ICOM introduces the IC-R7000, advanced technology, continuous coverage communications receiver. With 99 programmable memories the IC-R7000 covers aircraft, Marine, FM Broadcast, Amateur Radio, television and weather satellite bands. For simplified operation and quick tuning the IC-R7000 features direct keyboard entry. Precise frequencies can be selected by pushing the digit keys in sequence of the frequency or by turning the main tuning knob. FM wide/FM narrow/AM upper and lower SSB modes with six tuning speeds: 0.1, 1.0, 5, 10, 12.5, 25KHz.

The IC-R7000 has 99 memories available to store your favourite frequencies including the operating mode. Memory channels can be called up by pressing the memory switch then rotating the memory channel knob, or by direct keyboard entry. A sophisticated scanning system provides instant access to the most used frequencies. By depressing the Auto-M switch, the IC-R7000 automatically memorises frequencies that are in use whilst it is in the scan mode, this allows you to recall frequencies that were in use. The scanning speed is adjustable and the scanning system includes the memory selected frequency ranges or priority channels. All functions including the memory channel readout are clearly shown on a dual-color fluorescent display. Other features include dial-lock, noise blanker, attenuator, display dimmer and S-meter and optional RC-12 infra-red remote controller, voice synthesizer and HP 1 headphones.

IC-R71E, General coverage receiver.

The ICOM IC-R71E 100KHz to 30MHz general coverage receiver features keyboard frequency entry and infra-red remote controller (optional) with 32 programmable memory channels, SSB, AM, RTTY, CW and optional VFO's scanning, selectable AGC, noise blanker, pass band tuning and a deep notch filter. With a direct entry keyboard frequencies can be selected by pushing the digit keys in sequence of frequency. The frequency is altered without changing the main tuning control. Options include FM, voice synthesizer, RC-11 infra-red controller, CK70 DC adaptor for 12 volt operation, mobile mounting bracket, CW filters and a high stability crystal filter.
If you are put off trying your hand at building radio and electronic projects by the thought of soldering then the new Easiwire system is well worth looking at.
A WORD IN EDGWARES

Sir
I have been reading, with great interest, the letters regarding the Eureka/Rebecca radar system and I must fall in on the side of W. Blanchard (February '88 SWM) and back everything he said in his letter.

I do not write this as an "armchair expert" with a pile of technical books in front of me, but as an ex RAF Radar Mechanic (National Service) who worked on this equipment in 1950-51.

I would be very surprised if the equipment as W. Blanchard and I knew it ever staggered into the 1960s, let alone the '70s and '80s as some would have us believe.

Is the answer a modern state-of-the-art system but retaining the old code name Eureka etc? After all that seems to have happened with LORAN.

Finally comes the question of Band III TV also raised by W. Blanchard — are we to believe that the TV stations once jostled for air space with 1kW radar pulse transmissions?

All food for thought, gentlemen!
E. ROGERS G10MZ
SALTASH
CORNWALL

been decided to form a study group with the objective of collecting sufficient information to allow the compilation of an authoritative history. Much of the aerial navigation is closely concerned with radio navigation, and many of your readers must have worked with, operated, serviced or even designed radio navigational devices in the last 60 years or so. We would be very pleased to hear from anyone who feels that they might be able to contribute to this project by way of personal reminiscence, original material, papers or documents. In particular, material from the years up to 1939 is very scarce.

If anyone wishes to help, please write to me c/o The Royal Institute of Navigation, At The Royal Geographical Society, 1 Kensington Gore, London SW7 2AT W. BLANCHARD

Sir
I have been trying to locate a company who will undertake to repair a Sangean ATS-803 receiver which was purchased in Singapore last October and is still under warranty.

I have tried companies who sell this receiver but under their own trade name, but as my unit is under the Sangean name, no one will undertake the repair. I have also written to Sangean in Taiwan but have not received a reply.

If anyone can help me to get the set repaired I will be very grateful.
A. G. SMITH
PETERBOROUGH

Sir
I am writing about a quite serious problem that you may feel worthwhile mentioning in SWM.

Yesterday I bought a Matsui MR 4099 receiver from the local Curry's shop and, from another source six Ever Ready Silver Seal R2OS (D Type) batteries. When I came to insert them into the battery compartment they were such a close fit that, had I continued, there was no way that the inner ones could have been removed.

I then bought six normal type batteries from a Superdrug store, sold under the firm's own name. These fit quite loosely and there has been no trouble removing them.

In your review of the 4099 in the September '88 SWM you mentioned the likelihood of used batteries swelling or leaking and so becoming hopelessly jammmed.

However, the batteries that I used were brand new and higher than normal cost but don't seem to be suitable for use in the 4099, nor, I imagine, in other variants of the Sangean 803 such as the Realistic DX440.

The radio itself seems to be well made and at £100 offers quite a lot for the money.
K. GARDINER
DONCASTER

This poses a problem which, perhaps, some of our readers might be able to unravel. Are Ever Ready Silver Seal batteries over size or are the cheaper, own brand ones made undersize in case they swell? Has anyone else come across this problem? From the frequency with which the 4099 pops up, Brian Oddy's LMS6 column there are a lot being used by readers.

Sir
Oh dear! I suppose that I asked for it. I merely assumed that, because when I last used Rebecca/Eureka in 1958 I was told that it was obsolete and would shortly be withdrawn, 30 years later it might just have been. No chance of its companion BABS being found somewhere, I suppose? Or better still, somebody lurking in a corner with an operative GEE set? This must make it easily the longest-lived of the wartime radio nav aids.

Which brings me to the main point of this letter. The Royal Institute of Navigation was rather surprised recently to discover that nobody seems to have written a proper history of aerial navigation. There are plenty of books about the marine version, and even some on land navigation, but of aerial navigation there is nothing apart from an occasional memoir. Accordingly it has been decided to form a study group with the objective of collecting sufficient information to allow the compilation of an authoritative history. Much of the aerial navigation is closely concerned with radio navigation, and many of your readers must have worked with, operated, serviced or even designed radio navigational devices in the last 60 years or so. We would be very pleased to hear from anyone who feels that they might be able to contribute to this project by way of personal reminiscence, original material, papers or documents. In particular, material from the years up to 1939 is very scarce.

If anyone wishes to help, please write to me c/o The Royal Institute of Navigation, At The Royal Geographical Society, 1 Kensington Gore, London SW7 2AT W. BLANCHARD

Sir
I have been trying to locate a company who will undertake to repair a Sangean ATS-803 receiver which was purchased in Singapore last October and is still under warranty.

I have tried companies who sell this receiver but under their own trade name, but as my unit is under the Sangean name, no one will undertake the repair. I have also written to Sangean in Taiwan but have not received a reply.

If anyone can help me to get the set repaired I will be very grateful.
A. G. SMITH
PETERBOROUGH

If any reader or dealer can help Mr. Smith please reply through the Editorial Offices. ED

Sir
I notice that on the Contents page of the April 88 SWM you have incorrectly credited me with writing "Report from the Polder". Unfortunately you obviously paid the real author!

PETER LAUGHTON
LONDON

Word processors are marvellous things — but I can still make mistakes! My apologies to both Peter and the real author Jonathan Marks. ED

I do want accurate reports from s.w.i.s in connection with a running design programme of compacted TX antennas and their associated circuitry — or what are sometimes called "his funny aerrals"!

Most of these antennas are quite unconventional and break many of the accepted textbook rules established for a long time. The object of this research is to make smaller and smaller h.f. antennas for use with transistors and receiving but with a good performance. Many have worked very well but some have been disasters.

Presently on the stocks is a 20mm (8 inch) long 3.5MHz (80m) transmitting antenna. The experimental lash-up works — so Mark 1 is now in the course of construction. I am also working on the MicroLoop 80 which is just 460 x 460mm, and more. You can usually find me between 3.535 and 3.580MHz c.w. 0430 to 0600 prevailing time (GMT or BST). Transmitter power is usually 10 to 15W.

Why c.w.? Because I like it! Why low power? Because it is the only sure way to test a new antenna design. If it doesn't work then it is no good, whereas 100W, say, will get somewhere, even with a lousy antenna. And c.w. fans — the standard of c.w. operating at that early hour is invariably good and polite!

Detailed written reports, good or bad, will be much appreciated and will be acknowledged. My address is in the current Call Book. Thank you.
RICHARD Q MARRIS G2BZQ

IF YOU HAVE ANY POINTS OF VIEW THAT YOU WANT TO AIR PLEASE WRITE TO THE EDITOR. IF YOUR LETTER IS USED YOU WILL RECEIVE A £5 VOUCHER TO SPEND ON ANY OF SWM SERVICES.

The Editor reserves the right to shorten any letters for publication but will try not to alter their sense. Letters must be original and not have been submitted to other magazines.

Short Wave Magazine June 1988
Volvo Launch RDS Car Radio
Way back in the December 87 issue of SWM Peter Shore explained how the new Radio Data System (RDS) works and hinted that Volvo were about to introduce a new car radio equipped for RDS.
Volvo have always been very safety-minded in the design of their cars and safety features heavily in the reasoning behind the introduction of their SR-701 radio.
The driver of a car fitted with the SR-701 can just switch on, select his favourite v.f.m. station with the touch of one button and stay tuned anywhere in the country without having to retune. This removes the hazardous process of trying to find the same programme on a stronger station whilst driving the car.
Should the driver want to hear traffic information which might affect his journey then the RDS radio will give him that option. It can even be set to break into the programme or tape that he is listening to with urgent, pre-coded traffic messages.
The radio will also display the exact time, controlled by the RDS signal. The time displayed is never wrong and does not need resetting when the clocks change.
Both the BBC and IBA are well advanced with coding their f.m. transmissions. Ultimately the RDS codes, which are standardised throughout a large part of the European Broadcasting Union, will identify not only the transmitter but the different types of programme material so that an RDS radio will be able to select programmes by subject.
There is no doubt that RDS is an exciting step forward, particularly for the motorist. However, there are obstacles to be overcome if you fancy equipping your car with the Volvo SR-701 radio. While the radio itself will fit into the standard car radio cut-out, Volvo in their wisdom have opted to have a separate cassette player. This is fine - just as long as you own a Volvo with twin radio apertures in the dash. Otherwise you will be restricted to just the radio – with RDS benefits of course. Volvo put forward their technical arguments for splitting the system in this way - when you want to change the cassette player for a Compact Disc job you don’t have to throw away the radio. What happens if you want both cassette and Compact Disc was not clear – perhaps you change the two-aperture Volvo for a three-aperture SAAB.
Aside from the RDS features the SR-701 is a top of the range conventional car radio with medium and long wave, six-channel autostore, i.c.d. display, 2 x 20W power amplifiers with five-band equaliser. To help keep your SR-701 safely installed in your Volvo an owner-reprogrammable, four-digit, anti-theft coded system is fitted.
The SR-701 radio has been priced at £517 plus VAT and fitting while the separate TP-701 cassette player will cost £152 plus VAT and fitting, from any UK Volvo dealer of course.

TF3SIX on the Air
Jonas Bjarnason TF3JB of Hljodtau Radio Supply and Richard Diamond G4CVI of South Midlands Communications have worked together in order to obtain the licence for a 50MHz Icelandic beacon.
SMC have donated the beacon, built by Mike Walters G3JVL, along with a vertical unity gain antenna. The Yaesu power unit has been donated by Hljodtau Radio Supply, who have also organised the site near Reyjavik.
The beacon has the callsign TF3SIX and uses 50.057MHz running 50W e.r.p. The locator is HP94CC.

Free Software
We have heard from Peter Fawcett G0FBK and he would like us to pass on that free software is available in the form of a cassette to enable the EG2000 Colour Genie computer to run packet. The Colour Genie has been used for quite some time now as a dedicated RTTY terminal. It has been used successfully with the TNC220, but it is thought that it should be possible to use it with other TNCs.
If you send one pound, to cover the cost of the cassette and postage, you will receive a cassette and four-pages of useful data.
It’s not known just how many Colour Genie EG2000s were sold, but they were retailed by Lowe Electronics for RTTY use. Now it is hoped that RTTY enthusiasts can get on packet too – without too much extra expense.
For more details of where to obtain your software from, write to:
Peter L Fawcett G0FBK
7 Albert Hill
Bishop Auckland
Co. Durham DL14 6EH

The 934MHz Club UK
The organisation that brings together users of 934MHz and represents their interests. The magazine they produce comes out four times a year and gives round-ups of what’s happening in all the different areas around the UK.
For your year’s subscription, you get 4 magazines, updated membership lists, organised contests and rallies. So if you are a 934 MHz user, or potential user, and would like to know more about the group, then contact them at:
The 934MHz Club UK
PO Box 424
Althorne
Chelmsford
Essex CM3 6UP

RadioGram
The RadioGram magazine is published bi-monthly for all valve radio enthusiasts. It costs £6.50 in the UK and Ireland for six issues, that’s not always a calendar year. Issue No. 14, which recently arrived on my desk, contains features about the Zetavox ST, The EMI Story, Hall Columbia as well as general features on vintage music and a beginner’s guide. If you would like to know more about The RadioGram, then contact:
The RadioGram
Larkhill
Newport Road
Woodseaves
Stafford ST20 0NP

Bearcat BC580XLT Scanning Receiver
Nevada in Portsmouth are introducing the new Uniden Bearcat BC580XLT base/mobile scanning receiver. The main features of the set are that it has 100 memory channels, the frequency coverage is 29-54MHz, 118-174MHz and 406-512MHz. The other main feature is that the price will be £225.
Other things about the set are that it has a folding stand for table top use, can be run from either 13.8V d.c., two AA batteries or an a.c. adaptor and has a rugged construction designed for mobile use.
Nevada Communications
189 London Road
North End
Portsmouth Hants PO2 9AE
Amateur Madness

Everyone knows that radio amateurs are mad and a story that reached the news desk recently proves it.

Roy Andreang, using the call sign GB4CMT, jumped out of an aeroplane at 14,200 feet on Easter Saturday. He had hoped to be able to send Morse on the way down, but unfortunately the Morse key didn't work properly.

Still, he did manage to put out a call using the FT-290 MK II loaned by SMC (Northern) Ltd. Four days after the jump, Roy celebrated his 64th birthday, but he has promised his family that this was the last time.

Over the years, whilst working in association with the Haltemprice District Scout Fellowship, Roy has acquired many awards. He was the first to transmit from the top of the north tower of the Humber Bridge in 1974, was the first amateur to talk to others whilst making a parachute jump when he was 55 and the claim this time was the first to brew a cup of tea on the way down.

Improved Discine

Garex Electronics have announced an improvement to the popular Revco Recvone wide-band discone antenna.

There is often an advantage in fitting a vertical whip section above the 'disc' elements to improve the I.F. performance of the discone. Another application is to provide a reliable transmitting capability on one particular band.

So now, with the Revcone, the vertical section is optional. Only the mounting stud is provided initially, the vertical section may then be chosen from any mobile type whip in the Revcone range from 27MHz to 950MHz.

For more details on this antenna, contact:

Garex Electronics
7 Norvic Road
Marsworth
Tring
Herts. HP23 5LS

Diplome du Calvados

The REF regional club of the Department du Calvados in Normandy, have an award available to all radio amateurs and SWLs.

Applicants must have worked for (heard) 10 stations located in the Calvados district (No. 14) on any band and/or mode. There are special endorsements available for HF, VHF, S.H.F., CW, RTTY, etc., on request.

Contact with the club station, F6K/CZ on HF or F6K/CKZ on VHF, counts as two contacts.

No QSLs are necessary, send your log details, certified by two licensed amateurs and 10 IRCs to:

The Award Manager
Pierre Roger FC1CNJ
8 Rue des Petites Haies
F. 14440 Douvres La Délivrande
France

QRP Contest

The date of the Practical Wireless 144MHz QRP Contest has now been fixed. The date to put in your diary is:

Sunday June 12
0900—1700 UTC

Further details and a full set of the rules are published in the June issue of Practical Wireless now on sale at your newsagents.

Attention Cybernet Users

Nevada have recently written to us saying that the Kyocera Corporation of Japan will be ceasing production of 27MHz CB radios. Kyocera were responsible for producing the famous Cybernet and Ham International brand names.

Nevada have managed to purchase a large quantity of spare parts for all the Cybernet models, including the Cybernet Beta 3000, Beta 2000 and Beta 1000. They also have a limited quantity of Ham International spares.

For details of availability and cost of various spares, contact:

Nevada Communications
189 London Road
North End
Portsmouth
Hants PO2 9AE

Audio/Video Cassette Care

When you have spent many hours waiting for that elusive TV or radio signal, you don't want to find that the tape or video recorder you have been using to preserve the moment with is dirty and the results ruined.

We have been given details of a range of six audio/video care systems launched by Cirkit. Each care system is packaged in a strong, handy, "luggage" type case with a clear, hinged lid, snap lock closure and we've only space here to describe three of the care packages for you, but you should be able to find the whole range in the shops.

The Video Care System CS1 includes a push button VHS cleaner, anti-static screen cleaning fluid, VHS title lables and re-usable record safety tabs.

The Audio Care System CS3 includes a carbon fibre anti-static record brush, a stylus brush with inspection mirror, cleaning fluid, cassette head cleaner, head cleaning fluid, tape splicer complete with splicing tape and tape cutter.

The Audio Cassette Care System CS5 includes an electronic tape head demagnetiser, audio cassette tape head cleaner and fluid, audio tape head cleaning tools, a pocket sized inspection light and 10 audio cassette title cards.

The price you can expect to pay for these kits is £12.99 each. So does anyone have a birthday in the near future?...
More and more s.w.l.s and TVDXers are investing in rotators these days. South Midlands Communications have sent us details of some of their Yaesu antenna rotators.

There are three which might interest the s.w.l. as they are for light and medium duty work. Obviously there are some very “beefy” rotators also available including ones that can provide azimuth elevation too.

The first one is the G-250, it is for small and medium v.h.f., u.h.f. radio and television antennas. The power consumption is 37VA, the 360° rotation time is 43 seconds, the maximum vertical load is 50kg and the mast diameter is 25-38mm.

The G-400 and G-400RC have the same specification but have different control units. They are designed for small h.f. and medium to large u.h.f., v.h.f. radio and television antenna arrays. Power consumption is 40VA, 360° rotation time is 50 seconds, the maximum vertical load is 200kg and the mast diameter is 36-63mm.

For details of these and all the other Yaesu rotators, contact:
South Midlands Communications Ltd
School Close
Chandlers Ford Ind. Est
Eastleigh
Hants. S05 3BY

Birchover
A new TV relay station is being built on the south side of Birchover, some 8km north-west of Matlock Channels are:
- Channel 39 – BBC 1 Midlands
- Channel 42 – Channel 4
- Channel 45 – BBC
- Channel 49 – ITV Central

Antennas should be horizontal Group B, mounted outside.

Millburn Muir: The BBC’s f.m. station at Millburn Muir, near Dumbarton, should have changed its frequencies overnight on April 5/6. The new frequencies will be:
- Radio 2/1 88.3MHz
- Radio 3 90.5kHz
- Radio Scotland 102.7MHz

The Millburn Muir relay is 5km north of Dumbarton. As the frequencies are only 50kHz lower than the previous ones, listeners should have no trouble returning their receivers.

Perth: The BBC’s f.m. radio services in the Perth area – Radio 2/1, 3 and Scotland – should have moved to a new site at Kirkton Mair, about 3km south of the town centre. The transfer should have taken place overnight on March 9/10.

Engineering Information from the BBC

- May 29: The East Suffolk Wireless Revival will take place at the Civil Service Sportsground, The Hollies, Straight Road, Ipswich. Doors open at 10am.
 Colin Ranson
 Tel: Ipswich 688204

- June 12: The Royal Naval Amateur Radio Society Annual Mobile Rally will again be held in the sports field, HMS Mercury, Nr Petersfield, Hants. Gates are open between 1000 and 1700. As usual there will be plenty of attractions for all the family at this very friendly rally. More details from:
 Cliff Harper G4UJR
 Tel: 0703 557469

- June 12: The open day for the Mid Lanark Society will be held at the Community Centre, Newarthill by Motherwell. This new venue is about half a mile from the old one. There will be the usual traders, a bring B buy stand, demonstrations of packet radio and RTTY, lectures and the annual awards of the EHI Trophy. Talk-in will be on S22.

- June 19: Denby Dale Mobile Rally will be held at Shelley High School, about five miles south-east of Huddersfield, West Yorkshire. Rally opens at 11am (10.30am for the disabled). There will be the usual traders there, food and sideshows for all the family. Talk-in on S22, SU22 and 28MHz f.m.
 G3SDY
 Tel: 0484 602905

- June 26: The 31st Longleat Mobile Rally will be held, as always, at Longleat Park, Longleat, Nr Warminster, Wilt. The rally starts at 10am. More details from:
 Brian Goddard G4FRG
 Tel: 0272 848140

- July 2/3: The Popular Flying Association Annual Rally is again being held at Cranfield Aerodrome, Bedfordshire.

- July 10: The Sussex Mobile Rally will take place at the Brighton Raceground. More details from:
 Bob Henaire G11OS
 Tel: 0798 43841

- July 15 – 17: The RSGB 75th Anniversary National Convention will take place at the National Exhibition Centre, Birmingham. RSGB HQ can give you more details.

- July 24: The Cornish Amateur Radio Club have had to change the venue of their rally. The new venue is the Village Hall, Perranwell, about 8km SW of Truro.

July 28 – 31: The AMSAT UK Colloquium will again be held in the University of Surrey, Guildford. More details from:
 G3AAG
 Tel: 01 – 989 6741

WHAT’S NEW

A subject close to all s.w.l.s who have spent a lot of money on their listening station is security.

The Teleguard VP4 and VP3 are volumetric security systems which use passive infra red movement detectors. The VP3 is a self contained unit comprising one infra red movement detector, siren and power supply. The VP4 is a modified version of this offering protection of up to three additional areas by means of radio linked passive infra red detectors. As an extra deterrent, the optional VP2 Telesound unit can be positioned outside the protected area to give audible and visual warning.

The units are armed and disarmed by a small hand held remote transmitter which can be used up to 30m away from the unit. The built-in siren has a 115dB noise level too, so it’s likely to be heard!

Security Int. Ltd
Cornwallis House
Howard Chase
Basildon
Essex SS14 3BB

RALLIES

- May 29: The East Suffolk Wireless Revival will take place at the Civil Service Sportsground, The Hollies, Straight Road, Ipswich. Doors open at 10am. Colin Ranson
 Tel: Ipswich 688204

- June 12: The Royal Naval Amateur Radio Society Annual Mobile Rally will again be held in the sports field, HMS Mercury, Nr Petersfield, Hants. Gates are open between 1000 and 1700. As usual there will be plenty of attractions for all the family at this very friendly rally. More details from:
 Cliff Harper G4UJR
 Tel: 0703 557469

- June 19: Denby Dale Mobile Rally will be held at Shelley High School, about five miles south-east of Huddersfield, West Yorkshire. Rally opens at 11am (10.30am for the disabled). There will be the usual traders there, food and sideshows for all the family. Talk-in on S22, SU22 and 28MHz f.m.
 G3SDY
 Tel: 0484 602905

- June 26: The 31st Longleat Mobile Rally will be held, as always, at Longleat Park, Longleat, Nr Warminster, Wilts. The rally starts at 10am. More details from:
 Brian Goddard G4FRG
 Tel: 0272 848140

- July 2/3: The Popular Flying Association Annual Rally is again being held at Cranfield Aerodrome, Bedfordshire.

- July 10: The Sussex Mobile Rally will take place at the Brighton Raceground. More details from:
 Bob Henaire G11OS
 Tel: 0798 43841

- July 15 – 17: The RSGB 75th Anniversary National Convention will take place at the National Exhibition Centre, Birmingham. RSGB HQ can give you more details.

- July 24: The Cornish Amateur Radio Club have had to change the venue of their rally. The new venue is the Village Hall, Perranwell, about 8km SW of Truro.

July 28 – 31: The AMSAT UK Colloquium will again be held in the University of Surrey, Guildford. More details from:
 G3AAG
 Tel: 01 – 989 6741

Short Wave Magazine June 1988
This will be their 1st Thursday, 8pm in the Guide Hall, Dawlish Road. June 2 is a "Parents Night on 23d. June 3 is a Technical Meeting on 24d. June 4 is a Technical Meeting on 25d. June 5 is a Technical Meeting on 26d. June 6 is a Technical Meeting on 27d. June 7 is a Technical Meeting on 28d. June 8 is a Technical Meeting on 29d. June 9 is a Technical Meeting on 30d. June 10 is a Technical Meeting on 31d.
A lot of modestly priced scanners have appeared on the market in recent years but the great failing has been the inability of most of these machines to allow the user to select the mode regardless of the band. The reason for this of course is quite simple: Most of the world, and in particular the USA, decided many years ago that f.m. was the best means of getting a v.h.f. or u.h.f. signal from point A to point B whilst mobile. Airband is the exception where because of the traditional use of a.m. it has as yet been impossible to get a change to f.m.

Scanner manufacturers tend to design their equipment for the American market with a limited budget and as f.m. figures many times over. The American market provides a simple set of rules for the manufacturer to work with. It goes something like this: You programme the scanner to switch to f.m. except when it is tuned to Airband and then it automatically switches to a.m. That means you can forget front panel switches, elaborate programming techniques to store mode as well as frequency and that means you can keep costs down.

That’s all very well until you look at the quirky British market where not only is a.m. still in use on some bands but is getting a new lease of life as certain services you should not be listening to move from Band II to places I am not aware of and start to use A (the fact that British manufacturers are the only ones left churn out equipment for this complete “clunker” of a mode is I am sure purely coincidental).

For owners of top of the range scanners such as the Icom, AORs and Tandy 2004 this presents no problem but for someone with a limited budget it did. I say did because the Revco RS-3000 is the first budget priced scanner to appear on the market with programmable modes.

Banded Coverage

As a budget priced scanner you would neither expect, nor get, the kind of no-gaps coverage offered on the up-market machines so, what you get is banded coverage with four bands in all. This starts off at 26MHz and goes on to 30MHz so giving coverage of the CB channels and the amateur 28MHz band. Coverage then picks up again at 56MHz and goes on to 88MHz so covering the “Low Band” v.h.f. channels used by a variety of services. The next band covers 118 to 176MHz offering coverage of Air Band, Marine, 144MHz amateur service, etc. Finally u.h.f. coverage is provided between 330 to 512MHz.

For a great many users those bands will provide all the necessary coverage they will ever want and you can enter 50 of your favourite frequencies into memory. That is not a bad number of channels (far more than the AOR 2002 for example). The memory is arranged in 5 banks of 10 channels and it is possible to lock-out banks as well as individual channels. Delay (2 seconds) is individually programmed onto each channel which is a bonus because some costier scanners only allow delay to apply to all channels or none, not individual ones.

The scanner offers full search facilities with stepping rates of 5, 12.5 and 25kHz but it does not recall previously programmed upper and lower limits so these have to be re-entered each time search is used. Priority is provided on memory channel 1 and when this feature is selected it is scanned once every 2 seconds. Memory back-up is provided by a capacitor and the manufacturers say memory is retained for up to 2 weeks with power off.

The Box, The Bells and the Whistles

The RS-3000 is quite compact considering it’s features and for anyone looking for a mobile unit it should fit quite easily in most cars. Indeed I suspect it was designed as a mobile unit because it comes with a vehicle mounting bracket but does not come with a mains power supply. The only other accessory is a small telescopic whip which plugs into the Motorola-type antenna socket on the rear apron where you will also find the d.c. input socket and jack socket for external speaker.

The front panel features squelch and volume controls and the keyboard pad together with the I.C.D. display. The latter not only shows the frequency and channel number but also mode, manual or scan status, delay, lockout, priority, search limit and stepping rate. The keypad is easy to use, only one button serves a double purpose (decrement/priority) and there are up/down buttons for manual stepping.

Overall Impressions

The sensitivity of the test sample tallied pretty much with the quoted figures and these are roughly what I would expect on a middle-of-the-road scanner. Spurious rejection figures are not quoted and I suspect this is because they are not very good. Although impressions were purely subjective, it was apparent that strong local signals could pop up on all sorts of frequencies and an aural test shows that transmissions from an antenna 200 metres from where he lives, appear on just about any frequency he enters into the scanner. However, I must put this complaint into context by saying that this problem only occurs with nearby transmissions and I know of a lot of other scanners in this price range that fare no better. My only other gripe is about the antenna socket which is the same car radio type as found on quite a few different makes of scanner – it is near useless at v.h.f. and even worse at u.h.f. If I bought a RS-3000 I would remove it and replace it with a BNC connector.

So would I buy one? I think “her indoors” would blow a gasket if I bought another scanner and but for that I would probably buy one to permanently install in the car. The strong point is the programmable mode. Despite the hilier, Pidgin-English manual the beast is easy to drive and frequency coverage is adequate for most needs. It does not come with a mains power pack but then that is something that is quite cheap to buy or simple to build. It has plenty of memory channels and some features that are only found on more expensive machines. It is compact and professional looking and is very good value for money compared with some of the opposition.

I am grateful to Links Communications in Guernsey for the loan of the review sample. The Revco RS-3000 is distributed in the UK by Garex Electronics Ltd and costs £195 inc. VAT.

SPECIFICATIONS

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Coverage</th>
<th>Modes</th>
<th>Sensitivity</th>
<th>IFs</th>
<th>Search step rates</th>
<th>Audio output</th>
<th>Power source</th>
<th>Inputs/outputs</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>h.f.</td>
<td>v.h.f.</td>
<td>a.m./f.m.</td>
<td>v.h.f. (n.f.m.) & h.f.</td>
<td>118-176MHz</td>
<td>5, 12.5 or 25kHz</td>
<td>1.5 W into 8 ohm</td>
<td>13.8V d.c. (mains source</td>
<td>DC supply, 50kohm</td>
<td>Backlit Liquid Crystal</td>
</tr>
<tr>
<td>h.f.</td>
<td>v.h.f.</td>
<td>a.m./f.m.</td>
<td>v.h.f. (n.f.m.) & h.f.</td>
<td>118-176MHz</td>
<td>5, 12.5 or 25kHz</td>
<td>1.5 W into 8 ohm</td>
<td>13.8V d.c. (mains source</td>
<td>DC supply, 50kohm</td>
<td>Backlit Liquid Crystal</td>
</tr>
<tr>
<td>h.f.</td>
<td>v.h.f.</td>
<td>a.m./f.m.</td>
<td>v.h.f. (n.f.m.) & h.f.</td>
<td>118-176MHz</td>
<td>5, 12.5 or 25kHz</td>
<td>1.5 W into 8 ohm</td>
<td>13.8V d.c. (mains source</td>
<td>DC supply, 50kohm</td>
<td>Backlit Liquid Crystal</td>
</tr>
<tr>
<td>h.f.</td>
<td>v.h.f.</td>
<td>a.m./f.m.</td>
<td>v.h.f. (n.f.m.) & h.f.</td>
<td>118-176MHz</td>
<td>5, 12.5 or 25kHz</td>
<td>1.5 W into 8 ohm</td>
<td>13.8V d.c. (mains source</td>
<td>DC supply, 50kohm</td>
<td>Backlit Liquid Crystal</td>
</tr>
<tr>
<td>h.f.</td>
<td>v.h.f.</td>
<td>a.m./f.m.</td>
<td>v.h.f. (n.f.m.) & h.f.</td>
<td>118-176MHz</td>
<td>5, 12.5 or 25kHz</td>
<td>1.5 W into 8 ohm</td>
<td>13.8V d.c. (mains source</td>
<td>DC supply, 50kohm</td>
<td>Backlit Liquid Crystal</td>
</tr>
</tbody>
</table>

Dimensions: 152 x 58 x 220mm
Weight: 1.05kgs
SCANNING RECEIVERS are our speciality (and all that goes with them)

The AR2002 is without doubt the best known and best performing VHF/UHF monitor receiver on the market. Encompassing every frequency of interest, whether it be VHF airband, UHF airband, radio amateur, mobile radio, FM broadcasts, TV sound, the AR2002 also gives the user top performance. Frequency selection can be by direct keyboard entry, but there is a good old tuning knob as well, for sharpening up and down the bands. Properly styled and engineered for use in fixed station, mobile or portable, the AR2002 comes complete with a mains power supply and extending whip aerial. Now available from Aircastle products is the brilliant computer control system which makes the AR2002 into the most amazing monitoring system you ever experienced. Send for details right away.

For the airband enthusiast, the WIN-108 is the answer to a maiden's prayer. This compact handheld airband receiver is fully synthesised and covers the entire VHF airband from 108 to 136 MHz. With direct keyboard frequency entry you can be on channel faster than a Concorde captain, and the clear frequency readout tells you where you are. 20 memory channels are included, and you can scan these automatically. Not only that, you can tell the WIN-108 to search any given frequency range within the air band so as to find new frequencies of interest. Forget the AIR-7, the WIN-108 does it all and more. The WIN-108 comes complete with a correctly matched helical aerial and is eager to go.

The AR800E is a compact receiver (only 60 x 50 x 135mm) containing an AM/FM scanning monitor covering the frequency ranges 75-105, 118-174, 406-495, and that most requested band 830-950 MHz. Channel spacing can be programmed from the keyboard for 5, 10, 12.5, and 25 kHz according to band, so all frequencies are correctly selected. AM and FM modes are available, and there are 20 memory channels to store the most used frequencies. You can also tell the set to search automatically between frequency limits set by the user, and transfer any frequency of interest directly into an unused memory. To cap all this performance, the AR800E comes complete with rechargeable batteries and mains charger, and at an attractive price.

For those who demand the best, the airband receivers from Signal Communications are a must. The company is totally dedicated to producing the best airband radios around, and the latest R-535 is in such demand that we are having to keep a waiting list of eager enthusiasts. Why? Simply because the R-535 gives ultimate performance not only on the VHF band, but also on UHF as well. Designed for simple programming and high speed scanning and searching, the R-535 has no less than 60 memory channels to store your most used frequencies. VHF and UHF channels can be mixed in any order. A full list of accessories is available, including power supplies, aerials, rechargeable battery packs, and so on, making the R-535 the complete system for the advanced airband enthusiast.

The radio to end all radios. The new RZ-1 from Kenwood may look like a high quality in-car wireless, but in fact it is a mobile monitoring receiver covering 500kHz to over 900MHz. Just read that again: 500kHz to over 900MHz. Modes available are AM, FM (communications), FM (broadcast and TV), and channel spacings are included to meet all requirements. Consider the fact that with this one package you can listen to almost everything, from Medium wave broadcast, Shortwave stations, high quality FM and TV broadcasts, all communications channels including VHF and UHF airband, right up beyond 900MHz. (Although the spec says 905MHz, all RZ-1 receivers supplied by us have the upper frequency extended to 950MHz at no charge). The excellence doesn’t end there: the display can be programmed by you to show a readout of the station title e.g. “Radio 2” or “Lon. Twr.,” in any of the 100 (yes, 100) memory channels. Kenwood engineering quality and ease of use are combined to make the RZ-1 a must.

RZ-1..£465 inc. vat. Carr. extra.

As you may guess, we stock, sell, and take care of almost everything connected with the hobby of listening, from Long wave to UHF. If you need any advice or assistance, we are here to help, and information is available at all times on any of our product range. In addition to the “Listener’s Guide”, we also publish the “Airband Guide”, so if you send us £1 for postage, and ask for both these guides, we will be happy to send them off. Happy listening.

Send 60p to cover the postage and we will send you, by return of post, your FREE copy of “THE LISTENER’S GUIDE”, a commonsense look at radio listening on the LF, MF and HF bands. Its unique style will, I am sure, result in a “good read” but underneath the humour lies a wealth of experience and expertise. You will also receive detailed leaflets on our range of receivers and a copy of our current price list.

LOWE ELECTRONICS LIMITED
Chesterfield Road, Matlock, Derbyshire DE4 5LE Telephone 0629 580800 (4 lines) Fax 580020 Telex 377482
Shops in GLASGOW Telephone 041-945 2626, DARLINGTON Telephone 0325 486121, CAMBRIDGE Telephone 0223 311230, CARDIFF Telephone 0222 464154, LONDON Telephone 01-429 3256, BOURNEOUTH Telephone 0202 577760
FORTY FIVE YEARS LISTENING

Goff Curtis

Years ago I flew, and instructed, as a wireless operator in WWII, and on leaving the RAF in 1946 found life somewhat tame without some contact with radio. The I.F. and m.f., broadcast bands soon lost most of their appeal, and on mentioning this to a local G2 he said, “well, you will have to get on the amateur bands, and h.f., if you want to hear long distance stuff”.

Although having been a wireless operator, the amateurs and DX were a mystery to me, but on his advice a start was made by “knocking up” a 2-valve battery 1-V-1 with coils for each band.

This was followed by an Edystone 740, a mains receiver built like a battleship. New, it cost £35, and has only just “gone up the creek”. The present RX is a Trio R600, a simple RX, but quite a good set for the amateur, and s.w. broadcasting bands, when used with an L shaped 20m dipole, and 2.6m long wire, which are switchable.

The years between 1946 and 1960 were spent solely on the amateur bands, 90 per cent 14MHz c.w. until there were only uninhabited islands, etc. left to log, and for the next twenty years a move was made to the short wave broadcast bands.

After hearing 120 countries, which was thought to be quite a good score, until learning of a Dane who had heard 160! A return, about 1960, was made to the amateur bands, a decision that has never been regretted, particularly, as no longer a loner listener, contact with fellow listeners via tape, phone, letters and DX “phone ins” keep one up to date, and the “pot boiling”.

The notebook found in the spare room fired up the enthusiasm to use those 1940s procedures once again, and push up the “score”, and it still helps in 1967 to find those rare callsigns. The DXpeditions can hardly be missed once the callsign “pile-up” is heard, especially if the callers are following the instructions to call “up”.

An American YL, recently operating s.s.b. in Africa, sent “I will only answer calls 10 up”, and when callers eventually twigged this and went up, her frequency was in the clear, and it was a pleasure to listen. Like a breath of fresh air. Some c.w. operators (not all!) control and keep discipline on their frequencies, and have been heard to send “call up, or I will have to blacklist you”. Polite, sensible, and mostly effective. This has often been said before and bears repeating. Listening is like fishing, it needs some skill, and patience. The angler doesn’t really mind getting wet whilst it’s raining if he eventually gets a “catch”. The TXer and listener are in the same boat. A new listener to the bands could switch on his brand new receiver, and hear a good catch immediately, but its not always that easy. Although saying that, a KC6 in the West Carolines, not logged at this OTH during forty years searching, was heard via the speaker in the sitting room, whilst making tea in the kitchen.

Sitting at the receiver, listening out to what is going on in the world, must be one of life’s greatest pleasures, and this pleasant thought was highlighted when clearing out a spare room. Nothing of value was found except for a handwritten notebook of methods and tips found useful when monitoring. Made up at least forty years ago, it could have been written yesterday, as the information, more or less, still holds good today.

On the other hand it took ten days to hear an expedition to an island in the Indian Ocean, but that is a later story.

When first fishing the amateur bands in the 1940s with the battery 1-V-1 the broad and butter countries, apart from a few lucky long distance, were first concentrated on leading up to the better calls. After a time it was realised a more methodical, but not mechanical, system would help during a search for the rarer ones, and as the useful points turned up while listening, they were scribbled down in that 1940s notebook, and this is how it reads. Not very different from todays art of listening.

The following points apply to c.w., because after all, this is amateur radio, and although s.s.b. is rarely used at this OTH (unless there is a “wanted” new country on s.s.b. only). Many of the twenty points to easier hunting must help when listening for speech.

1. Skim over the band once or twice for a possible DX “pile up”.
2. Check other signals for a DX callsign.
3. Check the weakest signals, 2 or 3 layers down, especially in the quiet “cracks”, building up to the top, greater strength layer. When looking for the weak ones, ignore the strong. It’s similar, when driving, to not looking at, and being dazzled by, approaching headlights.
4. Don’t listen for too long at a session. Have a rest, keep going back (if you can) every half hour or so. Conditions change.
5. Check all h.f. bands in daytime, especially 14MHz.
6. Watch frequency of stations calling the DX, or “DX only”, as the station answering the call could be the DX.
7. Go into a doze on a weak one, they often peak up.
8. Keep the volume down so a weakish one can just be read, but up on its callsign. In fact, keep the gain down as far as possible all the time.
9. Don’t tune off a likely good station without making a note of its frequency. You may not find it again by going back to its approximate frequency.
10. Always have pencil, paper, clock, and tape recorder handy.

DXing

1. Grab all information possible on current and future DX activities, via DX broadcasts, and nets, newsheets, “phone ins”, and on the air.
2. Listen as continually as possible for DX which only operates for a short time, frequent looks for others.
3. Watch stations not sending their own callsigns, especially snappy RST

A sketch of Goff at the T1154 and R1155 by an ex-bomb aimer.
reports only. They are more often than not DX.
4. Note call signs of stations calling the DX. If someone comes back to one of these it should be the DX.
5. Listen I.F. of the wanted DX frequency as the callers should be “up”, h.f.
6. Familiarise oneself with DX’s “fist” (type of sending) strength, and other useful pointers, so that they are not lost amongst the QRM, and “operators” calling him whilst he is working!
7. Have a list of wanted call signs, frequencies, times, dates over the RX.
8. Careful on 21MHz as often the “pile up” cannot be heard; only the DX and when he is listening the frequency is quiet.
9. Use propagation forecasts, and the beacons, as a guide to the best times to listen.
10. If DX is sending too fast to read, some send around 40w.p.m., record it at 3½ inches per second, and play it back (if possible) at 1½!

Two very useful broadcasts are from Radio Berlin International, who transmit propagation forecasts every second Monday, but not having listened recently my latest gen could be incorrect, but they are on at least three times on Monday. Another very helpful broadcast is from the Dutch Radio Society, VERON, who come up every Friday on 3.6MHz with good DX tips at about 1500, and 1930UTC. Thanks to them A61, VU4/Andamans, and OFO/Market Reef, I have pushed up the “all time heard country score” to 342, which, again, was considered quite good until hearing G3AAE, had, at least, 360 confirmed by QSL cards, and a W1 368!
The RFOVW net on 14.2MHz around 1100UTC also provided a 731, and a DX “phone in”. The Western Carolines, so it hasn’t really been a bad half year, even if the eleven year cycle is still duffy.

The 3rd crew “B” flight (1-r) F/It Jock Mitrat (pilot), F/It Micky Finn (navigator), Sgt Smith (gunner), Sgt Thomas (engineer), W/O Nicholson (bomb aimer) and Goff.

The really dedicated listener, like the licenced DXer, seriously studies propagation; is on the right frequencies at the correct times, and consequently hears many more calls than the average listener like myself, who finds this a little too mechanical.

It’s worthwhile “working it out” if a brand “new one” is reported to be “on”. It pays off then! It also pays, of course, to have a pretty good idea of where to look at certain times, but to save over-taxing the brain (although forecasting should be obvious after forty five years) a “conditions” (expected) chart is pinned up over the RX, next to that list of wanted calls signs, times, etc. and when conditions are reasonably normal it works out.

It looks like:

1. 7MHz: Day and night: Locals up to about 62km.
 Night: Locals up to about 196km.
2. 3.5MHz: Dawn: Europe up to 621km. N. Africa? Oceanica?
 Night: Local, Europe, and N. America?
3. 7MHz: Dawn: Oceania, N. America, S. America, C. America, West Indies.

QSL from KP6AA heard in 1947, received 1961!

Dusk: N. and S. Africa, M.E. India, F/East, Oceanica.
Night: N. America, C. America, W. Indies, S. America?

14MHz: Dawn: Oceania, N. America (+ West Coast?), S + C. America, W. Indies.
Night: N. America, + W. Coast.

21MHz: Similar to 14MHz.
Day: Could be similar to Dawn, although Pacific more likely?
Dusk: S. Africa, N. America, S. America, C. America, W. Indies.

The new bands have not been monitored, and I am unaware of conditions as 80 per cent of my listening done on 14MHz, particularly c.w. 14MHz is an outstanding band, especially at dawn and sunset — when conditions are good!

Conditions were good on one night only, and three others, when trying out the broadcast bands for a change. Two South American countries not heard before 20 years, came through, both on 11MHz, around 2330UTC. A woman announcer speaking in Spanish (it could have been from anywhere) said the word “Mexico”, and the station played harp music (only) for about a solid hour. Luckily I stayed awake with help from five pipes of tobacco, and equal amounts of coffee, and it payed off when the announcer came up at 0001 with the Spanish equivalent for “this is Radio Mexico”.

On checking the details in the World Radio TV Handbook, they were on 15.385MHz (not 11MHz) between 0001 and 0100 in March, only using 10kW. The second “wanted” was found, after a search, due to the Argentine being exceptionally strong I.F. of the 11MHz band, which led one to think that there may be some weaker, usually more difficult to hear stations coming in, and there was Paraguay was on 11.915, at 2145UTC and gave their ident at 2215, in January. They were on for three nights...
only with their 40kW, and have not been heard since.

A third exciting time was hearing New Zealand. A pal phoned to say they were reported on 11,820kHz at 0900UTC, and they were. They were tape recorded, as were Mexico and Paraguay, but the tape playback was so grotty it was erased (what a fool) so that another, better recording could be made tomorrow. They were not there the next day, or the next, and were not heard again for another ten years! The programme was being beamed to Australia, using only 7kW, so I am almost certain but the recording was OK this time, S7/5, and they kind sent a QSL card and pennant.

Since beginning this "time shoot" I have heard that someone has heard 190 broadcast countries, so I must be satisfied with the 120 on tape here, and keep on the amateurs, as it can't be easy to hear another 70 broadcast countries during the next few years.

The radio "bug" really bit whilst flying, and became almost the sole interest (which is socially wrong) when using that battery receiver between 1946 and 1960. This has been adjusted since by amateur radio being now one of several hobbies, albeit the principal one.

It is impossible to give up listening for too long, for the fear of missing something; the recent August and September Market Reef and Mount Athos DXpeditions for example. If predictions are broadcast that short future conditions are to be duff, and no "specials" coming up, it is relaxing to have a few days off from hearing the headset. The speaker is only used when keeping an ear open, for something to crop up, from another room, when making the tea Future details are via Radio Berlin International, currently every second Monday on various "can't-be-missed" frequencies at 1515, 1645 and 1815UTC (and later times).

VERON, the Dutch Radio Society give wonderful DX news in English, every Friday at 1745 and 1945UTC on 3.600MHz, followed by slow, and fast, Morse practice. Many brand new countries, and expeditions have been heard thanks to their appreciated "DXpress". Probably quite a number of people have passed their c.w. tests, also thanks to VERON.

It is relaxing, at times, to not allow the receiver to become almost the only interest. Secondly, and this impression is rather strange and also welcome going back to the set after not using it for a time almost gives one the effect of listening for the first time. Very refreshing. Using a new, borrowed, or different spare receiver produces the same feeling — for a time.

The point of having a rest from the R-600 had almost been reached when VERON, and two know DX nets of s.s.b. and c.w. said the following stations should be coming on in August and September. CZ1NT FR6ES/J, JD1 (Minami Torshima, or Ogasawara?) OFOMA (Market Reef) and SV2UA/ SY (etc.) in Mount Athos, and most exciting of all (to me anyway) having been hunting that country for forty years or so, was BR1J, who was heard with a 339 signal working G3VVM on 21.028MHz around 2050BST. A premonition reared its head there, as 21MHz is generally dead here at that time.

All those callsigns mentioned by the DX boys were needed for brand new all time "heards", so the RX was kept warmed up for the two months, but disappointingly only brought in the OFOs, SV2S and the BRI, but they helped to bump up the "score" by three, and most satisfyingly, several hours were spent on the bands fishing instead of gardening.

Reports have not been sent out since around 1965, as it's really easier to tape record them, and the recording can be drooled over anytime later, which is more interesting, I think, for a listener, than just looking at a card which, however kindly sent, just says "TKS RPT 73". One of the last "serious" QSL cards sent was to some first class Indian operators who sent ten days (I believe) on the Laccadive Island, in the Arabian Sea, (Indian Ocean) in March 1961, and as they were continuously searched for on practically all bands for ten days, they weren't identified until an hour before they closed down, at 1730, 25 March 1961, a Saturday.

This is the day I take my YXL shopping, and as they haven't been heard by 1600 my wife was asked if she would mind going shopping alone. Generally sweet natured, this made her become a little hostile towards radio amateurs, thinking of all the shopping to carry home. So we made a pact. I would run her to the shops, leave her for an hour, nip back home until 1730, and then come out and bring her home. The speed limit must have been broken as I whistled back home, and switched on to find that their frequency appeared to be dead. Which was not surprising as not one UK station had been heard calling them during the ten days.

At 1608, W1UJ called them and RAU, with the callsign UV2NRM, came back with UJ8S report, I could hardly believe it, and had to convince myself it hadn't all been a dream, until the day their QSL card dropped through the letter box by Airmail, and a second card via the bureau. This holds pride of place pinned over the RX, flanked by K6AG, a YL school teacher, in Pago Pago, Dorothy, heard at 0608hrs in July 1958, working W6WO on the key, and she was kind enough to send her card confirming my report in ten days, by airmail.

Only one American, now KH6, has been heard from US Samda during the last 29 years, probably due to my bed, at my age, being more attractive than listening at 6am.

The card on the previous page is KP6AA (Palmyra Isl) who crept down the single wire feeder into the battery 1-V-1 on 3 January 1947. A report was sent off that day via the bureau, as his OTH was unknown, but must have gone astray as nothing was heard until 1960, when his home OTH was seen in a magazine.

Another card was sent to this address, and Stephen sent his KP6 QSL, saying "surprised to have a request for my old card after all these years, and happy to say I have a few left". This was in 1961. When mentioning listening is rather like fishing the word "persistence" could have been included. Ten days to find the Laccadives, and fourteen years to receive a card.

Jack Lambert's VP4VD QSL took a shorter time to come in from the Tabagos, where he was the first amateur to operate from the hotel Robinson Crusoe, on the Island, 90 per cent of the cards here are for c.w. reports; a few say "1ks for the first c.w. report", and probably the almost 100 per cent acknowledgments of reports sent out was due to them being in c.w. Many said they were inundated with speech reports from Europe which were mainly useless.

Part Two continues the story.
Circuiigraph Easiwire is the rather cumbersome name given to a new wiring system which does away with soldering. Using the system a beginner should be able to construct circuits using conventional components and the simple tools supplied in the starter kit.

With Easiwire connections are simply made by winding the connecting wire tightly around the pins or wires of each component in the circuit. The connecting wire is carried on a small spool and fed through the tip of the special pen. Each component is held in place by pushing its pins, or wires, through the holes of the plastics matrix board supplied. The holes in the board are tapered and grip the pins so that the components are firmly held in place. The wire is then wrapped tightly around the first pin to be connected, carried across the board to the next pin in the circuit and tightly wrapped around it. This process is continued until the complete circuit has been connected.

Easiwire has several advantages for the beginner. He, or she, can draw the circuit onto a piece of thick card, pierce the holes for the component leads using the tool provided and simply interconnect the component leads following the circuit diagram. This has the advantage of teaching the beginner something about the relationship between the theoretical circuit diagram and the real, practical circuit while reducing the outlay on matrix board.

The components can be used again and again, after unwrapping the wire, as the wrapping process does not damage the components.

Although it may appear to be a form of wire-wrapping it most definitely is not. Wire-wrapping involves cold-welding the wire to component pins which are specially shaped from hard metal so as to cut into the wire. Easiwire just wraps the wire round the leads without any deformation occurring.

Starter kit

The starter kit contains all the tools and basic parts needed to get going with Easiwire. The wiring pen has a built-in wire cutter and carries a reel of wire which feeds through the pen tip to make wrapping easy. A spare reel of wire is provided. A sheet of flexible plastics matrix board is included together with two sheets of double-sided adhesive material which can be used to fix the wire in set positions and hold insulation in place at crossovers. A special double-ended tool is supplied. One end unwraps joints, the other enlarges the holes in the board to allow larger component leads to be inserted. To allow you to connect power to the circuit some spring-loaded terminals and jacks are included in the kit along with instructions on using the system.

Soldering is considered by many readers to be a black art and as a result they are put off trying to construct their own radio gear. Dick Ganderton has been looking at the latest "no-solder" wiring system marketed by BIICC-VERO.

Short Wave Magazine will be producing projects for the beginner which will use this new wiring system to introduce readers to the exciting world of home construction.

With an introductory price set at £15, Circuiigraph Easiwire is being marketed in the UK by BIICC-VERO Electronics, Flanders Road, Hedge End, Southampton SO3 3LG, Tel: (04892) 88774.
SOLDERLESS WIRING

Construct your electronic circuits the new, quick and easy-to-learn way, WITHOUT solder: with Circuigraph Easiwire from BICC-VERO

With Easiwire all you do is wind the circuit wire tightly around the component pins. No soldering, no chemicals, no extras, simplicity itself. Circuits can be changed easily, and components re-used.

Easiwire comes in kit form. It contains all you need to construct circuits: a high-quality wiring pen with integral wire cutter, 2 reels of wire, a tool for component positioning and removal, a flexible injection moulded wiring board, double-sided adhesive sheets, spring-loaded terminals and jacks for power connections and an instruction book. Of course, all these components are available separately too.

To take advantage of the special introductory offer, complete the coupon on the right and send it to:

BICC-VERO ELECTRONICS LIMITED,
Flanders Road,
Hedge End,
Southampton, SO3 3LG

Please rush me Easiwire kits, retail price £18:—.
special introductory offer £15:— (includes p & p and VAT).
I enclose cheque/postal order for……….., made payable to BICC-VERO Electronics Limited
Please debit my credit card as follows:

Card Number
Expiry Date
Name
Address
Signature

or phone 04892 88774 now with your credit card number (24-hour answering service).

swm
INTRODUCTION TO DX-TV

Keith Hamer and Garry Smith

Frequencies Affected

Sporadic-E propagation affects frequencies well into the v.h.f. spectrum. This includes TV channels in Bands I and II which are allocated between 40 and 100MHz. Much of the reception takes place on channels below 70MHz, but during intense openings the m.u.f. (maximum usable frequency) can rise sufficiently to permit the reception of the v.h.f. f.m. radio band and even the 144MHz amateur radio band.

Extreme Distances

Sometimes Band I reception is possible from countries located outside the European area and it is not uncommon to find transmissions from the Middle East mingling with ones from Yugoslavia. In fact, many experienced enthusiasts delight in an opening to the south-east in the hope that something further afield will appear. The same remarks apply to openings to Spain and Portugal.

Double-hop Sporadic-E is usually responsible for the reception of stations situated in the Middle East because there is a tendency for them to appear during the reception of countries located at roughly half the distance. However, one theory suggests that double-hop Sporadic-E is not always responsible and reception could be caused by a combination of single-hop Sporadic-E and tropospheric propagation. This theory is supported by the fact that throughout the Mediterranean area, tropospheric enhancement exists for many months of the year.

A classic example of reception via a combination of propagation modes is thought to have occurred from Zimbabwe. For several years, either side of the solar peak, repeated loggings of the channel E2 transmitter at Gwelo became possible by a process due to trans-equatorial propagation (t.e.p.) and Sporadic-E ionisation. Trans-equatorial skip is usually limited to a region within 40 degrees above and below the equator but in this particular instance the t.e.p. signal arriving in the Mediterranean area was then propagated by Sporadic-E ionisation, before finally descending in the UK. A photographic example of such reception is shown in Fig. 2.

DX reception isn't always confined to the lowest channels in Band I either. In 1971, one DXTV enthusiast in the UK received signals on Channel R3 from a Russian transmitter at the coastal city of Baku on the Caspian Sea. More recently, Finnish DX enthusiasts have encountered f.m. radio broadcasts from Iraq during intense Sporadic-E openings.

Sporadic-E reception from countries much further afield has been known and exotic locations such as Dubai, Iran and Saudi Arabia have all featured in DXers' log-books over the last three years. A few years ago, West Indian signals were logged in the UK, although their exact origin still remains a mystery. On another rare occasion, a Brazilian station operating in Band I was noted in the Netherlands, a distance of approximately 10,000km. Fortunately its location was successfully traced by a studio caption.

Fig. 2: The chessboard test card transmitted from the Gwelo transmitter in Zimbabwe. The signal was received in the UK via a combination of trans-equatorial and Sporadic-E propagation.

Fig. 1: Map showing the locations of some of the more distant transmitters received during Sporadic-E openings in the UK.
being aired at the time. It is worth noting that the two dramatic instances quoted previously were witnessed by experienced enthusiasts who were diligent enough to spot something unusual during what may have appeared to others as just an ordinary opening.

Transatlantic DXTV Reception

On less frequent occasions, transmissions from North America and Canada have been successfully resolved. Two instances of TV reception from across the Atlantic occurred in 1967, during June and July, when 525-line signals in Band I were observed at several locations throughout the British Isles. On the latter occasion, the signals were extremely weak but one DXer managed to resolve them using a fixed loft antenna which was facing east! Openings on the 50MHz (6m) band from across the Atlantic were also very much in evidence during both those openings. Similar 50MHz activity was present on other dates too, but there were no reports of 525-line television pictures being received.

One possibility suggests that the m. u. f. was insufficient to propagate signals from the lowest 525-line TV channel (A2), which has a vision frequency of 55.25MHz and a sound carrier 4.5MHz higher at 59.75MHz.

When one considers that reception from distant countries in the Middle East, such as Jordan, Syria and even Iran, has been relatively commonplace during the past few seasons (especially 1967), it is fair to assume that reception from North America or Canada should stand a similar chance of being received. Upon examining the map, the distances involved are very similar and there are a fair number of Band I 525-line stations in operation on the eastern coast of Canada and the USA. Another reason for fewer reports of TV reception from across the Atlantic may be the fact that most DXTVs direct their arrays towards the Continent and are therefore less conscious of signals approaching from the west.

Recognising 525-line Signals

Receiving a 525-line signal seems to be the dream of most DXers (on this side of the Atlantic, of course) mainly because it signifies a genuinely exotic example of DX reception. Recognising a 525-line signal can be a problem because many enthusiasts are not quite sure what to look for. There used to be a widespread belief that the horizontal hold control would require adjustment to compensate for the difference in the number of lines. However, this is not the case. The frequency of the line oscillator needs to be run at roughly the same rate, namely 15.625kHz in the case of a 525-line transmission and 15.75kHz for a 525-line signal. In practice, the flywheel sync circuitry compensates for the slight difference in frequency. So, how do we recognise a 525-line signal?

The chief difference lies not with the number of lines, but with the field frequency. All 525-line signals have a field frequency of 50Hz, a frequency which is governed by the public electricity supply. In the USA, and other areas, where the 525-line is used, the electricity supply is 60Hz — the field frequency of the 525-line system being the same. When a 525-line signal is received, the picture rolls vertically at quite a rapid rate. This is usually the first indication of such a signal. The rolling can be cured by re-setting the vertical hold control, but normally the picture amplitude or height is then insufficient, caused by the field timebase operating at a different frequency. The height can be adjusted to compensate for this, but the gaps at the top and bottom of the picture make the signal more authentic. On strong 525-line DX signals, the frame timebase may be tolerant enough to lock on to the different frame sync pulses without adjustment. Indeed there are a few receivers designed without provisions for frame hold adjustment. Note that some of the more modern multi-standard designs will compensate for the difference in amplitude automatically, once the timebase recognises the different sync-pulse rate. For DX work, this can only cause confusion!

In certain South American countries, 50 and 60Hz electricity supplies can be found. Venezuela is one example and a combination of 525-line and 625-line TV systems are in operation. The 625-line system used for television has the same parameters for vision bandwidth and sound spacing as the 525-line system to ensure compatibility with shared channel allocations. The systems are N and M respectively. Unfortunately a System N signal would not be as easily recognised as a System M one would be, unless the accompanying sound channel with its 4.5MHz spacing could be monitored, or some visual means of identification was possible — such as captions, etc.

Antennas for Band I

We mentioned in Part 9, that a very simple antenna system, such as a dipole, could be pressed into service for initial experiments with Sporadic-E propagation. The majority of Continental high-power transmitters favour horizontal polarisation in which the receiving antenna has to be mounted "flat" or horizontal. Consequently it is recommended that the dipole should be so positioned.

Occasionally, a polarisation change takes place en route and signals which started out life as horizontally polarised arrive at the receiving site as vertical ones. Surprisingly, many enthusiasts rely solely on an array mounted horizontally, but an additional antenna such as a dipole mounted vertically, could prove advantageous when polarisation changes do occur.

A dipole mounted vertically will respond to vertically polarised signals arriving from all directions (Fig. 3), but with a dipole mounted horizontally, maximum signal pick-up occurs when it faces the transmitter (Fig. 4). With any horizontally mounted antenna, some method of rotating it is essential in order to obtain the best reception. If the dipole is mounted on top of an alloy pole, some method of manual rotation can be devised, although for convenience an electric rotator is best.

Better Antennas

Once addicted to the hobby, most enthusiasts can't resist the temptation of installing a more elaborate means of collecting signals. Band I arrays of
Fig. 5: Antenna dimension data for constructing a 3-element Band I antenna.

3-elements or more are quite common among enthusiasts as they possess a number of advantages over a dipole.

The addition of a reflector behind the dipole and a parasitic elements, known as a director, in front of the dipole increases the gain of the system, in simple terms, its “pulling” ability from a more specific direction. The gain of a wideband array will exhibit a lower overall gain than an array cut for single channel operation because of its compromise performance over a wider range of frequencies. Although adding more directors will enhance the gain and directional properties of an array, Band I antennas with elements in excess of five are seldom encountered. Antennas with more than five elements are available, but their sheer size may be a problem and they could attract unfavourable comments from neighbours. The improvement in directivity is perhaps the greatest advantage of using a multi-element Band I array because unwanted co-channel signals from other directions can be significantly reduced or eliminated completely. However, an antenna which is too directional could easily become a disadvantage in most DX applications because the operator would probably be unaware of other signals arriving slightly off beam. The same remarks apply equally to its front-to-back ratio. Some of the commercially-produced channelised arrays have a multi-element reflector assembly designed to reduce signal pickup from the rear. This is fine if it is used in domestic reception applications where a co-channel transmission to the rear might cause interference. For the DXer, such a design might be a disadvantage in the same way that a highly directional antenna would be. In the UK, for instance, a DX signal picked up from the rear of the antenna would be welcomed with open arms because it means it would have come from an “exotic” source.

Availability

When BBC1 and ITV programmes became duplicated on UHF in November 1969, there was little incentive for manufacturers to continue the production of Band I TV antennas for the UK. Of course, there was an export market, but such antennas were only produced in small quantities. Today you’ll be lucky to find a British manufacturer still producing them.

Fortunately, specialist manufacturers, such as those engaging in amateur antenna construction, can nowadays be of assistance in supplying suitable antennas for Band I reception. Apart from the traditional multi-element array at least one manufacturer is offering a Band I quad-driven Yagi of enormous dimensions.

DIY Antennas

It is a relatively easy task to construct your own multi-element antennas to cover Band I channels E2 to E4. Suitable half-inch diameter alloy tubing can be obtained from most metal stockists; the necessary hardware such as weatherproof dipole junction boxes and suitable element clips are also available.

The spacing between the parasitic elements should be between 0.1 and 0.15 wavelengths to achieve optimum gain. A greater spacing between the elements results in a better impedance match, but at the expense of gain. If closer spacing is used the centre impedance of the dipole will fall considerably and create problems with matching. Using a folded dipole assembly will compensate for this, but constructing one might be difficult unless you happen to have access to tube bending equipment. Suggested dimensions are shown in Fig. 5.

Semi-wideband Arrays

The measurements for a semi-wideband array are also shown in Fig. 5. Due to its smaller operating bandwidth, this type of array offers an improvement in gain over a wideband design having a similar number of elements. This particular type of array was designed by Ray Davies and Clive Atheroe of Norfolk some years ago in order to improve signals received from Belgium and the Netherlands on a daily basis without restricting its use to any particular Band I channel.

Channelised Arrays

The gain of the system is often considered to be the least important aspect because most signals received via Sporadic-E propagation are anything but weak. However, the increased gain is an important factor if you wish to concentrate on monitoring an extreme fringe Band I transmitter on a regular basis.

Such a transmitter could be Lopik in the Netherlands on Channel E4, this is a signal which can be received on virtually a daily basis, albeit extremely weak, over large areas of the UK. For the reception of specific transmitters, a channelised array is recommended since its performance will...
Automatic Notch Filter

Model ANF stops QSOs being ruined by tune-up whistles. It automatically removes tones within seconds of their arrival on frequency, leaving the QSO in the clean Classy technology, but simple to use and fit.

Price: ANF £67.85 Inc. VAT

To order simply dial 0532 744822 or write with cheque or postal order to

Dept SW Datong Electronics Ltd., Clayton Wood Close, West Park, Leeds LS16 6QE

Access/Barclaycard welcome — Fast delivery service
Catalogue and data sheets on any product available free on request. Dial 0532 744822
be optimised for that particular channel. Some Band I channelised arrays can be obtained with as many as eight elements but bear in mind that some of these may constitute part of the reflector assembly.

Search Antennas

There are times when some means of monitoring an empty band for initial signs of DX reception is desirable. A four element array beamed east should not effectively respond even to strong signals arriving from other directions (the south, for example) and an opening could easily be missed. Besides, most antenna rotators take a minute or more to turn the arrays through 360 degrees and although this may not seem very long, a small Sporadic-E opening could easily come and go!

What is required is some form of "search" antenna system with an all-round or omni-directional response, thus avoiding the need to continually rotate a multi-element array. Various options are available.

For instance, two or more dipoles could be mounted facing different directions and fed to independent receivers enabling several DX signals to be monitored simultaneously. Alternatively a switching arrangement could be considered allowing the output of either dipole to be selected. Another arrangement consists of two dipoles mounted horizontally at 90 degrees to one another. The output can be phased together to provide a system giving omni-directional coverage.

One type of antenna which has successfully been used by enthusiasts for Band I reception is the discone. This particular antenna covers 50-500MHz and is primarily intended for v.h.f. scanner applications.

Another type of antenna which may have possibilities for search applications is

Fig 7: Discone antenna.

Fig 8: Triax UFO active antenna.

the active antenna. One type is enclosed in a small weatherproof plastic housing, features an integral low-noise wideband amplifier and is omni-directional. This is the UFO manufactured by Triax, at only 325 x 255mm it is primarily intended for yachts, caravans, buses and lorries.

Need Help?

The start of the 1988 Sporadic-E season should be with us as this issue of the magazine hits the bookstalls. If there are any newcomers to DXTV who would like queries answered, write to the authors via the Editor enclosing an s.a.e. for a reply. □
A sightseeing charter flight is being organised by Peter Mugridge at Epsom, Surrey for Saturday, November 26, taking off from Gatwick at 7 p.m. and returning an hour later. Route will be Reading, Bristol, Land's End, The Solent, and back via Midhurst or Worthing. Peter is not only a keen aviation enthusiast but also an astronomer; on a Halley's Comet spotting flight he was amazed at how different the view from the windows looked at night when the cabin lights were turned out! The November flight will be around full moon and, with the cabin in darkness, a spectacular view of moonlit landscapes and/or cloudtops is expected. After costs, proceeds will go to the Mary Hare Grammar School for the Deaf, Newbury (Peter is an old pupil). And I might be giving a flight-deck commentary, so come and hear what really goes on during a flight! The aircraft will probably be a Boeing 737 but this is subject to final decision. Tickets shouldn't cost more than £39 and firm bookings are needed in the next four weeks - even though November seems such a long way off - otherwise the flight will not get airborne. Interested? Then write to me at the editorial address (but do not send any money yet) or even 'phone me weekday evenings 01-956 5113 which is also the number to ring if you'd like to visit my museum.

Meet the Team!

This year, Short Wave Magazine and Practical Wireless will be exhibiting at some aeronautical events, June 18 is the date of the airshow at RAF Halton, Wendover, near Aylesbury, Buckinghamshire and Cranfield Aerodrome, Bedfordshire is the venue for the Popular Flying Association's annual fly-in on July 1-3. The magazine's stand will have a selection of aeronautical radio items selected from my collection and I hope to be at both events (Saturday only at Cranfield). See you there?

Frequency Information

The search continues for a comprehensive list of radio navigation aids in alphabetical order of their identity. If a Morse ident is received, then which beacon is it? J. F. Coulter (Winchester, Hampshire) has sent me a cutting from Reed's Nautical Almanac which includes those aircraft and marine beacons within range of shipping.
congestion here was due to apron and not runway capacity; hopefully the extra stands will help. The terminal is accessed from taxiway areas 7 and 8.

Here are the new v.o.r. changes in the 3/88 issue of the Civil Aviation Authority General Aviation Safety Information Leaflet. The Newcastle v.o.r./d.m.e. (NEW: dah-dit, dit, di-dah-dah) is permanently relocated to the airfield but its frequency has changed from 112.05MHz to 114.25MHz. At Glasgow, the old GOW (dah-dah-dit, dah-di-dit, di-dah-dah, 113.4MHz) v.o.r./d.m.e. that was 11 nautical miles SSE of the airport has been withdrawn. The temporary v.o.r./d.m.e. on the airport, ABO (di-dah, dah-di-dit, dah-dah-dah, 115.40MHz) has been made permanent and its identity has been changed to GOW, so be careful! On to Prestwick and the PVK (di-dah-dah-dit, dah-di-dah, dah-di-dah) identity of the v.o.r./d.m.e./d.d.b. (117.50MHz and 355kHz) has been permanently changed to Turnbury (TRN: dah, di-dah-dit, dah-dit). At Barkway a d.m.e. is to be permanently introduced following tests; the v.o.r. is BKY: dah-di-dit, dah-di-dah, dah-di-dah-dah, 116.25MHz. Finally, they've re-introduced the London v.o.r./d.m.e. down here at Heathrow (LON: di-dah-di-dit, dah-dah-dah, dah-dit, 113.60MHz), pilots shouldn't take my word for it; all of the above changes are officially covered by class A NOTAMs.

Flight Plans

In the April "Airband" Chris Durkin (Ormskirk, Lancashire) asked for the London/Australia flight plans of BAW9 and BAW11 (note the new 3-letter airline designators that are now coming in to use). The entire plan is far too long to print here, and in any case, it varies slightly from one flight to the next. The flight is planned via radio navigation beacons when overland; these are connected up by the airways, making the appropriate chart look like the result of a "join-up-the-dots" puzzle. A typical flight plan is computerised these days; additional information could include true and magnetic tracks; time between waypoints (land elapsed total time); distance between waypoints, forecast wind and temperature; fuel requirements; speed information and likely altitude. To avoid the risk of uncontrolled amendments only one copy of the plan is dispatched.

To keep things simple, here is an abbreviated navigation plan for the Speedbird 011 to the first stop on route which this time was at Abu Dhabi, Bapped time depends on wind.

Save over £4 with this Special Book Offer

Only £10 inc post and packing. If you are into aeronautical or meteorological signals then you definitely need this book. It contains detailed descriptions of the World Meteorological Organisation Global Telecommunications system operating FAX and RTTY meteorological stations, and of its message format with decoding examples. Also contains detailed descriptions of the Aeronautical Fixed Telecommunications Network amongst others. Normal SWM Book Service price is £14 plus post and packing. While stocks last.

How to Order

Complete both coupons in ink, giving your name and address clearly in block capitals. Coupon (2) will be used as the address label to despatch your book to you. Send the coupons with your cheque to: Short Wave Magazine Book Offer (June), FREEPOST, Enefco House, The Quay, Poole, Dorset BH15 1PP. No postage stamp is needed. If you wish to pay by credit card (Access, Mastercard, Eurocard or Visa only), please fill in your card number and sign the coupon where indicated.

Available to readers SWM in England, Scotland, Wales, N. Ireland, the Channel Islands and the Isle of Man. Orders are normally despatched within 28 days, but please allow time for carriage. This offer is open while stocks last.

Cut Round Dotted Line

<table>
<thead>
<tr>
<th>Airway</th>
<th>To</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>England</td>
<td>0:00</td>
</tr>
<tr>
<td>Departure</td>
<td>Dover</td>
<td>0:17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Top of Climb</th>
<th>West Germany</th>
</tr>
</thead>
<tbody>
<tr>
<td>UF1</td>
<td>Nattenheim</td>
</tr>
<tr>
<td>UB6</td>
<td>Tang</td>
</tr>
<tr>
<td>UG313</td>
<td>Villach</td>
</tr>
<tr>
<td>UB1</td>
<td>Athens</td>
</tr>
<tr>
<td>UR19</td>
<td>Kea</td>
</tr>
<tr>
<td>UG33</td>
<td>Milos</td>
</tr>
<tr>
<td>UA14</td>
<td>Sia</td>
</tr>
<tr>
<td>UB12</td>
<td>Tans</td>
</tr>
<tr>
<td>B12</td>
<td>El Daba</td>
</tr>
<tr>
<td>B12</td>
<td>Katab</td>
</tr>
<tr>
<td>A51</td>
<td>Luxor</td>
</tr>
<tr>
<td>W726</td>
<td>Haifa</td>
</tr>
<tr>
<td>B54</td>
<td>Hail</td>
</tr>
<tr>
<td>A1</td>
<td>Dharan</td>
</tr>
<tr>
<td>B58</td>
<td>United Arab Emirates, Pital</td>
</tr>
<tr>
<td>G462</td>
<td>Abu Dhabi</td>
</tr>
</tbody>
</table>

| Top of Descent | Sicily |

Hope you enjoyed that little flight of fancy, back to earth until next month.

SHORt WAVe MAGAZINE JUNE '88
Specifications

- **Weight:** 1.7 kg (3.75 lbs) without batteries.
- **Output:** 120 mW (101 THD).
- **Dimensons:** 29.2 cm x 16.0 cm.
- **Direct Button Access:** To all 12 Shortwave Broadcast Bands.
- **Power Sources:** Battery or AC mains adapter.
- **General Coverage:** All AM Bands in LW/MW/SW (Dedicated Broadcast Band Coverage on all Versions) Plus of Course The FM Band for Quality Sound Broadcasts in Headphones Stereo.
- **Sleep Function:** Turns the Radio On or Off After a Adjustable Time of 10-90 Minutes.
- **Separate BASS & TREBLE Controls for Maximum Listening Pleasure.
- **External Antenna Jack for Better Reception.
- **Adjustable RF Gain Control to Prevent Listening When Closing to Other Strong Stations or If There is Interference.
- **New improved wideband filter:** (6/2.7kHz)
- **BFO Control (Best Frequency Oscillator) Enables Reception of SSB/USB LSB (Single Side Band) and CW Mode Coded Transmissions.
- **Illuminated Display to Facilitate Night-Time Use.
- **Designed for Both Portable and Desk Top Use.
- **Five dot LED Signal Strength Indicator.
- **Dimensions:** 23.2 cm x 14.0 cm (11.5 in. x 6.3 in. x 2.36 in.)

Accessory List

- **Hy-Gain:**
 - TH3MK2 2 Element TriBand... £76.00
 - A1824 HEVF 17/12cm Add on Kit... £30.99
 - 20MHz HEVF 20cm Kit... £33.39

- **Tonearm:**
 - TLM32 2 Element TriBand... £56.00
 - TH3MK2 2 Element TriBand... £56.00
 - TB1 MK3 Vertical 25ft High £164.35

- **Amp/Exciter:**
 - TTM32 2 Element TriBand... £56.00
 - TH3MK2 2 Element TriBand... £56.00

- **Weather:**
 - Weather Band Switch

Shortwave Antennas

- **Full range of accessories stocked microphones, SWR meter, DC Leads, Antennas etc.**

Reynolds Pink

- **ICF7600DS** £164

Philips D2999

- **New Production of Much Improved Version Has Just Commenced & Super Value for Money.**

Grundig 650 & 400 Sattellite

- **Mercedes-Benz in Audio Quality Great Sounds/Great Specs/Great Value.**

Vega 206

- **Eight Band Portable Including Tropical Bands**

Vega Selina 216 MKII

- **Complete with Long Range Shortwave Aerial & Earpiece**

Johnsons Shortwave Radio

- **43 Friar St, Worcester WR1 2NA 0905-25740**

- **If you Don't Know What You Want - We've Probably Got It!**

- **OH! AND BY THE WAY, WE ARE A HUSBAND AND WIFE TEAM! NOT ONE OF THE BIG BOYS!**
New Short Wave Service From Morocco

Radio Television Morocaine recently started relaying its international network on short wave. Programmes from Rabat are noted between 1400 and 1700UTC on 17.595MHz. At 1700UTC they switch to 17.815MHz until 1900UTC when they continue until 0100UTC on 11.920MHz. The BBC Monitoring Service reports that English programmes from Morocco also form part of this new international service short wave relay, i.e. between 1630-1800UTC, Monday-Friday. On Saturdays the block is later between 1700-1800, and on Sundays between 1900-2000UTC.

Don't jump to conclusions though because at 1630UTC 17.595MHz in Europe has two stations broadcasting in English top of each other. BRT Belgium is broadcasting a programme towards Africa, and Morocco is trying to do the same in the opposite direction! Let's hope that one of them makes a move before too long.

Contras

Despite the recent accord between the Nicaraguan government and the Contras which started on April 1, the US backed forces have no plans to discontinue their clandestine radio station, Radio Libertacion, believed to be coming from the southern part of El Salvador, continues to operate. A spokesman for the United Nicaraguan Opposition in Washington DC told Short Wave Magazine that the opposition was regarded as humanitarian aid, not military.

US Navy Radar To Move

The United States Navy has decided to move its relocatable short wave over-the-horizon radar system to a new site in the Aleutian Islands. They are located near the Alaskan mainland. In the course of 1989, the experimental radar system will move from its current site in White House, Virginia to Anchitska Island.

Meanwhile the US Airforce has a short wave over-the-horizon radar system up in Maine, in the North-East corner of the USA. Extensive tests of the system were made in January. But judging from monitoring reports, it seems to have done all this testing without causing major interference problems to short wave broadcasters.

Ever since the Russian over-the-horizon radar system caused severe reception problems during its early operations, concern has been expressed that these radars should find a modulation system to make them compatible with other spectrum users. If any reader has experienced what he or she believes to be the new US h.f. radar system, drop me a line.

Satellite Links Now Working

The Boston based Christian Science Monitor news station has established the satellite link to the rock music station KYOI it has bought on Saprion. Between 2200 and 2300UTC the Monitor news programme is going out on 15.405MHz before they return to tapes of soft-rock music.

Radio Canada International's new relay of English programmes via the facilities of Radio Japan is being heard on 15.305 and 17.710MHz with fair signals at 1200UTC. But at 2200UTC the programme is blocked by Radio Sweden using the same channel of 11.705MHz to America.

1000 Years Dublin

Back on St. Patrick's Day March 17, a new station began life in Dublin, Ireland. Run by the public service broadcaster RTE it has a rather unusual name: Radio Millenium. As well as f.m. the new station is also being heard on 1.278MHz medium wave between 0700 and 1300UTC Monday to Friday, Saturday's between 0900 to 1300UTC. Putting the station in the middle of Dublin's largest shopping arcade is seen as an attempt to improve the national radio's visibility in face of the onslaught from local pirate stations.

New Zealand Out of Band

Radio New Zealand have announced a move to a new out of band channel back on Sunday May 1. Between 1830 and 2105UTC look for the 7.5kW transmitter on new 12.045MHz. There has been a lot of talk that the BBC External Services have been talking with both Australian and New Zealand broadcasting organisations.

It is said that discussions are underway to establish a new relay station in the Pacific for the BBC. Signals from the BBC Singapore relay station are not reliable all the year round in the Pacific area.

But don't hold your breath! The press office at the BBC External Services in Bush House told Short Wave Magazine that plans to build the Pacific relay station in New Zealand are in very early stages. So early in fact that they have not yet approached the British Foreign Office for possible funding.

Moscow's Midweek Muddle

We could have foreseen the muddle that happened on the short wave bands between May 1 and 3. All the new schedules from Radio Moscow and the Soviet Peace and Progress station showed that they would be making their summer frequency changes on Wednesday May 4. Everyone else that planned to make adjustments did so on Sunday May 1. The first Sunday in May is traditionally the time to do this, but this year it coincided with the May 1 celebration in the USSR. This must have been the reason for delaying frequency moves by three days, though at the expense of some terrible frequency clashes during that week.

TV5 — Poor Response

The French media report was highly critical of TV5, the consortium of francophone television stations which broadcast to Europe. TV5 isn't as successful as it was hoped suffering from a vague identity, a limited audience, and uncertain financing. The report estimates TV5's viewership in Europe at just 90000 people.

In other development, it was announced on Tuesday that SEPT, France's cultural channel for Europe, has joined the TV5 consortium. SEPT will officially begin transmitting as an independent station when the TDF1 DBS satellite is launched. However there will be no merger of TV5 and SEPT, and idea put forward in the media report. TV5's management has disclosed that a North American version of the channel will be launched in June.

The Moroccan government has granted a license for a private TV station which will broadcast to Morocco on the country's second network and to Africa and cable systems in Europe via satellite. Broadcasts will start next year in French and Arabic.

One part of the service will be unscrambled, mostly in the morning, with Arabic programmes for general audiences. The scrambled portion will consist of films, music and sport, and will be mostly in French. The station will see the Intelsat satellite network and plans to cover francophone West Africa, Arabic-speaking Africa, and Arabic-speaking communities in Europe via cable.

Financing will come from viewer subscription fees which enable one to unscramble the station's broadcasts. The channel will also have to invest about 38 million dollars to repair and extend Morocco's second TV network which isn't being used at the moment.

BANDSCAN

Peter Laughton

INTERNATIONAL

Glenegles Building, The Terrace, PO Box 2002, Wellington
Phone (04) 721-777 Telex NZ 31031 Cables & Telegrams "Radionet"
RDS On Show

The BBC will be holding a special exhibition in London this year at Earls Court between October 1 and 9. One of the highlights will be the official launch of the Radio Data System — a technical development which makes it possible for FM transmitters to carry additional information using a 57kHz subcarrier, and which can be decoded on a suitable receiver as a digital display. You might like to note that SWM will be there too.

French Report

Prime Minister Jacques Chirac recently announced that Canal Plus (which simply translates as “Channel France”) would start broadcasting television programmes to Africa via satellite. The project is being financed at an initial cost of £600,000 by the French Ministry for Co-operation. It is designed to fill the gap in French programming in francophone Africa as well as to offer programmes to Africa’s national TV networks which can either be inserted live or tapped for later use. Canal France will replace France’s current system of sending video cassettes to TV networks. Besides being a rather slow method of distribution, France only sends 5000 hours of cassettes to Africa a year, exclusively in French.

West Germany, on the other hand, supplies 12,000 hours of five language channels to the same continent, and the US Information Agency’s Worldnet has been broadcasting via satellite to six African nations since October of last year.

Mr Chirac said Canal France will carry a variety of programmes, including films, cultural magazines, news and entertainment programmes, produced essentially by France’s public television stations.

The French government has also agreed to provide 1000 hours of French programmes to help fill the gap in African TV stations, as well as African TV stations in France, as well as African TV stations in France, as well as African TV stations in France, as well as African TV stations in France.

Initially it will broadcast eight hours a day via the last available channel on the Intelsat V satellite. Reception by home dishes isn’t envisaged — it is mainly broadcasting stations that will have the necessary equipment.

The private French television channel, Canal Plus, has also shown interest in broadcasting via satellite to Africa. It is investigating the prospects of broadcasting its so-called Canal Plus Afrique programme via satellite as well as obtaining local partners in Africa to rebroadcast its transmission on local or national TV networks. The French Ministry for Co-operation has not ruled out that Canal Plus could use its satellite channel to transmit to major cities in Africa. However, the ministry hastened to add that this would only be on a temporary basis.

Canal Plus has another plan though. It has applied to use one of the four available channels on the TDF1 direct broadcast satellite, scheduled to be launched later this year, to broadcast a scrambled channel in German in conjunction with a West German group. This will try to rekindle the interest in individual home dishes which has been severely hit by the failure of the West German direct broadcast satellite a few months back.

Radio France International Cuts Back English

Meanwhile, a report was recently presented to the French government concerning France’s foreign media policy. It congratulates Radio France Internationale France’s external radio service, on the progress it has made since 1982. But it also levels criticism at RFI’s technical backwardness and its limited audience outside Africa. It says RFI should be heard throughout the world as soon as possible, adding that its development strategy should focus on Asia.

RFI started broadcasting in Arabic to North Africa at the end of March, but has cut back in the number of English bulletins. Some early morning news broadcasts have been cut. You can now hear short news programmes at 0315 on 9.700, 11.700 and 11.670MHz (amongst other channels) and at 1245 UTC on 20.645, 15.155 and 11.670MHz (amongst others). At 1600 UTC “Paris Calling Africa” has been dropped as a title. The new RFI schedule calls the 60 minute segment on 6.175MHz “Paris Calling the World”, but they don’t refer to this on the air.

RFI still get my award for “most confusing programme schedule”. All the abbreviations on the charts are only in French. If you haven’t got a dictionary, then, it appears, that is too bad!

I recall reading in the monthly journal of the World DX Club that an RFI listener in London received several hundred RFI programme schedules at once last year. All were individually sent through the post thanks to a computer error in Paris. I wonder if they solved the problem?

Sunspots Number Rising Faster Than Expected

Several reports have been circulating that the sunspot cycle is doing some strange things. The source of the news items turns out to be Patrick Macintosh of the US National Oceanographic and Atmospheric Administration. Dr Macintosh feels that the new solar sunspot cycle is rising surprisingly fast and it might reach its maximum earlier than had been expected. He bases his findings on two primary considerations.

First, the average sunspot number, as well as the solar flux measured at 2800MHz, are rising much faster than most 11 year solar cycles observed this century. Dr Macintosh has also been analysing the rate at which sunspots are increasing. This also appears to be moving up rather fast.

Second, there is some interesting data surrounding so-called solar filaments. These are masses of gas suspended above the sun’s surface by magnetic fields, and from the earth they appear as dark thread-like structures on the solar disk. Solar filaments usually show a tendency to migrate to the poles of the sun as the solar cycle progresses towards the maximum, but this is currently happening much more rapidly than would be expected at this point in the cycle.

Overall Macintosh believes that the rise to maximum has been advanced by at least a year. If he is right, then we should see the high sunspot figures appearing in the first quarter of 1990, and even as early as the end of next year.

There is similar thinking in Australia, though here in Europe many observatories are still putting the solar maximum around May of 1991. Short wave broadcast stations are following the developments closely. High solar activity means that the higher frequencies of 17 and 21MHz start to perform much better, and that in turn alleviates the chronic congestion on lower frequencies. There is a trade-off though. Higher sunspots usually lead to an increased chance of sudden ionospheric disturbances, where short wave reception can disappear without warning for several hours at a stretch.
There is, as they say, good news and bad news. Luckily the good news is better than the bad. First the good news. The Shuttle programme is still on schedule for resumption in August and the new weather satellite, NOAA 11, is due for lift-off on July 16.

The bad news is that we are unlikely to see another amateur on board the shuttle in the foreseeable future. Although Tony England (W0ORE) and Owen Garnott (W5FLF) thrilled the world-wide amateur fraternity with their 144MHz band contacts and slow-scan TV, the sad fact is that as the schedule stands there are no licensed amateurs currently on the roster for the next series of shuttle launches.

That aside, let's go back to the good news. The NASA staff at Kennedy Space Center, KSC, are "buzzing". Despite what the newspapers may say, the morale is high and everybody is getting excited about the programme continuing. The three shuttles, Discovery, Atlantis and Columbia are on the site being prepared and, barring hitches, Discovery will be the first to resume operation. At the time of writing, the newly designed O-rings have been successfully tested at Morton Thiokol's Watertown facility at Utah and the planned date for the launch of mission STS-26 is August 4.

The mission will be commanded by Captain Frederick Hauck, he and the rest of the crew have all flown before. They are Pilot Richard Covey and Mission specialists John Lounge, George Nelson and David Hilmers. The prime object of STS-26 will be to not only to test the modified launcher and shuttle (the improved safety features such as escape hatches that can be detonated), but also to launch a new Tracking and Data Relay Satellite; TDRS-C.

Discovery will lift-off from Pad 39-B at Cape Canaveral and go into a 296km high, circular orbit inclined 28.5 degrees to the equator on a four-day mission. Dick Young at KSC's Press facility has confirmed that the two u.h.f. frequencies used for communication, 259,700 & 296,800MHz, remain unchanged. NASA is not the least bit concerned that these frequencies are published, nor that enthusiasts listen-in. Indeed, he seemed somewhat puzzled when I (as a Brit used to the attitude of the UK government) asked if they minded. The USA, of course, has a very different attitude to open government and anyone visiting KSC will be bowled over by the openness. Imagine the British Government opening up one of its major scientific establishments to tourists. This is probably the best free show in Florida.

However, you are now faced with an interesting anomaly. NASA say by all means tune-in to the shuttle communications, the British Government via the Wireless Telegraphy Act say "don't you dare." It is just another example of how absurd the situation in Britain is and surely one must question whether the government has any legal or indeed moral right to stop anyone from listening to extra-terrestrial communications. For example, when my book, Scanners 2, came out, there were several raised eyebrows about the inclusion of the FLTsacom (FleetSatCom) frequencies. These are a series of American Geostationary Military Communications satellites and the reason I was happy to publish was quite simply that the American Government themselves make no secret of the frequencies. Indeed NASA issued quite a detailed press release about the satellites on the 4 December 1986.

New Weather Satellite

Anyway, if you follow the advice in my series on getting started on weather satellites you will now be in a position to...

NOAA-11, due for launch on July 16, features emergency beacon tracking equipment and scientific equipment some of which is British.

Peter Rouse GU1DKD

On a recent visit to the States, Peter Rouse was fortunate enough to visit the Kennedy Space Center. This report was filed on his return.
ture-in and get ready for the new bird, NOAA-11 (she only becomes NOAA-11 once she's successfully in orbit). NOAA-11 will replace the early morning/afternoon vehicle, NOAA-9 which now has problems showing up on some equipment particularity on the power supply and microwave sounder channels 1 & 2 which have both totally failed.

NOAA-11 will have a big advantage over NOAA-9 in that the overhead time will be earlier (140am and 1.40pm approximate equator crossing). Naturally, this should mean that better pictures are obtained in the winter because light levels will be better at this time of the day than they are in the middle of the afternoon.

NOAA-11 will carry some British equipment and is due to be launched on May 18 using an Atlas-E ballistic missile modified for more peaceful applications from the Vandenberg Air Force Base in California.

In addition to the usual visible image and near-infra-red pictures, she will also carry equipment for SarBE/Cospas, the joint Emergency beacon locator system operated by the USA, France, Canada and Russia. NOAA-11 will join five existing satellites providing reception of signals on 121.5, 243.000 and 406.000MHz. These are the frequencies used by emergency locator beacons on aircraft and ships and include such devices as ELTs, EPIRBs and SARBEs. The reception of a signal on any of the frequencies causes an alert signal to be transmitted to a ground station with an approximate location. From then on, search aircraft using more localised d.f. methods can home-in on the beacon.

NOAA-11 also carries a number of scientific measuring instruments and although the data provided by these will not be of interest to most weather satellite enthusiasts, it is interesting to note that there is British participation. This consists of a three-channel sounding unit designed to measure the temperature of the stratosphere.

Communications and Data Handling

NOAA-11 will take up the frequency of 137.62MHz, which is currently used by NOAA-9. Recent NOAA bulletins have hinted that the satellite may simulcast on the NOAA-10 frequency of 137.50MHz as well. There is, of course, no reason why it should not, the two vehicles will be well separated by the earlier pass time that NOAA-11 is going to use. The big advantage will be that unmanned ground stations will no longer need to employ scanning receivers to record passes from both satellites.

S-Band real-time transmissions again take up frequencies vacated by NOAA-9, 168MHz and 170MHz.

The full list of both uplink and downlink frequencies are shown in Table 1.

<table>
<thead>
<tr>
<th>Link</th>
<th>Carrier Frequency</th>
<th>Information Signal</th>
<th>Baseband Bit Rate</th>
<th>Modulation</th>
<th>Sub-carrier Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command</td>
<td>148.56MHz</td>
<td>Digital commands</td>
<td>1kbps</td>
<td>Ternary frequency shift keyed (f.s.k./a.m.)</td>
<td>8, 10 & 12kHz</td>
</tr>
<tr>
<td>Beacon</td>
<td>137.770 & 136.77MHz</td>
<td>HISS, SALT, MTSU, SALT/2 SSM, IIS, spacecraft altitude data, time code, housekeeping telemetry, memory verification, all from TIP</td>
<td>832kbps</td>
<td>Split-phase phase-shift keyed p.s.k.</td>
<td></td>
</tr>
<tr>
<td>VH Modem</td>
<td>137.500 & 136.820MHz</td>
<td>Medium-resolution video data from AVHRR</td>
<td>2kbps</td>
<td>a.m./f.m.</td>
<td>2.4kHz</td>
</tr>
<tr>
<td>S-band real time</td>
<td>1689 or 1707MHz</td>
<td>High-resolution AVHRR & TIP data</td>
<td>665.4kbps</td>
<td>Split-phase p.s.k.</td>
<td></td>
</tr>
<tr>
<td>S-band real time</td>
<td>1698, 1702.5 MHz</td>
<td>High-resolution AVHRR data from MRR, medium-resolution AVHRR data from MRR, all from TIP</td>
<td>2.6616Mbps</td>
<td>Randomised non-return to zero p.s.k.</td>
<td></td>
</tr>
<tr>
<td>Data collection (uplink)</td>
<td>401.85MHz</td>
<td>Earth-based platforms & balloons</td>
<td>400bps</td>
<td>Split-phase p.s.k.</td>
<td></td>
</tr>
<tr>
<td>S-band playback to European ground station</td>
<td>1698, 1702.5 or 1707MHz</td>
<td>TIP data recovered from tape recorders</td>
<td>332.7kbps</td>
<td>Split-phase p.s.k.</td>
<td></td>
</tr>
<tr>
<td>S-band contingency & launch</td>
<td>2427.5MHz</td>
<td>Burst during ascent & real-time TIP in orbit</td>
<td>64.6kips</td>
<td>TIP in orbit</td>
<td>2.63kbps</td>
</tr>
<tr>
<td>S-band contingency & launch</td>
<td>2427.5MHz</td>
<td>Burst during ascent & real-time TIP in orbit</td>
<td>16.64kips</td>
<td>TIP in orbit</td>
<td>8.33kbps</td>
</tr>
<tr>
<td>SAR L band downlink</td>
<td>1544.5MHz</td>
<td>Data transmission from SAR & SARP to ground LUTs</td>
<td>300MHz (video)</td>
<td>p.m.</td>
<td>2 rad peak</td>
</tr>
<tr>
<td>SAR uplinks</td>
<td>SARP + 215.5</td>
<td>From ground ELT/EPIRBs to spacecraft</td>
<td>24kHz for 125.5MHz, 4kHz for 243MHz, 400bph & 406MHz</td>
<td>p.m. for 125.5MHz, p.m. for 243MHz, p.m. for 406MHz</td>
<td>25kHz for 125.5MHz, 4kHz for 243MHz, 400bph & 406MHz</td>
</tr>
</tbody>
</table>

* Uplink to the satellite

Behind all the scaffolding and covers, Columbia is readied for her next mission which will be in 1989.
WEATHER SATELLITE RECEPTION

Peter Rouse

This time we look at a crossed dipole with integrated line-powered amplifier which not only provides good reception of the v.h.f. weather satellite signals but, with only slight adjustments, can also be used for UoSAT.

The standard crossed dipole arrangement has been published many times and although the antenna is adequate, it does present several problems both in terms of matching to standard cable and in the sheer mechanics of assembling a lightweight and robust antenna from materials that are easy to obtain. For serious weather satellite reception a masthead pre-amplifier is essential and so the design presented here integrates the antenna and pre-amplifier and in doing so does away with the clumsy matching that is usually employed. It also uses readily available materials and excluding the electronics and cable, all the parts for the prototype were bought, new for less than £6. Even so, the finished product is a very professional looking antenna.

The reason we need to use a crossed dipole is that signals from the satellites are phased for circular polarisation, right-hand in the case of the weather satellites, left-hand for the UoSATs. This is to overcome the polarisation problem that can occur as the satellite makes a pass, in other words the polarisation of the satellite’s antenna will change in relation to the polarisation of your own antenna during the course of a pass.

Antenna Construction

One point that is rarely mentioned in articles dealing with crossed dipoles is that ideally a non-metallic boom should be used to obtain the near-perfect circular polarisation. The easiest way to overcome this is to use a section of standard pvc electrical conduit. It is readily available and is inexpensive. However, it is not very rigid and so some form of stiffening is required. The easiest way to overcome this is to reinforce it with a piece of dowelling of the same length. It could be argued that just one dowelling could be used for the boom but the problem with wooden booms is that they need to be heavily varnished and the varnish needs to be recoated at regular intervals to protect the wood and keep out moisture. There is a standard 20mm size in round conduit and its internal bore is a fraction over 16mm. Quite by coincidence, a standard size for wooden dowelling is 16mm and the dowel fits nicely inside the conduit. All that is needed is a liberal coating of impact adhesive on the wood before it is inserted. The ends should be sealed up to keep rainwater out and this can be done with any suitable sealant, even car body filler paste. It is worth noting by the way that this type of boom is also excellent for other antennas needing non-metallic booms, helical types being just one example.

For the actual antenna you will need to obtain a pvc, 4-way, surface, junction box with lid and rubber gasket and at least five metres of round conduit and these can be obtained from electrical suppliers or the bigger d.i.y. stores (the conduit is usually sold in 8-metre sections). However, one word of caution, you must use white conduit. Boxes and conduit are made in black, but the graphite used to dye the pvc can affect the characteristics of the antenna. You will need to drill two holes in the base of the box. One should be in the centre and big enough for a No. 8 wood-screw, the remaining one is for the feeder.

Cut four pieces of the conduit to a length of 580mm (this is sufficient length even for the airband version), and then glue them with pvc adhesive into the junction box outlets. Smear a liberal amount of impact adhesive onto the top of the boom and screw the junction box into place. The glue, when set, provides a seal to keep water out of the wood and also stops the box from spinning loose.

For ease of manufacture, the p.c.b. is etched in the square shape shown. However, to fit into the conduit box it has to be trimmed and filed to shape with corners cut off and cut-outs for the conduit box screw pillars (see photograph). You will need four lengths of stiff wire (preferably silver coated or tinned copper wire), these must be cut so that when they are soldered to the pads on the p.c.b. they give the required dipole length.

Antenna Construction

The aternna is a standard crossed dipole, often referred to as a "Turnstile". It is omni-directional (not evenly distributed gain though, as the response tends more towards a square with rounded corners) and has circular polarisation. To achieve this polarisation, the first set of dipoles are fed with a signal from a second dipole. This signal has to have a phase difference of 90° and this is achieved by using a feeder section that consists of 75Ω cable. The length of this cable is calculated by taking a quarter wavelength and multiplying it by the velocity factor of the cable. A typical velocity factor for solid dielectric cable (v.h.f. f.m. radio type) is 0.66 and by multiplying the true quarter wave by this figure (note that the figure shown for the antenna itself includes what is known as the correction factor) you arrive at the length for the phasing section. Because of the rather cramped confines of the conduit box used in construction you will need to use the thinner v.h.f. type cable rather than the thicker u.h.f. low-loss type.

The resulting feed point impedance is around 35Ω and usually a quarter wave section of 50Ω cable is normally used to provide a 85Ω feed point which is considered near enough a match for a 75Ω feed cable. In this instance, no matching section is required as the necessary match is provided by the input to the pre-amplifier and standard 50Ω cable is used for the feed.

The pre-amplifier is a conventional arrangement consisting of a BF981 m.o.s.f.e.t. with input/output matching and direct connection to the first pair of dipoles. The transistor was chosen for its very low noise characteristic at v.h.f. and the two transformers are pre-wound Toko types (MC111 4 25T + 1 25T). The 12 volt d.c. for the pre-amplifier is fed up the coaxial cable and the two chokes L1, L2 provide the d.c. path to the circuit whilst ensuring that the output v.s.w.r. is not unduly affected. These chokes simply consist of 4 turns of pvc covered wire on a small ferrite ring.

In most instances it should be possible to power the pre-amplifier with just a simple modification to the receiver. If the connection between the antenna socket and receiver circuitry is broken into and a capacitor inserted to isolate d.c. from the receiver circuitry, then the receiver’s d.c. supply can be fed to the antenna input socket via a 1µH choke with de-coupling capacitor. Alternatively a simple power supply could be used and this can be housed in a small case with input/output sockets.

The p.c.b. is double sided, not only to ensure stability but pads are provided on the top side for connection to the antenna elements. Note that holes are provided for through connections to connect the pads with the track-side of the circuit board. Where possible the components connected to ground should be soldered both sides of the board.
The braid from the phasing section must be insulated so that when the cable is soldered to the lower side of the p.c.b., it cannot come into contact with the tracks. With the feeder cable threaded through the junction box and the connected, the phasing section is inserted into the conduit carrying element "C". The element wires are now inserted into each conduit and the ends soldered to the top pads on the p.c.b.

Once the antenna has been tested and the pre-amp tuned-up, the ends of the conduit will have to be sealed and this can be done either with corks or rubber bungs. It will also be necessary to use some kind of sealant such as mastic, silicone rubber, glue or even Blu-Tack on the cable entry points, the box lid and the screws that hold it down.

Alignment and Tuning for Other Bands

The input/output matching circuits are simply tuned for best signal-to-noise ratio prior to installing the antenna. Rough tuning can be done with the two trimmer capacitors and the coil slugs can be used for final tuning and both circuits should be re-peaked until no further improvement can be made. In the case of the weather satellites, if a signal source is available then optimise the circuitry for 137.55MHz. For UoSAT reception you will need to swap over connections B and D and peak the circuit for 145,825MHz. Tuning should be done with the antenna well away from any metallic objects and ideally should be done outdoors and not in the shack. It is also best to tune-up with the antenna connected to the full length of feeder that is going to be used.

In all instances there should not be any sharp nulls when the antenna is rotated. If this is the case, then the phasing section is not the correct length and you may need to trim it (do note the earlier comments though that gain is not exactly the same in all directions). If the velocity factor of the cable is not known, then it is probably a good idea to start with a longer than estimated length and cut by a few millimetres at a time until all nulls disappear. It is worth noting by the way that by deliberately mis-phasing it is possible to create a highly accurate d.f. antenna. Careful pruning of the phasing section can produce an antenna with one very sharp null in only one direction (there will be a less pronounced null opposite). If the circuit shows any signs of instability (oscillation) then two cures are possible. The first is to screen the two tuning coils (old i.f. coil cans will do and can be soldered direct to the top ground plane), the second stage is to include an interstage screen between the transistor and output tuned circuit (a piece of p.c.b. is ideal). In an extreme case, gain can be reduced by progressively reducing the value of the resistor R2 between G2 and ground.

Finally

The antenna should be mounted in a good high spot well away from any metal that can upset the polarisation pattern. Normal TV antenna mounting hardware can be used but remember not to put too much pressure on the boom as it is not as strong as aluminium.

You will need

<table>
<thead>
<tr>
<th>Resistors</th>
<th>Capacitors</th>
<th>Semiconductors</th>
<th>Sundries</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon film</td>
<td>1% W 5%</td>
<td>Disc Ceramic</td>
<td>Foil Trimmers</td>
</tr>
<tr>
<td>100Ω</td>
<td>1</td>
<td>1nF</td>
<td>4</td>
</tr>
<tr>
<td>18kΩ</td>
<td>2</td>
<td>2.2nF</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| | | | | 4-way conduit box with lid and gasket; pvc glue; sealant, etc. (Additional parts may be required for power supply stages.)

Fig. 2: Full-size double-sided p.c.b. and component placement drawing.
THE HAM GEAR PMX PRESELECTOR

The PMX is basically an antenna tuning unit combined with a three-stage pre-amplifier, having full HF coverage and designed expressly for SWL use. Years of short wave work with various poor antennas in small gardens convinced us that what was needed was something just a bit more than the simple ATU. It always seemed that even after tuning the antenna and going to a fair amount of trouble over it there was still something lacking; something we were missing. A preamplifier was added in conjunction with the ATU and immediately things began to happen; the receiver perked up and felt a whole lot livelier. Overload was no problem with the RX gain backed off, the signal to noise being controlled by the preselector and we did have better reception. In 1964 the first PM1 preselector was produced, subsequent models going all over the world, 2,000 being made before we stopped counting. The PMX is our latest thinking on this original design.

There are four pages of free information available on the PMX, one devoted to unusual antenna experiments using the PMX, non-technical and with full illustrations. The PMX can be supplied unpowered (you provide 12v DC) or mains powered.

Unpowered PMX.............................£89.00
Mains powered PMX......................£78.00
Mains powered PMX with calibrator......£97.00

All prices include postage and packing. Despatch normally same day first class.

HAM GEAR ELECTRONICS
125 Wroxham Road, Norwich NR7 8AD.
Tel: Norwich (0603) 405611.
Mystery Signals

Reader John Davis of York wrote to me asking if I could help to clear up a problem he has been experiencing whilst scanning across the u.h.f. airband. Every so often the scanner would stop on what John describes as bursts of noise. At first he thought this must just be local electrical interference, but after a while he realised that they occurred at regular intervals across the band and were present 24 hours a day. The mystery deepened when he found that a friend in London could also hear the same signals. Together they tried to trace the direction the signals were coming from but could not seem to make sense of the results they obtained.

Well John, when I tell you where they originate from I think you may be even more intrigued. They are in fact downlinks from American Military Satellites. These are parked in geostationary orbits at over 35,000km away from earth and, I think you would agree, are one of the most distant signals you are likely to receive on a scanner.

You may think that I am sticking my neck out by mentioning such things in this column, but as nearly all the traffic being carried by these satellites is digitally encrypted I don't think that I am giving too much away. In fact I am certain that the US Government has made sure that very few other countries would have the resources available to be able to de-encrypt any of the information.

Some of the American magazines devoted to scanning have at various times included articles on military satellites and from these it is clear that occasionally plain speech is used. One example of this was the 9-day non-stop flight by "Voyager" just over a year ago. During this world record attempt several different communications systems were in use including a Motorola lightweight u.h.f. transceiver which, when combined with a hand-held antenna, provided the satellite link from the aircraft.

The satellites themselves are just like large repeater stations, receiving signals and then converting them for re-transmission at a higher power level on another set of frequencies. This is a linear transposition, which means that the re-transmitted signal is for some part dependent upon the strength of the received signal. So in order to be able to receive the weakest signals large antenna systems are used by the main control stations. Another factor to consider is that the power available to the satellite is limited. So if a lot of channels are in use at once the available power per channel is reduced, resulting in lower signal levels at the ground station.

For details of the main satellite up/down link frequencies I recommend the book "Communications Satellites" by Larry Van Horn. This is an excellent book if you are at all interested in satellites or space communications, and includes a very large frequency listing giving details of just about every transmission ever connected with space exploration.

The signals themselves are not particularly strong but it is possible to detect some using just a disccone and a reasonably sensitive scanner set to n.b.f.m. Obviously the higher the gain of the antenna you use the better the results you will achieve. I have been told that f.m. broadcast band or 144/430MHz amateur Yags work quite well, but I suspect that they need to be tilted upwards by 30 degrees or so to achieve the best reception. It was also mentioned that the continuous data signals on Fleet broadcast channels make a good beacon signal, and are useful when trying out new antennas. Well worth some experimentation I believe - let me know your results.

Fig. 1: (a) Basic tuned radio frequency (t.r.f.) receiver. (b) Basic superheterodyne receiver with wanted signal. (c) Basic superheterodyne receiver with a signal on the image frequency.

PRO Problems

Ron Beaumont of Norwich writes to me with a problem concerning his Realistic PRO 2004. Surprisingly it is causing him problems with TV reception — whenever the receiver is in use it produces patterning on his TV screen, some frequencies producing worse effects than others. He is worried that he may be causing interference to other TV sets in the area and wonders what he can do to either reduce or prevent the effect.

Before we look at ways of solving this problem it may be a good idea to look at what is actually causing it to happen in the first place. Let's examine the principle on which most modern receivers work, both scanners and short wave general coverage sets.

Back in the misty times receivers used to use the tuned radio frequency (t.r.f.) principle of operation. In this system the wanted signal was selected by tuned circuits, amplified and demodulated at the original frequency. This had the drawback that if you wanted to change frequency then all of the stages had to be retuned. In
simple receivers this did not present too
great a problem, but as designs got more
sophisticated, and the number of stages
increased it became clear that some other
form of operation would have to be found.
The method adopted was to use circuits
tuned to a single fixed frequency to
provide the majority of receiver gain.
These were called the Intermediate stages
and so the frequency to which they were
tuned was termed the Intermediate
Frequency or I.F. Only the circuits
responsible for selecting the wanted
frequency (the r.f. frequency or r.f.
stages), and converting it to the i.f. (the
local oscillator or I.O. and mixer stages)
now required tuning. This greatly reduced
the complexity of circuit design,
particularly where very large tuning ranges
were required as in scanning receivers.
See Fig. 1.

In most early types of scanning receiver
the I.O. was chosen as 10.7 MHz. So the r.f.
stages were tuned to the wanted
frequency, for example 1000 MHz, then
the I.O. would be tuned 10.7 MHz higher
in frequency at 110.7 MHz.
The I.O. is in fact like a low power
transmitter — it produces a signal which
is used by the mixer to convert the r.f.
signal (the wanted signal) to the i.f. The I.O. must
therefore always maintain a difference of
10.7 MHz between itself and the r.f. signal
for the system to work.

If we now imagine that another signal is
present, this time 10.7 MHz above the I.O.
frequency. Unless tuning of the r.f.
stage is very selective the unwanted signal
will be passed on to the mixer. As it is 10.7 MHz
away from the I.O. frequency it will be
accepted by the I.F. as a wanted signal.
With scanning receivers this tends to be
worse at higher frequencies, with some
models giving practically no rejection at
the I.O.

If you hear something which you think
should not be on the frequency to which
you are tuned it is always worthwhile
doing a bit of maths and checking it if it is on
the so-called Image Frequency.

To do this find the i.f. of your scanner
from the user’s handbook. Now add for
subtract in some cases twice the i.f. to
the frequency to which your scanner is tuned.
This gives you the frequency. Try
retuning your scanner to this new
frequency, you should hear the interfering
signal. The difference in signal strength
between being tuned to this new
frequency and the desired one will give
you an indication of the receiver image
rejection.

Designers use two ways around this
problem. One is to improve the selectivity of
the r.f. stages, in order to reject
unwanted signals. This is difficult in
scanning receivers as a very large tuning
range is required and it is tricky to get all
the stages to track each other across the
various frequency bands.

The other method is to use a higher i.f.
and if this is above the highest frequency
to be received it is possible to replace the
r.f. tuned circuits with just a low-pass
filter, greatly simplifying the design. For
this reason modern general coverage
receivers use an i.f. of around 45 MHz
(for reception of 500 kHz-30 MHz), and the later
designs of scanning receiver use around
600-750 MHz (for reception of 25MHz-550MHz).
The Realistic PRO 2004 uses a first i.f. of
610 MHz, this means that to tune the range
25-520 MHz the I.O. has to operate over the
range 635-1130 MHz. This is in part the
frequency range used by u.h.f. TV
broadcast stations and is the key to Ron’s
problem. Although the I.O. is very low in
power it can still produce a signal level
comparable to that of a TV station if it is in
close proximity to a TV receiver or
antenna.

To help prevent this from causing
problems it is necessary to determine just
how the I.O. signal is escaping from the
receiver. Try unplugging the antenna lead
from the scanner. Does this stop the
problem? If it does, try repositioning your
antenna and connecting cable to move it
further away from TV antennas and
downleads. If this doesn’t work then the only
solutions may be a filter in the scanning
receiver antenna lead, designed to reject
the i.f. signal from escaping via the
antenna. Alternatively a wide band pre-amplifier
in the scanner antenna lead may provide an
extra degree of isolation, but care must be
taken to prevent it from overloading the
receiver.

If the problem is still present with the
scanner antenna lead unplugged then the
i.o. signal must be leaking out directly
from the receiver. Try repositioning the
scanner, this may improve the situation.
In really bad cases it may be necessary to try
screening the case of the receiver. Several
aerosols are available for this purpose, but

I would strongly recommend contacting
the receiver manufacturers before
undertaking any major surgery, as they
may well have come across the problem
before and be able to offer a specific
solution.

AOR Images

Gordon Foster of Southampton brings to
light another interesting problem
connected with the image response of
receivers, in his case an AOR 2002.
Gordon was trying to listen to his local
airport d.m.e. beacon on 1041 MHz but
found he could also hear cellular
telephones as he tuned across the band.
This is because AOR had a problem to
overcome when they added the 800-1300
MHz range to the 2001 to produce the
2002.

If they had used the same i.f. (750MHz)
as that for the 25-560 MHz range it would
have been necessary to make the I.O. tune
over the range 1550-2050 MHz. This is
going to be a bit tricky with conventional
circuit layouts and would have required a
major redesign of the I.O. stage. AOR got
around this by using one of the other i.f.
stages in the receiver (at around 45 MHz).

This relaxed the design of the I.O. as it now
only has to tune over 755-1255 MHz, not
far too removed from the existing range of
775-1300 MHz. The problem in doing this is
that the image frequency is now only
90 MHz (2x45MHz) away from the wanted
frequency. When the receiver is tuned to
1030 MHz for example, the image
frequency is 940 MHz, right in the middle
of the cellular telephone band. The only
way around this is to place some form of
filter in the antenna lead designed to reject
signals at the image frequency. This
approach has its drawbacks particularly
when changing frequencies and is only
worthwhile considering when the
interfering signals become a real problem.

For the most part you just have to live with
it. The AOR is not as bad as many other
receivers in this respect and in some cases
is actually better.

Well that’s the end of another column.
Keep your letters coming in to the usual
address, PO Box 1000, Eastleigh, Hants,
SO5 5HB. If you require items returning
please enclose an s.a.e. Until next month
— Good listening.
Short Wave Receivers & Scanners

ELLIOTT ELECTRONICS

for the Radio Enthusiast

RIGS, ANTENNAS, SWR BRIDGES, POWER SUPPLIES, TEST GEAR, COMPONENTS, MORSE KEYS, COAXIAL CABLES, ROTATORS, MICS, PLUGS AND SOCKETS, SWITCHES

Books for radio amateurs

FAMOUS "Complete Guide to YHF/RF frequencies 20-2250MHz"

JAYBEAM AMATEUR ANTENNAS

APPOINTED DISTRIBUTOR

OSY OLD MAN TO Call us on LEIC. 553293 OR COME AND LOOK AROUND AT 26/28 Braunstone Gate, Leicester.

J. BIRKETT

RADIO COMPONENT SUPPLIERS

25 The Strait, Lincoln, Tel. 20767 (LN2 1LF)

EX-MILITARY COMMUNICATIONS RECEIVER R210. Frequency 2 to 16MHz in 7 switched bands AM, CW, SSB, FCo, Aerial inputs 80 ohm balanced line, long wire or whip, CW filter, BFO, Noise blanker, complete with 240 volt AC power pack, loudspeaker, headphone jack and pair of lightweight headphones.

Price £78.80 carr. Mainland only £12.00.

Wood & Douglas kits and C. M. Howes Communications kits available.

ACCESS AND BARCLAY CARDS ACCEPTED.

NEVADA communications

189 London Road, North Ena, Portsmouth PO2 9AE. Telex: 869107

THE UK's SCANNER SPECIALISTS

BLACK JAGUAR MKII POCKET SCANNER

Switchable between AM/FM. Complete with NiCad Charger

Frequency range:

26-30MHz, 60-86MHz, 115-178MHz, 210-260MHz, 410-500MHz

£235

100 XL BEARCAT

Hand held scanner with 16 channels.

Memory scan covering:

66-88 MHz, 118-174 MHz, 405-512 MHz

Complete with carrying case, earphone and charger unit

£189.99

BEARCAT 175 XL BASE

Base station scanning Rx with 16 channel memory scan covering:

66-88MHz, 118-174 MHz, 405-512 MHz

NEW LOW PRICE

£179.99

50 XL BEARCAT

A super NEW low cost handheld scanner with 16 memories and covers:

66-88MHz, 136-174MHz, 405-512MHz

£99.99

BEARCAT 800 XLT

40 Channel Base Scanner

Covers: 29-54MHz, 118-174MHz, 406-512MHz, 806-912MHz

Complete with AC adaptor

£257

NEW 580 XLT BEARCAT

100 Memory channels covers:

29-54 MHz, 118-174, 410-512 MHz

£179.99

70 XLT BEARCAT

Pocket size scanner with 20 memory scan covering 66-88 MHz, 118-174 MHz, 406-512 MHz

Complete with carrying case, earphone and charger unit

£179.99

NEW BUMPER CATALOGUE

£2 includes £2 Voucher

USE YOUR CREDIT CARD FOR IMMEDIATE DESPATCH

HOTLINE (0705) 662145

NEVADA
Reg Ward & Co. Ltd.
1 Western Parade, West Street, Axminster, Devon, EX13 5NY.
Telephone: Axminster (0297) 34918

For Price Lists.
Send Large S.A.E.

Aerial Technology and Design
Pentwyn House, Penyard, Llwydcoed, Aberdare, Mid Glam.
CF44 0TU.
Tel: 0685/870425

SANDPIPER COMMUNICATIONS
Suppliers to M.O.D., B.B.C., I.T.V., Police, D.T.I.

SPECIAL DISCONE OFFER
25 - 1300MHz

Due to the Outstanding Success of the Crossed Dipole Offer in the Feb '88 Issue of Short Wave Magazine.

Just One
Of Many Aerials
Produced
Send Large S.A.E.

FOR PRICE LISTS.

We Are Now Offering
The DC1300 to Readers
Of Short Wave Magazine
At the Special Price of

£42.00 inc. Post & Packing.

Please allow 14 days for delivery

Look Out for More Special Offers in Future Issues

OPEN TUES.-SAT. 9.00-5.30
LUNCH 1.00-2.00
(CLOSED MONDAYS)

STOCK ITEMS USUALLY DESPATCHED WITHIN 48 HOURS

ICOM KENWOOD
Available soon...SONY
What is the best receiver with which to make a start? For most of us, it is the cheapest one, whatever its shortcomings may be. Yet, once you make a serious start, in a fairly short time your interests will polarise. Perhaps you will start with the broadcast bands and find your way on to the amateur bands — or maybe start on 14MHz and end up chasing TVDX. What many of us do is to try to save some money. It seems pointless to spend big money at the start. These thoughts were sparked off when I read an old contest list, GC1-U, out from off the dust and junk in the loft, with intent to use it as part of a talk on servicing at the local club. In the process of satisfying myself that it still worked, I had a whiff of a time on the bands, and re-learned some long-forgotten listening arts tool. So you don’t need to start with an all singing dancing radio.

Contest
David A. Whitaker (Harrogate) mentions the White Rose Mid-Summer Short Contest. Listers on June 19 as follows: on 28MHz between 0900-1100UTC on 21MHz between noon and 1400UTC; on 14MHz between 1500-1700UTC on 7MHz between 1800-2000UTC and on 3.5MHz between 2100-2300UTC. Log as many stations and countries as you can in each two-hour period. Stations can only score points if they are in actual contact with another station e.g. CQ, QRZ and suchlike calls don’t score. Score one point for each station heard on each band. On each band, multiply the points by the number of countries heard on that band. Add the total so obtained for each of the five bands together. This is your final score. Countries are defined as in ARL Countries List. Log to show:

Date, Time (UTC), Station Heard, station being worked, report at SWL QTH, points claimed. Logs to arrive at: D. A. Whitaker, 57 Green Lane, Harrogate, N. Yorks. HG2 8LN, no later than July 31. Their report certifies whether the station will be awarded by the White Rose Club at their discretion, and the club’s decision shall be final.

The Mail
Let’s start with the letter from Jim Mowat (Luton) who runs an Icom RT71 receiver into dipoles up in the loft — the dipoles seem less, if at all, to pick up noise from nearby TV sets. Jim says that some DX stations are on so regularly that he is beginning to recognise their pattern.

Neil Melville (London N18) clicked with his first KL7 since 1981 in KL7G; March 23 was a very good day with a pile-up at 0830 under which there was a DX station, about the nearest Neil could get to his call sign was something vaguely like “T2VU” and a mention that the temperature at the base of the dipole he was using was 30 degrees CI. A little later YK1AO popped up and after an useless CQ call changed his tactic to calling by call numbers. Thus the Melville log received 27 JA calls in 27 minutes, four of them new ones!

Simon Burgess (Stockport) adds 27 new ones to his list. One of them is of considerable interest; was G3RKC/W1 an old friend of mine from years ago.

D. McIlroy (Limerick) has been putting up antennas at the work shop and, on 28MHz, he has received quite a number of calls without, alas, any success. Really, at this stage in the summer cycle, the only way to success on 28MHz is to check the band quickly at the start and end of every operating session, before shifting to another band. It is also a good thing to take a peek at 28MHz at “odd” times, in the hopes of picking up on an opening of some sort. Stick at it, Dave!

Next we have a new entrant in R. E. Webb (Ashford, Kent). Rod wonders whether stations he logged back in 1985 can be entered. Of course, just as soon as he has an entry to the All Time Ladder. The whole idea of the ladder is to give everyone a chance to compete on equal terms while they “get the hang of” the game. Also, a 4X6 is genuine prefix. All the earlier calls were 4X4, then 4X2, and 4X4, and more recently as these have been filled, calls in the 4X6 have been appearing. Rod uses a Lowe SRX30, fed from an inverted-V dipole, by way of an a.t.

On the subject of Ws, it must be recalled that they do not nowadays take on a new call sign when they change area. Thus March 4 may, for example, move to California and continue using his existing call. However, if he is out on a trip in a different call area, he will sign with his W4 call sign suffixed by the call area in which the station is located; thus, for example W4/WFL/P. To make it even clearer he may sign W4/WFL/P6.

Now to Peter Barnes (Blackpool) who says he is getting better at wrinkling them out on c.w. and comments on how a good healthy pile-up can make the receiver sound quite ill. Just imagine then what it was like before s.s.b.

Now to Basil Woodcock (Leeds LS17) who has some hard things to say about the way Jim Smith seemed to be neglecting Europe from his Baker/Howland is DX-pedition. One must admit to some feeling of surprise at the way this choice was made. It choose to look for Europe at times when there was no propagation and look for, say, WS when the band was open to Europe.

Next we turn to Ron Shilock (Halesowen) who offers, among others, UP4A in a recent contest as his first ever prefix entered as a result of listening being heard on this band.

Ted Robinson (Felixstowe) mentions hearing a very self-possessed YL operator, UU3AZO, in Moscow showing the older habits ofDXing. The operators are of the school that the call should be QTH’d, and all the more surprising to hear Kate volunteer the information that she was just two years old.

Next we go north, to visit Bill Prior at Lochcarron. Bill sticks to his RTTY activity, when he isn’t re-erecting antennas that have been knocked over by the branches. Pick of the crop, undoubtedly, for him this time was 9M2CO, though I would have rated the VE7 pretty highly too.

Problems
Someone — he shall be nameless — asked me just what to do when the receiver goes “on the blink”. I would talk first to members of the local radio club, or get hold of the distributor or dealer. The latter chaps are required by the makers to have the servicing facilities, but don’t like it if you have done modifications, particularly if they aren’t well carried out. Perhaps this is the best reason for insurance of your rig. Amateur Radio Maintenance Service, in effect take your money each year, and pay the bill whatever it is when your rig had to “go to the doctor”.

If the annual premium or the repair bill seems a bit steep, bear in mind that this is a rather complex lump of electronics, and must be up to the manufacturer’s good order before you return to you. The realignment alone (and it must be called up...
Amateur Round-up
Subsequent to the BARTG Spring h.f. RTTY Contest I have received several interesting reports. The first is from John Barber G4SKA who is a very experienced contest operator. John managed to work some very good DX with the following being a sample of some of the best: T2P (Costa Rica), PT2BW (Brazil), 3C1MB (Malako Bioko Is. Equatorial Guinea).
John also reports hearing one particularly unusual call namely A15AC. Neither myself nor John knew the location for this call. Fortunately Andy McClelland G0DKN/P3AEVB wrote to me with all the details. Apparently A15 is the call for the Middle East territory of Abu Ali. If you heard it... You can count yourself very lucky as the country was only activated for a short period by a DXpedition! The call A15AC was actually operated by DJ6JC. Other calls in use during the DXpedition were: A15AA (DJ6JSI using c.w.) A15AB (DXBCH using s.s.b.) My thanks to both John and Andy for the information.
Ian Baxter has also reported some quite good DX this month with his best catch being 905DA (Zaire).
One that I caught which is not so much DX as rare was SU1FN (Egypt) on 14MHz RTTY.

VHF Reports
I don’t as a rule get any reports on V.H.F. activity, so I was particularly pleased when I recently received a report for 50MHz, 144MHz and 432MHz. The only snag was that the originator identified himself simply as Gerry G.I. with no address! I would very much like to hear from Gerry as the list included some very interesting amateur stations with a fair number of Auroral contacts. So if you’re reading this please drop me a line.

Unusual Modes
I received a very interesting letter from Dominique Krem, Coutances, France. Dominique uses a fully expanded Poly-Electronic Pocem AFR-2010 automatic decoder to receive a variety of data modes. Dominique’s problem is quite simple in that he is having some difficulty finding transmissions using the more advanced modes.
My own suggestion is to try some of the following frequencies:
8.096 MHz TDM2 96 baud 425Hz shift.
10.754 MHz TDM2 96 baud 425Hz shift.
11.434 MHz TDM4 192 baud.
16.144 MHz TDM2 96 baud 850Hz shift.

If you can identify these or perhaps know of some other frequencies and modes then please write and let me know. I would also like to correspond with other listeners who use the Pocem range of equipment. If you would like to contact him his address is: 18 Rue du Moulin de Haut, Lot. Ecuisse-Chet, F-50200 Coutances, France.

Admiralty List of Radio Signals
I have received a plea for help from E. Swan of Eastbourne. After reading my comments about the Admiralty List of Radio Signals in the April issue, he has been having considerable trouble locating a supplier. Well, I obtained my copy from Kelvin Hughes at 19 – 23 Canute Road, Southampton S01 1FJ. The price for Volume Three was £11 plus £2 handling. I found the company to be very helpful so I can personally recommend them. If you know of any other suppliers then I would be very pleased to hear from you.

Atari 800XL Computer
I have received two letters from listeners requesting information on how to use the Atari 800XL computer for RTTY. The listeners involved are Joe Grim (Malta) and N. Ashby (Wombly). Unfortunately there appears to be no ready to run commercial software available to support RTTY.

On the bright side though Pete Lewis G3EMF informs me that Maplin Electronics supply a printout of a RTTY program with their TU1000 terminal unit kit so it may be worth giving them a ring. I have also noticed that Mike Bowthorpe G0CZV has written an article in the BARTG magazine Dacotm which lists all the published amateur software for the Atari 800XL. The issue concerned is Winter 1987 and I’m sure back issues will be available from BARTG.

Received at 1055UTC on 4.24776MHz, 120lpm & 576BC

BBC B User Groups
Bruce Marshall VK7MB (Australia) has contacted me requesting sources of public domain amateur software for the BBC B computer. Can anyone help? If so then please drop me a line and I will pass the details on to Bruce.

Readers’ Stations
Jack Rosbotham Douglas I.O.M. uses the popular Pocem AFR-1000 for the automatic decoding of utility stations. The receivers in use comprise a Sony ICF-2001D and a Yaesu FRG-7700.

Jack asks if I publish a frequency list compiled from readers reports. As it happens I am rearranging my database into a form that could be used for publication but time is very much against me at the moment. If you would like to see such a list then
What a Drag!

The now rapidly elevating solar flux has been giving severe attention to the weather satellites, with sudden dramatic short periods of "fade outs" during passes. Bill Brennan G3CQG of Chichester, who sent the original reports that signals from all the orbiters were often deep in the noise on northerly parts of a pass during the late March and early April auroral conditions. This was partly due to density ion production in the path, giving severe attenuation, and partly to magnetic pole ion noise. To compensate, signals are now being heard with satellites below horizon and antipodal reception likely to occur as sunspot numbers rise.

Dr. Patrick McIntosh, Director of Solar Physics at NOAA's Space Environment Laboratory at Boulder, Colorado, states that the peak of the cycle may occur as early as late 1988. McIntosh based this on studies of the total sunspot and cluster number, the rate of increase of 3000MHz solar noise and the migration of loops of intense magnetic activity to the solar poles.

When solar flux escalates, the atmospheric expansion resultant acts as a brake to earth orbiting satellites and considerable monitoring. My main aim was to try and watch some of the long path amateur DX on 14MHz. I've had a fair amount of success with both Australia and New Zealand logged. The signals were not too strong but quite readable. The best time appears to be between 0800 and 0900UTC at the moment, but, when the phenomenon is linked to the sun rise so this is the important element.

Although I was looking for amateur transmission there was plenty of commercial DX to be had between 12MHz and 15MHz in the early hours.

According to a recent report from Chris Kirby the higher frequencies are starting to come up with good activity between 18MHz and 20MHz.

If you have discovered any time or bands that appear to be particularly good, drop me a line and I will pass on the details.

Dx Tips

"The early bird catches the worm" is an appropriate saying for this month's tip! Being a bit of an early bird myself, I have been doing a spot of early morning

DX Tips

"The early bird catches the worm" is an appropriate saying for this month's tip! Being a bit of an early bird myself, I have been doing a spot of early morning

INFO IN ORBIT

Pat Gowen G3OR

17 Heath Crescent, Hellesdon, Norwich, Norfolk NR6 6XD

Fig. 1

8.210MHz RTTY 50N Khafji Oilfield Saudi.
9.114MHz RTTY 50N HGG31 Budapest news.
9.231MHz RTTY 50N 9KT27 Kuwait news.
9.430MHz RTTY 50N 2AT Tirana news.
12.212MHz RTTY 40/R YZ07 Tanjug news.

Your Views

I would be very grateful for some feedback on your views regarding the development of the Decoder. The column is present limited to about one and a quarter pages, so it's a question of making best use of the available space. So here are a few questions for you:

What do you think of the present format? Would you like to see the frequency list expanded? Do you want more or less readers' stations?

Do you want some tutorials? All constructive comments will be very welcome.

(1) Pat & John Beadle, Flynnonias, Saem, Llandilo, Wales SAI9 7NP. Tel: 0558 - 82288.
Barnes is now on the Digitalkter daily, and his satellite station and gave us some good tips. One of his pictures from MET-30 showed Denmark, north-west Germany and Holland exhibiting a characteristic distortion from the raw unprocessed radiometer image. It made it appear that the frame was merged by two observation cameras on the satellite back to back, each looking at opposite horizons.

A further example is given by Fig. 2, a photograph of the English Channel, with the dark patch in East Anglia showing the Brecklands and Thetford Forest, but with a worrying ninety degree "bend" running from north to south across central England. If one believes in the adage that "the camera cannot lie", then knowing that the camera is singular, one might be led to believe that Britain had finally been annexed from across the Atlantic, or that a major geological catastrophe had struck.

The explanation of the strange effect comes from Howard. "The problem with the line display is radio interference from the microprocessor, which leaks from any exposed ribbon cable, and gets into the receiver via the antenna, probably picked up by the braid". These semi-synchronised pulses that do the damage to the pictures are similar to the problems given by the r.f. generated by ones computer when attempting to run the receiver in close proximity to the computer for generated RTTY and SSTV, etc.

The only answer is to completely screen the computer or microprocessor in a metal box, or to line it out with bonded grounded aluminum foil (alternatively, spray the interior of the housing with one of the available conductive metallic sprays being very careful to avoid the housed components). This will cure the direct radiation, which will be a waste if power supply and interconnection leads are carrying the interfering signals, so these must be filtered and screened also.

If, despite the attenuation provided, any problem still remains, then it is likely that the down lead from the antenna is acting as part of the antenna capture. A good match to the antenna, using good quality coaxial cable is essential. Distancing and separating the antenna system is also important.

Interference, external, adjacent channel and home-brewed is a major general problem, particularly on weathersats. I would be interested in hearing from other readers who have experienced problems from whatever source, and their ideas and input on how they deal with it.

Centre Ground Stations

Lawrence Harris writes in from Plymouth to tell us some of his findings on the satellite scene, firstly with the USSR Meteor weathersats. Lawrence says, "the latest talking point among the weather satellite enthusiasts is the new MET 2/17 which was launched on January 30. It is particularly interesting because they have gone back to their 'old' frequency of 137.300MHz, which has not been used for a very long time. The new sattellite is in a north to south orbit, and the selection of frequency means that it will not interfere with any other Meteor weathersats'. Lawrence was fortunate to pick the new signals up only two days after launch during a routine scan.

He further tells us that Meteor 2/14, on 137.850MHz, is currently in a south to north orbit each morning, whilst Meteor 2/15 is in a southbound orbit during the middle of the day. Meteor 2/16 is a morning southbound satellite. He points out that all the Meteor birds can be heard on the following day some 20 minutes later, e.g. if the pass commenced at 1000 one day, then it will be 1020 on the following day, until the sequence drops when the pass is below western horizon, and a new one comes in from the east.

"Those using Y3DMV or similar frame stores will know that Meteor 2/14 has aperture troubles," says Lawrence, "resulting in a sudden opening of the lens aperture and consequent saturation of the white levels. This effect can be compensated for by using the modifications published in specialist magazines". Meteor 2/17 gave our correspondent some spectacular views of Labrador and Baffin Island recently, as he is fortunate enough to have a superb western horizon from Plymouth, getting good pictures down to one degree of elevation.

He is finding that Meteor 1/30 on 137.010MHz continues to provide good land detail. For this one, set your receiver to look from 1030UTC and you will get it before 1258 on any day. Each successive day it will appear two minutes later than the previous, until 1258. During the dark winter days it is always travelling north to south, and it can be heard to switch on its carrier for a few seconds before the picture modulation commences as it comes out of eclipse over Norway.

Lawrence continues to observe the NOAA-9 and 10 APT on 137.620 and 137.500MHz respectively, as NOAA-9 passes northbound between 1300 and 1530, southbound 12 hours later, whilst NOAA-10 performs similarly but northbound 1700 to 2100, and southbound 0500 to 0930, and on continuously. He is also looking at the all-British UK-6 satellite on 136.560/137.650MHz, which can be heard for some five consecutive orbits each day due to its inclination. "This satellite brings many happy memories back to me", says Lawrence, "since I used to command it. I am considering the possibility of decoding the data again, but using my home computer instead of the PDP B system that I used some eight years ago!"

"WHAT ARE THE ADVANTAGES OF VHF? There are three main ones, and they are important: (1) almost complete freedom from interference from foreign stations; (2) the reduction and in most cases complete elimination of interference from electrical appliances; and (3) greatly improved quality of reception which adds realism to all programmes and is a real boon when listening to music." I found this paragraph among my archives in a 4-page pull-out supplement to the Radio Times of 24 January, 1958. The centre pages of this supplement are devoted to a map of the UK showing the areas covered by the BBC in those pioneering days of v.h.f. broadcasting. Transmitters for England were sited at Wrotham to serve London and the South-East, Norwich and Sutton Coldfield for East Anglia and the Midlands, Holme Moss and Pontop Pike for the North and North Hessary Tor, Rowridge and Wenvoe for the West. Stations intended mainly for Northern Ireland, Scotland and Wales were situated at Divis, Maldrum and Kirk O'Spotts and Blaen-Phwyl.

In those days Band II extended from 88 to 100MHz and the stations previously mentioned transmitted the Light, Third and Home programmes (now BBC Radio 2, 3 and 4) on frequencies which varied with area, between 88 and 90MHz, 90 and 92.3MHz and 92.7 to 94.5MHz respectively. Wireless collectors will see this scribed on the dials of Band II receivers and converters manufactured in the late 50s and early 60s.
RX-4 MULTIMODE RECEIVE
RTTY / CW / SSTV / AMTOR

This is the ultimate in software for the SWL. Just one program to receive all four modes, switching from one to the other at a single keystroke. Extremely user-friendly, RX-4 has the facilities and performance you need to catch all the action on the bands as soon as you hear it.

When you see the features it's easy to see why RX-4 is today's best-selling receive software.

RTTY and AMTOR tuning scale makes tuning-in very quick and easy. Four RTTY baud rates, any shift, normal or reverse, with selectable unshift-on-space.

CW software filters and controllable autotrack for maximum performance up to 250 wpm! On-screen indicator lets you set the level and tuning with a minimum of fuss.

SSTV has selectable scan rates in both directions and two modes of picture storage for maximum use of memory.

Text and pictures can be stored, recalled to the screen and dumped to a printer as well as being saved to tape or disc.

Please note that the AMTOR section only receives ARG mode (mode A) but this is the most common mode and covers a lot of commercial TBF stations.

Previously, people have paid over £30 for separate RTTY, CW and SSTV programs which do not have the performance, facilities and convenience of RX-4. We are offering this amazing software for the low price of only £25 on tape, £27 on BBC or CBM64 disc.

BBC-8, CBM64 and VIC20 need our TIF 1 interface. This has isolation between computer and radio to reduce computer noise and switchable filters, giving much improved copy. Kit £20 (assembled PCB + cables and connectors) or ready-made, boxed with all connections £40, both available only with the software. For SPECTRUM we have two versions. One needs no hardware at all, the other uses the TIF 1 via an interface adapter board SIA-1 for improved performance. Tape + SIA-1 £40. Both versions are available on +3 disc at £2 extra.

Same day dispatch by First Class Post. Airmail Overseas. Prices include p&p and VAT, where applicable.

technical software
Fron, Upper Llandrindod, Caerphilly. Tel. 0246 811886

POCO
Swiss Made by Poly-electronic

Communication decoders

AFR-1000 Automatic CW-RTTY Decoder

The microprocessor-controlled POCOM AFR-1000 CW-RTTY Decoder automatically processes radio telegraphy signals in accordance with Baudot No. 1 and No. 2, ASCII, 1200 bauds and special codes. The AFR-1000 Automatic Decoder is remarkable for its value for money. Its moderate price makes it particularly suitable for the cost-conscious RTTY beginner. Unlike the other models in the AFR series, however, it cannot be upgraded for special codes.

FEATURES
- Fully automatic recognition of CW, ARQ-TEC and 1200 bauds (Type 1-5 seconds).
- Special narrow-band quadrature discriminator for all usual LF shifts of SO-1000 Hz and CW Morse telegraphy.
- Swiss technology and quality — 1-year guarantee.

The POCOM AFR-1000 is extremely easy to use and very simple to operate. The AFR-1000 is simply connected to the loudspeaker output on the shortwave receiver. Operation is confined merely to choosing the mode required. No tiresome testing of the baud rate and shift position. Two LED's indicate the active operation status in each case.

The baud modulation rate measurement facility is a complete new innovation in a unit in this price range. Knowledge of the baud rate permits reference to special codes, special radio services, etc., and makes it possible to shed light upon a radio telegraphy signal. The display is provided on the screen or printer linked to it to 1/1000 baud (e.g. 96.245 bauds) with quartz accuracy and within a measuring range of approx. 30 to 250 bauds.

AFR-2000 All Mode RTTY Decoder

The latest model AFR-2000 combines the highest demands. Their exceptional value for money will not be so easy to obtain in the near future. By choosing one of these units, you will be deciding in favour of the latest receiver on the market — enabling you to receive more and do less setting! Teletype reception has never been so easy!

DEWSBURY ELECTRONICS, 176 LOWER HIGH STREET
Stourbridge, West Midlands, DY8 1TB
Tel: Stourbridge (0384) 390063/371228
C.M.HOWES COMMUNICATIONS

Our range of easy to build kits offers some very attractive ways of adding extra facilities and performance to your receiving station, so why not build something yourself that adds extra interest to the hobby, and makes a pleasant change of spending those wet weekend days. Choose a worthwhile project from our range.

HOWES ASL5 Dual Bandwidth Filter

This filter simply connects between your receiver and an external 'speakerm or headphones to give a big improvement in CW and speech selectivity with most sets. No modifications to the radio are involved. Popular radios such as the FRG7, FRG7700, R600, R1000 and all similar sets (including most popular transceivers) will benefit from the addition of the ASL5. CW bandwidth is around 390kHz (16dB), and the sharp speech roll-off means that signals are around 50dB down at 3.3kHz. This is a big improvement over most standard filters. CW filters, even if you radio has provision for them, makes the ASL5 a very attractive alternative. This was reviewed in the April '87 issue of Short Wave Magazine. The unit requires a 12 to 14V DC supply and will drive 8 ohm or higher impedance 'speaker' or 'phones. A really useful station facility for boosting "back end" performance.

ASL5 kits: £14.90

HOWES CTU30 HF Bands Antenna Matching UNIT (ATU)

To add extra performance to the "front end" of the receiver, the CTU30 is the kit to choose. A high quality unit with a switched tuning capacitor, specially developed inductor design, broad band 4:1 balun, the CTU30 will optimally transform the signal energy from your antenna to the receiver by providing an impedance match. Long wire, coax or open wire fed antennas can be used in this unit. It can also be used for transmitting on all bands from 10 to 100m in 10m steps if the performance limits of your receiver and transmit power on 80m is considered. It has been reviewed in most of the radio magazines, and we feel it really is the best choice in ATUs for HF reception. You could spend a lot more on a factory built item, and get less performance!

CTU30 kit: £27.90

GOODS NORMALLY DISPATCHED WITHIN 24 HRS.

Prices Correct at Time of Going to Press

EYDON, DAVENTRY, NORTHANTS NN11 6PT

Mail Order and Retail

Phone: 0327 60178

BREDHURST ELECTRONICS LTD

HIGH ST, HANDCROSS, W. SX, RH17 6BW (0444) 400786

Open Mon-Fri 9am-5pm except Wed 9am-12.30pm. Sat 10am-4pm
SEEN & HEARD

The past 30 years have seen set design change from the use of thermionic valves to a wide variety of semi-conductors, almost 100 per cent national coverage by the BBC's transmitter network, the creation of local radio stations by the BBC and the IBA (see current issues of Radio Times and TV Times for your area). This greatly increased the demand for frequency space and resulted in the extension of the band to 108MHz in recent years. The introduction of stereophonic sound to v.h.f. broadcast receivers, including car radios and portables, was another giant step forward and the "improved quality of reception" mentioned in the supplement has been maintained throughout.

Afternoon advance in broadcast technology is not extensively used around the world and although signals in the v.h.f. bands have a limited range, much care is needed to avoid bodies requiring local stations to share the same frequency without interfering with each other. However, it soon became known that under certain atmospheric conditions, v.h.f. signals can increase their range considerably and are often heard in neighboring countries until the cause subsides. These improved conditions, known as openings, are enjoyed by radio enthusiasts of all ages and the youngest contributor to date is 15-year-old Neil Oakley Whitstable). He uses a Vega Selena B210 receiver with an all-weather semi-conductor antenna.

Don't forget to watch your household barometer Neil, or keep an eye on the television weather charts for changes in atmospheric pressure. When it is high, carefully tune from 88 to 108MHz and you should hear local radio stations from a greater distance, plus some continental.

Ken Lancaster feeds his Band II equipment with antennas built by Datong and Sandpiper Communications, mounted on the roof of his home in Rotherham and is pleased with their performance, Fig. 1. Although antennas are a broad subject they are an important part of any wireless station. Ken now receives many stations at S9 that were only S2 before he changed to his present system. "I am now receiving Radios Manchester, Tees, Humberside and Stoke in stereo with only a slight hiss," said Ken, adding, "I've mentioned these as they were impossible before and if you saw my location you'd see why, as I am in a dip between two hills surrounded by trees and a lot more houses."

Portable DXing

On the subject of car radios, whenever Simon Hamer (New Radnor) takes his TV gear on a DXpedition to one of his favourite high spots in mid-Wales he also tunes through Band II and usually logs BBC Radios Cornwall and Devon and Ireland's TRE 1, 2 and 3.

TELEVISION

Band I

"Conditions were useless," remarked Simon Hamer (New Radnor), in his report for the month prior to April 10. However, either by meteor scatter or short bursts of Sporadic-E, he caught glimpses of test cards from Sweden (SVT), Czechoslovakia (RS-KH) and Poland (TVP) on March 20, 21 and 23 respectively. He saw a subtitled film from Norway (NRK) on April 10.

Pictures from Scandinavia are often seen in the UK during the main Sporadic-E season as Noel Smythe (Camphill) found last year when among his catches from Norway were the test cards shown (Fig. 1) and NRK (Fig. 2).

After their first Sporadic-E season, TV enthusiasts should have logged pictures from Finland, Spain and the USSR. To prove this point, veteran DXer Bob Brooks (Great Sutton) sent Figs. 3, 4 and 5 which are typical examples from his photographic archives.

REPORTS

In Gloucester, Paul Painin, using a Philips D999 receiver and a 4-element antenna, logged French stations around 1800 on March 31 and April 1 at the high end of Band II. He tells me that his local station, Severn Sound, now has a transmitter at Stroud on 103MHz in addition to its spot on 102.4MHz.

From my home in Sussex, I heard the news and adverts for the Northampton area from Chiltern Radio at 1000 on April 3 and several French stations at good strength, around 0950 on the 4th. During the Easter holiday at Laurencetkirk, George Garden, using a Sony receiver and outside antenna, logged BBC Radio 4 from Sandbanks and Radio Tay from Dundee.

The deadlines are June 21, July 19 and August 16.

A piece in the press, a love of football and a bit of television detective work and David Glenday from Arbroath enters the fascinating world of DXTV. After reading a newspaper article about live English football matches being viewed on Sunday afternoons in Carnoustie and knowing that the Scottish IBA companies and BBC Scotland, do not cover these matches live, David decided that this was a case for TV DXing. David's home is only 10km north of Carnoustie and hoping to enjoy live soccer, took his first steps as a TVDXer.

During the afternoon of March 27, using a standard Philips colour set and a couple of horizontal rooftop antennas facing the transmitters at Angus and Craigellachie, he found two new stations. Neither came from Grampian or STV as both displayed different commercials," said David. He suspected that the first was Tyne Tees, but it faded before he could determine its channel number.

The same goes for George Garden in Edinburgh who wrote, "With the very high pressure (30.5m), a lot of f.m. signals were received in Band II". In early April, George logged Radio Forth, on his Sharp car-radio, while on low ground, in the village of Fordoun and on the 4th, he drove to Cairn O'Mount, a local high spot and at midday heard BBC Radio York and reported "very strong" signals from BBC Radios Cumbria and Newcastle.

TELEVISION

Ron Ham
Faraday, Greyniers, Storrington, West Sussex RH20 4HE

Between March 13 and April 7, Edwina and Tony Mancini (Belper) identified bursts of test cards from Czechoslovakia (CST RS-KH), Denmark (DR), Finland (YLE-TV1), Holland (PTT NED 1), Norway (Norg-NRK) and the regions Bremanger and Kongsberg, Spain (TVE-1) and Sweden (SVT Canal-1). It is interesting to note that apart from the signal from Czechoslovakia on Ch. R1 (49.75MHz) on March 28, the rest were at the higher end of the band on Chs. E3, R2 and E4 which, in frequency terms, means 55.25MHz, 59.25MHz and 62.25MHz respectively.

In Bedford, John Raleigh also received pictures at the top end from Belgium and Holland on 6 and 16 days respectively during the month prior to April 13 with best results coming from Holland around 2330 on April 12.
received a very clear test card from the low power transmitter at Bathinda on Ch. 12, followed by breakfast TV at 0730, Rana used his camera to record Fig. 7. During an excellent tropo-opening early on the 22nd, Rana logged breakfast TV from the transmitters in Agra and Jalandhar on Ch. 9, Amritsar on Ch. 7, Bathinda on Ch. 12, and Kasauli on Ch. 6.

With a slight tropo-opening in progress on April 4, Simon Hamer received pictures in Band III from Belgium (BRT-1 and RTBF-1), France (TDF), Holland (PTT NED-1) and Ireland (RTE-1 and 2) and in the UHF band from France and Ireland.

Although sometimes spasmodic, the Mancmis logged Band III signals, from France (Canal +) on 14 of the 25 days between March 13 and April 7 and, mainly test cards from Ireland’s RTE-1 and 2 on March 14, 16, 17, 18, 23, 28 and RTE-1 on April 2 and 7.

"The 24-hour TV from a few ITV regions when the other channels are closed down makes the airways open for us as a DXers paradise with possibilities not available before," wrote George Garden from Edinburgh. It only needs a hint of a lift for George to take his gear to Cairn O’Mounth and see what extra signals are about on the U.H.F. band. On April 4 he logged strong colour pictures from the BBC at Darvel in Ayrshire. In the small hours of the 5th, at his QTH in Laurencekirk with a 48-element indoor antenna, he received a good Scottish TV signal from Black Hill and, at 0150, logged pictures from the transmitter at Craigkelly. Later, around 0900, he was still receiving pictures from the BBC at Black Hill.

John Raleigh, kept a regular watch, around 1200, on Band III and logged pictures from France (Canal +) on Chs. L5 and 9 on 11 days a Belgium (RTBF-1) on Ch. E8 on 16 days between March 17 and April 13 and BRT on Ch. E10 on March 17, 18, 19, 20 and 21 and April 3.

Amateur Television
(fast scan)

On March 12 and 13, the newly formed Sevenside Television Group (formerly Bristol FM TV Group) entered the Spring Vision contest using Paul Green’s very distinctive callsign G7ATV/P. This was their first entry as a group chalking up 26 contacts on 432 MHz and 10 on 1296 MHz from their location some 203 m a.s.l. Their best DX was 234 km and 58 km respectively.

"As a Group we will be pooling our resources to enter TV contests and promote TV activity on all available bands. Our members with camcorders will be out filming, to produce some good quality programming for transmission on the bands," wrote Group Secretary Shaun O’Sullivan GBVPQ. Members of this group are responsible for the 1296 MHz f.m. TV repeater (GB3ZZ) which has regular viewers for some distance either side of the River...
EX-WD COMMUNICATIONS RECEIVERS

We now have stocks of ex ministry receivers checked & serviced in our own workshops

RACAL RA17, & RA17L, 1 to 30MHz, R210 2 to 16MHz.
EDDYSTONE 730/4 500kHz - 32MHz
Ring for prices & stocks.

Test equipment & Components — send for lists

Large SAE please or 20p stamps.

Wanted: WW2 Radio AR11, B2, R1155, R1475. etc.

V.H.Y.

AH ELECTRONICS (G8AQN)
151a BILTON ROAD, RUGBY, WARKS CV2 7AS
Tel: Rugby (0788) 76473, Eve (0788) 71066

GAREX VHF RECEIVERS

The celebrated Timothy Edwards designs now owned & manufactured by GAREX.

- A simple but versatile design capable of covering spot frequencies in the range 25-250MHz.
- Excellent sensitivity (typically better than 0.4µV for 12dB SINAD).
- Double superhet (10.7MHz and 455kHz IFs).
- Choice of IF bandwidths from weather satellite to '12.5kHz' PMR standards.
- The basic receiver is single channel crystal controlled.
- Multichannel options.
- 2 watt audio output stage having a low quiescent current.

- Size: 153 x 33mm Requires 10-14V DC supply.

PRICES:
Stock Versions: (fully assembled, aligned & tested boards)
6m, 4m, 2m & Weather Sat. £49.95

Complete cascaded versions & special options: details & prices on request. Crystals can be supplied if required; most popular 2 metre frequencies and the currently active Weather satellites are readily available. Crystal prices on request.

Mains power supply module £15.50

THE GAREX VHF PREAMPLIFIER

- Compact size: 34 x 9 x 15mm
- Up to 26dB gain
- Can be made for any frequency in the range 40-200MHz
- 3dB bandwidth ± 3MHz (at 145MHz)
- Uses BF881 (0.7dB NF at 200MHz)
- Input & output impedance 50 ohms
- 1dB compression: +10dBm
- Saturated output: -15dBV
- Supply voltage 8-17V DC at 5-10mA

Stock Versions: (fully assembled, aligned & tested boards)
6m, 4m, 2m & Weather Sat. £11.45

Other versions: Prices & details on request.
- NEW 2 HIGH PERFORMANCE 2 metre PRE-AMPLIFIER
- 3 Band-pass stages for improved selectivity
- 1dB Gain with 1dB NF
- RF switched (fail-safe action): gas-filled relays

Assembled, tested £42.50
Boxed Version £49.95

Main Distributors for REVCIO ELECTRONICS LTD.
Ask for details of the latest REVCIO "Whippet" and "Kwikfit" antennas and solderless co-ax adaptors (see PW June 87).

Prices include UP P&P & 15% VAT
Ask for details of our Interest Free Credit

GAREX ELECTRONICS
HARROW HOUSE, AKEMAN STREET, TRING HP23 6AA
TEL: TRING (04428) 8580 and CHEDDINGTON (0296) 668684
Callers by appointment only
Long days and short nights may be ideal for those who enjoy the outdoor life, but dedicated long and medium wave DXers are unlikely to find them conducive to their hobby. Thus the DX season is now under way. Meanwhile, this may be a good time to build a loop antenna in readiness for the next DX season!

Long Wave DX

(Not: I.w. & m.w. frequencies in kHz; s.w. in MHz; Time in UTC)

Although Radio Monte Carlo did not transmit on the second stage of the new I.W. band plan when it was implemented last February, their Roumoules transmitter has now been changed to 216kHz in accordance with the plan. While monitoring their broadcasts in Newcastle-upon-Tyne, Glen Glen-Davidson noted good reception during daylight, but considerable interference with Norway's Programme 1 from Oslo arises after dark, which makes reception poor.

Another 2kHz heterodyne has been spotted on this band by Philip Rambaut in Macclesfield. It seems that Morocco have not yet complied with the new plan, their transmission via Azial on 209 is beating with DLF's broadcast via Munich, W. Germany on 207.

Reporting from Bristol, Tim Shirley finds the reception of BBC Drotchow in 198 very bad around midnight due to co-channel interference from Lenegrind, USSR. Using a Blaupunkt Tunin car radio

With increasing numbers of sunspots this should improve action and DX on No. 14, 21 and 28MHz bands, which is good news for the slow-scan television enthusiasts. Any reader with a good communications receiver, one of the popular computers, appropriate software and a vision monitor, (see our advertisers) can receive slow-scan pictures on the dedicated spots within the h.f. amateur bands.

With the increasing number of power output to the full legal limit in High Wycombe. If any of you know different, do let Paul know because this is important for their records and future planning.

SSTV

One of the popular areas is around 14.230MHz and between 1900 and 1900 on April 3. Leslie Sargent (Runcorn) received contest pictures, from Czechoslovakia Fig. 9, Hungary, Spain Fig. 10, Sweden and Yugoslavia. Luxembourg's FRG-770 receiver is fed by an inverted "V" antenna coupled to a FRA-7700 active a.t.u. and his SSTV is decoded by a Sinclair Spectrum computer with G1FTU software and his hard-copy pictures, Figs. 9 and 10, are produced, from the computer by an Alphacam-32 printer. A bit earlier on the same band, Ray Gilchrist, (Millom), using a Sony ICF2001D and long wire antenna, logged SSTV signals from Poland, Fig. 11, Portugal and Sweden, Fig. 12. Ray's station also includes a Panasonic RF4900 receiver, a 3-element beam and he is awaiting SSTV software for his Commodore 64 computer.

MW Transatlantic DX

From Tunkridge Wells, Darran Taplin says, "(as you can see from my logs, I have at long last managed to pick up some stations on the other side of the Atlantic). He used an Edystone 660X communications receiver with a 25m random wire antenna. He heard CQYQ in St. John's, NF 930 three times during the month, once at SINPO 24433 at 2347.

Despite the longer daylight hours now just past, Tim Shirley found conditions to be quite good. He logged WYDE in Birmingham, AL on 850 around dawn. His latest report mentions WZA-Boston, VA 690 and W/BX Jacksonsville Beach, FL 1010 which are only permitted to operate between local sunrise and local sunset - chart. He has received a QSL letter from WZP to confirm his reception of their broadcast at 2100, but his log entry of W/BX at 0330 may not be confirmed as this station should have been off the air well before then.

A QSL card from KHEY in El Paso, TX has confirmed their broadcast on 690. Tim also received a QSL from WTX in New Orleans, LA on 690, they are celebrating 40 years of broadcasting this year and sent Fig. 1. Listening in New Radnor, Simon Hamer picked up Greenland Radio, Godthab, this station is mentioned by DXers. It could well be one to add to your DX list!

Following his reception in London, Phil Townsend logged Kalingrad, USSR for the first time during daylight.

Some DXers will be wondering if l.w. broadcasters welcome reception reports — the answer is yes. In fact, Howard Newell has just received QSL cards from Allouis (162); Sauliuss (183); Roumoules and Junglinster (234) to confirm his reception of their broadcasts in Great Missenden.

The next three deadlines for your letters are:

June 21, July 19 and August 16

Note: Brochures marked * were logged during darkness. All other entries were logged during daylight.

DXers:
(A) Ian Baxter, Blackburn
(B) G. Glen-Davison, Newcastle-on-
(C) Howard Newell, Great Missenden.
(D) Philip Ramaut, Macclesfield
(E) Tim Shirley, Bristol.
(F) Phil Townsend, London.
(G) N. Wheatley, Newcastle-on-

Germany 972 (300kW); Kvitsoy, Norway 1314 (1200kW); Nancy, France 1350 (100kW); RB Berlin, E. Germany 1359 (250/100kW); Manx Radio via Fdaxdale, Isle of Man 1368 (20kW) and Lille, France 1377 (300kW).

Other one distant broadcaster was noted by Sheila Hughes in Morden, Radio Tirana, Albania. The signal from their 1000kW transmitter in Lushnjë on 1395 rated as SINPO 32323 at 2130. Sheila now uses a m. w. loop with her Vega 206 portable and rated the radio broadcasts from Radio Monte-Carlo, Monaco 1467 (1000/400kW) at 44444 as 2230.

Using a Matsui MR-049 portable in Newhaven, Martin Andrews logged Radio Algerie, Algeria 981 (600/300kW). This broadcast is in parallel with their I.w. transmission on 254kHz via

seen & heard

Brian Oddy G3FEX
Three Corners, Merryfield Yard, Storrington, West Sussex RH20 4VS

Long and Medium & Short

Brian Oddy G3FEX
Three Corners, Merryfield Yard, Storrington, West Sussex RH20 4VS

Short Wave Magazine June 1988
Tipaza. Darran Taplin picked up their broadcast in Arabic on 891 (600/300kW) at 1936. He heard Tunis, Tunisia (20kW) on 963, as 5444 at 1941.

Two broadcasts in Arabic were received by John Nash in Brighton via sky wave paths after dark. These stemmed from Al-Baida, Algiers 531 (300kW) and Sid Jackson, Morocco 540 (600kW). John also heard three stations in Portugal, RRE via Muge 594 (100kW); R. Popular, Sevilla 828 (20kW); R. Barcelona 828 (20kW); R. Popular, Sevilla 837 (10kW); R. Intercontinental, Madrid 918 (20kW); R. España, Madrid 954 (20kW). R. Popular, Madrid 999 (20kW); R. San Sebastián 1260 (10kW) and RCE Pamploona 1550 (2kW), also heard on 158 (2kW).

A ‘Signal de Ball’ commentary by the American Forces Network (AFN) via Frankfurt, W. Germany 873 (150kW) attracted Cyril Kellam in Sheffield at 2200.

John Evans also picked up the 1253 (20kW) station which transmitted to the Shetland Islands at night. Using a Trio 9R59C receiver with an MFJ 901B a.t. and a remote wave antenna in Baltasound, Paul Donovan logged them as SIO 344 at 2250.

Howard Newell noted many W. German signals after dark, they were DLF Bayern (200kW); Hessischer RF, Frankfurt 594 (400kW); DLF Braunschweig 756 (800/200kW); Bayerischer RF, Munich 501 (4032kW); R. Bremerhaven (1100kW); AFN Munich 1107 (40kW); VOA via Munich 1197 (300kW); DLF Neumunster 1269 (600kW); DLF Mainfingen 1539 (700kW) and Westdeutscher RF, Langenbach 1593 (400/800kW). He also heard Radio Berlin International, E. Germany 1359 (250/100kW).

Some daylight ground wave signals were noted in the reports. Using an HVMV receiver with a 30m random wire antenna in Portsmouth around noon, John Johnerson picked up in Holland 747 (400kW), RTE-2 via Cork, Ireland 1278 (10kW); BBC Radio Ulster, via Lisnagarvey, N. Ireland 1341 (100kW) and Mamach, Lisburn 1440 (100kW).

In Wootton, Isle of Wight, George Millmore heard Les Trebless, Algiers 549 (600kW) at 1700. At times he can hear BBC Radio Scotland during daylight, their transmitters at Westerglen (100kW), Burghhead (100kW) and Redmoss (5kW) all operate on 810. From time to time he can hear the broadcasts on 810 from SER in Spain during daylight, their 20kW transmitter in Madrid!

The broadcast in Gaelic from Radio Na Gaeltachta in S. Ireland was seldom mentioned in the reports from DXers. Robert Taylor picked up their broadcast via Conamara (2kW) at 1316, but their signal was only SIO 222.

MW Local Radio DX

A Steepleton MB79 ported was used by Leo Barr to compile his first list for the chart. He connects an antenna to a rectangular wire antenna 3 x 2.9m to his set via a coaxial cable. Although this antenna makes little difference to the stronger signals, he says that the previously un-noticed weak signals “spring to life”!

A visit to Chichester enabled John Evans to explore the local radio scene there with his Vega 206 portable — see chart. The majority of his log was compiled at his home in Shawford using a Lowery SRX 30.

“…my prime catch this month was PenneRadio 1278, Radio Northampton 1107 and DevonAir Radio 666.” writes Howard Newell. Sheila Hughes added several new ones to her list of DX, logging Radio Devon 990; Saxon Radio 1251; Red Dragon Radio 1305; GW Radio 1260 and Radio Stoke on Trent 1503 for the first time.

A Grundig Satellit 3400 portable was used by Dale Rout in Colchester to compile his first log for the chart. He says that from time to time the signals from some of the east coast local radio stations reach him well at night.

Short Wave DX

It is surprising that there is still no sign of any additional broadcast activity on the 25MHz (11m) band, because the propagation conditions prevailing on the higher 28MHz (10m) amateur band indicate that good use could be made of 11m. The daytime transmission to S. Africa by Radio Northampton 1107 and DevonAir Radio 666 on 25.730 (Norwegian, English, Spanish 1200-1345) and often reach their target at SINPO 55555 — just like a local station!

Local radio chart

Note: Entries marked * were logged during darkness. All others were logged during daylight.

<table>
<thead>
<tr>
<th>DXer</th>
<th>Call</th>
<th>Frequency (MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Leo Barr, Sunderland</td>
<td>21.2</td>
</tr>
<tr>
<td>B</td>
<td>Alan Curry, Stockton-on-Tees</td>
<td>21.2</td>
</tr>
<tr>
<td>C</td>
<td>John Evans, Shawforth</td>
<td>21.2</td>
</tr>
<tr>
<td>D</td>
<td>Bob Sutton, Stockport</td>
<td>21.2</td>
</tr>
<tr>
<td>E</td>
<td>Sheila Hughes, Morden</td>
<td>21.2</td>
</tr>
<tr>
<td>F</td>
<td>M. Moore, New Work, ISOW</td>
<td>21.2</td>
</tr>
<tr>
<td>G</td>
<td>John Nash, Ilkley</td>
<td>21.2</td>
</tr>
<tr>
<td>H</td>
<td>Howard Newell, Great Missenden</td>
<td>21.2</td>
</tr>
<tr>
<td>I</td>
<td>Dale Rout, Chester</td>
<td>21.2</td>
</tr>
<tr>
<td>J</td>
<td>Tim Sheafe, Bristol</td>
<td>21.2</td>
</tr>
<tr>
<td>K</td>
<td>John String, Pershore</td>
<td>21.2</td>
</tr>
<tr>
<td>L</td>
<td>Darran Taplin, Tugwell, Wells</td>
<td>21.2</td>
</tr>
<tr>
<td>M</td>
<td>Robert Taylor, Edinburgh</td>
<td>21.2</td>
</tr>
<tr>
<td>N</td>
<td>John Evans, Chester</td>
<td>21.2</td>
</tr>
</tbody>
</table>
UK listeners are likely to get a false impression of the conditions prevailing on 11m because the reception of the broadcasts from Radio Norway is generally poor here. Leslie Hollis has been monitoring their signals in Grantham and rated them as SINPO 35553 at 1310.

Although there are daily variations in the conditions prevailing to areas to either east or west, many potent signals reach the UK during the day. Some improvement in the level of jamming has been noted during recent weeks.

The broadcasts from radio Japan in Tokyo are relayed to Europe on 13m via Mobayi, Gabon. Their wide-ranging programmes are in English and Japanese. Their early morning transmissions may be heard on 21.695 at 0700, but reception here is not always good at that time. During daylight hours, Alan Curry in Stockton-on-Tees is typical. They also beam towards Europe via Gabon on 21.700 at 1500 and reception at that time is generally good and deal better, Ken Whayman noted their signal in Bexleyheath as 44544 at 1525.

UAE Radio Dubai broadcast direct to Europe on 21 605 from 0815 until 1400. Mainly in Arabic, there are some segments in English including news bulletins, local weather reports and an interesting cultural series. Their UK reception is generally good with very little fading or interference present. Using a Vega 206 portable with the built-in telescopic whip antenna, Sheila Hughes rated them as 44444 at 1030.

The direct broadcasts to Europe from Radio RSA in Johannesburg, S. Africa 21.595, attract the attention of many UK listeners. Colin Godwin noted their signal in Malvern as 43334 at 1400. Some of the broadcasts in the US broadcast to programmes towards Europe during the afternoon. WHRI in South Bend, Indiana 21.700 was logged by Alf Gray in Birmingham at 1625. WYFR was heard via Okeechobee, Florida on 21.615 by Kenneth Buck at 1745, he rated them in Edmonton as SIO 454.

The better conditions has enabled DXers to log many broadcasts that are not heard in Europe. Several were noted by Philip Rambaut, SRI via Schwarzwald, Switzerland 21.685 (Fr., Eng., S. Africa) as SIO 222 at 0930; Radio Sweden, Stockholm 21.690 (Sw., Fr., to Middle East) 211 at 1112; Radio Moscow, USSR 21.450 (World Service to E. Africa) 434 at 1520; RFI via Issoudun, France 21.685 (Fr. to E. Africa) 222 at 1527; VOA via Monorvia, Liberia 21.485 (Eng. to C. Africa) 211 at 1800; WYFR via Okeechobee, Florida 21.525 (Eng. to W. Africa) 222 at 1805; VOA via Dixon, California 21.560 (Sp. to. S. America) 111 at 1805; also VOA via Bethany, Ohio 21.590 (Sp. to. S. America) 111 at 1808.

Several more were noted by other DXers. Kenneth Buck heard RER via Noblejas, Spain 21.575 (Sp. to Middle East), noting SIO 243 in his log at 1030. Darran Taplin logged Radio Hungary 21.525 (Hung., Eng. to Australia) SINPO 25554 at 1034; RFI via Nauru, GDR 21.540 (Hind., Eng. to S.E. Asia) 34443 and Radio Germany 21.600 (Swa., Eng., Fr. to E. Africa) 34433 at 1500; also Radio Sweden via Verberg (S.s.b.) 21.555 (Sw. to Africa) 44444 at 1505. Howard Newell picked up WCN in Boston at 1715 on 21.640 (Eng. to S. Africa) and rated their signal as 34433.

Many broadcasts on the 17MHz (16m) band are beamed towards Europe during the day. The station caterer for the wide listening audience the programmes are often repeated in a variety of European languages.

In the broadcasts from Radio Pakistan, Islamabad on 17.660 the main language used is Urdu, although there are some items in English, especially when the cricket test matches take place in Pakistan. Their English news bulletins at 1100 have attracted Edward Broadsmith’s attention in Worcester, they are read at dictation speed. UAE Radio Dubai 17.865 use Arabic as the main language, but there are some segments in English. Kenneth Buck is a regular listener to their news broadcasts and weather reports in English, he rated their signal as SIO 344 at 1030.

A transmitter at Okeechobee, Florida is used by WYFR in Oakland California to beam their programmes in Spanish, Arabic, Italian and English to Europe on 17.845 from 1600 until 1945. Kenneth Buck noted their signal at 1935 as SIO 444. Using a Tatung TMR 7602 portable in Coventry, John Chown noted to radio RSA in Johannesburg, S. Africa 17.880, broadcasting in English to Europe at 1810. At 2134 he picked up Radio HCJB in Quito, Ecuador 17.750, who’s programmes for European listeners are in Czech, German, Norwegian, French, English and Spanish. At 2145 he logged the signal from China 17.750 on KUPO in Okeechobee, Florida 17.750 with programmes in Chinese, French and German for Europe.

Some early morning broadcasts to other areas were noted by DXers. FEBA Radio, South Africa 17.855 (Eng. to Middle East) rated as S5553 at 0650 by David Edwards in Wallseid; Radio Australia via Carnarvon, W. Australia 17.715 (Eng. to E. Asia) rated as 21322 at 0810 by Howard Newell; Radio Bucharest, Romania 17.790/17.805 (Eng. to Australia) both transmissions were rated as SIO 444 by John Beridge in Cardiff at 0645.

Afternoon DXers noted AWR via Mobayi, Gabon 17.890 (Eng. to W. Africa) rated as S555 by Kenneth Buck at 22522 at 1215 by Leslie Hollis; Radio Cairo, Egypt 17.670 (Ar. to N. Africa) noted as 44444 at 1312 by Darran Taplin; WYFR via noting their, Florida 17.612 (Sp. to S. America) logged at 1610 by Philip Rambaut as SIO 333; RTM Rabat, Morocco 17.595 (Ar. to Middle East) rated as 444 at 1600 by Howard Newell. At 1630 David Nash picked up VOA via Monrovia, Liberia 17.870 (Eng. to C. Africa) at SINPO 43433 and VOA via Greenville, N. Carolina 17.785 (Eng. to W. Africa) at 35333.

Evening DXers logged KUSW Salt Lake City, Utah 17.715 (Eng. to NE America) heard at 1900 by Tim Shirley; Radio DW Cologne via Kirgali, Rwanda 17.860 (Ger. to W. Africa) logged by Colin Diffla in Corsham at 1934; Radio Nederland via Bonaire, Ned. Antilles 17.605 (Ar., Eng., Fr., Du. to W. Africa) noted by John Badler in Bishops Stortford at 2000; RCI Montreal, Canada 17.820 (Eng., Fr. to Africa) rated as SIO 454 at 2100 by Kenneth Buck.

Although frequent changes in propagation take place in the 15MHz (19m) band, the reception from many areas has been good recently and a number of long distance paths have been open, including those from Australia and New Zealand. U.S. stations are difficult to hear, however a S.W. PO 2001 portable in Gillingham, Michael Anthony picked up Radio Australia via Shepparton, S. E. Australia on 15.240 at 2300 Australian time. His notes on the signal strength were as follows: Some early morning transmissions on this frequency are beamed towards the S. Pacific area and S. E. Asia.

The broadcasts from Radio New Zealand and Wellington were logged by DXers. FEBA Radio, South Africa 17.855 (Eng. to Middle East) rated as S5553 at 0650 by David Edwards in Wallseid; Radio Australia via Carnarvon, W. Australia 17.715 (Eng. to E. Asia) rated as 21322 at 0810 by Howard Newell; Radio Bucharest, Romania 17.790/17.805 (Eng. to Australia) both transmissions were rated as SIO 444 by John Beridge in Cardiff at 0645.

Many of the broadcasts on this band are intended for listeners in Europe. Some heard during the daytime were VOIRI Tehran, Iran 15.085 (Sp. Farsi) rated as SINPO 33222 at 0825 by Howard Newell; Radio Pakistan, Islamabad 15.605 (Urdu, Eng.) noted as S5455 at 1115 by Ken Whayman; Radio Bangladesh, Dhaka 15.525 (Eng.) logged by Sheila Hughes at 1230 as 33323 at 1230; UAE Radio Dubai 15.435 (Ar., Eng.) rated as 42223 at 1345 by Colin Godwin; Radio Kuwait, Kuwait 15.505 (Ar.) noted as SIO 433 at 1555 by Robert Tai.

Many more were received during the afternoon, including RNB Brasilia, Brazil 15.285 (Eng., Ger.) rated as SINPO 22222 by Alan Curry at 1800; RTM Rabat, Morocco 15.355 (Ar.) logged by Colin Diffla at 1841; Radio Korea Seoul, S. Korea 15.575 (Port., Eng., Ger., Sp.) noted by Leslie Hollis as 34553 at 2030; WRNO New Orleans, USA 15.420 (Eng., Fr.) rated by John Parry in Northwich as SIO 343 at 2055; RCI via Sackville, E. Canada 15.325 (Fr., Eng., Rus.) noted as 45544 at 2110 by David Edwardson; Radio HCJB Quito, Ecuador 15.270 (Eng., Norw., Fr., Ger., Sp.) logged by Martin Andrews as SIO 433 at 2130; VOFC Taiwan via Okeechobee, Florida 15.440 (Chin., Ger., Fr., Eng.) rated as 34533 at 2200 by Leslie Hollis.

This band is the hub of listening activity for many DXers, consequently their reports detailed many of the broadcasts to several continents. Some of those heard during the daytime were the Voice of Israel, Jerusalem 15.640 (Eng. to Fr. Australia) noted by Philip Rambaut as 44444 at 1110; WYFR relayed via Taipei, Taiwan 15.085 (Eng. to S. Asia) rated as 44544 at 1405 by Ken Whayman; Radio Nederland via Tafta Volon, Madagascar 15.570 (Eng. to E. Africa) logged by Sheila Hughes as 44433 at 1630; BBC via Ascension Island.
SEEN & HEARD

Fig. 2: QSL from Radio Norway sent to Robert Taylor

15.400 (Eng. to Africa) rated as 33333 at 1752 by Ian Curry in Stockton-on-Tees. Many more were logged during the evening including Radio Sophia, Bulgaria 15.310 (Eng., Port., Fr. to Africa) heard by Colin Diffell at 1826; Africa No. 1, Gabon 15.475 (Fr., Eng. to W. Africa) logged by Martin Andrews at 1855; AIR via Bombay, W. India 15.360 (Eng. to E. Africa) heard by John Sadler at 1900; Radio RSA Johannesburg, S. Africa 15.225 (Eng., Fr. to W. Africa) rated as SIO 444 at 1900 by Bob Isaacs in Peterborough; VOA via Greenville, N. Carolina 15.205 (Eng. to N. Africa noted as SIO 585 at 1904 by Kenneth Buck; RCI via Sackville, E. Canada 15.260 (Eng., Fr. to W. Africa) heard at 1920 by John Chown; REE via Nobleas, Spain 15.375 (Eng., Fr. to Africa) rated as SIO 333 at 1921 by Julian Wood in Buckie; Radio DW via Antigua, W. Indies 15.105 (Port., Sp. to S. America) logged as SIO 444 at 2130 by John Parry; Radio Corp. Chile 15.140 (Sp. to S. America) and KGEI San Francisco, California 15.280 (Port., Sp. to S. America) both rated as SIO 111 by Philip Rambaut at 2325.

The 13MHz (22m band) has attracted another broadcaster. Radio Libya. They have opted to use 13.690, which is one of the many frequencies adopted by Radio Moscow. Their broadcasts in Russian from 0700 until 1400 have resulted in jamming being heard for the first time on this band.

There are a number of broadcasts to Europe during the day. Those noted in the reports stemmed from Radio Moscow, USSR 13.790 (Eng.) rated as 54444 at 1400 by Colin Godwin; WCSN Boston, USA 13.760 (Eng.) rated as SIO 444 at 1555 by John Parry; WHRB South Bend, DXers.

(A) Ian Baxter, Blackburn.
(B) Alan Curry, Stockton-on-Tees.
(C) David Edwards, Waltham.
(D) Simon Hamer, New Radnor.
(E) Dave Hossack, Fremont, W. Australia.
(F) George Wellington, IDW.
(G) John Nash, Brighton.
(H) Howard Newell, Great Missenden.
(I) Fred Reilant, Stonington.
(K) Rand Whitworth, Newcastle-upon-Tyne.
(L) Philip Rambeau, Macasseldorf.
(M) Kenneth Fenton.
(N) Tim Sherley, Bristol.
(O) Darran Taplin, Torridge Wells.
(P) Robert Taylor, Edinburgh.
The signals from Radio New Zealand have reached the UK. A few of the broadcasts to other areas were noted by Howard Newell, Radio Nederlands, Reykjavik and 13.770 (Eng. to S. Asia) noted as 23222 at 1430; Radio Prague, Czechoslovakia 13.715 (Eng., Cz to S. Asia) 43444 at 1445 and Radio DW via Wettach, W. Germany 13.790 (Eng., Hausa to Africa) 24322 at 1800. Noted by other DXers were Radio Moscow, USSR 13.625 (Eng., Russ., Farsi, Ar. to Middle East) logged by Colin Diffel at 2014; WYFR via Okeechobee, Florida 13.695 (Fr., Eng. to E. USA) rated as SIO 343 by Kenneth Buck at 2040.

Good long distance reception has been noted on the 11MHz (25m) band recently. The paths from Australia have frequently been open and during some nights the signals from Radio New Zealand have been strong. A few of the broadcasts to other areas were noted by Howard Newell, Radio Nederlands, Reykjavik and 13.770 (Eng. to S. Asia) noted as 23222 at 1430; Radio Prague, Czechoslovakia 13.715 (Eng., Cz to S. Asia) 43444 at 1445 and Radio DW via Wettach, W. Germany 13.790 (Eng., Hausa to Africa) 24322 at 1800. Noted by other DXers were Radio Moscow, USSR 13.625 (Eng., Russ., Farsi, Ar. to Middle East) logged by Colin Diffel at 2014; WYFR via Okeechobee, Florida 13.695 (Fr., Eng. to E. USA) rated as SIO 343 by Kenneth Buck at 2040.

Good long distance reception has been noted on the 11MHz (25m) band recently. The paths from Australia have frequently been open and during some nights the signals from Radio New Zealand have been strong. A few of the broadcasts to other areas were noted by Howard Newell, Radio Nederlands, Reykjavik and 13.770 (Eng. to S. Asia) noted as 23222 at 1430; Radio Prague, Czechoslovakia 13.715 (Eng., Cz to S. Asia) 43444 at 1445 and Radio DW via Wettach, W. Germany 13.790 (Eng., Hausa to Africa) 24322 at 1800. Noted by other DXers were Radio Moscow, USSR 13.625 (Eng., Russ., Farsi, Ar. to Middle East) logged by Colin Diffel at 2014; WYFR via Okeechobee, Florida 13.695 (Fr., Eng. to E. USA) rated as SIO 343 by Kenneth Buck at 2040.

Good long distance reception has been noted on the 11MHz (25m) band recently. The paths from Australia have frequently been open and during some nights the signals from Radio New Zealand have been strong. A few of the broadcasts to other areas were noted by Howard Newell, Radio Nederlands, Reykjavik and 13.770 (Eng. to S. Asia) noted as 23222 at 1430; Radio Prague, Czechoslovakia 13.715 (Eng., Cz to S. Asia) 43444 at 1445 and Radio DW via Wettach, W. Germany 13.790 (Eng., Hausa to Africa) 24322 at 1800. Noted by other DXers were Radio Moscow, USSR 13.625 (Eng., Russ., Farsi, Ar. to Middle East) logged by Colin Diffel at 2014; WYFR via Okeechobee, Florida 13.695 (Fr., Eng. to E. USA) rated as SIO 343 by Kenneth Buck at 2040.

Good long distance reception has been noted on the 11MHz (25m) band recently. The paths from Australia have frequently been open and during some nights the signals from Radio New Zealand have been strong. A few of the broadcasts to other areas were noted by Howard Newell, Radio Nederlands, Reykjavik and 13.770 (Eng. to S. Asia) noted as 23222 at 1430; Radio Prague, Czechoslovakia 13.715 (Eng., Cz to S. Asia) 43444 at 1445 and Radio DW via Wettach, W. Germany 13.790 (Eng., Hausa to Africa) 24322 at 1800. Noted by other DXers were Radio Moscow, USSR 13.625 (Eng., Russ., Farsi, Ar. to Middle East) logged by Colin Diffel at 2014; WYFR via Okeechobee, Florida 13.695 (Fr., Eng. to E. USA) rated as SIO 343 by Kenneth Buck at 2040.

Good long distance reception has been noted on the 11MHz (25m) band recently. The paths from Australia have frequently been open and during some nights the signals from Radio New Zealand have been strong. A few of the broadcasts to other areas were noted by Howard Newell, Radio Nederlands, Reykjavik and 13.770 (Eng. to S. Asia) noted as 23222 at 1430; Radio Prague, Czechoslovakia 13.715 (Eng., Cz to S. Asia) 43444 at 1445 and Radio DW via Wettach, W. Germany 13.790 (Eng., Hausa to Africa) 24322 at 1800. Noted by other DXers were Radio Moscow, USSR 13.625 (Eng., Russ., Farsi, Ar. to Middle East) logged by Colin Diffel at 2014; WYFR via Okeechobee, Florida 13.695 (Fr., Eng. to E. USA) rated as SIO 343 by Kenneth Buck at 2040.

Good long distance reception has been noted on the 11MHz (25m) band recently. The paths from Australia have frequently been open and during some nights the signals from Radio New Zealand have been strong. A few of the broadcasts to other areas were noted by Howard Newell, Radio Nederlands, Reykjavik and 13.770 (Eng. to S. Asia) noted as 23222 at 1430; Radio Prague, Czechoslovakia 13.715 (Eng., Cz to S. Asia) 43444 at 1445 and Radio DW via Wettach, W. Germany 13.790 (Eng., Hausa to Africa) 24322 at 1800. Noted by other DXers were Radio Moscow, USSR 13.625 (Eng., Russ., Farsi, Ar. to Middle East) logged by Colin Diffel at 2014; WYFR via Okeechobee, Florida 13.695 (Fr., Eng. to E. USA) rated as SIO 343 by Kenneth Buck at 2040.

Good long distance reception has been noted on the 11MHz (25m) band recently. The paths from Australia have frequently been open and during some nights the signals from Radio New Zealand have been strong. A few of the broadcasts to other areas were noted by Howard Newell, Radio Nederlands, Reykjavik and 13.770 (Eng. to S. Asia) noted as 23222 at 1430; Radio Prague, Czechoslovakia 13.715 (Eng., Cz to S. Asia) 43444 at 1445 and Radio DW via Wettach, W. Germany 13.790 (Eng., Hausa to Africa) 24322 at 1800. Noted by other DXers were Radio Moscow, USSR 13.625 (Eng., Russ., Farsi, Ar. to Middle East) logged by Colin Diffel at 2014; WYFR via Okeechobee, Florida 13.695 (Fr., Eng. to E. USA) rated as SIO 343 by Kenneth Buck at 2040.

Good long distance reception has been noted on the 11MHz (25m) band recently. The paths from Australia have frequently been open and during some nights the signals from Radio New Zealand have been strong. A few of the broadcasts to other areas were noted by Howard Newell, Radio Nederlands, Reykjavik and 13.770 (Eng. to S. Asia) noted as 23222 at 1430; Radio Prague, Czechoslovakia 13.715 (Eng., Cz to S. Asia) 43444 at 1445 and Radio DW via Wettach, W. Germany 13.790 (Eng., Hausa to Africa) 24322 at 1800. Noted by other DXers were Radio Moscow, USSR 13.625 (Eng., Russ., Farsi, Ar. to Middle East) logged by Colin Diffel at 2014; WYFR via Okeechobee, Florida 13.695 (Fr., Eng. to E. USA) rated as SIO 343 by Kenneth Buck at 2040.
G2VF LOOP ANTENNAS COMPLETE WITH ATU FOR HIGH FREQUENCY HAM BAND TRANSMISSION (SWR One to One 40, 15 and One Point Five to One 80 and 20) AND SWLS AND LONG AND MEDIUM WAVE BANDS FOR BCLs. Loops 21 inches square or triangle. D.I.Y. projects. No special skills required. Circuits, Parts Lists with sources of supply and full assembly data. HIGH FREQUENCY LOOP 80 to 10 Metres £5. LONG AND MEDIUM WAVE LOOP FOR BCL £3. LONG WAVE MEDIUM WAVE AND SHORT WAVE LOOP 1500 to 10 METRES FOR THE BCL AND SWL £8. SHORT WAVE ATU FOR USE WITH LOOP OR LONG WIRE £4. FIELD STRENGTH METER £2. MORSE CODE PRACTICE UNIT £2. PHOTO COPY HRO MANUAL £4. SAF for details. F. G. Rylands, 39 Parkside Avenue, Millbrook, Southampton SO1 9AF. Tel: (0703) 175084.

PLEASE MENTION SHORT WAVE MAGAZINE WHEN REPLYING TO ADVERTISEMENTS

Call or phone for a most courteous quotation 01-749 3934

We are one of the largest stockists of valves etc. in the U.K.

170GOLDHAWK ROAD LONDON W4

G2VF LOOP ANTENNAS COMPLETE WITH ATU FOR HIGH FREQUENCY HAM BAND TRANSMISSION (SWR One to One 40, 15 and One Point Five to One 80 and 20) AND SWLS AND LONG AND MEDIUM WAVE BANDS FOR BCLs. Loops 21 inches square or triangle. D.I.Y. projects. No special skills required. Circuits, Parts Lists with sources of supply and full assembly data. HIGH FREQUENCY LOOP 80 to 10 Metres £5. LONG AND MEDIUM WAVE LOOP FOR BCL £3. LONG WAVE MEDIUM WAVE AND SHORT WAVE LOOP 1500 to 10 METRES FOR THE BCL AND SWL £8. SHORT WAVE ATU FOR USE WITH LOOP OR LONG WIRE £4. FIELD STRENGTH METER £2. MORSE CODE PRACTICE UNIT £2. PHOTO COPY HRO MANUAL £4. SAF for details. F. G. Rylands, 39 Parkside Avenue, Millbrook, Southampton SO1 9AF. Tel: (0703) 175084.

FLIGHTDECK

THE AIRBAND SHOP

NORTH-WEST SPECIALISTS IN AIRBAND AND SHORTWAVE COMMUNICATIONS

SETS BY SIGNAL • UNIDEN • SONY • RECO • LOWE ELECTRONICS • KENWOOD • PHILIPS • GRUNDIG • PANASONIC • NORTHERN SPECIALISTS IN AIRBAND AND SHORTWAVE COMMUNICATIONS

58-62 LOWER HILLGATE, STOCKPORT, CHESHIRE SK1 3AN

Telephone: 061-480 8080

SPECIAL NOTICE TO READERS

Although the proprietors and staff of SHORT WAVE MAGAZINE take reasonable precautions to protect the interests of readers by ensuring as far as practicable that advertisements in SHORT WAVE MAGAZINE are bona fide, the magazine and its Publishers cannot give any undertakings in respect of claims made by advertisers, whether these advertisements are printed as part of the magazine, or are in the form of inserts.

While the Publishers will give whatever assistance they can to readers having complaints, under no circumstances will the magazine accept liability for non-receipt of goods ordered, or for late delivery, or for faults in manufacture. Legal remedies are available in respect of some of these circumstances, and readers who have complaints should address them to the advertiser or should contact a local Trading Standards Office, or a Citizens Advice Bureau, or their own solicitor.

ADVERTISERS INDEX

Aerial Techniques .. 41
AJH Electronics .. 41
Birkett J .. 31
BICC VERO .. 13
Bredhurst .. 38
Colomor ... 47
Component Centre .. 37
Datong ... 17
Dewsbury Electronics 37
Dressler Communications 28
Elliott Electronics ... 31
Flightdeck ... 47
Garex Electronics ... 41
Hamgear .. 28
Howes C M Communications 38
ICOM (UK) .. Cover II

Johnson Shortwave Radio 21
Lowe Electronics .. 8
Nevada Communications 31
Practical Wireless .. 18
Raycom Communications Systems 17
Rylands F. G.. 47
Sandpiper Communications 32
SEM .. 41
South Midlands Communications 3
Coverv .. 47
Spacetech ... 28
Stephens James .. 21
Technical Software ... 37
Uppington Tele-Radio (Bristol) 47
Ward Reg & Co ... 32
Waters & Stanton ... Cover III

Advertisers, whether these advertisements are printed as part of the magazine, or are in the form of inserts.
WHAT RECEIVER

What Receiver has been split into two sections. This part covers communications and general coverage receivers. The second section will deal with portable sets.

Panasonic RFS600LBE Communications Receiver

- **Coverage**: 150kHz to 29.999kHz
- **Modes**: a.m., c.w., s.s.b., b.l.s.b., f.m.
- **Sensitivity**: 150kHz to 1.6MHz: 3V, v.s.s.b. / b.l.s.b. / f.m.
- **Price**: £499.95

Yaesu FRG-8800 General Coverage Receiver

- **Coverage**: 150kHz to 29.999kHz
- **Modes**: a.m., c.w., s.s.b., b.l.s.b., f.m. narrow
- **Sensitivity**: 150kHz to 1.6MHz: 3V, v.s.s.b. / b.l.s.b. / f.m.
- **Price**: £499.95

Icom IC-R7000 Communications Receiver

- **Coverage**: 25 to 20000kHz continuous
- **Modes**: f.m., w.bel. / f.m., s.s.b. / c.w.
- **Sensitivity**: 1, 1.5, 10, 12.5, 25kHz
- **Audio Output**: 2.5W at 8Ω at 10% distortion
- **Frequency Stabilty**: ±50Hz during 5kHz
- **Features**: dual-colour fluorescent display, dial lock, noise blanker, attenuator, display dimmer, S meter
- **Price**: £490

Trio R-1000 Communications Receiver

- **Coverage**: 150kHz to 30MHz
- **Modes**: a.m., c.w., s.s.b., b.l.s.b., f.m. narrow
- **Sensitivity**: Below 2MHz: 3V, v.s.s.b. / b.l.s.b. / f.m.
- **Price**: £495

Yaesu FRG-7700 Communications Receiver

- **Coverage**: 150kHz to 30MHz
- **Modes**: a.m., f.m., s.s.b., b.l.s.b., f.m.
- **Sensitivity**: Below 300kHz: 3V, v.s.s.b. / b.l.s.b. / f.m.
- **Price**: £550

Kenwood R-2000 Communications Receiver

- **Coverage**: 150kHz to 30MHz
- **Modes**: a.m., f.m., s.s.b., b.l.s.b., f.m.
- **Sensitivity**: 150kHz to 2MHz: 3V, v.s.s.b. / b.l.s.b. / f.m.
- **Price**: £495

Short Wave Magazine June 1986
WHAT RECEIVER

Kenwood R 5000 Communications Receiver

- **Coverage**: 100kHz to 30MHz
- **Modes**: s.s.b., a.m., f.m., l.s.b.
- **Sensitivity**: 1.1 dB c.w. at -50dB S/N, 1.2 dB s.s.b.
- **Selectivity**: at 5kHz
- **Image rejection**: >80dB
- **Spurious rejection**: >80dB
- **Frequency stability**: ±3 p.p.m.
- **Audio output**: >1.5W at 7kHz
- **Stage**: Double conversion
- **Features**: 16 tuning memories, 100 memory channels, memory scroll, memory and programmable band scan, selectable i.f. filters, noise blanker, dual 24kHz quartz crystals, r.f. attenuator, lithium battery memory backup, keyboard frequency selection
- **Reviewed**: Short Wave magazine June 1987

PRICE: £875

Icom IC-71E General Receiver

- **Coverage**: 0.1 to 20MHz
- **Modes**: a.m./c.w./s.s.b./s.s.b./RTTY
- **Sensitivity**: >100mV for 10dB S/N, >100mV for 100mV at 70% mod
- **Selectivity**: >60kHz at 5kHz
- **Image rejection**: >80dB
- **Spurious rejection**: >80dB
- **Frequency stability**: ±100Hz at 70% mod
- **Audio output**: >1.5W at 7kHz
- **Stage**: Double conversion
- **Features**: 16 tuning memories, 100 memory channels, memory scroll, memory and programmable band scan, selectable i.f. filters, noise blanker, dual 24kHz quartz crystals, r.f. attenuator, lithium battery memory backup, keyboard frequency selection
- **Reviewed**: Short Wave magazine June 1987

PRICE: £875

Lowf HF-125 General Coverage Receiver

- **Coverage**: 30kHz to 30MHz
- **Modes**: a.m./c.w./s.s.b./l.s.b./f.m.
- **Sensitivity**: >10dB S/N, >10dB at 70% mod
- **Selectivity**: >60kHz at 5kHz
- **Image rejection**: >80dB
- **Spurious rejection**: >80dB
- **Frequency stability**: ±50Hz at 70% mod
- **Audio output**: >1.5W at 7kHz
- **Stage**: Double conversion
- **Features**: 16 tuning memories, 100 memory channels, memory scroll, memory and programmable band scan, selectable i.f. filters, noise blanker, dual 24kHz quartz crystals, r.f. attenuator, lithium battery memory backup, keyboard frequency selection
- **Reviewed**: Practical Wireless magazine June 1987

PRICE: £615

EDDYSTONE MODEL 1650 Communications Receiver

- **Coverage**: 10kHz to 30MHz
- **Modes**: a.m./c.w./s.s.b./f.m.
- **Sensitivity**: >100mV for 10dB S/N, >100mV for 100mV at 70% mod
- **Selectivity**: >60kHz at 5kHz
- **Image rejection**: >80dB
- **Spurious rejection**: >80dB
- **Frequency stability**: ±100Hz at 70% mod
- **Audio output**: >1.5W at 7kHz
- **Stage**: Double conversion
- **Features**: 16 tuning memories, 100 memory channels, memory scroll, memory and programmable band scan, selectable i.f. filters, noise blanker, dual 24kHz quartz crystals, r.f. attenuator, lithium battery memory backup, keyboard frequency selection
- **Reviewed**: Short Wave magazine June 1987

PRICE: £615

SERVICES

Subscriptions
Subscriptions are available at £17 per annum to UK addresses and £19.00 overseas by Accelerated Surface Post outside Europe. For further details see the announcement on page 15 of this issue. Airmail rates for overseas subscriptions can be quoted on request. Joint subscriptions to both Short Wave Magazine and Practical Wireless are available at £7.00 (UK) and £8.00 (overseas).

Queries
We will always try to help readers having difficulties with a Short Wave Magazine project, but please observe the following simple rules:

1. We cannot give advice on commercial radio, TV or electronic equipment, nor on modifications to our designs.
2. We cannot deal with technical queries over the telephone.
3. All letters asking for advice must be accompanied by a stamped, self-addressed envelope for envelope plus international Reply Coupons for overseas readers.

4. Write to the Editor, "Short Wave Magazine", Enfeco House, The Quay, Poole, Dorset BH1 1PP, giving a clear description of your problem and your listener site.

5. Only one query per letter, please.

Back Numbers and Binders
Limited stocks of most issues of SWM for the past 10 years are available at £1.45 each, including post and packing to addresses at home and overseas (by surface mail).

Binders, each taking one volume of the new style SWM, are available price £3.95 to UK addresses, or overseas, including post and packing. Please state the year and volume number for which the binder is required. Prices include VAT where appropriate.

Please note that Volume 45 finished with the December 1987 issue, making nine issues in the volume. In future each volume will run from January to December.

Ordering
Orders for p.c.b.s., back numbers and binders, PW computer program cassettes and items from our Book Service, should be sent to PW Publishing Ltd., FREE-POST, Post Sales Department, Enfeco House, The Quay, Poole, Dorset BH15 1PP, with details of your credit card or a cheque or postal order payable to PW Publishing Ltd. Cheques with overseas orders must be drawn on a London Clearing Bank and in sterling.

Credit card orders (Access, Mastercard, Eurocard or Visa) are also accepted by telephone to Poole (0202) 678558. An answering machine will accept your order out of office hours.

Components for SWM Projects
In general all components used in constructing SWM projects are available from a variety of component suppliers. Where special, or difficult to obtain, components are specified, a supplier will be quoted in the article.

The printed circuit board for the SWM Audio Filter, July 87 issue is available from Short Wave Magazine, Enfeco House, The Quay, Poole, Dorset BH15 1PP, price £2.00 plus 75p post and packing.
HOW TO ORDER
Add 75p per order postage (overseas readers add £1.50 for surface mail postage) and send a postal order, cheque or international money order with your order (quoting book titles and quantities) to PW Publishing Limited, FREEPOST, Enefco House, The Quay, Poole, Dorset BH15 1PP. Payment by Access, Mastercard, Eurocard or Visa also accepted on telephone orders to Poole (0202) 678558. Books normally despatched by return of post but please allow 28 days for delivery.

★ A recent addition to our Book Service

O/P = Out of print, O/S = Out of stock

DIAL SEARCH (5th Edition) 1988/89
George Wilcox
The listener's check list and guide to European broadcast
covering medium and long wave, v.h.f. and short wave, including two special maps, making the most of your portable and providing useful data. 49 pages £3.25

GUIDE TO BROADCASTING STATIONS
Philip Dunnington
Frequency and station data, receivers, antennas, Latin American DXing, reporting, computers in radio, etc. 240 pages £6.95

★ GUIDE TO FACSIMILE STATIONS
7th Edition
Joerg Klingenfus
This manual is the basic reference book for everyone interested in FAX, Facsimile, facsimile, of the name, ITU country/geochemical symbol, technical parameters of the emission are all listed. All frequencies have been measured to the nearest 100Hz. 252 pages £12.00

GUIDE TO FORMER UTILITY TRANSMISSIONS
3rd Edition
Joerg Klingenfus
This manual is built on continuous monitoring of the radio spectrum. Former utility stations and information. 126 pages £8.00

GUIDE TO UTILITY STATIONS
6th Edition
Joerg Klingenfus
This book covers the complete short wave range from 3 to 30MHz plus the adjacent frequency bands from 0 to 15MHz and from 1.6 to 3MHz. It includes details of all types of utility stations including FAX and RTTY. There are 1656 entries in the utility checklist and 3133 in the alphabetical call sign plus press services and meteorological stations 454 pages £19.00

HF OCEANIC COMMUNICATIONS
2nd Edition
Bill Laver
Amateur radio wave form and bands, main ground radio stations, European RT networks, North Atlantic control frequencies. 280 pages £12.00

INTERNATIONAL RADIO STATIONS
7th Edition
Revised and updated in 1985, this book shows the country, frequency/wavelength and power of stations in Europe, the Near East and the Mediterranean, Latin America and the Caribbean, plus short wave stations worldwide. 128 pages £3.95

THE COMPLETE VHF/UHF FREQUENCY GUIDE
Updated 1988
This book gives details of frequencies from 26 MHz upwards with no gaps and no texts. Recently updated, there are chapters on equipment requirements as well as antennas, etc. 88 pages £5.95

★ THE INTERNATIONAL VHF FM GUIDE
7th Edition
Julian Baldwin G3UJK & Kris Partridge G8APU
This latest edition of a useful book gives complete details of repeaters and beacons worldwide plus coverage and further information on UK repeaters. 70 pages £2.65

UK LISTENERS CONFIDENTIAL FREQUENCY LISTS
3rd Edition
Bill Laver
Covers the services and transmission modes that can be heard on the bands 1.625 to 29.7MHz. 147 pages £6.95

VHF/UHF AIRBAND FREQUENCY GUIDE
A complete guide to the airband frequencies including how to recognise the signals, frequencies and services, VOLMET and much more about the interesting subject of airband radio. 74 pages £8.95

WORLD RADIO TV HANDBOOK 1988
Country-by-country listing of long, medium and short wave broadcasts and TV stations. Receiver test reports, English language broadcasts. The s.w.i. bible - 526 pages £17.85
DATA & REFERENCE

DIGITAL IC EQUIVALENTS AND PIN CONNECTIONS (BP140)
A. Michaels
Equivalents for some IC pin connections of a popular selection of European, American and Japanese digital ICs. 256 pages £5.95

INTERNATIONAL DIODE EQUIVALENTS GUIDE (BP108)
A. Michaels
Possible substitutes for a large selection of commonly used diodes. 144 pages £2.25

INTERNATIONAL TRANSISTOR EQUIVALENTS GUIDE (BP108)
A. Michaels
Possible substitutes for a large selection of popular European, American and Japanese transistors. 320 pages £3.50

NEWNES AUDIO & HI-FI ENGINEER'S POCKET BOOK
Vivian Capel
A complete collection of practical and relevant data for anyone working on sound systems. The topics covered include microphones, gramophones, CDs to name a few. 190 pages Hardback £5.95

NEWNES COMPUTER ENGINEER'S POCKET BOOK
This is an invaluable compendium of facts, figures, circuits and design ideas. Perfectly suited to the designer, student, service engineer and all those interested in computers and microprocessor systems. 203 pages Hardback £6.95

NEWNES ELECTRONICS POCKET BOOK 5th Edition
Presenting all aspects of electronics in a readable and largely non-technical form for both the enthusiast and the professional engineer. 315 pages Hardback £6.95

NEWNES RADIO AMATEUR AND LISTENER'S POCKET BOOK
Steve Bourne
This book is a collection of useful and intriguing data for the traditional and modern radio amateur as well as the short wave listener. Topics such as AMTOR, packet radio, networking, modem communications, arband and maritime communications are all covered. 160 pages Hardback £6.95

NEWNES RADIO AND ELECTRONICS ENGINEER'S POCKET BOOK (17th Edition)
Keith Birindley
Useful data including maths, abbreviations, codes, symbols and frequency bands/allocations, UK broadcasting stations, semiconductor data, etc. 201 pages Hardback £6.95

NEWNES TELEVISION AND VIDEO ENGINEER'S POCKET BOOK
Eugene Trundle
This is an essential reference source for practitioners in "entertainment" electronic equipment. It covers TV reception from signal to screen, display tubes, colour camera technology, video recorder and video disc equipment, TV, radio and hi-fi sound. 323 pages Hardback £9.95

POWER SELECTOR GUIDE (BP235)
J. C. Van de Ven
This guide has the information on all kinds of power devices in terms of ratings rather than the usual alphanumeric (numeric) sort such as voltage and power properties making selection of replacements easier. 160 pages £4.95

RSGB RADIO DATA REFERENCE GUIDE
G. R. Jessop G6JG
The 5th edition of this essential book for the radio amateur's or experimenters' workshop. 244 pages Hardback £11.95

SEMICONDUCTOR DATA BOOK
A. M. Ball
Characteristics of about 10,000 transistors, f.e.s.t., w.i.s.d. diodes, rectifiers, tranzistors and s.c.r.s. 175 pages £7.50

TRANSISTOR SELECTOR GUIDE (BP234)
J. C. Van de Ven
This guide has the information on all kinds of transistors in useful categories (other than the usual alphanumeric sort) such as voltage and power properties making selection of replacements easier. 192 pages £4.95

FAULT-FINDING

ARE THE VOLTAGES CORRECT?
Reprinted from PM 1982–1983
How to diagnose problems on and electric and radio equipment, from simple resistive dividers through diodes, transistors, r.c.s. and valves 4 pages £1.00

GETTING THE MOST FROM YOUR MULTIMETER (BP239)
R. A. Penfold
This book is primarily aimed at beginners. It covers both analogue and digital multimeters and their respective limitations. All kinds of testing is explained too. No previous knowledge is required or assumed. 102 pages £2.95

OSCILLOSCOPES, HOW TO USE THEM, HOW THEY WORK
Ian Hickman
This book describes oscilloscopes ranging from basic to advanced models and the accessories to go with them, 133 pages £5.95

PRACTICAL HANDBOOK OF VALVE RADIO REPAIR
C. E. Millar
The definitive work on repairing and restoring valuable broadcast receivers dating from the 1930s to the 60s. Appendices giving intermediate frequencies, valve characteristic data and base connections. 230 pages Hardback £18.95

QUESTIONS & ANSWERS

RADIO REPAIR
B. J. Singhal
How to fault-find and repair valve and transistorised receivers, car radios and unit audio equipment. Suggested lists of tools and parts. 106 pages £2.95

SERVICING RADIO, HI-FI AND TV EQUIPMENT
Gordon J. King
A very practical book looking at semiconductor characteristics, DC and signal tests, fault-finding techniques for audio, video, f.t. and oscillator stages and their application to transistor radios and hi-fi. 205 pages £8.95

TEST EQUIPMENT FOR THE RADIO AMATEUR (RSGB)
H. L. Gribben G2ZW
Techniques and equipment for tests and measurements on receivers, transmitters, devices, systems and antennas. 142 pages Hardback O/P

TRANSISTOR RADIO FAULT FINDING CHART (BP70)
C. E. Millar
Used properly, should enable most common faults to be traced and repaired quickly. Selecting the appropriate fault description at the head of the chart, the reader is led through a sequence of questions until the fault is cleared. 635 x 455mm approx £0.95

PROJECT CONSTRUCTION

HOW TO BUILD ADVANCED SHORT WAVE RECEIVERS (BP222)
R. A. Penfold
This revision of the classic book on how to build short wave receivers can be gained from the hobby of shortwave listening when using home constructed receivers. The book gives full practical constructional details of a number of receivers as well as some add-on projects such as 5-meters and noise limiters. 118 pages £2.95

HOW TO DESIGN AND MAKE YOUR OWN P.C.B.s (BP121)
A. M. Ball
Designing or copying printed circuit board designs from layouts, including photographic methods. 80 pages £1.95

INTRODUCING GRP
Contemporary Articles from PM 1982–1985
An introduction to low-power transmission, including constructional designs of designs by Rev. George Dobbs G4JRV for transmitters and transceivers from 10 Band to 14MHz, and test equipment by Tony Smith G4AFI. 64 pages £1.50

MORE ADVANCED POWER SUPPLY PROJECTS (BP192)
R. A. Penfold
The practical and theoretical aspects of the circuits are covered in some detail. Topics include switched mode power supplies, transistor regulators, dual tracking regulators and computer controlled power supplies, etc. 52 pages £2.95

POWER SUPPLY PROJECTS BP76
R. A. Penfold
This book gives a number of power supply designs, including simple stabilised types, fixed voltage regulated types and variable stabilised designs. 31 pages £2.50

PRACTICAL POWER SUPPLIES
Contemporary Articles from PM 1978–1985
Graphics of batteries, transformers, rectifiers, fuses and heat sinks, plus designs for a variety of mains-powered power supplies, including the PM's "Marchwood" giving a fully stabilised and protected 120V/30 C.A. 48 pages £1.25

PROJECTS IN AMATEUR RADIO AND SHORT WAVES (BP122)
F. G. Reyner G3GGR
Practical design data are given for all projects, including housing the units in a suitable case. All the projects are either on p.c.b. or matrix board. 90 pages £4.95

SOLID STATE SHORT WAVE RECEIVERS FOR BEGINNERS (BP222)
R. A. Penfold
There is a strange fascination in listening to a broadcast from a distant station, perhaps even from across many thousands of kilometres. This is even more the case when you've built the receiver yourself. There is a vast range of designs that will give a fairly high level of performance. 93 pages £2.95

AUDIO FREQUENCIES

AUDIO (BP111)
(Elements of Electronics – Book 6)
F. A. Wilson
This book studies sound and hearing, and the operation of microphones, loudspeakers, amplifiers, oscillators, and both disc and magnetic recording. 320 pages £3.50

Short Wave Magazine June 1989
SONY AIR-7 HAND-HELD
AM/FM 108-176MHz +
LW/MW/FM
UNBEATABLE VALUE
That's a fact! 108-176MHz
plus LW/MW/FM broadcast.
Covers air, marine, FAX, etc.
Loudspeaker, memories, scanning, lockout, priority, etc. Supplier is stoked but we are the UK's largest stockist so check with us!

$247 FREE SECURICOR

SONY ICFC2001D RECEIVER
PORTABLE SUPER AM/FM/SW/CW
+ AIR BAND COVERAGE

Described as 'the best portable on the market' by a recent reviewer, it covers 100KHz-30MHz AM/FM/SW/CW plus LW/MW/FM broadcast. Memories, scanning, lockout, priority etc. Supplier is stoked but we are the UK's largest stockist so check with us!

$329 FREE SECURICOR

GLOBAL AT1000 AERIAL TUNER

The AT1000 is a receiver aerial tuner designed to give you maximum performance from your aerial. Covers the frequency range 100kHz to 30MHz. It matches all the modern receivers produced in recent years. Ideal for matching long wire, dipole or balanced feeder.

$89.00 POST FREE

SCANNING AERIALS

CLP 513 Beam
Illustrated above, this beam antenna covers 105-1300MHz. A forward gain of up to 12dBi and a front to back ratio of 50dB provides the means of dramatically improving reception. With a beam width better than 2° it can also be used for transmission up to 50 watts.

$99.00 plus post £3.00

CLP 5130 50MHz-1300MHz version in stock

$179.00 + £12.00 carriage

D130N Disclose
The D130N antenna is the leader in discus and used by military and research establishments. What better recommendation!! Covering 25-1300MHz with low SWR, it is supplied complete with 50ft of ultra low loss cable and N plugs.

$82.50 plus post £3.00

THE SECRET OF LEARNING MORSE CODE £4.95 post 90p

Here's a book that takes the problem of learning Morse code by the scruff of the neck and exposes the myths and mysteries that surround this most valuable ability. The author, Mark Francis, takes you simply but thoroughly through the whole learning process and shows that with his method you will be able to read Morse and enjoy your new found skill. Little is quoted, the book is written in non-technical language which makes it a joy to read. Mark Francis covers all the aspects of the subject and provides some very valuable tips on the best ways to learn and improve your code. And once you have learnt the code you can just sit down with the sample tests at the back of the book. There is even a chapter that tells you exactly what you should expect when you take your seal in the examination room for your RAE Morse test. As one reader said "It's the most comprehensive book available on the subject today!

$4.95 POST FREE

RETAIL & MAIL ORDER: 18-20, Main Road, Hockley, Essex SS5 4OS
Tel. (0702) 206835, 204965
RETAIL ONLY: 12, North Street, Horncastle, Essex RM11 10X
Tel. (04002) 44765
Visa and Access by telephone. 24hr. Answerphone Early Closing Wednesday
"They said I couldn't work DX with just 100 watts. Especially with a radio that has less than 1000 switches on the front panel.

But the truth is, I'm working lots of DX, more than some of these blockbuster types, thanks to my Yaesu FT-747GX.

You see, my no-nonsense FT-747GX was designed with me in mind, so I can hop around the band fast to nail those DX stations. While the other hams are warming up their amplifiers, I'm working the new country!

My FT-747GX has a super receiver, with a directly-driven mixer for great overload protection. And, Yaesu included the CW filter in the purchase price (I used the money I saved on postage for the QSL cards!).

And my FT-747GX is loaded with other features. The receiver works from 100kHz straight through 30MHz, and it's a fantastic shortwave broadcast receiver. I can use all twenty memories for that alone! Plus it's got dual VFOs. A noise blanker. Split frequency operation for the pile-ups. And scanning up the band helps me check out openings as they happen.

I just put in the optional crystal oven, and next month I'm going to pick up the FM board. And with the money I saved when I bought my FT-747GX, I got a second ten-metre antenna for satellite work on the high end of the band. I use my personal computer to tell me what satellites are going by, and the computer even sets the frequencies on the radio for me.

Now my friends are getting FT-747GX rigs, too. I knew they'd figure out my secret weapon sooner or later. But now I'm setting the pace!

Thanks, Yaesu. You've made a rig that makes sense, at a price I can afford."

South Midlands Communications Ltd
S.M. House, School Close,
Chandlers Ford Industrial Estate,
Eastleigh, Hants SO5 3BY
Tel: (0703) 255111
UK Sole Distributor

"They laughed when they saw my radio. Then they saw my logbook."