can size 1 ifin. sq. $\times 24 \mathrm{in}$. high, 12%. I.F. TRANSFORMER, IFT. $1 \mathrm{l} 10.7 \mathrm{Mc} / \mathrm{s}$. Miniature I.F. of nominal frequency $10.7 \mathrm{Mc} / \mathrm{s}$. The " Q " of each winding is 90 and the coupling critical. Can size $13 / 16 \mathrm{in}$. sq. $\times 1 \mathrm{hn}$. hign, $6 / 6$.
COILS, TYPE L1, T1 and T2. Specially designed for use in this unit, are wound on polystyrene formers complete with iron dust core tuning, $3 / 11$ each.
THE "MAXI-Q"" PRE-SET F.M. TUNER is available completely wired, assembled, valved and housed in a sturdily made gold-finished cover at $£ 8 / 11 / 5$, plus $£ 3 / 8 ; 7$ P.T. $=£ 12$.
VARIABLE F.M. TUNER completely assembled at $£ 7 / 17 / 2$, plus $£ 3 / 2 / 10$ P.T. $=£ 11$ (carriage $3 / \sim$ terms c.w.o.).
GENERAL CATALOGUE covering techncal information on full range of components, $1 /$-. post free.
TRADING TERMS for direct postal orders, c.w.o., plus appropriate postal charge. Please send S.A.E. with all enquiries.
DENCO
(CLACTON) LTD.,
(Dept. W.W.) 357/9 Oid Road, Clacton-on-Sea, Essex

the most economicall/y-priced and most attractive

 Hi-Fi systemever offered!

Our new series of matched "Prelude" cabinets has been acknowledged as the basis for a true High Fidelity system at really realistic cost. These contemporary-style cabinets in satinstriped sapele veneers are clever!y designed and beautifully finished. Although their smart appearance gives no hint of it, they are supplied in ready-to-assemble form and put together in a few minutes with a screwdriver. When used in conjunction with suitable Stentorian speakers and the WB. 12 Amplifier, they give absolute realism in reproduction at far lower prices than have hitherto been possible.

Examine the full range of WB products and judge for yourself. Name of nearest stockist and fully descriptive leaflets gladly sent on request.

Model H.F. 1012
10* Die-cast unit, 12,000 gauss magnec. Fitted with cambric cone, and universal impedance speech coil matching at $3,7.5$ and 15 ohms. Handling capacity, 10 watts. Frequency response, 30 c.p.s. 14,000 c.p.s. Bass resonance, 35 c.p.s.
(inc. P.T.) $\{4$. 19 . 9

STENTORIAN VHF/FM TUNER

designed to provide perfect reception even in districts normally regarded as out of range of FM transmissions. Wide frequency range: $87.5-108 \mathrm{Mc} / \mathrm{s}$. covers all proposed British stations, also many Continental and U.S.A.

Price $£ 25$

See and hear all WB lines at our London office (109 Kingsway, W.C.2) any Saturday between 9 a.m. and 12 noon.

 duction when used in conjunction with Stentorian $8^{\prime \prime}$ or 10° units, provision also for Tweeter Unit. Size: $33^{\prime \prime} \times 19^{\prime \prime} \times 19 \frac{1}{* "}^{\prime \prime}$.

Price E|I.||. 0

"Prelude" Bass Reflex Corner Console

This most attractive cabinet has been specially designed to utilise the natural acousaic properties of the walls, and is also obviously suitable for use where space-saving is a consideration. It is sturdily constructed to take every advantage of Stentorian 8° or 10° units, with provision for Tweeter Unit. Size: $33^{\prime \prime} \times 21^{\prime \prime} \times 17^{\prime \prime}$.

Price $\mathbb{1 0 . 1 0 . 0}$

THE WBI2

"Prelude" Hi-Fi Console Cabinet

Takes any make of tape-deck or record player, amplifier, preamplifier control unit, and radio tuner. Size: $33^{\prime \prime} \times 19^{\prime \prime} \times 19 \frac{1}{*}^{*}$.

Price $\{13.13 .0$

"Prelude" Hi-Fi Table Cabinet

Will accommodate any make of tape-deck or single record player, amplifier, pre-amplifier control unit and radio tuner. Size: $17 \frac{1}{2}^{\prime \prime} \times 10 \frac{1^{\prime \prime}}{} \times 18 \frac{1}{2}^{\prime \prime}$.

Price 19.19.6
Derails of suitable W.B. Tables available
on request.

HIGH FIDELITY AMPLIFIER

was acclaimed by all the leading experts when it was first introduced. In its improved form, it is now available with a choice of control units. Standard for crystal pick-up, and Major for all types. Main Amplifier, £18.10.0. Standard control unit, $\mathbf{E 9 . 0 . 0}$. Major control unit, $\mathbf{\text { El }} 19.10 .0$.

Whartedale W10/FSB £13-2-4

(Inci. purchase tax 74s. 10d.)
This is the best $10^{\prime \prime}$ speaker in the Whariedate range and gives excellent results in the AF 10 Reflex Cabinet fitted with Acoustic filter.

Made and Guaran'eed by wharfedale wireless WORKS LTD.

IDLE • BRADFORD YORKSHIRE

Teiephone: idie 1235/6 Grams: Whaifedel,Idie,Bradford

LETTER FROM NEW ZEALAND

"I have fitted my WIO/FSB speaker into a than pleased with the, and to say that I am more a
statement. The result would ber pectations, The performance exceeds an under"To response of very wide range. of a clean, larger sized best of my knowled range. but if the reaction of edale speaker in ine is the first is any who have seen several in the district; population in this I think that the this speaker "I might add in conct will grow rapidly. regularly to a wh a Broadon that in the course times as much as theaker which costs about I isten impression is that it can Who/FSB, but ten
dale little if anything in pew the Wharfe-

ELECTRO-MAGNETIC RELAYS?..

5 BYRON ROAD, HARROW, MIDOLESEX. Telephonet HARrow 7797/9

[^21]
THE VALVES FOR J BAND OPERATION

HE M55
can be supplied for fixed
frequencies within the range
14,000 to $16,500 \mathrm{Mc} / \mathrm{s}$.

KLYSTRON TYPE K346

This is generally similar to type K_{343} with mechanical tuning from 14,500 to $17,000 \mathrm{Mc} / \mathrm{s}$.

KLYSTRON TYPE K343

This is a low voltage reflex klystron for
J Band operation with a minimum power output of 20 mW at 350 volts. The moulded

MAGNETRON TYPE M555
This is a new packaged magnetron for pulse operation in J Band with a peak input power rating of 240 kW . Particular care has been taken to produce a compact, rugged valve for air-borne applications. base and flying leads specially commend it for high altitude operation. It has mechanical tuning covering the range 12,000 to $14,500 \mathrm{Mc} / \mathrm{s}$.

Both these klystrons, which may be used in conjunction with the M555 or in other
J Band applications, have 30 to $80 \mathrm{Mc} / \mathrm{s}$ electronic tuning. The output connections are American type UG419/U feeding into No. 18 Waveguide.

A new wide range DELAYED SQUARE PULSE GENERATOR

* OUTPUT VOLTAGE CALIBRATED TO WITHIN $\pm 2 \%$
Negligible overshoot on any range-no sag on long pulses. Width continuously variable from $0.2 \mu \mathrm{sec}$ to 2 secs. $\pm 5 \%$. The most accurate and versatile box of pulses yet made available to electronic engineers.

NAGARI

OSCILLOSCOPES

Model 5001 with accurate Time \& Voitage Calibrations.

Rise time 10 mutec independent of pulse width.

Square Wave Output $0.25 \mathrm{c} / \mathrm{s}$ to 2.5 Mc/s Waveforms show $0.2 \mu \mathrm{sec}$. pulse on 25 $\mathrm{cm} /$ usec. sweep; 10 million to 1 range of pulse rute, width and delay calibrated by direct reading dials mithin 5%.

Internal Multivibrator of new rype gives highly stable frequencies continuously varisble from 0.1 cts . to $1 \mathrm{Mc} / \mathrm{s}$
External Trigger from signals of any waveform and polarity at amplitudes down to 0.2 V and frequencies up to $\mathbf{2 . 5}$ M/Cs.
Single Pulses at may range setting by push button.

Delay of Pre-Pulse to main pulseiitter free and continuously variab'e from 0.2 usec to 2 secs; Pre-pulse output 20 volts positive or negative- 0.2 usec wide.

Main Puiss amplitude- 20 mV to 50 V positive or negative.

NAGARD LIMITED
18 Avenue Road, Belmont, Surrey Telephane VIGilont 9161,2

We engineered the best-then improved it

We just weren't satisfied with the best when we engineered the Tannoy Variluctance Pickup Cartridge.

Our design engineers went to work right away and perfected the "Complidex," a brand new stylus assembly that utilizes with even greater efficiency both the cantilever and variable reluctance principles. Using a combination of two distinct metals our design engineers overcame the inevitable compromise between magnetic and mechanical requirements entailed by a conventional homogeneous material. Result-the new
"Complidex" Stylus has increased magnetic efficiency within the gap plus improved mechanical efficiency of the cantilever. Further development gives correctly graded damping without disturbing the optimum vertical-lateral ratio of compliance.
Like their predecessors, the new "Complidex" Styliwith either sapphires or diamonds-allow instantaneous replacement without tools. The new "Complidex" Styli can be used to convert the original (Mark I) cartridge to Mark II specification.

SPECIFICATION

Each cartridge hand-made and laboratory tested Frequency response within 2 dB to $16,000 \mathrm{Kcs}$. No resonant peaks
No undamped resonances in sub-supersonic range Simple turn-over mechanism
Stylus assemblies completely independant
Instantaneous replacement of styli without
use of tools
Optimum lateral to vertical compliance ratio
Very low effective dynamic mass
Output: 20 mV at 12 cm per second
Termination load: 50,000 ohms.
Tracking weight: 6 grams for all discs
Available with either diamond or sapphire styli

tannoy Mark II 'variluctance' pickup cartridge
Tannoy Products Ltd. (Practitioners in Sound), West Norwood, London SE27. Telephone: Gipsy Hill 1131

-for Industrial Research

A new simultaneous dual-channel

 tape recorder

The Ferrograph Series 3C/FN, illustrated here, is a simultaneous dual-channel instrument, using staggered heads, which offers special facilities to those engaged in medical, aeronautical and other scientific research. Besides the normal ability to record simultaneously time pulses on one track and intelligence on the other, it becomes immediately obvious that many forms of comparative measurement, stereophonic sound, or indeed, any two activities capable of being translated into electrical phenomena (within its
frequency and phase shift limitations) can be recorded simultaneously and replayed when required. Thus, the scope of such an instrument, when used for Research purposes, is almost unlimited.

Our wide experience in the design, manufacture and application of high precision magnetic tape recording equipment in Industry will be made freely available to you on request. BRITISH FERROGRAPH RECORDER CO. LTD., I31 Sloane Street, London, SWI. Tel: SLOane $2214 / 5$ \& 1510 A Subsidiary of Wright and Weoire Limited

$\frac{\text { can be solved with }}{\text { S.s.m }}$ FLEXIBLE SHAFTING

THE "impossible" becomes practical with the application of flexible shafting.

We are experts in this rapidly developing field and can show you how to operate any element requiring rotation or push-pull movement, or both. Distance from control to point of application presents no difficulty.

Consult us on any of your remote control problems.

Flexible Shatt Handbook avaulable to rechnicians on request to Dept. W.

FLEXIBLE SHAFTING

REMOTE CONTROL POWER DRIVES and COUPLINGS
CHE

With its distinctive colour indication and almost indefinite life, a Hivac Neon is the best indicator for a wide range of domestic and industrial electrical equipment. Its easily seen light serves as a visual check that an appliance is working as required. Look at the advantages:

* Extremely long life without sudden failure
* No filament to break
* Inexpensive and easy to instal
* Shock resistant
* Negligib'e power consumption
* Operation on a wide range of A.C. or D.C. voltages

It just glow to show!

There's a type for every purposewrife lor tull details

Hivar Limited

Stonefield Way, South Ruislip, Middx. Ruislip 3366

switch to Superspeed!

In buying solder for manufacturing purposes there is only one soand principle . . . buy the best.
Otherwise you are risking the dependability of your products and the reputation of your firm.

Incorporating Enthoven's unique 6-channel stellate core, SUPERSPEED is everywhere recognised as the most efficient cored solder wire for general assembly work on radio, television, electronic and tele-communication equipment. But there is
also an Enthoven solder product that is the best for every other engineering and manufacturing application. Please write today for the new edition of our brochure
"Enthoven Solder Products"
-or consult us quite freely on your particular problems.
 requirements you are banking on the best known name in the industry-a name that represents nearly 150 years experience in non-ferrous metals and an incomparable record in research and development.

ENTHOVEN

A remarkable valve voltmeter for test or alignment of H.F. Rep:aters, Ampli ers, networks, etc. 20 m / v to 2.5 v in 3 ranges. 3 to $300 \mathrm{mc} / \mathrm{s}$. Shunt C at R.F. only 1.5 pf . stabilised valve bridge circuit. Very small insulated probe unit

DEPENDABLE TEST METERS for Extended Aerial and Wired T/V Systems
 SIGNAL LEVEL METER Type SL3/B

A battery operated valve voltmeter for measurement of Television, Television Sound and F/M signals as would appear at the down lead end of Aerial Installation or on Cabling of Wired Television or Communal Aerial Systems.

TELEFUSION ENGINEEIRING LTID.
-TELENG. WORKS, CHURCH ROAD, HAROLD WOOD, ROMFORD, ESSEX rel. ingrejourne 2901

ARCOLECTRIC SWITCHES \& SIGNAL LAMPS

S.936: Normally off S.938: Normally on

K.75: Small Pointer Knob

Neon Signal Lamp $\frac{1}{2}{ }^{\prime \prime}$ hore fixing

Write for Catalogue No. 131
S.L.90/SB

Low Voltage
Signal Lamp tor M.E.j. bulbs

T.622, Toggie Switch D.P.C.O. 3-amp.. 250v

ARCOLECTRIC switches.ito

Come and see...

our Exhibit in London next April 16-25 (1958) at Olympia.

We will be at the Instruments, Electronics and Automation Fair

Capitol Radio Engineering Institute is one of America's leading Technical Institutes - offering advanced courses, both in residence and by correspondence, in Electronics Engineering Technology and associated specialties. CREI is in its 3ist year and has many thousands of students and graduates all over the world.

The CREI residence school offers an intensive three year fully accredited and recognized college level course.

The Correspondence Division offers the same programme-at the same level and with the same accreditation and recog-nition-with the exception of the residence laboratory work, for upgrading study TO MEN ALREADY EMPLOYED IN SOME PHASE OF ELECTRONICS.

This programme of study is used on an individual basis by thousands of
students in all parts of the free worldand extensively in the United States and Canada on a group plan basis by dozens of leading electronics and aeronautical firms and Governmental Agencies for the Professional upgrading of their electronics personnel. Among these fine organizations are Canadian Broadcasting Corporation and United Air Lines, both of which have been clients for more than Io years.

It is planned to make this advanced electronics correspondence programme available very shortly through a British affiliate. You are cordially invited to visit our Exhibit at Olympia in April. We shall be glad to send you in advance our catalogue and complete information on our courses.

> please write to:
E. H. RIETZKE, president

Capitol Radio Engineering Institute

 3224 Sixteenth Street, N.W. Washington 10, D.C., U.S.A.

This is the first seif-contained eiectronic loudhailer ever made. Using transistors in push-pull output with a re-entrant horn-loaded loudspeaker, the Pye Transhailer has a range of approximately \downarrow mile.
In all commercial, industrial and sporting activities, for crowd control and in any place where there is need to amplify the voice, the Pye Transhailer is invaluable.

S̄PECIFICATION:

Power Output: 3-3 $\frac{1}{2}$ watts
Distortion: 10\%
Average Current Consumption: 120 mA .
Batteries : 4 cells Ever Ready Type 1839 (or equivalent) or 8 cells Ever Ready Type UII (or equivalent) Dimensions: Length $15 \frac{1}{2}$ ins. Diameter across mouth: $10 \frac{1}{2}$ ins.
Weight: 5 lbs. (incl. batteries)

PYE TELECOMMUNICATIONS LIMITED NEWMARKET ROAD CAMBRIDGE ENGLAND Telephone: Teversham 3131

Cables: Pyetelecom Cambridge

MARKINGS TO CUSTOMERS' REQUIREMENTS.
BVS/4 MOULDED IN BLACK P.F. BLACK ESCUTCHEON MARKED IN WHITE. XVS/6 MOULDED IN NATURAL COLOUR NYLON LOADED P.F. MARKED IN WHITE.
Sand for full detalls to :-
THE MCMURDO INSTRUMENT CO LTD. ASHTEAD, SURREY. Tel: Ashtead 3401.

SERVO GRAPHIC RECORDER by VARIAN ASSOCIATES

THE G-IO RECORDER fulfils the need for a flexible, compact and moderately priced instrument for recording phenomena capable of representation by d.c. signals in the millivolt range. The G- 10 utilizes the time proven automatic null-balancing potentiometer principle. It is suitable for local or remote recording and is used:
\star DIRECTLY to measure d.c. millivoltages
\star with ATTENUATORS for high d.c. voltages
\star with SHUNTS for d.c. currents of all values
\star ACROSS d.c. meters for continuous recording
\star with appropriate TRANSDUCERS for measurement of temperature, pressure, strain, etc.

STABILITY insured by the use of precision measuring circuit resistors, a REFERENCE CELL with an excellent discharge characteristic, and an a.c. type servo amplifier;
LINEARITY afforded by high quality measuring slidewire;
SENSITIVITY attained by use of multi-turn measuring slidewire and highgain servo system.
for further information apply:
B. \& K. LABORATORIES LIMITED

57 UNION STREET, LONDON, S.E.I
Grams: Banklabs, London

We offer a complete Tape Recorder Senvice:

These ore some of the other well-known modets we stock:

Vortexion 2A
Vortexion 28
Brenall Mk. 4
Brenall Deck with pre-amplifier unit
Elon
Grundig TKS
., TK8
., TK820
" TK830/3D
Elizabethan
Truvox

Topes
L.P. and Standard
E.M.I.

Scotch Boy
Ferrograph
Gevaert
Mastertape
Agfa
B.A.S.F.
. scock all the leading makes of amplifiers, control units, transeription units, pickups, loudspeakers and FM Tuner units.

FERROGRAPH

Model 3A N
This latest model, with its new capstan, gives even better performance and provides adequately for use of " long-play " Tapes. Single knob control ensures maximum simplicity of operation.

Price 79 gns.

THERE IS EQUIPMENT OF ALL KINDS AT 189

$\left.\begin{array}{l}\text { AMPLIFIERS, TUNERS, KITS } \\ \text { Tele-Radio Williamson } 625 \\ 0\end{array}\right)$

- VALVES, COMPONENTS,

 ACCESSORIES, MATERIALS, LOOKS AND SERVICEOur 56-page catalogue with lotest additions of value to oll who bwild and listen. $1 / 3$ post paid.

- VERY LARGE STOCKS-PERSONAL SERVICE

SAME DAY DELIVERY ON ORDERS RECEIVED BY POST
TECHNICALLY EXPERT STAFF
NEWLY ARRANGED DEMONSTRATION ROOM

SPEAKERS, PICXUPS, MOTORS
Wharfedale AF'IO Enclosure for loin. spazkers Wharfedale Golden iofics \qquad cis 15 Cs 141
Whartodale 5FB/3 239100
Tannoy Canterbury İzin. $\mathrm{D} . \mathrm{C}$..... 65
Tannoy 12in. Dual Concentric ... 63015
G.E.C. Moctil Cone speaker ${ }^{\text {a }}$ S
simon Cabinet Speaker 63110
W
Ful' "anges by Wharfedole, Goodmans, otc.
(diamond)
Garrard TPAilio P.U. with trans. 115
500 Curride
ring 500 Cartridge 6^{4}
disseur with diamond head 612
Collaro Trans. with PX head ES
1200 Trans. Motor 614
Lrans. Mot
Connoisseur

TAPE
Tele-Radio -Masterlink M. 2 Record/Prs-amp Unit, powered 6281
Ferrograph 3AN
Ferrograph 3AN/H.................... 690
Wearite 3A Deck 6350
Wearite 38 Deck E40 0
Vortexion 2A 692 4
Brenell Recorder 65513
Ditto with Rev. Counter
Fitm industries Ribbon Mic. ... 20 is
Simon * Cadenza ". ¢ © 10
Lustraphone "Lustrette" Mic.... 637
Resio RBL/T Mic. 6815
Wearite De-Fluxer 1210
Bib Splicer 18
Wearite Tape Recording Accessories.
Tapes by leading makers meluding Seotch Boy E.M.I. Ferrotabe, B.A.S.F., etc.

TEST EQUIPMENT

AVO Instrumencs including
AVO Multi-Minor
$6910 \quad 0$ Also Taylor Meters, Advance Signal Generators, atc.

the BDD JUSIDOB IFM UNit

Review Extracts...

". . . the construction and workmanship of this Rogers FM tuner is a delight to behold. The chassis is rigid and the wiring neat."
". . . the signal is held like a limpet over a few degrees of the dial then disappears and the inter-station noise increases until the next signal drops in and is held firmly, with no "off-tune' positions of distortion."
"The discriminater is of the Foster-Seeley type and provides first class audio quality."
"... on switching on cold no drift is apparent, as the AFC takes over within plus or minus $500 \mathrm{kc} / \mathrm{s}$ of correct tuning point." (GRR Home Test No. 37 by Donald W. Aldous, M.Inst.E., M.B.K.S., G.R.R. March 1957.)

PART OF A COMPLETE HOME HIGH FIDELITY

Available from leading High Fidelity deaiers throughout the country. Immedate delivery.
A new Illustrated Leaflet giving conese details of the complete range of matched units forming the RD IUNIOR Home High Fidelitv System may be nad on request.

ROGERS DEVELOPMENTS (ELECTRONICS) LTD
"RODEVCO WORKS
4-14, BARMESTON ROAD
CATFORD
LONDON, S.E. 6
Tele rams: RODEVCO LONDON SE6
Telephone: HiTher Green 7424

Digital Counting

Racal Engineering Ltd. announce reductions in the price of all standard Digital Counting Equipment

Write for full details and new price list

RACAL DIGITAL COUNTING EQUIPMENTS HAVE MANY APPLICATIONS IN:
Checking time marker pips - High-speed precision timing - Dividing Scaling - Frequency measurement - Computing - Batch counting Shaft speed control - Interval determination - Pulse delay generation Totalising - Chronometry - Nucleonic pulse counting - Tachometry

BRACKNELL, BERKSHIRE
Telephone: Bracknell 941
Cables/Grams: RACAL BRACKNELL BERKS.

DPA 10 Power Amplifier (Illustrated)
YOU DON'T NEED to pay the earth for a high degree of fidelity, that's for certain. Just because rather than work down to a price and consequently lose quality, DULCI have streamlined production and inspection to such a fine art that their claim of 'the finest quality at reasonable cost' is no idle boast but really means what it says.

HIGH FIDELITY- coun ourar

Superb circuit design and the use of only the best components available leave little to be desired and guarantee trouble-free reproduction of the highest high fidelity. Just listen.

6A4 High Fidelity Amplifier

4 watt 4 -valve circuit with a frequency response of $40-18,000$ c.p.s. $\pm 2 \mathrm{db}$. Neat Control Panel, size $6^{\prime \prime} \times 4^{\prime \prime}$, on fly leads for individual mounting. Input selector switch matching to Radio L.P. and 78 r.p.m. records. Separate bass and treble controls giving wide range of cut and lift. Volume Control. Rotatable transformer for hum cancellation.

Price $\mathbf{1 9 . 9 . 0}$
distinctly

quality products

THE DULCI COMPANY LTD. 97-99 Villiers Rd. London M.w. 2 WILlesden 6678/9

EHF MICROWAVE

 GENERATORS
AND SOURCES

18,000 to $50,000 \mathrm{mc} / \mathrm{s}$ WITH

PLUG-IN TUNING UNITS

Our Products will be on show at the
4th International Instrument Show, Caxton Hall, London

Now, with the POLARAD plug-in interchangeable tuning unit feature you can equip your laboratory with Extremely High Frequency generators and sources covering 18,000 to $50,000 \mathrm{mc} / \mathrm{s}$ permitting wide flexibility of operation at minimum cost. Each of the various tuning units requires no further adjustment after plug-in-all voltages and controls are automatically set for proposed operation. These new Polarad self-contained instruments operate simply with direct reading, wavemeter dials. They provide cw or modulated signals of known frequency for field, production line and laboratory testing of microwave equipment, components and systems.

> March 24th - 30th

EHF Microwave

Signal GENERATORS

7 plug-in r-f tuning units cover the frequency range from 18,000 to $39,700 \mathrm{mc} / \mathrm{s}$.
Direct reading calibrated attenuator output, accuracy $\pm 2 \mathrm{db}$.

- Frequency calibration accomplished by a $\pm 0.1 \%$ direct-reading wavemeter.
- Internal 1000 cps square-wave modulation.
- Capable of external modulation, both pulse and fm.
- Equipped with integral electroni-cally-regulated power supplies.

EHF microwave

Signal SOURCES
9 plug-in r-f tuning units cover the frequency range from 18,000 to $50,000 \mathrm{mc} / \mathrm{s}$.

- Internal 1000 cps square-wave modulation.
- Capable of external modulation, both pulse and fm.
Equipped with integral electronically regulated power supplies.
- Frequency calibration accomplished by a $\pm 0.1 \%$ direct-reading wavemeter.

SIGNAL GENERATORS Basic Unit Model HU-2		FREQUENCY RANGE	SIGNAL SOURCES Basic Unit Model HU-I	
Plug-in Tuning Unit Model No.	Power Output Calibrated		$\begin{aligned} & \text { Plug-In } \\ & \text { Tuning Unit } \\ & \text { Model No. } \end{aligned}$	Power Output Average
G1822	$\begin{gathered} -10 \\ -90 \mathrm{dbm} \end{gathered}$	18,000-22,000 mc/s	51822	10 mw
G2225		22,000-25,000 mc/s	52225	10 mw
G2427		24,700-27,500 mc/s	S2427	10 mw
G2730		27,270-30,000 mc/s	S2730	10 mw
G3033		29,700-33,520 mc/s	53033	10 mw
G3336		33,520-36,250 mc/s	53336	9 mw
G3540		35,100-39,700 mc/s	\$3540	5 mw
		37,100-42,600 mc/s	53742	Approx. 3 mw
		$41,700-50,000 \mathrm{mc} / \mathrm{s}$	S4150	Approx. 3 mw

Model SG-1218, Signal Generator and Model SS-1218 Signal Source are available to cover the frequency range 12,400 to $17,500 \mathrm{mc} / \mathrm{s}$.

MODULATION:

Internal modulating:
Frequency 1000 eps square wave. Requ角ements for axternal pulse modulation:
Pulse repetition
frequency ... 100 to 10.000 pps. Pulse width rate 0,5 to 10 microseconds Pulse amplitude 10 voles palk, miniPulse polarity ... Positive.

Requiraments for external frequency modulation:
Waveform .
Frequency
Amplttude
Sawtooth or sine wave. 50 to $10,000 \mathrm{cps}$.
Approx. 10 voliss rms, to produce $40 \mathrm{mc} / \mathrm{s}$ deviation.

For Complete Information:

NOW-the easy way to buy your Test set

PORTABLE TEST SETS
Series 90 \& 100
New easy terms for purchase of the superb M.I.P. Test Sets are offered by the makers. These terms are as follows:-
Series 90 Miniature Test Set
CASH PRICE $59 / 15 /$-. Deposit 35/-, six monthly instalments of 28/10.
Series 100 Portable Test Set
CASH PRICE £12/7/6. Deposit 47/6, six monthly instalments of 36/-
Other credit terms from the following suppliers:-

> HOME RADIO (MITCHAM) LTD.,
> 187, London Road, Mitcham, Surrey.
> FRITH RADIOCRAFT LIMITED, 69-71, Church Gate, Leicester.

SEND THIS COUPON FOR FULL DETAILS WITHOUT OBLIGATION
To: MEASURING INSTRUMENTS (PULLIN) LTD.
Electrin Works, Wïnchester Street, Acton, W.3.
Please send illustroted leaflet of the M.I.P. Series 90/100* Test Set, together with details of the new easy payment scheme.
|*Delete whichever Series number not required.
Name. \qquad
| Address \qquad
I w.w
L-
_

* over 200 tube types in the current catalogue. Full data on request.

WORSLEY BRIDGE ROAD LOWER SYDENHAM • LONDON SE 26 A Company withIn the Rank organssation Ltd. HITHER GREEN 4600

the DYNATRON v.h.f. tuner unit

provides true high fidelity listening

- 7/8 Valve Tuner - Pre-tuned 4 stations Automatic frequency corrector - Single switch operated

This tuner is the most advanced unit available today. It brings to the discriminating listener true-to-life reception of music and spoken word through the medium of the B.B.C.'s 'Home', 'Light' and 'Third ' VHF radio broadcasts.
The F.M. 2 employs a FosterSeeley type of discriminator and covers from 88 -10o Mc / s. with four pre-tuned circuits. This unit is used by the B.B.C. and leading relay organisations use it as both a main and monitor receiver. For completing a high fidelity audio installation or converting a radiogramophone, the Dynatron VHF tuner provides the complete answer.

£25.0.6

8 -valve $\mathrm{FM}_{2} \mathrm{HV}$
£29.3.9

Power Unit P.I £7.15.0

Write for fill details of this Dynatron F.M. Tuner and learn whor true high fidelity listening really means.

DYNATRON

an extra between uso available for use in in stallations uthere suitable voltoges are not available.

Dept. TU 103. DYNATRON RADIO LIMITED CASTLE HILL MAIDENHEAD BERKS

THE BEST OF BOTH WORLDS

Whether you want a self-contained plug-in-and-play High Fidelity instrument or a complete range of matched High Fidelity units-specify RCA. For over 25 years the world's recording studios have consistently preferred RCA. Now let RCA bring this same studio quality to your home.

7lew Orthophones

 Shagh Fideluty Matched Units

Panoramic Multiple Speaker System. $£ 56.11 .0$

20 watt Power Amplifier. £24.10.0

Lugh Jedelety

PLUG-IN-AND-PLAY

Record Reproducers

Above is the RCA "PRESIDENT" High Fidelity phonograph, ready-to-play, automatic changing, console record reproducer of outstanding quality. Panoramic muttiple speaker system; new triple control with balanced loudness feature; 20 watr peak push-pull power from extended range amplifier; elegantly styled in superb cabinets in walnut, light oak, or dark oak finishes.
The RCA "VICE PRESIDENT" High Fidelity phonograph (illustrated right) is a beautifully styled record reproducer with a quality of reproduction never before associated with instruments of its size. Panoramic triple speaker system; 10 watts peak power from push-pull amplifier with frequency range 40 20,000 cycles; triple control sys. tem; 4 -speed changer.
43 GNS. pplus $£ 1.15 .0$ optional legs uax paid.

RCA GREAT BRITAIN LIMITED, Lincoln Way, Sunbury-on-Thames, Middx.

 The high-frequency surface barrier transistors to be manufactured by Semiconductors Limited are the most advanced types in the field. The electro-chemical techniques used in manufacture allow close control of important parameters, and guarantee a life far exceeding that of thermionic valves. Resistance to shock and vibration is exceptional.

TRANSISTORS TO

SAMPLES AVAILABLE NOW

Prior to full production, transistors identical with those to be manufactured are being imported from the U.S.A. Sample quantities are available now for Sterling.

Engineers and Senior Executives are invited to write for details of technical literature on Sarface Barrier and all other types of Semiconductors Limited transistors.
COLLECTOR CHARACTERISTICS IN THE SATURATION REGION
2N240 TRANSISTOR

 electronic

can
 make

The design and manufacture of small mouldings, in large quantities, is just as much a speciality of National Plastics as the production of large and spectacular articles. Indeed, the making of a large multi-cavity mould to produce many small mouldings quickly is often a prece of fine engineering that only specialists can achieve.

NATIONAL PLASTICS

NATIONAL PLASTICS (SALES) LTD. avenue works, Walthamstow avenue, London, Phone: Larkswood 3933
 all the books that you need to increase your technical knowledge and keep up with the latest radio developments.

Volumes not in stock can be obtained for you, and we shall be pleased to supply a list of standard works on any subject.

Our local branch can also supply your business and personal stationery.

W. H. SMITH \& SON

HEAD OFFICE: STRAND HOUSE, LONDON, W,C. 2
BRANCHES THROUGHOUT ENGLAND AND WALES

—M. R. SUPPLIES Ltd.
 (Ratmblinhe.* 1985)

Unlvernatly recognised as supplier of TP-TO-DATF ELECTRICAL DATEPIAL wbich doen the Jote properly Instadt delivery. Careful packing. 8atinfactiod asured. Prices nett. Brand aew koods.
 r.p m. Thase arw brend new Germmo motore by Vorwerts, without normal fixed foot mounthaminuins mount la enpplied. We have 280 only to clear at 24:5/6 each. despatch 4; K.K complete with eapecito
SEADRD POLE IKDUCTION MOTORs 2DO/250v A.C. Very alknt runuing and ldeal for many lab. and domestle applications stisrern cooling fank, extractors, etc. No inter$1 f \mathrm{in}$. $1.485 \mathrm{r} . \mu \mathrm{m} . \mathrm{m}$. torque $800 \mathrm{grm} / \mathrm{cm}$. nad the perfoct onit for tape recondern in addj. tjou to mhove duties, $42 / 6$ (Nea. 2/9). Also opep type, amall model, body 8 by $2 t \mathrm{in}^{2}$. shaft proil. appma. inc. 2,700 r.p.m... torqua $150 \mathrm{grm} / \mathrm{cms}$ Abo suiteble for rim-dive tramo-gmotor. $18 / 8$ (des. 2/f).

 $57 / 6$ (des. 1/6
EXTRACICR FAMs. Very well-made nnite much below normal prive, 200/250 v. A.C. Induction motor, silent runnlog ao interierecoe Witb mounting frape and back 10th. Impellir 15,000 e.ft./hr. $\mathbf{f}^{5}, 12 / 8$ (den. etther $3 / 8$).
WIREWOUID POTENT'OMETERS (Celvarn). Brand Rew dual, $5,000 / 5,000$ ohms,
 $71 / \mathrm{A}$ ideri 2 h - .
 ammeteri availsble fot delivery from shoek $0 / 1000 / 500 \quad 50$-0-50 micrompe varione slizes, and atherm Delalla 00 re,juent.
OPERATIO aod backwards with re-wet and tiex. drive One difit per rev and can be used for teeting moun spreis. $15 / 6$ (dex. 1\%)
COMPLETE 8EWING MACEDRE MOTOR OUTFTKS. Detbilely no better job at uny
 tisht with switch beit, etc., and instructiona for Aring to ANY machine. And we afitl ooer the camplets nutat for es 15 ' (2 es. $2 / 9$)
GELEMUM RECTLFLERE Large range Low avallable tochuding a bank of four unite for D.C. delivery up to 30 volte 56 atupe. The bank $\mathbf{8 7 1 1 7 / 6}$. Let ua have your rectifier enquirien.
 Electrical. fomered with capacitor/induction motor, $230 / 240 \mathrm{v} .50 \mathrm{c} .1 \mathrm{ph}$ Rated
 (dee 2/6).
 if Caparify 15 ampa. A.C. in rnapt ivorthe bousing $41 \times 2 \times 9 \mathrm{jm}$. Easils inatilied-

SYMCREOMOUS TDES SWITCEES (Andmano). 2001250 v. 50 it compact black plastic housing 4 in . dia, by 3 lin. deep, providing up to 8 ob-off operatings per 24 bours, with day-omitting device tum optlonal). Capmetty 20 anpe A.C. E5/8/6 (dee $2 /-$),
M. R. SUPPLIES, Ltd., 68, New Oxford 8treet, London, W.G. 1
(Telephone MUSeum 2958)

These have been in regular quantity production for the past two years, and have proved themselves reliable and stable in a variety of applications. They are admirably suitable for all forms of DC to DC or DC to AC Converters, High Power portable Amplifiers and Public Address Equipment. "coltop" Power Transistors are the first to be offered for immediate delivery in quantity. Representing the latest developments in semi-conductor technique for power applications, these entirely British-made p-n-p Germanium Junction Transistors will open up entirely new fields to designers of industrial, commercial

and military equipment.
 GOLTOP POWER TRANSISTORS

 available NOW in commercial quantities| Available in 6 TYPES, all for 10-watts power dissipation:
 V15/10P. V15/20P. V15/30P. for 15 volts max.
 V30/10P. V30/20P. V30/30P. for 30 volts max. | | | * | High power rating-up to IOW at audio and supersonic frequencies. |
| :---: | :---: | :---: | :---: | :---: |
| Marimum Collector Power Dissidation
 (DC or Mean) for all types | ${ }^{t} \mathrm{amb}=25^{\circ} \mathrm{C}$ | $t_{\text {amb }}>25^{\circ} \mathrm{C}$ Reduction/ $/{ }^{\circ} \mathrm{C}$ | | High current ratings up to 3A DC. |
| (1) Clamped directly on to 50 sq. In. of 16 S.W.G. aluminium | 10W | 200 mW | * | Excellent resistance to mechanical shock. |
| (2) Clamped directly on to 9 sq. in. of 16 S.W.G. aluminium | $4 W$ | 80 mW | * | Hermetic sealing and rigorous manu- |
| (3) As (2) but with 2 mil mica washer between heat sink and transistor | 2W | 40 mW | | and stability of a high order. |
| (4) Transistor only in free air | IW | 20 mW | | |

British Design, Materials and Craftsmanship

Data sheets gladly forwarded on request
All trade enquiriesto: Newmarket Transistor Co. Ltd.
Exning Road, Newmarket. Telephone: Newmarket 338114 TA 10700

EDDYSTONE COMMUNICATION RECEIVERS

Model 840A illuseraced

Model 840A is tor A.C. or D.C. FIO/250 v.: 750 and $680 \times 110 / 240 \mathrm{v}$. A.C. These sees are the choice of the discorning p:ofessional and amateur users. Descriptive literature gladly forwerded.

Lacest EDOYSTONE Component Caralogue $1 /$..

The
Eddystone

Specialists

SERVICES LTD.

55 COUNTY ROAD, LIVERPOOL, Telephone: ANTREE 1445

CALL US ON TELEX. 62-244.
ESTAB. 1935

AUTOMATIC COIL WINDING MACHINES

 AND HAND WINDING MACHINES Machines supplied complete with stand motor and Two-Speed Friction Clutch
ETA TOOL CO
 (LEICESTER) LTD.

29a WELFORD ROAD, LEICESTER
'hone - 5386

.. and now for mains voltages

The popularity of the miniature irons for which A.N.T.E.X. were sole distributors has emphasized the need for an equally versatile model capable of operation directly from mains supplies.

Considerable development has now resulted in the 'Precision' soldering iron which is made in England by A.N.T.E.X. and is available through normal retail channels.

- Fully insulated elements ensure complete protection.
- Non-slip handle with thermal airgap.
- Replaceable bits are heavily nickel plated.
- Short shaft and correct balance give precise control.
- Highly flexible light-weight lead, easily replaceable.
- Complete safety provided by earth connection and rigorous testing.
- Replaceable elements sealed in shock absorber mounting for reliability.
- Clamp on lead removes all strain from connections.

Transformers available	Model LV6 Model LV12	Input $230 / 250 \mathrm{~V}$.	Input $230 / 250 \mathrm{~V}$.	\quad	Output 6 V.
:---					

... you will realise that Grampian high fidelity equipment gives you the nearest approach to "Concert hall listening" in your own home. You will, for instance, appreciate the extraordinary delicacy of reproduction achieved by therr new 12 in . loudspeaker. A great deal of research and new manufacturing methods were necessary to produce a speaker unit with such an extended audio frequency coverage at such a reasonable cost.

CYCLES PER SECOND INPUT $\frac{1}{2}$ WATT
RESPONSE CURVE for speaker unit 1255/15

Full details from:

A specially designed reflex cabinet suitable for either corner or side of room is now available as an easy-toassemble kit of parts, complete with grille material ready to assemble, stain and polish. Although it is primarily intended for use with the Type $1255 / 15$ speaker the cabinet will give excellent results with other units of similar specifications. Price £11

Deferred terms available if desired for both speaker and cabinet kit!

Makers of quality high fidelity equipment 17 HANWDRTH TRADING E8TATE, FELTHAM, MIDDLESEX Telephone Feltham 265718

EYELETTING

and light PUNCHING MACHINES

Autophoenix No. 6 A new and improved treadle operated machine for the automatic insertion and closing of eyelets in either flat or formed work in metals. plastics, fabrics, etc. The deep throat, high vertical gap and projecting base make this machine adaptable for eyeletting radio chassis, cylindrical shells, spinnings, mouldings, etc.
We manufacture a very full range of hand and automatic Eyeletting and Plercing Machines. Wrize for illustrated brochure to Dept. W.W.

HUNTON LIMITED

PHOENIX WORKS, 114116 EUSTON RD., LONDON, W.I Tel.: EUSton 1477 (3 fines)

Gram:s: Untonexh, London

POWER-POINT for record reproduction

PDIISFI-FIIIIT is a revolutionary miniature ceramic record-player cartridge with two sapphire tips.

POWISR-POIIV is a proved sales success-over $3,000,000$ have already been sold abroad!
 PlWLR-POIIIT can be fitted to all popular pick-up arms.

POWFIf-POIVIT is so easy to handle and so quick to replace-it solves your stylus replacement problem!
POIVFR-POIIIT gives higher fidelity, longer life, and reduces record wear to a minimum.
PDIKFR-POIVI is backed by attractive display material and a carefully planned advertising campaign.

FULLY ILLUSTRATED

CATALOGUE

WILL SHORTLY
BE AVAILABLE
RESERVE YOUR COPY NOW
Send coupon and two 3d. stamps
\qquad

Quartz Crystals of any shape and size cut and ground precisely to specification and coated, If required, with Gold. Silver, or Aluminium, ete.

BROOMES CPYETALS LTD

Suppliers to Minustry of Supply. Horne Office, B,B,C. ece. 181/3 TRAFALGAR ROAD, GREENWICH LONDON SE. 10 Phone: Gresnwlch 1828.
Grams: Xtals, Green, Condon.
Cobles: Xtals, London

If (like us) you love good music and find pleasure in good records, you will (we feel certain) be finding it increasingly difficult to choose from among the many fine L/Ps-just which to be fin to your collection. Now comes the perfect solution-the chance to borrow the pick of the L/Ps to play AT HOME-ON YOUR OWN GRAMOPHONE.
FULL DETAILS OF THIS LIBRARY SERVICE (which costs approx. 1/. per week each L/P borrowed) are included in our Catalogue \& Handbook-

THE L/P RECORD LIBRARY CLASSICAL CATALOGUE AND HANDBOOK for 1957

 COSTS ONLY $3 /=$ POST FREE $\begin{gathered}\text { (For Library details } \\ \text { without } \\ \text { please } \\ \text { Datalozue, } \\ \text { send } \\ \text { targe }\end{gathered}$ s.a.e. $2 \nmid \mathrm{~d}$.(50 cents U.S.A.) s.a.e. 210.)

?? YOUR QUESTION ANSWERED ??

We are frequently asked:In what condition are the Library records?
Records loaned by the L/P Record Library are in first-rate condition and worthy of reproduction on the finest high fidelity equipment. The very large majority are in mint or nearmint condition.
We can only suggest-take out a trial membership for yourself and see!!

From :- THE LONG PLAYING RECORD LIBRARY,
SQUIRES GATE STATION APPROACH, BLACKPOOL, LANCS.

FFSS ${ }^{\text {sTAND }}$ FACTORY FRESH FOR SALES SERVICE
FFSS announces a new, high quality, Sales Service operated exclusively by The L/P Record Library. We have long realised Record library. We have long realised hat such a ser and high fideliry enchusiast udio engineer and high fidelity enthusiast. FFSS indicates that the record purchased is not only a brand new, guaranteed unplayed, faccory copy but that it has been obrained from the makers by special order
for the purchaser. Besides being unfor the purchaser. Besides being unblemished, the disc is also as up-to-date a pressing as is currently available in this country. This is cremendously important when it is realised shat many of the older. L/Ps (especially Decca) are surrently being re-cut from the mastertapes by the manufacturers with marked improvement in reproduction. FFSS covers all record labels available in this country except H.M.Y.

- INSPECTION before dispatch and only good pressings are chosen.
ADYICE is given when needed and we can supply the best available recording. STYLUS REPLACEMENT Diamond or Sapphire-by return of post in mose cases. - EQUIPMENT AND ACCESSORIES. Our Reproduction Specialist Mr. C. T. Salishury will be only too happy to advise personally on the best available within YOUR price range
WHY NOT MAKE A TRIAL ORDER NOW

"YOU CAN RELY ON US"

> Stockists of all Radio and Electronic components for manufacturers, laboratories, Educational authorities, and the amateur.

THE NEW AVO MULTIMINOR
This first-quality pocket instrument available from stock.
DC. $2 \mu \mathrm{~A}$ to 1 A in 5 ranges, $0-1,000 \mathrm{v}$ in 7 ranges.

AC. $0-1,000 \mathrm{v}$ in 5 ranges. Resis. $0-2 \mathrm{meg}$ in 2 ranges. 10,000 Ohms per volt.
Price $\mathbf{6 9 . 1 0 . 0} \quad$ Leather Case 32/6
or 9 payments of $23 / 3$
or Deposit $63 / 4$ and 6 payments of 22/2
ALL OTHER AVO INSTRUMENTS IN STOCK

Radio Servicing

82, SOUTH EALING ROAD, LONDON, W. 5
Next to South Ealing Tube (TURN LEFT) 9 to 6 p.m., Wednesday 10^{\prime} ciock.

Send for full details to :-
THE McMURDO INSTRUMENT CO. LTD.
ASHTEAD, SURREY. Telephone: Ashtead 3401

AC FROM ANY DC SUPPLY WITH

DC/AC CONVERTERS

RADIO EXPORT

WE TAKE THIS OPPORTUNITY OF AGAIN THANKING OUR CLIENTS ALL OVER THE WORLD FOR THEIR CONTIN UED SUPPORT DURING 1957 WHICH HAS LED TO A FURTHER INCREASE IN SALES OF HALTRON TUBES.

ON LOOKING BACK, WE CAN ONLY HOPE THAT 1958 WILL PROVE LESS DIFFICULT THAN THE SITUATION WHICH AROSE WITH RADIO TUBES DURING 1957. GREAT SHORTAGES APPEARED IN ALL COUNTRIES, WITH THE RESULT THAT PRICES WERE CONTINUALLY ON THE INCREASE.

WE FEEL JUSTLY PROUD THAT OUR CUSTOMERS SUFFERED LESS THAN THOSE DEPENDENT ON OTHER SOURCES OF SUPPLY, AND JUDGED OVERALL, THE PRICE INCREASES WE HAD TO MAKE ON SOME TYPES WERE BY COMPARISON SMALL BEING THE RESULT OF PRUDENT AND LONG TERM PLANNING.

IT WILL PAY YOU TO AVAIL YOURSELVES OF THE HALTRON SERVICE WHICH IS UNIQUE IN EUROPE AND COMPRISES MORE THAN 2,000 TYPES OF RECEIVING, TRANSMITTING AND SPECIAL PURPOSE TUBES. IF YOU ARE NOT ALREADY IN POSSESSION OF OUR PRICE AND STOCK LISTS, THESE MAY BE HAD ON APPLICATION.

* FULLY TROPICALISED-CLASS H 1.
* SILVER PLATED PHOSPHOR-BRONZE CONTACTS.
P.T.F.C.E. MOULDINGS HAVE SIMILAR PROPERTIES

TO P.T.F.E. BUT THEY ARE LESS COSTLY TO PRODUCE. FULL INTER-SERVICE TYPE APPROVAL TO Z.560092-Z.560094-Z.560095-Z. 560134
Send for full technical details to:-
MOMURDO INSTRUMENT CO. LTD., VICTORIA WORKS, ASHTEAD, SURREY.

THE KEYSWITCH CO.

 ALL POST OFFICE EQUIPMENTEnquiries to Soles Manager
126 KENSAL ROAD, LONDON, W. 10 Telephione: LAD. O666. 4640 Grams: "Foneouibt". London. W. 10 Contractorsto Homes\& Overseas Governments\& H.M.CrownAgents

MINIATURE MICROPHONE LOUDSPEAKER
 6-300 Ω

Leaflets on Demand

TRIANON - ELECTRIC

95. COBBOLD ROAD, LONDON, N.W. 10

WIL 2116

dual concentric

loudspeaker

system with

built-in dividing

 network

The Altobass 2000 loudspeaker consists of a horn-loaded highfrequency unit mounted concentrically with a conventional low-frequency radiator to form one integral unit. A dividing network is built in to feed high and low frequencies to their respective voice coils. The HF pressure unit is loaded by a truly exponential horn commencing through the centre pole of the LF magnet and terminating in a multicellular assembly within the bass cone. This unique feature disseminates the full range over a wide area, thus eliminating any beam effect.

* dual concentric assembly
> * separate LF and HF diaphragms

\author{

* multicellular exponentlal HF horn
}
* cast aluminium chassis

17 guineas

Try "The Tutor"
This new reconder, using the Mark IV Collaro tape deck with digital counter. Produced by the manufacturers of the well-known "Tutor-Tapes."

Ontorite Mownurementa: $17!\times 15\} \times 7 \mathrm{fth}$. Including ldd. Omepot: St watlu. Weigh: s8ibs. In dun colonee molerophone and high/low/impedance radlo/ tram. Owtput: 3 ohm or 15 ohm (as ordered) for axtemation speaker, enrphose monltoring.

PRICE 62 gns.
complete whb Collaro ceramic eryatal micro phrne-ad $1,200 \mathrm{ft}$. reel of tave
Learn languages througb Tutor-Tape. Ploate wite for detalls.

$$
\text { Jutor_-Jape }_{\text {Company }}
$$

70, BREWER STREET, LONDON, W.I

ELECTRONIC ENGINEERS \& TRANSFORMER SPECIALI8T8

TRANSFORMERS

 Up to 50 K.V.A. F.H.P. MOTORS ELECTRONICSYour enquiries are invited and we shall be pleased to supp'y you with a complete catalogue.

ANDEC LIMITED

A.I.D., A.R.e. approved

BENNET ROAD • READING • ENGLAND
Tel. 8240112

к．じ。

6 WAY

 miniature mains voltage selector Type BMVS／6STANDARD B9A（NOVAL）VALVEHOLDER WITH 2－PIN

CAPTIVE PLUG．

UP TO 6 TAPPING POSITIONS．
MARKING TO CUSTOMERS＇REQUIREMENTS．

Send for full detajls to：－
THE McMURDO INSTRUMENT COMPANY LIMITED，ASHTEAD，SURREY．
Tel ：ASHTEAD 3401

BRAND NEW ORIOIMAL SPARE PARTE FOR RRB8 REGEIVER8.
I.F TRAMBFORmERs lst, 2nd, 3rd, 4th (for type D) $12 / 6$ each ar complete set of $6,60 /$. I.F. Trausformers, Crystal Load. $12 / 6$ each. Plates escutcheons (for D and LF), 15/- each. Dials (for type D), 10/- each.
Filtor Chokes (for D and LF), 22/6 each.
Outpent Transformore (for LF), 30/- each. Crystal shaving (D), $2 / 6$ each.
Antemene trimomers (LF and D), 2/6 each.
Fiter Condonser $3 \times 4 \mu \mathrm{~F}$, s2-10-0.
Condonmers $3 \times .25$, \mathbf{F} (D and LF), 2/6 each. $3 \times .101 \mu \mathrm{~F}$ (D and LF), $2 / 6$ each.
RF Antenna indwetors (D and LF), 7/6 each.
Malas trameformers (LF), 33 each.
Brall knows (for LF and D), 4/- each.

AYO MINOR8 in 'eather case, fully tested, 85-10-0. Packing and Carriage $5 /$ -

MARCOMI SIGMAL OENERATOR. T.F. 144 G . Covering $85 \mathrm{kc} / \mathrm{s}$. to $25 \mathrm{Mc} / \mathrm{s}$. Postage and packing 20/. 870.

2 K.V.A. TRAMSFORMERs. 230/50 v output adjustable by rotary iwitch. Can be easily adapted as a welding transformer. 18. Postage and packing $30 /$ -
R.109A RECEIVERs. Covering $2-12 \mathrm{Mc} / \mathrm{s} .6 \mathrm{v}$. D.C. 4/5/-.

Carriage paid.
HIGH RESISTANCE HEADPHONE $\{, 000$ ohms. Brand New, Ex W.D. boxed, Iype D.H.R., 11/- per pair, postage $1 / 6$.

LOW RESISTANCE HEADPHONEA, Brand new, Ex W.D. boxed. Type C.L.R. and D.L.R. 5/6 per pair, postage $1 / 6$.
P. C. RADIO LTD. 170. GOLDHAWK RD. W. 12 sHEpherds Bush 494

1155L REOEIVERS COVERING TRAWLER BAMD. Frequency range $200 \mathrm{kc} / \mathrm{s} .500 \mathrm{kc} / \mathrm{s}$. and $000 \mathrm{kc} / \mathrm{s} .-18.5 \mathrm{Mc} / \mathrm{s}$. Working and guaranteed s12/19/8. Packing and carriage within U.K. £1.

MODULATION TRAMSFORMERS (U.S.A. COlins), pramary imp. 6.000 ohrns. C.T., Secondary 8.000 ohms., 20W. $9 / 8$ each.

SPAREs for AR77E. Main Dial 8//. Bandspread Dial $8 /-$. Clean dial window sheet $3 /$. Terminal boards $3 /-$ each. 10 in . shaft for switch, 1/-. Band indicator shutter plate, 3/6. Each item $1 /$ postage.

AMERICAM VALVE TEsTER Modol 314. Individual lever switches for eacb tube element. Roll Chart ior American type valves. $220 / 30 \mathrm{~V}$. a.c. Brand new in nice wooden case with leather handles. Full instuction booklet. $\$ 10$. Cartiage 10%.

CONDENSERS, RESISTORS, COILS, TRAMSFORMER\&. Vory large salection in steck.

AMERIGAN HANDY TALKIE. lype B.C. 611 including two operating crystals (5.6 Mc . band), \$19/10/-. Postage and packing 10%.

FAMOUS RCA TRANSMITTERS

TYPRS BT 4336, K \& L

Frequency $2 \mathrm{mc} .-20 \mathrm{mc}$.
Power output: 350 w . telegraph. 240 w . telephone.
Type of modulation-Class B high level.
Audio input impećance 500 ohms.
Power supply 190 to 250 v . Single phase $50-60 \mathrm{c}$.
Tube complement: Crystal oscillators-807, Master oscillators-807. Intermediate amplifier-807, Power amplifier - 813(2), Modulator - 805(2), Rectifier 866A(4).
Complete with Master Oscillators, crystal multipliers, speech amplifiers, microphones, keys, instruction manual. etc.
We guarantee full supply o' all replacement parts for a minimum of 5 years after purchase.

Offices and Works
BEAYOR LAME, HAMMERSMITH, LONDOM, W. 6
Telephone: RIV 8006/7

From 3 to 8 Bank-To Specification

KEY SWITCHES

Several types
in stock
GOVERNMENT CONTRACTORS A.I.D. RELEASE

DELIVERIES

YOU'LL DO BETTER WITH PREMIER

POCKET VOLT TEST METERS

Two ranges, D.C. $0-250 \quad v_{1}, 0-25 \mathrm{~V}$. , complete with leads in canvas case. In leather case 1/6 extra. Plus $2 / 6$ post and packing

12/6

AM/FM RADIDGRAM CHASSIS

OF THE LATEST TYPE
Cash $\mathrm{C} 22 / 10 / \cdot$ or credit terms 23 :10/deposit and 8 monthly pay-
 Terms $\varepsilon 11 / 51$. deposit and 12 monthly payc1/0/11. Packing and Carr. 7/6. This
chassis has 8 valves and covers short, medium and long FM and Gram. Printed circuit on F.M. ensures a high degree of stabillty. Overall size 14 in . Jong, $6 \frac{1}{4} \mathrm{in}$. high, 9in. deep. Dial size $12 \times$ 5군

THE STAAR "GALAXY"
4-speed mixture Auto-changer. Finger-tip stop, start and speed change control. Size 10 in. $\times 12$ iin. A.C. mains $110-250$ v. Price 9115/- plus $4 / 6 \mathrm{pkg}$ \& carr
Credit Terms $\varepsilon 1 / 15 \mid$-and 8 monthly payments of $\Sigma 1 / 5 / 9$.

Build the

OHE VALYE BATTERY RECEI:ER

 AS SHOWN ON B.B.C. T.v. This Receiver contains a DAF96 valve and a pair of 4,000 ohm headphones and is powered by a combined 67 , and and voli batuerv.Price complete with headphones and Price complete with headphones and
including batery $.445 /-4$ Send for free diagram.

COLLARO R.C. 456

4-SPEED AUTOCHANGER

Designed to play 12 in ., 10 in . and 7 in . Records intermixed in any order at $16,331,45$ or 78 r.p.m. Capacity 10 records. New reversible Dual Stylus Crystal Pick-up for use on $100 / 250$ v. 50 cycle A.C. mains, $\mathrm{E} / \mathrm{I} 5 /$ / plus packing and postage $5 / \%$. Deposit $25 / \mathrm{F}$ and 8 monthly payments of $25 / 9$.

COLLARO A.C.4/564

4 -apeed starle pleyer with 榇udio " 0 " head. A.C. Main, 200/250 Folta, 50 c/a. Sultable for recor
8 8ecial offer
£7.7.0
Carr. \& Pkg. 5/-. B.S.R. TU8 3-speed Record Player with pick-up $£ 3$ 119/6.

2-VOLT IGAH BAKELITE CASED

 ACCUMULATORBy Oldham, Dagenite, Exide. New and unused, unspillable. 7$\} \times 4 \times 2$.

Price 6/6 plus $1 / 6$ post and packing.
A IT WILL PAY YOU TO VISIT OUR NEW HI-FI DEMCNSTRATION ROOM !

PREMIER RADIO CO., DEPT. W.W., 207 EDGWARE ROAD, LONDON, W. 2
Telephone: AMBassador 4033. PADdington 3271. (Open all day Sats.)

THE
 WEY R
 AD AM/FM RECEIVER

THIS RECEIVER WHICH HAS BEEN SPECIALLY DEVELOPED FOR THE AMATEUR CONSTRUCTOR PROVIDES COMPLETE COVERAGE OF THE SOUND BROADCAST BANDS-LONG, MEDIUM AND SHORT WAVE AM. WITH 87.5-100 Mc/s. V.H.F. FOR FM. WE HAVE PRODUCED A FULLY ILLUSTRATED BOOKLET WHICH GIVES INFORMATION ON THE ASSEMBLY AND ALIGNMENT OF THE 4-BAND SEVEN-VALVE RECEIVER, INCLUDING CHASSIS LAYOUT, CIRCUITS AND POINT-TO-POINT WIRING DIAGRAM.

* " WEYRAD" B. 61 COIL PACK, P. 23 I.F. TRANSFORMERS, T.S. 61 TUNING SCALE, Q2 I.F. FILTER, E. 822 MAINS TRANSFORMER AND E. 823 OUTPUT TRANSFORMER.
\star ALUMINIUM CHASSIS WITH ALL PUNCHING AND BENDING COMPLETE.
\star DESIGNED FOR LATEST TYPE MULLARD VALVES.
\star RECEIVER OUTPUT CAN BE MODIFIED FOR USE AS A RADIO FEEDER FOR QUALITY AMPLIFIERS.
THE BOOKLET \& PRICE LIST 2/6d.

ILLUSTRATED FOLDER OF AM. COMPONENTS 3d.

WEYMOUTH RADIO MANUFACTURING CO., LTD.

CRESCENT STREET, WEYMOUTH, DORSET.

T H E

 P O R T A B L E
MAY BE BUILT FOR
 t Size only $8 \mathrm{in} . \times$ Bin. $\times 4 \frac{1}{4} \mathrm{in}$.

 £7-7-0 plus 31-post \& pocking. Batteries extra. HT 10/- (Type B126) or equivalent. LT 1/6 (Type AO 35) or equivalent.* Weight, including batteries, $5 \frac{1}{2}$ b.
* 4 valves of che economy type.

K Medium and long wave superher circuit. * High Q frame aerials.

* High sensitivity on both wavebands.
* Prealizned IF transiormers.
* Prealigned if cransformers.
* Sin. speaker of the latest-cype.
* Automatic on/of switch operated by lid. * Designed in our own laboratory.
* Backed by an up-co-date Technical Information Deps. ¿ Components available separately il desired. Simple to construct, using normal soldering methods. * Instruction book 1/6.

which gives complete SAFETY to the constructor!

These Televisors use a double wound mains transformer which sives you complete safety from contact with the mains supply when hand line the chassis or controls.
\star B.B.C. \& I.T.A. DESIGN
WITH MEW TURRETTUNERES3:7.11 PLUS COST OF C.R.T.

Build in 5 Easy Stagea. Full Construction details available. Instruction Book 3/6 Post Free.

CONSOLE CABINETS with fult langth doors for 14 in ., I6in. and I7in. zubes PRICE $\{14 / 14 / \mathrm{F}$. H.P. Terms: Deposit $57 / 7 / 6$ and 9 monthly paymenes of $18 / 6$ CONSOLE CABINETS. Half-door $12 / 12 / \%$ H.P. Terms: Deposit C6/6/and 8 monthly paymencs of $18 / 3$. On above cabinats add $21 /$-for pkg. and carr.

with PREMIER

\section*{The latest COLLARO 4-spead singie player unit complete with pickup and turnover car	tridge		
plus	$2 / 6$	pkg. $\& 4$ \& carr.	}

CABINETS—PORTABLE
 MODEL PC/2
 Grey Lizard Rexine covered covered45/Overall dimensions $15 \mathrm{in} . \times 13 \mathrm{tin}$. 6 in. Clearance under lid when closed
 3in. LUXE
 Two colours, wine and grey, with cutout for speaker and Dimensions isin x
 $14 i n . \times 7$ in

Grey Lizard Rexine MOL PC/3
Overall dimensions $161 \mathrm{in} . \times 141 \mathrm{in} \times{ }^{6}$ 69/6 Clearance under lid when closed $3 \frac{1}{\mathrm{i}} \mathrm{in}$. MODEL PC/3 DE LUXE
As above but with cutouts for Speaker and Amplifier
Dimensions as above
THE ABOVE CABINETS ARE COMPLETE WITH CARRYING HANDLE FASTENERS AND PANEL

Packing and Postage 3/- each. Junction Transistors $10 / \mathrm{e}$ each Equivalent of the OC70 Type
CONTINENTAL STYLE CABIHET

Dark Piano finished with gold and black styling overall size 39 in long, 32 inin. high, l6in. deep. Two concealing on the left a black panel 18 in. $20 \frac{1}{i n}$. fintshed in medium mahog any, and on the right a detachable board $12 \mathrm{in} . \times 18 \mathrm{in}$. and a shelf which may be used for record storage. Cash Ptice 18 gns., plus 25/- pkg. and carr. Credit Terms: Deposit $22 / 18 /$ and 8 monthly pavments $£ 2 / 6 /-$.
The new Spencer West Band Three conver:er is now available at $[6 / 5 / \mathrm{\rho}$ plus pkg. and
post 3/-. West Pattern Unit 25/- plus 1/Spencer West Pattern Unit $25 /$ - plus 1/-
pkg. and post. For elimination of B.B.C. interference or I.T.A.

PREMIER BUREAU

 DE LUXEA superb cabinet in finely figured walnut vencer. In crior light sycamore with rexine matching lining. Overall dimen-
 deep. Uncut control panel on right-hand side approximately 16in. x 101in., uncut baseboard on left-hand side $15_{3}^{3} \mathrm{in}$. long, $13 \frac{1}{2} \mathrm{in}$. deep. Two full size felt-lined storage cupboard in the lower part of the cabinet.
Cash price $16 \frac{1}{2}$ gns.
Credit Terms: Deposit $£ 216 / 6$ and 8 monthly payments of $£ 2 / 3 / 2$. Packing and Carriage 25/- extra.
We carry a comprehensive stock of components by all leading manulacturers. SEND 3d. STAMP FOR OUR AUTUMN CATALOGUE.

Why not make the best!
MULLARD AMPLIFIER KIT
NOW SUPPLIED WITH ULTRALINEAR OUTPUT TRANSFORMER.
All the components for model 510 , PLUS preamplifier, on one chassis (total six valves), chassis gold hammer finished. May be pur: chased for $£ 12 / 12 /-$ plus pkg. and post $7 / 6$. This version complete and tested $\mathbf{~ 1 5 / 1 5 / - . ~}$ Or pre-amplifier and tone control in a separate unit f14/14/- plus plg. and post $7 / 6$.

8 WATT AMP:IFIER

This design includes 5 miniature valves of Ultralinear Output Transformer suitable for Speakers of 3 and 15 ohms, and a very attractive perspex front panel with gold lettering, complete set of parts $£ 8 / 8 / \mathrm{m}$. Postage and packing $5 /$-extra. Or $\{10 ; 19 ; 6$ built and tested.

4 WATT AMPLIFIER

Mlun $2 / 6$
Powinge
Instruction Book $1 /$ - post $\begin{aligned} & \text { Prg. } \\ & \text { free. }\end{aligned}$ A steel case is now available, complete with engraved panel, for $15 / 6$ extra. The amplifier may be supplied complete for $£ 5 / 5 /-$ plus pkg. and post $3 / 6$, or fitted in case at 56 plus pkg. and post 3/6. Engrived panel 3/6. Post free.

MIM BUY AURPLUS OR RE-CON-

 THESE FULLY QUARANTEED WIDE ANELE TUBES ARE AYAILABLEQ ANELE TUBES ARE AVAILABLE? THE LATE8T TYPE I7In. REGTANGUAMD PARYINO 21/- EXTBA ALED 14in RECTAMEIIAP TUBE TYPE 14PA. R13/19/6 (INGL TAX) PACKINQ AND CARRIAGE 18/-EXTRA.TERMS OF BUSINESS

Introducing LORENZ MODEL PL 562
4-speed gram. motor.
PRICE $£ 3.13 .6$

NEW FM TUNER

for the Home

 Constructor A new design using the lates! circuit techniques. In cludes 4 valves plus magic eye or, permeability tuning and an integral power upply Two controls only a gear driven slow supply. Two controls oniy, a gear ciriven slow control with onloft swich Suitable for fring control with AllAll components may be purchased for $\mathbf{5 8 / 1 5 1}$ plus packing and postage $3 / 6$. Send $1 / 6$ for booklet. OR less Mains Transformer and Rectifies $57 / 12 / 6$ plus packing and postage 3/Power requirements HT 230 v. 50 mA ., LT 6.3 v. 1.5 A. Dial size $3 \frac{1}{2}$. $\times 11$ in. 1 , overall size 11 in. long, 5 inin. deep, 41 in . high.

* IT WILL PAY YOU TO VIBIT OUR

NEW HI-FI DEMONSTRATION ROOM

THE NEW TSL

8TABILITY MODEL

6 valves including Magic Eye and Power Supply using the latest type Grorler permeability Unit complete with first audio stage and preset output volume control. Maximum radiation less than 10 microvolts per metre. Sensitivity better than .5 microvolts. Cash price $£ 17 / 10 /$ - (inclusive) or Credit Terms: Deposit $\mathbf{2 / 1 0} /$ - and 8 monthly payments of $52 / 3 / 2$. Postage and packing 5/- extra.

STIRLING VHF/FM TUNER UNIT

 A eleverly designed Unit suitable for installation either in existing equipment or as an external Unit. Completely self contained with its ewn power supply. The latest type petmeability funed circuit is used, tuning drift being negligible. Size $71 \times 71 \times 2$ in. Cash Price 213/13/-. Postage and packing 2/6 extra. Cr. Terms $x 1 / 15 /-$ deposit and 8 monthly payments of $\mathbf{5 1 / 1 3 / 6}$. Plus postage and packing of $2 / 6$.2-BAND TRF RECEIVER MAY BE BUILT FOR $£ 5.15 .0$
plus pkr. \& port 3/.

3 BAND SJPERHET RECEIVER

$\left.\begin{array}{ll}\text { MAY BE } \\ \text { BUILT FOR }\end{array}\right\}$ These two receivers use the latest type circuitry and are fitted into attractive cabinets $12 i n . x$ 6 !in. $\times 5$ lin. in either walnut or ivory bakelite or wood. Individual instruction books 1/= each. post frec.
THE JA8ON "ARGONAUT" MW/FM DESIGN tAll Premier components are designter approved. ALL components to build the complete Receivar, including output stege, may be purchased for $\& 15 / 5 / 4$ or all components less output seare but inciuding Power Supply, for ($13 / 19 / 6$, plus patcking and postage 3/6 on each.

MAKE CERTAIN DF

Reliability proved by tremendous production

Reliable components are the first essential to the smooth running of factory and production line.

That is why more and more manufacturers are turning to the Monarch.

The Monarch is the development of a proved and successful design, and is tested and re-tested before it leaves B.S.R.-it is ready to go straight into the set. You can employ the Monarch confident in the knowledge that there are no delays and technical troubles.

The Monarch helps to build the reliability of your product-investigate it without delay.

. . . MAKE CERTAIN DF THE

* Also available is the $T . U .9$ single record player and matching pick-up.
The world-proved ful-Fi turnover crystal cartridge is fitted to both Monarch and T.U.9.

World's most reliable

 four-speed autochanger!
Wirelless World

ELECTRONICS, RADIO, TELEVISION

Ina This Issue

VOLUME 64 No. 1
PRICE: TWO SHILLINGS

FORTY-SEVENTH YEAR OF PUBLICATION

Offices: Dorset House, Stamford Street, London,
S.E.1.

Please address to Editor, Advertisement Manager or Publisher, as appropriate.

Telephone.
WATerloo 3333 (60 lines)
Telegraphic Address. "Ethaworld, Sedist, London".

1 Editorial Comment
2 World of Wireless
6 Telephone Automation
7 Reception on Band V
11 Television Aerials for Bands IV and V By F.R.W. Strafford
14 Band V on a Turret Tuner
By P. R. Stutz
17 Some Special Magnetrons
22 Letters to the Editor
23 Short-wave Conditions
24 Cathode-Coupled Flip-Flop
28 Magnetism in Materials-1
31 Technical Notebook
33 Starting Tape Driving Mechanisms
36 Car Radio Receiver Design
By J. C. Beckley
40 A Pickup To Track at 2 Grams
41 Valves, Transistors and Efficiencies By "Cathode Ray"
45 Manufacturers' Products
46 News from the Industry
47 January Meetings
48 Random Radiations
50 Unbiased
By T. G. Clark By D. H. Martin

Transistor

R.C. Coupled Amplifier Stages

Although it is desirable to design a universal standard transistor amplifier stage, this is not possible because signal level, supply voltage and maximum working ambient temperature each introduce problems which must be overcome in different ways. It is possible however to design and publish typical amplifier stages for several supply voltages, assuming a maximum working ambient temperature, making a compromise between gain and output.
The first stage in an amplifier must be designed to provide as high a ratio of signal to noise as possible, because the accumulated input and circuit noise will give a very impure output over a number of stages. In all other stages the requirement is maximum gain for minimum distortion at the required output level. The recommended circuit using a Mullard OC71 transistor, with capacitive coupling produces a good gain for a relatively distortion free output., - The circuit is suitable for use with supply voltages of $\sigma \mathrm{V}$, 9 V and 12 V , stabilised up to $45^{\circ} \mathrm{C}$ ambient working temperature. Some modifications are indicated below for the user's guidance. It is important when modifications are made to ensure that the collector current should not go below 0.3 mA , otherwise the input resistance and collector-emitter gain \propto^{\prime} become very non-linear. The distortion and gain data shown in the accompanying table are typical for one OC7I stage from a series of

CIRCUIT VALUES AND GAIN FOR SOME TYPICAL OC71 TRANSISTOR STAGES

$\begin{aligned} & v_{c \mathrm{c}} \\ & \text { (i) } \end{aligned}$	$\underset{(\mathrm{mA})}{I_{c}}$	$\begin{gathered} R_{1} \\ (k \Omega) \end{gathered}$	$\begin{gathered} R_{2} \\ (k \Omega) \end{gathered}$	$\underset{(k \Omega)}{R_{0}}$	$\begin{gathered} \mathbf{R}_{c} \\ \left(\mathrm{k} \Omega_{1}\right) \end{gathered}$	$\frac{I_{\text {out }}}{I_{\text {in }}}$	'our*
6	1.0	39	10	1	2.2	23	200
9	10	62	10	1	3.9	28	260
12	1.0	82	10	1	5.6	31	270

* For 5\% total distortion
identical ones in cascade. The source impedance $\mathbf{R}_{\text {source }}$ is assumed equal to the collector resistance R_{C}. A resistance of $r .5 k \Omega$ is used to shunt R_{C}, this value is equivalent to the input impedance $\mathrm{R}_{\mathbf{L}}$: of the following stage. The current flowing in this $1.5 k \Omega$ is the output current considered in the distortion and gain measurements tabulated below. The gain figures apply to a transistor with average collector-emitter gain \propto^{\prime}. These component values have been carefully chosen such that in each case the transistor operates satisfactorily up to an ambient temperature of $45^{\circ} \mathrm{C}$. It will be seen from the table that the useful output current, for 5% total distortion, and stage gain increase with supply voltage. This distortion is predominantly second harmonic.

The performance obtained with $I_{c}=\mathrm{ImA}$ should be adequate in most cases, however the stage gain can be increased by reducing (not below 0.3 mA) the collectorcurrent, thisisonly worthwhile at the lower supply voltages. For instance $\mathrm{I}_{\mathrm{c}}=0.5 \mathrm{~mA}, \mathrm{Re}=$ $2.2 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{c}}=3.9 \mathrm{k} \Omega$ gives 20% increased gain. Increased output can be obtained for a given distortion by increasing the collector current to, say, 1.5 mA , altering circuit values accordingly. For minimum distortion it is preferable to keep the collector current in the range $\mathrm{I}-2 \mathrm{~mA}$, inany case it should not be reduced below o.3mA, and to keep the source impedance as high as possible.

The Skater's waltz is, of course, our forte; we delight you in the ballet of Prokoviev; we enthrall you in the rhythm of the pop. We are-have you guessedAcos GP 65 Cartridges. Type $65-\mathrm{I}$ is a star performer with hi-fi precision and hi-g grace, characteristics as level as the rink, yet full of vigour*. Type 65-3 strides out in style and force*. Poised on Acos $\times 500$ tested tips, we glide through our turn with perfect balance.
*Outputs : Type 65-1, 0.15 V ; Type 65-3, 1.0 V, at I cm/sec velocity, $1,000 \mathrm{c} / \mathrm{s}$

L. 338 'Mag-Nickel,' (glass) anti-surge, size 0 . Designed to withstand switching surges of 10 to 30 times rated current for 10 ms , without ultimate failure due to embrittlement of the wire. 250,500 and 750 mA .
L. 1055 Standard (glass) size 0 ($1 \frac{1}{2}^{\prime \prime} \times \frac{1}{4}$ " dia.). 60 mA to 25 A . blowing within 10 seconds on 100% overload, guaranteed life 1,000 hours at rated current.
L. 562 Miniature (glass) size 00, ($\mathbf{3}^{\prime \prime} \times 3 / 16^{\prime \prime}$ dia.). 50 mA to 7 A .

The fuse, simple as it seems, has undergone great development since 1880, when Edison first used the principle of the "weak-link" for protection against overload.
The extensive "Belling-Lee" range of cartridge fuses includes types for practically every electronic application, each being manufactured to extremely close tolerances to ensure the highest degree of accuracy and consistency in operation.
The links listed here are only a selection from the wide "Belling-Lee" range, which covers ratings from 10 mA to 500 A . Write to "Belling-Lee" for further details

"BELLING-LEE" NOTES

How efficient is an aerial? How long is a piece of string?

Not so long ago, at a meeting in a fringe area where we were discussing installations, we made it clear that very often we found really efficient aerials so badly installed that it would have been easy to achieve better results with a badly designed aerial well installed. If you haven't understood all that, it might be worth reading it again. In districts where there is plenty of signal, careless installation may not be very serious, and probably the installation team take credit for the reasonable picture that should really go to the set designer and the automatic gain control. But in a fringe area where the signal is in the region of 20 microvolts or even less, the automatic gain control is working full out, and the picture is noisy in any case. It is then that a skilful erection team can at least double the quality of the picture.

Some people think that the greater the number of elements the greater the gain. There are many four-cyclinder cars more powerful than many with six cylinders. It is all a question of design. We have an "H"-type aerial with higher gain than at least one well-known four-element array. We designed the first fourelement array, and, although it was a winner, we stopped production a few years back because we made a three-element array with a still higher gain, and we couldn't justify the fourth element. The theoretical and practical gains from the fourth element were just not worth while.

Band III is a different story; as the arrays are so much smaller, you can add more than four elements and still have a practicable device. We feel that nine elements are a maximum on one crossarm and our nine-element band III aerial is undoubtedly the most efficient single band III array available.

Advertisement of
BELLING \& LEE LTD.
Great Cambridge Rd., Enfield, Middx. Written $18 t h$ November, 1957

E(M/ HIIMMSTRERSVOCET/ Ampounce wew Practical way OF LEARNING AT HOME

NEW - completely up-to-date methods of giving instruction in a wide range of technical subjects specially designed and arranged for self-study at home under the skilled guidance of our teaching staff.
NEW-experimental outfits and lesson manuals are despatched on enrolment and remain the student's property. A tutor is allotted to each student for personal and individual tuition throughout the course.
Radio and television courses, with which specially prepared components are supplied, teach the basic electronic circuits (amplifiers, oscillators, detectors, etc.) and lead, by easy stages, to the complete design and servicing of modern Radio and T/V equipments.
If you are studying for an examination, wanting a new hobby or interest, commencing a career in industry or running your own full-time or part-time business, these practical courses are ideal and may be yours for moderate cost. Send off the coupon to-day for a free Brochure giving full details. There is no obligation whatsoever.
Gourses with Equipment
RADIO • SHORT WAVE RADIO
TELEVISION • MECHANICS
CHEMISTRY • PHOTOGRAPHY
ELEGTRICITY • CARPENTRY
ELECTRICAL WIRING
DRAUGHTSMANSHIP • ART etc. The is no

Vidicon Camera Tube

 with the American types is now available in three versions. Type 10667S-Studio Camera use. Type 10667F-Film Pick-Up Type 10667G-Industrial Applications.
For comprehensive details please apply for technical brochure.
Other E.M.I. Television Equipment:
Studio and Interview Camera Channels. Flying Spot and Photoconauctive Film Channels. Studio Mixers and Control Equipment.
(BROADCAST EQUIPMENT DIVISION) - HAYES - MIDDLESEX - ENGLAND

The effects of interference on radio and television is a much debated topic among manufacturers, authorities and public alike.

The rapid increase in possible sources of interference, in the form of new domestic and industrial appliances, serves only to intensify the problem.

For the effective control of interference...

Commutator motors, discharge lighting, thermostat operation and electro-medical equipment are the prime offenders. The best way to tackle the job of suppression is to build-in the necessary components at the equipment manufacturing stage. Wisely, most manufacturers rely on Plessey Suppressors, of which there are four main types giving a comprehensive coverage for the majority of requirements.
Manufacturers and Design Engineers are invited to write for Plessey Publication No. 952 which contains full details.

$\mathbf{4}_{\text {suppressor ranges }}$ or Plessey

Capacitors for Radio and Television Interference Suppression

Television Interference Suppression Inductors

Radio Interference Suppression Inductors

COMPONENTS QROUP - CHEMICAL ANO METALLURGICAL OIVISIOM
THE PLESSEY COMPANY LIMITED - WOOO BURCOTE WAY - TOWCESTER • NORTHANTS - TEL: TOWCESTER 312
Overseas Sales Organisation: PLESSEY INTERNATIONAL LIMITED • ILFORD - ESSEX • ENGLAND - TELEPHONE: ILFORD 3O40

Marconi Camera Channels

IMAGE ORTHICON CAMERA Type BD808 (illustrated)

Features

- Uses either $3^{\prime \prime}$ or $4 \frac{1}{2 \prime \prime}$ Image Orthicons.
- Designed for ease of servicing, excellent accessibility and plug-in sub-units.
- Four position turret will carry any combination from 2 -inch to 40 -inch lenses. 80 -inch and zoom lenses may also be used.
- Viewfinder can be tilted up or down to give the most comfortable viewing position.
- Camera Control Unit may be used with ro" picture tube and $3^{\prime \prime}$ waveform tube, or with $14^{\prime \prime}$ picture tube and $5^{\prime \prime}$ waveform tube.
- Remote control of light intensity by variable graded filter.
- Optional remote control of focus and turret. Optional semi-automatic alignment circuit.
- Built-in turret for neutral density and colour filters.
- Full range of accessories available for both studio and outside broadcast roles.

BROADCAST VIDICON CAMERA Type BO364

The most recent addition to the Marconi range of Television Equipment.

Features

- Compact, easily operated by one man. The camera has integral viewfinder with 7^{*} tube and $2 \frac{1}{4}^{\prime \prime}$ waveform monitor and includes all operational controls.
- Channel consists of Camera and Power Supply onlybut optional Remote C.C.U. and Monitor position available.
- Use of close-tolerance double-triodes in all valve circuits except one and printed wiring assemblies ensures great reliability.
- Rapid semi-automatic beam alignment, built-in aperture correction and gamma correction circuits are provided. Designed to make the best use of any of the present Vidicon tubes and with ample flexibility to deal with foreseeable developments.
- 4-position turret with positive location takes wide range of fixed and zoom lenses.

CYCLES PER SECOND
S.T.C. are able to offer a range of highperformance close-tolerance $1 \mathrm{Mc} / \mathrm{s}$ crystal units. The range comprises:-

S.T.C. TYPE	DE S C RIP TION	EQUIVALENT
4044	2 pin metal containers	DEF. 527I Style B
4046	2 pin metal containers	DEF. 5271 Style D
4013	B7G glass envelopes	DEF. 527I Style E

The above units all meet the extreme climatic conditions laid down in RCS/I

As a direct replacement for the $1 \mathrm{Mc} / \mathrm{s}$ crystal unit in the popular BC22I wavemeter S.T.C. offer a unit mounted in a glass envelope with a special international octal base (service equivalent IOXAR5).

I
meet the vigorous bump and vibration requirements of interservices specifications.
can be supplied to a minimum frequency tolerance of $\pm 0.005 \%$ over temperature range $-55^{\circ} \mathrm{C}$ to $+90^{\circ} \mathrm{C}$.
can be manufactured for operation at either series resonant or at 30 pF or 50 pF input conditions.
have excellent short and long term stability.
have excellent short and long term stability.

Standard Telephones and Cables Limited

EDISWAN transistors
 MAZDA

If you are manufacturing or designing electronic equipment you will find this folio of data sheets helpful as a source of reference. It gives you comprehensive information and characteristic curves covering the whole range of EDISWAN Mazda transistors.

Simply ask for the P-N-P Transistor Folio on your business notepaper.

SIEMENS EDISON SWAN LIMITED

155 CHARING CROSS ROAD, LONDON, W.C.2, AND BRANCHES TELEPHONE: GERRARD 8660. AN A.E.I. COMPANY TELEGRAMS: SIESWAN WESTCENT, LONDON

PERFORMANCE

Model 1071K Double Beam Kit Oscilloscope

List Price £69.0.0.
Hire Purchase Facilities.
Trade terms on application.

AN INSTRUMENT RANGE IN KIT FORM

Q. Why has Cossor Instruments decided upon this innovation?
A. To make available a range of first-class measuring instruments at a considerable saving in cost to the Buyer.
Q. Are Kit instruments inferior in performance to their Factory-built equivalents?
A. Certainly not. If assembled and wired exactly in accordance with the Manual of Instructions.
Q. A certain skill must, surely, be required to build these instruntents?
A. None beyond the ability to use a small soldering iron.
Q. How can a performance specification be maintained without setting up test equipment?
A. Largely by the use of PRINTED CIRCUITS which allow no interference with the layout of critical parts of the circuit.
Q. How many Kit instruments are at present available?
A. Three. Two Oscilloscopes, a SingleBeam and a Double-Beam, and a Valve Voltmeter. Others will follow shortly.
Q. Could I have more information on these interesting instruments?
A. With the greatest of pleasure. Just write to:

cosson nomans buman

The Instrument Company of the Cossor Group

COSSOR HOUSE - HIGHBURY GROVE - LONDON, N. 5

Vortexion

The above recorder uses a synchronous capstan motor and far use on 12 volt car battery a $50 \mathrm{c} / \mathrm{s} \pm 1 \mathrm{cycle} 230 \mathrm{v} ., 120 \mathrm{w}$. power supply unit is available.
T.R.G. 10 MINIATURE AMPLIFIER AND VERSATILE PRE-AMPLIFIER. A modern miniature amplifier, measuring only $4 \frac{1}{2} \times 5 \mathrm{in}$. over front panel and projecting $\ln \frac{1}{2} \mathrm{in}$. to the rear. Uses C core transformer material to obtain low external magnetic field and has less than 0.1% harmonic distortion at 10 watts output. The amplifier response is level $15 \mathrm{c} / \mathrm{s}$. to $50,000 \mathrm{c} / \mathrm{s}$. within 0.2 db . The 3 -valve pre-amplifier will operate direct from recorder heads with correction networks for difficult tape speeds and switched inputs are provided for radio, microphone and gram. with correction for all recording characteristics.
" SUPER FIFTY WATT" AMPLIFIER. This heavy duty amplifier is available for long life under arduous conditions. The normal life being 5,000 hours without valve change.

TAPE RECORDERS and AMPLIFIERS

\star The total hum and noise at $7 \frac{1}{2}$ inches per second $50-12,000$ C.p.s. unweighted is better than 50 dbs .

* The meter fitted for reading signal level will also read bias voltage to enable a level response to be obtained under all circumstances. A control is provided for bias adjustment to compensate low mains or ageing valves.
* A lower bias lifts the treble response and increases distortion. A high bias attentuates the treble and reduces distortion. The normal setting is inscribed for each instrument.
\star The distortion of the recording amplifier under recording conditions is too low to be accurately measured and is negligible.
\star A heavy mu-metal shielded microphone transformer is built in for $15-30$ ohms balanced and screened line, and requires only 7 micro-volts approximately to fully load. This is equivalent to 20 ft . from a ribbon microphone and the cable may be extended 440 yds . without appreciable loss.
t The 0.5 megohm input is fully loaded by 18 millivoles and is suitable for crystal P.U.s, microphone or radio inputs.
\star A power plug is provided for a radio feeder unit, etc. Variable bass and treble controls are fitted for control of the play back signal.
* The power output is 4 watts heavily damped by negative feedback and an oval internal speaker is built in for monitoring purposes.
* The play back amplifier may be used as a microphone or gramophone amplifier separately or whilst recording is being made.
* The unit may be left running on record or play back, even with I,750ft. reels, with the lid closed.

CP20A AMPLIFIER. This standard amplifier for extreme tropical use will operate from 230 v . A.C. mains or 12 v . car battery and give 15 w . output for a consumption of 5.5a. Inputs for 30Ω balanced microphones, M.I. P.U. and Cr. P.U.

FOUR CHANNEL

An Electronlc Mixer for four 30-50 Ω balanced line microphones or special to order. Normal output 0.5 v . on $20,000 \Omega$ but 1 mW ., 600Ω balanced or unbalanced is available as an alternative.
The 3-CHANNEL MIXER and PEAK PROGRAMME METER is similar to the above but is fitted with a meter reading peak signals with I second decay time and calireading peak signals with
brated in dbs from zero level 1 mW ., 600Ω to +12 and -20 balanced or unbalanced output by means of switch.

ELECRRONIC MEXER

PERSONAL \& INDIVIDUAL HOME TRAINING IN-

Accountancy
Advertising
Aeronautical Eng.
A.R.B. Licences

Art (Fashion, Illustrating, Humorous) Automobile Eng.
Banking
Book-keeping
Building
Business Management
Carpentry
Chemistry
City \& Guilds Exams.
Civil Service

Commercial Subjects Commercial Art
Computers
Customs Officer
Draughtsmanship Economics Electrical Eng.
Electrical Installations
Electronics
Electronic
Draughtsmanship
Eng. Drawing
Export
General Certificate of Education

Heating \& Ventilating
Eng.
HighSpeed Oil Engines
Industrial Admin.
Jig \& Tool Design Journalism
Languages
Management Maintenance Eng. Mathematics M.C.A. Licences Mechanical Eng. Metallurgy Motor Eng.

Photography
P.M.G. Cert. Police
Production Eng.
Production Planning
Radar
Radio
Radio Amateurs (C G) Licence
Radio \& Television Servicing
Refrigeration
Sales Management Sanitary Eng.

Secretaryship Servo Mechanisms Shorthand \& Typing Short Story Writing Short Wave Radio Sound Recording Telecommunications Television
Time Motion Study Tracing
Transistors
Welding
Workshop Practice Works Management and many others Also courses for GENERAL CERTIFICATE OF EDUCATION, A.M.I.H. \& V.E., A.M.S.E., A.M.Brit.I.R.E, A.M.I.Mech.E., A.M.I.E.D., A.M.I.M.I., A.F.R.Ae.S., A.M.I.P.E., A.M.I.I.A., A.C.C.A., A.C.I.S., A.C.C.S., A.C.W.A., City \& Guilds Examinations, R.T.E.B., Serv. Cert., R.S.A. Certificates, etc.

Courses with PRACTICAL EQUIPMENT in RADIO - TELEVISION • MECHANICS CHEMISTRY•ELECTRICITY•DRAUGHTSMANSHIP
PHOTOGRAPHY, ETC., ETC.

COURSE FROM 15/- PER MONTH

EMI INSTITUTES

Britain's best Hi-Fi Equipment

We have devoted over 22 years entirely to the design and manufacture of audio equipment and we ire proud of our position as leaders in this field. We were the first firm in the world to design and market Amplifiers having a total distortion content as low as 0.1%; a claim which was received with incredulity in 1945, but which was subsequently confirmed by the National Physical Laboratory and has become an accepted world-wide standard. High engineering ideals have guided our efforts, and Leak Amplifiers have been the choice of the B.B.C., Commonwealth and foreign broadcasting authorities and Recording Studios. This acceptance by professional audio engineers has led to a demand for Leak equipment from music lovers throughout the world.
On the important question of prices it is appropriate to mention one of the basic principles of Leak design. From long experience and by extreme attention to design details during development work on the pre-production models, we enable our craftsmen to achieve a high output per man-hour. The labour costs thus saved offset the increased cost incurred for high-grade materials, components and finishes, and this, together with quantity production (made possible only by a world-wide market), explains how quality products may be sold at reasonable prices.

- An important Test Report . . .

Independent laboratory tests of the Garrard 301 transcription turntable were recently carried out by Audio Instrument Company Inc., New York, U.S.A., under the direction of Mr. C. Y. Lebel (Chairman of one of the groups which prepared the NARTB Standards). It was necessary that the pick-wp and amplifier syszem should conform in response to the RIAAnew $A E S$-new $N A R T B$ response curve within $\pm 1 d b$, and in the tesis of this excellent transcription unit the componente seltctedfor ase as complying with this recuirement were a Leak tone arm fitted wi h Leak cartridge and a complete Leak pre-ampli,ier and power amplifier Model TL/10.
The full rest report appeared in the February, 1957 issue of "Wircless World," pages 22 and 23.

We invite you to complete the coupon
below and post it to us for details of
the NEW Range of Leak High
Fidelity Equipment.

The First Name
in High Fidelity

H. J. LEAK \& CO. LTD., BRUNEL ROAD, WESTWAY FACTORY ESTATE, ACTON, W.3, ENGLAND.

Please send
Please send name and address of my nearest Hi-fi deoler

Nome .
Address

Telegrams: Sinusoidal, Ealux, London
Telephone: SHEpherds Bush 1173/4/5 Cables: Sinusoidal, London
W.W.II/58

1925
EASY
TERMS

for the Connoisseur

 THE LATEST
"TL/I2 PLUS" POWER AMPLIFIER and the

"VARISLOPE III" PRE-AMPLIFIER
are designed to give the highest possible fidelity from records, radio and tape.
OTHER LEAK PRODUCTS "Trough-Line" F.M. Tuner Point
TUNERS; Chapman Lowther
LOUDSPEAKERS: Goodmans - Tannoy. Wharfedale
TRANSCRIPTION MOTORS: Collaro' Connoisseur'Garrard, etc. All the above-in fact all QUALITY EQUIPMENT is available on EASY TERMS. Immediate delivery on most items.
SMALL DEPOSIT secures, balance plus 5% interest payable in 9 equal monthly instalments or
50% DEPOSIT and balance plus 10% interest payable over 18 months or 24 months if required.

We pay carriage and cratage on all items.
Send us your requirements. We will quote by return.
The L•R•SUPPLY COMPANY, LTD. BALCOMBE (Tel: 254) SUSSEX

TRANSFORMERS for every requirement

 Range 1 volt- 35 K.V. 1 M/A-1,000 amps STANDARD OR TROPICAL FINISH

We are on Admiralty and Ministry of Supply lists and A.I.D. approved

Enquiries to :
STEWART TRANSFORMERS Ltd.
75 KILBURN LANE, LONDON, W. 10 • LADbroke 2296/7

0.5 amp. D.C. Meter. M.I. $2 \frac{1}{3} \mathrm{~m} . ~ F / M, ~ a s ~$ illustrated above. Ideal for Battery Chargers. New. II/6. P. 急 P. II-.
$0-300$ v. A.C. Meter, M.I. 2tin. F/M. New. $\mathrm{el} / \mathrm{s} /$ - each. P. \& P. $1 /$ -
Dual range pocket volt meter $0-25$ and $0-250$ v. in wallet. New $12 / 6$ each. P. 8. P. 1/.
0-500 Microammeter, $2 i n$. m/c., calibrated 0.15 and $0-600 \mathrm{v}_{\text {., }}$ as used on No 19 sets. Ex equipment, but individ. tested. 14/6 each. P. \& P. 1/-.
Oil filled Capacitors. U.S.A.
$2 \mathrm{mfd} .1,000 \mathrm{v}, 4 / 6$ each. P. \& P. 2/-
4 mfd. 600 v. $5 / 6$ each. P. \& P. $2 /$ -
$7 \mathrm{mfd} .600 \mathrm{v} .8 / 6$ each. P. \& P. 2/-
$.2 \mathrm{mfd} .5 \mathrm{kV} .3 / 6$ each. P. \& P. 2/-
ARMOUR Recording Wire. U.S.A. Top Quality on original reels, lensth Top Quality on original reels,
3,700 yds. $17 / 6$. P. \& P. $1 / 6$. New.
Rheostat, 12 ohm 4 amp. Ideal for Batery chargers, etc. New. 7i6. each. P. \& P. $1 / 6$.

Lightweight Headphones (imported). 4,000 ohms., res., as illus. above. New 15/- each. P. \& P. 1/6.
IVALEK lightweight British Headphonets, 2,000 ohms. New. 12/6 each. P. \& P. I!6.

M/C Headphones by S. G. Brown ficted with ear pads. L.R. Good con dition. 12/6 each. P. \& P. 1/9.
H.S.30. U.S.A. miniature ear pieces fitting inside the ear. Magnetic type Litting New. 15/- each. P. \& P. $1 / 6$.
Low impedance Ear Pieces, as used in flying halmets. Type 13466. New. 3/6 each. P. \& P. I/-
Throat Microphone, magnetic, British. New. 4/6 each. P. \& P. 1/-.
Throat Microphone, carbon, U.S.A. New. 3/6 each. P. \& P. 1/-.

No. 8 Microphone, carbon insert, with switch. New. 7/6 each. P. P. I/6.
Microphone, type 48, 10N/1438I as fitted in oxysen mask. R.A.F. patt. New. 3/6 each. P. \& P. I/-
Telephone handsets, sound power, pair will work by simple connection wishout batteries. Good condition. 22/6 each. P. \& P. I/9.
Telephone Handsets, U.S.A. Similar to G.P.O. with switch, cartion insert New. $12 / 8$ each. P. \& P. I/6.
Morse Keys, 8 ampere. Service Patt. New. 2/6 each. P. \& P. 1/-.
PHOTO MULTIPLIER, Type 93IA, for alfa counting, film scanning, specto graphy, etc. New. £2/5/- each. P. \& P. I/-

MINIATURE LEAD ACID ACCUMULATORS. made by famous British Manufacturer to most stringent
service requirements. Brand new, uncharged, withour acid, in original sealed cartons. Capable of being constantly charged. Conservatively rated.
12 volt 0.75 amp., size 4 in. x in. \times itin. plus $\$$ in. protrusion of terminals. Weight with acid $21 \mathrm{bs} .40 \mathrm{z} .22 / 6$ each plus 2/3 P. \& P. C.W.O.
2 volt 1.5 amp. size $4 \mathrm{in} . x$ itin. x I 1 in. plus f in. protrusion of cerminals. Weighe with acid i| oz. $7 / 6$ each plus $1 / 6$ P. \& P. C.W.O. Special offer the two 28/-plus $2 / 9$ P. \& P.

AIRCRAFT CAMERA G45B. Mk. III, fitted with $\mathbf{1 / 3 . 5}$ triple anascigmatic lens. Takes 25 ft . of 16 mm . film. Fitted with 24 volt motor. Mint condition, new in maker's original packing. E6/15/-each. P. \& P. 3/6.

DEMOLITION TESTERS consisting two decade units and M / C Galvanometer. In solid wooden carrying case. Readily converted to Wheatstone Bridge. Excellent condition. 40/- each. P. \& P. 3/6.

Evershed "MEGGER" Circuit testing ohms Meter. Pattern " $\$$ " complete with tescing prods, inst. book etc., 2 ranges $0-3$ ohms and 0.30 ohms. Brand new, guaranteed perfect, as illus. Offered at fraction of makers' price. \&4/17/6 each. P. \& P. 2/6.

250 Volt Evershed "WEE MEGGER" Insulation Testers. New condition. ©10 each. P \& P. 2/6.

ISin. RCA. U.S.A. P.M. Speaker, 15 ohms. Ideal for P.A. Will handle 30 watts. New, in maker's carton and case. 69/17/6 each. Carr. in England 15/-.

Londex Relay, 24 v. heavy silver contacts, two breaks. Fair con dition. 4/6 ea. P. \& P. 1/-. High Speed Relay, Siemens, two bobbins 1,000 ohms, each. New. 10/6 each. P. \& P. I/-

Fishing Rod Aerials,

 12ft. ($3 \times 4 \mathrm{ft}$. sections). Steel, copper plated, tapered top. Ideal aerial or fishing rod. Fair cond. 8/6 each. P. \& P. 2/6.Latest type Collaro Studio miniature Microphones, complete with screened jack plus. New. 37/6 each. P. \& P. I/.
U.S.A. NAYY MODEL "MAN Crystal Controlled Radio Transmitter and Receiver, for voice, by frequency modulated signals in the $30-40$ megacycle band. Choice of eleven frequencies, powered by 6 v. battery. Complete with valves, crystals etc., and spares. Unused, E25. Carr. Eng. Eil.

Muirhead Vernier Drive. Scaled 0-180 ratio $31 / 1$, dia. 3in., as fitted to RF. 26 Units. Complete with lampholder. In manufacturers' orisinal packing. New. manufacturers orig
$8 / 6$ each. P. \& P. $1 / 6$.
Neon Light, 230 v. A.C. M.B.C. Clear. 1/9 each. P. \& P. 6d.
Neon panel mounting indicator lishes, with flying leads, chrome bezel. 200/250 v. Red, clear and green. New. 3/9 each. P. 8 P, 6d.

Ulera Violet Bulb, AC/DC, 12 v. 36 watt. New. 5/6 each. P. \& P. 6d.
Radial Stud Switch, 20 segs. Sin. sq Complete with handle and housing. New. 5/- each. P. \& P. 2/-.
Contactor Time Switch, two impulses per second. In sound-proof box. New. 11/6 each. P. \& P. 3/-

L.T. Transformer, input 230 v. Output 50 v., 50 ampere, but adiustable by voltage regulator switch on primary In steal case fitted with mains switch will take 100% overload. Grs. Wt. 150 lbs . Wound at 800 amps . per sq. in As illus. above. New in manufacturer's As ilius. above. New in manufacturer's
Auto Transformer, step up, scep down $110 \mathrm{v} .-200-220-240 \mathrm{v}$. Fully shrouded New, not ex W.D.
300 watt type E2/2/-each. P. \& P. $4 / 6$.
500 watt type E3/3/- each. P. \& P. $4 / 6$. 1,000 watt type E4/4/-each. P. \& P. $4 / 6$. Eddystone Mains Transformer, capped primary, secondary HT 180-0-180 v. at primary, secondary HT $180-0-180$ v. at
80 mA . L.T. 12.6 v . at $2 \mathrm{amp}, 5 \mathrm{v}$.at 2 80 mA . L.T. 12.6 v at $2 \mathrm{amp} ., 5 \mathrm{v}$. at 2

Potted L.T. Transformer. Oil filled. Input 230 v. Output 2-4-14-22-30-38 v. at 7 amp. Conservatively raced. New E2/15/- each. Carr. in England 6/6.
Oil filled Transformers as above input 230 v. Output $1-29-3 \mid-33-35 \mathrm{~V}$. at 4 amp . New $\mathrm{E} / \mathrm{I} 10 /-$. Carr. Eng. 6/6
24 V . Blower Motor. AC/DC, will run on 12 v . Operational condition. 12/6 each. P. \& P. 3/-
U.S.A. Geared Motors, 27 v. D.C. giving twin outputs of 20 r.p.m. and 6 r.p.m. Size $7 i n$. x It in., tin. shaft. Will operate on 12 volts. Operational cond.
$19 / 6$ each. P. 8 P. $3 /$. 19/6 each. P. \& P. 3/-.
Miniature 24 v. D.C. Reversible Recorder Motors, fitted governo and right angle gear drive. 3in. x lin. x Itin. New $12 / 6$ each. P. \& P. 2/-
Dynamotor. Input 12 v. D.C., output 300 v. D.C. at 215 mA . Supplied tested C $1 / 10 /$ each. P. \& P. $3 / 6$

We wish to remind customers that with the now postere
ratot the mintmum postage on a parcel is now $1 / 6$. Orders for linhtwolght items which fotal over $2 / 3$ will be sent post free otherwue sufincient muat be incladed to cover postage. Atso wnere a postase and insorance arure specifcally mentioned then this must be ineludod rogardloss as them itome have to bo son
aparaldy.

A YAELET 8FITCEA. 4 poolition, 6 nole. $1!$ n. apindle of reasona ble length. Price 2/6 or 24:- jer dozen.
B 500KC CRY8TAL, plur-in type, 06.
C 5-0.5 CENTRE ZERO MILLIAMP METER. 2ן 10 moring cofi, 17/6. plus 1/6 poti and insurazee. D TEEREAL DELAY UHIT. 0.3 operated. Bwitches on or off, $3 / 6$.

H SLOW MOTION DIAL AND DRIVE, really beautifully made ex-American transmitler. $9 / 8$. DOUBLE POLE CONTRACTOR. contacts pultable for 15 ampa. D.C. or alsut 00 umpa. A.C. Han closing coll wrurs for 250 v. U.C. lout quite O.K. for A.C Aleo bas cconomy resistance und are blow out coils 15\%.
J CHAMGE OVER 8WITCH. 5 position, each 25 ampe.
PUSH-PULL OUTPUT TRAM8FORMER, potted miola ture construction, American made. 6,6.
L PUSE-POLL IMPUT TRANBFORMER, potted miniature conamiruction, Anuericali made, $3 / 6$. M GAB PLLLED TRIGGER VALVE. Type No. G240/2D. on octal hate. 9/6, post and iuswrance 1/6.

THIS MONTH'S SNIP

INDICATOR NO. 86. Contalns many hundred of very valuable sparea including no less than 12 potemtoracters. Thin tadicator anit will take the VCR97 or the VCR517 and with relatively simple cuoditications can be turned tato an oselloscope. Litmitell quantits offerd at the extronsely low price of 10% each, carriage and pactring 4,6 up to 200 miles, beyond this distance at cork.

TRIPLETT A.C.fD.c. MULTITESTER, an illuntrited. Becond homd cases have small blemishe and the akmishte and the
instrumenta need serInstmmenta need ser-
vicing, lout we feel vicing. lout we fepl
that ther are a goond that ther are A goond 2\%. poost and ins.

POWER PACE OR BATTERI CHARGER, cutput voluge $180-200 \%$ at f-amp but can he varied alowe yollage $180-2400$ vi at -amp but can he varied alove
or below this
 t'rice $27 / 6$. thas 5^{2} - carriage and lasurance

Keyma relat. Made for U.S. Nivg. Ex, high power Navy tranmoniter but unused and in very good condition. $47 / 6$ each, post and insurabce $2 j^{2}$ -

POWER PAEK, EX. G.P.O. Beautifully made, unased and in perfirct condition. Outjut voliage equals 75 v . it 200 inA . The output is almost ri,ple Iree,

rice 37:6, plus \$4. carriage and insurance
OVERCURRENT RELAY

Beautifully nude by the famoun Amertcan Weating: huse Compary, These are the aurince mountios through panal type Fith clear Pyrex giase coving.
Ther have collis for remote push butinn resetting Type A-oallitrated for currents betwep. 1 and. 4 Anall Type B-califrabed for curreats between .5 and 2 amps. Price, unued and perfect, $8 / 17 / 6$ each.

INSTANTUS HEATER

Convector heater 1 kW ，raling， 4 fl ．long made from heavy gauge sheet steel（rul－ vanimerl）．Can be utien lor grretihnuse，
workshop，aviary．etc．ete．Price 2.20% ． workshop，aviary．etc．etc．Price $22 / 10^{\prime \prime}$ or with thrmoalat，eAt5\％，carriage $5 /+$ 8 KW MODEL．Free standing with Dltio with thersuadatic control $85 / 17 / 6$ ．

Frap our heater cable around the pipea in your loft to prevent a freeze－up． 21 gards por

SMALL CLOCK MOVEMENT

7 －dav mecb． inan beanu－ $\begin{array}{lll}\text { t } & 1 & 11 \\ \text { made }\end{array}$ fully jew． elled few
only gale phes
prech

WESTINGHEUSE （U．8．A．） METERS
All moving coll fingh mountling type，ont． side diameter of face 3 3tin．
0.300 Y．D．C．．．．．．．．．．．．．ion 0 －1．5 KV D．C external mulipitier 0.15 ษ．A．C．．．．．． 0.1 mA ．
0.30 ar A ．
$0-109 \mathrm{~mA}$ ．
0.150 mA ．
0.150 mA ．
0.250 inA．
20%
$25 i=$
25%
$15 /=$
25%
$15 /=$
$15 /=$
15%
15%
BAND III CONVERTER
gaitable London，Midlands，North， 2 Bcotiand，elc．All the party including coutrol condensers and resietors．iMtelal cane avsilable as an extra．）Price $19 / 6$ plus $2 / 6$ poot and insurance．Tata iree

TURRET TUNER

not mew stock coils firplua，with and III，corsplete III，corsplete PCC8 vialves PCP8－1．F． Out put $33 / 38$ Mels with instruc－ lione und cjrcult
diegram
aty ＊ロバ

Whth knobs $3 / 6$ extra，post and ins． $2 / 6$.

Undoubtedly the most up－to－date telerheor for the home commertor Yon can buik It in an evening and the set when ofluhel will he equal to a factory made equivalent

```
-No technical knowledge recuires
- All uinlature value
-Metinl rectluler
- 120chanmel circultry
-Multivibrutur timabam
- Ferrox culue, H.H.T. and acan colls
34/$8 me/a. I.P
$utable for any modern 12, 14 or 17in. tube
```

 ull informatioa and data tree with perfs of available meparatoly，prise $3 / 8$ ．

TAPE DECK SNIP

TAPE DECE－Made by the famoun Truvox Corpany．Thum montains exactly the ame essention an the current model Ouly the atyline tifitierent．It aloo lake the stermophonic head．
8PECLFICATION：3 B．T．H．shader pole motors with ailent frictlon drive efiminat in
 Patented electric type push－button rodirilical brake．Tape bealiog on the drop－in principle，arcolmmulation for reels on T diameter．Tracking sense to britieb and American atandarda．Playing titrese up to 3 houre with L．F．Tape or 2 bours －ilth standard Tapes Two tracka able by side with antety sap．Poastive Azinuth
 price of E 17110 i－or $83 / 10 /$ down ang eight montbly paymention es．Non catlers and 10\％－curriage and insuranue．

Ent＇rely Redesigned

A．C．／D．C．MULTIMETER KIT

Measures A．C．fD．C．voits and chms．All the cssential parts nchudinz mata case，oin．mov－ ing coil meter，se．ected resistors，wire for shunts，rance，seiector，swith es，calibrated scale and full instructions，price $10 / 6$ pius 19 post and insturance．

T．V．SERVICE SHEETS

mo sheets covering the mont popular post－war Televitora by leading makor．－ （onsor，Ekco．Ferguson．P＇ye．Efc．etc． special 25% reduction to W．W readers who onier this month will receive the complete t00 sheeta an prinecd，15／＝poest free

Yours for 81.10 .0 Down and 8 menthly payments of $\mathbf{5 1 . 0 . 0 \text { or }}$

The fateat canat nu－tordate Reoon Plager mude thy the ramous B．S．R and fitied Unith lif－ri Cryetal Pick Up mad fitted with every monern device． sive years of trouble－tree mule No surplus but the current model．

THE ORGANTONE
5－Valve y －wave band superhet coverins long，mallum and khort wave． Ongmminlature valves are employed and low has iron cored coile account for an exeellent ignal－to－noine matio．Pull A V．C．to applial to both frequency changer and I．P．stagtin， The output stuge utilises pariable negative and reproduction of recorde bia perticularly good．
Chatalu alize to $12 \times 7 \times 7 \mathrm{in}$ ．－scale ajze is $10 \mathrm{x} \times \mathrm{iln}$ This recelver han beoe tested in particubarly difirntt arean and ita ducral excentional resulte．：＂rice 811110 ． carriage，etc．，7／6．Or eq depoalt and peven monithly psyments of $\mathrm{E} 1 / 10 /-$ Carr．．etc．，7／6．
DON＇T BE GAUCHT LKE THIS

CAR STARTER CHARGERKIT All parta to build an－and 12 －volt charger Which can be coninected to a＂lint＂ raried inatatly．Kit compriting the following． S－anip，rectifier Regulator 8tur swilch Reniutance Wire Malns onfoff 8wtich o－s amp．Moving Coll Meter．．． Construction Date or if bought all together price is ．．． $52 / 6$ plua $3 / 6$ poat and packing．

These are complote Auoreacent ughtinf Aitings．Bullt－la ballagt and startert－ stove enancellex white and roady to wort． Ideal low the kjtchen，over the wort bench and in simillur locetlons． singla 40． 4 ft ． 3 in ．lohg，weet a 40 watt tilbe． Prin 20．Uaca t wo 20 －watt atandard tubea Price $38 / 6$ each，with tabes． to 2500 co lles $7 / 6$ ．
Simplex Transistor Kit

ELECTRONIC PRECISION EQUIPMENT LTD．

266 London Road． Croydon． Phone：CRO 6558. Half－day Wednesday．

42－46 Windmill Hill， Ruislip，Middlesex． Phone：RUISLIP 5780
Hall－day Wedneoday．

152－153 Fleet St．，E．C．4． Phone：FLEET 2833. Half－jay Saturday．

29 Stroud Green Road Finsbary Park，N． 4.
Phone．ARCHWAY 1043 Hali－day Thursday．

Post Orders sinould be addressed to E．P．E．LTD．，Deor．2，66，GROVE ROAD，EASTBOURNE．

There is wide variation in individual listening preferences, particniarly with regard to sound levels at which matic is reproduced. This is not only a question of accuracy of reproduction, since it is sometimes neither meighbourly nor necessary to opernte int Concert Hail levels. Many people, in fact, find sreater matisfaction in hearing their mutic somewhat in mininture; while "life-sire" music is often the preserve of those for whom it is domestically practicahie. The maximum power handling capacity of the equipment can be chosen accordingly, due resard being taken of the size and aconstic mature of the roon in which it is to be used. As higher power ratimgs can raise equipment costs, careful choice is essential; the
guiding fuctor being whether there is sufficient power in hand to suiding fictor beng whether there is sinficient power in hand to prevent gine performances from bems momentiarily marred hy overload. GOODMANS range of HIGH FIDELITY LOUDSPEAKERS
mad LOUDSPEAKER SYSTEMS always imeludes sufficient models and LOU SSPEAKER SYSTEMS always includes sufficient models to malre choice easier. Two

AXAETE is an 8° High Fidelity unit. Full range coverage is achieved by a single diaphragm, unequalled though much imitated in design. The maximum power handling capacity of the Axiette is 6 walts. It is thus very suitable for low, medium or even high levels in small rooms; since less power is necessary than for large rooms, where it would be suitable only up to medium levels. When complete in an Enclosure built to coodmans recommended design, the axtette forms a very compact Reproducer not yet superseded by any other of this size.

AXIETTE BPECIFICATION

Type: Single diophrogm 8° direct radiator with p'astic treoted diaphrogm suspension.
Frequency Range: Fundamental Resonance: Maximum Power Handling Capecity: o wate
Flux Density: 15,000 gauss on 1 dia. pole. Impedance: 3 ohms or 15 ohms , at $400 \mathrm{c} / \mathrm{s}$.

AXIOM 22 Mkx II is the most powerful 12^{2} High Fidelity unit produced, with a maximum handling capacity of 20 watts. Twin diaphragms are employed, with mechanical crossover. A massive high efficiency ring magnet assembly provides high sensitivity and perfect control up to full power. The AxIom 22 Mk . II will handle without distortion more than enough power to satisfy any domestic High Fidelity requirements, even in very large rooms.
The sherwood Enclosure is available for housing and loading the axiom 22 Mk. II to the best advantage.

$$
\begin{aligned}
& \text { AXIOM } 22 \text { Mk. } 11 \text { 日PECIFICATION } \\
& \text { Type: } \text { Twin diophrosm } 12^{\circ} \text { direct } \\
& \text { rodiotor on rot chossis. } \\
& \text { Frequency Range: } 30 \mathrm{c} / \mathrm{s} \text {. } 15,000 \mathrm{c} / \mathrm{s} . \\
& \text { Fundamental } \\
& \text { Resonance: } 35 \mathrm{c} / \mathrm{s} . \\
& \text { Maximum Power } \\
& \text { Handling Capacity: } 20 \text { wotts. } \\
& \text { Flux Density: } 17,500 \text { gauss on a } 1 \mathrm{t}^{\prime \prime} \mathrm{dio} . \\
& \text { bole. } \\
& \text { Impedance: } 15 \text { ohms at } 400 \mathrm{c} / \mathrm{s} .
\end{aligned}
$$

GOODMANS complete ronge of High Fidelity Equipment is described ond illustratad in their new "High Fidelity Monuol' ($1957 / 58$.) This instructive publication also contains full constructional drawings of Enclosures for every loudspeaker in the range, and details of the complete craftsmin-built Enclosures produces for certain types. This Manual is free on application.

GOODMANS INDUSTRIES, LTD. AXIOM WORKS, WEMBLEY, MDX. Telephonc: WEMbley 1200 (8 lines)

Cables: Goodaxiom, Wembley, Eng. Australion Agents:
BRITISH MERCHANDISING (PTY) LIMITED, 183 Pitt Street, Sydney, N.S.W. Apply to: P.O. Box 3456, Sydney, for "H.F. Loudspeaker Monual", 1957/3

BRITISH NATIONAL RADIO SCHOOL
 ESTD. 1940

NOW IN OUR SEVENTEENTH YEAR AND STILL NO B.N.R.S. STUDENT HAS EVER FAILED
to pass his examination(s) after completing our appropriate study course
A.M.Brit.I.R.E., CITY and GUILDS, and P.M.G. EXAMINATIONS, and now

Another B.N.R.S. "FIRST"

MORSE TUITION. RECEPTION with L.P. Records.
"SENDING" monitored by telephone and tape recorder. A complete service.

Our Principal will personally check your "sending" by telephone on his tape recorder and will return to you a morse inker copy of your "sending" with his criticism and advice.
Please write for full details.

```
PRINCIPAL,
BRITISH NATIONAL RADIO SCHOOL
66 ADDISCOMBE ROAD, CROYDON, SURREY T\&). ADDiscombe 3341
```


BLICKVAC HIGH PRESSURE \& VACUUM IMPREGNATORS

BLICKVAC Impregnators are used by Marconi, Pye, S. Smith \& Sons, N.C.B., M.O.S., and many other well-known organisations. A full range of standard models is available-capacities 4 in . by 9 in . to 3 ft . by 3 ft .-suitable for Varnish, Wax, Potting Resins, etc. Plants can be designed for special requirements. Blickvac Impregnators are designed to give simplicity in control, outstanding performance and case in cleaning. A second autoclave can be added at low cost when needed.

BLICKVAC products include:-Epoxy Resin Vacuum Mixing and Casting Plants, Electric Ovens, Vacuurn Ovens, Mixing Vessels, Dipping Tanks, etc.

BLICKVAC ENGINEERING LTD.

Bede Trading Estate, Jarrow, Co. Ourham.
Jarrow 89/7155
96/100 Aldersgate Street, London, E.C. 1
Monarch 6256/8

Shaw's "Caesar and Cleopatra" televised in color zeith RCA equipment

RCA Color Television... ready for you!

Two additional countries, Japan and Culea, have joined the color parade with new installations of color telcvision equipment. Lísing equipment pioneered and developed by RCA for compatible color and black-and-white transmissions, these nations are taking a big forward step into the future.

From the very beginning of color television, RCA has held undisputed leadership. That's why today, when broadcasters all over the world think of installing color facilities, or experimenting with color on a limited scale, they turn to RCA for equipment or experienced advice.

In hospitals and medical schools, RCA Closed Circuit Color Television brings new depth and efficiency to the teaching of surgery.

RCA Color Equipment adds brilliant dimensions to programming techniques, transforms commercial products into thrilling reality. Complete TK-41 Color Carnera Chain with "all-in-one" Processing Amplifier provides identical control equipment for both live and film camera chains. Only two operating controls are needed for the entire camera chain. Overall stability, peak camera performance and highest picture quality are assured.

For complete technical information, write Dept. TV-49-A at the address below.

RCA INTERNATIONAL DIVISION
radio corporation of america
30 ROCKEFELLER PLAZA, NEW YORK 20, N.Y., U.S.A.
Trademark (s) Registered
 HIGH STABILITY
CARBON AND WIRE
WOUND
WESISTORS
G. A. Stanley Palmer, Ltd., announce a completely new and comprehensive range of wire
 wound and high stability carbon resistors. These will prove invaluable to the manufacturer of high quality equipment and assist substantially in relieving his overall production costs.

G. A. STANLEY PALMER LTD

[^22]
WALMORE ELECTRONICS LIMITED

PHOENIX HOUSE, 19/23 OXFORD STREET LONDON, W. 1
Telephone: GERrard 0522
Cables: Volvexpor
For immediate response Telex London 8752
EXPORTERS OF RADIO, TELEVISION AND INDUSTRIAL TUBES, HAVE PLEASURE IN

INTRODUCING THEIR BRAND

AND INVITE ENQUIRIES FROM BUYING AND CONFIRMING HOUSES EXCLUSIVELY FOR EXPORT

SUPPLIERS OF RADIO COMPONENTS ELECTROLYTICS, AND CATHODE RAY TUBES

WAFER SWITCHES TO SPECLFICATION

As we specialise only in the manulacture of small quantities of wafer switches (to individual specification) we guarantee competitive prices and last delivery.
SWITCHES TO PUBLISHED DESIGNS (FRCM STOCK)

SPECIALIST SWITCHES

23 Radnor Mews - Sussex Place
 London W2 - AMBassador 2308

Suppliers to the leading electronics, aeronautical and automobile companies and to research institutions, the G.P.O. and Universities.

of great interest to Television set Manufacturers

direct REPLACEMENTS

 offers capacity for the production of Time-Base Components70° and 90° components produced to your own specification or as developed by our specialists.
Short or long production runs undertaken.
for further information contoct:-
CONTRACTS DEPT.
Replacements
138 LEWIsHA触 WAY, NEW CROes, 8.E.14
Telephone. TIDeway 6666-8
Grams: Flibak, London.

The three units comprise:
AM/FM Tuner T10A
666.0.0

Power Amplifier LF10A
E25.0.0
Tone Control Unit TC10A
© 12.17 .6

These chassis may be purchased as a complete installation or separately as individual units.

Write for illustrated literature to:
DYNATRON RADIO LTD., Dept. W. MAIDENHEAD, BERESHIRR

BAND III CONVERTOR

 for ANY SET in ANY AREAThis unit has been widely used since I.T.A. Transmissions began to convert all types of secs. Superhet and T.R.F., to receive on Band ill.
Unlike many other convertors this unit is small enough to be fitted inside your cabinet. enabling the iob to appear finished and perfoctly safe for all to usb.
The wiring is simple to follow, and alignment is not difficule. - IT will convert eny set, any age. T.R.F. or Superhet.

- IT includes station switching.
- IT provides preseset contrast balancing.
- IT uses only one aerial input for both bands.
- IT provides manual tuning on Band III.
- IT is totally screened.
- IT completely rejects unwanted signals.
- IT requires no additional power supply where either 6.3 v . or .3 amp . heater is available.
CONVERTOR wired and aligned with fitting
instructions ..
63106
KIT complete in every detail, less knobs ©2 10 6
KNOBS ach .
CIRCUIT and instructions in decall (free with kit)
16
KITS made up by customers checked and aligned,
including post
126
When ordering please state present B.B.C. Station and I.T.A. Orders over $£ 2$ post free.

C. \&. G. KITS

285, LOWER ADDISCOMBE ROAD ADDISCOMBE, CROYDON, SURREY

Phone: ADDiscombe 5262

THE WORLD'S GREATEST BOOKSHOP

Foyles have departments for Gramophone Records, Stationery, Handicraft Tools and Materials, Music, Magazine Subscriptions, Lending Library.
119-125 CHARING CROSS ROAD, LONDON, W.C. 2 Gerrard 5660 (20 limes) $*$ Open 9-6 (Tburs. 9-7) Nearcst Station: Tottenham Court Road

AMPLIFIERS

We are always happy to demonstrate any of a wide range of amplifiers and control units at our showroom. We stock many makes at prices to suit every pocket.
This month we feature the PILOT H.F.A.l2 together with its control unit HFC 12. The amplifier, rated at 10 watts, tives a frequency reaponse from $15.50,000 \mathrm{cps}$ with extremely low distortion. The control unit hat a wide range from a
 choice of six inputs. Other controls are a seven-poajtion selector switch, bass, treble, filter, loudness and a muting switch. Price complate is 36 gns .

MICROPHONES - TAPES • TAPE RECORDERS SPEAKERS • AMPLIFIERS • F.M. RADIO - GRAMO. PHONES • RECORDS

Quality Mart

8 DARTMOUTH PARK AVE., LONDON, N.W.S.
GULliver II3I.

Switch-tuned F.M. (FREQUENCY CONTROLLED)

a Sorwione
 Wiring diagram and holed chassis available.
 Send S.A.E. for full circuit and constructional information.

AMPHENOL (Great Britain) LTD. Invite enquiries for engineering data and details of the availability of the well known range of "AMPHENOL" products

AMPHENOL (Great Britain) LTD.

Ormond House, 26/27, Boswell Street, London, W.C.I
Telephone: CHAncery 8956

CHAS. H. YOUNG, LTD.

Don't miss these SPECIAL OFFERS
 AMERICAN PRECISION HETERODYNE FREQUENCY METERS. TYpo L.M.14. $125 \mathrm{kc} / \mathrm{s}$ to $20 \mathrm{Mc} / \mathrm{L}$ Cryseli checked. Complece wieh calibration book, oec. VERY LMITED QUANTITY AVALABLE. Absolutaly 25 now. $E 25$ ach.

RACK MOUNTING PANELS, all 19 in . long by 5 tin ., 7 in ., 8 i in., or $10+$ in., $5 / 9,6 / 6,7 / 6,91$ - respeccivaly. Post 21 -.
ABSORPTION WAVEMETERS. 3 to $35 \mathrm{mc} / \mathrm{s}$. in 3 switched bands, complete with indicator bulb. $17 / 6$. Post rree.
THE NEW GELOSO V.f.O. UNIT. Output on 80/10 metres. Complete with calibrated diai, $\varepsilon \bar{j} / 12 / 6$. Sec ol three cubes, 24/-.
3 in. AERIAL INSULATORS. Ribbed glass. $1 / 6$ aach or 6 tor $7 / 6$.
P. \& P. 1/6.

CONDENSERS. $8 \mathrm{mid} .750 \mathrm{y} .15 / 6$ each. Post $1 / 6$.
COPPER AERIAL WIRE. 14 s. H/D 140tr. 171 -, 70ft. 8/6. P. \& P. 21-. Stranded 7125. 140t.. 101-, 70t. 51-. P. \& 'P. 21-.
D. 104 CRYSTAL HAND MIKES. List 26 . Complete with 6 ft . of cord and plug. ONLY $\mathrm{E} / 10 /-$ each.
SEMI MIDGET I.F. TRANSFORMERS (by well-known maker). $10.7 \mathrm{mc} / \mathrm{s}$ and $465 \mathrm{kc} / \mathrm{s}$. Can be used as $10.7 \mathrm{mc} / \mathrm{s}$ or $465 \mathrm{kc} / \mathrm{s}$ singly. Only $9 / 11$ pair per, postage 90.
HEADPHONES. High resistance (4,000 ohms), very sensitive. Bargain price, only $12 / 6$ pair. P. \& P. I/6.
BRITISH BREAST MIKES (earbon). Ideal for mobiles. 7/6. P. \& P. 21-.
MULTI-WAY CABLE, ilin. diameter. 7 colour coded wires, any jength cut. $1 / 3$ per yard. P. \& P. min. 1/6.
10-WAY CABLE (5 pairs). Screened and plastic covered. 2/- per yard. P. \& P. min. $1 / 6$.
LOW RESISTANCE HEADPHONES. Now ex-W.D. stock. C.L.R. types. Only $8 / 6$ pair. P. \& P. 1/6. Special Terms Quantities. Most comprehensive stock of Hifi equipment in the Midiands, Includine GUAD, LEAK, W.B., RCA, ROGERS, WHARFEDALE, GOODMANS, etc. Details and demonstrations with pleasure.

NO C.O.D. UNDER $/ 1$
Phone: CENTRAL 1635
Al/ Monl Orders to Depl. "W." Please print your name and address. CHAS. H, YOUNG LTD., 110 DALE END, BIRMINGHAM, 4.

TECHNICAL TRADING CO.

GERMAMIU1 CRYSTAL DIODEs tamovs make, Lepted, 94, p a p. 3d., 8/- dos.
 GORLA F.M. KITS Coastbitus comple "Tunnman Hoar" (BFI ROC8s valve 4 wo \%nd I.F. and 3nd I.F. (Discriminator) Transformers with addod 4 4t kc. A.M windingr, lateit German typet, with fulleat lastructions and circulte 28/15 $/ 0$.
4III. ALhaDD coils screened, slugeed, 1 fin high. 6/0 dos, 150 mA . 695-0-5eg F.

 Tranmaltters, $87 / 10 \%$.

$$
\begin{aligned}
& \text { TRANSISTORS ! A.P. TTPE. RED } \\
& \text { TRANSISTORS : R.P. TYPE WHITR gPor (up to } 2.5 \text { Mo/os. } 14 / 6
\end{aligned}
$$

POWER PAOKS, 290 v. A.C. aupply, iwo saparata adjuerable outputa, each 378.550 or
 banga, 9 coth. 84.10 eell 948 i or $87 i 10 /$ per patr (24 volts).

$$
\begin{aligned}
& \text { 13-LMANNEL F Uarepentable opportunity, complete in. } \\
& \text { CONVERTERS } \\
& \text { Uarepeutable opportunlty, cormplete in } \\
& \text { otructioge, maters soaled caces, no extrm } \\
& \text { colla roquired. eani)y adaphed mont sefy, } \\
& \text { moubtus molel, eseh } 53 / 15 /- \text {. }
\end{aligned}
$$

18-VOLT 3-4 Alpy, RECTIFLERS, full wave, $9 / 6$ to 25 dos Coenor Wobbulators, e9/10/. Mullard Capecity/Boointunoe Bridsen. W/18/.

GUARAMTRED RADIO VALYES, BOXED, s4HOUR 8EBVICE (all ouber typee advertieed athl avallable)

5040	$6 / 6$	656	5\%-	12 A 07	7	BOCOSO_{1}	0	EP91	8\%
6 BA 6	6/6	658	810	$128 \mathrm{K7}$	516	30C82	76	EY51	14\%
6888	649	68N70T	$5 / 8$	23LHOT	$8 / 6$	ECL80	$8 / 6$	N78	11/
604	419	6V6GT	6\%	E834	1/6	EP50	816	8P41	$2 / 6$
6 J 50	3/-	6x4	6/-	EbCs3	7\%	EF80	819	8 Pel	$8 / 6$

 Poveres $1 \mathrm{f}-\mathrm{m} 61$ ($1 / 9$ is 91 speakera/Trame). Mh. 6 d . No C.O.D. 100 TRLBVIBION GET BARGANE TO CALJERS ATH350/352, FRATTON ROȦD, PORTSMOUTH

MARCONI SIGNAL GENERATORS TYPE TF 517-F/1

Unrepeatable offer of these precision Signal Generators covering $10-18$ mcs, $33-58$ mcs, and $150-300$ mcs (a few only with $18-33$ mes coverage instead of $10-18$ mcs band).
In good, used condition, with charts, checked before despatch. ONLY

£12.10.0

Limited quantity. ORDER NOW.
(carriage, etc., 20/-)

A
 HARRIS ELECTRONICS SPECIAL!
 SEE ADVERT OPPOSITE

OSCILLOSCOPE

This Ministry of Supply Monitor Type 61 is a FirstGrade Synchroscope designed for D.C. Pulse and R.F. Envelope investigation, and employs a $3 \frac{1}{4} \mathrm{in}$. CRT type VCRI38A. The R.F. Frequency is $180-$ $220 \mathrm{Mc} / \mathrm{s}$ approx.; and is tuneable in that range. Has internal $500 \mathrm{kc} / \mathrm{s}$. Calibrating Oscillator on Y Plates. Existing Time Base Speeds are 50 cycles, 20 Microseconds fast, and I,000 Micro-seconds slow. Conservatively rated Mains Power Pack is for nominal 115 v . and 230 v . Will make up into an excellent General-Purpose Oscilloscope at a cost of a few shillings, full modification date being supplied. Front panel size is $10 \frac{1}{2} \mathrm{in}$. $\times 12 \frac{1}{2}$ in., depth of unit being 19in. BRAND NEW AND UNUSED, ONLY $£ 12 / 10 /-$ (carriage, etc., $15 /-$).

RIISS SUPER SLOW-MOTION TUNING ASSEMBLY. As used on all late model 1155 s . Easily fitted to "A" sess, etc. ONLY 12/6.

RCA RIBBON MICROPHONE. Table type, mounted on black-finished stand 7 tin. high, with press switeh in handle. BRAND NEW AND UN USED. ONLY 59/6.

ROLA $6 \frac{1}{2}$ in. P.M. SPEAKER.
Mounted in Grey crackled metal cabinet 9 in. $x 9$ in. $\times 4$ 4in., and with calume control. BRAND' NEW AND UNUSED. ONLY 27/6.

I-2-YOLT I-AMP BATTERYCHARGER. Very robust, ex Admiral ty. In Grey crackled metal case, size Gin. \times bin. $\times 4$ in. BRAND NEW AND UNUSED. ONLY 35/-.

INSULATION TESTERS (MEGGERS). Read up to 20 megs, at 500 volts pressure. Overhauled, and in perfect order. With leather carrying case. ONLY $69 / 19 / 6$, OR less case 68/10/-

POWER UNIT TYPE 3. Primary $200 / 250$ v. 50 cycles. Outputs of 250 v 100 mA , and 6.3 v .4 amps. Fitted with H.T, current meter, and voltmeter. For normal rack mounting and has grey front panel size $19 \mathrm{in} . \times 7 \mathrm{in}$. ONLY 70/(carriage, etc., 7/6).

EHT TRANSFORMERS, 5.5 kV . (Rect.) with 2 V .1 a., 79/6, 7 kV (Rect.) with 2 v. I a.. 89/6. 2.5 kV . (Rect.) with $2-0-2 \quad v .1 .1$ a., $2-0-2 \mathrm{~V}$ 2 a. (for VCR 97 tube, etc.), 42/6 (postage $2 /$ - per trans.).

500 MICROAMPS METER. 2 in. circular as used on British No. 19 Wireless Sets. Calibrated $0-15$ and 0.600 volts, resistance 500 ohms. A very fine instrument, and A SNIP AT ONY ONLY is/.

WIRELESS SET

No. 19 MK. 11

The famous Army Tank Transmitter-Receiver. Incorporates "A" set (TX/RX covering $2.0-8.0 \mathrm{Mc} / \mathrm{s}$. i.e., 37.5-1 50 metres); "B " Set (VHF TX/RX covering 230-240 Mc/s-, i.e., 1.2-1.3 metres), and Intercomm. Amplifier. Complete with 15 valves as follows: 6 of $6 \mathrm{K7G}, 2$ of $6 \mathrm{KBG}, 2$ of 6 V 6 G . and $1 \mathrm{ea} .6 \mathrm{B8G}$, 6H6, EII48, EF50, 807, and booklet giving circuizs, notes, etc. Size $17 \mathrm{tin} . \times 8$ tin. $\times 12 \mathrm{fin}$. Of American manufacture as previously offered by us, but another large rulease by the Ministry of Supply enables us to make a substantial reduction in price. In magnificent condition.
BRAND NEW AND UNUSED, ONLY 65/- (carriage, etc., 10/-). 12 -vole Power Units available' 25/- (earriage 5/-).

TCS TRANSMITTERS

The renowned American TCS Model designed by the Collins Company for scatic or mobile use. Covers $1.5-12.0 \mathrm{Mc} / \mathrm{s}$. in 3 bands, and is complete with 7 valves, emplowing 2 of 1625 in P.A. Stage, I each of 1625 in Buffer and Modulator Stages, and 3 of $12 A 6$ in Oscillator Seage. Provision for VFO or Crystal Control. 4 Crystal positions. Radio Telephone or Radio Telegraph. Has Plate and Aerial Current Meters. Power requirements 12 v . LT \& 400 v . HT. In black erackle case, siza $11 \times 13 \times 11$ in. condition BRAND NEW AND UNUSED. ONLY E12/iO/-(carriage, etc., 15/-).
The double Dynamotor Power Unit, Type 21888 for 12 -volt operation, defivering 400 v . for Transmitter and 225 v . for Receiver, is available at £ $12 / 10 /$ (carriage, etc., $15 /-$).

	ME	TERS		
F.S.D.	SIZE	AND TYPE		PRICE
50 microamps D.C.	2tin.	Flush circular		$59 /$
100 mieroamps D.C.	2 ¢in.	Flush circular		39/6
250 microamps D.C.	2 in.	Proj. circular		- 30/\%
500 microamps D.C.	$2 \mathrm{in}$.	Flush square.		- 27/\%
$1 \mathrm{~m} / \mathrm{a}$ D.C.	2 in.	Flush square		- 22/6
$150 \mathrm{~m} / \mathrm{a}$ D.C.	2 in.	Flush square		- 7/6
$200 \mathrm{~m} / \mathrm{a}$ D.C.	2tin.	Flush circular		126
10 amps D.C.	.31in.	Proj, circular		20/-
20 amps D.C.	.2in.	Proj. circular		716
40 amps D.C.	2 in .	Proj, circular		716
$15-0.15 \mathrm{mps}$ D.C.	3 tin.	Flush square.		. 25/6
15 volts A.C. .	. 2 in.	Flush circular	noving iron	- 816
300 volts D.C.	. 2 in .	Flush square.		1016
300 volts A.C.	2tin.	Flush circular		25-

MARCONI SIGNAL GENERATORS TF-390G Frequency coverise TORS TF-390G Frequency coverise
$16-150$ Me/s. BRAND NEW IN MAKER'S ORIGINAL TRANSIT CASES, MAKER'S ORIGINAL TRANSIT CASES,
with instruction manual. for normal with instruction manual. for normal A.C. mains operation. A unique
opportunity to acquire Laboratory opportunity to acquire Laboratory Equipment at a fraction of origina cost. ONLY 225 .

MARCONI BAND II CRYSTAL CALIBRATORS. Frequency range $170-240 \mathrm{Mc} / \mathrm{s}$. incorporates $5 \mathrm{Mc} / \mathrm{s}$. crystal for better than .001 per cent. accuracy. Directly calibrated dial, internal A.C. mains pack. Complate with spare set of valves and instruction manual in maker's transit cases. BRAND NEW. ONLY $£ 4 / 19 / 6$.

I2-WAY SCREENED CABLE. In loft. lengths, fitted with plugs, originally made for use with the 19 Set. UNUSED. ONLY $17 / 6$ per lead.

POCKET VOLTMETERS. Not exGovt. Read $0-15$ v. and $0-300$ v. A.C. or D.C. BRAND NEW AND UN USED, ONLY $18 / 6$.

CRYSTALS. British Standard 2-pin $500 \mathrm{kc} / \mathrm{s}$. $15 / \mathrm{m}$. Miniature $200 \mathrm{kc} / \mathrm{s}$. and $465 \mathrm{kc} / \mathrm{s} .10 /$ each.

SPECIAL MAINS TRANSFORMER OFFER. Normal 230v. A.C. Primary. Secondaries $330-0-330 \mathrm{v}$. 100 ma . 4 v . 3 amps. Ex W.D., BRAND NEW AND UNUSED. ONLY ISi. (Postage etc. $2 / 6$).

CHOKES. 10 H 60 ma . $/ \mathrm{m}$. 5H 200 ma . 7/6.

FILAMENT TRANSFORMERS. $6.3 \mathrm{v} .1 \frac{\mathrm{t}}{} \mathrm{amps} .7 / 6.6 .3 \mathrm{v} .3 \mathrm{amps} .10 / 6$. 6 v. VIBRATOR PACKS. Ourput approx. 130 v . at 30 mA ., fully filtetred and smoothed. Complete. ONLY 12/6.

Cash with order please, and print name and address clearly please add postage or carriage costs on all items

HARRIS ELECTRONICS (LONDON) LTD.

 Formerly U.E.I. CORPORATION

 Formerly U.E.I. CORPORATION}Radio Corner, 138 Gray's Inn Road, London, W.C.I

Phone: TERMINUS 7937

Open until I p.m. Saturdays.
We are 2 mins. from High Holborn (Chancery Lane Station) and $\$$ mins. by bus irom King's Cross

CHARLES BRITAIN (RADIO) LTD.

AVOMETER Mogiel D. \&́ 19.6 (P. \& P. 4/-)

D.C.	${ }_{75}{ }^{\text {as. }} \mathrm{V}$	is mis.	$75 \mathrm{~m} / \mathrm{A}$
300 mv .	15 V .	$30 \mathrm{~m} / \mathrm{A}$.	$150 \mathrm{~m} / \mathrm{s}$.
1.5 V .	is V.	$180 \mathrm{~m} / \mathrm{A}$.	$750 \mathrm{~m} / \mathrm{A}$.
3 V .	150 V	$400 \mathrm{~m} / \mathrm{A}$.	1.5 Ampe.
18 V .	300 V.	1.6 Ampm.	7.5 Ampm.
30 V .	609 V .	3 Ampe.	15 Amps.
150 V .	0.50 V .	15 Ampm .	
300 V .	1.5 KV .	30 Amps .	Resistance
750 V			04000 ohrns
1.5 KV .			0-10 K obons.
horoughly			

SANGAMO WESTON Model ET72 ANALYSER 10 Gn3. (P. \& P. 4-) A.C. and D.C. Volts D.C. Curreat

Out put meter
supplierl in neit black Rexine eoverod carrying cisue. com plete with sil batteries and instructions. Thoroughly
overtaulad and to periect working order.

MULLARD C \& R BRIDGE \&7.10.0 (P. \& P. 3/6)

Rastatance	Capacity
1/10te to 10 chems.	10 to 10110 pFd .
10 to 1010 ohms.	0.001 to 0.1 mard .
1 K to 100 K obmas.	0.1 to 10 mFd .

1 K to 100 K ohing. 0.1 to 0.1 mPd . 100 K to 111 Megohurs. Minus 24% to plas 25 an conngarian seale. Iroviaton for "Oren Brids."." Calibrate" position. Large eqsily read cale. Benaitivity control. Operates From $100 \div 150$. A.C. mailns In wery good condition. Carefully tested and rhecked betor: despateh.

HIGH RESISTANCE AVOMETERS. £14 (P. \& P. 4/-)
Thin in a opecial model, similar in appearabare to the type ullustratect, and yarticnlarly ueffil for radio. T/V, and elececroutc

JASON FM SWITCHED TUNERS

Alt three B.8.C. programmes at the turn of a switch. MERCURY KIT. Includes frone-end unte already built and aligned. £ $9 / 1 \% /$-post free. Credit Terms. Geposit $£ 1 / 10 / 6$ and seven monthty payments of $\mathbf{4} / 7 / \mathbf{/}$. Instruction Book 2/3, included in kits. Fully detaited price list free.
PREFECT TUNER. A reacy-buile unit. Less powor supply. E15/12/6. Credie Torms: Deposit $\mathbf{2 1 / 5 / 6}$ and seven monthly paymencs of ce/lt-. nilustrored leafiet free.
Both these tuners incorporate a guod AFC systom whicb ensures freedom from drät.
WATTS RADIO (Mail Order) LTD. 54 CHURCH STREET, WEYBRIDGE, SURREY

Telephone. Weybridge 4556
PLEASE NOTE Post orders only from this address.
 PERFORMANCE
Continuous 31 lb . at $1^{\prime \prime}$ Instantaneous to 16 lb

Same Dimensions as Type SB
Smaller Sizes Available
Greatly increased discountsfor quartities
Also Transformers to
7KVA 3 Phase
E. A. WGTBTETH ETPD.

18 FOREST ROAD, KINGSWOOD, BRISTOL. PHONE 67-4 365

AMPLIFIERS AND TUNERS

Leak T.L. 12	41818	
Leak Varislope III	E15 15	0
Quad. Mk. II and Control Unit	6420	0
Osram 912, from	62210	
Mullard 5/10	¢18 10	
T.S.L. (with cabines)	1313	
Tripletone 12 w . Hi-Fi Major	61518	
Tripletone De Luxe	69	
Tripletone Junior	C6 19	
Armstrong PB. 409 AM/FM	229	
T.S.L. AM/FM chascis	63211	
T.S.L. F.M. Tuner	41710	
Eddystone F.M. Tuner Model 820	431	
TRANSCRIPTION MOTORS		
Garrard 301 Transtription Unit.	4268	
Connoisseur Transcription Unit	12811	
Lenco GL. 55 Transcription Unit	41710	
Lenco GL. 56 Transcriprion Unir	c23	

SPEAKERS

Tannoy Dual Corsentric 15in. with X-over $£ 35120$ Tannoy Dual Concentric 12in. with X-over E29 54 Tannoy Direct Radiator 12in. \&14 0 Goodmans Axiom 150 11 , WB.HF.10/12 $£ 4199$ Twecters and a range of Wharfedale Units stocked. W.B. and Goodmans Cabinets.

Amplifiers and Cabinets Custom buile.

PICK-UPS

Leak Arm L.P. Head, diamond and Trans, $61316 \quad 5$
Connoisseur Mk. II L.P. Head (Diamond) $£ 12156$
Garrard TPA. 10 T/O Head, Diamond LP. 61590
B.J. Pick-ups, Geldring and Tannoy Cartridges, ete.

EDDYSTONE Communications Recejvers
Model 750
47800
Model 840A,
Model 870

Best Huy

 at Britain's
MARCONI NOISE GENERATORS Type TF 987/I.

\star Frequency range $100 \mathrm{Kc} / \mathrm{s}-200 \mathrm{Mc} / \mathrm{s}$.
\star Accuracy plus or minus .5 decibel.
\star Determines noise factor of AM AND FM receivers.
\star Noise output ranges $0-5,0-10,0-15$, and $0-30$.
\star Directly calibrated $3 \frac{1}{2} \mathrm{in} . \mathrm{m} / \mathrm{coil}$ meter.
\star Output impedance 71 ohms nominal.

* Fully stabilised HT supply.
\star For CA.C. mains operation, 200-250 v., 45-65 c/s.
\star Size $15 \frac{1}{2} \times 11 \times 8 \frac{1}{2} \mathrm{in}$. deep. Weight 28 lb .
\star Finished in grey enamel and chrome.
\star Brand new, unused, and in original boxes.
\star Complete with mains socket, co-ax plug. and lead.

FRACTION OF ORIGINAL PRICE $5 ? 5$

BATTERY CHARGERS. Input 230 v. A.C. Output 12 y. D.C. 1.5 amps. In neat grey metal case, $7 \times 6 \times$ Sin. Brand new. $35 / 0$ (Wearite eype), 4 pole, 3 way, $3 / 6$. 2 pole. (Wearite type), ${ }^{4}$ pole, 3 way, $3 / 6.2{ }^{2}$ po
6 way, 4 bank,
BRAND NEW.
RCA OUTPUT TRANSFORMERS. As used in M1-11220 Amplifior. Primary for push-pull 6L6's. Secondaries S, 7.5 15 , and 600 ohms, and tertiary for NFB. 25 wates power rating. Potted construc25 wates power rating. Potted construc-
tion, with tag connections Full circuit of RCA amplifier supplied. BRAND NEW, $27 / 6$.

TRANSFORMER BARGAINS Input $0-230 / 250 \mathrm{v}$. Output $240-0.240 \mathrm{v}$. 1.5 amps. RM5, 5 v. 1.75 amps., and 5 v. 12.5
 amps. $7 \times 7 \frac{1}{2} \times 101$ in high We 50 lb . Ported, oilefilled, by Gresham. Gives
2.1 amp. D.C. when rectified, $O R$ as 2.1 amp. D.C. When rectified, OR as ISOLATING TRANSFORMER to ortain
two 240 v . 360 w lines. Brand new two 240 v. ${ }^{360}$ w
c3/10/-. Carr. $10 /-$.
Input 0-110/120-200/250 v. Output 275.0 275 v. 100 mA ., 6.5 v. 7 amps.. 5 v. 3 a mps. (Govt. ratings). $4 \times 4 \frac{1}{2} \times 4$ in. high. Upright mounting. Brand new. 25/-. Postage 2,6 MAINS ISOLATING TRANSFORM ERS (Vortexion). Fully shrouded. For testing AC/DC sets in safety. 230 v . in put. Output 230 v . 100 watts, 22/6, post $2 / 6$.
U.S.A., pocted type, input $210 / 220 / 230 \mathrm{v}$. 5 secondaries. 7.5 v. 4 a., 7.5 v. 4 a.. 7.5 v. 8 a . and 2.5 v .5 a . ALL centre capped, and 6.3 v .4 a . These can be connected to giva many useful voltages up to 31 v. 4 a. Size $6 \mathrm{in} . \times 5 \mathrm{Sin} . \times 4 \mathrm{in}$. Wc. 16 lb Price $35 j$-.
HEAVY DUTY SLIDER RESISTORS. 0.4 ohms, 25 amps., 250 watts, worm drive. 0.4 ohms, 25 amps., 250 watts, worm drive.
$7 / 6$. 10 ohms, 3.5 amps., worm drive, $10 / 6$. 7/6. 10 ohms, 3.5 amps., worm
1 ohm . $12 \mathrm{amps} ., 150 \mathrm{wares}, 7 / 6$.
MINIATURE STC RELAYS. 250 ohms coil. DP ClO (double coneaces). It $x+x$ tin. Wt. 1 oz. 6 v operacion. 7/6.
VIBRATOR PACKS. Input 6 V. D.C. Output approx 100 v. D.C. at $30 \mathrm{~m} /$ Amps.: fully smoothed and R.F. fitered. Size $6 \frac{1}{2} x$ 5×2 in. Fitted with Mallory 629 C vibrator. $5 \times 2 \mathrm{in}$. Fited Boxed. $12 / 6$.
ANOTHER, but 230 v. D.C. $100 \mathrm{~m} /$ Amps. With OZ4 valve and vibrator. Brand new. Boxed. 25%.
Boxed. 25/ION TESTERS by Record Eloctric. 0-50 Megohms. Test voltage 500 . Electric. 0-50 Megohms. Test voltage 500 .
In perfect working order. ONL.Y f9/19/6, In perfect working order
OR, less ease, $88 / 10 /$.
 with 9 miniature insulazed Igranic jack sockets. Brand new. SNIP. 12/6.
HEAVY DUTY BLOWERS. For 200 250 v A.C./D.C. mains. 300 watts With $1 \frac{1}{2}$ inch dlam. iwin " V "' shape outlets. 2 lonjechs of hose. 4 spare filters and brushes. Suizable for industrfal use. lorges, ate Brand new. cally/6.

MINIATURE 373 IF STRIPS. For FM tuner described in April and May " Practical Wireless." Complete with 3 of EF91. 2 of EF92, and I of EB91. A fresh colase enables us to offer these once again, BRAND NEW, with circuit, 4216. OR, less valves, $12 / 6$. Post either $2 / 6$.
 FLUXMETERS. Fitted with Ernest Turner 3tin. mirrorscate meter and contaıned in polished wooden instrument case with carrying handle and hinged I
Brand new condition. SNIP. anly $49 / 6$.
Brand now condition. 5NIP, Brand $49 / 6$.
AMERICAN METERS. Brand new Westinghouse Bush, panel mounting. circular 2 fo. scale, $0-5$ milliamps, with blank black scale. Boxed. B/6, post li-
AMERICAN MICROPHONES AND HEADSETS. Consist of carbon microphone with press-to-talk button, and two 300 ohm earpieces in series, complete with 7 ft . cord. Phones are lightweight, and have rubber aar-cushions. As used with TBY-8 equipment, and should be very handy. BRAND NEW. A real SNIP at $15 /$-, post $2 /$ -

WIRELESS SET No. 1\%. MK. 2.
Two Transmitcer-Receivers and an Incercom Amplifier combined. "A" Set covers 2-9 Mc/s ($37.5-150$ metres), phone and CW . "B " Set freg. $235 \mathrm{Mc} / \mathrm{s}$ (1.25 metres), phone only. Complece with 15 valves. 6 of $6 K 7 G, 2$ of 6K8G. 2 of 6 V 6 G , I of 6B8G, 807, EF50, EB34, EII43, and 500 microamp check and tuning meter, instruction booklet and circuic. ALL BRAND NEW, air-tested. American made $65 /$-. Bricish made $50 /-$. OR, complete with 12 v . Dynamotor American. 90/. Bricish 75/-. Carriage, set $10 / \mathrm{F}$, both $15 /$ Send S.A.E. for full decails and price list of all 19 set equipment.
ADMIRALTY POWER UNITS. Equivalont to AM 234 Input $200-250$ v $50 \mathrm{c} / \mathrm{s}$. A.C. mains. Outputs 240 v. D.C $125 \mathrm{~m} /$ Amps., and 6.3 v. A.C. 6 amps. Dual purpose 2tin. panel mounted 300 v . meter reads input and $\mathrm{H} . \mathrm{T}_{\text {. voles. }}$ Double smoothing with paper eapacisors. Standard I9in. rack mounting. BRAND NEW. 79/6. Carr. $7 / 6$.
LOW VOLTAGE POWER UNITS. Inpur $202-250$ v. A.C. mains. Outputs, 220 v.D.C. $110 \mathrm{~m} / \mathrm{amos}$, and 6.3 v . D.C. 13 amps. Fully smoothed. Metal rectifiers, $\mathbf{C} / 10 / \mathrm{F}$, carr. IS/As used for TII54.

HIGH VOLTAGE

 POWER UNITS. Input 200-250 v. A.C mains. Outpur 1200 v . D.C , 200 milliamps Fully smoorhed, Metal rectifiers. 65/10/-. plus 15/carriage Shop Hours: 9-6 u.m. (9-1 p.m. Thursday)PLEASE ADD POSTAGE OR CARRIAGE ON ALL ITEMS

MARCONI LOOP AERIAL type 6\%. A small, compact, enclosed loop. On swivel mount with degree scale. Brand now, 69/6, pose $2 / 6$.
SPEAKERS (Eddystone). 3 ohms. $6 \frac{1}{2} \mathrm{in}$. diam. In grey wrinkled steel cabinet $9 \times 9 \times 5$ in. Complete with volume control and transformer for 600 ohms line Brand new $27 / 6$, post $2 / 6$. VRFFRINSMITTES. VC-950-A-130.A 100-150 Me/s, 4 channel, eryseal controlled cransmitter. Complete with valves. 2 of transmitter. Complete
16252 of 832 A , I of 815 .
BRAND NEW. In original American BRacking. (Xtals not oupplied.) ES/IS/6.

$$
1
$$

RT37/PPN2 BEACON TRANSMIT. TER-RECEIVER. $214.234 \mathrm{Mc} / \mathrm{s}$. Size $13 \mathrm{in} . \times 10 \mathrm{in} . \times 5$ in. Concains 5 3AS, 3 IS5, I IR5 and 22 v. synchronous vibrators. Operates from 2 v. accemuwitor via 2 built-in vibrapacks. Comploem (9fit.), lishtweight headphones. Toch(9yic.), Manual, super-quality carrying nical Manual super-qualicy carryins Toral we 28lb BRAND NEW, boxed. American equipment, 72/6.
SCR522 TRANSMITTER/RECEIVEMS $100-150 \mathrm{Mc} / \mathrm{s}$. Comprises BC624A rec., and BC625 trans. All complete with valves, and in first-class condition. BC624A, less relay,

Two-Way MORSE TRAINANG SETS,

 WIT Mk. 3. Consists of 2 valve oscillators (ARP12's) (one with pitch control), for I or 2 operators. Has provision for creating "atmospherics." in polished oak case 12 tin. $\times 10 i n, \times 8 i n .$, wt. 161 b . Complete with valves, leads, 2 keys, 7 -way terminal board, circuit and instructions, but less batteries and phones Ideal for Cadets, Scours, ete 5N1P. $19 / 6$ carr. $7 / 6$.VARIC TRANSFOKMERS (Zenith) $200-230$ v. input. Output volcase variable from $200-250$ v. at 8 amps. We. I41b. Brand new in/6 Carr. 5/.
MAINS DIMMERS. 300 ohms, 1 amp. 300 watts, twin ceramic formers, $15 /=$ FIELD TELEPHONES. Army type D Mk. 5 Buzzer calling. Ideal for building sites. farms, workshops. te Complete with handset and batreries. Tested, $3 \% / 6$

CHARLES BRITAIN (Radio) Ltd. 11 UPPER SAINT MARTIN'S LANE, LONDON, W.C.2. TEMple Bar 0545
One minute from Leicester Square Station (up Cranbourn Street)
Open all Sounday

KEY SWITCHES
PROMPT DELIVERY ALL TYPES UP TO Aco/bco

LI TO YOUR SPEOIFICATION QUICK DELIVERY KEEN PRICES CONTACTS UP TOB CHANGE OVER

RELAY\&-HIGH 8PEED. Miniature, sealed $1700+1700 \Omega$ 26/each. Post $1 / 3$.

METERS GUARANTEED

 to 50 mfd and reastances from 5 ohms to 50 megohms, each in 8 ranges. Valve voltmeter range 0.1 to 15 volts, and condenser leakage test. BRAND NEW. Full working instructions supplied with mstrument, $812 / 10 / \%$. Post $3 /$.
TEST SETB incorporating a Wheatstone Bridge, galvanoneter. Brand new, in case, 50/-. Post $3 / 6$
cELL TESTING VOLTMETER8. 3-0.s. In leather case with prods. A first-quality moving-coil meter, $25 /$. . Post $2 /$.
ELECTRIC MOTORs. $200 / 250$ volt, self-starting, 1 r.p.n.e., $35 /$. Post $1 / 6$. BRIDAE MEGGER TEATERS. 1,000 volts 100° wwsonns. Comploto with the Evershed Resistance Box. Absolutoly Brand Now and unmsen, in maker's
TELEPHONE8-SOUNTD POWERED-NO BATTERIES REQUIRED. Just connect with twin flex for clear speech. Transmitter/receiver units $4 / 6$ each. Twin lex 41 ar yard. Post $1 /$.
If 2 units are connected in series and one used for speaking and one for listening, perfect 2 -way conversation can be made.
TELEPHONE 8ETS. For perfect communication butween 2 ar more positions. Wall Type, one pair of units, 25 . Batteries $5 / 5$. Twin wire 5 . yard. Desk Type, now available, latest modern style. Two complete units ready for use, sas/17/8, Wire Sd, per yard. Post $3 /$ -
ROOM THERMOSTAT. Adjustable between 45 and 75 deg. Far. 250 v . 10 amp . A.C. Ideal for greenhouses, etc. $35 /$. Post $थ /-$.

> BATTERY CHARGERB

Ideal for charging 24 volt thatteries on electrically propelled vehicles. Rating 22 v. 10 amps., controlled by two 4 -position rotary switches for fine and coarse control which enabless $6 / 24 \mathrm{vt}$. Batts. to be charged. Input 200 H 250 v. A.C. 50 cy., fused for A.C. and D.C. Brand new 817/10/-. Carr. 15/.
ChARGINE RECTIFIERs. Full wave Bridge 12 volts $2 \mathrm{amps} ., 13 / \mathrm{B}, 4 \mathrm{amps}$, $2 / \mathrm{s}$, suitable transformers 2 amp., 24/4, 4 amp., 27/3, post $2 /$.
JACK PLUEs. Cylindrical bake.
lite screw on cover. 2 Contact Ideal for amplifiers etc., $2 / 6$ each,
ldeal for amplitiers etc
$24 /$ doz. 19 per 100 .
AIR BLOWER8. 230 nt . A.C. .57 h.p. $15 i n$. AIR BLOWER8.
fan, 6 in. outlet. Brand new fan, 6 in. outlet.
Engiand $20 /$.
PORTABLE BLOWERs. $200 / 250 \mathrm{v}$. AC/DC 300 watts with switch and leads, 1 in. outlet. 85. Carr. 7/6.
VOLTAGE REGULATORs. Input 230 v. A.C., 21 amp . Outpat 57.5 v . to 228 in 16 steps with current limiting reactor. $\$ 12 / 11 /$ - each, carriage $10 /$. RACKS-POST OFFICE 8TANDARD. Bft high with U-channel sides drilled for 19 in . panels, heavy angle base, 4 it .10 in also in stock.
VERNIER DRIVEs. Muirhead scaled $0 / 180$ deg. Ratio $\$$ 10/8. Post $1 / 6$.
RADIO-ACTIVITY mEASURINE INsTRUMEMTS. Philips Type 1092c. A portable self-contained unit in haversack. Scaled 0 to 10 millirontgens per hour, using Mullard Geiger Counter MX115, 25.
HEADPHONEE. Balanced Armature Type DHR. $17 / 6$ per pair, post $1 / 6$. HEADP HONE8. High-resistance 4,000 月 Type CHR, new. $18 / 6$ pair, post $1 / 6$. VENT-AXIA FANS-EXTRACTION OR INTAKE. $230 / 250$ volts A.C. 6 in . diam blades, $130 /$.. 12 volt D.C., $90 /-$, post $2 / 9$.
RATIO ARM UNIT8. Sultivan, 600 obms +600 ohms., $80 /$-, post $2 /$. WHEAT8TONE RE8ISTANCE BRIDEE. 1 to 10,000 ohms. Plug type, es. 8WiTCHEs. 1 hole fixing, 8 amp .250 vt . Single Pole change over, $1 / 6$ each, 12/- doz. 837/10/- per 1,000 .
L. WILKINSON (CROYDON) LTD.

19, LANSDOWNE ROAD, CROYDON
Phone: CRO. 0839
Telegrams: "WILCO", CROYDON

Compact and easy to instal. This chassis is the ideal tuner for the domestic High Fidelity system. Superb FM quality and AM sensitivity combine to give excellent BBC and Continental reception.

* FM85 Medium, Long plus FM with tuning eye on all bands and volume control.
24 gns or self-powered 28 gns
including Purchase Tax.
Full specifications from:

C. T. CHAPMAN (REPRODUCERS)

RILEY STREET, S.W.IO
Telephone: Flaxman 4577
Works: High Wycombe, Bucks.

MULTIMETERS OSCILLOSCOPES

COMMERCIAL TELEVISION CONVERTER

SUITABLE ANY T.V.
within 35 mifes of any I.T.A. Station NO ALTERATIONS TO SET Complete with buitt-in power supply, 200-250 \%. A.C. malus. Case 31 in . Iong, $3 \frac{1}{\mathrm{sm}}$. Wide, 4 lin. high is: corporating ynin control and band switch.
Complete with Wolsey 3 -element I.T.A. outskie or ort aetrim, 86 fect I.T.A. kand, t Trn pluge (Walney and 4 monthly pryments of 21/5/6.

Coverage 120 Ke/s.-230
 2.75 Me/s. 8.5 Mc/5.8 \& Mc/a.-28 Mc/6., 10 Me/s.-sil Mcia. $24 \mathrm{Me/m.sin} \mathrm{Mc} / \mathrm{s}$. Metal cave $101 \mathrm{n} . \times 6 \mathrm{fin}$. 4fin. Size of sale, 6 lin. x
Sfin. 2 valves aud rectilicr. A.C. mains $230-350$ Internal modulation $\$ 00$ c.p.s. to a depth of 30 per oent., modulatirl or unmodulated R.F., onit put continuously varistle 100 raili-volts. C.W. Rud mol* and moring coll outpu* meter. Grey hamuer sinish cave and white pwnel Aceurecy plus or minun $2^{\text {mo }}$ 84/19/6
and 3 nor 34/- deposithir pesmencs
SIGNAL GENERATOR

25% P. \& P. $4 / 8$ extrm.

SIGNAL \&

Coverage $7.8 \mathrm{Mc} / \mathrm{s} .-210$ Me/s. to five tmuds, all on fundardentala, mow motion tunlog audjo output, 9 vertical and horizontal bars, logeting geale. In grey bummer fuished caso with carrying handle. Accuracy $\pm 1 \%$ A.C. mains 200 . 250%.
$83 / 19 / 6$
P. \& P. $\$ / 6$. Or 22 depodi, P. \& F. 5.16 and 4 monthly payments of 27/6.

COMPLETELY PORTABLE AMPLIFIER
approx, size of $\times 3!$ incorporating is velven, coataet-conied metal rectifer, b, and
 5* P.M. SPEAKER AND O.P. TRANSFORMER if purchased with the above 18/6. Plus P. \& P. 1/ब.

COLLARO AUTOMATIC CHANGER

Model 456. 10 records. A. C. mains $200 / 250$ v. Turnover erystal head. BRAND NEW. Fully guaranceed (suitable for use with above amplifier). 25/- deposit plus P. \& P. 5/- and 7 monthly payments of $25 /$ /. Cash \$8.19.6. Plus P. \& P. 5/-

4 VALVE ALL-DRY SUPERHET PORTABLE KIT
incorporating ferrite rod eerial Madium and long waves. In grey leatherecte Size 9in. $\times 7$ in. $\times 6$ in. Valve line up IT4, IRS. $155,3 \mathrm{~V}$. Complete kit of parts (lass batteries) 25/19/6 Plus $3 / 6$ Post and Packing.

RADIO AND T.V. COMPONENTS (ACTON) LTD. 23. ACTON HIGH STREET, LONDON, W. 3 goods not dispatched outside u.k.

GERMANIUM JUNCTION RECTIFIERS

- finned bridge units

BRITISH THOMSON-HOUSTON
THE SRITISH THOMSOM-MOUSTON CO., \&TD., NUOET EMGLANO erec cmin ASHM

Gefll the most reliable MAGNETIC RELAY

A.I.D. A.R.B. ADMIPALTY APPROVED

Manufacturers of K. 3000 and K. 600 Type RELAYS PROTOTYPE RELAYS
to customers specification. Made up at short notice.
Your enquiries given prompt attention.
A. D. S. RELAYS LTD. Dep. W.W.

As supplied to the trade for the last seven years. Six months' full replacement, six monshs progressive. Made possible by the high quality
 1Gin. round T.V. TUBES at CS. Information on how to "do it yoursall" in our FREE citalogue. Ins., carr., 15/6.
12 in . T.V. TUEES, E6. 3 months ${ }^{2}$ uarancee on all round tubes. ins., carr., is/6.

HEADPHONES, $1 / 9$
Single earphone and headband. C-LR. Ideal for crystal sects, extension on radio, etc. P. \& P. 1/3.
5-VALVE MIDGET RADIO, $53 / 19 / 6$ Suparher. Octal valves: 12K8, $12 \mathrm{K7}, 12 \mathrm{O}, 35 \mathrm{~L}$ \& 3524 . Sin. spaaker included. 2 wavabands (L. \& M.). ${ }^{3}$ control knobs. $100-240$ volts. Universal. supply. Wooden cabinat, size $17 \times 8 \frac{8}{} \times 6$ in $\operatorname{lns} .$, arr.., $3 / 6$. T.V. AERIALS, 25/6. For all I.T.A. and F.M. channals. For outdoor or loff. 3 alements. Famous manufacturer at half the normal price. Poss 2/6.
T.V. MASKS... 79. 17in. Groy plastic. Brand naw. Post $21 /$ T.V. MAsKS...14/9. 17in. Halo lightin. Now. Post 2/-
T.Y. MASKS...10/9. I7inis White plastic. Now. Pose $2 /-2$ - 2 bulbs. use 800 battery. P. \& P. I/ Crate of 48 with 22 bulbs extra. $22 /-$ (118 bulbs in ail). Carr. 101-

HOME RADIO, 79/6
5 valve (octal) s/het. $3 \mathrm{w} /$ band receiver. A.C. gram. P.U. sockets. In wooden cabinet $18 \mathrm{f} \times$ lit $\times 8$ thin. Ins., carr., 7/6.

BEAUTIFUL EXTENSION SPEAKER, 29/9
 Complate Fitted with 8 in. P.M. speaker, "W.B." or "Goodmans" of the highest quality. 'Standard matching to any receiver, 2-5 ohms. Flex and switch included. Unrapeatable at this price. Monoy back zuarantee il not completely satisfied. ins., carr., 3/6.
Ain. P.M. SPEAKERS, 8/\%. Let the lady of the house listen to music while she works in the kitchen. Complete with O.P. trans., 10/-. P \& P $2 / 9$
spenkERs, 12/9. Goodmans or Elac. High quality Gin. P.M. Monayback guarantee. With O.P. trans., 14/- P. \& P. $2 / 9$.
"SOLO" SOLDERING TOOL, $19 / 6$
6-12 vole, $100-125$ volt. Made for the American market. Car battery or mains. Export quality. Complete in light carrying case. Reed of solder and spare parts. P. \& P. 2/9.

A flaw of the above in 6-12 volt, 200240 volt. 35/6. Expore enquiries in-

MAINS TRANSFORMERS

350-0-350 v. 80 ma .4 v. 4 v. heaters 200-250 v. primary

意

MIDGET EVER READY BATRYMAX, $1 / 9$

"B "type battery 22t v. No. B155. Ideal for midget or parsonal radia, hearing aid or photography flash. Size $\ddagger \times 2$ in. Post 3d. 6 for 7/-, post 6d. 12 for $12 /-$ post 9 d .

SIMULATOR UNITS, 19/6
Complete with valves. Telescopic sarial instruction booklet FREE with each order Ideal for Walkio-Talkie conversion. Test sec I72A. With ach order P. $4 / 6$

AVAILABLE)

17" T.V. CHASSIS \&19.19.6
Latest Improved circules. High or E.H.T. (brilliant picture). Improved sensltivity (for zreator range). Chassis easily adapted to any cabinet, 17 in. rectangular tube on adapted chassis. All channels. TURChassis. AUN channels. TURvalves. With 5 valves, $\angle 21 / 19 / 6$. Waives. With all valver, E 251916. Valve line-up (5 valves): Valve line-up (5 valves): $2-$ Others: 7-6F1s, EL33, 6LI8.

 Ins., carr., 25/- (incl tube). State B.B.C. channel and I.T.A. if turret
required. required.
$14^{\prime \prime}$ T.V. CHASSIS, TUBE AND SPEAKER E13.19.6
As above with 14 in . rouna tube. Less valves. Guaranteed 3 months. With 5 valves, cis $/ 19 / 6$. With all valves, E19/19/6. TURRE TUN TUNER 50 - extra. Ins., carr., $25 /$ - inc!, tube.

DENCO RADIOGRAM CHASSIS 97/6

3 and 4 waveband turret tuned. S/het. A.C./D.C. chassis with 6 in or 8 in. peaker. Size: $8 \frac{1}{2} \times 10 \times 12$ in. Valve line-up: CCH3S. EF39, EBC33, CL33 * CY3I. (CIC or dropper.) Ins., carr. $7 / 6$.

SUPER CHASSIS, 99/6
S-valve superhet chassis including an Bin. speaker. 4 control knobs (Tone, Volume. Tuning), W.C. switch; 4 waveband with position for gram. P.U. for extension spaaker. A.C./D.C. P. \& P. 5/6.

ELECTRIC CONVECTOR HEATER, 99/6
Cleaner, cheaper, safer than parafiin. A.C./D.C. Switched tor 1 or $2 \mathrm{k} /$ watts. Illuminated grille. Ins., carr., $10 / 6$.
ELECTRIC FIRES, $17 / 6$.
Hammered finish. A.C./D C. 200-250 volt. $1 \mathrm{k} /$ watt. Post $3 / 6$.
R.F. EHT COIL, $30 /$ - $6-10 \mathrm{k} /$ volc. Drawing and data FREE with each order. Post free.

CONSTRUCTOR CHASSIS UNITS
POWER PACK AND AMPLIFIER, 19/6. O.P. stage 6 V6 with O.P. trans. Smoothed H.T. 350 v. 250 ma., 6.3 v. 5 a., 22 v. 3 a., 6.3 v .4 a., 4 v. centre tappeo. Less valves. FREE drawing. Carr S/6 TIME BASE, 7/9. Including scanning coil focus unit, esc. Less valves FREE drawing. P \& $P .2 / 6$.
SOUND \& VISION STRIP, 19/6. Superhet. Complete s/ vision strip. Less valves. FREE drawing. P. \& P $2 / 6$.
T.V. CHASSIS TO CLEAR, 59/6. Complete chassis by famous manufacturer. R.F. EHP unit included. Drawing 2/6 or FREE with order Chassis in three separate units (powsr, s/vision, timpbasa interconnected). Thesa chassis can easily be fitted into existing console cabiners. Less valves and tube. Channols 1-2, 3-5. Easily converted to I.T.A. Ins., carr., 10/6.
RADIOGRAM CHASSIS, 39;9. 3 waveband and gram. superhet, 5 valve (octal). Ideal for cable gram., giving high quality output. 4 -knob control. 8 in P.M. speaker, 719 , with order. Set of knobs 2/- chassis $12 \times 6 \times 7$ itin. Ins., carr., 4/6.
CHASSIS, $1 /-$ each, 6 or 8 valve. Latest rype midgot valve design for A.M. and F.M. Now cadmium-plated on s.w.z. steel. $12 \sharp \times 7 \ddagger \times 2\} \mathrm{in}$. P. \& P 1/6. Post on 4, 3/-. 12 for 10/-. Carr. 5/-

$\begin{aligned} & 1 A 5 \\ & 155 \\ & 3 A 8 \\ & 4 D 1 \\ & 688 \\ & 6 F 12 \\ & 6 D 2 \end{aligned}$	Boxed VALVES ${ }^{3}$ MONTHS'								
	219	6H6	1/9	128E6	6/9	ECH42	8/9	EFSS	$2 / 9$
	4/9	$6 K 7$	3/9	12SG7	1/9	EF39	8/9	EL32	6/9
	3/9	6N7GT	4/9	$12 \mathrm{SJ7}$	1/9	EF41	819	EL91	3/9
	219	65G7	3/9	CVI9	3/9			EZ40	$8 / 9$
	319	77	3/9	EAF42	8/8	EbCA1	8/9	PEN4S	6/9
	715	$8 \mathrm{8D} 2$	3/9	E834	1/9	EF91	7/9	TTII	6/9
	$6 / 5$	eD3	$7 / 9$	EB91	6/9	EF37A	4/9	$\times 66$	$8 / 9$
		12407	5/9	ECC81	$8 / 9$	EF37	4/9	Z77	719
18		American 75 78	Typ	UX. 80 IDS		$\begin{aligned} & \text { at } 3 / 9 \\ & \text { 6D } \\ & 25 R E \end{aligned}$		$\begin{aligned} & 6 A 7 \\ & 6 C 6 \end{aligned}$	
	Barrettors 301 and 302 also at 3/8 each.								

CAR AERIALS, 6/9. Whip antennae, SOin. long, collapsing to Ilin. onthoie fixing Post $1 /-$.

(50 yards only from Tottenham Court Road Tube)
All post orders plomse to:-162, HOLLOWAY ROAD, LONDON, N.7. NORth 6295/6/7

ANHOUMOMY OUR ME日 F.M. TUMER KIT (Minted didrouit). This in our pribted cercult verrion of the Oarara 912 F.M. Tuner-naing T.C.Ge printiod circuit and coadeanery, incorporating vaive sold dial, witb mold escurchoon plate. Dial aperture only $\$ \times 2 \mathrm{in}$. Orain P. M book pet plas our additional inntructlome and lin. dividinuly priced componeute lise- 216 posit free or the Kit absolutely complete at $88 / 8 / \mathrm{p}$ plus $8 / 6 \mathrm{P}$. ${ }^{*} \mathbf{P}$. Aligment nerrice araliabio it required. We are demon. otratiog at both branchen

THE

JASON FM TUNER
Based on the booklet by Data Publications Ltd., $2 i-$ post free, inclading our individually priced Parta Lht. Elehly sonditive, frue irom drift. Incorporated 4 valve 6 AM 6 and 2 specialy sraded G.R.C. Cryotala, Tita tuning condenser, sale callbrated in me/a, and attractive bronze atove: enamelled front plate aiready mounted (illuatrated). Front plate aire 6ir. $x 6$ in. Chamis 7in. $x+4 / \mathrm{ln}$. x 1/in. Completa Fringe area kit $8 / 15 / 15 /-$ plus P. \& P.

DULCI F.S.AM. RADIOGRAY CEASGIS. We are very fortuaste in bolot able to ofler a further himited quanity of thia very popular and emeient chacals at agresty reduoed 6BA6. 6AT6 RLSA, 6X4 (or equiv.). Four controis: Tond, ON/OEF. Volume. Wavechange. Tuning. Ontput watte malched to 3.5 ohms. Incorporates latest Porrite Rod Aerlal. Input sockets for erystal or magrotic plak-up. Providon for meins supply, to gram motor. Orerall dimanuione 12in. Ix $\times 7 \mathrm{in}$. D. $\times 7 \mathrm{zin}$. H. Attractive dial with

JASON AM/FM KIT

This is a very bleh quality chavele for medium wavew and FM, incorporating 6 of tha lateat miniature valres, plus DM70 magic ese. Zits are svallable for chapoly oorapiete with
 include all required components and full consiruotional detals. Ful, Hilustrated Data

THE ROC $3 / 4$ WATT AMPLIPIER KIT. Compare the advantages. Treble, hase AND mlddle controle. For cryatal or mas. netic plek-up. A.C. Mains $200 / 250 \mathrm{~V}$.
Valve tine-up: 6 V8GT, 6807 metal $6 \times 80 \mathrm{~T}$. Valve tine-up: 6V8GT, 6807 metal 6 XSGT.
Negetive feedbect. Built on stove enamelNegrative feedback. Built on dove enamedved tin. $x i \frac{1}{3}$ in. Four engraved cream kaobe are included is the prive of the complete Fit with all necemary practicaland theoret. lual diatrame at 24/5!- only, ylue B/6 packing and poas or Inatruction Book
 lented, and ready for vee at $25 / 5 /=$

THE NEW R.C. TRANSISTOR/RECEIVER KIT

This recelver, covering medum wareband, which can be ampembled in about 1 bour, witl give amazias volume and
tonal qualite whon used in conjunction with a good merial and earth. Incorporating PNP Tranaistor and Germanaum Dlode. For headphone reception.
Imeluded witb the rit of prirta is a hadmome platic case in borcm and white, meapuring $4 \frac{\times 2 i}{} \times 11$ in. Thit cate
 Leghtwelicht high resistance mead phones ean bo suppled aeparately at
$15 /-$ paif. II, however, the kit is purchaed complete with houdphones
$15 /-$ paif. 1I, however, the kit 4 purchused complete with headphones

 serial and earth $8 / 6$ onis

AM/FM CHASSIS BARGAIN

> By ladione manulacturer.
geven valre-ECCSS, ECE61, RFS5, BABC80, RLS4, BE80, BMSI. Oover: 1ODE, medlum and F.M. bands. Separate bature and treblo controls, illuminated tive casily read odse lit dial, pertion or hive tasily read adse ill dia, vertion or horisoatal co cholice. Moorparte Mullard F.M. tund rection. Overall dimenaions. 121n. L. $\times 10 \mathrm{in}, \mathrm{W} . \times 1010$, D. Brand
new and fully gumateod. Whilat etocks lant only $818 / 19 / 8$ plus $5 /$ P. \& P. H.P or Credit Sule Terme wvaileble.
 altabie sor both

BCAFAI AMFI RADIOGRA1 CHA8sIS A new atyla AM/FM Chasala employing printed circutt P.M. Tuner
Vave Hine-up; 6 valves, BCO 86 6B88, 12AH8, 6BA6, 6AL5, 6AT6, ELB4, DYS. Moet attractive dial 12×5 ing. fully illuminated white on bleck back reound Fhite on ontrols: Tuning, Voluma Wavechage and Tone/On/OR Dibseasion (orerall): $18 \times 9 \times 8 \mathrm{mb}$ Frequency coverage (four wave bunds). $1,000 \cdot 2,000 \mathrm{~m} .200-650 \mathrm{~mm}$, $15-60 \mathrm{~m}, 88-100 \mathrm{mc} / \mathrm{h}$. Thls in at excelion phat 6% P. P Pheals. Prioc efoel $10 /$

FI POWAR PAGE KIT. We can now supply complote kjt for powar pack
suitable for the above F. M, tomer or any other stmilar tspas. Price for the com: plete hit in 37 i6 only or 50/6 for ready asembled unit. Thio pack is extremoly stuall, locoryorating valve rectinar type 6×8 and built on chavil alse only Oin. $\times 4$ in. $\times \frac{1}{\text { bin. Optioraal extra for }}$
power pack.

Have YOU had a copy of our 109 page comprehensive CAT. ALOGUE? This invaluable publication is only $2 /-$, post tree.

Our advantageous H.P. and Credit Sale tarms are available on any single item over C5. Your enquiries invited.

THE "sUPERTOR FOUE" ITT Our superlor fout-valve reoolver A.C.
mains, $200 / 250$ v. M. and Loos whee. An with our
 Maxlinum
hase sin. tapering to 3 tin. at top. Slophug front Very attractively finished in light walaut and peach. Eech coraponent brand new and tested prior to packlus. Complete tontruction booklet with prac. Booklet avalisble at $1 / 6$ poit iree. Onr price for complete kit e8/Q!8. Plenso udd $2 / 6 \mathrm{P}$. \& C. II preferred, we can oupuly Cabtuet Anembly only, comprialag Cabloet and hracket wive-chaose switch: dial, polnter, drum, pulleys, drive apindie.
drive aprins and knobs, at $45 / \mathrm{m}$, plue $2 / 6$ drive c. N.B.-Our hiti are evoig supplied with sumelent molder for the job.

TITE R.C. 2 AYP. BATTHET CHARGRR etope-anamelied steel lox, step: 7 fm . \times sifm x afin. Fally shroeded Arst qualtty tranalormar, brasd now ©. E.C. rectiffor. Taing fues, eto., for oharging complate lit with full prechion and theoretioal tmetruetione. Pries $36 / 6$ tuas $2 / 6$ P © P. Can bo suppliad amomWod aril tested of $45 /$ - plos P. P. Hoevy duts eroeodile cliter sullabla for car battery lage, optiomal extra at $1 / 6$ wer pat

 Talkie).
We have been move fortuaste in obtista
lige further sup plyoit complote compris. compris:
ing TX $/$
BX unit, RX unit, phonos, micto
phone,
aertal,
junction junction tery bat. ohel and full operating instructions. Range: approx miles. Frequency
coverge 7.4 .9 me/a. ABBOLUTELY BRAND NEW, 65/-.
Export enquiricicilea. Wo. 18 TRA
We havo We have juat taken delureryo
a quantity of these brandiker and com. plete. Thim sood por-
table, welf contained transmit. er/reosiv-
 rangetele-

Prequen
4ge 6 meis-9 mefs. All accentories supplied, J.e., Headphone, Mikit, Morse Eey. Aerlal, comprehensive ingiruction ap: 1 ABP12 2 AB8, 1 ATP4. Welighe: pprox. 221b. Dimensions (overall): An. $\times 10 \mathrm{in}$. $\times 17 \mathrm{~m}$. UNREPEATABLI of 99.8 Ius $7 / \mathrm{C}$ C. P .

CONSTRUCTORS NOTE !

RADIO DATA BOOKS
AYAILABLE, i.e Valve
suide, Colour code, acc
Send stamp for list.

THE "NEW LOOK" RAMBLER

Our mont popular AlkDry Portable Buperhet Kit now being supplied with a bew oabtnet
of swen more attractive appearance. The nter of even more attractive appearance. The new
 top panal with dial engraved in rod completes the overall "als of quality " This recelver really ha everything. Built-in trame werial hyg quality, extromely manaltive and Fery adequate volume trom the ${ }^{\text {Sia }}$, Noudapeaker. plete kit. lincluding cabinet, can be mupplled trom slock at the original apecial inclusive prioe
 1.6 V . L.T. type A.D. 35 ti $1 / \mathrm{B}$. Inetroction
 and todividual component price liut.
RALELEE BADIS UIIT, Babling the above reopiver
to bo used on A.C. malns, Very easily atted. Complete
lit, when escombied, Ats mugy into batiery compart

" PAMIL FOTR
Fith handsome brown new T.R.F. kit Thith handsocne brown lakelifte cabinet many commercially made recelvera cost ing twice this prico. ONLY $84 / 19 / 6$ plus $2 / 8$ p. © p. Instruction booklet avallable

A.B.-All our T.R.F. Fit eiroulte include specially wound Doneo "Iraz 9 " coils on polguyrend formort, improted par formanet. Pried remilas the game.
SURPLOS METPR BABGAME
We have targe etocks of metery from 30 micrommp to $\$ 00 \mathrm{v}$. and will be plonsed receipt of 3 d . stamp. HETRR RPCHIFIERS. 1 ma and 5

RETURN OF A WINNER :!! (Exclusive)

We have been most 3
fortunte in oltaining further Ilmiled supply of this floe and popular cabinot. In. Qually manufacturer's stock, thin troikey. type cabinet is anishod in polished dark solld walnut. Can easlly be adapted to accommodate tape reconder, amplitier. radioyram, etc. oth Kxternal measure
mente: $24 / \mathrm{in}$. $\times 16 \mathrm{in} . \times 29 \mathrm{in}$. The whole tr mounted upos "easy pun" cator Unropontable upon this eriteo es/19/G, plue 15% C. \& P .
GPREIAL PURCHASE ITOM HINIPTET BRAND MEW FO.
MITRER RECNVMR

THE "FCOHOSTY FOUR" E.R.F. KTY. A threevalve plum metal rectifier receiver.
A.c. mains $200 / 200$. Fedlum and Long waves. We can supply all required composents right down to the late nut ant Coll. Valve line-upe 8k7, 6in and 6 Vit. ont by bla high by 5 in. deep-Chole of lvory or brown Rakelite of wooden Whant riniah cabipet, Completo lastruc. tion booklet Fith prsctionl and theoretical diagrams, Bach compunent brand new and $8 / 10 /=$ complete-Remember thur price beligg demonstrated at, our shop premises. We prondly clame that our tully illuatrated instruction bootlet in the most cornprehenaive available for thim sype of reoelver-Booklet availationat $1 / 8$ post free. Plue $2 / 6$ pecking end carr. for complete kit. The R.E.P. L-Falve RECRIVER dry battery operation. tor use with head phones, the complicta tit svaliablo at 42:- lees batters, Diuw 2/- P. \& P. or

known high ontput " T " type heed. Sirictly inniled quandty at $2618 / 6$ plus
COLLARO \&SPERD inglo. recond unit COLhARO ESPEKD inglo. recond unit cartridge. Brand now, few only. 84/12/8 plue $3 / 6$ P. \& \mathbf{P}_{0}

Pour apeed Mxer Auto-Changer. Pingervep stop, thart and speed change tifully made and modrrately aised to bt alowost alay cabibet. For A.C. maina operatlon $110-150$ Pr Price 89/18/-
the P.T. STARP GALAXY complote with bese $810 / 19 / 6$. tac. P.T
Both plua $3 / 6 \mathrm{C}$ o P
RECORD PLAYAR OABNI NR-to ault all inpee of angle record and
autochmager ontis. Price from $45 / \mathrm{F}$.

61 me/a (6-7motrus).
H.T. ind 9 volt. LT, butierfie
Complote with
till operating totull operating th-
Ho. 17 Mk II, as above, but secoalhand, in good coodition
and complate $45 /=$.

PORTABLE GRAM

 AMPLIFIERSRCI.A. AMPLIFIER A mall hish quality RCi-A. A LPLILIER A momall hish quality cramophone ampiatier amploying the intart circulty and higriy enciont minutars

Price $88!19 / 6$ phan $2 /$. P. $P^{200 / 460 \%}$ RORA. Small PRINTRD CIRCUIT dingle valve hifh gain amplitier for the omalier type of portablo. Employa lateat type ECLs
requeat. Price only $59 / 6$ plue $2 /-\mathrm{P}$. P ..$~$ RCBA. A superior quality 3.Falve Amplitier employlas EZ80, EL84 and ECCB3. With separtata Bass and Treble controls. Purther detalis on
plua $2 / 6$ P. \& P.
RCAA. (ETALLIOLI). Thle ls supplied completo with hish flux 8in. P.M. Speaker and Bethe. Incorporating three octal and well-made unit Wh deal for use ta the larger type of record player and th
aqually auitable for qually suitsble for With a radlo foeder unit. separato beas

ro proviled an extenalion speaker and maina aupplies $t 0$ gram. motor. Output approx. 4 witts.

 torms eenligt: doposit and four monthy paymentin of $18 / 6$ per month.
Pitt our portable cmbidet " G " at $85 /-$ without modilication.

GPYCML OPHE TRAMAPORMRES AHD GHOCES. These are beautifully made, oted transiormers and chokes by a well finlahing touch "to any equipment the hich they are used. Als are mbeolutely brand new
HADIE SRAHSPORIERS
(A) PRTIARY: 230 v. SECONDARY $390-0.390$ v. 130 mA .2 v. 1.4 amp. 6.3 v.
 hifh pRice 45)
(B) PRINARY: 1io, 300, 230, 250 . GECOMDARY: $850-0-350$, 180 mA .
 blin $\times 6+10$. high. PRICE 45i-. (C) PRMARY: 200.230 . 250 F .88 EBCOND

 (D) PRIMARY: $200,230,250$ F. $8 B C O N D-$ ARY: $290-0.290 \mathrm{v} .200 \mathrm{~mA} .4 \mathrm{~F} .2 .2 \mathrm{amp}$.
6.3 v . tapped $4.2 \mathrm{v}, 6.2 \mathrm{mmp}$. 8ixe: 5 tiv. x 6.3 v. tapped 4.2 v. 6.2 amp. 8RICE $35 /=$, 250 v.
4fth. X Ejh. Migh. P1 (E) PRMARY: $110,200,230,250 \mathrm{~V}$. AECONDARY: $8330-0-830$ ㄱ. 100 mA .
 GRCONDARY: 6 v. 6 amp. $2 v, 4 \mathrm{mmp}$.
 PEICE $15 / \mathrm{m}$
CHOKEF:
(G) 40 H. 60 mA gize: 3ila $\times 2 \mathrm{in} . \times$ slin, hirh. PRICE $10 / 8$.

(I) 8 h. .100 mA. Rize 3 jin. $\times 3 \mathrm{ln} . \times$
 fin. Migh PRICE $10 /=$
(K) (Double choke) \$H. 60 mA . 4.5 HF . 0 mR. 8iek $21 \mathrm{in} . \times 21 \mathrm{in} . \times 31 \mathrm{in}$ high PRICE S/EMARPORIER
(L) PRIMARY; BK ohm, (sult 6V6 elogle
 10%.
FaLFe Wo have parhaps the mont Vahven wo have parnaps trede a ytamp whil bring comploto Hist of mrand now imported Five typed, fully grarain=

SELENIUM RECTIFIERS

BATTERY C

ASSEMBLED CHARGERS

 CHARGERS}6 v .1 a.
6/12 v. 1 1 a. . 19/9

$6 \mathrm{v}$.2 a .

6/12 v. 2 a. 29/9
6/12 v. 4 a. 56/9
Above ready for use with mains and output leads. Cases well ventilated and finished in stoved blue hammer. Carr, and packing $3 / 6$.

CHARGING EQUIPMENT BATTERY CHARGER KITS Consisting of Mains Transformer F.w. Bridge. Metal Rectifier, weil ventilated steel case. Fuses, Fuse-hol Iers, Grommets, panels and circuit. Carr. 2/6 extra. 6 v . or 12 v .1 amp. .. $22 / 9$ 6 v. 2 amps........... $25 / 9$ $\begin{array}{lll}6 \mathrm{v} . \text { or } 12 \mathrm{~V} .2 \text { amps. } & 31 / 6 \\ 6 \mathrm{v} \text { or } 12 \mathrm{v} & 4 \text { amps. } & 53 / 9\end{array}$ BATTERY CHARGER KIT Consisting of F.W. Bridge $\begin{array}{lll}\text { Rensisting } \\ 6 / 12 & \text { v. } 5 \text {. } & \text { Briage }\end{array}$
 and ammeter. Only 49/9. and amm

All for A.C. Mains 200-250v., $50 \mathrm{c} / \mathrm{m}$ Quaranteed 12 months Assembled 6v. or 12v. 4 amps. ASSEMBLED CHARGER $\begin{array}{cc}6 \quad \text { v. or } & 12 \\ 2 & \text { amps. }\end{array}$ Fitied Ammeter and selector plug for 6 v . or 12 v . Louvred metal case, finished attractive hammer
blue. Ready for use with mains and output leads. Double Fused. Only
Carr.
$3 / 6.49 /$

Fitted Ammeter and

 variable charge selector. Also selector plug for 6 . or 12 v. charging. Double fused. Well ventilated steel case with blue hammer finish.Ready for
$75 /-$ use with mains and use with mains and 3/9. Or Deposit 30/3/9. Or Deposit $30 /-$ and four mon

AM/FM RADIOGRAM CHASSIS. HIGH QUALITY. PUSH PULL. 6-8 WATTS Current manufacture. 12 months' guarantec. For 200-250 v. mains. Covers L and M. Wavebands plus F.M. Includes 8 latest type miniature B.V.A. valves. Only 22 gns. plus $7 / 6$ carr. Or deposit $£ 2 / 12 /$ - and 9 monthly payments of $£ 2 / 12 /-$. Guaranteed 12 months.
CO-AXIAL CABLE. 75 ohms. fin., 8d. yard. Twin screened feeder 11 d . yard.

ELECTROLYTICS (current production)
Tubular Types
The 450 Can Types
mid. 500 . 1/9
mid. 500 v . $2 / 6$
$16 \mu \mathrm{~F} 350 \mathrm{v}$. $\quad 1 / 11$
$1612 F 450$ v. $\quad 2 / 9$
$\begin{array}{llll}16 & 6 & F & 500\end{array} \quad$ v. $\quad 3 / 9$
$8-16 \mu \mathrm{~F} 500$ v. $4 / 11$
$25 \mu \mathrm{~F} 25 \mathrm{v}$. $\quad 1 / 3$
$50 \mu \mathrm{~F} 12 \mathrm{v} . \quad 1 / 3$
$50 \mathrm{mfd} .25 \mathrm{v} . \quad 1 / 9$
$\begin{array}{llll}50 \mu \mathrm{~F} & 50 & \mathrm{v} . & 1 / 9 \\ 100 \mathrm{mfd} . & 12 & \text { v. } & 1 / 9\end{array}$

100 mfd.	12 v.	$1 / 9$
100 mfd.	25	v.

$3,000 \mathrm{mifd}$. 6 v. $3 / 9$
$16 \mu \mathrm{~F} 450 \mathrm{v}$. $2 / 9$
$3 / 9$ $16 \mathrm{mfd} .500 \mathrm{v} . \quad 3 / 9$
$32 \mu \mathrm{~F} 350 \mathrm{v}$ $32 \mu \mathrm{~F} 350 \mathrm{~V} . \quad 2 / 11$ $\begin{array}{llll}32 \mathrm{mfd} . & 450 & \mathrm{v} . & 4 / 9 \\ 100 \mathrm{mfd} . & 450 & \mathrm{v} . & 4 / 9\end{array}$ ${ }_{8-8 \mu} \mathrm{~F}_{450} 450 \mathrm{~V}$. $8-8 \mu \mathrm{~F}$
$8-16 \mathrm{~F}$
450
450 v. $8-16 \mu \mathrm{~F}$
$16-16 \mathrm{~F}$
450 v v. $3 / 11$ ${ }_{32-32 \mu \mathrm{~F}}^{160} \begin{array}{lll}160 & \mathrm{v} & 3 / 11\end{array}$ $\begin{array}{lll}32-32 \mu \mathrm{~F} & 330 \mathrm{~V} . & 4 / 9 \\ 32-32 \mu \mathrm{~F} & 450 & \mathrm{v} . \\ 5 / 9\end{array}$ $\begin{array}{lll}32-32 \mu \mathrm{~F} & 450 & \mathrm{v}_{4} \\ 100-100 \mathrm{mfd} . & 350 \mathrm{v}_{\mathrm{s}}\end{array}$ 64-120 mfd. 350 $100-200 \cdots$ mfd. $\quad 7 / 6$ Many others in stock.
VOLUME CONTROLS with long spindles, all values, less switch, 219 ; with S.P. switch, $3 / 9$.
EX GOVT. STEP UPISTEP DOWN TRANSFORMERS. Double wound $80 / 100$ watts. 10-0-100-200-220-240 Y. to 5-0-75-115-$125-135 \mathrm{v}$. or Reverse. Only 11/9, plus $2 / 9$ post. 10-0-100-200-220-210 v. to 9-0-110-122-136148 v . or Reverse. 200 watts, 35/9, plus $7 / 6$ carr.
EX GOVT. METAL BLOCK PAPER 4 mfd 500 y CONDENSERS
4 mfd. $500 \mathrm{v} . \quad 2 / 3 \quad 8 \mathrm{mfd} .500 \mathrm{v} . \quad 4 / 6$ $4 \mathrm{mfd} .1,000 \mathrm{v} . \quad 3 / 9 \quad 10 \mathrm{mfd} .500 \mathrm{v} . \quad 3 / 9$
THE SKYFOURT.R.F.RECEIVER
 A desugn of a
3 valve $200-250$ v. A.C. Mains L^{L} \& M . Wave T.R.F. receiver with selerium rectifier. For inclusion in cabiner illustrated or walnut It employs valves $6 \mathrm{~K} 7, \mathrm{SP} 61,6 \mathrm{~F} 6 \mathrm{O}$, and is specially designed for simplicity in wiring. Sensitivity and quality is well up to standard. Point-to-point wiring diagrams, instructions and parts list, 1/9. This receiver can be built and parts list, 1/9. This receiver can be built. Available in brown or cream bakelite, or Available in bro

EX GOVT. VIBRATOR UNITS, 12 v . inpui 280 v. output. Suitable for car radio, etc., 16'6.
VIBRATORS. Oak and Wearite. Synchronous 7 pin 2 v. 7/9, 6 v. 8/9.

EX. GOVT, 50 WATT AMPLIFIERS. Brand new. For normal 200-250 v. 50 c.p.s. A.C. mains. Designed for speech only but with suitable pre-amp. could be used with Gram. or Radio. Valves included. Four 6L63 used for output. Complate with hand microphone with good length of lead. Unused in original transit cases. Only 9gns. Ready for use. Carr. 15/-.

RE-ENTRANT SPEAKERS, 3 watt, 7.5 ohms suitable for above, 25;- each.
5 CORE FLEX. Henleys circular rubber 14/36. Each lead colour coded. $1 / 6$ yard.

EX GOVT. MAINS TRANSFORMERS All 200-250 \%. $50 \mathrm{c} / \mathrm{s}$ inpue.
$120-0-12 \mathrm{~J}$ v. 40 mA .
$250-0-250$ v. $60 \mathrm{~mA} ., 6.3 \mathrm{v}, 3 \mathrm{a}, 6.3 \mathrm{v}$. i
a. Potted 4!-3!-3in.
$100 \mathrm{~mA} ., 6.3$ v. 7 a., 5 v. 3 a.
11/9
18/9
$230-0-230$ v. $80 \mathrm{~mA} ., 12.6$ v. 1.5 a. 5 v. 2 a. $11 / 9$ $400-0-400$ v. 250 mA .5 v. 2 a., 5 v. 2 a... $18 / 9$ 12.5 v. 3 a., 5 v. 3 a.

EX GOVT. SMOOTHING CHOKES
$300 \mathrm{~mA} ., 20 \mathrm{H} .150$ ohms.
$19 / 6$
$250 \mathrm{~mA} ., 5 \mathrm{H}, 50$ ohms
$150 \mathrm{~mA} ., 10 \mathrm{H},$.50 ohms
$100 \mathrm{~mA} ., 10 \mathrm{H} ., 100$ ohms
$100 \mathrm{~mA} ., 5 \mathrm{H} . .100 \mathrm{ohms}$, tropicalised
$80 \mathrm{~mA} ., 10 \mathrm{H} ., 350$ ohms., tropicalised
50 mA ., $50 \mathrm{H}$. . $1,000 \mathrm{ohms}$
EX GOVT. CASES, Well ventilated, black crackle finished, undrilled cover. Size $14 \times 10 \times 8$ inin. high. IDEAL FOR BATCARE. COVER COULD BE USED FOR AMPLIFIER. Only 9/9, plus $2 / 9$ post. AMPLIFIER. Only $9 / 9$, plus $2 / 9$ post.
Size 13\}in. $\times 8$ in. $\times 6 / \mathrm{in}$. with undrilled Size l3tin. $\times 8$ in. $\times 6$ in with undrilled
perforated cover finished in stoved grey enamel, 7/9, plus. $2 / 9$ post.
SPECIAL OFFERS. Small 2 gangs .0005 mfd., $4 / 9$. Electrolytics $32-32-32 \mathrm{mfd}$. 250 v ., $2 / 9$ each or in lots of six, $2 / 3 \mathrm{cach}$.

Type BM1. An all dry bat-
tery eliminator Size 51 x 41×2 in approx. Complotely replaces batteries supplying
1.4 v . and 90 v . where A.C. mains $200-250$ v. $50 \mathrm{c} / \mathrm{s}$. is available. Sultable for all battery portable receivers requiring 1.4 v . and 90 v . This includes latest low consumption types. Complete kit with diagram. 39/9 or ready for use $46 / 9$.
JUNCTION TRANSISTORS For R.F. $17 / 6$.
MINIA TURE MOTORS. $24 / 28$ v. D.C. or A.C. Size only $2 t \times 1$ in. Spindle 1 ifin. long, tin. diam. Made by Hoover Ltd., Canata. Price only 9/9.
M.E. SPEAKERS. $2-3$ ohms R.A. 8 in . Field 600 ohms., 11/9.

R.S.C. TRANSFORMERS

FULLY GUARANTEED.

MAINS TRANSFORMERS

Primaries 200-230-25J v. $50 \mathrm{c} / \mathrm{s}$.

FULLY SHROUDED UPRLAET MOUNTMNG

$250-0-250$ v. $60 \mathrm{~mA} ., 6.3$ v. 2 a., 5 v. 2 a. $17 / 6$ $350-0-350$ v. $70 \mathrm{~mA} ., 6.3$ v. 2 a., 5 v. 2 a. 19/9 $250-0-253$ v. $100 \mathrm{~mA} ., 6.3$ v. 4 a., 5 v. 3 a. 23/9
$250-0-250 \mathrm{v} .100 \mathrm{mA}. ., 6.3 \mathrm{v} .6 \mathrm{a}, 5 \mathrm{v} .3 \mathrm{a}$.,
for R1355 conversion
 $350-0-350$ v. $100 \mathrm{~mA} ., 6.3$ v. 4 a., 5 v .3 a. 300-0-303 v. 130 m. A., 6.3 v. 4 a., c.t., 6.3 v.

INTERLEAVED AND IMPREGNATED.

FILAMENT TRANSFORMERS

Primaries 200-250 v. 53 cls . 8 y 3 a

6.3 v. 1.5 a . ..	$5 / 9$	6.3 v. 3 a.	8/11
6.3 v. 2 a....	716	6.3 v. 6 a.	17/6
0-4-6.3 v. 2	7/9	12 v. 3 a.	

 12 V I a \ldots.... TRANSFORMERS

Primaries:
All with 200-230-250 v. $50 \mathrm{c} / \mathrm{s} . \quad$ Primariea: $\begin{array}{lllllllllll}0-9-15 & \text { v. } & 1 \ddagger & \text { a., } & 11 / 9 ; & 0-9-15 & \text { v. } & 3 & \text { a., } & 16 / 9 ; \\ 0-3.5-9-17 & \text { v. } & 3 & \text { a., } & 17 / 9 ; & 0-9-15 & \text { v. } & 5 & \text { a., } & 19 / 9 ;\end{array}$ $0-3.5-9-17$ v. 3 a., 17/9; 0-9-15 v. 5 a., 19/9; 0-9-15 v. 6 a., $23 / 9$.
OUTPUT TRANSFORMERS
Type BM2. Size $8 \times 51 \times$ 2tin. Supplies 120 v., 90 v., and 60 v ., 40 mA . and 2 v . 0.4 a. to 1 amp . fully smoothed THEREBY COMPLETELY REPLAGING BOTH H.T. BATTERIES AND L.T. 2v.AOCUMULATORs when connected to A.C. mains supply 200-250 v. $50 \mathrm{c} / \mathrm{s}$. SUITABLE FOR ALL BATTERY RECEIVERS normally using 2 v . accumulator. Complete kit with diagrams and instructions, 49/9, or ready for use, $59 / 6$.

1 a., suitable for Mullard 510 Amplifier $375-0-375 \mathrm{v} .150 \mathrm{~mA} ., 6.3$ v. $4 \mathrm{a} ., 5 \mathrm{v} .2 \mathrm{a}$. $350-0-350 \mathrm{v}, 150 \mathrm{~mA}, 6.3 \mathrm{v} .4 \mathrm{a} ., 5 \mathrm{v}$.3 a . $350-0-350 \mathrm{v} .150 \mathrm{~mA} ., 6.3 \mathrm{v} .2 \mathrm{a},. 6.3 \mathrm{v}$. 25 a., 5 v. 3 a.

Midget Battery Pentode 66: 1 for 3S4, etc
Small Pentode 5,000 10 to 3Ω
Standard Pentode, $5,000 \Omega$ to 3Ω
Standard Pentode, $8,000 \Omega$ to 3Ω
Push-pull 8 wetts 6 V6 to 5 ohm $4 / 9$
Push-pull 10-12 watts 6V6 to 3Ω or 150819
Push-pull $10-12$ watts to match 6 V 6 to $15 / 9$
3-5-8 or 15Ω
Push-pull EL84 to 3 or 15 ohms
Push-pull 15-18 watts, sectionally wound,
$6 \mathrm{~L} 6, \mathrm{~K}$ K66, etc., to 3 or 15 ohms.....
Push-pull 20 wati high-quality section.
Push-pull 20 watt high-quality section-
Smy wound, 6L6, KT65, etc.. to 3 or 15ת 47/9
SMOOTHING CHOKES
$250 \mathrm{~mA} .5 \mathrm{H} ., 100 \mathrm{ahms}$.
$150 \mathrm{~mA} ., 7-10 \mathrm{H}$., 250 ohms
$80 \mathrm{~mA}^{2}, 10 \mathrm{H}, 350$ ohms
80 mA ., $10 \mathrm{H}, 350$ ohms
14/9
Primaries 200-233 v, $50 \mathrm{c} / \mathrm{s}$.
$90 \mathrm{v} .15 \mathrm{~mA} ., 6-0-6 \mathrm{v} .250 \mathrm{~mA}$
9/11
$60 \mathrm{~mA} .10 \mathrm{H} .,{ }^{400}$ ohms
$1 \mathrm{amp}, 0.5 \mathrm{hm}$.
25-0-425 v. $200 \mathrm{~mA} ., 6.3$ v. 4 a., c.i.,
6.3 v. 4 a., c.t., 5 v. 3 a, suitable

TOP 8HROUDED DROP-TEROUGH TYPE
$260-0-260$ v. $70 \mathrm{~mA} ., 6.3$ v. 2 a., 5 v. 2 a. $16 / 9$
$350-0-350$ v. 80 mA ., 6.3 v. 2 a., 5 v. 2 a. $18 / 9$ 250-0-250 v. 100 mA .6 .3 v. 4 a., 5 v. 3 a $\quad 22,9$
 $350-0-350 \mathrm{v} .150 \mathrm{~mA} .6 .3 \mathrm{v} .4$ a., $5 \mathrm{v} .3 \mathrm{a} \quad 29 / 9$

ELIMINATOR TRANSFORMERS

R.S.C. A10 ULTRA LINEAR 30 WATT AMPLIFIER

NEW 1957 DESIGN, HIGH FIDELITY PUSH-PULL UNIT EMPLOYING SIX VALVES. EF86, EF86 ${ }^{\text {E }}$ EC83, 807, 807, incorporated. Sensitivity is extremely high. Only 12 millivolts minimum input is required for full output THIS ENSURES THE SUITABIIITY OF ANY TYPE OR MAKE OF MICROPHONE OR PICKUP. Separate Bass and Treble controls give both int and cut with ample tone correction for long playing records. An xtra input with associated vol. control is provided so that two separate inputs auch as mike" and gram., etc., etc., can b: simultaneously applied for mixing purposes. INCLUDED FOR SUPPLY OF 300 v . 20 mA . and 6.3 v. 1.5 a. FOR A RADIO fo-follow wiring diagrams. Cover as illustrated Cover as

O

Only $21 / 4 / 5$ 18/9 extra. Only 21 ed earr. 10/-0. Or Factory built with 12 months guarantee £13/13/-. TERMS ON etc. We cen supply Microphons3, Speakers, 12 \& Rotary ConASSEMBLED UNITS. DEPOSTI 36/- and y monthly payments verters, ete at feen cash prlces or on terms with amplliers, of $31 / \mathrm{m}$

Type 807 output valves are used with High Quality Sectionally wouni output transformer sp:cially designed for Ultra Linear operation. Negative feedback of 20 D.B. in main loop. CERTIFIED PERFORMANCE FIGURES ARE EQUAL TO MOST EXPENSIVE UNITS AVAIL ABLE. Frequency response ± 3 D.B. $30-20,000 \mathrm{c} / \mathrm{cs}$., Tone Controls ± 12 D.B. a $50 \mathrm{c} / \mathrm{Cs} .1+12$ D.B. to - 6 D.B. at 12,00 ग c/ce. Hum and noise 70 D.B. down. Good quality reliable components used. Chassis finish blue hammer. Overall size $12 \times 9 \times 9 \mathrm{in}$. approx. Power consumption 150 watts. For A.C. mains $200-230-250 \mathrm{~V} .50 \mathrm{c} / \mathrm{cs}$. Outputs for 3 and 15 ohm speakers. EQUALLY SUIT. FOR LARGE HALLS CLUBS, OO OUT SIDE FUNCTIONS. IDEAL FOR USE WITH MUSICAL INSTRUMENTS SUCH AS STRING BASS, ELECTRONIC ORGAN GUITAR etc FOR DANCE BANDS, GARRISON THEATRES, etc. EXPORT ENQUIRIESINVITEO

LT/A5 HIOH QUALITY TAPE DECK AMP LIFIER

 Truvox. Aspien, Brounell etc. de ginte make of Dook when oriering.
 ior full rocording. Ooly 2 millivolts minimmin oatpat requirel fram reocrding

 per secood. Autorantio equalis. ctloo st the turo of a koob when switch.

12
 Onit supplioi vith makerci 12. RLM, E780 EM3. Ontpitit wath Onil suppliod vith maker', 12 moothi guamatoe. Wo fonw of no other

COLLARO JUEIOE 4 speEd RECOAD PLAYER Fitb separate plock-up havias dunl polat sapphire atyluag Rrroil Curt. 3 /6.

LQ3 MINIATURE 3 WATT GRAM. AMPLIFIER Firr $300-230^{\circ}$ v. 50 c.p.s. A.C. Mains Overall alze only $\left.64 \times 4\right\}$ \times ulin Pithed rol. and Tone Control with mains switech. henaitiog ualt. Output for $2-5$ ohms apenker. Garrantead 12 unothe. Only 49!2. Carr. 3/9.

R\&G. AS 4-5 WATT HIEH GAIN AMPLIFIER

 A hishly renalitive ${ }^{4}$ for the nome amplifict club, etc. Only 80 millivolth inpat ter require. for full oatpot eo that it the suitabiat bighobdeifity pick-up heeds in addiHon to all other typen of pock-apa and practically all milise separato Bass and Treble pontrols are prortded. These cive equallastion. Bum level n megildible beins 71 D.B. fdown. is D.B. of negative fradber in ueod. 日.T. of 300 V . 26 mA . Aad LT. of B.8 \%. 1.5 S . avallable for the suyply af a Badto Feoder Onat or Tape Deck pro-mplifier. For A.C. malian inpnt of 200-230-230 ${ }^{\circ}$. 50 ch Outpat for 2.8 ohm apeaker Chaseils in not allive. Kit teoonplett in every detali sud locindee folly puncted value at ooly $\mathrm{E4} / 15 \%$ or meambled reedy for une $25 /$
 paymente of $28 /-$ for amombleal anth
R.8.C. A7 3-4 WATT QUALITY AMPLIFIER A hiechly sanative d-vive ampliber velag negmeve foedbeok and haning az axoelloat frequapecy rosponae. Pro-amplitier and Tood control stages are broorporatiod with reparate Baen and Treble controlm giviot full toop counpeamalion tor ong playing reoords sujtable for any king of plok-2p
 Unith etc ONLY to millitrote mpat required for inll outpat Polly bolnted chasian ritho baseplata por A.C. malime $2000-2800$. 80 opcles. Ortput for 2.8 oam speaker. Complete kit of parts with polnt-io-potiot Hixiog diagrame e2/8 extre. Or Depont $18 / 6$ and ive monthly papimente of $\mathbf{2 S O}^{2 / 8}$ for nemembled unit.

COLLARO RCE57 4 SPEED AUTO-EHAMAERS

 With stndio pick-up with turnower head. brand New. Cartoned, iatest madel. For $200-350$ v. 50 c.p.e. A.f. muns. Vezy limited number at only $\& 8 / 19 / 6$, Carr. $5 / 8$,COLLARO RG54 3 SPEED AUTJ-GHANGER As abore unit but ior normal 3 -apeod rayurerorota. Brand

 marted Lumilud uouber only. 7 eat. Cart $1 / 6$.

PORTABLE GABINET3.

dastra. Punthed in : tone recine. Pronptionoly atcractive
 Depth 7 in. phen Ind 1 lla . Carrizur 3%. sptacial 0ffer Above cabinee las amphare dith. apkr. And Collero Juator 10 GIIS. or with RCSI 14 OAS. Carr.
 Buitable "or un with Gart ind. B,A.i. or any wher rocord Phaving notit and most microphonss Total nergulve feed-

 anarsnieed 12 minths. Onts $23 / 19 / 8$. Or parosit 28/and Ive montaly pavinente of $22 /=$, Bend A.A.E. (or levilet.

PLESSEY DUAL CONCETRIE 12in P.M. SPEAKERS

 of orthodur diesifn support. ber remedy wirad with claoke and condonner to eot an ireeter. Thus high odeuty
 Ior nee with gur All or may 2 zlmilar amplinar. Reting to 2א/17/8. Op Depooss $13{ }^{\circ}$ apd aine troothly peymeat and nibe

Radia Suphly Ca. (uress) wo. 32 THE CALLS.
 LEEDS, 2.

Tarms: C.W.O. or C.O.D. No C.O.D. under CJ. Postage $1 / 9$ extra on all orders under 2, 2/9 extra under 85 unleas carriage charge seaced. Full Price List 6d. Trale List Sd. Open to Callers: 9 a.m. to 5.30 . p.m. Saturday untill p.m. S.A.E. please with all enquiries.

NEW 1857 DESIEN HIQH-FIDELITY PUSH PULL MmPLIFIER WITH BUILTHN TONE CDNTROL PRE-ANP. ©TAEES
Two inpat sockets with sssociatel coatrons allow mixin of "o mike" and gran. as th all High deastavity. fnolu las
 for Utars woulli output ramatormer, specially designe of current mzoufacture INOIVIOUAL CONTRDIS POR BASS ANID TREBLE " Litt * nit "Cul " Frequescs reaponss si DB $30-30.00$) efca, Bix negativa foelbsok
 required lor PULL OUTPUT. 8ultable for nae with all co tk and ty nes of plok-apa and raterophonos, Comparsbla

 with pluy wrovides $900 \% .30 \mathrm{ma}$ and $6.3 \% .1 .5$ a Por
 For A.C. malas $200 \cdot 330 \cdot 250$ 甲. 50 e/ou. Output for 8 sad 15 ohme apeatera. Kit Li complete to last nut. Chasaie is diagrams supplied. Desplec improved performance due to une of tateat mioiature valven vilice remalos as previons model but extra input now standerd.
Oaty 8 olrs. or hectory built $45 /$ extre. 2 oarring handion oan bo suppliod for 1819 . TRBB 301
 paymats of $85 / 8$
LINEAR "DIATOAIS" IOWACT HIdH POECTIT A IPLIPRER [0 oorporating pre-amp. Vor A.C. mate: mput $200-230-350$ v. 50 0.p.8. A compert shischivels outonts for $\$$ and 15 ohms appatere shaparate By and Treble consrole Pive latent type suinisinre Mulard valves Only 18 Gni. Beod s.A.E. for leatet and crerit terma. W.B. "STENTORIAN "HIGH FIDELITYPM. SPEAKERS, HFl012, 10 wallit, 15 ohrs (or 3 ohm) spesch ooth. Where a ieally good yaulity speaker at olow prioe in required, we gallo recomainond thla unit with an matiag periormsoce. M. Phens ritulo whethet 8 ohm or is oanc roquired. PIM. SPEAEERS. $2 \cdot 3$ ohm 5ith Goodutan 17/9. $7 \times 4 \mathrm{in}$.
 28/8. 1212 Premey 8011. 12in. Plentey $\$$ ohmph 10 28.t. 19,01. Howey 8906

SUPERHET RADID FEEDER UNIT
Deasko of a bish izsality Rudis Tuner Uait (npecisity sattable tor one with say of our Ampliftors). A Iriode Heptode Fichanker is used. Peatode I.P sail donble Olode 8scond Deteown, delayed A.V.C. Is arrayged oo thsi. A.V.C. dil postione Oontrol. o Tuniny w. Ch. and Vol Outpat pllt loed moest Amptitiars requiring 300 m . unput deperilin ou As. tocacion. OOly 250 . 15 mA . H.T. And L.T. of 6.3 F 1 amp requirud trom sonultder slee of anit approz. 9-A.71L bigh Eand B.A.E for thustrated lasdet. Total baidias oret te esik/a, Potat-ho-poith witiog dingrams EBCURDInG TAPE 1,200 th. Bean Puretode Modian Comeltivity $15 / 0$.

JOHNSON TX. CONDENSERS Brand new and boxed, 500pf, variables, I5/6. P/P. I/-. Also new, boxed 2 in, variable inductances by Johnson, 22/6. P/P. 2/6.

HIGH RESISTANCE HEAD. PHONES. Brand new, boxed. S.G. Brown's, (ex-gov.) 4,000 ohms, 12/6 pr. P/P. I/6.
MUIRHEAD VERNIER DRIVES.
Brand new, 7/6. P/P. 1/-

R. 1155 COMMUNICATION RECEIVERS.

New issue, in now condition fitted with super slow motion drive. Supplied thoroughly checked and reception tested, c8/19/6 each. P/P. 6/-.

HEAVY DUTY "C" CORE TRANSFORMERS. Input 230 volts. Outputs $\$ 10 / 0 / 510 \mathrm{v}$. 300 ma ., $375 / 0 / 375 \mathrm{v}$. 100 ma . 6.3 v . 9 a ., $2 \times 6.3 \mathrm{v}$. 2 a .

AR. 8 WAVECHANGE SWITCHES. Spare for Model D. Ceramic, 8 bank, 6 pos. complete with all screens. Brand new, $17 / 6$ each. P/P. 2/6.

FURZEHILL CRYSTAL CALIARA-

 TORS. Circuit incorporates 6 valves and Ime/s. crystal, giving pips at 10,100 and operated $2 y$ and $120 y$ Supplied brand new and boxed, 59/6. P/P. 3/6.TAPPED L.T. TRANSFORMER. Input 200/250 volts. Output tapped, 3, 6, 9, 12, 24 or 36 voles 5 amps, 35/- each. P/P. 3/-.

WELDING TRANSFORMER. Input 230 voles. Output 17.5 voles 35 amps . New, 72/6 each P/P. 5/-.
L.T. TRANSFORMER BARGAIN. Input $200 / 250$ volss. Qutput 12 voles 5 amps . New, 12/6 each. P/P. 2/-.

MUIRHEAD STUD SWITCHES. Brand new and boxed. 4 banks, each bank 24 position. Heavy duty contacts. Only $17 / 6$ each. P/P. I/6.
R.IIS5 SUPER SLOW MOTION DRIVES Improved version as fitted to models L and N. Suitable for Model A etc. Brand new, $12 / 6$ each. P/P. 1/=.
AVO MODEL 7 MULTIPLIERS. Extended 1000 volt range to 4000 volts new and boxed $5 / 6$. P/P. $1 /$ -
W. 1191 WAVEMETERS. Porcable battery operated frequency check meters, Irequency coverage $100 \mathrm{kc} / \mathrm{s}$ to $20 \mathrm{me} / \mathrm{s}$] in 8 switched bands, directly calibrated on vernier scalo. Circuit incorporates a $1 \mathrm{mc} / \mathrm{s}$. crystal. Supplied in first class condition, E5/19/6 each. P/P 6/-

ROTARY CONVERTORS. Input 24 volts D.C. Output 230 volts A.C. 50 cycles, 100 watts Supplied unused, $92 / 6$ each. P/P. 5!-

CRYSTAL MICROPHONE INSERTS

Sensitive, ideal for cape reiorders, am plifiers, ecc., $4 / 6$ each P/P. 6d.

COSSOR DOUBLE BEAM
 OSCILLOSCOPE TYPE 339

Operation 110/200/250 volts A.C. 120 watts. Time Base 10 positions. 6 cps, to $250,000 \mathrm{cps}$. Amplifier 10 cps . to $2,000,000 \mathrm{cps}$. Sensitivity, YI.Y2.3.1 v. D.C. I.I v. rms. X. 2.25 v. D.C. .8v. rms.

Supplied in good working order, E27/10/- each. P/P. \& I.
"C" CORE E.H.T. TRANSFORMERS. All new and unused. Input 230 voles. Type I. Output 3850v. 5 ma . 4 v . 2.5 s . 4 v , Ia., 52/6. P/P. $3 /$. Trpe 2, $1250 / 0 / 1250 \mathrm{v}$. 5.5 ma .6 .3 v . Ia. Type 2, 2v/ 1a., 22/6. P/P. 2/6.

6 VOLT VIBRATOR PACKS. Output 120 volts 30 ma . Fully smoothed, uses standard Mallory 4-pin vibrator, new and boxed, 12/6 each. P/P. 2/6.
MIDGET RECORDER MOTORS. size it $x 1 \times 2$ tin. Operates from 4.5 to 24 v . D.C. Fitted with reduetion gear. New and boxed, $12 / 6$ each. P/P. I/-

MARCONI TF-643 U.H.F. WAVEMETERS Frequency coverage 20 to $300 \mathrm{mc} / \mathrm{s}$. in 4 bands Accuracy 1% up to $150 \mathrm{mc} / \mathrm{s}$. and 2% above. Supplied in parfect condition with all coils and calibration charts, $£ 19 / 10 /-$ each. P/P. 6/-.

RCA. ET.4336. PLATETRANSFORMERS.

 Special rolease. brand new in original makers transit cases. Primary tapped 200 to 250 voles 50 cycles. Secondary $2000 / 0 / 2000$ voles 400 ma . tapped $1500 / 0 / 5500$ volts. Price $\leqslant 12 / 10 /$ - each. P/P. f .AUDIO BEAT FREQUENCY OSCILLA TORS. Frequency coverage 0 to $10 \mathrm{ke} / \mathrm{s}$. with separate 50 cycle check point. Output impedance 10 or 600 ohms. Built-in monitoring voltmeter. Operation $110 / 200 / 250$ volt A.C. Not new but supplied is goos working order, E9/19/6 each. P/P. 10 -

SPECIAL OFFER

BRAND NEW AMERICAN/CANADIAN No. 19 Mk. II TRANSMITTER-RECEIVERS. Complete
 with alves. Frevalves. Fre-
quency covquency cov-
erage 2 to 8 erage 2 to 8 $\mathrm{me}^{\prime} \mathrm{s}, 65 /-\mathrm{ea}$ P/P. 10/-. Limited num ber only available.

HEAVY DUTY MAINS ISOLATING TRANSFORMERS. Specifications:-Primary 230 volts 3 amps . Secondary 230 voles 3 amps . (service racing, OK 5 amps.). Ideal for laboratory or workshop use. Supplied brand new in original cransic cases, 66/io/- each. P/P. 10/..
MAINS VOLTAGE REGULATOR TRANSFORMERS. For A.C. mains 50 cycles. Will give a variable ourput from 185 voles to 250 voles at 24 amps, fis each. PJP. $10 /$. Smaller type available $200 / 240$ voles 7.5 anps, $87 / 6$ each. PiP. 5/-.

EX-NAVY SOUND-POWERED TELEPHONES. This type requires no batteries to operate and can be fitted in moments to give complete inter-communication between two porints. Hand generator calling. Only $45 /$ - each.
P / P. $/ 6$.

> 12 VOLT MIDGET ROTARY TRANSFORMERS. Type H.T.II., size it $\times 2 \neq \mathrm{in}$. Output $310 / 360$ volts 30 ma . New and boxed, 22/6. P/P. 1/6.

FERRANTI POTTED FILAMENT TRANSFORMERS. Hermetically sealed, ceramic terminations. All new and boxed. Type 1, 200/250v. input. Output 6.3v. CT, 5.6a., tapped 5 v .6 6 v. CT. 4.8a. tapped 4v. 6.3v. CT. 1a. tapped 4v.1 $19 / 6$ aach. Type 2. Input $200 / 250 \mathrm{v}$. Outputs, 6.3 v . CT. 3.3a. capped 5 v .6 .3 v , CT. 1a. tapped 4 v . 6.3 v . C.T. .9a. 6.3v. CT. .6a, $15 / 6$ each. P/P. 2/each type.
300FT. COPPER AERIAL WIRE. EX-U.S.A. dinghy aerial, 3/6. P/P. I/-

RCA. OUTPUT TRANSFORMERS. Completely potted. Centre-capped primary, 8000 ohms. Secondary tapped, 3, 7.5, 15 or 600 ohms. Separate leedback winding. 15 600 ohms. Separate watte rating. Suitable for 6L6, EL84, atc., unused, $27 / 6$ each. P/P. 2/-.

P/O JUMPER LEADS. 4ft. twin screened lead fitted with 2 standard P/O jack plugs, 3/-. P/P. 6d. Panel jacks to suit, 9d.
12 YOLT D.C. MOBILE AMPLIFIERS. EXAdmiralty. Separate mic. or gram inputs. Output 10 watts, matched to 3, 15 or 600 ohms. Supplied in good working order, $88 / 19 / 6$ each. P/P. 5/-

> AMERICAN SUPER LIGHTWEIGHT HEADPHONES. Res. 50 ohms. Fitted with rubber earmoulds to fit inside the ear. Extremely good quality, ideal for communication recaivers, etc. New and boxed, IS/- pair. P/P. $/ /-$.

HEAVY DUTY SLIDER RESISTANCE. 1 ohm 12 amp, 6/6. P/P. $1 /$-.
Mintature h.t. TRANSFORMER. Input $220 / 240 \mathrm{v}$. Output 220 v . 25 ma . 6.3v. la. naw, 10/6 each. P/P. I/-. Midget contact rectifier to match, 7/6.
AMERICAN ROTARY TRANSFORMERS. Models available for either 6 or 12 volt D.C input. Output 250 volts 80 ma . Ideal for car mplios or razors etc. new and unused, 22/6 each. P/P. 3/-.

SPECIAL OFFER OF MULTI-RANGE TESTMETERS

THE WESTON 772 A.C./D.C. TESTMETER. Sensitivity 1,000 ohms per volt, basic movement 50 microamps. S resistance ranges 100 ohms to 10 megohms. 5 A.C. or D.C. volt ranges. 2.5 to 1,000 volts. 5 D.C. current ranges 1,000 microamps to 500 ma . 3 A.C. current ranges, 5 to 5 amps. Supplied in perfect working order in 5 amps. Supplied in perfect working order in
rexine-covered carrying case, cio/10/-. P/P $4 /$-.

THE FAMOUS AVO MODEL "D" TEST. METER. Anocher of the large series AVO meters. Incorporates 2 resistance ranges, $1 k$. and 10 k , ohms. (can be extended by using external batteries). 5 D.C. volt ranges, is to 1,500 volts. 4 A.C. vole ranges, 7.5 to 1.500 voles, 4 D.C. currens ranges, .015 amp . to $30 \mathrm{amps}, 3$ A.C. current ranges .075 amp. to 15 amps . Supplied in perfect working order, $68 / 19 / 6$ each. P / P 4/-.

THE POPULAR UNIVERSAL AVOMINOR TESTMETER accurate instrument from 0 co 20k ohms O.C voleage 0 to 500 volt A.C. voltage 0 co 500 volts. $D C$. current 0 to 500 ma . Supplied in perfece working order. Complete with leather carrying case and leads, \&5/10/- each. P/P. $2 / 6$.

SMOOTHING CHOKE BARGAINS. $10 \mathrm{H} .60 \mathrm{ma} ., 4 / 6 ; 15 \mathrm{H}$. $60 \mathrm{ma} ., 5 / 6 ; 8 \mathrm{H}, 100 \mathrm{ma}, 8 / 6 ; 9 \mathrm{H}$. $100 \mathrm{ma},. 7 / 6 ; 10 \mathrm{H} .100 \mathrm{ma} ., 8 / 6 ; 5 \mathrm{H}$. $200 \mathrm{ma} ., 5 / 6: 20 \mathrm{H}$. 120 ma ., $10 / 6$; 50 H .120 ma ., $15 / 6$; Swinging choke $3.6-4.2 \mathrm{H} .250 \mathrm{ma}$., $10 / 6$. P/P. $1 /=$ to $2 / 6$.

CHEAP LOUDSPEAKERS. All now and unused, 3 ohm coils. Plessey, $2 \frac{1}{2}$ in., $16 / \mathrm{i}$; Elac, $6 \frac{1}{2}$ in., $17 / 6$; Elac, Sin., 17/6: Goodmans $3 \frac{1}{3} \mathrm{in} ., 17 / 6$; Elac, Bin., 19/6; Elac, $10 i n ., 27 / 6$; Plesser 12 in., $32 / 6$: Elac, 7×4 elliprical. 1816; Plessey, $10 \times 6 \mathrm{in}$. elliprical, 27/6; Postage $1 / 6$.

DYNAMO EXPLODER UNITS. Used for deconating explosive charges. Operacion is by hand generator, giving 1,800 voles across output cerminals. Ideal also as phoco flash. Brand new, only $29 / 6$ each. P/P. 3/-.
G.E.C. SELECTEST MULTI-RANGE METERS Basic movement I ma., ohms 0.1 megohm. D.C. voles is to 1,500 voles. A.C. voles 7.5 to 1.500 voles. A.C. current 75 ma , to is amp. D.C. current 1.5 ma . co 30 mp . Supplied in good working order. c9/19/6 each. P/P. 4/-

METER BARGAINS

50 microamp 2tin,	59/6
50 microamp 2tin. Pi, M.C.	49/6
100 microamp $2 \frac{1}{\text { i }}$ in. FM. M.C.	39/6
200 m/amps. $2 \frac{1}{2} \mathrm{in}$. FM. M.C.	$9 / 6$
I amp. RF. 2 tin. Pj.T.C.	5/-
300 volt A.C. 2 tin. FM, M.I.	25/-
1.5 amp A.C./D.C. 2in. FM. M.l.	6/6
$2 \mathrm{~m} / \mathrm{a}$. meter rectifier, STC	5/6

CHARGING AND MODEL TRANSFOR-

 MERS.1. Pri. $200 / 250$ v. Sec. $3.5,9$ or 17 v. 1 amp., 9/\%. 2. Pri. 200/250 v. Sec. 3.5, 9 or 17 v. 2 amp.. $14 / 3$. 3. Pri. 200/250 v. Sec. 3.5. 9 or 17 v. 4 amp., $16 / 6$. 4. Pri. $200 / 250$ v. Sec, 6.3 v. 3 amp., 8 v. 1.5 amp.. $9 / 6$.
S. Pri. 200/250 v. Sec. tapped, 3, 4, 5, 6, 8. 10, 12, 15, 18, 20, 24 or 30 vole 2 amp., 18/6. Postage 1/6 ah types.
LTT. METAL RECTIFIERS. Full wave and bridged. 12 v. 1 amp., $6 / 3$; 12 v. 2 amp., $9 / 3$ $12 v_{.} 4$ amp. $13 / 9 ; 24 \mathrm{v}_{\mathrm{i}} 1 \mathrm{amp} 12 / .6 ; 24 \mathrm{v} .4$ amp. 22/6; 36 v. 4 amp., 27/6. P/P $/ /$-all types

PORTABLE PRECISION VOLTMETERS

Brand new and boxed instruments by famous manufacturer housed in polished ceak case. Moving iron move: ment reading A.C. or D.C. voles on 2 ranges. $0-160$ and ranges. voles. 0 ain. mirror scale. Accuracy within 2\%.
Supplied at a fraction of original cost, only Suppliod at P/P $4 / 6$

MODULATOR 67

A wonderlul complece A.C, mains power pack concaining the following componenss. Transformer $350 / 0 / 350$ v. 200 ma .63 v. 6 a. 5 v .3 a . input 230 v . 200 ma . choke, SZ4 rectifier. Paper and electrolytic smoothing condensers. II other uselul valves. Hundreds of components including switches, pots, condensers, resistors, ecc. Supplied orand new wi:h covers.
SPECIAL REDUCED PRICE 39/6 each

EDDYSTONE MAINS POWER PACKS S.441B. Supplied brand new and unused. Input $200 i 250$ volts Output 300 voles 200 mz and 12 volts 3 amps Double choke and condenser smoorhed, 544 reccifier Housed in condenser moothed, Su4 rectifier Housed in grey meca | case, fully fused, indicator etc. Only $49 / 6$ each |
| :--- |
| $1 / \mathrm{s}$. |

AMERICAN BEACON TRANSMITTER, RECEIVERS

RT 37/PPN-2. Brand new and boxed, complece wich inseruction book. Equipment comprises transmitter/ receiver with 9 valves (5 3AS, 3 iSS and I IRS), with buils-in $2 v$. vibrator power pack, spare vibrator, head-set connector leads and lors. collapsible aerial. Frequency coverage $2 / 4 / 238 \mathrm{Mc} / \mathrm{s}$. Price 72/6 each. P/P. $6 / \%$.

EDDYSTONE SPEAKER UNITS Wonderful offer. All rand new and boxed Gtin. speaker fitted in grey metal case. Standard 3 ohm coil, built-in volume concro! and matching transformer for 600 ohm line. Ideal for all ype recaivers Only 27/6 each. P/P 2/6.

MARCONI SIGNAL GENERATOR TF144G

The samous laboratory scandard. Frequency coverage $85 \mathrm{ke} / \mathrm{s}$. to $25 \mathrm{me} / \mathrm{s}$. Output voitage from I microvole to I volt. Operation 200'250 voles A.C. Offered reconditioned as new and guaranteed to be within original makers' specification, a certificace issued with each individual instrument. Price only 665 each. individual instrument. Price only 665 each.
Carriage El .

HEAVY "C" CORE H.T. TRANSFORMERS
Type I Inpue 230 voles Output $369 / 0 / 360$ voles, $200 \mathrm{~m} / \mathrm{a}$. $360 / 0 / 360$ voles $65 \mathrm{~m} / \mathrm{a} .6 .3 \mathrm{v}$. ct. 5 a . 6.3 v. ct 2 a., 6.3 v. 5 a., 5 v 4 ... 5 v. 3 a. $65 /$ each P/P. 4/6.
Type 2. Input 230 volts. Output $35010 / 350$ volts, $400 \mathrm{~m} / \mathrm{a}$., 25 v. 1 a., 21 v. 5 a. 6.3 v. 5a., 6.3 v. Ja., $5 \mathrm{v}, 4$ a.. 75/- each. P/P 4/6
Type 3. Input 23 volts Output $453,0 / 450$ voles 250 m/a., 2×6.3 v. 5 a., 2×6.3 v. 1 a., 5 v. 4 ... $69 / 6$ each. P/P. 4/6.
"C'" CORE H.T. TRANSFOR$450 / 0 / 450$ v. $220 \mathrm{~m} / \mathrm{a}, \mathrm{K} 3$ ४ 6 m 6.3 v. 3 a., 5 v, 3 a., $59 / 6$ each. P/P. 4/..

CAMBRIDGE INSTRUMENTS CURREVT TRANSFORMERS. Input 50 cycles, 300. 150 or 75 amps. Output 15 amps. Brand new and boxed, 44/19/6 each. P/P. 4/e.

MAINS NEON PANEL INDICATORS. $200 / 250 \mathrm{v}$ Chrome escutcheon. Red amber green or clear.
$3 / 9$ each. P/P. 3d.

> AMERICAN MINE DETECTORS. Type SCR-625c. Battery operated, portable and complece with instruction book. Ideal for dececting all types of metals. $£ 12 / 10 /$ each. P/P. $10 /$.

MINIATURE SLOW MOTION DRIVES. Dia lain. 180 deg . scale calibrated $0-100$. For tin. spindles. New and boxed $7 / 6$ each. P / P. 1/-, Larger cype available, $7 / 6$ each.

CHEAP PLASTIC RECORDING TAPE. 1.200 fe. by famous manufacturer on 7in. universal spool, only $\$ 9 / 6$ each. Brand new

 and boxed. P/P, 1/6.INSTRUMENT POTENTIOMETERS. Brand new Colvern type. 100,000 ohms, 10 watts, 3 tin. dia. Ideal for bridges, etc., $10 / 6$ each. $P / P \mathrm{P} / /$ -

> ADVANCE CONSTANT VOLTAGE TRANSFORMERS. Input 190 to 250 volts, A.C. 500 cycles. Oucput constant at 230 voles. Max. rating ISO warts. Supplied brand now in original crates, Es/ $10 /$ e each. P/P. $5 /-$.

BARGAIN GRAM MOTORS. Garrard centredrive motors complete with turntables. 200/250 volt A.C. Adjustable mechanically from 0 to 45 r.p.m. Only 22/6 each. P/P. 3/f.

0-1 MA. METERS Brand new moving coil mouncing with $2 \frac{1}{\mathrm{i}} \mathrm{in}$. scale calibrated $0 / 300$ volts. Resistance 100 ohms. rectifier, 25/- each. P/P. 1/-

BENDIX COMMAND TRANSMITTERS. Complet with all valves and erystal. Fraquency coverage 2.1 co $3 \mathrm{mc} / \mathrm{s}$. Only 22/6 each. P/P. 3/-.

SPECIAL OFFER OF MARCONI SICNAL GENERATORS TFSIT.
Frequency coverage 16 to $53 \mathrm{mc} / \mathrm{s}$. and 130 to $260 \mathrm{mc} / \mathrm{s}$. Operation $200 / 250$ volts A.C. Supplied in perfect condition at the ridiculous price of $\mathbf{f} 12 / 10 /-$ each. Carriage Cl .

KAP42 .. 10,6	PCIF89 .. 12/6
EB41 $9 /$	PCP93 .. 1216
EBC41 .. 101-	POLAS .. 12/6
EBCPO .. 1016	PLs8 .. 27110
EBP80.... $10 / 6$	PL81 15/-
EC91 $8 / 6$	PL82 $9 / 6$
RCOs4 .. 10/	PL83 18\%
RCC5 $\quad .016$	PP225 8111
PCC91 .. ${ }^{\text {d }}$	PX25 .. 18/6
RCPPO . $12 / 6$	PY80 $9 / 8$
ECFA2 $\quad .218 / 6$	PY81 10/.
ECH3 . $15 /=$	PY82 8/-
ECH85 .. 10/6	PY83 101-
FCH42 . 401	QP21 .. $7 / 6$
RCH81 .. 91	8P4 10/6
BCLaO .. 816	8P1紬.... $7 / 8$
PCLA8 . $13 / 6$	TH41 $12 / 6$
EFP22 $\quad \cdots 1816$	TH233 .. 15\%
EP40 . 1216	U10...... 10/
RP41 .. $9 / 6$	U17 18/6
EP80 .. $8 / 6$	U22 81
EFP5 .. 10/	U25 13.6
EPr6 . 1216	U191 18/6
EPAP -. L0:	U445 15\%
EP93 . 816	U801 $31 / 4$
EK2 15/	LAP12 .. 11/6
ELS 12/6	UP11 $9 / 6$
ELA2 .. 6/6	UBC41.... $8 / 6$
EI33 $\quad . .14 / 6$	UBPMO .. $0 /$
ELs8 ..87/10	UCH43 .. 10,
ELA1 - 1016	UCR81 .. $11 / 6$
ELA2 .. 11/6	1741 1010
E181 . $10 / 6$	UTA1 1016
E1484 ... 1010	U184 12/6
R,M80 . 1016	UY41.... 8/6
8M9] 11,8	UYRS . . . 1016
EY61 $12 / 6$	VPISA.... 7/-
EY91 8i-	VP41 $8 / 6$
R240 8/	VR21 $\because . . .819$
E780 816	VR33 ($\mathrm{NPS9}$) $8 / 6$
F289 . . . 9 !-	VR54 (EB34) $\%$
E1148 .. 2j-	VRAS (RECOS ${ }^{\text {c }}$
$\mathrm{FCl}^{\text {c }}$. . . $12 / 6$	$7 / 6$
FW4/300.. 10/	VR66 (EP38) 6/-
1732 ... 12/6	VR57 (EK32) 8/-
+30 … 510	VR05 (8P61) 3/-
HLax ${ }^{\text {co.. }} 816$	VREDAA (SP41)
HL92 . . . 1216	vine (Priv 3-
HNRO9 . 13.6	VR66 (Pyl) $3 / 9$
H2210.... 8/-	
K40N $9 /-$	VR91 (EYL) 7\%
KBC\% ${ }^{\text {a }}$. $81-$	VH92 (EA50) $1 / 6$
KP15 $8 / 6$	VR103i30 8\%
KLLs2	VR116 .. 4/-
KT24 $4 / 6$	VRIm6 .. 8\%
KT\% … 5\%	VR187 .. $5 / 6$
KT33C... 10/-	V14150/30 8\%
к'768.... 15\%	vp23 8/6
KTW63 . . $8 / 6$	V870 3/0
KT\%H1.... 8/\%	VT52 (EL32) 616
L19...... $13 / 8$	VT501 blo
MH4 . . . $7 / 8$	VUY9 (MU12/14)
M1141 .. 719	(U19
MKT4 . . . 1316	VU64 (Ul2) 91-
M8P4 7 pin 101	ve111 .. $2 / 6$
N37 18/1	W77 8/6
N78 1810	W720 1310
P815 316	X65 $101 /$
P215 3/11	X78...... $22 / 3$
PRNA4 .. 15/	X79...... 11/6
1'EN25 .. 5/-	Y68...... 810
PEN4 $\quad .12 / 6$	222 10/-
PFN46 .. $71 /$	73309...... 11/6
PEN2:30A 4/-	7369...... 11/8
PCCst .. 10/-	z769...... 11/6
PACKINGAND valve. BAI	sTAOE-d. per) AY 8atric.

MAINS TRANSFORMER8 ${ }^{3} \mathbf{W T R y}$
 ${ }^{3}$ grip. Both tapped at 4 v.. $80 / 9$ each. HTR
Primary: $200-290-240$ v. Secondariee:
$350-0.350$ - $80 \mathrm{~m} / \mathrm{A}$
0.6 .3
v, 4

Primary: 200-220-240 v. Elecondary 30 F .

 Postage and
translormer.
FEATER TRAMSFORMRRS
230 v. 1r.put of volt 5 amp.
230 v. Input 3 volt 3.0 amp
239 v. Input 4 volt 1.6 amp
230 v . Input 4 volt 3.0 mmpe
280 v . Input 5 volt 2.0 mmp .
290 v. Ioput 6.3 volt .6 mmp .
250 v. Input 8.3 volt 1.5 amp .
280 v . Incut 6.3 volt 3.0 mmp .
230 v , Iuput 12 volt 75 mmp .
230 v , 'uput 12 volt .75 mmp .
OUR 1957-1958 CATALOGUE IS NOW AVAILABLE TO ALL READERS OF THIS MAGAZINE. 48 PAGES OF COMPONENTS AND EQUIPMENT OF INTEREST TO ALL RADIO EN. THUSIASTS. SEND $\%$. IN STAMPS FOR YOUR COPY.

HEADPHONES-MICROPHONES
Ex-GOVRRMTITT EEADPROME AND MIOROPH05:
\qquad $7 / 6$ pair
CLL low mietance type 120 ohm pourplus.
Complete with strep, lend and plog type

Itsh Fenintade DLA Pbonen 10/- pair thantrator
Buitable for modio wort yellow and treen red apot. pod, apot....
R.F. for ase ap to 1.6 moli, White apot o... 10%
10%
 R.F. for nes op to $1.5 \mathrm{me} / \mathrm{h}$ to 8 me/h. yellow and rod apot, ot

1 gant $7 / 6$ bach; 2 gant $11 / 6$ each. JB ${ }^{\text {m }} 00^{\omega}$ twit gant condener 208 PF front
CHASSIS

Ahminium Undrilled with $12 \times 8 \times 24 \mathrm{tu} .8 / 8$ ench
Retnforced Corper. Arall. $\begin{aligned} & \text { Retnforced Corser. Arall. } \\ & \text { able in the followins siree }\end{aligned} 14 \times 3 \times 2 \mathrm{tm}$. $6 /$ - esch able in the following siret: $14 \times 9 \times 2 \mathrm{ln}$. $18 /$-ach
 $8 \times 6 \times 2 \mathrm{ln}$. $8 / 3$ each $16 \times 10 \times 2\} \ln .14 /$ eeneh $10 \times 7 \times 21$ in. $7 / 8$ each an are tour-mided-ideel $12 \times 5 \times 2 \mathrm{fin} .5 / 9$ each for radio reocivers, amplid.

SPECIAL OFFER. BAND I-III TUNERS

 4.C.I. P. outpot $16.19 \mathrm{Mc} / \mathrm{m}$, emally moditied to other outputs. Full circult dingram anppliod

80/-

SPECIAL PURCHASE

THE NEW APEX MARK II BAND III CONVERTER

- B.B.C. or Commercial Programmes at the touch of aswitch.
- Built-In power supply for 200,250 7. A.C.
- Variable fide tuner and gnin cootrol. Boparate ronins oo/oax awleh
- size only byta. \times Bfin. $\times 2$ 保.

BUILDING A "SECOND" SET
TERE TB TRE CABLAST TO GIVE YOUB RECEIVER THE COIMRRCLAL LOOT 11 tin. $\times 7 \mathrm{in} \times$ Gin. mopplied with Chatis (cut oot reeirs) Diat, Bact Plate, Drive complete Post 3 /-

THE "EKE " QUALITY 3

 WATT AMPLIFIERThree Iutercational Octas Valree 6R8G, 6VGGT, 6XbGT. A.C. Maine fulty holated. begative feed back (voltage and current) for moderu erystal. Meally bow ham level and even frequency reapotise Price 845. and even frequency reapo

R-GoverMilent Meater TRAMgORTER Univeral loput 2×6.8 volt

W.B. "STENTORIAN" ER UNIT

Midel R.F. 1018 loin. die-cant unit, m corporting 12.000 ganay toragneth Hand fing 80 capacity. 10 watte. Prequency reaposea 80 c.p.a. 14.000 a.p.s Brea reoonabo sit c.p.e., R4/19/Q
 Televininn Coaverters, eto
Specilication:-
Primary. 2350 v. $50 \mathrm{c} / \mathrm{s}$.
fecondary 1. $200 \mathrm{v}, 10 \mathrm{~mA}$.
PRICR
Overall Bizec
Clamp construction. S.9in. $\times 2.4 \mathrm{~m} . \times 2 \mathrm{ym}$
over windinur.
LOUDSPEAKER CABINETS

That attrective walnat-finiebed cabinet available for 6 fin. or 8 ln apealier unite Metal spealrer freh, complete with beok and Gif. type. ath. type. Meneurea 8 tita
 at bape. Price $81 / 6$ each.
 sia. type Verty simitar deaign. Irioe 16/6

[^23]
WESTINGHOUSE RECTIFIERS

GYLDOM＂TELETUMER＂＂Al typee avall－ Late，Braclone or your choike． Phe thim convertor and your troubbes aro

Aerial and Oecilititor Colle（All channeleb）－ ant requenction $7 / 8$ pair．
Anowe．milaise room slock，completo range of
COMYROL ENORS
Lopg necked knobe for T．V Recelvera in SUPPREsBORS
Duppessions
interter kith of condensers and chokes for 1 amp．kite slappreation．

$6 / 8$.

A Replacement Oulide to pick up heads cartidiges，时yle Over 193 山uetrations． Ormor colle for Collaro Type Dect Trane． criptor．Bine Filter ood Q77 Trebls Boont coli in＂．．．． $7 / 6$ ench 2T9 Bing $21 / 7 / 6$ each QTV Bit Ove．coil ．．．．．．．．．．． 76 eac Onmor Cotb for the Beglosers Shortwire
Beceiver．Radlo Constructor Aug－ 1957. Receiver．Redlo Conatructor Ang． 1957.
8 Q1 $81 / 11$ Mo／h........ of each RW O2 1245 Mch
sCRATGHOPF
Removen scrulchen from Redlo and T．V Cabinet．10 Polythene Dispenser Tubea．
$3 /=$ eac

Ah Componeute in Btock for BBC Televiaino Btud to＂ $\mathrm{E}^{\text {＂}}$ Bulding your own Red to Ret．Complete Ktt thetuding Haedphones，etc．．．．．．．．．．．．．．． $451 /$

MAINS DROPPING RESISTORS

Manufactarers Burplus Typen
948 ohm Zenth Fith taps
650 ohm tap at 575 ohms， 500 ohme， 5 ohma， 10 ohens．
Erid 1.490 otran with Tapa ．．．．．．．．．
Norman omp． 1.000 ohm with Norman ol amp．1，000 ohms with Normas 3 amp． 1,000 obmi ．．．．．．．．．．．．．． siliders
Lenith yaine Dropper gio ohm
Dablliler Type IIY tupped $200-210$ ，
 and 1，840 ohms．withtwistapn ．．．．．．． Bulgh Dropper with voltage＂tage＂

REPANCO COILS

tramgerior conss and contomrarts
Type OTL oombloed IET ITF（315 Kojci）aod 08C Coll Medium and Pre： Type TI2 2nd it tranferroble 8is Ke／s Ype TTX Prd in Pull taterstage Trand Typer Tris Puah Puil Öutpat Trani－ Type Drxi Migh Gatn Dual Range Type DRE2 Dual Rauge BIEB Gain Ain aro oomploto with dircuits

ACOS MICROPHONES

4nc． 83
 Mic．\＄－S Table Model without switoh．
MIC．M－4 Table Model with awteoh．
IIC． $80-6$ With swith and sdaptor for s floor stand．

Withont Awloot－ $8 / 8 / 2 / 2$
A oryntal hand of detk microphoese deciped for the hisp quality pubilo sidiress
 tequater tat trom 30 to 7,000 c．pe With microphone in omai－dirootio

Ha，8－1
 reqporme from 50 to $E, 000$ a．p－s．Faftable tor nas to reooriling apperatise fubllo Addrone equipanent．of a
Ha． 3
The ame an the M10 35－1 bat atted who a sumbll dest stand

LOUDSPEAKER UNITS

Mak	Type	9180	Prico
Elac	Square	syla．	19／6 each
Lectroma，Plemey	Round	51 i.	$17 / 6$
Goodmann，Plenes	\％Round	81 ix．	18
Coortmune，R．A A	A．Round	8 in ．	19.6 eac
Plomey，R．A A．， 8	Elac Round	106．	$25 / 8$ each
Plemey	Round	12in．	each
Elac	Ellipheal	7 in．x	1916 cmich
Elac	Filliptical	10 m.	2B／6 ench
All the above aro	PN unite	H 2	coh

RTC 121n．heary daty 20

Sima Malas Enersteod
3in Mais Encriviod spoaker $21{ }^{17} \quad{ }^{6}$ All have feld coile of spprox． 800 olumu．

Jutalat fer stan．unita by Goodmana and Lectrona ittod with standard output 1 each

SCOTCH BOY RECORDING

 TAPE8，ETC．
sconct boz TYPA

PLAP Bacorpira
R2，
Oj－each 7 ta．dismetre apool，ser reel， SOORCA Immedinte defivery fromateck ECOORDHE TAPE
soort．on sio plantio ppoon，per reel． 1,2004 ．on ith．plastic apoot．per reel． plare Bpools： 5 to．diancter， $8 / 6$ each． 7in．diameter． $4 / 3$ each

WB EASY TO ASSEMBLE

CABINETS

JUFIOR BASS REPLEX CORNER COIHONE A new contemporary－ntyle cubinet，eppecially deatyod to gire maximum reprofluction 4uality from steatorian 810 ．or 10 ta ．unith， With provinioo for Tweeter Unit，if requirai． ме＂gure
8JITOR BAES RETUE CORMER CORSOLE Carefully dietsaed to encure superb enuaitity of reproduction whep uned in conjunction sinn if aloo made for Tweeter Uath，if re－ quired
Menture（approx．） $85 \mathrm{in} . \times 30 \mathrm{Hn} . \times 19 \mathrm{in}$

PUBLICATIONS

5o． 14 F．M．TUNER COMETRUCT10．1 by W．
 cuit aviliable，ex atoct，enob ．．．．．．．．． $8 / 6$ Ilo．188．HOW TO MAKE AERIALS TOR TV for all Channole Ten different detigna for local and fringe artan，each， 2.6
耳a，128，PRACHICAL TRAMSETMORS ATD Make Your Owd Translastors th 48 pagen， No 140 TसLETHION RERVICDIE FOR

 bis Cireults lucluded，encb ．．．．．．．．． $4 / 8$童价MARD．HHGH QUALITY SOUID ENPODOCTIOR Inclaies 20 watt Ampll． ber，F．1．Tuner．Pre－Ampliners，eic．．tach $8 / 8$ Repetat Ho． 5 IT EAOLT FDDOTG． Protumely itmotrated wh Photographes taken trom a Televimor sereen，ench ．．．．．．．81－ LOUDGPEAEREy ov C．A BRIGOS
The Why and How of cooj Reproduction． Bound＂anformation for the byman aud the eathuatant，each ．．．．．．．．．．．．．．．．．．7／6
Wearite Manual of the Tape Deck，eich Puptage 4d．atch on all the above．
$1 / 6$ DIDICATOR EAMPE Bpring＇ixing typ gach．Fepedil Enottifers，Type J10．2fo elch Amplion Volarithern，Type J10．2／0 E．PB． $8 / 8$ each．Etencion pealter Volum Controin 1／8 each 0 0．each

 certor， $6 / 8$.
EURPLOS aEAR PABMRL Wo have found，from time to thme stooke of oom ponents etripped from ex－Goverament equipment，aloos with discontinned hinea ate．These are in manall quantitle apd there fore onproftable to advertite．To make room for bev．hems we orier st hem lam cam JUHCxTO BOT：Type 5X／284， 20 may

RECORD PLAYER UNITS

E－S－R．MONARCH
Four apeed automatic record ohagge unit． Playi 7in．，10tm．and 12 in ．reoomis anto Turn－uver Pick－up．Unil plate $12!\times 10 \mathrm{fm}$ ． 28／5／s Poatage，etc．，4／6．

COLLARO
Mode 3／544．Tharee speod mingo dayer： pick－up．Croam tulsh E8／19／8

COMPONENTS

 36 i－per set（cireuit included）．
Long Wave Lomilng Coll to mat．sh $4 / 6$ and Recordina TapI，1，200 leek．＂Purs－ tons． $12 / 6$ ench．
Mrembe cups For Gram．Needlen（Beko－ itte），1d ench．
CETYTAL DIODEIS Whe Ends platio case． $1 / \mathrm{E}$ each．Bulgto 7－ats Fins An
 for atandard Patri ol Instrament Fandis． 94．each．Pairy ol Instrament Eandias， $1 / 3$ patr．Spacker Cones，6ABP in 8th cone with 1th．cone pleoe， $4 / 8$ each．GABP ${ }^{6}+\mathrm{tan}$ ．cone with lin，pole plece， $4 / 6$ eteah A Low－Eilst Impedanon Yatohtas Unil tor Headphose to be inverted ta the oord， 81 esch．Tatn Trantormer，Btandard Type $39520 \mathrm{ma} / \mathrm{m}$ ． 6.3 v． 3 amp．， $11 / \mathrm{s}$ esch． Bulda Indicator Lamen mingle hold Axing for ctandard Mgs bulb red lens， $8 / 8$ ouch Trubalar Coadenear（（letal Boes）Bprague

 200 r 210 ． Relay Volve Cve71，to Holder， 819 each．

 $8 / 8$ ench．
Her Tappirg acterw dio．No． iln．Jont 31L os．
＂GLE＂TRAVEncma EBON witi Aneros TrATD give tin $x \sin x$ 2ttn．bacluding handle，complete with lead and writch to enable to to aned on any voltage botween 110 and 260 F．A．B．C andaptor te Bthed ca the krean，to．）．81\％enoh
 Cartridge Furee， O ，ewoh．
CABBIIta capt 8uttabla for use as． projeotor or reconding capo sise 15 in ． x long， 111 tin deep． 51 in front E．T．，8 Hm rear H．T．With bleck rezing anibh．Wetyh 81 bb ． $18 / 8$ anch．Poet and Packing \＄／6． E70 HinMTURE VALVI PH ErRAIGET U1t2 This han Amorican manufectared tool at a prioe every one can attord．Comptele
whith plug．\＆／t ench．

RADID TRADERS LTID.
 23 WARDOUR ST., LONDON, W.I. (Coventry Street end)
 Phone: No. GERrard 3977/8
 Grams: "Rodiotrade"

SPECIAL OFFER OF CURRENT MANUFACTURE ELECTROLYTIC CONDENSERS
$8 \mathrm{mfd}, 450 \mathrm{v} .2 / 6$ each; $16 \mathrm{~m} / \mathrm{d}$, $450 \mathrm{v} .3 / \mathrm{m}: 32 \mathrm{~m} / \mathrm{d} .450 \mathrm{v} .4 / \mathrm{s} ; 8 \times 8 \mathrm{mfd}$. $450 \mathrm{v} 3 / .9 ; 8 \times 16 \mathrm{mid} .450 \mathrm{v} .4 / \mathrm{f} 16 \times 16 \mathrm{mfd} .450 \mathrm{v} .46 ; 32 \times 32 \mathrm{mfd}$ $350 \mathrm{v} .5 / \mathrm{s} /$. Bias Condensers: $25 \mathrm{~m} / \mathrm{d}$. 25 v . $1 / 6 ; 50 \mathrm{mid}$. 50 v . $1 / 9$. Please note we can offer special discounts for quantities.
W.W. RESISTORS. 5 watt $1 / 6 ; 10$ watt $2 / 6 ; 15$ watt $3 /-20$ watt $3 / 6$. We carry stocks of resistors from 2 watt to 150 watt W.W. Your enquiries invited.
HIGH STABILITY RESISTORS. \ddagger watt 5% 6d.; \ddagger watt 5% 9d. 1 wate $5 \% 1 /$. A few values in 1% and 2% still available.
ALL ORDERS FOR RESISTORS C.O.D. PLEASE, AS WE CANNOT GUARantee to stock all values.

ELECTROLYTIC CONDENSERS. Manufacturers' Surplus, in perfect condition. $100 \mathrm{mid} . \times 200 \mathrm{mid} .350 \mathrm{v}$. surge $5 / 6$ each; $100 \mathrm{mfd} . \times 100 \mathrm{mid}$. 425 v . surge $5 / 6$ each; 150 mld .450 v. wkg. $5 / 6$ each.
BIAS CONDENSERS. $3,000 \mathrm{mid} .6$ v. $3 / 6$ each; $2,500 \mathrm{mfd} .3$ v. $3 / 6$ each; $1,000 \mathrm{mfd} .12 \mathrm{v} .1 / \mathrm{s} ; 25 \mathrm{mfd} .25 \mathrm{v} .1 / 3 ; 50 \mathrm{mfd} .12 \mathrm{v} .1 /-$.

> TRANSISTORS: Junction type Red Spot by well-known manufaccurers $10 /$ - each.
> TRANSISTOR CONDENSERS: Miniature Electrolytic Capacitors 32 mid .3 v., 25 mfd .25 v., 25 mid .6 v., $16 \mathrm{mld} .12 v_{\text {. }} 8 \mathrm{mfd} .6$ v. 5 mid . $12 \mathrm{v} ., 2.5 \mathrm{mfd} .25 \mathrm{v} ., 1.6 \mathrm{mfd} .6 \mathrm{v}$., 1 mld . 12 v . All chese cypes of condensers are $3 / 6$ each. SPECIAL DISCOUNTS FOR QUANTITIES.
> AIR-SPACED TRIMMERS, 5, 10, 15, 20, 25, 50; and 75 of pre-ses and spindle cypes $2 /$ - each
> PYE PLUGS AND SOCKETS $1 / 6$ per pair " ${ }^{\text {T }}$ " pieced ... each
> GROMMETS, I grs. assorted grommers, tin. to lin. gross WESTECTORS. WX6, WXI2, W4 I/- each doz. 9/ SIGNAL LAMP HOLDERS. Panel mounting, complete with adjusting lampholder 2;- each ... doz. 21/-
> EELLING-LEE PLUGS AND SOCKETS. 5 pin 1/9; 7 pin 2/-; IOin. ... each

MANUFACTURERS PLEASE NOTE. We hold large stocks of Nitrogol, Visconol and other block-type Condensers, your enquiries are invited.

Q-100 amps. 50 c.p.s. $4 \frac{1}{2} \mathrm{in}$. METERS. E2/IO/-; 0-50 amp. Moving Iron Gin. Meters, 63/10/- each. All brand new and boxed.
MIDGET MICA CONDENSERS. .0001, .0002, .0003, .0004, . 0005 5/par dozen.
200 Assorted Moulded Mica Condensers, popular value
200 Assorted Silver Mica Condensers, popular values
200 Assorted Carbon Resistors, t, t and I watt. Good selection
$£ 2100$
Assorted Carbon Resistors, to thd wate Good selection £l 100
杂in. $3 /-10 \times 10 \times \frac{1}{1} \mathrm{in}$. $2 /-; 20 \times 10 \times \frac{1}{\pi} \mathrm{in}$, 4/\%. Minimum P. \& Pkg. $1 / 6$.

BARGAIN OFFER OF BATTERIES

4-way Push Button Units $\mathbf{2 / 6}$ each. Knobs for same 3/- per doz.
WEARITE COILS. PA4, PO4, PA5, PO5, 1/3 each. doz. 12/VALVE HOLDERS. Moulded B9A 7/6; B7G 6/-; Inc. Occ. 9/-;

Eng. Oct. ... doz. 4/6
VALVE HOLDER FITTED WITH LOWER CAN $1 / 6$ per doz.
extra. Sereening cans for B7G and B9A doz. 6/-
JONES PLUGS AND SOCKETS. 4 pin 216 per pair; 6 pin $3 / 6$ per pair; 8 pin $4 / 6$ per pair; 12 pin $6 / 6$ per pair. If cover required send $1 / 6$ extra per cover.
POINTER KNOBS. Small black with white line, standard \ddagger in.
spindle
$7 / 6$
WANDER PLUGS. Red and black doz. 2/-
PHILIPS TRIMMER TOOLS I/- each doz. 10/6 CASH WITH ORDER OR C.O.D. ALL ORDERS DEPT. W.I. ALL ORDERS FOR LESS THAN 22 ADD POSTAGE.

- We invite your enquiries for items not listed

Trade Counter open 9 to 6 Monday to Friday.
Also 9 to 1 Saturdays. Callers welcomed.
WHOLESALE MANUFACTURERS AND EXPORT ENQUIRIES INVITED

PRE-SET CONTROL LOCK

Designed to lock the spindles of pre-set potentiometers or trimmers without rotational or lateral displacement of shaft.

Will accept wide range of panel thicknesses.
TYPE P
TYPE C
Very attractive appearance for panel mounting

Send for leaflet A.I

"KNOB LOCK"

The ideal method of locking panel mounted controls. Positive guard against vibration, etc.

This development of our popular presest control lock is finlshed in black plastic and emboties control knob and instantaneous finger-tip locking knob.

Send for List No. A. 6

SUTtON COLDFIELD ELECTRICAL EMGINEERS

 Reddicap Trading Estate, Sutton Coldfield. 'phono zut 3038 a 533 s

CR50 BRIDGE measures from 10 pFd to 100 mFd and from I ohm to 10 Megohms in fourteen ranges, having - cotal scals tength of over 120 inches. Leakage cest for condensers. Indication ol balance is given by a magic eye fed from a high gain pentode. locernal scandards of "Constants " 1% resistors. Robustly conseructed for bench use, complete and ready tor use trom A.C. mains. E8/2/6 plus 4/6 carr./packing.

SG50 SIGNAL GENERATOR covers $100 \mathrm{kc} / \mathrm{s}$ to $80 \mathrm{Mc} / \mathrm{s}$ in six ranges on fundamentals (not harmonics) either modulated 400 cps or CW. Frequency accuracy 2\%. Uses 6AG5, 6C4 and RMI with double wound mains transformer. A de luxe inscrument housed in grey hammer finished case size $9 \times 13 \times 4$ in., with engraved Perspex scale. 69 plus 6/-carr./packing.

VV50 VALVE VOLTMETER. Price E8/2/6 plus $4 / 6$ carr./packing. Further detoils sent by return of post on receipt of self addressed stamped envelape.

TRADE supplied direct. CALLERS always welcome.

```
GRAYSHAW INSTRUMENTS
126 Sandgate High Street, Folkestone. Kent Phone: Folkestone 78613
```


RADIO - TELEVISION • HI-FI • ELECTRONICS • RECORDERS

AUTO-CHANGERS See us for your requirements or send for out latest list.

COLLARO

4-8PEED

MIXER AUTO-CHANGER

Latest model RC 456 incorporating auto and manual control enabling records to be payed singly or automatically. Complete with Studlo crystal pick-up and sapphire stylus List £13/17/\%.98.19.6 LASKY'S PRICE Post 5)-

Collaro " Junior " ${ }^{\text {s }}$-speed motor and pick-up with HOPS9 cartridge. Post $5 /$.
£4.12.6
Motor only, 59/6, past 2/6. Plck-up only. 33/6, post $9 / 6$.

Collaro 4/564 4-sweed Single Piayer with Stindio T p.n. crystal cartridge and stwi. Automatic stop. LASKY'S PRICE
87.7.0

COLLARO 4-speed

Transcription Turntable $4 \mathrm{~T} 200 / \mathrm{PX}, 219 / 10 / 0$. Less pick-up \&14:18/-. Carr. 7/6

BUILD YOURSELF A HIGH GRADE
 RECORD PLAYER!

We have the btagest selection of Auto-Changers, single Plavers, Anplifiers and cases, and you can make your own Record Player
for as low as
Come and see ue

TRANSISTORS AT A REASONABLE PRICE

R.F. P.N.P. Junction type, suitable for inedinm and low frequency oscillators, frequency changers and I.F. amplifers $21 /-$

AUDIO P.N.P. Junction type, suitable for high gain and low frequency amplifiers, and for output stages up to 250 milliwatts, $10 / \mathbf{}$ Post Free.

\star TESTED AND GUARANTEED EFFICIENT

\star HERMETICALLY 8EALED and unaffected by temperature variations.
Full operating data and circuit diagrams for a simple receiver superhet, T.R.F., multi-vibrator, relaxation oscillator, andio amplifier, oscillaturs, signal tracers, etc., supplied with each Transistor.

LASKY'S TRANSISTOR AMPLIFIER KIT
(200 milliwatts) For construction on a Printed Circuit

All components available separately

SUB-MIN. TRANSISTOR
TRANSFORMERA4/6
45-1 ratio each.
ALL TRANSISTOR COMPON. ENTS. Trans., midget. min. and sub-min. Coils, Ferrite Hods, sub-min. Condensers, ete.

PICK-UP BARGAIN
" RONE'PTE; Lightwelyht Crystal Piek-up with 2 cartridges. LASKY'S PRICE 45/=

Post $2 / 6$

GARTRIDGES

ACOS 110P37 p.וl. Cartridges. 1.p. and standard, complete with etyli. Lisit 41/7.
LASKY'S PRICE
Post $1 /$.

Size: $33 \mathrm{in} . \times 31 \mathrm{in}$. Height can be nuder lin. Uses nur new hermetically sealed Transistors and "perates from 6 -volt battery. Output impedance 3 ohms.
FULL DETAILS, CIRCUIT DIAGRAM AND' SHOPPING LIST 1/- post free.

COMPLETE KIT inclading 4 Transistors, all brand new components, latest T.C.C. miniature condensers, printed circuit and full instructions, $79 / 6$ l'ost $3 / 0$.

DEMONSTRATIONS AT EITHER OF OUR ADDRESSES

Telatron "Companion"
3.TRANSISTOR POCKET RADIO. T.R.F. circuit covering mediun and long waves, with balauced armature output. Ferrite aerial. Note small size: $4 \ddagger \times 3 \times 1 \mathrm{in}$. You can buld this novel transistorised $89 / 6$ pull instructions and price list. 6d. post free. All components available separately.

LASKYS
 RADIO

Season's Greetings

to the thousands of customers we have served in person or by post

LASKY'S 4-WATT PORTABLE GRAM AMPLIFIER

Will suit any type of crystal or magnetic pick-un. Ulses 3 valves: EL84 output L63 and EZ80 rect. Speaker and controls are completely separate and can be mounted as separate and can where in cabinet
shown or on anywher where most suitable.
COMPLETE with 3 valves and knobs, less
$\begin{aligned} & \text { Speaker. } \\ & \text { Carr. 5/. }\end{aligned} \quad 79 / 6$ carr. 3
$7 \mathrm{in} . \times 4 \mathrm{in}$. Elliptical Speaker, if required, $19 / 6$ extra.
Details and circult diagram post free on request.

LASKY'S PORTABLE

GRAM AMPLIFIER KIT

2 watts. Note small dimensions, approx. $\mathbf{H a}_{4} \mathrm{ith}$. $\times 3$ 3in. max., belght min. Uses EL84 output and 6X4 rectifier, double-wound transformer, tolle control, output transormer, etc. Built on a T.C.C. PRINTED CIRCUIT which greatly simplifies construction and clininates wiring errnrs.
COMPLETE KIT, inclıding vaives, printed circuit, full instruc-
ons, less Speaker.
Carr. $2 / 6$
58/-
7in. $\times 4 \mathrm{in}$. Elliptical Speaker, if required, $19 / 6$ extra.
*H.P. TERMS and CREDIT SALES avallable on certala items.

LASKY'S F.M. TUNER PRIMTED CIRCUIT YERSION OF Q.E.C. ©12 "F.M. PLUS" TUNER FOR HOME COMSTRUCTION
Note these star features:-
\star HIGH SENSITIVITY.
ALL BRAND NEW
T.c.c.

CONDENSERS. COUPLING COLL AND REIL PRINTED ON CIRCUIT.
\star SYALVES AND 2 german. IUM DIODES.
By the use of a printed circuit the I.F. and R.F. amplitiers are extremeiy stable at maximum gain and results are contgistent on all tuners.
Talve iline-up:-
ik.F. Antplifier, 2719 or EP80.
Mixer and Osc. B7 19 or ECC85
1st. I. W. amp. W719 or EF8s
and I.F. amp., W719 or EP85
2 Germaniuili Diodes GEX. 34 .
Driver Limiter, 7719 or EF80.
CANBE BUILTFOR 8 gns. (including valves)
Post and Pkg. 2/6
G.E.C. F.M. Tuner Book plus our full data and shopping list $2 / 6$ post free. All parts available separately ALIGNMENT SERVICE available. JASON F.M. TUNER
Special Parcel contaluing data book, chassis, front panel, dial, drive, tuning condenser, full sets of colls,
I.Fs, ratio detector, etc.
$68 / 9$ DATA BOOK with price ligt $2 /-2 / 6$ tuner uses 4-6A M6 and 2 crystals and can be built for $86 / 15 /-$, plus $3 / 6$ post.

JASON "ARGONAUT"

Super-sensitive Tuner for F.M. and inedium waves. Complete parcel wit power supplies.
£13.19.6
DATA BOOK $2 /$ - post free. Clrassis Assembly $57 / 9$ post $2 / 6$. I.F. and Coil Set $78 /$ post $1 / 6$.

All componenta svailable separutoly.

OTHER F.M. TUNERS

TSL \&17/10/-. DULCI \&17/10/Also Quad, Leak, RCA, Rogers, Pamphonic, etc
DULCI H4/T 4-wave AM/FM Tuner, 820/17/-.

SAVE POUNDS! ORDER BY POST IF YOU CANNOT CALL SCOOP!-PORTABLE TAPE RECORDER AMPLIFIERS

Malns 200/250 v. A.C. 6 watts output. 4 valves: EZ41 rect., EL41 output, EF40 and FCC81. Tone, volume and record/play back controls. Neon level indicator. Microphone and gram inputs. Can be used as a straight amplifier. Circuit diagram supplied.
LASKY'S PRICE
£6. 19.6
Completc with valves. Post \& Pkg. 5/-.

BUILD THIS 4-VALVE S/HET PORTABLE

 FOR ONLY 7 GNs.The PRINTED CIRCUIT supplied makes construction amazingly easy and accurate. You can build this ñe 4 -vaive superhet portable in an hour or so, and performance cquals readybuilt sets costing pounds more!

FOR ONLY e7/7/- plus $3 / 6$ carr. and pkg., you can bulld this Portable using all brand new components and valves, only batteries extra. Printed circuit, circuit diagram, and full instructions supplied.
If you would first like to study the layout of this portable send $1 / 6$ for Circuit Diagram, illustrations and full data. FOR ONLY 89/9/- plus $3 / 6$ carr. and pkg., you can build this joh as a mains and battery Portabie using our specialiy designed build-it-yourself Power Unit for $200-250 \mathrm{v}$. A.C. Demonstrations at both addresses.

HI-FI SPECIALISTS!

Selective Demonstrations of all the latest and best Hi-Fi equipment are given at our Tottenham Court Road showrooms. See our large and comprehensive stocks. PICK - UPS. Garrard, SPEAKERS. Wharfedale, Leak, Connoisseur, Orto- Goodmans, G.E.C., Lowphone, B/J., etc., etc. ther, Lorenz, etc, etc LowTRANSCRIPTION TURNTABLES. 3 and 4 speed GarAmplifiers. Quad, Rogers, Leak, RCA, Pamphonic, Unitelex, W.B., etc.
CABINETS. Wide selection of Cabinets and Cases to house your speakers and hi-fl equipment.

The New AVO MULTIMINOR. 19 ranges A.C. and D.C. 10,000 ohms per volt D.C. 1,000 ohms per volt A.C. Pocket size: 51×3) $\times 1 \mathrm{lin}$. Complete with leads and clip \&9/10/-. Post $3 / 6$.

Brand new and unused. Overall size: 14 in . long, 4 in. wide, 4 in. high. (Controls are mounted through chassis so cannot be seen in iliustration).
Note:-For use with high or medium Impedance Tape Heads, but with modification can work with any T.R. heads.

DULCI HI-FI CHASSIS,

AM and AM/FM TUNERS, and

AMPLIFIERS

New dealgns including:-
Mdl. H.3. AM/FM Radiogram Chassis, 3 wave bands including V.H.F. $\boldsymbol{\text { e20/17/- }}$ Md1. H. A. AM/FM Radjogram Chassis, 4 wavebands, including V.H.F. \&24/6/6 Mdi. H............................ chassis, 4 waves including V.H.F. 6-8 watts o.p. push-pull, ultra linear.
MdI. H.11 Combined E29/3/10 powered AM/FM Tuner and self powered AM/FM Tuner, Control Unit and Audio pre-amplifer.
Md1. DPA.10. 10-14 watt $229 / 3 / 10$ Linear Power Amplifer..... el2 tra Mdl. DP.4. 4-watt High Fidelt Amplifier \&7/10/=
MULLARD 510 AMPLIFIER KIT WITH T.C.C. PRINTED circuit

All specified components and your choice of transformers and choires by Partridge, Haddon, W/B, EHison or Gilson.
COMPLETE KIT of parts and printed circuit as low as 89.9 .0
Book 3/6 post free.
Printed circuit separately 22/6.
Also available built ready for use. Price according to transformers used. All components for abows Amplifier available separately. Price Litit on request.

Coilaro .' Tape DECKS
Coilaro "' Tape Transcriptor," Mk. III, \&22. Fitted pre-amp, £43. Truvox Deck, Mk. III, 23 ins. Truvox Deck MK. IV, $237 / 6 /$. Lane Deck, E18/10/-'
Wearlte Decks, 235 and $\& 40$.

TAPE RECORDERS

Leading makes-Grundig Elizabethan, Truvox, Sound, Vortexion, etc.
COLLARO TAPE DECK MOTORS, set of 3, clockwise, anti-clocik capstan. List 85/15/-. LASKY'S PRICE

Post 5/-

SPECIAL PURCHASE RECORDING TAPE

Famous manufacturer's surplus

 P.V.C. base, $1,200 \mathrm{ft}$. $21 / \mathrm{m}$ post 1/:.ALL LEADING MAKES OF RECORDING TAPE IN STOCK.

SPECIAL SPOOL OFFER

7in. Metal Spools $1 / 6$. All other

MORE MONEY-SAVING LASKY BARGAINS ON NEXT PAGE

EVERYTHING FOR HOME CONSTRUCTOR \& SERVICEMAN

TRUVOX 'SENIOR' SPEAKER DRIVING UNIT (pressure type) Power handling cap. 15 watte peak. With 12 fl . cinema horn reproduces down to 17 cps.
 List 57/15/-, Lasky's 59/6 Carr. $5 /-$ Price
 MOVING COIL
 P.M. SPEAKERS
 2 in . 17/6. 3in. and $3 \frac{1}{\mathrm{in}}$. $19 / 6$ 5in, 19/6. 61in. 17/6. 8in. 10in. 29/6.
 61 in . with transformer
 $7 \times 4 \mathrm{in}$. Elliptical. $10 \times 7 \mathrm{in}$. Elliptical
 \qquad $21 /-$ $29 / 6$ $19 / 6$ $32 / 6$

SPECIAL OFFER

DUAL CONCENTRIC SPEAKERS (I5in.)
Framous make. High Fideiity. 25 watts, 15 ohms imp., fuli freq. range 20 c.p.s. to 17,000 c.p.s., resonance 20 c.p.s. Complete with crossover unit. List $£ 27 / 4 / 6$.
$\underset{\text { PRICE }}{\underset{\text { LASKY'S }}{ }} \mathbb{8 1 6 . 1 9 . 6}$ Carr. $7 / 6$ plus $30 / \cdot$ for wo packing case (returnable).

G-VALVE RADIOGRAM CHASSIS COMPLETE WITH VALVES

 LASKY'S PRICE $£ 10 / 19 / 6$

Carriage and peciking $7 / 6$ extru

g-VALVE RADIOGRAM CHASSIS COMPLETE

 With Valves3. mave superbet, 1 1A.50 m.. $200 \cdot 550$ m.
 Hivis. Vaverall diain. 13ia. long, bin. deep, 7 io. hist approx. for ACC. milise $200 / 250 \%$. LASET'S PRICE
\qquad 7 GNS.
complete Carr. and Ply. $7 / 6$ extra
Prioe without valven $85 / 4 /$ -

Hi-FI ELECTROSTATIC
 SPEAKERS ("TWEETERS")

Easy to fit to any radio, TV receiver or amplifier. Full data and circuit diagram supplied. LSH75. For outputs up to 6 watts, 8/-.
LSH518. For outputs of 10-12 watts. 12/6.
LSH100. For outputs up to 20 watts, 14/-

Post free.
LPEES. MOVING COLL TWEETER
 50 cja For outputs up to 6 wata. 2 jm . diameter. All poat free. 30;'6.

SPEAKRR COVERDHGS. Iarge stocks of Tygan and " Bonneweave" Speaker Coveringa. Any alze plece cut. Send for sample and prices.

ALL-DRY POWER UNITS

 By Decca. Suitable for any battery radio using 1R5, 1T4, ete., 67t volts H.T.' $1 \frac{1}{4}$ valts L.T. LASKY'S PRICEPost $3 / 6$ $\mathbf{2 9 / 6}$

INEXPENSIVE EASILY BUILT RADIO SETS

Lasky's Radio Constructors' Parcels conlain eavrything to build up-lo-date and very eficient sets at lono cost.

PABCEI Wo. 1
Containa evergthlag to build a 4 -valve S.Wave aupertes for 200 /250 A.C. malime. tive wood cabinit, wehut veneer, or plaitic cablinet at ilustrated. size $12 \times 6 \mathrm{f} \times 51 \mathrm{in}$. derp. CAM BE BUILT FOR Carr. and packing $2 / 6$

PARCET Ho. 2
Contains everything to buthi a T.R.F. 3 -valve eet for $200 / 250 \mathrm{~A} . \mathrm{C}$. malns, medium
and long waves. Usen $6 K 70,617,8 V 6 \mathrm{and}$ and long waves. Unen 6K70, 6N7, 6V6 and
nietal rectifers. Neat thastic cabinet, walaut or fvory timsh, or wood ceablinet. Slize $12 \times$ 阴 $\times 5$ finin. deup.
$\begin{array}{ll}\text { CAF BE 80LT FOR } \\ \text { 8je and packiag 2/6 } & 85 / 10 / 0\end{array}$
INSTRUCTIOH BOOX for elcher above mets $1 /$ - post freo
CABLIETS ONLY plantic or wood, $17 / 6$
All comprononta availible aeparately.
MAKERS' SURPLUS TV COMPONENT BARGAINS

WIDE ANGLE 88 mm . Lime E.H.T. Lramh., frrox cube core.

 Bcanning Colis, Wow imp. iline sod 85/25/-
Ferrozecube cored Branning Coilis and
Line Out put Trans.ing 10.15 kV .
EYni winding, Line Trans. Cono
plete with circult diagram, the pair Prame Out put Trantiormer il....... Scanning
Frame or line blocking osc. trandformer
Focus Maqnet Ferrox-dure. P.M. Focun Magnels. Iron Coned fuomay Focaliser
Electromagnetic focus coll with oonblned sean colls

STADDARD 38 mm
Line Oulput Transformert 6.9 kV B.H.T. and 6.3 v. Finding. Ferrox: scabe frame
Dlato by Igranso blocking oucilititor
Frama or line blocking oeciltator
Frame out pat trasformer
Porus 3aknets
Without Vernier
With Verajer

 ately.
*H.P. TERMS \& CREDIT SALES available on certain goods

LASKYS RADIO

BAND III CONVERTERS

 TURRET TUNERS AERIALS, CO-Ax.CABLE Very large stocks. We have what you require.
CO-AX. CABLE

80 ohms semi-airspaced, finest quality, stranded. Per yard, 9d. Dozen yards...
Any length gupplied.
I7 in. C.R. TUBES
Rectangular, alumituised or ion trap 0.3 heater. Brand $£ 12 / 19 / 6$ Carr. and Insur. 22/0.

LASKY'S NEW MIDGET T.R.F. CONSTRUCTOR PARCEL

CAN BE BUILT

FOR ONLY 99/6
Post \& Pkg. 5/-
Handsome contemporary design case, overall size 8 lin. wide, $4 \ddagger \mathrm{in}$. deep, Sin. high. 2 latest double-purpose valves EBF9 and CL80, contact cooled rectifer. lor A.C. mains 200-250 speaker. Plastic cabinet in cream, pastel green, pink, hlue. FULL DACA, instructions, circuit diagram and shopping list, 16 post free.
All components available separ-
CABINET only, as fillus., $12 / 6$
Dlus $4 / 6$ post and pkg .
POCKET VOLT TEST METERS
Two ranges, D.C. 0-250 v. and 0-25 v. Complete with leads in canvas casc.
$\begin{array}{cc}\text { Lasky's } \\ \text { Price } & 12 / 6\end{array}$
Plus 2/6 post and packing. In leather case $1 / 6$ extra.

CHASSIS

We have the largest stocks of chassía, A.M. and AMIFM. A.M. chassis, I, m, s, from 7 Gns. AM/FM clanssis.......... from 14 Gms .

FERRITE RODS

Large selection of Ferrite Rods, all lengths, in stock. Price, per rod, lengths, in
$2 / 6$ to $3 / 6$.

MAINS TRANSFORMERS

All 200.250 v. 50 c.p.e. primary, ancet guality, fully graranteent.
 5 V. is n. Both hlatnenta tapped at 4 volta.

 AT/3. Auto Lrana. $0 \cdot 10 \cdot 1200,200 \cdot 330 \cdot 240 \mathrm{v}$.

FILAMENT TRANSFORMERS All 200-250 v. 50 c.p.s. primary. finest quality, fully guaranteed. 6.3 v. 1.5 amp. 5/11
6.3 v. 3 anp). 0.30 v. $2 \mathrm{amp} . \operatorname{tapped}$ voltages.

GERMANIUM CRYSTAL DIODES
GEX. 00 1/6, (1H2.34 3/6, WはS 3/6, HEX. CG12E 5i-.

20,000 VALVES IN STOCK

Here are a few examples of brand new surplus and inported valves:

EB91	716	EV41	10.6	BY86	14/6
EB41	$7 / 6$	EF80	$10 / 6$	13240	
Eabcso	10/-	EP83	$10 / 6$	1280	
EAPt2	101-	EP80	1216	PCL82	
EBC41	101-	EF89	101-	PCCOS 4	$12 / 6$
ECC85	101	6 K 8	$10 / 6$	P1/81	$18 / 6$
ECCA4	15!-	6 V 6	$8 / 6$	1 1-6\%	$10 / 6$
ECC83	81	6K7	5	10183	11/6
Euc82	9/-	697	$10 / 6$	l'Y80	$10 / 8$
ECxSI	9/-	687	$6 / 6$	PYst	$10 / 6$
12AT7	$8 / 6$	524	$8 / 6$	PY82	$10 / 6$
12AUT	$8 / 6$	DAF06	10:	PY83	1016
124×7	816	DL96	101-	6AT6	716
15389	10/6	DK96	10/-	HAT7	716
EFPCH2	15/	DP98	10\%	195	716
ECH42	$11 / 6$	DM70	91	3 ta	91-
ECH81	$11 / 6$	EY51	12/6	1T4	-
ECLaO	$10 / 6$	EC84	$11 / 6$	1R5	

WRITE FOR COMPLETB LIST

LASKY'S (HARROW ROAD) LTD.

370 HARROW ROAD, PADDINGTOH, W.9.
(Opposi.e Paddington Hospital)
Oppotice Paddington Hospit
LAD 5075 and CUN 1979.

FLECTROLYTICS ALL TYPES HEW STOER TUEULAR CAN TYPES $28 / 25 \mathrm{v} .40 / 12 \mathrm{v} .170 \quad 8+8 / 459 \%$. . $4 / 6$ $50 / 50$ v. $4 / 509$ v. 210 100/250 7..... 1: $8 / 480$.. $2+3$ $16+16 / 450 \% \ldots 5 / 0$ $18=16+8 / 850$ \%.5.6 $8+181450 \quad . \ldots$ ह1. $16 / 450$
$18.18 / 450$

 $88.28,340$ rimate 016 100i270 v. .. 6/6
 $8 \mu \mathrm{~F}$ itv. 3/6.
CONDERERRS. - IIo Silver Mion at prol valuat ${ }^{3}$ ot. to 1.000. ot. 8d. esah. Ditto and T.C.c. 001 rald-01 and $\dot{1350}$.
 1/6. E Runts, $1: 8$
CLOSE TOLERANCE CONDENSERS $3 /$ Hion
 60 Nf . (Tot. 1 pt. $1 / \mathrm{L} / 9$: 56 pt - -500 pl , each 1/9: 673 pf - 6,000 pf. each $8 / \mathrm{m}$
RESETORS.-Pref. van. 10 oums 10 M obras

CARBOR	What-wousio
Type. \ddagger W+ 8 8.:	w. 28 ohm
60.	$10 \% 10000$ 1/6
	15\% ohm $2 /$
	5 F \% 15,000-1/9
$\begin{aligned} & \text { Rew WOU D } \\ & \text { POTs } \end{aligned}$	गw LAB. COLVER'..
Pre-3et Min. T.v.	eto. Btanderd Glise Pote
Type Knuried ktot	2tin spindia High
led Knob. All	Grade All Values.
lues 28 ohruat to	100 othm to 50 E .
Ditio, Carbon	5/6: 100 \&. 8/6.
ck $50 \mathrm{~K} . \quad$ to	W!W EXT. SPEAKER
Meg. 3/-	MTROL 1003.
0070: 80	APE eto. 1,200ft.
eelo $1 . n / 5$ 3in.	3.8 710.
N	
Rack Voltryea	1252 \&V, 51-: K3/40
K $3 / 45$	V
9: K31100 +	6. eto MaInj
Pes.-HM1 125	60 mA . 4/9; RM2
v. 100 ma A 5/8	M3 125 $\mathrm{v}^{\text {c }} 120 \mathrm{~mA}$.

THIS MONTH'S SPECIAL OFFERS

 TRIPLETONE AMPLIFIERS. List price $\mathrm{C} / 119 / 6$. Ou price $65 / 19 / 6$ plus $2 / 6$ postage, etc. $200-250 \mathrm{v}$, A.C. 4 wates matched output for 2.3 ohms. Size only $8 \times 4 \times 4$ in. high. VALVES-6SJ7GT, 6V6GT, 6XSGT.Special Feature of Treble, Middle and Bass Controls. ALL NEW \& GUARANTEED
SINGLE-PIECE THROAT MIKES. I/- each. Post etc 3d. each. Could be used for electrifying musical instruments MIDGET BATTERY ELIMINATORS. To convort al low consumption Portables for Mains operation. Mains inpu 2001240 v. A.C. H.T. output 85 V. 10 mA , L.T. output 1.3 v 125 mA . Size $3.7 \times 2.5 \mathrm{in}$. Actually smaller than H.T. battery alone! SPECIAL PRICE OF 55/- plus $2 / 6$ post, etc. NEW \& GUARANTEED

172, ALFRETON RD., NOTTINGHAM

ASK ARTHURS FIRST

LARGE STOCKS OF VALVES and C.R.T.s. METERS, Avo, Advance, Taylor, and Cossor Oscilloscopes in stock. AMPLIFIERS, Leak, Trix \& Quad. GRAM UNITS, Garrard \& Collaro. Collaro TRANSCRIPTION UNIT 20IOPX.
LOUDSPEAKERS, Goodmans, Wharfedale, WB Tannoy and leading makes. PICK-UPS and STYLI of most makes. TAPE RECORDERS, Grundig, Philips, Truvox, Playtime \& Ferrograph.

LATEST VALVE MANUALS

Mullard, 10/6; Osram \& Brimar No. 6, 5/- each; Osram Part 2, 10/-. Postage 9d. each extra.
PARTICULARS ON REQUEST Terms C.O.D. OR CASH with order.

GRAY HOUSE, 150-152 CHARING CROAS ROAD, LOMDON, W.C. 2 TEMple Bar $5833 / 4$ and 4765

Cables: TELEGRAY. LONDON

A COMPLETE KIT OF PARTS TO BUILD

The "fidelity " TAPE AMPLIFIER Model HF/TR2 including POWER SUPPLY UNIT FOR ONLY £12.0.0 (Plas sfocarr. and This amplifier hab beef uxpremply destgned to meet
the rejulrements of the enthualats for High Fidelliy repmducilon It Idral m . coinpleted by the Mulsard Technichans and only really migh-grade component are inocrporated; truly HIOH FIDELWTY Recomling are

 wo-pontion eyualiser for 3 ing. and gin. apeeds. ani an eflecifve Tone Cont roi arrangeposition lob prorided to enable it to be need as an independent Ampliaer for Gramophon
 makes sof Tape Decke Whon ordoring, please adris make of dock in uso.
CEE ABgel and S.A.E. tor oriot dataile.
WE ALSO SUPPLY THE HF/TR2 A88EMBLED AND READY FOR U8E OR 218.0.0. (Plus ©/- carr. \& tas.). H.P. Treilis. Deposit 88 and 9 monthly payment: of 81. CREDIT TREDES: Depoait 24 and 9 monthly pagments of 81/9;4.

Home Conotructors!

BUILD YOUR OWN "Hi-Fi" TAPE RECORDER WE Offer YOU
a) The model Britie AMPLIPTER and POWER DMT, hoth iuls suembled. together with he TRUVOX MK IV TAPE OECK for ALTRENATIVELY as above but the EP/TR2 Amplifier and P/Uait
(b) Tbe model EF/TRE AMPLEIER and POWIER UKIT both filly amem BREd, together fith the RUVOX TAPE DRCK Lucorporatin
 ALTE COMPLETE KIT OF PABTg

(c) The model EE/TRA AMPLIFIER and POWER UMTT both fully atsem ALEERNATIVELY a above but the HF/TRs Ampliner and P/Unit ma COMPLETE KIT OF PABT8 ... plus 12/6 Carr. and Inamance.
TO COMPLETE THE RECORDER \qquad
The Portable Cartying Cave. A so gPRAKER . . 1.200 ft . Plebtic Tape

WE OFFER
$108810 \quad 0$ 20500
, arr. Ans.

STERN'S TAPE PRE-AMPLIFIER and ERASE UNIT

Provides the "Link" between the HIQH-QUALITY AMPLIFIER and TAPE DECK.
roder EP/TR1P \qquad A oompletely wambled Pre-Amplifer with owt, Power Supply. Can be mpplied corizotly matched for use with Truvox, Breatll or Collaro Deoks, and plewporated Recond lat Level Indicator plewe rend B.A.R with any laquiry. PRICE

THE NEW TRUVOX MKIV TAPE DECK

UNDOUBTEDLY ONE OF THE BEST TAPE DECKS ON THE MARKET.

PRICE £27.6.0 (4ay
CREDIT TTH27: Depoalt. $28 / 17 /$ and 9 monthly
 H.P. TERITS: Deposit $813 / 13 /-$ and 12 monthly payments of $21 / 6 / 3$.
gPECLTCATIOK:-3 B.T.E. ahaded pote motora with ailent frietion drive ellminatim. row and suttor. Puabobution controle electrleally mod mechanies lig interlockel (pateated). Patented electrketype puab-button controlled brake. tmohing io amalat editing; tape lowing on the drop-in pripcipal scconnmodation for reels of 7 in diameter. Trackibs sense. To Brtith and Amerfasp standsrds Piaging thmes; Cp with satety gap. - Playing time indication by precis!on revolution counter or farie virual type indliator plate according to choies Pooftive Aalinuth adjustment of Record. Plager Head. High Impedance Heads © The metal work is Gold Esmmered Anlsh.

The YK, TV DICK CAM AL 30 BE SOPPLIEO INCORPORATING PREOLSIOM REV,
 CRLDIT 8ALE: Depont ez/iel and y monthy of ee/15/10.

WE MAKE SPECIALLY REDUCED PRICES FOR COMBINED ORDERS

OR ADD TAPE TO YOUR EXISTING AMPLIFIER
 WE OFFER YOU

(3) The Model RTITRTP TAPE PREAMPLLIER together with the
(b) ALTERNATIVELY as to (a) nbove but Truvor Deck '............................... 0

PRECISION REV COUNTER .. 8380

PLEASE J2MCLUDE 12/3 to cover cost 0 . Carting and tasuranot.
GIRE PORCEASE and CREDIT SALE TERYS ave avaliable on all squipment (exctu liny
Kite 0 Parts). Bend S.A.E. for detmilt.
NOTR. . The Collero Transeriptor is in thort supply and thare ausy be a delay in dellvary. Wa will however book an onder.
The Deck a withee of the Trancriptor have to be ". Wire l-up." We will complete "his

ADVANCE NEWSII HUPMUL ILIS EEthe TROVOX Mk. III TAPE DECK and the correctly matched HP/TR1.A TAPE AMPLIFISR Price is only 30 aras.

Open Monday to Friday 9 a.m.-6 p.m. Saturday 9 a.m.-1 p.m.
 STERM RADIO LTD.

109 \& 115 FLEET ST., LONDOR, E.C. 4
Telaphone: FLEet St. 58/2/3/4

BRIRF BPBCLIFICATION:-
A O valve the up employing the latest MULLARD A o valve has up emplaying the lates $\begin{aligned} & \text { preferred-type valver, Provide complete coverage }\end{aligned}$

 - Qulek setion ""Pian" Key "selectors and separale Bnee and Treble Controls. Eae "Magic Eye "Tuning

HOME CONSTRUCTORS !

BUILD YOUR OWN " HITF
LOUDSPEAKER SYSTEM
UITE W-B'a WELL KNOW RANGE OP READY-TOAB8gMBLE CABINETR. ALL ARE BEAUTIFULLY MADE AND PINLBEED AND VERY RAGILY ABBEH-
ONLY BLBD ONLY A GCREWDRIVRR IB BEQUIRED;
THEY ARE PACKED FLAT IN CARTONS AND COMPLETR WTTH GCREWB.
WE 8HOW A FRW HERE
ABLE. BEND B.A.E. FOR LEAFLET.
OALL II ARD ESTH TO THEA
TAES REFLEX CORNER CONSOLE A new contemporary atyle
cablinet. to give maximum reprodaction quality from Btentorima 8in. or 101 a . units.
with provision for Tweter With proviaion for Tweeter
 Price e8/9/- or with the
sin. \&13/12/6 or with 10 in .
Btentorisn
Bpenker

THE "PRELUDE
BASS REFLEX
CORNER CONSOLE bas been spectally deaignod to buliseen the natural aconstio properties of the walles, and it abo obviously sultatio to uno Where mpace-saring is consideration
evnatructed to take every ar 10 in . naite, with provinion for Tweeter Uult. Size $38 \mathrm{in} \times 21 \mathrm{in} . \times 17 \mathrm{in}$. Prioe $810 / 10 / 0$ or with the 8 in. Reatortan speaker $214 / 13 / 6$
or with the 10 in gientorian of with the
$\$ 15 / 9 / 6$.
The' PRELUDE ' Hi Fi TABLE CABINET Deairned to take any roake
of Tape Deck or sluyte
Record Phyer foo AutoRecord Player (not Auto-
changers) Amplifer, Prechangers) Amplifier, Pro
amplifer Control Unit,
and Redio Tuner. Price

HIRE PURCNABE and GREDIT BALE TERM8
 ENGLOSED IM BTOCK.

MODERNISE YOUR OLD RADIOGRAM

: IT'S MUCH CHEAPER

high quaity amplihers, and Awoclated unita. Independent
and continuouily variable Basp and Treble controls give wide range of control. 8空ND EA.E. FOR DETAILS. PRICE $£ 37$ (Phan 7/G carr. and ins).

- CREDIT sALE TERES: Depooit $29 / 5 /$ and 9 monthls IIRE PURCHASE TRR13: Deponit 818/10/- and 120 monthly payment of $81 / 14 / 4$.

THE DULCI MODEL H3. COMBINED AM/FM radiogram CHASSIS

Thle ramelel lo very
sumillar to the model $\mathbf{H} .4$ deacribed above but covera 3 WAVRBANDB inatead of 4 (ounltiting the Short Rend) and price $£ 20.17 .0$ (Plue 7/8 carr. and ine.) CREDIP TERMS: Depoall R5/4/3 and o monthly payHeath of 81/18/4. H. . 12 .

IStern's "fidelity" F.M. TUNING IUNIT

The Iatert Mallard
Permenbilty
Permeability Tured
Unite Price

$\left.\right|^{\text {Bupply: }}$

£14.10.0

(Plus 7/B carr, and ima.).

TERMB: (a) H.P. Depolt
(b) Crodit Depoedt \$3/12/f amd 9 mouthy payments of 21/07. Providet is HiP. P1 ${ }^{\circ}$ approduction Tith may malke of Amplifer tad many Radio Recelven. It incrorporates:
 consumption to 1.7 ampe bt 6.3 volta mad $25 \mathrm{~m} / \mathrm{s}$. at 250 volts. TUNINE UNIT
Thla le IDENTICAL to the Blern's F.M. Tuper illuatrated -above, but in addition theorparatea the MgDIUJ WAVE.

 $\left\lvert\, \begin{aligned} & \text { nayment } \\ & \text { gntrod. }\end{aligned}\right.$
HOME CONSTRUCTORS . . . You ean build
(a) The " adelity" p.M. TUNING UNIT FOR $\mathbf{£ 1 0 . 0 . 0}$
(b) The "的ellty" Am/Fm tunina unit for $£ 13.0 .0$

The COMPLETE ASSEMBLY DIAGRAMS and INGTBUC TIONB CAN BE OBTANED FOR lio each
STERN'8 POWER SUPPLY UNIT8
Pully emoothed with ail output connections terminated to connecting Blacka. thereby ensbling ense of connecting Amphtiers are immedilety connievitod in this way). Overall
 ARE AVAILABLE. Type "A. Unit provides 250.300 volta nt up to 70 mola . and 6.3 volts st 3 s ampe.

PRICE 22.17.6 (Plm 31- carr. and ins.)
Type " B " Unit providea $250-800$ volte at up to $100 \mathrm{~m} / \mathrm{a}^{\prime}$

WH ALSO SUPPLI THESE DHITS AS COMPLETE ETTS
 membled.
Type -: A." Unit complete kit PRICE Re/9/6

THE DULCI MODEL H. 4 COMBINED Alu/Fim
 ADIOERAM chastis A ${ }^{4}$ Wa veband Receiver dealesped production Radto and Gram.
£24.6.6
(Plue $7 / 8$ carr. *
CREDIT TRRII: Deponit e6/Ri- and 9 montily pay-
 12 monthly payments of g1/2/7.
BRIEF
GPRCIPICATION:

- Covern Bhort, Medium, Long and F.M. Wavebanda - The Latest 7 -valve line-up : The Latest 7 -valve lime-up - "Rygic Eye "Tuning Indicator. - Intermal aerial for Incal atactiona.
- Overall size 12in. x 8ilin. x Plin. hlsh.

THE DULCI MODEL H.4T
Combined AM/FM Tuning Unit
incorporating own Power Supply.
MODEL H.4T. This model ta the "TUNER UNIT VER.
$810 \mathrm{~N}^{\prime}$ of the H. 4 Radiograna Chasio illutraved and deacribed shove. It one the amme coverybe of A.M, and Fize. Wavebands (4 altigeether) und yrectuely the anme in aize and appoarance, oxcept bhit has hitu conirom onf, monnted centrally on the chanelo. A selfocontaition Tuner tmrorporating own Power Supply. PRICE
£20.17.0
 amil 12 montbly paymente of $19 / 4$.

Conaiste of a t valve Superhet Beceiver covering Medium 13.6 to 138 metres. The new bow conuunption valvee are inoorporated and the whule in accomasialated in an attrachive robustly made ease. Buthery required ta 90
routs and 1.4 voth (price 18/6) and is external to case.

RECORD PLAYERS

THE VERY LATEST MODELS

ARE IN STOCK
MANY AT REDUCED PRICES ! ! ! TRAMSCRIPTIOM UNITB-AUTOCHAMQERE BIMGLE RECORD PLAYERE
Send S.A.E. for hllustrated stock list

CASH ONLY OFFER!!!

Thit lateat Brand Hew B.en. MoHAROE 4-BRED
AUTOCHAMGR E8.7.6 (Plum \$1.car. and tant - Minimum baec.

 sbove $5 f$ in.,. babebowrd bateblo
24 in .

WE ALSO HAVE A FEW ONLY

 COLLARO MODEL 458 +8peed " Mixer" AutochageraThe Uoits are BRAND NEW and incorporate the BTUDIO The Uoits are BRAND NEW and incorborate 0 (Plus $5 /$. carr.

Open Monday to Friday 9 a.m.-6 p.m.
Saturday 9 a.m. -1 p.m.
STERN
RADIO $\mathbf{L T D .}$.

HIGH FIDELITY

 FOR THE HOME CONSTRUCTOR
TUNING UNITS

 RADIO RECEIVERS
－COMPLETE KITS OF PARTS FOR THE＂Hi－Fi＂ENTHUSIAST

QUANITY OF THIS MATURE EAS NEVER BYFORE BEEN OFFERED AT SUCH LOW COST

STERN＇S REMOTE CONTROL UNIT

 designed in particular for use with the WULLARD S－ 10 main Amplifier． Ideally suited fordimple domestic in－ ataple domestic in．
intallat lon an an alternative to the more elaborate Pre amplifier（ ithown
 poalte）．Tone Control fucilities are remilly excrilent and fa couluncting with the $\cdot 5-10^{" M}$ Mnin
Ampliter reproduction ia of viry high quality．Perfectly auitmble for upe with all the popular Recond Plavers（B．S．R． Collaro，Garrard）and the noorlern Radio Tuner Unita Froat Panel contalas：（a）Coloured Indicator；（b）Beprate Britch；（d）Volume Contrul．Inputs on bucls for Rudio and Gram and Orsm equallatos to licorporsted．
PULL DATA Li oontained in the $3-10$ MAIN AMPLIFIEH MANUAL it $1 / 6$ ．

A smali Compact ampliter capablo of VEBY HICH GRAM．

The MULLARD＂5－10＂
 Fet deaigned woll certainly oeeds no recomamendation from us．Our kit io complete to MULLARDA apeeifioatlon iscluding the latest and the recommended Mulard Valve lineoup．All enecifed Componeats are aupplied and Powrer Supply in avaluble to drive Radio Tuner Undt．
PRICE OP COMPLETE KIT OF PARTS $89.10 .0 ~$ （Plus 8／－carr，\＆In⿻木一． or alternatively we aupply－
FULLY A8SEMBLED AND TEBTED for 811.10 .0
（PIUE $5 /$. cart．\＆InA．） WE ALSO OPFRR THE＊E－10＂IMCORPORATIMC TRANEFORIER FOR AN EXTEA E1／6／．
Thu ABSEMBLY MANUAL coataining FULL BPECLPI－ CATION la avaliable for 1／8．It maso tocludea full data on the REMOTE CONTROL，UNIT． ALTERHATIVELY WE WILL GUPPLY AssEIBLED and FULLY TESTED，as follows：－

8TERN＇s＂fidelity＂PRE－AMPLIFIER－ TONE CONTROL UNIT
＂A design for the musie Lover

This unit can be used with any Minit Amplitier．Briethy it has inputs ior all types of MICROPHONES，HIGB UNITT．It incorporates（a）GRAM EQUALIBINO CON： TROL（b）8TERPCUT FILTER．（c）COntinuouly variable BA8s and TREBLE CONTROLS，a variable OUTPUT CONTROL which easblea its moe with any type of Amplider，and Jack Bocikets are tacorporated for TAPR RECORD and TAPR PLAYBACKK．
hat wormally 8 asoclated onty commercially marie High fidellty Amplifiern．expendive PRICE OF COMPLETE KIT OF PARTB．\＄6．6．0 WH ALSO OFFER IT ABSEMBLBD BEADY FOR USB 98 （plus $5 / \cdot$ carr．a tom．）．
The ARSRMBLY MANUAL contains full apecification

SPECIAL PRICE

 REDUCTIONS－WE OFFER（a）The COMPLETS EIT OF PART8 to build both the MULLARD 5－10 and the REMOTE CONTROL B11．11．0
 （a）The MOLLARD 6－10 and tbe RSMOTE CONTROL UHTT for £14．0．0
 payments of $17 / 9$ ．
 CRRDIT SALE TERII：9A／15／e Doponit an
Dapout and 18 monthly pajments of $17 / 6$.
THS ABOVE PRICEB ARE BUBJECT TO 81／6／－BXTRA TP PARTRIDGE TRANSPORMER IS PREFERRED． WHEN ORDERING PLEASE INCLUDE $7 / 6$ to cover cost of Carriage and Insurance

$$
\begin{aligned}
& \text { carr. int int } \\
& \text { OPFER IT }
\end{aligned}
$$

OOPFER

 Altornatively sapplied A8sEMBLED and 88.12 .6 READ Y IUR SEE …
The complete 8 （pECIFICATION and AB8EMBLY DLA－ ORAMB are avaliable for $1 / 6$ ．
Developed from the very popular 3 valve 3 watl Amplifer dealgned in the Mullard Laboratories．We atrictly adbere to thelr ppecification but in addition we buve aided switcheri equalialag for L．P．and 78 recoris and E poaition tor Rande． Inpute，plus additional power to feed a Radio Tuniag
Extremely simplo to aswemble and ideally suitable to incorporate＂imall inatallation．
BRITAIN＇8 FINEST＂Hi－Fi＇AMPLIFIER
ant READY FOR UBE for
phat $5 / \mathrm{c}$ carr．a ing．）
U8E for
hla amplit．ins．）
39.10 .0
yet offered to the HOMR CONSTRUCTOR．It provides really excellent reproduction op to 8 watts，employing 6V6＇s in push－pull and incorporsting aegative feedback Providea for tbe use of linth a mad 15 ohm speakera．TVe
coraplete BPECIFICATION and BUILDINO INSTRUC TIONS are avallable for $1 / 6$ ．
－Wire－to－Wire＂Diagrams are tacluded and all Com－ monent are avaluble separmtely

accommodate aimost any make of Antochanger and Is attractively fieished in inaroop and Grey oolow Rexine

THE FOLLOWING HIGH FIDELITY AMPLIFIERS ARE IN STOCK

 Ampliner baring exparie BASs AND TREBLE Controie And GBAN EQUALising．Developed for birg qualist revrodoction include sparate power sapply with oprare P
The dulel model d．p．a．10．A 10 wate－Ulitra

 Tone Control Unil－all on one 829.3 .10 Thie Abutrona model A． 10 m ．II with meoo ciate PREMPPTUNE CONTROL UNIT，win model

 Clether wit the TLI2 plus AMPL• $\mathbf{E 3 4 . 1 3 . 0}$ тHE＂vabislops＂arsilable £15．15．0
 TONE CONTROL UNIT E26．0．0
 MPLIFIERTONB CONTROL UNIT $841,0.0$
GIRE PURCRASE and CREDIT TERIIS are avallable on all modala．
Ilmatrated and Deseriptive loalete are areileble．Soma 8．A．s
fic．pundra difte by most of the leadino MANUFACTUEERS
（b）The PORTABLS CARETLIG CABE． \qquad （c）thin．P．I．SPEAKER ．．．．．．．．．．．．．．．．．．．．．． $3 / 17 / 6$
$16 / 8$

We aloo bare a amalier PORTABLI CAgE kael tor Rocord Flavers，PRICE ONLY P3／8／e（plui 3／＊cart．Anep）． Atractively finlahed in higb－crade Rexiue aod robustly is will therefore secommonate all maken of $\times 15$ ita．hish． tocluding Autochangers．An nucut bateloond to stoo tucluatiog

RECEIVER TYPE R. 1392

Frequency 95-150 Mc/s (2-3 Metres). Air Tested 15 Valve Superhet. Air Valve Line-up: Superhet. Vave Line-up: (EF54); 1st Local. Oscillator (EF54); 1st Local. Oscillator V.R. 65 (SP61); 2 Oscillator Multipliers V.R. 136 (EF54); 3 I.F. Amp. V.R. 53 (E.F.39); AGC. 6Q.7. Output 6J5; Muting V.R.92 (EA.50); Noise Limiter V.R. 92 (EA.50); B.F.O. 6J7; Mixer V.R. 136 (EF.54); De Mod. 6Q7. Normally Crystal Controlled but can be tuned over 95 to $150 \mathrm{Mc} / \mathrm{s}$. Power supply required: $240-250$ volts at 80 mA . 6.3 volts at 4 amps. Size $19 \times 10 \mathrm{in}$. $\times 10 \mathrm{in}$. Standard Rack Mounting.
Complete with valves and circuit diagram
£6.19.6
Packing and Carriage 10 -- extra.

TR ANSMITTER/RECEIVER No. 19. Mk. II

Frequency coverage 2 to $8 \mathrm{mc} / \mathrm{s}$. for R/T. MCW. CW. Superhet Receiver $465 \mathrm{kc} / \mathrm{s}$. I. F .'s BFO etc. Receiver line-up: $6 \mathrm{~K} 7 \mathrm{RF} ; 6 \mathrm{~K} 8$ Mixer; Two 6 K 7 I.F.'s; 6B8 Det. Transmitter line-up: 6 K 8 Mixer; VFO EF50 buffer; ADC EB34; 807 P/A. This unit incorporates a TX/RX 229 ot $241 \mathrm{mc} / \mathrm{s}$. with a local range of 1 mile.
Valve line up: CV6. Two 6K7's and 6V6. Also intercom. set two valve AF amplifier 6 K 7 and 6 V 6.
As new condition and American manufacture.
£3.5.0
Fully valved.
Plus 10/-Packing and Postage

AN/APN.1. TRANSMITTER/RECEIVER

WALKIE TALKIE TRANSMITTER/ RECEIVER TYPE 38

Frequency 7.4 to $9 \mathrm{mc} / \mathrm{s}$, valved with four VP.23's and one ATP.4. Brand new and complete with two pairs of earphones two throat microphones, whip aerial, junction box and E3.5.0
Plus 5/- Packing and Postage.

RECEIVER TYPE R. 1132

Frequency $95-126 \mathrm{mc} / \mathrm{s}$. 11 Valve Superhet. Valve line-up: RF. Amp. VR.65; Frequency Changer AR.65; Local Oscillator VR.66; Stabilizer VS.70; I.F. Amplifiers V.R.53's; B.F.O. V.R.53; Detector V.R.54; A.F. Amplifier V.R.57; Output V.R. 37 (6J5). Switchable A.V.C. and A.G.C. Variable B.F.O. Circuit diagram
supplied with each unit. Easily converted
supplied With each unit. Easily converted
to receive Wrotham band with no alteration to wiring
to receive Wrotham band with no alteration to wiring
Conversion instructions available to eat 10 . $\times 10 \mathrm{in}$. Standard Rack Mounting.

43 .7.6

All these fine offers Proops

Shop and Head Office: Telephone: LANgham 0141 Mail order enquiries: Telephone: EUSton 8812 Carriage prices quoted apply only to England and Wates.

RECEIVER
 UNIT EX. 1143a

Suitable for conversion to 2 Metres or FM Wrotham transmissions. Valve line-up: Four EF. 50 's; One EL.32; Two EF.39's; One EBC. 33 ; One EA. 50.
Circuit diagram supplied with each unit. Fully valved. \&1.5.0

Plus $3 / 6$ Postage

DESYNN TYPE ANTENNA

or Beam position indication system
This comprises a transmitter unit and Indicator which will operate on 12 or 24 volts D.C. and will indicate with instantancous and smooth pointer movement. The Transmitter is a specially designed potentiometer and will operate the receiver on a simple three-wire syatem and the receiver in this instance is calibrated in gallons but dial could be easily altered to indicate a 360 deg. sweep. Transmitter and receiver with full instructions.

12s. 6d.
Plus 2;-Packing and Carriage

ANTENNA RELAY UNIT

U.S. manufacture, containing change-over relay, 2 in. panel mounting meter (measuring aerial current with separate thermocontarned in metal case $31 \times 4!\times 31 \mathrm{in}$. with ceramic stand off terminals.

12s. 6d.
Post paid

AN/APN. 1 TRANSDUCER

This unit consists of Magnet and Coil which is attached to an aluminium diaphragm suspended freely and perforated to prevent air damping Mounted on a Ceramic cover which sits over the diaphragm in a form of 2 -gang capacitor which has a swing from $10-50 \mathrm{pF}$.
The above unit is used as part of Wobbulator described on page 252 of the June, 1956, Wireless World.

Price
7s. 6d.
Post paid

GYRO UNIT AND INVERTER

Inverter: 12 volt d.c. input 3-phase 190 cycle output. (These inverters can be used successfully as 12 volt d.c. Motors for Models).
Gyro Unit: Operates on 3 -phase output from Inverter. Peak speed 11,400 r.p.m. Caged. Precision made equipment.
These units are ideal for experimenting and demonstration purposes. Size: Inverter $4 \times 4 \times 3 \mathrm{in}$.; Gyro 4 in . dia. incl. cage. 128. 6d.

Plus 3/- p.p.

NEW TANNOY SPEAKERS

External 8 watt unit 71 ohm impedance complete with matching transformer.

> \&1.0.0 each

Plus 3/6 Packing and Postage

MAINS POWER
 UNITS. TYPE 234

Double smoothed 200 to 250 v . 50 cycle input. Output: 200 or 250 volts at $100 \mathrm{~m} / \mathrm{A} 6.3$ volts at 6 amps. Voltmeter reading input and output voltages. Size: $19 \mathrm{in} . \times 10 \mathrm{in} . \times 6 \mathrm{tin}$.
 Standard Rack Mounting. 84 . 10.0

The TS184 A/AP
Real 70 cm . Test Gear, brand new in carrying case for only
$£ 5.10 .0$
Carriage Poid
Portable Preeision for Mobile Hams, Amateur T.V. Telearchics (with acknowledgements to Free Grid) and those monitoring the latest U.H.F. allocations.
RESONANT CAVITY WAVEMETER, calibrated $400-430 \mathrm{mc} / \mathrm{s}$. Tuning stops adjustable to any $30 \mathrm{mc} / \mathrm{s}$ band within the 400 to 470 mc / s coverage. Calibrated scale rack and pinion drive piston input attenuator-and alternative fixed coupling loop input provides facilities for use as a signal generator. Plug-in "Telescopic Probe Antenna" 656 detector and Monitor amplifier, 2-600 ohm phone jacks for modulated signals. Panel output terminals for metering 656 output current. Power required 6 volt at $300 \mathrm{~m} / \mathrm{A}$ and 30 volts at $0.5 \mathrm{~m} / \mathrm{A}$.
24-page booklet supplied with each unit giving comprehensive circuit descriptions, diagrams and suggesfed modifications Etc.

SIGNAL GENERATOR TYPE 52A

Frequency 6 to $52 \mathrm{mc} / \mathrm{s}$. Internal mains power pack.
$\$ 10.0 .0$
Plus : 10 - Carriage

SIGNAL GENERATOR AND WAVEMETER

Type W.1649. Frequency of signal generator: 140 to $240 \mathrm{Mc} / \mathrm{s}$. Accuracy $+0.5 \mathrm{Mc} / \mathrm{s}$. Frequency of Heterodyne Wavemeter: 155 to $255 \mathrm{Mc} / \mathrm{s}$. Accuracy $+0.2 \mathrm{Mc} / \mathrm{s}$. Containing VR. 135 and 4 -VR. 91 . 5 meg. crystal. Retractable aerial. Power requirements: 6.3 volts and 120 volts. Unit housed in copper lined wooden case. Size: $15 \frac{1}{1 i n} . \times 13 \mathrm{in} . \times 14 \mathrm{tin}$. In good used condition.
22. 10.0

Plus 101-Packing and Carriage

G. 93 WAVEMETER

'S' BAND PRECISION WAVEMETER

2900 to $3150 \mathrm{Mc} / \mathrm{s}$. TEST SET 288 A.M. Ref. 108B/6161.
Compriting exceptionally rugged silver-plated Wavemeter Type 1665, resiliently mounted and directly tuned by 7 lin. dia. calibrated micrometer with $6 \frac{1}{2}$ in. thimble scale. Temperature correction for micrometer attached. Resonance indicated on 100 microamp meter. Equally suitable for laboratory using milliweat powers or, with loose coupling, for high powers. UR21 connecting cable and couping probe supplied. Brand new in robust moisture-proof case with jackingoff screws and tool.
$\$ 15.0 .0$
Plus fl Pocking and Corriage

AMPLIDYNE MOTOR GENERATOR

Type 74. Brand new.
£1.15.0

ELECTRIC TIME SWITCH

Beautifully made clockwork mechanism automatically wound by 6 volt Solenoid. The time switch can be set for any period berween 30 minutes and 44 days This robust unit is housed in strong Bakelite case 4 in . in diameter.

12s. 6d.
Post Paid
BENDIX DYNAMOTORS
24 volts input 235 volts at 100 mA . D.C.

9s. Od. each Post pald

BINOCULAR TYPE INFRA RED VIEWING EQUIPMENT

Complete with EHT supply operating from 6 or 12 volt D.C. Originally designed for night driving. Complete with cleaning fluid and canvas carrying cases. Packed in transit cases.
23.10 .0

Carriage 716
PETROL ELECTRIC CHARGING SET $12 / 18$ volts, 80 watt. Ideal battery charging unit or for Field Days. Size: $14 \mathrm{lin} . \times 7 \mathrm{in}$. Weight 46 lbs .
Brand New, with complete set of running spares and Canvas cover.
\$11.10.0
Plus 10!-Pccking and Carriage

THROAT MICROPHONES TS.30.

Including socket.
3s. 0 d.
Post poid
CRYSTAL MIKE INSERTS
4s. 6d. each Post poid
HIGH RESISTANCE EARPHONES
2,000 ohms, single units
3s. 6d.
AMERICAN TANK PERISCOPES
7s. 6d.
Post paid

STANDARDISE YOUR RIG

With British to American or American to British Co-arial adaptors. Plug or Socket fittings.

1s. 6d.
Post poid

TRANSFORMERS

HEATER TRANSFORMERS

6.3 volt, $1 \frac{1}{2}$ amps.; brand new, 6/6, plus 1/- p.p.

SMALL MAINS TRANSFORMERS
Input 230 volt 50 cycles, output 250 volt 40 mA .96 .3 volt 1.5 amp. Size 3.9 in . $\times 2.4 \mathrm{in} . \times 2 \mathrm{in}$. Ideal for TV converters. Price $12 / 6$ each, plus 1/- p.p.
CHARGER TRANSFORMERS
For 6 or 12 volt; 230 volt 50 cycles input, 9 and 17 volt 3 amp . output. Price $15 / 6$ each, plus 1/- p.p.

MAINS CHANGING TRANSFORMER

(Admiralty Pattern) 230/100-110
130 V . Separate primary and secondary with earthed screen secondary winding between. Totally enclosed in 7 in . $\times 6$ in. $\times 8$ in. black steel cas: with detachable lid exposing terwith detachable lid exposing terSecondary very conservatively rated at 0.44 amps. (core size 3 sq. in.), tested to $2,000 \mathrm{~V}$. Weight 191 b .
\&1.0.0
including Packing and Postage

C.R.T. ISOLATION TRANSFORMERS
 For Cathode Ray Tubes hevine Heatar/Cathode short

 oircnit and for C.R. Tubes with falling emission Tyne A. Low ieakaze windings. Retio 1:1.25 giving - 25% boost on Secondary.

Type B. Mains input 290240 volts. Low Ce pacity. Multit Output 2. 4. 6.3, $7.3,10$ and 13 volts. Input hes two tans
which increase outpat volts by 25% and 50% respectively. Which incresse outpat volts by 25% and 50% respectively.
Thia transiormer fa suitable tor all Cathode Ray Tubes. With Tas Pane! 21/. each. Ditto for 6 volt Trbes only 1 \%/6.
Type C. Low eapaclity wound iransiormer for use with
8 volt Tubes with falling emission. Input $220 / 240$ volts Output 2-2t-2k-2t-3 volts at 2 amps. $17 / 8$ each. And Isolation Transformers are individually boxed. is belled NOTE:-It to essential to use mains
T.V. receivers having meriea connected hestere

RESISTORS. All mefeired values. $20 \% 10$ ohms to 10
 100 ohms to 10 meg . Ditto 10% 80.
$\left.\begin{array}{l}5 \text { watt } \\ 10 \text { watt }\end{array}\right\} \quad$ WRE-WOUND RESISTORS
15 watt
25 ohma $-16,000$ ohms
$\left\{\begin{array}{c}1 / 2 \\ 2 / 8 \\ \hline 10\end{array}\right.$
15.000 ohms 50.000 ohms, 5 W., $1 / 9: 10$ W. $12 / 3$
WIRE-WOUND POTS. 3 WATT EAB. COLVERN, ETC. Pre-set Min. T.V. Type | Standard size Poti., $2 \frac{1}{2}$ to

 O/P TRANSFORMERS. Heavy Duty $50 \mathrm{~mA}, 4 / 6$. Multiretio push-pult, $8 / 6$. Miniature 3 V 4 , ete., $4 / 6$. Hygrade L.F, CHOKES $15 / 10$ H. $\mathrm{mA} .11 / 6 ; 20 / 15 \mathrm{H} ., 120 / 150 \mathrm{~mA}$, $5 / \mathrm{F} ; 25 / 20 \mathrm{H} .100 / 120$ MAINS TRANS. $350-0-350.80 \mathrm{~mA} .6 .3 \%$. tapped 4,15 . 4 m \%. Lapped 4 ซ. \& a., ditto $250-0-25030 \mathrm{~mA}$., 1 c , $22 / 8$. Bargain $300-0-300 \mathrm{v} .65 \mathrm{mA}$.6 v. 4 a., 4% \%. 2 a., $15 /-$
I.F. TRANSFORMERS $7 / 6$ pair $465 \mathrm{Ke} / \mathrm{B}$ Slur tuning Miniature Can 2$\} \times 1 \times 1 \mathrm{in}$. High Wearite M800 IF Transformers $465 \mathrm{Kc} / \mathrm{a}, 12 / 6$ pair.
HEATER TRANS, Tapped 200/250 \%. 6.3 y. 1$\}$ amp, Ti6
 and jin. sq. $x 1$ itin. $2 /-$ complete with cores
TYANA. Midget Soldering Iron. 200,220 v. or 230,250 16/9. SOLON INSTRUMENT IRON. 25 win 24/\%.
MAINS DROPPERS. $3 \times 1+1 \mathrm{in}$. Three Adj. Stiders, 3 amp 750 ohms, $4 / 3$. 2 amp. $1,000 \mathrm{ohms}, 4 / 3$. per foot, 2 way, 6 d . fer toot, 3 way, 7 fd . per foot. 100 ohms

CRYSTAL MIKE INSERT by Acos Precision encineered. Size only $11 \times 316 \mathrm{in}$. Bargain.
Price f/\&.
Nrandormer required. MIKE TRANSF. $50: 1,3 / 9$ ea.; $1100: 1$, Po.ted 10,8
LOUDSPEAKERS P.M. 3 0RM. 24 n. Bquare, $17 / 6$

 CRYSTAL DIODE G.E.C., 2/-. GEX34, 4/0, 40 Circuits, $31-$ CRYETAL SET CONSTRUCTION. Kit 12/6. Book 1/H.R. HEADPHONES. 4,000 ohms, bi and now, 168 pair SWITCR CLEANER Fluid, squirt ipout. $4 / 3$ tin.
$\times 1$ in. $\times 13 \mathrm{in}$. $10 /-0005$ SLandard Dinialare, 11 in.
 9/-; less trimmers, $8 / 0$. Midget, 76 ; Single
solid Dieleciric $10 \mathrm{C}, 300,500 \mathrm{pt},. 3 / 6$ eech.

1958 RADIOGRAM CHASSIS THREE WAVEBANDS S.W. W. $200 \mathrm{~m} . \mathrm{m} .-550 \mathrm{~m}$. L.W. $800 \mathrm{~m} .-2,000 \mathrm{~m}$. L. W. $800 \mathrm{~m} .-2,000 \mathrm{~m}$. EL41, EZ40 Short-Medium-Long-Gram. A.C. $200 / 250$ V.. 4-way switeb leedback. 4,9 wath. Chassis 13 inin. $x \quad 51 \mathrm{in}$. $x 21 \mathrm{lin}$ Glass Dial 10×4 in. horizontal or vertical available.
2 Pilot Lamps. Four Knobs. Walnut or Ivory aligned a Plot Lamps. Four Knobs. Walnut or Ivory,
and calibrated. Chasis isolated from mains.
BRAND NEW $£ 10.10 .0$ carr. $4: 6$ TERMS: Deposit $£ 5$. $5 /$ and 6 monthly nayments of $£ 1$ AATCGED SPEAKERS FOR ABOVE CHASSIS

COLLARO HIGH FIDELITY AUTOCHANGER

MODEL RC456

For 7", 10", 12" Records 16. 33.4578 r.p.m 4.SPEEDS - 10 RECORDS WITH STUDIO "O " PICK-UP brand new in maker's boxes OUR PRICE $\mathbf{9 9 . 1 5 . 0}$ post froe TERMS: Deposit 85 ; 51 - and 6 monthly paymente of $f 1$. SUITABLE PLAYER CABNETS
Amplifter PLAYER CABINETS
$\frac{49 / 6}{63 /-}$

B.S.R. MONARCH 4-SPEED AUTOMATIC RECORD CHANGERS

Brand new sod tuly guaratteed 12 mooths. Fot job line reject stock
Designed to play 16. 33. 45, 78 r.p.m. Records 7in, two separate sanphire styii. for standard and L.P Each pliay 2,000 records. Voltage 200,250 A.C. OUR PRICE 58.15 .0 each. Post fres. Terma: Deposit 55 and $\$$ monthly payments of $£ 1$. Space required 14in. AMPLIFIER PLAIER CABINETS
GARRARD. 4-speed Single Record Flayer with GC2 Hi Fi Xtal Turnover Heal for 78 rp.m. aud L.

FAMOUS B.S.R. tapeed Motur and Turntalle with
 Xtal umover head, meladrate Bapphire atylun for L.P.
and MAnland records. SPECIAL OFFER, THE TWO £ $4 / 12 / 6$. pout $9 / 6.1+x 121 \mathrm{in}$. Cut Out beard $61-$ AMPLIPIER PORTABLE RECORD PLAYER CABINET gize $171 \times 131 \times 7 \mathrm{in}$. Motur Buard $16!\times$ litin.
Sl'ACE FOR ANY SINGLF, KECORD PLAYER TWIN EPEAKERG and AMPLIPIFA

COSSOR COMPANION

 MODEL $527 / \times$ FOR ALL-DRY BATTERY OPERATION S.W.I 13.6 to 43 metres, S.W. 242.8 to 136 metres, Medium 187 to 575 metres. A fine All-wave receiver giving world-wide reception on chree wavebands. Operation is reception on three wavebands. Operation isirom a single dry battery, very ezonomical irom a single dry battery, very eeonomical because the set uses the latest type of tow
consumption valves IAC6, IAJ4, IAHS, 3C4.

POWERFUL 6" ELLIPTICAL LOUDSPEAKER
The cabinet is attractively presented
maroon and beige with gold trimmings.
SIZE $9 \mathrm{f}^{\prime \prime} \times 6 \mathrm{~F}^{\prime \prime} \times 4 \mathrm{f}^{\prime \prime}$. Leaflet S.A.E.

SENTERCEL RECTIFIERS. E.E.T. TYPE FLY-BACK.
 $50 \mathrm{c}, \mathrm{D}$)
MAINS TYPE, RM1, 125 v. 60 mA., $5 /-;$ RM2, 100 mA
 MINIATURE CONTACT COOLED RECTIFIERS.

COILS. Wearite "P" type. 3/- cach. Oamor Midget "Q" type adj. dust core, from $4 /=$ ewch. All ranges.
 JASON F.M. TUNBR COLL SET, 26/- H.F. coll, acrial coll, Oscillator coil, two I.F. Trasusformers 10.7
Mc/b., Detector transformer and heater choke. Circuit and component book uning four GAMB, 2/F. J.B. Chinssin and Dial, $19 / 6$. Complete Kit, E5/i8/6.
With Jason Auperior calibratel dial, $86 / 25 /-$.
 500 v .001 to .01 mld . $9 \mathrm{~d} . ; .05,1$. $1 /-; .25,1 / 6 ; .5,1 / 9$; $1 / 350$ T, $9 \mathrm{~d} .: 0.1 \mathrm{mld}$. $2,000 \mathrm{~F}, 3 / 6 ; 0.01 \mathrm{mfd} 2000 \mathrm{~V} .1 / 9$ CERAMIC CONDS. 500 F. , 3 pl. to 01 mid . 10 d.
SILVER MICA CONDENSERS. $10 \% 5$ pt. 205000 pf. $1 /$;
 pf. $0.5,000$ pf., $2 /$ -

TUBULAR

| $3 / 6$ | $16 / 450 v$. |
| :--- | :--- | :--- |
| $4 / 5$ | $32 / 330 \mathrm{v}$ |

$\begin{array}{lllll} & 4 / 6 & 32 / 330 v & 4 / \\ 32 / 450 & \mathrm{v} . & 5 / 6 & 64 / 350 \mathrm{v} & 5 / 6 \\ 25 / 25 & 1 / 8 & 100 / 275 & 5 / 6\end{array}$

FULL WAVE BRIDGE SELENIUM RECTLFIERS. 2,0 or

for charging at 2.6 or 12 v. 1t a., 15/6:2 a. $17 / 8: 4$ 200
All Boved VALVES New \& Gusranteed

	All Boxed		VALVES		New \& Guaranteed		
185	816	6K8	816	EABC8	80816	E781	11/6
188	816	6L8	1016	E891	$8 / 6$	E1148	$1 / 6$
1T4	$8 / 6$	6Q7	1016	EBC33	8/6	Habcso	1216
384	816	68.7	$7 / 6$	EBC41	106	HYR2A	$7 / 18$
3V4	816	68N7	$8 / 6$	EBF80		MU14	1016
-U4	816	6V6G	716	RCCOA	1216	P61	616
5 Y 3	816	6VbGT	816	PCF80	1016	POCP4	1216
52.4	$10 / 6$	6X4	716	ECF82	1016	PCP80	1016
6AM6	818	6x5	716	ECH42	1016	PCF88	1016
688	516	${ }^{787}$	816	ECL80	816	PCLAR	106
6BE6	$7 / 6$	12 A 6	716	ECI82	$12 / 6$	PENO	616
6BHG	10/6	12AF8	$10 / 6$	EF39	716	${ }_{\text {PL8 }}$	1016
6BW6	816	12AT7	1016	EF41	1016	PY80	1016
GBW7	816	$12 \mathrm{AU7}$	1016	EF50	$5 / 6$	PY81	1016
6 CH 6	1016	12 AX 7	10/6	Equip.		PY83	$10 / 6$
$6{ }^{6} 6$	76	12BE6	10/6	EPS0	$8 / 6$	EP61	516
${ }_{6} \mathrm{FF} 8$	$7 / 6$	12 BH 7	106	8ylv.		UBC41	1016
${ }^{\text {fiH6 }}$	316	12K7	816	EP80	$10 / 6$	UCH42	1016
655	6/6	1207	$8 / 6$ 1016	EF92	5/6	UF41	1016
${ }_{6} 6$	$7 / 8$	${ }_{80}^{3524}$	1016	EL32	516	UL41	$10^{\prime} 6$
P.37	816	80	816	ELB4	1016	UY41	$10^{\prime} 6$
${ }^{6} \mathbf{K} 6$	616	054	$1 / 6$	EY51	11/6	U22	$10 / 6$
6K7	$5 / 6$	EASO	1/6	EZS0	10/6	X79	1016

HENRY'S

 (RADIDLTD)5 Harrow Road, Paddington, W. 2
Opfosite Edgware Road Station PADdington $1008 / 9$
OPEN MONDAY to SAT. 9-6. ThURS. 1 o'clock. Send 3d. for 28 -page Cotalogue.

QUARTZ CPYSTALS

FT-FUNDAMENTALS
80 Types $5706.667 \mathrm{Kc} / \mathrm{s}$ to $8340 \mathrm{Kc} / \mathrm{s}$ (in steps of $33.333 \mathrm{Kc} / \mathrm{s}$). 120 Types $5675 \mathrm{Kc} / \mathrm{s}$ to $8650 \mathrm{Kc} / \mathrm{s}$ (!n steps of $2.5 \mathrm{Kc} / \mathrm{s}$). (Excluding Types $7000 / 7300$ and $8000 / 8300$)

$$
5 /- \text { ЕАСН }
$$

Complete Sets of 80 Crystals 66. 0.0.
Complete Sets of 120 Crystals 67 . 10.0.

| $7000 \mathrm{Ke} / \mathrm{s}$ to $7300 \mathrm{Kc} / \mathrm{s}$, in steps of $25 \mathrm{Kc} / \mathrm{s} 7 \mathrm{EACH}$ |
| :--- | :--- |
| $8000 \mathrm{Kk} / \mathrm{s}$ to $8300 \mathrm{Kc} / \mathrm{s}$, in steps of $25 \mathrm{Kc} / \mathrm{s}$ |

FT2 41A-s4th HARMONIC
80 Types $20 \mathrm{Mc} / \mathrm{s}$ to $27.9 \mathrm{Mc} / \mathrm{s}$. (In steps of $100 \mathrm{Kc} / \mathrm{s}$.).
(Excluding 24-25.9 and $27 \mathrm{Mc} / \mathrm{s}$). 5/- EACH
24-25.9 \& $27 \mathrm{Mc} / \mathrm{s} 7 / 6$ Complece Ser of 80 Crystals 26

$100 \mathrm{Kc} / \mathrm{s} .$ $100 \mathrm{Kc} / \mathrm{s} .$	Gold-Plated D.T. Cut Two-Pin Box	\cdots	\ldots		$\begin{aligned} & 15 / . \\ & 15 \% \end{aligned}$
$150 \mathrm{Kc} / \mathrm{s}$.	Two-Pin Round			12/6d.
$160 \mathrm{Kc} / \mathrm{s}$.	. 10x	12/6d.
$200 \mathrm{Kc} / \mathrm{s}$.	FT241A	10%
$500 \mathrm{Kc} / \mathrm{s}$.	FT241A	7/6d.
$500 \mathrm{Kc} / \mathrm{s}$.	Brooks		15/-
$2500 \mathrm{Kc} / \mathrm{s}$.	Octal	
$5000 \mathrm{Kc} / \mathrm{s}$.	Piezo 2-Pin Holder	12/6d.

CERAMIC 2-PIN BANANA PLUG $15,010 \mathrm{Kc} / \mathrm{s}, 16,135 \mathrm{Kc} / \mathrm{s} .16,435 \mathrm{Kc} / \mathrm{s}$. $18,025 \mathrm{Kc} / \mathrm{s}$. $15,110 \mathrm{Kc} / \mathrm{s}, 16,335 \mathrm{Kc} / \mathrm{s}, 16,700 \mathrm{Kc} / \mathrm{s}, 18,125 \mathrm{Kc} / \mathrm{s}$.	$\begin{gathered} 7 / 6 \\ E A C H \end{gathered}$

MARCONI,	S.T.C. 2-PIN 10X FUNDAMENTALS IN KILOCYCLES			
1506.75	1764.5	2261	10,189	11.437
1544.4	1775	2295	10,233	11,501
1561.1	1780	2312	10,245	11.526
1566.5	1815	2315	10,300	11,587
1566.75	1870	2430	10,433	11,751
1572.5	1875	3270	10.445	11,788
1579	1890	3280	10,501	11,814
1588.68	1930	3310	10,511	11,851
1613.25	1981	3317.5	10,534	11,876
1650	2012	3390	10,545	12,600
1668.2	2055	3440	10,557	12,685
1674.9	2065.75	3630	10,567	
1690	2067.5	3850	10,622	AT
1690.5	2087.5	3920	10,755	
1700	2089	3960	10,767	
1727	2090	4210	10,823	7
1740	2118.25	4860	10,856	
1761	21\%	10,166	10,878	EACH

$\begin{aligned} & 32.5 \\ & 32.6 \end{aligned}$	FT24IA 72nd HARMONIC CRYSTALS 32.7 36.4 36.6 $5 /=\mathrm{EACH}$ 36.3 36.5 36.7				
T.C.S. CRYSTALS					
1522.5	1700	2070.3	2105	2667.5	
1572.5	1962.5	2072.5	2410	2865	EACH

MINI-TWO
 TWO.TRANSISTOR MINIATURE
 POCKET RADIO. The smallest Transistor set offered on the market. Variable Tuning. Drilled Chassis, Plastic Case siza 3in. \times 2in. x in. Minlacure Hearing Aid, 2 Transistors and all components including It volt Battery, Circuits and full practical layour diagrams.

Complete.

"EAVESDROPPER"
 THREE-TRANSISTOR POCKET RADIO

(No Aerial or Earch required)
Pre-selected to receive the Light and Home Stations. Total cost, as specified. including Transistors, Transformers, Coils, Condensers and Batrery, etc., with circuit and plastic case.

7716
All items sold separately.
With single 'phone, 82/6. With Acos Mike, 901-. With Min. Hearing Aid, 90/-

The New "TRANSISTOR-8"

Push-Pull Portable Superhet-Can be Builc for $£ 11 / 10,0$
This Portable 8 Transistor Superhet is tunable for boch Medium and Long Waves and is comparable in performance to any equivalent Commercial Transistor Set. Simplified construction enables this set to be buile easily and quickly into an attractive lightweight cabinet supplied.

TEN STAR FEATURES

* 8 Specially Selected Transistors

太 250 Milliwates Output Push-Pull

* Medium and Long Waves
* Internal Ferrite Rod Aerial
$\star 7 \times 4$ Elliptical Speaker
* Drilled Plastic Chassis $8 \frac{1}{2} \times 2$ tin.
\star Point to Point wiring and practical layout
\star Economical. Powered by $7 \frac{1}{2} \mathrm{~V}$ batery
* Highly sensitive
* Actractive lightweight contemporary case

We can supply all these items including Cabinet for E $11 / 101-$
All parts sold separately.
Send for circuit diagrams, assembly data, illustrations and instructions, and full shopping list FREE. Pose 3d.
Pair XCIOI's supplied 40\% extra. Call and hear demonstration modelor Mullard OC72s

373 MINIATURE I.F. STRIP 9.72 M:/s

The ideal F.M. conversion unit as described in "P.W." April/May, 1957. Complete wich 6 valves, two EF91's, two EF92's and one EB9I. I.F.T.'s, etc., in absoJutely new condicion. With circuit $12 / 6$ (less valves). $42 / 6$ (with valves.) Postage and Packing $2 / 6$ (either type).

TRANSMITTER RECEIVER

Army Type 17 Mk. 11
Complese with Valves, High Resis. tance Headphones. Hand-mike and Instruction Book 140 circ. - Frequency Range 44.0 to $62 \mathrm{Mc} / \mathrm{s}$. - Range Approximately 3 to 8 miles. Power requirements: Standard
120V H.T. and 2 V.T.
Ideal for Civil Defence and communications.
Calibrared WND NEW 59/6
Calibrated Wavemeter for same, 10/-
extra.

TRANSISTOR SAUARE WAVE

 GENERATORComplere Kis with 2 Transiscors, Components, Circuit and Plascic Case, 25/-.

"HOMELIGHT"

2 Transistor Personal Portable Voriable tuning We can supply all components including 2 Transistors, Diode. Resistors, Condensers and Miniature Hearing Aid and Plastic Case size $4 t \times 27 x$
$1 / 2$ and ItV Battery. FOR $52 / 6$.

All items sold separately.

[^24]
5.VALVEA.C./D.C. PORTABLE RADIO.GRAM CHASSIS THREE WAVE BAND SUPERHET, 200/250V A.C./D.C.

> (With Internal Aerial)

Short Wave $16-50 \mathrm{~m}$. Medium Wave $187-575 \mathrm{~m}$. Long Wave $900 / 2000 \mathrm{~m}$ (With Gram. Switching)
Well-known Manulacturer's product complete with Five Marconi Valves, type: X109, W107, DH107, N108 and U107 and 7×4 Elliptical Speaker. Ideal for Portable Radio-Gram. Chassis size: $10 \times 4 \times 4 \mathrm{in}$.

E7/12'6 P.P. $7 / 6$

Also available as above at the same price, similar chassis with following speciffrations: Shore Wave $11.27-31.9 \mathrm{~m}$. Short Wave 31.2-91m. Medium 187-575m and Gram. Switching.

[^25]

MAYCO

ELECTRIC COMPANY Now in stock, The new STIRLING

F.M.

TUNER

Complete with its own power pack and polished wooden cabinet. Nothing else to buy. Will work with any amplifier, record changer, radio or
radiogram. Full, clear instructions with each tuner. Fully guaranteed
Also in stock
STIRLING I.T.A.-B.B.C. TELEVISION CONVERTER

Guaranteed 12 months.

Complete with its own powar supply. Easily fitted. Cash with order. We pay the postage.

Price

mayco electric co.

Trade enquiries welcome

43 ROSEBERY AVE., LONDON, E.C. 1 | Terminu |
| :---: |
| Teleohonem $835-5958$ |

YOUR METER DAMAGED?

Contratores to the Yinintry of 8 upply and Goneral Poet Offioe. Bepairs by akilled craltamen of all makes and typee of Voltmelers, Ammeters, Microammelers, Multirange Tast Melers, Electrical Thermometers, Recording Instruments. instruments by reglatered poot to:-
L. CLASER \& CO.LTD

Electrical Instrument Repairars 97-100 ALDERSGATE STREET. E.C.I (Tel: : MONarch 6822)

RADIO\&ELECTRONIC ENGINEERS

The MORSE CODE is still, and always will be, the basic Code for individual Signalling, whether on visual or telecommunication circuits.
So add this simple and interesting subject to your qualifications. Apart from the to your qualincations. Apart drom the pleasure derived from this extra knowthe ladder is under consideration. Write for the CANder consideration. Write for the CANDLER BOOK OF
FACS and see for yourself how fascinating the Candler method of teaching the Morse Code will prove.
CANDLER SYSTEM CO. (56W) 52b ABINROON ROAD, LONDON, W. 8 Candler Systen Co., Derver, Colorado, U.S.A.

TELETRON BUPER INDUCTOR COILS

Ferrite Rod Aerials. Wound on high permeabilicy Ferroxcube rod, Medium wave 8/9, Dual wave $12 / 9$.
 Type HAX. Selective erystal diode coil for tape and quality amplifiers, $\mathrm{MW} 3 /$. LW $3 / 6$. Dual wave TRF Coils, matched pairs ias illustrated) 7/pair. Type S.S.O. Supersonic Tape Osc. coil, provides. 6.3 v. 3 a. RF for pre-amp heater. Eliminates induced $50 \mathrm{c} / \mathrm{s}$ hum, $40 / 100 \mathrm{kc}$, $15 /-\mathrm{ea}$. Transistor coils, etc. Available from leading stockists. Stamp for complete dacm and circuits.

THE TELETRON CO. LTD.,
266, Nightingale Rd., London, N.9. How 2527

When built, this new Jason F.M. Tuner provides choice of the thrte 8.8.C. programmes at the turn Switeh Tch, with a fourth position lor OFF. lizned uned pront End is supplied wired. cesticand plate. Chassis ready punched. In conformity with all lason F.M. Units, this model is completely stable and offers the highest possible standards of reproduction.

FROM LEADING 8TOCKI8Ts or in case of difficulty THE JASON MOTOR \& ELECTRONIC CO.

328, CRICKLEWOOD LANE, LONDON, N.W. 2
Phone: SPEedwell 7050

KIT

CONSTRUOTOR'S SWITCE-TUAER FMoluding areemblod Frons srad with and approved comert is 89.0 .0
SWITCE-TUNED FRONT END wilh
 Data Pobliontion Book of the $\quad \mathbf{2 . 0}$ Sond for doteriled tim of part--FREE. JASOH POWER PACE XTTE2.1.9

TEST METERS \& EQUIPMENT

EVERSHED \& VIGNOLES WEE MEGGER 250v.

New and
unused
Only Elolio
P. © P. 3/-
*
THE NEW AVO " MULTI MINOR" will test 1,000 v. D.C. or A.Ci Sensitivity 10,000 M/V D.C. or 1,000 M/V D.C. This 19 range all-purpose pocket size cester is for ohms, volts and milli-amps. Complete with inscructions, cest leads, etc. ¢9/10/-.
AVO VALVE TESTER. Complete with Rotary Panel in good order. €7/19/6, carr. 7/6. WAYEMETER TYPE W 1310 (Marconi ex Gove.), coverage $155-230 \mathrm{Mc} / \mathrm{s}$ continuous Complete with chart and test prods. As new for 200-250 v. A.C. mains operation. 44/15/-, carr. $10 /$.
VALVE TESTER (by Radio City Products, U.S.A.), model 314, brand new, unused with instruction manual. $110-220 \mathrm{v}$. A.C. $50 \mathrm{c} / \mathrm{s}$, Will test most American valves from 1.1 v . ep 200 v. E10, carr. 5/-

TEST SET. TS-26/TSM. This volt ohmmeter is the correct tester for EE8 telephones and all standard telephone equipment. B
technical data. $\mathrm{E7/10/-}$.
METERS. O-I m/a 2 in . circular F/M J7/6. Ditto, 2 in. 25/-. \quad - 50 microamps, D.C. m/c., projecting 2 tin. round 49/6. 0 10 mA . A.C. m / c., rectifiers, flush 34 in . round $49 / 1$. 300 V. A.C. 2tin. Hush mounting. 251$3 \frac{1}{2} \mathrm{in}$. flush mounting, $25 /-$ each.

AVO TEST BRIDGE. A.C. mains operated from 200-2s0 . Wil test resistance from
5 ohms to 50 mes. ohms and capacity from .00001 to 50 mids. A most useeveryday uses. Our price ${ }^{2}$ NLY E7/19/6. P. \& P. 3/6.

TEST METER. Model 420 S.P. (by Radio City Prodacts, U.S.A.). 1,000 ohms per vole for both A.C. and D.C. cests. As previously advertised. c5/19/6 only, carr., ete., 7/6.

EVERSHED
CIRCUIT CIRCUIT (low reied Ins ohm meter).The perfect meter for
continuity continuity
and polarity testing. Complete with test leads and ready to use. Brand new. Only £4/17/6. P. ER. 3/-.
5. METERS. 2in. cincular calibrated in decibels 5 mA . FSD. 25j-each. All brand decibels 5 mA . FSD, 25 and boxed. P. \& P. $/ /-$ each.
WAVEMETER CLASS D. Freq. range $1,900 \mathrm{kc} / \mathrm{s}$. to $8,000 \mathrm{kc} / \mathrm{s}$. ($158-37.5$ metres) in two ranges. Supply 6 v. D.C. input. New with instruction manual, spare vibrator and requency chancer. Complete in maker's transit case. 6S/19/6. Carr. 5/-.
MARCON: CRYSTAL CALIBRATOR. Frequency coverage $170-250 \mathrm{Mc} / \mathrm{s}$. Diredly calibrated, accuracy . 001%. Operation $200 / 250$ volts A.C. Supplied complete with 5 Mc/s crystal and spare set of 5 valves, in original transit case, brand new with instructions. $84 / 15 / 6$ each, carr. $10 /-$

ACCUMULATORS. Bakelite cased $2 v$ 100 ampere, 75 actual. Ex Govt. New and unused. Complete with carrying handle. deal for coupling 6 or 12 v . storage batteries. Size $6 \frac{1}{3} \mathrm{in} . \times 6$ in. $\times 3 \frac{1}{2} \mathrm{in} ., 15 /-$ each. Carr 3/6. 3 sent for $50 /-$ or 6 for 65 carr. paid. Ditto, 14 A.H. less handle, $5 / 6$, post $2 /-$ CATHODE RAY TUBES. VCR $139 A$ 2tin., 30/-; 3BPI. 3in., 30/-; SFPT, 5in., 35/-: VCR97, 6in., $20 /-$ All new and unused. P. \& P 3/-

ORAMOPHONE PLAYER AND AMPLIFIER CABINET. Finished in blue rexine. Complece with hinges and handle which are unassembled. New and unused. Overall size $12 \frac{1}{2} \mathrm{in}, \times 19 \mathrm{i} \mathrm{in} . \times 7 \mathrm{i} \mathrm{in}$. SPECIAL PRICE 32/6. P. \& P, 3/6.

TRANSFORMERS

RCA OUTPUT TRANSFORMERS.

20 watts, for $5,7.5,15$ and $500-600$ ohms impedance. Primary for a pair of 6L6's in pushpull. (Connection details supplied.) This specially designed first-quality output transformer is the best that money can buy OUR PRICE $27 / 6$ each. P. \& P. $2 /-$ L.T. TRANSFORMERS, Pri. 200-250 v 50 cycles A.C., Sec. 17.5 v. at 35 amps E4/15/-, carr. 10/-
TRANSFORMER (FERRANTI). Potced for 0-250 v. 50 cycles tapped primary, sec. $1,250 \quad \mathrm{v}_{0}, 15 \mathrm{~mA}$. Ideal for oscillos copes, etc. Size $31 \times 31 \times$ 4itin. ONLY $35 /-$ P. \& P. 2/6.
E.H.T. TRANSFORMERS. $3,850 \mathrm{v}$, at 50 mA . with two additional 4 V . L.T. windings, for 230 . 50 cycles primary. New and boxed. $\mathbf{6 3} / \mathrm{I} 5 /-$. Carr. 5/-.
TRANSFORMERS. $110-230$ v. Pri Sec. 26 v. tapped to 41 v. at 14 amps Now and boxed. $3 / 10 /-$ carr. $5 /=$
VARIABLE VOLTAGE REGULATOR TRANSFORMERS. Input 230 V. A.C at 21 amps. Output 57.5 volts in 16 equal steps to 230 y at 21 amps . Ex Govt., in perfect condition. $\quad\{2 / 10 /-$ earr. is $/ \mathrm{m}$. CAR RADIO VIB, TRANSFORMERS. 6 v. Input 280 v. at 80 mA . H.T. (Ex Phil co.). New in perfect condition. $12 / 6$ P.P. 2/-. Ditto 12 v. same price
E.H.T. TRANSFORMER. 20 kV , at 140 m / a. 230 v. 50 cycles primary. New and unused. Ex Govt. Built to the highest unused. Ex Govt. Buit to
specification. E22, carr, $30 /$.
TRANSFORMER. $1,800-0-1,800$ at kVA, 230 v. 50 cycles, primary. Fully tropicalised. New and boxed. tropicalised
Carr. $10 /-$.

SPEAKERS

TANNOY LOUDHAILERS (EX GOVT.). New and boxed. Impedance 7 ohms. Handling capacity 8 watts. Price $25 /$-. Post $3 / 6,2$ sent for $50 /$. Carr. $5 /$-. BAKER SELHURST I2in. P.M. 15 ohms. I5 watts loudspeakers, $30-14,000 \mathrm{c,p}$.s. Brand new. E4/10/-. RE-ENTRANT LOUDHAILERS. Heavy duty 20 watts all-metal. IS ohms. Diameter $18 i n$., length 12in. (approx.). By Parmeko. \& $6 / 10 /$ carr. 10/-. ERKER SELHURST " ${ }^{\circ}$ HI-FIMASTER SPEAK. has been acclaimed by all in the high-quality speaker has been acclaimed by all in the high-quality speaker
world as representing che finest value for money. world as representing the finest value for monay. Fundamantal resonance approx. 35 c.p.s. Freq. range $20 / 16,000$ c.p.s. Flux densicy approx. I4
15,000 lines per sq. cm. OUR PRICE ET/10/-. Full 15,000 lines per 8q. cm. OUR
descriptive Ifteratur available.
descriptive iteratur availabie.
Heavy ducy hand, in good working order
$18 / 24$ v. 10 AMP. BATTERY CHARGERS for 200 250 v. 50 cycles input, metered, switched and fused. As new. $\mathrm{c} 12 / 10 /=$ carr. 20/-
A.C-D.C. RECTIFIER POWER SUPPLY UNIT. 230 v. A.C. 50 eycles input, 100 v. D.C. output max 10 amps. $12 / 10 /=$, carr. $20 / \mathrm{m}$. Ditco at $2 t \mathrm{amp}$. $4 / 10 /-$ carr. $7 / 6$.
SELENIUM METAL RECTIFIERS. F/B.
6 or 12 v . 1 amp....... $7 / 4$ 2 24 . amp............. $13 / 6$ 12 v. 2 amp............... $10 /-24$ v. 2 amp.................. 20/- 24 .

 12 v. 10 amp................... 40, 24 v. 10 amp........................ $80 /-$ F/B, SINGLE PHASE OR THREE PHASE TO ORDER, FULLY GUARANTEED.
C.M.G. 25 PHOTO CELLS (OSRAM). Brand new.

15/=. P.P. $/ 1-$
B.C.g29A CRT INDICATOR UNIT. Containing $|-3 P B| 3 i n . C . R . T ., 3-65 N 7 s, 2-6 H 6 s, 1-6 G 6,1-6 \times 5$, 1 2×2; 8 valves in all. Ideal for scope conversion. Now, in original sealed cartons. 70/-, carr. 5/-.
 ㅊ RCA PLATE TRANSFORMERS. 190 to 250 v . t t primary. $50-60$ cycles. Secondary $4,600 / 3,500 /$ t t MID YOLT at $1.75 \mathrm{k} . \mathrm{v}$.a Brand now ind
 MINE DETECTOR No. 4. Complete in carrying case with all accessories. Good working order. $68 / 19 / 6$, carr. paid.
PARMEKO
PHONE MOVINE COIL HAND MICRO. plece with 12 yards flex. $30 /=$ P.P. $2 / 6$
BENDIX DYNAMOTORS. 28 v. D.C. input, 230 v. D.C. output at 100 mA . Now and boxed. 22/-,

12 v. D.C, ROTARY CONVERTERS. To 230 v. A.c. 50 cycles. 100 watts. Fully tested. E6/9/6, carr. 7/6. Ditto 24 v. D.C. | testeo, |
| :--- |
| C4/12/6, carr. $7 / 6$. |

MICROPHONE STANDS 3 sections of
MICROPHONE STANDS 3 sections of
I8tin. Extends to 56in. Stands on 3 legs
which fold tozecher. 21/- P.P. $2 / 6$. which fold together. 11/-, P.P. 2/6.
INDICATORBOARDS Standard and
NDICATOR BOARDS. Standard G.P.O.
rtting. New and unused in sesled car. tons. $15 /-$ each, either type.
G.P.O. 1 in in, RACKS. Heavy channel $4 f$ t. loin. hish, $59 / 6$, carr, $10,=$ Undrilled 14 S.W.G. steel panels for above with hinged cover, finished blue-srey. New and unused. $15 /-$ P. \& P. $5 /-$. Post free with rack.

-TRANSMITTERS ANDRECEIVERS

AIRCRAFT RACFO RECEIVERS BY RCA (Model No. CRY 46151). Freq. $195 \mathrm{kc} / \mathrm{s}$ to $9,050 \mathrm{ke} \mathrm{s}$. ($33-1,500$ metres) $195 \mathrm{ke} / \mathrm{s}$ to $9,050 \mathrm{ke}$ s. ($33-1,500$ metres)
continuous. For 28 v . D.C. input with continuous, For 28 v. D.C. input with built-in dynamotor. This 6 -valve receiver
with 2 R.F. stages and 2 I.F. stages with with 2 R.F. stages and 2 I.F. stages with
B.F.O. and C.W. E10, or complete with B.F.O. and C.W. E10, or complete with A.C. mains powar-unit for loudspeaker or
phones. Ready for use, f $15 / 10 /$. Carr, 101-
R. 109 A RECEIVERS. Freq. range $2-12.0$ megs. In sood working order. E4/7/6.
carr. $10 /-$ A.C. mains 200250 v . power carr. $10 /$-. A.C. mains 200250 packs available, E4, cirr. 5/6.
TRANSMITTER-RECEIVER No. 19. Mk. II complete with 15 valves. Frequency ranse A set $2-8$ meg., B ser $230-240 \mathrm{Mc} / \mathrm{s}$, in zood condition. E2/19/6, carr. 10/6. 12 V . ROTARY POWER UNIT for above, E1, carr. 5/-. All leads, headsets, variometers, etc., available.
BENDIX RECEIVER M.N.26. Covers $150-1,500 \mathrm{kc} / \mathrm{s}$ on 3 bands. This 11 -valve superhet is complese with dynamotor in perfect condition, 65/- carr. 8/6
COMMAND TRANSMITTERS.
5.3 mess. Complete with valves 4 to crystal. New and boxed. $35 /-$, P. \& P crys
$3 /-$ COMMMAND RECEIVERS. B.C. 454, $3 \mathrm{Mc} / \mathrm{Mc} / \mathrm{s}$. Brand new, 39/6. 455, 6-9 Mc/s, RECEIVER $3132{ }^{2}$ RECEIVER R1392 P 104. IS-valve superhet set, $95-150 \mathrm{Mc}_{3}$ (2 to 3 metres), slowmotion tuning, normally crystal controlled or tunable over $95-150 \mathrm{Mc} / \mathrm{s}$. Receiver front panels made to fit 19in. Rack Mounting. External power supply required good order. E5/19/6, carr. 15/-.

Hours of Business:
9-6 Weekdays
9-I Saturday

ADJOINING
LEICESTER SQ. TUBE STATION

switch-tuned F.M. tuner with A.F.C.
F.M. reception at its simplest and best. The programme you want at the turn of a switch, with automatic frequency control to keep you spot-on the station always. Available in kit form price ... 810 complete with valves. Full constructional data and detailed price list by return-2/3 post paid.

NOW AVAILABLE-

 from stockThe full range of the new WB Stentorian Loudspeaker and equipment cabinets. All packed flat and easily assembled with only a screwdriver. Completely veneered and polished, ready for use.
Send 3d. stamp for fully illustrated leaflet of all models.

WE ARE 8TOCK18T8 FOR: EDDYSTONE components and receivers; PANDA transmitters and Minibeams.
home radio
187 London Rd., Mitcham, Surrey

There's a future at

FELGRTE RADIO LTD.

for a

RADIO ENGINEER

We need a man for general factory and laboratory duties including the design of domestic radio. Academic qualifications are not essential, but he must have had experience in some form of design or close association with production.
Applications please to the Managing Director, Felgate Radio Ltd., Felgate House, Studland Street, Hammersmith, W.6.

FOR PROMPT DELIVERY		
WAFEP		
ASSEMBLIES, CUSTOM BUILT		
Eanks	PAXOLIN	CERAMIC
	${ }^{5} 7$	${ }_{\text {if }}{ }^{\text {dio }}$
2	109	231
3 4 4	142	348
4	17 19 9	47 58 11
6	221	716
7		
8	284	-

When A.B. 11 and 12 way Wafers are required, pleose add $1 /-$ per bank to obove prices.
SPECIALS at time and material plus 50%. - N.S.F. TYPE "G" SWITCHES.

nk	¢ 14	7	Control Plate otc., each
2 Banks	E1 14		
3 Banks	12.	1	5
4 Banks	$E 213$	6	
5 Banks	63	0	rs. mach
6 Banks	6312	5	9\%

Quotations gladly given for small as well as large quantities, also for special assemblies.
TELE-RADIO (1943) ETD.
189. EDGWARE ROAD, LONLON, W. 2.

Poddington 44S5/6

Tape Amplifiers for Wearite, Collaro and all other Decks, "Miteeamp" $2 \frac{1}{2}$ watts 18 gns .6 watts U/L. "Lodestar" 25 gns. Transistor tone control preamps, etc., Mixer units, etc. Write,

HARDING ELECTRONICS
120a Mora Road, Criekiowood, London, M.w. 2 Phona: OL 41770

SHERWCOD Instrument

FOR QUARANTEED WORKMAM8HI? WITH PERSONAL SERVICE

- CAPSTAN WORK 10BA TO 1 zi in .
- SHEETMETAL FABRICATIONS - ELECTRONIC METALWORK - PRESSWORK - A8sEMBLIES
- PRODUCTION maceinine
- DRILLING - TAPPINQ - MILLING
- WELDING - SILVER SOLDERING A.I.D. APPROVED

ROSEMONT ROAD, LONDON N.W. 3 HAMPSTEAD 6655.

PULLIN
SERIES 100 HIGH RESISTANCE TEST METER ACIDC $\quad 10,000$ ohms/volt 21 RANGES
100 microamps to 1000 v . Complete in die-cast case with test leads, clips \& prods CASH PRICE FULLY GUARANTEED £12-7.6 or Deposit E2-10-0 \& ning further illustrated brochure free on request.

FRITH Radiocraft LTD

 69.71 CHURCH GATE LEICESTER - 2e high st newpont pagnell Euche
WIREWOUND RESISTORS

Eurekz wound on strip. I to 1,000 ohms $1 \% 2 / 9 ; 0.5 \% 3 /-0.2 \% 4 / 3$; IK to SK, 1% 3/3; $0.5 \% 3 / 6 ; 0.2 \%$ 4/9. SK to 20K, 1% 4/-: $0.5 \% 4 / 3 ; 0.2 \% 6 /-0.75 \mathrm{~W}$ rating. Your value wound to order, quick delivery. Special quotation for quantities.

SHUNTS

Wire-ended Eureka shuncs, three ranges, 1% accuracy, for inclusion in customers own apparatus. For 1 mA .100 ohm meter, ranges $10.100,1,000 \mathrm{~mA}$. For $500 \mu \mathrm{~A} 500 \mathrm{ohm}$ meter, ranges $5,50,500 \mathrm{~mA}$. Price $8 / 6$ each.

PLAMET INSTRUMENT CO.
25. DOMinion avenue, leeds, 7 .

PRECISIOK SHEET METALWORK-
 We specialise in momufocturing of Chassis in oll motals, large or smal quontities to your own specifications
 V. W. BEAMISH
 Shardoloes Carage, Ihardolees Rd. Now Crose
 London, 8.E.14.
 THophone:TIDoway 478

E.M.I. FREQUENCY TEST TAPE TBT/1 63.0 .0
(Head alignment, level setting, frequency response test.) full detoils on request
J. ALLEN JONES LTD.

122, SOUTH ROAD, LIVERPOOL, 22 TELEPHONE WATERIOO 2205

SAMSON'S SURPLUS STORES Exclusive Purchase!!
 S.T.C. RECTIFIER SUPPLY UNIT No. 11 TYPE ZB 10235

Specification:--A.C. input $100-260$ volts. $45-65$ eycles. D.C. output 24 volts il amps, and 130 voles 600 m.a. very conservatively rated. L.T. and H.T. completely smoothed. All circuits fused. Mains on/off switch. Buitt in grey metal cabinet as illustrated. Heisht 5ft. Oin., width lif. 7tin., depth lit. Itin. Weight 20016.

These units were originally designed to supply L.T. and H.T. power in conjunction with Bay Power No. 3 to S.O.S.IT 3 channel telephone system, but are ideal for the electronic industry, research laboratories, schools, etc., etc. Complete with instruction book and circuit. Supplied brand new at a fraction of the maker's price.
$\mathbf{£ 1 7 . 1 0 . 0}$ warehouse
If further technical details are required, Instruction Book will be forwarded against a deposit of One Pound. Export enquiries are welcomed. We have a limited number of these units ready packed in original transit cases at a small extra charge.
$169 / 17 \|$ Edgware Road, London, W.2. Tel.: PAD 7851
125 Tottenham Court Road, W.I. Tel.: EUS 4982
All orders ond enquiries to our Edgwore Rood bronch, please. This is open all day Saturday.

-ARMY SIGNALLING LAMPS-

12/6 P. \& P. 2/6

12 VOLT RECEIVERS type 1125 d

Contents: two 9D2 valves, 3-1 ineervalve transformer, one mu-metal multi-ratio transformer etc.

$$
10 /- \text { P. \& P. 2/- }
$$

CHARTBOARD ANGLE LAMP

With clip-on end. Suitable tor Colleges, Offices, Draughtsmen, etc. Bayonet fituing Globs:
£1.0.0 P. \& P. 2/-
U.S.A. Dynamotors, Type D/M53A, 24 v inpuk, 220 y. D.C. output. £1. P. \& P. 2/6

A. PIRESTON \& SONS

186 Sussex Way, London, N. I9. ?hom : archway 5051

REFINEMENTS WORTH MUCH MORE THAN 52 Guineas Portable 38 Guineas Adaptataps

Collaro Mark III deck 3-speed, twin track New type power pack Mullard valves throughout 3-digit rev. counter.

Come and hear them or write for full facts and figures. Both well worth knowing all about.

SONOMAG LTD.

2 ST. MICHAEL'S RD., STOCKWELL, 8.W.9. TEL: BRI 5441

OVER 100,000 RELAYS AVAILABLE FROM STOCK SIEMENS HIGH SPEED RELAYS. All values. Ex stock. Contractors to leading manufacturers and GOVERNMENT DEPARTMENTS

HANNEY
 offers
 Components for

OSRAM 912 PLUS AMPLIFIER
OSRAM 912 PASSIVE UNIT
OSRAM 912 PRE-AMPLIFIER
OSRAM F.M. PLUS TUNER
MULLARD " TAPE " AMPLIFIERS
MULLARD 510 AMPLIFIER
MULLARD 510 "A" PRE-AMPLIFIER
MULLARD 510 " B" PRE-AMPLIFIER
MULLARD $3 / 3$ AMPLIFIER
MULLARD F.M. TUNER UNIT
"WIRELESS WORLD " BAXAND.
ALL PRE-AMP.
"WIRELESS WORLD" F.M. TUNER UNIT
DENCO MAXI-Q F.M. TUNER UNIT

Manuals available:
912 PLUS AMPLIFIER-4/-i OSRAM F.M PLUS TUNER - 2/6; MULLARD HIGH QUALITY AMPLIFIER MANUAL (contains F.M. details)-3/6; DENCOF.M. TUNER-1/6. Send 2 fd . postage, stating lists required. General Components list also available.

L. F. HANNEY
77, Lower Bristol Road Bath

THIS MONTH'S OFFERS

A.C. MOTORS. t-II.P. 230 volt $50 \mathrm{c} / \mathrm{s}$ S.P. (ap. Start. 1,330 r.p.m. 2.8 amps. © $4 / 10$, ${ }^{\prime}$ carr. $5 /-$. $0.6-\mathrm{H} . \mathrm{P} .230$ volts $50 \mathrm{c} / \mathrm{s}$ S.P. 940 r.p.m. és/5/-, carr. 7/6. All motors tested and guaranteed.
ROTARY CONVERTERS. D.C./A.C. 24
volts D.C. input, 230 volts A.C. 200 watts output through iransformer. Ideal for television, where no mains are available. Brand new, $\$ 8 / 15 /-$. 110 volts 1 I.C. input, 230 volts A.C. e8815/-. 110 volts D.C. input, 230 volts A.C.
10)/-. S.P. outpul, ※15. Sartor 45/., at. 400° CYCLE INVERTERS.
$24 / 28$ volts 1).C. input, dual output 115 volts 3 -phase 400 D.c. input, dual out 750 v.a. and 24,26 volts S.P. 250 v.a. evcles 750 Y.a. and $2+i 26$.
New condition all tested.
400 CYCLE ROTARY CONVERTER. 110
volts 0.8 amps D.C. input, 110 volts 0.27 amps .
400 cycles outpit or 220 volts D.C. U. 4 amps input, 110 volts 0.265 amps .400 cycles output. "8" METERS. 2tin. square flush pancl, suitable for A.R. 88 or other receivers. New stock, 39,6 , post $1 / 6$.
PARALLAX BAR8. Type P.B.2, with two graticules mounted in crames, micrometer adjustuent, two spare spot graticulcs and one scaled 0-30. lior map making from aerial photorraphs. Brand new by leading makers, in polished wood casc.
TELEPHONE JACKS, G.P.O. type, $1 / 6$ each, post free.
G.P.O. RELAY8, type 600 and 3000 , many contact ranges in stock.
METERS. We have large stocks of Switchboard Meters, $4 \frac{1}{2}$. to 8 in. dia., many ranges. Volts, Amps and nilliamps. send us your enquiries. All meters tested and guaranteed. METER MOVEMENTS. D.C. moving coil. Ideal for class demonstration. Amps, Volts, milliamps. In cases with pointer, 2;6 each, post $1 /$-.

Leslie Dixen at Co.
Dept. A, 214 Que3nstown Read, Londen, 8.W.s
Telephone: MACaulay $2159 \Longrightarrow$

METERSS

WE CAN SUPPLY WITHIN 7-14 DAYS

a complece range of moving coil-movingiron-lectrostatic-chermo-couple-also multirange meters-megers-pyromecers and laboratory test instruments, etc.

All to B.S.89.

REPAIRS

Delivery 7.14 days
Our skilled craftsmen carry out repairs or convert any types and makes of single and multirange meters.

Where desired, repairs are occepted on contract.
THE V.Z. ELECTRICAL SERVICE 4. LISLE STREET, LONDON, W.C. 2

Telephone: GERrard 4861

A SPENCER-WEST BAND III CONVERTOR

The Type 80 with printed eircuits, panel contro's lor Band switch and fine cuning and a periorm. ance which ensures enthusiastic satisfaction. Handsomely designed and finished to stand on your receiver with its self-contained power supply if iust plugs seraight in
Fulf describtive leoflet on request. Available from ofl , ood dealers or post free direct from the manufacturers if any difficulty

SELENIUM RECTIFIERS

40 ma . to 10 amp ., 6 v . to 100 v . Bridge, H. Wave or P.P.
WITH OR WITHOUT HIGHGRADE TRANSFORMER TO SUIT. These are new goods, best makes, not reconstructed Government surplus. Popular types, 6 v. 1 a., 4/-, 2 a., 7/6, 12 v. 2 a., 8/6, 12 v. 1 a., 7/6, 12 v. 3 a., 15/-, 6 a. alloyfinned type, $27 / 6,24$ v. 0.3 a., $9 / \mathrm{l}$, 0.6 a., 12/6, 24 v. 1 a., 13/6, 2 a., 15/6, 24 v. 3 a., $21 /-, 50$ v. 1 a., 24/-, 50 v. 2 a., $42 /-, 130$ v. 300 ma. h. wave, $38 / \mathrm{l}, 250$ v. 300 ma . do., $65 /-$, 110 v. 1 a. bdge., $48:-, 130$ จ. 80 ma. bdge., 21/-.

CHARGER KITS

No. 1, a kit for 2 v., 6 v., 12 v., 3 amp. transformer, rectifier, ammeter, all high-grade new parts, not rubbish, 52/6, unique convector housing for same, as illust., 12/6, p.p. 3/-, ditto, but 2 amp., $43:-$, casc $12 / 6$, p.p. $3 /-$. Economy 12 v. 3 amp . kit, no ammeter needed, 34i6, p.p. 2,6, all with 12 months' guarantee.

CHAMPION PRODUCTS
43 UPLANDS WAY, LONDON, N.21.
Telephone LAB 4457

Fidelia
HAND BUILT

The Vidella Imperial givee V.H.F. reception plat ali the inclilities of A Be audio aruplitier. The kramophone pre-aimplitior suitu at type of pick upe and bits recording correction for L.F., R.E.A.A. and 78 curves independers Basa and Treble Coutrim are fitted with aupruz. 24dt totan range and avallable with either our Major amplitier it $\mathbf{3} 38$ or our Junior power amplitior at 934.
Otber modela in our range theludes
Fidelin AM/PM Major. 12 valven. Tuned R.P staye on all wrebands. VEP. a. M, and L wavchands Gram Wre-ampllier and Input conrsctor for all pict-ape. Eeparate 9 watt wower mplioer e44.
Fhetin De-Lare VEE reception plus norma ravebacis. 7 watt posh-pull ousput Eleparato base and treble controls. 9 Kc tiler varimble
 fid derala wibnyly ob requen (fi. in stampe apprecinted.

sr. BUREMEA
SUBE
ELECARO

- BEFELOPMENTS

PCL. Pcacanosen $\$ 150$

NEW s.t.c. AND "WESTALITEE" SELENIUMM RECTIFIERS. Largect Lt. SELENNM RECTIFIERS Latarget Lit. range in Gratt Britain.
Products.
NOT Surpur.

REVI8ED PRICE8 (3rd JUNE)

S.T. C. E.H.T. K3/15, 5/-; K3/45, 9/4; $K 3 / 50,9 / 10 ; K 3 / 100,16,8 ;$ all post 4 d. extra. BRIDGE CONNECTED FULLWAVE. 17v. Ia., $13 / 4 ; 1.5 \mathrm{a}, 26 / 6 ; 2.5 \mathrm{a}, 32 / 6 ; 3 \mathrm{a}$. 30/6; 4a. 38/-; 5a, 38/6; all post 6d. 33 v . 0.6a. 22/3; 1a. 22/9; 1.5a. 45/-; 2a. 54/-; 3a. 54/-; 42. $64 / \mathrm{F} ; 5 \mathrm{5a}$. $68 / \mathrm{F}$; all post $1 / 6$. 54 v . 1 a . $33 /-; 1.5 \mathrm{a}, 621-; 2 \mathrm{a} .74 /-3 \mathrm{3a} .74 / \% 5 \mathrm{a} .97=$ 72v. 1a. 42/-i i.5a. 78/-; 2a. 95/-; 3a. 95/-; 5a. 124/-; 100v. 1a.61/-; i.5a. 112/-; 2a. 134/; 3a. 134/-; 5a. i80/-jall posk 2/-.
BRIDGE CONNECTED WITH TAin. SQUARE COOLING FINS ITv. 6a, 53/7; 102. 61/- post 2/6.
BRIDGE CONNECTED HEAVY DUTY FUNNEL COOLED or Titin. SQUARE COOLING FINS. Both types, same price. 17 v . $12 \mathrm{a}, 95 /-$; 20a. 120/-; 30a. 172/-; 50a. 280/-; 33v. 6a. 89/-; 10a, 102/-; 12a. 176/-; $20 \mathrm{a}, 202 / 6 ; 54 \mathrm{v} .6 \mathrm{a}, 124 / \mathrm{j}$; 10 a . 141 j ; 72 v . 6a. 160/-; 10a. 186/F; 100v. 6a. 227/6; 10a. 270/-. all post $3 /-$.

REVISED PRICES (7th FEB.)

". WESTALITE " (BRIDGE), 12-15v. D.C. 0.6a., 12/-; 1.2a., 30/न; 2a. 32/6; 2.5a. 49/-; 5a. 37/6; 10a. 416; 20a. 117/6; 30a. 171/-; 50a. 270/-; 24y. 1.22. 30/-; 2.5a. 49/-; 5a. 60/-; 10a. 109/6; 20a. 208/-; 36v. 1.2a. 47/6; 2.5a. 84/; 5a. 82/6; 102. $154 / 6 ; 100 \mathrm{v}, 1.2 \mathrm{a}$. 82/6; 2.5a. i54/6; 5a. 195/5; 102, 391/-.
 14D 134, 25/0; 36EHT60, 35/10, post 4 d . I m.a. A.C./D.C. meter-rects, , $14 / 6$. Wholesale and Retail
5pecial Price for Export and Quantity

T. W. PEARCE

66 Great Percy Street, London, W.C. 1 OIf Puatoarille Rosd. Eotwoen Eing's Crose and Angel

NEW SURPLUS

TEET OBC. T3170-ARIIS. $230 \mathrm{Mc} / \mathrm{m}$ with 4, $3 \mathrm{Q} 4{ }^{\circ} \mathrm{s}$; 2, 9899° a; 8 cryatalh, 1 M/a meter ; plston atiengator callhrated $1-1,000$ microvolta. New, boxed, $75 /-$ each.
rEsTr gry
T81e/APh. Deigned for teating radio althmetera locorporates When bridge audio opellistor $300-7000$ egcles; 28 v . vib. pack; $400-500 \mathrm{k} / \mathrm{cs}$ tuned
covity, ano $80 v$. meter. Supplled in food used concanty, alio sov. meter. Suppled in food used con-
dition with 6 valver, $70 /$ each. Fev fair condilion and les meter A5). foll each. Few fair condition is ATMHAL MEPCURY RELAYs. Mounted in paira, B/10i- per palr.
 each. 250 v . 1 amp t wave. $27 / 6$ each.
TRANSMITTER/RECEIVERS TYPE 17 Hr. 2, 44-61 hand milte and high res. phones and circuit $45 /-$ chen or two for 79/6. transmittert $190-260 v$ input $10 \mathrm{v}, 10 \mathrm{amp}, 2 \| \mathrm{v}, 10$ ampa twice all T and HV Insula Uon, $28 / 6$ ea.
 re(vig), c/sv. If ampas 8 v . 2 ampa 20 H choke, $52 \mathrm{Z4}$ Y 65 magic eje, 2 -EF50's, $1-15 C 82,1$-EAB0, dosens of componenta all in mant grey fouvred metal cape $10 \times 9 \times 91 \mathrm{~m}$. New and bored, made by Parmelso. Uarepentable component value only $42 / 8$ emch. COLLABO MODAL TR 4. A-Apeed aingle player with Acon Tho head, PU 6itted H-C cartrider and apphiree RESISTAICE UIIT 231. Comprieing 22 heavy-duty
 in perforsted metal case. Ideal dummy loed tor

HR RRLAYR PO 3000 type. $8,500 \mathrm{ohm}$ coll, 2M, 2B, 11.6 ea. 20,000 ohm coil, $18,11,18 /-$ en.
SPPCOAL PRIG
spicial PRices QuOTED for the following falve 68N7GT. 6AG5. EL 32 , TT11, 128C7M, 6×3. 6 K 70 , IC JLETERS, 2 in. rd, a, mit. $0.30 \mathrm{~mA}, 0.200 \mathrm{~mA}$, $0-500 \mathrm{~mA}, 0-2$ smpa, $13 / 6$ es. $0-15 \mathrm{v}$. A.C. (MI), $11 / 6$ $0-250$ smpe Fith ihunt. $47 / 6$. 0.150 F . A.C. (i mA

 ampa. 18/6 en.
AU soods carriop padd Bupland, Soollond and Welas.

JOHN ANGLIN

385 Cleethorpa Road, Grimsby, Lincs. Tel. : 56315

radio upheep ared repairs

By Alfred T. Witts, A.M.I.E.E., Chartered Electrical Engineer. 8th edition. This practical handbook explains in an easy-to-follow-atyle how to locate faults how to remedy them and how to keep modern radio receiver apparatus in the best possible working condition. It forms a most valuable book for radio service engineers and mechanics, and for all who require a practical book of "do"s and don'ts." 15 s . net.
"'This little book is a godsend. It is an excellent guide to fault finding."-Engineer.

PITMAN

Parker Street, Kingsway, London, W.C. 2

AIR DIELECTRIC TRIMMER
(Protected by Acetote Cover)

Capacities from 4 to 70 pF in voltages of 500 and 1000 D.C. Width 16.5 mm . Length 22 mm . Acetate dust cover optional. Insulation over 10,000 megohms. Power factor less than .001 .

DEVELOPMENTS CO. LTD. ULVERSTON, NORTH LANCS

Tel.: ULVERSTON 3306

CONDENSERS

COMDEMERRS-BLOCE PAPRR TEPRE $55+55$ mid. $s 00$ voltu A.C. $8 \times 7 \times 7 \mathrm{in}$., each $30 /=0.1 \mu \mathrm{~F}$.
variablie kriigTors with right ansle drive to ax belind panel 29.5 ohms. 8 ampa. At the lower end, sayTon five. at the higher end. Each $12 / 6$ 9:8 eart.
LOUD Hallik grearges 6 to 8 wath, $27 / 6$ ench. TRAMgrosictes, "C" eore. 200/250" volu pri., ${ }^{950-0-950}$ Lapped $250-0.250180 \mathrm{~m} / \mathrm{L}, 5 \mathrm{~F}$. 3 B . and 6.3, 0.5 a, , R5/6 encl.
280 voir $\mathrm{Pr} .1,2000-1,250,5 \mathrm{~m}$ s., $2 \times 6.8 \mathrm{\nabla} .1 \mathrm{~m}$., 0 polts prit, a lappings it
250 voltes pri $10 / 6$ each.
(Post and packint on all transformara, s/3.)
CHOKEs. 15 n. at $300 \mathrm{~m} / \mathrm{mon} 110$ ohms., $12 / 8$ each. 1 H. at $45 \mathrm{~m} / \mathrm{a}, \mathrm{H}^{3 / 6}$ each.
WAFMR 8 FITCHES. 0.4 ohms, 28 amp., 6\% each.

BREOSTAT8 W/W. 30 ohmen with 8.P. awitch pin. DOAL POTS $2 /$ emeh.

DAL POTS. 2×1 megna 1 Hin . Mpindle, $2 /$ each, 500 k . 50 k., 100 k., 500 k., Pots with 21 la . aplode, $10 /-$ spirif Lex SLItn Whe. $11-$ each, or $9 /$ doz.
GLYLOK FUSE HOLDERS, 8 amp . and 15 amp ., $2 /$
VALEEE HOLDERS. Int., Octal (U.8.A. type), $8 /-$ dos. COLVERY. Ceramic with, lower dikirt, 8/6 dor, each Whi pois. 25 k . and 50 k . (rremet), $1 / 6$
 BALANCED Ar 20 MTURE

30/- dos. These are very uneful 3 an each, or surita micas ald moulded micas. Per 100 ,
 100 ASSORTED REBISTORS. itad \& W. $15 / \mathrm{s}$
TERMS C.W.O. WRITE OR CALL

W. MILLS

3B TRULOCK RD., TOTTENHAM, N. 17
Phone: Tottenham 9213 \& 9330

M. \& J. PEARSON

Radio, Television \& Radar Equipment
OFFER THE FOLLOWING STANDARD ELECTRIC MOTORS
All Brand New in Cases "Not Ex-Gove." and on Money-Back Guarantee
1.-1/6 H.P. Crompton Parkinson 200-220 Volt 50 Cyc., 1,435 Rev. Capacity 5tart, 5 hock Mounted 2 in . x tin. Spindle, 28 lbs. E4/0/0 each.
2. $-\frac{1}{2}$ H.P. Delco $200-220$ Volt $50 \mathrm{cyc} ., 1,435$ rev. Heary Duty 2 in . x fin. Spindle, Capacity Start, Shock Mounted, 33 lbs. ES/0/0 each.
3.- H.P. Crompton Parkinson 200-220 Volt 50 cyc., 1,435 rev., 2 tin. x tin. Spindle 5 hock Mounted, Capacity 5 tart, 56 Jbs. E7/10/0 each.
4.-II32A Receivers. Used but in nice condition. 5pecial Price to clear $\mathbb{E 2} / 19 / 6$ each.
5.-5ignal Generators, Type 106, 5alford Electrical Instruments Lid., 230 Volt A.C., 5.5 to 55 . Mc/s. In nice condition

64/10/0 each.
6.-Engine Driven Generators, Ref. No. 5U/2362. Type U.O.E.D. Dual Purpose. 29 Vole 100 Ayc. $3,200 \mathrm{w}$. D C. Brand New in cases $E 2 / 10 / 0$ each.
7.-A Few Test Sets, Type 87 still available. A.C. Mains 50Ω i $50-300 \mathrm{Mc} / \mathrm{s}$. Complete with Mains Lead and Cables. Brand new

c3/10/0 each

All Prices include Post and Packing Scotland and England

263 GALLOW GATE GLASGOW, C. 4

Telephone: BELL 0729.

BAND 3 T.V. CONVERTERS BY RETURN OF POST

ALL with 12 months' guarantec (B.V.A. valves, 3 months' guarantee). All $3 /-$ each extra, postage. All 2/-C.O.D. For all I.T.A. stations and all sets except Philips. State B.B.C. Pattern rejector fitted. All fully wired, aligned and ready for use. All with power pack, knobs, aerial switching, metal rectifier and 2 valves ECC81. Direct switching from B.B.C. to I.T.A. Fine tuning on front. No drift.

£4.7.6

With metal cabinet as illustrated. Stove enamel grey hammer finish.
Or Walnut cabinet, $£ 4 / 17 / 6$ Lizard Rexine, £4/12/6.
Or chassis, i.e., less cabinet, $£ 3 / 17 / 6$ (p. \& p. 2/6).
Variable attenuator, $7 / 6$ (p. \& p. 1/-).
Aerial Splitter, 8/- (p. \& p. 1/-).
Band 111 Aerials, mast mounting: Carr. Paid 3-element, 27/-; 5-element, $35 /-$; 8 -element, $55 /-$.
Low-loss Co-axial, 8d. yard.
Our aerials are suitable for loft mounting.
External Crossover unit $7 / 6$ (post $1 / 6$).
Belling-Lee 6 -element Loft Band 3 aerial, 30 -.
POST ORDERS TO CAMBERLEY PLEASE.

GLADSTONE RADIO

3, CHURCH RD., REDFIELD, BRISTOL AND
82B, HIGH ST., CAMBERLEY, SURREY

TRANSISTORWISE

" Reco Special "' 3 vransistor portable receives home and con tinental stations. Uses specially designed high gain frame aeria mounted on metal chassis. Monchs of operation from 3 volc battery. Complete kit with balanced armature output unit and attractive plastic case. Only 65/-includins battery. Wiring circuit diagram parts list $1 /=$ P.O.
Reco transistor 3 simplified version for besinners. Data 9 d .

The " Reco " 2 transistor portable receives home and continencal stations, uses high gain ferrize runed aerial. Complete kit with balanced armature output unit and neat plastic pocket case. Only 55/-including battery. Wiring circuit diagram parss lise $1 /-\mathrm{P} .0$.

"Reco " all-wave I transistor receiver, uses zuned inductance coil and super sensitive Bell phone for quality private listening. Plastic case. Complete kir $29 / 6$ including battery. Wiring circuit diagram parts list $1 /-$ P.O.

RADIO EXCHANGE CO.
27 HARPER STREET, BEDFORD. TRADE AND MAIL ORDER ONLY.

TELEGRAPH AND TELEPHONE EQUIPMENT

E-Chanaal Carriar rolopbone Tarminde

Carrier Liox E.R. Equapmeat
ApperstuI E-lective Cartier - 88 Chanaol.
$1+4$ Carrior Telophode Turainals. Repeatera and
aparea.
$1+1$ Carrier Telephose Torminale, Hepenter and sparre. T Telegraph 2-ohanpo1 Orong Dilts and Bopestors:
 A mamblian
TT Tulerriph spoeolk + Eimplox Mo. 8
reaked Bays for multi-channal telesrapt and telephone equipment.
Filtor Unith, 600 ohme, rarlous cut-od frequeaclea. Thetworke. Belanclisg and Tenting.
Rotardation Coile and Ropeating coil.
Inpot and Outpat Trantormart.
 der Unite for Teleprimter.
Thopphoas Ewiteobloardic. 10 Line and 40 Lina

Fillrators 7 -plm 8ynahronoma
LOW POWER RADIO STATIONS
 A1, A2 and A3 AM
Wirsuon got Lsiad. Preq. 2-8 Me/s Byatemn Al. A and As Al ani.
Wrolean int 88. Camedian Walkle-Tulkio. Complete with all ancllarike Wirolese Elt ©ST. Troploalised Mad-Pack ret 3.0 to 6.2 $\stackrel{\text { Mefor }}{ }$
 T.0. fitiont with choice of Power Supply Unite 12 v .

Froxible Condait, fin. 1.D. Unsed. Copper. bralded th 5011 henth, ol per fook EQUIPMENT
AIMARC 1 VEF stations $100-156 \mathrm{Mo} / \mathrm{a} 10$-ghannel.

WCO 2000 Redio Compleines. Complete with all parts tmoludid Invercer Rupply Unith.

R. GILFILLAN \& CO. LTD

7, HIGH ST., WORTHING, SUSSEX
Tel.: Worthing 8719 and 30181.
Cables: Codes
"GIL WORTHING" BENTLEY'S 2nd.

The UNIQUE BENDER

YOU HAVE SEEN
from previous advertisements what the UNIQUE BENDER looks like.
Now we show examples of a few of the many jobs it will handle. It also makes angles, channels, folded and beaded edges and special sections up to 39 in . long Quickly, Accurately, and wilh Professional Finish.
ILXX-28. This tool is designed for heavier work. Ideal for Transformer Cuses.
for 6 oage folder write to:-
A. A. TOOLS w

197a Whiteacre Rd. Ashton-u-Lyne Ever/ genuine A.A. $\mathbf{t o o l}$ bears this mark

SERVO \& ELECTRONIC SALES LTD.

in addition to our normat extensive renge of vervo componente-Magallpa, Aeloyns, Velodyne Hotor Generators. Amplidy det, Pte, Te offirSDICATOR UIIT APWCO22A, 1-VCR97 ahifld, focus and hrillixnce controls, 8 pota, etc. Brand new in cartona 8766 . Carr. B1.
 housel. input $200-250$ v.. 80 c.p.a., output 6.8 F. 13A.. 220 v. 110 mA .. buth out puta choke caparity and neon. fize 1 E $\times 19 \times 11$ fin. Dual outidta vin a and $s \mathrm{~T}_{\mathrm{m}}$ Joves pluge. Weight 701be. Operatint Tempe. $-20^{\circ} \mathrm{C}$. to plus $50^{\circ} \mathrm{C}$. New in eane 810110/ each. Cart. 201 .
P0W LT UNIT TIPE 8 , input $300-250$. 50 c.p.e., outputs 250 v. 100 mA. D.C., 6.8 v. 4A. A.C.
Fith H.T. roltmoter and mmmeter. New in cmen.

CBTATRR TRATREORMER, Hermetically mented, it tillef. Input $10-206-200-20$ V. 50 c.p. i Three $31 \times 3 \times 3$ shb. Vertical or inverted mounting. 35/= each. P.P. $2 / 4$.
115 v. 400 o.p. . ROTARY comvertera, 28 D.C. input. Couservatively raied it 45 m . R.D.C. manulacture. se Cintr. 7/8
MINIATURE RGLAY, TIPE 41840D, 8TA 700 ohm. for 24 F. operathon. D.P.C.O.. ber metically menled, \&\%, 8 earh. P.P. $1 / 6$.
S0/to r.p.e 2.8 BA , with Graham rar. apd. gearboy out put $0-166$ r.p.m. $212 / 10 \mathrm{~L}$ each. Carr. $15 / \mathrm{m}$ KLAXOM 84 v. 10 TOE EKGDB1 1/20 h.p. ehan Wound, 2.600 r.p.m. $35 /$ ene each. P.P. \$/.
 1.0 , F 1,000 7 . Wk. 2inin. $\times 1+\mathrm{in} \times 3 \mathrm{in} \times 8 /$

 frame 21 ina and 30 in , diampotera, Bexiviance on application.
Termse C.W.O. Nets monthly for epproved sccounts.

1. Hopton Parade, Btreathem Hiph Roed, Lersion

The Junction Transistor and its Applicationa by E. Wolfendale, Postage 1/3...
Magnatic Tape Recording by Spratt. Postage $1 / 3$

Radio T.V. and Electrical Repairs by Odhams Press. Postage 1/3

The A.R.R.L. Antenna Book. Postage 1/- ...
Transistor Circuits by Rufus Turner Gernsback Library. Postage I/-......
Oscilloscope at Work by Hass and Hallows. Postage I/-.
Brimar Valve and Tele Tube Manual No. 7. Postage 9d.........................

Transistor Circuies for the Constructor by Bradley No. 2. Postage 4d.

Fundamental Principles of Transistors by Evans. Postage 1/6
The Mercury Jason Switched F.M. Tuner. Postage 4d.
Quinns Radio Diary 1958. Postage 6d.

UNIVERSAL BOOK CO.

12 LITTLE NEWPORT STREET, LONDON, W.C.2 (adjoining Lisle Street)

ELECTRONIC EQUIPMENT PROTOTYPE OR BATCH PRODUCTION.

METALWORK, PLATING,
FINISHING, WIRING,
INSPECTION, TEST
DESIGN AND DEVELOPMENT FACILITIES AVAILABLE
A.I.D. AND A.R.B. RELEASE

LOW OVERHEADS. KEEN QUOTATIONS.

AVIMASH ELECTRONIC LTD.
AVINASH WORKS, 70 8ILCHE8TER ROAD, LONDON, W. 10
TEL.: LADBROKE 2688

PORTABLE TEST PANEL

for workshop
or atudents' use
Two separate moving coil meters for voltage, current and resistance measurement. In wooden case with metal front and test prods.

Cash 56 (inc. post/pkg.) or 30/-down and 5 monthly paymenta of El (Total Price (6.10.0.)
Order now from:-
E.M.L IM8TITUTES, Dept. T.P.187, London, W. 4

CABINETS
for
Goodmans, G.E.C. Wharfedale, Jensen.

STANDARD BASS REFLEXCABINETS
Walnut, Mahogany and Oak, as illustrated
($34^{\prime \prime}$ high)
12" Speaker Model El0.0.0
10^{-}Spaaker Model
8.10 .0

8 ' Spaaker Model ع. 0.0
Opan till 5,30
Sxeurdays.
A. DAVIES \& CO. (Cabinet Makers)

3 Parkhill Place, off Parkhill Road, London N.W.3.

GULLIVER 5775

NEW METERS

(by well-known manufacturers)
to your requirements
7-14 DAYS DELIVERY
A.I.D. APPROVED

INSTRUMENTS EEECTRICAL CO.
107. Newingcon Causeway, London. S.E.I

A VACANCY EXISTS

in the Radio and Television Laboratories of a leading manufacturer, situated in eastern London, for a project leader to engage in the development of domestic and car radio. Must be familiar with current circuit techniques, including transistors, and production design for conventional and printed wiring. Minimum qualifications, H.N.C. with at least five years' experience in a similar capacity. A contributory pension scheme is in operation and good canteen facilities are available. Please reply, giving full details of experience and qualifications to Box No. 3031 c/o. "Wireless World."

MARCONI INSTRUMENTS LTD.

This Company has immediate vacancies at St. Albans in its Technical Literature (Telecommunications) Section; applicants should have electrical engineering qualifications and or experience in the design or development of electronic equipment; the duties are varied and interesting and the posts provide permanent and pensionable positions in a well-established Company.

Apply to Dept. C.P.S., 336/7, Strand, W.C.2, quoting Ref. W.W. 2970H.

TELEVISION INSTRUMENTATION DEVELOPMENT ENGINEERS

DUTIES: To undertake the design and development of test equipment for television, including work on special television camera applications. Considerable personal responsibility and freedom is given, and there are no set rules regarding the number of people engaged on a project, the allocation of project leaders, etc.

QUALIFICATIONS: The ability to design and develop equipment and aggressively progress a project through to the stage where a model is made and the information is available for a production drawing office. Candidates should preferably be of degree standard, or Corporate Members of one of the Professional Institutions, but consideration will be given to others who have considerable practical experience in the field. The ability to progress the project through to a satisfactory conclusion is the prime requirement. Due to expanding activities men with drive and initiative can be sure of progressive advancement.

Comprehensive pension and assurance schemes are in operation, and Canteen and Social Club facilities are provided.

Call any day including Saturday mornings at:

> MARCONI INSTRUMENTS LTD., LONGACRES, HATFIELD ROAD, ST. ALBANS, HERTS.
or write giving full details to Dept.: C.P.S. Marconi House 336/7, Strand, London, W.C.2, quoting reference W W 2970K.

MARCONI INSTRUMENTS LTD., TECHNICAL PERSONNEL REQUIRED Senior \& Junior Electrical Design Engineers SENIOR \& JUNIOR MECHANICAL DESIGN ENGINEERS

DUTIES: To undertake the design of Test Equipment covering practically the whole electronic field, including Telecommunication, Guided Weapons, and Nucleonics. Considerable personal responsibility and freedom is given, and there are no set rules regarding the number of people engaged on a project, the allocation of project leaders, etc.

QUALIFICATIONS: The ability to design equipment and aggressively progress a project through to the stage where a model is made and the information is available for a production drawing office. Senior engineers are usually of B.Sc. standard with practical experience in measuring techniques, while Junior Professional Institutions, or have similar qualifications, but this is in no way mandatory. The ability to progress the project through to a satisfactory conclusion is the prime requirement. Due to expanding activities, men with drive and initiative can be sure of progressive advancement.

Comprehensive pension and assurance schemes are in operation, and Canteen and Social Club facilities are provided.

Call any day including Saturday mornings at
MARCONI INSTRUMENTS LTD., LONGACRES, hatFIELD ROAD, ST. ALBANS, HERTS.
or write giving full details to Dept. C.P.S., Marconi House, 336/7, Strand, London, W.C.2, quoting reference WW 2970J.

High Sensitivity Miniature moving coil

LOUD SPEAKER

as used in the Perdio Pocket Transistor Radio. Diameter 27". Depth f° Impedance 3 ohms. Price, including tax, post and packing, 27/6. Cash with order For this and other miniature components, apply-

SPECIALISED ELECTRICAL COMPONENTS

SIR W. G. ARMSTRONG Whitworth aircraft limited ARMAMENTS DIVISION

The following personnel are required to fill interesting vacancies in the ANALOGUE COMPUTOR GROUP
ELECTRONIO ENQINEERS. Applications will be considered from Senior and Junior Engineers between the age of 26 years and 35 years, with experience of radio cominunication, carrier telephone or radar display equipment. A knowledge of servo systems would also be advantageous. The desirable qualifications for these posts would be a University Degree, but candidates with an B.N.C. will be considered.

DRAUGHTSMEN. Applications will also be weicomed from Sentor and Juntor Draughtsmen with design experience of smail radio transmitters, radio telephones, carrier telephone or radar equipment. In addition, practical experience of precision
mechanisms would be an advantage.

The Armaments Division is situated in the midst of the Warwickshire countryside and our newiy built Design Offices and Laboratories offer excellent working condi-
The posts are permanent and pensionable and will afford considerable scope to applicants interested in making a career in this type of work.
If you possess the appropriate qualifications and experience you are invited to apply, in the strictest conffdence to:

Technical Appointments Officer,

Sir W. G. Armstrong Whitworth Alrcratt Ltd.,
Baginton, Nr. Coventry. Quoring Reference Compl9.'

VAGANCIES IN GOVERNMENT BERYICE

A number of vacancies, offering good career prospects, exist for:-
Radio Operators - Male
Cypher Operators - Male \& Female
Apply, giving details of education, qualifications and experience, 10 :-
Porsennel Omcer, G.C.H.Q. (FOREIGN OFFICE) 53 Clarence strent, chettenham.

VACANCIES FOR RESEARCH AND DEVELOPMENT CRAFTBMEN IN GOVERNMENT SERVICE AT CHELTENHAM
INSTRUMENT MAKERS with fitting and machine shop experience in ling and machine
There are als
There are also vacancies where applicants with experience in one or more of the following can be considered:

1. Maintenance of radio communication receivers.
2. Sub-assembly lay-out, wiring and testing of radio type chassis.
3. Cabling, wiring, and adjustment of telephone type equipment
4. Fault finding in, and maintenance of, electronic apparatus
5. Maintenance of Teleprinters or Cypher Machines and associated telegraph equipment.
BASIC PAY: $£ 9 / 2 / 4$ plus merit pay, assessed at interview and based on ability and experience, as under:
ORDINARY RATE: $10 /$ - to $32 /-$ SPECIAL RATE: 38/- to 70/-.
Opportunitiea for permanent and penalonnble wite. Fivo-day wetk. good morking condifiute, singio accommodation araluble.
Apply to: Personnel Officer,
G.C.H.Q. (FOREIGN OFFICE),

53 Clarence Street, Cheltenham.

scientists and engineers at

POWERS-SAMAS research establishment

The continuing expansion of this leading Company in the accounting machine industry offers exceptional opportunities for scientists and engineers to engage in the absorbing work of designing and developing electronic, edectrical and mechanical equipment for the world market.
The vacancies are all for permanent, pensionable staff appointments at the Research Establishment at Whyteleafe, Surrey. Completed in March, 1957, the Establishment is one of the finest and best-equipped in Britain. It is in a most pleasant country setting yet is only some 35 minutes from central London by Southern Region to Whyteleafe South Station.
Generally (and subject to any specific qualifications stated below), applicants should have an engineering degree, H.N.C., O.N.C., or similar qualifications, and previous shop and destgn experience in the electronic, electrical or mechanical fields. A five-day week is in operation and working conditions and amenities are those to be expected in a modern, well-equipped research establishment. Applicants should send a brief description of their qualfications and experience to the Personnel Offlcer at the address shown below.

openings
 exist

for

DESIGN

Senior Designers and Draughtsmen with experience in either the mechanical feld or the electrical and electronics fleld, for work on desisn and development of modern accounting machinery.

PROJECT ENGINEERING

Men with previous process planning andior methods. engineoring experience both electrical and mechanjcal. for liaison between research. design and production.

LOGICAL DESIGN

Mathematictans or others with an aptitude for logical design and some knowledge of computer prosramming for commercial accounting.

PRODUCT IMPROVEMENT

Senior and junior mechantca enstneers with technical quaificitions, and design and production experience in ltapht ensineering to Join teams improving the design and performance of the current ranges of machines. A knowledge of mechanism destrn using modern techniques, and an open enquiring mind, are essential requirements.

RESEARCH

Senior and Junior research onsineers and physicists to engage in applied research in the field of Dats Processing. Applicants should have a degree in electrical engineering or physics, or be Corporato or Graduate members of the I.E.E., or Associaces or Graduates of the Institute of Physics. Applicants for senior positions should have some experience in digftal computing or allied fields. Vacancies also exist for Laboratory Technicians to assist in research and development projects. Applicants should have technical qualifcations or experience 12 electronics or physics.

Research Development

Design and Prototype
Development of Audio-
Electro Devices and
Equipment. Box No. 2336 clo "WV. World"

MULITTOME ELECTRIC CO.LTD.

invite applications from Intermediate and Junior
ELECTRONIC ENGINEERS
for work on the development and testing of an interesting range of new electronic projects. There are vacancies for engineers with a wide range of qualifications and experience up to and including H.N.C. standard. Experience of development work or fault-finding advantageous. Preferred age range $20 / 30$ years but applications will also be considered from young men who have recently left school with Higher School Certificate in Science. Apply stating age and giving particulars of education, training and experience to $12 / 20$, Underwood Street, London, N.I.

FERRANTI LIMITED

Wythenshawe, MANCHESTER

have vacancies
in the Laboratories for

DEVELOPMENT EMGIMEERS

to work on the design and development of electro-mechanical instruments for use in Guided Weapons.
Applicants should be of at least H.N.C. standard and although previous experience of this type of work is not essential, preference will be given to those who have a sound knowledge of gyroscopic techniques.
The laboratories are housed in a modern building which is situated in pleasant surroundings on the Cheshire boundary. The Company has a Staff Pension Scheme and an Assurance Scheme for Dependants.
The commencing salary will depend on qualifications and experience.
Forms of application can be obtained from

> T. J. Lunt, Staff Manager,
> Ferranti Ltd., Hollinwood Lancs.

Please quote reference DBW.

JAMES H. MARTIN \& CO,
CADENZA dual Impedance Microphone \& cable stand $£ 10 / 10 /$-. TRIX T43 Amplifier E19/19/ AP APEX band III Converter E.5/15/-. TSL LORENZ Concert Soundcorner, ع13/16/3. Richard Allen 'Golden unit' speaker 10in. diam. $£ 7 / 5 / 6$. AM/FM Radiogram chassis from $\mathrm{E}_{2} 24$. Stamp (only) for Lists. Iames H. Martin \&o Co., Finsthwilte, Newby Bridge, Ulverston, Lancabhire.

PHYSICISTS ARD ELECTRICAL ENGINEERS

Progressive positions are open to qualified people of degree standard for work on development and manufacture of special radio valve and microwave devices.
Initial training at the Research Laboratories of the G.E.C. will be available for certain selected candidates.
Canteen, pension fund and social club.
Apply quoting $\mathrm{T} / 1$ to:-
Personnal Officer, THE M.O. VALVE CO. LTD., Brook Green,
Hammersmith, W.6.
mamufacturers of valves for e.e.c.

Test Department at Marconi's, Basildon

Have vacancies for men to take technical responsibility for the quality of equipments in the fields of

Alrborne transmitters, receivers and navigetional alds,

Redar:

V.H.F. transmitters and receivers.

Applicants must have at least five years' experience in one of the equipment fields specified and preferably be educated to H.N.C. standard.

Houses are available to rent in Basildon New Town for successful applicants. Write to

Central Personnel Services,

336/7, Strand, W.C.2, quoting Ref. WW 2600R.

TEST ENGINEERS

required for interesting work in connection with Radar, Computers, Machine Tool Control Units, Camera Channels, Microwave Links and similar electronic equipment. Applicants must have sound theoretical knowledge of electronics backed by practical experience in H.M. Forces or industry. Staff positions and Superannuation Scheme. Single accommodation available. Apply, giving full details to Personnel Department (C.E./21), E.M.I. Ltd., Hayes, Middx.

E.M.I. ELECTRONICS LTD.
 SALES ENGINEERS ELECTRONIC INSTRUMENT DIVISION

Keen and energetic young sales engineers are required to deal with a large range of electronic instruments and industrial equipments. Applicants should be competent car drivers, prepared to travel within the U.K. or abroad as required. Please reply giving full details to the

Personnel Department (EL/B.27),
E.M.I. Electronics Ltd,

Hayes, Middx.

RADIO TECHNICIANS

IN

CIVIL AVIATION
A number of appointments are available for interesting work providing and mainraining aeronautical telecommunications and electronic navigational aids at aerodromes and radio stations in various parts of the United Kingdom.
Applications are invited from men aged 19 or over who have a fundamental knowledge of radio or radar with some practical experience. Training courses are provided to give familiarity with the $t y p e s$ of equipment used.

Salary $£ 600$ at age 25 rising to £705. The rates are somewhat lower in the Provinces and for those below age 25. Prospects of permanent pensionable posts.

Opportunities for promotion to Telecommunications Technical Officer are good for those who obtain the Ordinary National Certificate in Electrical Engineering or certain City and Guilds Certificates. The maximum salaries of Telecommunications Technical Officers are Grade III £870, Grade II £1,030, Grade I £1,250.

Apply to the Ministry of Transport and Civil Aviation (ESB1/RT), Berkeley Square House, London, W.1, or to any Employment Exchange (quoting Order No. Westminster 2109).

THE WAYNE KERR Laboratories require ELECTRONIC ENGINEERS
\& DRAUGHTSMEN
for development work in the following fields:
ELECTRO-CHEMICAL AND
LLECTRO-mRCHANICAL MRASURBMENTS A.P., จ.H.P., U.H.P. AND miciowave measurbments, industrial process Control bquipmint, PULSE TECHNIQUES.
Measurements techniques introduced by The Wayne Kerr Laboratories are finding incressing outlets in a world-wide field of Laboratory and Industrial use.
Attractive and interesting positions offering scope for initiative and ability are available for Senior and Junior Development Engineers and Draughtamen.

For Senior posts a minimum of Honours Degree Standard or equivalent professional qualifications is required, with several years' experience in the development of electronic instruments. For Junior posts qualifications ranging from O.N.C. to Degree Standard are acceptable. Draughtsmen are required to have experience in the mechanical deagn of Electronic apparatus.
All appointments are permanent, carry attractive salaries and qualify for membership of the Staff Pension Fund.

Applications, which will be treated in strict confidence should be oddressed to:

The Chief Devalopment Engineet Wayne Kerr Laboratories Led.,
3, Sycamore Grove, New Malden, Surrey. Telethone MMLden 2202.

FERRANTI LTo

 ELECTRONICSDEPARTMENT
have the following vacancies for
(1) JUNIOR ENGINEERS for development work on MICROWAVE VALVES at the Company's Wythenshawe, South Manchester, branch. A standard of approximately Higher National Certificate in Electrical Engineering is required.
(2) A GRADUATE ENGINEER interested in production, for work on technical problems in the production of SEMI-CONDUCTORS at the Company's Chadderton, Oldham, branch. Previous experience in the Semicondutor field is not essential since an initial period of training in the laboratory would be provided.

The Company has a Staff Pension Scheme and an Assurance Scheme for Dependants.
Forms of application can be obtained from
T. J. Lunt, Staff Manager, Ferranti Ltd, Hollinwood, Lancs.
Please quote reference PDH1 or 2.

DESIGN AND DEVELOPMENT EMGIMEERS

(8enior, Intermediate and Junior)
Required for the Modern Laboratory of a progressive Engineering Company engaged in the advanced development of Electronics and Mechanical Engineering in connection with gluided weapon and other applications. The Design Laboratory is expanding rapidly and, therefore, opportunities exist which give full scope for individual initiative and advancement to applicants who possess H.N.C. and who have also had previous experience in this field. A salary of up to $£ 1,500$ per annum will be paid to the selected candidates according to grade.
Applications, which will be treated in utmost confidence, should give full details of qualifications and experience and be addressed to:

BOX No. 291 I s/o WIRELESS WORLD

SENIOR TECHNICAL
 ENGINEERING STAFF

A London Engineering Company invite applications from project engineers who are capable of taking charge of electronics and mechanical engineering development in connection with guided weapon and other applications. These positions are permanent and offer ample opportunity for further advancement. The commencing salaries, which will be in the region of $£ 1,500$ per annum upwards according to qualifications and experience, will be subject to review on a generous scale. Engineering degree or H.N.C. Replies, which will be treated in utmost confidence, should give full details of qualifications and experience and be addressed to Box No. 2686 c/o "Wireless World."

SPRCIAL PURPOSE COMPUTERS

The Kidsgrove Works of the English Electric Company are considerably expanding their activities in the field of Special Purpose Digital Computers, and are building new development laboratories, pleasantly located on the Cheshire-Staffordshire border. There are a number of vacancies for Senior Engineers in the Computer team. Candidates should have had experience of logical and circuit design of computers, but consideration will be given to candidates having experience in the design of other complex pulse circuitry. The Company operates a Staff Pension Scheme and unfurnished tenancies of recently built houses will be available for successful candidates immediately.

Applications giving full details of qualifications and experience should be made to:
Dept. C.P.S. 336/7 Strand, W.C.2, quoting Ref. WW 306D.

Z \& I AERO SERVICES LTD.

A.R.B. Approved Stockists

EDDYSTONE 358X COMMUNICATION RECEIVERS

PRICE, tested and aligned, complete with set of 10 coils packing and Carriage..................... $\leqslant 12100$

COILS, range " A "" to "J" inclusive $17 / 6$ each. Packing and carriage $2 / 6$ per coil or $10 /=$ per set of ten.

For details see November issue.
SIMPLE TWO-DECADE WHEATSTONE BRIDGES
0 to 200 ohms in one-ohm steps (no ratio arms); built-in galvanometer $2.5-0-2.5 \mathrm{~mA}$.
buitein galvanometer 2.5-0-2.5 mA.
Packing and carriage

METERS

2tin. centre zero plain scale M.C. Galvanometer, 600-0-600 microamps, projection mounting, plug-in type 2 12.6 2 j in. round projection mounting M.C. Milliammeter, 0 to 500 mA
2 in. round flush-mounting M.......... Voltmeter ${ }^{6}$ 0 to 300 V. A.C. with internal matched re: sistance ... 22 6
V.H.F. AIRCRAFT TRANSMITTING \& RECEIVING ERUIPMENT
Crystal controlled, range 115 to $145 \mathrm{Mc} / \mathrm{s}$; power output 4 watts; total weight approx. power
26 lbs.

TRI520 4-channel installation.
TR1936 l0-channel installation.
STR9Z 44-channel automatically tuned installation. All released to A.R.B. requirements and supplied
ready for use, complece with mounting rack. ready for use, complete with mounting rack.
aerial, control unit, plugs and receiver headaerial, control
sear assembly. $\begin{aligned} & \text { Prices and details on application. }\end{aligned}$
SCANNERS RC-94 for SCR-720 RADAR ERUIPMENT, complere or components. Prices and details on application.

THOMSON-VARLEY POTENTIAL DIVIDER

Manufactured by H. Tinsley. This is a precision potentiometer having three decades plus divided wire, total resistance 70,000 ohms; resolution $1 / 100,000$ of total resistance. Built-in galvanometer appr. 1 microamp. F.S.D. Accuracy $.01 \%$
PRICE
625

BEAT FREQUENCY OSCILLATORS

Furzehill No. I, or equivalent, 0 to $10,000 \mathrm{c} / \mathrm{s}$, mains operated $£ 220 \%$ General Radio Type 613,0 o to $12,500 \mathrm{c} / \mathrm{s}$, battery-operated $\quad152500$
 operated \&6S 0 o 0
 B.S.R. Type LOSO, two-dial type, 0 to 16,000 c/s, mains operated 630 © 0 General Radio Type 700A (Wide range), 0 to $5 \mathrm{Mc} / \mathrm{s}$, mains operated............. 65500

FOSTER MODEL "d" PORTABLE THERMOCOUPLE POTENTIOMETER
Ranges: 0 to 20 mV and 0 to 60 mV
Calibration:
0 to $1600^{\circ} \mathrm{C}$. for Pt-Pt13\%Rh.
0 to $1300^{\circ} \mathrm{C}$. for Chromel/Alumel. 0 to $1040^{\circ} \mathrm{C}$. for Iron Constantan.
PRICE, complete with Standard Cell $£ 32$ o 0
Ditto, with Potential Divider......... $\varepsilon 35$ o 0
Packing and carriage \& \& 0

BD-71 and BD-72 6-line and 12 -line AMERJCAN TELEPHONE SWITCHBOARDS.
EE-8 AMERICAN FIELD TELEPHONES and Spares.
UC IO.line SWITCHBOARDS and large assortment of spares, including P.O. 201 Plugs.
COLLINS TCS TRANSMITTING \& RECEIVING EQUIPMENT, 1.5 to $12 \mathrm{Mc} / \mathrm{s}$; complete installations and spares. BC-191 (12 v.) TRANSMITTERS, 5pares and Tuning Units. AMERICAN COMMUNICATION RECEIVERS BC-312, BC-342 and BC-348. R.C.A. AR-88 COMMUNICATION RECEIVERS and large assortment of Spares.
SCR-269G and ARN-7 RADIO COMPASS INSTALLATIONS, and all Component Units.
ARC-1 V,H.F. AIRCRAFT TRANS-MITTER-RECEIVERS.
Large assorment of Plugs and Sockers: British 5X and 10H series, American Cannon and Amphenol, etc.
American and British Aircraft Headset and
Microphone Equipment
Prices and details on application.

BRAND NEW AMERICAN TEST KITS as illustrated in November issue, consisting of Frequency Meter BC-906D ($150-235 \mathrm{Mc} / \mathrm{s}$); Test Oscillator 1-196 (150-235 Mc/s); Test Receiver BC-1066 ($150-235 \mathrm{Mc} / \mathrm{s}$); Range Calibrator BC-949 (8 to $81 \mathrm{kc} / \mathrm{s}$), and Indicator BC-936 (R.F. Rectifier with video output). All these are portable battery-operated instruments working off 135 v . or 45 v . H.T. and l. 5 v. L.T.

PRICE of complete set of five units as above, brand new $\mathbf{\& 5} 100$ Packing and carriage \&l 0

MARCONI OUTPUT METER TF-340
Meter scale 0 to $50 \mathrm{~mW} / 0$ to 17 dB ; Meter Multiplier $0.1-1.0-10-100$; impedance values 25-30-40-50-60-80-100-125-150-200 ohms; Impedance Multiplier $0.1=1.0-10-100$.
PRICE, fully overhauled
63100

TAYLOR MODEL I60A OUTPUT METER

Meter Calibration: 0 to 25 mW .
Meter Multiplier: .01-. 10-1.0-10-100.
Impedance settings: 2.5-5-100-125-150-600-4000-8000-10,000-20,000 ohms.
PRICE, fully guaranteed E21 0

INSULATION TESTERS

EVERSHED " WEE " MEGGERS:

A.C. MAINS POWER PACKS for 2001 250 v . mains, output 300 v . H.T. at 200 mA and 12 v. 3 amps A.C., L.T. Size $7!\times 7 \times 13 \mathrm{fin}$. PRICE, brand new 6300
Packing and carriage
100

marconi valve voltmeter

TF428B/I, . 10 to 150 v . in five ranges; resonant frequency approx. $400 \mathrm{Mc} / \mathrm{s}$. Brand new, with spares, in transit case \& 35 o 0 Service equivalent of the above, overhauled and guaranteed $£ 1700$
Packing and carriage 150
2.5 kVA WELDING TRANSFORMERS for 230 v . mains. Two output sockets 25 amp and 50 amp at 50 v . Output voltage adjustable by means of "off-load "tappings. Permissible momentary overload up to 100%. Waterproof input and output sockets.
PRICE, brand new
E1500
Carriage
LI 100

Please write for further details of the above equipment and for Complete Catalogues of Radio/Aircraft and Test Equipment to:

Z \& I AERO SERVICES LTD. 14, South Wharf Road, London, W. 2

Telephone AMEassador 0151/2

We are always buying American Test, Aircraft and Radio Equipment, such as: BC-221, BC-312, BC-342, BC-348, ARC-1, ARC-3, ART-13, ARN-6, ARN-7, etc.

Wireless World Classified Advertisements

Rate $7 /$ Ior 2 hnes or reas ana $3 / 8$ tor everry siditional line or pirt therreot, avernse hines 6 worde. Bos Mumberi World" Dorses Hoone 8 .
 1058 lemat, Thursidy, Jamary god. Mo raposidility cocepted for urroris.

WARNING

Readers ore worned thot Government surplus components and valves which may be offered for sale through our displayed or classified columns carry no manufocturers' guarantee: Many of these items will have been designed for special purposes making them unsuitable fo civilion use, or may hove deteriorated as a result of the conditions under which they have been stared. We cannot undertake to deal with ony complaints regarding ony such items purchased.

NEW RECEIVER8 AND AMPLIFIER8

 A M/FM chassis, with or less o/p. stages; C.M. Tuner, switch-tuned, A.P.C. temp. 6.3 y comp. I.F.S. 7 valves, $\frac{1}{250 \mathrm{y}}{ }^{2}$ volt A.F ${ }_{50 \mathrm{~mA}}$ output, smart, brand new. few only; e12. . Win. Williams Sound." 32, Mariborough Park Ave., Sidcup. Kent.CI-FI at low cost; our AM/FM R/G chassis hohly reeders are grand periormers at hishly competitive prices; we particularly emphasize our Model A/F834, and 8 valve 3 wavealso Model A/73 AM/PM feeder: trade enquiries invited.-Bayly Bros.. 46, Pavilion Drive, Leigh-on-Sea. Rssex.
SHIRLEY LABPRATORIES, Ltd. 3, Prospect THE PWA. Worti.ing. Sussex, Tel. 30536 . THE TWA/1515 stereosonic tape recording and record and playback on both channels, 13watts O/P each channel. 96 gns. TWA/ 15 tape recordng and reproducing ampliner, iswatts O / P for Wearite and Collaro decks 45ens; TW/PA recording and replay pre-amplifer. 30gns; both With valve voltmeter monitoring: type sB/1-15econtrol fistem. 40 mv sensitivity. 20 gms ; with two inputs and 3 -position gram filter. 22gns; specialized amplitiers for the musical and scientific industries including the Mullara 20watt.

RECEIVERS AND AMPLIFIERSGOR sale, 2 only, 1155 transmitter receivers and Power Paks; at s7 each.-Airviews,
HR BC348R, CR100, etc. - Regurements ARess. ER BCS48R. CR100, etc.-Reguirements please to R, T, \& 1. Service. 254. Grove Green Rd
R.C.A. orthophonic amplifier, pre-amplifier, K v.h.f. tuner, Collaro 3 -speed transcription motor. studio P pick-up in W.B. cabinet with large record space; W.B. T. 12 tweeter. 1214 cabinet. cost $£ 150$: best offer over 885 ; h .p. avaliable.-Hayes Radio. N.7. North 1358.

RECEIVER8 ANO AMPLIFIER8 WANTED £30 reward Aeromagic Recelver 1935/1936. 3023. Cash Servicins Manual, Box ${ }_{[7546}$

TV RECEIVERS-

SURPLUS AND SECOND-HAND
FOR sale, white Ibbotson projection T.V. set, Fan buitable for use in stail recreation room; can be inspected at City Hospital, Chester. Management Committee, 5 , King's Buildings, Chester

LOUDSPEAKERS-SURPLUS AND SECOND-HANO

A PAIR Voist loudspeakers: E7/10 each,Norwich.

TEST EQUIPMENT-8URPLUS AND

GIGNAL generators. oscilloscopes, output \checkmark meters, valve voltmeters. Irequency meters. mutti-range meters in stock; your enguirles are invited.-Requirements to R. T, \& Bervice. VOLTMETERS 0.20 M.I. F.G., Res. 200 hms P/V 3 in $20 /-000$ M.C. sq. face, black dal. $\operatorname{Lin} 15 / 6 ; 0-80$ M.C., round, white dial 2 in $17 / 6$ 0.500 M.I., F.G. with ext. res., 4 in $35 /=$ Electrostatics $0-2,000$ flush fiting $21 / 2 \mathrm{in} 20 /:$ $0-3.500$ plug-in, 21 n 25/-i also $0-300 \mathrm{~m} / \mathrm{A}$. tone Rd., Lelcester.

ECONOMICAL DESIGN MEANS PRICE REDUCTION OVER TRANSFORMERS WITH LESS EXACTING SPECIFICATION

A range of truly " high" fidelity output tuansformers especially suited to the well-known Osram and Mullard Amplifier deaigns. The primaries are tapped for ulta-linear connection at
43%, and on certain models at 20% it give optimum performance at various power levels up to 50 watts for operation with such valves as KT88, KT66 EL34, N.709, EL84, etc.
The series includes a mains transformer of similar styling with specification to suit the Mullard $5-10$ and Osram 912 amplifiers.

Write for full details of these and other specified transformers.

PARTRIDGE TRANSFORMERS LTD TOLWORTH SURREY

Phone: ELMbridge 6737/8

DYNAMO8. MOTOR8. ETC -

500 cycles alternators 2KVA. 80v.-E.W.8. ham. Co., 69, Church Rd., Moseley. Birmine-

NEW CDMPDNENT8

CRYSTAL microphone inserts (Cosmocord Core mic 6/4): guerante boxed;
Market
15t.,
Satford.

COMPONENT8-SURPLU8 AND
8ECONDHAND
3000 condensers, $25 \mu \mathrm{i} 350 \mathrm{~V}$ wkg. MetalAvenue 1625 . pack, unused stock; ofters.-Tel. SOUTHKRN RADIO SUYPLY, Lta.. 11, LItLE played advertisement page 164.
R ADIO CLEARANCE, Lta ${ }^{2}$, 27, Tottenham MAINS transiormers pri. 110 v . $220-240 \mathrm{y}$ sec $300-0-300 \mathrm{v}, 4 \mathrm{v} 2 \mathrm{smp}$. $6.3 \mathrm{v} 2.5 \mathrm{smp}, 11 /=; 2-$ sang condenser, 0005, Var. size, $21 / i n \times 2 i n \times 1, \operatorname{in}$.
sin spindle, $4 /-\mathrm{M}$. iocus rings. WIDE: ANGLL tetrode tube, iully adjustable. $7 / 6$; TV. metal rectifters, 250 y 250 ma, size $31 / \mathrm{in} \times 4 i n$, cans, lisinx ivin in $21 / 1 \mathrm{~m}$, sius tuned, set of $3,5 / 6 ; 2$-gane var. 20 pt , size $21 / 4 \ln x 1^{1 / 2 i n} x$

PARMERO 8h 100 ma chokes, $7 / 6$
WIRE-WOUND pots, 1001 , 1 in spindle, $2 / 6$; speakers. P.M., 5 in 5Ω speech coil, $16 / 6 ;$ sheet speakers. Mim. large variety of sizes in stock. SUB-MINIATURE electrolytics for transistor

 ELECTRO-YTICS, capacity voltage, size, type
ot mouning; 50 mtd 25v, $1 / \ln \times 1 / \mathrm{in}$, tas, $1 / 6 ;$ $100 \mathrm{mfd}, 12 \mathrm{v}, 13 / 1 \mathrm{~m} \times 1 / 2 \mathrm{in}$ cas $1 / 6 ; 500 \mathrm{mfd}, 12 \mathrm{v}$,

 $2 / 6$; $16 \mathrm{mfd}, 350 \mathrm{v}, 2 \mathrm{in} \times \frac{1}{2} / \mathrm{in}$, prong, $1 / 9 ; 20 \mathrm{mid}$,
 $2 \mathrm{in} \times 7 / 3 \mathrm{~m} . \operatorname{clip}, 2 /-, 32 \mathrm{mid} .275-350 \mathrm{v}, 2 \mathrm{in} \times 1 \mathrm{in}$, $450 \mathrm{v}, 2 \mathrm{in} \times 1 \ln . \mathrm{W} / \mathrm{s}, 2,9 ; 40 \mathrm{mid}, 150 \mathrm{v}, 2 \mathrm{in} \times 1 \mathrm{in}$,

 prong, $3 / 6 ; 20025 \mathrm{mfd}, 350-425 \mathrm{v}, 3 \sin \times 13$ in. $200 \mathrm{mid}, 250-325 \mathrm{v}$, $3 \mathrm{in} \times 1 \mathrm{~m} / \mathrm{m}, 2 / 6 ; 200 \mathrm{mid}, 275$:

 $6 \mathrm{v}, 2 \mathrm{in} \times 1 \mathrm{ln}$, clip, $2 /=1,000 \mathrm{midd} 25 \mathrm{v}$. $3 \mathrm{in} \times 1 \mathrm{in}$. clip. $1 / 6$: $2.000 \mathrm{mfd}, 12 v, 21 \mathrm{n} \times 12 / \mathrm{in}, \mathrm{W} / \mathrm{E}, 3 / 6$; $50 \mathrm{v}, 44 \ln \times 21 \mathrm{n}$, clip, $5 /-2.500 \mathrm{mfd}, 50 \mathrm{v}, 44 \mathrm{~min} \mathrm{x}$

 450-525v, $3 \operatorname{in} \times 1$ in, clip, 3/6: $20+20 \mathrm{mid}, 350$ 425 v , $2 \mathrm{in} \times 1 \mathrm{in}$ prong $4 /-20+20 \mathrm{mid}, 150 \mathrm{v}$, 2 in
 W/E, $2 / 3,20+20 \mathrm{mfd}, 350-425 \mathrm{v}, 2 \mathrm{n} \times 1 \mathrm{in}, \mathrm{W} / \mathrm{E}$.
 350 v . 3 in $\times 1 \mathrm{in}$ prong, $3 / 9^{\circ}, 40+40 \mathrm{mfd}, 275$ $2 \ln \times 11 \mathrm{n}$, cllp, $2 / 6,40+40 \mathrm{mild}, 450 \mathrm{v}, 3 \mathrm{in} \times 1 \% \mathrm{~m}$.

 $250 \mathrm{mfd}, 250-355 v, 41 / 2 \times 15$, clip, $4 / 6: 60+$ 65 mfd , $250-325 \mathrm{v}$. $3 \mathrm{sin} \times 18 \mathrm{~m} / \mathrm{n}$, prong. $4 / 6 ; 100+$ $200 \mathrm{mid}, 250-325 v^{2} 41 / 2 \times 1 / \mathrm{min}, ~ c l i p . ~ 5 / 6 ; 150+$ $100+200 \mathrm{mid}, 275-350 \mathrm{v}$, $4 \mathrm{~lm} \ln \times 1 /$ in. clip, $6 / 6$ $200+200 \mathrm{mid}, 275-350 \mathrm{v}, 41 / \mathrm{in} \times 1 \mathrm{in}$ in. clip. 6/6: $1000 \mathrm{mfd}+1.000 \mathrm{mfd}, 6 \mathrm{v}, 3 \mathrm{in} \times 1 \mathrm{in}$. clip. $3 / 6$; $12+12+24 \mathrm{mfd}, 275-350 \mathrm{v}, 2 \ln \times 1 \mathrm{in}$, prong, $3 / 6 ;$
$16+8+4 \mathrm{mfd}, 275-350 \mathrm{v}$, $2 \ln \times 1 \mathrm{in}$, prone. $3 / 6 ;$

 $350-425 \mathrm{v}$. $21 \mathrm{n} \times 1 \mathrm{kin}$, clip. $3 / 6 ; 40+30+20 \mathrm{mid}$ $275-350 \mathrm{v}$. $3 \mathrm{in} \times 1 \ln$. prons, $3 / 6,40+30+20 \mathrm{mfd}$ $375-3507+25 \mathrm{mid} 358,31 \mathrm{x} \times 1 \mathrm{~min}$, prong. 4/-; $50+50+8 \mathrm{mid}, 275-350 \%, 3 \sin \times 1 / \mathrm{min}$, prong, $4 / 6$ $50+50+50 \mathrm{mid}$, 350% in $\times 1$ \%in, prong. $5 / 6$;
 clip. $5 /-$ are suaranteed new and unused

manufacturers surplus
 TRADE enquiries welcomed.

ALL prices melude packing and postage.
 NFW and used radio and television spares 1/6, all quaranteed: Lists 3d.-J. Palmer (W),
32. Neasden Lane, London, N.W.10.

SOUTHERNRADIO'S WIRELESS BARGAINS

TRANSMITTER-RECEIVERS. Type 38 Mk. II Walkie Talkie.

- See Special Offer Opposite

TRANSRECEIVERS. Type " 18 " Mark III. Two Units (Receiver and Sender). Six Valves, Microammeter, etc. in Metal Case. Untested, without guarantee but COMPLETE E2/18/6.
ATTACHMENTS for " 18 " Transrece ivers. ALL BRAND NEW. Headphones 15/6; Hand Microphone 12/6; Aerials $5 /-$; Set of 6 Valves 30/-. RECEIVERS R.io9. S.W, Receiver in Case, eight valves. Speaker and 6 -v, vib. Pack. Untested, no valves. Speaker and 6-v, vib. Pack;
guarantee but COMPLETE E2/18/6.
guarantee but COMPLETE E2/8/6. RESISTANCES. 100
New wire end $12 / 6$.
 CONDENSERS. $100 A d$. Mica: Tubular ;etc. $15 /-$-.
BOMBSIGHT COMPUTERS. Ex-R.A.F. BOMBSIGHT COMPUTERS. Ex-R.A.F. NEW. Hundreds of Comp
Ideal for Experimenters E3.
LUFBRA HOLE CUTTERS. Adjustable łin. LUFBRA HOLE 3 in. For Meral, Plastic, eece. $7 /$-.
to 3yin. For Meral, Plastic, etc. 7/-. 241 and F.T.243. 2.9 in . tin . Spacing. Frequencies berween 5,675 kcs. and 8,650 kes. (F.T.243). 20Mcs. and 38.8 Mcs. (F.T.241. S4th Harmonic) $4 /$ each. ALL BRAND NEW. TWELVE ASSORTED CRY. STALS $45 /$-. Holders for both types $1 /$ each. Customers ordering 12 crystals can be supplied with lists of Frequencies available for their choice. MORSE TAPPERS. Standard type 3/6: Extra Heavy on Base 5/6; Midger 2/9.
TRANSPARENT MAP CASES. Plastic $14 \mathrm{in} . x 10 \mathrm{ilin}$. Ideal for Maps, Display, ezc. $5 / 6$. DINGHY AERIALS. Ex-U.S.A. Refiector Type
4/6. Hemisphares $5 / 6$
CONTACTORTIME SWITCHES. 2 Impulses per sec. in case $11 / 6$.
Post or carr. extra, full list Radio, Books, etc., 3d. SOUTHERN RADIO SUPPLY LTD LONDON, W.C.2.

GERrard 6653

DERIAL EQUIPMENT. Poles, Masts, Dipples, Yasi, Microwave arrays. Whips, 12 in . Whips to 90 rt. Masts

- CABINETS AND RACKS. 36in. to 96 in. high, standard 19 in. wide.
50 CONDENSERS up to $10,000 \mathrm{mid}$. and 50 kV .
FUSES. Cartridge and E.S. t amp. to 600 amps .
- INSULATORS. 80 different patterns.
- LOUDSPEAKERS 3in. dia. to 50 wate Theatre Systems.
- METERS. 2 in . to 12 in . dia. 120 different types.
- POWER SUPPLIES. Generators, Rectifiers, Vibrators, Inverters, Dynamotors from 2 volts 100 amps . to $36,000 \mathrm{v}$. $\frac{1}{2} \mathrm{amp}$.
- RECEIVERS. 80 types available from is kc/s. to $600 \mathrm{mc} / \mathrm{s}$. including portable. D.F., Table Rack and Pedescal.
- TEST GEAR, American, over 100 different types, Meters, Calibrators, Signal Generators, etc.
TELEPHONE AND TELEGRAPH EQUIPMENT. Single- and multi-channel apparatus, filters, switchboards, power supplies, perforators, printers.
200 TRANSFORMERS Audio and Powar, 200 types from 2 volts to 18,000 volts and up to 15 kVA .
- TRANSMITTERS, 60 different types from UF-I Handie Talkie to G-50, 2,500 wates.

FULL LISTS AVAILABLE
Send your requirements. All packing and shipping facilities.

P. HARRIS,

OFGANEORD, DORSET
Telephone: LYCHETT MINSTER 212

COMPONENTS-SURPLUS AND

$\mathbf{R}^{\text {ADIO }}$ engineers, dealers, manufacturers; R send for our lits of brand new elearance ines in radio and television components. etc.-
A.W.F., Dept. WW, 10 . Sactive St. Bradford, i. Dept. WW, 10, SacanKe st., 0131
MAGBLIPG at low prices, fully guaranteed. Noc/3 in Resolver No. 5 (AP 10861), 5yy large stocks of these and other types.-P P

[LLUSTRATED Catalogue No. 13 containin Lover 450 items of Government surplus and model radio control equipment. 2/2, refunded Arthur Sallis Radio Control, Led., Department W.W.. 93, North Rd.. Brighton. 10193

CATHODE ray tubes, used but in good workCe. ing order with 3 months' written guarantee. E4/10 plus $12 / 6$ carriage, etc.iling 121 n to only.-Enquiries and orders in writing only to

NEW GRAMOPHONE AND SOUND
$\mathrm{G}^{\text {LASGOW,-Recorders bought. sold, ex }}$ ex Conanged. cameras, etc. exchanged for recorders or vice verse.-Victor Morris,
Argyle St., Glasgow, C.2.
[0201. CINE-VOX disc recording mechandsms for C L.P. or standard operation from 30 gns . 56gns.: also complete tape/disc or direct chan nels from 50gns-112gns.
don-For tall details be arranged in Lon-Con.- For itull details Write to K.T.S. Ltd., Callers by appointment only. N.
SPECIAL tape offer at great saving! 1,200 ft $^{\text {fer }}$ price 22/6. p. recording. tupe on $1 / 6$ in reels. our
 PHOT́' OPTIX iLONDON). Ltd., 73, Praed St.. London, W.2. Pad. 2891.
TAPE Recorders. Ferrograph, 76 gns : Reflecto Wraph. E87: Brenell. 48 gns: tipe decks. Wearite. Collaro. Truvox: microphones. Reslo S.T.C. Acos; amplifiers, Leat, 278ns; Quad fidelity tape to disc service.-Lambaa Record Co., 4, Klmberley Ave., Liverpool. 23 . 16884
IN accordance with our policy of only supplywe ing the best, we are happy to announce tha we are now accepting orders ior opinion one of the most outstanding advances in HIsh Fi and Recording Equipment supplied, Leaflet On request:- RECORD COMPANY, 4. KimberLAMBDA RECORD COMPANY,
ley Ave., Liverpool, 23 . Tel. Great Crobsy
4012

No interest charges with all makes of tape No recorders; ast us about our new high quality-low cost Addatape-can be connected to ampliner making a real hi-n recorder, or plugs into radio. eanets and prices on reques special offer, 1.200 t El plastic recording tape 132, Tottenham Court Rd.. London, w.1.
Euston 6500 . TAPE recorders for home and industry: 79gns LeeverseRich, from E_{250} according to 79gns; Leevers-Rach, ${ }^{\text {specincation; Standard and L.P. tapes; high }}$ quality mics., "Cadenza "Reslo. etc.; spearers, tuners, etc.; take/disk and complete recording service. -" Erolca " Sound Recording Services (1949), 31. Peel St. Eccles, Manchester. Eccles

GRAMOPHONE AND SOUND EQUIPMENTBURPLU8 AND 8ECONDHAND
COLLARO model 457 4-speed automatic C record changer. studio o pick-up, unused, in maker's carton, one only bargain $88 / 15$: also one only Collaro Mk. iv tape deck, I. power pack oreamplifer. power amodiner speaker, tape and microphone, completely wired by manufacturer ready for immediate use. new, in makers carton, terrific bargain ع37/10. $\frac{17}{}$ Box 2947.

TAPE RECORDING. ETC.
TAPE to disc, Queensway Recording Studios. ders 123. Queensway. W.2. Bay. 4992.
led and
HAVE your tape recordings transiferred w King Sc.. W. 3 . Acorn 2594 .
$\mathbf{R}^{\text {ENDEEVVOUS RECORDS offer comprehen- }}$ R sive $78 / \mathrm{LP}$ tape to disc recording facilities. chester. 3. ${ }^{\text {Lrom 19. }}$ Blactiriars St., Man
USE Britaln's oldest full-time tape/disc Uranster service for LPs and Mark 78 s (3till 1952 rates). Sound News Productions. 59. Bryanston St.. London. W.1. Amb. C091. 10192
 leafiet.-Marsh. Little Place, Moss Delph Liane,

SOUTHERNRADIO'S SPECIAL OFFER of
TRANSMITTER - RECEIVERS
Type 38 Mk. II (WALKIE TALKIE)
A recent direct Large Purchase of this well-known TX-R enables us to make this

VERY SPECIAL OFFER

TRANSMITTER-RECEIVER. Type " 38 " Mk II complete in Metal Carrying Case, $9 \times 6 \mathrm{lin}$, $\times 4 \mathrm{im}$. Weight 6 lbs. Frequency 7.3 to 9 Mcs. Fivs valve E $1 / 2 / 6$ pose paid.
These
Tx-R's are
in NEW
CONDI.
TION, but owing to demand they are they are by us and carry no guarantee. but should SERVICE:

ABLEACHMENTS for Type " 38 " Transreceivers. ALL BRAND NEW: Headphones $15 / 6$; Throat Mierophones 4/6; Junction Boxes 2/6: Aerials, No. $12 / 5$, No. 2, $5 /-i$ Webbing $4 / \mathrm{i}$ Haversacks $5 / \mathrm{F}$ Valves-A.R.P. 12 4/6, A.T.P.4. 3/6; Set of FIVE VALVES 19/- the set.
OFFER No. 2:
Transmitter-Receiver " 38," as above, com-
plete with set of external attachments, 42,6, post paid.
FFER No. 3 :
Transmitter-Receiver " 38 " Mk. II. Brand New with complete set of external attachments and complete set of spares including Webbing, Haversacks and Valves, 57/6, post paid.
SOUTHERN RADIO SUPPLY LTD LONDON, W.C.2. $\begin{aligned} & \text { GERPORT STREET } 6653\end{aligned}$

FOR 25 YEARS THE BEST

The
BRADFORD PERFECT BAFFLE
(Patent Psnding)

A COMPACT enclosure ensuring realism and clarity of reproduction with NO BOOM.
A comprehensive range for single- and multi-speaker systems is available.
From $£ 8 / 15 / 0$ for 17 in . $\times 17 \mathrm{in}$. $\times 12 \frac{1}{2} \mathrm{in}$. We are demonstrating the GOODSELL "Golden Range," the ORTOFON Pick-Ups and the WOOLLETT Transcription Gramophone Turntable.

Daily: 9 a.m. to 6 p.m.
Saturdays: 9 a.m. to Noon.

17 Charing Cross Road London, W.C. 2 Tel.: TRAíalgar 5575 (opp. Garrick Theatre)

limited

Trade and Export enquiries to :-
JOHN LIONNET \& COMPANY
(at above address)

WANTED, EXCHANGE, ETC

WANTED urgentiy, Garrard 20178 rpm Brock Transcription motor.-96. Ewhurst Rd. Brockley, S.E.4.
CONVERT to cash. We buy surplus; new 155. Skan Arcade, Bradford. 1. ${ }^{\text {Valc. }}$. 10190

A ${ }^{\text {DVERTISER }}$ requires one, or more, ment containing same.-Box 3150 .
Valves (new), tape recorders, test equip. Spon Lane, West Bromwich, Stafis. Tel. Wes. ${ }_{2392}$ Lane. West Bromwich. Stañs. Ce. [7079
WANTED, HRO coils, Rxs, etc. A.R.88s, Service, 2544 , Srove Green Rd., London, E. E. 1 I. Ley. 4996.
Wanted for cash!-Tape recorders. tape. Hi FI equipment. etc.; best prices from E. C. Kingsley \& Co. (F), 132 Tottenham

URGENTLY required, scrap platinum wire, Urentacts, etc.; spot cash for any quantity. £25 per oz troy. The Scientific Metal Co.. 50 . ${ }_{2534}$ Brompton Rd., London, S.W.7. Tel. ${ }_{[7446}$
CASH on the spot for second-hand tape Cocorders, ampliflers and Hi-Fi equipment, top prices paid. Sound Tape Vision Dept W. W.), 71, Praed St.. London, W.2. Padding.

URGENTLY wanted, manuals or instruction Uooks, data, etc. on American or British Army, Navy or Air Force radio and electrical equipment.-Harris, 93, Wardour St., W. 1

WANTED, BC610 Hallicrafters,, E.T. 4336 Wransmitters. BC312 recelvers, BC221 frequency meters and spare parts for all above: best cash prices.-P.C.A. Radio. Beavor Lane.
Hammersmith. W.6.
$W_{\text {tape }}^{\text {ANTED }}$ good quality communication RYS radios, record players, amplifiers, yalves, components, etc. estb. 18 years.-Call, send or Court, Leicester Sq.. W.C.2.

WYE purchalves WANTED
$W^{\text {E }}$ purchase large or small lots, must radio lowest price to be stated in in frst letter: mmediate cash settlement on completion.
48. Stafford St. Wolverhampton and
48. Stafford St., Wolverhampton. [0146

A LL types of valves British or American, prices paid. What have you to offer?-Write or call Lowe Bros., 9a. Dlana Place, Euston Rd., N.W.1.

CABINETS

CABINETS, radiogram and television, 25 models.-157, Bromgrove St., B'ham. Mid. 1054.

REPAIRS AND SERVICE

MAINS transformers rewound, new transMOTOR rewinds and complete overhauls; Arst class workmanship: fully guaranteed. F.M. ELECTRIC Co.. Ltd., Potters Bldgs. Warser Gate, Nottingham. Est. 1917. Tel. 54898, $\mathbf{R}^{\text {EWINDS, all types of transformers rewound }}$ R as original or new types supplied to your specifcotion
IANUFACTURERS of the " Meltronic Series MELTON ELECTRONICS, LTD. 42 , Towngate St., Poole, Dorset. Tel. Poole 2044.5. [7515 USE Jefco coll winder, cheapest machine on Southend-on-Sea. Lolliti

MAINS transformers, E.H.T.s, chokes, deld M coils. etc. promptly and emciently rewound or manufactured to any specification; 12 months ${ }^{\text {g }}$ guarantee
Hatrow Re REWIND SERVICE. Ltd.. 320 a 0914. Rd., London, N.W.10. Tel. Ladbroke

We have in stock 1,000 and 1,000 of seractual ones used by the trade: Dlease send s.a. actual enquiries.-M. Foy, 6. Wykeberk Gardens Leeds. 9 .
D. C. BOOLTON for repalrs to any loudspeaker: specialists on heavy and P.A. types; cone assemblies, field colls, repalr accessories; pressure units, microphones; trans-
formers rewound and to specifications; motor rewinds. -134 , Thornton Rd., Bradford, 1. Tel. 22838 .
PAINTS, CELLULOSE, ETC.
PANL, recognised for many years as the
unlque one-coat black crackle finish. brush unique one-coaling no baking avallable by post in $1 / 8$ pint cans at $3 / 6$ irom: G. A. Miller $\frac{1}{255}$, Nint cans at ${ }^{3 / 6}$ irom:. G. A. Miller.
[0260
MISCELLANEOUS
STANACT for soldering stainless steel, $2 / 6$ Rd., Rer bothester, Kent. Hayter. 21, Copperffeld

Armstrong

 QUALITY RADIOGRAM CHASSIS
MODEL AF 105

AM and FM Tuners and High Fidelity Amplifier on one compact chassis

- 10 valves. \qquad 10 watts push-pull amplifier with negative leed-back.
- FM Long, Medium and two Short wavebands.
- Frequency Range: $\mathbf{1 5 - 3 5 , 0 0 0}$ c.p.s. $\pm 1 \mathrm{~dB}$.
- Independent and Continuously variable Bass and Treble Controls with visual setung indicators.
- Magic Eye Tuning

MODEL PB 409
28 GNS

9 Valves. 6 watts push-pull output.

- Full VHF band ($88-108 \mathrm{Mc} / \mathrm{s}$) Plus Long. Medium and Short bands.
- Frequency Response within 2 dB 20 . 20,000 c.p.s. at 4 watts (double normal room volume).
Independent Bass and Treble Controls. Quick-action "Piano Key" selectors. Magic Eye Tuning.

We shall be glad to give you a demonstration of these and other models in our range at our Warlters Road showrooms (open 9.6 p.m. Weekdays and Saturday). If you are unable to visit us please write for descriptive literature mentioning WIRELESS WORLD. HIRE PURCHASE AND CREDIT facilities are available.
GUARANTEE: A!l our models are sold under full and unconditional money-back guarantee of satisfaction
FREE TRIAL IN YOUR OWN HOME.
Your money will be returned if 10° any reason you are not satisfied after 7 days' trial.

ARMSTRONG TELELELSSON CO. LTD.
Warlters Road, London, N. 7
Telephone: NORth 3213

a loudspeaker could be. 1 often fael that I am on the spot instead of in my own sisting room."

That is of course just what we who make Duodes have been telling you for years! And why we believe in offering you our home

There's no doubt that the best way to hear and choose tha reproducer you will live with is to invite it home and judge there.
But as 70 per cent of Duodes go overseas, and thair owners are just as happy as our many friends here, wo can honestly repeat yet again-Wherever you may live, if you want NATURAL SOUND, you must hear DUODE.

Write for details to:
DUODE LTD.
c/o The Gramophone,
II Greek Street, London, W.I

"DIPLOMA" HEADPHONES

Lightwaight High Resistance $(4,00)$ ohms). Complete with cord
$17 / 6$
Ideal for CRYSTAL SETS
The 'TYAMA' standard soldering Iren

δ

Adustable Bit.
Weight approx 402 Heating time 3 min 40 Watt economy Con-
sumprian.

- Standard Voleage Ranges.

16/9
Replacememt Elements and Bits always available
KENROY LIMITED 152/297 UPPER 8T. I8LIMETON, LONDON, M. 1 Telephone: CANonbury 4905-4663

THE world's best journals on sound recording Bryanston St., W.1; s.a.e., please. News ${ }^{59}{ }^{59}{ }^{\text {are }}$ VALVE cartons, minlatures $10 / 6$." GTs "" lists free.-R.H.S., 155. Swan Arcade, Bradford.

METALWORR. all types cabinets. chassis II racks, etc. to your own specifcation

 capacity available for small milling and cap. PHILPOTT'S METAL WORKS. Lid., Chapman st., Loughborough.
NOTICES

$\mathrm{B}^{\text {RITISH SOUND RECORDING ASSOCIA- }}$ STION. Details of membership. open to the proiessional sound recording engineer and all others interested in recording high quality reproduction and other branches of audio don lecture programme and the Manchester, Portsmouth and Cardiff Centres, may be abtained irom the Hon. Membership Secretary, R. J. Houlgate, A.M.I.E.E., 12, Strongbow Rd.
[003i

ACENTS WANTED

A GENTS calling on radio dealers, generous A commission to live wires.-A.W.F.. 10130

BUSINEA8 OPPORTUNITIES

SPECIALIZED electronic manufacturers with dealers with direct representation ofier retill les for their representatives to carry aditional ines by mutual agreement; no wholesaling or despatch; orders only accepted and passed on on commission basis; principals only in con-
fidence.-Box 2767 .
MANUPACTURERS and inventors: if you Vi have a product of universal appeal, new I les conception. practical in its approach and require capital plus the know-how of marketing. please contect the advertiser immediately giving full details; but please do not do so unless your product or ides is needed by 3ox masse and has distinctive sales appeal.
WeLL-KNOWN firm of precision engineers and instrument makers (London area) are desirous of entering into a licence agreeto electrical and/or mechanical devices of a precision instrument character. or of a consumer goods nature; adequate capital and production faclities aro arailable to develop. produce and market suitable deyices.-Communications should be addressed, in the first
instance to
Box 7247 .

145
TRANSFORMERS to any specincation: cuick and emcient service; compettive prices: estimates by return of post from: Messrs. Newman \&e Son, 1, Grove Cres., South Wood-
[7521 ,
TPANSDUCTORS, magnetic amplifers and I automatic contiol equipment designed and manufactured to eustomer's requirements; for quantities or single units we can still supply ering Co, B, Singer St Chambers, Singer London, E.C.2. Tel. Cie. 3695. ${ }^{\text {E }}$ [756i

CAPACITY AVAILABLE

CHASSIS worz, instrument cases, embossed boards in s.R.P.B. otc. Long or short runs, boarcsion work at Been prices. Extensive range Precision wort at raden prices. Extensive range
of stoct tools for radio and electronics industry; special tooling at favourable rates.-Metalwor $\frac{1}{3}$

SITUATIONS VACANT

TECHNICIAN electronics.
HILGER \& WATTS have an intaresting vacancy for a young man anxious to make at career willing to commence by carrying out and willing to commence by carrying out
routine messurements. Thls yacancy ofers good scope for advancement in an expanding organization. Candidates should have reached at least O.N.C. or G.C.E. level in maths and
physics. Five-day week, canteen and superannuation scheme. APPLICATIONS in writing to Personnel Offer,
 $W^{\text {Wreless }}$ Telegraphy Operator required by FALIKLAND ISLANDS GOVERNMENT WIreless Station, Port Stanley, on contract for one tour of three years in irst instance. Salary accorda year. Pull board accommodation obtainable at £12-£14 a month. Free passages. Liberal leave on full salary. Candidates must be SINGLE and have had good practical operating experience. P.M.G. Certificate an advantage,
White to the Crown Agents. 4 , Millbank,
London, S. letters, fuli quapincations and name in block letters, full qualincations and experlence, ${ }^{\text {and }}$
quote $\mathrm{M} 2 \mathrm{C} / 41891 / \mathrm{WF} .{ }^{\text {and }}$

BONDON CENTRAB

CAMADLAM BE MARE I \$VALVE BOPRRHET
 ($50-33.3$ metree), operates from beitery or vibrator. Range up to five malles with telesooplo sutenns or reater with higher antenna, fondor master oscliutor add power amplifer. Benatilivly 1 milliwatt output Hith input ots microvolta 10 ER.
 ,000 ${ }^{23,6}$.
illifinizerers. 2th. dial. Reailing $30-0.30$, uxb murunting. Bx-Gort Not ahecked for accuracy 16.

Rectipises. Ex-Govt., made by s.T.c. WIREWOUAD RREIISTAMCEs, $10001 \mathrm{~A}^{7 / 8} \mathrm{O}_{\text {verall }}$ ize $10 \times 1 \mathrm{in}$, dia. Unused. $5: 8$.
LiEGTRO MaONETIC COUNTRRS. Ex-G.P.O., every we perfect, 400 and 500 ohm coil, counting to 9,983 , muny tidustral and
 indicator hron Hand conrrols. complete min . onjor amida, o yarde OHI 8PEAKERE. In mood workiog order. 10ta $25 /$. 8 in . P. ..., 1016. 6 in . $13 / 6$.
OVING COIL HAMD IIIE. Type No. 7, $8 / 8$ TBLatoRs. Bynchronous 6 v. 7 -pin and 2 v . 7 -pin, avo emhiversar tees yerers. Reconditioned,
 30 Folk, $12 \mathrm{mp}, 34 \times 24 \times 21 \mathrm{in}, 25 \%$.
JIMELECTOR 8 FTTCHES. Have ming applicatione including automatio cuning, clrcuit election, eto. 80/6. Halt wipo 6.bank. 12!6. VOLOLE COMTROL with switch 10R, 2 pols itn.
 A.C.D.C. 5 valvem 18 volth 0.08 ampe, tapped at 00-110 volke 200-210 volk. 220-230 volke $240-250$ Vols Bine fin, high \times lin. dinmeter $7 / 8$.
$6 /=$
All prices include carriage.
23 LSLE ST. (GER. 2969) LONDON, W.C. 2
closed Thursday i p.m. Open alt day saturday

FM and HI-FI COMPONENTS

WIRES ESS WO nock NIRELESS WORLD FM TUNER UNIT DENCO FM TUNER
RADIO CONSTRUCTOR FM RADIO CONSTRUCT
J. T. FILMER シipartpord goad

Tol.: Usrliond $\$ 057$

LYONS RADIO LTD.

POWER UMITX TYPE 285, Injut 230 T. A.C. 50 opp. 350 v. D.C. (two choke fiter and condene at 5 mA , B.T.
 Fitted with valvee SU4, VU120 and Vig91. Howsed to metal case $18 \times 12 \times$ gins. Wha input/output pluge, fucholdert and on/oir swith to troot papet. supplied with chrcut diserma and in good morling
orier. PRICE ONLT $59 / 6$, carriage $8 / 6$. orier. PHiCx ONi 1 6日. , carrlage $8,0$.
Wee recraeng 100 v . ex-Govt. by Eversheds, in ow, unused condition PRICE $85 /=$, port $3 / 6$.
OUTPUT METERS. Callbrated in watte and dB. maje o mw. 20 . Input imperanoe vartable rrom 2.6 obms to 20 Kohme, Filted with moving-coll meter $4 \hat{i}$ in. din. 400 micro-ampe f.s.d. Thew are the Wimusor Model 150A, ex-Govt. No. 3 Mk. 2 , In ROTARY COMVERTERS (P.J. Typ 195). Input 24 च D.C. Output 290 v. A.C. 50 cge .100 whtta. Housed in meta comes fitted with standard 8-pin 5 A. wocke POWER UHITS TYPE 284. Input 200/250 5. A.C 50 cps mains. Outputs: approx. 250 V. D.C. a 100 mA . Double-section choke Aiter [s incornorated to give oxceptionaly sood mmoothlag. Made for 2 in . dia. meter for indicatins liput and output volh In sood condition and working order. PRICES ONLY exi17/6, carriaje 8/6.
3 GOLDHAWK ROAD (Dept. M.W.), 8HEPHERD'8 BUSH, LONDON, W. 12

Telephone: Shephord's Bush 1729

EQUPMENT \& CABBEETS by STAMFORD

Damonstrations of:
LOUDSPEAKERS; The Goodman Range, Wharfedale, G.E.C., Duode, Loranz.
GRAMOPHONE UNITS: Garrard 301 Connoissegr, Lenco
AMPLIFIERS \& CONTROL UNITS Acoustical Quad II, Leak, Rogers.
TAPE: Sonomag, Adaptacape.

Demonstrated at our New Showroom 98 WEYMOUTH TERRACE (Off Hacliney Road) LONDON, E. 2 Telaphone SHO 5003
Hours: 9.30 a.m. to 5.30 p.m. Mon., Tues, Fri., Sas.
Wednesday: 9.30 a.m. to 7 p.m. Thursdey: $9.30 \mathrm{a} . \mathrm{m}$, to 1 p.m.

No. 6 Bus from LIVERPOOL STREET or No. 170 Bus from Old Street Station (Underground). In both cases booking to the Odeon, Hackney Road, and walk back two turnings.

3 rt . wide, 35 in . high, 16 ja . deep. fin. Motor Board 35 tin wide, 14 tin deep having 4 in clearance below the top of the motor board and 12 in . above. Lower section 13 in. high.

Alternative interior to top section: Motor Board $16 \times 14 \frac{1}{i n}$. and control panel $15 \frac{1}{2} \times 12$. Price $\mathbf{5 1}$ / $/ 18$ - or $\mathrm{S} 6 /-$ deposit and 9 payments of $38 / 6$ monthly.

These cabinots are supplised in Oak, Walnut and hahogary voncors to shade roquired. Delivery $12 / 6$ in England and Wales
Write for Cexpopye of Equipment and cabinets for EOUIPHENT, RECORD: SPEAKERS and PYE BLACK BOX. Eatidaction guarantad or monay relunded.

Correspondenc: to:
A. L. STAMFORD (Dept. T4) 20 Colioge Parte, thasbury Read, Leedon, M,W.s.

MULTI-CHANNELIONS VELEPHONE RELAYS. THLEMETER equipment,
COMONCATION recelvers and transmitters. NAVIGATIONAL aids,
Aerial sjstems.
SPECIAL-PURPOBE television oquipment, COMPONENT8 and processes. work currently in hand at the Elypectronics Laboratories. Additional star from funior assistants to senior engineers are requifed; ample opportunity of adpancement exisis for those wilimg to undertake responsibilities, the programme of work requiring the expanslon of most sections. Tive laboratories are located in a new town giving ready access to London and the sur. facilities are avaliable nearby and the orm's sports club together with local clubs and societies offers adequate recreational and socia activity; securlty is enhanced by a pensions and is attractively planned. and housing in the town PL attractively planned.
experience, qualincations and age, to Personnel Department (E.45), Murphy Radio, Ltd., Wel. wyn Garden City, Herts.
INSPECTOR of Police, Grade II. required by NYASALAND GOVERNMENT for service in the Signals Section of the Communication Branch for cne tour of $2-3$ years with prospect of permanency. Salary scale £ 705 rising to $£ 1,200$ a year. Commencing salary according to experi-
ence. Outnt allowance 550 . Free passages. ence. Outht sllowance c50. Free passages. ive unmarried and between 20 and 30 years of age, of good education and physique not below 5 ft sin helght. and have normal vision without glasses. Essential to have at least 4 years experience of telecommunications work with a radio nrm. Government Department or H.M Porces. a knowledge of diesel and/or petro the Crown Agents, 4, Millbank, London, SW. W. State age. name in block letters. Iull gualifica-
tions and experience, and quote M1/45302/WF.

A PPLICATIONS are invited for pensionable EXAMINERS in the
PATENT Offce
To undertare the official scientinc. technical and legal work in connection with patent appli-
AGE at least 21 and under 35 years on 18 st January. 1957, with extension for regular Forces service. CANDIDATES must have (or obtain in 1957) 1st or 2nd Class Honours in Physics, Organic
or trical Engineering or in Mathematics, or an professional qualification. e.g.i. A.M.I.C.E., A.M.I.Mech.E., A.M.I.E.E., A.R.I.C. For ${ }^{\text {a }}$ iimited number or vacancies candidates with 1 st or 2 2nd Chass Honours degrees in other subjects

- sclentific or ortherwise-will be considered. Excentional candidates otherwise qualifed by high proressional attainments will be considered. London between $\$ 605$ and $£ 1,120$ hours in according to post-graduate (or equivalent) experience and National Service. Maximum of cale 81,345 . This salary scalt is being increased by approximately 5 par cent. Women's paysabove ecos silghtly lower, but is being Good prospects of promotion to Senior Examiner. rising to $£ 2,000$ (under review), and reasonable expectation of further promotion to Principgl Examiner.
ApplicATION form and further particulars Branch. 30 , Old Burlington Street, Scientific W.1, quoting $5128 / 57$ and stating date of birth. INTERVIEW Boards will sit at intervals, as required. Early application is advised.
CANTERBORY Education Authority. TechniAppLICATIONSS are invited for appointment trom 1st January, 1958 as Assistant Grade Qualincations: City and Guilds Radio Work Televisloa Servicing Certincates. A further recommendation would be in interest or qualincation in Eelectronlics or Telecommunications. sound Industrial experience required. Salary in accordance with Burnham Scales for Establishments for Further Education with allowances for Degree and approved Industria experience. Further particulars and Forms of Technical Collego Lonsport, Canterbury. Applicastions should be returned within two weeks of the sppearance of this advertisement. N. POLMEAR

CHDGF Education oftcer.
78. LONDON Onices

CANTEREURY, Kent.
[7556
$\mathbf{R}^{\text {FCORDING engIneer with tape/disc experi- }}$ ence wanted.-Full detalls to Box 3092

A UDIO Development Engineer required for acations and experience to Box 3082 . 17545
HI-FI.-Vecancy for selea assistant with good Rechnical and practical knowledge of all

GILSON

15 and 30W U.L. OUTPUT TRANSFORMERS

Dasigned in 1956 these transformers anticipated future trends and wo are confident they will meet the requirements of the most discarning amplifier engineer for a long time to come.

I5-WATT TYPE Ref. WO 892
Primary Inducrance 290 H . Leakage Inductance P to S 28 mH . Leakage Inductance $\$ P$ to $\frac{1}{8} P$ 30 mH . Wide frequency range at full power. 3.7. 7 and 15 ohms secondaries. 43% tapped primary.
This transformer is particularly suitable for the Osram 912 and Muilard 510 distributed load amplifiors.

List Price E3.2.6 2

30-WATT TYPE Ref. WO 866
Primary Inductance $>\mathbf{2 5 0} \mathbf{H}$. Lealenge Inductance <4 m M. Wide Frequency range at full power. H.F. response level to $>80 \mathrm{~K} \sim$. $7,000 / 3.7 / 15$ ohms 43\% pri. taps for E.L. 34's, KT66's or 807's.

List Price 65 . 12 ." 6

Please write for information leoflets on the above.
R. F. GILSON LTD. winisiss 11a 8T. QEORGE'S RD. WIMBLEOON, S.W. 19

Makers of HEAVY DUTY MAINS, NEON and FLUORESCENT LIGHTING TRANSFORMERS

 ARGAIN8

L2. STRP 378 , new. With ralves, 4816 RRLATB, en.
 pole c/o heavy-duty; $0 / 12^{r}$ v. 7/8 (p.p. 2/6). RX78, 2.41
 (p.p. 3/6). TEAT 8ETS: 74A with 10 valved, (car 1 139a and so cyele power pack; fir condijon, 501-carr. onv. 16/- (p. s/B). CAR RADIO (Command Roceiver, Med: lum wave). circult and modification date, $1 / 6$. Brand
 (post 3/6). VIBRAPACES, 6 . D.C. to 250 .

 BRAND NEW R.P.Eb, 27, 251 - (pest 9i-): RP25, $10 / 6$ RF26, 27, good cond., 201/, DYMAI OTORS (poot 3/G);

 $4 \mathrm{~b} 3 / 6$ Stur type, Multhend 1 P 24 W 2 B . 7/8. VHP

 $81 / 10330$ with 1 mA . 3 Jin in meter, valve TP25, eto.,

 contaja 2 separate microomp movementi and 2 neons, new, $10 /-$ PRRISCOPES (MIrrors) 3) $\times 1 / \ln$; univ. jolnt for rod fitting. 1/: pair. MorokB, fully enclued,
 cycles (AC/DC) continuotm, $12 / 6$ (post $3 /$). In. din. Twin duit corve oan $9 \times 11 \mathrm{n}$. din $45 /$ No. 18, leps attwchmentw, $50 /-$; No. 46, with attach.
 2 relays, 35/- (carr. extru above items). CDBA rco if: 1, 1.3, 5.6. 6.8. 10, 12, 15, 22, 27, 33, 47, 100 110, 220, 230, 270, 330 pfs., 6d, each. LIST AND RNQUIHIBS: G.A.F. please!

Callers and post: W. A. BENSON (W/W) Collers and post: W. A. BENSON (WIW) Collers: SUPERADIO (W'chapel) LTD Colfers: Shiteohapol, Liverpool. \&. ROY 11130 .

COVENTRY RADIO COMPONENT SPECIALISTS SINCE 1925

We have now trebled the size of our premises in order to supply a larger range of Components, Amplifiers and HI-F̈l Equipment.

Send your enquiries to:
189-191, DUNSTABLE ROAD, LUTON, BEDS.

New Telephone No. :-LUTON 7388-9

OSCILLOSCOPE

(MINIATURE TYPE-T" C.R.T.)
Supplied in kit form complet with full instructional no Operates from power supply of most AC domestic radio receivar equipment or from power unit upplied as an extra.
Cash $£ 10$ (inc post/pks.) or 301.down and 9 monthly payments of Cl (Total Price \&10.10.0.)
(Power unlt, if required, 63 extro)
Order now or send far further details to:-
E.m.I. INstiTUTES, Dept. S.C.127, London, W. 4

SITUATIONS VACANT

CHIEF Enginaer, Posts and Telegraphs To Department, Fiji. the operation, maintenance To be responsine of the Colony's telecommuniand improvement Central. Battery and Auromatic Exchanges with carrier telephone channels on the main trunk routes form part of the system while. owing to dificult terrain, exten sive use is made CI HF and VHF sadio tele graph and telephone circults.
PENSIONABLE or contract appointment in the alary scale \&F1775-EF2000 (E111=E100) plus cratulty of 15% of salary payable on satis. factory completion of contract. Entry point according to experience. Quarters, If avaligble at 10 ren 31 . Generous :eave. Free passages for oficer and tamily up to cost of four adult
lares. CANDIDATES must be Corporate Members of the Institution of Electrical Eng. Experience in between 35 and 45 years of age. Experience in tions Division of a Post Office Administration desirable.
WRITE, Director of Recruitment. Colonial Offce. S.W. 1 , Giving ase, quallications and ex-
perlence. Quote BCD $108 / 49$, 03 .
URGENTLY required, qualifed rad!o and telepanding service department; top salary for expanding service department; top salary for
[7543

T/V engineers required: must drive; excel--1 lent prospects for right men: salary irom
 FOREMAN required, fully conversant Fith all redio and electrical industry, A Apply to Haddon Transformers, Ltd., Masons Ave., Wealdstone, $[7537$ Middlesex.
SUPERVIBOR required by leading manufacturer of high quality loudspeakers and microphones; experience in this fiel and particulars and wages required.-Box 3133.

Television bench and field engineers re1 quired at all thmes for vacanctis in most parts of the British Isles; Dermanent positions paith highest salaries, plus bonus for suitable
applicants: $51 / 2$ day week.-Box 2781 .
[0251

EXPENDING Electronics Laboratory seeks Ex development entineers with wlde experience of audio amplitersilo.N.C or equic Reproducers, Ltd Dalston Gdns.. Stanmore. Middx. Wor. 40̇14.
TELEVISION Development Engineers (senior jects with minimum supervision up wo produc tion stage; write. giving rull personal details. Chiel Engineer, Redinusion R EDIFPUSION require an electronic equip\mathbf{R} ment engineer to carry out flinal test of electronic apparatus. including closed circuit television and to assist in the development of specialised conkrol gear; superant. The Manafer
tion; telephone for appointment.
17529 Feltham 4456.
Faraday electronic instruments. F Itd.: 245 , Brixton Rd.. S.W.9. have vacancles for young men in the test and inspection department which could lom

TELEVIBION Development Encineers.-Two - senior engineers are required for the development Laboralon district. Applicants should hold sood academic qualifications and have several years' experience in the developmen of black and white recelvers and some knowledge of colour television.
THE positions are permanent and pensionable and offer scope for advancement
ALe applicalions wid give freall in strjet conderience, qualifications, age and salary desire to Box 2574 .
E. K. COLE, Ltd., Malmesbury, require at E once Production Testers for testing Radio. Radar and Nucleonic equipments. Ex-service of housing accommodation; full canteen and welfare facilities, transport from outlying areas.-Applications should be made to personnel Manager.
TEST gear maintenance technician (25-45) 1 with practical experience in development or repair electronic test gear required, O.N.C. (E.E.) or C. \& G. certincate desirable; 44-hour 5-day week. statif canteen, pension scheme-Please apply by letter, glving age. experience.

$S^{E N I O R}$ and respanisible T/V ensineer reservice department: congenial worling conserlice sisp generous galary for successful applicant: must be conversant with maln agency receivers.-Apply in writing, gbating age. experienco and salary, required, to: wisex. [7518

THE MODEAN BOOK CO.
BRITAIN'S LARGEST STOCKISTS OF BRITISH AND AMERICAN TECHNICAL BOOKS

An Introduction to the Cathode Ray Oscilloscope, by H. Carter. Postage 8d.
The Electronic Musical Instrument Manual, by A. Douslas. 35/-, Postage 1/-Radio Designer's Handbook, by Langford-Smith. 42/-. Postage $1 / 6$
Mathematics for Telecommunicntions. Vol I. D. F. Spooner and W. R. Grinsted. 10/6. Postage 9d.
Transistor Engineering Reference Handbook, by Marrows. 80/-. Postage 1/6.
Electronic and Radio Engineering, by F. E. Terman. 79/-. Postage $1 / 6$.

Television Engineers' Pocket Book, by E. Molloy and J. P. Hawker. 10/6. Postage 6d.
G.E.C. Valve Manual. Part I. 7/6. Postage //-.
Radio Valve Data "WW." 5/-, Postage 8d.
Improve Your Reception, by J. Cura and L. Stanley. 5/-, Postage 4d.
Second Thoughts on Radio Theory. Compiled by "WW" Cathode Ray. 25/-. Postage $1 /$ -

Complete Catalogue 6d.

19-23 PRAED STREET LONDON, W. 2

PADdington 418S. Open 6 days $9-6$ p.m

METERS
 All types
 Any make

Single and Multi-range repaired and recalibrated
Meters 2" to 6^{*} supplied from stock.
Scaled to requirements.
E.I.R. INSTRUMENTS LTD. 329 Kilburn Lane, London, W.9. Tel.: LADtroke 4168

The finest method for cleaning records

Already over 200,000 enthusiastic users

THE "Dugt JBlaa"

 AUTOMATC GRAMOPHONE RECORD CLEANERATENT APHLEED rOR

Price reduced to 17/6 (plus 71- purchase tax)

 from your local doaler arCECIL E. WATTS
 Darby House, SUNBURY-on-THAMES, MIDDX

A WALKIE-TALKIE SET
 No. 38, Mk. II.

 Ideal for mearch partien, Are brigeriee clvil drfecee, bulldiw Brand per condition. Coumpleto rith 5 valves iend phomen
 and inatriction carrd with inuatrailona. Opersted froen ury hatherikes, E.T. 129011500 Io and L.T. 3 .r. (Dor supplied), in brand Dew condition, our price esel $17 / 8$ each, p.p. 7/80
 moter dolached rom Trima metor, complote with

 grarcs, D.C. 5 i. esolh. 18 $\nabla .7 / 8 \mathrm{meb}$ Pivericommuntcavon haid 8ist, mirenerghed. similar to G.F.O. 1 yper Do eletricity or 2-way bell wire, ctornect ming of

 olemn ocil 3.05 V adjurneble con.

 9,- per set, p. © p. 1,6.
EX O.s. askial, ott. apring leaded and fulls collapsible omplete wht corde nd yuys, ideal as menai or nishing od, brand Dew, 10/6. p. \& p. 2/
 DITr0. Will operat P. 1/6. to 78 7. D.C.. $18 / 6$ each, p. \& p. 1/6.
 p p_{b} gd. mbrellit typer Ideal for tranemitito and rectional anteana.
 10.6 each, p. \& P. 1/6. 27 F. Max. diecharge 7 amp, 7/6.v. 1 D. 1/6.
Special prices for bulk quantities.
Stockists of W/S No. 19 and spares. TERMS C.W.O.

We spectalise in Tolephone and 3.A. Equonem and aparran manfecturers enguirles iweitod.

FINSBURY TRADING CO. 12 STOKE NEWIMGTON HIGH ST., LONDON, N. 16

Tel.: Cllanerd 7342

SITUATION8 VACANT

OVERSEAS, Oil exploration company with world wide seismic parties ofers permanent career to electronic techniclans: maintainin and operating feld equipment; men prepared to accept responsibility and to live in camp or equivalent or cenuine practical experien. N. C. or equivajent or genuine practical experience to
this standird; libera! home leave,-Box 1608 . NORTHERN representative required by trans - former manufacturers to cover electronic and allied Industries; appiicants preferably round: satisiactory applicant, superannuation scheme, car pro-vided.-Write, giving details, to gales Manager. Woden Transformer Co., Ltd.. Moxley Rd.
Bilston Stifts.

METEOROLOGIST is required by radar It in manufacturers in London ares to main vices and to specialise in the technical laison with metal ser radar to meteorolugical problems.-Applicants should preferably have forecasting experience and should appiy in writing, stating age, expertence and salary required, to "JMD," Box
2871. - ${ }^{\text {LEPTRONIC test engineer required by Sunvic }}$ nucleonic equipment; preference will be given to applicants with experience in pulse tech niques: housing available if required.-Write, giving full details of experience, selary reControls. Ltd. No. 1 Pactory. Temple Pields, Iarlow, Essex. Wo. 1 ractory. Temple Fietas,
[7509
CNGINEERS required for installation and Instrumentation and V.H.P., A.M. and P.M. instrumentation and V.H.F., A.M. and P.M. have sound technical electronic training and preferable, servicing experience in the elec tronic field.-Write, statine age and detaids of experience, to Personnel Manager, E. K. Cole,
Ltd. Southend-on-Sea

TSTROMENT development engineer (sentor) with ultrasonics and electronic measuring in truments; must be capable of carrying out development projects to production stase with minimum of supervision.-Apply, giving full detais of experience, qualiacaiong and salary required, to Chiet Englneer. Dawe Instruments,

CLASS worker required Oto do sclentiol glass, burained; able production besis: successful woplicent will be working directly from drawings, and handling most sorts of glass; this is a chance to join a department which will double its sive in the next two years: 'phons for appointment, ElecRronic Instruments, Ltd.+ Lower Mortake Rd. Richmond. Richmond 5656 . Our ret. GB;
WW / N.
A SSISTANT sales engineer is required by handle technical sales correspondence in their handle technical sales correspondence in their
radar sales division: applicants should have good know!edge of commercial procedure and radar inatallation practice; a working knowledge of meteorology will also be of assistance. ase. experience. sallery required, etc. 77530
JMD." Box 2870 . ELECTRONIC INSTRUMENTS, Ltd., Lower acancies for junior and semi-senior en ineers with O.N.C. or equivalent experience for intrument final testing: these are stafi posipions orrering interesting and varied jobs with a bright future in cis rapidiy expanding company: 5-day week, persion scheme.-Apply to reference TE/WW/N,
$R^{A D 1 O}$ techniclane of all grades are invitori I to to apply for interesting and varied positions in car radjo servicing installation ana
development. Vacencies occur from time to ime for our dealers at all parts of the country high standard of practical and theoreticai knowledge of radio technologe is required,Apply in the nrst Instance to: Fersonne Oncer Circular Rd.. London. N W. 2
R ADIO technicians required by International R Aeradio, Ltd.. for oversedes service; perma. from pensionable positions; inclualve salarv rax free per znnum to al.616 per annum allowances; free accommodation: iree insurance. tit allowance, iree alr pasiages; senerous O.K leave. Qualined candidates to whom repiles only will be sent. please write. quotint R.T.it to
Personnel Opicer, 40. Parl St. W.1
0262 WEET sUssex COUNTY COUNCIL: Bofnor are invited for the post of essistant Grade A for radio and television servicing subjects: chip in the radio servicing or manuprenticeindustry ine radio servicing or manuiacturing Gndustry and hold the appropriate City a Obtainable from the Director of Education County Rall. Chichester, Sussex, on recelpt of stamped addressed envelope. Completed cipal. at the Bognor Regis Technical Institute, Gouthway, Bognor Regis.

ELEETRONIC COMPONENTS DIS TRIBUTORS FOR OVER 25 YEARS

Some populor lines: FOUR-SIDED blayg ceassis Made to our own worke irom commerclad qually
halithard aluminiunt of $16 \mathrm{~g} . \mathrm{w} . \mathrm{E}$. thlaknem these chamis will carry cmaponenta of cmnsiderable weight and normally require no corner strentheniag.

 - Poot $1 / 3 \quad$ Post $1 /\left.\mathbf{c}^{12 /}\right|^{\text {and Port } 1 / 9^{\text {rata }}}$ than fangea on two aldes (insulde or outaide) $1 / 8$ extri Poldered cornuere (new procens) $2 /$ - extra. Punets, any rize in to 8 ft. at $4 / 6$ sq. ft. (mq. in. \times it

 ol.. np to 33 pF 1 pF over 33 pF , 1800 per cent.
 2,500 ${ }^{\mathrm{pr}} 1 / 3 ; 3,000-5,000 \mathrm{pF} 1 / 8$.
Spectel (limited oumber ooly), 0.1 mifd. $1 \%, 12 /$. rom Bo ect rom 8 Cl . each.

HIOH
0\% tol. bopler
 SRPLUS STOCSS. various maten
$\frac{1}{1}$ watt
watt $\begin{array}{lll}5 \% & 2 \% & 1 \% \\ 74 & 102 & 1 / 8 \\ 94 & 11 & 1 / 8 \\ 104 & 1 / 3 & 18\end{array}$
保 Used by leading laboratoriea 66 typen in atock. requent.

The COOPER-SMITH HIGH FIDELITY AMPLIFIER Model BPI Main Amplifer, $814 / 17 /-$. Bnild-ityonrall, E12/12/0. Mk. 11 Pre-amp. and Control El1/3/- Bulld-1t-youmelt. 88/8/-.
DIRECT FROT
DIRECT FROI TAKKB TO DSCR A better 10 watt ampliter at lower cont. Send or flluntrated detalis of this remarkable outat or bear if in our demonntration ronm. Leak. Rorers, Lowiber, Goorlmana Acoustical, Larens, Philips, Connoimoour, Collaro, Germad Goklring.

RELAFY 600 type $3 / 6$ each.
2-ruake. 3000 a coll.
1 ranke, $1 \mathrm{c} / 0,150 \mathrm{Q}$ coll.
-break. 1 c/o, 1 c/o (M before B 150 a coll)
misuAL Lidicators, type 3 ($10 \mathrm{Q} / 4$) containing two Heon lampes (two) 9/6. ultabie for cromover unite, eto. 5 mP . A. whe. 1 mP ., 6d. esch; 2 mP . 6 A ; each 4 mPF . 8 A . each;

High-Grade Meters

Fluab
ceale.
By LEADING MANUPACTURER Tuah mounting, sting diar (leas alance), sin DC YOVNG COL
 $5.0-5 / 0-10.0 .5 \mathrm{~mA} / 0-115 . V_{0} 88$,
 $0-1,000$ volta, reat $20 \mathrm{~m}, \mathrm{~g}$ (20). PV), $8 \mathrm{~B} \cdot$ $0-500$ volts,
tmpe, F8D, ace:o $0-80,80 \%$.
All the above are brand new and teated

Pleaso add approx. ©ont of poutage

H. L. SMITH \& CO. LTD 287/2es EDGWARE ROAD, LOMDOM, W. 2 Telephone Paddington 5891

OPPORTUNTIES nomo

Get this FREE Book !

-ENGINEERING OPPORTUNITIES reveals how you can become technically qualified at home for a highly paid key-appointment in the vast Radio and Television industry. In 148 pages of intensely interosting matter, it includes full details of our up-to-the-minute home study course in all branches of TELEVISION and RADIO, A.M. Brit. I. R. E., City \& Guilds, Special Television, Servicing, Sound Film Projection, Short Wave, High Frequency and General Wireless Courses
We definitely Guarantee
"NO PASS-NO FEE"
II you're earning less than $\mathrm{C18}$ a week this enlyghtening book is for you. Write for your copy today. It will be sent FREE and without obligation.

8RITISH INSTITUTE OF ENGINEERING TECHNOLOGY x88b COLLEAS EOUSE. Lalis.
LONDON. W.8.

BRASE, COPPER, DURAL, ALUMINIUM, BRONZE
ROD. BAR. SHEET. TUBE. STRIP. WIRE 3.000 STANDARD STOCK SIZES No Quantity too Small. List on Apolication H. ROLLET \& CO. Ltd.

6 Chesham Place, S.W.1. SLO 1 ALso AT LVGEPOOL, BIREMGEAS.

QUARTZ CRYSTAL UNITS

Please note
change of address

The quartz crystal co. Ltd. Q.C.C. WORKS,

WELLINGTON CRESCENT, NEW MALDEN, SURREY.

Telaphopes: Moiden 0334 \& 2988. Grams., Cables: QUARTZCO. NEW MALDEN.

situations vacan

A COUSTIC engineer required to take charge A of acoustic laboratory; applicant mus have experience in requency response measurements of loudspeakers and the deaign and adjustment of radiogramophone cabinets, etc. an appreciation music essential and a Applicants should apply in writing glving detalls of age. quallications and experience, to Personnel Manager, E. K. Cole, Ltd., South-
end-on-Sea.
$[7534$
VACANCIES exist in a Government Com munications Centre in Boreham Wood for work on high quality communication equip ment. Inspectors must be able to read clrcuit diagrams and be acqualnted with current production methods. Testers will be required to align superhetrodyne recelvers and check per iormance of transmitters, Government Industrial conditions and rates. Commencing
salary not less than \&il per week. -Box 3056 $\mathbf{S}^{\text {ERVICE Engic and }}$ Electronic required to service Nucleexperience on Scaler, Analyser and Puise Generator instruments would be an advantage. Oppartunity may arise in the future to work on the development of lastruments. Canteen faclifies available and pension scheme in operation Nrite giving full details and qualitications J. F. Hendrie, Nucleonic and Electronic DepartMaldenhead Berts.

TECHNICAL Sales Representative to promote I sales or Nucleonic and Electronic instruments to indusiry, hospitals and Universities A sound engineering background and estabished contacts essential. Applicants should also have a good personality and address. Salary offered expenses, penstion scheme. Write giving full expenses, pensson scheme. Write givin ful onic and Electronic Department, Dynatron Radio Limited, Castle Hill, Maldenhead. Bucks. [7540

THE NATIONAL INSTITUTE FOR MEDICAL with so sound knowledge of electronics and physles is required in the instrument laboratory the work involves design, development and production of prototype apparatus for the various sclentific divisions within the Instltute: candidates should be over 24 and posseas either a H.N.C.; salary will be on a scale, Junior Technical Öffer $\& 510$ to $£ 780$. or Téchnlcal Officer £. 830 - $£ 1.150$.-Write. stating age. experience | and qualifications to the Personnel Omicer. |
| :--- |
| The Ridgeway, Mil Hin, N.W. |
| 7529 | DEVELOPMENT engineer and several techDical assistants required por a design group concerned with a wide range of small equipment and electrical appliances: preferenc of this class of work but young eng exeers with or this class of work but young engineers with ence will be considered. and if successful. wil have the opportuntty of gaining practical knowledge of design probiems met In fulilling commerclal and services specificatlons; an attractive selary' is oirered cogether with good jubure prospects. in the eastern suburbs of London.-Please reply. glving details of qualifications and experience. to Box 2946 .

TECHNICAL TRAINING

I EARN it as you do it-we provide practical Lequipment combined with instruction in chemistry photography, etc.-Write for ful detal!s to E.M.I. Institutes, Dept. WW47 London. W.4.
CITY and Guilds (Electrical, etc.) on "No CPass-No Fee" terms; over 95\% successes or ful detalla of modern courses in a branches of electrical technolosy send for our 144-pase handboot. Itee and posit ree. B.I.E.T. (Dept. 388A), 29. Wright's Lane L

TUITION

UNIVERSITY OF LONDON.
DEPARTMENT of Extra-Mural Studles. THE Iollowing University Extension Courses will be held at Imperial College, beglaning January, 1958 .
THEIR analysis and control for human comfor LECTURERS: R. W. B. Stephens. Ph.D. A.R.C.S., D.I C.: G G. Parfitt, Ph.D., A.R.C.B. D.I.C.S of Impertai collese.

THis course of elght lectures will be held at the Physics Department. Imperial Institute Rd.. South Rensington, 8.W.7, on Tuesdays at 7.0 p.m., berinning 14 January.

THE Physics of
LECTURER: J. Hallett. B.Bc.. of Imperial
THisge. course of six lectures whl be held at the Huxley Bullding, opposite the science Museum, Exhblton Rd. South Kensington, B.W.7, on FEE Ior admission 10 / APPLICATIONS for tickets and further information should be made to the Deputy Director (Ext. R.), Department of Extre-Mursl Studies,
Senste House, W.C.1.

For details write to

LTD.
8 RUPERT COURT, WARDOUR ST., LONDON, W.1.

GERrard 8286

LOCKWOOD
 makers of Fine Cabinets

 and woodwork of every descripLOCKWOOD \& COMPANY (WOODWORKERS) LTD.Lowlands Rd., Harrow, Middlesex. Byron 3704

ODDIE FASTENERS

Pat. 507249

THIS FASTERER WITH ENDLESS APPLICATIONS--SIMPLE-POSITIVE SELF-LOCKING. MADE IN A VARIETY OF TYPES AND SIZES. SPECIAL FASTENERS TO SUIT CUSTOMERS' REQUIREMENTS. WIDELY USED IN THE RADIO INDUSTRY.
illustrated brochure and other information will sladiy be sent on request.

Oddie, Bradbury 8 Cull Lto. Southampton Tol.: 55883 Cables: Fasteners, Southampton

V.H.F. TRANSMITTER TYPE TII3I-L
 With extended frequency range $100-156 \mathrm{MC} / \mathrm{S}$

We have a limited quantity of these Transmitters available for immediate delivery, fully serviceable

Finished in Grey

SHIPPING SPECIFICATION
Transmitter - Packed in Wooden Case
$7^{\prime} \times 2^{\prime} \times 2^{\prime} 6^{\prime \prime}$
Weight - 8 cwt .3 qtrs.
Valves and Audio Oscillator Packed in Wooden Case $18^{\prime \prime} \times 15^{\prime \prime} \times 12^{\prime \prime}$ Weight-I qtr. 2 lb.

All enquiries to:
AVIATION TRADERS LTD.
SALES DEPT.

21 WIGMORE STREET LONDON, W.I

Telephone: MUSEUM 7791
Telegrams: AVIATRADE WESDO
LONDON
Cables: AVIATRADE LONDON
$B^{\text {ATtersen }}$ college of Tuition
ELECTRON Tubes and their correct use. A COURSE of 12 lectures on wednesday evenings, 7.9 commencing 8th January. 1958. ree ε, further details and enroiment forms may be obtained from the secretary (electron tubes course) Battersea College, of Technology
Battersea Park Road, London, S.W.11. Battersea Park Road, London, S.W.11. [7553 NOTHING succeeds like success! What we for you-set the B.N.R.S. advt. page 116. [0172 WIRELESS operating; attendance and postal Wireless School. Manor Gdns., London, N. 7 .
FULL-TIME courses for P.M.G. Certs., C.G.L.I. Telecommunications, Radar Malntenance Cert. and B.Sc. (Eng.): Drospectus free.
$W^{\text {IRELESS. }}$ - See the world as a radio omicer Win the Merchant Nafy: short trainine period; low fees. scholarships. etc.i. availabile: boarding and day students; stamp for prospec-
tus.-WIreless College. Colwy Bay.
Dois
T^{\prime} Gullds, Radio-A.M.Brit.I.R.E. Cllty and - No Fee of exams. and home training courses in all branches of radio and T/V. Write for 144 -page handbook - free. - B.I.E.T.
Wright's Lane. London. W.
A LL EXAMINATIONB easter to pass by I.C.S. C. \& G. Telcoms, P.M.G. Cert. in wireless Telegraphy. radio and TV servicing, etc.-Write for Iree prospectus: International Correspondence Schools, Dept. CL.42A, Kingsway, Lon-
don, W.C.2.
A.M.I.Mech.E., A.M.Brit.I.R.E., City and A Guilds, etc." on ". No Pass-No Fee" terms, over 95% successes-or details of ing Building etc. write for 144 -page Hand hook Buree: B.I.E.T. (Dept. 387B), 29. Wright's Lane, London, W.8. (Dept. 381B), 29. Wright
EARN-AS-YOU-BUILD course in basge practical training building a 4 -valve receiver and superhet gignal generator and multitester; write for free book-international Correspondence Schools. Dept. CL.42. Kingsway, London, W.c.2.
TRAIN at home for a better position or a modern home tuition ofter comprehensive careers and hobbles; practical equipment supplied with many courses.-Write for free Institutes, Dept. WW 39. London. W.4. (Associated with H.M.V.)

A8s0:
10180
A. M.I.P.R.E.-for details of suitable study accepted), send for free syllabus of instruc. tional text; I.P.R.E., conditions of membership booklet 1/-: The Practical Radio Engineer, journal, sample copy 2/3; 6,000 alignment peaks tor superhets, 6/--Ali post iree from secre-
tary. I.P.R.E., 20, Fairfeld Rd.. London, N. 8.
FREE!-Brochure giving detalls of home Trestudy training in radio, television and all branches of electronics: courses for the hobby enthusiast, or for those aiming at the A.M.Brit.I.R. E. Clty and Guilds, R.T.E.B., and other professional examinations: train with the college operated by Britain's largest to E.M.I. Institutes. Dept. WW28, London. W. 4.

AUCTION8

SALES every Thursday at 11 2.m.
EASTERN Auction Mart. Ltd.
TELEVISIONS, radios, fridges, wash/machines, ENTRIES accepted working or not
15% commission on lots sold (min. $10 /-$). No sale no charge. WH conect in Greater London ares
WHITEHORSE Lane, Mile End Rd.. Stepney. STEPNEY Green 3993, 3296. $1033 . \quad$ [0125 BOOK8, IN8TRUCTION8, ETC.
"WIRELESS World," bound volumes, 1947. - T TELECOMMUNICATIONS (Principies) I and II in $\mathbf{m} . \mathrm{k} . \mathrm{s}^{\text {. Units " covers every- }}$ thing for these C. and G. exams. numerous $^{\text {worked }}$ worked examples. price 10/6; also "t Radio Reference " covers everything from basic principles to VHF, transmitters, aerial arrays, FM, etc. 180,000 words, 588 tigs., price 25/-,-Ridd!-
iord. 384, Tilehurst Rd., Reading. Berks. [7232 " R ADIO Interference Supression: As Appliea By G. L. Stephens A.M.I.E.E. 2nd Ed. An up-to-date suide to the various methods of suppressing electrical interference with radio and television reception. Many practical spplications are given, partlcular attention being paid quencies. Other chapters deal with the design and choice of suppressor components. methods of locating the source of interference, and suppression at the receiver itself. $10 / 6$ net from all booksellers. By post $11 / 4$ from Illife \& Sons Ltd.. Dorset House, Stamford St.. London.
S.e.1.

- 奴

G. R. Woodville -

Wireless World -
November 1957.

Output transformer type 4T35 as used by the author
1,000 2 anode to anode tapped at 40\%
Four secondaries each 25 v . total 400 watts.

High Tension Transformer type 5A9-1

Primary 10-0-200-220-240v. 50~ Secondary 700v. 1.2A rectified D.C.

Auxiliary Transformer type 5A9-2
Primary 10-0-200-220-240v. 50~ Secondaries 150-0-150v. 20m/A D.C.
6.3v. 20A
2.5 v .10 A
2.5 v . 5A
2.5v. 5A

Choke type 5A9-3
2 hys. when carrying 1.2A D.C. and 200v R.M.S. $100 \sim$ D.C. resistance 20Ω.

AERIAL MASTS R.A.F. TYPE 50

36 ft. HIGH

Kila comprise y ?la. dla. Tubita Steel (Copper Plateti) sectious of tit
langth, topasectiotitand base. 'rickets, Guys and Fittinge. YOU can purchase this uor
tnally expelisive MAST for a fraction of its cont,
£8.10.0 ONLY Pleate add El for (returnathe wooden carrying casc. The MABT is particularly auit able to tiake arnals (enpecially COMMERCIAL), and has many Other ueen. Exrra Ift. Mections
can be supplied at 11.6 per can be
section.
U.S.A. 45ft. AERIAL MAST (10 ections 4 ft fith. x lin., grys etc.). Thls eatirely bew and complete set it canvas rarrying bak fls wor high. irequency antemat sety witr adartonal
ARMY TYPE 32FT. MAST8 similar to above but 10 lin. screw-sections, suizable for permanent lightweight installation. Kit in canvas bag. $\$ 5 / 10 /-$, carriage $12 / 6$.

D3 STRANDED TELEPHONE CABLE, NEW, 1
mile drumb, 85/-, carr. 17/6

TRUVOX

and TANNOY LOUD HAILERS
EX-GOVT.
Impedance $7 \frac{1}{2} \Omega$ Handling cap. 8 watts price $25 /-$, post $3 / 6$.

TELEPRINTER EQUIPMENT-Brand New

Creed Automatic Transmitter No. iS4/N. Rect. Units 26 B . I.P 10.230 v . O-P, $80 \div 80 \mathrm{v}$. Telegraph Relays 299 AN.
Creed Keyboard 7M. 3 Bank 5 Unit with
answer-back uniz.

7B Carriage Unit, stand. friction feed S1813. Also comprehensive range of spares.
Quantity and Export enquiries are invited for all above items, also other Electronic Component parts.
HATTER \& DAVIS (RELAYS) LTD. 126, EENSAL ROAD, LONDON, W. 10 LADtroke 0666

BOOKS, INSTRUCTIONS, ETC.
A BACS or Nomozrams. By A. Glet. TransAnd lated from the French oy H. D. Phippen and J. W. Head. Most engineers have made use of nomograms at some time in their careers, and are fuly ailve to the ract that they are has to be solved repeatedly for several sets of variables. It is falr to say, however, that only a small proportion of even those who habitually employ nomograms know how to construct them for their own use. Most of the comparatively small ilterature on the subject is written or mathematiclans and is extremely hend. This book is essentlally practical, and not only demonstrates the many and vailed applications of the abac or nomogram, but shows how even those without highly specialized mathematical knowledge may construct their own charts. 35/- net. From all booksellers. Sons Ltd., Dorset House, Stamford St., London S.E.1.

Technical Instruction for Marine Radio Technical Instruction for Wireless TelegraphLsts." H. M. DDowsett, M.I.E.E.E F.Inst.P. and book. Q. Walker. A.R.C.S. This standard handnew format, has been planned and set in a the use of wireless actual. It is virtually a complete prospeoretical course for students wishing to qualify for the Postmaster-General's Certificate of Proficlency and contains detailed technical descriptions of 60% net from all booksellers. By post $61 / 9$ from Ilife \& Sons Ltd., Dorset House, Stam ford St., S.E.1.
THE Williamson Amplifier." This 15-watt nition on account of its remarkably low dis tortion. The issues of Wireless world in which it was originally described have long since been out of print, and the present booklet Which reprints ail the relevant artleles from 1947 onwards, gives full details not only of the basic circuit and layout, but also of the
ancillary circuits recommended by the designer ancillary circuits recommended by the designer
for high-quallty reproduction of record and radio programme; $3 / 6$ net from all booksellers By post $3 / 10$ from Iliffe \& Sons Ltd., Dorset House. Stamford St., S.E.1.
Wireless Servicing Manual." By w. T. edition of a standard work. which has come to be recognised as a reliable and comprehensive gulde for amateur and professional alike, has been thoroughly revised and set in a larger and hander format. Essential testing apparatus is deseribed and logical methods of deducing and remedying defects are explained. A com-
pletely new chapter on the servicing of quency modulated V.H.F. recelvers has been added $17 / 6$ from all booksellers. By post $18 / 8$ irom Iliffe \& Sons Ltd.. Dorset House. Stamford St., London, S.E. 1

- NTRODUCTION to Valves.". By R. W. W. M11 Hard, B.Sc.Lond., A.M.I.E.E. M.E. And Hescribes the princlples. construction, characteristics and uses of most types of radio valves. The approach is simple and, as book provides the student with a thorough understanding of valves and how they work. 8/6 ret from all booksellers. By post $9 / 4$ from 111 ffe \& Sons Ltd Dorset House, Stamford St., London. S.E.I
" $\mathrm{R}^{\text {ADIO Laboratory Handbor." By M. G. }}$ Scrogie. B.Sc M.I.E.E. This wellknown practical work describing laboratory equipment and methods of operation has bech entirely re-written and greatly enlarged. Amons the subjects considered are layout and fumish ing of premlses, methods of measurements, sources of power and signal measurements. many photographs. dlagrams, kraphs and tables; $25 /-$ net from all booksellers. By post $26 / 9$ from IIIFe \& Sons Ltd.. Dorset House, Stamford Street, S.E.1.

PRACTICAL TRANSFORMER DESIGN / PRODUCTION ENGINEER

To inaugurate, develop and overseer a new department to produce small radiotypemains and other transformers.

Real opportunity for man with ability and character.

Essex area- 15 miles London Apply giving details to:
Box No. 3085 c/0 Wireless World

COPPER WIRE

ENAMELLED, TINNED, LITZ
COTTON AND SILK COVERED RESISTANCE WIRES,
$1 \mathrm{oz} ., 2 \mathrm{oz}$, and 4 oz . REELS.
B.A. SCREWS, NUTS, WASHERS
soldering tags, eyelets and rivers
EBONITE and BAKELITE PANELS TUFNOL ROD. PAXOLIN TYPE COIL FORMERS AND' TUBES, ALL DIAMETERS.

SEND STAMP FOR LIST. TRADE SUPPLIED

G.E.C., B.T.H. \& WESTINGHOUSE GERMANIUM CRYSTAL DIODES

$$
\| /=\text { each. Postage 3d. }
$$

Diagrams and three Crystal Set Circuits Free with each diode.
A large purchase of these fully GUARANTEED diodes from the manufacturers enables us
POST RADIO SUPPLIES
33, Bourne Gardens, London, E. 4
We manufacture all types of SMALL TRANSFORMERS and CHOKES with MUMETAL and RADIOMETAL CORES either with or without MUMETAL SCREENS.
Microphone, Pickup, Line input, Output,
Computer, Rectifier, High Fidelity.
Midget, Transistor, Vibration, Seismic Instrument, Photocell, Recorder, Bridge and Experimental Transformers of all kinds. Frequency bands in the range $1 \mathrm{c} / \mathrm{s}$ to $150 \mathrm{kc} / \mathrm{s}$. Designs produced against Clients' electrical Quick delivery. Large or small quantities Contractors to G.E.C., Rolls-Royce, Decca H. J. Leak, R.C.A., M.O.S., Admiralty, etc.

E. A. SOWTER LTD.,

7 Dedham Place, Fore Street, Ipswich,
Tel.: Ipswich 52794.
Suffolk.

bul/d your own TAPE RECORDER 'ASPDEN'

tape deck kits
Two models, Sin. or 7in. spools, two speed, twin track, ferroxcube heads, finest motor, and, complete assembly instructions. Compact model $\$ 82$ kit............ 68 50 Standard model 782 kit 89 50 Assembled and tested 30/-extra.
RECORD/REPLAY AMPLIFIER KIT, $2 \frac{1}{2}$ watt, neon indicator, without valves POWER PACK K1T \qquad 62/18/6. Carr. extra.
Mr. E. D. S., of Notts, writes:-
"Can truly say that I have never had such good value for my money-performance-equal to many of the more expensive recorders." This deck and amplifier is being used in the Antarctic by an expedition member.
Send stamp for full particulars to:W. S. ASPDEN

Stanley Works, back Clevedon Road, Blackpool, Lancs.

-

The following Staff are required to assist in an increasing programme of engineering and manufacture of high-grade television equipment for Broadcast and Laboratory Application.

Excellent opportunities exist for men with the right abillty and experianca.

PROJECT ENGINEERS

to be responsible for the engineering development and production of television and allied equipment which would include some progressing and the suparvision of some technical staff. Applicants required to possess qualifications to H.N.C. or equivalent standard (suitable practical experience considered in lieu).

TECHNICAL ASSISTANTS

preferably with test experience, conversant with the use of Laboratory Test Equipment, required to work with minimum supervision.

5-DAY WEEK • PENSION SCHEME - GOOD CANTEEN I MIN. BUS AND RAIL SERVICES

Write, giving particulars of age, experience and salary required to:
CINEMA-TELEVISION LIMITED, Worstey Bridge Road, Lower Sydenham, S.E.26

CINEMA - TELEVISION LTD

COAXIAL CONNECTORS UG TYPE
21-B/U, 58/U, 290/U, etc.
According to JAN \& MIL Specifications for Aireraft, etc.
Foll list available. Send yoüp requiroments.
Orerseas Enquiries Invited
N.A.R. Agencies Ltd.

40 King's Road, London, S.W. 3

GALPINS

At sanompoed to Hovember we have takin over the Ir astormer Eeotion of this busimesh For rears We have wroun all Galjins tracetormers and can gromive rou the mane efoleney and quality as the pust.
JEFFERY TRANSFORMER CO.
199 Edward Street, New Cross, London, S.E. 14

POLYTHENE

INSULATORS, END CAPS, PLUGS, ETC. for

AER|ALS
Standard Articles or Special Mouldings
AMPLEX APPLIANCES (KENT) LTD.
19 DARTMOUTH ROAD, HAYES, BROMLEY. KENT (RAVensbourne 553I) All export enquiries to
ANGLO NETHERLAND TECHNICAL EXCHANGE LTD., 3, TOWER HILL, LONDON, E.C.3.

TELEVISION AERIAL COMPONENTS DESIGNED FOR CONSTRUCTING BAND I \& BAND III T.V. AERIALS ELEMENT DIMENSIONS SUPPLIED FOR ALL CHANNELS
 Selecting at random from our new multi-page catologue:
 \star Band III Folded Dipoles (As illustrated)
 \star Reflector and director rod holders
 \star Masthead Fittings for $\frac{3}{4}^{\prime \prime}, 1$. $1 \frac{1}{2}{ }^{*}$ and 2" Masts
 \star Mast Coupling units for 2" Masts Ł Insulators, both Rubber and Plastic
 (As illustroted)
 \star Alloy Tubing for Elements, Cross boom and masting

Send II- P.O. for the revised, fully lllustrated catalogue to:
FRINCEVISION LTD., Marlborough, Wilts.
Phone 657/8

INDEX TO ADVERTISERS

M

Mayco Electric Co.
Measuring Instruments (Pullin). Litd.
Hall Electric, Ltd
Hanney, L. F.
Harris tectroncs 154
Harris Electronics (London). Litd. 122,123
Harris, P. :
Hatter \& Davis, Litd.
123
Henley's. W. T. Telegraph Works Co. Ltd.
Henry's (Radio), Ltd.
Hivce, Ltd
Home Radio Ltd
H.P. Ladio Services, Ltd

Hunton. Ltd.
Iliffe \& Sons, Ltd
Imhof, Alfred. Ltd.
Induszrial Electronics
Instrument Electrical Co
Internationa! Correspondence Schools
Jason Motor \& Electronic Co Jeffery Transformer Co
Joners, J. A
Kenroy. Ltd.
Keyswitch Co.. "The
Lasky's Radio. Ltd. 139, 140. 141
Leak, H. J., \& Co., Ltd
Leevers-Fich Equipment, Lid
ewis Radio Co
Light Soldering Developments, Ltd
Linear Products Ltd.
Lockwcod \& Co. (Woodworkers). Lid
London Central Radio Stores
Long .Playing Record Library
Lyons Rapply Co.
McMurdo Instruments Co.. Ltd. 66. 86, 88, 91 Magnetic Devices. Ltd.
Mall Order Supply Co
Marconi Instruments. Itd.

Miden enterprises, Ltd.
Midiand Instrument Co.
Mtlls. W.
Ministry of Transport
Modern Book Co.
Modern Electrics. Ltd
Modern Techniques
M.O. Valve Co., Ltd.
M R Suoplirs, Ltd

M R Supolits, Letd.
Mulard, Ltd.
Mullard. Lbd. .. 78 A
Multicore Solders. Ltd. 3. 31, 35. 38. 55. 98
Multitone Eleptric Co.. Lidd. 13, 160

Nagard. L•d.	
N.A.R Agencies, Ltd.	173
National Piastics (Sales). Ltd.	78
Newmarket Transistors. Ltd.	79
Newnes. George. Ltd.	32B
Northern Radic Services	16
Oddie Bradbury \& Cull, Ltd.	170
Osmor Radio Products, Ltd.	120
Oxley Develomments Co.	155
Painton \& Co. Lotd.	43
Palmer, G. A. Stanley. Ltd.	118
Parridge Transformers. Ltd.	163
P.C.A Radio Ltd.	92
P.C.D.. Ltd.	46
P.C. Radic	92
Pearcp. T W.	154
Pearson M. \& J.	155
Uhilips Electrical, Ltd.	48
Phillips \& Bonsun, Ltd.	29
Pltman, Sir Isag., \& Son. Ltd.	154
Planet Instrument Co . .	152
Plesssey Co.. Ltu.. The	104
Post Radio Supplies	173
Power Contiols. Ltd.	33
Powers-Samas Accounting Ma	159
Premiar Rad.3 Co.	. 95
Preston A.. \& Sons	153
Proops Eros.. Ltd.	147
Pye. Ltd.	14
pye Telecommunications. Ltd.	66

Quality Mart
Page
120
Quartz Crystal Co., Lid.. 120
Racal Engineering, Ltd. ${ }^{71}$ Radio \& T.V. Componehits (Acton). Lid. ${ }^{728}$
$\begin{array}{lll}\text { Radio \&t.V. Componehts (Acton). Ltd. } & 128 \\ \text { Radio Component Specialists } & 148\end{array}$
Radio Corporation of America
Radio Exchange Co., The
Radio Resistor, Ltd.
Radio Servicing Co
Radiospares. Ltd.
Radio Supply Co. (Leeds), Lid. 132
Radio Telephone Aeria! Systems, Ltd 70
Radio Traders. Ltd. 138
RCA, Great Britain, Lid.
Relda Radio, Ltd.
Rogers Development (Electronics). Lị̛.
Rola-Celestion. Ltd
Rollet, H., \& Co., Ltd. 170
Runbaken. Ltd. ... 126
Salford Electrical Instruments. Ltd. 10
Sanisons Surplus Stores 153
Savage Transformers, Ltd. 171
Semiconductors, Ltd.
Service Trading Co
Servo-Electronics
Sherwood Instruments
Slemens \& Halske
Stemens Edison-Swan. Lid.
Simmonds. L. E., Ltd.
Smith. G. W. E., Ltd.
i34 $\quad 58$
Smith, H. L. \& Co. Lt. 134, 135
Smith, W. H., \& Son. Ltd. 78

Sonomag. Ltd. $\operatorname{Southern}$ Radio Supply, L.......
Southern Technical Supplies
Sowter, E. A.
Speciallsed Electrical Component............. 172
$\begin{array}{lll}\text { Specialist Swltches } & 158 \\ & 118\end{array}$
Specto. Ltd.
Spencer-West. Lodd.
Staar Electronics. Ltd.
Stamford. A. L.
Standard Telephonës'\& C.aib........................... 167
Standard Telephone \& Cables. Ltd99. 106

Sugden, A. R., \& Co. (Engineers), Lid.
Sugden, A. R., \& Co. (Engineers), Ltd
Sutton Coldield Eiectrical Engineers
Tannoy Products, Ltd.
Taylor Tunniclifi
(Refractories). Lt
Technical Ceramics. Ltd.
Technical Trading Co.

Telegraph Condenser Co., Ltd............................. 11
Telegraph Construction \& Maintenance,
Co., Ltd. ..
Tele-Radio (1943). Ltd. 68.152
Te!ctron Co.. The 150
Thomaquipment Repair \because.ivins, Ltd
Thorn Electrical Industries. Lid. 16
Trianon-Electric, Ltd. 8
T.R.S. Radio 14

Tutor Tape Co. ... 90

Valradio, Ltd. 86
Verdik Sales, Ltd. .. 170
V.E.S. Wholesale Services, Lid.
V.E.S. Wholesale services, Lid. 17
Vitavox, Ltd. 17

Vortex,
17
109
Vortexion, Ltd. .. 109
V. Electrical Service
154
Walmore Electronics, Ltd. 118
Watt, Radio .. 118
Watts, Cech E. ... 168

Wayne Kerr Laboratories, Lid... The 27,161
Wayne Kerr Laboratories. Ltd.. The .. 27, 161
Webber. R. A., Ltd
Weatwood. L. 124
Weymouth Radio Mfg. Co.. Ltd. The .. 93
White. S. 8., Co.. of Great Britain. Lid.
Whiteley Electrical Radio Co . Ltd
While inson 57
Wilsonson, Ronald, \& Co. Ltd. 126
Woden Transformers Co ".................... 15
Wright \& Weaire, Ltd. 61
Young. C. H. 121
Z. \& I. Aero Services. Lta. 162

As

 tho as
peas

Contrary to pop Contrary to popular belief, no two peas in a podiare identical. There is always a subtle variation in size or shape. With condensers it is different they are made to accepted standards of size-and finish, so that there may be nothing, except the maker's name, to distinguish one manufacturer's products from another.

Yet there can be a considerable difference in condenser performance and dependability. That set makers appreciape this is evidenced by the fact that, at every Radio Show, T.C.C. Condensers are to be found in more radio and sets than those of any other make.

The letters T.C.C. are a visible assurance of invisible quality, quality that results from more than half a century's specialisation in condenser research and development. That assurance may cost you a few pennies more, but in terms of customer satisfaction it may well be worth pounds.

Manufacturers, Service Engineers, Radio enthusiasts rely on

Ersin Multicore Solders AND AGGESSORIES

Throughout the world, Multicore Solders Ltd. have established Ersin Multicore Solder in the field of radio, television and electronic equipment, as the most reliable type of cored solder. The 5 separate cores of flux in Ersin Multicore Solder prevent breaks in the flux stream; there are no wasted lengths of solder without flux, and the risk of making dry joints through insufficient flux is eliminated. Ersin Multicore Type I Savbit Alloy containing 5 Cores of non-corrosive flux has now received Ministry approval under No. DTD/900/4535. It may be used for soldering processes on equipment for Service use in lieu of solder to B.S. 219. Ersin Multicore Savbit Alloy reduces absorption of the copper from soldering iron bits and increases the life of bits by up to 10 times, as Savbit keeps soldering iron bits in excellent condition for a considerable period greater efficiency of soldering processes is achieved.
If you have a soldering problem, please write to the Multicore Technical Dept., who will be glad to advise you.

SAVRIT FOR FACTORIES Ersin Multicore Savbit Type I alloy containing 5 Cores of non-corrosive flux is supplied to factories at bulk prices on 7 lb . reels. 16 and 18 s.w.g. are the diameters most suitable for the majority of soldering processes. Supplies are also available on I lb. reels.	SAVBIT FOR THE SMALL USER The Size 1 Carton contains approximately $\$ 3 \mathrm{ft}$. of 18 s.w.g. SAVBIT. It is also supplied in 14 s.w.g. and 16 8.w.g. Obtainable from radio and electrical stores. Ersin Multicore 5 -Core Solder is also supplied in 4 specifications of Standard Tin/Lead alloys. Price 5/- each (subject).	SAVBIT FOR THE SERVICE ENGINEER Approx. 170 ft . of 18 s.w.g. SAVBIT is supplied on a 1 lb. reel packed in a carton. Price 15/-each (subject).
SPEGIAL HIGH AND LOW MELTING POINT SOLDERS Comsol (Melting point $296^{\circ} \mathrm{C}$) P.T. (Melting point $232^{\circ} \mathrm{C}$) L.M.P. (Melting point $179^{\circ} \mathrm{C}$) T.L.C. (Melting point $145^{\circ} \mathrm{C}$)	STANDARD TIN/LEAD ALLOYS Ersin Multicore 5-core Solder is available in the following standard alloys: 60/40, 50/50, 45/55, 40/60, 30/70, and 20/80 and in 9 gauges on 7 fb . and 1 lb . reals.	HOME CONSTRUCTOR'S $2 / 6$ PACK Now available containing alternative specifications: I9 ft. of $18 \mathrm{s.w.g} .60 / 40$ alloy or, for soldering printed circuits, 40 ft . of 22 s.w.g. 60/40 alloy. Both wound on Reels. $2 / 6$ each (subject).
Bib WIRE STRIPPER AND CUTTER This 3 in I tool strips insulation without nicking the wire, cuts wire cleanly and splits plastic extruded twin flex. Adjustable to most wire thicknesses. 3/6 each (subject).	Bib RECORDING TAPE SPLICER Recording enthusiasts can affect considerable tape economies with this splicer. It makes the accurate jointing of tape so simple and quick that every scrap can be used. 18/6 each subject. Write for Free copy of Folder "How to Edit Tape Recording"	Bib SOLDER THERMOMETER Accurately indic: .es temperature of bits and solder baths, up to $400^{\circ} \mathrm{C}$. Price £6.12.6

[^0]: *See "World of Wireless," this issue.

[^1]: "Sensitive D.C. Null Detector." (December issue, p. 597).-The full-scale deflection of this instrument, as stated in the text, is 50 milli-microamperes and not $50 \mu \mathrm{~A}$ as shown in the sub-title.

[^2]: * MSF-Standard Frequency Transmissions from the Unted Kingdom."

[^3]: *Radio and electronic consultant.

[^4]: 1 "Cathode Ray," "Valves for Microwaves," Wireless World vol. 43, September 1953, p. 417, and October 1953, p. 482

[^5]: Thus type of approach is developed in greater detail in \mathbf{H}. W. Welch, Jnr., and W. G. Dow, "Analysis of Synchronous Conditions in Cylindrical Magnetron Space Charge." Jour. Appl. Phys., vol. 22, Aprill 1951, p. 433

[^6]: ${ }^{3}$ See for exanuple, R. Warnecke and P. Guenard, "Some recent Work in France on New Types of Valves for the Highest Radio Frequencies," Proc.I.E.E. vol. 100, Part II1, Nov. 1953 , P. 351.
 "D. R. Hartree, "Mode Selection in a Magnetron by Modified Resonance Criterion," C.V.D. Report, Mag. 17.
 ${ }^{\circ} \mathrm{H}$. W. Welch, Jnr., " Predicuon of Travelling Wave Magnetron Frequency Characteristics: Frequency Pushing and Voltage Tuning," Proc. J.R.E., vol. 41, Nov 1953. p. 1631.

[^7]: 'J. A. Boyd, "The Mitron-An Interdigital Voltage Tunable Magnetron," Proc. I.R.E., vol. 43, March 1955, p. 332.

[^8]: ${ }^{7}$ T. R. Bristol and G. J. Griffin, Jnr., " Voltage-Tuned Magnetron for F-M Applications," Electronics, May 1957, p. 162.

[^9]: "1. Langmuir and K. B. Blodgett, "The Effect of Space Charge and Residual Gases on Thermionic Currents in a High Vacuum" Phys. Rev. vol. 2. Decemlser, 1913, p. 450.

[^10]: ${ }^{10}$ Z. Fraenkel, "The Development of a Tunable CW Magnetron in the K-Band Region ", I. R. E. Trans. E. D., Vol. ED-4 No. 3, July 1957, p. 271.
 "M. M. Moss, R. G. Robertshaw, J. R. Tew and W. E. Willshaw, "A Review of the Performance of Magnetrons Operating at Low Magneric Field " ${ }^{\prime}$, L'Onde Electrique, Vol. 37, Oct. 1957, p. 804
 ${ }^{12}$ G. B. Collins, "Microwave Magnetrons", McGraw-Hill, p.17.

[^11]: - Decca Radar Led.

[^12]: * Communication from Telefunken G.m.b.H. via E.M.I.

[^13]: * There is no provision in the Stockholm Plan for Irish stations in Band I, but five are allowed for in Band III.-Ed.

[^14]: Abridged Characteristics
 Max. collector leakage current at $\mathrm{Vc}=-10 \mathrm{~V} . .$. $10 \mu \mathrm{~A}$ Current amplification cut-off frequency 350ke/s
 Collector knee voltage at $\mathrm{lc}=125 \mathrm{~mA} .$. -0.4 V
 Power dissipation (without heat sink) at $25^{\circ} \mathrm{C}$... 125 mW
 Power dissipation (bolted to heat sink) at $45^{\circ} \mathrm{C}$... 100 mW

[^15]: A member of the Automatic Telephone \& Electric Group.

[^16]: "BARRYMOUNT" Isolator. Non-inear, ait-damped. No snubbing at reconance (8 c.p.s.). Transmitted anceleration for 0.02 o increased input $\left(\pm 0.030^{\prime \prime}\right)$ is

[^17]: MARCONI INETRUMRNTS LTD. ST. ALBANS . HERTFORDSHIRE P TELEPHONE: ST. ALBANS 5GIGI
 Lowdon and the South: Marconi House, Strand, London, W.C.2. Tel: COVent Garden 1234
 Midlands: Marconl House, 24 The Parade, Leamington Spa. Tel: 1408 North: 30 Alblon Street, Kingston-upon-Hull. Tel : Hull Central 16347 WORLD-WIDE REPRESENTATION

[^18]: Telephone: Newmarket 3181/2/3.
 Telegrams: Powercon Newmarket.

[^19]: OVERSEAS AGENTS:
 SOUTH AFRICA: W. L. Proctor (Pry.) Led., 63, Strand Street, Cape Town. U.S.A.: Ercona Corporation, 551 Fifth Street, New York 17 N.Y. CANADA: The Astral Electric Co. Lid., 44, Danforth Road Toronto 13, Ontario. NEV ZEALAND. Turnbull \& Jones Led Head Office: $12 / 14$, Courteray Place We Cllington. HONG KONG The Radıo People Led., 31 Nathan Road. Hong Kong.

[^20]: MAIN DISTRIBUTORS:
 AUSTRALIA: British Merchandising Pty. Led., 183, Pitt Streen, Sydney; and J. H. Magrach (Pty.) Ltd., 208, Little Lonsdale Street Melbourne. EAST AFRICA: International Aeradio (East Africa) Ltd. P.O. Box 3133, Nairobi. MALAYA: Easland Trading Co., 1, Prince Street, Singapore.

[^21]: (Munulacturers and Trade enquiries only)

[^22]: Maxwell House, Arundel Street, Strand, W.C. 2 Phone Temple Bar 3721

[^23]: TERMS: Cash with order or C.O.D. Postase and Packing charse extra, a follows: Orders value $10 / \mathrm{F}$ add $1 /-: 20 /$ add $1 / 6 ; 40 /$-add $2 /-; 65$ add $3 /$ - unlees other wise stated. Minimum C.O.D. foe and postate 3/.
 For full terms of business see inside cover of our catalosue.
 a.m. to 5 p.m. Mon co Friday. Saturday 10 a.m. to 1 p.m.

[^24]: R.F.24. 1//-. R.F.25, 12/6. R.F.26, 25/-

 Brand new wich valves, carr. $2 / 6$.

 TRANSISTORSIGNALTRACEN
 Complete Kit with 2 Transistors, Components, Phones with Circuit and Plascic Case, 42/6.

[^25]: WALKIE-TALKIE TRANSMITTER/RECEIVER ARMY TYPE " 38 " Brand new, complete with valves, 2 pair Headphones, 2 Microphones, Junction Box, Canvas carrying bag. 4 Section Aerial and spare set of valves and circuit. Frequency Range $7-4.9 \mathrm{Mc} / \mathrm{s}$. Range approximately 5 Miles. BRAND NEW 65/= P.P. 5/-.

