EDDYSTONE 940 RECEIVER
improving its Performance

SONY ICF-2001D REVIEWED

For the Radio Listener
IC-R7000, 25-2000 MHz, Commercial quality scanning receiver

ICOM introduces the IC-R7000, advanced technology, continuous coverage communications receiver. With 99 programmable memories the IC-R7000 covers aircraft, Marine, FM Broadcast, Amateur Radio, television and weather satellite bands. For simplified operation and quick tuning the IC-R7000 features direct keyboard entry. Precise frequencies can be selected by pushing the digit keys in sequence of the frequency or by turning the main tuning knob. FM wide/FM narrow/AM upper and lower SSB modes with six tuning speeds: 0.1, 1.0, 5, 10, 12.5, 25KHz.

The IC-R7000 has 99 memories available to store your favourite frequencies including the operating mode. Memory channels can be called up by pressing the memory switch then rotating the memory channel knob, or by direct keyboard entry. A sophisticated scanning system provides instant access to the most used frequencies. By depressing the Auto-M switch, the IC-R7000 automatically memorises frequencies that are in use whilst it is in the scan mode, this allows you to recall frequencies that were in use. The scanning speed is adjustable and the scanning system includes the memory selected frequency ranges or priority channels. All functions including the memory channel readout are clearly shown on a dual-colour fluorescent display. Other features include dial-lock, noise blanker, attenuator, display dimmer and S-meter and optional RC-12 infra-red remote controller, voice synthesizer and HP 1 headphones.

IC-R71E, General coverage receiver.

The ICOM IC-R71E 100KHz to 30MHz general coverage receiver features keyboard frequency entry and infra-red remote controller (optional) with 32 programmable memory channels, SSB, AM, RTTY, CW and optional VFO's scanning, selectable AGC, noise blanker, pass band tuning and a deep notch filter. With a direct entry keyboard frequencies can be selected by pushing the digit keys in sequence of frequency. The frequency is altered without changing the main tuning control. Options include FM, voice synthesizer, RC-11 infra-red controller, CK70 DC adaptor for 12 volt operation, mobile mounting bracket, CW filters and a high stability crystal filter.

Helpline: Telephone us free-of-charge on 0800 521145, Mon-Fri 09.00-13.00 and 14.00-17.30. This service is strictly for obtaining information about or ordering Icom equipment. We regret this cannot be used by dealers or for repair enquiries and parts orders, thank you.

Datapost: Despatch on same day whenever possible.

Access & Barclaycard: Telephone orders taken by our mail order dept, instant credit & interest-free H.P.

Icom (UK) Ltd.
Dept SW, Sea Street, Herne Bay, Kent CT6 8LD. Tel: 0227 363859. 24 Hour.
Cover: The Eddystone 940 short wave receiver was deservedly popular in its day and is still very much sought after, both by collectors who want to preserve a bit of the past and listeners looking for a simple, "no frills" set. Tim Wright continues with his short series on improving the performance of the 940 in the light of modern day conditions.

CONTENTS

ON SALE AUGUST 25th

OCTOBER ISSUE ON SALE SEPTEMBER 22

[27] Eddystone 940 Receiver

Introduction to DX-TV Part 12

SWM Review Sony ICF-2001D Receiver

Three-Band SSB Receiver Part 3

Reminiscences Eddystone 940 Receiver Part 2

Behind the Scenes at Radio Australia Part 1

Klingenfuss

REGULARS

A Word in Edgeways

What’s New

Grassroots

Listen Out For Rallies

Airband

Scanning

Bandscan

Starting Out Services

What Scanner?

Book Service

Trading Post

SEEN & HEARD

Amateur Bands Round-Up

Decode

Info in Orbit

Band II DX

Television

Long Medium & Short

Your Letters

Latest News & Products

Club News

Special Event Stations

Where to Go

Aeronautical Radio News

For the Scanning Enthusiast

Broadcast Station News

For the Beginner

Important Information

Technical Specifications

Order Your Technical Books

Readers’ Adverts

GOOD LISTENING
Sir

In your issue of July 1988, Mr Rees of Dyfed, as well as missing the point of my letter and getting my name wrong, contrives also to show his ignorance of both technical monitoring and grammar.

For Mr Rees’s guidance, in addition to their technical duties using more advanced equipment, technical monitors reporting to the major broadcasting organisations in Europe are nowadays required to listen several times per day to “one hop” transmissions on cheap equipment, using only the incorporated antenna. This is precisely so as to evaluate the reliability or limitations of such transmissions when heard on simple receivers.

Systematic monitoring is one thing; random reception reporting another. I continue to maintain that Mr Steel’s point of view last January remains eminently valid.

According to the reports, the recent EDXC Conference in Antwerp underlined the growing dissatisfaction of the big short wave broadcasters with the general level of reporting. Things have mightily changed these past few years. Broadcasters in Europe are certain that their powerful “one hop” signals are reliably received. The emphasis on reception has moved significantly towards programme content.

Messrs Rees & Smith might, therefore, usefully enlarge their activities to include reporting on the quality of HCJB hymns, which would perhaps be of more utility to the broadcaster and good for their souls.

GERARD CASEY
BORDEAUX
FRANCE

Sir

I have recently been given what I think is an old ex-army general coverage receiver in very good condition and is in full working order. The plate on the front has on it RECEIVED BROADCAST. P.C.R. No3 Mk 1/2 ZA 00607 SERIAL No R/RAC/P/E/1961. It was a rack mounted set with external power source but has been converted to a 240V transformer. This was done, I think, by the makers because there is a modification plate also on the front which has No 1 crossed off. Anyway I have enclosed a slide photograph of it. I would appreciate any information on the set as to who its manufacturers were and are manuals available?

I am also having a go at the Audio Filter by Rev. G. C. Dobbs G3RJV, SWM July 1987.

I am interested in all aspects of short wave listening and I especially like "Airband", (being only a short distance from Manchester Airport), so having a monthly article on the subject is much appreciated, in fact the whole magazine is very good and is read from cover to cover as soon as it arrives, so carry on the good work. Anyway I will sign off now and hope you or fellow readers can come up with the name of that receiver.

R. BRADLEY
OLDHAM LANCS.

Sir

I have been following closely recent articles and letters featuring Rebecca/ Eureka and thought the following notes may be of interest.

I recently visited the Yorkshire Air Museum at Elvington near York where dedicated enthusiasts are restoring and fitting out with appropriate equipment the World War II control tower, associated buildings (NAAFI, etc) and a Halifax bomber. Not only does the museum have a display of radio, navigation aids and radar of the period, it also runs a video show which includes a training film on Rebecca/ Eureka. All the more remarkable for being in colour (1943 vintage I believe), the film shows how the equipment, installed in a Halifax bomber, was used to locate paratroop drop zones. It covers setting up the Eureka beacon and the use of the airborne c.r.t. display to guide the pilot to the beacon. Well worth a visit!

A well illustrated description of Rebecca/ Eureka's use in clandestine operations is contained in Pierre Lorain's book Secret Warfare. It shows how the equipment was used to guide aircraft carrying supplies and agents to the resistance in occupied France. It suggests a maximum range of 30 miles. The book is an encyclopaedia of equipment used by the French Resistance and has extensive coverage of wireless sets and communication techniques. Several circuit diagrams of "spy" sets are included.

Finally my first encounter with this ingenious equipment came as a budding radio enthusiast in the early 60s with the purchase of an AN/APN2, the American model of the Eureka beacon. This was widely available on the surplus market as a glance through issues of Practical Wireless of those years will reveal. The Rebecca set was the AN/PPN2 and the equipment operated also in the 200 - 220mc/s (sorry MHz) range. I believe it was also used in an air-sea rescue role working in conjunction with rubber dinghy rescue beacons. Alas my acquisition got broken up for components which included the popular "Acorn" valves which had been designed for use up to around 450MHz.

How about a series on some of the World War II equipment such as GEE, OBOE, etc?

MICHAEL OLDFIELD G8TJI
AYLESBURY BUCKS

A WORD IN EDGeways

IF YOU HAVE ANY POINTS OF VIEW THAT YOU WANT TO AIR PLEASE WRITE TO THE EDITOR. IF YOUR LETTER IS USED YOU WILL RECEIVE A £5 VOUCHER TO SPEND ON ANY OF SWM SERVICES.

The Editor reserves the right to shorten any letters for publication but will try not to alter their sense. Letters must be original and not have been submitted to other magazines.

Sir

I have recently been given what I think is an old ex-army general coverage receiver in very good condition and is in full working order. The plate on the front has on it RECEIVED BROADCAST. P.C.R. No3 Mk 1/2 ZA 00607 SERIAL No R/RAC/P/E/1961. It was a rack mounted set with external power source but has been converted to a 240V transformer. This was done, I think, by the makers because there is a modification plate also on the front which has No 1 crossed off. Anyway I have enclosed a slide photograph of it. I would appreciate any information on the set as to who its manufacturers were and are manuals available?

I am also having a go at the Audio Filter by Rev. G. C. Dobbs G3RJV, SWM July 1987.

I am interested in all aspects of short wave listening and I especially like "Airband", (being only a short distance from Manchester Airport), so having a monthly article on the subject is much appreciated, in fact the whole magazine is very good and is read from cover to cover as soon as it arrives, so carry on the good work. Anyway I will sign off now and hope you or fellow readers can come up with the name of that receiver.

R. BRADLEY
OLDHAM LANCS.

Sir

I have been following closely recent articles and letters featuring Rebecca/ Eureka and thought the following notes may be of interest.

I recently visited the Yorkshire Air Museum at Elvington near York where dedicated enthusiasts are restoring and fitting out with appropriate equipment the World War II control tower, associated buildings (NAAFI, etc) and a Halifax bomber. Not only does the museum have a display of radio, navigation aids and radar of the period, it also runs a video show which includes a training film on Rebecca/
A WORD IN EDGEWAYS

Sir

Through the courtesy of your columns may I say how much the letter from Mr. Darrel Rees, in the July issue, was appreciated. I felt that Mr. Gerard Casey was a little too scathing about the activities of part-time, non-professional DX reporters. Certainly my letter in the February issue was not intended as an attack on HCJB, a radio station backed by an organisation well able to speak for itself if the need arose.

As for the one-hop coverage aspect, Deutsche Welle have relay stations in Malta, Kigali, Antigua, Montserrat, Sines, Canada and Trincomalee, all listed in the WRTV Handbook. As a matter of fact I have a QSL Card confirming reception of the Trincomalee Relay on the 16th August 1985. After sending DX reports to several far-away places over many years, my choice of a European radio station was a deliberate attempt to listen to such a station and its relay satellites.

I would suggest that Mr. Saul should read the book ‘Television of To-day and Tomorrow’ by Sydney A. Moseley and H. J. Barton, published by Sir Isaac Pitman & Sons Ltd. (Third edition). I find it a most fascinating book as it covers the development of television both in the UK and abroad from April 1926 when the first public demonstration was given in Selfridges. The book is full of diagrams and pictures which will serve to give Mr Saul an idea of the construction of the equipment as well as the circuit diagrams. By 1928 Colour and Stereoscopic Television was using red, green and blue filters, a fact. The book stops at 1931!

ADRIAN E. COLEMAN
HARLESTON
NORFOLK

WHAT’S NEW

Marco Expansion

Marco Trading of Wern are pleased to announce the opening of its third retail shop, Supertronics.

Supertronics is five minutes walk from New Street Station and Birmingham’s main shopping area. It’s next door to Rusty Lee’s restaurant. They have over 1000sq ft of sales areas offering not only a wide selection of components, including transistors, I.C’s, resistors, cable, etc., but also speakers from 4W to 200W. There’s also test equipment (new and second-hand), alarm equipment, and also an on-site audio and video repair service.

They’re open Monday to Saturday 9am to 6pm, closed Wednesdays.

Supertronics
65 Hurst Street
Birmingham B6
Tel: 021-666 6504

DXAGB

The DX Association of Great Britain have always published a monthly newsletter, but until now it’s been A5 size. We have seen a copy of the ‘new’ newsletter, that’s the April/May edition, in its A4 size.

The new size certainly made a difference to the section on loggings, these were much easier to read. There’s a section on DX Information, Members Loggings and a Shortwave Logbook. As always, everyone else seems to have done better than ever.

If you would like more details on the activities of the DXAGB, send an s.a.e. to:

A.G. Brimming
43 Atwood Drive
Lawrence Weston
Bristol
BS11 0SR

The DM 4351

Electronic Temperature Instruments Ltd have recently added the DM4351 digital multimeter to their range.

It offers the user the choice of auto or manual ranging and will measure d.c. or a.c. volts, current, resistance and will operate as a continuity tester. The most sensitive range is 200mV, and voltages of up to 1000V d.c. and 750V a.c. can also be measured. The current ranges available are from up to 200mA and up to 10A.

The DM4351 includes a continuity bleep which is useful for cable tracing or short circuit detections. For diode testing the unit has an open circuit voltage of 1.5V on the continuity mode and continues to read ohms. The unit comes complete with a soft carrying case, probes and batteries and costs £39.

ETI
PO Box 81
Worthing
West Sussex BN13 3PW
Tel: 0903 2021 51

Screen Europe

Screen Europe is a bi-monthly magazine for DXTV fanatics. The issue we saw contained loggings, some history, scanner news, a home-brew project and an article on using computers.

The subscription rate is £4.75 per year. They also have available an extensive range of data sheets for the beginner on many subjects: Propagation, Antennas for DXTV, Photographing and Videoing DXTV and a French TV data sheet. Apparently this can be very useful if you live in the south of the country as it includes a list of all the French TV companies and style of programming as well as a map of France with all TV transmitters and channels marked.

If you would like to know more about the magazine, then send an s.a.e. to:

Tim Anderson
2 Burry Road
Silverhill
St. Leonards
East Sussex.
The Radiophile

Some readers may remember reading about a publication called RadioGram in the past. Well, it’s changed its name to The Radiophile.

This is because the former title was derived from “radiogram”, the early term for a message sent by radio. With the scope of the magazine being increasingly widened, they believe that the new name will more aptly reflect the purpose and content of a publication devoted to the interests of those who have a great affection for all aspects of vintage radio.

The June/July issue that landed in our office has articles on the Ekco AD65 receiver, The Story A home-made Accumulator and some very interesting short stories.

The subscription rates are £8 for six issues or £15 for twelve issues in UK and Ireland, £10 for six issues or £18 for twelve issues for Europe and Scandinavia. Other areas need to write first. The magazine is published bi-monthly.

The Radiophile

Larkhill
Newport Road
Woodseaves
Stafford ST20 ONP

RSGB 75 Award

To celebrate the 75th Anniversary of the Radio Society of Great Britain, the Society has decided to introduce the RSGB 75 Award. To qualify for the award, stations must achieve the following:

UK Amateurs and s.w.l.s.

One contact with any of the following stations –
GB75RS (throughout the year)
GB75HO (July 1988)
GB75AC (9-17 July 1988)
GB75ER (9-17 July 1988)

or 10 other GB75 calls PLUS contacts with a total of 75 different RSGB members.

Overseas Amateurs and s.w.l.s.

A total of 75 points made up from the following –
GB75RS (10 points)
GB75HO (15 points)
GB 75AC (15 points)
GB75ER (15 points)
GB75ER (15 points)

Other GB75 calls (5 points)
RSGB members (1 point)

Contacts may be made on any band using any mode, including satellites, but must NOT include any duplicate contacts or contacts via repeaters. All contacts must take place between 1 January 1988 and 31 December 1988. Short wave listeners, in both categories, will be able to apply for the award on a “stations heard” basis.

Claims must be postmarked no later than 1 April 1989 and be accompanied by a cheque or postal order for £1.50 made payable to RSGB to cover postage and packing. Ten IRCs are required for overseas applications.

When you have the required number of contacts or points, you should send a certified log entry (QSL cards not required) to:
Mr John Harvey G4/IVJ
RSGB 75 Award Manager
38 Bodenham Road
Northfield
Birmingham B31 5DS

One problem with NiCad cells in their gradual loss of capacity, brought about by discharging before the cells have been totally discharged. This loss occurs because cells tend only to remember the level of charge put back rather than the original capacity. Cirkit Distribution have manufactured the NC101 discharge/charge cycler to combat this problem. It is completely automatic from start cycle through to fully charged condition. Four current selectable ranges are available for a variety of battery packs.

Once the batteries have discharged to one volt per cell, charging commences under the control of a precision crystal oscillator at charging currents determined by electronic constant current control circuitry. When full charge is reached, charging stops and an indicator shows that the batteries may be removed.

The discharge period varies with the initial discharge state of the batteries. The maximum cycle time is 8 hours 33 minutes, but will normally be around 6 hours says Cirkit. The unit has two outputs, the first with fixed settings for an eight-cell NiCad battery pack of either 500 or 600mAh and the second for a four-cell NiCad battery with selectable capacity of 225, 500, 600 or 1200mAh.

For safety, outputs are short circuit protected, and there is audible warning of reverse battery polarity. Open circuit protection, a split bobbin transformer and internal mains fuse are fitted as standard.

The NC101 is available ready built at £49.95 including VAT, or in kit form (comprising board level kit at £27.10 and hardware kit at £12.50, both including VAT).

For more details on the NC101, contact: Cirkit Distribution Ltd
Park Lane
Bexbourne
Herts EN10 7NQ
Tel: 0992 444111

DSWCI Publications

The second publication is Clandestine Stations List. This is 12 A4 pages on active clandestine radio stations all over the world. The first section lists stations by frequency, the second section gives additional information including addresses and verification policy.

The Clandestine Stations List is available for 4IRCs surface mail or 5 IRCs airmail.

TV Antenna Amplifier

An increasing number of households now possess two (or more) TV sets, most usually working off the one antenna. Maplin Electronics have introduced an antenna amplifier which serves to boost the signal to one TV set or overcomes the losses which occur when two TV sets are operated from one antenna.

The white amplifier box (151 x 79 x 52mm) can be fixed to the wall or left free-standing. It features an on/off switch and red "on" indicator light. The unit can be left on continuously, if wanted.

The amplifier has three coaxial sockets. The antenna lead plugs into one and the TV sets' leads into the other two sockets. The 1.8m mains cable should be fitted with a plug equipped with a 3A fuse.

Bandwidth: 470 - 860MHz
Typical Gain: 7dB
Maximum Output: 96dBuV
Input/Output Impedance: 75Ω
Cost £11.95

For more details on the antenna amplifier, contact:
Maplin Electronics
PO Box 3
Rayleigh
Essex SS6 8LR

Computers Make Toddlers Anxious

Ramat Gan, Israel: A researcher at Bar Ilan University has conducted studies of three-year-olds implying that attempts to use computers may be raising their anxiety levels.

Prof. Pinia Klein of the university's school of education, who specialises in the study of mental development of young children, concluded that the computer can be threatening to youngsters under age four. "They are unfamiliar with it," the Professor says, "unlike a television, which they can operate with the press of one button."

Among four, five and six-year-olds, the anxiety disappeared and their attitudes to the computer were reflected in the degree of success they had in using them. "Parents shouldn't worry about young children coming into contact with the home computer," says Prof. Klein. "I'm simply saying they shouldn't force the issue."

Lincoln Century Award

This award is available to licensed amateurs and s.w.l.s. A list showing full details of the contacts made/heard should be certified by two other licensed amateurs.

All the contacts must be made from the same location, but contacts via satellites or repeaters don’t count. The award can be claimed for any permitted mode and all bands may be used. Any claims for above 50MHz should be single band.

There are four classes of award E to A and contact must be made with Lincoln Cities and Counties throughout the world. Lincoln Short Wave Club stations G6FZ or G6COL count as 30 points.

Any station in the City of Lincoln, England or any other town or city in the world with the name of Lincoln counts as 20 points. Any station in the County of Lincolnshire, England or in any Lincoln County in the USA counts as 10 points.

The five stages of award require the following points value:

E = 100 points
D = 200 points
C = 300 points
B = 400 points
A = 500 points

The award costs £1.00 sterling or five IRCs and is available from:

The Secretary
Lincoln Short Wave Club
Pinchbeck Farmhouse
Mill Lane
Sturton by Stow
Lincoln LN1 2AS

Radio Stations in the UK

The 7th edition of the booklet Radio Stations in the United Kingdom is available from the British DX Club. It’s a 24-page A5 booklet and it lists all national, local and regional long wave, medium wave and v.h.f./f.m. transmitters in the UK.

As well as station name, transmitter power and locations, each entry is cross-referenced to help with identification and to show any other channels that may be operating in parallel.

The list also includes a complete list of postal addresses and telephone numbers for each station listed together with background information on the broadcasters and advice on writing reception reports.

The cost of this booklet is £1, $3 or 4 IRCs and this includes postage worldwide.

British DX Club
54 Birkhall Road
Catford
London SE6 1TE

Shielded Coil Forms

Cirkit Distribution have introduced a comprehensive range of shielded coil forms manufactured by Micrometals of California. The assemblies include both an adjustable threaded core and a fixed cup to close the magnetic path.

Iron powder cores are offered as standard, with ferrite cores available for applications requiring higher inductance at lower frequencies. Winding forms may vary from series to series, with impregnated paper tube, polyester tube and nylon bobbins available. Shielding cans for electromagnetic shielding are made of copper with tin plating to ensure performance.

A thermosetting plastics that will not deform at elevated temperatures is used for the plastics moulded bases and all pins are copper tin plated.

For further information, contact:
Cirkit Distribution Ltd
Park Lane
Broxbourne
Herts EN10 7NQ
Tel: 0992 444111

Liniplex from Phase Track

Short wave broadcast listeners will soon enjoy the quality of reception which has hitherto been enjoyed only by serious BBC World Service listeners overseas using the Liniplex crystal controlled h.f. receivers.

The Liniplex receiver system is based on receivers supplied for “off air” broadcast relays to, amongst others, BFBS in the Falklands, Belize, Gibraltar, Cyprus, Hong Kong and Nepal.

The principal feature of these receivers is the linear phase locked synchronous demodulator which is unique and patented in the UK. In addition, an active tracking filter allows sideband modulation to be selected at will with no deterioration in audio quality from the double sideband case. No fine tuning is required during the reception of normal a.m. broadcasts.

Phase Track Ltd
16 Britten Road
The Robert Cort Industrial Estate
Elgar Road
Reading RG2 0AU

Radio Nederland Media Network Plans

This programme is transmitted by Radio Nederland on Thursdays. It is a weekly survey of communication developments compiled with the assistance of over 170 monitors spread across the globe. This audio magazine runs on enthusiasm, building on more than 26 years of experience in this field of programming.

Thursday September 1: “FIRATO-88”.

On location at the huge Firato Audio and Video Fair in Amsterdam, Media Network reports on the trends in consumer electronics. Will compact disc video finally appear, what is so great about Super-VHS and they report on the race to make an electronic stills camera.

Thursday September 8: “Masters of the Medium”.

Following on from Firato, they reflect on the days when recorded broadcasts were a nightmare... far worse than engineering a live one. A collection of curious stories from the early days of Radio Nederland, back in 1947/48.

Thursday September 15: “Masters of the Medium Part II”.

Has modern technology improved radio programme production?

Thursday September 22: “News Round-up”.

Jonathan Marks reports on the East Coast Hamfest in Virginia and what 10,000 DXers manage to hear over the previous weekend.

Thursday September 29: “Newcomer Notes”.

As the peak period of the short wave listening season opens, Media Network goes back to basics. But an experience short wave listeners will find tips to improve their success in the hobby.

Radio Nederland
English Section
Postbus 222
1200 JG Hilversum
The Netherlands

WHAT’S NEW

ASTUR

Do you own an Atari ST computer that you use for the hobby, or would like to use. If so then ASTUR may be the group for you.

The ASTUR group is a self-help users group dedicated to the use of the Atari ST computers in amateur radio — particularly with digital communications techniques.

The group was created to form a link between all amateur radio enthusiasts throughout the world, regardless of affiliation or special interest. The idea is to foster a free exchange of ideas, techniques and general information between its members concerning the use of the Atari ST.

For more information on joining the group, send 2IRC’s to:
ASTUR
W. Elsschotlaan 21
B-8460 Koksijde
Belgium

CRUG Goes Public!

A few months ago the Commodore Radio Users Group started up, little did the originator envisage what was ahead. Around 130 or so people registered initially and it has been the general consensus of opinion that the group should produce their own magazine and be run along the lines of most other computer/radio user groups.

As from June 1, the CRUG became a “real” user group. A magazine will be produced four times a year and will be known as Connections. Subscriptions have been fixed at £8 for the first year’s and will be reviewed next year.

For further information on the group, contact:
Commodore Radio Users Group
Simon Lewis GM4PLM
69 Irvine Drive
North Clippens
Linwood
Paisley
Renfrewshire PA3 3TB

Contact:
Linwood
North Clippens
Lincoln Short Wave Club
Sturton by Stow
Lincoln LN1 2AS

CRUG Goes Public!

A few months ago the Commodore Radio Users Group started up, little did the originator envisage what was ahead. Around 130 or so people registered initially and it has been the general consensus of opinion that the group should produce their own magazine and be run along the lines of most other computer/radio user groups.

As from June 1, the CRUG became a "real" user group. A magazine will be produced four times a year and will be known as Connections. Subscriptions have been fixed at £8 for the first year's and will be reviewed next year.

For further information on the group, contact:
Commodore Radio Users Group
Simon Lewis GM4PLM
69 Irvine Drive
North Clippens
Linwood
Paisley
Renfrewshire PA3 3TB
Cheltenham ARA meet 1st & 3rd Fridays in the Stanton Room, Charlton Kings Library. September 2 is G4XVE on the ZB Expedition. Dave Abbott G4RJP at Holbury, Thorncliffe Drive, Cheltenham.

Yeovil ARL meet Thursdays, 7.30pm in The Recreation Centre, Chilton Grove. September 8 is Netting by G3GMY. David Bailey G1NNM at 7 Thatcheom Close, Yeovil BA2 3BE.

Chelmsford ARS have BBC Essex, a description of the station on September 6. 1st Tuesdays, 7.30pm at Marconi College, Arbor Lane. Roy Martyn G3PMX on Chelmsford 353221 Ex. 3815.

Wirral ARS meet 1st & 3rd Wednesdays at Ivy Farm, Arrore Park Road. A low cost construction project on September 7, an Equipment Sale on the 21st. R. E. Bridson G3VBE on Wallasey 1346.

Thornbury & District ARC have a Junk Sale on September 13. For their meeting place and time contact H. T. Cromack GOFGI on Thornbury 411062.

Acton, Brentford & Chiswick ARS have demo of a Homebrew 2-band Transceiver by G4HMC on September 20. Alternate Tuesdays, 7.30pm at the Chiswick Town Hall, High Road. W. G. Dyer G3GHE on Acton 3778.

Wakefield & District RS meet Tuesdays, 8pm in Ossett Community Centre, Prospect Road. August 30 is a video Film Night (final prep for Trophy Contest), September 3/4 is the 144MHz Trophy Contest, the 6th is a Practical Evening. September 13 & last Fridays, 7.30pm at the Air/Morse Tuition, the 11th is a Treasure Hunt/Barbecue. Jonathan Ward G4HHT on Exeter 459622.

Coventry ARS meets Fridays, 8pm at Baden Powell House, 121 St. Nicholas Street, Radford. August 26 is a Canal Trip, September 2 & 16 are a Night on the Air/Morse Tuition, the 22nd is a Top Surplus Antennas G8PG, the 19th is a Natter Night. Val Mitchell G1GZB on Todmorden 7572.

Wyre ARS have a Barbecue on August 31 and a Morse Class on September 14. 2nd & 4th Wednesdays, 8pm in Breck Sports & Social Club. Dave Westby G4UQE on Lancashire 854745.

Pontefract & District ARS meet Thursdays, 8pm in the Carleton Community Centre, Carleton Road. September 1 is finals on SSB Field Day, the 8th is a Committee Meeting, the 15th On the Air and the 22nd QRP by Rev. George Dobbs. Eddie Grayson G6OJX on Knottingley 83789.

Braintree & District ARS have a Construction Evening on September 5 and PMR & VHF Repeaters by G3XVV on the 19th. 1st & 3rd Fridays, 7.30pm at the Braintree Community Association Centre, Victoria Street. Norma Willcombe GOFPW on Braintree 45058.

South Manchester RC meet Tuesday, 8pm in Sale Moor Community Centre, Norris Road. Sale. August 26 is a Mini Lecture evening in the Club Room, part of the pre-AGM discussion on the 14th. Tim Fitzgerald G4UOE on Camberley 29321.

On August 27, World DX Club have a representative from Phase Truck Ltd showing some of their equipment. They meet roughly every six weeks on a Saturday in St. Marys Centre, Chain Street, Reading from 2.30-5.30pm. Ron Blair on Reading 428895.

We have been informed that Mr A. G. Binning, Secretary of the DX Association of GB, has resigned. All correspondence should now be sent to DX.A.GB, c/o Flat 13, 63 Eton Avenue, Hampstead, London NW3 3ET.

Lincoln SW Club have On Air/Activities/Hamfest Programme Colating on August 31. Meet Wednesdays at the City Engineers Club, Central Depot, Waterside. Pam Rose G4STO at address shown above.

North Northants ARS meet 1st & 3rd Tuesdays, 7.30pm in the Cricket Pavilion, outside Rugby Radio Station. September 6 is a 144MHz d.f. Hunt, the 13th is prep for 3rd Annual Auction & Barbecue, the 19th is a Natter Night. Barbecue, details G8THW QTH. Kevin Marriott G8TWK on Rugby 77998.

Keighley ARS have a visit to Fire & Rescue HQ, Birkenshaw an Informal on September 13. 2nd & 4th Tuesdays, 8pm in the Club Room, rear of Victoria Hall. Kathy G1ILGH on Bradford 458222.

Coventry ARS meets Fridays, 8pm at Baden Powell House, 121 St. Nicholas Street, Radford. August 26 is a Canal Trip, September 2 & 16 are a Night on the Air/Morse Tuition, the 22nd is a Top Surplus Antennas G8PG, the 19th is a Natter Night. Val Mitchell G1GZB on Todmorden 7572.

Wyre ARS have a Barbecue on August 31 and a Morse Class on September 14. 2nd & 4th Wednesdays, 8pm in Breck Sports & Social Club. Dave Westby G4UQE on Lancashire 854745.

Pontefract & District ARS meet Thursdays, 8pm in the Carleton Community Centre, Carleton Road. September 1 is finals on SSB Field Day, the 8th is a Committee Meeting, the 15th On the Air and the 22nd QRP by Rev. George Dobbs. Eddie Grayson G6OJX on Knottingley 83789.

Braintree & District ARS have a Construction Evening on September 5 and PMR & VHF Repeaters by G3XVV on the 19th. 1st & 3rd Fridays, 7.30pm at the Braintree Community Association Centre, Victoria Street. Norma Willcombe GOFPW on Braintree 45058.

South Manchester RC meet Tuesday, 8pm in Sale Moor Community Centre, Norris Road. Sale. August 26 is a Mini Lecture evening in the Club Room, part of the pre-AGM discussion on the 14th. Tim Fitzgerald G4UOE on Camberley 29321.

On August 27, World DX Club have a representative from Phase Truck Ltd showing some of their equipment. They meet roughly every six weeks on a Saturday in St. Marys Centre, Chain Street, Reading from 2.30-5.30pm. Ron Blair on Reading 428895.

We have been informed that Mr A. G. Binning, Secretary of the DX Association of GB, has resigned. All correspondence should now be sent to DX.A.GB, c/o Flat 13, 63 Eton Avenue, Hampstead, London NW3 3ET.

Lincoln SW Club have On Air/Activities/Hamfest Programme Colating on August 31. Meet Wednesdays at the City Engineers Club, Central Depot, Waterside. Pam Rose G4STO at address shown above.

North Northants ARS meet 1st & 3rd Tuesdays, 7.30pm in the Cricket Pavilion, outside Rugby Radio Station. September 6 is a 144MHz d.f. Hunt, the 13th is prep for 3rd Annual Auction & Barbecue, the 19th is a Natter Night. Barbecue, details G8THW QTH. Kevin Marriott G8TWK on Rugby 77998.

Keighley ARS have a visit to Fire & Rescue HQ, Birkenshaw an Informal on September 13. 2nd & 4th Tuesdays, 8pm in the Club Room, rear of Victoria Hall. Kathy G1ILGH on Bradford 458222.

Coventry ARS meets Fridays, 8pm at Baden Powell House, 121 St. Nicholas Street, Radford. August 26 is a Canal Trip, September 2 & 16 are a Night on the Air/Morse Tuition, the 22nd is a Top Surplus Antennas G8PG, the 19th is a Natter Night. Val Mitchell G1GZB on Todmorden 7572.

Wyre ARS have a Barbecue on August 31 and a Morse Class on September 14. 2nd & 4th Wednesdays, 8pm in Breck Sports & Social Club. Dave Westby G4UQE on Lancashire 854745.

Pontefract & District ARS meet Thursdays, 8pm in the Carleton Community Centre, Carleton Road. September 1 is finals on SSB Field Day, the 8th is a Committee Meeting, the 15th On the Air and the 22nd QRP by Rev. George Dobbs. Eddie Grayson G6OJX on Knottingley 83789.

Braintree & District ARS have a Construction Evening on September 5 and PMR & VHF Repeaters by G3XVV on the 19th. 1st & 3rd Fridays, 7.30pm at the Braintree Community Association Centre, Victoria Street. Norma Willcombe GOFPW on Braintree 45058.

South Manchester RC meet Tuesday, 8pm in Sale Moor Community Centre, Norris Road. Sale. August 26 is a Mini Lecture evening in the Club Room, part of the pre-AGM discussion on the 14th. Tim Fitzgerald G4UOE on Camberley 29321.

On August 27, World DX Club have a representative from Phase Truck Ltd showing some of their equipment. They meet roughly every six weeks on a Saturday in St. Marys Centre, Chain Street, Reading from 2.30-5.30pm. Ron Blair on Reading 428895.

We have been informed that Mr A. G. Binning, Secretary of the DX Association of GB, has resigned. All correspondence should now be sent to DX.A.GB, c/o Flat 13, 63 Eton Avenue, Hampstead, London NW3 3ET.
GB7TV: The Rugby TV Repeater Group is planning a special event station over the August Bank Holiday weekend (August 27/28). The station will be operating ATV on at least 430 and 1296MHz from Sheenington near Banbury in Oxfordshire. The times will be from 12 noon to 8pm on the Saturday and from 7am to 12 noon on the Sunday.

G6IQM QTHR

GB2WVR: This station will be on the air for the World Veteran Rowing Championships in Strathclyde Country Park, Motherwell. The dates for this event are September 5 to 11.

For more details contact:
Brian GM0EGI QTHR or Paddy GM3MTH QTHR

September 4: The 21st Preston ARS Annual Mobile Rally will be held at the University of Lancaster. There will be trade stands, a large Bring & Buy, licensed bar, snack bar and restaurant. Talk-in on S22. Doors open at 11am (10.30 for the disabled). Admission by programme (50p includes free draw for colour TV). Ample free parking. More details from:
Godfrey G3DWQ
Tel: 0772 53810

September 4: The Telford Radio Rally and Exhibition will be held at the Telford Racecourse Centre, Telford. All the usual facilities and stands will be there. Talk-in on S22. Morse tests available through RSGB. Doors open 10.30 for the disabled, 11am for everyone else. More details from:
John GBARS
Tel: 0952 727719

September 4: The National Amateur Radio Car Boot Sale will be held at the Shuttleworth Collection, Old Warden Aerodrome, near Biggleswade, Beds. Gates open from 10am to 6pm, admission 50p, parking free. The Shuttleworth Collection is a famous aircraft and motor museum. Also there is a restaurant, bar and children’s playground. More details from:
Wendy
Tel: 0582 451057

September 20: The annual Amateur Radio Auction and Barbecue will again take place at the Cricket pavilion “B” Building Entrance, BTI Radio Station, A5 Trunk Road, Hillmorton Rugby. It’s organised by the Rugby ATS. The admission charge is only 20p per person and the large car park is free. Anyone may place an item in the auction, with or without a reserve price, free of charge. However, the Rugby ATS will retain 10% (£10 maximum) on all items sold.

September 24/25: The first El Hamfest will take place at the Grand Hotel, Malahide, Co. Dublin. There will be a dinner on the 24th, with the rally starting at 5.15pm sharp on the 25th. The weekend will consist of sessions on all aspects of amateur radio together with lectures by Louis Varney G5RV and it is rumoured that Hugh Turnbull, the Director Atlantic Division of the ARRL will be giving a lecture too. Talk-in will be on S22. More details on all the events and available accommodation at the hotel can be obtained from:
Christopher Yeates EI7AAB
Tel: Dublin 215145

*October 2: The Welsh Amateur Radio Convention is at the usual venue, Oakdale Community College, Blackwood, Gwent. More details from:
B. Davies GW3KYA
Tel: 0495 225825

October 9: The Armagh Radio Rally is to be held in the Drumsill House Hotel. Doors are open from 12 noon to 6pm. For more details of this successful rally, contact:
J. A. Murphy
Tel: Armagh 5221 53

*October 2: The Great Lumley ARES are holding their rally at The Community Centre, Great Lumley, Co. Durham. Doors open 11am. Talk-in on S22, RBO and GB3NT.

G1OKA
46 Donelaw
Great Lumley
Chesterle-Street
Co. Durham

*October 2: The Great Lumley ARES are holding their rally at The Community Centre, Great Lumley, Co. Durham. Doors open 11am. Talk-in on S22, RBO and GB3NT.

G1OKA
46 Donelaw
Great Lumley
Chesterle-Street
Co. Durham

*GB8AER: This Special Event Station will be operational from the Winter Gardens, Blackpool to commemorate the British 8th Army at El Alamein. The dates to look out for this station are October 29 and 30. GB8AER is organised on behalf of the Royal Signals Amateur Radio Society who would like to work other RSARS/RAFARS and RNARS members.

G2DHV QTHR

*GB1RLD: Two members of Radio Link - Derby Hospital Broadcasting will be operating the special event station from the outside broadcast caravan at the City Hospital, Derby. They will be using 144MHz v.h.f. on September 17 and 18 from 1000 to 1600.

John Huddlestone G1UJX
Tel: Derby 676822

If you have got a Special Event Station we should know about?

If so, write and tell us

GB8AER: This Special Event Station will be on the air on October 22 from Hove and is part of the El Alamein reunion being held at the Great Hove Town Hall, Hove. The station will be using 144MHz f.m.

G2DHV QTHR

RALLIES

* SWM in attendance

September 11: The Lincoln Hamfest will be held at the Exhibition Centre on the Lincolnshire Show Ground site. Admission is by lucky programme. All the usual attractions will be there.

September 24: The 1st El Hamfest will be held in the Grand Hotel, Malahide, Co. Dublin. There will be a dinner on the 24th, with the rally starting at 5.15pm sharp on the 25th. The weekend will consist of sessions on all aspects of amateur radio together with lectures by Louis Varney.

G5RV and it is rumoured that Hugh Turnbull, the Director Atlantic Division of the ARRL will be giving a lecture too. Talk-in will be on S22. More details on all the events and available accommodation at the hotel can be obtained from:
Christopher Yeates EI7AAB
Tel: Dublin 215145

*October 2: The Great Lumley ARES are holding their rally at The Community Centre, Great Lumley, Co. Durham. Doors open 11am. Talk-in on S22, RBO and GB3NT.

G1OKA
46 Donelaw
Great Lumley
Chesterle-Street
Co. Durham

*October 2: The Welsh Amateur Radio Convention is at the usual venue, Oakdale Community College, Blackwood, Gwent. More details from:
B. Davies GW3KYA
Tel: 0495 225825

October 9: The Armagh Radio Rally is to be held in the Drumsill House Hotel. Doors are open from 12 noon to 6pm. For more details of this successful rally, contact:
J. A. Murphy
Tel: Armagh 522153

HAVING DIFFICULTY GETTING YOUR COPY OF SHORT WAVE MAGAZINE?

Then place a regular order with your newsagent

NOW!

Dear Newsagent,
Please reserve/deliver my monthly copy of SHORT WAVE MAGAZINE
Name
Address

Signed

Short Wave Magazine September 1988
SCANNING RECEIVERS are our speciality (and all that goes with them)

The AR2002 is without doubt the best known and best performing VHF/UHF monitor receiver on the market. Encompassing every frequency of interest, whether it be VHF airband, UHF airband, radio amateur, mobile radio, FM broadcasts, TV sound, the AR2002 also gives the user top performance. Frequency selection can be by direct keyboard entry, but there is a good old tuning knob as well, for whizzing up and down the bands. Properly styled and engineered for use in fixed station, mobile or portable, the AR2002 comes complete with a mains power supply and extended whip aerial. Covering 25-550 and 800-1300MHz, the AR2002 has high sensitivity and selectivity for professional performance. In use by government departments and Big Brother, as well as thousands of users everywhere.

For the airband enthusiast, the WIN-108 is the answer to a maiden's prayer. This compact handheld airband receiver is fully synthesised and covers the entire VHF airband from 108 to 136 MHz. With direct keyboard frequency entry you can be on channel faster than a Concorde captain, and the clear frequency readout tells you where you are. 20 memory channels are included, and you can scan these automatically. Not only that, you can tell the WIN-108 to search any given frequency range within the air band so as to find new frequencies of interest. Forget the AIR-7, the WIN-108 does it all and more. The WIN-108 comes complete with a correctly matched helical aerial and is eager to go.

For those who demand the best, the airband receivers from Signal Communications are a must. The company is totally dedicated to producing the best airband radios around, and the latest R-535 is in such demand that we are having to keep a waiting list of eager enthusiasts. Why? Simply because the R-535 gives ultimate performance not only on the VHF airband, but also on UHF as well. Designed for simple programming and high speed scanning and searching, the R-535 has more than 60 memory channels to store your most used frequencies. VHF and UHF channels can be mixed in any order. A full list of accessories is available, including power supplies, aerials, rechargeable battery packs, and so on, making the R-535 the complete system for the advanced airband enthusiast.

R-535..£249 inc. vat. Carr. extra

The radio to end all radios. The new RZ-1 from Kenwood may look like a high quality in-car wireless, but in fact is a mobile monitoring receiver covering 500kHz to over 900MHz. Just read that again – 500kHz to over 900MHz. Modes available are AM, FM (communications), FM (broadcast and TVI), and channel spacings are included to meet all requirements. Consider the fact that with this one package you can listen to almost everything, from Medium wave broadcast, Shortwave stations, high quality FM and TV broadcasts, all communications channels including VHF and UHF airband, right up beyond 900MHz. (Although the spec says 905MHz, all RZ-1 receivers supplied by us have the upper frequency extended to 950MHz at no charge). The excellence doesn't end there; the display can be programmed by you to show a readout of the station title e.g. "Radio 2" or "Lon. Twr.", in any of the 100 (yes, 100) memory channels, Kenwood engineering quality and ease of use are combined to make the RZ-1 a must.

RZ-1..£465 inc. vat. Carr. extra.

As you may guess, we stock, sell, and take care of almost everything connected with the hobby of listening, from Long wave to UHF. If you need any advice or assistance, we are here to help, and information is available at all times on any of our product range. In addition to the "Listener's Guide", we also publish the "Airband Guide", so if you send us £1 for postage, and ask for both these guides, we will be happy to send them off. Happy listening.

FREE

Send 50p to cover the postage and we will send you, by return of post, your FREE copy of "THE LISTENER'S GUIDE" (2nd edition), a commonsense look at radio listening on the LF, MF and HF bands. Its unique style will, I am sure, result in a "good read" but underneath the humour lies a wealth of experience and expertise. You will also receive detailed leaflets on our range of receivers and a copy of our current price list.

LOWE ELECTRONICS LIMITED

Chesterfield Road, Matlock, Derbyshire DE4 5LE Telephone 0629 580800 (4 lines) Fax 580020 Telex 377482

Shops in GLASGOW Telephone 041-945 2626, DARLINGTON Telephone 0325 486121, CAMBRIDGE Telephone 0223 311230, CARDIFF Telephone 0222 461154, LONDON Telephone 01-429 3256, BOURNEMOUTH Telephone 0202 577760

All branches are closed all day Monday.
Hello, and welcome to this new feature in the pages of Short Wave Magazine. Every three months we'll present a look at some of the things happening on the DXing scene in North America. The focus will be mainly on short wave broadcasting stations and DXing them, but, from time to time we'll also touch on clubs and the general listening hobby scene in North America.

Guatemalan Indian groups. The station, using the call letters TGMI, is located 276km north west of Guatemala City. All programmes are in the Mam language, except for Spanish language station identifications. Broadcasting runs from 1200 to 1330 and again at 2300 to 0100.

Another newish station is Radio Kekchi on 4.845MHz which started out with just 250W but may now have increased that to 5kW. The station, using the call letters TGVC, is a service of the Kekchi Baptist Association which is made up of some 135 Baptist Churches in Guatemala’s north central region. Engineering set up for the station was done by Wayne Berger who is chief engineer at the well known Radio Cultural (TGNA) in Guatemala City. Radio Kekchi’s address is: La Voz Evangelical de la Casas, Fray Bartolome de Las Casas, 16015 Alta Verapaz, Guatemala.

Libertad Cubana Returns

On the secret side of things an anti-Castro broadcaster that was active a few years ago and then went silent for four years has returned. Radio Libertad Cubana (then) has added the words “y Radio Felipe de la Cruz” to its name for the new version. The announcer identifies himself as “Commandante David” and appears to be the same person who ran things the first time, using the same name, until he was closed down and brought up on charges which were later dropped. At present the station is operating from approximately 0100 to 0130 on Tuesdays, Thursdays and Saturdays on a frequency varying between 7.046 and 7.075MHz. When this one is on, so is La Voz de Alpha 66 (run by the Alpha 66 organisation) on 6.666MHz. Both stations programme only in Spanish and are quite likely located somewhere in Southern Florida.

Mexico

At any one time there are perhaps only three or four stations active from Mexico (out of the more than one dozen officially listed). In addition to those few, currently active DXers are hearing an oddity. XEFAJ, Radio Consentida, a 10kW station licensed for 1560kHz m.w. has been showing up at various spots on the short wave dial. This transmission, which may be some kind of relay, is heard variously between 2300 and 0600 on such frequencies as 4.900, 6.753 and 11.480MHz (each one varies slightly). No response has been received to letters reporting reception to the station.

Listeners who still have unanswered reports for past reception of Radio Grenada when it was still active on its 15.045MHz short wave frequency, can still get QSLs. Station Manager, George Grant, is happy to help out DXers who didn’t get replies from the previous administration, though he seeks rather detailed reports. A self-prepared QSL card and IRCs for return postage are sought, too. Reports to Mr Grant at Radio Grenada, Post Office Box 34, St. George’s, Grenada, West Indies. Incidentally, there’s a chance that Radio Grenada may return to short wave sometime in the future.

More tips on QSLing are now carried on HCJB’s DX Party Line. Saturday edition, based upon your scribe’s book *Secrets of Successful QSL’ing* so tune in.

That uses up my space for this time. Please write to Short Wave Magazine if you have suggestions about things you’d like me to cover. Best Wishes.

Gerry L. Dexter

WRNO Worldwide set off a chain reaction when it went on short wave back in 1982. Not a year has passed since then when at least one new short wave broadcaster hasn’t gone on the air from one of the 50 US states or US possessions. The latest of this line is WWCCR (World Wide Christian Radio) based in Nashville, Tennessee. WWCCR plans to air a wide variety of religious programming produced by outside groups paying a price for the station’s airtime. It may also broadcast programmes from various political groups as well.

Of those US short wave broadcasters now on the air only one or two met the original target date they had set and WWCR won’t meet their’s either. The station had originally hoped to be on the air by June 1 1988, but that has been pushed back until November 1, though it’s hoped that test transmissions may begin by sometime in September. The schedule set was 0200 and 0600 on 7.520MHz and 1300 and 0000UTC on 15.690MHz. Those times may not hold for the tests but the frequencies are likely to be the ones used.

The station will initially target audiences in Europe and Canada. Reports on reception may be sent to WWCR, 3314 West End Avenue, Nashville, TN 37203, USA.

Fire

A fire on June 12 damaged the studios and studio equipment of short wave station WHRI in South Bend, Indiana. Fortunately, WHRI’s 100kW transmitters are at a separate site some two hour’s drive to the south, at Nobelsville, and within an hour broadcasting had been transferred to an emergency set-up at the transmitter. The station was expecting that everything would be back to normal by the middle of July.

Voice of America

The Voice of America’s transmitter site at Dixon, California began operating back in World War Two. A few years ago the VOA closed the site down but then, some years after that, re-opened it and began using it again. Now, Dixon has been closed once after that, re-opened it and began using it again. However, the property will remain “on the shelf” so to speak and it’s possible that it might be brought back into use if needed at some point in the future.

Guatemala

Over the last year or so, two short wave broadcasters have come on the air from Guatemala. Radio Buenos Nuevas, at “Twi’ Pic” near the village of San Sebastian Huehuetenango (often written as “Hue’tenango”) came on the air using 4.800MHz. The station operates with 1kW and is owned by the Evangelical National Church of Mam (the Mam are one of the

Author Garry Dexter at his Wisconsin monitoring post, with NRD 525, NRD 515 and Drake R4B receivers.
INTRODUCTION TO DX-TV

Keith Hamer and Garry Smith

Although Sporadic-E reception is possible even with relatively simple indoor antennas, eventually there comes a time when the DX-TV enthusiast develops a craving for a more ambitious antenna system. Even a 3-element array for Band I occupies a minimum space of at least 3 x 2m — more if it is to be made rotatable. There can’t be many lofts which will accept an antenna of such dimensions, so an outdoor location is usually necessary for a Band I array.

As a last resort it could be mounted on the chimney should there be insufficient garden space for a mast. An alternative solution is to use heavy-duty stand off brackets bolted to the gable-end wall of the house.

These days most of us are used to the familiar sight of a small 13-element u.h.f. array for local transmissions neatly lashed to the chimney. As a consequence the thought of much larger arrays, especially for Band I frequencies, mounted on the chimney stack might at first seem rather daunting. Don’t forget, despite their size, vertically-mounted Band I antennas of even greater dimensions were sometimes seen on chimneys in the days before the v.h.f. 405-line system became redundant, especially in Channels 1 and 2 fringe reception areas. Receiving antennas for DX reception are usually orientated for horizontally polarised signals since the majority of European transmitters favour horizontal polarisation.

Fortunately an antenna mounted horizontally looks less conspicuous, but maybe that is a personal opinion. The addition of multi-element arrays for Band III and u.h.f. mounted above the Band I antenna may begin to present problems especially where high winds are concerned. The last thing you want is the chimney stack to come crashing through the bedroom ceiling at two o’clock in the morning at the height of a storm!

Up on the Roof

Professional installation services don’t come cheap, especially if the system is a "one-off". The antenna rigger could spend several hours installing such a system. Another drawback of gable-end or chimney-mounted systems is their inaccessibility when maintenance is required. This means relying on an antenna rigger or venturing upon the roof yourself — something best avoided unless you have a head for heights.

The best solution is to have some form of a mast which can be raised and lowered reasonably quickly for routine maintenance and changing antennas for comparison tests, etc.

As anyone who is contemplating the purchase of a mast will know, professional structures can be prohibitively expensive. For most of us, with only a moderately sized wallet, and alternative approach must be found. Two types of mast will be described: the scaffold pole variety and the more professional looking lattice. Both these masts have been tried and tested over a number of years by each author, supporting a variety of multi-element arrays for DX-TV reception. Sections of lattice mast tend to be expensive, but they can occasionally be acquired second-hand. For instance, the authors and a couple of amateur radio enthusiasts obtained theirs when a television relay company decided to renew their antenna system and dismantled the old structure.

Size

The question is, what size of mast to have? The easy answer is the bigger the better, or more to the point, the biggest and most ambitious you are likely to get away with and at the same time preserving the peace with your neighbours. If your neighbours are the sort who complain as soon as the washing line goes up, then there’s little chance you will be able to erect a mast without problems.

Planning Permission

Generally speaking, planning permission is required for any form of mast and it is best to make a few tactful enquiries initially. Different authorities seem to have their own rules and regulations. Sometimes local planning authorities frown upon any structure which is higher than a row of daffodils especially on some of the new open-plan housing estates. Also a lot depends on whether the structure will be classed as being fixed or portable, so bear this in mind when submitting any planning applications. In the case of the authors, obtaining written planning permission was just a formality.

If you do decide to approach the planning authorities, it will be worth stressing that the structure with its antennas will be used solely for receiving, rather than transmitting, purposes and it will therefore not cause any interference to neighbours’ TV or radio reception. In the case of a professional tilt-over lattice tower, which may be raised and lowered to various heights, you should stress that it will only be raised to its maximum during periods of reception. You should show a little courtesy with your immediate neighbours by informing them of your intentions and stressing that your hobby will not interfere with them at all.

Safety

This should be uppermost in your mind at all times and in your initial plans certain safety aspects should be considered before ploughing ahead. Try to imagine the worst things that can possibly happen once the mast is erected. For instance, if the whole structure toppled (which it shouldn’t if guyed properly) would it cause structural damage to the house? Perhaps of even greater concern, would it affect neighbouring properties? The latter aspect is extremely important. Questions like this should influence the final location of the mast. Obviously, if the total height of the mast is 11m and your garden happens to be 30 x 30m, there would be very little danger to neighbouring properties if you sited it in the middle. Of course it would look conspicuous, but it would be safe.

Use of Guy Lines

The use of guy lines will provide a safe mast structure up to the height of the lowest antenna. For obvious reasons, the remainder of the mast above the antenna

![Fig. 1.](image-url)
cannot be guyed since this would impede antenna rotation. Therefore, the weakest part of the structure will be immediately above the upper guy clamps. In many systems, this is usually where the antenna support pole enters the rotator.

Leverage

There are several factors which will influence the amount of stress at this weak point. The height of the support pole carrying the antennas above the rotator should not be excessively long. Its lever action will become magnified, especially if a large array is clamped to the top. It goes without saying that the heavier antennas should be mounted lower down if possible to reduce the effects of leverage during high winds. In most systems for DX-TV, the Band I array (which is usually the heaviest) is located at the lowest point with the one for u.h.f. at the top and Band III in the centre. The lever action could be reduced by using the shortest pole possible to carry the antennas, but arrays have to be mounted a certain minimum distance apart to avoid mutual coupling effects which might degrade their performance. The minimum spacing used by many enthusiasts is 1m between the arrays.

Shared Boom

Some saving in pole length can be made by constructing antennas for different bands on the same boom. For instance, each author has a Band II array mounted in front of the final Band I director, therefore each author has a Band II array mounted in bands on the same boom. For instance, by constructing antennas for different enthusiasts is lm between the arrays.

Alignment Bearing

The use of an alignment bearing is recommended for systems where anything but a single lightweight array is to be turned, see Fig. 1. The aim of the alignment bearing is to relieve the rotator of downward weight. For heavier loads, or support poles in excess of 2 metres, a second bearing is recommended. Alignment bearings are usually adequate. Mast erection should also be considered. If a mast consisting of two or more poles together is to be used to attain an upper height in excess of nine metres, then you may find yourself with a structure resembling a hump-back bridge while attempting to lift it off the ground.

Simple Mast for Sporadic-E Antennas

As we have emphasised in previous parts of this series, the height of the antennas for Sporadic-E reception is not of great importance. This is because signals arrive at a slight angle in the same way as satellite TV transmissions.

A minimum height of about five metres is recommended to enable a clear take-off. So, a mast to carry a Band I array of three or more elements can be very simple to arrange. Most metal stockists can supply 50mm diameter aluminium alloy tubing in five or six metre lengths — which is ideal for the job. Tubing with a wall thickness of 16 s.w.g. isn't expensive, but the thicker gauge scaffold type tubing can be. Steel poles can be obtained, but these tend to be extremely heavy and are easily prone to rusting. One of the biggest headaches is getting the pole back home!

The pole can be attached to the side of a shack or garden shed, as shown in Fig. 2.
weight and leverage. If you feel that this type of mast is the only one which will keep the peace, you could always compromise. The five or six metre mast could be used to support a Band I antenna, or a combined Band I/III system, with the u.h.f. array located elsewhere (perhaps on the chimney stack). For tropospheric DX reception, an antenna height of around nine to ten metres is usually considered the absolute minimum. However, the authors have experimented with Band III arrays of only 5-elements at a height of only six metres and results have been surprising. Even under flat conditions, reception has been evident from transmitters in France, Eire and Belgium which were initially considered impossible to receive at such a height.

Distant u.h.f. transmitters have also been received at similar heights. During a tropospheric lift some years ago, several Continental stations, including East Germany, were resolved using a single u.h.f. grid antenna at a height of 5m.

A variation on this mast arrangement consists of bolting heavy duty stand-off brackets to the side of the house at sufficient intervals to safely support the mast, see Fig. 3. To enable manual rotation of the mast, the U-bolts can be left sufficiently loose but lock-nutted to prevent unthreading. A dollop of grease applied to the U-bolt and its immediate surroundings should prevent seizure.

Some form of handle could be attached to the lower end of the pole to act as a lever to enable easy manual rotation. If some form of bearing at the lower end of the pole can be arranged, so much the better. No doubt a visit to the local car breakers yard could provide some inspiration.

Mast Base

Of course, neither of the two systems described utilise any form of pivot arrangement at the base of the mast, mainly on the grounds of cost and simplicity. Base tilt systems are commercially available to accept masts of 50mm diameter and these are relatively inexpensive. A concrete foundation is not always required. Some systems can be anchored to the ground with stakes to provide a temporary location, for field events, etc. Special tilt-over wall brackets are available too. These are designed to enable the mast to swing parallel to the wall providing easy access to the antennas. Pulley systems are available to facilitate this.

Another d.i.y. system makes use of two large wooden posts set in concrete, see Fig. 4. These act in a similar manner to flag pole supports and consist of a pair of three metre beams with holes drilled at the top and bottom. These accept two short lengths of 32mm diameter alloy tubing to which the mast pole is clamped. The supports must be thoroughly treated with wood preservative in order to minimise the possibility of decay.

The beams should be positioned about 300mm apart. Ensure that the two sets of 32mm diameter holes are carefully drilled and are directly opposite each other. It is essential that correct alignment is observed otherwise it will be difficult to obtain true vertical pole positioning.

Before the hole is filled with concrete and broken bricks, check with a plumb line and spirit level to ensure that the wooden uprights will be perfectly vertical once the concrete has set. This procedure must not be overlooked because the clamps cannot be adjusted for any such errors. If the beams are not truly vertical, or if the 32mm diameter holes are not correctly aligned, the whole mast will lean at an angle. Remember, the higher the mast, the more apparent this will be.

The concrete should be left for a few days to allow it to set really hard before you proceed to attach the bracket supports. To prevent movement of the beams whilst the concrete is setting, they can be shored up with props. It is worthwhile checking occasionally to ensure that the wooden supports have not moved from their vertical state.

Antenna Rotation

To make full use of a mast installation, particularly if it is to be used for DXing, it is strongly recommended that some method of rotating the antenna is adopted. This can be achieved by either employing a commercially available electronic rotator system or by turning the mast pole manually (often called the Armstrong method!). If the pole is steel and several arrays are fitted it may require a rather energetic person.

The manual method does have its advantages, such as cheapness, its muscle building properties and the chance for a breath of fresh air while venturing into the great outdoors to turn the antenna, not to mention the acquisition of a gentle suntan during the summer months (throughout the Sporadic-E season!). However, it can be a dreadful bind having to leave the comfort and warmth of the house to turn the antennas a few degrees during heavy rain or snow.

If a system is used in which heavy duty stand-off brackets are used to support a rotatable pole against the house or shack, it may be possible to site the mast near a window so that the success is obtained from indoors and only the finger-tips will suffer from frost bite.

Needless to say, a proper rotator is invaluable for DX reception where constant repositioning of the antenna may be necessary. Being able to view the screen and rotate the antennas simultaneously is a great advantage as this avoids rotating the antennas beyond the required direction. Inexpensive rotator units are readily available from antenna suppliers and advertisers in Short Wave Magazine.

The drive system for turning the support pole carrying the antennas consists of a low-voltage motor assembly which is mounted atop the mast. An indoor control unit provides clockwise and anti-clock-wise drive and also indicates the direction in which the antennas are beamed.

There are several different types of rotator on the market with a wide range of price tags. The cheaper and most popular rotators are generally of the offset variety in which the mast carrying the antennas passes completely through the rotator assembly. Most rotators of this type will accept a mast pole of up to about 32mm diameter. These have proved sufficiently robust for driving a typical DX-TV antenna system comprising a multi-element Band I array, Band III and a u.h.f. antenna at the top of the support mast.

One problem encountered by several enthusiasts using the cheaper type of rotator available is the variation in alignment over a very short period of time. The authors have not had first hand experience of this particular problem and their original rotators, manufactured in West Germany by Stolle, are still going strong after 16 years of hard work (famous last words!).

Tips

When installing antennas don't forget to leave an adequate loop of cable just above the rotator to enable the arrays to move the full 360 degrees without the cabling becoming caught. One tip worth remembering is to position the rotator to allow it to move from the south-west through 360 degrees rather than from the traditional south. This will avoid having to rotate the arrays by almost full circle in order to receive transmissions in Spain and Portugal which are slightly further north than the true south. Of course, it will mean that the dial markings on the control unit panel will be a few degrees out, but you can always apply your own calibration marks if necessary.

Short Wave Magazine September 1988
WHY PAY £1195 FOR A NEW NRD-525 . . .

We cannot think of a GENUINE reason either.
No boring waffle, just "realistic" prices.

The JRC NRD-525. Brand new, with 1 Year parts & labour warranty.
£995.00 including delivery.
Available NOW.

Short Wave Magazine September 1988
RX-4
MULTIMODE RECEIVE
RTTY / CW / SSTV / AMTOR

This is the ultimate in software for the SWL. Just one program to receive all four modes, switching from one to the other at a single keypress. Extremely user-friendly, RX-4 has the facilities and performance you need to catch all the action on the bands as soon as you hear it.

When you see the features it’s easy to see why RX-4 is today’s best-selling receive software.

RTTY and AMTOR tuning scale makes tuning in very easy and quick. Four RTTY baud rates, any shift, normal or reverse, with selectable unshift-on-space.

CW software filters and controllable autotrack for maximum performance up to 250 wpm. On-screen indicator lets you set the level and tuning with a minimum of fuss.

SSTV has selectable scan rates in both directions and two modes of picture storage for maximum use of memory.

Text and pictures can be stored, recalled to the screen and dumped to a printer as well as being saved to tape or disc.

Please note that the AMTOR section only accepts ARQ mode (mode A) but this is the most common mode and covers a lot of commercial TOR stations, also.

Previously, people have paid over £30 for separate RTTY, CW and SSTV programs which do not have the performance, facilities and convenience of RX-4. We are offering this amazing software for the low price of only £25 on tape, £27 on BBC or CBM64 disc.

BBC-C, CBM64 and VIC20 need the TIF1 interface. This has isolation between computer and radio to reduce computer noise and switchable filters, giving much improved copy. Kit £20 (assembled PCB + cables and connectors) or ready made, boxed complete with all connections £40, both available only with the software. For SPECTRUM we have two versions. One needs hardware at all, the other uses the TIF1 via an interface available only with the software. For SPECTRUM we have two versions.

CONVENIENCE OF RX-4. We are offering this amazing software for the low price of only £25 on tape, £27 on BBC or CBM64 disc.

First class short wave receiver. Buy this for £139.00 and receive the ARA 30 FREE. (CASH or CHEQUE SALES ONLY.)

FIRST CLASS SHORT WAVE RECEIVER. BUY THIS FOR £139.00 AND RECEIVE THE ARA 30 FREE. (CASH or CHEQUE SALES ONLY.)

GUARD TO UTILITY STATIONS 1988
(6th edition)
490 pages. £21.00 or DM 60.00. ISBN 3-924509-88-3

The fully revised new edition is the first publication in the world giving exact details on teleprinter stations using those new ARQ-E, FEC-A, etc., systems. Hundreds of frequencies of these stations are listed, as well as the results of our 1987 monitoring missions to the Yemen Arab Republic and to Mauritius/Reunion/Rodrigues.

This unique manual covers the complete short wave range from 3 to 30MHz, plus the adjacent frequency bands from 150 to 1000kHz and from 1.6 to 3MHz.

The numerical frequency list covers 15002 frequencies of stations which have been monitored during 1987, thereof 33% RTTY and 3% FAX. Frequency, call sign, name of the station, ITU country symbol, and corresponding frequency band plans for the Aeronautical and Maritime Mobile Services.

Further publications available are Guide to Facsimile Stations, Radioteletype Code Manual, Air and Maritime Code Manual, etc. For further information ask for our catalogue of publications on commercial, public and amateur telecommunication on short wave, including recommendations from all over the world. All manuals are published in the handy 17 x 24cm format, and of course written in English.

The price includes airmail to anywhere in the world. Payment can be by cheque, cash, International Money Order, or postal order (account Stuttgart 2093 75709). Dealer inquiries welcome - discount rates and pro forma invoices on request. Please mail your order to:

KLINGENFUSS PUBLICATIONS
Hagenloser Str. 14, 7000 Stuttgart, FRG.
Tel. 0711 626630
One reader to whom I talked at the Cranfield rally was Peter Willmin (Haslemere, Surrey) who wanted to connect an external loudspeaker to his hand-held scanner. Certainly the small speaker in these sets is a compromise due to lack of space, a properly enclosed external type would give improved sound quality for home use, and many of the usual components suppliers sell something suitable. In most cases you should be able to get away with connecting the speaker to the earphone socket of your receiver. You must find out the load impedance of the earphone socket and then make sure that the speaker's impedance is at least the same, if not more, than this (but a grossly excessive value would be inefficient). Never connect a speaker that has too small an impedance: the audio output stage of the receiver could become damaged.

What if the set's instructions don't state the impedance? Typical earphones have 8Ω impedance when measured with a 1kHz signal, but this would be an impractical way to test the earphone that was supplied with your set. I took a sample of 6 different earphones (all nominally 8Ω) and tested their resistance at d.c. using a digital multimeter; results were in the range 4.7-7.7Ω. If the earphone supplied with your set falls in this range it would be a fair bet to assume that it is 8Ω, but if you would like a little safety margin, why not go for a 16Ω speaker?

Follow-Ups

A verdict of amusing was given by Brendan McCartney G4DYO (Wokingham, Berkshire) on hearing the tape What Goes Up Might Come Down (Big Ben Tapes BV/MC121) that I mentioned last month. Also, the Speedbird 1000 (July "Airband") is a Beech King Air used (no play on words intended) by British Airways' Chairman, Lord King.

A request for "a day in the life of an airline pilot" comes from Chris Durkin (Ormskirk, Lancashire). I hope that the article by Malcolm Wayland in the last Airband magazine will satisfy your curiosity with regard to short-haul work. Would any pilot out there like to tell us what it's like doing the long-haul routes?

May 1987 seems a long way off now, but the "Aeronautical Radio" series that started in that issue of SV/M referred to the standard NATO 4-pole jack plugs found on most airliner and many other headphones. These sometimes appear on the surplus market; the tip of the jack plug and the pole next to it are connected to the microphone, the remaining two poles being for the headphones.

Receiving shortwave receive (s.s.b.) came up in July's "Airband" and I now see that Corrigan Radiowatch (Building 109, Prestwick Airport KA9 2RT) supply an external beat frequency oscillator (b.f.o.) kit. You should check that your receiver's intermediate frequency (i.f.) is suitable for use with any particular b.f.o.; otherwise the s.s.b. signals still won't be resolved. If anyone tries out this device, please share your results with the rest of us.

There have been many requests for a source of three-pointer aneroid altimeters.

Barry Parkhouse (Parkhouse Aviation, 9 Green Lane, Blackwater, Camberley, Surrey GU17 9DG, Tel: (0276) 33067 day or evening) is prepared to sell these "with minor defects" for £5 plus £1 postage, but do not attempt to use these out-of-specification units for actually flying an aircraft!

Information Sources

There is no simple way to relate the 4-letter selective calling (selcal) code to aircraft registration other than to look it up in a reference book. To R. J. Smith (Plymouth, Devon) I recommend High in the Sky by Ken Barker of The Aviation Society, 44 Laburnum Park, Bradshaw, Bolton BL2 3BU. The Midland Counties Aviation Society sometimes publishes updates to this book in their Air-Strip monthly newsletter; contact R. Queenborough 17 Leylan Court, Birmingham B13 0DB.

Michel Geeraert (Koksijde, Belgium) recommends The Radio Book Catalogue (L.J.D. Derenette, Postbus 37, B-8460 Koksijde, Belgium) and asks that an international reply coupon (IRC, available at larger post offices) accompanies enquiries. Michel would like to know of any groups working with radio-related public domain software, answers via the editorial address please. Also, Michel has had difficulty in locating some n.d.b.s when only the ident and frequency are known. The LYY on 397.5kHz is at Lydd, Kent, England, but where are the others? They are (with the frequency in kHz) AUT 295.5; BT 365.5; BTE 389.5; BU 473; CC 386; KC 230; OZ 312; SD 3.6; UU 354. Can anyone with a computer database locate these? Tot ziens.

Retired DC-9-41 pilot Capt. Leslie Grevelle-Smith G4SUJ (Wolverhampton) sends his picture in the form of an amateur radio O.S.L. card. Apparently he is seen doing his "On Approach - Roof Panel" checks, and appears to be making sure that the generators are re-set or haven't tripped. Leslie would like to know the precise geographical location of navigational beacons and I suggest three possibilities. Firstly, look in any of the usual sources (Aviad Supplments, R.A.F. En Route Supplement, or any radio navigation chart) and find the latitude/longitude for the beacon in question. This can be plotted on Ordnance Survey maps such as the 1:50000 Landranger series. This grid on the chart is to be ignored, use the lat/long scale on the chart's edges, join corresponding points on opposite edges with something long and straight such as folded newspaper. Second idea is to look on the quarter-million Topographical Chart used for visual navigation. The more recent editions tend to show the location of n.d.b. and v.o.r. facilities. Lastly, those aerodrome charts published by the Civil Aviation Authority will indicate the precise location of beacons on the airfield itself, such as i.e.s. or terminal v.o.r. (t.v.o.r.). These latter beacons are intended for finding the aerodrome rather than for en route use and hence differ from other v.o.r.s only in respect of having a lower transmission power for shorter use. Leslie points out why aeronautical mobile operation is not permitted by radio amateurs, the interference aspects could be a danger. He also wonders if transmission from a hot-air balloon would be safer but a current project, the High Altitude Radio Transponder (HART), has been prohibited. The idea is to test out an amateur satellite transponder by sending it aloft in a balloon that will be making a ladies' altitude record attempt; it appears that permission was denied on airworthiness grounds.
Experiences Shared

Talking of hot-air balloons, Cameron N77 G-BMLJ landed in the field outside the "Airband" photographer Chris Mlynek's house (Aylesbury, Buckinghamshire) but it was getting to near dusk to take a picture. Its pilot had just completed an instructional flight with her trainee crew (the more usual method of travelling from Tring is faster but less interesting). On this occasion no radio was carried, but it is possible to use a v.h.f. transceiver when penetrating controlled airspace. The balloon's primary radar echo is indistinguishable from that produced by a flock of birds (the only sizable metal on board being the twin gas cylinders) and the controller must allow for the balloon having no directional control. If clearance is refused, the only option is to land short of controlled airspace since you can't turn round and go back again! It is even possible to carry a secondary radar transponder.

Geoffrey Powell (Tamworth, Staffordshire) has sent me a photo showing himself operating various bits of radio gear, and, unless I'm mistaken, with an En Route Supplement in his hand. Geoffrey gained flying experience in both the RAF and as a private pilot. Although many beacons are v.o.r./d.m.e. combinations, it is only the v.o.r. part that can be tuned on the v.h.f. band. As far as n.d.b.s go, some frequencies are close or even co-channel. Try using the directional null of a ferrite rod or loop antenna to distinguish these; the frequencies are close to or even inside the medium wave broadcast band. I like Geoffrey's philosophy: "Ham radio makes friends everywhere, politics don't." I couldn't think of a better thought to leave you with till next month.

Don't forget that you can also come along to my Museum (make a prior arrangement by phoning 01-958 5113 weekdays 1800-2300 hours local).

Abbreviations:

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ω</td>
<td>ohms</td>
</tr>
<tr>
<td>b.f.o.</td>
<td>beat frequency oscillator</td>
</tr>
<tr>
<td>d.c.</td>
<td>direct current</td>
</tr>
<tr>
<td>d.m.e.</td>
<td>distance measuring equipment</td>
</tr>
<tr>
<td>HART</td>
<td>High Altitude Radio Transponder</td>
</tr>
<tr>
<td>i.f.</td>
<td>intermediate frequency</td>
</tr>
<tr>
<td>i.l.s.</td>
<td>instrument landing system</td>
</tr>
<tr>
<td>IRC</td>
<td>International Reply Coupon</td>
</tr>
<tr>
<td>NATO</td>
<td>North Atlantic Treaty Organisation</td>
</tr>
<tr>
<td>n.d.b.</td>
<td>non-directional beacon</td>
</tr>
<tr>
<td>RAF</td>
<td>Royal Air Force</td>
</tr>
<tr>
<td>s.e.l.</td>
<td>selective calling</td>
</tr>
<tr>
<td>s.s.b.</td>
<td>single sideband</td>
</tr>
<tr>
<td>t.v.o.r.</td>
<td>terminal very high frequency</td>
</tr>
<tr>
<td>v.h.f.</td>
<td>very high frequency</td>
</tr>
<tr>
<td>v.o.r.</td>
<td>very high frequency omni-directional radio range</td>
</tr>
</tbody>
</table>

ON SALE NOW ... AT YOUR NEWSAGENT

Practical Wireless

The Radio Magazine

SEPTEMBER 1988 £1.20

ISSN 0141 0857

NEW UK AMATEUR LICENCE DETAILS IN FULL

Plus

Doppler Shift on Satellites Part 1
And

Valved Communications Receivers - The BC-348

Short Wave Magazine September 1988
FRG 8800 £639.00
Super HF/VHF receiver. VHF option: LCD direct readout with 8-bit CPU function control. 21 button keypad entry or V.F.O. frequency selection. Full general coverage. Full 10kHz steps from 100kHz to 250MHz. AM/FM/LF/DF/DF/DF. 12 memories with back up 100, 220, 220V, 24Vdc, plus 12V d.c. operation (optional). Check and filter circuit control - last nut type dial - computer control.

FRG 9600 £499.00
All-mode scanning receiver providing features never offered before, covering 10kHz through 805MHz continuously, with 100 key repeat programmable memory channels.

LOWE HF-125 £375.00
Super HE/VHF receiver. AM, FM, narrow band FM and AM. The receiver has 20 memories, memory scan and a search mode which checks frequencies between user designated limits and a push button keypad for easy frequency entry and operation. A front panel knob allows the listener to quickly step up or down in either 12.5 or 25kHz steps from the frequency initially chosen. A socket for the optional HS232 interface (IRC-PACK) is provided on the rear panel.

LOWE R5000 £787.00
The frequency range is continuous from 10kHz to 30MHz and its modes of operation are USB, LSB, CW, AM. FM and FSX. An optional HF converter unit, coverage of the 111111MHz frequency range is possible. Nixie processor controlled. Gives assurance of memory selection frequency range assurance and an "UP" conversion PLL circuit to assure minimum flexibility and ease of operation.

The Black Jaguar Pocket Scanner covers CB and Amateur Band frequencies as well as the mid band Military band. It has switchable AM/FM and the accessories which come as standard include a Ni-CAD battery pack built in and standard charger, carry case, radio jack, helmet head set, antenna and the AM/FM switch. Carriage £3.00

The PMX is an antenna tuning unit combined with an RF amplifier, covering from 1.7 to 34MHz. The ATU section will match into your receiver all odd lengths of wire whether indoors or out, making the most effective use of the antenna. The amplifier section takes the ATU signal and boosts it to the amount necessary to give you a better readable signal. Some receivers, normally used with no ATU and the odd wire ant, are literally transformed by the PMX; with others the improvement is more subtle but quite definite. All in all the net result is better copy of the DX.

The PMX is an investment in better reception; you may eventually change your receiver, but you will always keep your PMX.

Some outstanding results have been reported by customers and some of our early units are still in use after 24 years.

The PMX can be supplied unpowered (you provide 12v DC) or mains powered. Unpowered PMX £78.00. Mains powered PMX £85.00. Mains powered PMX with ALC £99.00. All prices include postage and packing. Despatch normally same day first class.

COMPONENT CENTRE
7 Langley Road, Watford, Herts WD1 3PS
Tel: Watford 245335

YAESU

THE HAMGEAR PMX PRESELECTOR

MBR7

LISTEN INTO THE WORLD

Vega Selina 215 - 5 SW MW LW FM Mains/Batt. £36.95
Vega 205 - 6 SW MW LW Batt. £36.95
Goodmans Pocket Radio - 7 SW MW LW FM Stereo. £24.95
SABA Pocket Air Band - MW LW FM. £27.50
MBR 7 - 9 Band inc.Sw Air Marine Mains/Batt. £58.95
RS375 TUNABLE AIR BAND - 115-136MHz + 2 CRYSTAL CONTROLLED CHAIN. £73.00
UNIRED BEACAT 20X, 10 Channel Hand Held Scanner. £49.95
UNIRED BEACAT 175XL 16 Channel Scanner inc. Airband. £179.95
UNIRED BEACAT 70XLT 20 Channel Scanner inc. Airband. £179.95
BLACK JAGUAR MkII Hand Held Scanner with Air Band. £225.00
SONY ICF F70DS PLL Synthesised Receiver. £188.95
SONY ICF F700A Multiband Sw Receiver. £78.95
AUDIO TECH AT 9560 Electric Cord Lapel Radio Microphone 100HZ Range Band B £52.80
PORTASOL Gas Soldering Iron 25-60watt Variable. £19.95
EXPO RELIANT Drill Sub Min 12v £7.95
ANTEX SOLDERING iron Type CS 15 watt. £6.65
ANTEX SOLDERING iron Type CA 25 watt. £6.65
SOLDERING iron STAND ST4A. £2.95
N TYPE CONNECTOR For RGSU. £2.95
N TYPE CONNECTOR For URMC21. £2.95
N TYPE CONNECTOR For RGS/RG213. £2.95
RGS Cab. 25p per Mtr. £2.95
RG 11/2" Belden Cable. 75p per Mtr. £12.00
BFO Kit to work with IF of 455 kHz. £12.00
BFO Built & Tested. £17.95
ATTEN TUNER Kit (Rx). £28.95
HELPING HANDS ADJUSTABLE, Soldering Aid. £28.95

ALL SETS GUARANTEED PRICES INCL VAT & P/P EXCEPT PLEASE ADD £2.00 P/P ON RADIOS

CALLERS WELCOME MONDAY, TUESDAY, THURSDAY, FRIDAY, SATURDAY, 9.30-5.30

THE HAMGEAR PMX PRESELECTOR

The PMX is an antenna tuning unit combined with an RF amplifier, covering from 1.7 to 34MHz. The ATU section will match into your receiver all odd lengths of wire whether indoors or out, making the most effective use of the antenna. The amplifier section takes the ATU signal and boosts it to the amount necessary to give you a better readable signal. Some receivers, normally used with no ATU and the odd wire ant, are literally transformed by the PMX; with others the improvement is more subtle but quite definite. All in all the net result is better copy of the DX.

The PMX is an investment in better reception; you may eventually change your receiver, but you will always keep your PMX.

Some outstanding results have been reported by customers and some of our early units are still in use after 24 years.

There are four pages of free information available on the PMX, one devoted to 8 unusual antenna experiments using the PMX, non-technical and well illustrated. The PMX can be supplied unpowered (you provide 12v DC) or mains powered.

Unpowered PMX £69.00
Mains powered PMX £78.00
Mains powered PMX with ALC £99.00

All prices include postage and packing. Despatch normally same day first class.

HAMGEAR ELECTRONICS
125 Wroxham Road, Norwich NR7 8AD.
Tel: Norwich (0603) 405611.
SONY ICF-2001D REVIEW

Jack Aldridge

I'm more than happy with my short wave listening set-up at home, but never turn down the chance of playing with a different receiver, especially one like the ICF-2001D. As well as the normal a.m. and f.m. broadcast band coverage the ICF-2001D features air-band and continuous short wave coverage between 150kHz and 29.999MHz with s.s.b. demodulation thrown-in! All my listening interests in one radio — great.

First Steps
Perhaps one of the most important points when getting started is to read the manual, which in this case is well up to Sony's normal high standard. I'm the world's worst at reading instructions, usually it's "when all else fails, read the manufacturer's data!" With this radio it is wise to read first as it will save a lot of operating time. It's not that the radio is complex, but it can do so much. You'll find the manual contains instructions in three languages, English, French and Italian with each section being about 21 pages long.

I found the fold out section at the front with all the controls numbered on one side and details of all how to connect up all the accessories on the other really useful (mainly as my memory is useless). It came into its own when I was experimenting with more unusual modes and the various features on the radio.

The presentation used in the manual was excellent with very good use made of diagrams to illustrate points. One section I thought particularly good was the description of synchronous detection, not the easiest thing to explain, but they managed it very well. It was much easier to understand than a lot of text books I have seen.

The final page of the manual was a trouble shooting guide which is really quite important with modern microprocessor based receivers. This guide can certainly save a red face when returning a set which you thought was faulty, but turns out to be mis-operation!

Now to the practicalities of getting going! The first thing to do is lay your hands on two AA batteries as these must be fitted before the receiver will operate. These batteries are required even if you are using an external power source as they are used to power the clock and provide back-up power for the microprocessor. On the review model, there was a large yellow warning to fit these batteries before operating the receiver.

You can drive the ICF-2001D in any one of three ways: internal batteries, external d.c. or mains power. The battery requirement is quite moderate as only three D cells are required, that is in addition to the two AA batteries mentioned previously. Sony reckon that if you use "Sony New Super" batteries and use the radio for four hours a day, the batteries should last for between 32 and 45 hours depending on the type of listening. I can't verify this as I tend to use mains power when at home and only resort to batteries when out portable. I don't think I managed to come even close to 32 hours portable - the summer has not been good enough!

For powering the receiver from an external d.c. supply a 4.5V source will be required. Although 4.5V may seem a bit of an odd value, Sony do produce an optional accessory lead (DCC-127A) which allows the ICF-2001D to be powered from a standard 12V source. The final power supply option is to use the supplied mains power unit which plugs into the external power socket on the radio. Rather than being fitted with the standard, and often inconvenient, two-pin mains plug, this unit is left with a blank cable end so you can fit the correct type of plug. Another useful point is that the mains power unit is switchable between 110V and 240V a.c. so it should be useful for the traveller - no more searching shops in foreign lands for batteries!

The final decision to make when setting up is the antenna. The easiest solution is to use the built-in telescopic antenna which is simplicity itself as you only have to extend it! If you are looking for improved performance then an external antenna is to be recommended. I use a long wire or discone antenna for most of my listening. The connection of external antennas has been catered for with two 3.5mm jack sockets on the side panel, one marked AIR/FM and the other AM. One very good point is that the telescopic antenna is automatically disconnected when a plug is inserted in the external antenna jack. This is really effective in eliminating local interference from say a home computer or television, but is often overlooked on portable radios.

Now we've sorted out the connections let's move on to the controls.

The Buttons & Switches
First impressions of the Sony ICF-2001D are of a staggering array of push-buttons, some 68 in all! Fortunately Sony are used to sorting out the ergonomics of this many controls and the practical operation is nowhere near as complicated as the front panel or my description might suggest. The buttons are neatly grouped according to function and frequency of use. The most commonly used buttons, i.e., band selection, frequency entry and scanning are coloured white so they stand out well, whilst the memory and mode buttons are black. The remaining buttons are used to control the timer and shift functions and are coloured grey and blue respectively.
SONY ICF-2001D REVIEW

As well as the push buttons there are two switches which control the power and the tuning rate. The volume control is the normal slider type with the knob mounted so that it is just slightly proud of the surface.

There is only one rotary control on the whole radio and that is the main tuning knob. This is mounted on the right-hand side panel, but remains accessible from the front panel for fine tuning with your thumb. To allow fast tuning, this knob has an indent which allows rapid movement of the knob without your finger slipping.

Although the knob is well placed for right-handed users, it's not so good if you happen to be left-handed.

Moving on to the side panels, in addition to the tuning control the right-handed side has a slider control for the r.f. gain when using a.m. and a switch for the tone control. The left-hand side panel contains all the external connections to the radio, this is where the external power and the antenna sockets are mounted. Additionally there are audio output sockets, one for feeding to a tape recorder or amplifier and the other for an ear-piece or headphones. There are two small switches on the left-hand panel, the first controls an attenuator, which can be inserted to reduce the level of overly strong short wave signals. The other switch controls the main power of the radio.

It is particularly useful for the traveller as it is quite easy to accidently turn the set on using the front panel power switch. Then you're faced with buying batteries abroad, not easy. By using this switch the front panel control is disabled.

Using the ICF-2001D

The first thing I do, once the set is powered up, is to select my favourite frequency. This can be done in one of two ways: either direct frequency entry using the keypad or by using the manual tuning knob. Both have their uses and it's not all that usual to have both included on the same radio. If you want to roam around a band at will, then the rotary tuning dial is most useful. Whereas if you only have one particular frequency you want to listen to, then direct entry is much faster.

The direct entry of a frequency has been made extremely easy on this radio as only the frequency need be entered then the EXECUTIVE button. Mind you, once you've used the keypad to select your frequency you can then use the rotary control to move around from there if you want. The speed at which the dial moves when using a.m. can be changed: SLOW means 100Hz “steps”, and FAST 1kHz “steps”, you can even lock the dial once you've found a station you like.

These days, things like RTTY and AMTOR seem to be growing in popularity, so I thought I'd see how this radio took to those types of signals. I first of all tried amateur RTTY signals, which use a shift of 170Hz, but these proved difficult to resolve. I think this is due to the fact that the ICF-2001D has minimum “tuning steps” of 100Hz, which was a bit too coarse for accurate tuning. Having said that, I did have better results when listening to stations that use much wider shifts. I successfully listened to TASS news broadcasts sent at 50 baud and 425Hz shift.

Amateur AMTOR signals suffered from the same problems as amateur RTTY signals. So if your interest lies mainly with amateur signals, I think you'll be disappointed. If you enjoy listening to the “more interesting” utility stations then you'll have better results.

When trying to listen to my preferred type of signals, i.e. broadcast stations, I got on very well. Starting with the short wave bands, the radio is well equipped for a wide range of signals. There are two modes of a.m. reception, conventional detection and synchronous detection – sounds awful doesn't it?

Synchronous detection is useful for getting rid of “splatter” from stations close to the one you want to listen to. When you normally receive a.m. signals, you listen to both sidebands and the carrier in the middle. With synchronous detection you can choose which of the two sidebands you want to listen to. So, if the offending station is higher in frequency, listen to the I.s.b. part of the a.m. signal, if it's lower, do the opposite. It's not really as complicated as it sounds, you should look the words up in a technical dictionary if you want to see a diagram! Actually, Sony make a good effort at describing the function in the handbook with the ICF-2001D, complete with a diagram to make it easier to understand.

If you can find a signal with little or no interference (some chance!), then there is another facility at your disposal. The WIDE/NARROW control can make a real difference to the quality of the signal you are receiving. I spent most of the time with the switch in the narrow position, but once or twice things quietened down enough to use the wide position. This made a real difference to the audio quality, especially music which was much brighter. Unfortunately that situation never lasted.

Sony seem to have designed this radio for the short wave DX enthusiast as it's packed with gadgets to help wrinkle out those awkward signals. There's an r.f. gain control that only operates on a.m. which helps to reduce overloading problems. Then there is an attenuator switch which can be used to reduce signals even further. Both of these are most useful when you connect an external antenna.

Sony have added yet another function to the DXer! If you are trying to listen to a news broadcast or sports programme under really bad conditions, there is a little switch marked HIGH/LOW/NEWS. This is basically just a switched tone control, but was very useful.

I found the secondary function of the memory buttons an ideal aid to DXing. There are thirteen buttons marked to correspond to the usual short wave broadcast bands. So, when I wanted to listen to 44m, it was just a case of pressing the SHIFT button and the appropriately marked memory button together and the radio went straight to the low frequency end of the 49m band. Once there, you can tune up the band with the manual tuning control.

I found this certainly saved a lot of time when I was using the radio as it tended to move around the bands looking for my favourite programmes quite a lot.

My other favourite band is the aircraft band and the ICF-2001D had plenty of features to play with. The first, and most important point, is that it sounded good, which made a change as many manufacturers dismiss the aircraft band all too quickly. With local signals, I could almost believe I was in the cockpit with the crew. It was so clear! I listened to a lot of aircraft transmissions using both the internal telescopic antenna and a discone. I was lucky that, with the summer holidays around (delays included!), there was no shortage of traffic around to listen to. Luckily, I live quite close to an airport and could try out the performance on both strong local signals as well as the more distant stations.

I did try the radio out using both s.s.b., and f.m. The best place to check s.s.b. I have found, and for the amateur bands, with 14MHz being about the busiest and hardest work. The 100Hz “tuning steps” weren't a problem on amateur s.s.b. unlike my findings on amateur RTTY. The signal quality on f.m. was rather pleasant and I used it quite a bit as background entertainment whilst writing this review!
The ICF-2001D also has a built-in clock, interesting signal. Whether or not to stop when you find an broadcast frequencies that you have decided or up SO. That's active or move on after a second or whether you want to stop on a memory after of aircraft, s.s.b. and a.m. DXing all one programmed so you can listen to a mixture monitor. Each memory holds the mode and skip any memories you don't want to briefly mention some. You can lock out scanning the memories, I'd need the rest write in pencil they should last forever. There was a total of five sheets in the review model, so if you in pencil they should last forever. There are so many options available for scanning the memories, I'd need the rest of the magazine to do them justice, so I'll briefly mention some. You can look out and skip any memories you don't want to monitor. Each memory holds the mode programmed so you can listen to a mixture of aircraft, s.s.b. and a.m. DXing all one after another. You can also decide whether you want to stop on a memory that's active or move on after a second or so.

You can also search between two frequencies that you have decided or up through any of the thirteen stored broadcast bands. Again you decide whether or not to stop when you find an interesting signal.

Accessories & Oddments

The ICF-2001D also has a built-in clock, sleep timer and a programmable timer. The latter was my favourite. I could set it up to switch on and back off again up to four times a day, and these could be four different stations if I wanted. I could choose between listening for 15, 30 or 60 minutes. What was fun was waking up to the local radio, and then having my two other favourite programmes turning on without me having to remember them as well as the local airport at its busiest.

The accessories that came with the radio were impressive and useful. There were two little junction boxes in with the radio, these were so you could connect an external antenna easily to the 3.5mm socket. This saved me the time and effort of rushing out to buy 3.5mm jacks for my antenna leads — something I don't normally use. I didn't even have to heat up the soldering iron as screw terminals were used in the boxes. You get a strong webbing shoulder strap, which was useful when wandering around airport perimeters.

One feature which I think was put in for the traveller was 7m of wire complete with a clip for use when off on your holidays. The ear piece also is useful whilst on holiday, that way you don't keep everyone else awake with your programmes — not everyone appreciates them. As the socket was a 3.5mm one, I used my usual headphones whilst at home.

Also included is the Sony Wave Handbook. That's a 120-page guide to international a.m. and f.m. broadcast stations including schedules. Again I think this is aimed at the traveller as there's not enough room in amongst the luggage for all the frequency guides I usually use. I found the Aviation Guide interesting as it gave an outline of the uses of voice communications in aviation. It even included an example of what you might expect to hear and a glossary of terms.

Before the radio went back to Sony, the SWM staff put it through it's paces in the lab. The results they sent me make interesting reading as I enjoyed having the radio to play with. When compared with other radios in the "What Receiver" feature, I thought it came out quite well. The measurements confirmed my own impressions that the ICF-2001D is a very sensitive and well engineered receiver which will serve the enthusiast well.

The ICF-2001D is available from any Sony distributor priced around £350. My thanks to Sony (UK) Ltd., for the loan of the radio.

Abbreviations:

- a.c. alternating current
- a.m. amplitude modulation
- AMTOR AMateur Teletype Over Radio
- dB decibel
- d.c. direct current
- DX "long distance"
- f.m. frequency modulation
- Hz hertz
- kHz kilohertz
- i.s.b. lower sideband
- m metre
- mA milliampere
- MHz megahertz
- mm millimetre
- mW milliwatt
- r.f. radio frequency
- RTTY Radio TeleTYpe
- s.s.b. single sideband
- V volt
GAREX ELECTRONICS

WEATHER SATELLITE SYSTEM

This is the genuine MICROWAVE METEOSAT system, 24 hour geostationary (prediction charts not required).

Not to be confused with cheaper, computer add-on devices that normally utilise the VHF Satellites which are only usable for a few minutes at a time.

Our complete plug-in go package requires no computer, no software, and can be up and running, including dish alignment within 10 minutes.

Nothing more to buy: Dish, Microwave Receiver, Frame Store, 12" B/W Monitor AND ALL PLUGS & CABLES.

NEW

The spectacular NIMBUS system

For stunning animated views of weather events as they move across the globe, this is the COMPLETE GROUND STATION:

- VHF 10 Channel Receiver
- Nimbus Microcomputer, colour (or B/W) monitor and ALL SOFTWARE, PLUGS AND CABLES.

Yes everything!

More wonders than we can describe in this space!!

Call or write for further details.

VHF SYSTEMS

- VHF Active Antenna + 35m cable £74.75
- VHF 10 Channel Receiver £155.25
- Colour Frame Store (suit VHF & Microwave) £454.25
- SAE for full details and prices of other "separates"

GAREX VHF RECEIVERS

The celebrated Timothy Edwards designs now owned & manufactured by GAREX.

- A simple but versatile design capable of covering spot frequencies in the range 25-200MHz.
- Excellent sensitivity (typically better than 0.4uV for 12dB SINAD).
- Double superhet (10.7MHz and 455kHz IFs).
- Choice of IF bandwidths from weather satellite to '12.5kHz' PMR standards.
- The basic receiver is single channel crystal controlled.
- Multichannel options.
- 2 watt audio output stage having a low quiescent current.
- Compact size: 153 x 33mm Requires 10-14V DC supply.

PRICES

Stock Versions: (fully assembled, aligned & tested boards) 6m, 4m, 2m & Weather Sat. £49.95

Complete cased versions & special options: details & prices on request. Crystals can be supplied if required; most popular 2 metre frequencies and the currently active Weather satellites are readily available. Crystal prices on request.

Mains power supply module £15.50

GAREX VHF PREAMPLIFIERS

- Compact size: 34 x 9 x 15mm
- Up to 26dB gain
- Can be made for any frequency in the range 40-200MHz
- 3dB bandwidth 3MHz at 45MHz
- Uses BF981 (0.7dB NF at 200MHz)
- Input & output impedance 50 ohms
- 1dB compression: +10dBm
- Saturated output: +15dBm
- Supply voltage 8-17V DC at 5-10mA

STOCK VERSIONS:

- 6m, 4m, 2m & Weather Sat.
- Fully assembled, aligned & tested boards
- £49.95

GAREX MICROCOMPUTER SYSTEMS

- *NEW* HIGH PERFORMANCE 2 metre PRE-AMPLIFIER
- 3 Band-pass stages for improved selectivity
- 16dB gain with 1dB NF
- RF switched (fail-safe action): gas-filled relays
- 10-14V DC power supply
- £42.50

MAIN DISTRIBUTORS FOR GAREX ELECTRONICS LTD.

Ask for details of the latest GAREX "Whippet" and "Kwikkit" antennas and sardless coaxial adaptors (see PW June 87).

Prices include UP P&P and 15% VAT

Ask for details of our Interest Free Credit

GAREX ELECTRONICS

HARROW HOUSE, AKEMAN STREET, TRING HP23 6AA
TEL: TRING (044282) 8580
and CHEDDINGHAM (0296) 668684

Callers by appointment only
The first section of the receiver, the audio amplifier built on a tag board, was described in Part 2. Logically the v.f.o. is the next stage to build as it uses similar constructional techniques to the audio amplifier with the interesting addition of the now almost forgotten art of coil winding.

The rest of the tag board left over from the audio amplifier is used to build the main circuit of the v.f.o. and you should follow the layout of the components shown in Fig. 3.2. Remember how you fitted them onto the board last month? If not refer back to Part 2 to refresh your memory.

Coils
Now we come to the interesting bit — winding the coils. In the past the enthusiastic constructor would spend hours winding different coils to "improve" various aspects of the performance of his receiver. Now things are very different and coil winding is almost a forgotten art! Fig. 3.3 shows the basic coil assembly and for the v.f.o. you will need three of these coils — with different numbers of turns of course.

Take one of the coil formers and a length of 30s.w.g. enamelled copper wire about 1m long. Pass one end of the

![Fig. 3.2: Completed v.f.o. board.](image)

follow the layout of the components shown in Fig. 3.2. Remember how you fitted them onto the board last month? If not refer back to Part 2 to refresh your memory.

Coils
Now we come to the interesting bit — winding the coils. In the past the enthusiastic constructor would spend hours winding different coils to "improve" various aspects of the performance of his receiver. Now things are very different and coil winding is almost a forgotten art! Fig. 3.3 shows the basic coil assembly and for the v.f.o. you will need three of these coils — with different numbers of turns of course.

Take one of the coil formers and a length of 30s.w.g. enamelled copper wire about 1m long. Pass one end of the

![Fig. 3.1: Circuit diagram of the v.f.o. Please note that in the audio amplifier section described in Part 2 the 5µF electrolytic capacitor C14 was shown the wrong way round in the circuit diagram (Fig. 2.1). It was shown correctly in Fig. 2.2 and has been corrected in this version.](image)

YOU WILL NEED

<table>
<thead>
<tr>
<th>Component</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistors</td>
<td></td>
</tr>
<tr>
<td>1/4 W 5% Carbon film</td>
<td></td>
</tr>
<tr>
<td>47Ω</td>
<td>1 R12</td>
</tr>
<tr>
<td>680Ω</td>
<td>1 R14</td>
</tr>
<tr>
<td>1.5kΩ</td>
<td>1 R13</td>
</tr>
<tr>
<td>15kΩ</td>
<td>2 R15</td>
</tr>
<tr>
<td>Capacitors</td>
<td></td>
</tr>
<tr>
<td>Polystyrene</td>
<td>1 C24</td>
</tr>
<tr>
<td>100pF</td>
<td></td>
</tr>
<tr>
<td>220pF</td>
<td>1 C21</td>
</tr>
<tr>
<td>1nF</td>
<td>1 C19</td>
</tr>
<tr>
<td>Silvered mica</td>
<td>1 C23</td>
</tr>
<tr>
<td>180pF</td>
<td></td>
</tr>
<tr>
<td>Polyester</td>
<td>1 C22</td>
</tr>
<tr>
<td>5nF</td>
<td></td>
</tr>
<tr>
<td>Disc Ceramic</td>
<td>1 C20</td>
</tr>
<tr>
<td>0.1µF</td>
<td></td>
</tr>
<tr>
<td>Sub-min. plate ceramic</td>
<td></td>
</tr>
<tr>
<td>6.8pF</td>
<td>1 C26</td>
</tr>
<tr>
<td>12pF</td>
<td>1 C27</td>
</tr>
<tr>
<td>100pF</td>
<td>1 C25</td>
</tr>
<tr>
<td>Variable air spaced</td>
<td>1 C28 (see text)</td>
</tr>
<tr>
<td>5 – 28pF</td>
<td></td>
</tr>
<tr>
<td>Semiconductors</td>
<td></td>
</tr>
<tr>
<td>Transistors</td>
<td>1 Tr5</td>
</tr>
<tr>
<td>BC108</td>
<td></td>
</tr>
<tr>
<td>2N3819</td>
<td>1 Tr6</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td></td>
</tr>
<tr>
<td>Miniature group panel (tag board); 10mm dia. coil formers with dust iron cores (4); Rotary switch 4p3w; 30s.w.g. enamelled copper wire.</td>
<td></td>
</tr>
</tbody>
</table>
wire down through one of the two small holes in the base and then back up through the adjacent hole to lock the end in place, leaving about 100m free for connecting to the rest of the circuit. Now carefully wind the required number of turns around the coil former, pushing the turns close together to the bottom of the former. When you have the required number of turns wound onto the former, secure the top end of the wire with a small piece of adhesive tape and then run a "strip" of "15 minute" epoxy adhesive. (e.g. Araldite) down the windings to permanently fix them in place. Repeat this for the other two coils.

Winding T1

While you are coil winding you might as well wind T1. This consists of 20 turns of 30s.w.g. enamelled copper wire wound in exactly the same way as L4, 5 and 6. When the adhesive has set, carefully wind three turns of pvc covered "hook-up" wire over the top of the 20 turn coil and secure in place with some more "15 minute" epoxy adhesive.

You should now check your work carefully just as you did with the audio amplifier module. It is not really practical, however, to test the v.f.o. before it is properly installed in the case.

In Part 4 we will cover the remaining parts of the circuit before dealing with the case and final wiring in Part 5.

Photo Acoustics Ltd.

58 High Street, Newport Pagnell, Bucks. MK16 8AQ.

Part 3

Three-Band SSB Receiver

Fig. 3.3: Coil winding details.

Fig. 3.4: Winding details for T1.

Royal Blue

Photo Acoustics have pleasure in presenting the ROYAL BLUE — a Short Wave Listeners folded dipole antenna that covers 2-30MHz. Its neat and compact design (just 6" tall) makes it ideal for unobtrusive outdoor or indoor use, it will work quite happily on your roof or stood in the corner of your shack. It is a truly versatile antenna that will pull in DX and which works exceptionally well with modern receivers such as the Yaesu FRG8800, Icom R71, Trio R2000 and so on.

To buy this superb new antenna, just send us £25, plus £3 for postage and packing and we will rush one to you.

Aerials, ATUs and Accessories

<table>
<thead>
<tr>
<th>Name</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>MFJ16100 SWL antenna tuner</td>
<td>£4.00</td>
</tr>
<tr>
<td>Trio RIS high quality headphones</td>
<td>£14.25</td>
</tr>
<tr>
<td>Trio RIS lightweight headphones (not enclosed type)</td>
<td>£16.75</td>
</tr>
<tr>
<td>Yaesu YER enclosed headphones</td>
<td>£19.99</td>
</tr>
<tr>
<td>Yaesu YER lightweight headphones</td>
<td>£19.99</td>
</tr>
<tr>
<td>Revco PA3 Masthead Preamp 10MHz to 100MHz</td>
<td>£4.00</td>
</tr>
<tr>
<td>Revcone 16 Element Discone 50-500MHz</td>
<td>£9.75</td>
</tr>
<tr>
<td>Icom AH7000 wideband discone 25-1300MHz</td>
<td>£16.75</td>
</tr>
<tr>
<td>Reso PI3-Matthews Preamp 10MHz to 2000MHz</td>
<td>£24.00</td>
</tr>
<tr>
<td>Icom AH7000 wideband discone 25-1300MHz</td>
<td>£24.00</td>
</tr>
<tr>
<td>MFJ16010 SWL antenna tuner</td>
<td>£16.75</td>
</tr>
<tr>
<td>Trio RIS lightweight headphones (not enclosed type)</td>
<td>£19.99</td>
</tr>
<tr>
<td>Yaesu YER lightweight headphones</td>
<td>£19.99</td>
</tr>
<tr>
<td>Revco PA3 Masthead Preamp 10MHz to 100MHz</td>
<td>£4.00</td>
</tr>
<tr>
<td>Revcone 16 Element Discone 50-500MHz</td>
<td>£9.75</td>
</tr>
<tr>
<td>Icom AH7000 wideband discone 25-1300MHz</td>
<td>£16.75</td>
</tr>
<tr>
<td>Reso PI3-Matthews Preamp 10MHz to 2000MHz</td>
<td>£24.00</td>
</tr>
<tr>
<td>Total</td>
<td>£105.95</td>
</tr>
</tbody>
</table>

Specifications

- **Frequency range:** 75-1055KHz
- **Modes:** AM, FM
- **Channel steps:** 3kHz, 10kHz
- **Auto search:** (Free) and (Manual)
- **Memories:** 5
- **Search function:** Auto search between user selected frequencies

Dimensions:

- **Height:** 610mm
- **Width:** 305mm
- **Depth:** 152mm

Weight:

- **Antenna:** 268g
- **Mast:** 275g
- **Box:** 275g

Supplied Accessories:

- Belt clip
- Rechargeable battery pack
- Name plate
- SWL fitted

Cartridge:

- **Price:** £29.00

Spend up to £1,200 Instantly with a Photo Acoustics Ltd. Credit Charge Card — Apply for Details

Retail Showroom Open Tuesday—Friday 9.30-5.30, Saturday 9.30-4.30

Goods normally despatched within 24 hours. Please allow 7 banking days for cheque clearance. Prices correct at time of going to press — E&OE
SCANNING

Alan Gardner

This month’s column begins with a look at two new products of interest to scanning enthusiasts.

Most current cordless telephones are adaptations of the older (illegal) designs, with different transmit and receive frequencies, improved r.f. filtering to reduce spuriously transmitted frequencies, increased electrical safety and in some, but not all cases, the addition of a security code to prevent illegal outside usage.

The operation of current generation cordless telephones is very simple. An incoming call is transmitted by the base unit to the handset using n.b.f.m. at approximately 1.7MHz. The handset receives this signal on an internal ferrite rod antenna and, after detection, causes an alarm signal to sound. On hearing this signal the user raises the telescopic antenna on the handset and switches it to "talk". This causes the handset to transmit back to the base station again using n.b.f.m., but this time at around 47MHz. The handset also transmits an additional signal in the form of a high frequency tone, usually around 6kHz, superimposed on top of the speech signals. This tone is filtered out at the base station and is used to switch the speech circuits to line, thus connecting the call. Part of the speech signal from the handset is routed back via the base station to the handset in order that the user can hear himself speak, as with a normal telephone.

In order to make an outgoing call, the user again switches the handset to talk, the base station detects the 6kHz tone and connects the system to line. When the user starts to dial, the 6kHz tone is interrupted by the dialling circuitry in the handset - this causes the line to disconnect momentarily on each dialling pulse, thus providing the loop disconnect method of terminating the call.

Most current CT2 designs have a dial in the form of a rotary switch, analogue switches, pulse code modulation algorithm, this is then framed into 1ms bursts and transmitted at 72Kbit per second using an adaptive differential pulse code modulation algorithm.

Cordless Telephones

BT has, for several years, been carrying out research into various forms of cordless telephone systems. Most of the recent trials have been centred at around 900MHz, with many experiments aimed at assessing the propagation of these frequencies within typical office buildings. Much of this research is aimed at providing an office orientated cordless telephone exchange. With the current generation of cordless telephones this is not possible, mainly due to the limited number of channels available.

There’s exciting news for AOR fans. A demonstration of a pre-production version of their proposed new scanner, the AOR 3000 was available at the NEC Amateur Radio Exhibition. You may remember I mentioned in the April issue that AOR had run into difficulties with this new model. However, it now seems that most of the major design problems have been overcome and production should by now be well underway.

The major features include: coverage from 500kHz to 2075MHz, tuning in various step sizes from 50kHz to 100kHz, detection of a.m., w.b.f.m., n.b.f.m., u.s.b. and i.s.b., 400 memories, built-in computer interface, lockout of individual adaptations of the older (illegal) designs, with different transmit and receive frequencies, improved r.f. filtering to reduce spuriously transmitted frequencies, increased electrical safety and in some, but not all cases, the addition of a security code to prevent illegal outside usage.

The operation of current generation cordless telephones is very simple. An incoming call is transmitted by the base unit to the handset using n.b.f.m. at approximately 1.7MHz. The handset receives this signal on an internal ferrite rod antenna and, after detection, causes an alarm signal to sound. On hearing this signal the user raises the telescopic antenna on the handset and switches it to "talk". This causes the handset to transmit back to the base station again using n.b.f.m., but this time at around 47MHz. The handset also transmits an additional signal in the form of a high frequency tone, usually around 6kHz, superimposed on top of the speech signals. This tone is filtered out at the base station and is used to switch the speech circuits to line, thus connecting the call. Part of the speech signal from the handset is routed back via the base station to the handset in order that the user can hear himself speak, as with a normal telephone.

In order to make an outgoing call, the user again switches the handset to talk, the base station detects the 6kHz tone and connects the system to line. When the user starts to dial, the 6kHz tone is interrupted by the dialling circuitry in the handset - this causes the line to disconnect momentarily on each dialling pulse, thus providing the loop disconnect method of terminating the call.

Most current cordless telephones are adaptations of the older (illegal) designs, with different transmit and receive frequencies, improved r.f. filtering to reduce spuriously transmitted frequencies, increased electrical safety and in some, but not all cases, the addition of a security code to prevent illegal outside usage.

The operation of current generation cordless telephones is very simple. An incoming call is transmitted by the base unit to the handset using n.b.f.m. at approximately 1.7MHz. The handset receives this signal on an internal ferrite rod antenna and, after detection, causes an alarm signal to sound. On hearing this signal the user raises the telescopic antenna on the handset and switches it to "talk". This causes the handset to transmit back to the base station again using n.b.f.m., but this time at around 47MHz. The handset also transmits an additional signal in the form of a high frequency tone, usually around 6kHz, superimposed on top of the speech signals. This tone is filtered out at the base station and is used to switch the speech circuits to line, thus connecting the call. Part of the speech signal from the handset is routed back via the base station to the handset in order that the user can hear himself speak, as with a normal telephone.

In order to make an outgoing call, the user again switches the handset to talk, the base station detects the 6kHz tone and connects the system to line. When the user starts to dial, the 6kHz tone is interrupted by the dialling circuitry in the handset - this causes the line to disconnect momentarily on each dialling pulse, thus providing the loop disconnect method of terminating the call.

Most current CT2 designs have a dial in the form of a rotary switch, analogue switches, pulse code modulation algorithm, this is then framed into 1ms bursts and transmitted at 72Kbit per second using an adaptive differential pulse code modulation algorithm, this is then framed into 1ms bursts and transmitted at 72Kbit per second using f.s.k. That's not all, transmissions are interleaved to give time division duplex operation on a single radio channel. This provides increased security against casual eavesdropping and also doubles the number of channels available. As only one channel is now needed for a two-way conversation, as opposed to the present requirement for two, transmitter power will be in the region of 10mW giving a range of around 100m from the base station.

These features permit a much higher degree of channel re-use, with experts predicting up to 5000 people per square kilometre, as opposed to the current figure of around 100 or so. Keep your eyes peeled as high street chains such as Dixons expect to stock some models towards the end of the year.

AOR AR-800E Antennas

Ian Smith of Paisley has just caught the scanning bug after purchasing an AR-880E handheld scanner. He finds that the receiver works well, but can be improved by substituting a telescopic antenna in place of the supplied helically wound antennas. This permits adjustment of the length of antenna to 1/4 wavelength at the frequencies of interest. The approximate length of antenna section in centimetres being given by the formula: 7500 divided by frequency in MHz.
Ian has made his own telescopic antenna from readily available parts, see Fig. 1. The most difficult aspect of construction is soldering a screw to the base of the antenna as you may have to use a blow lamp or gas ring to get the parts hot enough for the solder to melt.

Place a short length of suitable plastic tubing over the screw up to its bevel in order to form an insulator. This is then screwed into the centre of the phono socket, taking care that no part of the antenna touches the metal outer of the adaptor. Finally, a length of heat shrink sleeving placed over the lower section of the antenna and the top of the BNC adaptor helps to hold the parts together and creates a neater looking finish. Ian concludes his letter by saying, "I'll bet there is an easier way to do this but I always like to be difficult!" That may be true Ian, but at least you have found a method that works, which is a good starting point for anyone else who wants to make one, so many thanks for your notes.

SMC 8400A

John Bidgood of Southampton has just obtained a SMC 8400A scanner and finds that he can enter and search frequencies between 26 - 55MHz which is outside the specified range of the receiver. He asks if the scanner is actually working on these frequencies or is it just the display fooling him?

I must admit that I don't have any experience of this particular scanner John, but I am sure that at least one of the readers of this column will have some information, perhaps even a few modifications they may like to share - how about it? In the meantime John, you should be able to tell if it is working on this column. However he has found that there is enough leakage from the first i.f. to allow it to be used as a converter for long distance TV reception - as I outlined in the July column. However he has found that there is not enough leakage at the moment. However you may find that you have to tune slightly away from the main signal carrier frequency to obtain the best results by avoiding interfering signals on adjacent channels. I have included a short list of the most common Band II TV channels for your guidance, but as I say, in many cases it is easier to just tune around and save any good frequencies in memory channels for future reference.

If you are interested in Long Distance Television Reception then I can recommend the book A TV-DXers Handbook BP176 by R. Sunney. Published by Bernard Babini Publishing Ltd and - yes, you guessed it - available through the *SWM* book service (Do I get a bonus for this?). This is an invaluable reference book and contains details of international channel numbers and frequencies, antenna designs, receiver circuits as well as many hints and tips on the subject.

As a final note Peter has offered free of charge (but please enclose an s.a.e.) short lengths of the sub-miniature coaxial cable used in the modification. If you would like some of this cable send your letter to me and I will pass it on to him.

As usual all mail to PO BOX 1000, Eastleigh, Hants SO5 5HB. If you require items returning please enclose an s.a.e.

Next month - Goodlistening.

Converter Update

D. L. Prince writes from Dyfed to correct me for saying that one of the first uses of converters was for TV reception. He can remember converters being offered as long ago as 1933, when they were produced to give short wave reception between 15 - 80m on normal domestic receivers, with only long and medium wavebands.

Well I guess that the next postbag will bring me a letter recalling an even earlier example - as Mr Prince says in his letter, "there is nothing new in Wireless".

Neil Buchanan of Lisburn, Co. Antrim has been experimenting with his Tandy PRO-2004 and finds that it is possible to extract a 10.7MHz i.f. signal from the "Tape Out:" socket. Although theoretically this should not happen, he finds that there is enough leakage from the i.f. stages to make it possible to feed a short wave receiver from the socket.

He uses this method to receive s.s.b. signals by tuning the scanner to the frequency of interest and then after selecting w.b.f.m., tunes the short wave receiver around 10.7MHz, with s.s.b. selected until he can resolve the signal. One other tip that he mentions is that the level of signal leakage seems to increase if the squelch is fully closed, so it is a good idea to put frequencies such as s.s.b. calling channels into the memories for rapid recall.

Note that w.b.f.m. has to be selected for this to work, as it is only in this mode that the receiver uses 10.7MHz as one of its i.f.s. Neil says that the great advantage of using this method of extracting an i.f. signal is that no modifications have to be performed to the scanner, which could involve problems with equipment warranties.

He has also tried feeding a TV set from the socket to see if there was sufficient leakage from the first i.f. to allow it to be used as a converter for long distance TV reception - as I outlined in the July column. However he has found that there is not enough leakage at the u.h.f. frequencies involved to give discernable pictures, but this could be a good starting point for further experimentation.

TV Frequencies

Along the same lines. Peter Turner of Ipswich has tried the R7000/TV modification mentioned previously, and is very pleased with the results. He now wonders what the best frequencies are to monitor. Well Peter, I have found that the best method is to let the scanner find them for you, get it to search over the TV Band I (41 - 68MHz), Band II (174 - 225MHz), Band IV (471 - 585MHz) and Band V (610 - 890MHz). You will often be surprised by what you can find even during the most disappointing of conditions. Band I is the favourite with many strong Eastern European being detectable at the moment. However you may find that you have to tune slightly away from the main signal carrier frequency to obtain the best results by

Abbreviations

- **a.m.** amplitude modulation
- **BNC** type of coaxial connector
- **BT** British Telecom
- **f.m.** frequency modulation
- **f.s.k.** frequency shift keying
- **GaAs-f.e.t.** Gallium Arsenide field effect transistor
- **Hz** hertz
- **i.f.** intermediate frequency
- **kHz** kilohertz
- **I.S.B.** lower sideband
- **m** metre
- **MHz** megahertz
- **ms** millisecond
- **mW** milliwatt
- **n.b.f.m.** narrow band frequency modulation
- **NEC** National Exhibition Centre, Birmingham
- **r.f.** radio frequency
- **s.a.e.** stamped addressed envelope
- **s.s.b.** single sideband
- **TV** television
- **u.h.f.** ultra high frequency
- **u.s.b.** upper sideband
- **w.b.f.m.** wideband frequency modulation
The first wireless set I had ever seen belonged to an uncle and on one occasion I was allowed to turn the two large knobs under his watchful eyes. At that time, in 1924 and then aged 13, I viewed the set as a really magnificent piece of equipment. Measuring about 15 x 12in with a sloping panel, at the top were four valves of the pinched nipple type. "Dull emitters", I was told.

Below each valve was a small knob which turned the arm of a rheostat to control the brightness of the valves. To the left of this assembly were several large coils, one of which could be moved from a horizontal position to the vertical.

At the bottom were two large dials, each marked 0 to 100 which I was allowed to turn.

Eccentric Uncle

My uncle, however, was a bit of an eccentric for soon afterwards, much to my dismay, the wireless was relegated to a position on the first floor landing, covered in a dust sheet, never to be used again as far as I know. Yet it was complete with its loudspeaker, i.t. and h.t. batteries, and even had an aerial attached!

Although my uncle appeared to take no further interest in tuning-in the long and medium waves, he nevertheless continued to purchase a wireless magazine which I, in due course, was allowed to read and digest, much to my later advantage.

And so the idea of owning my own receiver became my aim.

The following year, 1925 and aged 14, I obtained a job as errand boy at a local electrical and wireless shop, one of my daily duties being to empty the waste-paper baskets and rubbish bins, not only in the offices and shop, but also on the workshop floor where wireless sets were assembled from kits.

Out of a Job

Six months later I was out of a job, the firm having gone into liquidation, but not before I had "scrounged" almost all the parts I required to build a simple set of my own: a couple of tuning condensers (capacitors), a valve holder, an h.f. choke or two, fixed capacitors and resistances, plus all the terminals and other bits and pieces.

By that time I had read in wireless magazines of correspondents who had tuned into Australia using one-valve sets and the idea appealed to me immensely, so much so that I was determined to do the same.

My first attempt was to be a one-valve set, 0-1-0, the valve probably a Mullard PM2DX. The only thing I now needed, apart from batteries, were a couple of coils for short wave listening.

Eventually I found a suitable pair at another local shop, costing 2s 6d each (today's price 25p the pair!). With a diameter of about 3in they would have done justice to any transmitter. Marked 25 metres I knew they would do very nicely to start with. "Use in conjunction with a 0.0003F tuning condenser", said the instructions.

My tuned circuit was both 0.0005F, too large for satisfactory use on the short waves, but that was no problem, for tuners of 60 years ago were so manufactured that each could be stripped and then re-assembled with fewer vanes, using the spare spacing washers to double-space the remaining vanes.

Assembled

Once assembled, having acquired batteries, the set was coupled to two wires stretching down the sloping stairway ceiling and then across the kitchen ceiling to a corner. The set worked, but was far from satisfactory. For one thing hand capacitance was rife, making it difficult not only to hear anything but also to retain reception long enough to identify the station.

Tune into any frequency on which there is a broadcast station and the chances are that it will be heard, provided that the transmission is beamed to the listener's area at a suitable time of the day or night. That is thanks to the sophistication of modern transmitters and receivers. But it was not always so simple as that for in the 20s both receivers and transmitters were often very crude.

The set had no front panel, the only controls being the variable coil-holder, its secondary coil of 3 turns providing the necessary reaction required, and a single tuner which tuned the other 5 turn coil.

Once again in a wireless magazine came to my aid: it showed not only how to get rid of some, if not all, of the hand capacitance howling, but also how I could obtain a better control over reaction by placing my second tuner (until then spare) in series with the secondary coil.

This was a major step forward and although at that time I was restricted to 25 metres, I could now retain any transmission long enough to identify it. My target, however, was Australia and so far I had failed night after night, only to discover that I had been tuning-in at the wrong time of the day and that I should try early mornings.

A Bit of Luck!

Then a bit of luck! A neighbour gave me an old 4-valve set used for long and medium wave reception, together with its coils. No use for short waves, of course, but with the set came an h.t. eliminator (a mains rectifier which yielded d.c. voltages from 50 to 90 volts in 10-volt stages. There was also a trickle charger for my one and only accumulator.

From articles in the wireless magazine I also discovered that my one-valve receiver could be tuned into a one-valve converter, taking the four leads into the base of a broken valve and then plugging into the detector valve socket of the domestic receiver, giving me a two-valve amplifier to boost the converter.

Once again I had a kit and the following Saturday and, before going to bed, I set up my rig ready for an early rise on the following day. Getting up just before 5am I tuned into some music and waited. Just on the hour came the call of the kookaburra. Success at last!

Six Months Waiting

After more than six months of waiting there came my first-ever OSL card, one which confirmed reception of VK3AR at Lyndhurst, Australia, and issued by the Australian Post Office. The card was buff-coloured, small and with 3AR typed in, not very impressive perhaps, but to me a major step forward in being a short wave listener.

The world of short wave listening was, however, changing almost dramatically, Strattons (Eddystone) had brought out a huge range of short wave equipment, plug-in coils (14-pin and 6-pin, the first having two windings for use in the h.f. antenna input stage, and the latter in the detector stage of the receiver).

REMINISCENCES

George Hewlett

Radio Australia

The Laughing Kookaburra

RADIO AUSTRALIA

SHARING THE WORLD WITH OUR FRIENDS

Eccentric Uncle

Out of a Job

A Bit of Luck!

Six Months Waiting

SHARING THE WORLD WITH OUR FRIENDS

George Hewlett

Eccentric Uncle

Out of a Job

A Bit of Luck!

Six Months Waiting

SHARING THE WORLD WITH OUR FRIENDS

George Hewlett

Eccentric Uncle

Out of a Job

A Bit of Luck!

Six Months Waiting
With the covers in place, connect up the receiver and run it for an hour or so with a towel covering the air vents. Keep an eye on it as the temperature will rise dramatically! If any component is likely to fail it will do so under these conditions. Switch off and allow to cool for a couple of hours, repeat the cycle and correct any faults that may have shown up.

Noise

Next, remove the casing and coil pack cover and replace the carbon resistors in the first r.f. stage, l.o. and first i.f. stage with metal film resistors to lower the noise. This may be necessary in the first audio amplifier also. Fit R20 from V3 grid (pin 21) to chassis and not to the a.g.c. line as variations in mixer current will "pull" the l.o. transformers. Replace the a.g.c. bias resistors, polyester capacitors with polycarbonate types, polystyrene capacitors with mica or ceramic types, and completely re-align the receiver. At this point I carried out noise figure tests and tried a different ECC189 r.f. valve V1 and ECH81 mixer valve V3 and got some improvement.

Bandwidth

My next step was to reduce the bandwidth, giving a better "minimum usable sensitivity" for a given noise figure as a bonus to improved adjacent channel selectivity.

Extract all i.f. transformers and remove the cans. The tertiary windings can cause stray leakage coupling across the transformer and degrade the skirt selectivity curve; carefully remove them and link the pins. Refit the i.f. transformers. Completely re-align to the centre frequency of the crystal filter, as described in the manual. Check out the receiver and note the difference!

BFO Swing

The b.f.o. tuning capacity or swing, on early production sets, is reduced by carefully bending outwards the fixed vanes at the front and rear. On later sets simply remove the rear fixed vane altogether. Set to mid-way position and zero beat by adjusting the coil core, then check that ±3kHz is obtained. The original was over 6kHz and too coarse.

The front wafer of the selectivity switch — S2a, b in Fig. 2.2 — is re-wired as shown in Fig. 2.3. You should use the Eddystone circuit diagram (Fig. 2.2), to help you identify the various components connected to the switch. Having located S2a connect all three contacts of the switch together and remove the wire connecting the MAX and MIN contacts to the bottom of the tertiary windings of T1. Remove the link wire connecting the MAX and MIN contacts of S2b.

Further Modifications

The contacts on the rear wafer, S2c, freed by removing the tertiary windings on T3, will be used for the "stenode" modification to be described in Part 3. Other modifications to come include a squelch circuit, tape monitor, i.f. output and a l.o. output to drive a digital frequency display.

Abbreviations

- **a.f.** audio frequency
- **a.g.c.** automatic gain control
- **b.f.o.** beat frequency oscillator
- **i.f.** intermediate frequency
- **l.o.** local oscillator
NOTE - ALL SECTIONS OF IS ARE SHOWN AT RANGE 2

ALL TRIMMERS ARE 3-30P 1" AND E FOR UNBALANCED INPUT 11/0 1111111 1704

Fig. 2.2: Complete circuit diagram of the Eddystone 940 receiver reproduced by Short Wave Magazine
VOLTAGES
All voltages indicated on the circuit above were taken using a
meter of 20,000:1 sensitivity and an applied mains voltage
of 240V. A variation of ±5% should be allowed and readings
should be taken between the point indicated and chassis.
Range switch should be at ‘5’. Gain controls at maximum,
Mode switch to CW/SSB, Standby switch to ON and AGC OFF.

Kind permission of Chris Pettitt GOEYO, Managing Director, Eddystone Radio Ltd.

September 1988
In the two hundred years since the first whites settle into the newly discovered continent of Australia, progress has been rapid. In particular, the telecommunications infrastructure of this fledgling nation, in which some 15750000 people live in an area of 7682200 square kilometres and whose climate ranges from the alpine to the tropical, has developed dramatically. There are around 270 national and 150 commercial television stations in operation, with the Australian Broadcasting Corporation operating 144 radio stations and 137 commercial, privately owned, stations in operation.

Test Match

Radio Australia can trace its history back to 1927 when, on September 5, the first world broadcast from the country was made from VK2ME with a 10kW transmitter. In November of that year, there was an attempt by VK3ME in Melbourne to broadcast a weekly programme for overseas listeners which failed. It was not until the inauguration in 1936 of special news services for New Caledonia and the New Hebrides that short wave transmissions for abroad re-started. This time they were from 3LR Melbourne, later to become known as VLR Lyndhurst.

The Australia vs England test match of 1936/7 proved to be another failure. The Australian Broadcasting Corporation, handed back control to the Department of Information who assumed the control on international short wave transmissions and opened by the Prime Minister, R.G. Menzies.

In January 1940, French broadcasts in Indo-China and New Caledonia began, followed shortly thereafter by German, Spanish, Dutch and Italian. Some of these services were short-lived however. Both Italian and German were dropped in October 1940, followed in June 1941 by the cessation of programmes in Spanish. At the same time, a policy was adopted to concentrate programming more on Asia target areas. May 1942 saw transmissions in Japanese begin, and in June, the Department of Information which had taken control on international short wave broadcasting, handed back control to the ABC.

Psychological Warfare

In July, a political warfare committee was established in Canberra to co-ordinate Allied policy and psychological warfare transmission began from Radio Australia.

In August 1942, Malay, Siamese (nowadays known as Thai) and Chinese (Mandarin) transmission began. May 1944 saw the inauguration of a 50kW transmitter, VLC, at Shepparton for Radio Australia, the control of which had been assumed by the Department of Information again the previous month.

When the end of World War Two came in August 1945, there were 12 international transmission from Australia. Four of these were broadcasts of psychological warfare, comprising nine individual programmes for Asia, five general international transmissions, two Allied Forces transmitters and opened by the Prime Minister, R.G. Menzies.

In January 1946, a peace-time programme schedule for international listeners was introduced and in August, another 100kW transmitter (VLB) at Shepparton.

Between 1947 and 1974, Radio Australia consolidated its position, changing the language services to meet the needs of its audience. In June 1947, the Chinese and Japanese services were discontinued, by March 1948, a programme in German re-started, only to close, along with the Dutch service in April 1950. This was the month in which control of Radio Australia was returned to the ABC from the Department of Information. In 1956, the Mandarin Service commenced and the Thai Service started broadcasting daily. During the 1960s, the Japanese, Vietnamese and Cantonese services began work.

On 20 December 1968, three 250kW transmitters at the Cox Peninsula, Darwin, were taken control on international short wave transmissions and on British Fleet programme.

Peace

In that same month, a 100kW transmitter at Shepparton (VLB) began operations, by November, the name of Radio Australia was officially introduced to mark the change from the war-time role which the station had played.

In January 1946, a peace-time programme schedule for international listeners was introduced and in August, another 100kW transmitter (VLB) at Shepparton.

Between 1947 and 1974, Radio Australia consolidated its position, changing the language services to meet the needs of its audience. In June 1947, the Chinese and Japanese services were discontinued, by March 1948, a programme in German re-started, only to close, along with the Dutch service in April 1950. This was the month in which control of Radio Australia was returned to the ABC from the Department of Information. In 1956, the Mandarin Service commenced and the Thai Service started broadcasting daily. During the 1960s, the Japanese, Vietnamese and Cantonese Services began work.

On 20 December 1968, three 250kW transmitters at the Cox Peninsula, Darwin, were taken control on international short wave transmissions and on British Fleet programme.

Peace

In that same month, a 100kW transmitter at Shepparton (VLB) began operations, by November, the name of Radio Australia was officially introduced to mark the change from the war-time role which the station had played.

In January 1946, a peace-time programme schedule for international listeners was introduced and in August, another 100kW transmitter (VLB) at Shepparton.

Between 1947 and 1974, Radio Australia consolidated its position, changing the language services to meet the needs of its audience. In June 1947, the Chinese and Japanese services were discontinued, by March 1948, a programme in German re-started, only to close, along with the Dutch service in April 1950. This was the month in which control of Radio Australia was returned to the ABC from the Department of Information. In 1956, the Mandarin Service commenced and the Thai Service started broadcasting daily. During the 1960s, the Japanese, Vietnamese and Cantonese Services began work.

On 20 December 1968, three 250kW transmitters at the Cox Peninsula, Darwin, were taken control on international short wave transmissions and on British Fleet programme.

Peace

In that same month, a 100kW transmitter at Shepparton (VLB) began operations, by November, the name of Radio Australia was officially introduced to mark the change from the war-time role which the station had played.

In January 1946, a peace-time programme schedule for international listeners was introduced and in August, another 100kW transmitter (VLB) at Shepparton.

Between 1947 and 1974, Radio Australia consolidated its position, changing the language services to meet the needs of its audience. In June 1947, the Chinese and Japanese services were discontinued, by March 1948, a programme in German re-started, only to close, along with the Dutch service in April 1950. This was the month in which control of Radio Australia was returned to the ABC from the Department of Information. In 1956, the Mandarin Service commenced and the Thai Service started broadcasting daily. During the 1960s, the Japanese, Vietnamese and Cantonese Services began work.

On 20 December 1968, three 250kW transmitters at the Cox Peninsula, Darwin, were taken control on international short wave transmissions and on British Fleet programme.
DEWSBURY ELECTRONICS ARE ABLE TO OFFER THE SHORT WAVE LISTENER A FULL RANGE OF RECEIVERS, RTTY, TOR, FAX, ASCII, DECODERS, PRINTERS AND MONITORS.

AERIALS ARE AVAILABLE FOR ANY SIZE OF INSTALLATION.

A STAMPED ADDRESSED ENVELOPE WILL BRING YOU DETAILS OF ANY OF THESE PRODUCTS.

REPAIR FACILITIES AVAILABLE.

Stockists of DAIWA - MET ANTENNAS - POCOM - ICOM - YAESU - TASCO TELEREADERS - MICROWAVE MODULES - ICS AMTOR - AEA PRODUCTS - DRAE

Dewsbury Electronics, 176 Lower High Street, Stourbridge, West Midlands.
Telephone: Stourbridge (0384) 390063/371228
Telex: 336712 SHELTN G

Instant finance available subject to status. Written details on request.
Ballooning Broadcasting

In Washington recently, the US Senate Appropriations Committee earmarked US $7.5 million for the establishment of a complementary TV Marti Service. The plan is backed by US Senators Hawkins and Warren Rudman. In order to obtain the line of sight path needed to get TV signals into the Cuban capital of Havana, US Engineers are thinking of using an industrial tethered balloon to support the antenna. The last station to try industrial balloons was a pop music ship in the North Sea. But then the weather in Florida is a lot less severe than the North Sea, with the exception of the occasional hurricane! Vice President George Bush seems to favour the project. Speaking to Cuban-American National Foundation, Bush said it was time to go one step better than the existing Radio Marti. “It has been said that a picture is worth a thousand words. In this case thousands of pictures are worth a single word... namely freedom”. US $7.5 million is not enough to run such a TV station though, only set it up. The US National Association of Broadcasters in Washington has expressed reservations that the project may provoke the Cubans into trying to jam the signal, with possible consequences for TV stations operating in Florida areas. Also the v.h.f. signal from the balloon will be omni-directional, and that means the chosen channel will be useless for US TV stations in the Southern part of the United States. Some radio stations in the same area received financial compensation when Cuba retaliated soon after Radio Marti started transmission in 1986.

Cool Reception

In the last few months, several European stations (notably RCI Montreal and SRI Bern) have been discussing their listeners. They claim there is a growing difference of interests between pure technical listeners, DXers and the international broadcasters. To use the bottle analogy, DXers are interested in the outside of the bottle, the broadcasters are more concerned with the contents. Both hope the container doesn’t break.

Some broadcasters complain they are not getting the quality of response they desire. Technically orientated DXers retorted at conferences in Antwerp, Belgium and Irvine, California recently, saying that if a station doesn’t get quality response, maybe it is not making quality programmes. Signal strength is also important, since if it is too weak in the target area, all the creative effort is in vain.

Audience research shows that pure wave listeners. Radio Budapest has run a short wave club since the start of 1985, and despite budget cuts, has maintained a service aimed at enthusiastic newcomers to short wave listening. Whatever you may think of Hungarian politics, Radio Budapest has managed to keep its short wave club free from political bias. In return for sending in reception reports, members of the club get a b-monthly newsletter. The logging section covers all kinds of stations, although it can’t compete with some of the Western DX clubs when it comes to speed in bringing the DX news. There is no doubt that Radio Budapest has done more than most stations to help beginners understand the short wave jargon. More information from Radio Budapest, Budapest 18, Hungary.

Hungary has just upgraded one of its short wave transmitters. 6025kHz is now used to relay one of the domestic programmes, and it is no coincidence that this service was inaugurated at a time when Hungarians in neighbouring Romania, seemed to be under pressure.

Radio Marti, the US government radio programme launched on May 20 1985, is in the news again. It is beamed towards Cuba on medium and short wave from Voice of America facilities in Florida, Ohio, and North Carolina.

Canaries Cease

A programme produced by the Spanish National Radio’s regional studios on the Canary Islands, is recently being widely reported in DX ears. It goes out daily on 1535kHz between 2206-2300UTC. The programme is beamed to South America, which is why reception is only fair in Europe. In fact, the transmission has been around for years, but a change in transmitter site may explain why some people have just noticed it again. The programme used to be broadcast via two 5kW transmitters owned by Spanish Foreign Radio on the Canary Islands. Although official sources won’t confirm it, it seems that the two ancient transmitters there have recently been retired from service. The programme is now fed back to Madrid and broadcast from transmitters at Nobelles, near Toledo right in the heart of the country. There has been an increase in the transmitter power.

If you are interested in Spanish speaking stations, there is an 18-page useful and comprehensive free guide available. Jaime Bagena, a producer of the Radio Enlace programme on Radio Netherlands Spanish service, compiles a regular list of Spanish language broadcasts from international short wave broadcasters.

The next edition is due out at the start of October, just after the European winter time starts. You can avoid delays by writing directly to the Spanish service of Radio Netherlands, P.O. Box 222, Hilversum, Holland.

Receiver Update

Bob Grove of Brasstown, North Carolina, USA has released further news on the SR-1000 communications receiver he’ll be marketing a little later this year. There will be options to extend the coverage up to 2000kHz if desired, as well as additional bandwidth filters to suit the listeners individual requirements, says the press release. We’ll have to see what happens next. Several competitors are sceptical that all these features can be incorporated at the price of just under US $2000.

In the last few months we have had several reactions from readers complaining about receiver manufacturer’s instruction booklets. Whilst the English language manuals of many Japanese made products have improved over the last 10 years, other language versions are often very confusing. They are obviously translated by a bureau with no real understanding of what they are doing.

With the exception of Lowe electronics in Britain and Grundig in North America, no manufacturer seems to offer a concise introduction as to what to do with your new short wave radio, despite having dug deep in your pocket to buy it. Back in the late fifties the Hallicrafters company of
Chicago gave away a promotional record to promote short wave. Grundig North America gives away a free VHS cassette with a 30 minute show explaining the radio. Maybe there are other ideas that we haven't spotted... if so drop a line to BANDSCAN.

Clandestine Shifts

The UNITA radio station, supporting the UNITA forces in Southern Angola has made some rather dramatic changes to its output. It calls itself “The Voice of the Black Cockerel Resistance”. A transmitter said to be at Jamba runs a programme A using two transmitters, one of which must be in excess of 100kW. Between 0500 and 0900UTC they are on 9700kHz and 7130kHz, between 1100 and 1400UTC on 9650kHz and 11820kHz, 1800-2200UTC on 7130kHz and 7145kHz. English is heard at 0600UTC Mondays to Thursdays, and at 1310 on Sundays.

A second B programme operates independently from a transmitter site believed to be in Southern Africa. Between 0330 and 0600UTC and again 1720-2000UTC they use 4975kHz, while from 0800-1030 and 12-1430UTC they use 9600 and 11960kHz. The audio quality of the B programme is terrible, as though it is being fed from a long way over the telephone line.

Continental Local Radio

With the recent decision to put UK community radio on the back burner again, it is interesting to watch developments in other parts of Europe. In Italy and France, attempts are being made at regulation, though there are still plenty of pirates around.

Until recently, the many dozens of media groups in the Netherlands were dependent on existing cable systems to broadcast their local radio and television programmes. They could not legally use a transmitter to broadcast over the air, although the lack of legislation didn’t stop some of them. Holland still has several thousand active pirate radio stations. Back on January 20 1988, twenty local groups were granted permission by the National Media Board to broadcast their radio programmes over the airwaves. In the course of this year it is expected that most of the other hundred or so local groups which have applied will also be granted permission.

However, this is not the green light for giant pirates to go legal. The power of the transmitter is limited to 25W, transmissions are only in mono and there is a strict rule against advertising. The pirate radio stations have proved that the many single family businesses are happy to use radio to advertise. But very heavy political lobbying by the newspaper industry in the Netherlands has succeeded in stopping the introduction of legal local commercial radio. Instead, the local radio station in Amersfoort, for instance, gets a grant from the council. They in turn collect some £75000 from a TV newspaper project run on the city’s cable system. The situation is far from ideal, but it is a start in the right direction.

Radio Heating Experiment

The use of high-power electro-magnetic radiation in the upper atmosphere is raising concerns over its potential environmental impact. Louis Slesin of Microwave News in the US advises us of a weird invention. In August 1987, Dr. Bernard Eastlund of Spring in the state of Texas was granted a patent for a way of heating charged particles in the earth’s atmosphere with radiation. This operated in the 20-1800kHz frequency range. Thus, the inventor claims, could result in the total disruption of communications over a large portion of the earth. Alternatively, the system could be used to modify weather. Dr Eastlund points out that his system would have significant military implications, particularly as a barrier to, or confusing factor for, hostile missiles or airplanes. The patent has been assigned to a company called APTI, a subsidiary of the Atlantic Richfield group.

Dr. Richard Williams, a Physicist based in Princeton, NJ, recently published a paper in which he warns that Eastlund’s invention might become a serious threat to the earth’s atmosphere. However, it is not known how Eastlund’s ideas might be applied as two other patents concerning this same invention have been classified as secret. In his unclassified patent, Eastlund notes that a phased array antenna would be ideal for generating the desired signal and that the North Slope of Alaska would be a good place to test the weapon. Although a lot of energy would be needed (in the order of 1000MW), the capability is within the state-of-the-art. Indeed, Eastlund told Williams that a secret project is already underway to study and implement the invention.

More Culture!

Another European cultural television channel is ready to go on the air at the beginning of next year. That is assuming there are no further delays in the launch of France’s TDF-1 direct broadcasting satellite. The French government actively supported the creation of the new European channel as La Sept, or Channel Seven, two years ago. However, George Duby, Chairman of the new channel, has admitted that La Sept’s future hinges on the successful October launch of the French direct broadcasting satellite.

The TDF-1 satellite programme has been bedevilled by delays. Confidence was shaken when the German TV-SAT1 of exactly the same design failed soon after launch last November. Assuming all goes well though, the new French government-owned channel will aim to provide a pan-European service, and not just concentrate on what’s happening around the French speaking parts of this continent.

La Sept has already negotiated a large number of joint productions with major European television networks and is about to reach a similar deal with Channel Four in the UK. The project was originally set up two years ago with a capital of £5.7 million. Apart from films, theatre, opera, documentary and other cultural programmes, the new channel is also adapting the Open University concept on a European scale, putting out courses in the afternoon. The channel has already built up a stock of more than 2000 hours of programmes, which should keep it going for a while.

Religious Broadcasters Bulletin Board

Another short wave radio station has started a computer bulletin board. This is run by a religious station WYFR in Okeechobee, Florida. According to the board, WYFR has just inaugurated its 13th transmitter, and a 14th will be commissioned shortly. This station has certainly come a long way since it purchased the old “Radio New York Worldwide” site at Scituate Massachusetts. If you have a computer modem capable of the B-N-1 format and using the BELL tones you can try this number: 010 183 763 1034. No password is needed, and it seems to work quite well at 1200 Baud.

Yes, Another Relay!

The latest relay to be announced is from Switzerland. Swiss Radio International has decided to hire airtime from the Brazil external service broadcaster, Radio Bras. If you check 17730kHz at 0200UTC you may hear the SRI programme in English. In fact, it is being beamed to Central America(!). The slight delay behind parallel frequencies operating at that time indicates a satellite feed. Radio Bras has not asked Switzerland for reciprocal airtime. Who’s next?
The Guide to Utility Stations by Joerg Klingensfuss is currently Europe's best selling frequency guide. It's not cheap at £19, but it is very comprehensive with more than 15,000 entries. It is also very accurate. Joerg explained to me that this accuracy is the result of many years of personal listening.

He is a radio enthusiast who has been listening around the bands for more than twenty years. When I asked him why he concentrates on the h.f. bands and virtually ignores v.h.f. and u.h.f., he explained that the law in Germany prohibits listening to transmissions other than those from authorised broadcasting stations, radio amateurs, time signals and, with a special licence, utility stations.

The situation is almost the same here in Britain, but in Germany the law is enforced in a way that I don't think would be very popular here. The authorities regularly ask radio dealers for the names and addresses of their customers and life can be made very difficult for anyone who has bought a scanner. There is also a reward system where people are paid to inform on any of their friends and neighbours who they think may be operating a scanner. There is also a reward system where people are paid to inform on any of their friends and neighbours who they think may be operating a scanner or unlicensed television.

The ethics of this system may be questionable, but it has proved to be very effective and now only a few German radio dealers bother to sell scanners. It also explains why Joerg prefers to listen on h.f.

When I say that Joerg is an enthusiastic listener, this could qualify as the understatement of the year. Not for him the occasional twiddles round the dial - he spends many hours compiling lists and verifying signals, cross-referencing the ones he has heard with published information and bandplans. This he does throughout the summer from his home in Tuebingen, which is just south of Stuttgart. This isn't because he stops working for the winter, but because he doesn't like to stay in Germany when the winter turns cold, preferring to be somewhere warm such as tropical Africa or South America. So, where a radio amateur would take himself off on a DXpedition in order to make contact from some obscure square, Joerg goes on listening expeditions.

He's been to the Azores, the Yemen, Madagascar, Mauritius, Reunion Island, Zaire, Algeria, Morocco, Borneo, Brunei, Malaysia, Indonesia, India, Sri Lanka, Senegal, Martinique, Guadeloupe and many other places. When I asked why it was necessary to carry heavy radios to such exotic places just to listen, he explained that, in much the same way as a serious astronomer will site his telescope well away from artificial light in order to get a better view of the sky, he prefers to listen where there is no man-made electrical noise to interfere with the signals. He also added that he likes laying on the beach!

Receivers

Naturally, I was keen to find out which receiver Joerg uses and, surprisingly, it's not the latest Japanese all-singing, all-dancing digital black box, but an old trusty Drake R7. Admittedly, it has been modified to give improved frequency stability and Joerg paid Drake an enormous amount of money to persuade them to design some special RTTY filters for him, but apart from that, he considers this to be the best receiver available. It has stood up to the rigours of travelling, heat and humidity remarkably well, but just in case, Joerg carries an NRD-525 as a spare. This is a necessary precaution, especially when you consider the chances of picking up radio spares in the middle of a Borneo jungle.

Fortunately, listeners can survive without the complicated (and heavy) antennas that amateurs need. I was surprised to find that Joerg uses a trick that I have used for years to hide my long wires. He carries with him several old transformers and when he wants to run out a long wire antenna, he just uncoils one of the windings. This provides an extremely long piece of very thin wire that is almost invisible. This, he explained, stops people asking awkward questions and, as the wire is so cheap, it doesn't matter if it breaks - he just runs out another length.

Unfortunately, Joerg and I didn't have time for a long chat, but he did tell me a few amusing stories about his expeditions. Like the time he was arrested for knocking on the front door of a top secret American listening station, located on a tiny tropical island so remote that they hadn't bothered to post any guards! I have asked Joerg if he would like to write an account of one of his trips and he has given me a definite maybe! It seems that finding the time is a problem, but perhaps we'll be lucky.

I was pleased to have met the man behind the books, and was left with the impression of someone who is dedicated to listening, while at the same time enjoying a very pleasant lifestyle. I was also left with a strong emotion - envy!

<table>
<thead>
<tr>
<th>Abbreviations</th>
</tr>
</thead>
<tbody>
<tr>
<td>h.f.</td>
</tr>
<tr>
<td>u.h.f.</td>
</tr>
<tr>
<td>v.h.f.</td>
</tr>
</tbody>
</table>
ENTERPRISE ADIO APPLICATIONS LTD.

Introducing the MICROREADER

all prices include VAT & Post & Packing. Discounts for clubs.

BP34 High Quality Professional Audio Filter. Now available.
outstanding performance includes price £94.50.

S.M.E. UNIT C, UNION MILLS, ISLE OF MAN
Tel. Marown (0624) 851277
QRM ELIMINATOR
A unique design, which has revolutionised interference suppression.
Connects in your aerial lead and phases out interference before it gets to your receiver. Any sort of QRM. It can be next to your rx (or your computer) or several miles away, e.g. power lines, 1.5-30MHz. £69.50. Ex-stock.
S.M.E. VHF CONVERTER
Plugs into any HF receiver aerial socket to give you coverage from 118 to 146MHz. Tune your receiver from 2 to 30 MHz £49.50. Ex-Stock.
S.M.E. HF CONVERTER
Plugs into your VHF scanner aerial socket and converts it's range to cover 100kHz to 60MHz. Gives you full LF, MF, HF, VHF, UHF coverage. £48.50. Very wide band PRE-AMPS.
3MHz to 500MHz, 3dB gain, 1.5 dB N.F. and unprecedented performance. Basic Pre-Amp £32.50. Switched through when OFF £37 from stock.
AUDIO MULTIPLIER.
Gives variable selectivity 3kHz-20kHz, passband tuning, Hi or Low pass filters and 2 notch filters. They say this is the best filter anywhere. £75 from stock.
If you require more information on our products, ring or write.
Prices include VAT and delivery.
C.W.O. or CREDIT CARD by phone.

EX-WD COMMUNICATIONS
We now have stocks of ex ministry receivers checked & serviced in our own workshops
RACAL RA17, & RA17L, 1 to 30MHz. R210 2 to 16MHz.
EDDYSTONE 730/4 500kHz - 32MHz
Ring for prices & stocks.
Test equipment & Components — send for lists Large SAE please or 20p stamps.
WANTED FOR OWN PRIVATE COLLECTION
ARRL, R1475, COMMAND TX’s and RX’s etc.

A.E. ELECTRONICS (G8AQN)
151a BILTON ROAD, RUGBY, WARKS CV22 7AS
Tel: Rugby (0788) 76473, Eve (0788) 71066

SITUATED AT SOUTHERN END OF M23 — EASY ACCESS TO M25 AND SOUTH LONDON

HF RECEIVERS

4mm Polyester Guy Rope (40Ckg) per metre
UR70
UR76
(combination)
Kenwood RZ1 Wide Band Receiver
Sony A.O.R.
Yaesu Adonis AM503C; desk mic with pre-amp
Yaesu Yaesu
Kenwood R5000
Kenwood VC10 V.H.F. Converter
A.K.D.

HF RECEIVERS

43MHz to 30MHz, 9dB gain, 1.5 dB N.F. and unprecedented performance. Basic Pre-Amp £32.50. Switched through when OFF £37 from stock.
AUDIO MULTIPLIER.
Gives variable selectivity 3kHz-20kHz, passband tuning, Hi or Low pass filters and 2 notch filters. They say this is the best filter anywhere. £75 from stock.
If you require more information on our products, ring or write.
Prices include VAT and delivery.
C.W.O. or CREDIT CARD by phone.

Short Wave Magazine September 1988

35
The generation of double sideband (d.s.b.), single sideband (s.s.b.) and independent sideband (i.s.b.t.) suppressed carrier signals was detailed last month in this series. In any of these transmission systems the radiated sideband information is devoid of its original reference carrier, so it cannot be demodulated at a receiving point unless a locally generated reference signal is used to simulate the missing carrier.

The degree of accuracy with which the reference signal has to be applied to the sideband information in the receiver is dependent upon the type of transmission and the nature of the modulating waveform. In the case of d.s.b. and i.s.b.t. transmissions it is essential that both the frequency and phase of the reference be correct, otherwise severe distortion in the demodulated signals will be evident.

This requirement also has to be met when s.s.b. transmissions are used to convey music or data information, but for voice communication purposes the requirement is a good deal less stringent. Provided the reference is within 10 or 20kHz of the original carrier frequency, the speech will sound fairly natural, but it will become unnatural sounding, although still intelligible, if the error in the reference is greater than 50Hz.

The amplitude of the reference is also important. If the ratio of sideband energy to reference signal is too high the effect will be similar to overmodulation in an a.m. system and distortion will occur. If the amplitude of the reference signal is much greater than the sideband information then an effect similar to undermodulation results; however in practice this has been found to be advantageous and a reference amplitude of up to 100 times the sideband information is often employed.

Carrier Insertion

One method of simulating the original carrier at the receiving point is to generate a low level reference signal on the same frequency as the missing carrier with a highly stable variable frequency oscillator (v.f.o.) and then very loosely couple it into the receiver via the antenna terminal. This method, known as front end injection, has the advantage that it may be used with any a.m. receiver and involves no modifications to the set whatsoever - however it does suffer from a number of limitations.

The desired s.s.b. signal is tuned in initially so that it is roughly centred within the f.m. passband of the receiver - this will be indicated by the unintelligible sounds reaching maximum volume or by the signal strength meter (if fitted) kicking upwards to a peak value. The v.f.o. is then set to a point either above or below the sideband signal and then very carefully tuned through the signal. At some point the signal will start to become intelligible, although the pitch may well be wrong so that a male voice will sound more like a female or vice versa! Further careful adjustment of the v.f.o. should result in the pitch of the voice becoming normal.

Where a transmission is known to be using the lower sideband (i.s.b.) the v.f.o. should be set to the high side of the signal initially and its frequency should then be gradually reduced until the signal is resolved - the reverse applies for an upper sideband (u.s.b.) transmission. As a general rule, amateur radio operators use i.s.b. below 10MHz and u.s.b. above that frequency, but that rule is not always applicable to commercial transmissions.

Once the v.f.o. tuning is correctly set, the receiver main tuning should be adjusted slightly for the best reception - this will not affect the pitch of the demodulated signal. The coupling between the v.f.o. output and the receiver antenna terminal should then be adjusted so as to ensure that an adequate level of reference signal is present, thereby avoiding effective overmodulation and distortion. Exactly how long the s.s.b. signal will remain intelligible will depend upon the stability of the v.f.o. and the stability of the basic receiver is relatively unimportant with front end injection methods.

In practice this method of inserting the reference signal may prove to be cumbersome, since it will be necessary to tune the v.f.o. to a frequency corresponding to the original suppressed carrier of each transmission received - the main receiver tuning and the coupling from the v.f.o. may then need to be adjusted for optimum results. Since the selectivity of the intermediate frequency (i.f.) stages of a typical a.m. superhet receiver will have been designed to accommodate a signal at least twice as wide as a s.s.b. signal, it may be difficult to avoid the splatter from station operating close to a wanted signal in a busy band.

An alternative approach to front-end injection may be employed with a superhet receiver which has been designed for the reception of c.w. as well as a.m. signals. Since the i.f. signal resulting from the frequency changing process will have identical characteristics to a selected incoming s.s.b. signal, the local reference signal can be generated at i.f. and injected into, or just ahead of the detector stage to simulate the missing carrier. This method offers a distinct advantage in that a choice of only two injection frequencies will be required - one will be needed for use with u.s.b. and the other for i.s.b. signals.

The beat frequency oscillator (b.f.o.) provided for the reception of c.w. signals, can be used to supply the required reference frequency at i.f. so that the signal can be demodulated with an envelope detector - see "Starting Out" SWM July '88. The frequency of the b.f.o. should not be set to about 1.5kHz above the nominal i.f. for the reception of i.s.b. signals, or to about 1.5kHz below it for u.s.b. signals - unlike the front end injection system where the v.f.o. frequency had to be changed for each incoming s.s.b. signal, only one or other of these two settings will be required for all incoming s.s.b. signals.

In order to ascertain these b.f.o. settings the receiver should be set to the a.m. mode initially with the b.f.o. turned off. Select either the 80 or 40m amateur band and centre an amateur i.s.b. signal within the i.f. passband by adjusting the receiver main tuning so that the unintelligible sounds reach maximum volume and the "S" meter kicks to a peak value. Next, reduce the i.f. gain, turn off the automatic gain control (a.g.c.), advance the i.f. gain (volume) and tune on the b.f.o. Do not alter the main tuning. Adjust the b.f.o. control to a point where the speech is resolved and note its position - this setting will be required for all i.s.b. signals. To establish the setting for u.s.b. signals the process should be repeated using an amateur u.s.b. signal in the 20 or 15m amateur bands.

Having set the b.f.o. to the appropriate frequency for the sideband involved, it should not be altered while searching for other s.s.b. signals - they can be selected by simply adjusting the receiver main tuning control, but it is important to note that the tuning has to be done very slowly and carefully until the speech is clearly resolved. How long the chosen signal will remain intelligible will depend upon the stability of the receiver, local oscillator(s) and the b.f.o.

The fast acting a.g.c. system employed in most a.m. receivers cannot be used to control the gain because bursts of noise would arise when the a.g.c. suddenly increased the gain to compensate for the lack of signal during the pauses in a s.s.b. transmission - it should therefore be turned off. The i.f. gain control should be adjusted to ensure that the level of sideband energy does not effectively overmodulate the inserted carrier.

For optimum performance an envelope detector requires quite different levels of reference injection from the b.f.o. with c.w. and s.s.b. signals - a very small b.f.o. signal is needed for c.w. reception.
Product Detectors

There are several versions of this type of detector, but they are all known as product detectors because the a.f. output is a mathematical product of two separate r.f. inputs — see Fig. 1. Product detectors fall into two main categories, namely active and passive. The active type employ transistors, integrated circuits or valves, all of which depend upon an external power supply for their operation, whereas the passive type use diodes which act as high speed switches — they are controlled by the signal voltages and require no external power. A conversion gain can be obtained with active detectors, but the passive type introduce a conversion loss of 5dB or more — however, their simple circuits offer a number of advantages, including low noise performance, low cost and good isolation between the input and output ports. It is worth noting here that there should be no audio output from either type of detector if the reference signal is removed.

The circuit of one type of active product detector is shown in Fig. 2. The principle of operation is essentially that of a mixer — the output from the i.f. amplifier chain is coupled to the a.f. amplifier via C5 and the difference products — the difference signal being the wanted audio, which is coupled to the a.f. amplifier via C5 and the gain control R3. The unwanted sum product and the reference signal are prevented from entering the audio amplifier by the r.f. choke and by-pass capacitors C3/C4 — by choosing suitable values for these capacitors, unwanted high frequency components in the audio signal can also be attenuated.

The circuit of a passive detector which uses two closely-matched, high-speed, switching diodes is shown in Fig. 3. The reference signal is applied to a centre tap and difference products — the difference signal being the wanted audio, which is coupled to the a.f. amplifier via C5 and the gain control R3. The unwanted sum product and the reference signal are prevented from entering the audio amplifier by the r.f. choke and by-pass capacitors C3/C4 — by choosing suitable values for these capacitors, unwanted high frequency components in the audio signal can also be attenuated.

Subscriptions

Subscriptions are available at £17 per annum to UK addresses and £19.00 overseas by Accelerated Surface Post outside Europe. For further details see the announcement on page 20 of this issue. Airmail rates for overseas subscriptions can be quoted on request. Joint subscriptions to both Short Wave Magazine and Practical Wireless are available at £27.00 (UK) and £30.00 (overseas). Three year subscriptions are also available for SWM at £45.00 (UK), £50.00 (overseas).

Components for SWM Projects

In general all components used in constructing SWM projects are available from a variety of component suppliers.
DATONG ELECTRONICS LIMITED

For products you can rely upon to give amazing results

For information on Active Antennas, RF Amplifiers, Converters, Audio Filters, the Morse Tutor and Speech Processors send or telephone for a free catalogue and selective data sheets as required. All our products are designed and made in Britain. Orders can be despatched within 48 hours subject to availability.

DATONG ELECTRONICS LTD
CLAYTON WOOD CLOSE, WEST PARK, LEEDS LS16 6QE. TEL: 0532 744822

RADIO AMATEURS EXAM?
PASS FIRST TIME!

Before you enrol check the benefits of RRC'S unique Home Tuition Service

RRC has helped thousands of students to success in their examinations with this unique system of postal tuition, one which guides you, step-by-step, to qualify in the shortest possible time. Only The Rapid Results College offers you all these advantages:

- A qualified personal tutor
- Study material prepared by specialists
- Complimentary self-contained courses
- Handy pocket-sized booklets
- Personal study programme
- Regular marked tests
- 48 hour despatch
- Free advice before you enrol
- Telephone Helpline
- Free 'How to Study' Guide
- Installment Plan
- Free Postage on course material
- Worldwide Airmail Service
- Extra tuition free if you don't pass first time

POST COUPON TODAY FOR FREE RADIO AMATEURS PROSPECTUS
Please send me my prospectus as quickly as possible.

Mr/Mrs/Miss/Ms
Address

RRC
The Rapid Results College

Just Published!

The fifth and latest edition of this very popular publication has just been published. Essential reading for anybody who listens or operates on the short-wave band. Packed with the latest information on frequencies and services. A mine of information that will tell you much about the fascinating part of the radio spectrum between 2 and 30MHz.

INCLUDES:
- Marine
- Aviation
- Weather
- Embassy
- RTTY
- FAX
- Military
- Broadcast
- Press
- Duplex splits
- Navigation

£6.95 plus £1 post

This frequency manual is now available at most good amateur radio dealers in this magazine and many specialist book shops. In case of difficulty it can be ordered direct from the publishers as below:

SPA PUBLISHING LTD
18-20, Main Road, Hockley, Essex.
VISA & ACCESS Tel 0702 206835

Short Wave Magazine September 1988
Earthing

This topic has cropped up again in your letters. The area is two angles to this subject, the first is safety and the second is improving the performance of the antenna in use.

In most houses the safety earth travels from every socket by various wires netting all over it, including the earth lead running up to the ground and wiring with thin wire is dangerous! A longer spike is just so much wasted effort - and if you don't do it properly the results can be spectacular.

Improvements to your earth won't make a difference, say, J. C. has read all the letters and previous hints may help. B. Dawson (Leeds) heard the chap using a Realistic DX302, used, with an a.t.u., a vertical antenna and a 7MHz dipole in the loft. There isn't a lot of space so have to work him with "new" country. B. Dawson heard him as part of a plea for a QSL! But there aren't that many amateurs operating from there. Perhaps Brian heard the chap at the OTHER end of the QSO saying JBBQ was a new country for him, as part of a plea for a QSL! It's hard to sort out what's in a QSO if the amateurs don't keep to procedure, i.e. the other stations callsign first, theirs last.

R. E. Webb (Ashford, Kent) has underlined TG9KM as his catch of the month; all the other continents are represented save Oceania, so maybe some early 1990's sign of returning interest.

The next three deadlines for your letters are:

September 20,
October 19 &
November 15
Readers Letters

My first letter comes from Henrik Bo Christensen who moved to the UK from Denmark about a year ago. Despite being comparatively new to RTTY, he has been very active and has written all his own software for his Amstrad 464. His first receiver was the trusty Matsui 4001 but this has since been replaced by a Yaesu FRG-7700 which he is very pleased with. His home-brew software has been written in compiled Pascal and is the Epson FX-80 printer. Apart from his two antenna systems, Henrik has even built a homebrew receiver which is of the filter type and sounds very interesting.

Another reader who sent me details of their station is Allan Santos G4PMJ. He uses an AEA PK-222, the BBC B, an FRG-7, an IC-730 for his amateur work and the Epson FX-80 printer. Apart from his two antenna systems, Allan has his own studio which is the filter type and sounds very interesting.

A new antenna system in use comprises a 16m dipole feeding into a Yaesu FRT-7700 s.a.t.u. Henrik has kindly offered to give me a full description of his station and software which should prove interesting.

For those of you who have not heard of Henrik's software, it is the MM2001 RTTY decoder in past months. I have had several enquiries as to what it does, how much it costs, where you can buy one, etc. So, whilst at the RSGB Exhibition at the NEC in July, I approached the manufacturers of the software to find out the current pricing. The manufacturers have stopped production and only have a few units left. They would consider producing the unit again, if the production run was great enough.

I have been offered a unit for review which could prove interesting, so watch this space for more details.

There is obviously a fair degree of "trumpet blowing", but this is only expected to be a free publication.

The MM2001

Having mentioned the MM2001 RTTY decoder in past months. I have had several enquiries as to what it does, how much it costs, where you can buy one, etc. So, whilst at the RSGB Exhibition at the NEC in July, I approached the manufacturers to find out the current pricing. The manufacturers have stopped production and only have a few units left. They would consider producing the unit again, if the production run was great enough.

I have been offered a unit for review which could prove interesting, so watch this space for more details.

For those of you who have not heard of this unit, it's a stand-alone device which accepts an audio input from your receiver, decodes any RTTY signals within its capabilities and displays the output on a standard TV. This sort of unit is ideal for anyone who is interested in RTTY but doesn't want to get involved with computers. The modes catered for are RTTY 45.5, 50, 75 and 100 baud; ASCII 110, 300, 600 and 1200 baud, with high or low tones.

One of the charts this month was supplied by Allan. It was received at 1111UTC on July 17, the frequency being 14.414G9MHz. Unfortunately, Allan's not sure who it was transmitted, so any ideas anyone?

Now to a plea for help. Terence Driscoll VK6PQ is looking for AMTOR software for the Amstrad 464. He's got both RTTY and Morse, so anyone out there using an Amstrad 464 for AMTOR? If so, I'd like to hear about the software so I can help Terence.

Help for Newcomers

Ian Brothwell, the Secretary and Publicity Officer for BARTG, has recently sent me a copy of a new booklet called Amateur Radio Data Communicators: Beginners Frequency. The object of the publication is to provide some basic information for newcomers to the data modes. Although it is intended mainly for the radio amateur, there is a lot of information for all those interested in the data modes. It starts with a brief description of TOR, Packets and FAX. The next section gives some background behind the actual operating techniques in use today.

There is obviously a fair degree of "trumpet blowing", but this is only expected to be a free publication.

The MM2001

Having mentioned the MM2001 RTTY decoder in past months. I have had several enquiries as to what it does, how much it costs, where you can buy one, etc. So, whilst at the RSGB Exhibition at the NEC in July, I approached the manufacturers to find out the current pricing. The manufacturers have stopped production and only have a few units left. They would consider producing the unit again, if the production run was great enough.

I have been offered a unit for review which could prove interesting, so watch this space for more details.

For those of you who have not heard of this unit, it's a stand-alone device which accepts an audio input from your receiver, decodes any RTTY signals within its capabilities and displays the output on a standard TV. This sort of unit is ideal for anyone who is interested in RTTY but doesn't want to get involved with computers. The modes catered for are RTTY 45.5, 50, 75 and 100 baud; ASCII 110, 300, 600 and 1200 baud, with high or low tones.

One of the charts this month was supplied by Allan. It was received at 1111UTC on July 17, the frequency being 14.414G9MHz. Unfortunately, Allan's not sure who it was transmitted, so any ideas anyone?

Now to a plea for help. Terence Driscoll VK6PQ is looking for AMTOR software for the Amstrad 464. He's got both RTTY and Morse, so anyone out there using an Amstrad 464 for AMTOR? If so, I'd like to hear about the software so I can help Terence.

Help for Newcomers

Ian Brothwell, the Secretary and Publicity Officer for BARTG, has recently sent me a copy of a new booklet called Amateur Radio Data Communicators: Beginners Frequency. The object of the publication is to provide some basic information for newcomers to the data modes. Although it is intended mainly for the radio amateur, there is a lot of information for all those interested in the data modes. It starts with a brief description of TOR, Packets and FAX. The next section gives some background behind the actual operating techniques in use today.

There is obviously a fair degree of "trumpet blowing", but this is only expected to be a free publication.

The MM2001

Having mentioned the MM2001 RTTY decoder in past months. I have had several enquiries as to what it does, how much it costs, where you can buy one, etc. So, whilst at the RSGB Exhibition at the NEC in July, I approached the manufacturers to find out the current pricing. The manufacturers have stopped production and only have a few units left. They would consider producing the unit again, if the production run was great enough.

I have been offered a unit for review which could prove interesting, so watch this space for more details.

For those of you who have not heard of this unit, it's a stand-alone device which accepts an audio input from your receiver, decodes any RTTY signals within its capabilities and displays the output on a standard TV. This sort of unit is ideal for anyone who is interested in RTTY but doesn't want to get involved with computers. The modes catered for are RTTY 45.5, 50, 75 and 100 baud; ASCII 110, 300, 600 and 1200 baud, with high or low tones.

One of the charts this month was supplied by Allan. It was received at 1111UTC on July 17, the frequency being 14.414G9MHz. Unfortunately, Allan's not sure who it was transmitted, so any ideas anyone?

Now to a plea for help. Terence Driscoll VK6PQ is looking for AMTOR software for the Amstrad 464. He's got both RTTY and Morse, so anyone out there using an Amstrad 464 for AMTOR? If so, I'd like to hear about the software so I can help Terence.

Help for Newcomers

Ian Brothwell, the Secretary and Publicity Officer for BARTG, has recently sent me a copy of a new booklet called Amateur Radio Data Communicators: Beginners Frequency. The object of the publication is to provide some basic information for newcomers to the data modes. Although it is intended mainly for the radio amateur, there is a lot of information for all those interested in the data modes. It starts with a brief description of TOR, Packets and FAX. The next section gives some background behind the actual operating techniques in use today.

There is obviously a fair degree of "trumpet blowing", but this is only expected to be a free publication.

The MM2001

Having mentioned the MM2001 RTTY decoder in past months. I have had several enquiries as to what it does, how much it costs, where you can buy one, etc. So, whilst at the RSGB Exhibition at the NEC in July, I approached the manufacturers to find out the current pricing. The manufacturers have stopped production and only have a few units left. They would consider producing the unit again, if the production run was great enough.

I have been offered a unit for review which could prove interesting, so watch this space for more details.

For those of you who have not heard of this unit, it's a stand-alone device which accepts an audio input from your receiver, decodes any RTTY signals within its capabilities and displays the output on a standard TV. This sort of unit is ideal for anyone who is interested in RTTY but doesn't want to get involved with computers. The modes catered for are RTTY 45.5, 50, 75 and 100 baud; ASCII 110, 300, 600 and 1200 baud, with high or low tones.

One of the charts this month was supplied by Allan. It was received at 1111UTC on July 17, the frequency being 14.414G9MHz. Unfortunately, Allan's not sure who it was transmitted, so any ideas anyone?

Now to a plea for help. Terence Driscoll VK6PQ is looking for AMTOR software for the Amstrad 464. He's got both RTTY and Morse, so anyone out there using an Amstrad 464 for AMTOR? If so, I'd like to hear about the software so I can help Terence.

Help for Newcomers

Ian Brothwell, the Secretary and Publicity Officer for BARTG, has recently sent me a copy of a new booklet called Amateur Radio Data Communicators: Beginners Frequency. The object of the publication is to provide some basic information for newcomers to the data modes. Although it is intended mainly for the radio amateur, there is a lot of information for all those interested in the data modes. It starts with a brief description of TOR, Packets and FAX. The next section gives some background behind the actual operating techniques in use today.
Before attempting to actually receive this station you must have the code for it and the software that is needed. This software can be downloaded from the website of the American Spacelab Program. The software is written in C++ and is available for Windows and Linux.

The satellite is in geostationary orbit at 75 degrees west and is permanently visible from the UK. The satellite can be tracked using the website www.astronomy.com.

The satellite is used for telecommunications and provides voice, data, and video services to the UK and other countries in the UK's region.

The satellite is also used for scientific research and is equipped with a number of instruments for studying the Earth's atmosphere and the ionosphere.

The satellite is managed by the UK Space Agency and is operated by the European Space Agency.

The satellite is scheduled to be in service until 2023 and will then be decommissioned.

The satellite is a part of the GOES constellation and is one of the GOES-East satellites. The GOES constellation consists of four satellites that circle the Earth in an orbit that is approximately 24 hours long. The GOES satellites are used to provide weather and environmental data to support decision-making and planning in the UK and other regions.

The GOES constellation is managed by the United States National Oceanic and Atmospheric Administration (NOAA) and is operated by the National Environmental Satellite, Data, and Information Service (NESDIS).
strong, Chris recommends a preamplifier at the dish, and suggests that as the source is close to the horizon, an elevated dish with a clear line of sight for a few hundred metres is required. Despite the fact that his dish is but 2m high, and a local church tower is in the path, he still gets good results! Despite the fact that for some obscure reason the signals are never at their best in the mornings, Chris is highly delighted with this setup. He finds that they send a considerable quantity of meteorological maps via the satellite, similar to those transmitted on FAX, but the photo-mosaics assembled from NOAA-9 and 10 passes more than compensate. Copies of the GEOS-E dissemination schedule are available from Weatherwatch at Rae Lasham, in return for a large self-addressed stamped envelope. "For anyone interested in the weather in the Staries or the Pacific," says Chris, "turn the dish, or, as I did, invest in a second dish and converter". Chris is always keen to exchange information, and kindly offers to demonstrate his system, all set up in a Portakabin in his back garden, to any enthusiast who comes his way, at 128 St Andrew Road, Redhill, Surrey, RH1 6TA. Telephone: (0895) 446096.

Since Harrys of Plymouth reports to our column again, with the news that he too has been getting good pictures from GEOS-E, which he receives at 4 degrees elevation. He finds that if he rotates his dipole from the horizontal used for Meteosat to nearly vertical, he has an excellent signal. Pictures of North and South America have been observed in visible and infra-red, plus pictures from three other satellites, i.e. NOAA-9, NOAA-10 and GEOS-W. These include store and forward pictures of polar regions and the tropics, also in visible and infra-red, which has enabled Lawrence to perform some interesting scientific research projects on the measurements of changes in the polar regions, an important subject with the threat imposed by the melting ice-caps to our future.

Lawrence has been busy monitoring the entire spectrum of satellite transmissions, and had discovered further developments since his last treatise. Both MET 2/16 and 2/17 have now started to demonstrate the aperture sticking problems evidenced by all the earlier Meteosat. He says, "It suprises me that the Russians have high ground, (1015mb). So, at each stop on low and was slightly antenna. was using mountains, David Glenday (Arbroath) glen and although surrounded by While on holiday in an Aberdeenshire future. imposed by the melting ice-caps to our research projects on the measurements perform some interesting pictures of both polar regions and the NOAA-9, NOAA-10 and GEOS-W. These include store and forward visible and infra-red, plus NOAA-9, NOAA-10 and GEOS-W. These include store and forward pictures of both polar regions and the tropics, also in visible and infra-red, which has enabled Lawrence to perform some interesting scientific research projects on the measurements of changes in the polar regions, an important subject with the threat imposed by the melting ice-caps to our future.

Lawrence has been busy monitoring the entire spectrum of satellite transmissions, and had discovered further developments since his last treatise. Both MET 2/16 and 2/17 have now started to demonstrate the aperture sticking problems evidenced by all the earlier Meteosat. He says, "It suprises me that the Russians have high ground, (1015mb). So, at each stop on low and was slightly antenna. was using mountains, David Glenday (Arbroath) glen and although surrounded by While on holiday in an Aberdeenshire future. imposed by the melting ice-caps to our research projects on the measurements perform some interesting pictures of both polar regions and the NOAA-9, NOAA-10 and GEOS-W. These include store and forward pictures of both polar regions and the tropics, also in visible and infra-red, which has enabled Lawrence to perform some interesting scientific research projects on the measurements of changes in the polar regions, an important subject with the threat imposed by the melting ice-caps to our future.

Lawrence has been busy monitoring the entire spectrum of satellite transmissions, and had discovered further developments since his last treatise. Both MET 2/16 and 2/17 have now started to demonstrate the aperture sticking problems evidenced by all the earlier Meteosat. He says, "It suprises me that the Russians have high ground, (1015mb). So, at each stop on low and was slightly antenna. was using mountains, David Glenday (Arbroath) glen and although surrounded by While on holiday in an Aberdeenshire future. imposed by the melting ice-caps to our research projects on the measurements perform some interesting pictures of both polar regions and the NOAA-9, NOAA-10 and GEOS-W. These include store and forward pictures of both polar regions and the tropics, also in visible and infra-red, which has enabled Lawrence to perform some interesting scientific research projects on the measurements of changes in the polar regions, an important subject with the threat imposed by the melting ice-caps to our future.

Lawrence has been busy monitoring the entire spectrum of satellite transmissions, and had discovered further developments since his last treatise. Both MET 2/16 and 2/17 have now started to demonstrate the aperture sticking problems evidenced by all the earlier Meteosat. He says, "It suprises me that the Russians have high ground, (1015mb). So, at each stop on low and was slightly antenna. was using mountains, David Glenday (Arbroath) glen and although surrounded by While on holiday in an Aberdeenshire future. imposed by the melting ice-caps to our research projects on the measurements perform some interesting pictures of both polar regions and the NOAA-9, NOAA-10 and GEOS-W. These include store and forward pictures of both polar regions and the tropics, also in visible and infra-red, which has enabled Lawrence to perform some interesting scientific research projects on the measurements of changes in the polar regions, an important subject with the threat imposed by the melting ice-caps to our future.

Lawrence has been busy monitoring the entire spectrum of satellite transmissions, and had discovered further developments since his last treatise. Both MET 2/16 and 2/17 have now started to demonstrate the aperture sticking problems evidenced by all the earlier Meteosat. He says, "It suprises me that the Russians have high ground, (1015mb). So, at each stop on low and was slightly antenna. was using mountains, David Glenday (Arbroath) glen and although surrounded by While on holiday in an Aberdeenshire future. imposed by the melting ice-caps to our research projects on the measurements perform some interesting pictures of both polar regions and the NOAA-9, NOAA-10 and GEOS-W. These include store and forward pictures of both polar regions and the tropics, also in visible and infra-red, which has enabled Lawrence to perform some interesting scientific research projects on the measurements of changes in the polar regions, an important subject with the threat imposed by the melting ice-caps to our future.

Lawrence has been busy monitoring the entire spectrum of satellite transmissions, and had discovered further developments since his last treatise. Both MET 2/16 and 2/17 have now started to demonstrate the aperture sticking problems evidenced by all the earlier Meteosat. He says, "It suprises me that the Russians have high ground, (1015mb). So, at each stop on low and was slightly antenna. was using mountains, David Glenday (Arbroath) glen and although surrounded by While on holiday in an Aberdeenshire future. imposed by the melting ice-caps to our research projects on the measurements perform some interesting pictures of both polar regions and the NOAA-9, NOAA-10 and GEOS-W. These include store and forward pictures of both polar regions and the tropics, also in visible and infra-red, which has enabled Lawrence to perform some interesting scientific research projects on the measurements of changes in the polar regions, an important subject with the threat imposed by the melting ice-caps to our future.

Lawrence has been busy monitoring the entire spectrum of satellite transmissions, and had discovered further developments since his last treatise. Both MET 2/16 and 2/17 have now started to demonstrate the aperture sticking problems evidenced by all the earlier Meteosat. He says, "It suprises me that the Russians have high ground, (1015mb). So, at each stop on low and was slightly antenna. was using mountains, David Glenday (Arbroath) glen and although surrounded by While on holiday in an Aberdeenshire future. imposed by the melting ice-caps to our research projects on the measurements perform some interesting pictures of both polar regions and the NOAA-9, NOAA-10 and GEOS-W. These include store and forward pictures of both polar regions and the tropics, also in visible and infra-red, which has enabled Lawrence to perform some interesting scientific research projects on the measurements of changes in the polar regions, an important subject with the threat imposed by the melting ice-caps to our future.
Reports

The high atmospheric pressure (1027mb) was falling, giving improved tropospheric conditions. This, accompanied by Sporadic-E during the evening of June 27 was good news for Ken Lumsden in Rotherham. Between 1900 and 2000 Ken made 3 scans of Band II and found 40 foreign stations. Most of the stations were very strong and languages included Belgian, Dutch, French, German, Italian and Spanish, said Ken.

The barometric pressure was high around 1020mb for almost two weeks, although it fluctuated a little, but not below 1018mb and not above 1027mb. It has also been very dry here and at times the fog rolled in from the sea, usually at night and enhancing v.h.f. reception", wrote David Edmondson (Wallsend) on July 2.

Between 1700 and 1900 on June 10, David, using a Toshiba RPT11-L with its own rod antenna, logged Dutch and German stations above 59MHz. He also heard football and popular music from Holland at the lower end of the band in parallel with m.w. transmissions on 747 and 675kHz respectively. This is a good way of identifying stations.

During the evening of the 13th, fog rolled in after a hot and very clear day, David heard BBC Radio Leeds on 92.4MHz at a distance of 160km in addition to 10, mainly German stations above 58MHz. Among those he identified were DLF in Koln and Hessischer Rundfunk. He pointed out that night-time stations are difficult to identify because in West Germany, local and various networks amalgamate.

John Parry (Northwich) logged a number of Spanish stations in Band II during the Sporadic-E opening at 2030 on July 5. He also heard the AFR7S, with an American lady announcer, from Madrid.

David Glenday received French, German and Italian signals, in stereo, between 93 and 105MHz around 1730 on July 10. He heard about 10 Italian stations between 87 and 102MHz at 0930 on the 12th.

While the band was under the influence of Sporadic-E toward the end of June, Simon Hamer (New Radnor) received Programmes 1 and 2 from Iceland (RUV) and Norway (NRK) on the 25th; various Scandinavian channels on the 27th and Austria, Czechoslovakia, West Germany including ADFN, Hungary (Radio Danubus) and Italy on the 28th. During much improved tropospheric conditions he also heard BBC Radio Guernsey and Jersey, ILRs Clyde and Metro, some West Germans including BFBS, Maxx Radio and RTE-FM 1/2/3/4. Cork local radio and RTE - Millenium 88 on June 16 and stations in Belgium, France, Holland and Luxemburg on July 9.

The next three deadlines are:
September 20,
October 19 and
November 15.

SEEN & HEARD

Ron Ham
Faraday, Greyfriars, Storrington, West Sussex RH20 4HE

Television networks throughout the world transmit their terrestrial signals on shared channels within the v.h.f. and u.h.f. regions of the radio frequency spectrum. These regions are generally known, with some international frequency variations, as Band I (46-96MHz), Band II (145-68MHz), Band III (175-230MHz), Band IV (471-608MHz) and Band V (615-855MHz). New readers sometimes find all this confusing so, as a working example, I have prepared a chart, Fig. 1, which covers the main part of Band I and a little of Band II.

This is a chart I can be a DXer’s dream during the annual Sporadic-E season (May–September), when pictures from a variety of stations in the countries listed are often received in the UK. The relationship between the colour of the station, its country of origin, and the shared vision and sound frequencies are shown at the top and bottom of the chart. Details of individual stations can be found in the television section of the World Radio TV Handbook.

Band I

During the variety of Sporadic-E openings which occurred between May 24 and July 10, Mike Bennett (Slough) received test-cards and/or programmes from stations in Austria (ORF-FS1); Belgium (BFR1); Czechoslovakia (CS-Bratislava, ODK-2 and RS-KH); Denmark (DR); Finland (YLE-TV1); East Germany (DDR); West Germany (ARD); Hungary (MTV-1 Budapest); Iceland (RUV-Iceland; Italy (RAI); Norway (NRK-2); Portugal (RTP-1); Poland (TVP-1); Portugal (ITV-1) and the USSR (JRT-1). Among these openings were sporting events from Czechoslovakia; UVTISET (news) from Finland; an Alfred Hitchcock film from Spain; Ch. E3, from an unidentified source on July 8. While some of these openings were in progress, Stevenham Newquay (Newquay) added Czechoslovakia, Germany, Holland, Iceland, Norway, Portugal, Spain, Sweden and Switzerland to his DXTV countries score.

Band II

During the variety of Sporadic-E openings which occurred between May 24 and July 10, Mike Bennett (Slough) received test-cards and/or programmes from stations in Austria (ORF-FS1); Belgium (BFR1); Czechoslovakia (CS-Bratislava, ODK-2 and RS-KH); Denmark (DR); Finland (YLE-TV1); East Germany (DDR); West Germany (ARD); Hungary (MTV-1 Budapest); Iceland (RUV-Iceland; Italy (RAI); Norwegian regions (Bagen, Bremergan, Gamlen, Gunie, Hennig, Kongsberg, Melhus and Steigen); Poland (TVP-1); Portugal (RTP-1); Portugal (TVE); Sweden (Kanal-1 Sweden); Switzerland (PTT-SHG1); the USSR and Yugoslavia (JRT-BGDR, TVE-1 and RTU-LJNA). He also reports seeing a new style clock, square in shape with hands only, from Spain on July 8.

“Conditions have been super this last month”, remarked Dave Coggins (Knutsford) on June 18. This was after seeing cartoons from Czechoslovakia on June 5; test cards from Denmark, Finland, Norway, Portugal and Sweden on June 4 and 9; games from Spain on days 16 and 17.

On the 17th, Maurice Peall (High Wycombe) watched a football match between England and the USSR on June 24; test cards from Portugal (RTP) on July 7 to his new country score, and received pages of Teletext from Italy (RAI) on July 9 and 12. “Reception good all day (June 24) with test-cards from USSR, Finland (YLE TV1) and Czechoslovakia (RS-KH), etc.”, said Maurice.

On the 25th, Simon Hamer (New Radnor) logged pictures from Iceland, North America (525-line, Chs. A2/3/4); Scandinavia and the USSR. During the 12 events between June 18 and July 14, he logged 19 countries and saw Wembley tennis from Czechoslovakia; UVVTSET (news) from Finland; an Alfred Hitchcock film from Spain on June 27 and Arabic script, on Ch. E3, from an unidentified source on July 8.

While some of these openings were in progress, Stephenham Newquay (Newquay) added Czechoslovakia, Germany, Holland, Iceland, Norway, Portugal, Spain, Sweden and Switzerland to his DXTV countries score.

In Belper, husband and wife team Tony and Edwina Mancini logged 14 countries and saw adverts from Germany, Hungary and Spain; cartoons from Czechoslovakia, Hungary, Italy and Portugal; dancing from the USSR; a variety of films from Italy, Norway (NRK-2), Portugal, Spain and Sweden; music from Austria; news from Germany (Tagesschau, TGLI); Portugal, Spain (TVE-1) and the USSR (BPEMH and HOBCONT); and various sporting events from Czechoslovakia (CST-1), Germany, Spain (TVE-2); the USSR and Yugoslavia (JRT-1). Among the identities seen were Germany’s ARD-1 Grunten, SWF/BADN and RBG; Italy’s
RAI Televideo; Portugal’s RTP-1 Porto; Spain’s TVE-1 Pola Manana and Telediario and Switzerland’s (+PTT-SRG-1) KEDD followed by a programme schedule. While on high ground in Derbyshire the Mancinis tried their Philips portable with a roof-rack dipole and logged signals from Portugal and Spain.

A tune around for me with a D-100 converter into a Panasonic VCR at 1435 on June 21 and 0840 and 1230 on the 24th revealed test cards from Austria, Czechoslovakia, Finland in colour, Norway, Poland and the USSR. Pictures and sound on Ch. R3 were received at 1706 on June 24 and around 1800 on the 27th. I use an ex-military R216 v.h.f communications receiver in conjunction with the television sets to find the sound channels which are several megahertz away from the vision frequency.

Readers photographs of DXTV pictures are always welcome and this time the test cards from Austria and Czechoslovakia and the Hungarian presenter, Figs. 1, 2 and 3 came from David Glenday (Arbroath). The test card from Poland and the announcer from Romania, Figs. 5 and 6, were received by Noel Smythe in Caerphilly. The programme from Spain, Fig. 7, was recorded in July 1986 by the late Len Eastman in Bristol and, Fig. 8, the familiar Russian news presenter with TACC caption, came from the archives of Bob Brooks.

When Sporadic-E is about, Band I pictures from the USSR like Figs. 9 and 10, are often seen in Meerut, India, by Lt. Col. Rana Roy.

While on holiday in an Aberdeenshire glen surrounded by mountains, David Glenday, used his Yoko F6 receiver and set top antenna. He logged pictures from Germany on Chs. E2 and 3 during the Sporadic-E opening on June 28. From the home station he saw test cards from Czechoslovakia and the USSR for predominance on the 24th, news, weather and the “TD” logo from Spain on July 7; logo and clock captions from both Germany and Hungary; programmes from Czechoslovakia and the USSR (TSS – Televizione Sovietskovo Soyuz) on the 8th; test card and news from both Switzerland and Spain on the 9th; sport, film and news from Germany, Spain and the USSR respectively on the 10th and a wildlife feature and test cards from Italy and the USSR on the 12th.

In Great Sutton, Bob Brooks identified signals from 15 countries and logged the captions “Hello Vienna” from Austria, ”Monitor” from Poland and “Austrias” and “Castilla la Mancha” from Spain. He also saw Videotext from Italy and the idents with clocks from Hungary (MTV-Budapest), Poland (ITVP with Eagle logo), Romania (TVR Bucuresti) and the USSR. Bob noted that the TVP, TVR and TSS clocks were showing 1, 2 and 3 hours respectively ahead of our time.

Sporadic-E ebbed and flowed in the early mornings of July 12 and 13, when I received test cards from Sweden (Ch. E2) and the USSR (Ch. R2) on the 12th and Norge Melhus (Ch. E2) and Henners (Ch. E3) on the 13th. I also saw test cards from the USSR on Chs. R1/2 and programmes on Ch. R3 around 0900 on July 20 and 21. While using my Pustion, with its rod antenna, in Bodiam Castle car park between 1400 and 1530 on the 20th, I found rapidly fluctuating pictures on Chs. R1 and 2 and a strong westem film around Ch. E3.

"RAI has been dominating the screen this year", remarked Owen Jones (Blurton) having frequently logged their captions, clocks, programmes and test cards. Owen also received idents scribbled with Barcelona, Bratislava, Budapest, Magyar Televisio, Porto, TACC, Televerket, Televini Novini and
AERIAL TECHNIQUES

AR300XL ROTATOR

£39.95

FULLY AUTOMATIC AERIAL ROTATOR FROM AERIAL TECHNIQUES. The AR300XL is a new improved model which we have added to our range. The Rotor head unit has now been redesigned with a new streamlined casing and updated internal bearings for longer life. The smartly designed Centro Constel rotors rotate at a low and cool rate. One main domestic feature. The moving rotor on the console, gives an instant readout of the aerial beam heading, letting you know the aerial’s position at all times. The system is ideal for most short and domestic projects. The off set full height rotator accommodates ALL types of YAGI, TV and FM Aerials both large and small, with 272lbs / 123kg. Once installed, the head unit may be mounted on a mast with a size of up to 2” (5cm) in diameter – the installation mast is up to 15” (40cm) in diameter, it requires large bolts which can be supplied to allow a 2” stub mast to be fixed (please ask for details). For heavier load applications an Adjustable Support bearing may be used above the rotator up to 3 arrays may be employed. The head unit may be mounted on a mast with a size of up to 2” or 5cm. The installation mast is up to 15” or 40cm in diameter. If required, larger bolts can be supplied to allow a 2” stub mast to be fitted. For heavier load applications an Adjustable Support bearing may be used above the rotator up to 3 arrays may be employed. Please include SAE for further details. Also available for sale is the AR300XL Automatic Antenna Rotator and Control Console. The AR300XL is a new improved model which we have added to our range. The Rotor head unit has now been redesigned. with a more streamlined casing and updated internal bearings for longer life. The smartly designed Centro Constel rotors rotate at a low and cool rate. One main domestic feature. The moving rotor on the console, gives an instant readout of the aerial beam heading, letting you know the aerial’s position at all times. The system is ideal for most short and domestic projects. The off set full height rotator accommodates ALL types of YAGI, TV and FM Aerials both large and small, with 272lbs / 123kg. Once installed, the head unit may be mounted on a mast with a size of up to 2” or 5cm. The installation mast is up to 15” or 40cm in diameter. If required, larger bolts can be supplied to allow a 2” stub mast to be fitted. For heavier load applications an Adjustable Support bearing may be used above the rotator up to 3 arrays may be employed. Please include SAE for further details.

WORLD RADIO

TMRR7602

SPECIFICATIONS & FEATURES

- Full Shortwave/AM/FM 150-29999kHz
- No Gap! - FM 87.5 - 108MHz Mono/Stereo
- Five Tuning Functions: Direct Press Button Frequency Input
- Auto Scanning, Manual Scanning
- Memory Recall and Manual Tuning Knob
- Built-in Clock and Alarm
- Radio Turns on Automatically at preset time & Frequency.
- Large digital frequency display.
- Fourteen Memories - Nine Memory Channels For Your Favourite Station Frequencies.
- Last Setting of Mode & Waveband Stored in 5 Memories.
- Direct Press-Sutton Access to All 12 Shortwave Broadcast Bands.
- Two Power Sources - Battery or AC Mains Adaptor
- General Coverage of all AM Bands in LW/MW/SW (Dedicated Broadcast Band Coverage on all Version/Plus of Course The FM Band for Quality Sound Broadcasts in Headphone Stereo).
- SLEEP Function Turns the Radio Off or On After an Adjustable Time of 10-90 Minutes.
- Separate BASS & TREBLE Controls for Maximum Listening Pleasure.
- External Antenna Jack for Better Reception.
- Adjustable RF Gain Control to Prevent Overloading When Listening Close to Other Strong Stations or If There is Interference.
- New improved wide/narrow filter 16/2.7kHz1
- Stations or If There is Interference.
- External Antenna Jack for Better Reception.
- Adjustable RF Gain Control to Prevent Overloading When Listening Close to Other Strong Stations or If There is Interference.
- New improved wide/narrow filter 16/2.7kHz1
- Stations or If There is Interference.
- External Antenna Jack for Better Reception.
- Adjustable RF Gain Control to Prevent Overloading When Listening Close to Other Strong Stations or If There is Interference.
- New improved wide/narrow filter 16/2.7kHz1
- Stations or If There is Interference.
- External Antenna Jack for Better Reception.
- Adjustable RF Gain Control to Prevent Overloading When Listening Close to Other Strong Stations or If There is Interference.
- New improved wide/narrow filter 16/2.7kHz1
- Stations or If There is Interference.
- External Antenna Jack for Better Reception.
- Adjustable RF Gain Control to Prevent Overloading When Listening Close to Other Strong Stations or If There is Interference.
- New improved wide/narrow filter 16/2.7kHz1
- Stations or If There is Interference.
- External Antenna Jack for Better Reception.
- Adjustable RF Gain Control to Prevent Overloading When Listening Close to Other Strong Stations or If There is Interference.
- New improved wide/narrow filter 16/2.7kHz1
- Stations or If There is Interference.
- External Antenna Jack for Better Reception.
Long Wave DX

Note: I.w. frequencies in kHz; Time in UTC (=GMT).

From time to time, listeners write and say that they find the I.w. band little interest (even boring) because the same stations can be heard day after day. This may well be the case if the band is chosen during daylight, because the signals arrive via ground wave paths and can be expected to be fairly constant. However, if the conditions of the contours of the ground, they lose energy or become attenuated due to the resistivity of the surface. This varies with the nature of the path and is one of the factors which determines whether or not a signal may be received at a particular location.

These signals are not consistent and the hours of darkness may be a problem since a particular location during daylight can be heard day after day.

The latest report from Jim Willetts includes the callsigns of some fourteen stations in Canada and the USA. Their signals have been reaching Grimsby at some time between 0100 and 0430.

The broadcasts from a further seven stations in Australia: 6WF in Perth 720 (0.5kW) rated 33443; 6IL in Melbourne 750 (1kW) rated 34333. He was especially pleased to hear Deutsche Welle via Sri Lanka 1548 at 2332, as he has only heard their broadcast once before.

Brian Oddy G3FXE
Three Corners, Merryfield Way, Storrington, West Sussex RH20 4NS

Long MEDIUM & SHORT

Note: Entries marked * were logged during daylight.
All other entries were logged during daylight.

Valencia, which all adds up to a good bit of DXing.

Tropospheric

During a tropospheric opening, pictures from the Belgian French service RTBF-1, Fig. 11, West Germany's ARD, Fig. 12, and the Deutches Bundespost test card, Fig. 13, are often seen in the UK in Bands III, IV and V. The photographs in Figs. 12 and 13 were received by Bob Brooks and David Gledney respectively.

As the atmospheric pressure ebbed and flowed throughout the month of July, 1984, the Mancunians received pictures in Band I1 from Belgium (ERTV-1 and RTBF-1-Wave Canal B), Denmark (DR) France (Canal 1 and 4); Germany (ARD-1 and -3 and NDR-1 and DFF-DRF-11); Holland (AVC HVS and PTT-NED-1) and Ireland (RTÉ 1 and 2 and RTÉ 2 Teletext).

Bob Brooks watched adverts from Canal 11 at 19h00 on July 7 and cartoons at 14h37 on the 9th. Simon Hamer logged Luxembourg (RTL) and West Germany (ARD) for the summer months. Brian France (TDF), East Germany (DFD-1/2) and Ireland (RTÉ 1/2) on the v.h.f. (Band III) and u.h.f. bands on June 15th (RTBF-1 and RTBF-11) and Luxembourg in Band III and France and Holland (NED-2/3) in the u.h.f. band on July 11.

Several of the BBC low power relays were logged by Jonathan Ascher in London between 1900 and 2000: Radio 4 via Newcastle 603 (2kW) rated as 2232; Radio 4 via Plymouth 774 (1kW) 3232; Radio 4 via Wolverhampton, Belguim 1512 (600kW) 55454 at 2100.

The broadcasts from Radio Prague on 1287 have also been attracting the attention of Leo Barr in Sunderland at 2213. He picked up Radio Moscow, USSR via Kaliningrad 1143 (150kW) and via Kaunas 1368 (1000kW) at 1217. Leo uses a Sprengener MBR-7 portable with its built-in rotatable antenna, but he is planning to build a "Sopper Loop" in the near future.

Several of the BBC medium power relays were logged by Jonathan Ascher in London between 1900 and 2000:

- Radio 4 via Newcastle 603 (2kW) rated as 2232; Radio 4 via Leeds 604 (500kW) 3233; Radio 4 via Plymouth 774 (1kW) 3232; Radio 4 via Wolverhampton, Belguim 1512 (600kW) 55454 at 2100.

The broadcasts from Radio Prague on 1287 have also been attracting the attention of Leo Barr in Sunderland at 2213. He picked up Radio Moscow, USSR via Kaliningrad 1143 (150kW) and via Kaunas 1368 (1000kW) at 1217. Leo uses a Sprengener MBR-7 portable with its built-in rotatable antenna, but he is planning to build a "Sopper Loop" in the near future.

Several of the BBC medium power relays were logged by Jonathan Ascher in London between 1900 and 2000: Radio 4 via Newcastle 603 (2kW) rated as 2232; Radio 4 via Leeds 604 (500kW) 3233; Radio 4 via Plymouth 774 (1kW) 3232; Radio 4 via Wolverhampton, Belguim 1512 (600kW) 55454 at 2100.

The broadcasts from Radio Prague on 1287 have also been attracting the attention of Leo Barr in Sunderland at 2213. He picked up Radio Moscow, USSR via Kaliningrad 1143 (150kW) and via Kaunas 1368 (1000kW) at 1217. Leo uses a Sprengener MBR-7 portable with its built-in rotatable antenna, but he is planning to build a "Sopper Loop" in the near future.

Several of the BBC medium power relays were logged by Jonathan Ascher in London between 1900 and 2000: Radio 4 via Newcastle 603 (2kW) rated as 2232; Radio 4 via Leeds 604 (500kW) 3233; Radio 4 via Plymouth 774 (1kW) 3232; Radio 4 via Wolverhampton, Belguim 1512 (600kW) 55454 at 2100.

The broadcasts from Radio Prague on 1287 have also been attracting the attention of Leo Barr in Sunderland at 2213. He picked up Radio Moscow, USSR via Kaliningrad 1143 (150kW) and via Kaunas 1368 (1000kW) at 1217. Leo uses a Sprengener MBR-7 portable with its built-in rotatable antenna, but he is planning to build a "Sopper Loop" in the near future.

Several of the BBC medium power relays were logged by Jonathan Ascher in London between 1900 and 2000: Radio 4 via Newcastle 603 (2kW) rated as 2232; Radio 4 via Leeds 604 (500kW) 3233; Radio 4 via Plymouth 774 (1kW) 3232; Radio 4 via Wolverhampton, Belguim 1512 (600kW) 55454 at 2100.

The broadcasts from Radio Prague on 1287 have also been attracting the attention of Leo Barr in Sunderland at 2213. He picked up Radio Moscow, USSR via Kaliningrad 1143 (150kW) and via Kaunas 1368 (1000kW) at 1217. Leo uses a Sprengener MBR-7 portable with its built-in rotatable antenna, but he is planning to build a "Sopper Loop" in the near future.
Wallasey, Merseyside 1107 was logged by Neil Wheatley during a visit to Lytham St Annes. The transmitter was about 38km away and the signal was 5555 at any time of the day or night. The clear sea path to the Isle of Man ensured good reception from Manx Radio via Foxdale 1368 (20kW) throughout the day.

Phil Townsend (London) heard Belgium’s BRT2 via Wavre 540 (150/50kW); RTBF1 via Wavre 621 (300kW); BRT2 via Kuurne 1188 (5kW) and BRT2/inter via Volwermont 1512 (600kW). From Holland: Hilversum 3 via Lelystad 675 (120kW); Hilversum 2 via Flevoland 747 (400kW) and Hilversum S via Flevoland 1008 (400kW), all during daylight. Phil also noted quite good reception during daylight from DLF via Bayreuth, W. Germany 549 (200kW); RTE-1 via Tullamore, S. Ireland 567 (500kW); France Inter via Lille, France 1071 (200kW) and the BBC World Service via Orfordness 1296 (500kW).

MW Local Radio DX

A Racial RA17 receiver and a random wire antenna enabled George Millmore to hear nineteen stations in Wootton, Isle of Wight. He says, “I have not heard Radio Solway since receiving it on May 26th — since then it has been obliterated by Paris (8kW). It is also interesting that Paris is obliterated at times by Madrid (200kW). Maybe the reception of Radio Solway was a one off occasion.”

Radio Solway was mentioned in the latest report from Tim Shirley. He logged their signal at 0830. Their transmissions from Copenhagen on 25.850 will be in Danish from 1200 to 1530 – their programmes will be in advance schedules for September in the 25MHz (11m) band just now, but generally there is a marked improvement in the propagation on the higher frequency bands.

There is no trace of broadcast activity in the 26MHz (11m) band just now, but advance schedules for September in the 25MHz band indicate that Radio Solway International intend to broadcast to listeners in Africa via Fredrikstad, Norway on 25.730 from 1200 until 1300. The programmes will be in Norwegian. The other good news is that Denmark will also be using this band to reach their listeners in S. Asia and Australia in September their transmission from Copenhagen on 25.850 will be in Danish from 1200 and 1250. Perhaps some of the other broadcasters will decide to join them.

Solar flares have disturbed the ionospheric disturbances which may result in fade outs lasting a few minutes, hours or even days. Solar flares have disturbed the broadcasters and DXers alike, since the sunspots are increasing at such a rate just now that some experts are of the opinion that the peak figure of this solar cycle will be an all time record.

That has to be good news for broadcasters and DXers alike, since reception conditions can be expected to improve dramatically too! Of course there may well be periods when bursts of solar activity (flares) cause sudden ionospheric disturbances which may result in fade outs lasting a few minutes, hours or even days. Solar flares have disturbed the ionospheric disturbances which may result in fade outs lasting a few minutes, hours or even days. Solar flares have disturbed the broadcasters and DXers alike, since reception conditions can be expected to improve dramatically too! Of course there may well be periods when bursts of solar activity (flares) cause sudden ionospheric disturbances which may result in fade outs lasting a few minutes, hours or even days. Solar flares have disturbed the ionospheric disturbances which may result in fade outs lasting a few minutes, hours or even days. Solar flares have disturbed the broadcasters and DXers alike, since reception conditions can be expected to improve dramatically too! Of course there may well be periods when bursts of solar activity (flares) cause sudden ionospheric disturbances which may result in fade outs lasting a few minutes, hours or even days. Solar flares have disturbed the ionospheric disturbances which may result in fade outs lasting a few minutes, hours or even days.

Short Wave DX

The sunspots are increasing at such a rate just now that some experts are of the opinion that the peak figure of this solar cycle will be an all time record. That has to be good news for broadcasters and DXers alike, since reception conditions can be expected to improve dramatically too! Of course there may well be periods when bursts of solar activity (flares) cause sudden ionospheric disturbances which may result in fade outs lasting a few minutes, hours or even days. Solar flares have disturbed the broadcasters and DXers alike, since reception conditions can be expected to improve dramatically too! Of course there may well be periods when bursts of solar activity (flares) cause sudden ionospheric disturbances which may result in fade outs lasting a few minutes, hours or even days. Solar flares have disturbed the broadcasters and DXers alike, since reception conditions can be expected to improve dramatically too! Of course there may well be periods when bursts of solar activity (flares) cause sudden ionospheric disturbances which may result in fade outs lasting a few minutes, hours or even days. Solar flares have disturbed the broadcasters and DXers alike, since reception conditions can be expected to improve dramatically too! Of course there may well be periods when bursts of solar activity (flares) cause sudden ionospheric disturbances which may result in fade outs lasting a few minutes, hours or even days. Solar flares have disturbed the broadcasters and DXers alike, since reception conditions can be expected to improve dramatically too! Of course there may well be periods when bursts of solar activity (flares) cause sudden ionospheric disturbances which may result in fade outs lasting a few minutes, hours or even days. Solar flares have disturbed the broadcasters and DXers alike, since reception conditions can be expected to improve dramatically too! Of course there may well be periods when bursts of solar activity (flares) cause sudden ionospheric disturbances which may result in fade outs lasting a few minutes, hours or even days. Solar flares have disturbed the broadcasters and DXers alike, since reception conditions can be expected to improve dramatically too! Of course there may well be periods when bursts of solar activity (flares) cause sudden ionospheric disturbances which may result in fade outs lasting a few minutes, hours or even days. Solar flares have disturbed the broadcasters and DXers alike, since reception conditions can be expected to improve dramatically too! Of course there may well be periods when bursts of solar activity (flares) cause sudden ionospheric disturbances which may result in fade outs lasting a few minutes, hours or even days. Solar flares have disturbed the broadcasters and DXers alike, since reception conditions can be expected to improve dramatically too! Of course there may well be periods when bursts of solar activity (flares) cause sudden ionospheric disturbances which may result in fade outs lasting a few minutes, hours or even days. Solar flares have disturbed the broadcasters and DXers alike, since reception conditions can be expected to improve dramatically too! Of course there may well be periods when bursts of solar activity (flares) cause sudden ionospheric disturbances which may result in fade outs lasting a few minutes, hours or even days. Solar flares have disturbed the broadcasters and DXers alike, since reception conditions can be expected to improve dramatically too! Of course there may well be periods when bursts of solar activity (flares) cause sudden ionospheric disturbances which may result in fade outs lasting a few minutes, hours or even days. Solar flares have disturbed the broadcasters and DXers alike, since reception conditions can be expected to improve dramatically too! Of course there may well be periods when bursts of solar activity (flares) cause sudden ionospheric disturbances which may result in fade outs lasting a few minutes, hours or even days. Solar flares have disturbed the broadcasters and DXers alike, since reception conditions can be expected to improve dramatically too! Of course there may well be periods when bursts of solar activity (flares) cause sudden ionospheric disturbances which may result in fade outs lasting a few minutes, hours or even days. Solar flares have disturbed the broadcasters and DXers alike, since reception conditions can be expected to improve dramatically too! Of course there may well be periods when bursts of solar activity (flares) cause sudden ionospheric disturbances which may result in fade outs lasting a few minutes, hours or even days. Solar flares have disturbed the broadcasters and DXers alike, since reception conditions can be expected to improve dramatically too! Of course there may well be periods when bursts of solar activity (flares) cause sudden ionospheric disturbances which may result in fade outs lasting a few minutes, hours or even days. Solar flares have disturbed the broadcasters and DXers alike, since reception conditions can be expected to improve dramatically too! Of course there may well be periods when bursts of solar activity (flares) cause sudden ionospheric disturbances which may result in fade outs lasting a few minutes, hours or even days. Solar flares have disturbed the broadcasters and DXers alike, since reception conditions can be expected to improve dramatically too! Of course there may well be periods when bursts of solar activity (flares) cause sudden ionospheric disturbances which may result in fade outs lasting a few minutes, hours or even days. Solar flares have disturbed the broadcasters and DXers alike, since reception conditions can be expected to improve dramatically too! Of course there may well be periods when bursts of solar activity (flares) cause sudden ionospheric disturbances which may result in fade outs lasting a few minutes, hours or even days. Solar flares have disturbed the broadcasters and DXers alike, since reception conditions can be expected to improve dramatically too! Of course there may well be periods when bursts of solar activity (flares) cause sudden ionospheric disturbances which may result in fade outs lasting a few minutes, hours or even days. Solar flares have disturbed the broadcasters and DXers alike, since reception conditions can be expected to improve dramatically too! Of course there may well be periods when bursts of solar activity (flares) cause sudden ionospheric disturbances which may result in fade outs lasting a few minutes, hours or even days. Solar flares have disturbed the broadcasters and DXers alike, since reception conditions can be expected to improve dramatically too! Of course there may well be periods when bursts of solar activity (flares) cause sudden ionospheric disturbances which may result in fade outs lasting a few minutes, hours or even days. Solar flares have disturbed the broadcasters and DXers alike, since reception conditions can be expected to improve dramatically too! Of course there may well be periods when bursts of solar activity (flares) cause sudden ionospheric disturbances which may result in fade outs lasting a few minutes, hours or even days. Solar flares have disturbed the broadcasters and DXers alike, since reception conditions can be expected to improve dramatically too! Of course there may well be periods when bursts of solar activity (flares) cause sudden ionospheric disturbances which may result in fade outs lasting a few minutes, hours or even days.
Portugal 21.680 (Ger to S. Asia, Australia) as 333, Kenneth Buck noted the BBC World Service transmission to E. Africa via Daventry, UK 21.470 as SIG 400 to N. and W. Africa via Rampisham, UK 21.710 as 55555 at 1400. At 1500, Tim Shirley picked up a broadcast in English to E. Africa from medium wave Radio RSA Johannesburg, S. Africa 21.535, noting their signal as SIG 454.

Later, David Griffith logged a broadcast in Radio Prague, Czechoslovakia 21.505 (Eng, Cz, Ar, to Africa) 33443 at 1540; Radio NHK Tokyo 21.500 (Eng, Sw, Fr to Africa) 55555 at 1540; WYFR via Okeechobee, Florida 21.253 (Eng, Fr, to Africa) 22222 at 0700 and 1400 by Andy Keddie; the Voice of America to E. Africa 17.850 (Eng 0100-0150) as SIO 433, George Hewlett; 15.320 (Eng, Fr to C. Africa) 22222 at 0352 by Ken Reece; 15.160 (Eng, Fr to C. Africa) 33222 at 0116Viking R.

Johannesburg, S. Africa 17.860 (Eng to Europe, W. Africa 1100-1200) as 454 at 0046 by David Wratten. This broadcast has been observed during darkness.

An interesting note was made by D, H, N: 0.25

Broadcasts which may be heard later in the evening include Radio RSA Johannesburg, S. Africa 17.755 (Eng to Europe 1400-1600) as SIO 33333 at 0040 by Sheila Hughes and 0046 by David Wratten. This broadcast has been observed during darkness.

Many more may be heard during the afternoon, including 15.160 (Eng, Ar, to E. Africa) 33222 at 1315 by Philip Ramspatt; Tanger, Morocco 17.815 (Eng, Fr to Middle East, N. Africa 1700-1800) noted as 433 at 1700 by Cyril Kellam in Sheffield.

During the evening Kenneth Buck logged VOA via Greenville, USA 17.500 (Eng to W. Africa 2000-2100) as 333 at 1800; RCI via Saskville, C. Canada 17.500 (Eng to S. Africa) 333 at 1800; and 17.820 (Eng, Fr to Africa 1800-2000) as 433 at 1900. Voice of Israel, Jerusalem 17.865 Heb, Russ, Eng, Fr to Europe (730-1955) as 444 at 1900; Radio Nederlands via Bonaire, Netherlands Antilles 17.865 (Eng, Dtl, Fr, to Africa 1830-2200) as 444 at 1915. Later, Radio HCJB, Quito, Ecuador 17.780 (Fr, Ger, Eng, Sp to Europe 1500-1600) as 22222 at 2130 by David Wratten; the Voice of Turkey, Ankara 17.760 (Eng, Tur to S. Africa) as 33444 at 2000 by Bob Barr; the Voice of Free China, Taipei via Okeechobee, Florida 17.845 as noted 54444 at 2230 by Bill Griffith.

KVOH Los Angeles, USA 17.775 (Eng to C. America 2030-0100) logged as 44333 at 0046 by David Wratten. This broadcast has been observed during darkness.

The broadcasts from Radio Australia have been attracting attention in Europe although they are beamed to other areas. At 0300, Tim Shirley heard one of their transmissions from Shepparton: 15.240 (Eng to S. Pacific 2100-0730). This broadcast has been particularly well received at 1900, and the dedicated DXer throughout the day and night in the 16MHz (19m) band. Broadcasts from several continents have been heard in the UK at remarkable signal strengths, but solar events (flares) have resulted in high noise levels and fading of signals. Many have been logged with limited reception due to time restrictions.

The following stations and frequencies were heard during the month:

- **Radio RSA**:
 - Johannesburg, S. Africa 17.860 (Eng to Europe, W. Africa) 1100-1200
 - Johannesburg, S. Africa 17.755 (Eng to Europe, W. Africa) 1400-1600
 - Johannesburg, S. Africa 17.865 (Eng to Europe, W. Africa) 1800-2000

- **Voice of America**
 - 15.160 (Eng, Ar to E. Africa)
 - 17.865 (Eng, Fr to Africa)
 - 17.820 (Eng, Fr to Africa)

- **Radio Nederlands**
 - 17.865 (Eng, Dtl, Fr, to Africa)
 - 17.760 (Eng, Tur to S. Africa)

- **Voice of Turkey**
 - 17.760 (Eng, Tur to S. Africa)

- **Radio Australia**
 - 15.240 (Eng to S. Pacific)
 - 17.775 (Eng to C. America)

- **BBC World Service**
 - 15.160 (Eng to W. Africa)
 - 15.500 (Eng to S. Africa)
 - 17.500 (Eng to Africa)
 - 17.820 (Eng, Fr to Africa)

Note: Entries marked * were logged during darkness. At other entries were logged during daylight.

Serendipitous disturbances have disrupted reception from time to time, but Fortunately these have been relatively shortlived and during most days very potent signals from several continents have been evident.

The 16m broadcasts from Radio Australia to Asia and the Pacific areas are being received well in Europe just now. Andy Keddie rated their broadcast to the Central Pacific and Western N. America via Sharpton 17.759 (Eng 2200-0631) as 22222 at 2200; David Wratten also logged it as 24333 at 0218. At 0335, David Edwardsen picked up their transmission to S. Asia via Carnarvon 17.715 (Eng 0010-0915) and noted it as 24432.

The latest report from George Hewlett includes their transmissions as follows: 17.750 via Darwin (Eng, Chin to E. Australia, C. Asia) 22222 as 433; 17.715 via Carnarvon as 433, they are being received as a great deal, but it can usually be heard until close down at 0910. Alan Curr noted 17.715 as 22222 at 0700 and Philip Ramspatt noted it as 322 at 0802.

The broadcasts to SE Asia from Radio Japan via Yamata, Japan 17.810 (Eng, Jap 0100-1100) have also been reaching the UK. Using a SONY 3C-1500, 30m wire aerial in a static position, Bill Griffith rated their signal in London as 22222 at 0935. Bill Griffith also logged a broadcast in Radio Prague, Czechoslovakia 21.505 (Eng, Cz, Ar, to Africa) 33444 at 1540; Radio NHK Tokyo 21.500 (Eng, Sw, Fr to Africa) 55555 at 1540; WYFR via Okeechobee, Florida 21.253 (Eng, Fr, to Africa) 22222 at 0700 and 1400 by Andy Keddie; the Voice of America to E. Africa 17.850 (Eng 0100-0150) as SIO 433, George Hewlett; 15.320 (Eng, Fr to C. Africa) 22222 at 0352 by Ken Reece; 15.160 (Eng, Fr to C. Africa) 33222 at 0116Viking R.

In Newcastle-on-Tyne, Glen Ginn-Davidson heard VOR via Carnarvon 17.759 (Sp to Middle East) 45444 at 1700. A broadcast to S. Africa via WSW, Kent 17.715 (Eng 0010-0915) as SIO 454.

Many more may be heard during the afternoon, including 15.160 (Eng, Ar, to E. Africa) 33222 at 1315 by Philip Ramspatt; Tanger, Morocco 17.815 (Eng, Fr to Middle East, N. Africa 1700-1800) noted as 433 at 1700 by Cyril Kellam in Sheffield.

During the evening Kenneth Buck logged VOA via Greenville, USA 17.500 (Eng to W. Africa 1600-2200) as 333 at 1800; RCI via Saskville, C. Canada 17.500 (Eng to S. Africa) 333 at 1800; and 17.820 (Eng, Fr to Africa 1800-2000) as 433 at 1900. Voice of Israel, Jerusalem 17.865 Heb, Russ, Eng, Fr to Europe (730-1955) as 444 at 1900; Radio Nederlands via Bonaire, Netherlands Antilles 17.865 (Eng, Dtl, Fr, to Africa 1830-2200) as 444 at 1915. Later, Radio HCJB, Quito, Ecuador 17.780 (Fr, Ger, Eng, Sp to Europe 1500-1600) as 22222 at 2130 by David Wratten; the Voice of Turkey, Ankara 17.760 (Eng, Tur to S. Africa) as 33444 at 2000 by Bob Barr; the Voice of Free China, Taipei via Okeechobee, Florida 17.845 as noted 54444 at 2230 by Bill Griffith.

KVOH Los Angeles, USA 17.775 (Eng to C. America 2030-0100) logged as 44333 at 0046 by David Wratten. This broadcast has been observed during darkness.

No further reports were received from Europe.
RNI via Fredrikstad, Norway 15.235 at 1008. Eng, Sp to Middle East 0900-1200 (25455 at 1200) and to USA 1400-1500 (4344 at 1500). In George, S. Africa, Dick Moon, logged Radio Damascus 15.270 (Eng to E. Asia 1400-1500) as 4344 at 1430. At 1200, George Markwick heard the Voice of Vietnam, Hanoi, 15.100 (Eng, Russ, Fr, Sp to Europe, Middle East 1500-2130) as SIO 444 at 1500.

During the afternoon, George Markwick (Thornaby) heard Radio Damascus 15.270 (Eng to E. Asia 1300-1530) as SIO 433 at 1300. At 1410, Christian Pritchard heard Radio Sweden, Stockholm, 15.300 (Sp to W. Europe, Africa No. 1) at 1420 and at 1500, Christian Pritchard heard the Voice of Vietnam, Hanoi, 15.100 (Eng, Russ, Fr, Sp to Europe, Middle East 1500-2130) as SIO 444 at 1500.

Away from ground, Christian Pritchard heard Radio Damascus 15.270 (Eng to E. Asia 1300-1530) as SIO 433 at 1300. At 1410, Christian Pritchard heard Radio Sweden, Stockholm, 15.300 (Sp to W. Europe, Africa No. 1) at 1420 and at 1500, Christian Pritchard heard the Voice of Vietnam, Hanoi, 15.100 (Eng, Russ, Fr, Sp to Europe, Middle East 1500-2130) as SIO 444 at 1500.

Away from ground, Christian Pritchard heard Radio Damascus 15.270 (Eng to E. Asia 1300-1530) as SIO 433 at 1300. At 1410, Christian Pritchard heard Radio Sweden, Stockholm, 15.300 (Sp to W. Europe, Africa No. 1) at 1420 and at 1500, Christian Pritchard heard the Voice of Vietnam, Hanoi, 15.100 (Eng, Russ, Fr, Sp to Europe, Middle East 1500-2130) as SIO 444 at 1500.
Sw. SW. Europe, S. America 2100-2200 as a remarkable 5555 at 2100. Kenneth Reece heard Radio Australia via Darwin 11.730 (Eng, Fr, to Australia 2100-2200 as 44444 at Australia via Darwin 11.730 (Eng, Fr, to Europe, Middle East 1800-2000 as 3333 at 1815; Claron Fitzsimons heard AIR via New Delhi, N. India 7.410 (Eng to Europe 1845-2230) 35433 at 1948; Sheila Hughes listened to IBRA Radio via Cyclops, Malta 7.110 (Pol, Ger, Eng to Europe 2000-2115) 44343 at 2045.

From time to time solar events have resulted in high noise levels in the 6MHz (49m) band, but the broadcasts from the high power stations in Europe and Scandinavia have been generally well received here. Broadcasts from more distant areas have also been heard: VOA via Greenville, USA 6.935 (Eng to Europe 0400-0700) 3333 at 0700 by Philip Rambaut; Radio Australia via Carnarvon, W. Australia 6.035 (Eng to S. Asia, Europe 1530-2300) 44343 at 1800 by Andy Keddie; King of Hope, S. England 6.280 (Fr, Eng to Middle East, S. Europe 1945-2200) 2332 at 2145 by David Watten. Putting his one valve to the ultimate test, Ron Pearce heard Radio Australia on 6.035 2234.

SEEN & HEARD

Station Addresses

REMINISCENCES

Ceramic valve and coil holders, as well as insulated posts, and terminals.

Second-hand chassis

My one-valve set was also changing for now it had its own chassis, second hand, and an output stage. An h.f. stage had been added, with separate tuning for both an h.f. detector, together with bandspreading and a small tuner in the antenna input stage. A variable resistance also replaced the former coil reaction tuner, giving greater control over volume.

Changing Valves

Valves, too, were changing. First a screened grid went into the h.f. stage, then changed to an h.f. pentode. And even the output stage boosted a QPP valve!
Theasby Electronics

Theasby Electronics can help your DX’ing
Preselector - cuts interference and amplifies signals - £20
Aerial Tuner - tunes aerial and reduces interference - £30
Crystal Calibrator - 1kHz to 1MHz output - £15
All ready built, 12 volt operated, send for free literature
THEASBY ELECTRONICS
31, MIDDLETON, COWLING, NORTH YORKSHIRE BD22 0DQ
Telephone: (0535) 36785

ELECTRONIC SERVICES
All Amateur radio and electronic equipment bought, sold or exchanged. Repairs and modifications a speciality.
Large stock of secondhand Amateur equipment constantly changing. Send S.A.E. for the latest lists.
Dennis Larcombe (G0JLA)
24 Pipit Close, Weymouth, Dorset DT3 5RT
Telephone: Weymouth (0305) 814196

PLEASE MENTION SHORT WAVE MAGAZINE WHEN REPLYING TO ADVERTISEMENTS

ADVERTISERS INDEX

Aerial Techniques 45
Aircastle Products 21
AJH Electronics 35
ARE Communications 13
BARTG Rally 21
Bredhurst 35
Colomor 51
Component Centre 17
Corrigan Radio 51
Datong 38
Dewsbury Electronics 31
Dressler Communications 14
Electronic Services 51
Elliott Electronics 45
ERA 35
Flightdeck 51
Garex Electronics 21
Hamgear 17
Icom (UK) Ltd Cover ii
Javiation 21
Johnsons Shortwave Radio 45
Klingenfuss Publications 53, 14
Lowe Electronics 8
Photo Acoustic 23
Practical Wireless 16
Rapid Results College 38
Rylands F. G. 21
SEM 35
South Midlands Communications Cover iv
Spa Publishing 38
Spacetech 38
Stephens James 13
Technical Software 14
Theasby 51
Uppington Tele-Radio (Bristol) 53
Ward, Reg & Co 17
Waters & Stanton Cover iii

SPECIAL NOTICE TO READERS

Although the proprietors and staff of SHORT WAVE MAGAZINE take reasonable precautions to protect the interests of readers by ensuring as far as practicable that advertisements in SHORT WAVE MAGAZINE are bona fide, the magazine and its Publishers cannot give any undertakings in respect of claims made by advertisers, whether these advertisements are printed as part of the magazine, or are in the form of inserts.

While the Publishers will give whatever assistance they can to readers having complaints, under no circumstances will the magazine accept liability for non-receipt of goods ordered, or for late delivery, or for faults in manufacture. Legal remedies are available in respect of some of these circumstances, and readers who have complaints should address them to the advertiser or should consult a local Trading Standards Office, or a Citizens Advice Bureau, or their own solicitor.
AOR AR800E
Hand-held Scanner

- **Coverage**: 75-105, 118-136, 140-174, 406-496, 830-950 MHz
- **Modes**: a.m., f.m.
- **Sensitivity**: For 12dB SINAD: 75-105 MHz = 0.4uV, 406-495MHz = 0.5uV, 830-950 MHz = 0.8uV
- **Resolution**: 5, 10, 12.5kHz (v.h.f), 25kHz (u.h.f.)
- **Image Rejection**: More than 40dB
- **IF Stage**: 10.7MHz, 455kHz
- **Audio Output**: 250mW, 8 Ohms
- **Scan Rate**: 10 Channels per second
- **Search Rate**: 5 seconds per MHz at 25kHz steps
- **Memories**: 16
- **Features**: Priority and memory lock out on Scan, Selectable a.m./f.m.
- **Reviewed**: Practical Wireless Nov 1986
- **Price**: £225.00

Uniden Bearcat 580XLT
Mobile/Base Scanner

- **Coverage**: 29-54MHz, 118-174MHz, 406-512MHz
- **Modes**: a.m., f.m.
- **Sensitivity**: 0.5uV (12dB SINAD) h.f., 0.8uV (12dB SINAD) v.h.f.
- **IF Selectivity**: 55dB at 25kHz
- **Resolution**: 5, 10, 12.5kHz
- **Image Resolution**: More than 40dB
- **Audio Output**: 25W at 10% t.h.d.
- **Scan Rate**: 15 Channels per second
- **Search Rate**: 2 second delay, lockout, priority scan.
- **Memories**: 100
- **Features**: 2 second delay, lockout, priority scan.
- **Reviewed**: Practical Wireless Nov 1986
- **Price**: £199.00

Black Jaguar BJ200 Mark III
Hand-held Scanner

- **Coverage**: 26-30MHz, 60-80MHz, 115-174MHz, 210-260 MHz 410-520 MHz
- **Modes**: a.m., f.m.
- **Sensitivity**: 0.5uV (12dB SINAD) v.h.f., 0.8uV (12dB SINAD) u.h.f.
- **IF Selectivity**: 60dB ±20kHz
- **Resolution**: 5, 9, 10, 25 or 50kHz
- **Image Resolution**: More than 40dB
- **IF Stage**: 10.7MHz, 455kHz
- **Audio Output**: 400mW at 8 Ohms
- **Scan Rate**: 15 Channels per second
- **Search Rate**: 25 Freq. per second
- **Memories**: 100
- **Features**: Priority and memory lock out on Scan, Selectable a.m./f.m.
- **Reviewed**: Practical Wireless Nov 1986
- **Price**: £225.00

Uniden Bearcat 100XLT Hand Held Scanning Receiver

- **Coverage**: 29-54MHz, 118-174MHz, 406-512MHz
- **Modes**: a.m., f.m.
- **Sensitivity**: 0.5uV (12dB SINAD) v.h.f., 0.8uV (12dB SINAD) u.h.f.
- **IF Selectivity**: 75dB at 25kHz
- **Resolution**: 5, 10, 12.5kHz
- **Image Resolution**: More than 40dB
- **IF Stage**: 10.7MHz, 455kHz
- **Audio Output**: 480mW
- **Scan Rate**: 15 Channels per second
- **Search Rate**: 25 Freq. per second
- **Memories**: 100
- **Features**: 2 second delay, lockout, priority scan.
- **Reviewed**: Practical Wireless Nov 1986
- **Price**: £199.00

WIN 108
Hand-held Airband Scanner

- **Coverage**: 108-135.975MHz
- **Modes**: a.m.
- **Sensitivity**: 0.5uV for 12dB SINAD
- **IF Selectivity**: 55dB at 25kHz
- **Resolution**: 25 or 50kHz
- **Image Resolution**: 55dB
- **IF Stage**: 10.7MHz, 455kHz
- **Audio Output**: 320mW at 10% t.h.d.
- **Scan Rate**: 10 channels per second
- **Search Rate**: 5 seconds per MHz at 25kHz steps
- **Memories**: 20
- **Features**: Priority channel, display-lock, channel lockout, keyboard lock, speaker, audio, and display lighting
- **Reviewed**: Practical Wireless Nov 1986
- **Price**: £175.00

Sony ICF PRO -80
Hand-held Scanner

- **Coverage**: 150kHz-108MHz (115.15kHz-223MHz using FRG -80 converter)
- **Modes**: w.b.a.m., n.b.a.m., f.m., n.b.f.m., s.s.b.
- **Sensitivity**: 20V for 20dB S/N (f.m.), 1.25uV for 12dB SINAD (airband), 0.5uV for 12dB SINAD (144-174MHz)
- **Selectivity**: ±3.8kHz/1-6kHz (50dB); 58d81±-400kHz (f.m.)
- **Resolution**: 3, 5, 9, 10, 25 or 50kHz
- **Image Rejection**: 77dB (i.w./m.w./s.w./v.h.f.), 40dB (f.m.)
- **IF Stage**: 55.845 MHz & 455kHz, 10.7MHz (f.m.)
- **Audio Output**: 400mW into 80 Ohms
- **Scan Rate**: 10 Channels per second
- **Search Rate**: 5 seconds per MHz at 25kHz steps
- **Memories**: 40
- **Features**: Converter supplied, soft case, shoulder belt, frequency handbook, key protect facility and fine tune control
- **Reviewed**: Short Wave Magazine March 1988
- **Price**: £1.45

Uniden Bearcat 580XLT
Hand-held Airband Scanner

- **Coverage**: 108-135.975MHz
- **Modes**: a.m.
- **Sensitivity**: 0.5uV for 12dB SINAD
- **IF Selectivity**: 55dB at 25kHz
- **Resolution**: 25 or 50kHz
- **Image Resolution**: 55dB
- **IF Stage**: 10.7MHz, 455kHz
- **Audio Output**: 320mW at 10% t.h.d.
- **Scan Rate**: 10 channels per second
- **Search Rate**: 5 seconds per MHz at 25kHz steps
- **Memories**: 20
- **Features**: Priority channel, display-lock, channel lockout, keyboard lock, speaker, audio, and display lighting
- **Reviewed**: Practical Wireless Nov 1986
- **Price**: £247.00

Sony AIR -7
Airband Scanner

- **Coverage**: 150kHz-2.19MHz, 76-136MHz, 144-174MHz
- **Modes**: a.m., w.b.f.m., n.b.f.m.
- **Sensitivity**: 20V for 20dB S/N (f.m.), 1.25uV for 12dB SINAD (airband), 0.5uV for 12dB SINAD (144-174MHz)
- **Selectivity**: ±3.8kHz/1-6kHz (50dB); 58d81±-400kHz (f.m.)
- **Resolution**: 5, 9, 10, 25 or 50kHz
- **Image Rejection**: 77dB (i.w./m.w./s.w./v.h.f.), 40dB (f.m.)
- **IF Stage**: 55.845 MHz & 455kHz, 10.7MHz (f.m.)
- **Audio Output**: 400mW into 80 Ohms
- **Scan Rate**: 10 Channels per second
- **Search Rate**: 5 seconds per MHz at 25kHz steps
- **Memories**: 10
- **Features**: Key protect, backlit I.C.D. readout and priority channel
- **Reviewed**: Practical Wireless Nov 1986
- **Price**: £1.30

Short Wave Magazine September 1988
Signal R-535
VHF/UHF Airband Scanner

Coverage: 108-142.995MHz, 220-378.995MHz
Modes: a.m.
Sensitivity: For 12dB SINAD: 0.32μV (v.h.f.), 0.56μV (u.h.f.)
Selectivity: ± 55dB at ±25kHz
Resolution: 5kHz
Image Rejection: Better than ±55dB (v.h.f.), better than ±25dB (u.h.f.)
IF Stage: 21.4MHz, 4.5kHz
Audio Output: 360mW into 8Ω
Scan Rate: 12 channels per second (memory)
Features: Compact size, liquid crystal display and priority memory channel
Price: £249

Reveco RS-3000
Compact Monitor Scanner

Coverage: 26.32MHz, 60.90MHz, 118-180MHz, 380-512MHz
Modes: a.m., n.b.f.m.
Sensitivity: 0.5μV (v.h.f.) & h.f., 1μV (arband) and u.h.f. Both 10dB SN
Selectivity: Resolution: 5kHz
Image Rejection: IF Stage: 21.4MHz, 4.5kHz
Audio Output: 1.5W at 10% peak to peak
Features: Compact size, liquid crystal display and priority memory channel
Price: £199

Kenwood RZ-1
Scanning Receiver

Coverage: 500kHz-905MHz
Modes: a.m., n.b.f.m., w.b.f.m.
Sensitivity: 5μV on a.m. (1dB SINAD), <0.5μV on n.b.f.m. and w.b.f.m.
Selectivity: Resolution: 5kHz
Image Rejection: IF Stage: 45.75MHz, 10kHz
Audio Output: 2W across 8Ω at 10% peak to peak
Features: Lockout facility, delay function and telescopic antenna supplied
Price: £465

Bearcat 210XW
Scanning Radio

Coverage: 30-500MHz, 130-174MHz, 406-512MHz
Modes: 1m
Sensitivity: 30-500MHz ±136-174MHz = 0.3μV, 406-512MHz = 0.5μV
Selectivity: ±55dB at ±25kHz
Resolution: 5kHz
Image Rejection: IF Stage: 45kHz
Audio Output: 1W r.m.s. into 8Ω at 10% peak to peak
Scan Rate: 25kHz or 1MHz
Scan Rate: 8 channels per second
Features: 10 memories, 53 station addresses in 34 countries.
Price: £487

GUIDE TO FACSIMILE STATIONS
8th edition — June 1988
262 pages. ISBN 3-924508-68-9
£14.00 or DM 40.00

Reliable and easy-to-use FAX equipment is now available for less than £20.00. It prints weather charts, press photos, satellite pictures etc. with excellent resolution via a standard Epson-compatible dot matrix printer on ordinary paper. The interest of mariners, yachtsmen, pilots, radio amateurs, monitors and meteorologists around the world in the reception of FAX transmissions has subsequently exploded during the past two years. Apart from the hardware mentioned, the potential user needs detailed and actual schedules of those FAX stations. That vital information is published since the early seventies in our international reference books like the FAX Guide.

- The numerical frequency list covers 333 frequencies — from VLF to UHF — of FAX stations which have been monitored in 1987 and 1988. Frequency, call sign, name of the station, ITU country/geographical symbol, technical parameters of the emission, and all frequencies have been measured exact to the nearest 100kHz. The alphabetical call sign list covers 219 call signs, with name of the station, ITU symbol, and corresponding frequency (± iesl.
- Schedules of 89 FAX stations on 318 frequencies are listed alphabetically, including the latest schedules of Blackhall Meteo and Royal Navy London. Additional chapters cover:
 - Comprehensive list of equipment on the market for both FAX and meteorological satellite reception, with photos and manufacturer’s addresses.
 - Detailed explanation of the technique used for the transmission of FAX pictures.
 - Regulations on technical characteristics of FAX equipment, including all CCITT and WMO standard test charts.
 - Comprehensive list of both geostationary and polar-orbiting meteorological satellites, with full technical data. Detailed explanation of APT PREDICT and FANAS polar-orbiting satellite position data codes.
 - Radio amateur FAX activities.
 - 224 abbreviations.
 - 53 station addresses in 34 countries.
 - 178 sample charts and their interpretation.

Further publications available are Guide to Utility Stations, Air and Meteo Code Manual, Radio Automatic Code Manual, etc. Write for detailed catalogue of publications on commercial telecommunication on shortwave. All manuals are in the handy 17 x 24 cm format, and of course written in English.

Prices include airmail to anywhere in the world. Payment can be by cheque, cash, or International Money Order. Postal Giro Account: Stuttgart 2093 75-709. Dealer inquiries welcome — discount rates and pro forma invoices on request. Please order from

Klingenfuss Publications

What Scanner

Bearcat 800XLT
Base Scanner

Coverage: 28 - 54MHz, 118 - 174MHz, 406 - 512MHz, 806 - 912MHz
Modes: a.m.
Sensitivity: 28-54MHz = 0.3μV, 118-136MHz = 0.8μV, 406 - 512MHz = 0.5μV, 840 - 912MHz = 0.7μV
Selectivity: 5kHz
Image Rejection: IF Stage: 406kHz
Audio Output: 1.5W r.m.s. at 10% peak to peak
Scan Rate: 2.5 seconds per MHz at 25kHz steps
Features: 12 channel banks
Price: £625

Kenwood RZ-1
Scanning Receiver

Coverage: 500kHz-905MHz
Modes: a.m., n.b.f.m., w.b.f.m.
Sensitivity: 5μV on a.m. (1dB SINAD), <0.5μV on n.b.f.m. and w.b.f.m. (12dB SINAD), <3μV on 60-905MHz, <1μV on w.b.f.m.
Selectivity: Resolution: 5kHz
Image Rejection: IF Stage: 45kHz, 10kHz
Audio Output: 2W across 8Ω at 10% peak to peak
Lineout 150kHz
Scan Rate: 25kHz or 1MHz
Scan Rate: 8 channels per second
Features: Text store, feature, picture symbols available on display
Price: £465
HOW TO ORDER
Add 75p per order postage (overseas readers add £1.50 for surface mail postage) and send a postal order, cheque or international money order with your order (quoting book titles and quantities) to PW Publishing Limited, FREEPOST, Enefo House, The Quay, Poole, Dorset BH15 1PP. Payment by Access, Mastercard, Eurocard or Visa also accepted on telephone orders to Poole (0202) 678558. Books normally despatched by return of post but please allow 28 days for delivery.

* A recent addition to our Book Service. O/P = Out of print, O/S = Out of stock.

LISTENING GUIDES
AIR BAND RADIO HANDBOOK
David J. Smith
With an air band radio you can eavesdrop on the conversations between aircraft and those on the ground who control them. The author, an air traffic controller, explains more about this listening hobby. 174 pages £9.95.

AIR TRAFFIC CONTROL
David Adams
A guide to air traffic control with maps, drawings and photographs explaining how aircraft are guided through congested airspace. 176 pages £9.95.

DIAL SEARCH (5th Edition 1988/89)
George Wilcox
The listener's check list and guide to European broadcast- covering medium wave, long wave, v.h.f. and short wave, including two special maps, making the most of your portable and many, 46 pages £3.25.

FREQUENCY ROUTINE 1990
T. W. Tinnie
Identifies the fightholds of 168 airlines, schedule, charter, cargo and mail, and to and from the UK and Eire and overflights between Europe and America. 104 pages £4.00.

GUIDE TO BROADCASTING STATIONS
Philip Darrington
Frequency and station data, receivers, antennas, Latin American and Australasian, receiving, computers in radio, etc. 240 pages £6.95.

GUIDE TO FACSIMILE STATIONS
Bill Laver
Joerg Klingenfuss
This manual is built on continuous monitoring of the radio spectrum from the sixties until the recent past. It is a useful summary of former satellite and FM radio stations and provides information to the active radio monitor in the classification and identification of radio signals. 126 pages £8.00.

GUIDE TO UTILITY STATIONS
6th Edition
Joerg Klingenfuss
This book covers the complete short wave range from 3 to 30 MHz plus the adjacent frequency bands from 0 to 15kHz and from 1.6 to 30kHz. It includes details on all types of utility stations including FAX and RTTY. There are 15802 entries in the frequency list and 3123 in the alphabetical call sign list plus press services and meteorological stations. 494 pages £15.00.

HF OCEANIC AIRBAND
COMMUNICATIONS
(3rd Edition)
Bill Laver
Aircraft channels by frequency and band, main ground radio stations, European R/T networks, North Atlantic control frequencies. 29 pages £3.50.

INTERNATIONAL RADIO STATIONS
GUIDE (BP255)
Revision and updated in 1988, this booklet shows the site, country, frequency, wavelength and power of stations in Europe, the Near East and N. Africa, North and Latin America and the Caribbean, plus short wave stations worldwide. 128 pages £9.00.

THE COMPLETE VHF/ UHF FREQUENCY GUIDE
Updated 1988.
This booklet gives details of frequencies from 28—2250MHz with no gaps and who uses what. Recently updated, there are changes in equipment requirement as well as antennas, etc. 88 pages £6.95.

* THE INTERNATIONAL VHF FM GUIDE
7th Edition
Julian Baldwin G3UHK & Kris Partridge G8AUU
The latest edition of this useful book gives concise information on UK repeaters and beacons worldwide plus cover- age maps and further information on UK repeaters. 70 pages £2.85.

UK LISTENERS CONFIDENTIAL FREQUENCY LIST (5th Edition)
Bill Laver
Covering the services and transmission modes that can be heard on the bands between 1.635 and 29.7MHz.

BEGINNERS
AN INTRODUCTION TO RADIO DXING (BP91)
R. Nafievalla, A. T. Cushen and B. D. Clark
A	book which gives guidance and advice both to listeners seeking reliable reception of some distant stations, and to DX listening hobbyists. 134 pages £9.95.

SHORT WAVE RADIO LISTENERS' HANDBOOK
Peter Rousseau
A guide to understanding and using amateur radio, weather and TV broadcast. 207 pages £9.25.

BEGINNERS TO ELECTRONICS
Over 100 practical projects
F. A. Wilson
This book is a comprehensive guide to electronic projects for beginners and has 150 practical projects, CB and amateur radio are all dealt with here. 266 pages £9.95.

BEGINNER'S GUIDE TO RADIO
(Radio Edition)
Gordon J. King
Radio signals, transmitters, receivers, antennas, com- ponents, values and starters: CB and amateur radio are all dealt with here. 266 pages £9.95.

BEGINNER'S GUIDE TO ELECTRONICS
Over 100 practical projects
F. A. Wilson
This is a book especially written for those who wish to take part in basic radio building. All the crystal sets in the book are from old designs but updated to take account of modern components. 72 pages. £1.75.

ELECTRONICS SIMPLIFIED—CRYSTAL SET CONSTRUCTION (BP122)
F. A. Wilson
This is a book especially written for those who wish to take part in basic radio building. All the crystal sets in the book are from old designs but updated to take account of modern components. 72 pages. £1.75.

QUESTIONS & ANSWERS RADIO
Eugene Trundle
Basics of electrical theory, radio and semiconductors, audio and CB radio, antenna and test equipment. 110 pages £3.95.

THE SIMPLE ELECTRONIC CIRCUIT AND COMPONENTS BOOK (BP83)
F. A. Wilson
The aim of this book is to provide an inexpensive but comprehensive introduction to modern electronics. 209 pages £3.50.

TELEVISION
* AN INTRODUCTION TO SATellite TELEVISION (BP165)
F. A. Wilson
Answers all kinds of questions about satellite television. 176 pages £9.95.

A TV-DXERS HANDBOOK (BP176)
Peter S. P. M. Friel
Information on transmission standards, propagation, receivers, including mult-standard, colour, satellites, antennas, television, station identification, interference, etc. Revised and Updated 1986. 87 pages £5.95.

SATELLITE TELEVISION
Peter S. P. M. Friel
How satellite TV works, setting up your own TV receiver, the courses, the programmes available. 72 pages £4.95.

GUIDE TO WORLD-WIDE TELEVISION TEST CARDS
Edition 2
Keith Hamer and Garry Smith
This book aims to fill the gap between high level amateur radio handbook and the simplified beginners manuals. It is written in a "students own notes" format that hopes to put the reader more at ease than formally written test books. 216 pages £7.30.

COMMUNICATION (BP85)
(Elements of Electronics—Book 5)
F. A. Wilson
Fundamentals of line, microwave, submarine, satellite, digital multiplex, radio and telegraphy systems, and telegraphy. For anyone who wishes to understand these basic systems. 256 pages £8.95.

FOUNDATIONS OF WIRELESS
And Electronics (10th Edition)
M. G. Scroggie and S. W. Amos
This is a book which deals with the basic principles of radio systems as well as antennas, etc. 88 pages £6.00.

THE SATELLITE EXPERT'S HANDBOOK (USA)
Joerg Klingenfuss
A guide to understanding and using amateur radio, weather and TV broadcast satellites. 207 pages £9.25.

AIR & METEO CODE MANUAL
Joerg Klingenfuss
A code book which gives guidance and advice both to listeners seeking reliable reception of some distant stations, and to DX listening hobbyists. 134 pages £9.95.

BETTER SHORTWAVE RECEPTION (USA)
W. S. On WSSAI & S. D. Cowan W2LDX
Receivers, modulation and demodulation, reception techniques for the short waves and v.h.f. 158 pages £8.50.

PASSPORT TO WORLD BAND RADIO
This book gives you the information you need to explore and enjoy the world of broadcast band listening. It includes features on different international radio stations, receiver reviews and advice as well as the hours and languages of broadcast stations by frequency. 358 pages £11.95.

SCANNERS (updated)
Peter Rousseau GUIDRK
A guide for users of scanning receivers, covering hardware, frequencies, reception techniques and operating procedures. 177 pages £7.95.

SCANNERS 2
Peter Rousseau GUIDRK
This includes even more information on the use of v.h.f. and u.h.f. communication and the operation of scanners to improve the performance of scanning equipment. 216 pages £9.95.

SHORT WAVE RADIO LISTENERS' HANDBOOK
A. Nallawalla, A. T. Cushen and ZL1BCG
In easy-to-read and non-technical language, the author guides the reader through the mysteries of amateur, broadcast and CB transmissions. 207 pages £9.95.

RADIO TYPE CODE MANUAL
10th Edition
Joerg Klingenfuss
This book provides detailed descriptions of the characteristics and performance of the various types of medium wave, all commercial modulation types including voice frequencies, telegraphy, telegraph transmission on short waves, with its alphabetical order in their geographical sections. 52 pages £2.95.

RADIO TELETYPE CODE MANUAL
Joerg Klingenfuss
This is a code book especially written for those who wish to take part in basic radio building. All the crystal sets in the book are from old designs but updated to take account of modern components. 72 pages. £1.75.
INTERFERENCE INTERFERENCE HANDBOOK (USA) William R. Nelson WA6FGG 310 pages £7.25
AMATEUR RADIO PROJECTS (USA) Winter 87/88 Edition
This useful work now incorporates a 48 page reference section of useful information for amateur radio enthusiasts. 310 pages £7.25
AMATEUR RADIO LOGBOOK Standard logbook for the transmitting amateur in horizontal A4 format. 25 lines per page. 96 pages £2.30
AMATEUR RADIO OPERATING MANUAL (RSA) A mammoth work covering virtually every aspect of amateur operating, including international call-sign series, prefix lists, DXCC countries lists, etc. 204 pages £6.16
AMATEUR RADIO SATELLITES the first 25 years
Articles and Announcements The material in this souvenir publication is drawn from the first 25 years of amateur satellite operation. It covers a particular section of developments which have occurred over the last 25 years. 34 pages £2.25
CALL BOOK AND GRINDER GRID TUBES (USA) This handbook explains the operation of EM1A power grid valves and provides design and application information to assist the user of these valves. 156 pages £6.75
HAM RADIO AMATEURS' EXAMINATION (RSA) G. G. Johns and John G3HMB The background to multiple choice exams and how to study for them. Includes sample RAE papers for practice, plus maths revision. 91 pages £3.00
PASSPORT TO AMATEUR RADIO Handbooks GW3JGA The famous series by GW3JGA, used by thousands of successful RAE candidates as an aid to their studies. Plus the author's archives. It is mainly a pictorial account on the traditional and modern radio amateur as well as the successful QRP station. Lots of advice is given by the author who has spent years as an ardent CIRPer. 118 pages £4.95
PROJECTS IN AMATEUR RADIO AND SHORT WAVE LISTENING Collected Articles from PW 1983-1985 A very practical book looking at semiconductor characteristics such as voltage and power properties making selection of replacements easier. 160 pages £4.95
DIODES REFERENCE BOOK Keith Brindley, G3IOM This book deals with the building and operating of a successful QRP station. Lots of advice is given by the author who has spent years as an ardent CIRPer. £4.95
EQM EQUIVALENTS GUIDE (BP85) A. Michaels Possible substitutes for a popular selection of European, American and Japanese transistors. 320 pages £3.50
DIGITAL IC EQUIVALENTS AND PIN CONNECTIONS (BP140) A. Michaels Equivalents and pin connections of a popular selection of European, American and Japanese linear i.c.s. 320 pages £5.95
NEWNES AUDIO & HI ENGINEER'S POCKET BOOK Vivian Capel This is a complete collection of practical and relevant data for anyone working on sound systems. The topics covered include microphones, guitar amplifiers, Citrus, etc. To name a few: 190 pages Hardback £9.95
NEWNES COMPUTER ENGINEER'S POCKET BOOK Steve Money G3P2Z This is an invaluable compendium of facts, figures, circuits and data relevant to the designer, student, service engineer and all those interested in computer hardware and microprocessor systems. 203 pages Hardback £9.95
NEWNES ELECTRONICS POCKET BOOK 5th Edition Presenting all aspects of electronics in a readable and largely non-mathematical form for both the enthusiast and the professional engineer. 315 pages Hardback £8.95
NEWNES RADIO AMATEUR AND LISTENER'S POCKET BOOK Steve Money G3P2Z This book is a collection of useful and intriguing data for the traditional and modern radio amateur as well as the short-wave listener. Topics such as AMTOR, packet radio, SSTV, computer communications, airband and maritime communications are all covered. 160 pages Hardback £8.95
NEWNES RADIO AND ELECTRONICS ENGINEER'S POCKET BOOK (17th Edition) Keith Brindley, G3IOM Useful data covering maths, abbreviations, codes, symbols, frequencies, components, circuits, interconnections, semiconductors, components etc. 201 pages Hardback £6.95
NEWNES TELEVISION AND VIDEO ENGINEER'S POCKET BOOK Eugene Tande This is a valuable reference source for practitioners in entertainment electronic equipment. This book gives full practical constructional details of a number of receivers as well as some add-on circuits. Such as S-meters and noise limiters. 118 pages £2.95
HOW TO DESIGN AND MAKE YOUR OWN PIN CONNECTIONS (BP140) R. A. Penfold Designing or copying printed circuit board designs from magazines, including photographic methods. 80 pages £1.95
MODERN ELECTRONIC TEST EQUIPMENT Yoshio Okazaki How to use a multimeter to fault-find on electronic and radio equipment, from simple receiver circuits through to oscilloscopes and equipment for you to build your own boards. 115 pages £19.25 (hardback)
GETTING THE MOST FROM YOUR MULTIPLIER (BP239) R. A. Penfold This book describes in a down-to-earth manner how the main categories of local multiplier equipment work. The subjects covered include analysis and design of the individual stages, crystal oscillator, frequency source, time and event counters, spectrum and logic analyser, and displays and automatic test equipment. 134 pages £6.95
OSCILLOSCOPES, HOW TO USE THEM, HOW THEY WORK (Revised 2nd Edition) Ian Hickman This book describes oscilloscopes ranging from basic to advanced models and the accessories to go with them. 133 pages £6.95
PRACTICAL HANDBOOK OF VALVE RADIO REPAIR Charlie E. Miller The definitive work on repairing and restoring valued broadcast receivers dating from the 1920s to the 1960s. Appendices giving intermediate frequencies, valve characteristics, data and base connections. 230 pages Hardback £17.50
QUESTIONS & ANSWERS RADIO REPAIR Les Lawry-Johns How to fault-find-and repair valued and transistorised receivers, car radios and unit audio equipment. Suggested lists of tools and spare parts. 106 pages £3.95
SERVICING RADIODIODES, HI-FI AND TV EQUIPMENT Gordon J. King A very practical book looking at semiconductor characteristics such as voltage and power properties making selection of replacements easier. 160 pages Hardback £9.95
TRANSPORT RADIO TRANSISTOR FINDING CHART (BP70) C. E. Miller Used properly, should enable most common faults to be traced reasonably quickly. Selecting the appropriate fault description at the top of the chart, the reader is led through a sequence of suggested checks until the fault is cleared. £25.00 plus postage and packing. £0.95
PROJECT CONSTRUCTION HOW TO BUILD ADVANCED SHORT WAVE RECEIVERS R. A. Penfold Greater satisfaction can be gained from the hobby of short-wave listening when using home constructed equipment. This book gives full practical constructional details of a number of receivers as well as some add-on circuits such as S-meters and noise limiters. 118 pages £2.95
HOW TO DESIGN AND MAKE YOUR OWN PIN CONNECTIONS (BP140) R. A. Penfold Designing or copying printed circuit board designs from magazines, including photographic methods. 80 pages £1.95
INTRODUCING QRP Collectors Articles from PW 1983-1985 An introduction to low-power transmission, including constructional hints and tips. Covers AMTOR, QRV, TVI, transmitters and transceivers from Top Band to UHF and test equipment by Tony Smith G4AF1. 64 pages £1.50
ADVANCED POWER SUPPLY PROJECTS (BP192) R. A. Penfold The practical and theoretical aspects of the circuits are covered in some detail. Topics include switched-mode power supplies, mains transformers, dual rail tracking transistors and computer controlled power supplies, etc. 92 pages £2.95
POWER SUPPLY PROJECTS BP76 R. A. Penfold This book gives a number of power supply designs including simple unregulated types, fixed voltage regulators and variable voltage stabilised designs. 91 pages £2.50
PRACTICAL POWER SUPPLIES Collectors Articles from PW 1983-1985 Characteristics of batteries, transformers, rectifiers, fuse and heat-sinks, dual rail tracking transistors and controlled power supplies, including the FV. "Marchwood" guage which fully stabilised and protected 12V 50A d.c. 49 pages £1.25
PROJECTS IN AMATEUR RADIO AND SHORT WAVE LISTENING F. G. Rayor G3GOR Full practical construction details are given for all projects, including housing the units in a suitable case. All the projects are either on p.c.b. or matrix board. 90 pages £4.95
QRP NOTEBOOK Douglas Maw W2FR This book deals with the building and operating of a successful QRP station. Lots of advice is given by the author who has spent years as an ardent QRPer. All the projects are easy to read and the drawings large and clear. 77 pages £3.95

Short Wave Magazine September 1988

55
FOR SALE Sinclair +2 128K computer with games Oxon OX9 4QY. Details, Mr Small GOHJC, 8 Cherrytree Road, Chinnor, tester manual, vintage servicing guides for sale. LSAE various data books, equivalents guides, AVO valve Tel: 0282 815224.

communications receiver 0.5-30MHz a.m., s.s.b., c.w. and a v.h.f. direction finding loop. Plus items on propagation including such favourites as the ZL Special and '2BCX. Collected Antenna Articles from PW 1977-1984 Taking a new look at how h.f antennas work, and putting reduction of mathematics involved. 86 pages £2.95

This book deals with the basic concepts relevant to receiving and transmitting antennas. Lots of diagrams make construction much easier. 124 pages £4.95

Design, construction, adjustment and operation of h.f. beam antennas. 198 pages £6.75

includes record deck. Also ex -BBC portable tone source.

$2.95

144-146MHz band. The range of antennas described will cater for most situations, particularly those where space is a problem. 157 pages £6.95

åber, table for c.w., RTTY, data, plus calculations for antennas, distance, bearing, locators, satellites, sun, moon and circuit design. £9.41

Antenna and propagation theory, including NBS Yagi design data. Practical designs for antennas from medium waves to microwave, fair, good, or excellent, built by L. Rogers, s.w.v. and power meters, and a noise bridge. Designing with TVI. 150 pages £3.00

WE FIS'S ANTENNA NOTEBOOK

Doug DeMaw W1FB

This book provides lots of designs, in simple and easy to read terms, for simple wire and tubing antennas. All drawings are included and clear making construction much easier. 124 pages £4.95

WIRE'S & WAVES

Collected Antenna Articles from PW 1980-1984

Terrestrial and satellite communication systems, which are becoming ever more involved. 256 pages £2.95

THE ARRL ANTENNA COMPENDIUM Volume 1

£6.75

The ARRL Antenna Book (USA)

$2.95

The ARRL Antenna Handbook (USA)

£2.95

The ARRL Antenna Handbook

£2.95

British Popular 225, 1980

Advertised from traders, apparent traders or for equipment which it is illegal to possess, use or which cannot be licensed in the UK will not be accepted.

Advertise for AFR2010 V5 with cash or exchange for AFR2010 V5

£125.00. Standard C6500 receiver with p.s.u. £75 ono.

BEGINNERS (BP222)

£109.00

broadcast signals up to the 12 w.p.m. required for the RAE. 19 pages £2.85

THE CODE OF LEARNING MORSE CODE

Mark Francis

Designed to make you proficient in Morse code in the shortest possible time, this book points out many of the pitfalls that beset the student. 87 pages £4.95

FOR SALE Philips D2935 world radio receiver cost £195. Philips 8220 world radio receiver cost £160. Philips 2008 world radio receiver cost £110. £80.00 Induction coil and plug. £12.00

FOR SALE Kenwood RZ.1. RX 500kHz-950MHz £340.

Dropping Well, Rotherham, South Yorkshire S61 2AE.

FOR SALE Heatwave - Fm interface plus software ROM for BBC Micro complete with documentation, never used £35 including post. Tel: 0191 5799906. R. Needham, 109 St Andrews Road, Hinkley, Oxon RG14 1P.

WANTED Tri R1000 communication receiver, must be in good condition and air worthy. Also Preclinical Voice 2000, A C Stagg, 130 Sherwell Valley Road, Torquay, Devon TQ2 6EX. Tel: 0603 65046.

FOR SALE Heatwave with S.K28 communications receiver Circa 1986 collectors' item. Has been adapted to include record deck. Also ex BBC portable tone source. £75.00 Offer: L. Alcock, 8 Belmore Road, Bristol 0117 6AT. Tel: 0272 46925.

FOR SALE EC10 with power pack head phones in perfect condition £65. Also Superscan 300 ready to convert to 10MHz £130. Tarleton, 498 Burton Road, Mickleover, Burton-on-Trent DE1 6DD. Phone 0200 221870.

FOR SALE Sony Air-7, 5 months old as new £175. James Whyton, 71 Melville, Bourton-on-the-water, Stroud, Glos GL56 2EJ. Phone after 6pm from 21:00. WANTED Main drive belt for Philips EL451/1 to reeal 4 track tape recorder. Any 1960s transistor portable featuring the "Carpege" broadband, working order not essential. Ken Lancaster, 121 Upper Worple Road, Dorking West, Rotherham, Yorkshire S61 2AE.

FOR SALE Kenwood TR-1, RX 500kHz-950MHz £340. Icom AH-1000 discrete antenna £55. Panasonic R500 RX 158kHz-30MHz £35. Datong AD307 active antenna fourdor model £45. All boxed mint condition 01-50 7054.

FOR SALE Tektroition VX500 osilloscope 5 inch tube £19 inch rack, working £25. 10 amp Varicase mains £30. Kenlake FJ-4U signal generator £25. DC p.s.u. 0.6V d.c. 10 amps smoothed unreg £30. J. Wood, 45 Pigrine Close, Great Chesterton, Essex CB5 1OG. Saffron Walden 3077.

FOR SALE Philips D2205 world radio receiver cost £170.00 less than 12 months ago will accept £75 (b) which includes postage. Steven Myers, 47 Trevor Road, Drek Park, Liverpool L9WDY. Tel: 051-5218850.

Complete the form in July's Short Wave Magazine, or write our your advertisement in black marker - up to a maximum of 30 words plus 12 words for your address - and send it, together with your remittance for £2.30, to Trading Post, Short Wave Magazine, Enfesco House, The Quay, Poole, Dorset BH1 1PP. Advertisements will be published in the earliest available issue and SWM reserves the right to edit any advertisement not complying with the rules. You must send the Corner Flash from this page, or your subscription number as proof of purchase of the magazine.
SONY AIR-7 HAND HELD AM/FM/LW/MW UNBEATABLE VALUE
The most portable receiver is "That's a fact"! 108-176 MHz plus LW/MW band broadcast. Covers air, marine, PMR, etc.LCD display, memories, squelch, clock, calendar.etc. Supplied in a silk bag but we are the UK's largest stocks so check with us! £227 FREE SECURICOR

SONY ICF7600DS PORTABLE COMMUNICATIONS!
This latest receiver covers both air and military bands. Coverage is 108-143.5MHz & 220-380MHz AM. Featuring a 60 channel memory, the receiver will enable you to monitor virtually any air traffic. The 12 volt requirement makes it ideal for base, mobile or portable use.

B5375 AIR-BAND MONITOR 118-136MHz
This well known receiver is ideal for the serious air band enthusiast. superb sensitivity and selectivity. this pocket size monitor is unrivaled in value for money. 2 fixed channels are possible and the squelch controller ensures silent operation. Complete with battery and whip. £69.50 CARR FREE

AOR 2002 SCANNER UV-144/430MHZ
From AOR the famous UV/144MHz scanner that covers 26-1300MHz AM/FM. Highly compact, 230V or 12V DC with LCD, memories and squelch. Ideal for the serious enthusiast. A wide range of accessories and 230V AC or DC. £475 FREE SECURICOR

GLOBAL AT1000 AERIAL TUNER
The AT1000 is a receiver aerial tuner designed to give you maximum performance from your receiver. Covering the frequency range 150kHz to 30MHz it matches all the modern receivers produced in recent years. Ideal for matching long wire, dipoles or balanced feeder. £69.00 POST FREE

HFC OCEANIC AIRBAND COMMUNICATIONS
Published December, 1987
Tune into the exciting world of long distance airband communications. Hear aircraft navigating the world's oceans; air and sea rescue in action; flight crews talking to take off, inter-aircraft weather broadcasts from all corners of the world. It's exciting, and this book will tell you exactly where and when it all happens. A unique publication!

NEW EDITION VHF/UHF AIRBAND FREQUENCY GUIDE
The new edition of this ever popular reference guide will be available towards the end of August. Completely updated and much more detailed than previous editions, we know that you will want to get the latest edition. Printed manual specially for UK listeners. If you are one of the few listeners who have for the first time provided a cross reference section in numerical order to make the guide even more useful. £59.00 plus post & p & p

NEW EDITION VHF/UHF AIRBAND FREQUENCY GUIDE 1.8-300MHZ
This new edition of this ever popular reference guide will be available towards the end of August. Completely updated and much more detailed than previous editions, we know that you will want to get the latest edition. Printed manual specially for UK listeners. If you are one of the few listeners who have for the first time provided a cross reference section in numerical order to make the guide even more useful. £59.00 plus post & p & p

BOOKS SPECIALLY FOR YOU!

NEW EDITION REPRINTS
Printed December, 1987
A complete guide for all ham radio enthusiasts. £14.95

NEW EDITION SCANNING AERIALS
Complete guide for all ham radio enthusiasts. £14.95

NEW EDITION RECEIVERS (Free delivery)
R535 VHF/UHF Airband Monitor £249

THE COMPLETE VHF/UHF FREQUENCY GUIDE £5.95 + £1 p & p

THE COMPLETE VHF/UHF FREQUENCY GUIDE FIFTH EDITION

THE COMPLETE VHF/UHF FREQUENCY GUIDE 1.8-300MHZ £6.95 + £1 p & p

UK LISTENERS CONFIDENTIAL FREQUENCY LIST 1.8-300MHZ
This famous listing is now in its fifth edition. Completely updated for 1988 and a lot thicker. Many additional frequencies have been added and of course some have been removed. The service is known to no longer exist. Packed full of information on all that happens between 1.6 and 30MHz, you will find this fascinating reading. Covering all aspects of the shortwave service, there is just a selection of the feedback received, NOT瀍IONS, BROADCAST, MARINE, EMBASSY, MILITARY, RITTY, FAX, PRESS, and much more. Not only frequencies and services, but on many cases times of transmission as well. This is not an American export, but a UK printed manual specially for UK listeners. It is one of the few people that haven't published one of these yet, then you really don't know what you have been missing. On the other hand you have your previous editions, as we know that you want to get the latest edition. £59.00 FREE SECURICOR

GLOBAL LISTENERS CONFIDENTIAL FREQUENCY LIST 1.8-300MHZ
This famous listing is now in its fifth edition. Completely updated for 1988 and a lot thicker. Many additional frequencies have been added and of course some have been removed. The service is known to no longer exist. Packed full of information on all that happens between 1.6 and 30MHz, you will find this fascinating reading. Covering all aspects of the shortwave service, there is just a selection of the feedback received, NOT瀍IONS, BROADCAST, MARINE, EMBASSY, MILITARY, RITTY, FAX, PRESS, and much more. Not only frequencies and services, but on many cases times of transmission as well. This is not an American export, but a UK printed manual specially for UK listeners. It is one of the few people that haven't published one of these yet, then you really don't know what you have been missing. On the other hand you have your previous editions, as we know that you want to get the latest edition. £59.00 FREE SECURICOR

NEW EDITIONS OF THE CONFIDENTIAL FREQUENCY LIST 1.8-300MHZ
This famous listing is now in its fifth edition. Completely updated for 1988 and a lot thicker. Many additional frequencies have been added and of course some have been removed. The service is known to no longer exist. Packed full of information on all that happens between 1.6 and 30MHz, you will find this fascinating reading. Covering all aspects of the shortwave service, there is just a selection of the feedback received, NOT瀍IONS, BROADCAST, MARINE, EMBASSY, MILITARY, RITTY, FAX, PRESS, and much more. Not only frequencies and services, but on many cases times of transmission as well. This is not an American export, but a UK printed manual specially for UK listeners. It is one of the few people that haven't published one of these yet, then you really don't know what you have been missing. On the other hand you have your previous editions, as we know that you want to get the latest edition. £59.00 FREE SECURICOR
Yaesu has serious listeners for the serious listener.

Yaesu's serious about giving you better ways to tune in the world around you.

And whether it's for local action or worldwide DX, you'll find our VHF/UHF receivers are the superior match for all your listening needs.

The FRG-9600. A premium VHF/UHF scanning communications receiver. The 9600 is no typical scanner. And it's easy to see why.

You won't miss any local action with continuous coverage from 60 to 905MHz.

You have more operating modes to listen in on: upper or lower sideband, CW, AM wide or narrow, and FM wide or narrow.

You can even watch television programmes by plugging in a video monitor into the optional video output. (NTSC System).

Scan in steps of 5, 10, 12½, 25 and 100kHz. Store any frequency and related operating mode into any of the 99 memories. Scan the memories. Or in between them. Or simply "dial up" any frequency with the frequency entry pad.

Plus there's more, including a 24-hour clock, multiplexed output, fluorescent readout, signal strength graph, and an optional PA4C, AC power adaptor.

Extend the coverage further with the optional FC965DX 0.15-30MHz and FC1300 800-1300MHz external converters.

The FRG-8800 HF communications receiver. A better way to listen to the world. If you want a complete communications package, the FRG-8800 is just right for you.

You get continuous worldwide coverage from 150kHz to 30MHz.

And local coverage from 118 to 174MHz with an optional VHF converter.

Listen in on any mode: upper and lower sideband, CW, AM wide or narrow, and FM.

Store frequencies and operating modes into any of the twelve channels for instant recall.

Scan the airwaves with a number of programmable scanning functions.

Listen in. When you want more from your VHF/UHF or HF receivers, just look to Yaesu. We take your listening seriously.

YAESU

South Midlands Communications Ltd
S.M. House, School Close,
Chandlers Ford Industrial Estate,
Eastleigh, Hants S05 3BY
Tel: (0703) 255111
UK Sole Distributor

Prices and specifications subject to change without notice.
FRG-9600 SSB coverage: 60 to 460 MHz.