UNIDEN BEARCAT UBC175XL
SCANNER REVIEW

Radio Data Systems

Ideas for Christmas SPECIAL

For The Radio Listener
GAREX
THE SCANNER SPECIALISTS

JIL SX-400
THE PROFESSIONAL SCANNER
- Band coverage 26-520MHz
- AM, NFM & WFM
- Expendable from 100MHz to 1.4GHz with SSB and CW
- Computer control options
- IF output terminals
- Specifications set by professionals

£649

REVCO RS-2000E
THE VERSATILE SCANNER
- Covers: 60-180MHz, 380-520MHz
- AM & NFM on all bands
- Search & store of active channels
- Channel activity counter
- 70 memories
- 12V dc & 240V ac

£279

JIL SX-200N
THE SUPERIOR SCANNER
- The choice of the professionals
- Proven reliability
- Covers: 26-88MHz, 108-150MHz, 380-514MHz
- AM & NFM on all bands
- Positive action keyboard
- 16 memories
- 12V dc & 240V ac

£325
Cover The Uniden Bearcat UBC 175XL base station scanning receiver is the subject of our review this month.

Unfortunately, our Bandscan feature has had to be held over this month due to lack of space.
As explained last month, this issue marks the end of Volume 45. I know that it may look a bit strange, having had thirteen issues in Volume 44, to follow on with only nine to complete Volume 45, but it will bring us into step with the calendar, making life much easier in the future. The other interesting thing about the volume numbers is that although the magazine has been published for over 50 years, only 45 volumes have been completed. The answer lies, of course, with the fact that the magazine did not come out during the Second World War — the stuff all "went to war."

The long awaited Scanning column starts in this issue. Don't forget that you need your inputs to ensure that it is lively and interesting.

So, if you are a scanning nut then drop Alan Gardener a line and ensure the new column's success. Airband started out in just the same way, and judging by the amount of mail that Godfrey Manning now receives, is very popular indeed.

The hurricane that swept across the south of England during the night of Oct. 15/16 left thousands without essential services. Amongst these were two of our regular "Seen & Heard" correspondents — Ron Ham and Brian Oddy. We work to very tight deadlines for all the "Seen & Heard" sections and to meet these both Ron and Brian use word processors. Without electricity they are useless, and without the telephone it's difficult to let anyone know — a state of affairs that lasted for over a week!

That this issue of Ron's and Brian's columns at all is a miracle indeed — thanks Ron and Brian.

DICK GANDERTON

Sir

I would like to add some more feedback concerning pirate stations.

As regards pirate stations such as Radio Sinn Fein, I agree with the other readers' reactions about having a column for these stations. It is this magazine's moral duty for the protection of the reader to stop this. Listing the radio of such a violent organisation would surely offend many listeners and seriously jeopardise the reputation of the magazine. I would like to point out now that my utter dislike for stations of such an obnoxious manner.

I would like to fight the case for a short wave clandestine stations listing. This truly neglected aspect of the hobby in this country, due to legislation, is worthy of more publicity. I cannot see how the politics of foreign groups can harm or offend the British reader. In my opinion their policies should be regarded as a matter of an interesting education, as I have found through my listening. There is no reason for such listings in a magazine column to be political or politically biased. For instance, a political profile of any given station would be merely a statement of fact, showing no opinions on the part of the magazine.

I would like to point out that a very informative column, which shows absolutely no bias, exists and thrives in the Dutch Shortwave Club's International Bulletin, and no doubt caters for the needs of the isolated British listener — lost competition on your part.

I find this aspect of my hobby enthralling and an education as to the state of many nations. Indeed, some of my best loggings have been clandestine stations.

I would like to see mine and many other clandestine enthusiasts' needs met by my favourite British magazine. I believe that this very fascinating aspect of our great hobby is the final hole for fill, and I have no qualms about this happening. I have to stress that activity which might affect the British readers, such as Sinn Fein, is not acceptable and is the only obstacle to a specialist column. I also hope that there will be favourable reaction from fellow readers and listeners who seem opposed to our hobby. I will also say that I am very active in monitoring official broadcasts.

M. O'SBORN
CHELMSFORD

The controversy still rages over the subject of pirates and clandestines. Whatever the arguments put forward I still have to take into account the fact that this country is very cosmopolitan. There are people living here from all countries, creeds and religions, and their views must be taken into account when trying to decide what will, or will not, cause offence.

Just because the events are taking place on the other side of the world it doesn't mean that no one in the UK is affected. And what about the growing number of overseas readers of the magazine? I can see the usefulness of listing such stations so that readers can identify what they have heard — and at least if you know that what you have heard across is a pirate or clandestine station you can wield the ultimate power of censorship and quickly return the set to another frequency — can't you.

I will let the arguments continue for another issue and then pronounce the matter closed.

ED

Sir

HELP! Where can I beg, borrow or steal an instruction manual for a Realistic DX-200 receiver?

I think that "Airband" is the best section of a great magazine.

D. T. KEELY

ANGLESEY

Can any reader help Mr. Keely?

If so please reply through the Editorial Offices at Poole.
Clamp-on Chokes
A few months ago in Bandscan, Peter Laughton mentioned some clamp-on radio frequency chokes. At that time all he was able to give as a supplier was a Canadian address. We have since heard that AKD supply them (their design is the subject of a patent application).
They can supply two kit sizes, UF8 and UF4 and each kit contains the following:

<table>
<thead>
<tr>
<th>Component</th>
<th>UF8</th>
<th>UF4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ferrite "U" Cores</td>
<td>16</td>
<td>8</td>
</tr>
<tr>
<td>Clamping extrusion</td>
<td>16</td>
<td>8</td>
</tr>
<tr>
<td>Re-usable ties</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>Adhesive strip</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Application & Info: 1
Price inc. VAT P&P: £19.95 £9.89
For more details you should contact:
AKD
Unit 5
Parsons Green Estate
Boulton Road
Stevenage
Herts SG1 4QG

VNG Goes Off The Air
Not altogether unexpected perhaps, but as anticipated by George Hewlett in SWM’s few months ago, the Australian time and frequency station VNG at Lyndhurst has gone off the air. This is 23 years after being inaugurated by the Australian Post Office.
The purpose of the service was to provide accurate time signals and standard frequencies for use, throughout Australia, by organisations making seismic and other scientific measurements.
Based at Lyndhurst, in the state of Victoria, the operating frequencies were 12, 7.5 and 4.5kHz.
Peter Anderson, a member of the Australian Astronomical Association, described the move as being unfortunate and a loss to astronomical researchers. The alternative was, he said, WWVH in Hawaii, which was not only weaker but also suffered from fading.

Steam Powered Santa
Steam radio comes alive again this year at Didcot Railway Centre in South Oxfordshire. Members of the Great Western Society, assisted by amateurs from local radio clubs, will be operating GB4GWR during the Railway Centre’s Santa Steamings on December 6, 13 and 20.
The Railway Centre, which houses a huge collection of Great Western Railway locomotives, rolling stock and memorabilia, will be open from 11am to 5pm each day. Presents will be available for children in Santa’s steam train grotto.
GB4GWR will be active during the opening hours of the Railway Centre so all visitors will be welcome. Only one station will be active at a time because of a move into a warmer, but smaller shack. As usual QSL cards will be available. Why not collect yours in person and enjoy a good day out for all the family.
More details can be obtained from:
John O’Hagan G4PFY
Brubell
27 Colne Close
Grove
Wantage
Oxfordshire OX12 0NN

South Midlands Communications have introduced three new models of their 13.8V d.c. power supplies.
All the units have line regulations of less than 1 per cent and r.m.s. ripple of just 2mA.
That means they are suitable for all kinds of electronic equipment.
The RU120406 is designed for a constant 4 amps but will provide a surge to 6 amps.
The RS120810 is suitable for up to 8 amps constant and 10 amp surge. It also has over voltage protection.
Finally there is the SS122535 which is suitable for 25 amps constant and 35 amps surge. This p.s.u. is not only voltage protected but also has terminals for remote voltage sensing. This compensates for voltage drop on the output cable, therefore maintaining a constant voltage at load.
More details are available from:
SMC Ltd
SM House
School Close
Chandlers Ford Ind Est
Eastleigh
Hampshire
SO5 3BY
Tel: (0703) 255111
Stamp Collection

At SWM, we're always pleased to hear of a worthy cause, especially when those in the world of radio try and help others. So, if you get lots of post through your door we've heard of a way you can help.

John Allsopp G4YDM is collecting postage stamps, new, used, Foreign or British. He doesn't even mind whether they are still attached to the envelope or not.

He is hoping to raise money from these stamps to purchase a transceiver for a disabled amateur. If you have stamps you can send, dispatch them to:

John Allsopp G4YDM
30 Manor Park
Concordville
District 11
Washington
Tyne and Wear
NE37 2BT

DXAGB

Volume VIII Number 8 of DXAGB News has landed on the desk this month. There is another part of the series by Nick Rank about Marine Radiobeacon DXing, which has been very interesting and Frank Baldwins Shortwave Logbook is enough to make anyone green with envy. He seems to be logging at all hours of the day and night and hears the most wonderful DX, when does he sleep and eat, I wonder. If only my log book looked remotely similar. Still it encourages me to try harder.

If you would like more details on the DX Association of Great Britain, then write to:

Alf Brimming
DX-AGB
43 Atwood Drive
Bristol
BS11 0SR

Oldest Aussie QSLs

Who has the oldest QSL card or letter issued by Radio Australia or by its predecessors? Have you any reminiscences of Radio Australia’s early days of broadcasting?

In 1989, Radio Australia will celebrate its 50th year of regular transmission to the world. As part of a number of special programmes already contemplated by the ABC, they want to find who has the oldest QSL amongst its listeners.

HCJB

On November 30, the DX Partyline programme is: “What’s the inside industry scoop about radio equipment?” They are presenting the programme from the 1987 ANARCON Equipment Manufacturer’s Forum.

That’s at 2130 on 15.270 and 17.790 for Europe.

Media Network, broadcast by Radio Netherlands, is a weekly survey of communications developments compiled with the assistance of over 185 monitors spread across the globe. This audio magazine runs on enthusiasm, building on more than 26 years of experience in this field of programming.

Media Network reflects trends within the media business both in The Netherlands and around the world.

November 26: The Long Path through Asia Part One. After a slight delay(!), Media Network is finally off on a round the globe tour. This week they stop off in Thailand, looking at the complicated media in this exotic Asian country. They also tune around the dial letting the listener hear sound that will never reach most English speaking parts of the world.

December 3: The Long Path Through Asia Part Two. From Bangkok, they fly to Jakarta taking the train through Java. What is happening to the Indonesian media scene. Are all the short wave local stations on the way out? What is left of the Dutch colonial influence in this fast developing Asian society? They also include Pacific media news from Arthur Cushen.

December 10: News Update. This week we concentrate on the background items, including input from Richard Ginbey and John Campbell.

December 17: Christmas Preview. This week’s edition includes an interview with Dutch electronics specialist Willem Bos. He’s been examining active antennas for the WRTH 1988 edition. He’s come to some interesting conclusions, and these will be illustrated in today’s programme. Andy Sennitt, just back from the United States, will be passing on last minute media news.

December 24: The Party. This year they’ll be holding a Christmas party, inviting contributors to pass on their greetings and also to report on their best and worst Christmas gift. Wrapped up in the programme will be the usual serving of media developments, including a summary of the past year’s propagation trends from Mike Bird.

December 31: Best of the Worst. More mistakes from the world of radio broadcasting. You can hear examples taken from Radio Netherlands, and other stations around the globe. They also look at why those bloopers happened. They also look at some of the more unusual requests stations have had from listeners in 1987. Gene Reich gives us a classic example.

Vintage Wireless

If vintage wireless is your forte then perhaps you should be reading the Bulletin of the British Vintage Wireless Society.

The very smart magazine contains a wealth of information for those interested in the bygone era. There are loads of adverts so you can find the firm that stocks that elusive part you needed to restore your favourite set.

There are news pages, articles about classic sets, projects, articles about vintage television as well as historical articles and readers letters.

If you would like more details such as subscription rates and the like, then write to:

Robert Hawes
63 Manor Road
Tottenham
London
N17 0JH.
THE SATELLITE EXPERIMENTERS HANDBOOK
Published by the ARRL
Available from Short Wave Magazine Book Service
210 x 275mm, 207 pages. Price £9.25 plus 75p P&P
In this book is the information you need to communicate through or pick up the signals from orbiting satellites. Whether your interest is in amateur radio, weather, TV broadcast or other spacecraft, you’ll find an immense store of valuable data.

The book covers the early days of space communications, so you have lots of background information. It tells you how to get started, what you need and provides profiles of various spacecraft.

There is even a chapter labelled “You want to build a satellite” in Part III — the section for the advanced radio amateur!

SOLID STATE SHORT WAVE RECEIVERS FOR BEGINNERS
(BP222)
by R. A. Penfold
Published by Bernard Babani (publishing) Ltd
Available from Short Wave Magazine Book Service
110 x 178mm, 93 pages. Price £2.95 plus 75p P&P
ISBN 0 900 162 62 7

There is a strange fascination in listening to a broadcast which has been transmitted from a station that may be many thousands of kilometres away across the other side of the world. This has helped make short wave listening one of the most popular branches of the radio and electronics hobby world.

This book not only gives the reader plenty of receivers to build, but gives the details on how they work, how to use them and constructional hints.

Described are crystal sets, regenerative receivers, a portable reflex receiver, a single band receiver as well as some using f.e.t.s. The circuits described should provide suitable levels of performance, despite the fact they only use relatively few and inexpensive components.

PROJECTS IN AMATEUR RADIO AND SHORT WAVE LISTENING
by F. G. Rayer G30GR
Published by Newnes Constructors Projects
Available from Short Wave Magazine Book Service
134 x 210mm, 90 pages. Price £4.95 plus 75p P&P
ISBN 0 408 00502 5

Throughout the world there are more than 750,000 licensed radio amateurs and many thousands of enthusiasts who, while not operating their own transmitters, share the excitement and interest of amateur radio through short wave listening. The receivers and other aids described in this book are relatively easy to build and will be equally useful to the licensed amateur and short wave listener.

Full constructional details are given for all projects, including housing the units in a suitable case.

Projects such as antennas, antenna tuning units, dummy load, converters and receivers are all covered.

POWER SUPPLY PROJECTS (BP76)
by R. A. Penfold
Published by Bernard Babani (publishing) Ltd
Available from Short Wave Magazine Book Service
110 x 178mm, 91 pages. Price £2.50 plus 75p P&P
ISBN 0 900 162 96 1

The purpose of this book is to give a number of power supply designs, including simple un stabilised types, fixed voltage regulated types, and variable voltage stabilised designs, the latter being primarily intended for use as bench supplies for the electronics workshop. The designs provided are all low voltage types for semiconductor circuits.

There are other types of power supply apart from the mains to low voltage type and a number of these are dealt with in the final chapter, including a cassette power supply, NiCad battery charger, voltage step-up circuit and simple inverter.

OSCILLOSOPES How to Use Them How They Work
Revised 2nd Edition
by Ian Hickman
Published by Heinemann Newnes
Available from Short Wave Magazine Book Service
135 x 214mm, 133 pages. Price £5.95 plus 75p P&P

Oscilloscopes are essential tools for checking circuit operation and diagnosing faults, and an enormous range of models is available. But which is the right 'scope for a particular application? Which features are essential, which not so important? What techniques will get the best out of the instrument?

This book goes a long way towards answering these questions and many more. If you are a student, then it will be even more useful as it discussed in detail how 'scopes work. It also helps the person trying to decide whether that particular model is a bargain or not.

HOW TO BUILD ADVANCED SHORT WAVE RECEIVERS (BP226)
by R. A. Penfold
Published by Bernard Babani (publishing) Ltd
Available from Short Wave Magazine Book Service
110 x 178mm, 118 pages. Price £2.95 plus 75p P&P
ISBN 0 900 162 67 8

Although many short wave listeners use commercial equipment these days, a great deal of satisfaction and enjoyment can be gained from the hobby by using home-constructed equipment.

Using ready-made short wave gear gives very little insight to how the equipment works. Obviously, the story is very different when you build your own.

Full constructional details are given for a number of receivers, both single and double superhet.

There are add-on circuits given, such as Q multiplier, crystal filter, noise limiters and preselector amongst others.

Plenty to keep you busy during the coming winter months.
GRASSROOTS

Lorna Mower

Starting this month with the Itchen Valley RC, who meet on the 2nd and 4th Fridays of the month at 7.30pm in The Scout Hut, Brickfield Lane, Chandlers Ford, Eastleigh. November 27 is a general meeting, followed by G9NZ and December 11 is their Christmas Party. More details from Maurice Cheeseman G1PFO on Southampton 736794.

For ARA, as a result of the termination of Airband Frequencies by G3SVG on December 8, the club meets every Tuesday in the Greyhound Hotel, Market Place, Cromford at 7.30pm. For details, contact Clive GOWF on Matlock 3503.

The Ripon and District ARS meet every Thursday at 7.30pm in the Old Airfield Road Shed (behind Ripon Town Hall). December 17 is their Christmas Bring & Buy organised by David GAUC and January 8 is the club’s Christmas Dance in the Village Hall, GBDTC. For further information contact Liz Bulman at The Lodge, Lister House, Sharow HG4 8BU.

Two events planned this month for all those at the Wakefield & District RS. December 1 is on the air night and the 22nd is their Christmas Social, there will be no meeting on the 29th. They meet Tuesdays at 7.45pm in the Community Centre, Prospect Road, Ossett. John Bryan G4VRY on Leeds 3820198 will tell you more.

The Coulsdon ATS meet every 2nd Monday in the 7.45am in St Swithin’s Church Hall, Grovelands Road, Purley. They have no meeting on December 14. More details from Alan on Thornton Heath 0610.

The East Kent RS have an Annual Cheese & Wine Party on December 9, a winter night meeting follows on the 17th. Meetings are held on the 1st and 3rd Thursdays of each month at 7.30pm in the Cabin Youth Centre, Kings Road, Herne Bay. For more information contact Brian Didmon G4GIS, on Whitstable 262042.

December 16 is the Christmas Social for all those at the Hastings Electoral RS, who meet every 3rd Wednesday at 7.45pm in the West Hill Community Centre, Croft Road, and also every Friday at 8pm in the Club Room, Ashdown Farm Community, Downley Close. Dave Shirley G4NVO on Hastings 420008, will I’m sure tell you any other details.

The Dunwich and District ARS meet on the 1st and 3rd Mondays at 8pm in The Queen Hotel, Todmorden. George Dobbs gives an Annual Christmas Lecture & Social (members only) on December 7, a Natter Night follows on the 21st, and on January 4 there is a Construction competition. More details from G1GZB on Todmorden 7572.

The Atherstone ARC meet on the 2nd and 4th Mondays of each month at 7.30pm in the Physics Laboratory, Atherstone Upper School, Long Street. There is a talk by J. Howard on “Spare Parts” on December 14 and on the 28th there is no meeting. John Arrow G4UQZ on Atherstone 713670, will tell you more.

On November 26, the Edgeware & District RS have SWR Topics, (Morse Class from 6.30pm) and on January 14 they are their AGM. All meetings take place on the 2nd and 4th Thursdays, in the Wating Community Centre, 146 Orange Hill, St Albans. For further information from Ian Cope G4UZ, on Hatfield 65707.

The Winchester ARC meet every 3rd Friday in Durrington House, Eastleigh Street. They have a Christmas Party planned for December 18. More details from Dick Murray on Winchester 881002.

The Colchester Radio Amateurs meet in the Board Room, first floor “B” Block, Colchester Institute, Sheepen Road at 7.30pm. December 10 is a Film and Video Evening. Further information from G3JFU on Colchester 851189.

There’s a lot planned for all those at the Sheffield ARC, with a trip to Beam訪れ February 10, a trip to the Aerosol Society on November 30, Morse Forum on December 7, Pea and Pie Supper on the 14th. Rendezvous with GT1JAH on the 21st and to finish, Christmas Party on December 28. The club meets every Friday at 6pm in the Firth Park Pavilion, Sheffield. Tuition for Morse Code and Radio Amateur’s Exam is held once a month, every 2nd Sunday at 6pm. Details from Alan Pemberton on Sheffield 395287.

The Fareham & District ARC meet every Wednesday at 7.30pm in the Parkwood Community Centre, Westlands Grove. December 21 is a talk entitled “Bobbins, Baluns and Beads” by G3CCB, the 10th is a talk by John Howard “How to Know Mute” on G3TL. Contact G3CCB on Fareham 288139 for more details.

The Bredhurst Recieving and Transmitting Society meet every Thursday at 8pm in the Parkwood Community Centre, Deanwood Drive, Rainham, Gillingham. November 26 is a talk on “Regenerative Receivers” by G3JL. For further information the 2nd Construction/Natter Night, the 10th is a talk on “Kathleen – how our girl is doing” by G3YCY and the 2nd Construction/Natter Night follows on the 17th. There will be no meetings on the 24th and 31st. More details from Kelvin Fay GOAMZ on Medway 376691.

December 9 is a Natter Night, the 23rd is a Christmas Party, for all those involved with the Towbridge and District ARC. The club meets alternate Wednesdays at 8pm in the Territorial Army Centre, Bythesea Road, Dunstable. On December 11 they have a Christmas TV Show via GB8TV, the 18th is a Christmas Party (members only) and there will be no meeting on the 25th. Further details can be a Junior contest on Tony GOCC on Luton 508259.

A Mini-lecture is planned for November 27 and December 11 is a Social evening for all those at the Holmfirth & District ARC, there is no meeting on December 25. The club meets on the 2nd and last Fridays of each month at 7.30pm at the St Andrews Church Hall, Briercliffe Road, Wigan. Enquiries concerning WDBARS activities to the new secretary David Love G4RBO on Banstead 511358.

The Mansfield ARC meet on the 1st Friday and 3rd of each month at 7.30pm in the Victoria Social Club, Mansfield. December 4 is the club’s Christmas Party and the 15th is a talk by G8NNN on “The Oscilloscope”.

There will be no meeting on Friday 1 January, Keith Lawson G4AAH on Mansfield 661085 will tell you more.

Wyre ARC meet at the Breck Sports and Social Club, Breck Road, Poulton, in the 2nd and 4th Wednesdays of each month at 8pm. They have Sweapies Night planned for December 11 which is the club’s Annual Dinner (tickets £6.60 to £7). There will be no meeting on the 23rd. Contact G4NVO on Ipswich 654295 for more details.

On December 8, the Keighley ARS have an Informal Meeting planned. All meetings start at 8pm in the Police Club 16 Victoria Street, Keighley. For any further details please contact Kathy G1GHI on Bradford 495622.

Quite the ever popular Junk Sale is planned at the Derby ARC on ARC on December 2 and January 6. A Construction Contest is being held on December 9, Christmas Party on the 16th, no meeting on the 23rd and The Year in Retrospect on the 30th. All meetings are at 7.30pm at 119 Green Lane, Derby. More details from Jack Anthony G3KGF on Derby 742136.

Quite a busy month ahead for the Yeovil ARC, who meet every Thursday at 7.30pm in the Recreation Centre, Chilton Grove, Yeovil. December 3 is v.h.f. Propagation & Choosing a v.h.f. site by G3JGC, the 10th is an outline of Broadcasting Studio techniques past & present by G3FQO, a Natter Night follows on the 17th and the Christmas Party & Junk Sale follows on the 23rd.

No official meeting on the 31st. Further details from David Bailey G1MN on Yeovil 78904.

The Weymouth ARC usually meet on the 1st Tuesday of each month at 7.30pm in the Marcon College, Arbour Lane, Clef kemish. A talk on Packet Radio has been arranged for December 1. For more details contact Roy G3PMX or Ela G6HKM on Clef kemish 360545 (home) and 353221 Ex. 3810 (office).

All lecture and social meetings for those connected with the Felixstowe and District ARS take place at 8pm, in the Scout Hut, Bury Road, Felixstowe. November 30 is the club’s social and December 14th is Christmas drinks at the Groves, Loughbororough. There is no meeting on the 28th. Further details can be with G4YQC on Ipswich 642595 (daytime).

Another full month ahead for the Newman Police, (Yeovil) YMCA ARC, December 5, a Natter Night, the 9th “How Can I Work Meteor Scatter?” by G8VR, the 16th Christmas Social and January 6 is Natter Night. No meetings in December.

ARC’s Meetings are held on Wednesday evenings, and Instruction Classes in Morse or Radio Amateur’s Exam. These are held at the Dover YCMA, Grosvenor, Leybourne, Leybourne Road, Dover. On Monday and Tuesday evenings it is necessary to contact the club to enrol in instruction or coaching classes. For further information contact John Dobson on Dover 211638.

The Loughton & District ARS meet every second and Paul Whitehill, on each month, at 7.45pm in Loughton Hall (room 201). December 4 is G4ONP Night on the 8 X 6 metre and a Christmas Meal at Ciro’s Restaurant is planned for the 18th. No meeting on January 1, drinks at the Wheatsheaf at 8pm.

More details from John Ray G4GHH on 9 Albin Hill, Loughton 1G0 4RA.

Welwyn/Hatfield ARC have an AGM on December 7. Main meetings are held at Lemsford Village Hall, Brocket Road, Lemsford on 1st Mondays. Their informal meetings are at 9th Welwyn Garden Scout HQ, Knightfield on 3rd Mondays.

Further details from Kevin Dunville G4WLG on Welwyn Garden 383162.

Friday 18 December is Buffet/Dance Night at the RAFA Club, Penney’s Road, all those at the Eden Valley RS. Meetings start at 7.30pm in the Ullswater Centre, Penrith or The Crown Hotel, Eamont Bridge, and usually take

Short Wave Magazine December 1997

6
place every 3rd Thursday. For further information contact Martin G4FUI on Penrith 66728.

Cheltenham ARC have their AGM on December 4. They meet in the Stanton Room, Charlton Kings Library, Cheltenham. More details from Tim Kirby on Cheltenham 36111 (text 2299) during the day or 36723 in the evenings.

The East Lancashire ARC meetings are held twice a month at the Conservative Club, Cliff Street, Blackburn. The 1st Tuesday being formal, the last Tuesday informal. Both start at 7.30pm. December is their AGM. Further information available from the IBA transmitting at 1LA, or from David Moss on Halifax 202306.

On December 2, the Chesham & District ARC have a talk on Batteries by G3GJP, a Natter Night on the 9th and a Video evening with Cheese and Wine on the 18th. More details from John G4VR on Tuesdays G4VJ, or on Dave Worsley 618290.

Crystal Palace & District RC meet at the All Saints Parish Rooms, Beulah Hill (opposite the IBA transmitting at 1LA, or from David Moss on Halifax 202306.

The Farnborough and District RS have a Christmas Social meeting on December 9. There will be no meeting on the 23rd. The club meets in the Railway Enthusiasts Club, off Hawley Lane (also side M3 bridge) at 8.15, on the 2nd and 4th Wednesdays in each month. More details available from Tim Fitzgerald on Camberley 2923.

Bury RS meet every Tuesday at the Mosses Centre, Cecil Street, Bury. Main meetings are on the 2nd and 5th Tuesdays, and other meetings are into the Club's Annual List. Further details from C. Ashworth G1PKO on Bury 5018.

A talk on AX25 Packet Radio by G4MRK on December 7, followed by a Christmas Party. Details of the evening being held at the Southdown ARS. They usually meet on the 1st Mondays at the Chasleley House for Disabled Ex-Servicemen, Bilton Road, Eastbourne. Other meetings are held in the Clubrooms, Hailsham Leisure Centre, Vicarage Lane, Hailsham on Wednesdays and Fridays. All take place at 7.30pm. C. Evans G4VOS on Heathfield 3168 can tell you more.

Toftby ARS every Friday at 7.30pm, in the English China Clay Social Club, Highweek, near Newton Abbot. Saturday 12th is their Christmas Party at the Arundel Court Hotel, Arundel, near Chichester. Christmas meetings are held on January 29. Bob McCreadie G0FGX on Haytor 233, will give you more details.

The Verulam ARS meet the 2nd on Tuesday 4, each month with the exception of December, when they shall meet on the 2nd and 3rd Tuesdays. They meet at the Royal Air Force Association HQ, on the 18th. A Natter Night follows on January 21. Christmas meetings are held on December 23, with Gordon Hunter giving a talk on the club's Annual Meeting. Details of the evening being held at the Southdown ARS. They usually meet on the 1st Mondays at the Chasleley House for Disabled Ex-Servicemen, Bilton Road, Eastbourne. Other meetings are held in the Clubrooms, Hailsham Leisure Centre, Vicarage Lane, Hailsham on Wednesdays and Fridays. All take place at 7.30pm. C. Evans G4VOS on Heathfield 3168 can tell you more.

A meeting is the committee meeting on the 3rd Saturday of each month. December 19 is a Social Evening and January 16th is the Presentation of the Club's Annual List. Geoff Strode G3ZFL on Forest Hill 6940 will tell you anything else you may need to know.

The Cheltenham and District RS meet at the Cheltenham Rugby Union Football Club, Hallare, Vicars Cross at 9.30pm. Morse classes start at 7.15pm. A Construction Contest is to be held on December 15, a Christmas Party on the 22nd and a Drink and Waffle night is planned for the 29th. Further details from Dave Hicks G8FA on Cheepsend 369685.

On December 1, and an Annual Christmas Social Evening and Presentation of the Marceus Trophy on the 15th, are the two events planned for those at the Chichester and District RS. Club meetings are held in St Peter's Hall, St Peter's Road, Chichester, on the 1st and 3rd Tuesdays of the month at 7.30pm. If you have any queries then the person to contact is C. Bryan G4YLL on Chichester 7823.

The South Bristol ARC usually meet at the Holy Trinity Church Hall, (Upper), Green Lanes, Winchcombe Hill at 7.45pm. Their AGM is on the 10 December, their last meeting on the 24th. Further details from D. C. Elson G4YLL on Waltham Cross 30051.

The South Bristol ARC usually meet at the Holy Trinity Church Hall, (Upper), Green Lanes, Winchcombe Hill at 7.45pm. Their AGM is on the 10 December, their last meeting on the 24th. Further details from D. C. Elson G4YLL on Waltham Cross 30051.
SHORT WAVE RECEIVERS

HF125 General coverage receiver made in Britain by Lowe Electronics, 30 kHz to 30 MHz... £375.00 £7.00
Options K125 Optional frequency entry keypad £59.50
D125 FM and synchronous AM detector £59.50
F125 Portable pack, includes internal nicads, charging system and active whip antenna £69.50
R2000 KENWOOD general coverage receiver 150 kHz to 30 MHz... £637.50 £7.00
Options VO10 VHF converter, adds 116 to 174 MHz £170.50 £2.50
YG185C 500 Hz CW filter £116.62 £1.00
R2000 KENWOOD general coverage receiver, 100 kHz to 30 MHz... £895.00 £7.00
Options V620 VHF converter, adds 108 to 174 MHz £176.32 £1.00
YK200C 500 Hz CW filter £49.59 £1.00
YK58CN 270 Hz CW filter £59.10 £1.00
YK88SN 1.8 kHz SSB filter £49.10 £1.00
YK88A1 0 kHz AM filter £50.48 £1.00
SP430 Matching speaker £43.04 £2.50
VS1 Voice module £34.02 £1.00
NRD585 JAPAN RADIO COMPANY general coverage receiver, 90 kHz to 84 MHz... £1195.00 £7.00
Options CMK165 Optional VHF/UHF Converter, adds 34-60, 114-174, 423-456 MHz £391.35 £7.00
CMM550 Internally fitted RTTY demodulator £102.19 £1.50
CMM552 Internally fitted RS52 interface £91.75 £1.50
OCR33 Cable for CMM552 interface £80.25 £3.00
CMF33 300 Hz crystal filter £126.37 £1.00
CMF35 600 Hz crystal filter £126.37 £1.00
CMF33 10 kHz crystal filter £126.37 £1.00
NV38 Matching loudspeaker £86.86 £2.50

DATA DECODING EQUIPMENT

CD600 Decoder for CW/RTTY/ASCII/AMTOR... £218.14 £7.00
GD800 Decoder for CW/SSB/ASCII/AMTOR... £204.97 £7.00
CD970 As CD660 but with built-in dot matrix display... £277.77 £7.00

VHF/UHF CONVERTERS

(MMC1445E...6 metre converter, uses 10 metre IF £39.56 £1.25
MMC1448E...8 metre converter, uses 10 metre IF £39.56 £1.25
MMC1448HE...MMC1448B but higher specification £74.94 £1.25
MMC432282S...70 centimetre converter, uses 10 metre IF £44.86 £1.25

HEADPHONES

HS7 KENWOOD miniature head phones £16.66
HS8 KENWOOD lightweight headphones £20.15
HS8 KENWOOD de luxe headphones £38.57

WORLD CLOCK

CWTC CASIO world time clock £15.95 £1.00

FREE

Send 50p to cover the postage and we will send you, by return of post, your FREE copy of "THE LISTENER'S GUIDE", a commonsense look at radio listening on the LF, MF and HF bands. Its unique style will, I am sure, result in a "good read" but underneath the humour lies a wealth of experience and expertise. You will also receive detailed leaflets on our range of receivers and a copy of our current price list.

For full range of VHF/UHF receiving equipment see last months advertisement in this magazine.

LOWE ELECTRONICS LIMITED

Chesterfield Road, Matlock, Derbyshire DE4 5LE Telephone 0629 580800 (4 lines) Telex 377482 LOWLEC G
Shops in GLASGOW Telephone 041-945 2686, DARLINGTON Telephone 0325 486121, CAMBRIDGE Telephone 0323 311230,
CARDIFF Telephone 0222 464154, LONDON Telephone 01-429 3268, BOURNEMOUTH Telephone 0202 877760

Short Wave Magazine December 1987
Frequencies and Information Charts

With regret I am unable to advise readers as to the best equipment to purchase for any given purpose, although many of you have written requesting this kind of thing. One problem is that opinion on equipment is subject to individual preference and what suits me may not be what you like. Also, it’s hard for one person to remain an up-to-date “walking catalogue” of receivers, etc. One such request is from Bob Bell (Blyth) who also notes dense traffic across a south-east/north-west path. I suggest that this is the UB13 land possibily UR38) airway which passes the Newcastle v.o.r./d.m.e. identity NEW-dah-dit, di-dah-dah, 112.06MHz/Channel 57) and n.d.b. (same identity, 352Khz). See your Aerad chart H108 or Jeppesen 3E(HI). Air traffic is always subject to control under instrument flight rules (i.f.r.) whatever the weather and does not communicate with a flight information region (f.i.r.) which only handles uncontrolled aircraft in its advisory capacity. Oceanic flights contact Shanwick first on v.h.f. and are then usually given a pair of h.f. channels on which to report during their passage within the north Atlantic track system. For frequencies again see the appropriate Aerad charts (which you say you’ve got) or Jeppesen “Airline Traffic Orientation Chart”. I also recommend this latter chart to D. R. Benfield (Northampton).

Frequencies and nav-aid availability, etc. do change regularly and to find out up-to-the-minute information you need a NOTAM service. Philip Lee (Epsonom) who has done a little gliding would like to know about this service. Your local airfield might carry NOTAMs (try the flying club or school); you can also take Aviation News fortnightly for its “Radio Watch” feature. Some large public libraries can also help with these NOTifications to AirMen and lastly the Civil Aviation Authority (CAA) publication General Aviation Safety Information Leaflet (monthly from CAA, Printing & Publication Services, Greville House, 37 Grattan Road, Cheltenham, Gloucestershire, GL50 2BN) contains a section on “VOR Changes”. Philip is also trying to build a list of frequencies, but I think that the usual sources as often mentioned in this column are as good as any. One such is suggested by Alan Jarvis (Cardiff); 1 AIDU, RAF Northolt, West End Road, Ruislip, Middlesex, H4406NG sells charts, En Route Supplements, etc. Do remember the good-sized stamped/ addressed envelope when sending for price lists. Alan helps previous readers who wanted to know the locations of London air-traffic control relay stations: some of them are at Davidson Moor, Birdlip and Clee Hill.

Military News

The military low flying system interests

When will pilots (and their radios) become redundant? Yours truly flew on his holidays by Boeing 767 and found it to be all computerised “in the office” up front! Very disconcerting was the navigation receiver’s habit of tuning whatever nearby beacon it liked in order to allow automatic validation of the computerised inertial reference system’s current position. This pre-programmed frequency need not be one of the beacons mentioned in the flight plan!

Alan Duckers (Merseyside), ‘Aye’ you rightly say, Alan, this type of flying does not take place in congested terminal areas but is dense over certain parts of the country where there are fewer conflicts. True combat flying would entail doing 600kts at less than 1250ft above the surface but the aircraft that you actually see are strictly limited to remain at least 250ft from the nearest object (including the surface) and not to exceed 450kts (which I take to be indicated air speed, i.a.s.). Last year I attended a meeting at which the RAF presented their case for low flying training and an assurance was given that the route and timing of these flights is random apart from being restricted to 0700-2300 hrs weekends. Apart from this, Alan mentions the new Doppler v.o.r. beacon near him at Wallasey (WAL: di-dah-dah, di-dah, di-dah, 114.1MHz). Could some reader please enlighten the rest of us as to the difference between this type of v.o.r. and the conventional variety as described in part 2 of my “Aeronautical Radio” series? Apparently some light aircraft v.o.r. receivers do not work properly with these Doppler beacons (according to Aeronautical Information Circular 75/1986 published by the CAA). My three part series ran in May, June and July this year so if I like Roy Taylor G1LP (Wembley) you missed it, please write to the Editor for the price of back numbers (sorry I can’t send any myself).

Clive Hextall G1HVN (Leicester) is interested in the military u.h.f. allocation. Last month I mentioned the adoption of narrower channel spacing; in fact, it appears that what actually happened was that on 23rd August the NATO countries went on to 25kHz channels and many existing frequencies changed (example the Northolt automatic terminal information service, a.t.i.s., is now on 269.9MHz and its operational hours are 0800-2000GMT). Not all aircraft have this narrower channel capability yet, though.

Callsigns

“How do the airlines announce themselves to the controller” asks Ian Baxter (Blackburn). Well, they all have agreed callsigns which usually include the flight number. “Speedbird 123” is British Airways flight 123 (in the old days, that would have been BOAC). Gsco 5EA used the “Gliding Eagle” callsign. Some British Airways and British Airtours (“Beetours”) flights have a strange allocation of callsign (e.g. “Shuttle 9 Uniform” was one flight on which I came home to Heathrow from a trip to Edinburgh). “Olympic” is the Greek national flag carrier, and “SABENA” (acronym for: Société Anonyme Belge d’Exploitation de la Navigation Aérienne) likewise for Belgium. D. R. Benfield points out that “Airforce 1” is the US Air Force aircraft carrying the President. While on the subject of dignitaries, a “purple airway” is a temporary restriction to protect a royal flight.

Confusion over all those numbers” required to explain an aircraft’s position is not surprising. Joseph Grogan (Belfast). It seems that nearly everything that pilots routinely say is numeric! There are: flight number, altitude (feet) along with barometric pressure setting (millibars), heading (degrees), speed (knots), frequencies, “squawk” numbers and time. Not to mention their position: wind direction, speed, area and barometric pressure. There may be a runway number thrown in for good measure! If you took the radio endorsement for the private pilot’s licence (p.p.i.) you’d be expected to use “by the book” procedure leaving no doubt as to exactly which number was being mentioned at any given moment. Unfortunately experienced pilots tend to abridge their reports in the real world of busy control frequencies. If any particular terminology is causing confusion then I will attempt to explain it in this column if you write to me. When you start your interest in flying, information on aircraft position can be found by consulting the radio navigation charts (as mentioned in various recent “Airbands”), and frequencies are listed in the Aerad Europe Supplement Volume 1.

I won’t easily forget my mistake about the Decca system. Chris Kirby (York) reminds me that the frequencies used are in the range 70-130KHz. Chirp 6B is the English one, based on a frequency (f1) of 14.1667KHz. The master frequencies are all 6f (85Khz) with the red slave on 5f (113.3KHz), green slave on 9f (127.5KHz), and purple slave on 5f (70.8KHz).

Can anyone tell David Edwardson (Wallasey, Tyne & Wear) the locations of the VOFD 1987? There are several around the country, all on the same nominal frequency but in actual fact slightly staggered by a few hundred KHz so as to reduce mutual co-channel interference. Another
controversy is the meaning of VOLMET: one reader puts forward the alternative view that the “Vol” is from the French Voler, to fly. David is near RAF Oulder which controls Border Rader (132.8MHz) which may also explain a query by G. R. Foster (Southampton) who wants to know where Oulder is.

Heathrow Procedures

The approaches to Heathrow interest Bill Montague (Hornchurch) who lives under the Lambourne hold actually based over the v.o.r. LAM: di-dah-dit, di-dit, dah-dah, 116.9MHz. The other three holds are over the v.o.r.s at Bovingdon (BNN: dah-dit-dit, dah-dit, dah-dit, 112.3MHz), Ockham (OCK: dah-dah-dah, dah-dah-did-dit, dah-dit, 115.3MHz) and Biggin Hill (BIC: dah-dit-dit, di-dit, dah-dit-dit, 115.1MHz). Radials are race track shapes stacked at 1000ft intervals over the beacon. The two main runways are parallel 27 left/right (09 right/left if running in the opposite direction). Unless single runway operation is in use, aircraft land on one of the runways and take off on the other parallel one in the same direction (always in to wind unless it is light, say less than 5mph). Chris Cotton lives in Battersea, under the final 27 approach. The only reason that I can think of for the last-minute change that Chris sometimes observes when certain larger aircraft switch from 27R to 27L is that having landed, taxiing to terminal 4 will be quicker and it would not be necessary to cross the other runway. All Heathrow taxiways and runways are divided into numbered blocks and the pilots report their position to ground movement control on 121.9MHz by reference to these. As a passenger you may see the yellow boards which carry two numbers separated by a bold vertical line: these are at the boundary of two blocks, the left-hand number is the block that you are leaving and the right-hand number is the block entered. For quick taxiing to terminal 4, aircraft that have touched down on 27L would need to reduce speed sufficiently to be able to vacate the runway to the left at block 83. Bill uses aerodrome let-down charts from the CAA but the Aerodrome ones are more compact and sometimes cheaper. You can see the block number layout from these.

Both Bill and Chris are interested in the instrument landing system (i.l.s.) and for details I would refer you both to part 3 of my “Aeronautical Radio” series (July SWM). Category weather minima relate to cloud base and runway visual range suitable for a manual landing, having reached a decision height of around 200ft depending on aircraft type and runway situation (minimum decision height, m.d.h., now supersedes the old decision height but allows for more factors). Cat II refers to bad weather where the decision height might be only 100ft. The aircraft equipment capable of flying this is more sophisticated than Cat I, for example at least two autopilots are needed. Cat III requires fully automatic landing although I'll give a view of the runway just on the flare. It's only when in the landing roll and III isn't even allowing visual taxing! For takeoff, the runway is kept clear of other aircraft or vehicles by the controller and then the pilot need only see a couple of lights ahead at any given time so as to maintain a straight path along the runway centre-line. At the moment of rotation, the instrument would normally be used alone anyway.

However, just as with any radio equipment, i.l.s. can't be guaranteed to remain accurate without regular maintenance. The radiation patterns of the localiser and glide-slope beams are all important. The CAA flying unit (based at Stansted) operates the localiser and the glide-slope (as seen by Chris). This makes repeated i.l.s. runs, breaking off to go around at the last minute, and calibrating its flight path against ground-based equipment. They used to do this with a theodolite but I gather that it's more scientific now (something involving lasers!). It's a demanding job for the pilot that isn't just one i.l.s. approach at the end of a flight, but many rapid repeated ones, all to be flown with superb accuracy without loss of concentration! But it is bound to get in the way of the routine traffic which doesn't stop just because the calibrator is flying about. Recently I saw this happening at Luton whilst the 26 i.l.s. was being calibrated. The trouble was, 03 was the active runway! During this time, the i.l.s. often identifies itself as TST: dah, di-di-dit, dah; it should not be used for navigational purposes when under test. The RAF have their own calibration aircraft. Luton I regard as my local airport; well worth a visit since the spectacles' car park is right next to the main taxiway. Most first officer's offices have no view to the assembled crowds of enthusiasts whilst taxing on to the apron after landing.

More museums: R. M. Lydond (South Glamorgan) mentions those at Cardiff airport and 1st Sunday in the month only) St. Athan. He would also like to know the power used by the transmitters or aircraft and ground stations; can anyone help? The e.p. from aircraft antennas can often be quite low in relation to transmitters output power (see “Book Review”, Radio Communication October 1987 p.747). For the information you ask about the Seical system try High in the Sky by Ken Barker from The Aviation Hobby Shop, Spectator Terrace, Manchester Airport, Wythenshawe, Manchester, at £3.25 inclusive of postage.

According to John Davies this book also includes useful frequency and flight-over-time information. John adds that the Shawwick controllers are based at Shannon along with the transmitters and that only the computer systems are located at Prestwick.

An old friend is Rolf Vogel (Menorca, Spain) who has all but completed his private pilot's licence. His problem is that all radio procedures are in Spanish! So he has to return to Germany to take an English language radio test... complicated. A tip he suggests is as follows. Establish and fly along any v.o.r. radial away from the facility, then turn 45° off heading. Time (in seconds) from this turn until crossing the next radial that is separated by 10° from the original one. Divide this time by 10 and the resulting number is actually how many minutes it would now take to fly directly to the beacon. Unfortunately I found this to be out by 50 per cent based on simple trigonometry: can anyone help? Rolf's other interest is sub aqua diving and this can interact disastrously with flying. The pressure in the cabin of an airliner is equivalent to that 2100m up a mountain. So he decided to go on a trial diving lesson and then fly home a few hours later; the reduced cabin pressure promptly causes the bends! An interval of 24hrs is needed between diving and flying. Remember that the Commander will have to divert his aircraft for an emergency landing in the event of a passenger falling ill, and the safety interest of that one person must be balanced against those for the aircraft complement as a whole. A difficult decision, and not one likely to be popular if the illness is effectively self-induced.

The radio-nav facilities near his Cardiff home are puzzling George Jacob. It isn't really possible to correlate airway colour designation and direction; amber 25 runs over you leaving Berry Head (BHD: dah-di-di-dit, di-di-dit, dah-dit, 112.7MHz v.o.r. and 318kHz n.d.b.) on 015° and going to Exe (BN: dah-di-di-dit, dah-di-dit, 115.3MHz) and 054° with a couple lights. (LCY: 111.1MHz v.o.r. and 50kHz n.d.b.) You are told to cross and go on the beacon.

The runway (10/28) at the London (Croydon) STOLport has only 6500ft. by the time you read this. There's a n.d.b. (LCY: dah-di-di-dit, dah-dit-dah, dah-di-dah, 322kHz) and a terminal d.m.e. which is presumably i.l.s. coupled as it is accessed by tuning the nav set 111.15MHz. Air-traffic control is by Thames Radar on 132.7MHz.

Others of you who have written in will be interested in your local facilities. Richard Carrick (Huddersfield) will find himself at a real “crossroads in the sky” near the Pole Hill v.o.r. (POL: di-dah-dah-dit, dah-dah-dah-dah, 112.1MHz). Most of the airways traffic routing north-south along the west coast passes here. An old hand from the days of Hunters and Shackletons is P. Farnes who will be under a direct track leaving Stubbly (STU: di-di-dit, dah-di-dit, 113.1MHz v.o.r. and 400kHz n.d.b.) on 078° towards Honley (HON: di-di-dit, dah-dah-dah, dah-dit, 112.9MHz). Michael Ellard (Cork) is near a major intersection at the Cork v.o.r. (CRK: dah-di-di-dit, di-di-dit, 202kHz) and the Guiyu v.o.r. (GUI: dah-di-di-dit, di-di-dit, 115.3MHz).
The Uniden Bearcat UBC 175XL is a very attractive base station v.h.f./u.h.f. scanner with nine-band coverage of the spectrum between 66 and 512 MHz. Any frequency within these bands can be stored in one of the 16 memories for later retrieval. Also incorporated are search, scan and a host of other useful facilities. The rather attractive simulated wood finish makes this receiver particularly appropriate for those without the advantage of a separate shack for the radio equipment, as few people would find it "offensive" to look at. In fact, it probably matches many hi-fi tuners and cabinets already in many living rooms!

Operation

Connecting up the UBC 175XL is very easy. The unit comes complete with an a.c. adapter, which is a plug-top mounted unit with a two-pin connection to the mains outlet. The only point to note here is that a high quality fused 3A to two-pin adapter will be required in order to provide adequate protection and physical support for the adapter. The r.c. output of the a.c. adapter is connected to the scanner by a 1.8m lead and a standard power jack on the rear panel.

The antenna connection is made via a car radio type coaxial socket on the rear panel, this seems a strange choice of socket for a scanner covering up to 512 MHz. The r.c. is supplied with a 500 mm telescopic antenna which plugs into the antenna socket. This type of antenna doesn't perform very well and to realise the full potential of the receiver any prospective purchaser would be wise to invest in an externally mounted discrete antenna. That doesn't mean to say that the scanner gives poor results with the supplied antenna, far from it. The only other connection on the rear panel is for an external speaker, though the sound quality from the internal speaker is very good.

The UBC 175XL is equipped with a good range of features designed to ease the life of the listener. The key-pad has been separated into two distinct groups. The first group comprises the program keys which allow direct entry of frequency, channel number and search limits. The second group of keys are used to select the facilities of the UBC 175XL. The frequency and current mode is displayed on a rather pleasant back-light liquid crystal display (r.c.d.) which is set at an ideal angle for viewing.

One of the first jobs, after switch-on, is to enter some of your favourite frequencies into the memories. This is very simple. You just enter the required channel number, press the MANUAL key to indicate that you want to set up the channel and then type in the required frequency followed by the r (enter) button. I found this a pleasant change from the scanners which require very careful reading of the handbook before attempting any type of operation.

Another useful feature is the scanner adds the trailing zeros for you. If, for example, you want to enter 145.0000 MHz, you only need to enter 145, followed by the enter key. The trailing zeros are automatically entered.

Once a selection of your favourite frequencies have been entered they can be scanned by pressing the SCAN button, whereverupon the display will blank, except for the channel number. The scan is stopped either by the presence of a signal exceeding the squelch threshold or by pressing the manual button. The blanking of the frequency display during scanning highlights the thought that has gone into making this scanner as easy to use as possible, at least you know what the scanner is doing.

A common problem with scanners is finding a suitable setting for the squelch control. On the UBC 175XL it can be switched to auto which selects a factory preset squelch level. I found that this preset level proved to be just about optimum for general listening and was used extensively during the review period.

When operating in scan mode, the receiver normally operates with a very fast scan rate of 15 channels per second, but this can be set to an alternative rate of 5 channels per second if required. The high scan speed is a useful feature as it means, fairly obviously, that every channel is monitored in just over a second consequently you are unlikely to miss any of the action! Even at that speed it doesn't take much to stop the scanner either. So, if your favourite frequencies are ones that only have short bursts of signal in long periods of silence, then the 15 channels per second scan rate will be very useful for you.

If you get problems with a carrier on one or more channels, then this can be easily overcome using the lockout facility. This is enabled or disabled very easily by pressing the LOCKOUT button whilst tuned to the offending channel. You have no idea how useful this facility is, until you are troubled by an annoyingly constant signal, then it is worth its weight in gold.

Do you need a base station scanner? If so the Uniden Bearcat UBC 175XL reviewed here could be just what you’ve been waiting for.

A common problem when listening with a scanner is that when tuned to a two-way communications channel the scan will restart in the gap between transmissions. On the UBC 175XL this problem is overcome using the delay facility which forces the scanner to wait for 3 seconds before recommencing the scan. The facility can be enabled on any channel and is activated by pressing the DELAY button whilst tuned to the required channel. The allowed n/t to monitor amateur repeaters quite successfully, even those with long gaps between the hand overs.

There is a priority channel feature on the UBC 175XL, it forces the scanner to monitor channel one every three seconds regardless of whether the scan has already stopped on another channel. The obvious use is to monitor your favourite frequency whatever that may be. It's the PRI button which starts and stops this function, but don't forget it's only active on channel one so be careful about which frequency you put in there.

It's often useful to be able to examine a segment of the spectrum in order to discover new frequencies of interest. This facility is available in the form of a search which operates between any two frequencies in any one band. The actual band limits are as follows: 66-88 MHz, 118-136 MHz, 136-174 MHz and 406-512 MHz.

To enable a search, the limits must first be entered, this is a very straightforward operation. First the required channel is selected as described earlier and the first search limit is entered followed by the LIMIT button instead of the r button. The second search limit is then entered in the same manner. One helpful point is that the limit frequencies can be entered in any order as the scanner sorts out which is the high and low limit. Although you have to select one of the scans memories for the search routine, the contents of the memory

John Waite

UNIDEN BEARCAT UBC 175XL

Overhauled magazine December 1987
remain intact which is good but it's not made very clear in the manual. Once the limits of the search have been set the search is started by pressing the SRC button on the front panel. The search is continuous and when the high limit is reached it resets to the low limit and starts again. I found the continuous search very useful as you can sit back and let the scanner do all the work and just make a note of any interesting stations that are revealed.

When searching a band the UBC 175xl actually tunes in discrete steps, the step size is determined by the band being searched as follows:

- 66-88MHz: 6, 406-512MHz: 12 kHz steps
- 118-136MHz: 25 kHz steps
- 136-174MHz: 5 kHz steps

Although it's not mentioned in the manual, the SPEED button actually works when in search mode which is very useful. The two search speeds available appear to be approximately 15 or 5 steps per second. I found that, as when in scan mode, the very fast search rate is extremely useful as you can very quickly check a wide range of frequencies.

Once you have found an interesting transmission you can stop the search by pressing the VOLO button, if nothing else this gives you time to make a note of the frequency for entry into one of the sixteen scan memories. One notable feature available in search mode is the ability to manually step either up or down in frequency one step at a time. This manual search can be started at any time while in search mode by pressing the VOLO button, to step up in frequency press the HOLD button again and to step down press the LIMIT button. I thought that this was a very useful feature as a lot of scanners only allow you to step up in frequency. If you only discover one interesting frequency then the UBC 175xl has a handy short cut to move the frequency into a scan memory. You first press VOLO to stop the search and then simply press E to move the frequency into the displayed memory channel. I thought this was very quick and easy to use. Finally, if the search stops on a steady carrier a press of the SRC button will recommence the search from where it stopped, which proved to be very useful. As is common with most scanners, there is no facility to lock-out frequencies when in search mode.

One facility not mentioned so far is the weather channels, this scans between 162.2 MHz and 162.550 MHz in seven 25kHz steps. The scan is started by pressing the WX button and then continues in the same manner as normal scan. This feature is of little use in the UK as the frequencies scanned are for the NOAA satellite which is not always easily received in the UK.

Circuit Description

The UBC 175xl is a complicated receiver using 24 transistors, 5 integrated circuits and 53 diodes, so I will attempt to simplify the circuit description as much as possible.

The signal from the antenna socket is led to two separate r.f. amplifiers and mixers. The first deals with all signals below 400MHz and comprises a m.o.s.f.e.t. r.f. amplifier followed by a dual gate m.o.s.f.e.t. mixer. The path for signals above 400MHz is similar except that the r.f. amplifier and mixer stages use bipolar transistors. The outputs of both mixers are transformer coupled to a 10.86MHz crystal filter. The resultant 10.86MHz i.f. is then fed to a single stage i.f. amplifier before being coupled to an MC3359P f.m. receiver integrated circuit. The MC3359P contains the 2nd mixer, i.f. amplifier, noise amplifier and squelch circuit. After being filtered by a ceramic filter, the 450kHz output of the 2nd mixer is split between the f.m. i.f. amplifier and the a.m. i.f. amplifier. To enable automatic switching between a.m. and f.m. the recovered audio signal from the two detectors is applied to an electronic switch before being fed to a buffer amplifier. The final audio amplification to 1 watt is achieved using a TDA1906 power amplifier.

The generation of local oscillator frequencies is controlled by the microprocessor and uses a phase locked loop system. The frequency reference for the system is a 10.4MHz crystal which also doubles as the second local oscillator. A two transistor v.c.o. (voltage controlled oscillator) produces the first local oscillator signal which is fed to the mixer via two cascaded buffer amplifiers. In order to cope with the large frequency span, the oscillator output is fed via a tripler when the u.h.f. band is selected.

The d.c. output from the plug-top power unit is fed via a series diode to provide reverse polarity protection. An integrated circuit voltage regulator provides the main 8 volt supply for the receiver, whilst several other voltages are regulated using Zener diodes.
BASE STATIONS

For Tomorrow’s Radio Technology

TODAY

Good News for FT767 owners. Kenwood owners take note!

IMPROVED YAESU FT767 RWC/MK2 HF-UGF BASE STATION

We are pleased to announce that we have now improved the synthesis (pre-existing) to a better dynamic range up to 1989. We now have the best of both worlds! This modification is based on a class of its own and is available from RWC and is fitted free to all new units bought by us, or will modify any existing unit for £58.50, plus return carriage.

FT767: COMPLETE BASE STATION (EX. WHF) £1390.00

FT767 MK2: COMPLETE BASE STATION (EX. WHF) WITH 2M FITTED £1510.00

FT767B: COMPLETE BASE STATION WITH 2MTR (SPECIAL PRICE) £1600.00

NEW ICOM IC075 £10W BASE STATION 2M/6M RECEIVER TX100N & GM Many more makes and models in stock. Please enquire.

NEW PRODUCTS

- **ICOM ICR7000/AH7000**
- **NEW ICOM TYPE COMPATIBLE NICAD PACKS**
- **EMPTY CELL CASES AND DESK TOP CHARGER**
- **NEW WX7 SPREAD Spectrum Nicknog**
- **NEW WX7 SPREAD Spectrum Nicknog**
- **NEW ANTENNAS & ACCESSORIES**
- **RAY WITHERS COMMUNICATIONS LTD**

Manufacturers, Importers and Suppliers of World Famous Communications Products

INTERNATIONAL HOUSE, 963, WOLVERHAMPTON ROAD, OLDbury, WARLEY, WEST MIDLANDS, B69 4RL.

Ordering Information: For further details please call us for a free brochure or write for our colour brochure, which can be obtained for a small charge. All crédito/charge cards accepted. £1000.00 Instant credit available to customers, subject to status. We also offer our RWC Charge card, Please call for further details and information. Please do not advertise products that are not on hand for sale. All prices correct at time of going to press, However, prices subject to change without prior notice. E. & O.E.

STOP PRESS... PLEASE NOTE NEW ADDRESS

NEW

SCANNERS

YAESU FRG9600/RWC

NEW

RAY WITHERS COMMUNICATIONS LTD

Manufacturers, Importers and Suppliers of World Famous Communications Products

INTERNATIONAL HOUSE, 963, WOLVERHAMPTON ROAD, OLDbury, WARLEY, WEST MIDLANDS, B69 4RL.

Ordering Information: For further details please call us for a free brochure or write for our colour brochure, which can be obtained for a small charge. All crédito/charge cards accepted. £1000.00 Instant credit available to customers, subject to status. We also offer our RWC Charge card, Please call for further details and information. Please do not advertise products that are not on hand for sale. All prices correct at time of going to press, However, prices subject to change without prior notice. E. & O.E.

STOP PRESS... PLEASE NOTE NEW ADDRESS

NEW

RAY WITHERS COMMUNICATIONS LTD

Manufacturers, Importers and Suppliers of World Famous Communications Products

INTERNATIONAL HOUSE, 963, WOLVERHAMPTON ROAD, OLDbury, WARLEY, WEST MIDLANDS, B69 4RL.

Ordering Information: For further details please call us for a free brochure or write for our colour brochure, which can be obtained for a small charge. All crédito/charge cards accepted. £1000.00 Instant credit available to customers, subject to status. We also offer our RWC Charge card, Please call for further details and information. Please do not advertise products that are not on hand for sale. All prices correct at time of going to press, However, prices subject to change without prior notice. E. & O.E.

STOP PRESS... PLEASE NOTE NEW ADDRESS

NEW

RAY WITHERS COMMUNICATIONS LTD

Manufacturers, Importers and Suppliers of World Famous Communications Products

INTERNATIONAL HOUSE, 963, WOLVERHAMPTON ROAD, OLDbury, WARLEY, WEST MIDLANDS, B69 4RL.

Ordering Information: For further details please call us for a free brochure or write for our colour brochure, which can be obtained for a small charge. All crédito/charge cards accepted. £1000.00 Instant credit available to customers, subject to status. We also offer our RWC Charge card, Please call for further details and information. Please do not advertise products that are not on hand for sale. All prices correct at time of going to press, However, prices subject to change without prior notice. E. & O.E.

STOP PRESS... PLEASE NOTE NEW ADDRESS

NEW

RAY WITHERS COMMUNICATIONS LTD

Manufacturers, Importers and Suppliers of World Famous Communications Products

INTERNATIONAL HOUSE, 963, WOLVERHAMPTON ROAD, OLDbury, WARLEY, WEST MIDLANDS, B69 4RL.

Ordering Information: For further details please call us for a free brochure or write for our colour brochure, which can be obtained for a small charge. All crédito/charge cards accepted. £1000.00 Instant credit available to customers, subject to status. We also offer our RWC Charge card, Please call for further details and information. Please do not advertise products that are not on hand for sale. All prices correct at time of going to press, However, prices subject to change without prior notice. E. & O.E.

STOP PRESS... PLEASE NOTE NEW ADDRESS

NEW

RAY WITHERS COMMUNICATIONS LTD

Manufacturers, Importers and Suppliers of World Famous Communications Products

INTERNATIONAL HOUSE, 963, WOLVERHAMPTON ROAD, OLDbury, WARLEY, WEST MIDLANDS, B69 4RL.

Ordering Information: For further details please call us for a free brochure or write for our colour brochure, which can be obtained for a small charge. All crédito/charge cards accepted. £1000.00 Instant credit available to customers, subject to status. We also offer our RWC Charge card, Please call for further details and information. Please do not advertise products that are not on hand for sale. All prices correct at time of going to press, However, prices subject to change without prior notice. E. & O.E.

STOP PRESS... PLEASE NOTE NEW ADDRESS

NEW

RAY WITHERS COMMUNICATIONS LTD

Manufacturers, Importers and Suppliers of World Famous Communications Products

INTERNATIONAL HOUSE, 963, WOLVERHAMPTON ROAD, OLDbury, WARLEY, WEST MIDLANDS, B69 4RL.

Ordering Information: For further details please call us for a free brochure or write for our colour brochure, which can be obtained for a small charge. All crédito/charge cards accepted. £1000.00 Instant credit available to customers, subject to status. We also offer our RWC Charge card, Please call for further details and information. Please do not advertise products that are not on hand for sale. All prices correct at time of going to press, However, prices subject to change without prior notice. E. & O.E.
UNIDEN BEARCAT UBC 175 XL

Performance

I have been able to assess the performance of the UBC 175xL, over several months of use. My first impression was of a very well laid out attractive scanner. The initial eagerness to get on the air resulted in rather poorer results than expected. These initial problems were due to the supplied telescopic antenna which is really not suitable as a general coverage antenna over the range 66-512MHz.

I thought that the programming of the scanning memories had been made very simple and easy to use which is a big plus point. The only snag with the memories is that the contents are only held for about 4 hours after removing the power. The reason for this is that instead of a battery back-up system the UBC 175xL uses the energy stored in a capacitor to power the memory after the power is removed. I think that most users would prefer a battery back-up system, even if it does mean an occasional battery change.

Despite the back-up problems the 16 memories can be very quickly re-programmed so perhaps it’s not too bad a problem.

The very fast scan rate of 15 channels or steps per second was very useful and made it very easy to make full use of the sixteen channels. One other feature that proved to be very useful in normal operation was the automatic squelch, this saved all the normal delicate twiddling of the squelch control in an effort to find the optimum setting. The factory setting for automatic squelch was just right.

The technical performance of the scanner was evaluated in the SWM lab, and the results can be seen in brackets in the specification chart. The scanner actually put up a very good performance and exceeded the manufacturer’s specification on all counts. The r.f. sensitivity was particularly good and was very well controlled throughout each band. The maximum variation across a band was 0.08µV which is very good for such a wide-band receiver. The audio response – 6dB points were at 250Hz and 2kHz which proved to be a good match for the internal speaker. The audio quality, though not perhaps ideal for communications, was very comfortable to listen to over extended periods.

To summarise, the UBC 175xL is a very attractive scanner that achieves a welcome simplicity of operation without compromising the technical performance.

The Uniden Bearcat UBC 175xL is priced £179.99 inc VAT and is available from Uniden UK Limited, Uniden House, East Portway, Andover, Hampshire SP10 3LX. Thanks to Uniden UK Limited for the loan of the review model.

AIRBAND

<110

DI-dah-dit, di-dah-dit, dah-di-dah, 114.6MHz. I'm surprised that you report a lack of traffic here, Michael; you are also near Waterford airport which is relatively busy. J. M. Gooding (Essex) is close to Southend airport and airway red 1 south (RIS) which should give you plenty of interest. Another near-airport dweller is Gordon Gipson (Newcastle-upon-Tyne).

Company Frequencies

My attention is drawn to the company frequency allocations on v.h.f. by Colin Sumner (Rainham). Typical information passed between aircraft and base will be time off blocks/or take-off (in GMT of course, with the "/" being spoken as "diagonal") number of passengers as adults occupying seats + number of babes-in-arms; and any engineering messages. So often aircraft develop or fly with small defects which are no problem unless they infringe the minimum equipment list for that operation. It might not matter, for example, if the captain’s seat will not slide back and forth on its rails provided that the position in which it has jammed is acceptable in order for the pilot to reach the controls correctly. About 20mins prior to arrival a company call might also be made which could include estimated arrival time, fuel burn-off and required uplift (probably in kts), and other needs such as wheelchairs or someone to meet unaccompanied minors. Talking of companies, one recently advertised in the national press for cabin crew who not only had to have a suitable personality for the job but were expected to be able to swim! Confidence not inspired.

Colin also asks about helical antennas. These are fitted to many handheld equipments (never to aircraft) and are physically short in relation to the wavelength in use. They also therefore have reduced gain. There is however a voltage maximum at the free end, which is dangerous if brought near to the eyes whilst transmitting.

Thanks to one and all for writing; please keep your observations coming in. I'm sorry that with my volume of mail I am unable to answer individual letters directly, but I'll try to solve technical problems in this column. If I don't know the answer myself, maybe someone else out there does! I wish you all season's greetings until we meet next month.

Specification

Frequency Coverage:
- 66-88MHz in 12.5kHz steps
- 118-136MHz in 25kHz steps
- 136-174MHz in 5kHz steps
- 406-512MHz in 12.5kHz steps

Channel Capacity: 16

Sensitivity:
- 0.3µV (0.24µV) 66-88MHz
- 0.5µV (0.42µV) 406-512MHz
- The above for 12dB SINAD with ±3kHz deviation
- 0.8µV (0.6µV) 118-136MHz
- The above for 12dB SINAD with 60% modulation

I.F. Selectivity:
- 55dB (59dB) @ ±25kHz

Audio Output: 1W (1.1W), 8Ω 10% t.h.d.

Size: 240mm wide, 62mm high, 180mm deep

Weight: 740g

The figures in brackets are the measured results.
INTRODUCTION TO DX-TV

Keith Hamer and Garry Smith

Part 5

The next time your picture is rolling and the caption "Continental Interference — Do not adjust your set" appears, instead of switching off, twiddle with your tuner. You could be surprised.

same reason, the heat built up escapes quickly during the evening. This heating and cooling process results in temperature inversions which often lead to the formation of "waveguides". These are capable of directing signals at frequencies typically above 70MHz.

Reception under tropospheric-propagation mode conditions tends to be more favourable when in a path parallel to the isobars featured on weather maps. Isobars are lines connecting points of equal atmospheric pressure.

Fog Helps

The presence of widespread fog is another indication that reception via the troposphere may be enhanced. Conditions tend to favour the early morning and late evening but a noticeable fall-off occurs as the sun warms the lower troposphere.

Under the conditions described so far, long-distance signals can sometimes last for several days at a time. Indeed, conditions have been known to last for almost a fortnight.

Tropospheric Ducting

Towards the end of a DX opening, as the high-pressure system is moving away, a ducting effect can occur along its trailing edge. Occasionally, tropospheric ducting

For the Record

Just for the record, the most commonly received Band I tropo signal in the UK originates from the Lopik transmitter on Channel 4 which is located in the Netherlands. This is closely followed by the Belgian Liège outlet on Channel E3 which radiates RTBF-1 programmes in the French language.

The f.m. radio band between 88 and 108MHz can also become increasingly active due to the effects of enhanced tropospheric conditions.

High Pressure

The troposphere extends from the surface of the earth up to around 7600m and within it atmospheric pressures vary in different areas. From time to time, slow moving areas of above normal pressure can occur. These are termed anticyclones. Clear blue skies by day and clear, but cold, nights are often associated with high-pressure systems. Sometimes a high-pressure area can exist together with a low-pressure zone which leads to weather normally associated with winter. Incidentally, don't overlook the humble barometer which you may have hanging on the wall at home. Monitoring any increase in atmospheric pressure may well pay off as it will provide a good indication to possible DX-TV reception via improved tropo conditions.

Unlike Sporadic-E reception, there is no set "season" for such. Enhanced tropospheric reception conditions can and do occur at any time of the year. However, there is a tendency for these conditions to arise during the months of September and October when periods of settled weather are fairly common.

During periods of anticyclonic weather conditions, the earth warms up in the daytime due to the lack of cloud layer. For the

Fig. 1: Weather chart during a period of enhanced tropospheric propagation conditions.
will propagate distant stations but not those at close range. Also, only a small range of frequencies rather than the whole of the band may be affected. A typical example of this is occurs when certain Swiss u.h.f. transmitters have been received in the UK between channels 30 and 40 with virtually no results from other stations along the reception path. Sometimes a fast-moving pressure system can produce the right conditions for ducting to occur. The leading or trailing edge of the high-pressure system can be responsible in such cases. This particular form of short-lived tropospheric ducting, sometimes lasting less than an hour, has been experienced by a number of vigilant DX enthusiasts over the years. Needless to say, enthusiasm, patience and a lot of luck has probably helped.

Super Reception

A cold or occluded front at the boundary of the high-pressure region can increase the range of TV signals even further. A classic example occurred in October 1975 when an exceptionally intense and prolonged opening towards the UK permitted the reception of signals transmitted some 1200km away. Russian u.h.f. signals were detected during the period and although they were relatively weak by comparison with closer transmissions, it proved just what was possible under exceptional circumstances. A repeat of these conditions occurred as recently as October 1985.

The illustration in Fig. 1, kindly supplied by the Meteorological Office, is a weather chart for the particular reception period during October 1975. It shows the high-pressure region centred over Central Europe with the associated occluded front (line AA).

Watch the Weatherman

The daily weather forecasts shown on television are a recommended means of keeping track of impending tropospheric propagation conditions. Choose a forecast which shows the Atlantic chart with the various high and low pressure areas marked. Make a note of any approaching high-pressure areas. Currently, the best time to watch the weather forecasts on weekdays are at 6.30pm and 9.30pm on BBC 1.

First Signs

Assuming that the weather condition is purely anticyclonic, a noticeable increase in the signal strength of usually weak transmissions will be experienced. Tuning through the u.h.f. band may reveal distant stations appearing on otherwise vacant channels.

Long distance signals will be at their best in Band III and on the u.h.f. bands picture without sound does not necessarily guarantee that the signal originates from the Continent. Some receiver designs may feature a more efficient intercarrier sound circuit than others. Consequently, one model may produce sound on a given level of signal input while another will not. By tuning through the TV programme guides or briefly tuning into the local transmissions, a process of elimination should reveal whether or not it is a genuine Continental signal. Colour is often present provided that the signal is of sufficient strength to overcome the threshold of the colour killer circuitry within the receiver. It goes without saying that a receiver specifically designed for the UK will only resolve PAL broadcasts. SECAM transmissions will be displayed in monochromes on a PAL receiver.

A French signal will exhibit unstable frame and line synchronisation with reversed video information, i.e. the whites appear black and blacks appear white. This is because positive vision modulation is employed with the French system as opposed to negative modulation as used elsewhere throughout the world.

Stable Results

Tropospheric propagation has the advantage that received signals are not subject to the rapid fading and phase-distortion normally experienced with Sporadic-E. This means that reception can sometimes be of entertainment quality with results indistinguishable from those of the local BBC or IBA transmitters. Signals via tropospheric propagation, unlike Sporadic-E, do not arrive at an angle and reception techniques usually reserved for fringe areas should be considered. This implies the use of sensitive antennas as high as possible feeding a low noise mast-head amplifier. The disadvantage with this type of reception is that local irregularities in terrain tend to obstruct the signal path. This means that if your take-off in the general direction of the Continent is poor then your chances of good results will be impeded.

The possibility of successful tropospheric DX from the Continent is best assessed under normal, or what is sometimes called “flat” conditions. Studying UK transmitter listings and the relevant service area maps (often available from the BBC and IBA) should provide clues as to what you might resolve by carefully tuning through the u.h.f. channels. If possible, a wideband antenna covering channels 21 to 68 is best used for this assessment. It need not be too elaborate and a more sophisticated and sensitive array can be installed at a later date. It should be mounted at a minimum height of 10m and directed towards the anticipated transmission. A mast-head pre-amplifier is not usually necessary at this stage. If reason-

Fig. 2: The East German test card of the 2nd network received from the channel E34 transmitter located at Brocken

Fig. 3: Text page as broadcast by the Belgian French-language TV series service from Liége on Channel 42

Fig. 4: The Swedish clock caption as received on Channel E33 during an intense opening from the 100kW transmitter at Hooberby

IBands IV and VI in the early morning and late evening, or to be more precise between the late evening and early morning.

If you happen to tune an unfamiliar programme during conditions, the first sign that it may have come from overseas is the absence of sound. This is due to the difference in the intercarrier sound spacings found on TV systems outside the UK. These differences were discussed in Parts 2 and 4 of this series. Note that a
New Uniden Bearcat UBC100XL

The fabulous new handheld scanning receiver from Bearcat-Uniden. Sporting the following features:

- 16 programmable memory channels
- Frequency range 66-88 MHz, 118-174 MHz, 406-512 MHz.
- Scanning speed 15 channels per second
- Search speed 25 frequencies per second
- Lockout facility
- Liquid crystal display with backlight
- Audio output 300 milliwatts

Beautifully built including tough carrying case and helical antenna, nicads and charger. Only £199.00 including carriage.

Equipment Reviewers Please Queue Here

Outstanding performance from one of Japan's foremost manufacturers, the NRD525 RECEIVER from the Japan Radio Company.

- Multimode operation, RTTY, FAX, CW, SSB, AM, FM
- Frequency coverage: 900 KHz - 34 MHz
- Optional internally fitted VHF/UHF converter
- 34-60, 114-174, 423-456 MHz
- 200 fully programmable memory channels
- Double superhet high first IF 70 MHz
- Computer RS-232 interface option
- Scan sweep reception
- Built-in clock/timer
- Better than ±3 PPM frequency stability on all bands
- Direct access tuning either by flywheel or numeric keys
- Pass band tuning and notch controls
- Digital full feature multi-coloured display

Send SAE for colour brochure

AVAILABLE EX-STOCK AT A HUGE SAVING OVER LIST — PRICE £995.00

inc VAT

Bredhurston electronics

SITUATED AT SOUTHERN END OF M23 — EASY ACCESS TO M25 AND SOUTH LONDON

<table>
<thead>
<tr>
<th>MF RECEIVERS</th>
<th>£ (p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Icom IC-R71</td>
<td>925.00</td>
</tr>
<tr>
<td>Kenwood R200</td>
<td>595.00</td>
</tr>
<tr>
<td>Kenwood VCTC5 H.F. Converter</td>
<td>161.94</td>
</tr>
<tr>
<td>Kenwood R500</td>
<td>875.00</td>
</tr>
<tr>
<td>Yeasu FRG</td>
<td>795.00</td>
</tr>
<tr>
<td>Yeasu FRG8000 H.F. Converter</td>
<td>100.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>STATION ACCESSORIES</th>
<th>£ (p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diac VHF wavemeter</td>
<td>30.25</td>
</tr>
<tr>
<td>A.K.D. VHF wavemeter</td>
<td>24.96</td>
</tr>
<tr>
<td>Yeasu PRC1010 low pass filter 30MHz/1Kw</td>
<td>35.26</td>
</tr>
<tr>
<td>Kenwood LM30A low pass filter 30MHz/1Kw</td>
<td>35.26</td>
</tr>
<tr>
<td>Addon AM3500 diode mix with 0.1ppm/0.01</td>
<td>100.00</td>
</tr>
<tr>
<td>Addon AM3500 diode mix with compression</td>
<td>89.00</td>
</tr>
<tr>
<td>S.M.C. Pole-phase II 1.2m</td>
<td>49.00</td>
</tr>
<tr>
<td>S.M.C. Pole-phase II 70cms</td>
<td>69.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ANTENNA WIR</th>
<th>£ (p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOG Balun 115/5 K.W P.E.</td>
<td>13.95</td>
</tr>
<tr>
<td>Brromen Balun 41/1 K.W</td>
<td>11.20</td>
</tr>
<tr>
<td>Brromen 7.10MHz Echo Trap Irrat</td>
<td>9.95</td>
</tr>
<tr>
<td>Self Amagewhaling Tape 10m x 25mm</td>
<td>4.25</td>
</tr>
<tr>
<td>Tocalyptic Polyhedral Baffle centre</td>
<td>1.60</td>
</tr>
<tr>
<td>Small Ceramic egg insulators</td>
<td>0.65</td>
</tr>
<tr>
<td>Large Ceramic egg insulators</td>
<td>0.65</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ANTENNA TUNER UNITS</th>
<th>£ (p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yeusu FR 7200 Short wave listening</td>
<td>99.00</td>
</tr>
<tr>
<td>Yeasu FC 72A71</td>
<td>349.00</td>
</tr>
<tr>
<td>Kenwood AT250</td>
<td>208.07</td>
</tr>
<tr>
<td>Kenwood AT250 auto</td>
<td>366.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ANTENNA SWITCHES</th>
<th>£ (p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Walt CH 20N 1300MHz N skts</td>
<td>49.00</td>
</tr>
<tr>
<td>Walt CHS24 500MHz 5003N skts</td>
<td>29.95</td>
</tr>
<tr>
<td>SA 40K 2way decast 500MHz N skts</td>
<td>26.99</td>
</tr>
<tr>
<td>SA 490 as above but SO239 skts</td>
<td>19.49</td>
</tr>
<tr>
<td>DRAE 3 S/W N skts</td>
<td>21.91</td>
</tr>
<tr>
<td>DRAE 3 S/W SO239 skts</td>
<td>16.94</td>
</tr>
<tr>
<td>CIS 4 4 way S/N C skts 1500MHz</td>
<td>30.39</td>
</tr>
</tbody>
</table>

GOODS NORMALLY DESPATCHED WITHIN 24 HRS.

PRICES CORRECT AT A TIME OF GOING TO PRESS - EBOE

STOP PRESS...STOP PRESS... PRICE REDUCTION

KENWOOD TS430 HF Transceiver

£478.00
SERCALS

John Davies

Most of the modern airliners of today are equipped with two types of radio, a v.h.f. (very high frequency) and the other being an h.f. (high frequency) type.

Transmissions on v.h.f. are mainly confined to domestic routes where there is ample opportunity to sight antennas. The signal which is received is normally free from interference and the range being restricted to approximately 320km. The aircrew can monitor transmissions constantly with the use of headsets. Indeed it is mandatory in most countries to listen out above 10000ft when such transmissions are being received although hand mikes can be used with the speakers turned up.

HF or VHF?
The h.f. is used when the aircraft cannot receive v.h.f. transmissions. Therefore you would expect aircraft to use this method of communication when crossing large land or sea masses where no v.h.f. facilities exist or where would be impracticable to operate. Good examples are flights that cross the Atlantic or cross desert areas.

Conversely to the v.h.f. signal, the short wave or h.f. signal can be subjected to all manner of interference. Factors which may govern transmissions are the time of day; the weather and position of the aircraft, all of these can contribute to a good radio relay taking place. With these problems, a system had to be devised whereby the cockpit crew of an aircraft need not constantly monitor hours and hours of unwanted interference. The thought of a long flight listening to varying noise levels would be hard and extremely exacting for pilots.

This is where the SELCAL system plays a vital and major part in long distance communications. It is now possible for an aircraft which is monitoring a specific radio frequency to be called without speech taking place whatsoever. A coded radio signal is transmitted from a ground control and is received by a decoding device in the aircraft.

This output code is then fed into a SELCAL decoder which can activate an aural and visual alert for the aircrew. This will only operate if, and only if, the received code corresponds to the code selected on the SELCAL decoder in the aircraft.

Transmitted Codes

The transmitted codes from the ground stations are made up of two frequency pulses (r.f. bursts), each being of 1±0.25 seconds separated by a period of 0.2±1 seconds. During each pulse the transmitted carrier is 900 per cent modulated with two tones, thereby there are a total of four tones per call, the frequencies of the tones determine the code.

The tones are given in the formula:

\[f_{N} = \text{antilog} \left(\frac{0.054 \times (N - 1)}{2.0} \right) \]

where \(N = 12, 13, 14 \) to 27 this gives a total of sixteen tones between 312.6 and 1479.1 Hz. The tones are designated by the letters A to S. Omotted are the letters I, N and O. So for example a typical SELCAL you may hear would be AB-CD (alfa bravo - charlie delta) or GH-AM (golf hotel-alfa mike).

A simple way of looking at the system is to give the letters numbers, e.g. A = 1, B = 2 and so on. Therefore the second and fourth letters must always be higher in value than the first and third. So AB-CD is correct but not BA-DC, also GH-AM is correct but not HG-MA. Another which also applies is that you cannot have the same letter twice in any SELCAL, so BD-DM is incorrect.

2970 Codes

There are 2970 codes available for assignment to aircraft using the first twelve tones, but recently an addition has been made which now incorporates the tones P, Q, R and S raising the total to 10920. Codes or blocks of codes are assigned on request to individual airline operators who in turn assign the SELCAL code to their aircraft either on a flight
number or on an aircraft registration related basis. Although in latter years, SELCALs can be found allocated to individual aircraft as opposed to specific flights.

An example of this type of SELCAL allocation can be found with the Boeing 767 aircraft of TWA (Trans World Airlines). N601TW is allocated DJ-AF, N602TW – DJ-AG, N603TW – DJ-AK and N604TW is DJ-AL. This shows the block allocation applying to individual aircraft.

Indeed over the years a great deal of frustration has been endured amongst aviation enthusiasts who identify specific flights and are then unable to tie up the registration of the aircraft. With the SELCAL remaining more stable in their allocation to various airlines and aircraft this is now possible. To show how this can be achieved a fleet list of the aircraft in use with British Airways has been shown together with their allocated SELCALs, Table 1.

Traced
A SELCAL can be traced through its life with a particular airplane. You will more often than not find they were previously allocated to aircraft which are no longer in service. For example the SELCAL of AN160-GK was allocated to a VC10 aircraft with the registration of G-ARVE this aircraft has since been withdrawn from use. The SELCAL is now carried on a Boeing 747 with the registration of G-BDXP. Examples can be found with other fleets where this has been implemented and SELCALs have been transferred to new aircraft joining the company. So with a block allocation of SELCALs it will be up to the individual airline to issue a particular code.

The larger passenger carrying aircraft would normally carry two identical SELCAL systems. The SELCAL decoder will therefore recognise a received combination of tones on any of five channels which correspond to that combination selected on the code select and annunciator panel. When the correct code has been transmitted by the ground controller it is recognised by the SELCAL unit and a chime switch is activated. This signal can also be received by means of a light in the cockpit of the aircraft. The light or lamp switch is by way of an interrupter circuit so that the lamps will in fact flash. A constant supply to the chime switch causes the chimes to sound. Both will continue until reset. Each lamp holder incorporates a switch which, when depressed, will release the lamp switch and chime switch. The tone filters in the decoder will typically be mechanically resonant devices.

Variations in the SELCAL arrangement are possible. The control and annunciator panel can be separate units. Should an airliner or an operator require aircraft related codes there will be no need for the code select switches with the appropriate code being selected by jumper leads to the rear connector of the SELCAL unit in the aircraft.

Lamps and Chimes
The lamp and chime supplies can be changed at the operators option. Possibilities are to reverse the situation and have steady lights and multi-stroke chimes, or have steady lights and a single stroke chime, in which case the interrupt circuit is not used.

What does this mean in non-technical jargon and how is the SELCAL system set up in practice? The equipment which is in use today consists of:

(i) A ground SELective CALLing unit, this is where the SELCAL codes are entered by an operative or controller.
(ii) A ground to air transmitter.
(iii) An airborne receiver.
(iv) The airborne SELActive CALLing decoder and a signal indicator.

The technique which is employed is that a ground controller who wishes to contact a particular flight or aircraft will enter the code which corresponds to the SELCAL of the aircraft. It will then be transmitted by a radio signal to the aircraft. The pilot will then either see a light or hear a “bing-bong” chime from the SELCAL decoding unit in the cockpit in the aircraft. This would indicate to him that a controller wishes to communicate with him.

Aeronautical Radio Inc., sometimes referred to as ARINC are the issuing authority for SELCALs. They are an American based company who act as agents for ICAO. An operative or airline will contact them with specific requirements and be asked for the registration and the routes the aircraft intends operating. A SELCAL will then be allocated to the operator and it is up to him to allocate it as required.

Every effort is made by ARINC to ensure that aircraft with the same SELCAL are not likely to be on the same radio frequency and working similar routes at the same time. Duplicate SELCALs are issued but normally to aircraft working on different continents. So for example the SELCAL GH-AB is issued to a British Airways 757, G.BKRP, which confines its working life to the European domestic routes and also the same SELCAL is issued to an Eastern Airlines 7600 Airbus, N227EA which flies mainly in the United States and South America. The chances therefore of both aircraft being on the same frequency are very remote.

Aircraft Identity
After discovering how it is possible to identify an aircraft's registration from its SELCAL, tune your h.f. receiver into the frequencies used by Shanwick Oceanic Control. This is the control which transmits to aircraft crossing the Atlantic Ocean.

When the aircraft first makes contact with Shanwick Oceanic Control you will hear the aircraft ask for a SELCAL check, this is in order to check the decoder for the Atlantic crossing. Contact will be made by aircraft travelling from east to west when the flight is at 10 degrees west. As Shanwick Oceanic control is continually manned there are no problems with the
RDS is potentially the biggest technological breakthrough in radio terms since the widespread introduction of the transistor in the 1960s. Almost overnight, RDS could do away with the need to fiddle with tuning knobs and dials, enabling direct and simple access of stations. With more and more stations crowding onto the dial, it will do away with any uncertainty as to which station one is actually tuned to. This problem of overcrowding and difficulty of station identification is highlighted on the frequency chart which shows stations currently broadcasting and those planned which will be audible just to the west of London on v.h.f. m.

The concept of RDS is remarkably simple: the addition of an inaudible data signal to the transmission, which, once decoded can perform many jobs, including most fundamentally, telling the listener what station the radio is tuned to. Each specially equipped RDS receiver will feature a display to show in plain language the station name: e.g. “BBC R3.”

Secondly, where a station is available on more than one frequency in an area, the RDS receiver will continuously compare the reception of each frequency and automatically tune to the one offering best reception.

How it Works

It has long been known by engineers that data sub-carriers can be used successfully with v.h.f. m. broadcasting, and indeed different uses have been found for sub-carriers in different countries during the past few years, notably the ARI (Autofahrer Rundfunk Information) system in West Germany. The technical standards for the application of RDS are the result of extensive work carried out under the auspice of the European Broadcasting Union, using the Public Information system developed by the Swedish Telecommunications Administration as a basis.

The data sub-carrier frequency in RDS is 57kHz, three times the frequency of the stereo pilot tone and during stereo transmissions will be locked to the third harmonic of the pilot tone. The tolerance of the sub-carrier frequency will be ±1kHz in both mono and stereo broadcasts.

The injection level for the data sub-carrier has been set at around 3 per cent — obviously, the higher the input level, the more accurate and error-free the signal will be but this would have an adverse affect on interference to the audio channel when reception is under non-perfect conditions, or a receiver is not correctly aligned. The EBU specification allows for the injection of the sub-carrier to be between ±1kHz and ±7kHz with the requirement at the BBC showing that very little is to be gained by using more than the permitted minimum value.

RDS data is arranged in 26 bit block lengths, 10 of which are error control bits, making it possible to correct an error burst of up to 5 bits length in a block. Basband coding is structured to form groups of 104 bits each, made up of four blocks of 26 bits. The data transmission is fully synchronous and there are no gaps between the groups or blocks. At the start of each group, the Programme Identification (p.i.) code is included, ensuring that this fundamental information is repeated at an adequate rate for effective automatic tuning in, for example, ten times each second.

Thirty-two group types are available, of which less than half have yet been defined, giving much scope for the future development of the system.

The applications which have been identified thus far are:

PI Programme: A code broadcast which uniquely identifies each radio service. The code is used by the radio receiver confirm that it remains with the
RX-4
MULTIMODE RECEIVE
RTTY / CW / SSTV / AMTOR

This is the ultimate in software for the SWL. Just one program to receive all four modes, switching from one to the other at a single keypress. Extremely user-friendly, RX-4 has the facilities and performance you need to catch all the action on the bands as soon as you hear it.

When you see the features it's easy to see why RX-4 is today's best-selling receive software.

RTTY and AMTOR tuning scale makes tuning-in very quick and easy.

Four RTTY baud rates, any shift, normal or reverse, with selectable unshift-on-space.

CW software filters and controllable autotrack for maximum performance up to 250 wpm! On-screen indicator lets you set the level and tuning with a minimum of fuss.

SSTV has selectable scan rates in both directions and two modes of picture storage for maximum use of memory.

Text and pictures can be stored, recalled to the screen and dumped to a printer as well as being saved to tape or disc.

Please note that the AMTOR section only receives ARQ mode (mode A) but this is the most common mode and covers a lot of commercialTOR stations, also.

Previously, people have paid over £30 for separate RTTY, CW and SSTV programs which do not have the performance, facilities and convenience of RX-4. We are offering this amazing software for the low price of only £25 on tape, £27 on BBC or CBM64 disc.

BBC-B, CBM64 and VIC20 need our TIF1 interface. This has isolation between computer and radio to reduce computer noise and switchable filters, giving much improved copy. Kit £15 (assembled PCB + cables and connectors) or ready-made, boxed with all connections £25. For SPECTRUM we have two versions. One needs no hardware at all, the other uses the TIF1 via an interface adapter board SIA-1 for improved performance. Tape = SIA-1 £40.

Same day dispatch by First Class Post. Airmail Overseas. Prices include p&p and VAT, where applicable.

technical software (SWM)
Fron, Upper Llandwrog, Caernarfon LL54 7RF. Tel. 0286 881886

Satisfaction for you and your neighbours! Highly unobtrusive yet ideal for DX reception, Datong actives feature a dipole (not a monopole) for optimum rejection of local interference.

Price: AD270 £51.75 Inc. VAT (indoors only);
AD370 £69.00 Inc. VAT (weatherproof)

To order simply dial
0532 744822

or write with cheque or postal order to

Dept SW Datong Electronics Ltd., Clayton Wood
Close, West Park, Leeds LS16 6OE

Access/Barclaycard welcome
Fast delivery service

Catalogue and data sheets on any product available free on request. Dial 0532 744822
RADIO DATA SYSTEM

PS Programme Service
- This code produces a plain language display on the receiver of the station to which it is tuned.

CT Clock Time
- Provides the receiver with an accurate display of time and date. This will automatically adjust to local time when travelling across Europe in addition to correcting to time changes in the UK during the spring and autumn.

AF Alternative Frequency
- This provides the receiver with a list of frequencies in the area on which the same programme may be found.

ON Other Networks
- This information tells the receiver where to find the best frequency for other networks and local radio available in the area. This enables the receiver to instantly change to the best frequency available for another station when the user changes channels.

TP Travel Programme
- A detailed explanation of the application of these codes is given later.

TA Travel Announcement
- This provides a unique code to each radio programme and may be used to enable a radio to automatically switch on a listener's choice of programmes.

PIN Programme Identification
- Two applications designed to display textual messages on suitably equipped receivers and can also be used to download information into computers, or to activate voice synthesis devices, perhaps for spoken travel messages for car drivers in their own languages.

TDC Transparent Data Channel
- A signal to switch decoder modes (e.g. mono to stereo) in the listener’s receiver.

RT Radio Text
- Designed to indicate to the receiver which of the two user-set volume settings to use dependent on programme content. It enables the listener to set his own preference for relative levels of music and speech.

PTY Programme Type
- A code sent with each programme, allowing suitable equipped receivers to select the type of programme the listener prefers automatically — for example, a listener could ask for drama, and the radio could then tune to any station broadcasting drama.

IH in-House
- Used by broadcasters and not intended for public reception.

What Happens
- News of an incident affecting motorists on for example the M11 at junction 10 will be passed to the studios of Radio Cambridgeshire by the police in the normal way. When the presenter on the station is ready to read the bulletin he will play the usual travel information “jingle” and read the message. The start of the “jingle” will be electronically detected and information passed by means of data links to the transmitters in the area (in this instance Talcotneston and Peterborough). These transmitters radiate the national services, (Radios 2, 3 and 4 with Radio 1 in the future) and also the local Radio Cambridgeshire programmes.

The information received causes the local radio transmitter to radiate additional RDS data signals (TA and TP) which tells the radio receiver that the local station is about to broadcast travel information for the area. Similarly, the national network transmitters simultaneously commence broadcasting RDS data through the ON (other networks) feature. This tells the receivers tuned to a national service the frequency on which a travel message is
about to be broadcast. If the driver has selected a travel option on his RDS receiver, the radio will automatically tune to the frequency on which the message is to be broadcast—in this case Radio Cambridgeshire. At the end of the bulletin, the TA and TP signals are removed from the RDS data stream, and the radio automatically returns to the original programme, or reverts to cassette listening.

The alternative frequency (AF) facility of RDS provides for the transmission of a list of other frequencies on which the currently tuned programme may also be received. The receiver builds in its memory a list of these frequencies and their corresponding signal strengths, with the receiver switching to whichever channel in its memory provides the best signal.

Two methods are available—the "list" method and the "paired-frequency" method.

The list-method sends the alternative frequencies as a sequential list, two frequencies being transmitted in each block at a time. The list commences with a reference to the total number of frequencies in the list so that the receiver may check that it has received the complete listing without the data suffering corruption. The number of alternative frequencies in this method is restricted to twenty-five.

In the paired-frequency method, the sixteen bits reserved for alternative frequency (AF) use in block three of group OA are used to transmit a pair of frequencies. The first frequency of a pair is any frequency (f0), the second of the pair being one of the valid alternatives (f1) for the frequency f0. In the next repetition of the block, the first frequency of the pair is again f0, with the second being another valid frequency for f0—f2. This is repeated until all alternatives for frequency f0 have been transmitted. The next block will then comprise frequency f1 and the first of its alternatives and so on.

Pairs of frequencies are transmitted in this way until all the frequencies and their valid alternatives have been transmitted when the entire sequence is repeated.

The receiver manufacturers complained that too much memory space would be taken up with the deployment of the list-method. In some parts of Europe, because of the terrain and the nature of the network distribution system in use, twenty-five frequencies were an insufficient number to reference all alternatives required. The advantage of the paired-frequency method is that it is possible to structure the pairs of frequencies in such a way that the second frequency is always a valid alternative for the first frequency of the pair in a way that is not possible in the list-method.

Receivers have to be capable of recognising both of the methods, and to respond accordingly. The BBC will be using whichever is the more advantageous in any given situation.

RDS Services

The National Broadcasters throughout most of Europe are introducing their RDS services from 1987 onwards, and because the system is universal throughout Europe, radio will function equally well in all countries, although not all administrations are intending to introduce precisely the same features of RDS.

In the UK, the Independent Broadcasting Authority has announced its intention to encourage radio franchise holders to broadcast RDS.

Radio manufacturers both in Europe and the Far East are actively developing RDS capable radio receivers, primarily for the car radio market, for which RDS is particularly of use, but it is understood that fixed radio receivers are also under development. It is known that Volvo are about to introduce a car radio with RDS capabilities.

The Radio Data System is certainly a great leap forward for the industry: whether or not it will be accepted by listeners is, of course, another matter entirely.

INTRODUCTION TO DX-TV

fig. 5: Dutch television at u.h.f. featuring the antics of Loeki the lion between adverts! Note the slight line pairing effect from the co-channel transmission.

fig. 6: Band III reception from the Halden outlet on channel E11 showing the Norwegian station opening caption.

fig. 7: A West German test pattern from Hessischer Rundfunk at u.h.f.

Effective DXing at Band III and u.h.f. will be. During a typical opening, signals from transmitters anything up to 640km distant can be expected. If you are lucky enough to live in the south-east of England or East Anglia, transmissions from the Netherlands, Belgium and France should be available, of sorts, on a daily basis. During enhanced conditions, the reception of stations located in Central Europe should be reasonably assured. However, if you are unfortunate enough to live in the Outer Hebrides, much of your reception will be from BBC and IBA transmitters sited in the UK and the best tropospheric DX you might hope to secure will probably only originate from Crystal Palace.

Correction

The address for Protel Isuppliers of antennas given in Part 1 should have been 256 Ballards Lane, London N12 BNP.
Communication decoders

AFR-1000 Automatic CW-RTTY Decoder

The microprocessor-controlled POCOM AFR-1000 CW-RTTY Decoder automatically processes radio teletype signals in accordance with Baudot No. 1 and No. 2, ASCII, ARQ/TEC (SITOR/AMTOR/RTTY) and CW (Morse telegraphy) standards and corresponds to the latest state of the art. The AFR-1000 Automatic Decoder is remarkable for its value for money. Its moderate price makes it particularly suitable for the cost-conscious RTTY beginner. Unlike the other models in the AFR series, however, it cannot be upgraded for special codes.

FEATURES
- Fully automatic recognition of CW, ARQ/TEC and Baudot No. 1 and No. 2 teletype signals with automatic decoding, independently of the shift position.
- Baud rate analysis in the range from approx. 30 to 250 bauds.
- Extremely fast phasing of ARQ/TEC signals (Typical: 1/5 seconds).
- Special narrow-band quadrature discriminator for all usual LF shifts of 50 /1000 Hz and CW Morse telegraphy.
- Swiss technology and quality — 1-year guarantee.

The POCOM AFR-1000 is extremely easy to use and very simple to operate. The AFR-1000 is simply connected to the loudspeaker outlet on the shortwave receiver. Operation is confined merely to choosing the mode required. No tedious testing of the baud rate and shift position. Two LED’s indicate the active operation states in each case.

The baud modulation rate measurement facility is a complete new innovation in a unit in this price range. Knowledge of the baud rate permits reference to special codes, specific radio services, etc., and makes it possible to shed light upon a radio teletype signal. The display is provided on the screen or printer linked to it to 1/1000 baud (e.g. 96.245, bauds) with quartz accuracy and within a measuring range of approx. 30 to 250 bauds.

AFR-2000 All Mode RTTY Decoder

The technology of models AFR-2000 and AFR-2010 meets the highest demands. Their exceptional value for money will not be so easy to obtain in the near future. By choosing one of these units, you will be deciding in favour of the latest receiver on the market — enabling you to receive more and do less setting! Teletype reception has never been so easy!

DEWSBURY ELECTRONICS, 176 LOWER HIGH STREET Stourbridge, West Midlands, DY8 1TB Tel: Stourbridge (0384) 390063/371228
IDEAS FOR CHRISTMAS

ARE YOU LOOKING FOR SOME BRIGHT IDEAS FOR CHRISTMAS?
WHETHER YOU ARE GIVING THE GIFTS, OR HOPING TO RECEIVE THEM, WE HOPE THE FOLLOWING PAGES WILL BE USEFUL TO YOU.

UK Listeners Confidential Frequency Lists

Published: Waters & Stanton
Author: Bill Laver
Page size: 210 x 290mm
Pages: 124
Covers: Soft covered
Chapters: 12
Price: £5.95 plus 75p P&P
Available: SWM Book Service

Preface
About This Guide
receivers
Aerials, RTTY
Facsimile; stations in this Guide
Marine Services
Aeronautical Communications
Unusual Transmissions
Frequency Allocations
Broadcast Station Schedules
Frequency Listings 1.6 – 30MHz
International Prefixes
“A comprehensive list of h.f. frequencies 2–30MHz.
Including: Aviation, Marine, Broadcast, Embassy, Military, RTTY, Press, etc.”

VHF/UHF Airband Frequency Guide

Published: Waters & Stanton
Author: Bill Laver
Page size: 210 x 290mm
Pages: 74
Covers: Soft covered
Chapters: 16
Price: £5.95 plus 75p P&P
Available: SWM Book Service

How it all Began
Receiving Airband Signals
Receiver and Aerial Requirements
Airband Frequencies and Services
Aerodrome Frequency List
VOLMET Service
Airways Frequencies
Flight Information Regions
Other Frequencies of Interest
Company Frequencies
Telephone Designators
UHF Emergency Fixer Service
Offshore Oil and Gas Helipads
Military Lower Airspace Radar Service
ICAO Location Indicator Codes
Abbreviations

Air Band Radio Handbook

Published: Patrick Stephens Ltd
Author: David J. Smith
Page size: 157 x 215mm
Pages: 174
Covers: soft covered
ISBN: 185280 047 0
Chapters: 19 (see below)
Appendices: (see below)
Price: £5.99 plus 51p P&P

This book aims to help the listener unravel the jargon and events surrounding Air Traffic Control. Whether you go out to airfields with your radio or live near an airport, there are times when the enthusiasts wants to know, “what are they on about”. The messages that pass between pilots and the ATC are short, sharp and made very little sense to begin with – this is never helped if it is a foreign accent either. Once you start understanding what’s happening, a whole new world of radio listening opens up for you.

The author is very obviously an enthusiast and the press release that came with the book explains further. He joined the Ministry of Aviation in 1965 and has worked at locations throughout the country in Air Traffic Control. Since 1982, he has been working at Liverpool Airport.

The chapter that interested me the most was the one on air displays. That’s because we live within view of three places that regularly hold air displays and I’ve often wondered what gets said during the displays. When you watch an air display, it always looks so slick and professional. After reading this book you realise that there is a great deal of frantic rushing about going on behind the scenes. Displays have to be extended as the next performer isn’t ready, reshuffling takes place and things sometimes get muddled. Lots of the sorting out takes place on the radio, with the display co-ordinator in touch with the pilots. Apparently “heated exchanges” may take place – I shall listen carefully next time!

If you’re not sure where to look for the different airports and airfields then the appendices will come to your rescue. There is an alphabetical list of the airports and airfields with their appropriate tower, approach, radar, etc., frequencies. There is also a list in numerical order. Both the v.h.f. band and u.h.f. bands are covered separately.

The Book is available from Patrick Stephens Ltd, Dept 9885A, Dennington Estate, Wellingborough, Northants NN8 2RQ.

Abbreviations and Q-Codes
Chapter 1: Listening
Chapter 2: ATC terminology
Chapter 3: Types of airspace
Chapter 4: Navigational aids

Chapter 5: Area or Airways Control
Chapter 6: Approach control
Chapter 7: Aerodrome control
Chapter 8: ATC at Heathrow
Chapter 9: Oceanic Control
Chapter 10: Flight Information Services
Chapter 11: Weather and Air Traffic Control
Chapter 12: Airfield visual aids
Chapter 13: Airport operations and procedures
Chapter 14: Royal flights
Chapter 15: Air displays
Chapter 16: Emergencies
Chapter 17: Air band radios
Chapter 18: Charts and related documents
Chapter 19: Magazines for the enthusiast and air band listener
Appendix 1: Beacons and reporting points
Appendix 2: Airways frequency allocation
Appendix 3: VHF air band frequencies
Appendix 4: UHF air band frequencies
Appendix 5: ICAO Aircraft type designators
Appendix 6: Aircraft radio callsigns
Steepletone MBR7

Coverage:
- i.w.
 - 150 – 300kHz
- m.w.
 - 540 – 1600kHz
- s.w.
 - 7.00 – 22.00MHz
- s.w.2
 - 2.3 – 7MHz
- f.m.
 - 88 – 108MHz
- Air
 - 108 – 135MHz
- M.M.
 - 140 – 175MHz

Power: 4 x 1.5V D cells, 12V d.c. or 240V a.c. mains.

Audio: 100mm internal speaker or headphones.

Antenna: 900mm telescopic antenna, external antenna socket and ferrite rod.

Tuning: Rotary tuning (including fine tune).

Weight: 2.71kg

Dimensions: 268 x 355 x 144mm

Price: £65

The MBR7 is a very attractive looking multi-band radio with many interesting features. The physical appearance is dominated by a T shaped moulding on the top of the cabinet which is actually a "direction finder!". The supplied manual was brief but adequate and offset by a rather good short wave station guide. This guide lists, in alphabetical order, a good selection of international broadcast stations including callsign, power, frequency and transmission times. I thought this was a very useful addition.

The power supply arrangements for this set are rather versatile and includes a 13A mains plug. The manual also gives correct details for the termination of a standard 13A plug. To use the MBR7 for portable use, four D cells will need to be fitted in the battery compartment. The changeover from a.c. to d.c. power supplies is by a small but well marked slider switch on the rear panel. The final option for the power source is to use an external 12 volt power supply. There is a car adaptor available which fits into a standard cigar lighter socket. If required the radio can be operated from any well smoothed and fused 12 volt power supply via the standard power jack on the rear panel.

The audio section of the radio is controlled by separate volume and tone controls which are mounted on the front panel. One unusual feature is the inclusion of a switch to enable the audio amplifier to be used as a sort of mini public address system. When used in this mode a microphone/recorder player, etc, can be connected via a 3.5mm jack socket at the front panel.

The medium and long wave broadcast band performance was very good, with the automatic gain control coping well with the signals. The very effective tone control made it very easy to obtain a pleasant sound on all the a.m. broadcast bands. The antenna on the long, medium and short wave bands can be rotated by a ferrite rod mounted in the T moulding on the top of the radio. This novel arrangement works as a direction finder as the T moulding is rotatable through about 130°. The main advantage of this system is not for direction finding but for reducing interference from adjacent stations. This is achieved by rotating the antenna assembly for the best compromise between the wanted and unwanted signals. In order to help find the correct tuning point a tuning meter is incorporated to the left of the main dial. The meter is slightly unusual in that it works in the opposite sense to normal, i.e. full scale deflection indicates no signal whilst minimum deflection is maximum signal strength. This reverse indication, although unusual, didn't present any problems and was in fact a very positive tuning aid.

The short wave coverage is very comprehensive being continuous between 2.3MHz and 22MHz. The performance when receiving short wave broadcast stations was very good. A nice point is the inclusion of a fine tune control to aid tuning in these congested bands. An unusual feature is that the ferrite rod antenna is used for short wave reception. This doesn't seem to present any problems, in fact there are advantages in that the direction of the ferrite rod can be used as described earlier to minimise any interference. The only snag I found with the short wave reception was that with a.m. as the only mode available, the marine and amateur band coverage was rather limited as single sideband is the primary mode on these bands.

The performance on v.h.f. broadcast stations was very good indeed and the audio quality from the 100mm internal speaker was excellent. A switchable automatic frequency control is also provided which can be useful when trying to receive a weak signal which is close to a much stronger station.

The v.h.f. coverage is extended by a separate band covering 108-175MHz. It is very unusual to get a range as wide as this in a receiver of this type. This extended range encompasses the marine band as well as the more unusual air band. As with a lot of receivers of this type the air and marine band coverage uses the same f.m. demodulator as the v.h.f. broadcast band. This creates a few problems in as much as signals must be carefully tuned for best results and the bandwidth is rather wide for best performance. In practice these problems are not too limiting especially for those who only occasionally monitor the air/marine bands.

The receiver was loaned by Johnsons Shortwave Radio, 43 Firar Street, Worcester WR1 1NA. Tel: 0905 257400.

Binders & Subscriptions

One of the “best” gifts you can buy this Christmas is a Short Wave Magazine subscription. The rates are:
- UK: £17.00
- Overseas: £18.00

A joint subscription to both Short Wave Magazine and Practical Wireless is:
- UK: £27.00
- Overseas: £30.00

Don’t forget to tell us which issue you would like the subscription to start from.

You can also obtain binders to hold 12 issues of your favourite magazine. These are £3.95 including postage and packing.

We take both Access and Visa and the telephones lines are open 24hrs to make ordering easy.
C. M. Howes DcRx Kit

The DcRx kit is a low-cost, easy to build, amateur band receiver. It has been designed so that a newcomer to the hobby can build a short wave receiver with the minimum of trouble.

The kit comes complete with all the components with the exception of the large tuning coil. This can be ordered from C. M. Howes if stocks last. The printed circuit board has clear placement markings on the top side of the board to guide even the novice constructor to get it right first time. The instructions, though concise, are very clear with an exact building procedure linked to columns for ticking off component placement and checking.

The components are good quality standard items and the p.c.b. is thick glass fibre board. Fortunately for the beginner, the coils are pre-wound and ready to place on the board. Although the kit comes with the components you need, items such as the box, slow-motion drive and knobs aren't there. Now that's not a bad thing because if you go to rallies or radio club meetings with junk sales, you can pick these items up very cheaply.

The design used is a conventional one, but at least reliable. The tuned input is mixed with the signals from an f.e.t. v.f.o. by a twin f.f.e.t. mixer. The audio is pre-amplified and filtered in a single low-noise operational amplifier stage and the final audio amplification is done in a single integrated circuit amplifier.

One point worth mentioning is that the frequency stability of this project is good that the kit is usable for receiving RTTY and AMTOR signals. That's pretty good for a home built kit, some ready-made radios can't cope with those types of signals!

If you get the 14MHz version, it can be re-tuned for the "new" 10.1MHz band. If you are a "seasoned" constructor, many of the units could be retained and used on all kinds of bands.

The tuning range covers the whole band for s.s.b. and c.w. reception, and the receiver is capable of 1 watt of audio output and requires a 12 to 14 volt d.c. supply (the quiescent current is about 30mA).

If you would like details of the kits that C. M. Howes produce then an s.a.e. will bring a two-page catalogue. Write to C. M. Howes Communications, Eydon, Daventry, Northants NN11 6PT. Tel: 0327 60178.

Science Fair 200-in-1 Electronic Kit

Cat. No. 28.205
Price £34.95

This project box is suitable for pupils 10 years of age and over, mainly because the 108-page instruction book takes a bit of reading. Not that it is complicated, just large (365 x 241mm), which is not surprising with the details of 200 projects included.

There are some neat cartoons and some of the pages, making it interesting reading. Just in case this is your first venture into electronic projects, there are diagrams of all the components so you know what resistors, transistors, integrated circuits, etc., look like when they are mentioned.

Rather than describe all 200 projects (we'll be here until next Christmas) I'll pick just one. Project 95 is a basic audio oscillator.

I chose this one as the circuitry is used many times over in lots of the other projects both in this kit, and in other designs. The instruction book asks you (how the circuit works), the answer is written in a way that if you get stuck. There is a circuit diagram and a numerical wiring sequence to follow. All the close wound springs that form the connections are labelled 1 to 176, so it's very easy to wire each project. There is a section for the constructor to make notes against each project. This gives a record of what you've done so far and makes sure you understand things better.

Unlike some other project kits in the Tandy range this one has all the springs connected to the board when you buy it, so saving you the time it would take to put 176 springs in place.

I think this project set would be ideal, not only for youngsters, but for those who, in their childhood had an interest in radio, but over the years have lost touch with some of the modern technology and would like to brush up their knowledge.

The kit was kindly loaned by our local Poole branch of Tandy and should be available in most other Tandy stores. It is also a recently added item to their catalogue.

Science Fair Crystal Radio Kit

Cat. No. 28.219
Price £3.95

This simple kit from Tandy gives a younger member of the family the chance to build and experiment with a simple electronic project. The crystal radio has been with us for many years and can provide surprisingly good results. This particular kit supplied with a seven page instruction book giving good detail on how to build the radio. The method of construction is very simple requiring only a pair of long nosed pliers and wire cutters. Each instruction is clearly written with a small box at the front for the constructor to "tick" as each step is completed successfully.

The basis of the kit is a plastics moulding with a cardboard insert on which is printed the circuit diagram. The connections are made by trapping wires in close wound springs which are mounted in the cardboard insert. This technique, although cumbersome to describe was actually very effective in practice. It does at least ensure that no soldering is required and so much younger members of the family will be able to play with this kit.

Everything needed to make this radio work is included as it doesn't need batteries - it must be one of the few toys that doesn't need batteries!

Once the step by step instructions have been completed, the manual continues with a section describing the antenna and earth requirements. As with any crystal set the final performance is dependent on the efficiency of the antenna system and extra effort here will pay dividends. The final section of the manual contains a simple description of how the radio works along with a circuit diagram.

This is only one in a range of similar kits available from most Tandy shops, this kit was kindly loaned by the Boscombe branch.
Passport to World Band Radio

Published RDI
Page size: 10 x 254mm
Pages: 255
Covers: Soft covered
Price: £14.50 plus £1 P&P

This publication was released in the United States in September, and supplies have now reached the European distributor. 255 pages of the book are coloured blue, and this is really the heart of the publication. It uses a well-developed graphics format to visually illustrate the short wave radio dial. The frequency is shown down the side of the page, and the time is listed across each page. Pages 715 to 716MHz, and you can see at a glance which station is scheduled to use that frequency and at what time. If the language of the transmission is English, Ultra High Frequency, Portuguese, Spanish, Russian, Chinese or Japanese you can actually see what time the broadcast starts and finishes. Coverage starts at 2.300MHz and moves continuously up to 2.60MHz in the blue page section. However, two pages of the charts have been put in the white page lexicon section covering 21.610 to 25.730MHz. Why this has been done isn’t immediately clear but you might miss this at first glance. The schedule section has obviously been compiled with care, and once you get used to the numerous abbreviations the book becomes quite a useful tuning aid as you spin the dial. Another 44 pages in the book cover receivers. There are one-paragraph summaries of most of the receivers currently on sale in North America from 50 to 8000 dollars. Author Larry Magne gives his short and often critical opinion in a few paragraphs. More detailed reviews are included on the Sangean ATS-803, Sony ICF7600 and 7600D, Panasonic RF-60, Philips 2935, Grundig Satellite 400 and 500, Sony ICF2001D, Kenwood R-5000, JRC NRD 525, Low EHF-125, Icom ICR-71, FRG880, and Ten Tec RX-325. Some of these reviews have previously appeared elsewhere, but have been thoroughly updated. They don’t include technical specifications on the receivers. This is offered as a separate optional extra, costing 6 US dollars for EACH report that you’re interested in.

The rest of the book contains advice on elements from North American equipment dealers and 10 feature articles. One of the best we found was one by Don Jensen on listening to Latin American music with a useful one page guide as to what channels to pick in North America. This book is a useful addition to the short wave listening hobby, and will fill serious gaps in it if you try to use it on its own without other reference sources to hand.

Appendix 4
Useful Addresses

Although this book is an Australian publication, don’t let that put you off, the authors have made every effort to avoid any bias in their writing.

Most people don’t need a book to tell them how to get pictures on their television or programmes on their radio. But what if you want to receive more exotic pictures or programmes and what happens during an ionospheric disturbance that you could find this book useful.

Right from the start this is a really easy book to read, they don’t assume you know all the ins and outs of radio reception. The first chapter is called “An Overview” and explains all kinds of things regarding the world of radio. Subject is described briefly, subjects such as callsigns, troposphere, solar indices and literature. Any subject that is described in detail later in the book is lightly mentioned, just to let you know the subject hasn’t been forgotten.

Also included in the Overview is a mini glossary of radio terms. In the first edition there were quite a few gaps, but then it is only a mini-glossary, there are also some words I wouldn’t have expected to find, such as Luxembourg Effect and Excited Carrier Selective Sideband. Most of the entries though were well described if only briefly and at least give the reader an idea of the meaning of the words.

Although stations are also listed in countries such as New Zealand in no order listing. If you want to know what is on in English now, you’re not going to waste through 151 pages to compile your own list. There’s certainly space left in the book to incorporate such a listing without increasing the page count. There needs to be a warning somewhere that just because a 1 kilowatt station in Indonesia is on the air now, you can’t expect fantastic reception in the heart of Europe. Likewise should you tune 5.109MHz and hear distant voices, don’t immediately assume you’ve heard the clandestine station Voice of the Burmese people.

You need to choose another book to find addresses of even the major stations, and to discover whether the international broadcaster of your choice also uses medium wave to reach you. In Europe, Asia and the Middle East medium wave is often the best method of international broadcasting. It is long waves, and at distances, especially in winter. Available from Interbooks, SW4, Stanley, Perth PH1 4QQ.

Chapter 1: Radio TV Reception - An Overview

Chapter 2: The Broadcasting Bands

Chapter 3: Receivers
Choosing a Receiver, Types, Prices, Features and Controls, Reception Problems, Buying, Operating a Receiver.

Chapter 4: Antennas
Antennas, Antenna Terminology, Types of Antennas, Omnidirectional Antennas, Directional Antennas, Long Wave Antennas, Medium Wave Antennas, Short Wave Antennas, Active Antennas, FM and TV Antennas, Connecting the Antenna to the Receiver, Types of Feeders, Losses, Velocity Factor, Connectors, Switches, Diagrams, Receiver Tuners, Installation Considerations.

Chapter 5: Advanced Topics

Chapter 6: The Broadcasters
Major Broadcasters, Minor Broadcasters.

Chapter 7: The Hobby of Radio DXing
Introduction, The Reception Report, Verification, DXing Aids, DX Clubs, DXing Locations, Tips from the Experts.

Appendix 1
Log Sheets

Appendix 2
Metrics for Radio TV

Appendix 3
Time Difference Chart

Better Radio/TV Reception
Published Ashley Publishing
Page size: 208 x 280mm
Pages: 125
Covers: Soft covered
ISBN: 0 9568532 07
Chapters: (see below)
Appendices: (see below)
Price: £9.95 plus £7.50 P&P

Chapter 1: Radio/TV Reception - An Overview

Chapter 2: The Broadcasting Bands

Chapter 3: Receivers
Choosing a Receiver, Types, Prices, Features and Controls, Reception Problems, Buying, Operating a Receiver.

Chapter 4: Antennas
Antennas, Antenna Terminology, Types of Antennas, Omnidirectional Antennas, Directional Antennas, Long Wave Antennas, Medium Wave Antennas, Short Wave Antennas, Active Antennas, FM and TV Antennas, Connecting the Antenna to the Receiver, Types of Feeders, Losses, Velocity Factor, Connectors, Switches, Diagrams, Receiver Tuners, Installation Considerations.

Chapter 5: Advanced Topics

Chapter 6: The Broadcasters
Major Broadcasters, Minor Broadcasters.

Chapter 7: The Hobby of Radio DXing
Introduction, The Reception Report, Verification, DXing Aids, DX Clubs, DXing Locations, Tips from the Experts.

Appendix 1
Log Sheets

Appendix 2
Metrics for Radio TV

Appendix 3
Time Difference Chart
Dial Search

Published George Wilcox
Page size 148 x 210mm
Pages 49
Cover Soft covered
ISBN 0 9508857 2 1
Chapters 12
Price £3.60 inc. UK postage

As I write, the fifth edition of this useful book is going to press. It is up-to-date until October 1987, which makes it one of the best sources of information around at the moment. It is called The Listener’s Check-list and Guide to European Broadcasting, which seems an accurate description.

The new edition will contain many of the old features as well as some additions. The chapter on making the most of your portable has been rewritten now complete with diagrams. It has always contained very useful information for those using simple sets, which gives you a better chance of improving your results. There is lots of practical advice like, “reception is better the higher your set is (or antenna).” A portable in an upstairs room, near a window if possible, is much more reliable than on the ground floor’.

There is a British Isles map mounted inside the back cover and a Europe and Mediterranean map inside the front. These maps give the locations of the various broadcasting transmitters.

The section called Spot the Tune has been reduced in size this time, to make room for more popular information. It is only useful to those who can read music as it provides the signature tunes and interval signals from some of the international broadcasters.

Another addition to the book is the details of the amateur bands and the North American medium wave to the Broadcast Bands section. This should now make this a very comprehensive chapter as previously only the long wave, medium wave, short wave, v.h.f., u.h.f. and s.h.f. bands were included.

One point to note is that times of broadcasting in this book are given in British Time. Listeners in most European countries will be one hour ahead of this time for most of the year. However, Europe puts the clock back before Britain does, so that times are the same as the UK for about a month (end of September to end of October). This is an interesting time, especially in late evening, as times of close down, fading and interference are different from usual. Who knows what you would be able to hear.

The book is available from George Wilcox, 9 Thurlow Close, Eastbourne BN20 9NF from mid-December onwards.

Chapter 1 Introduction
Chapter 2 Frequency Bands
Chapter 3 Medium Wave: Europe, Index, British Isles, Index (locale)
Chapter 4 Longwave
Chapter 5 VHF (f.m.)
Chapter 6 Shortwave
Chapter 7 Using the Dial Search Maps
Chapter 8 Making the most of your portable
Chapter 9 Spot the Tune
Chapter 10 Classical music & jazz
Chapter 11 Broadcasts in English
Chapter 12 Programme Notes

The Complete VHF/UHF Frequency Guide

Published Waters & Stanton
Author Bill Lever
Page size 210 x 290mm
Pages 60
Cover Soft covered
Chapters 11
Price £4.95
Available SWM Book Service

Equipment Requirements
Including Aerials
About the Entries in this Publication
The Future of VHF/UHF Communications
Frequency Guide 26 to 117.95MHz

Science Fair AM Short Wave Radio Kit

Cat No. 28176
Price £11.95

The AM Short Wave Radio Kit from Tandy is a simple kit for the youngster with a budding interest in radio and electronics. It has three bands covering 520kHz - 1625kHz, 6MHz - 8MHz and 12MHz - 17MHz. The method of construction is simple but unusual and consists of two plastic end pieces with a heavy duty cardboard chassis which is overprinted with the circuit diagram. The interconnections are made using spring terminals which are inserted in the cardboard chassis and line up with the connection points on the circuit diagram. The kit contained a plentiful supply of capacitors and stripped connecting leads as well as the main components which saves extra expense. The only thing that needs to be supplied is a battery.

The whole unit uses 3 transistors, 8 resistors and 8 capacitors to complete the kit and there is a small 2-transistor amplifier to boost any signals once found.

The only tools required to build this are a small Phillips screwdriver, a pair of long nosed pliers and a pair of wire cutters. The handbook is clearly written and describes briefly what happens when the constructor finds a station on their radio. Then there is a very clear parts list with the components illustrated to prevent mistakes being made with electrolytic capacitors and transistors. In each case the circuit symbol is given by the side of the illustration which is a good teaching aid. Unfortunately the capacitors look slightly different as these kits are supplied mainly for the US markets — but that’s not too great a problem.

The method of construction is following step by step through the instruction book “tickling” the stages as they are completed. No soldering is required which reduces the risk of accidents without removing the fun of building your own projects.

The project you see in the photograph was successfully built by Emma Mackie, a bright 9-year old. So that gives an idea of the suitability of the kit for enthusiastic youngsters. That’s not to say some of the older readers may not want to have a go! The kit is available in most Tandy stores and was kindly loaned by the local Poole branch.
Goodmans ATS-801

Coverage
i.w. 155-281kHz
m.w. 530-1820kHz
s.w. 5.8-15.5MHz
f.m. 87.5-108MHz (stereo into stereo
headphones)

Power
4 x 1.5V AA batteries or 6V d.c. supply
3V Silver Oxide back-up battery

Audio
60mm speaker and light-weight
headphones supplied

Antenna
860mm telescopic antenna supplied

Tuning
digital tuning
i.w. 1KHz steps
m.w. 1KHz steps
s.w. 5kHz steps
f.m. 50kHz steps

Weight
580g

Dimensions
112 x 180 x 30mm

Price
£85

The ATS-801 is a rather up-market portable radio featuring digital microprocessor control at the heart of all operations. Don’t be misled by its small physical size as it is packed with features. The initial impression is of a nicely engineered and well presented piece of equipment. The controls were very clearly marked and operation was possible without having to read the well presented manual.

The liquid crystal display (l.c.d.) on the front panel is very clear and always active. When the radio is switched off the display shows the current time in 12-hour form with a.m. or p.m. clearly marked as appropriate. As soon as the radio is turned on, the display changes to show the frequency in MHz or kHz depending on the band selected at the time.

The band selection was very simple and comprised a four-position slider switch to select either long, medium, short or v.h.f. band. To manually set a frequency the band is first selected and then the frequency can be altered in steps by pressing either the up or down tuning buttons on the front panel. If you want to tune quickly then these buttons can be held down. The only problem I found when fast tuning is that the audio is muted, except for a “beep” at each tuning step. This, of course, means that the only indication you have as you tune past a signal is when the tuning indicator, i.e. the lights. An additional tuning facility is incorporated in the form of an automatic scan routine. This is tuned on by a small switch in the front panel and the scan is started by holding down either the up or down tuning button for a couple of seconds. Once the scan has started it will continue until a signal is found that exceeds the factory pre-set threshold. I thought the scan was very effective on v.h.f. and on the medium and long wave bands during the day. At night, the automatic scan was less successful as the congested state of these bands meant that the scan was always stopping on the myriad of miscellaneous signals.

One of the spin-offs of microprocessor control is that programmable memories are easy to implement. The ATS-801 has a total of 25 memories available which is very good. The memories are very well organised as 10 on the short wave band and five each on the three other bands. The programming of these memories is wonderfully simple which means that they are likely to be well used. Goodmans have also included a separate battery back-up for the memories, so you don’t lose the memories when you change the radio batteries which is useful. Whilst discussing programming I ought to mention that the clock is rather more than just a simple clock. It has a timer facility which allows you to pre-programme when the radio switches on and off. This could be used as a radio alarm if required. The final timer facility is the sleep button which turns the radio off after 60 minutes and is designed for those who like to drift off to sleep with some background music. With all these programmable facilities you will be pleased to hear that the keyboard can be locked to prevent accidental operation of any of the push buttons.

Lightning protection

Here are two useful devices from SMC Ltd. Lightning and static discharge protection is an area worthy of some extra thought in view of the expensive equipment that many of us connect to our antenna systems. The first point to make clear is that there is nothing on the market that will protect your equipment from a direct lightning strike! Protection can however be provided from voltages that may be induced into your antenna system by nearby static discharges. The type of protection available falls basically into two categories. The first is the simple spark gap device which relies on dissipating any induced voltages in a controlled spark gap discharging any high voltages that may be present on the antenna system. The heart of the protector is a gas filled cartridge connected between the inner and outer of the coaxial antenna lead. The SMC 566 lightning arrester falls into this first category and comprises an in-line SO239/PL259 connector with an in-built spark gap. The main body of this connector also has an earth lug which should be wired to a low impedance earth with as heavy a gauge of cable as possible. The disadvantage of this type of protection is that the breakdown voltage of the spark gap is poorly defined and generally on the high side which results in an unpredictable level of protection.

The big advantage of course is price as this type of protector is generally about a quarter the price of the more sophisticated gas discharge devices.

This second and more expensive type of protection is provided by gas discharge devices. These units provide a tightly controlled environment for discharging any high voltages that may be present on the antenna system. The SMC 568 is a good example of this type of protector and is housed within an in-line male to female N connector. As with the simpler protector mentioned earlier, an earth lug is provided which must be connected to a good earth with heavy gauge cable. This particular protector is of very high quality and its prime use would be for protecting v.h.f. or u.h.f. equipment and is to be recommended for users of externally mounted discones.

As can be seen from the frequency coverage, this is essentially a broadcast station receiver and as such it performed very well. The sound quality was very good particularly when listening to v.h.f. using the supplied stereo headphones. When listening on short wave the telescopic antenna needs to be extended for best results. One novel little extra is a pair of metal legs on the base of the cabinet which can be folded out to give increased stability when using the set on a flat surface. The only snag being that these feet could not be used when the radio was mounted in the supplied vinyl case.

The radio was loaned by Johnsons Shortwave Radio, 43 Firlar Street, Worcester WR1 2NA, Tel: (0905) 25740.

SMC650 £20.50 plus 75p P&P
SMC66 £23.99 plus 75p P&P
SMC568 £20.50 plus 75p P&P

IDEAS FOR CHRISTMAS

SMC568 £23.99 plus 75p P&P
2150 £20.50 plus 75p P&P

The radio was loaned by

Short Wave Magazine December 1987

Johnsons Shortwave Radio, 43 Firlar Street, Worcester WR1 2NA, Tel: (0905) 25740.
Goodmans SG-789L

Coverage:
- i.w.: 150 - 281 kHz
- m.w.: 522 - 1820 kHz
- s.w.1: 5.80 - 6.20 MHz
- s.w.2: 7.05 - 7.50 MHz
- s.w.3: 9.45 - 9.90 MHz
- s.w.4: 11.70 - 12.05 MHz
- s.w.5: 15.05 - 15.50 MHz
- s.w.6: 17.45 - 18.05 MHz
- s.w.7: 21.45 - 21.95 MHz
- i.f.m.: 87.5 - 105 MHz (stereo into stereo headphones)

Power: 3 x 1.5 V AA batteries or 4.5 V d.c.

Audio: 70 mm speaker and light-weight headphones supplied

Antenna: 690 mm telescopic antenna

Tuning: Rotary tuning

Weight: 400 g

Dimensions: 89 x 174 x 30 mm

Price: £39.95

Operation

Although this receiver was only used for a short period I found that it performed very well and would make a very handy portable for the traveller. It could also be very useful if you're trying to find an "ideal" present for someone interested in all kinds of broadcast radio reception. Whether listening to Radio One in stereo (using the stereo headphones) or Voice of America on 11.94 MHz the audio quality was surprisingly good. The general operation of the radio was very easy with all controls having a good positive feel.

The tuning of signals was helped by the built-in tuning indicator, which comprises a small d.e. on the front panel. This indicator glows brighter as the signal gets stronger giving a very clear indication of the best tuning point. For those of you considering this radio for a younger member of the family, you will be delighted to learn that the stereo headphones are included with the radio. Seriously though, the headphones were comfortable and produced a very pleasant sound quality which was at its best when listening to a stereo transmission on v.h.f.

The presence of a stereo signal is indicated in the conventional way by a red i.e.d. glowing on the front panel. If you want to use mono headphones then a switch has been provided to manually switch from stereo to mono.

Moving on to the short wave bands, all the main broadcast sections are adequately covered in seven separate bands. The tuning dial shows the band number and the common band name in metres, i.e. 4.9 MHz, though the dial is calibrated in kHz. On the reissue model the dial calibration was about 5% out, but this is not uncommon on a portable receiver.

As the broadcast bands are covered in seven segments the main tuning becomes more akin to a bandspread dial. This greatly eases tuning on the very congested band conditions found after dark.

Most shortwave broadcast signals seem to suffer from quite severe fading, so it was good to see that the automatic gain control on the SG-789L coped well with the majority of signals. It can be quite a nightmare sorting out all the signals after dark as on some receivers there seem to be at least two stations on each frequency. The SG-789L makes comparatively easy work of this as the selectivity is well defined.

The receiver was loaned by Johnsons Shortwave Radio, 43 Friar Street, Worcester WR1 2NA. Tel: 0905 25740.

Steetleton SAB9

Coverage:
- i.w.: 150 - 270 kHz
- m.w.: 540 - 1600 kHz
- f.m.: 88 - 108 MHz
- Airband: 110 - 130 MHz

Power: 4 x 1.5 V AA cells or ext 9 V d.c.

Audio: 70 mm speaker or earpiece supplied

Antenna: 615 mm telescopic antenna supplied

Tuning: Rotary tuning (coarse and fine tune)

Weight: 500 g (with batteries)

Dimensions: 100 x 208 x 45 mm

Price: £18.95

Fortunately this radio is very easy to use as the instruction booklet consists of a single page that explains the use of the receiver and control functions — all you need to know.

The physical layout of the receiver is optimised for hand-held use and I must admit it was quite a nice fit in my hand. The front panel is quite straight forward and comprises a slide switch to select the band, rotary volume on-off and a rotary tuning control. The tuning control is actually mounted on the right hand side of the radio and is best used as a thumb-wheel control. The only other control is the fine tuning which is a thumb-wheel on the right-hand edge of the radio. One point worth noting is that all the controls are very nicely laid out for right-handed users and may prove to be rather awkward for a left-handed person.

The tuning dial is a little unusual in that the frequency markings are printed on the front panel and the dial pointer is visible through a transparent panel immediately above the markings. Although unusual, the dial calibration was very easy to read and the airband scale was located closest to the dial pointer which was good.

The performance on the medium and long wave bands was adequate for general local listening. I thought that the sound quality from the 70 mm speaker was quite pleasant for a hand-held radio.

The v.h.f. and air-band are actually one band, although the dial markings are split in two. The v.h.f. broadcast section covers the normal frequency range and turned in a good performance. The audio quality when tuned to broadcast stations was good, if perhaps a little on the bright side. The sensitivity was not measured but seemed to be quite good. I mentioned earlier that the air-band coverage is actually a continuation of the v.h.f. broadcast band, this presents a couple of slight problems. First is that to receive broadcast stations a bandwidth in the order of 75 kHz is required whereas 10 kHz is adequate for the v.h.f. The second snag is that air-band transmissions use amplitude modulation and broadcast signals use frequency modulation. Having pointed out the problem I am pleased to say that this receiver manages to perform remarkably well on the air-band. Without going into too many complications the a.m. signals can be resolved by tuning slightly to one side of the wanted signal. I didn't find any problems using this technique and the fine tune control made it very easy to find the optimum tuning point. The bandwidth problems show up by several adjacent transmissions being audible at the same time, but this is only really a problem if using the receiver close to a busy international airport. The tuning scale of the air-band was quite short (about 25 mm) but this did give the advantage of being able to quickly scan the whole band.

Overall this would make a good first radio for someone interested in aircraft communications.

The Steetleton SAB9 was kindly loaned by Johnsons Shortwave Radio, 43 Friar Street, Worcester WR1 2NA. Tel: (0905) 25740.
Marconi, in Newfoundland, successfully read signals sent from his station in Cornwall, on 12 December 1901. Although many scientists in a number of countries were carrying out experiments in wireless telegraphy, he has perhaps the best claim to be the inventor of wireless.

He patented his apparatus in London, and formed the Wireless Telegraph and Signal Company (later Marconi Wireless Telegraph Company).

Wireless Experiments

In Australia the first recorded wireless experiments were being conducted as early as September 1897, by Charles Todd (famed for his work on overland telegraph lines) and his son-in-law, Professor William Bragg, of Adelaide University, but although successful their signals did not cover a great distance.

When the Duke of York (later King George VI) visited Australia to open the first Federal Parliament in 1901, signals were exchanged between shore stations, both at Melbourne and at Hobart, and the naval ships escorting the royal vessel.

Experiments continued and, in July 1906, the first wireless communication between land stations in Australia was made between Point Lonsdale (S. Vic.) and Devonport (N., Tasmania), a distance of nearly 300km, the stations being established by the Marconi Company.

Then came the first official association between the Post Office and wireless. The Wireless Telegraphy Act was passed to bring about order and control of radio, requiring all stations to be licensed, the Post Office being made responsible for its administration.

The date: 23 November 1923. The time: 8pm. The place: Sydney, Australia. It was on that night that a radio station, 2SB (later 2BL) broadcast a programme of light entertainment: Australia's first regular broadcast. The story of Australian radio, however, goes back beyond that date.

By the outbreak of World War One, 19 stations were operating around the Australian coast providing ship-to-shore communication. In 1917 a German wireless message was intercepted at the Applecross (W. Australia) station. For the duration of the war administration of the Act was passed to the Navy, the Post Office resuming responsibility when hostilities ceased.

Direct Transmissions

In September 1918, the first direct transmission between the UK and Australia was sent by the Marconi Company from Caernarvon, in Wales, and received in a Sydney suburb.

Until now transmissions were mainly in Morse code, but by 1919 wireless telephony was on its way with the first public demonstration being given by the Royal Society of New South Wales in August 1919. Then followed a series of weekly concerts in experimental broadcasts in Melbourne in 1921.

RADIO AUSTRALIA tells it all — fast and accurate

World & Australian news, current affairs, information and entertainment in English, Indonesian, Standard Chinese, Cantonese, Japanese, Neo Melanesian, French, Thai and Vietnamese. Programmes schedules on request.

Credit: The Australian Post Office.
Hello and welcome to this new column in which I will include items of interest for those people owning scanning receivers, and also feature some of the more interesting new developments in the fast moving world of commercial radio communications.

This is referred to as Semi-Duplex operation. Full Duplex operation is where both operators can transmit and receive simultaneously, this is generally only used when a system is capable of being connected to the telephone network. Use of this type of operation is very well controlled by the DTI, as it tends to tie up radio channels for extended periods. This is particularly important in cities where frequencies have to be re-used.

Why, then, you may ask is Dual Frequency Simplex operation preferred against Simplex, when at first sight it appears to offer few advantages.

Well, if you consider that most base stations are located on high ground in order to maximise their coverage area, if a single frequency Simplex system was used, the geographical separation between stations using the same channel would have to be much larger than that for a dual frequency Simplex system. This is because the well located base stations would be able to receive each other well outside the intended coverage area for the mobiles. Because all the base stations are transmitting on a different frequency from the other system's receiver at close to the wanted frequency would cause overloading to occur. The additional isolation provided by the increased frequency separation in a dual frequency Simplex system helps to reduce this problem.

I hope that this gives a general guide to the more standard types of p.m.r. systems — watch future columns for details of more sophisticated systems.

Table 1

<table>
<thead>
<tr>
<th>PMR Allocation</th>
<th>Base TX Frequency (MHz)</th>
<th>Base RX Frequency (MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>"LOW" Band</td>
<td>86.000</td>
<td>71.500</td>
</tr>
<tr>
<td></td>
<td>to</td>
<td>to</td>
</tr>
<tr>
<td></td>
<td>86.300</td>
<td>72.800</td>
</tr>
<tr>
<td></td>
<td>to</td>
<td>to</td>
</tr>
<tr>
<td>Simplex</td>
<td>86.300</td>
<td>86.700</td>
</tr>
<tr>
<td></td>
<td>to</td>
<td>to</td>
</tr>
<tr>
<td></td>
<td>86.700</td>
<td>86.700</td>
</tr>
<tr>
<td></td>
<td>to</td>
<td>to</td>
</tr>
<tr>
<td></td>
<td>86.950</td>
<td>76.950</td>
</tr>
<tr>
<td></td>
<td>to</td>
<td>to</td>
</tr>
<tr>
<td></td>
<td>88.000</td>
<td>78.000</td>
</tr>
<tr>
<td></td>
<td>to</td>
<td>to</td>
</tr>
<tr>
<td>"MID" Band</td>
<td>138.000</td>
<td>105.000</td>
</tr>
<tr>
<td></td>
<td>to</td>
<td>to</td>
</tr>
<tr>
<td></td>
<td>141.000</td>
<td>108.000</td>
</tr>
<tr>
<td>Simplex</td>
<td>169.850</td>
<td>169.850</td>
</tr>
<tr>
<td></td>
<td>to</td>
<td>to</td>
</tr>
<tr>
<td></td>
<td>173.050</td>
<td>168.250</td>
</tr>
<tr>
<td>"HIGH" Band</td>
<td>169.850</td>
<td>169.850</td>
</tr>
<tr>
<td></td>
<td>to</td>
<td>to</td>
</tr>
<tr>
<td></td>
<td>169.850</td>
<td>169.850</td>
</tr>
<tr>
<td></td>
<td>to</td>
<td>to</td>
</tr>
<tr>
<td></td>
<td>173.050</td>
<td>168.250</td>
</tr>
<tr>
<td>"UHF" Band</td>
<td>440.000</td>
<td>446.500</td>
</tr>
<tr>
<td></td>
<td>to</td>
<td>to</td>
</tr>
<tr>
<td></td>
<td>443.500</td>
<td>429.500</td>
</tr>
<tr>
<td></td>
<td>to</td>
<td>to</td>
</tr>
<tr>
<td></td>
<td>446.500</td>
<td>426.000</td>
</tr>
<tr>
<td></td>
<td>to</td>
<td>to</td>
</tr>
<tr>
<td></td>
<td>466.000</td>
<td>426.500</td>
</tr>
<tr>
<td>Simplex</td>
<td>446.000</td>
<td>446.000</td>
</tr>
<tr>
<td></td>
<td>to</td>
<td>to</td>
</tr>
<tr>
<td></td>
<td>446.000</td>
<td>446.000</td>
</tr>
<tr>
<td></td>
<td>to</td>
<td>to</td>
</tr>
<tr>
<td></td>
<td>447.000</td>
<td>431.000</td>
</tr>
<tr>
<td></td>
<td>(London only)</td>
<td>to</td>
</tr>
<tr>
<td></td>
<td>448.000</td>
<td>431.000</td>
</tr>
<tr>
<td></td>
<td>to</td>
<td>to</td>
</tr>
<tr>
<td></td>
<td>453.000</td>
<td>459.500</td>
</tr>
<tr>
<td></td>
<td>to</td>
<td>to</td>
</tr>
<tr>
<td></td>
<td>454.000</td>
<td>460.500</td>
</tr>
<tr>
<td></td>
<td>to</td>
<td>to</td>
</tr>
<tr>
<td></td>
<td>456.000</td>
<td>461.500</td>
</tr>
<tr>
<td></td>
<td>to</td>
<td>to</td>
</tr>
<tr>
<td></td>
<td>467.000</td>
<td>462.500</td>
</tr>
</tbody>
</table>

Over the past few years the communications market within Britain has been restricted by the lack of available spectrum, preventing growth and the development of new systems.

With increasingly advanced techniques and the recent release of a large chunk of the spectrum previously allocated to broadcasting, this position is now changing.

Private Mobile Radio

It is perhaps worthwhile outlining the present position within Britain. Private Mobile Radio (p.m.r.) is the general term applied to privately owned business radio communication systems. Until recently this was generally split into a few main allocations. (See Table 1).

The terms Simplex and Duplex refer to the type of operation permitted in each sub-band. Simplex operation is where both the base station and mobile transmit on the same frequency. This means that each operator has to take it in turn to transmit in order to hear the other person — unlike, say a normal telephone conversation. Simplex operation is normally only permitted for low power stations operating within a well defined area, a factory or park for example.

Duplex (or more correctly in this case, dual frequency Simplex operation) is generally the preferred type of operation. In this case the base station transmits on one frequency to the mobile, and receives replies from the mobile on a separate frequency. Normally this second frequency is paired with the first in some fixed manner.

Again the operators have to take it in turns to speak to each other as in the Simplex case. In some cases though the base station operator can still listen to the mobiles whilst transmitting, although the individual mobile stations can still only transmit or receive at any instant in time.
Band III

As I mentioned in the introduction to this column, several new systems are now being introduced into this country, one of these is termed "Trunked" p.m.r. This is initially being placed in the middle of the recently vacated Band III TV allocation (see Fig. 2) with the other segments being reserved awaiting the development of even more advanced systems, possibly using s.s.b. or a.s.c.b. modulation techniques.

Trunked Systems

Trunked systems are currently one of the most spectrum efficient ways of providing communication for p.m.r. users. This is because in traditional systems each user is assigned an individual channel, usually shared on a geographical basis with other users. So within each area only one system can operate on each channel. Obviously each user will have differing uses for their system and so the traffic loading on the channel will vary throughout the day. A taxi firm will for instance tend to be busy early in the morning and again late in the evening, whereas a delivery company may be busy in the mid afternoon. So if a method could be found of distributing the loading on a channel in a more even fashion then the system efficiency would increase.

This is what a Trunked Radio system achieves, each user is given access to a "pool" of frequencies with a common calling channel. When a call is established the base station finds an unused channel from the "pool" and signals to the mobile (by means of a 1200 baud data burst) for the mobile to change frequency from the original channel to the new one. The call then continues on the new channel, with the mobile returning to the calling channel on completion of the call.

By using this system many more users can be accommodated on a limited number of channels, and the addition of further channels results in a much greater increase in capacity than with conventional systems.

Band III PMR Allocations

Some limited capacity systems have been in use for a few years now, these were additional allocations made by the DTI before the release of Band III, and after much research into the available spectrum, particularly in London where the demand was the greatest. "Holes" were found in parts of the v.h.f. Marine Band and also at u.h.f. with one of the underused segments of the 430MHz Amateur band pushed into service. It is hoped that the release of Band III will reduce the pressure on the remaining spectrum.

<table>
<thead>
<tr>
<th>Base TX (MHz)</th>
<th>Base RX (MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simplex</td>
<td>199.500</td>
</tr>
<tr>
<td></td>
<td>to</td>
</tr>
<tr>
<td></td>
<td>200.600</td>
</tr>
<tr>
<td>Duplex</td>
<td>200.600</td>
</tr>
<tr>
<td></td>
<td>to</td>
</tr>
<tr>
<td></td>
<td>207.600</td>
</tr>
<tr>
<td>Simplex</td>
<td>207.600</td>
</tr>
<tr>
<td></td>
<td>to</td>
</tr>
<tr>
<td></td>
<td>208.600</td>
</tr>
<tr>
<td>Not yet allocated</td>
<td>184.500</td>
</tr>
<tr>
<td></td>
<td>to</td>
</tr>
<tr>
<td></td>
<td>199.500</td>
</tr>
<tr>
<td>Not yet allocated</td>
<td>208.500</td>
</tr>
<tr>
<td></td>
<td>to</td>
</tr>
<tr>
<td></td>
<td>225.000</td>
</tr>
</tbody>
</table>

Restrictions on New Equipment?

Many readers will by now have noticed trends in the latest generations of Amateur Radio equipment to reach these shores, so too no doubt will the Radio Regulatory Division of the DTI. Some of this equipment covers frequencies well outside the normal Amateur bands, on transmit as well as receive. It would not be surprising to find some of the less honest p.m.r. users cutting costs by using this non-type approved, but cheaper, equipment. The interesting fact is that many of the Japanese companies producing equipment for the Amateur market also produce modified versions for commercial users. A good example of this is the popular Icom IC2E hand-held v.h.f. transceiver which is available in both Marine and High Band p.m.r. versions, at increased cost. The only circuit differences are changes in the internal oscillator frequencies and the removal of the thumbwheel frequency selection.

With the new generation of broad-banded circuits the only changes required are in the programming of the internal microprocessor — a much simpler production change; indeed much of the new equipment is expected to be type approved soon.

In the US restrictions are being placed on programmable p.m.r. equipments, this is mainly due to users installing unauthorised channels, where their existing allocation is busy. It has, of course, always been possible to fit extra channels to crystal controlled equipment, but the ease of re-programming, usually involving either typing in a secret sequence on the keypad, or shorting a test point to earth, has led to widespread misuse. It would not be surprising if the British Authorities decided to try and nip this problem in the bud.

See What You Can Hear!

A new add-on for the Icom R7000 receiver is now available in the US called "Spectrum Display". It plugs into the rear of the receiver and produces up to a 10MHz wide spectrum analyser style frequency display, when connected to an oscilloscope. The idea of such a device, commonly referred to as a "Panadapter" is not a new one, indeed military surveillance equipment since the Second World War has usually incorporated such a feature for the analysis of received signals, however this unit has to be one of the most sophisticated items yet to be offered on the hobbyist market. One drawback, I feel, is the need to use an oscilloscope as the display device, as this means that an additional piece of equipment has to be obtained, increasing the overall price the owner has to pay. I would guess however that with the cost of computing power decreasing it will not be long before a...
version which can interface directly with a TV monitor will become available. Current cost of the unit in the US is $350 so expect about the same price in £s when it reaches these shores.

Interception of Communications

The discussions regarding the Electronic Communications Privacy Act in the US have many parallels with the interception of Communication Act in Britain. It is interesting to note the many claims and counter claims now floating around the American Senate. The main pressure for restrictions on what can, or cannot be legally received has come from the powerful cellular radio lobby, this has resulted in a proposed limitation on listening to certain types of radio traffic, which when viewed against the American ideal of freedom is seen as the first nail in the coffin of the so-called utility monitoring.

The situation seems strange in that, by passing such laws, the government expects that people will be dissuaded from listening. Nothing has changed with the introduction of cellular radio, it was possible to listen to radiotelephone conversations on the older systems, but only now do the system operators seem to have realised this.

Surely if people are going to take advantage of anything they hear, then breaking one further law is not going to stop them. No radio system is totally secure, but modern electronics make it easy and inexpensive to provide some form of secure speech, which would make casual listening difficult. In this context the system operators seem to have favoured the easy way out.

Books

Each month I will try to include the titles of books which I hope will give readers of this column a further insight into some of the topics covered. So to start off this item good general guides to both p.m.r. and similar allocations are the following HMSO publications:

Revised International Table of Frequency Allocations and associated terms and definitions. Home Office ISBN 0 11 340729 7

Feedback

This is your column as well! So I would be glad to receive any contributions, questions, criticisms, suggestions or just plain cries for help, anything in fact connected with the topics featured this month. So how about it? All mail to PO Box 1000, Eastleigh, Hants SO5 5HB. If you require items returning please enclose an s.a.e.

ircraft contacting them but if the plane is not on a constant listening watch the SELCAL system will be used.

Oceanic Control

Oceanic control north of latitude 46 degrees north and south of 61 degrees north is shared between two centres. To the east of 30 degrees west is controlled by Shanwick, situated at Ballygreen, in the west of Ireland, and west of 30 degrees west is controlled by Gander, situated in Newfoundland, Canada. North of 61 degrees north is under the control of Iceland as are the polar tracks and south of 46 degrees north by Santa Maria in the Azores.

Radio Frequencies

The radio frequencies which are allocated to Shanwick, Gander, Iceland and Santa Maria for the North Atlantic routes are divided into four groups which cover the major zones.

NAT A Covers aircraft flying on the Southern tracks including flights worked by Shanwick and Santa Maria Controls.

NAT B Central and Northern tracks for aircraft registered west of 30 degrees west. (e.g. American aircraft).

NAT C As at NAT B but for aircraft registered east of 30 degrees west. (European registered aircraft).

NAT D Northern routes outside organised tracks. These included the polar routes.

Each flight uses a primary frequency with a back-up secondary for use when the reception is poor or fading. For most of the year, the two middle frequencies for each zone are used Shanwick Oceanic using the 5m band as a primary and 8m for the secondary or back up. At 30 degrees west the aircraft changes over to the Canadian control at Gander with the primary becoming the 8m band when the 5m acting as the secondary frequency. At very busy periods, the secondary frequency may be used for progress reports and SELCAL checks but this is the exception rather than the rule.

Flights over the Atlantic

Flights over the Atlantic were developed in a track system. It was designed to cope with airline timetables which have all the aircraft going the same way at given times to avoid congestion.

So therefore the bulk of the transatlantic flights leave on the west bound tracks travelling to Canada and the United States between the hours of 1100 to 1500 UTC and travel in the opposite direction between 0100 and 0700 UTC.
Sound Waves

Sound waves consist of alternating, low frequency compressions and rarefactions of the air, and travel at a speed of 1200km/hr. A perfect human ear responds to audio frequencies (a.f.) which lie within the range 10Hz to 20kHz; however, some animals can respond to much higher frequency (ultra-sonic) noises.

Differences

It is very important to appreciate that despite the apparent overlap in the audio and radio frequency (r.f.) ranges between 10 and 20kHz, the nature of the two kinds of waves is quite different. Radio waves consist of electric and magnetic fields and travel at 300 000km/s (see Starting Out, SWM April '87). No wonder, then, that a person with very good hearing cannot hear the 16kHz signals broadcast by GBR from Rugby when driving past on the M11.

The sounds which originate in a studio of a BC centre, or at an outside event, are either picked up by a microphone or reproduced from sound information stored on disc or tape. Like the human ear, a microphone responds to the compressions and rarefactions of the air, but converts them into tiny electrical currents which are then amplified to a predetermined peak level before being sent along specially equalised audio lines to the transmitter.

Modulation

When the audio signals arrive at the transmitting station they are further amplified and then superimposed onto a r.f. carrier wave generated within the transmitter by a process called modulation. The combined signal is then radiated by the station's antenna. The modulation process may take various forms, but two systems are often employed by broadcasters - amplitude modulation (a.m.) and frequency modulation (f.m.).

Each method has advantages and disadvantages, but on the crowded long, medium and short wave bands the most important consideration is the amount of band space required by the modulated signal. The a.m. system is used on these bands because several a.m. broadcasts could take place in the amount of space required by a single wide-band f.m. transmission. The much wider h.f. bands are well suited to f.m. transmissions and extensive use is made of them to provide a high-fidelity broadcast service, but they are not considered here.

Amplitude modulation is essentially a mixing process and is usually carried out at high power levels in the final stages of BC transmitters. When an audio signal (f_a) is mixed with an r.f. carrier (f_c) in a non-linear device, it can be shown that additional frequencies above and below the carrier are produced: these are called side frequencies, and consist of f_c ± f_a (see Fig. 1a). Provided the amplitude of the modulating audio signal (f_a) does not vary, the amplitude of the side frequencies will remain constant.

Sidebands

If the frequency of f_a is increased, then the side frequencies move further away from the carrier. If more than one modulating frequency is present, then a band of frequencies results above and below the carrier; these are called the upper and lower sidebands - see Fig. 1b. If the frequency and amplitude of f_a varies (as in speech), the amplitude and frequency of the sideband frequencies will also vary. It should be noted that the sidebands are actually mirror images of each other and that it is the sidebands which carry the modulation information.

Irrespective of whether or not modulation is present the carrier remains constant, and actually carries no information, but is required as a reference by a receiver for the demodulation process.

If all this seems a little confusing, consider a practical example with a carrier (f_c) operating at a frequency of 1500kHz. If the modulation frequency (f_a) is 1kHz, then the upper sideband frequency will be 1500kHz + 1kHz = 1501kHz, and the lower sideband frequency will be 1500kHz - 1kHz = 1499kHz. If a higher frequency of 5kHz is added to the modulating audio, that will result in an additional upper sideband frequency of 1500kHz + 5kHz, and an additional lower sideband frequency of 1500kHz - 5kHz = 1495kHz, being present.

The layout of a simple a.m. transmitter (Fig. 2a) and the associated waveforms present at each stage (Fig. 2b) can be seen. A master oscillator (m.o.) generates a low level r.f. signal "A" at the desired carrier frequency. The output from the m.o. is then amplified by a power amplifier (p.a.) before being passed to the antenna and radiated.

The incoming audio signal from the studio centre "B" is amplified sufficiently to enable it to drive an audio power amplifier, called the modulator. The audio output from the modulator appears across the secondary of the modulation transformer where it is applied in series with the high tension supply to the p.a.

If no audio is incoming from the studio centre, an unmodulated or plain carrier will be radiated by the antenna; note that the r.f. signal voltage shown at "C" is constant. When audio is present the waveform depicted at "D" results, which contains the carrier (f_c) and the sidebands (f_c + f_a and f_c - f_a), it is called the modulation envelope.

Modulation Depth

When the audio causes the peak r.f. signal

Brian Oddy G3FEX
voltage to vary from zero to twice the unmodulated value, the transmission is said to be fully modulated. The r.f. power will then vary from zero to four times the unmodulated value, since power varies as the square of the voltage. Any further increase in audio would result in distortion and spurious sideband signals being generated; these would cause interference to broadcasters on adjacent channels. The degree, or depth, of modulation is usually expressed as a percentage of the maximum value. The audio output of an a.m. receiver is related to the depth of modulation, so it is desirable to keep the modulation percentage as high as possible in order to improve intelligibility. The ratio of the loudest and quietest audio at the studio centre is called the dynamic range, and at many s.w. transmitting stations the dynamic range of the incoming audio is compressed to improve intelligibility of the quiet passages. The loudest passages of audio are limited to a preset level and any peaks that exceed this value are clipped off to avoid overmodulation.

The space taken up in the r.f. spectrum by a modulated transmission is called the bandwidth of the signal. In the case of an a.m. transmission this is equal to twice the highest modulating frequency. In the example the highest modulating frequency is 5kHz, so the signal will occupy a band extending from 5kHz below to 5kHz above the carrier, namely from 1485 to 1505kHz — thus giving a bandwidth of 10kHz.

When an a.m. signal is radiated via the ionosphere to some distant location, the paths taken by the upper and lower sidebands may be slightly different. This causes delays or phase errors in the components of the signal and results in a form of audio distortion in the demodulated signal called phase distortion. This type of distortion is most noticeable during periods of fading of the transmitted signal, so try listening to a s.w. signal which is fading and see if you can detect the phase distortion.

STARTING OUT

Sit the handiest guide for home listener or DXer; now it's set to be even easier to read and consult. Revised checklists: European LW & MW Index, Complete U.K. lists, MW & VHF, plus-updated after all the changes, indexed. Selection of short wave broadcasts in English, and programmes of classical music and jazz. Feature on "Making the most of your portable", with unique transmitter maps of Europe and Mediterranean, (A3 size) and British lists, for easy bearings.

Ready mid-Dec. 87 — 48 pages A5 — £3.60 including U.K. postage (£4.00 abroad or 18 IRCs), from George Wilcox (SWM1), 9 Thurrock Close, Eastbourne, East Sussex BN20 6AN.

Practical Wireless

The Radio Magazine

JANUARY '88 ISSUE

Expedition to the Pole

Build the PW "Otter" 50MHz Receiver

The Revex Wave Monitor Scope Reviewed

New series "Battle of the Beams" The German WW2 Radar Systems

and lots, lots more

on Sale December 10 — Order Your Copy Now!

Contents subject to last-minute revision

Theasley Electronics

"Theasley Electronics can help your DX'ing"

THEASBY ELECTRONICS
31, MIDDLETON ROAD, NORTH YORKSHIRE BD22 0DG
Telephone: (0536) 36785
At the time of writing, radio amateurs and SWLs in this country are divided in two — those who have their antenna still in the air, and those who have lost antennas, towers, sometimes even roofs. Clearly, nothing can save an antenna onto which a tree, or neighbours’ garden shed, is blown. On the other hand, many antennas came down for no better reason than that the wind blew. Regular maintenance is a good idea because a tower that doesn’t fall down, the ingress of moisture for instance can cause a slow but progressive deterioration.

So what to do? In terms of initial design engineering remember that everything must be in proportion: to use a great big Perins insulator with a 28 s.w.g. (0.38mm) wire is asking for the first wind to fetch everything crashing down. Likewise, to use thin string with a diode made of 1 s.w.g. (3.2mm) wire is equally daft. My “Best Bent Wire” of 28 s.w.g. survived happily, simply because I have NO insulators; it is tied up with clear nylon monofila-
ment fishing line, and a length of this has in fact a longer insulating path than a conventional insulator. For a centre-fed diode or G5RV type, one has to add to the equation the weight of the feeder. You are now straining to reduce the sag, and a moment’s consider-
ation of the Triangle of Forces shows the pull on the wires is far more than the mere weight of the feeder; whence it is always preferable to support a centre-fed device at the feedpoint, and so take all load off the wire and supports.

As to maintenance, there are several things one can do; drop the whole works, masts and all for checking, at least every couple of years. The masts can be completely checked over, looking particularly at the joints between sections, and all nuts and bolts giving a good dose of lanolin-based grease. A clean-up and a lick of paint to protect from corrosion, and a particularly close look at any place where two dissimilar metals come into proximity; such a case might be a couple of aluminium mast tubes, joined with a sleeve of plated steel and maybe stainless steel bolts. In such cases the weather will not just generate rust, but will result in serious electrolytic corrosion if the dissimilar metals are at opposite ends of the corrosion Table. There is a Corrosion Table in the RSGB Radio Data Reference Book, Fourth Edition, p.164, and presumably in later editions; for more detailed information you can refer to the DEF Standard.

Turning to the feeder, you can examine it for signs of chafing along its whole length, and for indications of moisture ingress through non-waterproof connectors such as the PL259 type. Before putting it up, measure the s.w.g. of the coaxial cable with the far end open-circuit and note the reading. When you do maintenance a check of the cable’s s.w.g. under the same conditions should give the same answer: if it shows a lower s.w.g. than 10:1 then the cable has become lossy and needs dumping.

Sealing the end of a piece of coaxial cable successfully where it joins the antenna elements is quite difficult; but it is vital. Since the PL259 isn’t waterproof of itself, that also needs to be sealed. The rubber-based sealants which give a reel of acetic acid as they cure should be treated with caution, as the acid is corrosive — but there is a very tight on the market which doesn’t use acetic acid. Some people use the rubber self-amalgamating type. When you are putting it all back up, it is worth considering whether to put up “preventer” guys as an extra precaution should the normal guy HPX RULES
1: The object is to hear and log as many prefixes as possible; a prefix can only count once for any list, whatever band it is heard on.
2: Only calls issued for amateur radio operation may be included. Undercover and pirate calls will not be credited, nor any MARS stations be claimed.
3: Where a suffix determines a location the suffix shall be the deciding factor in the number assigned. Where there is no suffix or if the suffix has no number attached, e.g., VE1 AED/P/SU, VE3 UJ/P/SU, they are arbitrarily counted as SU1 and SU2 respectively, and the same holds good for call signs. 4: The object is to hear prefixes not countries, thus there is no discrimination between say MP4B and MP4K which count as one prefix.
5: The /P, /M and /MM suffixes create a new series: thus G3SWM, G3 SMP, G3SWMM and G3SWM all count as prefixes, and where it is known to be legal, IAM also.
6: When the prefix is changed, both the old and the new may be counted; thus VQ4 and 524 both count.
7: G2, G3, G4, etc., all count separately, as do GW2, GW3, etc., and in the same way K2, W2, WA2 all count separately even though they may be in the same street.
8: Send your HPX list, in alphabetical and numerical order showing the total claimed score. With subsequent lists, it is sufficient to quote the last claimed score, the new list of prefixes and the new total. Give your name and address on each sheet, and send to: LADDERS, Short Wave Magazine, Enecco House, The Quay, Poole, Dorset BH15 1PP, if possible to arrive before the deadline for that particular month.
9: Failure to report for two consecutive listings, i.e., four months, will result in deletion from the Table, although there is no objection to a “nil” report to hold your place.
10: 200 prefixes must be heard for an entry to be made in accordance with HPX Rules. At score 500 transfer to the All-Time list is automatic. Note. The Annual Table is a Phone only listing.

200 prefixes to have been heard for an entry to be made in accordance with HPX Rules. At score 500, transfer to the All-Time list is automatic. Note. The Annual Table is a Phone only listing.

Rules as for the Annual Listing. An entry for this listing must be submitted in addition to any claim for the All Time Post War ladder.

At the time of writing, radio amateurs and SWLs in this country are divided in two — those who have their antenna still in the air, and those who have lost antennas, towers, sometimes even roofs. Clearly, nothing can save an antenna onto which a tree, or neighbours’ garden shed, is blown. On the other hand, many antennas came down for no better reason than that the wind blew. Regular maintenance is a good idea because a tower that doesn’t fall down, the ingress of moisture for instance can cause a slow but progressive deterioration.

So what to do? In terms of initial design engineering remember that everything must be in proportion: to use a great big Perins insulator with a 28 s.w.g. (0.38mm) wire is asking for the first wind to fetch everything crashing down. Likewise, to use thin string with a diode made of 1 s.w.g. (3.2mm) wire is equally daft. My “Best Bent Wire” of 28 s.w.g. survived happily, simply because I have NO insulators; it is tied up with clear nylon monofila-
ment fishing line, and a length of this has in fact a longer insulating path than a conventional insulator. For a centre-fed diode or G5RV type, one has to add to the equation the weight of the feeder. You are now straining to reduce the sag, and a moment’s consider-
ation of the Triangle of Forces shows the pull on the wires is far more than the mere weight of the feeder; whence it is always preferable to support a centre-fed device at the feedpoint, and so take all load off the wire and supports.

As to maintenance, there are several things one can do; drop the whole works, masts and all for checking, at least every couple of years. The masts can be completely checked over, looking particularly at the joints between sections, and all nuts and bolts giving a good dose of lanolin-based grease. A clean-up and a lick of paint to protect from corrosion, and a particularly close look at any place where two dissimilar metals come into proximity; such a case might be a couple of aluminium mast tubes, joined with a sleeve of plated steel and maybe stainless steel bolts. In such cases the weather will not just generate rust, but will result in serious electrolytic corrosion if the dissimilar metals are at opposite ends of the corrosion Table. There is a Corrosion Table in the RSGB Radio Data Reference Book, Fourth Edition, p.164, and presumably in later editions; for more detailed information you can refer to the DEF Standard.

Turning to the feeder, you can examine it for signs of chafing along its whole length, and for indications of moisture ingress through non-waterproof connectors such as the PL259 type. Before putting it up, measure the s.w.g. of the coaxial cable with the far end open-circuit and note the reading. When you do maintenance a check of the cable’s s.w.g. under the same conditions should give the same answer: if it shows a lower s.w.g. than 10:1 then the cable has become lossy and needs dumping.

Sealing the end of a piece of coaxial cable successfully where it joins the antenna elements is quite difficult; but it is vital. Since the PL259 isn’t waterproof of itself, that also needs to be sealed. The rubber-based sealants which give a reel of acetic acid as they cure should be treated with caution, as the acid is corrosive — but there is a very tight on the market which doesn’t use acetic acid. Some people use the rubber self-amalgamating type. When you are putting it all back up, it is worth considering whether to put up “preventer” guys as an extra precaution should the normal guy
under ultra-violet light, so routine changing of tereylene guys and halfyards is always a good idea — you don't know in what fashion they get tired, and anyway "retired" stuff for less important work! And it goes without saying that the stretch in nylon rope makes it totally unsuited for guying; so ask what synthetic the rope is made from when you buy it!

New Chums
Our first one is S. Hill (Port Talbot); he has a TRS-60 doing the logging and keeping similar work, plus a Howeas direct-conversion receiver for 14MHz, and a second receiver for the 70, 144, 432MHz bands. Antennas are a discone for the scanner, three dipoles, one E-W, one N-S, and one inverted-V. He thinks that possibly other readers are "put off" by the need to keep a log, and he encloses a program which provides a Prefix List sort of the loggins. Tuming to the items above during September the mid-afternoon activity of VK2EQ, twice blasting in to Port Talbot, and also that of SV2UA/SY, Mount Athos who appears in the GW3CDP net.

Now to Southampton, where P. Mcallen runs an FRG-7700 with an FRU-7700 a.t.u., into a vertical tribander by Jaybeams. Pete uses a full-time to start to 14MHz phone, and his listing covers all continents nicely.

S. Burgess (Stockport) has an end-fed wire in the loft, half outside, fed to a home-brew a.t.u. and FRG-7700 receiver. Simon used to have a Drake R4C, and sadly misses the notch filter. Of course, to compare the two receivers is a bit unfair anyway, as the old Drake was made for a much more demanding application and its new price reflected that. Another possible approach would be to use a Datong audio filter unit.

B. E. Woodcock (Leeds) has sent in a first letter; Basil has it all in a while now, with sort of 298 a.m. and nowadays he specialises in IOTA (Islands on the Air) in which he has 237 islands confirmed. Basil agrees with the comments recently by D. Hughes, that the standards of operating have deteriorated sadly in the last few years.

J. B. Barnes (Blackpool) uses a Trio 895D, and has 393 prefixes for his first entry in the c.w. section.

Others
E. W. Robinson (Felixstowe) latched on to the Mount Athos group, and both 5L1H and 5L1AH/Portable 8, so later became a regular in HPX terms in 5L8. R. G. Williams (Borehamwood) says he has, "made up my mind to like the new style Short Wave magazines". However, like us or no, he likes HPX and continues to rise in the Ladder. Perhaps his Pet of the Month is TRBCW, with W87PAX as runner-up.

Next, N. McEvilley, London N1, who was a bit puzzled by a Russian and an Italian. U24WHK/UH1B was something like a "special" from UH (Turkoman), while IL3/K3CAZ was operating from IL one of the assortment of offshore islands around Italy. The "reversed" form of callsign, IL3/K3CAZ rather than K3CAZ/IL3, is a new standard which is being adopted throughout the Common Market countries, and has a lot to commend it — with the old method you could turn up your nose, say, at a W1, and tune off too quickly to realise he was in fact 7 in Colorado, whereas the start of the call is the prefix for the place where he is actually located you would stay for a serious listen; so I hope this new system becomes universal.

What hopes of a 28MHz beacon list enquires M. Ribton (Gillingham, Kent), he being full of enthusiasm since he now has a full-packed shack down the garden... wonder how the enthusiasm will hold up in February? Seriously, in answer to the first question, I haven't seen a new one; but doubtless there will be one soon; meantime, just tune around the beacon segment carefully each day, and since all beacons have callsigns, you will still know just where the band is opening too.

Now to an interesting letter from N. Hembrey (Northiam). Back again, to be sure, about a change of receiver; now he has changed to the idea of an update to the antenna farm. There are, a TA31JR trap dipole, an 81Hz tuned feed slot fed at 144MHz all on a 10m Telomast, and a 48-element multibeam on the chimney for 432MHz. Feeders for the first two are fed by TV type coaxial, fed underground into the shack, and after ten years they could be, as Norman says "Pretty Awful!!!" The revision involves swapping the 80-6m with a ten-element Parabase, and putting the multibeam also on to the Telomast. Then, each would be fed to a shed about 1/4 of the way along the line, and then a single UR67 coaxial from there fed to the receivers. It all sounds like a good idea, although one would need to switch back again between the shed shack unless one is prepared to switch plugs around continually and accept the extra breakage rate, and it assumes the coaxial switch in the shed is switchable from the shack. On the other hand, there is always the question of how far the coaxial cable has really deteriorated. As far as the sheath is concerned, if the cable has been under ground duct for ten years it has been preserved from UV radiation, and if its sheath wasn't damaged by abrasion, the water and dirt hasn't got into the antenna end, then that coaxial may be as good as new! On the other hand, just buried, and left in the soil for womans, mice and other things to chew at, and it may be very sick indeed. The only safe answer is an s.w.r. check as already suggested. Ideally the s.w.r. without the antenna connected ought to be infinity, and practically MUST look higher than 10:1. Paradox: if the feeder deteriorates, it "improves" the s.w.r. Thus a very bad length might show an s.w.r. of 3:1 on this test.

A. P. Lincoln (Aldershott) is still using his 432MHz set SS7050 and Wrazee SC-140 units as his prime interest is SSTV and RTTY, and of course he still collects computers. Pete says he likes particularly the review articles in PW and 3W.

Prefixes
D. Jones (Liverpool L4) is a new reporter who has a Sony IC-600DS, with which he is very much feeling his way. First, David, the question of prefixes. The best way is to get to know "which is which" is to get hold of a copy of Geoff Watts' Prefix List. Geoff Watts is at 62 Belmore Road, Norwich NR7 0PU, where he does various useful listings. The instance, a listing of the UAS by their oblasts in case this sort of thing is of interest for collecting the various awards put out from Board of Trade, Moscow, it would be nice to know which is where on the map your man is. As for USA, the number in the callsign represents the call area in which the station was first licensed; in rough, we could say W1, W2, W3, W4 are on the eastern side, nearest us, W6 is California, W7 and W0 cover the other parts of the West, while W5, W9 and W6 cover the more easterly inland areas, but to hear a W6 say he is, in fact, Maine, is not unknown these days! Don't forget also when we change a coaxial we must mean W, A, K, N, prefixes, and two-letter variations on them; while to complicate things further, two letter prefixes can also cover different series.

W. J. Prior (Lochcarron) now has some 900-plus callsigns in his log on RTTY, so new ones are getting a little harder. Since Lochcarron was lidded in an effort to make up for a bad year, W87PAX has been a delightful problem from the surrounding terrain anyway as a glance at the map will show. Thus Bill was more than a little fluffed to read BR1PBN solidity.

D. A. Whittaker (Harrogate) asks us to remind everyone about the White RoseARS SWL Contest in January, where a number of stations has been very pleased to find seven new countries, and on the other side, he now has an R620 receiver to replace the old R610 he has admired for the past 15 years. The extra filtering is perhaps the main advantage, plus the 20dB attenuator. One has to say that generally, the attenuator is rarely if ever unused on the lower bands, paradoxical though it may seem — simply because of the overload created by the big signals out of band (in terms of s.w.r."

C. R. Eye (Jersey), Brendan McCartney G4DYO and others have noted I skipped over the TV7GLC. In fact it was in Rouen, celebrating the fifty year anniversary of the death of William the Conqueror, and run by the Radio Club de Normandie, with QSLs via F6DLM, whose address is OK in any case. Call back seven times round it gives me the chance to mention that a sub to DX News Sheet, which G4DYO edits, each week is well worth while if you want to be reminded of what’s happening in the DX World. Write to RSGH HQ, Lambda House, Cranborne Road, Potters Bar, Herts EN8 3JE for the details. On a different tack, Chris Woodcock says that on the lower bands, he uses a loop antenna, as described in the May 1987 issue, and an audio notch filter to combat QRM. To that end he says "that the extra filtering, the latter can be spectacular — but DO remember to put everything back to normal when you switch off, or you may surprise yourself next time around!" What a difference a year makes, says B. Patchett (Sheffield). Brian is referring to the way in which conditions have picked up since we passed our last September; not so much noticeable as on 21MHz, and to some degree on 28MHz too. Last October, when we had nothing but the odd European opening, this time, work T1J, K9R8N/M, K3PAC, 9Q850A, FRD, and from the U.S., 2B8UN, 2W2ED, N8QX, W2RP, W2BAI, and UA9YX. Other signals accounted for included ZL4BO and, on 3.5MHz, DX5SS, W9RE, and K3WW. All of this of course reflects in the HPX Ladder up 55 on a previous 1206.

Remember — post your reports early for Christmas — to arrive by December 11.
SEEN & HEARD

How many of you spotted my deliberate mistake in the October Decode? Brendan McCartney G4DOY did, but then I suppose he should have been, as he's the editor of the *RGB DX News Sheet!* What was this error you ask, well, I claimed that the amateur prefix XX9 was Portugal when in reality it's Macao which is way out in the Far East near Hong Kong. My apologies for misleading you all, at least it proves I'm human (I). If you were unfortunate enough to catch the兖 and suggest you arm yourself with the Radio Amateur Prefix / Country / Zone List which is available from Geoff Warts1) price £1.00. my thanks to Brendan for pointing out the error.

RTTY

Some interesting reports received this month from a few readers. Several people have asked for frequencies of weather stations that broadcast plain language reports. I expect most of you have already discovered the large number of stations transmitting 5-digit groups but the plain language stations are few. One of the problems with the plain language stations is that they seem to send just test slips or steady carrier for quite long periods. How about writing to me with details of any stations that you have discovered. I’ll publish the details in my name or anonymously if you would prefer! Here is an extract from a RTTY log that was received recently:

14.777MHz	RTTY 50 baud rev.
14.630MHz	RTTY 50 baud rev.
6.755MHz	RTTY 50 baud rev.
13.526MHz	RTTY 50 baud normal
18.905MHz	RTTY 50 baud rev.
7.800MHz	RTTY 50 baud rev.
14.638MHz	RTTY 75 baud normal US Info.
20.98MHz	RTTY 50 baud normal USSR.

The amateur bands have been very active this month with one or two very unusual calls on. On the 9th of October I logged OF1WF (Finland) working ZL1AHA (New Zealand) on 14MHz RTTY. The OF prefix is a little unusual and further listening revealed that the stations usual call is OH1WF, the special call being to celebrate Finlands 70th anniversary of Independence. It makes me wonder about Independence celebrations as 5N27ZH (Nigeria) was also logged in October the reason for the 27 in the call is that the Nigerian Independence Day is actually the 27th September.

The following list shows the best DX during this period:

| JR3TMW (Japan) | 4K1 PLK (Antarctica) | 905BG (Zaire) |

**PY6SL (Brazil) | LU2ALH (Argentina) | C8XCA (Uruguay) | D44BC (Cape Verde) | Y85NQF (Indonesia). One final unusual station was YO4AVR/MM (Romania) who heard on 14MHz RTTY whilst he was maritime mobile off the south-east coast of Brazil.

AMTOR activity has also been quite good, I still find the poor use of call signs rather frustrating, as you often have to monitor a QSO for a considerable time before the stations can be identified. If you want to receive AMTOR then the best frequencies to monitor are 3.52MHz, 7.025MHz and 14.027MHz all these are all ±5kHz.

Packet radio is still continuing to expand and monitoring around the centre of h.f. activity on 14.103MHz will very quickly reveal an amazing range of call signs. The latest addition to my log is 6W1FJ in Senegal, West Africa. The operators name is Malick and his QTH is Dakar. This station seems to be very active at the moment so it should be easy to find.

Prestel

A response from Preston! My offer of a fast response help clinic using my Prestel mailbox has been taken up by M. Marazzi who was the first to contact me and required advice on the development of his shack. I’m glad to say I was able to respond very quickly and all seemed to work very well. If any readers would like to take advantage of this service, rev. Mailbox number is: 425470071.

FAX-1 RTTY

Regular readers who saw my review of the ICS Electronics FAX-1 in the October SWM will no doubt remember that I mentioned the facility to receive RTTY. This option enables the FAX-1 to decode and print out standard wide shift RTTY signals and is a useful addition. The software reviewed with the FAX-1 was a development version which has now been enhanced and is included as standard with all new FAX-1s. I suggest you read the October review for the main details but I will mention the enhancements here.

The first improvement is that inverted RTTY can now be received without having to either alter switches on the rear of the FAX-1 or change bandwidth. This is achieved by a simple press of the RTTY button which, when in RTTY mode, acts as a toggle between inverted and normal RTTY. The second enhancement concerns the actual printing of the received RTTY. In the original software, printing only occurred when a complete line with carriage return and line feed had been received. With the new software the contents of the print buffer can be printed at any time by pressing the PHASE buttons. This facility is particularly useful for quickly checking that you have selected the correct parameters for decoding a signal.

For those of you who already own a FAX-1, an upgrade package is available by sending your existing EPROM to ICS Electronics2) price £33 plus £1 P&P. One very important point concerns static protection. It is vital to use proper electrostatic protection when handling the EPROM or replacing the EPROM. If you are unsure about this I would recommend that you contact ICS first. The upgrade will apparently include a revised and expanded manual with all the original errors corrected.

FAX

Lots of FAX this month starting with some v.h.f. activity. Paul Yearles G1UTM and Chris Vemall G4VCH have both written to me with details of their v.h.f. FAX activity. The frequency most used by both Chris and Paul is 14.4 MHz which is the designated FAX call frequency though you may find activity on an adjacent frequency. The standards commonly used are 120 r.p.m., and an IOC of 288. I have made a request for all RTTY columns in Practical Wireless that the first Monday in each month should be a FAX activity night. I am hoping that this will increase the amount of v.h.f. activity and help to bring together a few people with common interests. I noticed recently that in the DARC (German Amateur Radio Club) FAX Contest, 14.232MHz was suggested as a FAX frequency as well as the normal 14.101MHz. This is significant as the 14.101MHz is likely to cause interference from amateur packet stations, so perhaps the FAX groups are going to declare a new frequency away from the packet frequencies!

Here is a selection of stations from the FAX log for this month:

3.55MHz	120/576 DOD3
4.055MHz	120/576 DOD6
13.512MHz	120/576 CHF
8.083MHz	120/576 ROM5
18.235MHz	120/576 BA34
10.712MHz	90/876 RK473

The figures after the frequency in the above list are speed in r.p.m./IOC (Index Of Co-operation).

Esmond Aguilar F6GOV/G4KBJ has written from France with details of how FAX station G6OB/6 uses the popular FAX-1 decoder which drives a Brother 1409 printer. The receiver used is the Trio TS9405 amateur radio transceiver which, judging by the pictures sent is performing very well. Esmond does ask the question, as do many of you, “What happens if I accidentally receive a Press photo?” The Amateur Radio licence contains a section covering the reception of signals that you are not authorised to receive. This basically states that the contents of any message...
so received must not be divulged. This section has to be included in the amateur licence because when using bands that are shared with other services you are bound to occasionally receive a non-
amateur signal. For the unlicensed listener the situation is more complicated, as the Wireless

Telegraphy Act simply states that you can only receive signals if you are authorised to do so. Consequently if you are not authorised to receive any FAX signals then you shouldn't be looking at all! This is perhaps a rather gloomy thing, in practice if you are either a licensed amateur or licensed to receive weather stations then you should be covered for the accidental reception of other FAX signals. The important point is that you are not allowed to pass the signal on to a third party. The reasons for the restrictions are fairly obvious and fall into two main categories. The first is national security. Military and other Government services need to use radio communication and the message content, in a lot of cases, is sensitive and needs legal protection. The second category is commercial transmission, an example being the Press Agencies. These Agencies gather news in various parts of the World and use radio to broadcast the news stories and pictures. Obviously, in this day and age, this service is not free and the Media pay the Press Agency for the information that they use. The Wireless Telegraphy Act in this case is protecting a commercial interest.

I think the most important asset for the short wave listener is common sense. If you intercept private, confidential, or Military traffic then you are asking for trouble. If you then make the intercepted information public then you can expect a knock on the door!

The views I have expressed here are only my own interpretation of the situation and your comments would be very welcome.

I am just off to the Computerisation Exhibition in Birmingham where I hope to run a live FAX demo on the PWS/SMW stand.

Next month I will, if all goes well, publish some of the pictures.

(1) Geoff Watts, 62 Belmore Road, Norwich, Norfolk, NR7 OPU.
(2) ICS Electronics Ltd., P.O. Box 2, Arundel, West Sussex, BN18 ONX.

INFO IN ORBIT

Pat Gowen G3IOR
17 Heath Crescent, Hellesdon, Norwich, Norfolk NR6 6XD

Following our information last month on tracking and listening to the operations from the Soviet MIR space station, more details have come in on future space plans in the USSR, as a result of the October 2 to 4 Space Symposium held in Moscow, in celebration of the 25 years of spaceflight. This was attended by 850 space scientists, and included shuttle operator Owen Garriott W5FL and President Vladimir V. Kozlov, both representing AMSAT, with Leonid Labutin UA3CR, for the USSR AMSAT group. Since the September 1984 meeting when you and I crossed the line to discuss AMSAT phasing, some excellent further progress was made in the recent meetings toward using the advanced Soviet launch technology for future AMSAT satellites and payloads. In particular, plans are being further advanced for "MIR" to "GOAL" and "VITA" packet radio transponders that were earlier due to fly on the aborted shuttle mission with Ron Parise WA4SR.

This plan, first announced in 1982, a 100 metric tonnes space shuttle to be taken onto orbit by the massive new reusable Energia launch vehicle which is said to be able to lift off 200 metric tonnes to low earth orbit. With the six planned launches per year, numerous modules will be taken and attached to the MIR docking ports, each module providing the mass of some 20 metric tonnes. Each is as large in dimensions as the current MIR station. The eventual complete assembly will result in a very large space station in permanent earth orbit, probably to be used as a launch base for interplanetary and deep space missions. The USSR "A rocket of the future" was re-used as a space transport system is now in development, and has already undergone atmospheric take-off and landing flight tests by pilot Igor Volk, who flew in the 1984 SOYUZ T-14 mission. The first space stations are planned for 1989, to complement the current automatic docking Progress supply and Soyuz man-ferry vehicles. Several readers have enquired why the operation of the MIR and June 1986 cosmonaut hopping between MIR and Salyut-7 will come about again this year, and John Branean GM4IHJ, who recently gave a lecture on this topic at the Soviet Astronautics Symposium at the British has provided the answers.

"It is most unlikely" states John, "as first, Soyuz is orbiting at 480km altitude. Unassisted Soyuz ferry flights, even if stripped of two men and no extra could not safely make it to 480km without a Cosmos 1986 or Progress type space tug, as there would be no safe fuel margin. Secondly," says John, "the current 480km Salyut/Soyuz system, where it was 'parked' following the last cosmonauts' visit in 1986, is far less perturbed than that of MIR. Whilst the two stations were in the same orbital track in 1986 playing 'follow my leader', they now intersect at nearly 90 degrees to one another. To manoeuvre from one to the other could cause the system to be very expensive on fuel."

John recommends that enthusiasts who would wish to follow this problem further should read Further Notes of Soyuz/Soyuz MIR/Progress by Bate, Muller and White, published by Dover in the USA and Constable in the UK, but warns that to follow they should have mathematics at least at "A" level. A comprehensive treatise by GM4IHJ on following MIR is to be found in the October Journal of the British Interplanetary Society, which describes the complex matter in terms that are easy to follow by the non-expert. It would appear that even without the inter-satelkkship hopping, we are to see an increasing number of spacecraft in the next few years, and regular observation of the frequencies supplied last month could be highly productive and informative to listeners.

Latest reports from keen space listener Berger Lindholm of Finland indicate that a new module called Inertia is now attached (or immediately adjacent) to MIR. A transmission co-incident with computer calculated MIR passes (the same tracks as for Inertia) can now be heard on 165.140MHz, in addition to the 143.625MHz f.m. voice frequency we have been following.

Elint

In addition to MIR, John Branean follows many other satellites, and draws our attention to the Elint, Store and Dump family of satellites that are to be found with simultaneous transmissions on 153.420 and 204.560MHz (Elint), 153.480 and 204.640MHz (Store), and 153.600 and 204.680MHz (Dump). Faint signals are also to be heard on 153.300MHz, and at other times on 204.440MHz. The entire matrix could be from 153.300 to 156.600MHz, or from 204.400 to 204.800MHz, i.e. every 80 to 80kHz across the band. A study of the downlink format shows that the pair of frequencies are linked, each being the third and fourth harmonics of a 51MHz fundamental, i.e. 153.420MHz and 204.560MHz are respectively the 3rd and 4th harmonics of 51.140MHz.

As these satellites gather information, store it in memory and then dump it to ground link upon earth command to a specific point. John naturally assumes that this was a code encryption technique, whereby both phase locked signals must be simultaneously demodulated in order to transmit the clue to intelligence transmitted. Consultation with professionals suggest that this is the case, but that the choice is a clever way to overcome the severe problems on complex signals that can be brought about by Faraday rotation and scintillation. The trick is that while phase-locked, one may cross correlate (multiply) the pair of signals such that one obtains a minimum of 6dB signal to noise enhancement, plus the advantages of frequency diversity.

It is otherwise difficult at v.h.f. to avoid the loss of signal gathering problems caused by scintillation, plus the changing rotation of polarisation brought about by the downlinked signal through ionised layers in earths magnetic field. They are particularly noticeable with high Dextor shift and low elevation angle evidenced in low circular orbit satellites, when the angle of incidence to the ionised areas is low, a maximum slant range signal passage through the ionosphere is present.

All western traffic has shifted to microwave frequencies to help avoid these problems, but an even higher Dextor shift results with h.f. and an even poorer performance at low elevation angles due to high path losses. What is more, the cost of microwaves is some five to ten times that of the satellite and at the ground station. It would appear that a cute answer has been found, both in technical and economic terms, and that v.h.f. satellites will be with us for some time yet.

Weathersats

Howard Barnes of Wivenhoe, Colchester, writes in to say that he
Brian Coupe G4RHZ, writes to tell us that Cosmos-1871, a military recon-sat, was launched on 1 August 1987, fell back to earth on Aug. 10, this possibly indicating a motor failure. Brian quotes a report by Geoff Perry, who stated that his observations of Cosmos-1870 (Object 1987...), a payload of 15-20 metric tonnes, with a visual magnitude of ~1. He found transmissions on frequencies 108MHz and 109MHz from the Meteor and Intercosmos series, using a modulation system like Kwant and the heavy Cosmos modules, although the frequencies were not recorded.

Harry Johnson LA4XLC tells us that now three modules are docked to MIR, these being called Kvant, Progress and Inertia, so it would be logical to assume that Inertia, the latest, is the same as Cosmos-1870. Quite separate Keplerian element sets are given for the set of three in the NASA Look at the above mentioned, calculated out to passes, they all come to the same positions.

Gordon Anderson SM4MMT gives an interesting account of his observation of the Intercosmos-5 satellite on the day of the massive hurricane force winds here in the UK, when such a deep low came across England bringing an unprecedented destruction of homes and trees. He found that whilst most signals were stable, as normal, transmissions emanating from the Soviet Union were subject to deep QSB. At first, this was thought to be due to movement of the microwave dishes due to the wind, altering the focus of the dish. If this were not the case, the effect would have produced irregular and variable strength, but Gordon’s finding was that the signal was varying by a regular amount from maximum to minimum on a very regular half second fade rate. We have to conclude that the effect was not propagation, due to shear forces in the weather system producing gravity waves bringing about slanting of the signal path.

Tropospheric Openings

It is well known that the paths of v.h.f. signals are easier, and that ranges increased when the weather is fine and the atmospheric pressure is high. A more intense opening, which can further increase the range, often occurs and lasts for several hours while the prevailing high pressure is failing. A simple barometer is a good instrument to use near your set and when its pointer has risen above 30.0in (1015mb) the time has come to keep watch on Band II for broadcast signals from afar.

Daily weather maps, or on television or in some national newspapers, can also be useful DX predictors because they show the movements of high and low pressure systems over large areas. These observations, coupled to v.h.f. DXing, often encourage an interest in the fascinating subject of meteorology. I was reminded of...
STEPPHENS-JAMES LTD.
47 WARRINGTON ROAD, LEIGH, LANCs, WN7 3EA
Telephone (0942) 676790
Turn at the Greyhound Motel on the A580 (East Lancs. Road).

LANCASTRE & THE NORTH WEST’S LEADING RETAILER IN AMATEUR RADIO. 20 YEARS SERVING THE AMATEUR BY AMATEURS. SPECIALISING ONLY IN AMATEUR RADIO EQUIPMENT.
24 HOUR MAIL ORDER SERVICE.

H 125 GENERAL COVERAGE RECEIVER £375.00
Global AT1000 SWL Antenna Tuner £89.00
GPV 720 2m - 70cm collinear £45.68
GPV 770 70cm collinear £45.69
Large Ceramic Insulators 80p
Full size G5RV antenna £16.85
Half size G5RV antenna £14.25
80-10 Goole Kit £24.95
Par 7-11 MHz Triax £8.75
HSR62 1.1 bahn 3.79
Large dipole centre piece £3.95
High Power 70MHz Triax £17.95
Weil D103DC Mono Antenna £76.35
Receive Octave Antenna £31.60
GPV 2m Colinear £54.92
Pac 2 MHz Triax £8.75
Detect QTO Morse tutor £64.36
2 Way Antenna switch 50/50 £23.90
Mij 300 Watt Dummy Load £25.35
Mij L1A 10 A 300 Watt £62.10
Mij 100 Watt Dummy Load £42.00
Mij 8 Way Antenna Switch £18.00
ATC Lightning Arrestor £8.58
RS2175 Hands Held Airband Rx £69.90

AR2002 RECEIVER
Frequencies, scope of the AR2002 is from 25 to 550 and from 800 to 1200 MHz. Modes of operation are wide band FM, narrow band FM and AM. The receiver has 20 memories, memory scan and a search mode which checks frequencies between user designated limits. The receiver has a pull button keypad for easy frequency entry and operation.
A front panel knob allows the listener to quickly step up or down in either 12.5 or 25 kHz steps from the frequency initially chosen. The AR2002 has a front panel LED for "O" meter.
There is a front panel 3.5mm jack socket for headphones use.
A socket for the optional RS233 interface (RC PACI) is provided on the rear panel. The RC PACI consists of an 8 bit CPU with its own ROM and RAM and with your own computer acting as a dumb terminal many additional operating facilities become available.
Of course, if you want to write your own programs using the RC PACI, as an interface than "The sky’s the limit!"

AIRBAND EQUIPMENT
RS2175 Hands Held Receiver £69.90
RS25 VHF/UHF Airband Receiver £249.00
G. Plane Antenna indoor/outdoor use £45.90
Mobile Magnetic Mount Antenna £18.50
Air Traffic Control Book £6.95
Air Traffic Radio Book £2.25

We are also stockists for: G-Whips – Weiz - Kenpro
– G5RV Rotations and SWR meters, power supplies.
– Cushcraft - Bertinute – J. Beam
– Microwave Modules, Global, Tomma antennas, ARRL, and RSGB Publications, CARPO Antenna Tuners

Full range of clamps, aluminium tubes, vertical
antennas, dipole £10.35
Send large SAE for full details. Our secondhand
units are the large 1 largest in the country, send
S.A.E. for our up dated list.
Shop hours 9.30 to 5.30 Mon – Friday, 4 pm Sat.

WEATHER SATELLITE SYSTEMS

★ Receiver ★ Antenna ★ BBC Interface ★ BBC Software Disc & Rom ★ Scanning Unit ★ Test Tape & Accessories

★ ★ ★ Demonstration disc only £3.00 ★ ★ ★

(redeemable)

KITS:

From £38.35
(BBC Rom, Disc, PCB, Manuals)

To £139.95
(Complete BBC System, Receiver, Tape, Rom, Disc, Interface, Antenna)

BUILT UNITS:

All units available built to your spec. e.g.
complete NOAA system, plug into your Beob and go:

Only £209.35

★ NEW LOW POSTER PRICES ★

We are distributors for the National Remote Sensing Centre and can supply a range of NOAA, METEOSAT & LANDSAT images on posters, photographic prints or slides. We also have a range of books on weather satellite related topics as well as some superb satellite image atlases. Ideal Christmas gifts for the dedicated enthusiast. S.A.E. list.

PART EXCHANGE MGR SERVICES
WIRAL BASED COMMUNICATIONS

CMHOWES
SPECTRUM COMMINS
WOOD & DOUGLAS
MET ANTENNAS
MARINE RADIO
CELLPHONES

S.E.M. NEW & SECONDHAND

UNIT C, UNION MILLS, ISLE OF MAN
Tel: Maryon (0624) 851277

S.E.M. VHF CONVERTER
Plugs into any HF receiver aerial socket to give you coverage from 118 to 146MHz. Tune your receiver from 2 to 30 MHz £45.95.

S.E.M. H.F. CONVERTER
Plugs into your scanner aerial socket and converts its range to cover 100Hz to 60MHz. Gives you full LF, MF, HF, VHF, UHF coverage £49.95 from stock.

VERY WIDE BAND PRE-AMPS.
3MHz to 500MHz, BB gain, 1.5 dB fn. F and unprecedented performance. Basic Pre-Amp £32.00. Switched through when OFF £87 from stock.

GRM ELIMINATOR
Connects in your aerial lead and stops interference before it gets to your receiver. Any sort of QRM, it can be next to your (your computer) or several miles away, 1.5-30MHz £85. Don’t believe it. Try one for 10 days and if you’re not amazed, we’ll refund, less £5 to cover costs. There are many people now listening who found it impossible without their QRM Eliminator. Ex-Stock.

If you require more information on our products, ring or write.
Prices include VAT and delivery.

M. G. R.

S.E.M. LTD.
21 West Wools, Portland, Dorset DT5 2EA. Tel. 0306 822753

S.E.M. LTD.

48 SHREWSBURY ROAD, BIRKENHEAD, Wirral, MERSEYSIDE CH41 6RW

S.E.M. LTD.

S.E.M. LTD.

S.E.M. LTD.

S.E.M. LTD.
this when I saw a typical weather station installed in the farming section of the Roman Palace at Fishborne, Sussex, Fig. 1.

"I am very interested in DXTV," said Bob Brooks (Gren Sutton). He identified signals from 15 countries, in Band I, during various Sporadic-E events between July 17 and September 6. Bob's station is equipped with a D100 converter, Telefunken 2820 video recorder, JVC CX610 receiver and a combined Band III antenna with a Labgear CM7065 pre-amplifier.

His log for the period includes ident, programmes and test cards from stations in Austria (ORF-FS1), Czechoslovakia (CST-Bratislava and RSKH), Germany (ARD-1 WDR), Holland (PTT-NED1), Hungary (MTV-Budapest), Italy (RAI, TGI and Televido), Norway, (Begn, Gamlem, Gulen, Hemnes, Melhus, Steigen and Televerket), Poland (TVP and Warsawa), Portugal (RTI), Romania (TVR Bucuresti and Televista Romania), Spain (TV8, Telediaro and Valencia), Sweden (TV1-Sverige), Switzerland (+PTT-SRG1), USSR (HOBOCCTN) and Yugoslavia (RTV-1 Ljubljana).

Hurricane
At midday on October 14, the already low pressure (29.6 in.) started to fall, by 1800 it was 29.5 in. and at midnight it stood at 29.2 in. Around midnight on the 15th, another fall began which reached 29.0 in. by 1800. The indicator on my Short and Mason Barograph was below 29.0 in. at midnight and by 0500 on the 16th it was reading 28.8 in. Between 0100 and 0500, a hurricane crossed southern England causing considerable damage, and immediately after the pressure began to rise rapidly, Fig. 2, reaching 29.3 in. by noon and 29.7 at midnight.

I know that strange things also happen to V.H.F. radio signals under such extraordinary conditions, however, I could not check the bands on this occasion because, the electricity went off about 0200, my radio room window was blown in around 0245 and by 0500, the home OTH was damaged and the garden was a shambles with fallen trees. On the 21st I was still without electricity and little prospect of getting any because many poles and wires are down in the locality.

Band I
From his OTH in India, Lt. Col. Rana Roy noted Sporadic-E disturbances before 0800 on July 17, 19 and 25 and during the evenings on days 16, 24, 28 and 29. Although Rana identified a Chinese news reader for a few minutes at 1805 on the 16th, the signals he logged came mainly from various parts of the USSR.

"At 0620 on the 17th, we saw a Russian test card on Ch. 3 and by 0625 there were 3 Russian stations fighting for predominance on the screen," said Rana. He added, "The pictures were not very clear due to overlapping, however, at 0725 we saw a fairly clear picture of a news-caster (Fig. 4), but by 0730 there were multiple images again and it was impossible to identify any signals." He also found a mixture of Russian pictures on the 18th, 26th and 28th. A Soviet news programme, received by Rana at 0800 on June 28, on Ch. 2, suffering from co-channel interference is shown in Fig. 5.

Although the recognised Sporadic-E season usually ends early in September, it is still worth checking the band frequently for random short-life openings. For instance, Bob Brooks logged news from Italy, test cards from Poland, the USSR and a new test card with Kanal-1 at the top from Sweden during the morning of the 10th. Czechoslovakia at 1047 on the 14th and programmes from Italy and Poland between 1222 and 1617 on the 15th.

"There was some Sporadic-E on the 17th," wrote TV columnist Garry Smith (Derby) after switching on at lunchtime and finding RAI (Italy) on Ch. 1b and a weak test pattern on Ch. 1a. "The best DX came shortly after 1800 when I logged TVE (Spain) on Chs. E2 and E4 and an Arab station on Ch. E3," said Garry.

Among the signals logged by Noel Smythe (Caerphilly) toward the end of the season was a clock from Austria (Fig. 6), the PRAHA logo (Fig. 7) from Czechoslovakia and a newsreader (Fig. 8) from Yugoslavia.

Garry Smith's camera is usually ready when DX is about and, late in the season, he caught the

TELEVISION

Ron Ham
Faraday, Greyfriars, Storrington, West Sussex RH20 4HE

Bob also sent 3 interesting pictures which he received from Italy (Fig. 1), Poland (Fig. 2) and Portugal (Fig. 3), during the summers of 1983, 4 and 5 respectively.

Howard Barnett (Northampton) recently installed a Salora 15L33 multi-standard receiver to start TVDXing and he tells me that the V.H.F. section of this set covers Channels E2-12 and F2-10.

At his OTH in London, Phil Townsend uses a Blaupunkt-Turn car radio, with the choice of north-south and east-west wire antennas, and an Armstrong 624 fed by a 2-element, south-facing, beam for DXing in Band II. Phil logged French language stations between 88-89 MHz during the early evenings of September 12, 13, 18 and 28, around 89 MHz on the 11th and 27th and at both ends of the Band at 1515 on the 8th. He heard idents for France Musique on the 18th and 28th and has logged signals from BBC Radios Bedfordshire, Cambridge, Essex, Kent, London and Sussex and the IBA stations Capital Radio, Chiltern Radio, Invicta Radio, LBC and Radio Mercury.

Although Bill Kelly (Belfast) had little to report this time, he did hear adverts from Westside Radio, Ayr at 0755 on September 19 and announcements and the local news from Radio Clyde at 0301 on October 2.
Swiss-Italian clock (Fig. 9) and Vatican news (Fig. 10).

Between September 13 and October 12, Edwina and Tony Mancini (Belper) received pictures from 11 countries: Czechoslovakia, Denmark, East and West Germany, Holland, Norway, Poland, Portugal, Spain, Sweden and the USSR, which is good for the time of year. They logged the West German regionals, SWF/RBG (Raichburg) and SWF/BDN (Baden) and the Norwegian regionals Bagn, Bremanger, Gamlem and Kongsgaard. On September 14, they noted a new Swedish test card with a larger than usual clock and Sverige with Kanal 1 in place of the old TV1. Later it changed back to the normal TV1 test card.

Among the idents they logged were Televideo (T/text) and TGI (news) from Italy, Jurnal de Tarde (news) from Portugal and HOBOCTN (news) from the USSR.

In Bedford, John Raleigh received Italian pictures from September 16 to 21 and on days 24, 25, 29 and 30 and October 1, 11 and 12. He also received signals from Portugal and Spain on the 18th and Holland (PTT-NED1) almost daily on Ch. E4 from September 17 to October 13 and again on the 17th and 18th.

Tropospheric

During the opening at the end of August, Bob Brooks received pictures, in Band III, from Belgium (RTBF-1), France (Canal +), Germany (ARD-SFB news Berlin) and Ireland (RTE-1 and 2) and Belgium (BRT TV1). Between 0800 and 1059 on September 21 he received Germany (ARD-ZDF), Holland (PTT NED1) and Ireland. At midday on September 13, he also received amateur (fast scan) television pictures from GW8LIR/P.

The Mancinis received pictures from Belgium (RTBF1) on September 13, 14, 15 and 25; test cards from Finland (YLE-TV1) and Sweden on the 16th and France (Canal +), with cartoons, pop music and sport, on most days from September 13 to October 12. Signals from Ireland (RTE-1 and 2), with news, sport and
NEW FROM YOKO
MODEL F6/I
VHF/UHF SYSTEM
B/G/I/II Operation
£95.00

Yes, the ubiquitous Yoko 6" black & white TV for reliable VHF/UHF TV/DXing is back — but in an improved version. Model F6/I incorporates not only the NEW SYSTEM (6MHz sound for Europe, Middle East, Australia and other parts) AND SYSTEM I (FRENCH standard, 5.5MHz sound), the 5.5/6MHz sound switching is automatic within the receiver, the 6MHz and positive/negative video switch is situated at the rear of the television.

It's a re-tuned too, featuring a sleek black monitor look and with rotary drum continuous band tuning. A telescopic whip antenna is situated at the rear, together with a 75ohm coaxial input socket.

Versatile Sw Pay power for OC Mains, internal batteries or an external 12v DC source (lead supplied), its ideal for the home, mobile, camping/caravanning or that 'DX-pedition' to the local mountain (and we'll supply the aerials if needed!) Completely compatible for use in the UK and throughout the Continent (including FRANCE). It's just the answer for a compact — 4.7H x 5.5W x 8.6D (Deep) inches — high gain and comprehensive TV/DX installation and at a reasonable price.

Stocks of this new receiver have just arrived from the Far East, so don't delay, order now and maximise your listings.

YOKO model F6 multi-standard VHF/UHF 5" screen TV (System B/G/I/II) £95.00. Carriage UK £4.95; elsewhere POA.

Aerial Techniques, the company that knows the TV/DXing hobby carry a comprehensive range of aerial equipment for every type of installation — and with a huge range of filters, amplifiers, cables, rotators, masts and supporting hardware.

Send for our illustrated Catalogue at 75p, if it doesn't list what you want, then we can obtain it quickly.

STOP PRESS — New Triax style notch filter, covers whole of the UHF Band. 470-860MHz completely tunable. Notch depth up to 26dB £6.95 (includes postage).

All prices inclusive of VAT.

Delivery normally 7-10 days.

ACCESS & VISA Mail and Telephone orders welcome.

AERIAL TECHNIQUES (SW)
11, Kent Road, Parkstone,
Poole, Dorset, BH12 2EN. Tel: 0202 738232.

WORLD RADIO
TMR7602

WHAT A RESPONSE & DEMAND WE'VE HAD FOR THIS RADIO!

UNLIKE THE BIG BOYS
WE DO NOT PUT A JAP
NAME ON OUR MODEL
AND WE ALSO INCLUDE
A P.S.U. AT OUR CRAGY
PRICE

£129.99
+ £5 carriage/handling

Suggested price is £199.99 but anything they can do we can do better

REVIEWS IN WRTIH & DATABASE INTERNATIONAL & MADE IN TAIWAN TO OUR SPECS BY 'SANGEAN'. (NO SANGEAN IS NOT A SPANISH DRINK).

JOHNSONS SHORTWAVE RADIO
43 FRIAR ST, WORCESTER WR1 2NA 0905 - 25740
MERRY CHRISTMAS, BE WELL AND BE HAPPY FROM ANITA (HIS WIFE) AND LARA (OUR DOG), A FIVE POUND BUNDLE OF JOY AND FUN (THAT'S THE DOG, THAT IS)!

THE BEST GETS BETTER
AT JOHNSONS

OFFICIAL SONY DEALER

AN active antenna with FET RF amplifier made for any SONY radio ever made plus any other make of receiver. Works on batteries or mains. Simply the best! £49.00 + £4.25 postage, it's the cheapest way round the world.

You'll need ICF7600D in stock.

ICF2010D, PRO10, AIR7. Plus we stock Sony accessories and their RF range.

DIPLOMAT SG706, 10 wavebands pre-set, Russian, International models. £42.95 + £2 postage for radio, headphones, carry case, 100 page examples.

6 band VEGA, 215 MULTI SELENA — mains and battery, true Russian technology and rugged made. Complete with long range aerial and even. £42.95 + £3 postage or £25 cash delivery.

FREE REPAIR WITH HANDHELD WITH ANY RADIO PURCHASED, YOU JUST PAY 2 HANDLING AND POST.

GRUNDIG SATELLITE 600
and 600 PROFESSIONAL
HIGH QUALITY MULTIBAND RECEIVERS.

600 — £290.00 + £10 security delivery charge £189.95 + £5.

These are the international models with full coverage 150KHz-29.9MHz plus VHF in quality audio.

PANASONIC MULTIBAND PORTABLES
6000 — RF300L — RF305L
HIGH TENSION AND QUALITY WORLD RADIO.

WE STOCK A RANGE OF AIRBAND RADIOS & SCANNERS, TELL US WHAT YOU WANT.
Wogan, reached them on September 18, 20, 21, 26, 28 and 29.

John Raleigh received BRT on September 19, 20, 22 and 27, RTBF-1 on most days between September 17 and October 6 and Canal+ almost daily from September 17 to October 10.

George Garden (Edinburgh) observed closely the ridge of high atmospheric pressure which was predominant almost daily toward the end of September and early October. While staying in Laurenciekir, on 6944 on October 4, he checked the u.h.f. band with his JVC CX610 and found strong unmodulated transmissions from Blackhill.

In Barbados, Dale Jordan can receive pictures from Colombia and Venezuela, on Chs. 3, 4 and 5 with a 9-element cross-phased antenna, when it is raining.

SSTV
"SSTV signals have been few and far between, but on October 3 there was a lot of activity in this mode and most signals were very strong," wrote Peter Lincoln from Aldershot. Peter copied QSL captions from HA5XY and SP4KM, a QSO between EA7JS and OK3CKW Fig. 11, and a photograph of SM6EKP in his shack.

SSTV conditions have been very poor on 14 and 21 MHz, although I did manage to work CT1, EA, HA, IS0, SP, SV and W1. I said Les Hobson GOCL/11 in a 26th anniversary photograph. However, on October 3, Les put out an SSTV QSO and could not believe his luck when reply came from A44JR in the Sultanate of Oman. "This contact sent the adenaing going and I left the shack rather pleased," remarked Les with his first-timer tally increased to 233.

In Millom, Raymond Gilchrist received SSTV signals, on 14MHz, from Cyprus (Fig. 12) at 1101 on September 3, C31SD Andorra at 1914 on the 13th, DL7AKF on 1910 on the 26th and 27th. His list in Bulgarian, Czechoslovakia, Finland, France, Greece, Hungary, Italy, Poland, Spain and the UK during the weekend of October 4 and 5.

DX Report

(Note: LW & MW frequencies in kHz, SW in MHz: Time UTC)

Long Wave DX

Brian Oddy G3FXE
Three Corners, Merryfield Way, Storrington.
West Sussex RH20 4NS

With the approach of the shortest day, many DXers have been honing their new loop antenna designs in the hope of pulling in some of the weaker l.w. stations noted on certain frequencies.

One of the DXers who sent along details of his latest loop was David Edwardson of Wallisend. It consists of a 0.23m by 0.27m frame made of 25 and 85 turns of 22 s.w.g. wire to form the main loop. A 3.9mH inductor is wired in series with the main loop and a 500pF capacitor tunes the assembly to resonance. A 3 turn winding of 18 s.w.g. wire around the loop provides the coupling to the receiver. The tuning is sharp and covers the range 65 to 600kHz. David has been comparing the performance of the loop with his outdoor trap dipole tuned as a Marconi 3C/12, although the sharper directional properties of the loop offer a great advantage over the non-directional trap dipole.

Valved receivers are popular with many l.w. DXers. Writing from Cardiff, John Beridge says he finds his old valved receiver is still the best because it provides a silent background when used with an outside long wire antenna — so important if the really weak signals are to be heard. John also uses an ex-USAAF BC348 valved communications receiver in Grimsby and tunes his "V" antenna to resonate on the l.w. band with a home made "Trombone" e.t.u. A new l.w. receiver for the long and medium wave bands has been constructed by Ron Pearce in Bungay — it uses an ex-USAAF BC348 valve. His list for the chart certainly shows what can be done with a few component and a little patience!

In London, Phil Townsend compiled his list for the chart while testing a new Panasonic RF-1680L portable. He says that the volume and other controls are operated by touch instead of the usual knobs or sliders, so assessing a signal rating is rather difficult since there is no indication of the setting of the volume control. Colin Diffell also used a portable with an internal ferrite rod and slided to compile his list for Corsham. He says that in addition to the stations noted he heard several weak and unreadable stations in the background and that is a common problem and the only answer may be to build a good loop antenna.

In an interesting letter from West Kilbride, Roy Mill says he has been using the broadcasts from Donebach, W.Germany on 153kHz as a language tutor for some years. The publicity material which he has received from Deutschlandfunk indicates that during the hours of darkness the transmitter power is reduced from 500kW to 250kW, so doubtless the received signal strength noted at night by Philip Rabmant in Macclesfield — see LMS October '87. Apparently the antenna system at Donebach is directional with the radiation curtailed to the South East so as to lessen interference with Brasso. A QSL card sent in by Glen Glan-Davidson of Netley, W. Can, who’s view from one of the masts at the Donebach — see Fig. 1.

Roy uses a battery powered Brans TR9000 model 4 transistor portables to receive in conjunction with a loop antenna to receive Donebach — it enables him to "null-out" Brasso because their signals arrive 17 degrees to the north of those from Donebach. His interesting loop depicted in Fig.2 uses an over coupled secondary to increase the bandwidth of the loop response.

Writing from "down under" in Southport, Queensland John Ratcliffe says he has been monitoring 200kHz in the hope of hearing signals from the BBC Droltich transmitter, but so far this year he has had no luck.

MW Transatlantic DX

Reception conditions are gradually improving as the hours of darkness increase. The earliest signals to cross the Atlantic just now appear to stem from CQVY in St. John’s, Newfoundland on 930 — they were logged in Glasgow by Alexander Little as early as 2145 during one night and rated SINPO 22332! The Caribbean Beacon, Anguilla on 1810 is a close runner up in the second wave of signals were logged as 22322 by Alexander at 2248. Both of these times are exceptional, but a check on those frequencies before going to bed would have been worthwhile, to see how many of them at the times quoted in the chart are more likely to result in an entry in your log!

In Redhill, George Morley received a home made 1m square loop with his new Tico R5000 receiver to prepare his list for the chart. The loop is wound around an "X" frame constructed from two lengths of 15mm square hard-wood and short lengths of 20mm dowel. George says that when using the loop the received signals are only about one "S" unit down on his outdoor long wire antenna and it does a very good job directionally — however it is a bit cumbersome!

Jim Willett used his trusty RCA AR 77 receiver with a "V" panel to compile his interesting list of DX — it contains several stations not heard by other DXers. Tim Shirley has been burning the midnight oil in Bristol and logged several stations in North Carolina and one in Texas, USA. Since they have not been mentioned before in this series, they are subject to confirmation by OSL.

Listening in Belfast, Bill Kelly also added a station in North Carolina to his extensive list of DX, namely WBT in Charlotte on 1110 — he listened to their bulletin of local news and rated their overall signal as 2. A bulletin of news from the Florida area attracted his attention at 0500 — this proved to be from another shortwave station, namely WCRJ in Jacksonville on 1530. Reception of their signal was good with an overall rating of 2. Bill now awaits confirmation by OSL.

Leo Gieske has been checking the band in Randburg, S.Africa mainly between 0330 and 0430. His log included two stations which have not been previously mentioned in this series — WLAC in Nashville, Tennessee on 1510 and CBJ in Chicoutimi, Quebec on 1580.

Other MW DX

Leo Gieske has once again been hearing IRR Capital Radio, London on 1548 in Randburg! Several more European stations were logged by him between 0330 and 0430 — notably Nica at 1350; Saarbrücken, Germany 1422; Marnach, Luxembourg 1440; Monte-Carlo, Monaco 1487; Wein-Bisamberg, Australia 1476; Mainfingen, W. Germany 1539; Sarnen, Switzerland 1666 and Langenberg, W.Germany 1593 — a remarkable list. However, Leo notes that m.w. propagation conditions are generally less favourable than in previous years — there was an early start to the "static season" this year and high levels of thunderstorm activity now make reception difficult on the lower frequencies.

John Nash has been testing out his new Matsui MR4098 portable on this band during the evening. He reported on Brighton and logged two stations in Algeria — Ain Beida 531, which rated as SINPO 33443 at 1920 and Algiers 5305 at 1941. He also picked up a number of stations in Spain including Madrid on 585, 657,
Dxers:
(A) Peter Beridge, Cardiff.
(B) Colin Duff, Corsham.
(C) David Edwards, Wallsend.
(D) Paul O'Connor, Birmingham.
(E) Peter Sabin, Beccles.
(F) Philip Ramsbat, Mallesfield.
(G) John Sheridan, Mapperley.
(H) Tim Shirley, Bristol.
(I) Phil Townsend, London.
(J) Jim Willett, Grimsby.

810, 918 and 954; La Coruna 639; Seville 684 and 792; Oviedo 720; Barcelona 738; San Sebastian 774 and Murcia 855 — all were logged between 1800 and 2030. At 0400, Daniel Masterson listened to the broadcasts from RNE-1 via Murcia on 855 in Stokes-on-Trent and rated their signal SIO 444.

Some interesting stations were logged during the night by Bill Kelly including Ain Beida, Algeria 531; Beromuutter, Switzerland 532; Faro, Portugal 550; Riyadh, Saudi Arabia 585; Muge, Portugal 594; Lyon, France 603; Nineva, Iraq 603; Waver-Overijse, Belgium 620; Baghdad, Iraq 621; Sanat, Egypt 684; Algir, Algeria 881; Milan, Italy 900; Madrid, Spain 918; Azurara Portugal 1062; Krasnodar, USSR 1089; Belgrade, Yugoslavia 1098; Kalingrad, USSR 1116; Zadar, Yugoslavia 1134; Strasbourg, France 1181; Via Real, Portugal 1170; Misn, USSR 1197; Bordeaux, France 1206; Wroclaw, Poland 1206; Lushnje, Albania 1215; Wolvertem, Belgium 1512.

Darran Taplin has been checking the band during the evening in Tunbridge Wells and logged Radio Algeria on 981 as SINPO 44444 at 1956. This broadcast runs in parallel with their I.W. transmission on 254kHz. He also logged Radio Prague, Czechoslovakia on 54444 and DLF via Neumunster, W. Germany 1269 as 54444. Saarbrucken, W. Germany 1422 was heard for the first time by Tim Shirley. A bulletin of news, broadcast via Radio Moscow’s World Service 1000kHz transmitter in Leningrad, USSR on 1484 was received by Glen Davidson at 2220 — SINPO 44444.

No doubt Radio Finland will welcome reports on the signals from their new low power transmitting station in Porti on 965 — David Edwards rated their signal on SINPO 44444 at 1845 and noted a great improvement on their transmissions from Turku. The signals from Porti now compare well with Radio Sweden’s broadcast via Solovetsky on 1179, which Paul O’Connor rated as SINPO 54555 at 2100 while using a car radio with a 6m wire antenna in Birmingham. The broadcasts from Radio Sweden are popular with many UK listeners. Bill Beridge says he listens every night to their news broadcast intended for listeners in Nordic countries and in Morden, Sheila Hughes has been following their DX line to DXing series and is a regular listener to their famous “Sweden Calling DXers” programme.

The broadcasts from Radio Norway via Kvitoyo on 1314 are also well received at night in the UK and it is also possible to hear their broadcasts during the day in some areas of the UK — Robert Taylor logged their signal in Edinburgh as SIO 555 at 1315! At night he has been listening to the BBC 648 programmes via Orfordness 648; BBC Radio Ulster via Lurgan and 1341 to Maxe Radio, Isle of Man at 1368.

The BBC 648 broadcasts have also been attracting the attention of Leslie Bliss in Knaresborough — the signal 53 during daylight hours is rather weak. Some slight co-channel interference exists after dark, but reception is generally good and the signal peaks at 0400. Dave Fairhurst of Enfield informed me that the BBC Information Centre and Shop at Bush House, Strand can supply BBC 648 broadcast schedules and many other books and items of interest to DXers, so if you are in London be sure to pay it a visit!

Writing from Thessaloniki, George Efstratiades Teleports that the BBC 648 broadcast peaks S1033 at 2220, but he has also noted co-channel interference. Some of the other broadcasts from Greece have been heard again, notably the evening stem from Solvesborg, Sweden 1179; Leningrad, USSR 54444.

Phil Townsend has been exploring the band with Radio Yugoslavia’s Panasonic RF-1880 portable. During daylight he logged *Waver Overijse, Belgium 540; RTE-1 Tullamore, S. Ireland 567; *Stuttgart, W. Germany 876; *Paris, France 585; BBC Orfordness 648; Lopik, Holland 675; Flevoland, Holland 747; Wolvertem, Belgium 927; Flevoland, Holland 1003 and *Langenburg, W. Germany 1593 (those marked *) were not heard. At dusk some additional stations were logged, notably: RNE-1 via Murcia, Spain 531; Bayreuth, W. Germany 549; Wien-Bisamberg, Austria 585; Frankfurt, W. Germany 594; RTE-2 Athlone, S. Ireland 612 and Varna, Czechoslovakia 639.

Using a Yaesu FRG-7700 receiver with a long wire antenna in Stockton-on-Tees, Alan Currie has been commenting on his DX logs in the National magazine December 1987. He has been listening to a baseball commentary from AFN Frankfurt, W. Germany 873 and to country music broadcast by VOA via Munich-IAsming, W. Germany 44444 at 1830 and AFN 54444 at 2035. The report from Sheila Hughes included three stations which were not mentioned by other DXers: namely Lushjne, Albania 1395; TWR Monte-Carlo, Monaco 1467; Stargard, Poland 1503 and Vatican Radio, Rome 1530 — all were heard between 1830 and 2100 and rated as SINPO 43343.

MW Local Radio DX

Sheila Hughes has been taking a first look at the local radio scene and says “I have really enjoyed seeking out the stations”. Sheila discovered that she could only hear Radio Norfolk by sitting half way up the stairs with her Vega 206 portable! In sending along his first log for the chart from Chesterfield, Martin Ellis says “I usually listen in the mornings before TV’s are on put, as I suffer very bad interference”. Martin uses a Realistic DX302 in conjunction with a 13m random wire antenna. TVI is a very common problem, but a considerable improvement may result by using a good loop antenna to ‘null-out’ the worst frequencies — it can also be used at other times to separate the stations operating on shared frequencies!

“Scooper Loop” (PW July ’86) was used with a Yaesu FRG-7700 receiver to compile the extensive list sent in by John Sheridmer of Mapperley. In Forfar, Stewart Russell has been putting his “Scooper Loop” to good effect — he says “The loop has enabled me to receive IFR’s 1548, Tay 1584, NorthSound 1035, Moray 1107 and Clyde 1152 more clearly”.

An impressive list was sent along by Bill Eyer of Stockport — he used his new Trio R5000 receiver with a 13m random wire antenna. Writing from Chichester, Peter Hall says “I have added a Datong FL3 filter to the Edystone Loop and has made a vast difference to the listening quality of all the stations”.

Short Wave DX

Since we are now on the upward slope of the next solar sunspot cycle, it seems that two broadcasters have decided to make test transmissions on the 25MHz (11m) band. At the time of going to press, little is known about the tests or the exact beam headings. Leslie Hollis of Grantham sent along the first report to me on a transmission to Africa from Radio Norway International, Oslo on 25 750 at 1000 — their signal was rather poor, rating SINPO 25323, but it was identified as the station!

During the last few days I have been hearing transmissions from Radio Nederland on 25 970. The station announcements in English at 0830 refer to their Asian

Please post early for Christmas — Reports by December 14.
WANT TO TUNE INTO MORE STATIONS?
We have the frequencies!

All new articles... completely revised listings...400 pages for 1988.

GUIDE TO UTILITY STATIONS 1988
by J. Klingenfuss
THE NEW 1988 EDITION NOW AVAILABLE
Guide to Utility Stations 1988 is the most comprehensive and accurate book on Utility Stations, covering airlines, commercial, military, Met, shipping, etc. Thousands of stations are listed with their frequencies, callsign, station name, location, transmission mode, etc. This massive frequency list from 0 to 30 MHz includes RTTY, CW, SSB, AMTOR, FAX, SITOR, VHF, etc. That's not all, there are chapters on Q-Codes, Z-Codes, SIMPO reporting, Met stations, maps and much more. Unlike other books the stations listed have been monitored.
Price £19.95 + £1.65 post and packing in UK Overseas postage £2.45 by sea £1.25 airmail.

PASSPORT TO WORLD BAND RADIO
New Larger 1988 Edition in Stock
Everything you need to explore and enjoy the exciting realms of shortwave radio. The first part, How to Tune in the World looks at a few countries and subjects available. Part two, 1988 Buyer's Guide to World Band Radio, reports "hand-on" and laboratory tests of the latest models and comparative ratings of just about every major portable or tabletop receiver. Finally, Worldscan runs through all the frequencies of the world band spectrum and shows who's broadcasting from where, at what times, and in which languages.
Price £14.50 plus £1 postage in UK Overseas £6 airmail or £2 sea mail worldwide, Europe and Eire.

SHORT WAVE NEWSLETTER
Our fortnightly report keeps you up to date on the ever-changing world of shortwave radio. The latest schedules, news and logs from the broadcast bands are featured and we have a section on the unofficial stations. Please send 70p for a copy of the latest issue Cheques should be made payable to P.S. Withers.
SWN, 3 GREENWAY, HAROLD PARK, ROMFORD, ESSEX RM3 0HH

FLIGHTDECK
THE AIRDECK SHOP
NORTH-WEST SPECIALISTS IN AIRDECK AND SHORTWAVE COMMUNICATIONS RECEIVERS, SETS BY SIGNAL • UNIDEN • SONY • REVO • LOWE ELECTRONICS • KENWOOD • PHILIPS • GRUNDIG • PANASONIC •
FAIRBOTHAM & CO LTD
58-62 LOWER HILLGATE, STOCKPORT, CHESHIRE SK1 3AN
Telephone: 061-430 1800

G2VF LOOP ANTEENNAS COMPLETE WITH ATU FOR HIGH FREQUENCY HAM BAND TRANSMISSION SWR One to One 40, 15 and 10and One Point Five to One 80 and 20 AND SWL'S AND LONG AND MEDIUM WAVE BANDS FOR BCL's. Loops 21 inches square or triangle. D.I.Y. projects. No special skills required. Circuits, Parts Lists with sources of supply and full assembly data. HIGH FREQUENCY LOOP 80 to 10 Metres £5. LONG AND MEDIUM WAVE LOOP FOR BCL'S £3. LONG WAVE MEDIUM WAVE AND SHORT WAVE LOOP 1000 to 10 METRES FOR THE BCL AND SWL £5. SHORT WAVE ATU FOR USE WITH EITHER A LOOP OR LONG WIRE ANTENNA. £4. SAE for details. Gallery welcome any day any time. F. G. Rylands, 39 Parkside Avenue, Millbrook, Southampton. Tel: (0709) 715044.

ALL VALVES & TRANSISTORS
Call or phone for a most courteous quotation
D1.749 3934
We are one of the largest stockists of valves etc. in the U.K.
170 GOLDHAWK ROAD LONDON W12

PLESSEY PR185 SERIES HF COMM RECEIVERS
FOR SPARES AND SERVICE
K AND M SPECIAL PRODUCTS
8a, ST DAVIDS ROAD, CLANFIELD, HAMPSHIRE
P08 ONL. Tel: (0705) 594438

ADVERTISERS INDEX
Aerial Techniques, 46
ARE Communications, 17
Birkett J., 24
Brodhurst Electronics Ltd, 17
Colomor, 49
Datong, 21
Dewsbury Electronics, 24
Elliott Electronics, 21
Fairbatham & Co Ltd, 49
Garex Electronics, 46
Hamgear Ltd, 46
Hornby L.E., 43
ICOM IUKI Ltd., 43
Interbooks, 49
Johnson Shortwave Radio, 46
K and M Services, 48
Lowe Electronics Ltd., 49
MGR Services, 43
Practical Wireless, 37
Rylands F.G., 49
SEM, 43
Short Wave Newsletter, 49
Stephens James, 43
Technical Software, 21
Theasby, 37
Uppington Tele-Radio (Bristol) Ltd., 24
Uniplex Ltd., 49
Waters & Stanton, 21
Wilton G., 37
Withers R. Communications Ltd., 13

INTERBOOKS
SW5, Stanley
Perth, PH1 4QQ, Scotland
Tel: Stanley (0738) 828575 (24 hrs) Almondbank (073883) 708

Short Wave Magazine December 1987
The broadcasts from Radio RSA on 21,590 are intended for listeners in Western Africa and Europe.

Their programmes cover a wide variety of interesting topics and may be heard from 1300 until 1555. Daniel Masterson mentioned their popular ‘Mailbag’ programme in his report and relayed that their signal as SIO 333 at 1525. In Sheffield, Cyril Kellam has been listening to some of the interesting topics broadcast by Radio Japan, Tokyo, and relayed to England by Moyabi, Gabon on 21,700 from 1500. Using a Realistic DX-360 portable receiver, Cyril rated their signal as SIO 444, but sometimes reception was poor.

Writing from London, Bill Griffith says he took a very small Panasonic RF-9 battery receiver with him on a visit to Romania recently. While in Bucharest, he used it with its own little telescopic whip antenna and picked up İRE Spain, broadcasting to the Middle East via Nojole on 21,575 at 1745.

John Perry has been monitoring the band during the evening in Northwich and logged two broadcasts to W. Africa from the USA — these stemmed from the Christian Science Monitor station WCSSN in Boston on 21,515 (SINO 44554) at 1850 and from WYFR in Oakal, California via their transmitter in Okeechobee, Florida on 21,515 (SINO 45545) at 2000.

The reception conditions prevailing on the 17Mhz (16m) band are also generally unstable, but there has been a marked improvement in long distance reception. Although the broadcasts from Radio Australia on 17,715 are beamed on S.E. Asia from 0100 until 0900, they also become audible in the UK around 0215. During travelling on the ‘long path’ across the Pacific to reach us, Ian Curry is one of the many UK listeners who follow their sporting events and other items around 0745 — he uses a Yaesu FRG 7700 receiver with a long wire antenna in Stockton-on-Tees.

The broadcasts to E. Asia from KQY in Saipan, N. Marian Islands on 17,800 have also been reaching the UK well in the morning — David Edwardson logged their signal as SINO 370 at 0745. Using a 10w valve (955) receiver, Ron Pearce picked up Radio Afghanistan via Moscow, USSR 17,650 at 1038 on 0240 (Bari to Durban) (UTC 0500-1200); Radio Pakistan, Islamabad 17,680 at 1120 (Urdish/English 0715-1120) and WCSSN Boston, USA 17,640 at 1140 (In English/French/German to Africa 1000-1155).

Some of the other interesting broadcasts noted by DXers during daylight include UAE Radio Dubai 17,775/17,865 (Arabic/English to Europe 0615 to 1500), logged by David Edwardson at 1040 as SINO 44544; Radio RSA Johannesburg, S. Africa 17,780 (French/English to S.W. Africa 1200-1855), rated as 44433 by Darran Tallin at 1300; RTV Tangier, Morocco 17,695 (Arabic to Middle East 1400-1700), rated by John Nash as S5555 at 1405; RFI via Allouis, France 17,620 (French/English to E. Africa 0700-1655), rated as 55555 by Alan Curry at 1817.

During the evening the broadcasts from S. America, the USA and Canada dominate the band — some of them were mentioned in the reports, namely Radio Surinam national 17,755 (Dutch/English to Europe via RBN Brazil 1700-1810), noted by Neil Dove in Lokerlisle as 55544 at 1800; Radio HCB Quito, Ecuador 17,790 (Czech/ German/English/Norwegian/French/Spanish to Europe 1800-2230), logged by John Badger in Bishops Stortford at 1900; Radio CNR Montreal, Canada 18,775 (Polish/French/English/Russian to Europe 1800-2100), logged by Bill Griffith while in Bucharest, Romania; VO1 at Bethany, USA 17,780 (English to W. Africa 1800-2300), rated by Peter Hall as SIO 222 at 2130.

The 15Mhz (19m) band is the hub of listening activity for many DXers because there are many interesting broadcasts to choose from during the day! An improvement in the reception conditions prevailing on this band has enabled DXers to hear signals from all continents. Although there have been no reports of the broadcasts from Radio New Zealand reaching DXers, there have been reports heard recently on 15.150 in New York! Chris Annotis heard their time signals for 0215 followed by a news bulletin in English intended for listeners in this area. Dave Miller who operated a Sony ICF 7600D portable in conjunction with a vertical wire antenna 20m long and logged their signal as SIO 323.

The broadcasts from Radio Australis to the Pacific (15,240) have been reaching the UK around 2200. Bill Reid logged them in Finchampstead and also noted their transmission to Asia on 15,395 and 2225 as SIO 343. Most of the transmissions from Radio Australia are monitored from 0400 on a daily basis in Torquay by George Hawlet. His latest report, which logged signals on 15,240 peak SIO 322 around 0545, but severe co-channel interference exists later and makes reception impossible.

Many interesting 19m stations were mentioned in the reports from DXers — in the early morning, Jim Willett logged the Voice of Nigeria, Lagos 15.120 at 0500 (English/French to Europe 0500-0857) and George Morley

DXers

(A) David Edwardson, Wallasey.
(B) Bill Griffith, Finchampstead.
(C) Alexander Little, Glasgow.
(D) R. M. Redhill, Billericay.
(E) Ron Poulton, Newcastle-upon-Tyne.
(F) Tim Shirley, Billericay.
(G) Jim Willett, Grays.

Service, but the frequencies they quote do not include 25.970. An announcement at 0927 refers to their Indonesian Service and again omits this frequency.

Perhaps these transmissions are directed towards Madagascar, because the satellite communication centre there is undergoing repairs and normally feeds their relay transmitter in Talata Volan. Reception is very variable here and much fading and phase distortion exists. If you are hearing these transmissions, please send a report to Radio Nederland — also a copy to me for inclusion in LMS!

The reception conditions prevailing on the 21Mhz (13m) band are generally unstable, but a number of interesting broadcasters are making use of the band during the day to reach listeners in selected target areas.

One of the early morning transmissions stems from Radio Japan, Tokyo and reaches listeners via

Moyabi, Gabon on 21,695 following their news bulletin. Alan Curry logged their signal as SIN0 22322 at 0715.

Commencing at 0700, RFI broadcasts to listeners in E. Africa via Allouis, France on 21,820 until 1800 — their programmes are mainly in French, but there are some items in English. The reception of their signal is often good in the UK — Robert Taylor noted SIO 444 in his log at 0805.

UAE Radio Dubai also make an early start they beam their programmes in Arabic to listeners in N. Africa on 21,805 from 0615. Although their programmes are mainly in Arabic, there are some segments in English — Leslie Bissell has been listening to them and logged their signal as SINO 35534 at 1350.

Using a JRC NR5 515 receiver with a random wire antenna and Micro-Prep KS-3 at 1420, John Glenn, Davidson logged during the early afternoon Radio Netherlands via their relay in Talata Volan, Madagascar on 21,480 (SINO 55454); Radio Prezidentia Czechoslovakia 21,505 (55435); RE via Noblejas, Spain 21,575 (54534); and Radio RSA Johannesburg, S. Africa 21,590 (55455).
Note:—
Entries marked * were logged during darkness.
All other entries were logged during daylight.

DXers
(A) Alan Curry, Stockton-on-Tees.
(B) Martin Ellis, Chesterfield.
(C) Bill Eyre, Stockport.
(D) Peter Hall, Chichester.
(E) Sheila Hughes, Morden.
(F) Bill Kelly, Belfast.
(G) John Nash, Bath.
(H) Paul O'Connor, Birmingham.
(I) Stewart Russell, Forfar.
(J) John Sheridan, Mapperley.
(K) Tim Shirley, Bristol.
(L) Darran Taplin, Tunbridge Wells.
(M) Robert Taylor, Edinburgh.
(N) Phil Townsend, London.
(O) Jim Willett, Grimsby.

heard their transmission to N. Africa on 15.120 at 0735 (Eng-
lish/Arabic, 0700-0957). During the day Georgs logged Radio
Bangladesh, Dhaka 15.525 at 1254 (English to Europe
1230-1300); Radio Beijing, China 15.185 at 1800 English to S.
Asia 1400-1555); BBC via Ascension Island 15.400 at 1510
(English to Africa 1500-1800) and VOA via Colombo, Sri Lanka
15.395 at 1535 (English to S. Asia 1300-1900). John Nash
logged Radio Prague, Voice of Vlamin, Hanoi 15.010 at 1320 (French/
English to Europe 1300-1440); Riyadh, S. Arabia 15.060 at
1556 (Arabic to N. Africa 1100-1700) and UAE Radio Dubai
15.320 at 1610 (Arabic/English to Europe 1500-2050).
The reports compiled during the evening included Africa No. 1,
Gabor 15.475 at 2000 (French/English to W. Africa 1700-2300),
noted by Bill Griffin; RNR Brasilia, Brazil 15.265 (English/German
to Europe 1800-1930), rated as 44434 at 1835 by Alan Currip;
Radio Slovakia Bulgaria 15.310 at 1914 (English/Portuguese/French
to Africa 1420-2030) and Radio Cairo, Egypt 15.335 at 1956
(IZulu/French to W. Africa 1930-2230), logged by Colin
Diffiell; RC Montreal via Sackville, E. Canada 15.525 (French/
English/Russian to Europe 1830-2200), rated by Peter Hall
as 333 at 2000. Three stations in the USA were also mentioned
— WHFR South Bend, USA 15.105 (English to Europe 1700-2100),
rated as 424 at 1945; and Red
WBN Red Lion, USA 15.185
(English to N. Africa 2003-2245), rated as 34333 by Sheila Hazles
at 2030 and WRNO New Orleans, USA 15.420 (English to Europe
1900-2100), rated as 222 by Julian Wood in Buckle.
A station which is seldom mentioned, namely Radio Sistema
Nacional, Chile on 15.140 (Spanish
in S. America 2230-0400) was
logged by two DXers — David
eVerger of Newton-le-Wilows, who
used a realistic DX-302 receiver with a dipole antenna and Stephen
Taylor of Gateshead, who used a
Sony ICF 6900W receiver with a
10m outdoor wire antenna — he
rated their signal at S0 444 at
2300. Although the 13MHz (22m)
band is dominated by Radio
Moscow, several other broad-
casters use this band during the
day. At 0800, Jim Willett heard
Radio Korea, Seoul, S. Korea on
13.670, broadcasting to Europe
in German, English and Italian
(0915-0830) — he also heard Radio

DXers
(A) Leslie Bliss, Knaresborough.
(B) Alan Curry, Stockton-on-Tees.
(C) Neil Dove, Lockerbie.
(D) David Edwardson, Wallsend.
(E) Glen Gill-Davison, Newcastle-
upon-Tyne.
(F) David Glover, Newton-le-Wilows.
(G) Bill Griffin, I Bunchest.
(H) Kelly, Belfast.
(I) Alexander Little, Glasgow.
(J) Dick Moon, George, S. Africa.
(K) George Morley, Redhill.
(L) John Nash, Brighton.
(M) Fred Pallant, Storrington.
(N) John Parry, Northwich.
(O) Ron Pearce, Banga.
(P) Ron Proudfoot, Newcastle-
on-Tyne.
(Q) Philip Rambut, Macclesfield.
(R) John Sadler, Bishops Stortford.
(S) Leslie Sergent, Runcorn.
(T) John Sheridan, Mapperley.
(U) Tim Shirley, Bristol.
(V) Stephen Taylor, Gateshead.
(W) Robert Taylor, Edinburgh.
(X) Keith Wakes, Hull.
(Y) Jim Willett, Grimsby.
<table>
<thead>
<tr>
<th>Freq MHz</th>
<th>Station</th>
<th>Country</th>
<th>UTC</th>
<th>DXer</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.380</td>
<td>R.Limeria</td>
<td>Brazil</td>
<td>2345</td>
<td>U</td>
</tr>
<tr>
<td>2.380</td>
<td>PBS</td>
<td>Falkland Islands</td>
<td>0145</td>
<td>Y</td>
</tr>
<tr>
<td>2.390</td>
<td>R.Criben</td>
<td>Indonesia</td>
<td>1628</td>
<td>J</td>
</tr>
<tr>
<td>2.420</td>
<td>R.Sao Carlos</td>
<td>Brazil</td>
<td>2168</td>
<td>J</td>
</tr>
<tr>
<td>2.485</td>
<td>ABC Katherine</td>
<td>Australia</td>
<td>2037</td>
<td>J</td>
</tr>
<tr>
<td>2.490</td>
<td>VOS 1 Fu Zhou</td>
<td>China</td>
<td>1915</td>
<td>U</td>
</tr>
<tr>
<td>2.560</td>
<td>Xinjiang</td>
<td>China</td>
<td>2300</td>
<td>S</td>
</tr>
<tr>
<td>2.490</td>
<td>R.Semarang</td>
<td>Indonesia</td>
<td>2040</td>
<td>J</td>
</tr>
<tr>
<td>2.520</td>
<td>TWR</td>
<td>Swaziland</td>
<td>2358</td>
<td>Y</td>
</tr>
<tr>
<td>2.525</td>
<td>NKQD</td>
<td>Brazil</td>
<td>2007</td>
<td>J</td>
</tr>
<tr>
<td>3.210</td>
<td>Mozambique</td>
<td>Mozambique</td>
<td>0125</td>
<td>Y</td>
</tr>
<tr>
<td>3.125</td>
<td>Orange</td>
<td>S.Africa</td>
<td>0420</td>
<td>H.U</td>
</tr>
<tr>
<td>3.220</td>
<td>Togo, Lome</td>
<td>Togo</td>
<td>0533</td>
<td>U</td>
</tr>
<tr>
<td>3.360</td>
<td>ELMO Monrovia</td>
<td>Liberia</td>
<td>2166</td>
<td>U</td>
</tr>
<tr>
<td>3.330</td>
<td>R.SA</td>
<td>S.Africa</td>
<td>0324</td>
<td>U</td>
</tr>
<tr>
<td>3.335</td>
<td>Clube Manilla</td>
<td>Brazil</td>
<td>0335</td>
<td>P</td>
</tr>
<tr>
<td>3.770</td>
<td>SWAC 1</td>
<td>Namibia</td>
<td>0415</td>
<td>H</td>
</tr>
<tr>
<td>3.300</td>
<td>Cultural</td>
<td>Guatemala</td>
<td>0215</td>
<td>Y</td>
</tr>
<tr>
<td>3.305</td>
<td>Zimbabwe</td>
<td>Zimbabwe</td>
<td>0310</td>
<td>Y</td>
</tr>
<tr>
<td>3.320</td>
<td>R.Suid Africa</td>
<td>S.Africa</td>
<td>1945</td>
<td>L</td>
</tr>
<tr>
<td>3.325</td>
<td>R.Liberal</td>
<td>Brazil</td>
<td>0355</td>
<td>P</td>
</tr>
<tr>
<td>3.325</td>
<td>R.Palanguayara</td>
<td>Indonesia</td>
<td>2100</td>
<td>U</td>
</tr>
<tr>
<td>3.335</td>
<td>R.FCN Lagos</td>
<td>Nigera</td>
<td>2007</td>
<td>P</td>
</tr>
<tr>
<td>3.340</td>
<td>R芦orta</td>
<td>Peru</td>
<td>0431</td>
<td>P</td>
</tr>
<tr>
<td>3.355</td>
<td>R.Nac.Luanda</td>
<td>Angola</td>
<td>2020</td>
<td>P</td>
</tr>
<tr>
<td>3.355</td>
<td>Botswana</td>
<td>Gabarone</td>
<td>2245</td>
<td>T</td>
</tr>
<tr>
<td>3.365</td>
<td>GRC Redou</td>
<td>Ghana</td>
<td>2130</td>
<td>Y</td>
</tr>
<tr>
<td>3.380</td>
<td>Swiss Army</td>
<td>Austria</td>
<td>2045</td>
<td>L</td>
</tr>
<tr>
<td>3.905</td>
<td>AIR Delhi</td>
<td>India</td>
<td>2300</td>
<td>J.S</td>
</tr>
<tr>
<td>3.910</td>
<td>ARFS Tokyo</td>
<td>Japan</td>
<td>0500</td>
<td>P</td>
</tr>
<tr>
<td>3.915</td>
<td>BBC Krami</td>
<td>Singapore</td>
<td>2200</td>
<td>P.S,T,S,T</td>
</tr>
<tr>
<td>3.955</td>
<td>PBS Hubei Wuhan</td>
<td>China</td>
<td>2158</td>
<td>V</td>
</tr>
<tr>
<td>3.955</td>
<td>PBS Ghingh Xining</td>
<td>China</td>
<td>2320</td>
<td>S</td>
</tr>
<tr>
<td>3.955</td>
<td>BBC Davenery</td>
<td>England</td>
<td>1915</td>
<td>B.W</td>
</tr>
<tr>
<td>3.955</td>
<td>R.Fran</td>
<td>S.Africa</td>
<td>2220</td>
<td>L.Y</td>
</tr>
<tr>
<td>3.965</td>
<td>R.France</td>
<td>France</td>
<td>2316</td>
<td>E.S,T</td>
</tr>
<tr>
<td>3.970</td>
<td>R.FM de Europe</td>
<td>W.Germany</td>
<td>1955</td>
<td>F.N</td>
</tr>
<tr>
<td>3.975</td>
<td>R.Surabaya</td>
<td>Indonesia</td>
<td>1658</td>
<td>J</td>
</tr>
<tr>
<td>3.975</td>
<td>BBC Scotland</td>
<td>UK</td>
<td>2100</td>
<td>R</td>
</tr>
<tr>
<td>3.995</td>
<td>SJ Rene</td>
<td>Switzerland</td>
<td>1829</td>
<td>B.G</td>
</tr>
<tr>
<td>3.995</td>
<td>DW Cologne</td>
<td>W.Germany</td>
<td>2015</td>
<td>N</td>
</tr>
<tr>
<td>4.000</td>
<td>RO Greenland</td>
<td>Greenland</td>
<td>1035</td>
<td>Y</td>
</tr>
<tr>
<td>4.035</td>
<td>PBS Xiong Xhosa</td>
<td>Tibet</td>
<td>2325</td>
<td>P</td>
</tr>
<tr>
<td>4.045</td>
<td>R.Moscow</td>
<td>USSR</td>
<td>1835</td>
<td>T</td>
</tr>
<tr>
<td>4.050</td>
<td>R.Frunze</td>
<td>USSR</td>
<td>2325</td>
<td>K</td>
</tr>
<tr>
<td>4.060</td>
<td>R.Moscow Kharkov</td>
<td>USSR</td>
<td>1846</td>
<td>L.T</td>
</tr>
<tr>
<td>4.065</td>
<td>R.Moscow Ryazan</td>
<td>USSR</td>
<td>1845</td>
<td>A</td>
</tr>
<tr>
<td>4.080</td>
<td>R.Luhan</td>
<td>Mongolia</td>
<td>2200</td>
<td>U</td>
</tr>
<tr>
<td>4.220</td>
<td>Xingjiang</td>
<td>China</td>
<td>2255</td>
<td>K.P.T,V</td>
</tr>
<tr>
<td>4.505</td>
<td>Xingjiang</td>
<td>China</td>
<td>2255</td>
<td>F.S.T,U.V,Y</td>
</tr>
<tr>
<td>4.520</td>
<td>Khany Mensy</td>
<td>USSR</td>
<td>1815</td>
<td>L</td>
</tr>
<tr>
<td>4.545</td>
<td>Asia Asia</td>
<td>USSR</td>
<td>2345</td>
<td>K.L.T</td>
</tr>
<tr>
<td>4.635</td>
<td>Dushanbe, Tadjik</td>
<td>USSR</td>
<td>2310</td>
<td>F.T</td>
</tr>
<tr>
<td>4.650</td>
<td>Santa Ana</td>
<td>Bolivia</td>
<td>0200</td>
<td>P</td>
</tr>
<tr>
<td>4.740</td>
<td>Afghanistan</td>
<td>via USSR</td>
<td>1833</td>
<td>A.C,H,M,S,T,Y</td>
</tr>
<tr>
<td>4.750</td>
<td>Bertoua</td>
<td>Cameroon</td>
<td>2100</td>
<td>Y</td>
</tr>
<tr>
<td>4.750</td>
<td>Lubumbashi</td>
<td>Zaire</td>
<td>1933</td>
<td>J</td>
</tr>
<tr>
<td>4.755</td>
<td>R.Ced Grande</td>
<td>Brazil</td>
<td>0169</td>
<td>J</td>
</tr>
<tr>
<td>4.755</td>
<td>Sani Radio</td>
<td>Honduras</td>
<td>0455</td>
<td>F.T.U</td>
</tr>
<tr>
<td>4.755</td>
<td>RNI Ujungpangad</td>
<td>Indonesia</td>
<td>1600</td>
<td>U</td>
</tr>
<tr>
<td>4.760</td>
<td>Yunnan Kuming</td>
<td>China</td>
<td>2321</td>
<td>T</td>
</tr>
<tr>
<td>4.765</td>
<td>ELWA Monrovia</td>
<td>Liberia</td>
<td>1932</td>
<td>A.C,S,T</td>
</tr>
<tr>
<td>4.765</td>
<td>RIO Rio Inter</td>
<td>Venezuela</td>
<td>2345</td>
<td>A</td>
</tr>
<tr>
<td>4.765</td>
<td>Moscow</td>
<td>Cuba</td>
<td>2326</td>
<td>T</td>
</tr>
<tr>
<td>4.775</td>
<td>AIR Gautheni</td>
<td>India</td>
<td>0148</td>
<td>T</td>
</tr>
<tr>
<td>4.775</td>
<td>RIKI Jakarta</td>
<td>Indonesia</td>
<td>1545</td>
<td>P</td>
</tr>
<tr>
<td>4.780</td>
<td>R.Baku</td>
<td>USSR</td>
<td>2055</td>
<td>K.T</td>
</tr>
<tr>
<td>4.785</td>
<td>RTM Sambako</td>
<td>Mali</td>
<td>2203</td>
<td>C.H,K,T,XY</td>
</tr>
<tr>
<td>4.790</td>
<td>R.Tempete</td>
<td>Peru</td>
<td>0145</td>
<td>Y</td>
</tr>
<tr>
<td>4.790</td>
<td>Azad Kashmir R.</td>
<td>Pakistan</td>
<td>1712</td>
<td>D.K.</td>
</tr>
<tr>
<td>4.790</td>
<td>Dongola</td>
<td>Cameroon</td>
<td>2215</td>
<td>C.F.Y</td>
</tr>
<tr>
<td>4.800</td>
<td>R.Popular Cuenca</td>
<td>Ecuador</td>
<td>0450</td>
<td>P</td>
</tr>
<tr>
<td>4.805</td>
<td>R.F.Casablanca</td>
<td>Morocco</td>
<td>2105</td>
<td>D.K,L.T,U,Y</td>
</tr>
<tr>
<td>4.805</td>
<td>R.Nac Amazonas</td>
<td>Brazil</td>
<td>2326</td>
<td>S.I.Y</td>
</tr>
<tr>
<td>4.810</td>
<td>R.Yerevan</td>
<td>USSR</td>
<td>2112</td>
<td>F.K</td>
</tr>
<tr>
<td>4.815</td>
<td>R.DTJ TV Burjina</td>
<td>Uganda</td>
<td>2045</td>
<td>D.P.M,S,T,Y</td>
</tr>
<tr>
<td>4.820</td>
<td>Botswana</td>
<td>Botswana</td>
<td>2055</td>
<td>D.M,S,Y</td>
</tr>
<tr>
<td>4.825</td>
<td>Khanty-Mansiysk</td>
<td>Russia</td>
<td>0136</td>
<td>T</td>
</tr>
<tr>
<td>4.825</td>
<td>R.Ashkhabad</td>
<td>USSR</td>
<td>1810</td>
<td>K.T</td>
</tr>
</tbody>
</table>

The 11MHz (25m) band has a great deal to offer the DXer both during the day and night. Some of the broadcasts noted in the early morning stem from Radio Australia via Shepparton, S.E. Australia 11.910 at 0625 (English to S. Pacific area 0400-0850); Radio HCJB Quito, Ecuador 11.925 at 0750 (English to Australia 0700-1130) – both logged by Bill Reid; KNLS Anchor Point, Alaska 11.860 (English to S.E. Asia 0800-0900), logged by Philip Rambaut at 0818; FEBG Manila, Philippines 11.850 (English/Czech to C. Asia 0830-1100) and XEPR Vero Beach, Florida, USA – both noted by John Nash around 0840; TWR Guam, Pacific 11.805 (English to E. Asia 0835-0930) rated as 222 by Steve Cox.

The Voice of Israel, Jerusalem 11.585 (Hebrew to W. Europe 1100-1500); Radio Kuwait 11.890 (Arabic to Middle East 1125-1225); Radio Amman 11.900 (Arabic to Europe 0700-2350) and Radio Damascus, Syria 12.085 (Arabic to Middle East 0600-1500) were all logged around 1200 by Leslie Biss. Radio Pakistan, Islamabad 11.615 (Urdu/English to N. Africa 1315-1630) was rated as 43444 by John Nash at 1534 and Radio Polskie, Warsaw 11.840 (English/French to W. Africa 1600-1700) was noted by Darran Taplin as 44433. An Extensive log from Philip Rambaut included BBC World Service at 1433 (English to Asia 0900-1615); VOA via Tianqiao, Philippines 11.965 at 1453 (Chinese to Asia 1000-1500) and VOA via Kavala, Greece 11.635 at 1600 (Greek to Asia 1600-1700).

Some of the broadcasts noted during the evening include Radio Beijing, China 11.500 (German/English to Europe 1800-2155), noted by Ron Proudfoot in Newcastle-upon-Tyne; AIR New Delhi, India 11.620 (English to Europe 1800-2230), rated as 43343 by John Nash at 1845; Radio Portugal, Lisbon 11.740 (German/English/French/Italian to S. Europe 1900-2100) and WCEN Boston, USA 11.695 (English to Europe 2100-2155) – both were logged by George Efstratiades. In Worcester, Edward Broadsmit has been listening to Radio RSA Johannesburg, S. Africa 11.800 at 2100 (Portuguese/French/English to Europe 1900-2156). Bill Reid logged WRNO New Orleans, USA on 11.705 (English to N. America 2100-2230) and rated their signal as 323 and Jim Willett heard Radio Globo, Brazil on 11.805 at 2359 (Portuguese 0900-0300). The 9MHz (31m) band offers plenty to interest DXers throughout the day and long distance reception is generally good. Keith Wakelin is one of the many regular listeners to the broadcasts to Europe from Radio Australia via Shepparton on 9.655 from 0700 to 1030 – he uses a DX502 receiver with a Global 1000 a.u.t. and 20m wire antenna in Hull and has found good reception. George Hewlett says peak reception conditions exist just now and their signal is generally SIO 444 from 0830 until 0915. Chris Amlot says the ABC domestic s.w. service from Perth on 9.610 has been reaching New York at SIO 484 at 1150. Many of the stations detailed last month are still active during the day. In addition, George Morley picked up the Voice of Kampuchea, Phnom-Penh 9.985 at 1233 (SIO 132); FEBG Manila, Philippines on 9.800 at 1320 (333) and TWR Guam, Pacific 9.820 at 1410 (334). Tim Shirley heard the Voice of Vietnam, Hanoi 9.840 at 1313 (French/English to Europe 1300-1400) and at 1600 logged Abu Dubai on 9.630 (Arabic to Europe 1600-2130).

At night, some of the broadcasts from S. America are audible in the UK – Radio Bandeirant, Brazil 9.645 (Portuguese 0800-0300) was rated as 34443 as 2130 by Neil Dove; Radio Rumbos, Venezuela 9.660 (Spanish 0900-0600) was logged at 2215 by Stephen Taylor; Radio Nac. Paraguay 9.735 (Spanish/Guarani 2200-0200) was logged by David Glover at 2250 and RAE Buenos Aires, Argentina 9.690 (Portuguese/Spanish/English to S. America 2200-0500) was rated as 34432 at 0210 by Neil Dove.

Despite the overcrowding, signals have also been good on the 7MHz (41m) band. Two early morning religious broadcasts noted by DXers, stemmed from WYFR via Okeechobee, Florida on 7.355 (Russian/German/English to Europe 0400-0745), rated as 44444 by John Nash at 0639 and also logged by Dick Moon in George, S. Africa and from TWR Monte Carlo, Monaco on 7.105 (English to Europe 0645-0640), rated as SIO 444 by Cyril Kallam at 0700.

Many interesting broadcasts were logged later in the day, including those from RBL via Naan, GDR 7.295 (English to Europe 1515-1600), rated as 444 at 1550 by Peter Hall; Radio Australia via Carnarvon W. Australia 7.205 (English to Europe 1530-2040), logged by Stewart Russell; AIR New Delhi, India 7.410 (English to Europe 1845-2230), logged as 35543 by Neil Dove at 2250 and Radio Beijing, China 7.700 (Russian to Europe), rated as 44554 by John Perry at 2000.

Reception on the 6MHz (49m) band has also been good – Stewart Russell is a regular listener to Radio Australia via Carnarvon, W. Australia on 6.035 (English to Europe 1530-2040), Neil Dove heard Vatican Radio, Rome on 6.190 at 1900 – their broadcast to Europe from 1630 to 2100 is in 13 languages. Listening during the night, Bill Kelly logged King of Hope, S. Lebanon 6.280 at 0300.

December 6: The North Scotland Second Annual Computer and Electronics Show will be held in the Music Hall, Aberdeen. Admission is £1. The show is organised by SATRO North Scotland. SATRO (Science and Technology Regional Organisation) North Scotland is a non-profit making organisation, dedicated to supporting and enhancing science and technology education. Any profit from the show will be devoted to developing computer and electronics clubs.

Dr L. Glasser
Chemistry Department
University of Aberdeen
Aberdeen AB9 2UE
Tel: (0224) 272952

March 13: The Bury Radio Society will be holding their 1988 rally at a new venue. The bigger venue is the Castle Leisure Centre, Bolton Street, Bury. There will be the usual large number of stands, a bring and buy and masses of radio and electronics traders. Talk in will be on S22.

March 20: The Tiverton SW Radio Club are holding The Mid Devon Rally at the Pannier Market, Tiverton. There is easy access from junction 27 of the M5 and excellent parking facilities on site. There will be two halls of trade stands, a bring and buy and a mobile snack bar. Talk-in will be on S22.

G4TSW
Mid Devon Rally
PO Box 3
Tiverton

SEEN & HEARD

Fig. 1

Fig. 2

RALLIES

* SWM will be in attendance.

December 6: The Verulam Christmas Rally will be held at the St Albans City Hall. The rally is open from 11am to 5pm. There will be a bring and buy, raffle and a talk-in station.

S.C.B. Dunning
0923 52959

March 13: The Bury Radio Society will be holding their 1988 rally at a new venue. The bigger venue is the Castle Leisure Centre, Bolton Street, Bury. There will be the usual large number of stands, a bring and buy and

masses of radio and electronics traders. Talk in will be on S22.

M. L. Jamil G11QVE
29 Harrow Close
Blackford Bridge

March 20: The Tiverton SW Radio Club are holding The Mid Devon Rally at the Pannier Market, Tiverton. There is easy access from junction 27 of the M5 and excellent parking facilities on site. There will be two halls of trade stands, a bring and buy and a mobile snack bar. Talk-in will be on S22.

G4TSW
Mid Devon Rally
PO Box 3
Tiverton

Short Wave Magazine December 1987 53
ANTENNAS (BP105)
R. A. Penfold
Practical designs including active, loop and ferrite antennas plus accessory units. 96 pages £1.95

ALL ABOUT CURVILINEAR QUAD ANTENNAS (USA)
W. I. Orr W5SAI & S. D. Cowan W2LX
Theory, design, construction, and adjustment of quad antennas. 48 pages £5.50

ALL ABOUT VERTICAL ANTENNAS (USA)
W. I. Orr W5SAI & S. D. Cowan W2LX
Theory, design, construction, operation and adjustment of h.f. broadcast band antennas. 96 pages £7.75

HF ANTENNAS
FOR ALL LOCATIONS (USA)
L. A. Moson G8EXN
Taking a new look at how h.f. antennas work, and putting theory into practice. 260 pages £6.17

OUT OF THIS WORLD (USA)
F. C. Judd G2BCX
The book deals with the basic concepts relevant to receiving signals. Lots of diagrams reduce the amount of mathematics involved. 86 pages £2.95

BEAM ANTENNA HANDBOOK (USA)
W. I. Orr W5SAI & S. D. Cowan W2LX
Design, construction, adjustment and installation of h.f. beam antennas. 96 pages £6.25

SIMPLE AMATEUR BAND AERIALS (BP125)
E. M. Noll
How to build 25 simple and inexpensive aerials, from a simple dipole through beam and triangle designs to a mini-parabolic reflector and using several frequencies, including the WARC bands. 80 pages £1.95

THE ANRLL ANTENNA BOOK
14th Edition (USA)
A station is only as active as its antenna system. This book covers propagation, practical constructional designs of antennas and some elements, test equipments and formulas for beam heading calculations. 327 pages £9.10

THE ANTENNA KOMPENDIUM Volume 1 (USA)
This book makes fascinating reading of hitherto unpublished material. Among topics discussed are quads and loops, log periodic arrays, beam and multi-band antennas, verticals and reduced size antennas. 175 pages £9.25

THE RADIO AMATEUR ANTENNA HANDBOOK (USA)
W. I. Orr W5SAI and S. D. Cowan W2LX
Yagi, quad, dipole, i.p., vertical, horizontal or "slipper" antennas. Towers, grounds and rotators. 187 pages £6.75

TWO-METRE ANTENNA HANDBOOK
F. C. Judd wrote this book for radio amateurs new to the 144-146 MHz range of frequencies described as the "2-meter" band. 175 pages £6.95

SIMPLE LOW-COST WIRE ANTENNAS FOR RADIO AMATEURS (USA)
W. I. Orr W5SAI and S. D. Cowan W2LX
Efficient antenna for Top Band to 2m, including "invisible" antennas for difficult station locations. 191 pages £6.75

SIMPLE SHORT WAVE BROADCAST BAND AERIALS (BP132)
E. M. Noll
Designs for 25 different aerials, from a simple dipole through to logical designs to a multi-band umbrella. 80 pages £1.95

SIMPLE TROPICAL AND MW BAND AERIALS (BP145)
E. M. Noll
Simple and inexpensive aerials for the broadcast bands from mid-window to 1.5 MHz. 96 pages £1.75

FAULT-FINDING
ARE THE VOLATGES CORRECT?
Reprinted from PW 1982-1983
How to use a multimeter to fault-find on electronic and radio equipment, from simple resistive dividers through circuits using diodes, transistors, i.c.s and valves. 44 pages £1.95

PRACTICAL HANDBOOK OF VALVE RADIO REPAIR
Chas E Miller
The definitive work on repairing and restoring valued broadcast and receiver equipment. Appendices giving intermediate frequencies, valve characteristic data and base connections, 230 pages Hardback £15.95

QUESTIONS & ANSWERS
RADIO REPAIR
Les Lawry-Johns
How to fault-find and repair valued and transistorised receiving car radios and other units. Suggested lists of tools and spare parts. 106 pages £2.95

SERVICING RADIO HI-FI AND TV EQUIPMENT
Gordon J. A very practical book looking at semiconductor characteristics, d.c. and signal tests, fault-finding techniques for radio, video, audio equipment and their application to transistor radios and hi-fi. 205 pages £9.95

TELEVISION INTERFERENCE MANUAL (RSGB)
P. Priestley
TV channels and systems, spurious-relation TVI, strong-signal TVI, radio-breakthrough, transmitter design. 78 pages £2.94

TEST EQUIPMENT FOR THE AMATEUR RADIO (RSGB)
H. L. Gibson G28UP
Techniques and equipment for tests and measurements on devices, systems and antennas. 142 pages Hardback £7.89

TRANSISTOR RADIO FAULT FINDING CHART (BP70)
C. E. Miller
Use the chart to help the apprentice or the novice to locate the fault. It's a chart which will help you find the fault quickly. 12x5 x 45mm £0.95

COMPUTING
AMATEUR RADIO SOFTWARE (SOFTWARE)
John Morris WM4ANB
Using a computer for RTTY, data, plus calculations for antennas, distance, bearing, locators, satellites, sun, moon and circuit design. 328 pages Hardback £9.41

AN INTRODUCTION TO COMPUTER COMMUNICATIONS (BP177)
R. A. Penfold
Deals with the various types of modem and their applications, plus how to interconnect computers, modems, and the telephone system. Also networking systems and RTTY. 96 pages £2.95

AN INTRODUCTION TO COMPUTER PERIPHERALS (BP170)
J. W. Penfold
Computers, monitors, printers, disk drives, cassette recorders, modems, etc., explaining what they are, how to use them and the various types of standards. 80 pages £2.95

MICROPROCESSING SYSTEMS AND CIRCUITS (BP77)
The Elements of Electronics—Book 4
F. A. Wilson
A very comprehensive guide to the elements of microprocessing systems, which are becoming ever more important in radio systems and equipment. 256 pages £4.95

NEWNES COMPUTER ENGINEER'S PRACTICAL BOOK
This is an invaluable compendium of facts, figures, circuits and data and is indispensable to the designer, student, service engineer or those interested in computer and microprocessor systems. 203 pages £12.95

AUDIO FREQUENCIES
AUDIO (BP111)
The Elements of Electronics—Book 6
F. A. Wilson
Audio, sound and hearing, and the operation of microphones, loudspeakers, amplifiers, oscillators, etc. 456 pages £6.95

THEORY & CALCULATIONS
BEGINNERS GUIDE TO ELECTRONICS
Owen Bishop
For youngsters thinking of a career in electronics; theory and applications in computers, radio, TV, recording, medical, and industrial electronics. 144 pages £4.95

CARE AND FEEDING OF POWER GRID TUBES
The handbook analyses the operation of EMAC power grid valves and provides design and application information to extract the best performance from these valves. 156 pages £4.95

RADIO FREQUENCY INTERFERENCE (USA)
What causes it? Are all r.f. problems difficult, expensive and time-consuming to cure? These questions and many more are answered in this book. 84 pages £4.25

THE SIMPLE ELECTRONIC CIRCUIT AND COMPONENTS Book (BP62)
The aim of this book is to provide an inexpensive but comprehensive introduction to modern electronics. 209 pages £3.50
INDEX 87

Vol 45 — April to December

CONSTRUCTIONAL
Antenna Trombone Tuner by A. H. Robson. 20 Aug
A Simple Antenna Tuning Unit by Rev. G. C. Dobbs G3JRV. 24 Apr
Audio Filter by Rev. G. C. Dobbs G3JRV. 22 July
Build the DX180/80 Loop Antenna by Richard O. Morris G2ZCO. 18 Apr
The Long Arm Loop by G. W. Millmore. 21 Sept

FEATURES
Aeronautical Radio: by Godfrey Manning BSc MB BS G4GLM. Part 1 32 May
Part 2 32 June
Part 3 25 July
A Golden Age Apart from Gremlins by David Lazzell. 26 Nov
Context Operating for Listeners by Janet Stone. 9 Sept
EDXC Conference Report by Simon Spanwicks. 14 Nov
Goonhill Earth Station by Elaine Richards G4LFM. 26 Sept
Ideas for Christmas. 25 Dec
Index. 50 Nov
Intrigue on the Short Wave Bands by Peter Shore. 28 Nov
QTO by Leonard Moss. Part 1 40 May
Part 2 40 June
Radio Australia — The Beginning by G. W. Millmore. 32 Dec
Radio Data Systems by Peter Shore. 20 Dec
Scanning by Alan Gardner. 33 Dec
Selcals by John Davies. 18 Dec
Short Wave USA by Gerry L. Dexter. 43 Apr
Special Event Station GBONN by D. F. Kitchen. 52 Aug
The Biggest Radio Event in the World by Rev. G. C. Dobbs G3JRV. 14 July
The Great St. John Paris by Rodney Harrigan G1ACL. 3 Sept
The Man Who Spanned the Ether by Roger Jones. 23 Oct
The Voice from England by Joan Ham. 16 Apr
WARC-HFC 87 by Simon Spanwicks. 30 July
Wireless at the Chalk Pits by Joan Ham. 26 Oct
60 Years on — Empire Broadcasting Diamond Jubilee by Joan Ham. 9 Nov

THEORY
Another Fortunate Find by Chas. E. Miller. 19 July
Another Mystery Marcon by Chas. E. Miller. 28 Sept
Antennas For Scanners by Alec Wood BSc G8WHR. 22 Aug
Attenuators Made Simple by Ian Poole G3YXW. 33 July
Facsimile by David Bird G6EJD. 9 Oct
In Search of Super DX by Barry Davies. 18 Oct
Introduction to DXTV by Keith Hamer and Garry Smith. Part 1 26 Aug
Part 2 23 Sept
Part 3 24 Sept
Part 4 23 Nov
Part 5 15 Dec
New Russian Satellites by Pat Gowen G3IOR. 33 Aug
Restoring a Communications Receiver from Nazi Germany by Chas. E. Miller. Part 1 38 Apr
Part 2 28 May
The Grey-line DX Path by Ron Stone GW3YDX. 18 June
Valves and Receivers by John Roscoe G4OK. 38 June

REVIEWS
Datong AD270 Active Antenna by Ken Michaelson G3RDG. 10 Aug
Datong FL-3 Audio Filter by Ken Michaelson G3RDG. 20 Nov
FAX Decoder for the BBC by John Waite. 20 Oct
G4IDE Spectrum FAX by Richard Ayley G6AAG. 32 July
C.M. Howes ASL5 Audio Filter by Dick Ganderton G8VHF. 31 Apr
Kenwood R-5000 Receiver by Ken Michaelson G3RDG. 17 Oct
ICS Electronics FAX-1 by Mike Richards G4WNC. 13 Oct
Matsui MR4099 Receiver by Dick Ganderton G8VHF. 15 Sept
National Panasonic RF-840 by Peter Shore. 52 Sept
Panasonic RF-B60 Receiver by Peter Shore. 38 May
Realistic DX-360 by Dick Ganderton G8VHF. 10 July
Realistic PRO32A Scanner by John Waite. 30 Nov
Realistic PRO2004 Scanner by Dick Ganderton G8VHF. 34 Apr
Sony ICF-F7600DA Receiver by Peter Shore. 28 Aug
Uniden Bearcat UCB 175XJ by John Waite. 11 Dec
WD & Douglas TVUP2 Receiver Converter by Mike Richards G4WNC. 22 May

PRODUCTS
AKD — Clamp-on Chokes. 4 Dec
Antenna Technologies — Telescopic Masts. 3 June
Antifrequency Ltd — Masthead Amplifiers. 3 July

PRODUCTS (continued)
British Telecom — Code Decoder. 5 Aug
Ceka Works Ltd — Micro Screwdrivers. 3 Nov
Communications — Multipliers. 5 Apr
Cirkit Holdings plc — Restore
Cooper Tools Ltd — Screwdrivers. 5 Sept
Cotswold Electronics Ltd — Toroidal Mains Transformers. 4 Oct
Currys Ltd — Currys Enter SW Radio Market. 4 Aug
Dorset Dish (Satellite TV) Ltd — Dorset Dish. 3 Oct
Greenweald Electronics Ltd — Switch-mode PSU. 3 Oct
Edward Baker — MW DX Listings. 5 June
Fieldtech Heatthrow Ltd — Scanner. 3 June
Harrisons Electronics (London) Ltd — Pocket DMM. 3 June
Hobie Microwave — Search and DF System. 3 June
SWR Communications Ltd — ASTRID’s Alive. 5 May
SMLC Ltd — Power Supplies. 4 Dec
Sony (UK) Ltd — New Sony Short Wave Receivers. 4 Aug
N.P. Taylor (G4HXL) — WOSP. 4 June
Technical Software — Software. 4 June
Waters & Stanton Electronics — Antennas for Scanners. 4 Aug
R. Withers Communications Ltd — Airband Receiver. 4 Oct
R. Withers Communications Ltd — Modified RTTY Scanners. 4 Apr
R. Withers Communications Ltd — FT-776. 5 Sept

BOOK REVIEWS
An Introduction to Antenna Theory. 5 Nov
Better Radio/TV Reception A Non-technical Approach. 26 Apr
Communications Satellites. 3 May
Dublin Calling. 26 Apr
Projects in Amateur Radio and Shortwave Listening. 26 May
Radio Beacon Handbook. 3 May
Radio Database International. 5 July
Radio Frequency Interference How to identify and cure it. 5 Nov
Radio Receivers. 4 May
Satellite Television A Layman’s Guide. 3 May
Secrets of Successful G3LXyling. 5 Nov
Solid State Short Wave Receivers For Beginners BP.222. 5 Dec
So You Bought A Shortwave Radio! 15 Oct
Specifications of a Short Wave Receiver. 16 Oct
The Complete Shortwave Listeners Handbook 3rd Edition. 26 Apr
The Complete VHF/UHF Frequency Guide. 6 Aug
The Radio Amateur’s Microwave Communications Handbook. 3 May
The Satellite Experimenters Handbook. 3 May
The Slow Scan Companion. 26 Apr
UK Listeners Confidential Frequency List 4th Edition. 5 Nov
VHF/UHF Airband Frequency Guide. 5 Nov
World Radio TV Handbook 1987. 5 Sept

REGULARS
Airband by Godfrey Manning. 31 Aug, 22 Sept, 27 Oct, 1 Nov, 5 Nov, 9 Nov
Amateur Bands Round-Up by Justin Cooper. 47 April, 45 May, 46 June, 35 July, 37 August, 33 Sept, 33 Oct, 32 Nov, 38 Dec
Band II DX by Ron Ham. 50 April, 51 May, 52 June, 51 July, 41 August, 38 Sept, 40 Oct, 38 Nov, 42 Dec
Bandscan by Peter Laughton. 29 April, 33 May, 25 June, 15 July, 18 August, 18 Sept, 16 Oct, 16 Nov
Decode by Mike Richards G4WNC. 48 April, 48 May, 46 June, 37 July, 38 August, 35 Sept, 35 Oct, 33 Nov, 40 Dec
Info in Orbit by Pat Gowen G3IOR. 49 April, 48 May, 48 June, 39 July, 39 August, 35 Sept, 34 Nov, 41 Dec
Long Medium & Short by Brian Oddy G3FEX. 55 May, 56 May, 56 June, 44 July, 45 August, 42 Sept, 43 Oct, 40 Nov, 47 Dec
Starting Out by Brian Oddy G3FEX. 36 April, 65 May, 65 June, 51 July, 35 August, 31 Sept, 31 Oct, 31 Nov, 36 Dec
Television by Ron Ham. 53 April, 53 May, 53 June, 42 July, 42 August, 39 Sept, 40 Oct, 38 Nov, 44 Dec

56
Short Wave Magazine December 1987
YOUR ONE STOP LISTENER SERVICE!
Established 1973
HUGE STOCKS - BEST PRICES - GOOD BACKUP — FREE SECURICOR
YOU NAME - WE'VE GOT IT!

SONY AIR-7 HAND-HELD AM/FM 108-176MHz + LW/MW/FM UNBEATABLE VALUE
The best VHF monitor there is. That's a fact! 106-160MHz plus LW/MW/FM broadcast. Covers air, marine, PMR etc. LCD display, memories, scanning, walkies, memory. etc. Supplies are short but we are the UK's largest stockist. So check with us.
£247 FREE SECURICOR

SONY ICF2001D RECEIVER SUPER PORTABLE + BASE HF + AIR BAND COVERAGE
Described as the best portable on the market by a reviewer. It covers 150kHz-30MHz AM/SSB/AM plus HF air band. Memories, scanning etc., at a bargain price. External aerial socket and a host of other features. 230V AC or battery.
£329 FREE SECURICOR LEAFLET AVAILABLE

NEW SONY PRO-80 RECEIVER AM/FM/SSB 116kHz-220MHz
A major innovation in monitor receivers. Just think, a complete short wave and vhf monitoring system in your pocket! Memories, scanning, etc. Order today.
£329.00 Carry Fee Free

SONY ICF7600DS PORTABLE COMMUNICATIONS!
Not a toy, but a serious communications receiver. 150kHz-30MHz AM/SSB/plus memories, scanning, digital readout and optional HF module. 116-136MHz
The well known model is ideal for all card monitoring. Pocket size and battery powered with wrist strap. Highly sensitive and used by many professionals.
£169 FREE SECURICOR

R537S AIRBAND MONITOR
116-136MHz
This well known receive is ideal for all card monitoring. Pocket size and battery powered with wrist strap. Highly sensitive and used by many professionals.
£69.00 Carry Fee £2.00

TRIO R2000 HF RECEIVER POPULAR BASE MONITOR
Well respected, it covers 150kHz-30MHz AM/SSB/plus memories, scanning, digital readout and optional HF module. 118-174MHz. Like all Trio equipment it has a super specification.
£595 FREE SECURICOR

GLOBAL AT1000 AERIAL TUNER
The AT1000 is a receiver aerial tuner designed to give you maximum performance from your receiver. Covering the frequency range 150kHz to 30MHz, it matches all the modern receivers produced in recent years. Ideal for matching long wire, dipoles or balanced feeders.
£69.00 POST FREE

GLOBAL AT1000 AERIAL TUNER
The AT1000 is a receiver aerial tuner designed to give you maximum performance from your receiver. Covering the frequency range 150kHz to 30MHz, it matches all the modern receivers produced in recent years. Ideal for matching long wire, dipoles or balanced feeders.
£69.00 POST FREE

YAESU FRG8000 HF RECEIVER IDEAL BASE STATION
The highly regarded Rx from YAESU covering 150kHz-30MHz AM/SSB/CW plus HF. With module option. High resolution LCD display plus memories and scanning. Very popular and superior performance.
£619 FREE SECURICOR

AU1000 UNBEATABLE VALUE

THE SECRET OF LEARNING MORSE CODE
By Mark Francis £4.95 + 90p p&p
Morse code is an essential requirement for those who aspire to a class "A" licence. But many other enthusiasts, including the thousands of listeners would improve the enjoyment of their hobby immensely if they were able to read Morse. This book sets out to take the myths and mysteries out of the subject, it takes you step by step through all phases of learning the code and provides simple solutions to answer all those familiar pitfalls so often encountered by students. Written in an easy to read style that will make your study enjoyable, it is packed with exercises, sample tests, etc., and runs to almost 100 pages. At last somebody has cracked the "secret" of learning Morse code quickly and easily.

BOOKS SPECIALLY FOR YOU!

COMPLETE VHF/UHF FREQUENCY GUIDE 26-2250MHz £2.95 + 80p p&p

This guide has sold over 4,000 copies since its publication last August and is still selling well. Mainly because it is recognised as being of tremendous value and unique in radio literature. If you are one of the many who are curious to know what transmits where in the wide VHF/UHF spectrum, then this is a guide that you should not be without. This book gives comprehensive details of all the main users of this part of the radio spectrum. The frequency range is subdivided into sections under appropriate headings for the type of services using the particular sub-divisions. All kinds of service are covered including land, sea, air and space. Full details are included of major operators and lists and names plus some useful editorial. If you are at all interested in this part of the radio spectrum, you will find this a most valuable and absorbing book.
Better Short Wave Reception £6.00 + £0.60 p&p
Oceanic HF Airband Frequency Guide £2.95 + £0.60 p&p
World Radio HF Teletype Frequency List £3.95 + £0.60 p&p
World Radio & TV Handbook (1987) £17.95 + £1.00 p&p

Waters & Stanton

RETAIL & MAIL ORDER: 18-20, Main Road, Hockley, Essex SS5 4QS.
Tel: (0702) 206835, 204965
RETAIL ONLY: 12, North Street, Hornchurch, Essex RM11 1OX.
Tel: (04024) 44765
Visa and Access by telephone. 24hr. Answerphone.
ICOM introduces the IC-R7000, advanced technology, continuous coverage communications receiver. With 99 programmable memories the IC-R7000 covers aircraft, Marine, FM Broadcast, Amateur Radio, television and weather satellite bands. For simplified operation and quick tuning the IC-R7000 features direct keyboard entry. Precise frequencies can be selected by pushing the digit keys in sequence of the frequency or by turning the main tuning knob. FM wide/FM narrow/AM upper and lower SSB modes with six tuning speeds: 0.1, 1.0, 5, 10, 12.5, 25KHz. The IC-R7000 has 99 memories available to store your favourite frequencies including the operating mode. Memory channels can be called up by pressing the memory switch then rotating the memory channel knob, or by direct keyboard entry. This sophisticated scanning system provides instant access to the most used frequencies. By depressing the Auto M switch, the IC-R7000 automatically memorises frequencies that are in use whilst it is in the scan mode, this allows you to recall frequencies that were in use. The scanning speed is adjustable and the scanning system includes the memory selected frequency ranges or priority channels. All functions including the memory channel readout are clearly shown on a dual-colour fluorescent display. Other features include dial-lock, noise blanker, attenuator, display dimmer and S meter and optional RC-12 infra-red remote controller, voice synthesizer and HP1 headphones.

IC-R71E, General coverage receiver.

The ICOM IC-R71E 100KHz to 30MHz general coverage receiver features keyboard frequency entry and infra-red remote controller (optional) with 32 programmable memory channels, SSB, AM, RTTY, CW and optional FM. Twin VFO' s scanning, selectable AGC, noise blanker, pass band tuning and a deep notch filter. With a direct entry keyboard frequencies can be selected by pushing the digit keys in sequence of frequency. The frequency is altered without changing the main tuning control. Options include FM, voice synthesizer, RC-11 infra-red controller, CK70 DC adaptor for 12 volt operation, mobile mounting bracket, CW filters and a high stability crystal filter.

Telephone us free-of-charge on:
HELPLINE 0800-521145.

You can get what you want just by picking up the telephone. Our mail order department offers you free same day despatch whenever possible, instant credit, interest free H.P., Barclaycard and Access facilities, 24 hour answering service.