Circuit Ideas

- 6½ bit DAC using four output pins
- Long delay timer using one 555
- Audio level and peak metering
- High voltage, simple and fast inverter
- Electronically tuneable active only oscillator
All equipment is used - with 30 days guarantee and 90 days in some cases.
Add carriageway and VAT to all goods.
1 Stoney Court, Hotchkiss Way, Binley Industrial Estate
Coventry CV3 2RL ENGLAND

Radio Communications Test Sets

Agilent (HP) 8924C (opt 601) CDMA Mobile Station T/Set
£8500
Agilent (HP) E8285A CDMA Mobile Station T/Set
£8500
Anritsu MT8802A (opt 7) Radio Comms Analyser (300Hz-3GHz)
£8500
Hewlett Packard 8920B (opt 1.4, 7, 11.12)
£3750
Hewlett Packard 8922M + 83200E
£5000
Marconi 2955 / 2955A
£1250
Marconi 2955B/60B
£3500
Marconi 2955R
£1950
Motorola R6200B
£2500
Racial 6103 (opt3, 2)
£5000
Rhode & Schwarz SMF22
£1500
Rhode & Schwarz CMD 57 (opt B1, 34, 6, 42, 43, 61)
£3995
Rhode & Schwarz CMU 92 (2GHz) DECT
£3995
Rhode & Schwarz CMUA 94 (3GHz)
£4500
Schlumberger Stabilock 4031
£2750
Schlumberger Stabilock 4040
£1300
Wavelet 4103 (GSM 900) Mobile phone tester
£1500
Wavelet 4032 Stabilock Block Counter
£1750
Wavelet 4105 PCS 1900 GSM Tester
£1600

MISCELLANEOUS

Agilent (HP) 5393A Microwave Frequency Counter 26.5GHz
£1500
Agilent (HP) 8566A / 8565A 100kHz-30GHz Synth. Sig. Gen.
from £600
Agilent (HP) 8567A / 8567B 100kHz-1040 or 2000MHz
from £1250
Agilent (HP) 86414A (opt 1) 10GHz Sig. Gen.
£2750
Agilent (HP) 8664A (opt 1 + 4) High Perf. Sig. Gen.
from £1050
Agilent (HP) 8920A (opt 2) Measuring Rxr (150kHz-1300MHz)
£7500
Agilent (HP) 8970B (opt 0) Noise Figure Meter
£2995
Agilent (HP) EPM 441A (opt 2) single ch. Power Meter
£1300
Agilent (HP) 6812A AC Power Source 750VA
£2950
Agilent (HP) 6936B DC Power Source 400W (0-10A)
£1600
Agilent (HP) M3676B Digital Modulation Sig. Gen. 300MHz-2250MHz
£4250
EIP 545 Microwave Frequency Counter (150MHz)
£1000
EIP 544A and B 26.5GHz Frequency Counter
£1500
EIP 575 Source Locking Freq. Counter (100MHz)
£1250
EIP 575S Five Freq. Counter (100MHz - 1050MHz)
£1200
Hewlett Packard 8510A and B Signal Gen. 10kHz - 1050MHz
£1500
Genrad 1657/65/1693 LCR meters
from £500
Gigatronics 8614C Power Meter + 80350A Peak Power Sensor
£1250
Gencom 8542C Power Meter + 2 sensors B040A
£1995
Hewlett Packard 338A Distortion measuring set
£600
Hewlett Packard 436A power meter and sensor (various)
£1750
Hewlett Packard 438A power meter - dual channel
£1750
Hewlett Packard 3335A - synthesizer (200MHz-810MHz)
£600
Hewlett Packard 3784A Frequency Analysis
£2950
Hewlett Packard 37900C - Signalling test set
£2500
Hewlett Packard 4274A LCR Meter
£1750
Hewlett Packard 4276A LCR Meter
£2750
Hewlett Packard 4276A LCZ Meter (100MHz-200kHz)
£1400
Hewlett Packard 5342A Microwave Freq. Counter (180GHz)
£850
Hewlett Packard 5385A - 1 GHz Frequency counter
£1400
Hewlett Packard 8355B - Sweep Generator Mainframe
£1500
Hewlett Packard 8642A - high performance RF synthesiser (0-1.150GHz)
£2500
Hewlett Packard 8913B - Modulation Analysis
£1500
Hewlett Packard 8920A, B and E - Distortion Analysis
from £1000
Hewlett Packard 11729B/C Carrier Noise Test Set
from £2500
Hewlett Packard 85574A High Frequency Probe
£1000
Hewlett Packard 85632A Power Supply (0-60V) (0-5A)
£2000
Hewlett Packard 5361B Microwave Freq. Counter (26.5GHz)
£2450
Hewlett Packard 5362B Microwave Freq. Counter (400GHz)
£5250
IRF (Marconi) 2051 (opt 1) 10kHz-2.7GHz Sig. Gen.
£5000
Keithley 220 Programmable Current Source
£1750
Keithley 2032A Programmable Current Source
£1750
Keithley 2032A Programmable Current Source
£1750
Keithley 488478 picometer (with source).
£13500
Keithley 617 Electrometer/Source
£1900
Keithley 8200 Component Test Fixture
£1750
Marconi 6680/6620/6606A/6970A Power Meters & Sensors
from £600
Philips 5515 - TN - Colour TV pattern generator
£1400
Philips PM 5193 - 50 MHz Function generator
£1350
Rhode & Schwarz RHM 3004B - 6 GHz Signal Modulation Analyser
£2500
Rhode & Schwarz RMS 2003B Optical Power meters with sensors
from £1000
Rhode & Schwarz AMG IQ Modulation Generator 2 channel
£3000
Rhode & Schwarz RMS 2003B Optical Power meters with sensors
£3995
Stanford Research DS360 Ultra Low Distortion Function gen. (200Hz)
£1400
Tektronix DS050B - AM/FM Modulation Current Amp with M/F and probe
£2750
Tektronix AWG 2021 Arbitrary Waveform Generator. (1.8GHz - 10GHz)
£2400
Wayne Kerr 3245 - Precision Inductance Analysers
£1750
Block 3220 and 3225L Cal available if required.
£1200
WAG PD4-4 PC/P CM channel measuring set
£3750
WAG PJF-6 Error & Jitter Test Set
£6500

Tel: 02476 650 702
Fax: 02476 650 773
Web: www.telnet.uk.com
Email: sales@telnet.uk.com
3 COMMENT
A late developer

4 NEWS
- Digital spectrum analyser chip could change test gear
- Nanotech gets funding boost
- Computer becomes a music buff
- Facility opens for systems engineers
- Electrons get in a spin
- Tiny atomic clock size of grain of rice
- Phone gets a hard drive
- CW transmission and detection at terahertz
- Chill runs through high energy physics
- Mine hunters meet a robot deminer
- Lasers make mice better
- Crimewatch in the UK
- Many lasers make light work
- Pilotless plane takes electronics for a ride

10 CLASS-A IMAGINEERING: PART 6
Graham Maynard concludes his investigation into loudspeaker back-EMF induced amplifier distortion and hopefully has answered the ‘why does Class A sound better’ question

26 SIMULATING POWER MOSFETS
In this second part of a series using the Microcap6 software, Cyril Bateman introduces a method by which any Spice user can ‘hand carve’ power MosFet models

34 ‘MIXED SPICES’ PART I
Spice (Simulation Program with Integrated Circuit Emphasis) was originally developed around 1968. Recently, the number of programs offering Spice simulations has increased. Alistair Macfarlane of Electric Fields Design Consultancy, a long term Spice user, reports

40 ADVANCED RF HARMONIC THEORY... IN PRACTICE
Opamp and ADC technology have progressed so far that they have outreached high-resolution harmonic distortion measurements. A fresh look is needed at the practical aspects of the measurement process, allowing designers to debug their latest creations. Leslie Green CEng MIEE investigates

46 CIRCUIT IDEAS
- 6 ½ bit DAC requires only four output pins
- Long delay timer using only one 555 chip
- Audio level and peak metering
- High voltage, simple and fast inverter
- Electronically tuneable active only oscillator

52 LETTERS
- Nutters
- Curious result
- Hybrid amp
- Cottingue
- Catt’s litter
- Pseudo science
- Not me guv

56 NEW PRODUCTS
The month’s top new products

60 WEB DIRECTIONS
Useful web addresses for electronics engineers
In line with our policy of producing top quality products at amazing prices we have reduced the price of our best selling items by up to 50%.

Don’t delay - this is for a limited period only!

2004 PRICE BUSTERS

19" Horizontal 2U High

<table>
<thead>
<tr>
<th>Sockets</th>
<th>13A/4/R</th>
<th>@ £22.65 ea. Nett</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Vertical

<table>
<thead>
<tr>
<th>Sockets</th>
<th>T13A/4</th>
<th>@ £20.25 ea. Nett</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Vertical Left Hand with Switch

<table>
<thead>
<tr>
<th>Sockets</th>
<th>4LH/MS</th>
<th>@ £20.25 ea. Nett</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Vertical Right Hand with Switch

<table>
<thead>
<tr>
<th>Sockets</th>
<th>4RH/MS</th>
<th>@ £20.25 ea. Nett</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This promotion cannot be used in association with any other discount or offer. Olson Electronics Ltd reserve the right to change the price without prior notice.
A late developer

RFID is surely a technology that is about to explode and proliferate into every sphere of modern life. I have been keeping a weather eye on this topic for about fifteen years, since involved, while with Plessey/Siemens, in a study into the feasibility of using Radio Frequency Identification tags to keep track of children in theme parks. A practical problem - several get lost every day and one or two a year get lost permanently - it is a difficult application for the technology, due to the range required. In retailing, a tag is only required to operate over a short range, a few metres at most.

One of the problems holding back wide scale application of RFID tags has been that of standardisation. It would be a great disadvantage if Europe, the US and Asia went their different ways, with mutually incompatible systems. Fortunately international co-operation is on its way, driven by the needs of industry and commerce. For keeping track of pallets for the transfer of goods, EPCglobal Inc. is developing the proposed the EPCglobalG2 standard. This uses a 96 bit format, and tags using this format are already available, with read and write operating ranges up to a few metres, while operation at UHF permits multiple tags to be read/written per second without collisions.

I don’t have details to hand of the allocation of the 96 bits to headers, serial numbers etc. but 2^96 is a seriously large number, about 7.922816244 x10^28! Major concerns, both commercial and governmental, are mandating the use of RFID technology, with Wal-Mart, Tesco, US D.O.D and others requiring its use in their supply chain and logistics systems as early as 2005. And in the EU, new regulations will require the use of tags to keep track of individual animals such as beef herds etc. with the system already proven by pilot trial schemes. Tags complying with ISO 11784/85 were placed subcutaneously in each animal, allowing it to be tracked at various points during its lifetime, and after. Knowing where the beef the housewife buys comes from, should boost her confidence - and sales - in the view of past catastrophes such as scrapie, BSE, foot and mouth disease, etc.

Another burgeoning RFID application is smart tickets, which can be loaded with credit like a phone card, and debited automatically, in accordance with the journeys undertaken by the holder. Card readers on the various forms of transport could simplify matters by enabling a traveller to make a journey involving both buses and trains, without the need for a through-ticket or separate tickets for each stage. Already trialled in Perth, Australia, it is shortly to be tried out on the Seattle mass transit system.

Other applications abound, and Jo(e) Public will have to get used to tags appearing everywhere, whether he or she likes it or not. For instance, tags in clothes may cause the washing machine to inform you of the right programme to use for each, while tags on food packs may enable the smart fridge to warn you when you are running low on butter, or eggs, or milk... In time it will become as difficult to buy a ‘dumb’ fridge or washing machine as it is now, for those with a ‘keep it simple - less to go wrong’ philosophy, to buy a car without central locking.

Much more on RFID tag technology and applications can be found in the Philips publication ON THE MOVE, Identification News, Volume 6 Issue 3, September 2004. Philips’ World News, Volume 13 Number 3, September 2004 also covers the topic, with other useful and interesting articles such as Bluetooth/WLAN intercommunication, hands-free car phones, class D amplifiers and electronic ink, among others.

Ian Hickman
Digital spectrum analyser chip could change test gear

Isle of Wight-based RF Engines has produced a digital intermediate frequency (IF) chip for use in spectrum analysers.

Called ‘SpectraChip IF’, it “is a digital replacement for analogue IF filtering used in current spectrum analysers” said RFEL, which specialises in DSP firmware for FPGA programmable logic. “It provides a digital implementation of all the standard features, such as resolution bandwidth filtering, video bandwidth filtering and conversion to log power.” Resolution bandwidth is 10Hz to 3MHz in 1-3-10- steps and video bandwidth is 1Hz to 1MHz in 1-10- steps.

Test equipment makers can license SpectraChip IF from RFEL as an off-the-shelf design, although the firm has to customise interfaces for individual customers. “The standard design will fit comfortably into the Xilinx Spartan3 1000 FPGA device costing less than $100,” said RFEL. “It consumes a mere 0.5W in operation, or significantly less in the power save mode.”

In this form, the FPGA expects a digitised IF signal centred at 21.4MHz with a signal bandwidth of up to 10MHz - although other IF bandwidths can be accommodated.

In addition to the FPGA, spectrum analyser designers will also have to include a fast analogue to digital converter (ADC). Together “we estimate these will cost 50 per cent of the analogue equivalent, based on the limited information we can get from our customers”, said sales executive Simon Underhay.

Dynamic range is restricted to around 85dB by available ADCs. SpectraChip can “match any dynamic range the customer requires”, said Underhay. The product has already been licensed by one test gear firm, with another expected to sign soon, said Underhay. www.rfel.com

‘Free’ real-time spectrum analysers

While RF Engine’s SpectraChip IF is a replacement for existing spectrum analyser IF strips, adding an ADC and an FPGA raises the prospect of real time spectrum analysis with no extra hardware costs.

Traditional spectrum analysers sweep a filter through the spectrum to develop their amplitude verses frequency display, missing activities at frequencies either side of the instantaneous sweep frequency.

Real-time spectrum analysers continuously pull in the entire spectrum of interest, missing nothing, and are extremely expensive. According to RFEL, with the right firmware a Xilinx Spartan3 1000 FPGA could take a 5MHz band and measure the instantaneous amplitude in 4,000 separate frequency bands, known as bins, within this.

RFEL is working on such firmware, for a product to be know as ‘SpectraChip MHz’.

“Standard Gaussian shape filters can be used to produce a standard spectrum analyser effect, or higher specification, flat top, low transition band filters can be used to achieve power measurement accuracy and good frequency isolation,” said RFEL.

As no human can possibly use 4,000 simultaneous channels of data at 5MHz, SpectraChip MHz includes a trigger facility to record waveforms at all frequencies before and after a trigger event at a particular frequency. See the blue diagram for one way of displaying this data. Averaged displays are also possible. Beyond this, SpectraChip GHz is under development. In a very large fast FPGA, with a 1Gsample/s ADC, this will capture 16,000 bins at 500MHz.
Nanotech gets funding boost

The Government has released the first tranche of its £90m funding for nanotechnology projects in the UK. The Department of Trade and Industry has made £15m available to 25 projects, spanning anti-corrosion coatings to electronic printing.

"Nanotechnology is an important and exciting emerging technology, one that has the capacity to improve daily life for us all. It is about designing new products and improving existing ones by making things much smaller, faster, stronger, or more energy efficient," explained DTI minister Nigel Griffiths.

The Government is also making £70m available for nanotechnology through the Research Councils and has set up the UK Micro and Nanotechnology Network to support firms moving into this area. "We want to help organisations turn ideas into reality, helping create jobs and prosperity for companies in the UK," Griffiths added.

Grants awarded under the scheme total up to 50 per cent of a project's total value. Some high profile projects have won funding under the scheme, including Trikon Technology from South Wales. It has received over £1.5m to help develop an ion beam deposition tool for creating magneto-resistive RAM.

Meanwhile Teraview from Cambridge has over £1m from the fund to continue work on its Terahertz imaging systems. These could revolutionise the detection of cancers.

Two firms - Insight Faraday from Runcorn and Mast Carbon from Guildford, are working on fuel cells.

Qinetiq in Malvern has won funding for molecular gas sensors and for narrow bandgap spintronic devices.

Other projects include improved power electronics contact technology by Dynex Semiconductor; low temperature polymer embossing by Applied Microengineering; and nanotube and nanowire production at Thomas Swan.

A £3m grant has also been given to INEX, a Microsystems and nanotechnology facility for industry based in Newcastle.

Facility opens for systems engineers

Loughborough University has opened its £60m Systems Engineering Innovation Centre (SEIC), which combines training and research for systems engineers.

The centre is already committed to training 1,000 engineers from BAE Systems by 2005.

Opening the centre, Minister for Science and Technology Lord Sainsbury said: "Innovation - turning new technologies and ideas into commercially successful products - is the key to business success. Partnership working between academia and industry is vital if we are to capitalise on our world-class science and technology base and pull through knowledge from the lab to the business bottom line."

Joining the University and BAE is the East Midlands Development Agency, making SEIC a unique collaboration between academia, industry and a regional authority.

UK firms working in areas such as aerospace, automotive, food and drink processing, medical technologies and clothing and textiles will benefit, said the centre.

Demand for training in systems engineering is expected to be high. The SEIC highlighted a Department for Education and Skills report which said the UK would need 270,000 engineering professionals by 2010. Up to 45,000 engineers will need to be trained each year to meet that demand.

At the SEIC, some 30 jobs will be created in the first two years, with up to 45 in the longer term.

Support network for Yorkshire firms

Yorkshire electronics firms are getting their own support group that hopes to promote growth and job creation in the Yorkshire and Humber region.

Electronics Yorkshire is a not-for-profit limited company that will establish a network of experts able to provide support to new and existing companies. "This is a serious opportunity to bring real and tangible benefits to the electronics industry in our region," said Arthur Gillatt, chief executive of Electronics Yorkshire.

The group will also take control of the Training and Technology Centre in Bradford, moving it to Leeds in the process.

"The Network and the new Technology and Training Centre are the first steps in ensuring Yorkshire and the Humber's electronics companies have a brighter future," Gillatt added. Electronics Yorkshire is funded by Yorkshire Forward and the Learning and Skills Council. Firms wishing to join the group - free of charge - contact Dave Williams on 0113 274 4270.

Computer becomes a music buff

Researchers at the universities of Southampton and Vienna have demonstrated that the complex and individual performance styles of concert pianists can be modelled in unique 'performance alphabets', providing a method of recognising their performance styles by computer.

"Concert pianist Glenn Gould had a unique and instantly recognisable performance style, for which he is rightly renowned," said Southampton.

"Indeed, the extent to which pianists such as Gould, Horowitz and Uchida have a discernibly individual style of playing is recognised not just by classical music aficionados, who can hear the differences, but also by computers, which can analyse the differences and model them."

Vienna researchers measured tempo and volume when the same Mozart sonatas were played by Glenn Gould, Daniel Barenboim, Andras Schiff, Mitsuko Uchida, Roland Batik, and Maria Joao Pires.

Professor John Shawe-Taylor of the University of Southampton School of Electronics and Computer Science led the analysis. "Different players have different ways of building tension or expression in the music," said Shawe-Taylor, "and they [Vienna researchers] represent this raw data for every note and progression of the music as a trajectory, which can be represented visually in tempo-loudness space as a 'performance worm'."

The novel analysis techniques applied to the performance worm data at the University of Southampton were able to distinguish the different performers based on a relatively small sample of their performances.

On a speculative note: "We are seeking common patterns across two different ways of looking at an event," Shawe-Taylor said. "On the one hand we have the musical score, and on the other, its interpretation by an individual concert pianist." If these two could be combined "then we might be able to generate aspects of a Horowitz performance of a piece that he had never actually played".

November 2004 ELECTRONICS WORLD
Lay it on thick

A technique to form layers of ceramic film at room temperature on printed circuit boards has been developed by Fujitsu Laboratories.

The process could be used to produce high quality passive components, particularly capacitors in microwave applications, on standard FR4 PCBs.

Along with Japan’s National Institute of Advanced Industrial Science and Technology (AIST), Fujitsu developed two technologies; formation of low temperature ceramic films and multi-layering of those films.

To create the films, the developers used an aerosol deposition, with a gas spraying ceramic powder at high speed onto the board.

Electrons get in a spin

The spin of a single electron in a silicon transistor has been observed by researchers from the University of California.

Working at the Los Alamos National Lab in the US, the team found a way to convert the spin of a single electron in the gate oxide layer of a Fet into a charge. This charge could then be measured by the Fet.

“We believe this is a significant advance in the field of quantum physics. The more that the fields of science and engineering learn about the enigmatic physics of electron spin, the more we will be able to use that knowledge in the future to create nanoscale technologies like spin electronic and quantum computers, that are based on electron spin control,” said Los Alamos scientist Ivar Martin.

Future electronic systems may rely less on the statistical maths of thousands of electrons that existing transistors and Fets rely on. Instead single electron memories and transistors may become commercially viable.

Decoherence is a process undergone by sub-atomic particles such as electrons as they interact with other matter, thereby losing their wavelike properties. Electrons have long decoherence times compared to other particles.

Phone gets a hard drive

Samsung’s SPP-V5400 is claimed to be the first mobile phone with an internal hard drive. The drive, which measures 25mm diagonally, can hold 1.5Gbyte of data, compared with a maximum of 100Mbyte in more conventional phones, said the firm. The phone is also equipped with a 50mm QVGA LCD and a mega-pixel camera as well as features including an MP3 player, electronic book and Korean-English/English-Korean dictionaries. Initially, the phone is only being sold in Korea.

Tiny atomic clock size of a grain of rice

Scientists at the National Institute of Standards and Technology (NIST) in the US have built an atomic clock just 4.2mm high, the same size as a grain of rice.

The so-called 'chip-scale' atomic clock uses a combination of solid state laser technology, optics and micromachining.

NIST claimed the output frequency of the clock achieves a long-term stability of one part in 10^{10}, better than 10us per day, while consuming just 75mW.

At the heart of the clock is a vapour cell. Conventional atomic clocks have a cavity defined by the microwaves used to excite the atoms, making the cells in the order of centimetres long.
CW transmission and detection at terahertz

Teraview, the Cambridge-based terahertz imaging company, has made a solid-state continuous-wave terahertz imaging system.

Previously, the firm has been imaging skin cancer cells using a pulsed lasers pumping a GaAs heterostructure quantum cascade laser (QCL). Output power is 1µW, with returns received by a synchronous detector based around a similar heterostructure.

Now the firm has a continuous wave version (see diagram) with two 800nm infra-red CW laser diodes pumping a modified GaAs QCL. The pumping diodes are tuned so their difference frequency is the terahertz output required.

"We have reduced cost by a factor of ten and size by a factor of eight or nine," said the company's CEO Dr Don Arnone. Power is also down from the pulsed version: "just shy of a microwatt", said Arnone, "but the [synchronous] detector operates in the order of attowatts".

Key to getting the system working has been compensating for the low power of the CW pumps compared with the previous pulsed source.

Final output power depends to a degree on a bias voltage applied to the QCL and re-engineering the heterostructure to withstand more voltage has allowed sufficient output power to be recovered.

The photographs show a knife and a razor blade, both partially concealed from visible light, viewed by the CW terahertz imaging system.

Superconducting electronics cooled to just two degrees above absolute zero will form the basis of the next generation of particle physics accelerator.

With experiments such as the Large Hadron Collider under construction at CERN, an international team of scientists has chosen the next technology, which could see contributions from UK firms.

The electron-positron linear collider will be designed to create impacts with an energy of up to 1TeV (10^12 electron Volts). It would be able to investigate the Higgs boson (if it exists) and maybe give clues to the nature of dark matter.

To create such huge energies, scientists have chosen to use "cold" technology developed at Deutsches Elektronen-Synchrotron in Germany. (DESY)

"The superconducting technology uses L-band (1.3GHz) radio frequency power for accelerating the electron and positron beams in the two opposing linear accelerators that make up the collider," said George Kalmus, of the Rutherford Appleton Laboratory.

By using superconducting niobium cavities in the 20km long colliders, power from the drive klystrons is coupled efficiently.

The LHC at CERN is a circular proton-proton collider.

"A linear collider is the logical next step to complement the discoveries that will be made at the LHC," said CERN director general Robert Aymar.

The other technology touted for the linear collider uses X-band structures at room temperature.

Mine hunters meet a robot deminer

Carson the robot, seen lurking in the background, was one of the demining technologies demonstrated to group of humanitarian mine removal organisations by Malvern-based research organisation QinetiQ.

It can be driven remotely up to a mine, place charges to burn out or blow up the mine, then reversing away.

The organisation representatives were in the UK to attend a course at Cranfield University and the QinetiQ visit was part of a demining technologies awareness day arranged by Cranfield.

"This is an annual event with Cranfield University. Clearance of mines is a huge concern in many areas of the world and we are always ready to discuss our humanitarian de-mining technologies with those who experience the problem first-hand," said QinetiQ project manager David Lewis.

Together, the organisations attending cover de-mining in Afghanistan, Azerbaijan, Bosnia and Herzegovina, Burundi, Cambodia, Iran, Iraq, Jordan, Kenya, Sri Lanka, Sudan and Vietnam.
Lasers make mice better

Mouse maker Logitech has turned to lasers to improve tracking performance in optical computer mice.

"We've turned off the red light on these optical mice and replaced it with an invisible laser," said David Henry, Logitech senior v-p of its control devices business unit. "Laser will eventually make the optical mice of today obsolete," he claimed.

An optical mouse tracks by illuminating the surface it slides over, viewing that surface with a detector array through focusing optics. Algorithms in the mouse track marks and blemishes on the surface and infer motion direction and speed.

Smooth plain surfaces, and those with certain patterns, like polished or wood-grain surfaces, can fool the system and prevent the mouse working reliably.

Working with optoelectronic device maker Agilent Technologies, Logitech developed the laser system, which includes a sensor which can capture 5.8Mpixel of detail each second. "The nearly singular wavelength of laser light is capable of revealing much greater surface detail," said Logitech. "In tests conducted at Agilent, the laser mouse was found to have 20 times more sensitivity to surface detail than LED optical mice."

The laser has been built into the MXMTM1000 Laser Cordless Mouse, which also includes Logitech's Fast RF 27MHz radio link which "enables the same rate of wireless data transfer as that of cabled mice operating through a USB port: up to 125 reports per second, approximately 2.5 times more than other RF-based cordless mice."

Power comes from a lithium ion rechargeable cell which charges in under four hours and "typically lasts 21 days". A ten minute charge will give a day's use. www.logitech.com

Crimewatch in the UK

An image processing project to monitor passengers in public transport systems is being carried out by Thales Research and Technology in Reading.

Part of a European research team, Thales hopes to develop tools that can automatically recognise dangerous or criminal behaviour on systems such as the London Underground.

Charles Attwood from Thales describes the system: "First, a time-base corrector system assigns and aligns the timing on the video feeds. It then digitises the analogue signals, compreses them and sends them to the 'crowd monitor' system provided by Kingston University in the UK."

"This analyses the video provided and returns alarms based on movements related to crowd behaviour - overcrowding on station platforms, for example."

Motion detection is able to track people as they move through the station. Behaviour recognition software issues alerts if any suspicious activities are spotted.

Called ADVISOR (Annotated Digital Video for Intelligent Surveillance and Optimised Retrieval) the system has been tested by the Barcelona and Brussels metro systems, the latter running 800 cameras.

Alarms are issued when the cameras spot overcrowding, access blocking, the detection of ticket barrier jumping, vandalism, and scenes of violence such as fights and muggings.

www-sop.inria.fr/orion/ADVISOR

Many lasers make light work

Washington state-based laser firm Aculight Corporation has produced an external cavity diode laser that combines the outputs from seven diode laser bars, each containing 200 single-mode emitters, to generate 26W of near-diffraction-limited light at 820nm.

"To date, this may be the largest number of diode lasers combined into a single, high-beam-quality light source," said the firm.

Aculight originally developed the 820nm laser for a military customer that needed to project a small spot of light on a faraway target using an efficient light source.

"One of the most common lasers around is the diode laser. They're rugged, efficient and a great workhorse for generating optical power," said Dennis Lowenthal, Aculight's v-p for R&D. "But poor beam quality has limited their use in many applications. A technique called spectral beam combining [SBC], however, allowed us to merge the output of several diode laser bars and yet retain the beam quality of a single emitter; the result is a novel high-power, high-quality diode source."

SBC overlays the outputs of many laser emitters into a single, near-diffraction-limited beam. "The SBC technology behind the unique laser could provide an important stepping-stone for the use of diode lasers in many applications that demand high-power, high-beam-quality light," said the firm, which could be used in photodynamic therapy and as a pump source for fiber lasers.

www.aculight.com

Pilotless plane takes electronics for a ride

Vector P is an unmanned aerial vehicle (UAV) aimed at carrying 9kg of electronics, cameras and sensors.

With a 3m wingspan, the plane can stay aloft for up to five hours and its position and payload information may be monitored from up to 100km via wireless data modems.

The plane can take-off and land autonomously, as well as automatically follow flight plans using GPS. Manual control is also possible.

Built-in safety systems can include auto-parachute deployment in the event of an emergency. www.intellitechmicrosystems.com
New powerful functions

- Virtual instruments – meters, scopes, transient recorder, function generator, power supplies and more
- Test mode, equivalent to the standard SPICE analyses and a separate continuous transient simulation mode that allows you to alter device and circuit parameters and examine the results immediately
- Layered sweeps, meaning you can step almost any device or circuit parameter on top of any test
- Monte Carlo analysis available for all tests including expanded Monte Carlo
- Easy part selection, including a customisable parts palette
- User-friendly interface with buttons and control tabs
- Live updating in simulation mode
- Circuit wizard makes it easy to generate standard circuits including attenuators, power supplies, filters, op-amp and tube-based circuits
- Over 25 thousand parts, unlimited circuit size
- Highly flexible 3D graphing
- NEW “realistic” models for caps, resistors, inductors
- Interactive parts including switches, fuses, LEDs, etc.
- Layered sweep tests (expanded)

B² SPICE is backed by comprehensive free technical support both local rate telephone and online, full user manuals and tutorials and a NO QUIBBLE, FREE 30 DAY EVALUATION OFFER

FREE 30 DAY TRIAL

FULL - OPERATIONAL SINGLE USER VERSION
Used worldwide by higher education, research and industrial professionals B² SPICE is a powerful and most importantly, ACCURATE software package for professional design engineers.

ONLY £229p&p
Ex VAT

CALL 0845 6017242
www.spice-software.com
Most high fidelity listeners appreciate the cleanly controlled loudspeaker cone reproduction of class-A amplification. After John Linsley Hood presented his simple 1969 design in Wireless World Graham Maynard needed to know why class-A is so much less fatiguing to listen to, because on-going solid-state design efforts are not worthwhile unless the final results actually sound better. Here he concludes his investigation into loudspeaker back-EMF induced amplifier distortion.

To date my reverse driven amplifier simulations have been completed under zero input quiescent current conditions that could be said to rarely arise during sound reproduction. However 'passive' loudspeaker crossover frequency coil motion cannot be achieved without some degree of loudspeaker system induced back EMF being generated, and thus any global NFB loop that encircles correction delaying 'stabilisation' circuitry cannot instantaneously control output terminal potential wrt input, and this has the potential to affect amplification and thus reproduction no matter at what output driving instant or at what amplitude any higher frequency back EMF might impinge. Given that circuit delay and minimum stability characteristics are design specific and that these ought not change significantly in time under the effect of any amplitude or phase of loudspeaker generated back EMF, no matter what type of amplification and NFB or output error correction methods are involved, my simulated reverse injection method for amplifier circuit excitation should remain representatively valid.

Back in my valve amplifier days, I was well aware that varying the value of the pico-Farad capacitor which parallels the output terminal NFB loop sensing resistor could have a notable effect upon reproduction whilst not especially altering the amplifier's measurable steady sinewave audio frequency response and distortion figures. This capacitor affects not only closed loop stability, as may be observed via conventional steady squarewave observation using a real loudspeaker load, but also the 'quality' of sound that a loudspeaker might eventually reproduce; too high a NFB capacitor can 'dull' or 'suck back' the dynamic detail of reproduction, while too low a value can cause a just perceptible false 'brightness' or 'glassy sheen', and thus the complete omission of this component should be avoided due to the way in which differentially sensed closed NFB loop controlled current correction ends up lagging back EMF modified output terminal voltage error.

Two of the most useful components in my early separate magnetic cartridge pre-amplifier were a dual gang 47kΩ variable in series with 22kΩ, and a 250pF variable capacitor in parallel with short and un-padded pick-up leads, both being finely set to match cartridge loading. As front panel controls both were mostly left in the optimally flat reproduction position, but the capacitor proved very useful in compensating for overly 'dull' or 'bright' pressings. As part of the real world testing for my Part 4 - Figure 10 class-A 25W-8Ω circuit, I actually tried an insulated 100pF air-spaced shortwave variable connected in parallel with its 10kΩ NFB loop sensing resistor to see if there might be any advantage in providing user variability. However amplification did not change significantly because the circuit already had an extremely low propagation delay, even though dynamic response and stability characteristics must have been becoming degraded at maximum and minimum settings respectively. Based upon past experience I had already prototyped using both 15pF and 22pF capacitor values, and was pleased with the neutrality of output when either component was fitted. In view of the long known importance of this component, I more recently wondered how my amplifier might simulate dynamically when the value of its NFB sensing capacitor was varied with 1V.RMS - 10kHz of reverse sinewave drive applied, with the results being observed from t=0; as illustrated in Figure 20.

Figure 20 shows four separate response simulations for NFB sensing capacitor values of 1 pF, 4.7pF, 22pF and 100pF. The 620µV (-67dB) under-damped oscillation
the 1pF (stray capacitance) controlled response shows why this component should not be omitted; inadequate high frequency NFB loop sensing leads to control overshoot, thus the accuracy and stability of the reverse (loudspeaker back EMF) damping response becomes compromised. The 4.7pF component provides better damping, but at 360µV still does not adequately control back EMF induced overshoot. The 22pF (-80dB) trace corresponds to my earlier Part 5 - Figure 13 simulation, though with different resolution, this value being optimum for the simple two stage amplifier circuit. The 100pF trace appears to establish superior initial error control, but by now it is also beginning to degrade the amplifier’s forward measurable phase response and is ‘dulling’ the first cycle forward amplification (transient) response with its own charging requirement, which causes a gradually settling error offset and increases the equivalent FCD figure I am keen to keep low so that the amplifier will retain top flight and uncompensated dynamic impulse response capabilities.

That the 22pF value subsequently turned out to be correct for quickly returning the simulated 25W-10kHz toneburst signal level zero shift to within 1mV of its biased dc zero, and with Figure 20 separately showing this component’s excellent overshoot limiting, this is rather satisfying. Fortuitous perchance? No: the amplifier was already sounding ‘good’ because it does not appear to introduce audible waveform distortion or characterising qualities or reproduction smear, as more recent simulations have done no more than confirm. It was only after I had finalised the circuit and its write up that later simulator examination revealed the alternating signal zero for a 25W-10kHz sinewave toneburst most quickly returns to genuine zero with a feedback capacitor value of 18pF; also that the 100pF NFB sense capacitor increases the 20kHz forwards simulation measured phase shift to minus 6.7 degrees with a just given bias setting and topology, irrespective of any NFB loop or error correction arrangements; the time period taken for a return to zero volts at the output terminal relates to the amplifier’s separate external impedance, internal parallel capacitance induced propagation delay and global NFB loop characteristics; whilst any oscillation relates to the amplifier’s reversely excited stability characteristic.

Now, I do not especially like squarewave testing, nor for that matter 2pF amplifier output terminal loading, because nowhere in real world audio reproduction is there a similarly sharp response that must be followed or controlled, nor is there a similarly leading current load that must be driven in order to ensure subjective listening satisfaction, besides, the sibilance, musical harmonic and percussive transient responses these tests are most related to are more akin to being a range of abruptly starting harmonics, with the highest and most energetic frequency components being the least sustained. Also, not all squarewave generators have equal fast rise times so that measurement altered or comparison quality corresponding to an input related equivalent FCD figure of 0.33%.

Squarewave testing?

Sub microsecond oscilloscope observation from ø=0 with a suddenly starting sinewave is not easy to arrange on an audio test bench, though it is possible to reverse resistance drive any amplifier with a steady 10kHz 1Vp squarewave and monitor its voltage output through each ‘-’ to ‘+’ or ‘+’ to ‘-‘ generator induced output stage current crossover. Amplifier deviation and stability disturbance arise much more quickly than with sudden reverse sinewave start-up, and both examinations may well produce findings different to those arising via normal forward continuous squarewave drive with a resistive output termination. The results for reverse simulated steady squarewave drive for my class-A circuit could be shown in a separate illustration, but the nature of the traces do not differ enough from those already shown in figure 20. The amplitude of an initial reverse squarewave driven error spike relates to the natural output impedance of the output stage itself, prior to any global NFB loop or error correction circuitry being able to correct the induced voltage error, and thus initially it remains the same for a given bias setting and topology, of subsequently establishing equal topologically generated output amplitude in relation to its bias and ongoing dynamic control capabilities. A non-feedback amplifier would limit error amplitude in relation to its bias and topologically generated output impedance, but would be incapable of subsequently establishing equal but opposite error correction and crossover-loudspeaker damping current flow, but then it could not induce loudspeaker cable, crossover or driver induced ‘ringing’ against a low output impedance either. There is also always the potential for the reverse squarewave driven error amplitude that is momentarily permitted by a stable class-B amplifier to be greater due to higher natural output impedance with lower standing current, no matter how fast the global or local NFB loop, amplified correction, and this is why steady sinewave forward testing procedures alone will not reveal all of the circuit activity that could lead to

Figure 21: Comparing the output terminal responses for the generic class-B and simple class-A.
different amplifiers 'amplifying' and thus 'sounding' differently, especially at those unavoidable instants of music waveform induced overdrive or overload. Unfortunately reverse squarewave simulation can also induce output stage cross-conduction where this is unlikely to arise in a competent real-world finished design due to series load impedances and the amplitude of loudspeaker generated back EMFs reducing with increasing frequency.

Could it be that it has been these momentary load induced and leading w.r.t. circuit delayed NFB loop stabilised amplifier output 'tweeter driving' errors that have been causing many solid-state amplifiers to sound tiringly 'over bright', 'sharp', 'brittle' or 'tizzy', where such effects have come to be formally attributed to minute levels of higher harmonic steady sinewave distortion when evaluated via conventional Fourier analysis with passive and thus non-back EMF generating resistor loads? Also are these 'Fourier' components equally generated when a real cable plus loudspeaker system is the amplifier load instead of a test bench resistor? After all, valve amplifiers have much inferior high frequency harmonic distortion figures at higher output powers without them sounding so dissonant, but then valve amplifiers do not similarly generate an extremely low output impedance against which loudspeaker terminal back EMF can so reactively develop, and I am not aware that amplifier distortion is routinely Fourier analysed when a loudspeaker system is the load anyway. I always found it extremely hard to describe the veiling and mind confusing loudspeaker reproduction of a Part 5 - Figure 14 type of class-B amplifier, for whilst there was no doubt that NFB always firm up the bass response and reduced single tone distortion, these amplifiers made composite loudspeakers sound as if the musical dynamics had been internally compressed, such that not only was I aware of an anonymising loss of projected image depth and an alteration of detail, especially on leading wavefronts, but that sonic changes led to me becoming disenchanted and disinterested with what had previously been enjoyable listening from known to be good source material. Now that I have simulated these reverse (loudspeaker back EMF) induced leading edge distortions I realise that my ears had been right all along.

Curiously I did observe a similar sonic characteristic on one experimental valve power amplifier where substantial NFB loop sensing had been internally derived directly from the push-pull anodes instead of more conventionally from the loudspeaker output terminal, where the latter leads to a more naturally sounding control of transformer output with a more constant time relationship w.r.t. signal input, though I do feel that valve amplifiers could benefit from using limited amounts of both resistive anode internal and output terminal global types of feedback in a nested configuration, with further additional improvement being achievable by using quiet and directly coupled 50V powered differential solid state first stage circuitry instead of doggedly maintaining an 'all valve' practice with its unavoidable front end thermionic hiss.

Disparate attention required!

In spite of John Linsley-Hood via his Solid State Audio Power article in EW+WW, Nov 89, p1042, also Ed Cherry as he yet again repeated in his Ironing Out Distortion article EW, July 97, p557, as well as many others, all making suggestions that C.doms should not be implemented as a Miller connected capacitor at the VAS stage, my generic class-B circuit is similar to many that are still being written about by some 'established' designer-writers as if THD specifications can prove beyond criticism that these are upper echelon audio amplifier designs. The error waveforms shown in Part 5 - Figures 16, 18 & 19 demonstrate class-B weaknesses caused by circuit design flaws that regular EW Letters readers have been assured as recently as December 2003 are 'solved problems and dead issue' aspects that are 'completely understood', thus amplifier end users and expectant constructors are not getting a fair deal.

Class-B amplifier designers might care to run suddenly starting reverse driven output stage sinewave simulations via a lower value series resistor that will mimic loudspeaker impedance dips, whilst varying output stage, driver and input stage bias currents, because waveform control degradation due to the dynamic invocation of a voltage sensing NFB amplifier's internal closed loop current limitations, are much more significant and consequential for audio reproduction than the normally observed bias controlled minimisation of forward examined steady sinewave crossover distortion with an ideally resistive load alone. Moving the acting end of the C.dom away from the high impedance input stage output node in the way that was so long ago suggested, leaves the VAS collector free to slew at very high speed through the output stage bias range, which usefully minimises VAS stage correction delay and therefore limits loudspeaker back EMF driven conduction crossover commutation as well as conduction crossover induced differential input stage signal waveform modulation. By getting rid of the Miller Effect inducing VAS C.dom, and by minimising the V-ce variable effect of VAS transistor base-collector capacitance by increasing input stage current, or if the connection of a Miller C.dom is essential to prevent instability - by working it against a VAS base-emitter resistor to ensure that its rate of charge w.r.t. input stage current capability at audio frequencies is low enough for flat open loop gain throughout the audio spectrum - loudspeaker induced leading output terminal voltage commutation development at audibly significant frequencies is minimised, and the Part 5 -Figure 19 illustrated zig-zag superimposition plus time elongated crossover plus amplifier generated distortion artefacts could thus also be minimised, with amplifier-loudspeaker interface induced errors being reduced to extremely low levels.

Fundamental nulling

Over the years I have spent countless non-Fourier hours trimming the amplitude and phase adjusting controls of a fundamental nulling sinewave filter in order to reveal and study output stage conduction crossover plus amplifier generated distortion artefacts, and yet today, this is one method for waveform examination where our modern computer simulation software is much less convenient. We might need to sit back for ten or more separate long running simulations to gradually establish an exact amplitude and phase null for fundamental cancellation at the output voltmeter via a second separately configured voltage generator in series with the measuring instrument. What manually takes thirty seconds with stable test bench gear can easily take ten to twenty minutes on a desktop running with sufficient resolution to fully reveal the amplitude and coincidental non-linearity and any conduction crossover spikes, for these are all still there and it is insufficient resolution with...
Agilent (Hewlett Packard) 8753D Network Analyser

Option 11 (This deletes the 'S' Parameter)
85046A 'S' Parameter Test Set can be purchased separately if required.
Frequency Range 300kHz – 3GHz
Up to 110 dB of Dynamic Range

Price of 8753D = £7995
Price of 8753D + 85046A = £9995

Agilent (Hewlett Packard) 3588A Spectrum Analyser

Option 001 (High Stability Frequency Ref.)
Frequency Range 10Hz – 150MHz

Price of 3588A = £3995

Wayne Kerr PMA3260A

Precision Magnetics Analyser
with 3265A Bias Unit (25 Amp)

Price of PMA 3260A + 3265A = £5995

Stanford Research DG535

Four Channel Digital Delay Generator
Various options available
Two Fully Defined Pulse Outputs
5 picosecond Edge Resolution
50 picosecond RMS Jitter
Fully Adjustable Amplitude & Offset
Delays up to 1000 seconds
1 MHz Maximum Trigger Rate
Internal, Burst, Line or External Triggering
GPIB Interface – Standard
Optional Outputs + or - 35V, 100 ps Rise / Fall

Price of DG535 = £2750
unrealistically used equipment that leads them not being revealed. The computer method however is potentially much more useful, for once a specific sinewave null has been established to reveal exactly what the amplified but propagation delayed output terminal waveform is additionally carrying, i.e. the distortion residual that accompanies loudspeaker waveform drive, we can re-start the simulation to reveal and investigate any first cycle distortion that would normally pass undetected before test bench gear is capable of stabilising, and which some simulators might be incapable of analysing.

Now any analogue error arising between $t=0$ for a suddenly starting and rising sinusoid at amplifier input, and $t=0$ for the delayed output we eventually hear at amplifier output is not going to be as great as the simplistically ‘time shifted’ differential sinusoidal waveform subtraction would suggest actually arises during that initial propagation delay period, though as far as ongoing music is concerned we cannot fail to hear any errors arising after the $t=(propagation\ delay)\ period\ w.r.t.$ any other coincidentally running waveform already being amplified. This leads me to offer a simulated substitution for different amplifier-loudspeaker interface distortions being generated by ‘loudspeaker’ back EMF interacting with different NFB loop controlled output stages in the same manner that my more convenient reverse injection testing has already suggested can arise.

For Figure 22 I have parallel simulated the steady state responses for five separate generic class-B circuits, each having an identical Part 5 - Figure 14 semiconductor configuration, which is similar to those possessing excellent fundamental open loop gain linearity as investigated by Douglas Self in his 1993-94 EW+WW reference series entitled Distortion in Power Amplifiers, but which here have the different capacitor-inductor overlays as described below. Each circuit variation is separately fundamental amplitude-phase nulled in order to reveal its individually generated error waveform whilst outputting 15V.RMS at 10kHz into my virtual approximation of the ‘Ariel’ loudspeaker. The power rails for the generic circuit were increased to ±35V, bias to 30mA, and circuit usage is for illustration purposes only, not to claim any stable world reference amplifying capabilities.

The red trace shows the simulated fundamental-nulled distortion-residual at the loudspeaker terminal for the generic circuit with both its 100pF Miller C.dom and its series output choke fitted, when the amplifier is loaded by a standard 8Ω non-inductive resistor. The amplifier circuit introduces an overall voltage waveform delay of 1.2µs, and the resistor loading ensures that both the output current and output voltage crossovers occur simultaneously.

The blue trace shows the simulated fundamental-nulled distortion-residual at the loudspeaker terminal for the generic circuit with both its 100pF Miller C.dom and its series output choke fitted, when the amplifier is loaded by a standard 8Ω non-inductive resistor. The amplifier circuit introduces an overall voltage waveform delay of 1.2µs, and the resistor loading ensures that both the output current and output voltage crossovers occur simultaneously.

The green trace illustrates how removal of the series output choke alone can get rid of its dynamically induced contribution to loudspeaker back EMF-choke generated first cycle transient distortion. However, the unsmoothed Miller C.dom permitted loudspeaker back EMF induced reverse output node commutation, with its significantly higher speed product generation, is now clear to see. Without the series output choke, the amplifier’s loudspeaker loaded voltage waveform delay has been reduced to 0.5µs, and thus the zero current class-B crossover for the green trace arises earlier than for the red and mauve traces. (By comparison, the virtual loudspeaker loaded waveform delay with a simple class-A amplifier is just 0.2µs, and there are no output stage induced current crossover discontinuities.)
The mauve trace shows how the error residual can be cleaned up by not using a Miller connected C.dom. The much improved high frequency bandwidth response/delay has here been established on the still unchanged class-B base semiconductor foundation by using a low value capacitor two pole HF gain degeneration network between the VAS collector and the differential feedback transistor base, and by adding a 22pF capacitor in parallel with the 10kΩ NFB resistor as used in my own class-A amplifier. See Figure 23. Only the Miller Effect inducing C.dom, the differential stage, and NFB loop capacitor arrangements have been modified for this simulation (the VAS driver transistor collector remains 0V connected) the result being a further 40dB reduction in steady state distortion after 200μs. The loudspeaker circuit plus series output choke induced first cycle error still arises, even though this would not be quotable on a specification sheet that merely lists a historically ‘established’ steady state THD measurement result.

Choke-less and C.com-less
Please note that this Figure 23 circuit has not been tested for stability in the form of a real world construction. It is used here to show how by removing the Miller C.dom alone that it is the internally generated leading differential input stage current flow within the globally closed NFB loop that causes additional class-B conduction crossover generated amplitude error, as opposed to crossover spikes merely being superimposed upon and straddling NFB loop controlled amplitude waveform distortion, as is so often imaged with simplistic passive resistor loading.

Yellow. With the Figure 23 gain degeneration arrangement used in place of the audio frequency gain stultifying Miller C.dom, and with the series output choke removed, we can reduce both input stage distortion and VAS collector delay, leaving the simulated amplifier with the illustrated near straight yellow line error trace. This introduces 1.7μs of voltage waveform delay, with up to 5mV p-p of crossover distortion spiking, though with a negligible amplitude distortion error. Also note that the first transistor current variation has dropped to less than one hundredth of that with the direct 100pF C.dom connection as it drives the VAS stage buffer; hence the very immediate NFB loop generated output current control in the presence of exactly the same ‘loudspeaker circuit’ loading as for the green and red traces.

With the ‘-’ to ‘+’ 1V reverse square-wave Figure 21 test, the initial output stage error for the Figure 23 circuit remains a class-B 0.83V, but
the choke-less and C.dom-less recovery correction takes a mere 100ns, with especially improved performance notable via its -95dB amplitude and 20 degrees of leading 10kHz phase error when examined via a reverse driven steady sinewave investigation as per Part 5 Figure 11 where my class-A measures -64dB and 8 degrees respectively, figures that could question the sensibility of class-A usage.

The only difference between the red and yellow traces relates to NFB and stabilisation control components connected to an unchanged Figure 14 transistor layout. The Figure 23 circuit shows that it is possible for steady state distortion and reverse (back EMF) excitation damping levels to remain high at all audio frequencies, when using the earliest of semiconductor devices within bipolar circuitry very similar to that optimised and introduced by Mr Douglas Self as a ‘Blameless’ design; however unlike the Blameless, real world user stability for the full Figure 23 circuit has not been proven, and I am not presently able to check this out.

Clearly a Miller connected VAS C.dom drawing input stage current at audio frequencies causes a substantial and not subtle increase in dynamic loudspeaker load induced amplifier-loudspeaker interface distortion in the green and red traces when compared to the Blue resistor loaded trace. This confirms that there is a need for reverse injection testing to reveal the leading error caused by components that are invisible to the end user, for Figure 22 shows they can induce additional reproduction affections when the amplifier is used as part of a real-world sound reproducing system. Figure 23 reveals by removal, how, when a deliberately introduced Miller Effect at an amplifier’s three electrode VAS is used to ensure unconditional stability, it can simultaneously degrade global NFB loop control and leave the output stage more free to sharply reverse commutate through a portion of the fixed output stage bias when loudspeaker system back EMF induced current flow momentarily becomes leading phase shifted w.r.t an amplifier’s signal input voltage. The leading two pole VAS collector potential derived HF degeneration applied to the NFB sensing input of the differential pair of Figure 23, does not interfere with the balanced voltage to current transductance of the input pairing or the control they exert upon amplifier output w.r.t. input. This same stabilising two pole filter arrangement can be added to other solid state amplifier designs to increase their stability and stabilise load induced amplifier circuit voltage delay.

Bridged amplifiers

It is also worth considering at this point how one amplifier might thus affect its bridge connected partner if the output from a signal driven A’1 is then used to feed a potential divider at the negative input of its A’2 pairing. Integrated circuits and amplifiers that are bridged in this way or via a commoned NFB loop link might bench measure okay when their common load is a passive resistor, yet produce much less convincingly realistic sound reproduction than when they are separately driven by an external phase splitter or via genuine ‘+’ and ‘−’ input reversing. This is due to an A1’s inability to instantly control its output terminal voltage potential under the influence of a portion of loudspeaker plus A2’ delayed error arising at the output of A1’, the error then being momentarily re-amplified by A2’ such that music input generates a range of differently timed voltage errors between A1’ and A2’ outputs. When the capacitor that parallels a NFB loop sensing resistor is omitted within a Miller C.dom stabilised amplifier that might work well on its own, it would not be impossible for leading loudspeaker induced output stage reverse commutation to initiate catastrophic inter-amplifier oscillation. Often, stereo car audio amplifiers run much more cleanly when each channel is separately optimised to drive ‘in-phase’ just one separate voice coil of a dual voice coil sub-bass driver each, when compared to bridged mode with the voice coils either in inductance increased series, or 4x amplifier current flow parallel. Small and sealed car audio enclosures generate phenomenal back EMF, inducing air-spring pressures, so reducing the sound level does not especially improve reproduction quality when d.c. drivers are parallel driven by an auto-bridged stereo amplifier, even when power supply rail capabilities have not been exceeded!

Here I have managed to illustrate using a generic circuit similar to some that have been published, constructed and marketed, one mechanism whereby passive crossover circuitry and dynamic loudspeakers can cause many already existing class-B bipolar amplifier output stages to sound increasingly indistinct as rising waveform levels energise complex back EMF induction responses, simply because so many of those amplifiers have been fitted with a series output choke and/or Miller Effect inducing and NFB loop response delaying C.dom! Any failure to understand the real significance of reactive loudspeaker induced distortion mechanisms which arise due to their frequency dependent dynamic impiemgments upon either a series output inductor or capacitor coupled output terminal, or a Miller-VAS C.dom HF control reduced amplifier’s NFB output node, will devalue the most erudite of amplifier designer’s efforts in reducing forward circuit distortion below what once were already excellent 0.1% valve power amplifier levels and especially those that use triodes with their natural loud damping anode resistance, or grid aligned beam output tetrodes running in AB1 40% ultra-linear where there is still good damping plus a much lower internal Miller Effect plus lower reverse parasitic electron reflection and re-emission than with a pentode or triode at higher output power. Thus I cannot but wonder what types of amplifiers have been chosen by experienced loudspeaker designers for their own reference work - they might not actually use the better than 0.01% solid state THD specified class-B chassis that some ‘experienced’ amplifier designers think they should; and, if they did optimise their designs whilst using low impedance but reactive output stages, how would their loudspeakers then sound when driven by other more reverse phase linear or minimally signal path and thus NFB loop response delayed amplifier types?

My suggested reverse injection testing procedures, which apply no more than a simple 10kHz-1V RMS sine wave via an amplifier’s nominal load resistance, have been shown to have validity in predicting the likelihood of tweeter voltage modulation from loudspeaker system generated back EMF, due to a lack of coherent output terminal control via a series output choke or correction current delay within a closed voltage sensing global NFB loop solid state class-B amplifier. The procedure is simple, and may be retro-completed on any existing amplifier, old or new; class-A or B; other or dumper; nested feedback or error correction; thermionic or semiconductor; and, analogue or digital! It requires no more than a buffered, or amplified signal generator, a dual trace.
Motor Drivers/Controllers
Here are just a few of our controller and driver modules for AC, DC, unipolar/bipolar stepper motors and servo motors. See website for full details.

NEW! Bidirectional DC Motor Controller
Controls the speed of most common DC motors (rated up to 32VDC/5A) in both the forward and reverse direction. The range of control is from fully OFF to fully ON in both directions. The direction and speed are controlled using a single potentiometer. Screw terminal block for connections.
Kit Order Code: 3166KT - £14.96
Assembled Order Code: AS3166 - £24.96

DC Motor Speed Controller (6A/100V)
Control the speed of almost any common DC motor rated up to 100V/5A. Pulse width modulation output for maximum motor torque at all speeds. Supply: 5-15VDC. Box supplied. Dimensions (mm): 60x90x100. Kit Order Code: 3067KT - £12.96
Assembled Order Code: AS3067 - £19.96

NEW! PC / Standalone Unipolar Stepper Motor Driver
Drives any 5, 6 or 8 lead unipolar stepper motor rated up to 6 Amps max. Provides speed and direction control. Operates in stand-alone or PC-controlled mode. Up to six 3179 driver boards can be connected to a single parallel port. Supply: 9V DC. PCB: 80x50mm.
Kit Order Code: 3179KT - £9.96
Assembled Order Code: AS3179 - £16.96

NEW! Bi-Polar Stepper Motor Driver
Drive any bi-polar stepper motor using externally supplied 5V levels for stepping and direction control. These are usually available for software running on a computer.
Supply: 8-30V DC. PCB: 75x85mm.
Kit Order Code: 3158KT - £12.96
Assembled Order Code: AS3158 - £26.96

Most items are available in kit form (KT suffix) or assembled and ready for use (AS prefix).

Controllers & Loggers
Here are just a few of the controller and data acquisition and control units we have. See website for full details. Suitable PSU for all units: Order Code PSU445 £8.95

Rolling Code 4-Channel UHF Remote State-of-the-Art. High security, 4 channels. Momentary or latching relay output. Range up to 40m. Up to 15 Tx's can be learnt by one Rx (kit includes one Tx but more available separately). 4 indicator LED's. Rx: PCB 77x80mm, 12VDC/6mA (standby). Two and Ten channel versions also available.
Kit Order Code: 3108KT - £14.96
Assembled Order Code: AS3108 - £19.96

Computer Temperature Data Logger
4-channel temperature logger for serial port. °C or °F. Continuously logs up to 4 separate sensors located 200m from board. Wide range of free software applications for storing/using data. PCB just 38x38mm. Powered by PC. Includes one DS1820 sensor and four header cables.
Kit Order Code: 3145KT - £19.96
Assembled Order Code: AS3145 - £26.96

NEW! DTMF Telephone Relay Switcher
Call your phone number using a DTMF phone from anywhere in the world and remotely turn on/off any of the 4 relays as desired.
User settable Security Password, Anti-Tamper, Rings to Answer, Auto Hang-up and Lockout. Includes plastic case. Not BT approved. 130x110x30mm. Power: 12VDC.
Kit Order Code: 3140KT - £39.96
Assembled Order Code: AS3140 - £49.96

Serial Isolated I/O Module
Computer controlled 8-channel relay board. 5A mains rated relay outputs. 4 isolated digital inputs. Useful in a variety of control and sensing applications. Controlled via serial port for programming (using our new Windows interface, terminal emulator or batch files). Includes plastic case 130x100x30mm. Power Supply: 12VDC/500mA.
Kit Order Code: 3108KT - £14.96
Assembled Order Code: AS3108 - £26.96

Infrared RC Relay Board
Individually control 12 onboard relays with included infrared remote control unit. Toggle or momentary. 15m range. 112x122mm. Supply: 12VDC/0.5A
Kit Order Code: 3142KT - £14.96
Assembled Order Code: AS3142 - £26.96

PIC & ATMEL Programmers
We have a wide range of low cost PIC and ATMEL Programmers. Complete range and documentation available from our web site. Programmer Accessories:
40-pin Wide ZIF socket (ZIF40V) £16.00
16V DC Power supply (PSU010) £19.96
Leads: Parallel (LDC136) £4.55 / Serial (LDC441) £4.55 / USB (LDC644) £2.95

NEW! USB 'All-Flash' PIC Programmer
USB PIC programmer for all 'Flash' devices. No external power supply making it truly portable. Supplied with Windows Software. ZIF Socket and USB Plug A-B lead not included.
Kit Order Code: 3128KT - £34.96
Assembled Order Code: AS3128 - £44.96

Enhanced "PICCALL" ISP PIC Programmer
Will program virtually ALL 8 to 40 pin PICs plus a range of ATMEL AVR, SCENIX SX and EEPROM 24c devices. Also supports In System Programming (ISP) for PIC and ATMEL AVRs. Free software. Blank chip auto detect for super fast bulk programming. Requires a 40-pin wide ZIF socket (not included). Available in assembled format only.
Assembled Order Code: AS3144 - £48.95

ATMEL 89xxx Programmer
Uses serial port and any standard terminal comms program. 4 LED's display the status. ZIF sockets not included. Supply: 15-18VDC.
Kit Order Code: 3123KT - £29.96
Assembled Order Code: AS3123 - £34.96

NEW! USB & Serial Port PIC Programmer
USB/Serial connection. Header cable for ISP. Free Windows software. See website for PICs supported. ZIF Socket/USB Plug A-B lead extra. Supply: 18VDC.
Kit Order Code: 3149KT - £26.96
Assembled Order Code: AS3149 - £34.96
oscilloscope, plus a nominal value of non-inductive load resistor. The reverse driving amplifier does not even need to be an ultra low distortion type, and so one channel of a stereo pair could be used to evaluate its partner. Switching to squarewave with an adequately buffered generator could also reveal any NFB loop control instability w.r.t. input, and, if the error amplitude is not near instantly controlled, reveal output stage impedance or a risk for loudspeaker driven pre-NFB controlled output stage reverse commutation through a portion of the output stage biasing potential.

A simple observation of reverse driven output terminal phase shift at 10kHz will indicate whether the chassis under test has a predominantly resistive characteristic that does not momentarily permit the generation of leading error potentials, or, have an inductive characteristic where suddenly generated leading quadrature and 'step like' error potentials could reactively increase with increasing frequency and dynamic loudspeaker impedance dips. Also, in view of the above mentioned momentarily high output stage currents already noted by Mr. D. Self, an increase in the voltage/current level of this reverse examination drive via the 'load' resistor until it dissipates the amplifier's rated power might also reveal any output device conduction crossover induced problems due to signal path induced current insufficiency limitations within the closed NFB loop, which could then become apparent only when driving efficient or crossovered dynamic loudspeakers loudly. Where a capacitive output characteristic is suspected, a second test could be run at 100Hz to check whether the output terminal develops an additional lagging alternating zero-level shift that increases with falling frequency, because this would have a worst effect due to phase shifting around any loudspeaker designer's deliberately intended utilisation of loudspeaker driver-cabinet bass resonance.

Real loudspeaker response
If the output potential of an amplifier being tested remains more than 60dB below that of reverse drive up to maximum rated current flow through the nominal series resistor, then any phase shift at 10kHz might be considered as being inconsequential, but this would be true only if an initial first cycle of reverse (dynamically) generated error is stably controlled by the closed NFB loop, which is why first microsecond and first cycle circuit energisation responses need to be separately simulated from t=0 w.r.t input and t=0 w.r.t output driven signal injection examinations.

Each of the simulated traces illustrated in Figure 22 was derived via individual fundamental 'dynamically' generated phase nulling with a differentially phase delayed equal-but-opposite 10kHz steady sinewave in order to separately reveal distortion content. This nulling permits voltage error observance at each amplifier's output terminal, due to individual amplifier-loudspeaker interface delay induced reactions with identical loudspeakers and inputs. The traces represent the way in which a 10kHz waveform would be modified by composite loudspeaker reactivity and subsequently erroneously generated amplifier circuit responses. Conventional THD analysis fails to reveal the first cycle distortion due to a composite loudspeaker's impedance reacting with any amplifier's separate, but both integral and internal impedances, as has been illustrated here. Using an oscilloscope to directly observe the output terminal waveform or differential input base potentials for error during music amplification with loudspeaker loading will not show up this kind of leading current induced crossover distortion because fundamental nulling is necessary to reveal such activity and this cannot be set up for music. Nor can THD measurement and scope monitoring reveal the dynamic activities of Miller C.dom generated 'internal' closed loop inducance or 'external' series inductance waveform modification either. When it is driving a reactive load the generic class-B amplifier does not behave as if the total inducance at its output terminal is a simple summation of both internal plus external attributes, because leading Miller capacitor charging current within the closed NFB loop causes additional 'ringing' through back EMF driven output stage conduction crossovers as it constantly hunts for, but never quite manages to achieve, a steady state correction, as illustrated by the green and red traces of Figure 22, whilst the choke allows dynamic loudspeaker current flow to momentarily modulate the amplifier's output voltage w.r.t. the NFB loop controlled output node, as per the first cycle red and mauve traces. For those who have the equipment there is a possibility for 24/192 digitally encoding, delaying and decoding any amplifier input signal, and simultaneously comparing it with attenuated amplifier output terminal waveform potential to generate an on-going and live display of 'listening-time' error whilst real loudspeakers are reproducing real music waveforms.

Those amplifiers observed having inductive output characteristics under reverse sinewave examination are likely to be the ones that will be more tiring to listen to because they cannot keep themselves from distorting the leading edges of waveforms due to the influence of complex reactive current flow within real-world dynamic loudspeakers, as has been illustrated by the parasitic tweeter driving wavelets of my Part 3-Figure 7. Thus they cannot keep themselves from fractionally time and voltage smearing detail within the differential stereo sound stage image which the loudspeakers subsequently recreate, whilst amplifiers that pre-correctly overshoot during a cycle of reverse simulation are also likely to sound too 'bright' or 'glassy' when driving reactively complex loudspeakers. Those amplifiers having a capacitive low frequency characteristic might actually sound warmer and louder as the bass response softens with phase shifted NFB current generation at the output terminal because they cannot genuinely damp bass driver voice coil movement; this can lead to kick drums sounding flappy instead of tight.

'Standard' and 'established' amplifier-phase and slew rate measurements observed when amplifiers drive steady sine or square waveforms into a phase linear passive resistor load are so inadequate for determining how an amplifier might actually respond to and therefore 'sound' when it is used to dynamically drive suddenly starting asymmetric sound waveforms into real-world electro-magnetic loudspeakers, because single frequency testing cannot reveal how a family of musically related harmonic components can become differentially phase shifted or intermodulated w.r.t. the original input due to loudspeaker induced back EMFs separately acting against an amplifier's individual dynamic and NFB loop controlled capabilities. Where the output of a signal generator cannot be gated for first cycle start-up, then an initial leading edge of reverse driven error per Part 5 - Figure 18 might not be directly observable, especially if the
reverse driving source amplifier already introduces its own first cycle waveform distortion. This is where simulator evaluation can be of significant help, because, although fundamental test bench nulling will reveal additional product generation when a real loudspeaker is the load, a real loudspeaker will make much noise and might not survive lengthy voice coil heating; also the test set controls will need endless tweaking as every change impacts upon both the phase and amplitude of null settings - necessary adjustments which prove that internal amplifier behaviour is not as constant as is generally expected. Look at the zero current conduction crossover timings in Figure 22 above, they vary with each of the individual amplifier circuit's internally generated current flows which eventually arise in response to loudspeaker induced back EMF, and thus the zero current crossover timing and amplifier circuit induced distortion will vary with frequency. All five of the Figure 22 amplifiers have identically connected transistors, but their different series-parallel path connected component arrangement introduced different internal NFB and signal voltage propagation delays, and thus each amplifier generated different loudspeaker back EMF induced soundwave distortions that would (except for the yellow trace example) change and sound different when the loudspeaker is changed!

Continuous display

We might not always be able to discern any amplifier altered delays which arise when a single channel is being tested in isolation, but our ear-brain neurology is capable of perceiving directionally and harmonically induced differential affections having short time differences that would otherwise relate to 100kHz or more on a cyclic basis. This leads me to suggest another way in which it should be possible to compare different stereo amplifiers by using switch attenuated headphones, or an old series capacitor connected tweeter, or a ground isolated oscilloscope to observe an amplifier's load driving competence whilst it is actually music driving real-world loudspeakers; a method that should also enable investigation for whether a specific phantom sound stage disturbance or undiagnosed manifestation of distortion is actually source or power amplifier related, and which may also be computer simulated, as is illustrated here.

If both channels of a stereo amplifier under test are simultaneously fed together, with headphones, tweeter, oscilloscope or simulated monitoring of the difference between outputs, then nothing should be observable when each channel is driving the same output into equal resistance loads. However, if one resistor is then replaced by a composite loudspeaker system, as is illustrated in Figure 24, then any previously level balanced degradation of amplitude linearity or any reactively induced dynamic phase (time) shift in amplifier output will instantly be rendered audibly or visibly detectable. If there is any amplifier non-linearity distortion in the 8Ω output w.r.t. the loudspeaker output, then this too will become part of the audible error or amplitude trace, such that the output from a poor amplifier will appear worse than expected, but this is no bad thing because it is just as important to optimise amplitude linearity as well as minimise dynamically generated loudspeaker back EMF induced amplifier errors. Also, I see the Figure 24 examination arrangement as being a 'live' monitoring set-up because it is capable of automatically 'nominally nulling' the amplified music waveform via an on-going subtraction of a normal propagation delayed and 8Ω resistor loaded zero phase waveform, from that which becomes modified by loudspeaker back EMF generation, such that there will be an on-going 'listening time' indication of loudspeaker induced amplifier distortion whilst the amplifier is real time driving the loudspeaker with complex music signal waveforms.

Figure 25 illustrates the error waveforms as three pairs of amplifiers are simulated together. All of the amplifier circuits have been gain equalised for direct comparison purposes when being simultaneously driven by a single 1V.p-p 10kHz signal generator source, to output 10V RMS each when loaded with an 8Ω resistor. The 'Y' or vertical axis voltage differences displayed here relate to the resistor loaded amplitude distortion w.r.t. the loudspeaker output, plus reactive loudspeaker induced internal impedance error component w.r.t. the initial zero phase output across the resistor load, this being the reason for two crossover spikes appearing on the class-B trace. The initial and any zero voltage level spiking is due to an amplifier's normal output stage current crossover or poor stability response, whilst any second and normally larger amplitude spiking would due to an amplifier's internal stability of NFB loop delayed current control in the presence of loudspeaker generated but phase shifted back EMF.

The green trace in Figure 25 shows the simulated output terminal 'V' difference caused by 8Ω loaded amplifier output nulling of the approximately 'Ariel' loaded amplifier for two Part-5 Figure 14 circuits; please note that the loudspeaker induced loss of 'amplifier' output amplitude shown in the waveform w.r.t. a positively starting common input has been divided by ten, i.e. the simulated difference and quadrature loss in output amplitude between virtual loudspeaker and plain resistor loaded outputs is 1.3V p-p! The sudden dynamic loss due to the initial amplifier 'permitted' virtual loudspeaker induced series output choke voltage change and the subsequent quadrature phase shift are clear to see. The red trace shows the Miller connected VAS C.drom plus NFB loop generated amplifier inductance of a choke-less Figure 14 'permitting' loudspeaker back EMF induction of initial plus subsequent reverse driven conduction crossover commutation, plus quadrature output terminal voltage development. The blue trace is the resultant from my simple class-A. It has minimal sudden starting error and no crossover distortion, just a smooth and low level of NFB loop permitted...
Figure 26: Four two-cycle 10V.RMS-10kHz ‘live’ interface distortion displays.

Figure 26 shows the traces from four pairs of amplifiers each being driven at 1V p-p 10kHz and again equally gain matched to output 10V RMS across an 8Ω resistor. Here the difference between the resistor loaded amplifier under test, and its virtual ‘Ariel’ loudspeaker loaded stereo partner, goes to the Vertical or ‘Y’ input of an oscilloscope as set out in Figure 24, whilst the Horizontal or ‘X’ input is connected to the common ground termination. The oscilloscope ground is again directly connected to the 8Ω loaded amplifier output, so good isolation remains essential.

I well remember using a similar oscilloscope arrangement to monitor transmitter radiation when the BBC first introduced dynamic amplitude modulation control on their AM services. A synchronously demodulated output was fed to both the oscilloscope vertical and brightness inputs, whilst receiver intermediate frequency amplitude was fed to the horizontal input; the result being a flat based triangular display that was not meant to go beyond a 100% modulation pointed top display. Unfortunately it not infrequently did so, though nowadays with their over-enthusiastic automatic dynamic ‘optimisation’ of studio output being compression limiter adjusted to match the 100% modulation level, supposedly ‘necessary’ for transmission efficiency and ease of listening at noisy reception sites, our broadcasters are ruining AM reception for everyone due to amplitude demodulators sounding as if ‘flat battery’ garbled because they become highly non-linear at 90% carrier modulation levels, let alone 100%. This is like audio; what is monitored at an amplifier input or transmitting antenna input, is not the same as what we eventually hear.

I mention this AM radio modulation monitor because it was a display that could be left constantly running and be viewed whilst listening to distorted reception. This is the idea behind my Figure 24 ‘live’ monitoring method for observing music signal induced amplifier interface distortion, because loudspeaker induced amplifier distortion products can be rendered visible and be directly associated with what we are listening to whilst the amplifier under test is music driving real-world loudspeakers. Of course this method of investigation can also be set up using computer simulation software, as here in Figure 26 which shows:

A; the 1.3V p-p output vertical input error of the Part 5 - Figure 14 circuit that arises due to series output choke decoupling between the amplifier’s loudspeaker loaded output terminal and its true NFB loop controlled output node, w.r.t. the nominally propagation delayed ‘X’ axis reference output that is more linear and time coherent when the amplifier’s load is purely resistive.

B; without a series output choke the Figure 14 circuit error amplitude is limited to between ±10mV, but audio is still going to sound coarse with this degree of conduction crossover spiking at only 10V RMS output on such a simple waveform. This virtual loudspeaker induced error really is substantial!

C; the very much reduced initial spiking, horizontal start-up, low amplitude distortion and phase shifted crossover spiking of the Miller C.dom-less and series output choke-less Figure 23 circuit is plain to see. Here it has become obvious that not only has one half of the output stage maintained better control than the other by its reduction of vertical input voltage error, but with there being less stray path capacitance charging within the closed global NFB loop, the loop response is more accurately defined, and thus it is more resistant to back EMF induced reverse commutation through a portion of output bias potential. This kind of difference between output halves due to dynamic loading would not be

Phase shift with near resistive loss; i.e. the loudspeaker induced amplifier loss almost mirrors amplifier input. Note that even though this is an excellent sounding amplifier the error (not its output) potential is more shifted than steady sinewave plus resistor examination suggests!

**The most humble of oscilloscopes should be capable of producing this kind of differential display from the ‘Y’ take off point illustrated in Figure 24. Note however that the oscilloscope input ground is directly connected to the resistor loaded 8Ω amplifier output, so it must be a battery portable type with anything connected to it being ground isolated and insulated, or be ground isolated and powered via a good isolating transformer, also the oscilloscope should be kept well away from the audio frequency signal source and cabling, also the amplifier’s input panel. The oscilloscope timebase may be free running, event triggered or externally synchronised to the phase linear ‘X’ waveform appearing across the 8Ω resistor such that an on-going display of dynamic loudspeaker induced distortion may be viewed during ‘live’ listening.

‘Live’ distortion monitoring

My final illustration is Figure 26. It shows the traces from four pairs of amplifiers each being driven at 1V p-p 10kHz and again equally gain matched to output 10V RMS across an 8Ω resistor. Here the difference between the resistor loaded amplifier under test, and its virtual ‘Ariel’ loudspeaker loaded stereo partner, goes to the Vertical or ‘Y’ input of an oscilloscope as set out in Figure 24, whilst the Horizontal or ‘X’ input is connected to the common ground termination. The oscilloscope ground is again directly connected to the 8Ω loaded amplifier output, so good isolation remains essential.

I well remember using a similar oscilloscope arrangement to monitor transmitter radiation when the BBC first introduced dynamic amplitude modulation control on their AM services. A synchronously demodulated output was fed to both the oscilloscope vertical and brightness inputs, whilst receiver intermediate frequency amplitude was fed to the horizontal input; the result being a flat based triangular display that was not meant to go beyond a 100% modulation pointed top display. Unfortunately it not infrequently did so, though nowadays with their over-enthusiastic automatic dynamic ‘optimisation’ of studio output being compression limiter adjusted to match the 100% modulation level, supposedly ‘necessary’ for transmission efficiency and ease of listening at noisy reception sites, our broadcasters are ruining AM reception for everyone due to amplitude demodulators sounding as if ‘flat battery’ garbled because they become highly non-linear at 90% carrier modulation levels, let alone 100%. This is like audio; what is monitored at an amplifier input or transmitting antenna input, is not the same as what we eventually hear.

I mention this AM radio modulation monitor because it was a display that could be left constantly running and be viewed whilst listening to distorted reception. This is the idea behind my Figure 24 ‘live’ monitoring method for observing music signal induced amplifier interface distortion, because loudspeaker induced amplifier distortion products can be rendered visible and be directly associated with what we are listening to whilst the amplifier under test is music driving real-world loudspeakers. Of course this method of investigation can also be set up using computer simulation software, as here in Figure 26 which shows:

A; the 1.3V p-p output vertical input error of the Part 5 - Figure 14 circuit that arises due to series output choke decoupling between the amplifier’s loudspeaker loaded output terminal and its true NFB loop controlled output node, w.r.t. the nominally propagation delayed ‘X’ axis reference output that is more linear and time coherent when the amplifier’s load is purely resistive.

B; without a series output choke the Figure 14 circuit error amplitude is limited to between ±10mV, but audio is still going to sound coarse with this degree of conduction crossover spiking at only 10V RMS output on such a simple waveform. This virtual loudspeaker induced error really is substantial!

C; the very much reduced initial spiking, horizontal start-up, low amplitude distortion and phase shifted crossover spiking of the Miller C.dom-less and series output choke-less Figure 23 circuit is plain to see. Here it has become obvious that not only has one half of the output stage maintained better control than the other by its reduction of vertical input voltage error, but with there being less stray path capacitance charging within the closed global NFB loop, the loop response is more accurately defined, and thus it is more resistant to back EMF induced reverse commutation through a portion of output bias potential. This kind of difference between output halves due to dynamic loading would not be
obvious via other more conventional forms of testing.

D; my simple 25W class-A generates a less vertical (less inductive) first cycle start-up error without any crossover spiking, and a smoothly controlled low level amplitude error. Note however that whilst a pure biased class-A amplifier might perform cleanly it is unable to drive as loudly through the loudspeaker impedance dips as can a fixed biased class-A that is free to run into class-AB output operation when dynamic loudspeaker current requirements become momentarily increased; for interest reed: www.passdiy.com/pdfs/a40.pdf

The vertical axis portion of waveform distortion in C is approximately 25dB lower than in D, but the 'loudspeaker' induced crossover spikes, which in this simple 10V.RMS - 10kHz sinewave example remain sharp, would almost touch the smooth and near resistive better than 40dB trace of D if both were superimposed. Note that both of the chokeless class-B amplifier voltage outputs pass close to the centre zero with slight offset after each half cycle, and that the loudspeaker induced output stage zero current crossovers have become very clearly illustrated due to a degree of sinusoidally generated expansion in the centre region of the display. The illustrated loudspeaker back EMF induced leading current left-up/right-down crossover spikes actually arise between 4 and 4.5µs, whilst the sinewave synchronous graticule width here represents between ±25ms of amplitude display. When musically driven 'loudspeaker' induced errors are displayed it will only be the relative output amplitudes that may be determined, for the frequency and thus the time period of horizontal display width will be inconstant.

In all of these displays the maximum horizontal amplitude was potentiometer adjusted to match the amplitude from the sinusoidal voltage appearing across the 8Ω resistor of each individual amplifier pairing; in real life the sensitivity of one channel on a dual beam scope would need to be most appropriately set for the required front panel switched horizontal deflection. Also note that all simulated second cycle traces are slightly different to the first; this is not especially due to any amplifier weakness, but to composite dynamic loudspeaker characteristics taking longer than one 10kHz waveform time period to stabilise, which can significantly affect amplifiers (especially pure class-A with their naturally limited output current driving capability) that are expected to drive loudspeakers with more dynamically complex music than the medium level simple sinewave comparison illustrated here.

If this kind of dual axis 'live monitoring' display is set up with a modern digital hand-held oscilloscope, I highly expect a good amplifier to maintain a mostly horizontal straight line trace. Those amplifiers generating crossover distortion will produce centre of screen voltage spikes much as illustrated in B and C; those amplifiers which current clip due to dynamic loudspeaker loading with insufficient amplifier bias or output stage current limiting will generate vertical off-screen left-down/right-up error traces closer to the left and right display edges, whilst any semiconductor device current insufficiencies, saturation or cross conduction could become easily identifiable as the differential vertical error responses fall or lift away from what should be a smooth and more horizontal amplitude display. Also where an oscilloscope has a voltage triggergable storage capability it should be possible to study individual error events.

The choke-less and Miller C domain less-class-A designs discussed in this text are not upset by reverse investigations where the series load is driven up to the amplifier's individual bias limited maximum current capability, but class-B types that use output chokes exhibit notable reactive load current induced error potential generation at their output terminal no matter how accurate the internal NFB arrangements, and, even without an output choke, Part 5 - Figure 14 like circuits can still be reverse driven into additional conduction crossover distortion at higher loudspeaker driving levels due to the Miller connected VAS C.dom capacitor's leading input stage current flow reducing necessary dynamic NFB loop control at the output terminal, and thus failing to prevent additional reactive loudspeaker induced output terminal current flow from reverse driving the output devices through a portion of their VAS controlled forward bias potential, as has now been much more comparatively simulated in Figures 22, 25 and 26. This still occurs at low level in example C for the Figure 23 circuit, because I have deliberately used VAS driver transistor C-be Miller Effect to degenerate hf gain and thereby improve closed loop global stability, though the error amplitude remains very low.

Figure 21 shows how a fully biased class-A design can be more naturally resistant to initial output terminal leading voltage shift under the influence of dynamically generated loudspeaker back EMF currents. Mosfet class-B amplifier designs tend to have higher heartbeats and can have naturally lower gate voltage controlled output impedance, but they still need to be checked for additional resistor/collector/drain driven gate-capacitance induced circuit delay creating an additional signal path phase change within what often already are two or more stages of high gain-bandwidth amplification within a global NFB loop, and which often are stabilised through the use of a Miller connected VAS C.dom; the very component that momentarily increases internal high frequency non-linearity as one or other output device drops out of current conduction maybe one to five Mosfet bias volts offset from the alternating signal zero voltage potential. This can show up very clearly via X-Y monitor investigations.

Now I am not stating that all class-B(AB) amplifiers are going to perform badly when driving loudspeaker crossovers and voice coils with suddenly changing asymmetric waveforms, but reverse or differential load testing methods could be a definitive method for 'live' monitoring their capabilities with a view towards topological performance ranking. Also there is no reason why a digitally delayed or this direct examination method could not also be used for checking out different amplifier plus loudspeaker cable characteristics by monitoring loudspeaker terminal potential w.r.t. the resistor loaded reference; maybe those who rely upon steady sinewave voltage measurements will then come to realise that loudspeaker sited 'passive' crossover networks can set up 'dynamically' significant amplifier-cable-loudspeaker induced audio waveform distortion effects.

Conclusions

Quite literally I had all of my 'FCD' (first cycle distortion) reasoning, and both class-A amplifier circuits completed before I thought about simulating these 10kHz reverse driven output response examinations and the parallel-differential distortion monitoring investigations which have further lengthened and thus delayed the originally intended
completion of this article. My investigations arose from a personal need to know why simple class-A amplifiers already have a natural advantage, and why they can be so much less cerebrally tiring to listen to, thus I feel that the above findings are worth passing on, even if some readers might dislike my presentation, find related errors that could rightly be stated to affect examination detail but not the nature of this overview, or claim that some of it has been 'old hat'. If anything I have written is wrong then it can be corrected, but please realise that I am unable to cover with a depth I would have ideally preferred to due to real-life limitations and lack of facilities.

Any power amplifier having a low equivalent forward first cycle distortion figure is very likely to have the excellent and phase coherent NFB loop controlled output terminal error correction necessary for dynamically transparent treble and image reproduction via real world loudspeakers, but music cannot be stopped in order for us to make those first cycle or fundamental nullled observations of amplifier performance, and this is where the differential monitoring arrangement, with its collective and 'live' display capability can give us an instantaneous audible and/or visual indication of real-time amplifier-loudspeaker interface induced amplifier distortion. Observance of these differential traces has convinced me that good results from the above suggested methods for 10kHz investigation in particular are essential, i.e. a low equivalent FCD output terminal measurement w.r.t. a conventional forward input voltage; a low level of low angle steady sinewave residual w.r.t. a reverse testing load resistance injected input; a low level of initial reverse driven dynamic output terminal voltage development with fast and stable control, and especially, a smooth plus low level of observable differential resistor-loudspeaker load induced dynamic error via the Figure 24 test circuit. Differential testing is especially easy to set up on a good simulation program screen by copy-pasting a resistor loaded amplifier circuit on to the same page and then changing one load into a virtual loudspeaker, linking the inputs to a single source and attaching horizontal and vertical screen oscilloscope inputs as illustrated. Indeed, this method is so instantly revealing of possible reactive loudspeaker induced crossover distortion and loading effects, circuit reactivity and stability, device storage and gain-bandsdwidth product related differences between stages and output halves, also all signal and NFB loop enclosed impedance - especially parallel, interstage or feed-forward connected capacitors, that it has already become my most used amplifier circuit investigation method. It has already shown up weaknesses on many supposedly 'high-fidelity' amplifier circuits, and thereby offers a practical route for design improvement.

Simulation of the humble JHL-69 with a 22mQ output capacitor reveals that its circuit typically manages an equivalent FCD figure of 0.05% with a mere 14 degrees of NFB loop controlled reverse driven phase shift at 10kHz, though with its limited bias and loudspeaker damping control at approximately 30dB that original circuit is not quite as capable of driving complex loudspeaker systems loudly. Any amplifier that can match or better these figures is likely to sound acceptable, though with hindsight, and as with the generic class-B circuit used here for illustration purposes, the original JHL class-As can also be further improved upon without changing the basic transistor arrangement they already use. The Figure 14 circuit has an equivalent first cycle distortion figure of 0.43% and a reverse driven 10kHz phase angle of 85 degrees; the very similar Miller C.dom-less and choke-less Figure 23 an excellent 0.10% FCD and 1 degrees, my simple class-A 0.02% FCD and only 8 degrees of reverse induced phase shift. An 82Q resistor measured equivalent 10kHz FCD figure of circa or better than 0.1% within a 100kHz bandwidth should signify a satisfactory standard for dynamic high fidelity reproduction with good pass-bandwidth and fast closed NFB loop generated loudspeaker back EMF control. Under 10kHz reverse driving examinations, an initial error can reveal either series output choke reactivity, enclosed NFB loop propagation delay induced inductance, an inadequate closed loop stability margin, or too high an input (filter) impedance degrading the NFB loop's discrimination capabilities. A low level and low angle of reverse driven steady sinewave error development, especially at higher reverse testing levels will prove not only a good dynamic loudspeaker driving capability, but that all stages within the closed NFB loop have high frequency current phase linearity and are biased with sufficient capability for charging all unavoidable and internal signal path capacitances. Where an input filter has a -3dB turnover below 200kHz its delay could affect and possibly mask subsequent weaknesses in an amplifier's forward tested dynamic response capabilities. Yet an input filter, or a series output choke, must not be bypassed for testing purposes because this will affect reverse loudspeaker back EMF energised closed NFB loop operation and thereby falsely improve the genuinely realisable response speed, which is where these reverse driven and the differential output monitoring investigations come into their own because they allow testers to examine amplifier reactions and look out for those series inductance and minutely delayed but audibly deleterious 'voltage sensed' output-current correction errors that otherwise might have remained unmeasured and thus unstated.

There might indeed always have been more of a Fourier-less 'art' to designing genuinely realistic sounding audio systems than many technical writers have been willing to accept. Properly noted findings of audible change due to single circuit alterations backed up by continuous auditioning, with the development of an ever stronger and empirically refined foundation does have an equally viable basis in its own right because measurements alone cannot fool humans into accepting reproduction and the sound levels are not too low or too high when compared to an original performance as to make the learned cerebral perception of human hearing mask out distortion, which does happen more often than is realised. I have often been able to discern amplifier distortion that has been masked at higher output powers by completely closing one ear and lightly closing the other with gentle finger pressure in order to (non-linearly) attenuate high sound pressure levels; and to protect my hearing too! The qualities or weaknesses of high power amplifiers really are best examined in large upholstered theatres, or at a distance in open air and thus quite literally in
a free field, also by driving a variety of different loudspeaker types. Empirical designers could find the above differential load examination technique especially useful for it reduces their need to purchase calibrated distortion measuring equipment, and leaves funds for where they can be more productively used.

Time for a cuppa
Through these very lengthy efforts I have come to realise that separate forward and reverse energised first cycle output terminal measurements, backed up by differential resistor-loudspeaker output monitoring studies of an amplifier’s response capabilities are essential before anyone can state beyond doubt that any audio frequency amplifying circuit is genuinely capable of being deemed a fully-fledged loudspeaker driving audio amplifier, no matter how fantastic its 'conventional' specifications, or how emotional the claims are for one particular type 'sounding' best. Maybe some high-tech amplifiers never did deserve the 'high fidelity' tag that had been claimed for them, and it is little wonder that established retailers have by necessity become so experienced at matching amplifier-loudspeaker combinations.

I cannot claim that these findings are definitive, for I am not especially knowledgeable of theory, but I have sought to test my own beliefs, as well as the understanding of others, in order to ensure that the results of anyone’s conscientiously applied theory does not actually conflict with the nature of that which is fundamental and demonstrably observable.

At this point I need a break from the writing, but in so taking I will leave readers to ponder a rather significant question: -

What’s inside your amplifier?

As with my previous article, this writing has been long in completion, then freely passed on to Electronics World for publication. Sincere thanks are therefore due to the entire Electronics World team for their substantial donations paid directly to the Marie Curie Cancer Care Nursing Service.

Thank you very much, Graham Maynard.

Graham hopes to be back soon, examining some of the loudspeaker driving capabilities of ultra-linear beam tetrode output stages, and the challenges they set for competent solid state replacement, which eventually led to his development of a more efficient JLH based class-A power amplifier.

He suggests that anyone interested in class-A amplification visit the excellent web site run by Geoff Moss, and especially Geoff’s ‘JLH update’ page at; - http://www.tecaus.btinternet.co.uk/jlhupdate.htm

Number One Systems
The world beating PCB design software

Easy-PC for Windows

Easy-PC version 8 is released
Winning accolades the world over Easy-PC for Windows V8 is a major milestone in the evolution of this extremely popular software tool. Try a demonstration copy of Easy-PC and prepare to be amazed at the power versatility and remarkable value for money.

New in Version 8
- Sketch Mode Routing
- ODB++ Format Export
- Import Bitmap
- Single-Sided AutoRoute
- Customisable Toolbars
- Auto Smooth and Mitring of tracks
- Wires & Jumpers
- Unified Quality Check
Plus lots more........

Fully integrated Schematics & PCB layout in a single application complete with forward and back annotation. Design and rules checks at all stages ensure integrity at all times. Professional manufacturing outputs allow you to finish the design process with ease.

Stop press... Stop press... Stop press... Stop press... Stop press...
By customer demand now with Eagle import as well as Tsien Boardmaker 2 import.

call for a brochure prices & CD on +44 (0) 1684 773662
or e-mail sales@numberone.com
you can also download a demo from www.numberone.com

Number One Systems - Oak Lane - Bredon - Tewkesbury - Glos - United Kingdom - GL20 7LR UK
"Swordfish" PS40M10 Hand Held USB Oscilloscope

A unique hand held device that combines the functions of oscilloscope, data logger, spectrum analyser, volt meter and frequency meter in a single instrument. PS40M10 features a user replaceable precision spring loaded probe tip which can be used to probe even small smd components. The probe cap can be removed to allow PS40M10 to connect to standard oscilloscope probes or BNC cables if required. PS40M10 comes complete with oscilloscope and data logging software. The supplied Windows DLL’s allows 3rd party applications to interface to it. Example code in several popular programming languages are provided. Windows CE and Linux drivers are also available on request.

"Swordfish" PS40M10 Features

- 10 Bit ADC Resolution
- 1G S/s sampling rate (repetitive) 40M S/s native
- Maximum input voltage +/- 50V
- AC / DC Coupling
- Edge, min/max pulse width and delayed trigger modes
- Analog Bandwidth 5MHz
- Self Powered USB Interface - no external PSU required
- Precision spring loaded probe tip or standard BNC connection
- 3rd Party application software support provided
- Hardware upgradeable over USB

£149
+ shipping & VAT

"Stingray" DS1M12 Dual Channel Oscilloscope, Signal Generator & Multi-Function Instrument

Stingray DS1M12 is the value for money dual channel oscilloscope with signal generator, data logger, spectrum analyser, volt meter and frequency meter capabilities. Despite its low cost, DS1M12 offers a wealth of features including 1M S/s sampling with 12 bit conversion, advanced digital trigger modes, AC / DC coupling and an inbuilt signal generator with 10 bit resolution.

£125
+ shipping & VAT

"Stingray" DS1M12 Features

- Dual Channel standard BNC input connectors
- 12 Bit simultaneous ADC sampling on both channels
- 20M S/s sampling rate (repetitive) 1M S/s native
- Signal Generator Output / External Trigger Input
- Maximum input voltage +/- 50V
- AC / DC Coupling
- Edge, min/max pulse width and delayed trigger modes
- Analog Bandwidth 200KHz
- Self Powered USB Interface - no external PSU required
- 3rd Party application software support provided
- Hardware upgradeable over USB

Technical Information

For detailed technical specifications, information and downloads please visit www.usb-instruments.com

Sales Information

USB Instruments - a division of EasySync Ltd
373 Scotland Street, Glasgow G5 8QB, U.K.
Tel : 0141 418 0181 Fax : 0141 418 0110
E-mail : sales@easysync.co.uk
Web : www.easysync.co.uk
Simulating power MosFets

In this, the second of a planned four part series using the Micro-cap6 software, Cyril Bateman introduces a method by which any Spice user can ‘hand carve’ the power MosFet models needed when designing audio amplifiers.

Power MosFet transistors are said to be easier to manufacture than the equivalent junction transistor, but vastly more difficult to model accurately. For this reason most Spice2 users rely on using models provided by the transistor maker. In my last article I outlined how more accurate models, better suited to modelling distortions, might be produced by a user ‘hand carving’ a subcircuit model using data from the datasheet, supplemented with a few simple low current DC measurements.

In this second article, we get our hands dirty producing our first subcircuit model, one which does not need complex Spice2 Analog Behavioral devices. Using three Spice2 Level-1 MosFets together with selected Spice2 devices, this model should be usable within most versions of Spice2. My next article describes a most complete model using more complex behavioral devices which do require a PSpice compatible simulator.

To accurately model distortions in a power amplifier with MosFet output devices, our model must accurately predict MosFet behaviour for small drain currents while subject to the drain-source voltages used in power amplifiers. Datasheets mostly concentrate on larger drain currents while subject to the drain-source voltages used in power amplifiers. Datasheets mostly concentrate on larger drain currents while subject to the drain-source voltages used in power amplifiers. For example, the datasheet transfer curves for my chosen devices used a 10V...
drain-source voltage and plotted currents up to their 16A maximum. The curves for currents below 3A were cramped and difficult to read accurately.

The drain-source voltage used in a power amplifier might be 35 volts or more and 3A transistor current in a typical output stage is sufficient to produce some 50 watts of audio. Using increased supply voltages and staying within the MosFet square law characteristic, more than 100 watts may be produced.

Initial exploration

When I commenced this work, my knowledge of power MosFets or their problems was limited, mostly gleaned from private correspondence with Ian Hegglun during his lengthy investigations and from reading his two part article, May/July 1999. So followed many hours searching my literature files and internet using Google, as well as visiting and following many hours searching my offices (contact Caroline Fisher, details page 3), but to save space in the issue have reduced the netlist to those device models needed, but not detailed on the schematic drawings, to implement the circuits:-

BUZ90001D semiconductor models only:-

- MODEL MstroMOD NMOS (LEVEL=1 LAMBDA=0.001 VTO=2.53 KP=7.5 L=1 U W=1 U RS=0.8 IS=1E-30 TOX=1 RG=10 N=10 T_ABS=25)
- MODEL MweakMOD NMOS (LEVEL=1 LAMBDA=0.001 VTO=0.288 KP=0.1 L=1 U W=1 U RS=0.18 IS=1E-30 TOX=1 RG=1.36 N=10 T_ABS=25)
- MODEL MweakMOD NMOS (LEVEL=1 LAMBDA=0.001 VTO=0.275 KP=0.2 L=1 U W=1 U RS=2.9 IS=1E-30 TOX=1 RG=25 N=10 T_ABS=25)
- MODEL M 좀스 모델과 같은 모델을 사용하여 전자회로를 설계하고 모델링하는 것이 가능하다. 이때, 모델링 내용을 포함한 부품리스트는, 기술자들의 협력이나, 표준화된 부품리스트를 사용하여 구현할 수 있다. 이 기술은, 부품리스트에 필요한 모든 모델링 내용을 포함한, 전자회로 설계에서 사용할 수 있다.
The Level-I data set applied to these MosFets is severely restricted, temperature is permanently fixed at 25°C, both W and L are set to 1 micron, reducing the Level-I R_e equation to KP. Using essentially just two parameters, threshold voltage and KP for each MosFet, facilitates attaining the desired transfer curve in the subthreshold and square law regions. A small value of source resistance can be used to flatten the curve from individual MosFets as gate voltage increases, smoothing the transition from one MosFet to another. The settings used for TOX, BS and N are chosen to minimise convergence difficulties.

Having restricted the MosFet characteristics to provide a gain curve locked to 25°C, we must separately provide the variations in threshold voltage, source and drain resistance with temperature and voltage. Three Spice2 voltage controlled voltage sources E1, E2, E3 and one PSpice function source E4 are used, so must be compatible with your simulator.

The small network of components bottom right in the schematic uses three resistors each having specific temperature coefficients. Used with E2 and E3 they adjust the threshold voltage with temperature by adding or subtracting a small correction voltage to the gate voltages. At 25°C these resistors remain as 1Ω, the network is balanced so E2 and E3 make no adjustments.

With the circuit still set to simulate at 25°C, the resistors in the source and drain leads can be adjusted to match the 25°C transfer characteristic curve. Resistor R5_source, acts to rapidly flatten the transfer curve with increasing gate voltage. Two resistors and E4 in the drain circuit are used to control the transfer curve at high drain currents. The resistor R1-drain reduces current in the linear region. The multiplier X in the E4 equation ((1E-6 x X) also the exponent '10' of the power statement) models the space charge limiting effect. Reducing X or the exponent '10' rounds off the curve at high currents. The modelling needed to replicate the MosFet's 25°C transfer curve is now complete.

When simulations are run at temperatures other than 25°C, the three resistor network, bottom right in the schematic, becomes unbalanced according to the TC of each resistor and the simulation temperature. E2 and E3 now adjust the threshold voltages by adding or subtracting a small voltage to the gate voltages. To aid understanding, I ran a few simulations to ascertain the level of these applied

Figure 3: These DC analysis plots from the figure 2 schematic illustrate how changes in junction temperature affects drain current with gate-source voltage for this power MosFet. The crossover region in a power amplifier is affected by changes in threshold voltage.

Figure 4: The datasheet curves for the BUZ900/01D MosFet are small, so difficult to read especially for small currents. These transfer curves were printed as large as possible, then annotated with actual spot values to facilitate developing my model.

Figure 5: Attaining this smooth merging of the sub threshold conduction - square law regions, important when modelling distortion, completes stage 1 for our model. Our 25°C curve shows good agreement with the datasheet.

MosFet input capacitances Cds and Cgd also change with drain-source voltage, but both curves flatten with increasing voltage. These capacitance changes could cause distortion and affect the transistor's apparent gain with frequency. Using AC simulations to model frequency response Spice2 performs a small signal analysis, so cannot replicate these capacitance changes with drain-source voltage. Modelling distortion using transient simulations, the subthreshold/crossover distortion region is critical, however drain-source voltage will then be large, minimising these capacitance changes.

Obtaining model data
I found the Fairchild¹ and Infineon² sites the most useful. Both companies produce a large selection of switching power MosFets for which they list models and a good selection of application notes. I already had a copy of the Harris CD ROM from 1998 which provided many early application notes. One of the earliest attempts to provide an adequate model is described in AN9210 dated February 1992. Now part of Fairchild, several of these Harris application notes have been updated and re-issued, explaining in some detail the Fairchild PSpice models.

Two meanings seem to be inferred by the description thermal model, some makers use it to describe the transistor's internal heat flow from junction to case, others provide a transistor model which 'self heats' according to the power dissipated. For clarity I shall use the term self heating for such devices.

Exploring the FDP038 PSpice model
Having downloaded the datasheet, their PSpice model file and AN7532/33 application notes, I redrew the model as a conventional schematic, simplified as above but complete with stimulus, supply voltage and loads, enabling the model to be run and tested. This schematic, Figure 2, must provide the model descriptions in the FDP038 PSpice electrical model netlist.

Three Level-I MosFets are used connected in parallel to model the gain block for the full current range, from the sub-threshold region to the devices limit. The M1_strong MosFet provides the curve for the square law and saturation regions, M1_Med fills in from the sub-threshold to the point when M1 takes over. M3_Weak provides the small currents required near zero volts and initiates the sub-threshold curve.
N.B. for C1 use either C1_DPL or 02 PLCAP, not both

V6 set to 0v for DC calc, 4.45v bias for Trans

November 2004 ELECTRONICS WORLD

volts to perhaps two volts, simulating the transfer curve from some 0.5 to three. Adjust these values to match starting with a threshold voltage shown in result as adjustments proceed, as simulations at 25°C and plotting the or less for KP. Paying attention only adjusted first, setting its threshold The MosFet labelled M3_weak is a BUZ900/01D non-self heating 20N16/204. The simplest way to craft our its direct equivalent, the Exicon EC-

model the BUZ900/01D transistor3 or for the new model. I decided to using its settings as starting values of this FDP038 working schematic, model is to save and rename a copy desired lateral 'N' MosFet subcircuit the subthreshold region, see shown in the datasheet, especially in temperature/transfer curves, which comply particularly well with those can be seen in the attached plot of corrections by temperature. The results are listed in figure 2, directly above the resistor network.

Final proof that this schematic version of the model works correctly can be seen in the attached plot of temperature/transfer curves, which comply particularly well with those shown in the datasheet, especially in the subthreshold region, see Figure 3.

The simplest way to craft our desired lateral ‘N’ MosFet subcircuit model is to save and rename a copy of this FDP038 working schematic, using its settings as starting values for the new model. I decided to model the BUZ900/01D transistor3 or its direct equivalent, the Exicon EC-20N16/204.

A BUZ900/01D non-self heating model

The MosFet labelled M3_weak is adjusted first, setting its threshold voltage just above or below zero volts as needed with a small value, 1 or less for KP. Paying attention only to the lowest current section of the datasheet transfer curve, running DC simulations at 25°C and plotting the result as adjustments proceed, as shown in Figure 4.

MosFet M2_med is then adjusted, starting with a threshold voltage around 0.5 volts and KP around two to three. Adjust these values to match the transfer curve from some 0.5 volts to perhaps two volts, simulating and plotting as before.

Finally adjust MosFet M1_strong, starting with a threshold voltage around two to three volts and KP perhaps five to ten. Adjust these values to follow the transfer curve from some 2 volts up to some 5 or 6 volts gate-source, simulating and plotting as before.

Should you find any of the above curves increasing too quickly at voltages above their threshold but cannot reduce the value of KP and still match the curve at lower voltages, simply add a small amount of source resistance in the relevant MosFet model, to flatten its curve with gate voltage. Any source resistance used within these Level-1 MosFets remains fixed and cannot change with temperature, so use the minimum values needed.

My chosen devices are ‘double die’ types packaged in a single TO-3 case, so exhibit increased transconductance compared to many transistors. When modelling other types, you may need to adjust downwards my suggested starting KP values.

Having attained a good match with the transfer curves up to say 5 to 6 volts, slightly more perhaps with single die lateral MosFets, you will probably find the curve continues as a nearly straight line, indicating excessive drain currents for gate voltages of 7 and above. This is easily corrected by adjusting the temperature dependent source resistance R5_source, a major contributor to the MosFet Rdson. This should significantly flatten the curve but will not produce the rounding off needed as the MosFet approaches its saturation region. That is controlled by the two resistors R3_SLC1, R1_drain and the PSpice function source E4.

(V(5,51) - ABS(V(5,51))) x (PWR(V(5,51)) - (1e-6x220),10))

This E4 function is controlled according to the voltage drop between nodes 5 and 51, the voltage drop across R3_SLC1, using the expression shown above as used in the figure 2 schematic. In Spice2 terminology the voltage between two nodes is described as e.g. V(5,51) signifying the voltage drop across the resistor R3_SLC1. Both produce a large, dramatic rounding off effect. Initially I find it best to vary R3_SLC1 in small amounts then adjust the value in brackets (1e-6x220),10). Small changes in the ‘220’ value produces modest flattening and rather more dramatically when adjusting the power ‘10’. With some models this power originally shown in figure 2 as a ‘10’ factor for the FDP038, may also have to be reduced to avoid excessive ‘floating point range exceeded’ errors.

To expedite this process, I enlarged and printed the datasheet graph as large as possible, then using ruler and calculator noted the relevant drain currents by voltage on my printout. When satisfied your 25°C plot replicates the datasheet, plot the curves for higher and lower temperatures, by running simulations with the temperature reset as needed. See Figure 5.
E2 and E3 have little effect on the threshold voltages and the gate source voltage controls E1. With higher or lower temperatures, these resistor values increase or reduce in line with their stated coefficients.

To help my understanding I plotted the effects of temperature on this network, which are tabulated in the figure 2 drawing. Increasing or reducing temperature produces the voltages used to control E2, and E3, which now replicate the effect change in temperature has on the threshold voltage. Used with a suitable capacitive diode model for C1, DPL, E1 results in the dramatic change in the gate drain capacitance with gate voltage already discussed. Used with a capacitor as shown, it has no effect and capacitance stays constant.

Run and plot simulations for the upper and lower datasheet transfer curves. In all probability these will now approximate the datasheet curves. If not small adjustments to the TC values for R1, drain, R3, L1, C1, and R5, source, should suffice. You may also need to modify the "gain" values for E2 also E3. Changing these or the resistor TC values should have little or no effect on the 25°C curve. See Figure 6.

As a final check plot the transfer curves by temperature in sequence as one plot simply by 'stepping' the plot temperature using a temperature list, e.g. 25, 75, 100, see Figure 7.

Improving subthreshold data

It is possible you may feel, as I did, the curves for small values of gate voltage and drain current should better match your devices. Most makers datasheets are produced assuming 25°C, using extremely short test pulses in an attempt to avoid transistor self heating and retain the junction at this temperature. Lacking a suitable pulse measuring method, pulse testing was not an option.

After some consideration I decided to mount my devices onto a known heatsink using a known thermal washer. I would measure drain currents using a steady 10V DC drain-source voltage, adjusting the gate voltage as needed to obtain various currents, from less than 1mA to the 3A maximum which interested me, then calculate the expected junction temperature for each measurement. By increasing the simulation temperature slightly above room temperature to match each measurement temperature, I could now tweak the "25°C" subthreshold curve for each measurement, to match my measured drain current values.

I measured six pairs of devices, obtained from three different batches. I found each MosFet did conduct slightly, even when the gate was directly connected to the source, i.e. zero gate-source voltage. Choosing the values from an intermediate device I amended the transfer curves by small adjustments to the threshold and KP for all three transistor models. Ensuring the best possible model in the subthreshold region for realistic simulations of crossover distortion See Figure 8.

With models now closely aligned to actual measured values for low drain currents, I was forced to accept some divergence at currents approaching the saturation region. For my needs that matters little, since I don’t expect to use such high drain currents.

‘P’ Types

Following the above process but with the polarity of some components reversed in the schematic, I produced a model for my BUZ905/6D ‘P’ MosFets. Having completed my initial learning curve and using the values developed for the ‘N’ model as a starting point, this ‘P’ model was developed rather more quickly and easily. See Figure 9.

However, when I measured the drain currents for my ‘P’ samples, I found notable differences compared to the ‘N’ types. The ‘N’ types conducted some 0.25mA at zero gate voltage and current increased steadily with each small increase in gate voltage. The ‘P’ types also conducted some 0.25mA at zero volts but their current did not increase until some 0.3V gate-source voltage was applied. This approx. 0.3V difference increased slightly with each voltage step, becoming nearly 0.65 volts for 2A drain current. As if an additional Schottky diode existed in the ‘P’ device source path.

This voltage difference meant the threshold voltage for the weak MosFet had to be moved significantly to model the ‘P’ type, compared to that used for the ‘N’ type.

Netlist

The next stage in producing our final subcircuit model is to export this schematic netlist into a simple text editor such as Windows notepad. One which does not insert control codes. First we should assign the node numbers we wish to use for our subcircuit, to a printout of the schematic. As already explained the node numbers connected to the gate, drain and source electrodes must match those specified in the first subcircuit line also the schematic shape we intend to use.
needed, insert the opening statement

nodes in the netlist and formulae as nodal requirements. Manually edit the formulae or the schematic shape agree with the nodes used in the subcircuit model, also the some items not needed for the constant. See these named nodes which do remain avoid confusion or errors I assign for calculations or to plot results, to renumbering. Hence where needed circuit nodes, any circuit change simulator automatically assigns MC6 and possibly your own `51', '50', '8', etc on my schematic. nodes, in larger fonts, e.g. the '5', assigned these nodes, which is why schematic software will already have

Figure 11: Having completed the netlist needed for the subcircuit models, we can at last test the finished subcircuit models. Using MC6 I found some final tweaking was needed.

In all probability your Spice2 schematic software will already have assigned these nodes, which is why my drawing shows apparently odd nodes, in larger fonts, e.g. the '5', '51', '50', '8', etc on my schematic. MC6 and possibly your own simulator automatically assigns circuit nodes, any circuit change results in the nodes automatically renumbering. Hence where needed for calculations or to plot results, to avoid confusion or errors I assign these named nodes which do remain constant. See Figure 10.

Your exported netlist will include some items not needed for the subcircuit model, also the automatically assigned nodes will not agree with the nodes used in the formulae or the schematic shape nodal requirements. Manually edit the nodes in the netlist and formulae as needed, insert the opening statement and .ENDS etc needed for a subcircuit to complete our subcircuit model, then insert into your library.

Having added the subcircuit into the library as required by your particular simulator and explained in my last article, you assign the model to a schematic 'shape' using the shape routines supplied by your simulator. You can now import the model into a schematic 'shape' using the shape routines supplied by your simulator.

Calling a subcircuit from a Windows schematic is even simpler. All subcircuits in your library will have been assigned a representative component 'shape'. Any subcircuit included in your library is simply selected and its 'shape' inserted into position in your schematic exactly like any conventional component, resistor, capacitor, transistor, op-amp etc. This schematic shape will initiate the subcircuit call for you.

Using a subcircuit model to circumvent the limitations inbuilt in Spice2 is not new, if you look you will see that Op-amps are modelled as relatively large subcircuits even though Spice2 does include the primitive components needed to model a simple op-amp within its core software.

When creating a subcircuit for our power MosFet, the subcircuit nodes representing its drain, gate and source electrodes must be assigned in the first line of its netlist. The last line must be terminated with .ENDS and not .END as is usual for a net-list:

e.g. SUBCKT BU905D 10 20 30

Calling a subcircuit from a Windows schematic is even simpler. All subcircuits in your library will have been assigned a representative component 'shape'. Any subcircuit included in your library is simply selected and its 'shape' inserted into position in your schematic exactly like any conventional component, resistor, capacitor, transistor, op-amp etc. This schematic shape will initiate the subcircuit call for you.

Using a subcircuit model to circumvent the limitations inbuilt in Spice2 is not new, if you look you will see that Op-amps are modelled as relatively large subcircuits even though Spice2 does include the primitive components needed to model a simple op-amp within its core software.

When creating a subcircuit for our power MosFet, the subcircuit nodes representing its drain, gate and source electrodes must be assigned in the first line of its netlist. The last line must be terminated with .ENDS and not .END as is usual for a net-list:

e.g. SUBCKT BU905D 10 20 30

Calling a subcircuit from a Windows schematic is even simpler. All subcircuits in your library will have been assigned a representative component 'shape'. Any subcircuit included in your library is simply selected and its 'shape' inserted into position in your schematic exactly like any conventional component, resistor, capacitor, transistor, op-amp etc. This schematic shape will initiate the subcircuit call for you.

Using a subcircuit model to circumvent the limitations inbuilt in Spice2 is not new, if you look you will see that Op-amps are modelled as relatively large subcircuits even though Spice2 does include the primitive components needed to model a simple op-amp within its core software.

When creating a subcircuit for our power MosFet, the subcircuit nodes representing its drain, gate and source electrodes must be assigned in the first line of its netlist. The last line must be terminated with .ENDS and not .END as is usual for a net-list:

e.g. SUBCKT BU905D 10 20 30

Calling a subcircuit from a Windows schematic is even simpler. All subcircuits in your library will have been assigned a representative component 'shape'. Any subcircuit included in your library is simply selected and its 'shape' inserted into position in your schematic exactly like any conventional component, resistor, capacitor, transistor, op-amp etc. This schematic shape will initiate the subcircuit call for you.

Using a subcircuit model to circumvent the limitations inbuilt in Spice2 is not new, if you look you will see that Op-amps are modelled as relatively large subcircuits even though Spice2 does include the primitive components needed to model a simple op-amp within its core software.

When creating a subcircuit for our power MosFet, the subcircuit nodes representing its drain, gate and source electrodes must be assigned in the first line of its netlist. The last line must be terminated with .ENDS and not .END as is usual for a net-list:

e.g. SUBCKT BU905D 10 20 30

Calling a subcircuit from a Windows schematic is even simpler. All subcircuits in your library will have been assigned a representative component 'shape'. Any subcircuit included in your library is simply selected and its 'shape' inserted into position in your schematic exactly like any conventional component, resistor, capacitor, transistor, op-amp etc. This schematic shape will initiate the subcircuit call for you.

Using a subcircuit model to circumvent the limitations inbuilt in Spice2 is not new, if you look you will see that Op-amps are modelled as relatively large subcircuits even though Spice2 does include the primitive components needed to model a simple op-amp within its core software.

When creating a subcircuit for our power MosFet, the subcircuit nodes representing its drain, gate and source electrodes must be assigned in the first line of its netlist. The last line must be terminated with .ENDS and not .END as is usual for a net-list:

e.g. SUBCKT BU905D 10 20 30

Calling a subcircuit from a Windows schematic is even simpler. All subcircuits in your library will have been assigned a representative component 'shape'. Any subcircuit included in your library is simply selected and its 'shape' inserted into position in your schematic exactly like any conventional component, resistor, capacitor, transistor, op-amp etc. This schematic shape will initiate the subcircuit call for you.
Global Defaults, amended settings as used.

<table>
<thead>
<tr>
<th>Name</th>
<th>Default</th>
<th>Revised</th>
<th>Simulation controlled</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTOL</td>
<td>1pA</td>
<td>1µA</td>
<td>maximum current accuracy</td>
</tr>
<tr>
<td>CHGTOL</td>
<td>0.01pC</td>
<td>1pC</td>
<td>maximum charge accuracy</td>
</tr>
<tr>
<td>ITL1</td>
<td>100</td>
<td>1000</td>
<td>Permitted iterations for DC analysis</td>
</tr>
<tr>
<td>ITL2</td>
<td>50</td>
<td>1000</td>
<td>Permitted iterations for DC analysis</td>
</tr>
<tr>
<td>ITL4</td>
<td>10</td>
<td>1000</td>
<td>Permitted iterations for transient analysis</td>
</tr>
<tr>
<td>RELTOL</td>
<td>0.001</td>
<td>0.01</td>
<td>Relative accuracy of voltages - currents</td>
</tr>
</tbody>
</table>

Thermal modelling

If you obtained the datasheet for the FDP038 from Fairchild, you will notice they claim it provides both electrical and thermal models. The electrical model is certainly fine and runs extremely well producing unusually good agreement with the datasheet curves. However the claim to also provide a thermal model in my view is optimistic. It is true they do supply a model of the thermal path from the transistor junction to the outside world, but the format used makes attaching a heatsink difficult.

I did many experiments but could find no way this thermal model could be made to control the junction temperature. Without additional components it could not even be used to monitor the junction temperature.

Obviously while the subcircuit model described in this article can be used to model distortion at various junction temperatures, the most desirable model of all would be one which ‘self heated’. Fitted with an electro-thermal representation of a heatsink and insulating washer, not only could transistor junction temperature be measured, the MosFet characteristics also would change in real time with change of junction temperature, even during one cycle at 1kHz, just as in a real transistor.

These improvements are possible and form the subject for my next article. I have already produced working self heating thermal models for my pair of BUZ transistors. As will be seen, these thermal models do provide distortion simulations satisfying close to those measured on my modified Maplin amplifier. However these thermal models must use behavioural modelling elements which may differ from or even not be available in your Spice2 simulator.

References
2. Infineon Technologies http://www.infineon.com/simulate
4. EC-20N16/20 lateral power MosFet http://www.exicon.com

TEST REPORT: the DigiFusion FVRT100 DVR
The FVRT100 is a hard-disk recorder for use with DTT reception. Roger Thomas bought one to replace his elderly VCR and gives it a thorough check out.

PROJECT: an electronic stethoscope
This simple but efficient design uses an electret microphone for sound pickup, a TL431 adjustable regulator (comparator) for amplification and a MOSFET as the output stage. There are all sorts of uses for stethoscopes. In particular they can be helpful for activity detection when fault-finding.

THE LUNEBERG LENS AERIAL
J. LeJeune describes an unusual aerial for satellite signal reception.

VINTAGE REPAIRS: the Collaro Conquest autochanger
Michael Maurice describes the operation of this record changer, which dates from the Fifties/Sixties, and what’s involved when repair is necessary.

Available October 20
FRUSTRATED!
Looking for ICs TRANSISTORS? A phone call to us could get a result. We offer an extensive range and with a World wide database at our fingertips, we are able to source even more. We specialise in devices with the following prefix (to name a but a few).

2N 25A 2SB 2SC 2SD 2P 2SK 3N 3SK 4N 6N 17 40 AD
ADC AN AM AY BA BD BDT BDV BDX BF BFN BFR BSY BVS BSW BSX BTA BTB BW BU BU BUK BUW BUW BUX BUZ CD DX CXA DAG DM DS
DTA DTC DTL GL GM HA HCF HD HFH ICL ICM ICR IFA IKL LBL LDD TLFL M DCB MAC MAX MD MC MDA MJ MF MM MPN MPS MPSS
MRF NJM NE OM OP PA PAL PIC PN RC RS SAB SAD SJ SASSD SGA SL SLN SM STU STH STR STS SVM TTA TAA TAG TBA TC TCA TDA TDB
TEA TIC TIP TIPL TEA TEA TLM TMP TPS TPU UAA UAC UDN ULN UMN UPA UPC UDP VX ZRT ZTV

Please visit our website at www.cricklewoodelectronics.com
17 thousand components in stock

Mail, phone, Fax, Credit Card orders & callers welcome.

STEWART OF READING
17A KING STREET, NORTIMER, NR. READING RG7 3RS
Tel: 0118 933-1111 Fax: 0118 933-3275

November 2004 ELECTRONICS WORLD

Mail, phone, Fax, Credit Card orders & callers welcome.

STEWART OF READING
17A KING STREET, NORTIMER, NR. READING RG7 3RS
Tel: 0118 933-1111 Fax: 0118 933-3275

November 2004 ELECTRONICS WORLD

Mail, phone, Fax, Credit Card orders & callers welcome.

STEWART OF READING
17A KING STREET, NORTIMER, NR. READING RG7 3RS
Tel: 0118 933-1111 Fax: 0118 933-3275

November 2004 ELECTRONICS WORLD

Mail, phone, Fax, Credit Card orders & callers welcome.
'Mixed Spices' Part I

Spice (Simulation Program with Integrated Circuit Emphasis) was originally developed by the University of Berkeley in California around 1968. First used mostly by academic types to simulate and optimise the behaviour of semiconductor devices, gradually it became less dependant on the original arcane text-based language as it was integrated with schematic capture and graphing capabilities, and available in ever more complex PC/Windows based programs. Recently the number of programs offering Spice simulations has increased until there are nearly as many flavours as on your supermarket shelves. Alistair Macfarlane of Electric Fields Design Consultancy, a long term Spice user, reports

Analysing many different Spice programs is a somewhat daunting undertaking. Each and every program designer has their own idea of how the schematic capture, layout, help, graphing and modelling should be done, never mind the maths behind it all. This involves solving a large number of differential equations using matrix algebra, and running various iterative processes until the (potentially many) nodes of the circuit all settle down ("converge") to prescribed limits.

From a long web surfing session I identified 12 programs which looked promising to examine and if possible, test. Some of the other more complex (and expensive) workstation based or IC design types were not tested, due to both time constraints and a suspicion that these would be of less immediate interest to readers.

To learn even the basics of any new Spice program thoroughly requires at least a day or two of effort, and the features in some of these programs can be so complex that even then it’s only possible to scratch the surface of what they can theoretically do. Spice provides many different types of analyses, such as DC, AC (e.g. Bode plot, phase shift) Transient analysis, frequency domain, noise, distortion, digital, complex maths such as RMS values, Nyquist control loop stability, Smith charts for RF and so on. Sensitivity /MonteCarlo/worst case/optimisation analysis is sometimes provided to help with tolerancing a design. Most have the choice of integration methods from Trapezoidal, Gear and sometimes Backward Euler. I have been working with Spice since the mid-80’s in my capacity as a circuit designer and latterly a consultant, and still find features I have not used - yet.

With so many programs to examine, ease of learning was considered to be an important part of the process. I quickly found that many programs have so many layers of menus, options and choices that it is easy to miss the function you might want because it is hidden several layers down behind some button which perhaps does not appear immediately relevant. Personally, in a design business rather than academic application, I want to use Spice both to design and to investigate the operation of a given circuit quickly, easily and reliably, and then go on to build and test a prototype (if possible), and then PCB design. A good simulation can find and take out the question marks and perhaps save a design iteration or two. And circuit elements in Spice do not burst into flames or explode when overloaded, causing damage to either the circuit or designer!

With Surface Mount components becoming smaller by the year, the days of prototyping boards and hanging a scope probe on a convenient wire-ended resistor are gone; it’s much easier if you get it right first time! (Most of the programs provide a netlist output for PCB design.) With that kind of schedule I may not go back to using Spice for some time, so when the next design pops up I don’t want to have to relearn some quirky program from scratch again. Nor as a circuit designer do I wish to have to become a software guru, or have to have to call on an IT department (or the program’s tech support department) for help. I dare say there are many other applications where Spice is to be used more constantly and familiarisation is not so much of a problem. To assist with learning, a few programs provide animated runs to show how some of the functions can be carried out. Others rely on a short tutorial and some solely on plodding through a help file, hoping that the relevant terms can be found in the index — not always the case!

Most of the Spice providers offer demo programs with circuits which they have created, and it would be easy just to run some of these and treat the results as a guide to performance. However being a cynical engineer I of course wondered whether these demo circuits could have been massaged so the bugs have been removed (actually, not every time!) and there is even the possibility of using already prepared files which appear to run. Often the makers provide these demos with limited time, size or model database; a few offered full versions for the purpose of my test.

To try to make sure I was comparing as realistically as possible, I decided to try to create a simple mixed-signal circuit to pulse-width modulate a coil, which hopefully would be within the limits of the
demos available (albeit - theoretically - almost insultingly easy for some of the programs). I could then see how easy - or difficult - it might be to capture this to schematic, run the simulations and examine the data produced using a transient analysis, which to me is the more interesting - and more challenging to the software. My experience of Spice has shown that oscillators in particular can be problematic due to the strong feedback implied, and indeed this proved to be the case. (The circuit has two, one analogue, one digital, feeding a D-type Flip-flop divide by 2, which in turn drives an npn transistor controlling the inductor current). The flywheel diode used was a deliberately 'bad' choice being a slow recovery type.

The Spice programs to be tested were 5Spice, B2Spice, Edwin, Icaps 4, LTSpice/SwitcherCAD, Microcap 7, Multisim 7, Orcad/Pspice, Simetrix, Superspice, Spiceage/Spicycle and Visual Spice. Not tested were programs like HSpice, Acesim, Smart Spice, Dolphin Spice, Spectre, nVisage etc. as I consider these are more for the big companies.

5Spice
5Spice is a collaborative effort between an Englishman, Mike Smith and an American, Richard Andresen, 30 years an analogue design engineer. Mike developed the WinSpice engine and Richard the schematic capture front end. The program demo is a little minimalist and I suspect 5Spice may be at quite an early stage of development. It has only limited if any mixed signal/digital capability and no obvious FFT and advanced features like Monte Carlo (although the registered version claims to have noise and distortion, which could imply some sort of FFT is available). To me, one of the more useful features during a Spice transient analysis is to have the program graph the results at the same time as the simulation is running. (These are known in some programs as 'Marching Waves') 5Spice does not appear have this feature. During a long simulation, it is important to know what is happening, so that if things are going hopelessly wrong it can be aborted.

Unfortunately I was unable to get even the simplest part of my circuit (the opamp relaxation oscillator) to run properly. A 5V supply, 4 resistors, a capacitor and comparator managed to generate ~1.6kV in a 100µS run. (Useful perhaps as a source of renewable energy, but unfortunately not exactly accurate!) And to make my case for marching waves, on one attempted run, 5Spice told me the simulation was running but after waiting a goodly time looking at this message, I found the computer had hung! And hanging up was something which happened all too often with various programs to be discussed later. Life is too short to have to watch your computer reboot and Scandisk run through multi-GB drives; I quickly got bored with making yet another cup of coffee. I feel that such basic faults should have been ironed out well before the programs concerned were put on the market. So I had to be content with running their astable demo. The screen grabs are shown in Figures 1 & 2.

In fairness to 5Spice, the front end is fairly intuitive to use and construct a circuit, with a component toolbar down the right side of the screen. But there is no auto-numbering of component references; each has to be put in manually. And junctions of more than two wires need a junction point to ensure connection; all too easy to forget. As well as this minor irritation, opamp shapes come either as three wire (no supplies) or an 7-wire version which has only 4 pins identified. 'Dangling pins' like this need a no-connection symbol. There is no facility for expanding graphs other than one cursor. All rather basic, but then 5Spice costs just $169. They can be found at www.5spice.com.

B2Spice
B2Spice is created by Beige Bag Software in the USA. I wondered where the name came from; it turns out that they originally wanted to call it 'Brown Bag' to signify good value for money but as that was already taken settled for the present name! I first tried to run the demo but was getting nowhere so the UK distributor arranged for a full version 4 'Pro' to be made available to me. At one stage I was asked to try a beta of their latest version 5, but that proved much too buggy, so after several crashes I reverred to V4. This is a much more advanced program than 5Spice, but does not support FFT and other DSP functions; that is still to come in V5, along (I am told) with many new features. Digital is limited, and the digital models proved to be somewhat eccentric, having a dead band between 0.5V and 4.5V where it was considered an illegal level and everything stopped. However the boys at Beige Bag bent over backwards to help me and with some tweaking got my circuit to run. But even then not all was well; curious artefacts appeared, namely dips in the transistor collector voltage trace without any base drive (see screen dump). These are probably due to ringing between the slow diode and 'perfect' inductor, but this goes to show one of the maxims of using Spice; often you need to know pretty much what the answer should be before you can rely on your results! The simulation took a slow 16 seconds to run!

Creating the schematic was reasonably intuitive; there was no component toolbar but the components were listed in categories under the Devices menu. Unfortunately sometimes this meant a long scroll down through many components to find the desired part. And placing a part and changing your mind was a pain; the 'Esc' key didn't get you out as I'd expect, and the only way I could find was to continue to place it then delete! And rotating required Ctrl-R, a rather clunky
method. I found that after I had enabled the component names (such as the 74HCO4) for some reason all but that name disappeared from the schematic, and nothing I have been able to do since has persuaded them to return! At least it didn’t hang.

Graphing produced a nice set of (marching) traces but rather limited in that the left y-axes are all “sort-off” commoned (but not quite) and the autoscaling doesn’t leave any headroom. It’s hard to see, but the first dip in the collector trace actually goes negative. And you are limited to just one cursor. In my experience two are desirable so that the delta can be measured. Apparently it is possible to tile the traces, but ‘a bit involved’. But otherwise the trace expansion worked well and I could look into the switching edges easily. The failure of the transistor to stay saturated with the extra current due to the diode’s slow recovery time was clearly seen in the collector graph.

B2Spice is available from RDResearch (www.spice-software.com) costing £139 for the standard and £239 for the Pro versions. The screen grabs are shown in Figures 3 & 4.

Edspice
Edspice is part of the Edwin suite of EDA programmes from Visionics, originally a Swedish company. It is bundled with schematic capture, mixed signal simulation, thermal analyser, electromagnetic analyser, signal integrity simulation and PCB layout. I purchased the non-commercial version out of interest but had never explored the Spice capability. There are a number of demo circuits which run OK, so I tried to build my ‘standard’ circuit using the capture module. It is not an easy program to learn due to numerous similar looking icons and quirky menus. Also the net and wiring are apparently separate. When wiring up the net and wires coincide, but deleting the wire does not delete the net; this has to be deleted separately.

With all these features, the program gives the impression of being potentially quite powerful, but is not intuitive or easy to understand from the long-winded help files. The first part of the circuit - when eventually created - did apparently run but without producing a graph. I contacted Visionics who sent me a quick reply (from India) attaching two files containing sections of my proposed circuit. Unfortunately these were for Windows XP, and I use 98SE, so that didn’t work. I created my full circuit and sent it off again to Visionics to see if they could get it to work. The circuit arrived back after a few days and I was able to run it in an encouraging 7 seconds. But the results were completely wrong. The digital oscillator waveform was weird (there seems to be some interaction between the two oscillators) and the voltages too low to switch the transistor. So ‘nil points’ for Edwin, I’m afraid. The screen grabs are shown in Figures 5 & 6.

Icap 4
Icap 4 is a somewhat scarily complicated Spice program suite from Intusoft, a US company. After the (by now usual) unsuccessful attempt to use their demo, followed by several e-mails for help to their representatives in the UK, Technology Sources Ltd., I was able to create my circuit and run it. In fact I was limited to 20 components in the demo, but the IC models used up an unknown number of sub-circuits internally, so the representatives created special models to stay within the limit. There are a number of quirks in the schematic capture, which no doubt regular use could make easier. Dangling pins - even an output - are a no-no; you must attach a wire to the pin, even if it doesn’t go anywhere! Selecting a component or text for moving or rotating involves holding the cursor clicked on the part for a second or so, otherwise it doesn’t move. Commands and functions are hidden under layers of menus, but for the power available it could be worth the intellectual effort (and patience) to find them.

Unfortunately this complexity does not make it very intuitive; running a simulation throws up a bewildering array of three Windows on top of the first one, including a set of thumbnail marching graphs. In fact Intusoft are one of the vendors who produce a set of animations of the use of their program, and in one of these they mention that ‘this problem is being addressed’. It needs to be.

Buried underneath it all is the menu to find Intuscope, the ‘real’ graph program. This is also quite powerful but not very intuitive; at least in the demo, traces have to be selected each time, but the default is to tile them, which makes for easy viewing.

Icap can have the thumbnail probe waveforms included in the schematic, as shown on the next page. The graph window below is not easy to find but once expanded to full size has a number of useful functions such as expanding the traces, changing scales,
Without these special models, the program ran the solenoid simulation (with marching waves) in just 2½ seconds! And Linear’s models of capacitors etc. can be ‘real’ with the parasitics such as ESR and ESL included. There is however no Monte Carlo analysis and another limitation is that there seems to be no provision for cursors on the graphs.

Unfortunately the only diode models available were fast recovery types so I couldn’t see what it did with a slow diode.

There was a difference in the frequency of the Schmidt oscillator from what was expected using a ‘real’ 74HC14 (2.2MHz vs. 485kHz) but this can be attributed to too small a value of hysteresis in the model. I couldn’t get the two-gate oscillator to run, perhaps that’s a challenge for someone with more time? In fact its ‘Digital’ modelling is a little limited but there are adequate models for playing with and the possibility of importing models, which could expand its use considerably. LTSpice has an active user group (http://groups.yahoo.com/group/LTspice) and can even export netlists to various PCB design programs. The screen grab is shown in Figure 9.

All things being considered, an excellent entry level program for anyone interested in getting into Spice. And did I mention – it’s free!

Multisim 7

Multisim 7 is the Spice simulation part of the Electronics Workbench EDA suite of programs; it claims to have 16,000 models and to cope with VHDL and Verilog as well. I struggled with this from the start. Its demo does not allow a save, so that each time I had to start again meant rebuilding the circuit from scratch. It hung the computer on too many occasions (even twice in the middle of schematic capture, with a ‘Run Time’ error), which of course meant every time starting again after a reboot; this quickly got more than just boring and eventually I gave up. Capture is slightly quirky and erratic, in that you cannot connect more than one wire to a component pin, and I found wires came and went rather arbitrarily. Component values are selected from a table of ‘standard’ values, and this was limited to 1 Ohm to 22 Megohms for resistors. I never did find how to use (say) a 0.001 ohm resistor for current sensing!

Since I couldn’t get my circuit to run, even after a discussion with the technical support (who in this case was concerned that I might be using without these special models, the program ran the solenoid simulation (with marching waves) in just 2½ seconds! And Linear’s models of capacitors etc. can be ‘real’ with the parasitics such as ESR and ESL included. There is however no Monte Carlo analysis and another limitation is that there seems to be no provision for cursors on the graphs.

Unfortunately the only diode models available were fast recovery types so I couldn’t see what it did with a slow diode.

There was a difference in the frequency of the Schmidt oscillator from what was expected using a ‘real’ 74HC14 (2.2MHz vs. 485kHz) but this can be attributed to too small a value of hysteresis in the model. I couldn’t get the two-gate oscillator to run, perhaps that’s a challenge for someone more time? In fact its ‘Digital’ modelling is a little limited but there are adequate models for playing with and the possibility of importing models, which could expand its use considerably. LTSpice has an active user group (http://groups.yahoo.com/group/LTspice) and can even export netlists to various PCB design programs. The screen grab is shown in Figure 9.

All things being considered, an excellent entry level program for anyone interested in getting into Spice. And did I mention – it’s free!
cursors provided. Personally I dislike the use of 'Virtual Instruments' although I can see their value for educational purposes. They tend to clutter up the schematic especially if you need to measure a lot of different voltages or currents. The screen grabs are shown in Figures 10 & 11.

Readers may be interested in the following further reading, available from the EW book service operated for us by Boffin books at www.boffinbooks.com

SPICE: A GUIDE TO CIRCUIT SIMULATION AND ANALYSIS USING PSPICE:

ANALYSIS AND DESIGN LINEAR CIRCUITS 3E WITH PSPICE FOR LINEAR CIRCUITS (USES PSPICE VERSION 9.2) SET:

BASIC ENGINEERING CIRCUITS ANALYSIS 7E WITH PSPICE FOR LINEAR CIRCUITS (USES PSPICE VERSION 9.2) SET:
Irwin, John Wiley & Sons Inc, 2001, hardback £93.50 0-471-20924-4

CIRCUITS 5E WITH ETA & CD WITH FIRST LAB IN CIRCUITS & ELECTRONICS AND PSPICE FOR LINEAR CIRCUITS SET:
Dorf, John Wiley & Sons Inc, 2001 hardback £122.00 0-471-21997-5

CIRCUITS SE WITH HAND ON PSPICE SET, Dorf,
John Wiley and Sons (WIE), 2000 hardback £115.00 0-471-43969-X

CIRCUITS SE WITH ETA & CD WITH FIRST LAB IN CIRCUITS & ELECTRONICS AND PSPICE FOR LINEAR CIRCUITS SET:
Dorf, John Wiley & Sons Inc, 2001 hardback £122.00 0-471-21997-5

CIRCUITS ANALYSIS 2E WITH PSPICE FOR LINEAR CIRCUITS (USES PSPICE VERSION 9.2) SET:
Cunningham, John Wiley & Sons Inc, 2001 hardback £98.50 0-471-20933-3

ELECTRIC CIRCUITS ANALYSIS SE WITH PSPICE FOR LINEARCIRCUITS (USES PSPICE VERSION 9.2) SET:
Johnson, John Wiley & Sons Inc, 2001 hardback £89.50 0-471-20932-5

**ELECTRIC CIRCUITS FUNDAMENTALS: PSPICE MANUAL, Sergio Franco; James S. Kang (California State Polytechnic University, Pomona, USA), Saunders College Publishing/Harcourt Brace, 1995, paperback £21.99 0-03-003534-1

ELECTRIC CIRCUITS REVISED AND PSPICE SUPPLEMENT PACKAGE:
Nilsson, Prentice Hall, 2002 hardback £15.98 (inc.VAT) 0-13-009470-6

PSPICE FOR WINDOWS: VOLUME 1: DC AND AC CIRCUITS:
Rao, R. S. Ramshaw; D. Schuurman (both of University of Waterloo, Canada). Kluwer Academic Publishers, 1996, paperback £72.00 0-412-75140-2

**SPICE FOR CIRCUITS AND ELECTRONICS USING PSPICE SCHEMATICS, Rashid, Prentice Hall, 2003 paperback £34.99 0-13-101988-0
The world's leading electronics magazine, Electronics World is a must read for any electronics professional or serious hobbyist.

Featuring every month most aspects of the global electronics industry, it covers research, technology, applications, products and theory in areas such as audio, RF, components, CAD design, simulation software, PC & micro based products, test and measurement, semiconductors and much much more...

- Keep up to date with the latest information affecting the industry
- Essential reference and in-depth features covered monthly

Make sure of your copy now...

Contact

Highbury Fulfilment Services,
Link House, 8 Bartholomew's Walk, Ely, Cambridge CB7 4ZD.

Telephone 01353 654 431
Fax 01353 654 400

Email hbc.subs@highbury-wyvern.co.uk
Advanced RF harmonic theory ... in practice

Opamp and ADC technology have progressed so far that they have outreached high-resolution harmonic distortion measurements. A fresh look is needed at the practical aspects of the measurement process, allowing designers to debug their latest creations.

Leslie Green CEng MIEE investigates

Audio engineers use 24+ bit acquisition systems to measure harmonic distortion 120dB below the fundamental. Microwave engineers use spectrum analysers to measure harmonic distortion 85dB below the fundamental out into the far gigahertz region. In between the extremes of the audio and microwave regions lies the vast bulk of modern designers. We want to design for low harmonic distortion in the low megahertz range, but neither of the aforementioned disciplines is of much use.

Spectrum analysers

Modern spectrum analysers are enhanced with digital technology, reducing the noise floor and hence increasing the dynamic range. It is therefore quite usual for spectrum analysers to quote dynamic ranges in excess of 120dB. They also have extended low frequency operation so that some work down to the kilohertz region. You would therefore be forgiven for assuming that such a device would be ideal for measuring harmonic distortion in the low megahertz region.

Of course "microwave and RF" engineers have their own terminology. Instead of measuring relative to the fundamental, they measure relative to the 'carrier'. A second harmonic 80dB lower than the fundamental is then simply -80dBc. HD2 is a convenient shorthand notation for second harmonic distortion, and will be used henceforth.

Although a spectrum analyser has a huge non-harmonic dynamic range, the HD2 specification seems quite poor. Consider the HD2 specification of the Agilent E4402 9kHz to 3GHz spectrum analyser:

- 10MHz to 500MHz: < -65dBc
- 500MHz to 1.5GHz: < -75dBc
- 1.5GHz to 2.0GHz: < -85dBc
- >2GHz: < -100dBc

Observe that HD2 gets better as the frequency is increased. Also notice that there is no HD2 specification below 10MHz, despite the fact that the analyser is otherwise specified down to 9kHz operation. The bottom line is that spectrum analysers specified for -100dBc at 1MHz just do not exist.

The key problem with a spectrum analyser for measuring harmonic distortion at ultra low levels is that the displayed distortion is critically dependant on the size of the signal presented to the input stage, "the mixer". This effect is shown quite clearly in the measured results of Figure 1.

The best HD2 measurement on a spectrum analyser is achieved by reducing the signal at the mixer until the second harmonic is just sitting on the noise floor. Whilst this can be done by using the input attenuator built into the spectrum analyser, this attenuator usually has 10dB steps. Such a coarse attenuator does not allow the best possible measurements. It is for this reason that the Anritsu MS2681A, for example, uses an input attenuator with 2dB steps. One can of course use an external attenuator, but this is not ideal from a usability point of view.

In order to minimise the noise floor of the spectrum analyser, the 'local' measurement bandwidth, the resolution bandwidth, has to be made as low as possible. Minimising the resolution bandwidth slows down the sweep speed and makes it impractical to see the fundamental and second harmonic at the same time.

The optimum measurement is achieved by centring the display on the fundamental, taking a reading, then re-centring on the harmonic and taking a reading. All very inconvenient and time consuming; not something that even a proficient user should be expected to realise.

When I wrote out the table of HD2 specifications for the Agilent E4402, I missed out a crucial piece of information, the signal level at the input to the mixer. In order to...
estimate the best HD2 reading that can be made, you are expected to realise that HD2 improves at a rate of 1dB for every dB that you reduce the input signal until the second harmonic reaches the noise floor of the spectrum analyser. This 1dB/dB slope is seen quite clearly in Figure 1, provided the signal is initially low enough.

Equipment

If you look at the data sheet for the Analog Devices opamp AD8021, for example, you will see typical distortion specs at 1MHz of HD2 = -93dBc and HD3 = -108dBc. As a user you might reasonably ask how this high level of performance can be verified in your design.

In the case of an opamp, it can be wired into a unity gain inverting configuration. If the input is supplied with a clean sinewave then the output should be an anti-phase sinewave plus whatever harmonics the opamp itself produces. If the input and output are summed using a pair of equal resistors, the fundamentals will largely cancel. The remaining signal will therefore contain a much higher proportion of the opamp’s harmonics.

This technique has effectively boosted the resolution of the measuring system. In fact, any technique which suppresses the fundamental will have the same resolution enhancing benefit.

Unfortunately, because of the delay through the opamp, the input and output fundamentals will not be exactly in-phase. They therefore will not null particularly well, even if a fine gain control is included in the summing network. A phase shift of 0 degrees will prevent the fundamental from being nullled by more than $-20\times\log(\sin(0))$. Nulling the fundamental by more than 40dB requires the input-to-output phase shift to be less than 0.57°.

Introducing such a small phase shift is apparently easy, just an RC filter. But capacitors and inductors are notorious for creating harmonic distortions!

Obviously if you used a ceramic capacitor you would only use an NP0 dielectric, knowing full well that ZSU and Y5V types are useless for analogue work.

However, even metallised film capacitors are known to create harmonic distortions, so it is unsafe to assume that the filter you have made will be completely free from harmonic distortion. The only safe answer is to use a low-loss delay line to produce the phase shift, preferably a delay line having an air dielectric.

Having nulled the pure sinewave you can now ... but wait a minute, where did the pure sinewave come from? A typical RF signal generator at 1MHz and above will have HD2 and HD3 levels of around -40dBc to -50dBc, depending on the output level. You cannot buy a signal generator that produces less than -90dBc harmonics above 1MHz; and the best I have found only gives -60dBc.

In the case of the opamp scheme, you might feel that the input harmonics from the signal generator would also be nulled by summation with their counterparts after passing through the opamp. The trouble is that the phase shift network now has to vary with frequency appropriately to correctly phase-up the fundamental, second and third harmonics, and the gain also needs to be constant over this 3:1 frequency range. Realistically then, it is still important to use a very pure sinewave source.

Standards

Let’s suppose that you make yourself a fixed frequency ultra-pure sinewave generator. Having made it, you don’t know how well it performs so you want to calibrate it. I checked with the UK National Physical Laboratory (NPL) and they are unable to calibrate such a generator. I also made the same enquiry with the US National Institute of Standards and Technology (NIST, formerly NBS) but they did not respond.

Of the five calibration laboratories in the UK accredited for distortion measuring equipment, not one was able to calibrate anything above 100kHz. Thus whatever confirmation you can get from other sources, the measurement is not going to be traceable to national standards. This being the case, you need a much better understanding of fundamental metrology than usual; there is no measurement establishment to corroborate and backup your readings.

Text books suggest using a notch filter to kill off the fundamental, but do not then explain how to prove ‘beyond reasonable doubt’ that the notch filter is linear. It is very easy to make a notch filter that is non-linear at the ultra-low distortion levels we are talking about.

The solution to our signal source problem is to use either a notch-pass filter or a low-pass filter; either way we need to remove at least 60dB of the fundamental in order to boost the system measurement capability by at least 60dB. The problem is that neither filter is testable on its own; they can only be tested as a pair.

Theory

The way a spectrum analyser works, the only place harmonic distortion can be created is in the mixer. The input signal is then converted to a fixed intermediate frequency so that no further frequency related information is processed. You always need to test for distortion in the mixer by using extra attenuation at the spectrum analyser input. If an additional 2dB attenuation reduces the fundamental by 2dB, but the harmonic by 4dB or more, then the harmonic is being generated by the mixer and is not present in the signal.

The theory behind the 1dB per dB reduction of internal second harmonic distortion with input attenuation is very simple. The spectrum analyser’s input mixer can be characterised by a power series expansion:

$$V_o = A_0 + A_1 V + A_2 V^2 + A_3 V^3 + ...$$

Using a cosine input signal gives:

$$V_o = A_0 + A_1 \cos(\alpha t) + A_2 \cos^2(\alpha t) + A_3 \cos^3(\alpha t) + ...$$

The cos squared term can be converted to a double frequency term using standard trigonometric identities and it is then clear that the resulting double frequency term is multiplied by the same V^2 factor that was originally in front of the cos squared term. Hence when the input voltage V is increased by a certain number of decibels, the second harmonic is increased by double that amount.
The more complete answer is that all even-order powers of the input signal, created by the even-order powers in the power series, result in some second harmonic contribution. (Likewise, all odd-order powers of the input signal contribute to the third harmonic distortion.) However the higher order even powers will contribute more second harmonic distortion as the input signal is increased by virtue of their higher index of the V term in the power series expansion. What therefore happens is that the V^3 term creates second harmonic distortion that increases at four times the dB rate of the input signal. A graph of this situation shows the increased slope at increased signal levels (Figure 2).

From the graph it is seen that the initial slope of the curve is two decades per decade (= 2dB/dB). At the far right hand end of the curve, the slope is 4dB/dB due to the fourth order distortion. The dip in the middle is due to the fourth order term being of opposite sign to the second order term. Hence it is not guaranteed that harmonic distortion monotonically decreases as the input signal is decreased.

The more complete answer is that all even-order powers of the input signal, created by the even-order powers in the power series, result in some second harmonic contribution. (Likewise, all odd-order powers of the input signal contribute to the third harmonic distortion.) However the higher order even powers will contribute more second harmonic distortion as the input signal is increased by virtue of their higher index of the V term in the power series expansion. What therefore happens is that the V^3 term creates second harmonic distortion that increases at four times the dB rate of the input signal. A graph of this situation shows the increased slope at increased signal levels (Figure 2).

From the graph it is seen that the initial slope of the curve is two decades per decade (= 2dB/dB). At the far right hand end of the curve, the slope is 4dB/dB due to the fourth order distortion. The dip in the middle is due to the fourth order term being of opposite sign to the second order term. Hence it is not guaranteed that harmonic distortion monotonically decreases as the input signal is decreased.

The measurements of Figure 3 validate the theory, showing that higher order terms in the power series give rise to a great many local minima in HD2. The signal generator used for this test was a Krohn-Hite 4402B, which typically generates very pure sinewaves. Although a 12 bit system has 1 part in 4096 resolution (72dB), more resolution is achieved when you FFT the time domain data. The FFT spreads out the quantisation noise, giving more resolution.

The measurement was performed using a 4096 point FFT and the resulting FFT was averaged to minimise the noise. Furthermore, additional resolution was achieved by putting the Accura into a dithered oversampling mode; the resulting -110dBFS noise floor is quite impressive. It seems likely that these high-order power series terms are due to the integral non-linearity errors of the ADC used, an Analog Devices AD9432BST-105.

Since the Krohn-Hite is not specified up to a distortion level which eliminates its effects from the test, another test helps to show that it is the acquisition system giving rise to these wiggles in the HD2 reading. By using a fixed 4 div ptp signal and shifting it up and down the screen, changes in the signal source are eliminated. Figure 4 shows that there is still interesting structure in the HD2 readings that is not due to second harmonic distortion.

The point to be stressed here is that simple devices, like the diodes used in this test, will tend to have a monotonic increasing transfer function. Such a transfer function will have a power series representation where the terms all have the same sign.

Consider just second harmonic distortion. For any system, if you reduce the input signal sufficiently the second harmonic distortion created by the second order term will eventually dominate, unless you hit the system noise floor first. The reason is that the second harmonic distortion due to the higher order terms will have been reducing much faster than that produced by the lower order terms as the signal amplitude was reduced. For an ADC, however, the signal level required for the second order term to be dominant may not be found because, in practice, the signal is seldom reduced below one tenth of full scale.

Signal Source

The first step in any testing process is to generate a pure sinusoidal signal, which, as mentioned earlier, is achieved using a filter. I bought a custom-made notch-pass filter from Allen Avionics for several hundred pounds. A centre frequency of 1.1MHz was chosen, rather than 1MHz, to minimise aliasing problems.

This filter was tested to -95dBc insertion loss at the second harmonic by the manufacturer. That is a very easy figure to verify using a signal generator at 2.2MHz feeding into a spectrum analyser. There is no dynamic range consideration because...
you can use a nice big signal at the input to the filter.

In normal use, with this much attenuation at the second harmonic, 'none' of the second harmonic present in the signal generator will get through to the output; -45dBc at the input, for example, would give rise to -140dBc at the output! However it is quite possible for internal distortion within the filter to create its own second harmonic distortion.

What is clear is that I cannot 'turn down' the signal from the signal generator, look at the signal on the wave analyser and see if the distortion changes. (By 'wave analyser' I mean any one of a spectrum analyser, an oscilloscope with FFT capability, or a dedicated FFT analyser.)

In fact it is not even possible to say that reducing the output level of an RF signal generator is guaranteed to reduce its harmonic content! If the generator consists of an oscillator, a variable attenuator and an output stage, the oscillator harmonics will be fairly constant, whereas the output stage harmonics will be changing with amplitude. It is therefore quite possible for the oscillator harmonics to null with the output stage harmonics at one or more amplitude levels, thereby making the harmonic content a non-monotonous function of the output amplitude.

One test I could do is to initially use a 3dB pad at the input to the filter. (RF people use the simple term 'pad' instead of 'Inline 5052 attenuator'.) If the 3dB pad is first used at the filter input, then moved to the filter output, the overall harmonic distortion should be substantially the same in both cases. If it is not the same, the filter was causing a significant amount of distortion. Figure 5 makes this test clearer.

A slight caution is in order at this point. The 3dB pad between the signal generator and the filter will improve the matching between the two devices. Therefore, when the pad is removed, the system may not give exactly the same performance due to the mismatch. This problem can be minimised by always using additional pads at the signal generator output and at the wave analyser input.

Mismatch changes will then be considerably lessened when the moveable pad of figure 5 is used.

Now of course the 3dB pad which is being moved may introduce distortion of its own. In this case it might cause a difference between the readings in the test of figure 5. Thus the test is most useful when no change is detected.

Then again, the change in distortion in the filter may just happen to cancel the additional distortion due to the 3dB pad, causing no overall change! In a situation like this, you need another independent method to verify the test. If the test also worked with a 6dB pad then the confidence level would be increased.

Absolute harmonic filter

Ideally a filter is needed which can remove at least 10dB of the harmonics, but which is guaranteed not to introduce harmonic distortions of its own. Clearly no LCR filter can perform this function because any inductors and capacitors in such a filter would be under suspicion and cause an uncertain result. Air-wound inductors should give reasonably distortion free results, as should air-dielectric capacitors, but a piece of wire should give the best possible results.

What we are talking about is a quarter wave transformer used as a notch filter. For those who are rusty on transmission line theory, an open-circuit length of loss-free coaxial cable will appear as a short-circuit when the signal frequency is equal to the reciprocal of four times the delay time of the cable. A 1MHz fundamental requires the 2MHz second harmonic to be removed and this requires a cable that is 125ns long. RG58 coax has a delay of around 5ns/metre, so that means around 25 metres of cable.

The loss of the cable determines the depth of the attenuation notch, so don't use skinny coax such as RG174. In my case, the second harmonic reduction of the (chunky) RG58 absolute filter was 20dB. Please note that propagation delays are dependant on dielectric constant. You should always cut the cable too long in the first instance, measure the notch frequency and iteratively tune the notch by successive measurements, calculations, and snips.

A simple T-piece junction can be used at the input to the wave analyser, the open circuit coax line being attached in parallel with the input signal. A switched attenuator will be needed just before the input to the wave analyser/quarter wave line to cope with the loss at the fundamental frequency when the quarter wave line is attached. Obviously you switch in some additional attenuation when the quarter wave line is not in circuit, thereby maintaining the amplitude of the fundamental applied to the wave analyser between the two tests.

This absolute harmonic filter method should give a very high confidence that the notch-pass filter is, or is not, putting out sufficient harmonics to be measured in your system. Having determined that the notch pass filter was not producing significant harmonics by using an absolute harmonic filter, I was confident that the readings taken

Figure 5: The pad is moved from the input to the output of the notch-pass filter. If the reading on the wave analyser changes, the filter was creating distortion.

Figure 6: Second harmonic distortion in the Accura driven from a pure source.

Figure 7: Third harmonic distortion in the Accura driven from a pure source.

Graphs:

- **HD2 versus amplitude @ 1.1MHz**
- **HD3 versus amplitude @ 1.1MHz**

November 2004 ELECTRONICS WORLD
were due to the oscilloscope and not the signal generator or the filter. (Figure 6, Figure 7).

Using the absolute harmonic filter method, the source/filter combination can be qualified for use at any arbitrary level of resolution. Therefore the next step is to increase the wave analyser resolution by using either a high-pass filter or notch filter, thereby lessening the fundamental content.

The harmonics visible with this configuration should be minimal if the high-pass filter is linear. The absolute filter is used at the input side of the high-pass filter to see if there is a change in the harmonic level. If there is no change, and the harmonic is too big relative to the enhanced measurement being made, then the high-pass filter itself needs to be improved. If, on the other hand, the harmonic drops, then the harmonic you were previously seeing was a valid enhanced view of the harmonic coming through the notch-pass filter. One should still do a test with a 3dB pad moved from input to output of the high-pass filter, however.

Another thing to watch out for is an increase of harmonic distortion when the absolute filter is used. This would mean that harmonic signals from the generator/low-pass filter combination were nulling with distortion created by the high-pass filter.

In conclusion

Higher frequencies and higher loads make low harmonic distortion more difficult to achieve. However, absolute filters using transmission lines get shorter, smaller and more effective at higher frequencies. Unless you can measure harmonic distortion to a sufficient resolution, and with confidence, you cannot easily evaluate optimum components for your precision application.

At the moment, accurate measurements of ultra-low levels of harmonic distortion in the low megahertz region are laborious and can only be done at spot frequencies. However, it will only be a matter of a few years before time domain equipment such as 1kHz analysers and oscilloscopes totally outperform frequency domain equipment such as spectrum analysers in this measurement region. Specialist filters will be needed in the first instance to calibrate these FFT analysers, and absolute harmonic filters will be needed to calibrate the specialist filters.

RF signal generators in the 1MHz to 10MHz region are generally very poor on harmonic distortion and it is to be hoped that they will also improve to support the measurement efforts; at least a factor of ten improvement would be appropriate.

It is also important for national metrology institutes and accredited test laboratories to upgrade their capabilities to provide the necessary traceability of harmonic distortion measurements at these frequency and distortion values.

I should finally admit that even cables and connectors are known to be non-linear! The non-linearity manifests itself as passive intermodulation distortion (PIM). PIM is important in RF transmitter cables, with figures in the region of -140dBc to -160dBc being quoted. Thus well-made cables should be acceptable at the level of -110dBc which is required for the present purposes.

Back Issues

Back issues of Electronics World are available priced at £4 including p+p in the UK and £4 plus p+p elsewhere.

Please send correct payment to:
Electronics World, Highbury Business, Media House, Azalea Drive, Swanley, Kent BR8 8HU

There are also a limited number of back issues from 2002 & 2003.
Reader offer:

x1, x10 switchable oscilloscope probes, only £21.74 a pair, fully inclusive*

*Additional pairs as part of the same order, only £19.24 each pair.

Please supply the following:

<table>
<thead>
<tr>
<th>Probes</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td></td>
</tr>
<tr>
<td>Address</td>
<td></td>
</tr>
<tr>
<td>Postcode</td>
<td>Telephone</td>
</tr>
</tbody>
</table>

Method of payment (please circle)

Cheques should be made payable to Electronics World
Access/Mastercard/Visa/Cheque/PO

Credit card no

Card expiry date

Signed

Please allow up to 28 days for delivery

Seen on sale for £20 each, these high-quality oscilloscope probe sets comprise:

- two x1, x10 switchable probe bodies
- two insulating tips
- two IC tips and two sprung hooks
- trimming tools

There's also two BNC adaptors for using the cables as 1.5m-long BNC-to-BNC links. Each probe has its own storage wallet. To order your pair of probes, send the coupon together with £21.74 UK/Europe to

Probe Offer, Caroline Fisher, Highbury Business, Media House, Azalea Drive, Swanley BR8 8HU

Readers outside Europe, please add £2.50 to your order.

Specifications

<table>
<thead>
<tr>
<th>Switch position 1</th>
<th>Switch position 2</th>
<th>Switch position 'Ref'</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandwidth</td>
<td>Bandwidth</td>
<td>Bandwidth</td>
</tr>
<tr>
<td>DC to 10MHz</td>
<td>DC to 150MHz</td>
<td>DC to 10MHz</td>
</tr>
<tr>
<td>Input resistance</td>
<td></td>
<td>Probe tip grounded</td>
</tr>
<tr>
<td>1MΩ – i.e. oscilloscope i/p</td>
<td>10MΩ ±1% if oscilloscope i/p is</td>
<td>via 9MΩ, scope i/p grounded</td>
</tr>
<tr>
<td>Input capacitance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40pF + oscilloscope capacitance</td>
<td>12pF if oscilloscope i/p is 20pF</td>
<td></td>
</tr>
<tr>
<td>Working voltage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>600V DC or pk-pk AC</td>
<td>600V DC or pk-pk AC</td>
<td></td>
</tr>
<tr>
<td>Rise time</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.4ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input resistance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1MΩ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input capacitance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12pF if oscilloscope i/p is 20pF</td>
<td>10-60pF</td>
<td></td>
</tr>
<tr>
<td>Compensation range</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10-60pF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Working voltage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>600V DC or pk-pk AC</td>
<td>600V DC or pk-pk AC</td>
<td></td>
</tr>
</tbody>
</table>
Fact: most circuit ideas sent to Electronics World get published

The best circuit ideas are ones that save time or money, or stimulate the thought process. This includes the odd solution looking for a problem - provided it has a degree of ingenuity. Your submissions are judged mainly on their originality and usefulness. Interesting modifications to existing circuits are strong contenders too - provided that you clearly acknowledge the circuit you have modified. Never send us anything that you believe has been published before though.

Clear hand-written notes on paper are a minimum requirement: but you will stand a much better chance of early publication if you supply your idea electronically, preferably by email. Any diagrams need to be in a graphic format, not a CAD/CAM or any other obscure file.

Most circuit ideas contributors are paid £35 and good ones attract £50 or even £100! If winners would prefer archive CDs or subscriptions instead of payment please let us know when you send the idea in.

Where software or files are available from us, please email Caroline Fisher with the circuit idea name as the subject.

Send your ideas to: Caroline Fisher, Highbury Business, Media House, Azalea Drive, Swanley, Kent, BR8 8HU or email to: ewcircuit@highburybiz.com

6½ bit DAC requires only four output pins

All microcontrollers with the exception of a few primordial 8051s have the ability to set each pin as either an output driven high, an output driven low or a high impedance input. Using all three states allows a DAC with 81 output levels to be produced using just four output pins, whereas a standard binary DAC using 4 pins would produce only 16 levels.

R5 and R6 bias the non-inverting input of an op-amp to half the supply (2.5V). The circuit operates in exactly the same way as the binary-weighted-resistors DAC, with the op-amp operating as a virtual earth amplifier, summing the currents through resistors R1 to R4, except that the resistors are ternary weighted. With all microcontroller outputs in their high impedance state, no current flows in R1-R4 and the output is at 2.5V. With R4 taken to OV, the output is at one LSB above 2.5V, with R4 taken to +5V, the output is at one LSB below 2.5V. With R3 taken to OV, the output is at three LSB above 2.5V, and with R3 high the output is three LSB below 2.5V.

To produce an output of two LSB above or below 2.5V, R3 is taken high and R4 low, or vice versa. Unlike the usual weighted resistors DAC, this circuit can operate off a +5V only supply. If the output is only required from 0V to +5V, use an op-amp with rail-to-rail outputs (doesn’t need rail-to-rail inputs) and Ra and Rb are not required.

To bias the output to 0V, R4 should be the same as R3, R5 can similarly be used to bias the output to the centre of a +12V supply. C1 is a filter to remove the glitches caused as the inputs change state. This circuit has been tried with PIC and AVR microcontrollers. PIC software has to access a bank-select register twice to tri-state the outputs, so the AVR is a better choice if any output speed is required. An example of the software is shown below. Table 1 shows the data to be written to the Port output and Data Direction registers (TRIS registers in the case of the PIC).

Note that the data is for the AVR microcontroller which uses a zero to select high-impedance state on the output, whereas the PIC uses a one.

The circuit can be extended to more bits, it will give the equivalent of 58% (log3/log2) more bits over a binary system: there is a sequence of E24 resistors that almost fits the ternary weighting values: 1.1 - 3.3 - 10 - 30 - 91 - 270 - 820

The fit is about 1% so for more than 100 output levels, better tolerance resistors approximating more closely to a ternary scale would be required if monotonicity is not to suffer. The table below shows the port values necessary for each output voltage. The first column refers to a single-ended output, the second to a bipolar output centred on 2.5V.

The following is an example of the AVR code:

LPM ;LOAD PORT DATA FROM TABLE
MOV R1, R0
INC ZL
LPM ;LOAD TRISTATE DATA FROM TABLE
LDI YL, 0 ;TRISTATE ALL OUTPUTS
OUT DDRB, YL
OUT PORTB, R1 ;OUTPUT DATA TO PORT
OUT DDRB, R0 ;OUTPUT DATA TO TRISTATE REGISTER
INC ZL
RJMP LOOP

The Z register points to a table of values to be output, each 16-bit word containing the port data (least significant byte) and the tristate data (most significant byte). It only takes two clock cycles to update the output (which is 250ns for an AVR running at 8MHz).

Perhaps some reader could inform me as to whether an R-3R ladder circuit exists!

Ian Benton
Ilkeston
Derbyshire
UK
<table>
<thead>
<tr>
<th>Port Value</th>
<th>DDR Values</th>
<th>Port Value</th>
<th>DDR Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1 0</td>
<td>P2 0</td>
<td>P3 0</td>
<td>P4 0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>21</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>22</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>23</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>25</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>26</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>27</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>28</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>29</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>30</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>31</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>32</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>33</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>34</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>35</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>36</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>37</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>38</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>39</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>40</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Roh = see text
R1 = 10k
R2 = 30k
R3 = 91k
R4 = 270k
R5 = R6 = 22k
R7 = 6.8k
C1 = see text
Audio level and peak metering

Engaged in a recent audio project, I had left the Vu and peak-metering circuit to last thinking that it would involve a simple rectifier, possibly enhanced by an op-amp driving a capacitor. Once involved in the detail, I soon found that this was not a simple task.

My requirements were for a circuit, which would capture the peak potential of an audio signal to within 5% between 20Hz and 20kHz and store the potential (slowly decaying) for observation by the user. The RMS value should also be available.

Charging a large capacitor at high frequencies without causing phase lag and thereby inaccuracy is the route of the problem, as the frequency rises, the peak value tends toward the average instead of the peak due to the limited current output capabilities of an op-amp.

The answer was to ‘pass on’ the acquired result and any errors from a frequency limited low frequency stage to another stage capable of dealing with the higher frequencies, but less capable of storing the value for long time periods.

IC1a&b form a standard precision rectifier that can easily be scaled by multiplying RSa & RSb by the required ratio. RSb, which factors the average value to RMS, should ideally be 11% of RSa. C Comp goes someway to compensating for the speed limitations, which are mainly due to op-amp slew rates & input capacitance, and diode capacitance.

With the values shown, the output ripple from the peak detector is +0.7% at 20kHz, and is 98% accurate at 20kHz, and has a decay time of approximately 50 milliseconds to 30%. The RMS output ripple is ±2% at 20Hz and has a decay time of approximately 125ms.

John Charlesworth
Wombleton
York

High voltage, simple and fast inverter

Figure 1 shows a very simple high voltage MOSFET inverter, where the problem of driving the high side MOSFET is solved using a low voltage transistor Q and a special arrangement through D6. This is an extremely fast inverter, much faster than those driven through optocouplers, so dead time problems are minimised.

The inverter has the usual blocking diodes D4 and D6, and the parallel diodes D5 and Dg.

Turn off of Q2 is performed by Q3: when Q3 turns on, Q2 gate is short-circuited to ground through R4 (which limits current and dampsen oscillations). Q2 gate is discharged very fast, discharging time being only limited by the value of R4. Q1 stays off thanks to R2 and C3 is charged to +12V through D2. The gate pulse creates a current through C4 and D3 protects the base-emitter junction of Q1.

Turn on of Q2: when the control input (PWM in the diagram) goes low, Q3 turns off fast, thanks to D7. A displacement current (C4.(1V/dt) flows through C4 to the base of Q1. Q2 charges the output capacitance of Q1 and the gate capacitance of Q2, which turns on. C supplies the collector current.

If the period is long, Q1 stays conducting and compensating the leakage of Q3. If D4 were a Schottky diode, which is very leaky, R4 should be reduced.
There is a very short cross conduction between both MOSFETs, more apparent when Q3 turns off and Q2 on. A small inductor in series with the main supply limits the current spikes. The inductor (L1) needs a snubber made by D1, R1, C2 (the inductor value shown is very conservative and can be smaller).

The values shown are for a 370W three-phase inverter with 150% overload capacity. If the MOSFET is changed, the value of C4 has to change according to the total gate charge plus the output capacitance of Q3 (which is much lower and can be neglected). The capacitor current is amplified by Q1, so $C_4 > Qg_2 \times h_{FE1}$. Do not make C4 value higher than necessary as the base current in Q1 would be too high.

To get all speed advantages of the circuit, the PWM signal should be able to drive Q3 very fast. If necessary, a buffer circuit as shown in Figure 2 can be used. It can be driven by a single CMOS gate.

This is probably the simplest high voltage inverter one can design. It has been used in thousands of three-phase motor drives from 0.37 to 0.75kW. It was protected under the patents US4802075 and EP0274336, but now these patents are free to use.

Francesco Casanellas CEng, MIEE, SMIEE
Aiguafreda
Spain
Electronically tuneable active only oscillator

Presented here is a novel current and/or voltage controlled active-only sinusoidal oscillator based on and utilizing two operational transconductance amplifiers (OTAs) and as many internally compensated operational amplifiers (ICOAs). The architecture is thus fully integrable with programmability features as it is devoid of external passive components. The circuit is canonical as it employs the absolute minimum number of components. The circuit offers considerable economy in the chip area, as it is intrinsically free from oscillation. The oscillation frequency besides being temperature insensitive is linearly adjustable through the bias voltage of ICOAs, lending electronic control over it, which suits IC design techniques. The frequency of oscillation can also be adjusted non-linearly through the bias current of the OTAs.

A routine analysis of the proposed oscillator circuit depicted in the figure yields the following characteristic equation:

$$A_1A_2g_2 + g_1 = 0 \quad (1)$$

Since no complex term is present in the characteristic equation, the circuit as such is free from the preset condition of oscillation. Due to this several IC related advantages have accrued viz., reduction in chip area, power consumption and parasitic effects. Moreover, the absence of the preset condition of oscillation eliminates the possibility of the circuit ceasing to oscillate or producing a distorted signal. Circuits that have a preset condition of oscillation are constrained with a critical design problem of ceasing to oscillate or they produce a signal with a fair amount of distortion in the event of a marginal change in the value of components involved in the condition2-12. This is quite possible when the circuit is allowed to operate in varied environmental conditions. As a result, design procedure becomes involved and the use of costly precision components is inevitable. Assuming the open loop gain of OAs of the form

$$A_i = B_i/s \quad (2)$$

where B_i is the gain bandwidth product of ith OA, equation (1) reduces to

$$s^2g_2 + B_1B_2g_2 = 0 \quad (3)$$

The frequency of oscillation is given as

$$w_0 = B_1B_2g_2/g_1 \quad (4)$$

The frequency of oscillation in terms of bias current of OTAs is given as

$$w_0 = B_1B_2g_2/I_{01} \quad (5)$$

where transconductance gain $g_1 = I_{01}/2V_T$, I_{01} is the bias current and V_T is the thermal voltage of ith OTA.

An inspection of equation (5) reveals that the frequency of oscillation can be tuned either non-linearly through the bias current of OAs or linearly through bias supply of ICOAs. The transconductance gain of the OTA is susceptible to change with variation in ambient temperature, but since frequency of oscillation is the function of ratio of transconductance gains as well, resulting in its stabilization as the ratio of transconductance, gains remain temperature invariant and as such can work well under changing environmental conditions. This feature will have the positive fallout of further improving the functional performance of the circuit. The active sensitivities of w_0 are very low and are less than unity.

N. A. Shah and S. I. Iqbal
The University of Kashmir
Srinagar
India

References
Long delay timer using only one 555 chip

One application for this circuit would be a personal radio sleep timer add-on unit. The example sleep timer uses a transistor as a switch but other applications could use it to drive a relay or isolated triac for heavier loads.

My first attempt to build a simple one-chip (7555) battery-saving 30-minute sleep timer for a personal radio failed due to the electrolytic capacitor’s leakage current preventing the monostable from timing out. I then used the standard long timer circuit of a 555 astable and digital counter IC, which worked as desired but I felt there must be a way of making a single 555 do the job. The solution seemed rather simple and the circuit is shown in Figure 1.

The main circuit uses a CMOS 7555CN (for the low quiescent current, 60µA) to turn the radio on for up to 25 minutes using TR1 as a switch. TR1 has a low 1k base resistor to ensure it is saturated. The ‘reset’ button turns the radio off, and the ‘start’ button turns it on (thus starting the timeout period), or restarts the timeout period. I also added a DC jack with a make break contact so that I could plug in a solar panel/mains battery eliminator to further save batteries.

The timing components C1 and R5 have been rearranged so that the discharge pin actually charges C1 and so the timing period is set by the C1 - R5 discharge time, which means that any leakage current will simply slightly shorten the delay by discharging C1 faster. By referencing C1 to Vcc rather than ground, the 555 threshold pin sees the voltage (Vcc - VoltageAcrossC1), which makes it appear as if C1 was charging as expected. Thus the delay remains 1.1C1R5 seconds.

I wasn’t sure if any diode clamps were needed at the threshold input, so just decided to rely on those present in the IC as part of its static protection circuitry. The power indicator LED only uses 1mA.

I housed the timer PCB and two AA cells in a case of a similar size to the radio, joined the two with stick-on Velcro pads and connected power to the radio using wires ending in dummy AA cells (Maplin YX92A).

Alan Bradley
Belfast
UK

ELECTRONICS WORLD

NEWSAGENTS ORDER FORM

Please reserve/deliver a copy of Electronics World for me each month

Name and address

Signed

Electronics World is published by Highbury Business on the first Thursday each month. Photocopy this form, fill in your details and ask your newsagent to reserve a copy.
Letters to the editor

Letters to “Electronics World” Highbury Business, Media House, Azalea Drive, Swanley, Kent, BR8 8HU
e-mail EWletters@highburybiz.com using subject heading ‘Letters’.

Nutters

I am moved to commend Electronics World upon its extraordinarily equability, giving voice to non-mainstream contributors. Perhaps though, a line should be drawn at harmless nutters (non-pejorative). Deciphering the text of An electric universe (Aug 04), if I grasp correctly, the cornerstone is that astronomical bodies are highly charged. An old notion easily discounted by observation and calculation. Of course bodies do tend towards a degree of charge but it cannot usually be significant. It’s not necessary to elucidate because information is readily available and can be derived from first principals anyway. Nor does your contributor impart authority by invoking mythology, but in his terms he might reflect upon Matthew 7:26 (a foolish man which built his house upon the sand) before constructing his philosophical edifice.

Intelligence, to which I bow, is apparent, but rational appears to be subsumed by a prior agenda. This leads seamlessly to Mr. Catt whose words I have been aware of for nigh on thirty years. The same words juxtaposed with no discernible order. The Catt question and other railing have been rejoined ad nauseam but all that results is the same discredited tautologies at higher volume. Failure to comprehend explanation does not render the explanation false. So what is the point of continued indulgence? Understanding of all things has been forged by brave souls who often suffered for their heresy. But demonstrably flawed random noise merely exposes intellectual caesura and encourages the dissolution of enlightenment. Pandered to, the proponents learn nothing and go to their graves ignorant, arrogant and sad. I would suggest that it is a disservice to them and the scientific community at large to be party to promulgation of their self deceptions.

Andrew S Robertson
Ayrshire
Scotland
UK

Curious result

Bravo to Lee C.F. Sallows for his article A Curious New Result in Switching Theory (May ’04).

As a one-time designer of state logic systems, I shared his obvious excitement of the chase, and rejoice in his discovery and incisive clear thinking.

‘Impractical’ I’m sure, but neither ‘futile’ nor ‘redundant’ Lee, and perhaps one of the most significant circuit boards ever constructed. Puts me in mind of Alan Turing’s Machine – useless but beautiful.

This was my introduction to Moore’s Circuit, but I recognised the basic decode/re-code as the method I used in a state logic sequence controller without memory for the first wine bag filling machines, minimising IC packages rather than inverters.

Which made me think; some of the outputs drove air cylinders and some inputs came from switches sensing cylinder positions, forming a ‘memory’ for the current state of the machine. I would be interested in Mr. Sallows’ view on how this external memory relates to Moore’s Circuit, by definition without memory.

My intuition tells me that the concept of a memory-less system may only be a useful abstraction, and that all ‘non-trivial’ machines will have state memory in some form, albeit obscure.

And ‘I dips me lid’ to EW for again ‘going deeper’ (Thomas Scarborough, May letters) and drawing me to think deeper.

What makes EW different?
The depth that comes from Self, Hickman, Catt, Sallows, JLH, JPB, Scroggie, et al, writing up the mistakes they (and others) made, and how they applied theory and practice to sort them out, gaining insight and passing it on.

The bits that don’t fit are the truly interesting ones.

Roly Roper
Ivanhoe
Melbourne
Australia

Hybrid amp

With reference to Mr. Jeff Macaulay’s reply in the August EW; I’m afraid he has not got the drift of my letter or that of Mr. Aylward. The objection was not to valves in general, or even to valves in hybrid circuits. The objection was to using a valve in such a manner that does not make any significant contribution to the performance of the circuit, while unnecessarily increasing the complexity and cost of the circuit.

The fact that a valve is present in the circuit, without affecting the signal, is not sufficient to term the unit a hybrid amplifier, any more than the presence of a neon bulb as a power indicator would be.

Valves are fine, when they are used appropriately. I am yet to find a solid-state domestic AM tuner which can stand comparison with any 30-year-old valve tuner with a triode-hexode oscillator/mixer and a pentode IF stage, in its selectivity, lack of oscillator pulling, or its overload handling ability. I’m not so convinced about the superior sound of valve Hi-Fi, however, and I generally agree with Mr. Macaulay’s comments about output impedance (and the vagaries of output transformers) being responsible for the “valve sound.”

The point I was trying to make was that the valve in Mr. Macaulay’s amplifier is operating purely as a current source, which could have been implemented much more simply using an FET, without compromising performance.

The reasoning that a solid-state current source would cause a large switch-on current surge through the speaker is, at best, dubious. Mr. Macaulay’s circuit inherently has a slow turn-on due to the charging of capacitor C1 (through the signal source), with a time constant of the order of 0.68 second. Since the terminal voltage of the current source only rises at the same rate, the surge, with a capacitor coupled output, and enhancement mode FETs, is not likely to be anything of the order of the 10 Amps that Mr. Macaulay mentions in his letter.
I feel quite certain that Mr. Aylward did not recommend the removal of the valve without substituting another current source in its place, as Mr. Macaulay seems to believe. I hope Mr. Macaulay does not think EW readers are that ignorant.

Using a valve involves the addition of a filament supply and an increase in heat dissipation. Further, the lifetime of a valve is limited. While it may be fun & trendy to use valves, engineering common sense dictates that they be used only where they make a significant difference.

By the way, what was Mr. Clive Steven's August article all about? I sincerely hope that was a glorious gur at the lower extremities!

Joseph Carri
By email

Cottaging

I'm scratching my head as to how I said that D. Self was running a cottage industry, I was speaking hypothetically. According to SEB my critic's logic, all nil-distortion amplifiers sound the same, therefore all makers of nil-distortion amplifiers should pack it in and D. Self hypothetically should be the sole manufacturer world wide, I was giving D. Self a backhanded compliment, can he not see that? I could easily have chosen a number of Americans, some Japanese or Europeans. I chose him.

I'll repeat what I said in previous letters D. Self deserves world wide acclaim, for his nil-distortion power amps built using cheap parts. I am a follower of J.L.H.'s philosophy on power amps using MOSFETS from the late seventies onward John's main aim was to design a MOSFET amp, I agree, but this is the only difference I have worth mentioning with D. Self. It was D. Self that put forward power amp circuits without an input filter being accepted as the way to go, I copied that.

I will go further and say and say he richly deserves an OBE for his services to the British Hi-Fi industry. There is only one problem with this to achieve this he needs to be put forward by his peers and after 12 years of slaughtering them in pages of EW this might not be forthcoming it's a shame really for technically he deserves it and Doug, I'm praising you not slagging you off.

I agree with Jeff McCauley, the perfect amp should have no sound, but what percentage of power amps are like that to more than 10% world wide, why? It's all down to business practice. What amp maker is going to sell his top of the range amp at entry level prices, they would need to be mad and who could afford them, only those earning big bucks who are approximately 10% of a country. The only way around that is to build your own.

A point I should have made previously which brings to public notice, I said previously, in my first letter a year ago, that I listened to music on my Stax Lambda Electrostatics, these required a quality audio interface plugged into the power amp, output (12 Watts RMS) after working with my amp using an 8 Ohm resistor at the output I then thought it better to use a real world load i.e., the interface unit. To my horror the 1KHz square wave on the scope screen looked as if it had been hit with a sledge hammer a third of the way up the leading edge vertical, it veered off to the right at an angle of 40 degrees. This turned out to be because of one of the wire wounds around the output (I had already removed the source resistors) was inductive, therefore two inductors in series, loss of HF, Scroggie Radio Handbook, 6th edition. I removed the resistor and peace was restored, a small adjustment in the feedback removed the slight over-shoot.

It has to be asked how many people in this country as abroad used the Stax's with the transformer interface, with a commercial amp, only self build , those with a scope could try by-passing the output components and fitting headphone only sockets to try it electrostatic only, it does exactly as Graham Maynard's so far.

My critic, SEB, made out in a round about way that I should be reading the Beano and Dandy comics not EW. Well no, I don't have letters after my name, but I was among the first post-war children to be given an intelligence test (now IQ test). I remember too, I finished so quickly that the boy next to me copied my answers, the teacher caught him. I passed my 'qualifying' with an 'A' the top mark. I was three years at High School, when high school meant high school but had to leave as I came from a poor family and had to go out to work to bring money into the house.

SEB mentions that my writings are the same as those on DIY/Hi-Fi web-sites, sorry to disappoint SEB, but I don't own or have had a PC. So if my thoughts are the same as those on websites, it is coincidental, although judging by the emails from that source on John's demise they sound very intelligent so I'll take it as a compliment.

Although not relevant here, for the past 20 years I have been a member of the theosophical society of Britain, from which I was given a diploma for intellectual and spiritual reasoning in philosophy, religion and reincarnation, etc.

This takes me onto Clive Stevens' article, very interesting, on a practical level, it looks like a diode valve, Sun/Anode - Earth/Cathode. Even DohW to deposits on the earth/cathode. On time he's 'hit the nail on the head'. On a scientific, and for that matter also spiritually, you can't argue against time. No Time = No distance = No human body spirit, only the end as life as we know it, humanly. In spirit, you think of those you love and they are with you, no time, no distance. You think therefore it is. What Clive says regarding the end of time is also said to be the Bible, but in 2000 year old terms = the sun and moon shall give light - the stars shall fall from the sky. The heavens shall roll up like a document. There are now several cosmologists who now believe there is a God. I realise this is a 'hot potato', arguments on both sides but it's what I believe in and won't be changing my mind.

Lastly, if I was in a pub drinking the local ale and looking for some interesting conversation and had to choose between men in grey suits and Ivor Catt, Ivor would win every time, I certainly like his style.

D. Lucas
Anstruther
Fife
Scotland
UK

Catt's litter

Ian Hickman's article The Catt anomaly, Electronics World October 2004, p38, compresses history. In 1982 Catt suggested that there was an anomaly in Classical Electromagnetic Theory. However, after some decades of suppression (of this suggestion and also of his own theories), Catt decided to concede that the reigning Electromagnetic Theory of 1910 was perfect, as many experts have assured us. Catt then asked 'The Catt Question', which humbly asks for detail on the perfect theory which has ruled for a century. 'The Catt Question' should be minimal, merely asking where the negative electric charge, which all agree appears on the bottom conductor, comes from. It asks nothing about how and why it reaches its necessary position.

A decade ago, it took four years to force two luminaries, Pepper FR5 and McEwen, to comment. They contradicted each other. All luminaries then went silent.
The £2,000 letter, published by me in the August issue of EW, p57, offers money to any student who prevails on his accredited expert to write anything on the subject.

"The Catt Question" is only a question, and makes no assumptions. Ian Hickman is wrong to write; "Ivor assumes they are both wrong. On the contrary, I maintain, they are in fact both right."

Hickman knows, following Professor Ziman's repeated statement; "The aim of science is to achieve consensus," that it is necessary for all salaried luminaries to sing from the same hymn sheet, so as not to frighten the horses (students). If there are two conflicting theories, Westerner McEwan's and Southerner Pepper's, then students must be warned. Otherwise, in confusion and despair, the number of students studying physics will drop even more rapidly.

If, as Hickman asserts, both Westerners and Southerners are right, then it is necessary that such luminaries, for instance McEwan, Reader in Electromagnetics, and Pepper FRS, not Hickman, say so. In fact, McEwan and Pepper both say the other is wrong; "... I am prepared to take slight issue with Prof Pepper - again in a completely friendly way I hope - about the main component of the velocity". Southerner Pepper says; "... charge supplied from [the west] outside the system would have to travel at light velocity as well, which is clearly impossible." It is no solution for Hickman contradict them both, and to write; "... they are in fact both right." They, not Hickman, control the content of university courses. Hickman merely provides obfuscatory waffle to give them cover. Try to keep it simple. Once I came to accept that nothing new in electromagnetic theory is allowed, I spent decades honing this simplest possible question on the old.

With Harold Hillman, Reader in Biophysics, and others, I have found worldwide cases in science and academia where all of today's experts refuse to define their ruling theories. One lethal example is AIDS.

Historically, it is unprecedented for all text book writers and salaried expert teachers to be exposed for refusing to define the rudiments of their craft. Biophysics lecturer Dr Luca Turin, UCL, comments on The Catt Question; "It belongs in Chapter One of all the textbooks." The implications go far beyond an abstruse technical question. Further information is at www.ivorcatt.co.uk or www.ivorcatt.com/44.htm

Ivor Catt,
St. Albans
Hertfordshire
UK.

Not me guy

Like Mr Andy Holt, I too am amused by the articles of Mr. Ivor Catt.

May I fill in a gap he left in his May article, according to the letter of Mr. Penny, by adding some additional information?

The influence of residual magnetism in mains transformers is underestimated and often unknown. Compared with the old fashion laminated silicon steel transformers, the use of a modern ferrocore ring-core transformer is more problematic.

As a transformer is switched off, the core can have residual magnetism. If the transformer is switched on, such that the mains current creates a magnetic field in the same direction as the magnetic remanence, the core will saturate. While the change of the magnetic flux drops almost to zero, the primary induction disappears and the current is only limited by the low DC resistance of the primary coil. To cope with this high surge current, there is a need for a high value primary fuse. But this is, in case of a failure, in conflict with the safety requirements when a much lower fuse value is needed to avoid red glowing components on the PCB board.

I add some measurements to the hysteresis loop was picked out of the behaviour of transformers.

With a modern digital oscilloscope and some means of switching on and off the mains at a defined point in the voltage cycle, it is possible to measure the behaviour of transformers.

The setup to measure the hysteresis loop was picked out of

Pseudo science

In the August 2004 issue, page 52 Engineering versus pseudo-science Mr. Green makes a fundamental error about Newton's second law. The second paragraph is trying to illustrate the second law (F=ma) and at the end of the paragraph gives an incorrect example.

"In fact modern car manufacturers agree with Aristotle, using bigger engines in cars when they want higher top speeds." is correct by itself, but it has nothing to do with F=ma. A larger engine usually brings a higher power-to-weight ratio and thus a higher ACCELERATION, which would be relevant to the paragraph. A "higher top speed" has to do with the resistance of motion (the air resistance, rolling resistance and transmission losses) balancing with the output force of the tyres on the road, so a larger engine would allow a car to go faster.

I don't think this point is pedantic, but a fundamental piece of understanding of forces. It is rather amusing that the first sentence thus applies to the writer of the article: "Men are deplorably ignorant to natural things..." in this particular situation. Thanks for a great magazine

Peter Rolfe
By email
the book *101 Proeven met de oscilloscoop*, NV Centrex, Eindhoven 1966, see Figure 1. In that time this Dutch publication was also available in English, French and German. The resistor value R_1 was changed to 0.05 ohm for the current measurements. R_3 with C serve as a 90-degree phase shift. R_2 is the transformer load resistor. The oscilloscope is set in the X-Y mode.

WARNING: Note that the oscilloscope is connected to the mains. Take the necessary safety precautions.

A few years ago my attention was caught while a 1A fuse, 20x5mm IBC127 slow, blew up when I switched on an unloaded ring-core transformer. It became even stranger when I did measure a high inrush current, above 22A peak, while at the same time the secondary voltage dropped to zero. See Figure 2 and Figure 3. The single spike is the primary current plot. It can occur in the positive or the negative phase of the supply voltage. It depends on the magnetisation prehistory. The other line in the plot is the secondary output voltage.

The manufacturer of this ferroxcube transformer was unknown, but by its size it was estimated as a 100VA-120VA transformer with a primary DC resistance of 13 ohms.

Later on I did compare the results with a similar old silicon steel E-I core transformer, Monacor TR 134, bought in 1980, and specified as primary 220V, secondary max 24V, 5A. The measured primary DC resistance was 11 ohms.

I used different load conditions with both transformers, but I only include the measurements with a 22 ohm load. It shows best the hysteresis curve.

Figure 4 and Figure 5 show the curve of the ferroxcube ring-core transformer and the large current overshoot in fig. 4. The X-axis is related to current. The Y-axis is the phase shifted secondary voltage across the capacitor in fig. 1.

Figure 6 and **Figure 7** show that even with silicon steel a slight saturation is possible, but extreme current spikes did not occur. The saturation bend is slightly less sharp as can be expected with this kind of material. Note that the sensitivity of the Y channel is 20mV instead of 50mV.

E. Vanderfeesten
Belgium
NEW PRODUCTS

Please quote Electronics World when seeking further information

RPR solution
An IEEE 802.17 standard compliant Resilient Packet Ring (RPR) solution for the Intel® IXP2XXX product line of network processors is available from Wipro Technologies. It includes integrated data plane and control plane components implemented on Intel® IXP2XXX network processors and allows for more efficient use of SONET/SDH ring bandwidth while transporting Data traffic. Common applications for this solution are in the Metro Optical and Ethernet products to enable efficient transport of Ethernet over existing infrastructure. RPR offers a sub 50ms restoration time after a failure and up to 8 times over-subscription of the network under certain conditions.

www.wipro.com

New scale you can count on
A new weighing scale has been designed to provide fast and accurate high resolution counting of parts and components. The bench top scale can be connected to any four-load cell platform, with up to 6 tonne capacity. The G235 from Avery Weigh-Tronix is easy to operate with a range of counting methods provided to suit the product. A choice of flexible sampling routines is available including reverse and negative sampling which eliminates unnecessary handling of delicate components. An accumulator function allows the operator to break a large quantity into smaller batches which will be totalled at the end of the routine. RS232 output is supplied as standard for connection to a printer or PC. The software includes 8 print format options offering a variety of layouts. A re-chargeable battery is optional, which provides 200 hours of continuous operation, or it can be powered from six dry cell batteries for 800 hours local base use only.

Enquiries: info@awtxglobal.com
0870 90 30061

Free CD...everything you wanted to know about EMC
EMCIA is the UK trade association for companies involved in electromagnetic compatibility. Formed in 2002 and comprising 34 members the association is also an accredited trade organisation with UK Trade and Investment. Available now is the EMC & Compliance CDROM which contains a relevant directives with lists of appropriate standards, a product finder and directory of companies. Included are articles covering design techniques for EMC, EMC for systems and installations and EMC testing.

www.compliance-club.com

The changing face of watches
Fossil Inc., designers of contemporary, quality fashion watches and accessories, has teamed up with the flexible display technology company, Pelikon, to produce the world's first wristwatch incorporating complex segmented electroluminescent (SEL) display technology.

Pelikon, which develops the application of SELs and InterfaceDisplays™, has been working with Fossil to produce a series of eye-catching, innovative watch face displays that feature both animation and illumination.

Fossil designers have worked closely with Pelikon to develop the concept, taking their current range of animation watches to the next level with the addition of light-up features. With Pelikon's ability to use SEL technology to deliver new watch faces

www.fossil.com
jholiday@fossil.com

Enquiries regarding SEL displays
contact.sales@pelikon.com

High density horizontal solutions for CompactPCI and VME
Rittal has extended its range of Slim-Box products that reflect the trend for smaller and more efficient systems. The high-density electronic packaging solutions feature 2 slots per 1U of height. The new models include VME as well as increased range of CompactPCI (CPCI) systems and “neutral” versions for custom backplanes, which can include switched fabric.

All models in the horizontal mount range are equipped for 6U front plug-in boards and include fans for left to right side cooling. The options, available as standard configurations, include provision for rear I/O transitions, plug-in hot swap or A TX power supplies, and “neutral” systems without a backplane for greater customer choice.

www.rittal.co.uk
Seeing the way forward

A monitoring and display breakthrough from Cambridge Consultants could give athletes the means to optimise their training and performance without the need for the conventional armoury of sensors and wrist displays. Athletes of tomorrow will need only to wear a pair of glasses that incorporate everything needed to monitor and display key biomedical parameters in real time.

Performance improvement depends increasingly on access to detailed biomedical data. Technospecs incorporate both data capture and information delivery. Sophisticated sensors measure factors such as heart rate and blood oxygen levels, and that information is delivered in real-time in the form of a head-up display originally developed for jet fighter pilots.

Behind Technospecs lies work on a number of technologies that will transform the concept into a commercial product. One further intriguing implementation possibility is the addition of a wireless communications link to the Technospecs chip, so that an athlete could transfer performance data to a PC for detailed analysis, or to the trainer.

The compact head-up display technology also presents opportunities in automotive sport where the ability to display sensor readings in a helmet or viewfinder could eliminate the need to look down at controls. Monitoring of real-time physical data also has applications beyond sport, such as in the armed forces or emergency services.

Cambridge Consultants www.cambridgeconsultants.com

Envirowise and Intellect announce WEEE and RoHS supply chain initiative

Environmental support and advisory service, Envirowise, has launched a free service to help UK electronics and computer manufacturers set up product supply chain partnerships aimed at improving environmental performance, achieving cost savings and complying with WEEE and RoHS legislation on waste electrical and electronic equipment and hazardous substances.

Envirowise will provide free support and advice on design issues, waste minimisation, compliance with WEEE and RoHS legislation, and fulfilment of ISO 14001 commitments to help the host company manage its supply chain environmental performance, coordinate promotion and awareness, organise events and workshops, and offer free on-site design and environmental consultant visits and counselling.

Companies requiring further information on electronics industry supply chain partnerships should contact Philip Price at Envirowise on 0870 190 6355, fax him on 0870 190 6361, or e-mail: philip.price@envirowise.gov.uk.

Organisations who require general advice and information on WEEE and RoHS or companies who wish to take advantage of free Designtrack and FastTrack one-day site visits can obtain further information through the Envirowise website (www.envirowise.gov.uk) or via the Environment and Energy Helpline – Telephone 0800 585794.

New EMC antenna

Schaffner Ltd has introduced the BHA 9220 horn antenna for EMC immunity and emission testing. A linearly polarised broadband antenna for EMC and RF measurements over the frequency range 200MHz to 2GHz, it may be used both as a transmitter and receiver. It complements the existing BHA 9118 model, which covers the frequency range 1 to 18GHz. All Schaffner antennas are individually calibrated at their in-house UKAS accredited facility, which also offers ongoing re-calibration services. A full range of accessories is also available including, masts, tripods, adapters and mountings.

Full details of the Schaffner Antenna range can be found in the new EMC Antennas catalogue, please contact Andrew Kotas on +44 (0) 118 977 0070 for a copy or email AKotas@schaffner.com www.schaffner.com

New 3-in-1PXI FlexDMM instrument

The National Instruments PXI-4072 FlexDMM gives engineers the functionality of three common instruments in a single-slot 3U PXI module – a 6½-digit multimeter, an LCR meter, and a 1.8 MS/s isolated digitizer.

The NI PXI-4072 FlexDMM brings digital multimeters one step closer to providing universal measurement capability by offering engineers the 20 most common ATE measurements, including voltage, current, capacitance, inductance, temperature and resistance. By integrating these measurements into one PXI module, engineers reduce test system size and cost, increase throughput and shorten test development time.

www.ni.com/uk

Queen's Award – nominations wanted

Outstanding businesses from the electronics sector have just weeks left in which to apply for a Queen's Award for Enterprise – the UK's most prestigious accolade for business success. Applications can be made in three categories – International Trade, Innovation and Sustainable Development. The Awards are open to any sized business, from two-person partnerships to large multinationals. This year for the first time, nominations are also being invited from the electronics sector for individuals felt to be worthy of a new royal Award for contributions to encouraging a UK enterprise culture.

The Queen's Award for Enterprise Promotion is for outstanding individuals who promote enterprise by teaching other people enterprise skills or who, as mentors or role models, inspire others to become successful entrepreneurs. Nominations are sought from colleagues, associates and beneficiaries of their work. The deadline for all applications and nominations is 31 October 2004. For more information, visit www.queensawards.org.uk
To reserve your web site space phone Steve Morley

COMPONENT TECHNOLOGY
www.component-technology.co.uk
- PIC microcontroller kits and modules for students and hobbyist.
- 18F45X, 16F87X Proto-Boards for ease and fast development of project ideas.
- Infrared Illuminators for CCTV’s in low ambient light security areas.
- Analogue 8-channel high voltage isolator. Data logging.
- 5% discount code ‘elwwdir2004’ for Electronics World readers.
- Consultancy
- TIG control systems – REIS interface.
- Real-time X-ray Imaging.

CRICKLEWOOD ELECTRONICS
www.cricklewoodelectronics.co.uk
- Lightweight portable battery/mains audio units offering the highest technical performance. Microphone, Phantom Power and Headphone Amplifiers. Balanced/unbalanced signal lines with extensive RFI protection.
- Cricklewood Electronics stock one of the widest ranges of components, especially semiconductors including ICs, transistors, capacitors, all at competitive prices.

FUTURE TECHNOLOGY DEVICES INTL LTD
www.ftdichip.com
- FTDI designs and sells USB-UART and USB-FIFO interface IC’s. Complete with PC drivers these devices simplify the task of designing or upgrading USB peripherals.

GREENWELD
www.greenweld.co.uk
- Whether your interest is in electronics, model engineering, audio, computer, robots or home and leisure products (to name just a few) we have a wide range of new and surplus stock available.

IPEVA
www.ipeva.com
- IPEVA sell FPGA platforms and provide Design Services for Embedded Systems, OpenCores IP, Analogue, Digital, FPGA, ASIC, HDL Translations (e.g. Schematics/C/C++ to VHDL) and Migrations. Altium Nexar and Protel Bureaux. Tel 0870 080 2340

MCES LTD
Web: www.mces.co.uk
- MCES are a specialist electronics company providing a high quality repair, rework and re-manufacturing service to electronic modules and sub assemblies, including handling both large and small volume production and rework for major manufacturers. Established in 1972 we have continued to make large

INTRODUCE YOUR WEBSITE TO 15,000 ELECTRONICS ENGINEERS
investments in specialised test equipment, surface mount technology and tooling enabling us to diagnose repair and verify a wide range of electronic modules to a very high standard. We also operate a fitting service for surface mount multi pin IC’s and BGA’s.

SOFTCOPY
www.softcopy.co.uk

As a PC data base or hard copy, SoftCopy can supply a complete index of Electronics World articles over the past ten years. Photo copies of articles from back issues are also available.

TELEVES
www.televes.com

Televés website was launched as an easier way to keep in contact with our World-wide Network of Subsidiaries and Clients. This site is constantly updated with useful information/news plus you can download info on our range: TV Aerials & accessories, Domestic and Distribution amplifiers, Systems Equipment for DTT and Analogue TV, Meters and much more. Tel: 44(0) 1633 873921 email hbotas@televes.com

TELONIC
www.telonic.co.uk

Telonic specialists in laboratory AC & DC Power Supplies, Electronic AC & DC Loads, Electrical Safety Testing and complete test systems. Plus RF Filters, Attenuators, Diesel Engine Smoke Measurement, Quartz Crystal Microbalances. Tel +44 (0) 118 9786911

TR CONTROL SOLUTIONS
www.trcontrolsolutions.com

We specialise in products and services for serial communications, protocol conversion, wireless communications and embedded ethernet. Tel: +44 (0) 208 823 9230.

TELEVISION AND CONSUMER ELECTRONICS

...and you thought advertising was expensive!

Call Steve Morley on 01322 611254 and find out how you could reach 15,000 electronics engineers from just £2.89 per day!

Fax back this form on 01322 616339

Name

Company name

Web address

Address

Postcode

Telephone number

Fax number

Entry – no more than 100 words.

Include screenshot? Yes ☐ No ☐

Lineage only will cost £150 + vat for a full year. Lineage with colour screen shot will cost £350 + vat for a full year.
Electronics World is enjoyed by some of the world's top circuit designers - but it's not just for professionals. Stimulating designers for almost a century. Electronics World covers analogue, RF and digital circuit technology and incorporates design information on everything from model train control to input/output via a 10baseT network... and it's now available all on CD-ROM.

- 12 issues on each CD-ROM
- Full text and diagrams of all articles, circuit ideas, letters etc
- Easy to browse
- Fully searchable by keywords and index
- High-quality print in colour
- Full software listings included
- Easy to use

CDROMs are available for 1999, 2000, 2001, 2002 and 2003. Each disk contains 12 back issues of Electronics World in a searchable, browsable and printable format PLUS the library of software files. The CDROMs run on PCs with Windows '95, Me, 2000 and XP, requires IE4 or above and Adobe Acrobat Reader (supplied on the CD).

The CDROMs are only £30 each including VAT and UK post, add £1 extra postage for Europe, £5 extra postage for rest of the world, exclusively available from SoftCopy Limited, address below.

Limited special offer for readers of Electronics World - all five CDs for the price of four.

Please send the following CD-ROMS

<table>
<thead>
<tr>
<th>Qty</th>
<th>CD-ROM Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1999</td>
</tr>
<tr>
<td>1</td>
<td>2000</td>
</tr>
<tr>
<td>1</td>
<td>2001</td>
</tr>
<tr>
<td>1</td>
<td>2002</td>
</tr>
<tr>
<td>1</td>
<td>2003</td>
</tr>
</tbody>
</table>

NAME
Address
Card Number
Expiry

Order now at:
www.ewmag.co.uk

SoftCopy Limited, 1 Vineries Close, Cheltenham GL53 0NU, UK
Tel: +44 (0) 1242 241455 Fax: +44 (0) 1242 241468 sales@softcopy.co.uk
Television and Consumer Electronics magazine is the only magazine for technicians who deal with consumer electronic products, in particular TV, video, satellite and audio equipment.

- Launched in 1935 this respected journal is the longest established consumer electronics magazine
- Keep up to date with the latest information and changes affecting the industry
- Tips and guides on repairing television and electronic equipment including satellite receivers, PCs, monitors, VCRs, DVD, audio equipment and much more
- Essential reference and in-depth features covered monthly

Make sure of your copy now...

Contact
Highbury Fulfilment Services,
Link House, 8 Bartholomew’s Walk, Ely, Cambridge CB7 4ZD.

Telephone 01353 654 431
Fax 01353 654 400
Email hbc.subs@highbury-wyvern.co.uk

Subscription rates for 1 year:
- UK £33.80 ● Europe £49.00 or €92
- USA $104 ● Rest of the World £63.50

Subscription rates for 2 years:
- UK £53 ● Europe £78.40 or €146
- USA $166.65 ● Rest of the World £101
For a FREE consultation on how best to market your products/services to a professional audience ring STEVE on 01322 611254

WEB SITE WWW.JOHNRSRADIO-UK.COM WWW.JOHNRSRADIO.COM
JOHNSRADIO ELECTRONICS TEST AND COMMUNICATION EQPT

LARGE QUANTITY SALE EX M.O.D.
MARCONI TE2019A Synthesized Signal Generators - 80kHz to 1040Mc/s AM - FM - High Class with many functions - £285 each.
TEKTRONIX 2445 A OSCILLOSCOPE 150Mc/s Four Channel £300.
HP COMMUNICATION TEST SET 8922M - 10 - 1000Mc/s + GSM 83220E Converter 1710 - 1900Mc/s - DDS - PCS - MS £500
HP COMMUNICATION TEST SET 8922M OPT 010(Dual) etc. £750.
ALL UNITS AND PRICED EX WORKS WITH INSTRUCTIONS - TESTED BASIC WORKING. CARR + PACKING IF REQUIRED EXTRA.
Phone for appointment or to request item lists, photos, site map.
All welcome, Private or Trade, sales, workshop repairs or calibration
PLEASE CONTACT PATRICIA AT WHITEHALL WORKS, 84 WHITEHALL ROAD EAST, BIRKENSHAW, BRADFORD, WEST YORKSHIRE, BD11 2ER.
Tel: 01274 644007 Fax: 01274 651160
WEB SITE WWW.JOHNRSRADIO-UK.COM WWW.JOHNRSRADIO.COM

This Magazine reaches over 10,000 potential customers
To advertise in this space call Steve on 01322 611254

Component Kits!
Brand new High quality components kits available from just £3.99
www.fastcomponents.co.uk
Tel: 0870 750 4468 Fax: 0870 137 6005
Winchester House, WIntingsber Rd, Walton-on-Thames, Surrey, KT12 2RH

PRINTED CIRCUIT BOARDS
AGAR CIRCUIT DESIGNED & MANUFACTURED
- Prototype or production quantities
- PCB artwork available
- PCBs design from circuit diagrams
- Almost all computer file accepted
- PCB assembly - mechanical assembly
- Full product design-manufacture-turn-round

Unit 6, East Belfast Enterprise Park
209 Albertbridge Rd, Belfast BT5 4GX
TEL 028 9073 8897 FAX 028 9073 1802
info@agarcircuits.com
Passive components, semiconductors, power devices, network cabling

Choose your perfect analyser

New Low Prices!

limited time only

the atlas LCR
- Automatically identify Inductors, Capacitors and Resistors.
- Inductors from 1μH to 10H.
- Capacitors from 1pF to 10,000μF.
- Resistors from 1Ω to 2MΩ
- 1% Basic accuracy.
- Automatic frequency selection.

the atlas SCR
- Automatically analyse Thyristors and Triacs.
- Automatically identify all three leads.
- Automatic test currents from 100μA to 100mA!

"Star Pack"
LCR and DCA in carry case £118.00
Carry cases £15.00
SMD Tweezer Probes for LCR £19.00
Spare Battery £1.75

ESR Measurement
model ESR60
available December 2004

Semiconductor Analysis
model DCA55

Cat5 Cable Testing
model UTP05

£49
£79

www.peakelec.co.uk
all prices include UK Delivery and VAT

Don't just test it... Analyse it!
AMPLIFIERS
AT/HP 4815A Vector Impedance Meter 500kHz-108MHz
AT/HP 4262A 10kHz Impedance Analyser
AT/HP 41924 13MHz Impedance Analyser
Kalmus KMS7371.0 25W 10kHz-1GHz Amplifier

ELECTRICAL POWER
DM 2.81-4.4kHz Current Clamp For BHR 4810/05
Drumex PP5100 Quality Power Analyser

FREQUENCY COUNTERS
AT/HP 8719D 136Hz Vector Network Analyser dw S Param
AT/HP 35770 38Hz-200MHz Vector Network Analyser
Advantest R3167G1 8GHz Actor Network Analyser
Advantest R3165CH 40MHz-3.86Hz Network Analyser
Keithley

MULTIMETERS
AT/HP 81160 50MHz Function Generator
AT/HP 3314A/601 20MHz Function Generator
Racal 1992 1.3GHz Frequency Counter
Marconi CPM20 2GHz Counter/Power Meter
EIP 548A 26.56111Hz Counter
AT/HP 5351B 26.5GHz Frequency Counter
AT/HP 53131A/001 DC-225MHz 10 Digit Universal Counter

FREQUENCY COUNTERS
Dranetz PP4300 Power Quality Analyser
Anritsu MS46306/010 10Hz-300MHz Network Analyser
Anritsu MS4624B 96Hz Actor Network Analyser
Anritsu 37347A 2GHz Actor Network Analyser
Anritsu MS46243 2GHz Actor Network Analyser
Anritsu MS46308/010 10MHz-300MHz Network Analyser

OSCILLOSCOPES
AT/HP 541120 4 Channel 100MHz 100kVisc/Div 20GS/s Oscilloscope
AT/HP 555024 2 Channel 400MHz 400kVisc/Div Oscilloscope
AT/HP 555023 4 Channel 250MHz 250kVisc/Div Oscilloscope
AT/HP 546108 2 Channel 100MHz 200kVisc/Div Oscilloscope
AT/HP 546562 2 Channel 100MHz 200kVisc/Div + 8x Ch LA
AT/HP 547450 2 Channel 1GHz 1GVisc/Div Oscilloscope
Pico 199245A 4 Channel 120MHz 250kVisc/Div Oscilloscope
LeCroy P2104 4 Channel 1GHz 250kVisc/Div Oscilloscope
LeCroy UX544X 4 Channel 1GHz 100kVisc/Div Oscilloscope

POWER METERS
AT/HP 4364 Dual Channel RF Power Meter
AT/HP 4366A 10MHz-10GHz Power Sensor
AT/HP 4368A 100MHz-1GHz 1GHz-10GHz Power Sensor
AT/HP 4369A 1GHz-10GHz 10GHz-100GHz Power Sensor
AT/HP 43688 A Single Channel RF Power Meter

POWER SUPPLIES
Wide Range of AT/HP Programmable DC Supplies - from Faraday AP207/0 10A 100V Power Supply
Kikusui PSV900 200V Voltage/Frequency Converter
Kikusui PZ-L200W 1000W Electronic Load
Kikusui PZ-L2000W 10000W Electronic Load
Kikusui TP1012 Dual Probe Power Supply

RF SWEEP GENERATORS
AT/HP 8032A 10MHz-1GHz 50W Synthesised Sweeper
AT/HP 80332A/1E1ES 3kHz-1GHz 20W Synthesised Sweeper
AT/HP 80332A/1E1ES 3kHz-1GHz 20W Synthesised Sweeper
Anritsu AV844C 0.1-10GHz Synthesised Signal Generator
Kikusui AV845C 0.1-10GHz Synthesised Signal Generator

SIGNAL & SPECTRUM ANALYSERS
Advanced R3364C Poly-2GHz Spectrum Analyser
Advanced R3373B 1GHz-2.4GHz Spectrum Analyser +2/4GHz
Advanced R3371D 3.5GHz Spectrum Analyser
AT/HP 33454A 4GHz Spectrum Analyser
AT/HP 33341A 10GHz Spectrum Analyser

SIGNAL GENERATORS
AT/HP 8565E 50kHz-2GHz Synthesised Spectrum Analyser
AT/HP 8565A 6.5GHz Spectrum Analyser
AT/HP 8566A 220GHz Spectrum Analyser
AT/HP 8566B 220GHz Spectrum Analyser
AT/HP 8569A/010/10K40 2GHz Spectrum Analyser
AT/HP 8563A 1kHz-5GHz Spectrum Analyser
AT/HP 8563E/010/10K 5GHz Spectrum Analyser
AT/HP 8564E/010/10K 5GHz Spectrum Analyser

TELECOMS
Marconi 2021F 1GHz Radio Comms Test Set
Marconi 20220 1GHz Synthesised Signal Generator
Marconi 20230/001/002/006 1.35GHz Synthesised Signal Generator
Marconi 20240/010 1.35GHz Synthesised Signal Generator
Marconi 3024/001 1.35GHz Synthesised Signal Generator
R&S SMH 2GHz Synthesised Signal Generator

WIRELESS
AT/HP 8704A Noise & Interference Test Set
AT/HP 8704A/041 Noise & Interference Test Set
RTR 2967 Audio Comms Set with GSM
RTR 5442-03 I1 Directional Power Head
Marconi 2499/0/2 1GHz RF Spectrum Analyser
Marconi 2529/0/2 1GHz RF Spectrum Analyser
Marconi 2599/0/2 1GHz RF Spectrum Analyser

The Industry's Most Competitive Test Equipment Rental Rates

Quality Second User Test Equipment with 12 Month Warranty as Standard, with 24 month available!

01753 596000
Fax: 01753 59 6001
www.TestEquipmentHQ.com
email: info@TestEquipmentHQ.com

The only company with the confidence to offer 12 month warranty as standard, with 24 month available!

Prices shown are for guidance in EUR GBP, exclusive of VAT. All items subject to price change. Rental prices are per week for a rental period of 4 weeks. Free carriage to UK mainland addresses on sale items. Rental or new unit deliveries will be charged at cost. This is just a selection of equipment we have available - if you don’t see what you want, please call All items are supplied fully tested and refurbished. All manuals and accessories required for normal operation included. Certificate of Conformance supplied as standard, Certificate of Calibration available at additional cost. Test Equipment Solutions Ltd Terms and Conditions apply. All E&OE.