October 1984
Volume 42 Number 8

G3RJV reviews the Timestep MON-2M Receiver Kit
G3TXF on the CQ Worldwide Contests

FOR THE RADIO AMATEUR AND AMATEUR RADIO
THE SHORT WAVE MAGAZINE

October, 1984

FRG7 OWNERS ARE GOING — DIGITAL AND SIDEWAYS

And you can join them by using our custom designed DFC70 digital frequency counter. The DFC70 is specifically designed for the FRG7 and gives rock steady read out on all bands with 100Hz resolution. Signal frequency is computed and displayed unambiguously on a state of art LCD display specially made for us in Japan. It is not necessary to drill any holes and only one wire has to be connected to a well marked test point in the receiver.

DFC70 Kit £19.95 Built and tested module £24.95

Will also work with the Lowe SRX30 and Drake SSR/1.

TEN TO TWENTY THE SHORT WAVE MAGAZINE

With our new FM? adaptor module, you will be able to receive sideways modulation (FM as it is otherwise known). Our superb state of art FM detector uses the very latest 3359 chip from Motorola, and has a built in IF filter and a variable squelch control for noise free monitoring. Although specially designed for the FRG7 in mind, it will happily work with other receivers or transceivers with a 45kHz IF amplifier. The FM7 will add a whole new dimension to your listening activities. You will of course be able to follow legal CB contacts but you will also hear the exciting DX being worked by amateurs on 10 metre FM. Used in conjunction with our DFC7 counter, you can accurately tune to a specific CB or amateur channel and be so sure that you will not miss whatever goes on.

KR Price £9.95 Tested Module £14.95 P&P £1.00 (VAT inc.)

For FM reception on receivers with any IF up to 50MHz, the FM 42 is the answer to all your problems. Please state frequency required when ordering.

KR Price £14.00 Tested Module £19.00 P&P £1.00 (VAT inc.)

TIMOTHY EDWARDS MK2 144 mHz PRE-AMP

We are proud to announce that the well known RF consultant Timothy Edwards has given us the exclusive marketing rights to his new 2 metre pre-amp. Timothy Edwards RF designs are used by British Telecom amongst others and so you can be sure that this pre-amp will perform to perfection. It employs the incomparable BF981 which has a better noise figure at 2M than the often used 3SK88. Spec. Size (tiny) 34mm x 9mm x 15mm (same as Mk1) Noise figure 1.0db Gain 26db KIT PRICE £4.95 (inc VAT & P&P).

NEW LCD COUNTERS

At last a new range of 5 digit LCD counters that will cover up to 200MHz and give 1KHz resolution to 39MHz. Ideal for most short wave receivers using common IFs. Similar to the FC177 but cheaper! Supply voltage 5-15V dc. Will operate on 26 different IF offsets. If this counter range won’t do what you want probably nothing will. Works with all of Tony Bailey G3WPO designs, ask for conversion data.

DFC40 0-4MHz £14.95 built

DFC41 0-32 MHz £18.50 kit

DFC42 0-200MHz £21.95 kit

BARGAINS

LNA144. OUR ace RF designer Timothy Edwards has done it again! In line 144MHz RF switched pre-amp which needs no modification to any rig. Just put it in the co-ax feed, supply 12V and your amp will have ear ache. Uses the BF981 with a total of 4 tuned circuits for the best out of band rejection. The relays are 50ohm gas filled with earthed metal cans and are good to over 800MHz. This was originally designed for “British Telecom Satellite Division” hence the provision for gold 14GHz SMC connectors. 1dB noise figure and 18dB gain is guaranteed to improve all standard rigs on 144-146MHz. Will fit in the co-ax feed, supply 12V and your deaf rx will have ear ache. Uses the 144MHz RF switched pre amp which needs no modification to any rig. Just put it in and be surprised. LNA144 Kit £14.95 built and tested module £24.95.

70cm POWER AMPLIFIER At last a cheap and easy UHF power module by TRW the world leaders in RF modules. Only 150mW input for a full 15 watt output all the way from 430 to 440 MHz. Use with an attenuator for your handheld or build a simple TV Transmitter with the circuit provided.

TRW MX15 £12.75

2M MONITOR RECEIVER. A superb design featuring crystal and ceramic filters coupled with the MC3359 and BF981 results in an almost bomb proof monitor. Single channel with squelch and 500mW audio amplifier. No coils to wind and little alignment required. Uses standard crystals from “PM Electronics”. MON2M Kit £19.95 built and tested module £29.95. For professional use on 18-200MHz built and tested module £38.50 including crystal.

WHO IS TIMOTHY EDWARDS? He’s 32, licenced for 14 years, was a senior design engineer at Pye Telecomm and now works full-time for Timestep. He’s also responsible at Timestep for designing the top graded spectrum analysers and signal generators costing over £40,000. Now you can see why our amateur modules always work properly and have full meaningful specifications.

TOP BAND CONVERTER Listen to the other local nets and DX on 160m with any 2m SSB receiver. Does not need a large aerial and will comfortably out perform most commercial Receivers.

UC160 Kit £9.95 UC160 built and tested £16.50

GAS FILLED RF RELAY

New Japanese 50 ohm low loss gas filled RF relay. Only 0.3dB loss at 430 MHz with 35 watts input. Ideal for switching pre-amps and the TRW MX15. BSWR 1.5:1 at 1gHz. 12 volt coil.

DR12V £4.75

All prices include postage and VAT. Send 35p for individual data on any of the above.

Mail order only. Please allow up to 28 days for delivery.
TIMESTEP ELECTRONICS LTD, WICKHAM BROOK, NEWMARKET, SUFFOLK.
TELEPHONE NO 0440 820040 TELEX 817015 TIMST G
ADVERTISERS' INDEX

J. Birkett ... 390
Black Star Ltd. 390
British National Radio and Electronics School 391
Colomor Electronics Ltd. 395
Datong Electronics Ltd. 393
Dewsbury Electronics 355
E.M.A .. 391
G2DYM Aerials 395
G3HSC (Rhythm Morse Courses) 395
Hately Antenna Technology 391
D. P. Hobbs Ltd. 392
KW Ten-Tec Ltd. 389
Lowe Electronics Ltd. 350, 351
Microwave Modules Ltd. 354
MuTek Ltd. .. 390
P.M. Electronic Services 389
Quartslab Marketing Ltd. 391
Radio Shack Ltd. 356
F. G. Rylands .. 390
S.E.M. ... 389
Small Advertisements 392, 393, 394, 395
Spacemark Ltd. 390
Stephen-James Ltd. 352
S.W.M. Publications inside back cover, back cover, 391, 392 394, 395, 396
Timstep Electronics Ltd. inside front cover
Uppington Tele/Radio (Bristol) 391
Reg. Ward & Co. Ltd. 392
Waters & Stanton Electronics 353
Geoff Watts ... 390
R. Withers Communications 356
Wood & Douglas 355

© Short Wave Magazine Ltd.
E. & O. E. VAT Reg. No. 239 4864 25 349
LOWE SHOPS

Whenever you enter a LOWE ELECTRONICS' shop, be it Glasgow, Darlington, Cambridge, Cardiff, London or here at Matlock, then you can be certain that, along with a courteous welcome, you will receive straightforward advice. Advice given, not with the intention of "making" a sale, but the sort which is given freely by one radio amateur to another. Of course, if you decide to purchase then you have the knowledge that LOWE ELECTRONICS are the company that set the standard for amateur radio shops and after-sales service. The shops are open Tuesday to Friday from 9.00 to 5.30 p.m., Saturday from 9.00 to 5.00 p.m. and close for lunch each day from 12.30 till 1.30 p.m.

In Glasgow the LOWE ELECTRONICS' shop (the telephone number is 041-945 2626) is managed by Tim G3SAN. Its address is 4/5 Queen Margaret's Road, off Queen Margaret's Drive. That's the right turn off Great Western Road at the Botanical Gardens’ traffic lights. Street parking is available outside the shop and afterwards the Botanical gardens are well worth a visit.

In the North East the LOWE ELECTRONICS' shop is found in the delightful market town of Darlington (the telephone number is 0325 486121) and is managed by Don G3GEA. The shop's address is 56 North Road, Darlington. That is on the A167 Durham road out of town. A huge free car park across the road, a large supermarket and bistro restaurant combine to make a visit to Darlington a pleasure for the whole family.

Cambridge, not only a University town but the location of a LOWE ELECTRONICS' shop managed by Tony G4NBS. The address is 162 High Street, Chesterton, Cambridge (the telephone number is 0223 311230). From the A45 just to the north of Cambridge turn off into the town on the A1038 past the science park and turn left at the first roundabout, signposted Chesterton. After passing a children's playground on your left turn left again (between the shops) into Green End Road. Very quickly, and without you noticing it, Green End Road becomes High Street. Easy and free street parking is available outside the shop.

For South Wales, the LOWE ELECTRONICS' shop is located in Cardiff. Managed by Richard GW4NAD, who hails from Penarth, the shop (the telephone number is 0222 464154) is located within the premises on the first floor of South Wales Carpets, Clifton Street, Cardiff. Clifton Street is easily found, being a left turn off Newport Road just before the Infirmary. Once in Clifton Street, South Wales Carpets is the modern red brick building at the end of the street on the right hand side. Enter the shop, follow the arrows past the carpets, up the stairs and the "Emporium" awaits you. Free street parking is available outside the shop.

LOWE ELECTRONICS' London shop is located at 223/225 Field End Road, Eastcote, Middlesex (the telephone number is 01-429 3268). The shop, managed by Andy G4DHQ is easily found, being part of Eastcote tube station buildings and as such being used by the short wave listener in his shed at the bottom of the garden, today's equipment looks "very HI-FI". Most of the receivers carry the description "general coverage" meaning that it will tune without gaps frequencies from around 100 kHz to 30 MHz. Such wide coverage means that not only can you listen to amateurs and short wave broadcast stations worldwide, you can also hear Radios 1, 2, 3 and 4 and Laser on 588 kHz. To the short wave listener this is a great advantage over rigs which only have selected bands. It is usually the band you particularly want that the manufacturer had decided you could do without. The receivers which I now describe are all "general coverage", and I might add are each capable of giving you the satisfaction which I describe above.

the R600.

For many years......

I have found much pleasure in slowly tuning a receiver across the short wave bands. I remember discovering that the new wireless, just purchased by my Grandfather, had on it a short wave section. So, after the family had listened to "The Archers" and set about the evening's activities, I was left with the set to myself, able to tune around and listen to the world. I am certain that the thing that fascinated me then is still the same today; the fact that transmissions from such exotic places so far away could be heard in my own surroundings. Perhaps I am a romantic at heart but to imagine the sights and sounds of the countries originating the transmissions was special. I find it difficult to describe the feeling. I have since spoken to many people who have shared the same experience, they too find it difficult to explain.

Since those days......

things have changed and many receivers have come and gone. When compared with the large pieces of surplus equipment once used by the short wave listener in his shed at the bottom of the garden, today's equipment looks "very HI-FI". Most of the receivers carry the description "general coverage" meaning that it will tune without gaps frequencies from around 100 kHz to 30 MHz. Such wide coverage means that not only can you listen to amateurs and short wave broadcast stations worldwide, you can also hear Radios 1, 2, 3 and 4 and Laser on 588 kHz. To the short wave listener this is a great advantage over rigs which only have selected bands. It is usually the band you particularly want that the manufacturer had decided you could do without. The receivers which I now describe are all "general coverage", and I might add are each capable of giving you the satisfaction which I describe above.

At the start of the range is the TRIO R600 which costs £272.83 including VAT. This is the receiver for the beginner, the person of limited means or the cynic who does not really believe my enthuose. The R600 is a basic receiver covering from 150 kHz to 30 MHz and having switched upper and lower sidebands, wide and narrow am and cw. It has a 20 dB attenuator and a noise blanker fitted as standard. Operation is simple, select the mode of operation, turn the MHz dial to the correct band and, by using the VFO knob, tune to the desired frequency. The clear digital readout makes station selection simple. The TRIO R600 is an ideal receiver for shack, bedroom or lounge.
Moving upward from the R600 we find the TRIO R2000. The receiver covers frequencies from 100 kHz to 30 MHz and has, in addition to the facilities found on the R600, a ten channel memory to hold your favourite stations. Memory operation is versatile, each memory retaining not only the frequency but the mode of operation. Each memory can be used as a separate VFO. In addition to AM, USB, LSB and CW the R2000 is fitted with FM which, when used with the VC10 internal vhf converter, enables the amateur 2 metre band to be fully listened to. Another advantage over the R600 is that the R2000 tunes continuously up the band and not in 1 MHz sections. Three rates of tuning are provided enabling the band to be either searched diligently or quickly 'scanned'. With the optional VC10 fitted the R2000 adds to its frequency range the VHF section from 118 to 174 MHz and, of course, operates on AM, FM, USB, LSB and CW. Fast or slow AGC can also be easily selected using a front panel switch. Altogether a fine receiver and ideal for today's listener. The TRIO R2000 costs £436.75 including VAT. The additional NRD515...
J.R.C. NRD515D

General coverage receiver 100 KHz to 30 MHz fully synthesised. Digital readout PLL synthesiser with rotary type encoder pass band tuning -- modular construction.

TS7515 TRANSMITTER & AC PSU £1,171.00

NEW 96 CHANNEL MEMORY UNIT.

J.R.C. JST 100FM TRANSCEIVER & AC PSU £998.00

TRIO TS430’s

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>TW4000A</td>
<td>£488.00</td>
</tr>
</tbody>
</table>

TRIO R600 RECEIVER £272.00

TRIO R2000 RECEIVER £436.00

VHF CONVERTER. £117.00. Covers 118-174 MHz

TRIO TS830S

HF SSB TRANSCEIVER £758.00

BELCOM LS 202: 2m hand held DSB transceiver. £225.00 plus accessories.

Belcom LS202 2M FM hand held transceiver £138.00

Microwave Modules, FDK, and other equipment also available, including I.C.S. — Diwa.

GB 100 Base Station Antenne — Self selecting B band vertical — 50 Ohm ground mounted 11ft vertical manufactured by G-Whip Products. £85.90

MID PRODUCTS

HO1 Minibeam 10 15 20m £189.00

H.T.E.

H2035P 2E1 Triband £172.50

H2035P 9E1 Triband £169.00

H335P 9E1 Triband £290.00

H335P 3E1 Triband £231.50

H390C 9E1 Triband £263.95

MV 484H 484V £68.95

MV 390 Handheld £63.45

TE14114Element 2m Beam £74.40

MV 3911 with Rosette £60.00

WARN DIAMOND ANTENNAS

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>DP CP5 Vertical</td>
<td>£133.00</td>
</tr>
<tr>
<td>DP CP4 Vertical</td>
<td>£59.00</td>
</tr>
</tbody>
</table>

HULK ANTENNAS

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/4 wave 2m Whip mobile</td>
<td>£16.50</td>
</tr>
<tr>
<td>5/8 wave 2m Whip mobile</td>
<td>£20.56</td>
</tr>
<tr>
<td>7/8 wave 2m Whip mobile</td>
<td>£16.00</td>
</tr>
<tr>
<td>5/8 wave Base Station antenna</td>
<td>£18.50</td>
</tr>
<tr>
<td>GPV-50m Base Station Co Linear</td>
<td>£38.50</td>
</tr>
<tr>
<td>GPV-770m Base Station Co Linear</td>
<td>£31.80</td>
</tr>
<tr>
<td>GPV-710 144-432MHz dual base station</td>
<td>£32.80</td>
</tr>
<tr>
<td>Revco C90 Discine</td>
<td>£25.00</td>
</tr>
</tbody>
</table>

JAYBEAM

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>LW5 5E1 2m Yagi</td>
<td>£16.33</td>
</tr>
<tr>
<td>LW8 8E1 2m Yagi</td>
<td>£18.55</td>
</tr>
<tr>
<td>LW10 10E1 2m Yagi</td>
<td>£25.30</td>
</tr>
<tr>
<td>LW18 18E1 2m Yagi</td>
<td>£37.95</td>
</tr>
<tr>
<td>PBM 10E1 Parabeam</td>
<td>£49.95</td>
</tr>
<tr>
<td>PBM 14E1 Parabeam</td>
<td>£60.95</td>
</tr>
<tr>
<td>C5/2m 2E1 Co Linear</td>
<td>£85.25</td>
</tr>
<tr>
<td>D5/2m Double 4E1 Slot Yagi</td>
<td>£72.60</td>
</tr>
<tr>
<td>D8/2m Double 8E1 Slot Yagi</td>
<td>£37.95</td>
</tr>
<tr>
<td>G4/2m 4E1 2m Quad</td>
<td>£31.83</td>
</tr>
<tr>
<td>G8/2m 8E1 2m Quad</td>
<td>£41.46</td>
</tr>
<tr>
<td>C5/2m 2E1 2m Quad</td>
<td>£41.40</td>
</tr>
<tr>
<td>DB/24 432MHz Co Linear</td>
<td>£29.00</td>
</tr>
<tr>
<td>DB/70m Double 8 Slot Yagi</td>
<td>£26.18</td>
</tr>
<tr>
<td>PBM 18/1018 8E1 Quad</td>
<td>£134.90</td>
</tr>
<tr>
<td>PBM 20/24X 24E1 Parabem</td>
<td>£46.00</td>
</tr>
<tr>
<td>LW24 24E1 folded dipole</td>
<td>£31.05</td>
</tr>
<tr>
<td>MM/28 28E1 multibeam</td>
<td>£23.00</td>
</tr>
<tr>
<td>MM/4144 8E1 multibeam</td>
<td>£37.95</td>
</tr>
<tr>
<td>MM/818 8E1 multibeam</td>
<td>£51.75</td>
</tr>
<tr>
<td>5X/10X Crossed Yagi</td>
<td>£44.85</td>
</tr>
<tr>
<td>12E/12X12E1 Crossed Yagi</td>
<td>£56.20</td>
</tr>
<tr>
<td>5X/2 2m Crossed Yagi</td>
<td>£29.90</td>
</tr>
<tr>
<td>12E/2Crossed 10E1 Yagi</td>
<td>£48.30</td>
</tr>
</tbody>
</table>

ANT PRODUCTS

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>LY 5E1 Yagi</td>
<td>£15.95</td>
</tr>
<tr>
<td>LY 2B1 Yagi</td>
<td>£20.95</td>
</tr>
</tbody>
</table>

JANUARY

L.A.N.C.H.A.S.E & THE NORTH WEST’S LEADING RETAILER IN AMATEUR RADIO. 20 YEARS SERVING THE AMATEUR’S AMATEURS SPECIALISING ONLY IN AMATEUR RADIO EQUIPMENT. 24 HOUR MAIL ORDER SERVICE.

TS7095S FABRICATED COAX SELECTORS £225.00

TS7100 FABRICATED COAX SELECTORS £225.00

TS7110 FABRICATED COAX SELECTORS £225.00

TS7120 FABRICATED COAX SELECTORS £225.00

TS7130 FABRICATED COAX SELECTORS £225.00

STEPHENS-JAMES LTD.

47 WARRINGTON ROAD, LEIGH, LANCS. WN7 3EA

Telephone (0942) 676790

Turn at the Greyhound Motel on the A580 (East Lancs. Road).

THE R532 AIRCRAFT BAND RECEIVER £175-195 inc. VAT.

SPECIFICATION.

- Frequency range: 110 to 136 MHz, i.e. all NAV/COM channels.
- Number of channels: 1:040 (150 kHz steps).
- Sensitivity: Better than 0.7 microvolts 10dB SN.
- Memory channels: 1001:0 banks of 10. Memories can be scanned automatically or selected manually.
- Power required: 12v dc negative earth 300mA typical. (Display can be switched off to reduce consumption when operating portable. Size: 160 x 45 x 310mm. Weight: approx. 1.5kg (including memory backup batteries).
UNBEATABLE PRICE
M750XX SSB-CW-FM
144 -148MHz
Send for leaflet.

NEW CATALOGUE NOW AVAILABLE SEND S.A.E.

WELZ DIAMOND
GH22
5-6dB
144-146 MHz
No other aerial matches its price!

£32.50
Carriage £4.00.

This popular receiver covers 25 to 500MHz with no gaps. Comprehensive scanning, channel spacing, and broad and narrow filters make this a number one choice. Send for leaflet.

WEIZ SP15M "MADE TO MEASURE"
The most famous of all the Welz products. Covers 1.8 to 160MHz and measures vswr and line power. Scaled 2, 20, and 200 Watts this is the ideal shack meter.

£41.00

NEW STOCKS JUST ARRIVED!
PANASONIC RF-3100 SYNTHESIZED RECEIVER

£219 inc. VAT

TRULY PORTABLE! 230v AC, 12v DC or int. batts.

MAIL ORDER SLIP
To: Waters & Stanton 18-20 Main Road, Hockley, Essex.

Address

Items required

Carriage: Items under £10 - £1.00; Over £10 - £1.50; Larger aeriel £4; Rigs £6; Securicor £11.
This microprocessor controlled Morse Keyboard is simply the ultimate in "electronic keyers":—

FEATURES —
- 12-30 wpm speed range.
- 4 memories — each 256 characters.
- 80 character buffer to ensure perfect morse.
- Meteor scatter mode.
- High quality full size Qwerty keyboard.
- 12v DC operation.

£135 inc. VAT (p&p £3.50)

MTV435

435 MHz ATV TRANSMITTER

This high performance ATV transmitter consists of a dual channel exciter, video modulator and a two stage 20 watt linear amplifier. It is suitable for monochrome and colour transmissions, has two switch selectable video inputs, and includes a test wave form generator.

Full transmit/receive switching is incorporated and aerial changeover is achieved by a PIN diode switch, which allows connection of the 436 MHz aerial to a suitable receive converter, such as the MMC4365-600 which is available at £29.90 inc. VAT, p&p £1.25.

£159.95 inc. VAT (p&p £3)

MMS1

THE MORSETALKER

This unique product is a self-contained speaking morse tutor and, as well as a random morse generator, the MMS1 incorporates a microprocessor speech synthesis system which provides talk back of the random morse. This product is a truly cost effective means of obtaining a full class 'A' amateur licence, without having to rely on a third party for instruction.

FEATURES —
- Wide speed range: 2-20 wpm.
- Segmented alphabet choice for novices.
- Variable group length — 1, 5, 50 characters.
- Truly random and accurate morse.
- Internal loudspeaker.
- 12v DC operation.

£115 inc. VAT (p&p £3)

MMT 144/28

2m LINEAR TRANSVERTER

The MMT 144/28 2 metre linear transverter is intended for use with a 28 MHz transceiver to produce a high reliability transceive capability at a reasonable cost. By using this transverter all the features of the prime mover are retained, resulting in a first-class system for the 144 MHz band. As the transverter is linear, it is suitable for SSB, FM, AM, CW and will work in conjunction with transceivers such as:- FT 101, FT 102, FT902, FT-1, TS 120/130, TS430, TS830, TS930 etc. (Please specify when ordering).

- 10 Watts RF output power.
- Low-noise receive converter — 2.5dB N.F.
- Ultra-Linear transmit converter.
- Highly-stable regulator controlled oscillator.
- RF Vox provides automatic changeover.
- 13.8v DC operation.

£109.95 inc. VAT (p&p £3)

OUR ENTIRE RANGE OF PRODUCTS WILL BE EXHIBITED AND ON SALE AT THE 1984 LEICESTER SHOW BY OUR OWN SALES TEAM. COME AND TAKE A CLOSER LOOK

ALL MICROWAVE MODULES PRODUCTS ARE FULLY GUARANTEED FOR 12 MONTHS (INCLUDING PA TRANSISTORS)

MICROWAVE MODULES LTD
BROOKFIELD DRIVE, AINTREE, LIVERPOOL L9 7AN, ENGLAND
Telephone: 051 523 4011 Telex 628608 MICRO G
CALLERS ARE WELCOME PLEASE TELEPHONE FIRST

HOURS:
MONDAY TO FRIDAY
9-12.30, 1-5.00
W O O D & D O U G L A S

- NEW CATALOGUE
- NEW PRODUCTS
- NEW TELEPHONE NUMBER
- NEW PRICES

Our current product range is listed below but keep in touch at rallies and exhibitions throughout the summer for our latest developments for you the active amateur.

Package Prices

<table>
<thead>
<tr>
<th>Product</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 500mW TV Transmit</td>
<td>Kit</td>
</tr>
<tr>
<td>2. 500mW TV Transceive</td>
<td>35.00</td>
</tr>
<tr>
<td>3. 10W TV Transmit</td>
<td>65.00</td>
</tr>
<tr>
<td>4. 10W TV Transceive</td>
<td>95.00</td>
</tr>
<tr>
<td>5. 70m 500mW FM Transceive</td>
<td>79.00</td>
</tr>
<tr>
<td>6. 70m 10mW FM Transceive</td>
<td>105.00</td>
</tr>
<tr>
<td>7. 70m Linear/Pre-amp /TV</td>
<td>40.00</td>
</tr>
<tr>
<td>8. 2M Linear/Pre-amp 25W</td>
<td>42.00</td>
</tr>
<tr>
<td>9. 2m Synthesised 10W Transceive 50mW to 500mW</td>
<td>150.00</td>
</tr>
<tr>
<td>10. 2m Synthesised 10W Transceive 50mW to 500mW</td>
<td>120.00</td>
</tr>
<tr>
<td>11. 2m Crystal Controlled 10W Transceive 50mW to 500mW</td>
<td>85.00</td>
</tr>
<tr>
<td>12. 70m Linear/Pre-amp</td>
<td>45.00</td>
</tr>
</tbody>
</table>

70mra EQUIPMENT

<table>
<thead>
<tr>
<th>Product</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 10W/500mW</td>
<td>TQM10</td>
</tr>
<tr>
<td>2. 10W/500mW</td>
<td>TQMP10</td>
</tr>
<tr>
<td>3. 10W/500mW</td>
<td>TQMP10</td>
</tr>
<tr>
<td>4. 10W/500mW</td>
<td>TQMP10</td>
</tr>
<tr>
<td>5. 10W/500mW</td>
<td>TQMP10</td>
</tr>
<tr>
<td>6. 10W/500mW</td>
<td>TQMP10</td>
</tr>
<tr>
<td>7. 10W/500mW</td>
<td>TQMP10</td>
</tr>
<tr>
<td>8. 10W/500mW</td>
<td>TQMP10</td>
</tr>
<tr>
<td>9. 10W/500mW</td>
<td>TQMP10</td>
</tr>
<tr>
<td>10. 10W/500mW</td>
<td>TQMP10</td>
</tr>
</tbody>
</table>

2M EQUIPMENT

<table>
<thead>
<tr>
<th>Product</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 120C</td>
<td>TQM10</td>
</tr>
<tr>
<td>2. 120C</td>
<td>TQM10</td>
</tr>
<tr>
<td>3. 120C</td>
<td>TQM10</td>
</tr>
<tr>
<td>4. 120C</td>
<td>TQM10</td>
</tr>
<tr>
<td>5. 120C</td>
<td>TQM10</td>
</tr>
<tr>
<td>6. 120C</td>
<td>TQM10</td>
</tr>
<tr>
<td>7. 120C</td>
<td>TQM10</td>
</tr>
<tr>
<td>8. 120C</td>
<td>TQM10</td>
</tr>
<tr>
<td>9. 120C</td>
<td>TQM10</td>
</tr>
<tr>
<td>10. 120C</td>
<td>TQM10</td>
</tr>
</tbody>
</table>

We are also stockists of DAIWA - WELTZ - DAVTREND - TASCO TELEREADERS - MICROWAVE MODULES - ICS AMTOR - AEA PRODUCTS - DRAE

Access/Barclaycard accepted Licensed credit broker

Dewsbury Electronics

176 Lower High Street, Stourbridge
West Midlands
Telephone: Stourbridge (0384) 390063

Immediate finance available subject to status
Written details on request
Closed Monday

All the above available from stock.

Dewsbury Electronics offer a full range of Trio Equipment always in stock.
Kantronics UTU Universal Terminal Unit
The Kantronics Universal Terminal Unit (UTU) gives any computer with an RS232 port and a terminal program the ability to interface with any transceiver. The UTU is essential for many applications and has been used with complete success in hundred of installations throughout the world. It is programmed directly from the computer giving you the option of setting up your requirements.

KANTRONICS
The Interface RTTY/CW (Software required) .. £139.95
Interface II RTTY/AMTOR/CW (Software required) 265.95
UTU Universal Terminal Unit (No software needed) 199.95
Software
Hamsoft Vic-20 Cartridge .. 49.95
Hamsoft Apple II Disk .. 29.95
Hamsoft TI-99 Cartridge .. 99.95
Hamsoft TRS-80 Colour Cartridge .. 59.95
Hamtext Vic-20 Cartridge .. 99.95
Hamtext Disc Apple II, IIE ... 99.95
Amtorsoft Vic-20 Cartridge .. 89.95
Amtorsoft Com-64 Cartridge ... 89.95
Hamtext Disc Apple II, IIE ... 99.95
Supertap Vic-20 Cartridge .. 99.95
Supertap Com-64 .. 99.95

£229.95

Mains Adapter £6.99
DC Adapter £4.49

£229.95

Realistic PRO-30. A full-feature, microprocessor controlled scanner with extended frequency coverage - in a compact size you can carry wherever you go! Scan up to 16 of your favorite channels continuously, or search a selected frequency range for new or unpublished channels. Scan and Search in two speeds. Two-second Scan Delay, selectable for each channel prevents missed replies. Lockout feature temporarily bypasses unwanted channels. Big LCD display shows channels and frequencies being monitored or programmed as well as the status of the channels. Priority function monitors your favorite frequency while you listen to others. Frequency tracking front end assures top sensitivity on all bands. Squelch control eliminates noise between messages. Has jacks for external antenna and earphones. With flexible antenna, 7.5 x 21 x 144. Requires six ‘AA’ batteries or mains or DC adapter. Memory backup requires four silver-oxide batteries.

We are agents for Jaybeam - Tonna - Revco - Bantex - A.R.M. plus our own well established range of HB9CVs for 2m, 10m and 70cm from £5.99. Tonnas from £17. Jaybeam from £5.98 and the Revco discone from £29.95. We carry a large stock of antennas both base and mobile.

As we are authorised agents for Yaesu, Icom, FDK and Revco, we can supply the full range of matching accessories for all these products. E.g. atus, psus, swr meters, dummy loads, antenna switches, rotators etc. Ask about our free accessories with new transceivers.

We are a service based company with over 8 years experience in PMR. We import R.F. Transistors and R.F. Power Modules direct from Japan.

We give a full written report for just £12.50. We will also undertake to do simple jobs on the spot but please telephone first to make sure that workshop time is available. We import R.F. Transistors and R.F. Power Modules direct from Japan.

MON. SAT 8.30–5.30 LATE NIGHT THURS/FRI 584 HAGLEY ROAD WEST, ODBURY, WALSALL 608
BARCLAYCARD 9754
(QUINTON, BIRMINGHAM)
Telex: 23718
Licensing

It seems to be somewhat absurd, when the spectrum is becoming ever more used and abused, to de-regulate any form of electronic emission without very careful consideration; yet this is something the Government apparently intends to do early next year. Among the devices specifically mentioned for de-regulation are radio aids for the elderly and disabled, garage door openers, radio microphones and anti-shoplifting tags. While one is quite able to understand the ideal behind the proposals, the result will be a craze for the inevitable flood of imported inferior-quality devices (the number of people with perfectly normal hearing for whom a radio deaf aid has great play-value is not to be counted in ones and twos). The upshot, of course, will be just yet more QRM to the inconvenience of more sections of the population. Disabled people’s radio aids will be themselves disabled, garage doors will be opened all along the road each night as the yobs do their rounds, and radio microphones will proliferate everywhere to the extent that they will QRM each other out of use. As for anti-shoplifting tags, if they aren’t neutralised in short order, police overtime will increase to an unprecedented level.

We must always press to maintain and extend our freedoms, but when the best is the enemy of the good for heaven’s sake let us think before we act. History is littered with examples of the results of non-thinking among those we pay to do our thinking for us!

A day after this is written, the new ‘simplified’ schedule to the amateur radio licence becomes operational. It is aimed at ‘the needs of the user’ and also ‘clears up misunderstanding’. The schedule, far from becoming clearer has become a bit of a dog’s breakfast; change for change’s sake, in fact. As for the changes in the body of the licence, they are essentially the ones arising from some negotiation with the RSGB and represent easings or extensions of our possible activities. And the footnotes repeat — as they always have done — what should have been learnt by heart at the time of the RAE-taking.

When will we see some attempt at licence enforcement — rather than playing with words rendered empty by lack of enforcement?

Our apologies to readers for the delayed publication of last month’s issue; this was due to a major machinery breakdown at our printers.
Adonis compressor microphone is used.

The 6m. beacon at the RSGB's Potters Bar headquarters was officially switched on at 1400 GMT on Aug. 30. GB3NHQ is on 50.05 MHz continuously and the e.r.p. is about 15W from crossed dipole antennas. Reception reports have been received from the north of Scotland to the south of France.

In a CW QSO on Aug. 27 on 2m. Ray Baker, G4FSY, (Norfolk) gleaned from LA5IH details of beacon LA4VWH which Jon looks after. It operates on 144.890 MHz from CU47a running 15-20W. The antennas are two 8-ele. Yagis beam ing due south, 10m. a.s.l., the site being 30m. a.s.l. This information shows considerable variance from that printed in the latest DUBUS magazine to hand.

John Lemay, G8KAX, (Essex) heard the Swiss 70cm. beacon HB99F again around the end of July. It is on 432.984 MHz from DG40c and sends details such as the locator, power, antenna, a.s.l., etc.

Contests

The B.A.R.T.G. has sent the results of the Spring VHF/UHF RTTY contest which brought fewer entries than the 1983 event did, in spite of there being more operators using the mode now. The fixed section on 2m. was won by G6CZV with 354 points and GU6JST was second with 305. There were 16 entries. Only eight were received in the 2m. Multi-op. part won by G4PDY/P with 428 pts. G3WOR/P was second with 335. The two 70cm. sections each attracted one entry and no entries were received for 23cm.

The Contest Manager's report mentions, "... the perenniel complaint from mechanical operators about the absence of CR and LF sequences from some computer stations". And of "... long CQ calls and endless RYs which seriously waste time".

Henry Souchet, 9H1CD, has sent the results of this year's 9H Falcon Contest. It attracted 31 entries from seven countries and was won by 1BXXN who accumulated 207,775 points. ISOQDV came second with 160,427 and IT9BBD third with 145,125. The only U.K. entrant was Kevin Piper, G8ZRB/M (39,235) came top with G4IUF/M (37,410) and G6OKU/M (7,930) third. The SWL winner was RSGB/P with 4629 and 12,880 pts.

Beacon Notes

The 6m. beacon at the RSGB's Potters Bar headquarters was officially switched on at 1400 GMT on Aug. 30. GB3NHQ is on 50.05 MHz continuously and the e.r.p. is about 15W from crossed dipole antennas. Reception reports have been received from the north of Scotland to the south of France.

In a CW QSO on Aug. 27 on 2m. Ray Baker, G4FSY, (Norfolk) gleaned from LA5IH details of beacon LA4VWH which Jon looks after. It operates on 144.890 MHz from CU47a running 15-20W. The antennas are two 8-ele. Yagis beam ing due south, 10m. a.s.l., the site being 30m. a.s.l. This information shows considerable variance from that printed in the latest DUBUS magazine to hand.

John Lemay, G8KAX, (Essex) heard the Swiss 70cm. beacon HB99F again around the end of July. It is on 432.984 MHz from DG40c and sends details such as the locator, power, antenna, a.s.l., etc.

The Contest Manager's report mentions, "... the perenniel complaint from mechanical operators about the absence of CR and LF sequences from some computer stations". And of "... long CQ calls and endless RYs which seriously waste time".

Henry Souchet, 9H1CD, has sent the results of this year's 9H Falcon Contest. It attracted 31 entries from seven countries and was won by 1BXXN who accumulated 207,775 points. ISOQDV came second with 160,427 and IT9BBD third with 145,125. The only U.K. entrant was Kevin Piper, G8ZRB/M (39,235) came top with G4IUF/M (37,410) and G6OKU/M (7,930) third. The SWL winner was RSGB/P with 4629 and 12,880 pts.

Beacon Notes

The 6m. beacon at the RSGB's Potters Bar headquarters was officially switched on at 1400 GMT on Aug. 30. GB3NHQ is on 50.05 MHz continuously and the e.r.p. is about 15W from crossed dipole antennas. Reception reports have been received from the north of Scotland to the south of France.

In a CW QSO on Aug. 27 on 2m. Ray Baker, G4FSY, (Norfolk) gleaned from LA5IH details of beacon LA4VWH which Jon looks after. It operates on 144.890 MHz from CU47a running 15-20W. The antennas are two 8-ele. Yagis beam ing due south, 10m. a.s.l., the site being 30m. a.s.l. This information shows considerable variance from that printed in the latest DUBUS magazine to hand.

John Lemay, G8KAX, (Essex) heard the Swiss 70cm. beacon HB99F again around the end of July. It is on 432.984 MHz from DG40c and sends details such as the locator, power, antenna, a.s.l., etc.

The Contest Manager's report mentions, "... the perenniel complaint from mechanical operators about the absence of CR and LF sequences from some computer stations". And of "... long CQ calls and endless RYs which seriously waste time".

Henry Souchet, 9H1CD, has sent the results of this year's 9H Falcon Contest. It attracted 31 entries from seven countries and was won by 1BXXN who accumulated 207,775 points. ISOQDV came second with 160,427 and IT9BBD third with 145,125. The only U.K. entrant was Kevin Piper, G8ZRB/M (39,235) came top with G4IUF/M (37,410) and G6OKU/M (7,930) third. The SWL winner was RSGB/P with 4629 and 12,880 pts.

Beacon Notes

The 6m. beacon at the RSGB's Potters Bar headquarters was officially switched on at 1400 GMT on Aug. 30. GB3NHQ is on 50.05 MHz continuously and the e.r.p. is about 15W from crossed dipole antennas. Reception reports have been received from the north of Scotland to the south of France.

In a CW QSO on Aug. 27 on 2m. Ray Baker, G4FSY, (Norfolk) gleaned from LA5IH details of beacon LA4VWH which Jon looks after. It operates on 144.890 MHz from CU47a running 15-20W. The antennas are two 8-ele. Yagis beam ing due south, 10m. a.s.l., the site being 30m. a.s.l. This information shows considerable variance from that printed in the latest DUBUS magazine to hand.

John Lemay, G8KAX, (Essex) heard the Swiss 70cm. beacon HB99F again around the end of July. It is on 432.984 MHz from DG40c and sends details such as the locator, power, antenna, a.s.l., etc.

The Contest Manager's report mentions, "... the perenniel complaint from mechanical operators about the absence of CR and LF sequences from some computer stations". And of "... long CQ calls and endless RYs which seriously waste time".

Henry Souchet, 9H1CD, has sent the results of this year's 9H Falcon Contest. It attracted 31 entries from seven countries and was won by 1BXXN who accumulated 207,775 points. ISOQDV came second with 160,427 and IT9BBD third with 145,125. The only U.K. entrant was Kevin Piper, G8ZRB/M (39,235) came top with G4IUF/M (37,410) and G6OKU/M (7,930) third. The SWL winner was RSGB/P with 4629 and 12,880 pts.

Beacon Notes

The 6m. beacon at the RSGB's Potters Bar headquarters was officially switched on at 1400 GMT on Aug. 30. GB3NHQ is on 50.05 MHz continuously and the e.r.p. is about 15W from crossed dipole antennas. Reception reports have been received from the north of Scotland to the south of France.

In a CW QSO on Aug. 27 on 2m. Ray Baker, G4FSY, (Norfolk) gleaned from LA5IH details of beacon LA4VWH which Jon looks after. It operates on 144.890 MHz from CU47a running 15-20W. The antennas are two 8-ele. Yagis beam ing due south, 10m. a.s.l., the site being 30m. a.s.l. This information shows considerable variance from that printed in the latest DUBUS magazine to hand.

John Lemay, G8KAX, (Essex) heard the Swiss 70cm. beacon HB99F again around the end of July. It is on 432.984 MHz from DG40c and sends details such as the locator, power, antenna, a.s.l., etc.
The Satellites

Dave Robinson, G4FRE, (Suffolk) is now using Oscar 10, mode B. On 435 MHz, he runs 7w Tx output to an 11-turn home made helical antenna. The 145 MHz Rx system utilises a 5XY Yagi with switchable polarisation, 3SK97 preamp, and Icom IC-202. Up to Sept. 25 countries had been worked including HL1EI, EA8AAB, LX1PB, LA6HL/TF, CT1HA, plus 17 JAs and 10 Ws. Az-el. control is by the renowned "armstrong method". Dave has acquired an Icom IC-402 for uplink use.

Adrian Chamberlain, G4ROA, (Coventry) has added 4X4IX and SV1PY homemade helical antenna. The 145 MHz, he runs 7w Tx output to an 11-turn now using Oscar 10, mode B. On 435 MHz, he uses a 9-ele. Yagi with 25m. of RG213 coax and made preamp. The antennas are vertically polarised, only 8ft. a.g.l. and steered by hand. Colin has been using the FT-726R without full duplex a.g.l. and RS-7 were on together with signals being transmitted by both at the same time.

DX-Peditions

Three very successful DX-peditions took place in August. First the Derbyshire Hills Contest Group's trip to the Irish Republic, reported by Martin Daf, G6ABU. The team arrived in Ardmore on Aug. 2 and set up in WL02J with a large herd of curious cows for company. The 2m. station was assembled first and, after a few problems, was fully operational at 2100 on the 3rd. The 4m. and HF stations were operational on Aug. 4, good use being made of the 20m. VHF net for arranging MS skeds. The supplied 80m. VHF net proved to be a non-event.

Highlight of the trip was a 70cm. MS test with DL7QY (FJ61e) on the 11th, from 2200. At EI2PVX/P, the station consisted of an Icom IC-471E with mTuK Gasfet masthead preamp. (MGF1202), LDF2-50 feeder to four 21-el. Tenna Yagis at 55ft. and a K2RIW design amplifier. CW at 400 l.p.m. was used and the resulting QSO was far from marginal, the longest burst being over ten seconds. Your scribe has heard the tapes and at the end, DL7QY's signal was in and out of the noise much of the time, suggesting tropospheric propagation as well. After this historic sked, the Gasfet preamp. died but they did manage about 200 tropo. QSOs.

On 2m. about 1,700 stations were contacted including 84 on SSB MS and 32 on CW MS. On Aug. 5, from 0738-0806, there was an Es opening when 12 stations were worked in HB, 12, 13, IW1, F and YU, plus OK9PW (HJ). In the big opening on the 6th, only YU1UN (JD) was worked from WL02J, though, at 1240. On 4m. activity was disappointing but DK1PZ was worked via MS, crossband to 2m. in EL59H in 38 mins. on the 6th. 12 stations were worked on 4m. The 23cm. station was not QRV until the evening of the 8th. It comprised a Trio TS-770, fed with LDF4-50 feeder, Piper masthead Gasfet masthead and four 23-el. Tonna Yagis at 45ft. The transverter was a Microwave Modules one and the PA a single 2C39A. The preamp. never seemed to work properly so only seven stations were worked:—EI2VRT/8 (V1), G4K1Y (ZM40i), G3WOH (YN47I), GW8FKB (XN), G6LUIZ (YM08a), G4CBW (YN79e) and G8JHL (YN). They had no time to set up the 13cm. equipment and
regular 3m. trials with GW3PPP/P and G4DGU/P were unsuccessful. Operations ceased on Aug. 14th by which time the resident cows had begun to invade their tents. The site was about 200ft. a.s.l. 200 yards from the sea at Ram Head.

Paul Broadhurst, G4NFD, has sent in a report covering the Albatross Contest Group’s trip to VL38d in the Irish Republic from Aug. 3 to 14. The QTH was the Old Head of Kinsale (Co. Cork) on a hill top 90m. a.s.l. at the end of a 4km. long peninsular affording sea-path take-offs from the W through NE. Initial generator troubles were eventually resolved on the 7th so some skeds on the 5th and 6th were kept using just 20w from a Yaesu FT-221R powered from a car battery. They also suffered tape recorder and keyer malfunctions on the 9th and 10th.

The 2m. station consisted of the FT-221R with 8877 PA and two 16-ele. Tonna type PA, the antennas being four 23-ele. Yagis for EI2VRO/P. 95 MS QSOs were completed, 9 were not and nothing was heard from 13 sked partners. Many tropo. QSOs were made in not very good conditions. On 70cm. they used a Yaesu FT-101 with a transverter and a pair of 4CX250B type PA, the antennas being four 21-ele. Yagis. EI2VRO/P. 95 MS QSOs were completed, 9 were not and nothing was heard from 13 sked partners. Many tropo. QSOs were made in not very good conditions.

On 23cm. the “prime mover” was a Trio TS-700G to a transverter and 2C39A PA, the antennas being four 23-ele. Yaquis. EI2VRO/P. 95 MS QSOs were completed, 9 were not and nothing was heard from 13 sked partners. Many tropo. QSOs were made in not very good conditions. On 23cm. the “prime mover” was a Trio TS-700G to a transverter and 2C39A PA, the antennas being four 23-ele. Yaquis. EI2VRO/P. 95 MS QSOs were completed, 9 were not and nothing was heard from 13 sked partners. Many tropo. QSOs were made in not very good conditions.

Repeater Note

GB3SF, claimed to be the world’s first pilot SSB repeater, was switched on at 1800 on Aug. 14. It is located at the University of Sheffield and the power to its pilot SBB repeater, was switched on at 2125. Later PAOFR and PE1GHG, both in CL, were contacted. On a lighter note, GW8TVX, using a Trio TR-2300 and MM transverter on a pushbkle worked some eight miles, not line-of-site, running 250mw to a short length of 15A fuse wire for an antenna. Richard is claiming a “first” for this! The group thanks those many G stations who worked by while they worked the continents. Many GMs visited the site and Gerry, GM4RKM, was particularly welcome when he provided beer for all. QSL cards have been designed and were expected to be sent out starting at the end of September.

On the subject of QSLs, Reg Woolley, GW8VHY, one of the EI2VPX team, reports that quite a few cards received after DX-peditions are incorrectly made out, possibly SVOAB or SV7AD. On Aug. 4, Ray Baker, G4SRY, (Norfolk) called CQ’ on CW at 2135 and was answered by YU2EZA (IG34F) getting an RST59 report. This apparent Es opening was very fleeting so perhaps it was a long MS burst?

Next, the MS scene and more readers comments that stations from the extreme north to the far south were coming in at the same time, in which Keith worked 14 counties and two countries so far. He worked on SSB providing five new squares and country no. 31. G6DER (S. Yorks.) also mentions a short event on Aug. 4, but omitted to state the time, in which Keith worked YU4EDO. On Aug. 6, he found six new squares and managed 5UTs in 1D, 4 in IF, 2 in IE and one each in HE, HF, JD, JE and JF.

Kevin Piper, G8TGM, (W. Sussex) was rewarded with three new countries and four more squares on Aug. 6. He began at 1232 and got 11 YUs, LZ1AB, LZ1KDP (LC), YO2FP (KF) and two HG8s in KG. He has changed his gear again and now uses an Icom IC-251E with mutile box. From GJ4ICD, news that Keith Boleat, GJ6TMN, was on in the Aug. 6 affair from 1305. He contacted YO2FP and 7 HGs in JH, JI and KG squares. No YUs were mentioned.

Andy Steven, GM41PK, (Edinburgh) has been on leave this summer and sent a long letter covering all his various modes activities. He worked his first EAs in the June 30 event, which lasted about 1’/4 hours, contacting every station heard. He remarks that stations from the extreme north to the far south were coming in at the same time, but his best DX was ISNY/EA9(XV04e) at 2,228 kms. and 12 squares were worked.

Next, the MS scene and more readers are using this mode than ever before. Henry Souchet, 9H1CD, wrote, “I am...
dedicating myself to MS—sked every evening.” He runs adequate power to two
(HJ) also in one, 8s. burst. Later IW9ANO
Pete Atkins, G4DOL, (Dorset) made his
SSB QSOs with IT9GSF (GX) and
shower. on Aug. 4/5, a week before the peak of the shower.

Mick Allmark, G1EZF, (Leeds) lists 31
QSOs all on the random QROs, including
LA1K (EY) on the 13th. John Hunter,
G3MYB, (Bucks) also completed with
LA1K other successes being YU6BLM
(JB), LA8OW (DU), OH6CY (MW) and
SSB QSOs with IT9GSF (GX) and
EA6QO (AY). He describes the antics on
the random SSB QROs as, “bedlam.”

Pete Atkins, G4DOL, (Dorset) made his
first MS QSOs on the 12th with OE3OBC
(IH) worked in a 9s. burst, and OK1MAC
(HG) in one, 8s. burst. Later IW9ANO
(GY) answered a “QSO” call and was
worked on 12s. SSB skeds on Aug. 23/24
with Y72BL (GL) and SM1BSA (JR) were
not completed, however.

Ken Osborne, G4GIO, (Somerset) lists a
mix of CW/SSB, random and sked contacts
in the shower including LA1K, HG1W/0 (LH) and Y41YL (HO). He
heard little random activity on 144.400
MHz so it seems that the SSB-ers prefer the
“old” QRO of 144.200. Ken reports little
or nil in most of his skeds and recollections
were very bad; he reports better
luck in June and July. Aug. 26, a sked with
CT1WW (WB) came off, though.
Using only 25w. G4LZD made a few
attempts on random SSB on the 11th and
was heard by IW5ACZ and IK4DCO, but
not completed. As Steve wrote, “Well, I
tried!”

Over the period Aug. 7-12, Jon Stow,
G4MCU, (Essex) had six completed QSOs
with YU23L/2 (IC), HG8CE, SM5BE1
(JU), YU3FM (HG) and Y23NL (HO) on
cw, and with HG1G (LH) and LS9K.
G4MUC asks if anyone is interested in
trying 110 Band, 170 Hz shift RTTY on
MS? Roger Greengrass, G4NRG, (Essex)
completed his first MS sked on Aug. 10
with 12F2AK (EF). Next day brought F1JG
(CD) and YU1AWW (KE) at 1,662 kms.
and on the 12th OE3OKS (IH). The YU
contact was over in 9 mins. after a 25s
burst.

Tim Kirby’s, G4VXE, (Glouce.) first
tries brought Y22ME (HM) and
IW2BZY on the 11th, and F1JG
and IW2BNA (EF) on the 12th, all SSB.
He will be on cw soon. Since getting his Class
A licence Ian Parker, G4UYZ, (Herts.) has
been operating on CW MS mode using
a morse program developed for the B.B.C.
Model B computer by G4UEJ. It enables
keying speeds between 300 and 2,000
l.p.m. to be chosen, Ian completed with
YU3ES (GF) and DL3MBG (GI) on Aug.
4, 13LGF (FF) and SM5MIX (HS) on the
5th, Y41YL on the 9th, 11AMP (EE)
and SM41VE (HT) on the 11th, the last
producing a 40s burst at S9 + 20 dB.
Richard Mason, G6HKS, (Norfolk)
broke his duck with at least four QSOs on
random SSB MS. These were HG1W on
the 11th, and O2KZKZR (II), IW4ARD
(GE) and 14VOS (FE) on the 12th. Quick
break-in procedure was used but QRM
was a problem. G8TGM completed five
QSOs but did not think the Perseids were
very good this year. Kevin’s successes
were SM7KNK (HP) and 14B8XN (FE) on
the 11th and YU3C (HG), DL3MBG
and OE3OKS (IH) on the 12th. On the random
QRO, French stations in CF and CG were
audible on tropo. which did not help. Nell
Montanana, G8RWG, (Surrey) mentions
LA1K (EY) on the 12th for a new square.

Geoff Brown, G4JCD, thought this year’s
Perseids shower was the best for some time and is claiming 72 completed
QSOs on random SSB, the early morning hours on the 12th being particularly hectic.
At 0100, F1FHI called him to report that
with his antenna pointing due east, he was working into Italy and Sicily. Geoff then
worked two Is and an IT9 whose signals
were weak and watery, also by bearing at
90°. This has the hallmark of FAI
propagation.

GM4IPK’s August MS operations saw
QSOs with SM6AHI/2 in IB and JG on the 2nd, and O2C6E (II)
on the 1st, OH5LK (NC) and OH2AUK
(LT) on the 5th, CT1WW on the 14th and
F8CS (CH) on the 20th. In the Perseids,
Andy lists Y21PL (GL), SM2LTA (JY)
and SM3COL (1W) on CW, and 12F2AK,
SM3GHB (HW) and OE3OBC on SSB.

And now the tropo. activity beginning
with the ladies. Sue Frost, G4WGY,
(London) is threatening to dig up the
Crystal Palace ridge to improve her take-
off. However, she is quite pleased with her
August efforts on the key. Some more in
the Sept. contest brought her ladder total
to 73. Sue queried if contest QSOs count
for the CW Ladder scores and of course
they do. June Charles, G4Y1R, (Essex)
missed the Es again but did work
E12VPX/P (Waterford) and GM6JKU
(Grampian) for new countries, the GM
being prized as her beam will not turn due
northeast.

Dave Sellars, G3PBV, worked several of
the EI DX-Pedition stations in August
including EI3VQA/P (UL) on the 19th.
The operator was F6HM but Gildas was
not heard from other locations after the
19th. E12VPX/P was the strongest signal
Dave has ever heard from EI, which is a
poor direction for him. Conditions
improved at the end of the month and
EA1CYE (YD) was worked on the 31st. In
the contest, at 0330 on the 2nd, he found
the band wide open to DG square. Many
Fs and HB9s were worked. HB0PMF/P,
running 2w, was worked, also
DK9TV/HB0/P in the Principality of Liechtenstein. G4DOL also contacted the
latter station but failed to work 1W2BAI
(EF) due to QRM.

During the Sept. 1/2 contest G4FRE did
well to the south with easterly QSOs hard
to find. Dave’s best DX from Suffolk were
EA3JA (BC) and F6FRE (DD). G4IO
caught EI3VQA/P (UL) on Aug. 19 and in
the contest Ken lists EA1RCA/P (WD),
HB9s in DG, plus the two HB0s
calling QRG once they have made contact.

Parked many more on CW but hopes worked. Scilly Isles on the 28th. In the contest, best including LA6VBA (ES). It took half an hour of tropo. on the 12th -14th brought OZ1JXH LAODT/MM (AO) on SSB, while good DX was F6ITD/P and 11 countries were worked including GM4SUF/P (XS), also GM4MCU reports nothing new in the squares quest, but lists EA2LY/P (ZD) on the frequency. He mentions being rather irritated when, DK9TV/HBO (EH) also a new country. His wife has now “inherited” his old shack. Mark is looking for YO square on this band too.

G4MCU finds propagation over the sea quite reasonable even in low pressure conditions, something Jon has not noticed on 7cm. He worked DC9XO (EM) and DF5LQ (EO) on the 19th, PA0GHB (BL) on the 21st and G8PNN on the 25th, all new squares. G4ROA added CL sq. on the 25th thanks to PE1JSE. G6DER got G8WPL, GM8MBP and ONSNY (BK) for assorted new table points on the 23rd-26th. G8KAX mentions PAs in CL and DL on the 14th.

G8PNN sent copies of 14 pages of his station log covering the period Aug. 1 to 26, most of them devoted to 23cm. His achievements would be good by many people’s 2m. standards. New squares for Gordon were ONSNY (BK) and ONSGF (CK) while Surrey and Lothian were all-time new counties. G8WPL runs 2w to a 23-ele. Yagi and only started on Aug. 10 but looks like he will do well with 5 squares already. GM8BDX is up to 13 sq., the latest additions being AM, BK, CK, CL and CN. The weekend Aug. 25/26 saw GB3BPO at 59 + 10 dB and PA0OHN at S8.

Three Centimetres

G4FRE has a PA0HEJ varactor mixer and single valve PA producing 12w output. Dave’s Rx uses an MGF1401 Gasfel RF amplifier and interdigital converter, the antenna being a 42-ele. Quad Loop Yagi at 10m. g.l. G8PNN was worked on Aug. 25 and ONSGF (CK) the next day. G8PNN is up to 6 countries and 13 sq. on the band Gordon’s log showing 27 QSOs in August. SM6HYG (FS) was worked on the 11th at 1916 at S9+ 60 dB each way.

Deadlines

Once again the Editor is none too pleased at sporting an extra page and maybe there will not be quite so much to report next month. The deadline for November is Oct. 3, quite early. The next one is Nov. 7. Everything to:- “VHF Bands”, SHORT WAVE MAGAZINE, 34 High Street, WELWYN, Herts., AL6 9EJ. 73 de G3FPK.
FOR some considerable time I have been an advocate of home-built amateur radio equipment, but sometimes the dragon wins. In my shack I have a little 2-metre FM handheld transceiver; it's not new but it is black and Japanese. Looking inside the diminutive case it is clear first of all that it would be impossible for most of us to build anything so compact, and secondly, we could not do it for the same price. And so it is with several types of equipment we use in our hobby. Particularly at VHF, and especially if they are bought secondhand, some of the far-eastern boxes offer good value for money. Sometimes applications appear in the hobby for which the full weight of oriental technical ingenuity is somewhat heavy handed. What happens if one wishes to monitor a particular VHF channel? Must a complex box of robots vomit decorated with controls and digital readout be tied up for one simple operation? One attractive way around such a problem is to have a dedicated single channel monitor receiver. The Timestep Electronics MON-2M 2-metre Monitor Receiver Kit designed by Timothy Edwards provides such a receiver module.

The basic receiver was designed for the range 18 to 200 MHz with high performance, although for amateur markets the 2-metre version is the one usually sold. The cost of the kit is low enough for it to be used as a single-channel monitor for a local repeater or a simplex channel, left on to monitor required calls. Most high performance receivers at VHF seem very complicated but this kit has been designed with a low component count in mind. The designer is Timothy Edwards who is well known for his amateur radio designs and articles, he seems to spend a lot of his time sitting on 45 grand's worth of test equipment! The receiver kit can also be used as the starting point for an upgradable system. Timestep also sell a 10-channel oscillator to match the basic board and an optional 8-pole crystal filter which simply replaces the existing filter on the board. Timothy Edwards' well known 2-metre preamplifier boards could also be used in front of the receiver board.

The kit is supplied with all components and double-sided printed circuit board; all of the inductors are prewound and just solder into the circuit. The first oscillator requires a crystal in the 44 MHz range for the chosen channel. These are standard items and can be ordered from PM Electronic Services, 2 Alexander Drive, Heswall, Wirral, Merseyside L61 6XT. Just ask for a 44 MHz receive crystal in HC25/U mountings and quote the required 2-metre channel or frequency.

The Circuit

The circuit for the MON-2M is shown in Fig. 1. Perhaps the best way to consider the circuit is to follow the words of the designer, Timothy Edwards in the notes from the kit.
SINAD are achievable. It should be noted that a 2-stage band pass filter comprising L1 and L2 is provided to give a superior image rejection. Even with the attendant loss that this gives the early prototypes were achieving 0.2µV for 12dB SINAD. These figures are so good that receivers from Japan only a few years ago could not equal these results even with their excess of RF gain. The mixer FET is the now universally accepted BF 981 introduced into the U.K. by Timestep.

The IF output at 10.7 MHz is selected by L3 which has an internal tuning capacitor and is matched into L8 which is a 2-pole crystal filter. The matching of this filter is extremely important and the design procedure is rather complicated; however using the values specified will give the best distortion and adjacent channel performance. It is important to note that this must be a crystal filter and not a ceramic one as the ceramic filters have excessively wide stop bands and cause the IF amplifier to overload; IF amplifier overload is usually an unidentified problem with a lot of receivers and the substitution of a 2-pole crystal filter always clears these difficulties. The IF pre-amplifier Q2 has been designed to correctly match the output impedance of the filter and provide a little gain before driving the main IF section, Q3, which is the ubiquitous MC3359 (also manufactured as the ULN3859A). It is important to note that ostensibly the two ICs are interchangeable but in fact the ULN3859A version is a second generation device which has superior temperature tracking and limiting amplifier stability, and it was the designer’s original investigation of this IC at Pye Telecoms that persuaded the manufacturers to bring out the ‘A’ version and hence it is used in this project.

The 10.7 MHz is mixed with the crystal oscillator comprising X2, C11 and C12 to the final IF frequency of 455 kHz; this is selected and filtered by a 4-pole ceramic filter, L7. The IF is then amplified and limited before passing to the quadrature discriminator comprising C15, L6 and R18; L6 already has an internal capacitor but for ease of tuning C15 is added externally. The audio output is buffered internally with an emitter follower and appears on pin 10, the base of the emitter follower being decoupled to ground via C20 which not only improves sensitivity but also assures complete stability. The audio output is low-pass-filtered by R17 and C21 before being passed to the volume control, R33. Standard de-emphasis is provided by R27 and C28. It is a strong feeling that monitor receivers should be able to drive relatively high quality inefficient loudspeakers — certainly for local nattering the tiny speakers used in most black boxes are not suitable. It was with this in mind that a 2-watt audio amplifier was incorporated rather than the usual 500mW amplifiers. It must be noted with this particular chip that the output to the loudspeaker is not referenced to ground and neither loudspeaker output should be connected to ground or earth otherwise damage to the IC will occur; in practice this is no problem.

The main IF amplifier, Q3, has internally a noise operated squelch system which looks at a narrow audio spectrum at approximately 9 kHz — which, of course, has no modulation as the speech band is between 300 Hz and 3 kHz. 9 kHz was chosen as it is the frequency at which the noise disappears at a very fast rate when small input signal levels are present. This noise is filtered and rectified before being passed to the input of a Schmitt trigger on pin 14 of Q3. There is also a standing DC level provided by R20 applied to this pin. By adjusting R20, signals between 0.10µV and approximately 2.01.4V will open the squelch. The squelch uses a novel system which is well proven by the designer’s Company and turns the supply to the audio amplifier on and off. This has the inherent advantage that with the receiver in its quiescent mode current consumption is considerably reduced. It may be thought that this system would produce clicks and bangs in the loudspeaker as the squelch opens and closes; however with the use of Q10, a 0.5 amp transistor, and the circuitry around Q8, there
Table of Values

R1	56K
R2	100K
R3, R6, R10, R26	100R
R4	47R
R5	5K6
R7	1K5
R8, R21	47K
R9	1K2
R11	3K3
R12, R16, R25, R31	22K
R13	470R
R14	820R
R15	330K
R17, R30	1K
R18	33K
R19, R23	27K
R20	47K pot.
R22	680R
R24	560R
R27	150K
R28	33R
R29	1R
R31	330R
R32	25 or 10K pot.
C1, C11, C23	47pF
C2, C18, C34, C36, C39	100nF
C3, C13, C13, C28, C38	10pF
C4	1p8
C5, C6, C7, C9, C10, C21, C22, C25, C27	47pF

Also: PCB from Timestep Electronics, 2-off xtal skts., 2-off PCB pins, 2-off 10mm. cans, 1-off 7mm. can, 17-off track pins, 1-off 10-way plug, 1-off 10-way shell, 10-off 10-way pins.

Note: X1 can be obtained from P.M. Electronic Services, 2 Alexander Drive, Wirral, Merseyside L61 6XT (quote 44 MHz Rx HC25/U and channel required).

Building the Kit

The text suggests that the construction of the board may take a whole weekend. That appears to be a good estimate. I built it up in three evenings and I am used to wielding a soldering iron. The kit is not a beginner's project. The placements and spacing on the printed circuit board are such that accurate and careful soldering with low wattage soldering iron is essential. Timestep maintain that most of the problems encountered with the board have been due to poor soldering from inexperienced constructors: I can quite believe that. Most of the people who have approached me over the years with problems in home construction have had soldering faults — and they can be fiendish to trace. A high density board requires a little pre-planning for the constructor, but if the components are sorted out in advance and the constructor is methodical in his progress, and the recording of that progress, most simple mistakes can be avoided. The board requires good workmanship rather than technical knowledge. The layout plan and the clear component list minimise the chances of wrong component placement. I enjoyed building the board, but I always find electronic construction therapeutic.

The kit has no housing for the circuit board, it would be pointless for a module with so many diverse applications. I mounted mine on a simple aluminium cradle of base, front and back panels with a view to console mounting at a later date. The module would fit into quite a small box, although one of the features of the circuit design is the good audio quality of the output so perhaps the housing would be governed by the size of the loudspeaker chosen for the receiver; mine has no integral loudspeaker but a jack socket audio output. There is only one control, for volume, as the squelch level control is a printed circuit board preset. The volume control potentiometer is provided with the kit, although some constructors might like to replace it with one which includes an on/off switch.

Alignment

The alignment can be performed without any test equipment at all although life is easier if some simple equipment is available. The text with the kit simply and carefully explains the procedure for alignment of the receiver. Apart from the input tuning coils the other inductors should require little or no adjustment. There are so many operators around on 2-metres FM these days that aligning up from an existing signal on the band should not be too difficult. As with all alignment procedures the principle is a little at a time, recalling the amount of offset made so that the original state can be restored if required.

My particular board when aligned appeared to have a sensitivity of 0.32µV for 12dB SINAD, the squelch opening threshold being 0.16µV. Nice on paper but even nicer in use! I have found the receiver very sensitive even when used with a

are no perceptible clicks or bangs and the squelch operates in a very smooth and positive manner.

A stabilized supply is provided for all stages other than the audio amplifier from the Zener diode Q11 fed from R32; if a very low current receiver is required Q11 may be removed resulting in, typically, a reduction in quiescent current from 19 to approximately 15mA. The designer is sure that these circuit techniques will be lifted by other authors and commercial manufacturers!
rubber ducky antenna on the shack bench. The manufacturers are right about the audio — it does sound good into a decent loudspeaker. The board has a squelch defeat point which can be wired to a switch or push button and that is very useful for poor or fluttery mobile signals. The module did not seem to be appreciably desensitised by another transmitter in the same shack on an adjacent channel. Timestep can supply a suitable 8-pole crystal filter which just slots into the existing board and this gives a very good intermodulation response. Timestep do offer a limited trouble-shooting service to builders of their kits but this is a home construction project and buyers should be aware of the fact that they are expected to build the equipment when they buy it.

I like the MON-2M receiver. Mine has a typical use now that Mrs. RJV is an RAE graduate: it is the dedicated monitor receiver idling away in the study awaiting for the "beam me up Scottie" signals from her handbag rig.

The MON-2M breaks new ground in design simplicity at high performance and has been adopted by British Telecom in one of their monitoring schemes. A nicely presented kit, satisfying to build and use, and the price is such that it enables the keen 2-metre FM user to have a dedicated monitor for his or her favourite channel or repeater.

The kit costs £19.95 and is available from Timestep Electronics Ltd., Wickhambrook, Newmarket, Suffolk. (Tel: 0440-820040).

Basics for the SWL and R.A.E. Candidate, Part 17

SUGAR-COATED THEORY

Modulation

We must now come back to this word 'modulation'. If we have a CW carrier to command, then we say that we modulate it when we alter it such that we convey information. The simplest case is just to switch on the carrier as a signal, and the next simplest is when we turn the carrier wave on and off in accordance with the Morse (or similar) code to convey a message. However, in common amateur parlance we tend to think of modulation in the slightly more restricted sense of causing our carrier to convey speech.

Now, there are various ways in which we can make the speech signal from the microphone alter the carrier. We can cause the carrier to move in frequency about its nominal figure — this is the FM so beloved of the VHF licensees, of the CB-ers, and of the hi-fi fans who listen to Radio 3. This method is the best in terms of the possible received quality, given a clear channel and an adequate received signal level. The hi-fi signal also requires a very large bandwidth, but our amateur FM signals are restricted by the terms of our licence to no more than the width of an equivalent AM signal.

Which neatly leads us into the business of AM. Here, we are going to hold our carrier signal on a constant frequency, and vary its amplitude in accordance with the dictates of our microphone signal. If we imagine a pure sine wave at, say, 1000 Hz (a sound not unlike that of a flute) as the signal being given off by the microphone resulting from what it 'hears', then we can imagine that the maximum amount by which the carrier can be reduced is exactly to zero, and therefore the maximum to which it can be increased is exactly to double the original carrier amplitude. If we call this '100% modulation', then it doesn't require a genius to realise that if we now increase the sound level to the mic. we will actually stop the carrier altogether each time we approach and pass 100% modulation at the negative end; and we may or may not succeed in going beyond the double the carrier amplitude in the positive direction. In effect we will be cutting off carrier 1000 times a second — and the resulting 'splat!er' up and down the band will make you rather unpopular with the other users of the band! See Fig. 1 for drawings of all this.

Next we must analyse the case of the perfect AM signal having 1000 Hz tone modulation at 100% modulation level. Without going into the maths of it all too much, we can say that if we look at this signal on an oscilloscope we will get a display like Fig. 2(a); and if we transfer the signal from the scope to a 'spectrum analyser' we will see a display like Fig. 2(b). If we imagine our

![Fig. 1(a). A CW signal with no modulation. To send Morse, this 'carrier' may simply be switched on and off in accordance with the code. Fig. 1(b). At time 't' a modulating tone is added — say 1000 Hz — to give 100% modulation; note that now the RF signal changes at an audio rate to ±2 volts and at the same rate to 0 volts. Note also that the line shown as the modulating AF sine waveform touches the peak level of each successive cycle of RF; at 1.8 MHz, for example, each AF cycle would contain 1800 RF cycles.](image)
modulated AM signal will therefore give out 100 watts in the absence of modulation, and under modulation will vary about this figure to a peak output of four hundred watts, and a low of zero watts output.

In practice it was a rare AM transmitter that could make 100% modulation without distortion, even among the broadcasters; and of course we would be transmitting speech, whose waveforms are vastly more complex than the single tone.

To revert to our 100-watt output rig, and 100% modulation, a little of the Ohm's Law stuff will show us that we have 100 watts in the carrier and 25 watts in each of the sidebands.

SSB Enters — Stage Left!

It wasn't long after the AM case had been analysed that it was realised that the AM signal's two sidebands contain identical intelligence, and that the function of the carrier is to provide a 'reference signal' for the receiver detector to use, to extract the wanted audio component. By 1915, indeed, Western Electric had patents on a viable single sideband (SSB) system; what was done was to filter out the carrier and one sideband, leaving only one sideband to be transmitted. Further they had realised that, for a given received signal, SSB only requires one quarter the power output capability in the transmitter. In those early years the latter was important, due to the limitations of the early transmitting valves. Today, of course, we amateurs would use the same pair of valves we would have used in our old AM rig to give us four times the talk power. Furthermore those old-timers would have had no reason to suspect the greatest gain in our bands in 1984 — the removal of all those carriers and unwanted sidebands means we can get many more signals on to a band without heterodyne QRM or mutual interference. Even when we do have some QRM from another SSB station, we have a far better chance of being able to apply our ears and brains to resolving the cacophony into 'sense plus monkey-chatter'.

The reason for this last gain is less than obvious; if two AM signals are so close they are mutually interfering, the detector will tend to demodulate everything against the strongest carrier, so if they are fading up and down first one carrier and then the other will be favoured. With SSB, we don't transmit the carrier; instead we re-insert it at the receiver (BFO or CIO) and, which is more important, we make its amplitude so large that it is the only one against which the receiver will demodulate everything.

The practical advantage of SSB is so obvious that from its appearance in the late forties it very quickly swept everything in the way of old-fashioned AM into the dustbins and flea-markets of the amateur radio world. For a year or two the sideband op. would get the odd puzzled comment, "Something wrong with your mod, OM"; from some poor chap who either had never before met SSB, or didn't know how to resolve it on the war-surplus or home-brew receivers of the time. However, one clear explanation on how to deal with SSB was usually enough, as far as reception went. However, those who sought to explain SSB transmission and theory in the magazines all made it sound so darned complicated that it scared almost everyone off home-brew SSB transmitters. In reality, anyone who could build a decent superhet receiver could build and align an SSB transmitter.
However, for years now, almost everyone using SSB has used a transceiver rather than a separate transmitter and receiver — why? There are two reasons: firstly the rather obvious one that, since the sideband to be used on any given band is agreed by all, it follows that once a signal is tuned-in, the transmitter will be on the right frequency (unless one is in a DX pile-up where they are working split-frequency of course). Secondly, if the receiver requires a suitable filter for SSB selectivity, and the transmitter requires an identical one for the purpose of generating the SSB signal, one has a pointless duplication of the most expensive components. In practice, the duplication is more than just the filters, and so a transceiver costs little more than a receiver of equal calibre. To obtain the desirable split-frequency facility with a transceiver is fairly simple — small splits are accommodated by the use of incremental receiver tuning (IRT) which pulls the VFO a small amount as required by use of a varicap diode, which is enough for most purposes; wider splits can be accommodated by the use of an outboard VFO and switching, normally powered from the main rig.

Circuits

There are, in practice, three methods of generating an SSB signal. One can start with a fixed frequency and use a crystal or mechanical filter, as is done in all the current commercial rigs. If one is prepared to start at a low enough frequency — say, 50 kHz — one can indeed use a filter made from coils and capacitors, in the same way. This is what is known as the ‘filter method’.

Secondly, one can use a technique of phasing — this was developed by amateurs and is a more elegant attack than the brute-force method of filtering; and one can do it either on a fixed frequency, or, with some compromise, on the final band of a single-band rig. The method involves an audio phase-shift network, and an RF phase-shift network, each having outputs at 90° apart, and a couple of balanced modulators. RF phase-shifting is quite easy. The audio phase-shift is more tricky, but circuits are around. The famous “SSB Jr.” circuit audio network is due to W2KUJ and first made SSB popular in U.S.A. The one by Dome, W2WAM, is considered by some to be easier to set up. A more modern approach to audio phase-shifting is that due to Gingell, extensively discussed by Martinez, G3PLX. The first two are discussed in detail in the third, fourth and fifth editions of the RSGB Radio Communication Handbook, (save that Dome is dropped from the fifth) while the Gingell/Martinez polyphase arrangement has been written up in RadCom and the RSGB Amateur Radio Techniques in recent editions. Phasing, especially using the G3PLX approach, is a natural for home-brew, and in the writer’s opinion a good one puts out a nicer-sounding signal on the air than a filter method rig.

That leaves us with the so-called ‘third method’, due to Weaver. This is, in effect an amalgam of filtering and phasing, and has the minor advantage that it tends to turn its splatter on to its own frequency rather than spreading it far and wide. (Rough justice, that!) The writer has never heard a Weaver-type rig on the air to his knowledge, nor seen an article on a practical construction using the method.

But for our purposes we are talking about the filter method. Firstly, we need a crystal or mechanical filter! The latter are made by Collins — rather expensive — and Kokusai, and they are made for frequencies up to around 500 kHz. Crystal filters are also expensive, although probably easier to obtain, but there is no reason why you shouldn’t ‘roll your own’. Indeed, many of the earlier SSB designs did just that, using the then easily-obtained surplus FT243 series crystals, or even the FT241 series. To go this route in 1984, one would need to have a source of lots of these ‘rocks’ and be prepared to accept that the exciter frequencies will be tailored to the crystal filter one can make with the crystals to hand, rather than the other way about. Some useful articles appear in the ARRL Single Sideband for the Radio Amateur covering this approach to filter brewing. Let us just say that a reasonable crystal filter will use at least six crystals, and a first-class HF one will probably have a dozen. The main requirements are that the pass-band across the top be around 2.7 – 3.1 kHz, without serious ‘humps and hollers’ in that area. It should have a steep-sided shape outside the pass-band, with a bandwidth of no more than 6 kHz at 60dB down. A careful examination for any

Fig. 4 Phasing Type Exciter

Sideband suppression is achieved entirely through the accuracy of the phase-shift networks at RF and AF, and carrier suppression is achieved entirely by accurate balancing of the two balanced modulators. A very elegant approach.

Fig. 5 Crystal Filter Response

This is a plot of a crystal filter made from FT241-series crystals; f_c shows where the crystal oscillator, CO1, of Fig. 3 would be located to give USB or LSB output. Note that the carrier crystal frequency is located such that 20dB or more of carrier suppression is given by the filter.
In the course of the processing of the signal, there will be some spurious responses which show none for a goodly number of kHz to either side of the pass-band, if one sets the 60dB down level as the figure. Practically, with amateur test gear, - 60dB is probably as far as you can measure with any degree of ease. These figures will only be achieved when the filter is correctly terminated on both input and output ports; see Fig. 5.

If one is prepared to equate the audio output of a superhet to the PA of the SSB transmitter, a consideration of the block diagram at Fig. 6(a) and 6(b) indicates that the receiver case and the transmitter case are all but identical.

Carrier Suppression

Up to now we have made no mention of the business of getting rid of the carrier; with the filter method we implied the filter is removed by the carrier, which is at least partly true — by about 20dB in most rigs on our bands, and by rather more in some specialised equipments. However, 20dB isn’t enough; and we haven’t even got that with a phasing arrangement. The trick is turned by the use of a ‘balanced modulator’ which is another name for a balanced mixer. Recall our mixer stage. We put in F1 and F2, and we get out F1 + F2, and F1 — F2, F1, F2, and the various harmonics. The balanced mixer will show a condition of balance — like the Wheatstone Bridge, if you like — to the carrier, which will therefore not appear in the output in the ideal case. Practically, our design carries tolerances, and so carrier suppression is less than perfect; but with care and, maybe, a balance control to adjust for best results, we can obtain quite good carrier suppression.

Desiderata

This is as good a time as any to consider just what sort of suppression we are looking for. The carrier we want to be at least 30dB down, and preferably more suppression will be welcome. A practical rig will give around 40-50dB. Less than 30dB of carrier suppression will probably be noted at the receiver as a ‘growl’ if one is a trifle mis-tuned. Suppression of the unwanted sideband should be a minimum of 30dB, and again we would like more, if we can get it easily. A filter rig should go 60dB, and a 45dB figure indicates that there is some leakage around the filter due to less than perfect layout and screening; a phasing rig will go to 35dB with the Dome or W2KUJ arrangements, and one could expect better of a polyphase rig.

In the course of the processing of the signal, there will be some non-linearities due to the characteristics of the devices used and the degree to which they are ‘thrashed’ and some of these will appear in the pass-band of the signal proper. If this happens after the SSB signal has been created — the spurious outputs will be radiated. Some will be, as indicated, in the pass-band proper, and will serve to degrade intelligibility. Others will appear where the unwanted sideband would have been, and be a nuisance to others; and yet more will be spread right across the band and outside it. This sort of thing cannot be reduced to zero, but it can be kept down to a reasonable level by ensuring that all mixers are given the right sort of drive levels (essentially, the ‘carrier’ signal needs to be ten or more times bigger than the peak level of the ‘modulated’ signal), and by avoiding bad practice in the output stage. Here we can make a firm statement: nothing less than at least 30dB down is tolerable. Don’t forget that if you have a linear, your transmitter must do better than - 30dB, to allow for some degradation in the linear. At levels from 100 watts p.e.p. output up to the legal limit, on any band, there is no alternative to valves if you are not to be anti-social! One hopes this situation will improve in the next year or so, as power FET devices that are suitable appear. Meantime, if you have a solid-state PA, don’t over-drive it and preferably never let it go above half its nominal peak power output level.

Finally, stability. It is nice to know with good accuracy where you are on the band, and essential if you go near the band-edge; but this isn’t so important by a long chalk as having a signal that doesn’t wander up and down the band. A little can be tolerated by way of an IRT control on the receiver end, but without this, the chap at the other end retunes the drifter, resulting in the situation at the end of the over where the chap who was drifting now has to return to find the stable chap who moved to take up the drift. The end result is the entire QSO ‘walking’ up or down the band as the case may be, to the annoyance of all and sundry.

What about CW transmission with an SSB rig? Some of them will achieve this by unbalancing a balanced modulator so that a suitable level of carrier leaks through — sort of accidental-done-on-purpose, if you follow. Another way is to generate an audio tone at, say 800 Hz, and use this tone, turning it on and off by means of the key, to cause bursts of CW output at 800 Hz off the nominal carrier frequency. Fine, provided the 800 Hz tone is pure; it needs to have a second and third harmonic level of at least 40dB down, or there will be little QRP brothers at 1600 and 2400 Hz away from the nominal carrier — and the level of injection of the 800 Hz tone must be of itself ‘just so’ or the pure sine-wave will be degraded in the audio amplifier stages leading to the first modulator. Why 800 Hz, anyway? Because most people like an 800 Hz beat note in the receiver headphones, and most AF filter designs are centred on this frequency.

to be continued
U.K. Radio Amateur Participation in the CQ Worldwide Contests

N. S. CAWTORNE, G3TXF

October, 1984

Table 1. CQ Worldwide SSB Logs from the U.K., 1968-82.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Single Op.</td>
<td>Total</td>
<td></td>
</tr>
<tr>
<td>All Bands</td>
<td>10</td>
<td>8</td>
<td>8</td>
<td>12</td>
<td>10</td>
<td>15</td>
<td>13</td>
<td>11</td>
<td>13</td>
<td>11</td>
<td>6</td>
<td>7</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28 MHz</td>
<td>10</td>
<td>5</td>
<td>4</td>
<td>2</td>
<td>6</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>9</td>
<td>4</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>21 MHz</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>14 MHz</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>8</td>
<td>8</td>
<td>7</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>7 MHz</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>3.8 MHz</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>1.8 MHz</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Multi-Single</td>
<td>7</td>
<td>1</td>
<td>1</td>
<td>8</td>
<td>7</td>
<td>8</td>
<td>14</td>
<td>13</td>
<td>10</td>
<td>12</td>
<td>9</td>
<td>6</td>
<td>5</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>Multi-Multi QRP</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Analysis of CQ WW Results over 15 Years

To try and find the answers to these questions a detailed analysis has been made of U.K. participation in the CQ WW contests for the last 15 years (1968-1982), based on the published results. In order to put the U.K. participation into perspective on the international scale, a detailed analysis of the full results for the 1982 SSB and CW CQ Worldwide contests has also been made.

The full results of the CQ WW contests take about a year to be published and reach the U.K. At the time of writing the 1983 results are not yet to hand, and so the analysis of worldwide participation has been based on the 1982 CQ WW contests, held in October and November 1982.

Tables 1 and 2 show a detailed summary of the U.K. participation in the CQ WW contests over fifteen years. The Tables show the numbers of logs submitted by U.K. stations in the different categories. As listed, there are ten possible categories of entry for the WW contests: Single Operator on all bands, Single-Operator Single-Band on any one of the six bands, Multi-Operator Single-Transmitter, Multi-Operator-Multi-Transmitter and finally there is a special QRP section.

Single-Operator All-Band Entries

Of the several types of entry that can be made, the most popular is the single-operator all-band entry, where contest QSOs are made on a number of bands. The top line in the Tables show that this is usually the most popular entry for U.K. stations.

Single-Band Entries

Alternatively a single operator may decide to work the contest on just one band. CQ WW contests cover the six HF bands (the new WARC bands are not included) and therefore there are six possible “single band” categories. The Tables show the number of U.K. entries for each of the single-band categories from 1.8 MHz through to 28 MHz.

For the CQ WW SSB contests, 28 MHz appears to be the most popular band for single band entrants in the U.K. during sunspot maxima. This is understandable since 28 MHz is probably one of the most enjoyable bands to work on HF, subject to there being any good propagation. For both SSB and CW taken together, 14 MHz is the most popular single-band entry for U.K. stations. There have been a total of 122 in the last 15 years.

ON the last full weekend of both October and November each year there takes place on the HF bands arguably the biggest and most important set of contests of the year: the CQ Worldwide SSB and the CQ Worldwide CW contests. Worldwide activity during these DX contests is always very high with large numbers of radio amateurs making a special effort to be on the air for at least some part of these contest weekends.

DX stations from many of the rarer locations are always to be found in the CQ WW contests; contest expeditions activate many countries that may normally be difficult to work. Rarer countries where the resident amateurs may usually prefer to ragchew rather than work DX-er's often come on the bands for the CQ Worldwide contests. The CQ WW contests give everybody an opportunity to work something new or interesting on the HF bands.

U.K. Participation

Worldwide participation in the CQ WW contests is very high. The organisers, CQ magazine, regularly receive over 2,000 logs for each section of the contest. For the 1982 WW contests, the total number of logs received by the organisers was 4,666. Where do these logs come from? How much do U.K. stations participate?
Participation in this category from the U.K. has been very low on to be able to compete seriously in this category anyway! stations with a sufficient amount of antenna space and equipment using one callsign. The U.K. licence conditions for normal different bands, throughout the contest from one location and likely five or six stations that can work independently, each on 25 and 60 participating operators. Multi-single teams are usually operators to work much DX which may under more normal have more than tripled in the five years since the QRP section was defined for these contests as "less than 5 watts input". To contests. This has been growing in popularity over the years. QRP operators to team up and make a "multi-single" entry. station is on the air. This category of entry has always proved very that being used by the main station, at the same time as the main second station in addition to the "single transmitter". There are strict rules as to how a spotting station may operate. The purpose of the spotting station is to work multipliers on a band different to that being used by the main station, at the same time as the main station is on the air. This category of entry has always proved very popular in the CQ WW contests, because it allows a number of operators to team up and make a "multi-single" entry. In the U.K., the average number of entrants in this category over the fifteen years observed has been 8.6 on SSB and 4.06 on CW. These two together probably represent something between 25 and 60 participating operators. Multi-single teams are usually from 2 up to about 5 operators.

Multi-Operator Multi-Transmitter

A full scale "multi-multi" entry requires at least four and more likely five or six stations that can work independently, each on different bands, throughout the contest from one location and using one callsign. The U.K. licence conditions for normal amateur stations do not permit transmissions on more than one band at a time. However, realistically there cannot be many U.K. stations with a sufficient amount of antenna space and equipment to be able to compete seriously in this category anyway! Participation in this category from the U.K. has been very low on SSB and so far has been zero on CW!

QRP Section

In 1978, the QRP section was introduced in the CQ WW contests. This has been growing in popularity over the years. QRP is defined for these contests as "less than 5 watts input". To encourage QRP participation the QRP results are listed separately from the QRO entries. The numbers of QRP entries on a worldwide basis for both the SSB and the CW WW contest together have more than tripled in the five years since the QRP section was started. In 1978, the combined QRP entry was 58, whereas by 1982 it was up to 204.

The CQ WW contests are an excellent opportunity for QRP operators to work much DX which may under more normal operating conditions be out of their reach. The QRP operator can usually work several new countries during the Worldwide contests, not only because of the high level of activity, but also because all the QSOs are kept to an absolute minimum in length and because the DX is trying to make as many contacts as possible by working everything that he can hear. This includes QRP-er's that might otherwise be trodden to death in pile-ups and DX working out of contests!

U.K. Countries and the CQ WW Awards

CQ magazine issues awards and certificates for the CQ Worldwide series of contests on a country-by-country basis. For the purposes of the CQ WW contests, the countries list used is the ARRL DXCC countries list, plus those countries on the DARC's Worked All Europe countries list not appearing on the DXCC list. There are three such countries, and just one of them is in the U.K.: GM-Shetlands! With the normal seven DXCC countries (G,GD,GJ,GM,GU,GW) that make up the U.K., Shetlands makes the eighth country within the U.K. for the purposes of the CQ WW contests.

<table>
<thead>
<tr>
<th>Contest Year</th>
<th>SSB Logs</th>
<th>CW Logs</th>
<th>Total Logs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1968</td>
<td>36</td>
<td>36</td>
<td>72</td>
</tr>
<tr>
<td>1969</td>
<td>36</td>
<td>32</td>
<td>68</td>
</tr>
<tr>
<td>1970</td>
<td>28</td>
<td>28</td>
<td>56</td>
</tr>
<tr>
<td>1971</td>
<td>33</td>
<td>22</td>
<td>55</td>
</tr>
<tr>
<td>1972</td>
<td>43</td>
<td>36</td>
<td>79</td>
</tr>
<tr>
<td>1973</td>
<td>35</td>
<td>24</td>
<td>59</td>
</tr>
<tr>
<td>1974</td>
<td>39</td>
<td>43</td>
<td>82</td>
</tr>
<tr>
<td>1975</td>
<td>44</td>
<td>44</td>
<td>88</td>
</tr>
<tr>
<td>1976</td>
<td>43</td>
<td>35</td>
<td>78</td>
</tr>
<tr>
<td>1977</td>
<td>26</td>
<td>23</td>
<td>49</td>
</tr>
<tr>
<td>1978</td>
<td>44</td>
<td>27</td>
<td>71</td>
</tr>
<tr>
<td>1979</td>
<td>37</td>
<td>37</td>
<td>74</td>
</tr>
<tr>
<td>1980</td>
<td>31</td>
<td>33</td>
<td>64</td>
</tr>
<tr>
<td>1981</td>
<td>26</td>
<td>32</td>
<td>58</td>
</tr>
<tr>
<td>1982</td>
<td>38</td>
<td>38</td>
<td>76</td>
</tr>
</tbody>
</table>

15 years: 539 490 1,029

Table 3. U.K. logs listed in the results of the SSB and CW WW Worldwide Contests.
With there being 10 possible entry categories and with the 8 CQ WW countries in the U.K., this would, in theory at least, mean that 80 certificates are available to U.K. entrants in both parts of the CQ WW contests! This is without taking into account any of the possible continental winner awards that might also be available to high scoring stations.

The Islands around the U.K.

The Isle of Man (GD), Jersey (GJ) and Guernsey (GU) are all very much sought after as multipliers in the CQ WW contests. It is interesting to note the relatively low number of entrants in the CQ WW contests from these island "countries". Many of the entries shown on the Tables from the islands are often connected with visiting "foreigners" to the islands, be they G3 type foreigners or G5 type foreigners!

U.K. Total Logs in CQ WW's

Table 3 shows for each of the fifteen years covered, the total number of U.K. logs submitted for both the SSB and the CW CQ WW contests each year. It is interesting to note that the total number of logs submitted from the U.K. for SSB (539) only slightly outnumber those for CW (490). The U.K. entries for the different years are also shown in Fig. 1.

There is a fair degree of consistency in the number of logs submitted over the years, although the U.K. amateur radio population as a whole has probably at least doubled over the period. The average for SSB was about 36 U.K. logs and for CW about 33 logs. Looking through the results listings many callsigns are found to appear on a very regular basis, almost year in and year out!
Worldwide Analysis

For 1982 only, a complete analysis of the worldwide entries has been made, which helps to put the U.K. figures into perspective. For the 1982 CQ WW SSB contest 2,444 entries appeared in the results, whereas on CW in the same year the total was 2,222. The corresponding U.K. entries of 38 (SSB) and 38 (CW) represent about 1.6% (SSB) and 1.7% (CW) of the totals.

On the global basis, the total number of logs shown for the five most major contributors of logs are: U.S.A., 1,495; U.S.S.R., 781; Japan, 444; Czechoslovakia, 237; and East Germany 151. The U.K. participation on a global basis is relatively a long way down the listings.

Fig. 2 gives the breakdown of the number of logs submitted by each European country for both the SSB and CW Worldwide contests in 1982. An "all U.K." position, i.e. including GD,GJ,GM,GU and GW, is shown on the graph as well as a G only position. This shows the U.K.'s participation as a whole in relation to other European countries, as well as the participation of the English stations alone in these two contests. The number of logs submitted from all the U.K. was about one third the number submitted by the highest participating country in Europe, namely Czechoslovakia.

Fig. 2 also shows the mix of SSB and CW logs submitted by each country. For 1982, the U.K. entries were just 50% SSB and 50% CW. How that mix for U.K. stations has varied over the years can be seen from Fig. 1. The Eastern European countries tend to have a relatively higher participation in the CW contests than in SSB contests.

This Year's CQ Worldwide Contests

The next CQ Worldwide contests will again be on the last full weekends of October and November. The dates for this year's events are October 27-28 (SSB) and November 24-25 (CW). Whatever the band conditions are like, one thing is certain: there will be plenty of stations to work! The U.K. participation in these major international operating events is relatively low when compared with many of our European neighbours. So this year, why not come into the CQ Worldwide contests for a few hours, work as much as you can and send in a log. Who knows, you might even win a certificate for your effort! The address to which logs should be sent is: CQ Magazine, 76 North Broadway, Hicksville, NY 11801, U.S.A.

Acknowledgements

The data used to prepare this article has been drawn from the results of the CQ Worldwide contests that appear in CQ magazine.

Now available from muTek Limited is its new TVHF-230C 9-band HF transverter, designed to operate with a 144 MHz SSB/CW or multimode transceiver and give high-performance receive and transmit facilities on all nine current HF amateur allocations with 10 watts p.e.p. output. Built to muTek's usual demanding specifications and high standards, the TVHF-230C cost £334.90 including VAT (plus £5.00 carriage); for detailed information contact muTek Limited, Bradworthy, Holsworthy, Devon EX22 7TU (tel: 0409-24543).
Important note: *It was pointed out in last month's issue that if any part of these designs is changed the expected performance will not be realised.*

Using the Data

Two designs will be described, a six-element beam (Fig. 1) centred on 145 MHz and an eleven-element (Fig. 2) with a centre frequency of 433 MHz. The designs use readily available materials and give gains of around 15dBd on 433 and 10dBd on 145 MHz. Provision is made for converting from balanced elements to coaxial cable feed and allowing accurate impedance matching by the use of a Gamma matching system. Due to the high gain obtainable and the matching system used, these designs have become known as the "Big G" aerials (the fact that I stand six-foot five and weigh over twenty stone is, of course, completely coincidental!)

The Materials

The booms for the aerials are 1.25 inch square "finished" timber. This is a nominal dimension and may vary slightly according to how much timber was removed during planing. Slight changes in this dimension are of no importance. The elements are made from 8mm. copper water pipe. Choose a straight piece of timber which is free of knots and drill 8mm. holes at the points shown in the diagrams. All measurements should be made from one end, as indicated, so that errors do not "build up". The timber should now be primed and finished with a good quality paint or varnish.

The elements should be cut to lengths that are about 10 to 15mm. longer than those indicated in Tables 1 and 2 and are then inserted through the boom. You may find a slight slope on the elements but this can be corrected with a gentle bend. Set the element central in the boom and then fix it firmly by driving in a woodscrew as shown in the sketch, Fig. 3. The ends of the elements are now closed by lightly hammering them over a distance of about 10mm. at each end. (This is to stop the elements...
Screw into Driven element eflector
Driven element

Matching rod before adjustment:
145 MHz 12 inches
432 MHz 5 inches

Matching rod before adjustment:

Fig. 5 DETAIL OF MATCHING SYSTEM.

"organ piping" in a high wind. Very pretty sound, but your neighbours will not want to hear it at three in the morning. The exact length of the element is then marked and cut to length.

The Gamma Match

This is best understood by reference to the drawings, see Figs. 4 and 5. The outer of the coaxial cable is connected to the centre point of the driven element and the inner is connected to a point on the driven element via a variable capacitor and the lower tube; this is the same system as used on the HB9CV but with variable tapping. A small plastic box is screwed to the underside of the boom to make a waterproof housing for the matching system.

Tuning-Up

There are only two points at which you can measure what is popularly known as the "SWR" of the aerial. One is at the feed point of the aerial itself and the other is at electrical half-waves along the feeder system. The second is usually more convenient.

Make up a length of UR43 cable 106" long and connect this between the aerial and your SWR bridge. Connect a suitable transmitter and set it to the centre of the frequency range in which you normally operate, say 144.300 MHz if your interest is mainly SSB. The aerial should be supported on a suitable mast and pointed upwards at an angle of 45 degrees or so to avoid ground reflections. You should also ensure that the aerial does not look into any high buildings or other obstructions.

Apply power from the transmitter and check the SWR. By moving the shorting bar along the rods and adjusting the variable capacitor bring the SWR down to 1:1. Any of the matching bar that extends beyond the short may now be removed. The aerial may now be mounted on the mast in the normal fashion. If it is mounted close to other aerials, which may detune it, it is possible to do that final tweaking at the installed position. Do not try to adjust the SWR by cutting the length of the cable. This does *not* adjust the SWR but simply alters the feed point impedance at the bottom of the cable. This may protect your PA but it will not improve your aerial system performance!

Pictured here is the new British-made Black Star Jupiter 500 function generator. This mains-operated equipment offers full programmability of both amplitude and frequency by external voltage and high output voltage of up to 30V peak-to-peak; frequency range of the Jupiter 500 is 0.1 Hz to 500 kHz in seven switched decade ranges with fine frequency control. Sine, square, triangle and TTL (30 loads) waveforms are selectable and an adjustable DC offset up to 15V can be applied to the output. Supplied with a comprehensive instruction manual, the Jupiter 500 costs £110 plus VAT in the U.K. Full information and an illustrated colour data sheet are available from Black Star Ltd., 9A Crown Street, St. Ives, Huntingdon, Cambs. PE17 4EB (Tel: 0480-62440).
CONDITIONS have begun their seasonal change on the bands; the first stirrings in the indicators are reported in the RSGB Sunday News-Bulletins for those who care each week to lend an ear. Indeed, one wonders if there is any real DX-er who doesn't listen to the propagation forecast.

Odds and Ends!

It is one thing to be able to guess what is happening on the bands next week, and indeed to be able to say we are on the up-or down-side of the sunspot cycle — but it is quite another one to predict when and how it will peak or bottom. This will have been brought home to anyone who listened to the RSGB Bulletin of August 19, in which the minimum was predicted to occur around the end of 1987 or early in 1988 — but with the reservation that some authorities are predicting a prolonged period near the minimum, lasting until 1990. The truth of the matter is really that none of us know enough about the mechanism of the sunspot cycle to make a long-term prediction, save by an extrapolation from history. The first indication that the minimum is near will be when the first sunspots are seen relating to a different latitude on the sun. But don't try making observations of sunspots yourself, unless you can arrange to throw the sun's image onto a white card — any attempt to look directly at the sun is liable to produce permanent blindness!

During the past month, dedicated DX types on 80m, will have observed that it is now possible for the Ws to appear within our bit of the band — 3750-3800 kHz in fact; but General-class Ws now have a phone allocation starting at 3.850 MHz. The crowd which activated Lord Howe Is. last year are aiming for Mellish Reef, possibly at the end of October for the CQ WW Phone contest. A rumour nails those dates down to October 25-November 6, and the QSL address as VK2WU.

K4YT, Karl Renz, has been assigned to Manila for a two year stint, and we understand he will be travelling to P29, BY, BV, YB, ZL, VK, 3D2, VS5 and VS6, with some considerable hope of operating from these places.

Another station has appeared from China, this one being BY5RA, operating from Foochow, with authorisation from Top Band to 432 MHz, CW, SSB, FM and Satellite. The QSL address is Box 730, Foochow, China.

An interesting little contradiction refers to A51PN; TDXB says that he has been QRT for the past three years but DX Report has him audible in Canada around noon and 14310 kHz; so some serious listening seems indicated.

Now to a real live DX-pedition. The Chilean Radio Club and the Chilean Navy are sponsoring CE0AA, San Felix, beginning on September 4 for around six-eight weeks. According to CE3GN, the two operators are both new to amateur radio, and don't have very much English — and they have less experience of handling pile-ups! And, one would expect some of the biggest pile-ups ever. This has to be one of the most wanted countries ever for Europe, as well as the rest of the world, and it does seem from the first couple of days that it is all going to be a 'list' operation. At the time of writing the list seems to be being picked up on the French net around 1715z, 21170-ish, and/or 14120-ish from 1900z. The operators are claimed to be good commercial CW operators with a little CE9 time in. Let us hope that by the time you come to read this they have gained a little confidence and begun to work split-frequency.

For a British DX-pedition; this one is a group called the Rutherford-Appleton Laboratory Amateur Radio Group, and they will be active from Montserrat as VP2MF from October 20 on CW, and then on Phone of course through the CQ WW DX Phone Contest, October 27/28. There will be an emphasis on the low bands for those after 5BDXCC, and some Top Band activity. Operators are G3JSK, G3UKS, GM3YOR, G4BGH, G4JVG, G4XR1 and G4XRI. The QSLs should either go via the Bureau or direct to G3RRS, c/o Jean Mills, G4XRI, R20, Rutherford-Appleton Laboratory ARC, Chilton, Didcot, Oxon., U.K.

Another expedition of note is the one to South Cooks by PA3BFM and PA3DHH, operating as ZK1XC and ZK1XD, with assistance from ZK1CG. It is of interest to note that ZK1CG is now in the holiday season, operating as ZK1XC and ZK1XD, with assistance from ZK1CG. It is of interest to note that ZK1CG is now in the holiday season, operating as ZK1XC and ZK1XD, with assistance from ZK1CG. It is of interest to note that ZK1CG is now in the holiday season, operating as ZK1XC and ZK1XD, with assistance from ZK1CG. It is of interest to note that ZK1CG is now in the holiday season, operating as ZK1XC and ZK1XD, with assistance from ZK1CG. It is of interest to note that ZK1CG is now in the holiday season, operating as ZK1XC and ZK1XD, with assistance from ZK1CG. It is of interest to note that ZK1CG is now in the holiday season, operating as ZK1XC and ZK1XD, with assistance from ZK1CG. It is of interest to note that ZK1CG is now in the holiday season, operating as ZK1XC and ZK1XD, with assistance from ZK1CG. It is of interest to note that ZK1CG is now in the holiday season, operating as ZK1XC and ZK1XD, with assistance from ZK1CG. It is of interest to note that ZK1CG is now in the holiday season.
By way of *DX Report*, we hear that 5X5GK is not licensed either as a 5X5, or indeed as a VE... and that 5U7LD and the recent DJ5CQ/SV/A were both turned down as DXCC counters.

Top Band

Between his new job and a holiday, G4AKY (Newport, Essex) only managed to work UZ3SWG, EA3CQS/EA5, UG6GAW, a couple of Ols, and SM5AHK. However, during his holiday at Fowey with uncle G4JFU, who possesses some three acres of garden, much of the time was spent with G4JFU planning a 'good' Top Band aerial — but on the existing 200 feet, G4AKY worked W2QD, KT3M, OL0CB, and heard PY1BVY and HZ1AB, all on CW. An amusing sideline to the exercise of planning a good Top Band aerial at Fowey is that Dave says so on makes the planning exercise so much easier!

At G4OBK (Chorley), quite a bit of time was spent on the LF bands despite the static. On Top Band Phil nabbed HZ1AB after two years stalking him; HZ1AB worked around fifty EUs on the night of August 29 when static was low at that end. I5ONZA also went into the bag, not to mention G4XWD, when he was still GE6TV. Jim’s main interest (as his call indicates!) is in old-time radio gear, and he wonders whether there is much interest in this area; we immediately think of Ron Ham and the Museum at the Chalk Pits, Amberley, and of course the Wireless Museum of which G3KPO is curator, down on the Isle of Wight. In addition there are several private collectors known to the writer, so the interest is certainly there. G4XWD wonders if there is enough interest for some on-the-air contact between enthusiasts — sounds likely, and those interested could get in touch with G4XWD at 40 Oldnall Road, Kidderminster DY10 3HW. Incidentally, if you hear a very strong signal from G4XWD, the chances are fair that you are hearing him using a kite aerial, of the type used with the old BC-778 series rigs. And, if you want to help the cause of restoration, and you happen to have a circuit of the DST-100 receiver, please let G4XWD have a copy, or at least a sight — his copy lacks a great lump in the second mixer area.

Top Band for G2HKU (Sheppey) was a selection to have the potential of the aerial, and which have made it a good proposition on 3.5 and 7 MHz too! CW worked 4U1ITU, AA1K, KH8AC/1 again, and CP8HD heard on SSB on the impossible frequency for Cs of 1810 kHz LSB. On the weekend before he wrote John managed HZ1AB three times, with a big improvement using the new aerial, DL1GK/HBO, DF2ZI/OY, UL7FCC, RL7FDR, UK0SGQ, and very weakly heard VK6HD on September 2 at 2215z.

Ten

Just one contact was noted on this band by G6QQ (Hoveton) in the shape of a CW one with LU8DQ; David, like all the other correspondents, reckons conditions were between lousy and awful!

Ten metres for G3OUC (Newbury) in two varieties, namely QRP SSB with a homebrew rig, which accounted for IKMN, OK1AJN, SM7ACB, Y22EK, DK8GT and others; and QRP FM with which FO8S/MM and some locals were worked. G3NOF (Yeovil) admits to no contacts on the band, although, he says, there have been openings to Europe in the daytime and to South America in the evenings, on occasion.

For G4OBK the band held the pleasure of a new country, by way of 9J2B0, plus lots of Europeans.

The New Bands

G4OBK mentions an outing on 18 MHz, which yielded a CW contact with F0HSE.

G4K1 (Swinton) — at least that's who we think it is, but he didn't put his name or call on his letter! — has been operating almost exclusively QRP, on various bands. Bill mentions that he has a CC rig
on 10 MHz, and a crystal which looked to be right in the middle of the QRM at 10.112 MHz, so he took the holder apart and pencilled on it till it came down nicely to the band edge — and then broke it! So, Bill awaits delivery of a new rock, with which, he says, he will be more tender and loving!

G2HKU only seems to look at 10 MHz, but there he is usually into pay-dirt. This time he reports CW contacts with Y24DO/P, OY7ML, and DF3GX/PJ4.

It was 'new bands only' for our last reporter, G4UZN (Leeds LS17). On 10 MHz CT2FN, DF3GX/PJ4 (Bonaire), DK4AN/ISO, DL1GK/HBO, LU1DZ, NP2AB (U.S. Virgin Is.), OX3LY, VK2KH, VK6WT, ZL3GQ and ZL3IS were all hooked, with the following on 18 MHz: DJ6OY, DL2NAI, HB9AKW, IS00MH, OY7ML and OZ2MJ. On 24 MHz, believe it or not, precisely the same people were heard as on 18 MHz. As G4UZN says, not a mis-print — and not as easy as it looks either!

Fifteen

G6QOQ (Hoveoton) seems to have spread his wings a little; all bands 3.5-28 MHz seem to have received at least a look, but for the moment we must concentrate on 21 MHz. CW dealt with JA8HQG, JH7MSQ, 4X6KF in August, while in the European DX CW contest David went after and raised such as RF0, UL8, UA9, W1KM, ZS1CT, 3D6AK, LUB6Q, 4X6LF, 424NVT, K1AR, KCI1F, K1BV, K1VUT, W2YV, W3GM, K4BAI, K4LTA, W5SR, K5KLA, PY2WB, N4NO, NP4Z, HZ1HZ, and one UL. As for SSB, that was used for contacts with JYS5CO, TR8DR and PY2ZJ.

G4KKI is a 100% QRP and home-brew merchant, and can use all the bands 3.5-30 MHz. On 21 MHz his QRP rig heard lots of PYs, but none were near his crystal frequency. Bill in fact uses the OXO rig, famous throughout the G-QRP Club ranks, with a 2N3866 output stage giving about 750 milliwatts or 2SC1969 PA stage to take him to three watts output. The snag, of course, is being crystal controlled, so VFO rigs for each band are in the building. G4KKI has had some shack photographs taken, and reckons to let us have sight of one — preferably in black — at some time. QSOs actually completed included those with A24MC, A24SC, C30LA1, FH4AA, F6GXB/TK, H5AK, 12DMK/IL7, J28DN, J9YCL, KU8ZC, VO1BL, VO1NP, ZS1AAQ, ZS2AO, ZS2DK, ZS2OM, ZS6TB, ZS6TUK, 3D6AN, 5X5GK and 9Q5RN.

G4NOZ (Colchester) notes only the group from Malta, who are inundated whenever they venture on to the bands; Les mentions in particular 9H1HD, on August 2, handling the pack with a great good humour.

Points from the Post

W1WY sends his usual, and invaluable, Contest Calendar each month. October, he informs us, this year is going to be a bit easier as

W3MK (Los Angeles) notes how much he admired the new U.S. legislation aimed at illegal operation, but feels that its effect on QRM will be minimal until other countries follow Britain's lead.

Chris Rees, G3TUX, operating as G3TUX/16 at his holiday QTH near Ancona. His newly-acquired muTek transverter performed well, the limiting factor being the FT-290 used to drive it. On the problem of intrusion into the amateur bands, and the ineffectiveness of jamming unless the intruder is nearby, Chris says that some of the strongest CB signals on 10m. (in the middle of the Beacon Sector) copied at G3TUX/16 were East London YL's discussing the dinner menu. G3TUX welcomes the new U.K. legislation aimed at illegal operation, but feels that its effect on QRM will be minimal until other countries follow Britain's lead.
Eighty

Not a band on which we get all that many reports, but a better than usual month this time.

First off we have G4NOZ, who has put up a home-brew G5RV and tried it out on the TS-130S with some very good reports from QRP stations; noticeable QRM on SSB, but generally in the clear on CW.

G2NJ (Peterborough) notes that G5NX is back from his 26th trip to VK land, and was operating CW while /M on August 27 from Oakham for QSOs with Nick and G40KL. QRP stations noted by G2NJ included G3SB/P at Badminton, using an HW-8 with a mobile whip, just after a QSO with GM3DHT; G3SB/P was up on a hill and in the clear all round. G4GIQ was S79 throughout a 35 minute CW QSO, testing out a pocket-size transceiver to be used with a kite aerial — his QTH being on the bank of a small river. Yet another contact with G2CNN was made while the latter was at Basingstoke, the day before G2CNN was due to return home to Norfolk.

G4KKI offers QRP contacts with G3ASM, G3JHC (QRP), G3NSA, DJ4ST and GB3MXN (QRP), all while using his three watts output on output. G2HKU offers just one QSO, made with the QRP rig with DJ0SS.

Last contributor on this band was G6QQ, who managed to push his CW signals across to UL8 and UA9.

Forty

G4NOZ found the band rather noisy for SSB, but reports good QSOs with SMs and UBs on CW.

G4KKI attacked the problem of his aerial, and in fact got it up a further eight feet; this and the three watts output on CW was enough to practice Morse on DL3KBQ, G4FKH, G13MBO (2-way QRP), G4CTJ (2-way QRP), EA3ALY, EA2EY, and W3GM.

The normal rig at GH2HKU was used to work CW to UA9S and UF6CR; but it was down to four watts CW QRP for the contacts with UL8LWO and UZ9FWR.

Forty for G40BK began with a QSO with Snow, VK3MR, on 7 MHz; then PY1JF, W1, W2, W3, W8, VE1ZV, 4U1ITU, LU8DQ, PY2BW, FG4DI for a new one, UA9S and R0LC.

As for G3BDQ, he notes that outside of Top Band, he worked CW on 7 MHz, to raise R18BL, UI8OAA, a half-dozen UA9S, 8Q7RM for a band new one (QSL via JE3MXX), 6W8GE, JAs, UL7CAD, UL7TCG, DF2PI/OY, F6EYS/3A and UI8J3K.

Finally on this band we come to G6QQ; David seems to have taken a liking to Morse and to this band, as well as providing fun for the ‘un-associated’. All the details on this one from G4UKS, Mrs. H. Clayton-Smith, 115 Marshawlswick Lane, St. Albans (St. Albans 59318, evenings) to whom also should go the logs after the contest, postmarked no later than December 10. We commend this one to everyone as a club activity.

Twenty

Which is where it all happens. G2HKU stuck to CW, and worked HK6KKK, DF3GX/PJ4 in ‘Bonaire’, and KC7YU/5N6. A ‘moment’ of a rather different kind occurred one morning when Ted’s wife suggested he look out of the window; there was a tit, busily engaged in biting lumps off the insulation of one of the aerials and carting it off to a nest site as construction material. Now that needs a law about it!

A crystal on 14.060 MHz, an OXO rig, and an SRX-30 receiver provided twenty-metre entertainment for G4KKI, mostly at three watts out; it raised N2DAN, VE3AX, W2AG, F6IPS while at only 750 milliwatts, and HB9NE. However, it is a little upsetting to hear things of interest off one’s crystal frequency, so we gather that a VFO controlled rig in now in the building stage.

G4NOZ joined in the Sunday evening RNARS net (14190 kHz plus or minus QRM, 1900z), and found 2B2HT, plus a little later EA7DHK in La Linea. Others were WA2SSV, WA2VFA, both at 559 on CW, and EA6GPE; youngest of the month was 4Z4HS, operated by 14-year-old Moran, and most nostalgic FV4VAR, commemorating the landings in Southern France in W.W.II.

The band has been poor usually, but there have been some signals around. Early-morning VK/ZL have been poor, and the best time seems to be 1700z onwards, with a good Asians on short path, and Africans around 1800. Don made Phone contacts with A4XKD, AL7BL, CY0SAB, DU1DBT, F6GXB/TK, JW5VAA, JY9CL, K2BDY/DU7, KC2PZ/VP2M, KC7UU/5N6, OX3JZM, TF5BW, UI0AT (Franz Josef Land), UD6BR, UI8J1, UI8ZAC, V2AZM, Z9A, 4K0B (USSR North Pole Expedition), 4S7NS, 5N8AE, 911NO, 9Q5MA and 9V1VS.

G4XWD, as we have indicated, is interested in the old-time radio gear, but at the moment he is on with a TS-520SE until he can get some vintage gear working to satisfaction, operating on 80, 20 and 15 metres. As for the DX, Jim doesn’t give a list, but says his best was W7WHO in Oregon who came back to a quick CQ; they has a nice contact, and then the W disappeared in the horde all after a contact with Oregon!

Last man in is G6QQ; David stuck to CW, and worked VK3DFX, UL8, UA9, UF6, K1AR, W2YV, W3GM, K2ZS, UA0, K4LTA, KCF, W2REH, K2NJ, W5Z2R, W8UZV, N8BIQ, W9OA, plus in the All-Asian JA6YAI, JS6AAT, JE15GH, eight UA9s, one UA0, two ULS, JA1BWA, JA9YBA and HZ1AB. Now, he says, after all the CW practice last month, he’s back to the microphone!

Big Switch

We can pull it and relax till next month. We know conditions have been pretty vile, but we could do with more reports with news of what’s going on in the great big world of amateur radio; send them addressed to ‘CDXN’, SHORT WAVE MAGAZINE, 34 High Street, Wethlyn, Herts, AL69EQ, by the dates shown in the ‘box’. And, by next time we should be seeing the conditions picking up a little—fingers crossed, please!
Every Beam Has its Moment
OR, ENSURING YOUR MAST STAYS UPRIGHT!

D. J. REYNOLDS, G3ZPF

Having made an assessment of local windspeed ("S.W.M.", June 1984) and then converted wind speed to wind force ("S.W.M.", August 1984), the next step is to use the derived forces to determine the size of mast member required to resist them.

Bending Moment Theory

It is necessary at this point to introduce the concept of a bending moment, and the stiffness of a section, although for this "limited" application (in engineering terms) the maths will be quite straightforward. Most, if not all, readers will be familiar with the term cantilever, and this is just what a self-supporting mast (or a vertical antenna) is. The elements of a Yagi array can be considered as two cantilevers back to back.

Figs. 1(a) and 1(b) show a vertical cantilever subjected to different kinds of lateral loads. In Fig. 1(a) the load is referred to as a 'point load' which, as its name implies, has the entire load applied at a single point. Examples of a point load are the load from an aerial array atop the mast, or the pull exerted by the end of a dipole to the mast.

Fig. 1(b) shows a 'uniformly distributed load' (of UDL) applied, and the obvious example of this would be the wind pressure exerted on the side of the mast itself. Note that the wind force on the elements of the aerial are of the UDL type, but their effect on the mast is concentrated at the top, as in Fig. 1(a).

To avoid confusion, point loads are generally referred to by a capital letter, with UDLs being referred to by a lower case letter. The units of point loads are either newtons (N) or kilonewtons (kN), whilst UDLs have units of newtons per millimetre (N/mm), kilonewtons per metre (kN/m), or any other combination of force per length.

Under the action of lateral forces, the vertical (or horizontal) cantilever will bend by an amount dependent on the magnitude of the applied forces and the stiffness of the cantilever. The forces acting within the material to resist the bending action are such that the face nearest the applied load will be in tension, whilst the opposite face will be in compression. The distribution of stresses across the depth of the member subject to bending are shown in Fig. 2, but note that the tensile face being next to the loads only holds true for a cantilever, and with a beam supported at both ends the situation is normally reversed. The stresses are greatest on the faces of the member, and change sign (tension is normally regarded as + ve and vice versa) at the centreline. At the centreline there is theoretically no bending stress, hence the name 'neutral axis'. The neutral axis will always be on the centreline of the member for the type of members being dealt with, but there are occasions in civil engineering when the two are displaced.

A bending moment is the product of a force and a distance, with the distance from the point of action sometimes referred to as the 'lever arm' for obvious reasons. Looking at Fig. 1(a) it is easy to see that the bending moment will be zero at the top of the mast, and equal to W x L at the base of the mast. The stresses on the face of the mast are at a maximum at its base, coinciding with the point of maximum bending moment, and their value will depend on the stiffness of the mast. The stiffer the mast for a given length and load then the lower the stresses, and vice versa. Obviously if the diameter of the mast is too small, the stresses induced will be greater than the material can stand, and the mast will snap.

Shear Force

As well as bending the mast, transverse loads will also tend to shear it off at the base. This may seem hard to imagine with a tall, slender mast, but imagine if the mast were only one metre high and was one metre in diameter. A hypothetical case, yes, but it will shear rather than bend. Fortunately for members of the proportions covered by this article, bending will be the limiting factor and not shear.

Here Comes the Maths...

To determine the safe load for any given cantilever, or the size of cantilever needed to resist given forces, there are a few simple formulae. It is not intended to derive or explain them, but simply to use them as mathematical tools, as a means to an end.

For both Figs. 1(a) and 1(b),

\[M = fZ \]

where

\[M = \text{Bending Moment} \]

\[f = \text{bending stresses} \]

\[Z = \text{section modulus} \]

Simple enough on the face of it, apart from the mysterious 'Z', which is a measure of the stiffness of the mast.

Although it will be obvious to many readers, to simplify the design of a mast with several loads, it is quite possible to calculate the moments and stresses caused by each load separately, and then add the results at the end. It is referred to as the "principle of superposition", and is illustrated in Fig. 3. Earlier in this piece, it was stated that both masts and Yagi elements were cantilevers, apart from the fact that the former is in the vertical plane, and the latter is horizontal. Because of the different alignments there are slight differences to the forces present at the supports of each, which have to be taken account of, and which are illustrated in Figs. 4(a) and 4(b).

Fig. 1(a) (point load),
Max. B/M = W\cdot L
Shear = W

Fig. 1(b) (UDL),
Max. B/M = \frac{w\cdot L^2}{2}
Shear = w\cdot L

Figure 1

Fig. 1(a). A self-supporting mast with a point load 'W' at the top. Examples of this load type include the windload from aerial arrays, or the horizontal force from one end of a dipole. Fig. 1(b). A self-supporting mast with a uniformly distributed load, 'w' per metre height. This is the type of load produced by the action of wind forces on the mast.
Section Modulus

Cantilevers can be formed from a variety of materials, such as timber, steel, or reinforced concrete. Generally only the first two materials are likely to be used by Amateurs, and for the purpose of this article only steel will be considered. Beams are manufactured in a variety of shapes, some of which are shown in Fig. 5, although the first two would only ever be used in very small size sections, because of the weight and cost implications.

The most commonly used section in amateur circles must surely be (iv), the circular hollow section (a tube) and there is a 'standard' formula for calculating the stiffness of such a shape, viz: Fig. 6. Again, no attempt will be made to derive the formula, since that would just confuse the issue, but now the only factor remaining to be found in the earlier formulae is the bending stress 'f'.

The Code of Practice

As with most things, a little knowledge can be a dangerous thing, and simply using the above formulae can get readers into very deep water if one or two conditions are not met. BS449: Part 2:1969, henceforth referred to as the 'steelwork code', gives guidance on the use of structural steelwork, and at first sight looks horribly convoluted and difficult. As with the code of practice on wind loads, however, it is meant to cover all things for all men, and the vast majority of it is irrelevant to this application. What is required from the steelwork code is a value for the maximum value of 'f': the bending stress. This can be found in table 3a of the steelwork code, and the table is reproduced in Fig. 7. Obviously a range of values is given for 'f', rather than a single value, with the actual value being dependent on v/t, and D/T. Notice that the top left-hand corner of the chart has the higher values, whilst the bottom right-hand corner has the lowest. The top left-hand of the chart refers to short, fat, cantilevers or beams, whilst the bottom right-hand refers to tall, slim ones. Although the table has values for 'f' up to 165 N/mm², a footnote in BS449 adds the proviso that if the thickness of the walls of the member are 40mm or over, then the maximum stress allowable is reduced to 150 N/mm².

Combined load cases can be split into their component parts, to aid analysis, then all results are added together to give the total stresses and moments.
The circular hollow section (C.H.S.) will be the section most widely used by amateurs, either for masts or beams. The formula for the Section Modulus (Z) is as shown.

\[Z = \frac{\pi}{32} (D^2 - d^2) \]

Sorting out the D/T is no problem, as that is just the outside diameter divided by the wall thickness, but the ratio \(V_r \) needs some explanation. The '1' is the effective length of the cantilever (as opposed to the actual length), although fortunately if the base of the cantilever is well designed, they are one in the same. Note, though, that a poor base detail which provides only a partial resistance to torsion will entail the effective length having to be taken as twice the actual length. Fig. 8 illustrates the point, and will hopefully serve to make readers aware that attention to practical detailing is just as important as the mathematical design.

The Radius of Gyration

This rather grand sounding name is given to the figure \(r_y \) shown in Fig. 7, and again it will be introduced as simply another small formula to be solved, but masochistic readers who have tired of this simplistic approach will find a full explanation in a book entitled "The Steel Designers Manual", published by Crosby Lockwood Staples, although it is a fairly large tome, weighing in at about 4lb. Be that as it may,

\[r_y = \frac{Z}{D/2} \]

where \(Z = \) section modulus
\(D = \) outside diameter
\(A = \) area of metal calculated from \(A = \pi (D^2 - d^2) \)

Armed with the above, it is then possible to determine a value for \(\sigma_{pk} \) for any particular situation. Values in the table can be interpolated if required. Providing that the actual bending stress derived from 'f' in the equation \(M = f.Z \) is less than the value of the permissible stress \(\sigma_{pk} \), then all is well, and the section is adequate for the applied loads.

Making a ‘Guesstimate’

The more astute reader will probably have realised by now that part-way through the design process there is a chicken-and-egg situation. In attempting to decide upon a section size it is necessary to guesstimate a section size before proceeding to determine the actual stresses, and comparing them with the permissible ones for the section guessed at. Experience allows structural engineers to guesstimate fairly accurately the size required, but for the tyro it is possible to work out the 'minimum Z' by putting the maximum value of 165 N/mm² for 'f' into the formula \(M = f.Z \), which can be rearranged as:

\[M = f_{max} = Z_{min} \]

The section eventually needed may turn out slightly larger than that indicated by the minimum value of Z, but it does provide a starting point far closer than a blind guess would give. The aim is to end up with the actual bending stresses slightly lower than the permissible ones, for maximum economy, but as long as the actual stresses are lower than permissible, the section will be safe.

The situation is slightly different when checking out the maximum possible loading on an existing mast, but to clarify the
process for each case, a step-by-step guide to the design process is shown in Figs. 9 and 10. The most commonly used section shape is a tube, but the most commonly used size is that of the ubiquitous "two inch" scaffold tube. For ease of reference the dimensions and section modulus of a scaffold tube are given below.

\[D = 48.3 \text{ mm} \]
\[T = 4.0 \text{ mm} \]
\[d = 40.3 \text{ mm} \]
\[A = 557 \text{ mm}^2 \]
\[Z = 5700 \text{ mm}^3 \]

Although the design process is stated to be for a tubular mast, the process can also be applied to trap verticals, beam elements and booms, or whatever, to determine their maximum survival velocity. Note though, that for horizontal members the bending moment due to self-weight must be allowed for (see Fig. 4(b) in the form of a (usually) small UDL.

Other Considerations

Even though the section chosen may appear adequate from the above criterion, there are still two more checks to make in some cases. These have been deliberately left out of order as readers who are checking out survival velocities for existing (or intended) verticals or beams will not need them.

In the case of the pole-plus-aerial, no account has been taken of axial loads from the weight of the aerial array, plus the self-weight of the pole itself, although they are unlikely to prove a problem on simpler setups. Even so it would be as well to check them, and for this reference has to be made to table 1 in BS449 to find the permissible compressive stress (as distinct from the permissible bending stress) which fortunately is a constant 230 N/mm².

Using the previous article, backtrack to obtain the maximum safe windspeed.

Note A. Since the headload will be dependent on windspeed, it is necessary to guesstimate a reasonable figure to start with. Once the actual windspeed has been found, check that the aerial load at this speed is less than the initial estimate. If not, increase the headload and repeat from (iv).

Note B. If checking out a trap vertical, steps (iv) & (v) can be omitted.

Step-by-step procedure for finding safe wind speed for an existing mast.

(i) Calculate \(L/\tau \) and D/T for the mast section.
(ii) From Fig. 7 determine the permissible bending stress.
(iii) Use the permissible stress for 'f' in \(M = f.Z \) to determine the total permissible moment.
(iv) Determine the headload, and calculate the bending moment it produces (see Note A).
(v) Subtract the headload moment from the total permissible moment, to give the maximum windspeed moment.
(vi) Using the previous articles, backtrack to obtain the maximum safe windspeed.

The above formula is simply to check that the combined effects of the bending moments and axial loads do not combine to push the stress over the top. As previously stated the ratio \(f_c / f_c \) will often turn out to be negligible, but it pays to check.

The final consideration is that of deflection. A cantilever may be strong enough to withstand the applied loads, but if it is particularly tall then the deflection under loading may be a cause of alarm to neighbours, and is unlikely to endure them to your intrusion on "their" skyline. In building construction the deflections of individual members have to be kept within defined limits, as steel tends to be happy with deflections which would easily crack plaster on walls, or brickwork cladding panels. For the case of a self-supporting pole the deflection will be more of a psychological problem than anything else, except perhaps where UHF arrays are fitted. A mast which sways excessively in high winds will not only cause the XYL some panic, but could well rock a UHF array by an angle which exceeds its vertical beam width. It would be a good idea to limit the deflection to less than 1/180 to minimise problems in either area.

Referring to Fig. 1(a) the actual deflection will be:
\[\text{deflection} = \frac{W.L^3}{3.E.I.} \]
and for Fig. 1(b) will be:
\[\text{deflection} = \frac{W.L^4}{8.E.I.} \]

A couple of new terms have sneaked in here; the Young's Modulus (E) and the moment of inertia (I), which have values as follows:
\[E = 210,000 \text{ N/mm}^2 \]
\[I = Z.D \]
\[E \]
\[2 \]

Once the actual deflection has been calculated from the above formula, it can be compared with the permissible value of 1/180, and if it exceeds it then it may be wise to choose a larger section. There is no need to check out all of the bending and axial stresses again, as they will obviously be lower, just put the value for Z into the above equations.

Fig. 9. Step-by-step procedure for sizing of mast.

Fig. 10. Step-by-step procedure for finding safe wind speed for an existing mast.

Step-by-step procedure for each case, a step-by-step guide to the design process is shown in Figs. 9 and 10.

- **(i)** Calculate bending moment from point load at head of mast using \(M = W.L \).
- **(ii)** Calculate bending moment from UDL, using \(M = w.L^2 \).
- **(iii)** Add together both of the above, to give the total moment.
- **(iv)** Use a value of 165 N/mm² for 'f' in \(M = f.Z \) to determine the minimum possible value of Z.
- **(v)** Choose a section size to give a Z value slightly larger than that determined from (iv).
- **(vi)** Calculate \(1/\tau \) and D/T for the section.
- **(vii)** From Fig. 7 determine the permissible bending stress.
- **(viii)** If the actual stress is less than the permissible, then section is adequate, but if not then choose a larger one and repeat from (vi).
Tapers

With a cantilever the maximum bending moment is at the base of the member, but the moment decreases to zero at its tip. It is therefore possible to gradually reduce the size of the section, and save some metal, a feature which you will have noticed in trap verticals and the elements of beams. This is fine providing there are no attachments to the tip of the cantilever, such as an aerial array, which will require a reasonable size section to fix to. Even so, tall masts can be tapered slightly, which helps when fabricating from shorter lengths of beam. Sections can be obtained which are a snug fit inside the one below, and then bolted or welded together. Take care that your taper is not too steep, and check out the bending moment, etc., at each change of section.

Look at Lamp Posts

In engineering design, as mentioned before, it helps to have a good idea of what the answer should be before starting, so that any errors in calculation are then self-evident. Knowing what the answer should be is a product of experience, but readers can get an appreciation of the expected sizes from simply looking at tubular steel lamp posts. They, too, are vertical cantilevers with the possibility of torsion at the top, as the arm supporting the lamp housing is unbalanced, unless it is a twin light unit for the centre of a dual carriageway. The adventurous may care to examine the extremely tall lighting towers found in some large carparks or public places, and also take note of how far they sway in a good wind.

Stainless Steel Stresses

The stresses laid out in BS449 are for mild steel, but commercial aerials often use stainless steel. I am told that the stresses for stainless steel can be taken as 15% below the corresponding values for mild steel.

Units in Calculations

The author has tried to make the maths as simple as possible, and providing that readers work through the various steps in a logical manner then few problems will be encountered. Although the formulae are quite simple, it is very important to take care with the units of each parameter, otherwise surprising results may be produced. The simplest approach is to reduce everything to:—

- Nmm for bending moments (= kNm x 10^3)
- N/mm^2 for stresses (both bending and compressive)
- mm^2 for Z values (mm^3 = cm^3 x 10^6)
- mm for thickness
- mm for length
- N for point loads
- N/mm for UDLs

Readers may end up with rather large numbers of zeroes, or exponent powers, but these will (or should) mostly cancel out during the calculations.

Final Comments

In order to clarify the situation further, it is intended to produce a further article giving worked examples to follow, plus the design of a mass concrete base to support the mast, plus comments on practical construction details. It seems as well to point out at this juncture that although every effort has been made to ensure the accuracy of information, the author can accept no liability for any consequences arising from its use. As with previous sections, enquiries of a general nature will be dealt with on receipt of an s.a.e., the address to which to write being: 502 Lapwood Avenue, Kingswinford, West Midlands DY6 8SG.

Acknowledgement

Extracts from, and references to, “BS449: Part 2:1969” are reproduced with the permission of the British Standards Institution, 2 Park Street, London W1A 2BS, from whom complete copies of the document may be obtained.

An Improved Tone-Burst for the FT-207

JOHN EVERINGHAM, G4TRN

FOR repeater operation the FT-207 tone circuit leaves much to be desired: having to switch the 1750 kHz access tone off while maintaining a carrier requires two hands and is very inconvenient. The circuit (see Fig. 1) is easily fitted within the rig without drilling and with a minimum of alteration to the existing circuitry.

From the start of a transmission the tone oscillator is fed through R1; this has no effect on its performance. While the tone oscillator is running C1 is charging through R2. After about 1/2-second the voltage on C1 triggers the SCR into conduction. When this happens the tone oscillator stops abruptly as its supply voltage is grounded by the SCR; in this state about 4.5 mA flows through R1.

On receive the 5 volt supply is removed and the SCR turns off. The next transmission repeats the cycle, though as C1 has to discharge through R2 during reception the next tone burst may not be so long; it is however always sufficient to access a repeater.

Having gained access the tone burst switch may be moved to 'off' at any time to avoid annoyance (and to save that extra 4.5mA battery drain on transmit).

Construction

See Fig. 2. The SCR, R2 and C1 may be "crows nested" together and then hung between convenient points in the rig; a lump of 'Blu-tack' greatly aids the 'crows nesting'. The blue wire is removed from the tone burst switch and soldered to R1; the other end of R1 is soldered to the tone burst switch (in place of the blue wire). The ground connection is made to the key pad PCB where the negative side of the two electrolytic capacitors are connected. The anode connection is soldered to the middle tag of the tone burst switch, where the brown wire is already connected.

The connections to the switch should be dressed very close to the front panel, and as a precaution a strip of p.v.c. insulating tape should be stuck along the angle of the PLL/VCO screening box as there is very little clearance between it and the line of slide switches.
CLUBS ROUNDUP

By "Club Secretary"

Before we start the meat course, may we just say, once again, that we must have all the required information to hand — Hon. Sec., Hq. address, meeting dates and details, and the full name of the club. And, of course it goes without saying that you must give details for the correct month. For example, for deadline September 28, we are receiving copy to appear in the November issue, which covers your club’s November dates.

The Mail

A nice, well-nourished pile of letters, so we had better start to slim it down.

Acton, Brentford & Chiswick have a talk on 7cm. on October 16, at Chiswick Town Hall, High Road, Chiswick, given by G6BLT, and with the start time 7.30 p.m.

October 5 for Axe Vale is a microwave evening, at the Cavalier Hotel, West Street, Axminster.

New One

This one is called Aycliffe & Shildon, and they are to be found at Sunnydale Leisure Centre, Middridge Road, Shildon, Co. Durham, every Friday evening; we note this month outings planned on October 9, election of officers the following week, J-O-T-A over October 20/21 at Kelcoe, and on October 28 a Sunday junk sale and bring-and-buy at Elm Road, Working Men’s Club, Shildon, with refreshments and a licence applied for. More details from the Hon. Sec. at the address in the Panel.

For details of the Bangor club in GI, we must refer you to the Hon. Sec. — see Panel — although we believe they gather at the Sands Hotel on the sea-front on the first Friday of the month.

Braintree - and they have changed their dates to the first and third Monday in the month at the “Nags Head”, Dunmow Road.

Barry College of Further Education’s letter doesn’t mention the October activities; we gather they meet at the College Annex, Weycock Cross, Barry, but for the rest we refer you to the Hon. Sec. — see Panel.

At Bishops Stortford they have the formal meeting on the third Monday in the month at the British Legion Club, near the top of Windhill; on October 15, G3MUI will be the speaker. Additionally they have an informal on the first Thursday in the month at the “Nags Head”, Dunmow Road.

October 16 is the date for Biggin Hill at St. Marks Church Hall, Biggin Hill, for the Construction Contest.

Changes

There has been a change of Hq. for the Braintree crowd; they have moved to St. Peter’s Church Hall, St. Peter’s Close, Braintree — and they have changed their dates to the first and third Wednesday.

Another club to make a move is Bridgend; they are now receiving visitors in the YMCA at Bridgend. In addition they have altered their meetings to be on the first and third Friday, with the first meeting an informal and the other one the main meeting. For October, the main meeting will be the AGM.

Quite a while since we heard from the Bristol group; they now have a base at the YMCA, 6 Park Road, Kingswood, every Tuesday. Among the winter activities we note RAE and Morse classes, a special-event station on December 1 at Hq. with a full HF and VHF club station available. More details: contact the Man in the Panel!

Now to B.A.R.T.G.: this is the one for the RTTY buffs, and we must congratulate the club on its enormously successful membership drive — we understand they are now over the top of their 2000-member target. The club caters for all those amateurs and SWLs interested in RTTY, by machine or electronically, by AMTOR or packet radio. All the details from the Hon. Sec. — see Panel.

October 20 is AGM time for British Rail; the club is having this event at Stanier House, which is close to New Street Station, off Stephenson Street, Birmingham, and of course all members are asked to attend. Details from the Hon. Sec. — see Panel for his details.

We now go to Barry where they meet every Tuesday evening at the Mosses Community Centre, the main one being on the second Tuesday of each month. Thus, October 9 is the Construction Competition.

Cambridge (Repeater Group) look after several repeaters including those at Barkway; they also have the odd meeting which is always well-attended. More details from the Hon. Sec. — see Panel.

Either September 28 or October 12 (check with the Hon. Sec. to find out which!) is the big date for the combined Cheltenham clubs, when Lady Fiennes will be telling them all about the transglobe expedition by her husband — this will be at Smiths Industries canteen. Normally the club meetings are at Charlton Kings Library, in the Stanton Room, and they will be there on October 19 for a natter evening.

For Cheshunt the club gatherings are weekly; natter evenings are on October 3, 17 and 31, while on October 10 G3TIK puts on a film show, and on 24th G6BTQ will be talking about the ins-and-outs of coaxial cable. The venue is Church Room, Church Lane, Wormley, near Cheshunt.

Deadlines for “Clubs” for the next three months

- **November issue:** September 28th
- **December issue:** October 26th
- **January issue:** November 30th
- **February issue:** December 28th

Please be sure to note these dates!

It is the first Tuesday and the third Thursday of each month for Chichester at Fernleigh Centre, 40 North Street, in the Green Room. There is a mis-print (we think!) in the current newsletter, as we believe the ‘October 20’ date should read October 2. The other meeting is on October 18 and is down for a talk on AMTOR by G4C1D with a live demonstration of the method by G4EMR.

Down west now to Cornish, at the Church Hall, Treleigh, on the old Redruth by-pass, where we are told the October meeting is on October 11 for a talk by G3NPB on aerials. That also seems wrong, as we know the club computer section usually meets around that date... better check with the Hon. Sec. — see Panel.

Crawley is at Trinity Church Hall, Ifield, on October 24 for a talk and demonstration by Wood and Douglas of their range of equipment. In addition they have informal meetings at one another’s homes.

We have a run-down on Cray Valley goings-on for almost a year ahead; October 4 is their Grand Surplus Sale, at Christchurch Centre, Eltham High Street, and on October 18 there is a natter evening at the same address.

October 20 is a junk sale for Crystal Palace — what is more, a junk sale in red ink — must have something special to dispose of... The venue is All Saints Parish Room, Upper Norwood, London SE19, which is at the junction of Beulah Hill and Church Road, opposite the IBA mast.

Naturally enough, most of the events in the Dartford Heath D/F club programme are D/F Hunts — but before each hunt they...
have a meeting at the "Horse and Groom", Leyton Cross, Dartford, which is NQR TQ5 521726. These are from 2100 onwards, and the next one is on October 9. More details from the Hon. Sec. — see Panel (but before October 19 - he's off for Farnborough).

Allied Centre, Greenman Alley, off Tower Street, is home to the Dudley crew. It looks to be every Monday evening, but we do no meeting sessions on October 1 and 8, plus the AGM on October 22.

October 11 is down as 'open' and to be announced on the night at Edgware; they are based on 145 Orange Hill Road, Brent Oak, Edgware, on the second and fourth Thursdays.

West again now to Exeter, where the gang foregather at the Community Centre, St. Davids Hill, on October 8 for the AGM. October 12 for Farnborough is a film show by G4MBZ, at the Railway Enthusiasts Club, Access Road, off Howland Lane, Farnborough.

We've not received our up-date for Fyde, so all we can tell you is that they meet at the Kite Club, Blackpool Airport, on the first and third Tuesday of each month; more detail from the Hon. Sec. — see Panel (but before October 19 — he's off to Montserrat for the QQ W Phone Contest!).
Members of Ballymena A.R.C. (GI3FFF) pictured during their expedition in August to Rathlin Island, where they operated G2M1R to commemorate Marconi's and Kemp's first practical Morse transmissions, to Ballycastle (just south of Rathlin Is.) in 1898. Left to right: GI4NNM, GI4KUM, GI4XFX, GI4SFZ, Angela, GI4TRX, GI4POY, GI4VBZ, GI40UE, GI40ZT, GI3UHL, GI4HCN, GI40GQ, GI4DCC, GI4V1Z, GI4TOR, David, GI6FTW.

Another New One!

This is at Glossop; they seem to have two meetings a month at least, at the “Nags Head” on Thursday evenings. October 4 is down for G3RJV to do his QRP talk, and on 25th there is a demonstration of SS/TV by G3LIE. More details from the Hon. Sec. — see Panel for his address.

Next we come to the G-QRP Club itself—and members should note the Hon. Sec.’s new address in the Panel. Please, if possible, give him a couple of weeks relief from calls and letters while he finds the box containing the soldering-iron. That doesn’t apply if you want to join, of course!

Greater Peterborough foregathers at Southfields Junior School, Stanground, on the fourth Thursday of each month in term-time. October 18 is an RSGB Video evening. They had a visit from G3RJV of the G-QRP Club back in June and are still recovering from the shock!

The Harlow club is based on Mark Hall Barn, First Avenue, Harlow, Essex, where they meet each week. For the latest details of the programme we refer you to the Hon. Sec. at the address in the Panel.

For Harrow the Hq. is Harrow Arts Centre, Harrow Weald; they are there every Friday evening, either in the Roxeth or the Belmont Room. For October we only note the informal on 5th and the Construction Contest on 12th.

Turning to Hastings, we find they have regular chat nights on Fridays at Ashdown Farm Community Centre, Croft Road, plus other activities at the same venue on other evenings. The main meeting is the third Wednesday of the month, at West Hill Community Centre; October 17 is a junk auction.

Now to Havering, which means Fairkytes Arts Centre, Billet Lane, Hornchurch, where they have an informal quarterly business meeting on October 3, and informals on 10th and 24th. The Constructors Cup is on October 17, and on October 31 the talk is “The History of Battery Power” by G3EUR.

October 13 sees the skittles match between Worcester and Hereford at the “Antelope” pub in Hereford; in addition there are the normal meetings on first and third Fridays at County Control, Civil Defence Hq. Gaol Street, Hereford. October 5 is a talk and demonstration on microwaves by the Microwave Society, and on 19th there is the club informal.

The Hornsea club meet each week at The Mill, Mill House, Atwick Road, Hornsea, on Wednesdays; the membership comes from a large catchment area extending to Hull, Bridlington, Driffield, Flamborough, as well as Hornsea.

October 10 for Ipswich will be a night-on-the-air; on October 31 they have a bring-and-buy sale, at Barrack Corner Church Hall. Normal meetings are on the second and last Wednesdays in the clubroom at the “Rose and Crown”, at the junction of the A45 Norwich Road and Bramford Road.

If there is anything you want to know about amateur radio in EI-land then you should be in touch with the I.R.T.S. crowd; details from the Hon. Sec. — see Panel.

Over to the Isle of Man. We hear they have now completed the QSL chore from their recent DX-pedition; for the WAB fans they have a trip organised into NX square on a “fine” weekend in October. Details from the Hon. Sec. — see Panel — on this and also the regular club meetings.

The City Engineers Club, Central Depot, Waterside South is home to the Lincoln crowd on second and fourth Wednesdays, filling the gaps with RAE and CW classes. October 10 is an evening of slides about western U.S.A. and Canada by R. Littlewood, and on October 24 they have an activity night, with a rig on the air.

It’s been a while since we heard from Loughor; find them at the Loughor Scout Hall, which is situated off Heol Cae-ty-Newydd — visitors can look out for GW4HVJ on S20 or GB3WW on R7, from 1900 onwards for talk-in.

Turning now to Maltby we find them every Friday evening at the Old School Buildings, Church Lane, Maltby. We don’t have the very latest details, for which we must refer to the Hon. Sec.

The Midland crowd are very coy about their meetings at 294A Broad Street, Birmingham, opposite the Repertory Theatre; thus we suggest you either go along — there is some activity most evenings — or contact the Hon. Sec. at the address in the Panel.

Every Wednesday evening the “Dolben Arms” in Finedon, near Wellingborough, is filled with amateur radio talk from the Nene Valley members who take it over. The only date we have detail on is October 3, for a talk on the Town and Country Planning Act, 1971.

On we go to Newark for a gathering of the local club at The Palace Theatre on the first Thursday of the month, this being in Appletongate; they also have informal gatherings at a local inn — perhaps you should be in touch with the Hon. Sec. for the latest details.

Now we turn to R.A.I.B.C., the club for the invalid and blind amateur or SWL. There are three grades of membership, namely the full member, the representative and the supporter. The latter two groups are the ones that make everything happen each in their different way. If you know of a disabled amateur or SWL, you should point them at RAIBC; and if you can help you should, whether actively, or by persuading your club to make a donation, or doing so yourself. More details from the Hon. Sec. — see Panel.

October 16 for Reigate is a talk by G3JKV on aurora, at the Constitutional and Conservative Centre, Warwick Road, Redhill.

All those who served in, or are currently serving in the Royal or Merchant Navy, should consider membership of the Royal Navy group. Details from the Hon. Sec.

On to South Bristol now, and here we find them at Whitechapel Folk House, East Dundry Road, Whitechapel, Bristol; October 3 is down for a talk on “Submaritime Mobile” by G3OUK, and on 10th G8XIH introduces the club winter project. October 17 is computer activity night, and on 24th they will be discussing next
year's calendar of events. The month is rounded off by a bring-and-buy night. Looking forward a bit, on November 7 they have a talk on G.W.R. steam engines by Ron Gardner.

Now we head for Southdown, and the Chaseley Home for Disabled Ex-Servicemen, South Cliff, Eastbourne. October 1 is set aside for Wood and Douglas to talk about the history of their kits, while in November they have G2LL on OSCAR-10. As we have a separate note about a new club room, at Hailsham Leisure Centre, with, it seems meetings each week, perhaps a call to the Hon. Sec. would sort it all out

It is the second Thursday of each month for Southgate at their Hq. at St. Thomas’ Church Hall, Prince George Avenue, Oakwood, London N14. However, we don't have the details on the programme for which we refer you to the Hon. Sec. — see Panel.

We now go to Stockton where they meet every Wednesday at the Billingham Community Centre between 7.30 and 10 p.m. More details from the Hon. Sec. — see Panel for his particulars.

The Surrey club foregather at TS Terra Nova, 34 The Waldrons, South Croydon, on the first and third Mondays. On November 1 they have a talk about the Planetarium, by G3WPB.

Not so far away is Sutton & Cheam, where they gather at Downs Tennis Club on the third Friday of each month for the main meeting, and on the first Monday of each month for an informal. October 1, then, is an informal, and on October 5 they visit the Vintage Wireless Museum at 23 Rosendale Road, West Dulwich. On October 19 they have a talk on Fast Scan TV by G8MN.

Turning now to Torbay we find they have a place at Bath Lane, rear of 94 Belgrave Road, where they gather informally every Friday evening, and on the last Saturday of each month for the main meeting. Details of what's on from the Hon. Sec.

October 1 at Todmorden is down for a sight of the “Secret Listeners’” video; venue Queens Hotel in Todmorden.

The first and third Tuesday are the evenings for the Vale of White Horse crowd; we don’t have the latest programme data for which we have to refer you to the Hon. Sec. — see Panel. Venue is the Landsdown Club, Milton Trading Estate, Didcot.

We head now for Verulam, where they are based on the R.A.F. Association Hq., New Kent Road, off Marlborough Road in St. Albans, on the second and fourth Tuesday of each month. The first meeting is informal, and the second one the main meeting; October 23 sees a talk by G8MQT on Larkspur ex-military equipment.

WACRAL is the name of the group of practicing Christian radio amateurs and SWLs who have grouped into their own club; details from the Hon. Sec.

October 8 is the date for the talk by G3NRW to the Welland Valley group, and his subject is to be AMTOR; Hq. is Welland Park College, Market Harborough. The club would be pleased to have visitors or new members, who should contact the Hon. Sec. — see Panel.

West Kent now meets every Friday evening in the Adult Centre Annexe in Quarry Road, Tunbridge Wells. The informals are on October 12 and 26; the October 5 date is taken up with films, and on 19th October the talk “Touchdown” is by Dave Thorpe of BT and Brian French of BCAL.

Up to Westmorland now, which means the “Strickland Arms, Sizergh, near Kendal, on the second Tuesday of the month. October 9 is down to G3UEC, for a photographic audio-visual evening.

Now we go to Wirral who will be meeting from now on on the first and third Wednesday of each month at the Parish Hall, Heswall, Wirral.

We have run out of programme for the Worcester group; but we can say they meet twice each month, sometimes in the “Old Pheasant”, sometimes the Oddfellows Club, both in New Street, Worcester. For the rest we refer you to the Hon. Sec. — see Panel for his details.

It’s the “Old Ship Inn”, in the Market Place for the Worksop members; October 11 is a demo by Lowe Electronics, and on 18th they have the AGM. Then on October 25, G3FDW will give a talk entitled “Do vertical antennas radiate equally badly in all directions?”

A move of Hq. is noted by the Worthing crowd, they having shifted into more roomy premises at Lancing Parish Hall, South Street, Lancing, where they are to be found every Wednesday evening.

Every Thursday evening the Yeovil club get together at the Recreation Centre, Chilton Grove, Yeovil. October 4 is a night for you to “Bring your Gadget!”, and on 18th there is the G3GC talk on computers; October 25 is a natter night.

At York the group of friends forming the local club all head for the United Services Club, 61 Micklegate, York, each Friday, when they are pleased to see visitors and potential new members. Now 308 — and here we have to say that they are very coy indeed about giving us all the latest gen on their club — so all we can say is that they are in the Surbiton area and refer you to the Hon. Sec. — see Panel — for the rest. However, we do know they are having a junk sale on October 9, at St. Mark’s Church Hall, Churchill Road, Surbiton — this is not their usual venue so they must be hoping for bumper turn-out!

CB

We don’t normally get much correspondence from the CB fraternity, but we have a copy of the beautifully printed magazine of the 934 MHz Club UK. As its name implies, it is devoted to the interests of the UHF CB activity, and is very keen on setting and maintaining standards of operating. We have read this from cover to cover and think it is a worthy group to support; we suspect they may be showing some of our VHF fraternity the proper way to operate their rigs! More details from the Hon. Sec. at the address in the Panel.

Finale

All completed again; the deadline dates are as shown in the Panel, and are for the arrival of your letters complete with all the needful information, addressed as always to your “Club Secretary”, SHORT WAVE MAGAZINE, 34 High Street, Welwyn, Herts. AL6 9EQ. 73 and 88!

R.A.E. Course

Fareham: Fareham Adult Education Centre, Wickham Road, Fareham, Fridays 7-9 p.m., commencing November 2. Full details from the Centre (0329-280709) or course tutor G3CCB (0329-288139).
SEMFACT 7. If you 'phone your order with your credit card number, we can send it the same day.

S.E.M. TRANZMATCH. The most versatile AERIAL MATCHING (Tuning) UNIT available. Matches 15 - 5,000ohms BALANCED or UNBALANCED feeders up to 1kw. Air coupled balun (no toroids) means no connection to equipment which can cure TVI both ways. An S0239 and screw terminals for CO-AX, END FED or TWIN FEED. They say "It will match anything": 8' x 4' x 7", 3 - 600MHz E74. 1 - 8-300MHz E83. The highly acclaimed EZITUNE built in (see below) £25.90 extra. All EX-Stock.

NEW SEM WAVEMETER. Have you read your licence? Have you got a wavemeter? Produced following so many requests. Covers 1. 5-3CMHz in 3 switched bands with a very nice meter readout. Only £29.50. S.E.M. EZITUNE NEW CIRCUIT

Gives MORE noise a bomb proof operation. Because no similar unit is made, its usefulness is not appreciated until you have used one. Eliminates need for S.W.R. bridge.

Connects in aerial lead, produces S9 +11 - 170MHz noise in receiver. You have now put an exact 500hms into your transceiver.

S.E.M. IMABIC KEYER. No better fully auto keyer anywhere. Uses Curtis chip. R.F. response, well within specs. S0239s. £34.50 Ex stock. P.c.b. to fit in any A.T.U. £29.50 Ex stock.

Fully protected, you can transmit through it, save your P.A. and stop QRM. 3-15KHz to earth output £19.93 Ex Stock.

CLEAN UP the bands by tuning up without transmitting. Increase your PA life by many times.

The most versatile filter available. Gives "passband" tuning, "variable selectivity", and one or two notches. Switched Hi-pass, Lo-pass, peak or notch. Selectivity from 2.5KHz to 20KHz. Tunable from 2.5KHz to 30KHz. PLUS another notch available in any of the four switch positions which covers 10KHz to 100Hz. 12V supply. Sizes: 6' x 2' x 2' £34.50 Ex stock. £29.90 £38. A first class twin paddle key £15. Ex Stock.

S.E.M. Audio Multifilter (a very good filter at a very good price). EXCELLENT selectivity. Another winner from KW TEN-TEC the "ARGOSY II" a winner!

S.M. AUDIO MULTIFILTER IA very good filter at a very good price. 3WAY ANTENNA SWITCH 1xW S0239s. Good to 2 metres. £17.50 Ex stock. Or 4th Neat, accurate & economical. £33.500 Ex Stock.

RF NOISE BRIDGE. Adjustable 0 - 1,000ohms, 3" x 1 1/2 " x 2" £34.50 Ex stock.

BRAID BREAKER/HI PASS FILTER. Put in T.V. ant. lead to cure TVI. £6.50 Ex Stock. O/p. This is for you. £45.00 Ex stock.

S.E.M. male and female pin sockets and BNC sockets. £1.90 for S0239s or BNC sockets. Ring or write for prices.

If you want an 80 metre 13.5-3.8MHz Rx. Only 2 1/2 " x 6" x 3". 12 volt operation. I.W. 2.5KHz to 20Hz. Tunable from 2.5KHz to 250Hz. PLUS another notch available in any of the four switch positions which covers 10KHz to 100Hz. 12V supply. Sizes: 6' x 2 1/2 " x 3" £74. 1.8-30MHz £83.

S.E.M. VISA 80 METRE RECEIVER. PA5 V. m. specification as the Auto including 240V P.S.U. £33.00*.

SENTINEL 2 METRE PRE-AMPLIFIER. No R.F. switched. £15.00' Ex stock.

POWER SUPPLIES for our linears 6 amp £34.00. 12 amp £46.00.

SENTINEL AUTO 2 METRE or 4 METRE PRE-Amplifier RF switched, same spec. as in our linears, see above. 400W P.E.P. power rating. Use on any mains. 12V 25mA; £28.50* Ex stock.

100 watts SSB/CW

Price: £576 incl. VAT & Delivery (UK)

Please check prices with KW before ordering.

Another winner from KW TEN-TEC the "CORSAIR"

200 watts SSB/CW with many facilities. Price £922 incl.

KW TEN-TEC LTD.

Vanguard Works, Jenkins Dale, Chatham, Kent, ME4 5RT

Tel: 0634 815173
FREQUENCY COUNTERS

The brand new Meteor series of 8-digit Frequency Counters offer the lowest cost professional performance available anywhere.

- Measuring typically 2Hz – 1.2GHz
- Low Pass Filter
- Sensitivity <50mV at 1GHz
- Battery or Mains
- Setability 0.5ppm
- Factory Calibrated
- High Accuracy
- 3 Gate Times
- 1-Year Guarantee

PRICES (Inc. adsorber/charger, P & P and VAT)

<table>
<thead>
<tr>
<th>Model</th>
<th>Frequency</th>
<th>Price</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>METEOR 100</td>
<td>(100MHz)</td>
<td>£112.12</td>
<td>Illustrated colour brochure with technical specification and prices available on request.</td>
</tr>
<tr>
<td>METEOR 600</td>
<td>(600MHz)</td>
<td>£142.02</td>
<td></td>
</tr>
<tr>
<td>METEOR 1000</td>
<td>(1GHz)</td>
<td>£192.62</td>
<td></td>
</tr>
</tbody>
</table>

The List you have always needed, the list that gives you everything, and all on one line! For each country:

- a. its DXCC "status"
- b. its normal prefix
- c. the special prefixes
- d. the ITU callsign block allocation
- e. the continent
- f. the "CQ" Zone No.
- g. the ITU Zone No.

The List can be kept always up-to-date because ample space has been provided for adding every new prefix, each new ITU allocation, etc. Everything arranged alphabetically and numerically in order of prefix. Ideal for Contest operators and SWL’s. Tell your Club-members about it. Order an extra copy for that overseas friend. 15 pages. Price 75p (UK!), overseas airmail $ 2.00 or 6 IRCs.

CARL BIRKETT
13 THE STRAIT,
LINCOLN, LN1 1UF.
Phone: 20767

LOW PROFILE AERIAL SWITCHING 12 Volt SCPO RELAYS @ 80p.
M. WAVE FRAME ANTENNA. 21 inches square. D.I.Y. project.

J. BIRKETT
62 BELMORE ROAD, NORWICH NR7 0PU, ENGLAND

RADIO AMATEUR PREFIX -COUNTRY -ZONE LIST

GEOFF WATTS
62 BELMORE ROAD, NORWICH NR7 0PU, ENGLAND

Editor of "DX News-Sheet" 1962-82

The List is the r.f. technology company

Debt. S.W., Bradworthy, Holsworthy, Devon EX22 7TU (0409 24) 543

G2VF Inventor and proprietor of Patent for VARIABLE HIGH FREQUENCY FRAME ANTENNA wishes all Hams and SWL’s to benefit from his invention and offers circuit and full assembly details for the modest sum of £5. A Do-It-Yourself project. Components required to be found in most Ham shelves. Most expensive component, two variable tuning capacitors.

The G2VF is a variable frame antenna. It consists of a frame, 1600MHz, £142.02

The G2VF is a variable frame antenna. It consists of a frame, 1600MHz, £142.02

FREQUENCY COUNTERS

NEW SAMSON KEYERS

ETM-SC – £89.00. succeeds popular ETM-3C, used for years by Pro & Amateur stations. Fully adjustable SAMSON twin paddles built in for normal or squeeze keying. Relay or transistor keying. Sidestone generator. 8-50 wpm, self-completing with dot/dash memories, Morse characters — can run once only, or repeat continuously. Fully adjustable SAMSON twin paddle unit built in. Uses 4 AA batteries. New style case. TUNE button.

JUNKER PRECISION HAND KEY - E49.45. texts to build up longer message sequences. KEYPAD control of memories, Repeat, and ETM-8C MEMORY KEYER - E124.95. 8 MEMORIES leach one will store approx. 50 switchable dot/dash memories. Uses 4 AA batts. New style case. TUNE button. Relay or transistor keying. Sidestone generator. 8-50 wpm, self-completing with stations. Fully-adjustable SAMSON twin paddles built in for normal or squeeze keying. (only 1uAidling11. Very compact case.

JUNKER PRECISION HAND KEY - E49.45.

texts to build up longer message sequences. KEYPAD control of memories, Repeat, and ETM-8C MEMORY KEYER - E124.95. 8 MEMORIES leach one will store approx. 50 switchable dot/dash memories. Uses 4 AA batts. New style case. TUNE button. Relay or transistor keying. Sidestone generator. 8-50 wpm, self-completing with stations. Fully-adjustable SAMSON twin paddles built in for normal or squeeze keying. (only 1uAidling11. Very compact case.

EARLY LATEX

FREQUENCY COUNTERS

NEW SAMSON KEYERS

ETM-SC – £89.00. succeeds popular ETM-3C, used for years by Pro & Amateur stations. Fully adjustable SAMSON twin paddles built in for normal or squeeze keying. Relay or transistor keying. Sidestone generator. 8-50 wpm, self-completing with dot/dash memories, Morse characters — can run once only, or repeat continuously. Fully adjustable SAMSON twin paddle unit built in. Uses 4 AA batteries. New style case. TUNE button.

JUNKER PRECISION HAND KEY - E49.45. texts to build up longer message sequences. KEYPAD control of memories, Repeat, and ETM-8C MEMORY KEYER - E124.95. 8 MEMORIES leach one will store approx. 50 switchable dot/dash memories. Uses 4 AA batts. New style case. TUNE button. Relay or transistor keying. Sidestone generator. 8-50 wpm, self-completing with stations. Fully-adjustable SAMSON twin paddles built in for normal or squeeze keying. (only 1uAidling11. Very compact case.

JUNKER PRECISION HAND KEY - E49.45.

texts to build up longer message sequences. KEYPAD control of memories, Repeat, and ETM-8C MEMORY KEYER - E124.95. 8 MEMORIES leach one will store approx. 50 switchable dot/dash memories. Uses 4 AA batts. New style case. TUNE button. Relay or transistor keying. Sidestone generator. 8-50 wpm, self-completing with stations. Fully-adjustable SAMSON twin paddles built in for normal or squeeze keying. (only 1uAidling11. Very compact case.

EARLY LATEX

FREQUENCY COUNTERS

NEW SAMSON KEYERS

ETM-SC – £89.00. succeeds popular ETM-3C, used for years by Pro & Amateur stations. Fully adjustable SAMSON twin paddles built in for normal or squeeze keying. Relay or transistor keying. Sidestone generator. 8-50 wpm, self-completing with dot/dash memories, Morse characters — can run once only, or repeat continuously. Fully adjustable SAMSON twin paddle unit built in. Uses 4 AA batteries. New style case. TUNE button.

JUNKER PRECISION HAND KEY - E49.45. texts to build up longer message sequences. KEYPAD control of memories, Repeat, and ETM-8C MEMORY KEYER - E124.95. 8 MEMORIES leach one will store approx. 50 switchable dot/dash memories. Uses 4 AA batts. New style case. TUNE button. Relay or transistor keying. Sidestone generator. 8-50 wpm, self-completing with stations. Fully-adjustable SAMSON twin paddles built in for normal or squeeze keying. (only 1uAidling11. Very compact case.

JUNKER PRECISION HAND KEY - E49.45.

texts to build up longer message sequences. KEYPAD control of memories, Repeat, and ETM-8C MEMORY KEYER - E124.95. 8 MEMORIES leach one will store approx. 50 switchable dot/dash memories. Uses 4 AA batts. New style case. TUNE button. Relay or transistor keying. Sidestone generator. 8-50 wpm, self-completing with stations. Fully-adjustable SAMSON twin paddles built in for normal or squeeze keying. (only 1uAidling11. Very compact case.

EARLY LATEX

FREQUENCY COUNTERS

NEW SAMSON KEYERS

ETM-SC – £89.00. succeeds popular ETM-3C, used for years by Pro & Amateur stations. Fully adjustable SAMSON twin paddles built in for normal or squeeze keying. Relay or transistor keying. Sidestone generator. 8-50 wpm, self-completing with dot/dash memories, Morse characters — can run once only, or repeat continuously. Fully adjustable SAMSON twin paddle unit built in. Uses 4 AA batteries. New style case. TUNE button.

JUNKER PRECISION HAND KEY - E49.45. texts to build up longer message sequences. KEYPAD control of memories, Repeat, and ETM-8C MEMORY KEYER - E124.95. 8 MEMORIES leach one will store approx. 50 switchable dot/dash memories. Uses 4 AA batts. New style case. TUNE button. Relay or transistor keying. Sidestone generator. 8-50 wpm, self-completing with stations. Fully-adjustable SAMSON twin paddles built in for normal or squeeze keying. (only 1uAidling11. Very compact case.

JUNKER PRECISION HAND KEY - E49.45.

texts to build up longer message sequences. KEYPAD control of memories, Repeat, and ETM-8C MEMORY KEYER - E124.95. 8 MEMORIES leach one will store approx. 50 switchable dot/dash memories. Uses 4 AA batts. New style case. TUNE button. Relay or transistor keying. Sidestone generator. 8-50 wpm, self-completing with stations. Fully-adjustable SAMSON twin paddles built in for normal or squeeze keying. (only 1uAidling11. Very compact case.

EARLY LATEX

FREQUENCY COUNTERS

NEW SAMSON KEYERS

ETM-SC – £89.00. succeeds popular ETM-3C, used for years by Pro & Amateur stations. Fully adjustable SAMSON twin paddles built in for normal or squeeze keying. Relay or transistor keying. Sidestone generator. 8-50 wpm, self-completing with dot/dash memories, Morse characters — can run once only, or repeat continuously. Fully adjustable SAMSON twin paddle unit built in. Uses 4 AA batteries. New style case. TUNE button.

JUNKER PRECISION HAND KEY - E49.45. texts to build up longer message sequences. KEYPAD control of memories, Repeat, and ETM-8C MEMORY KEYER - E124.95. 8 MEMORIES leach one will store approx. 50 switchable dot/dash memories. Uses 4 AA batts. New style case. TUNE button. Relay or transistor keying. Sidestone generator. 8-50 wpm, self-completing with stations. Fully-adjustable SAMSON twin paddles built in for normal or squeeze keying. (only 1uAidling11. Very compact case.
Volume 42
THE SHORT WAVE MAGAZINE

QUARTZ CRYSTALS

<table>
<thead>
<tr>
<th>PRICE</th>
<th>FREQUENCY RANGE</th>
<th>OVERTONES</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>£1.98</td>
<td>WHEN 2 OR MORE</td>
<td>£4.60</td>
<td></td>
</tr>
<tr>
<td>£2.06</td>
<td>WHEN 2 OR MORE</td>
<td>£4.60</td>
<td></td>
</tr>
</tbody>
</table>

MADE TO ORDER CRYSTALS

<table>
<thead>
<tr>
<th>PRICE</th>
<th>FREQUENCY RANGE</th>
<th>OVERTONES</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>£1.98</td>
<td>WHEN 2 OR MORE</td>
<td>£4.60</td>
<td></td>
</tr>
<tr>
<td>£2.06</td>
<td>WHEN 2 OR MORE</td>
<td>£4.60</td>
<td></td>
</tr>
</tbody>
</table>

AMATEUR ELECTRONICS UK

G2BAR HAM BAND AERIALS

UK’s SOUTH WEST BRANCH

Main suppliers of YAESU MUSEN equipment. Full Page adverts show Special Buys. Call Peter G1DFK and Bert G2BAR for your on-spot service.

Send 30d in stamps for descriptive leaflets and prices

12 14 PENNYWELL ROAD. BRISTOL BS5 0TJ

HATELY ANTENNA TECHNOLOGY - GM3HAT

1 Kenfield Place, Aberdeen AB1 7UW, Scotland, U.K.

DIPOLE OF DELIGHT

This new antenna family which require NO ATU, have been provisionally patented in the major industrial countries. A Dipole of Delight is the ideal antenna for the newly licensed HF operator because it is:

(1) Simple to use (ii) Efficient (iii) Broadband (iv) Neat in appearance

For Example, G4VUX writes: “I have obtained DX-CC on June 2nd in only about four months casual operating. So now down to DX-CC on 7 to 28 MHz individually.”

For full technical details send SAE or IRC. All antennas can radiate 1 kW.

MULTIBANDERS DD Europe 7/21 length 21m (69ft) £15.00

DO USA 7/21 ... 21m (69ft) £28.00

DO 10/9/24 ... 15m (50ft) £28.00

DO 14/21/28 ... 10m (33ft) £46.50

DO 21/4/32 ... 21m (69ft) £65.00

MONOBANDER DD 10 length 15m (50ft) £23.50

DO 10/9/24 ... 10m (33ft) £16.50

DO 14/21/28 ... 7m (23ft) £15.00

DO 21/4/32 ... 5.9m (19ft) £11.50

Price does not include recommended 5mm 50 ohm coax (available for antenna purchasers at 30p per metre parcel post paid. PL250 inc. reducer £1). Payment by personal cheque in any currency (where national law permits).

Proprietor, M.C. Hatley, M.Sc., MIEE, Chartered Electrical Engineer (GM3HAT).

THE NEW UNIDEN 2021 PORTABLE COMMUNICATION RECEIVER

We recommend this receiver to all Amateurs and Short Wave Listeners who require first class performance comparable with the best. At a competitive price.

£156.80 inc. VAT and Carriage

For full technical Spec. send S.A.E.

G4FLN

GBADO

E.M.A.

MUNDAYS LANE, ORFORD, WOODBRIDGE, SUFFOLK

24-Hr Answering Service

Tel. 0394-51515 (24 hr service)

AMATEUR RADIO

by Gordon Stokes and Peter Bubb

The Lutterworth Press are the publishers of this book, which is intended for those wishing to study for the R.A.E. and comprises nineteen chapters, plus Introduction and Index, covering the basic technical material the would-be candidate needs to obtain a ‘pass’. Copiously illustrated with simple diagrams and excellent plates. Published in hardback.

192 pages £9.60 inc. p/p

AMATEUR RADIO

by Gordon Stokes and Peter Bubb

THE LUTTERWORTH PRESS are the publishers of this book, which is intended for those wishing to study for the R.A.E. and comprises nineteen chapters, plus Introduction and Index, covering the basic technical material the would-be candidate needs to obtain a ‘pass’. Copiously illustrated with simple diagrams and excellent plates. Published in hardback.

192 pages £9.60 inc. p/p

SHORT WAVE MAGAZINE LTD.

34 HIGH STREET, WELWYN, HERTS. AL8 6QD

By Gordon Stokes and Peter Bubb
1. Western Parade, West Street, Axminster, Devon EX13 5NY
Telephone (0297) 34918
Open: Mon., Tues., Thurs., Fri. 9-5.30. Wed. 9-1.00. Sat. 9-5
Access: Instant Credit
Barclay/Visa card

Complete range of Yaeusu, Trio, Icom equipment available from stock.
Full showroom and demonstration facilities.

Ancillary equipment by: Microwave Modules, muTek, Datong, Drae, WNOS, Hansen, Teto and Kenpro.

Aerials by: Jeybeam, TET, Hygain, G-Whip and Mini products.
Connectors, dummy loads, cables, rotators, etc.

Copy must be received by October 11th to be sure of inclusion in the November issue, published on October 26th

TRADING

The famous Mosley Antennae: TA-33Jr, Mustang, Atlas, V-3Jr, TD-3Jr, Beams, Verticals, etc. Also spares. Available direct from us, send £1 for our "HF Antennae Handbook" showing all our Antennae. — Mosley Electronics, 196 Norwich Road, New Costessey, Norwich NR5 0EX.

Amateur Radio equipment bought, sold, exchanged. Lists sent on request. — Ring R & S Radio, Weymouth (0305) 786930 anytime.

Spectrum 16/48K, ZX81 1/16K RTTY. Features such as split screen type-ahead, auto 'Tx/Rx', 26 programmable memories, plus many more. For more details of programs, PCBs, kits and ready-made units, send an s.a.e. to G4MJC/G4FDW, 3 Aylesbury Avenue, Eastbourne BN23 6AB.

November issue: due to appear Friday, October 26th. Single copies at 90p post paid will be sent by first-class mail for orders received by Wednesday, October 24th, as available. — Circulation Dept., Short Wave Magazine, 34 High Street, Welwyn, Herts. AL6 9EQ.

Course for City & Guilds, Radio Amateur's Examination. Pass this important examination and obtain your licence, with an RRC Home Study Course. For details of this and other courses (GCE, Career and professional examination, etc.) write or phone: THE RAPID RESULTS COLLEGE, Dept. JV7, Tuition House, London SW19 4DS. Tel: 01-947 7272 (9 a.m. to 5 p.m.) or use our 24 hour Recordacall Service, 01-946 1102 quoting Dept. JV7.

Morse reading programs. Work on clean signals without hardware interface. ZX81 1K unexpanded memory: translated code with word and line spaces for easy reading, automatic scroll action, £7.00 inclusive. Spectrum 16/48K: scroll action with 10-page scrolling memory, instantly accessible page-by-page, £8.00 inclusive. All types variable speeds; feed signal direct into 'ear' socket. — Pinehurst Data Studios, 69 Pinehurst Park, West Moors, Wimborne, Dorset BH22 0BP.

 Amidon toroidal cores, ferrite rings and beads. Send s.a.e. for data and prices. Business hours: 10-5 p.m. Tues.-Fri.; 10-4 p.m. Sat. — SMC (TMP Electronics), Unit 27, Pinfold Workshops, Pinfold Lane, Buckley, Clwyd CH7 3PL.
G5RV's use open-wire feeder for best results. It's easy with our Antenna Insulator Kit that includes 25 quick-fit clip-on spreaders and 3 heavy-duty ribbed insulators, £5.60 plus 40p post-packing. — Viola Plastics, Dept. SWM, 36 Croft Road, Hastings, Sussex.

Tuition: self-test manual for R.A.E. students—"Questions & Answers", £2.75 inc. post/packing. For details please send s.a.e.—Peter Bubb (Tuition), G3UWJ, 58 Greenacres, Bath BA1 4NR.

Ultra-slim "Slim Jim" for 2-metres, plus 4m. cable with PL259, £7 plus £1 postage. Cheques to Berkshire Communications, P.O. Box 31, Bracknell, Berks. RG12 4TG.

Amateur radio equipment bought, sold and exchanged. Phone 04024-57722 or send s.a.e. for list.—G3RCQ Electronics, 132 Albany Road, Hornchurch, Essex RM12 4AQ.

READERS ADVERTISEMENTS
10p per word, minimum charge £1.50 payable with order. Add 25 per cent for Bold Face (Heavy Type). Please write clearly, using full punctuation and recognised abbreviations. No responsibility accepted for transcription errors. Box numbers 40p extra. Send copy, with remittance, to the Classified Dept., Short Wave Magazine Ltd., 34 High Street, Welwyn, Herts. AL6 9EQ.

Copy must be received by October 11th to be sure of inclusion in the November issue, published on October 26th.

READERS

For Sale: Sommerkamp FT-250 transceiver (same as Yaesu FT-200) with FP-250, suit newly licensed amateur, £195. — Ring Parsons, Fareham (0329) 287%9.

Exchange: Crotech 3030 15 MHz single-beam oscilloscope, or similar, in same condition. — Ring Paul, Stoke-on-Trent (0782) 632600.

WORLD RADIO/TV HANDBOOK 1984

The World's only complete reference guide to International Radio & Television Broadcasting Stations. It includes: Frequencies, time schedules, announcements, personnel, slogans, interval signals and much more besides of value to the listener. Lists all International short-wave stations, including frequencies, for each country; foreign broadcasts, long and medium wave stations (AM broadcast Band), TV stations and domestic programmes. Long recognised as the established authority by broadcasters and listeners. It is the only publication that enables you to identify BC stations quickly and easily. Enables you to fill more pages in your log book on the SW BC bands and helps you add more BC-station QSL cards to your collection.

£12.15 inc. p/p

from
SHORT WAVE MAGAZINE
34 High Street, Welwyn, Herts. AL6 9EQ

BETTER SHORT WAVE RECEPTION
by William I. Orr W6SAI and Stuart D. Cowan W2LX

Latest 5th Edition

In the latest edition of this excellent work for all those who own (or intend to own) a radio receiver, these two well-known and respected writers have produced chapters covering: the radio spectrum and what you can actually hear world-wide; the tuning of a shortwave receiver; the business of buying a receiver, both new and secondhand; a description of the SW Rx in non-technical terms, together with receiver adjustment and alignment; DX-ing above 30 MHz; a description of the VHF receiver; building and adjusting efficient aerials; reception techniques.

Thoroughly readable and "digestible", this book is without doubt a very valuable addition to the bookshelf of any SWL.

160 pages £6.20 inc. post.

Order from:
Publications Dept.
Short Wave Magazine Ltd.
34 High Street, Welwyn, Herts. AL6 9EQ

For Sale: Trio TS-130S HF transceiver fitted with optional 1.8 kHz and 300 Hz filters, very good condition, with handbook and mic., £450; PS-30 matching PSU, £70. Or £500 for both units. TS-75 VHF/UHF frequency meter with PSU similar to BC-221, 85 to 1000 MHz, £30. Carriage extra. — Ring Poole, GW3JAZ, Gresford (097883) 2584.

Exchange: Trio R-1000, very good condition, boxed with handbook, for Collins 51-J or 753 series (tatty one considered). Possible cash adjustment. — Ring Brian, 01-736 6581.

Wanted: Loan or copy of manual or circuit for Hallicrafters S.38 HF receiver. All costs will be met. — Ring Sirignano, G4FZG, Cheltenham 580329.

Sale: Panasonic TR-5032G DX/TV, Bands 1/3/4/5, 5.5/6 MHz bandwidths, as new, £50. — Ring Marris, Slough 75780.

Sale: Eddystone Model 940 communications receiver, with instruction manual, excellent condition, £150 or near offer. — Ring Martin, Medway 683851.

Selling: H.A.C. kits, unmade-up: T-Twin, £22; Triple-T, £29. Both 'or near offer'. — Ring Lindars, 01-647 6157.

November issue: due to appear on Friday, October 26th. Single copies at 90p post paid will be sent by first-class mail for orders received by Wednesday, October 24th, as available. —Circulation Dept., Short Wave Magazine, 34 High Street, Welwyn, Herts. AL6 9EQ.

Selling: Drake R7-A receiver, filtered 6/4/3/2.3/1.8 kHz, with Drake MS-4 speaker and Drake headphones, £1,000. No offers. — Ring Murphy, 03727-26539.

For Sale: Eddystone Model 880/2 communications receiver, coverage 400 kHz to 30.6 MHz, rack mounting, with Eddystone manual and 40 spare valves, a superlative receiver, £130. Buyer collects. — Ring Nuttall, 0242-519845.
Sale: Panasonic DR-31 (3100LBE) receiver complete with Yaesu antenna tuner, in perfect condition, giving excellent reception on 32 bands (cost £270!), only £140. Buyer collects.—Ring Lawrence, 01-440 0476.

Selling: Complete 144 MHz station: Icom IC-251E all-mode transceiver, Icom HM-7 dynamic microphone, Yaesu FRG-7700 communications receiver, Yaesu YH-55 headphones, Amtech 200 ATU, Hokushin GP-144W colinear antenna with wall brackets, everything mint condition, £400 the lot.—Ring Newell, Hemel Hempstead 62138.

Please mention “SHORT WAVE MAGAZINE” when contacting Advertisers—it helps you, helps them and helps us.

SIMPLE, LOW-COST WIRE ANTENNAS
by William Orr, W6SA1

Latest Edition

This excellent and thoroughly recommended handbook is the publication on the practical approach to building aerials. After starting with aerial fundamentals there are discussions and descriptions of ground-plane, end-fed, DX dipole, vertical and wire beam antennas, plus coverage on a universal HF antenna system and working DX with an “invisible aerial”; the SWR meter and coaxial cable also have chapters to themselves.

The whole book is presented in an authoritative, immensely clear, readable and enjoyable manner with the emphasis on the practical throughout—to the extent that even the chap who can hardly strip a piece of co-ax need not feel at all left out! Just as practical for the SWL, too!

192 pages £6.20 inc. post.

Order from

Publications Dept.
Short Wave Magazine Ltd.
34 High Street, Welwyn, Herts. AL6 9EQ

8 TRAP DI-POLES

Data Sheets, Large 23p S.A.E. Aerial Guide 75p G2DYM, UPLLOWAN, TIVERTON, DEVON

Callers Welcome By Appointment Only
Tel: 03986 215

ALL VALVES & TRANSISTORS

Call or phone for a most courteous quotation
01-749 3934
We are one of the largest stockists of valves etc. in the U.K.

COLOMOR ELECTRONICS LTD.
170 GOLDHAWK ROAD
LONDON W12

MORSE MADE EASY

"STRANGE BUT TRUE." No expensive equipment required only a turnable If you start RIGHT you will be reading amateur and commercial Morse within a month. Most students take about three weeks. That's why after 30 YEARS we still use three scientifically prepared special records with which you cannot fail to learn the MORSE RHYTHM automatically. It's as easy as learning a tune. 18 w.p.m. in 4 weeks guaranteed. Complete course comprising 2 x 12" + 1 x 7" multi-speed records + books & U.K. p.p. £7.00. (Overseas, sufficient for 750 grams.).

Stan. Bennett. G31SC. Sax 14 45 Green Lane, Potters Bar, Herts. EN6 1AP. 01-602 2968.

Butterworth Group publications now in stock

Practical Aerial Handbook, 2nd edition £10.90

Two-Metre Antenna Handbook £6.35

Beginners Guide to Radio, 9th edition £5.10

Beginners Guide to Electronics, 4th edition £5.05

Beginners Guide to Amateur Radio £4.95

Beginners Guide to Integrated Circuits, 2nd edition £5.00

Projects in Amateur Radio and Short Wave Listening £4.20

Guide to Broadcasting Stations, latest 18th edition £5.00

The World’s Radio Broadcasting Stations and European FM/TV Guide £7.60

Semiconductor Data, new 11th edition £8.05

Foundations of Wireless and Electronics, 10th edition £10.05

Practical Handbook of Valve Radio Repair, new title £15.95

Electronics Pocket Book, new 4th edition £6.20

Oscilloscopes — How to Use Them, How They Work £5.20

prices include postage and packing

Publications Dept.
SHORT WAVE MAGAZINE LTD.
34 HIGH STREET, WELWYN,
HERTS. AL6 9EQ
Have you got all these ARRL titles on your shelf?

<table>
<thead>
<tr>
<th>Title</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solid State Design for the Radio Amateur</td>
<td>£6.35</td>
</tr>
<tr>
<td>Electronics Data Book</td>
<td>£3.15</td>
</tr>
<tr>
<td>Antenna Book, latest 14th edition</td>
<td>£6.70</td>
</tr>
<tr>
<td>Weekend Projects for the Radio Amateur</td>
<td>£3.05</td>
</tr>
<tr>
<td>FM and Repeaters for the Radio Amateur</td>
<td>£4.35</td>
</tr>
<tr>
<td>The Radio Amateur’s Handbook 1984, soft cover</td>
<td>£11.50</td>
</tr>
<tr>
<td>Antenna Anthology</td>
<td>£3.65</td>
</tr>
<tr>
<td>Hints and Kinks</td>
<td>£3.60</td>
</tr>
<tr>
<td>Learning to Work with Integrated Circuits</td>
<td>£2.40</td>
</tr>
<tr>
<td>The Satellite Experimenter’s Handbook</td>
<td>£9.15</td>
</tr>
</tbody>
</table>

(all prices include post/packing)

Available from SHORT WAVE MAGAZINE
Publications Dept.,
34 HIGH STREET, WELWYN, HERTS. AL6 9EQ. Telephone: Welwyn 5206/7.
THE SATELLITE EXPERIMENTER’S HANDBOOK

Just published by the ARRL, this superb new handbook provides all you need to know to communicate through, or pick up the signals from, orbiting satellites — whether your interest is in amateur radio, weather or TV-broadcast satellites. Chapter headings include: Preliminaries, Early Days, Past/Present/Future, Getting Started, Tracking Basics, Ground Station Antennas, Receiving and Transmitting, Satellite Orbits, and more; plus Tables and Charts.

Whether you are a beginner or an expert, if your interest is satellites, and particularly Amateur Radio ‘birds’, this book is indispensable and unreservedly recommended.

208 pages

£9.15 inc. p/p

Order from:
Publications Dept.
SHORT WAVE MAGAZINE LTD.
34 HIGH STREET, WELWYN,
HERTS. AL6 9EQ

THE RADIO AMATEUR’S HANDBOOK, 1984

(ARRL)

61st Edition

Still the reference book no radio amateur should be without! As well as covering Ohm’s Law to spread-spectrum, new material in the 1984 edition includes: new tables on low-pass, high-pass and band-pass filters; an updated section on the classes of amplifier operation; a new kilowatt amplifier for 160, 80 and 40m.; a refined version of the De luxe Audio Filter; plus updated chapters on Specialised Communications Systems and Interference. A new and better index is included — and much, much more!

640 pages

hard cover, £14.50 inc. p/p
soft cover, £11.50 inc. p/p

Order from:
Publications Dept.
SHORT WAVE MAGAZINE LTD
34 HIGH STREET, WELWYN,
HERTS. AL6 9EQ

1984 CALL BOOK

“U.S. LISTINGS”

In this issue . . .

★ 433,921 licensed U.S. radio amateurs
★ 30,505 new licenses included, issued since the
 1983 edition
★ 106,567 changes in listings
★ Then & Now — call letter changes
★ QSL managers
★ ARRL Countries list
★ Zip Codes and Licence Class on all listings
★ Standard Time charts
★ Census of U.S. Amateur Radio licenses
★ Plus many other features

1214 pages

£15.20 inc. postage

Order from:
Publications Dept.
SHORT WAVE MAGAZINE LTD.
34 HIGH STREET, WELWYN,
HERTS. AL6 9EQ

1984 CALL BOOK

“DX LISTINGS”

(i.e. all amateur call-signs outside the U.S.A. and its Possessions)

In this issue . . .

★ 413,852 licensed radio amateurs
★ 37,265 new licenses included, issued since the
 1983 edition
★ 115,940 changes in listings
★ QSL managers
★ Radio amateur prefixes of the world
★ ARRL Countries list
★ Great Circle bearings
★ Standard Time charts
★ Census of world Amateur Radio licenses
★ Plus much, much more!

1206 pages

£14.50 inc. postage

Order from:
Publications Dept.
SHORT WAVE MAGAZINE LTD.
34 HIGH STREET, WELWYN,
HERTS. AL6 9EQ
Technical Books and Manuals
(ENGLISH AND AMERICAN)

AERIAL INFORMATION
Antenna Handbook (Orr and Cowan) .. £4.55
Practical Aerial Handbook, 2nd Edition (King) £10.60
Beam Antenna Handbook .. £4.35
Cubical Quad Antennae 2nd Edition £3.90
Simple Low Cost Wire Antennas, by Orr £6.20
Aerial Projects (Penfold) ... £2.30
73 Dipole and Long-Wire Antennas (E. M. Noll) £6.35
Antenna Book (ARRL) latest 14th Edition £6.70
The (ARRL) Antenna Anthology .. £3.85
HF Antennas for All Locations (RSGB) £6.10
The Amateur Antenna Construction Handbook for Ham, CB and SWL (Tab) .. £5.00
Home-Brew HF/VHF Antenna Handbook (Tab) £5.00
25 Simple Shortwave Broadcast Band Aerials (E. M. Noll) £2.25
25 Simple Amateur Band Aerials (E. M. Noll) £2.25
25 Simple Indoor and Window Aerials £2.05
VHF Propagation Handbook, by WA4MVI £3.55

BOOKS FOR THE BEGINNER
Amateur Radio (Lutterworth Press) £9.60
Solid State Short Wave Receivers for Beginners (R. A. Penfold) £2.25
Beginners Guide to Radio (9th Edition) £5.10
Beginners Guide to Electronics, 4th Edition £5.05
Beginners Guide to Amateur Radio (Newnes) £4.85
Beginners Guide to Integrated Circuits, 2nd edn. £5.00
Morse Code for the Radio Amateur (RSGB) £1.20
Understanding Amateur Radio (ARRL) 0/S

GENERAL
Weekend Projects for the Radio Amateur (ARRL) £3.05
Projects in Amateur Radio and Short Wave Listening (Newnes) . £4.20
How to Build your own Solid State Oscilloscope (Rayer) £2.25
How to Design and Make Your Own PCB's £2.25
How to Build Advanced Short Wave Receivers £2.25
Better Short Wave Reception, (5th Ed) £6.20
FM Repeaters for the Radio Amateur (ARRL) £4.35
Easybinder (to hold 12 copies of "Short Wave Magazine") together! 0/S
World Radio & TV Handbook 1984 Edition £12.15
The World's Radio Broadcasting Stations and European FM/TV (Newnes) ... £7.60
Guide to Broadcasting Stations (18th Edition) £5.00
Radio Stations Guide ... 0/S

Long Distance Television Reception (TV-DX) for the Enthusiast (revised edition) £2.25
An Introduction to Radio DXing £2.30
Radio Amateurs DX Guide (14th Edition) £2.45
Power Supply Projects (Penfold) £2.05

HANDBOOKS AND MANUALS
Radio Communication Handbook, Vols. 1 and 2 combined (paperback), RSGB £11.05
Teleprinter Handbook, New 2nd Ed. (RSGB) £13.70
TVI Manual (2nd Edn.) (RSGB) .. £1.85
The Radio Amateur's Handbook 1984 (ARRL), soft cover £11.50
The Radio Amateur's Handbook 1984 (ARRL), hard cover £14.50
Learning to Work with Integrated Circuits (ARRL) £1.70
Weather Satellite Handbook .. 0/S
The Satellite Experimenter's Handbook (ARRL), new title £9.15
Test Equipment for the Radio Amateur (RSGB) £5.75
Amateur Radio Operating Manual (RSGB) 3rd Ed £4.95
Oscilloscopes - How to Use Them, How They Work (Newnes) £5.20
Practical Handbook of Valve Radio Repair (Newnes) £15.95
Radio Propagation Handbook, by W4LGF (Tab) £10.10

USEFUL REFERENCE BOOKS
Solid State Design for the Radio Amateur (ARRL) £6.35
Foundations of Wireless and Electronics, 10th Edition (Scroggie) £10.05
Amateur Radio Techniques, 7th Edn. (RSGB) £6.00
U.K. Call Book 1984 (RSGB) .. £7.05
Hints and Kinks (ARRL) ... £3.60
Electronics Data Book (ARRL) ... £3.15
Radio Frequency Interference (ARRL) £2.40
Amateur Radio Awards, (RSGB) £3.40
Electronics Pocket Book, 4th Edition (Newnes) £6.20

VALVE AND TRANSISTOR MANUALS
Towers' International Transistor Selector, latest Edition (Up-Date No. 2) £10.60
Semiconductor Data Book, 11th Edition (Newnes) £8.05
International Transistor Equivalents Guide 0/S
International Diode Equivalents Guide £2.60

VHF PUBLICATIONS
VHF Handbook, Wm. I. Orr W6SAI new 3rd Edition £9.75
The UHF-Compendium, Parts 1 and 2 0/S

orders despatched by return of post
THE ABOVE PRICES INCLUDE POSTAGE AND PACKING

O/P (Out of print) .. £2.25
O/S (Out of stock) .. £2.30
Many of these titles are American in origin (Terms C.W.O.)
Prices are subject to alteration without notice.

Available from SHORT WAVE MAGAZINE
Publications Dept.
34 High Street, Welwyn, Herts. AL6 9EQ — Welwyn (043871) 5206/7
(Counter Service: 9.30—5.00 Mon. to Fri.)