Two-way hand-helds - 15% reader discount **EEEECTRONICS VOORDAD** JANUARY 2001 £2.65

Direct-coupled value amplifier Tx and Rx for the LF band Design RF front ends Impedance meter for electrolytics

Hewlett Packard	
8642A – high performance R/F synthesiser	
(0·1-1050MHz)	£4750
3335A - synthesiser (200Hz-81MHz)	£2400
Hewlett Packard	
436A power meter and sensor (various)	from £750
437B power meter and sensor (various)	from £1100
Hewlett Packard	
Wandel & Goltermann	
SPECIAL OFFER	
PCM-4 PCM Channel measurement set	
(various options available)	from £5500
Marconi 6310 – programmable sweep generator	
(2 to 20GHz) – new	£3250
Marconi 6311 Prog'ble sig. gen. (10MHz to 20GHz)	£4000
Marconi 6313 Prog'ble sig. gen. (10MHz to 26.5GHz	z) £6250
Hewlett Packard	
5370B - universal time interval counter	£1500
Hewlett Packard 8662A synth. sig. gen. (10kHz to 12	280MHz)
	£8250
Hewlett Packard 3324A synth. function/sweep gen. (21MHz)
	£2,500

OSCILLOSCOPES

Gould 400 20MHz - DSO - 2 channel	£800
Gould 1421 20MHz - DSO - 2 channel	£600
Gould 4068 150MHz 4 channel DSO	£1500
Gould 4074 100MHz - 400 Ms/s - 4 channel	£1350
Hewlett Packard 54201A - 300MHz Digitizing	£995
Hewlett Packard 54600A - 100MHz - 2 channel	£750
Hewlett Packard 54610A - 500MHz - 2 channel	£1850
Hewlett Packard 54502A - 400MHz-400 MS/s 2 channel	
	£1800
Hitachi VI52/V212/V222/V302B/V302F/V353F/V550B/V650F	from £125
Hitachi VI I00A - I00MHZ - 4 channel	£900
Intron 2020 - 20MHz. Dual channel D.S.O. (new)	£450
lwatstu SS 5710/SS 5702 -	from £125
Kikusui COS 5100 - 100MHz - Dual channel	£350
Lecroy 9354M 500MHz - 2 Gs/s - 4 channel	£6000
Lecroy 9314L 300MHz - 4 channels	£3000
Meguro MSO 1270A - 20MHz - D.S.O. (new)	£450
Philips PM3094 - 200MHz - 4 channel	£1750
Philips 3295A - 400MHz - Dual channel	£1600
Philips PM3392 - 200MHz - 200Ms/s - 4 channel	£1995
Philips PM3070 - 100MHz - 2 channel - cursor readout	£750
Tektronix 465 - 100MHZ - Dual channel	£350
Tektronix 464/466 - 100MHZ - (with AN, storage)	£350
Tektronix 475/475A - 200MHz/250MHz -	from £450
Tektronix 468 - 100MHZ - D.S.O.	£650
Tektronix 2213/2215 - 60MHz - Dual channel	£350
Tektronix 2220 - 60MHZ - Dual channel D.S.O	£995
Tektronix 2235 - 100MHZ - Dual channel	£600
Tektronix 2221 - 60MHz - Dual channel D.S.O	£995
Tektronix 2245A - 100MHZ - 4 channel	£900
Tektronix 2440 - 300MHz/500 MS/s D.S.O.	£2450
Tektronix 2445A/2445B - 150MHz - 4 channel	£1000
Tektronix 2445 - 150MHZ - 4 channel + DMM	£1200
Tektronix TAS 475 - 100MHZ - 4 channel	£995
Tektronix 7000 Series (I00MHZ to 500MHZ)	from £200
Tektronix 7104 - 1GHz Real Time - with 7A29 x2, 7B10 and 7B	15 from £2500
Tektronix 2465/2465A/2465B - 300MHz/350MHz 4 channel	from £1250
Tektronix 2430/2430A - Digital storage - 150MHz	from £1250
Tektronix 2467B - 400MHz - 4 channel high writing speed	£4750
Tektronix TDS 310 50MHz DSO - 2 channel	\$750
Tektronix TDS 320 100MHz 2 channel	£850
Tektronix TDS 340A 100MHz DSO - 2 channel	£1250
Tektronix 544A 500MHz 4 channel	£4950
	24050

SPECTRUM ANALYSERS

Ando AC 8211 - 1.7GHz	£1500
Avcom PSA-65A - 2 to 1000MHz	£850
Anritsu MS 610B 10KHz - 2GHz - as new	£3500
Advantest/TAKEDA RIKEN - 4132 - 100KHz - 1000MHz	£1500
Hewlett Packard 8756A/8757A Scaler Network Analyser	from £1000
Hewlett Packard 853A Mainframe + 8559A Spec. An. (0.01 to 21GHz)	£2750
Hewlett Packard 182T Mainframe + 8559A Spec, An. (0.01 to 21GHz)	£2250
Hewlett Packard 8568A (100Hz - 1500MHz) Spectrum Analyser	£3500
Hewlett Packard 8568B - 100Hz - 1500MHz	£5250
Hewlett Packard 8567A - 100Hz - 1500MHz	£3995
Hewlett Packard 8752A - Network Analyser (1.3GHz)	£5995
Hewlett Packard 8754A – Network Analyser (1.50Hz)	£1500
Hewlett Packard 8591E 9KHz-1.8GHz	£4250
Hewlett Packard 3561A Dynamic signal analyser	£3995
Hewlett Packard 35660A Dynamic signal analyser	£3250
IFR A7550 - 10KHz-1GHz - Portable	£1950
Meguro - MSA 4901 - 30MHz - Spec.Analyser	£700
Meguro - MSA 4912 - I MHz - IGHZ Spec. Analyser	£995
Tektronix 2712 Spec. Analyser (9kHz - 1.8GHz)	£3750
Wandel & Goltermann TSA-1 system analyser (100Hz-180MHz)	£2750
Wiltron 6409 - 10-2000MHz R/F Analyser	£1750

All equipment is used - with 30 days guarantee and 90 days in some cases Add carriage and VAT to all goods.

 Telnet, 8 Cavans Way, Binley Industrial Estate,

 Coventry CV3 2SF.
 CIRCLE NO. 101 ON REPLY CARD

Quality second-user test & measurement equipment

NEW PHONE CODE FOR COVENTRY 02476

Radio Communications Test Sets

Marconi 2955	£2000
Marconi 2955B	£4500
Antritsu MS555A2	£1200
Hewlett Packard 8922B (GSM)	£6950
Schlumberger Stabilock 4031	£3500
Schlumberger Stabilock 4040	£1500
Racal 6111 (GSM)	£1750
Racal 6115 (GSM)	£3995
Rhode & Schwarz CMTA 94 (GSM)	£4995

Fax 02476 650 773

MISCELLANEOUS

WIISCELLANEOUS	
Eaton 2075-2A – Noise Gain Analyser	at £2750
Fluke 5100A/5100B/5200A - Calibration Units (various available)	from £1000
Fluke 2620 Data Buckets	£500
Hewlett Packard 339A Distortion measuring set	£1200
Hewlett Packard 435A + 435B Power meters	from £100
Hewlett Packard 778D Dual-Directional Couplers	£650
Hewlett Packard 3488A · Switch/Control unit	£475
Hewlett Packard 3457A multi meter 6 1/2 digit	£950
Hewlett Packard 3784A - Digital Transmission Analyser	£4500
Hewlett Packard 3785A - Jitter Generator & Receiver	£1250
Hewlett Packard 5385A - 1 GHZ Frequency counter	£650
Hewlett Packard 6033A - Autoranging System PSU (20v-30a)	£750
Hewlett Packard 6622A - Dual O/P system p.s.u.	£1250
Hewlett Packard 6624A - Quad Output Power Supply	£2000
Hewlett Packard 6632A - System Power Supply (20v-5A)	£800
Hewlett Packard 811A Pulse/Function Generator (1Hz-20MHz)	£1250
Hewlett Packard 8112A - 50MHz Pulse Generator	£2250
Hewlett Packard 8350B - Sweep Generator Mainframe	\$2000
Hewlett Packard 8656A Synthesised signal generator	£850
Hewlett Packard 8656B Synthesised signal generator	£1450
Hewlett Packard 8657A Synth. sig. gen. (0.1-1040MHz)	£1750
Hewlett Packard 8660D - Synth'd Sig. Gen (10 KHz-2600MHz)	£3250
Hewlett Packard 8901B - Modulation Analyser	£2750
Hewlett Packard 8903A, B and E - Distortion Analyser	from £1250
Hewlett Packard 16500A + B - Logic Analyser Mainframes	from £1000
Hewlett Packard 16500C - Logic Analyser Mainframe	£3250
Hewlett Packard 16501A/B & C - Logic Analyser System Expander Fra	
Hewlett Packard 37900D - Signalling test set	£3750
Hewlett Packard 5350B - 20Hz Frequency Counter	£1950
Hewlett Packard 83220A DCS/PCS test sets	£3000
Hewlett Packard 8657B - 100KHz-2060 MHz Sig Gen	£3995
Hewlett Packard 8657D - XX DQPSK Sig Gen	£4500
Hewlett Packard 8130A – 300 MHz High speed pulse generator	£5250
Hewlett Packard 8116A ~ 50MHz Pulse/Function generator	£3250 £2250
Marconi 1066B – Demultiplexer & Frame Alignment Monitor (140MBIT)	
NEW	£1750
Marconi 2305 – modulation meter	
	£999
Marconi 2610 True RMS Voltmeter	£550
Marconi 6950/6960/6960B Power Meters & Sensors	from £400
Phillps 5515 - TN - Colour TV pattern generator	£1400
Philips PM 5193 – 50MHz Function generator	£1500
Leader 3216 Signal generator 100KHz - 140MHz - AM/FM/CW with bui	
modulator (as new) a snip at	£795
Racal 1992 – 1.3GHz Frequency Counter	£500
Rohde & Schwarz NRV dual channel power meter & NAV Z2 Sensor	£1250
Rohde & Schwarz SMG (B1/B2) sig. Gen. 1GHz	£3250
Systron Donner 6030 - 26.5GHz Microwave Freq Counter	£1995
Tektronix ASG100 - Audio Signal Generator	£750
Wavetek 178 Function generator (50 MHz)	£950
Wayne Kerr 3245 – Precision Inductance Analyser	£1995
Wayne Kerr 6245 - Precision Component Analyser	£2500

Tel: 02476 650 702 Fax: 02476 650 773

CONTENTS

COMMENT 3

Exploiting third world skills

NEWS 4

- Mobile phone hazards
- Uk parallel processing start-up
- Government invests to combat e-crime
- The black art of white LEDs
- 300mm wafers give Taiwan edge
- Ford goes for digital radio
- Sensor indicates tactile force
- Internet buyers get new rights
- Electrochromic display technology

CYBERCRIME GOES 12 **BIG TIME**

Andrew Emmerson reports on a communications crime that's completely out of control - phone fraud. What's more, we're all paying the price.

16 COMMS AT 136KHZ

Paolo Antoniazzi and Marco Arecco have been addressing the challenge of transmitting and receiving on the Europewide amateur-radio allocation at 136kHz

- a frequency low enough to allow an audio power amplifier to be used as a transmitter

HIGH-FREQUENCY 24 **IMPEDANCE METER**

Measuring a capacitor's value at low frequency tells you little about how it is

likely to perform in, say, an SMPS. Cyril Bateman's meter measures impedance at up to several megahertz.

- 32
 - Pulse-width modulated PSU
 - Simple relay tester
 - Linear sawtooth oscillator
 - Test fuse blowing time

39 NEW PRODUCTS

New product outlines, edited by Richard Wilson

50 DESIGNING FRONT-ENDS

Joe Carr explains how to get the most out of a radio receiver front-end design.

54 **BEGINNERS' CORNER** WAVEFORM DISTRIBUTIONS

Probability distributions are an important topic in electronics, and in particular in communications, yet you rarely see an explanation of them. Ian Hickman gives this neglected topic an airing.

SPEAKERS' CORNER: 58 **HOW DOES IT RADIATE?**

John Watkinson looks at how sound pressure waves propagate and interact

DC-COUPLED 61 **VALVE POWER**

Numerous single-ended audio power amplifiers with no coupling capacitors have appeared in the past, but there have been few DC-coupled push-pull designs like these, from Wim de Haan et al.

ACCESS DENIED 64

The UK is in danger of becoming the cave man of the telecoms industry if the market for broadband services is not opened up. Are the interests of operators being put before the needs of the economy? David Manners reports.

67 **AN 'IDEAL' TRANSISTOR** With the aim of helping you produce

more effective analogue designs, Bryan Hart explains how it is possible to develop a set of 'ideal' transistor models that suit particular 'families' of applications.

72 WEB DIRECTIONS Useful web addresses for the electronics

designer.

75 LETTERS

E series resistors, Input filter distortion.

February issue on sale 23 December

Cover photography Mark Swallow

Reader offer - buy a pair of twoway hand-held radios for just £75 excluding VAT and carriage. See page 66.

New sensor film indicates tactile force between surfaces - see News on page 8.

Will the telecoms industry make the UK the caveman of Europe? David Manners reports on page 64.

CIRCUIT IDEAS

tech suppor Expensive maintenance

with EDS

Sinking jast with 000

costl upgrades? old jashioned software?

electronic STUDIO

Realise your potential s break free

electronic design STUDIC

Introducing EDS Advance the new modular electronics design system that includes simulation, schematic, PCB, autorouting and CADCAM modules as standard.

Our powerful integrated development environment brings powerful management to your projects and now features 3D style PCB footprints, Viper rip up and retry autorouter, shape based design rule checking, full copper pour support with unlimited automatic zones and split power planes, cross probing between schematic/pcb/netlist, netlist navigator, wizards to automate key features, DTP quality feature rich schematics, 2000 look and feel, and a wide range of import/export options.

If you are struggling with your existing system and feel its time for a change, why not give us a call and we will send you our free information pack. Or visit our web site and download a free trial copy of EDS.

Try before you Buy at www.quickroute.co.uk

Quickroute Systems Ltd, Regent House, Heaton Lane, Stockport SK4 1BS UK Tel 0161 476 0202 Fax 0161 476 0505 Email Info@quicksvs.demon.co.uk

Standalone Data Loggers Low-cost standalone data capture solution

T-Logger 44.99 + Vat Micro power standalone single channel temperature logger

X-Logger 69.99 + Vat

Micro power standalone voltage logger with 1 temperature and 3 voltages channels

- Initialised by a PC via a RS232 port
- Catch data and store the values into its on-board memory for future retrieval
- Data can be downloaded into a PC and viewed though Excel or other spreadsheet packages
- Win 95/98 driver for initialisation and download
- Ultra-low power consumption
- Sensors available for X-logger: temperature, humidity, light intensity, etc. Other Standalone Loggers
- Standalone Event Loggers (record occurrence of events)
- Standalone Data Loggers with memory up to 8 Mega byte.
- Intec designs standalone data loggers to your specification

Intec Associates Limited 11 Sandpiper Drive, Stockport, Cheshire, SK3 8UL, UK Tel: +44 (0)161 477 5855 E-mail: mail@intec-group.co.uk

www.intec-group.co.uk Fax: +44 (0)161 477 5755

CIRCLE NO.105 ON REPLY CARD

000

0

ADVANCED TIVE AERIA

The aerial consists of an outdoor head unit with a control and power unit and offers exceptional intermodulation performance: SOIP +90dBM, TOIP +55dBm. For the first time this permits full use of an active system around the If and mf broadcast bands where products found are only those radiated from transmitter sites

- General purpose professional reception 4kHz-30MHz.
- -10dB gain, field strength in volts/metre to 50 Ohms.
- Preselector and attenuators allow full dynamic range to be realised on practical receivers and spectrum analysers.
- Noise 150dBm in 1Hz. Clipping 16 volts/metre. Also 50 volts/metre version.

* Broadcast Monitor Receiver 150kHz-30MHz. Frequency Shifters for Howl Reduction * Stereo Variable Emphasis Limiter 3 * PPM10 In-vision PPM and chart recorder * Twin PPM Rack and Box Units. * PPM5 hybrid, PPM9 microprocessor and PPM8 IEC/DIN -50/+6dB drives and meter movements

SURREY ELECTRONICS LTD The Forge, Lucks Green, Cranleigh GU6 7BG Telephone: 01483 275997 Fax: 01483 276477

CIRCLE NO.104 ON REPLY CARD

Exploiting third world skills

S o, the Labour government's plan to fill the IT skills shortage by allowing large numbers of suitably skilled immigrants – mostly from the Indian subcontinent – to by-pass the normal channels and enter Britain freely is now virtually in place.

Why should anyone worry about this? These people will certainly not be a burden on the British social security system. They will be paying taxes along with the rest of us, and being educated people they will most likely fit easily into our society.

Apart from the obvious need to use up a bit more green belt to provide more housing in this tightly packed island, everything should be fine, shouldn't it? But it isn't.

Firstly, extracting large numbers of the brightest and best skilled personnel from third-world countries like India strikes a considerable blow to the Indian IT infrastructure. There have already been protests from India about a first-world country like Britain pilfering a third-world country's intellectual assets in order to prop up its shaky IT infrastructure in this way. This is entirely understandable.

The situation is similar to the recent raid that the NHS made in the Caribbean for nurses to shore up its equally deficient ranks. An undesirable result of this is that many hospitals in the Caribbean are now short-staffed. But then, why should we worry about that? We're all right Jack!

In both these cases, the fact that Britain is a former colonial power and is still behaving so thoughtlessly and selfishly towards its former colonies has raised hackles.

Secondly, there is evidence that there are numbers of well qualified IT people in Britain that are being excluded from the jobs market *because* of their age. A letter in the 21 September issue of *Computer Weekly* from a 38 year old IT graduate highlighted this interesting problem.

It appears that industry does not just want IT workers – it also wants *cheap* IT workers. Older IT professionals commanding a higher wage are out.

You can bet that the immigrant workers will not be paid the going rate. The law of supply and demand will ensure this. The jobs market will be diluted sufficiently to depress the general wage But by importing workers from abroad the politicians are pandering to the industry in this respect, and in doing so, promoting ageism.

Thirdly, an injection of IT personnel from abroad is the very epitome of the despised policy of shorttermism. It does absolutely nothing to address the roots of the problem – which is that we are simply not recruiting and training sufficient IT workers ourselves.

The problem is that not many school leavers are all that interested in IT at a technical level. They are acquiring some IT skills because that is almost unavoidable in schools these days. But they are much more worldly-wise than former generations.

School leavers know that the quickest route to a new BMW and that house in the country with a swimming pool is to be a Eurobond dealer, human rights lawyer or some similar parasitic trade along those lines. And who

Electronics World is published monthly. By post, current issue £2.65, back issues (if available). Orders, payments and general correspondence to L514, Electronics World, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Th:892984 REED BP G. Cheques should be made payable to Reed Business Information Ltd

Newstrade: Distributed by Marketforce (UK) Ltd, 247 Tottenham Court Road London W1P OAU, tel. 020 7907 7777. Subscriptions: Quadrant Subscription Services, Oakfield House

Perrymount Road, Haywards Heath, Sussex RH 16 3DH, Telephone 01444 445566. Please notify change of address. Subscription rates 1 year UK £36.00 2 years £58.00 3 years £72.00. Europe/Eu 1 year £51.00 2 years £82.00 3 years £103.00 ROW 1 year £61.00 2 years £98.00 3 years £123 can blame them? Why be in the hot seat as an overburdened and under-paid employee in the IT department of some demanding company, to be looked down on and patronised by a technically ignorant board of directors when more interesting careers with better rewards are offered elsewhere?

Below is reprinted an extract from a 1984 edition of *Electronics World* highlighting this very problem. It could have been written yesterday. And it highlights the total incompetence of our politicians regardless of which party they belong to.

Indeed, politics and not technology is once again at the very heart of this problem. Observers of the political scene – particularly those with a socialist leaning – will marvel at the fact that it is not an extreme right-wing anti-worker government doing this. It is a *Labour* government.

However, the more cynical of you will see it as just another example – as if we needed any more after the Dome fiasco – of the breathtaking moral bankruptcy of the current breed of career politician, whose main aim in life is to stay in power rather than advance any personal conviction.

Simon Wright

Extract from *Electronics World*, October 1984 To investigate, and make proposals to rectify, the country's shortage of skilled people in the information technology field, the DTI has set up an IT Skills Shortage Committee under the Chairmanship of Under-secretary John Butcher.

The Committee's first report looks at the shortage of graduate skills. The Alvey directorate has estimated a current shortfall of some 1500 graduates which is likely to escalate, if no action were taken, to 5000 by 1988.

Recommendations put forward by Committee are to increase the number of first degree places in the appropriate areas, increase the number of IT conversion courses for updating or upgrading a student's IT skills.

Areas identified as being in particularly short supply of the right technical skills are:artificial intelligence, largescale integrated circuit design, and software engineering. There is also a great shortage of teachers of these skills.

In addition to increasing the number of university and polytechnic places, the committee has recommended the institution of the Great Switch by reducing the number of places in less productive disciplines (the education spokesman in the Committee pointed out a more than ample supply of historians and biologists).

The major strategy is to encourage the industry to provide equipment and expertise in the setting up of a new Partnership of collaboration with the Government and with academic institutions.

Another strategy is to attract brain-drain ex-patriots back with suitable tax and capital incentives...

...The need for urgency is paramount, especially as it takes five years from the time that a 16 year old chooses which subjects in which to specialise to the time that a 21 year old emerges with a first degree.

Overseas advertising agents: France and Belgium: Pierre Mussard, 18-20 Place de la Madeleine, Paris 75008. United States of America: Ray Barnes, Reed Business Publishing Itd, 475 Park Avenue South, 2nd Fl New York, NY 10016 Tel; (212) 679 8888 Fax; (212) 679 9455 USA mailing agents: Mercury Airfreight International Itd Inc, 10(b) Englehard Ave, Avenel NJ 07001. Periodicals Postage Paid at Rahway NJ Postmaster. Send address changes to above. Printed by Polestar (Colchester) Ltd, Filmsetting by JJ Typographics

Ltd, Unit 4 Baron Court, Chandlers Way, Southend-on-Sea, Essex SS2 SSE.

© Reed Business Information Ltd 1997 ISSN 0959 8332

EDITOR

Martin Eccles 020 8652 3614

CONSULTANTS

lan Hickman Philip Darrington Frank Ogden

EDITORIAL ADMINISTRATION

Jackie Lowe 020 8652 3614

EDITORIAL E-MAILS

ADVERTISEMENT

SALES MANAGER David Wilson 0208 652 3033

GROUP SALES EXECUTIVE Pat Bunce 020 8652 8339

ADVERTISEMENT E-MAILS pat.bunce@rbi.co.uk

ADVERTISING PRODUCTION 020 8652 8339

PUBLISHER Mick Elliott

EDITORIAL FAX 020 8652 8111

CLASSIFIED FAX 020 8652 8938

NEWSTRADE ENQUIRIES 020 7907 7777

ISSN 0959-8332

For a full listing of RBI magazines: http://www.reedbusiness.com

SUBSCRIPTION HOTLINE Tel (0) 1444 475662 Fax (0) 1444 445447

SUBSCRIPTION QUERIES rbp.subscriptions@rbi.co.uk Tel (0) 1444 445566 Fax (0) 1444 445447

UPDATE

Consumer Association questions mobile phone hands-free test methods

Which? magazine's second set of mobile phone hands-free kit test results wboth ere revealed recently.

The Consumers' Association (CA), publisher of Which?, tested radiation levels from hands-free kits (HFKs) in April and discovered they increased radiation into the brain rather than decreasing it.

This first set of results was rubbished by both the phone industry and the DTI, which reported on its own set of tests in August.

Criticism was of the CA's choice of test. It constructed one that it considered a good model of actual use. Industry standard tests for HFKs are adaptations of tests designed for phone handsets – which are now, somewhat inaccurately, grouped under the more general term 'SAR' tests.

The second set of Which? tests were initiated to discover why its initial test results differed so markedly from the SAR tests performed by phone companies, HFK-makers and the DTI.

These repeated and extended the first set – at test house ERA – and performed the SAR tests at SAR Test, the test house used by the DTI.

The CA concludes that handset SAR tests are not applicable to HFKs. "The tests are designed to test mobile handsets. They do not always allow for the appropriate position of the handset cable [when used to test personal hands-free kits]," according to CA principal scientist Roy Brooker.

Now all the test results have been published and the CA is convinced that the SAR test and the CA's test are not mutually exclusive, and that

Key findings at a glance

 All hands-free kits can push in-brain signal levels up or down.

- Signal level is mainly dependent on free wire length 'd'.
- No rule-of-thumb can be made to minimise exposure.
- Specific industry tests for hands free kits should be devised.
- No kit/phone combination pushes signals above Euro-limits.

its tests are more representative of real HFK use.

It claims that, in normal use, inbrain signal levels are mainly determined by the length of cable between the phone antenna tip and ear piece (shown as 'd' in the diagram).

It also found the relationship between d and signal level always followed a notch-like curve. Level decreased for a narrow range of d and increased progressively either side of this. A movement of 4cm was enough to change from attenuation to gain.

The curve was similar, but not identical, to all HFK-phone combinations. Curve differences and steepness make a signal-reducing rule-of-thumb impossible.

Preliminary work, says the CA, shows that ferrite beads on the HFK lead can cut radiation levels. Some questions have been raised about the validity of the RF probe used in the test. A CA spokeswoman said the organisation was confident that the probe was valid.

The Which? test rig. The antenna is always at the same place, inside the simulated head. Crucial, says the CA, is that the hands-free kit hangs down as it does in use – impossible in industry standard 'SAR' tests. In-head levels were 10 to 350 per cent of measurements with the phone held to the head.

Steve Bush

UK parallel processing start-up is set for product launch

Aberdeen parallel processing start-up Axeon has completed a second round of funding, raising £3.5m to finance its product launch.

The Scottish firm plans to launch its 'learning processor' early next year. The design, used as a co-processor to a DSP, will enable 3G mobile phones to run at their maximum of 2Mbit/s, claimed Hamish Grant, CEO of Axeon.

"The current state of the art is potentially only going to deliver 56kbit/s in the 3G environment," Grant told *Electronics Weekly.* "They're talking about aspiring over the next three or four years to reach the 384kbit/s level."

Axeon's design is a parallel array of 256 Risc processors containing a patented algorithm, similar to a neural network. Unlike other arrays, each processor can operate independently using its own instruction set.

Its strength is solving problems that have uncertain data or uncertain data relationships. Channel equalisation in a mobile phone is a perfect example of this.

"If you integrate our component today, you will be able to get 2Mbit/s in an economic chip," said Grant.

The complexity of channel equalisation means it takes thousands of Mips on a conventional digital signal processor. Even if the task could be done conventionally, it would raise an unacceptable power figure.

Axeon's processor is orders of magnitude better than a DSP in terms of both overall performance and Mips per Watt, Grant said.

By the end of the year Grant hopes to have a fully working 3G prototype, while a team is working on a synthesisable version of the design.

The Phantom Power Box

48 volt microphone phantom powering unit

Professional portable units operating from an internal PP3 battery or external mains adaptor

 ★ Suitable for converting any microphone amplifier to P48 standard phantom power ★ High efficiency DC to DC converter for extended battery life ★ Accurate line balance for high common mode rejection ★ Low noise and distortion ★ Extensive RFI protection

The Balance Box (mic/line amplifier) – The Headphone Amplifier Box – The OneStop DIN rail mounting radio frequency interference filter and voltage transient protector for voltage and current loop process signal lines

Conford Electronics Conford Liphook Hants GU30 7QW Information line: 01428 751469 Fax: 751223 E-mail contact@confordelec.co.uk Web http://www.confordelec.co.uk/

CIRCLE NO.106 ON REPLY CARD

GENUINE GOVERNMENT SURPLUS

We currently have in stock a selection of MOD surplus electrical equipment. All items are untested and sold as seen. Please ring for more details.

Tektronics 466 Storage Oscilloscope	£99.00
Tektronics 2445a Oscilloscope 150mhz	£399.00
Phillips 3217 Oscilloscope 50mhz	£99.00
Gould OS300 Oscilloscope 20mhz as new, boxe	ed £99.00
Gould DS 4072 Oscilloscope 100mhz	£50.00
Racal 9009 Modulation Meter	£69.99
Static Sine Wave Inverter 8242 as new, boxed	£89.00
Megger Pat.2 Portable Appliance Tester	£39.99
Marconi 2019A Signal Generator	£249.00
80khz-1040mhz	

Find out more about us on our website WWW.FAMCO.CO.UK Church Lane, Croft, Skegness, Lincs (Just off the A52) Telephone: 01754 880880

CIRCLE NO.107 ON REPLY CARD

EW11/00

Government invests in 'Cybercops' to combat e-crime

The Government is to invest £62m to employ more than 80 specially trained 'Cybercops' to tackle crime on the Internet.

Home Secretary Jack Straw said the investment was a key part of the drive to make Britain the best place to do e-business.

A new National Management Information System (NMIS) will be set up for police forces in England

and Wales using £37m of the money

It will provide them with a comprehensive information management and analysis tool joining up data held on a variety of different police IT systems. It will present data in a consistent format so that the whole range of police business can be easily and reliable compared and analysed nationwide.

NMIS is likely to be rolled out throughout the criminal justice system and related organisations in the future. The other £25m will pay for up to 86 special police officers both nationally and locally.

There will be an extra 40 specially trained officers and the new hightech crime unit to investigate Internet and other e-crime will begin work in April 2001.

The black art of white LEDs

The white LED is the least understood of all recent LED developments, according to Philip Logan, business development manager for supplier Marl International.

Consequentially this product is the one most likely to exhibit unexpected characteristics to the unwary designer.

The white LED is produced by a combination of a blue high intensity LED, and a phosphor material. The narrow band blue output characteristic is used to excite the phosphor, which in turn fluoresces, resulting in a wideband response, emitting a bluish-white colour.

While this would appear to the naked eye to be white, it lacks much of the red spectrum, and has a radically different spectral output when compared with incandescent filament lamps," says Logan. LEDs are being used to replace

incandescent products in a wide range of retrofit applications, and in many instances, they are required to operate behind some form of optical filter. These optical filters are predominantly colour filters, used to remove certain bands of incandescent output to achieve particular colours.

"Because of the difference in spectral output outlined above, care needs to be taken when using a white LED to replace an incandescent bulb," says Logan.

For example, a red LED behind a red filter will give a better performance than using a white LED, despite the original light source being a white incandescent bulb. White LEDs have tremendous potential for illumination, rather than indication, and research is in progress to develop this type of application.

www.marl.co.uk

300mm wafers could give Taiwan world lead

Taiwan could take the lead in

semiconductor manufacturing in 2002/3 as seven out of the fifteen wafer fabs being built to use the larger 300mm wafer size are either Taiwanese-owned or are a part of a Taiwanese joint venture.

Such an advantage in manufacturing, which reduces costs per chip by 30 per cent, could propel Taiwan into a leading position in the semiconductor industry.

According to the Arizona analysts company IC Insights, the seven fabs being built either by Taiwanese companies or in a joint venture with a Taiwanese company are: Trecenti - the Hitachi/UMC joint venture to

build a 300mm fab in Japan due to come onstream in January next year; ProMOS, the Infineon/Mosel-Vitelic joint venture which aims to start volume production in 2002; Powerchip, the Mitsubishi/ Powerchip joint venture which expects to start running 300mm wafers in 2002; Macronix starting 2002, UMC starting next year; and two fabs at TSMC starting 2001 and 2002.

Europe has an interest in three of the 300mm fabs being built: ST/Philips at Crolles starting in 2002; Infineon/Motorola at Dresden due to move into volume in 2002, and Infineon's ProMOS joint venture fab.

Japan has an interest in three fabs: Hitachi's interest in Trecenti; Mitsubishi's interest in Powerchip, and NEC's own 300mm fab in Hiroshima.

America is involved in four fabs: TI in Dallas due to start next year; Intel in Oregon and Arizona due to start production in 2002, and IBM in New York.

The move from 200mm to 300mm has taken much longer than expected. In 1996, equipment trade body SEMI said 300mm equipment was 'already available' and forecast that there would be nine 300mm pilot lines and two volume production lines running in 1998.

'Electronics and Computing '95, '98, NT or 2000 **Principles V7'**

Studying electronics or computing or just want to keep up to-date in a easy and enjoyable way, then this fully interactive software is for you.

visit eptsoft.com or telephone for full details of more than a thousand menu items.

Electronics:-

Atomic Structures, DC Current flow, Basic Electronics, Simple DC Circuits, Types of Switching, Variable Voltages, Ohm's Law, DC Voltage, DC Current, Series/Parallel Resistors, AC Measurements, AC Voltage and Current, AC Theory, RCL Series/Parallel Circuits, Capacitance, Capacitors, Inductance, Inductors, Impedance, Communication System, Signals, Attenuators, Passive/Active Filters, Tuned Circuits, Coupling and Selectivity, Oscillators, Circuit Theorems. Diode Theory, Diode Applications, Transistor Theory, Bipolar Transistor, Transistor Configurations, Transistor Circuits, Field Effect Transistors, Operational Amplifier Theory and Applications, Sum and Difference Amplifiers. **Electrical:-**

DC and AC Power, SCR, Power Supplies, Voltage Regulators, Magnetism, Motors/Generators, Transformers, Three Phase Systems. Digital Techniques:-

Logic Gates, Flip Flops, Combinational Logic, Counters, Counting, Shift Registers, Logic Interfacing, Timers, Boolean Algebra and DeMorgan's Theorems.

Microprocessors and PIC Microcontrollers:-

Basic Micro-Computer, Busses, A.L.U, Clock and Reset, Instructions and Control, Memory Cells, ROM and RAM, Memory Addressing, Instructions, PIC Introduction, PIC16F84 Architecture, PIC16C71 A/D, Byte, Bit, Literal and Control Instructions.

Personal user £99.95 VAT Education £299.95 +VAT

(Includes unlimited multi-user site licence.)

Measurement and Component Testing:-Analogue multi-meter, Measurement, Component Testing Mathematics:-

Simple Numbers, Number Types, Roots, Triangle Ratio's, Triangle Angles, Area, Surface Area and Symmetry, Volume, Percentages, Ratio's, Fractions, Vectors, Circle Angles, Laws, Algebra Rules-Tige Powers, Simplifying, Equations, Graphing, Slope and Translate, Pl Angles, Complex Numbers, Statistics, Lottery Number Predictor, Phy Science.

Computer Science:-

Hardware Devices, Data Structures, Data Files, Binary Numbers, Binary Arithmetic.

Toolbox:-

DC Calculations, AC Calculations, Numbers, Applications Self-Assessment Questions:-

DC, AC, Power, Semi-Conductors, Op-Amps, Digital, Mathematics **Components and Equipment Picture Dictionary:-**High quality digital camera images and explanatory text.

ELECTRONICS LAB (Optional add-on hardware).

eptsoft limited. Pump House, Lockram Lane, Witham, Essex. UK. CM8 2BJ. Tel: +44 (0)1376 514008. Fax: +44 (0)870 0509660. Email: info@eptsoft.com. Switch, Delta, Visa and MasterCard accepted. No additional postage or airmail charges.

All Fords will have digital radio by 2004

The fledgling digital audio tuner market has been given a shot in the arm with Ford's announcement that it is to fit digital radio receivers in all new cars sold in the UK by 2004.

The car market has been considered crucial for digital radio by analysts and the industry as a means of achieving volume production which will result in lower prices.

Ford has also become a shareholder in the MXR consortium, which is bidding for UK regional digital radio licences. "This represents the single biggest positive step for the uptake of digital radio in the UK," said Phil Riley, MXR consortium's chairman.

Also, in a move to promote the technology, an organisation named the Digital Radio Development Bureau, is being created.

The Bureau will bring together broadcasters, retailers and manufacturers in a united effort to promote digital radio and to work together on developing sets.

"The task of the Bureau is to ensure that there are a wide variety and large number of sets in the market-place at competitive prices in as short a time as is reasonably possible," said Paul Brown, chief executive at the Commercial Radio Companies Association.

Brown played down a suggestion that the industry would follow the route taken by the digital TV industry and subsidise sets. "We're a very different medium; our income is derived entirely from sponsorship and advertising," said Brown, "We don't get anything back in the form of a subscription."

• A digital radio receiver for less than £300 is now available. The tuner, from VideoLogic Systems, connects to any hi-fi and will initially be available from selected Dixons stores.

Sensor film indicates tactile force between two surfaces

A sensor film that measures tactile force has been developed by US firm Sensor Products.

Called Pressurex, the film is used to measure the compression force between two surfaces. When placed between the surfaces and compressed, the film changes colour, reflecting the force between the surfaces. Comparing the film colour to a colour chart, or using an imaging system, allows pressure to be measured.

A typical application would be checking a laminating press for multi-layer PCB manufacture or checking the pressure between the rollers of a dry film laminator.

It could also reveal inconsistencies in resistor thickness across large substrates in hybrid chip manufacture. The image shows the lamination pressure of a multilayer PCB.

Internet buyers get goods return rights

A law protecting British consumers from dodgy Internet selling has come into force.

The Consumer Protection (Distance Selling) Regulations give consumers the right to obtain information about the sale of goods and the right to withdraw from a contract.

The law affects all forms of distance selling, such as mail order and catalogue shopping, but its most interesting impact is on the Web.

Whether buying a new PC mouse or a car, the buyer has the right to return the goods and get their money back for any reason.

Technology lawyer Dai Davis, a consultant with UK law firm Nabarro Nathanson, said sellers will have to accept some goods will be returned in less than perfect condition. And if the seller fails to inform the buyer of their rights, then the right to withdraw from the contract extends to three months and seven days. There are, as one would expect, exceptions, including sales of services such as accommodation, transport and catering. This also covers things like cinema tickets, personalised goods and software that is opened by the buyer.

200 pixels per inch liquid-crystal displays

IBM has started production of a 22-inch liquid-crystal display (LCD) that packs in 200 pixels per inch – a resolution around 12 times sharper than current monitors.

With nine million pixels in total, the display is said to be as clear and sharp as a photograph. Based on well known active matrix technology, the LCD uses aluminium instead of the more traditional molybdenum and tungsten.

Applications for the displays include medical imaging, weather forecasting, satellite mapping and publishing.

The first customer for the displays is the Lawrence Livermore National Laboratory in California, which will use it to display models of nuclear weapons ageing.

New display technology

Dublin start-up Nanomat is looking at the advantages of using electrochromic chemicals to make displays

anomat, a spin-off from University College Dublin, is taking a close look at electrochromic chemicals with a view to making displays. These rely on chemicals which change colour or transmissivity when electrons are added or removed and have been used in electrically-dimmable car rear view mirrors.

In a paper to the SID conference, Nanomat's senior scientist Dr Diarmuid O'Brien outlined the advantages and disadvantages of electrochromic displays (ECDs) and showed how the company has jumped the first hurdle, of super-slow response time.

ECDs have been made with electrodes in a solution of electrochromic chemicals.

"When the materials are used in solution, the response time is around 15 seconds because the electrochromic molecules have to diffuse to the electrodes," said O'Brien.

To quicken the electron transfer, Nanomat is attaching the colourchange materials directly to the electrodes. "By injecting electrons directly into the dye [EC material] we get a 15ms response time, and a memory of up to five days."

Nanomat claims that its ECD exceeds the optical performance of other displays – including ink on paper.

This means that the display can be updated quickly. It also means that it will retain that display for almost a week without power.

Achieving a profound colour change means altering the state of a lot of

Throw away your paperbacks?

Many attempts are being made to develop an effective display for electronic books.

What is needed is a device that has advantages over the original.

While it is unlikely to compete on cost for a long time, it must: be more compact, be at least as easy to read, and have negligible power consumption.

Assuming an electronic book only needs to compete with normal books, it will not need video-speed, may not need full colour and perhaps not even a grey-scale.

molecules, all of which have to be connected to the electrodes.

O'Brien has created a large surface area electrode that can accommodate a three dimensional matrix of EC molecules by sintering conductive nano-crystals over a layer of indium tin oxide (ITO) on a glass substrate.

Two similar sheets of glass, positioned with conductive sides together, are used to make the display cell.

A potential applied between the two conductors transfers electrons to the colour-change material, called a viologen, which changes from transparent to coloured.

Currently, different viologen chromophores can be blended to get green, blue, violet and black.

> Working electrode • Nanoporous wide

bandgap semiconductor • Phosphonated

viologen

Power

Electrolyte (with Integrated white reflective

particles)

Taking this into account, several backwater display technologies begin to look attractive for electronic books.

Among these are cholesteric LCDs (Ch-LCDs), ferroelectric LCDs, zenithal bistable LCDs, rotating micro-particle displays and electrophoretic displays. All of these can be used in non-emissive mode, so power is very low, and many of them are bi-stable, power consumption is zero between updates.

To this list can now be added electrochromic displays.

Between the conductors is a chargebalancing lithium-based electrolyte. This is loaded with white particles to give the chromophores a white background.

Now that speed is not an issue, Nanomat is looking for a way to multiplex a two-dimensional array of EC pixels.

Like liquid crystals, the materials exhibit a knee in their voltage/optical characteristic that lends itself to passive-matrix addressing. Unfortunately, the knee is not so profound as with liquid crystals which could lead to contrast reduction through the partial turn-on of pixels in the row and column of an addressed pixel. Solutions to this problem are under investigation.

- e -

ITO

Counter-electrode

conducting film Phosphonated redox

mediator

Nanoporous metallically

Glass

Steve Bush

Nanomat's

electrochromic display cell. The viologen on the left changes from transparent to violet when it accepts an electron. When viewed from the left, the colour shows up against the background of white particles suspended in the electrolyte. The electron source is also a colour-change material so a red on white image can be seen from the back of the display. Response speed is 15ms at 3V for small pixels. Tests indicate life exceeds 5.5 million display cycles.

Nanomat's guide to contrast ratios										
@0°	@45°	@80°								
9:1	8:1	7.5:1	3.5:1							
6:1	5.5:1	5:1	4.5:1							
4.5:1	4:1	4:1	3:1							
4:1	3:1	2:1	0							
18:1	7.5:1	6.5:1	3.5:1							
	@0° 9:1 6:1 4.5:1 4:1	@0° @30° 9:1 8:1 6:1 5.5:1 4.5:1 4:1 4:1 3:1	@0° @30° @45° 9:1 8:1 7.5:1 6:1 5.5:1 5:1 4.5:1 4:1 4:1 4:1 3:1 2:1							

SMALL SELECTION ONLY LISTED - EXPORT TRADE AND QUANTITY DISCOUNTS - RING US FOR YOUR REQUIREMENTS WHICH MAY BE IN STOCK

HP New Colour Spectrum Analysers LAST FEW ONLY HP141T+ 8552B IF + 8553B RF -1KHZ -110Mc/s - £500. HP141T+ 8552B IF + 8554B RF -100KHz -1250M - £600. HP141T+ 8552B IF + 8556A RF - 20Hz-300KHz - £400. HP141T+ 8552B IF + 8555A 10 MC/S-18GHzS - £1000 HP8443A Tracking Gen Counter 100KHz-110Mc/s - £200 HP8445B Tracking Preselector DC to ISGH2 - E250. HP8445B Tracking Generator • 5-1300Mc/s - E450. HP8444A OPT 059 Tracking Gen • 5-1500Mc/s - E650. HP35601A Spectrum Anz Interface - £300. HP8970A Noise Figure Meter + 346B Noise Head - £3k. HP8755A+B+C Scalar Network Anz PI - £250 + MF 180C -Heads 11664 Extra - £150 each. HP3709B Constellation ANZ £1,000. HP11715A AM-FM Test Source - £350. FARNELL TVS70MKII PU 0-70V 10 amps - £150. MARCONI 6500 Network Scaler Anz - £500. Heads available to 40GHz many types in stock. Mixers are available forANZs to 60GHz. Marconi TF2374 Zero Loss Probe - £200. Racal/Dana 2101 Microwave Counter - 10Hz-20GHz - with book as new £2k. Bacal/Dana 9303 True RMS Levelmeter + Head - £450 TEKA6902A also A6902B Isolator - £300-£400. TEK CT-5 High Current Transformer Probe - £250. HP Frequency comb generator type 8406 - £400. HP Sweep Oscillators type 8690 A+B + plug-in to 18GHz also 18-40GHz. HP Network Analyser type 8407A + 8412A + 8 - HUMIC/S - 1500 - £1000. HP 8410-A-B-C Network Analyser 110Mc/s to 12 GHz or 18 GHz - plus most other units and displays sed in this set-up 8411a-8412-8413-8414-8416-8740-8741-8742-8743-8749-8550. From £1k. 110Mc/s - £500 - £1000. 8411a-8412-9415-9415 From £1k. Racal/Dane 9101A 9302 RF millivoltmeter - 1/5/2CHz st ercf230-2400. Recal/Dana Modulation Meter Type 9009-9008 - 8Mc/ 1 5GHz - £150/2260 - 9009A £350. Recal Dan, Modulation Meter Type 9009 1 5GHz - £150/£250 – 9009A £350. Marconi RCL Bridge type TF2700 - £150. Marconi Microwave 6600A 1 sweep osc. Marconi Microwave 6600A 1 sweep osc., mainfram 6650Pl - 18-26.5 GHz or 6651 Pl - 26.5-40GHz-6750 £600. MF only £250. Gould J3B test oscillator + manual - £150 Barr & Stroud Variable filter EF3 0 1Hz 100 Dass -

law pass - 150, other makes in stock Recal/Dana 9300 RMS volumetor - £250. HP 8750A storage normalizer : £400 with lead + S.A. on M Marconi mod meters type TF2304 - £250 - TF2305 - £1,00 Racal/Dana counters-99504-8965-9966-9915-9916-9917-50M6/s-3GHz - £100 - £400 - all fitted with FX standards. HP180TR, HP181T, HP182T mainframes £300 - £500 HP432A-435A or B-436A-power meters + powerheads to 60GHz - £150 - £1750 - spare heads available. HP3586A or C selective level meter - £500. nP3356A 0F C Selective level meter - £300. HP86222A-8 Sweep PI-2 - 18GHz - £1000-£1250. HP86220A+B Sweep PI-2 - 18GHz - £1000 - £1250. HP86520C Mainframe - £250. IEEE £350. HP8165A Programmable signal source - 1MHZ - 50Mc HP3455/3456A Digital voltmeter - £40. HP5335A Universal time interval course r HP5335A Universal counter - 200Mc/s TEKTRONIX 577 Curve tracer + adaptors - 1900 TEKTRONIX 1502/1503 TDB cable test set - £400 HP8699B Sweep PI YIG oscillator .01 - 4GHz - £300. 8690B MF-£250, Both £500, Dummy Loads & Power att up to 2.5 kilowatts FX up to 18GHz - microwave parts new and ex equipt - relays - attenuators - switches - waveguides - Yigs - SMA - APC7

plugs - adaptors etc. qty. In stock. B&K Items in stock - ask for list. -Power Supplies Heavy duty + bench in stock, Weir - Thurlby - Racal etc. Ask for list. Large stock, all types to 400 amp - 100Kv. - Dia A HP8405A Vector voltmeter - late cole HP8508A Vector voltmeter - £2500 00.

LIGHT AND OPTICAL EOUPMENT Anritsu ML93A & Optical Lead Power Meter - £250. Anritsu ML93B & Optical Lead Power Meter - £350. Power Sensors for above MA96A - MA98A - MA913A Battery Pack MZ95A. Anritsu MW97A Pulse Echo Tester.

PI available - MH914C 1.3 - MH915B 1.3 - MH913B 0.85 -MH925A 1.3 - MH929A 1.55 - MH925A 1.3GI - MH914C 1.3SM £500 + one PI. Anritsu MW98A Time Domain Reflector. Pl available - MH914C 1.3 - MH915B 1.3 - MH913B 0.85 -MH925A 1.3 - MH929A 1.55 - MH925A 1.3GI - MH914C 1.3SM - £500 + one P.I. Anritsu MZ100A E/O Converter. + MG912B (LD 1.35) Light Source + MG92B (LD 0.85) Light Source £350. Anritsu MZ118A O/E Converter Anitsu M2118A 0/E Converter. +MH922A 0.8 0/E unit + MH923 A1.3 0/E unit £350. Anitsu ML96B Power Meter & Charger £450. Anitsu MN95B Variable Att. 1300 £100. Photo Dyne 1950 XR Continuous Att. 1300 - 1500 £100. Photo Dyne 1800 FA. Att £100.

Cossor-Raytheon 108L Optical Cable Fault Locator 0-1000M 0-10kM £200. TEK P6701 Optical Converter 700 MC/S-850 £250.

TEK OF150 Fibre Optic TDR - £750. HP81512A Head 150MC/S 950-1700 £250. HP84801A Fibre Power Sensor 600-1200 £250. HP8158B ATT OPT 002+011 1300-1550 £300. HP81519A RX DC-400MC/S 550-950 £250. STC OFR10 Reflectometer - £250. STC OFSK15 Machine jointing + eye magnifier - £250.

MISCELLANEOUS ITEMS HP 4261 LCR meter - £650. HP 4274 FX LCR meter - £1,500. HP 3488 Switch Control Unit + PI Boards - £500. HP 75000 VXI Bus Controllers + E1326B-DV quantity HP 83220A GSM DCS/PCS 1805-1990M evertor fo with 8922A - £2,000 HP 1630-1631-1650 Logic ANZ's in stock HP 8754A Network ANZ /S + 8: 02. + cables £1,500. HP 8754A Network ANZ HZ6 4 2600MC/S + 8502A + Cat £2,000. E2,000. HP 8350A Sweeper NE + 83540A PI 2₄8.4GHZ + 83545A PI 5 9 12.4GHZ eff 3 + £3,500. HP MICROWAVE NWT AMPLIFIER 489A11-2GHZ 300B -

E400 HP PREAMPLIFIER 8447A 0.1-400MC S - L00. Dua HP PREAMPLIFIER 84470 0.0 - .3GHZ - £400. HP POWER AMPLIFIER 844 E 0.01-1 3GHZ - £400. HP POE + POWER AMPLIFIER 8447F 0.01-1 3GHZ -HP 3574 Gain Ph se Meter 1HZ 13MC/S OPT 001 0 7400 00. Dua' ACOUNT AND A CONTRACT AND A CONTRACT

E350. MARCONI 6950-69608 Power Meters + Head - 7400-2900 MARCONI SIGNAL SOURCE-6055-6056-6057-6058-805 -ange + 18GH2 - £250-£400. CAL 1792 COMMUNICATION RX - £500 eath - £1,000 -

CAL 1792 COMMUNICATION RX - £500 earth - £1,000 -Bar model with back lighting and byte test. ACAL 1772 COMMUNICATION RX - £400-£500. PLESSEY PR250 A-G-H COMMUNICATION RX - £500-£900 TEK MODULE MAINFRAMES - TM501-502-603-504-506-CM5003-506.

EM6082506. TEK P15016-M1 - Prog Multi Interface - £250. FG Prog. 20MC/F Eurotion Gen - £400 - S1 - og Scanner - £250 - DM Prog DMM - £400. TEK 7000 OSCILLOSCOPE MAIN/FRAMES - 7603-7623 - 7633-7834-7854-7904-7904-70164-216047.1000. TEK 70000 // S - 7A11-7A12-7A18-7A18-7A19-7A22-71.24-7A26-7A29-7A42-7B10-7B15-7B53A-7B80-7B86-7892A, 111-7A26-7A29-7A42-7B10-7B15-7B53A-7B80-7B86-7892A, 111-

L. 7000 - 7511-7512-7514-7M11-51-92-53 54-55-00 551-57000 - 7511-7512-751-751 53-554 POWER SUPPLIES - 0621A-6623A-6624A-6632A-6652 As available - 56 6000 types 2POA.

SPECIAL OFFERS MARCONI 2019A SYNTHESIZED SIGNAL GENERATORS BOKC/S 1040MC/S - AM-FME E400 in instruction book

2500 inc. instruction b

tested. R&S APN 52 LF: g Gen at Hz = 260KHz dw book = £25 HP 5922 RADIO COMMUNICATION Test Setter. G-H-M. Options various. 52,000-63,000 each. HP-35220 A-E GMS UNITS for above £1.000-£1.500. WAVE TECK SCLUMBERGER 4001 Radio Communication Test Set internal spectrum anz £1.800-£2,000. ANRTSU MS555A2 RADIO Comm anz. TO1000 MCIS. N CB Tuba in this model £450.

ANRITSU MS55542 HADO CODM and TOTOL MOST CR Tube in this model 6450. TEK 24454-4CI 1500MCS SCOPE + new X1+X10 probe instruction bool 2500 each. HP4193A VECTOR IMPEDANCE METER + Probe Kit-OKHZ to 110 MC/S. 3.5k.

WE KEEP IN STOCK HP and other makes of RF Frequency doublers which when fitted to the RF output socket of a S/Generator doubles the output frequency EG.50-1300MC/S to 50-2600MC/S price from £250 - £450 each.

SPECTRUM ANALYZERS

HP 3580A 5HZ-50KHZ - £750. HP 3582A Dual 0.2HZ-25.5KHZ - £1,500. HP 3585A 20HZ-40MC/S - £3,500. HP 3588A 10HZ-150MC/S - £7,500 HP 8568A 100HZ-1.5GHZ - £3,500. HP 8568B 100HZ-1.5GHZ - £4,500. HP 8590B 9KC/S-1.8GHZ - £4,500. HP 8569B 10MC/S (0.01-22GHZ) - £3,500. HP 3581A Signal Analyzer 15HZ-50KHZ – £400. TEK492 50KHZ-21GHZ OPT 2 – £2,500. TEK492P 50KHZ-21GHZ OPT 1-2-3 – £3,500. TEK492AP 50KHZ-21GHZ OPT 1-2-3 - £4,000. TEK492BP 50KHZ-21GHZ - £3,000-£4,000. TEK495 100KHZ-1.8GHZ - £2,000. HP 8557A 0.01MC/S-350MC/S - £500 + MF180T or 180C -£150 - 182T - £500. HP 8558B 0.01-1500MC/S - £750 - MF180T or 180C - £150 -182T - £500

HP 8559A 0.01-21GHZ - £1,000 - MF180T or 180C - £150 -182T - £500.

182T – £500. HP 8901A AM FM Modulation ANZ Meter – £800. HP 8901B AM FM Modulation ANZ Meter – 1,750. HP 8903B Audio Analyzer – £1,000. HP 8903B Audio Analyzer – £1,000. MARCONI 2370 SPECTRUM ANALYZERS – HIGH QUALITY – DIGITAL STORAGE – 30HZ-110MC/S Large qty to clear as received from the stand add as is from pile complete or add £100 for basic testing and adjustment – callers preferred – block your proof from our sibku upite – discourts on the of ck your own from over sixty units - discount on gtys of

EARLY MODEL GREY - horizontal alloy cooling fins - £200. LATE MODEL GREY - vertical alloy cooling fins - £300. C LATE MODEL BROWN - as above (few only) - £500.

OSCILLOSCOPES

TEK 2465A 4ch-350MC/S - £1,550 TEK 2465A 4Ch-350MC/S = £1,550. TEK 2465A CT 4ch-350MC/S = £1,750. TEK 0.5 0. 2230 -100MC/S + 2 probes = £1,250. TEK 0.5 0. 2430A -152 M/S + 2 probes = £1,250. TEK DIS.0. 2430A -152 M/S + 2 probes = £2,000. TEK DIS.0. 2440 -000, S + 2 probes = £2,000. TEK TAS 475-85 11 - 20MCS + 4 ch + 2 probes = £900-£1,1%. TEK D.S.O. 2440 -3001. TEK D.S.O. 2440 -3001. TEK TAS 475-485 10

 Han 100 Arceso in the 2010 arces 4 cft + 2 probes - £900-£1.1%.
 HP1740A - 100MC/S + 2 probes - £250.
 HP1741A - 100MC/S storage + 2 probes - £200.
 HP1724A - 172XA - 1725A- 275MC/S + 2 probes - £300-£400.
 HP1745A - 100MC/S storage - large screen - £250.
 HP1745A - 1746A - 100MC/S - large screen - £350. HP54100A – 1GHz digitizing – £500. HP54200A – 50MC/S digitizing – £500 HP54501A - 100MC/S digitizing - £500 HP54100D - 1GHZ digitizing - £1,000

1

LICROWAVE COUNTERS - ALL LED READOUT EU3551D Autohet 20H2 18GH2 - E750. EIP 371 Micro Source Los DH2 18GH2 - E850. EIP 451 Micro Pulse Countr - 300MC/S-18GHz - E700. EIP 545 Microwave Frequency Counter - 10H2-18GHz - E1K. EIP 548A Microwave Frequency Counter - 10HZ-26.5GHz - C EV

P-575 Microwave Source Locking - 10Hz-18GHz - £1.2K. R 588 Microwave Pulse Counter - 300MC/S-26.5GHz -

2D 60548 Micro Counter 20HZ-24GHZ – SMA Socket – £800. SD 60548 Micro Counter 20HZ-18GHZ – N Socket – £700. SD 60540 Micro Counter 800MC/S-18GHz – £600. SD 62464 Micro Counter 20HZ-640Hz – £1.2K. SD 62444 Micro Counter 20HZ-45GHz – £400. P5352B Micro Counter OPT 010-005-46GHz - new in box -

P5340A Micro Counter 10HZ-18GHz - Nixey - £500. HP5342A Micro Counter 10HZ-18-24GHz – £800-£1K – OPTS 001-002-003-005-011 available. 001-002-003-003-011 available. HP5345A + 5344S Source Synchronizer – £1.5K. HP5345A + 5354A Plugin – 4GHZ – £700. HP5345A + 5355A Plugin – 4GHZ – £700. HP5385A 1GHZ 5386A-5386A 3GHZ Counter – £1K. HP5388A 1GHZ 5386A-5386A 3GHZ Counter – £1K-£2K. Racal/Dana Counter 1991-160MC/S – £200. Racal/Dana Counter 1992-1.3GHz – £600. Racal/Dana Counter 9921-3GHz - £350.

SIGNAL GENERATORS

HP8640A – AM-FM 0.5-512-1024MC/S – £200-£400. HP8640B – Phase locked – AM-FM-0.5-512-1024MC/S – £500-£1.2K. Opts 1-2-3 available. HP8654A - B AM-FM 10MC/S-520MC/S - £300. HP8656A SYN AM-FM 0.1-990MC/S - £900. HP8656B SYN AM-FM 0.1-990MC/S - £1.5K. HP8657A SYN AM-FM 0.1-1040MC/S - £2K. HP8657B SYN AM-FM 0.1-2060MC/S – £3K. HP8660C SYN AM-FM-PM-0.01-1300MC/S-2600MC/S – £2K. HP8660D SYN AM-FM-PM-0.01-1300MC/S-2600MC/S - £3K. HP8673D SYN AM-FM-PM-0.01-26.5 GHz - £12K. HP3312A Function Generator AM-FM 13MC/S-Dual – £300, HP3314A Function Generator AM-FM-VCO-20MC/S – £600, HP3325A SYN Function Generator 21MC/S – £800. HP3325B SYN Function Generator 21MC/S – £2K. HP8673-B SYN AM-FM-PH 2-26.5 GHz – £6.5K, HP3326A SYN 2CH Function Generator 13MC/S-IEEE – £1.4K. HP3336A-B-C SYN Func/Level Gen 21MC/S - £400-£300-£500. Racat/Dana 9081 SYN S/G AM-FM-PH-5-520MC/S - £300. Racal/Dana 9082 SYN S/G AM-FM-PH-1.5-520MC/S - £400. Racal/Dana 9084 SYN S/G AM-FM-PH-.001-104MC/S - £300. Racal/Dana 9087 SYN S/G AM-FM-PH-.001-1300MC/S - £1K. Anritsu MG3601A SYN AM-FM 0.1-1040MC/S - £1.2K.

ITEMS BOUGHT FROM HM GOVERNMENT BEING SURPLUS. PRICE IS EX WORKS. SAE FOR ENQUIRIES. PHONE FOR APPOINTMENT OR FOR DEMONSTRATION OF ANY ITEMS, AVAILABILITY OR PRICE CHANGE. VAT AND CARRIAGE EXTRA. ITEMS MARKED TESTED HAVE 30 DAY WARRANTY. WANTED: TEST EQUIPMENT-VALVES-PLUGS AND SOCKETS-SYNCROS-TRANSMITTING AND RECEIVING EQUIPMENT ETC.

Johns Radio, Whitehall Works, 84 Whitehall Road East, Birkenshaw, Bradford BD11 2ER. Tel: (01274) 684007. Fax: 651160

CIRCLE NO. 111 ON REPLY CARD

Cybercrime goes big-time

Andrew Emmerson reports on a communications crime that's completely out of control – phone fraud. What's more, we're all paying the price. sked to name the most prevalent wire fraud you'd probably guess bogus credit card orders over the Internet. But you'd be wrong. Global losses to Internet-related fraud reported last year by MasterCard and Visa amounted to a 'mere' \$10 million apiece, whereas phone calls charged to other users' accounts are over 2000 times higher.

In fact a new report issued by British consultancy Chorleywood Consulting conservatively estimates the impact of fraud in the telecomms industry world-wide to be over \$22bn in 2000 – and rising. And that's without taking into account the large amount of fraud on cellular networks.

The ease with which these frauds are perpetrated is amazing. What's even more surprising is the indolence of users to protect themselves against their antagonists. The techniques employed by the phraudsters – and the straightforward remedies of defence – are publicised widely yet users continually fail to take the most basic precautions.

For instance, the last organisation you'd expect to suffer an attack from phone fraudsters would be the Metropolitan Police headquarters at New Scotland Yard. But you'd be wrong. Only a few years ago the law-enforcers were obliged to spend $\pounds 15$ million revamping their phone system after losing a sum claimed as close to $\pounds 1$ million to phone crooks.

Users aren't the only victims

Mobile-phone operators have been stung too. BT Cellnet had the misfortune to sell over a million pre-pay handsets that allowed deceitful users to modify them to give free phone calls for life. This was in addition to an earlier fraud in which prepaid cellular phone cards were being topped up with stolen credit cards.

What's even more amazing is that these frauds are allowed

COMMUNICATIONS

to continue unabated. Eight years ago I wrote in this magazine,

"The fact these people get away with this so easily speaks volumes for the lack of security on modern user systems. Call it an allegory of modern times if you will, but it could not have occurred without the deskilling of communications management in large firms and the general ignorance of telephone users. The net result is that many phraudsters know more about the programming of modern call-connect systems than their official custodians, which is how the former can manipulate them undetected to their own ends."

Since then fraud has mushroomed, proving that while the phraudsters have sharpened their skills, comms managers and security experts have not.

Not surprisingly the main targets are smaller firms and public authorities ill-qualified in detecting and preventing this kind of theft. Some victims though are high-profile organisations that should have known better. Part of the problem, according to BT, is that nobody expects to be a victim of phone fraud; it only happens to other firms. And while everyone has heard of computer hackers and recognises that danger, they have a mental block accepting that a processor-controlled switchboard is just another form of computer and just as vulnerable.

"This unawareness is what makes phone fraud so prevalent," declares communications consultant Richard Cox, who has acted as expert witness in several cases involving deception of this kind. "What's more, unlike computer hacking, telephone fraud has not attracted major media attention, leading most people to underestimate the scale of the problem or how easily it is perpetrated."

Some kinds of phone crime target phone companies; the mobile phone frauds already mentioned are an example, he continues. But in most cases the thieves' victims are other users, using three main techniques.

How is it done?

The crudest method of phone fraud is tapping into another user's line at an external junction box; this is blatant but effective and quite easy to conceal.

Far less detectable is the 'in and out' dodge; many organisations now have a facility for people working from home or in the field to dial into the company switchboard and make longdistance calls through the firm's own facilities. If not properly supervised, this provision can be exploited by unauthorised users as well.

The latest – and most cunning – ruse entraps people visiting certain sex sites on the Internet. They are told they must download a special viewer program and on installing this, click to agree to the program's 'conditions'.

It's not obvious among all the verbiage that these are more than the usual terms; in fact they include an agreement allowing the software to re-route all subsequent Internet calls via an

extremely pricey premium rate or overseas number. The so-called viewer program does this surreptitiously by altering the user's dial-up network (DUN) file.

Dave Millett, security specialist with Lucent Technologies' new enterprise networks group, warns that the incidence of phone fraud is growing fast. He explains: "As new technologies are introduced, so fraud tends to migrate to them. However, 'social engineering' – tricking an insider into facilitating the fraud – is not dependent on technology and this is also on the increase. It's up to users to safeguard their own environment and to choose secure products. Hackers are here to stay, so never drop your guard."

All modern call-connect systems have calllogging facilities and users should exploit these capabilities to identify normal calling patterns and traffic levels. From this point on, detecting abnormal call activity is simple so long as a constant watch is maintained.

Specialist software to further simplify the task is widely available too. Employees have a part to play in fighting fraud too and must be educated to be vigilant and report abnormal telephone activity.

"It's this combination of speed, simplicity and stealth that makes phone fraud the perfect crime; no physical access is needed to the victim's premises. The perpetrators are also almost impossible to trace, too and while the police and phone companies all know where in east London the epicentre of this criminal activity is, that information alone is little help," states Cox. Clip from the 'Alliance to Outfox Phone Fraud' web site highlighting the UK fraud forum. The AOPF is a broad-based group of telecommunications industry and related companies whose goal is to reduce fraud by educating businesses and consumers about fraud prevention.

http://www.telefraud.com/about.htm

The law offers little consolation to victims because the perpetrators can commit their crime from any location and cover their tracks well. Consequently they are seldom caught.

Legal issues

The Telecommunications (Fraud) Act 1997 has made it an offence to possess or supply equipment for use in the course of, or in connection with, obtaining telecommunication services dishonestly. It also give law enforcers a much stronger weapon for punishing the perpetrators they manage to catch. Previously, the only indictable offence was the 'unlawful abstraction of electricity' – a somewhat nebulous crime which, for many judges at least, understated the true gravity of the offence.

That said, having adequate penalties in place is one thing, actually catching the phraudsters is quite another matter. This confirms technology as the chief defence against fraud in business telephone systems.

Although the invisible enemy is capable and highly skilled, it can only succeed when security is lax, where system passwords have been left as the default code set at the factory – or

Learn the lingo

Phone pirates and phraudsters are motivated by money and are criminals who happen to have selected telephone companies or users as their victims.

Phone freaks or phreakers claim to be explorers, driven to find loopholes and work-arounds in technology for the sheer joy of discovery. Like genuine computer hackers, they wreck nothing, neither do they steal. Phrackers are people who inhabit both worlds of computing and communications, and h/p (hacker/phreaker) is another term with the same meaning.

The 2600 magazine, sold in Borders bookshops and Tower Records in London, is the unofficial organ of the h/p fraternity; it has a website at www.2600.com, while other subversive material can be found throughout the Web and in particular at http://www.members.tripod.com/~SeusslyOne/FAQ.html and http://www.phonelosers.org.uk/

Double trouble for Cellnet

BT's Cellnet mobile phone operation has been the victim of two kinds of fraud. Other networks have managed to avoid both of them through more stringent security measures.

Fraud number one occurs because, unlike other operators, the company was accepting anybody's debit or credit card numbers to top up a pre-pay phone, without positive authorisation or identity check.

Victims have not been compensated for their loss and inconvenience, since Cellnet claims to be a victim as well. A fascinating website, namely www.pardoes.com, sets out the claimants' case and runs a campaign on their behalf.

The second fraud is the 'bottomless top-up'. It enables people to make free calls indefinitely on Philips Diga phones. An additional chip is soldered to the main circuit board of the Diga, which is then programmed with software obtainable over the Internet.

Onboard routines are supposed to record the amount of allocated call credit and deduct this from the allowed call total, but switching the handset off and back on again restores the credit to the original amount. Although the rogue phones are no longer on sale, fraudulent use continues because prepay users are effectively impossible to trace.

But why is mobile phone fraud so rife? Avoiding payment is not the only pull; the ability to conceal calls is a boon to drug dealers and other criminals who suspect they are under surveillance. There's also a booming business in selling stolen calls to immigrants wanting to call home to their relatives; people on low wages are extremely willing to pay a modest sum to the 'brokers' who set up calls for them.

indeed where they cannot be changed – and where little or no examination is made of call logging records. A competent communications manager will be abreast of all these issues already; lack of experience in these matters may make others the next victim. You cannot say you have not been warned!

Networks can fight back

Cerebrus, widely considered to be the most effective telecommunication fraud detection system available, is now even better at detecting pre-pay mobile phone fraud, according to its developers, Fraud Solutions.

The Cerebrus fraud detection and management system monitors up to 200 million calls each day for signs of fraudulent behaviour. It's a hybrid, and combines basic 'rules and thresholds' techniques – setting limits on spend or usage – with neural-network based artificial intelligence. In so doing Cerebrus identifies behavioural patterns – the signatures of fraud – and adaptively learns to detect new, unpredictable forms of fraud.

Cerebrus targets pre-pay fraud specifically by enabling operators to compare account use to their respective credit and debit levels. For example, if balances don't reduce in proportion to account usage there's a strong chance that fraud is taking place.

Mike Waddell, Fraud Solutions' Business Development Manager says, "The pre-pay sector has been caught out by its own success. Phones are available to people that couldn't previously qualify for one, such as infrequent users, teenagers and credit risks. This factor, combined with the customer's anonymity, has proved a fertile ground for fraud. Cerebrus gives companies the very best defence against pre-pay fraud."

Fast work

Phone fraud is characterised by its speed, simplicity and stealth; no physical access is needed to the victim's premises either. A total of 9400 stolen phone calls made between December 5 1999 and February 8 this year represented a loss of \$50000 to the US federal government, according to phone company officials.

A US army sergeant was arrested the same month and charged with giving out White House telephone access-code information that allowed individuals to make calls at government expense.

A British company providing a faxback service neglected to bar return calls to premium numbers. The result was a $\pounds 12\,000$ phone bill in just three weeks – the people running the premium rate numbers share half of the phone company's proceeds. Other phraudsters make faster work; in the USA a Seattle business was stung for $\$100\,000$ of fraudulent calls in just one weekend.

Playing on ignorance - and greed

Many Americans have responded to a message that they immediately call or fax a number in the 809 area code. The incentive is to receive information about winning a wonderful prize, or getting a job, or else to avoid litigation or receive information about someone who has been arrested or died.

The number is indistinguishable from any other North American number but because the 809 area code is in the Caribbean, international call charges apply. The scamsters then try to keep their victims on the phone as long as possible, at charges reported as up to \$25 per minute.

An identical fraud is not possible in Britain but a number of press advertisements for 'Sexy Susie' chat services format their overseas numbers in a way that disguises that they are actually in Guyana. There, the telephone administration pays back commission to operators of telephone information services in recognition of the enlarged incoming call traffic these numbers generate.

Low-tech works too

Not all telephone-related frauds involve high technology. There are other 'social engineering' dodges that can also cost phone users dear. One of these, rampant in New York a while back was master-minded by an elusive Russian named 'Serge'. It milked a fortune worth millions from various corporations on Madison Avenue. Serge and his colleagues set up two premium-rate '540' telephone numbers of the kind used by phone-sex lines. These were named 'Get Rich Fast Inc.' and 'Work for Yourself Inc.'

The gang despatched a fake messenger to pick up packages from reception desks. When told there was no parcel waiting, the 'messenger' asked the receptionist for permission to "call the office to see what is wrong". He would then dial the premium-rate number and hold a long and involved conversation – in Russian – at a cost of \$2.25 per minute. The charge was automatically transferred by the New York telephone company from the business victim to the crooks' accounts'. It was not known how much the con-men made altogether, but they withdrew \$240 000 in cash before the police discovered the front companies.

Easy peasy

A highly reputable telecomms consultancy tells of a client company that has already been ripped off for tens of thousands. With phone company assistance, the calls and the PBX ports used were traced and the culprits identified. The victim company refused to take action in court, however, for fear of bad publicity.

Direct Inward System Access is the feature that made the fraud possible. According to this consultancy, DISA is nothing less than a timebomb and should not be employed.

"It's just too open to fraudsters," says our informant. "Today's phrackers can erase their tracks so cleverly, you cannot even detect they have been through the switch." The consultancy has purchased service manuals on every PBX in the country and claims it can 'hack' the lot of them. And if it's that easy for them, it's equally easy for the phrackers.

The consultancy also institutes unannounced security checks on its customers – with the blessing of the comms managers concerned – and manages to fool employees into revealing passwords every time, even when warned to be on their guard. People are so trusting!

Preventing fraud

These free booklets provide useful advice on preventing fraud:

'Guidance and Best Practice for the Avoidance of Dial-Through Fraud', from industry body BABT, phone 01932-251200.

'Avoiding PBX Fraud – working actively to safeguard your system', from phone company Telewest, phone 0118-945 8522.

PROTEUS

Virtual System Modelling

Build It In Cyberspace

www.labcenter.co.uk circle no. 112 on Reply CARD

Develop and test complete micro-controller designs without building a physical prototype. PROTEUS VSM simulates the CPU <u>and</u> any additional electronics used in your designs. And it does so in real time. *

 CPU models for PIC and 8051 and series micro-controllers available now. 68HC11 comming soon. More CPU models under development. See website for latest info.

E60 Unersion unin Shareware Order Onlin Download & Order Onlin

- Interactive device models include LCD displays, RS232 terminal, universal keypad plus a range of switches, buttons, pots, LEDs, 7 segment displays and much more.
- Extensive debugging facilities including register and memory contents, breakpoints and single step modes.
- Source level debugging supported for selected development tools.
- Integrated 'make' utility compile and simulate with one keystroke.
- Over 4000 standard SPICE models included.
 Fully compatible with manufacturers' SPICE models
- DLL interfaces provided for application specific models.
- Based on SPICE3F5 mixed mode circuit simulator.
- CPU and interactive device models are sold separately build up your VSM system in affordable stages.
- ARES Lite PCB Layout also available.

*E.g. PROTEUS VSM can simulate an 8051 clocked at 12MHz on a 300MHz Pentium II.

Write, phone or fax for your free demo CD - or email info@labcenter.co.uk. Tel: 01756 753440. Fax: 01756 752857. 53-55 Main St, Grassington. BD23 5AA Paolo Antoniazzi and Marco Arecco have been addressing the challenge of transmitting and receiving on the Europe-wide amateur-radio allocation at 136kHz – a frequency low enough to allow an audio power amplifier to be used as a transmitter.

Comms at 136KHz

Fig. 1. At the base of the Marconi vertical antenna for 136kHz.

urope's new 135.7-137.8kHz LF amateur band was launched on 30 January 1998 in the UK. This low-frequency wireless band, and its 160-190kHz counterpart in the USA, presents unusual challenges. Working at a wavelength of 2206m for example, a hypothetical quarter-wave antenna would be a 550m high tower!

But this part of the RF spectrum is a wonderful place for experimenters. Only quasi-audio type instrumentation and lots of wire are needed to start.

Combining the modern PC's processing capability with old-style large coils and big vertical antennas with capacitive 'hats', you can obtain very interesting results¹.

To explain how, we will use a step by step method starting with transmission antennas. In the following, we analyse grounding, propagation, noise and load coils. To round the article off, we present a 136kHz mini-system suited for beginners and for preliminary tests in the field.

Very-short vertical antennas

It is very difficult to realise a quarter-wave vertical antenna because the wavelength corresponding to 136kHz is 2206m.

A practicable dimension would be in the 7 to 10m range, assuming that most people have a garden or some roof space. However, efficiency resulting from such a short antenna would be very small – less than 0.1%. For comparison, the height for a similar antenna used for the 14MHz band should be 7 to 10cm.

More complete technical documentation on the big aerials, are available from reference 2 - 'The monster antennas' – and reference 3.

RF DESIGN

Power radiated by a vertical antenna is related to radiation resistance R_r , effective value of antenna base current I_b and antenna directivity G_A .

The first way of improving radiation resistance is to make a taller antenna, but managing a 15 to 20m high tower is not easy. The radiation resistance of a short vertical antenna is given by the following equation,⁴

$$R_r = \frac{40\pi^2 h^2}{\lambda^2}$$

Here, R_r is radiation resistance in ohms, h is antenna height in metres, and λ is wavelength, which is 2206m at 136kHz.

This kind of antenna has a triangular current distribution: zero at the top and I_b at the base, i.e. the feed point. It is not difficult to show that the efficiency η of this kind of arrangement is very poor and the resulting radiation resistance is only few milliohms,⁵

$$\eta \approx \frac{R_r}{R_L + R_c}$$

considering that,

$$R_r \ll R_L + R_G$$

where R_L is coil resistance in ohms and R_G is ground resistance, also in ohms.

To improve the antenna efficiency it is necessary to increase the radiation resistance and antenna current distribution. This can be done by putting a capacitance at the top of the antenna, also known as an antenna's 'hat.' This kind of capacitance is obtained using one or more wires connected to the upper end of the vertical rod.

Another way of improving antenna efficiency is to minimise coil and ground losses R_L and R_G , but the reduction of the last one is not so easy.

The following relationship gives the distributed capacitance, of the vertical part of the antenna:

$$C_{\nu} = \frac{24h}{\log\left(\frac{1.15h}{d_{\nu}}\right)}$$

This will be around 10pF/m, considering the antenna dimensions involved here. In this equation, C_V is antenna vertical capacitance in picofarads while d_V is antenna vertical rod diameter in metres.

The following gives the horizontal distributed capacitance,

$$C_{H} = \frac{24l}{\log \frac{4h}{d_{H}}}$$

-

Here, C_H is antenna horizontal capacitance in picofarads, l is the antenna's horizontal wire, i.e. hat, length in metres, and d_H is horizontal wire diameter in metres. For the example involved here, this will be about 5pF/m.

Current at the top of the vertical antenna, assumed to have the same current increase versus capacitance as the whole antenna, is given by the following:

$$I_{t} = \frac{C_{H}I_{b}}{C_{H}C_{V}}$$

Here, I_t is current at the top of the antenna in amps while I_b is current supplied by the transmitter at the antenna feed point, also in amps.

These considerations allow you to calculate the radiation resistance of a vertical antenna with hat using,

Fig. 2. Ground resistance versus rod length in a typical earth $100\Omega/m$.

At this point, you can calculate the effective power radiated by the antenna discussed here, considering that G_A is 3dB the gain of a short vertical antenna – and not the theoretical $4.78dB^6$.

$$P_r = R_r I_b^2 G_A$$

Here, P_r is effective power radiated by the antenna in W_{erp} .

To check the complete system, a relatively simple antenna has been constructed with a vertical rod of 7m isolated from ground by a plastic plate, Fig. 1. This antenna was implemented using 1in (25.4mm) stainless-steel tubes loaded at the upper end by 70m of 3mm diameter copper wire.

This kind of arrangement has a total capacitance of 450pF. It allows trapezoidal current distribution on the antenna with a ratio between the top and the base currents of about 0.85. A consequence of the capacitive hat is a radiation resistance estimated at about 14m Ω . This corresponds to an effective radiated power increase of about 5dB relative to the same antenna without hat, in which case, R_r is $4m\Omega$.

Table 1 shows the radiation resistance calculated in three short vertical antennas: R_{r1} is without hat, R_{r2} is with a per-

fect hat, and R_{r3} involves a normal hat. Using radiation resistance R_{r3} , which is the most practicable, we computed the effective radiated power considering an effective base current of 0.5A (P_{O1}) or 4A (P_{O2}).

We tuned our antenna by making the loading coil together with the total antenna capacitance resonant at 136kHz. The antenna bandwidth, considering the total circuit resistance, R_L+R_G , is about 800Hz. To fine tune it, we used an additional inductor of 250µH selectable in 50µH steps.

The importance of a good ground

A big problem with LF is making an effective ground connection. If you have a country house with a big garden, you probably won't have grounding problems. As is well known, earth is inherently poor conductor. It normally has resistivities in the range of 10 to 1000Ω per metre, or 10^{-1} to 10^{-3} S/m, so the conductivity of the metal used for the earthing rod is not too important.

Ground resistance $R_{\rm G}$ can be viewed as the resistance resulting from a series of equally thick concentric shells of earth around the ground rod. With a typical 3m rod, half of the resistance is contained within a cylinder of 10-15cm radius around the rod⁷.

The only way to reduce the ground resistance is to use multiple electrodes. Adding more ground rods reduces the earthing resistance, but the final resistance is higher than the value simply obtained by dividing the resistance of a single rod by the number of parallel rods.

A single 3m rod, 25mm in diameter, driven into soil with $100\Omega/m$ average resistivity, Fig. 2, will have an earthing impedance of about 30Ω measured at 50-60Hz. Using four rods in parallel, placed at 10-15m in a square, will give a final LF resistance of $10-15\Omega$.

At 136kHz, the inductance of the connecting cable is not important, but a large wire is needed to avoid skin-effect resistances. Using for example the 42 by 0.18mm Litz wires that we used for the coils results in just $0.0164\Omega/m$ DC resistance. This equates to 0.2Ω of RF resistance for a 10 metre run.

When using four or more parallel ground connections, the resistance of the wires is not too important. We used standard 3mm² flexible copper wire.

In our tests 2 by 4m deep rods and 2 by 2m deep rods were used at a distance from the common ground point – at the base of the Marconi vertical antenna – of 10-12m. The measured value of our ground resistance, $R_{\rm G}$, at 136kHz was 11 to 14 Ω .

For any type of electrode that may be used to connect the system to earth, its ground resistance is directly proportional to the resistivity of the soil. Knowing the earth resistance and impedance is very important since it governs the efficiency of the complete system, Fig. 3. See references 8 and 9 for more information on the electrical characteristics of the surface of the earth. The world atlas of ground conductivities is available from reference 10.

Distance covered

Propagation at 136kHz is mainly groundwave during the day with some skywave propagation at night, Fig. 4. The skywave behaviour is calculated using the CCIR simplified model¹¹ for typical ground conductivity. Achievable range depends very much on the transmitting station's capabilities. The better equipped stations now achieve several hundred kilometres in daytime and up to 1000 to 2000km at night.

Most of the available information on LF propagation originated from an old book by A. Watt¹², a well known paper from J. A. Adcock⁶ and from practical field experiments.

Low-frequency propagation - at 10 to 200kHz - differs

from high-frequency propagation in a number of respects. Surface wave propagation is very strong. There is no skip zone, although low angle sky wave radiation is dominant. This is because of the low height of the reflecting plane and the long distance travelled by the surface wave.

Where the surface wave meets the sky wave, the two merge together, possibly with some cancelling or adding of the two where the strengths are equal.

From 200kHz downwards, both surface and sky wave improve. The result of this is that the zone where the surface wave equals the sky wave remains between 500 and 1000km. At 136 to 200kHz, propagation is poor in the day and reasonable at night. Between 10 and 30kHz, propagation is excellent both day and night.

Propagation issues

All LF transmissions are vertically polarised. In fact, it is almost impossible to radiate any horizontal component unless you are transmitting from an aircraft. From an LF perspective, the main limiting factor is the noise level.

The frequencies where propagation is best is also the place where noise is highest. This is the main reason for very high powers being used for very long distance communications by commercial and military stations. Another reason for high powers being used is poor antenna efficiency.

At LF, ground loss is very low. At all low frequencies, it only starts to become significant at distances of more than 500km, even over poor ground.

Although surface wave propagation depends on the fairly basic physical phenomenon of diffraction, calculating path loss depends upon a number of factors. Path loss graphs from 10kHz to 30MHz are given by CCIR/ITU¹³.

At all radio frequencies, the surface wave is composed of several components. The most significant waves are direct, reflected and a diffracted wave derived from the edge of the wave shadow. At LF, the direct and reflected wave⁶ at a low angle to the ground are opposite in phase and totally cancel each other. This leaves the diffracted wave as the dominant wave.

Gain of a short dipole is 1.78dBi – i.e. 1.78dB relative to an isotropic – at right angles to the wire. If the antenna is above a perfect ground, the lower half of the radiated energy will be added to the upper half and this adds another 3dB.

In normal operation on long wave, the antenna is always vertical and always short. This means that the gain is always 4.78dBi, or threefold. Due to losses of the signal to the ground and to supplying the surface wave by diffraction, the lower edge of the radiation pattern is depleted. In our calculations for Table 1 we used only 3dB for G_A .

The characteristic of loss of signal to ground is known as 'cut back'. At LF, cut back is less than at HF. Low-angle signals bend due to the diffraction that produces the surface wave, and the sky wave path just above is also curved. For an ionospheric reflecting layer 90km high, the expected maximum length of a single hop sky wave is about 2000km. In practice, the hop can be usefully extended to more than 2800km.

Very interesting field-strength measurements in the 136kHz band and on DCF39 – a German 138.830kHz station with 40kW radiated power – are shown on the web site of DK8KW¹⁴.

Band limiting beats the noise

The final factor and the biggest problem in the band is noise. No matter how strong a signal is, the signal-to-noise ratio is always the limiting factor. This noise comes mostly from atmospheric electrical discharges throughout the whole world. It is applicable whatever real antenna is used for

Table 1. Radiation resistance an	d radiated power for Marconi
antennas at 136kHz.	

Heigh	t	Degree	Rri	R _{r2}	R ₃ (*)	P01	PO2
(m)	(inches	;)	(Ω)	· (Ω)	(Ω)	(mW)	(mW)
5.0	197	0.82	0.0020	0.0081	0.0070	3.49	224
6.0	236	0.98	0.0029	0.0117	0.0101	5.04	323
7.0	276	1.14	0.0040	0.0159	0.0139	6. 95	445
10.0	394	1.63	0.0081	0.0324	0.0282	14.10	902
14.0	551	2.28	0.015 9	0.0636	0.0554	27.69	1773
20.0	787	3.26	0.0324	0.1298	0.1129	5 6.46	3613
28.0	1102	4.56	0.0636	0.2544	0.2216	110.80	7091

 $G_A = 3$ dB, comprising gain of short vertical plus ground reflection.

 $\frac{I_{top}}{I_{base}} = 0.85$

136kHz amateur band

In the UK, the introduction of the 'European Harmonised Amateur Low Frequency' spectrum allocation took place in January 1998. It spreads from 135.7 to 137.8kHz and replaces the old 73kHz allocation, which was withdrawn in June 2000.

Note that only amateurs with a Class-A licence are allowed to operate equipment at frequencies below 30MHz.

receiving.

The only real antidote to the noise is to work with an extremely low bandwidth – much lower than the 100-250Hz used by HF people.

For the tests, we used an interesting high-quality 10kHz IF filter designed for telecoms. It has a -3dB bandwidth of 20Hz and is still only ± 50 Hz wide at -50dB. It attenuates an interfering signal separated by 100Hz by more than 90dB.

Slow CW

To overcome the noise limits, many stations use the so-called 'slow-CW' to operate in the LF bands. Slow-CW allows you to detect signals that are far below the noise levels and can not be detected by ear. Using a personal computer, an audio card and specific spectrum analyser (FFT) software like Spectrogram 5 for example, signals 20dB below the noise floor can be detected! Typical dot lengths of 3 to 5 seconds have been established to do the job.

Atmospheric noise at LF is high and increases at a very high rate with decreasing frequency. Noise maps and curves are given in texts on the subject.

Typical noise figures are given in Table 2. These are intended as a guide to receiving noise level on 136-190kHz using CW reception with 100Hz and 25Hz bandwidth. The figures are relative to 1μ V/m.

More scientific data on LF noise are available from tests made in 1957^{15,16} in Canada. These tests were carried out at 107kHz with a bandwidth of 4500Hz and are shown in Fig.

LF noise levels at 1. n.	36 to 1 9 0kHz –
BW = 100Hz	BW = 25Hz
-15 dB	-21 dB
-5 dB	-11 dB
30 dB	-36 dB
-18 dB	-24 dB
	n. BW = 100Hz −15 dB −5 dB −30 dB

5. Of course, man-made noise is also important, but it is unpredictable, ¹³ Fig. 6.

Fig. 7. Minimum coil wire length versus coil diameter and D/Le – a starting point for realising high-current, high-quality inductors. Interference on the 136kHz band has been caused by highspeed data carried by telephone networks being radiated due to incorrect screening practices. ADSL carrying internet traffic at high speed over normal twisted pair telephone lines is likely to compound the problem. It uses 256 modulated carrier frequencies from 26kHz up to 1.5MHz. It is not yet clear whether there will be serious interference problems from ADSL though.

It is likely that noise from these sources will increase in time, as the commercial advantages of high speed internet and other data links seem to outweigh many other consider-

Fig. 8. Final load inductor – 3mH, with a Q of 600 at 136kHz.

ations. Bear in mind that the balanced driver that sends ADSL signals over the 120Ω line – i.e. the telephone's twisted pair – has an output of +20dBm.

The art of high-Q coils

The simplest form of loading network is a coil in series with the vertical Marconi-type antenna. This coil tunes the capacitive reactance of the antenna and matches the feed point down to a reasonable level of 15 to 50Ω .

As already mentioned, a way to improve the antenna efficiency is to drastically reduce the series resistance of the coil – down to less than 5Ω for example – by designing an inductor having a very high quality factor 'Q'.

This equation defines coil quality factor,

$$Q = \frac{2\pi fL}{R_{AC}}$$

\$

Here, f is frequency in kilohertz, L is inductance in millihenries and R_{AC} is the LF equivalent series resistance in ohms.

Losses that impact the quality factor of an LF coil are:

- skin effect of the wires
- proximity effect between contiguous winding turns
- dielectric properties of the distributed capacitance
- coil-support material electrical performance

The resistance that a copper wire presents against a direct current flowing is given by,

$$R_{DC} = \frac{2.23 \times 10^{-2}}{d^2}$$

Here, R_{DC} is DC resistance for unit of length in Ω/m and d is the wire diameter in millimetres.

If the current alternates, the inner part of the wire has a higher reactance than in the previous case and the wire resistance becomes,

$$R_{AC} = 8.374 \times 10^{-2} \, \frac{\sqrt{f}}{d}$$

where R_{AC} is the AC resistance for unit of length in Ω/m and f is frequency in megahertz. A more accurate computation of the resistance in alternating current, namely skin effect, is reported in reference 17.

To reduce the resistance generated by skin effect, Litz wire is used. It comprises a lot of thin insulated wires connected together at the ends.

When two or more adjacent wires are carrying current, the current distribution in every conductor is submitted to the magnetic field generated by the adjacent wires. This effect, namely proximity effect, significantly increases the value of $R_{\rm AC}$ calculated previously.

While experimenting, we verified the impact of this effect on the coil quality factor. Have a look at L04 and L05 data in **Table 3**. There, the 'Q' increase is related to the pitch increase from 1 to 2mm.

Dielectric losses occur due to the material used to insulate the winding's conductors, enamel for instance. Such losses are negligible though in relation to the total capacitance needed for resonance at LF.

During the experimental phase, we tried using common grey PVC tube. We found this to be the worst material, as you will see from L01 in Table 3. Compare that coil's quality factor with that of the coils wound on wood and air.

The best coil was one wound on a support comprising eight cylindrical pieces of wood connected together by two

Table 3. S	pecifications	of high-O	coils we	tested for	use at LE.
i uore o. o	prementons	Vi ingi Q	cons me	icsicu ioi	use at LT

										136kHz			200kHz		
Coil type	Coil dia	Wi re d ia	Litz	Turns	Coll Le	D/Le	Wire length	L	R _{DC}	XL	Q	RAC	XL	Q	RAC
		(mm)	(mm)	(cores) (mm)		(m)	(mH)	(Ω)	(Ω)	(*)	(Ω)	(Ω)	(*)	(Ω)
Grey PVC	160	0.90	-	175	176	0.91	88	3.12	2.43	2665	205	13.0	3 919	187	21.0
Air+wood	160	0.18	30	120	210	0.76	60	1.40	1.38	1196	513	2.33	1758	534	3.29
Air +wood	200	0.18	42	157	272	0.73	99	2.70	1.63	2306	507	4.55	3391	435	7.80
Air +wood	330	0.90	-	85	87	3.80	88	3.30	2.43	2818	237	11.9	4145	230	18.0
Air +wood	330	0.90	-	85	165	2.00	88	2.50	2.43	2135	318	6.71	3140	309	10.16
Air +wood	330	0.18	42	94	168	1.96	97	3.00	1.59	2562	597	4.29	3768	541	6.97
v															
$*O = \frac{\Lambda_L}{\Lambda_L}$															

plates of wood with a hole in the centre. This kind of support minimises the mass of material – i.e. wood – within the inductor winding in order to reduce losses.

The inductance of an LF coil can be calculated using,

$$L = 2.53 \times \frac{10'}{f^2 C_A}$$

RAC

where L is coil inductance in millihenries, f is frequency in kilohertz and C_A is total aerial capacitance comprising vertical + hat capacitances, in picofarads.

A further method of minimising the winding series resistance is to have the minimum wire length that corresponds to have a ratio of 2.2 between the coil diameter and its effective length, i.e. D/L_e , Fig. 7. You can vary this ratio from 1 to about 4.8 without a drastic worsening of the inductor performances.

At this point you can calculate the number of turns of the winding using,:

N =

$$5.08 \times 10^5 Lp + \sqrt{(5.08 \times 10^5 Lp)^2 + 4.572 \times 10^5 LD^3}$$

D²

Here, N is the number of turns of the coil, L is the value of loading inductance in millihenries, p is the pitch between two adjacent turns in millimetres and D is inductor diameter, also in millimetres. Pitch p is equal to, or more than, the wire diameter including its insulation.

The above formulas allow you to calculate the inductance of a single-layer coil with an accuracy of 1%, as confirmed by the experimental results.

Coil performance tests

Table 3 shows the results from all the inductors we tried during our evaluation. Coil L06 was the last one tested and it summarises the experience we achieved in this field.

This inductor, Fig. 8, has been used to load the 136kHz transmitter to the antenna and ground arrangements previously described.

After building the coils, we needed to perform the merit factor measurements in order to confirm the theoretical results of our study. To do this, we developed an original method for minimising losses caused by making measurements. The advantage of our novel test circuit, Fig. 9, is that it measures the series resonance instead of the parallel one.

When voltage V_X is one half of the voltage at the output of the transformer, the resistance is equal to R_{AC} . The relevant value, R_S , can be measured by a simple digital ohmmeter. Caution is needed while making the measurements to prevent errors. It is important that the coil under test and its magnetic field are far away from metallic surfaces and

do not intercept external unwanted magnetic fields.

Such large coils become a loop receiving antenna so the measurements must be repeated with the winding in different positions and orientations to allow errors to be detected. Another thing worth considering when making measurements is whether the length of the antenna's connecting wire is affecting the test result. Fig. 10. A group of large coils that we used for the Q factor tests.

Considering the number of possible error sources, we suggest that you use a reference inductor to check the quality of the measurements performed. For this purpose we used a Boonton shielded coil, with an inductance of 2.5mH and a Q of170. It is visible in Fig. 10 at the top right, together with the group of inductors made.

Fig. 11. Simple 136kHz linear amplifier using a low-cost monolithic IC.

Fig. 12. Shielded and tuned LF loop antenna comprising 18 turns of TVsatellite cable, together with a balanced amplifier.

A starting point for work at 136kHz

A very simple transmission circuit for use at 136kHz is shown in Fig. 11. It includes a common audio power amplifier used in high-quality TV sets, namely the TDA7265 from STMicroelectronics. A printed circuit board and more technical information on this device are available on the web site at www.st.com.

At audio frequencies, typical output power of this amplifier is 25+25W with 4Ω speakers. At 136kHz the maximum output power drops to about 4W. This output power is more than adequate for LF system tests, generating up to 0.5A of antenna current.

Transformer T_1 is implemented using a standard FT101-43 one inch toroidal core. It is used to match the required 4Ω load to the 16-18 Ω total resistance of the system, i.e. the antenna plus load coil plus ground.

The coil selected for use as a load for the Marconi antenna is shown in Fig. 8. It has an inductance of 3mH and a Q of 600. Total loading seen by the output transformer, i.e. at the base of the 7m long vertical antenna, comprises 4.3 Ω of the coil, R_L , and 12 Ω for the ground, R_G , i.e. 16.3 Ω . Loading on the amplifier is 4 Ω .

You can see the base of the antenna and its load coil in the Fig. 1.

Receiving antenna

In the receiving section of the system, the shielded loop antenna, Fig. 12, performs best. A tuned-loop antenna provides the required front-end selectivity. A balanced input preamplifier using a TSH151 low-noise operational amplifier with power bandwidth up to 200kHz provides the required gain.

We use a gain of 26dB to provide a +6dB for the output matched to $50/75\Omega$. In effect the shield, made using satellite TV coaxial cable, is not so important. It is also a limiting factor as it reduces the number of turns, lowering the coil's Q factor.

The shielded-loop version in the photo was used for tests. Since then we have started to produce a new, larger loop that is well balanced and doesn't have any shield. A directional magnetic loop, sensitive only to the magnetic component of the field, will help to eliminate the effects of the various nearfield sources of interferences – particularly man-made noise¹.

Our first loop antenna, Fig. 12, has an area of $0.48m^2$ and uses 18 turns, resulting in a Q of 50. Its equivalent height at 136kHz, where λ is 2206m, is,

$$h_e = 2\pi AN \frac{Q}{\lambda} = 6.28 \times 0.48 \times 18 \times \frac{50}{2206} = 1.23 \text{ m}$$

At 136kHz, the operational Q is always near 50. To have a working bandwidth of not less than 2.1kHz from 135.7 to 136.8kHz, all the parameters of the loop can be fixed, apart from A and N.

The simplified formula for the equivalent height of receiving loops at 136kHz is,

 $h_e = K \times AN = 0.142 \times AN$

For the new version of the loop, with an area of $2.0m^2$, 44 turns and the same Q, the effective height will be,

 $h_e = K \times AN = 0.142 \times AN = 0.142 \times 44 \times 2 = 12.5 \text{ m}$

Note that this is a 20dB more gain! More turns is good, more diameter is even better.

W.E. Payne, N4YWK, suggests that the product of A and N is the only term that describes the characteristics of the loop itself. A figure of merit is the effective aperture, A_e , which is the physical area multiplied by the number of turns¹⁸.

References

- Dodd, Peter, G3LDO, 'The LF Experimenter's Source Book', RSGB, 2nd Edition, 1998.
- Byron, W J, W7DHD, 'The Monster Antennas,' Comm. Quarterly, Spring 1996, p. 5.
- Byron, W J, W7DHD, 'A Word About Short Verticals,' Comm. Quarterly, Fall 1998, p. 4.
- 4. ON7YD, 'Antennas for 136kHz,' www.qsl.net/on7yd/136ant.htm
- Curry, Dave, 'Basic 1750 m. Transmitting Antennas,' www.fix.net/~jparker/curry/1750mta.htm
- Adcock, J A, VK3ACA, 'Propagation of Long Radio Waves,' *Amateur Radio Magazine*, June to September 1991.
- Mardiguian, M, 'Grounding and Bonding,' Vol. 2, Interf. Control Tech. Inc, 1995, p. 2.43.
- CCIR/ITU, 'Electrical Characteristics of the Surface of the Earth,' REC.527-3, 1992.
- 9. Goodman, J M, 'HF Communications, Science and Technology,' Van Nostrand, 1992, p. 193.
- CCIR/ITU, 'World Atlas of Ground Conductivities,' REC. 832, 1992.
- 11. Soegiono, Gamal, 'LF Propagation Abstracts,' 1999, http://www.lwca.org/library/lfprop
- 12. Watt, A D, 'VLF Radio Engineering, Pergamon Press, 1967
- CCIR/ITU, 'Ground-Wave Propagation Curves for Frequencies between 10kHz and 30MHz,' REC. 368-7, October 1992.
- 14. DK8KW, 'LF field strength measurements,' http://home.tonline.de/home/dk8kw/index.html
- Watt, A D. and Maxwell, E L, 'Characteristics of atmospheric noise from 1 to 100kc,' Proceedings of the IRE, 1955, p. 787.
- Mc Kerrow, C A, 'Measurements of Atmospheric Noise in Canada,' Proceedings of the IRE, 1955, pp. 782-786.
- 17. Terman, F E, 'Radio Engineer's Handbook,' 1958.
- Payne, W E, N4YWK, 'Sensitivity of Multi-Turn Receiving Loops,' http://www.lwca.org/library/articles

Further reading

Goodman, J M, 'HF Communications, Science and Technology,' Van Nostrand, 1992, p. 336.

OBSOLETE - SHORT SUPPLY - BULK

THE AMAZING TELEBOX

Converts your colour monitor into a QUALITY COLOUR TVII

The TELEBOX is an attractive fully cased mains powered unit. containing all electronics ready to plug into a host of video monitors or AV equipment which are fitted with a composite video or SCART input. The composite video output will also plug directly into most video recorders, allowing receivation of TV channels not normally receivable on most television receivers" (TELEBOX MB). Push button controls on the front panel allow reception of 8 fully tuneable off at UHF colour television channels. TELEBOX MB covers vitually all television frequencies VHF and UHF including the HYPERBAND as used by most cable TV operators. Ideal for desktop computer video systems & PIP (picture in picture) setup. For complete compatibility - even for monitors without sound - an integral 4 watt audio amplifier and low level Hi Fi audio output are provided as standard. Brand new - fully guaranteed.

TELEBOX ST for composite video input type monitors tarked. TELEBOX ST for composite video input type monitors tarked. TELEBOX MB Multiband VHF/UHF/Cable/Hyperband tuner 589.95 For overseas PAL versions state 5.5 or 6 mHz sound specification. "For cable / hyperband signal reception Telebox MB should be con-nected to a cable type service. Shipping on all Telebox's, code (B)

State of the art PAL (UK spec) UHF TV tuner module with composite 1V pp video & NICAM hi fi stereo sound outputs. Micro electronics all on one small PCB only 73 x 160 x 52 mm enable full tuning control via a simple 3 wire link to an IBM pc type computer. Supplied complete with simple working pro-gram and documentation. Requires +12V & +5V DC to operate. BRAND NEW - Order as MY00. Only £49.95 code (B) See www.distel.co.uk/data_my00.htm for picture + full details

FLOPPY DISK DRIVES 21/2" - 8"

All units (unless stated) are BRAND NEW or removed from often brand new equipment and are fully tested, aligned and shipped to you with a full 90 day guarantee. Call or see our web site www.distei.co.uk for over 2000 unlisted drives for spares or repair.

3½" Mitsubishi MF355C-L. 1.4 Meg. Laptops only	£25.95(B)
31/2" Mitsubishi MF355C-D. 1.4 Meg. Non laptop	£18.95(B)
5¼" Teac FD-55GFR 1.2 Meg (for IBM pc's) RFE	£18.95(B)
5¼" Teac FD-55F-03-U 720K 40/80 (for BBC's etc) RFE	£29.95(B)
5%" BRAND NEW Mitsubishi MF501B 360K	£22.95(B)
Table top case with integral PSU for HH 51/4" Floppy / HD	£29.95(B)
8" Shugart 800/801 8" SS refurbished & tested	£210.00(E)
	£195.00(E)
	£260.00(E)
	£295.00(E)
9" Mitcublehi M2906-62 0311 DC climling MCM	C205 00/E)

8" Mitsublshi M2896-63-02U DS slimline NEW 2295.00(E Dual 8" cased drives with integral power supply 2 Mb 2499.00(E)

HARD DISK DRIVES 21/2" - 14"

 HARD DISK DRIVES 2½" - 14"

 2% TOSHIBA MK1002MAV 1.1Gb laptop(12.5 mm H) New £99.55

 2% TOSHIBA MK2101MAN 2.16 balaptop (13 mm H) New £99.50

 2% TOSHIBA MK4309MAT 4.3Gb laptop (8.2 mm H) New £105.00

 2% TOSHIBA MK4309MAT 4.3Gb laptop (12.7 mm H) New £105.00

 2% TOSHIBA MK4309MAT 4.3Gb laptop (12.7 mm H) New £105.00

 2% TOSHIBA MK4309MAT 4.3Gb laptop (12.7 mm H) New £105.00

 2% TOSHIBA MK4309MAT 4.3Gb laptop (12.7 mm H) New £105.00

 2% TOSHIBA MK4309MAT 4.3Gb laptop (12.7 mm H) New £105.00

 2% TOSHIBA MK4309MAT 4.3Gb laptop (12.7 mm H) New £105.00

 2% TOSHIBA MK4309MAT 4.3Gb laptop (12.7 mm H) New £105.00

 2% TOSHIBA MK4309MAT 4.3Gb laptop (12.7 mm H) New £105.00

 3% CONNER CP3024 20 mb IDE I/F (or equiv.) RFE

 5% CONNER CP3044 40 mb IDE I/F (or equiv.) RFE

 5% QUANTUM 40S Prodriv e 42mb SCSI I/F, New RFE

 5% SEAGATE ST-238R 30 mb RLL I/F Refurb

 5% SEAGATE ST-238R 30 mb RLL I/F Refurb

 5% CDC 24205-51 40mb HH MFM I/F RFE tested

 5% TDG 26byte SCSI differential RFE tested

 5% NEC D2246 85 Mb SMD interface. New

 5% FUJITSU M2322X 160Mb SMD I/F RFE tested

 6% NEC D2246 85 Mb SMD INF RFE tested

 6% NEC D2246 85 Mb SMD I/F RFE tested

 6% FUJITSU M2322X 160Mb SMD I/F RFE tested

 Many other drives in stock - Shipping on all drives is code (C1)

Ex demo 17" 0.28 SVGA Mitsubishl Dlamond Pro monitors, Full multisync etc

Full 90 day guarantee. Only £199.00 (E)

Just In - Microvitec 20" VGA (800 x 600 res.) colour monitors. Good SH condition - from £299 - CALL for Info

Good SH condition - from 229 - CALL for Into PHILIPS HCS35 (same style as CM8833) attractively styled 14" colour monitor with both RGB and standard composite 15.625 Khz video inputs via SCART socket and separate phono jacks. Integral audio power amp and speaker for all audio visual uses. Will connect direct to Amiga and Atarl BBC computers. Ideal for all video monitoring / security applications with direct connection to most colour cameras. High quality with many features such as front concealed flap controls, VCR correction button etc. Good used condition - fully tested - guaranteed Only £99.00 (E) Dimensions: W14" x H12%" x 15%" D.

PHILIPS HCS31 Ultra compact 9" colour video monitor with stan-dard composite 15.625 Khz video input via SCART socket. Ideal for all monitoring / security applications. High quality, ex-equipment fully tested & guaranteed (possible minor screen bums). In a trac-tive square black plastic case measuring W10* x H10* x 13½* D. 240 V AC mains powered. Only £79.00 (D) Only £79.00 (D)

KME 10" 15M10009 high definition colour monitors with 0.28" dot

ME to 15M10009 ngh definition coron momon pitch. Superb clarity and modern styling. Operates from any 15.625 khz sync RGB video source, with RGB analog and composite sync such as Atari, Commodore Amiga, Acorn Archimedes & BBC. Measures only 13%* x 12* x 11*. Good used condition. Only £125 (E) Only £125 (E)

20" 22" and 26" AV SPECIALS

Superbly made UK manufacture. PIL all solid state colour monitors, complete with composite video & optional sound input. Attractive teak style case. Perfect for Schools, Shops, Disco, Clubs, etc.In EXCELLENT little used condition with full 90 day guarantee.

20"....£135 22"....£155 26"....£185 (F) We probably have the largest range of video monitors in Europe, All sizes and types from 4" to 42" call for info.

DC POWER SUPPLIES

Virtually every type of power supply you can imagine.Over 10,000 Power Supplies Ex Stoc Call or see our web site. Stock

TEST EQUIPMENT & SPECIAL INTEREST ITEMS

£245.00 /G

members to take the heavlest of 19" rack equipment. The two movable vertical fixing struts (extras available) are pre punched for standard cage nuts'. A mains distribution panel internal-ly mounted to the bottom rear, provides 8 x IEC 3 pin Euro sockets and 1 x 13 amp 3 pin switched utility socket. Overall ventilation is provided by fully louvered back door and double skinned top section with top and side louvres. The top panel may be removed for fitting of Integral fans to the sub plate etc. Other features include: fitted castors and floor levelers, prepunched utility panel at lower rear for cable / connector access etc. Supplied in excellent, slightly used condition with keys. Colour Royal blue. External dimensions mm=1625H x 633D x 603 W. (64" H x 25" D x 234" W) Sold at LESS than a blird of maters price II

Superb quality 6 foot 40U

Sold at LESS than a third of makers price II

A superb buy at only £245.00 (G) 42U version of the above only £345 - CALL

12V BATTERY SCOOP - 60% off !!

A special bulk purchase from a cancelled export order brings you the most amazing savings on these ultra high spec 12v DC 14 Ah rechargeable batteries. Made by Hawker Energy Ltd, type SBS15 featuring pure lead plates which offer a far superior shelf & guaran-teed 15 year service life. Fully BT & BS6290 approved. Supplied BRAND NEW and boxed. Dimensions 200 wide, 137 high, 77 deep. M6 bolt terminals. Fully guaranteed. Current makers price over £70 each Our Price Case each Our Price £35 each (c) or 4 for £99 (E)

RELAYS - 200,000 FROM STOCK

Save ££££'s by choosing your next relay from our Massive Stocks covering types such as Military, Octal, Cradle, Hermetically Sealed, Continental, Contactors, Time Delay, Reed, Mercury Wetled, Solid State, Printed Circuit Mounting etc., CALL or see our web site www.distel.co.uk for more information. Many obsolete types from code. Seve CCCC stock. Save ££££'s

tions where mains power not available. Overall dimensions 66 mm wide x 117 deep x 43 high. Supplied BRAND NEW & fully guaranteed with user data, 100's of applica-tions including Security, Home Video, Web TV, Web Cams etc, etc. ONLY £99.00 or 2 for £180.00 (B) Web ref = LK33

SOFTWARE SPECIALS

£1250 £1955 NT4 WorkStation, complete with service pack 3 and licence - OEM packaged. ONLY £89.00 (B) £2900 ENCARTA 95 - CDROM, Not the latest - but at this price I DOS 5.0 on 3% disks with concise books c/w QBasic Windows for Workgroups 3.11+ Dos 6.22 on 3.5" disks Wordperfect 6 for DOS supplied on 3% disks with manual £5100 £3950 **FPOA** £55.00 £24.95

All prices for UK Mahland. UK customers add 17.5% VAT to TOTAL order amount. Minimum order £10. Bona Fide account orders accepted from Government, Schools, Universities and Local Authonities - minimum account order £50. Cheques over £100 are subject to 10 working days clearance. Carriage charges (A)=£3.00, (A)=£4.00, (B)=£5.50, (C)=£8.50, (C)) £12.50, (D)=£15.00, (E)=£18.00, (F)=£20.00, (G)=CALL Allow approx 6 days for shipping - faster CALL. All goods supplied to our Standard Conditions of Sale and unless stated guaranteed for 90 days. All guarantees on a return to base basis. All inghts reserved to change prices / specifications without prior notice. Orders subject to stock. Discounts for volume. Top CASH prices paid for surplus goods. All trademarks, tradenames etc acknowledged. © Display Electronics 1999, E & O E, 07/99.

£1950 £1150

C1450 £1250 £POA £1950 £1250

£500 £3500 £3250 £495 £495 £1995 £300 £750

£1450

£75 \$5650 **EPOA** EPOA

£650 £775

£5750

72

 TEST EQUIPMENT & S/

 MITS: A FA3445ETKL 14" Industrial spec SVGA monitors

 FARNELL 0-60V DC @ 50 Amps, bench Power Supplies

 FARNELL 0-60V DC @ 50 Amps, bench Power Supplies

 FARNELL AP3080 0-30V DC @ 80 Amps, bench Suppy

 IkW to 400 kW - 400 kZ 3 phase power sources - ex stock

 BM 8230 Type 1, Token ring base unit driver

 Wayne Kerr RA200 Audio frequency response analyser
 EP0A

 IBM MAU Token ring tisribution panel 8228-28-5050
 £950

 AIM 501 Low distortion Oscillator 9Hz to 330Khz, IEEE
 £250

 ALLGON 8360.11805-1880 MHz hybrid power combiners
 £250

 Marconi 6310 Programmable 2 to 22 GHz sweep generator
 £6500

 Marconi 2030 opt 03 10KHz-1.3 GHz signal generator, New
 £4995

 HP53781A Pattern generator & HP3782A Error Detector
 £P0A

 HP650B Logic Analyser
 £P0A

 HP650B Logic Analyser
 £P0A

 HP54121A Dc to 22 GHz four channel test set
 £P0A

 HP54121A Dc to 22 GHz four channel test set
 £P0A

 HP A1, A0 8 pen HPGL high speed drum plotters - from
 £550

 Marconi 200300 MHz pulse generator, GPIB etc
 £P1A

 HP A1, A0 8 pen HPGL high speed fourt plotters - from
 £550<

Mann Tally MT645 High speed line printer Intel SBC 486/133SE Multibus 486 system. 8Mb Ram Siemens K4400 64Kb to 140Mb demux analyser

DISTEL on the web !!

VISA

28 YEARS

Taylor Hobson Tailysuff amplifier / recorder ADC SS200 Carbon dioxide gas detector / monitor BBC AM20/3 PPM Meter [Ernest Turmer) + drive electronics ANRITSU 9654A Optical DC-2.5G/b waveform monitor ANRITSU ML93A optical power meter ANRITSU ML93A optical power meter ANRITSU Diverse optic characteristic test set R&S FTD2 Duai sound unit R&S SBUF-E1 Vision modulator WILTRON 6630B 12.4 / 20GHz RF sweep generator TEK 2445 150 MHz 4 trace oscilloscope TEK 2455 300 Mhz 300 MHz oscilloscope rack mount TEK TDS380 400Mhz digital realtime + disk drive, FFT etc TEK TDS524A 500Mhz digital realtime + colour display etc HP3554A Op 07 20Hz to 40 Mhz spectrum analyser PHILIPS PW1730/10 GNV XRAY generator & accessories CLAUDE LYONS 100A 240/415V 3 phase auto.volt. regs £2200

High-frequency impedance meter

he ever increasing demand for small, lightweight, efficient equipment, has resulted in an explosion in the use of minute surface mount packages, encouraging designers to use physically small capacitors.

For a given capacitance and working voltage, the smallest physical size usually results from using either high-K ceramic chips, or tantalum or aluminium electrolytic capacitors. These possess three undesirable attributes.¹

- As frequency increases, their apparent, measurable capacitance reduces. It can be much smaller than the marked, low-frequency, nominal value.
- For a given CV product, case size reduction invariably increases the ESR of the capacitor.
- These styles exhibit measurable self-inductance.

Resonant capacitors

At some frequency, the capacitive and inductive reactances become equal and opposite and so cancel. The phase angle then measures zero. At this resonance frequency, and for one octave lower, the apparent or measured capacitance increases dramatically, tending ultimately towards infinity at resonance. Measured impedance is then equal to the capacitor's ESR.

Capacitance increases that are measured near the device's resonance are not real. They result from an *LCR* meter simply converting measured impedance and phase into a capacitance value.

Measuring a capacitor's value at low frequencies tells you little about how it is likely to perform in, say, a switch-mode power supply, where the device's inductive components come into play. Here, **Cyril Bateman describes** an instrument for looking at a capacitor's impedance at anything from audio frequencies to several megahertz. It reads from a few milliohms to almost $\mathbf{2}\Omega$ on a low-cost digital panel meter.

With increasing frequency, the actual or true capacitance values reduce and the ESR of an electrolytic capacitor can exceed its capacitive reactance. When this happens, the capacitor's measured phase angle

becomes small – only a few degrees. The measured impedance curve then appears flat bottomed over a wide frequency band.

Above resonance, the inductive reactance dominates over the capacitive reactance, so the capacitor's measured impedance increases with frequency, Fig. 1.

Some capacitor manufacturers provide nominal impedance or ESR values for their ranges. These are usually specified at 100kHz and room temperature.

High-frequency capacitance and inductance values are rarely stated. In any case it is better to perform your own comparative measurements. If you do, you can use frequencies and temperatures that are appropriate to your application, ensuring a more useful comparison between capacitor makes and types.

Measuring C at high frequencies

A suitable, variable-frequency *LCR* meter allows parameters that change with frequency to be determined accurately. But

TEST & INSTRUMENTATION

The meter is self-contained except for power supply, and needs only a signal generator to supply the test signal Use of a phase meter is optional.

Fig. 7.

Fig. 2. Simulation used to verify my test methods. Impedance was plotted two ways, the classic 'voltage drop/current' and also 'sense-resistor-value×vectordifference-voltage/sense-resistorvoltage-magnitude'. Both curves overlay exactly in the plot. The method 2, 'sense resistor×VM1/VM2' ratio and capacitor phase angle, needed to calculate ESR and capacitance, is also plotted.

Fig. 1. Impedance measured using the |Z| meter with phase angles

measured using the meter's phase

buffer output. The capacitor under test was mounted on my test jig as in

such meters can be extremely expensive.

However, such measurements are also possible using simple methods and low cost laboratory instruments.

In my last article,² 'Method 2' described how accurate measurements of impedance and reactance are possible using only a suitable test jig with current sensing resistor, a signal generator, a phase meter and a high-impedance RF millivoltmeter. The current-sensing resistor used should be close in value to the mean impedances to be measured. It must be non-inductive and its true resistance value must be accurately known.

Unfortunately, using this equipment, impedance values are not directly measurable. Several calculations are needed to convert the measured parameters. Method 2 is outlined in a separate panel entitled 'Determining capacitor impedance'.

I also introduced my improved Method 3, which *does* produce a direct readout of impedance. It needs no calculations and is usable from audio frequency to several megahertz.

This method depends on accurately measuring the differential voltage drop across the capacitor using a wideband, differential input, millivoltmeter. Divided by the capacitor's through current, this voltage represents the device's impedance.

Capacitor through current is most easily determined by measuring the voltage drop across a small ground-return sense resistor whose value is $known^3$.

To confirm these methods, I modelled a theoretical 200μ F capacitor having an ESR of 0.05Ω , measured using a 0.4995Ω sense resistor. The simulation shows this direct derivation of impedance with frequency, and confirms the accuracy of both techniques, Fig. 2.

This article details the design of my dedicated impedance meter, which is usable from audio frequencies to several megahertz, measuring from a few milliohms to 1.999Ω .

Circuit concept

As a starting point I considered the circuit of my RF milli-

Fig. 3. Three-

component equivalent

circuit of a capacitor.

Measurement points

voltmeter⁴. This is based on a Maxim 457, a high-frequency, high input impedance, low input capacitance, dual op-amp in a standard 8-pin DIL package. It provides differential phase and gain of 0.2° and 0.5% respectively. The device slews at

Capacitor

V2

VM2

Sense 'R'

V1

Signal

Generator

150V/ μ s and can drive a 1V signal into 75 Ω .

To measure this differential voltage, I needed at least two similar input circuits, followed by a differential amplifier and a high-frequency rectifier. But I also need to measure the voltage magnitude at the series resistor, and then perform a division of these voltages,

As already proved in Fig. 2,

$$Z|=R_{sense}\times\frac{V(1)-V(2)}{VM(2)}$$

Here, V(1) and V(2) are the complex difference voltages while $V_M(2)$ is the voltage drop across the capacitor current sense 'R', Fig. 3.

Fig. 5. The revised printed board pattern used for my prototype |Z| meter. Notice the additional dummy pads at U_2 and U_5 to equalise board capacitances between the two channels. Also note the guard tracks around sensitive pins of U1. **Together with mirror** imaging of tracks, these measures overcame the phase difficulty of my original board.

I decided to investigate this approach using two matched high impedance input channels, similar to the one in my RF millivoltmeter⁴. These were followed by two of the rectifying stages used in the same millivoltmeter.

The rectified DC outputs were divided, using a PM128 panel meter, modified to ratio mode, as applied to my tan δ meter to give a direct display of measured impedance. The tan δ meter mentioned was described in the January 2000 issue.

A relay could select between measuring the two input channels, or the differential measurement could be taken, as required. This displays either measured impedance as the vector result of (V(1)-V(2))/VM(2), or VM(1)/VM(2) for Method 2.

By adding a dual-channel buffer immediately following the preamplifier circuits, I could supply an amplified, phase equalised output to my phase meter. Thus the |Z| meter could be used simply to measure impedance at a given frequency.

Alternatively, when combined with a phase meter, it could be used to calculate capacitance or inductance with frequency, using Method 2, answering many measurement needs at modest cost.

Following a few measurements and simulations to establish the voltage levels, I increased the preamplifier gain from 5 to 10, ensuring 1V drive to the rectifiers with a 100mV maximum input to the test jig.

To minimise the affects of circuit offsets when measuring the small differential V(1)-V(2) voltage, I revised the rectified output attenuators, giving a maximum output of 2V to the modified PM128 display module, Fig. 4.

The differential amplifier

When measuring a low-impedance capacitor, the V(1)-V(2) difference signal is some 35dB smaller than the commonmode voltages. Consequently the common-mode rejection of the difference amplifier must be significantly larger, and maintained to the highest measuring frequency.

I evaluated a number of instrument and differential amplifiers. Most worked well at lower frequencies but failed at

1MHz and above. I opted for the AD830, which claims differential gain and phase errors of 0.05% and 0.08° respectively. It also provides a 50dB common-mode rejection and better than 0.1dB gain flatness at 10MHz.

Phase-meter buffer

The phase-meter buffer circuit proved particularly difficult to design. My first prototype board worked well measuring impedance up to 1MHz, but performed poorly when measuring phase even as low as 100kHz.

I made many abortive attempts to trim the phase performances by adding small compensation capacitors. I then realised the circuit board had minor capacitance and track layout differences. V(2) was not quite an exact mirror image of V(1). Perhaps more important was the Maxim 457's use of an 8-pin DIL package.

This meant that V(1)'s non-inverting input, being next to the -5V supply pin and PCB tracks, exhibited slightly more capacitance to ground. Also, at high frequency, the output pin of V(2) was similarly affected by being next to the +5V supply pin and its PCB tracks.

These differences were not significant when measuring

Determining capacitor impedance

This a summary of Method 2, as detailed in an earlier article². Combined impedance of the test capacitor and sense resistor is represented by $'|Z|_{total'}$.

$$Z\big|_{\text{total}} = R_{\text{sense}} \times \frac{VM(1)}{VM(2)}$$

where VM(1) and VM(2) are voltage magnitudes measured at V(1) and V(2) using a normal voltmeter.

 $ESR=(\cos phase-angle \times |Z|_{total})-R_{sense}$

where phase-angle is VP(1)-VP(2).

 $X_{c} = sin phase-angle \times |Z|_{total}^{6}$

If phase-angle is negative, capacitance is,

$$2 \times \pi \times f \times X$$

If phase-angle is positive, inductance is,

$$\frac{n_c}{2 \times \pi \times i}$$

Capacitor impedance is given by,

 $\left|Z\right|_{capacitor} = \sqrt{ESR^2 + X_c}$

Voltages V(1) and V(2) are complex voltages, having both magnitude and phase. But for this method you only need to measure voltage magnitudes.

Fig. 6. Double-sided printed board, 54 by 25mm used for the test jig, shows mirror imaged measurement tracks to the V(1) and V(2) SMA connectors. The underside is completely covered by a ground plane except for a circular area at the test capacitor. Both top and bottom earths must be well connected together - especially at the earthy end of the sense resistor.

gain by frequency, but contributed phase differences between the channels.

Revised layout

I carefully rebuilt the board using pads as for a 10-pin package, together with exact mirror imaging of tracks and with

Setting up

Solder a good short circuit to the jig in place of a test capacitor. A 3mmwide piece of copper sheet will do for the short. The jig should be fitted with your chosen sense resistor.

Apply 100mV AC at 300-350Hz from a signal generator at the jig input and with the |Z| meter set to read V(1)/V(2). Adjust R_3 then R_{53} to obtain 1V outputs at both V(1) and V(2). Set the meter to read,

V(1) - V(2)

VM(2)

and slightly adjust R_{53} to minimise the V(1) output.

Remove the short circuit and replace with a known resistor, say 1Ω at 1%. Attach the PM128 panel meter.

Leaving R_3 and R_{53} as now set, add gain adjusting resistors to adjust the gain of the appropriate output stage until the PM128 display reads correctly for your known resistance.

When you are satisfied with the reading, apply higher test frequencies. The display reading should increase slightly according to the inductance of your known resistor.

Remove the known test resistor and replace with the short circuit.

Attach phase meter to the phase buffer outputs then apply 100kHz to 1MHz from the signal generator. Adjust trimmer C_{68} to obtain as close to 0° of phase as possible, over this frequency range.

Remove short circuit. |Z| meter is ready for use.

Impedance

When an alternating current passes through a perfect capacitor, the voltage waveform lags that of the current by 90°. An ideal capacitor has neither inductance nor resistance. The capacitor produces an impedance with a phase angle of -90° .

At any one frequency, a practical capacitor can be represented by a series combination of inductance, capacitance and resistance. These combine to produce an impedance with a much reduced phase angle. Depending on frequency, the measured phase angle can be either positive or negative.

An LCR meter converts this measured impedance and phase angle into two components only,

 $|Z| \angle \theta = R \pm jX$

representing ESR (resistance) and reactance.

If the measured phase angle is negative, the meter calculates a capacitance value,. If positive it calculates an inductance value.

Because only a single frequency has been measured, the meter cannot segregate this reactance into its inductive and capacitive components.

$|Z| \angle \theta = R \pm jX = \sqrt{R^2 + X^2}$

Here, *R* is the capacitor's ESR at the measured frequency while X is the capacitor's reactance at that frequency.

With practical capacitors, this net reactance has both a capacitive and inductive component. In principle, provided impedance and phase angle are measured at a minimum of two frequencies, it is feasible to extract these components from the values of 'X' measured. There's more on this in the panel entitled, 'Three component modelling'.

matched components for the preamp, phase buffer and rectifier stages. Adjusting one small trimmer capacitor, I achieved better than $\pm 0.1^{\circ}$ phase difference up to 1MHz between the two channels, measured at the phase meter buffer outputs.

I considered the preamplifier stage to be even more sensitive so I laid it out carefully using earthed guard tracks around the most sensitive pins and components, and carefully mirroring the channels.

This layout equalisation also improved the common-mode rejection at high frequency such that measuring a wire short circuit in place of a test capacitor in the jig, the short circuit now measured less than $4m\Omega$ up to 10MHz.

Not being suited to an auto-routed layout, both boards were carefully laid out by hand. Fig. 5.

Relay switch

One final area that needed attention was the switching between two discrete measuring channels and the differential measuring circuit. It was important to equalise circuit loadings for both relay positions.

You will see two apparently unnecessary resistors R_{26} and R_{27} on the circuit diagram, Fig. 4. When switched as two discrete measuring channels, U_{1a} and U_{1b} both drive into 820 Ω and 470 Ω resistors in parallel. One end of each 470 Ω is at virtual ground.

Switched to differential measurement and without R_{26} , U_{1a} would drive only into an 820 Ω resistor and the high input impedance of the AD830.

Similarly without R_{27} on the output of the AD830, the two 470 Ω resistors would see unequal impedances. These differences may seem unimportant, but without these arrangements I was not able to attain as good common-mode rejection at high frequency.

Display meter

I modified a PM128 display module to ratio mode by removing two resistors R_2 and R_3 . The |Z| meter's V(1) output connects to 'REF-HI' on the meter, the pad that originally linked both resistors. Output V(2) connects to the normal 'IN-HI' terminals and the |Z| meter ground to the PM128 input ground.

To accommodate the maximum voltage from the |Z| meter, R_6 , originally $47k\Omega$, was removed from the PM128, and replaced with $470k\Omega$.

Test jig requirements

To minimise line reflections to the signal generator, a 10dB attenuator should be inserted in the signal coaxial cable, immediately adjacent to the test jig.

If a 1 Ω sense resistor is used, then the meter automatically reads impedance in ohms. Because I have standardised on a nominal 0.5 Ω , the gain of the V(2) output stage must be increased to compensate.

Using a sense resistor larger than 1Ω , the gain of the V(1) output stage should be increased instead. If a sense resistor larger than 2Ω is used, you may need to alter both rectifier attenuators, to restrict output voltage into the PM128 meter.

The |Z| meter printed board provides spaces for additional gain-setting resistors in both channels. Not shown in the schematic, these connect between pin 2 and pin 6 of the AD712 amplifiers.

Setting up

Adjustment is simple. While measuring a known 1% resistor

mounted on the test jig, at 300-350Hz, adjust the gain of the relevant channel to display the correct value on the PM128 meter.

As for the main printed circuit board, the test jig was also carefully mirror imaged when laying out the tracks that connect the test capacitor to the |Z| meter. Ensure that track lengths and capacitances between both channels are similar, Fig. 6.

Sense resistors

The sense resistor used must be non-inductive. If it isn't, as frequency increases every capacitor measured will read less than its true value. Conventional 1 Ω 1% resistors are readily available, but these usually have a spiral 'cut', used to trim to final value. Combined with the resistor's physical length, this results in sufficient self-inductance to increase the resistor's impedance measurably at 100kHz, degrading our measurement.

Fig. 7. Test jig specially developed for the |Z| meter differential voltage and phase measurements. It incorporates a non-inductive current sensing resistor and is usable to at least 10MHz. Three PRC201 1.5 Ω 1218 chip resistors are used to make 0.4995 Ω . The earthy end of the sense resistor is connected to the ground plane using vias and a brass U⁺ channel, well soldered along its length.

Fig. 8. Assembled |Z| meter printed board with two SMA connectors arranged to directly accept the test jig. By switching the central relay, the board can be made to operate in either measurement mode. The AD830 IC mounted near the relay, provides excellent common-mode rejection for differential measurements. To provide direct impedance measurement with 0.4995 Ω sense 'R', gain increasing resistors for V(2) output are fitted next to U₅.

A spiralled reference resistor should not be used, except when measuring only very low frequencies. Some makers provide metal-film resistors with either a straight cut or no cut at all. These are considerably more expensive than conventional spiralled resistors.

If you are in doubt, carefully scrape away the resin coating from a resistor, to reveal whether it has been spiralled in

Capacitance and inductance values

These values are calculated from measured $R \pm jX$ for typical 220µF/10V capacitors. One random sample only of each style was measured.

Unit/parameter	10 kHz		100 kHz	300 kHz	1 MHz		
220µF/10V Philips037	Aluminiu		0.700	0.700	0.074		
Impedance (Ω)	0.824	0.785	0.738	0.706	0.671		
ESR (Ω)	0.818	0.783	0.74	0.71	0.67		
Capacitance	129µF	68.4µF	27.1µF	9.1µF	2.0µF		
220µF/0V Rubycon YXF Aluminium							
Impedance (Ω)	0.404	0.372	0.341	0.322	0.308		
ESR (Ω)	0.394	0.372	0.34	0.32	0.32		
Capacitance	153µF	94µF	44µF	20.7µF	9.2µF		
oupaonanoo	roopri	o (pi		20.7 pr	0.201		
220µF/10V Rubycon ZL	Aluminiu	Im					
Impedance (Ω)	0.122	0.091	0.082	0.076	0.073		
ESR (Ω)	0.10	0.09	0.09	0.08	0.08		
Capacitance	187.5µF		122.3µF	104.5µF	1.21nH		
220µF/10V Rubycon ZA	Aluminiu	Im					
Impedance (Ω)	0.087	0.041	0.030	0.028	0.035		
ESR Ω (Ω)	0.04	0.04	0.03	0.03	0.03		
Capacitance	189.8µF	185.4µF	200.9µF	0.69nH	2.39 nH		
220µF/10V Elna RSH	Aluminiu	ım					
Impedance (Ω)	0.313	0.290	0.270	0.254	0.242		
ESR (Ω)	0.31	0.29	0.27	0.26	0.25		
Capacitance	171.7µF	119.7µF	5 5 .0µF	27.6µF	19.3 3 µF		
220µF/10V AVX TPS	Tantalur						
Impedance (Ω)	0.143	0.089	0.06	0.045	0.040		
ESR (Ω)	0.10	0.08	0.06	0.05	0.05		
Capacitance	149.2µF	100.9µF	62.3µF	45.7µF	0.83nH		
220µF/10V Sanyo Oscon		0.027	0.01	0.01	0.000		
Impedance (Ω)	0.077	0.027	0.01	0.01	0.029		
ESR (Ω) Capacitance		0.02 192.0µF	0.01 230.9µF		0.01		
Capacitance	201.5μ-	192.0µP	290.9hF	2.13nH 4	.23 11		

I made these measurements using my dedicated meter, switched to Method 3 for impedance then Method 2 for ESR and capacitance. Many other suitable capacitors are available, from other stockists. ESR obviously cannot exceed |Z|. Where this occurs in the table, it is caused by insufficient resolution in my phase-angle measurement.

While the rapid increase in capacitance of the 220μ F/10V Rubycon ZA and the 220μ F/10V Sanyo Oscon looks odd, it is simply a reflection of the effect that self-inductance has on apparent capacitance, when approaching series resonance.

With electrolytic capacitors, series resistance usually dominates. So the notable impedance null, frequently found at resonance with lowloss capacitors, cannot be observed. See the panel entitled 'Threecomponent modelling' for more information. manufacture. I have found some makers' low value straight cut 'Melf' resistors have extremely low inductance.

I recently bought some IW low-value surface-mount resistors, listed by the distributor as non-inductive. I then wasted time getting very strange results.

On telephoning the manufacturer to complain, I was advised that this part should never have been listed as noninductive because it was in fact a miniature, resin sealed wirewound!

Surface-mount 'thick-film' chip resistors ensure low inductance for two reasons. A straight 'L' cut is often used to trim such resistors, and their physical lengths can be very short.

Even better, certain types are available that are wider than they are long. Sometimes these are effectively three 1206 resistors in parallel. A typical 1206 chip has some 1 to 1.5nH inductance, so with three in parallel, this construction provides minimal self inductance⁵.

Three-component modelling

As shown in Fig. 3, a capacitor is usually represented as a series combination of resistance as ESR, self inductance and capacitance.

When one frequency only is measured then the reactive component can only be interpreted as being either capacitive of inductive, according to the sign of the measured phase angle.

When measuring capacitors at several frequencies and especially if some of these measurements are taken at well above the capacitor's self resonance, its reactance can be segregated into capacitive and inductive parts. This results in a more realistic capacitance measurement at all frequencies.

$|Z| = \sqrt{ESR^2 + \left(X_C - X_L\right)^2}$

where X_C is the capacitive reactance and X_L the inductive reactance at the measured frequency.

Solving for three unknowns requires a minimum of two measurements at differing frequencies. Ideally a swept measurement at several frequencies is used. Certain recent swept-frequency component analysers, like the HP4194 and HP4195, are provided with internal software routines. These routines automatically calculate the three-component model⁷.

The software calculates parameters at frequencies where the measured impedance is a factor of $\sqrt{2}$ smaller and larger than the maximum and minimum values measured⁸.

This method works well for many stable components but not with electrolytic capacitors. These have ESR and capacitance values that change with frequency. Self inductance for electrolytics, however, is relatively constant with frequency.

I prefer to estimate this inductive component by taking a series of impedance measurements at frequencies well above resonance. Taking the Oscon capacitor, which resonated at 190kHz as an example, I measured impedance at 1MHz intervals up to 10MHz. Above 2MHz its apparent measured inductance stabilised slightly below 5nH. Its impedance then increased linearly with frequency.

Correcting the measured results for 4.5nH self inductance reduces the Oscon's actual capacitance at 100kHz to 163.7µF. This represents excellent performance and is a much more realistic value than the device's apparent capacitance, which increased to 230.9µF, calculated from an uncorrected, single-frequency measurement.

Applying the same inductance correction to the 30 kHz measurement reduces its apparent 192μ F to an excellent 186.5μ F.

These figures clearly show the effect that a small amount of self inductance has on conventionally measured capacitance values – especially at frequencies less than a decade below resonance.

Having a reasonable estimate for self-inductance, using the above threecomponent equation can produce a far better estimate of the true capacitance value at all frequencies, both above and below resonance. Using a magnifying glass, the 'L' trimming cut of a thickfilm resistor can usually be seen through the coloured lacquer that coats the resistor element.

I bought a number of 1.5Ω resistors, Philips type PRC201. These are 1218 size, comprising three 1206 resistors in parallel. Measuring voltage drop while passing a 100mA DC, I was able to select a number of identical sets of three, effectively nine 1206 resistors in parallel. Each set makes a noninductive, near 0.5Ω value, for my test jigs. These can be seen stacked and soldered on a test jig in Fig. 7.

Measurement range

Using the components and gains as shown, the |Z| meter measures from a few milliohms up to 1.999 Ω , from low audio frequencies up to 10MHz. This range is ideal when measuring electrolytic capacitors. By scaling the sense resistor and output stage gain settings, other measurement ranges can be provided.

This system has been designed for use with a conventional 50 Ω laboratory signal generator capable of supplying at least 7V into a 50 Ω load. In use, the signal generator output is adjusted so as to provide 100mV input to V_1 , Fig. 8.

Performance

Intended to measure from a few milliohms to 1.999Ω , this meter makes accurate impedance measurements on low-impedance capacitors ridiculously easy and is usable at frequencies up to 10MHz.

The preamplifier and buffer stages provide phase reference and phase measurement outputs at levels that simplify the measurement of phase angles. Phase measurement is needed to ascertain resonance frequencies or to calculate capacitance and inductance. It is not needed to measure impedance magnitude.

Of course if you have no need to measure phase, then the buffer components can be omitted, with significant saving on component costs.

The prototype meter was assembled using Augat low-profile turned pin sockets. These exhibit some 1pF of capacitance pin to pin. If other makes are used, or indeed no sockets at all, it would be prudent to adjust the values of C_3 and C_{53} to compensate for change in capacitance.

I plan to make PCBs together with full drawing sets and assembly notes available. For details and prices, send an SAE to me at Nimrod, New Road, Acle, Norfolk NR13 3BD.

References

- Bateman, C, 'Understanding Capacitors' *Electronics World*, June 1998.
- 2. Bateman, C, 'Evaluate capacitors for smps designs' *Electronics World*, Sept 2000.
- The Impedance Measurement Handbook, Agilent Technologies, (H P) USA.
- Bateman, C, 'Measure AC millivolts to 5MHz' Electronics World, Apr. 2000
- 5. Bateman, C, 'Understanding Capacitors' *Electronics World* Apr. 1998.
- 6. Bateman, C, 'Fazed by phase?' Electronics World, Nov. 1997.
- 7. Parametric Analysis for Electronic Components and Circuit Evaluation, AN339, Agilent Technologies, (H P) USA.
- 8. Practical Design & Evaluation of High Frequency Circuits, AN317, Agilent Technologies, (H P) USA.

Post your completed order form to:-Jackie Lowe, Room L514, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS

Fax your completed order form to 020 8652 8111 UK Price: £15.00 Europe £17.00 ROW £19.00 **Price includes delivery**

How to pay (Edison) paperback

I enclose a cheque/bank draft for £ (payable to Reed Business Information)

Please charge my credit/charge card □ Mastercard □ American Express □ Visa □ Diners Club

Credit Card No:

Expirey Date:

Signature of Cardholder

Cardholder's statement address: (please use capitals)

Namé

Address

Post Code_____Tel:__

ROOK IO ROA

The definitive biography of the century's godfather of invention-from the pre-eminent Edison scholar "Israel's meticulous research and refusal to shy away from the dodgier aspects of Edison's personality offers a fresh glimpse into the life of the inventor."-**New Scientist**

"Remarkable."- Nature

"An authoritative look into Edison's working methods, here leavened by enough personal detail to give the achievements shape."-Publishers Weekly

"Israel's book should go a long way toward taking Edison out of the shadows and placing him in the proper light."-Atlanta Journal-Constitution

"Exhaustively researched, with strong emphasis on Edison's methods and achievements."-Kirkus Reviews

The conventional story of Thomas Edison reads more like myth than history: With only three months of formal education, a hardworking young man overcomes the odds and becomes one of the greatest inventors in history. But the portrait that emerges from Edison: A Life of Invention reveals a man of genius and astonishing foresight whose career was actually a product of his fast-changing era. In this peerless biography, Paul Israel exposes for the first time the man behind the inventions, expertly situating his subject within a thoroughly realized portrait of a burgeoning country on the brink of massive change. Informed by Israel's unprecedented access to workshop diaries, notebooks, letters, and more than five million pages of archives, this definitive biography brings fresh insights to a singularly influential and triumphant career in science.

CIRCUITI IDEAS

Fact: most circuit ideas sent to Electronics World get published

The best circuit ideas are ones that save time or money, or stimulate the thought process. This includes the odd solution looking for a problem – provided it has a degree of ingenuity.

Your submissions are judged mainly on their originality and usefulness. Interesting modifications to existing circuits are strong contenders too – provided that you clearly acknowledge the circuit you have modified. Never send us anything that you believe has been published before though.

Don't forget to say why you think your idea is worthy.

Clear hand-written notes on paper are a minimum requirement: disks with separate drawing and text files in a popular form are best – but please label the disk clearly.

Pulse-width modulated power supply

This voltage-controlled PWM converter needs but a single NE556. Note that the input voltage on the voltage-control pin has to be between 0.45 and $0.9 \times V_{cc}$. To allow for this, a resistor is inserted between the voltage control and the input pin. The voltage divider thus created

The voltage divider thus created converts a 0-10V input voltage into the correct voltage range for the control pin. The conventional capacitor circuit is used, so the control circuit must create a control voltage between $\frac{1}{3}$ and $\frac{2}{3}V_{cc}$.

Timer IC_{2A} forms an astable multivibrator generating an

exponential reference signal. This signal is compared in IC_{2B} with the control voltage created with P_1 (R_3), forming a PWM signal.

Output is taken from the discharge pin of IC_{2B} . This pin drives the voltage-regulator IC_3 to create an output voltage that is regulated and has short circuit protection. Amplitude of the output voltage is set with P_2 (R_6) between 3V and 15V. Pin 7 short circuits the resistance P_2 and R_5 when the control voltage is lower than the reference signal.

The reference voltage for P_1 is taken from the voltage-control pin of

 IC_{2A} , but any voltage between 0-10V DC can control the PWM setting. Range of the PWM is limited to the rising edge of the reference signal. To achieve this the output of IC_{2A} is connected to the reset and trigger pin disabling the output of IC_{2B} while capacitor C_4 is discharging.

In the CMOS version of the NE556, the internal reference voltage chain uses higher value resistors, and it is necessary to scale R₃ accordingly. **Bernard Van den Abeele** Evergem Belgium E24

E50 Winner

CIRCUIT IDEAS

Linear sawtooth oscillator with buffered output

All that is needed to turn a 555 oscillator with buffered output is a resistor, R_1 , and p-n-p transistor Tr_1 (see diagram).

The transistor acts as an emitter follower with emitter bias resistor R_3 . However, resistor R_1 across the base emitter junction of Tr_1 provides a near constant current of about $0.6/R_1$ (ignoring base current) to charge C_2 . Resistor R_2 discharges C_2 , as in a normal 555 astable circuit.

Charging current through R_1 changes according to the variation of the base emitter voltage. This change is largely due to the variation in the transistor's collector-emitter current, which is proportional to R_3 and any output load.

Provided that the collector-emitter current is much larger than the charging current, the variation in emitter current is approximately 2:1 so the base emitter voltage change is in the region of 20mV, i.e. about 3%. If the oscillator frequency is not more than a few kHz, the sawtooth amplitude is from $\frac{1}{3}$ to $\frac{2}{3}V_{cc}$ just like a normal 555 astable. At higher frequencies, the additional delay imposed by the transistor causes an increase in output amplitude. This effect can be reduced by increasing the transistor's bias current.

The discharge part of the sawtooth is still exponential in shape. If this part is very short the amplitude of the output will increase (see above).

Remember that the oscillation frequency is now no longer voltage independent since a constant current is involved and that there is a -0.3%per °C temperature dependence.

Operating frequency is approximately $1.8/(R_1 \times C_2 \times V_{cc})$. With the values shown in the diagram the charging current is about 50μ A and the oscillator frequency is about 3kHzwith supply of 5V. *M* Hughes York

This 555 timer-based circuit provides a buffered sawtooth output.

Test fuse blowing time

t can be important when designing an equipment to choose the correct fuse rating. In the interests of reliability, it may be useful to measure the time it takes to blow a fuse at a given current, which exceeds the rating by a given amount.

This circuit provides the means for such a test. The required test current

is set up on the active load. On closing the switch, the time to blow is recorded on the timer/counter. It is essential that the switch does not exhibit bounce; a knife switch is recommended. J Kathe Mumba India E33

Crowbar protection for variable out-output supply

n a regulated power supply, the traditional crowbar circuit is designed for fixed voltage output only, as the trip point must be hard wired. The lack of over voltage protection on a variable-voltage output power supply is a hazard when connecting circuits to be tested or repaired to such power supply.

The following circuit was developed to provide crowbar protection on a regulated power supply with 0-30V output, using only two CMOS ICs and one voltage comparator IC. The circuit is powered at 15V via an LM317T three-terminal regulator connected to the main rectifier smoothing capacitor. The common 7815 is not applicable because of its low maximum input voltage.

The circuit consists of an oscillator, touch-operated switch, digital sample-and-hold circuit, trip voltage comparator and crowbar SCR. The touch point is made to the metal knob or the metal spindle of the variable resistor that the operator adjusts to change the regulated supply output voltage.

over-voltage trip.		
Power supply	Trip voltage with	Trip voltage with
nominal o/p (V)	germanium D2 (V)	silicon D ₂ (V)
5.0	5.9	7.2
10.0	11.0	12.3
15.0	15.9	17.3
20.0	21.0	22.3
25.0	25.8	27.2
30.0	30.8	32.3

If the variable resistor is mounted on a conductive panel, the resistor case and spindle must be insulated from the panel for the touch sensor to function properly.

Oscillator U_{1B} generates a 300Hz square wave that feeds the digital sample-and-hold circuit and the touch switch. Clock polarity is inverted via U_{1A} and applied to the U_{2B} 's clock input. The 4013 bistable multivibrator samples the data input 'D' during the rising edge of the clock.

If the metal knob is not being touched, because of the delay caused by U_{1A} , 'D' will always be low while clock rises. When the operator touches the metal knob to change the power supply output voltage, the human body introduces capacitance. This results in delay to the signal applied to 'D' and a change of state occurs at the 4013 outputs.

While the operator adjusts the supply output voltage, the touch switch operates. Bistable device U_{2B} changes state and sets U_{2A} .

Transistor Q_3 conducts and trip circuit Q_1 is disabled.

Counter U_3 is now forced into reset with all its outputs, Q_{1-8} , low and no voltage appears at the *R*-2*R* ladder network. Green LED D_3 turns off to signal protection and the circuit is now off.

After the correct output voltage is set, the operator releases the metal knob and the touch switch resets. Diode D_4 becomes inactive and the reset line of the 4040 returns to low.

The 4040 starts counting up. When the voltage output at the *R*-2*R* network matches that of the regulated supply output voltage at point *A*, U_{1C} operates to enable U_{2A} to change state. This results in clock pulses from 4040 being bypassed, and turns on the LED.

Simultaneously, the trip circuit is armed. However, as the sampling point of the trip comparator U_{1D} pin 10 is taken after diode D_2 ; a voltage offset exists between the R-2R network voltage and the pin 10 voltage. It is this offset voltage

Winner of the National Instruments digital multimeter worth over £500

that gives the ceiling of the over voltage protection.

As the input is sampled via R_{16} and R_{21} voltage divider, this translates to 300% of the diode voltage drop added to the external voltage that would result in a trip. Choice of D_2 between germanium or silicon types gives a different trip ceiling voltage.

Select R_{18} such that point A is +10V at maximum output. The test results of the actual tripping voltage on my prototype were measured as in the Table shown earlier.

Lim Chung Haywards Heath Sussex E30

National Instruments sponsors Circuit Ideas

National Instruments is awarding over £3500 worth of equipment for the best circuit ideas.

Once every two months throughout 2000, National Instruments is awarding an NI4050 digital multimeter worth over £500 each for the best circuit idea published over each two-month period. At the end of the 12 months, National is awarding a LabVIEW package worth over £700 to the best circuit idea of the year.*

About National Instruments

National Instruments offers hundreds of software and hardware products for data acquisition and control, data analysis, and presentation. By utilising industry-standard computers, our virtual instrument products empower users in a wide variety of industries to easily automate their test, measurement, and industrial processes at a fraction of the cost of traditional approaches.

Software

Our company is best known for our innovative software products. The National Instruments charter is to offer a software solution for every application, ranging from very simple to very sophisticated. We also span the needs of users, from advanced research to development, production, and service. Our flagship LabVIEW product, with its revolutionary, patented graphical programming technology, continues to be an industry leader. Additional software products, such as LabWindows/CVI, ComponentWorks, Measure and VirtualBench, are chosen by users who prefer C programming, Visual Basic, Excel spreadsheets, and no programming at all, respectively.

Hardware

Our software products are complemented by our broad selection of hardware to connect computers to real-world signals and devices. We manufacture data acquisition hardware for portable, notebook, desktop, and industrial computers. These products, when combined with our software, can directly replace a wide variety of traditional instruments at a fraction of the cost. In 1996 we expanded our high-performance E Series product line in PCI, ISA and PCMCIA form factors, shipped our first VXI data acquisition products, and added remote (long-distance) capabilities to our SCXI signal conditioning and data acquisition product line.

Our virtual instrumentation vision keeps us at the forefront of computer and instrumentation technology. National Instruments staff works actively with industry to promote international technological standards such as IEEE 488, PCMCIA, PCI, VXI plug&play, Windows 95/NT, and the Internet. More importantly, we integrate these technologies into innovative new products for our users.

*All published circuit ideas that are not eligible for the prizes detailed here will earn their authors a minimum of \$35 and up to \$100.

NI4050

The NI 4050 is a full-feature digital multimeter (DMM) for hand-held and notebook computers with a Type II PC Card (PCMCIA) slot. The NI 4050 features accurate $5^{1}/_{2}$ digit DC voltage, true-rms AC voltage, and resistance (ohms) measurements. Its size, weight, and low power consumption make it ideal for portable measurements and data logging with hand-held and notebook computers.

- DC Measurements: 20mV to 250V DC; 20mA to 10A
- AC Measurements: 20mV rms to 250V rms; 20mA rms to 10A rms;
- True rms, 20Hz to 25kHz
- Up to 60 readings/s
- UL Listed
- 5¹/₂ Digit Multimeter for PCMCIA

LabVIEW

LabVIEW is a highly productive graphical programming environment that combines easy-to-use graphical development with the flexibility of a powerful programming language. It offers an intuitive environment, tightly integrated with measurement hardware, for engineers and scientists to quickly produce solutions for data acquisition, data analysis, and data presentation.

- Graphical programming development environment
- Rapid application development
- Seamless integration with DAQ, GPIB, RS-232, and VXI
- Full, open network connectivity
- Built-in display and file I/O

National Instruments - computer-based measurement and automation

National Instruments, 21 Kingfisher Court, Hambridge Road, Newbury, Berkshire, RG14 55J. Tel (01635 523545), Fax (01635) 524395 info.uk@ni.com www.ni.com.

Simple relay tester

This simple circuit allows dynamic relay tests to be performed quickly and inexpensively on a large number of devices, as long as one normally open and normally closed pair of contacts is available. It is useful when checking a suspected sluggish relay, or seeking to qualify a new vendor.

Upon energising the circuit, the relay's normally closed contact applies a high logic level to a CMOS flip-flop's 'set' input. In turn, its Q output is now set high, driving the power MOSFET on, energising the relay's coil.

As the relay's wiper starts to move, the high level is removed from the 'set' input. This is of no consequence as the flip-flop won't change state until the wiper reaches the other, normally-open contact. At this time the flip-flop is reset and ceases to drive the FET so the relay is de-energised.

The wiper then goes back to the normally closed position, and the cycle repeats itself, creating an oscillation whose frequency is highly dependent on the relay's mechanical properties. This frequency may be read by a frequency counter or oscilloscope, and a rough estimate of the relay's response time may be obtained.

Any suspect relay may be sent to the lab for further testing in a controlled environment. The beauty of this circuit is that untrained personnel may quickly sort out potentially defective devices. In fact, with a little experience, the frequency counter is no longer required, as a trained ear may easily identify a sticky relay by listening to the cadence from the relay's buzzing sound.

Note that separate supplies are used to power the logic and the relay. Not only will this accommodate different coil voltages, but most importantly, it will prevent electrical noise – of which there will be plenty – coupling into the logic circuit, creating an erratic behaviour. For the same reason, I would recommend that you use CMOS flip-flops operating at least at 12V for improved noise immunity.

It is worth mentioning that the ubiquitous freewheeling diode normally placed across the relay coil should not be used. This dramatically increases the hold time after the relay is de-energised, and may even make it long enough to mask mechanical defects.

Rather, a 200V MOSFET, assisted by a relatively large-voltage transient suppressor, allows for dissipation of the magnetic energy with a minimal delay.
Fernando Garcia
Brownsville
Texas
USA
E40

Ten year index: new update

IRCOIT IDEAS	Searc Print Note Bac
apacitor, Bipolar capacitor	CONTROL SYSTEM SIMULATOR
apacitors, dark secrets of	George Varkey
ar immobiliser	
ar intruder alarm	January 1990, p28
ar radio loop aerial	
assette motor controller	A simple electronic simulator for
lipper provides flat-top output	producing a Simple Harmonic Motion
lipper, Symmetrical audio	(SHM) test for use in testing
oaxial-cable tester	control systems.
olour-bar generator (NTSC)	9
ommunications link, single-wire	
empact-disc player into scan	
mparator, High input-voltage	
emparitor extends alarm system	
umparitor, simple twelve-bit	
ompass helps the blind	
ompass, Audible	
onnection, Two-wire power/signal ontinuity tester, improved	
ontrol system simulator	

www.softcopy.co.uk

Photo copies of *Electronics World* articles from back issues are available at a flat rate of £3.50 per article, £1 per circuit idea, excluding postage.

Hard copy *Electronics World* index Indexes on paper for volumes 100,101, and 102 are available at £2 each, excluding postage.

Hard copies and floppy-disk databases both available

Whether as a PC data base or as hard copy, SoftCopy can supply a complete index of *Electronics World* articles going back over the past nine years.

The computerised index of *Electronics World* magazine covers the nine years from 1988 to 1996, volumes 94 to 102 inclusive and is available now. It contains almost 2000 references to articles. circuit ideas and applications - including a synopsis for each.

The EW index data base is easy to use and very fast. It runs on any IBM or compatible PC with 512K ram and a hard disk.

The disk-based index price is still only £20 inclusive. Please specify whether you need 5.25in, 3.5in DD or 3.5in HD format.

Existing users can obtain an upgrade for £15 by quoting their serial number with their order.

Ordering details

The EW index data base price of 20 includes UK postage and VAT. Add an extra 1 for overseas EC orders or 5for non-EC overseas orders

Postal charges on hard copy indexes and on photocopies are 50p UK, £1 for the rest of the EC or £2 worldwide. For enquires about photocopies etc please send an sae to SoftCopy Ltd. **Send your orders to SoftCopy Ltd**,

1 Vineries Close, Cheltenham GL53 ONU. Cheques payable to SoftCopy Ltd, please allow 28 days

for delivery.

e-mail at SoftCopy@compuserve.com, tel 01242 241455

TiePieScope HS801 PORTABLE MOST

ABRITARY WAVEFORM GENERATOR-STORAGE OSCILLOSCOPE-SPECTRUM ANALYZER-MULTIMETER-TRANSIENT RECORDER-

 The HS801: the first 100 Mega samples per second measuring instrument that consists of a MOST (Multimeter, Oscilloscope, Spectrum analyzer and Transient recorder) and an AWG (abritary waveform generator). This new MOST portable and compact measuring instrument can solve almost every measurement problem. With the integrated AWG you can generate every signal you want.

- The versatile software has a user-defined toolbar with which over 50 instrument settings quick and easy can be accessed. An intelligent auto setup allows the inexperienced user to perform measurements immediately. Through the use of a setting file, the user has the possibility to save an instrument setup and recall it at a later moment. The setup time of the instrument is hereby reduced to a minimum.
- When a quick indication of the input signal is required, a simple click on the auto setup button will immediately give a good overview of the signal. The auto setup function ensures a proper setup of the time base, the trigger levels and the input sensitivities.

The sophisticated cursor read outs have 21 possible read outs. Besides the usual read outs, like voltage and time, also quantities like rise time and frequency are displayed.

- Measured signals and instrument settings can be saved on disk. This enables the creation of a library of measured signals. Text balloons can be added to a signal, for special comments. The (colour) print outs can be supplied with three common text lines (e.g. company info) en three lines with measurement specific information.
- The HS801 has an 8 bit resolution and a maximum sampling speed of 100 MHz. The input range is 0.1 volt full scale to 80 volt full scale. The record length is 32K/64K samples. The AWG has a 10 bit resolution and a sample speed of 25 MHz.The HS801 is connected to the parallel printer port of a computer.
- The minimum system requirement is a PC with a 486 processor and 8 Mbyte RAM available. The software runs in Windows 3.xx / 95 / 98 or Windows NT and DOS 3.3 or higher.
- TiePie engineering (UK), 28 Stephenson Road, Industrial Estate, St. Ives, Cambridgeshire, PE17 4VVJ, UK Tel: 01480-460028; Fax: 01480-460340

TiePie engineering (NL), Koperslagersstraat 37, 8601 WL SNEEK The Netherlands Tel: +31 515 415 416; Fax+31 515 418 819

Web: http://www.tiepie.nl

Available exclusively from Electronics World

Amazing music

21 tracks – 72 minutes of recordings made between 1900 and 1929. These electronically derived reproductions are no worse than – and in many cases better than – reproductions of early 78rev/min recordings – some are stunning...

Pandora's drums Unique and atmospheric music recorded in the early 1900s – the days *before* 78s.

All tracks on this CD were recorded on DAT from cylinders produced in the early 1900s. Considering the age of the cylinders, and the recording techniques available at the time, these tracks are of remarkable quality, having been carefully replayed using modern electronic technology by historian Joe Pengelly.

Use this coupon to order your copy of Pandora's drums

Please send me CD(s) at £11.99 each including VAT plus £1.50 carriage per order UK, or £3.00 overseas for which I enclose:

Credit card details 🔲 tick as appropriate

Name

Address

Total amount

Make cheques payable to Reed Business Information Group. Or, please debit my credit card.

Card type (Master/Visa) Card No Expiry date

Please mail this coupon to *Electronics World*, together with payment. Alternatively fax credit card details with order on 0208 652 8111. Address orders and all correspondence relating to this order to Pandora's drums, Room 514, Electronics World, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. 30

Track

- 1 Washington Post March, Band, 1909
- 2 Good Old Summertime, The American Quartet 1904
- 3 Marriage Bells, Bells & xylophone duet, Burckhardt & Daab with orchestra, 1913
- 4. The Volunteer Organist, Peter Dawson, 1913
- 5. Dialogue For Three, Flute, Oboe and Clarinet, 1913
- 6. The Toymaker's Dream, Foxtrot, vocal, B.A. Rolfe and his orchestra, 1929
- 7 As I Sat Upon My Dear Old Mother's Knee, Will Oakland, 1913
- 8 Light As A Feather, Bells solo, Charles Daab with orchestra, 1912
- 9 On Her Pic-Pic-Piccolo, Billy Williams, 1913
- 10 Polka Des English's, Artist unknown, 1900
- 11 Somebody's Coming To My House, Walter Van Brunt, 1913
- 12 Bonny Scotland Medley, Xylophone solo, Charles Daab with orchestra, 1914
- 13 Doin' the Raccoon, Billy Murray, 1929
- 14 Luce Mial Francesco Daddi, 1913
- 15 The Olio Minstrel, 2nd part, 1913
- 16 Peg 0' My Heart, Walter Van Brunt, 1913
- 17 Auf Dem Mississippi, Johann Strauss orchestra, 1913
- 18 I'm Looking For A Sweetheart And I Think You'll Do, Ada Jones & Billy Murray, 1913
- 19 Intermezzo, Violin solo, Stroud Haxton, 1910
- 20 A Juanita, Abrego and Picazo, 1913
- 21 All Alone, Ada Jones, 1911

Total playing time 72.09

NEW PRODUCTS

Please quote Electronics World when seeking further information

Arc-welding diodes for 500A

International Rectifier has introduced five recovery diodes for inverter welder output stages. Typical voltage and current requirements for arc welders are 20 to 50V at 50 to 500A DC. Four of the five

diodes – the 80EBU02, 150EBU02, 80EBU04 and 150EBU04 – are available in the firm's PowIRtab package, and are rated at 80A. The fifth device (60EPU02) is rated at 60A and comes in a TO-247 package. International Rectifier Tel: 0208 645 8001

LED pilot lights

From EAO are series 04 pilot lights with direct feed 110 and 230V BA9 AC LEDs for 22.5 and 30.5mm mounting. The units can also be supplied with 24V LEDs, filament lamps and

transformers. The LEDs consume 3 to 5mA depending on voltage. The pilot lights are fitted using a bayonet fixing and two screws for assembly. The compact version is installed using a threaded fixing nut. The lights can be fitted into a 22.5mm hole with round or square fronts or flush mounted into a 30.5mm hole. Connection to the units is by screw terminal or 6.3mm fast-on terminals. Applications include control systems and industrial machinery. The lens cap or diffuser marking plate can be engraved for identification of the pilot light function. Illumination is in red, yellow, green, blue or white. EAO

Tel: 01444 245021

Synchronous boost converter

Linear Technology has announced the LTC3401 synchronous step-up DC-to-DC converter in a ten-lead MSOP that operates from an input voltage down to 0.85V (single alkaline cell). It can deliver over

Risc in-circuit emulator

Available from Noral Micrologics, the Lauterbach TRACE32 FIRE-166 Risc in-circuit emulator provides real-time, non-intrusive debugging of embedded applications based on Infineon's 3.3 and 5V C166 16-bit microcontrollers. It can be used with all derivatives of the C166 family and features include 40MHz no-wait-state operation, hardware dequeuing, dual-ported emulation memory for on-chip flash and XRAM, and full tracing of information on bondout buses. A context tracking system reduces the time needed to identify and rectify software problems by letting developers recreate and analyse the embedded system's debug environment after the code has executed in real time. Noral Micrologics Tel: 01254 295800

500mA output with up to 97 per cent efficiency and draws 38µA of supply current in burst mode or less than 1µA in shutdown. Switching frequencies from 300kHz to 3MHz may be programmed with an external timing resistor. Applications include pagers, cordless phones, GPS receivers and hand-held instruments. It incorporates a 0.16Ω n-channel MOSFET switch and 0.18Ω synchronous rectifier. Its current mode architecture has adaptive slope compensation to facilitate loop compensation. In user controlled burst mode, the internal power MOSFETs operate intermittently based on

load demand. Its oscillator can be synchronised to an external clock to improve suppression of switching harmonics in sensitive audio and IF bands. Burst mode operation is inhibited during synchronisation or when the mode-sync pin is pulled low, which prevents low frequency ripple interference with audio circuitry. *Linear Technology*

Tel: 01276 677676

20V MOSFETs

Fairchild has introduced 20V p-channel MOSFETs with 8 and $12V V_{GS}$ ratings in surface mount packages. The devices have maximum RDS(on) ratings at 1.8V gate voltage for switching low voltages, so there is no need for additional boost circuitry. The SuperSOT-8 FDR840P 20V V_{DS}, 12V V_{GS} MOSFET has a maximum $R_{DS(on)}$ of $11m\Omega$ at 4.5V V_{GS} . The FDW254P single 20V MOSFET in a TSSOP-8 at 2.5V VGS has an RDS(on) of 15mΩ. Fairchild Semiconductor Tel: 01793 856819

NEW PRODUCTS

Please quote Electronics World when seeking further information

Voltage reference

National Semiconductor has announced a sub-bandgap series voltage reference. With a voltage reference of 1.024V, the LM4140, is for battery-powered instruments and test equipment. Accuracy is 0.1 per cent and temperature coefficient 3ppm/°C. It comes in an SO-8 package. Noise is 2.2µV p-p from 0.1 to 10Hz and load regulation is lppm/mA. Stability is 60ppm over 1000 hours and thermal hysteresis 20ppm. Quiescent current is typically 230µA, with shut-off current less than 1µA. An enable pin helps prolong battery life. Because this is a series reference, it can also be used in low drop-out applications. The drop-out voltage is 20mV at 8mA and the device can source up to 8mA. There are five reference-voltage options -1.024, 1.25, 2.048, 2.5 and 4.096V. All are specified from 0 to +70°C. National Semiconductor Tel: 0870 240 2171

Rabbit 2000 processor kit

2001 is stocking a modulebased development kit for the Rabbit 2000 microprocessor. The kit provides a ready-built processor core containing processor, memory, I/O and control functions which simply plugs in to the prototyping

board or finished system. By using the kit designers can check out concepts and produce working module-based prototypes. In addition modules are available in production volumes. Three module variants are available - with 18MHz or 25MHz clock and 128k or 512k SRAM as required for the application. As well as the Core Module (RCM2020), the Module development kit includes: manual with schematics and documentation on CD-ROM, getting started page, prototyping motherboard board, programming cable, and a complete Dynamic C SE software development system. 2001

Tel: 01438 742001

3mm pitch connector

A 3mm pitch addition to its Maten-Lok range of connectors has been announced by AMP. With the smallest pitch in the MNL family, the series is suitable for wire-to-wire and wire-to-board applications, and can handle up to 5.0A per circuit. Features include a dual-beam contact design and PCB pegs for board polarisation. Offering 2-24 position vertical and right angle headers for surface mount and through-hole applications, the products are footprint compatible and intermateable with competitive equivalents. Featuring hightemperature header housings for IR processing, the connector series also features a pre-staged, two-piece housing assembly which will not lock unless the contacts are correctly positioned, and which then holds them securely in place with retention to withstand at least 20 pounds of force per contact. No special tools are required to remove a contact, so disconnection is quick and simple. They are available in 2-

24 position sizes with three row configurations available for 9,12 and 15 positions. AMP Tel: 0208 420 8072

Embedded Web browser

Amino Communications, the network appliance firm, has licensed the ANT Fresco Web browser from embedded communications appliance software developer, ANT, for use across all its information appliances and networked devices.

The ANT Fresco browser, ported onto Amino's IntAct modules adds another element to Amino's development 'toolkit', providing a browser suitable for a wide range of network devices. The browser has a small memory footprint, allowing it to be integrated into many designs for devices such as set-top boxes, seat back entertainment systems, in-vehicle terminals, kiosks and so on. The browser is processor and system software independent and so can be ported to a number of different platforms. Amino Comms Tel: 01954 784500

Programmable dual VCXO clock

American Microsystems has announced a programmable clock generator chip for video settop boxes. The FS6219 is a 3.3V programmable, three PLL clock chip with two integrated VCXOs. The device meet worldwide set-top box signal frequency standards. The two VCXO circuits make it possible to receive simultaneous, but independent, signals for picture-in-picture. The VCXO and PLL circuits are user-programmable over an I²C bus. Each VCXO uses an external voltage to tune the crystal frequency for the phase locking of each reference to an independent source, such as the incoming MPEG clock. Features include programmable reference, feedback and post-dividers for generation of clock frequencies with no synthesis errors. Either VCXO can be used as the PLL reference. Output frequencies can be selected from one or more of the PLLs.

American Microsystems Tel: 00 49 351 31 530 23 Advert. SCIENCE WORLD DISCOVERY BOOK. Further to Catt's work on the nature of the 377 ohm dielectric in electromagnetic theory, new research has established the cause of gravity. Volume = (volume of fundamental particles) + (volume of dielectric or fabric of space). This continuity equation implies that the motion of distant matter in the universe radially away from us, discovered by Hubble from the red-shifted spectra of clusters of galaxies, produces an equal and opposite effect on the dielectric of space, which is the cause of gravity.

SCIENTIFIC PROOF: THE MECHANISM OF GRAVITY

When a submarine moves underwater, or when you take clothes out of a suitcase (fixed volume), or when a person walks down a corridor, an equal volume of water or air moves in the opposite direction to fill the volume being vacated by the matter. In the universe, the motion of clusters of galaxies has a similar effect on the fabric of space. A unit volume is full of a mixture of electrons and nuclear matter and the fabric of space, like a suitcase containing some clothes and some air. The predicted effect of this from the Hubble motion of matter in the universe (the big bang) is therefore an equal and opposite motion of the fabric of space. Hence, the fabric of space moves towards us to fill in the volume being vacated by the outward moving matter as clusters of galaxies rush away from us. Furthermore, the fabric of space (or dielectric of space) permeates through atoms and planets.

The speed, v, of the clusters of galaxies increases with distance, r, according to v = rH. This variation in speed constitutes an acceleration since the distance is directly proportional to the time which has elapsed since the light was emitted (the space-time effect). Hence, by definition acceleration, $a_{tt} = dv/dt = d(rH)/dt = vH = rH^2$.

Hence, the effect of the inward acceleration of the fabric of space, caused by the outward motion of matter in the universe (like the motion of air into the suitcase when you take clothes out of it) produces the acceleration due to gravity which keeps us on the earth's surface. The shielding effect of the Earth's mass on the all-round fabric of space creates the geometric effect of gravitation. Hence, a $= MG/r^2$, where we predict $G = 3H^2/(4\pi\rho)$. Thus, this theory actually predicts Newton's gravitational acceleration formula as well as the value of the constant, which can be verified experimentally by astronomy to prove or disprove the theory. Furthermore, this theory of gravity, the only ever proposed which accurately predicts the value of the constant G, also explains the recent experimental discovery that the furthermost galaxies in the universe are not "slowing down" due to gravitational retardation: gravity is not a mysterious "law" of nature but a mechanistic *effect* of the expansion itself.

MATHEMATICAL DERIVATION OF GRAVITY BY CONSIDERING IN DETAIL THE ASYMMETRIC DIELECTRIC PRESSURE FROM THE EXPANSION OF THE ENTIRE UNIVERSE

The shielding factor of matter (mainly nuclei in space) against the all-round accelerative pressure of the dielectric of space can be considered as follows. We consider a sphere around the observer with a radius equal to the distance of the mass from the observer. If a hypothetically massive shield *completely* stopped the dielectric pressure on one side of the observer, the maximum possible gravitational acceleration would be induced in the observer, forcing him towards the shield, like the bubbles pushed to the sides of a glass of beer or lemonade by the pressure of the liquid and the absence of pressure from the glass.

Dielectric pressure P = F/A. F = force = $m_z a_H$, where a_H = Hubble acceleration (because the dielectric motion in balances the Hubble mass motion outwards in the universe out to radius R) = $dv/dt = d(RH)/dt = vH = RH^2$, where R = effective radius of universe (radius at which the expanding mass produces the greatest contribution to the dielectric pressure where we are), and H = Hubble constant. A = area upon which dielectric force acts to produce the gravitational acceleration we wish to calculate = area of sphere with radius r, so A = $4\pi r^2$. Now, m_z = effective mass of the dielectric of free space (the 377 ohm dielectric or continuous fabric of space) acting on the area A, hence m_z = mass of matter in hollow volume of the universe with an inner radius of r and an outer radius of R, so $m_z = (4/3)\pi (R^3 - r^3)\rho$, where r^3 is insignificant compared to R^3 , so the formula reduces to simply $m_z = (4/3)\pi R^3\rho$, where (p = average density of universe (currently being carefully assessed by astronomers by working out the mass and distribution of galaxies in space, plus the gravitational effects of invisible matter, such as nuclear particles, on the shape of rotating visible galaxies), because the effective *dielectric* equivalent mass moving inwards is equal to the actual mass moving outwards.

Hence, $P = F/A = m_z a_{H}/A = (1/3)R^4H^2 \rho / r^2$. This dielectric pressure acts equally on all sides of any sphere of radius r, thus preventing any net force or acceleration, but explaining inertia. Waves of dielectric flow, like Aristotle's arrow self-sustaining momentum mechanism in his book *Physics* (he was wrong only in mistaking the arrow for matter, when the actual matter is the subnuclear particles and electrons in the arrow; but we excuse Aristotle since he never had an X-ray or measured radiation penetration of atomic-composed matter), around moving fundamental particles from front to rear. The continuous, non-particulate, 377 ohm electromagnetic dielectric of space exhibits no drag because drag is only caused by particles colliding and thereby dissipating energy. [The continuous nature of the dielectric is illustrated by careful inspection of photos of starlight deflected by the sun's gravity during eclipses: the deflected starlight (photons) still produce a sharp image, indicating that the source of gravity (the dielectric) is continuous, rather than a diffuse image due to particle-particle scattering (which would occur between photons and "gravitons" if the cause of gravity was "graviton" particles.]

The shielding of this pressure P by a mass M at distance r creates an asymmetry (a net force upon the observer, due to a reduction in pressure coming specifically from the direction of M), hence the observer is accelerated towards M, thus producing gravity.

Since the equivalent mass of inward accelerating dielectric is equal to the mass travelling outward in the universe, a shield with the mass of the universe would be required to exactly and completely stop the inward dielectric (as elastic recoil). A shielding mass M, will therefore stop dielectric pressure in proportion to the ratio of M to the mass of the universe, $(4/3) \pi R^3$. The effective shielding cross-sectional area is therefore A_{shielding} = [surface area of a sphere of radius r].[M/{(4/3) $\pi R^3 p}$] = 3M r² / (R³p). The net pressure towards mass M is the unshielded pressure multiplied by A_{shielding}, divided by the area of the sphere $(4\pi r^2)$ of radius r which mass M is shielding: hence, net pressure, $\mathbf{P} = P(A_{shielding})/(4\pi r^2) = RH^2 M / (4\pi r^2)$.

To get the net acceleration of the dielectric towards mass M at distance r from it, we remember that pressure P = F/A = ma/A, so acceleration a = PA/m, where P is the net pressure of the dielectric towards the mass M at distance r, m is the effective mass of the continuous dielectric accelerating inward, taking spherical divergence into account, m = [mass of universe].[surface area of sphere with radius of universe R] = $(4/3) \pi Rr^2 \rho$, and A is the surface area of a sphere with radius r, so $A = 4\pi r^2$. Hence, $a = (3/4) H^2 M/(\pi r^2 \rho)$. Hence, we have theoretically derived the Newtonian expression $a = GM/r^2$, where we find $G = (3/4) H^2 / (\pi \rho)$. This is a testable prediction, as H and ρ (including the invisible matter like black holes and neutrinos) become better known via further astronomy and nuclear physics research.

THE "SCIENCE WORLD DISCOVERY BOOK" SHOULD BE PUBLISHED IN 2001, PRICED £25. TO REQUEST AN ADVANCE ORDER, OR TO ENQUIRE ABOUT "SCIENCE WORLD" RESEARCH JOURNAL (ISSN 1367-6172), PLEASE WRITE TO NIGEL B COOK, 28 GATE COURT, WEYBRIDGE, SURREY, KT13 8NW, OR EMAIL: nigelbryancook@hotmail.com

NEW PRODUCTS

Please quote Electronics World when seeking further information

Electrolytic caps

Components Bureau is stocking Jamicon's TXR series aluminium electrolytic capacitors. With radial leads on a 5 or 7.5mm pitch, the devices feature a high ripple current capability of up to 2000mA and low ESR of 0.25 to 4.47Ω , depending on value. Available in values from 3.3 to

 330μ F, and voltages of 160 to 450V DC, the low-cost capacitors are designed for operating at -40 to 105°C, or -25 to 105°C for the 450V devices. Components Bureau Tel: 01480 386565

Relays for small signals

Matsushita Electric Works has introduced its SX relay with dual changeover contacts that allow it to be used where only reed relays or other solid-state devices have previously been used. The combined effects of a guaranteed maximum initial contact resistance of $100m\Omega$, with the ability of being able to control loads as small as 10µA at 1mV DC, make the relay suitable for medical applications such as electrocardiogram equipment, where minute signals are

The Distributor with 20,000 hard-to-find lines EX STOCK!!!

Semiconductors

We have one of the largest ranges of discrete parts in the UK, both new and obsolete types and, if we do not have it in stock, we can usually source it for you.

Call or fax for our latest Semiconductor stock list.

Computer products

We carry in stock everything to make a Personal Computer. CPUs – Memory – Motherboards – Cards – Scanners – Modems – Sound Cards – Speakers – All types of Drives – Cases – PSUs – Monitors etc

Components & equipment

Call or fax for our latest Semiconductor stock list. Capacitors – Resistors – Connectors – Potentiometers – Cables – Batteries – Speakers – Amplifiers – Lamps – Microphones – Fans – Power supplies – Transformers – Buzzers – Sirens – Fuses and Holders – LEDs – LCDs – Relays – PA Systems – Tools – Test Equipment – etc

See our web site. Non-trade customers, send £9.80 to the sales office for a complete suite of catalogues.

Semiconductor Supplies International Ltd

Dawson House, 128 - 130 Carshalton Road, Sutton, Surrey, England, UK. SMI 4TW 020-8643 1126 (Sales and Technical Queries) Fax: 020-8643 3937 (For International use +4420) e-mail: sales@ssl-uk.com Web: ssl-uk.com

passed by the relay without degradation. A minimal selfheating effect is generated through the SX's coil power pickup consumption of just 35mW, ensuring that thermoelectric voltages are reduced to a minimum 3mV. Measuring a subminiature 15 by 7.4 by 8.2mm, the SX is available in both through-hole and surface mount types, the contact arrangement is 2 form C, with latching configurations also available. Matsushita Tel: 01908 350700

Optical receiver

Anadigics has introduced an optical receiver that Stratos Lightwave has selected for use in its small form factor transceivers for storage area networks. The AMT8301T46F/L can operate at 1x and 2x Fibre Channel data rates.Sensitivity is better than -19dBm over voltage and temperature at 1.0625 and 2.125Gbit/s data rates at a supply voltage of 3.3V with less than 45mW power dissipation. Anadigics Tel: 001 908 668 5000

Microwave multichip module

Alpha Industries has introduced a proprietary multi-chip module packaging technology which it claims can reduce the cost of manufacturing high-speed and high-frequency datacomms equipment by replacing labour intensive wire-bonding with a surface-mounted package specifically designed for high frequency and high speed ICs. Called Alpha-2, it is claimed to be smaller and easier to assemble

Wide XGA reduces optical components

Densitron's LightCaster WXGA display is a single panel projection system that is intended to reduce the number of optical components required. The system provides two display modes, which allows user selection between XGA (1024 by 768 pixels) and HDTV (720 P) with widescreen format (16:9 aspect ratio). Applications include television, data graphic, video-ready front projectors for business settings, desktop and presentation monitors; and videoconferencing. Densitron

Tel: 01959 542000

EST EQUIPMEN

Quality second user test equipment bought and sold All purchases backed with full one-year warranty and technical support

HP 8648B 2GHz Signal Generator

AMPLIFIERS	
Amplifier Research 1W1000 1GHz 1W Amplifier	1850
HP 70621A /H50 100KHz to 2.9GHz Pre-Amp Module	1500
CALIBRATORS	
Fluke 5220A Transconductance Amplifier	2350
COMPONENT ANALYSERS	
HP 4141B DC Source/monitor	10200
HP 4145B Component Analyser	11950
HP 4191A-002 1GHz Impedance Analyser	6500
HP 4192A 13MHz Impedance Analyser	5500
The Troust romine importance strangeer	0000
And a state of the	
Contraction of the local division of the loc	
DATACOMMS	
Microtest Penta Scanner Cat 5 Cable Tester	1650
Fluke DSP100 Cat 5 Cable Tester	1650
Fluke DSP4000 Cat 5/5e/6 Cable Tester	2650
ELECTRICAL NOISE	
HP 346B 18GHz Noise Source	1150
HP 8970B Noise Figure Meter	8500
	0000
EMC	
R&S EB 100 Miniport Receiver 20-1000MHz	3750
R&S EPZ 100 Mini Panoramic Display	1250
R&S HE 100 1GHz Active Directional Antenna	1150
FREQUENCY COUNTERS	
EIP 548A 26.5 GHz Counter	2200
HP 5350B 20GHz Frequency Counter	2600
Marconi CPM46 Counter Power Meter	5000
Philips PM6654C/526 1.5GHz/2ns GPIB Counter Timer	1650
Filips Filio0340/320 1.30h2/2hs dFib Counter filiter	1030
FUNCTION GENERATORS	
HP 33120A 15MHz Function/Arbitary Waveform Gen	975
HP 3325B 21MHz Function Generator	3500
Philips PM5193 50MHz Function Generator	1750
LOGIC ANALYSERS	
	1200
HP 16500B Logic Analyser Mainframe HP 1650A 80 Channel Logic Analyser	1250
5 7	1400
HP 16510B 80 Channel Logic Analyser Card	
HP 16530A DSO Timebase Card	1000
HP 16531A 400MS/S DS0 Card	1200
HP 16550A Timing Analysis Module	1950 1900
HP 16555A Timing Analysis Module HP 1662A 68 Channel Logic Analyzer	4600
HP 1670A 136 Channel Logic Analyzer	6900
HP 1671D 102 Channel Logic Analyser	9950
The TOT TO TO CONTAINED LOUID MILLINGE	3530
in the second second	
Contract of the local division of the local	
The second se	
10 C C C C C C C C C C C C C C C C C C C	
Company and and	
· · · · · · · · · · · · · · · · · · ·	
NETWORK ANALYSERS	
HP 4195A Network / Spectrum Analyser	10500
HP 85046A 3GHz S Parameter Test Set (50 0hm)	3750
HP 8753B 3GHz Vector Network Analyser	5750
HP 8753C 3GHz Vector Network Analyser	11950
OPTICAL FIBRE TEST	
Anritsu MW0972B 1310/1550nm SM Plug-in	3500
Anritsu MW9070B OTDR Mainframe	2500
	2000
OSCILLOSCOPES	
HP54603B 2 Channel 60MHz Digitizing Scope	850
HP 70700A /H25 20MS/S Digitiser Module	1000

:1 = =

shipped with every

order over £10k

Free Palm m100

HP 437B RF Power Meter	1250
HP 438A Dual Channel RF Power Meter	1950
HP 70100A 100KHz to 50GHz Power Meter Module	1000
Various HP 848x Power Sensors (from)	395
Various Marconi 69xx RF Power Sensors (from)	350
Marconi 6960A Power Meter	750
Wandel & Goltermann OLP-2 Optical Power Meter	900
POWER SUPPLIES	
HP 6282A / 005 / 028 10V 10A DC Power Supply	150
HP 6284A 005/028 20V/3A DC Power Supply	150
HP E3615A 20V/3A DC Power Supply	195
HP E3631A 25V 5A DC PSU	650

PULSE GENERATORS	
HP 8082A Pulse Generator	850

nr sweer u	ENCHAIUNS		
Wavetek 2	2001 1.4GHz	Sweep Ger	nerator

SIGNAL & SPECTRUM ANALYSERS

F

Advantest R4131B 3.5GHz Spectrum Analyser	3950
Advantest R4131D 3.5GHz Spectrum Analyser	4500
Advantest R9211A 100KHz Dual Channel FFT Analyser	3750
Anritsu MS2601B 2.2GHz Spectrum Analyser	5500
Anritsu MS2612A 4.6GHz Spectrum Analyser	6500
Anritsu MS610B 2GHz Spectrum Analyser	2650
Anritsu MS612A 50Hz to 5.5GHz Spectrum Analyser	6500
HP 3561A 100KHz Dynamic Signal Analyser	3250
HP 3562A 2-Channel 100KHz Dynamic Signal Analyser	4500
HP 35660A 102.5KHz Dynamic SIgnal Analyser	2950
HP 35665A 102.4KHz Dynamic Signal Analyser	9750
HP 3585A 40MHz Spectrum Analyser	4500
HP 70000 22GHz Spectrum Analyser System	14500
HP 70000 2.9GHz Spectrum Analyser c/w Tracking Gen	13500
HP 8560A 2.9GHz Spectrum Analyser	10500
HP 8561A 1KHz-6.5GHz Spectrum Analyser	10850
HP 8562B 22GHz Spectrum Analyser	17500
HP 8591A / 021 1.8GHz Spectrum Analyser	4650
HP 8592A /021 Spectrum Analyser	9500
HP 8593A 22GHz Spectrum Analyser	12500
HP 8596E 12.8GHz Spectrum Analyser	19500
HP 8901A 1.3GHz Modulation Analyser	1250
HP 8903B 20Hz To 100KHz Audio Analyser	2750
Tektronix 492-02 21 GHz Spectrum Analyser	4500
Lindos LA100 Audio Analyser (Inc. LA101 & LA102)	2750
SIGNAL GENERATORS	
	10500
Advantest R4262 4.5GHz Signal Generator	16500
HP 8642A /001 1GHz High Performance Signal Gen	2500

HP 8656B /001 1GHz Synthesised Signal Gen	1150
HP 8657B 2GHz Signal Generator	4250
HP 8673C 0.05-18.6GHz Synthesised Signal Generator	19800
HP 8673G 26GHz Synthesised CW Signal Generator	5400
Marconi 2017 1GHz Low Noise Signal Generator	1000
Marconi 2019A 1GHz Signal Generator	1000
Marconi 2022 1GHz Signal Generator	650
Marconi 2031 2.7GHz Signal Generator	6950
R&S SMH 2GHz Signal Generator	6950
R&S SMHU58 4.32GHz Signal Generator	14500

3650

TELECOMS

975

1300

ELEGUINIS	
Anritsu MD0623C 2MBPS CEPT Interface for MD6420A	3000
Anritsu MD6420A Data Transmission Analyser	3500
Anritsu MP1520B PDH Analyser	4300
Anritsu MS371A PCM Frame Analyser	4500
HP 37717C SDH/PDH/ATM Analyser (various configs)	13800
HP 37732A / 005 8MBPS Telecoms/Datacoms Analyser	7950
HP 3788A/001 2MBPS Error Performance Analyser	2950
HP 4934A / 001 Tims Test Set With Battery Pack	3200
Marconi Triton Signalling Test Set	8500
Marconi 2840A Handheld 2MBPS BERT Tester	1950
Trend Aurora Duet Handheld ISDN Tester	3950
TTC Fireberd 6000 c/w Jitter (interfaces available)	4950
W&G PFA-35 2MBPS Communications Tester	4950
Wandel & Goltermann DST-1 E&M Signalling Tester	1250
Wandel & Goltermann PA-20 PCM Analyser	2500
Wandel & Goltermann PCM23 Voice Freq PCM Tester	2750

TV & VIDEO

CA100 Colour Analyser with CA-A10 Measuring Prot	be 2650
Fluke 54200 /M01 TV Signal Generator	4950
HP Calan 2010 Sweep/Ingress Analyser	1950
Philips PM5415TNS TV Pattern Generator	1950
Tektronix 1781R Video Measurement Set	4500
Tektronix TSG271 TV Generator	2750
Tektronix VM700A / 01/11/1C Video Measurement S	et 11750

WIRELESS HP 11757A / 70/140MHz Multipath Fading Simulator 4500 HP 83220A /022 PCS/DCS1800 Test Set 3950 HP 83220E PCS/DCS1800 MS Test Set 3500 HP 8920A 1GHz Radio Comms Test Set (Many configs) 3950 HP 8920A /2/3/4/5 1GHz Radio Comms Test Set 4950 HP 8920B Radio Comms Test Set (Many configs) 12500 HP 8922M GSM Test Set 9500 Marconi 2955 Radio Comms Test Set 1950 Marconi 2955B Radio Comms Test Set 3500 Marconi 2965A Radio Communications Test Set 6950 Racal 6103 /001/002 GSM/DCS Test Set c/w SMS/Fax 9750 R&S CMTxx Radio Test Set - Various Models (from) 2250 **R&S CTS55 Digital Radio Tester** 4250 Schlumberger 4015 1GHz Radio Comms Test Set 4950 Schlumberger 4031 Radio Comms Test Set 2750 Schlumberger 4922 Radio Code Analyser 250 Schlumberger 4039 960MHz Radio Comms Test Set 1250 Wavetek 4032 GSM Test Set 9500

See our extensive online catalogue at www.TestEquipmentHQ.com Flexible commercial solutions available on all products.

Prices shown are in £UK and are exclusive of VAT. Free carriage to UK mainland addresses. This is just a selection of equipment we have available. If you don't see what you want, please call. All items supplied fully tested and refurbished with one year warranty. All manuals & accessories required for normal operation included. Certificate of conformance supplied as standard, Certificate of calibration available at additional cost. Test Equipment Solutions terms apply. E&OE.

CIRCLE NO. 116 ON REPLY CARD

www.TestEquipmentHQ.com e-mail info@TestEquipmentHQ.com

01753 59 6000

fax: 01753 59 6001

NEW PRODUCTS

Please quote Electronics World when seeking further information

than traditional 'chip-and-wire' component packaging. Compatible with standard tapeand-reel manufacturing, the modules are suitable for use in high-speed data communications equipment, including LMDS wireless systems. Alpha Industries Tel: 00 1 781 935 5150

Design for GPS infrastructure

Trimble has introduced a design for global positioning system (GPS) infrastructure, the Virtual Reference Station (VRS), which it claims supports centimetre-level positioning accuracy without the need to set up a local reference station. Developed in the US by Spectra Precision's subsidiary TerraSat, the VRS consists of software and a network of **Trimble GPS receivers** communicating with a control centre. The VRS software uses the data to calculate GPS error corrections that are applicable over a wide area. These error corrections are transmitted via wireless communication devices (radios or cellular phones) to users in the field within the network area. Additionally, users can retrieve stored GPS correction data from the control centre via the Internet for postprocessing. The system is claimed to reduce systematic errors in the reference

station data to improve reliability and operating range. This allows a user to increase the distance at which the rover receiver is located from the physical reference stations while improving on-thefly initialisation times. *Trimble Navigation Tel: 01256 760150*

400/200MHz amplifiers

Unique Memec has introduced two fixed gain amplifiers, configurable for gains of +1, -1of +2 which feature identical bandwidths in both gain-of-1 and gain-of-2 configurations. With a bandwidth of 400MHz, the Elantec EL5196C offers a slew rate of 3000V/µs, while operating from just 9mA of supply current. The Elantec EL5197C offers a bandwidth of 200MHz with a slew rate of 2200V/µs and a supply current of 4mA. The EL5196C and E15197C are available in the industry standard 8-pin SOIC and SOT23-6 packages. Unique Memec Tel: 01296 397396

IEEE1532 standard PLDs

Lattice Semiconductor has announced that its latest generations of in-system programmable CPLDs will be compliant with the newly approved IEEE 1532 standard for programmable devices. Lattice plans to ship fully compliant ISP devices by the end of the year. Programming is accomplished through the IEEE 1149.1 boundary scan test access port (TAP). Lattice Semiconductors Tel: 01276 803223

Configurable supplies to 1kW

XP has introduced a 1000W unit in its RB series of configurable single and multi output modules which now ranges from 400 to 1000W. All units are approved, tested and guaranteed. The PFC units offer 1 to 10 outputs, have universal (85-264V) input and are CE marked. Output ripple and noise is 0.1 per cent RMS, 1 per cent peak-to-peak typical at 20MHz.

Features include overload protection, short circuit and overvoltage protection, remote sense and current sharing. Low earth leakage versions are available. Prototypes are available in three days. Every module is burned-in and tested prior to despatch, and covered by a comprehensive warranty and full technical support. Key markets include instrumentation and broadcast. *XP*

Tel: 001189 845515

IEEE1149.4 test access IC

National Semiconductor has announced the development of a general-purpose SCAN IEEE 1 149.4-compliant IC. The Analog Test Access prototype uses embedded test circuitry from LogicVision to provide analogue access to board-level circuit nodes. Digital board designs can make use of the IEEE1149.1

boundary scan standard for high fault coverage automated test generation but to access analogue test points an external In-Circuit-Tester (ICT) must be used. The IEEE1149.4 mixedsignal test standard is designed to reduce the need for ICT. The analogue test points can then be accessed according to the IEEE 1149.4 standard which defines

SM LEDs with lenses

Lumex has introduced two styles of surface mount light-emitting diodes (LEDs) that feature a built-in domed lens on top of a flat-bottomed carrier. According to the supplier, compared with conventional SM LEDs which emit light over an angle of 130° to 180°, these lensed devices focus the light to a narrower 50° angle. These LEDs are intended for applications such as displays or backlighting, as well as for status or circuit fault indicators. Two versions are available, the LXL1307 series is packaged on a chip carrier with a footprint that is 3.2mm x 1.6mm. The high point of the lens measures 1.8mm above the mounting plane. Colour choices include super intensity red, super orange, super red, super yellow, and ultra super blue. AlInGaP, GaAlAs, and InGaN/SiC chips are used, and provide on-axis light intensities as bright as 1500mcd. The LXL1209 series has a 3.2 x 2.4mm footprint and a 2.6mm high point above the board. Lumex

Tel: 00 1 800 278 5666

MARCONI 2019A	STILL AVAILABLE AS	RADIO COMMUNICATIONS TEST SETS	SPECTRUM ANALYSERS
MARCONI 2019A	PREVIOUSLY ADVERTISED WITH PHOTOS	MARCONI 2955/29958 E20 MARCONI 2955A/2960 E25	
THE REAL PROPERTY IN COMMENTS		MARCONI 2022E Synthesised AM/FM Sig Gen	£4000
- Or	MARCONI 893C AF Power Meter. Sinad Measurement	10KHz-1.01GHz LCD Disolay etc	EATON/AILTECH 757 0.001-22GHZ
1 ⁶ ::: 🚆 :: *	Unused£100		TEKTRONIX 492 50KHz-18GHz
5-5-	Used		n.r. 00000 with Wall Harrie TUUKHZ-TOUWHZ.1200
	MARCONI 893B - No Sinad		
AM/FM synthesised signal	MARCONI 2610 True RMS Voltmeter Autorangin 5Hz- 25MHz		
generator 80khz-1040khz	GOULD J3B Sine/Sg Osc. 10Hz-100KHz. Low distortion	H.P. 8656A Synthesised 100kHz-990MHz Sig Gen	
J	COULD J3B Sine/Sq Osc. TOHZ-TOUKHZ. Low distortion		
NOW ONLY £400	AVO 8Mk6 in Ever Ready Case, with leads etc	H.P. 8640A AM/FM 500kHz-512MHz Sig Gen	
2400	Others Avos from £50	IEEE	
	GOODWILL GFC8010G Freq. Counter 1Hz-120MHz	RACAL 9081 Synth AM/FM Sig Gen 5-520MHz	
I.P. 3312A Fun Gen 0.1Hz-13MHz£300	Unused£75	H.P. 3325A Synth Function Gen 21MHz	00 HP141 Systems 8553 1kHz-110MHz from
M/FM Sweep/Tri/Gate/Burst etc. H.P. 3310A Fun	GOODWILL GVT427 Dual Ch AC Millivoltmeter. £100-£125	MARCONI 6500 Amoktude AnalyserC15	
en 0.005Hz-5MHz£125	10mV-300V in 12 Ranges Freg 10Hz-1MHz	H.P. 4275A LCR Meter 10kHz-10MHz	
ine/Sg/Tri/Ramp/Pulse FARNELL LFM4 Sine/Sg	SOLARTRON 7150 DMM 61/2 digit True RMS - IEEE	H.P. 8903A Distortion Analyser	
scillator 10Hz-1MHz£125	£95-£150	WAYNE KERR 3245 Inductance Analyser	
ow distortion. TTLOutput. Amplitude Meter H.P.	SOLARTRON 7150 Plus	H.P. 8112A Pulse Generator 50MHz	50 TEKTRONIX TDS640A 4 Ch 500MHz 2G/S
45A Logic Probe with 546A Logic Pulser£90	RACAL TRUE RMS VOLTMETERS	DATRON AutoCal Multimeter 5%-7% digit. 1065/1061A/ 1071	TEKTRONIX TDS380 Dual Trace 400MHz 2G/S £2000
nd 547A Current Tracer	9300 5Hz-20MHz usable to 60MHz, 10V-316V	from £300-£6	
LUKE 77 Multimeter 3½ digit Handheld £60	9300B Version	MARCONI 2400 Frequency Counter 20GHz	
LUKE 77 Series 11	9301/9302 RF Version to 1.5GHz from	H.P. 53508 Frequency Counter 20GHz	
EME 1000 LCD Clamp Meter 0–1000A. In	HIGH QUALITY RACAL COUNTERS 9904 Universal Timer Counter, 50MHz	H.P. 5342A 10Hz-18GHz Frequency Counter	
arrying Case	9916 Counter, 10Hz–520MHz	B&K Accelerometer type 4366	00
	9918 Counter, 10Hz-520MHz, 9-digit	H.P. 11692D Dual Directional Coupler 2MHz-18GHz	nn PHILIPS PM3092 2+2 Un 200MHz., Delay etc
RACAL 9008	FARNELL AMM255 Automatic Mod Meter 1.5MHz-2GHz.	H.P. 11691D Dual Directional Coupler 2MHz-18GHz	£800. As new
AUTOMATIC	UnusedE400	TEKTRONIX P6109B Probe 100MHz Readout. Unused	60 PHILIPS PM3082 2+2 Ch 100MHz. Delay etc
MODULATION		TEKTRONIX P6106A Probe 250MHz Readout. Unused	£700. As new
METER AM/FM	CLASSIC AVOMETER DA 116	FARNELL AMM2000 Auto Mod Meter, 10Hz-2.4GHz. Unused	50 TEK TAS465 Dual Trace 100MHz. Delay£800
	DIGITAL 3.5 DIGIT	MARCONI 2305 Mod meter, 500kHz-2GHz from £7	50 TEK 2465B 4 Ch 400MHz. Delay Curs£1250
1.5MHz-2GHz ONLY 195	COMPLETE WITH BATTERIES	ROHDE & SCHWARZ APN 62	TEK 2465 4 Ch 300MHz. Delay Curs
			TEK 2445/A/B 4Ch 150MHz. Delay etc £500-£900
I.P. 8494A Attenuator DC-4GHz 0-11dB	AND LEADS	SYNTHESISED 1Hz-260kHz	TEK 468 Dig Storage. Dual 100MHz Delay£450
VSMA £250	ONLY £30	SIGNAL GENERATOR. BALANCED/	TEK 466 Analogue Storage, Dual 100MHz., £250
I.P. 8492A Attenuator DC-18GHz 0-6dB		UN-BALANCED OUTPUT	TEK 485 Dual Trace 350MHz, Delay
PC7 £95	SOLARTRON 7045 BENCH	LCD DISPLAY	TEK 475 Dual Trace 200 MHz. Delay
MANY OTHER ATTENUATORS, LOADS,	MULTIMETER	H.P. 6012B DC PSU 0-60V; 0-50A 1000W £100	
COUPLERS etc AVAILABLE		FARNELL AP60/50 1kW Autoranging£100	
COUPLERS BIC AVAILABLE	4½ digit BRIGHT	FARNELL H60/50 0-60V; 0-50A	
DATRON 1061 HIGH QUALITY 5%	LED WITH LEADS	FARNELL H60/25 0-60V: 0-25A	
DIGIT BENCH MULTIMETER	ONLY E30	Power Supply HPS3010 0-30V; 0-10A£14	
True RMS/4 wire Res Current	UNLY LOU	FARNELL L30-2 0-30V: 0-2A	000111
	IT'S SO CHEAP YOU SHOULD HAVE	FARNELL L30-2 0-30V; 0-1A	
Converter/IEEE £150	IT AS A SPARE	Many other Power Supplies available	Component Tester£325
ARCONI TF2015 AM/FM sig gen, 10-520MHz	IT AS A SPAIL	Isolating Transformer 240V In/Out 500VA £4	
ACAL 9008 Auto Mod Meter, 1.5MHz-2GHz	Auto measurements of R, C, L, Q, D	Isolating transformer 240V In/Out 500VA £4	Trade Trade Solution Take Solution Component
EVELL TG200DMP RC Oscillator, 1Hz-1MHz	HUNTRON TRACKER Model 1000. \$125		Tester£300
ine/Sq. Meter, battery operated (batts. not supplied)	H.P. 5315A Universal Counter, 1GHz, 2-ch	GOULD OS 300 OSCILLOSCOPE	HAMEG HM203.7 Dual Trace 20MHz
ARNELL LF1 Sine Sq. Oscillator, 10Hz-1MHz	FLUKE 8050A DMM 41/2 digit 2A True RMS	DUAL TRACE	Component Tester£250
ACAL/AIM 9343M LCR Databridge, Digital	FLUKE 8010A DMM 3½ digit 10A		FARNELL DTV20 Dual Trace 20MHz Component
		20MHz £160	Tester. A
ACCENT STEWART O	f READING	En EMPRESE	MANY OTHER OSCILLOSCOPES AVAILABLE
110 WYKEHAM ROAD, REA			
		USED EQUIPMENT – G	UARANTEED, Manuals supplied
Telephone: (0118) 926804 Callers welcome 9am-5.30pm Monday t		This is VERY SMALL SAMPLE OF STOCK. S/	AE or telephone for lists. Please check availability before
			AT to be added to total of goods and carriage.

CIRCLE NO. 118 ON REPLY CARD

NEW PRODUCTS

Please quote Electronics World when seeking further information

parametric test facilities and uses the digital IEEE 1149.1 infrastructure.

National says it expects the SCANSTA 400 chip to accelerate acceptance of the IEEE1149.4 mixed-signal test standard. Sample quantities will be available in Q4/00 from National as a technology test vehicle. National Semiconductor Tel: 0870 240 2171

Real-time emulator

A non-intrusive, real-time emulation hardware module from RF Solutions is for developing embedded systems based on Arizona Microchip's PIC16F87x eight-bit microcontrollers with on-board functionality including flash memory and

10-bit a-to-d conversion. The ICEPIC DB877 personality daughter board, with the company's ICEPIC and ICEPIC 2 non-intrusive incircuit emulators, provides real-time source level debugging in assembler or C at maximum processor speeds for all 16F87xs. The user can set unlimited hardware trigger breakpoints on any address or range of addresses. Developers can identify and rectify software bugs by executing code in single-step and procedure-step modes. A hardware filter controls multi-cycle instruction capture. It runs under Windows 95, 98, 2000 and NT. *RF Solutions Tel: 01273 488880*

BOOK TO BUY

Low-Power CMOS VLSI Circuit Design

A comprehensive look at the rapidly growing field of low-power VLSI design

Return to Jackie Lowe, Room L514, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS

Please supply the following title:

Low-Power CMOS VLSI Circuit Design

Total

Name

Address

Postcode

Telephone

Method of payment (please circle)

Access/Mastercard/Visa/Cheque/PO Cheques should be made payable to Reed Business Information

Credit card no_

Card expiry date

Signed

Low-power VLSI circuit design is a dynamic research area driven by the growing reliance on battery-powered portable computing and wireless communications products. In addition, it has become critical to the continued progress of high-performance and reliable microelectronic systems. This self-contained volume clearly

introduces each topic, incorporates dozens of illustrations, and concludes chapters with summaries and references. VLSI circuit and CAD engineers as well as researchers in universities and industry will find ample information on tools and techniques for design and optimisation of low-power electronic systems.

Topics include:

- Fundamentals of power dissipation in microelectronic devices
 Estimation of power dissipation due to switching, short
- circuit, subthreshold leakage, and diode leakage currents
 Design and test of low-voltage CMOS circuits
- Design and lesi of low-volidge civics circuits
- Power-conscious logic and high-level synthesis
 Low-power static RAM architecture
- Energy recovery techniques
- Software power estimation and optimisation

UK Price: £54.50 Europe £55.50 ROW £57.50

** Price includes delivery and package **

Professional PCB Layout for Windows at Computer Store Prices!

Number One Systems

Call +44 1684 773662 or Fax +44 1684 773664

E-mail info@numberone.com

Easy-PC For Windows 4.0

now reads Ultiboard designs/libraries*

Suddenly, a professional level PCB layout product is available at a realistic price. Just check the specification and see what excellent value you get with Easy-PC For Windows. Then test before you buy with a demo version

you will be simply amazed with Easy-PC For Windows.

True Windows 32 bit product Integrated Schematics and Layout as standard Windows drag & drop throughout Multiple documents open within display Technology files for fast start-up Tiled display - Cascade, Vertical, Horizontal Multi-level Undo/Redo

Integrated standard Autoplace Optional shape based AutoRouter

Full Copper Pour

Split powerplanes

Unlimited signal/powerplane layers Unlimited non-electrical/doc layers Keep out/keep in areas for routing R/H mouse menu support

*Ultiboard is a trademark of Ultimate Technology

Pan across design to cursor position Cross probing between Schematics and PCB Full forward & backward annotation Schematics /PCB

Modeless driven operation, no menu selection required

Consistently, one of Europe's most popular PCB Layout products for Windows 95/98/NT/2000, Easy-PC has won praise

Over 7,000 users must be right!

from users for the wealth of features within each new release.

Many of these new features are normally only found in the world's most expensive PCB Layout software packages.

Now try Easy-PC For Windows for yourself !

call us for a demonstration copy or download from WWW.NUMberone.com

Number One Systems, Oak Lane, Bredon, Tewkesbury, Glos, GL20 7LR. UK

CIRCLE NO.119 ON REPLY CARD

WATCH SLIDES ON TV MAKE VIDEOS OF **YOUR SLIDES DIGITISE YOUR** SLIDES

(using a video capture card)

"Liesgang diatv" automatic slide viewer with built in high quality colour TV camera. It has a composite video output to a phono plug (SCART & BNC adaptors are available). They are in very good condition with few signs of use. For further details see www.diatv.co.uk .£91.91+ vat = £108.00

Board cameras all with 512x582 pixels 8.5mm 1/3 inch sensor and composite video out. All need to be housed in your own enclosure and have fragile exposed surface mount parts. They all require a power supply of between 10 and 12v DC 150mA.

47MIR size 60x36x27mm with 6 Infra red LEDs (gives the same illumination as a small
torch but is not visible to the human eye)£37.00 + vat = £43.48
30MP size 32x32x14mm spy camera with a fixed focus pin hole lens for hiding behind a
very small hole£35.00 + vat = £41.13
40MC size 39x38x27mm camera for 'C' mount lens these give a much sharper image
than with the smaller lenses£32.00 + vat = £37.60
Economy C mount lenses all fixed focus & fixed iris
VSL1220F 12mm F1.6 12x15 degrees viewing angle£15.97 + vat = £18.76
VSL4022F 4mm F1.22 63x47 degrees viewing angle£17.65 + vat = £20.74
VSL6022F 6mm F1.22 42x32 degrees viewing angle£19.05 + vat = £22.38
VSL8020F 8mm F1.22 32x24 degrees viewing angle£19.90 + vat = £23.38
Better quality C Mount lenses
VSL1614F 16mm F1.6 30x24 degrees viewing angle£26.43 + vat = £31.06
VWL813M 8mm F1.3 with irls 56x42 degrees viewing angle£77.45 + vat = £91.00
1206 surface mount resistors E12 values 10 ohm to 1M ohm 100 of 1 value E1 00 + vet

1206 surface mount resistors E12 values 10 ohm to 1M ohm 100 of 1 value £1.00 + vat 1000 of 1 value £5.00 + vat 866 battery pack originally intended to be used with an orbitel

Please add 1.66 + vat = £1.95 postage & packing per order

JPG ELECTRONICS 276-278 Chatsworth Road, Chesterfield, S40 2BH. Tel 01246 211202 Fax 01246 550959 Mastercard/Visa/Switch Callers welcome 9:30 a.m .to 5:30 p.m. Monday to Saturday

CIRCLE NO.120 ON REPLY CARD

1166 1 MAYO ROAD • CROYDON • SURREY CRO 2QP 24 HOUR EXPRESS MAIL ORDER SERVICE ON STOCK ITEMS email: langrex@aol.com								
AZ31 CL33 CL33 CL33 CL32 CL33 CL32		KT66 Special KT88 Special N78 KT88 Special OA2 OB2 OB2 PCI850 PCI8505 PCI86 PD500 PL36 PL36 PL36 PL36 PL36 PL36 PL36 PL36	20.00 20.00 3.00 3.00 3.00 2.50 2.50 2.50 2.50 2.50 2.50 2.50 1.50 1.50 1.50 1.50 1.50 1.50 1.200 3.00 3.00 2.50 2.50 3.00 3.00 2.50 3.00 2.50 3.00 3.00 2.50 3.00 3.00 2.50 3.00 3.00 2.50 3.00 3.00 3.00 2.50 3.00 3.00 3.00 3.00 3.00 2.50 3.00 3.00 3.00 3.00 3.00 2.50 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3		3.00 2.00 7.50 2.00 2.00 2.00 2.00 2.00 2.00 4.00 3.00 3.00 3.00 3.00 3.00 3.00 3	6U8A 6V6G 6V6GT 6V6GT 6X4 12AT7 12AT7 12AX77 12AX77 12AX77 12AX77 12BA7 12BH7	1.1 10.0.1 6. 3.3 3.3 3.5 5.7 7. 10.0 7.1 10.1 7.1 10.1 7.1 10.1 7.1 10.1 7.1 10.1 7.1 10.1 7.1 10.1 7.1 10.1 7.1 10.1 7.1 10.1 7.1 10.1 10	

CIRCLE NO.121 ON REPLY CARD

easily

BOOK TO BUY

Valve Radio and Audio Repair Handbook

* A practical manual for collectors, owners, dealers and service engineers * Essential information for all radio and audio enthusiasts * Valve technology is a hot topic

This book is not only an essential read for every professional working with antique radio and gramophone equipment, but also dealers, collectors and valve technology enthusiasts the world over. The emphasis Is firmly on the practicalities of repairing and restoring, so technical content is kept to a minimum, and always explained in a way that can be followed by readers with no background in electronics. Those who have a good grounding in electronics, but wish to learn more about the practical aspects, will benefit from the emphasis given to hands-on repair work, covering mechanical as well as electrical aspects of servicing. Repair techniques are also illustrated throughout.

This book is an expanded and updated version of Chas Miller's classic Practical Handbook of Valve Radlo Repair. Full coverage of valve amplifiers will add to its appeal to all audio enthusiasts who appreciate the sound quality of valve equipment.

Contents include: Electricity and magnetism; Voltage, current, resistance and Ohm's Law; Real life resistors; Condensers; Tuning; Valves; Principles of transmission and reception; Practical receiver design; Mains valves and power supplies; Special features of superhets; Battery and mains battery portable receivers; Automobile receivers; Frequency modulation; Tools for servicing radio receivers; Safety precautions; Fault finding; Repairing power supply stages; Finding faults on output stages; Faults on detector/AVC/AF amplifier stages; Finding faults on IF amplifiers; Faults on frequency-changer circuits; Repairing American 'midget' receivers; Repairing faults on automobile radios; Repairing battery operated receivers; Repairing FM and AM/FM receivers; Public address and high fidelity amplifiers.

UK Price: £22.50 Europe £25.00 ROW £27.00

** Price includes delivery and package **

Return to Jackie Lowe, Room L514, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS

Please supply the following title:

Valve Radio and Audio Repair Handbook

Total____

Name

Address

Postcode

Telephone

Method of payment (please circle)

Access/Mastercard/Visa/Cheque/PO Cheques should be made payable to Reed Business Information

Credit card no_

Card expiry date

Signed

NEW PRODUCTS

Please quote Electronics World when seeking further information

Zero-drift op amp

Linear Technology has announced the LTC2051 and LTC2052 dual and quad zerodrift amplifiers. Housed in the tiny MSOP-8 and SSOP-16 packages, these DC accurate op amps feature a maximum input offset voltage of 3μ V and an offset drift of 30nV/°C, 75pA input bias current, CMRR and PSRR in excess of 130dB and 140dB large signal gain. In addition to DC accuracy and a small footprint, the

LTC2051/LTC2052 feature a wide gain bandwidth of 3MHz, a high slew rate of 2V/µs and low DC to 10Hz noise of $1.5\mu V_{pp}$. Optimised for use in portable battery-powered as well as industrial applications, these amplifiers are capable of operation from a single +2.7V supply to $\pm 5V$, drawing just 750µA per channel. Rail-to-rail output voltage swing and a wide input common mode range that includes ground make these op-amps ideal for use with a range of sensors from thermocouples to airflow meters, pressure sensors and any variety of wheatstone bridge sensors. Linear Technology Tel: 01276 677676

LEDs that emulate lamps

Litton VEAM/TEC's range of fascia panels use a combination of white LED technology, optical filters and custom dimming circuitry to emulate the appearance of conventional incandescent lamps. Primarily designed for retrofit applications in defence and aerospace instrumentation, the new panels have the same colour and dimming characteristics as surrounding incandescent-based displays while still possessing the features of surface mount LED technology, including lower power consumption, lower operating temperature, longer lifetime and increased reliability. *Litton VEAM/TEC Tel: 0208 8366 1291*

Li-ion charger IC

Texas Instruments claims to have the industry's first Li-ion battery charge management IC to have an integrated MOSFET and Schottky diode. The bq2400x family includes a 1.2A MOSFET pass transistor and a reversecurrent blocking Schottky diode with a combined maximum dropout voltage of 0.7V. According to the supplier, this should make it possible to build a full battery charger circuit within a 44mm² footprint. In addition, the devices perform a programmable charge algorithm, including preconditioning for deeply discharged cells and voltage, temperature and time monitoring for safety. Battery makers recommend preconditioning for deeply discharged Li-ion and Li-Polymer cells. The process applies a reduced current to raise the battery voltage above 3V. The devices also include a safety timer so that if preconditioning fails to produce the desired result, the battery is presumed damaged and charging stops. Texas Instruments Tel: 01604 663399

Self on Audio **Douglas Self**

The cream of 20 years of Electronics World articles (focusing on recent material)

A unique collection of design insights and projects - essential for all audio designers, amateur and professional alike.

Scientific electronics based on empirical data

Douglas Self has been writing for Electronics World and Wireless World over the past 20 years, offering cutting-edge insights into scientific methods of electronics design.

This book is a collection of the essential Electronics World articles, covering twenty years of amplifier technology but with a very strong bias towards more recent material. The articles include self-build projects as well as design ideas and guidance for the professional audio designer. The result is a unique collection of design insights and projects - essential for all audio designers, whether amateur or professional.

Contents: Introduction; PRE-AMPLIFIERS: An advanced preamplifier MRPI; High-performance preamp MRP4; Precision preamp MRP10; Moving-coil head amp; Preamp '96 I; Preamp '96 II; "Overload Matters" (RIAA overload); Balanced line inputs and outputs, part 1; Balanced line inputs and outputs, part 2; POWER AMPLIFIERS: FETs less linear than BJTs; Distortion in power amplifiers 1-8; Distortion residuals; Trimodal part 1, 2; Load-invariant power amp INVAR.DOC; Common-emitter amps; Two-stage amplifiers; SPEAKERS: Excess speaker currents; Class distinction (amp classification); Relay control; Power partition diagrams; Audio power analysis.

Douglas Self has dedicated himself to demystifying amplifier design and establishing empirical design techniques based on electronic design principles and experimental data. His rigorous and thoroughly practical approach has established him as a leading authority on amplifier design.

Readership: Audio electronics enthusiasts; Professional amplifier designers: Power amp users Paperback Pages: 416pp

UK Price: £26.50 Europe £27.50 ROW £28.50

Return to Jackie Lowe, Room L514, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS

Please supply the following title: **SELF AUDIO**

Total

Self

Audio

Name Address

Postcode

Telephone

Method of payment (please circle)

Access/Mastercard/Visa/Cheque/PO Cheques should be made payable to **Reed Business Information**

Credit card no

Card expiry date

Signed

Joe Carr explains how to get the most out of a radio receiver front-end design.

DESIGNING FRONT-ENDS

receiver's front-end – that is the portion of the receiver prior to the IF amplifier – is the key to its dynamic performance. Areas such as dynamic range, intermodulation distortion, –1dB compression point and third-order intercept point are a function of how well the front end of the receiver performs.

Front-end architectures

Several different architectures are used in receiver frontend circuits. Figure 1 shows the simplest form. It consists of a mixer stage and local oscillator preceded by a bandpass filter. Input to the band-pass filter comes from the antenna. The band-pass filter can be narrow or broad, depending on design.

There are two main issues regarding this type of architecture. First, there is cost. It costs less than the other architectures in some implementations. Secondly, the theory advanced by some authorities is, "why amplify noise prior to mixing?" The goal is to not use up the mixer's head room with processing unneeded energy. This theory has some merit, as was evident in the Squires-Sanders SS-1 receiver in the 1960s.

The main attributes of the bandpass filter are good forward performance – within the pass-band that is – and good reverse isolation. The second of these attributes is needed to prevent the local oscillator signal from reaching the antenna where it can be radiated. It has three important duties:

- It must limit the bandwidth of the input signal to minimise intermodulation distortion.
- It must attenuate spurious responses, mainly the image frequency and the ¹/₂-IF frequency problems.
- Suppress local oscillator energy to prevent it from reaching the antenna.

Table 1. Affects of mixer attributes on receiver performance.

Third-order intercept point Second-order intercept point Noise balance LO to RF isolation RF to IF isolation Conversion loss Intermodulation distortion 1/2-IF response Sensitivity and AM noise rejection LO energy radiated by antenna Direct IF pick-up Sensitivity A second version of the front-end architecture is shown in Fig. 2. This version uses an RF amplifier. The gain of the RF amplifier is low – certainly less than 20dB. Gains of more than 20dB may cause stability to be compromised, and the intercept point may not be achieved.

The purpose of the RF amplifier is to isolate the mixer as well as give the signal a small boost prior to mixing. This boost overcomes the losses in the mixer and the bandpass filter. The principal benefit of the RF amplifier is that it improves the isolation of the mixer/local-oscillator circuit from the antenna circuit.

A third version is shown in Fig. 3. Like the other two architectures, this one has a mixer and local-oscillator circuit - or a converter containing both mixer and local oscillator. The difference between this architecture and the previous one is the addition of a second band-pass filter.

This second band-pass filter may be the same frequency as the first, but that is not the only arrangement. It is often tuned to the image frequency. This frequency is the RF frequency plus or minus twice the IF, and is located on the other side of the local oscillator from the RF signal, Fig. 4. That way, the image frequency gets the same treatment in the mixer as the RF, so comes through the system as a valid signal.

Having a filter tuned to notch the image frequency, while passing the desired frequency, can limit this problem. Of course, the image filter must track the band-pass filter at the input if the receiver is multiple frequency.

The second band-pass filter may also attenuate the receiver's other spurious response and direct IF pick-up. In addition, it attenuates noise originating in the RF amplifier, preventing it from reaching the mixer.

Finally, it suppresses second-harmonic energy arising in the RF amplifier, thereby improving the receiver's second-order intercept point.

This filter should have no return responses at high frequencies. The reason is that the mixer has poor response for odd harmonics of the receive frequency, so they may ride through the system.

The RF band-pass filter's attributes will be determined by a combination of the first IF frequency and the injection side of the local oscillator signal. If low-side injection is selected, some of the spurious signal products may be on the low side of the RF signal.

On high-side injection just the opposite occurs: all of the spurious signals will be on the high side of the RF signal.

The trade-off between insertion loss and selectivity in the filter should usually be made in favour of insertion loss in band-pass filter number 1, but it can be sacrificed in bandpass filter number 2.

Mixer/local-oscillator performance

The performance of the first mixer is key to the performance of the receiver. It is a nonlinear device. Furthermore, it usually sees the highest level radio frequency signals in the system – the local oscillator, largely. So it needs to have a very high intercept point.

Single device active mixers are cheap, but they have the poorest performance of all the mixers. Generally speaking, the best performance comes from passive, double-balanced mixers. These generally have the highest intercept points, and better noise balance relative to most mixer designs. **Table 1** shows the mixer performance parameters and the things they affect.

Sometimes there is a third band-pass filter at the interface between the mixer and the local oscillator. This LO filter is used to attenuate wideband noise and its harmonics around the local-oscillator frequency, which could degrade the mixers second-order intercept point.

There is a trade-off in the type of mixer circuit used in a receiver. On the one hand, passive mixers have better intermodulation distortion performance than active mixers. However, they do not provide any conversion gain, and are in fact lossy devices.

Active mixers require less in the way of local-oscillator power, but their noise performance is worse than passive mixers. Furthermore, at high temperatures, the high thirdorder intercept point performance of the active mixer degrades.

A diplexer network is often placed between the mixer's IF output and the IF amplifier. The diplexer network absorbs some frequencies, while passing others. The diplexer network must be non-reflective up to several times the LO frequency. If not, those frequencies would be reflected back to the mixer, degrading its performance.

The single-sideband phase-noise performance of the local oscillator is important to the receiver's adjacent-channel selectivity. Wideband noise often afflicts the receiver sensitivity. Further, the LO signal must be as pure as possible to prevent spurious responses in the receiver.

It is not prudent to ignore the LO signal. It is a large signal that causes switching in the mixer, which generates its own harmonics. As a result, the local oscillator signal should be as pure as possible.

The local oscillator must be able to operate normally despite changes in temperature and power supply voltage. Its output should also remain stable if the receiver is subjected to mechanical vibration or impact.

Noise performance

All radio reception is a matter of manipulating the signal-tonoise ratio, i.e. SNR, of the system. Because of this problem, the noise generated by the mixer, local oscillator, band-pass filters and RF amplifier should be minimised.

For a passive, lossy device, such as the filter or some mixer stages, the noise figure is given by,

$$F = 1 + \frac{(L-1)T}{290}$$
(1)

Here, F is the noise factor of the device, L is the loss of the device (1/G) and T is the temperature of the device in kelvin (K). Some double-balanced mixers can have slightly higher noise figures.

The Friis equation for noise governs the system,

$$F = F_1 + \frac{F_2 - 1}{G_1} + \frac{F_3 - 1}{G_1 G_2} + \dots \frac{F_N - 1}{G_1 G_2 \dots G_{N-1}}$$
(2)

Here, F is the equivalent noise factor, F_1 , F_2 , F_3 are the noise factors of stages 1, 2 and 3, F_N is the gain of the nth stage and G_1 , G_0 and G_3 are the gains of stages 1, 2, and 3. Gain G_{N-1} is that of the stage before the Nth stage.

The overall noise factor of the receiver is determined by the noise performance of the stages within the system.

Spurious responses

A spurious response is a response that is not intended. On a superheterodyne receiver, these spurs can be created in the mixer stage, although they have their origin elsewhere. Most receiver spurs are a result of the heterodyning of the receiver, according to,

$$F_{\rm er} = mF_{\rm er} \pm nF_{\rm eq} \tag{3}$$

Here, F_{IF} is the intermediate frequency, F_{RF} is the radio frequency, F_{LO} is the local-oscillator frequency and *m* and *n* are either integers or unity.

By solving equation 3 for F_{RF} , you get two possible RF frequencies at which spurs can occur. These are,

$$F_{RF} = \frac{nF_{LO} - F_{H}}{m}$$

and,

$$F_{RF} = \frac{nF_{LO} + F_{IF}}{m}$$

The most common spurs are,

• Image frequency (previously defined, see Fig. 4)

- $\frac{1}{2}$ -IF (see Fig. 5)
- Direct IF pick-up
- *n*×LO frequency
- LO spurious frequencies
- Second mixer spurs (dual-conversion receivers only)

In full-duplex radio receivers, i.e. those that are used in conjunction with a transmitter at the same time, there are two additional responses that must be considered: full duplex

image and half duplex image. These are defined as,

$$Duplex \ image = F_T - \Delta f \tag{6}$$

$$Half \cdot duplex \ image = F_T + \frac{\Delta f}{2} \tag{7}$$

Here, F_T is the transmitter frequency and Δf is the difference between the transmitter and receiver frequencies.

Intercept points

(4)

(5)

An intercept point is a measure of circuit linearity. It allows you to calculate intermodulation distortion levels from the input signal levels. The intercept point represents an input amplitude, Fig. 6, at which the desired fundamental frequency is equal in amplitude to the undesired signal.

Second-order intercept point

The second-order intercept point, or SOIP, is due to the operation of the second-order products of a signal, and increases at a rate of 2dB for a 1dB increase in the fundamental level.

The 1/2-IF response of the mixer can be predicted from the second-order intercept point. The 1/2-IF point is due to the second harmonics of the RF signal and the LO signal, both of which are internally generated ($2F_{RF} \pm 2F_{LO}$). The 1/2-IF rejection is given by,

$$\frac{IP_2 - S - C}{2} \tag{8}$$

Here, IP_2 is the second-order intercept point, S is the receiver sensitivity in dBm and C is the capture ratio or the cochannel rejection in decibels.

For example, suppose a receiver has a second-order intercept point of 45dBm, and a sensitivity of -120dBm. If the cochannel rejection is 6dB, the half-IF rejection is ,

$$\frac{45 \text{dBm} + 120 \text{dBm} - 6 \text{dBm}}{2}$$

$$=\frac{159}{2}=79.5$$
dB

Third-order intercept point

The third-order intercept point, or TOIP, is the point at which the fundamental signal and its own third-order products are equal in amplitude. For each decibel increase in the fundamental signal, the TOIP increases 3dB.

The TOIP is predominantly responsible for the intermodulation distortion performance of the receiver. Intermodulation performance of the receiver can be defined as the difference, in decibels, between the receiver's sensitivity and the signal level that is sufficient to produce a specified level of interference. It can be calculated from,

$$IM = \frac{2IP_3 - 2S - C}{3}$$
(9)

where, IM is the intermodulation rejection ratio in decibels, IP_3 is the TOIP, S is the receiver sensitivity in dBm and C is the capture ratio or co-channel rejection in decibels.

Equation 9 covers the situation for one carrier. Unfortunately, real receivers see many carriers. The number of such products is n(n-1), where n is the number of carriers present for both $2F_1-F_1$ and $2F_1+F_2$, and, for triple beats, n(n-1)(n-2)/2 for $F_1+F_2-F_3$ situations.

Intercept points of the *n*th order

Once you know the input levels of signals applied to the receiver, you can calculate the *n*th order intercept points using,

$$IP_N = \frac{nP_A - P_{IMN}}{n-1} \tag{10}$$

Here, IP_N is the *n*th order intercept point, *n* is the order of the intercept point, P_A is receiver input signal power level and P_{IMN} is the power level of the IMD signal

RF amplifier

The RF amplifier can have a deleterious effect on the performance of the mixer stage, hence the entire receiver. There's a number of methods that can be used to reduce the effect.

The first method is to use a high-power device operating well below its maximum range. There is a trade-off with noise performance, however, and that must be taken into consideration.

Second, reduce the signal level to the device. This can be done with attenuators, in some cases. Care must be taken though to balance the needs of sensitivity in this respect.

Third, reduce the stage gain. Again, noise and SNR considerations apply. Fourth, use negative feedback in the amplifier. And Fifth, increase the selectivity of the RF amplifier. A narrower bandpass produces less noise than wider bandwidths.

A sixth way is to use push-pull amplifiers because they tend to cancel even-order products – odd-order products are not affected – which tend to take up mixer head room.

In summary

A receiver's front-end dominates its dynamic performance far more than the IF or other sections of the receiver. The matters of sensitivity and selectivity are dominated by the IF performance characteristics, but the dynamic performance is influenced by the front-end of the receiver.

Email: sales@seetrax.com Website: www.seetrax.com

Old Buriton Lime Works, Buriton, Petersfield, Hants. UK GU31 5SJ Tel: (44) 01730 260062 Fax: (44) 01730 267273

CIRCLE NO.122 ON REPLY CARD

BEGINNERS' Guinner

Waveform distributions

Probability distributions are an important topic in electronics, and in particular in communications, yet you rarely see an explanation of them. A spectrum analyser will tell you about the frequency distribution of a signal, but other techniques are needed to investigate the signal's voltage-probability distribution. Ian Hickman gives this neglected topic an airing. first came across voltage probability distribution diagrams many years ago, but they seem to be little discussed in the literature. Yet they aid our fundamental understanding of signals, in a way rather complementary to the voltage/frequency information provided by a spectrum analyser.

There are two sorts of probability distribution diagrams; those showing the cumulative probability of a voltage waveform, and those showing the probability density.

Voltage probability density distribution

Figure 1a) shows a squarewave of amplitude $\pm V_p$ about 0V ground. Imagine a window comparator set at

a level more negative than V_p , indicated at A = = = A. If the window is moved up to the level indicated by the dotted lines, the probability that the voltage will lie within the window is zero – assuming that the squarewave is perfect, with infinitely fast rise and fall times.

As the window reaches and encloses $+V_p$, the probability becomes 0.5, assuming that the mark:space ratio is indeed 50:50. Beyond $+V_p$, clearly the probability of the voltage lying within the window is zero again. The probability is 0.5 while the level V_p remains within the window, regardless of the window's width. In other words, the area of the shaded rectangle at V_p represents a probability of 0.5.

Now consider an infinitely narrow window, moving up from A = = =A, and encountering the $-V_p$ edge of the squarewave. The long thin rectangle at $-V_p$, represented as a line with arrow head, has an area of 0.5, but its width is zero. So its length must be infinite. It is in fact an example of a 'delta function' – a function well known to mathematicians.

The usual zero-width infiniteamplitude delta function has an area of unity. But here there are two of them, one at $-V_p$ and one at $+V_p$, so each has an area of 0.5. The total area of unity indicates a probability of unity, or 100% if you prefer.

For 100% of the time, the voltage level is either $+V_p$ or $-V_p$. The probability of occurrence of any voltage between $+V_p$ and $-V_p$, or indeed outside that range, is zero.

Determining probability density

While Fig. 1a) shows a probability density diagram, probability density is not the easiest thing to measure. You can use a window comparator as described, to obtain an approximation to it, but obviously a window of zero width is impracticable.

Much more manageable is the cumulative probability diagram. The cumulative probability diagram for a squarewave is given in Fig. 1b).

Imagine an ideal comparator whose output is zero when the signal input is above its reference input, and +1Vwhen below. Then the cumulative probability will be as in Fig. 1b). Note that the cumulative probability is the integral of the probability density.

Other waveforms

Every waveform type has its own characteristic probability density diagram. Figure 3 shows that for a sinewave. The shape shown gives roughly the right idea, although it is not guaranteed accurately to scale.

As the infinitely-narrow window encounters the negative peak of the sinewave, suddenly there is a finite probability, since the sinewave has a 'stationary point' at $-V_p$. Above this point, the curved sides of the negative peak cross the window at an increasingly acute angle, so the probability decreases. It is least at zero volts, where the rate of change of voltage is greatest, and then increases again, only to cease abruptly at $+V_p$. Note that Fig. 2 shows quite a

Note that Fig. 2 shows quite a different signal frequency from Fig. 1, to emphasise that the probability density depends only on the wave shape and is independent of its frequency.

It is not difficult to derive the probability density diagrams for other common waveforms. For example, looking at Fig. 2, it is clear that if the sinewave were replaced by a triangular wave with its constant slope sides, the dip in the curve around zero would disappear, the probability density being constant between the limits $-V_p$ and $+V_p$. And the result would be the same for a triangular wave with a non-50:50 ratio, or even for a sawtooth waveform.

Real probability distributions Measuring real probability distributions is really quite

Fig. 2. Probability density diagram for a sinewave

straightforward, if you are content to measure the cumulative probability rather than the probability density.

The one can be derived from the other, for, as noted above in connection with Fig. 1, the cumulative probability is the integral of the probability density. So if you measure the cumulative probability, differentiating it will give the probability density.

I made up a circuit to measure the cumulative probability of various waveforms, and this is shown in Fig 3. Op-amp IC_3 integrates a voltage of +15V or -15V, applied via R_5 from the output of IC_{1d} .

When the positive-going output of IC_3 reaches +7.5V, the output of IC_{1c} falls from +15V to -15V, while the output of IC_{1d} rises from -15V to +15V. The output of IC_3 therefore reverses direction and moves linearly towards -7.5V.

On reaching -7.5V, the cycle repeats, and a $\pm 7.5V$ triangular

wave of about 0.5Hz is applied to the reference input, pin 2 of comparator IC_2 .

Depending on whether the signal input at pin 3 of the comparator is higher or lower than the voltage at pin 2, the comparator's output will be -15V or +15V. Filter R_4/C_2 smooths out the waveform, providing a dc level indicative of the probability that the signal voltage is lower than the reference voltage.

As the filter is such a simple one, only signals of very much higher frequency than the 0.5Hz triangular wave can be used with the circuit as it stands.

The filtered voltage level across C_2 was buffered by IC_{1b} and applied as Y deflection to a scope used in the XY mode. The triangular wave output of IC_3 was applied as the X deflection.

The arrangement will trace out on the screen the cumulative probability of any waveform applied

to the comparator, provided only that the peak-to-peak value of the waveform is less that $\pm 7.5V$.

Fig. 4. Display of the cumulative probability distribution of a sinewave.

Fig. 5. High-pass filtered audio-frequency noise: 5V/div. vertical, 5ms/div. horizontal.

Fig. 6. Display of the cumulative probability distribution of Gaussian noise.

Some practical results

Figure 4 shows the result obtained for the cumulative probability of a sinewave. The horizontal deflection is provided by the $\pm 7.5V$ triangular wave, and the deflection sensitivity has been adjusted to more or less fill the screen.

When the comparator output is permanently at logic zero or logic one, the limits of the filter output are $\pm 15V$, and the filter output supplies the vertical deflection. Again, the deflection sensitivity has been adjusted to more or less fill the screen.

Due to the 20 second exposure, Fig. 4 shows a complete sinuous trace, but during that time, the spot was repeatedly tracing out the curve, first from left to right and then back again, every two seconds. The fact that the go and return traces are identical shows that the filter time constant was not too long. If it had have been, the go and return traces would be slightly separated.

The amplitude of the applied ground-centred 20kHz sinewave was 13.1V peak-to-peak, and it was applied at input B. Thus the reference triangular wave recorded the cumulative probability from just below the negative peak to just above the positive.

When the reference is below the negative peak, at the extreme left of the trace, the probability of the comparator providing a logic 1 (+15V) output is zero, and the level out of the filter is constant at -15V.

When the reference encounters the negative peak, there is a discontinuity in the slope of the trace output by the filter, which starts to rise rapidly. The slope then reduces, being a minimum around the central portion of the sinewave, before increasing again only to revert abruptly to a horizontal straight line above $+V_p$.

If you were to plot the slope of the trace – i.e. differentiate it – it would be zero at the left, then rise abruptly before dipping in the middle, and being symmetrical about this point, just like that shown, on its side, in Fig. 2.

Figure 5 shows a very important waveform encountered in all branches of electronics and elsewhere, namely Gaussian noise. It is so called because the probability density distribution is the Gaussian or 'normal' curve.

The sample shown is band-limited white noise, that is to say it contains

all frequencies between a lower and an upper cut-off point. The lower point was set at 10kHz, using the filters incorporated in the particular audio-frequency noise generator used.¹

For this test, capacitor C_2 was increased to 47n, to avoid excessive thickening of the trace due to residual ripple from the filter. Also, in view of the limited output voltage available, it was applied to input A, output A being patched into input B.

In this case, the buffer stage IC_{1b} was ignored, and the filter output voltage across C_2 monitored directly with a $10M\Omega$, $\times 10$ probe. This avoids the problem that the buffer cannot handle the full $\pm 15V$ output of the filter. In fact, it would have been better not to use the buffer in the earlier tests; the discontinuities at each end of the trace in Fig. 5 should have looked even more pronounced.

Before recording the result, the amplitude of the noise was adjusted so that its peaks did not exceed ± 7.5 V. This proved difficult if not impossible to do by observing the waveform of Fig. 5 directly, so the output of the comparator at pin 7 was monitored instead. The amplitude of the noise input was reduced until momentarily the comparator output stopped changing state at each end of the ± 7.5 V reference excursion.

The resultant cumulative probability display is shown in Fig. 6. This looks very much like the textbook curve, and shows that the amplitude distribution of the noisegenerator's output is indeed Gaussian.

A maximal length pseudo-random bit stream, or PRBS, circuit is used in the the noise generator to produce white noise. The PRBS is a series of logic noughts and ones, and this is converted to Gaussian by being lowpass filtered at well below the clock rate.

I had always assumed the distribution to be Gaussian normal, but it is nice to have confirmation. You can see that the slope of the curve increases, from left to right, smoothly to a maximum and then dies away again to zero. This corresponds exactly to the bellshape of the normal or Gaussian distribution curve.

The degree of departure from the Gaussian normal characteristic could be further investigated in detail as follows. The triangular waveform would be replaced by a dc level, accurately set by a

potentiometer in steps of say 200mV from exactly -7.5V to +7.5V, with the aid of a DVM.

At each step, the dc level out of the filter should be recorded, also with the DVM, and the results tabulated. A $3^{1}/_{2}$ -digit, or better still $4^{1}/_{2}$ -digit, DVM will provide the resolution to record readings differing but little from the rail voltage, such as will be encountered at several standard deviations from the mean.

Filter output readings from -15Vto +15V are then normalised to the range zero to unity by adding 15 and dividing by thirty. They can then be plotted on cumulative probability paper. If the distribution is Gaussian, the plot will be a straight line.

Cumulative probability paper has one linear axis, which would be used for the ± 7.5 V reference scale. The other is divided to nearly cover the range nought to one.

Probability of 0.5 occurs in the middle of the axis, increasing in cumulative normal fashion at one end to 0.9999 and decreasing to 0.0001 at the other. A suitable paper is 'Chartwell', Reference number D5572, though note that this gives probability in 'milliunits', so that the centre line is not 0.5 but 500.

Other applications

Probability density distribution is important in a number of electronics and communications applications. One such comes to mind from my days in defence electronics.

When trying to jam an adversary's communications, one will be modulating a transmitter to blanket the target bandwidth used by the enemy, without jamming one's own communications, quite probably in an adjacent part of the band.

The jammer could be frequency modulated with noise, but the resultant Gaussian distribution across the band would be unsuitable, due to the spill-over outside the target band. Wideband modulation with a waveform with precise limits would be better, perhaps wideband sinusoidal FM at a suitable rate of, say a few kilohertz.

The occupied bandwidth of a wideband sinewave modulated carrier is approximately given by $2(f_d+f_m)$ where f_d is the deviation – a few megahertz upwards in this case – and f_m is the modulating frequency – a few kilohertz, say. So the fall-off of power at the ends of the band is

Fig. 7. Power spectral density of carrier, wideband modulated with a) a sinewave, b) a triangular wave

Forthcoming 'Beginners' corner' topics

This was to be the last article in the 'Beginners' Corner' series, but due to its popularity, Ian is currently working on further tutorials. This discussion on probability density distributions will be followed by articles on an audio PA stage using common-emitter devices driven from op-amp supply lines, transformer equivalent circuits, the superheterodyne receiver, balanced circuits, constant current generators, voltage references and linear ramp generators among others – not necessarily in that order.

Earlier in this series...

As explained in a preliminary article in the May 2000 issue, this series is intended to help students – and anyone interested in getting to grips with RF design – gain a background in practical electronic circuitry and troubleshooting.

Originally, the series was developed in response to the government's RF Engineering Education Initiative. Below is a list of the tutorials that have already appeared.

- 1 Timer circuit using the 555, June 2000 issue
- 2 Audio oscillator Wien bridge based, July issue
- 3 h_{fe} tester, August.
- 4 Radio-frequency oscillator, Colpitts type, September.
- 5 Audio frequency filter/oscillator state variable based, October.
- 6 Capacitance meter, November.
- 7 Radio-frequency oscillator involving negative resistance, December.

rapid and predictable.

Using sinewave frequency modulation though, the envelope of the discrete lines forming the jammer's output spectrum will have a dip in the middle, Fig. 7a).

The similarity to Fig. 2 is clear, though the dip in the middle is less pronounced, due to the vertical scale being $\log - at 10 dB/div - rather than linear$.

On the other hand, wideband frequency modulation with a triangular waveform will provide a constant degree of jamming energy across the target band, though the roll-off beyond the band edges is not quite so compact, see Fig. 7b). This is because the modulating triangular wave contains harmonics, unlike the sinewave modulation of Fig. 7a).

A somewhat better jammer may result from passing the spectrum of

Fig. 7a) through a low-Q tuned circuit, partially flattening the power spectral density across the jammed band, and retaining or even slightly improving the rapid band-edge rolloff.

Reference

 Hickman, Ian, Wide Range Noise Generator, Wireless World, July 1982, p 38.

Capacitance meter

There was an error in November's Beginners' Corner. On page 907, in the formula for C_{or} the multiplication sign in the denominator on the righthand side of the equation should be a minus sign. I missed it at the proof-reading stage; apologies.

SPEAKERS' CORNER

The sensation of sound is a function of the velocity of the air. Displacement is the integral of the velocity. Figure 1 shows that to obtain an identical velocity, or slope, the amplitude must increase as the inverse of the frequency. Consequently for a given sound-pressure level, lowfrequency sounds result in much larger air movement than high frequencies.

Sound pressure is proportional to the volume velocity, U, of the source. Volume velocity is obtained by multiplying the vibrating area in square metres by the velocity in m/s. As sound-pressure level is proportional to volume velocity, as frequency falls the volume, or displacement, must rise.

Fig. 1 Low frequencies must have larger air movements for the same sound-pressure levels as high frequencies.

How does it radiate?

John Watkinson looks at how sound pressure waves propagate and interact.

This means that low-frequency sound can only be radiated effectively by large objects, hence all of the bass instruments in the orchestra are much larger than their treble equivalents. This is also why loudspeaker cone movement becomes great enough to see at low frequencies.

Volume velocity is measured in cubic metres per second and so sound is literally an alternating current of air. Pressure p is linked to the current by the impedance just as it is in electrical theory.

Electrical analogies

There are direct analogies between acoustic and electrical parameters and equations that are helpful. One small difficulty is that whereas alternating electrical parameters are measured in rms units, acoustic units are not. Thus when certain acoustic parameters are multiplied together, the product has to be divided by two. This happens automatically with rms units.

The intensity of a sound is the sound power passing through unit area. In the far field it is given by the product of the volume velocity and the pressure. In the near field, the relative phase angle will have to be considered.

Intensity is a vector quantity as it has direction, which is considered to be perpendicular to the area in question. Total sound power is obtained by multiplying the intensity by the cross sectional area through which it passes. Power is a scalar quantity because it can be radiated in all directions.

In a spherical sound wave, there is negligible loss as it advances outwards. Consequently the sound power passing through the surface of an imaginary sphere surrounding the source is independent of the radius of that sphere. As the area of a sphere is proportional to the square of the radius, clearly, the intensity falls according to an inverse square law.

Inverse square law?

Everyoue has heard of the inverse square law, but unfortunately not everyone has heard that it does not always apply. It should be used only with caution because a number of exceptions to it exist.

Very close to a sound source, the proximity effect causes a deviation from the inverse square law for radiating objects that are small compared to the wavelength. The area in which there is deviation from inverse square behaviour is called the near field.

In reverberant conditions, a sound field is set up by reflections. As the distance from the source increases at some point the level no longer falls.

It is also important to remember that the inverse square law only applies to near-point sources. A line source radiates cylindrically and intensity is then inversely proportional to radius. Noise from a busy road approximates to a cylindrical source. Flat panel loudspeakers that operate with chaotic bending waves are not point sources, and have an extended near field.

Wave theory

Wave acoustics is the sonic subset of wave theory is used in many different disciplines including radar, sonar, antenna design and optics. Consequently the designer of a loudspeaker may obtain inspiration from studying a radar antenna or a CD pickup, although most seem to get their inspiration from carpentry.

Figure 2 shows that when two sounds of equal amplitude and frequency add together, the result is completely dependent on the relative phase of the two. On the left of the diagram, when the phases are identical, the result is the arithmetic sum. On the right, where there is a 180° relationship, the result is complete cancellation. This is constructive and destructive interference. At any other phase and/or amplitude relationship, the result can only be obtained by vector addition.

The wave theory of propagation is based on interference and was originally proposed by Christiaan Huygens. The theory suggests that a wavefront advances because an infinite number of point sources can be considered to emit spherical waves which will only add when they are all in the same phase. This can only occur in the plane of the wavefront.

Figure 3a) shows that at all other angles, interference between spherical waves is destructive. For any radiating body, such as a vibrating object, it is easy to see from Fig. 3b) that when a radiating object is small with respect to the wavelength, only weak spherical radiation is possible.

Radiators large and small

On the other hand, when the radiator is large in comparison with the wavelength, a directional plane wave can be propagated, or 'beamed'. Consequently high-frequency sound behaves far more directionally than low frequency sound. When a wavefront arrives at a solid body, it can be considered that the surface of the body acts as an infinite number of points that reradiate the incident sound in all directions. When the body is large compared to the wavelength and the surface is flat, constructive

AUDIO DESIGN

Diaphragm is considered as an infinite number of point radiators

Effect here is obtained by integrating sound due to every point radiator

interference only occurs when the wavefront is reflected such that the angle of reflection is the same as the angle of incidence.

If the body is small, the amount of re-radiation from the body compared to the radiation in the wavefront is very small. Constructive interference takes place beyond the body as if it were absent, thus it is correct to say that the sound diffracts around the body.

Figure 4 shows two identical sound sources that are spaced apart

by a distance of several wavelengths, and which vibrate inphase. At all points equidistant from the sources, the radiation adds constructively. The same is true where there are path length differences which are multiples of the wavelength.

Destroyed sound

However, in certain directions the path length difference results in relative phase reversal. Destructive interference means that sound cannot leave in those directions. The resultant diffraction pattern has a polar diagram consisting of repeating lobes with nulls between them.

The radiation of a pulsating sphere is interesting, but it does not model many real-life sound radiators. The situation in Fig. 4 can be extended to predict the results of vibrating bodies of arbitrary shape.

Figure 5 shows a hypothetical rigid circular piston vibrating in an opening in a plane surface. This is more like a real loudspeaker, or at least a woofer.

As the piston is rigid, all parts of it vibrate in the same phase. Following concepts advanced earlier, a rigid piston can be considered to be an infinite number of point sources. At an arbitrary point in space in front of the piston, the result is obtained by integrating the waveform from every point source.

Interestingly, the result of this integration is identical to the Fourier transform of the spatial disposition of the diaphragm. To see why, you will need to consider how transforms work. This will be the subject of a future article.

TV Fault Finding Guide

Peter Marlow Contents: Introduction; A-Z of manufacturers and models Readership: Professional service engineers, some college courses.

Pages: 400pp

Price: £22.50

Unique expert authorship and trusted Television magazine identity. Real repair and troubleshooting info - not just cribs from manufacturers' data sheets. Ease of reference this book is an essential repair tool, not just another volume for the shelf, Television magazine's TV Fault Finding column is a unique forum for practical servicing tips, with the UK's leading service engineers and servicing writers contributing their observations and recommendations month by month. But try finding those faults reports for the Amstrad CTV2200 that's on your bench. Even with an index you will be chasing through a pile of magazines... until now. Peter Marlow's TV Fault Finding Guide is a distillation of the most used fault reports from 11 years of Television magazine. Arranged by make and model the information is extremely easy to access, and the book is a convenient size for the bench or to carry with you. This will undoubtedly become one of the service engineer's most useful tools. Unlike other fault guides, this one is based on top quality information from leading authorities, and genuine repair case studies. This is real-life servicing information, not just a compilation of manufacturers' manuals.

Over 2000 reports covering over 300 models Instant on-the-spot diagnosis and repair advice. Television magazine's leading writers' wit and wisdom available for the first time in book form.

Post your completed order form to:-Jackie Lowe, Room L514, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS

How to pay (TV Fault Finding Guide) paperback						
I enclose a cheque/bank draft for £ (payable to Reed Business Information)						
Please charge my credit/charge card Mastercard American Express Visa Diners' Club						
Credit Card No: Expiry Date:						
Signature of Cardholder						
Cardholder's statement address: (please use capitals)						
Name						
Address						
Post CodeTel:						

DG-comled Value Dower

hroughout the years I have seen many valve circuits. I have seen singleended designs without coupling capacitors, but I have never seen a push-pull design that was DC coupled.

I believe that coupling capacitors have a major influence on the overall sound quality of an amplifier. The goal here was to produce a relatively simple push-pull valve amplifier using an output transformer, but without any coupling capacitors.

Valve amplifiers have appeared without an output transformer. But the benefits of transformerless designs are are outweighed by their high complexity and high component count.

We have found that single-ended designs are affected by speaker choice so we produced this DC-coupled amplifier using an ECC85 and EL84s in push-pull.

Design goals, amplifier No 1

The goal of this amplifier project was to design an amplifier with a low component count that was DC coupled throughout. It also had to be low cost and relatively easy to build.

Figure 1 shows the complete amplifier. Because one of the design goals was low component count, we had to come up with a simple input stage. A long-tail pair was chosen.

An ECC85 is used for its low impedance in combination with a relative high amplification factor. The low impedance is important because the valve has to work with a relatively low plate voltage. We have found the ECC85 to perform well in audio applications. It is also widely available and inexpensive.

For the output stage, we chose the EL84. It is also inexpensive and widely available. In push-pull mode, it can deliver over 10W.

Most valve amplifiers use a commoncathode circuit directly coupled to a longtailed pair as driver stage. We thought, "why not skip the common cathode and find a way to couple the long-tail pair directly to the EL84 push-pull output circuit?" After all, the ECC85 can provide enough gain.

The EL84 needs -11V of bias for 40mA at 300V plate voltage. Thus, we had to find a way to couple the long-tail pair and the

output stage in such a way that the 11V bias voltage remained.

Our power supply provides +390V. Knowing this allows the anode voltage of the ECC85 to be calculated. Maximum plate voltage of the EL84 is 300V, so cathode voltage has to be something like +85V. This is derived from,

Vcath=Vpsu-(Vplate+Vtransformer).

Now that the cathode voltage of the EL84 is known, it is easy to determine the plate voltage of the ECC85. As the cathode voltage is +85V, this has to be +74V in order to maintain the -11V bias voltage. The screen grid voltage should be 85V-11V=74V.

A transistor is used as a current source, setting current for the ECC85. Because of the high values of the cathode resistors, the EL84s automatically find the correct operating point.

The current source also makes the amplifier more stable via DC feedback by means of the two $120k\Omega$ resistors. These resistors apply some correction for current differences in the EL84s by setting the voltage at the base of the transistor. This correction feature is not essential, but it works fine with the current source used.

A negative supply is needed for the current source. We chose -6.2V for convenience, using the heater winding and zener diode to produce it. If you use 12V and modify the current source as shown in Fig. **1b**), you can remove feedback and the amplifier will be very stable.

Using a cascode as a current source with a LED forming the reference should improve the current source even further. In this alternative, Fig. 1c), the DC feedback is again superfluous.

Potentiometer P_1 is 220 Ω and is added to correct imbalance in the output stage. We used a voltmeter made from a small 50 μ A-0-50 μ A meter for adjustment. If the needle of this meter is in the middle, balance is good.

Adjustment for imbalance is not critical. A difference in the cathode voltages of 2.2V will result in a current imbalance of only 1mA. This is because of the large DC current feedback of the large cathode resistors.

Adjustment should be made 20 seconds after power-up and again after 15 minutes

Coupling capacitors and output transformer greatly simplify valve power amplifier design, but they both degrade linearity. Because of the inherently high impedance of valves, eliminating the output transformer is difficult. Numerous single-ended designs without coupling capacitors have appeared in the past, but there have been few **DC-coupled** push-pull amplifiers like this one from Kees Heuvelman and Wim de Haan.

This article was prepared by Wim de Haan, Kees Brakenhoff and Kees Heuvelman. The idea for the amplifier came from Kees Heuvelman.

AUDIO DESIGN

Adjust P1 so that voltage across the cathodes is zero (M1 in the middle). High Voltage supply should have a delay of at least 30 seconds ! Gain approx.20dB

Fig. 1. Three-valve audio power amplifier using a transistor current source in the long-tail pair cathode. Insets b) and c) show alternative ways of forming the current source. In the original design, -6.2V was chosen as the source supply rail due to the convenience of the 6.3V heater winding.

or so. In this way the balance of the output stage remain stable over a very long period.

Overall feedback is accomplished by the $3.3k\Omega$ resistor, the 5Ω transformer winding and the negative input of the long-tail pair. Total gain of the amplifier is approximately 20dB while overall feedback is approximately 6dB.

Transformer alternatives

The Amplimo VDV8020 toroidal output transformer would be the perfect choice as output transformer. The primary impedance of this toroidal transformer is $8k\Omega$ and ultra-linear taps are provided. Frequency response is exceptional with -3dB points at 2Hz and 134kHz.

An extremely high coupling factor, very low leakage inductances and low internal capacitances have achieved this. There are no conflicting resonances below 100kHz. This performance is achieved through the use of multisectioned windings together with special combinations of series and parallel connections. The multi-segment secondary winding has a 5Ω impedance, contrived to be suitable for both 4Ω and 8Ω loudspeakers.

In 1993, Amplimo was the first company in the world to supply toroidal output transformers with a quality factor greater than 290 000. This factor is synonymous with frequency range.

Other suitable transformers are the Hammond 1608 or 1650F (USA), the BorderPatrol OTTP-610 (England), the Sowter U004, U064, UA23 or U082 (England).

A vintage Unitran 9U13 is used as output transformer throughout this project. This Dutch transformer is made back in the sixties. Unitran manufactured some fine transformers.

All transformers mentioned are still in production, except for the Unitran.

Amplifier 1 in summary

This amplifier circuit has no coupling capacitors, it works well and it is very stable.

As is common with DC-coupled valve amplifiers, the heater filaments must be up to temperature before the **HT** is applied to the circuit. This means a power-up delay of at least 30s.

Cathode capacitors on the output valves ensure that AC signals cannot feed back to the input stage through the current source transistor.

We designed this amplifier to give good performance yet remain simple. One area that could possibly benefit from a little extra complexity is the current source.

The suggested circuit works only with output valves biased fully in Class A. If for any reason the power supply voltage rises by, say 10%, then the output valves will be automatically overloaded.

In a recent design, we used a regulated DC power supply for the driver stage. This makes the circuit more flexible.

Amplifier design 2

We designed a second DC-coupled amplifier using three EF86s and EL84s in push-pull. Shown in Fig. 2, this circuit provides even better stability.

To enhance stability, the current source incorporates an EF86 pentode and the long-tail pair uses two more EF86s. Stability is improved because the DC differences in the output stage taken from the cathodes of the EL84s are fed to the screen grids of the EF86s of the long-tail

Fig. 2. Stability is improved by replacing the dual triode with two EF86 pentodes and using the same pentode as the active device in the current source.

pair. In this way each output valve has its own DC regulation, regulated by its associated EF86.

Using the EF86, the long-tail pair has a higher output impedance. This tends to cause a problem with high frequencies if no feedback is used. However, gain is high so more feedback can be applied to overcome this problem.

Square waves fed into this amplifier come out fine. Overall feedback is approximately 10dB.

Good stability, simpler circuit - design 3

We tried replacing the three EF86s with two ECC88s, Fig. 3. Stability was just as good. After 36 hours of continuous operation, the voltage across the cathode resistors of the EL84s changed only 0.3V.

Only 2dB feedback is used here. Current for the long-tail pair can be set by changing the $100k\Omega$ resistor connected to the negative supply. It is approximately,

$$\left(150\frac{100k}{100k+180k}\right) \div 15k$$

or about 3.6mA. This configuration should also work with ECC85s.

Amplifier design 4

Figure 4 shows a practical DC-coupled design using an ECC85, a current source and two additional potentiometers. These pots are there to allow current and the high voltage of the input stage to be adjusted.

Current of the ECC85 is set to half that of ECC88. The other section of the ECC88 is used in the plus section of the power supply, in this way the voltage of the input stage is adjustable.

The grid of the ECC88 is controlled by the resistor divider between the negative rail and ground. Using the potentiometer, the high voltage can be easily set to approximate 206V.

The current source should be set to approximately 1.7mA. Bear in mind that the current source should be adjusted in so that the anode voltage of the ECC85 reads +74V.

Technical support

- Amplimo toroidal transformers. Telephone: + 31 74 376 3765. Website: http://www.amplimo.nl/
- BorderPatrol transformers. Telephone: + 44 1273 276716. Website: http://www.borderpatrol.net/
- Hammond transformers: Telephone: + 1 716 651 0086. Website: http://www.hammondmfg.com/
- Sowter transformers. Telephone: + 44 1473 252794. Website: http://www.sowter.co.uk/

Fig. 3. Practical realisation of design 3, which provides good stability and an easy-to-implement circuit. Two ECC88 double triodes are used at the input.

Specifications, amplifier design 4

All measurements were made using a Hammond 1608 output transformer, a Tesla JJ ECC88, Tesla JJ EL84s, an RFT ECC85.

Output power at 1% distortion Sensitivity for 10W output power Noise/hum related to 1W Frequency response @ 1W -3dB	11.9W 700m∨ 78dB 10Hz-72kHz,
Distortion at 10W @ 1kHz	0.55%
Distortion at 10 W @ 30kHz	2.35%
Distortion at 10 W @ 45Hz	2.7%
Damping 4Ω @ 100Hz	4x
Damping 4Ω @ 10kHz	5.3x

Fig.4. Of the four designs, this one is the most practical. It provides good stability and is easy to adjust.

Power supply for amplifier design 4 with a simple triode shunt regulator on the positive supply and a neon shunt stabiliser for the -150V rail.

The UK is in danger of becoming the cave man of the telecoms industry if the market for broadband services is not opened up. Are the interests of operators being put before the needs of the economy? David Manners reports

ogical behaviour in the telecommunications industry has gone out of the window. The big US players, Lucent Technologies, Nortel Networks and Cisco Systems – all stock market darlings until recently – have seen their shares hit by reports that the telecommunications network operators are reducing equipment orders.

But in Europe, the biggest player of them all, Alcatel of France, reports sparkling business – sales up 50 per cent in the third quarter, data and optical networking up 88 per cent, and CEO Serge Tchuruk is very bullish about the state of the market.

"We're revising upwards our guidance from telecom revenue growth for the full year to the high thirties, with the increase from operations growing twice as fast," said Tchuruk, projecting that the demand for adding broadband technology to the world's telecommunications networks was robust.

On the other hand we see telecommunications network operators like BT digging their heels in on adopting broadband to the point where the UK regulator is hauled up before the House of Commons select committee, and a couple of the entrepreneurial network operators known as CLECs, which would like to sell broadband access to UK consumers, are reported to have pulled out of the market.

The UK is not alone in this. Across the world the anecdotal evidence is of telecommunications network operators doing what they can to slow down the adoption of broadband services. They create difficulties for customers who want them, delaying installation, making access to their premises difficult for new operators wishing to install their equipment, and charging both operators and customers too much to make the whole process viable.

This is why would-be operators, like the CLECs, are burning cash like dot.coms and not showing any returns. The amount of cash already used up varies from the \$221m of Covad to the \$871m of Rhythms. Most will have to return to the capital markets for more cash next year – which is reflected in 80 and even 90 per cent declines in the share prices of some CLECs.

Could the rollout of broadbandto-the-home technology, such as ADSL, be killed off in the same way as ISDN to the consumer was killed off in the 1990s? It seems an awful question to ask, with so much of the world's economic growth expected to come from e-commerce, which depends on upgrading the telephone network. But the question has to be asked.

denied

Could the interests of the national telecommunications network operators be put above the interests of the world economy?

Analysys, the Cambridge-based telecommunications consultants, says: "Competitively priced Internet access services are viewed as a critical component for EU global competitiveness". The political and economic stakes are too high for the telecommunications operators to stand in the way of the upgrading of the network.

Interestingly, the companies that are doing really well in providing the equipment to upgrade the network are finding contracts in countries where the national telecommunications operators have less political influence than they do in Europe and the US. For instance: Korea and Taiwan are big buyers of the equipment; last week Marconi announced a \$550m order from Dubai.

The same irrationality, though not for the same reasons, seems to be occurring in the wireless market. Whereas Motorola and Ericsson announced weak results from handset sales in the third quarter citing declining markets and Ericsson has long been rumoured to be considering exiting the handset market - No 1 handset player Nokia announced a fantastic third quarter, with sales up 59 per cent and revenues on track to top \$30bn. What's more, it projected a record fourth quarter.

It must be awful for the executives at the handset divisions of Motorola and Ericsson to see Nokia's handset business storming ahead while they falter. Here the difference can only be in execution – Nokia actually came up with seven new handset models in the third quarter.

Something that Nokia does resonates with the public. Maybe it's the fact that its CEO Jorma Ollila gives priority to fashionability, ease-of-use and touchy-feely attributes like styling, over the engineering instinct to produce ever-more elaborate technological *tours de force*.

Latest models are said to allow you to customise your own ringing tone – like having your school song, and putting your own screensaver, say a photo of your partner, on the screen. Those ideas never came out of an engineering department. So, in wireless

communications, as in broadband wired communications, the market doesn't seem to be responding to trends, but to individual initiatives, varying abilities to execute, and opportunism. That's frustrating for analysts seeking trends and logical explanations, but its par for the course for an industry pioneering new frontiers.

www.oftel.gov.uk

The irresistible force meets the immovable object

The irresistible force is the huge and growing human demand to communicate:

- We are sending 8bn e-mails a day – expected to rise to 26bn by 2005.
- We bought 400m mobile phone handsets this year; 60% more

than last year. If that growth continues, 7bn hand-sets will be bought in 2006 by a world population of 6bn!

- Internet traffic doubles every 100 days.
- 350m people are on-line; 800m expected to be on-line in 2005.

\$650m in net commerce is transacted every year; \$6.9trn is expected for 2004.

 The immovable object is the reluctance of telecoms network operators worldwide to upgrade the network...

The Big Question is: 'When does the network gridlock?"

Personal voice communications without a licence over a two mile radius for £75, exclusive.

Reader offer A pair of two-way PMR radios for just £75*

RS446 key features... Up to 2 mile

coverage radius Scans main and

- subchannels
- Eight channels, each with 38 sub channels
 Backlit display for
- night time use
- Unique call functionHeadphone and mic
- sockets allow discrete use
 Battery status
- indicatorAuto battery save
- feature
- Keypad lock-out

RS 446 personal mobile radio...

To celebrate its launch, new test and instrumentation company Tecstar is offering *Electronics World* readers *two* RS446 personal mobile radios for just £75 excluding VAT and carriage.

Capable of transmitting and receiving voice over a distance of up to two miles, depending on terrain, the PMR 446 needs no licence. It offers eight channels, scanning – and with CTCSS up to 304 channel combinations.

A backlit liquid-crystal display shows volume level, channel number, subchannel number, battery level and transmit/receive or channel busy. A unique call feature enables the user to alert the person they wish to contact.

Transmission distance is up to 2 miles. The radio has an accessory socket for an external headphone, earpiece or vox-microphone/headphone combination. A keypad lock and battery save feature are also standard.

The unit measures only 120 by 50 by 20mm and weighs less than 150 grams – including batteries. It is supplied complete with instructions and belt/mounting clip.

Compact, lightweight and low cost, the RS446 wireless personalcommunications hand set has a wide range of applications. These include fetes, events and rallies. Builders on building sites could benefit from these radios, as could exhibitors at exhibitions and staff at warehouses, winter activities, sports events, maintenance departments, schools and care homes. Of course you can also use the RS446 just to keep contact with someone locally. The uses are almost limitless.

Send a cheques or postal orders to Tecstar Electronics Limited, 1 Nuffield Road, St Ives, Huntingdon Cambridgeshire PE27 3LX.

Tel 01480 399499, fax 01480 399503, e mail sales@tecstar.co.uk

Order coupon

Please send me RS446 personal mobile radios, for which I enclose:

For ____ pairs of RS446 radios at £75 per pair Plus VAT at 17.5%, or £13.13 per pair

Plus £6 UK postage per order, or £14 overseas

Total

Fill in your name and address and post this coupon together with a cheque for the total amount above payable to Tecstar to the address below.

Name ____

Address _

Post code

Signature

Send cheques, postal orders etc to Tecstar Electronics Limited, 1 Nuffield Road, St Ives, Huntingdon Cambridgeshire PE27 3LX. Tel 01480 399499, fax 01480 399503, e mail sales@tecstar.co.uk

What is CTCSS

CTCSS – or 'continuous-tone controlled squeich system' – allows sub channels of the main channels to be used. There **a**re 38 sub channels to each main channel. Using subchannels decreases the likelihood that someone else will be using the same frequency.

An 'ideal' transistor?

With the aim of helping you produce more effective analogue designs, Bryan Hart explains how it is possible to develop a set of 'ideal' transistor models that suit particular 'families' of applications. This first article deals with static models. A second will cover dynamic alternatives. his article, and one to follow, emphasises the importance of the idea of a family of models for 'ideal' transistors. By 'ideal' transistor, I mean a device that is ideal for a given class of applications.

I describe circuit categories for which each family member may be regarded as ideal, either for a first-order understanding of circuit operation or for initial estimates prior to more detailed calculations and experimental work.

In this first article, static models are covered. Here, it is first necessary to consider, briefly, what is meant by an 'ideal diode' because that concept is central to the description of an ideal bipolar junction transistor, or BJT. In the second article, I deal with dynamic models.

Ideal-diode models

A p-n junction diode is shown schematically in Fig. 1 and an 'ideal piecewise-linear' dc characteristic of it, together with its 'boxed' representation,¹ is shown in Fig. 2.

From a physical viewpoint, there is assumed to be an unlimited supply of charge carriers within the device to support the conduction process for one (forward) polarity of applied voltage but zero availability of carriers for the other (reverse) polarity. An analogue is a non-return valve. Such a valve permits the unhindered flow of fluid through a pipe in one direction but completely blocks the flow in the opposite direction.

The model in Fig. 2 is useful in a firstorder analysis of a wide range of applications that includes the following: rectification; clipping, limiting and clamping; and the diode pump circuit, used early in designs for pulse counters and frequency-to-voltage converters.

When the forward voltage drop of a diode

is not negligible in comparison with signal and supply voltage levels, the model in Fig. 3 can be used. The device is off when V_D is less than δ – typically 0.7V – but when I_D is greater than 0, it behaves like a battery being charged.

A limitation in the availability of suffi-

ciently energetic charge carriers in the p and n regions accounts for the 'ideal exponential' diode model. The model is conveniently represented Fig. 4a) by showing a general diode symbol with a current parameter, I_S , next to it. This is intended to indicate that,

$$I_{\underline{D}} = I_{\underline{S}} \left[\exp \frac{V_{\underline{D}}}{V_{T}} - 1 \right]$$
(1a)

This equation typifies the *I*-V characteristic of a p-n junction. In it, the parameters have the following meanings: V_T , which is approximately 25mV at room temperature, is the product of Boltzmann's constant, k, with the absolute temperature, T, divided by the magnitude, q, of the charge on an electron; I_S , the reverse current when V_D is less than 0, is a parameter dependent on device geometry and doping levels.

Referring to equation 1a, the exponential Boltzmann factor is related to the fraction of two entities. The first is the number of holes approaching the edge of the depletion layer in the p region. The second is the number of electrons approaching the boundary of the depletion layer in the n region, that have sufficient thermal energy to surmount the junction potential barrier and enter the opposite region to become the minority carriers responsible for the conduction process within the device.

When V_D is greater than 100mV there is insignificant error in rewriting equation 1a) as,

$$I_D = I_s \exp\left(\frac{V_D}{V_T}\right) \tag{1b}$$

A plot of I_D on a log scale against V_D on a linear scale is a straight line with extrapolated y axis intercept I_S , Fig. 4b).

A circuit for which the model is applicable is shown in Fig. 5. This forms the input stage of an elementary solid-state thermometer. If D_1 and D_2 have identical values of $I_S(<< I_D)$ but pass currents scaled in the ratio m:1, then,

$$V_o = V_T \log_e m \tag{2}$$

and,

$$\left(\frac{dV_o}{dT}\right) = \left(\frac{k}{q}\right) \log_e m \approx 86.2 \log_e m \quad \frac{\mu V}{\circ C} \quad (3)$$

The parameter m is a design choice.

Ideal piecewise-linear BJT models

An n-p-n BJT is shown in shown in Fig. 6 and its earliest, and simplest, model for $I_B>0$, $V_{BC}<0$ – the amplifying mode – in Fig. 7.

This is a current-controlled model. The ideal piecewise-linear diode, D_E , models the base-emitter p-n junction. Base current, I_B , in D_E controls the ideal collector current generator I_C . Here, I_C describes the transport of minority carriers across the base from the base-emitter junction, where they are inject-

ed, to the base-collector junction where they are extracted. As indicated, $I_C = \beta I_B$, where β is the well-known common-emitter direct current-gain factor.

As it stands, the model of Fig. 7a) has only limited practical use because of the neglect of a finite V_{BE} . However, by adding a voltage source, δ , of around 0.7V, in series with D_E , as in Fig. 3, you obtain a model that is useful in all but the most refined bias-circuit calculations in linear amplifier circuit applications.

An ideal piecewise-linear model of a BJT for switching DC and low-frequency signals is shown in Fig. 8, together with its associated output characteristics. In the commonemitter switching mode, both the emitter and the collector act simultaneously as sources and sinks for carriers crossing the base.

If you think of charge carriers as coins then a commercial bank is both a sink and source for them. Consequently, the BJT can be viewed as two transistors, each operating in the linear mode, connected in inverse parallel.

The component I_{BN} of base current in D_E

that models the base-emitter junction controls the collector current component, I_{CN} , that flows in 'normal' operation. Hence the subscript N. This subscript is usually omitted when V_{BC} is less than 0, i.e., β_N is what was previously called β .

Diode D_C models the base-collector junction. Similar comments apply to the (reverse, R) current components,

$$I_{BR} = \frac{I_{CR}}{\beta_R} \tag{4}$$

and I_{CR} associated with it. Normally, β_R is less than β_N because a BJT is intentionally designed to be asymmetrical.

This model is useful in demystifying the operation of the analogue-gate circuit in Fig. 9. I first used such a gate while designing an interscan target-marker symbol-generator for radar displays – long before the advent of cmos transmission gates.

Typical input and output waveforms are shown in Fig. 10. Assuming the impedance of C at the input signal frequency is much less than R_S , Fig. 11 shows a load line for an instantaneous value of v_G , in this case the maximum value V_M , plotted on the output characteristic for,

$$I_B = \frac{V_{CC}}{R_B}$$

Switch S_1 in Fig. 9 models the action of a gating waveform. When this switch is at X, Q is on and v_0 is zero, provided that,

$$(\beta_R + 1)\frac{V_{CC}}{R_B} > \frac{V_M}{R_S}$$
(5)

When the switch is at Y, Q is off provided V_M is less than V_{KK} . Then,

$$\frac{v_o}{v_G} = \frac{R_L}{R_L + R_S} \tag{6}$$

Ideal exponential BJT models

Figure 12 illustrates an ideal exponential BJT model when V_{BC} is less than zero. If V_{BE} is more than 100mV,

$$I_c = I_s \exp \frac{V_{BE}}{V_T} \tag{7}$$

 I_S is a property of the base region. The change in base width with voltage is allowed

for by multiplying I_S by a factor,

$$+\frac{V_{CE}}{V_A}$$

where V_A is the magnitude of the Early voltage.

Equation 7, which emphasises the voltagecontrol aspect of BJT operation, is the basis for the design of a wide range of bipolar analogue ICs. These include current mirrors, multipliers and 'root-law' circuits.

A simple root-law circuit using matched devices is shown in Fig. 13. By repeated application of equation 7, and the simplifying assumption that β is infinity, it can be shown that,

$$I_{o} = \sqrt{I_{1}^{2} + I_{2}^{2}}$$
 (8)

In practice, equation 7 is obeyed precisely over an I_C range exceeding seven decades for collector currents less than a milliamp.

However, the relationship between I_B and V_{BE} does not follow the ideal form of equation 7. Neither, incidentally, does the real relationship between diode current and voltage follow accurately that indicated in equation 1b. This is because of the existence of 'anomalous' current components such as that due to recombination of minority carriers in the base-emitter transition region.

The base current has been described graphically² as a 'sewer' for ill-behaved components of bipolar transistor current. That is why the function performed by the circuit of Fig. 5 can be more accurately achieved using BJTs instead of diodes. It is also why the logarithmic amplifier scheme in **Fig. 14** uses a BJT with its base earthed, rather than a diode for the feedback component.

An ideal exponential BJT model that applies for arbitrary polarities of V_{BE} and V_{BC} is shown in Fig. 15. It is a transport version³ of the classic Ebers-Moll injection model⁴. For V_{BE} , $V_{BC} >> V_T$.

$$c = I_{CN} - I_{CR} \tag{9}$$

$$I_{CN} = I_S \exp \frac{V_{BE}}{V_T}$$
(10)

$$I_{CR} = I_{s} \exp \frac{V_{BC}}{V_{T}}$$
(11)

$$I_{BN} = \frac{I_{CN}}{\beta_N} \tag{12}$$

$$I_{BR} = \frac{c_R}{\beta_R}$$
(13)

In this saturated state, it turns out that if I_B and I_C change by the same numerical factor,

then the change in V_{BE} is exactly matched by the change in V_{BC} , so V_{CE} remains constant. This fact is exploited in devising a simplified dc model⁵ of the BJT in saturation that is useful in interface-circuit design.

References

- 1. Hart, B.L., 'Introduction to Analogue Electronics', Arnold, Chapter 1 (1997)
- 2. Davidse, J, Electronics Course Notes 'Elektronica B.O.', p. 61, Delft University of Technology, 1976-1977
- University of Technology, 1976-1977.
 Gummel, H.K. & Poon H.C., 'An Integral Charge Model of Bipolar Transistors', *BSTJ*, Vol. 49, pp. 827-852, 1970.
- Ebers, J.J. and Moll J.L., 'Large-Signal Behaviour of Junction Transistors', Proc IRE, Vol. 42, pp. 1761-1772, 1954.
- 5. Hart, B.L., 'Designing with saturation', *Electronics World*, p. 842, Oct 1998.
- 6. Beaufoy R. & Sparkes J.J., 'The junction transistor as a charge controlled device', *ATE Journal*, p. 317 *et seq.*, 1957.
- Sparkes J.J., 'Junction Transistors', Pergamon Press, 1966.
- 8. See Ref 7, pp. 129-149.
- Giacoletto L.J., 'Study of pnp alloy junction transistors from d.c. through medium frequencies', R.C.A. Review, 105, p. 506 et seq., 1954.

OE

BOOK TO BUY

Completely updated, this comprehensive dictionary contains over 28,000 electronic terms, phrases, acronyms, and abbreviations from the everexpanding worlds of consumer electronics, optics, microelectronics, computers, communications, and medical electronics. This dictionary is a valuable resource for professionals in the field, hobbyists, students, or anyone interested in electronics.' -Poptronics

Included in this fully revised classic are well over 28,000 terms, phrases, acronyms, and abbreviations from the ever-expanding worlds of consumer electronics, optics, microelectronics, computers, communications, and medical electronics. From the basic elements of theory to the most cutting-edge circuit technology, this book explains it all in both words and pictures. For easy reference, the author has provided definitions for standard abbreviations and equations as well as tables of SI (International System of Units) units, measurements, and schematic symbols.

Modern Dictionary of Electronics is the bible of technology reference for readers around the world. Now fully updated by the original author, this essential, comprehensive reference book should be in the library of every engineer, technician, technical writer, hobbyist, and student.

Post your completed order form to:-Jackie Lowe, Room L514, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS

Fax your completed order form to 020 8652 8111 UK Price: £42.50 Europe £45.00 ROW £47.50 Price includes delivery

How to pay Modern Dictionary of Electronics

□ I enclose a cheque/bank draft for £_____ (payable to Reed Business Information)

Please charge my credit/charge card □ Mastercard □ American Express □ Visa □ Diners Club

Credit Card No:

Expiry Date:

Signature of Cardholder_

Cardholder's statement address: (please use capitals)

Tel:

Name

Address

Post Code

AQUILA VISION

http://www.aquila-vision.co.uk

Aquila Vision specialises in supplying and supporting Embedded Microprocessor Development products from PICs to DSPs. We also stock robotics boards, Linux and general interest CD-ROM's.

ALCATEL COMPONENTS

http://www.components @alcatel.de

ASHWELL ELECTRONICS

http://www.ashwell-hg.com

Ashwell provide technical support for Apex Microtechnology op-amps and DC/DC'S; Aeroflex; EMP filtered connectors; M S Kennedy; Mintech obsolescence; NSC Mil/Aero; Teledyne Relays and isocom mil/optocouplers.

ARCOM

http://www.arcomcontrols.com/ew/

A leading international supplier of communication and control technology to industry, Arcom provides leading edge solutions through a comprehensive range of market leading products.

BROADERCASTING COMMUNICATIONS SYSTEMS

www.broadercasting.co.uk

WINRADIO now brings you a complete choice in personnel computer controlled radio scanning and reception solutions • Broadcast • Media • Monitoring • Professional Amateur Radio communications

BEDFORD OPTO TECHNOLOGY LTD

http://www.bot.co.uk

Optoelectronic products UK design development manufacture standard and

custom, LED bargraphs, circuit board indicators, stand offs, transmissive/reflective switches, baseefa optocouplers tubular and surfacemount, pannel mount LED assemblies.

CONCEPT ELECTRONICS

http://www.conceptkey.co.uk

Concept Keyboards are specialists in the design and manufacture of customer specified membrane panels and keyboards, and electronic design. Concept's membrane manufacture is supported by a full electronic production facility to provide a complete turnkey keyboard and electronics service, fully accredited to ISO9001.

CONTROL SOLUTIONS

WWW.CONTrolsolutions.co.uk Data acquisition and control for beginners, hobbyists, and professionals. Perform mathematical and logical operations on data in real time. Email: info@controlsolutions.co.uk.

COOKE INTERNATIONAL

http://www.cooke-int.com e-mail: info@cooke-int.com

Stockists of Quality Used Electronic Test Instruments and Operating & Service Manuals

CROWNHILL ASSOCIATES LTD

http://www.crownhill.co.uk

Crownhill supply low cost development tools for use with Micro-Controllers and Smart Cards. Products include Smart Card development tools, Smart cards, Micro Development tools and Bespoke Desion Services.

DANIEL MCBREARTY

http://www.danmcb.demon.co.u k/eng.html

Experienced engineer based in London, specialist in audio and control systems. Available for design, project engineering or general consultancy. Background of high-quality work.

DESIGNER SYSTEMS CO.

http://www.designersystems.co. uk

Electronic product design company with over a decade of experience promoting it's own product range and designing and manufacturing innovative products for client companies/individuals.

EQUINOX TECHNOLOGIES UK LTD

http://www.equinox-tech.com

Equinox Technologies UK Ltd., specialise in development tools for the embedded microcontroller market.

EDWIN PCB DESIGN SOFTWARE

http://www.swifteurotech.co.uk

Swift Eurotech supply the best-selling EDWin CAD/CAE system for PCB design, including schematics, simulation and PCB design. Discounts up to 60% for noncommercial users.

ECM SELECTION

http:// www.ecmsel.co.uk

For the pick of the UK's Top High-Tech Software and Hardware career opportunities - from fresh Grad/PhD to Senior Engineer/Manager -- £22,000 - £70,000

ELECTRONICS AND COMPUTING PRINCIPLES

http://www.eptsoft.com

Studying electronics or computing or just want to keep up-to-date in an easy and enjoyable way, then this fully interactive software is for you.

FELLER UK

http://www.feller-at.com

Feller (UK) Ltd. manufacture Fully approved cordsets (Moulded mains plugs and connectors) and Power Supply Cables for all industrial Countries to National and International Standards

FLASH DESIGNS LTD

http://www.flash.co.uk

Flash supply low cost AVR ISP programmers (£39), MINI-ICE starter kits (from £69), Portable Easy-ICE emulators (from £199), ICE Adapters & 'C' compilers for any ATMEL AVR, MCS51, Dallas, Hitachi H8 microcontroller. Download FLASH NEWS now, Watch out for Special Offers'. ARE YOU developing code in a Flash?

GOOT PRODUCTS

http://www.kieagoot.co.uk

Kiea Trading Company is the sole agent of Goot products, We specialise in supplying the soldering and desoldering product range manfactured by Goot Japan for the UK market. Goot uses advanced production technology to manufacture high quality soldering iron products for industrial, professional and general purpose use.

HSPS LTD

http://dspace.dial.pipex.com/hsps/

FILTER DESIGNER - Advanced analog and digital filter design software for the PC. -Standard and Professional versions.- Free download of Evaluation version.

HTB ELEKTRONIK

http://www.htb-elektronik.com

We are selling second-hand test & measurement equipment and accessories for over 10 years, from all leading manufactures.

To reserve your web site space contact Pat Bunce Tel: 020 8652 8339 Fax: 020 8652 3981

LEVY/LATHAM GLOBAL

http://www.levvlatham.com

U.S. Military Surplus meters, plug-ins, test sets, oscilloscopes, power supplies, signal generators, spectrum analyzers and radio components from Tektronix, Hewlett Packard, Sony, Phillips and more!

LOW POWER RADIO SOLUTIONS

http://www.lprs.co.uk

LPRS markets low power radio transmitters, receivers and transceiver modules manufactured by ourselves, Radiometrix, Circuit Designs, RDT and Micrel. Applications for telemetry, video and remote control.

MATTHEY MICROFILTERS

http://www.microfilters.net

30 years experience in the design and manufacture of high quality passive filters and delay lines. Used in Broadcast. Telecommunications, Medical, Multimedia, and Computer industries.

MATRIX MULTIMEDIA LTD

www.matrixmultimedia.co.uk

Matrix Multimedia publishes a number of highly interactive CD ROMs for learning electronics including: Complete electronics course, Analogue filter design, and PICmicro(R) microcontroller programming (C and assembly)

NEWNES - BOOKS FOR THE ELECTRONICS WORLD

http://www.newnespress.com Over 300 books and information packages for those working with electronics and engineering technology. Visit our site for a free catalogue and downloads.

NORCALL

http://www.norcall.co.uk Suppliers and repairers of MOBILE RADIO equipment SALES

HIRE REPAIR

> Huge stocks of used radios and spares Pve Philips Simoco Icom Kenwood Standard Cleartone Maxon Yaesu Key Midland WE CAN PROGRAM ANYTHING 24hr Service

OMEGA RESEARCH LTD

http://www.omega-research .co.uk "SMD prototyping adapters. Unique,

flexible, low cost adapters to allow bench working with SM devices. Range suits most devices down to 0.5mm pitch."

PCA-PHILIP COLLINS & **ASSOCIATES PTY. LTD**

http://www.pca.cc

PCA manufactures Radphone 2000DX remote control systems for shortwave broadcasters and government agencies wanting worldwide control of communications receivers and transceivers from any tone phone.

POLY-FLEX CIRCUITS LTD http://www.polyflex.com

Design, manufacture and population of printed polyester flexible circuits, including Flip Chip on Flex providing practical, low cost, reliable solutions for today's small lightweight products.

QUASAR ELECTRONICS www.guasarelectronics.com

The UK's No. 1 Electro le Kit Supplie A d Bill - and a - Barris Bills 1 The - Barris Bills 1 The second secon Brief R andre 1900

Over 250 electronic kits, projects and ready built units for hobby, educational & industrial applications. TEL: 01279 306504, FAX: 07092 203496 or EMAIL: ewsales@quasarelectronics.com

QUILLER ELECTRONICS

and states in a

http://www.quiller.com

100+ pages of detailed technical information on Schrack Relays, MEC Switches, Hirose Connections,

RADIOMETRIX

http://www.radiometrix.co.uk

Radiometrix specialises in the design and manufacture of VHF & UHF, RF data modules. We offer a broad range of PCB mounted miniature transmit, receive and transceiver modules for OEM use.

RADIO-TECH LIMITED http://www.radio-tech.co.uk

Radio modules, modems, telemetry, audio transmitters, pagers, antenna, remote controls and much more. All UK designed and manufactured.

BALFE ELECTRONICS

professional test & measurement www.ralfe-electronics.co.uk

RD RESEARCH

http://www.looking.co.uk/spice

Analogue and digital SPICE modelling software. Full details available on this site. Available on a 30 day evaluation basis.

RS COMPONENTS LTD

http://rswww.com

The award winning on-line service from RS

- 110,000+ products available
- Technical data library - Stock availability check
- Integrated on-line purchasing
- Order by 8pm with you tomorrow.

SOFTCOPY

http://www.softcopy.co.uk

As a PC data base or hard copy, SoftCopy can supply a complete index of Electronics World articles over the past ten years. Photo copies of articles from back issues are also available.

SESCOM, INC.

http://www.sescom.com

SESCOM, INC. is a 30-year manufacturer of audio "problem solvers" and transformers. We also offer easilyfabricated aluminum enclosures for small production runs and prototypes.

STAFFORDSHIRE WIRELESS COMPANY

http://www.staffs-wireless.com

Wireless, communication, test equipment, bought and sold for very competitive prices visit our web site or telephone John on 01889 569928 or 0973 296461

SUPRA AUDIO CABLES

http://www.jenving.se

Jenving Technology AB is the manufacturer of Supra Audio Cables. OEM productions are also accepted.

TEMWELL CORPORATION http://www.temwell.com.tw

Manufacturer & Exporter of Heelical BPF

Filter, 30 Watts BPF Power Filter and Handset/Base Station Duplexers

TEST EQUIPMENT SOLUTIONS

http://www.TestEquipmentHQ.com

Quality second user test equipment with full warranty and support. All types of equipment from all leading manufacturers including general purpose, communications and industrial test.

THOSE ENGINEERS LTD http://www.spiceage.com

Working evaluations of SpiceAge mixedmode simulator, Spicycle PCB design tools and Superfilter demo (synthesises passive, active, digital filters). Tech support, sales links and price list.

THERMOSPEED

http://www.thermospeed.co.uk

Temperature and pressure, control and instrumentation. Full on-line purchasing.

- * Overnight ex-stock delivery
- * Create your own hotlist
- * Download datasheets * Full technical support

TRIDENT MICROSYSTEMS LTD

http://www.trident-uk.co.uk

Visit the Trident website for details and datasheets on their entire LCD and printer product range. Download data and subscribe for our regularly updated newsleter.

electronics enthusiasts and experts.

issue to announce your

WEB ADDRESS.

to find new sites.

Electronics World acknowledges your

Put your web address in front of 21000

company's need to promote its web site, which

is why we are now dedicating pages in every

This gives other readers the opportunity to

look up your company's name, to find your

web address and to browse the magazine page

TOWER HILL TECHNICAL SERVICES

http://www.towerhillaerials.com Everything you need for DIY Satellite & TV aerial installation. The one stop

shop for TV, FM, Satellite, Amateur Radio PMR Aerials, Distribution Equipment, Cable & Accessories.

TECHNICAL AND SCIENTIFIC SUPPLIES

http://www.technicalscientific.com Suppliers of pre-1985 equipment and components.

- Test/Measurement equipment
- Valves and semiconductors
- Transducers and pressure gauges
 Scientific books and catalogues
- Manuals and data sheets

VANN DRAPER ELECTRONICS LTD

http://www.vanndraper.co.uk

Test equipment from Grundig. Kenwood, Hitachi, Fluke, Avo, Glassman, Advance in a comprehensive site including oscilloscopes, multimeters, power supplies, generators, counters, soldering, digital tv etc.

VUTRAX PCB DESIGN SOFTWARE

http://www.vutrax.co.uk

VUTRAX electronic schematic and pcb design system for Windows 95, 98 and NT. Limited Capacity FREE version <text>

downloads available, all upgradeable to various customised levels.

WOOD & DOUGLAS

http://www.woodanddouglas.co.uk

Wood & Douglas Ltd is the leading independent British designer and manufacturer of quality radio products for International telemetry, data,voice & video wireless communications.

UK ELECTRICAL DIRECT

http://www.uked.com

For a comprehensive on-line directory, buyers guide and resource locator for the UK Electrical Industry look at this site. Many of the companies listed have links to their own web sites, making this a one-stop shop for a huge amount of information.

UK MAILING LIST GROUP

http://www.egroups.com/list/uk tvrepair

Following on from the newsgroup discussion last month there is a UK Email group for TV technicians where you can send an Email to everyone in the group. There's just over 30 people in the group at present. For more details and how to register look at the egroup home page. Just a general comment though you do have to be careful who you give your Email address to so that you can avoid "spamming" - that is getting lots of unwanted Email about dubious Russian site (amongst others).

REED CONNECT

http://www.reedconnect.net/

Another free internet access site, this time from Reed Business Information. However the site possesses a useful UK

People and Business Finder, with an email search. There's also business news and local information, and some good links to directory sites.

REPAIRWORLD

http://www.repairworld.com

Repairworld is a sophisticated US based fault report database which is updated bi-weekly. It operates on a subscription basis and describes itself as an "affordable solution for all technicians". You can see some samples of the material for free, monitors, VCR, DVD and Camcorders being of particular relevance to UK users. The site also provides a "chat room".

> To reserve your web site space contact Pat Bunce Tel: 020 8652 8339 Fax: 020 8652 398

We understand that cost is an important factor, as web sites are an added drain on budgets. But we are sure you will agree that the following rates make all the difference:

FOR 12 ISSUES:

Lineage only will cost £150 for a full year just £12.50 per month. This includes your company's name, web

address and a 25-word description. Lineage with colour screen shot costs £350 for a full year, which equates to just £29.17 per month.

This price includes the above mentioned information, plus a 3cm screen shot of your site, which we can produce if required.

To take up this offer or for more information ring:

Pat Bunce on 020 8652 8339 or fax on 020 8652 3981. or e-mail: pat.bunce@rbi.co.uk

ELECTRONICS WORLD January 2001

Letters to the editor

Letters to "Electronics World" Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS e-mail jackie.lowe@rbi.co.uk using subject heading 'Letters'.

The low-down on E numbers

With reference to the letter on 'E numbers and resistors' in the December 2000 issue, Mr Wells has clearly been dilatory in not learning the entire contents of his collection of *Electronics World* – formerly *Wireless World* – by heart.

A similar letter by one 'Scott' was published in the January 1984 issue, when Mr Wells' amplifier was approaching two years old. It received its retribution in a response from the WW stalwart 'Thomas Roddam'. I am fairly sure that this was one of the WW classic pseudonyms, published in the May 1984 issue.

The story goes back to the E6 series for $\pm 20\%$ tolerance resistors. The (British Standards?) committee dealing with the subject of preferred value components before the 1939-45 war deliberately deviated from the theoretically-correct values.

For practical reasons. 3.3 was chosen instead of 3.2 to get 'more colour contrast', presumably with 2.2. It hardly mattered technically, because '3.3' actually means '2.7 to 3.9' in the E6 series.

There was a choice to be made between 4.7/6.8 and 4.6/6.7, and again, the combination with the greater colour differences was chosen. Provided the manufacturer can sell all the resistors produced, as one preferred value or another, the values chosen as 'preferred' do not matter much.

Roddam does not discuss the 'modulation' of the E12 values in detail, but 2.7 is the geometric mean of 2.2 and 3.3, and 3.9 is the mean of 3.3 and 4.7. The 'modulation' of the E6 series has indeed influenced the E12 and E24 series, but the E96 series can use theoretical values because no colour-coding is involved.

Roddam's letter also discloses the way to design *RC* filters with E6 preferred values, by initially making the engineering approximation that 2π is 6.8 and using logs to base 6. Now, of course, one might take 2π as 6.2 and use logs to base 12 or 24. John Woodgate Via e-mail

Input-filter distortion

With reference to letters in the December 2000 issue, in his response to my own letter regarding the use of a series $10k\Omega$ resistor plus 220pF shunt capacitance as an input filter, Phil Denniss is dubious to the point of opinionating that I fuss ridiculously. As all aspects must be addressed technically, please allow me to clarify, and hopefully promote a better understanding of the matters I raised.

First off, an apology is due. By the time I realised that I my computer had been set for a fast examination, and thus too coarse a series of examination subdivisions, the 0.3% distortion figure had already appeared in print. The distortion figure should have been only 0.1%, though the 15° phase shift at 20kHz was correct. I'm sorry.

Phil's understanding of linear fundamentals appears to be the same as mine. Of course a sine-wave that has passed through the filter will not show distortion on an audio test set, and the amplitude will be little altered. Nor will we be able to hear any distortion at 2kHz or any other test frequency.

What I relate to here is the way that we use signal generator inputs, and then examine the output waveform *alone*. This is oh so wrong,

Will my ship ever come in?

I would like to build a homing device for a radio-controlled boat, where the boat would automatically 'return to base' by default. Can anyone help me find such a kit, or perhaps point me towards another solution to the problem, as designing and building such a system alone is a bit beyond me?

Paul Hampshire Specialist Instrument Mechanic Sasol (Secunda) South Africa because it leads to misleadingly good specification figures being produced in isolation. Just as we do with audio amplifiers!

We do not 'hear' musical tones in isolation; they are component parts of an intimately interrelated spectrum of recognisable fundamentals and harmonics.

A $10k\Omega$ resistor plus 220pF introduces a tiny delay, with a phase shift that increases sharply with frequency; this is separate to the individual, but series additional, delays and phase shifts that are due to our amplifiers themselves and the series output chokes they incorporate. Occasionally the latter two characteristics predominate and mask input filter effects.

This HF 'time' distortion – see the accompanying plot which shows in red the leading output edge of a 10kHz sine-wave that has passed through the filter – shows up as a loss of definition on transient and sibilant sounds, also on musical instruments that are rich in higher frequency harmonics.

A major point in my letter was to explain that these filter induced losses occur at all signal levels, and not just at ear damaging loudness when other amplifier problems might arise.

Clearly the $10k\Omega+220pF$ filter causes a sine-wave lag that increases with frequency, as if the wave is replayed following a slight delay. Thus an initiated waveform becomes time lagged with respect to the input and all other frequencies that it had initially been specifically related to. The input signal did not stop to allow for this particular time delay to occur at just one frequency, and thus the filtered audio comprises a wide range of phase delays that relate to component frequencies at their time of passing.

This time I have illustrated and shown that there are measurable signal changes between a filter's source and its output – a difference that becomes superimposed upon the output with respect to the original input waveform. This distortion is equivalent to the original, plus an entire family of phase lagging harmonic components. These components are related to the instantaneous difference in amplitude between the input and

The right-hand curve is the leading output edge of a 10kHz sine-wave that has passed through the $10k\Omega+220pF$ filter.

output waveforms.

It is thus a fact that the suggested filter distorts my example of a 2kHz sine-wave by 0.1% with respect to input, and all other coexisting source signal there present.

The resulting reproduction might sound 'sweet' but it is not accurate, and our recognisable audible reference point becomes 'soft floating', constantly shifting as different sound frequencies dominate. I am not saying that anyone will notice this, but a system that has lesser frequency dependent propagation delays is instantly recognisable as being more transparent.

If anyone doubts my writing, will they please try switching this filter into and out of circuit with top flight audio gear using a microphone or CD source, because FM and vinyl simply might not be good enough. If you manage to hear the difference then you must admit that you are hearing signal distortion: You might find the sound acceptable, but I could never suggest that anyone must accept it.

There is nothing that is newly challenging or unconventional in this letter, yet it does challenge the conventionalised spot and swept frequency examination methods that we use to test our amplifiers.

It is realistic reproduction that I strive for. Over the decades I have come to understand that equipment does not always perform as its specification sheet implies; 'hi-fi' specifications tend to fall far short of what is necessary to regenerate realistic sound.

It was good to read John Well's letter on the same page. Hands-on

LETTERS

experiences are always worth sharing, for not everyone can directly benefit from the unexpected empirical findings that challenge our theoretical bases. *Graham Maynard Newtownabbey Northern Ireland*

In the response from Phil Dennis to the comment by Graham Maynard that a $10k\Omega+220pF$ low-pass filter can introduce distortion, Phil states that this distortion 'defies understanding'.

Not so. Distortion from capacitors and resistors has been a known fact to component engineers for at least thirty years. See 'Harmonic testing pinpoints passive component flaws,' by V. Peterson and P. Harris of Ericcson, published in *Electronics* July 1966. And, 'Measurements of non-linearity in cracked carbon resistors', by G.H.Millward of the BBC, published in IEE paper 2747 Jan 1959.

Obviously if one used ideal components, such distortion is not possible. But in practice, depending on one's choice, it certainly can arise.

While the most likely culprit is

the chosen capacitor, resistors are not blameless in this respect. Over the years, they have even been 100% production tested for this parameter.

In the heyday of the metal oxide resistor, many telecommunications makers specified a maximum permissible distortion for their resistors, initiated I believe by Ericcson.

Certainly my employers performed routine tests on their products using two specialist harmonic distortion testers and a 10kHz test frequency. These were high-speed commercially-available test equipments capable of testing ten components a second. I still have catalogue data listing some ten other references. (CLT1 Component Linearity Tester, March 1991)

As to the capacitor, the 220pF value quoted by Maynard raises some interesting choices. Almost all capacitor dielectrics exhibit two main deviations from the ideal. These are reduction in capacitance with frequency and dielectric absorption. Air performs best and electolytics – both aluminium and tantalum – worst.

Obviously for 220pF, you can

forget electrolytic types. You are then left with a wide choice between plastic films, mica and ceramics. For cost and size reasons, the natural choice would be ceramic.

In the seventies, many reputable amplifier makers used tubular ceramic types in their preamplifier/tone controls. But these were usually restricted to low 'K' materials. This restriction resulted from comparative distortion measurements, performed I believe, by the Acoustical Company.

Today, my preferred choice would be to use only COG ceramic, polystyrene, polypropylene or polyphenylene sulphide. Of these the lowest cost would result from a COG ceramic-disc capacitor, the smallest size from a COG multilayer.

Using these capacitor materials with metal-film resistors should minimise distortion, but I suspect a measurable level would be found.

So in response to both correspondents, I suspect that Maynard may have chosen his capacitors unwisely, while Phil Dennis is assuming the use of near ideal components.

While I have no valid current comparative measurements to offer, I am willing to evaluate and investigate some modern components in order to prepare an article for *Electronics World* should there be sufficient interest. *Cyril Bateman Acle Norfolk*

Has anyone got these back copies?

Can anyone help me with copies of the following please?

'Modulated pulse audio amplifiers,' Jan 1976, p. 76.

'Design of ceramic magnet loudspeakers,' Jan 1976, p.320.

'Class-D principles analysed,' Dec. 1967, p.576.

'A critique of Class-D amplifiers...' Dec. 1968, p.645.

'Distortions inherent in PWM Class-D amplifiers,' Dec. 1968, p.672.

*Compression chamber behind horn drivers,' Feb. 1971, p. 64.

My e-mail address is guidonoselli@outline.it. Fingers crossed.

Save 15% Pico ADC42 Virtual oscilloscope

*UK only. Overseas readers please fax or e-mail for a quote including delivery charges.

Featuring 12-bit resolution and $1M\Omega$ input impedance, the ADC42 samples at up to 15kS/s and includes software for spectrum analysis, oscilloscope functions and frequency display. Plugging into a PC's LPT port, the unit provides large, colourful displays and all the usual timebases and trigger options – all in a case slightly larger than a matchbox.

ADC42 single channel oscilloscope

- Low cost and easy to use
- No power supply required
- Ultra compact design
- Oscilloscope and data logging software included
- Write-to-disk on trigger function standard

The ADC42 is a single-channel pc based virtual instrument. Simply plug the unit into the parallel port of your pc and run the software. Designed for analysing low-frequency signals, it provide all the functionality of a conventional scope at a fraction of the price.

The ADC42 has 12-bit resolution making it suitable for applications where detection of small signal changes is needed.

Specifications

Scope timebases Spectrum analysis Max sampling Voltage range Resolution Channels I/P impedance Accuracy PC connection Power supply

500µs/div to 50s/div 100Hz to 10kHz 15ksample/s ±5V 12 bit 1 BNC 1MΩ, dc coupled 1% D25 to PC parallel port Not required

Use this coupon to order your ADC42

Please send me ADC-42(s) at the special offer price of £98 fully inclusive of VAT and recorded UK delivery, normal selling price £111.63 excluding postage.

Name___

Address

Phone number/fax_

Total amount £.....

I enclose a cheque

Please charge to my credit/debit card.

Card type (Master/Visa/Switch etc)

Card No __ _

Expiry date ____/___

Please mail this coupon to *Electronics World*, together with payment. Alternatively fax credit card details with order on **0181 652 8111**. Address orders and all correspondence relating to this order to Pico Offer, Electronics World, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. email jackie.lowe@rbi.co.uk Make cheques payable to Reed Business Information Group.

ADVERTISERS' INDEX

CONFORD ELECTRICAL	PICO
COOKE INTERNATIONAL	QUICK ROUTE2
NIGEL COOK	RAMCO5
CROWNHILL	RD RESEARCH5
DISPLAY ELECTRONICS23	RALFE ELEC
DATAMANOBC	SEETRAX53
EPTSOFT7	SIGHTMAGIC47
ICE TECHIBC	STEWART OF READING45
INTEC ASSOCIATES	SURREY ELECTRONICS2
JOHNS RADIO11	TELNETIFC
JPG ELECTRONICS	TEST EQUIP SOLUTIONS
LABCENTER ELECTRONICS	TIE PIE
LANGREX	WEB PAGES72, 73, 74

As an advertiser you can be certain that your sales message is going to be read by decision-making electronics professionals with the power to purchase your products.

The pre-paid rate for semi-display setting is £17 per single column centimetre (maximum 4cm). Box number £22 extra. All prices plus 17½% VAT. All cheques, postal orders etc to be made payable to Reed Business Information. Advertisements together with remittance should be sent to Electronics World Classified, 12th Floor, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Fax: 0208 652 3981. Tel: 0208 652 8339

Service

Link

<u>APPOINTMENTS</u>

MUSICAL FIDELITY

Musical Fidelity Ltd is a British high-end Hi-Fi manufacturer. Due to continued expansion they have two new vacancies in their engineering department. Both positions will be working for a small R&D department that specialise in the design of Hi-end audio products.

Position 1: R&D ENGINEER/TECHNICIAN

Duties will include:-Design/Test of Digital and Control Electronics. Prototype Building and Testing Submitting New Products for CE Approval (EMC/Safety Testing) Previous experience with PIC programming required, salary 20k-30k dependant on experience. Position 2:

Duties will include:-Upkeep of all EMC/Safety Approval Associated Documents Preparation of User Manuals Preparation of Production Test Procedures Assisting with Research and Development of New Products

Salary 15k-20k dependant on experience

In the first instance please send a current CV and covering letter to:-

Mr. Colin Maxted, Technical Manager, Musical Fidelity Ltd,

15-17 Olympic Trading Estate, Fulton Road, Wembley, Middlesex HA9 OTF.

As an advertiser you can be certain that your advertisement is going to be read by DECISION-MAKING ELECTRONIC PROFESSIONALS with the POWER TO PURCHASE your products.

Why not let Electronics World help you?

Call Pat Bunce Tel: 020 8652 8339 Fax: 020 8652 3981 E-mail: patbunce@rbi.co.uk

ARTICLES WANTED

Rack Enclosures New and Used most sizes 16U to 50U side and rear panels mains distribution 19" Panel mounts optima eurocraft. Prices from £45 +vat

M&B Radio 86 Bishopsgate Street Leeds LS1 4BB Tel. 0113 2702114 Fax. 0113 2426881

BEST CASH PRICES PAID

For valves KT88, EL37, DA100, PX25 and complete collections. Please ask for our wanted list.

WIDE RANGE OF VALVES & OBSOLETE CRT STOCKED

E-mail: sales@BEL-Tubes.co.uk

Tel: 01403 784961 Fax: 01403 783519 Billington Export Ltd., Sussex RH14 9EZ Visitors by appoIntment please

FOR SALE

RF DESIGN SERVICES

All aspects of RF hardware development considered from concept to production.

WATERBEACH ELECTRONICS

www.rlaver.dial.pipex.com TEL: 01223 862550 FAX: 01223 440853

LINEAGE

PRINTED CIRCUIT BOARDS – Quick Service. Design and Manufacture for Prototypes or Production. Agar Circuits, Unit 5, 308 Albertbridge Road, Belfast BT5 4GX. Tel: 02890 731807. Fax: 02890 731802. E-mail: agar@argonet.co.uk

HP1744A storage scope with manual £300 inclusive. Many other scopes and items and test equipment and components available. Mayflower Electronics, 48 Brendon Road, Watchet, Somerset TA23 0HT. Tel: 01984 631825.

TOP PRICES PAID

For all your valves, tubes, semi conductors and IC's.

Langrex Supplies Limited 1 Mayo Road, Croydon, Surrey CR0 2QP TEL: 020 8684 1166 FAX: 020 8684 3056

SERVICES

POWER SUPPLY DESIGN

Switched Mode PSU Power Factor Correction designed to your specification

Tel/Fax: 01243 842520 e-mail: eugen_kus@cix.co.uk Lomond Electronic Services

Please Mention Electronics World When Replying to advertisements

CIRCLE NO.125 ON REPLY CARD

CIRCLE NO.126 ON REPLY CARD

For development or production...

A range of truly portable, Universal and EPROM/Flash programmers for every need

- Support for all types of devices including 8 and 16-bit memory, up to 128Mbit, PLDs,
- CPLDs, and over 300 microcontrollers
- Uses the parallel port of any PC or laptop
- Program and verify low voltage devices down to 1.8V
 Low cost package adapters available for PLCC, PSOP, TSOP, QFP, SDIP, SOIC and BGA
- No additional modules or adapters required for any DIP device
 Compatible with DOS, Windows[®] 95/98, Windows[®] NT
- · Powerful and comprehensive software interface is easy to use
- · Uses PSU/Recharger supplied, or batteries for real portability
- Includes Chiptester for TTL/CMOS, DRAM and SRAM devices
- Optional EPROM/RAM emulators also available

OGY

Model	Supports	Price
EPMaster LV48	48-pin support for EPROM, EEPROM, Flash & Serial PROM	£295
Speedmaster LV48	As EPMaster LV48, plus BPROMs, PALs, GALs, CPLDs and 8748/51 microcontrollers	£495
Micromaster LV48	As Speedmaster LV48, plus over 300 microcontrollers including 87C48/51/196, PICs, AVRs, 89Cxxxx, ST6, MC705/711, SAB-C5xx, TMS320/370, Z86, COP etc FULLY UNIVERSAL	£695
LV40 Portable	40-pin version of Micromaster LV48 + LCD & Keypad	£995

...the best programmers are here.

The new Matrix Programming System offers the most complete, flexible gang programmer you will ever need for production applications at an extremely competitive price from £1,995

- Two levels of device support: Memory only, or Universal support for memory devices up to 128Mbit, PLDs, CPLDs and over 300 Microcontrollers
- 4 or 8 independent programming sites per box
 Daisy-chaining allows up to 48 centrally controlled sites
- Very high throughput (program/verify time in seconds): 28F400 = 4/2.5, 28F160B3 = 18/12, 28F640[5 = 155/60
- Low cost passive socket modules give support for DIP, PLCC, PSOP, TSOP, QFP etc.
- Modules are not device specific giving major savings in cost of ownership
 True low voltage support down to 1.8V, plus marginal verification
- Intelligent auto-sensing of sockets eliminates need to continually access keyboard
- Powerful and comprehensive software, with easy-to-use interface
- Manufacturer approved algorithms for accurate programming and maximum yield Full on-board diagnostics
- Compatible with Windows[®] 95/98 and Windows[®] NT
- Universal input power supply 90-260V, 50/60Hz

All ICE Technology programmers come with lifetime FREE software updates[†] and technical support, 12 month warranty and 30-day moneyback guarantee. For complete Device Support lists, FREE oftware updates, Demo software and full product information,

just visit our website at www.icetech.com

...and here, www.icetech.com

Matrix From

£1995

ICE Technikula UN Penistone Court, Sheffield Road, Penistone, Sheffield. S36 6HP. UK tel: +44 (0)1226 767404 • fax: +44 (0)1226 370434 • email: sales@icetech.com

5370 Gulf of Mexico Drive, Suite 204B, Longboat Key. FL 34228. USA tel: 1 (941) 387 8166 • fax: 1 (941) 387 9305 • email: icetechusa@icetech.com

t Custom software and enhanced priority device support is also available for all programmer platforms. All prices are exclusive of carriage and VAT All trademarks are recognised as belonging to their respective owners.

CIRCLE NO. 102 ON REPLY CARD

STILL THE WORLD'S MOST POWERFUL PORTABLE PROGRAMMERS?

CIRCLE NO. 103 ON REPLY CARD

DATAMAN-48LV

£495+ VAT

- Plugs straight into parallel port of PC or laptop
- Programs and verifies at 2, 2.7, 3.3 & 5V
- True no-adaptor programming up to 48 pin DIL devices
- Free universal 44 pin PLCC adaptor
- Built-in world standard PSU for goanywhere programming
- Package adaptors available for TSOP, PSOP, QFP, SOIC and PLCC
- Optional EPROM emulator

DATAMAN S4

- Programs 8 and 16 bit EPROMs, EEPROMs, PEROMs, 5 and 12V FLASH, Boot-Block FLASH, PICs, 8751 microcontrollers and more
- EPROM emulation as standard
- Rechargeable battery power for total portability
- All-in-one price includes emulation leads, AC charger, PC software, spare library ROM, user-friendly manual
- Supplied fully charged and ready to use

S4 GAL MODULE

NEW MODEL

Daninan Manan-48

SURELY NOT.

INTELLIGENT UNIVERSAL PROGRAMMER

SURELY SOMEONE SOMEWHERE HAS DEVELOPED A PORTABLE PROGRAMMER THAT HAS EVEN MORE FEATURES, EVEN GREATER FLEXIBILITY AND IS EVEN

ACTUALLY, NO. BUT DON'T TAKE OUR

WORD FOR IT. USE THE FEATURE

BETTER VALUE FOR MONEY.

......

- Programs wide range of 20 and 24 pin logic devices from the major GAL vendors
- Supports JEDEC files from all popular compilers

SUPPORT

- 3 year parts and labour guarantee
- Windows/DOS software included
- Free technical support for life
- Next day delivery always in stock
- Dedicated UK supplier, established 1978

Still as unbeatable as ever. Beware of cheap imitations. Beware of false promises. Beware of hidden extras. If you want the best, there's still only one choice - Dataman.

Order via credit card hotline - phone today, use tomorrow.

Alternatively, request more detailed information on these and other market-leading programming solutions.

SUMMARY BELOW TO SEE HOW OTHER MANUFACTURERS' PRODUCTS COMPARE.

MONE - BACK 30 DAY TRIAL

£795+ VAT

If you do not agree that these truly are the most powerful portable programmers you can buy, simply return your Dataman product within 30 days for a full refund

Orders received by 4pm will normally be despatched same day. Order today, get it tomorrow!

DATAMAN

Dataman Programmers Ltd, Station Rd, Maiden Newton, Dorchester, Dorset, DT2 0AE, UK Telephone +44/0 1300 320719 Fax +44/0 1300 321012 BBS +44/0 1300 321095 (24hr) Modem V.34/V.FC/V.32bis Home page: http://www.dataman.com FTP: ftp.dataman.com Email: sales@dataman.com