REVIEWED THIS MONTH

ICOM IC-R7000 HF SCANNER
SONY ICF-760IL SW RECEIVER

Plus

REGULAR FEATURES FOR SCANNING, AIRBAND AND BROADCAST ENTHUSIASTS
JUPITER
NEW WORLD LEADER IN SCANNERS?

Don't take our word for it — read what Short Wave Magazine’s Alan Gardener says:

“Sensitivity is very good” — “I like the simple method of keyboard entry” — “Good circuit design and 705MHz. IF also helps to ensure freedom from unwanted image signals” — Referring to his recent review of the JUPITER 6000, Alan Gardener said “I found it difficult to believe it was possible to receive some transmissions” — “I don’t think I have had so much fun from using a scan since I first got my hands on an AOR-2001” — “Looks set to dominate the handheld scanner market in the immediate future” — If that does not convince you fully, then perhaps the specification will!!

General Features
- Switchable AM/FM
- 25-550MHz & 800-1300MHz.
- Proper manual up/down electronic tuning.
- 50 memories in 5 banks of 20.
- Selective bank scanning.
- 10 programmable band segments.
- Priority channel.
- Any memory channel can be temporarily passed.
- Steps of 5, 10, 12.5, 25 or 30kHz.
- Auto frequency correction for step changes.
- Band Search or Memory Scan.
- Carrier or audio locking.
- Permanent/temporary hold.
- Delay.
- Slow/Fast speed (20 steps per second).
- Battery saver circuit.
- Large speaker for good audio.
- BNC socket.
- Proper English manual for UK market.
- Not an American import.
- Key lock.
- Telescopic antenna.

THE “HANDY”
JUPITER II

- External 12V DC
- Internal: 4 x HP7 batts
- Telescopic whip
- BNC socket
- Carry strap
- Direct 12V charging
- Proper Handbook
- Illumination switch
- 12 month warranty

JUPITER BASE

- Keypad illumination
- Mobile mounting kit
- 12V Cigar lighter lead
- Comprehensive handbook

SPECIAL OFFER!
FREE INSURED DELIVERY ON
ORDERS PLACED THIS MONTH

FEATURES COMMON TO BOTH MODELS

- Direct up/down control
 A feature that most scanners do not have but should. Just punch in a frequency and use the up/down arrowed buttons to freely tune around the spectrum.

- AF Scan
 No more of those annoying blank carriers for the receiver to lock onto. Simply tell it to ignore silent carriers and it will.

- One Button Memo Read
 Just press one button and you are in the memory bank. Press up/down to move through the memory channels or use direct access to go straight to a memory.

- Battery Saver
 For long term single channel monitoring select this mode. The battery drain will be reduced dramatically, about the same as a car electric clock.

- Skip Function
 If you want to bypass a single memory channel or a whole block of memory channels, this can be done at the touch of a couple of buttons. Just tell the receiver what to ignore.

- High Speed Scan
 No other receiver offers a faster scan rate. The 20 steps per second means you can hunt through the spectrum quicker with this receiver than any other model.

- Fast Memory Write
 Enables you to quickly write into the memories, no need to select a number, the receiver finds the next empty memory.

- User Friendly Search Programme
 You can search in either direction and change direction at the press of a button. Total agility with a speed that will amaze you.

- Unique Multiband Programme
 No less than 10 separate band segments can be stored in the receiver's memory. You can instantly select the band of your choice for closer inspection.

WATERS & STANTON

RETAIL & MAIL ORDER: 18-20, Main Road, Hockley, Essex SS5 4Q.S.
Tel: (0702) 206835, 204965

RETAIL ONLY: 12, North Street, Hornchurch, Essex RM11 1QX.
Tel: (04024) 44765

Visa and Access by telephone, 24hr Answerphone Early Closing Wednesday
UNESCO Print Media Division

Short Wave Magazine

Contents

- **Page 7** Hot Rodding the ICF-2001D
- **Page 10** Antennas Part 4
- **Page 16** SWM Review
- **Page 29** Icom IC-R7000HF Scanner
- **Page 30** VHF Weather Satellite Antenna
- **Page 31** SWM Review
- **Page 31** Sony ICF-7601L Receiver
- **Page 32** The Secret Listener
- **Page 32** Right the First Time Part 3

Regulars

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Word</td>
<td>2</td>
</tr>
<tr>
<td>A Word in Edgeways</td>
<td>2</td>
</tr>
<tr>
<td>What’s New</td>
<td>3</td>
</tr>
<tr>
<td>First Aid</td>
<td>4</td>
</tr>
<tr>
<td>Trading Post</td>
<td>5</td>
</tr>
<tr>
<td>Grassroots</td>
<td>6</td>
</tr>
<tr>
<td>Bandscan</td>
<td>12</td>
</tr>
<tr>
<td>Airband</td>
<td>24</td>
</tr>
<tr>
<td>Scanning</td>
<td>34</td>
</tr>
<tr>
<td>Subscriptions</td>
<td>39</td>
</tr>
<tr>
<td>Rallies</td>
<td>56</td>
</tr>
<tr>
<td>Advertisers’ Index</td>
<td>57</td>
</tr>
<tr>
<td>Starting Out</td>
<td>58</td>
</tr>
<tr>
<td>Index 89</td>
<td>60</td>
</tr>
<tr>
<td>Book Service</td>
<td>62</td>
</tr>
</tbody>
</table>

Seen & Heard

- **Amateur Bands Round-Up**
 - **Page 38** Paul Essery GW3KFE
- **Decode**
 - **Page 41** Mike Richards G4WNC
- **Info in Orbit**
 - **Page 42** Lawrence Harris
- **Band II DX**
 - **Page 45** Ron Ham
- **Television**
 - **Page 45** Ron Ham
- **Long Medium & Short**
 - **Page 48** Brian Oddy G3FEX

Good Listening

- **Steve Whitt**
- **F. C. Judd G2BCX**
- **Mike Richards**
- **John Hickin G3PXL**
- **Peter Shore**
- **Mikhail Drakov**
- **Rev George Dobbs G3RJV**

Cover: Mike Richards has put the Icom IC-R7000HF v.h.f./u.h.f. scanning receiver, with its added built-in h.f. converter, through its paces.

© COPYRIGHT

PW Publishing Limited 1989

Copyright in all drawings, photographs and articles published in *Short Wave Magazine* is fully protected and reproduction or imitation in whole or in part is expressly forbidden. All reasonable precautions are taken by Short Wave Magazine to ensure that the advice and data given to our readers is reliable. We cannot however guarantee it and we cannot accept legal responsibility for it. Prices are those current as we go to press.
This issue sees another Index, the third since Short Wave Magazine was relaunched as a magazine for listeners. In that time the magazine has become firmly established as the second largest selling hobbyist radio magazine on the UK newsagents' shelves. The biggest selling is, of course, still our sister magazine Practical Wireless which, from the January 1990 issue, receives a complete face lift. Look out for it at your newsagent on Thursday 14 December.

The pilot issue of Vintage Radio obviously met with your approval, judging by the coupons and letters returned. Publication will start on a regular, quarterly basis next year with the first issue being published in the Spring. The magazine will be available only on subscription and each subscriber will receive a complete volume regardless of when they commence subscribing. Subscriptions will cost £10.00 per year. If you are interested in vintage radio then you should subscribe to Vintage Radio - complete the form on page 26 now, before you forget.

The staff of Short Wave Magazine wish you all the best in listening pleasure and look forward to your company in the coming year.

DICK GANDERTON

A WORD IN EDGeways

Sir
I was most interested to read your article on the Jupiter II hand-held scanner. I had, in fact, already purchased the radio prior to the article appearing. I sent for details from a number of retailers, all the addresses being taken from advertisements in SWM.

The best presentation of information was that from Nevada Communications, Northend, Portsmouth. As I had taken their address from SWM, I felt they were worthy of mention. I'm sure you will understand your readers' anxiety when purchasing by mail order. One wonders what the after sales service will be like.

With regard to Nevada, it is excellent to say the least. The service was quick and efficient. Paul Martin, with whom I spoke by telephone, supplied unbiased opinions on the Jupiter and other makes. He was of considerable help in deciding the model to purchase. A problem I experienced with the first Jupiter, was dealt with so quickly that I was left quite impressed. Apart from an immediate replacement, I was contacted by Mr Martin who readily put my mind at ease regarding their after sales service.

Nevada is a company I feel I can recommend and, one from which I believe your readers may buy with confidence, mail order especially. I shall be giving my "radio" friends their details.

W. J. HIBBERD
BRIDGEN
MID-GLAM

Sir
Having just read October SWM I find the letter from Richard Wilmot of Technical Software rather disturbing. To my way of thinking Mr Wilmot is trying to sell his software for the BBC computer. What I find amazing is the fact that he says that the BBC is the best computer for the job. I think that he is a bit behind the times. I will agree that in its day the BBC was the best in its range, but by today's standards 32K of memory looks a bit silly.

But my main reason for writing is just to put a few facts right. Nearly all of today's computers can be interfaced to any type of amateur radio from the very basic to FAX or packet radio. I use several types myself including Amstrad 664, 6128 and PCW 8256 very successfully as well. I use an Icom IC-R71E with interface for almost everything, FAX, packet, RTTY to store frequencies, etc. I have written software for Amstrad computers for nearly two years with not that many problems. The BBC computer in its very basic form will cost anything from £175 to around £220 second hand. This is very expensive by today's standards. Then, of course, you have to buy a disc drive and all the other items that are required to run the software. The BBC is now getting very long in the tooth and is a very expensive machine for what it does.

And, of course, comes the most important problem of all with the BBC computer. Noise. The BBC was renowned for the noise that it generated. At 10m it is not that good and even with screening it is still bad. Also the RGB monitor socket is very noisy and is not recommended for high quality FAX pictures. I think that anyone who has used this computer will agree with me.

I will not deny that in its day the BBC was the "best" in its class, but those days have passed. At the moment the "in" computers are the Amiga and the Atari ST. The ST is now becoming what the BBC used to be for amateur radio. Some very good public domain software is available for all applications.

I am not trying to start a debate on which computer is the best, but just to show that the ageing BBC is no longer so, in today's world of improvements in computers and electronics. I only hope that Mr Wilmot's letter will not put off budding radio amateurs from buying the computer they want and not a BBC which he seems to think is the best one around today. Just to say keep up the good work with the mag. Still the best one around!

JOHN PALMER
HAVANT

Sir
With reference to the letter from Mr W. R. Semmen of Penzance in the October issue of SWM, he says that in my letter, published in the August issue of SWM, I wrote about the attitude of the Amateur Radio fraternity - I did not do anything of the sort. If he had read my letter properly he would have seen that my remarks were addressed to one gentleman in particular, who, I thought, treated my friend and I rather shabbily. I have always been on good terms with many Amateur Radio members, who have all helped me with any problems I have had to do with radio, and none of them have referred to my excellent Grundigs as "Rubbish".

Once again, thank you for a wonderful magazine, keep up the good work.

E. S. WALDEN-VINCENT
GREAT YARMOUTH
NORFOLK

Sir
My advice to Mr Semmens is that if you can attend a local radio club, you will find the majority of members are kind, helpful and good people to talk to. Also, some local authorities have a scheme which enables pensioners and unemployed people to attend the RAE course free.

Last, but not least, let's have some media coverage of the hobby I found by accident when I asked a G4 "Is that a CB twig?"

M. CHARLTON
SUTTON IN ASHFIELD
NOTTINGHAMSHIRE
Infra-red Remote Control Kit

The latest "Sound Master" kit from Maplin Electronics is for a useful infra-red, remote control switch which can be used in situations where it is impractical, or inconvenient, to use direct manual switching.

The completed project provides remote switching of a single pole changeover relay with the provision for either latched or momentary output. To indicate that the system is operating, i.e. in both the transmitter and receiver flash. The transmitter is housed in a purpose-made case but the receiver requires a suitable housing, preferably metal.

The receiver requires a 9 to 12 V d.c. power supply at 35 mA standby which rises to 120 mA when the relay is operated. The transmitter uses one 9V (PP3) alkaline battery and the current consumption, dependent on the required range, is 35 to 180 mA when operated. The operating frequency is 18.5 to 23.5 kHz.

All the parts needed for both the transmitter and receiver, but excluding a metal case for the receiver, are provided in kit LM69A (IR Remote Switch Kit) which costs £17.95 including VAT from Maplin Electronics, PO Box 3, Rayleigh, Essex SS6 8LR. Tel: (0702) 554161.

9-Band Portable Radio

The new Steepletone MBR9 has been introduced to fill a gap in the company's range. Described as a multi-band, personal radio, it covers 150 to 281 kHz long wave, 522 to 1620 kHz medium wave, 87.5 to 108 MHz v.h.f. f.m. and 5.85 to 6.20, 7.10 to 7.50, 9.45 to 9.80, 11.45 to 11.98, 15.10 to 15.55 and 17.45 to 18.06 MHz on its six s.w. bands. Tuning is by means of a conventional rotary control on the right-hand end. Frequency indication is by a conventional horizontal scale with a vertical pointer. Band selection and volume are controlled by means of slider controls and the on-off control is a push-button. A world time zone map on the rear of the set provides the user with useful information. "On station" indication is provided by an i.e.d. For v.h.f. listening a five-section telescopic antenna is fitted and a stereo headphone socket allows private listening. Power requirements are two size 7 batteries or a mains adaptor which is an optional extra. The MBR9 measures 170 x 80 x 40 mm and is available in any colour "as long as it is black". Steepletone Products Ltd, Park End Works, Croughton, nr Brackley, Northants NN13 5RD. Tel: (0869) 810081.

BBC World Service

Millions of listeners across two continents will find it easier to tune into World Service programmes now that the new transmitters on Ascension Island are in operation.

The improvements are the latest stage in a ten-year investment programme which has included other major projects such as the new Hong Kong relay station that kept listeners in China informed during the recent student demonstrations in Tiananmen Square.

The £1 million development on Ascension will improve audibility for BBC audiences in West and Central Africa and Latin America. Two new 250 kW transmitters have been installed at the BBC's Atlantic relay stations on the island. Signals are sent to the relay from London via satellite.

"We have the biggest listenership and the highest reputation of any international broadcaster," said Managing Director BBC World Service, John Tusa. "But in an increasingly competitive world we risk losing both credibility and audience if we cannot be heard clearly.

"Until now, BBC programmes have been limited at times to one transmitter on Ascension. Now there will be two, increasing the signal strength. As a result, World Service broadcasts in English, French, Hausa, Portuguese and Spanish will all be easier to hear. And so will our increasingly popular BBC English teaching lessons," Mr Tusa added.

The Ascension improvements are part of a £100m capital investment programme sanctioned by Parliament in 1981. The scheme was aimed at boosting the BBC World Service global audience - now standing at 120 million people - by replacing worn-out transmitters, some of which dated back to World War Two.
WHAT'S NEW

Jamboree-on-the-Air

The most significant development in this year's Jamboree-on-the-Air, otherwise known to millions of Scouts worldwide as JOTA, is the DTI's initiative in persuading 32 countries to allow Scouts and Guides to exchange greetings messages via amateur radio. Until now only Canada, the USA, Pitcairn and the Falkland Islands have allowed this facility. JOTA takes place every year using amateur radio with scouts broadcasting from locations all over the UK, including villages, halls, schools and local Scout Headquarters. This year's dates were 21-22 October.

"Jamboree-on-the-Air provides young people with a chance to talk to each other and learn more about Scouting in many of the 150 countries where Scouts can be found," said Michael Beach, the UK's International Commissioner. "Friendships are formed, maps and atlases are studied and young people throughout the world become much more aware of each other. The special arrangements negotiated by the Department of Trade and Industry, encouraged by the Radio Society of Great Britain, make the 1989 event particularly exciting and represent a considerable boost to international Scouting links."

Over 350 special event licences were issued by the RSGB for the 1989 JOTA event. The Girl Guides must now be hoping that similar relaxations can be obtained for their own amateur radio event - Thinking Day on the Air - next February.

Cellular Radio Guide

The Office of Telecommunications (OFTEL) has recently published an interesting basic user guide to the cellular radio networks. The 24-page booklet covers a range of topics including how the networks operate, what to consider before signing a contract and what to do if the service fails. The booklet has been produced to meet a need identified in the review of the cellular service which was published by the Director General of Telecommunications, Sir Bryan Carsberg, in May of this year. One of the conclusions reached in the review was that many customers had insufficient knowledge about the system to enable them to form expectations of the service. Enquiries to OFTEL have also revealed that customers have signed airtime contracts without realising the full implications of the contract terms.

BACT, the Advisory Committee on Telecommunications for Small Businesses has also contributed to the booklet, which is titled A Guide to Cellular Radio and is available, free of charge, from OFTEL's Library Tel: 01-622 1665. OFTEL's report, Quality of service on the Cellular Networks is still available, free of charge, from the same source. OFTEL, Atlantic House, Holborn Viaduct, London EC1N 2HQ.

FIRST AID

Mr E. Rowe has been reading with great interest, the letters in the "Word in Edgeways" column about the old ST Radios. With his brother, he has been trying for quite some time to get information on the last radio made, the ST Super.8 If you can help, contact him at: 11 Thorstorne Drive, Irby, Wirral, Merseyside L61 4XR.

Could any reader please help with information on how to receive SSTV to an s.w.l. now turning after 20 years to this mode on the h.f. band. Derek Lawrence is using a Sony IC-F700V and a Spectrum 128 with a RMS-3 program. He can find the signal, but cannot resolve it into a picture. Derek Lawrence, 145 Tudor Way, Dines Green, Worcester.

What is the equation for converting metres into MHz and vice versa? Kevin Lanthorne used to have this equation in a computer program, but has sold the computer and the program has been lost. Can anyone help? Kevin Lanthorne, 127 Blackfell Road, Blackfell, Washington, Tyne & Wear NE37 1JU.

Has anyone got a manual or circuit diagram of a Pye Table Radio model PE340? Photocopies would do, and all expenses will be met. Chris Buckhurst, 66 Corringham Road, Stanford-le-Hope, Essex SS17 0AE.

Mr Portritt is curious about BERNEx (sometimes pronounced BERRNA) Radio. He listens to Berne Maritime on a number of frequencies - 4.379, 8.784 - all messages seeming to involve ships in the Mediterranean. Its location is Berne Switzerland - 200 miles inland, why there? Is the transmitter up in the Alps? H. Portrett, 7 Birney Edge, Danas Hall, Ponteland NE20 9JJ.

Mr Levers is looking for a service manual/information on the GEC HF Communications Receiver type RC410/R or RC411/R. All costs will be paid. M. Levers "Waverley", Independent Hill, Alfreton, Derbys DE5 7DG.

Mr K.G. Arnold has an Armstrong linear and separate amplifier which have developed a fault in the left channel - it ceases to separate after some 15 minutes of being switched on and makes a loud "swishing" and "plopping" noise. A local engineer has not been able to rectify the fault and so he would like to locate the makers who used to be in North London. Mr K.G. Arnold, 66 Bromeswell Road, Ipswich, Suffolk IP4 3AT.

Mr S. Gallagher owns a Midland 2001 27MHz f.m. transceiver (precision series) and he is looking for the circuit diagram and any technical data to help him in the refurbishment task. S. Gallagher, 24 Valient Court, Townparks North, Antrim, N. Ireland BT41 2HY.

Graham Mott is in the process of renovating a very old signal generator which unfortunately has had its identification details removed before he acquired it. The instrument was manufactured by Marconi Ecko Instruments Ltd and he suspects its origins may well be prior to 1939. It contains three Mazda valves type ACP (still working well) and a rectifier type UU4.

It would be nice to identify the instrument and, if possible, to obtain a circuit diagram, handbook or any relevant information. Marconi have tried to assist but their efforts have regrettably been unfruitful. Much of their old records have been lost apparently. However, from data acquired so far I believe that the generator is possibly a version of model TF144, but prior to the well-known model TF144G although of the same size and slightly different front panel layout. He is also seeking a coaxial plug for the r.f. output. Graham Mott, 9 Grampian Way, Dulton Broad, Lowestoft, Suffolk NR32 3EP.
FOR SALE Bearcat 200XL new, boxed with p.s.u. and instructions, £195 o.n.o. A. Healy. Tel: Hemel Hempstead 2321 10 evenings only.

FOR SALE Trio JR310 receiver, fitted new filters, 14.5m aerial, 16-element bands, £100 cash, £216 v.h.f. receiver five bands 2/4/8/15/12/10, £30 cash. Buyers collect. HRO-MX nine coils, £100 p.s.u. nice, Mr N. Walker, 35/ 37, Dunsley Deneholm Rd, Queensbury, Bradford BD13 1NA.

FOR SALE Yaesu FRG-965 (9600) v.h.f/u.h.f. receiver, 60-950MHz, hardly used, excellent condition, boxed, complete with h.f. converter, 100kHz-60MHz, £235. Robert M. thumbnail Coventry 4524 45.

FOR SALE PRO-3Z, 200 channel scanner, 68-88, 108-136, 138-174, 380-512MHz, £150, boxed, good condition or exchange for Yaesu FGT-7 or similar. Also 144MHz hand-held transceiver compatible with charger, etc., £65, R. Taylor G3OHV. Tel: Tunbridge Wells 23044.

FOR SALE Icon R7000 v.h.f/u.h.f. scanner, as new, excellent condition, manual, circuit, original black box, £275 o.n.o. Datong multi-mode audio filter model FLM, manual, power supply, as new, £30, J. House, 4 Elizabeth Way, Kinverholme, Warwicks CV8 1OP. Tel: Kenilworth 54556.

FOR SALE Yaesu FRG-7700 all-mode communication receiver 0.15-30MHz. Four FRV-7700 v.h.f. converters 70-170MHz, £200, Yaesu FT-7000, antenna, tuner/detector, £375, external speaker. Plus manuals. Sarcely used, £420. As one lot, D. L. Sunderland. Tel: Wilmslow, (Cheshire) 535142.

FOR SALE Barlow Wadley r.f. RX MKII, excellent condition, £100 o.n.o. Yaesu SCANNER BC100XL, four months old, £130, J. Castle, 9 Ferndale Walk, Anghering, West Sussex BN16 4DB. Tel: Worthing 774708.

WANTED Communication receiver Heathkit any model considered or similar. M. Stevenson, 124 Green Lane, Eastwood, Essex SS9 5QJ. Wanted one v.h.f. converter VC10 for Trio R2000, must be in good working order, about £80-90. For Sale One Philips D2335 World Receiver, £130. J. S. Wood. Tel: Cochlan 387.

FOR SALE Sony PRO-80, 18 months old, excellent condition with manual, plus Sony AN1 active antenna, both boxed, £225 for both. P. Bennett, 3 St. Lukes Rd, Burton-on-Trent, Staffs DE13 0LW. Tel: Burton-on-Trent 31086.

FOR SALE Pye Olympic f.m. in excellent condition converted and working on 70MHz, plus some spare boards, £75 o.n.o. Ken Ginn G8NDL. Tel: Swanley 613289.

FOR SALE Bearcat 250 50-channel scanner US model 115/12 volt handbook and service manual. Includes plug-in solid state automatic receive switch, £145 o.n.o. M. Calvert. Tel: 01-363 2015.

FOR SALE Sony ICF-7600 DS receiver complete with p.s.u. and all usual Sony extras, new in August, hardly used, £100. A. Henry. Tel: Grimsby 827700 evenings.

FOR SALE Reftec 934VHF transceiver c/w mobile unit £100. 9m aluminium telescopic mast £25, Mr Hagon. Tel: Shrewton 627985 after 6pm.

FOR SALE TMR7602 communication receiver, 150kHz-3OMHz, digital receiver, £75. Also Yaesu FRT-7700 antenna tuner, £35. Both in good condition. Andrew. Tel: 01-642 3961.

FOR SALE AQOR AR-900 hand-held v.h.f., u.h.f. antennas and case, as new and boxed, unused, £190. Mr D. Cripoph. Tel: Aylesbury 81624.

FOR SALE JIL SX-400 (big brother of the very popular SX-200) as new. A bargain at £300. Mr G. Carke. Tel: Tunbridge Wells 35604.

FOR SALE Bearcat 200XL, five months old, case, charger, Tandy centre loaded antenna (modified). All as new in original box. £175 o.n.o. H. Davies. Tel: Aberdare 76598 at 9-5.30pm Mon-Friday.

FOR SALE NRD-525 communication receiver with 250Hz filter fitted supplied. £850. Amiga A500 computer with software £270. Both items are only a few weeks old and in excellent condition including original boxes. Robert Webster. Tel: 051-489 1241.

FOR SALE Realistic PRO-34 hand-held scanner, complete with Royal 1300 discone antenna, p.s.u./charger, rechargeable batteries, Scannerbook and realistic telescopic antenna. Still under warranty, £220. Dave Willis. Tel: Yokoll 472579 evenings.

FOR SALE Bearcat Uniden BC100XL T, 100 channel hand-held scanner £95 o.n.o. Bearcat Uniden BC175XL base unit, 16 channel, 66-88, 118-174 and 406-512MHz, a.m./f.m. £85 o.n.o. P. C. Lock. Tel: Aldershot 323203 evenings and weekends.

FOR SALE Edystone model S770R communications receiver. 19MHz to 165MHz with manual, £100 o.n.o. P. S. Evans. Tel: Newport 413367.

WANTED Airband receiver. Simple v.h.f. model would suffice. M. Hely. Tel: 01-935 7119 between 1 and 2pm.

FOR SALE Sony Air-7 scanner air/a.m./f.m./p.s.b. Many facilities, boxed, antenna, instructions, 18 months old, v.g.c. £120. Sony ICF7600D receiver, v.g.c., £80. Sony AN1 antenna system, unused, boxed, £30. C. Farquhar. Tel: 01-504 2166 8pm to 9pm.

FOR SALE OR SWAP R11155/T11154 original, unmodified, with manuals, 1/2 meter. Edystone 770R, heeds attention. Hallcrafter 257, P/C radio receiver. Offers or swap scanner. M. A. Lane. Tel: Leicester 413892.

FOR SALE Icom R7000 radio scanner, 26-1300MHz, no gaps, 99 memories, with 500kHz-30MHz converter fitted internally giving 99 extra memories. Perfect with manual and original packing, £750, buyer collects. Harry Scrase, 1 Jubilee Rd, Sandvich, Kent CT13 0QP. Tel: Sandwich 612640.

FOR SALE Icom R71E communications receiver, 100kHz-30MHz, fitted with f.m. unit, s.s.b. filter, voice-synthesis unit, d.c. unit. T.v.c. remote control unit. Manual and original packing, perfect, £750, buyer collects. Harry Scrase, 1 Jubilee Rd, Sandvich, Kent CT13 0QP. Tel: Sandwich 612640.

FOR SALE SX200N scanning receiver, good condition with manual, £140. Paul Legg, 42 Oxford St, Northwood, Isle of Wight. Tel: Isle of Wight 297084.

FOR SALE Sony ICF-2001 synthesised receiver, 150 to 29999kHz, f.m., a.m., s.s.b., c.w. Digital readout with memory facility. Or Complete with power supply unit, original packing and excellent condition, £100. R. V. Henderson, 8 The Woodlands, Broom, Billeswade, Beds. Tel: Billeswade 315395.

WANTED Samatron U-veeter or similar airband u.h.f. to v.h.f frequency converter. Mark. Tel: Crawley 563161 day or Horsham 53598 after 6.30pm.

FOR SALE Yaesu FRG-7 general coverage receiver, 500kHz-29.8MHz, little used, manual, headphones, etc., £105. E. A. Leavestey. Tel: York 658922.

FOR SALE Grundig RC60 carceiver super hi-fi to Din45-500, f.m./l.m./w./i.w.x, 2x50W or 4x30W, touch controls, 8 f.m. presets, full range inbuilt sockets, brown metallic case 630x150x80mm, mint condition but no audio, hence price £30. Alan Bennett. Tel: 061-653 1163 evenings only.

AR-900 hand-held scanner, seven months old, boxed with instructions, charger, v.h.f./u.f. antennas, £175. Dick De Las Casas. Tel: Bordon 34962.

FOR TRADE GEC ERT400 receiver. Lafayette H8B60 g.c. receiver, Yaesu FR-101 receiver bandswitch (new in box). Two 1930 broadcast receivers. Wanted Edystone 659 wire wound N/P switch with a 6N9PN. Eddydog 690x band switch or wafers, Trio R599 receiver, J. Wright, 54 Queen Mary Ave, Basingstoke, Hants RG21 2PG. Tel: Basingstoke 468649.

Write out your advertisement in BLOCK CAPITALS - up to a maximum of 30 words plus 12 words for your address - and send it, together with your payment of £2.30, to Trading Post, Short Wave Magazine, Enefco House, The Quay, Poole, Dorset BH15 1PP. Advertisements will be printed in the earliest available issue and SWM reserves the right to exclude any advertisement not complying with the rules. You must send the flash from this page, or your subscription number as proof of purchase of the magazine.

Advertisements from traders, apparent traders or for equipment which is illegal to possess, use or which cannot be licensed in the UK will not be accepted.

SWM DEC 89 TP
South East Kent (YMCA) ARC have Natter Nights on November 29/December 6, Winter Fox Hunt on December 13 and their Xmas Social on the 20th. Wednesdays, the Dover YMCA, Godwynehurst, Leybourne Rd B. Joyner G6ZY on Dover 852533.

South Bristol ARC have a Committee meeting/14MHz/Rx Dx on November 29, judging for Terry Dunsford Trophy G3XED on December 6, HF Activity on the 13th, their Christmas Party G4YZR on the 20th and 14MHz Activity on the 27th. Wednesdays at the Whitchurch Folk House, East Dundry Rd. Len Baker G4RZY on Whitchurch 832222 (Wednesday evenings).

Cheltenham ARC have their AGM with film or social event on December 1, Stanton Room, Charlton Kings Library. Dave Abbott GHF70/10, Thorncliffe Drive, Cheltenham GL51 6P Y.

Bath & District ARC, contact Howard G6EYJ on Bath 428010.

Carrickfergus ARG meet Tuesdays, 6.30pm in the Downshire Community School, the last Tuesday of each month by guest speakers. November 28 is Utilising Surplus Transformers G14NF. December 5 is Construction and CW and the 12th is their last meeting of the year. Geoff G10GDP on Carrickfergus 366109.

Cheshunt & District ARC have Natter Nights on November 29/December 13, Top Band Operation G3RFS on December 6 and Xmas Social G4UNL on the 20th. Wednesdays, 6pm in the Church Room, Church Lane, Wombly. Roger Frisby G4OAA on Hoddesdon 467495.

Aylesbury Vale RS have the GGB Bill Biloff Trophy Construction Contest on December 6 and an Informal social reflecting the success of 1989 on the 20th. 1st & 3rd Wednesdays, 8pm at Harwick Village Hall. Geoff Groom G5YCL on Buckinghamshire 817496.

Rugby ATS meet Tuesdays, 7.30pm at the Cricket Pavilion outside Rugby Rugby Stadium. December 5 is the UC1322 Upconvert G3TSS and the 9th is their Annual Dinner G8HYU. Kevin Marriott G8TVH on Rugby 77986.

Hasting Electronics & RC have their Xmas Social on December 20, 3rd Wednesdays, 7.45pm at West Hill Community Centre, Croft Rd, and Fridays, 7.30pm in the Clubroom, Ashdown Farm Community, Downey Close. Reg Kemp G3YYP at 7 Forewood Rise, Crowhurst, East Sussex TN33 9AH.

Southgate ARC have an Informal on November 23 and their AGM on December 14. Holy Trinity Church Hall Upper, Winchmore Hill, 7.45pm. Brian Shelton on 01-360 2453.

Norfolk ARC meet Wednesdays, 7.30pm at The Norfolk Dumping, The Livestock Market, Harford, Norwich. December 6 is an Informal/Committee meeting, the 13th is Beyond Pacemaker Hill, Computer Works G0KRU and the 19th is their Xmas Party. Steve Sewell G4VCE on Mulbarton 782586.

Sutton & Cheam RS meet 3rd Fridays, 7.30pm at Downs Lawn Tennis Club, Holland Ave and 1st Mondays in Downs Bar for Natter Nights. November 29 is a Committee meeting at Patfrees, Picquets Way, Banstead. December 3 is 144MHz Fixed and AFS Contest, the 4th is a Natter Night in the Downs Bar, the 10th is CATS Christmas Bazaar and the 15th is their Xmas Get-Together. John Puttco G0BWV on 01-644 9945.

Southdown ARS have Club 2m VHF Contest SSB on December 3 and their Xmas Social on the 4th. 1st Mondays, 7.30pm at the Chasely Home for Disabled Ex-Servicemen. Southgate, Banbury Rd, Norfolk. Weekdays and Fridays in the Clubroom, Hailsham Leisure Centre, Vigaret Rd. C. R. Evans G4YOS on Hassfiehd 3168.

Yeovil ARC have RF Resistance G3YMY on November 23, Natter Night on the 30th, Video Night on December 7, Multi-band Antennas G3YMY on the 14th, Mince Pies and on the Air on the 21st and a Natter Night on the 28th. Thursdays, 7.30pm at the Recreation Centre, Chiton Grove. David Bailey G1MM at 7 Thatcham Close, Yeovil BA21 3BS.

Pembrokehire RS meet Mondays, 7.30pm at the Further Education Centre at 140, Haverfordwest. 1st Mondays are Lectures and 2nd are Committee meetings. Martin Goodall GW8ZMU on Haverfordwest 764009.

Lothians RS have a Social on December 13, 2nd & 4th Wednesdays, 7.30pm at Orwell Lodge Hotel, Polwarth Terrace, Edinburgh. P. J. Dick GM4DTH at 21 West Maitland St., Edinburgh EH12 5EA.

Mid-Warwickshire ARC meet 2nd & 4th Tuesdays, 8pm at 61 Emrscoate Rd, St. John's Ambulance HQ. November 28 is Technical Topics and Draft Programme for 1990 and December 12 is their Xmas Supper Night with RSGB Guest. Mike Newell G1HDG on Kenilworth G13073.

Fylde ARC have a Construction Competition on November 23 and a Supper/Social Evening on December 14. 2nd & 4th Thursdays at South Shore Tennis Club, Midgeland Lane. Frank Whitehead G4CSA on St. Annes 720867.

Farnborough & District RS meet 2nd & 4th Wednesdays, 7.30pm at the Railway Enthusiasts Club, off Hawley Lane (by M3 bridge). December 13 is their Xmas Social. Tim Fitzgerald G4UQE on Camberley 292321.

Dragon ARC meet 1st & 3rd Mondays, 7.30pm at the Four Crosses, Menai Bridge. December 4 is talk by Mr. Llewellyn Jones, The United States - The Welsh Connection and the 18th is their Xmas Party. Tony Rees on Bethesda 600693.

Todmorden & District ARC have George Dobbs Annual Xmas Lecture on December 4 and Fun and Games Night on the 18th. 1st & 3rd Mondays, Bom at the Queen Hotel. Mrs E. Tyler G0AEC on Halifax 882038.

Thornbury & District ARC meet 1st & 3rd Wednesdays, 7.30pm in the United Reform Church, Chapel St. December 6 is a Quiz. Tim Cromack G0FGI at Rose Cottage, The Nalte, Oldbury-on-Severn, Bristol, Avon BS12 1RU.

Loughton & District ARC have a Film Show on December 1 and their Xmas Meal on the 15th. Room is at The Anchor Hotel, Rectory Lane. John Ray GBD2H on 01-508 3434 after 7pm.

Wimbledon & District ARC meet 2nd & last Fridays, 7.30pm at St. Andrews Church Hall, Herbert Rd. November 24 is Film Night and December 8 is their Xmas Social. Nick Lawlor G6AUY on 01-330 2703.

Cambridge & District ARC have Visit to Magnetic Resonance Scanner, Addenbrookes Hospital on November 24, an Informal on December 1 and their Xmas Party on the 8th. Fridays, 7.30pm in the Further Education Centre at Coleridge Community College, Radegund Rd. Brian Davy G4TRO on Cambridge 353664.

The Amateur Radio Club of Nottingham meet Thursdays, 7.30pm at Sherwood Community Centre, Mansfield Rd, Sherwood. Paul G1WBJ on Nottingham 735740.

Stevenage & District ARC have a Junk Sale on December 5 and Test Equipment G12ZH on the 19th. Ground Floor Lecture Room, "D" Block, Ridgemonde Training Centre, Telford Ave, 7.30pm. Pete G0GTE on Stevenage 724991.

Chelmsford ARC have a Sale of Surplus Equipment on December 5 and Club Social on the 16th. 1st Tuesdays, 7.30pm in Marconi College, Arbour Lane. Roy G3PMX on Chelmsford 353221 Ext. 3815.

Biggin Hill ARC have their Xmas Party on December 19, 3rd Tuesdays, 7.30pm at The Victory Social Club, Kechill Gdnes, Hayes. Geoff G3UMI on 01-462 2689.

Verulam ARC have their Annual Great Erg Race on November 28 (this is the event originally scheduled for October 24). 2nd & 4th Tuesdays, 7.30pm at the RAF Association Club, 3rd Tuesday of each month, the 18th, on St. Albans. Andy Ince G0GBZ at Cottage No.1, Ronington, 28 Nascot Wood Rd, Watford WD1 3SD.

Horndean & District ARC have Survival G4D1U on December 7, 1st Thursdays, 7.30pm at Merchistoun Hall, London Rd. Stuart Swan G0FYX on Havant 472864.

Hornsea ARC have Natter Nights on November 29/December 27, Switched Mode Power Supplies G8EXX on the 6th, Middle East Trucking G1KT on the 13th and RAF Electronics G1YVL on the 20th. Wednesdays, 8pm at The Mill, Atwick Rd. Jeff G4I4Y on (0964) 833351.

Stourbridge & District ARC meet 1st & 3rd Mondays, 7.45pm at the Robin Woods Centre, Scotts Rd. December 4 is On Air/Natter Night and the 18th is NiCad Batteries. Clive Williamson G4IEB on Stourbridge 392006.
HOT-RODDING THE ICF-2001D

Steve Whitt
Part 4

This month Steve Whitt concludes his modifications by offering suggestions to improve the S-meter.

S-Meter

The S-Meter is one feature on a receiver that can be the source of more debate than almost any other, particularly in respect of its usefulness in providing an accurate gauge of signal strength. I have not actually implemented any changes in this area of the circuit, but if you feel that the S-meter is rather too sensitive, there is a very simple modification which provides scope for further experimentation. As supplied, resistor R60 in the S-meter circuit (Fig. 4.1) is 39kΩ but this component can be safely replaced by any value down to about 10kΩ; the smaller the value the less sensitive the S-meter display.

Fig. 4.1: Details of the modified S-meter circuit.

<table>
<thead>
<tr>
<th>I.e.d. No</th>
<th>Received Signal (*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>μV</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1.1</td>
</tr>
<tr>
<td>2</td>
<td>1.4</td>
</tr>
<tr>
<td>3</td>
<td>1.7</td>
</tr>
<tr>
<td>4</td>
<td>2.2</td>
</tr>
<tr>
<td>5</td>
<td>2.7</td>
</tr>
<tr>
<td>6</td>
<td>3.9</td>
</tr>
<tr>
<td>7</td>
<td>6.2</td>
</tr>
<tr>
<td>8</td>
<td>15</td>
</tr>
<tr>
<td>9</td>
<td>31</td>
</tr>
<tr>
<td>10</td>
<td>55</td>
</tr>
</tbody>
</table>

(*) minimum signal to light I.e.d.; test frequency 6MHz.

Table 4.1: Unmodified Signal Strength Indication

Further Scope

So far in this article I've attempted to find easy-to-implement solutions to the main problems inherent in the design of the 2001D. If serious consideration is given to these points then this receiver will really shine, easily outperforming some receivers at over twice the price.

Naturally I could only tackle the easiest to fix problems and there are still some areas of the design that could benefit from further attention. These are listed below but in fairness I've balanced the weaknesses against the strengths lest anyone think that there are only negative comments.

For

Balanced f.e.t. design used in first mixer is less prone to even order distortion effects. Dual-loop digital p.l.l. synthesiser is less prone to phase noise and permits faster scanning. Up conversion to 55MHz first i.f. reduces image problems. Synchronous a.m. detector gives good audio from weak, fading or distorted a.m. signals. Voltage step-up circuit provides higher voltage for tuning Varicap diodes, reducing phase-modulation or distortion problems.

Against

Low supply voltage (3V or less) means small signal voltage swings, hence limited dynamic range of amplifiers. Synchronous detector is unduly susceptible to phase/frequency modulation; reacts to supposedly inaudible phase modulated data signals carried by some a.m. transmitters. Local oscillator has wide tuning range (50-90MHz) so is more prone to phase noise effects. Diodes used for band switching and filter switching have low forward currents (100-250μA) when on, and low reverse voltages (0-600mV) when off, so could cause distortion or capacitive feed-through problems. Audio performance is rather poor and the three-position audio tone switch is not very effective. An external audio filter or processor unit is recommended for the serious listener.

That just about wraps up the do-it-yourself guide to hot-rodding the 2001D and all that you need now are some "go-faster stripes" to complete the picture!

Recommended Reading

Useful Addresses

Sony UK Ltd., Sony House, South Street, Staines, Middlesex TW18 4PF. Tel: (0784) 467000
Radio West, 850 Anns Way Drive, Vista, California 92083, USA. Tel: (619) 726-3510
Radio Database Int., IBS Ltd., PO Box 300, Penns Park, PA 18943, USA.
Specialised Electronic Services (Sony Service Centre), Unit 4, Goose Green Trading Estate, 47 East Dulwich Road, London SE22 9BS. Tel: 01-693-9622.

Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.m.</td>
<td>amplitude modulation</td>
</tr>
<tr>
<td>f.e.t.</td>
<td>field effect transistor</td>
</tr>
<tr>
<td>i.f.</td>
<td>intermediate frequency</td>
</tr>
<tr>
<td>kΩ</td>
<td>kilohms</td>
</tr>
<tr>
<td>l.e.d.</td>
<td>light emitting diode</td>
</tr>
<tr>
<td>MHz</td>
<td>megahertz</td>
</tr>
<tr>
<td>mV</td>
<td>millivolts</td>
</tr>
<tr>
<td>p.l.l.</td>
<td>phase locked loop volts</td>
</tr>
<tr>
<td>V</td>
<td>volts</td>
</tr>
<tr>
<td>μA</td>
<td>microamperes</td>
</tr>
<tr>
<td>μV</td>
<td>microvolts</td>
</tr>
</tbody>
</table>
When you are ready to graduate to real listening
Look to Lowe

The R-2000 from Kenwood
150kHz-30MHz. SSB/AM/CW/FM
VC-10 converter 118-174 MHz
R-2000 £595
VC-10 £162

The R-5000 from Kenwood
100kHz-30MHz. SSB/AM/CW/FM/FSK
VC-10 converter 118-174 MHz
R-5000 £875
VC-20 £167

The NRD-525 from JRC
Simply the best receiver you could buy . . . £1095

Send four first class stamps to cover the postage and we will send you, by return of post, you FREE copy of “THE LISTENERS GUIDE” (2nd edition), a commonsense look at radio listening on the LF, MF and HF bands. Its unique style will, I am sure, result in a “good read” but underneath the humour lies a wealth of experience and expertise. You will also receive detailed leaflets on our range of receivers and a copy of our current price list.

FREE

LOWE ELECTRONICS LIMITED
Chesterfield Road, Matlock, Derbyshire DE4 5LE Telephone 0629 580800 (4 lines) Fax 580020 Telex 377482

What do I mean by “When you are ready to graduate”? Well, like all hobbies or pastimes, short wave listening is a progressive hobby, and many people come to it almost by accident when they hear an unusual broadcast station on their ordinary domestic radio, particularly if the radio has a short wave band. Interest is aroused, and before long the listener begins to wonder why there are some signals he cannot resolve. He may well turn to the pages of Short Wave Magazine for advice, and become familiar with terms such as SSB, RTTY, selectivity, propagation, and so on.

It is at this point that our worthy listener takes his first step in upgrading his equipment, and comes out of primary education into more advanced listening. Many people at this same point rush along to their nearest High Street multiple retail store and buy what they are told is a “Short Wave Radio”, bristling with push buttons and coloured knobs. Sadly, the so-called “Short Wave Radio” is often no more than a domestic portable with a fancy front panel, and the performance when used for anything other than casual listening is no better than the old radio with which he started — in fact it’s often worse.

So — these push button portables are excellent for taking on holiday, or carrying to the river bank during a fishing trip, but for real listening — no, no, no.

Our listener is about to graduate from the University of Short Wave Listening, and armed with the knowledge of what he really needs for his hobby will proceed to find a suitable receiver for his purposes. Now it is true that the cost of a properly designed short wave receiver will be higher than the domestic portables; but not so much higher as to be prohibitive, and by going to a specialist (and I mean a true specialist, not someone who talks about "Tranny Radios"), the listener will get good advice based on years of experience in the field, and access to not only new receivers but usually a range of guaranteed second hand units as well. The specialist will also stock and sell a full range of necessary accessories, ranging from simple aerial insulators to complex morse and RTTY decoders for more advanced enthusiasts.

You may get the impression that I am referring to Lowe Electronics when I talk about a specialist dealer, and of course I am. After 25 years of specialising, it is generally accepted that we are without equal, and this is reinforced by the fact that we have been appointed by so many leading manufacturers to represent their products. As a final point, how many other companies in the UK have designed, built, and sold a real short wave receiver to 17 countries around the world. WE HAVE.

The receivers shown on this page are representative of the best in the world, and are on show at all our branches and at selected dealers throughout the UK. For full information on how to choose your short wave radio, just send off for our "Listeners Guide" (details below), or call and ask. We are happy to help, and we know what we are talking about.
25 YEARS IN SHORTWAVE

When it comes to scanners
Look to Lowe

AR-3000
Continuous all-mode (including SSB) from 100kHz to 2036MHz makes the AR-3000 the most amazing receiver ever to be made. Trouble is, they can't make enough of them to meet the world-wide demand, so there is a lengthy waiting list. Well worth patiently waiting for, the AR-300 has stunned the market by its specification and sheer performance.
AR-3000 £765

AR-2002
The best known, most respected scanner, in the world. The AR-2002 offers continuous coverage from 25-550MHz and 800-1300MHz, and all mode (AM, FM(W), FM(N)). This scanner has consistently been the leader in the field, and has yet to be equalled. Scanning, searching, just enjoying listening; it's all there with the AR-2002.
AR-2002 £487

AR-950UK
A new addition to the AOR range is this base station/mobile scanning receiver, with all the features and performance we have come to expect from AOR. Frequency ranges 60-88, 108-136, 137-174, 220-290, 291-380, 406-470, and 830-950MHz. AM or FM available on any frequency. 100 memories. Everything in fact that you need in a scanner, and from the best maker in the world. The AR-950UK comes complete with mains power supply and two arials for top performance.
AR-950UK £249

AR-900UK
What a scanner; The AR-900UK covers all the bands you ever needed, in AM or FM modes (on any frequency); has 100 memories built in, enables you to monitor so much of interest — and all in a tiny hand held package. Now wonder thousands are already in use. Designed for the UK listener, the AR-900UK offers every facility at a reasonable cost. Frequency ranges 108-136, 137-174, 220-280, 300-380, 406-470, and 830-950MHz. Send for details now.
AR-900UK £235* NOW £199

AR-800E
The baby of the family, but what a baby. Covers 75-105, 118-174, 406-495, and 839-950MHz in AM and FM modes. Comes with rechargeable battery pack, charger, and flexy aerial. As with all AOR models, every channel spacing in current use can be programmed, so you needn’t miss a transmission. All you ever wanted in a low cost scanner.
AR-800E £199* NOW £165

For the past 25 years Lowe Electronics have specialised in seeking out the best in radio and bringing it to our customers. Those customers will also tell you that we have another speciality — looking after them. Whatever is best in radio, we sell. Whatever we sell, we back with really expert advice and service. We are pleased to represent the best companies in the receiver world, and in addition to the AOR range shown here, we also distribute receivers from Signal Communications and WIN, two of the top names in Airband radio. For full information and a copy of our Airband Guide, simply send us four first class stamps and mention that you saw our ad in Short Wave Magazine®. Happy listening.
Parasitic Beams with Two Driven Elements

Whilst a multi-element, long Yagi can provide a high degree of directivity gain, the physical length and additional weight even for 144MHz operation - could prove too much for small rotators and present a large area to high winds. By employing two driven elements in either endfire or broadside configuration (see Part 7) with close spacing between the directors, parasitic beams only two-thirds the length of a long Yagi can be constructed to provide the same directivity gain.

The G2BCX 16-element beam, designed for operation on 144MHz, has a forward directivity gain of 16dBd. The measured horizontal radiation pattern is shown in Fig.10.1. It uses two driven elements phased 180 degrees and is less than two-thirds the length of a well-known, commercially made Yagi with the same forward gain. Another example is a parasitic beam for the 28MHz band - the ZL5-10, shown in Fig.10.2. It employs two driven elements phased 135 degrees and with three directors has a directivity gain of 9dBd. It is about two-thirds the length of a Yagi with the same gain factor and horizontal radiation pattern. For constructional details of the G2BCX 16-element beam refer to that indispensable book Out of Thin Air (available from the SWM Book Service) and for the ZL5-10 see the March 1986 issue of Practical Wireless.

Crossed Linear and Parasitic Beams

A half-wave dipole radiates a linearly polarised wave and the polarisation mode is determined by orientation, i.e. radiation is vertically polarised with the antenna vertical and vice-versa when the antenna is horizontal; refer to the combined radiation pattern Fig.1.4, Part 1. If the radiation from two dipoles, one vertical and one horizontal, is combined and the currents in each radiator have a 90 degree phase difference, the result is circular polarisation. However, as the radiated fields are identical in magnitude, power from the transmitter is equally divided between the two dipoles. The overall directivity gain for circular polarisation is therefore 3dB less than that for a single dipole.

The same applies to an identical pair of Yagi beams, crossed at right angles to each other and which may be switched to operate individually to obtain either horizontal or vertical polarisation with the same gain as for a single antenna. If they are driven together, as described above, the combined radiation will be circularly polarised but the overall directivity gain will be 3dB less than that obtained with a single antenna.

With a suitable phasing system a crossed Yagi pair can also be made to provide "slant" polarisation at either 45 or 135 degrees and circular polarisation in a "right" or "left" hand direction - although for these modes there will still be the 3dB loss in directivity gain for reasons already explained.

The Helical Antenna

Circular polarisation, in a left or right hand direction, is one of the features of the helical antenna, the others being reasonably constant maximum radiation and a low v.s.w.r. over a wide frequency range. The helical antenna can be made to operate in a number of modes, but the most commonly used is the "axial" mode which maximum radiation is in the...
direction of the helix axis and is circularly polarised. The rotation direction of polarisation depends on whether the helix is wound with the turns going left or right-handed (like a screw thread). This mode of radiation occurs when the circumference of the helix is approximately one wavelength diameter at the centre frequency of the chosen operational band.

Axial mode helicals are not difficult to construct and can be matched directly with a 50Ω coaxial transmission line. The broadband function, forward directivity gain, feed impedance etc., remain almost constant over a frequency range of 2:1. For example, a 6-turn helix with a 14 degree pitch and a diameter of one wavelength, as shown in Fig. 10.3, has a bandwidth from about 300 to 500MHz based on a centre frequency of 400MHz. Maximum forward directivity gain is on average 10dBd, and the v.s.w.r. as in Fig. 10.4 remains below 1.5:1 over the whole of the functional frequency band.

The forward radiation pattern for a multiple-turn helical antenna does vary somewhat over a 2:1 frequency range with the beamwidth at -3dB being a little narrower at the highest frequency and a little wider at the lowest. The “measured” radiation pattern for the 6-turn helical, as above, is shown in Fig. 10.5. Helicals are frequently used for communication via satellite repeater stations from which wave polarisation changes during orbit.

Beam Antenna Coverage

A beam antenna with a fairly high directivity gain - say 10 to 16dBd - is an asset when v.h.f. and u.h.f. tropospheric “lift” conditions prevail and working distances are often extended to several hundred miles. At distances of this order the arc of coverage based on the angles at which radiation is 3dB down from maximum can be quite wide. The print-out, Fig. 10.6, from a computer program devised by the writer, gives some idea of how wide the arc of coverage can be. The radiation pattern shown is that of a 12-element beam for the 144MHz band with the -3dB points marked “X”. The computer program will produce a V.D.U. graphic, as Fig. 10.6, of the radiation pattern of an antenna located at any place on the map. The magnitude of the pattern can be chosen as required and the direction of maximum radiation set to any angle over 360 degrees. It is quite a simple job to obtain a similar presentation by drawing the horizontal radiation pattern of an antenna on tracing paper, with the angles related to -3dB for the main lobe, or lobes, and use it as a rotatable overlay on a map.

Next time we will look at the log-periodic dipole array and some special antennas.
The French company is planning to install three high-power short wave transmitters and to lease airtime to interested international broadcasters. “Bandscan” called up the company, Media Connection International in Paris.

Cape Verde

They told us the project is to build a transmitter site in Cape Verde. Three 500kW transmitters will be built on the island of Santo Domingo, near Praia, the capital of Cape Verde. They have no plans to make any programmes themselves. Instead, they intend to lease the transmitters to international short wave stations, such as Radio France International, the Voice of America or Japan’s NHK, which are already using relay transmitters to cover their target areas. Radio France, for example, rents airtime on Africa No. 1 in Gabon to cover the African continent. So, this new transmitter site will be available for hire by any major international broadcaster.

The three transmitters on Cape Verde will be able to cover all of Africa, as well as the Americas. The site is strategically located in the middle of the Atlantic Ocean, and studies carried out by MCI indicate that propagation for South America is excellent. Besides the strategic location, the French company chose Cape Verde because the island’s government was willing to grant a permit. In turn, MCI will pay taxes on the islands and turn over 5 per cent of its revenues to the Cape Verdean government.

Media Connection International is a private group based in Paris. This project is a commercial venture, and they have carried out feasibility studies that show the project could generate around $6 million a year. So far, Radio France International has shown a strong interest in the project, as have NHK Radio Japan and the Voice of the Americas. Although MCI haven’t yet signed any contracts, they do have letters of intent. As things stand now, they plan to start broadcasting in 18 months, so that’s in mid 1991. The name of the station will be “Onda Verde”.

Since the station is located off the West African coast, it could be a serious competitor to Africa Number One, the commercial station in Gabon which is doing very well, especially in Francophone Africa. But, MCI has contacted Africa Number One and a joint venture is not being excluded. Under the agreement signed between MCI and Cape Verde, the transmitters will be turned over to the island’s government in 25 years.

Radio Phone Lines

In the last 18 months we’ve carried several reports about how international short wave stations are swapping air time with others. There has been a relative lull lately in these swapping agreements. But, now a French company has come up with a new project to be realised just off the coast of West Africa.

BBC 648 which is a regional radio service within BBC World Service has started a Club 648 designed to get young Europeans together. Tel: 01-257 2648 for a curious message. The Club 648 programme runs at 1615UTC on 648kHz only. If listening to the amateur bands is more your style there’s a voicebank full of listening tips on (0426) 925240. You need to understand ham radio jargon to follow the messages though.

Radio Netherlands has just changed the number of its answerline. It is open round the clock for comments and feedback on their programmes. The number is 010 31 35 724 222.

Last March, Radio Netherlands stopped broadcasting to the UK at 1830UTC. The 6.020MHz was only far at best they say, and they didn’t feel it was worth continuing the interference battle on the 43m band. It seems a deluge of complaints have reached the station asking them to reconsider. The current schedule shows that this hasn’t happened yet, ideally they should get airtime on the 747 or 1008kHz m.w transmitters on the Flevpolder near Lelystad. That would certainly give them good UK coverage.

Albanian Insight

Radio Tirana is the source of much comment in short wave circles. Their programmes have a highly political content and don’t tell you much about daily life in the country. Currently they mainly interest political scientists but is a new era round the corner. In their excellent German language “KW Panorama”, Radio Austria International’s Wolf Harranth rang up Werner Schmidt. He’s West German listener who’s taken a tour of Radio Tirana recently. Here’s a translation of that interview.

“Radio Tirana’s interval signal comes from a patriotic song written in the 1960’s. Its called ‘With pick axe in one hand and rifle in the other’, and it tells how the Albanians managed to throw the Soviets out of their country. Last year Radio Tirana’s German service had a listener contest. I entered for the fun of it, and ended up winning the first prize. Which was a trip to Albania!”

It was certainly amazing, and it turned out to be very different to what I had expected. I took it to be similar to North Korea or parts of Rumania - where everything runs to a strict schedule and criticism is not possible. In contrast I found the people at Radio Tirana quite open. I told them that although they have a strong signal, at least in Europe, their transmissions are not what you can never appeal to a large audience. They seemed to accept that comment. All the news and features are made in a central newsroom in broadcasting house, and are then translated by the various language departments. Since last year producers in the various language sections have been allowed to make some programmes themselves, for example the mailbag programme.

The power of the transmitters is quite modest, on short wave the maximum power is 100kW. The facilities seem to be a mixture of Chinese and Soviet equipment and it is very old indeed. The studios are very simple with giant tape recorders. The studio technician sits in front of a large panel of rotary knobs which resembles the control centre of an electric power station rather than a radio studio, but it all seems to be in working order.

In the course of last year a new director was appointed. Napoleon Rochi wants to modernise the station, for example by introducing more voices into the programmes and finding ways to liven things up. However, I was surprised at how isolated many of the radio people were. I talked to people in the German service who had never listened to foreign radio stations and had no idea what their colleagues overseas were doing. May be that’s why they sound the way they do. They ask me to send them examples of QSL cards and programme schedules from other stations so they could find out what other broadcasters were doing”.

SRI Lankan Mystery

After a period of just playing patriotic songs, a clandestine station appears on the island of Sri Lanka now identifies itself in Singhala as “The Independent Voice” or “the Voice of Freedom”. The transmission is daily at 0100-0130, 1300-1330UTC on 4.360MHz. They have also introduced a Sunday morning broadcast at 0330-0410UTC on 7.010MHz, that’s in the 7MHz amateur radio band! The
programmes of this station strongly attack the rebel JVP party and its guerrilla activities. The station also maintains ties with the station in government communique or in the Sri Lankan newspapers. Signal strength indicates it is at least 10kW and the station is unjammed. All these facts seem to point to a “black clandestine”. In other words, it is probably run by the Sri Lankan government to confuse listeners. The secret British operation in Woburn Abbey during the Second World War did a similar job, creating the anti-Nazi station “Der Chef”.

Cambodia

The Cambodian media scene is in turmoil, what with the recent withdrawal of the last Vietnamese army units. A recently inaugurated joint Vietnamese-Australian satellite ground station in Ho-Chi-Minh city has been making a fortune transmitting footage from hundreds of journalists covering the withdrawal. On the radio front, changes have been afoot for some time. The Voice of the People of Cambodia is currently on 4.910 and 6.090MHz with the “official” external service. But, in addition, there are three unofficial voices.

There’s the “Voice of Democratic Kampuchea”, supporting the Pheapthot regime. The transmitters are thought to be in Kunning China. The station disappeared earlier this year before the Chinese crack down in June. But as the hardline returned in Beijing, so the Voice of Democratic Kampuchea has re-emerged. Transmissions have been noted 0400-0500UTC on 17.680 and 15.110MHz, 0900-1000 on 17.533, 11.870 and 11.780MHz, 1300-1400 on 9.440 and 6.025 and the final broadcast is 2330-0030 on 9.440 and 7.350MHz, all in the Cambodian language. During the winter months, the last broadcast may propagate to Europe.

Then there’s the “Voice of the Khmer”, used by the Kampuchean Peoples National Liberation Front. This is the voice of Prince Sianoek. The frequency is 8.325MHz with transmission times that include 0430-0700, 1100-1400, and 2300-2400UTC. That’s about thought to be in the liberation zone near the Thai border.

The “Voice of the National Army of Democratic Kampuchea” on 5.408MHz has an extended transmission by an hour, so it’s now 1000-1830UTC. They’re using Vietnamese and Cambodian. The transmitter is also believed to be in the Thai-Cambodian border area.

Cable None

In Holland, the Dutch commission for the media, appointed by the government, has ruled that Cable One is not a foreign station and doesn’t fall under the current media law. This operation has studios in Hilversum, and hired a satellite channel on the communications satellite ECS. So as from October 1 cable companies were being advised to remove it from their systems or face £15 000 a day fines. Earlier in October, Cable One lost a court case in which it objected to the ruling that even though it had a holding company in England, most of the disk jockeys, programming and commercials were Dutch. Since Cable One has no terrestrial transmitters, its fate appears to have been sealed. Just before they were deemed illegal though, Radio Broadland bought a major share in Cable One.

Receiver News

We have had several letters asking what has happened to the new super receiver announced by Grove Enterprises, a company in Brastown North Carolina USA. Their SR-1000 should have been on the market by now, but so far nothing. It seems the newly projected date is March 1990.

Another Capital

Capital Radio is not unique to London. There is one in the Transkei, in South Africa and one in the Middle East too. In the past few weeks we noted the English service from Abu Dhabi on 13.605MHz at 2230UTC has a relay of this Middle Eastern “Capital Radio”. The DJs were wondering whether anyone was listening to them on short wave.

Hurricane Hugo

Hurricane Hugo caused considerable havoc across a wide area of the Caribbean. Conventional communication links to many of the Windward Islands were broken before the full force of the hurricane struck. The BBC-Deutsche Welle short wave relay station on the island of Antigua suffered some damage, although not too severe. On another part of Antigua, the Voice of America m.w. relay had more material damage.

In their desperate attempt for news from the region, some of the US radio and TV stations have been misusing the amateur bands. It is one thing to listen to the traffic out of the region, quite another to start recording interviews with amateurs in the affected area.

It looks like one of the most important regional broadcasters in the Eastern Caribbean has been badly hit. Radio Antilles on Monserrat is operational again. Staff have been laid off for the time being. You may recall that the current owner, Radio Deutsche Welle in Germany, was trying to sell it. Indeed the Organisation of East Caribbean states was interested in buying. Just what the hurricane damage will mean now is still not clear. Radio Antilles is an important outlet for many international broadcasters, including VOA, RCI and the BBC.

BBC and Radio Netherlands Build Relay

Earlier this year we mentioned that Radio Netherlands had spent some £80 000 on an extensive feasibility study into ways to improve reception, especially in South-East Asia and the Far East. The report was submitted to Mr. Wassenaar, the Dutch Minister for Culture. The station has then been looking around for partners, and found one in the form of the BBC World Service. But meanwhile at Radio Netherlands' Bonaire relay station, a new 250kW short wave transmitter is being phased into service, being used for daily operation.

Italian Changes

There is currently no law regulating radio and TV in Italy, private stations are operating there because of a supreme court ruling back in 1975, but after several false starts, it seems that a communications bill, now before the Italian parliament may introduce regulation. We’ve examined the bill, and it makes no provisions for any private short wave broadcasting. Two classes of licence will be issued, national and local. The authorities are going to divide Italy into sectors, the size of the sector being related to the population.

A city like Milan may consist of one or more sectors, whilst a sector in a sparsely populated part of the country may include several villages. Those with a local licence will have to restrict their coverage to one sector, those with a national licence will be able to set up a network of transmitters across the country and serve many sectors at the same time. Radio stations must operate at least eight hours a day to qualify for a licence. However, the new bill makes no provision for community radio or frequency sharing within a sector. Just how the current 4000 commercial radio stations in Italy will react to this legislation is still unknown, and where does this leave the commercial short wave operations like Italian Radio Relay Service, or the religious station at Forlì owned by Adventist World Radio?

Japan: Goodbye to DX Corner?

It’s been announced that Kas Matsuda, producer of Radio Japan’s popular DX
A.R.E COMMUNICATIONS

The very latest “2 in 1”
ICR7000HF Receiver
500kHz — 2GHz

EXCLUSIVE TO
A.R.E. COMMUNICATIONS

YES: 500kHz to 2GHz CONTINUOUS receive in
one unit. Using the ICR7000 multimode facilities,
this probably makes the “2 in 1” ICR7000HF
Receiver the most versatile scanner available today.
Because of the enormous frequency coverage, the
ICR7000HF has 200 mode sensitive channels for
increased flexibility.

With excellent strong handling characteristics, using a
direct fed Double Balanced Mixer, the need for a
pre-amp is unnecessary.

Compare the price of an ICR71E at £855 and an
ICR7000 at £999!

Available from stock, the new
ICR7000HF.

Only £909.00 incl. VAT. Phone 01-997 4476 for
immediate delivery.

* Also available as an after-fit to your existing ICR7000
only £139 incl. VAT.

A.R.E COMMUNICATIONS HAVE SELECTED SE
OFFER THE BEST SPECIFICATION SUITABLE FOR
COUPLED WITH THE SUPERB PRICES THAT W
THAN TO CONTACT US FOR A QUOTE. ALSO
FOR DEMONSTRATION — SO THAT YOU CAN BE
TOTALLY SUITABLE FOR YOU.

AND NOW THE NEW
JUPITER RANGE

BASE AND HANDHELD

General Features
- Switchable AM/FM.
- 25-550mHz & 800-1300MHz.
- Proper manual up/down electronic tuning.
- 100 memories in 5 banks of 20.
- Selective bank scanning.
- 50 programmable band segments.
- Priority channel.
- Any memory channel can be temporarily passed.
- Steps of 5, 10, 15, or 20Hz.
- Auto frequency correction for step changes.
- Band Search or Memory Scan.
- Carrier or audio locking.
- Permanent/temporary hold.
- Delay.
- Slow/Fast speed (12 steps per second).
- Battery saver circuit.
- Proper English manual for UK
- Not an American import.
- Key lock.
- Telescopic antenna.

- External 12V DC
- Internal: 4 x HP7 batts
- Telescopic whip
- BNC socket
- Carry strap
- Direct 12V charging
- Proper Handbook
- Illumination switch
- 12 month warranty

JUPITER BASE
£375
P.S.U. EXTRA

PHONE 01-997 4476

A.R.E.
COMMUNICATIONS
6 ROYAL PARADE
HANGER LANE
EALING
LONDON W5A 1ET

PHONE
01-997 4476
FAX:
01-991 2565

Opening hours Monday - Friday 9.30-5.30 Saturday 10.00-1.00.

Short Wave Magazine December 1989
VERAL RECEIVERS WHICH WE CONSIDER
THE SERIOUS SHORT WAVE LISTENER AND
WE CAN OFFER — YOU CAN DO NO BETTER
REMEMBER WE OFFER FULL FACILITIES -
SURE THAT THE EQUIPMENT YOU BUY IS

B & B

Brenda
G4VXL

Bernie
G4AOG

FOR THOSE WHO DEMAND
THE BEST
LISTEN TO THE WORLD IN DETAIL
IC-R9000
COMMUNICATIONS RECEIVER

The world is now at your fingertips with COM's elite new IC-R9000, a communications receiver truly in a professional class all of its own. With the IC-R9000's continuous all mode, super wideband range of 100kHz to 999.8MHz, ICOM's unique CRT display and numerous scan functions, local and distant spots on the globe are now within earshot in one single receiver.
The IC-R9000's versatile receive capability allows you to receive many different mode signals. Listen to AM used by broadcast stations and VHF ari-band. Use SSB U.S. B.I.S.B. and CV to receive Commercial and Amateur stations on shortwave.
Tune into CB (Citizen Band), Marine and amateur stations using FM or use wide FM to receive FM broadcast stations and TV signals. PSK (Frequency Shift Keying) is also built in for receiving RTTY from news agencies. With an advanced range like this you'll have no trouble in hearing stations near to home or on the other side of the planet.
Watch the IC-R9000! Using your TV set or video recorder with a video input connector you can receive VHF and UHF TV broadcasts. Also the built in CRT can display ATV (Amateur Television) on both the 430 and 1200MHz amateur bands. With the introduction of the IC-R9000 you now have the technical quality required to enjoy HF, VHF and UHF communications.

UNIDEN
BEARCAT. 200XLT

FREQ. 66-88MHz
118-174MHz
406-512MHz
806-956MHz

200 Memories
10 Priority channels
Superb Sensitivity

£219.00

The R-5000 from Kenwood
100kHz-30MHz. SSB/AM/CW/FM/FSK
CV-10 converter 118-174 MHz
R-5000...

KENWOOD'S LATEST AND GREATEST
HF RECEIVER
OUR PRICE £795
VC10 £159

PHONE 01-997 4476

The NRD-525 from JRC

J.R.C. ARE RENOWNED FOR THEIR
COMMERCIAL RADIO EQUIPMENT AND THEIR
AMATEUR BAND EQUIPMENT. ENJOYS THE
SAME REPUTATION.
OUR PRICE £995
The Icom IC-R7000 is a very sophisticated v.h.f./u.h.f. scanning receiver offering continuous coverage from 25MHz through to 2GHz in standard form. In addition, the IC-R7000 is equipped with demodulators for a.m., f.m., narrow band f.m. and s.s.b. The model reviewed here was supplied by ARE Communications Ltd and was fitted with their h.f. converter giving extended coverage down to 500kHz. This obviously converts the IC-R7000 into a potentially very powerful receiver.

Connecting Up

The first thing to do with a receiver as complex as the IC-R7000HF is to read the operating manual. Fortunately this is a very well presented, easy-to-read A4 book comprising some 36 pages. The presentation style is up to Icom’s usual high standard and good use is made of charts and diagrams to simplify the descriptions. In addition to the manual, there is a full circuit diagram which, as you can imagine, is quite complicated and occupies both sides of a 300 x 820mm sheet!

Obviously the first task is to sort out the connections, starting with the power supply. As opposed to amateur transceivers which use external power supplies the IC-R7000HF uses its own built-in power unit which can be set for either 110V, 117V or 230V a.c. mains. The power lead consisted of an IEC plug and socket combination at the receiver end and a moulded 2-pin plug on the other.

Moving to the antenna connections, there are two sockets provided. The main v.h.f./u.h.f. antenna socket is a good quality N-type socket mounted on the rear panel. I must say I was pleased to see a good quality socket fitted here as so many receivers seem to use a variety of totally inappropriate and lossy connectors.

As the ARE modification allows h.f. reception, a separate socket is required. Rather than drill any of the panels ARE have taken over the spare socket on the rear panel for the h.f. antenna connection. Although this is a phono socket, which is not really ideal for r.f. use, the losses at h.f. are minimal so it does not represent a problem. To simplify the antenna connection a PL-259 to phono socket adaptor is provided with the h.f. conversion.

In addition to these basic connections the IC-R7000HF offers a range of features designed to make life easy for the operator.

Although the internal speaker is very good, a 3.5mm jack is provided on the rear panel for the connection of an external speaker. The impedance driving capabilities of this output are 4 to 8 ohms and the internal speaker is disabled when this is in use.

If you prefer headphone listening there is a standard 6.3mm jack on the front panel which is very convenient. As with the external speaker socket the internal speaker is disabled when this is in use.

For recording signals off air the IC-R7000HF is well equipped with a 3.5mm fixed low level audio output on the front panel. Additional recording facilities are provided on the rear panel in the form of...
ICOM IC-R7000HF SCANNER

a remote phono socket which is linked to the squelch line. This can be used to remotely control a tape recorder so that recordings are only made when the squelch is lifted - a very novel feature. Just to finish off the recording facilities, a button on the rear panel can be operated to include the output from the optional speech synthesiser with the recorded signal. Very handy if you are recording a selection of frequencies using one of the scan modes.

Another potentially very useful signal output is the 10.7MHz second i.f. signal which is available via a phono jack on the rear panel. This wideband output is particularly useful for those who want to add additional features to the already comprehensive specification. An example might be to add a high quality f.m. i.f. strip and stereo decoder for stereo broadcast reception. One point to watch if using this output, though, is that the signal is superimposed on a 9V d.c. voltage.

For those interested in computer control an Icom CI-V serial communications port is also provided. There is also an optional CT-17 level converter available allowing this port to be connected to a standard RS-232 interface.

As you can see the IC-R7000HF is very well equipped for its v.h.f./u.h.f. monitoring role.

Facilities

Probably one of the most important operational features of a receiver of this type is the frequency selection methods. In this area the IC-R7000HF includes a combination of the techniques used in conventional h.f. receivers and v.h.f. scanners. The first and most obvious is to use the large tuning knob which dominates the front panel. This knob is fitted with a finger indent to aid rapid tuning and had a very pleasant feel with just the right amount of weight. The feel of this control can be adjusted by a screw located on the bottom panel immediately below the tuning control. As with most modern rotary controls the Icom uses a digital shaft encoder with a stepped output of fifty steps per revolution. The frequency steps associated with the rotary control can be selected using another rotary control on the front panel. The options are 25, 12.5, 10 and 5kHz, 1 and 100Hz - quite impressive! Another useful feature associated with this control is the lock button on the front panel which, when depressed, disables the rotary control - handy for preventing accidental frequency changes! Another feature associated with frequency selection is the optional IC-EX310 voice synthesiser which, when fitted, will speak the frequency whenever the SPEECH button is pressed. This is obviously a great boon for the visually handicapped listener and, as I mentioned earlier when discussing the connections, can also be fed to a tape recorder.

In addition to using the main tuning knob, a keypad is provided for the direct entry of frequency. This is obviously very useful for rapid frequency changes which with a range of nearly 2000MHz is essential! The logic used for direct frequency entry is very comprehensive and automatically handled trailing zeros, thus saving operator time.

As you would expect from a receiver of this type there are plenty of memories provided for storing your favourite frequencies - 99 in total. These are not arranged in banks like many other scanning receivers, but are nevertheless very versatile.

The required channel number can be selected in one of two ways. Either by using the twelve way rotary knob on the front panel, or by direct entry using the keypad. In both cases the channel number is clearly indicated on the far right of the display.

The rotary switch is in effect a motion detector with each clockwise click incrementing the channel number by one and vice versa. Direct channel number entry also utilised the rotary switch which in addition to its rotary movement acted as a push switch. Once the required channel number had been entered via the keypad a single press of the rotary control activated that channel. I thought this was quite a novel way of minimising the number of controls on the front panel.

Once a memory channel had been selected, the main rotary tuning control remained active and can be used to check adjacent frequencies for activity or just for tuning around. Of course some of the memories can be set to particular band edges and used as a quick method of selecting those bands. For example if you are interested in amateur transmissions you can store 144MHz in one memory and 432MHz in another, selecting those memories would instantly set the receiver to the required band whereupon the main tuning control can be used to check the band for activity.

Associated with this is a button marked M-SET which, when pressed, returned operation to that stored in the memory which is very useful for checking memory contents whilst tuning around.

For receiving frequencies above 1GHz the button on the front panel marked appropriately 1GHz has to be pressed, this then gave access to the frequency range 1025MHz through to 1999MHz.
ICOM IC-R7000HF SCANNER

Specifications

Frequency Range
25MHz - 999.999MHz
1025MHz - 1999.999MHz

Modes
A3E (a.m.), F3E (f.m.) and J3E (s.s.b.)

Sensitivity
25MHz - 999.999MHz
n.b.f.m. > 0.5μV for 12dB SINAD
f.m. > 1.0μV for 12dB SINAD
a.m. > 1.0μV for 10dB S/N
s.s.b. >0.3μV for 10dB S/N

Selectivity
f.m., a.m. 7.5kHz at -6dB
n.b.f.m. 3kHz at -6dB
f.m. 75kHz at -6dB
s.s.b. 1.4kHz at -6dB

Spurious and Image rejection
<60dB

Frequency Stability
below 1GHz 5ppm 0-50°C
above 1GHz 10ppm 0-50°C

Intermediate Frequencies
1st 778.7MHz or 266.7MHz
2nd 10.7MHz
3rd 455kHz except wide f.m.

Power Supply
110V, 220V or 234V a.c. 50/60Hz

Current drain
1.7A maximum

Audio Output
2.5 watts into 8Ω at 10% distortion

Dimensions
286 x 110 x 276mm

Weight
8.0kg

Operation of the 1GHz button is indicated on the display by a red 1GHz symbol rather than inserting an extra digit at the front of the displayed frequency.

As mentioned earlier the IC-R7000HF is a real multi-mode receiver with a.m., f.m., n.b.f.m. and s.s.b. included as standard. All the modes are selected by a single press of the appropriate button adjacent to the direct entry keypad. Of course just selecting s.s.b. is not always good enough as the transmission can be upper or lower sideband! The normal mode at v.h.f./u.h.f. is upper sideband but the IC-R7000HF can be set to receive lower sideband by operating a small slide switch on the rear panel.

An unusual feature of the IC-R7000HF is the inclusion of three switched f.m. i.f. bandwidths - 6, 15 and 150kHz. These are selected using a combination of the FM and FMN buttons on the front panel and the FM 1 and 2 switch on the rear panel.

When receiving a.m. or s.s.b. it is quite common to be troubled by impulsive noise from vehicles, etc., and to counter this the IC-R7000HF is fitted with a fixed noise blanker which can be switched in via the front panel.

With the very high signal levels often encountered at some locations, an r.f. attenuator can be very useful to reduce distortions caused by overload of the front end. The IC-R7000HF is fitted with a switchable 20dB attenuator for this purpose.

Scanning

The scanning facilities are a very important part of any v.h.f./u.h.f. receiver as they allow the operator to monitor a large number of low activity channels with minimum effort. The IC-R7000, as you would expect, is set up with some very comprehensive and novel scanning options.

As with most scanners, it is the memory channels that are scanned and this can be achieved in a number of ways.

The first and most straightforward is a simple memory scan which monitored each programmed channel in turn, stopping whenever a signal is encountered which is strong enough to lift the squelch. The action taken by the IC-R7000HF logic on detecting a signal is determined by the setting of the SCAN DELAY switch on the front panel. There are four options available:

1) Wait for squelch to close before continuing the scan.
2) Continue the scan after a 5 second pause.
3) Continue the scan after a 15 second pause.
4) Stop the scan when the squelch is lifted.

Another useful extra is the VSC button which stands for Voice Scan Control. When enabled this prevented the scan from stopping on silent carriers which is obviously a great advantage.

The scan speed can also be altered over a fairly wide range of approximately 2 to 7 channels/second using another rotary control.

Getting back to the subject of scanning modes the IC-R7000HF included a mode scan which scanned all the memories stored in the same mode as that indicated at the start of the scan. This can be a very efficient way of looking at certain types of transmission only.

It is often handy to be able to scan a particular selection of memory channels and the IC-R7000HF achieves this with its Selected Memory Scan. In order to use this facility the operator first has to manually mark the required channels using the SET key. It is also possible to delete individual channels or all channels by simple single key operations. Channels included in the scan are indicated on the display by a decimal point between the first and second digit.

I think all scanners have a priority scan mode and the IC-R7000HF is no exception. Once set the receiver monitors the priority channel in accordance with the setting of the scan delay control mentioned earlier.

A search facility where the receiver searches a user programmed frequency range is another common feature of scanners and in the icom this is called Programmed Scan. The procedure is to set a high and low frequency limit and mode and the receiver scans from f.l. to h.f. using the frequency step set by the tuning step control. This mode is primarily of use when searching for new stations. An interesting and effective adjunct to this mode is the Auto Write Memory Scan. When activated this scan operated between the frequency limits stored for the programmed scan, but every time a signal strong enough to lift the squelch is encountered that frequency is stored in one of the nineteen auto write memory

Short Wave Magazine December 1989
BBC WORLD SERVICE SHOP

PORTABLE SHORTWAVE RECEIVERS

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grundig 220</td>
<td>£49.95</td>
</tr>
<tr>
<td>Yachtboy</td>
<td>£59.95</td>
</tr>
<tr>
<td>Grundig 225</td>
<td>£59.95</td>
</tr>
<tr>
<td>Yachtboy</td>
<td>£69.95</td>
</tr>
<tr>
<td>Grundig Satellite 400</td>
<td>£199.95</td>
</tr>
</tbody>
</table>

Sony ICF 7600L £89.95
Sony ICF 7600DA £129.95
Sony ICF SW1E £149.95
Sony ICF 7600DS £159.95

Grundig Satellite 400 £199.95

1 year's FREE London Calling subscription (World Service magazine) with each order before December (worth £10)

Add 10% for post and packing, 28 days delivery in UK. Pay by sterling cheque to "BBC World" or credit card (quoting card number and expiry date).

BBC World Service Shop (Dept. SW-Dec)
Bush House, Strand WC2B 4PH
MON–SAT 10am to 5pm

D-MM GOOD VALUE!

Cirkit's new range of Digital Multimeters offer a quite unbeatable combination of features and value:

- Ranges include: frequency, capacitance and temperature
- Housed in strong ABS cases
- Overload protection on all ranges
- Full one year warranty
- 3½ digit, auto zero, auto polarity LCD, plus low batt indication
- 200 hour battery life
- All meters supplied with test leads, battery and manual

TM5315B
- **Remarkable value**
- **18 ranges**
- **10A dc current**

Price £19.99

TM5375
- **Frequency measurement to 20MHz**
- **ac/dc current to 10A**
- **24 ranges**

Price £36.75

TM5365
- **30 ranges**
- **Frequency & capacitance measurement**
- **Compact size**

Price £37.90

TM115
- **0.5% accuracy**
- **Transistor HFE test**
- **25 ranges**

Price £33.67

TM115
- **Frequency: 2kHz-20kHz**
- **Resistance: 200Ω-20MΩ**
- **Accuracy: ±0.5%**

TM115
- **Frequency: 2kHz-10kHz**
- **Continuity, diode & HFE test**
- **Basic dc accuracy: ±0.5%**

Short Wave Magazine December 1989
The members of Southgate Amateur Radio Club wish all Radio Amateurs and Short Wave Listeners the Compliments of the Season, and look forward to seeing you on Friday, March 9th and Saturday, March 10th, 1990, at the...
channels (CH 80 to 99). Obviously a very powerful feature!

On The Air

Although a very complex receiver I found the layout and general operation to be surprisingly straightforward proving that Icom have done their homework on the ergonomics. The main tuning control had a very pleasant feel which is essential if fine tuning is to be comfortable. The wide selection of tuning steps also contributed greatly to the ease of tuning.

I also liked the ability to set the meter to read signal strength or centre tuning. The centre tuning being a particularly useful aid for f.m. DXing.

The direct entry keypad is very positive in operation as are all the push-button controls. I found the frequency entry logic to be fool-proof yet still allowing rapid entry of frequencies.

A common area of complaint with v.h.f./u.h.f. scanners is the quality of the a.m. demodulator but, in the case of the IC-R7000, this is certainly not true, the received quality being very good indeed. The audio balance is an excellent compromise between that required for a.m. broadcast reception and communication use such as air band.

The s.s.b. (and c.w.) audio is unfortunately not quite up to that high standard with weak signals in particular suffering a degree of warbling and roughness. This is caused primarily by the synthesiser which is known to be rather noisy. Despite this criticism the performance is usable.

The n.b.f.m. audio quality is very acceptable but the wideband performance, whilst fine for a receiver of this type and expected use, is a long way from hi-fi standards, with the bottom end being particularly light. The IC-R7000HF can probably be used for high quality reception by using an external i.f. and demodulator fed from the 10.7MHz i.f. output.

The scanning modes are particularly good, being very quick and easy to use. The auto memory write scan is a particular favourite of mine as it allowed me to leave the receiver to find and store active frequencies. All I had to do is move any particularly interesting frequencies from the auto write section into the normal memory range, i.e. below channel 80. The transfer of frequencies from memory to display and then on to another memory is also made easy by the M-SET function.

The ability to vary the scan delay and speed combined with the Voice Scan Control meant that the scan parameters can easily be optimised to suit the required type of transmission.

Although at first I thought the provision of a mode scan to be a little odd, I soon found it to be very useful. An example being to set the mode to f.m. wide and start the scan. The receiver would then effectively be scanning all f.m. broadcast stations stored in memory.

I thought the 1GHz indication on the frequency display could have been improved by actually displaying the real received frequency i.e. adding "1" to the left of the display. I am caught out once or twice with the 1GHz button depressed especially when the receiver is below eye level which tended to obscure the top line of the display.

Whilst I had the IC-R7000HF on review I took the opportunity to check out the performance in the PW/SWM lab. I’m pleased to be able to report that the review model exceeded the specification on all counts which, if you examine the specification, is pretty impressive in itself.

Because the h.f. limit of the available test equipment is 1040MHz this is the highest frequency I can test. The sensitivity varied throughout the measured range with maximum sensitivity occurring at around 100MHz. At all frequencies s.s.b. is the most sensitive followed by f.m. (narrow), f.m. (wide) and a.m.

The frequency stability is very good and perfectly satisfactory for use with s.s.b. or c.w., the most critical modes.

Under The Bonnet

The IC-R7000HF is such a good performer I thought it would be quite interesting to take a look inside.

With a sophisticated receiver such as the IC-R7000HF it’s not practical to give a full circuit description, so I will confine myself basically to a “block diagram” approach.

The 25 to 999MHz coverage is handled by four diode switched r.f. amplifiers before being applied to the first mixer. The first i.f. is 778.7MHz for frequencies between 25 and 512MHz changing to 266.7MHz for 512 to 1000MHz. The reception of frequencies above 1GHz is achieved using a relay switched amplifier and mixer which subtracts 1GHz from the incoming signal.

The second i.f. uses the standard 10.7MHz and is the final i.f. for the f.m. wide mode. All the other modes are demodulated at the final i.f. of 455kHz which is also where the main filtering took place. The noise blanker is, in fact, a noise gate and operated within the 10.7MHz second i.f.

The demodulated audio is processed by integrated circuit pre-amplifier and power amplifier.

All the variable frequency requirements of the IC-R7000HF are met by the phase locked loop module which is controlled by the logic module.

The power supply utilised a d.c. to d.c. converter to generate the wide range of voltages required.

ICOM IC-R7000HF SCANNER

As the review model is fitted with the ARE h.f. conversion I took the opportunity to examine its performance.

The h.f. converter comprised a separate p.c.b. which occupied the position normally reserved for the IC-EX310 voice synthesiser. There is another space to the side of this which is reserved for the remote controller unit - so you may be able to have the synthesiser or remote control, but not both, as expected.

Technically the converter is quite straightforward using the well established SBL-1 double balanced mixer fed with a 100MHz crystal controlled local oscillator. This combination being used to effectively add 100MHz to the incoming h.f. signal, so that it fell within the i.f. range of the IC-R7000.

In addition to the i.f. circuitry, there is some logic provided to interface with the Icom’s logic and display functions. In fact the logic interfacing is one of the big plus points of this conversion as it made the h.f. converter feel part of the receiver as opposed to an add-on. All the facilities of the IC-R7000HF remain available when in use with the only complication being that when using the direct entry keypad you have to add 100MHz to the required frequency - not really a problem. The display however indicates the actual frequency as the 100MHz digit is suppressed.

The only odd point is the operation of the HF switch on the front panel (ex-dimmer switch) which brought the converter into operation. Although marked HF it had to be depressed for v.h.f. and released for h.f., to my mind this is the reverse of what I would expect.

The performance is actually very good achieving a sensitivity of 0.32µV for 10dB S/N at 14V. This sensitivity is maintained throughout the main part of the h.f. spectrum, although at the higher ends of the spectrum, the sensitivity dropped quite dramatically as the 500kHz lower limit is reached. The use of the SBL-1 double balanced mixer meant that the overload performance of h.f. remained very good - an important factor with some of the very high signal levels to be found on todays bands.

One big bonus with the logic interfacing between the Icom and the h.f. converter is that when switched to h.f. an additional 99 memory channels are available. For convenience the conversion is supplied with the first 25 of them set for 1 to 25MHz for use as an Mhz band switch.

It is important to realise that the design requirements of h.f. and v.h.f. receivers are really quite different - you only have to compare the facilities of the IC-R7000 with its h.f. sister, the IC-R71, to realise this. As a result the IC-R7000HF suffers a few short-comings in its h.f. role. The first concerns the tuning steps which are restricted to a minimum of 100Hz,
SCANNERS
WE’VE GOT THE LOT!

We carry the largest stocks - with the lowest prices

JUPITER
MVT - 6000 MOBILE/BASE RADIO

Now in stock this superb mobile version of the Jupiter 11 Handheld Radio. Covers 25-1300MHz supplied complete with 240V AC supply and mobile bracket. £379 (inc carriage).

JUPITER 11 H/Held SCANNER

Covers 24-1300MHz
(24-500MHz) (800-1300MHz)
Including the full military air band.
100 Memories
* Selectable AM/FM
* High Speed Scan

JUPITER 11 ACCESSORIES
Case and Belt Hook £9.95
Cigar Lighter DC Lead £4.95
4 High Capacity Nicad Cells £6.00 set

BEARCAT SCANNERS

UBC 50XLT (10 CH MEM) £99
(66-88 MHz, 136-174 MHz, 406-512 MHz)
(29-54 MHz, 136-174 MHz, 406-512 MHz)
BC 55XLT (10 CH MEM) £99
(29-54 MHz, 136-174 MHz, 406-512 MHz)
UBC 70XLT (20 CH MEM) £149
(29-54 MHz, 136-174 MHz, 406-512 MHz)
UBC 100XLT (16 CH MEM) ONLY £169
(66-88 MHz, 118-174 MHz, 406-512 MHz)
BC 100 XLT (100 CH MEM) £199
(29-54, 118-174, 406-512 MHz)
UBC 200XLT (200 CH MEM) £299
(66-88, 118-174, 406-512, 806-956 MHz)

UBC 145 XLT NEW LOW PRICE £99
(66-88, 136-174, 406-512 MHz)
BC 175 XLT (16 CH MEM) £169.99
(29-54, 118-174, 406-512 MHz)
BC 210 XLTW (20 CH MEM) SPECIAL OFFER £149
(29-54, 136-174, 406-512 MHz)
BC 590 XLT (100 CH MEM) £199
(29-54, 118-174, 406-512 MHz)
UBC 760 XLT (100 CH MEM) NEW £249
(66-88 MHz, 118-174 MHz, 406-512 MHz, 806-952 MHz)

ICOM
We are pleased to be appointed
ICOM dealers for the South Coast.
ICOM R71 (0.1 - 30MHz) £854
ICOM R7000 (25 - 1300MHz) £925

This month both radios supplied with free wide band discine. Worth £59.50!

SEND £2 FOR OUR NEW BUMPER CATALOGUE INCLUDES £2 VOUCHER

SONY RADIOS

WE ARE MAIN SONY SHORT WAVE STOCKISTS
SONY ICF 2001 D (100kHz-150MHz) £299.95
SONY ICF 7600 DA Pocket Short Wave S/Held £129.85
SONY ICF 7600 D Pocket Short Wave S/Held £99.00

RING FOR DETAILS OF THE SONY RANGE

SCANNING RECEIVERS

AOR 3000 (call for info) £765
AOR 2002 Base with Full Coverage £387
AOR 900 Handheld with 900MHz £225
SONY AIR 7 Airband H/held £229
SONY PRO 80 Wideband H/held £299
SONY AN1 Active Antenna £49
AOR950 Base (60-88, 108-174, 220-390, 406-470, 830-950) £249

STANDARD AX700 (50-905MHz) £575

LOW NOISE PRE-AMPLIFIER
* Covers 25-2100 MHz
* Low Noise GaAs FET
* Switchable Band Pass Filters
* Variable Gain Control
This new amplifier is a must for the scanner enthusiast and will allow reception of signals that were inaudible without it.
Some pre-amplifiers cover from 100kHz upwards, but this causes the shortwave bands to be amplified creating intermodulation problems at VHF/UHF. Our new ABIS pre-amplifier uses switchable filters to give optimum performance on the band in use and starts from 25 MHz avoiding the shortwave bands.

SCANNING ANTENNAS

NEVADA WB1300 Discone (25-1300MHz)
Stainless Steel top of the range £59.95
NEVADA DISCONE (50-700 MHz)
8 Element High Quality £24
NEVADA PA 15 (100-960 MHz)
A new Collinear Ant. with over 9dB gain at 900 MHz £49.95
NEVADA MOBILE ANT. (50-1300 MHz)
MAGNETIC MOUNT Complete £27.90
GUTTER MOUNT Complete £24.90
LOG PERIODIC (105-1300 MHz) 20 El. Beam with over 12dB gain £89

MASTHEAD ANTENNA SWITCH

For Scanning Enthusiasts
Select 2 antennas at the mast-head remotely from one cable.
Frequency: DC to 1.3 GHz
Connectors: 'N' Type £49.95

LOW LOSS JAPANESE COAX

Essential for optimum performance with wideband UHF scanners. We have directly imported this cable which has exceptional low loss and is good for frequencies up to 3GHz. Loss at 1GHz for 10mm is 1.87 dB - 5D, 1.3 dB - 8D, 1.05 dB - 10D
MODEL 5D (8.1mm Dia) £5.56 per MTR
MODEL 8D (11.1mm Dia) £1.40 per MTR
MODEL 10D (13mm Dia) £1.99 per MTR

USE YOUR CREDIT CARD FOR SAME DAY DESPATCH

NEVADA
189 LONDON ROAD NORTH END PORTSMOUTH PO2 9AE

HOTLINE (0705) 662145
ICOM IC-R7000HF SCANNER

whereas a good h.f. receiver needs 10Hz or 15Hz steps. These small steps are required when resolving some of the narrow-shift data modes such as 170Hz shift RTTY or 200Hz shift Packet. The small steps also allow better audio quality for s.s.b. signals.

Another area of difference is the i.f. filtering, where facilities such as pass-band tuning and bandwidths down to 300Hz are common place among h.f. receivers.

The point I am trying to make is that although a v.h.f. scanning receiver the IC-R7000HF is clearly an in a class of its own, the h.f. performance, albeit very good, is in a different league.

Overall I was very pleased with the h.f. conversion, the performance is good and the installation quality is excellent. The logic interfacing is also well thought out, making it very easy to operate.

Summary

What can I say? The IC-R7000HF is clearly a very competent v.h.f./u.h.f. scanning receiver with the performance and handling to put it in a class of its own. I thoroughly enjoyed using the IC-R7000HF and found the scanning facilities to be very powerful indeed. I have no hesitation in recommending the IC-R7000HF to anyone who is seriously interested in the v.h.f./u.h.f. bands and the ARE h.f. conversion is an excellent bonus for those who like to keep an interest in h.f.

The IC-R7000HF is available from: ARE Communications Ltd., 8 Royal Parade, Hanger Lane, Ealing, London W5 1ET. Tel: 01-997 4476

The price is £289 inc. VAT. They can also retro-fit the h.f. converter to your existing IC-R7000 receiver for £199 inc. VAT. My thanks to ARE Communications for the loan of the review model.

Corner, is leaving Tokyo to take up a new career in Australia. His last broadcast will be in November. We’d like to take this opportunity to wish Kas all the best for the future, and congratulate him on the hard work he’s put into establishing Radio Japan’s media programme. He attended a successful meeting of short wave listeners in Virginia USA back in September, in which he passed on the news that the Japanese government has launched a feasibility study into short wave broadcasting via satellite on 26MHz. The idea proposed is to put two satellites into a non-geosynchronous orbit, which would upload programmes as they flew over Japan and replay them over chosen target areas. The scheme could be ready by the end of the next decade. However, Voice of America, who have already made such a study concluded that it is difficult to generate enough radio frequency power at 26MHz from an orbiting satellite to give an acceptable signal on earth, and the costs to develop the special technology are very high indeed.

Abbreviations

<table>
<thead>
<tr>
<th>a.c.</th>
<th>alternating current</th>
<th>kHz</th>
<th>kilohertz</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.m.</td>
<td>amplitude modulation</td>
<td>MHz</td>
<td>low frequency</td>
</tr>
<tr>
<td>c.w.</td>
<td>continuous wave</td>
<td>m</td>
<td>megahertz</td>
</tr>
<tr>
<td>d.c.</td>
<td>direct current</td>
<td>mm</td>
<td>millimetre</td>
</tr>
<tr>
<td>d.b.</td>
<td>decibel</td>
<td>p.c.b.</td>
<td>printed circuit board</td>
</tr>
<tr>
<td>f.m.</td>
<td>frequency modulation</td>
<td>r.f.</td>
<td>radio frequency</td>
</tr>
<tr>
<td>GHz</td>
<td>gigahertz</td>
<td>s.s.b.</td>
<td>single sideband</td>
</tr>
<tr>
<td>h.f.</td>
<td>high frequency</td>
<td>S/N</td>
<td>signal to noise</td>
</tr>
<tr>
<td>Hz</td>
<td>hertz</td>
<td>u.h.f.</td>
<td>ultra high frequency</td>
</tr>
<tr>
<td>i.f.</td>
<td>intermediate frequency</td>
<td>V</td>
<td>volts</td>
</tr>
<tr>
<td>kg</td>
<td>kilogram</td>
<td>v.h.f.</td>
<td>very high frequency</td>
</tr>
<tr>
<td>µV</td>
<td>microvolt</td>
<td>µΩ</td>
<td>microamperes</td>
</tr>
<tr>
<td>R7000HF</td>
<td></td>
<td>Hz</td>
<td>ohms</td>
</tr>
</tbody>
</table>

R7000HF and found the scanning facilities to be very powerful indeed. I have no hesitation in recommending the IC-R7000HF to anyone who is seriously interested in the v.h.f./u.h.f. bands and the ARE h.f. conversion is a great bonus for those who like to keep an interest in h.f.

Consumer Protection Unit

We continue to receive a stream of complaints from people who have ordered publications from Bernd Friedwald, also trading under the name of Peacewood Publications of Homberg West Germany. Several former agents for the company have written to us to say that they are fed up with complaints and now want nothing more to do with the scheme. Everyone claims to have sent money, and received nothing. A fax from the company has been sent to several radio stations, claiming that because of a change in the computer database software the summer edition was not published but that a winter edition is on the way in September. It had not materialised by the time we went to press. A letter from the publisher in an Italian DX magazine claimed that another project called the International Broadcasting Handbook had also been published, that due to a computer error, some copies of the book had not yet been sent out. It appears to be more the case that no books were sent out.

The International Listening Guide seems to be a classic example of a hobby project turned sour. If you send money to a company for a product, you don’t expect to wait a year while software is developed to make it, especially when letters are not answered to explain what’s going on, and money is not returned to those who don’t want to wait. We don’t think ILG should rely on other print media to relay news of its progress to paying customers, and for the moment at least, you’d be well advised to stop sending any money until a real product emerges on time.

Let me close by wishing all readers of this column all the best radio conditions over the Christmas and New Year Holiday period. Let’s start the new decade with a bumper crop of news!
Those mysterious callsigns are sorted out by Godfrey - with your help, of course. Also, you too can glow in the dark!

Some further details come from Robert Biggart (Deputy Flight Operations Manager, Novair International Airways, Gatwick Airport) to whom my thanks go for sending various useful documents - always welcome. A new callsign is first checked by the state's air traffic control service for suitability when read over the radio, and to avoid clashes with similar existing callsigns. The International Civil Aviation Organisation (ICAO) disseminates the agreed callsign worldwide. Here's Novair's story. British Caledonian owned 50 per cent of Calair (a charter operation, CALJET), the rest being owned by Rank. British Airways took over British Caledonian and Calair then became wholly owned by Rank. Part of the agreement was the name change by which Calair became Novair. Sometimes the 3-letter ICAO designator is used as a callsign, e.g. NGK256 instead of STARJET 256.

If you really want a complete list of callsigns you need ICAO Document 8585 Designators for Aircraft Operating Authorities and Services. This will set you back £18.15, including postage from David Fairbotham (Flightdeck - The Airband Shop, 58-62 Lower Hillgate, Stockport, Cheshire SK1 3AN. Tel: 061-480-8080 or (check price before ordering) from Civil Aviation Authority (CAA) Printing and Publication Services, Greville House, 37 Grattan Road, Cheltenham, Gloucestershire GL50 2BN. Tel: (0242) 235151.

Other credits for contributing to the above list go to: Mike Bennett (Slough, Berkshire); Steve Birchall (RAF Coningsby, Lincolnshire); Chris Coates (North Walsham); Peter J. Cooke (Liverpool, Mawsey-side); J.F. Coulter (Wessex); Ian Doyle (Manchester); A.G. Halliday (Bridgend, Mid-Glamorgan); Dennis Hardingham (Gloucester); Ken Holliday (Norwich) and Dave Wright (Sheffield).

Follow-Ups

In October I asked for the location of Wigtown. There is more than one - but the Baldoon variety is to be found at 54°51'N 4°26'W. Originally this was a war-time RAF airfield but is now CAA licenced, its use requires prior permission from its operator, Baldoon Flying Group. Location is 3km south-west of Wigtown, just inland from Wigtown Sands, in south-west Scotland, just 6m above sea level (see Ordnance Survey Sheet 83 First Series 1:50000, runways intersect at NX434536). With thanks for the information to J.F. Coulter, K. Heath (Wessex, Hampshire); Ken Holliday and Alan Jarvis (Cardiff).

Alan Jarvis is still unsure about the new 111.95MHz facility (see October's issue); whereas it could be a new channel 56Y TACAN I await whatever confirmation readers can come up with. Unfortunately I can't relay the relay station frequencies that you query, Alan; my RAF En Route Supplement does not give any of the 5.5u.f. relay frequencies quoted in the Love Airband Guide as belonging to the airfields that you suggest. Can you confirm where this information came from?

Back now to Steve Foster (Burton-
NEW! DIGITAL READOUT!

The new HOWES DFD5 kit helps give that professional look to your home-brew receiver, transmitter or transceiver project. However, the most important feature of a digital frequency display, is that it enables more accurate netting to standard working frequencies, the QRP calling frequency for example. If you are tuned “spot on” then your CC call is more likely to be heard by those monitoring the frequency. Listeners will also find the DFD5 with its 100Hz resolution, a boon for finding the fixed frequency stations with precision, and repeatability. If you know the frequency you are listening to accurately, you can always return to the same spot.

- Five digit, 43 high LED display
- Covers 1 to 30MHz without prescaling.
- Connects directly to all HOWES VFOs, and with the CBA2 buffer amplifier, can be connected to all HOWES receivers except TRF3.
- Assembly is straightforward, but neat soldering is required.

HOWES has always offered a way of building excellent equipment at a reasonable cost, now with the DFD5 digital frequency display you can add the main visual feature of factory built gear, to your home-brew station. It will look the “bee’s knees” with a DFD5!

DFD5 kit: £39.90
Assembled PCB: £59.90

HOWES CBA2 Buffer Amplifier.

A coaxial circuit can not be connected directly to the oscillator stage of a receiver withoutchrionic frequency pulling. The CBA2 buffer amplifier provides the isolation you need to avoid these problems, and so enables a digital readout to be used with all the direct conversion receivers in our range.

CBA2 kit: £5.80
Assembled PCB: £6.90

DXR10 10, 12 & 15M AMATEUR BAND RECEIVER.

This receiver kit is designed to enable you to enjoy long distance reception. SSB and CW stations can be heard from all corners of the globe on these bands, now that the sunspot level is high. You will hear almost as much with the DXR10 as with the most expensive sets. The performance for a simple receiver is amazing! Requires one 50pF tuning capacitor.

DXR10 kit: £24.90
Assembled PCB: £36.90

DefRx20 20M AMATEUR BAND RECEIVER.

A straightforward single band receiver kit, the DefRx20 has been the introduction to amateur radio for many beginners. It offers world wide reception on the most popular long distance band. We have added a signal transmitter (MVT500) for the licensed amateur, and the simple set can be expanded into a full transceiver if you wish. Two 50pF tuning capacitors (£1.50 each) are required. Receives SSB and CW stations. Versions of the DefRx2 are available for 160, 10 and 6M amateur bands and also for the 40-40 MHz HF band.

DefRx Kit: £15.60
Assembled PCB: £21.50

TRF3 SHORTWAVE BROADCAST RECEIVER.

The TRF3 will pick up stations from all over the world. It tunes from around 5.7 to 12MHz in these bands, covering most of the regular shortwave broadcasters. Plenty of audio output is available for loudspeaker or headphones, and it can operate with large or small antennas. This kit has been designed with the beginner in mind, and it makes an excellent introduction to shortwave listening. Requires one 50pF tuning capacitor.

TRF3 kit: £14.90
Assembled PCB: £20.20

AA2 ACTIVE ANTENNA AMPLIFIER.

Build your own miniature active antenna for long, medium and shortwave reception with our very popular AA2 kit. 6 or 8 feet of wire and the AA2 amplifier will give similar signal strengths to much larger conventional antennas. You can also make your miniature antenna rotatable to reduce interference - you can't do that with a long wire if you are limited for antenna space, need a rotatable medium wave antenna, or simply need a compact portable antenna for mobile use, the AA2 can help.

AA2 kit: £7.50
Assembled PCB: £11.50

ASLS DUAL BANDWIDTH FILTER.

Add extra selectivity to your receiver with the HOWES ASLS filter. Sharper rolloff for SSB and a 2MHz bandwidth CW filter give a very useful improvement with all the popular Japanese receivers/transceivers. Easy to build. Simply connects in line with your external speaker or phones, no mods to the radio are needed. Very worthwhile station accessory.

ASLS kit: £14.90
Assembled PCB: £22.50

All HOWES KITS include a good quality Printed Circuit Board, with the parts locations screen printed on it for easy, accurate assembly. All board mounted components are supplied, as are fuses, cut wire instructions. Sales and technical advice are available by phone during office hours. For specific product information sheets, or a copy of our free catalogue, please request an FAQ.

Please add £1.00 P&P to your total order value.

73 de Dave G4KQH, Technical Manager.

AIR BAND RADIO SPECIALISTS

IF YOU WOULD LIKE OUR INFORMATION PACK PLEASE SEND A SAE WITH STAMPS TO VALUE OF 50p.

AIRTOUR & AGENCY FOR PILOT PRODUCTS

(SHOP HOURS VARY DUE TO FLY-INS ETC., CLOSED WEDNESDAY)

SPECIAL NOTICE TO READERS

Although the proprietors and staff of SHORT WAVE MAGAZINE take reasonable precautions to protect the interests of readers by ensuring as far as practicable that advertisements in SHORT WAVE MAGAZINE are bona fide, the magazine and its Publishers cannot give any undertakings in respect of claims made by advertisers, whether these advertisements are printed as part of the magazine, or are in the form of inserts.

While the Publishers will give whatever assistance they can to readers having complaints, under no circumstances will the magazine accept liability for non-receipt of goods ordered, for late delivery, or for faults in manufacture. Legal remedies are available in respect of some of these circumstances, and readers who have complaints should address them to the advertiser or should consult a local Trading Standards Office, or a Citizens Advice Bureau, or their own solicitor.

Magazine December 1989
on-Trent) and his request in the August issue for information on the Cromer radar head beside the B1159 road at Overstrand, Norfolk. Chris Coates reports this to belong to Anglia Radar which is actually operated from Stansted; with a radar view of the southern North Sea, gas platform service traffic can be monitored. Now Chris asks about the radar head at Trimingham on the same road. As previously noted here, there is a communications relay at Trimingham, but who can advise on the radar?

The Sony ICF-201D has it's propensity to pick up short/medium wave breakthrough whilst tuned to v.h.f. is a recurring topic. Bert Balmforth (Paisley, Renfrewshire) received simple advice from Sony: don't overload the receiver with short wave signals but instead disconnect the external a.m. antenna. Bert built the Practical Wireless chicken-wire discone (February 1989) and experiences good v.h.f. reception (including broadcasters) but gives a timely warning about the sharp points on the chicken-wire.

Ian Doyle is surprised how few relays transmit the North Atlantic Organised Track Broadcast, but I have no further information on this; presumably, as you suggest, Ian, the coverage is already good enough – especially if received by aircraft at reasonable altitudes. Can anyone tell Ian the location of Brest Radar’s transmitters? Yours truly flew to that part of the world for this year’s holidays – but when you’re up there, you have no idea of the precise location of the people you’re talking to down there! Do I have any readers in France?

Museum Piece

A while back I reported how one reader used an ultra-violet (u.v.) source to make the dial faces of certain aircraft instruments fluorescent orange in the dark (a minority glow with other colours, notably green). A readily available source is one intended for reading “invisible” security marking pens: the TLP-M901 (£10.95) which includes a 4W u.v. tube (spare tube TSL902R, £6.20) from Topline International, Topline House, Bartlow Road, Linton, Cambridge CB1 6LY. Tel: (0223) 893913. Add £2 postage to orders. You will also need four AA alkaline batteries. Try it. It works!

Frequency & Operational News

The General Aviation Safety Information Leaflet 9/89 from the CAA reports that the n.d.b. on 377kHz at Aberdeen has a new ident. of AOS (di-dah, dah-dah-dah, di-di-di). NOTAM A553 introduces a d.m.e. at Barrow/Walney Island. Warton Aerodrome (operated by British Aerospace) may not be overflying without clearance; if there’s no reply on Warton’s frequency then Blackpool must be contacted. The CAA’s Aeronautical Information Circular 91/1990 suggests that one of the Humberside n.d.b.s has a new ident of KIM (dah-di-dah, di-di, dah-dah) – but which one? At Islay/Port Ellen runway 14/32 is withdrawn. Now on to accidents and the AAIB Bulletin 9/89. During a problem involving a DC-10 at Gatwick the Aerodrome Fire Service-to-Aircraft frequency of 121.6MHz was used.

Alan Jarvis reports a new a.t.i.s. at Cardiff on 119.47MHz. Ian Doyle offers his frequency list to anyone who sends him a reply envelope to 114 Barton Lane, Eccles, Manchester M30 0FG, should appeal to Geoffrey Powell among others. Two other published lists are suggested by Evan Murray (Auckland, New Zealand). International Telecommunication Union (ITU) Appendix 27 Aerial 2 to the Radio Regulations is the “Frequency Allotment Plan for the Aeronautical Mobile (R) Service and Related Information.” Obtainable from ITU, Geneva. Also: Confidential Frequency List, Gilfer Associates Inc., PO Box 239, 52 Park Avenue, Park Ridge, NJ 07656, USA; covers 4-27MHz.

Simon Lucas (location not stated) notes the world-wide primary distress frequency of 5660kHz, used by Edinburgh and Plymouth Rescue. I expect that very varied procedures tend to be used in the heat of a real emergency and it’s quite possible that one aircraft could guide others to the scene of an incident. For example, maritime reconnaissance Nimrods carry liferafts which can be dropped from the bomb bay to help survivors.

K. Heath would like to know the Southampton (Eastleigh) frequencies; they are as follows: a.t.i.s. 113.35; Southampton zone 121.3; Approach 128.85; Tower 118.2; Radar 131.0 all MHz.

Time to “call finals” for this month, but don’t miss another mind-bending Xmas Quiz in the next issue! The prize is a Victor Tanker fuel contents gauge, and if you win it, you can try out the u.v. fluorescence for yourself.

The next three deadlines (for topical information) are December 1, January 5 and February 2.

Abbreviations

a.m.	amplitude modulation
a.t.i.s.	automatic terminal information service
CAA	Civil Aviation Authority
d.m.e.	distance measuring equipment
h.f.	high frequency
kHz	kilohertz
km	kilometre
MHz	megahertz
n.d.b.	non-directional beacon
TACAN	Tactical Air Navigation
u.h.f.	ultra high frequency
v.h.f.	very high frequency
u.v.	ultra-violet

The photo of the Lancaster that appeared in the “Airband” section of October SWM, should have been credited to Chris Mylne. Apologies for this omission.
BEARCAT SCANNERS

UBC 500XL 66-88/136-174/406-512MHz £99.95
10 memories, channel review, including FREE charger worth £4.95
BC 55XL 29-54/136-174/406-512MHz £99.95
10 memories, channel review, including FREE charger worth £4.95
BC 70XL 66-88/136-174/406-512MHz £149.99
20 memories, full frequency display, with FREE car charger kit worth £4.50
BC 100XL 29-54/118-174/406-512MHz £199.99
100 memories, airband, search including FREE car charger kit worth £4.50
UBC 1000XL 66-88/118-174/406-512MHz £199.99
200 memories, top of the range, including FREE car charger kit worth £4.50
100 memories, 5 search bands, including FREE mains adapter worth £4.95
SPECIAL SPECIAL OFFER!!! In the continuing tradition of offering the best package deals on the market we are offering the choice of either a FREE BB145S broadband mag-mount antenna or a FREE SkyScan mast-mounted wideband scanner antenna covering 50-525MHz. Each is worth £14.95 and is yours free when you order your scanner. Offer valid while stocks last.

ICOM IC-R7000

Listen to weather, fire, coastguard, TV, airband and many, many more. Wide frequency coverage provides you with all the channels you need to become a VHFS and UHF listener. Frequency coverage is guaranteed from 25 to 1300MHz, but may extend on individual units to 2GHz! Features include:
- USB, LSB, FM, FM-N, AM
- 99 memory channels, keypad entry
- optional infra-red remote control
- variable speed scan and delay
- optional voice synthesizer
- six tuning steps
- sensitivity < 0.3µV for 10dB SINAD

Save £123! Raycom price £925
Including Royal 1300 disk worth £93.50

CHARGE IT!

Why not take advantage of the RAYCOM Credit Card and spread the payment for that scanner you've always wanted. Example: Yaesu FRG9600 MKV pack £70 deposit and £28 per month (APR 34.5%). Call for a quote and written details! Licensed credit broker.

YAESU FRG9600

9600 standard 60-905MHz £469.00
9600 Mkll 60-950MHz £499.00
9600 Mkll pack 60-950MHz £545.00
9600 MkV 0.2-950MHz £625.00
9600 MkV pack 0.2-950MHz £699.00
Standard to Mkll U/G £40.00
Standard to MkV U/G £149.00
Mkll to MkV U/G £129.00
 Packs include PSU and ROYAL 1300!

ACCESSORIES

ROYAL 1300 discone 25-1300MHz £59.50
ROYAL 700 discone 70-700MHz £19.95
SKYSCAN colinear 60-525MHz £14.95
BB145S broadband mag-mount £14.95
Sandpiper mobile colinear 50-600MHz £17.95
Gutter mount for SO239 fitting £7.95
VHF/UHF Frequency Guide £5.95
VHF/UHF Airband Guide £5.95
Flight Routings Guide to Airline Flights £4.00
HAS-1 mast mount antenna switch £49.95

RAYCOM COMMUNICATIONS SYSTEMS LIMITED, INTERNATIONAL HOUSE, 943 WOLVERHAMPTON ROAD, OLDBURY, WEST MIDLANDS B69 4RZ. TEL 021-544-6767, Fax 021-544-7124, Telex 584608 IDENTI G.

HAPPY CHRISTMAS FROM RAYCOM!
FREE CELLULAR CAR TELEPHONE ON ALL PURCHASES SUBJECT TO RACAL AIRTIME LICENCE APPROVAL - FITTING EXTRA £39 +VAT ON MOST CARS

SPECIAL OFFER!!! In the continuing tradition of offering the best package deals on the market we are offering the choice of either a FREE BB145S broadband mag-mount antenna or a FREE SkyScan mast-mounted wideband scanner antenna covering 50-525MHz. Each is worth £14.95 and is yours free when you order your scanner. Offer valid while stocks last.

CHOOSE A FREE ANTENNA!

Either a free broadband mag-mount with BNC adaptor or a free SkyScan mast-mount scanner antenna covering 60-525MHz with your scanner - just call with your credit card number for same day shipment. Offer valid while stocks last.

ROYAL AL-7 £229.95
ROYAL PRC-80 £299.95
ROYAL 7600A £199.00
ROYAL 7600DS £149.00
ROYAL 200ID £299.95
ROYAL SWIS SPECIAL £209.95
ROYAL AN-1 antenna £49.95
ROYAL AN-3 antenna £44.95

RAYCOM is an approved SONY short-wave centre and is able to offer a complete sales and after sales service.

ROYAL 13000 discone 25-1300MHz £59.50
ROYAL 700 discone 70-700MHz £19.95
SKYSCAN colinear 60-525MHz £14.95
BB145S broadband mag-mount £14.95
Sandpiper mobile colinear 50-600MHz £17.95
Gutter mount for SO239 fitting £7.95
VHF/UHF Frequency Guide £5.95
VHF/UHF Airband Guide £5.95
Flight Routings Guide to Airline Flights £4.00
HAS-1 mast mount antenna switch £49.95

ACCESSORIES

ROYAL 1300 discone 25-1300MHz £59.50
ROYAL 700 discone 70-700MHz £19.95
SKYSCAN colinear 60-525MHz £14.95
BB145S broadband mag-mount £14.95
Sandpiper mobile colinear 50-600MHz £17.95
Gutter mount for SO239 fitting £7.95
VHF/UHF Frequency Guide £5.95
VHF/UHF Airband Guide £5.95
Flight Routings Guide to Airline Flights £4.00
HAS-1 mast mount antenna switch £49.95

RAYCOM COMMUNICATIONS SYSTEMS LIMITED, INTERNATIONAL HOUSE, 943 WOLVERHAMPTON ROAD, OLDBURY, WEST MIDLANDS B69 4RZ. TEL 021-544-6767, Fax 021-544-7124, Telex 584608 IDENTI G.
ASK ELECTRONICS LTD.
246-250 TOTTENHAM COURT ROAD
LONDON W1P 9AD
TEL: 01-637 0590
FAX: 01-637 2690

PHILIPS

£ 64.95
0 1875

- Compact 12-Band Portable Radio
- LW/MW/FM/SSB short wave
- Large tuning control • Tuning LED
 indicator • Telescopic and
 ferroconer aerials • DC supply
 connection • Earphone connection
- Wrist strap • Attractive
 pouch

£ 2999
0 1875

- All-electronic Digital World
 Receiver • LW/MW/FM/AM
 selectable SW bands • Direct
 frequency key-in • Automatic
 search • 36 station memory
 • LED frequency clock display
 • Up conversion in double
 superheterodyne for exceptional
 selectivity • Variable BFO for
 CW/SSB reception • Touch-panel
 switching • LCD frequency
 display • Mains/battery supply

£ 124.95

SONY

CRF-V21

NEW
ARRIVALS
ALSO IN STOCK
GRUNDIG SATELLITE
MODEL NO. 650

FAX/RTTY/ satellite FAX

Circuit system
LW/MW/SW: Dual conversion superheterodyne
FM: Single conversion superheterodyne

Frequency range
LW/MW/SW: 9kHz – 29.99999MHz
FM: 88.5kHz – 108.09998MHz (European countries)
76MHz – 108.09999MHz (Other countries)
SAT: 137.62/141.12MHz (when the
AN-P1200 is connected: 1.691GHz/1.6945GHz)

Detection mode
AM WIDE, AM NARROW, SYNC-USB, SYNC-LSB, SSB-USB, SSB-LSB/CW, N.B. FM

£ 2599.95

SONY RADIOS
ICF SW20 .. £ 84.95
WA 8800 (9-band stereo cassette) £ 199.95
ICF 7600DS .. £ 139.95
ICF SW15 .. £ 199.95
ICF SW16 .. £ 145.00
AIR 7 .. £ 209.95
ICF 2001D (includes AN1 Antenna) £ 319.95
PRO 80 ... £ 289.95
Sony AN 1 .. £ 49.95

PANASONIC RADIOS
RF-B10 ... £ 89.95
RF-B20 ... £ 89.95
RF-B40 ... £ 124.95
RF-B65 (inc Mains adaptor) £ 109.95
TOSHIBA RP-Fll, (II Band Radio) £ 89.95

ALL SONY RADIOS ARE ON
SPECIAL OFFER

£ 289.95

D 2999

- All-electronic Digital World
 Receiver • LW/MW/FM/AM
 selectable SW bands • Direct
 frequency key-in • Automatic
 search • 36 station memory
 • LED frequency clock display
 • Up conversion in double
 superheterodyne for exceptional
 selectivity • Variable BFO for
 CW/SSB reception • Touch-panel
 switching • LCD frequency
 display • Mains/battery supply

£ 124.95

National
Panasonic
RF-9000

FM 87.5 – 108MHz
LW/MW/SW: 1.0100 – 2.09000MHz
SW: 1.0110 – 2.09000MHz

£ 1800.00

Sony

Radios

ALL SETS GUARANTEED. PRICES INCL V.A.T. ALL MAJOR CREDIT CARDS ACCEPTED ALSO CHEQUES AND POSTAL ORDERS
ALL GOODS DESPATCHED WITHIN 48 HOURS

Short Wave Magazine December 1989
No matter which system is to be used, the end result can only be as good as the signal fed to the receiver. The starting point for a good signal is the antenna itself. Adding a preamplifier to a poor antenna will only result in more noise in an already weak signal.

The answer, then, has to be to increase the signal at the antenna. After trying different designs, the author found that the antenna described gives the best results.

Referring to Fig. 1 you will see that the design is basically two horizontal, half wave dipoles mounted at right angles to each other, with a multi-element reflector mounted below. An old BBC 405-line TV antenna or a v.h.f. f.m. radio antenna may be used as the start point. The overall length of each dipole, including the centre insulator, is 1035mm (see Fig. 1). This is the optimum length for the centre of the 137MHz weather satellite band.

Mount the two dipoles close together and at right angles to each other on a piece of tubing. Using low-loss 75Ω coaxial, connect a half wave (1035mm) length to each dipole. Using 50Ω coaxial cable for the receiver down-lead, connect the three end braids together. Now join the three inner wires together taking great care to keep braid and inner connections apart. These two connections, as in Fig. 2, must now be sealed from the weather. Self-amalgamating tape can be used to form a good weather-proof seal around the joins. If this tape is not available, then pvc electrical tape may be used to do the job, although it is not quite as good as the self-amalgamating type as it deteriorates in sunlight.

Reflector

To construct the reflector, start with a piece of 16 or 18s.w.g. aluminium plate of 100mm diameter or square. Cut a hole of 28mm diameter, or to suit the tubing used, in the centre of the disc as shown in Fig. 3. Mount a capacitor clip, to grip the tubing tightly, over the central hole in the plate. Taking eight 500mm lengths of aluminium tubing of about 6mm diameter, fix them on the plate as shown in Fig. 4. Two self-tapping screws or bolts should be used to secure each one to the plate such that the overall distance between each pair of ends is 1035mm.

To complete the construction, slide the reflector plate up the tubing to a distance of 560mm from the vertical mid-point of the two crossed dipoles and clamp the capacitor clip to secure the reflector to the tube.

For best results mount the antenna as high as possible away from buildings and trees. If it is accessible, the reflector may be adjusted up or down for best results up to a maximum of 25mm in either direction.

Using the above antenna I can receive pictures from as far south as the Canary Islands near the Tropic of Cancer, as far east as Syria, Cyprus and Turkey, and as far north as Iceland and Greenland. Signals are steady and may last as long as 13 to 14 minutes between acquisition (a.o.s.) and loss of signal (l.o.s.).

YOU WILL NEED

2 off v.h.f. TV dipoles; 1 off 16 or 18 s.w.g. aluminium plate 100mm square; 1 off antenna mast 750mm long minimum; 1 off vertical capacitor mounting clip; 2 lengths 75Ω low-loss coaxial cable (1035mm); 1 length of 50Ω coaxial (as required to receiver); Self-amalgamating tape; Nuts, bolts and screws, as required.

Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.o.s.</td>
<td>acquisition of signal</td>
</tr>
<tr>
<td>f.m.</td>
<td>frequency modulation</td>
</tr>
<tr>
<td>l.o.s.</td>
<td>loss of signal</td>
</tr>
<tr>
<td>mm</td>
<td>millimetres</td>
</tr>
<tr>
<td>pvc</td>
<td>polyvinylchloride</td>
</tr>
<tr>
<td>s.w.g.</td>
<td>standard wire gauge</td>
</tr>
<tr>
<td>TV</td>
<td>television</td>
</tr>
<tr>
<td>v.h.f</td>
<td>very high frequency</td>
</tr>
<tr>
<td>Ω</td>
<td>ohms</td>
</tr>
</tbody>
</table>
Pocket sized s.w. radios are, it seems, all the rage at present, and the new Sony ICF-7601L travel portable fits nicely into this group. Of traditional analogue design, the new Sony, in its European guise, boasts 12 bands, including nine s.w. bands, together with f.m., m.w. and l.w. This set, which replaces the earlier ICF-7600, offers much improved s.w. coverage, an area in which the previous set had serious shortcomings.

Whilst s.w. is not covered continuously, it does provide the broadcast bands from 21MHz (13m) through to 4.7MHz (60m), including the 13MHz (21m) band, now increasingly used by a number of international broadcasters, in advance of its official release by the International Telecommunication Union. The 25MHz (11m) band is excluded from the 7601’s range, but despite the increase in activity on this band as we head towards the sunspot maximum, this is of less importance on a set of this type. As will be seen from the specifications, out-of-band frequencies are well covered.

It should be noted that sets sold outside Europe do not have l.w., but instead offer the 78, 90 and 120m bands in one tuning scale. This may be seen by some potential purchasers in Europe as a disadvantage since it precludes listening to stations on the 75m band which is used by some European broadcasters, and the tropical bands for African stations in particular.

Operation

Operating the radio is simplicity itself. The four band-select buttons (f.m., m.w., l.w., s.w.1-9) act as “power on” controls, and an i.e.d. shines in the appropriate button to indicate which band is selected. Selection of the individual s.w. bands is by means of a sliding control beneath the large and clearly marked tuning dial. A light blue indicator at the bottom of the dial shows which band has been chosen and a rotary knob on the right-hand side of the set tunes in the frequency with the dial, calibrated in 5kHz steps, is reasonably accurate and allows easy tuning of stations on known frequencies, and can assist the user in identifying the frequency of catches made. One disappointment with the tuning knob is that only 50 per cent of the circumference is exposed, which makes quick sweeps across a band less than easy.

A “hold” facility locks the set to whichever band (f.m., l.w., m.w., s.w.1-9) is selected, but not to the individual frequency, so the radio could be knocked off channel accidentally even when the “hold” button had been used. However, this control does act as a main power control, useful when travelling to ensure that the set is not switched on unintentionally.

Audio Quality

Audio quality is good—a reasonably sized speaker next to the tuning dial offers ample output for table-top use and a 3.5mm socket gives scope for the use of an earpiece (included with the set) or headphones. Volume and tone controls are beneath the tuning knob on the right side of the radio, although the two position tone control (news or music) seems to have very limited affect on the audio output, but may be of some use when trying to reduce whistles on s.w.

There is only one bandwidth for s.w. which at the -6dB point appears to be marginally over 5kHz. This is fine for general broadcast listening, but may prove less suitable for DX work when trying to listen to weak stations next to “powerhouse” signals. However, selectivity is judged overall to be good, and sensitivity is also good, with few signs of the overloading which occurs on some similar sized receivers. The six section telescopic antenna provides, on the whole, adequate reception, although a compact long-wire antenna is included with the radio. This is housed in a small box around 50mm square by 10mm deep, looking rather like a steel tape measure at first glance. It contains a long length of wire with a sleeve at one end to slip over the telescopic antenna, and is useful when travelling as it can be hung out of windows or draped around curtains.

The ICF-7601L does suffer from some spurious signals generated by the set itself, and indeed the handbook mentions that 5.903, 6.207, 11.503, 11.958 and 21.870MHz may be difficult to receive for this very reason.
The radio is powered by four AA cells, and these will last for around 26 hours on s.w. An optional 6V d.c. adaptor is available (included in some markets).

Summary

The Sony ICF-7601 is, overall, a good s.w. receiver for general use, offering good all-round performance, with sensitivity and selectivity at least as good as any of the other comparable sets available today. A reasonably accurate analogue dial and does away with the need for a digital frequency display. The radio being well built and pleasantly designed, offers good audio quality for s.w. listening. An ideal travelling companion, or simply as a set to listen to at home, the ICF-7601 will set you back £79.95. Sony (UK) Ltd, Sony House, South Street, Staines, Middlesex TW18 4PF

Specifications

<table>
<thead>
<tr>
<th>Frequency range</th>
<th>Power Source</th>
<th>Power Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>f.m.</td>
<td>Battery 6V (4xAA cells)</td>
<td>450mW</td>
</tr>
<tr>
<td>87.6-108MHz</td>
<td>Optional 6V d.c. adaptor (Sony a.c.-D4M)</td>
<td></td>
</tr>
<tr>
<td>m.w.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>525-1610kHz (to 1750kHz in N. America)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>l.w.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>145-285kHz (excluded in some markets)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s.w.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.60-5.20MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s.w.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.80-6.40MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s.w.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.90-7.50MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s.w.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.40-10.00MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s.w.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.55-12.15MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s.w.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.45-14.05MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s.w.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.00-15.65MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s.w.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.50-18.15MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s.w.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21.35-21.95MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2.20-4.20MHz replaces l.w. in some markets)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21.35-21.95MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>525-1610kHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M Hz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.50-18.15MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.55-12.15MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M Hz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.80-6.40MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.45-14.05MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M Hz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.40-10.00MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.60-5.20MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M Hz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>87.6-108MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>m.w.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>525-1610kHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>l.w.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>145-285kHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s.w.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.60-5.20MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s.w.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.80-6.40MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s.w.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.90-7.50MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s.w.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.40-10.00MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s.w.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.55-12.15MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s.w.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.45-14.05MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s.w.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.00-15.65MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s.w.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.50-18.15MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s.w.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21.35-21.95MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2.20-4.20MHz replaces l.w. in some markets)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dimensions: 192.5x122x35mm

THE SECRET LISTENER

By Mikhail Drakov (s.w.i.)

A tale of haunting intrigue and ingenuity on the part of a youthful radio enthusiast.

In my youth I was fascinated by the new science of radio. Alas, my father was not sympathetic to my desires to build a broadcast receiver and forbade any such activity, which he deemed to be fit for the devil. True to say few folk did not fear the unknown.

I resolved that if I could do so, I would contrive a secret set. Thus upon the toilet seat a ploy was formed from the basic learning I had scrounged from library articles.

My chosen design was for a one-valve regenerative set. One valve was as much as I needed and costly at that. The capacitor was a very nice variable type. However, it seemed that such an item was all too rare at that time, so I decided on a fixed capacitance and a variable inductance.

Where on earth was it to go? It had to be practical and efficient, yet needed to be as discreet as possible. We had moved into an old manse, my father taking over from a minister whose fate had been impending madness followed by a tormented death.

Father ignored this story as idle speculation. Meanwhile, I was investigating the premises for a possible location for the secret set and antenna wires. It took a week on painfully careful contrivance but success was achieved!

The set was built as a false brick which replaced the original. This was the same height as the light switch to which I wired the set in parallel! The feeder was cemented between bricks and then the window with great care taken to paint and fill the evidence.

On the roof, the feeder terminated in a rotatable loop disguised as a weather vane! Subsequently, father was none the wiser despite the vane turning without wind! The rotation was facilitated by a rope and pulleys which were well hidden under the wall creeping plants!

The water pipe gave a most useful earth to improve on the simple loop. My next concern was to wire up a loudspeaker. This was in fact a high resistance headphone earpiece glued to a cone, albeit a flat-ish sort of cone behind the picture of some stern woman with a cat in her arms.

Whenever I wanted to use the set, I would go to the false brick radio with the light switch on and adjust a screw for the advancement and withdrawal of an iron core within the tuning coil. The station would be heard faintly from the picture on the wall!

This went on for many weeks. One night when I was watching the stars outside, I heard an unearthly scream followed by strange incomprehensible chanting. I ran indoors and up the stairs. It was in my room that I discovered my father contesting with a restless spirit of evil which uttered loud unfathomable moans to the pulsing of the bedroom light. As he held up the silver cross and attempted exorcism I realised by father had come face to face with non other than the dark and evil energy form known as RADIO MOSCOW!
Using The Crystal Set

The Crystal Set tunes the Medium Wave Band (often called the "a.m. band") and should receive broadcast stations on this band including local radio stations and some of the national networked stations like Radio 1, 2 and 3. Whatever is received loudly on domestic radio sets in the home ought to be capable of reception on the set. A good antenna and probably an earth connection will be required to operate the crystal set. Ideally an external antenna wire should be used but this may depend upon where the set is being used. In some areas the signal strength of medium wave broadcast stations is higher than in others.

My prototype crystal set, operated north of Manchester, received several stations on a very modest antenna. My amateur radio antenna (a lot of wire, over 20m in the air) gave a large number of very loud stations, but I received several stations very well by using a makeshift antenna from the television set antenna cable. Remove the antenna from the television set (switch off first) and connect a wire to the outer metal of the coaxial plug and push the other end of the wire into the board at the antenna connection point. This alone gave me quite good results. There was a slight improvement when I connected a makeshift aerial which was a piece of wire connected to a central heating pipe. The connection must be to bare metal.

The tuning range of the radio is limited and additional stations may be obtained by sliding the coil towards one end of the ferrite rod and retuning C1. The tuning range of C1 may be increased a little by joining together the two outer tags. Variable capacitor C1 is, in fact, two tuning capacitors rotated by one shaft, i.e. a dual-gang, variable capacitor. Joining the two outer tags uses both capacitors, but do not let the joining wire touch the central tag.

Congratulations! You have built a radio. Not only that, but it is self-powered, so never needs switching off and you have shared in the thrill of the first radios (crystal sets) of the early 1920s.

Improving the Crystal Set

The crystal radio of Fig. 2.1, is a very basic radio receiver, as are all crystal sets, but it is possible to add a little electronic sophistication. Fig. 3.1 shows an improved version which uses only four extra components. These are: a resistor (R1), two capacitors (C2 & C3) and another diode (D2). These modifications will not turn the radio into a super receiver but should improve the overall performance.

The resistor provides a better termination for the audio output signal.
For the reasons explained above, this 470pF capacitor will allow the r.f. signals to pass. So we say it "couples" the signals from the antenna to the tuned circuit. But surely a direct wire would couple the signals just as well, in fact better because there are slight losses through the capacitor? A directly coupled antenna can have adverse effects on the tuned circuit. The effectiveness of a tuned circuit depends upon a "pure" inductance and capacitance. The antenna and earth appear to the tuned circuit as an extra capacitance and can spoil the effectiveness of the tuned circuit: this is called DAMPING.

The crystal set is a very simple radio receiver and only has one tuned circuit to select the required radio signal frequency. The ability of a receiver to tune (or select) the required signal and not to have other adjacent signals receive, is called the SELECTIVITY. With only one tuned circuit, the crystal set is not very selective and sometimes more than one signal can be heard at once. A simple way to improve the selectivity is to reduce the damping of the tuned circuit by the antenna and this is the function of C3. In the same way that is why the coil has a

RESONANCE

Even musically illiterate people like me, know that stringed instruments rely upon strings having a resonant frequency. The vibrations of the string produce a required note (frequency of vibration) depending upon their length, thickness and tension. In the same way an electronic circuit can resonate at a chosen frequency. We use such circuits in our radio receivers to choose (or tune) the required station.

The circuit is very simple and has two components: a capacitor and an inductor (coil) usually represented in circuits by the designations L and C as shown in (a). This is called a PARALLEL TUNED CIRCUIT because of the way it is connected.

To put it simply, a tuned circuit relies upon a property called REACTANCE. Reactance resists the flow of a.c. current. Capacitive Reactance works in the opposite way to Inductive Reactance. The reactance of an Inductor increases as the frequency gets higher, the reactance of a capacitor increases as the frequency goes lower. So for any given values of a capacitor and inductor there will be a frequency where both are the same and cancel out. This is the resonant frequency of that tuned circuit.

Since reactance tries to stop the flow of an a.c. current, the resonant frequency, at which the two types of reactance cancel out, is the point at which the circuit will allow a high current to flow. Other frequencies, above and below the tuned frequency, produce a state in which a.c. current flow is resisted or reduced. So we can see how a tuned circuit is able to accept or tune a required frequency.

The values of L and C are designed for the required frequency. More commonly in radio receivers, the value of C is variable (variable capacitor) enabling a range of frequencies to be chosen. This is shown in (b) where C1 becomes a variable tuning control: operated by the tuning knob of a radio receiver.

RESISTORS

Resistors are frequently used in electronic circuits and come in all shapes and sizes but all do the same basic job: they limit (or resist) the flow of an electric current. Fixed resistors are usually small cylinders with a wire issuing from each end and have a series of coloured stripes to indicate their value. This value is expressed in OHMS with the symbol Ω. Perhaps you remember Ohm’s Law from school? Many of the resistors in radio work have high values in Thousands of Ohms (kΩ) or Millions of Ohms (MΩ). The cylinder contains powdered carbon mixed with a binder, or has a thin metal film on the surface which limits the flow of current.

The markings are the RESISTOR COLOUR CODE to indicate the value of resistance in ohms. Each colour represents a number and three colour-coded bands indicate the value. The coloured bands read from the end of the resistor body. The first band shows the first number the second the number and the third the multiplier, or the number of noughts required to make up the full value.

As an example, take a resistor marked: YELLOW - VIOLET - RED. The first number is 4, the second 7 and the multiplier 2 (or 00). The total value is 4700Ω (four thousand, seven hundred ohms) written more often as 4.7kΩ or sometimes 4k7Ω because it is so easy to miss the decimal point on a circuit diagram.

Resistors may be used in combinations to produce a required value. The two combinations are series (in line) and parallel (across each other). In series the values simply add together but in parallel the reciprocals of the values are added to give the reciprocal of the total. Parallel combinations are more difficult to calculate but mathematicians will spot that two equal value resistors in parallel give half of their value. That is, two 1000Ω resistors in parallel total 500Ω.

Resistors may also have a fourth coloured band which indicates their tolerance: that is how close you might expect the value to be. The commonest types these days have a gold band, which indicates the value will be ±5% of the stated value. The size of the resistor governs how much power it can handle. The commonest types used in radio work are 0.25 watt are quite small, there are even smaller, but less common. 0.125 watt resistors. For higher powered circuits there are resistors rated at 0.5, 1, 2 and 5W and even higher.
New Products
As promised, the base station version of the Jupiter II hand-held I previewed in the October column is now available. Called the Jupiter 6000 it has all the features of the hand-held, but is in a very compact form measuring approximately 419 x 117 x 59mm - ideal for installation within the confines of a modern car. The specification is basically the same as the Jupiter II, the main differences being the front panel layout which is angled to assist the operator when used as a base station. The I.c.d. display is the same as the hand-held and the keyboard, which is arranged horizontally to the right of the display, is also similar. Both the display and 30-95000Hz are illuminated with a soft green light making night-time operation easy. The rear panel has an external 12V power socket, 3.5mm loudspeaker jack, BNC r.f. connector and an attenuator switch to help under strong signal conditions.

In operation I found the unit very easy to use. Its compact size permitted it to sit on top of the car dashboard giving good display and controls visibility. Sensitivity was excellent but I did find a few problems with reception when driving in areas where u.h.f. TV channel 21 was in use. This manifested itself as vision buzz and made reception on certain bands difficult up to 15 miles away from the transmitter site. Switching in the attenuator helped, but reduced the sensitivity - therefore I would not recommend using any form of preamplifier or active antenna with the receiver.

Priced at £379, it may have a difficult time competing against the Tandy PRO-2005, although its compact size is a strong selling feature. For further details contact: Waters & Stanton, 18-20 Main Rd, Hockley, Essex SS5 4QS. Tel: (0702) 206835.

The second new scanner is from AOR. Called the AR-950 it is a base/mobile version of the AR-900 hand-held and features a frequency coverage of 60-88, 108-136, 220-280, 300-380, 406-470 and 830-95000Hz. One hundred memory channels are available in five banks of 20, with an extra five available for temporary storage of frequencies found using the search function. Manual selection of a.m. or f.m. is possible and the most common search step sizes are available. The unit measures 50x152x178mm approximately and has the the rubber keyboard mounted to the right of the I.c.d. display.

In operation, sensitivity is good with a first i.f. frequency of 21.4MHz limiting, but not totally eliminating image response problems. One annoying feature is the scan delay function which halts the scan for six seconds when a transmission is detected, but then resumes scanning.

SCANNING
Alan Gardener

This month Alan takes a look at a couple of interesting new receivers and continues his climb up the u.h.f. radio spectrum.

This is a real nuisance if you can't find the correct button to manually stop the scan within such a short time period. The price is expected to be around the £250 mark which should ensure it's popularity. Write to Lowe Electronics, Chesterfield Road, Matlock, Derbyshire DE4 5LE for further details or alternatively you can ring them on (0629) 580800.

Tandy PRO-38/Uniden 50XL Modifications

Reader T. Gait of Glasgow has written to me asking if I know any way of providing a search function on the Tandy PRO-38 scanner. I must say that I have not heard of any modification that will provide the missing function but that doesn't mean that it can't be done. Many scanners use similar controllers (the Tandy PRO-38 and the Uniden Bearcat 50XL are practically identical) so it may prove possible to trick the receiver into thinking it is the next model up in the range - the 100XL, which has a search facility. Unfortunately, I don't have copies of the service handbooks for these two models, but I bet someone out there has! So if that someone is you, or if you have experimented with either of these two models why not drop me a line?

This question does highlight a common theme in many of the letters I receive - that is how can I add extra facilities or extend the frequency coverage of my scanner? My answer in most cases has to be "by selling it and buying a more sophisticated model". This is particularly true at the moment because so many new models are being introduced and many people are selling their old (or not so old in some cases) scanners off at reasonable prices. The general rule-of-thumb when buying a scanner is "you get what you pay for". Most manufacturers produce several models ranging from a budget model aimed at the newcomer, right up to a top-of-the-range model for the person who must have the best.

However, most scanner models usually only have limited frequency coverage and are in many cases primarily designed for the American market. The most common problem users experience with these models is the inability to manually select a.m. reception which is usually only available on the v.h.f. airband range of 108-136MHz. This is not a problem in America where a.m. is rarely found outside this band, but in Britain many important services still use a.m. - so beware!

The moral of the story is simple, make sure the scanner you buy is capable of receiving the transmissions you want to listen to. This may sound obvious but it is quite easy for a newcomer to the hobby (or old hands for that matter) to be tempted by low prices. Remember, it is always worthwhile spending time looking at what is available before spending money - and consider buying secondhand!

Low Cost Monitor Receiver

So having bought your expensive 1000 memory channel, all-mode, all-singing all-dancing, tea and coffee dispensing scanner you find it spends 99 per cent of its life monitoring your favourite local frequency. Doesn't that seem a little wasteful? Well, how about a cheap alternative receiver that you can leave running all the time whilst freeing the main receiver for more exciting things. What's the catch you ask? Well, you do have to do a little work - but you can learn a lot in the process.

The solution is to re-tune one of the many Ex-Private Mobile Radio (p.m.r.) transceivers now available on the surplus market to the frequency of your choice. With a little luck the whole project should cost less than £20 although I must admit that in the past, by very careful selection, I have been able to find hand-held u.h.f. receivers already working on suitable frequencies for under £1 each. Revised specifications for p.m.r. equipment came into force in the New Year making a lot of existing equipment obsolete. When taken out of service a lot of equipment re-appears on the amateur market at very reasonable prices so keep an eye out for bargains later on in the year.

The key to all this is in a new book called Surplus 2-Way Radio Conversion Handbook written by a near neighbour (and r.f. interference source) of mine, Chris Lorek and published by Argus, ISBN 36242 946 0. The book covers nearly every aspect of converting commercial equipment to operate on other frequencies including good quality circuit diagrams and component layouts of the most commonly available equipment.

Highly recommended if you enjoy experimenting and not a bad suggestion for a Christmas gift!

What Can I Hear? Part 9

This month we continue our examination of the u.h.f. spectrum starting with the band 410-425MHz. This is allocated to the government and is used for a variety of purposes including fixed links and
radiolocation. In fact the government is the primary user of most of the u.h.f. spectrum. However, it does permit other services to operate on a non-interference basis. This is only practicable because much of the spectrum is held in reserve "just in case".

The main use of the remaining spectrum between 425-470MHz is for p.m.r. The propagation characteristics of radio waves at u.h.f. make this range of frequencies ideal for localised communications. Well sited base stations can give city wide coverage, whilst on the other hand a simple antenna system can provide communications just within a small area - a factory or goods yard for example. By limiting the range of a system it is possible to reuse the same frequency many times, making good use of the available spectrum. However, extra frequencies still have to be provided to cope with the demand for radio communication in major cities. In order to help with this problem some of the bands normally set aside for government use are pressed into service, but only within certain geographical areas.

Another way of meeting the demand in cities is by some p.m.r. operators making use of shared base stations generally referred to as Community Base Stations or Community Repeaters. Most of these transmit in the band 440-443.5MHz and receive on paired frequencies in the range 425.5-429.5MHz. However, extra allocations are available in London. The base stations are generally situated on high buildings or hills in order to give city wide coverage. They are configured so that they can receive a low power transmission from a mobile and at the same time re-transmit it at a much higher power level, thus increasing the operating range of the mobile. By several users sharing the same base station, equipment costs and site rentals are made more economical.

In order to prevent confusion occurring between operators sharing the system use is made of a technique called Continuous Tone Coded Squelch System (CTCSS). In this system one of 37 specially chosen low frequency tones is transmitted along with the speech. This is detected in the base station and only when the correct tone is received does the system re-transmit the signal. CTCSS gives privacy to groups of users and at the same time prevents any one of the operators from making excessive use of the system by the base station control circuit "locking out" the user for a period of time. This type of system is very popular in London with businesses such as dispatch services, delivery firms and bus operators.

Another major block of the u.h.f. spectrum lies between 430-440MHz. This is commonly referred to as the 70cm Amateur Band, although in fact the amateur service only has secondary user status and has to share parts of the band with government services, p.m.r. and radiolocation. This is particularly true of the bottom segment, 430-432MHz. This may seem like a recipe for disaster but by careful co-ordination most of the users are unaware of each others existence. Because of the relatively large bandwidth available to amateur stations many different modes of transmissions can be heard. These include s.s.b. and Morse at around 432-432.5MHz; digital packet stations between 432.5-433MHz; f.m. simplex and repeater traffic between 433-434MHz; Amateur satellite up and down-links using Morse and s.s.b.
WE HAVE THE BEST RANGE OF SHORTWAVE/MULTIBAND/AIR/MARINE/PS & B BAND RADIO'S/BOOKS/ACTIVE AERIALS AVAILABLE. WE ARE PLEASED TO ANNOUNCE OUR NEW RADIO TESTER HAS ARRIVED. MR W. G. BUNTER, FORMERLY OF THE REMOVE, GREYSTONES WILL BE PLEASED TO ASSIST WITH YOUR QUERIES. NO TIME FOR WRITING MORE. OLD BUNTERS AT THE CREAM BUNS ‘LUMME’
between 434-436MHz; finally amateur TV transmissions between 435-440MHz. Despite the large selection of transmission modes, the 70cm band tends to be very quiet outside large urban areas so be patient when listening.

Moving a little higher in frequency the band 451-453MHz is allocated to the Home Office for use by the emergency services. This choice of frequency makes it ideal for short range communications or with well-sited base stations slightly larger areas such as a town centres.

Two of the most popular allocations for p.m.r. services in the u.h.f. spectrum are 453-454 and 456-457MHz. Many large companies who operate their own base stations tend to use these bands for on-site communications.

Moving up to 457MHz, we reach another p.m.r. allocation - this time the frequencies are used for fixed links. A typical application for such a link would be to provide a speech circuit and control path to a remotely sited base station. However, pressure on the u.h.f. spectrum has now made most links move up to the microwave bands, leaving the main use for scanning telemetry. This is mainly used by the Power, Gas and Water companies to provide remote control of and indications from remote sites such as pumping stations or switching centres. One master station interrogates each out-station in sequence, building up a complete picture of the system status back at the control centre. There are many thousands of these out-stations around the country, so keep an eye open for the twin u.h.f. link antennas next time you pass a pumping or electricity substation.

Finally, one of the forgotten segments of the u.h.f. spectrum at 458MHz is the u.h.f. control band. I bet you didn’t know there was one! Although not secret, this band has never been that popular with radio modellers. The main reason being that it was introduced as a solution to the problems associated with the poor quality 27MHz model control band, no other country had such a high frequency allocation (at that time). As a consequence very few manufacturers produced equipment for the band, and that which was available was very expensive. Now that other bands have been made available for model control it is very likely that the allocation will become filled with the low power local paging and telemetry systems which already share the band.

More next time when we explore the region of the spectrum leading up the microwave bands.

In the meantime, keep those letters coming to the same address: PO Box 1000, Eastleigh, Hants SO5 6HB. Until next month - Good Listening and Happy Christmas!

RIGHT THE FIRST TIME

Tapping to feed D1. This helps to reduce the resistive damping of the earpiece circuit.

Adding the New Components

The layout for the improved crystal set is shown in Fig. 3.1. The positions of the components of the basic crystal set have been retained with the extra components merely added in the positions shown.

The resistor (R1) is a standard 0.25W component marked with YELLOW-VIOLET-ORANGE bands. The tolerance is unimportant in this application. The two capacitors can be the inexpensive miniature ceramic plate types, in which case they will probably be marked as "n47". For this application any type of 470pF (or 500pF) capacitor would do the job. The diode is the same type as used in the original circuit. Take care to get the diodes the correct way round. The ends of both D2 and D1 marked with the coloured band go to the "top" of C2/R1.

Check the positions of the new components against both the layout and the circuit diagrams of Fig. 3.1. The crystal set may well be louder and it will certainly have less annoying high pitched hiss on the signals. You may also note that the selectivity has improved a little. Try using it with or without the earth connection to see if the earth makes any difference: in some cases it may not.

<table>
<thead>
<tr>
<th>Abbreviations</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.c.</td>
<td>alternating current</td>
</tr>
<tr>
<td>a.f.</td>
<td>audio frequency</td>
</tr>
<tr>
<td>a.m.</td>
<td>amplitude modulation</td>
</tr>
<tr>
<td>d.c.</td>
<td>direct current</td>
</tr>
<tr>
<td>kΩ</td>
<td>kilohms</td>
</tr>
<tr>
<td>m</td>
<td>metre</td>
</tr>
<tr>
<td>pF</td>
<td>picofarads</td>
</tr>
<tr>
<td>r.f.</td>
<td>radio frequency</td>
</tr>
</tbody>
</table>

Parts List for Improvements (Fig. 3.1.)

<table>
<thead>
<tr>
<th>Part</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>47kΩ 0.25W Resistor (YELLOW-VIOLET-ORANGE)</td>
</tr>
<tr>
<td>C2, C3</td>
<td>470pF Miniature Ceramic Plate Capacitor</td>
</tr>
<tr>
<td>D2</td>
<td>AA119 Germanium Diode (Maplin QB00A or Electrovalue AA118)</td>
</tr>
</tbody>
</table>

Notes:

1. R1, C2 & C3 are available from any electronic component dealer
2. C2 and C3 can be any type of 470 or 500pF capacitor
3. Any Germanium Signal Diode will serve for D2 but it is best to use the same type as D1 in the original circuit.
Not every letter that fails to reach me can be blamed on the Post Office! I have known mail to be postmarked in mid-July, and reached here in good time; however, it has since clearly led a hard life as it has cupped, until it fell into the hands of a local amateur who realised it was for me and forwarded it! And would you believe it, whether or not there was no signature on it anyway, Murphy strikes again!

Antenna Height

Those of you who have read the textbooks on antennas will have seen various charts and drawings which indicate that there are certain "preferred" heights for a horizontal antenna. These arise from measurements made with scaled models which are carried out over a sheet of metal which simulates a perfect earth. Older readers will recall those delightful lectures by G6CJ - the illustrious "ERA Demonstrate the antenna patterns with models"

Now, up to 30MHz the practical cases are in fact sited closely over less than perfect earth on the one hand, while on the other our incident angles are arriving at very low angles of incidence. Indeed, it is often the case that an incoming signal will vary its angle of incidence during the course of a complete QSO. At v.h.f., we know that signs aren't reflected from the ionosphere, and also that there are several or many wavelengths above ground. Is there, then, any rule we can apply to the question of how high the antenna should be?

The answer has to be, for several reasons, to advise that whatever the band you get the antenna up as high as you can practically, whatever the band. With the best will in the world, our garden is scarcely likely to be the control room of a whole of brass. The modern home has enormous electrical noise output to upset our listening. Ours is a world of coaxial cable or twin feeder down to the shack, so much the better. Getting the antenna up in the vicinity of a seldom used hole can start to improvements, while the twin feeder or coaxial cable helps to make sure the signal doesn't become as weak, or propagate nothing, out at the pulling on the power down. So, even if there were no other gain, height would be worth while. Second, of course, the higher antenna can "see" over the local buildings and obstructions. As to the business of preferring the antenna to be a half-wavelength (or multiples of this) high for preference, all we can say is that the practical chaps who experimentally always try to find out that any gain in height is worth while; obviously our less than perfect ground beneath the antenna is upsetting the theoretical applicant.

Turning to v.h.f., under normal flight conditions, you can reasonably say that range is directly related to antenna height. This is because of the curvature of the earth. One can almost say that the situation is akin to the business of the sailor approaching a distant lighthouse. He can look in his Nautical Almanac, either Reed's or the Macmillan, and find a table which relates height to horizon distance. If the lighthouse is, and the navigator and the navigator. In the bridge is say 10m high, then he can find the horizon distance for each height, and add these two together, and multiply by one hundred, which will give you the necessary altitude of the lighthouse you seek to be able to see over the horizon. Of course, he will have spotted it before that much, so that in order to reach the "look" of the light across the sky before he comes close enough for it to be its own light, he will have to allow for the wave "dragging its feet" around the earth's curvature, as a point will be quite nearby. Thus, locally, the v.h.f. range is about 6.5km in most directions simply because of the hills. Of course, under v.h.f. "lift" then one may well find the increases and distances of this distance, but this effect is somewhat akin to the mirage of the desert, where you see the far distance long before you should, shimmering, may even inverted, and disappearing without warning. On land, of course there are hills to get in the way and swallow the signal. In radio terms, we can take the distance so found and add one third, to allow for the wave "dragging its feet" around the earth's curvature, as a point will be quite nearby. Thus, locally, the v.h.f. range is about 6.5km in most directions simply because of the hills. Of course, this effect is somewhat akin to the mirage of the desert, where you see the far distance long before you should, shimmering, may even inverted, and disappearing without warning. On land, of course there are hills to get in the way and swallow the signal. In radio terms, we can take the distance so found and add one third, to allow for the wave "dragging its feet" around the earth's curvature, as a point will be quite nearby. Thus, locally, the v.h.f. range is about 6.5km in most directions simply because of the hills. Of course, this effect is somewhat akin to the mirage of the desert, where you see the far distance long before you should, shimmering, may even inverted, and disappearing without warning. On land, of course there are hills to get in the way and swallow the signal. In radio terms, we can take the distance so found and add one third, to allow for the wave "dragging its feet" around the earth's curvature, as a point will be quite nearby. Thus, locally, the v.h.f. range is about 6.5km in most directions simply because of the hills. Of course, this effect is somewhat akin to the mirage of the desert, where you see the far distance long before you should, shimmering, may even inverted, and disappearing without warning. On land, of course there are hills to get in the way and swallow the signal. In radio terms, we can take the distance so found and add one third, to allow for the wave "dragging its feet" around the earth's curvature, as a point will be quite nearby. Thus, locally, the v.h.f. range is about 6.5km in most directions simply because of the hills. Of course, this effect is somewhat akin to the mirage of the desert, where you see the far distance long before you should, shimmering, may even inverted, and disappearing without warning. On land, of course there are hills to get in the way and swallow the signal. In radio terms, we can take the distance so found and add one third, to allow for the wave "dragging its feet" around the earth's curvature, as a point will be quite nearby. Thus, locally, the v.h.f. range is about 6.5km in most directions simply because of the hills. Of course, this effect is somewhat akin to the mirage of the desert, where you see the far distance long before you should, shimmering, may even inverted, and disappearing without warning. On land, of course there are hills to get in the way and swallow the signal. In radio terms, we can take the distance so found and add one third, to allow for the wave "dragging its feet" around the earth's curvature, as a point will be quite nearby. Thus, locally, the v.h.f. range is about 6.5km in most directions simply because of the hills. Of course, this effect is somewhat akin to the mirage of the desert, where you see the far distance long before you should, shimmering, may even inverted, and disappearing without warning. On land, of course there are hills to get in the way and swallow the signal. In radio terms, we can take the distance so found and add one third, to allow for the wave "dragging its feet" around the earth's curvature, as a point will be quite nearby. Thus, locally, the v.h.f. range is about 6.5km in most directions simply because of the hills. Of course, this effect is somewhat akin to the mirage of the desert, where you see the far distance long before you should, shimmering, may even inverted, and disappearing without warning. On land, of course there are hills to get in the way and swallow the signal. In radio terms, we can take the distance so found and add one third, to allow for the wave "dragging its feet" around the earth's curvature, as a point will be quite nearby. Thus, locally, the v.h.f. range is about 6.5km in most directions simply because of the hills. Of course, this effect is somewhat akin to the mirage of the desert, where you see the far distance long before you should, shimmering, may even inverted, and disappearing without warning. On land, of course there are hills to get in the way and swallow the signal. In radio terms, we can take the distance so found and add one third, to allow for the wave "dragging its feet" around the earth's curvature, as a point will be quite nearby. Thus, locally, the v.h.f. range is about 6.5km in most directions simply because of the hills. Of course, this effect is somewhat akin to the mirage of the desert, where you see the far distance long before you should, shimmering, may even inverted, and disappearing without warning. On land, of course there are hills to get in the way and swallow the signal. In radio terms, we can take the distance so found and add one third, to allow for the wave "dragging its feet" around the earth's curvature, as a point will be quite nearby. Thus, locally, the v.h.f. range is about 6.5km in most directions simply because of the hills. Of course, this effect is somewhat akin to the mirage of the desert, where you see the far distance long before you should, shimmering, may even inverted, and disappearing without warning. On land, of course there are hills to get in the way and swallow the signal. In radio terms, we can take the distance so found and add one third, to allow for the wave "dragging its feet" around the earth's curvature, as a point will be quite nearby. Thus, locally, the v.h.f. range is about 6.5km in most directions simply because of the hills. Of course, this effect is somewhat akin to the mirage of the desert, where you see the far distance long before you should, shimmering, may even inverted, and disappearing without warning. On land, of course there are hills to get in the way and swallow the signal. In radio terms, we can take the distance so found and add one third, to allow for the wave "dragging its feet" around the earth's curvature, as a point will be quite nearby. Thus, locally, the v.h.f. range is about 6.5km in most directions simply because of the hills. Of course, this effect is somewhat akin to the mirage of the desert, where you see the far distance long before you should, shimer
LISTEN INTO
THE WORLD

AR0008 £199.00
AR000U £199.00
H725 £395.00
RG8 £249.00
W118 Scanning Airband Receiver £175.00
SAB 9 POCKET AIR BAND-WAV LW FM MB £23.50
MB 7A BAND INC SW Air Marine Marine/Marine £65.95
R035 TUNABLE AIR BAND 18-136MHz + 2 CRYSTAL £69.95
CONTROLLED CHAN £22.00
BLACK JAGUAR MIII Mic Hand Held Scanner with Air Band £17.50
AUDIO TECH AT 9500 Electric Cord Least Radio £22.00
VHF/UHF TUNABLE RANGE 86 108MHz £50.95
PORTASOL GAS SOLDERING IRON 25-150watt Variable £19.95
N TYPE CONNECTOR FOR RG58U £2.95
N TYPE CONNECTOR FOR RG213 £2.95
RG8 Cable £1.50 per Mtr
RE310/RE310 Cable £1.50 per Mtr
BFO Built & Tested £19.95

SONY APPROVED SHORT WAVE CENTRE

ALL SETS GUARANTEED. PRICES INCL VAT & P/P EXCEPT PLEASE ADD £2.00 P/P ON RADIOS.
CALLERS WELCOME MONDAY, TUESDAY, THURSDAY, FRIDAY, SATURDAY, 9.30-5.30.

COMPONENT CENTRE
7 LANGLEY ROAD, WATFORD, HERTS WD1 1PS
Tel: WATFORD (0923) 245335

PC HF FAX

The PC HF Facsimile is a complete FAX reception system for the IBM PC (tm)
family of computers.

- Display in grey scale or colour.
- Printer output in half tone.
- Supports Hercules, CGA, EGA, VGA.
- IOC rates 60, 90, 120, 180, 240 LPM
- Storage/Retrieval from disk
- Automatic Image Capture.
- Image Zoom, Pan, Reversal, Export.
- Slide Show Animation.
- Menu Driven Software.

Comes complete with Demodulator Cable, Manual and Tutorial Audio Cassette.
Simple to install, uses no external power or expansion slot.

PRICE ONLY £99.00 inc. VAT. P/P £2.75
CALL TODAY FOR FULL DETAILS.

COMAR ELECTRONICS

TA Birmingham Road, Coopers House, Isle of Wright, PO31 7BH
Tel: 0983 200308

VIDEO FILM MAKING
by Keith Brooks
First published in 1985, this 176 page book describes how video film making is done and what you can do yourself. Practical step-by-step instructions are given for making your own films. Originally £15.95 our bargain price is just £2.95 including P&P.

BOOK BARGAINS

0202 665524

or send your orders to:
PW Publishing Ltd. FREEPOST, Enefco House, The Quay, Poole, Dorset BH15 1PP

SATELLITE TV - A LAYMANS GUIDE
by Peter Pearson
This book, first published in 1987, explains all about setting up your own satellite TV terminal at home. Originally sold at £4.95 it can be yours for just £1.50 including P&P.

SWM SUBSCRIPTIONS

Fill in the Order form below and post it to: PW Publishing Ltd., FREEPOST, Subscriptions Dept., Enefco House, The Quay, Poole, Dorset BH15 1PP (no stamp required). Credit Card Orders taken on (0202) 665524.

Overseas subscriptions outside Europe are now despatched by Accelerated Surface Post for faster delivery.

If you already have a subscription you can still take advantage of our offer, but you must quote your subscription number.

Please indicate the type of subscription required:

SHORT WAVE MAGAZINE 1 YEAR
- £19.00 (UK)
- £21.00 (Europe)
- £22.00 (Rest of World)

PRACTICAL WIRELESS 1 YEAR
- £15.50 (UK)
- £18.00 (Europe)
- £19.00 (Rest of World)

PRACTICAL WIRELESS 3 YEAR
- £40.00 (UK)

SPECIAL JOINT SUBSCRIPTION 1 YEAR ONLY
- £30.00 (UK)
- £33.00 (Europe)
- £35.00 (Rest of World)

To commence with issue dated

To: PW Publishing Ltd., FREEPOST, Subscriptions Dept., Enefco House, The Quay, Poole, Dorset BH15 1PP

Name

Address

I enclose cheque/PO (Payable to PW Publishing Ltd) £

I charge to my Access/Visa Card the amount of £

Card No.

Valid from to

Signature

Short Wave Magazine December 1989
REVCO WHEN QUALITY COUNTS

REVCON

The UK's favourite discoe composed of traditional British quality engineering.

The REVCO PA3 range (KE-3000), airband monitor (AIRHANDYSKYVOICE)

£49.00

Socket.

8800 £649.00

Another option is the fly-by-wire converter instead of the popular SONY NCI-2000. It gives a better UHF performance, but it costs a bit more. The choice is yours.

Because the REVCON is British-made by a Company which has been in business for 30 years, you buy with confidence.

WIDE-BAND PRE-AMPLIFIERS

The problem with omnidirectional-wide band antennas is their lack of gain.

The REVCO PA3 range of wide-band pre-amplifiers complement the antennas and compensate for their shortcomings.

The basic specification of the products is: coverage 20MHz-1GHz, at 1GHz, minimum gain 13dB, noise factor 5.5dB. Choose from a masthead version PA3 or a standard desktop version PA3. Best results are normally obtained from the masthead model which gives a boost to weak signals which would otherwise have been lost in the feeder cable. Also feeder cable noise is not amplified which is the case if the amplifier is mounted at the base of the feeder. On the other hand, the die-cast box version requires no special installation and is readily taken out of circuit. The masthead model is supplied with a special power unit which feeds the DC power to the antenna feeders via a single line for the PA3, or via 12v DC source. The PA3 is available to special order and is a high gain antenna suitable for special applications. A special feature of the PA3 series is a high gain VHF and UHF converter (PA311.8), 10kHz-301MHz, 99 memories.

All models are supplied with remote controls for operation (optional). Clock and timer gives 1.00-2.00. Contact your local Dealer or in case of difficulty write, phone or fax. Trade enquiries welcome. Revocon Electronics Ltd, Old Station Yard, South Brent, S Devon TQ10 9AL Tel: 0364 73394 Fax: 0364 727007

ON-GASS ANTENNAS

This type of antenna mount has been around for a long time, but they are very difficult to produce successfully at VHF. The Cellular Radio industry has popularised the glass- mount, but there are fewer design problems at 900MHz, because the coupling assemblies are small. REVCO's extensive experience in making the UK's best Cellular On-glass has led to the production of superior quality VHF and UHF models. Here are a few facts which you should know:

- **Coupling efficiency:** apart from the question of effective power transfer to the outside world, you don't want too much RF leaking inside the car, do you? Not healthy for vehicle electronic systems, and possibly not good for humans either.

- **REVCO glass:** our unit features a very efficient power transfer.

- **Stage power:** no good if they fall off half way home. A properly installed REVCO stays on. Should you change your car, a refit kit is available.

- **Simplicity:** some of the competition has a multitude of loose component parts; the REVCO glass Plus/minus feature is a very efficient power transfer.

- **Weather resistance:** REVCO antennas are made from corrosion resistant materials and will stand up to all seasons, all conditions, is not necessary to plaster the product with silicone rubber to keep the water out. The REVCO glass mounts do cost a bit more, which reflects these superior features.

- **Coverage:** from 50MHz to 2.0GHz usually, but from 75MHz to 5GHz for the odd band. Here are some special cases: a small. REVCO's WESTERN HORIZON probe at 1GHz: as good as any we know of. It is the best all rounder, with a gain of 13dB, noise figure 1.00-2.00. Contact your local Dealer or in case of difficulty write, phone or fax. Trade enquiries welcome.
I should first say thank you to all the people who write into "Decode" every month. The kind comments about the column are much appreciated, and I hope you will continue to make the column interesting to read. Frequency lists are being sent out shortly after the bank holiday weekend, so by the time you read this, your annual holiday follow-up by the radio rallies we have attended has slowed down the despatch.

It has been really good to meet some of SWM's regular readers and, for me it has been especially interesting to meet some of the readers who regularly supply me with information for this column. If you would like your list to appear in the column, just send me three or two classic class stamps and your name and address and it will be despatched as soon as possible. If you can include a scan of your list, that will be even better. As I only keep stations in the list that have been heard in the last three months, I do need a regular supply of such a list or the frequency list just dries up.

By the time you read this, I will have finished attending rallies for this year. When the 1989/90 rally calendar has been worked out I will publish the list of rallies I will be at. If you can, come and say hello and say hello, it would be good to put faces to the names in the letters. I am always pleased to hear your comments about the column - good or bad!

SEEN AND HEARD

Michael Richards GW4NC
200 Christchurch Road, Ringwood, Hants BH24 3AS

DECODE

Regulatory

I recently had cause to contact the Home Office in Bracknell, the DTI in London regarding the current situation with licences for the reception of weather broadcasts. Due to the constraints of the Wireless Telegraphy Act you are only allowed to receive signals for which you have authority to do so. For the likes of you and I, that means we can only legally monitor broadcast stations and amateurs! To gain authority to receive weather signals the procedure used to be to send an application to the DTI along with £10.00 whereupon a licence would be granted.

During my enquiries into this I discovered that the situation has recently been changed to advantage - you are now free to monitor weather transmissions without any additional licence. This represents a major change in the policy with which it previously used to be applied. The reasoning behind the change is simply that it was impossible to police this aspect of the Act so why waste everybody's valuable time and money on a fruitless exercise.

Having said all that, you are only allowed to use any information received for amateur or self-education purposes. Should you use the information for profit, then you can expect to have a charge levied by the Met. Office.

If you come across any little gems like this, please drop me a line with the details and I will investigate the matter.

Readers' Letters

It's some time since I did a run down of readers' equipment.

Mr. Gore-Thorne, a near neighbour of mine, uses a Tandy DX160 and a Sigma 49 3/4/27 MHz CB antenna to receive his data signals.

Judging by your letters, you don't need to form an "all-singing, all-dancing" radio for data communications - a lot depends to seem on the listener. Keith Huselton in Selby uses a Bearcat DX100 and finds it works well for his needs.

Up in Halifax, K. Roberts is using a Kenwood R8500 with a 20 metre wire antenna. The day before he wrote the letter he had purchased an ERA Microreader. So far he seems to have had no problems with amateur transmissions, which can be a good way of getting used to using new equipment.

In common with many readers, he has found that some of the most interesting signals have produced the best copy.

A system based on the Spectrum 48k computer and 8 bit A/D board in Morcambe. The receiver is a Trio R1000 as well as a Mizuho KK-3 antenna tuner, 15m end-fed antenna and J&P Electronics filter and software.

I received a very unusual letter from a reader in Bournemouth. His letter heading includes a colour photograph of him and his station. The station equipment is listed on the back of his QSL card and comprises a Sony ICF-2001D plus TC-M381 tape back-up, a Sony AN-1 active antenna and a DSH active antenna, a Realistic PRO-204 scanner with two discos, an AR-400 with an ARA-50 active antenna, and finally an ERA Microreader. He is now awaiting delivery of an AR3000.

Leaster Jones in West Kirby uses a Kenwood R6500 with a home-made a.t.u., the computer side of his station at the moment comprises a BBC Master 128 and G3V2D software with a borrowed home-made decoder. He is in the process of deciding which decoder wants for himself.

Since I have not purchased Spectrum RX4 software from Technical Software, I have discovered how some of this advice seems to really be taking up all my spare time! says A.C. Knox from Largs. I think that many would echo his thoughts on the addictive aspect of data listening. He uses a Realistic DX440 and 60 long wire antenna.
with the RX4 software. Mr Knox is having one or two problems decoding SSTV. He suspects that he thinks the main problem is deciding which signals are SITOR.

Norman Pilgrim from Leicester wishes to point out that the ERA Microweaver combination users like himself. Don't use the RTTY button on the Icom, instead use the u.b.o or i.b.o. mode depending on whether the transmission is "normal" or "reverse". He then adds that a considerable success with this combination and says that although practice is required to get used to the Microweaver, once you have mastered it there is no holding you back! Norman also has a stand-by receiver, the YAESU FRG-7 which is coupled to a Data V.F. converter that can be switched in as necessary. He uses a well-insulated wire just thrown over the ridge of the house which forms an inverted V for the Yaesu. The main antenna for the Icom is a fan vertical, consisting of a number of wires strung up against a coxial feed. A number of radial wires are buried in the lawn to help give a good "earth". He says that worried anyway to modify the Sony IC-F2001D for fine tuning as I find it very difficult to tune 170Hz shifts of the "normal" SITOR "20 to 260 Hz steps?", says Geoff Nichol. The terminal unit Geoff uses is a Maplin type and as an Ambassador he has the ERA Microweaver is Ray Baskett from Shotton. His receiver is a Trio R-600. Another reader using the ERA Microweaver is Peter Lambert from Cambridge. He has picked up a few SITOR transmissions, but as yet no FXA. The frequency list might help him find where this one is found.

A mechanical set up is used in the station of Ian Burns of Frintinghall. There's a Sony IF-2001, 75B Teleprinter and a Rediphone TT10 terminal unit/decoder. An ST5 terminal, used for the cards for the near future though.

P Pendlebury in Bridgand has been using a number of stations transmitted by weather stations so far using his YAESU FRG-7, Dragon 32 and BMK RTTY software. If you do find them, try to get the numbers. I am not sure how many, so it might be interesting to know more, then there are a few places you can look. Back in the April, May and July issues of Practical Wireless and F2001 DX, there is a side part series called "Weather Watch" by Jeff Maynard. In the article he mentions that the instructions and the problems that decoding these transmissions is available in the Admiralty List of Radio Signals Volume 3, Admiralty List of Radio Signals (By means and Meteor Code) by Moer Berglingfuss.

In a modified FRG-7, FT1012D, ST5, Maplin TU1000, Dragon 32 and a mixture of software from G4BKM and GW4WRD is used by R.A. Ratsilffe in Wokingham.

Ian Wye has aquired his first computer, a Spectrum 2+, and is searching for sources of software. The best source that I can think of is the Spectrum Amateur Radio Users Group, which seem to have an abundance of software and sources available. So far he has purchased the log book and RAE programs from Telesical Software and a couple of HTA Antenna programs from HRT and the G GRP Club. The latter one has set him a few problems as it need not be adapted to run on his Spectrum. He's resorted to the local library for suitable books to help him.

Gary Franklin is looking either to write his own software for the Atari ST or for sources to buy from. Some time ago I heard from a group in Europe that supported the Atari ST computer, ASTUR (Atari ST Users on Radio). Founded in March 1987 by Michel Cerveau and Wilfried Delerette, the ASTUR ST Users on Radio group exists to encourage and where possible to co-ordinate the activities of Atari ST users on the amateur radio hobby scene. ASTUR is a non-profit making group and is run by its members on a voluntary unpaid basis. More information can be had by sending 2 IRCs to ASTUR, W. 189, Rue de la Plage, 1180, Ostende, Belgium. I think the subscription rate is two disks and 2 IRCs; one disk is returned to you with the information on it. As for the software (it is very good), Gary supplies any sort of publication, periodical, chart, official notice, and so on, covering the entire marine world that he has found is Warsaw National Marine Bookshop, 31 Newton Road, Warsaw, Southampton SO3 6FY. They also publish an annual Bibliography of Nautical Books plus two number of the radio access which has over 17000 entries, listed by title and author. They have a catalogue of computer and secondhand books and are very helpful on the phone and can be telephoned now.

Norman Hartford of Telford has a question. He has heard a c.w. station either EECY or E-C3Y on 9.136, 8.160 and 13.630MHz but can't find it listed in Klingenfuss. Does anyone have any more information?

A month or so ago I mentioned the SWM Radio Information Cassettes, well Ted Rickett recommends the tape he's had since 1985. It's the Tone Recognition Tape from Klingenfuss, its correct name is Magnetic Tape Recording of Modulation Tones. The thirty minute cassette comes complete with a double-sided A4 sheet describing the high tones of each of the twenty-six classes of emissions on the tape.

QLS Information

The Wellington Metro ZKLF XAX frequencies are: 5.807, 9.459, 9.459, 13.630 and 16.401MHz. The transmissions are 24 hours with schedules at 0445 and 1645. The QSL address is: New Zealand Meteorological Service, Met. Interchange Station, Box 15112, Wellington, New Zealand.

Now to Guan and the Naval Oceanography Centre there. They have three sites and the frequencies they use are: Apra Harbour (Guam) NPN 7.834, 15.225, 16.020 and 16.441MHz. Subic Bay (Philippines) NPO 10.966 and 15.255MHz. Totsuka (Japan) NDF 9.398MHz, 9.845MHz, and 12.3245MHz. The transmissions are 24 hours with schedules at 1245 (part 1) and 1300 (part 2). The address you need is Naval Oceanographical Centre, c/o Box 17, FPO San Francisco, CA 96900, USA.

While working with Calvinian addresses, I also have details on the NOAA National Weather Service.

INFO IN ORBIT

Lawrence Harris
5 Burnham Park Road, Peverill, Devon PL3 5QB

Pre-amps

Continuing with the series about the principle sections of a satellite receiving station, we now take a look at pre-amplifiers.

The idea of having a pre-amp is to provide sufficient gain for the weak satellite signal received by your antenna system to be able to travel through the many metres of cabling and excessive losses. This means that it must be directly connected to the antenna.

For your home-designed polar orbiting receiver and antenna system your pre-ampl need only provide enough gain to overcome the down lead losses. These will be about 8 to 10dB for an average 15 to 20m of cable so your pre-amp should provide this sort of gain. Avoid excessive gain or you may pull starting up unwanted out-of-band signals.

The pre-amp should have a properly designed pass band so that the gain drops off rapidly both below 136MHz and above 138MHz. Average prices range from £10 to £20. You should check accordingly. I'm surprised to see one at first - you may be pleasantly surprised.

Components that are included when you buy a complete satellite system for Meteosat/GOES will have been designed for that specific system and so would work well. I'm thinking of the later section on "Future Projects". I am very cautious about high-gain units for use on polar orbiters because experience shows that all sorts of unwanted signals can be pulled in along with the satellite signal.

If you are constructing your pre-am from one of the many kits available, remember that it will have to take the worst of the weather, including thunderstorms and lightning, which will burn out most of these pre-amps. However, if you have a reliable supplier of any sort of publication, periodical, chart, official notice, and so on, covering the entire marine world that he has found is Warsaw National Marine Bookshop, 31 Newton Road, Warsaw, South Hampton SO3 6FY. They also publish an annual Bibliography of Nautical Books plus two number of the radio access which has over 17000 entries, listed by title and author. They have a catalogue of computer and secondhand books and are very helpful on the phone and can be telephoned now.

Multiple Launches

The Russians recently launched six satellites from the same rocket, a Tsiklon booster. They are all Cosmos satellites and numbered from 2038 to 2043. They were put into similar orbits, almost circular at 1400km and with inclinations of about 83 degrees. The description "have radio systems for precise measuring of orbit and orientation elements," means, I think, that they are probably all navigation satellites. The satellites are called "Glonass", I think.

I was pleased to hear the cosmonauts back on the 143.625MHz transmitter after the long break. The noises and
wavecom W 4010

professional-grade, high-performance data communications decoder/ analyzer, yet easy to use and at an affordable price:

- decodes Morse code, standard baudot, bit-inversion, arq, fec, ASCII, packet radio and variable speed baudot and ASCII
- for professional users, 14 additional commercial data communications modes (on supplementary eeproms) are available
- measures baud rates with high accuracy and makes synchronous and asynchronous bit analysis
- led-bar indication for tuning
- hard-and software additions and upgrade capabilities
- built in f7-b (f6) decoder
- universal microprocessor video card (24 lines x 80 characters or 18 lines x 40 characters)
- extensive rfi-filtering on all lines
- 5 int. language sets, including Cyrillic, Greek and Hebrew.
- RS-232c/v. 24 serial port, Centronics parallel port
- optimal customer’s support due to in-home r + d and 1 year warranty

PRICES FROM £895.00 inc. V.A.T.

FOR DETAILS OF THIS AND OTHER DECODERS PLEASE SEND S.A.E.

Dewsbury Electronics, 176 Lower High Street, Stourbridge, West Midlands.
Telephone: Stourbridge (0384) 390063/371228
Telex: 336712 SHELTN G

Stockists of DAIWA — POCOM — ICOM — YAESU — TASCO TELEREADERS — MICROWAVE MODULES
APPROVED KENWOOD DEALER.

Instant finance available subject to status. Written details on request.
voices that I heard seemed most intriguing and I wondered whether they were doing an outside excursion - otherwise known as an EVA (extra-vehicular activity). The cosmonauts are Alexander Viktorenko and Alexander Serebrov and they are continuing to do much scientific study, and have an automatic transport vehicle with them for the EVAs. My thanks to the Novosti Press Agency for all this information.

Assorted Signals

Various signals other than APT (picture) satellites are frequently heard in the 137MHz band, as I have mentioned in previous columns. A most interesting letter from Brian Coupe G4RHZ of Doncaster listed many of the frequencies together with his ideas about which satellites are responsible. Brian mentions the navigation satellites heard in the 136MHz band i.e., 149.91, 149.94, 149.96 and 150.03MHz which are heard every few minutes. On 150.03MHz there is a civil navsat system as well. Brian tells me that this data is decodable. I have asked Brian for more details and look forward to saying a bit more about this system in a future column.

Also on Brian's long list is the musical sounding Transit SB-5 which he also has heard on 136.6MHz. The signal on 137.08MHz which I hear sometimes may be 1971-100C Brian is right. He describes it as a Ferrit. Other frequencies mentioned are 136.23MHz which may be Tiros 7,8 or 9. I am still trying to obtain Kepler elements for these to identify which it is.

Brian mentions that two satellites came on in the 430MHz amateur band, one called Hilat which transmits on 137.676MHz as well as at 435.974MHz and 413.028MHz, and one called Polar Bear on both 435.978MHz and at about 149.98MHz. Brian tells me that these satellites were identified by experienced amateurs after much data analysis.

Another correspondent, Geoffrey Falworth, has written to me about his research into the various published satellite frequencies and comments that 137.40MHz was not only used by the Russian Meteor satellites but also by some Indian spacecraft. Also on his list is 136.47MHz which he writes was once used by OVS 3 and Isis 1 but apparently these are not known to be transmitting now. On 10th October I heard 4 minutes of bleeps on 136.47MHz at about 0925UTC which I am fairly certain were of satellite origin.

Geoffrey has kindly volunteered to obtain some Kepler elements for me so with his welcome co-operation I should be able to identify some of these signals in due course.

I have had some welcome telephone calls from readers of this column and also from asking for data on satellite frequencies. Graham Smith G1JVZ has been studying a book called Communication Satellites and he tells me that its a mine of information on all of the various communications so I shall have an early Christmas this year!

Finally, I was surprised to hear what I think is called Mirorrallon on 136.11MHz on October 10. I haven't heard this one for many months. Apparently it may be a Japanese beacon trailing one of their amateur satellites.

UoSAT-1 Decays

This amateur satellite operated by the University of Surrey was launched 8 years ago on 6th October 1981 by NASA and covered over 44,600 orbits before it finally decayed on Friday 13th October. Many of us have been tuning in and recording its data for computer processing, over a long period of time. UoSAT-1 transmitted easy to decode data containing space-related measurements and it was this data that persuaded many people to take up satellite monitoring.

The last measurements of its orbital period that I saw on the UoSAT-2 bulletin board gave its Mean Motion as 16.1289 orbits per day as it dropped rapidly into the earth's upper atmosphere.

We've lost all miss UoSAT-1 (also known as Oscar 9) but there are more spacecraft on the way - UoSATs D and E and the four Microsats, all involving the pioneering work of the University of Surrey under the expert direction of Dr Martin Sweeting. Details of the various experiments published in Practical Wireless in the Amateur Satellites section. Current launch date is planned for January 19th 1990.

Professional-Amateur Cooperation

Last month I mentioned the free exchange of information between professionals and amateurs, in particular the need of amateurs to have Kepler elements in order to track satellites. Some years ago my wife asked Brian to respond to requests from the public for scientific and other information. I was therefore very disappointed to receive a letter from an institution refusing to send me elements for the few satellites that I wished to record with my own observations. One reason given implied that this column would have published the data "without due credit".

Some years ago I spent many hours obtaining visual satellite observations made with my friend Pierre, one of the keenest satellite observers ever known. Meanwhile I have found other sources for this innocuous data and will publish the results in a later column.

NOAA Weather Satellites

During early October the APT (picture) transmission on NOAA 9 which was switched off for a few days because the satellite passes were coinciding with NOAA 11 which takes priority. During a routine monitoring session (playing with the kids while the scanner looks around!) I suddenly heard the NOAA 9 beacon. It hadn't occurred to me that the beacon would be left on even though the APT was off but of course it makes sense. It is interesting to hear these signals when you don't expect them.

Transmissions continue regularly from NOAA 9, 10 and 11 with APT on 137.62, 137.50 and 137.62MHz respectively and beacons on 136.77 and 137.77MHz.

Okean 1

The prize for detecting signals from Okean 1 goes to Reverend James Brown who heard a single transmission in mid-September. Okean uses 137.40MHz but none of the many people that I talk satellites with had heard Okean 1 for months. The view is that Okean 2 may be launched at any time.

The Russian Meteorites have been off and on again. Met 2/16 uses 137.40MHz and has continued to transmit visible-light pictures in darkness, though, as mentioned in previous months, these are not of comparable quality to the usual NOAA or Met 32 quality or format. While writing this, Met 2/16 is off completely while it passes through a twilight phase. Within a couple of weeks I would expect it to be back on.

Met 2/17 is also using 137.40MHz but isn't now transmitting the SSR format picture so it just switches off in darkness. Both 2/16 and 2/17 were above the UK horizon on October 1st at 1227UTC causing interference with each other. The professional ground stations have directional antennas so they won't suffer from this effect.

During October the use of 137.3MHz has been reported and it appears that propagation is lower than expected.

Metosat-4 and GOES-E

Both of these geostationary weather satellites continue to transmit good quality pictures and the fading during the early hours noticed by many observers seems to have gone. The Japanese (GMS) pictures seem to have improved as well even though their new GMS-4 satellite wasn't yet online.

Pictures

Both of the pictures are from the GOES-E satellite. Fig 1 is a composite of pictures taken by the NOAA 11 polar orbiting re-transmitter by GOES-E on August 10th. It shows the region around Saudi Arabia and the Gulf. The grid lines are superimposed by the satellite controllers.

Fig 2 is a composite from NOAA 11 of the North Atlantic on 4th July showing a vigorous weather system.

Future Projects

An interesting development is happening on the more advanced side of our hobby. Amateur publications are publishing circuits
for construction using advanced components that are falling in price. I have recently seen an article for a very low noise, high gain, wide-band preamp - a dream specification! - for use with the geostationary satellites and high resolution picture transmission. I am constructing this unit because I do need one for looking at GOES pictures.

It was a sure sign that summer was ending when Joanne and I watched baby swallows being fed on her Band II dipole, Fig. 1, before making their long journey to warmer parts. Who knows? They may well be back next year to nest in the eaves of our house and feed their youngsters on the same supplies.

The swallows’ departure prompted me to remind our overseas readers that I am always pleased to include their reports in my columns because these can give us in the UK, a chance to learn how signals in different latitudes and temperatures behave while an opening is in progress. For instance, in Botswana, P.R. Guruprasad (Mopelokoe) keeps an eye on the high power DX stations and when the pressure is varying, he looks for DX in Band II and at 0205 on July 29 he said that PRG 59.6MHz was overloaded at times by a transmission on 89.55MHz which “seemed to be in South Africa on 89.55MHz, and 89.55MHz on 105.2MHz, the 12th and “very strong signals” again from RSR (Ri) on the 17th and from SA stations, stemming from one broadcaster, in Afrikaans early on the 26th, various programmes from Radios Botswana (89MHz) and Setswana (89.55MHz) and more strong signals in English/Afrikaans on 94.8, 98.4 and 100.5MHz on the 30th. “It gives me extreme pleasure to hear Band II even at times when the complete s.w. range gets faded out,” said P.RG.

Tropospheric

While on holiday in Great Yarmouth in September Roy Patrick (Bereavon, uses Vega 215 portable, heard BBC Radios 1 (London), Kent and Norfolk on most days and excellent signals from Belgium (BRIT & 2), “lovely signal on September 21st,” said Roy, and Holland and Belgium on the 22nd. He logged signals from various stations, stemming from one broadcaster, in Afrikaans early on the 26th, various programmes from Radios Botswana (89MHz) and Setswana (89.55MHz) and more strong signals in English/Afrikaans on 94.8, 98.4 and 100.5MHz on the 30th. “It gives me extreme pleasure to hear Band II even at times when the complete s.w. range gets faded out,” said P.RG.

Band I

Sporadic-E addicts will be interested to learn that in India, Lt. Col. Rana (Meerut) received pictures from the USSR on Ch. R1 (49.75MHz) during such disturbances on July 5, 6, 7, 11, 12, 16, 17, 20, 21, 23, 25 and 28 and September 3, 5 and 6. In addition he logged pictures from Division Ch. E2 (48.25MHz) on July 16, 17 and 20 and August 5. Among the programmes he saw were cartoons, documentaries, news, Figs. 1 and 2, films, the “TCCP” caption and a test card from the USSR and, a pre

Media Involvement

Finally, be cautious if you are asked to provide any sort of weather forecasting for the press. Satellite enthusiasts monitoring the planet can now forecast the weather quickly for at least a day or so in advance, I reluctantly agreed to do this for one month when asked by a national daily and was one of several people involved. At the end of it they told me that I had “done very well” and arranged a photographic session. Nothing was ever published and my enquiries of the paper fell on deaf ears. Be careful if you are approached!

Stop Press...

In late October a new Russian Meteor weather satellite, probably Meteor 26, was placed on the scene, transmitting visible pictures in daylight and good-quality infra-red at a rate of 137.5MHz. Full details next month.

Television

Ron Ham

Faraday, Greyfriars, Storrington, West Sussex RH20 4HE

Ron Ham

Faraday, Greyfriars, Storrington, West Sussex RH20 4HE

Ch. R1 at 2010 on October 1 and logged a test card from Czechoslovakia (CST ISR-P) on Ch. E2, the 5th, Edwards, Tony, Jean and I had the pleasure of meeting Igor Khrustalev UA3QJC at the Chak Pit Museum, (Amberley, Sussex) on October 8. Igor was on holiday from Voronezh and, after a tour of the museum’s vintage wireless collection, we decided to look at the Manci’s photographs of Soviet TV which they had received during various Sporadic-E openings. Igor said that he had not been able to watch the 50MHz amateur band because of the heavy signal from a nearby TV transmitter.

Nest Purling (Hull) saw a Soviet clock on Ch. R1 at 1759 (showing 2059) on August 1, followed by the BPG at 2130. On the 13th Igor added the Polish news programing caption “dt” ZDZIENNI TELEWIZYJNY received another test card (RAII) at 1951 on the 2nd and an item about Moscow’ trams at 1851 on the 9th. During the mornings it was decided to look at the Manci’s photographs of Soviet TV which they had received during...
THE MXII MICROREADER
A COMPLETE MORSE/RTTY DECODER WITH TUTOR PRICE £139.95 includes VAT & Postage.

TO ORDER OR FOR MORE INFORMATION ON THIS OR ANY OF OUR OTHER PRODUCTS:
ER A LIMITED
26 CLARENCE COURT
WINWICK OUA
WARRINGTON WA2 8Q
Tel: (0925) 573118

ALSO AVAILABLE FROM
CRT: ST HELENS JERSEY
ELECTROMART: NEATH
HOWES KITS: DAVENTRY
RAS: NOTTINGHAM.
STAR: TYNE & WEAR
WATERS & STANTON
ESSEX

WHAT IS A MICROREADER?
The Microreader is a small compact unit that allows anyone, equipped with a suitable SW receiver, to read Morse and radio telegraphy signals simply and without fuss. No computers, interfaces or program tapes are needed. Just connect the Microreader into the ear or speaker socket and switch on. It really is that easy. The decoded words appear on the built in 16 character LCD display.
The Microreader has all the necessary filtering and noise blanking included to allow reception even under bad conditions. This makes it suitable for use with lower cost or home made sets. Receivers such as the Lowe HF125/225 with their smooth tuning are ideal. Even the Sony 2001D with its 100Hz step size will still give you very good results. A three colour bargraph tuning indicator makes precise station tuning simple, while shift indicators take the guess work out of RTTY.
The main processor in the Microreader is an Intel 8032 running at 12MHz. This makes it fast enough to not only decode and display the text but also to measure and display the frequency a few thousand times each second. It's even fast enough to use its own dictionary to check and correct the text even down to punctuation. The RS232 port in the Microreader can if you wish be used to send decoded messages directly to the screen of a terminal unit or suitable computer. If a permanent record (hard copy) is needed, then just connect it directly to a compatible serial printer.
The Morse tutor can send and receive Morse. No more guessing what was sent at which speed. You see exactly what is being sent as it's sent and you may repeat it as many times as you like. The random characters are sent as ten groups of five characters with at least five seconds delay. The syllable speed, spacing and type. Plug in a Morse key and see what your sending is really like. Even experienced CW operators find this feature extremely useful for showing up embarrassing keying faults (especially own name and callsign). ERA Ltd. is a manufacturing facility and as such has no showroom. We do however accept personal callers who may like to find out more about the Microreader or try one on the spot in our showroom.

RADIO BOOKS
Maritime Radio Handbook - New Edition £13.75*
Guide to Utility Stations 1989 £18.75 now £16.00*
Supplement 2 for 1989 edition £2.85*
Passport to World Band Radio 1989 £12.95 now £10.50
World Broadcast Station Address Book £2.95*
Shortwave Listening with The Experts £5.00
Grove Shortwave Directory 1989 £12.95 now £10.50
Ninety Nine Nights on Medium Wave £2.95
Embassy Radio Communication £9.95
Time Signal Stations £9.95
Catalogue of TV Pictures Europe £9.95
Air Band Radio Handbook £5.95
Flying Routes 1989 £4.00
Air Traffic Control £5.95
AERAD £5.85
A TV-0Xers Handbook £5.95
UK Table of Radio Frequency Allocations £12.00
Radio Beacon Handbook £9.95
Guide to Facsimile Stations £12.25
Worldwide Marine Radio Facsimile £9.95
Guide To Former Utility Transmissions £8.75 now £4.75
Communication Satellites £13.50
Introduction to Satellite Television £5.95
Uno, Dos, Cuatro - Guide to Number Stations £9.75
Limited Space ShortWave Antenna Solutions £9.95
Scanners £7.95
Scanner Guide £7.95
ITU List of Ship's Call-signs + supplements £35.80
ITU List of Ship's Stations + supplements £40.00
Better RadioTV Reception and UHF reception at 110MHz £9.95
Air and Metro Code Manual £14.50
RTTY Today £7.85
Dial Search 1988/89 £3.25
Listeners Logheets - per pack of 100 £2.20
Confidential Frequency List £12.95
Wave Antenna Reception of MW/LW £3.50
Secrets of Successful QSLing £6.50
Monitoring Times £2.20*

Postage: £1.00 UK or £2 overseas per order. Books marked * post free UK only.

INTERBOOKS, S129, 8 Abbot Street,
Perth PH2 OEB, Scotland
Tel: 0738-30707

Short Wave Magazine December 1989
Poland and the USSR, respectively. Neil again caught Russian news, around 1800 on the 10th and watched a report about a Mexican train crash with the caption "TACC COOSWAET" (Tass report). Finally at midday on the 22nd he noted a caption in Cyrillic, another saying "INTERMECO" and an Orchestra on Ch. E3.

Simon Hamer (New Radnor) received pictures from Poland and the USSR on September 21, Finland and Scandinavia on the 22nd, Spain on the 23rd and Czechoslovakia, Hungary, Poland, Sweden and the USSR on October 7.

Among the smearable "F2" pictures identified by Simon on Ch. E2 were Arabic Teletext from Dubai on October 8, a test pattern from Iran on the 9th and the "ZBC" test card from Zimbabwe on the 10th. I received strong sync-pulses, with my ex-military R216 v.h.f. receiver and a mixture of unlockable television signals, typical "F2", on Ch. R1 between 0845 and 0930 on the 16th.

Picture Archives

During the openings between June and August David Hunt (Brighton) received colour pictures from Scandinavia, Figs. 4 and 5 and toward the end of July Malcolm Hince (Hereford) logged strong signals from Spain’s TVE1, Fig. 6. On June 19 and July 22, David Glenday (Arbroath) received a test card and a programme caption, Figs. 7 and 8, from Denmark on the u.h.f. Channels E66 and E40 respectively.

Tropospheric

During various morning and evening tropo-openings on July 5, 6, 20 and 26, August 12 and 31 and September 4, 9 and 10, Rana Roy watched Breakfast TV and some evening programmes from Agra, Bhatinda, Jalandhar, Kasauli, Lahore and Rawalpindi, Figs. 9, in Band III.

Andrew Jackson (Birkenhead) took advantage of the good conditions between September 3 and 10 for a spot of u.h.f. DXing and received pictures, at varying strengths, from BBC1 East, Midlands, North East, Northern Ireland, North West, South and Scotland, BBC2 from Winter Hill and the IBA stations Anglia TV from Sandy Heath, Border from Caldbeck, Central and Central TV East Midlands from Sutton Coldfield and Waltham respectively, HTV West Mendip, Scottish from Black Hill, S4C from Moel y Parc, Tyne Tees from Bilsdale and Pontop Pike, TVS from Hannington and Ulster from Divis. Andrew’s u.h.f. antennas can be seen in Fig. 10.

While the very high pressure system (30.6in) was moving in early October, I received negative pictures from France at 0830 on the 1st, news and sport, in colour from RTE at 1830 on several channels in Band III on the 2nd and varying degrees of co-channel interference on u.h.f. signals on both days.

Among the DX logged in a super haul by Simon Hamer, in Bands III, IV and V, during the openings on September 20 and 21 and October 3.
and 4, were stations in Austria (ORF1 & 2), Belgium (VRT1 & 2), Denmark (DR and TV2 DANMARK), France (TF1, TDF, East and West Germany (DFG1 & 2, ARD1, BFBS, BR1, HESSEN3, HR1, NDR1 & 2), SWF, "SSVC GERMANY", WEST3 and ZDF), Holland (NCRV1 and NCRV2), Ireland (RTÉ1 and Network 2), Luxembourg (RTL PLUS), Norway (NRK), Poland (TVP1), Sweden (SVT1 & 2) and Switzerland (1-PTT, SRG1 and 2-PTT-TSI) (Swiss/Italian).

Mike Bennett (Slough) received text cards from RTBF1 on Ch. E8 or E12 at 0953 on 13 January 1991 and on 13 February 1991. Between January 13 and February 13, 1991, faxed reports were received from France (CANAL+) and cartoons, church service, test-cards and teletext from RTÉ1 and 2 and Switzerland (1-PTT and 2-PTT). These faxed reports opened up two u.h.f. first-timers for David Glenday, RTÉ on Ch. E29 on 30 January 1990 and for a brief period at “snowstorm” level, on Ch. E35 on 26 January 1991. David told me that at 1305 he saw the East German (DOR F21) text card from Brocken on Ch. E34 rise out of the noise and was quite strong until around 1400. Although they had been about, he detected this weak signal on Ch. 35 and first thought it was Czechoslovakia, however, when it finally locked at 1920 there was no doubt that it came from Poland. His u.h.f. DX haul included programmes from Holland (NED1 & 2A) and from Polish transmitters at Crystal Palace, Emley Moor, Moel y Parc and Sutton Ings. Those who were DXing on the evening of 13 February 1991, will be interested to know that Sandy Heath on October 1, Denmark and France on the 3rd and Belgium (BRT1 & 2) and West Germany’s WDR1 on the 4th.

“Things have been rather flat here over the last month on Bands I and II,” wrote John Woodcock (Basingstoke) on October 11, 1990. However, he did log pictures, at varying strengths in Band III, from France on September 20 and 29 and possibly Germany at 1430 on October 2, and ovadia from Wetquith on Ch. E9, to wish you a good listening time in UTC.

Satellite TV

During a tropospheric opening on Wednesday, 30 January, David Glenday received pictures of an announce, Fig. 11, on Ch. E62, from a SAT-1 relay in West Germany, and the Mancinis recently logged a Nordic test-card, Fig. 12, direct from EUTELSAT 1.

SSTV

“A new country, JA1HKL answered my QSO call, very pleased to work Japan on s.s.t.v. for the first time,” wrote Les Hobson GOCUI (Rotherham) on September 29. In addition to exchanging 24 and 48 seconds colour pictures with stations in Hungary, Italy, Poland, Spain and Yugoslavia. During the first 12 days of October Les received pictures from CRAFEN and DLFAGI, exchanged 8 seconds pictures on 14MHz with several Europeans, gave HA1DRV his first slow scan contact, worked the special event station C30LEC and increased his tally to 137. Although 14MHz is the popular channel for slow scan work, Les suggests that users give the other slots in the 3.7, 7, 21 and 28MHz bands a try and he feels that the allocation for this mode on 14MHz would be far better if it was moved to the far end of the band.

During the month prior to October 7, Max Wustrau G7BLH (Houghton Conquest) copied slow scan pictures from stations in Hungary, Italy, Spain (EA2J0 calling “CO PACIFICO”) and Switzerland, plus four photographs of mostly regular operators, a scan of a house and the captions, “BUONA SERA GRAZIE DELLA”, “MY NAME IS RAPPALE MY OTHOGENOVA” and “PSSI QSL VIA BUREAUX”.

As another year of broadcasting draws to a close I would like to send all those who have contributed to the success of this section of “Seen & Heard”, by sending along regular and interesting reports. May I take this opportunity to wish you all a very happy Christmas and good listening in the New Year. I look forward to your continuing support in 1990. Keep those reports rolling in!

DX Report

Note: LW & MW frequencies in kHz, SW in MHz; Time in UTC.

Long Wave DX

The third and final stage of the three part plan affecting stations in the long wave band will be implemented on 1 January 1990. The object of the plan is to alter the spacing between the stations so that they are at kHz intervals starting at 156kHz. Stations below 200kHz were affected by the first stage, which was introduced on 1 February 1986. The second stage, which involved the stations below 245kHz, took place on 1 February 1988. The final stage will bring the rest of the stations on the Long Wave line and will change the upper band limit from 281 to 279kHz.

The final stage of the plan will affect many stations including “Atlantic 252” in Clarkestown, S.Ireland, which will move from 254 to 252kHz. Whilst monitoring the band in Macclesfield, Phillip Rambaut noticed that the frequency of the 151kHz station in Trawsfynydd, North Wales, Czechoslovakia has been changed from 272 to 270kHz, presumably in preparation for alignment with the plan.

Writing from Morden, Sheila Hughes says “I thought I would have a try at long wave DX for a change, which has been a neglected aspect of the hobby for me up to now.” As her guide to the band Sheila used the LMS long wave charts and the detailed information and excellent colour maps in the DIAL Search booklet - see SWM Book Service.

A holiday in Yarmouth enabled Roy Patterson (Darby) to check the band from a new location with his Vega 215 portable. No doubt the clear sea paths in some directions helped him to log the thirteen stations noted in the chart.

MW Transatlantic DX

Now that the longer hours of darkness have arrived, no doubt some listeners will come to the conclusion that the MW is a rather quiet band during the search for new stations! In the past the broadcasts from CJOR in St.Johns, Newfoundland on 930 have acted as a pointer to the reception conditions prevailing between E.USA and the UK. On these occasions Rosemary Shirley picked up their transmission in Bristol around 2300, but to avoid confusion in times she decided to listen later. Simon Hamer (New Radnor) logged their signals and...
RMS3 - RTTY, MORSE & SSTV

The Program: Decode, RTTY, Morse & SSTV with one program for your Spectrum.

Menu driven, this program is the most "User Friendly" on the market today. All sections of the program will operate without filter or interface, though a suitable filter will improve decoding on the noisy HF bands.

The Filter: Specially designed for use with this programme, the filter switches easily between the three modes. Each of the three filters incorporated in the unit are designed for optimum performance, and AGC is incorporated as standard. (Please state programme source).

The System: We are able to offer a saving to customers purchasing the program and filter at the same time.

The Program £17.50, the filter £35.00, both £47.50.

Please send large S.A.E. for full details of all our products.

GUIDE TO UTILITY STATIONS 1990

502 pages GBP 20 or DEM 60

This unique manual covers the complete shortwave range from 6 - 150kHz and from 1.6 to 3MHz. It is the only publication in the world with up-to-date frequencies for the current sunspot maximum - published now and not five years too late! Latest technical developments such as the multitude of new ARG and FEC teleprinter systems are covered exclusively by our UTILITY GUIDE. Sophisticated operating methods and regular overseas monitoring missions (1989 for Dominica, Indonesia, Malaysia, Singapore and Somalia) complete our best-seller.

The completely revised new edition includes a frequency list with 17740 frequencies, and a call sign list with 3285 call signs. Up-to-date schedules of FAX meteo stations and RTTY press services are listed both alphabetically and chronologically. Abbreviations, addresses, codes, definitions, explanations, frequency band plans, international regulations, modulation types, NAVTEX schedules, Q and Z codes, station classes, telex codes, etc. - this reference book lists everything. Consequently, it is the ideal companion to the World Radio TV Handbook for the "special" stations on SWI.

We have published our international radio books not only since yesterday but for 20 years. They are in daily use by equipment manufacturers, monitoring services, radio amateurs, shortwave listeners and telecommunication administrations all over the world.

Please ask for our free catalogue, including recommendations from all over the world. All manuals are published in the handy 17 x 24 cm format and, of course, written in English.

Do you want to get the total information immediately? For the special price of £74 or DM220 (you save £14 or DM40) you will receive all our manuals and supplements (altogether more than 1400 pages) plus our new CASSETTE TAPE RECORDING of MODULATION TYPES.

Our prices include airmail to anywhere in the world.

Payment can be by cheque, cash, International Money Order, or Postgiro (account Stuttgart 2093 75-709). Dealer inquiries welcome - discount rates and pro forma invoices on request. Please mail your order to:-

Klingenfuss Publications

Hagenholzer Str. 14
D-7400 Tuebingen
Fed. Rep. of Germany

Tel. 01049 7071 62830

PLEASE MENTION SHORT WAVE MAGAZINE WHEN REPLYING TO ADVERTISEMENTS

SCANNING?

HAVE YOU NOTICED THAT THERE IS SO MUCH RADIO SPECTRUM TO SCAN, AND LITTLE OR NO INFORMATION AVAILABLE ON WHERE THE REALLY INTERESTING TRAFFIC IS? LOOK NO FURTHER — WE OFFER A WIDE RANGE OF FREQUENCY LISTINGS AND BAND PLANS.

FOR A FREE COPY OF OUR LATEST CATALOGUE JUST SEND AN A4 SAE TO S.S.C. P.O. BOX 71 BOURNEMOUTH DORSET BH9 1DT.
BREDHURST ELECTRONICS LTD.

High St, Handcross, W. Sx. RH17 6BW
(0444) 400786

SITUATED AT SOUTHERN END OF M23 — EASY ACCESS TO M25 AND SOUTH LONDON

RECEIVERS

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>HF226</td>
<td>£950</td>
</tr>
<tr>
<td>IC271</td>
<td>£1100</td>
</tr>
<tr>
<td>R2000</td>
<td>£595</td>
</tr>
<tr>
<td>VC10V HF Converter</td>
<td>£150</td>
</tr>
<tr>
<td>FRG8800</td>
<td>£649</td>
</tr>
<tr>
<td>FW9600 HF Converter</td>
<td>£950</td>
</tr>
</tbody>
</table>

HF TRANSCIEVERS

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>TS940x</td>
<td>£1996</td>
</tr>
<tr>
<td>TS440x</td>
<td>£1130</td>
</tr>
<tr>
<td>TS740x</td>
<td>£892</td>
</tr>
<tr>
<td>TS690x</td>
<td>£997</td>
</tr>
<tr>
<td>PT790X</td>
<td>£1599</td>
</tr>
<tr>
<td>PT791X</td>
<td>£660</td>
</tr>
<tr>
<td>IC765</td>
<td>£2469</td>
</tr>
<tr>
<td>IC736</td>
<td>£1500</td>
</tr>
<tr>
<td>IC726</td>
<td>£975</td>
</tr>
<tr>
<td>IC725</td>
<td>£768</td>
</tr>
<tr>
<td>IC726</td>
<td>£890</td>
</tr>
<tr>
<td>Ten Tec Omni V</td>
<td>£1830</td>
</tr>
</tbody>
</table>

DUAL BAND TRANSCIEVERS

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>TM121E</td>
<td>£899</td>
</tr>
<tr>
<td>TM10E</td>
<td>£1496</td>
</tr>
<tr>
<td>PT736R</td>
<td>£1423</td>
</tr>
<tr>
<td>PT738R</td>
<td>£1399</td>
</tr>
<tr>
<td>PT4700F</td>
<td>£575</td>
</tr>
<tr>
<td>IC23E</td>
<td>£599</td>
</tr>
<tr>
<td>IC210E</td>
<td>£498</td>
</tr>
<tr>
<td>IC2400E</td>
<td>£135</td>
</tr>
</tbody>
</table>

TRANSCIEVERS

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>TS811E</td>
<td>£998</td>
</tr>
<tr>
<td>TR816E</td>
<td>£699</td>
</tr>
<tr>
<td>TH405E</td>
<td>£248</td>
</tr>
<tr>
<td>TR416E</td>
<td>£298</td>
</tr>
<tr>
<td>FT749 + FN810</td>
<td>£263</td>
</tr>
<tr>
<td>TR790R</td>
<td>£499</td>
</tr>
<tr>
<td>FT711RH</td>
<td>£375</td>
</tr>
<tr>
<td>IC46E</td>
<td>£298</td>
</tr>
<tr>
<td>IC446E</td>
<td>£310</td>
</tr>
</tbody>
</table>

DUALANTENNA TUNER UNITS

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>FR7700</td>
<td>£169</td>
</tr>
<tr>
<td>IC851AT</td>
<td>£349</td>
</tr>
<tr>
<td>AT330</td>
<td>£208</td>
</tr>
<tr>
<td>AT780</td>
<td>£298</td>
</tr>
<tr>
<td>CAT100</td>
<td>£279</td>
</tr>
<tr>
<td>MF3410</td>
<td>£158</td>
</tr>
<tr>
<td>MF3490</td>
<td>£298</td>
</tr>
</tbody>
</table>

DATATON

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD370 Active Antenna</td>
<td>£77.62</td>
</tr>
<tr>
<td>FL3 Multimode Filter</td>
<td>£164.54</td>
</tr>
<tr>
<td>D-200 Microtutor</td>
<td>£83.40</td>
</tr>
<tr>
<td>ASP Speech Processor</td>
<td>£313.20</td>
</tr>
</tbody>
</table>

COAXIAL SWITCHES

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>SA-660/way SO239</td>
<td>£19.48</td>
</tr>
<tr>
<td>SA-650/way N</td>
<td>£33.69</td>
</tr>
<tr>
<td>D active SO239</td>
<td>£18.69</td>
</tr>
<tr>
<td>D passive N</td>
<td>£23.15</td>
</tr>
<tr>
<td>CS4 4-way BNC</td>
<td>£39.10</td>
</tr>
<tr>
<td>MFJ-1701 6-way SO239</td>
<td>£31.20</td>
</tr>
</tbody>
</table>

POWER SUPPLIES

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>BHD-12A</td>
<td>£74.75</td>
</tr>
<tr>
<td>BHDIH220</td>
<td>£161.95</td>
</tr>
<tr>
<td>DRAE 8 amp</td>
<td>£178.72</td>
</tr>
<tr>
<td>DRAE 12 amp</td>
<td>£194.72</td>
</tr>
<tr>
<td>DRAE 24 amp</td>
<td>£191.94</td>
</tr>
</tbody>
</table>

HAND HELD RECEIVERS

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>PK235 Airband</td>
<td>£68.00</td>
</tr>
<tr>
<td>Sony Air7</td>
<td>£248.00</td>
</tr>
<tr>
<td>Win-10B Airband</td>
<td>£175.00</td>
</tr>
</tbody>
</table>

ANTENNA TUNER UNITS

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC4700</td>
<td>£699</td>
</tr>
<tr>
<td>FRG9600</td>
<td>£509</td>
</tr>
<tr>
<td>RL1</td>
<td>£455</td>
</tr>
<tr>
<td>AR2002</td>
<td>£487</td>
</tr>
<tr>
<td>RS5-Airband</td>
<td>£248</td>
</tr>
<tr>
<td>Standard AX-200</td>
<td>£575</td>
</tr>
</tbody>
</table>

SIRIUS RECEIVER

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>FT7000</td>
<td>£169</td>
</tr>
<tr>
<td>FT817AT</td>
<td>£349</td>
</tr>
<tr>
<td>AT330</td>
<td>£208</td>
</tr>
<tr>
<td>AT780</td>
<td>£298</td>
</tr>
<tr>
<td>CAT100</td>
<td>£279</td>
</tr>
<tr>
<td>MF3410</td>
<td>£158</td>
</tr>
<tr>
<td>MF3490</td>
<td>£298</td>
</tr>
</tbody>
</table>

IC SENSES

ICS Electronics Ltd

For the best in HF and VHF Amateur Data Communication

PK-88 HF/VHF Packet Radio TNC

- HF/VHF Modem
- Host Mode
- Receive only mailbox, 32K RAM
- TCP/IP and NetROM compatible

A superb value packet radio modem, packed with all the most needed features.

AMT-3 Amtor/RTTY Terminal Unit

- Excellent tuning indicator
- Full status display
- Host Mode
- CW ident
- Front end filter optimised for Amtor/RTTY

Amtor is by far the best mode for HF data communication. The AMT-3 gives uncompromising performance at an affordable price.

CABLES & FILTERS

- Hi3-Balun 1:1 Double Braided | £13.96 |
- Beecon Balun 4:1 Double Braided | £18.00 |
- Beecon 7 MHz/480 MHz Trap | £10.95 |
- Seil Amplifying Tape 10m x 5mm | £4.25 |
- T-piece multipole 50ohm centre | £1.60 |
- Small ceramic RX filter | £9.65 |
- Large ceramic RX filter | £9.65 |

ACCESSORIES

- UHF 076 low loss coax 50ohm per metre £0.25 |
- VR 7050 coax dia. 5mm per metre £0.35 |
- 10p 75Ohm coax per metre £0.35 |
- VR 95 50Ohm coax dia. 3.5mm per metre £0.40 |

GARDENS

- G&L 75pp 1:12.5, 30W | £2.95 |
- G&L 1.125 1:1 £2.95 |
- G&L 1:1 £2.95 |
- G&L 1:2 £2.95 |
- G&L 1:3 £2.95 |

ROOMS

See the new range of Palomar Ancilliaries imported from U.S.A. Here now!

MAIL ORDER & RETAIL

SHORT WAVE MAGAZINE

December 1989

50
Local Radio DX Chart

<table>
<thead>
<tr>
<th>Freq</th>
<th>Station</th>
<th>ILR</th>
<th>Power (w)</th>
<th>DXer</th>
</tr>
</thead>
<tbody>
<tr>
<td>550</td>
<td>R. Scolby</td>
<td>10</td>
<td>1.00</td>
<td>DX</td>
</tr>
<tr>
<td>565</td>
<td>Invicta Snd/Gold</td>
<td>0.10</td>
<td>1.50</td>
<td></td>
</tr>
<tr>
<td>565</td>
<td>Gloucester</td>
<td>0.10</td>
<td>1.50</td>
<td></td>
</tr>
<tr>
<td>565</td>
<td>Suffolk</td>
<td>0.10</td>
<td>1.50</td>
<td></td>
</tr>
<tr>
<td>565</td>
<td>Dorset</td>
<td>2.00</td>
<td>3.00</td>
<td></td>
</tr>
<tr>
<td>565</td>
<td>Devon</td>
<td>2.00</td>
<td>3.00</td>
<td></td>
</tr>
<tr>
<td>565</td>
<td>Rutland</td>
<td>1.00</td>
<td>1.50</td>
<td></td>
</tr>
<tr>
<td>565</td>
<td>York</td>
<td>1.00</td>
<td>1.50</td>
<td></td>
</tr>
<tr>
<td>565</td>
<td>BBC Essex</td>
<td>0.80</td>
<td>1.20</td>
<td></td>
</tr>
<tr>
<td>570</td>
<td>Hereford/Worcester</td>
<td>0.03</td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td>570</td>
<td>Gloucester</td>
<td>1.00</td>
<td>1.50</td>
<td></td>
</tr>
<tr>
<td>570</td>
<td>Suffolk</td>
<td>0.63</td>
<td>0.90</td>
<td></td>
</tr>
<tr>
<td>570</td>
<td>Essex</td>
<td>0.50</td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td>570</td>
<td>Kent</td>
<td>0.70</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>570</td>
<td>York</td>
<td>0.50</td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td>570</td>
<td>Cheltenham</td>
<td>0.27</td>
<td>0.40</td>
<td></td>
</tr>
<tr>
<td>570</td>
<td>Rutland</td>
<td>0.64</td>
<td>0.90</td>
<td></td>
</tr>
<tr>
<td>570</td>
<td>Essex</td>
<td>0.80</td>
<td>1.20</td>
<td></td>
</tr>
<tr>
<td>570</td>
<td>BBC Essex</td>
<td>0.20</td>
<td>0.30</td>
<td></td>
</tr>
<tr>
<td>570</td>
<td>Leeds</td>
<td>0.50</td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td>590</td>
<td>Cheltenham</td>
<td>0.27</td>
<td>0.40</td>
<td></td>
</tr>
<tr>
<td>590</td>
<td>Oxford</td>
<td>1.00</td>
<td>1.50</td>
<td></td>
</tr>
<tr>
<td>590</td>
<td>Norwich</td>
<td>1.50</td>
<td>2.25</td>
<td></td>
</tr>
<tr>
<td>590</td>
<td>Norfolk</td>
<td>0.30</td>
<td>0.45</td>
<td></td>
</tr>
<tr>
<td>590</td>
<td>GWRR (Brunel B)</td>
<td>0.30</td>
<td>0.45</td>
<td></td>
</tr>
<tr>
<td>590</td>
<td>Air</td>
<td>0.12</td>
<td>0.18</td>
<td></td>
</tr>
<tr>
<td>590</td>
<td>Cheltenham</td>
<td>0.20</td>
<td>0.30</td>
<td></td>
</tr>
<tr>
<td>590</td>
<td>Cumber</td>
<td>1.50</td>
<td>2.25</td>
<td></td>
</tr>
<tr>
<td>590</td>
<td>Furness</td>
<td>1.00</td>
<td>1.50</td>
<td></td>
</tr>
<tr>
<td>590</td>
<td>Lancaster</td>
<td>0.45</td>
<td>0.67</td>
<td></td>
</tr>
<tr>
<td>590</td>
<td>Devon</td>
<td>1.00</td>
<td>1.50</td>
<td></td>
</tr>
<tr>
<td>590</td>
<td>Lincolnshire</td>
<td>1.00</td>
<td>1.50</td>
<td></td>
</tr>
<tr>
<td>590</td>
<td>Norfolk</td>
<td>1.50</td>
<td>2.25</td>
<td></td>
</tr>
<tr>
<td>590</td>
<td>Norwich</td>
<td>0.30</td>
<td>0.45</td>
<td></td>
</tr>
<tr>
<td>590</td>
<td>GWRR (Brunel B)</td>
<td>0.30</td>
<td>0.45</td>
<td></td>
</tr>
<tr>
<td>590</td>
<td>Trans (GEM-AM)</td>
<td>0.20</td>
<td>0.30</td>
<td></td>
</tr>
<tr>
<td>590</td>
<td>Devon</td>
<td>0.20</td>
<td>0.30</td>
<td></td>
</tr>
<tr>
<td>590</td>
<td>Wiven</td>
<td>0.30</td>
<td>0.45</td>
<td></td>
</tr>
<tr>
<td>590</td>
<td>Abingdon</td>
<td>0.10</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td>590</td>
<td>Oxfordshire</td>
<td>0.50</td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td>590</td>
<td>Devon</td>
<td>1.00</td>
<td>1.50</td>
<td></td>
</tr>
<tr>
<td>590</td>
<td>Holme (G.C)</td>
<td>5.25</td>
<td>7.90</td>
<td></td>
</tr>
<tr>
<td>590</td>
<td>Red Rose</td>
<td>0.25</td>
<td>0.37</td>
<td></td>
</tr>
<tr>
<td>590</td>
<td>Solent</td>
<td>1.00</td>
<td>1.50</td>
<td></td>
</tr>
<tr>
<td>590</td>
<td>Trans (GEM-AM)</td>
<td>0.50</td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td>590</td>
<td>Cambridgeshire</td>
<td>0.50</td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td>590</td>
<td>Downtown</td>
<td>1.00</td>
<td>1.50</td>
<td></td>
</tr>
<tr>
<td>590</td>
<td>Bucks</td>
<td>1.00</td>
<td>1.50</td>
<td></td>
</tr>
<tr>
<td>590</td>
<td>Kent</td>
<td>0.50</td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td>590</td>
<td>Northfield</td>
<td>1.00</td>
<td>1.50</td>
<td></td>
</tr>
<tr>
<td>590</td>
<td>Sheffield</td>
<td>1.00</td>
<td>1.50</td>
<td></td>
</tr>
<tr>
<td>590</td>
<td>West Sound</td>
<td>0.32</td>
<td>0.48</td>
<td></td>
</tr>
<tr>
<td>590</td>
<td>Northampton</td>
<td>0.50</td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td>590</td>
<td>Derby</td>
<td>1.20</td>
<td>1.80</td>
<td></td>
</tr>
<tr>
<td>590</td>
<td>Swindon (AM)</td>
<td>0.50</td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td>590</td>
<td>Bristol</td>
<td>0.83</td>
<td>1.25</td>
<td></td>
</tr>
<tr>
<td>590</td>
<td>Cyle</td>
<td>0.50</td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td>590</td>
<td>BBC Shropshire</td>
<td>0.20</td>
<td>0.30</td>
<td></td>
</tr>
<tr>
<td>590</td>
<td>Metro Radio</td>
<td>0.50</td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td>590</td>
<td>Fosseley</td>
<td>0.50</td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td>590</td>
<td>Bedfordshire</td>
<td>0.10</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td>590</td>
<td>GWRR (Brunel B)</td>
<td>0.16</td>
<td>0.24</td>
<td></td>
</tr>
</tbody>
</table>

Short Wave DX

Generally excellent conditions have been noted in the high frequency bands during most days, but from time to time the ionosphere has been disturbed by solar flares and reception has been disrupted. Most of the strong DX from the 25 MHz (11m) band have been reaching their targets at quite remarkable strength! The broadcasts to Europe include the Voice of the UAE in Abu Dhabi 25.895 (Ar 0600-1600, noted as SIO 455 between 0945 and 1520), as noted by Kenneth Buck in Edinburgh; also Radio RSA Johannesburg, S.Africa on 25.750 (Gd, Ger, Fr 1400-1800) and 25.870 (Gd, Ger, Fr 0900-1300; Eng, Gd 1400-1600; Ger, Du 1700-1900), as noted by SIO 5544 at 1505 as Raymond Edwards in Chatham. The 500kW broadcasts from Radio RSA have also reached Quebec, Canada during 26 days of the month, where Alan Roberts logged them as 35434 at 1700. The broadcasts to the Middle East and Africa are also being well received. Listening in George, S.Africa Dick Moon noted the BBC via Daventry, UK 25.750 (Eng to Africa 1100-1430) as 4090 AM (in France 25.820 (Fr to Africa 0900-1600) as 34343; also Radio Moscow, USSR 26.780 as 44444 at 1427; Radio Norway, Oslo 26.730 as 44433 at 0815; Radio Denmark, Copenhagen 25.850 as 44333 at 124; and BRT Brussels 26.050 as 44433 at 1000.

Good long distance reception has been noted in the 21 MHz (13m) band during most days. Some of the broadcasts from Radio Australia have been reaching the UK, although they are intended for other areas. Using a homemade single valve (955 ac) straight receiver in Bungay, Roy Pearce picked up their transmission to Korea, Korea, Malaysia and Singapore on 21.525 (Eng 1300-1430) at 1350, which he noted as SIO 322. Perhaps Ron’s achievement will encourage others to build an inexpensive straight set based on a single valve or 2N3819 f.e.t. transmitter.

The broadcast to Europe in this band include: Radio Japan, Yamata 21.500 (Sw, It, Fr 0300-0700), as noted as 34343 at 0559 by Kenneth Reece while in Bonaire; Radio Japan via Mojabi, Gabon 21.690 (Sw, It, Fr, Eng, Jap 0530-0830) - SIO 433 at 0700.
SEEN & HEARD

Medium Wave DX Chart

<table>
<thead>
<tr>
<th>Freq (kHz)</th>
<th>Station</th>
<th>Country</th>
<th>Power (kW)</th>
<th>DXer</th>
</tr>
</thead>
<tbody>
<tr>
<td>531</td>
<td>Leipzig</td>
<td>Germany</td>
<td>10</td>
<td>T</td>
</tr>
<tr>
<td>540</td>
<td>Düsseldorf</td>
<td>Germany</td>
<td>100</td>
<td>T</td>
</tr>
<tr>
<td>589</td>
<td>Soft</td>
<td>Hungary</td>
<td>2000</td>
<td>L</td>
</tr>
<tr>
<td>540</td>
<td>DLR-Braunschweig</td>
<td>Germany</td>
<td>1500</td>
<td>T, F, K, L, M, R, T</td>
</tr>
<tr>
<td>593</td>
<td>Espoo</td>
<td>Finland</td>
<td>100</td>
<td>T</td>
</tr>
<tr>
<td>589</td>
<td>CD&F Rostock</td>
<td>Germany</td>
<td>750</td>
<td>L</td>
</tr>
<tr>
<td>593</td>
<td>Valencia</td>
<td>Spain</td>
<td>500</td>
<td>T</td>
</tr>
<tr>
<td>593</td>
<td>RTC-1 Tullnmore</td>
<td>Ireland</td>
<td>200</td>
<td>L, R</td>
</tr>
<tr>
<td>593</td>
<td>West Berlin</td>
<td>Germany</td>
<td>100</td>
<td>T</td>
</tr>
<tr>
<td>593</td>
<td>Stuttgart</td>
<td>Germany</td>
<td>250</td>
<td>L, F, K, L, M</td>
</tr>
<tr>
<td>593</td>
<td>Dl Wian</td>
<td>Austria</td>
<td>650</td>
<td>M</td>
</tr>
<tr>
<td>593</td>
<td>RFP Paris</td>
<td>France</td>
<td>7 P</td>
<td></td>
</tr>
<tr>
<td>593</td>
<td>RNE-1 Madrid</td>
<td>Spain</td>
<td>200</td>
<td>P, T</td>
</tr>
<tr>
<td>593</td>
<td>BBC-1 Dunstable</td>
<td>UK</td>
<td>100</td>
<td>L, M</td>
</tr>
<tr>
<td>593</td>
<td>BBC-2 Newcastle</td>
<td>UK</td>
<td>200</td>
<td>L, M</td>
</tr>
<tr>
<td>593</td>
<td>RTE-2 Athlone</td>
<td>Ireland</td>
<td>100</td>
<td>L</td>
</tr>
<tr>
<td>593</td>
<td>Leida</td>
<td>Spain</td>
<td>10</td>
<td>P</td>
</tr>
<tr>
<td>593</td>
<td>Tallinn</td>
<td>USSR</td>
<td>100</td>
<td>E</td>
</tr>
<tr>
<td>602</td>
<td>RTBF-1 Wolv</td>
<td>Belgium</td>
<td>300</td>
<td>F, K, L, M, P, R</td>
</tr>
<tr>
<td>602</td>
<td>RNE-1 Sor Juan</td>
<td>Spain</td>
<td>100</td>
<td>K</td>
</tr>
<tr>
<td>612</td>
<td>Vigo</td>
<td>Spain</td>
<td>100</td>
<td>K, L</td>
</tr>
<tr>
<td>612</td>
<td>Tenno-Jodokus</td>
<td>Tunisia</td>
<td>800</td>
<td>G</td>
</tr>
<tr>
<td>612</td>
<td>Lubice</td>
<td>Czechoslovakia</td>
<td>1500</td>
<td>K, L, M</td>
</tr>
<tr>
<td>630</td>
<td>La Coruna</td>
<td>Spain</td>
<td>100</td>
<td>T, P</td>
</tr>
<tr>
<td>648</td>
<td>BBC-Droxford</td>
<td>UK</td>
<td>500</td>
<td>K, L, M</td>
</tr>
<tr>
<td>648</td>
<td>Simferopol</td>
<td>USSR</td>
<td>150</td>
<td>E</td>
</tr>
<tr>
<td>667</td>
<td>Burgh</td>
<td>England</td>
<td>250</td>
<td>G</td>
</tr>
<tr>
<td>667</td>
<td>BBC-1 Wrexham</td>
<td>UK</td>
<td>200</td>
<td>J, L</td>
</tr>
<tr>
<td>686</td>
<td>Bodensee</td>
<td>Germany</td>
<td>500</td>
<td>H, L</td>
</tr>
<tr>
<td>686</td>
<td>Bielefeld</td>
<td>Germany</td>
<td>20</td>
<td>J, L</td>
</tr>
<tr>
<td>675</td>
<td>Hivernus-2</td>
<td>Holland</td>
<td>120</td>
<td>D, K, L, M, R</td>
</tr>
<tr>
<td>684</td>
<td>RNE-1 Sevilla</td>
<td>Spain</td>
<td>250</td>
<td>J, L, M</td>
</tr>
<tr>
<td>684</td>
<td>BBC-2 Bristol</td>
<td>UK</td>
<td>150</td>
<td>M</td>
</tr>
<tr>
<td>702</td>
<td>Askern</td>
<td>France</td>
<td>500</td>
<td>L</td>
</tr>
<tr>
<td>702</td>
<td>Monto Carlo</td>
<td>Monaco</td>
<td>100</td>
<td>P</td>
</tr>
<tr>
<td>702</td>
<td>Zamora</td>
<td>Spain</td>
<td>500</td>
<td>L</td>
</tr>
<tr>
<td>702</td>
<td>Rennes</td>
<td>France</td>
<td>300</td>
<td>F, M, P</td>
</tr>
<tr>
<td>720</td>
<td>Heidelberg</td>
<td>Germany</td>
<td>500</td>
<td>L</td>
</tr>
<tr>
<td>720</td>
<td>BBC-1 Munich</td>
<td>Germany</td>
<td>1500</td>
<td>T</td>
</tr>
<tr>
<td>720</td>
<td>BBC-1 Brussels</td>
<td>Belgium</td>
<td>500</td>
<td>L, M</td>
</tr>
<tr>
<td>720</td>
<td>BBC-2 London</td>
<td>UK</td>
<td>100</td>
<td>J, L</td>
</tr>
<tr>
<td>720</td>
<td>BBC-1 Belfast</td>
<td>UK</td>
<td>50</td>
<td>J, L</td>
</tr>
<tr>
<td>720</td>
<td>Rome</td>
<td>Italy</td>
<td>100</td>
<td>J, L, M, T</td>
</tr>
<tr>
<td>720</td>
<td>BBC-1 Zurich</td>
<td>Switzerland</td>
<td>500</td>
<td>L, K, L</td>
</tr>
<tr>
<td>720</td>
<td>BBC-2 Oslo</td>
<td>Norway</td>
<td>100</td>
<td>J, L</td>
</tr>
<tr>
<td>720</td>
<td>BBC-1 Copenhagen</td>
<td>Denmark</td>
<td>60</td>
<td>J, L</td>
</tr>
<tr>
<td>720</td>
<td>BBC-1 Sana</td>
<td>Spain</td>
<td>60</td>
<td>L</td>
</tr>
<tr>
<td>720</td>
<td>Berlin</td>
<td>Germany</td>
<td>1500</td>
<td>L, M</td>
</tr>
<tr>
<td>720</td>
<td>Berlin</td>
<td>Germany</td>
<td>500</td>
<td>L, M</td>
</tr>
<tr>
<td>720</td>
<td>BBC-1 Brussels</td>
<td>Belgium</td>
<td>100</td>
<td>J, K, L, M, T</td>
</tr>
<tr>
<td>720</td>
<td>BBC-2 London</td>
<td>UK</td>
<td>500</td>
<td>L, M, T</td>
</tr>
<tr>
<td>720</td>
<td>BBC-1 Brussels</td>
<td>Belgium</td>
<td>100</td>
<td>J, K, L, M, T</td>
</tr>
<tr>
<td>720</td>
<td>BBC-2 London</td>
<td>UK</td>
<td>250</td>
<td>J, L, M</td>
</tr>
<tr>
<td>720</td>
<td>BBC-1 Copenhagen</td>
<td>Denmark</td>
<td>50</td>
<td>J, L</td>
</tr>
<tr>
<td>720</td>
<td>BBC-1 Helsinki</td>
<td>Finland</td>
<td>100</td>
<td>J, L</td>
</tr>
<tr>
<td>720</td>
<td>BBC-2 London</td>
<td>UK</td>
<td>150</td>
<td>J, L</td>
</tr>
<tr>
<td>720</td>
<td>BBC-1 Edinburgh</td>
<td>Scotland</td>
<td>500</td>
<td>J, L</td>
</tr>
<tr>
<td>720</td>
<td>BBC-1 Belfast</td>
<td>UK</td>
<td>75</td>
<td>J, L</td>
</tr>
<tr>
<td>720</td>
<td>BBC-1 Copenhagen</td>
<td>Denmark</td>
<td>100</td>
<td>J, L</td>
</tr>
<tr>
<td>720</td>
<td>BBC-2 London</td>
<td>UK</td>
<td>250</td>
<td>J, L, M</td>
</tr>
<tr>
<td>720</td>
<td>BBC-1 Brussels</td>
<td>Belgium</td>
<td>200</td>
<td>J, K, L, M, T</td>
</tr>
<tr>
<td>720</td>
<td>BBC-2 London</td>
<td>UK</td>
<td>600</td>
<td>J, K, L, M, T</td>
</tr>
<tr>
<td>720</td>
<td>BBC-1 Helsinki</td>
<td>Finland</td>
<td>50</td>
<td>J, L</td>
</tr>
<tr>
<td>720</td>
<td>BBC-2 London</td>
<td>UK</td>
<td>125</td>
<td>J, L</td>
</tr>
<tr>
<td>720</td>
<td>BBC-1 Copenhagen</td>
<td>Denmark</td>
<td>200</td>
<td>J, L, M</td>
</tr>
<tr>
<td>720</td>
<td>BBC-2 London</td>
<td>UK</td>
<td>100</td>
<td>J, L</td>
</tr>
<tr>
<td>720</td>
<td>BBC-1 Brussels</td>
<td>Belgium</td>
<td>50</td>
<td>J, L</td>
</tr>
<tr>
<td>720</td>
<td>BBC-2 London</td>
<td>UK</td>
<td>200</td>
<td>J, L</td>
</tr>
<tr>
<td>720</td>
<td>BBC-1 Copenhagen</td>
<td>Denmark</td>
<td>100</td>
<td>J, L</td>
</tr>
<tr>
<td>720</td>
<td>BBC-2 London</td>
<td>UK</td>
<td>50</td>
<td>J, L</td>
</tr>
</tbody>
</table>

DXers:
- A: Darren Beasley, Bridgewater.
- B: Scott Caldwell, Worthington.
- C: Jim Cash, Swinburn.
- D: Raymond Edwards, Chatham.
- E: Simon Hame, New Rodnor.
- F: Sheila Hughes, Morden.
- G: Rhoderick Illman, Thurnham, Duman.
- H: Graham Johnson, Nunetston.
- I: Cyril Kather, Sheffield.
- J: George Millmore, Wotton I.O.W.
- K: R.O. Blumberg, Glasgow.
- L: Philip Rowhani, Marchfield.
- M: Mark Selby, Aldershot.
- N: Tim Shirley, Bristol.
- O: Chris Shorten, Norwich.
- P: Darren Tappe, Tonbridge.
- Q: Mark Thompson, Wrexfield.
- R: Phil Townsend, London.
- S: Ted Wallen-Vincent, St. Mary's.
- T: Max Wustrau, Bedford.

Notes:
- Entries marked * were logged during darkness. All other entries were logged during daylight.
EX MILITARY COMMUNICATIONS RECEIVER R210. Frequency 2 to 16MHz in 7 switched bands AM, CW, SSB, Fco. Aerial inputs 80cm balanced line, long wire or whip, CW filter, BFO, Noise blanker, complete with 240 volt AC power cord, loudspeaker, headphone jack and pair of lightweight headphones.

Price £79.80 carr. Mainland only £8.00.

EX MILITARY COMMUNICATIONS RECEIVERS TYPE R210

A 3-BAND RECEIVER KIT FOR £63!

EX MILITARY COMMUNICATIONS RECEIVERS R210, 16KHz to 16MHz in 7 switched bands AM, CW, SSB, Fco. Aerial inputs 80cm balanced line, long wire or whip, CW filter, BFO, Noise blanker, complete with 240 volt AC power cord, loudspeaker, headphone jack and pair of lightweight headphones.

Price £79.80 carr. Mainland only £8.00.

EX MILITARY COMMUNICATIONS RECEIVERS TYPE R210

A 3-BAND RECEIVER KIT FOR £63!

A Complete in Every Detail

- 80-40-20m Bands!
- Direct Conversion
- Fully Detailed Manual

Other super kits include: DTR3 TRANSCEIVER, ATUs, AUDIO FILTER etc etc ... all 'well styled' and complete!

For full details of the 'CARLTON' and the rest of our range, send a SAE to:

LAKE ELECTRONICS, 7 MIDDLETON CLOSE, NUTHAL, NOTTINGHAM NG16 1BX

or ring Alan 64DVW on (0692) 382509 (callers by appointment only).

JAVIATION

Specialists in VHF/UHF Airband equipment

We carry in stock one of the widest ranges of scanning receivers available and can offer expert advice on all matters aviation wise.

NEW MVT-5000 MQL 25-550/800-1300 - Please call for price

NEW MVT-6000 Base 25-550/800-1300 - Please call for price

AOR800 Leather carry cases and Spares Battery Packs also in Stock

Latest UHF airband frequency list: £2.00

VHF airband frequency list: £3.00

STEPHENS-JAMES LTD.

47 WARRINGTON ROAD, LEIGH, LANCs. WN7 3EA
Telephone (0942) 676790

Turn at the Greyhound Motel on the A580 (East Lancs Road).

ANTENNA RANGE

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUBERCRAFT</td>
<td>£209.00</td>
</tr>
<tr>
<td>A3 3 Element Tribander Beam</td>
<td>£329.00</td>
</tr>
<tr>
<td>A4 4 Element Tribander Beam</td>
<td>£353.35</td>
</tr>
<tr>
<td>10-30D 3 Element 10m Monobander</td>
<td>£118.04</td>
</tr>
<tr>
<td>15-30D 3 Element 15m Monobander</td>
<td>£139.70</td>
</tr>
<tr>
<td>20-30D 3 Element 20m Monobander</td>
<td>£238.21</td>
</tr>
<tr>
<td>AP8 8 Band Vertical 25H High</td>
<td>£164.35</td>
</tr>
<tr>
<td>AP8 5 Band Vertical 25H High</td>
<td>£123.85</td>
</tr>
<tr>
<td>18 Element 2m Boomer Antenna</td>
<td>£106.99</td>
</tr>
<tr>
<td>15 Element 2m Boomer Antenna</td>
<td>£118.00</td>
</tr>
<tr>
<td>Ringo Ranger 2m Vertical</td>
<td>£42.98</td>
</tr>
<tr>
<td>New RS 5 Band half wave vertical</td>
<td>£29.00</td>
</tr>
<tr>
<td>DW 10, 18, 24 MHz Rotary dipole</td>
<td>£19.00</td>
</tr>
<tr>
<td>BUTTENUR</td>
<td>£39.69</td>
</tr>
<tr>
<td>HF 70-5 Band vertical Antenna</td>
<td>£36.99</td>
</tr>
<tr>
<td>HF 2V 80/45 metre Vertical</td>
<td>£142.00</td>
</tr>
<tr>
<td>M 1824 HFV 1/712m Add on kit</td>
<td>£30.50</td>
</tr>
<tr>
<td>20MRK HFV 2m Kit</td>
<td>£23.38</td>
</tr>
<tr>
<td>HY-GAIN</td>
<td>£249.00</td>
</tr>
<tr>
<td>THZ M3 3 Element Tribander</td>
<td>£185.95</td>
</tr>
<tr>
<td>18AVY 5 Band Vertical</td>
<td>£148.46</td>
</tr>
<tr>
<td>JAYBREAM</td>
<td>£249.00</td>
</tr>
<tr>
<td>TB3 M3 3 Element Tribander</td>
<td>£348.00</td>
</tr>
<tr>
<td>TB2 M3 2 Element Tribander</td>
<td>£234.00</td>
</tr>
<tr>
<td>TB1 M3 2 Element Tribander dipole</td>
<td>£117.30</td>
</tr>
<tr>
<td>VDR3 M3 Tribander Vertical</td>
<td>£81.56</td>
</tr>
<tr>
<td>DB4 8v Element Beam</td>
<td>£109.83</td>
</tr>
<tr>
<td>4v4v4m 4m 4v Element Beam</td>
<td>£44.76</td>
</tr>
<tr>
<td>4v4v4m 8v 4v Element Beam</td>
<td>£64.05</td>
</tr>
<tr>
<td>LW25 5 Element 2m</td>
<td>£20.83</td>
</tr>
<tr>
<td>LW30cm 5 Element 2m</td>
<td>£28.35</td>
</tr>
<tr>
<td>PB5/40cm Parabeam</td>
<td>£77.08</td>
</tr>
<tr>
<td>8xv2m 5 Element Crossed</td>
<td>£35.68</td>
</tr>
<tr>
<td>8xv2m 9 Element Crossed</td>
<td>£35.68</td>
</tr>
</tbody>
</table>

HAND HELD SCANNING RECEIVERS

WIN 108 Air band | £175.00|
AR90DJK	£199.00
AR90DJK + Base Station Receiver	£235.00
NEW HF 225 general coverage receiver	£295.00
NEW "Jupiter" Multi-Channel Handheld Receiver	£295.00
"Jupiter" Base Receiver	£379.00

KENWOOD RANGE

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>TS9405 HF Transceiver</td>
<td>£195.00</td>
</tr>
<tr>
<td>TS440A Automatic Antenna tuner</td>
<td>£268.00</td>
</tr>
<tr>
<td>SP940A Speaker with filters</td>
<td>£87.55</td>
</tr>
<tr>
<td>ATIS450S HF Transceiver</td>
<td>£164.52</td>
</tr>
<tr>
<td>AT4400 Automatic Antenna tuner</td>
<td>£223.48</td>
</tr>
<tr>
<td>TS550 20 amp power supply</td>
<td>£105.00</td>
</tr>
<tr>
<td>TS1540S HF Transceiver</td>
<td>£362.00</td>
</tr>
<tr>
<td>PS430 Power supply</td>
<td>£173.78</td>
</tr>
<tr>
<td>AT250 Automatic Antenna tuning unit</td>
<td>£306.00</td>
</tr>
<tr>
<td>AT220 Transmitter Unit</td>
<td>£106.49</td>
</tr>
<tr>
<td>TL222 HF Linear amplifier</td>
<td>£149.05</td>
</tr>
<tr>
<td>M500 base station microphone</td>
<td>£48.00</td>
</tr>
<tr>
<td>M500 De luxe deuce microphone</td>
<td>£99.00</td>
</tr>
<tr>
<td>TR752 2M Multimode Mobile Transceiver</td>
<td>£329.00</td>
</tr>
<tr>
<td>TR8510 70cm multimode Transceiver</td>
<td>£329.00</td>
</tr>
<tr>
<td>TM231E 50watt 2m Transceiver</td>
<td>£318.00</td>
</tr>
<tr>
<td>TM431E 90watt 30cm Transceiver</td>
<td>£469.00</td>
</tr>
<tr>
<td>TS8005D HF Transceiver + EMeters</td>
<td>£99.05</td>
</tr>
<tr>
<td>TS225 2m Handheld Transceiver</td>
<td>£225.00</td>
</tr>
<tr>
<td>TS250 2m Handheld Transceiver</td>
<td>£225.00</td>
</tr>
<tr>
<td>TS4200 70cm Handheld Transceiver</td>
<td>£325.00</td>
</tr>
<tr>
<td>TS4205 70cm Handheld Transceiver</td>
<td>£325.00</td>
</tr>
<tr>
<td>R5000 General coverage receiver</td>
<td>£129.25</td>
</tr>
<tr>
<td>VC20 VHF Converter 108-174MHz</td>
<td>£269.00</td>
</tr>
<tr>
<td>VC20 General coverage receiver</td>
<td>£269.00</td>
</tr>
<tr>
<td>VC10 VHF Converter 115-147MHz</td>
<td>£269.00</td>
</tr>
<tr>
<td>HD35 De Luxe headphones</td>
<td>£75.75</td>
</tr>
<tr>
<td>TS7900A Dual Band Dancer Transceiver</td>
<td>£149.05</td>
</tr>
<tr>
<td>LF30A Low Pass Filter</td>
<td>£32.25</td>
</tr>
<tr>
<td>SP50 Mobile Speaker Unit</td>
<td>£20.40</td>
</tr>
<tr>
<td>TS7155 DUAL Dancer Transceiver</td>
<td>£350.00</td>
</tr>
</tbody>
</table>

FULL range of accessories stocked microphones, SWR meter, DC Leads, Antennas etc.

TEN-TEC

We are pleased to announce we are now the official West North West Stockist for the full range of the TEN-TEC range of HF equipment.

* Paragon* HF Transceiver with full general coverage receiver facilities. .. £139.90

* Corsair* Mid HF Amateur Band Transceiver .. £120.00

* Argosy* Mid HF Amateur Band Transceiver .. £99.00

* Century 22* CW only Transceiver .. £299.00

New Amateur Band only Transceiver *Omni V* .. £399.00

FULL RANGE OF ACCESSORIES AVAILABLE SEND S.A.E. FOR DETAILS

MFJ ACCESSORIES RANGE

MFJ 1001 Random Wire Tuner .. £30.00

MFJ 1016 New Antenna switch .. £42.00

MFJ 948C 2VHF Converter .. £167.70

MFJ 941D 1VHF Converter .. £159.13

MFJ 901B 2VHF Converter .. £180.00

MFJ 300 watt dummy load .. £120.00

MFJ HF Noise Bridge .. £103.10

ROTORIANTS

G3/ROCI .. £69.00

G690RC .. £219.00

CQ6 MR 750E .. £254.00

CDE AR40 .. £159.00

CD 451 1VHF .. £237.00

EMOTATOR 1057Y .. £199.00

POWER SUPPLIES

PS200M Heavy duty 30A, 22A cont .. £129.50

PS1200M 3-15v variable 12A max .. £79.50

Postage carriage at cost.

We are also stockist for Global, Datong, and have a full range of publications by RSGB-ARL and others. Our secondhand list is updated daily. Please send SAE for this or any information.

SHOP HOURS

Mon - Fri 9.30-5.00pm
Sat 9.30-4.30pm

24 HOUR MAIL ORDER SERVICE

SATSALE

VISA

53 Short Wave Magazine December 1989
many broadcasts to Europe: Radio Mustang Int. via 5SSR 17.660 (Eng) was rated SIO 444 at 1005 by John Coultier in Winchester; Voice of China to S.Asia 17.575 (Sp 1900-2100); Voice of Japan to S.Asia 1100-1200 - 2223 at 1104 by Andy Cadler; RNE Spain 17.890 (Sp 7-7 - 5334 at 1550 by Raymond Edwards; BBC Persian 21.670 (Du, Eng 1700-1800); Russia 53535 at 1000-1800, heard at 1630 by Paul Gibson; Radio Surinam Int. via RNB 21.675 (Du, Eng 1700-1800) SIO 444 at 1740 by Philip Rambaut; Radio HCJB Quito, Ecuador 17.790 (Cz, Gr, Sw, Norw, Fr, De, Fr 1900-2100) SIO 333 at 2145 by Alf Gray in Birmingham; Voice of Israel, Jerusalem 17.630 (Eng 2200-0300), noted as "fail" at 2251 by Robin Harvey in Bourne; VOFTaiwan via Okeochobee, Florida 17.612 (Ger, Eng 2100-2300) - 2242 at 2300 by Don Redhead in Dronfield.

Also noted were some of the broadcasts to other areas: Radio Japan, Yamata 17.765 (Eng, Jap to Asia 0300-0700) - 4444 at 0500 by Chris Shorten; BBC via Maastricht, Holland 17.595 (Eng to Europe) 0900-0630) - SIO 222 at 0502 by Alan Smith in Northern: Radio DW via Julich, W Germany 17.780 (Eng to Europe) 0900-0500); - 55545 at 0900 by Mark Selby; Voice of Greece, Athens 17.550 (Eng to Australia) 0800-1000) - 33322 at 0847 by Carl Yates; Radio Beijing, China 17.710 (Eng to S Asia 0930-1100), heard at 1100 by Harry Sutcliffe in Totton; Radio Moscow, Cenana 17.940 (Du to Africa 1300-1350) - 33333 at 1300 by Robin Dickerson in Oman; RTM China 15.425 (Eng to Europe) 1700-0000) - 34434 at 1700 by Kenneth Buck; Voice of Israel, Jerusalem 15.640 (Eng 2000-07) - 4444 at 2011 by Jim Cash; BBC via Kendal, Canada 15.425 (Eng to Europe) 0900-2300) - 33333 at 2100 by Andy Cadler; WSOCS, Scotts Corner, Maine 15.610 (Eng 2000-2300) - 33322 at 2100 by Leo Barr in Sunderland; VOFTaiwan, Taiwan 15.345 (Ger, Eng 2100-2300) - SIO 333 at 2215 by Francis Hewer; WVFTeynham, USA 15.690 (Eng 1700-0000) - 4444 at 2030 by John Cash in Newport; Radio For Peace Int. Costa Rica 21.565 (Eng 2000-2400) - SIO 333 at 2045 by John Evans in Stackstede; WYFR via Okeechobee, Florida 21.615 (Eng 2000-2100) - 34322 at 2043 by John Cash in Swanwick.

Some of the broadcasts to other areas were also logged: Radio DW Cologne 21.600 (Ger to Australia, New Zealand 0500-0800), noted as 24432 at 0700 by David Edwardson in Wallasey; Radio Prague, Czechoslovakia 21.705 (Eng to S.E.Africa 0730-0800) - 54434 at 0740 by David Harker in Dublin; BRT Brussels, Belgium 21.815, (Eng, Fr to S.E.Africa 0830-1330) - 34333 at 0810 by Carl Yates in St.Helens; SRF via Schwarzenberg, Switzerland 21.615 (It, Eng, Ger, Fr to S.Asia 0745-1030) - 45444 at 0835 by David Wratren in Cambridge; BBC via Limassol, Cyprus 21.470 (Eng to E.Africa 0900-1610), noted as "good" by Dickerson Illman (Oman); Vatican Radio, Rome 21.485 (Fr, Eng, Port. to Africa 1000-1215) - 34333 at 1125 by Derek Lawrence in Worcester; Radio Austria Int. Vienna 21.490 (Ger, Sp, Fr. to W.Africa 1300-1700) - SIO 555 at 1430 by Simon Hame; BRT Brussels, Belgium 21.810, (Eng, Fr to Africa 1300-1430) - 22122 at 1430 by Louis Whitelent in Luton; Radio Pakistan, Islamabad 2.740 (Eng to Middle East 1600-1630) - SIO 455 at 1500 by Kenneth Buck; WSOCS Scotts Corner, Maine 21.640 to E.Africa 1600-1800) - 34334 at 1657 by Andy Cadler in Folkestone; Radio KZ, Ukraine 21.615, (Eng to 1900-700) - SIO 222 at 1900 by Julian Wood in Buckie; Radio Nederland via Sonnai, Ned Antilles, 21.685, (Fr to C.Africa 1930-2025, Du to W.Africa 2030-2125) - 45554 at 2030 by John Parry in Northwich; WYFR Okeechobee, Florida 21.525 (Eng to W.Africa 7-2425) - SIO 333 at 2050 by John Sadler in Bishopstofford.

Long distance paths have also been open in the 17MHz (16m) band. The broadcasts from Radio New Zealand, Wellington to Pacific areas 17.705 (Eng 2345-0145; 0145-0335*, 0330-0730; *Sat/Sun only) have been audible in the UK around dawn during some months. Listening to 0600, Simon Hame picked up their broadcast and noted it as SIO 222. From time to time some of Radio Australia's broadcasts to other areas have reached our shores. Their transmission to S.Africa via Carnarvon on 17.175 (Eng 0900-0919) was noted by 0700, noted by 0700, David Wratren as 24332 at 0805. Daily variations in their reception of their transmissions to the central Pacific areas and the USA. WSOCS, Shepparton on 17.795 (Eng 2200-0900) were noted by Kenneth Reece in Prenton - at best he rated them as 22322 at 0521, but more often they were inaudible. The reports included some of the...
Equipment Used

Ted Agombar: Grundig Yacht Boy 700 + 20m random wire.
Leo Barr: Matsui MR4099 + internal antenna.
Derek Aleskey: Steepleton MB78 + 20m random wire.
Kenneth Buck: Home-built superhet + random wire + Andy Cadler: Saisio SW500 + 40m random wire.
Jim Cash: Sony ICF 2001D.
John Coulter: Yaesu FRG-7 + 20m random wire.
Raymond Edwards: Kenwood R5000 + 20m random wire loop.
David Edwardson: Trio R60 + trap dipole 22m long.
John Evans: Saisio SW500 or Racial RA17L + GSV + Paul Gibson: Panasonic RF8-6DL.
Simon Hamer: Lafayette HE30 + ATU + 22m random wire.
Rob Harney: Matsui MR4099 + built-in whip.
Francis Heare: Sharp GFA3 tassette radio + random wire.
Shelia Hughes: Sony ICF 7600DS; Vega 206; Panasonic DR48 + 15m inverted L.

Rhoderick Illman: Sony ICF 7600DS + 23m random wire.
Graham Johnson: Panasonic DR49 + 20m wire-loop.
Cyril Kellam: Sony ICF 7600DS + AN 1 or 6m vertical wire.
John Nash: Kenwood R5000 + random wire.
Ike Odoum: Philips D-2395 PLL portable.
Fred Pallant: Trio R200 + random wire in loft.
Ron Pearson: Home built one valve (955) straight set.
Phillip Rambaut: Intermarine Radio R700 + random wire.
Kenneth Reece: Icom R9000; NRDS25 (Kenwood R5000 + random wire in Both).
Alan Roberts: Home built "Epsom" single conversion superhet + 9m wire.
John Sadler: DX-100L + indoor dipole.
Mark Selby: Realistic DX-440 + 15m random wire.
Mike Smith: Low HF-225 + Sooper Loop.
Darran Taplin: Eddystone 680X + Global ATU + 8m indoor wire.
Mark Thompson: JRC NRDS25 + 1m or 20m random wire.
Phil Townsend: Panasonic RF1880L portable or Low SRX 30 + random wire.
Ted Walden-Vincent: Grundig Satellite 1405SL or Sangean SG TBEL.
Julian Wood: Trio R200 + random wire in Both.
Dan Wrennan: Philips D2999 + loop + FDK-750 2m transceiver.
Carl Yates: Realistic DX-440 + 15m random wire.
by David Wratten; KNL5 Anchor Point, Alaska 11.715 (Eng to Asia 0800-0900) - 23232 at 0900 by Mike Smith; Radio Australia via Shepparton 11.720 (Eng to C. Pacific area 0830-0930) - SIO 333 at 0832 by Alan Smith; AWR Aqata, Guam 11.960 (Chin to C. Asia 0900-1300) - 33433 at 1055 by Rhodesian Ilamun; Radio Taishkent, USSR 11.785 (Eng, Ur to S. Asia 1200-1500) - SIO 333 at 1330 by John Evans; Radio Sweden, Stockholm 11.905 (Eng to Australia, New Zealand 1400-1430) - 44444 at 1420 by Carl Yates; Radio Prague, Czechoslovakia 11.685 (Ar, Eng, Fr to Africa 1630-2125), heard at 0058 by John Coutler; Radio Globo via Rio, Brazil 11.805 (Porto S.E. Brazil 0900-0300) - SIO 322 at 2235 by Philip Rambaut.

Radio Australia's 9MHz (31m) broadcasts to Europe via Shepparton on 9.655 (Eng 0700-1030) were rated as 32333 at 0720 by Lew Barr. A few of the many other broadcasters using this band include WCSS via Scotts Corner, Maine 9.850 (Eng to E. Africa 0200-0400), noted as 44344 at 0400 by Ted Agombar; the Voice of Greece, Athens 9.395 (Eng to Europe 1900-1950) - 44444 at 1920 by Sheila Hughes; SRI via Schwarzenburg, Switzerland 9.885 (Port, Eng, Sp to Africa 0300-2200) - SIO 333 at 2145 by Alf Gray; Radio Portugal, Sao Gabriel 9.680 (Port, Eng to USA 2200-0300) - 32232 at 0257 by Derek Lawrence.

While checking the 7MHz (41m) band, Alan Smith rated Radio Australia's broadcast to Europe via Carnarvon 7.205 (Eng 1340-2030) as SIO 433 at 1634; John Parry noted KBS Seoul, S. Korea 7.550 (It, Fr, Kor, Ar, Ger, Eng, Sp, Port to Middle East, E.Africa 1545-2345) as S3353 at 2030; John Evans logged RTV Slax, Tunisia 7.475 (Ar to Europe 1800-2345) as SIO 434 at 2200; Francis Hearne rated Radio Polonia, Warsaw 7.145 (Eng, It, Sp to Europe 2100-2355) as SIO 222 at 2330.

Radio Australia's 6MHz (49m) broadcasts to Europe via Carnarvon on 6.035 (Eng 1500-2030) were rated as 43333 by Chris Shotten at 1605. Many of the reports mentioned the broadcasts to Europe from Radio Sweden, Stockholm 6.085 (Eng 1800-1830), rated as 44344 at 1808 by Graham Johnson; also from Vatican Radio, Rome 6.190 (Hun, Cz, Pol, Ger, It, Fr, Sp, Eng, Port 1630-2230), noted as 44444 at 2050 by Darren Wells.

Station Addresses

BBC Radio Northampton, P.O.Box 1107, Abington Street, Northampton, NN1 2BE.

IRL Marcher Sound, The Studios, Mold Road, Gwersyllt, Wrexham, Clwyd, LL11 4AP.

Radio Portugal, Central Sce. Av., Duarte Pancheco 5, P-1000 Lisboa, Portugal.

Radio Prague, Vinohradska 12, CS-12099 Praha, Czechoslovakia.

Radio Veritas Asia, P.O.Box 939, Manila, Philippines.

Voice of Vietnam, 58 Quan Su Street, Hanoi, Vietnam.

SEEN & HEARD

by David Wratten; KNL5 Anchor Point, Alaska 11.715 (Eng to Asia 0800-0900) - 23232 at 0900 by Mike Smith; Radio Australia via Shepparton 11.720 (Eng to C. Pacific area 0830-0930) - SIO 333 at 0832 by Alan Smith; AWR Aqata, Guam 11.960 (Chin to C. Asia 0900-1300) - 33433 at 1055 by Rhodesian Ilamun; Radio Taishkent, USSR 11.785 (Eng, Ur to S. Asia 1200-1500) - SIO 333 at 1330 by John Evans; Radio Sweden, Stockholm 11.905 (Eng to Australia, New Zealand 1400-1430) - 44444 at 1420 by Carl Yates; Radio Prague, Czechoslovakia 11.685 (Ar, Eng, Fr to Africa 1630-2125), heard at 0058 by John Coutler; Radio Globo via Rio, Brazil 11.805 (Porto S.E. Brazil 0900-0300) - SIO 322 at 2235 by Philip Rambaut.

December 10: The Leeds and District ARS are holding their annual rally at the Civic Centre, Dawsons Corner, Pudsey, Leeds. This is on the main Leeds Ring Road between Leeds and Bradford. Admission is 50p and the doors open at 10.30am. There will be the usual traders and a Bring & Buy stall. There is a licensed bar and refreshments. Geoff Stubbs on (0532) 585801.

1990

February 24: The Rainham Radio Rally will be held in the Parkwood Community Centre, Deanwood Drive, Rainham, Gillingham, Kent. Doors are open from 10.15am to 4pm (10am for disabled visitors). The usual traders will be there along with a Bring & Buy stall and refreshments. Talk-in by GB4RRR on S22 and SU22. Bob Golke. Tel: (0634) 362154.

March 9-10: There will be an amateur radio show at Picketts Lock Centre, Picketts Lock Lane, Edmonton, London N9. Details from: London Amateur Radio Show, 126 Mount Pleasant Lane, Brickett Wood, Herts AL2 3XD.

March 18: The Norbreck Amateur Radio, Electronics & Computing Exhibition will be held at the Norbreck Castle Exhibition Centre, Blackpool. Details from: Peter Denton 6G6CF. Tel: 051-630 5790.

April 21-22: The RSGB are holding their Convention and Exhibition at the NEC, Birmingham.

May 13: The VHF Convention will take place at Sandown Park Racecourse, Esher, Surrey.

May 13: The Yeovil ARC 6th QRP Convention will be held at the Preston Centre, Monks Dale, Yeovil at 9am. The first lecture is at 10.30am. Lectures during the day will be conducted by G3SOXX, G3PHI, G3PCJ and G3YJM. All the usual traders will be there. Refreshments are also available. D.J. Bailey G1MMN, QTHR.

June 24: The Annual Longleat Mobile Rally will be, as usual, held at Longleat, near Warminster, Wilt.

July 1: The York Radio Rally will be in the Tattersall Building, York Race Course, The Knavesmire, York. Doors open at 11am with an entrance fee of 50p (children admitted free). There is ample free parking. On show will be amateur radio, electronics and computing, arts and crafts, there's a grand Bring & Buy, Morse tests, lectures on various aspects of amateur radio, a raffle and talk-in on S22. A licensed bar and cafe will be available for refreshments. The Knavesmire is well signposted and there will be additional RAC signs round the main approaches to York. Frank Webb G3ZKS. Tel: (0904) 629798.

September 16: The South Bristol Amateur Radio Club are holding the Bristol Rally in the Great Train Shed, Temple Meads Railway Station, Bristol. David Farr G4WUB. Tel: (0272) 839865.

RALLIES

Short Wave Magazine & Practical Wireless in attendance.

If you are organising a rally and would like it mentioned in Short Wave Magazine, then drop us a line, preferably as soon as you have fixed the date but no later than six weeks in advance (marking your envelope Rally Calendar) and we'll do the rest. Please make sure that you include all the essential details such as the venue, starting time, special features and a contact for further information.
RX-8 for the BBC Computer

Receives screen and printer FAX charts & photos, HF and VHF PACKET, Colour SSTV, RTTY, AMTOR, CW, ASCII, UoSAT 1 & 2.

Receive them all with every possible feature, superb performance and ease of use. Full printer and disc support. The best receive system ever. Complete system of EPROM, hardware interface with 2 demodulators and tuning display, comprehensive handbook and all connecting leads, only £259. DISCOUNT for RX-4 users. We can’t begin to list all the features here so send for full Information or see review in October ‘89 Ham Radio Today.

RX-4 RTTY/CW/SSTV/AMTOR RECEIVE

Performance, features and ease of use make this still a best-seller. Text and picture, disc and printer support. Needs TIF1 interface. BBC, CBBM64 tape £25, disc £27. VIC20 tape £25. SPECTRUM tape £40, + 3 disc £42 inc adapter board (needs TIF1 also) or software-only version £25.

TIF 1 INTERFACE Optimum HF and VHF performance with our software. 4-pole filtering and computer noise isolation for excellent reception. Kit £20, ready-made, boxed with all connections £40. Available only with software.

Also MORSE TUTOR £6, LOGBOOK £8, RAE MATHS £9 for BBC, CBBM64, VIC20 and SPECTRUM. BBC LOCATOR with UK, Europe, World maps £10. All available on disc £2 extra.

technical software VISA

Fron, Upper Llandwrog, Caernarfon LL54 7RF
Tel: 0286 881886

ALL VALVES & TRANSISTORS

Call or phone for a most courteous quotation
01-743 0899
We are one of the largest stockists of valves etc, in the U.K.

COLOMOR ELECTRONICS LTD.

170 GOLDHAWK ROAD
LONDON W12 8JU

TRIPLE S

Spectrum 48/128k Software
AIRBAND LISTINGS WITH FREQUENCY SEARCH
VOR BEACONS INC. MORSE I.D. £2.99, VHF - £3.99
UHF - £4.99 OR ALL THREE ON ONE TAPE - £8.49
P&P 50p per order, sent to:
98B, Baker Road, Newthorpe, NOTTINGHAM. NG16 2DP
Also available from Air Supply and Waters & Stanton

REALISTIC SCANNERS

Save £40 on the PRO 2005
AM/FM 25MHz to 520 and 760 to 1300MHz
400 memories 240V or 12VDC
£299.95 FREE P+P (Price was £339.95) as reviewed in Sept ’89

Link Electronics
228 Lincoln Road, Peterborough PE1 2NE
(0733-45731) SAE for catalogue

INDEX TO ADVERTISERS
The role of a battery is to produce electrical energy by means of a chemical reaction. Experiments during the year 1800 by an Italian, Count Alessandro Volta (1745-1827), revealed that a potential difference (p.d.) or electromotive force (e.m.f.) could be produced between a copper disc and a zinc disc by separating them with a cloth moistened with a salt solution. Later, he connected a number of these Voltaic cells in series to form a battery of cells which he called a Voltaic pile.

Primary Cells

Subsequent investigations by others showed that a variety of "wet" cells could be produced by immersing two dissimilar metal plates in a suitable conducting liquid, i.e. one which would combine chemically with one of the metal plates during the discharge period. Such liquids are referred to as electrolytes and cells which produce electrical energy by chemical action in this way are known as primary cells. Whilst the electrical energy is being discharged through an external circuit the chemical characteristics of the elements of the cell are gradually changed and eventually the cell is destroyed.

One of the earliest practical wet cells was the Leclanche, which consisted of zinc and carbon rods immersed in a solution of ammonium chloride (sal-ammoniac). It produced an e.m.f. of approximately 1.5V, but the terminal voltage fell rapidly after only a brief discharge period because the chemical reaction resulted in the formation of hydrogen bubbles around the inert carbon rod which caused an increase in the internal resistance of the cell and also set up a counter, or "polarising", e.m.f. within the cell. Provided the cell was allowed to rest, the hydrogen bubbles would gradually disperse and the terminal voltage would slowly rise to the original value.

A "dry" version of the Leclanche cell is still popular today, being commonly used in torches. Small "penlight" (AA) cells of this type are often used to power calculators, radio receivers, "Walkman" type radio/cassette players and other devices, but they may not be ideally suited for the purpose - see later. Dry cells of this type consist of a zinc canister and a central carbon rod surrounded by a black paste. The exact nature of this paste is a trade secret, but the basic ingredients are ammonium chloride, powdered carbon, manganese dioxide and water. The top of the canister is sealed with pitch, but a small vent is provided to allow accumulated gas to escape. The role of the manganese dioxide is to act as a depolariser - it combines with the hydrogen to produce another form of manganese oxide and water.

Due to the chemical action within the cell, the carbon rod becomes positive with respect to the zinc case and a nominal potential difference of 1.5V exists between them. A steady fall in voltage occurs in this type of cell when on continuous load - see Fig. 1. On a heavier but intermittent discharge the voltage rises during each recuperative period - see Fig. 2. During each discharge period the chemical reaction results in part of the zinc case being converted into zinc chloride. Owing to impurities in the zinc some chemical action also takes place within the cell during rest periods and this results in the zinc canister being slowly eaten away; consequently cells of this type have a limited "shelf life". As the active area is gradually reduced the internal resistance of the cell rises. Failure of the depolariser to completely neutralise the hydrogen also results in increased internal resistance, which limits the discharge current.

The chemical action within the cell will continue beyond this point and eventually the zinc canister will be eaten away to the point where the contents start to leak through the case. Unless the battery is removed from a torch or other equipment before this occurs, serious corrosion and irreparable damage may ensue. In an attempt to overcome these problems, manufacturers have produced a version of these cells in which the zinc case and its contents are "sealed" in a steel outer case. Although this has eased the problem, it is important to appreciate that these cells are not totally "leak proof".

Relatively inexpensive individual cells in zinc cases can still be purchased but, despite the extra cost, the use of sealed cells in expensive equipment is a wise precaution. Unfortunately, the outer containers of most multi-cell batteries offer little protection against leakage. Waxed cardboard partitions are used to
Separate the individual zinc-carbon cells, which are then connected in series to obtain the desired overall terminal voltage. The assembly is then housed in an outer container, which may be made of cardboard, tin plate or plastic.

In large cells the electrode area is increased so that a heavier current can be obtained from high power (HP) cells, which are the same physical size as standard purpose (SP) cells, are also available. These are intended to be used where a high current drain with reasonable voltage stability is required, a typical application being to power a small electric motor. There is no advantage to be gained from using HP cells instead of SP cells when a light discharge current is involved. It is important that the maximum discharge rate quoted by the manufacturer for a particular size of cell is not exceeded, otherwise the creation of excessive gas bubbles will cause a sharp rise in internal resistance and the life of the cell will be prematurely shortened. Their life will also be shortened if they are subjected to a continuous current drain, as all zinc-carbon dry cells require a rest period. Optimum performance can be expected from these cells at ambient temperatures of ±20°C.

Several other types of primary cell are available. The alkaline-manganese cell has become popular comparatively recently. The exact nature of the contents of these cells is also a trade secret, but basically they consist of a zinc anode, a high density manganese dioxide cathode and a potassium hydroxide electrolyte, all of which are contained in an insulated electroplated steel case which is resistant to corrosion. A nominal p.d. of 1.5V is produced by these high energy cells, which offer a service life expectancy of up to six times that of a conventional zinc-carbon cell. They have a low internal resistance and are capable of continuous discharge. Satisfactory operation can be expected over a wide temperature range, typically -20°C to +70°C. Another point in their favour is that they have a "shelf life", whereby approximately 95 per cent of their energy is likely to be available after 20 months of storage. The cost of these cells is substantially higher than that of the zinc-carbon counterpart, but the use of the penlight (AA) version of these cells in a portable receiver designed to accept them may well be an especially good investment for the s.w.l., since advantage can be taken of their ability to withstand the continuous discharges involved during prolonged periods of DXing.

Small button-shaped mercury cells for use in hearing aids and cameras have been manufactured for many years, but a full range of standard sized cells is now available. Each cell is contained in a corrosion resistant nickel plated steel case, which is not an active element of the cell although it is in direct contact with the compressed mercuric oxide and graphite which form the cathode. A zinc anode and an alkaline electrolyte of potassium hydroxide (caustic potash) are the other basic ingredients, but the exact nature of the contents is yet another trade secret! An off load p.d. of 1.3V is produced, but under load this falls to an almost constant 1.2V until near the end of a long service life, when a rapid decrease occurs - see Fig. 3. The low internal resistance also remains substantially constant. Resting the cell makes little difference to the energy available for intermittent or continuous discharge. The total energy available is several times that of a corresponding zinc-carbon cell, but the cost is very much higher. Mercury cells also have a long shelf life.

Secondary Cells

In contrast to a primary cell, which has to be discarded when discharged, a secondary cell is so designed that following a discharge it can be restored to its original state by passing a "charging" current through it in a direction opposite to that of the discharge current. Usually the process can be repeated many hundreds of times before chemical changes within the cell impair its performance.

The most common type is the lead-acid cell. It consists of two grid-like plates made from lead and antimony alloy, which are pasted with red lead (+plate) and lead monoxide (-plate). The plates are immersed in an electrolyte of sulphuric acid and water and they are then "formed" ready for use by passing a direct current through the cell. This converts the red lead to lead peroxide and the lead monoxide (litharge) to spongy lead. A p.d. of 2.05V arises between the plates when the cell is fully "charged". The cell is considered to be discharged when the voltage falls to about 1.85V. The internal resistance is of the order 0.001-0.1Ω, so they are prone to damage if short-circuited. A single cell is often referred to as an accumulator, but several cells may be connected in series to form a storage battery. Such batteries are in common use on motor vehicles and some motorcycles. They can provide an economical means of powering a receiver via its external supply socket (where fitted), but it is essential to observe the polarity and voltage requirements and to ensure that a suitable fuse is fitted in the lead to the set as these batteries can supply a very heavy current if accidentally short-circuited. From time to time it will be necessary to top up the cells with distilled water.

Secondary cells which employ an alkaline electrolyte offer the advantage that they are much lighter than lead-acid cells of corresponding energy capacity, but they are more bulky. Known as nickel-iron or "NiFe" cells, they consist of a nickel oxide anode which is usually held in a nickel-steel frame, an iron cathode and an electrolyte of potassium hydroxide. The e.m.f. may vary between 1.4 and 1.0V during discharge. Another point in their favour is that they will stand up well to overcharging and excessive discharging.

Rechargeable "sealed" nickel-cadmium, or "NiCad", cells can provide an economical source of power for portable receivers. A nickel plated steel case contains the elements of the cell, which employs a caustic alkaline (potassium hydroxide) electrolyte. When fully charged the off load e.m.f. is just under 1.3V. On load this falls to 1.2V and remains almost constant during the discharge period. In the interests of long life these cells should not be discharged below 1.0V. With care, it may be possible to recharge them up to 1000 times before they exhibit an inability to hold the charge, so although they are expensive, they may be a good investment for the s.w.l.

Although NiCad cells are readily available in the standard sizes adopted for zinc-carbon or alkaline manganese cells, their e.m.f. somewhat limits their use as direct substitutes; e.g. a receiver designed to operate on a 6V supply provided by four "AA" sized zinc-carbon or alkaline-manganese cells connected in series, may not operate satisfactorily on the 4.8V provided by four "AA" size NiCad cells. Although a 6V supply could be obtained by using five NiCad cells in series, it is unlikely that the battery compartment would accept five cells!

This problem can be overcome by using an external battery holder* - they accept either four or six "AA" cells, which are linked in series and wired to small press stud connectors on the holder. A matching (PP3) press stud connector*, a length of two-core cable and suitable plug** will enable the battery pack to be connected to the external supply socket on the receiver. An unused cell space in the holder must be either linked with a "dummy" cell* or wired out. A wiser plan is to install a fuse across the unwanted space, since fully charged NiCad cells are liable to explode if short-circuited accidentally.

* Available from Maplin Electronics
Tel: (0702) 554161.
INDEX 89

Vol 47 - January to December

CONSTRUCTIONAL
A Hexagonal Loop Antenna by John Ratcliffe 28 Apr
Hot Rodding the ICF-2001D by Steve Whitt
Part 1 25 Sep
Part 2 21 Oct
Part 3 13 Nov

Inexpensive Vertical Antenna by James Stirrat 28 Jul
Modifying the Realistic PRO-2004 by Bill Wilson 26 Oct
Passive MW & LW Signal Booster by P.B. Buchan 24 Nov

Plant A Tennamast This Summer by Dick Ganderton G8VGH 30 Aug

Three-band SSB Receiver Part 6 by C.M. Lindars 12 Jan
UHF Discone Modifications by Peter Rouse G1UDK 18 Jan

Versatile Receive Converter by Peter Rouse G1UDK 27 Aug

FEATURES
A Receiving Station for the Family Man by S.A. Slater 29 Sep
Admiralty HF Direction-Finding Station Goonhavern by Andy Thomas 33 May

Behind the Scenes at VOA by Peter Shore 24 Oct
Clandestine Radio 56 Sep

DX Letter From America by Gerry Dexter 25 May 7 Feb
31 Nov
35 Aug

Effiel Tower Wireless Station by Stan Crabtree G30XC 7 Jul

Fun with Antennas by Mikhail Drakov 27 Jul
High Seas & Short Waves by Joan Han Part 1 15 Feb
Part 2 33 Mar

Piccadilly Radio by Sharon George 33 Jul
QRP on Ice by Vaughan Purvis GVPZ/LH5PA/LH5QA 11 Aug

Radio Australia - 50 Years of Broadcasting by G.E.W. Hewlett 36 Mar
The Story of Joan-Eleanor by Chas E. Miller 22 Aug
This Is Two Emma Toc by Joan Ham Part 1 21 Jun
Part 2 21 Jun

What on Earth is a SWL? by Leighton Smart GV20049 24 Sep

THEORY
Antennas by F.C. Judd G2BCX Part 1 24 Jan
Part 2 25 Feb
Part 3 10 Mar
Part 4 27 Apr
Part 5 11 May
Part 6 18 Jun
Part 7 23 Jul
Part 8 21 Sep
Part 9 30 Oct
Part 10 10 Dec

Introduction to DX-TV by Keith Hamer & Garry Smith Part 16 10 Feb
Part 17 16 Apr
Part 18 27 Jun
Part 19 29 Jul
Part 20 24 Aug

Right The First Time by Rev. G.C. Dobbs G3RJV Part 1 16 Oct
Part 2 10 Nov
Part 3 32 Dec

BOOK REVIEWS
1934 Official Short Wave Radio Manual edited by Hugo Gernsback 7 Jan

Air Traffic Control by David Adair 7 Jan

Electronics Simplified - Crystal Set Construction by F.A. Wilson 7 Jan

Getting the Most from Your Multimeter by R.A. Penfold 7 Jan

Marine UK Radio Frequency Guides 10 May

Novice Antenna Notebook by Doug DeMaw W1FB 24 Mar

RAE Manuals 10 May

The ARRL Operating Manual 24 Mar

The Complete DXer by Bob Locher W9KNI 24 Mar

World Radio TV Handbook 10 May

PRODUCTS
Alpha Electronics Ltd - Gold Star Multimeter 5 Jan
Amiga SSTV - ICS Electronics 4 Mar
Butternut - HRS Electronics 2 Feb
Computer Programs - Harlech Electronics 4 Mar

Data Comms Decoder & Analysers - Dewsbury Electronics 5 Jan

Dewsbury Electronics - DataComms Decoder & Analysers 5 Jan

Digital Pocket Multimeter - Electronic & Computer Workshop 6 Mar

DX-TV Converter - HS Publications 4 Jan
Filtered Main Plug - Britcon International 5 Oct
FM Receiver Tuner Sets - Cirkit Distribution 5 Apr
Gold Star Multimeter - Alpha Electronics 5 Jan
GoldStar Counters -Alpha Electronics Ltd 4 Feb
Goldstar's Latest - Alpha Electronics 4 Sep
HS Publications - DX-TV Converter 4 Jan

Instrumex (UK) - Low Cost DVM 3 Jan

Johnson's Shortwave Radio - Old Fashioned Wireless Sets 4 Jan

Low Cost Audio Jacks - Rendar 5 Apr
Low Cost DMM - Instrumex (UK) 3 Jan

Mast head Amplifiers - MFT Company Ltd 5 Jan
MFT Company Ltd - Mast head Amplifiers 5 Jan

Miniature Push-Button Switches - Cirkit Distribution 5 Feb
New Scanning Receiver - Nevada 4 Mar

Old Fashioned Wireless Sets - Johnsons Shortwave Radio 4 Jan

Panasonic RF-B55D 4 Nov
Pocket-sized DMM - Sollex International 2 Jul

Rack Cases - West Hyde Developments 5 Apr
Satellite 500 4 Aug

Skyview - Fieldtech Heathrow 3 Jul

Spectrum Software from Triple S 3 Aug

Spike Kater - Matelect 4 Apr

Temperature Controlled Iron - Electronic & Computer Workshop 4 Oct

Triple DC Power Supply - Thandar Electronics 4 Apr

Waters & Stanton - Wideband Antennas & Pre-amps 5 Jan
Weather Station - ICS Electronics 5 Mar

Wideband Antennas & Pre-amps - Waters & Stanton 5 Jan

Hatchet Drivers - Electronic & Computer Workshop 6 May

REVIEWS
Bearcat 880XLT Scanner by Jack Aldridge 20 Mar
Bearcat BC-950XLT Mobile Scanner by John Waite 10 Jul

Cirkit Weather Satellite System by Peter Rouse G1UDK 21 May

Drake R-4C Receiver by Ken Michaelson G3RDG Part 1 35 Apr
Part 2 31 May

ERD Microreader by Rev. G.C. Dobbs G3RJV 16 Apr

Grundig Satellit International 400 by John Waite 20 Feb

Grundig Satellit International 650 by John Waite 21 Apr

Grundig Yacht Boy 215 by Jack Aldridge 15 Jan

ICS ANT-1 Active Antenna by Mike Richards G4WNC 26 Mar

ITC World Receiver by John Waite 32 Oct

Jandeek Direct Conversion Receiver Kit by Dick Ganderton G8VGH Part 1 14 Sep
Part 2 29 Oct

Lake Electronics TU1 Mk2 ATU Kit by Rev George Dobbs G3RJV 16 Nov

Liniplex F2 Receiver by Peter Shore 20 Aug

Lowe HF-225 HF Receiver by John Wrightson 10 Jun

Philips D-2395 World Band Receiver by John Waite 28 Nov

Philips D-2999 World Receiver by Mike Richards 25 Jun

Realistic PRO-2005 Scanner by John Waite 32 Sep

REGULARS
A Word in Edgeways - 2 Jan, 2 Feb, 2 Mar,
2 Apr, 2 May, 2 Jun, 2 Jul, 2 Aug, 2 Sep, 2 Oct, 2 Nov, 2 Dec

Airband by Godfrey Manning G4GLM 10 Jan, 34 Feb, 15
Mar, 31 Apr, 14 May, 14 Jun, 14 Jul, 10 Aug, 31 Sep, 10 Oct, 33

Nov, 24 Dec
INDEX 89

Band II DX by Ron Ham 43 Jan, 43 Feb, 47 Mar, 45 Apr, 39 May, 40 Jun, 44 Jul, 43 Aug, 43 Sep, 44 Oct, 40 Nov, 45 Dec
Bandscan by Peter Laughton 21 Jan, 27 Mar, 14 Apr, 16 Jun, 17 Jul, 18 Sep, 12 Dec
Bookcase 7 Jan, 24 Mar,
Dec
 Decode by Mike Richards G4VNC 39 Jan, 40 Feb, 40 Mar, 43 Apr, 35 May, 37 Jun, 40 Jul, 40 Aug, 40 Sep, 41 Oct, 37 Nov, 41 Dec
First Aid 12 Sep, 18 Oct, 7 Nov, 4 Dec
First Word by Dick Ganderton 2 Mar, 2 May,
Grassroots by Lorna Mower 6 Jan, 5 Feb, 6 Mar, 5 Apr, 7 May, 6 Jun, 6 Jul, 6 Aug, 6 Sep, 35 Oct, 6 Nov, 6 Dec
Info In Orbit by Pat Gowen G3IOR 40 Jan, 41 Feb, 43 Mar, 44 Apr, 36 May, 38 Jun
Info In Orbit by Lawrence Harris 41 Jul, 41 Aug, 41 Sep, 43 Oct, 38 Nov, 42 Dec
Listen Out For 6 Feb, 7 Apr, 4 Jun,
3 Jul, 33 Aug, 5 Sep
Long Medium & Short by Brian Dddy G3FEX 46 Jan, 46 Feb, 50 Mar, 49 Apr, 42 May, 43 Jun, 48 Jul, 47 Aug, 48 Sep,
51 Oct, 44 Nov, 48 Dec
LW Maritime Radio Beacons by Brian Dddy G3FEX 51 May, 51 Nov,
52 Feb, 55 Aug
Rallies 36 Jan, 6 Feb,
12 Mar, 40 Apr, 27 May, 5 Jun, 4 Jul, 33 Aug, 4 Sep, 22 Oct,
52 Nov, 56 Dec
Scanning by Alan Gardener 31 Jan, 31 Feb, 17 Mar, 10 Apr, 18 May, 32 Jun, 21 Jul, 16 Aug, 10 Sep, 12 Oct, 18 Nov, 34 Dec
Starting Out by Brian Dddy G2FEX 35 Jan, 37 Feb, 38 Apr, 34 Jun, 35 Jul, 36 Aug, 36 Sep, 37 Oct, 58 Dec
Television by Ron Ham 43 Jan, 43 Feb, 47 Mar, 47 Apr, 39 May, 40 Jun, 44 Jul, 44 Aug, 44 Sep, 47 Oct, 41 Nov, 46 Dec
Trading Post 56 Jan, 56 Feb, 60 Mar, 56 Apr, 56 May, 4 Jun, 5 Jul, 7 Aug, 7 Sep, 7 Oct, 7 Nov, 5 Dec
What Scanner 52 Jan
What’s New 3, 30 Jan, 2 Feb, 3 Mar, 3 Apr, 5 May, 2 Jun, 2 Jul, 3 Aug, 3 Sep, 3 Oct, 2 Nov, 3 Dec

SPECIAL OFFERS
Special Offer - Guide to Broadcasting Stations 25 Apr
Special Offer - Radio Information Cassette 1 6 Oct
Special Offer - Newnes Short Wave 7 Mar
Listening Handbook 7 Jun
Special Offer - Guide to Facsimile Stations 9th Edition 7 Jun

COMPETITIONS
Arctic Power Boat GVPZ 5 Aug

FREE GIFTS
Great Circle Map Apr
What Does It Mean? by Elaine Richards G4LFM May

Tidy up that pile of mags!

SWM BINDERS
Only £3.50 each
(plus £1 p&p for one binder, £2 p&p for two or more, UK or overseas)

Are you tired of sifting through cardboard boxes and carrier bags to find that useful item in SWM?
Our smart binders, covered in blue plastics, are a must for your library, keeping your radio magazines in good condition and easily accessible.

Plus!
Tidy up those other mags too. Plain binders to take any A4 size magazines - no names, no pack drill !!!

HOW TO ORDER
Send a postal order, cheque or international money order with your order stating number and type required to PW Publishing Limited, FREEPOST, Enefco House, The Quay, Poole, Dorset BH15 1PP.
Payment by Access, Mastercard, Eurocard or Visa also accepted on telephone orders to Poole (0202) 665524. Normally despatched by return of post but please allow 28 days for delivery.
Prices include VAT where appropriate.

0202 665524 (24 hour Answer Service)
RADIO

AIR & METEO CODE MANUAL
10th Edition
Joerl Klzingfusen

BETTER RADIO/VHF RECEPTION
A. Nallewalla, A. T. Cushman and B. D. Clark
An Australian book giving guidance and advice to listeners seeking reliable reception of distant radio stations, and to DX listening hobbyists. 134 pages. £9.95.

BETTER SHORTWAVE RECEPTION (USA)
W. S. Orr W8SAI and S. D. Cowan W2LX
Propagated DX listening techniques for the short waves and v.h.f. 158 pages. £5.50.

PASSPORT TO WORLD BAND RADIO 1989
This book gives you the information to explore and enjoy the world of broadcast band listening. It includes features on different international radio stations, receiver reviews and advice as well as the hours and languages of broadcast stations by frequency. 390 pages. £10.95.

SCANNERS (Third Edition)
Peter Rouse GU1SDK
A guide for users of scanning receivers, covering hardware, antennas, accessories, frequency allocations and operating procedures. 245 pages. £7.95.

SCANNERS 2
Peter Rouse GU1SDK
The companion to Scanners, this provides even more information on the use of the v.h.f. and u.h.f. communications band and gives constructional details for accessories to improve the performance of scanning equipment. 216 pages. £9.95.

SHORT WAVE RADIO LISTENERS' HANDBOOK
Arthur Milier
In easy-to-read and non-technical language, the author guides the reader through the mysteries of amateur, broadcast and CB transmissions. 207 pages. O/P.

RADIOTELETYPE CODE MANUAL
10th Edition
Joerl Klzingfusen
This book gives detailed descriptions of the characteristics of telegraph transmission on short waves, with all commercial modulation types including voice frequency telegraphy and comprehensive information on all RTTY systems and c.w. alphabets. 36 pages. £8.00.

THE SATELLITE EXPERIMENTER'S HANDBOOK
USA
A guide to understanding and using amateur radio, weather and TV broadcast satellites. 207 pages. £9.25.

1934 OFFICIAL SHORT WAVE RADIO MANUAL
Edited by Hugo Gernsback
A fascinating reprint from a bygone age with a directory of all 1394 s.w. receivers, servicing information, constructional projects, circuits and ideas on building vintage sets with modern parts. 280 pages. £9.95.

HIGH POWER WIRELESS EQUIPMENT
Articles from Practical Electricity 1910-11
Edited by Henry Walter Young
A reprint of interesting practical articles from the early days of radio. 99 pages. £6.95.

BEGINNERS
AN INTRODUCTION TO RADIO DXING (BP91)
R. A. Penfold
How to find a particular station, country or type of broadcast and to receive it as clearly as possible. 112 pages. £1.95.

BEGINNER'S GUIDE TO RADIO
9th Edition
Gordon J. King
Radio signals, transmitters, receivers, antennas, components, valves and semiconductors CB and amateur radio are all dealt with here. 266 pages. £6.95.

THE SIMPLE ELECTRONICS CIRCUIT AND COMPONENTS Book One (BP62)
The aim of this book is to provide an inexpensive but comprehensive introduction to modern electronics. 209 pages. £3.50.

TELEVISION
AN INTRODUCTION TO SATELLITE TELEVISION (BP195)
F. A. Wilson
Answers all kinds of questions about satellite television. For the beginner thinking about hiring or purchasing a satellite TV system there are details to help you along. For the engineer there are technical details including calculations, formulae and tables. 104 pages. £5.95.

A TV-DXERS HANDBOOK (BP176)
R. Bunney
Information on transmission standards, propagation, receivers including multi-standard, colour, satellites, antennas, photography, station identification, interference etc. Revised and updated 1986. 97 pages. £5.95.

GUIDE TO WORLD-WIDE TELEVISION TEST CARDS
Edition 3
Keith Hamer & Gerry Smith
Completely revised and expanded, this is a handy reference book for the DVTX enthusiast. Over 200 photographs of Test Cards, logos, etc., world wide. 60 pages. £4.95.

SATELLITE TELEVISION INSTALLATION GUIDE
2nd Edition
John Breeds
A practical guide to satellite television. Detailed guidelines on installing and aligning dishes based on practical experience. 56 pages. £11.95.

THEORY
COMMUNICATION (BP99)
Elements of Electronics Book 5
F. A. Wilson
Fundamentals of line, microwave, submarine, satellite, digital/modem, radio and telephone systems are covered without the more complicated theory or mathematics. 256 pages. £2.95.

FILTER HANDBOOK A practical design guide
by Stefan Niewiadomske
A practical book, describing the design process as applied to filters of all types. Includes practical examples and BASIC programs. 195 pages. £25.00.

FROM ATOMS TO AMPERES
F. A. Wilson
Explains in simple terms the absolute fundamentals behind electricity and electronics. 244 pages. £3.50.

LEVEL II RADIO & ELECTRONICS THEORY
Ian Ridpath 2L18GC
A sequel to Amateur Radio & Electronics Study Course, covers advanced theory to a level for most technician courses. The handwritten format aims to make the student feel these are his own notes. 169 pages. £6.70.

PRACTICAL ELECTRONICS CALCULATIONS AND FORMULAE (BP53)
F. A. Wilson
This has been written as a workshop manual for the electronics enthusiast. There is a strong practical bias and higher mathematics have been avoided where possible. 249 pages. £3.95.

SOLID STATE DESIGN FOR THE RADIO AMATEUR
Ray Newberry W7201 and Doug DeMaw W1FB
Back in print by popular demand! A revised and corrected edition of this useful reference book covering all aspects of solid-state design. 256 pages. £10.95.

THE ARRL ELECTRONICS DATA BOOK
Doug DeMaw W1FB
Back by popular demand, completely revised and expanded, this is a handy reference book for the r.f. designer, technician, amateur and experimenter. 360 pages. £8.95.

LISTENING GUIDES
AIR BAND RADIO HANDBOOK
David J. Smith
Listen to conversations between aircraft and ground control. The author, an air traffic controller, explains more about this listening hobby. 174 pages. O/P.

AIR TRAFFIC CONTROL
David Adair
A guide to air traffic control with maps, drawings and photographs explaining how aircraft are guided through crowded airspace. 176 pages. £6.99.

DIAL SEARCH
5th Edition 1988/89
George Wilcox
The listener's checklist and guide to European broadcasting. Covers m.w., l.w., v.h.f. and s.w., including two special maps. 46 pages. £3.25.

FLIGHT ROUTINGS 1989
T.T. Williams
Identifies the flights of airlines, schedule, charter, cargo and mail, to and from the UK and Eire and overflights between Europe and America. 104 pages. £4.00.

GUIDE TO BROADCASTING STATIONS
Philip Harrington
Frequency and station data, receivers, antennas, Latin American DXing, reporting, computers in radio, etc. 240 pages. £9.95.

GUIDE TO FACSIMILE STATIONS 9th Edition
Joerg Klingenfuss
This is still the most comprehensive book for everyone interested in FAX. Frequency, callsign, name of the station, ITU country/geographical symbol, technical parameters of the emission are all listed. All frequencies have been measured to the nearest 100Hz. 318 pages. £12.00.

GUIDE TO FURTHER UTILITY TRANSMISSIONS
3rd Edition
Joerg Klingenfuss
Built on continuous monitoring of the radio spectrum from the sixties until the recent past. A useful summary of former activities of utility stations providing information in the classification and identification of radio signals. 126 pages. £8.00.
GUIDE TO UTILITY STATIONS
7th Edition
Joerg Klingenfuss
This concise, complete short wave range from 3 to 30 MHz plus the adjacent frequency bands from 100 kHz and upwards. Includes details of all types of utility stations including FAC and RTTY. There are 1580 entries in the frequency list and 3123 in the alphabetical call sign list plus services and meteorological stations. 494 pages. £19.00

HF OCEANIC AIRBAND COMMUNICATIONS
3rd Edition
Bill Laver
Aircraft channels by frequency and band, main ground radio stations, European RT networks, North Atlantic Oceanic Transmissions. £25.50

INTERNATIONAL RADIO STATIONS GUIDE (BP255)
Revised and updated in 1988, this book shows the site, country, frequency/wavelength and power of stations in Europe, the Near East and N. Africa. North and Latin America, and the Caribbean, plus short wave stations worldwide. 120 pages. £4.95

MARINE UK RADIO FREQUENCY GUIDE
Bill Laver
A complete guide to the UK s.w. and VHF marine radio networks. Useful information, frequency listings and the World Marine Network. 92 pages. £4.10

NEWNES SHORT WAVE LISTENING HANDBOOK
Joe Pritchett G1UOW
A technical guide for all short wave listeners. Covers construction and use of equipment, tells how to explore the bands up to 30 MHz. 286 pages. £12.95

THE COMPLETE VHFR/UHF FREQUENCY GUIDE
Updated 1988
This book gives details of frequencies from 26-2250 MHz, with no gaps and with what. Recently updated, there are chapters on equipment requirements as well asListenians, etc. 86 pages. £5.95

THE INTERNATIONAL VHf FM GUIDE
7th Edition
Julien Baldwin G3JGK and Kris Partridge G3AUA
The latest edition of this useful book gives concise details of repeaters and beacon worldwide plus coverage maps and further information on UK repeaters. 70 pages. £2.85

THE POCKET GUIDE TO RTTY AND FAC STATIONS
Bill Laver
A handy reference book listing RTTY and FAC stations, together with modes and other essential information. The listing is in ascending frequency order, from 1.6 to 27.17 MHz. 46 pages. £2.95

SHORT WAVE LISTENERS CONFIDENTIAL FREQUENCY LIST
Bill Laver
Covering the services and transmission modes that can be heard on the bands between 1.636 and 28.75 MHz. £7.95

VHF/UHF AIRBAND FREQUENCY GUIDE (Updated)
A complete guide to the airband frequencies including how to receive the signals, the frequencies and services, VOLMET and much more about the interesting subject of airband radio. 74 pages. £5.95

WORLD RADIO TV HANDBOOK 1989
Countries country listings of long, medium and short wave broadcast and TV stations. Receiver test reports. English language broadcasts. The s.w.l.'s "tobble" 576 pages. £17.95

INTERFERENCE
INTERFERENCE HANDBOOK (USA)
William R. Nelson W8FGQ How to locate and cure r.f.i. for radio amateurs, CBers and TV and stereo owners. 253 pages. £6.75

RADIO FREQUENCY INTERFERENCE (USA)
William R. Nelson W8FGQ and Peter J. Lauer W9EGQ Are all f.i. problems difficult, expensive, time-consuming and consuming? These questions and many more are answered in this book. 64 pages. £4.30

TELEVISION INTERFERENCE MANUAL (RSGB)
B. Priestly TV channels and systems, spurious radiation TVI, strong signal TVI, audio breakthrough, transmitter design. 70 pages. £2.34

AMATEUR RADIO
AMATEUR RADIO CALL BOOK (RSGB)
Wally W8BBB Edition
Now incorporates a 46-page section of useful information for amateur radio enthusiasts. 310 pages. £7.00

AMATEUR RADIO LOGBOOK
Staats: Practical advice for maintaining amateur in horizontal A4 format. 25 lines per page. 96 pages. £2.30

AMATEUR RADIO OPERATING MANUAL (RSGB)
A mine of information on just about every aspect of amateur operating. International call sign series holders, prefix lists, DXCC countries list, etc. 204 pages. £6.16

AMATEUR RADIO SATELLITES the first 25 years
Arthur C. Goo G2UX
This souvenir publication mainly a pictorial account of the pattern of developments which have occurred over the last 25 years. 34 pages. £2.25

AN INTRODUCTION TO AMATEUR RADIO (BP257)
I.D. POOLE
This book gives the newcomer a comprehensive and easy to understand guide to amateur radio. Topics include operating procedures, jargon, propagation and setting up a station. 150 pages. £3.95

CARE AND FEEDING OF POWER GRID TUBES (USA)
This handbook analyses the operation of IMAC power gridvalves plus design and application information to assist the user of these valves. 158 pages. O/P

HINTS AND KINKS FOR THE RADIO AMATEUR
Edited by E. L. Hutchison and David Newmark
A collection of practical ideas gleaned from the pages of QST magazine. 152pages. £4.95

HOW TO PASS THE RADIO AMATEURS' EXAMS
Clive Smith G3YWX Offers a wealth of hints, tips and general practical advice for all transmitting amateurs and short wave listeners. 128 pages. £5.95

QUESTIONS & ANSWERS AMATEUR RADIO
F. C. Judd G2BCX What is amateur radio? The Radio Amateurs' Exam and Licence, Technology, equipment, antennas, operating procedures and codes. 122 pages. £3.95

RADIO AMATEUR'S GUIDE TO RADIO WAVE PROPAGATION (HF Bands)
F. C. Judd G2BCX The how-to of the mechanism and variations of propagation in the HF bands. 144 pages. £8.95

THE 1989 ARRL HANDBOOK FOR THE RADIO AMATEUR
This is the 66th edition of this very useful hardback reference book. Updated throughout it has several new sections covering oscilloscopes, spectrum analysers, digital frequency counters, phase-noise measurement and new constructional projects. 1200 pages O/P

THE ARRL OPERATING MANUAL
Another very popular book from the ARRL. Although written for the American radio amateur, this book will also be of use and interest to the UK amateur. 684 pages £9.95

THE COMPLETE DX'ER
Bob Locher WN9K
Now back in print, this book covers equipment and operating techniques, especially DX chaser, from beginner to advanced. 187 pages. £7.95

THE RAE MANUAL (RSGB)
G.L. Benbow G3HBJ
The latest edition of the standard aid to studying for the Radio Examiners' Examination. Updated to cover the latest revisions to the syllabus. 192 pages. £15.00

THE RADIO AMATEUR'S DX GUIDE (USA)
11th Edition
The guide contains information not easily obtained elsewhere and is intended as an aid and quick reference for all radio amateurs interested in DX. 38 pages. £2.95

THE RADIO AMATEUR'S QUESTIONS & ANSWERS REFERENCE MANUAL 3rd Edition
R. E. G. Petri GB6CCJ
This book is completely compiled especially for the students of the City and Guilds of London Institute RAE. It is structured with carefully selected multiple choice questions, to progress with an guiessered course of instruction, although it is not intended as a test book. 256 pages, O/P

VHF/HIGHFREQUENCY MANUAL (RSGB)
G. R. Jessop G6JJP
Theory and practice of amateur radio reception and transmission, between 30MHz and 240GHz. 520 pages. £8.94

MAPS
DARC LOCATOR MAP OF EUROPE
This multi-coloured, plastics laminated, map of Europe shows the ARRL ("Maidenhead") Locator System. Indispensable for the v.h.f. and u.h.f. DXer. 692 x 872mm. £5.25

NORTH AMERICA (USA)
Standard radio amateur prefix boundaries, continental boundaries and zone boundaries. 760 x 935mm. £2.50

NORTH AMERICA'S PREFIX MAP OF THE WORLD (USA)
Prefixes and alphabets, plus listings by order of country and of prefix. 1014 x 711mm. £2.95

WORLD AMATEURS' WORLD ATLAS (USA)
Seventeen pages of maps, including the world-polar projection. Also includes the table of allocation of international call sign series. £3.95

DATA REFERENCE
DIGITAL IC EQUIVALENTS AND PIN CONNECTIONS (BP140)
A. Michaels Equivalents and pin connections of a popular selection of European, American and Japanese digital i.c.s. 236 pages. £5.95

INTERNATIONAL DIODE EQUIVALENTS GUIDE (BP108)
A. Michaels Possible substitutes for a large selection of many different types of semiconductor diodes. 144 pages. £2.25.

INTERNATIONAL TRANSISTOR EQUIVALENTS GUIDE (BP85)
A. Michaels Possible substitutes for a popular selection of European, American and Japanese transistors. 320 pages. O/P

NEWNES AUDIO & HI-FI ENGINEER'S POCKET BOOK
Vivien Cepel This is a concise collection of practical and relevant data for anyone working on sound systems. Thetopics covered include microphones, tapeheads, CD systems to name a few. 190 pages. Hardback £9.95

NEWNES COMPUTER ENGINEER'S POCKET BOOK
This is a invaluable compendium of facts, figures, circuits and data and is indispensable to the designer, engineer and all those interested in computer and microprocessor systems. 203 pages. Hardback £8.95

NEWNES ELECTRONICS POCKET BOOK
9th Edition Presenting all aspects of electronics in a readable and largely non-mathematical form for both the enthusiast and the professional engineer. 315 pages. Hardback £8.95

NEWNES RADIO AMATEUR AND LISTENER'S POCKET BOOK
Steve Money G3FXZ This book is a collection of useful and intriguing data for the traditional and modern radio amateur as well as the short wave listener. Topics include AMTOR, packet radio, SSTV, computer communications, airband and maritime communications are all covered. 160 pages. Hardback £8.95

NEWNES RADIO AND ELECTRONICS ENGINEER'S POCKET BOOK
17th Edition Keith Bradly Usefult data covering math, abbreviations, codes, symbols, frequency bands/allocations, UK broadcasting stations, semi-conductors, components, etc. 201 pages. Hardback £6.95

NEWNES TELEVISION AND VIDEO ENGINEER'S POCKET BOOK
Eugene Trudg This is a valuable reference source for practitioners in "establishment" television and radio engineering. It covers TV reception from v.h.f. to s.h.f. display tubes, colour camera technology, video recorder and video disc equipment, video test and hi-fi sound. 323 pages. Hardback £9.95

POWER SELECTOR GUIDE (BP235)
J. C. J. van De Van

Short Wave Magazine December 1989
This guide has the information on all kinds of power devices in useful categories (other than the usual alpha numeric sort) such as voltage and power properties making selection of replacements easier. 160 pages. £4.95

RSGB RADIO DATA REFERENCE BOOK G. R. Jessop G6JP
The 5th Edition of an essential book for the radio amateur's or experimenter's workbench. 244 pages. Hardback £8.95

SEMICONDUCTOR DATA BOOK A.M.Ball
Characteristics of some 10000 transistors, f.e.t.s, u.j.t.s, diodes, rectifiers, triacs and s.r.s.s. 175 pages. £9.95

TRANSISTOR SELECTOR GUIDE (BP234)
J. C. J. Van de Ven
This selection guide to all information on all kinds of transistors in useful categories (other than the usual alpha numeric sort) such as voltage and power properties making selection of replacements easier. 192 pages. £4.95

FAULT FINDING
ARE THE VOLTAGES CORRECT?
Reprinted from PW 1982-1983
How to use a multimeter to fault-find on electronic and radio equipment, from simple resistive dividers through circuits using diodes, transistors, i.c.s and valves. 44 pages. £1.50

GETTING THE MOST FROM YOUR MULTIMETER (BP239)
R. A. Penfold
This book is primarily aimed at beginners. It covers both analogue and digital multimeters and their respective limitations. All kinds of testing is explained too. No previous knowledge is required or assumed. 102 pages. £2.95

OSCILLOSCOPES, HOW TO USE THEM, HOW THEY WORK
Ian Hickman
This book describes oscilloscopes ranging from basic to advanced models and the accessories to go with them. 133 pages. O/P

PRACTICAL HANDBOOK OF VALVE RADIO REPAIR
Ches E. Miller
The definite work on repairing and restoring valued broadcast receivers dating from the 1930s to the 60s. Appendices giving intermediate frequencies, valve characteristic data and basic connections. 230 pages. Hardback £20.00

SERVICING RADIO, HI-FI AND TV EQUIPMENT
Gordon J. King
A very practical book looking at semiconductor characteristics, d.c. and signaltests, fault-finding techniques for audio, video, r.f. and oscillator stages and their application to transistor radios and hi-fi. 205 pages. £10.95

TRANSISTOR RADIO FAULT FINDING CHART (BP70)
C. E. Miller
Useful and essential, should enable most common faults to be traced reasonably quickly. Selecting the appropriate fault description at the head of the chart, the reader is led through the sequence of suggested checks until the fault is cleared. 63 x 455mm (approx) £0.95

CONSTRUCTION
HOW TO DESIGN AND MAKE YOUR OWN P.C.B.s (BP121)
R. A. Penfold
Designing or copying printed circuit board designs from magazines, including photographic methods. 80 pages. £2.50

INTRODUCING GRP
Collected articles from PW 1983-1985
An introduction to low-power transmission, including constructional details of designs by Rev. George Dobbs G3JLV, for transmitters and transceivers from Top Band to 14MHz, and test equipment by Tony Smith G4FAI. 64 pages. £1.50

MORE ADVANCED POWER SUPPLY PROJECTS (BP62)
R. A. Penfold
The theoretical and practical aspects of the circuits are covered in some detail. Topics include switched mode power supplies, precision regulators, dual tracking regulators, computer controlled power supplies, etc. 97 pages. £2.95

POWER SUPPLY PROJECTS (BP76)
R. A. Penfold
The book contains a number of power supply designs including simple unregulated types, fixed voltage regulated types and variable voltage stabilised designs. 91 pages. £2.50

PRACTICAL POWER SUPPLIES
Collected articles from PW 1978-1985
Characteristics of batteries, transformers, rectifiers, fuses and heatinks, plus designs for a variety of mains driven power supplies, plus the PW "Marchwood" giving a fully stabilised and protected 12V 30A d.c. 48 pages. £1.25

GRP NOTEBOOK
Doug DeMaw W1FB
This book deals with the building and operating of a successful GRP station. Lots of advice is given by the author who has spent years as an ardent GRPer. All the topics is easy-to-read and the drawings large and clear. 77 pages. £4.95

TEST EQUIPMENT CONSTRUCTION
R.A.Penfold
Described, in detail, how to construct some simple and inexpensive but extremely useful pieces of test equipment. 104 pages. £2.95

50 (FET) FIELD EFFECT TRANSFER PROJECTS
F.G.Raye
50 circuits for the s.w.i. radio, amateur, experimenter or audio enthusiast using f.e.t.s. 104 pages. £2.95

AUDIO FREQUENCIES
(AUDIO BP111)
Elements of Electronics Book 6 F. A. Wilson
This book studies sound and hearing, and the operation of microphones, loudspeakers, amplifiers, oscillators and both disc and magnetic recording. 320 pages. O/P

ANTENNAS (AERIALS)
AERIAL PROJECTS (BP105)
Practical designs for directive, loop and ferrite antennas plus accessory units. 96 pages. £2.50

ALL ABOUT CUBICAL QUAD ANTENNAS (USA) W. I. Orr W6SIAI & S. D. Cowan W2LX
Theory, design, construction, adjustment and operation of quads. Quads vs. Yagis. Gain figures. 109 pages. £5.50

ALL ABOUT VERTICAL ANTENNAS (USA) W. I. Orr W6SIAI & S. D. Cowan W2LX
Theory, design, construction, operation and the secrets of making vertical work. 197 pages. £7.50

AN INTRODUCTION TO ANTENNA THEORY (BP198)
H. C. Wright
This book deals with the basics concepts relevant to receiving and transmitting antennas. Lots of diagrams reduce the amount of mathematics involved. 86 pages. £2.95

BEAM ANTENNA HANDBOOK (USA)
W. I. Orr W6SIAI & S. D. Cowan W2LX
Design, construction, adjustment and installation of h.f. beam antennas. 198 pages. O/P

HF ANTENNAS FOR ALL LOCATIONS (RSGB) L. A. Moxon G8XN
Taking a logical look how h.f. antennas work, and putting theory into practice. 260 pages. £5.19

NOVICE ANTENNA NOTEBOOK
Doug DeMaw W1FB
Another book from the pen of W1FB, this time offering "new ideas for beginning hams". All the drawings are large and clear and each chapter ends with a glossary of terms. 130 pages £5.95

OUT OF THIN AIR
Collected Antenna Articles from PW 1977-1980
Including such favourites as the ZL Special and "2BCX 16- element beams for 2m, and the famous "Siles Jim", designed by Fred Judd G2BXC. Also features systems for Top Band, medium wavefonh wave loop designs and a v.h.f. direction finding loop. Plus items on propagation, antennas and accessory antenna design. 80 pages. £1.80

SIMPLE, LOW-COST WIRE ANTENNAS FOR RADIO AMATEURS (USA) W. I. Orr W6SIAI & S. D. Cowan W2LX
Efficient antennas for Top Band to 2m, including "invisible" antennas for difficult station locations. 191 pages. £6.75

THE ARRL ANTENNA BOOK (USA)
The 15th Edition
A station is only as effective as its antenna system. This book covers propagation, practical constructional details of almost every type of antenna, test equipment and formulas and programs for beam heading calculations. £12.95

SOLVE THAT DIFFICULT CHRISTMAS PRESENT - BUY A BOOK OR A SUBSCRIPTION TO SWM

THE ARRL ANTENNA COMPENDIUM (USA)
Volume One
Fascinating and hitherto unpublished material. Among the topics discussed are quads and loops, log periodic arrays, beam and multi-antenna beams, verticals and reduced size antennas. 175 pages. £9.25

WIRE & WAVES
Collected Antenna Articles from PW 1980-1984
Antenna and propagation theory, including NBB Yagi design. Practical designs for antennas from medium waves to microwaves, plus accessories such as a.t.s., s.w.i. and power meters and a noise bridge. Dealing with TVI. 160 pages. £3.00

W1FB'S ANTENNA NOTEBOOK
Doug DeMaw W1FB
This book provides lots of designs, in simple and easy to read terms, for simple wire and tubing antennas. All drawings are large and clear, making construction much easier. 124 pages. £5.95

25 SIMPLE AMATEUR BAND AERIALS (BP125)
E. M. Noll
How to build 25 simple and inexpensive aerials, from a simple dipole through beam and triangle designs to a mini-rhombic. Dimensions for specific spot frequencies including the WARC bands. 80 pages. £1.95

25 SIMPLE INDOOR AND WINDOW AERIALS (BP136)
E. M. Noll
Designs for people who live in flats or have no gardens, etc., giving surprisingly good results considering their limited dimensions. 84 pages. £1.75

25 SIMPLE SHORT WAVE BROADCAST BAND AERIALS (BP132)
E. M. Noll
Designs for 25 different aerials, from a simple dipole through helical designs to a multi-umbrella. 80 pages. £1.95

25 SIMPLE TROPICAL AND MW BAND AERIALS (BP142)
E. M. Noll
Simple and inexpensive aerials for the broadcast bands from medium wave to 46m. 64 pages. £1.75

THE RADIO AMATEUR HANDBOOK
William I. Orr W6SIAI & Stuart, D. Cowan W2LX
Yagi, quad, quagi, i.f. vertical, horizontal and "e Sloper" antennas are all covered. Also towers, grounds and rotators. 190 pages. £6.75

COMPUTING
AN INTRODUCTION TO COMPUTER COMMUNICATIONS (BP177)
R. A. Penfold
Details of various types of modem and their applications, plus how to interconnect computers, modems and the telephone system. Also networking systems and RTTY. 96 pages. £2.95

AN INTRODUCTION TO COMPUTER PERIPHERALS (BP170)
J. W. Penfold
Covers the wide range of computer peripherals such as monitors, printers, disk drives, cassette recorders, modems, etc., explaining what they are, how to use them and the various types of standards. 80 pages. £2.50

MICROPROCESSING SYSTEMS AND CIRCUITS (BP77)
Elements of Electronics Book 4 F. A. Wilson
A comprehensive guide to the elements of microprocessing systems, which are becoming evermore involved in radio systems and equipment. 256 pages. £2.95

MORSE
INTRODUCING MORSE
Collected Articles from PW 1982-1985
Ways of learning the Morse Code followed by constructional details of a variety of keys including lambo, Triambic, and an Electronic Bug with a 528-bit memory. 48 pages. £1.25

THE MORSE CODE FOR RADIO AMATEURS (RSGB) Malcolm Mills G3JAC
A guide to learning and send Morse code signals up to the 12 p.m. required for the radio licence aspiring to a Class A licence having passed the RA.E. 19 pages. £2.88

THE SECRET OF LEARNING MORSE CODE
Mark Francis
Designed to make you proficient in Morse code in the shortest possible time, this book points out many of the pitfalls that beset the student. 87 pages. £4.95

Short Wave Magazine December 1989 64
With 99 programmable memories the IC-R7000 covers aircraft, Marine, FM Broadcast, Amateur Radio, television and weather satellite bands. For simplified operation and quick tuning the IC-R7000 features direct keyboard entry. Precise frequencies can be selected by pushing the digit keys in sequence of the frequency or by turning the main tuning knob. FM wide/FM narrow/AM upper and lower SSB modes with six tuning speeds: 0.1, 1.0, 5, 10, 12.5, 25KHz.

The IC-R7000 has 99 memories available to store your favourite frequencies including the operating mode. Memory channels can be called up by pressing the memory switch then rotating the memory channel knob, or by direct keyboard entry. A sophisticated scanning system provides instant access to the most used frequencies. By depressing the Auto-M switch, the IC-R7000 automatically memorises frequencies that are in use whilst it is in the scan mode, this allows you to recall frequencies that were in use. The scanning speed is adjustable and the scanning system includes the memory selected frequency ranges or priority channels. All functions including the memory channel readout are clearly shown on a dual-colour fluorescent display. Other features include dial-lock, noise blanker, attenuator, display dimmer and S-meter and optional RC-12 infra-red remote controller, voice synthesizer and HP 1 headphones.
Yaesu has serious listeners for the serious listener.

Yaesu's serious about giving you better ways to tune in the world around you.

And whether it's for local action or worldwide DX, you'll find our VHF/UHF receivers are the superior match for all your listening needs.

The FRG-9600. A premium VHF/UHF scanning communications receiver. The 9600 is no typical scanner. And it's easy to see why.

You won't miss any local action with continuous coverage from 60 to 905MHz.

You have more operating modes to listen in on: upper or lower sideband, CW, AM wide or narrow, and FM wide or narrow.

You can even watch television programmes by plugging in a video monitor into the optional video output. (NTSC System)

Scan in steps of 5, 10, 12½, 25 and 100kHz. Store any frequency and related operating mode into any of the 99 memories. Scan the

memories. Or in between them. Or simply "dial up" any frequency with the frequency entry pad.

Plus there's more, including a 24-hour clock, multiplexed output, fluorescent readout, signal strength graph, and an optional PA4C, AC power adaptor.

Extend the coverage further with the optional FC965DX 0.15-30MHz and FC1300 800-1300MHz external convertors.

The FRG-8800 HF communications receiver. A better way to listen to the world. If you want a complete communications package, the FRG-8800 is just right for you.

You get continuous worldwide coverage from 150kHz to 30MHz.

And local coverage from 118 to 174MHz with an optional VHF converter.

Listen in on any mode: upper and lower sideband, CW, AM wide or narrow, and FM.

Store frequencies and operating modes into any of the twelve channels for instant recall.

Scan the airwaves with a number of programmable scanning functions.

Plus you get keyboard frequency entry. An LCD display for easy readout. A SINPO signal graph.

Computer interface capability for advanced listening functions. Two 24-hour clocks. Recording functions. And much more to make your listening station complete.

Listen in. When you want more from your VHF/UHF or HF receivers, just look to Yaesu. We take your listening seriously.

Yaesu

South Midlands Communications Ltd
S.M. House, School Close, Chandlers Ford Industrial Estate, Eastleigh, Hants SO5 3BY
Tel: (0703) 255111
UK Sole Distributor

Dealer inquiries invited.

Prices and specifications subject to change without notice.
FRG-9600 SSB coverage: 60 to 460 MHz.