THE STORY OF NITON RADIO
SONY PRO-80 REVIEWED
What Receiver
For the Radio Listener
IC-R7000, 25-2000 MHz, Commercial quality scanning receiver

ICOM introduces the IC-R7000, advanced technology, continuous coverage communications receiver. With 99 programmable memories the IC-R7000 covers aircraft, Marine, FM Broadcast, Amateur Radio, television and weather satellite bands. For simplified operation and quick tuning the IC-R7000 features direct keyboard entry. Precise frequencies can be selected by pushing the digit keys in sequence of the frequency or by turning the main tuning knob. FM wide/FM narrow/AM upper and lower SSB modes with six tuning speeds: 0.1, 1.0, 5, 10, 12.5, 25KHz.

The IC-R7000 has 99 memories available to store your favourite frequencies including the operating mode. Memory channels can be called up by pressing the memory switch then rotating the memory channel knob, or by direct keyboard entry. A sophisticated scanning system provides instant access to the most used frequencies. By depressing the Auto M switch, the IC-R7000 automatically memorises frequencies that are in use whilst it is in the scan mode, this allows you to recall frequencies that were in use. The scanning speed is adjustable and the scanning system includes the memory selected frequency ranges or priority channels. All functions including the memory channel readout are clearly shown on a dual-colour fluorescent display. Other features include dial-lock, noise blanker, attenuator, display dimmer and S-meter and optional RC-12 infra-red remote controller, voice synthesizer and HP 1 headphones.

IC-R71E, General coverage receiver.

The ICOM IC-R71E 100KHz to 30MHz general coverage receiver features keyboard frequency entry and infra-red remote controller (optional) with 32 programmable memory channels, SSB, AM, RTTY, CW and optional VFO's scanning, selectable AGC, noise blanker, pass band tuning and a deep notch filter.

With a direct entry keyboard frequencies can be selected by pushing the digit keys in sequence of frequency. The frequency is altered without changing the main tuning control. Options include FM, voice synthesizer, RC-11 infra-red controller, CK70 DC adaptor for 12 volt operation, mobile mounting bracket, CW filters and a high stability crystal filter.

Helpline: Telephone us free-of-charge on 0800 521145, Mon-Fri 09:00-13:00 and 14:00-17:30. This service is strictly for obtaining information about or ordering Icom equipment. We regret this cannot be used by dealers or for repair enquiries and parts orders, thank you.

Datapost: Despatch on same day whenever possible.

Access & Barclaycard: Telephone orders taken by our mail order dept, instant credit & interest-free H.P.

Icom (UK) Ltd.
Dept SW, Sea Street, Herne Bay, Kent CT6 8LD. Tel: 0227 363859. 24 Hour.
The coastal radio station at Niton on the Isle of Wight has an interesting history, as Elaine Richards G4LFM found out when she visited it recently. Bandscan will definitely be returning next month. Peter Laughton apologizes to his regular followers.

Our Reader Survey and Competition is in the four-page centre section which you are asked to complete and return to the address given.

CONTENTS

VOL. 46 ISSUE 3 MARCH 1988

ON SALE FEBRUARY 28th

<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cover</td>
<td>Niton Radio</td>
</tr>
<tr>
<td>The Roman Wall Expedition</td>
<td>9</td>
</tr>
<tr>
<td>Introduction to DX-TV</td>
<td>13</td>
</tr>
<tr>
<td>Part 8</td>
<td></td>
</tr>
<tr>
<td>Weather Satellite Reception</td>
<td>22</td>
</tr>
<tr>
<td>Part 2</td>
<td></td>
</tr>
<tr>
<td>SWM Review</td>
<td>24</td>
</tr>
<tr>
<td>Sony PRO-80 Scanner</td>
<td></td>
</tr>
<tr>
<td>Niton Radio</td>
<td>26</td>
</tr>
<tr>
<td>Computer Noise</td>
<td>29</td>
</tr>
</tbody>
</table>

REGULARS

- **First Word**: 2
- **A Word in Edgeways**: 2
- **What's New**: 3
- **Bookcase**: 5
- **Grassroots**: 6
- **Airband**: 10
- **Listen Out For**: 16
- **Scanning**: 19
- **Starting Out**: 31
- **Services**: 49
- **Book Service**: 50
- **Rallies**: 56

SEEN & HEARD

- **Amateur Bands Round-Up**: 33 | Justin Cooper |
- **Decode**: 34 | Mike Richards G4WNC |
- **Info in Orbit**: 35 | Pat Gowen G3 IOR |
- **Band II DX**: 36 | Ron Ham |
- **Television**: 37 | Ron Ham |
- **Long Medium & Short**: 40 | Brian Oddy G3 FEX |

© COPYRIGHT

PW Publishing Limited 1988. Copyright in all drawings, photographs and articles published in Short Wave Magazine is fully protected and reproduction or imitation in whole or in part is expressly forbidden. All reasonable precautions are taken by Short Wave Magazine to ensure that the advice and data given to our readers is reliable. We cannot however guarantee it and we cannot accept legal responsibility for it. Prices are those current as we go to press.
FIRST WORD

This issue is the twelfth since we relaunched Short Wave Magazine as a magazine for listeners. The changes in both the fortunes and format have been dramatic, but I would like to know what you, the readers, think about the magazine, and what you are really looking for when you buy it.

To help me to “fine tune” SWM this issue contains a Reader Survey in the centre which you are invited to complete and return to the Editorial Offices in Poole.

To give you an incentive to return the Survey we are offering an impressive array of prizes to the winner and runners up in a simple competition, details of which are in the Survey Form itself. The First Prize is a Lowe HF125 General Coverage Receiver which is listed at £375. As consolation prizes to the five runners up we are offering One-year Subscriptions to SWM. So get your pen out and fill in the Survey Form — now.

Over the next few issues I have lined up several exciting features. The April 88 issue marks the First Birthday of the “new look” SWM! and to celebrate this occasion a special and unusual cover has been designed. I will reveal no more so as not to spoil the surprise, but make sure you ask your Newsagent to reserve your copy.

DICK GANDERTON

A WORD IN EDGEEWAYS

Sir

Further to Miss Godbold’s queries about computer interference. Unfortunately it was not specified whether the radio and computer are used for RTTY decoding etc., or simply to listen to Radio One while zapping aliens, but I will assume the former.

The two major sources of interference in my experience are the use of a colour TV as the monitor — a monochrome unit is far “quieter”, but a proper monitor is best if this can be connected to the Spectrum Plus — and r.f. interference getting into the radio through the audio connection. This can be countered quite simply by cutting the audio lead and reconnecting it using two r.f. chokes, one in each wire. I used 220µH items, mostly because they were all I had.

The use of screened leads throughout will certainly help, including the power supply lead to the computer and the radio, and the headphone lead, and some form of external antenna fed with coaxial cable via an a.t.u., remembering that if the antenna is the ubiquitous long wire then a good earth is mandatory for best signal to noise performance. I use indoor dipoles for 7-28MHz with great success, resorting to a loop for 80m (SWM DX 160/80 May 87). Direct radiation from the computer to the radio, and the TV to the radio for that matter, is also a problem.

Keeping the radio as far away as possible from the computer is the obvious answer, even an extra metre can make quite a difference, although it will probably mean extending at least some of the leads. Enclosing the computer p.c.b. completely in a metal box with an external keyboard is also a possibility, assuming the availability of a suitable keyboard, the metal box makes a great heatsink for the regulator, minimising any problems due to overheating. Don’t just put the computer complete unit in a biscuit tin, or whatever, without proper ventilation. This will only cure your problems by frying the computer. Finally, extra decoupling of the power supply circuitry within the computer can be advantageous at some frequencies, but this really is a last resort as it involves fitting possibly several different value capacitors in parallel across the supply rails of as many i.c.s as possible, maybe only to find that improvement only exists where signals don’t.

Obviously any internal modification or disassembly of the computer will void any warranty and should only be conducted by someone of sufficient competence. I hope the above will be of some help to Miss Godbold and your other readers. If they can get as much enjoyment out of their equipment as I get out of my ZX81 decoding RTTY and c.w. the effort will be well worth while.

C. R. EVE
JERSEY

Sir

George Wilcox, on page 2 of the Fifth Edition of Dial Search has comments on “the listener’s entitlement to clear reception”. I have not heard this mentioned in the current “to-do” on the future of broadcasting, although “the freedom to broadcast” is. I therefore feel that the listener’s interest has been lost.

In my opinion the entitlement to clear reception has priority over freedom to broadcast. After all, who listens to a broadcast subject to interference — other than us s.w./DXers? I assume that would be broadcasters have in mind good reception by their listeners but at the moment this point seems lost on them.

Is not “the listener’s entitlement to clear reception” an ideal subject for the attention of Short Wave Magazine and, perhaps with other radio magazines, putting forward the listener’s interests at Westminster.

To create my own small wave, I shall be writing to my MP on the subject.

PHILIP TOWNSEND
LONDON

This raises some interesting issues. Let’s have your views on the subject.

Sir

The recent correspondence regarding the Sony PRO 80 from a Northern Sony dealer underlines the difference between a specialist communications dealer such as ourselves and a general domestic stockist of Sony products. Perhaps even more, it highlights my own company’s unique position with regard to the Sony range of communications products. We are the largest stockist of Sony communications equipment in the South, probably in the UK, and as far as I am aware, the only Sony UK dealer able to offer the customer comparisons between Sony, Kenwood, Yaesu and Icom, etc. As specialists in communications we make it our business to be familiar with the products we sell and in fact produced our own addendum to the PRO 80 instruction manual within 24 hours of receiving the first delivery, in order to clarify a few points for the benefit of the less experienced. To claim lack of knowledge of a product through insufficient experience is not acceptable to most members of the public. We have a number of enthusiastic and licensed amateurs on our staff, and we also make it our business to have proper antennas for demonstration purposes — a fairly basic requirement I would have thought.

Since October we have had full-colour brochures on the PRO 80, and prior to that we published our own illustrated technical brochure. I sincerely hope my company’s product knowledge never falls to the point where we have to invite a customer to provide us with a teach-in on one of our own products!

P. W. WATERS
WATERS & STANTON
ELECTRONICS
Sir
With reference to the letter from Mr Wilson and the reply from Mr Andrews.
Before Mr Wilson starts to compare sensitivity, selectivity, scanning modes, etc. between the Sony ICF PRO 80 and ICF20001D models perhaps he should consider whether he can manage without timer and synchronous detection facilities, which the PRO 80 doesn't have.
Apart from being an excellent high performance receiver for the home, the PRO 80 takes to the 2001D really comes into its own when abroad on trips, business or pleasure. To be woken by virtually distortion-free BBC World News in the morning makes the set worth every penny as far as I'm concerned.
Talking about synchronous detection and worst of all, if I switch on synchronous detection whilst tuned to Radio 4 on 200kHz long wave the audio takes on a fairly low frequency modulation which results in a warbling effect, particularly on the female voice. This is obviously very annoying and, to me, unlistenable. The effect is not present when tuned to any of the other i.w. stations. Is this due to the BBC employing phase modulation of the carrier to remote switch electrical appliances?
If this is the case then will other broadcasters follow suit and render synchronous detection — a giant step forward in a region of fidelity redundant? Perhaps SWM can answer this one.
Finally, Mr Andrews' statement that many short wave purchasers are not enthusiasts. I can believe this to be true of people spending less than, say €100 but cannot believe it of the person spending £350!

BILL CLAMP
HAVANT, HANTS

WHAT'S NEW

RDS
Recently, BBC engineers completed the installation, ahead of schedule, of Radio Data Systems (RDS) equipment at all of its network and local radio v.h.f. f.m. transmitters serving England. These RDS signals will allow the 'intelligent' receiver to automatically tune to the best signal, give a visual indication of the station name and display the current time and date.
The RDS data is carried on an inaudible 56kHz sub-carrier on every v.h.f. f.m. transmitter serving England. Work to extend the system to Scotland, Wales and Northern Ireland started this year.
The system will be dynamically configured from April 1988, when the RDS central computer, located in the Control Room at Broadcasting House, London, is put on line. This will allow codes to be updated, for example when the Radio 2 v.h.f. f.m. transmitters are carrying Radio 1 programmes. It will allow a Travel Service using the TA (Travel Announcement) and TP (Travel Programme) codes, which will be added in the autumn 1988. The RDS service will be publically launched at the BBC Radio Show, being held at Earl's Court, London, from September 30 to October 2.

Engineering Details
High Wycombe: A new v.h.f. f.m. relay station should now be in operation. It is located at the same site as the existing TV relay at Plomer's Hill on the north-west side of town.
The frequencies to be used are:
Radio 2 1 89.9MHz
Radio 3 92.1MHz
Radio 4 94.3MHz

Llandinam: A new TV relay, at Bronheirion, should now be on the air. It is about 0.75km to the west of Llandinam village.
The channels are:
Channel 23 S4C
Channel 26 BBC 2 Wales
Channel 28 HTV Wales
Channel 33 BBC 1 Wales
To take full advantage viewers should use Group A, vertical, outside antennas.

Long Wave Changes
The BBC changed the frequency of Radio 4 long wave transmitters to 198kHz on 1 February 1988. The transmitters, which are located at Droitwich, Westerglen and Burghhead, have been moved from 200kHz (1500m) to 198kHz (1515m) as a result of the World Administrative Radio Conference (WARC) in 1979. This requires all long wave stations to operate on a frequency spacing of 9kHz.
The long wave transmitters, which carry the Radio 4 (UK) programme, operate at frequency standards, being locked to rubidium drive sources. The frequency stability of the Droitwich transmitter will be maintained to an accuracy of better than 1 part in 10^11 by the National Physical Laboratories Caesium Standard.
Some commercial companies use this transmitter as a reference source to calibrate accurate frequency test equipments. They are advised to check with the manufacturer or suppliers of the equipment so that modifications can be expected.
If you would like reception advice on the long wave transmitters, you should contact:
BBC Engineering Info Dept
Broadcasting House
London W1A 1AA

EDXC '88 Antwerp
A full round of lectures and displays has been arranged as well as an interesting programme of non-radio activities.
EDXC '88
C/o PENVOX
Rue Jules Lejeune, 37
1060 Brussels
Belgium

Scaner Computer Control Terminal
The Aircastle 2002 Scanner Computer is the result of some very careful evaluation of the needs of the AR2002 user and the combination of many years of hardware and software expertise. It is a stand-alone unit which runs off an external 9-12v d.c. supply and is connected to the AR2002 by means of a ribbon cable.
The unit is controlled by connecting any computer running an asynchronous scrolling terminal program to the build-in RS232 Interface.
Some of the features are: Much faster scanning rates (up to 150 channels per second). In excess of 400 memories (8K RAM version) or 1000 on RAM expansion option.
Memory can be backed-up by fitting batteries.
Extended frequency range.
Squelch control output to drive a tape recorder on/off. Price is £169.89 all inclusive.
There are many more, but space doesn't permit a full list. For more details:
Aircastle Products
PO Box 78
Bournemouth
BH1 4SP

The European DX Council are holding their 1988 Conference at the Crest Hotel, Antwerp, Belgium, May 20 to 23.
The opening ceremony takes place at 1730 on May 20 in the sumptious auditorium of the Provincial House in Antwerp, the seat of provincial government and it is hoped that the Governor of the Province of Antwerp will perform the ceremony.
Local Radio DX

If you are interested in Local Radio DXing, then the British DX Club have just the booklet for you. It is called Radio Stations in the United Kingdom 6th Edition, and at £1 or 4 IRCs won't break the bank either. It contains details of local radio frequency changes, m.f. transmitters, v.h.f. transmitters, an address and frequency guide as well as information about the broadcasters.

To give you an idea of how easy it is to drive, most of the book has 5 columns on each page. The first gives the frequency (either in kHz for the m.f. stations of MHz for the v.h.f. stations). The second column gives the power used by that station and the third column gives the name of the station, or stations, using that frequency. The fourth column is very useful, it gives you any other frequencies used by that station for its broadcasts. The last column is a "notes" column which gives you the number to look up in the addresses list for the correct station address.

If you would like a copy of this book, send the £1 or 4 IRCs to:
British DX Club
54 Birkhall Road
Caford
London
SE6 1TE

Masthead Amplifiers

Antiference is extending its range of Uniplus masthead amplifiers with the UP3302. This is an extra high gain u.h.f. masthead amplifier with a v.h.f. by-pass. This provides a labour-saving installation for areas where there are strong local v.h.f. signals but very weak u.h.f. ones.

The amplifier's u.h.f. gain is 27dB±2dB. The noise (2.5dB) and v.s.w.r. characteristics are good and the housing is weatherproof. It is designed for remote operation, power being supplied from either a base power unit or from a distribution amplifier with a +12 volt line power source (negative earth).

The new amplifier costs £18.50 excluding VAT from Antiference specialist wholesalers.

Antiference Ltd.
Bicester Road
Aylesbury
Bucks HP19 3BJ
Tel: (0296) 82511

Young Electronic Designer Awards 1988

This scheme is now in its fourth year and, under the chairmanship of Professor John Eggleston, University of Warwick, sets out to provide the opportunity for young people to develop their talents in a practical, applied way.

The award scheme, sponsored by Circit and Texas Instruments, is open to students up to 25 years of age, and they have to produce an electronic device that is original, effective, well designed and has a useful application in everyday life.

Details and application forms are available from:
The YEDA Trust
24 London Road
Horsham
West Sussex RH12 1AY
Tel: (0403) 211048

On Air

The latest addition to the ITS 448 Magazine stand on Prestel is called On Air and is edited by Keith Maton G0NHU.

Keith can be contacted via the AX.25 packet radio network by sending a message @G4DKX. This will get you more information about On Air.

The lively coverage includes news, rally dates and venues, contact information, a bring and buy section and an amateur radio prize competition. In the first month of operation over 20,000 accesses were made to the new service.

If you are a Prestel subscriber and would like to read On Air for yourself just access Prestel and key: ★448900

Communication

The January issue of Communication, the monthly journal of the British DX Club, contains some very interesting articles.

Constructional details for a medium wave spiral loop antenna, some very rare and unusual QSL cards and lots of interesting loggings make for a good read.

UK Membership of the BDXC is £7.50 and for this you receive the monthly magazine by First Class post. Overseas surface mail costs £8.50 and airmail £11.00. Please note that Eire is now classified as overseas by the Post Office. For further details, contact:
Colin Wright
54 Birkhall Road
Caford
London SE6 1TE

YEAR 88 Project

The Radio Society of Great Britain are hoping to encourage Youth into Electronics via Amateur Radio — hence the acronym YEAR. All affiliated clubs and societies will be receiving information packs explaining what they can do to help. If your club doesn't receive one then contact:
RSGB HQ. Lambda House
Cranborne Road
Potters Bar
Herts EN6 3JN
AMATEUR RADIO SATELLITES THE FIRST 25 YEARS
by Arthur C. Gee G2UK Chairman AMSAT-UK
Published by AMSAT-UK
Available from Short Wave Magazine Book Service
146 x 210mm, 34 pages. Price £2.25 plus 75p P&P

Amateur radio satellites haven't always been so many and so successful. Things have moved so fast in this field that the 25 years have simply flown by unnoticed. Development has progressed at such a pace that it has been difficult to keep up with it. New satellites have been launched at such a rate that one seems to have hardly got used to the characteristics of one, before another has appeared with its new technology, to which users have to become acquainted.

The material in this souvenir publication is drawn from the records of the author, AMSAT-UK's chairman. The story starts recalling a conversation with G2BNH after the Sputnik launch when the idea of amateur radio one day being involved in spacecraft was mentioned. Then came the birth of Project Oscar, Orbital Satellite Carrying Amateur Radio. The book follows the Oscar story through to Oscar 8. It also recounts some of the RS story too. The University of Surrey aren't missed out either, as a great deal of the booklet is devoted to their part in the amateur radio satellite history. Even our own "Info in Orbit" columnist, Pat Gowen G3IOR, gets a mention!

WEATHER SATELLITE RECEPTION
by Chris Hornby
Available from Spacetech, 21 West Wools, Portland, Dorset DT5 2EA
149 x 209mm, 91 pages. Price £9.75 plus £1 P&P
ISBN 1 870919 00 9

This book is aimed at two types of readers, those who have a casual interest in satellite imaging processing techniques but who may not wish to go into a great deal of technical detail as well as those who wish to get involved to the extent of starting their own satellite project.

There are four chapters in the book: Satellites in Education; Reception and Antennas; Decoding Signals; Development. There are also ten appendices covering things like useful addresses, licensing notes, satellites, FAX frequencies and hard copy — to name a few.

All kinds of topics are discussed, reception and decoding techniques, frame formats and orbiting types. After working your way through the book, it's hoped that the reader will feel confident enough to have a go at setting up their own station.

There are plenty of illustrations to give the reader an idea of what results you can expect from various systems including a FAX picture from Bracknell. Both printer dump and photographic type results are shown to give a good idea of the different levels of resolution that can be achieved. I thought the best one was on page 62, a photograph of the Isle of Portland, land themed mapper, 30m resolution.

If you think you would like to get into weather satellite watching, or have recently bought all the kit and are wondering where to go, then this book could make the way ahead a little easier for you.

SCANNERS 2 International VHF/UHF Communications Guide
by Peter Rouse GU1DKD
Published by Argus Books
Available from the Short Wave Magazine Book Service
152 x 233mm, 261 pages. Price £9.95 plus 75p P&P
ISBN 0 85242 924 X

This book is a companion to Scanners. It provides even more information on the use of v.h.f. and u.h.f. communication bands and gives details on how to construct accessories to improve the performance of scanning equipment.

The book is international in scope and contains frequency allocations for all three ITU regions including country by country variations. Also included are international callsign series, marine allocations, spot frequencies of major world airports, repeaters and beacons. The technical section covers construction of broad band antennas and signal boosters, power supplies, chargers and even a complete 10-channel scanner! Hints are provided on servicing, modifications and useful solid-state devices for experimental circuits.

GUIDE TO FACSIMILE STATIONS — SEVENTH EDITION
by Joerg Klingenfuss
Published by Klingenfuss Publications
Available from Short Wave Magazine Book Service
170 x 240mm, 252 pages. Price £12.00 plus 75p P&P
ISBN 3-924509-67-0

This publication, which is in its Seventh edition, is aimed at the FAX enthusiast and contains a wealth of information in a well indexed fashion.

The first section contains a mouth-watering selection of current FAX decoders with a brief description of their features. The following two sections deal with the basic principles of FAX transmission along with comprehensive technical specifications of standard commercial transmissions.

Satellite enthusiasts are not forgotten as there are details of a wide range of satellites and a very useful table for decoding the positional data broadcast from some Meteosat stations.

The section most used is probably the frequency list which contains 374 frequencies between 53kHz and 28MHz. This latest edition includes an additional 28 frequencies over the previous edition. As well as the frequency and station name the list gives the callsign, transmission mode and alternative frequencies for the station.

One really useful item is the inclusion of full schedules for all the main FAX stations. The schedules are arranged in country order and detail the frequencies, transmission mode, time and chart description. This section ends with a description of the Meteosat dissemination schedule.

The book is rounded off with a selection of sample charts (167 in total) and their interpretation. This information is often very useful when trying to interpret an unusual chart.

Having used this book and the earlier edition for some time I would recommend it to the FAX enthusiast.

G4WNC
Sutherland and District ARS meet on the 1st and 3rd Wednesdays at 7.30pm, in the Sutherland Arms Hotel, Golspie. For further details you can contact John Macomk GM0HBI on Golspie 3197.

Meetings for the Ealing & District ARS are usually held on a regular basis. The next meeting is at 7.30pm, in the Community Centre, 71a Northcort Road, Ealing. On March 1 they have a Committee Meeting, the 8th is a Morse evening by G3TGT, Preparation for BARTG and the Spring RTTY Contest G8MPP-G1ZTN follows on the 15th, and G4HKS gives a talk on Innovations in Japanese Equipment on the 22nd. More from Anton Berg on North Ealing 1416.

Barry College of Further Education holds a meeting on a Thursday evening, in the annex of the Barry College of FE, Barry Court, Bonavilton Road (A4226), near the Welsh Hawking Centre. March 6 is the first meeting of the month which starts at 2pm, and a Video Film Presentation – Amateur Television as used in our Hobby, is planned for the 17th. Further information available from Dr Johnston GW4BCB at 68 Heol Isaf, Radyr, Cardiff, S Glam CM4 6JR.

Saturday February 27 is a Morse Test at Cullboxie, Dingwall for the Slackers. They meet on Thursday evenings at 7.30pm, in the Cameron Youth Club, Planefield Road, Inverness. Contact Ronald MacDonnell G4MCT on Dingwall 61783 for more details.

The Stevenage & District ARS meet at 8pm every 1st and 3rd Tuesday, in SITEC Limited, Ridgeway, A606, while the 1st is a) 7.45pm. Details from Tim FitzGerald 376991.

Meetings for the North Wakefield and District ARS meet every 2nd Fridays at 7.30pm, in The White Horse Public House, Fall Lane, East Ardsley. February 25 is their monthly meeting, March 3 a Visit to Birkenshaw Fire Station, and on the 10th is GNOK on the Air 2m, 70m and h.f. from the new shack. Club project night, workshop and test gear ready, goes on the 17th and CEGB gives a talk on Power Generation and Dinorwig on the 24th. You can contact Steve Thompson G4RCH on Leeds 536633 for more details.

The North Wakefield and District ARS are held at 119 Green Lane, Derby, starting 7.30pm. March 2 is the ever famous Junk Sale, in aid of the Holy Trinity Church & District ARS. They meet on Thursday evenings at 7.30pm, in the Community Health Centre, Haslatt Avenue, Cawley. The 2nd Wednesdays are Information evenings held at members homes, and the 3rd Wednesdays are Committee Meetings, Club Nets are held every Friday at 8.30pm. More details from Dave Hill G4QOM on Cawley 82641.

On March 19, February 24 and March 24 are Informal evenings for those at the Southgate ARS. March 10 is a Formal evening. The club meets at 7.45pm every 2nd and 4th Thursday, in the Holy Trinity Church Hall (Upper), Green Lanes, Winchmore Hill, London. More from Brian Shelton on Winchmore Hill 2438.

The Cheshunt and District ARC meet every Wednesday at 8pm, in the Church Room, Church Lane, Wombly. February 27 and March 9 are Natter Evenings, March 12/13 is the Community Health Contest, a talk on 50MHz One Year On by G3VFM follows on the 16th, and the 23rd is a Natter Evening. Further details available from Peter Davies G1KQA on Cawley 764330.

Meetings for the Torbay ARS are held in the English China Clay Hall (A4226), Stent Road, Brixham, every Friday evening. On Saturday March 12 they have their Annual Dinner at the Temeslott Hotel. Bob McCreadie G0FXG on Haytor 237731 for more details.

A Junk Sale on March 7 is this month’s event for the Southdown ARS. Meetings are held on the 1st Mondays, in the Chaseton Home for Disabled Ex-Servicemen, Southcliff, Bolsover Road, Eastbourne, at 7.30pm. In the Clubrooms, the Ducklington Leicestershire Centre, Vichem Road, Hailsham on Wednesdays and Fridays. Club organised classes, usually held on Wednesdays, commence at 7.30pm. More details from C.R Evans, G4VOS on Heathfield 3168.

Halfax and District ARS meet at 7.30pm in the Running Man Public House, Pellow Lane, Halifax. The 1st Tuesdays being Informal evenings, the 3rd Tuesdays being Formal evenings. March 15 is MGR Services, “Microwave Modules” Demo. More from David Moss G0DLM on Halifax 202306.

The Felixstowe and District ARS have a Social evening on the 2nd and an AGM on the 21st. All meetings take place at 8pm, in the Scout Hut, Bath Road, Felixstowe. Further details from Paul Whiting G4YGC on Ipswich G4YGC 617807.

A Craft Fair Planning Night is scheduled on March 1 for the Rugby ATS, who meet every Thursday at 7.30pm, in the Cricket Pavilion, outside Rugby Station. Further information about the Society available from Kevin Marriott GBTWY on Rugby 773966.

Rugby and District ARS meet every Thursday at 7.30pm, in the Old Air Raid Shelter (behind Ripon Town Hall), Friday 25 is a talk by GOCYL. If anyone would like to know more about the club, please contact Miss Liz Bulman at the Lodge, Lister House, Sharow, Ripon, North Yorkshire HG4 5BU. On March 15, 3rd Thursday, Palace & District RC have a talk on German Army Communications of WW2 by G3DWW. They meet every 3rd Saturday at 8pm, in the All Saints Church, Knights Hill, London (opposite IBA Transmitting Mast). More from Geoff Stone G3FZL on Forest Hill 6940.

Wimbledon & District ARS have “a Meet the Committee” evening on February 26, and G1ADW gives a talk on the Metropolitan Railway on March 11. All meetings are held on the 2nd and last Fridays at 7.30pm, in St Andrews Church Hall, Herbert Road, Wimbledon. David Love G4RBO on Burgh Heath Street, can be contacted in any other details.

Mansfield ARS meet at 7.30pm every 1st and 3rd Tuesday in the Victoria Social Club, Mansfield. March 15th is Home Brew Test Night, followed by BRED at the end. Details from Keith Lawson G4AAH on Mansfield 642719.

An informal evening on March 8 is specially for those members of the Keighley ARS. Meetings start at 8pm every 2nd and 4th Tuesday, and I’m sure Kathy G11GH on Bradford 496222, can give you details of their meeting place.

Edgware & District RS have Parents for Everyone G3SJE on February 25 and on March 19th. More information with training for great night. They meet on the 2nd and 4th Thursdays at 8pm, in the Watling Community Centre, 145 Orpington Road, Edgware. Further information available from Ian Cope G4UZ on Hatfield 657077.

On February 25th, the Bredhurst Receiving and Transmitting Society have a Rally Briefing – GB4ARRR on the air, Saturday 27th is the third Rainham Radio Rally 10am, March 3 a talk on The New Collectors G3EIE, the 10th is a Construction/Natter Night, an AGM follows on the 17th and finally, another Construction/Natter Night on the 24th. They meet every Thursday evening at 8pm, in the Parkwood Community Centre, Deanwood Drive, Rainham, Gillingham. More from Brian G4AMZ on Medway 376891.

Eden Valley RS have an AGM on March 17, to be held in The Crown Hotel, Eamont Bridge. They meet every Thursday at 6.30pm. For further details contact Martin G4FUI on Penrith 667282.

Wether Satellite Reception by G4RUB on February 25th, to be held in the for those at the South East Kent (YMCA) ARC. They have a Natter Night on March 2, a discursive talk on Dayton Ham-Vention by G3VTT on the 9th, a Natter Night on the 16th, and the 23rd is a Club Construction Contest. Meetings are held on Wednesday evenings and Instructing Night 7.45pm. The Amateur Examination Coaching are on Monday and Tuesday evenings. All events are held at the Dover YMCA, Godwynhur, Folkestone, information available from John Dobson on Dover 211638.

The Rhyl & District ARC meet every 1st and 3rd Monday at 7.30pm, in the 2nd Rhyl Scout HQ (behind little Theatre), Vale Road, Rhyl. They have UK Telephones (BT) on March 7 and a Coast Guard Service talk on the 21st. More from GW0HHK on Llandegla 621 can tell you anything else.

The Wakefield & District RS have a busy month ahead, starting with On the Air Night on March 1, the 8th is B1PVN on 7MHz. The FM and Other TX, and the 15th is Club Project Surgery. They meet every Tuesday at 7.45pm in the community centre, Prospect Road, Ossett. More from John Bryan on Leeds 820198.

Meetings for the St. Helens & District RS are held every Thursday at 7.45pm, in the Community Resource Centre, Old Central Secondary School, College Street, St. Helens. More
Tuition is available before the start of the meeting if required. Further details available from Derek Ainscough G10MY, on Marshalls Cross 818455.

Workshop ARS have a Magazine Sale on March 1, a Natter Night on the 8th, an official Club meeting on the 15th, and a Natter Night on the 22nd. They meet every Thursday evening from 7.30 to find out details of their meeting place and time by contacting Kevin Fox G4MDO, on Dinnington 566724.

An Annual Junk Sale on March 3 is the main event for everyone at the East Kent RS. Meetings are held in the Parkside Lodge, Kings Road, Herne Bay, every 1st and 3rd Thursday at 7.30pm. More from Brian Dodson G4NRS on Whistable 262042.

On March 17, the Vale of Evesham RAC have a Natter Night. Formal evenings are the 1st Thursday at 7.30pm, in the Round of Gras, Badsey. Informal evenings are the 3rd Thursdays at 8pm, in the Gardeners Arms, Gaylords. For further information contact Mike G4UXC on Evesham 831508.

The Covent ARS RS have a meeting every Friday at 8pm, in Baden Powell House, 121 St. Nicholas Street, Radford. February 26 is a Night on the Air & Morse Tuition, March 4 brings a Surplus Equipment Sale, another Night on the Air & Morse Tuition, the 11th a Natter Night, and the 18th an illustrated talk on Astronomy. More from Jonathan Ward G4HHT on Coventry 610401.

Sutton & Chem RS have a Committee Meeting at 35 Great Elshams, Banstead on March 2, a Natter Night on the 7th and a Closing/Annual General Meeting on the 18th. They meet every 3rd Friday at 7.30pm, in the Downs Lawn Tennis Club, Holland Avenue, Cheam. Natter Nights are on the 1st Mondays in the Downs Bar. Further details from John Puttcock G0BVW at 53 Alexandra Avenue, Sutton.

Hastings Electronics & RC meet every 1st and 3rd Wednesday at 7.30pm. The 1st being a Committee meeting in Ashdown Farm Community Centre, the 3rd a Main meeting in West Hill Community Centre. They also meet every Friday in the Ashdown Farm Community Centre for a Chat night. They have their AGM on March 16. Further details from Dave Shirley G4NVO on Hastings 420608.

Meetings for the Acton, Brentford and Chiswick areas are usually held every 3rd Tuesday at 7.30pm, in Chiswick Town Hall, High Road, Chiswick. On March 16 there will be a discussion on Members Problems. W. G. Dyev G3GHE on Acton 3778, can tell you any other details.

On February 26, The Radio Society of Harrow have a Constructional Contest, March 4 is an Activity Night, the 11th a talk by G3MNO and the 18th a Junk Sale. They meet every Friday at 8pm, in the Roxeth Room, Harrow Arts Centre, High Road, Harrow Weald. Further details can be obtained by contacting the Chairman, Bob Pickles G3GCA on Ruislip 52108.

The Chelmsford ARS meet every 1st Tuesday at 7.30pm, in Marcon College, Arbour Lane, Chelmsford. On March 1 they have an Information & Repairing & Repair of Amateur Equipment. More from Roy G3PMX or Ela G6HKM on Chelmsford 360545 (Home), or 363221 Ext. 3815 (Office). Cheltenham ARS meet on the 1st Fridays in the Stanton rooms, Charlton Kings Library, Cheltenham. Dave Abbott G4RFU at 11 St. Nicholas Street, Cheltenham, can tell you more.

On Wednesday March 23, Banbury ARS have their AGM starting at 7.30pm, in the Mill Club, Spiceland Park, Banbury. Further details from Bryan G1LHO on Banbury 51774.

Port Talbot ARC meet every Thursday at 7pm, with Morse Tuition commencing at 8.30pm. Meetings take place in the BSC Sports and Leisure Club, Margam, Port Talbot. Contact S. Hill at 31 Ynys Lee, Cwmcarn, Port Talbot SA12 7 JE.

South Powys ARS have a talk on December 3 on the 1st. The 1st Tuesdays are talks, the 3rd Tuesdays are Social evening. The meetings usually meet in the Mill Hall on the first floor, the Street, Brecon. Contact B. Carter GW8AAG on Blwch 703158 for more details.

March 3 is Introduction to Amateur Radio for the Horndean & District ARS. They meet every 1st Thursday at 7.30pm, in Merchiston Hall, Horndean. Dan Boucher G4CARLE on Horndean 755274 can tell you more.

Chichester and District ARC meet every 1st and 3rd Tuesday at 7.30pm, in St. Pancras Hall, St. Pancras. Chichester ARS have a talk on HP Propagation Using the Commodore 64 by Dr H. P. Williams, and the 15th is a Club Meeting. Further information available from C. Bryan G4ENH on Chichester 789587.

Bury RS meet every Tuesday in the Mosses Centre, Cecil Street, Bury. Main meetings are held on 2nd Tuesdays and other meetings are informal. C. J. Ashworth G1PKO on Bury 5018 can tell you more.

Midland ARS meet every Wednesday for Morse and Thursdays their Night on the Air. They also meet every Tuesday, the 1st in the month being a Committee Meeting, the 2nd a

Computer Night, the 3rd is their monthly meeting, and the Birmingham Central Raynet monthly meeting, on the 4th. All meetings take place at 57 Green Lane, Great Barr. Meetings start at 7.30pm, classes at 7pm. On March 15, G8CVR gives a talk on Earthing. If you would like more details then contact Tom Brady on Sheldon 1821.

Verulam ARC meet at 7.30pm every 2nd and 4th Tuesday, in the RAF Association HQ, Hew Kent Road (off A12 Luton Road), St. Albans. March 8 is an Activity Evening and on the 22nd, they will be holding the 1988 G3PAO Memorial Lecture, held annually to commemorate the late George Slaughter. For further information contact Hilary G4JSK on St. Albans 59318.

Meetings for the Wirral and District ARS are usually held on the 2nd and 4th Wednesday at 7.30pm, in the Ibby Cricket Club, Mill Hill Road, Ibby. More details from Gerry Scott G8TRY on Wirral 23937.

The Tmdordjen and District ARS meet at 8pm every 1st and 3rd Monday, in The Queen Hotel, Todmorden. More from G1GZB on Todmorden 7572.

South Bristol ARC meet every Wednesday at the Whitchurch Folk House, East Dundry Road, Whitchurch, Bristol. March 2 is a Dave Workshop by Glenn Ross, the 9th QRP Activity Evening, Inter-Club Contest Bullsye follows on the 16th, and the 23rd is a Contest Planning Evening. Len Baker G4RZY on Whitchurch 834282, will be able to tell you more.

On February 25, the Yarmouth Road ARC have an Informal Meeting, March 3 is Contest & Special Event Plans, the 10th and 17th are both Informal Evenings, and they have Microwaves in the Oil Industry on the 24th. At Informal Evenings they have h.f. and v.h.f. operation, Morse practice and RAE tuition. All formal evenings begin at 8pm, otherwise meetings start at 7.45pm in Drill Hall, York Road. Contact A. Besford on Yarmouth 721177.

Trowbridge & District ARC meet fortnightly on a Wednesday Evening at 8pm, in the TA HQ, Bythease Road, Trowbridge. A visit by the Fire Prevention Officer is planned for March 2, and the 16th is a Natter Night. Further information can be obtained by contacting Ian Carter G0GRI on Bradford 830383, or at the office on 01225 6666.

Fireham & District ARC have a lecture on Radio Security Service Part 2 on March 2, and G1AVI gives a lecture about Fax on the 18th. They meet every Wednesday at 7.30pm, with Morse classes from 6.30pm, in the Porchester Community Centre, Westlands Grove, Porchester. More from G3CGB on Fareham 288139.

Horsham ARC have a Grand Junk Sale scheduled for March 3. They usually meets every 1st Thursday in the Guide Hall, Denne Road, Horsham. Anyone wishing for further information can contact Phil Godbold G4UD0, on Steyning 594089.

The Stourbridge & District ARS have an Informal Evening on March 7, and an AGM on the 21st. They meet in the King Edward VI School, Stourbridge, every 1st and 3rd Monday. More from Derek Pearson G3ZOM on Kingswinford 288900.

Meetings for the Dumfries and Galloway RA and Electronic Club are held every 1st and 3rd Mondays at 7.30pm, in the Eden Bank Hotel, Dumfries. The 1st Mondays are Activity evenings and the 3rd Mondays are the club AGM. For further details available from John Young G5MULY, at 22 Hallmeadow Place, Annan DG12 6BZ.

The Binstead ARS meet every Monday at 7.30pm, in “Brickfields”, Newnham Road, Isle of Wight. The 1st Monday is a Meeting, the 3rd is Lecture Night. The subject for this month’s lecture is Astronomy by G1RHU. If you would like more details on the club and it’s activities then contact Alan Griffiths G0ISB at 29 Dubberrs, Godshill, Isle of Wight.

Meetings for the Calnthis ARS are every 2nd Wednesday at 7.30pm, in the Loch Watten Hotel, Watten. Mrs E. Wylie GM1XJY on Barrock 85604, can tell you more.

On March 20, the Eighth Annual Components Fair will take place at the Pontefract & District ARS. This event will be held at Carleton Community Centre, Pontefract. It will be held in the White House, Pontefract. Talk in on S22. More details from Eddie Grayson G6OXJ on Knottingley 83792.

Wyre ARS have a Video – Last Year Epics, on March 9 and March 23 is a Club on the Air. They meet every 2nd and 4th Wednesday at 8pm, in the Breck Sports and Social Club. More from Dave Westby G4UHI on Lancashire 654745.

Lanlenni Coleshill ARS meet on the 2nd and 4th Sundays at 7pm, in the Coleshill Disabled Centre, Lanlenni. On March 14, GW4XLE will be giving a talk on Fault Finding. Contact Selwyn on Llandybie 850803, or John on Lanlenni 59400 for more details.

On March 16, Lough Erne ARC have a talk on the RSGB by G4NKO. The club meets every 3rd Wednesday at 8pm, in the Railway Hotel, Enniskillen. They can get further information by contacting W. A. Ward on Enniskillen 24905.
SHORT WAVE RECEIVERS are our speciality (and all that goes with them)

Special feature — the HF185

Why did we design and produce the HF185 receiver? Simply to provide the keen short wave listener with a receiver which offered not only all the facilities he or she needed in an HF receiver, but to give at the same time a level of performance which would cope easily with HF conditions likely to be encountered in Europe.

You all know the problems, high power broadcast stations pounding in at night, blotting out the weak signals you wanted to hear — and many of the unwanted signals were generated in your receiver itself. That we succeeded in designing a receiver which could solve the listening difficulties is obvious from comments from reviewers, but we also did it at an attractive price.

The HF185 performance ranks equal to or better than imported receivers at twice its price, and its success stretches around the world.

So what did the reviewers say? I’ll give you a few comments, but for the full story why not send a stamped addressed envelope marked “HF185” and we will return a fully descriptive brochure with all the review comments included.

Quotes

“What is particularly important is the fact that so much attention has been paid to RF and IF performance, areas so lacking in many Japanese sets. Short Wave Listeners will be particularly pleased about the many choices of selectivity on AM.” Angus McKenzie.

“I tuned straight to the 40 metre amateur band to see how it stood up to the battering from high powered propaganda broadcasters when attempting to resolve relatively weak amateurs striving to get contacts. The simple answer was, no problem.” Chris Lorek.

“After an hour, drift was less than 50Hz in each instance. This is comparable with receivers in much higher price classes.” World Radio and TV Handbook.

“It’s refreshing to find a receiver that does exactly what it claims.” World Radio and TV Handbook.

The HF185 costs £375 including VAT. Need I say more?

R8000. This has to be the most popular receiver ever made. Covering 150kHz to 30 MHz, with an optional internally fitted converter giving 108 to 174 MHz, the R8000 also gives all mode reception, a selection of bandwidths, and a carefully thought out system of memory channels and scanning functions. Operated from mains or 12v as standard, the R8000 goes anywhere. £465 inc VAT. (Carr. by Securicor £8).

R8000. The recently introduced top of the range receiver from Kenwood has brought a new level of performance to the keen listener, and gives this performance in an easy to use package. Truly one of the great receivers, and in use all over the world. £775 inc VAT. (Carr. as for R2000).

NRD525. Professional monitor receiver from JHC, one of the world’s top communication companies. The NRD range of receivers has been recommended by every influential reviewer in the world, and is byword for performance, features, and reliability. Sooner or later, everyone would like to own a NRD525. Not only do you get top performance but a wide range of options can be incorporated, including RTTY decoding, VHF/UHF converters, and full remote control by computer. Send for details of this remarkable radio right away. £1195 inc VAT. (Carr. as for R2000).

NEWS! NEWS! NEWS! Kenwood are about to introduce a mobile monitor receiver known as the R21. This astonishing unit is intended to form part of an ultimate car audiosystem but is self contained and is powered from any 12 volt supply. What can it do? Well, it’s truly surprising, because Kenwood have packed in a coverage from 50kHz to 900 MHz; AM, FM narrow, and FM wide modes; 100 multi function memories with display not only of frequency but station titles as well; direct frequency keyboard entry and tuning with a conventional knob control; a built in stereo FM decoder; and so on and on. Hard to believe that so much can go into a box the size of a normal car radio, but there it is. Price £465 inc VAT. If you want to know more, give us a call or send for details. The R21 is going to add another dimension to monitor receivers.

Head Office and Showroom

LOWE ELECTRONICS LIMITED

Chesterfield Road, Matlock, Derbyshire DE4 5LE Telephone 0629 580800 (4 lines) Fax 580020 Telex 377482

Shops in GLASGOW Telephone 041-945 2626, DARLINGTON Telephone 0385 486131, CAMBRIDGE Telephone 0323 311230, CARDIFF Telephone 0222 484184, LONDON Telephone 01-429 3268, BOURNEMOUTH Telephone 0202 377780

Prices and specifications subject to change without notice

Send 80p to cover the postage and we will send you, by return of post, your FREE copy of "THE LISTENER'S GUIDE", a commonsense look at radio listening on the LF, MF and HF bands. Be unique style will, I am sure, result in a "good read" but underneath the humour lies a wealth of experience and expertise. We will also receive detailed leaflets on our range of receivers and a copy of our current price list.

Send 80p to cover the postage and we will send you, by return of post, your FREE copy of "THE LISTENER'S GUIDE", a commonsense look at radio listening on the LF, MF and HF bands. Be unique style will, I am sure, result in a "good read" but underneath the humour lies a wealth of experience and expertise. We will also receive detailed leaflets on our range of receivers and a copy of our current price list.
This great barrier is 116km long and averaged 10 Roman feet thick and stood to a height of 4.8 to 5.4m. In front is a great ditch, in places hewn out of solid rock, (the land at Housesteads is based on dolerite, a hard stone used for road chips), behind is the Vallum, a kind of fence to keep out intruders and to control traffic.

At every Roman mile there is a milecastle, and each of these has two turrets spaced out evenly along the wall. There are 19 forts including the coastal ones for the different units, cavalry, infantry and part-mounted infantry. It has its communication system linking the wall forts with out-posts and the rearward network, with a northern command HQ in the city of York.

Built as a result of the hostile threat from Caledonia (Scots and Picts) and keeping down the troublesome Brigantes, of what is now northern England and southern Scotland from the time AD124 to about 130, it was abandoned in 142 in favour of a more forward line joining the Clyde and the Forth. This is known as now the Antonine Wall. It was put into commission once more about AD165.

By the end of the second century, it had fallen into such serious condition that it needed much rebuilding under Septimius Severus. Every fort had an extensive civilian settlement, and by the fourth century the army, like most trades and crafts had become hereditary and it was tied to the land. These troops no longer moved about, but became a kind of “home guard” protecting the frontiers, their families and property, living off the land around them.

At each end of the wall are two line museums, at Carlisle and at Newcastle, the latter has many artefacts, a model of the wall and a reconstruction of the Mithream (Temple) at Carrawburgh.

The Expedition Project

The site for the expedition will be at the Vallum Lodge Hotel at Bardon Mill on the Military Road. This is 13km east of Greenhead on the B6318 road and 18km west of Chollerford, 51km west of Newcastle and 5km west of Housesteads Roman camp.

Hadrian’s Wall is the finest military monument in the whole Roman Empire, and in the central section views of scenic grandeur can be seen. Its history and details of construction of all its various structural elements are very complicated and one should never attempt to study any part without an Ordnance Survey map.

The site is on the north side of the road, 200 metres from the Twice Brewed pub and 0.8m west of the Once Brewed youth hostel “which can be considered one of the best youth hostels in Europe as it has been recently extended and modernised.”

We have the offer of the shop, a glass fronted room set to one side of the hotel, with a large car park all around it, power and hot water and with, I hope, a special price for out-of-season accommodation for Friday, Saturday and Sunday nights if it is wanted. There is also a bar and the facilities for hot meals makes the site most attractive.

The Scenario

It was a cold March night 1850 years ago, when a fateful message was sent. The message was sent from the Roman general, Quintus Computica, to his garrison leader Didius Germanicus at Wallsend. The contents of the message were to be carried by legionsaries and transmitted by signal fires over the 60km.

Unfortunately, on that fateful night, heavy rains and the high winds made lighting the signal fires very difficult. This, coupled with the coldness in the northern regions of the legionsaries due to their mode of dress, caused the message to become garbled.

The historic message was to have read “Send reinforcements we are going to advance”, (the real reason was the Quintus Computica’s wife Datusis wanted to go shopping in Edinburgh!). Unfortunately the garbled message read, “Send three and fourpence we are going to a dance.” Instead of the ten legions of crack foot soldiers he expected, a lowly clerk was sent with the requested amount in a little goat skin bag, he was accompanied by six body guards who also wished to go to the dance.

The proposed raid on the Picts and Scots and the shopping trip to Edinburgh had to be postponed until the following year.

Station Operation Data

The expedition is to be held on March 26 and 27, the weekend before Easter. The station will hope to operate on 3.5, 14.21, 28 and 144MHz using all modes of transmission.

It is hoped to set up the site on Friday evening and close down on Monday morning. As there are plenty of things to do in the area it is hoped that the general public will visit the site. Special QSL cards will be issued for the station which will have the callsigns GB1HW and GB4HW.

Things to do and see

The Roman army camp at Carvoran is just 6km to the west and the Housesteads Roman camp is 9km to the east. Also in the east is Chesters Roman site at 16km. The Vindolanda Fort and civilian settlement is about 2.5km south.

You can go walking along the wall itself. As for refreshments, there is no end of choice. The Halldse, pubs, shop and restaurant are 10km away, the Bardon Mill pottery, pub and Little Chef are just 8km. You could always go to the Haydon Bridge pubs, or hotel/restaurant at 13km or Hexham’s good shopping centre, restaurants, Abbey, swimming baths, cinema, etc. Have I sold the area to you yet?

If these don’t appeal then there is always the Once Brewed information centre at 1km or the Twice Brewed pub and hotel at 200 metres.

If you would like more information on the expedition run by the Hazlittg Amateur Radio Club, then contact M. Scott at Wellview, 12 Castle View, Ovingham-on-Tyne, Northumberland NE42 6AT. They would welcome any visitors to the wall on March 26 and 27.
In the January issue there was a description of a simple dipole antenna scaled for the centre of the communications (com) part of the airband. Now Dick Ware (Gillingham, Dorset) suggests some variations to this arrangement. Firstly, ensuring that the top of the mast is at least level with (if not above) the top of the dipole enables a bias towards ground rather than airborne stations and I suspect that the mast is acting as a reflector, turning the antenna in to a Yagi-like array. My immediate thought is that the gain thus achieved is due to more low-angle radiation being received. The signals arriving at high angles from aircraft have travelled a virtually unobstructed path and so the reduction in gain won’t matter so much here. Would an antenna expert like to join the debate? Secondly, the antenna-to-mast spacing matters, as might now be expected from the foregoing. If the antenna is offset λ/4 from the mast then maximum radiation is received from the front (from the direction of the dipole). Changing to λ/2 spacing gives equal side lobes but with little fore and aft; λ/4 gives three equal lobes at 120° separation in azimuth, one of which projects straight ahead from the dipole (like the one in the λ/4 case).

Flight Data Recording

An interest in flight data recorders is expressed by Ken Easom (Cape, South Africa). Two types of recording are made on public transport flights: the actual flight data recorder (f.d.r.) itself which includes time, indicated airspeed, altitude and heading plus other optional information, and the cockpit voice recorder (c.v.r.). I expect that minimum standards are laid down by the International Civil Aviation Organisation but other aircraft apart from commercial flights may carry recorders; if more details become apparent then I will include them in a future “Airband.”

The f.d.r. may consist of a magnetic wire recorder, magnetic tape, or a pen recorder. This latter works by scratching multiple traces on a metal foil roll; the variation in trace position needs very accurate measurement in order to determine the value of the appropriate parameter. In the cockpit there will typically be a controller on which an identity and flight number can be set, and the number of recording hours remaining may be shown. Once the wire, tape or foil has been exhausted then the f.d.r. will be changed or re-loaded but this may be after perhaps a couple of hundred flying hours. Of course premature removal will be necessary in order to investigate any irregular occurrence. The “black box” (as the press call it) is invariably a bright colour e.g. orange/red; these days this assists its location amongst wreckage. It is crashproof and fireproof within extreme limits. A typical location would be in the forward part of the root of the tail fin, a little above the fuselage; this tends to be one of the least susceptible areas in a crash. There are examples of f.d.r. equipment in my own personal collection to where visitors are welcome by prior arrangement. (write to this column or telephone me on 01-966 5113.)

Additionally the c.v.r. may be housed elsewhere, such as the nose-wheel bay. This works on a continuous loop of about half an hour and has a microphone unit in the cockpit. When the Japan air Lines Boeing 747 crashed, it remained airborne but out of control for more than half an hour after the initial incident; the important part of the recording had thus been overwritten by later events before the final impact.

Ken also notes other equipment available in emergency. Location beacons can be fitted that give out a sonar signal to enable detection of a submerged aircraft, and life-rafts carry transmitters that put out a characteristic noise on the v.h.f. distress frequency of 121.5 MHz. I’m not sure what type of battery enables 30 day operation, Ken, but don’t forget that the outputs might be pulsed so that most of the time the sonar or transmitter is only drawing a tiny quiescent current.

As far as dangerous cargo is concerned, there are regulations about this and certainly passengers are advised against carrying anything remotely explosive, inflammable, sharp, or containing compressed gas. The Boeing 747 Combi is so-called because of its mixed passenger/freight configuration. Whereas a cargo explosion is possible following a transgression of the rules, a simple fire would be less severe since the cargo hold is typically equipped with fire detection/extinguishing facilities. A common fire detection wire is a robust metal tube looped around the area at risk; its resistance or capacitance (concentric wires) changes with temperature and this gives rise to a fire-deck warning typically a red light built in to the handle that itself operates the release of the fire bottle.

Frequencies and Locations of Ground Stations

Where several v.h.f. ground relay stations are scattered across the country but are simultaneously transmitting the same signal, their frequencies are in fact slightly staggered away from the nominal channel centres (see Aeronautical Information Circular 8/1988 from the Civil Aviation Authority (CAA)). The offsets are as follows:

<table>
<thead>
<tr>
<th>Number of Stations</th>
<th>Offsets (kHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>-5, +5</td>
</tr>
<tr>
<td>3</td>
<td>-7.5, 0, +7.5</td>
</tr>
<tr>
<td>4</td>
<td>-7.5, -2.5, +2.5, +7.5</td>
</tr>
</tbody>
</table>

When more than one station is in range the resulting heterodyne (the whistle caused by the slightly different frequencies mixing together in the receiver and causing a beat note) will be at least 5 kHz which is outside the receiver’s passband. There can be problems with some types of squelch circuit that mistakenly blank off the transmission, behaving as if the heterodyne were just any other interfering noise.

Locations and frequencies have been provided by Paul Whiteley (Poulton-le-Fylde, Lancashire), K. Finlay (Chester-le-Street, County Durham), John Walker (Upper Langford, Bristol), Chris Kirby (Hoby, York) and Russell Carter (Garston, Herts). Relay stations for the air traffic control centres are at Birdlip, Cheddburgh, Clee Hill, Daventry, Davidstow Moor (Cornwall), Frimingham, Grantham, Great Dun Fell (Cumbria), Greenford, Preston, Scafell, Swingfield (Kent), Ventnor (Isle of Wight) and Warlingham (Surrey).

London VOLMET (weather reports) are broadcast as follows (kHz offsets in braces):

North (126.6 kHz) from Great Dun Fell (+3.5); Main (135.375 kHz) from Ventnor (-7.5) and Warlingham (+7.5); South (128.6 MHz) from Davidstow Moor (+7.5), Ventnor (0) and Warlingham (-7.5).

The main military air traffic control radar units may also assist civil aircraft in some cases (e.g. Brize Radar provides a lower airspace radar advisory/information service).

Abbreviations used in the table below: R = Radar, M = Military, W = West, N = North.
A UHF Frequency Listing and catalogue comes from Jonathan R. Clough of Javiation, Carlton Works, Carlton Street, Bradford, W. Yorks BD7 1DA (Tel: (0274) 732146 — chats encouraged)!. As well as pointing out the above non-standard offsets on the VOLMET transmissions, Jonathan explains the British Airways Shuttle calssigns. Shuttle 2 is Heathrow to Manchester and 3 is the reverse sector; 4/5 are Heathrow to/from Belfast; 6/7 are Heathrow to/from Glasgow and 8/9 are Heathrow to/from Edinburgh. A suffix letter is added for each flight of the day. Air Force 1 and 2 are the United States presidential flights, the present B-707 type aircraft soon to be replaced by a 747 variant. Our own royalty use Rainbow (Duke of Edinburgh), Unicorn (Prince Charles), Kittyhawk (Her Majesty the Queen), and Kitty (other royal family members or royal flight aircraft not carrying royal passengers at the time).

Information You May Have Missed
A fascinating series on the wartime radio beams, the secret weapon precursors of our present radio navigation systems, started in the January issue of Practical Wireless.

The same issue of P/W carries a list of marine frequencies on page 61; 156.3 MHz (Channel 8) may be involved in helicopter rescue operations.

In the CAA’s General Aviation Safety Information Leaflet (g.a.s.i.l.l) 12/87 there is a map (page 71) showing the airways which may be crossed by gliders without contacting a controller; there are, of course, conditions attached to this privilege. With the g.a.s.i.l.l came General Aviation Airmisses November 1987; the centre insert is a map of the Lower Airspace Radar Service complete with frequencies.

The same g.a.s.i.l.l details changes to the Southampton and Bournemouth special rules airspace (page 8).

Some Technical Aspects
Both Russell Carter and Chris Kirby have helped out with a description of Doppler v.o.r. (d.v.o.r.). You will recall (“Aeronautical Radio,” June 1987) that the conventional v.o.r beacon produces a frequency modulated reference signal that is received independently of bearing between aircraft and beacon. Also transmitted is an amplitude modulated signal, but the phase of its modulation varies depending on what bearing the beacon lies relative to the aircraft. Unfortunately, some sites are unsuitable for this system because signal reflections distort the accuracy of the original transmissions.

The d.v.o.r. overcomes this problem but at the expense of more complex electronics and needing a larger site. The reference is now amplitude modulated but the outer signal is unmodulated. It is made to appear as if it comes from a rotating antenna (in fact a series of antennas, placed in a ring, are sequentially fed to generate this effect and there are no actual moving parts). This apparently moving signal—which is displaced 10kHz from the reference signal—is subject to the frequency shifts of the Doppler effect, the result of which is a phase difference that is interpreted by the airborne receiver in the same way as conventional v.o.r.

Think of it this way: in conventional v.o.r. the outer antenna is like a rotating beam; only when it is pointing at the aircraft (which it does 30 times a second) is its signal received and therefore available for comparison with the central reference antenna’s transmission. Unfortunately, a reflection might be received more strongly; there will be an error since the reflection is at its strongest when the beam antenna is pointing at the reflector which does not lie on the same bearing from the beacon as the aircraft does. Doppler v.o.r. makes use of an omnidirectional antenna that seems to be positioned on the circumference of a merry-go-round that turns 30 times per second. This signal is not subject to direction — dependent reflection effects.

Chris states that a typical airborne v.h.f. transmitter produces about 2-5 watts and a u.h.f. device 10-15 watts. An h.f. transmitter of 110-150W may be coupled to such a physically short antenna that the e.r.p. is only milliwatts. However, an antenna at 10000m would be a radio amateur’s dream, even if only for QRQ!

Chris has also sorted out the current definition of decision heights. Where only azimuth guidance is available from a radar controller or a beacon the aircraft may not go below the minimum descent altitude (m.d.a.). Then whatever approach procedure is in use will be followed; the aircraft continues to look for the runway until it has obviously been missed due to the poor visibility. Even if the aircraft circles round for another approach, the m.d.a. is adhered to unless the runway can be seen. There is no hurry about the decision to land since the aircraft remains at a steady safe altitude whilst looking for the runway. A precision approach is where vertical guidance is also given either by the glide slope (I.L.S) or by precision approach radar. In this case, the descent is made along the glide path until the minimum decision height (m.d.h.) is reached at which point the pilot must make a quick decision that either the approach can be completed visually or a go-around is required. If the decision is delayed, more height will be lost on the continuous descent which would be a dangerous situation in poor visibility.

Russell would like to remind readers that airway colour designations have now been replaced by the corresponding phonetic letter (e.g. amber is replaced by alpha). What a pity. K. Finlay points out an airway change: UB13 is now believed to have been re-designated UBS.

Paul Whiteley lives near Watton military air traffic zone (m.a.t.z.) in which Beagle Bulldog single piston engined, basic trainer aircraft are to be found. No doubt moving much faster are the British Aerospace Hawk advanced jet trainers. On the civil side it is common at large airports for an automatic terminal information service to be transmitted (e.g. on 128.175MHz at Manchester) in the form of a continuous tape recording of actual weather, runway usage, etc. The first bulletin is designated A (Alpha) and the next update is Bravo, etc. To save time, pilots are expected to acknowledge receipt of the a.t.i.s. by telling the controller the appropriate designation letter; on approach I might call, “Manchester, good evening, Shortwave 381 is a Boeing 737 with information Charlie, over.”

A simple vertical mast with a hut was discovered by Peter Gummer (Cleckheaton, Yorks). The Lichfield n.d.b. (LIC: di-dah-dit-dit, di-di, dah-dit-dah-dit, 545kHz) is on the east side of the A38 road 1.5 nautical miles north of Alrewas so your guess about this is probably right. By contrast a v.o.r. is a much larger structure with antennas arranged in a circle, often involving an elevated circular mesh and not unlike a top hat in silhouette.
DATONG ACCESSORIES FOR BETTER SHORT WAVE LISTENING

Full specifications of these items on request

ANTENNA RANGE

VLF £34.90 (carriage £2.00) converts incoming VLF signals to frequencies 2mHz higher for easy tuning on normal communications receivers. Simply connects in series with the antenna.

DC 144/28 £38.67 (carriage £2.00) converts signals in the 144-146MHz band down to the range 28-30MHz for easy tuning on normal HF bands receivers.

FL3 £129.37 (carriage £2.00) fully automatic notch filter for "hands-off" removal of tune-up whistles and other steady tone interference. Independent low-pass and high-pass filters with very deep cut-off for removing "monkey chatter" and other off-tune interference from SSB signals. Both filters tune continuously from 200 to 3500 Hz. Selecting note filter tunes manually from 200 to 3500 Hz.

FL2 £89.70 (carriage £2.00) features twelve poles of tunable active filtering brings a new standard of performance to receiver pass-band control. Independent low and high-pass filters beat crystal filter standards of skirt selectivity yet cut-off frequencies are continuously variable from 200 to 3500 Hz.

PC1 £137.42 (carriage £2.00) model PC1 converts any good two metre SSB receiver or transmitter into a superb general coverage communications receiver. Coverage is 10 to 30MHz in thirty synthesised bands of 1kHz and no receiver modifications are required.

LAPANCS & THE NORTH WEST'S LEADING RETAILER IN AMATEUR RADIO. 20 YEARS SERVING THE AMATEUR BY AMATEURS SPECIALISING ONLY IN AMATEUR RADIO EQUIPMENT. 24 HOUR MAIL ORDER SERVICE
INTRODUCTION TO DX-TV

Part 8

Keith Hamer and Garry Smith

Capturing examples of long-distance TV reception, either on film or video, can create a hobby in itself. There can be complications but, surprisingly, excellent results can be achieved with just a little practice.

off-screen photograph is the single lens reflex (s.l.r.) type. With this equipment the image seen in the viewfinder enters the camera via the lens system. This means that close-up photograph is possible without the problem of parallax errors. Consequently, there is no excuse for taking a wonderful view of the knobs of the set but only half the screen. Being able to see through the lens also means the focus can be adjusted precisely. A cheap and cheerful camera such as the Russian made Zenith E is a typical s.l.r. camera (an updated version, the Zenith II, is currently available) and it is surprising how many enthusiasts already use one.

The main drawback to the Zenith E is its slowest automatic shutter speed of 1/30th second. The shutter on this particular model is of the focal plane variety which moves horizontally. Unfortunately the TV field frequency of 25Hz (1/25th second) and the vertical composition of the picture often results in diagonal shading across the picture (see Figs. 1 and 2). Perhaps turning the camera (or the set) through 90 degrees would eliminate the diagonal shading effect.

Time-Lapse Photography

Many years ago one particular enthusiast had accumulated an extremely impressive collection of off-screen test cards and captions using such a camera. It transpired that time-lapse techniques were involved in which the shutter was manually opened for a fraction of a second. Initial reaction assumed the process to be fiddly and critical but it seemed to be a technique worth trying. In order to eliminate any possibility of camera movement an inexpensive tripod and cable release was duly purchased. The first results of time-lapse photography were astonishing to say the least; the shading effect had been totally eliminated. So had the objectionable background grain on the TV picture which always seemed to be present when using a 1/30th second shutter speed. The pictures were now worth looking at.

A decision was made to become acquainted with black and white film processing at that point, thanks to the efforts of a well-known mail order processing company. They lost many prints of extremely rare African F2-layer reception, in place they sent 20 of someone else’s prints showing Russian architecture! Processing is fairly easy, and the equipment was obtained second-hand. Buying film in bulk also reduces costs although it does take a little practice to wind a metre or so of film onto a 35mm cassette in total darkness.

The "B" setting on the Zenith provides manual shutter control. One striking improvement was the smoothness of the picture. A fast shutter speed will tend to freeze any noise particles on the picture and these will show up on the end result.

Thinking back the TV pictures on the photographs always appeared grainy even when the live DX picture seemed excellent. Due to the random nature of the noise, a slower shutter speed will average out any movement thus giving the impression of a smoother and cleaner background. Too long an exposure can result in blurred pictures, especially on weaker test cards and captions. Usually the identifications become difficult to read but the overall effect looks more pleasing when compared with the original DX picture.

Camera Settings

An aperture setting of f4 or f5.6 gives good results when using a film with an ASA rating of 125 (22 DIN). Using reduced i.f. bandwidths for a proportion of DX reception means that most of the pictures are monochrome, and the use of a black and white film is preferred, such as Ilford FP4.

There is no reason why a colour film should not be used, especially in these days of inexpensive processing. Unfortunately, monochrome reception does not appear very pleasing to the eye on colour prints and often a bluish colour cast is present, unless lens filters are used. There is plenty of room for experimentation here.

If you do decide to process the film yourself, black and white is the easiest to do and you can select the best negatives you wish to print. There is also the added bonus of being able to select specific areas of the negative for enlargement.

Fig. 1: Severe shading of the picture when using a shutter speed of 1/30 second. The photograph shows the old French test card taken when the B19-line system was in use.

Fig. 2: A different shading effect is present on this picture of the Italian colour bars. The shutter speed was 1/30 second with an aperture setting of f2.
For optimum results, set the brightness and contrast controls on the receiver for a normal picture. Whatever you do, don’t be tempted to use a flash attachment. If you are using black and white film it is best to reduce the colour control to minimum, otherwise the colour bar portions of test patterns will show an uneven graduation from white to black (compare Figs. 3 and 4).

Provided that the screen is to fill most of the print, the exposure can be made in a darkened room. If for some reason the camera cannot be focussed with the screen filling the aperture (as could be the case if the screen is smaller than 150mm), it is best to avoid a darkened room. This is not because a background of striped wallpaper and mock Capo di Monte will make your photographic efforts of Russian TV more plausible, it is simply because a large dark expanse surrounding the screen may fool the automatic processing equipment into giving the wrong exposure when you send your film for developing.

Mixed Numbers

When using time-lapse techniques, success is assured, especially with static DX pictures such as test cards and captions. Bear in mind that Sporadic-E pictures can move slightly due to propagational effects and this can cause blurring, especially if the exposure is too long. The longer exposures can enhance weak signals and experimenting with time-lapse techniques will produce surprising results. It is advisable not to give more than one second exposure with test cards incorporating digital clocks. These, of course, change every second and the result will be superimposed numbers of the “seconds” part of the display.

Animated opening sequences and some of the more modern computer originated “hi-tech” captions can be tricky to photograph, especially if letters move across or zoom out of the picture. You will have to decide at which point you consider the caption should be photographed and several pictures should be taken and the best one chosen. Newsreaders and announcers can be difficult to photograph using time-lapse techniques. They often end up looking like “gawping goldfish!” with their mouths wide open!

Recording DX Reception on Video

It is all very well to suggest recording the DX onto video tape initially but how can we record foreign broadcasts on a typical video cassette recorder which is intended for UK reception?

One way is to use a converter system, such as the D-1000, in which all the DX signals are converted to a spare u.h.f. channel. By connecting the recorder between the converter and TV receiver, a convenient way of recording any DX signals is obtained. The main drawback is the inability of the video recorder if it are strip to demodulate foreign sound carriers. Fortunately, a version of the D-100 is now available which enables the sound to the monitored using an f.m. radio receiver. Once extracted from the f.m. receiver, the audio signal can be fed into the video receiver via its auxiliary sockets.

A growing trend among TV DXers is to operate a multi-standard television receiver. Some of the more upmarket sets feature AV inputs and outputs which enable the DX reception to be extracted and recorded at baseband level. This means that most normal domestic video recorders can be connected to the receiver in order to capture both vision and sound information, irrespective of the original transmission standard or channel. We say most normal video recorders because one well-known manufacturer was too mean to incorporate AV sockets on its early V2000 format machines! Come to think of it, Sony have adopted the same tactics on some of their recent 8mm camcorders. However, perhaps we are straying from the original topic under discussion?

If the TV receiver is suitable for French system “L” reception which uses positive-going video modulation (instead of the normal negative), there will be no problem when using a normal video recorder since the signal is extracted after demodulation. The same remarks apply to the a.m. sound modulation encountered on system “L” broadcasts.

Recording may be played back via the antenna socket of a normal UK receiver if required. In a machine designed for the UK market the internal modulator will generate a composite output at u.h.f. with a 6MHz f.m. intercarrier sound spacing.

Recording SECAM Colour

You may be wondering whether it is possible to record SECAM colour transmissions on a normal video recorder. Well, there are several machines that will oblige, since the recorder circuitry is primarily interested only in the chroma subcarrier frequency which is 4.43MHz for both systems. Broadcast NTSC colour will not record successfully because a much lower subcarrier frequency is employed. We have had first-hand experience of recording SECAM information on several VHS machines, for example, the Ferguson 3v22 (that’s the one with the protruding clunky mechanical keys), the later Ferguson 3v29/30 range and the Panasonic NV430. Even the humble Sanvo 3500 (Beta) will cope admirably, which puts paid to a rumour that all Beta V.C.R.s. will not record SECAM. Of course, there are many machines which seem to recognise the system differences and consequently these will ignore SECAM colour information. A couple of budget-priced domestic recorders actually had a PAL-SECAM switch fitted as standard. The incorrect setting of the switch would produce incorrect colours on playback and, perhaps, a baffled service technician upon being called out to repair the machine! Typical examples of machines fitted with a PAL-SECAM switch were the Alba 400, the Comet equivalent under the Solavox brand name and certain versions of the early top-loading Hitachi VT11E.

Multi-standard V.C.R.s

Some manufacturers produce multi-standard video recorders which will record DX straight from the antenna. Some will automatically switch between standards upon recognising the incoming signal. Often these are highly priced when compared with the basic UK equivalent and many dealers may be reluctant to offer a repair service when a fault develops. Should you prefer a multi-standard V.C.R. ensure that the machine you buy has a system 1 modulator output designed to

Fig. 3: Note the uneven transition effect of the colour bars near the top of the test pattern. The photograph was taken with the colour intensity control set to normal. An aperture setting of f4 and a shutter speed of 0.5 second was used.

Fig. 4: A similar test pattern but photographed with the colour control set to minimum. Note the time display. An exposure of longer than 1 second would have resulted in superimposed numbers as the “seconds” changed.
INTRODUCTION TO DX-TV

feed a UK TV receiver. The same applies if you are contemplating nipping over the English Channel to a French hypermarket to buy a machine. There is no point in ending up with a v.c.r. with a French system L modulator output, unless you happen to have a multi-standard TV with system L awaiting your return.

Playback

It must be stressed that to obtain a colour picture the playback of SECAM recordings must be done via a recorder equipped with a SECAM decoder, either at r.f. or baseband. The playback of a SECAM recording through a normal PAL receiver will result in a monochrome display. Disabling the colour killer circuitry within the decoder can sometimes produce a fuzzy blue and red vertical bar effect when presented with a SECAM signal. This effect can be useful since it can confirm whether your video recorder can handle the SECAM system especially if you don’t happen to possess a suitable receiver at the time. Incidentally, disabling the colour killer circuitry allows the decoder to resolve chroma information on a lower level of signal albeit very noisy. The actual modification varies between receivers and the appropriate service manual is best consulted. Reducing the threshold level of the decoder in this way does have a few drawbacks, such as allowing the decoder to respond to spurious noise producing coloured speckles over monochrome pictures. Fortunately, the latter annoyance can be removed by setting the colour control to zero.

Recording Different Line Standards

Some domestic machines can successfully record system M transmissions, namely 525 lines with a frame frequency of 60Hz. Success depends mainly upon the type of servo system design used in the receiver. Some machines display a severe sync loss every few seconds because the servo reference signal is derived from the incoming field sync pulses, which are at a different rate with system M transmissions. Fortunately, the Sanyo 9300 coped well with Canadian 525-line DX reception encountered during the FZ-layer peak a few years ago. Similarly, the final 405-line broadcasts were recorded without problems using the same machine. It must be stressed that on playback the receiver timesbases must conform to the original system characteristics. Just for the record, the TV used for playback of the 405-line recordings is an elderly Thorn 1400 dual-standard receiver. The original solenoid operated system switch was replaced by a series of miniature relays in the i.f. section and a more robust one with heavy duty contacts in the line output stage. A multi-way switch performs the selection of the various TV system combinations. The 405-line recordings were extracted from a receiver at audio and video level using a modulator as an interface (see later). On playback, the video recorder modulator converts the recorded audio and video information into a System I signal at u.h.f. From its original System A standard (405-lines scanning, positive video modulation and a.m. sound), the recorded signal is presented to the receiver in System I form but with 405-line scanning.

Multi-band Recorder

Quite a few domestic video recorders have been produced over the years with multi-band tuners as standard enabling DX signals to be received directly from the antenna. The best example is the Sanyo 9300 which is a very popular machine among DXers for several reasons; they are cheap to obtain because of their age and are unwanted by the general public on account of their monstrous size. Other examples include certain Hitachi VT11E models, the Solovox/Alba 4000 and Ferguson 3V35E. If they happen to already own such a v.c.r. it is possible to use it as a form of converter. By operating the machine in the E-to-E mode, the TV will display whatever channel is selected. Band switches are normally located adjacent to the tuning presets. Since the band switches and presets are intended for that specific task, (namely to be preset), using them for continual tuning up and down the bands usually provides very fiddly and results in rapid wear.

Such a set-up will only provide pictures because the v.c.r. “front-end” will respond only to 6MHz intercarrier sound signals. A popular method used by some DXTV enthusiasts is to receive the sound channel separately and combine them in the video recorder. For example, a scanner is sometimes used for sound reception and the audio can be fed directly into the recorder and added to the incoming picture signal. There are sometimes snags encountered with this idea because the recording must be made via the v.c.r.s. tuner and the audio input. The source Fig. 5: How the problems of a live receiver chassis can be overcome by the use of a u.h.f. modulator and an antenna isolation socket.

Modulators

Adding audio and video take-off sockets to a TV receiver is not as straightforward as one might imagine. The chief concern is mains isolation. Many receiver designs still utilise a live chassis, especially the larger screen sizes. Fortunately most monochrome portables feature a double wound mains transformer which offers a completely safe chassis but is must not be taken for granted that every portable is designed in this way. It is so easy to assume the popular 14-in colour set would be safe too, but very few models are. We wonder how many service technicians have investigated blown fuses, etc., only to discover the tell-tale wires leading from the terminals of the loudspeaker in an attempt to connect the TV to the hi-fi amplifier. The golden rule is leave well alone if you are not fully conversant with the inside of a television receiver.

A safe way of extracting audio and video signals from a TV receiver is to use an interface such as a u.h.f. modulator, thus producing a composite output for feeding the antenna input on the video recorder (see Fig. 5). In the case of a UK modulator, the sound and vision spacing of the composite output will be set at 6MHz irrespective of the original spacing of the transmission prior to demodulation. The Astec UM1286 and UM1684 are two typical examples of modulators with separate audio and video inputs. Note that some modulators only have a video input and therefore would be unsuitable. The r.f. output of the modulator (at u.h.f.) can be arranged to leave the receiver via an isolated antenna socket in order to overcome the problems posed by a live or dubious chassis polarity. Ensure that the socket is not fitted outside the receiver. The actual take-off points for the video and audio signals will largely depend upon the receiver design. A little experimenting may be necessary. The input of the amplifier may be experimentally connected to the output pin of the vision demodulator i.e., or better still the emitter of any luminance amplifiers immediately following the i.c. output. A buffer
amplifier is sometimes required to drive the modulator (see Fig. 6). On a monochrome receiver, the video could be tapped from the cathode of the c.r.t. The circuit in Fig. 7 could then be used. In both circuits the preset is adjusted for optimum results. For audio take-off a point prior to the volume control is preferred since its adjustment will not effect the audio output. Unfortunately, a convenient source of take-off may not be easy to find in some circuits using an integrated circuit containing the whole of the sound stages. Circuits using a separate intercarrier i.e., such as the TBA120 series, provide an audio output at pin 8 but its level will be affected by the adjustment of the d.c. volume control. In some cases it may be more convenient to tap off the signal at the loudspeaker and attenuate it as necessary using a potential divider consisting of preset connected to the input of the modulator.

Fig. 6: A buffer stage suitable for feeding the modulator

Fig. 7: Using a modulator to extract video information from a monochrome receiver

Suppliers

Modulators suitable for this type of work are available from:

Astec Europe, 8b Portman Road, Reading, Berkshire RG3 1EA. Tel: 0734 509411.

Further details of the D-100 Converter Systems are available by sending s.a.e. to: HS Publications, 7 Epping Close, Derby DE3 4HR.

LISTEN OUT FOR

GB5RN: The Royal Naval ARS London (HMS Belfast) Group will be active from Thursday March 17 to Wednesday April 13. This is to celebrate the 75th anniversary of the launch of HMS Belfast. A special QSL card will be issued, all QSLs via the RSGB or Derek Costello G4UKJ, Three Ways, The Green, Stalham, Norfolk NR12 9PZ. Requests for direct QSLs must be accompanied by s.a.e. and return postage. The correct address of the ship is HMS Belfast, Imperial War Museum, Off Morgans Lane, Tooley Street, London SE1 2JH.

GB7CO: G408K and G0EJK, sponsored by the Central Lancashire ARC will be active from Wednesday March 23 to Tuesday March 29 from the Island of Colonsay. They will be using all h.f. bands and will be especially active in the WPX SSB contest as a multi-op station. There will also be a limited amount of v.h.f. activity on 144MHz. DXCC status is Scotland. IOTA ref: EWO8; WAB: NR38 Strathclyde. Island Collectors Isle of Oransay NR38 and NR39. QSL will be via G408K (1988 callbooks only) or via the RSGB bureau.

Have you got a Special Event Station we should know about? If so, write and tell us

ZM1BCC: From April 15 to 25, an amateur radio station will be operating from the Public Library of the Birkenhead City Council. The station will be operated by local amateurs. Operations will be on the high frequency bands as well as v.h.f. and u.h.f. Times of operation will be from 9am (local time) to 5pm, with later times on Thursday and Friday. April 21 and 22. If conditions are good, later times may be operated on other days. A full-colour QSL card has been designed, showing the proximity to Auckland City. A brief history of Birkenhead from the time it was occupied by the Kawerau Maori tribe to the present, is on the back. Distribution is mainly by the bureau. It will be of particular interest to the group in Birkenhead to contact other amateurs who live in districts of Birkenhead, Birkdale or Beach Haven in other parts of the world.

GB0I0S: Following the successful expeditions over the past few years to Lundy, Skye and the Western Isles, the Mid Northants Exhibition Group are pleased to advise that this year's trip will be to the Channel Islands. A base station will be set up on the Island of Sark, and it is hoped that mobile and portable operation will be made from Jersey, Guernsey, Alderney and Herm. A special effort will be made for WAB collectors, and it is anticipated that all the Parishes on both Guernsey and Jersey will be activated during the week 30 April to 7 May. They will be on all h.f. bands. All QSOs will be QSLed via RSGB or direct via G4VID (s.a.e. please).

GB3SWR: This will be used as the talk-in station for the Swansea Mobile Rally at the Swansea Leisure Centre on April 24.

GB4IMD: On April 23 the Cornish RAC are celebrating International Marconi Day. They expect to operate from the site where Marconi made his first transatlantic transmission — Poldhu Cove, near Mullion on the Lizard Peninsula. This is very close to where the Goonhilly Satellite Station now stands. Operation will be on 3.5, 7, 14, 21 and 28MHz using s.s.b.
GAREX ELECTRONICS

WEATHER SATELLITE SYSTEM

This is the genuine MICROWAVE METEOSAT system, 24 hour geostationary (prediction charts not required).
Not to be confused with cheaper, computer add-on devices that normally utilise the VHF Satellites which are only usable for a few minutes at a time.
Our complete plug in and go package requires no computer, no software, and can be up and running, including dish alignment within 10 minutes.
Nothing more to buy: Dish, Microwave Receiver, Frame Store, 12" B/W Monitor AND ALL PLUGS & CABLES £995.95
Expandable to include VHF Satellites and colour. Designed by Timestep Electronics, now supplied by Garex.

VHF SYSTEMS
VHF Active Antenna + 35m cable £74.75
VHF 10 Channel Receiver £155.25
Colour Frame Store (suits VHF & Microwave) £454.25
Sae for full details and prices of other 'separates'

GAREX VHF RECEIVERS

The celebrated Timothy Edwards designs now owned & manufactured by GAREX:
* A simple but versatile design capable of covering spot frequencies in the range 25-200MHz.
* Excellent sensitivity (typically better than 0.4µV for 12dB SINAD).
* Double superhet (10.7MHz and 455kHz IFs).
* Choice of IF bandwidths from weather satellite to ‘12.5kHz’ PMR standards.
* The basic receiver is one channel crystal controlled.
* Multi-channel options.
* 2 watt audio output stage having a low quiescent current.
* Size: 153 x 33mm Requires 10-14V DC supply.

PRICES:
Stock Versions: (fully assembled, aligned & tested boards)
6m, 4m, 2m & Weather Sat. £49.95
Complete cased versions & special options: details & prices on request. Crystals can be supplied if required; most popular 2 metre frequencies and the currently active Weather satellites are readily available. Crystal prices on request.

Mains power supply module £15.50

THE GAREX VHF PREAMPLIFIER

* Compact size: 34x9x15mm
* Up to 26dB gain
* Can be made for any frequency in the range 40-200MHz
* 3dB bandwidth ±3MHz (at 145MHz)
* Uses BF981 (0.7dB NF at 200MHz)
* Input & output impedance 50 ohms
* 1dB compression: +100dBm
* Saturated output: +15dBm
* Supply voltage 8-17V DC at 5-10mA

Stock Versions: (fully assembled, aligned & tested boards)
6m, 4m, 2m & Weather Sat. £11.45
Other versions: prices & details on request.

* NEW * HIGH PERFORMANCE 2 metre PRE-AMPLIFIER
* 3 Band-pass stages for improved selectivity
* 16dB gain with 1dB NF
* RF switched (fail-safe action): gas-filled relays
* Assembled, tested (box version on request)

£42.50

Main Distributors for REVCO ELECTRONICS LTD.
Ask for details of the latest REVCO "Whippet" and "Kwikfit" antennas and solderless co-axial adaptors (see PW June 87). Prices include UK P&P and 15% VAT

Ask for details of our interest Free Credit

GAREX ELECTRONICS
HARROW HOUSE, AKEMAN STREET, TRING HP23 6AA
and CHEDDINGTON (0296) 668684
Callers by appointment only

Short Wave Magazine March 1988
ON SALE NOW...

MARCH 1988 £1.20

ISSN 0141-0857

Practical Wireless

The Radio Magazine

A New Series For Beginners
UNDERSTANDING
CIRCUIT DIAGRAMS

Reviewed
The Howes SWB30 SWR/Power Meter

WIN A £390 Cap. Co Magnetic Loop!

... AT YOUR NEWSAGENT
SCANNING

Alan Gardener

Which is the best scanning receiver to buy? This the most common question asked by readers contemplating buying a scanning receiver for the first time. The simple answer is that there is no simple answer! However, after reading this you will at least be able to make a good choice and avoid some of the pitfalls.

receiver the upper and lower frequency limits of the band to be searched, and also the frequency step size that the receiver is to search with. The receiver then automatically searches over the set range and stops when a signal is detected.

Some of the more sophisticated receivers offer a whole range of different signal detection systems for use in the search and scan modes. These are designed to prevent the receiver from staying on one frequency for too long if a continuous signal is present, or in some cases if no modulation is present. You should decide whether you are going to make the most use of either the Scan or Search function and choose the receiver with the facilities to suit.

Frequency Coverage

Many receivers are designed for the American market and the frequency coverage reflects this. So ensure that the bands you want to listen to are present. In general only the so called "continuous coverage" scanners will include the u.h.f. aircraft band for example.

Tuning Step Size

Again many of the receivers will only tune in multiples of 5kHz as a result of the American method of assigning channels. This can be a problem in Britain as most channels are allocated in multiples of 12.5 or 6.25kHz. Depending on the filter fitted to the receiver the recovered audio can in some cases sound very distorted as the receiver cannot tune exactly to the wanted signal. The better receivers let you select from several tuning steps.

Types of Modulation

One of the major problems with some of the earlier designs of scanner was the inability to manually switch between different detector stages in order to be able to recover the different types of modulation in use. Yet again this is a result of the American market setting the rules. In the US it would appear that a.m. transmissions are only associated with the v.h.f. aircraft band, whereas in Britain many bands have a mix of both a.m. and f.m. transmissions, so make sure you can switch between the two types as and when required. In the worst case you may find that the receiver you thought would cover the v.h.f. aircraft band will in fact tune the required frequencies but will not switch to a.m. Some receivers also offer w.b.f.m. — this is useful if you want to listen to f.m. broadcast stations or TV sound. And may also be of interest to DX- TV enthusiasts or radio amateurs, as many Eastern European TV and f.m. broadcast stations operate in the 40-50MHz region and give a good guide to propagation conditions. If you listen to satellites or radio amateurs then s.s.b. is important, but make sure you can switch between u.s.b. and l.s.b. in order to be able to take full advantage of this type of transmission. Single side band also becomes important if you want to use a converter with the scanner as this will then give you good

Main Features

Scan: The term used to describe the type of operation where the receiver runs through frequencies which have been pre-programmed into the equipment memory channels by the user. For example local airport frequencies or amateur repeater channels. The receiver scans through these memory channels and stops when a signal is detected. The number of memories which can be scanned depends on the make of the receiver but most offer a minimum of 20, with the facility to "Lockout", or temporarily remove from the scan, those memories which are not of interest at the moment.

Search: Often confused with Scan, this is the other main feature on most receivers. If you don't know the exact frequency that a particular service operates upon but you have a rough idea, or perhaps you want to monitor activity on one of the amateur bands, then use can be made of the "search" facility. The user programs into the
quality short wave reception at a fraction of the cost of a dedicated general coverage receiver.

Other Factors to Consider

Signal strength meter: This is useful in determining how close a received station is, or how good a particular antenna is. Tuning knobs Most receivers only have up and down buttons to permit manual tuning of the receiver (other than by direct keyboard entry). This can be very frustrating if you wish to quickly change from one frequency to another, or want to manually search for new active frequencies. If you think you may wish to do this, consider the provision of a tuning knob very seriously.

Squelch relay output: Useful if you want to monitor frequencies over a long period of time by connecting a tape recorder to the receiver. Doing this permits you to compress several days activity into just a few hours.

Computer interface: If you are interested in finding new frequencies or logging channel usage then this is the option to look for. Many receivers now boast of computer ports, and an increasing amount of software is becoming available, making it very easy to get sophisticated system running.

Specifications

Specifications can be very misleading. One of the best ways to see if a receiver is up to the mark is to read the reviews. Particularly where measurements have been made, as the manufacturer’s figures are usually a minimum standard and many models are much better than the published figures.

Sensitivity: This is the ability to hear signals and should be lower than 1µV for 12dB S/N on a.m. and 0.5µV for 12dB S/N on n.b.f.m.

Selectivity: This is the ability to reject unwanted signals on adjacent frequencies. The best choice seems to be around ± 7.5kHz at −6dB for most services in Britain, but up to ± 12kHz at −6dB is usable.

Spurious response/Image rejection: This is the ability to reject unwanted signals. The image rejection is usually a problem with earlier designs of receiver and can result in other transmissions interfering with the wanted signal. It is generally worse on the u.h.f. ranges of receivers where the wider bandwidth circuits cannot provide such a high degree of selectivity of the wanted signal as is possible on the lower frequency ranges. One common manifestation of this problem is that of local police transmissions appearing in the 430MHz amateur band, usually making reception of weaker signals impossible. A minimum of 50dB rejection should be expected for both image and other spurious responses, however a lower figure is to be expected on hand-held models as a result of design economies in order to get the circuitry to fit inside the case.

I hope that the above notes have given some guidance, and I would be interested to hear from readers with their experiences of buying scanners.

UHF Aircraft Band Converters

Reader A. Sheldon of Nottingham is trying to obtain a converter for use with his scanner, which will permit him to be able to receive the u.h.f. aircraft band. He has tried contacting Aero Hobby Supplies of Birmingham who were mentioned in Peter Rouse’s book Scanners as being the suppliers of the Sumatron U-Vert. However it would seem that the company has either moved or ceased trading, so perhaps one of you may be able to help. Do you know if this particular product is still available, or is there any other make of converter that will do the same job? On a slightly different note do any of you know of any modifications or operating tips connected with the Saisho SC7000 scanning receiver, I must admit that this model is not familiar to me but I am assured that it is equivalent to one sold under the Revo brand name. I will pass on any information that you send me.

Spectrum Monitor

You may remember that I mentioned a “Panadaptor” type of display for use with the Icom R-7000 receiver a few months ago. Well I have now received information on a range of units which are available in this country. The three models are the RX-9019A, B and C. The RX-9019A is the basic unit which runs off 240V a.c. and requires an external oscilloscope on which to display the frequency spectrum. The RX-9019B has a built in display and operates from both 240V a.c. or 13.8 V d.c. and finally the RX-9019C which has the same features plus a built in 20MHz single trace oscilloscope. All units feature a 1MHz sweep width, 10kHz resolution, i.f. rejection of 60dB, image rejection of 40dB and a sensitivity of 1.5µV on linear or 1µV on log. A useful extra feature is the inclusion of a 10.71kHz marker to indicate the centre of the display, which is the frequency that the receiver is tuned to. This looks like a very interesting unit and I would like to hear from anyone who has had a chance to try either this or a similar item. Contact Microwave Vision & Telemetry Ltd, 373/375 Uxbridge Road, Acton, London, W39RH. Tel: 01-992 5726 for further details.

Computer Interface

On the subject of accessories for the R-7000, Icom UK Ltd are now selling an interface and control program produced by J.T. Electronics, enabling owners of BBC microcomputers to operate their receiver under remote control. The package is named JT602 and consists of a simple interface unit which connects the R-7000 to the BBC computer, the program itself which can be supplied either as a listing, tape or disk, and finally a comprehensive manual which covers the main aspects of the program. Back up information is available should the need arise. The program is written in Basic and permits operation of all the controls normally associated with the receiver front panel. The only major difference being the storage of memory contents on disk rather than in the receiver itself. Having attempted to make sense of the Icom CI-V interface handbook myself (which I am informed is not entirely correct for control of the R-7000) I feel that this package would be a good basis for anyone trying to write a control program for the receiver. Especially as a listing can be supplied to aid with this otherwise frustrating and time consuming operation. At the time of writing the price for the complete package is £19.95p, but check with Icom UK on (0227) 363869 before ordering. At this sort of price it may be worth considering even if you don’t own a BBC machine, but have enough software writing experience to be able to make the program work on your own computer.

As usual all contributions to PO Box 1000, Eastleigh, Hants SO5 5HB. Please enclose an s.a.e. if you require items returning. Until next month – good listening.
NEW FOR SCANNERS

LOG PERIODIC
25 - 1500MHz
5 to 11dB
£295.00

JUST ONE
OF MANY AERIALS
PRODUCED
SEND LARGE S.A.E.
FOR PRICE LISTS.

Pentwyn House,
Penyard, Llwydcoed,
Aberdare, Mid Glam.
CF44 0TU.
Tel: 0685/870425

WORLD RADIO
TMR7602

OUR PREVIOUS PRICE WAS RIDICULOUS!
NOW WE ARE FORCED
TO REDUCE YET AGAIN

£99.99
WHilst stocks last
+ £8 carriage &
packing

FULL AFTER SALES
SERVICE
CALL IN FOR
DEMONSTRATION!
YES! WE DO KNOW HOW
IT WORKS!

THIS IS A CRAZY PRICE, SO
RUSH US YOUR ORDER TO
AVOID DISAPPOINTMENT.

DIGITAL FREQUENCY DISPLAY. P.S.U. 400 MW OPTIONAL EXTRA £10
FREE RECENT WRTH HANDBOOK WITH ANY RADIO PURCHASED. YOU JUST PAY £2 HANDLING AND POST.

JOHNSONS SHORTWAVE RADIO
43 FRIAR ST, WORCESTER WR1 2NA 0905- 25740

OUR SETS ARE SO SENSITIVE THEY CRY WHEN THEY HEAR "THE SOUND OF MUSIC".
It is obviously essential to know when weather satellites are going to appear. A look at some of the published data for the "birds" shows a bewildering array of complicated expressions and figures known as Keplerian Elements. In fact, it is possible to predict pass times without most of this data and without even knowing what most of it means.

The essential information is the "Nodal Period" and the "Longitudinal Increment". The Nodal Period is the time taken by the satellite for one complete orbit and the Increment is the number of degrees the earth moves underneath the satellite track during an orbit. If, on any given day, we know the exact time and the exact position the satellite passes over the equator, we can then calculate all future equator crossing times and positions simply by adding the nodal period and increment, however, that is a fairly tedious task and typical of the "number crunching" that computers do so well.

The program shown was written for the BBC, but is adaptable to other computers. It prints out all valid UK passes and shows the date, the equator crossing point in degrees and the time. On average, an afternoon northbound pass will come into range about 7 or 8 minutes after crossing the equator. A morning southbound pass is about 32 to 33 minutes after crossing the equator, (in this latter instance the equator crossing time obviously related to the satellite crossing the equator on the side of the earth opposite the UK).

The first thing that has to be done is to obtain a NOAA reference orbit. This can be done by ringing the UK Weatherwatch Service at Lasham Aerodrome, but only after 6pm. The number is (0256) 83448 and a recorded announcement will give you all the data you need. The recording is updated every Friday and covers both NOAA 9 and 10.

On running the program you will be prompted for the month (numerically) and date of the reference orbit, the equator crossing time in hours, minutes and seconds and the equator crossing point in degrees (always longitude west). Next you will be asked for the satellite number, 9 or 10, so that this can be automatically printed. The program now calculates and prints every valid UK pass with its equator crossing time. Lines 430 and 440 are the ones that restrict the print-out to UK passes. By adjusting the degrees of latitude in these two lines, you can reconfigure the print-out for any part of the world. By removing the two lines altogether, you will get a print-out of every single world orbit.

The only statements in the program which are peculiar to the BBC are VDU 2 (printer on) and VDU 3 (printer off).

The program can only give results for a month at most, but this is no bad thing. The satellite characteristics slowly change, which is why Weatherwatch provide regular updates of information. They also give a status report and news of new satellites, etc.

The Rules and The Clubs

You do not require a licence to receive weather satellite signals, but you do need a letter of authorisation. There is no charge and you should send a letter and s.a.e. to The Department of Trade and Industry, Radio Regulatory Division, Room 309, Waterloo Bridge House, Waterloo Road, London SE1 8UA. State that you wish to receive NOAA and ESA signals for amateur meteorological purposes and require a letter of authority.

It is also a good idea to join the Remote Imaging Group, RIG. Membership is only a few pounds and the quarterly newsletter is packed with information about equipment, books, software, satellite news and charts showing pass times. Also, all RIG members have blanket permission from the DTI to watch weather satellites for amateur purposes. For details send an s.a.e. to Phil Seaforth, 14 Nevis Close, Leighton Buzzard, Beds LU7 7XD.

The activities of AMSAT-UK are aimed more at amateur satellites, but they also cater to a lesser degree for weather satellite enthusiasts. They stock a wide range of software and books. An s.a.e. to Ron Broadbent, 94 Herongate Road, Wanstead Park, London E12 SEQ will bring details of the donation required and other information on AMSAT's work.

In Part 3 we will look at how to build a crossed dipoles antenna with matching amplifier and an inexpensive audio monitor-cum-level indicator.

WEATHER SATELLITE RECEPTION

Peter Rouse GU1DKD

Part 2

For the beginner, the easiest satellites to work with are NOAA9 and 10. They send infrared and visible images side by side and make useful daylight passes over the UK.

Short Wave Magazine March 1988
GUIDE TO UTILITY STATIONS 1988
(6th edition)
including:
GUIDE TO RADIOTELETYPE STATIONS
(14th edition)
490 pages. £21.00 or DM 60.00.
ISBN 3-924509-88-3

The fully revised new edition is the first publication in the world giving exact details on teleprinter stations using these new ARQ-E, FEC-A, etc., systems. Hundreds of frequencies of these stations are listed, as well as the results of our 1987 monitoring missions to the Yemen Arab Republic and to Mauritius/Reunion/Rodrigues.

This unique manual covers the complete short wave range from 2 to 20 MHz, plus the adjacent frequency bands from 2 to 150 kHz and from 1.6 to 30 kHz. Contrary to mimeographed publications it is built on real-time monitoring throughout the year around the clock. It includes details on all types of utility stations including facsimile, Morse, phone and teleprinter stations, the latter covering the entire spectrum from standard RTTY over SSTV to all those fascinating new ARQ, FDM, FEC, TDM and VFY systems.

The numerical frequency lists covers 15824 frequencies of stations which have been monitored during 1987, thereof 33% RTTY and 3% FAX. Frequency, call sign, name of the station, ITU country code and corresponding return frequencies, or times of reception and details, are listed. The alphabetical call sign list covers 3123 call signs, with name of the station, ITU country code, and corresponding frequencies.

22 RTTY press services are listed on 502 frequencies not only in the numerical frequency list, but also chronologically for easy access across the clock, and alphabetically in country order.

Additional alphabetical indices cover:
- Schedules of 72 meteorological FAX stations on 287 frequencies.
- 98 meteo RTTY stations on 243 frequencies, 518 MHz NAVTEX schedule.
- 952 name and traffic abbreviations and signals, 152 telex service codes.
- 963 utility station addresses in 201 countries.
- Radio Regulations on frequency and call sign allocations.
- Frequency band plans for the Aeronautical and Maritime Mobile Services.
- All Q code and Z code groups for civil and military use.
- Emission designations, classes of stations, and various other tables.

Further publications available are Guide to Facsimile Stations, Radioelectric Code Manual, Air and Metro Code Manual, etc. For further information ask for our catalogue of publications on commercial telecommunication on short wave, including recommendations from all over the world. All manuals are published in the handy 17 x 24 cm format, and of course written in English.

The price includes airmail to anywhere in the world. Payment can be by cheque, cash, international Money Order, or postgeld (laat Stuttgart 2003/7 5/20). Dealer Inquiries welcome — discount rates and pro forma invoices on request. Please mail your order to:

KLINGENFUSS PUBLICATIONS
Hagenhoher Str. 14, D-7400 Tuebingen, Fed. Rep. Germany. Tel. 01040 72 0800

KNEBALT SALES LIMITED
The UK's Scanner Specialists
NEW MODELS AND
LOWEST PRICES FROM
UNIDEN

MODEL BC 50XL
Handheld scanning receiver
with 10 memories
Covers: 66-88 MHz
136-174 MHz
406-512 MHz

£99.99

MODEL 100XL
HAND HELD
Scanner with 16 channels
memory scan covering
66-88 MHz, 118-174 MHz,
406-512 MHz
Super sensitive receiver

£199.99

MODEL 70 XL
New pocket size scanner
with 10 memories.
Covers: 66-88 MHz, 118-174 MHz,
406-512 MHz

£229

BLACK JAGUAR
POCKET SCANNER
Switchable AM/FM
Covers CB plus the following
frequencies: 26-30 MHz, 60-88 MHz,
210-260 MHz, 410-500 MHz

£225

MODEL 175 XL BASE
Scanning receiver with 16 channel
memory scan covering: 66-88 MHz,
118-174 MHz, 406-512 MHz

NEW LOW PRICE
£189.99

SSE DISCONE
RX ANTENNA
70-500 MHz
With 3 Elements
£24.95

SEND FOR OUR BUMPER CATALOGUE
OF AMATEUR, CB, SCANNING EQPT.
ONLY £2 (Includes a £2 voucher)

FREE DISCONE RX ANTENNA
70-500 MHz
With 3 Elements
£24.95

NEVADA COMMUNICATIONS
189 London Road, North End,
Portsmouth PO2 9AE. Telex: 869107

Short Wave Magazine March 1988
The Japanese Sony Corporation considers the short wave listening hobby to be an important market and devotes considerable resources to the production of new equipment for this area. One of the latest is the PRO80.

Facilities

The PRO80 is a compact, hand-held continuous coverage receiver, offering the user all frequencies between 150kHz and 108MHz. Frequencies 115.15 to 223MHz (for airband and public services) are available using a converter supplied with the model. At first glance, this set would appear to be a useful tool for anyone wishing to listen seriously both to broadcasters, amateurs and public services. However, closer inspection reveals that the set is missing many of the features which one would expect to find on sets for the serious listener.

The controls are located on the front and top of the set. On the front panel there are nineteen keys, most which have more than one function. It is using the main keypad that frequencies may be tuned directly - press DIRECT followed by the frequency in kHz, followed by EXECUTE. There is no tuning knob, but manual tuning is achieved by two buttons for either an increase or decrease in frequency.

The PRO80 tunes only in 5kHz steps on short wave, with fine tuning for stations off channel. Mode is also selected using the front keys: AM WIDE, AM NARROW, FM, FM NARROW and SSB. There is a KEY PROTECT facility which enables the chosen station to be locked. The 40 memory channels are provided in four "pages", and this coupled with a sophisticated scanning system. The various scan options are: entire frequency coverage of the set, limited scan between two frequencies input by the user (say 17.4 to 18.2MHz), memory scan of all the frequencies stored on any of the four pages or program memory scan which automatically scans only the station which has been programmed amongst all 40 memories, in the order programmed.

Controls on the top of the receiver comprise the main power switch, a TNC type connector for the telescopic antenna which is provided with the PRO80, the volume control (a rotary knob) coupled with a two-position tone control (change to high or low tone achieved by depressing the volume control knob), the rotary SQUELCH control which may be set to auto by depressing the knob and the FINE TUNE and SSB knob. To use either of these facilities, it is necessary to select the appropriate function using the front panel controls. Earphone and recording output jacks complete the top panel.

The add-on converter for 115.15 to 223MHz is attached at the TNC socket, with the telescopic antenna connected to the top. An additional two AA size cells are required for the converter.

Using the Set

Whenever one obtains a new piece of equipment, one is inclined to pop in the batteries, switch on and use whatever it is with only a cursory glance at the handbook. With the Sony ICF-PRO80, that can simply not be done! The operation of the set is complex, and took this author some time to master the finer points.

Batteries are inserted into the rear of the set in a special slide-in box. When changing the cells it is necessary to complete the operation within three minutes or all memories will be lost.

Direct frequency entry is straightforward, as outlined earlier, and feeding frequencies to one of the forty memories, or recalling one, is equally simple; the latter operation requiring just the touch of a single button.

The liquid crystal display is comprehensive, showing the frequency tuned in at the press of a button (narrow or wide (norm), etc.), whether fine tuning is selected, memory number and page, key memory and priority. There is a TRY AGAIN message, when tuned to the wrong frequency, coupled with a buzz to tell the user of an operator error. Successful operations are denoted by a beep!

When tuning the set, it is necessary to press each button of the tuned set, otherwise the set will not function. In this instance, it is necessary to move to the last set, set and scan the set, and select the correct frequency.

Operation with the I.F. converter is more complex. After attaching the device to the TNC socket, it is necessary to remove the battery panel at the back of the set and extract the battery box. This will reveal a FREQUENCY DISPLAY button which must be moved to SHIFT. When the set is switched on once again, an "S" is displayed indicating that the frequency display can be shifted, which will read 100, 150MHz. To shift the frequency, it is necessary to keep the PROGRAM key depressed whilst pressing DIRECT followed by the frequency 115000 then EXECUTE. Now frequencies can be displayed in the range of the converter's operation. When entering any frequency directly using the converter, it is necessary to enter three right-hand noughts, e.g. 123MHz must be entered as 123000. This is somewhat easy to forget when using the set. A 30dB attenuator is provided on the converter.

Each time one wishes to return to the original frequency coverage of the PRO80, it is necessary to remove the batteries and set the FREQUENCY DISPLAY button to the set.

With only 5kHz tuning steps for direct entry on short wave, it is necessary to make frequent use of the fine tuning device, and it is a shame that the frequency display does not alter in conjunction with this device making it easier to know exactly what frequency one is receiving, rather than a hit and miss guesstimation. It was noticed that the frequency calibration on the test model was approximately 1.5kHz out.

The s.s.b. mode is straightforward, although the set's stability was questionable at times, and perhaps the filter is a little too wide for comfortable listening, requiring repeated adjustment to obtain the correct pitch.

The audio quality from the very small loudspeaker located on the front of the PRO80 is fair, but should one wish to connect an external speaker, the low audio output from the socket may prove problematic.
Performance

Sensitivity on both long and medium wave is poor, whilst on short wave and v.h.f., sensitivity is good and equal to sets such as the ICF-201D. Sensitivity above 60MHz is poor, although the performance of the converter in this respect is good.

Selectivity on a.m. narrow is good for short wave, but this mode is too narrow for long wave and medium wave. Again, the short wave performance is equal to the 201D. The a.g.c. holds a.f. output to within 5dB over a 100dB range of input and this is a good result.

The ultimate S/N ratio of 30dB on a strong signal is poor. Oscillator noise and image response of the PRO80 are both considered to be poor. Battery consumption is fair; around 11 hours with alkaline batteries and 2 hours with ordinary cells.

Conclusions

The ICF-PRO80 is a novel set, limited by its design and perhaps only moderate overall performance. It is aimed, perhaps, at the listener who wants more than either just short wave or v.h.f. scanning, but perhaps a combination of the two. However, the switching operation between the converter and the main set’s coverage should be awarded a prize for its ridiculous complications.

The receiver, like any number of earlier Sony receivers, seems to have been designed by engineers without too much consideration for the end-user. It will be interesting to see what alterations will be made to the design in the coming months. It is certain that other Japanese manufacturers will jump on the bandwagon and bring out similar devices in the future. Until then, this receiver, costing around £350 in the UK, will suit the listener who wishes the benefit of a hand-held listening device which covers short wave and v.h.f., and who will put up with a complex switching operation and moderate performance.
British Telecom International (BTI) operates a network of 33 manned and unmanned radio stations around the coast of Britain. These stations offer a variety of medium (up to 400km) and short (up to 60km) range radio services for shipping and the offshore industry, as well as carrying out, on an agency basis, work for the DTI and Department of Transport. These services complement long-range radio and maritime satellite services provided by BTI from other locations.

Eight of these medium and short-range coast stations are currently manned. The DTI are introducing automated arrangements which will help to increase the efficiency of the services, and keep down the cost of services to customers. This involves reorganising the coast stations into two networks, the northern and southern regions. This will enable any one of the four manned stations in the north, or any one of the four in the south, to take on traffic from any of the other stations in their region.

Manned stations in the north are Wick, Stonehaven, Cullercoats and Portpatrick; in the south Land's End, Niton, North Foreland and Humber. Each region will have a distress watch and broadcast station, in the north this is to be Stonehaven and in the south, Land's End. The function of these regional control stations will be to provide 24-hour distress watch cover for behalf of the Department of Transport and 24-hour broadcast arrangements for maritime information, i.e. weather forecasts, navigational information etc.

Other stations in the region will provide commercial traffic-handling facilities such as telephone calls and telexgrams. Unlike now, they will not be manned 24-hours a day but will take turns to provide out of hours cover for commercial traffic.

The reorganisation should make no difference to the standard of service to customers, and should be completed by the end of October this year.

As a fore-runner to this rationalisation of services, three coast stations – Niton, Humber and Stonehaven – had their wireless telegraphy (Morse) service withdrawn on 1 November 1987. This is because the Department of Transport no longer required a distress watch to be kept on the Morse distress frequency of 500kHz from those three stations, because of the much reduced level of signals on 500kHz nowadays. The DoT consider that the overlap between the five remaining stations is such that adequate coverage remains.

On the commercial side, while Morse traffic is declining, it is still being used extensively by ships, particularly on high frequencies. Portishead Radio is one of the busiest coast stations in the world and almost certainly the best equipped with modern transmitters and receivers. A recent visit to Portishead certainly bore out that claim, as the previous visit had been

Elaine Richards G4LFM

Recently we received a newspaper cutting regarding the closing of the Morse service from Niton Radio. This prompted a little research into coast stations and Niton in particular.

Present day Niton Radio.

eleven years earlier and things have certainly changed! They have recently introduced a computerised transmitter control and selection system to enable the Radio Officers in the central control centre at Burnham to control the transmitters at Rugby. Also being developed is a new computerised message-handling system. The h.f. wireless telegraphy service will be maintained there as long as it is economically viable.

Niton Radio as it was in 1927.

Niton Radio

The coast station at Niton has a history going back many years. In September 1909, it was one of six stations which the Post Office bought from the Marconi International Marine Communications Company to provide a medium-range distress and radiotelegraph service for the 296 British ships then equipped with radio. The number of British vessels licenced is somewhat larger now!

Not only has Niton seen changes in technology (more about that later) but it has seen a lot of changes in the ships themselves. Pre-war, the daily arrivals and departures from Southampton included such well-known names as the Cunarders Queen Mary, Aquitania, Ascania and Mauretania, and the P & O "Strath" liners, the Royal Mail Line's Asturias and Almanzora, the Union Castle's Athlone Castle and Stirling Castle.

Immediately after World War II, many of these ships were still in service. Now, while some passenger vessels still operate, most of the ships that navigate Spithead and the Solent carry bulk cargoes or containers. They are perhaps less glamorous and elegant, but often larger, more numerous and more demanding in their communications needs for safe and orderly arrival and departure. It has largely been the need for rapid communication and rapid decision that has led to expansion of the radiotelephone service and its extension into the field of yachts and pleasure craft.

A coast station's most important task is to be constantly on the alert for calls from ships in distress. From 1947 to 1948, all Niton's traffic was in Morse code, then the medium frequency radio telephone service was introduced. The v.h.f. service was introduced back in 1959.

As an example of their work, in 1978, Niton broadcast 76 distress calls. When
It is now twelve months since Short Wave Magazine was re-launched as a magazine for the listening enthusiast. The changes have been dramatic - the increase in circulation alone would indicate that they have been in the right direction - but we would like to find out from our readers exactly what they would like to find in the magazine.

Some of the questions are aimed at finding out about your listening habits and what radio equipment you use. Others are on topics of general interest, while the remainder will give us the information to develop SWM along the lines you would like.

LISTENING HABITS

1. Have you ever listened to broadcast stations from outside your country in the past year?
 - Yes []
 - No []

2. The following stations can be heard in the UK. Please tick those you have heard:
 - R. Moscow []
 - HCJB Voice of the Andes []
 - R. Monte Carlo []
 - WRNO (USA) []
 - R. Australia []
 - R. Luxembourg []
 - Trans World Radio []
 - R. Japan []
 - R. South Africa []
 - R. Radio []
 - R. Havana []
 - R. Netherlands []
 - R. Beijing []
 - VOA (USA) []
 - R. Sweden []

3. Do you listen to international broadcasting on:
 - Medium wave []
 - Short wave []
 - Both []

4. Why do you listen to international radio?
 - Interested in how different people live []
 - Looking for alternative points of view to balance local news []
 - Find programming not available locally []
 - Religious programmes []
 - Technical/DX hobby interest []
 - More world news []
 - Other, please specify []

5. What days of the week do you usually listen to international broadcasting? (Tick as many as apply)
 - Monday []
 - Tuesday []
 - Wednesday []
 - Thursday []
 - Friday []
 - Saturday []

6. What time of day do you usually listen to international radio:
 - 0000 to 0600 []
 - 0600 to 0900 []
 - 0900 to 1200 []
 - 1200 to 1500 []
 - 1500 to 1800 []
 - 1800 to 2100 []
 - 2100 to 2400 []

 EQUIPMENT

7. What kind of short wave receiver do you have? (Tick as many as apply)
 - General coverage (all-band) []
 - Broadcast bands only []
 - Amateur bands only []
 - Transceiver []

8. What kind of short wave receiving capability do you have? (Tick as many as apply)
 - Single side band (s.s.b.) []
 - Amplitude modulation (a.m.) []
 - Frequency modulation (f.m.) []

9. Does your receiver cover the 11 metre band?
 - Yes []
 - No []

10. Which of these Radio Clubs/Societies do you belong to?
 - AMSAT []
 - BARTG []
 - BATC []
 - DXAGB []
 - EDXC []
 - G-QRP []
 - RSGB []
 - Radio Station DX Club []
 - Local Radio Club []
Reader Questionnaire

BACKGROUND

11 How would you describe your expertise in radio/electronics?
 Beginner □
 Average □
 Advanced □

12 How old were you when you first became interested in radio as a hobby?

13 Can you solder?
 Yes □
 No □

14 Do you construct your own radio equipment or accessories (excluding antennas)?
 Yes □
 No □

If “YES”, how?
 From your own designs □
 From designs published in books or magazines □
 From kits □

15 Is your antenna system:
 Mounted on your house □
 Mounted on a tower/mast □
 In the loft □
 On, or in, the receiver □

16 Have you ever designed or made your own antenna?
 Designed and made
 Made from a published design
 Never

17 Do you own a computer?
 Yes □
 No □

If “YES” is it:
 Class A □
 Class B □

18 Do you use it in conjunction with your hobby?
 Yes □
 No □

19 Do you hold a current UK amateur transmitting licence?
 Yes □
 No □

If “YES” is it:
 Class A □
 Class B □

How long have you held it?

20 How many hours a week do you devote to radio? (Include time spent reading, writing and QSLing)
 Up to 1 hour □
 2 to 5 hours □
 6 to 10 hours □
 11 to 20 hours □
 Over 21 hours □

21 How much money have you spent on radio within the past year? (Include magazines, club fees and other incidental expenses.)
 Up to £50 □
 £51 to £250 □
 £251 to £500 □
 £501 to £1000 □
 £1001 to £2500 □
 Over £2500 □

22 How many radio rallies/exhibitions do you visit each year?
 None □
 1 □
 2 or 3 □
 4 or more □

23 Has radio as a hobby influenced your choice of career?
 Greatly □
 Somewhat □
 Not at all □

GENERAL INFORMATION

24. How frequently do you use each of the following? (please tick one box in each row)
 Almost every day □
 1 to 2 times weekly □
 1 to 2 times monthly □
 Rarely or never □

 Newspapers □
 Television □
 Local Broadcast Radio □
 National Broadcast Radio □
 Amateur Radio □
 Home Video System □
 International Radio □
 Stereo Recordings □
 Magazines □

25 Please state how often, if at all, you read each of the following magazines: (Please tick one box in each row)
 All/Most Occasionally Rarely Never

 Amateur Radio □
 Elektor □
 Ham Radio Today □
 Radio & Electronics □
 World □
 Short Wave Magazine □
 Practical Wireless □
 Monitoring Times (USA) □
 Popular Communications (USA) □
 World Radio (USA) □
 Electronics & Wireless World □
 Radio Communication □
 Other (please name) □

26 How old are you? □

27 What is your sex?
 Female □
 Male □

28 How many years of formal education have you completed? □

29 Please describe your occupation, or previous occupation if unemployed or retired.

30 Which national daily newspaper(s), if any, do you read most often?
 The Star □
 The Sun □
 Daily Mirror □
 Daily Mail □
 Today □
 Daily Express □

 Daily Telegraph □
 The Guardian □
 The Independent □
 The Times □
 Financial Times □
 Other (Please state) □
Reader Questionnaire

Questionnaire

31. Have you bought any of the following as a direct result of seeing an advertisement in Short Wave Magazine?
- Receiver □
- Accessories □
- Antennas □
- Kits □
- Components □
- None of these □

32. How interested are you in reading about the following facets of radio in Short Wave magazine? (please tick one box in each row)

<table>
<thead>
<tr>
<th>Broadcast listening on:</th>
<th>Very Interested</th>
<th>Quite Interested</th>
<th>Not at all Interested</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long/medium waves</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Short waves</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>VHF</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Data comms (RTTY, FAX, etc)</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>TV-DXing</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Aircraft radio</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Licensed amateur radio</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Satellites</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Scanning</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Antennas</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Computer applications</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
</tbody>
</table>

33. Please state how interested you are in reading each of the following sorts of features in Short Wave Magazine? (please tick one box in each row)

<table>
<thead>
<tr>
<th>What’s New</th>
<th>Very Interested</th>
<th>Quite Interested</th>
<th>Not at all Interested</th>
</tr>
</thead>
<tbody>
<tr>
<td>Word in Edgeways</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Reviews</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>What Receiver/Scanner</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Construction</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Seen & Heard</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Airband</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Scanning</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Bandscan</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Bookcase</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Grassroots</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Rallies</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Listen Out For Advertisements</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>History</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Nostalgia</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
</tbody>
</table>

34. How many people see your copy of Short Wave Magazine?

35. Do you have any hobbies other than radio?
- Yes □
- No □

If “YES” what are they?

We would welcome any other comment you would like to make about Short Wave Magazine.

WIN A LOWE HF-125

Thank you for taking the trouble to fill in this questionnaire. To show our appreciation, we are giving away a very attractive prize to the winner of a simple competition, open to anyone returning a completed questionnaire.

Please write in the space provided how many completed questionnaires you think we will receive back by 25 March 1988. The correct answer and the nearest estimate will be announced in our July issue and the winner will receive a prize of a Lowe HF-125 communications receiver. The five runners-up will each receive a 1 Year Subscription to Short Wave Magazine. The Editor’s decision is final.

Please return your completed questionnaire to us in an envelope addressed:

Short Wave Magazine (Competition)
FREEPOST
Enefco House
The Quay
Poole
Dorset BH15 1PP

You do not need to put a stamp on the envelope. Please do not enclose anything else with the questionnaire.

Although we will be using the results of the survey as mentioned at the beginning of the questionnaire, individual replies will, of course, be kept entirely confidential.

My estimate is: □

Name and address: __________________________

Post code: __________________________
The HF-125 short wave receiver was conceived, designed and is "Made in Britain" for the DX enthusiast. Its ability to perform on a crowded band with strong adjacent stations was a major consideration in its design. The HF-125 is also easy to use, the controls being simple and sensible. Essential bandwidth filters which are often options on other equipment are fitted as standard.

The HF-125 has continuous coverage from 30kHz to 30MHz. Operating modes are AM, USB, LSB and CW. An optional board (D-125) adds FM and synchronous AM. Unlike other receivers, the HF-125 comes complete with a comprehensive range of bandwidths; a 2.5kHz filter for SSB transmissions or for resolving an AM station using LSB mode and ECSS technique (exalted carrier, selectable side band), a 4kHz, 7kHz or 10kHz filter for AM reception, the width chosen dependent on the signal and band conditions. For the CW enthusiast a 400Hz audio filter is included as standard.

Operating the HF-125 is refreshingly simple. The receiver is switched on by a combined on/off volume knob and displays the last frequency used on a large backlit liquid crystal display.

Two buttons, one marked up, the other down, select the correct megahertz and you tune to the required frequency using a large heavy knob with a thoughtfully provided finger recess. The tuning rates relate to a simple design concept of two stations per knob revolution on each mode. Tuning on SSB and CW is in 15.6Hz steps. This allows accurate resolution of SSB signals and ECSS reception of AM. On AM and FM the tuning step is increased to provide comfortable station selection.

Mode selection is by a front panel switch. Initial filter selection is automatic and dependent on mode, AM switches in the 7kHz filter and SSB/CW the 2.5kHz filter. Checking the filter in use is easy, a momentary press of the FILTER SELECT button and the frequency display changes to indicate the current filter width, another press of the button identifies the next filter on the display and at the same time switches to it. Repeated pressing of the button switches in the other filters in turn. Filters available for use on AM and SSB are 2.5, 4, 7 and 10kHz and on CW, 2.5kHz and 400Hz. If the D-125 optional board is fitted and Synchronous AM is selected the receiver automatically switches to the 4kHz filter. Again this choice can be overridden. On FM, filter width is fixed at 12kHz, the filter select button now switching the squelch in or out.

To further enhance reception other facilities are included. A noise blanker is permanently in circuit to deal with vehicle ignition interference, 20dB of RF attenuation can be switched in when required and an HF or DF cut tone control can be applied to the audio.

The HF-125 has 30 memories which are available in two banks of fifteen. There are four memory functions; review where by pressing the MEMORY SELECT button, frequencies stored in memory are briefly displayed (during memory select the receiver is still tuned to the original VFO frequency), RECALL which transfers memory frequency to VFO, RESTORE which returns the receiver to the original VFO frequency and STORE which transfers a frequency from VFO to memory.

Having now found the optimum reception the outstanding performance of the HF-125 is revealed. Typical values for frequencies greater than 500kHz are a sensitivity on SSB of 0.3µV for 10dB S/N and on AM 0.7µV for 10dB S/N at 70% modulation. Dynamic range is greater than 90dB at 50kHz from the tuned frequency.

The HF-125 operates from 12 volts DC and, as such, is suitable for use from an external battery whilst caravanning or boating. For home use an AC mains adapter is supplied with the receiver. For truly portable listening, in the garden or on a hilltop, an internal rechargeable battery, charger and active whip aerial option (P-125) is available.
such a call is heard, all routine work on that frequency stops while the coast station alerts the Coastguard, sends particulars of the distress to other ships and maintains communications with the rescue vessels, the Navy and Lloyds. The coast station also maintains a close liaison with the RNLI.

Like other coast stations, Niton also plays a part in preventing distress and casualty incidents. In one year they transmitted over 3600 navigation warnings, 1400 weather bulletins and 1000 gale warnings. They also dealt with 24 cases of medical advice and assistance.

Expansion

Several factors led the Post Office to move Niton Radio control and its receiving antennas from the old site at Niton Undercliff to St Lawrence, 3km to the east. First, a new site was needed to enable the services to expand and keep pace with a continually growing number of calls, especially on v.h.f. Second, at Niton Undercliff there was a danger of a possible landslip affecting the station — as good a reason to move as any! Also, as the transmitters and receivers were so close to each other, mutual interference between them was creating a problem at the old station.

The transmitters are now at Rill Farm, about 8km west of the old station and about 9km away from the receivers. There are five masts, each about 49m high. The medium frequency transmitters are located at the main St Lawrence site, while the v.h.f. transmitters are sited on St Boniface Down, one of the highest points on the Isle

Ancient and modern.
 Below is Niton’s Marconi d.f. receiver of Wight. Here there is one mast, 49m high, carrying seven antennas.

Finally came the necessity to re-equip all coast radio stations to meet the international requirements for single sideband (s.s.b.) radio telephone communication. This gave improved speech quality and range and only used half the bandwidth of previously used systems. Conserving bandwidth was vital in an area of radio congestion such as mid-Channel.

Niton was able to provide multiple-call working on v.h.f. and m.f. or a combination of both, and selective calling for rapid alerting.

Following privatisation in 1984, the station became part of British Telecom International. The last two major developments at Niton took place in November 1986 and June 1987. In 1986 they took over control of the radio services provided by the Ilfracombe and Celtic radio stations and in June an automatic radiotelex circuit was opened, linking Niton to Portishead Radio Station.

True Story

The following story really illustrates how important our coast stations are. On 23 October 1970, Dougie Shaw was approaching the end of his shift at 10pm. He received a distress call from the tanker Pacific Glory. A collision had occurred off St Catherine’s Point (on the southern tip of the Isle of Wight) between Pacific Glory and the tanker Allegro.

The Pacific Glory called Niton and asked for a v.h.f./link call through to the ship’s owners in London. Following standard procedure, the radio operator at Niton dialed through to London, established the call, and called back the Pacific Glory to put the call through. He received no reply. He called again, but again there was no reply. Mr Shaw’s colleague on duty at Niton noticed a glow on the horizon from the south-facing windows of the station, and surmised it was the vessel in distress. Mr Shaw got up from his console to look and saw the ship silhouetted in flame, approximately 8km out to sea. The tanker had burst into flames between distress calls.

The station was kept very busy that night, communicating with the search and rescue vessels. Had it not been for the professionalism of the station staff and all those involved in the rescue, the appalling toll of casualties that night (13 dead out of 42 crew on board) could have been much worse.
Morse Tutor

Learning Morse with D70 is fast and painless. And you can "do it anywhere" because D70 is built to travel and the battery lasts for months. Field proven by thousands of users.

Price: £56.35 incl. VAT

To order simply dial

0532 744822
or write with cheque or postal order to

Dept. SW Datong Electronics Ltd., Clayton Wood Close, West Park, Leeds LS16 6QE

Access/Barclaycard welcome — Fast delivery service
Catalogue and data sheets on any product available free on request. Dial 0532 744822 (2 lines)

Free Gift

"The Secret of Learning Morse Code" by Mark Francis — when you purchase a Datong Morse Tutor!

DON'T DELAY! place your order now and we will send you your Morse tutor and the FREE GIFT. Immediate delivery. This offer applies while stocks last.

FREE GIFT VALUE £5

Bredhurst electronics

SITUATED AT SOUTHERN END OF M23 — EASY ACCESS TO M25 AND SOUTH LONDON

VHF RECEIVERS

<table>
<thead>
<tr>
<th>Brand</th>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Icom</td>
<td>IC-771</td>
<td>£285.00</td>
</tr>
<tr>
<td>Kenwood</td>
<td>TK4000</td>
<td>£279.00</td>
</tr>
<tr>
<td>Icom</td>
<td>IC 7100</td>
<td>£285.00</td>
</tr>
</tbody>
</table>

ANTENNA ACCESSORIES

- Drapes
- V.H.F. wavereters
- A.K.D.
- V.H.F. wavereters
- Icom
- FT6010X low pass filter
- 100MHz 1kW
- Kenwood LC-100 low pass filter 300MHz 1kW
- Adorns
- AM305G desk mic with pre-amp
- Adorns
- AM305G desk mic with pre-amp
- Bricomm
- 7.1MHz Epoxy Traps
- Welz
- CH204
- 3 metre
- Bricomm
- KMG 3000
- 26W 2m/70cm

VHF SCANNING RECEIVERS

<table>
<thead>
<tr>
<th>Brand</th>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Icom</td>
<td>IC-771</td>
<td>£285.00</td>
</tr>
<tr>
<td>Yaesu</td>
<td>FTM-1000</td>
<td>£285.00</td>
</tr>
<tr>
<td>A.R.D.</td>
<td>AM-1500</td>
<td>£190.00</td>
</tr>
<tr>
<td>Signal</td>
<td>RS85 "Airband"</td>
<td>£150.00</td>
</tr>
<tr>
<td>Sony</td>
<td>AVE</td>
<td>£250.00</td>
</tr>
</tbody>
</table>

ANTENNA/BITS £ (c/b) 2M PERIODS £ (c/b)

<table>
<thead>
<tr>
<th>Brand</th>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kenwood</td>
<td>TH21E Handheld</td>
<td>£109.00</td>
</tr>
<tr>
<td>Kenwood</td>
<td>TH751E 25W multimode</td>
<td>£239.00</td>
</tr>
<tr>
<td>Kenwood</td>
<td>TH7711 base station</td>
<td>£450.00</td>
</tr>
<tr>
<td>Kenwood</td>
<td>TH201E Handheld</td>
<td>£253.00</td>
</tr>
<tr>
<td>Kenwood</td>
<td>TH215E Handheld</td>
<td>£317.00</td>
</tr>
<tr>
<td>Kenwood</td>
<td>TH415E Handheld</td>
<td>£499.00</td>
</tr>
</tbody>
</table>

ANTENNA TUNER UNITS £ (c/b)

<table>
<thead>
<tr>
<th>Brand</th>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yaesu</td>
<td>FGT705 Short wave listening</td>
<td>£100.00</td>
</tr>
<tr>
<td>Yaesu</td>
<td>FT705AT</td>
<td>£346.00</td>
</tr>
<tr>
<td>Kenwood</td>
<td>AT230</td>
<td>£208.70</td>
</tr>
<tr>
<td>Kenwood</td>
<td>AT290 auto</td>
<td>£366.00</td>
</tr>
</tbody>
</table>

ANTENNA SWITCHES £ (c/b)

<table>
<thead>
<tr>
<th>Brand</th>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yaesu</td>
<td>CH20 10000MHz N skts</td>
<td>£48.00</td>
</tr>
<tr>
<td>Yaesu</td>
<td>CH250 10000MHz N skts</td>
<td>£29.95</td>
</tr>
<tr>
<td>Yaesu</td>
<td>CH500 10000MHz N skts</td>
<td>£26.99</td>
</tr>
<tr>
<td>Yaesu</td>
<td>CH1000 10000MHz N skts</td>
<td>£20.49</td>
</tr>
<tr>
<td>Yaesu</td>
<td>CH2000 10000MHz N skts</td>
<td>£16.94</td>
</tr>
</tbody>
</table>

GOODS NORMALLY DELIVERED WITHIN 48 HRS. — PRICES CORRECT AT TIME OF GOING TO PRESS. EASY

70cm TRANSCIEVERS £ (c/b)

<table>
<thead>
<tr>
<th>Brand</th>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yaesu</td>
<td>FT7051 2m/70cm multimode</td>
<td>£230.00</td>
</tr>
<tr>
<td>Yaesu</td>
<td>FT7052 2m/70cm multimode</td>
<td>£265.00</td>
</tr>
<tr>
<td>Icom</td>
<td>IC-6000</td>
<td>£285.00</td>
</tr>
<tr>
<td>Icom</td>
<td>IC-601</td>
<td>£285.00</td>
</tr>
</tbody>
</table>

WE ALWAYS STOCK A GOOD SELECTION OF FREQUENCY REFERENCE BOOKS

BREDHURST ELECTRONICS LTD HIGH ST, HANDCROSS, W. SX. RH17 6BW (0444) 400786
Open Mon-Fri 9am-5pm except Wed 9am-12.30pm. Sat 10am-4pm

Short Wave Magazine March 1988
In almost every article on computer noise that I have seen in various magazines, the author has explained its origin by mentioning the high speed processor clock and its sharp transitions. While it is, indeed, true that all computers do have these clocks, the interference that they cause would just be the fundamental and harmonics every 1 MHz or so up through the bands.

However, as even the most casual user of computer and radio knows, this isn't what you get in practice. The main cause of computer noise is the video signal and its harmonics. With a clear, black screen you get the harmonics of the line and frame synchronisation pulses. The line frequency is 15.625 kHz and the frame frequency is 50 kHz, so you hear the familiar 50 kHz background buzz all over the bands with stronger whistles superimposed on it every 15.625 kHz.

With video information on the screen, the position is much the same but with an increased level of noise, the nature of which depends on the exact content of the screen display. It generally appears as fairly broad-band noise with some accentuation of the sync pulse buzz and whistles.

Check the TV

As a first move in curing the problem, just check that it isn't, in fact, your TV set which is causing the trouble. Try switching it off and disconnecting it from the computer and listen for any improvement. If it is pushing out noise, the only real answer is to use another one which is clean, as screening and filtering a TV set is not usually very successful.

Fortunately, most sets do not produce noise problems and only a very small minority create real trouble.

At this point, I should mention that the RGB output of the BBC computer produces a truly horrific amount of noise and should definitely not be used, or even left connected, as it is the loading of this signal which causes the trouble. Use the u.h.f. output to a TV antenna socket or the PAL (BNC socket) output to a monitor. If you want a colour display from the PAL signal, you will have to connect the two contacts of Link 39 on the computer p.c.b. This is next to the u.h.f. modulator on the board and is clearly labelled. In my experience, careful adjustment of the monitor controls, especially the colour saturation, is needed to achieve a good colour picture and even then the quality is much poorer than that from the RGB signal. If colour is not specifically needed you get a better definition (nearly up to RGB standard) by leaving Link 39 disconnected. Connecting the two sides of the Link to a miniature switch mounted near the BNC socket on the back of the BBC, gives you the best of both worlds. If you have a RGB-only monitor, you’ve got problems as PAL to RGB converters are hard to come by and expensive. Unless you can find one, you’ll have to get a PAL monitor or a TV set.

Antennas

The next item to consider is your antenna. This should be as good as you can possibly make it and any effort put in to improve it will be well rewarded. It should be sited as high and as far away from the computer as possible so as to maximise the ratio of signal to noise pick-up. Balanced antennas (e.g. dipoles) pick up noticeably less noise than unbalanced ones (e.g. long wires), so it is usually worth putting up a dipole, if you have the space, for any band which is of particular interest. For general short wave listening, however, a long wire is easily the most common and practical antenna but to be effective it really needs to be as long as possible, certainly at least 20 metres. If you do not have the space to put up such a length then you should seriously consider using one of the active antennas currently available. The use of an antenna tuning unit (a.u.u.) can often improve the performance of a long wire against computer noise, although this is not always the case. Finally, those of you with portable receivers should not be tempted to use just the built-in whip antenna. It may produce clear signals when no computer is present but I have yet to hear of one instance where it has produced enough signal to get good copy on a computer decoder.

What Next?

What you do next depends on exactly how the noise is getting from your computer to the radio. There are three possibilities: direct radiation from the computer itself and its leads, conduction via the power supply through the mains and conduction through any interface unit which you may have connected between the radio and computer.

First, remove any connection between radio and computer. This will probably produce a big reduction in the noise if the interface did not contain isolation as this is usually how most of the noise is transferred.

To distinguish between radiation and conduction through the mains, disconnect the radio from the mains and run it from a battery. Any reduction in the noise indicates mains-borne interference. The remaining noise is caused by radiation.

If mains-borne noise is a problem, it can sometimes be greatly reduced by simply plugging the computer power supply and radio into different mains sockets as far apart as possible, especially if they are not on the same section of the mains house wiring. Otherwise, it can usually be reduced by the standard practice of wrapping the power lead round a ferrite ring. You may need to do the video lead as well - try disconnecting it to see if it is contributing to the problem. The ring should be as close to the computer as possible and experiment to find the optimum number of turns required.

Direct Radiation

Direct radiation is more difficult to deal with. If you have followed my advice about antennas you should have reduced the noise on the short waves to something approaching f.h. band noise levels and the scope for further improvement is, therefore, limited. On v.h.f., the problem may be more acute. First, make sure that your radio is well earthed. If you are not using the mains earth, bear in mind that a simple stake in the ground has a surprisingly high impedance. Even a thick wire buried for tens of metres can be satisfactory, especially if the vertical conductibility of the ground is low. If you are using a long-wire antenna, it may be helpful to screen the first few metres nearest the radio as this section picks up most noise and least signal.

Screening the Computer

If the radiation noise is still too high, you will have to screen the computer. This is not a job for the novice or the faint-hearted. More than one person has screened his machine only to find that when he reassembled it the ungrateful beast either refused to work or even blew a fuse (for worse!). Unless you are competent to troubleshoot any problems, you should think five times before attempting such a task. Having said that, several people have produced dramatic reductions in noise radiation which have made all the difference between being able to operate with the computer running and not. From the very limited amount of information available, it seems that this improvement is most likely to be realised at v.h.f. The usual method of screening a computer is to spray a film of nickel on to the inside of the case. You will need to remove the contents first and then put it all back afterwards, being very careful that you don't create any short-circuits to your newly conducting case. The nickel film must be properly bonded to the computer.
If you just want the computer to run, say, a satellite predictor or logbook program while you operate, then I hope that you have now succeeded in reducing the noise to an acceptable level.

If, however, you are using the computer to decode RTTY, c.w., etc, then the noise conducted through most terminal units and other interfaces will still probably be the main source of interference. It is possible to buy interfaces which provide isolation between computer and radio (i.e. there is no direct connection between them), and using these will eliminate this source of noise. Otherwise, you will either have to try winding the leads round ferrite beads or use some sort of isolator to reduce the noise. Note that the noise is conducted as much along the common ground connection as anything and so you won’t reduce it by using screened cable for these leads.

If the signal is presented to the computer at TTL level, it is possible to use an opto-isolator, which can provide very effective isolation. A typical circuit is given in Fig. 1. Resistor R1 limits the photodiode current to a value that does not overload the driving circuit, but should otherwise be as low as possible. Use 220Ω if driven from 74 series gates and 470Ω if from 74LS series. IC1 can be almost any type of buffer or gate and there to reshape the signal to a square wave, as the output from the photo-transistor has a rather long rise time. When operating a transceive program, a similar circuit can be used, but the two sides of the isolator must have completely separate power supplies and ground connections or you will short-circuit the isolation. With suitable changes in component values, this circuit can also be used for RS232 level signals.

There are two possibilities to isolate audio signals at loudspeaker level or less. These techniques will be needed if you are using direct connection software (e.g. the Spectrum EAR socket programs). An ordinary audio transformer has been used to provide a moderate amount of isolation which may be sufficient. Otherwise, you can use an opto-isolator in a circuit such as Fig. 2, remembering the constraints on the power supplies mentioned above. The audio signal output from this circuit will be less than the input voltage and so some further amplification may be needed.

As I said at the beginning, each noise problem is different and needs individual analysis and treatment. I hope that I have been able to point out the various things which you can do to help the situation, but only you will be able to determine which methods produce the best results in your particular case. There is really no point in phoning someone hundreds of miles away for help — this is a problem which has to be solved by experimentation on-site. The best general advice is to go for the easy solutions first and leave the difficult stuff, like screening the inside of the computer, to the end if all else fails. It is quite likely that an hour spent in the garden putting up a better antenna will improve your noise situation more than a day spent messing about with ferrite rings and aerosols.

Le fer de savoir

If you have successfully tackled this problem, please write to the Editor about your experiences so that all the readers can benefit. Even if you tried something which didn’t work, this information is still useful to help guide others. To those who haven’t yet attempted it, I hope that you now feel more confident of success. It can be, at times, a difficult task but one which amply repays the time spent in solving it when you hear those clear signals every time you switch on.

LEN EASTMAN G8UUE

I had known Len for nearly ten years when he died peacefully in his sleep, at the age of 71, on Sunday night, January 10. With his going I shall miss not only a friend but an ever-ready source of information on Television.

It was our common interest in Television that brought Len and I together. Although Len was the proud holder of an amateur radio callsign, he was really a short wave watcher at heart. There wasn’t a happening on television that Len didn’t watch or record. He was probably the country’s top man when it came to the reception of Sporadic-E television signals. His photographs, taken live off the television screen, have been seen in periodicals such as Practical Wireless and Short Wave Magazine for many years.

Many a club evening has been livened up with Len’s videos on Sanish Dancing from Spain or a news broadcast from Russia. Apart from the reception of television pictures, and it is said that Len was the first person to actually own a television in Bristol. Len also transmitted television pictures, as he had a very comprehensive amateur television station and his callsign was seen for many years in and around Bristol. He also managed to work the continent on many occasions. However, it didn’t stop there as Len had more patience with new comers to television than anybody else I know, he would spend hours sending pictures to assist a fellow amateur in setting up his equipment. More recently, Len was able to put his station to good use when he assisted with signal strength reports for the Bristol TV repeater during its commissioning phase.

Len had a very active life working for Rolls Royce Aeroengines Division in Bristol. On his retirement, he undertook the holiday of a lifetime and went to America. Film of this holiday could often be seen on the regular Sunday evening TV net. A net which Len hardly ever missed. In fact, he was on the net talking and showing pictures to a host of operators in the Bristol area on Sunday evening, January 10.

Sadly the last entry in his log for that day is that of, “Station Closed”.

Roger Worth G4ZQF
Variable Selectivity

The second i.f. stages are pre-set tuned to the chosen low intermediate frequency (IF2) and a choice of quartz filters (FL2 and FL3) enable the selectivity to be varied. Since short wave a.m. broadcasts are spaced at 5kHz intervals throughout the bands, the wide filter FL2 will usually have a bandwidth of 5kHz to allow all of the incoming signal to be accommodated.

When adjacent channel interference arises, the narrow filter FL3 with a bandwidth of perhaps 2kHz may be selected. Such a narrow filter will degrade the wanted signal since it will cut off its higher frequency sidebands and the unwanted interference will be substantially reduced. Some RXs have additional filters to cater for s.s.b. and c.w. signals, and the need for them will become apparent when reception of these modes is discussed later in this series.

Part of the signal output of the last i.f. amplifier is converted into d.c. potential which varies with signal level, and this is used to automatically control the gain (a.g.c.) of each i.f. stage. A three-position switch marked FAST/SLOW/OFF may be provided to vary the attack and decay time constants of the a.g.c., or turn it off. In some RXs the a.g.c. potential is also used to unbalance a bridge circuit so that a meter placed across the bridge may indicate relative signal strength in SINPO "S" units from 1-5, or in "S" units of the RST code from 0-9.

The a.g.c. potential is not usually applied to the i.f. stage because high amplification at low noise is required there to enhance the overall signal-to-noise ratio of the RX. A potent undesired signal may be amplified to the point where it may swamp a later stage and cause cross-modulation effects, whereby the modulation of the unwanted signal is superimposed on a wanted one, a manual r.f. gain control is therefore provided. An alternative approach is to use an r.f. attenuator ahead of the i.f. amplifier so that the amplitude of all signals from the antenna may be reduced in steps of 10dB from 0 to -40dB.

The detector stage demodulates IF2 so as to recover the original modulating audio, which is then amplified sufficiently to drive a loudspeaker.

STARTING OUT

Brian Oddy continues this month by looking at the more advanced designs of receivers, such as the double conversion superhet, and how they achieve their improved performance.

Brian Oddy G3FEX

Dual Conversion

Most of the more advanced modern superhet designs combine these two concepts and convert if, initially to a high intermediate frequency (IF1) to ensure that a high image ratio exists; then a second mixer is used to convert IF1 to a lower intermediate frequency (IF2) so that adequate selectivity can be achieved by using sharply tuned i.f. circuits before further processing takes place in subsequent stages of the receiver. An RX of this type is known as a dual conversion receiver, or double-superhet.

The block diagram of one type of dual conversion receiver is shown in Fig. 1. In this version the r.f. amplifier, first mixer and first local oscillator stages are tuned by ganged variable capacitors so that they remain in step throughout each range selected by the i.f. exchange switch; however, the first local oscillator (I1) always operates above the desired signal (I1) by an amount corresponding to the first intermediate frequency (IF1).

Stability

The first oscillator must possess good stability. When a frequency synthesiser is used to act as one of the tuning of the r.f. amplifier and first mixer are ganged and brought out as a separate front panel control marked preselector, and this has to be peaked up on a desired signal once the synthesiser has been set to the correct frequency. Receivers of this type often employ a digital frequency display to indicate to the nearest 100Hz the frequency to which the RX is tuned.

The output of the first mixer (IF1) is passed through a ceramic filter (FL1) to attenuate unwanted frequencies before it enters the first i.f. amplifier. The second mixer input is pre-set tuned to IF1 and the second local oscillator (I2) operates on a frequency equivalent to IF1 + IF2; it is derived from a quartz crystal (X1) to ensure stability. Both local oscillators need to be well screened if spurious signals resulting from their harmonics are to be avoided.

Although the very early superhet receivers had to convert the incoming signal (f1) to a low i.f. to avoid losses, subsequent improvements in components reduced the losses and made it possible to process a signal in the h.f. spectrum with little loss and relative ease. Despite further technical advances, the practice of using a low i.f. continued and it is still employed in many modern inexpensive receivers. This is mainly because i.f. tuned circuits can be sharply tuned to provide the selectivity needed in the i.f. chain at reasonable cost.

Simple receivers using a low i.f. are often satisfactory up to about 10MHz, but above that frequency the tuned circuits associated with the input of the mixer become less selective due to losses and unwanted image signals arise – see "Starting Out", SWM February '88.

Adding tuned r.f. stages ahead of the mixer can help improve the image ratio and also enhance the weak signal performance of the RX. Consequently, many of the older valued communication receivers which used a low i.f. employed at least one gang-tuned r.f. amplifier stage ahead of the mixer. The famous National HRO, for example, had two such stages and used a plug-in coil assembly for each band to reduce losses and simplify wavechaging. The later RCA AR88 used a common wavechanger switch to select the appropriate coils for the two r.f. stages, the mixer and the local oscillator on each of its six ranges.

Since image signals stem from a band twice the i.f. away from the wanted signal, f2, and on the same side of f1 as the local oscillator (f1), another easy way of improving the image response is to operate f1 at several (or even many) megahertz above f2 so that a high intermediate frequency difference signal (f1 - f2) results. The selectivity of the mixer tuned circuit will then be adequate to reject the unwanted image signals because of the large frequency difference involved. Unfortunately it is not a simple matter to provide adequate selectivity in high frequency i.f. stages, so a conflicting choice arises: a high i.f. for good image response, or a low i.f. for good selectivity.

Ganged tuning

Short Wave Magazine March 1988
Other Designs

In another type of double-conversion system the tuning of the r.f. stage, first mixer and first local oscillator is fixed, and the tuning of the first i.f., second mixer input and the second local oscillator is made variable – see Fig. 2. This block diagram only covers the stages up to the output of the second mixer, since the second i.f. and subsequent stages are similar to those shown in Fig. 1.

In this version a band-pass filter at the input to the r.f. amplifier allows a narrow band of signals, including the desired one (f1), to be amplified. When this narrow band of signals is mixed with the crystal controlled output from f2, the resulting mixer output (IF1) is also spread over a narrow band. The tuning of the first i.f. amplifier, second mixer and second local oscillator is ganged and variable, but it may only be varied within the narrow band of IF1 so that a wanted signal may be selected and converted to the fixed low intermediate frequency (IF2), and then processed in the subsequent stages of the receiver.

In effect this means that the RX will only tune across a narrow segment of the r.f. spectrum – perhaps 1MHz wide. To change the range it will be necessary to select an appropriate band-pass filter and a suitable crystal. The tuning rate of the second oscillator will be the same on every band, and since it only has to cover a limited tuning range it may be easier to achieve good stability.

The first three building blocks of Fig. 2, namely r.f. amplifier, mixer and crystal oscillator form the basis of many of the commercial add-on converters which may be used ahead of an existing s.w. receiver to extend its range or improve its performance; for example, a converter with a 144-146MHz input and a 28-30MHz output will enable a s.w. RX covering the 28MHz band to tune across the 144MHz amateur band.

Although the block diagrams have served to illustrate the general principles behind receivers of this type, many superior designs using variations of these principles have evolved during the last decade or two. Some modern communications receiver designs use triple or even quadruple conversion systems to enhance their performance and often convert the incoming signal to a first i.f. in the v.h.f. region – perhaps 44MHz or higher. The second i.f. may be around 9MHz and the third i.f. at 455kHz, if a fourth, if included, a frequency of 50kHz is frequently chosen. Of course, in such complex designs the four local oscillator frequencies have to be chosen with great care to avoid spurious responses, and high stability is essential!

TAKE ADVANTAGE OF THIS GREAT SUBSCRIPTION OFFER

Wherever you live, a Postal Subscription will ensure that you receive your copies of SHORT WAVE MAGAZINE and/or PRACTICAL WIRELESS regularly, through your own letterbox, before it gets onto your newsagent's shelf. Order a Joint Subscription and you will qualify for the Special Discount.

Fill in the Order Form below and post it to: PW Publishing Ltd., FREEPOST, Subscriptions Dept., Enelco House, The Quay, Poole, Dorset BH15 1PP (no stamp required). Credit Card Orders taken on (0202) 678558.

Overseas subscriptions outside Europe are now despatched by Accelerated Surface Post for faster delivery.

Please indicate the type of subscription required:

<table>
<thead>
<tr>
<th>Subscription Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short Wave</td>
<td>£17.00</td>
</tr>
<tr>
<td>Wireless</td>
<td>£14.00</td>
</tr>
<tr>
<td>Special Joint Subscription</td>
<td>£27.00</td>
</tr>
<tr>
<td></td>
<td>£18.00 (Overseas)</td>
</tr>
<tr>
<td>(Prices correct at February 1988)</td>
<td>£18.50 (Overseas)</td>
</tr>
</tbody>
</table>

To commence with issue dated ____________

[] I enclose cheque/PO (Payable to PW Publishing Ltd) £__________

[] Charge to my Access/Visa Card the amount of £__________

Card No: _________ 0000 0000 0000 0000

To: PW Publishing Ltd., Subscriptions Dept., Enelco House, The Quay, Poole, Dorset BH15 1PP

Name: __________________________

Address: ________________________

______ 1

Signature: ______________________

Date: ______________

-starting out-

32
It is very noticeable that over the two decades since I began writing about amateur radio topics, the average age of the contributors has risen. One wonders why this is. One thought which occurs is that the way in which a newcomer comes into the hobby.

Today's newcomer is faced with a huge variety of manufacturers' rigs to choose from, most of which have a high price tag — especially to a youngster on pocket money or low wages. The idea of home construction of a receiver is never really pushed and made appealing enough. Most people think they're not capable of building something as complicated as a receiver, but doesn't have to be complicated or built from scratch.

In fact, one can produce, easily enough, a simple receiver that will in skilled hands produce a good performance using no more than, say, three or four transistors, a couple of diodes and a pair of "cheapo" headphones, provided one is game to accept single band operation.

Even that approach can be regarded as over complicated. How about this for a scenario? Take one transistor or valve portable radio lacking a b.a.f. but covering one or more amateur bands; couple it to an antenna. Take one other transistor portable, preferably covering rather similar ranges of frequency. Switch on the first receiver, and tune to an amateur band. Listen for a noise like "Dorothy's dog with a pen in his nose"; this is the sound of an s.s.b. signal heard without a receiver beat oscillator. Tune this as accurately as you can.

Now you switch the second receiver on. If it covers similar ranges, tune it around 400-500kHz lower in frequency. If it doesn't cover this range, try half this frequency, one-third or one quarter. Tune the second receiver carefully around with the volume control right back until you hear the whistle as you tune through the signal on the first receiver; you may need to adjust the spacing of the second receiver from the first or from the antenna wire, or rotate one receiver relative to the other to adjust the degree of coupling. To tune around the band, you simply adjust both receivers in step, and maybe reduce the coupling on a weak signal.

You don't believe it can be done? Let's just say that one contributor got his first 1000 prefixes or so that way, and then dropped out as he had an RAE pass and a licence under his belt. I tried this trick a couple of weekends ago, and logged 200 prefixes in a weekend stint, first on s.s.b. and then again on c.w. — and got a LOT more kick out of it than out of the main station receiver in the process!

Letters

S. Myers (Liverpool 91) got interested in the amateur bands after reading the October 1987 issue. Steve uses a Philips D2935 receiver, and is aiming at a Datong Antenna for the next stage. There is an interesting point in Steven's list of prefixes; he has claimed A6XBV. Now, clearly he has heard A6XB in contact with someone ... or has he? IF — and only if — the operators concerned were using the proper procedure of "own callsign last", then Steven could have heard a VK working A6X, and losing the back-end of the VK call in a burst of GRM. On the other hand the sloppy abbreviated operating procedures often heard, with either a callsign omitted or a case where A6XB was looking for VK as a directional call. Such operating practices do make things difficult for the SWL newcomer, one could wish for a considerable improvement — though we won't get it. In this particular case, I am fairly certain that Steven did in fact latch on to A6XB, so the prefix has been allowed to stand.

On a different tack, included in Steven's list I noted W6SAI, who is Bill Orr the well known amateur radio author.

Next to D. A. Whitaker (Harrogate), he has had a most successful 1987, beating his previous countries-heard score by one, thanks to ARRL's recent decision on Anubal! On 7MHz some 161 countries were heard, on 3.5MHz 162 and on Top Band 77, all on s.s.b.

Another new entry comes from N. K. Yule (Bengeo) who came to the amateur bands by way of an interest in oceanic aircraft communications. The receiver is an R600, used with a Mizuho KKX a.u.t. which in turn is connected to twenty metres of wire suspended at roof-top height, running N-S. The start date was November 20, the stop date is December 31 — 302 prefixes. The station is operated on all bands, but evidently 21MHz is the favourite. I was amused to note that the first time he came across a pile-up, it was the one on VK9YV on Cocos-Keeling — a baptism of fire indeed!

The VK5LA signal was, in its way, a disappointment to many, as DX operators have come to regard SY as Mount Athos; SY1UA was in fact a 150th anniversary celebration of the University of Athens.

Now Chris Eve (St. Helier, Jersey), he has been thinking about scanners for v.h.f. and n.m.f., on 28 and 144MHz, by knocking just one of his priorities out of the spec. Chris was able to find a Sony PRO 80 which met all the others, at just under £300. It seems quite good when compared with the main station receiver, and it now sits peacefully alongside scanning for beacons when it isn't being used to attack both ends of a split-frequency contact.

P. Broadbent (Hartlepool) was one of the members of the VE6RCS club station, and is now taking up the hobby again, Paul wants to know if QSLs are required for HPX — quick answer to that is "no". As for the Annual Table, it runs each year from January 1 to December 31, and then restarts; however, when you reach 500 Prefixes I shift you into the All-Time listings. To date Paul has 152 prefixes logged, using a Panasonic DR48 receiver plus the provided wire antenna.

M. Ribton (Gillingham) puts up his usual nice list of new prefixes, and adds a note to say he doesn't know "whether it is an improvement or not". All I can say is, I wish I had as good in my own log!
I noted CJ1FG for the Winter Olympics, being VO1FG; IY5MR for a Marconi commemoration, various assorted W200 signals, commemoration of the 200th anniversary of the American constitution, while T08KC was a French Polynesian special activity station. S. M. Gauci (Malta) heard JY1; the first time he has appeared in a log to this piece for some years. The operator of JY1 is of course King Hussein of Jordan.

In the licensing news, moment for M. Rodgers (Harwood) is c.w., although he does listen to other modes. Mike managed C31 for Andorra, an LBB for a new Norwegian prefix and RPO in Georgia, USSR for the pick of the crop.

P. Barnes (Blackpool) had only fifteen contacts; that evenings draw in, Peter says, the bands are shut by the time he gets at them. VX3HO sounded odd to Peter, but worked several stations and gave the name of Garth, and location “near Niagara”. I looked up the references and noted that VE3HO is in Ontario, and the towns on either side are Niagara Falls, S. Ontario, Canada on the East bank, opposite the falls, with a population of 60,000, and Niagara on the West Bank, which is in New York State and has a population of 100,000; the two are joined by bridges. Probably some form of special-event activity from the east bank.

Now I come to S. Burgess (Stockport) who has unwrapped a prize comedy of errors over his HPX Logic; he claimed 603 and somehow that got turned into 301, then I had a 127, and in front of me I have a Nil return according to the letter, and a list of 46 new ones. All of this would be easy if everyone would be SURE to note on their list, in accordance with Rule 8, the OLD score to which the NEW score is to be added. If you do this, and I get into a tangle, I can use it to get me back to the beginning, so the slip doesn’t show. Turning to the claim, alas I must delete ZA — no activity from Albania has been allowed in years, and frankly I am a bit doubtful about the ZA2RPS operation that was accepted about twenty years ago. On the other hand, I see no reason to doubt the 6W100AD — doubtless yet another special-event job.

N. Melville (London N18) sticks to his c.w. last and for the pick of his crop offers VK9YD. Neil was double of the W200 series of stations, but as already noted these commemorated 200 years of the American Constitution.

Turning to B. Woodcock (Leeds 17), Baxter has established that the incoming noise is antenna-borne, which removes the need for much mains filtering, although I feel a filters is not bad thing. Such need be no more than a ferrite ring of suitable grade; take off the mains plug, wind eight or ten turns of the mains lead around the ferrite ring, so that the ring is as near as you can get to the receiver, then put the plug back on, with great care to get live, neutral and earth on the right plug pins. I stress the latter both for safety reasons and because I once had a serious interference problem caused by someone borrowing a mains lead for NFD, changing the plug, and then reversing live and neutral when renewing it for return to me!

Deadlines are March 15, April 19 and May 10

DECODE

Mike Richards G4WNC
200 Christchurch Road, Ringwood, Hants BH24 3AS

RTTY

A bumper selection of reports this month starting with Ian Baxter. One of Ian’s main interests is the reception of RTTY, both amateur and commercial, which is achieved using a Yaesu FRG-7100 receiver. X Spectrum 48K with Technical Software RX-4 program and a 20m long wire antenna. On the amateurs band his best recent DX was 9N7Y0 (Nepal) which brought his countries total to 27. Other stations of interest include SV2JL (Greece), C315D (Andorra), VE3D (Canada) and TR8GD (Gabon). This latter station is well worth looking out for as he is very active on the 14 and 21 MHz bands. Ian’s commercial reports have been included in the frequency list at the end of this section.

One of my regular contributors has supplied me with the schedule for this month’s new broadcasts from Tehran as follows: 1000-1100 UTC 18.56, 19.2, 19.98 MHz 1100-1230 UTC 19.2 MHz 1500-1730 UTC 7.96, 7.4, 19.98 MHz 1900-2030 UTC 7.4, 7.96, 8.05 MHz 2030-2200 UTC 8.05, 7.96 MHz

Most of these transmissions are in English using 50 baud, 425Hz reversed shift. Now for this month’s frequency list, the format is the same as last month, i.e. frequency/mode/permission:

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Mode</th>
<th>Permission</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.24 MHz</td>
<td>RTTY 50/5</td>
<td>CNM59X9 Ballarat</td>
</tr>
<tr>
<td>25.75 MHz</td>
<td>RTTY 40/5</td>
<td>YO172 Bagdad</td>
</tr>
<tr>
<td>54.4 MHz</td>
<td>RTTY 50/70</td>
<td>CHROMA AIR, Jeddah</td>
</tr>
<tr>
<td>73.3 MHz</td>
<td>RTTY 50/20</td>
<td>HZ Jeddah</td>
</tr>
<tr>
<td>74.7 MHz</td>
<td>RTTY 50/50</td>
<td>HZ Jeddah</td>
</tr>
<tr>
<td>88.7 MHz</td>
<td>RTTY 50/10</td>
<td>IMB2 Rome</td>
</tr>
<tr>
<td>67.75 MHz</td>
<td>ARQ 96</td>
<td>Channel A XTU Ascension</td>
</tr>
<tr>
<td>75.12 MHz</td>
<td>RTTY 75</td>
<td>XV Hanoi</td>
</tr>
<tr>
<td>75.55 MHz</td>
<td>RTTY 75</td>
<td>VY3/4 E. Guadalcanal</td>
</tr>
<tr>
<td>97.2 MHz</td>
<td>RTTY 75</td>
<td>XV Hanoi</td>
</tr>
<tr>
<td>10.2 MHz</td>
<td>RTTY 50</td>
<td>RKA25 TASS</td>
</tr>
<tr>
<td>12.81 MHz</td>
<td>SITOR 100/170</td>
<td>SAR63 Goteborg</td>
</tr>
<tr>
<td>13.5 MHz</td>
<td>RTTY 75/45</td>
<td>CFH Halifax</td>
</tr>
<tr>
<td>32.4 MHz</td>
<td>RTTY 40/50</td>
<td>YO172 Bagdad</td>
</tr>
<tr>
<td>13.5 MHz</td>
<td>RTTY 50/80</td>
<td>KM8 Taipe</td>
</tr>
<tr>
<td>14.57 MHz</td>
<td>RTTY 50/59</td>
<td>N9X9 Rabat</td>
</tr>
<tr>
<td>14.63 MHz</td>
<td>RTTY 75/425</td>
<td>WFK5 USIA</td>
</tr>
</tbody>
</table>

14.801 MHz RTTY 50/425 TASS 14.937 MHz RTTY 50/5 KU Ascension Nigeria 15.86 MHz RTTY 50/59 EPJ Tehran 19.227 MHz RTTY 75/5 Belgrade 19.98 MHz RTTY 50/59 EPJ-2 Tehran

Please keep these reports coming to enable me to maintain this list.

FAX

I have received a very good selection of FAX pictures from Ivor Cooper, a sample of which is shown in this column. Ivor uses a recently purchased Info-Tech M-800 FAX decoder and a NORD-525 receiver to produce some excellent results. When monitoring FAX transmissions I particularly like to keep an eye out for re-broadcast satellite images. The only problem I have is in searching through all the FAX schedules to find a station sending these pictures at the appropriate time. What is really needed is a chronological list of these transmissions. Well thanks to some material supplied by Jim Bryant I have compiled the following list. All the transmissions use 120 r.p.m. and an IOC of 576.

0103UTC Offenbach 0110UTC Tokyo 0110UTC Offenbach 0144UTC Offenbach 0315UTC Offenbach 0500UTC Beijing China 0645UTC Offenbach 0745UTC Tokyo 0820UTC Beijing China 0840UTC Offenbach 0945UTC Northwood (2) 1005UTC Northwood (1) 1140UTC Novosibirsk 1225UTC Offenbach 1244UTC Offenbach 1300UTC Offenbach, Novosibirsk 1310UTC Tokyo 1355UTC Northwood (1) 1420UTC Northwood (2) 1440UTC Northwood (2) 1503UTC San Francisco 1539UTC Offenbach 1701UTC Northwood (2) 1720UTC La Jolla 1730UTC La Jolla 1740UTC San Francisco 1845UTC Offenbach 1910UTC Tokyo 2000UTC Berlin 2345UTC Rota

The frequencies of these stations are:

Offenbach 13.4 kHz

Tokyo 3.622 MHz, 7.305 MHz

On a different tack, Basil bewails the lack of QSL returns from his reports; an eternal problem, and one which can only be solved by sending much more lengthy reports; by and large, the real DXpedition isn’t too bad, provided you go the proper route called for by the DX station; it’s the home-based Ordinary Joes who are so stingy with QSLs.

Other Points

Since commencing this piece I have had some snow, over the night of 21/22 January; one thing no wire antenna takes kindly to is having a layer of snow fall on it, which then solidifies and freezes. Oddly enough, while it was inches thick on the 28 s.w.g. wire, the rope guys for the mast had only a thin coating, as did the coaxial cable where it runs horizontally. I had just got up, and looked outside while waiting for the tea to brew and was just in time to see the wire decide to “call it a day” and break with quiet dignity to the ground! Luckily I had some spare wire, and ten minutes work later in the day resolved the problem.

One last point, please note the new address, all mail to arrive by the deadlines please.
Frequency Indication

From some of the letters I have received it would appear that some of you are a little unsure when it comes to interpreting the frequencies in frequency lists.

To start with, you will need to understand a few of the basics of f.s.k. Frequency shift keying (f.s.k.) is the most common modulation technique used for RTTY, ASCII and weatherfax. It is effected by literally shifting the frequency of the carrier.

If we look at a RTTY transmission, the signal is in a digital format and frequency has two possible states i.e. a mark or a space (alternatively a logic 1 or 0). When this signal is applied to a transmitter, the higher carrier frequency is sent for a logic 1 (or space) and the lower carrier frequency is used for the logic 0 (or mark).

The frequency difference between the two carrier frequencies is known as the shift, with common values being 170, 425 and 850Hz. Obviously with two transmitted frequencies, we have a dilemma when we want to state the nominal frequency of the signal. Fortunately a convention has been established making the published frequency the higher of the two.

This is all very well for RTTY, but what about FAX signals which have black and white video opposed to mark and space? Well, in this case it is still the higher frequency which is published almost incidentally represents the frequency.

Having clarified the published frequency, the next problem appears when you attempt to tune into a specific station. The common complaint is that to receive the station properly the receiver display shows a different frequency to that published for the station. The most usual reason for this is that the receiver in use does not have a RTTY mode and the signal is being received with the mode switch set to either u.s.b. or l.s.b. When set for u.s.b. or l.s.b. most receivers actually display the frequency of the suppressed carrier, which explains the error when receiving RTTY signals.

What we want to establish is how much to add or subtract from the displayed frequency to give the published frequency.

One simple method for checking your own receiver readout is as follows:
1) Set your receiver and RTTY decoding equipment in the mode you wish to check.
2) Tune the receiver to a strong RTTY signal of known frequency.

i.e. 4,489MHz Bracknell 425Hz shift, 50 baud RTTY.
3) Fine tune your receiver for best copy.

Note the difference between the displayed frequency and the known frequency.

This difference represents the correction factor that you will have to apply to your receivers display when trying to locate a signal from its published frequency.

NAVTEX

Having mentioned this mode for the first time last month, I have received a very interesting letter from Brian Gregory. Brian has written his own decoding software for this mode which he runs on a 1979 vintage Heath H85 computer. Being a professional programmer he used the language Modula-2 for this particular mode but he has also written programs for RTTY and FAX using a combination of C and assembler.

The main receiver in use is a Sony IC7600D but Brian adds that the stability of this set is not quite good enough for NAVTEX. In order to overcome this stability problem he has been working on a dedicated receiver for 518KHz NAVTEX. The receiver is a fairly conventional superhet except for an 18KHz I.f. The front-end comprises two f.e.t.r. f.m. amplifiers followed by a MC3357 narrow band i.f. amplifier and demodulator. The local oscillator frequency is controlled by a 500KHz ceramic crystal. The recovered output from the demodulator is applied to a comparator before finally passing to the computer.

Brian has completed the prototype and the results to date using a 6.5m antenna have been very good with the following signals logged:
- Scheveningen Netherlands
- Ostende Belgium
- Lands End UK
- Cullercoats UK
- Portpatrick UK
- Rogaland Norway
- Stockholm Sweden
- Reykjavik Iceland

The next problem for Brian to tackle is the computer interface on his main station. My thanks to Brian for this comprehensive report.

Importing Radio Equipment

Ivor Cooper has recently taken delivery of an Info-Tech M-800 FAX decoder and a M-6000 Intelligent Terminal Unit from the US (lucky chap). The transaction went very smoothly until it came to releasing the goods from Customs at Heathrow Airport.

The air-freight company normally charges about £40 for Customs clearance, whereas if you do it yourself there is £12. Not being one to miss a bargain, Ivor decided to handle the Customs himself.

Well, a day and a half later and rather the worst for wear Ivor finally emerged with his equipment! To be fair to the Customs and Excise staff at Heathrow it wasn't really their fault, it's just that the paper work is very complicated. The moral of this story is don't try to clear your own goods through Customs unless you are very familiar with all the paper work.

We are always on the lookout for Letters of Interest from our readers, so if you have something to say, by all means write to us.

Reports for May '88 issue by March 15 please

Weather Satellites

This month we show some of the excellent weather-satellite pictures captured by David Bird of Stoke Ferry, King's Lynn, in north-west Norfolk. He has a wide interest in radio and electronics, and built the Reference between the board system that we referred to in earlier columns for receiving his pictures from space. Dave is G8XOC and, with his natural interest in DX and v.h.f., it is not surprising that some of the views we see emanate from satellite passes more distant than those we normally see over the UK.

The signals received are much weaker from low angle satellite passes close to ones horizon. This is due to attenuation brought about by the longer path and the losses created by a low incidence angle to the receiver. The tropospheric layers can still be easily captured as strong signals by the use of a beam antenna and a low noise pre-amplifier, preferably built and placed at the cable connection at the antenna itself. With the capture lobe at a low angle, some interference from poorly suppressed electrical apparatus and motor vehicles is inevitable, but this, like the attenuation, is lowest at night and in the early mornings.

Our first picture, Fig. 1, shows a marked low approaching Northern Ireland from the north-west, with a prominent cloud rotation system. The land boundaries of Denmark, Germany and France were clearly defined, with Poland and Finland visible to the right of the frame.

A view from the Atlantic to the North and Baltic seas, with cloud over the Scottish and Scandinavian mountains can be seen in Fig. 2.

A rare sight in that which we optimistically referred to in moments of enthusiasm as "Summer 1987" can be seen in Fig. 3, which shows the UK and northern Europe in clear skies, but southern Europe in cloud. The ridge of the Pyrenees mountains can be seen by Andorra between southern France and Catalonia in northern Spain.

An excellent "close-up" of Italy, Sardinia and Corsica set in a silver appearance on Fig. 4, with the offshore Yugoslavian Islands of Hvar (where your author was YU7LAZ) Korcula, etc., clearly defined off Dubrovnik on the Adriatic coast.

Our next pictures have been supplied by Mark Smith, whose station we described in the January column. The expansion facility, its versatility and benefits are demonstrated in the photographs. They are in applied colour, but should look almost as good in our black and white reproduction.

A joint infra-red and visible x1

INFO IN ORBIT

Pat Gowen G3IOR
17 Heath Crescent, Hellesdon, Norwich, Norfolk NR6 6XD

SEEN & HEARD

9.87MHz, 13.597MHz, 18.22MHz, 22.77MHz
Beijing 5.527MHz, 8.122MHz
10.117MHz, 14.367MHz, 18.237MHz
Northwood (1) 4.248MHz, 6.436MHz, 8.495MHz
12.741MHz, 16.939MHz
Northwood (2) 8.334MHz, 16.115MHz
Novosibirsk 5.766MHz, 9.22MHz
Rota 5.785MHz, 7.453MHz
San Francisco 8.682MHz, 17.670MHz
La Jolla 8.644MHz, 17.409MHz

If you know of any other stations sending satellite images please drop me a line and I will add them to the list.

If s.k.

Remote Imaging Group board
Norfolk.

750Hz.

If this doesn't work we referred to in earlier columns for receiving his pictures from space. Dave is G8XOC and, with his natural interest in DX and v.h.f., it is not surprising that some of the views we see emanate from satellite passes more distant than those we normally see over the UK.

The signals received are much weaker from low angle satellite passes close to ones horizon. This is due to attenuation brought about by the longer path and the losses created by a low incidence angle to the receiver. The tropospheric layers can still be easily captured as strong signals by the use of a beam antenna and a low noise pre-amplifier, preferably built and placed at the cable connection at the antenna itself. With the capture lobe at a low angle, some interference from poorly suppressed electrical apparatus and motor vehicles is inevitable, but this, like the attenuation, is lowest at night and in the early mornings.

Our first picture, Fig. 1, shows a marked low approaching Northern Ireland from the north-west, with a prominent cloud rotation system. The land boundaries of Denmark, Germany and France were clearly defined, with Poland and Finland visible to the right of the frame.

A view from the Atlantic to the North and Baltic seas, with cloud over the Scottish and Scandinavian mountains can be seen in Fig. 2.

A rare sight in that which we optimistically referred to in moments of enthusiasm as "Summer 1987" can be seen in Fig. 3, which shows the UK and northern Europe in clear skies, but southern Europe in cloud. The ridge of the Pyrenees mountains can be seen by Andorra between southern France and Catalonia in northern Spain.

An excellent "close-up" of Italy, Sardinia and Corsica set in a silver appearance on Fig. 4, with the offshore Yugoslavian Islands of Hvar (where your author was YU7LAZ) Korcula, etc., clearly defined off Dubrovnik on the Adriatic coast.

Our next pictures have been supplied by Mark Smith, whose station we described in the January column. The expansion facility, its versatility and benefits are demonstrated in the photographs. They are in applied colour, but should look almost as good in our black and white reproduction.

A joint infra-red and visible x1

Short Wave Magazine March 1988

35
picture photograph taken from
Mark's monitor is seen in Fig. 5. It
was taken from a NOAA-9 pass on
6 July 1987, and shows the
considerable difference between the
visible light and infra-red frames.

The photograph in Fig. 6 was
taken of NOAA-9 the previous day
and is an x2 showing good views of
England and France, with a
"warm" patch appearing to be a
new island off Brittany.

Some common words used are
"Da" for Yes, "Nyet" for No,
"Panych" for I understand, "Lad
Na" for On Tune, "Kharashoo" for
Good, Very Well or alright,
"Dachim Kharashoo" for Very
well indeed or excellent, "Dobray
Ootrah" for Good morning and
"Zrdad-vootsiya" for Greetings.

Some technical words are
"Da" for Yes, "Nyet" for No,
"Panych" for I understand, "Lad
Na" for On Tune, "Kharashoo" for
Good, Very Well or alright,
"Dachim Kharashoo" for Very
well indeed or excellent, "Dobray
Ootrah" for Good morning and
"Zrdad-vootsiya" for Greetings.

Reports for May '88 issue
by March 15 please

BAND II DX

Ron Ham
Faraday, Greyfriars, Storrington, West Sussex RH20 4HE

At his QTH in Caterham, Ray
Howggo uses a Sony STR-6046
tuner/amplifier with a 1.5m whip
antenna at ground level. He found
that, under normal atmospheric
conditions, he could receive at
reasonable strength, BBC Radios
2, 3 and 4, from Oxford and
Wrotham, between 88 and
94MHz, Radios London, Medway,
Solent, east and north Sussex and
Radio 1 from the BBC and Capital
Radio and LBC (London), County
Sound (Guildford), Chiltern Radio
(Luton/Bedford), Invicta Sound
(east Kent) and Radios Mercury
(Rigate and Crawley) and 210
(Reading) from the IBA between
94 and 105MHz, all at reasonable
strength. "I thought this might be
interesting because it shows that
channel occupancy has reached
saturation level, surpassing even
the medium-wave. In addition, it

Many technical words strikingly
similar to English.

Calling procedures include
"Zoup mi Tamara", This is TAMIR.
The call used by Romanenko:
"Ras, Ras, Tree, Dva, Ateen" is
Calling, calling, three, two, one
and "Nez Spatsia" is Ground
(below) this is Space.

MIR Details

Those who were listening over the
Christmas holiday-period to the
v.h.f. communications frequen-
cies of MIR and the communica-
ting manned SOYUZ ferrycraft
were in for a real treat, as activity
was naturally at a very high level.

A further bonus was a series of
excellent sightings in clear skies
over the same period, permitting
good tracking records to be
maintained despite the frequent
ly changing period of the space-
ship.

Yuri Romanenko, who had
sounded more than a little tired
during his earlier almost mono-
syllabic contacts on
143.625MHz MIR contacts with
the ground command noticeably
began to speak at length and
cheered up enormously as soon as
news came of his return to earth
by the new year.

Following the filling, undocking
and separation of the Progress
supply vehicle on December 19, a
SOYUZ-TM-4 was launched
carrying Vladimir Titov, Musa
Manarov, and cosmonaut Doctor
Anatoly Levchenko to dock two
days later. After the changeover
routine, Anatoly Levchenko
returned with the original crew
members Yuri Romanenko and
Alexander Alexandrov in the old
SOYUZ-TM-3 to land at
Kazakhstan on December 29.
Both Soyuz trips were clearly
audible on 121.750MHz, but with
competition between a.m. and
f.m. as this frequency is used by
numerous airports around Europe,
which caused more than a little
confusion. At times even music
could be heard, apparently
emanating from Soyuz, but
possibly picked up by their uplink
repeater and re-broadcast.

A new voice is now on
143.625MHz, that of Titov, who
appears delighted to have settled
in remarkably quickly, having been
frustrated by technical difficulties
that aborted his two earlier
attempted missions.

John Branegan GM4HJ, our
regular MIR watcher, has provided
a basic guide to cosmonaut
spoken Russian, added to by your
scribe, which will assist observers
to understand what they are
hearing. The cosmonauts use a
very small set of words for most of
their operating procedures, and
some of these and their meanings
are produced here phonetically.

First come the numbers, which are
used a great deal in reports:
"Adeen" = one, "dva" = two,
"tree" = three, "cheteye" =
four, "pvyat" = five, "shest" =
six, "seyem" = seven, "vo-
seyem" = eight, "dey-vayat" =
ine, "dey-syat" = ten. Numbers
eleven to nineteen use the simple
additional phrase of "nord-tsat"
so that "adeen-nord-tsat" is
eleven, "seyem-nord-tsat" is
seventeen, with eighteen being
"va-seyem-nord-tsat", nineteen
"dey-vayat-nord-tsat" and
twenty "dvah-tsat", with thirty
said as "tree-tsat" and so on.
When we get to one hundred it
is "sto". A typical report is a long
string of numbers ending in ".

Eneshay Normala.. " meaning
"Otherwise Normal".
makes DXing almost impossible,” said Ray. He continued, “Assuming the average broadcast receiver can cope with four signals per MHz, this allows room for only 48 signals within the present allocation.” Good point Ray.

Reports

Each time the high pressure system began to fall during this period, true to form, Band II opened. I logged French stations between 98 and 100MHz around 1600 on November 28 and 8 other national voices between 92 and 100.7MHz at 0920 on the 29th. Similarly, during the event on December 22, French voices were predominant from 98 to 100MHz and I counted a dozen French, Dutch or German voices throughout the Band at 1400 on the 23rd.

“I first noticed an opening on 2015 on the 22nd which lasted through the 23rd and ended by noon on the 24th,” wrote Ken Lancashire (Rotherham). He noted that his barometer was holding steady at 1030mb (30.45in) after falling slightly earlier in the week. During this event, Ken listened to stations from France and Holland between 98 and 102kHz and a very strong Dutch transmission, in full stereo, on 105.6MHz. He logged a sports programme on 102.1 which became so strong at 2000 on the 23rd that it was as good as he receives Radio Aire from Leeds. “There were quite a few signals up and down the band murmuring away in the background which I did not consider good enough to log,” said Ken. He found Band II conditions “very strange” early in January and between the 1st and 11th he again heard continental stations, at times, were numerous and powerful. “A good friend sorts out the languages for me,” said Ken.

Further to last October’s hurricane which hit parts of southern England, J. T. Whitmore (Southampton) reports that the pen on his Short and Mason barograph fell to 28.3 in at 0400 on the 16th and then rose to 29.3 in by noon.

On December 23, Simon Hamer (New Radnor) identified signals from Denmark, France, East and West Germany, including APN and BFBs. While returning from Edinburgh in late December, Colin Godwin (Malvern), using his Ferguson stereo cassette receiver, logged BBC Radio Lancashire and the IBA stations Macher Sound, (Wrexham and Desides) Piccadilly Radio (Manchester), Radio City, (Liverpool) Red Rose Radio (Preston and Blackpool) and Signal Radio (Stoke) between 96 and 104MHz.

Meteor Scatter

How often have you casually glanced upward and seen a streak of bright light dart across the clear night sky? It was all over in flash, but what you witnessed was a random meteor particle burning up as it collided with the earth’s atmosphere. When this happened a rapidly decaying trail of ionised gas was created some 95km above us which, for a brief period, may well have deflected the signal from a distant broadcast station well off it’s intended course.

If a receiver was tuned to that station’s frequency, a fragment of the transmitted speech or music would have been heard. Longer bursts of programme means that the signal bounced off a more intense trail left by a much bigger particle, or possibly a fire-ball. Periodically, on it’s orbit around the sun, the earth encounters great swarms of these particles, known in the astronomical world as meteor showers, Fig. 1. During these happenings large numbers of signal “pings” are heard, and, by using radio to count these, it is possible to plot the earth’s passage through a particular shower, but that’s another story.

Readers with converters for the 70MHz amateur band, or with scanners, often hear meteor scattered signals from the Polish broadcast station Gdansk on 70.3MHz. Reference to the World Radio TV handbook shows that signals from broadcast stations in Czechoslovakia, Hungary and Romania can also be found between 68 and 73MHz. As a guide, many of the stations that we will log within this range during the sporadic E season can also be heard via meteor scatter. For the benefit of computer buffs, I used the Trojan Cad-Master light pen on my Amstrad PCW8512 to produce Fig. 1.

Reports for May ’88 issue

by March 15 please

TELEVISION

Ron Ham
Faradale, Greyfriars, Stormington, West Sussex RH20 4HE

At his QTH in Derby, fellow journalist Garry Smith logged East and West Germany and Switzerland, (Figs. 8, 9 and 10) and Lt. Col. Rana Roy (India) identified pictures from Jullundur, (Fig. 11) and Lahore, (Fig. 12), in India and Pakistan respectively.

Band I

Although John Raleigh (Bedford) found little Band I activity during the month prior to January 13, he did find pictures from Holland (PTT-NED-1) on most days between December 15 and 27 and again on January 8. Edwina and Tony Mancini (Belper) noted some early morning and evening activity around Chs. E2 and E4 over a similar period and identified cartoons and skating from Denmark and Sweden and test-cards from Czechoslovakia (RS-KH), West Germany (ARD, SWF/RBG), Holland (PTT-NED-1), Norway (Kongsberg) and Sweden (SVT-Kanal-1). On December 20, Steve Ralph (Sittingbourne) tried out a W84 antenna for Band I and was delighted, at 1130, to find signals from Belgium (RTBF-1) on Ch. E3 and Holland (NED-1) on Ch. E4. However, his highlight came at 1600 when he logged bursts of ice-hockey followed by a nature programme in colour on Ch. R1. Judging by the captions, Steve presumes these pictures were coming from the USSR.

In Poole, Ian Galpin received bursts of pictures on Chs. E2 and E3 from Scandinavia, via meteor scatter (Fig. 1 in Band II DX) at 1300 on November 2 and on several Band I channels during the peak of the Geminid meteor shower on December 12, 13 and 14. “I heard many bursts of European TV carriers on 53.750MHz,” wrote Ian. He explained, “This frequency, Ch. E2 sound and Ch. 1 vision, is also a good check for sporadic-E because it is used for sound transmissions in most of western Europe and for video in Italy. The video carrier has to be at least 59+ 20 on my FT-690 and dipole receiving set up before a picture appears on my dipole fed JVC 3040 TV screen.” Between 1605 and 1642 on December 20, Ian found at least two transmitters on Ch. R1 and saw the caption “REKLAM” intermixed with Hungarian adverts.

In New Radnor, Simon Hamer received “pings” of meteor reflected test-cards from Spain (TVE-1) at 0730 on December 13, Norway (Bagn and Bremanger) at 1230 on the 16th and Iceland (RUV-Island) and Sweden (SVTV-Kanal-1) (Sverige) around 1500 on January 3.

Several unidentified signals and a few glimpses of test-cards from Holland, Norway scribbled Bremanger and Televerket, Poland and Sweden were caught at various times in December by Bob Brooks at his QTH in Great Sutton.

News From India

Lt. Col. Rana Roy noted Sporadic-E disturbances on July 29 and

Short Wave Magazine March 1988
August 5, 9, 14 and 25 when he logged pictures from the USSR including cartoons, a documentary, news with the familiar BPEMR and HOBOCTN identities and sport. During the Sporadic-E events he experienced multiple-signals when station identity was almost impossible on the 5th and 9th and he probably received pictures from Alma Ata in north Afghanistan on the 9th and 25th. “August 9 was definitely the best Sporadic-E we had during the season,” said Rana.

He also observed tropospheric openings on August 18, September 27 and October 12 and reports seeing Breakfast TV from the low power transmitters at Agra, Bhatinda and Kasauli in Band III on the 18th, programmes from Jullundar with interference from the Agra i.p.t., Ch. 9, on the 12th and pictures from the high power transmitters at Amritsar and Jullundar on Chs. 7 and 9 and again the i.p.t.s. at Agra, Bhatinda and Kasauli on Chs. 9, 12 and 6 respectively.

Tropospheric
Early on December 13, Steve Ralph found ARD-1 on Chs. E7, 8 and 10, WDR, showing an episode of Sesame Street, on Chs. E9 and 11 and in the evening he watched sport, followed by the news and the caption “Nachrichten” from DDR-F1 on Ch. E12. “ARD was wiping out RTBF on Ch. E8. The 14th was much about the same with the addition of Canal + on Ch. L6, Luxembourg (RTL+1) on Ch. E7 and NDR-1, Hannover, on Ch. E10,” said Steve. At 1330, he tuned to Ch. E12 and found a programme teaching English on DDR-1. During the opening on the 20th, Steve received pictures from France (TDF-Antenne-2) on the u.h.f. channels L44 and 53, (FR3) on Ch. L29 and 47. Germany (ZDF) on Ch. E45, test-cards from Holland (NED-1 and 2), first naming the transmitter site, “Goes” and later changing to “AVVC-HVS” on Chs. E29 and 32 and a test-card from Luxembourg, scribed “Ecoutez RTL!” on Ch. E27.

Around 2100 on December 22, Ian Galpin logged pictures from Channel + on several spots in Band III. Simon Hamer has a massive haul on v.h.f. and u.h.f. signals from a long list of transmitters in Belgium (BRT TV1 and 2 and RTBF-1), Denmark (DR) south and west and Jutland on Chs. E7 and 10 respectively, Eire (RTÉ-1 and 2), France (TDF Canal+), East and West Germany (DFF-1 and 2 and ARD/WDR-1, NDR-1 and 3, WDR-3 and ZDF), Holland (NED-1, 2 and 3), Luxembourg (RTL+1), news Daggersven from Norway (STORD, BOXN and LYNGDAL on Chs. E5, 8 and 9) and Poland (TVP, Ch. R8) on December 22 and 23. “A fast moving tropo this time,” said Simon. He took about 5 minutes to log all the German stations at lunchtime on the 23rd and added, “Poland and Sweden made a welcome first time appearance for me in Band III and a whole string of West German stations were fighting for predominance on my screen.”

Pictures from Radio Televisi Eireann were received throughout the day on December 23 by Bob Brooks who also logged their clock caption on Ireland’s Ch. H (207.25MHz) in Band III on...
EX-WD COMMUNICATIONS RECEIVERS

We now have stocks of ex ministry receivers checked & serviced in our own workshops

RACAL RA17, & RA17L, 1 to 30MHz. R210 2 to 16MHz.
Ring for prices & stocks.
Test equipment & Components — send for lists
Large SAE please or 20p stamps.
Wanted: WW2 Radio AR11, B2 etc. W.H.Y.

ELECTRONICS
151a BILTON ROAD, RUGBY, WARKS CV22 7AS
Tel: Rugby (0788) 76743, Eve (0788) 71066

S.E.M. UNIT C, UNION MILLS, ISLE OF MAN
Tel: Marown (0624) 851277

S.E.M. VHF CONVERTER
Plugs into any HF receiver aerial socket to give you coverage from 118 to 148MHz. Tune your receiver from 2 to 30 MHz. £49.50. Ex-Stock.

S.E.M. H.F. CONVERTER
Plugs into your scanner aerial socket and converts its range to cover 100kHz to 60MHz. Gives you full LF, MF, HF, VHF, UHF coverage. £49.50 from stock.

VERY WIDE BAND PRE-AMPS.
3MHz to 500MHz, 9dB gain, 15 dB N.F. and unprecedented performance. Basic Pre-Amp £32.00. Switched through when OFF £37 from stock.

QRM ELIMINATOR
A unique design, which has revolutionised interference suppression. Connects in your aerial lead and stops interference before it gets to your receiver. Any sort of QRM, it can be next to your rx (your computer?) or several miles away, 1-5-30MHz. £99.50.

If you require more information on our products, ring or write.
Prices include VAT and delivery.
C.W.O. or CREDIT CARD by phone.

WEATHER FAX/RTTY/NAVTEX: COMPLETE RECEIVE SYSTEM

Gives superbly detailed weather maps, satellite cloud cover printouts, printed weather forecasts, navigation warnings and news bulletins from around the globe.

Includes FAX-1 demodulator, mains power unit, Epson compatible printer, paper, ribbon and all connecting cables. Nothing more to buy. Just connects to receiver loudspeaker output.

Hundreds of FAX-1s already in use world wide by professional and amateur weather forecasters, yachtsmen, aviators and enthusiasts. British designed and manufactured.

IC S ELECTRONICS LTD (DEPT SWM)
P.O. Box 2, Arundel
West Sussex BN18 0NX
Telephone: 024 365 655 (2 lines)
Facsimile: 024 365 575
12 months parts and labour warranty. Price includes VAT at 15%

WEather FAX/RTTY/NAVTEX: COMPLETE RECEIVE SYSTEM

IC S ELECTRONICS LTD (DEPT SWM)
P.O. Box 2, Arundel
West Sussex BN18 0NX
Telephone: 024 365 655 (2 lines)
Facsimile: 024 365 575
12 months parts and labour warranty. Price includes VAT at 15%

IC S ELECTRONICS LTD (DEPT SWM)
P.O. Box 2, Arundel
West Sussex BN18 0NX
Telephone: 024 365 655 (2 lines)
Facsimile: 024 365 575
12 months parts and labour warranty. Price includes VAT at 15%

WEATHER FAX/RTTY/NAVTEX: COMPLETE RECEIVE SYSTEM

IC S ELECTRONICS LTD (DEPT SWM)
P.O. Box 2, Arundel
West Sussex BN18 0NX
Telephone: 024 365 655 (2 lines)
Facsimile: 024 365 575
12 months parts and labour warranty. Price includes VAT at 15%

WEATHER FAX/RTTY/NAVTEX: COMPLETE RECEIVE SYSTEM

IC S ELECTRONICS LTD (DEPT SWM)
P.O. Box 2, Arundel
West Sussex BN18 0NX
Telephone: 024 365 655 (2 lines)
Facsimile: 024 365 575
12 months parts and labour warranty. Price includes VAT at 15%
December 6, 22, 23 and 24 and January 8. "The fall in atmospheric pressure from 1035mmb to 1025mb on the 23rd gave rise to very good pictures being received from Holland and Luxembourg in Band II," wrote John Raleigh. During these events, the Mancinis watched news Tagesschau and the programme Moonlighting on ARD-1, cartoons, a chat-show, forthcoming films and news on Canal +, news Aktuelle Kamera on DFF-1, variety on NED-1, Teletext from RTBF-1 and Logos and test cards from ARD and RTE.

In order to allow for seasonal changes in the state of the ionosphere, an international agreement permits s.w. broadcasters to change their operating schedules four times a year — in March, May, September and November. Some of the s.w. frequencies quoted in this month's LMS can therefore be expected to change soon after publication.

The terms of the agreement require any changes in operating frequency to be made on the first Sunday of those months, but several broadcasters have apparently decided to ignore the agreement. They have changed their operating frequency with little or no warning at other times of the year. From the listeners' point of view, changes of that nature are very undesirable.

DX Report
(Note: l.w. & m.w. frequencies in kHz, s.w. in MHz: Time UTC)

Long Wave DX
The highlight of the month for Howard Newell in Great Missenden was the arrival of a new Matsui MR4098 receiver. Needless to say he has been testing it out on all bands! He compiled his first l.w. log for the chart mainly at night.

One of the new Steepletone MBR7 receivers, as depicted in the December SWM, was used by Darran Taplin in Tunbridge Wells. He says: "The performance of this receiver seems to be very good. I found the built-in direction finder very useful, in fact I managed to log quite a few new stations, one of them was USSR on 200kHz. The signal was very weak, but I managed to identify it!"

Writing from Cardiff, John Bennidge says he has now heard four m.w. stations during daylight, but so far he has only been able to identify positively the ten stations noted in the chart. The contacts on the coil turret of his Vega receiver recently became intermittent and an inspection revealed a mis-alignment between the contacts and the associated spring fingers. He cured the fault by adjusting the position of the index cam on the main shaft, a good tip for other Vega users with similar problems.

The latest report from Paul O'Connor, who is visiting Florida, S. Africa, mentions high static levels caused by local thunderstorms and temperatures of 36°C. One of the recent storms brought down his antenna and a further problem arose when it was restored because the heat of the sun melted the plastics insulation on the wire! The static has so far prevented him from identifying any of the weak carriers below 200kHz which he mentioned in his report last month.

At the time of going to press the second part of the new l.w. band had yet to be implemented, but some of the changes in operating frequency to be expected between 189 and 245kHz are detailed in the chart.

MW Transatlantic DX
Reporting from Walland, David Edwardson says he found the conditions for transatlantic DXing to be generally good during the last month. Using a 1.005m by 0.885m loop in conjunction with an I.F. converter ahead of his Trio R600 receiver, he logged VOCM in St. John's, Newfoundland on the remarkably early time of 11:10, their signal rated as SINPO 23532. He was very surprised to find that their signal was also audible in the morning, noting it as 2332 just before sunrise!

Another broadcast from Newfoundland became audible at 21:15 on 930, this stemmed from CJQJ in St. John's, but their signal had to compete with BRT via Wolvertem, Belgium on 927 until BRT closed down, so David could only rate it as 1251 at that time. Later, their signal improved and by 0425 it was rated as 24442. David has also been hearing WBZ in Boston on 1030 quite regularly from about 2225. A typical rating at that time being 2332. On some occasions their signal has also been audible just before sunrise!

Another station in Boston, namely WHDH on 850 was heard by Tim Shirley in Bristol at 2330. He also picked up WWKB in Buffalo, New York on 1520 at that time, but other signals from the USA were noticeably absent until after midnight. Some of them were noted in the report from Ian Baxter (see chart). He used a Yaesu FRG-7700 receiver with a 20m wire antenna in Blackburn and compiled his list between 0006 and 0032. Encouraged by his initial success at transatlantic DXing last month, Howard Newell started to monitor the band from Walland.

Deadlines are March 15, April 19 and May 10

LONG MEDIUM & SHORT
Brian Oddy G3FEX
Three Corners, Merrifield Way, Storrington, West Sussex RH20 4VS

SSTV
Although Fred Batty has a difficult location among trees in Surrey, he recently added the RX4 program to his Spectrum software and now decodes SSTV signals via his R200 receiver.

Between December 2 and 20, Ray Gilchrist (Millom) received slow scan pictures from stations in Germany, Italy, possibly Japan, Poland, Sweden and Switzerland. Ray saw the JH call sign on a frame but could not be sure if it was direct or from another station taking part in the QSO.

DXers
(A) Ivan Baxter, Blackburn.
(B) David Edwardson, Walland.
(C) Bill Kelly, Belfast.
(D) Howard Newell, Great Missenden.
(E) Tim Shirley, Bristol.
(F) Alan Taylor, Coventry.
(G) Jim Willett, Grimsby.
Dxers
(A) Alan Taylor, Coventry. He borrowed it from his son so that he could compare its performance with his own Realistic DX302 receiver. Alan uses a Cooper Loop when transatlantic DXing, so he made up a ferrite inductor winding 20 turns of 24 s.w.g. enamelled wire around a slab of ferrite material approximating 95 x 12 x 3mm and attached it to the back of the receiver with two strips of selsotape. He then connected it to the loop via a length of coaxial cable. Between 0020 and 0145, Alan logged quite a number of stations (see chart) and compared the two receivers.

Bill Kelly has been testing out a phased loop in Belfast and he found it to be very good - see his results in the chart. During four nights of these tests, he picked up broadcasts in Spanish from RCN in Tijuana, Mexico on 1470 between 0020 and 0045. These included a football commentary and several talks. Their news bulletin in Spanish attracted his attention at 0403 on a fifth night. Bill also heard XEAI in Mexico City on 1560 at 0445, this station has not been mentioned before in this series and is subject to confirmation by OSL. Listening in Gomby, Jim Willett also heard XEABC in Tijuana, Mexico on 1470 at 0315, but he logged his best DX one night at 0250, namely CB138 in Santiago, Chile on 1360.

Note:
Entries marked * were logged during darkness. All other entries were logged during daylight.

Seen & Heard

<table>
<thead>
<tr>
<th>Freq kHz</th>
<th>Station</th>
<th>ILR or BBC</th>
<th>Power in kW</th>
<th>DXer</th>
</tr>
</thead>
<tbody>
<tr>
<td>595</td>
<td>R. Solway</td>
<td>B</td>
<td>97.50</td>
<td>D.E</td>
</tr>
<tr>
<td>603</td>
<td>Invicta Sound</td>
<td>B</td>
<td>0.10</td>
<td>D.E,G,K.L</td>
</tr>
<tr>
<td>630</td>
<td>R. Bedfordshire</td>
<td>B</td>
<td>0.30</td>
<td>B.C,D,E,K,L,M,N</td>
</tr>
<tr>
<td>630</td>
<td>R. Cornwall</td>
<td>B</td>
<td>2.00</td>
<td>E.K</td>
</tr>
<tr>
<td>637</td>
<td>R. David</td>
<td>B</td>
<td>2.00</td>
<td>B.C,E,D,E</td>
</tr>
<tr>
<td>657</td>
<td>R. Cornwall</td>
<td>B</td>
<td>0.50</td>
<td>E</td>
</tr>
<tr>
<td>666</td>
<td>Devon Air R.</td>
<td>B</td>
<td>0.34</td>
<td>E</td>
</tr>
<tr>
<td>666</td>
<td>R. York</td>
<td>B</td>
<td>0.50</td>
<td>A.C,D,E,F</td>
</tr>
<tr>
<td>729</td>
<td>BBC Essex</td>
<td>B</td>
<td>0.10</td>
<td>L.G,*,K.L</td>
</tr>
<tr>
<td>756</td>
<td>R. Cumbria</td>
<td>B</td>
<td>1.00</td>
<td>B,C,E,D,E</td>
</tr>
<tr>
<td>756</td>
<td>R. Shropshire</td>
<td>B</td>
<td>1.00</td>
<td>C,E,D,L,M</td>
</tr>
<tr>
<td>756</td>
<td>BBC Essex</td>
<td>B</td>
<td>0.50</td>
<td>G,*,L,N</td>
</tr>
<tr>
<td>774</td>
<td>R. Kent</td>
<td>B</td>
<td>1.00</td>
<td>E.G,L</td>
</tr>
<tr>
<td>774</td>
<td>R. Leeds</td>
<td>B</td>
<td>1.00</td>
<td>A.C,D,E</td>
</tr>
<tr>
<td>774</td>
<td>Severn Sound</td>
<td>B</td>
<td>0.14</td>
<td>B.D,E</td>
</tr>
<tr>
<td>792</td>
<td>Chilton R.</td>
<td>B</td>
<td>0.27</td>
<td>C,D,E,G,L,N</td>
</tr>
<tr>
<td>792</td>
<td>R. Foyle</td>
<td>B</td>
<td>1.00</td>
<td>E</td>
</tr>
<tr>
<td>801</td>
<td>R. Devon</td>
<td>B</td>
<td>2.00</td>
<td>B,C,D,E,H,M,I</td>
</tr>
<tr>
<td>802</td>
<td>2CR</td>
<td>B</td>
<td>0.27</td>
<td>E</td>
</tr>
<tr>
<td>828</td>
<td>R. WM</td>
<td>B</td>
<td>0.20</td>
<td>C,D,E</td>
</tr>
<tr>
<td>828</td>
<td>R. Aire</td>
<td>B</td>
<td>0.12</td>
<td>C,D,E</td>
</tr>
<tr>
<td>837</td>
<td>R. Cumbria</td>
<td>B</td>
<td>1.00</td>
<td>C,F,I</td>
</tr>
<tr>
<td>837</td>
<td>R. Furness</td>
<td>B</td>
<td>1.00</td>
<td>A*,D,E,J</td>
</tr>
<tr>
<td>837</td>
<td>R. Leicester</td>
<td>B</td>
<td>0.25</td>
<td>C,E,F,G,H,I,L,N,O</td>
</tr>
<tr>
<td>855</td>
<td>R. Devon</td>
<td>B</td>
<td>1.00</td>
<td>E.G,L</td>
</tr>
<tr>
<td>855</td>
<td>R. Norfolk</td>
<td>B</td>
<td>1.00</td>
<td>E,G,L</td>
</tr>
<tr>
<td>873</td>
<td>R. Lancashire</td>
<td>B</td>
<td>1.00</td>
<td>C,D,E</td>
</tr>
<tr>
<td>873</td>
<td>R. Norfolk</td>
<td>B</td>
<td>0.25</td>
<td>C,E,F,G,H,I,L,N,O</td>
</tr>
<tr>
<td>900</td>
<td>R. Aberdeen</td>
<td>B</td>
<td>1.00</td>
<td>E,G,H,I,L</td>
</tr>
<tr>
<td>936</td>
<td>GWR</td>
<td>B</td>
<td>0.15</td>
<td>B.D,E,L</td>
</tr>
<tr>
<td>945</td>
<td>R. Trent</td>
<td>B</td>
<td>0.32</td>
<td>E,K,L,M</td>
</tr>
<tr>
<td>954</td>
<td>Devonair</td>
<td>B</td>
<td>0.32</td>
<td>E,K</td>
</tr>
<tr>
<td>954</td>
<td>R. Weymouth</td>
<td>B</td>
<td>0.32</td>
<td>E,K,L,M</td>
</tr>
<tr>
<td>990</td>
<td>R. Devon</td>
<td>B</td>
<td>1.00</td>
<td>E</td>
</tr>
<tr>
<td>990</td>
<td>Beacon R.</td>
<td>B</td>
<td>0.09</td>
<td>C,D,E</td>
</tr>
<tr>
<td>990</td>
<td>Hallam R.</td>
<td>B</td>
<td>0.25</td>
<td>C,D,E</td>
</tr>
<tr>
<td>999</td>
<td>Red Rose R.</td>
<td>B</td>
<td>0.09</td>
<td>C,D,E</td>
</tr>
<tr>
<td>999</td>
<td>R. Solent</td>
<td>B</td>
<td>1.00</td>
<td>B,E,G,L,N</td>
</tr>
<tr>
<td>999</td>
<td>R. Trent</td>
<td>B</td>
<td>0.25</td>
<td>E</td>
</tr>
<tr>
<td>1026</td>
<td>R. Cambridge</td>
<td>B</td>
<td>0.50</td>
<td>C,E,L,N</td>
</tr>
<tr>
<td>1026</td>
<td>Downham R.</td>
<td>B</td>
<td>1.00</td>
<td>D,E,*,I</td>
</tr>
<tr>
<td>1026</td>
<td>R. Jersey</td>
<td>B</td>
<td>1.00</td>
<td>E</td>
</tr>
<tr>
<td>1035</td>
<td>R. Kent</td>
<td>B</td>
<td>1.00</td>
<td>E,G,L</td>
</tr>
<tr>
<td>1035</td>
<td>North Sound R.</td>
<td>B</td>
<td>0.78</td>
<td>E,I</td>
</tr>
<tr>
<td>1035</td>
<td>R. Sheffield</td>
<td>B</td>
<td>1.00</td>
<td>C,E,D,E,F,G,H,I,L</td>
</tr>
<tr>
<td>1035</td>
<td>West Sound</td>
<td>B</td>
<td>0.32</td>
<td>E,G,H,I,L</td>
</tr>
<tr>
<td>1107</td>
<td>Moray Firth R.</td>
<td>B</td>
<td>1.50</td>
<td>E,I</td>
</tr>
<tr>
<td>1107</td>
<td>R. Northampton</td>
<td>B</td>
<td>0.50</td>
<td>E,L,N</td>
</tr>
<tr>
<td>1116</td>
<td>R. Guernsey</td>
<td>B</td>
<td>0.50</td>
<td>M</td>
</tr>
<tr>
<td>1152</td>
<td>BBMB</td>
<td>B</td>
<td>3.00</td>
<td>E</td>
</tr>
<tr>
<td>1152</td>
<td>R. Broadland</td>
<td>B</td>
<td>0.83</td>
<td>E,O</td>
</tr>
<tr>
<td>1152</td>
<td>Elmdale</td>
<td>B</td>
<td>3.60</td>
<td>E,O</td>
</tr>
<tr>
<td>1152</td>
<td>LBC</td>
<td>B</td>
<td>23.50</td>
<td>E,G,N</td>
</tr>
<tr>
<td>1152</td>
<td>Metro R.</td>
<td>B</td>
<td>1.80</td>
<td>E,D,E</td>
</tr>
<tr>
<td>1152</td>
<td>Piccadilly R.</td>
<td>B</td>
<td>1.50</td>
<td>C,D,E</td>
</tr>
<tr>
<td>1152</td>
<td>R. Plymouth Sound</td>
<td>B</td>
<td>0.08</td>
<td>E,L,M</td>
</tr>
<tr>
<td>1161</td>
<td>R. Bedfordshire</td>
<td>B</td>
<td>0.08</td>
<td>E,L,M</td>
</tr>
<tr>
<td>1161</td>
<td>GWR</td>
<td>B</td>
<td>0.16</td>
<td>B,E</td>
</tr>
</tbody>
</table>

Chart

- **DXers**
- **Wave Magazine**
- **Short Wave Magazine**
- **March 1986**

DXer:
- (D) David Hackwell, Warrington.
- (E) Simon Hames, New Radnor.
- (F) Paul Hawkey, Newcastle-on-Tyne.
- (G) Sheila Hughes, Morden.
- (H) Bill Kelly, Belfast.
- (I) David Middlemiss, Ely.
- (J) George Millmore, Wootton, IoW.
- (K) John Nash, Brighton.
- (L) Howard Newell, G. M.essenden.
- (M) Tim Shirley, Bristol.
- (N) Darren Taplin, Tunbridge Wells.
- (O) Robert Taylor, Edinburgh.
Entries marked * logged during darkness.
All other entries were logged during daylight.

DXers
(A) John Beridge, Cardiff.
(B) Colin Diffell, Chesham.
(C) David Hackwell, Warrington.
(D) Davy Hossack, West Lothian.

Other MW DX
Listening at all hours of the night, Bill Kelly logged Titovo Usje, Yugoslavia 531 at 0655; Leningrad, USSR 549 at 0030; Marseille, France 675 at 0530; Nancy, France 837 at 0705; Algeria, 891 at 0100; Milano Italy 900 at 0300; Lvov, Ukraine 936 at 0035; AFN via Munchen, W. Germany 1107 at 0255; Tanger, Morocco 1233 at 2335; Dublin, Co. Dublin 1204 at 0755; Monte-Carlo, Monaco 1467 at 0620; UAE Radio, Dubai 1481 at 0025; Sochi, USSR 1512 at 0445; Vatican Radio, Rome 1530 at 0110; Kaunas, USSR 1557 at 0502 and Leningrad, USSR 1566 at 0230.

Darran Taplin has also been putting his new receiver through its paces this week. Several of the more distant stations were Tavarnik, Yugoslavia 1125 at 2131; Biograd, Yugoslavia 1134 at 2130; Rome Italy 1332 at 2145; Leningrad, USSR 1494 at 2216 and Radio Tirana in Lushnje, Albania 1395 at 1830. Between 2045 and 2300 he picked up some stations in Spain namely Madrid 585; La Coruna 639; Sevilla 684; Oviedo 729; Barcelona 738 and Murcia 855.

Member of the stations in East Germany (E) and West Germany (W) were logged by DXers including Nordkirchen (W) 549 logged after dark by Robert Taylor (E) Howard Newell, Gr. Middlesbrough.
(F) Philip Rambaut, Maclesfield.
(G) Tim Shirley, Bristol.
(H) Darran Taplin, Tunbridge Wells.
(I) Jim Willett, Grimsby.

in Edinburgh; Neubrandenburg (E) 657 at 1644; Braunschweig (W) 756 at 1851 and Burg (E) 783 at 0030, all noted by Paul Hawkyard in Newcastle-upon-Tyne, AFN Frankfurt (W) 873 at 1901, R. Bremen (W) 936 at 1844, AFN Munich (W) 1107 at 2124, AFN Stuttgart (W) 1143 at 2155, Neumuster (W) 1269 at 1915, all logged by Darran Taplin; RFI Berlin (E) 1360 at 2315, heard by Bill Stewart in Glasgow and DLF London 1361 at 1348, all logged by Glen Glen-Davison in Newcastle-upon-Tyne at 1124.

Using a Racal RA17 receiver with a random wire antenna in Wootton on the Isle of Wight, George Milmores heard several more E/W German stations namely Frankfurt (W) 594, Munich-Ismaning (W) 801, Mainz (W) 972, Burg (W) 1044 and Landenberg (W) 1593, all were logged between 1500 and 1700.

Listening in Brighton during daylight, John Nash has been hearing BBC Radio Ulster via Lisnagarey, N. Ireland on 1341 and rated their signal as SINPO 4534 and at 0840 he also logged two of the official stations in S. Ireland, namely RTE-1 via Talliumore on 527 and 55455 at 1150 and RTE-2 via Athone on 61 – 43444 at 1420.

Although the multi-lingual BBC broadcasts via Orfordness on 648 are mainly intended for listeners abroad, they also appeal to some listeners in the UK. Alan Currie finds their Sports Roundup of interest and he quotes their signal in Stockton-on-Tees as 43444 at 0939, but reception during daylight is far from good, in many areas of the UK. Paul Hawkyard checked their signal in Newcastle at 1630 and could only rate it as SOI 1 and in some areas it is insurmountable during daylight. It is a pity that the antenna system used at the transmitter site is so directional. Most of the reports I have received suggest that the signal is a good deal better after dark in many areas of the UK.

Writing from Forfar, Stewart Russell says he enjoys listening to the programmes broadcast in the evening by RSI via Solvesborg, Sweden on 1179 and by BRT via Wolwertem, Belgium on 1512. Eileen and Wyn Mainwaring also listen to the programmes from BRT on a daily basis in Cowes, IOW, but Wyn says reception there is often noisy. Eileen’s Hacker portable receiver is usually given to the task of pulling in many of the other m.w. signals, but Wyn says he intends to construct a m.w. ferrite rod antenna soon so that his Low FRE 725 receiver can be used more extensively on this band.

The report from David Meddlem in Eyemouth was interesting because he logged two stations which are seldom heard in the UK during daytime, namely Marzo Radio, Isle of Man on 1368 at 1445 and RTE-2 via their 10kW transmitter in Dublin on 1278 at 1515. His best DX at night was radio Tirana via Lushnje, Albania on 1395, broadcasting a news bulletin in English at 1900. The broadcast from Marzo Radio reach many areas of the UK at night via the sky wave path, Robert Taylor logged them in Edinburgh as SOI 444.

There were two m.w. reports from overseas listeners this time. It was nice to hear for the first time from P. Guruprasad in Mopolelo, Botswana, which is about 60km North of Gaborone. He says he listened to SABC Radio Lotus via Maraisburg, N. Johanneson on 648 between 1830 and 1930 and as a result of that he has become interested in m.w. DXing. He uses a Philips D-7243 receiver and noted their signal as 14332.

A reader from a regular contributor, namely George Efstratiades in Thassaloniki, Greece. He uses a Philips D-2225 receiver to log the BBC World Service via Zygi, Cyprus on 1323 at 2200 and rated their signal as SINPO 33333. He added another station to his growing list of m.w. DX at 2230 one night, when he picked up Radio Vilnius in Lithuania, USSR on 666, their signal was 23222.

MW Local Radio DX
Loop antennas are popular with many local radio DXers because the sharpness in their “figure of eight” response may be used to eliminate or “null-out” unwanted signals. Using a “Sooper Loop” ahead of his Grundig 1400SSL receiver, Tim Phillips has added a few more stations to his growing DX list in New Road.

Bill Eyre spent a good deal of time searching the band and he compiled an extensive list for the chart, he now thinks it will be difficult to log many more stations during daylight. Apparently DXing in night in Stockport is made almost impossible by the numerous pirate radio stations in S. Ireland which occupy many of the frequencies allocated to UK local radio stations, it seems that Bill cannot null them out despite the use of a “Sooper Loop”.

Because of his location on the Isle of Wight, George Milmores says that unwanted Continental stations come in via the “back door” of his loop during the day when it is peaked on a desired UK local radio station, so he intends to carry out some experiments with a view to making his loop unidirectional. No doubt this kind of problem occurs in other areas of the UK too and one possible solution may be to add a “sense” antenna to the loop, so that a
SONY PRO 80

Now in stock — the Sony PRO 80 — as reviewed in this issue.

This fantastic receiver is supplied complete with carry case, shoulder strap, earphone, antenna, antenna adapter and frequency converter for just £329 (inc. VAT and Securicor delivery if required).

P.S. We have found that our ARA active antennas perfectly complement this incredible receiver.

THE HAMGEAR PMX PRESELECTOR

Our well-known HF band ATU and RF preamplifier combined, designed by an SWL with SWL requirements in mind, covering 1.7 to 34MHz. The ATU will tune those odd lengths of wire to any frequency, allowing antenna experiments to maximise reception at your QTH. At the same time it amplifies the signal with its 3-stage preamp, so that if your RX drops off above 10MHz it can be improved with a better signal to noise ratio. Of course, there are some bands where after dark one needs an attenuator; we have thought of that too — the gain control at its maximum will give 20dBs gain whilst at its minimum becomes an attenuator with 15dBs attenuation; between the two extremes is zero gain position. Finally because only the band required is peaked superhet image rejection is improved.

The PMX can be supplied unpowered (you supply 12vDC) or mains powered. It can also be supplied with a built-in 10kHz calibrator — if you haven’t got a digital dial this is the next best thing to spot check those DX stations.

Prices are:

Unpowered PMX .. £69.00

Mains powered PMX £79.00

Mains powered PMX with calibrator £97.00

All prices include postage and packing.

Send for 4-page information on this PMX series.

RX-4 MULTIMODE RECEIVE RTTY / CW / SSTV / AMTOR

This is the ultimate in software for the SWL. Just one program to receive all four modes, switching from one to the other at a single keystroke. Extremely user-friendly, RX-4 has the facilities and performance you need to catch all the action on the bands as soon as you hear it.

When you see the features it’s easy to see why RX-4 is today’s best-selling receive software. RTTY and AMTOR tuning scale makes tuning-in very quick and easy. Four RTTY baud rates, any shift, normal or reverse, with selectable unsighl-on-space.

CW software filters and controllable autotrack for maximum performance up to 250 wpm. On-screen indicator lets you set the level and tuning with a minimum of fuss.

SSTV has selectable scan rates in both directions and two modes of picture storage for maximum use of memory.

Text and pictures can be stored, recalled to the screen and dumped to a printer as well as being saved to tape or disc.

Please note that the AMTOR section only receives ARQ mode (mode A) but this is the most common mode and covers a lot of commercial TOR stations, also.

Previously, people have paid over £30 for separate RTTY, CW and SSTV programs which do not have the performance, facilities and convenience of RX-4. We are offering this amazing software for the low price of only £25 on tape, £27 on BBC or CBM64 disc.

BBC-B, CBM64 and VIC20 need our TIF1 interface. This has isolation between computer and radio to reduce computer noise and switchable filters, giving much improved copy. Kit £15 assembled PCB + cables and connectorial or ready-made, boxed with all connections £25. For SPECTRUM we have two versions. One needs no hardware at all, the other uses the TIF1 via an interface adapter board SIA-1 for improved performance. Tape + SIA-1 £40. Both versions are available on + 3 disc at £2 extra.

Same day dispatch by First Class Post, Airmail Overseas. Prices include p&p and VAT, where applicable.

technical software (SWM)

Fron, Upper Llandroog, Caernarfon LL54 7RF. Tel: 0286 818861
cardioid (heart shaped) pattern is produced.

Writing from Zandvoort, Holland Ed Wieringa has been unable to log IR Lennonga Radio on 1278 due to the strong signals from Strasbourg, France and RTE-2 via Dublin or Cork on that frequency.

QSL's were mentioned in several of the reports, John Nash received QSL's from BBC Radio Bedfordshire via Luton 630; Essex via Manningtree 729; Leicester via Hinckley 875; Common 837 and Nottingham via Clipstone 1584 during the month, but he is still awaiting a QSL from BBC Radio Cornwall to confirm his reception on 1200. QSL's from five BBC stations were received by Tim Shirley, namely Bedfordshire via Luton 630, Shropshire via Shrewsbury 711; Guernsey 1116, Oxford 1485 and London via Brookman's Park 1458.

It was nice to hear from Ian Wilkins in Lympham for the first time this month. He would like to see the location of some of the more obscure IR radio stations, e.g. Invicta Sound, quoted in LMS and the transmitter power mentioned too.

Short Wave DX

As we steadily climb the upward slope of the present solar sunspot cycle, the 25MHz (11m) band can be expected to improve during the next few years and eventually they will offer unrivalled global reception as we approach the peak.

Although Radio Nederlands established a temporary link on 25.970 to their relay station in Madagascar while their satellite link was undergoing repairs towards the end of last year, so far only Radio Norway International in Oslo have thought it prudent to establish a regular broadcast service. Their transmitting station in Fredrikstad, SE Norway beams their programmes in Norwegian, English and Spanish to S. Africa on 25.7300 between 1200 and 1345.

In his latest report from Johannesburg, S. Africa, Simon Illingworth says that the broadcast from RNI usually reach him at SINPO 45444. Apparently a regular type of fading occurs on their signal at times, but it does not seriously affect reception. Perhaps some of the other broadcasters will soon decide to follow the example set by RNI and make use of this band to reach their listeners.

Listening in Great Yarmouth, Ted Walden-Vincent picked up the broadcasts from RNI at 1300. They have also been received in other areas of the UK too, but reception here is generally poor, a typical rating of 244 saw was noted by David Edwordson. Their signal has also been reaching Ed Wieringa in Holland, but he says it is weak and suffers from fading.

In contrast to the 11m band, a number of broadcasters use the 21MHz (13m) band to reach listeners in several continents. The reception conditions have been generally quite good during daylight, but the band closes a few hours after sunset in the UK.

An interesting broadcast may be heard between 0700 and 0830. This stems from Radio Japan in Tokyo and it is in English and Arabic. It is mainly for listeners in Europe via Miyabi Gabon on 21.695. Kenneth Reace logged their signal in Preston as SINPO 23333 at 0740.

This band is perhaps the best one to choose if you intend to listen to the broadcasts from Radio RSA in Johannesburg, S. Africa during the day. They are beamed towards W. Africa and Europe on 21.590 and their programmes in English may be heard at 0700 and from 1200 on.

Peter Hall listened to several of their broadcasts in Chichester during the month and he found their signal to be a very consistent QSO around 1400 on the UK.

The broadcasts from UAE Radio Dubai on 21.605 are also beamed towards Europe and reach the UK quite well. Their programmes are mainly in Arabic, but a news bulletin in English may be heard at 1030. This is followed by a report on the weather in Dubai. A well presented cultural series in English then follows until 1055. A further transmission in English may be heard between 1330 and 1535.

Kenneth Buck is a regular listener to their programmes and he logged their signal in Edinburgh as SIO 454.

During the day there are a number of broadcasts to other areas, but they may also be audible on certain occasions. Swedish/French/English to S. Asia 10100 is particularly strong and was rated as 24343 by Kenneth Reece at 0858; RSI Stockholm, Sweden 21.690 (Swedish/French/English to Middle East 1000-1130); RFI Berlin via Nauen, Germany 2125 (Hindi/English to S. Asia 1145-1445); BBC via Daventry, UK (World Service to E. Africa 1100-1345), all logged by Howard Newell.

Two of the religious broadcasters in the USA may be heard in the UK during the afternoon, namely WHRI in South Bend, USA beaming towards Europe on 21.640. Leslie Hollis rated their signal in Grantham as 45533 at 1530 and WYFY via Kecskemeth, Florida 21.525 (English/Arabic/French; Portuguese to W. Africa 1600-1945) was logged by David Midlemess at 1615.

In his report from Johannesburg, Simon Illingworth says the reception conditions on the higher frequency bands have improved and the BBC World Service broadcasts via Rampisham, Dorset on 21.710 reach him very well from 1100 until 1515.

There has been a noticeable improvement in the reception conditions on the 7MHz (11m) band in the UK, especially during the early morning on long distance routes. At times, the broadcasts from Radio Australia via Darwin to E. Asia on 17.715. It is possible to hear this via the short path. Although their transmissions extend from 0100 until 0730, daily monitoring in Torquay from George Hewlett on behalf of Telecom Australia reveals that they are audible until about 0700.

There were many broadcasts mentioned in the reports, those logged during the morning stemmed from Radio DW Cologne via Wurtenthal, W. Germany 17.845. (German to S. E. Asia 0600-1355), rated as 33433 at 0907 by Darran Taplin; UAE Radio Dubai 17.865 (Arabic/English to Europe 0615-1645), noted as SIO 513 at 1030 by Kenneth Buck; BBC via Limassol, Cyprus 17.885 (World Service to E. Africa 0500-1400), rated as 33532 at 1115; Radio Pakistan, Islamabad 17.660 (Urdu/English to Europe 0715-1120), their dictation news bulletin in English at 1105 was rated as 45444 at 1105 by Leslie Hollis; Radio Budapest, Hungary 17.710 (Hungarian/English to Australia 1000-1055) and Radio Neder- lands via Flervo, Holland 17.605 (English to Middle East 1130-1235) were logged by Howard Newell.

At 1210 Howard heard Radio HCJB Quito, Ecuador 17.790 (English to N. America 1200-1600). At 1240 Leslie Hollis picked up Radio Cairo, Egypt 17.675 (English/Bengali to S. Asia 1215-1430) and noted 44533 in his log. Listening in London, Peter Vlietinck heard Radio Prague, Czechoslovakia 17.705 (English/Czech to W. Africa 1430-1625) and Vatican Radio, Rome 17.730 (French/English to E. Africa 1530-1600). Russian, Ukrainian, French, English, Polish and German are the languages used by RCI in Montreal, Canada during their broadcast to Europe from 1430 until 1800 and Darran Taplin rated their signal as 44444 at 1600.

In Macclesfield, Philip Rambaut logged radio RSA Johannesburg, S. Africa on 1278 and from 1505 (English to Middle East 1300-1556) and at 1635 he picked up a seldom mentioned station, namely KVOH in Van Nuys, California 17.775 (Spanish/English to C. America 1500-2359) and noted SIO 222 in his log. Using a Philips D-2935 portable with just the built-in whip antenna in Manchester, Michael Hirst listened to the programmes from WYFR via Okeechobee, Florida 17.750 (English/German to Europe 1600-1745), he rated their signal as 333 at 1616.

During the evening Howard Newell logged VOA via Bethany, Ohio 17.800 at 1820 (English to W. Africa 1800-2200); Radio HCJB Quito, Ecuador 17.790 at 1900, with programmes in Czech, German, English, Norwegian, French and Spanish to Europe 1800-2230, also Radio Surinam International via RNB, Brazil 17.835 at 1715 (Dutch/English to Europe 1700-1745). Listening in Cornwall 12046, Colin Duffin heard Radio Nederlands via Bonaire, Ned. Antilles 17.605 broadcasting in Arabic, English, French and Dutch to W. Africa from 1320 until 2125.

The reception conditions prevailing on the 15MHz (19m) band have also improved. The broadcasts from Radio Australia to the S. Pacific area via Shiparton on 15.240 (2100-0730) have been reaching the UK some mornings. George Hewlett rated them as SIO 434 around 0430, fading to 332 by 0645.

FBCB International "The Sound Alternative"

QSL card confirming John Nash's reception of FBCB Manila on 11.850MHz 6 September 1987.

Short Wave Magazine March 1988
<table>
<thead>
<tr>
<th>Freq MHz</th>
<th>Station</th>
<th>Country</th>
<th>UTC</th>
<th>DXer</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.310</td>
<td>ABC Alice Springs</td>
<td>Australia</td>
<td>2030</td>
<td>T</td>
</tr>
<tr>
<td>2.360</td>
<td>R.Maya do Barreiras</td>
<td>Brazil</td>
<td>0035</td>
<td>Y</td>
</tr>
<tr>
<td>2.380</td>
<td>RBS</td>
<td>Fiskalnd</td>
<td>0630</td>
<td>T</td>
</tr>
<tr>
<td>2.420</td>
<td>R.Santo Carlos</td>
<td>Brazil</td>
<td>0030</td>
<td>Y</td>
</tr>
<tr>
<td>2.440</td>
<td>Vos. 1 Fuzhou</td>
<td>China</td>
<td>1500</td>
<td>T</td>
</tr>
<tr>
<td>3.200</td>
<td>Vos. 1 Fuzhou</td>
<td>China</td>
<td>0030</td>
<td>Y</td>
</tr>
<tr>
<td>3.205</td>
<td>AIR Lucknow</td>
<td>India</td>
<td>0010</td>
<td>T</td>
</tr>
<tr>
<td>3.210</td>
<td>R.Mozambique</td>
<td>Mozambique</td>
<td>1430</td>
<td>N</td>
</tr>
<tr>
<td>3.215</td>
<td>AIR Zimbabwe</td>
<td>Zimbabwe</td>
<td>0215</td>
<td>J,N,Y</td>
</tr>
<tr>
<td>3.220</td>
<td>R.Togo, Lome</td>
<td>Togo</td>
<td>0650</td>
<td>T</td>
</tr>
<tr>
<td>3.230</td>
<td>ELWA Monrovia</td>
<td>Liberia</td>
<td>0640</td>
<td>S</td>
</tr>
<tr>
<td>3.235</td>
<td>R.Nepal</td>
<td>Kathmandu</td>
<td>1530</td>
<td>Y</td>
</tr>
<tr>
<td>3.235</td>
<td>R.EI Sol Los Andes</td>
<td>Peru</td>
<td>0200</td>
<td>T</td>
</tr>
<tr>
<td>3.245</td>
<td>R.Clube Varginha</td>
<td>Brazil</td>
<td>2135</td>
<td>T</td>
</tr>
<tr>
<td>3.255</td>
<td>Voz de E Tegre</td>
<td>Mozambique</td>
<td>0145</td>
<td>T</td>
</tr>
<tr>
<td>3.260</td>
<td>PBS Guihou Guiyang</td>
<td>China</td>
<td>2345</td>
<td>E</td>
</tr>
<tr>
<td>3.270</td>
<td>SWABC 1</td>
<td>Namibia</td>
<td>0306</td>
<td>A,E,R</td>
</tr>
<tr>
<td>3.280</td>
<td>R.Huri Pyaucho</td>
<td>Peru</td>
<td>0215</td>
<td>T</td>
</tr>
<tr>
<td>3.320</td>
<td>R.Sud Africa</td>
<td>South Africa</td>
<td>0303</td>
<td>E</td>
</tr>
<tr>
<td>3.325</td>
<td>FRCN Lagos</td>
<td>Nigeria</td>
<td>2257</td>
<td>A</td>
</tr>
<tr>
<td>3.340</td>
<td>R.Aitara</td>
<td>Peru</td>
<td>0425</td>
<td>A</td>
</tr>
<tr>
<td>3.365</td>
<td>AIR New Delhi</td>
<td>India</td>
<td>1630</td>
<td>J</td>
</tr>
<tr>
<td>3.365</td>
<td>AIR Calcutta 2</td>
<td>India</td>
<td>2250</td>
<td>A,B,C,R</td>
</tr>
<tr>
<td>3.370</td>
<td>R.Badghad</td>
<td>Iraq</td>
<td>1956</td>
<td>E</td>
</tr>
<tr>
<td>3.380</td>
<td>R.Iris Esmeraldas</td>
<td>Ecuador</td>
<td>0350</td>
<td>J</td>
</tr>
<tr>
<td>3.905</td>
<td>AIR Delhi</td>
<td>India</td>
<td>1555</td>
<td>E,R</td>
</tr>
<tr>
<td>3.905</td>
<td>R.Capital</td>
<td>Singapore</td>
<td>2344</td>
<td>E,G,J,Y,Z</td>
</tr>
<tr>
<td>3.930</td>
<td>PBS Qinghai Xining</td>
<td>China</td>
<td>2355</td>
<td>E</td>
</tr>
<tr>
<td>3.950</td>
<td>BBC Daventury</td>
<td>England</td>
<td>1850</td>
<td>D,M,S,V,Z</td>
</tr>
<tr>
<td>3.955</td>
<td>DW Cologne</td>
<td>Germany</td>
<td>1930</td>
<td>D,G,M,Z</td>
</tr>
<tr>
<td>4.040</td>
<td>MOSC</td>
<td>USSR</td>
<td>1800</td>
<td>W</td>
</tr>
<tr>
<td>4.050</td>
<td>R.Frunze</td>
<td>Minsk</td>
<td>1540</td>
<td>P</td>
</tr>
<tr>
<td>4.060</td>
<td>PBS Kharkov</td>
<td>Kharkov</td>
<td>2259</td>
<td>C,J,R,Z</td>
</tr>
<tr>
<td>4.120</td>
<td>Xingjia</td>
<td>China</td>
<td>2230</td>
<td>A,E,Y</td>
</tr>
<tr>
<td>4.440</td>
<td>R.Santa Rosa</td>
<td>Bolivia</td>
<td>0230</td>
<td>T</td>
</tr>
<tr>
<td>4.450</td>
<td>RAF</td>
<td>Germany</td>
<td>2313</td>
<td>A</td>
</tr>
<tr>
<td>4.450</td>
<td>MOSC</td>
<td>USSR</td>
<td>0715</td>
<td>S</td>
</tr>
<tr>
<td>4.500</td>
<td>Kamyani Mansiyak</td>
<td>China</td>
<td>1535</td>
<td>E,P</td>
</tr>
<tr>
<td>4.635</td>
<td>R.Dushaneb, Tadzhik</td>
<td>Tajikistan</td>
<td>0103</td>
<td>E</td>
</tr>
<tr>
<td>4.560</td>
<td>R.Santa Ana</td>
<td>Bolivia</td>
<td>2320</td>
<td>A</td>
</tr>
<tr>
<td>4.725</td>
<td>RBG</td>
<td>Russia</td>
<td>1535</td>
<td>E,P</td>
</tr>
<tr>
<td>4.725</td>
<td>Xinjiang</td>
<td>China</td>
<td>2320</td>
<td>A,E,K,P</td>
</tr>
<tr>
<td>4.740</td>
<td>RAF</td>
<td>Germany</td>
<td>0745</td>
<td>A</td>
</tr>
<tr>
<td>4.750</td>
<td>R.Bortoua</td>
<td>Cameroon</td>
<td>2300</td>
<td>O</td>
</tr>
<tr>
<td>4.755</td>
<td>PBS Xizang</td>
<td>China</td>
<td>0030</td>
<td>T</td>
</tr>
<tr>
<td>4.755</td>
<td>R.Huania 2000</td>
<td>Peru</td>
<td>0436</td>
<td>T</td>
</tr>
<tr>
<td>4.755</td>
<td>PBS</td>
<td>Russia</td>
<td>0436</td>
<td>T</td>
</tr>
<tr>
<td>4.760</td>
<td>RAF</td>
<td>China</td>
<td>0800</td>
<td>E,M,S</td>
</tr>
<tr>
<td>4.760</td>
<td>RAF</td>
<td>Libya</td>
<td>0800</td>
<td>E,H,M,S</td>
</tr>
<tr>
<td>4.765</td>
<td>RAF</td>
<td>Ghana</td>
<td>1900</td>
<td>C,H,L,U,W,Y</td>
</tr>
<tr>
<td>4.765</td>
<td>MOSC</td>
<td>Russia</td>
<td>0200</td>
<td>E,M</td>
</tr>
<tr>
<td>4.780</td>
<td>V.Carsobolo</td>
<td>Venezuela</td>
<td>0052</td>
<td>E</td>
</tr>
<tr>
<td>4.785</td>
<td>R.Baku</td>
<td>USSR</td>
<td>2020</td>
<td>L,Y</td>
</tr>
<tr>
<td>4.785</td>
<td>RTM Barkamo</td>
<td>Mali</td>
<td>2230</td>
<td>A,E,H,M,O,S,Y,Z</td>
</tr>
<tr>
<td>4.790</td>
<td>R.Jalalpur</td>
<td>Pakistan</td>
<td>0445</td>
<td>A</td>
</tr>
<tr>
<td>4.790</td>
<td>R.Azad Kashmir</td>
<td>Pakistan</td>
<td>1930</td>
<td>Y</td>
</tr>
<tr>
<td>4.795</td>
<td>MOSC</td>
<td>Russia</td>
<td>2237</td>
<td>R,Z</td>
</tr>
<tr>
<td>4.800</td>
<td>AIR Hyderabad</td>
<td>India</td>
<td>0045</td>
<td>J</td>
</tr>
<tr>
<td>4.800</td>
<td>LNBS Lesotho</td>
<td>Lesotho</td>
<td>1930</td>
<td>E,O,R,Y</td>
</tr>
<tr>
<td>4.805</td>
<td>R.Nac Amazonas</td>
<td>Brazil</td>
<td>2340</td>
<td>A,E</td>
</tr>
<tr>
<td>4.810</td>
<td>RSA</td>
<td>South Africa</td>
<td>1915</td>
<td>O</td>
</tr>
<tr>
<td>4.810</td>
<td>MOSC</td>
<td>Russia</td>
<td>2270</td>
<td>V</td>
</tr>
<tr>
<td>4.810</td>
<td>Y.Yerevan</td>
<td>Armenia</td>
<td>2050</td>
<td>O,R,S</td>
</tr>
<tr>
<td>4.815</td>
<td>R.Ripple</td>
<td>Russia</td>
<td>1310</td>
<td>A,S,O,Y,Z</td>
</tr>
<tr>
<td>4.815</td>
<td>RTF TV Burka</td>
<td>Burkina Faso</td>
<td>2055</td>
<td>N,O,Y</td>
</tr>
<tr>
<td>4.815</td>
<td>R.Botswana</td>
<td>Botswana</td>
<td>2055</td>
<td>N,O,Y</td>
</tr>
<tr>
<td>4.820</td>
<td>R.lBotswana</td>
<td>Botswana</td>
<td>1830</td>
<td>B</td>
</tr>
<tr>
<td>4.830</td>
<td>Khanyi Mansiyak</td>
<td>South Africa</td>
<td>0553</td>
<td>E,S</td>
</tr>
<tr>
<td>4.825</td>
<td>Vo f Selva</td>
<td>Brazil</td>
<td>0535</td>
<td>S</td>
</tr>
</tbody>
</table>

DXers

(A)	Ian Baxter, Blackburn.
(B)	Jean-Yves Camus, Crestel, France.
(C)	Alan Curry, Stockton-on-Tees.
(D)	Colin Duffett, Corsham.
(E)	David Edwardson, Walsend.

Short Wave Magazine March 1986

45
The programmes in Arabic and English from UAE Radio Dubai 15.435 are also being heard in N. America (0200-0400), SE Asia (0415-0600) and Europe (0615-1515). At his listening post in Wallsend (Fig. 1), David Edwardson rated their signal as 34544 at 0340.

Although VOIRI Tehran, Iran 15.080 broadcast to Europe from 0530 until 1500 their programmes are in Spanish, French and Farsi, Davy Hossack logged them at 0705. The Voice of Nigeria, Lagos 15.120 was logged as 34232 at 0830 by John Nash.

Listening in Northwich, John Parry logged Riyadh, Saudi Arabia 15.060 as 45554 at 1530 (Arabic to N. Africa 1100-1700); WYFR via Okeehobe, Florida 15.440 (English/German/French to Europe 1600-1845) – 34553 at 1610; VOA via Monrovia, Liberia 15.475 (0530 to C. Africa 1600-2200) – 44554 at 1610. The broadcast to Europe in eight languages from RCI Montreal, Canada may be heard on 15.325 between 1430 and 2200. Graham Johnson rated them as 45444 in Nuneaton at 1756.

Writing from Evesham, Edward Broadsmoth says he has been hearing the broadcasts to Europe from WCN in Boston on 15.280 very clearly at 1700. Ron Pearce has also been hearing them on his single 955 Acorn valve receiver in Bungay. He picked up two more stations in the USA, WYFR via Okeehobe, Florida 15.170 at 1700 (English to C. America 1300-2245) and WRNO in New Orleans 15.420 at 1800 (English/French to Europe and N. Africa 1800-2200). Arthur Bolton has also been experimenting with a one valver in Birmingham. Originally he set used a 1TV valve, but he decided to try a 955 Acorn and found results much better. An h.t. supply of 35V was adequate.

Between 2000 and 2100, Colin Diffell logged Vatican Radio, Rome 15.120 (English/Esperanto to Africa 1900-2010); BBC via Antigua, W. Indies 15.260 (World Service to S. America 2000-2115); Radio Cairo, Egypt 15.335 (Fulani/French to W. Africa 1930-2230) and Radio HCJB Quito, Ecuador 15.270. Sheila Hughes is a regular listener to HCJB programmes in Morden at 2135.

Another broadcaster in the USA, namely WCN in Boston may now be heard on the 13MHz (22m) band. Leslie Hollis logged their transmission from 13.670 at 05444 in Grantham at 1445 and George Estratiades rated their signal in Greece as SIO 444 at 1400. Some of the other broadcasters using this band were noted in the reports from DXers, Radio Korea Seoul, S. Korea 13.670 (Italian, French, German and English to Europe 0600-1115), rated by John Parry as 34553 at 0812. Later, Howard Newland logged WYFR via Okeehobe Florida 13.695 at 1310 (French/English to N. America 1200-2245); Radio Moscow 13.790 at 1345 (World Service to N. America 1100-1600) and Radio Nederlands via Fievo, Holland 13.770 at 1430 (English to S. Asia 0600-0900) who also heard WYFR and at 1609 he logged SRI Berne, Switzerland on 13.685 as SIO 444. Leslie Hollis picked up WHRI South Bend, USA 13.765 at 1930 and rated their signal as 25432 (English to Europe 1800-2100).

There is certainly plenty to interest the DXer on the 11MHz (25m) band by day or night! The programmes from Radio Australia are beamed to the S. Pacific area via Shepparton on 11.910 from 0400 until 0630 and during some mornings they have been reaching the UK. George Hewitt has noted some jamming around 0415, but by 0615 their signal may peak 434. The signals from their station in Darwin in 11.800 have been audible some days around 1200. This transmission is intended for listeners in C. Asia, with programmes in Japanese and English from 1000 until 1330. Leslie Hollis logged them as 43433 at 1215.

The broadcasts from KTWR on the remote island of Guam in the mid-Pacific have been attracting the attention of Sheila Hughes at 0805. They beam programmes in English to N. Asia from 11.805 from 0930 and as SIO 34433 by Sheila at 0830. Two seldom mentioned stations were noted in the report from George Estratiades, namely Radio Tanzania, Zanzibar 11.735 broadcasting in Swahili from 1400 until 1815, rated as 232 at 1703 and SLBC Colombo, Sri Lanka 11.800, broadcasting in English and Sinhala to the Middle East for an hour from 1745.

The programmes in English, Norwegian, French and German broadcast by Radio HCJB in Quito, Ecuador on 11.790 between 1900 and 2200 are popular with listeners in Europe. Using a Saiso SW5000 portable plus 10m wire Nick Rank noted their signal in Buxton as 44333 at 2153. In Malvern, Colin Godwin has been listening to the programmes in English and Danish from Radio Tokyo in Japan. They are beamed to Europe via Miyabi, Gabon on 11.800 from 2200 until 2359. Colin noted 43334 in his log at 2345.

There are plenty of interesting broadcasts on the 9MHz (31m) band too! Radio Australia beam their programmes to listeners in Europe via Shepparton on 9.655 from 0700 until 1030. Reception here is generally good and it seems that Leo Gieseke has also been hearing their transmissions in Randure, S. Africa around 0705!

Some of the broadcasters noted on the 7MHz (41m) band by DXers were Radio Korea, Seoul, S. Korea 7.725, logged at 1500 by Julian Wood in Buckie; Radio Australia 7.205 (English to Europe 1400-2030), rated as 33433 by Darran Taplin at 1600; Iran's Flag of Freedom 7.080 (Farsi/Arabic to Middle East 1630-1825), logged by Dick Moon at 1645; Radio Bangadesh, Dhaka 7.505 (English to Europe 1815-1945) and Radio Sadler in Bishops Stortford at 1825; Radio Vilinus Lithuania, USSR 7.165 (English to N. America 1645-1845); some of the programmes on 7MHz were heard by Sheila Hughes at 2300; Voice of Greece, Athens 7.425 (English/Greek to N. America 2359-0350), rated as 55555 at 0810 by Bill Griffith in London.

While monitoring the 6MHz (49m) band in London, Phil Townsend logged Radio Yugoslavia, Belgrade on 5.980 at 1610 and KFBS Siapen, N. Mariana Islands 6.135 by portable in Bexhill-on-Sea, David Minter logged RHC Havana, Cuba via Moscow, USSR 6.165 at 2215 and Radio Sophia, Bulgaria 6.070 and 6.135 by portable in Bexhill-on-Sea, Bob Wilson picked up the BBC World Service via Ascension Island on 6.005 at 2256.

Station Addresses

BBC Radio Orwell, Phoenix Wharf, Truro, Cornwall, TR1 1UA
ILR County Sound, The Friary, Guildford, Surrey, GU1 4YX
Radio Moscow, English Section, Pyatnitskaja Ulitza 25, Moscow, USSR
Radio Exterior de Espana, Apartado 156 202, E-28080 Madrid, Spain
Radio Singapore (SBC), Caldecott Hill, Thornton Road, Singapore 11293
Radio Tehran, Foreign Broadcasting Department, M Cravian Street, Yerevan, Armenian SSR, USSR

Please note that Deadlines for Reports for all sections of Seen & Heard are now the same
SHORT WAVE NEWSLETTER

Our fortnightly report will keep you up to date on the everchanging world of short wave radio. Every issue contains the latest logs from both the official and unofficial broadcasters along with the latest schedules. A feature section is also presented and this may be the latest MW/LW DX tips, a special article or something else. For the latest issue, send £20, or to get a better idea of SWN, why not try a sample subscription of three issues for £2.10. Please make all cheques payable to P.S. Wiltshire and write to: SWN, 3 GREENWAY, HAROLD PARK, ROMFORD, ESSEX, RM3 0HH.

G2VF LOOP ANTENNAS COMPLETE WITH ATU FOR HIGH FREQUENCY AIRBAND TRANSMISSION (SWR One to One 40, 15 and 10 MHz) Five to One 80 and 20 AND SWLs AND LONG AND MEDIUM WAVE BANDS FOR BCLS £3. LONG WAVE/VHF LOOP FOR BCLS £3. LONG WAVE MEDIUM WAVE AND SHORT WAVE LOOP 1500 to 10 METRES FOR THE BCL AND SWL £8. SHORT WAVE ATU FOR USE WITH EITHER LOOP OR LONG WIRE ANTENNA £4. FIELD STRENGTH METER £2.50. Details for F. G. Rylands, 39 Parkside Avenue, Millbrook, Southampton. Tel: (0703) 775064.

ALL VALVES
& TRANSISTORS

COLOMOR ELECTRONICS LTD.

PLESSEY PR155 SERIES HF COMM RECEIVERS

FOR SPARES AND SERVICE
CONTACT K and M SPECIAL PRODUCTS
8a, ST DAVIDS ROAD, CLANFIELD, HAMPSTEAD

PO8 0NL. Tel: 0705 594438

LISTEN INTO THE WORLD

VEGA SELINA 215—5 SW MW LW FM Main
Batt £36.95
VEGA 206—6 SW MW LW £24.95
GOODMANS POCKET RADIO—SW MW LW FM £22.95
SAB 7 POCKET AIR BAND—MW LW FM £21.50
MRB 7—8 BAND INC SW AIR MAINS £59.95
R057 TUNABLE AIR BAND—115-126MHz £2
CRYSTAL CONTROLLED CH £73.00
AIR TRAFFIC CONTROL BOOK £3.50
AUDIO TECH AT 9500 ELECTRIC COND LAPL £53.00
RADIO MIC 100MT RANGE £52.80

DIGITAL MULTIMETERS
—DC VOLTS 1000V £19.95
—AC VOLTS 450V £19.95
—RES 0-20 MEG £19.95

ALL METERS HAVE ABOVE RANGES+

ADVERTISERS INDEX

Aerial Techniques
AJH Electronics
Bredhurst Electronics
Colomor Electronics
Component Centre
Datong Electronics
Dressler Communications
Elliott Electronics
Fairbotham
Garex Electronics
Hamgear
ICOM (UK)
ICS Electronics
Johnsons Shortwave Radio
K&M Special Products
Klingenshroff Publications
Low Electronics
Nevada Communications
Photo Acoustics
Practical Wireless
Rylands F. G.
SEM
Short Wave Newsletter
South Midlands Communications
Spacecraft
Stephens-James
Technical Software
Theasby
Uppington Tele Radio
Ward & Co.
Waters & Stanton

THE BCL
500V
215—115-126MHz £2
CROSS TUNABLE £73.00
AMPLIFIERS £3.50
ALL ITEMS POST FREE

Thesby Electronics
Thesby Electronics can help your DX'ing
Preselector—cures interference and amplifies signal. £39. Air Tuner—tunes aerial and reduces interference. £28. Band pass filter—3 stages of audio filtering £35. Crystal Calibrator — Nine to 1145kHz output £19. All ready built, 12v or 24v operated, send for free literature Also, High pass TVI filter—rejects signals below 3 MHz £39. Brand Breaker TVI filter—rejects interference picked up or down £39. Both TVI filters together £57.50. PL 259 Fittings, aerial cables, all items post free.

THEASBY ELECTRONICS
31, MIDDLETOWN, COWLING, NORTH YORKSHIRE BD22 0DG
Telephone: 0853 367066

PLEASE MENTION SHORT WAVE MAGAZINE WHEN REPLYING TO ADVERTISEMENTS

SPECIAL NOTICE TO READERS

Although the proprietors and staff of SHORT WAVE MAGAZINE take reasonable precautions to protect the interests of readers by ensuring as far as practicable that advertisements in SHORT WAVE MAGAZINE are bona fide, the magazine and its Publishers cannot give any undertakings in respect of claims made by advertisers, whether these advertisements are printed as part of the magazine, or are in the form of inserts.

While the Publishers will give whatever assistance they can to readers having complaints, under no circumstances will the magazine accept liability for non-receipt of goods ordered, or for late delivery, or for faults in the manufacturer. Legal remedies are not available in respect of some of these circumstances, and readers who have complaints should address them to the advertiser, or should consult a local Trading Standards Office, or a Citizen's Advice Bureau, or their own solicitor.

FLIGHTDECK
THE AIRBAND SHOP
NORTH-WEST SPECIALISTS IN AIRBAND AND SHORTWAVE COMMUNICATIONS RECEIVERS
SETS BY SIGNAL • LINDE • SONY • REVCO • LOWE ELECTRONICS • KENWOOD • PHILIPS • GRUNDIG • PANASONIC •
FAIRBOOTH & CO LTD
58-62 LOWER MILLER STREET, STOCKPORT, CHESHIRE SK1 3AN
Telephone: 061-480 8000

47
WHAT RECEIVER

What Receiver has been split into two sections. This part covers general coverage receivers and the second section will deal with portable sets.

Lowe SRX30D Communications Receiver

- **Coverage**: 500 - 30MHz
- **Modes**: a.m., f.m., s.s.b., b.i.b., i.f.
- **Sensitivity**: 10dB S/N plus 13dB for an input of 0.3μV on 48MHz
- **Resolution**: Better than 10dB
- **Selectivity**: s.s.b./c.w. 8kHz and 4kHz at -6dB
- **Image rejection**: Better than 30dB
- **Spurious rejection**: Better than 30dB
- **Frequency stability**: ±300Hz for 100 minutes after warm-up time
- **Audio output**: 2W in max
- **Stage**: General coverage
- **Price**: £69.95

Panasonic RP6600DLE Communications Receiver

- **Coverage**: 150kHz to 29.999MHz
- **Modes**: i.f., c.w., s.s.b., b.i.b., i.f.
- **Sensitivity**: 150kHz to 1kHz input, ±30μV on 48MHz
- **Resolution**: Better than 30dB
- **Selectivity**: ±6dB at -6dB, 15kHz at -50dB
- **Spurious rejection**: Better than 30dB
- **Frequency stability**: ±300Hz during first 1/2 hour, <50Hz during any 30 minutes after warm-up
- **Audio output**: 1W at 8Ω and 10% distortion
- **Stage**: 47.055MHz, 455kHz
- **Features**: Built-in clock, trimmer and sleep timer
- **Price**: £69.95

Yaesu FRG-8800 General Coverage Receiver

- **Coverage**: 29 to 20000MHz continuous
- **Modes**: i.f., m.w., a.w., m.w., s.w., a.w., i.f., s.w.
- **Sensitivity**: <0.5μV for 12dB SINAD
- **Resolution**: 0.1, 1, 5, 10, 12.5 and 25kHz
- **Selectivity**: 1dB at 6kHz for 60kHz SNR, 1.5kHz for 20dB
- **Audio output**: 2.5W in max
- **Stage**: Multiple i.f.s between 455kHz and 9MHz
- **Price**: £395

Kenwood R-2000 Communications Receiver

- **Coverage**: 150kHz to 30MHz
- **Modes**: a.m., f.m., s.s.b., b.i.b., i.f.
- **Sensitivity**: 150kHz to 22MHz s.s.b./c.w., <2μV, 2MHz to 30MHz a.m., <4μV
- **Resolution**: 50kHz, 5kHz
- **Selectivity**: a.m. ±2kHz at –6dB, 1kHz at –50dB
- **Image rejection**: >70dB
- **Spurious rejection**: >60dB
- **Frequency stability**: ±300Hz for first hour, ±50Hz after
- **Audio output**: 1.5W at 8Ω and 10% distortion
- **Price**: £499.95

Yaesu FRG-7700 Communications Receiver

- **Coverage**: 150kHz to 30MHz
- **Modes**: i.f., c.w., s.s.b., b.i.b., i.f.
- **Sensitivity**: Below 300kHz: 3μV a.m., 1μV s.s.b./c.w., 1kHz i.f.
- **Resolution**: 1kHz
- **Selectivity**: ±4kHz at –6dB, 25kHz at –50dB
- **Audio output**: 2W in max
- **Stage**: General coverage
- **Price**: £350

Icom IC-R770 Communications Receiver

- **Coverage**: 150kHz to 30MHz
- **Modes**: a.m., f.m., s.s.b., b.i.b., i.f.
- **Sensitivity**: 150kHz to 1kHz input, ±30μV on 48MHz
- **Resolution**: Better than 30dB
- **Selectivity**: ±6dB at -6dB, 15kHz at -50dB
- **Spurious rejection**: Better than 30dB
- **Frequency stability**: ±300Hz for 100 minutes after warm-up time
- **Audio output**: 2.5W in max
- **Stage**: General coverage
- **Price**: £499.95

Icom IC-R7000 Communications Receiver

- **Coverage**: 150kHz to 30MHz
- **Modes**: a.m., f.m., s.s.b., b.i.b., i.f.
- **Sensitivity**: 150kHz to 22MHz s.s.b./c.w., <2μV, 2MHz to 30MHz a.m., <4μV
- **Resolution**: 50kHz, 5kHz
- **Selectivity**: a.m. ±2kHz at –6dB, 1kHz at –50dB
- **Image rejection**: >70dB
- **Spurious rejection**: >60dB
- **Frequency stability**: ±300Hz for first hour, ±50Hz after
- **Audio output**: 1.5W at 8Ω and 10% distortion
- **Price**: £499.95

Trio R-1000 Communications Receiver

- **Coverage**: 20kHz to 30MHz
- **Modes**: a.m., m.w., s.s.b., b.i.b., i.f.
- **Sensitivity**: Below 2MHz: ±2μV s.s.b., 5μV a.m.
- **Resolution**: 1kHz
- **Selectivity**: ±4kHz at –6dB, 25kHz at –50dB
- **Audio output**: 2W in max
- **Stage**: General coverage
- **Price**: £499.95

YAESU FRG-8800

- **Coverage**: 29 to 20000MHz
- **Modes**: i.f., m.w., a.w., m.w., s.w., a.w., i.f., s.w.
- **Sensitivity**: <0.5μV for 12dB SINAD
- **Resolution**: 0.1, 1, 5, 10, 12.5 and 25kHz
- **Selectivity**: 1dB at 6kHz for 60kHz SNR, 1.5kHz for 20dB
- **Audio output**: 2.5W in max
- **Stage**: General coverage
- **Price**: £395

Short Wave Magazine March 1988
WHAT RECEIVER

JRC NRD-525 General Coverage Receiver
- **COVERAGE**: 30kHz to 34MHz (optionally to 45MHz in steps)
- **MODES**: AM/FM/FSK, SSB, LSB, USB, CW
- **SENSITIVITY**: 1.6 dB to 34MHz cw, 0.8 dB at 6MHz
division
- **SELECTIVITY**: Wide bandwidth at >4kHz at -6dB, <1kHz
- **REJECTION**: >6dB
- **FREQUENCY STABILITY**: ±3 ppm.
- **AUDI0 OUTPUT**: >5W at 40 and 10% distortion
- **RANGE**: 2.6 - 4.5kHz
- **FEATURES**: Scan and sweep, electronic tuned (via main control or key pad), noise blanker, S-meter, subtone input, mute input, transmission monitor, squelch, dimmer, tone control, clock, timer, i.f. notch filter, passband shift
- **REVIEWS**: Practical Wireless June 1986
- **PRICE**: £1195

Kenwood R-5000 Communications Receiver
- **COVERAGE**: 10kHz to 30MHz
- **MODES**: CW, SSB, AM, FSK
- **SENSITIVITY**: >1.8 dB at 30MHz, SSB, CW, FSK, 0.25kHz, 1kHz, 6kHz
- **RESOLUTION**: 1kHz
- **SPECIAL FEATURES**: <1kHz, 4kHz, 2.5kHz, 5kHz
- **REJECTION**: >60dB
- **FREQUENCY STABILITY**: ±50 ppm above 1MHz
- **AUDIO OUTPUT**: line (600Ω) 10W pre-set, loudspeaker
- **1W max. output medium impedance
- **FEATURES**: Remote control, variable speed tuning, built-in f.f. front end pre-selector option, scan and sweep facility, 98 programmable memories
- **REVIEWS**: Short Wave magazine June 1987
- **PRICE**: £875

Edystone Model 1650 Communications Receiver
- **COVERAGE**: 10kHz to 30MHz in synthesised steps of
- **RESOLUTION**: 1kHz
- **SPECIAL FEATURES**: Tuning, 6dB at 6kHz, 400Hz, 1kHz, 2kHz, 3kHz
- **REJECTION**: typically 100dB
- **FREQUENCY STABILITY**: typically 100ppm above 1MHz
- **AUDIO OUTPUT**: line (600Ω) 10W output
- **FEATURES**: Remote control, variable speed tuning, built-in f.f. front end pre-selector option, scan and sweep facility, 98 programmable memories
- **REVIEWS**: On application to Lowe Electronics
- **PRICE**: On application to Lowe Electronics

Services

Subscriptions
Subscriptions are available at £17 per annum to UK addresses and £19.00 overseas by Accelerated Surface Post outside Europe. For further details see the subscription page on page 15 of this issue. Airmail rates for overseas subscriptions can be quoted on request. Joint subscriptions to both Short Wave Magazine and Practical Wireless are available at £27.00 (UK) and £30.00 (overseas).

Queries
We will always try to help readers having difficulties with a Short Wave Magazine project, but please observe the following simple rules:

1. We cannot give advice on commercial radio or television equipment, nor on modifications to our own apparatus.
2. We cannot deal with technical queries over the telephone.
3. All letters asking for advice must be accompanied by a stamped, self-addressed envelope plus international Reply Coupons for overseas readers.

4. Write to the Editor, “Short Wave Magazine”, Eneflo House, The Quay, Poole, Dorset BH15 1PP, giving a clear description of your problem. 5. Only one query per letter, please.

Back Numbers and Binders
Limited stocks of most issues of SWM for the past 10 years are available at £1.45 each, including post and packing to addresses at home and overseas (by surface mail).

Binders, each taking one volume of the new style SWM, are available price £3.90 to UK addresses, or overseas, including post and packing. Please state the year and volume number for which the binder is required. Prices include VAT where appropriate.

Please note that Volume 45 finished with the December 1987 issue, making nine issues in the volume. In future each volume will run from January to December.

Orders
Orders for p.c.b. s, back numbers and binders, PW Computer program cassettes and items from our Book Service, should be sent to PW Publishing Ltd., FREE-POST, Post Sales Department, Eneflo House, The Quay, Poole, Dorset BH15 1PP, with details of your credit card or a cheque or postal order payable to PW Publishing Ltd. Cheques with overseas orders must be drawn on a London Clearing Bank or in Sterling.

Credit card orders (Access, Mastercard, Eurocard or Visa) are also welcome by telephone to Poole (0202) 678558. An answering machine will accept your order out of office hours.

Components for SWM Projects

In general all components used in constructing SWM projects are available from a variety of component suppliers. Where special, or difficult to obtain, components are specified, a supplier will be quoted in the article.

The printed circuit board for the SWM Audio Filter, July 87 issue is available from Short Wave Magazine, Eneflo House, The Quay, Poole, Dorset BH15 1PP, price £2.00 plus 75p post and packing.

Short Wave Magazine March 1988

49
HOW TO ORDER
Add 75p per order postage (overseas readers add £1.50 for surface mail postage) and send a postal order, cheque or international money order with your order (quoting book titles and quantities) to PW Publishing Limited, FREEPOST, Enefco House, The Quay, Poole, Dorset BH15 1PP. Payment by Access, Mastercard, Eurocard or Visa also accepted on telephone orders to Poole (0202) 678558. Books normally despatched by return of post but please allow 28 days for delivery.

★ A recent addition to our Book Service. O/P = Out of print, O/S = Out of stock.
OSCILLOSCOPES, HOW TO USE THEM, HOW TO WORK (Revised 2nd Edition)
Ian Hickman
This guide takes oscilloscopes ranging from basic to advanced models and the accessories to go with them. 173 pages £6.95

POWER SELECTOR GUIDE (BP235)
J. C. J. Van de Ven
This guide has the information on all power selectors in useful categories (other than the usual numeric sort) such as voltage and power properties making a selection of replacements easier. 160 pages £4.95

RADIOTELETEYPE CODE MANUAL
1940 Edition
Joerg Rinlenfuss
This book gives a detailed description of the characteristics of telegraph transmission on short waves. With all complete details of all types including voice frequency telegraphy. It provides comprehensive information on all RTTY systems and w.s.m. alphabets. 96 pages £8.00

RSGB RADIO DATA BOOK
G. R. Jessop G6JP
The Editor of an essential book for the radio amateur or experimenter's workshop. 244 pages Hardback £5.00

SEMICONDUCTOR DATA BOOK
A. M. Ball
Characteristics of about 10,000 transistors, i.e.s., diodes, rectifiers, tracs and c.c.s. 175 pages £7.50

TRANSISTOR SELECTOR GUIDE (BP234)
J. C. J. Van de Ven
This guide has the information on all transistors in useful categories (other than the usual alphanumeric sort) such as voltage and power properties making a selection of replacements easier. 192 pages £4.95

PROJECT CONSTRUCTION
HOW TO BUILD ADVANCED SHORT WAVE RECEIVERS (BP226)
R. A. Penfold
This book gives full practical constructional details of a number of receivers as well as some add-on circuits such as filters and noise limiters. 118 pages £2.95

HOW TO DESIGN AND MAKE YOUR OWN P.C.B.s (BP121)
R. A. Penfold
Designing and making printed circuit board designs from magazines, including photographic methods. 80 pages £1.50

INTRODUCING QRP
Collected Articles from PW 1983-1985
The latest edition of this useful book provides design for the QRP experimenter and one for you to build your own kits. 1157 pages £15.25 (hardback)

THE INTERNATIONAL VHF FM GUIDE
7th Edition
Julian Baldwin G3UHJ & Kris Partridge GA8UU
This book provides design details of repeaters and beacons worldwide plus coverage maps and further information on UK repeaters. 70 pages £2.25

THE MORSE CODE FOR RADIO AMATEURS (RSGB)
Margaret Scott GA3GCT
A guide to learning and using the Morse code as a universal code for traffic and emergency work with your radio equipment. 150 pages £3.75

THE SATELITE EXPERIMENTER'S HANDBOOK
G. R. Jessop G6JP
A guide to using and understanding radio, weather and TV broadcasting signals. 207 pages £12.92

THE SECRET OF LEARNING MORSE CODE
Mark Francis
Designed for the hobbyist to learn and practice Morse code in the shortest possible time, this book points you out of the pitfalls that beset the student. 87 pages £4.95

VHF/HF MANUAL (RSGB)
G. R. Jessop G6JP
Theory and practice of amateur radio reception and transmission, between 30MHz and 24GHz. 520 pages £19.95

AERIAL RANDBRO HANDBOOK
David J. Smith
With air band radio you can make up on the air and save the trouble of the comparatively complicated radio receiving apparatus. Many stations all over the world have the author's radio panel, and ex¬ pands more about this hobby. 174 pages £5.95

HOW TO PASS THE RADIO AMATEURS' LICENSE EXAMS (RSGB)
G. L. Benbow G3HMB
The background to multiple choice exams and how to study for them with nine sample RAE papers for practice, plus marks marked. 91 pages £3.15

INTRODUCING MORE
Collected Articles from PW 1982-1985
Ways of learning the Morse Code, followed by constructional details of keys including lamproc, Transmit, and an Electronic Bug with a 528-bit memory. 48 pages £1.25

PASSPORT TO AMATEUR RADIO
Reprinted from PW 1981-1982
The famous radio amateur passport held by thousands of successful RAE candidates as an aid to their studies. Plus other useful aids for students of amateur radio. 96 pages £1.50

PROJECTS IN AMATEUR RADIO AND SHORT WAVE OPERATING
F. G. Rayner G3QGR
Full constructional details are given for all projects, including housing the units in a suitable case. All the projects are either on p.c.b. or main board. 90 pages £4.95

QUESTIONS & ANSWERS
AMATEUR RADIO
F. C. Judd G2BXC
What is amateur radio? The Radio Amateurs' Exam and Licence. This book describes the type, equipment, antennas, operating procedure and codes used by amateurs. 122 pages £2.50

RADIO AMATEUR'S GUIDE
RADIO WAVE PROPAGATION
HF Bands
F. C. Judd G2BXC
The how and why of the mechanisms and variations of propagation in the h.f. bands. 144 pages £8.95

RADIO AMATEUR'S MAP OF NORTH AMERICA
Amateur Radio
This book shows radio amateurs' frequency boundaries, continental boundaries and zone boundaries. 750 x 636mm £2.25

THE 1986 ARRL HANDBOOK FOR THE RADIO AMATEUR
This is the sixty-fifth edition available only in hardback, the first six editions were available in paperback. Among topics discussed are the famous "Slim Jim", designed for Top Band, medium dimensions and a v.h.f. direction finding loop. Plus more on propagation, antennas and accessories. 176 pages £1.00

SIMPLE AMATEUR BAND AERIALS (BP125)
E. M. Noll
How to build 25 simple and inexpensive aerials, from a simple dipole through beam and triangle designs to a maximum field. Dimensions for specific spot frequencies, including the WARC bands. 80 pages £1.98

SIMPLE, LOW-COST WIRE ANTENNAS FOR RADIO AMATEURS (USA)
W. L. Orr W6SAI and S. D. Cowan W2LX
Efficient aerials for Top Band to 2m, including "invi¬ sible" antennas for difficult station locations. 197 pages £6.75

THE ARRL ANTENNA BOOK
14th Edition (USA)
A station is only as effective as its antenna system. This book covers propagation, plan and practical constructional details of almost every type of antenna, test equipment and formulas and programs for beam heading calculations. 327 pages £9.10

THE ARRL ANTENNA COMPENDIUM Volume 1
(USA)
This book makes fascinating reading of hitherto unpub¬ lished material. Among antenna plans included are full drawings of almost every type of antenna, test equipment and formulas and programs for beam heading calculations. 552 pages £12.95

THE RADIO AMATEUR HANDBOOK (USA)
W. L. Orr W6SAI and S. D. Cowan W2LX
Yagi, quad, qpsk, i.p., vertical, horizontal and "shaper" antennas. Towers, grounds and rotators. 187 pages £6.75

TWO-METRE ANTENNA HANDBOOK
F. C. Judd wrote this book for radio amateurs new to the 144-146MHz band. The range of antennas described will cater for most situations, particularly those where space is a problem. A further 176 pages £8.95

WIOES & WAVES
Collected Articles from PW 1980-1984
Antenna and propagation theory, including N65 Yagi design data. Practical designs for antennas from medium waves to microwaves, plus antennas for computers, s.w.r., and power meters, and a noise bridge. Dealing with HF, TV, 150 pages £3.90

29 SIMPLE INDOOR AND WAVEAERIALS (BP136)
E. M. Noll
Designs for people who live in flats or have no gardens, etc., giving surprisingly good results considering the limited dimensions. 64 pages £1.75

29 SIMPLE SHORT WAVE BROADCAST BAND AERIALS (BP132)
E. M. Noll
Designs for 25 different aerials, from a simple dipole through designs to a multi-band umbrella. 80 pages £1.95

30 SIMPLE TROPICAL AND MW BAND AERIALS (BP145)
E. M. Noll
Simple and inexpensive aerials for the broadcast bands from medium wave to 48m. 64 pages £1.75

AUDIO FREQUENCIES
Audio (BP111)
(Elements of Electronics—Book 6)
F. A. Wilson
This book studies sound and hearing, and the operation of microphones, loudspeakers, amplifiers, oscillators, and both disc and magnetic recording. 320 pages £3.50

THOLOGY & CALCULATIONS
BEGINNER'S GUIDE TO ELECTRONICS
Owen Bishop
For beginners thinking of a career in electronics; theory and applications in computers, radio, TV, recording, medical and industrial electronics, and computers. 240 pages £4.50

CARE AND FEEDING OF POWER GRID TUBES (USA)
This book analyses the operating of EMAC power grid valves and provides design and application information to assist the use of these valves. 156 pages £6.75

Short Wave Magazine March 1989
March 5: For the second year running, Newcastle Breweries and the Tyneside ARS are joining forces to stage the Blue Star Rally. The venue is the North East Exhibition Centre in Gosforth Park, Newcastle. Doors are open between 11am and 5pm. Following last year’s success, three floors of the Centre will house equipment dealers and there’ll be many local bargains too. The RSGB will be conducting Morse tests. There is plenty of free parking adjacent to the centre. For more details: G4MRT Tel: 091-281 0994

March 13: The Bury Radio Society will be holding their 1988 rally at a new venue. The bigger venue is the Castle Leisure Centre, Bolton Street, Bury. The site will be the usual large number of stands, a bring & buy and masses of radio and electronic traders. Talk-in will be on S22. More from: M. L. Jamil G1VQE 29 Harrow Close Blackford Bridge Bury

March 20: The Tiverton SW Radio Club are holding The Mid Devon Rally at the Pannier Market, Tiverton. There is easy access from junction 27 of the M5 and excellent parking facilities on site. There will be two halls of trade stands, a bring & buy and a mobile snack bar. Talk-in will be on S22. More details from: G4TSW Mid Devon Rally PO Box 3 Tiverton

April 24: The Swansea ARS will hold their 7th Annual Rally in the Swansea Leisure Centre on the A4067, Swansea-Mumbles Road. Note that it’s a change of venue. Doors will be open between 10.30am and 5pm. There will be plenty of traders, a bring & buy, bookstall, refreshments, licensed bar and an h.f. station. Talk-in will be by GB2SWR. More details from the rally secretary: Roger Williams GW4HSH Tel: 0792 404422

June 12: The open day for the Mid Lanark Society will be held at the Community Centre, Newratherby, by Motherwell. This new venue is about half a mile from the old venue of Wharnholme Hall. There will be the usual traders, a bring & buy stand, demonstrations of packet radio and RTTY, lectures and the annual award of the EHI Trophy. Talk-in will be on S22 and catering will be provided.

June 18: The Royal Air Force Halton Air Show and Amateur Radio Rally will take place at RAF Halton, near Aylesbury, Bucks. The RAFARS Golden Jubilee Rally will be held inside a hanger. More details from: Terry F. Owen G4PSH Tel: 0296 85760

July 28-31: The AMSAT-UK Colloquium will again be held in the University of Surrey, Guildford. More from: G3AAJ Tel: 01-989 6741

July 31: The Scarborough ARS Rally will be held at The Spa, Scarborough. Doors open at 11am. Talk-in will be on S22 and S8 as well as G83NY. More details from: Ian Hunter G4UQP OTHR Tel: 0723 376847
YOUR ONE STOP LISTENER SERVICE! Established 1973
HUGE STOCKS — BEST PRICES — GOOD BACKUP — FREE SECURICOR
YOU NAME IT, WE'VE GOT IT!

SONY AIR-7 HAND-HELD
AM/FM 100-176MHz +
LW/MW/FM
UNBEATABLE VALUE

The best VHF monitor there is. That's what 110.1-176MHz
plus LW/MW/FM broadcast
Covers an array of marine, FM etc
LCD display memories
Scanning, quick lock, priority
Supplied with neck strap — so check with us!
£247 FREE SECURICOR

SONY ICF7600DS
PORTABLE COMMUNICATIONS!

Not a toy, but a serious
communications receiver
150kHz-30MHz AM/SSB/FM
156-108MHz Digital
readout memories, click and
provision for external antenna.
Listen to the work of Mars or battery.
£169 FREE SECURICOR

NEW SONY PRO-80
RECEIVER
AM/FM/SSB
115kHz-223MHz
A major innovation in monitor
receivers. Just think a complete
short wave and vhf monitoring
system in your pocket! Memories,
snooping, etc. Order today
£329.00 Carriage Free.

SONY ICF2001D RECEIVER
SUPER PORTABLE AM/SBB/CW
+ AIR BAND COVERAGE

Described as "the best portable on the market"
It covers 150KHz-30MHz AM/SBB/DW
Plus VHF marine and FM
broadcast. Memories, scanning, etc. All included. The SSB
performance is superb and can match many top
station receivers. 230/110V AC power
supply included.
£329 FREE SECURICOR

R537S AIR-
BAND MONITOR
118-136MHz

This well known receiver is ideal for the
serious all-band enthusiast.
Supplied and serviced by
SECURICOR. With battery and whip.
£69 Carry. £2.00 p&p

CLP 5130
103-136MHz
13.5kHz fwh gain
1kHz/10kHz
Length 4.5"
Receiver & Transmit

£82.00 post £3.00

D130N
26-130MHzicone
Stealth direction
Receiver & Transmit
Height 8" approx.

£47.50 post £3.00

LATEST PRICE LIST
Our complete price list is available for the cost of a stamp. Over 700 items listed!

GLOBAL AT1000 AERIAL TUNER

The AT1000 is a receiver aerial tuner designed to
give you maximum performance from your receiver.
Covering the frequency range 150KHz
to 30MHz it matches all the
modern receivers produced in recent years. Ideal for matching
long wires, dipoles or balanced feed
£69.00 POST FREE

SPECIAL OFFER on a scrap book

AN active aerial separate £9+ £2 cart

BETTER SHORT WAVE RECEPTION

Oceanic HF Airband Frequency Guide
£5.00 + £0.60 p&p

Better Short Wave Reception
£2.95 + £0.70 p&p

Oceanic HF Airband Frequency Guide
£3.95 + £0.60 p&p

£17.95 + £1.00 p&p

£17.95 + £1.00 p&p

AT Air Control by David Adar
£5.99 + £1.00 p&p

Air Band Radio Handbook
£5.99 + £1.00 p&p

Air Control by Ian Allan
£5.99 + £0.70 p&p

Band Radio Handbook
£5.99 + £0.70 p&p

Scanners: A VHF/UHF Listeners Guide
£7.95 + £1.00 p&p

Gateway House, The Quay, Poole, Dorset
£5.95

Tel: (04024) 44765

Published on the Fourth Thursday of each month by PN Publishing Limited, Enfield House, The Quay, Poole. Dorset BH15 1PR. Printed in England by Itoh Kyo (Imprint) Ltd., Tunbridge Wells, Kent, Distributed by COMAG, Tavistock Road, West Drayton, Middlesex UB7 7OE, telephone West Drayton 44450. Tel: 08177337. Sales Agents for Australia and New Zealand — Gordon & Gotch (Aust.) Ltd. South Africa — Centaur News Agency Ltd. SHORT WAVE MAGAZINE is subject to the following conditions, namely that it shall not, without the written consent of the Publishers first having been given, be lent, rented, hired out or otherwise disposed of by way of Trade at more than the recommended selling price shown on the cover, and that it shall not be lent, rented, hired out or otherwise disposed of in a mutilated condition or in any unauthorised cover by way of Trade, or affixed to or as part of any publication or advertising, literary or pictorial matter whatsover.
Yaesu has serious listeners for the serious listener.

Yaesu’s serious about giving you better ways to tune in the world around you. And whether it’s for local action or worldwide DX, you’ll find our VHF/UHF receivers are the superior match for all your listening needs.

The FRG-9600. A premium VHF/UHF scanning communications receiver. The 9600 is no typical scanner. And it’s easy to see why.

You won’t miss any local action with continuous coverage from 60 to 905MHz.

You have more operating modes to listen in on: upper or lower sideband, CW, AM wide or narrow, and FM wide or narrow.

You can even watch television programmes by plugging in a video monitor into the optional video output. (NTSC System).

Scan in steps of 5, 10, 12 1/2, 25 and 100kHz. Store any frequency and related operating mode into any of the 99 memories. Scan the memories. Or in between them. Or simply “dial up” any frequency with the frequency entry pad.

Plus there’s more, including a 24-hour clock, multiplexed output, fluorescent readout, signal strength graph, and an optional PA4C, AC power adaptor.

Extend the coverage further with the optional FC965DX 0.15-30MHz and FC1300 800-1300MHz external convertors.

The FRG-8800 HF communications receiver. A better way to listen to the world. If you want a complete communications package, the FRG-8800 is just right for you.

You get continuous worldwide coverage from 150kHz to 30MHz. And local coverage from 118 to 174MHz with an optional VHF convertor.

Listen in on any mode: upper and lower sideband, CW, AM wide or narrow, and FM.

Store frequencies and operating modes into any of the twelve channels for instant recall.

Scan the airwaves with a number of programmable scanning functions.

Listen in. When you want more from your VHF/UHF or HF receivers, just look to Yaesu. We take your listening seriously.

South Midlands Communications Ltd
S.M. House, School Close,
Chandlers Ford Industrial Estate,
Eastleigh, Hants SO5 3BY
Tel: (0703) 255111
UK Sole Distributor

Dealer inquiries invited.

Prices and specifications subject to change without notice.
FRG-9600 SSB coverage: 60 to 460 MHz.