January 1986

B.N.O.S.
LPM 70-10-100
4-metre Linear Amplifier reviewed
G3RJV and GW3SPA complete their projects
The new AFR 1000 Automatic all mode decoder from Poly Electronic has features never seen before for such a low price. Decodes RTTY (CCITT No. 1 and CCITT No. 2) Sitor-Amtor, F.E.C. and CW. A special NEW feature is the AUTOSPEED CHECK MODE enabling precise measurement of received teletype traffic, includes Video output and RS232 interface with DTR. Supplied with power lead and plugs. Post and packing £4.50. S.A.E. for further details.

See this and other Pocom products at Dewsbury Electronics or at Ward Electronics, Birmingham, or Reg Ward & Co. Axminster.

Dewsbury Electronics offer a full range of Trio Equipment always in stock. We are also stockists of DAIWA, WELTZ, TELEREADERS, ICS AMTOR-AEA PRODUCTS-BNOS, MET ANTENNAS, BENCHER, VIBROPLEX.

Dewsbury Electronics, 176 Lower High Street, Stourbridge, West Midlands. Telephone: Stourbridge (0384) 390063/371228. Open Monday thru Saturday. Instant H.P. subject to status, Access Visa and real money.

UP YOUR FUNDAMENTAL

* LOW-NOISE SWITCHABLE PRE-AMP
* SWITCHABLE LINEAR AMPLIFIER
* RF OR HARD-WIRED SWITCHING
* SWITCHABLE HANG-TIME
* "BARGRAPH LED" POWER METER
* CONTINUOUSLY RATED

WITH ONE OF THE NEW VHF LINEAR AMPLIFIERS FROM B.N.O.S. ELECTRONICS

4M
- Frequency Range: 70 to 72 MHz
- Output Power: 100W +/- 0.5dB
- Power Requirements: 13.8V DC, 14A +/- 15%
- Pre-amp Gain: 12dB Typical
- RX Noise Factor: Better than 1.5dB

LPM 70-10-100 £195.00

2M
- Frequency Range: 50 to 54 MHz
- Output Power: 100W +/- 0.5dB
- Power Requirements: 13.8V DC, 14A +/- 15%
- Pre-amp Gain: 12dB Typical
- RX Noise Factor: Better than 1.5dB

LP 144-3-50 £125.00
LP 144-10-50 £125.00

6M
- Frequency Range: 50 to 54 MHz
- Output Power: 100W +/- 0.5dB
- Power Requirements: 13.8V DC, 14A +/- 15%
- Pre-amp Gain: 12dB Typical
- RX Noise Factor: Better than 1.5dB

LPN 50-10-100 £195.00

- POSTAGE FREE
- SECURICOR DELIVERY AVAILABLE AT £4 PER ORDER
- DEALERS LOCALLY AND THROUGHOUT EUROPE

B.N.O.S. ELECTRONICS LTD, DEPT SWM
BIGODS HALL, GREAT DUNMOW,
ESSEX CM6 3BE. TEL (0371) 4677
ADVERTISERS’ INDEX

<table>
<thead>
<tr>
<th>Company Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amateur Electronics Ltd</td>
<td>452</td>
</tr>
<tr>
<td>J. Birkett</td>
<td>491</td>
</tr>
<tr>
<td>B.N.O.S. Electronics Ltd</td>
<td>inside front cover</td>
</tr>
<tr>
<td>British National Radio and Electronics School</td>
<td>491</td>
</tr>
<tr>
<td>Colomor Electronics Ltd</td>
<td>490</td>
</tr>
<tr>
<td>Datong Electronics Ltd</td>
<td>489</td>
</tr>
<tr>
<td>Dewsbury Electronics</td>
<td>inside front cover</td>
</tr>
<tr>
<td>E.M.A.</td>
<td>448</td>
</tr>
<tr>
<td>G4TNY Amateur Radio</td>
<td>490</td>
</tr>
<tr>
<td>D. P. Hobbs Ltd.</td>
<td>490</td>
</tr>
<tr>
<td>R. A. Kent Engineers</td>
<td>487</td>
</tr>
<tr>
<td>KW Ten-Tec Ltd.</td>
<td>487</td>
</tr>
<tr>
<td>P.M. Electronic Services</td>
<td>487</td>
</tr>
<tr>
<td>Quartslab Marketing Ltd.</td>
<td>488</td>
</tr>
<tr>
<td>F. G. Rylands</td>
<td>490</td>
</tr>
<tr>
<td>S.E.M.</td>
<td>486</td>
</tr>
<tr>
<td>Small Advertisements</td>
<td>489, 490</td>
</tr>
<tr>
<td>Stephen-James Ltd.</td>
<td>486</td>
</tr>
<tr>
<td>S.W.M. Publications</td>
<td>inside back cover</td>
</tr>
<tr>
<td>back cover, 488, 490, 491, 492</td>
<td></td>
</tr>
<tr>
<td>Thanet Electronics Ltd</td>
<td>450, 451</td>
</tr>
<tr>
<td>Uppington Tele/Radio (Bristol) Ltd</td>
<td>488</td>
</tr>
<tr>
<td>Reg. Ward & Co., Ltd.</td>
<td>488</td>
</tr>
<tr>
<td>Waters & Stanton Electronics</td>
<td>487</td>
</tr>
<tr>
<td>Geoff Watts</td>
<td>488</td>
</tr>
</tbody>
</table>

SHORT WAVE MAGAZINE
(GB3SWM)

ISSN: 0037-4261

VOL. 43 JANUARY, 1986 No. 507

CONTENTS

Editorial — Discussion ... 453
VHF Bands, by N. A. S. Fitch, G3FPK 454
Converting the ‘Colt 295’ 40/80-Channel AM/FM
CB Set for Use on the 10-Metre Amateur Band, Part 2,
by Roger Alban, B.Sc., C.Eng., MIEE, GW3SPA 458
‘Beyond the Call’ — G8MWR .. 461
An American Experience, Part 5, by Christopher Page, G4BUE, and Colin Turner, G3VTT ... 462
‘SWL’, by Justin Cooper ... 467
‘Kitchen Table Technology”, No. 10 (Part 2): The ‘Kowloon’
TRF Receiver, by Rev. G. C. Dobbs, G3RJV 470
B.N.O.S. Electronics LPM70-10-100 Linear Amplifier,
by P. N. Lewis, G4APL — Equipment Review 472
The KW Ten-Tec Models 227 and 228 Aerial Tuning Units,
by E. H. Trowell, G2HKU — Equipment Review 473
Communication and DX News, by E. P. Essery, G3KFE 475
“Practically Yours”, with Glen Ross, G8MWR 478
A 4:1 Balun Transformer, by P. C. Cole, G3JFS/DA1PE 479
Muting Communications Transceivers, by Anthony Green, VS6EZ 480
Clubs Roundup, by “Club Secretary” 482

Editor: PAUL ESSERY, G3KFE/G3SWM
Advertising: Charles Forsyth

Published at 34 High Street, Welwyn, Herts. AL5 9EQ, on the last Friday of the month, dated the
month following.
Telephone: 04-3871 5206 & 5207

Annual Subscription:
Home: £16.00, 12 issues, postfree
Overseas: £16.00 ($21.00 U.S.), post free surface mail

Editorial Address: Short Wave Magazine,
34 High Street, Welwyn, Herts. AL6 9EQ, England.

Prices shown in advertising in this issue do not necessarily constitute a contract and may be subject
to change.

AUTHOR’S MSS

Articles submitted for Editorial consideration must be typed double-spaced with wide margins on
one side only of A4 sheets. Photographs should be lightly identified in pencil on the back with details
on a separate sheet. All drawings and diagrams should also be shown separately, and tables of values
prepared in accordance with our normal setting convention — see any issue. Payment is made at a
competitive rate for all material used, and it is a condition of acceptance that full copyright passes to
the Short Wave Magazine, Ltd., on publication.

© Short Wave Magazine Ltd.
IC-1271E Fantastic new multimode 1.2GHz Transceiver

ICOM, a pioneer in 1.2GHz technology are proud to introduce the first full feature 1240 - 1300 MHz base station transceiver. Features include: multimode operation, 32 memories, scanning and 10 watts RF output. The IC-1271E allows you to explore the world of 1.2GHz thanks to a newly developed PLL circuit that covers the entire band, a total of 60MHz, SSB, CW and FM modes may be used anywhere in the band making the IC-1271E ideal for mobile, DX, repeater, satellite or moonbounce operation. The IC-1271E has outstanding receiver sensitivity, the RF amplifiers use a low noise figure and high-gain disc type GaAs FET's for microwave applications. The rugged power amplifier provides 10 Watts which can be adjusted from 1 to 10 Watts. A sophisticated scanning system includes memory scan, programme scan, mode-selective scan and auto-stop feature. Scanning of frequencies and memories is possible from either the transceiver or the HM12 scanning microphone. 32 programmable memories are provided to store the mode and frequency in 32 different channels. All functions including memory channel are shown clearly on a seven digit luminescent dual colour display. The IC-1271E has a dial-lock, noise blanker, RIT, AGC fast or slow and VOX functions. With a powerful 2 Watt audio output the IC-1271E is easily audible even in a noisy environment. The transceiver operates with either a 240V AC (optional) or 12 volt DC power supply. A variety of options include IC-FS25 internal AC power supply, IC-EX310 voice synthesizer, the TV-1200 TV transceiver adaptor and the IC-EX309 computer interface. The IC-1271E is the most compact and lightest all-mode 1200 MHz transceiver currently available.

IC-R7000 VHF/UHF scanning receiver

Causing quite a stir at the moment is the ICOM IC-R7000. This new receiver is able to give high frequency coverage up to 1.3MHz without sacrificing SSB stability which is maintained throughout the IC-R7000's entire frequency range. For simplified operation and quick tuning, the IC-R7000 feature direct keyboard entry. Precise frequencies can be selected by pushing the digit keys in sequence of the frequency or by turning the main tuning knob. FM/AM/SSB modes, frequency coverage 25-1000 MHz and 1025 - 2000MHz (25 - 1000MHz and 1250 - 1300MHz guaranteed specification). The IC-R7000 has 99 memories available to store your favourite frequencies including the operation mode. Memory channels may be called up by simply pressing the memory switch, then rotating the memory channel knob or by direct keyboard entry. A sophisticated scanning system provides instant access to most used frequencies. By depressing the Auto-M switch. The IC-R7000 automatically memorises frequencies in use, while the unit is in the scan mode. This allows you to recall frequencies that were in use. Scanning systems include memory selected frequency ranges or priority channels, scanning speed is adjustable. Narrow/wide filter selection. Five tuning speeds: 10Hz, 100Hz, 1.0KHz, 10KHz and 25KHz. All functions including memory channel readout are clearly shown on dual-colour fluorescent display with dimmer switch. The IC-R7000 has dial-lock, noise blanker, S-meter and attenuator. Options include RC-12 infra-red remote controller and a voice synthesizer.

For a more detailed specification of the competitively priced IC-R7000 contact your authorised ICOM dealer or telephone us direct on 0800 521145, our FREE Linkline service for Amateurs and SWL's.
IC735 compact HF Transceiver

As predicted the ICOM IC-735 has rapidly gained the reputation it deserves. When compared with similar 'top names' transceivers the IC-735 towers above them (despite its smaller size). The IC-735 has a larger number of programmable channels, but notably most important is the superb sensitivity in all modes SSB, CW, AM and FM. This superior sensitivity is due to the excellent front end performance. All amateur frequencies from 1.8MHz to 30MHz are available including the three new bands 10, 18 and 24MHz. RF output is approximately 100 Watts. Tuning ranges from 100KHz to 30MHz, made continuous by using a high-side IF and a CPU control system. RTTY operation is also possible.

Dynamic range is 105dB with a 70.451MHz first IF circuit. Pass-band tuning and a sharp IF notch filter provide clear reception even under duress. Preamp is 10dB and attenuator 20dB. Computer remote control is possible via the RS-232C jack.

Options include: the AT-150 automatic antenna tuner, the PS55 AC power supply and the SM-6 and SM-8 desk mics. Why not find out more about the IC-735 by ringing us or your local ICOM dealer.

Thanet Electronics are proud to offer their continued complete service for all Amateur radio requirements - no matter what your problem may be regarding the smooth operation of your shack Thanet have the answers, and technical 'know-how'. If you require a demonstration of any ICOM equipment telephone our retail premises on Herne Bay (0227) 369464 where we will be pleased to hear from you.

WANT TO LEARN MORE?
Telephone us free-of-charge on:
HELPLINE 0800-521145.

This is strictly a helpline for obtaining information about or ordering ICOM equipment. We regret this service cannot be used by dealers or for repair enquiries and parts orders. Thank you.
RISE TO A NEW LEVEL OF VHF AND UHF OPERATION WITH THE YAESU FT-726R

FEATURES
THREE BANDS...PLUS
You choose the plug-in RF Modules for the bands you want to use.

THREE MODES...PLUS
Sideband selectable SSB, FM and CW are all included, with dual synthesized VFOs.

ELEVEN STANDARD MEMORIES...PLUS
All memories store mode (as well as band, of course).

SATELLITE OPTION...PLUS
With the optional plug-in satellite IF unit installed, full duplex cross-band capability is provided.

NOW! ADD THREE HF BANDS!
An HF module for the 21, 24.5 and 28 MHz bands.

DUAL METERS...PLUS
Another first for V/UHF operation.

FT-726R

THE FIRST MICROPROCESSOR-CONTROLLED AMATEUR TRANSCEIVER CAPABLE OF HF, VHF AND UHF FULL DUPLEX OPERATION!

AMATEUR ELECTRONICS LTD.

510/512 Alum Rock Road Alum Rock Birmingham B8 3HX Telephone 021-327 1497/6313

Amateur Electronics Ltd. FREEPOST MAIL ORDER ENQUIRIES Amateur Radio Exchange FREEPOST London W3 9BR
EDITORIAL

Discussion

The recent Region 3 IARU Conference received some important papers for consideration. The first one was that from Papua-New Guinea. This one was headed "QSL — the curse of the contact" and points out the facts of life as far as QSLs in Papua-New Guinea are concerned: 5000 cards cost some 180 U.S. dollars, and their Bureau charges 3 cents per outgoing card. Thus, by QSL-ing, the P29 amateur pays around 6.6 cents for his half of every QSO he has . . . and an average amateur may have between 1000 and 10000 contacts a year. Thus they call for an 'honour' system for all awards, and for global acceptance of the principle. It is worth noting that Fiji put up an almost similar proposition.

Secondly, New Zealand offers the proposal that the DX-pedition, coupled with the open-ended nature of the DXCC award, encourages expeditions to operate from ever more ridiculous and even dangerous 'countries', all for the ego of a small minority chasing after 'Honour Roll' status. This, they consider, has led to activity which brings amateur radio into disrepute and encourages too high power levels. Their solution is to make DXCC a once-for-all award — 100 countries and no endorsements for greater numbers. Their resolution ends by calling for discussion of ways and means.

Thirdly, the other side of the coin, from G3XQU (ex-3V8DX) for presentation to NZART arising from the resolution just mentioned. He thinks DX-peditions are in fact good for the image of amateur radio, and would like the Region 3 IARU Conference to endorse his opinion.

Our reaction is that it is right and proper that each of these three viewpoints be considered with care — maybe a debate at a club meeting even — as they all have an important bearing on amateur radio in the wider sense. One doesn't have to be particularly perceptive to know that a good deal of Africa is already unworkable for lack of legal licensed amateur activity; one doesn't have to be very caring to feel sorry for the poor chap in some DX location who just can't have a peaceful natter on the band without losing his QSO in a wall of QRM from ill-mannered and ill-tempered callers; and one doesn't have to be on the dole to realise how the chore of QSL-ing and the cost must put a severe strain on any active DX station's pocket and time.

Something needs to be sorted out, but at this stage we wouldn't presume that any solution is of necessity correct.

RSGB to take over Morse tests

The Department of Trade in Industry announced on December 2 that it had appointed the RSGB to take over the running of the amateur radio Morse tests on its behalf from April 1. The Society's proposal was chosen, rather than those of either British Telecom International or The City and Guilds of London Institute, as representing, "... a significant improvement in the service offered to radio amateurs who wish to take the Morse test." The RSGB intends setting up a network of 70 testing centres, one in each county, region or designated island, with tests every two months at a fee of £7. We can only applaud this move, since it offers a more efficient and cheaper service. The next logical move would be for the RSGB to take over the R.A.E., setting the syllabus, examination questions and marking papers; after all, examinations for the professions are not set or conducted by third parties so why should the C.G.L.I. be involved at all?

STOP PRESS: The six-metre band will be released for all Class-A licensees on a 24-hour basis from February 1st, as announced in the "London Gazette" on December 20th.
VHF BANDS
NORMAN FITCH, G3FPK

First, a very happy New Year to all readers. Thank you for your support in 1985 and here's hoping that 1986 will be a good year for the VHF and microwave enthusiasts. The six metre band will soon be available and it will be interesting to review achievements in a year's time.

After the memorable October tropo lift, we were brought down to earth in November which saw very mediocre conditions. Even in the busy London area, there were times when the SSB section of 2m. was completely empty, so much so that one wondered if one of the local squirrels had chewed through the coaxial feeder. (Yes, the little beasts actually walk up the brick walls at G3FPK and have had a go at the feeder for the HF antenna).

Beacon News

Since last month's mention of the new 13cm. beacon GB3NWK on 2,320.850 MHz, further details have been received from the newly formed North West Kent Beacon Group. G8JIG is the beacon keeper, G4GLN is the technical manager and G8CIU the treasurer. The site details are NGR TQ496644 (J001BI). The ERP is 5w omnidirectional from an Alford slot antenna 25ft. The keying is FSK sending "GB3NWK J001BI" and reception reports should go to G4GLN who is QTHR. So far, development and running costs have been modest, would be most welcome and the site details for 12043 pts. The All-other stations section was won by the Parallel Lines Contest Group, G82RS on Dec. 1 and revealed that the Single-op. section was handsomely won by Geoff Brown, G4JCD, who amassed 16,230 points. G16TMM was second with 2,808 and G4AGQ came third with 2,600 points. The All-other stations section was won by the Parallel Lines Contest Group, G4LIP, with 13,097 pts. closely challenged by GW4NVO/P with 13,071, while third place went to G8LNC/P with 12,043 pts.

The results of the October UHF/SHF Contest were also broadcast and in the following summary, MO means Multioperator, SO signifies Single-op. and the 1 and 2 refer to first and second place; the rest is obvious. 432 MHz SO, 1 G3XDV 22,225 pts; 2 G64AT 11,728. 432 MHz MO, 1 G8TFI/P 93,378; 2 G4RNL/P 89,682, 1,296 MHz SO, 1 G3XDV 13,032; 2 G3JXN 5,832, 1,296 MHz MO, 1 G4NVO/P 15,999; 2 G3CRK/P 15,233.

2.3 GHz SO, 1 G3XDV 2,222; 2 G3JXN 2,001. 2.3 GHz MO, 1 G4FRE/P 5,034; 2 G3ZIG/P 2,710. 3.4 GHz SO, 1 G3FYX/P 53. 3.4 GHz MO, 1 G4FRE/P 760; 2 G4PZZ/P 482. 5.7 GHz MO, 1 G3JOC/P 29. 10 GHz SO, G3FYX/P 53. 10 GHz MO, 1 G4FRE/P 76; G3OXL/P 17. 24 GHz SO, 1 G3FYX/P 53. Congratulations to all participants.

"VHF Bands" deadlines for the next three months:
- February issue — January 8th
- March issue — February 5th
- April issue — March 5th

Please be sure to note these dates

The first VHF contests this year are the 70 MHz Cumultatives and there are five sessions. Jan. 26, Feb. 9 and 23 and March 9 and 23. As to the times, enquires to RSGB Headquarters drew a blank so it is assumed they will be 1000 – 1200 as last year and that it will be for single operator stations only. The 144 MHz CW event is on Feb 2 and again, it has to be assumed the time will be as last year, from 0900 – 1500 with only one class. No doubt, for those who see RadioCom, the January issue will clarify both events.

Space News

There is no news at all from any readers this month. It would be very interesting to find out just how many amateurs regularly use Oscar-10 and any Soviet transponding satellites that may still be functioning. Probably no other branch of the hobby has had such large sums invested by amateurs individually, their national societies, industry and government bodies.

Contest Notes

The results of the September 144 MHz Trophy Contest were broadcast over G2RBS on Dec. 1 and revealed that the Single-op. section was handsomely won by Geoff Brown, G4JCD, who amassed 16,230 points. G16TMM was second with 2,808 and G4AGQ came third with 2,600 points. The All-other stations section was won by the Parallel Lines Contest Group, G4LIP, with 13,097 pts. closely challenged by GW4NVO/P with 13,071, while third place went to G8LNC/P with 12,043 pts.

The results of the October UHF/SHF Contest were also broadcast and in the following summary, MO means Multioperator, SO signifies Single-op. and the 1 and 2 refer to first and second place; the rest is obvious. 432 MHz SO, 1 G3XDV 22,225 pts; 2 G64AT 11,728. 432 MHz MO, 1 G8TFI/P 93,378; 2 G4RNL/P 89,682, 1,296 MHz SO, 1 G3XDV 13,032; 2 G3JXN 5,832, 1,296 MHz MO, 1 G4NVO/P 15,999; 2 G3CRK/P 15,233.

2.3 GHz SO, 1 G3XDV 2,222; 2 G3JXN 2,001. 2.3 GHz MO, 1 G4FRE/P 5,034; 2 G3ZIG/P 2,710. 3.4 GHz SO, 1 G3FYX/P 53. 3.4 GHz MO, 1 G4FRE/P 760; 2 G4PZZ/P 482. 5.7 GHz MO, 1 G3JOC/P 29. 10 GHz SO, G3FYX/P 53. 10 GHz MO, 1 G4FRE/P 76; G3OXL/P 17. 24 GHz SO, 1 G3FYX/P 53.

Congratulations to all participants.

Awards News

Two more readers have joined the 144 MHz QTH Squares Century Club. The first is Bob Ainge, G4XEK, from Cheadle in Staffordshire (ZM01h). His 100 confirmations were for 85 tropo. QSOs, 10 via Es and five vq Ar. 85 were on SSB, 13 on CW and a couple on FM. Bob's amateur radio career began in November 1945 when he became BSWL 2120 and his previous calls were VE7ACN, K2GMO, DL4OZ, F0BLB, K2GMO/5, G5BEX, G5CIQ and G4/W5MJQ. Before he was 21 years old, he had operated in 48 of 50 states of the U.S.A. His station comprises an Icom IC-251, a 130w amplifier and four 14-ele. Parabeams, the QTH being 500ft. a.s.l. However, over an arc of 350° Bob is surrounded by higher ground between 100 yards and one-and-a-half miles away. At the time of application, he had 141 squares worked. G4XEXe's membership no. is 59 and his certificate was issued in Nov. 14 1985.

Member no. 60 is another Italian reader, Alessandro Della Casa, 14YNQ, from Modena in northern Italy (FE25e). He submitted 125 cards but one was a duplicate so his total is 124. These comprise 63 tropo. QSOs, 37 on MS and 24 via Es. 14 contacts were CW, the rest on SSB. The certificate was issued on Nov. 23, 1985. At the time of application, 176 squares had been worked and many confirmations are outstanding from G4LJE, G3WGH, SK7JD, F6DRO and SV1DH to whom he sent three QSLs.

Alessandro, was first licensed in May, 1978 at the age of 16½ years. His station consists of a Trios TS-830S with transverter, a BF981 preamp., a 4CX250B PA and a 16-ele. Tonna Yagi antenna. He is also a keen DX'er on the HF bands and has many excellent awards.

Erik Cechota, OE3CEW, from Scheiblingstein in Austria, member no. 22, has been awarded his "225" sticker on Dec. 3, his previous total being 202 confirmed. His list was for 12 SSB and 11 CW QSOs, nine each on MS and Es, and five on tropo. mode. The Es opening to Russia on May 21, 1984 provided QSLs from UA8BAC (SE), RB5QOL (SG), UA6YB (TE), UA6AEH (TF), and UA6AEC (UE).

Another reader has joined the 144 MHz VHF Century Club, Roger Betts, G1EHJ from Tamworth in Staffordshire. His certificate no. 379 was sent on Nov. 15. He became interested in the hobby in 1983, took the R.A.E. that December and passed it, operating commencing in February, 1984 on FM mode only. His present station comprises a Trios TS-770 running 8w to a 7-ele. home made ZL-special antenna. On 70cm. he uses a 19-ele. Tonna Yagi. The QTH is 400ft. a.s.l. Roger is collecting various U.K. VHF awards but is finding it difficult to get information on many of these club-type awards. However, details of Short Wave Magazine awards are easy enough to acquire; just send an s.a.e. to the Welwyn QTH. If you are nearing 100 squares confirmed on 144 or 432 MHz, in addition to the rules sheet, there is an application form. Overseas readers should send an IRC.
Perhaps some of our keen s.w.l. friends might care to listen on as many 0–10 orbits in a month as possible and jot down all the calls heard. Your scribe would not be surprised if it turned out to be very few.

The latest UosAT Bulletin to hand at the time of editing was no. 152 dated Nov. 15. Under the heading of “Manned Mission 61E,” we learn that Dr. Ron Parise, WA4SIR, an AMSAT member, will be a crew member of the ASTRO 1 space shuttle mission 61E, whose possible launch date is March 6. There is a possibility that a packet radio terminal controller (TNC) may be taken. If so, it will be a special version of Tucson Area Packet Radio (TAPR) TNC-2.

News from France

Mention was made in the Nov. 1985 HF/VHF of Pierre Redon’s plans to operate as F1ADT/P from AC and AD squares. On a QSL card, he gave some more information. Saturday mornings in July from BG74c, a site 800m. a.s.l. In July, all days except Saturdays, from BF34c, 1,150m. a.s.l. Operation from BE18d is possible in September. In the first weekend in August, from BD25d at 1,250m. a.s.l., this taking in the contest. And from the home QTH ZE40a in April, May, June and October.

On 2m., Pierre will run 400w to a 17- ele. long Yagi, on 7cm. 350w to either two or four 21- ele. long Yagis and on 23cm., 200w to four 23- ele. Tonna Yagis. During operation from the south of France in 1985, F1ADT contacted 575 U.K. stations. In the big lift of Oct. 12-14 to the north, Pierre had 152 G QSOs on 2m. and 225 on 70cm. up to ZP square.

Six Metres

By the time this appears an official announcement should have been made about the general release of the 6m. band in the U.K. One reader has been corresponding with his Member of Parliament and through him, received a letter from the D.T.I. in early December advising that negotiations with the RSGB had been completed and that an announcement would be made before Christmas. Similar matters were on the RSGB’s Database service on Dec. 6 and mentioned by the President at the Annual General Meeting the next day. The expectation is for a February announcement in the Gazette which will state precisely who can use the band and when and with what power and modes.

6m. is already available to some Norwegian amateurs and it is likely that EI stations will again have the band. The RSGB received a letter from the Portuguese national society, the R.E.P., which seemed to be trying to tell that CT amateurs would be getting a 6m. allocation, too. If this proves to be so, it would make it all the more interesting since 6s openings at 50 MHz are quite common to Iberia in the summer. Also, the Azores Islands and Madeira, CT2 and CT3 respectively, would be included.

As for actual operating, Dave Lewis, GW4HBK, (GWT) wrote, “Conditions can only be described as rock bottom. Zero report; even beacons GB3BUX and GB3CTC have been completely absent at times.” Tony Collett, G4NBS, (CBE) cannot hear anything on the band at times due to very strong data-type noises which make reception impossible.

Mike Johnson, G6AJE, (LEC) has been listening on the band since Nov. 10. At first, his converter took off like a rocket due to a faulty PL-259 antenna plug which resulted in Radio Prague being radiated on his 2m. rig. He has heard twelve of the permit holders up to Nov. 17. His equipment consists of an LMW Electronics 50/144 MHz converter into a Trio TR-9130, the antenna being a single Quad loop 20ft. a.g.l. A two element Quad is on the drawing board. Mike hears the GB3HQB beacon from Potter’s Bar and has copied GB3SIX on Anglesey via MS at S2 with bursts up to ten seconds.

Four Metres

Jerry Russell, G4SEU, (WKS) has sent a press release on the GB4MTR project for which an awards programme is planned. The following four weeks periods have been booked: Jan. 1-28, operated from G4VOZ (LEC); Jan. 29 to Feb. 25 from G4ENA (GLR); Feb. 26 to Mar. 25 from GW4HBK (GWT) and from Mar. 26 to Apr. 22 from G4ENB (BFD). This is all a voluntary effort and the idea is...
On the morning of the 28th, he worked OK1AUN/P and OK1AXH/P. Flemming is now up to Y23RD again, Y22LD (GM), OKI KFQ/P.

The next bout of DX was on the 24th at 1000 when OK1AUN/P and OK1KPU/P both in G1, OK2BWY (HK), OKIMAC/P and SP6HE1 (IL). On the 28th, SK4MPI was S9 all day but only one GM was worked.

Although the north is his best direction, only one GM was worked. Dick Phipps, G4TWD, (KNT) sums it all up, "Not a good month!" his best DX being GM square in the CW contest on Nov. 2/3. He added another ten new CW stations for the ladder making it 640 for the year.

Dave Cater, G4WHZ, (ESX) is another CW devotee with 502 different stations worked this year. He operated in the Fixed Contest on Dec. 1 and worked 34 stations including GM0BQM/P and OT6NH. June Charles, G4YIR, (ESX) reflecting the mediocre conditions in November, wrote: "I don't need a very large piece of paper to report my activities."

However, she did find another 16 stations for her CW Ladder score, making it 273 for the year up to Nov. 28.

G6AJE advises that fewer reports will be sent as he now works in London. From the home QTH in Ratby (LEC), he worked SM7MKT (GP) on Oct. 20 for a new 1985 country making it 13 so far. Keith Hewitt, G6DER, (YSS) put his 2m. beam back up on Oct. 25 to catch the last part of the lift and managed SM1NWW/1 (JQ) for a new square.

On the 27th, with the A index reaching 40 by the 28th, he worked 17 Y stations in GL, GM, HL and HM, many Ds in the E, F and G rows, a couple of OK portables and 125Ps in HL, HM, FN, IK, JM, JL and JN. For the record, Keith states that of 123 stations worked, 34 (28%) gave their Maidenhead header. Roy Gibbons, G6XSU, (HFD) has not been too active lately but wrote to update his squares totals and managed GM6LXN, who is the most northerly amateur radio station in the mainland in Brough, Caithness. Since the majority of readers will never have seen an Aurora, here is John's description of this event.

"First, at about 1815 GMT was the village of Greenland, operating mobile and letting passengers on to his bus, when the fog cleared for about a minute. The sky to the east was full of colours, green being the most predominant. Deny is a native of the north coast but he says that it was the most spectacular show he has ever seen, but the fog came down around him and that was that.

"At 2130, I checked outside for a visual and it was right overhead. Its shape and joined up with far eastern and far western sections from time to time. This was not a colour display at any time, but it lasted until 0200. It was fantastic to watch. At one stage, lines ran from north to south overhead and at the east and west ends of this, they turned to point and flow over the horizon. As one looked straight up, the roughly north/south lines had waves sweeping across them at right angles starting from the north end and sweeping over the other lines to move south, sometimes very bright, other times faint.

"At one stage, as the east and west sections joined up overhead, it looked like a flame from a Bunsen burner; the lines came from the west and then they opened up and travelled around an 'eye' section that was overhead — the hot part of the flame — to reform around the other side to go off over the eastern horizon. All the time, pulses seemed to be sweeping from this area and moving south, always larger and slow moving."

John did find time to tune himself away from this stunning display to work a few stations which were: SM1LPU (JR), SM4POB, G4XDZ (AL), G4GAWA (WP), OH3AZB (LU) and SM4CFL who was contacted on CW. All these were between S6 and S9 with similar reports received. GDPRL was also worked, but Len was only RS43A. He heard from G3GHY and L65VA and a GM. It is very interesting to learn that John worked stations when the Aurora was overhead. Unfortunately, he did not mention any beam headings or whether he had to elevate his antenna.

As to the history of this event, the A index was only hovering around 6 units till Nov. 26 as SCC — sudden storm commencement — occurred at 0451 on the 27th, with the A index reaching 40 by the 30th. This unpredicted AR was the result of a series of disintegrating filaments and the A index reached the highest value since April, 1985.

<table>
<thead>
<tr>
<th>Station</th>
<th>4m.</th>
<th>2m.</th>
<th>7mkm</th>
<th>uWave</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>G4TWD</td>
<td>640</td>
<td>640</td>
<td>640</td>
<td>640</td>
<td>640</td>
</tr>
<tr>
<td>G4GHY</td>
<td>587</td>
<td>587</td>
<td>587</td>
<td>587</td>
<td>587</td>
</tr>
<tr>
<td>G4WHZ</td>
<td>353</td>
<td>353</td>
<td>353</td>
<td>353</td>
<td>353</td>
</tr>
<tr>
<td>GU1KM</td>
<td>325</td>
<td>325</td>
<td>325</td>
<td>325</td>
<td>325</td>
</tr>
<tr>
<td>GW4TTH</td>
<td>156</td>
<td>156</td>
<td>156</td>
<td>156</td>
<td>156</td>
</tr>
<tr>
<td>GW4GJ</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>GW4GB</td>
<td>71</td>
<td>71</td>
<td>71</td>
<td>71</td>
<td>71</td>
</tr>
<tr>
<td>G4YIR</td>
<td>232</td>
<td>232</td>
<td>232</td>
<td>232</td>
<td>232</td>
</tr>
<tr>
<td>G4GTY</td>
<td>244</td>
<td>244</td>
<td>244</td>
<td>244</td>
<td>244</td>
</tr>
<tr>
<td>G4NBU</td>
<td>171</td>
<td>171</td>
<td>171</td>
<td>171</td>
<td>171</td>
</tr>
</tbody>
</table>

No. of different stations worked since Jan. 1.

The Short Wave Magazine
Seventy Centimetres

G4MJc acquired a Yaesu FT-790R in June last year. In the October lift, on the 14th, Flemming worked DB2VY (DJ) and DL0UD (DL) with just one watt. On the 24th, he contacted on CW LA6VBA (ES) at 1825. At 1945 the next day, he tried to work GM4NHl. From 2030 he struggled to work GW11LP who copied everything except the fifth character of GM4MJc’s Maidenhead locator. Just as the lift was ending, a QSY from 2m. brought QSOs with OK1KHI/P and OK1AXH/P, both in HK and on CW. He now has 18 squares and seven countries on the band.

G4NBS now has his masthead prepped, going again. Tony lists his only contacts of note on Oct. 24 as; SM6CWM (GR), PAOHVA (CM), worked DKONA (FK). On 13cm., G4BYV, (NOR) who met Carl Blom, cumulatives.

On 6cm., 13cm. and 23cm., Carl has worked PAOEZ on 3cm.

On 27th, Mike worked DC9ZP on 144.13 MHz. The following day at 1600 on 144.40 MHz, “callsigns” 01 and 02 were being bandied about in connexion with “radio checks.” One London station asked them for their callsigns only to be answered by, “Oh shut up!” During conversations, it would seem that they are operating in Arab-owned property since certain names mentioned were of Arabic origin. Also architects and builders were mentioned and squashed courts. Perhaps some mobiles in the “posher” parts of Hampstead might care to look out for any likely property. After all, there is enough QRM on 2m. from computers, telephones and the like without having to suffer from pirates as well.

Maidenhead again

During a recent QSO with your scribe, Dave Dibley, G4RGK, made a very pertinent comment concerning the rapid identification of squares in hectic conditions such as an Es opening, or when tropo. signals are very weak. On ‘phone, we use phonetics such as “Yankee Lima” for YL. Now in Maidenhead, YL is I081, and the like without having to suffer from QRM on 2m. from computers, telephones and the like without having to suffer from pirates as well.

VHF Convention

With the imminent release of the 6m. band, Ken Ellis, G5KW, has advised that Ray Cracknell, G2AHU, will be giving a lecture entitled, 50 MHz, History, Results and Expectations for the Future. This will be in Stream B starting at 1615 and will be a 90 minute session to give more time for a discussion. At a different time, Ken Willis, G8YR, will present his History of VHF talk. The Convention is on Sunday, March 16 at Sandown Park.

AMSAT—UK

Ron Broadbent, G3AAJ, has advised of the formation on Dec. 14 of the AMSAT-UK Technical Group. Its initial remit is to build objects for flight in two planned satellites. The group is actively engaged in manned and unmanned balloon transponding. A new booklet is now available, Satellites in Education Resources. It is a primer in satellite matters and costs £3.75 including postage and packing. Details and orders to:—AMSAT-UK, London E12 7EQ.

Intruders

Somewhere in north London, possibly in the Hampstead area, a security firm has been using the 2m. band illegally. They are using to be FM hand-held transceivers and have been heard on 144.13 and 144.40 MHz at least. At G3FPK on Nov. 15 at 1643, Kevin and Don were chatting on 144.13 MHz. The following day at 1600 on 144.40 MHz, “callsigns” 01 and 02 were being bandied about in connexion with “radio checks.” One London station asked them for their callsigns only to be answered by, “Oh shut up!” During conversations, it would seem that they are operating in Arab-owned property since certain names mentioned were of Arabic origin. Also architects and builders were mentioned and squashed courts. Perhaps some mobiles in the “posher” parts of Hampstead might care to look out for any likely property. After all, there is enough QRM on 2m. from computers, telephones and the like without having to suffer from pirates as well.

The Microwaves

Some items of news from John Tye, G4BYV, (NOR) who met Carl Blom, SM6HYG, on Nov. 18. In the October lift, Carl worked PA0E2 on 3cm. for a PA/SM “first” on the band, also PA0EHG and PA0CMO, all in CM square. SM6HYG also contacted DC9XO (EM) on 3cm. He is QRP on this band until he rebuilds his PSW for his TWT amplifier. On 6cm., 13cm. and 23cm., Carl has worked DK0NA (FK). On 13cm., G4BYV has worked FM, YK and ZK to bring the 1985 tally to 51 counties and 16 countries and the all-country and three new squares. He was contacted on SM6ESG (GR), PAOHVA (CM), worked DKONA (FK). On 13cm., G4BYV, (NOR) who met Carl Blom, cumulatives.

On 27th, Mike worked DC9ZP on 144.13 MHz. The following day at 1600 on 144.40 MHz, “callsigns” 01 and 02 were being bandied about in connexion with “radio checks.” One London station asked them for their callsigns only to be answered by, “Oh shut up!” During conversations, it would seem that they are operating in Arab-owned property since certain names mentioned were of Arabic origin. Also architects and builders were mentioned and squashed courts. Perhaps some mobiles in the “posher” parts of Hampstead might care to look out for any likely property. After all, there is enough QRM on 2m. from computers, telephones and the like without having to suffer from pirates as well.

Maidenhead again

During a recent QSO with your scribe, Dave Dibley, G4RGK, made a very pertinent comment concerning the rapid identification of squares in hectic conditions such as an Es opening, or when tropo. signals are very weak. On ‘phone, we use phonetics such as “Yankee Lima” for YL. Now in Maidenhead, YL is I081, the important part being the “I1,” but how do you get that over phonetically? How many English operators contacting a CT station who spoke no English at all would know how to say “eighty-one” in Portuguese?

Sign off

One of the poorest months for a long time, hence only four pages. Next month sees the final placings in the Annual Tables so please make certain that you send your claims in by the all-important deadline in the box. All correspondence should go to:—VHF Bands,” SHORT WAVE MAGAZINE, 34 High St, WELWYN, Herts., AL6 9EQ. 73 es A Happy New Year de G3FPK.
Converting the "Colt 295" 40/80-Channel AM/FM CB Set for Use on the 10-Metre Amateur Band

Part 2

ROGER ALBAN, B.Sc, C.Eng, MIEE, GW3SPA

Retuning the Set

It will now be necessary to retune L2 and T2 which form a band pass tuned circuit to provide signal injection into the receiver first mixer and also feeds the input to the transmit mixer. This is best carried out on transmit with a power meter in series with a 50-ohm dummy load connected to the aerial socket of the set.

Adjust L2 and T2 for maximum output power on channel 19. (Remember that the American channel/frequency association is not in sequential steps of 10 kHz from one channel to the next; channel 19 happens to produce a frequency in mid band.) Next adjust T3, the output tuned circuit from the transmit oscillator, for maximum output power; follow this by adjusting the tuning of T4, L6, L7 and L8 for maximum output power. It may be necessary to change some of the values of the tuning capacitors for the next lowest preferred value to obtain correct tuning. The capacitors associated with the tuned circuits of L2, T2, T3 and T4 are housed internally within the screen cans of the Toko coil formers. Care must be taken to unsolder and remove the coil formers from the printed circuit board; the capacitors can be found to reside in the underside base of the coil former. It is best to remove the screen cans from the coil former and carefully cut the leads to the internal tuning capacitors before removing the capacitor from the base of the coil former. All the tuning capacitors removed were measured and found to be 50 pF. After the tuning capacitors have been removed the screen cans can be replaced and the coil former resoldered back onto the printed circuit board. Tuning capacitors of a lower preferred value, namely 33pF were soldered onto the back of the printed circuit board which made it easy to change the values if necessary. Prior going to the effort of removing the tuning capacitors, it is worth while attempting to try and adjust the various tuned circuits by varying the tuning cores; you may be lucky and get away with it!

Receiver Tuning

After tuning the transmitter for maximum power output, approximately 4 watts, the receiver RF amplifier will require to be adjusted. Remove the 50-ohm dummy load from the aerial socket and connect a signal generator operating at 29.49 MHz, which corresponds to the receive frequency for channel 19. Reduce the output of the signal generator until the signal is just audible from the receiver speaker; adjust T6 and T7 for maximum signal. Again reduce the output of the signal generator until the signal is just audible to ensure that the receiver AGC system is not working, and again adjust T6 and T7 for maximum audio output from the receiver speaker.

If you do not have a signal generator to hand, don't worry. The set can be connected to an aerial and receiver tuning achieved by either tuning against the received signals from another amateur, or by using another converted CB set as the signal source.

Channel Change Switch

The channel change switch consists of a number of segments constructed out of double-sided printed circuit board which has been etched such that when rotated will provide the required logic code for the PLL chip by switching the Vdd supply onto the programming inputs. The channel switch by the same technique provides the correct code to drive the common anode twin seven-segment displays giving a visual indication of the channel number selected by switching via a resistor array the cathode of each individual segment to earth. The 80-channel set has been equipped with an additional switch wafer, and selecting this common switch terminal to earth will provide a visual display of either 1 to 40 or 41 to 80. The code produced from the program lines remains unchanged.

The two resistor arrays comprise each of 7 individual resistors,
and the terminals of the channel switch associated with the display are soldered to a small printed circuit board numbered PTSW076A0X and the various functions are illustrated in Fig. 6. The twin seven-segment display is attached to another small PCB numbered PTLD022AOX which is attached to the rear of the front panel and electrically connected to the two resistor arrays by flexible printed circuit strip.

Channel Switch Code

The channel switch produces code to meet the frequency requirements of the F.C.C. specification. That is, certain frequencies are missed and some frequencies are not sequential with the channel number selected, as shown in Table 1. The author has attempted, by using diode switching and using the logic code produced to drive the seven-segment displays, to produce a program code to drive the PLL chip which causes the frequency jumps to remain in step with the changes in channel number selected. After spending several hours investigating the possibilities, the author came to the conclusion that it would be very complicated to produce the correct program code using diode switching and decided to leave well alone.

Frequency Modulation (1)

The set design started off life as an American AM set designed to meet the F.C.C. specification. However, as previously described, additional sub-mounted printed circuit boards have been added to extend the operational frequency range of the set. On some models an additional PCB has been added to provide the set with the additional facility of frequency modulation. The PCB has been designed by Ham International and can be distinguished by the board number PTZZ033AOX, Fig. 7. A two-pole, two-way switch has been added to the front panel to select AM or FM. One pole of the switch connects either the AM detector or the FM demodulator to the input of the audio amplifier on receive; the other pole of the switch connects the RF power amplifier direct to the positive supply on FM, or via the audio amplifier output impedance matching transformer on AM.

Frequency Modulation (2)

On transmit, the microphone is connected to the input of the audio amplifier, Fig. 8. The output of the audio amplifier is fed to an impedance matching transformer T11, which in turn is fed to terminal 6 on the FM board, Fig. 7. The deviation is pre-set by RV501 and the audio output is fed to terminal 5; terminal 5 is connected to terminal 26 on the main set PCB. The audio is fed to the capacitance diode via an RF choke, and the resulting audio causes the frequency of the transmit 10.695 MHz crystal oscillator to deviate in sympathy with the audio applied. Amplitude modulation is prevented by connecting the supply of the RF power amplifier direct to the supply via switch S2a.

Frequency Demodulation

On receive the FM discriminator input is taken from the second IF amplifier and fed to terminal 1 on the FM board which is connected to the input of the discriminator circuit. The output of the discriminator appears on terminal 3 (Fig. 9) and is fed via switch S2b to the volume control and audio amplifier. Also on receive, terminal 4 on the FM board is at a potential of 6.2 volts which causes Q503 to conduct and grounds terminal 7 of the FM board. Terminal 7 is connected to the base of transistor Q14 which provides automatic level control required only under transmit conditions; therefore any automatic level control is inhibited under receive conditions. A sample of the audio output from the discriminator IC circuit, an AN240, is fed to the base of Q501 which in turn causes Q502 to conduct under receive conditions, preventing any audio from reaching the capacitance diode. This circuitry is not required with the present system of providing FM, because the transmit mixer crystal oscillator only oscillates during transmit.

Frequency Modulation Problems

On-the-air reports were received suggesting that the quality of the modulated signal left a great deal to be desired. Numerous tests were carried out to try and improve the situation, but to no avail. The author eventually decided to completely re-build the FM modulator. The existing system deviated the 10.695 MHz crystal oscillator. The author examined the methods of providing FM deviation in U.K. specified CB sets, decided to follow their example, and frequency deviate the VCO.

Modified Modulation Circuit

The circuit eventually used is shown in Fig. 10, and can be built if you are unlucky enough to have found a set which does not contain the FM board previously discussed and shown in Fig. 7. The transistor Q502 can be substituted by a BC107. It was decided that audio from the audio amplifier would be taken from terminal 23 because it does not contain a DC component. As it is
the intention to deviate the VCO, it is important that under receive conditions the VCO should not be deviated by preventing audio from reaching the capacitance diode. It was therefore decided to use a transistor switch Q502, which was already available on the FM board. However, it was decided that the logic signal appearing on terminal 4 of the FM board provided a more reliable method of switching, rather than relying on the audio output from the FM discriminator in the original circuit. This required a few modifications to the FM board shown in Fig. 10, and transistor Q501 can be removed completely as it is no longer required.

It was found that the new circuit provided a greater deviation for the audio provided, than the original circuit. It was found necessary to reduce the audio level by placing a 22K-ohm resistor in series with the 2K-ohm preset resistor used to adjust the deviation level. The resulting audio leaves the FM board via terminal 5, and is directly wired to the low pass filter comprising a 100K-ohm resistor and 100pF capacitor. The capacitance diode used was an ITT310, which was previously part of the transmit mixer crystal oscillator in the original circuit. The author has also tried a BA102 which was also found to work satisfactorily. The capacitance diode is coupled to the VCO tuned circuit by a 27pF capacitor; it was not found necessary to re-adjust the tuning core of L1. The new components to provide deviation were connected together on the component side of the PCB. The transmit mixer crystal oscillator was modified by removing the capacitance diode and substituting a 30pF trimmer in parallel with a 10pF capacitor.

Conclusions

The transmitter has now been tested on the air over a period of several months and the reports received indicate that the audio quality is now good. The receiver performance on FM has always been good.

During the period that the set was being modified, it was discovered that there are a large number of sets around containing the printed circuit boards described in this article, but housed in different size and shape cases, and known by different names. This seems to be a common practice amongst set manufacturers to sell the same product in a different case containing varying amounts of 'plastic chrome'? Whether this sells more sets remains to be seen.

One example encountered was the Colt 295 PCB being found in a set called a Formac 88, which was on sale at the local Welsh rally at Barry, with a price tag of £3.00. Converting these types of sets must represent one of the cheapest ways of obtaining equipment to work the amateur ten-metre band. I wish you luck with your set conversion, and look forward to hearing you on ten metres!

The first Alinco International product to be introduced by I.C.S. Electronics Ltd. following their recent appointment as exclusive U.K. distributor, is the new Alinco ALM-203E two-metre handheld transceiver which is priced at £209.00 inc. VAT. Full details of the ALM-203E are available from I.C.S. Electronics Ltd., P.O. Box 2, Arundel, West Sussex BN18 0NX (tel: 024365-590), and the firm supplies the equipment direct.
"Beyond the Call"

G8MWR

For many years this magazine ran a feature titled "The Other Man's Station" which was very popular. In these days of using commercial equipment it would be far less relevant but we feel that something more in the nature of a profile of the person 'beyond the call' would be of interest.

G8MWR, Glen Ross, is now known mainly as the man who started the Microwave Society and also as a freelance journalist but how did he get involved in amateur radio in the first place?

"I first got involved towards the end of the war, by making my own radios" he told us. Later and due to an error in coil winding he discovered the local lads on Top Band and it was not long before he was investigating twenty metres on the domestic broadcast receiver. He then got involved in modifying ex-services equipment and around this time made his first super-regenerative receiver which not only found the local police but also the two-metre band. The VHF bug had struck!

1949 came and with it National Service as a radio mechanic in the Royal Signals, the obligatory spell in Hell (Catterick Camp) was followed by service mainly in Kenya and Uganda from where many Sunday morning forty-metre contacts were made into the U.K. using 10kW from a Marconi SWB-11 with stacked, terminated, rhombics at 60 and 90 feet. "We got excellent reports!"

After demob he returned to his native Bristol and became heavily involved with the local clubs. To earn an honest crust he worked in the domestic radio repair game while continuing studies. He then joined the well known firm of Labgear at Cambridge and was involved in the design of most of their amateur radio gear. The next stop was the development labs at the G.E.C. works at Coventry which was followed by joining the development team of a very large American company specialising in state-of-the-art microwave design.

On returning to England in 1977 the present call was obtained and activity since then has been mainly on the higher VHF and microwave bands. In excess of 100 watts is generated on 144, 432 and 1296 MHz, the aerials being an eight-element Swiss Quad on Two, a 48-ele on 70cm. and 180-ele (12 times 15-ele Yagis) on 23cm., all with low noise preamps at the aerial. The power drops to one watt on 13cm. with stacked 15-ele Yagis being built. On 10 GHz there is 15 milliwatts of WBFM and 5 milliwatts of sideband to a two-foot dish, and to finish it off there is 7 milliwatts of WBFM to a twelve-inch dish on 24 GHz.

The thing he is happiest about is the setting up of the Microwave Society three years ago. The fact that there was a real need for this is shown by the fact that the current membership stands at over 700. "Not bad for a one-man band operation", he says.

His time is now filled running the Society, representing the RSGB, writing articles and running a microwave consultancy business. He is also well known as a person who travels the country giving talks to the clubs, mainly on microwave matters, but also on other subjects. "I really could not fit it all in if it were not for the help of my wife Val, G8XAF." Asked for advice to newcomers he said "Get the soldering iron out and build something for yourself."

If you would like to appear in this feature, please send relevant details and a good, sharp photo of yourself (not necessarily B/W) to the Editor, marking the envelope "BTC". Anyone and everyone is welcome to contribute.
On the way to N4TO's QTH in Georgia we had spent a few days staying with veteran QRP'er Rich Arland, K7YHA/4, and his family. Rich, well known to many QRP operators in the United Kingdom as G3CSU when he had lived in Newmarket, Cambs, during his five years service at R.A.F. Mildenhall with the United States Air Force. As the stay with Rich at Langley Air Force Base in Virginia came to an end, a study was made of the map to see how far it was to our next destination at Roswell, near Atlanta in Georgia. The mileage that had to be driven was around 650 miles and we had planned to do it in one day, leaving Rich's in the morning and arriving at Vic's in the evening.

After bidding a sad farewell to Rich and Pat, we wondered how long it would be before we saw them again. Both Rich and Pat have remained vaguely English in their ways, and promised to return to the United Kingdom as soon as possible. As N4AR once said, "We are very lucky to have amateur radio. When we make friends we can never really leave them behind, as we can always contact them on 20 metres. Remember, behind the green dials of our equipment are the faces of our friends." That was a funny statement at the time, but one which we were often reminded of during our trip through the United States.

Leaving Langley we drove across the southern part of the State of Virginia and south down Interstate 85 into North and South Carolina. The further south we drove it was very noticeable how the humidity became wetter and the temperature warmer, and we certainly appreciated the air conditioning fitted to our car. Chris, who tans quicker than one of the black-and-white minstrels putting on make-up basked in the heat, while Colin, a colder mortal who often holidays in the damper climes of Holland, vainly struggled to put the air conditioning on to full power!

Taking turns at driving we covered the distance in the allotted time and arrived at a garage on the outskirts of Roswell, which we had arranged with Vic as a rendezvous. After Chris telephoned Vic to tell him we had arrived, we stood on the forecourt of the garage waiting and trying to adjust our bodies to the 88 degrees and high humidity. At one point a stranger asked us the way to the nearest interstate highway which we were proudly able to tell him, having just come off of it. The stranger rushed back to his wife, who sat in a rather battered van, to tell her of the "two Australians who had just gotten into town and knew all the routes!" (Time and time again we were mistaken for Australians, which caused some considerable mirth to our many hosts.)

N4TO is Vic Dubois, who previously operated as N4TO/KP4, and had only recently moved to Georgia. We had both known Vic for sometime on the air, and had met him in London in 1984 at the First Class CW Operators' Club Dinner.

Vic lives in Roswell, which is a suburb of Atlanta, and is famous as having the only wooden house not burnt down by General Sherman at the end of the American Civil War. In 1865 General Sherman, at the head of the victorious Union forces, cut the Confederacy in two by a bold thrust towards the sea, burning Atlanta in the process.

Luckily Vic's new house, although of wooden construction, stands in more enlightened times, and is set in some beautiful grounds surrounded by trees. As can be seen from the photograph the antenna system was of a low order in more ways than one, and with some glee we learnt that Vic was in the process of putting up a tower and a few temporary wire dipoles. Despite protests from Vic it was decided that the newly arrived guests would help in the process of assembling and erecting the tower and putting up the wire dipoles, so enabling Vic to get back on the air from his new home.

First, though, it was decided to eat out and Vic had arranged for us all to have a meal at a restaurant known as Jilly's. His remark of "You will like this place, boys" was an understatement when we found that the meal was served by girls clad in short mini skirts!

After an evening's sight seeing trip around Atlanta, which is a beautiful city by night, we went home for a night's sleep, looking forward to the day's antenna construction ahead. Before going to bed Chris was idly playing with the 24-channel piped TV system and with a yell of delight found a 24-hours-a-day country and western station. (American TV, whilst it is sometimes of variable quality due to phase delays in the chroma system, is capable of a very large and varied output; programmes containing news, cartoons, sport, country and western, religion, are all available on a 24-hour basis.)

Following breakfast the next day we mutually decided to spend the morning sightseeing at the base of Stone Mountain, which is a granite outcrop some 15 miles from Atlanta. The base of the mountain has a Wild West railway running around it which proves to be an interesting tourist attraction.

After arriving back at N4TO's home we began work and started by investigating the antenna Vic had already put up. He had been active on both 7 and 14 MHz with a simple 7 MHz wire dipole 18...
The extent of tower erection at N4TO's new QTH when G4BUE and G3VTT arrived.

feet high, and had merely unplugged the outer braid of the coax feed and used the system as an end fed Hertz on the other bands.

We had decided to keep skeds where possible with amateurs back home, and a lucky QSO with Al, G3FXB, enabled us to determine the level of signal that was being put into the United Kingdom with the simple dipole. After the QSO a new dipole was cut for 14 MHz and hung as a sloper in the direction of Europe. Any dipole can be made to exhibit a little directivity by sloping it in the required direction. Incidentally it was thought that greater directivity could have been achieved if the dipole has been hung from a metal mast, but unfortunately until the tower was erected Vic had to rely on the trees available in his garden. A further QSO with G3FXB showed an improvement in signal strength to such an extent that he thought we had put up Vic's new Yagi. (Al had been with us at the F.O.C. Dinner at Danbury, Connecticut, earlier on our trip, and was aware that we would be helping Vic put up his tower and new antennas.) This adds some weight to the theory that a sloping dipole gives improved performance in the favoured direction.

Attention was now turned to erecting some form of 1.8 MHz antenna which would allow operation from this low band — something we wanted to experience from as many locations as possible in the United States. A dipole for 1.8 MHz is approximately 264 feet long, but Vic had purchased a pair of loading coils, not seen before in the United Kindom, manufactured by the Gotham Company. These loading coils reduce the length of the dipole to approximately 130 feet, which is a useful space saving despite the largest size of many gardens in the United States. Although Gotham no longer manufacture antennas or traps, there was found to be considerable interest in loading coils of this kind in the United States. Here in the United Kingdom loading coils would reduce the size of a 1.8 MHz half-wave antenna so that it would easily fit into our smaller gardens. By chance we found some equipment loading coils available from the Radiokit Company of Box 411, Greenville, New Hampshire 03048, U.S.A.

The loading coils available from this company are of a similar design to that supplied by Gotham and are manufactured by a firm called Barker Williamson. Anybody considering a shortened dipole for 1.8MHz would be well advised to contact Radiokit for the current price of their model LC1 loading coil. Coils of this type would prove a useful product over here and could also provide a useful experimental homebrew project for the ardent 1.8 MHz operator.

The short 1.8 MHz dipole was duly made up and put up between two trees, with a third tree providing support for the heavy 50-ohm coax feed. Chris showed his expertise at antenna construction by throwing the halyard over two high branches with the aid of a suitable weight. Colin was heard to mutter something about Chris changing his profession to that of “pitcher for the local baseball team”, and with that a car pulled up with two of our other friends from F.O.C., N4VZ Bob and K4OAH Gary.

With a larger crew the prospect of raising the tower at N4TO seemed a lot easier. After greeting each other we looked at the tower sections stored in Vic’s garage and around his property, and decided on the best method of erecting the sections. The golden rules of tower construction learnt from N4AR were remembered, and are best repeated once again:-
1. Never climb without a safety belt.
2. Never climb when you have been drinking or are tired.
3. Never climb when darkness is approaching.
4. Never climb when bad weather or a storm is approaching.
5. Always climb knowing exactly what you intend to do and with all the right tools for the job.

Remember what Bill said, the first 30 feet are the most dangerous, heights above 30 feet will kill you anyway! Never take chances. To the rules given above we would add, always climb with the correct clothing and a stout pair of shoes ("clothing" is generally a pair of shorts only as you can see in the photograph).

The lower section of the tower had already been erected by Vic and was firmly set in a block of concrete. The first of the upper ten sections was already in position, and further upper sections were to be lifted into position with the aid of a gin-pole. A gin-pole is a pole securely fastened to the top most section already in position, and is used with the aid of a halyard to pull further sections high enough in the air so they can be bolted together, see Fig. 1. During the day the tower was made up section by section, ten feet at a time, with two men manhandling the individual sections on top of the completed tower sections, and three men hauling on the halyard lifting further sections into position.

A break was made in the latter part of the afternoon so that a quick QSO could be made with G3ZWH, who was acting as contact man in the United Kingdom and who then telephoned Colin’s wife to say that all was well. Colin found it eerie to work a station only a stone’s throw from his home in Maidstone, Kent. It was a sobering thought when it was considered that RF, after leaving Vic’s low dipole antenna, flashed some 4000 miles out across the Atlantic to one’s home location, Amateur radio is indeed a wonderful hobby.

It would be of interest to mention Vic’s station. Like many operators we encountered in the United States we found him to possess a brand new TS-930, although this version had the built-in automatic antenna tuner. This rig is an all-band, general coverage

<table>
<thead>
<tr>
<th>Fig. 1 THE GIN POLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulley block</td>
</tr>
<tr>
<td>Rope to ground</td>
</tr>
<tr>
<td>helpers - hauling</td>
</tr>
<tr>
<td>Next tower section</td>
</tr>
<tr>
<td>Gin pole</td>
</tr>
<tr>
<td>Builders scaffold clamps</td>
</tr>
<tr>
<td>Completed tower sections</td>
</tr>
</tbody>
</table>

With the correct clothing and a stout pair of shoes ("clothing" is generally a pair of shorts only as you can see in the photograph).
either had, or had plans for, antenna systems which would make work efficiently, and made from the best materials available to full use of the size of their gardens, no matter how big or small, even evening with N4TO, N4VZ and K4OAH confirmed that they withstand the rigours of the environment. Our discussions that States amateurs we had stayed with. No matter what antenna amateur radio to rights!

beer. Over coffee we discussed F.O.C. CW and antennas, and eating enormous (by British standards) beef steaks and drinking the chairs onto the veranda and there spent the rest of the evening us all with the prospect of a barbecue, and as dusk fell we moved

antenna maintenance.

As the light faded we decided that enough work had been done for the day. We had completed enough of the tower for Vic to fit

the next section, which contained the luffing arrangement, to enable the top section of the tower to be swung downwards for antenna maintenance.

When completed the tower will support a TH7, a two-element Yagi for 7 MHz and a sloper system for the LF bands. Vic cheered us all with the prospect of a barbecue, and as dusk fell we moved the chairs onto the veranda and there spent the rest of the evening eating enormous (by British standards) beef steaks and drinking beer. Over coffee we discussed F.O.C. CW and antennas, and between the five of us naturally finished up by putting the world of amateur radio to rights!

Once again we realised we had learnt the same lesson as experienced during the visit to N4AR and the many other United States amateurs we had stayed with. No matter what antenna system is going to be used, it must be constructed safely, made to work efficiently, and made from the best materials available to withstand the rigours of the environment. Our discussions that evening with N4TO, N4VZ and K4OAH confirmed that they either had, or had plans for, antenna systems which would make full use of the size of their gardens, no matter how big or small, once again were reminded of the less than efficient antenna system often encountered here in the United Kingdom. Despite our lower RF output power, every use must be made of our antenna system if regular and consistent communication is to be made with stations worldwide.

As already mentioned in part 2, a design for a noise bridge, called “The Greyhound”, has been decided upon as one step along the path of antenna improvement for both of us. An antenna noise bridge, particularly one that allows measurements of the reactive components, if present on an antenna, is a very useful tool. (“The Greyhound” is to be described in a forthcoming issue of S.W.M.—Ed.)

The trip across the United States had been trailed with reluctant goodbyes. Once again we had enjoyed the company of a good friend and sadly had to say 73’s until the next QSO. We said goodbye to Al and headed in a north-westerly direction to cross the Smokey Mountains and into Tennessee to find Ten-Tec, our final stop before the homeward journey back to New York.

Before we lay about 250 miles of some of the most beautiful country of the whole trip. The journey took us right through the Smokey Mountains along with its Cherokee Indian reservation, a rainstorm so severe the car had to be stopped, and breathtaking scenery. The Smokies are so called because of the smoking effect seen to rise from the tops of the trees caused by ascending water vapour; the mountains themselves rise to over 6500 feet and the road to over 5000 feet.

We had arranged to stay with Al Kahn, K4FW, the chairman of Ten-Tec, at his home on the edge of the mountains in Gatlinburg, about 12 miles from Sevierville, where Ten-Tec is located. Before meeting Al we decided to travel into the centre of Sevierville to see the Old Court House and to meet another of our F.O.C. friends, Dick Frey, K4XU. Dick is chief engineer at Ten-Tec and, as will be mentioned later, had a lot to do with the development of the “Ommi” range of transceivers. After meeting Dick he took us on to Al’s house. Al, besides being chairman of Ten-Tec, is another F.O.C. friend and that evening, over dinner with him and his wife Anne, he outlined how and why Ten-Tec had first begun.

We discovered that Al had always been a dedicated CW operator and had retired from the Electro Voice Company in 1968. After some six months or so he became bored with retire-ment and decided to start a business of his own in Tennessee, which he would call Tennessee Technology. He had a plant built in Sevierville with no specific future planned for it, although he had a vague idea that it should produce some sort of amateur radio equipment. A discussion with Jack Birchfield, K4IU, then followed, and they both decided that a new lease of life was needed in amateur radio and as a result Ten-Tec was born. They felt that “Tennessee Technology” was too much of a mouthful, and hence abbreviated it to “Ten-Tec”.

Jack, who is now the president of Ten-Tec, suggested that QRP modules may be one way of interesting the newly licensed novices to the hobby, and at the same time provide a cheap way of getting them started. Jack had come to Ten-Tec to join Al on the new adventure, and it can be stated quite categorically that for QRP in amateur radio, this partnership was the start of the cornerstone of all low power transmitters, the famous ‘Argonaut’.

Another amateur, Dan Tomski, K4OU, who used to work with Al at the Electro Voice Company, also moved to Tennessee to join him; Dan is now vice-president of Ten-Tec.

The new plant started making PCB modules, and many of the older QRP-ers will no doubt remember the range of modules produced. The TX1 transmitter board, which gave two watts RF output on either 80 or 15 metres crystal controlled, and the MX1 companion direct conversion receiver board. The AAI audio board, and the VO1 VFO module board, which gave the extra flexibility operation needed in QRP, completed the range.

The boards proved to be a considerable success, but the strange thing was that they were not being bought so much by the newcomers to amateur radio, but by the old timers. Many of them...
telephoned Al to say that they had not switched on the QRO rig for weeks and were having more fun with low power QSOs using transmitters and transceivers utilising the modules produced by Ten-Tec. This was useful news and feedback for the Ten-Tec group. It showed a healthy interest in QRP, an interest that has helped fuel the world-wide enthusiasm existing today. Soon radio amateur operators all over the world were clamouring for a transceiver using these modules.

This resulted in the PM2 and PM3 range of CW transceivers being produced. These transceivers were of simple direct-conversion techniques which, although well known, caused quite a stir when they were introduced. They were available for operation on the 80 and 40 metre bands, or on the 40 and 20 metre bands, with an RF output power of two watts. A conversion board was available giving 15 metre operation, and the range also included an antenna tuner and simple power supply.

Looking at the specification for the PM2, it can be seen that this simple direct-conversion transceiver offered so much. For example, apart from the two watts RF output, the VFO drift was less than 100 Hz on either band, the receiver had better than 1 microvolt sensitivity, and the selectivity was in the order of 2 kHz, so allowing reception of SSB signals. Some versions had a built-in sidetone circuit, and the overall current consumption was 20mA on receive and 250mA on transmit, so allowing the use of lantern cells or a small accumulator when out portable.

Colin remembers working with a PM2 on holiday in Cornwall some twelve years ago. He used a piece of wire and a selection of cells to give twelve volts — and a large number of QSOs. The PM range was responsible for many of the present QRP operators first becoming interested in QRP. Ten-Tec have, of course, long since stopped making the PM range, but they are still to be seen at rallies, and appear in various radio magazines associated with QRP. They are without a doubt, a very good buy and can be recommended.

Many operators, after buying the PM range, wanted a more elaborate transceiver. Requests came into Ten-Tec for both SSB operation on transmit, more bands, and better selectivity. It should be remembered that the simple direct-conversion receiver approach will not give single signal reception, and there is no sideband filtering possible. The direct-conversion receivers QRM level is then 3dB worse than a simple superhet approach.

The next step, of course, was the famous Argonaut range, which was largely designed by Jack Birchfield, K4JU. The original Argonaut was the 505 series, which gave SSB and CW operation on 80 through 10 metres. VFO calibration was to within 1 kHz, but its greatest feature, at least to a CW operator, was that of full break-in, commonly known as QSK.

Full break-in refers to the action of keying the antenna relay during the sending of individual characters so that one can listen on the transmitted frequency while sending. This feature allows the operator to monitor the frequency being used and time is not wasted in sending whilst the other station is calling you, to give one example. It also allows for interference to be heard when it occurs on your operating frequency and for your own operating speed and timing to be operated accordingly. These features are of the highest priority to a CW operator, particularly when operating with low power, and have helped to make the Argonaut range a very big success.

Although the Argonaut 505 was a success, it was decided to modify it to take advantage of some circuit improvements, particularly in the area of the keying relay in the QSK break-in circuit. A reed relay had been used with great success, but PIN diodes had become available at reasonable prices, and the Ten-Tec designers decided to try them in the next Argonaut, the 509.

The 509 also had the feature of an accessory socket, which allowed a CW filter to be plugged in, so giving improved selectivity. This filter utilised a multi-section active audio filter circuit and greatly improved the Argonaut's reception of weaker signals on crowded bands, particularly the weak signals found with QRP operation. Power for this filter was also taken from the rear socket, from the 12V supply rail. The final evolution of the Argonaut has been the 515, which is similar to the 509 but with a cabinet facelift and a change of VFO operation.

Previously, both the Argonaut 505 and 509 versions had used a VFO with a doubler/quadrupler circuit to give full 80 to 10-metre operation. Unfortunately this system, although being a workable one, gave a rather rapid tuning rate on 10 metres, and a level of VFO stability that Ten-Tec thought they could improve upon. The new 515 had a mixer VFO system, similar to that used on the Triton transceiver, which gave a tuning rate that was the same on all bands and far improved stability.

Despite these features, as often happens these days in modern electronics, a design becomes progressively more difficult to manufacture, and Ten-Tec recently decided to halt the production of the Argonaut. It seems that certain components and construction techniques were proving too expensive to
has passed with flying colours. A further operator's appraisal
yet another famous transceiver, the Corsair.
range, too, has now ceased production - only to be replaced by
K4XU. As Dick Frey said to us, "The Omni range is really a CW
of which have shown excellent CW performance, a testimony to
been available in many versions, notably the B and C models, all
the next range of transceivers, the `Omni' range. The Omni has
position of Chief Engineer, and had a major role in the design of
from this beginning with the company he now occupies the
words about the factory, its production techniques, and the
design and service facilities. The factory itself is a relatively
modern building built on the outskirts of Seviereville in the late
1960s. The staff of 120 produce not only amateur radio
appearance in Short Wave Magazine. Naturally it has full power, 200 watts, and full break-in QSK on all
bands from 1.8 MHz to 28 MHz, including the W.A.R.C. bands.
Many modern amateur transceivers have a synthesiser local oscillator with the attendant noise problems, but Ten-Tec has
paid particular attention to local oscillator noise and has produced a transceiver with the best noise performance and best
dynamic range possible. During our trip we heard of the latest
addition to the range, that of the Corsair II. A few details of this
new transceiver may be of interest here.
The Corsair II, apart from the all-band operation of the
Corsair, now has a 16-pole ladder filter fitted as standard giving
over 100dB of skirt selectivity; weak signals adjacent to those of
high intensity are easily read. A front panel control switches in
further narrow bank IF filters, and a variable active audio filter
gives selectivity to 150 Hz. There is a virtual absence of phase
noise, and the low noise floor allows those weak signals that are
often masked on transceivers using noisy PLL oscillators to be
copied. In addition to this improved receiver performance, the
Corsair II has a built-in keyer with a memory bank for up to 40
caracters, a unique bandwidth pass band tuning system, dual
mode noise blanker and both wide and narrow offset tuning. The
Corsair II also has an optional second VFO, which is designed to
allow the operator to listen on both the frequency on which he is
transmitting and on a second frequency, so providing reception of
signals on two different frequencies at the same time. Particular
attention has been paid to operating efficiency, and the controls
have been very carefully placed to allow effortless operating
without a great deal of adjustment.
An article about Ten-Tec would not be complete without a few
words about the factory, its production techniques, and the
etc. As the Ten-Tec company built on its experience from year to
year it was able to offer newer and more exciting concepts to
amateur radio. Building on the concept of the Argonaut, came the
Triton range, sometimes called the model 540, or 544 in its digital
form. This transceiver was in effect an Argonaut with the much
higher power input of 200 watts, improved stability and receiver
performance, and the same QSK circuit, all derived from a 12 volt
supply.
Although now out of production, Colin purchased one of these
transceivers in the United States, and is as enthusiastic about it as
the original Argonaut. It must be remembered that full break-in at
an RF output power of 100 watts is no mean technical
achievement; this is certainly true of seven years ago, when the
circuit was first introduced. Indeed, Far East manufacturers have
only offered full break-in to the amateur radio market as a
standard feature comparatively recently, and sometimes not
particularly successfully. Without a doubt Ten-Tec has been
market technology leaders. From the Triton, Ten-Tec went on to
manufacture the Century 21, a transceiver manufactured mainly
for the novice running 50 watts of CW only. Recently this has
been upgraded to the Century 22, of which a review will soon
appear in Short Wave Magazine.
Enter now Dick Frey, K4XU, to the story. Dick had been
employed by the United States Air Force, and for many years had
been licensed as W1FCC. He had purchased a Triton, and after
trying it out, decided he could make some improvements to it.
performance. Apparently, Dick had completely rebuilt the RF
front end of his Triton, i.e. RF stage and mixer, and had
mentioned this to other amateur operators during QSOs. Al Kahn
got to hear about this, and decided that any man who bought a
brand new Triton and then rebuilt the front end had to be
someone special. Al told his staff, "Find him, and if he knows
what he is talking about, employ him".
Obviously Dick did know what he was talking about, because
from this beginning with the company he now occupies the
position of Chief Engineer, and had a major role in the design of
the next range of transceivers, the 'Omni' range. The Omni has
been available in many versions, notably the B and C models, all
of which have shown excellent CW performance, a testimony to
the two F.O.C. operators associated with Ten-Tec, K4FW and
K4XU. As Dick Frey said to us, "The Omni range is really a CW
transceiver. We threw in SSB as an afterthought." Alas the Omni
range, too, has now ceased production - only to be replaced by
yet another famous transceiver, the Corsair.
The Corsair has been the subject of a very selective review and
has passed with flying coloures. A further operator's appraisal
continue with. The howls of anguish at this statement from Ten-
Tec were heard all the way from Rochdale to Chelmsley Wood,
and from Upper Beeding to Seviereville, but business and
production cost rises have had to come before QRP operators'
preferences.
As the Ten-Tec company built on its experience from year to
year it was able to offer newer and more exciting concepts to
amateur radio. Building on the concept of the Argonaut, came the
Triton range, sometimes called the model 540, or 544 in its digital
form. This transceiver was in effect an Argonaut with the much
higher power input of 200 watts, improved stability and receiver
performance, and the same QSK circuit, all derived from a 12 volt
supply.
Although now out of production, Colin purchased one of these
transceivers in the United States, and is as enthusiastic about it as
the original Argonaut. It must be remembered that full break-in at
an RF output power of 100 watts is no mean technical
achievement; this is certainly true of seven years ago, when the
circuit was first introduced. Indeed, Far East manufacturers have
only offered full break-in to the amateur radio market as a
standard feature comparatively recently, and sometimes not
particularly successfully. Without a doubt Ten-Tec has been
market technology leaders. From the Triton, Ten-Tec went on to
manufacture the Century 21, a transceiver manufactured mainly
for the novice running 50 watts of CW only. Recently this has
been upgraded to the Century 22, of which a review will soon
appear in Short Wave Magazine.
Enter now Dick Frey, K4XU, to the story. Dick had been
employed by the United States Air Force, and for many years had
been licensed as W1FCC. He had purchased a Triton, and after
trying it out, decided he could make some improvements to it.
performance. Apparently, Dick had completely rebuilt the RF
front end of his Triton, i.e. RF stage and mixer, and had
mentioned this to other amateur operators during QSOs. Al Kahn
got to hear about this, and decided that any man who bought a
brand new Triton and then rebuilt the front end had to be
someone special. Al told his staff, "Find him, and if he knows
what he is talking about, employ him".
Obviously Dick did know what he was talking about, because
from this beginning with the company he now occupies the
position of Chief Engineer, and had a major role in the design of
the next range of transceivers, the 'Omni' range. The Omni has
been available in many versions, notably the B and C models, all
of which have shown excellent CW performance, a testimony to
the two F.O.C. operators associated with Ten-Tec, K4FW and
K4XU. As Dick Frey said to us, "The Omni range is really a CW
transceiver. We threw in SSB as an afterthought." Alas the Omni
range, too, has now ceased production - only to be replaced by
yet another famous transceiver, the Corsair.
The Corsair has been the subject of a very selective review and
has passed with flying colours. A further operator's appraisal
appeared in the Sept. 1985 issue of Short Wave Magazine. Naturally it has full power, 200 watts, and full break-in QSK on all
bands from 1.8 MHz to 28 MHz, including the W.A.R.C. bands.
Many modern amateur transceivers have a synthesiser local oscillator with the attendant noise problems, but Ten-Tec has
paid particular attention to local oscillator noise and has produced a transceiver with the best noise performance and best
dynamic range possible. During our trip we heard of the latest
addition to the range, that of the Corsair II. A few details of this
new transceiver may be of interest here.
The Corsair II, apart from the all-band operation of the
Corsair, now has a 16-pole ladder filter fitted as standard giving
over 100dB of skirt selectivity; weak signals adjacent to those of
high intensity are easily read. A front panel control switches in
further narrow bank IF filters, and a variable active audio filter
gives selectivity to 150 Hz. There is a virtual absence of phase
noise, and the low noise floor allows those weak signals that are
often masked on transceivers using noisy PLL oscillators to be
copied. In addition to this improved receiver performance, the
Corsair II has a built-in keyer with a memory bank for up to 40
caracters, a unique bandwidth pass band tuning system, dual
mode noise blanker and both wide and narrow offset tuning. The
Corsair II also has an optional second VFO, which is designed to
allow the operator to listen on both the frequency on which he is
transmitting and on a second frequency, so providing reception of
signals on two different frequencies at the same time. Particular
attention has been paid to operating efficiency, and the controls
have been very carefully placed to allow effortless operating
without a great deal of adjustment.
An article about Ten-Tec would not be complete without a few
words about the factory, its production techniques, and the
design and service facilities. The factory itself is a relatively
modern building built on the outskirts of Seviereville in the late
1960s. The staff of 120 produce not only amateur radio
equipment, but transceivers for government agencies throughout
the world. Further areas of the factory produce machine dies for
other industries and machine tools, whilst another part produces
enclosures or cabinets in a knock-down form for other manu-
facturers, such as MFJ of filter fame.
Production techniques use a large flow line, involving the use of
local female labour, which is usually set up to produce a particular
"run" of printed circuit board over a day's period. For example,
during our visit the production run for that day was for local
oscillator boards for a hand-held transceiver being produced on
behalf of a United States Government agency for operation on the
air band.
Each girl operator on the line inserts a few components and
passes the PCB along the line to the next operator, where a similar
operation is carried out with the next batch of components.
The girls are quite happy to work in this way, and with the relatively
small production levels of this company such a labour intensified
method of production certainly works. Robots, although more

efficient, would be more expensive, and would not justify the initial outlay. Ten-Tec can produce equipment competitively by using these production techniques. (Incidentally, we had heard rumours that Dolly Parton’s sister had once been employed on the production line at Ten-Tec, and these rumours were found to be true; it seems that the Parton family were “very big” in these parts!)

Final soldering, using flow bath techniques, and final testing are carried out at the end of the main production line. Two other lines are utilised to assemble the PCBs into their respective cabinets, and to undertake final test procedures. It was very interesting to note the way the Ten-Tec engineers had employed their ingenuity to manufacture test equipment “in house”, making the most use of Ten-Tec cabinets and circuitry. As many production engineers will know, test equipment purchased externally to the manufacturing concern can prove very expensive; by using components and circuitry available from stock, test costs can be kept to a minimum.

There is one area of Ten-Tec that does need a special word. We have found, as many others have found, that Ten-Tec also means good service. From the company’s conception, Al Kahn had said that the after-sales service had to be second to none. The American market, as indeed the world market, is flooded with transceivers from Japan, and to combat this commercial threat, it was considered that good service was the best means of securing future orders. Certainly in the United States the back-up service is both rapid by telephone and letter.

Two men must be singled out for the service they provide to amateur radio from the Ten-Tec company. One is Joe Redwine, N4AVF, who we have both dealt with before. Joe is now in the capacity of sales manager, but he ensures that sales are bolstered by continuing good service. Larry Worth, is the service manager, and with a handful of service engineers, keeps the Service Department running.

Colin, who is employed on the service side of radio and television manufacturing, was fascinated to find engineers talking with ease about difficult faults found on transceivers, fault finding tips, and modifications in much the same way as Colin and his colleagues discuss colour televisions and video recorders in the United Kingdom. Quite a few tips were given about modifying the Argonaut and Triton range of transceivers. As can be seen from the photograph the range of test equipment is both expensive and extensive, and reflected Ten-Tec’s efforts to keep up to date with service technology.

The final part of our tour was a trip to the development laboratory, where we saw four development engineers working on new products.

The most exciting of these was a completely new transceiver that Dick Frey was working on himself. This transceiver is intended to compete with the FT-1 and TS-930 and 940 receivers.

After saying goodbye to the gang at Ten-Tec, we had to make our way by car back to John F. Kennedy Airport in New York, an exhausting trip over 600 miles, with temperatures in the low nineties.

And then it was over, and we were left with the flight back to the United Kingdom to reflect on all that had happened during the previous three weeks. The existing friendships that had been strengthened, and the many new ones that had been made, will hopefully continue for years, as a result of visits to each other’s countries and regular CW contact on either 25 or 60 kHz up from the bottom band edges, (the F.O.C. and QRP frequencies).

Back in England, when we sit down at our rigs, we remember the words of Bill, N4AR, and picture the faces of our friends behind the green dial of our transceivers, as their RF is reflected off the ionosphere on its way from their QTH to ours across the Atlantic Ocean. Yes — what a truly great hobby amateur radio is.

Ten-Tec products are available in Britain through KW Ten-Tec Ltd., Vanguard Works, Jenkins Dale, Chatham, Kent ME4 5RT (0634 – 815173).

SHORT WAVE LISTENER FEATURE

By Justin Cooper

THIS time around we seem to have a somewhat smaller pile of mail than usual; but, as always, there are the interesting points raised in your letters. First, though, one of J. C.’s own questions — why is it that certain months always yield a heavy amount? It’s been like that for the past two decades or more.

However, at this time of the sunspot cycle, there are lots of things to command our attention. When we think about our stations we should try to be system-minded — in other words to think carefully whether a change would improve one particular aspect of the set-up at the expense of another, and if so, is there a benefit overall? If there isn’t, then can we alter things (or our own minds) to improve the system before the negative aspects of the problem. As an example, let’s consider a decision to go at the HPX Ladder. We have a nice neutralise the negative aspects of the problem. As an example, benefit overall? If there isn’t, then can we alter things (or our own aspect of the set-up at the expense of another, and if so, is there a think carefully whether a change would improve one particular

stations we should try to be system-minded — in other words to make the most use of Ten-Tec cabinets and circuitry. As many production engineers will know, test equipment purchased externally to the manufacturing concern can prove very expensive; by using components and circuitry available from stock, test costs can be kept to a minimum.

The American market, as indeed the world market, is flooded with transceivers from Japan, and to combat this commercial threat, it was considered that good service was the best means of securing future orders. Certainly in the United States the back-up service is both rapid by telephone and letter.

Two men must be singled out for the service they provide to amateur radio from the Ten-Tec company. One is Joe Redwine, N4AVF, who we have both dealt with before. Joe is now in the capacity of sales manager, but he ensures that sales are bolstered by continuing good service. Larry Worth, is the service manager, and with a handful of service engineers, keeps the Service Department running.

Colin, who is employed on the service side of radio and television manufacturing, was fascinated to find engineers talking with ease about difficult faults found on transceivers, fault finding tips, and modifications in much the same way as Colin and his colleagues discuss colour televisions and video recorders in the United Kingdom. Quite a few tips were given about modifying the Argonaut and Triton range of transceivers. As can be seen from the photograph the range of test equipment is both expensive and extensive, and reflected Ten-Tec’s efforts to keep up to date with service technology.

The final part of our tour was a trip to the development laboratory, where we saw four development engineers working on new products.

The most exciting of these was a completely new transceiver that Dick Frey was working on himself. This transceiver is intended to compete with the FT-1 and TS-930 and 940 receivers.

After saying goodbye to the gang at Ten-Tec, we had to make our way by car back to John F. Kennedy Airport in New York, an exhausting trip over 600 miles, with temperatures in the low nineties.

And then it was over, and we were left with the flight back to the United Kingdom to reflect on all that had happened during the previous three weeks. The existing friendships that had been strengthened, and the many new ones that had been made, will hopefully continue for years, as a result of visits to each other’s countries and regular CW contact on either 25 or 60 kHz up from the bottom band edges, (the F.O.C. and QRP frequencies).

Back in England, when we sit down at our rigs, we remember the words of Bill, N4AR, and picture the faces of our friends behind the green dial of our transceivers, as their RF is reflected off the ionosphere on its way from their QTH to ours across the Atlantic Ocean. Yes — what a truly great hobby amateur radio is.

Ten-Tec products are available in Britain through KW Ten-Tec Ltd., Vanguard Works, Jenkins Dale, Chatham, Kent ME4 5RT (0634 – 815173).
situation. It was moved away and turned off when the main shack heater was turned on. The extra on the electricity bill was low enough to be lived with.

Another of the station problems could concern the business of prefix logging. Should we have a card-index, or a spreadsheet type of record, or should we go to a computer? If the latter, can we generate — or buy, but heaven forbid that! — a program which will do what we want. Can the receiver live with the noise of the digital circuitry in the computer? Can we input calls heard while operating? What about logging? Again, there are ways out and round all of these. My own case might indicate one way. The computer noise was unacceptable, and an inspection showed it might be more of a pain to cure the noise by screening than it was worth. The solution is simple: keep the existing log, and at the end of each operating session (or the beginning of the next) enter into the program all the calls gleaned during the session. A simple addition sum gives a running score on the log page, and the computer never runs while the receiver is being used seriously. The problem has gone away of itself!

The Mail

First on the pile is W. J. Prior (Lochcarron) who, it will be recalled is located in a rather difficult spot (July “SWL” refers) for which we suggested the idea of a VK2ABQ beam. Bill did indeed build one, and finds it works very well, so much so that he is now getting to hear stations to east and west of him which in the past were just not audible. It would be interesting to know just how Bill made the beam rotate — we would guess that as it was an experimental exercise, the rotation is done either by turning the whole mast, or, more simply, the beam is left free to rotate and pointed by a couple of bits of string dangling from the elements! But, if the improvement is maintained, there will doubtless be some more engineering work done on the aerial. The point here is that Bill has managed to get a good beam built for no more than a few bits of raw material and a few hours of constructional work.

There is a moral somewhere!

Mrs. R. Smith (Nuneaton) has her usual good list of HPX offerings, and predicts that the Christmas chores will result in a Nil return for next time around . . . Another moral — give up Christmas turkey, plum pud and mince pies 'cos you know it's labour saving! (Typical Justin! — Ed.)

Next comes a letter from M. Ribton (Gillingham) who notes that he still has the card-index from his late 1970s operations, when he had worked up to a score of around 1500; he also has the QSLs, including such as 9N1MM, 6O1FG and JY1; they were being collected for a shot on the IOTA Award.

Perhaps this is a good a moment to give a mention to IOTA (Islands on the Air) which originally was a brainchild of that same Geoff Watts who does the Prefix List, and who also ran the DX News Sheet. (DXNS was taken over some time back by RSGB and is currently edited by G4DYO) IOTA remained in Geoff's hands also until quite recently, but is now being handled by G3KMA.

The idea is that you get the special Directory, and then try to hear all the islands listed; new ones are entered into the Directory as and when activity from them occurs or becomes possible.

Next I. Thomson (Rye) who comments that, since he got his G1OZR call he has been practising Morse and doing a bit of construction. Ian has various old magazine articles stowed away and bits put to one side to build them, but notes the difficulties of laying hands on such parts as are needed. One answer to this is to go to the rallies and look at the component stalls. Then there is of course Birkett of Lincoln, who advertises in our pages, plus Maplin, Bi-Pak and other such firms. It is perhaps worth while to get hold of a current catalogue from one of the broad-line firms. It is perhaps worth while to get hold of a current catalogue from one of the broad-line firms. It is perhaps worth while to get hold of a current catalogue from one of the broad-line firms. It is perhaps worth while to get hold of a current catalogue from one of the broad-line firms.

Now we come to a rather heart-rending letter from D. Pye (London W2) who says he is suffering from terminal mind damage through RAE study . . . but at least Don will be a self-confessed challenge to the class tutor! It sounds as though it is the maths involved in the course that are the problem, but there are two things to be remembered here. Once you have been shown the correct way, then there are usually short ways to be put in store in the mind. Secondly, and this is important, is the fact that there is plenty of opportunity to pass the RAE even if you get every calculation wrong; this is simply because the mathematical questions are so few and the pass-mark required is below 100%. The thing to do is to have the formulae themselves learnt, so you can recognise them on sight. Anyway, he'd better pass — J. C. has

ANNUAL HPX LADDER

Starting date, January 1, 1985

SWL

D. Pye (London W2) 430
T. Ross (Edinburgh) 232
L. Marquardt (Hereford) 331
W. J. Prior (Lochcarron) 213
M. Probert (Basingstoke) 288

Minimum of 200 Prefixes to have been heard for an entry to be made, since January 1, 1985. At score 500, transfer to the All-Time ladder is automatic. Entries to be in accordance with HPX Rules, see p. 302, September issue.
<table>
<thead>
<tr>
<th>Prefixes</th>
<th>SWL</th>
<th>PHONE ONLY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B. Hughes (Harvington)</td>
<td>3068</td>
</tr>
<tr>
<td></td>
<td>E. M. Gauci (Sliema, Malta)</td>
<td>2712</td>
</tr>
<tr>
<td></td>
<td>Mrs. R. Smith (Nuneaton)</td>
<td>2523</td>
</tr>
<tr>
<td></td>
<td>E. W. Robinson (Felixstowe)</td>
<td>2443</td>
</tr>
<tr>
<td></td>
<td>H. M. Graham (Chesham)</td>
<td>1838</td>
</tr>
<tr>
<td></td>
<td>M. Rogers (Harwood)</td>
<td>1596</td>
</tr>
<tr>
<td></td>
<td>S. Baker (Cwmbran)</td>
<td>1527</td>
</tr>
<tr>
<td></td>
<td>P. Oliver (Paisley)</td>
<td>1500</td>
</tr>
<tr>
<td></td>
<td>N. E. Jennings (Rye)</td>
<td>1406</td>
</tr>
<tr>
<td></td>
<td>N. Henbry (Northiam)</td>
<td>1387</td>
</tr>
<tr>
<td></td>
<td>N. Askew (Coweney)</td>
<td>1367</td>
</tr>
<tr>
<td></td>
<td>M. Fox (Northampton)</td>
<td>1305</td>
</tr>
<tr>
<td></td>
<td>G. Shipston (Rye)</td>
<td>1091</td>
</tr>
<tr>
<td></td>
<td>G. A. Carmichael (Lincoln)</td>
<td>1077</td>
</tr>
<tr>
<td></td>
<td>M. Ribton (Gillingham)</td>
<td>1050</td>
</tr>
<tr>
<td></td>
<td>J. Routledge (Hartlepool)</td>
<td>988</td>
</tr>
<tr>
<td></td>
<td>M. Hudson (Folkestone)</td>
<td>889</td>
</tr>
<tr>
<td></td>
<td>P. Lincoln (Aldershot)</td>
<td>887</td>
</tr>
<tr>
<td></td>
<td>M. Patchett (Sheffield)</td>
<td>847</td>
</tr>
<tr>
<td></td>
<td>J. Heath (St. Ives, Cambs.)</td>
<td>788</td>
</tr>
<tr>
<td></td>
<td>R. Wooden (Staines)</td>
<td>761</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prefixes</th>
<th>PHONE ONLY</th>
<th>PHONE ONLY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>J. J. Sales (Lancaster)</td>
<td>676</td>
</tr>
<tr>
<td></td>
<td>G. Casejon (Orpington)</td>
<td>672</td>
</tr>
<tr>
<td></td>
<td>N. Fox (Wakefield)</td>
<td>564</td>
</tr>
<tr>
<td></td>
<td>S. Wilson (St. Andrews, Fife)</td>
<td>529</td>
</tr>
<tr>
<td></td>
<td>C. Burrells (Stevenage)</td>
<td>506</td>
</tr>
<tr>
<td></td>
<td>J. Singleton (Withersea)</td>
<td>506</td>
</tr>
<tr>
<td></td>
<td>Mrs. T. Carmichael (Lincoln)</td>
<td>502</td>
</tr>
<tr>
<td></td>
<td>A. Vest (Durham)</td>
<td>501</td>
</tr>
<tr>
<td></td>
<td>J. Goodrick (L.O.W.)</td>
<td>1763</td>
</tr>
<tr>
<td></td>
<td>F. Dunn (Chester)</td>
<td>1755</td>
</tr>
<tr>
<td></td>
<td>A. Vest (Durham)</td>
<td>598</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prefixes</th>
<th>RTTY ONLY</th>
<th>CW ONLY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M. E. Jennings (Rye)</td>
<td>668</td>
</tr>
<tr>
<td></td>
<td>P. Lincoln (Aldershot)</td>
<td>510</td>
</tr>
<tr>
<td></td>
<td>J. Routledge (Hartlepool)</td>
<td>342</td>
</tr>
<tr>
<td></td>
<td>W. J. Priory (Lochcarron)</td>
<td>327</td>
</tr>
<tr>
<td></td>
<td>N. Henbry (Northiam)</td>
<td>293</td>
</tr>
<tr>
<td></td>
<td>R. Fox (Northampton)</td>
<td>233</td>
</tr>
</tbody>
</table>

Minimum score for an entry is 500 for Phone, 200 for CW or RTTY.

Bet money on it with another staff member! On a different tack, Don tried to J.O.T.A. weekend, and had it demonstrated to him that not much can be done while one is out shopping with the XYL!

B. F. Hughes (Worcester) went to the Leicester show the weekend before he wrote, and found it about average — and of course nice for meeting old friends. Bernard has, like most of us, a chronic shortage of the folding green stuff and as he says, for some it can become horribly hard on the pocket if you let it. Agreed, and if you get carried away it can also be very difficult to get it all home! Finally, Bernard has a query — a perfectly genuine A1SP/TF, who must count as TF5 by the Rules.

For P. Oliver (Paisley) there is no excuse for not entering the local RAE course — the family has bought him all the required texts for Christmas. And of course, up there on the West Scotland Gladder the first fall of snow came in the earlier part of November, which will keep Pete safely at home until spring to do the studying. J. Routledge (Hartlepool) broke silence this time to add a note that he has been rather more active of late, the reason being the nearer approach of that magic 1000 score. Odd, isn’t it, that a number should excite such feeling, but it does, and has for as long as your scribe has been writing the piece. Similarly with a country score — first landmark is the easy 100 countries confirmed, then 200 (which doesn’t seem to matter to most people) and then 300 confirmed which seems to be a universal landmark; after that there is only the Honour Roll and the prospect of a ‘full house’ — only possible for most of us in terms of current countries, although there are some OTHs now in their sixties and seventies who can show an all-time full house.

Turning to the letter from H. M. Graham (Chesham) we find Maurice has quite a long collection of HPX to add to his total, even though he finds nowadays that he has to spend more time than he would like on such chores as gardening and housework now being his hobby. Nonetheless, it is interesting to notice that the Graham scoring rate has increased markedly since he passed the 1000 mark.

E. M. Gauci (Sliema, Malta) claimed eleven of the Jamboree stations using the /J prefix, all of which we have deleted for the moment. However, Eddie may look at them and find that some are new prefixes in their own right anyway, in which case, he will no doubt re-claim them next time round. Eddie reckons his list is a bit short anyway, as he has been somewhat occupied with other matters and so hasn’t been able to spare as much time as he would have liked on the bands.

The comments of N. Henbry last time around about the better performance of some of the older receivers, and in particular the FR-DX400 and KW-77, is echoed this time by E. W. Robinson (Felixstowe) who reckons his EA-12 has the beating of the modern Japanese boxes. SWL Robinson — he never signs with his first name! — takes care to maintain his own EA-12 right ‘up to snuff’ and says he has carried out careful change-over tests using his aerial switch against some first-class Jap receivers, and found the EA-12 wins by a mile. True enough, and to a large degree this is simply because of the modern demand for frequency synthesis — and the noise thereby generated and injected into the receiver front-end. We agree that it is nice to have a synthesiser and digital readout to look at, but usually it covers up some weak signals. Also, it has to be said that only in the last couple of years or so have designers paid attention to the need for dynamic range; this is an area where for years the solid-state receivers were sadly deficient when compared with the last of the valved jobs. That position is changing fast, though, and the best of the latest crop are well ahead in dynamic range, and of course this immediately shows up on Eighty and Forty, on which bands a good dynamic range and a front-end attenuator have made life much easier.

Still on this tack, we were amused to read G4HCL’s bit about QRP in a recent issue of the Cambridgeshire Repeater Group newsletter. Chris seemed to think that to use a simple receiver of home-brew provenance implied automatically that it would be ‘deaf’ and in addition lacking in the ability to winkle them out. He obviously has never built a receiver to a G3RJV design! As for the question of power on the bands, it is true that if we could obtain a world-wide restriction to a maximum of ten watts of output, and could enforce it, many of our problems on the bands would be eased. If as well we could reduce the power of the short-wave broadcasts and other users, we would make a further vast improvement all round. The plain truth of the matter is that the ability to generate (and finance) high power BC stations has far outrun the ability of receiver designers to build receivers that can cope with nearby high power signals while listening to the weak ones in between. A reversion to the principle of direct-conversion, and the consequent lower input to mixer stages would probably be the next step forward in serious receiver design, if the truth be known. But, of course, G4HCL often writes with tongue in cheek, if only to provoke his readers into thinking!

M. Rodgers (Harwood) is very lucky to have his entry for the ladder taken in — it had to be pieced back together after the family dog took a bite at it! The hound does love to sit under the letter-box, and we leave the rest to the imagination!

Our next letter comes in from B. Patchett (Sheffield) who operates as G4VBP, almost exclusively /M, using FM on Ten and Two — this ‘illness’ having been brought on by acquiring a Ford Fiesta. Brian says he was also lent an FT-707 for a few days and managed to scratch up some 16 countries from the car on Twenty SSB. Two — this ‘illness’ having been brought on by acquiring a Ford Fiesta. Brian says he was also lent an FT-707 for a few days and managed to scratch up some 16 countries from the car on Twenty SSB with it, including VE8RCS.

We hear this time that S. Baker (Cwmbran) has passed the ripe old age of eight, while G4W6Z/W2, does the score-keeping chores to bring Stephen’s score up to 1527. The QSLs are beginning to show up, too, with a nice crop of ‘goodies’ listed.

F. Dunn (Chester) reckons the past couple of months have been quite reasonable. However, the proposed aerial system changes are still not done yet, as more time is being spent reading the G3XAP series of articles in S.W.M.

QRT

That’s the lot for this time; and the deadline for next time looks like January 23 for your letters to arrive at Welwyn. The address is, as always, to your J. C., “SWL”, Short Wave Magazine, 34 High Street, WELWYN, Herts. AL6 9EQ. And by that time we hope you will have all recovered from the Christmas and New Year jollifications and can find time to write in with your scores for the Ladder, your news and views, and of course your technical questions. ‘Bye for now!'
"Kitchen Table Technology"

A Series of Occasional Articles to put the ‘amateur’ back into Amateur Radio

REV. G. C. DOBBS, G3RJV

No. 10 (Part 2): The 'Kowloon' TRF Receiver

ARMED with Keith Granger's little circuit sketches I made several simple TRF receivers and once again amazed myself with what a TRF receiver can do, even on the amateur bands in their current crowded state. I finally evolved the three-band version which is shown in Fig. 2. TR1 acts as a regenerative detector, TR2 as an audio preamplifier and IC1 as the audio amplifier.

The Circuit

The regenerative detector is shown around TR1. The method of feedback is quite simple. VC1 and L2 form the only tuned circuit for the incoming frequency; a portion of the signal is fed back via VR1 and L1. L1 is arranged to be out of phase with L2 to provide inductive coupled positive feedback; the amount of feedback is controlled by VR1, a front panel control. In my final version of the circuit I used three coils to tune the three bands 3.5 MHz, 7 MHz and 14 MHz. This could have been done with two coils or perhaps just one with interpolation; however in offering this circuit to Short Wave Magazine I have attempted to make it foolproof. Tuned circuits in TRF receivers are notorious for being affected by just about everything. The values for L2 given in the table will place the bands over about the middle quarter of the range of VC1. Better bandspread might have been desirable but with these values at least the reader will hit the band from their current crowded state. This may seem a luxury but again this choice was to help the tuning and feedback. A single band version would be much simpler to build as this does not require the switching around SW 1. The coils LI and L2 are wound onto iron dust toroid cores. SW 1. The coils LI and L2 are wound onto iron dust toroid cores.

The most complex area of the circuit is that around the input tuning and feedback. A single band version would be much simpler to build as this does not require the switching around SW 1. The coils LI and L2 are wound onto iron dust toroid cores. This may seem a luxury but again this choice was to help the tuning and feedback. A single band version would be much simpler to build as this does not require the switching around SW 1. The coils LI and L2 are wound onto iron dust toroid cores.

The audio signal is coupled via C5 into a single audio preamplifier stage, thence into an integrated circuit amplifier. The IC chosen is the ULN2283 sold by Cirkit Holdings for a mere £1; this IC is a simple device with very few external components. The audio signal is coupled via C5 into a single audio preamplifier stage, thence into an integrated circuit amplifier. The IC chosen is the ULN2283 sold by Cirkit Holdings for a mere £1; this IC is a simple device with very few external components. The output drives a pair of 8-ohm headphones or will drive a speaker for stronger signals. Audio gain control is provided by VR2, another front panel control. The whole circuit runs from a nine volt battery; I used a single PP3.

The other minor problem is that L1 ought to be wound out of phase with L2. The usual way to do this is to wind it in the opposite direction. On a "Polo mint" type core that is not easy! Instead I overwound LI onto L2 in the same direction but reversed the leads as shown in the drawing. It is not ideal to have the top end of L2 along the end of L1 going to ground, but it seems to work quite well in practice. The technique for winding the coils is to wind L2 first, then wind L1 over L2, placing the windings into gaps in the L2 winding. In these cores, each time the wire goes through the hole, counts as one turn. Begin at the ground end of L2 and when the tapping turn is reached, pull out a loop of wire, twist it tightly and complete the winding. In the switching arrangements L1, L2 and C1 form a little unit for each band which is switched into circuit by SW 1. Mounting the tuned circuit around SW 1 is simple, if not crude. I merely soldered the switched ends of L1 and L2 onto appropriate tags on the switch and they became self-supporting. A thick ground wire runs around the switch to provide points for the grounded ends of the coils. It looks crude ... is crude, but it works. The photograph shows the arrangement.

The value of C1 is also quite critical and will depend upon the antenna in use and the band in question. I leave the reader to sort this out for himself. What is required is the minimum of coupling into the tuned circuit to receive the signals. Not enough will make the receiver a little deaf; too much will swamp the detector stage. I had good results with a few feet of wire — in fact a large antenna can even be a disadvantage in that a very low value of C1 is required so as not to swamp the input. Even with a small antenna, my values of C1 for 80m, 40m and 20m, were 22pF, 15pF and 10pF respectively. The old TRF experts will say that a variable capacitor for C1 will sort it all out. However that is just one more set of leads floating about at RF, and fixed capacitors chosen for the band and the antenna are a much safer, and easier, method.

The `Kowloon' TRF Receiver

REV. G. C. DOBBS, G3RJV

No. 10 (Part 2): The 'Kowloon' TRF Receiver

ARMED with Keith Granger's little circuit sketches I made several simple TRF receivers and once again amazed myself with what a TRF receiver can do, even on the amateur bands in their current crowded state. I finally evolved the three-band version which is shown in Fig. 2. TR1 acts as a regenerative detector, TR2 as an audio preamplifier and IC1 as the audio amplifier.

The Circuit

The regenerative detector is shown around TR1. The method of feedback is quite simple. VC1 and L2 form the only tuned circuit for the incoming frequency; a portion of the signal is fed back via VR1 and L1. L1 is arranged to be out of phase with L2 to provide inductive coupled positive feedback; the amount of feedback is controlled by VR1, a front panel control. In my final version of the circuit I used three coils to tune the three bands 3.5 MHz, 7 MHz and 14 MHz. This could have been done with two coils or perhaps just one with interpolation; however in offering this circuit to Short Wave Magazine I have attempted to make it foolproof. Tuned circuits in TRF receivers are notorious for being affected by just about everything. The values for L2 given in the table will place the bands over about the middle quarter of the range of VC1. Better bandspread might have been desirable but with these values at least the reader will hit the band from their current crowded state. This may seem a luxury but again this choice was to help the tuning and feedback. A single band version would be much simpler to build as this does not require the switching around SW 1. The coils LI and L2 are wound onto iron dust toroid cores. SW 1. The coils LI and L2 are wound onto iron dust toroid cores.

The most complex area of the circuit is that around the input tuning and feedback. A single band version would be much simpler to build as this does not require the switching around SW 1. The coils LI and L2 are wound onto iron dust toroid cores. This may seem a luxury but again this choice was to help the tuning and feedback. A single band version would be much simpler to build as this does not require the switching around SW 1. The coils LI and L2 are wound onto iron dust toroid cores. The value of C1 is also quite critical and will depend upon the antenna in use and the band in question. I leave the reader to sort this out for himself. What is required is the minimum of coupling into the tuned circuit to receive the signals. Not enough will make the receiver a little deaf; too much will swamp the detector stage. I had good results with a few feet of wire — in fact a large antenna can even be a disadvantage in that a very low value of C1 is required so as not to swamp the input. Even with a small antenna, my values of C1 for 80m, 40m and 20m, were 22pF, 15pF and 10pF respectively. The old TRF experts will say that a variable capacitor for C1 will sort it all out. However that is just one more set of leads floating about at RF, and fixed capacitors chosen for the band and the antenna are a much safer, and easier, method.

The other minor problem is that L1 ought to be wound out of phase with L2. The usual way to do this is to wind it in the opposite direction. On a "Polo mint" type core that is not easy! Instead I overwound LI onto L2 in the same direction but reversed the leads as shown in the drawing. It is not ideal to have the top end of L2 along the end of L1 going to ground, but it seems to work quite well in practice. The technique for winding the coils is to wind L2 first, then wind L1 over L2, placing the windings into gaps in the L2 winding. In these cores, each time the wire goes through the hole, counts as one turn. Begin at the ground end of L2 and when the tapping turn is reached, pull out a loop of wire, twist it tightly and complete the winding. In the switching arrangements L1, L2 and C1 form a little unit for each band which is switched into circuit by SW 1. Mounting the tuned circuit around SW 1 is simple, if not crude. I merely soldered the switched ends of L1 and L2 onto appropriate tags on the switch and they became self-supporting. A thick ground wire runs around the switch to provide points for the grounded ends of the coils. It looks crude ... is crude, but it works. The photograph shows the arrangement.
Construction

It would be possible to etch a printed circuit board for the receiver; there is not much of it. In my case I wanted to build up a quick prototype and used Perfboard. This is the board with 0.1" spaced holes, like Veroboard but without the copper strips. It is expensive and is sold by the Tandy stores, but only a small piece is required. I half intended to etch a board later, but if it worked, why bother, I thought... The layout for the board is shown in Fig. 4; this could be adapted for printed circuit board use. In the case of Perfboard the components are pushed into the holes and the interconnections made with spare lead lengths on the components. Any extra interconnections required are made with thin tinned copper wire: the inside of stripped PVC-covered thin wire is ideal. I used an IC holder for IC1. This is not essential but I am mean; I might want to use it again... and again.

The choice of component types is not too critical. Small capacitors were used for the coupling and decoupling parts of the circuit. The large values are all electrolytic, although tantalum bead types could have been used. The feedback capacitor, C2 is a miniature ceramic plate type. The main tuning capacitor must be a good quality airspaced variable: these are expensive items, the Jackson Type C804 are available from Cirkit Holdings, but I endeavour to buy these capacitors whenever I see them at bargain prices.

The mounting of the circuit board into the case is important. A screen is placed behind the front panel, as shown in Fig. 5. This serves to provide a mounting panel for SW1, VC1 and VR1. In addition it provides extra screen for VC1 hence reducing any likelihood of hand capacitive effects on the tuning. VR2/SW2 is mounted directly on the front panel. The antenna input is via a phono socket (or whatever socket is the station standard) and the audio output goes to a jack socket. VC1 has a slow motion drive. The one used on the prototype is a 6:1 epicyclic drive complete with a scale. These are fairly common, Japanese made, items. If such a drive is not available, the 6:1 reduction drive sold by Cirkit Holdings would be usable but a scale would have to be added to the front flange.

Once the circuit board has been built and the controls added to the case, the final part of the construction is to wire up the switching circuitry around SW1. It is advisable to try out the coils L1/L2 in turn, without switching, before adding them to SW1. This will enable tests to be made for the values of C1 on each band. I used silvered mica capacitors for C1 but ceramic types would do the job. On the initial testing of L1/L2, check that there is a smooth feedback action on VR1. The detector should slide into oscillation (a rushing sound) in the middle ares of the travel of VR1. The coverage of the bandswitched coils might also be checked at this stage. If a signal generator is available, the process is easy. Without a calibrated signal source, another receiver may be used to check the frequency coverage of the three coils. When the TR1 stage is oscillating is should be possible to pick up the signal on an adjacent receiver. After all these tests wire up the three combinations of L1/L2/C1 onto SW1.

Using the Receiver

Beware of the TRF if you are an ‘all mod. cons.’ operator because the TRF has to be operated. The tuning control and the feedback control are interdependent. For reception of CW and SSB signals the receiver should be used just at the point where oscillation occurs. It will be evident in use how this works. The audio gain control is the last one to adjust; it should be set at a comfortable listening level and then adjusted to individual stations after VC1 and VR1 are correctly set. Whenever a new station is tuned in with VC1, then VR1 should be readjusted to the correct level. It all sounds complex but like most operations a little practice makes it very simple. Before I built up this receiver I had forgotten how good TRF receivers can be. The sensitivity is amazing for so few components. With careful use of the feedback, this can be a very effective receiver for amateur band listening.

Got a young lad who is interested in amateur radio? Well a little receiver like this is ideal for monitoring the bands. What is more, he could probably build it himself. That is THE WAY to begin the hobby.
EQUIPMENT REVIEW

B.N.O.S. Electronics LPM70-10-100
Linear Amplifier

P. N. LEWIS, G4APL

Introduction

THE reviewer was loaned a B.N.O.S. LPM70 4-metre 100-watt amplifier to try out under normal and contest conditions.

The amplifier was supplied protected in the usual polystyrene clad container, the contents of which consisted of: LPM70-10-100 Linear Amplifier; Mobile mounting bracket with two thumb screws; 3.5mm jack plug for use with the PTT line; spare 15 amp fuse; Linear Amplifier User Manual (one page).

Hardware Specifications

The Linear Amplifier is designed for the frequency range 70.0 MHz to 72.0 MHz.

- Class of Operation: AB1
- Input Impedance: 50 ohms unbalanced
- Minimum input power: 500 mW
- Maximum input power: 15 watts
- Recommended input power: 10 watts
- Output impedance: 50 ohms unbalanced
- Output power maximum: 100 watts +/− 5%
- Insertion loss straight through: 1.0 dB +/− 0.5 dB
- Power requirements: 13.8 volts DC at 13.8 amps +/− 15%

Preamplifier:

- Receive gain: 12 dB typical
- Noise factor: better than 1.5 dB
- Input impedance: 50 ohms
- Output impedance: 50 ohms
- Power requirements: 13.8 volts DC at 100 mA +/− 15%

Construction: The amplifier is built into an aluminium heat sink, height 68 mm, length 230 mm, width 146 mm, total weight 2.5 kg.

Controls

The front panel controls consist of:

Linear On/Off switch: With the switch in the ‘off’ position, the linear is in the straight-through mode, with the switch in the 'on' position the linear is enabled.

Preamp On/Off switch: The preamplifier operates independently of the linear amplifier and has a separate change-over relay allowing it to be used when the linear is switched off.

Mode SSB/FM switch: The ‘hang-up’ time of the change-over relays can be selected using this switch. A long time constant for when the linear is used in the SSB mode.

All the above switch states are indicated by LEDs on the front panel.

Power meter: The power meter consists of a seven LED bargraph showing the relative power output. Each of these yellow LEDs represent 14 watts of output power when used into a correctly matched load.

Overpower: When the linear is over-driven the change-over relays will switch to straight-through operation, this is indicated on the front panel by the red LED at the end of the bargraph.

Hard-wired switching: The linear operates either on the RF VOX change-over or can be driven via the PTT line.

Rear connections: RF out via SO239 sockets; RF in via SO239 sockets; 13.8 Volts DC in via lead with in-line fuse holder with 15 amp fuse; PTT 3.5mm socket for hard-wired change-over.

Operation

The amplifier was to be used with the station equipment, which consists of an FT-101ZD and the FTV-901R transverter with the 4m. module.

The amplifier was supplied with a 68 inch length of power lead, which the reviewer found to be long enough so that the amplifier could be conveniently sited away from the main station DC PSU; the power supply should be capable of producing 13.8 volts at 14 amp RMS.

A lead was connected from the HF transceiver replay (earth on transmit) to the centre of the 3.5mm plug that was supplied, which when plugged into the PTT socket on the rear of the amplifier enabled the hardwired change-over. The transverter was connected to transmitter linear input socket, and the aerial connected to the aerial socket.

In the section “Care of your Linear” in the User Manual it states recommended lead lengths to be used to connect the transmitter to the linear; in the reviewer’s case the first lead that contained the right plugs was utilised.

On power up, the amplifier produced 100 watts on the station Welz SP300 power meter. The User Manual specification states the input power should be in the range 500mW RMS to 15W RMS, and 10 watts recommended.

It was found that the amplifier could be driven to full power (100 watts) with 8 watts input, before the overpower circuit came in and switched the linear to the straight-through mode, until the input power is reduced.
On air reports:
The reports on the transmitted signal were all very encouraging, with many reports of a clean signal; during the period of test no bad reports were received, even with local stations.
The preamplifier gave a useful receive gain on what the reviewer believes to be a deaf receiver in the transverter module, with a slight increase in receive noise.
The RF switching was used at first during the initial tests, and the relay delay in SSB mode was found to be sufficient; the reviewer then changed over to using the hardwire switching, as he finds with all RF switching the tripping of relays annoying.
The reviewer, not having had the use of a 100-watt four-metre amplifier before, used it during the October Fixed-station Four-metre contest, and found the extra power gain very useful in working the longer distances.
After five hours of continuous SSB use the case of the amplifier was hand hot, and still producing 100 watts output when driven with a continuous carrier.

Circuit Description
No circuit diagram or description were supplied but a diagram was later sent after a request to the manufacturer. Even then, they could not provide one for this product, only a diagram for the 144 MHz version which is similar. No component values were indicated, nor were transistor types identified. All that can be written is that the transmitter amplifier is a single stage with an op-amp controlled bias supply network. The receiver preamplifier is a dual gate Mosfet device with back-to-back diodes to protect the input. Input matching is by a capacitive divider across the coil and there is a pi-network attenuator on the output side.

Conclusion
The amplifier performed very well when in use, the overpower protection circuit was a nice feature of the unit, and the reviewer would like to see this in other amplifiers in the hope of hearing cleaner signals on the amateur bands.
Another feature which had not been seen before on an amplifier is the mobile bracket with thumb screws, this of course could be used to fit the amplifier under a shelf in the shack or in a car for those that are mobile on four-metres.
With the hardware well presented, it was a disappointment to find when reading the Linear Amplifier User Manual that there were several spelling errors.
Thanks are extended to all those radio amateurs who gave reports, and B.N.O.S. Electronics for the loan of the LPM70-10-100 Linear Amplifer.

EQUIPMENT REVIEW

The KW Ten-Tec Models 227 and 228 Aerial Tuning Units

E. H. TROWELL, G2HKU

These two units, manufactured in U.S.A. by the Ten-Tec Corporation in Sevierville, Tennessee, are retailed here by KW Ten-Tec of Chatham, Kent. Both units contain similar circuitry except that Model 228 includes an SWR bridge and illuminated meter, and both are improved versions of the earlier Transmatch units 247 and 277.
The T-network circuit is based on the popular Transmatch originated many years ago by Lew McCoy, W1ICP, of the ARRL. Rated at 200 watts intermittent and 100 watts continuous, they are intended to match the unbalanced 50-75 ohms output impedance of transmitters to a variety of balanced or unbalanced loads between 1.8 and 30 MHz. From 1.8 to 4 MHz the maximum balanced load is 500 ohms.
Construction is to the normal Ten-Tec standard, the case in two parts is easily removed and finished in black and bronze, to match the current Corsair and the last Argonaut, the Model 515. The front panel layout is clear, with well spaced controls which have a positive feel about them and are fitted with the usual Ten-Tec
knobs. The variable capacitors are wide spaced with double bearings and ceramic end plates and are rated at 1kV. Silver plated 18 s.w.g. wire on a 2-inch core with 47 taps and a rotary slider form the inductance and in use was positive and easy to adjust. A ceramic five-position aerial selection switch, again with a nice positive feel about it, is mounted on the rear panel operated via an insulated shaft by the front panel control, in a manner similar to the rotary inductor. As a matter of personal preference the writer would have been happier with a switch of larger construction here in order to avoid possible arcing. However the unit fitted showed no inclination to do so in use but it would be unfair to either this switch or the transmitter itself to operate it while actually passing RF through it. No one would deliberately do so of course, but accidents do happen!

Model 228 has the SWR meter, which is in circuit at all times, mounted on the left side of the panel and below it is the rotary Sensitivity control and Reverse-Forward slide switch. The SWR bridge itself is mounted on its own panel, fixed to the case bottom, and adjustment is quite straightforward. The meter is illuminated by a 12V bulb which requires the appropriate input to a phono socket on the rear panel.

The connections on the rear panel are five PL-259 sockets for transmitter input, dummy load and aerials one, two and three respectively for co-ax feeders. Four terminals are provided being earth, single wire feed and the remaining two for balanced line feed systems. When using the latter it is necessary to fit a jumper wire from the single wire terminal to one of the balance line terminals.

Controlling the above connections is the five-position aerial selection switch on the right-hand side of the front panel. This switch was not fitted on the earlier models referred to and is a welcome addition providing the following functions:

Position 1. DL BYPASS. A direct connection from the transmitter input to the Dummy Load output socket which, if not used to connect to a dummy load, may be used as a by-pass position for an aerial which does not require matching. (Note that a dummy load is not supplied, but can be obtained. The part no. being Model 209).

Position 2. BYPASS 1. As the wording indicates, the transmitter input is not through the tuner, but goes directly to the ANT 1 output socket.

Position 3. TUNER 1. For a co-ax fed aerial passing through the tuner.

Position 4. TUNER 2. As above for a second aerial.

Position 5. TUNER 3. For single wire or, when jumper wire installed, a balanced line feed.

In the last position a balun is switched in when using balanced line. Ten-Tec warn that if the impedance of the line is greater than 500 ohms the balun will get warm after prolonged use. An indication of this will be an increasing reading on the SWR meter and may be rectified by an alteration in aerial or feeder length, or both.

A point to bear in mind when using an aerial tuning unit of this type is that the greatest bandwidth for a given SWR will be at the lowest L/C ratio of the tuning. In other words, although it is possible to obtain a match at a number of different tuning positions there will be one which will provide the maximum bandwidth, for a given SWR. Recording the control positions for each band and aerial on a piece of card placed near the unit enables a quick final tune up point to be reached when changing bands.

Connecting the terminal marked GND to the station earth or ground system with really heavy gauge wire or, preferably, braid or strip, is recommended. This helps in the reduction or elimination of stray RF fields sometimes encountered when using wire fed aerials — and is in any case good, sound practice. (An often overlooked source of suitable earthing strip can be found in the older TV receivers where it is used to join the tuner unit to the receiver chassis or frame. It is easily soldered and short pieces may be joined to make up suitable lengths as required.)

The unit was used on various aerials including a G5RV, single wire and a Cushcraft ATVS vertical, no problems being encountered on any band from 1.8 to 30 MHz. A point worth noting is that this type of aerial tuning unit with its two capacitors in series with the transmission line is basically a form of high pass filter. However it does offer some harmonic suppression, the degree of which will depend upon the impedance that the unit is looking into. The writer had a standard production colour television receiver without any extra filters fitted, in use within two feet of the transmitter without any TVI being noticeable.

The external dimensions are 10½" wide x 3½" high x 7" deep, and the units are confidently recommended.

KW Ten-Tec Ltd., Vanguard Works, Jenkins Dale, Chatham, Kent ME4 5RT. (tel: 0634-815173).
By the time you come to this piece, you will (we hope) all be recovering from the eating and drinking and celebrating of the holiday period, and the children or grandchildren’s demands for instant repairs of toys will have, for the moment, reduced. However, if Santa brought you a beam and a sixty-foot tower — we bet the youngsters’ toys still need mending!

And, talking of towers, we have a letter from Richard Diamond of S.M.C. in Southampton which has, to put it mildly, worrying features for all radio amateur and commercial users of aerial masts or towers. Richard had ‘permanent’ planning permission for his tower; but now Southampton Planning Committee has issued a dis-continuation order with a view to the tower’s removal. The action purports to be on the grounds of TVI; but the cause of the problem is known to have nothing to do with this, and the TVI is minimal. Consider the future implications of this proposal If Southampton Council were to get away with this action, then no planning permission granted for anything would be worth the paper it is written on. You could spend a thousand pounds on an aerial system, with full planning permission, and be asked to remove it on specious grounds of TVI, even before it had actually been. You might even build an extension to your house, with full planning permission, and then be required to pull it down before you had even used it. In fact, Southampton Council Planning Committee appears to be trying to act the part of God.

This is an important matter of principle, and we feel that every radio amateur and every club should formally write to Southampton Council Planning Committee to express their concern at this proposed breaking of a commitment and for bringing the whole idea of Town and Country Planning into disrepute. Richard will continue the fight on the legal grounds; meanwhile, write to Southampton Council Planning Committee at the Civic Centre, Southampton, now!

Famine Relief

From the Hon. Sec. of the Frensham Heights School Amateur Radio Club, Richard Jones, G1JCD, comes a long letter which describes the school’s exercise in sponsored radio contacts for famine relief, and how the accident of a contact with ST5ALR, Alastair, who is working for CARE in Central Sudan, brought to mind the possibility of the amateur radio movement worldwide putting together ways of raising money to help. We know there are many who agree with G1JCD, and we suggest that they get in touch with him direct (QTHR); if they can between them get something going that is practicable, then *Short Wave Magazine* will not be backward in publicising their proposals.

The Bands

As well as can be expected, sums it up. It rather seems as though the Top Band types have been having a field day, but of course the 28 MHz addicts have not done too well. On the other hand, the latter band has, by virtue of the increased activity, shown clearly that it still has something to offer even at sunspot minimum. We recall in previous cycles periods of literally years when nobody mentioned the band at all, save maybe to comment “listened but heard nothing”! Thus it is needful not just to listen, but if the band seems dead to put out a CQ or two and only if the latter ploy fails to QSY.

Top Band

With contests and other activities this band has been distinctly lively. It was interesting to note some YO stations on in the contests, and it is understood this was by way of a try-out — the YOs hope that ere long they will get permission to use the band on a regular basis. G4OBK (Chorley) is now up to 105 countries worked, with 14 new ones snapped up in the last couple of months. During the summer refit the vertical grew a few feet, and this seems to have worked nicely on the band. SSB yielded HH7PY, W1-2-3-4-5-8-9, VE1-3, CY0SAB, E95EU, OH0BA, HB0AON, VP9AD, VY02VE, ZL2BC, EA6NB, 4U11IU, K7N7/4X, EA8YV, P44B, YV2IF, ZL2BT, ZL3GQ, IS0PLQ, GU0/PA2FAS; and CW rescued from the QRM UF6DR, W1-2-3-4-5-7-8-9-0, VE1-2-3, ZL3GQ, OH2BEN/C56, UD6DKW, TG9NX, UL7CAD, JW0A, FM5WD, DL1RK/CT3, CY0SAB, CN8ES, UA9s, LJ2CJ, YO8KAE, YO4KCA, V2A, ASTB, K7N7/4X, YV5T, 9Y4VT, D44BC, UG6GAW, Y04KRX, HB0VCQ, 4U1V1C, RF3V, Y03KWJ, ZB2EO, YV3AGT, O6211, V3A, 4V2C, K3OUC/VY4, and UO50JM. Phil reckons that in the CW event conditions were superb; he worked 177 different W stations, and in one 2½-hour spell on the Sunday morning worked 82 of them on the trot!

G3BDQ (Hastings) notes that he is in a minority of one over the split-frequency working argument, but he remains quite unrepentantly in favour of simplex operation. On a different tack, John mentions his QSO with a station he believes to have been OE7RKI/1YK. John got his report and an ‘R’ for his own over, but even though he stayed on the frequency for twenty minutes afterwards he still is unsure of the call — none of the EUs sent his call, and on the few occasions the /Y station sent his call it was swamped in the QRM the non-use of callsigns in contest and DX pile-ups is now getting to be a minor form of madness. True enough, but if its ‘fashionable’ everyone will do it! Third point, John has built the shielded loop to the ARRL “Antenna Book” design, in the loft, and it is very useful indeed on receive — a couple of S-points down, but the DX is clean and clear. Really worth the time and effort of building it. CW contacts G3BDQ made included assorted WS, PY1RRO, YV3AGT, CN8ES, YK6HD, OH2BEN/C56, C53AA, OY7ML, 4X4KT, K7N7/4X, EA8QO, EA8AAU, EA9CE, EA9IE, JY9MG, JA4NBG, IS0PLQ, T77C on SS, YOs, UD6DKW, UG6GAW, UH8FAP, UL7EDR, UM8MLE, UO5GQ, UO50JM, several UA9s, and UA0AKH and UA0BVC.

“CDXN” deadlines for the next three months:

- **February issue**—January 9th
- **March issue**—February 6th
- **April issue**—March 6th

please be sure to note these dates

Now we head for G2HKU (Sheppey) who says he has been laid low by a ‘bug’ — and that ZL3FV tells him it has swept ZL too; seems they call it ‘Chinese Flu.’ Ted’s list includes SSB with PAGPN, now nicely on the mend, plus CW contacts with OZ1W, EA7DMF, E19J, RR2RX, UA3QBD, OH0BA, OH7VR, OK2PLA, LA5X, LX9BV and EA9IE.

EIGHTY

Like beating your head against a brick wall — it’s nice when you stop! For example, DXNS mentions the YUS heard working T32 one night at 2205z — that
would have been about noon in E. Kiribati, which is a new slant on LF propagation!

G2HKU was using QRP CW on this band; it netted LX/DL1VH, HA2EOU, YU3GO.

Although G4OBK has been on Eighty he says the operating is in stark contrast to his experience on Top Band; between being jammed by some station mouting obscenities and the heavy QRM on SSB, it’s not pleasant. SSB contacts included W3PL, VK2AVA, CYO5SB, and JY50CI, and on the key LX/DK3VH, UA0WBJ, RW9HZZ, TG9NX, DF4ZL/CT3, CN8ES, and TK0KP/CER (Cerbicales Is for IOTA) under a badly-behaved pile-up.

G2NJ (Peterborough) starts with a mention of the GB2TAC call in use through December until January 3, driven by G3LCG as the nominated op, on behalf of TOPS. Still with TOPS, they have a Straight Key Party on February 3 — 1600 to 1800z, 3530 – 3580 kHz, and call “CQ HTP”. More details from G2NJ, GW8WJ, or G4GBG. On the operating front, once again the OH stations have been heard calling CQ DX on CW as early as 1400z at the beginning of November. OH7XI, Vesa, was heard to work JA2EJI at 1435z and by 1525 his total bag was eleven JAs and a brace of Russians. Vesa was 589 to G2NJ and, as before, only the odd slight hint of the JA signals themselves were audible to G2NJ.

One who can’t keep away from it is G3ZPF (Kingswinford) who has the inverted-vee folded back so he can add the bits on the end if he wants to go from CW to Phone, albeit at the cost of a trip down the garden. Although the apex is only 30 feet up, it has given results: SSB to CN2AQ, JY50YJ, TG9NX, 3A2EE, K21AB plus small fry; on the key he collected up J37AE, K8GL, N2MM, UA1OT (Franz Josef), WINH, KV9S, and the EUs.

G6QQ (Hoveton) returns to the lists; he has a trap dipole with centre at 25 feet and ends down to twelve, which isn’t too promising. In the event it came up with W1FV, W1KMG, N2AA, N2PP, N3ED, K3TUP, K8GL, WB9P0H.

Forty

Not a lot of reports on this band, although it is probably the best DX band we have at the moment, if some of the claimed contest scores have any significance.

G6QQ wasn’t all that active for one reason or another, but he did have a short stint on the band during the Contest weekend, to make CW contacts with K1AR, K10X, N2AA, K2TR, N3RS and W3PL. Incidentally, that K1AR was the chap who has a claimed score in the CW WW CW contest of around 3.4 million for a single-op multi-band entry, which if it survives the scrutineers will be a world record score — at this time in the sunspot cycle it seems unbelievable!

G4OBK wasn’t too active on the bands, but he does mention contacts on CW with 5L2EQ (QSL via 12CRC), EA6NB, SP9AG, HK3J3, 9Y4VT, EA9CE, GJ30AA, JA2YKA, TK5EP and L5SLG.

As G2HKU the CW was used for CY05SB, W3PL, UA0TO, V2A, and N2AA, all with the main rig, while QRP CW was plenty enough to enable a contact with UD6DKW.

A surprising entrant on Forty is G4HGW (Knutsford) who has been at work on a Howes forty-metre transmitter kit; over Christmas the VFO kit will be built up and then Tony will see what he can do with three watts of CW.

GW4BLE (Newport, Gwent) spent much spare time analysing his contest logs, but he did find time to get on 7 MHz and work YS1RDR and UA0TO; plus listening in quite a lot but not actually working the smaller fry.

4 MHz

As always this is where the majority of the world’s DX traffic is transacted in practice. G3NOF (Yeovil) says he has changed his Mustang beam to a TET HB33SP on a Kenpro KR6OORC rotor, and is finding it works very well — certainly it must be nice to have the beam rotating again after having it jammed for some weeks in just one direction. Don notes the VK/ZL long-path opening around 0800 – 1000z and the short-path around 1200z to the same area; North Americans have been strong between 1130 and 1300, but in the last few days before reporting the band was dying almost as soon as darkness fell. SSB contacts were made with D68AM, K6SH, K7GN (Utah), K77HH (Wyoming), N6EQ, N9AG/V2A, VK2AA, VK3AGW, VQ9MG, WA7EVC, XE1OE, ZB2HX/MM in the Med., 3DBU, 3BBF, and 5R8AL.

G4VFG (Ivybridge) comes in at this point, to tell us that despite the earlier closing of the band, he has made it to 9Y4NW, ISL0MN, 9H3CY, 9H1GX, 5L2EN (QSL to Box 2668, Monrovia), XT2BR (QSL to Box 116 Ouagadougou), PY5ZBU, and EAA8M, on Phone.

G4OBK obviously used the band but reports, “Not much of note on Twenty!”

G4QFF has an FT-102 to a Cushcraft R3 vertical on the HF bands; on Twenty CW yielded KP4BGZ, VE1 – 2 – 3, all W call areas, and 9Y4VT in the contest weekend, while SSB went over to WA2KWN, KR10, and K7GNN one afternoon, and VE3KIE and W1JQC on another.

G2HKU notes that conditions picked up enough for him to resume the ZL contacts, with ZL3F; this is the only SSB report he contacts but CW went out to K9RN/6 and K4FU.

Most mornings, says GW4BLE, the Pacific path was showing at least signs of life; 0730 – 1030z is quite a long opening for this stage in the sunspot cycle. All-Time country number 310 appeared in the shape of ZM80Y, and for the rest the pick of the crop included KB6DAW/KH9, KB6DAW/KH2 ZD7AL, VK9ND, ZL7A, (Chatham Is.), 4D9R (DXPI), 4D9RP (DU prefix), 3DD2M, FK8CP, DXIN, various of the JY50 stations, V2A, an interesting one with Liberia in 5L2CY, KC6JC (East Carolines, Republic of Belau, originally thought to be in West Carolines).

Bits

VK6HD made his 1000th EU contact on Top Band during October — he is to be found on 1835, 1832 or 1824 kHz at his sunrise time — around 2118z at the time of writing.

We hear that CQ Magazine is thinking about a 50th Anniversary celebration for the WAZ Award.

That ‘louderboomer’ signal of OH4OS in the contest was the result, on Twenty, of his using forty-eight elements, made up of eight six-element Yagis stacked on a 180-foot pole . . . and it seems to work both ways too, report the Ws who were working him when nothing else from Europe was audible. And, note, the pole itself was rotated — some beam, that! If you come across HG4SEA/MM, the yacht St. Jupat, this is a circumnavigation by two HA amateurs; they had the idea back in 1979, studied both for the equivalent of RAE and the equivalent of Yachtmaster Ocean, and then got hold of a Balaton 31 hull moulding which they fitted out themselves. The shadedown cruise was in the Mediterranean during the summer of 1985, and was itself some 6000 kilometres. They sailed on the world trip on September 25, and the route is to be ZB2, EA3U, KA9, ZD8, ZDY, ZD9, around the Cape of Good Hope, FB8W, FB8Z, to VK-land. They will stay there for a few months to get clear of the hurricane season, and then head for ZL, Polynesia for the collection of some ethnographic data, around the Horn, LU, PY, some parts of the Caribbean, across the Atlantic to EA8 and via Gibraltar back to the Adriatic. The frequencies to watch are 14.262 and 21.255, plus possibles 3.675, 7.075, and 25.005 MHz; the skeds are all at 1200z and dependent on conditions.

The net stations to look out for are HG IS, EA9, EA8, ZD8, ZDY, ZD9, around the Cape of Good Hope, FB8W, FB8Z, to VK-land. They will stay there for a few months to get clear of the hurricane season, and then head for ZL, Polynesia for the collection of some ethnographic data, around the Horn, LU, PY, some parts of the Caribbean, across the Atlantic to EA8 and via Gibraltar back to the Adriatic. The frequencies to watch are 14.262 and 21.255, plus possibles 3.675, 7.075, and 25.005 MHz; the skeds are all at 1200z and dependent on conditions.

The net stations to look out for are HG IS, EA9, EA8, ZD8, ZDY, ZD9, around the Cape of Good Hope, FB8W, FB8Z, to VK-land. They will stay there for a few months to get clear of the hurricane season, and then head for ZL, Polynesia for the collection of some ethnographic data, around the Horn, LU, PY, some parts of the Caribbean, across the Atlantic to EA8 and via Gibraltar back to the Adriatic. The frequencies to watch are 14.262 and 21.255, plus possibles 3.675, 7.075, and 25.005 MHz; the skeds are all at 1200z and dependent on conditions.
situation and they shut the offender down smartly. Disregarding that isolated lout — and we hope he will not get his call back at all — an enormous amount of good work was done, at the instigation of the user services and indeed the Foreign Office, which without doubt involved a certain amount of ‘creative interpretation’ of the rules by both the authorities and the amateurs in order to meet the needs. RSGB, Raynet, and all the individuals who were involved for 17 days of 24-hours daily operation, and the authorities who helped it all happen, all deserve congratulations. G3USF was the focal point from which it all started, but it would be invidious to mention any others, as we don’t know all the names and calls — suffice it that they were all magnificent.

RSGB members will recall that back in 1979 John Bazley, G3HCT, was President; brother Mick is well known also to DX-ers as VK6HD. G3HCT, not to be outdone did a fine job recently as A25/G3HCT for 26 hours of operation, mainly on 21 MHz CW — DX5 records him as having made 17000 QSO’s which would have been a spectacular record of 653 QSOs to the hour. Even when 17000 QSOs it would have been over one a minute, which is going good on 21 MHz and CW.

BARTG sent us the details of their Spring RTTY contest, over the weekend March 22/24th. The rules are a little too long for repetition here, but details are obtainable in full from Peter Adams, G6LZB, 464 Whippendell Road, Watford, Herts, England WD1 TPT. There is, we are pleased to note, an SWL section to this one.

The business of the price of IRCs is one that is worth taking up; back in 1982 they were 20p, then they were jacked up to 25p, then 35p and now, from January 1, a few strong rhubarbs to one’s MP, or the stage where it is cheaper to go and buy some U.S. dollar bills for return postage.

Gotaways, while W9IT and W3MF were also worked on the key.

G4VFG noted a few glimmers of life; on SSb it was KF4BZ, EC9IR, EC6MR, N4DR, W2HGY, W4SVB and W9AGXL.

For G3NOF, the band was open most mornings 1000 – 1200z, short path to VK, with a few from S.E. Asia as well. North Americans were often to be heard 1230 – 1600z, and the odd African around 1600, but things fell away towards the time of writing his letter. SSb QSOs were made with J28EL, JY50CH, JY50YJ, K5OVC, K2AH, TR8RC, VE3S, V121HD, VE3FXT/3D6, VK3AQN, VK3DMA, VK3GK, VK3KRD, VK3NCK, VK3NDY, VK3NZL, VK5NF, VK6QG/P, VK6V, VK7NBE, VK7NBN, W1 – 2 – 3 – 4 – 5 – 8 – 9, W2JAP, YB3CN, ZS3/W6QL, and G4T7F.

Good on some days, says G40BK. Phil used his Morse to work CW to GJOAAA, A2S/G3HCT, HKOBKX, 9Y4VT, CN8ES, RF6FR, PJ2FR, while the microphone came in handy for JY50YJ, A22KZ (QLS via G4EKEZ), ZS3TBS/P, A71BJ, TA1C, and NC80V/V2A.

Ten

Firstly, G4HZW (Knutsford) who operated mainly CW, using a TS-820 and two-element Quad. His list of contacts added up to GM3YOR (File) G4BLX (E. Sussex) in the contest, plus ZS6TUK in the CQ WW shindig, DL5GCJ, IITRE, and VK9XJ on Christmas Island. The latter was on 28, 595 and said he was on the band every day. His signal was as high as RS53, but he soon went QRT when the Italian stations wouldn’t behave.

G4EZA (London, SW16) notes what a wonderful thing a contest can be for ‘conditions’! This thought was provoked by hearing some 55 countries on SSb in the month, of which some 49 were in the SSb CQ WW contest. Tim reckons his best DX contact was the one with 3B8DB with ten minutes on a most exquisite QRP six. He had been built to try on the car. G4EZA hastily knocked up another one, and managed 18 Ws and a VE with the thing standing two feet above the shack floor and fed from the FT-7. For G2ADZ (Chessington) it was mainly activity on the new bands. However, on Ten, the VK2RSY beacon was audible on the morning of October 29, but a CQ did no good at all!

On a different tack, Bill noticed that GB3SX has been replaced by a new one on the same frequency, using the call GB3RAL. The old one, operational for 16 years at Crowborough, has been replaced by GB3RAL, located at the Rutherford-Appleton Laboratory near Slough; reports would be welcomed by the beacon keeper, who is G4CGB.

G40BK seems to have found very little, for he reports a SSB contact with HG11WB and a CW one with DL7AAE/EA6.

There wasn’t a lot of joy in it for G6QQ either; he did manage a CW contact with Mal, Z23JO.

So far this year, says G4VFG, he has managed 33 countries on Ten, the total being bulked up by the recent opening when Peter stumbled over LUSEJS and C8HDR, both on CW, and CT3DK, EA8AMT, LU1DXO and LU1HOO, all on SSb. On a different line, G4VFG put on a station at the local primary school to demonstrate the hobby to the young pupils as part of a project on ‘Communication’.

G4VFG showed them the sound of various modes on a receiver first, and then went on to make a few contacts on Twenty, both U.K. and foreign, and overall seems to have made an impression.

G3NOF didn’t find much to shout about at all, save for a few Africans at the beginning of November.

New Bands

Only a few reports this time. G2ADZ found a couple of VKs on 10 MHz, L1EJG (Tromso), G5JL, and DJ2TI, plus ZL1AMO on November 17 which he reckons is a first G-ZL contact on the band, LU6EF, ZM3RK regularly, ZM2AGY, and VK4AG. As for 24 MHz, the Wonder Wire yielded W8HXT who is coming to U.K. next summer, KP2J, NJ2T, WIHM4D/4, CT2FN, SN25BRJ, WA1QCO, NK4A and ZS6BMS; the latter is claiming the first ZS - U.S.A. contact ever, on October 21, with K6ST1 — a long haul indeed, of around 10,000 miles.

Only 10 MHz gets a mention from G2HKU, who keyed with K2OZ and EA8AGF.

Likewise G6QQ; David found the band lively on some mornings, and worked SM0EUB and 13BLF. G4FLK had a punt around the three new bands between 0900 and noon on December 1, and heard quite a lot without being able to raise much. 24 MHz was dead on all the aerals, both amateur signals and commercials; on 18 MHz DJ2FR was worked, and some fourteen other stations logged, of which the best was J28EL. As for 10 MHz, there was a similar story; one station raised, around 15 others heard, with nothing outside the European area.

Finis

That’s about it for another month. For next time around, the deadline for your letters will be to arrive by January 9th, 1986 addressed as ever to your scribe, "CDXN", SHORT WAVE MAGAZINE, 34 High Street, WELWYN, Herts. AL6 9EQ. Mind how you go!.
"Practically Yours" with GLEN ROSS, G8MWR

Updates

ONE of the nice things about doing this feature is the amount of feedback from readers on the projects which have been described. Sometimes this is just a matter of the user's experiences in using the gear or perhaps a rather unusual application. I also get some ideas for improving the original design. Two of these relate to the wide range audio generator and are well worth passing on.

The first one is from Jim Ellis of Worthing and gives some values for the capacitors to be used for range switching over the total bandwidth of the 8038 IC, from near DC to around 1 MHz. This is shown in Fig. 1 and is connected in place of C2 in the original circuit (July 1985 "PY"). An overall extension of the frequency range is possible by feeding the centre tap of RV2 via a 1N914 diode as shown in Fig. 2. Jim also comments on the fact that at very low output levels some samples of the 741 can add a significant amount of noise to the output. Whilst this may not normally be very important he puts forward the use of a LF351 IC in place of the 741 as a cure for this problem.

Another improvement to the circuit comes from John, GW3TZN. He found that whilst the square wave output from the 8083 was excellent the output from the buffer started to show some degradation of the leading edge rise time. This also showed as a slight flattening of the top of the sine wave output. John has replaced the buffers with a two-stage transistor circuit which is shown in Fig. 3. The transistors used in the original were 2N753 but any small audio transistor should be suitable. The resulting output is excellent on all functions up to 15 kHz with only a slight amount of distortion on the sine wave output as the frequency is further increased. It may be worth putting small capacitors, say 100nF, in parallel with C1 and C2 in Fig. 3 to further improve the bandwidth of the buffer.

UHF Generator

An idea for improving the usefulness of the UHF generator, which was described in the August 1985 issue, comes from Paul Thompson of Warwick. As it stands the unit produces only a carrier, but with addition of the small audio oscillator shown in Fig. 4 will provide a combination AM/FM modulation and so make the carrier easier to find if it is 'in the noise'. This is particularly useful when the unit is being used with an FM receiver.

Deviation: The preset control, should be adjusted to give the modulation level required, bearing in mind the fact that every time you multiply the fundamental the deviation will increase by the same factor. If the deviation is set for 5 kHz on 144 MHz then it will be 15 kHz on 432 and 45 kHz on 1296 MHz. It should therefore be set for use on the band that is most often used. An alternative approach for those who have the wide band audio oscillator mentioned earlier would be to mount a socket on the case of the UHF generator to which the AF oscillator could be connected. This would then provide a very versatile modulation system.

Either of these two ideas could also be applied to the microwave generator, which was described in "PY" for November 1985, by taking the audio input signal connection to the junction of R1/L1 in Fig. 3 of that article.

Six Metres

Several people have commented on the fact that a lot of the top receivers made in the 1950-1965 era tuned up to 54 MHz and so cover the new allocation at 50 MHz. The results on that band can vary between abysmal and excellent, my own Hammarlund HQ-170A being able to hold SSB with only an occasional tweak on the vernier tuning — and that with a free-running valve first oscillator at above signal frequency. A common problem, however, is with hum modulation of the local oscillator causing a nasty FM warble on the recovered audio; you may also notice this effect on 28 MHz.

Hum modulation: This is usually caused by the cathode of the oscillator valve acting as an anode with respect to cathode, and so
having a 50 Hz modulating voltage present which then modulates the incoming signal. The cure is to feed the oscillator, and possibly also the mixer stage, filament from a DC line. This is easily achieved by disconnecting the supply from the valve base and inserting a half-wave rectifier as in Fig. 5. The value of the capacitor needs to be found by trial and error to produce the required 6.3 volts on load, but is usually in the region of 3300 µF. The supply should be wired to give a positive supply to the valve, the cathode is usually near earth potential and so is negative with respect to the filament and the rectifying effect is eliminated. This very simple modification can give a dramatic improvement in results and is well worth the few minutes work and minimal cost that is involved.

A 4:1 Balun Transformer

An Easily Made Item for HF Band Use

P. C. COLE, G3JFS/DA1PE

IN the August 1985 issue of S.W.M. G3RJV described the construction of an HF balun transformer wound on ferrite rod removed from an old transistor radio. As George so rightly says, this little device, although one of the easiest things in the world to make, is surrounded by mystery and regarded with suspicion by many amongst us. I must admit that I had serious doubts when first I heard of the idea but practical experience over the last two years or so has shown that it does work, and so as my contribution towards helping to ‘enlighten the unenlightened’ here are details of a design which I have used on the HF DX bands to match 75-ohm coaxial cable to 300-ohm twin balanced feeder operating under matched conditions.

Fig. 1 gives the diagrams for the balun which consists of 8 bifilar turns of 18 s.w.g. enamel covered wire close-wound on a short length of long/medium waveband grade ferrite aerial rod from a pocket radio. (N.B. Jumble sales are a good hunting ground for the latter and 10p will often be sufficient to acquire title to a suitable scrap tranny' which will probably yield a few other useful bits for the junk box as well.) It doesn’t seem to matter much whether the bifilar wires are twisted together, as is usually recommended, or simply laid side by side. Personally I prefer the latter method for the thicker gauges of wire when making small diameter coils because it looks neater, but really it is more a matter for personal choice. Also, wire size is not unduly critical so don’t be afraid to use something different — even plastic covered flex if necessary — but do take great care to make the windings as tight and as even as possible in order to maintain circuit balance, and then secure them so that they don’t move about. This can be done by binding the end turns to the rod with strong thread and then treating the coil with a very light coating of coil varnish. Or another good method is to use heat-shrinkable plastic tubing over the ends of the windings, if you have the right size available.

From Fig. 1 it can be seen that the wiring of the balun is simple and straightforward. Take the start of one winding and join it to the finish of the other winding to form the common line which becomes the earth point for the unbalanced 75-ohm connection. The other ends of the windings then connect to the 300-ohm balanced feeder line whilst the unbalanced 75-ohm feed goes to one side or the other (which side doesn’t matter) of the balanced feed line. Here, of course, is where some of the doubts start to arise. How can a 75-ohm feeder connected across half of a balanced winding possibly become 300-ohm across the whole? Really it is quite simple! The two windings in series form a centre-tapped coil which acts as a 2:1 autotransformer, so that a voltage of V volts across the 75-ohm connections is transformed to 2V volts across the two windings in series. Assuming the circuit power is the same this means that the current flowing in the 300-ohm line is halved — double the voltage with half the current means that...
the impedance is increased by 4 times. Hence the 75-ohm is transformed to 300-ohm.

In the absence of more elaborate test equipment the arrangement given in Fig. 2 was used to make a practical evaluation of the balun and the following results were obtained on 21 MHz with a folded dipole cut from the bottom end of the band:

<table>
<thead>
<tr>
<th>Frequency</th>
<th>SWR</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.00 MHz</td>
<td>1:1.20</td>
</tr>
<tr>
<td>21.10</td>
<td>1:1.20</td>
</tr>
<tr>
<td>21.20</td>
<td>1:1.30</td>
</tr>
<tr>
<td>21.30</td>
<td>1:1.40</td>
</tr>
<tr>
<td>21.40</td>
<td>1:1.60</td>
</tr>
<tr>
<td>21.45</td>
<td>1:1.70</td>
</tr>
</tbody>
</table>

Taken alone these readings are, of course, no guarantee that the device is working efficiently. However after running 100 watts of 21 MHz RF through it for 5 minutes there was no sign of heating of either the core or the windings, so the transformer action would appear to be quite efficient, and in addition there was no difference in radiated signal strength when the balun was replaced by a conventional aerial tuning unit.

Muting Communications Transceivers

Simple Elimination of White Noise

ANTHONY GREEN, VS6EZ

Several years ago I was an avid user of Six Metres whenever I found it open. At the time, I was disappointed that the Icom IC-211, which I was using in conjunction with a Microwave Modules 2-metre to 6-metre transverter, had no muting circuitry when used on SSB.

I used to switch on the equipment, and with the RM3 scanning unit attached to the Icom 211, scan 50 and 52 MHz bands for activity. But having to listen to white noise for lengthy periods of time proved very irritating, and very conducive to switching off and thereby missing an opening.

I decided that there must be a way to scan in silence, and be alerted when the RM3 unit scanned through a signal. It was whilst searching through my collection of integrated circuits that I found an RCA CA3046; this is a 14-pin integrated circuit containing five npn transistors. This IC with a few extra components, silenced the white noise problem for good, and now the only noise coming from the Icom 211 in scan mode is a series of tones coming from the speaker as the RM3 unit tunes through a signal. This is sufficient to draw one’s attention to the presence of a signal on any band being used at the time, either with or without a transverter in front of the main set.

In the circuit diagram, the transistors have been numbered for ease of functional identification. TR1 and TR2 are emitter followers with R3 as the resistor from which the audio is taken via C4 to the input connection of the volume control. TR2 is biased for linear operation by the R1 and R2 network and is the audio input transistor which is connected via C2 to the wire which was originally connected to the input of the volume control before this new board was fitted.

A small amount of the audio signal is coupled via the miniature trimpot and C1 to the base of TR4 where it is amplified. The output of this stage is rectified in the voltage doubler circuit and a DC voltage proportional to the audio input signal is produced and is fed back to the base of TR3.
Table of Values

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>220k</td>
</tr>
<tr>
<td>R2</td>
<td>390k</td>
</tr>
<tr>
<td>R3, R5</td>
<td>47K</td>
</tr>
<tr>
<td>R4</td>
<td>560k</td>
</tr>
<tr>
<td>R6</td>
<td>10K</td>
</tr>
<tr>
<td>R7</td>
<td>2K2</td>
</tr>
<tr>
<td>RV1</td>
<td>470K sub-min. preset</td>
</tr>
<tr>
<td>C1, C3</td>
<td>0.1 µF</td>
</tr>
<tr>
<td>C2, C8</td>
<td>5 µF</td>
</tr>
<tr>
<td>C4, C5, C6</td>
<td>22 µF, 0.01 µF, 50 µF</td>
</tr>
<tr>
<td>GD1</td>
<td>germanium diode</td>
</tr>
<tr>
<td>GD2</td>
<td>germanium diode, OA91 or similar</td>
</tr>
<tr>
<td>SD1</td>
<td>silicon diode, 1N4148, 1N4149, 1N914 or similar</td>
</tr>
<tr>
<td>SD2</td>
<td>germanium diode, 0A91 or similar</td>
</tr>
<tr>
<td>RV1</td>
<td>470K sub-min. preset</td>
</tr>
<tr>
<td>C1, C3</td>
<td>0.1 µF</td>
</tr>
<tr>
<td>C2, C8</td>
<td>5 µF</td>
</tr>
<tr>
<td>IC1</td>
<td>RCA CA3046</td>
</tr>
</tbody>
</table>

Note: capacitor values above 1 µF are electrolytic 10-volt working or more, or tantalum types may be used; resistors are 1/4-watt or 1/4-watt rating.

In use, RV1 is adjusted until the mute just closes; this produces about 1 volt across C8. About 1.2 volt is needed on the base of TR3 before it switches on and in so doing, also switches on TR5 and unmutes the set. In the muted condition, both transistors will, at this stage, be turned hard off. Full line potential will appear on the collector of TR5, and by the interconnection, on to the base of TR1 which is the biased hard on. This action stops TR2 operating and no audio noise is fed out of C4 to the following audio amplifier stages.

If a real signal of sufficient strength is being received by the muting board, then a larger voltage will appear across C8 and this switches on TR3 and TR5. This reduces the voltage on the base of TR1 which then turns off. Audio signals are now able to pass through TR2 and then on to the following audio stages via the volume control.

Sometimes it is necessary to immobilise the action of the muting circuit whilst listening to very weak signals right on the threshold of the muting board’s operation. This mute defeat is achieved by SW1 which I fitted on the bottom of the set with flying leads back to the muting board.

Since the muting board is unnecessary during FM operation of the Icom 211, the unit is automatically defeated by the connection from the base of the transistor TR1 via SD1 to the mode switch.

When FM is selected, the cathode of SD1 is earthed. In my set, I connected it to a pink wire soldered to two connectors almost directly underneath the “S” meter on the switch contact plate closest to the front of the set. On other sets by different manufacturers a little bit of “poke and hope” in conjunction with a circuit diagram is called for, but little damage should be caused if SD1 is correctly fitted.

C5 and C6 are not strictly necessary to have in circuit, but I found that whilst adjusting RV1, the muting circuit was demodulating Radio Television Hong Kong’s medium wave English language service, so it is possible that sources of RF radiation will get into the circuitry at other locations. These two components can be left out unless found to be necessary.

C8 can be varied from 2 µF to 10 µF, or higher, depending on how long you wish the muting to stay open. A higher value holds it open longer, I found a 5 µF value satisfactory and the mute stays open during short pauses in speech.

R7 and ZD1 are used to bring the Icom 211 voltage rail down to around 8 volts to power the muting board which consumes only a few milliamps.

The circuit was built on a small piece of Veroboard and mounted inside the set, secured to a side wall of the chassis by a single screw on a point close to the volume control.

This small addition to my IC-211 has proved remarkably useful over the years, and can easily be used in other communications transceivers where muting would be an improvement. It has other applications such as super-regenerative sets and public address amplifiers.

Very handy indeed for the home- constructor (as well as many other applications) are the two models of the new ‘Spirig’ self-illuminated pocket microscope. The 30-power magnification Spirig-30 costs £18.90, and the 100-power Spirig-100 costs £27.90. Full information is available from Cobonic Ltd., 32 Ludlow Road, Guildford, Surrey GU2 5NW (tel: 0483-505260).
CLUBS ROUNDUP

By "Club Secretary"

W E have another great big pile of letters this month — the club activity scene is really booming of late — and so we must not waste too much space with chit. However, here is a thought for the New Year.

The new blood the club needs if it is to expand and flourish is virtually always by way of newcomers to the hobby, and these are most likely to be found through a note in the local paper. Here, you need to consider how the local paper operates; if it has a column for local activities, write out a brief note in the same style, and about the same length, and send it to the editor. If they like a picture to go with it, send them one. If they don’t use it, stuff as such, how about a write-up on the next event you do; or even how about thinking up an event you can write about? A sponsored QSO session for the local hospital, or something similar, would grab the fancy of the editor for certain. Of course, you make quite sure that the address quoted is one that can reach an active member . . . and away you go!

The Mail

Sometimes we wonder where it all comes from! Let’s make a start with Abergavenny & Nevill Hall and their activities at Pen-y-Fal Hospital, Abergavenny, in the room above Male Ward 2 every Thursday. Lots of happenings, and also a deal of effort in the way of RAE and Morse for the newcomers. More details from the Hon. Sec. — see Panel.

At Acton, Brentford & Chiswick we see they are to be found in the Chiswick Town Hall on January 21st, 1986, for the AGM. The Hq. is in Chiswick High Road, London.

Basingstoke has its base at Forest Ring Community Centre, Sycamore Way, Winkleybury, on the first Monday in each month; January 6 is a talk on 23cm. operation by G3NNG, and on February 3 they have a talk from Wood and Douglas on their kits.

For all the latest details on the Biggin Hill goings-on we must refer you to the Hon. Sec., albeit we do know that they foregather at St. Mark’s Church Hall, Biggin Hill, and we think it is the third Tuesday each month. However, check with him — see Panel for his details.

Now to Bishops Stortford; the third Monday in January is AGM-time, at the British Legion Club in Windhill. In addition, some of the gang can be found informally in the saloon bar of the “Nags Head” on the Dunmow Road every Thursday evening — usually decorating the bay window! Incidentally, this club has a nice idea: they have a A4 Planning Calendar and each year they mark up the various dates for the year, Xerox enough copies, and give one to each member.

A change of Hon. Sec. is noted at Borders; and doubtless she will be pleased to pass on the details of the group’s activities and Hq. — see Panel for the address.

The Borehamwood club gathers at the Organ Hall Community Centre, Birstow Close, Borehamwood, Herts. There are various activities going on among the membership, and they are often to be heard on Wednesday evenings on 144.270 MHz when they have a club net. More details from the Hon. Sec. — see Panel for the details.

We were amused to note that Branttree has added Leek to the left top of the map of their catchment area, which is the front cover design of the newsletter. The reason is that they have a member in Leek, up in Staffs, and they don’t want to lose him! The group is to be found on the first and third Monday each month at the Community Association, Victoria Street, which lies next to the bus park in the centre of Branttree.

Every Thursday Brodhurst group goes to the Parkwood Community Centre, Parkwood, Rainham, Kent; on January 23 they have a junk sale, and they seem to have a formal session with a talk once or twice every month.

Bristol now, and first we have Bristol City RSGB, which lives at the Small Lecture Theatre, University Walk, University of Bristol, Clifton; on January 27 they have their Annual General Meeting.

The other group from Bristol who report this time is called Bristol (Shirehampton) and this one is based at Twyford House, Lower High Street, Shirehampton, where they say they have a varied and interesting programme every Friday evening. More details from the Hon. Sec. — see Panel.

For the record there is another Bristol club, known as South Bristol, and they will be found further down the piece.

British Telecom (Reading) is a closed group for BT employees, which meets at various BT premises on the third Wednesday of each month; more details from the Hon. Sec. — see Panel.

Turning now to Burn we were sorry to see that G3VNQ was writing his last editorial in the newsletter before he emigrates to W9-land — but at least he had a mug-shot of himself in his shack so we could see the chap whose call we have been hearing for so many years! Meet the group on any Tuesday evening at their base at the Mosses Youth and Community Centre, Cecil Street, Bury; the ‘main’ meeting is on the second Tuesday each month; January 14 is on RTTY and given by G3VC.

Deadlines for “Clubs” for the next three months—

February issue—December 19th
March issue—January 31st
April issue—February 28th
May issue—March 28th

Please be sure to note these dates!

Cambridge Repeater Group has its meetings on Friday lunchtimes at the “Pike and Eel”, Chesterton, Cambridge. In addition they have the ‘Junk Sale Rally Extravaganza’ on February 23, at Pye Telecommunications, St. Andrews Road, Cambridge — all the details from the Hon. Sec. at the address in the Panel.

Hq. for the Cheltenham group is at Stanton Room, Charlton Kings Library, Cheltenham; January 3 is a talk on AMTOR by G3WHO, and on 17th they have a quiz with the Worcester club, at home.

For all the details of the January meetings at Cheshunt we have to refer you to the Hon. Sec. — see Panel for his address and number; but we can say that they are to be found on Wednesdays at the Church Rooms, Church Lane, Wormley, near Cheshunt. January 7 is AGM-time for Chester, and on 14th the construction contest winners will be doing the talking. January 21 will deal with the question of “What to do with Failed Projects”?(!) and on 28th they have a couple of videotapes to watch.

The Chichester members have their Hq. at Fernleigh Centre, 40 North Street, where they foregather on the first Tuesday and the third Thursday of each month. Usually they are in the Green Room. For programme details we have to refer you to the Hon. Sec. — see Panel.

On to Colchester where the Hq. is at Colchester Institute, Sheepen Road, on alternative Thursdays. More details from the Hon. Sec. — see Panel.

Cornish are nowadays based at the Church Hall, Treleigh, on the old Redruth bypass, where they meet on January 2 for another instalment of the G3WKP talk on his trips in Africa; and February 6 is ‘Impedance Matching’ by G1AJB.
At Crawley many of the meetings are at member's homes; this means a contact first with the Hon. Sec. as a courtesy. The 'main' meetings are at Trinity Church Hall, Ifield; for dates we must refer you to the Hon. Sec. — see Panel.

On Saturday, January 18 the Crystal Palace group will be hearing all about FAX — talking will be done by G8BMQ. Venue is All Saints Parish Rooms, Beulah Hill, Upper Norwood, London.

January 7 and February 4 are the two next gatherings of the Dartford Heath D/F Club at their base at the "Horse and Groom" pub at Leyton Cross, near Dartford Heath. The D/F Hunts go from various places, and details are given out at the meetings.

Next we go to Denby Dale, where the Hq. address is in the Pie Hall. Try room 3 (or the bar!) on any Thursday evening. January 1 is a noggin-and-natter session, and on 8th they have their AGM. January 15 is again a noggin-and-natter and on 29th they will be hearing about Fire Service communications.

January 1 at Derby is a junk sale, and on 8th they have the Mayoral Reception at the Council House, Derby. January 15 is down for a "Year in Retrospect" presentation. Hq. is at 119 Green Lane, Derby, where the gang has the whole top floor.

Now to Dorking, and here they have the informal on January 14, followed on 28th by the Annual General Meeting. The latter is at Ashcombe School, and the informals are at the Star and Garter Hotel, both near to Dorking BR station.

Another AGM is the one at Edgware on January 9; there is also the informal on 23rd; and both these are at Watling Community Centre, 145 Orange Hill Road, Burnt Oak, Edgware.

As for many years, the Fareham club is still based at Portchester Community Association, Westlands Grove, Portchester, Hants; on January 8th they will be looking into the RX80. January 15 is the AGM, and on 22nd they have a night-on-the-air. That leaves January 29 for a talk on the bands 1296 MHz up to 10 GHz.

The Falkirk group has its base at the Grange Centre, Brightons, near Falkirk; RAE and Morse are on Tuesday evenings, and in addition the club meetings are on the first and third Wednesdays at Hq. For programme details for January, we must refer you to the Hon. Sec. — see Panel.

The winner of the construction contest, G8ATK, will be holding forth at Farnborough on January 22; but on the informal night, January 8, G4MBZ has an "Off-the-Cuff Night!" The venue is the Railway Enthusiasts Club, Access Road, off Hawley Lane, Farnborough.

January 7 and 21 are the dates for Fylde members at their meeting place at the Kite Club, Blackpool Airport. Their sub includes membership of the Kite Club so they can go and watch aeroplanes whenever the fancy takes them for a break from radio! January 7 is the AGM, and on 21st they have the informal and Morse class.

The Glenrothes RAE and Morse classes are, respectively, on Mondays and Tuesdays at Balwearie High School in Kirkcaldy, while the club Hq. is at Provosts Land, Leslie. For the rest we have to refer you to the Hon. Sec. — see Panel.

We come next to the G-QRP Club; this is the one for those who enjoy operating with QRP, and also, very much for the people who enjoy home-building their station equipment. All the details from the Hon. Sec. — see Panel.

It looks as though the Grimsby dates have been 'adjusted' to accommodate the New Year festivities; they are meeting on January 9 for a talk on coaxial traps and dipoles and on 16th they have the computer night. That leaves January 23 for a talk on sunspots. All these are at Cromwell Social Club in Cromwell Road, and start at 8 p.m.

The Harrow crowd meets on Fridays at Harrow Arts Centre, High Road, Harrow Weald, in the Roxeth Room; January 3 they are still 'at home' and on 10th they have an activity night. January 17 is a film show, and on 24th they have an activity night again. Finally, on January 31, G4JNZ talks about 'Contests for All.'

The third Wednesday of each month is the main meeting date for Hastings: 7.45 p.m. at West Hill Community Centre, Croft Road, Hastings. Every Friday they are to be found also at the club room at Ashdown Farm Community Centre, Downey Close, off Harrow Lane. January 15 is a talk on aerals.

Our next stop is at hereford which means Fairkytes Arts Centre, Billet Lane, Hornchurch, on Wednesday evenings. There are no meetings for January 1 or 8; but things restart on 15th with the Annual General Meeting and on January 22 G8DPB will talk about SHF DX. January 29 is an informal.

At Hereford the locals have a place at County Control, Civil Defence Hq, Gaol Street, Hereford. On January 3 they have an audio-visual session (tape-and-slide lecture!) and on January 17 the informal club evening at Hq.

The Ipswich club magazine has details of the goings-on of umpteen different clubs. However it doesn't forget their own meetings; these are at the "Rose and Crown", on the corner of Bramford Road and Norwich Road, and they note the club room is entered separately from the bars.

Over the water now to I.R.T.S. This is the national society for Eire, and of course they know about all the club activities that goes on in EI-land. Details from the Hon. Sec. — see Panel.

We were sorry to hear from Kidderminster that member Bob Conway, G3JNE, died in August after a short illness; he was a superb CW operator and a very keen club member who will be greatly missed. Turning to the club, they now have their base at the Vice- Presidents Club, Harriers Football Ground, Hoo Road, Kidderminster, where they meet on January 7th for an on-air meeting and on January 22 for a talk on AMTOR by G3WHO, Peter Harris.

The Maxwelltown group has its base at the Tam'o Shanter Inn, Queensbury Street, Dumfries; January 8 is a committee meeting, and on January 22 they have a talk on first aid and safety in the shack. More details from the Hon. Sec. — see Panel.

We thought that it wouldn't be long before we heard again from Midland's G8GAZ after he 'retired' from the PRO job and sure enough he is back, as deputy PRO! He tells us that they have successfully completed the move from Broad Street, to the new venue at Unit 5, Henstead House, Henstead Street, Birmingham, where they are on the second floor up 36 steps — they are thinking of putting a chair on the landing for the OTs who need a rest on the way up! We believe they are there on Tuesdays, Wednesdays and Thursdays, but if in doubt call G8GAZ on S17 for the latest details.

At Morecambe Bay the locals head for the canteen of the Luneside Engineering Company, Mill Lane, Halton, near Lancaster, every Monday evening. January 6 is a talk on 'Audiology' by G1PMZ, and on 13th they have a Morse class. January 20 is the AGM and on 27th there is another Morse evening.

Meetings of the North Wakefield group are at the "White Horse" public house, East Ardsley, every Thursday evening. January 2 is the Chairman's Welcome talk, and on 9th they have a visit to the Blood Transfusion Service Hq. January 16 sees them heading for the Pontefract junk sale, and on 23rd they have a talk on the weather by the Leeds Weather Centre staff. Finally, January 30 for the monthly business meetings.

Now we turn to Nottingham where they have a room at Sherwood Community Centre, Woodthorpe House, Mansfield Road, Nottingham. On January 2 they are on the air, and on 9th they have a talk about 'Amateur Radio's Newest Frontier — Video'. January 16 is down for a talk by G4MHB about his trip to China, and on 23rd members talk about projects that nearly worked. Finally, on January 30 they have their forum for the month.

New One

To us, at least! Oldham get together every Thursday evening at Moorside Conservative Club, Rippenden Road, Moorside, Oldham. Additionally, we note they have a Mobile Rally, on January 26, at Birch Hall Hotel, Rhodes Hill, Lees, Oldham;
Plymouth Polytechnic also has a club nowadays, and we understand they have a Foxhunt on January 12; the start is at 1000 outside the Students Union, where the details will be given out to competitors and visitors. More details from the Hon. Sec. — see Panel.

Ponteefract means Carlton Community Centre, Carlton, which lies between Pontefract and the A1. They are having a Six Metres, and on January 20 they have a talk by Mr. D. McDonald on ocean racing.
Components Fair there on March 16 — details from the Hon. Sec., see Panel. January 6 at the same place is the annual junk sale, and on 23rd they have a project evening. January 30 is a talk on making transparencies by G4ISU.

For the details of the Poole Amateur Radio Society we must refer you to the Hon. Sec. — all we have is the handout covering their Poole Award, for working stations in Poole and members of the club.

At Reading the Hon. Sec. writes to say he will be giving up his post from January 1. Doubtless there will be a new appointee, but for the meantime we have no one to refer you to but him. We believe the locals get together in a pub in Emmer Green — and that's about all we have for the moment!

Reigate members will have a treat on January 21, when G3VLM talks about his homemade HF bands transceiver. This one is at the Constitutional and Conservative Centre, Warwick Road, Redhill, in the upstairs Meeting Room.

The Royal Navy club members are serving or retired RN types, or from the Merchant Navy or foreign navies. Details from the Hon. Sec. — see Panel for his details.

At Wakefield the local club lives at Ossett Community Centre, Prospect Road, Ossett. January 8 is a natter night, and on January 22 they have the RSGB tape-and-slide talk on semiconductors.

The Welwyn-Hatfield club Hon. Sec. gives no details of the venue, but says they are in session on January 6 for an RTTY demonstration, and on 20th when they will be active on Eighty. More details from the Hon. Sec. — see Panel.

Every Wednesday evening the White Rose club meeting takes place at Moortown RUFC, Moss Valley, King Lane, Leeds. The shack is open on January 1 and on 8th there is a test gear night. January 15 is a natter night, and on 22nd G4ATZ talks about amateur radio in Jordan as JY9WR. January 29 is another natter.

It's a long time since last we heard of Wimbledon; they are still at the St. John Ambulance Hq. Kingston Road, Wimbledon, where on January 31 they have a talk on cellular radio by G4ULM.

The first and last Tuesdays of January are both on-the-air sessions for Wolverhampton. That leaves a discussion night on 22nd, and for January 21 they have B4PZA to talk about the Radio Regulatory Department.

At Worcester the Oddfellows Hall, New Street, seems to have become the only Hq. January 6 is on Police communications, and on 15th there is an informal. January 7 is a quiz against Cheltenham, at Cheltenham.

Now Worthing, which now has its base at Lancing Parish Hall, South Street, Lancing. It looks to be every Wednesday evening there, though we are a little out-of-date.

Meteor scatter will be discussed by G4GZA at Worksop on January 14, and on 28th G4KMA talks about simple test gear. The venue is the Sub-Aqua Club, The Maltkins, Gateford Road, Worksop.

At Yeovil the locals gather every Thursday evening at the Recreation Centre, Chilton Grove, Yeovil.

York has its Hq. at the United Services Club, 61 Micklegate, York, every Friday — all visitors are welcome. More details from the Hon. Sec., see Panel.

Finally, we have 308 which has its base at the Coach House, Church Hill Road, Surbiton, Surrey. For the other details we must refer you to the Hon. Sec. — see Panel for his details.

Finis

That's it for another month, and the time has come to mention deadlines — they are in the 'box' in the body of the piece and are the dates for arrival of your letters, addressed to your "Club Secretary", SHORT WAVE MAGAZINE, 34 High Street, Welwyn, Herts. AL6 9EQ.
S.E.M. UNION MILLS, ISLE OF MAN
Tel: MAROWN (0624) 851277

S.E.M. TRANZMATCH. The most VERSATILE Aerial Matching (Tuning) Equipment is one of largest in the country, send large SAE for full details. Our secondhand equipment is one of largest in the country, send large SAE for full details.

Send large SAE for full details. Our secondhand equipment is one of largest in the country, send large SAE for full details.
MORSE KEY KITS

BUILD YOUR OWN SOLID BRASS MORSE KEY
ONLY £19.95 + £2.00 P&P
(Excludes base)
Goods in stock, by return

POLISHED WOOD BASES AVAILABLE £7.70 + £1 P&P

Kit contains all components and instructions. Just provide a base and assemble, alternatively use our finished wood base, average assembly time is less than one hour and requires no special tools.

Ball race bearings essential for quality performance. Solid silver contacts. Precision contact adjustment using fine pitch threaded screws.

Please send S.A.E. for further information.

THIS PRODUCT IS OBTAINABLE ONLY FROM

R. A. KENT
ENGINEERS
243 CARR LANE, TARLETON, PRESTON, LANCs PR4 6YB.
Tel: Hesketh Bank (0774-73) 4998.

UK LISTENERS
CONFIDENTIAL FREQUENCY LIST

The second edition of our frequency guide has just been published. Essential reading for the short wave listener who enjoys listening outside the amateur bands. This guide covers 2-30MHz and lists a wide range of transmissions that can be heard regularly in the UK. Unlike any other publication, this has been especially produced for the UK short wave listener. Only a fraction of the price of some other publications, it sets out neatly in a highly comprehensive manner, information that has never before been put together in one publication. Again unlike competitive guides this one includes both broadcast stations of the World together with Marine, Air, Military, Embassy, Press and News Agencies, etc. etc. It tells you the frequencies used by civil and military aircraft whilst flying the Atlantic, when and where to hear the latest press bulletins, long distance marine traffic, and much more. This new edition includes comprehensive details of RTTY stations together with time schedules.

Send today for your copy or contact any good amateur radio dealer.

£4.95p&p 50p
SHOP & MAIL ORDER: 18–20 MAIN ROAD, HOCKLEY, ESSEX.
Tel: 0702 206835

THE QUARTZ CRYSTAL SPECIALIST

AMATEUR RADIO CRYSTALS FROM STOCK
4m, 2m, 7cm and transverter/converter
MICROPROCESSOR from MARKER CRYSTALS
DOUBLE BALANCED MIXERS M8 and M18
PIN compatible with MD108 and SBL1
but with superior spec available from stock.

WE CAN SUPPLY CRYSTALS TO MOST COMMERCIAL AND PROFESSIONAL SPECIFICATION INCLUDING COLD WELD SPECS.
CRYSTAL SOCKETS for HC6/u, HC13/u and HC25/u

MADE TO ORDER SERVICE
OVER FREQUENCY RANGE 6KHz to 250MHz with express service if required
For full details of the above services, please send s.a.e.
relative to the U.K., the Zone areas into which the world is

b. “S.W.M.” DX ZONE MAP

Latest 10th Edition!
Great Circle Projection on durable, quality, paper for wall mounting. 55% in. deep, by 24½ in. wide. Giving essential DX information—bearing and distance of all parts of the world relative to the U.K., the Zone areas into which the world is divided for DX purposes, with major prefixes listed separately. Distance scale in miles and kilometres. Time scale in GMT. Marking of Lat./Long. close enough for accurate plotting. Hundreds of place names, mainly the unusual ones, and most of the rare islands.

Price £4.35 inc. p/p
Publications Dept.
Short Wave Magazine Ltd.,
34 High Street, Welwyn, Herts. AL6 9EG.

AMATEUR RADIO SOFTWARE
by John Morris, GM4ANB

In this newest RSGB hardback publication, ready-to-run programs are presented for Satellites, CW, RTTY, Data, Antennas, Propagation, Locators, Sun and Moon, Circuit Design Aids, as well as 97 other useful programs.

328 pages
£8.60 inc. p/p
Publications Dept.
Short Wave Magazine Ltd.,
34 High Street, Welwyn, Herts. AL6 9EQ.
READERS ADVERTISEMENTS
10p per word, minimum charge £1.50 payable with order. Add 25 per cent for Bold Face (Heavy Type). Please write clearly, using full punctuation and recognised abbreviations. No responsibility accepted for transcription errors. Box numbers 10p extra. Send copies, with remittance, to the Classified Dept., Short Wave Magazine Ltd., 34 High Street, Welwyn, Herts. AL6 9EQ. Prices include VAT.

Copy must be received by January 17th to be sure of inclusion in the February issue, published on January 31st.

READERS

For Sale: Yaesu FT-101ZD transceiver, with narrow filter, microphone, keys and Yaesu headphones, perfect condition, £420. — Ring Smith, Abingdon (0235) 834474.

Offering: Drake TR-5, mint condition, reasonable offers invited. — Ring Carpenter, 0432-59056.

Sale: Trio R-300 and SMC-73, 0.5 to 30 MHz, bandspread tuning, amateur bands, mint condition, £80 each. — Pogson, 7 Long Acre, Mablethorpe. (Tel: 0521-72191).

Selling: Rex-Rotary 400 duplicator, with instruction manual, very good condition, little used, suitable for club newsletters, etc., buyer must collect (compact: 14" x 14" x 18"), reasonable offers only. — Watts, 62 Belmore Road, Norwich. (Tel: 0603-33103).

Wanted: Inexpensive HF transceiver, defective condition considered. — Ring Hobden, G3XMY, Plymouth 47157.

For Sale: R.532 aircraft band receiver, £125. Acorn BBC Teletext adaptor, £100. Both items as new. — Ring Devine, 0924-825025.

Sell or Exchange: Sony ICF-2001 HF receiver, with PSU, 2 sets of Nicads, manual, original packing, £90 or near offer. Wanted: HW-8, Icom IC-202S or 2m./FM portable. — Ring Dunne, G4VLE, 061-480 1549 (Cheshire).

For Sale: LAR Omni-Match Antenna Tuning Unit, £30. Wanted: cheap digital scanning receiver, about £100. — Wood, Sylvania, Enzie, Buckie, Banffshire AB5 2BN.

February issue: due to appear on Friday, January 31st. Single copies at £1.60 post paid will be sent by first-class mail for orders received by Wednesday, January 29th, as available. — Circulation Dept., Short Wave Magazine, 34 High Street, Welwyn, Herts. AL6 9EQ.

Selling: Datong Model MK Morse keyboard, in excellent order complete with instructions, £90. — Ring Hill, 0242-528431.

Wanted: Trio TS-700S, must be perfect with original packing and manual. — Wormald, G3GGL, 20 Sandbourne Drive, Bewdley, Worcs. (Tel: 0299-403372).

For Sale: Microwave Modules MMT 432/28S, new, £90. FP-700 PSU/LS, £75. Drake TR4-CW, with MS-4 and Shure mic., £375. — Ring Smith, 0707-328831.

Sale: FT-101E, SSB/AM, plus 600 Hz CW, AC/DC with leads, covers 160-10m., with speaker, fan and manual, very good condition, £350. — Ring 0442-45030.

Active Antennas

Satisfaction for you and your neighbours! Highly unobtrusive yet ideal for DX reception, Datong actives feature a dipole (not a monopole) for optimum rejection of local interference.

Price: AD270 £51.75 Inc. VAT (indoors only); AD370 £69.00 Inc. VAT (weatherproof)

To order simply dial 0532 552461 or write with cheque or postal order to Dept SW Datong Electronics Ltd., Spence Mills, Mill Lane, Bramley, Leeds LS13 3HE, England

Access/Barclaycard welcome — Fast delivery service
Catalogue and data sheets on any product available free on request. Dial 0532 552461
USED AMATEUR EQUIPMENT?
I Buy, Sell & Exchange!

SELLING? I pay the BEST POSSIBLE PRICES for your Clean Used Equipment!
For the Deal You've been Looking for,
Phone Dave, G4TNY ANYTIME ON HORNCHURCH (04024) 57722
or Send SAE
G4TNY AMATEUR RADIO
132 Albany Road, Hornchurch, Essex RM12 4AQ.

CALL or phone for a most courteous quotation
01-749 3934

It TRANSISTORS
We are one of the largest stockists of valves etc. in the U.K.

D. P. HOBBS NORWICH LTD.
G3HEO
ELECTRONIC COMPONENT SPECIALISTS
AGENTs FOR:
FDK — ICOM — YAESU — WELZ — JAYBEAM — DRAE
Part exchange welcome
Access, Barclaycard + Credit Terms Available
13 ST. BENEDICT'S ST., NORWICH. Tel. 615786

G2VF Inventor and proprietor of Patent for VARIABLE HIGH FREQUENCY FRAME ANTENNA offers circuit and full assembly details for the modest sum of £5. A Do-It-Yourself project. Components required to be found in most Ham shacks. Most expensive components, two variable tuning capacitors. Antenna twenty-one inches square, mounts on top of control box, fully retractable from operating position, tunable all the way 80 to 10 metres there being only one inductance. SWR One to One 40, 15 and 10 and One Point Five to One 80 and 20. R9 on CW from JA, W areas O to 9, VE 1 to band all Europe. Ninety awards obtained with frame. Maximum power 100 watts. NEW EFFICIENT L.W. AND M.WAVE FRAME ANTENNA. 21 inches square. D.I.Y. project. Circuit, parts list, assembly data £3. Ideal Caravan and flat dwellers.

February issue: due to appear on Friday, January 31st. Single copies at £1.60 post paid will be sent by first-class mail for orders received by Wednesday, January 29th, as available—Circulation Dept., Short Wave Magazine, 34 High Street, Welwyn, Herts. AL6 9EQ.

Course for City & Guilds, Radio Amateur's Examination. Pass this important examination and obtain your licence, with an RRC Home Study Course. For details of this and other courses (GCE, Career and professional examination, etc.) write or phone: THE RAPID RESULTS COLLEGE, Dept. JV8, Tuition House, London SW19 4DS. Tel: 01-947 7272 (9 a.m. to 5 p.m.) or use our 24 hour Recordacall Service, 01-946 1102 quoting Dept. JV8.

Amidon toroidal cores, ferrite rings and beads. Send s.a.e. for data and prices. Business hours: 10-5 p.m. Tues., Wed., Fri.; 10-4 p.m. Sat. — SMC (TMP Electronics), Unit 27, Pinfold Workshops, Pinfold Lane, Buckley, Clwyd CH7 3PL.

Peace and Quiet: Self-catering (£15-£120), central touring, omni for DX-ing (GOATS shack). — "Chylean", Tintagel, Cornwall PL34 0HH. (Tel: 0840-212262).

Amateur Radio equipment bought, sold, exchanged. Contact Dave, G3RQQ, Hornchurch (04024) 55733 evenings 6-9 p.m., Prettel MBX402455733, or send s.a.e. for current list. — G3RQQ, 65 Cecil Avenue, Hornchurch, Essex RM11 2NA.
AMATEUR RADIO OPERATING MANUAL
(RSGB)
Latest Third Edition
204 pages
Publications Dept. £6.10 inc. p/p
Short Wave Magazine Ltd.,
34 High Street, Welwyn, Herts. AL6 9EQ

TELEPRINTER HANDBOOK
2nd Edition
This RSGB book, edited by GBGOJ, G3IR and G2UK, is one of the most comprehensive guides available to the theory and practice of amateur RTTY, and is a "must" for anyone seriously interested in this mode. Fully illustrated with line diagrams and close-up photos, it provides descriptions and servicing information for several popular European and American machines as well as other essential RTTY equipment. Plus chapters on setting up an RTTY station and operating procedures. Published in hardback.
308 pages
Publications Dept. Short Wave Magazine Ltd.,
34 High Street, Welwyn, Herts. AL6 9EQ. £12.70 inc. p/p

CALL BOOKS
RADIO AMATEUR CALL BOOKS (1986)
International Listings. £17.20
North American Listings. £17.90
U.K. Callbook, 1985 Edn. (RSGB) £17.50

MAPS
"SHORT WAVE MAGAZINE" DX ZONE MAP
(GREAT CIRCLE) in colour. Latest 10th edition. £4.36
RADIO AMATEUR'S WORLD ATLAS In booklet form, Mercator projection, for desk use. Gives Zones and Prefixes. Latest 12th edition. £2.75

LOG BOOKS
Amateur Radio Logbook £2.70
Receiving Station Log £2.75
Mobile Logbook £1.20

(Prices include postage and packing)
Available from:
Publications Dept.
Short Wave Magazine
34 High Street, Welwyn, Herts. AL6 9EQ
Tel: Welwyn (043871) 52067
(Counter Service, 9.30-5.00 Mon. to Fri.)

AMATEUR RADIO OPERATING MANUAL
(RSGB)
Latest Third Edition
204 pages
Publications Dept. £6.10 inc. p/p
Short Wave Magazine Ltd.,
34 High Street, Welwyn, Herts. AL6 9EQ

TELEPRINTER HANDBOOK
2nd Edition
This RSGB book, edited by GBGOJ, G3IR and G2UK, is one of the most comprehensive guides available to the theory and practice of amateur RTTY, and is a "must" for anyone seriously interested in this mode. Fully illustrated with line diagrams and close-up photos, it provides descriptions and servicing information for several popular European and American machines as well as other essential RTTY equipment. Plus chapters on setting up an RTTY station and operating procedures. Published in hardback.
308 pages
Publications Dept. Short Wave Magazine Ltd.,
34 High Street, Welwyn, Herts. AL6 9EQ. £12.70 inc. p/p

CALL BOOKS
RADIO AMATEUR CALL BOOKS (1986)
International Listings. £17.20
North American Listings. £17.90
U.K. Callbook, 1985 Edn. (RSGB) £17.50

MAPS
"SHORT WAVE MAGAZINE" DX ZONE MAP
(GREAT CIRCLE) in colour. Latest 10th edition. £4.36
RADIO AMATEUR'S WORLD ATLAS In booklet form, Mercator projection, for desk use. Gives Zones and Prefixes. Latest 12th edition. £2.75

LOG BOOKS
Amateur Radio Logbook £2.70
Receiving Station Log £2.75
Mobile Logbook £1.20

(Prices include postage and packing)
Available from:
Publications Dept.
Short Wave Magazine
34 High Street, Welwyn, Herts. AL6 9EQ
Tel: Welwyn (043871) 52067
(Counter Service, 9.30-5.00 Mon. to Fri.)

Butterworth Group publications now in stock
Two-Metre Antenna Handbook £6.35
Beginners Guide to Radio, 9th edition £5.46
Beginners Guide to Electronics, 4th edition £5.45
Beginners Guide to Amateur Radio £5.45
Beginners Guide to Integrated Circuits, 2nd edition £5.00
Projects in Amateur Radio and Short Wave Listening £5.20
Guide to Broadcasting Stations, latest 18th edition £5.50
The World's Radio Broadcasting Stations and European FM/TV Guide £8.00
Semiconductor Data, new 11th edition £8.50
Foundations of Wireless and Electronics, 10th edition £10.00
Practical Handbook of Valve Radio Repair, new title £17.15
Electronics Pocket Book, new 4th edition £6.20
Oscilloscopes - How to Use Them, How They Work £6.00

prices include postage and packing

Publications Dept. SHORT WAVE MAGAZINE LTD.
34 HIGH STREET, WELWYN, HERTS. AL6 9EQ

BECOME A RADIO AMATEUR
Train now for the Radio Amateur Licence examination. No previous knowledge needed, only a few hours per week of home study for 3 to 6 months. Post coupon now for details or tel. 062-67-6114 (24 hr service)
British National Radio & Electronics School
P.O. Box 7, Teignmouth, Devon, TQ14 OHS
FREE brochure without obligation from:
British National Radio & Electronics School
P.O. Box 7, TEIGNMOUTH, DEVON, TQ14 OHS

Butterworth Group publications now in stock
Two-Metre Antenna Handbook £6.35
Beginners Guide to Radio, 9th edition £5.46
Beginners Guide to Electronics, 4th edition £5.45
Beginners Guide to Amateur Radio £5.45
Beginners Guide to Integrated Circuits, 2nd edition £5.00
Projects in Amateur Radio and Short Wave Listening £5.20
Guide to Broadcasting Stations, latest 18th edition £5.50
The World's Radio Broadcasting Stations and European FM/TV Guide £8.00
Semiconductor Data, new 11th edition £8.50
Foundations of Wireless and Electronics, 10th edition £10.00
Practical Handbook of Valve Radio Repair, new title £17.15
Electronics Pocket Book, new 4th edition £6.20
Oscilloscopes - How to Use Them, How They Work £6.00

prices include postage and packing

Publications Dept. SHORT WAVE MAGAZINE LTD.
34 HIGH STREET, WELWYN, HERTS. AL6 9EQ
THE ARRL ANTENNA COMPENDIUM

Volume 1

Just published by the ARRL, this book makes fascinating reading of hitherto unpublished material, and will appeal to every antenna experimenter. Among topics discussed are Quads and Loops, Log Periodic Arrays, Beam and Multi-band Antennas, Verticals and Reduced Size Antennas. There is a section on Antenna Construction and Installation, as well as a chapter giving General Antenna and Transmission Line Information.

175 pages £8.95 inc. p/p

Order from:
Publications Dept.
SHORT WAVE MAGAZINE LTD.
34 HIGH STREET, WELWYN,
HERTS. AL6 9EQ

THE ARRL 1986 HANDBOOK
for the Radio Amateur

63rd Edition
available during January

Each of the 40 chapters in this year’s edition has had some revision, with over 500 new or revised diagrams, resulting in a page total increase to 1184; new material on today’s major topics represents 532 pages and includes sections on Digital Electronics and Special Modulation Techniques. A new section covers remote control of model aircraft and vehicles. 27 new projects are described including PA’s for 1.8, 50, 144 and 1296 MHz, and preamps and transverters for the VHF/UHF enthusiast. Remains, as always, the radio amateur’s “bible”!

soft cover: £16.00 inc. p/p
hard cover: £23.50 inc. p/p

Order from:
Publications Dept.
SHORT WAVE MAGAZINE LTD
34 HIGH STREET, WELWYN,
HERTS. AL6 9EQ

THE SATELLITE EXPERIMENTER’S HANDBOOK

Recently published by the ARRL, this superb handbook provides all you need to know to communicate through, or pick up the signals from, orbiting satellites — whether your interest is in amateur-radio, weather or TV-broadcast satellites. Chapter headings include: — Preliminaries, Early Days, Past/Present/Future, Getting Started, Tracking Basics, Ground Station Antennas, Receiving and Transmitting, Satellite Orbits, and more; plus Tables and Charts.

Whether you are a beginner or an expert, if your interest is satellites, and particularly Amateur Radio “birds”, this book is indispensable and unreservedly recommended.

208 pages £9.70 inc. p/p

Order from:
Publications Dept.
SHORT WAVE MAGAZINE LTD.
34 HIGH STREET, WELWYN,
HERTS. AL6 9EQ

WORLD RADIO/TV HANDBOOK 1985

The World’s only complete reference guide to International Radio & Television Broadcasting Stations. It includes: Frequencies, time schedules, announcements, personnel, slogans, interval signals and much more besides of value to the listener. Lists all international short-wave stations, including frequencies, for each country; foreign broadcasts, long and medium wave stations (AM broadcast Band), TV stations and domestic programmes. Long recognised as the established authority by broadcasters and listeners. It is the only publication that enables you to identify BC stations quickly and easily. Enables you to fill more pages in your log book on the SW BC bands and helps you add more BC-station QSL cards to your collection.

£19.15 inc. p/p

Order from:
SHORT WAVE MAGAZINE
34 High Street, Welwyn, Herts. AL6 9EQ
1986 "CALL BOOK"

NORTH AMERICAN LISTINGS
(lists licensed amateurs in all North American countries, plus Hawaii and U.S. possessions)

In this issue...
★ 470,896 licensed U.S. radio amateurs
★ 31,207 new U.S. licenses included, issued since the 1985 edition
★ 107,676 changes in listings
★ Then & Now — call letter changes
★ QSL managers
★ ARRL Countries list
★ Zip Codes and Licence Class on all listings
★ Standard Time charts
★ Plus many other features

NOW IN STOCK! £17.90 inc. postage

(a few 1985 U.S. Listings still available, at £8.50 each inc. p/p)

Publications Dept.
SHORT WAVE MAGAZINE LTD.
34 HIGH STREET, WELWYN, HERTS. AL6 9EQ

1986 "CALL BOOK"

INTERNATIONAL LISTINGS
(lists all licensed amateurs outside countries in North America, Hawaii and U.S. possessions)

In this issue...
★ 431,929 licensed Radio Amateurs
★ 43,648 new licences included, issued since the 1985 edition
★ 79,994 changes in listings
★ QSL managers
★ Radio amateur prefixes of the world
★ ARRL Countries list
★ Standard Time charts
★ Census of world Amateur Radio licenses
★ Plus much, much more!

NOW IN STOCK! £17.20 inc. postage

(a few 1985 DX Listings still available, at £8.50 each inc. p/p)

Publications Dept.
SHORT WAVE MAGAZINE LTD.
34 HIGH STREET, WELWYN, HERTS. AL6 9EQ

BETTER SHORT WAVE RECEPTION

by William I. Orr W6SAI and Stuart D. Cowan W2LX

Latest 5th Edition

In the latest edition of this excellent work for all those who own (or intend to own) a radio receiver, these two well-known and respected writers have produced chapters covering: the radio spectrum and what you can actually hear world-wide; the tuning of a shortwave receiver; the business of buying a receiver, both new and secondhand; a description of the SW Rx in non-technical terms, together with receiver adjustment and alignment; DX-ing above 30 MHz; a description of the VHF receiver; building and adjusting efficient aerials; reception techniques.

Thoroughly readable and "digestible", this book is without doubt a very valuable addition to the bookshelf of any SWL.

160 pages £6.20 inc. post.

Order from:

Publications Dept.
Short Wave Magazine Ltd.
34 High Street, Welwyn, Herts. AL6 9EQ

SIMPLE, LOW-COST WIRE ANTENNAS
by William Orr, W6SAI

Latest Edition

This excellent and thoroughly recommended handbook is the publication on the practical approach to building aerials. After starting with aerial fundamentals there are discussions and descriptions of ground-plane, end-fed, DX dipole, vertical and wire beam antennas, plus coverage on a universal HF antenna system and working DX with an "invisible aerial"; the SWR meter and coaxial cable also have chapters to themselves.

The whole book is presented in an authoritative, immensely clear, readable and enjoyable manner with the emphasis on the practical throughout — to the extent that even the chap who can hardly strip a piece of co-ax need not feel at all left out! Just as practical for the SWL, too!

192 pages £6.20 inc. post.

Order from:

Publications Dept.
Short Wave Magazine Ltd.
34 High Street, Welwyn, Herts. AL6 9EQ
Technical Books and Manuals

(ENGLISH AND AMERICAN)

AERIAL INFORMATION

Antenna Book (Gordon Cowan) .. £7.75
Beam Antenna Handbook .. £6.40
Cubical Quad Antennae: 3rd Edition £6.80
Simple Low Cost Wire Antennas, by Orr £6.20
Aerial Projects (Penfold) .. £2.30
Antenna Book (ARRL) latest 14th Edition £4.50
The (ARRL) Antenna Anthology ... £8.00
Two-metre Antenna Handbook, F. C. Judd £8.50
HF Antennas for All Locations (RSGB) £6.66
25 Simple Shortwave Broadcast Band Aerials £2.25
25 Simple Indoor and Window Aerials £2.05
25 Simple Tropical and MW Band Aerials £2.05
The ARRL Antenna Compendium, Vol. 1 (new title) £8.95

BOOKS FOR THE BEGINNER

Amateur Radio (Lutterworth Press) £9.60
Solid State Short Wave Receivers for Beginners (R. A. Penfold) £2.25
Beginners Guide to Electronics, 4th Edition £5.45
Beginners Guide to Amateur Radio (Newnes) $5.00
Beginners Guide to Integrated Circuits, 2nd edn. £5.00
Guide to Amateur Radio, 16th Edition (RSGB) £3.40
Morse Code for the Radio Amateur (RSGB) £5.50
Understanding Amateur Radio (ARRL) £6.90
Radio Exam Manu., latest 11th edition (RSGB) £3.90
How to Pass the Radio Amateurs’ Examination (RSGB) £3.30

GENERAL

Weekend Projects for the Radio Amateur (ARRL) £3.05
Projects in Amateur Radio and Short Wave Listening (Penfold) £4.20
How to Build your own Solid State Oscilloscope (Rayer) . £2.25
How to Design and Make Your Own PCB’s £2.25
How to Build Advanced Short Wave Receivers £2.25
Better Short Wave Reception, (5th Ed) £6.20
FM & Repeaters for the Radio Amateur (ARRL) £4.35
Easibinder to hold 12 copies of “Short Wave Magazine” together . £8.00
The World’s Radio Broadcasting Stations and European FM/TV (Newnes) £8.10
Guide to Broadcasting Stations (18th Edition) £5.50
International Radio Stations Guide (new ed) £3.25
Long Distance Television Reception (TV-DX) for the Enthusiast (revised edition) £0.00
An Introduction to Radio DXing (14th Edition) £2.45
Power Supply Projects (Penfold) £2.80
Long Distance Television Reception (TV-DX) for the Enthusiast (revised edition) £0.00
An Introduction to Radio DXing (14th Edition) £2.45
Radio Power Supply Projects (Penfold) £2.80

HANDBOOKS AND MANUALS

Radio Communication Handbook, Vols. 1 and 2 combined (paperback), RSGB £12.70
Teleprinter Handbook, New 2nd Ed. (RSGB) temp. O/P
TVJ Manual (2nd Edn.) (RSGB) £2.20
The ARRL 1986 Handbook for the Radio Amateur, softcover £16.00
The ARRL 1986 Handbook for the Radio Amateur, hardcover £23.00
Weather Satellite Handbook ... £9.70
The Satellite Experimenter’s Handbook (ARRL) £5.75
Amateur Radio Operating Manual (RSGB) 3rd Ed. £6.10
Oscilloscopes — How to Use Them, How They Work (Newnes) £0.00
Practical Handbook of Valve Radio Repair (Newnes) £17.15

USEFUL REFERENCE BOOKS

Solid State Design for the Radio Amateur (ARRL) £7.60
Foundations of Wireless and Electronics, 10th Edition (Scroggie) £10.05
Amateur Radio Techniques, 7th Edn. (RSGB) £6.50
Hints and Kinks (ARRL) ... £4.40
Electronics Data Book (ARRL) £5.00
Radio Frequency Interference (ARRL) £2.40
Amateur Radio Awards, (RSGB) £6.20
Radio Data Reference Book, new 5th edition (ARRL) £8.90
Amateur Radio Software (RSGB) new title £8.60

VALVE AND TRANSISTOR MANUALS

Towers’ International Transistor Selector, latest 1987 Edition (Up-Date No. 3) £14.50
International Diode Equivalents Guide £3.40
International Diode Equivalents Guide £2.60

SEMICONDUCTOR MANULS

Amateur Radio Awards, 11th Edition (Newnes) £8.50
International Diode Equivalents Guide £3.40

USEFUL REFERENCE BOOKS

Foundations of Wireless and Electronics, 10th Edition (Scroggie) £10.05
Electronics Data Book (ARRL) £5.00
Radio Frequency Interference (ARRL) £2.40
Amateur Radio Awards, (RSGB) £6.20
Radio Data Reference Book, new 5th edition (ARRL) £8.90
Amateur Radio Software (RSGB) new title £8.60

VHF PUBLICATIONS

VHF/UFH Manual (RSGB) 4th edition £11.20

THE ABOVE PRICES INCLUDE POSTAGE AND PACKING

O/P (Out of print) ...
O/S (Out of stock) ..

Available from

SHORT WAVE MAGAZINE

Publications Dept.

34 High Street, Welwyn, Herts. AL6 9EQ. — Welwyn (043871) 5206/7

(Counter Service: 9.30 — 5.00 Mon. to Fri.)

(ARRL) A/C No. 5476151