G3ROO adds FM to the FT-707

"Practically Yours" with Glen Ross, G8MWR, begins with an easy power supply
MODEL D70 MORSE TUTOR

Once you've decided to tackle the dreaded Morse Test you won't want to mess about. You'll want a learning method that is effective, painless, and that gets you on the HF bands FAST without any expensive retakes.

That's exactly what the Datong Morse Tutor can do for you, as thousands of satisfied users will confirm. The Morse Tutor generates a random stream of Morse characters to give receiving practice, but two very important features set the D70 apart from other systems.

First, each character comes at you at its normal speed but with an extra delay between each one. As you improve you reduce the delay until full speed is reached. This way you always learn the correct rhythmic sound for each character and avoid the worst of the notorious "plateau" effect.

Second, you can take it anywhere and use it whenever you like without the bother of a mains lead. Battery drain is so low that you should be able to pass the exam on the battery which we install before shipping!

Supplied complete with internal speaker plus personal earpiece, and with a key jack for sending practice, Model D70 is your passport to a more rewarding hobby.

Price: £49.00 + VAT (£56.35 total)

FL2/FL3 MULTI-MODE AUDIO FILTERS

These high performance audio filters will improve the performance of any existing communications receiver - in most cases, dramatically.

By selecting "SSB" mode you can remove high pitched monkey-chatter from off-tune SSB stations; remove low pitched noises from other stations on the low side of your signal; remove tune-up whistles with a manually controlled notch filter; at the same time remove tune-up whistles with a second notch filter which tunes itself automatically (this function applies to FL3 only).

What marks out the Datong filters from the rest is the high performance of each of the above functions plus the fact that all four functions are available simultaneously.

By selecting "CW" mode all available filters (except the automatic notch) are automatically harnessed together to give an almost unbelievable ability to pull out a single CW signal from a crowded band.

Whether you are an amateur or a professional and no matter which rig you use, the overcrowding on today's HF bands can spoil your reception. Simply adding a Datong audio filter in series with the speaker may be the biggest single improvement you will ever make.

Note that by retrofitting the FL2/A auto-notch conversion kit you can convert an FL2 to an FL3 at any time. The only difference is the auto-notch filter.

Prices: FL2 £78.00 + VAT (£92.70 total); FL3 £92.49 + VAT (£106.37 total); FL2/A conversion kit, £134.49 + VAT (£153.67 total)

ORDER FORM

Please send me the following

<table>
<thead>
<tr>
<th>Model</th>
<th>Qty.</th>
<th>Unit Price</th>
<th>Unit Total</th>
</tr>
</thead>
</table>

Prices include Post, Packing and VAT (U.K.)

Total £

I enclose CHEQUE/POSTAL ORDER No. for £

Please debit my VISA/ACCESS account.

Card No. ________

All orders sent by return, 1st class parcel post. Any delay will be notified to you immediately.

SEND TO: Dept S.W. Spence Mills, Mill Lane, Bramley, Leeds LS13 3HE, England. Tel: (0532) 552461
ADVERTISERS' INDEX

Aspen Electronics Ltd. 99
J. Birkett 102
Black Star 98
British National Radio and Electronics School 98
Colomor Electronics Ltd. 103
Datong Electronics Ltd. inside front cover
Dewsbury Electronics 59
E.M.A. 101
G2DYM Aerials 103
G3HSC (Rhythm Morse Courses) 103
D. P. Hobbs Ltd. 99
I.C.S. Electronics Ltd. 98
KW Ten-Tec Ltd. 81
Lee Electronics Ltd. 62
Lowe Electronics Ltd. 54, 55
Metalpayre 97
Microwave Modules Ltd. 61
MuTek Ltd. 99
P.M. Electronic Services 99
Quartslab Marketing Ltd. 98
Radio Shack Ltd. 64
Radio Society of Great Britain 62
R.T. & I. Electronics Ltd. 100
F. G. Rylands 100
S.E.M. 97
Small Advertisements 100, 101, 102, 103
South Midlands Communications Ltd. 56, 57
Spacemark Ltd. 100
Stephen James Ltd. 58
S.W.M. Publications back cover, inside back cover 101, 102, 103
Timestep Electronics Ltd. 63
Uppington Tele/Radio (Bristol) Ltd. 102
Reg. Ward & Co. Ltd. 101
Waters & Stanton Electronics 60
Geoff Watts 99

COVER DESIGN:
Allan & Co. Ltd., Welwyn

SHORT WAVE
MAGAZINE

(GB3SWM)

ISSN: 0037-4261

VOL. 42 APRIL, 1984 No. 486

CONTENTS

Page
Guest Editorial — Novice Licensing. 65
VHF Bands, by N. A. S. Fitch, G3FPK 66
Traps and Trapped Antennas for the Home Constructor, Part 3, by A. P. Ashton, G3XAP 70
"Practically Yours", with Glen Ross, G8MWR 76
An FM Conversion for the Yaesu FT-707 Transceiver, Part 1, by Ian Keyser, G3ROO 78
Communication and DX News, by E. P. Essery, G3KFE 83
Using the Icom IC-730 Transceiver with a VHF Transverter, by N. A. S. Fitch, G3FPK 86
Russian DX'ing — Oblast Chasing Can be Fun! by N. S. Cawthorne, G3TXF 88
Logic Controlled P-T-T with Toneburst, by C. H. Kaufman, G1CHK 90
Clubs Roundup, by "Club Secretary" 92

Editor: PAUL ESSERY, G3KFE/G3SWM
Advertising: Charles Forsyth

Published at 34 High Street, Welwyn, Herts. AL6 9EQ, on the last Friday of the month, dated the month following.
Telephone: 04-3871 5206 & 5207

Annual Subscription:
Home: £9.60, 12 issues, post paid
Overseas: £9.60 ($17.00 U.S.), post paid surface mail

Prices shown in advertising in this issue do not necessarily constitute a contract and may be subject to change.

AUTHOR'S MSS

Articles submitted for Editorial consideration must be typed double-spaced with wide margins on one side only of A4 sheets. Photographs should be lightly identified in pencil on the back with details on a separate sheet. All drawings and diagrams should also be shown separately, and tables of values prepared in accordance with our normal setting convention — see any issue. Payment is made at a competitive rate for all material used, and it is a condition of acceptance that full copyright passes to the Short Wave Magazine, Ltd., on publication.

© Short Wave Magazine Ltd.

E. & O. E. VAT Reg. No. 239 4864 25
LOWE SHOPS

Whenever you enter a LOWE ELECTRONICS’ shop, be it Glasgow, Darlington, Cambridge, London or here at Matlock, then you can be certain that along with a courteous welcome you will receive straightforward advice. Advice given not with the intention of “making” a sale but the sort which is given freely by one radio amateur to another. Of course, if you decide to purchase then you have the knowledge that LOWE ELECTRONICS are the company that set the standard for amateur radio after-sales service. The shops are open Tuesday to Saturday and close for lunch 12.30 til 1.30 pm.

In Glasgow the LOWE ELECTRONICS’ shop (telephone 041-945 2626) is managed by Sim G3SAN. Its address is 4/5 Queen Margaret’s Road, off Queen Margaret’s Drive. That’s the right turn off Great Western Road at the Botanical Gardens’ traffic lights. Street parking is available outside the shop and afterwards the Botanical Gardens are well worth a visit.

In the North East the LOWE ELECTRONICS’ shop is found in the delightful market town of Darlington (telephone 0325 498121) and is managed by Don G3GEA. The shop’s address is 56 North Road, Darlington. That is on the A167 Durham road out of town. A huge free car park across the road, a large supermarket and bistro restaurant combine to make a visit to Darlington a pleasure for the whole family.

Cambridge, not only a University town but now the location of a LOWE ELECTRONICS’ shop managed by Tony G4NBS. The address is 162 High Street, Chesterton, Cambridge (telephone 0223 311230). From the A45 just to the north of Cambridge turn off into the town on the A1039, past the science park and turn left at the first roundabout. After passing a children’s playground on your left turn left again into High Street. Easy and free street parking is available outside the shop.

The Capital City also has a LOWE ELECTRONICS’ shop managed by Andy, G4DHQ. Easy to find, the address is 278 Pentonville Road, London N1 9NR (telephone 01-837 6702) and the shop is located on the lower sales floor of Hepworths. That’s only a 3 minutes walk from Kings Cross railway station. So, when you’re in the Capital City, visit LOWE ELECTRONICS.

Finally, here in Matlock David G4KFN is in charge. Located in an area of scenic beauty a visit to the shop can combine amateur radio with a outing for the whole family. May I suggest a meal in one of the town’s inexpensive restaurants or a picnic on the hill tops followed by a spell of portable operation.

if I am absolutely honest,

I am not certain whether I own a NRD515 because of its unbelievable performance as a general coverage receiver or just for the sheer pleasure of having and constantly admiring probably the finest piece of equipment available today.

Perhaps it comes down to the same thing, certainly the other NRD owners I have spoken to have all expressed the same feelings, that the NRD515 is a receiver in a class of its own.

As a person not owning the receiver, you may ask what sets this particular one above all the others. This is difficult to define—the feel of the equipment when wandering over the crowded band, its signal handling capability and selectivity can only really be appreciated by use. Technically, the equipment is above reproach. JRC’s manufacture and production control methods as applied to other items in the range are equally applied to their amateur products. The other items referred to, only a small part of the vast range, are marine radio equipment, Marisat mobile terminal, Omega navigators, Doppler sonar, echo sounder/fish finders, communication satellite earth stations and a complete range of avionic beacons, radar and associated products. Indeed, a wider range application of electronic and radio technology for land, sea and air.

You may be forgiven for associating such advanced technology with complexity of operation, a piece of equipment that needs an operator with an electronics degree. However, this assumption is incorrect. The NRD515 is easy to use with the minimum of controls to ensure the operator really enjoys his listening time. Digital readouts, MHz, mode and filter bandwidth switches together with a VFO knob that will tune the band continuously without using any other control, from 100KHz to 30MHz or vice versa. To assist with difficult band conditions the NRD515 has pass band tuning and the medium wave broadcast section to 600KHz to 1.8MHz has a preselector control to cope with crowded conditions.

To give real “armchair copy” JRC have introduced the NCM515 remote control keypad. As its name suggests the NCM515 enables frequencies to be quickly keyed into the receiver. Four memories are provided, two rates of frequency stepping in increments of either 100Hz or 10MHz and finally the ability to add to or subtract from the operating frequency by any frequency step. Add the optional 600Hz CW filter and the 96 channel memory unit and, as the other NRD515 owners would say, “a joy to own”.

the NRD 515

<table>
<thead>
<tr>
<th>Description</th>
<th>Price inc vat.</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRD515 monitor</td>
<td>£885.00</td>
</tr>
<tr>
<td>NRD515 receiver</td>
<td>£885.00</td>
</tr>
<tr>
<td>NRD515 remote control</td>
<td>£785.00</td>
</tr>
<tr>
<td>NRD515 memory unit</td>
<td>£785.00</td>
</tr>
<tr>
<td>NRD515 speaker</td>
<td>£34.50</td>
</tr>
<tr>
<td>CFL260 filter</td>
<td>£39.10</td>
</tr>
<tr>
<td>CFL230 filter</td>
<td>£64.00</td>
</tr>
</tbody>
</table>

LOWE ELECTRONICS
Chesterfield Road, Matlock, Derbyshire. DE4 5LE.
Telephone 0629 2817, 2430, 4067, 4995. Telex 377482.
TR9130 TWO METRE ALL MODE TRANSCEIVER
This rig is proof, if one needed it, that TRIO do not bring out new models just for the sake of it. The TR9000 is remembered as a classic rig and today people are still asking for second hand ones, even if they are a rarity on our S/H shelf. The TR9130 incorporates the improvements that all amateurs asked for, green display, reverse repeater, tune whilst transmitting, higher power, more memories and of course memory scan. TRIO’s answer, the TR9130.

TR9130 £442.52 inc vat.

TR7930 TWO METRE FM MOBILE TRANSCEIVER
Those who have used or owned a Trio TR7800 will know what I mean when I say that Trio, with the introduction of the TR930 have improved on the unimprovable. The Trio TR930 improves on the TR7800 by giving a green backlit liquid crystal display, extra memory channels, both timed and carrier scan hold, selectable priority frequency and correct mode selection (simplex or repeater). The most significant change is the liquid crystal display, but closely following this must be the ability to omit specific memory channels when scanning and the programmable scan between user designated frequencies.

TR7930 £312.11 inc vat.

TS9306 HF TRANSCEIVER WITH GENERAL COVERAGE RECEIVE FACILITIES
Much has been said about the TS9306 transceiver and it now has a place high in the affection of those amateurs fortunate enough to own one, indeed it has become the “flagship” of the TRIO range. Providing full amateur bands plus a general coverage receiver (1150kHz to 33MHz), the TS9306 has every conceivable operating feature for today’s crowded frequencies.

TS9306 £1150.00 inc vat.

TS530SP HF AMATEUR BAND TRANSCEIVER
A logic progression from the reliable TS520 series the TS530SP was the most popular HF rig in the range. I use the term “was” because TRIO decided to cease production and supplies were no more, however the demand from radio amateurs worldwide for the transceiver have continued and TRIO have reintroduced the rig. A standard HF valve transceiver without the frills but providing today’s amateur with all necessary facilities for reliable world wide communication, the TRIO TS530SP. Now fitted with notch filter.

TS530SP £638.00 inc vat.

TS780 DUAL BAND BASE STATION TRANSCEIVER
The TS780 is the perfect base station VHF/UHF transceiver for the enthusiastic operator. The rig has all the necessary control functions essential for operating on both today’s busy two metre band and the wide spaces of seventy centimetres. Full repeater facilities plus reverse repeater are included and the transceiver has the usual memory channels (10), 10 VFO’s, updown frequency shift microphone, IF shift, two priority channels, memory and band scan, etc. A superb rig, I have one myself, ring for a full enthusiasm.

TS780 £795.00 inc vat.

R2000 GENERAL COVERAGE RECEIVER
The amateur bands are only a very small part of the radio spectrum, many other transmissions are available for the short wave listener. Broadcast stations provide an alternative source of current information both political and regarding the life style of the country. Fitted with the internal VHF converter the R2000 covers continuously frequencies from 118 to 174 MHz giving access to amateur two metre transmissions (am, fm, ssb and cw) plus a lot more. Having 10 memories, memory scan and programmable scan the R2000 provides in one rig the perfect receiver.

R2000 £421.36 inc vat.

TR2500/TR3500 HANDHELD TRANSCEIVERS
Two first class hand held transceivers, one for two metres and the other for seventy centimetres. Ten memory channels, band and memory scan, repeater shift, reverse repeater and a low power position make the rigs extremely useful for the radio amateur who wishes to keep in touch with his local scene. A comprehensive range of accessories, base station charger, speaker microphone, mobile mount, etc, can be added to enhance operation, accessories used with one rig being compatible with the other.

TR2500 £237.82 inc vat.

TR3500 £256.45 inc vat.

TW4000A DUAL BAND FM TRANSCEIVER
I have been waiting for this rig for the last three years, now it is here and I am using one, words fail me. Send for details.

TW4000A £469.00 inc vat.
Tired of the QRM and lack operating space on 2m?

Then O.S.Y. to 70cm and begin to enjoy your hobby again after all 70cm is 10MHz wide in most of the U.K. that’s plenty of room for all to enjoy their favourite mode.

In order to help promote further activity on 70cm we have been able to reduce prices of many of Yaesu’s UHF transceivers. This has been possible due to S.M.C.’s bulk purchasing from Yaesu together with reduced production costs at the factory due to increasing demand on the Japanese home market since the introduction of UHF repeaters in Japan.

Check out the prices of Yaesu’s UHF Transceivers against other manufacturers’ modes and you will probably agree Yaesu leads the way to 70cm.

Just consider with lower equipment costs than equivalent 2M transceivers, a larger number of UHF repeaters in the UK per amateur population than anywhere else worldwide and remember 70cm antennas because of their smaller size and similarity to T.V. antennas make them far more environmentally acceptable than 2M long Yagis.

‘Need we say more except see you on 7Cems.!!!

FT708R now only £179 inc.

FT790R shown with FL0101 optional amplifier

FT730R now only £229 inc.

COAXIAL FEEDERS

Don’t throw away those valuable watts by using a poor quality feeder. Remember approximately 20M of UR67 will have an approximate attenuation 30dB at 432 MHz. This means if you invest around £250 for a 100W P.A. you will only end up with about 50W at the antenna.

UR67 att 3.9dB per 25M approx £0.69p/m
Pope H100 att 2.25dB per 25M approx £0.79p/m
*Eupen 5121 att 1.4dB per 25M approx £2.93p/m NEW
*Andrews LDF2.50 att 1.9dB per 25M approx £3.00p/m
*Andrews LDF4.00 att 3.56dB per 25M approx £3.56p/m

*Helical Foam-Dielectric cables.

Carriage on cables £2.40 up to 20M, over 20M £3.20.

Looking for a Satellite Transceiver System?

Those clever men at Yaesu have put together your total satellite transceiver requirements in one package. If you are interested in the RS satellite with 2M to 10M transponders, the answer is FT726R + HF module and satellite unit, or if you want Oscar 10 with 70cms to 2m transponder, the answer is FT726R + 70cms module and satellite unit. You can even use the FT726R with the mode L transponder on Oscar 10. However in this case the FT726R does require a little help from Microwave Modules and their MMX1268/144. For mode L the answer is FT726R + 70cms module, satellite unit and MMX1268/144 on all the above combinations, full duplex is possible when the satellite unit is fitted to the FT726R. So look no further, Yaesu have the answer, the FT726R!!!!

FT726R(2i) Transceiver clw 2m... £738.00 inc.
FT726R Transceiver main frame... £599.00 inc.
21/24/72 HF module... £200.00 inc.
50/726 6m module... £185.00 inc.
144/726 2m module... £155.00 inc.
430/726 70Tms module... £250.00 inc.
SAT27B Full duplex module... £195.00 inc.
XF459MC 600Hz CW Filter... £38.50 inc.
MMX1268/144 Satellite transmit transverter... £148.00 inc.

SMC SERVICE
Free Securicor delivery on major equipment.
Access or Barclaycard over the phone.
Biggest branch agent and dealer network.
Securicor ‘B’ Service contract at £5.00.
Biggest stockists of amateur equipment.
Same day despatch whenever possible.

FREE FINANCE
*On many regular priced items SMC offers.
Free Finance on invoice balance over £120.
20% down and the balance over 6 months on.
50% down and the balance over a year.
You pay no more than the cash price!!!

Details and eligible items available on request.

GUARANTEE
Importer warranty on Yaesu MUSEN products.
Ably staffed and equipped service department.
Daily contact with the Yaesu MUSEN factory.
Tens of thousands of spares and test equipment.
Twenty-five years of professional experience.

*2 year warranty on regular priced Yaesu products.

SMC STOCK CARRYING AGENTS WITH DEMONSTRATION FACILITIES

Neath John GW4FOI 003625 523746 Day
003625 2942 Eve
Stourbridge Andrew G4BJY 003643 72602

THE SHORT WAVE MAGAZINE
April, 1984
Communications Ltd.

MAIN DISTRIBUTOR FACTORY BACKED
BUCKLEY, STOKE, GRIMSBY, JERSEY, EDINBURGH.

FACILITIES + UNEQUALLED PERFORMANCE BY YAESU

FT203R YAESU'S NEW COMPACT 2M HANDIE

The ultra compactness of the FT203R is due mainly to Yaesu's chip component circuit board assembly, the chip components being installed automatically by robots. The 203's features include thumbwheel frequency selection, built-in S/PO meter, 2.5W RF O/P at 10.8V, (3.5W O/P with FNB4). Vox activated switching is possible when used in conjunction with YH-2.

Accessories supplied include FNB3, FTE-2 tone unit, CSC6 case and YHA-14A antenna.

- **FT203R** 2.5W transceiver £169.00 inc.
- **FBA5** Case for 6AA cells £6.50 inc.
- **FN84** 12V Nicad pack £9.40 inc.
- **CSC7** Soft case (when FN84 is used) £6.50 inc.
- **YH-2** Headset/ Mic £13.90 inc.
- **MH-12A** Speaker Mic £16.85 inc.
- **SMC8.9AA** Charger (13A style) £8.05 inc.
- **MFMB21** Mobile mounting bracket £7.65 inc.

THE BUY OF THE YEAR

FT707 8 BAND HF TRANSCEIVER

FP707 matching AC PSU £125.00 inc.
FV7017DM Digital VFO £149.00 inc.

- **FT77** 8Band RX/ TX 100w output £459.00 inc.
- **FT77S** 8Band RX/ TX 10w output £425.00 inc.
- **FP700** Matching AC PSU £136.00 inc.
- **FC700** Matching Antenna Tuner £58.90 inc.
- **FV700DM** Digital VFO Unit £200.00 inc.
- **MMKT77** Marker Unit £10.35 inc.
- **FMUT77** FM unit £27.20 inc.

YAESU'S LINE UP FOR '84

THE FT757 SYSTEM

Frequency range 160-10m Tx general coverage Rx, 10 Hz VFO steps and 500 kHz band steps. Modes, USB, LSB, CW, AM, FM all as standard. Power output 100W SSB, CW, FM, 25W carrier AM, 3rd order products -40dB at 100W on 14 MHz. Dynamic range better than 100dB CW/AM at 14 MHz. Frequency stability better than ±10ppm. Frequency stability lower than ±10ppm. Programmable memory scanning with scanstop threshold adjustable with the RF Gain control. All accessories installed including AM, FM, Marker, Speech processor, shift filters, 60Hz CW filter and keyer. New heatsink design and ducted cooling system allow 100W o/p at 100% transmitter duty cycle. Selectable semi break-in or full break-in and built-in inanibk keyer with dot-dash memory. Three microprocessors control most of the switching and adjusting functions normally done by hand and optional CAT interface unit allow further operating flexibility with an external computer.

- **FT757GX All Modes and Filters Fitted** £685.00 inc.
- **FP757GX Switched Mode PSU 50% Duty** £149.50 inc.
- **FP757HD Heavy Duty PSU 100% Duty** £231.50 inc.
- **FC757AT Automatic Antenna Tuner** £231.50 inc.
We are proud to introduce the VHF/UHF communications receiver we have all been waiting for. A glance at the brief specification will tell you why the new AR2001 receiver is going to take the listener by storm.

TRIO R600 RECEIVER

- £263.00
- Covers 118-174MHz

TRIO R2000 RECEIVER

- £421.00
- VHF CONVERTER, £113.00

TRIO TS830S HF SSB TRANSCIEVER

- £731.00
- As the North West’s only official Trio stockists we carry the full Trio range of equipment and accessories. Full service facilities. Send s.a.e. for up-to-date information.

ANTENNAS

- Hy-Gan
 - £52.90
- 1/4V0 38and Vertical
- 1AV4W 4 Band Vertical
- 1AVTBW 4 Band Vertical
- TH2MK3 3EL Tribander Beam
- TH3MK3 3EL Tribander Beam
- TH4LJR 3EL Tribander Beam
- TH6X 5EL Tribander Beam
- 2006A 2 Element Beam
- Explorer 14 Tribander

MINI PRODUCTS

- FT21 Minibeam 10-15m
- £169.00
- FT21 Vertical
- £159.00

J.R.C. NRD5150

- General coverage receiver 100 KHz to 30 MHz fully synthesised, Digital readout PLL synthesiser with rotary type encoder pass band tuning - modular construction.
- £965.00

FL2 MULTI-MODE AUDIO FILTER

- £69.00

TW4000A

- £469.00

)

TRIO TS430’s

- £752.00

Tw4000A

- £469.00

TRIO R600 RECEIVER

- £263.00

TRIO R2000 RECEIVER

- £421.00

VHF CONVERTER, £113.00

TRIO TS830S HF SSB TRANSCIEVER

- £731.00

J.R.C. NRD5150

- General coverage receiver 100 KHz to 30 MHz fully synthesised, Digital readout PLL synthesiser with rotary type encoder pass band tuning - modular construction.
- £965.00

ANTENNAS

- Hy-Gan
 - £52.90
- 1/4V0 38and Vertical
- 1AV4W 4 Band Vertical
- 1AVTBW 4 Band Vertical
- TH2MK3 3EL Tribander Beam
- TH3MK3 3EL Tribander Beam
- TH4LJR 3EL Tribander Beam
- TH6X 5EL Tribander Beam
- 2006A 2 Element Beam
- Explorer 14 Tribander

MINI PRODUCTS

- FT21 Minibeam 10-15m
- £169.00
- FT21 Vertical
- £159.00

J.R.C. NRD5150

- General coverage receiver 100 KHz to 30 MHz fully synthesised, Digital readout PLL synthesiser with rotary type encoder pass band tuning - modular construction.
- £965.00

FL2 MULTI-MODE AUDIO FILTER

- £69.00

TW4000A

- £469.00

)

TRIO TS430’s

- £752.00

Tw4000A

- £469.00

TRIO R600 RECEIVER

- £263.00

TRIO R2000 RECEIVER

- £421.00

VHF CONVERTER, £113.00

TRIO TS830S HF SSB TRANSCIEVER

- £731.00

J.R.C. NRD5150

- General coverage receiver 100 KHz to 30 MHz fully synthesised, Digital readout PLL synthesiser with rotary type encoder pass band tuning - modular construction.
- £965.00

FL2 MULTI-MODE AUDIO FILTER

- £69.00

TW4000A

- £469.00

)

TRIO TS430’s

- £752.00

Tw4000A

- £469.00

TRIO R600 RECEIVER

- £263.00

TRIO R2000 RECEIVER

- £421.00

VHF CONVERTER, £113.00

TRIO TS830S HF SSB TRANSCIEVER

- £731.00

As the North West’s only official Trio stockists we carry the full Trio range of equipment and accessories. Full service facilities. Send s.a.e. for up-to-date information.

ANTENNAS

- Hy-Gan
 - £52.90
- 1/4V0 38and Vertical
- 1AV4W 4 Band Vertical
- 1AVTBW 4 Band Vertical
- TH2MK3 3EL Tribander Beam
- TH3MK3 3EL Tribander Beam
- TH4LJR 3EL Tribander Beam
- TH6X 5EL Tribander Beam
- 2006A 2 Element Beam
- Explorer 14 Tribander

MINI PRODUCTS

- FT21 Minibeam 10-15m
- £169.00
- FT21 Vertical
- £159.00

J.R.C. NRD5150

- General coverage receiver 100 KHz to 30 MHz fully synthesised, Digital readout PLL synthesiser with rotary type encoder pass band tuning - modular construction.
- £965.00

FL2 MULTI-MODE AUDIO FILTER

- £69.00

TW4000A

- £469.00

)

TRIO TS430’s

- £752.00

Tw4000A

- £469.00

TRIO R600 RECEIVER

- £263.00

TRIO R2000 RECEIVER

- £421.00

VHF CONVERTER, £113.00

TRIO TS830S HF SSB TRANSCIEVER

- £731.00

As the North West’s only official Trio stockists we carry the full Trio range of equipment and accessories. Full service facilities. Send s.a.e. for up-to-date information.

ANTENNAS

- Hy-Gan
 - £52.90
- 1/4V0 38and Vertical
- 1AV4W 4 Band Vertical
- 1AVTBW 4 Band Vertical
- TH2MK3 3EL Tribander Beam
- TH3MK3 3EL Tribander Beam
- TH4LJR 3EL Tribander Beam
- TH6X 5EL Tribander Beam
- 2006A 2 Element Beam
- Explorer 14 Tribander

MINI PRODUCTS

- FT21 Minibeam 10-15m
- £169.00
- FT21 Vertical
- £159.00

J.R.C. NRD5150

- General coverage receiver 100 KHz to 30 MHz fully synthesised, Digital readout PLL synthesiser with rotary type encoder pass band tuning - modular construction.
- £965.00

FL2 MULTI-MODE AUDIO FILTER

- £69.00

TW4000A

- £469.00

)

TRIO TS430’s

- £752.00

Tw4000A

- £469.00

TRIO R600 RECEIVER

- £263.00

TRIO R2000 RECEIVER

- £421.00

VHF CONVERTER, £113.00

TRIO TS830S HF SSB TRANSCIEVER

- £731.00

As the North West’s only official Trio stockists we carry the full Trio range of equipment and accessories. Full service facilities. Send s.a.e. for up-to-date information.
AMTOR SPOKEN HERE – SEE THE FAMOUS ICS AMT-1
Always on demonstration in Stourbridge.

NEW FROM AEA IN THE U.S.A.
THE "MICROPATCH"
A NEW LOW COST METHOD OF USING THE
COMMODORE VIC20 or CBM64 on the air with RTTY or
CW
SIMPLY PLUG IN TO YOUR MACHINE’S EXPANSION
PORT AND OFF YOU GO. Auto Tracking CW speeds.
Type ahead Buffers. TRY ONE AND SEE. It’s Foolproof.
Well at least it’s G4CLX proof. If he can use it so can you.
5Z4CX thinks it’s great.
£129.00 inc. VAT, pp £1.50. SAE ENQUIRIES.

This antenna is based on the
very popular and successful
‘SLIM JIM’ design.
The GAMMA TWIN has the
following unique features:

* VERY LOW ANGLE OF
RADIATION
* ADJUSTABLE RADIATOR,
(140-150 MHZ)
* COMPLETELY
WEATHERPROOF
CONNECTING BOX
* VERTICAL FIX
DIRECTLY TO MAST

£7.95
incl VAT
+£1.15 p&p

Dewsbury Electronics offer a full range of Trio Equipment always in stock.
We are also stockists of DAIWA – WELTZ – DAVTREND – TASCOT ELEREADERS – MICROWAVE MODULES
- ICS AMTOR – AEA PRODUCTS – DRAE

Dewsbury Electronics, 176 Lower High Street, Stourbridge, West Midlands.
Telephone: Stourbridge (0384) 390063

Closed Monday Instant finance available subject to status
Written details on request
WATERS & STANTON ELECTRONICS

YAESU 757GX

COMPLETE HF STATION

No hidden extras!

CW FILTER IAMBIC KEYER

BREAK-IN NOISE BLANKER

GEN. COVERAGE AM-FM-SSB-CW 1

Accessories: -

MINI-PRODUCTS HQ-1

“FULL SIZE PERFORMANCE” IN A PINT POT!

- 6-10-15-20m 1kw
- 6’2” turning radius
- weight 15lbs

£124

NEW

TRIO

FDR

WELZ

AZDEN

BNOS

YAESU FT203R

The FT203R is a brand new handheld transceiver from YAESU. It covers the frequency range 144.146MHz in 10kHz steps. Power output is 2 watts or 0.3 watts and the thumbwheel dial provides instant and accurate frequency selections. A beautifully constructed unit with detachable ni-cad pack, aerial, case, etc., at a special introductory price.

£675

£169

TRADE INS? - We are always looking for good gear either as part exchange or for cash. Just give us a call.

MAIL ORDER - All orders despatched same day.

VISA OR ACCESS - Just phone your order in. Immediate dispatch.

INSTANT CREDIT - If you have a credit card we can usually arrange instant credit.

SECOND-HAND EQUIPMENT - We buy for cash or part exchange - our major stock of second-hand equipment is kept at Hockley. All items carry three months warranty. Stock changes daily so call or telephone your requirements whether buying or selling.

STOP PRESS - Ex Demo YAESU FT203R £1049.12 months warranty. F2500 handheld £135

£329

FBD M750XX

2M FM - SSB - CW

£132

FABULOUS RX40

FM MONITOR

141-180 MHz

Covers the major portion of the VHF band and is designed to professional standard.

£99.50
SOMETHING FOR EVERYONE

MM 1001KB — MORSE KEYBOARD

£135 inc. VAT (p&p £3.50)

This microprocessor-based product is the ultimate in 'electronic keyers' and will send both live and stored messages in the speed range 12 - 30 wpm.

Four separate memory stores are provided, each of 256 characters capacity and an 80 character keyboard buffer is incorporated so that the morse code is actually read from this memory at a constant speed.

A high speed facility of 600 characters per minute is included, useful for meteor scatter operation. The keyed output is via an opto-isolator which eliminates problems such as 'relay-bounce'.

10m 100W LINEAR AMP.

MML28/100-S

£129.95 inc. VAT (p&p £3.50)

- 100 watts out for 10 watts in
- Linear all-mode operation
- Low-noise receive preamp
- Straight-through mode
- RF Vox with manual override
- 13.8V DC operation

1268MHz SATELLITE UP-CONVERTER — MMX 1268/144

£149 inc. VAT (p&p £4.50)

- 2 watts RF output power
- Low distortion, Linear converter
- 144MHz bypass facility
- Highly stable oscillator chain
- 13.8V DC operation

1296MHz GaASFET PREAMPLIFIER — MMG 1296

This GaASFET 1296MHz preamplifier is constructed on high-quality Teflon glass-fibre PCB and includes a microstripline filter which provides excellent rejection to mixer image frequencies and out of band signals. It has a power gain of 15dB and a noise figure of 1.2dB. The power requirements are 13.8V at 35mA and the unit is fitted with 50Ohm BNC sockets.

£59.95 inc. VAT (p&p £1.25)

OUR ENTIRE RANGE OF PRODUCTS WILL BE EXHIBITED AND ON SALE AT MOST OF THE 1984 MOBILE RALLIES

BY OUR OWN SALES TEAM, COME AND TAKE A CLOSER LOOK

ALL MICROWAVE MODULES PRODUCTS ARE FULLY GUARANTEED FOR 12 MONTHS (INCLUDING PA TRANSISTORS)

OUR HOURS ARE:

MONDAY TO FRIDAY

9-12.30, 1-5.00
Stockist for: STANDARD — YAESU — MICROWAVE MODULES — SHURE — HI-MOUND CDE — STOLLE — TELECOMM ANTENNAE — J-BEAM — KATSUMI

ICOM GENERAL COVERAGE RECEIVER IC — R70

Yaesu General Coverage Communications Receiver FRG7700

Price £549.00 (including VAT & Carriage)

Price £369.00 (including VAT & Carriage)

- 0.1MHz — 30.0MHz
- Dual VFO’s
- 6 Digit 100Hz readout
- Bandwidth control
- SSB — CW — RTTY
- FM — with optional board
- Switchable preamplifier

Price £435.00

- 150kHz — 29.999MHz, Full coverage high stability dual PLL system
- Automatic band pass filter selection
- 3 filters for AM reception
- Fast/slow AGC switch
- Narrow band FM reception capability
- Timer facilities
- 240 volt AC or (with adaptor kit) 13.8 volts DC
- Receives SSB, AM, CW, and FM (Narrow band)

400 EDGWARE ROAD, LONDON W2
01-723 5521 Tlx 298765

NORTHERN AGENTS: — Joe Bell, G4PMY, 134 Crewe Road, Haslington, Crewe.
Tel: 0270 582849.

RSGB National Amateur Radio Convention
National Exhibition Centre, Birmingham
Saturday 28th April 10am to 6pm Sunday 29th April 10am to 5pm

FEATURING

- Lectures on Propagation, VHF and Microwaves.
- Introduction to Amateur Radio for Beginners
- Annual RSGB HF Convention
- Major Exhibition of Amateur Equipment & Components.

Forum for VHF and Repeater Enthusiasts.
RSGB stand with book sales and representation by many of the Society’s committees.
Bigger Flea market as a result of last year’s success.

Entrance Fee £2 (Children ½ price) Car Parking Free

Organised by the Radio Society of Great Britain
And you can join them by using our custom designed DFC70 digital frequency counter. The DFC70 is specifically designed for the FRG7 and gives rock steady read out on all bands with 100Hz resolution. Signal frequency is computed and displayed unambiguously on a state of art LCD display specially made for us in Japan. It is not necessary to drill any holes and only one wire has to be connected to a well marked test point in the receiver.

DFC70 Kit £19.95 Built and tested module £24.95
Will also work with the Low SHX30 and Drake SSR/1.

TIMOTHY EDWARDS MK2 144 MHz PRE-AMP

We are proud to announce that the well known R.F. consultant Timothy Edwards has given us the exclusive marketing rights to his new 2 metre pre-amp. Timothy Edwards R.F. designs are used by British Telecom amongst others and so you can be sure that this pre-amp will perform to perfection. It employs the incomparable BF981 which has a better noise figure at 2 M than the often used 3SK88. Spec. Size (tiny) 34mm x 9mm x 15mm (same as F47). DFC40 0-4MHz £14.95

NEW LCD COUNTERS

At last a new range of 5 digit LCD counters that will cover up to 200 MHz and give 1KHz resolution to 39MHz. Ideal for most short wave receivers using common IFs. Similar to the FC177 but cheaper! Supply voltage 5-15V dc. Will operate on 26 different IF offsets. If this counter range won't do what you want probably nothing will. Works with all of Tony Bailey G3VVP0 designs, ask for conversion data.

DFC40 0-4MHz £14.95 built
DFC41 0-32 MHz £18.50 kit
DFC42 0-200 MHz £21.95 kit

SCRAMBLER. At last a real voice scrambler for use on any radio system or telephone. Variable codes selectable for optimum security. As used by USA law enforcement agencies. Will fit inside most mobile transceivers and will operate on AM-FM, SSB or any other mode. One unit is required for each radio or telephone.

LNA144. Our ace R.F. designer Timothy Edwards has done it again! In line 144MHz RF switched pre amp which needs no modulation to any rig. Just put it in the co-ax feed, supply 12V and your deaf rx will have ear ache. Uses the BF981 with a total of 4 tuned circuits for the best out of band rejection. The relays are 20pF200 metal cans and are gold 14GHz SMC connectors. 1dB noise figure and 18dB gain is guaranteed to improve all standard receivers.

TONE BURST. Probably the smallest crystal controlled unit available. 1750Hz ± 0.1Hz. Supply 5-15V. Will fit in the tiniest of rigs or even microphones.

TOP BAND CONVERTOR. Listen to the other local nets and DX on 160m with any 2m SSB receiver. Does not need a large aerial and will comfortably out perform most commercial receivers.

ULTIMATE 2M MOBILE AERIAL. For those of you who don't want the world to know. Fully automatic professional quality electrically retractable aerial. Can be used manually or with erect when the rig or car radio is switched on. Full duplex design allowing LW-MW and stereo FM to be used simultaneously with 2m. Half wave electrically loaded for superb performance on 144-146MHz. Maximum input power 30W. This unique design can be used with our LNA144 for outstanding results.

934MHz PERSONAL COMMUNICATION TRANSCIEVERS

Quiet and private. Ideal for small business use or give the girlfriend one. Each unit checked by Timothy Edwards on our Anritsu MS626B Spectrum Analyzer and Marconi 2019 Synthesised Signal Generator. Mobile Transceiver £299.95, Mobile aerial 3dB, mag mount £26.45, hole mount £20.75, Base 3dB £15.53.

All prices include postage and VAT. Send 35p for individual data on any of the above.

Mail order only. Please allow up to 28 days for delivery.

TIMESTEP ELECTRONICS LTD, EGREMONT ST, GLEMSFORD, SUDBURY, SUFFOLK.

TELEPHONE No 0787 280154 TELEX 987033 TIMST G
The Bearcat® DX-1000 makes tuning in New York as easy as dialling a phone.

Direct access keyboard tuning brings a new level of simplicity to shortwave radio. With the Bearcat® DX-1000, dialling in the WNYW in New York is as easy as dialling a telephone. And you can switch from the BBC to Peruvian Huayno music from Radio Andina instantly. Without bandswitching.

Featuring the innovative microprocessor digital technology made famous by Bearcat scanner radios, the DX-1000 covers 10 kHz to 30 MHz continuously. Bearcat® DX-1000 shortwave radio with PLL synthesized accuracy. But as easy as it is for the beginner to tune, it has all the features even the most sophisticated shortwave “DXer” could want. 10 memory channels let you store your favourite stations for instant recall — or for faster “band-scanning” during key openings. The digital display measures frequencies to 1 kHz, or at the touch of a button, doubles as a two-time zone, 24-hour digital quartz clock. A built-in timer wakes you to your favourite shortwave station, or activates peripheral equipment like a tape recorder to record programs while you are asleep or at work.

The DX-1000 also includes independent selectivity selection to help you separate high-powered stations on adjacent frequencies. Plus a noise blanking system that stops Russian pulse radar interference.

There's never been an easier way to hear what the world has to say. With the Bearcat DX-1000 shortwave radio, you have direct access to the world.

Direct Access To The World
Novice Licensing

For some time a minor campaign has been waged in favour of a Novice Licence based upon an even simpler Radio Amateurs’ Examination. However, many licensed radio amateurs take the opposite view maintaining that the current R.A.E. is far too simple and an inadequate basis on which to assess a candidate’s technical competence.

All examinations are a weeding-out process designed to eliminate candidates not reaching the set minimum entry standards. I suggest it is time we demanded a higher minimum standard for those seeking full privileges to operate in the amateur bands, otherwise amateur radio will lose its hard won credibility with the general public.

The present R.A.E. syllabus, setting of questions and marking of papers is handled by the City and Guilds of London Institute. Why? Surely all this should be administered by the national body representing radio amateurs in the U.K., namely the Radio Society of Great Britain. After all, this is the way the professions select their various grades of members and it would be entirely appropriate for us to adopt the same procedure.

I suggest the present R.A.E. be regarded as this proposed novice licence examination, the passing of which would entitle candidates to restricted power use — say 25 watts — in parts of the appropriate bands for a maximum of a year, after which the novice licence, akin to a provisional driving licence, would lapse. This would give the novice either time to acquire sufficient technical knowledge and practical experience to attempt Part 2 of the R.A.E., or drop out.

Part 2 of the R.A.E. would test moresearchingly the candidates’ technical competence and include some old-style, mandatory questions requiring written answers, rather than multiple-choice questions to be answered by a tick. If they felt sufficiently confident, both parts of the R.A.E. could be taken on the same day. Passing Part 2 would entitle the candidate to existing Class A or B licences.

I see nothing wrong in this more elitist approach. Far better that we have 50,000 licensees with a reasonable knowledge of what they are doing, than a quarter million, the majority of whom are little more than CB-type appliance operators. In the January issue of its journal Radio Communication, RSGB members were invited to write to the Society’s Licensing Advisory Committee about novice licensing. Readers of this piece should consider their views, too, and write their own comments on this important matter. The address is:— RSGB Headquarters, Alma House, Cranborne Road, Potters Bar, Herts. EN6 3JW.

Norman Fitch, G3FPK

“Magazine” Prizewinners

Choosing the winner of the annual Short Wave Magazine article competition has proved quite a task this time, with at least six possible names which could have come out on top. In the end, and for the second time in recent years, we have decided to share the prize (for Volume 41) between two contributors.

Congratulations, then, to Ian Keyser G3ROO, and Ed Wetherhold W3NQN, who each receive a cheque for £50.

G3ROO’s splendid “Whitfield” transceiver six-part series (March to August, 1983) proved practical and popular, with many examples on the air and yet more still being constructed — while W3NQN’s superb two-part series “Low Pass Filters for Attenuating RF Amplifier Harmonics” (December 1983/January 1984) was as much a work of art as of science, and a considerable contribution to amateur radio in many ways. Thank you both very much!

This is also the time when we thank all our other contributors over the past year; their efforts are just as much appreciated and valued. Indeed, we would have been lost without them!
March 4, he worked VK5YZL. As soon as the better weather comes, Adrian will be installing a ten-turn helical antenna for 436 MHz.

In a response to requests for more satellite news from readers, Russell Coward, G6HRI, sent in four pages of news after some three months — Nov. to Jan. — when only 30 mins. operating per week were possible. He has lately been experimenting with forward scatter on O-10 when the satellite has been one or two degrees below his horizon. This has resulted in up to 2½ hours extra operating time. He attributes this success on westerly passes to his clear take-off from Blackpool, across the Irish Sea, with the help of ducting. Russell uses 30w to two 48-ele. Multibeams for these sub-horizon experiments and stresses the need for a really good receiving system. His set-up comprises a pair of 10-ele. Parabeams, the Rx being a Yaesu FT-290R with a 3SK88 RF stage and a mutTek preamplifier in the '290. Signals are weak with the characteristics of a DX opening to Europe with fading — and QRM due to his being on the DX end of a pile-up.

G6HRI is up to 36 U.S. states worked. On Feb. 10, between 1336 and 1805, much of the period being sub-horizon, he lists 20 U.S.A. QSOs including AA7A (AZ); N6EEG, W7OTC, NG6P, K6TE, K6TSK (all CA); K07N (OR) and KB7RV (NV), plus other eastern and mid-west states. On the 11th, K2UYH (NJ) was worked at 1° below horizon, AI using his 28ft. dish and just 30 milliwatts and again contacted the next day on orbit no. 502.

Orbit no. 535 on Feb. 28 was at best on Russell's horizon yet in a two hour period from 1348 ten Ws were worked from California to Florida. Contacts with WA6CTX (CA), W7OTC again and KA0OQO (MO) were at — 1°. The next day, orbit no. 537 was another rather low pass to the west and, in addition to 12 mainland Ws, K6H1BA was worked, sub-horizon, also K9PW/VP2V in the British Virgin Is. for a new country. G6HRI's report ends with Mar. 1, orbit no. 539, when another eight Ws were contacted.

Russell included a few "DX notes", the first of which refers to the recent Clipperton Is. DX trip where they were unable to get a 432 MHz Tx permit, so no O-10 operation. However, in another trip in April, NA6E says they are trying hard to get authorisation. The second note is about an O-10 contest on Apr. 14 with exchanges of Maidenhead Squares. That information from WA2RDE (NY) who is in F12. Thaddeus, KL7GNG, in Fairbanks, Alaska and PY2GN in San Paulo, Brazil, just before the transponder was switched off. On Feb. 29, on a lowish, easterly pass, JA8FXG in Sapporo, was contacted, and at 0145 on
Contests Notes

Congratulations to reader Chris Easton, who, operating as GW8TFI/P, won last year's 23cm. Cumulative Contest with a total of 1,866 points. Second was G4APA with 807 and third, G8FEZ with 699 pts.

April 8, 1300-1700 GMT sees the 432 MHz CW contest and it is a single section affair with radial ring scoring. The BARTG's Spring VHF/UHF RTTY Contest runs from 1800 GMT on Apr. 14 to 1200 the next day, but a declared four hours break is mandatory. Bands are 2m, 70cm and 23cm and the event is for residents in "CQ" zones 14 and 15. The rules are rather lengthy and copies can be obtained for an s.a.e. to G6LZB, 464 Whippendell Road, Watford, WD1 7PT. The Stevanage and DARS is running an FM contest on 2m on Apr. 15 in the sub-bands 144.500-144.845 MHz. The QRG stated is 144.129 MHz. From the 20m VHF net, your scribe learned that LA6QBA will be operating a Yaesu FT-690R transceiver for 6m and likes it very much. He is continuing his MS tests with GM3WJO and they usually complete on SSB in 20-30 minutes. From Denmark, OZ1DOQ has a 6m receiving station under construction for eventual installation at Bushey Heath. The Tx QRG will be 1,297.0 MHz, the Rx QRG being 1,291 MHz. Horizontal polarisation. The Group also operates the 3cm beacon GB3SWH on 10.368 GHz useful for checking receivers as it has been heard in Hampshire and Suffolk. Antenna polarisation is horizontal.

DX Note

From the 20m VHF net, your scribe learned that LA6QBA will be operating from GV41e from Apr. 14-22, mainly for MS work. The QRG stated is 144.129 MHz and he will have 1kw to four 11- ele. Yagis. He will be listening on the VHF net, too.

Beaconry

For a long time there has not been a VHF beacon in Ulster since GB3GI closed down on 2m. It is understood that plans are afoot to provide a new service from WP square with beacons on 6m, 4m, 2m and 70cm, sometime this year.

Repeaters

Bill Wright, GM3IBU, Chairman of the Orkney-Caithness Repeater Group, reports the "birth" of a new repeater on Wideford Hill, near Kirkwall, Orkney at 1600 on Feb. 17. It is on R2, callsign GB3OC, and is based on a Uniden 2030. The antenna is a ground plane 20ft. a.g.l., the site being 750ft. a.s.l. about two miles west of Kirkwall.

Trevor Groves, G4KUJ, Secretary of the South West Hertfordshire UHF Group, has sent some notes about their repeaters and beacons. GB3HR is the 70cm relay on RB14, now re-sited at Stanmore covering the St. Alans, Edgware, Harrow and Watford areas. GB3BH is a 23cm FM beacon/repeater station under construction for eventual installation at Bushey Heath. The Tx QRG will be 1,297.0 MHz, the Rx QRG being 1,291 MHz. Horizontal polarisation. The Group also operates the 3cm beacon GB3SWH on 10.368 GHz useful for checking receivers as it has been heard in Hampshire and Suffolk. Antenna polarisation is horizontal.

Six Metres

Paul Turner, G4JUE, (Essex) now has a Yaesu FT-690R transceiver for 6m and likes it very much. He is continuing his MS tests with GM3WJO and they usually complete on SSB in 20-30 minutes. From Denmark, OZ1DOQ has a 6m receiving set-up and is looking for crossband MS proposals from U.K. licensees. He is one of a group of at least five Danish amateurs who plan to operate 4U1TU in Geneva from July 1 to 8, possibly on 6m.

Issue no. 7 of Six News, the newsletter of the U.K. 6m Group, dated Feb. 1, has been received and includes the news that Arthur Breese, GD2HDZ, was on for the Feb. 12 and 26 Cumulatives sessions which produced 13 of this year's counties. Others who are active on 4m include G4FRE. Four Metres

Beaconry

For a long time there has not been a VHF beacon in Ulster since GB3GI closed down on 2m. It is understood that plans are afoot to provide a new service from WP square with beacons on 6m, 4m, 2m and 70cm, sometime this year.

Repeaters

Bill Wright, GM3IBU, Chairman of the Orkney-Caithness Repeater Group, reports the "birth" of a new repeater on Wideford Hill, near Kirkwall, Orkney at 1600 on Feb. 17. It is on R2, callsign GB3OC, and is based on a Uniden 2030. The antenna is a ground plane 20ft. a.g.l., the site being 750ft. a.s.l. about two miles west of Kirkwall.

Trevor Groves, G4KUJ, Secretary of the South West Hertfordshire UHF Group, has sent some notes about their repeaters and beacons. GB3HR is the 70cm relay on RB14, now re-sited at Stanmore covering the St. Alans, Edgware, Harrow and Watford areas. GB3BH is a 23cm FM beacon/repeater station under construction for eventual installation at Bushey Heath. The Tx QRG will be 1,297.0 MHz, the Rx QRG being 1,291 MHz. Horizontal polarisation. The Group also operates the 3cm beacon GB3SWH on 10.368 GHz useful for checking receivers as it has been heard in Hampshire and Suffolk. Antenna polarisation is horizontal.

Six Metres

Paul Turner, G4JUE, (Essex) now has a Yaesu FT-690R transceiver for 6m and likes it very much. He is continuing his MS tests with GM3WJO and they usually complete on SSB in 20-30 minutes. From Denmark, OZ1DOQ has a 6m receiving set-up and is looking for crossband MS proposals from U.K. licensees. He is one of a group of at least five Danish amateurs who plan to operate 4U1TU in Geneva from July 1 to 8, possibly on 6m.

Issue no. 7 of Six News, the newsletter of the U.K. 6m Group, dated Feb. 1, has been received and includes the news that Arthur Breese, GD2HDZ, was on for the Feb. 12 and 26 Cumulatives sessions which produced 13 of this year's counties. Others who are active on 4m include G4FRE. Four Metres

Beaconry

For a long time there has not been a VHF beacon in Ulster since GB3GI closed down on 2m. It is understood that plans are afoot to provide a new service from WP square with beacons on 6m, 4m, 2m and 70cm, sometime this year.

Repeaters

Bill Wright, GM3IBU, Chairman of the Orkney-Caithness Repeater Group, reports the "birth" of a new repeater on Wideford Hill, near Kirkwall, Orkney at 1600 on Feb. 17. It is on R2, callsign GB3OC, and is based on a Uniden 2030. The antenna is a ground plane 20ft. a.g.l., the site being 750ft. a.s.l. about two miles west of Kirkwall.

Trevor Groves, G4KUJ, Secretary of the South West Hertfordshire UHF Group, has sent some notes about their repeaters and beacons. GB3HR is the 70cm relay on RB14, now re-sited at Stanmore covering the St. Alans, Edgware, Harrow and Watford areas. GB3BH is a 23cm FM beacon/repeater station under construction for eventual installation at Bushey Heath. The Tx QRG will be 1,297.0 MHz, the Rx QRG being 1,291 MHz. Horizontal polarisation. The Group also operates the 3cm beacon GB3SWH on 10.368 GHz useful for checking receivers as it has been heard in Hampshire and Suffolk. Antenna polarisation is horizontal.

Six Metres

Paul Turner, G4JUE, (Essex) now has a Yaesu FT-690R transceiver for 6m and likes it very much. He is continuing his MS tests with GM3WJO and they usually complete on SSB in 20-30 minutes. From Denmark, OZ1DOQ has a 6m receiving set-up and is looking for crossband MS proposals from U.K. licensees. He is one of a group of at least five Danish amateurs who plan to operate 4U1TU in Geneva from July 1 to 8, possibly on 6m.

Issue no. 7 of Six News, the newsletter of the U.K. 6m Group, dated Feb. 1, has been received and includes the news that Steve Richardson, G4JCC, has given up the jobs of editor and secretary. Their A.G.M. was scheduled for Mar. 24 at which, no doubt, new volunteers will have been elected. One interesting comment on 6m Auroral possibilities was from K1TOL in Maine, who is listening for U.K. stations on CW via the mode. He has an auto-keyer sending "CQ" on 50.095-50.110 MHz. In case that sounds far-fetched, Lefty has been elected. One interesting comment on 6m Auroral possibilities was from K1TOL in Maine, who is listening for U.K. stations on CW via the mode. He has an auto-keyer sending "CQ" on 50.095-50.110 MHz. In case that sounds far-fetched, Lefty has been elected.
found the conditions below average, being unable to work anyone over 500 kms. away.

G4KUX does extremely well from Co. Durham in Aurora, dus particularly to his four-19-ele. Cushcraft "Boomer" antennas. They are in a 12ft. x 12ft. box on a 40ft. tower, fed with 25m of spaced airspaced Heliax cable. The transceiver is a "muTeked" Yaesu FT-225RD, the PA being a pair of 4CX250Bs. In the Feb. 3/4 Ar, Nick worked some very choice stations; OY9JID (WV05h), OH2TI (MU65g), SM5BE1 (JU72c), OH1AAW (LU42a), LA3BQ (FU77j), UK2RBM (MT43j), SM3A2ZV (IX79c), UR2RIW (LS02c), UR2NW (LT74d) and UR2RQT (MS80e), along with more usual DL, LA and SM DX.

In the Feb. 10 Ar, Nick was on from 1845, his log extract showing QSOs with LA, GM and SM, plus Y22ME (HM53a), OH2MQ (MU25f), UR2NW again and OH6CH (NV0td). On Feb. 13, tropo. conditions seemed favourable and SK1YHF (JR51d) was S1-2. A "CQ" call brought a couple of SMs in Stockholm, then another Ar began. SMs were worked both via Ar and tropo. at a QTE of 60°. Then came the first OH contacts on tropo. when he worked OH2s TT, BM, BJW and BDF, all in Helsinki. In another Ar on Mar. 2, OY5NS (WY) was worked along with a few LAs and GMs, between 0010 and 0040. Follow that lot!

G4ROA mentions the high band occupancy during the Feb. tropo. conditions at the beginning of February. His best DX to the south was G1DI1l in Beer (Devon) while to the north, Adrian's best was G6IKB/P in Cumbria. Martyn Jones, G4TIF, (Warks.) also took advantage of the Feb. 11-15 long GDX lift. New 1984 counties were G4LZD (Devon), G3IZD (Cumbria), GU4HUY and three GWs in the Glamorgans, all on the 11th. The 14th brought GW3KJW (Gwynedd) and G1BCL (Suffolk) and in the contest on Mar. 4, GW30XD/P (Powys).

Congratulations to Tim Kirby, ex-G6TTU, now G4VXE (Gloucs.) and who has been doing some brass-pounding. He reckons CW activity to be on the increase for both the Swale ARC Contest on Jan. 22 and the Mar. 3/4 affair, but even so, he has amassed 51 counties and ten countries so far this year. Brian Hancock, G4NPM, Hon. Sec. of the Swale ARC.

ANNUAL CW LADDER

<table>
<thead>
<tr>
<th>Station</th>
<th>4m.</th>
<th>2m.</th>
<th>70cm</th>
<th>µWave</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>G4ARI</td>
<td>10</td>
<td>106</td>
<td>56</td>
<td>116</td>
<td></td>
</tr>
<tr>
<td>G4VXE</td>
<td>24</td>
<td>106</td>
<td>56</td>
<td>116</td>
<td></td>
</tr>
<tr>
<td>G3FPK</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>G2DHW</td>
<td>3</td>
<td>9</td>
<td>9</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

No. of different stations worked since Jan. 1.

G6HRI had little to report, but Russell did work EIREP (VO) for a new square on Feb. 9. In the Mar. 3/4 contest, his best DX was F1KBF/P (AK301) at 475 kms. and he also worked G1, GM and EI stations. Gordon Emmerson, G8PNN, 5070x, was to have worked on 70cm, so far, than on 2m, but hopefully he will give the band, and Northumberland, an airing from time to time.

Philip Hocking, G8ZDS, is another new correspondent, from Camborne in Cornwall who has entered the squares table. He hopes to report on DX from the county in future. GD2HDZ had considered giving the annual table a miss this year but was spurred on to "new his private war" with his rival, G3BW, after all. It is remarkable how similarly these two friends score in these annual jousts. Arthur asks "Where have all the old, familiar call-signs gone?". He is one of several readers who deplore the RSGB's decision to drop the QTH information from contest exchanges as it make county chasing that much more difficult.

Geoff Brown, G14ICD, mentions the excellent tropo. conditions on Feb. 12 to 15. Although no great DX was worked, some interesting contacts took place. He cites a full FM duplex QSO between G14ICD on 144.650 MHz and G8YTF (YN30g) who was on 432.650 MHz. S9 each way at 10w over about 500 kms. In the March contest he made 390 QSOs on the band for 5,060 points.

Seventy Centimetres

G4ROA found band conditions rather strange in that, while the big lift was on on 2m, there was very little activity on 70cm. On Feb. 19, in the contest, Adrian listed nine, 1984 new counties by which time the QNRF — barometric pressure at sea level — was down to 1,017mb. In this event, G4LOJ (Norfolk) seems to have been his best DX. The March contest was marked by a very wide transmission which commandeered over 40 kHz of the band. The centre frequency was difficult to find, and the station was 60 miles away, too. Adrian thought there were fewer stations on in the event, this year.

During the Feb. 19 contest, G4TIF worked G3DY (Camb.) for an all-time new county, plus G4LOJ and G8ZHP (Lincs.). During the mid-Feb. lift, Martyn lists some rarer catches as G6CBN (Durham), GW6IGY (Clwyd), G6UPZ (Northumberland), G4VJC (Cleveland) and G8WJLY (S. Glam.). G6CSY's best DX on QRP was G6CVT (YN). In the Feb. 19 contest, G6HRI mentions working G8TFI (YL), G4CQR (AL), G3XDF (AM) and GD2HDZ and G14GVS in X0. In the March event, Russell worked G16ATZ/P (WO) for a new square, G4CQR and GW8TFI/P (YL). Ray Cox, G8FMK, (Oxon.) thought activity and conditions in the fixed contest fairly low.

G8PNN did quite well in February. Some of Gordon's longer DX included G4NUT (Bucks.), G3CQR (E. Sussex), G8KGF (Oxon.), G3SHK (Wilts.) and G8KMWG (Lothian) in the fixed contest. On the 13th, he lists OZ9PZ and SM5ERE to bring the year's countries to four.

G8TFI has not been too active from home (Gloucs.) this year except for the fixed contest when he worked 196 stations in six hours in average conditions. 47
they were out portable in South Wales as conditions were fantastic many northern England stations being worked at great signal strengths. Even so, no new squares were added. The Emley Moor beacon, GB3MLY, was 40 dB over noise. In the March contest, Geoff had 21 QSOs worth 260 pts. in average conditions.

The Microwaves

G4ROA reports low activity but did work two new stations not heard before on Feb. 12; G8UYR and G8SWZ, both in Wolverhampton. G4TXG, G4LRYX, G8TFI, G6CQO, G8FUO, G8LJU, G6BBG, G4TXG, G6CQO, G8TFI and G4BVY whose call was used on 2m where they made over 700 QSOs. G4JXN described the mid-Feb. conditions as "fantastic" many northern England stations being worked at great signal strengths. Even so, no new squares were added. The Emley Moor beacon, GB3MLY, was 40 dB over noise. In the March contest, Geoff had 21 QSOs worth 260 pts. in average conditions.

Computer Interference

A few months back, reference was made to interference caused to reception of HF and VHF signals at G3FPK by a BBC Model B computer on the other side of the party wall. This DCI - Digital Computer Interference - is a two-way phenomenon in that program loading via tape cassette is impossible in the presence of RF from the TX. No doubt those who use computers in their homes appreciate the racket most create. The problem is made worse since most all home computers are housed in plastic cases offering no screening at all. At present, there are no official standards concerning the permitted maximum level of radiation. Anyway, it is far too late to introduce legislation in view of the hundreds of thousands of such machines now in use.

Some alleviation of the interference which would be beneficial to both user and sufferer - as in the G3FPK case - can be achieved by screening the "works". In Oscar News No. 44, reference was made to a method of zinc spraying the inside of computer cases at a cost of about £12, plus VAT and postage. Any reader interested should request further information from The Secretary, AMSAT-UK, LONDON, E12 3EQ, enclosing an s.a.e., marked "Computer Screening". This service was mentioned under a note, "Beeb Computer", but likely the firm carrying out this work would do it for other computers.

Fibre Glass

In the same issue of Oscar News, mention was made of unbendable, thick-walled fibre glass tubes for use in multiple antenna arrays. Undoubtedly, any metal objects close to VHF/UHF antennas are likely to distort the radiation pattern, particularly if they are parallel to the elements. It does not make sense to spend a lot of money on high gain antennas, stack or bay them to get even more gain, and then ruin the performance by using metal booms and stub masts. Mind you, this material does not come cheap and a price of £3.50 per foot was quoted. Lengths up to 6ft. were mentioned. Two firms supplying these fibre glass tubes are:— Bantex Ltd., Abbey Road, LONDON, N.W.1. and Jaybeam Ltd., Kettering Road North, NORTHAMPTON, NN3 1EZ.

Deadlines

The May deadline is April 4 and the following one is May 2; please note these dates in your diaries. Everything to:- "VHF Bands", SHORT WAVE MAGAZINE, 34 High Street, WELwyn, Herts. AL6 9EQ. 73 de G3FPK.
HAVING discussed trap construction from both the theoretical and practical viewpoints, and seen how to tune and water-proof them, we are now in a position to consider trapped antennas in detail.

Let us consider first a two-band trapped dipole, which will employ one pair of traps resonant in the highest of the two frequency bands which the antenna covers. Fig. 1(a) shows the layout of the antenna, but in order to resonate the device we must fully understand the manner in which the device operates, since from this understanding we can see that the antenna must be resonated on the two bands in the correct order. From the diagram we see that the antenna is for frequencies \(f_1 \) and \(f_2 \), and that the traps are resonant at \(f_1 \). If we now apply RF to the antenna at frequency \(f_1 \) (which is the resonant frequency of the traps), the traps offer a very high impedance to the energy and they act virtually as insulators, preventing the RF from reaching the outer sections of the device. Hence, by adjusting the lengths of the inner sections of the dipole we can resonate this section of the antenna to \(f_1 \) without any alteration to the lengths of the outer sections. Anyone who has resonated such a device will know, however, that the length of this inner section will be slightly shorter than the length of a single-band dipole resonated to the same frequency. For example, the inner section of a trapped dipole for 40/80 metres will have an overall length of around 64ft., whereas a simple 40-metre half-wave dipole is around 66ft. It would therefore appear that one of the effects of the traps is to “end load” the inner section to a small degree when the antenna is used on frequency \(f_1 \) — and this is depicted in Fig. 1(b).

Let us now consider operation of the dipole at frequency \(f_2 \). When we supply RF at this lower frequency, we are no longer at the resonant frequency of the traps and they therefore offer a low impedance to the RF, which flows through them and into the outer sections of the dipole — which are hence operative at this frequency. Fig. 1(c) shows the mode of operation of the antenna when used at frequency \(f_2 \), and it can be seen that the device is now operating as an inductively loaded half-wave dipole: the traps load each half of the antenna. The device can now be accurately resonated at this lower frequency by adjustment of the lengths of its outer sections and it is clear that this will have no influence on the operation of the device on \(f_1 \). As mentioned earlier, the L/C ratio of a trap can vary considerably; hence the actual amount of loading of the antenna will also vary and thus two antennas resonated to the same frequency, \(f_2 \), can be of significantly different lengths. However, a 40/80-metre trapped dipole will have an overall length of about 106 to 110ft. which compares with lengths of around 130 to 135ft. for single-band 80-metre dipoles, and from these figures it can be seen that the effect of the loading is very significant — each trap accounting for a reduction of around 12 or 13ft.

Suppose that we now wished to convert this antenna into a 3-band device to cover 160 metres in addition to the 80 and 40-metre bands. We could add a pair of 3.5 MHz traps to the ends of the existing dipole, plus the appropriate lengths of wire to resonate the device at 1.8 MHz. Fig. 2(a) shows the layout of the 3-band antenna, the first detail of which to appreciate is that due to the fact that the 3.5 MHz traps will add a small amount of loading to the outer ends of the 80-metre section, the antenna will need to be re-tuned at 3.5 MHz. Fig. 2(b) shows the mode of operation on 3.5 MHz: note the small amount of end loading, which is similar to that experienced when operating on \(f_1 \) with the 2-band device. Again the actual amount of shortening required will depend on the nature of the 3.5 MHz traps, but the length will be around 2ft. on each side of the antenna.

When we apply 1.8 MHz energy to the antenna, both the 7 and 3 MHz traps offer a low impedance and the whole antenna acts as an inductively-loaded dipole — loaded by all four traps as seen in Fig. 2(c). The lengths of the outer sections must be adjusted in order to resonate the antenna on 1.8 MHz, but because the device is now loaded by two pairs of traps, it is even more difficult to quote actual lengths, but approximately 60ft. will be required on each side of the antenna, giving an overall length of around 210 to 240ft.

Before discussing specific antenna types, there is one more property of parallel resonant traps which must be understood, and that is the manner in which they behave when subjected to RF at frequencies higher than their resonant frequency. With the 2...
and 3-band dipoles discussed above, we saw that the traps acted as inductances when subjected to RF below their resonant frequencies, i.e., they behave as capacitors when subjected to higher frequencies. Fig. 3 shows traps in such a situation. The significance of this fact will become clear when we look at specific antenna types, which we will now do, and put the antennas in separate groups.

Trapped Dipoles

The W3DZZ Trapped Dipole. This is probably the most common antenna used in Amateur Radio throughout the world, and when an operator says that he is using a trapped dipole and offers no further specification, he is invariably referring to the W3DZZ device. The antenna actually appears under a variety of different call signs and commercial names. The author is saddened by this practice and prefers to see the credit go to W3DZZ who is accredited with the original design; true, different manufacturers use slightly different L/C ratios in the traps and, hence, slightly different wire lengths but these do not alter the fundamental concept of the antenna.

The 2-band dipole using a pair of 7 MHz traps discussed above is, indeed, the W3DZZ, but is normally referred to as a 5-band rather than a 2-band device, because W3DZZ found that it would operate as a harmonic device on 10, 15 and 20 metres. The mode of operation on these three bands is as shown in Fig. 3, but it should be realised that the actual amount of capacitive loading contributed by the traps will be different on each of the three HF bands, since for a given capacitance, reactance is determined by frequency:

\[X = \frac{1}{2\pi fC} \]

where \(X \) = reactance (ohms)

\(f \) = frequency (Hz)

\(C \) = capacitance (farads)

When we discussed the construction of traps earlier in this series, we saw that there is a wide range of practical values of capacitance that could be incorporated into a 7 MHz trap; for example we could use 47pF with a 10.5 \(\mu \)H inductance or we could use 120pF with 4.1 \(\mu \)H, both combinations giving a resonant frequency of about 7 MHz. From the formula for capacitive reactance given above it is immediately apparent that a 47pF capacitor will load a W3DZZ to a very different degree to a 120pF capacitor and that, since the physical length of the antenna is determined by resonating the device on 7 and 3.5 MHz, we have little control over the resonant frequencies in or near the 14, 21 and 28 MHz bands, and that different versions of the device will differ considerably in actual performance on these bands. If we compare two antennas, one having traps with 120pF capacitors, and the other 47pF, we see that the former will be slightly longer overall because the traps will contain less inductance and the loading on 3.5 MHz will be lower. Also, because the capacitances are greater, the reactance and hence the loading on 14, 21 and 28 MHz will be smaller than with the 47pF capacitors. Thus the effect on the HF bands is doubled because we have a longer antenna which is shortened to a lesser degree by the trap capacitance, and the actual difference between the two antennas is greater than we might have supposed at first sight.

W3DZZ originally used 60pF capacitors with 8.2\(\mu \)H inductors to resonate his traps to 7.15 MHz which is, of course, the centre of the U.S.A.'s 7 MHz allocation. He then tuned his antenna to 7.20 and 3.75 MHz (again these are more appropriate frequencies for U.S. operators than U.K.) and found resonances at 14.15 and 29.50 MHz with a broad resonance at 21 MHz giving an SWR of less than 2:1 across this entire band. (N.B. this was on a 75-ohm feeder — not 50-ohm).

Another American worker used 100pF capacitors in 7.2 MHz traps, resonated the device at 7.2 and 3.9 MHz and found resonances at 14.1, 21.5 and 29.9 MHz.

At G3XAP, using 47pF capacitors and resonating the traps at 7.05 MHz, then tuning the antenna to 7.05 and 3.65 MHz, it has been found that the HF band resonances are around 13.8, 21.2 and 29.2 MHz. It can be seen, therefore, that the antenna is to some extent a compromise on the three HF bands, and it is unlikely that the W3DZZ will be truly resonant as a 5-band device.

The author prefers to consider the W3DZZ as a 2-band antenna and to think in terms of an additional device for the three HF bands, but any reader who has insufficient room or ambition to contemplate a separate HF antenna is advised to give serious consideration to the following points:—

1) Use 75-ohm twin feeder rather than coaxial cable (since this will reduce losses on the HF bands) and make the feeder length such that it is a multiple of half waves on 20, 15 and 10 metres in order to present impedances of reasonable magnitude to the transmitter end of the feeder. Allowing for a velocity factor of around 0.7 for feeder of this type, lengths of about 50ft. or 75ft. would be suitable.

2) If one of the three HF bands is a particular favourite, adjust the lengths of the outer sections of the antenna to give a low SWR on this particular band — at the expense of 80-metre resonance and possibly resonance on the other two HF bands as well. For example, if high efficiency is desired on 20 metres, it may prove necessary to shorten the antenna to resonate in this band, and this will move the 80, 15 and 10-metre resonances upwards as well.

As mentioned in the discussion on the principles of trapped antennas, the lengths of the W3DZZ are around 64ft. between the
traps (i.e. 32ft. each side of the feeder) and approximately 22ft. for the outer sections, giving an overall length of around 108ft. — this is depicted in Fig. 4. The lengths of the inner sections must be adjusted first to resonate the antenna at 7 MHz and then the outer sections are adjusted to establish resonance at 3.5 MHz.

A 4-Band Trapped Dipole. This device is depicted in Fig. 5 and consists basically of a trapped dipole resonated on 14 and 7 MHz, but showing resonances near the 21 and 28 MHz bands in a similar manner to that found with the W3DZZ dipole. The inner sections are first adjusted to resonate the device on 14 MHz and then the outer sections are adjusted to give 7 MHz and then the outer sections are adjusted to give 7 MHz resonance. At G3XAP, 22pF capacitors were used in the traps which were resonated at 14.2 MHz, and after tuning the antenna to 14.2 and 7.05 MHz, resonances were found at around 21.3 and 28.9 MHz.

For anyone not having the room to erect a W3DZZ dipole, this antenna offers 4-band coverage with a total span of just 54ft; this figure can be reduced slightly by erecting the antenna in the inverted-vee configuration. 3.5 MHz operation can be achieved by 'strapping' the feeder at the transmitter end (i.e. connecting both conductors of the feeder together) and supplying power to it via an antenna matching unit — in other words, using the antenna as an end-loaded Marconi system. If the feeder can be made around 30 to 35ft. in length, the overall length of feeder plus one half of the dipole will be such that the device will behave as an end-fed quarter-wave, which will prevent a low impedance to the transmitter. By adjusting the length of the feeder, the device can actually be resonated on 3.5 MHz and will prove to operate in a very efficient manner. Note, however, that as with any low impedance end-fed antenna, an efficient earth will be necessary and it is suggested that a 70ft. counterpoise should be considered — this can be 'wrapped around' if necessary to fit the space available — even around the skirting board of a room if it proves impractical to install this wire outside the operating room. Fig. 6 shows the antenna used in this configuration.

A Trapped Dipole for 14/21/28 MHz. The two antennas discussed so far have both been essentially 2-band devices, resonance on other bands for which they are used being a little hit-and-miss. For the operator who wants true resonance on the three HF bands, and hence efficient operation, or for the operator who does not have room even for the 54ft. dipole discussed above, a 3-band dipole is a good choice. This uses two pairs of traps, resonant on 28 and 21 MHz and has an overall span of around 25ft — compared to 33ft. for a single-band dipole for 14 MHz.

The antenna is shown in Fig. 7, but once again it must be stressed that the dimensions given are for guidance only and that actual dimensions arrived at by tuning the antenna to resonance can differ quite widely from those given. As with the previous two antennas, the inner sections are adjusted first, in this case to establish resonance on 28 MHz — the actual resonant point being chosen in accordance with the operator's operating habits. G3XAP would resonate his at 28.1 MHz! The sections between the two pairs of traps are then adjusted for 21 MHz resonance, finishing up with the adjustment of the outer sections to resonate the complete antenna on 14 MHz. Note that as we are now somewhat higher in frequency than with the two previous antennas, small adjustments to the antenna's length can lead to quite large changes in resonant frequency (especially at 29 MHz) and a cautious approach is advisable.

The main comment to be made regarding this antenna is that as we have two pairs of traps, trap losses will be higher than for a trapped dipole that employs only one pair of traps, so it is important to consider whether we actually need three-band coverage. It is the 14 MHz band that suffers most from trap losses since both pairs of traps are operative as loading components when the antenna is used at this frequency and, since 14 MHz carries the bulk of DX traffic, an operator should look at his operating habits carefully before choosing this antenna. If 28 MHz was never used, for example, it might be wiser to construct a 2-band 14/21 MHz device, using one pair of traps resonant at 21 MHz.

A Rotary Dipole for 14/21/28 MHz. The triband trapped dipole just discussed is small enough to make it easily constructed from aluminium tubing instead of wire, and this has two advantages; firstly that it only requires one support point (at its centre) and secondly that it can be rotated. It is considered that coaxial traps are the most suitable type for this application, but a later part of the series will suggest an alternative. Even if the reader decides to use coaxial types and purchases them in preference to attempting the lathe work described earlier in this series, the rotary dipole can still be constructed at a much lower price than the current retail price of commercial models. However, I would urge readers who are still undecided about the construction of coaxial traps to "give it a go" because the final product will give much pride and satisfaction.

The dimensions quoted for the triband wire dipole will be found to be similar to those required for the rotary version,
although the latter will be found to be slightly shorter as a result of its slightly reduced length-to-diameter ratio.

A Trapped Dipole for 3.5/7/10 MHz. By incorporating a pair of 10 MHz traps into an existing W3DZZ dipole, coverage of the new 10 MHz amateur band can be provided — albeit at the expense of 14, 21 and 28 MHz coverage. However, as already stated, the author prefers to think of the W3DZZ as a 2-band dipole and therefore considers it as providing an extra band and not as the loss of three bands! Some writers have said that the W3DZZ dipole is resonant on 10 MHz without modification whilst others have indicated that they do not get acceptable SWRs on this band, and this may reflect the different L/C ratios used by different manufacturers in their 7 MHz traps. Anyway, this approach is a little too hit-and-miss to appeal to me and for that reason this alternative approach is offered.

The layout of the antenna is shown in Fig. 8 and again the actual lengths arrived at after tuning the device may differ significantly from those quoted. As with the previous antennas we start at the highest frequency band (10.1 MHz) and adjust the lengths of the inner sections, then we resonate at 7 MHz by adjusting the sections between the two pairs of traps, and finish up by adjusting the lengths of the outer sections to achieve 3.5 MHz resonance.

Trapped Verticals and Inverted-L’s

As far as the HF bands are concerned, trapped verticals are very popular amateur antennas and their popularity is partly due to the fact that in terms of performance they lie somewhere between Quads and Yagis at the top end of the range, and simple wire antennas at the other extreme. Operators tend to choose them because they wish for better performance than that offered by wire antennas, but do not have the cash, ambition or real-estate for a directive array. For various reasons their performance tends to be nearer the bottom end of the range than the top end, though one of the main reasons is that most of us pay insufficient attention to the provision of an adequate ground system against which to operate them.

The only way to avoid the requirement for an efficient earth system is to use a vertical dipole, and the author would suggest that any reader contemplating construction of the 20/15/10-metre dipoles discussed above (either wire or tubing versions) should consider erecting them in the vertical plane since their performance will be superior to horizontal dipoles, unless the latter can be erected in very high positions. However, we are concerned here with simple base-fed verticals, which are normally resonated as quarter-wave devices.

We can consider a quarter-wave vertical antenna to be one half of a dipole, the ground system replacing the “missing half” of the dipole. A dipole is a balanced device with the current in one half of it equal to the current in the other half, so it is obvious that for a quarter-wave vertical to operate in as efficient manner as a dipole, the current in its ground system must equal the current in the vertical itself. The ground system is provided by installing a radial system, and this must be done regardless of whether the device is mounted in an elevated position or at ground level. W6SAI, in his Antenna Handbook (available from Short Wave Magazine Publications Department), suggests that the number of radials required for efficient operation is determined by the height at which the antenna is installed and considers that as few as four are required at heights of one wavelength above ground, whilst 100-plus are required for verticals located at ground level! Few of us are going to have the ambition to install 100 radials, but the point of the statement is to emphasize the need to provide a good ground system. It is considered that at G3XAP, ground systems tend to be more extensive than at the average station, and the author has certainly achieved much success with ground mounted verticals, perhaps typified by gaining a 9 watt, 1.8 MHz WAC award with a ground mounted inverted-L antenna that had in excess of 70 radials! The author’s advice to any would-be constructor or purchaser of a base-fed vertical, whether trapped or not, is to say that unless he is prepared to put time and effort into an effective earth system, he can only expect very mediocre results. Practically all cases of inefficient operation of vertical antennas can be traced to inefficient ground systems!

The minimum ground system that should be contemplated is four radials for each band that the antenna covers — hence the popular 14/21/28 MHz triband vertical would have a minimum of twelve radials. Few amateurs provide anywhere near this number — and few amateurs are really satisfied with the performance of the device!

One other aspect of verticals is that their siting must be carefully considered to avoid having them screened by surrounding structures, especially if it is intended to mount them at ground level. By mounting the vertical on a tall mast, we can obviously alleviate this problem, but at the same time it is more difficult to
The author constructed a two-band trapped vertical antenna for low angle radiation. Obtained with a quarter-wave antenna, hence detracting from the effect of this is to raise the angle of radiation above that which is with about 16.5ft. for a simple 14 MHz vertical quarter-wave. The discussed, the overall length on 14 MHz is about 12.5ft. compared difference is marginal. For example, with the triband device just bands that they cover — although with the highest frequency the adjustment of the top section to resonate the complete antenna on (28 MHz), then the middle section for 21 MHz, finishing up with the lower section first to establish resonance on the highest frequency

A High Performance 14/21 MHz Inverted-L: The “XAP-2V.”

The author constructed a two-band trapped vertical antenna for 14 and 21 MHz using the conventional principles discussed with the triband vertical, i.e. a quarter-wave vertical for 21 MHz, a 21 MHz trap plus sufficient extra tubing to resonate the device on 14 MHz. Performance on 21 MHz was reasonable, although 14 MHz performance left a little to be desired — DX was worked on this band but not worked easily. Also the author had considerable interest in 21 MHz at that time, and although the device appeared to work efficiently, thoughts were turned towards getting a little gain on this frequency without going to the expense and complexity of a directive array.

The XAP-2V antenna was hence evolved and is depicted in Fig. 10, from which it can be seen that it consists of an inverted-L configuration. It will also be apparent that it operates as a quarter-wave on 14 MHz, but as a three-quarter wave on 21 MHz and that the trap is resonant on the lowest of the two frequencies covered, not the highest as is usual with trapped verticals. The reason for this is firstly that it permits the 14 MHz section to be practically a full quarter-wave in length, but, more importantly, it means that the complete vertical section is physically 5/8 waves long on 21 MHz — 5/8 waves being the optimum length of a base-fed vertical for low angle radiation. Because the 14 MHz trap is subjected to RF energy at a higher frequency than its resonant frequency, it acts as a capacitor when the antenna is operated on 21 MHz, and hence the overall length of the device is somewhat greater than might be expected for a 21 MHz three-quarter wave antenna.

Had the device been built purely as a vertical, rather than in the inverted-L configuration it would have been over three-quarter wavelengths in physical height on 21 MHz, and, apart from the fact that it would have been getting rather large in terms of mechanical stability, it would have displayed lobes of very high angle radiation when operated on 21 MHz; this was certainly not considered desirable.

The antenna is first resonated on 14 MHz by adjustment of the length of the lower vertical section, and then on 21 MHz by adjustment of the length of the loading wire. This loading wire need not be horizontal and can slope either upwards or downwards depending on the location of a suitable securing point for the supporting rope. The loading wire is connected to the top of the vertical by means of a self-tapping screw, the connection then being waterproofed. The author painted over the screw head with enamel paint and also applied some to the point of the screw on the inside of the tubing; the whole joint was then covered with a generous application of PVC insulating tape.

The performance of this antenna on 21 MHz is extremely good, DX being easily worked, and it certainly outperforms the conventional trapped vertical by a long, long way.

It is suggested that by describing this particular antenna, readers will be able to apply similar principles in getting the best
A 5-Band Inverted-L. The device depicted in Fig. 11 is, of course, one half of a W3DZZ dipole, erected in the inverted-L configuration, and little comment is necessary other than to say that the device is resonated in the same order as the W3DZZ. 7 MHz resonance is first established by adjustment of the length of the wire between the vertical section and the trap, followed by tuning on 3.5 MHz by adjustment of the length of the loading wire. As with the W3DZZ, it will be found that low SWRs will not be achieved on all three HF bands and, since we are feeding the device with coaxial feeder, feeder losses can be somewhat higher than with the W3DZZ dipole. Again it is suggested that if one of the three HF bands is a particular favourite, the loading wire can be adjusted to resonant the antenna on that band — at the expense of 3.5 MHz resonance and possibly to the detriment of the other two HF bands.

The vertical section of this antenna is a little under a half-wavelength long on 14 MHz which makes it excellent for DX on this band; on 21 MHz it is about 5/8 waves long which is ideal. On 28 MHz it is somewhat longer — approaching a full wavelength — and although low angle radiation is present, there are lobes at very high angles which tend to limit the usefulness of the device since European signals will be received at extremely high signal levels and can cover up any weaker DX signals which may be present.

A 4-Band Inverted-L. This antenna is one half of the 4-band trapped dipole discussed earlier and is shown in Fig. 12. The author has found a low SWR on all four bands when using this antenna, but constructors may find some variation due to the use of different traps which may have different L/C ratios. The vertical section is a little under a quarter-wave on 14 MHz, about 3/8 waves on 21 MHz and approaching a half-wave on 28 MHz, which means that the device makes a good DX antenna on 21 and 28 MHz, with reasonable DX performance on 14 MHz. It is tuned by adjusting the length of wire between the vertical section and the trap to establish 14 MHz resonance and then the length of the loading wire to obtain overall resonance on 7 MHz. It will be found that even with a vertical section of only about 1/8 waves at 7 MHz, some DX will be workable on this band, although for local and semi-local work the antenna will be inferior to a low, horizontal 7 MHz antenna.

Trapped Yagis

Because of the cost of commercially produced trapped Yagis, the serious experimenter may be tempted to “give it a go” and construct a device, but the author knows of no easily obtainable traps that are suitable for incorporation into parasitic elements, so the constructor must be prepared to make his own traps for the purpose. A 3-element triband Yagi will require the construction of twelve traps, but even if the latter work required to produce coaxial traps has to be paid for, the whole project, including the cost of suitable tubing for the elements should total under £100, which is considerably lower than the cost of commercial antennas — except for some “mini-beams”. However, a home brewed Yagi will outperform a mini-beam hands down, so the author does not consider such a cost comparison to be valid.

A wire beam might be considered — especially if the operator is mainly interested in a specific geographical area such as North America or Australia for example. Such a device could be built very inexpensively and would provide valuable experience to the home-brewer who might later decide to construct a rotatable array.

Alternatively, the reader could well decide to attempt a 2-element array or a 2-band Yagi — or both. A 2-element Yagi for, say, 14 and 21 MHz requires the construction of only four traps and will certainly provide very good performance on these two bands. It must be appreciated, however, that the elements of a two-band Yagi will be longer than a three-band Yagi’s elements since, when operating on 14 MHz, there is the inductive loading of only one pair of traps per element compared with two pairs per element for the triband model. Should 21 and 28 MHz be decided upon for a 2-band Yagi, however, element lengths will be very short (around 20ft.), and this makes such a choice an attractive one. It is again suggested that any reader who is tempted to have a try at trapped Yagi construction should read the later part in this series in which alternative traps for incorporation into tubing antennas will be discussed.

The method of construction of a trapped Yagi is to firstly produce the driven element and resonate this to the required frequencies before attaching any parasitic elements to the array — dimensions for a 3-band driven element are exactly as for the 3-band dipole discussed earlier. Tuning should be carried out at as high a point as possible, since resonant frequencies will alter when the antenna is subsequently removed to a higher point. The author suggests that if the device can be mounted on top of a 10ft. pole, it can be resonated 100 kHz lower than the required final frequency and will be found to “move up” to the required frequency when finally mounted at heights of 30-plus feet.

The traps on the parasitic elements must be resonated to the frequencies of the parasitic elements, and as it is not easily possible to alter them after they have been water-proofed, it is important to decide on specific frequencies before construction. It is suggested that reflectors should be 5% lower in frequency than the driven element, and the director(s) 3% higher, and that for a 2-element device the parasitic should be a director. For example, let us assume that we are constructing a 3-element tribander, and that we wish to resonate the device on 14.1, 21.1 and 28.1 MHz for CW operation. Our reflector frequencies will therefore be 13.4, 20.05 and 26.7 MHz and the director frequencies, 14.5, 21.7 and 28.9 MHz respectively. The traps should be tuned to these frequencies during construction (for 21 and 28 MHz only, of course), and the completed parasitic elements should be tuned to the same frequencies in the same manner as with the driven element — that is mounted on their own on a suitable post and tuned “low” if this was done with the driven element, i.e. 100 KHz below the required final frequency in the example quoted above.

A method suitable for determining the resonant frequencies of antennas will be discussed in the next article.

to be continued
This is the first of a new series of articles in which we shall describe the basis of a design and some variations on it. They will not be full "nut and bolt" descriptions but will contain enough information for the average person to complete the project.

Power for the People!

There are two primary purposes for requiring a power supply. One is to power equipment and the other is as a means of charging Nicads. If we can combine the two functions, so much the better.

The circuit shown in Fig. 1, will do this for us. Let's see how it works. The mains input is taken through the switch and fuse to the primary of the mains transformer (T1). The output of the transformer is then rectified by the bridge rectifier (D1) and smoothed by the electrolytic capacitor (C1). We now have a power supply capable of producing 1 amp. If this is all you require we stop right here. By suitable choice of components you can produce whatever voltage and current you need.

Voltage

The major snag is that as the current taken from the supply varies so will the voltage. (In other words the regulation is poor.) For some jobs this is not important; an audio amplifier would be perfectly happy, for example. Voltage regulator ICs are available to deal with this problem at low cost. They can be used in two ways. The first is to provide a constant voltage when the load varies, and the second way provides a constant current with varying load. The use of the first system is obvious and is achieved by using the 7812 shown in the diagram. Other types are available, the 7805 giving 5 volts. The 0.1µF disc capacitors are to stop any tendency for the IC to self-oscillate and should be fitted close to the IC pins. The 1000µF should be connected to the output terminals on the front panel.

Current

Why should we need constant current? To charge Nicads! For this purpose we make use of the 7805. This unit tries to maintain a constant 5 volts between its output and earth pins. If we put a resistor in series with the Nicad, Fig. 2, the 7805 will maintain 5 volts across it. Remembering Ohms Law, this means that current flowing through the resistor is such as to generate 5 volts and, as the resistor and Nicad are in series, then the current through the Nicad must be the same as that flowing through the resistor. By switching in different values of resistor we can set the charge to whatever is required by the particular Nicad.

Building Options: (a) an unregulated power supply; (b) a constant voltage PSU; (c) a Nicad charger; (d) combine (b) and (c) (both functions can be used together as long as the total drain does not exceed 1 amp).

Link: If you want to dress the unit up a bit you can fit a meter in place of the link. There are two ways this can be done. The easy way is to fit a 1 amp meter, but the circuit in Fig. 3 will allow any cheap meter from 100 microamp to about 5 milliamp to be used. With 1 amp flowing the voltage across R6 will be 2.2 volts. R7 and M1 form a voltmeter that can be adjusted to show this as a full-scale reading. We even have a built-in method of calibrating the meter. Start by setting R7 to maximum resistance, and the charger...
section to the 500mA position. Now short-circuit the charger terminals, causing a current of 500mA to flow. Adjust R7 to give a reading of half-scale on the meter. Remove the short circuit. The meter will now read the total current drawn by both sections of the unit, when a load is connected.

![Fig 2](image)

![Fig 3](image)

Construction

If you have not had much experience of building do not try to build it into the smallest available case, give yourself some space. The circuit can be built on Veroboard but, if this is done, small heatsinks should be fitted to the regulators. A better way is to mount them on to the metalwork, using suitable insulators. Remember there are mains voltages in this unit so take care.

Which option will you build?

(Please let us know what you would like to see described in this feature.—Ed.)

CONTEMPORARY BRIEFS . . .

MUCH equipment these days is battery operated. Batteries need to be housed within the enclosure, for neatness, and **Messrs. A. F. Bulgin & Co. P.L.C.** have produced a brochure illustrating their latest range of battery holders. The range includes panel, PCB and baseboard mounting designs for AA, AAA, C, D, and PP3 size cells, in single and multiple types. Further information from Mr. Brian Diggle. The company's address is, By Pass Road, Barking, Essex IG11 0AZ.

WHILE batteries are very useful, for indoor use mains operation is more convenient and much cheaper. To cater for very small devices, **Messrs. Avel-Lindberg Limited** now offer what they claim to be "the world's thinnest transformers". They are designed for direct mounting on to close spaced PCBs and are only 10.5mm. high. Dual 120V primaries are standard and the load rating is 0.8VA. Six models are listed which provide a range of secondary voltages from 5V at 160mA, to 48V at 17mA. The other dimensions are 57 x 68mm. Other VA ratings are available from 2 to 30 in their "OB" range, all mounted in resin-filled flat thermoplastic cases. Further information from Mr. R. S. Mattin, Avel-Lindberg Ltd., South Ockendon, Essex RM15 5TD.

TWO new 16K-BIT Static RAM ICs have been announced by **Motorola Limited**, featuring as low as 45ns access time. The MCM2167H is organized as 16,384 words by 1 bit, and the MCM2016H is a 2,048 words by 8 bits device. High performance silicon-gate MOS (HMOS) technology is used in their fabrication. No external clocks or timing strokes are required, so stand-by power consumption is much reduced. For further information, contact the nearest sales office or authorized distributor.

<table>
<thead>
<tr>
<th>Battery</th>
<th>R_x</th>
<th>Charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>PP3</td>
<td>560Ω, 1/4W</td>
<td>9mA</td>
</tr>
<tr>
<td>AAA</td>
<td>270Ω, 1/4W</td>
<td>20mA</td>
</tr>
<tr>
<td>AA</td>
<td>68Ω, 1/2W</td>
<td>70mA</td>
</tr>
<tr>
<td>C</td>
<td>22Ω, 2W</td>
<td>250mA</td>
</tr>
<tr>
<td>D</td>
<td>10Ω, 3W</td>
<td>500mA</td>
</tr>
</tbody>
</table>

Max. Battery Voltage = 14 volts

Table 1. Switch S2 should be chosen to give the number of charging positions required. Warning: Some "D" cells are only rated at 1.2 Ah; charge these as "C" cells.

COST savings of 90% over the cost of PCBs can be achieved using a novel tape of 99.999% fine copper, produced by **Copperfoil Enterprises**, they claim. The tape comes on rolls 33 metres long in widths of 4, 4.75, 6 and 8 mm. Designed for low voltage projects, the tape is fully tested at 24 volts and 5 amps, suggested uses being repairing PCBs, making capacitances, circuit tracks and bus-bar supplies. The tape is backed by a heat resistant, hi-tack adhesive which will withstand normal soldering temperatures. It can be stuck to almost any insulated surface, including paper. Further information from the company at:—141 Lyndhurst Drive, Hornchurch, Essex RM11 1JP.

Ambit International's Spring 1984 Components Catalogue is now available. Priced at 80p, it is obtainable from newsagents, or direct from the company at 200 North Service Road, Brentwood, Essex CM14 4SG.
An FM Conversion for the Yaesu FT-707 Transceiver, Part 1

RETAILS AM AND AVAILABLE IN KIT-FORM

IAN KEYSER, G3ROO

WITH the introduction of the FT-77 and FT-757 into the Yaesu range the FT-707 is now appearing on the amateur market at very reasonable prices, the lowest seen to date being £250. This rig, although originally intended for mobile and portable operation, has also found its home as a base station in many shacks, no doubt due to the number of facilities in such a small box.

There are, of course, failings, and the first was the lack of 160m. This was covered in SWM June 1982. In addition, an external VFO and transverter switching were described in SWM September 1982, and a mains power unit for the set appeared in SWM January 1983. Two further units have been constructed but not yet covered by an article; these are a 2m. transverter and an ATU/aerial switching unit. Having included 2m. into the station and with the advent of Ten FM, an FM conversion has now been carried out, but prior to describing that modification I will cover some less dramatic modifications which will improve the performance of the set and at the same time will give the less experienced constructor a look inside the rig and so gain a little more confidence before diving into the depths of the FM conversion.

I remember when I first opened the set the first impression was of horror, followed quickly with a little inward prayer that nothing would ever go wrong! It was not too long before my prayer was forgotten 'up above' and I was wishing that I had been a little more regular with my Sunday attendances, and that on visits to George, G3RJV, more time had been spent in discussing religion rather than QRP or circuits!

The problem which arose manifested itself while out mobile after about one year of operating. The effect was that of severe instability while on the move which disappeared when stationary. Having removed the covers it was found that this effect could be simulated by shorting the VFO box to the main chassis, and further investigation traced the fault to front-panel earthing. During construction the front panel is, of course, painted prior to fitting and consequently the fixing holes are also painted. After a year of rather rough use mobile, the paint under the screws started to break up and the front panel could now short to the chassis by various paths, depending on how the chassis was flexed. This caused fluctuating earth currents which in turn had the undesirable effect of shifting the VFO frequency. This is easily rectified by removing these screws in turn, cleaning the paint away with a 1/4-inch drill and replacing the screws. It is very important to do these screws one at a time as the VFO is mounted on the front panel and alignment with the analog dial can easily occur.

As far as CW is concerned the FT-707 has two failings; the first one is common to all 'rice boxes' and is that of hard keying, and the second is the lack of QSK, full break-in operation. The hard keying can easily be rectified, the CW shaping being carried out by C10180 located on the RF PCB. This 10µF capacitor can be increased to 47µF with considerable softening of the CW.

To accomplish full QSK would require extensive modification of the set; however an acceptable performance can be obtained very easily indeed by decreasing the delay time of the VOX circuit. The timing capacitor C3049 is located on the AF PCB and is a 10µF tantalum bead; on removing this from the PCB note the
Opening-up the FT-707.

Table of Values

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>100K</td>
</tr>
<tr>
<td>R2</td>
<td>10K</td>
</tr>
<tr>
<td>R3, R8</td>
<td>68K</td>
</tr>
<tr>
<td>R4</td>
<td>22K</td>
</tr>
<tr>
<td>R5, R13, R15</td>
<td>1K</td>
</tr>
<tr>
<td>R6</td>
<td>270K</td>
</tr>
<tr>
<td>R7</td>
<td>120K</td>
</tr>
<tr>
<td>R9, R10</td>
<td>deleted</td>
</tr>
<tr>
<td>R11</td>
<td>470K</td>
</tr>
<tr>
<td>R12</td>
<td>47/50K pot.</td>
</tr>
<tr>
<td>R14</td>
<td>100R</td>
</tr>
<tr>
<td>R16</td>
<td>47K</td>
</tr>
<tr>
<td>L1</td>
<td>YHCS11100</td>
</tr>
<tr>
<td>C1</td>
<td>150 pF</td>
</tr>
<tr>
<td>C2, C12, C18</td>
<td>2.2 µF</td>
</tr>
<tr>
<td>C3, C4, C6, C7, C10, C11, C17</td>
<td>100 nF</td>
</tr>
<tr>
<td>C8, C9, C15, C16, C19, C20</td>
<td>1 nF</td>
</tr>
<tr>
<td>C5</td>
<td>22 pF</td>
</tr>
<tr>
<td>C13</td>
<td>82 pF</td>
</tr>
<tr>
<td>C14</td>
<td>47 pF</td>
</tr>
<tr>
<td>Q1</td>
<td>BF199</td>
</tr>
<tr>
<td>I1</td>
<td>MC3359 (ULN3859)</td>
</tr>
<tr>
<td>D1</td>
<td>1N4148</td>
</tr>
<tr>
<td>F1</td>
<td>CFU455</td>
</tr>
</tbody>
</table>

Also required: Timestep PCB, 10-way PCB plug, 10-way shell, 10-off pins, 9-off hollow rivets.

polarity and replace with a 1 µF tantalum bead. Next locate R3177, a 470K resistor, which is across the delay control and is situated on the AF PCB. This was not present in my set although shown on the circuit diagram. With this modification and the AVC set on 'fast' it is possible to listen through up to about 15 w.p.m., and to listen between words above this speed. One must expect wear on the relays as they are working much harder than before — though after a year no trouble has been experienced and the set has been used in this mode for many, many hours.

This modification does lead to another problem that can occur with one of the relays in the AVR unit. Sometimes when going off transmit the receiver failed to come on, and this was traced to the relay that switches the 13.5V to the transmitter section, whose contacts 'weld' together. Yaesu do a modification kit for this problem which includes a new relay and a resistor; I went one step further and included a 0.1 µF capacitor across the contacts.

Another instability problem was finally traced to the plug and socket which feeds the VFO signal to the RF PCB. This is J1005,
and involves the screening of the VFO signal line onto pins 8 and 9. The earthing of the braid to the socket insert became poor and had to be remade; extraction of these inserts is described later in this article.

FM Modification

Having investigated the foregoing, considerable confidence should have been gained in the ability to carry out this main modification. However, if this is not the case this is definitely not the modification for you! Prior to unsoldering a single wire give strict instructions to the rest of the family that you are (a) not available to help with any homework problems, (b) not available for any household repairs of any nature, and (c) not to be disturbed even if the house is burning down, except for frequent deliveries of coffee or tea. (No alcohol, makes one too confident!)

Having got this arranged sit down with the set, an assortment of screwdrivers, a good light and the circuit diagram and get really acquainted with the set. This is a good thing to do even if no modification is being done, because when a fault occurs, it is then known how to get into the relevant part of the circuit.

The modification itself is different to other modifications that I have heard of for this set. These all have the common failing that the AM mode is removed for the inclusion of FM; I have always felt that removal of a mode is sacrilege and should be avoided if at all possible. There are two things which I feel are not necessary on the FT-707; firstly the ‘FIX’ facility which I think has been included for commercial purposes, and secondly the ‘MARKER’ which, with the digital dial, is superfluous. The ‘FIX’ switch was decided upon to use as it is simple to change the label ‘FIX’ to ‘FM’ (and also the marker has since been used for another modification, but more of that later.)

Method

Having given warnings, now for the description of the modification. To produce an FM transmission the first thing that we require is a carrier to FM. We have this in the AM mode, so all we have to do is to switch to AM, remove the AM modulation and apply FM to the carrier. We are fortunate that in the FT-707 the microphone audio is brought off the PCB to the microphone gain control and this is a good point to intercept the audio; we do not require the gain control in the FM mode as deviation limiting will be included on the modulator PCB, and once set will remain unchanged. This switching is carried out on the audio line that feeds the top end of the potentiometer. One pole of the ‘FIX’ switch we use so the audio can either be switched back to the AM modulator or to the FM modulator PCB, see Fig. 1.

On receive similar switching is carried out with the AM audio. The AF output from the AM detector can be located on pin 3 of J3004, this is routed to the second pole of the ‘FIX’ switch and with the switch in the depressed position the AM audio is routed back to the audio amplifier of the FT-707 on pin 3 of J3001. When the switch is pressed the AF from the audio AM detector will be disconnected and the input of the audio amplifier will be connected to the output of the FM detector.

This modification consists of three small printed circuit boards. The FM demodulator, which accepts a low level signal from the IF amplifier, amplifies, limits and demodulates the FM signal; squelch is also included to quieten the receiver when no signal is present. The second PCB is the Tx modulator; this amplifies, clips and filters the signal from the microphone prior to driving the clarifier line—and so frequency modulating the VFO of the FT-707. The third PCB is used for switching the supplies to the other two PCBs; it is necessary to remove the supplies to both boards when not in the AM/FM mode.

Three PCBs were used rather than one due to the severe limitation of space within the FT-707. In fact it is so tight it is not possible to fix these PCBs to the frame of the set and so they are carefully wrapped using cardboard and bookbinding plastic to guard against any possible short-circuits. The outer case of the set holds them snugly in position when the set is finally closed up.

The FM Demodulator

The FM demodulator, Fig. 2, used in this modification is the FM707 module from Timestamp Electronics. This is their FM42 PCB modified for an IF of 8.9875 MHz; the main device used in this circuit is the famous MC3359 (ULN3859) which has found use in many amateur designs. It is a dual conversion IF strip with a second IF of 455 kHz and the IC is preceded by an IF amplifier, Q1 (BF119), which increases the sensitivity of the FM IF strip to 20dB SINAD for 2aV; this level of signal is obtainable from C2049 on the IF PCB of the FT-707.

There are two possible methods of squelch: the existing preset squelch on the FM707 module or, alternatively, this can be made adjustable by removing the earthing link from the bottom end of R13, increasing the value of R13 to 10K ¼ W, and then connecting the bottom end of R13 to the slider of the microphone gain potentiometer (pin 4, J3004). This converts the mic. gain to squelch when in the FM mode. We can do this as the mic. gain is not used on FM and the impedance of the squelch circuit is high and will not therefore affect the audio level on other modes.
The FM Modulator

The circuit of this PCB is given in Fig. 5. Q201 is a preamplifier fed from the mic. amp. of the FT-707 via the 'FIX' switch. This increases the signal level sufficiently to drive the diode limiter D201 and D202. Q202 amplifies the clipped signal to a level sufficient to drive the clarifier line, but before we can do this we have to clean up the distortion created in the clipping circuit. This is done by the active low pass filter circuit Q203 (I have had this circuit in my notebook of 'useful circuits' for years but, as usual, I forgot to jot down the originator of the idea; many thanks to whoever it was!) Q204 is an emitter-follower to drive the clarifier line without loading the active low pass filter. This was required as the clarifier line is decoupled by a 0.33µF capacitor (C4335) inside the VFO box (and so inaccessible) which tries to short out any audio applied.

The PSU Control PCB

See Fig. 8. This is required as we need to remove the supply to the FM modulator on receive, and to the FM demodulator on transmit; also the supply must be removed from both on SSB and CW modes. In the AM mode pin 8 of J2001 is earthed and in all other mode positions this pin is held high through a 10K resistor; this is used for filter switching on the IF PCB. We can use this bias to bias Q302 and Q304 on and off and these will short out the zener diodes used for stabilization. This means that the output of Q301 will be zero except on Tx in the AM/FM mode, and the output of Q303 will be zero except on receive in the AM/FM mode.

Opening the FT-707

This is part of the operation that takes courage! Firstly remove the outer covers and place the set upside down on the bench. Remove the two screws holding the right-hand side cheek (viewed from front) to the front panel. Now remove the two on the left-hand side, plus the four small screws, and remove the whole side cheek. Unplug all the PCB plugs from the RF PCB and then the front panel can be eased from the rest of the set. To hold the front panel in a stable position I found that a roll of PVC tape pushed between the VFO box and the metal plate holding the frequency counter PCB did the trick.

It will now be possible to locate the connections to the switch PCB, these are shown drawn in Fig. 11. A good steady hand, fine iron, and a bit more courage are now needed to remove these connections; hard wire them as in Fig. 12 and replace them with the new cables. In the following description the colour codes are those found in my FT-707 and there is the possibility that they may not be the same in other units. To guard against any confusion it is necessary to ensure that the terminations have been identified correctly and then check the colour codes against them prior to starting. Having done this re-locate '12' and remove the white/yellow wire from that termination and tape it up. Now remove the red/white from '11' and the blue from '13' and join them together with one end of a 560-ohm resistor; then remove the white/grey wire from '14' and connect it to the other end of the 560-ohm resistor and tape this combination up. Finally remove the white/black wire from '15' and tape it up. That completes the unwiring of the terminations and the wires should be tucked out of the way. It should now be possible to see R4902 to the rear of the terminations, and this should be removed.

At this point it is worth replacing all the plugs into the RF PCB and apply power to check that all is well; after all, it would be a much harder job to locate a wiring error with the other wires in place. Having confirmed that the set still functions properly (phew!) it is now time to start adding wires. For this I used twin (figure-of-eight) microphone screened lead as one core is red and the other blue, so helping with identification during wiring.

The next part of the operation is not so difficult but does require considerable care. We now have to remove several lines from the PCB plugs and replace them with our own. The first one...
Eeyore always said Roo's shack was rather untidy... On the second shelf, second left, is G3ROO's prize-winning "Whitfield" transceiver; see the editorial page, this issue.

Table of Values

Fig. 5

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>R201</td>
<td>100K, 1/4W</td>
</tr>
<tr>
<td>R202</td>
<td>15K, 1/4W</td>
</tr>
<tr>
<td>R203, R205, R209</td>
<td>1K, 1/4W</td>
</tr>
<tr>
<td>R204</td>
<td>220K, 1/4W</td>
</tr>
<tr>
<td>R206</td>
<td>33K, 1/4W</td>
</tr>
<tr>
<td>R207</td>
<td>47K, 1/4W</td>
</tr>
<tr>
<td>R208</td>
<td>4K7, 1/4W</td>
</tr>
<tr>
<td>RV201</td>
<td>1K5 min. horizontal preset</td>
</tr>
<tr>
<td>RV202</td>
<td>1K5 min. h/p</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>C201</td>
<td>22 nF</td>
</tr>
<tr>
<td>C202</td>
<td>66 nF</td>
</tr>
<tr>
<td>C203</td>
<td>33 nF</td>
</tr>
<tr>
<td>C204</td>
<td>1µF tan</td>
</tr>
<tr>
<td>C205, C206, C207</td>
<td>470 pF</td>
</tr>
<tr>
<td>C208</td>
<td>220 nF</td>
</tr>
<tr>
<td>Q201 to Q204</td>
<td>BC548 or BC108</td>
</tr>
<tr>
<td>RV201</td>
<td>4K7 min. horizontal preset</td>
</tr>
<tr>
<td>D201, D202</td>
<td>1N4148 or similar</td>
</tr>
</tbody>
</table>

The wiring of this side of the switch is similar to the other side; however there are two ways that the wires can be connected to the microphone circuit. Either the line from the microphone amplifier can be broken at the plug J3004 pin 3, or at the top end of the microphone gain control. I opted for the plug as there is slightly less chance of the cables getting moved about at that point and perhaps shorting out. In either case the sequence is the same, termination 11 is connected to pin 3 of J3004, termination 13 is connected to the top end of the microphone gain control, and termination 12 should have a 12-inch length of screened cable connected to it so that this can be routed to the input of the FM modulator PCB.

(to be concluded)
After the sickeningly poor period around the turn of the year things have perked up considerably; and at the time of writing we are within ten days of the Equinox with all that implies in terms of band conditions. And, of course, we are well down the slope of the sunspot cycle and everything must be considered in this context.

Around the bands, there has been something to report all the way between Ten — where the FM activity is certainly livening-up what was otherwise an unoccupied lump of spectrum space — right the way down to Top Band.

For that which does this band love to hate! Seriously, if you have an attenuator, a decent dynamic range, then you should be able to hear the stuff. Once you can hear it, seriously, if you have an attenuator, a decent dynamic range, then you should be able to hear the stuff. Once you can hear it, you can set about working it! Certainly the preferred scheme is to be on the right spot when the guy makes his first call and then snatch him before the rest of the world notices, or he'll disappear under the heap of blind callers . . . which implies a need for something no amateur radio shop has yet offered, namely a crystal ball a need for something no amateur radio shop has yet offered, namely a crystal ball. As yet, this is the band they all love to hate!

Twenty and Forty, Tony with the TS-820 and ten metres, but now he has his indoor wire that loads on the personal point of view, G2NJ notes the latter was running three watts input. From the morning of February 19.

G4HZW (Knutsford) is still hard at it with the TS-820 and ten metres, but now he has his indoor wire that loads on Twenty and Forty, Tony is getting considerable entertainment from it. As yet, this is the band they all love to hate! As yet, he doesn't feel quite able to come to grips with understanding the vagaries of the band and conditions.

G3BDQ (Hastings) does occasionally look on bands other than Top Band or Two — he was heard on Forty CW in hot pursuit of UL7TAQ and VK3MR.

EIGHTY

Here our first reporter is G4SXE (Rolleston) who has had the best month ever with his QRP rig. It does seem to help things on the transmit side when the ATU is doing its thing properly — but of course it also tends to make the receive side work hard too! Brian solved this last problem by reference to the G3RVJ attenuator design of April 1981 in Short Wave Magazine. Just to prove the point, Brian's best dozen contacts on CW with two watts included ON4IE, F6HXE, F54PL, GW5TW, GI3ZAD, DJ2KC, LZ1KV, PA3CRO, SP7KQL, SP9BCH, DJ1MH and GW4TNH who is a YL operator.

Turning to the letter from G2HJL (Reading) we point out that since his eyes had recovered from the sight of our first new-style cover, Harold was able to indulge in a play in the AGCW-DL Hand-Key Party, and also the PACC contest, as a preliminary exercise for the real business — which is of course the BERU shindig.

G2NJ (Peterborough) says he has heard from G2CNN, back from his stay up in the arctic at Inverness; it seems that the winds had his aerials away three times. On a different subject, the TOPS CW net on 3592 kHz on Sunday evenings received a bit of interest recently when they were joined by G3PVB in St. Albans who got reports all round on his three-watt HW-8 signal. A week later, just before the net started, the control, G4RAR, worked LA6YV on the net frequency while the latter was running three watts input. From the personal point of view, G2NJ notes the fall away in conditions; no more Scandinavians in mid-afternoon working DX, and the EUs are suffering from severe fading as well. However, an interesting one was the QSO with G4HXB in Stockport. Jim, it seems is a white stick operator and he had made a new year's resolution to have a CW QSO each day — they had a chat for a full hour, and later G2NJ received a QSL direct with his callsign in Braille.

G3ZPF (Kingswinford) had broken his 'duck' at the new QTH by working VPZ2A, 6W2EX and VP2KBZ for new ones; the usual WS and VE5s, plus UA9 and UA0, were all there to be taken, but it is quite surprising the size of the pile-up that can appear on an East Coast W signal at times! Two that didn't respond to David's blandishments were J37AE and VU2BX - this is the umpteenth time the latter has slipped through the G3ZPF fingers. With regard to the matter of his temporary appearance on two-metres, G3ZPF says that the loaned gear is now back with its owner, as he has had a telephone installed which has a longer range! On a completely different tack, G3ZPF wonders if anyone knows who first coined the term 'lid' for a certain type of operator.

Full power CW for G2HKU (Sheppey) meant CW contacts with AA4S, EA8RL and PA0DV/PJ2, while the QRP four watts managed to come across with DJ5QK and F6HCX.

Top Band

First-off we must mention the letter from W1WY; as regular readers will be aware, Frank passes on to us his Contest Calendar every month from which we can extract details of interest for this side of the Pond. However, Frank is also a long-time Top Band DX operator and he is a bit worried at the present trend of things. As he says, there are some Big Guns appearing on the band over there, and the 'DX Window' is all but useless. The problem is made worse by DX stations who are operating in the Window area, and inviting calls on their own frequency. Just imagine, W1WY says, when a weak DX signal does that, and all the 1 kW Big Guns pile up in that small five-kilohertz segment; anything in the way of DX that might have been there sinks without trace! All we can say is that maintaining the DX-Window idea is, as far as possible, a very good idea and one to be publicised in all possible ways; but we also have to accept that there are some countries which are not only new to the band, but also don't have transmitting privileges in the area of the DX-Window. That doesn't alter the basic fact though — we shouldn't encourage anyone on this side operating in the DX-Window and listening for replies on his own QRG, if the band is open and he knows he can be heard at DX.

Our remarks on the Bordeaux incident last time out sparked-off a rather tetchy letter from GM4KGK of Leith Nautical College. Obviously, he has never operated Top Band, as he thinks a request to QSY would get on two-metres - of which he obviously does have experience. A valid point GM4KFK makes is that in most cases the coast stations work duplex and so cannot in fact transmit to ask for amateur QRM to shift. However, we looked in our copy of Reed's Nautical Almanac (admittedly not the 1984 issue, but recent enough) and we find that 1820 kHz is one of the Bordeaux transmit frequencies. GM4KFK wonders whether we could tell him of an aerial which would receive signals all over the Bay of Biscay area and yet reject the signals coming in from Cornwall, Cork, Kent and Caithness, as he would be most interested . . . Well, perhaps he's
never heard of directive aerials? Of course, they have just those, as Bordeaux is not normally audible in U.K. The problem, more likely, is that ships in the Bay of Biscay, who obviously won’t have directive aerials, can’t hear Bordeaux because of QRM from ten-watts amateur signals emanating from U.K. and Europe. If that has suddenly become the case, haven’t our French friends established a good case for investigating their transmitter and aerial system for a fault condition before shouting? GM4FKK’s other point is a very fair one, insofar as he says the use of the fish-phone stations is connected with safety of life at sea; agreed — and we know that the amateur behaviour on Top Band with respect to the fish-phone is infinitely better than the behaviour of the professionals on the continent and in the Bay of Biscay who use the VHFA calling and distress channel 16 (156.8 MHz) as a chat channel.

On a pleasanter note, from G3OUC (Newbury), we have a letter enclosing a cutting from his local paper. It seems that Pat got a bit annoyed about those infernal illegal联络less cords which infest Top Band. Pat not only did his homework, but sat and thought about how to make it hurt before he wrote to the paper. The nub of his argument was in implication that every local radio amateur was able to listen to the chatter of the people using these things, and implies that the criminal element have already rumbled the potential profit to them of listening to these open conversations. Anyone who reads the correspondence column of that paper and who owns one of those illegal phones will be very strongly motivated to get shot of it, and quick. Congratulations to G3OUC on his effort. In the meantime he is still able to work a few around 2200z, such as SSB to EA3YV, DL5SB, DJ3VI, DL6WV, DJ6QT, DJ8WL, DF7KD, SP3BP, SP3BI, OK1J DX, GM4PXG (Shetlands), and loads of Russians. However, Pat is dusting off his key, partly because he has a pal at the salt mine who is associated with safety of life at sea; agreed — and we know that the amateur behaviour on Top Band with respect to the fish-phone is infinitely better than the behaviour of the professionals on the continent and in the Bay of Biscay who use the VHFA calling and distress channel 16 (156.8 MHz) as a chat channel.

G4OBK (Chorley) makes his second offering in 22 months. Phil has the choice of either 190 feet of inverted-L or a sixty-foot vertical for this band, and recently he increased his earthing system from 300 feet of wire to some 2000 feet, and this has brought about a very considerable improvement in the signals. Score so far is 58 countries worked, of which some seven have been hooked in 1984. Phil is also active QRP — crystal-controlled on 1843 kHz, with 700 milliwatts to a BFY51; this rig so far has connected with G13LFH in Belfast, G5DQ in Cambridge, and G3ZJJ in Devizes. The main log includes such as 9H1CG, Y21UD, FC8TT, SM4APZ, UL7CAO, UA9CBD, 9H1BB, E2ZQAE, OKs, EA5TX, UA3s, AA1K, W2FJ, while a gotaway was K6OJ/C6A who peaked 579 at 0540z on March 4 — and who was in fact worked by G13OQR; and VK6BC heard at 1955 on February 10, worked by G3RBP and EUs.

Now for G2HKU; he used CW to work VE1YX, PA0PN, OE1DH, HB9AMO, OH3VW, DL1YD, EA7ABW, EA9KF, and E9DEA; while the SSB signal went out and swapped reports with PA0DIN, DL1RK, GM4SID, OZ1W, GM3GMN, EA8QO, WM4JM/MN, DJ2BW, F9LT, DJ6RX, GM3OXC, F3BC, HB9CM, SM3BP, OL9CPG, OL9CPZ, UA9CBR, OL8COS/P, YU2ZZ, and both LX/DF7PN and LX/DF2PI — no reason known for the apparently odd way of expressing the calls.

G3BDQ (Hastings) comments on how rapidly things have changed during the course of the month. On February 1 John worked a second QSO with JA2GQO, but has heard no JA stations since. On the next day W0IFH, in Texas despite his call, was worked at 0716. SV0AA was a new one and then a surprising return to a QSO call in the shape of 9M2AX; G3BDQ has the QSL card and notes that it is claimed to be an ‘impossible’ QTH for Top Band DX — in a tower block! Several evening VKs were hooked, and then VK3DJG, who is actually so strong that a European station accused him of being phony! There was a QSO with your scribe on 15th which might have turned into a long natter on the key had we not been interrupted by that pestilent telephone ringing. A couple of new ones were SV5QX (Rhodes) and SV9OA (Crete) while T77V was worked during the Phone contest — sadly G3BDQ was not at home for most of the period of the number-swapping.

New Bands

Not many reports — let’s have more! Though what we really want is for more countries to release the band to their amateurs.

G4OBK, as already indicated, is a Top Band man primarily, but he does look on occasion at 10 MHz, where his CW was pushed put to LU1DZ, DLs and G2HW. O2IEUO was raised on 18 MHz CW.

Another who took a peak at 10 MHz was G2HKU, who managed a two-way on the key with LU6AMW.

G4OBS (Winterlow) says the pick of his month’s crop included FY7CP, worked on 24 MHz CW, and a gotaway VK6 on the same band.

Ray Howes, G4OWY (Weymouth) believes in burying his call deep into the body of his letter — we didn’t get it at all last time and nearly failed this time too. Ray only mentioning it while giving us a rocket! However, to come to the point, Ray has stuck to 10 MHz, and for a change raised quite a number of G stations, as well as OK4BA, several DLs and a gotaway in the form of VP2ES.

Coming

Which is where we look at the DX we can hope to find in the next few weeks. From DXNS we note that the Kermadec expedition still seems to be progressing, although Jim Smith has dropped out of the party. In addition there is always the chance of snagging ZL8AFH on Eighty!

The Clipperton Is. expedition seems to have hit a snag; nonetheless all the indications are that, sadly it will be over and done with by the time this reaches you all.

“CDXN” deadlines for the next three months:

<table>
<thead>
<tr>
<th>Month</th>
<th>Issue Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>May</td>
<td>April 5th</td>
</tr>
<tr>
<td>June</td>
<td>May 3rd</td>
</tr>
<tr>
<td>July</td>
<td>June 7th</td>
</tr>
</tbody>
</table>

Please be sure to note these dates

If you are after Sable Is. look out for CY95SB; the problem is that Wayne’s visits are at short notice, and may be for a day or several days.

Tokelau operation is forecast, with DL1UV there for a stay of at least a month.

A change in the official prefix for Macao is noted; it is now XX9.

We go to look at the American TDX: here we note that XU15S is back in the amateur radio business, and so also is BY — if conditions would condense to give us a break!

Here and There

Nice to hear again from G4BUE (Steyning) who now has his broken tower replaced and a new beam on top (See January’s “CDXN”); some spare time has been spent with a calculator and all the aerial handbooks, and as a result of this and some practical work, the old Western Electronics DX34 beam has been restored, and has had its 14 MHz performance...
considerably improved. So — it's an ill wind that blows no-one any good!

GM4CUX (Edinburgh) reckons he had a drab and patchy winter on his favourite 21 MHz band, and just recently he had the ill (or good, depending on how you look at it?) fortune to be smitten by a 'bug' which was doing the family circuit; so from February 15, for several days, the shack was the place to be, as we shall explain a little further on. But — and this is the interesting bit — GM6KZG, a close neighbour, popped round to the invalid and operated under supervision for his first time on HF, to raise OD5CN, OA4BS, VE2DGY and VE3WA — which should be enough to enthuse him for the Morse test!

Ten Metres

Has been much more lively, occasionally even in the East-West directions. However, we do have a serious problem with various illegal CB-ers camping in our band. While it is worse in some places than others, we would suggest that all readers who have ten-metre gear put it to use. Even if you don't actually like CW, a slow CQ call on top of a CB-er with illegal equipment won't take much effort; or if he is in the Phone part of the band, or if he is in the Phone part of the band, illegal CB-ers won't take much effort;

Tony so far forgot his priorities as to get a new car! Shame on him! The old rig still does its thing on Ten, though, as shown by the SSB contacts with GM6KZG, a close neighbour, popped round to the invalid and operated under supervision for his first time on HF, to raise OD5CN, OA4BS, VE2DGY and VE3WA — which should be enough to enthuse him for the Morse test!

Fifteen & Twenty

Not a lot of reports on these bands for this time. Both have been like the dear old curate’s egg — but of course you need to be able to get in the shack while the band is open to make any DX contacts, and most of us have to work!

G2HKU used his SSB to work GJ2LU, ZL3JV and ZL3RS — and indeed the writer would have chipped in to the ZL contacts one morning, but for another commitment. On CW, Ted got out to K4LTA/P7J, UK0BAE (a polar station on Cape Chelyuskin), VK2SA, JR4GCT, JA2D0H, JAI7C, W1RM and EK0KP. On the QRQ front, W0FO, EA2FAA and KA3CS were all worked with four watts.

All this was on Twenty, while on 21 MHz CW there was HH2VP and W2MEL.

GM4CUX picks out his SSB contacts with the following as his best during the month: J87BS, C6AVEY, 5N6BLM, CN2AQ, VP8MT, AP2P twice, W4DVE/W, 3M3JF, 5B4MF, MF7WD, SVI1UN, OD5TS, VS6CP, JR6YAH, VE3BSA, JE1FIG, VK2FU, K9KA/P/V2A, and VP2KBU.

Perhaps the most active of our reporters in the absence of G3NOF was G6QQ; David offers on 21 MHz SSB, 7P8DD, U18ZAC, PT7CAW, ZP5LET, HP1JXN, BY3KK, VE5VJ, and WS5LH; CW accounted for NP4G, ZS1TH, 8P6NX, N4B6/C6A, UA0AEE, UA0SLN, K4FW/V2P2K, 4Z4DX, J1DBCQ, JA6OPP, and some 73 assisted Ws during the contest. As for Twenty, there was a CW QSO with VE7CLZ, plus some 21 assisted W contacts during the contest weekend.

Contests

A week before this hits your doormat will have seen the CW WPX SSB Contest. April 21-22, from noon zulu to midnight zulu — 36 hours — is the ARCI QRP Spring Contest. Any 24 hours, and send RS(T), plus country, plus either membership number or power. Score 5 for a member, and 4 for a station in another continent if a non-member, or 2 for a station in one's own continent (that's how we read it anyway). There is a multiplier of states/countries worked, and a second multiplier for the power level output (4 – 5W out x 2, 3 – 4W out x 2, 2 – 3W out x 1). There is a bonus multiplier of 2-times if entirely solar-powered, and 1.5-times for 100% battery operated. Final score, then, is QSO points times country multiplier times power multiplier, times bonus multiplier if applicable. Logs to go to KA5NLY, 16 Fairmont Drive, Little Rock, Arkansas, 72204, to arrive by May 21. Frequencies to look at are 3560, 7040, 14060, 21060 and 28060 kHz, while novices are to be found on 7210, 7110, 21110, and 28110 kHz.

Looking ahead a bit, there is of course the CW WW WPX CW contest; this one is over the weekend May 26-27.

QRT

This is the finish of the pile for another month; for next time the deadline date is in the 'box', and the address, as always, "CDXN" SHORT WAVE MAGAZINE, 34 High Street, Wivelin, Herts, AL6 9EQ.

May issue due to appear on Friday, April 27th
Using the Icom IC-730 Transceiver with a VHF Transverter

N. A. S. FITCH, G3FPK

While many VHF/UHF operators use equipment specifically made for the various bands above 30 MHz, others use transverters driven by HF bands transmitters or transceivers. In the author's case being a Class A licensee with assorted HF bands gear, it seemed a waste of money to buy an expensive VHF transceiver when all that was needed was a 28/144 MHz transverter.

For many years, the 144 MHz station comprised a separate receiver and transmitter of 1960s vintage which, while quite adequate, nevertheless lacked the extra features, convenience and compactness of the modern solid-state equipment. These “separates” were used with a hybrid solid-state/valve transverter which needs about 200 milliwatts of 28 MHz RF to drive the transmitter section. The HF Tx was modified by switching off the PA valve, taking the 28 MHz power from the 12BY7A driver valve, the amount of drive being controlled by varying the negative grid bias on an earlier stage.

Missing Decibels

When an Icom IC-730 HF bands transceiver was acquired, one of the many optional accessories was the EX-205 Transverter Unit, the installation of which simplifies connexion to a VHF or UHF transverter. However, the RF output level is a miserable 150 milliwatts into 50 ohms, equivalent to less than half a milliwatt of drive. Thus some 26dB extra gain was necessary. The dealer could not come up with any solution in the way of simple modifications to the IC-730, so an alternative approach was considered.

ALC to the Rescue

The IC-730 is a well-designed piece of equipment and the Icom engineers have produced a versatile circuit, one feature of which is an ALC input socket for use when a linear amplifier is installed. The circuit diagram shows this socket to be connected to the signal gates of two buffer amplifier stages in the transmitter chain, one operating at 9 MHz, the other at 39 MHz. Both are 3SK74 devices, dual gate FETs.

It is common practice to control the gain of dual gate FET amplifier stages by altering the DC gate voltage, the equivalent to varying the grid bias of valve amplifiers. A test circuit was set up to ascertain if feeding a negative voltage into the ALC socket would control the gain without distortion of the signal and, if so, what voltage values were necessary. A positive five volts stabilised supply was used with the positive rail earthed and a voltage divider network was connected across the output. It was discovered that a negative voltage swing of 0.73 to 0.88 varied the transceiver’s output power from 100 watts to nothing. The IC-730 was then connected to the transverter’s 28 MHz Tx input and the power control turned down to about 200mW output. The system worked satisfactorily and sounded alright into a dummy load when monitoring on a separate receiver.

Final Realisation

On air tests also proved that the idea worked so the circuit of Fig. 1 was wired up. In view of the small range of the control voltage, a stabilised supply is essential. The RF choke was included to prevent any stray RF getting onto DC lines and screened wire is used for the ALC lead. Capacitors C2 and C3 are necessary to preclude likely destructive self-oscillation in IC1. There is nothing critical about the parts layout and the author made his version up on a piece of Veroboard. The completed board is installed inside the transverter power supply.

Interfacing

As used with the original “separates,” the author’s transverter did not need an input relay as there were separate 28 MHz connections to the Rx and Tx. However, with a transceiver a relay is required and a suitable one was found in the junk box. It came from a six volts PMR unit so a dropping resistor was used in series. The multifunction changeover relay in the transverter is a nominal 12V component and the additional PMR relay and its dropping resistor was wired across it. These two relays are now powered from the 13.8V stabilised PSU which is used for the IC-730. The live side is wired to pin 2 on the IC-730’s accessory socket and the return lead to pin 3. In transmit mode, pin 3 is grounded by a relay in the transceiver.

The transverter does not have an antenna changeover relay and an external, 6V AC operated Dow Key device is used. Power for this is obtained from the transverter’s PSU and this relay is also switched by the IC-730. The Icom engineers made provision for switching an external power amplifier and to use this facility the phono socket marked “MEMO (SEND)” is employed following switching an external power amplifier and to use this facility the phono socket marked “MEMO (SEND)” is employed following paragraph 5.5.7 in the Instruction Manual. All that is involved is to change wander plug P37 on the Accessory Board from J1 to J3 and this is clearly illustrated on page 10. The interfacing is shown in Fig. 2 and the 6dB attenuator network, R5, R6 and R7, was included to provide a proper fifty ohms load for the IC-730 PA stage.

Final Realisation

On air tests also proved that the idea worked so the circuit of Fig. 1 was wired up. In view of the small range of the control voltage, a stabilised supply is essential. The RF choke was included to prevent any stray RF getting onto DC lines and screened wire is used for the ALC lead. Capacitors C2 and C3 are necessary to preclude likely destructive self-oscillation in IC1. There is nothing critical about the parts layout and the author made his version up on a piece of Veroboard. The completed board is installed inside the transverter power supply.

Final Realisation

On air tests also proved that the idea worked so the circuit of Fig. 1 was wired up. In view of the small range of the control voltage, a stabilised supply is essential. The RF choke was included to prevent any stray RF getting onto DC lines and screened wire is used for the ALC lead. Capacitors C2 and C3 are necessary to preclude likely destructive self-oscillation in IC1. There is nothing critical about the parts layout and the author made his version up on a piece of Veroboard. The completed board is installed inside the transverter power supply.

Final Realisation

On air tests also proved that the idea worked so the circuit of Fig. 1 was wired up. In view of the small range of the control voltage, a stabilised supply is essential. The RF choke was included to prevent any stray RF getting onto DC lines and screened wire is used for the ALC lead. Capacitors C2 and C3 are necessary to preclude likely destructive self-oscillation in IC1. There is nothing critical about the parts layout and the author made his version up on a piece of Veroboard. The completed board is installed inside the transverter power supply.

Final Realisation

On air tests also proved that the idea worked so the circuit of Fig. 1 was wired up. In view of the small range of the control voltage, a stabilised supply is essential. The RF choke was included to prevent any stray RF getting onto DC lines and screened wire is used for the ALC lead. Capacitors C2 and C3 are necessary to preclude likely destructive self-oscillation in IC1. There is nothing critical about the parts layout and the author made his version up on a piece of Veroboard. The completed board is installed inside the transverter power supply.

Final Realisation

On air tests also proved that the idea worked so the circuit of Fig. 1 was wired up. In view of the small range of the control voltage, a stabilised supply is essential. The RF choke was included to prevent any stray RF getting onto DC lines and screened wire is used for the ALC lead. Capacitors C2 and C3 are necessary to preclude likely destructive self-oscillation in IC1. There is nothing critical about the parts layout and the author made his version up on a piece of Veroboard. The completed board is installed inside the transverter power supply.

Final Realisation

On air tests also proved that the idea worked so the circuit of Fig. 1 was wired up. In view of the small range of the control voltage, a stabilised supply is essential. The RF choke was included to prevent any stray RF getting onto DC lines and screened wire is used for the ALC lead. Capacitors C2 and C3 are necessary to preclude likely destructive self-oscillation in IC1. There is nothing critical about the parts layout and the author made his version up on a piece of Veroboard. The completed board is installed inside the transverter power supply.

Final Realisation

On air tests also proved that the idea worked so the circuit of Fig. 1 was wired up. In view of the small range of the control voltage, a stabilised supply is essential. The RF choke was included to prevent any stray RF getting onto DC lines and screened wire is used for the ALC lead. Capacitors C2 and C3 are necessary to preclude likely destructive self-oscillation in IC1. There is nothing critical about the parts layout and the author made his version up on a piece of Veroboard. The completed board is installed inside the transverter power supply.

Final Realisation

On air tests also proved that the idea worked so the circuit of Fig. 1 was wired up. In view of the small range of the control voltage, a stabilised supply is essential. The RF choke was included to prevent any stray RF getting onto DC lines and screened wire is used for the ALC lead. Capacitors C2 and C3 are necessary to preclude likely destructive self-oscillation in IC1. There is nothing critical about the parts layout and the author made his version up on a piece of Veroboard. The completed board is installed inside the transverter power supply.

Final Realisation

On air tests also proved that the idea worked so the circuit of Fig. 1 was wired up. In view of the small range of the control voltage, a stabilised supply is essential. The RF choke was included to prevent any stray RF getting onto DC lines and screened wire is used for the ALC lead. Capacitors C2 and C3 are necessary to preclude likely destructive self-oscillation in IC1. There is nothing critical about the parts layout and the author made his version up on a piece of Veroboard. The completed board is installed inside the transverter power supply.
Fig. 2 TRANSCEIVER, TRANSVERTER AND POWER SUPPLY INTERCONNECTIONS

The figures on the IC-730 diagram are the pin numbers on the accessory socket. An internal modification has to be made in the IC-730 to the "MEMO" socket (see text).

Tables of Values

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>5k6</td>
</tr>
<tr>
<td>R2</td>
<td>24k</td>
</tr>
<tr>
<td>R3</td>
<td>4k3</td>
</tr>
<tr>
<td>R4</td>
<td>100k</td>
</tr>
<tr>
<td>C1</td>
<td>470µF, 16V elec.</td>
</tr>
<tr>
<td>C2, C3, C4</td>
<td>0.02µF disc ceramic</td>
</tr>
</tbody>
</table>

Fig. 2

R5, R7 = 150R, 1W carbon
R6 = 39R, 1W carbon
R8 = 100R, 1W wirewound (not required if RL3 is a 12V relay)

RL1 = changeover relay in transverter
RL2 = antenna changeover relay
RL3 = input changeover relay (not required if one already provided in transverter)

The Proof of the Pudding

Initial tests with the final unit were carried out with the transverter terminated in a dummy load and monitoring the SSB and CW signals both aurally and on a tape recorder using a separate receiver. No "nasties" were found so the system was launched into the antenna. Exhaustive tests were carried out with John Nelson, G4FRX, who reported a peak signal into his receiver of some 330 microvolts. This represents a very strong signal, sufficient to cause non-linearity in some of the more mediocre "black boxes." However, the G4FRX system has a third order intercept point of +7dBm so is perfectly linear way beyond the -57dBm level. When correctly loaded, at this -57dBm level, all traces of the signal were lost at +4.4 kHz and -5.1 kHz.

At first some odd-order intermodulation distortion products were reported on the LF side of the SSB signal. These were removed, "like magic" by carefully adjusting the loading of the PA stage. Now this suggests a serious drawback of commercial solid-state amplifiers which are set up for a fixed 50 ohms output impedance with no adjustable loading control. This could explain why so many seem to produce rather rough signals since it is very unlikely that any antenna will look like a nice 50 ohms resistor across an entire amateur band.

Conclusions

This system has been used since the beginning of this year and the ideas herein could be adapted for other HF transceiver and VHF transverter combinations. Some observations about the IC-730, though. First, in AM mode, the power control does not work so, if you inadvertently select that mode and go over to transmit, you will be firing 40 watts of RF into your transverter — definitely not recommended! Second, the setting of the power control for maximum carrier power on CW is quite different from the setting for maximum output on SSB mode, for which latter far more drive seems to be needed. So, if changing from SSB to CW don't press the key until you have drastically reduced the drive, otherwise the attenuator network, R5, R6 and R7, will likely "fry." But the system could be refined to overcome these minor problems.

To revert to normal HF operations, it is only necessary to change the antenna lead from the back of the IC-730 from the transverter, to the HF antenna circuits. The ALC lead does not need to be disconnected as there is no negative voltage present when the transverter PSU is not switched on. However, the ALC meter on the IC-730 behaves slightly differently when this lead remains connected although there is no reported difference to the received HF signal. Future modifications will include a master "HF/VHF" switch which will take care of these various refinements.

Notes:

(1) On VHF, a standard signal input of 5 microvolts across a 50 ohms input impedance has been proposed for an S9 S-meter reading, equivalent to -93dBm. Thus 330µV is equivalent to 20 log \(\frac{330}{5} \) = 36dB over S9. Alternatively -93 + 36 = -57dBm.

(2) The G4FRX receiving system used in the tests comprises an MGF 1200 Gasfet RF stage with 10dB of negative feedback. The mixer device is an MCI Schottky Diode Balanced Mixer type SRA1H, fed with a +16dBm local oscillator signal.
Russian DX‘ing — Oblast Chasing Can Be Fun!

N. S. CAWTHORNE, G3TXF

No matter what HF conditions are like, from the U.K. at least, it is nearly always possible to work USSR stations on one band or another at any time of day or night. Russian DX‘ing or “oblast chasing” can add a lot of interest and fun to what are usually rubberstamp-type QSOs. The following few notes are intended as a brief guide for the SWL, or transmitting amateur to introduce this somewhat specialised but interesting form of DX‘ing.

What are Oblasts?
The USSR is currently divided into 180 administrative regions (in Russian, a region is ‘oblast’), similar to the counties of the U.K. or the states of the U.S.A. DX-chasing and QSL collecting from Russian stations on the HF bands is similar to working towards the Worked All States for the U.S.A. or towards the Worked All British Counties or WAB Areas in the U.K. Different oblasts vary greatly in size and population and are correspondingly more or less difficult to find on the DX bands. The nearer European oblasts tend generally to be the easier ones with the most difficult being on the far eastern side of the USSR. Of the 180 current oblasts, 86 are in Europe, 92 in Asia and then one each in the Arctic and in Antarctica.

How to Recognize an Oblast
Table 1 gives a list of the current oblasts with their corresponding callsign grouping. This listing makes it easy to identify directly from the callsign the oblast from which a particular USSR station is operating. The oblast is identified from the combination of the figure in the callsign with the first letter that follows; as an example, UK9AAN, a well-known contest station, is located in oblast 165. This is found by looking for UA9A in the table.

To identify the oblast, it does not matter if the station is an individual station UA, UB, UC, UD etc., a club station UK, or a 28MHz/VHF-only station RA, RB, RC, RD etc., since it is the combination of the letter and letter that follows that is the significant part of the callsign. In the case of UK9AAN the significant part of the callsign is “9A”.

The only exceptions to this oblast identification rule appear to be some of the older two-letter calls as well as some of the older special event calls, e.g. UM5OB. However the more recent special event calls, of which there is an ever increasing number, such as U1A, R4L, R5M, EWSV and RG6G are still readily identified by the same method (being oblasts 169, 164, 59, 13 and 4 respectively). Similarly, stations that may be portable or on an oblast DX-pedition sign with a suffix after the home-call that indicates the oblast of operation; e.g. UK9YBD/U9Z, where the “9Z” part of the suffix indicates oblast 100.

The highest oblast number currently is 185; there are 5 deleted oblasts (11, 32, 35, 61 and 116), making a current possible total of 180 oblasts.

New Oblasts and Large Population Oblasts
There are two very new oblasts, 184 and 185 that appear to be subdivisions of existing oblasts, namely 177 (UM8PA-) and 48 (UI8LA).

Where the amateur population is very high and the numbers of callsigns required cannot be covered by one single oblast identification figure-letter group, then further groups are used; for example the Moscow City oblast 170, which can be UA3A or UA3B. There are seven oblasts that use more than one significant figure-letter group to identify the oblast; these additional oblast codings have been included in the table.

Oblasts of Special Interest
Oblast 171 covers the Arctic region in which occasionally floating ice-stations such as UPOL 15 can be worked. Similarly oblast 172 is Antarctica, which is currently identified by the 4K1 prefix. A particular oblast to watch for is oblast 159, UA0Y, which is in the only part of the USSR in CQ Zone 23 (a CQ Zone shared with BY and JT1); there has been oblast DX-pedition activity from this rarer oblast from a group using the special call U0Y.

Keeping Records and Oblast DX-chasing
When tuning around the HF bands, the author finds it useful to have a “wanted oblast” list close to hand. The “wanted oblast” checklist is extracted from the oblast record system, a sample of

Table 1. To identify the oblast of a USSR station, check the figure in the callsign and the first letter that follows the figure against the list. For example, to identify the oblast of UK9AAN look for the significant part of the callsign, namely “9A” in the table, which identifies oblast 165.
which is shown in Fig. 1. This simple record system makes it easy to keep a tally on the number of oblasts worked as well as a check on the oblasts that have been worked but for which QSL cards are still awaited.

DX oblast chasing can become quite a challenge, even some of the nearer European oblasts can be hard to find (the Russian equivalents of Rutland in the old WABC days?) There are occasional internal DX-peditions within the USSR that activate the rarer oblasts, usually recognised by callsigns such as UK8TAA/U8C and UK9OAA/U8C, which have both recently been active from the rare oblast 49.

Oblast Awards and QSL'ing

The Central Radio Club, the famous Box 88 in Moscow, issues the R-100-0 award for having confirmed contacts and confirmed SWL reports from 100 different oblasts. There is also a special award for those who achieve the very difficult task of collecting cards from all the current oblasts. The QSLs themselves need not be sent with the application, but there should be a list of the QSL certified by two other amateurs, preferably club officers, that the cards have been checked. For further details on the methods of applying for awards, reference should be made to an awards manual such as the RSGB's Amateur Radio Awards.

As all QSLs for Russian amateurs go via the CRC QSL bureau, it can take several years for cards to come through; although in some few cases cards have been received via the bureau just two to three months after the QSO. Because of the inherently erratic nature of QSL'ing, the author prefers to keep a separate list of the different stations worked in each oblast, until a QSL is finally received. As an example, seven different stations were worked in not very rare oblast 131, UA4N, before a card came through for one of the earlier contacts! When the QSLs do eventually arrive, there is very rarely any problem with checking the oblast as this is usually marked on the QSL itself.

Working the Oblasts

As the author's main interest is CW on the HF bands, it is with the key that the majority of USSR contacts have been made. During HF contests it is very easy to QSO a large number of USSR stations, some of which may be in rarer oblasts; the oblast can be immediately recognized by using the callsign decoding procedure described above.

Once a year, during the first full weekend of May, there is the CRC organised CQ-M worldwide SSB/CW contest. As part of the contest exchange, USSR stations give their oblast number; several of the rarer oblasts are usually active during the CQ-M contest.

As HF conditions continue to decline over the next few years it will still be possible to work some of the rarer oblasts even when conditions to more DX-otic parts of the world are no longer open.

News on forthcoming rare oblast expeditions within the USSR can sometimes be found in the DX news-sheets and in the DX columns; for the real oblast DX-er there is a specialist DX news-sheet published on an ad hoc basis by K1KI a few times per year.

Pictured is a small collection of QSLs from some of the special-event USSR stations that have been active in the past few years. The oblast, or geographic region, can be identified directly from the callsign as described in the text.

K1KI's news-sheet contains items of interest for "oblast-chasers", including details on new oblasts and rarer oblast activity.

Even if you are not at the point of looking for the last few rare oblasts, oblast-chasing can still be a lot of fun, mainly because of the large amount of Amateur Radio activity within the USSR and because of the relative ease with which a large number of USSR stations can be contacted or heard from the UK.

So next time you work or hear a Vlad, Boris or Yuri check out his oblast and see if it's a rare one. It might just be be!
Logic Controlled P-T-T with Toneburst

A USEFUL ADDITIONAL FACILITY

C. H. KAUFMAN, G1CHK

This circuit was designed to aid the amateur operator and solves a prominent problem: the necessity of having to hold the p-t-t continuously when transmitting, which is not only tiring but also at times very inconvenient, particularly during long 'overs'. The unit not only solves this problem but also provides a voluntary toneburst.

On successive short operations of the p-t-t the transceiver will alternate between the receive and transmit modes. To send a toneburst, all one has to do is hold the p-t-t for a slightly longer time than normal; this threshold may be preset, as may the toneburst duration. The only requirements are that the p-t-t line goes to ground on transmit (most do), and that there is a supply of between 8V and 15V. The toneburst facility is particularly useful for repeater access, when mobile.

Circuit Description

See Fig. 1. The existing p-t-t switch is connected to the p-t-t input (pin 'C') and provides a 0V level when the p-t-t is operated. This is connected, via R2, to the inverter IC1a whose input is normally pulled-up by R1; thus the output of IC1a is high when the p-t-t switch is pressed. R1, R2 and C1 provide immunity against 'bouncing' p-t-t switches. From here there are two, mostly separate circuits: the p-t-t logic and a toneburst controller. They will be described in that order.

IC2c and IC2d form a bistable whose input function (set or reset) is dependent on its preset output; IC1b and IC1c re-route the input signal appropriately. Therefore, on successive input pulses it will change state. C3, C4, R4 and R5 give the bistable a time constant that is longer than that of the input pulse and are essential to prevent multiple triggering. The input pulse is derived, via differentiation network C2/R3, from the output of IC1a. The output of the bistable, when set, biases TR1 into conduction and takes the p-t-t output (pin 'H') low, thus keying the transceiver. D3 sinks any back e.m.f. that would be produced by an inductive load, and could otherwise damage TR1.

When a bistable is first powered, its output state is unpredictable, so IC1d disables the bistable (in the reset state) until C6 has charged via R8. This takes about 5 seconds after switch-on, and prevents accidental initial transmission. This would be most undesirable as you can imagine!

The toneburst controller is enabled by IC2a when the bistable is set. Therefore a toneburst may only be produced when transmitting; this prevents any consequent confusion. If the p-t-t is held whilst in the transmit mode then IC2b output will be high. This causes C5 to charge via R6/R7. If the p-t-t is held for longer
than the threshold, set by R7, then the output of IC3a will go low. C7 then presents a negative pulse to the input of IC4b which inverts it. This positive pulse triggers a monostable formed by IC4c, IC3b and their associated components. The time period of this monostable is made variable by R13; D4 lights when the monostable is triggered.

The actual tone is generated by an astable comprised of IC3c, IC3d, C9 and R15, the latter is used to set the oscillation frequency. This oscillator is enabled when the monostable is set, so by correct adjustment of R15 and R13 a toneburst of correct frequency and duration is produced. The output, a square-wave, is filtered by the succeeding R/C network to a near sine-wave, and is then fed into the audio input of the transceiver via R17. C12 is included to prevent RF intervention, which could otherwise upset the oscillators stability.

Schmitt trigger gates have been used where the inputs are derived from rising and falling waveforms.

Construction

The circuit is built on a 0.1″ pitch Veroboard, the size of which is standard 37 holes by 24 strips; see Fig. 2. The copper side is first cleaned with a light abrasive paper, to prepare it for soldering.

Before soldering can commence, 49 breaks have to be made in the copper strip, on the underside of the board. Care is needed here as mistakes can be very difficult to rectify — that is if they can be found at all! The longest task follows, and that is the insertion of 28 wire links. Fortunately it is not necessary to use insulated wire for these, tinned copper wire is ideal. The four integrated circuit sockets are now soldered in place, followed by the nine Veropins.

Next all the resistors are inserted. I would suggest starting with R1 and proceeding in ascending order, so as not to miss any of them out; R7 and R15 are miniature horizontal presets and R13 is of the miniature vertical variety.

Now insert the capacitors making sure that the tantalum types, C5 and C6, have their positive leads connected as shown (to the top of the board). D1, D3 and TR1 are all heat sensitive devices, so do not apply excessive heat to them while soldering them into place. Refer to the layout diagram with these three components, as they must be correctly orientated (cathodes or collector to the top of the board).

The final three on-board connections can now be made, these are between U9 and J15, G14 and R28, H5 and E32; they must be
made with insulated wire. Before continuing, check your construction carefully.

Installation and Final Adjustments

See Fig. 3. An AF frequency counter is invaluable in the setting up of the unit, but not essential. Firstly insert IC1, IC2 and IC3 (omit IC4 for the present), making sure that they are correctly orientated. As these integrated circuits are CMOS types, avoid touching the pins, as their inputs are prone to damage from static electricity.

Connect the positive and negative rails of the host transceiver to the board, via pins 'A' and 'B' respectively (the supply voltage must lie between 8V and 15V), and apply power. Temporarily connect pin 'T' to pin 'B' and connect a frequency counter to pin 'F' using pin 'E' as the earth. Adjust R15 for a reading of 1750 Hz.

If a frequency counter is not available then, connect a crystal earpiece across pins 'E' and 'F' and whilst listening to a toneburst (from another transceiver) adjust R15 for the same tone in the earpiece. This is quite a satisfactory method — for all but the tone deaf!

Disconnect the supply, remove the temporary link and insert IC4. Next connect the anodes of D2 and D4 to pins 'G' and 'D' respectively (the anode of an LED is usually indicated by the longer of the two leads). Both their cathodes go to pin 'B'. D2 provides a 'transmit' indication and is red, D4 is green and lights when a toneburst is being sent.

Now the original p-t-t line has to be interrupted and the microphone end of this is connected to pin 'C' on the board. Leave the transceiver end disconnected for now.

Turn R7 fully counter-clockwise, and turn R13 (when viewing it with IC2 on the right) fully clockwise. With power applied, trigger the toneburst using the p-t-t and whilst observing D4, turn R13 counter-clockwise until a period of about 300ms is obtained. Now turn R7 to the middle of its travel. The circuit should now be functioning as described in the introduction, and by adjustment of R7 the time for the toneburst to trigger, after depression of the p-t-t, may be set to your own taste.

Finally connect pin 'F', with screened lead to the microphone (using pin 'E' for the earth), and the p-t-t line of the transceiver to pin 'H'. The output can withstand 70V and can sink 300mA; if these limits are exceeded then a relay will have to be used to key the transceiver, its coil being connected between pins 'H' and 'A'.

R17 was chosen as 100K in the prototype, but if over modulation does occur then this may be increased in value (and vice versa). If a low impedance microphone is used, then a simple transistor buffer may be added to the output, to increase the signal level.

CLUBS ROUNDUP

By "Club Secretary"

Don't forget, club scribes, that we need an update at least once every three months, which must include the club Hq. address, the name, address and telephone number of the Hon. Sec., and the dates and details of the programme. Of course we welcome entries that come in the form of the club newsletter, and we enjoy reading them; but please make certain all the information we need is in there, preferably on a little note pinned to the newsletter. Nothing too formal is needed — just a clear and unequivocal statement of the needful plus, of course the name of the club(!)

Anyone for Radio?

Tony Wilson, G3MAE, is interested in gauging the interest in forming a club in Northallerton in North Yorkshire. To that end, he would appreciate a contact, personal or by phone, to him at 8 The Paddock, Appleton Wiske, Northallerton, North Yorkshire; phone Great Smeaton 530. We might add to that the idea of an ad.

The Letters

It's AGM time again for Abergavenny & Nevill Hall; the date is Thursday, April 12 in their club room above Male Ward 2, Pen-y-Fal Hospital, Abergavenny, where the club foregather every Thursday evening. On Tuesday evenings they have a booking for the Seminar Room, Nevill Hall Hospital, for their R.A.E. class which seems to be highly successful.

April 17 is the date for Acton, Brentford & Chiswick; the Hq. address is the Town Hall, High Road, Chiswick, and the topic for the evening will be QRP, starting at 7.30 p.m.

The Axe Vale gang now hold the club call G8CA — this was once held by a founder member and tireless worker for the club. April 6 sees a talk on construction techniques — with a challenge! — while on April 28 they have a coach trip to the NEC for which they have a few spare tickets. See you there, gang. The club meets at the "Cavalier Inn", West Street, Axminster, which is on the A35, just west of the parish church.

The venue for the Bangor club is the Sands Hotel in Bangor, with the first part of the programme a video tape by Yaesu which has been organised by G13KDB, and then G13MBB will be talking on slow-scan TV; this talk will be aimed at the beginner in particular, so visitors doubly welcome. Come on April 6.

Another AGM for mention; this one is at the "Englishcombe Inn", Englishcombe Lane, Bath, and the date Wednesday, April 18. In more general terms, we understand they have a booking on alternate Wednesdays.

We don't have the latest details for the Belfast College of Technology gatherings, so we must refer you to the Hon. Sec. — see Panel for his details.

Over to Biggin Hill and here the new Hq. is at St. Mark's Church Hall, Church Road, Biggin Hill. On April 17 they have a trade demonstration, by C. M. Howes.

Bridgend group have a booking on the second Wednesday of each month at the NCB Hq., Tondu; the April event is a bring-and-buy.

At the recent AGM at Bishops Stortford a new Hon. Sec. took office, and his details appear in the panel. The main meeting is at the British Legion club, Windhill, on the third Monday of each month, and there is a natter evening on the first Thursday of each month at the Nag's Head pub which lies on the A120 road out of the town towards Dunmow.

The Bromsgrove A.R.S. crowd have moved Hq. to the British Legion Club, Birmingham Road; April 10 is an informal discussion on computers between members, and on 24th an informal gathering.

Bury have an evening of nostalgia on April 18, when G8YF will be talking about early radio; but you can find them informally gathering on every Tuesday evening at the Mosses Community
Centre, Cecil Street, Bury, except the second in each month which is reserved for the formal stuff.

Now we turn to the Cambridgeshire Repeater Group; details on them and their activities from the Hon. Sec. — see Panel.

At Cheltenham the gatherings are at Stanton Room, Charlton Kings Library, Cheltenham; April 6 is a Computer Night, and members will bring along their boxes (and an adequacy of main adapters!) to demonstrate. The natter evening is down as April 20.

We head now for Cheshunt, where the weekly meetings are on Wednesdays at the Church Room, Church Lane, Wormley; April 4 is down for G3NNE to talk about his trip to Australia, and on 18th they have G8LXB on the Royal Observer Corps. Between these dates are the informal natter sessions.

Chichester seem to be settled in at Fernleigh Centre, 40 North Street, Chichester, on the first Tuesday and third Thursday. April 3 is the AGM, taken in the Long Room; and on April 19 they will be gathering in the Green Room.

April 5 is the night for the home-constructors at Colchester, where they have their competition; the venue is the Colchester Institute, Sheepen Road, Colchester.

April 5 at Cornish is the date for the AGM; and the place the Church Hall, Treleigh, on the old Redruth By-Pass.

On the third Saturday in each month the Crystal Palace group foregathers at All Saints Parish Room, Upper Norwood; this is at the junction of Beulah Hill and Church Road, opposite the IBA mast. April 21 is one of their rare informal evenings.

The routine for Dartford Health D/F is to have a meeting during the week prior to one of their Sunday hunts. Thus we see they are at the “Horse and Groom” on April 10, and the Sunday hunt is on April 15; the usual start is at NGR525730 on Dartford Heath. For the latest details we suggest you contact Pete on Greenhithe 844467 — he seems to be the internal contact man in the club — but there is always the Hon. Sec., see Panel.

Up to Derby now, which means Wednesday evenings at 119 Green Lane, Derby. April 4 is a junk sale, and on 11th they have a night-on-the-air. April 18 is down for a talk and demonstration of AMTOR, and on April 25 there is a talk by the RSGB Region 4 Representative.

On the second and fourth Monday in each month we hear the Droitwich club gather at the Scout Hq. in the town. Details from the Hon. Sec. — see Panel for the details.

Dudley has April 10 at the Central Library, when they have a talk by G6FK on VHF/UHF operation. Details from the Hon. Sec.

We are now to East Kent and here the venue is given as “The Cabin”, Kings Road, Herne Bay; April 5 is a talk on interference but on April 19 the topic was not, at the time they wrote, finalised. However, we don’t doubt they’ll have something going on.

East London RSGB group is now going to meet on a quarterly basis, the first of these being on Sunday, April 15, at 2.30 p.m., at Wanstead House, Wanstead; this is 100 yards behind the Wanstead Underground. On this date the speakers will be G8VR and G3VPK, for questions and answers on RSGB matters. Incidentally, the group is not confined to RSGB members; others may of course join.

Lots of light-hearted banter about the AGM appears in the current Edgware newsletter; but in it we note that G3SJE is not only chairman, but that he has been doing slow-morse on the air in the district for around twenty years — another of the unsung heroes. Turning to the club, we see they have a place at 145 Orange Hill Road, Burnt Oak, on the second and fourth Thursday of each month. April 12 is down for G3GC’s talk “Aerial Radiation Patterns”, and on 26th there is the informal.

Exeter next, and we see that they have a visit on April 9 to the Radio Devon studios at St. Davids Hill, Exeter. As numbers are restricted, a rapid contact with the Hon. Sec. seems to be indicated — find his details in the Panel.

The 6th Exmouth Scouts’ Hut is home to the Exmouth crowd, where they are to be found on alternate Wednesdays at 7.30 p.m. This Hq. is at Marpool Hill, Exmouth.

To put together a year’s programme ahead, in a club that gets together every week is some achievement, but it has been done by the Hon. Sec. at Fareham. The club Hq. is at Portchester Community Centre, Wheatlands Grove, and their evening is Wednesday. April 4 and 18 are set aside for operating and nattering. April 11 will be “The History of Naval Communication” by G3YTQ, and on 25th they have a junk sale.

April 11 is a bring-and-buy sale at Fareham, and on 25th there is a brains trust. These are at the Railway Enthusiasts Hq., Access Road, Hawley Lane, Fareham, Hants., near the M3 bridge.

The Cheltenham group have grown by leaps and bounds since they got their present Hq. at the Kite Club, just inside the main entrance of Blackpool Airport. April 3 is down for a talk by G4RSA on RTTY, while on 17th they have the informal and Morse class. Details from the Hon. Sec. — see Panel.

Glencrothes now, at Provosts Land, Leslie, Fife. April 15 is a talk on mountaineering for the ‘formal’ session, but they also have informal sessions every Wednesday evening.

The G-QRP Club is very definitely the success story of the decade; it is open to all who are interested in low-power operating, or indeed home-building of QRP equipment for our bands. Details from the Hon. Sec. — see Panel for his details.

Glenrothes group have a junk sale and quiz all together on April 12, at Southfields Junior School, Stanground, Peterborough.

April 12 and 26 seem to be the dates for the Great Yarmouth crowd, at the STC Sports and Social Club in Beveror Road, South Denes. Sad to say, no details of the programme.

Harrow Arts Centre is home to the Harrow club, where they alternate between the Belmont and Roxeth Rooms for their weekly gatherings. Informals and practical evenings are on April 6 and 20 in the Roxeth Room; the talks are on April 13 and 27 in the Belmont Room.

Hastings could be remarked on as the place where it all happens... the main meeting is on the third Wednesday, which gives us April 18 for a junk sale; this is at West Hill Community Centre. However, on just about every other weekday evening, if you go to Ashdown Farm Community Centre you will find some of the lads...
doing their thing, particularly on Fridays which are the regular weekly chat nights.

Havering's April shows a quarterly business meeting on April 4, and informal on 11th and 25th. That leaves April 18 for a talk on kites and kite aerials by G3MWF. The venue is Fairlykes Arts Centre, Billet Lane, Hornchurch.

As they have just had an AGM we don't have any data for **Hereford**, save that they foregather at County Control, Civil Defence Hq., Gaol Street, Hereford, on first and third Fridays.

April 2 is the date for **Hornhead**, at Merchistoun Hall, London Road, Hornhead, Portsmouth. The talk is by GB4EQ.

Now we head for The Mill, Atwick Road, *Hornsea*, where the locals get together every Monday evening. More from the Hon. Sec. — see Panel.

I.R.T.S. is the national society for Eire; and thus it is the place to contact if you want to know anything about local clubs and amateur radio in El-land. Details from the Hon. Sec. — see Panel.

Pan back and we come to the **Isle of Man**; the locals head for the Keppel Hotel, Creg-ny-Baa every Monday evening, but they seem to have lots of other activities on the go, too.

One is always entertained by the contents of the *Midland* newsletter. On April 17 we see they have got G3RJV talking about QRP, at 294A Broad Street, Birmingham; but we think you can try the door on almost any evening and find someone in the clubroom.

We seem to be a bit adrift with the **Mid-Sussex** doings at Marle Place Centre, Leylands Road, Burgess Hill, and so we must refer you to the Hon. Sec. — see Panel for his details.

April 10 sees a talk by G3BA on radio in a PoW camp, at the **Mid-Warwicks** club, followed on April 24 by a natter night; both are at 61 Emscote Road, Warwick.

A natter night is also on the card for **Nene Valley** on April 4; they then have GB4WBB on the air over the weekend April 7/8 for the Boys Brigade 'Anchor Chain' event. April 11 is a video evening, with "World at their Fingertips" and "World of Amateur Radio". April 18 is down for a talk by the County Emergency Planning Officer, but the usual meeting on April 25 is cancelled as it falls in the Easter holiday. All meetings are at the "Dolben Arms", Finedon, near Wellingborough, with the transmitting events at the nearby 1st St. Mary's Scout Hall.

The **Newquay** club are off to visit the Coastguard Centre at Falmouth on April 11, meeting at Pendennis Castle at 7.30 p.m. On April 25 they are at The Drill Hall, Cranstock Street, Newquay, for a talk on making and testing VHF D/F aerials.

If you want to meet the **Norfolk** lads, try the Valley Drive Community Centre, Plumstead Road, Norwich, on any Wednesday evening. Arising from this change of Hq., a new programme is in the process of being assembled, and doubtless the Hon. Sec. would be pleased to bring you up to date — see Panel.

Every Thursday evening the **Ponfret** club gathers in Carlton Community Centre, with Mondays also in use for Morse tuition.

Reigate are based on the Constitutional and Conservative Centre, Warwick Road, Redhill, in the Upstairs Meeting Room, on the third Tuesday of each month, and we notice April 17 is the AGM.

April 2 at Rhyl is an activity night, and on 16th they have a D/F Hunt. The headquarters address is the 1st Rhyl Scouts Hq.; contact the Hon. Sec. to find out where it is!

Now to **Salisbury** and Grovener House, Churchfields Road, where they get together every Tuesday; the Hon Sec. indicates they are busy putting the programme together after the AGM.

An ever-growing club is the one at **South Bristol**; Whitchurch Folk House, East Dundry Road, Whitchurch, will find them. On April 4 they have a talk on the RS232 arrangement by G4MCO, and an HF night is on 11th. April 18 is set aside for a VHF NFD preparation night, and on 25th they have a ten-metre FM evening.

Readers in the **South-East Derbyshire** area should be aware that there is a club which meets in term-time at S.E. Derbyshire College, Ilkeston Road, Heanor, every Tuesday evening. For details, contact the Hon. Sec. at the address in the Panel.

South Manchester means Sale Moor Community Centre, Norris Road, Sale. Friday, April 6 sees their Spring D/F Hunt, and on April 13 Mrs. C. Barker, G3WEN, will talk about radio signalling in British Rail — visitors specially welcome to this one. April 20 they are shut down for the Easter break, and on 27th they have a home-brew (equipment, not boozel!) contest. Besides all this, they can be found on Monday evenings for a natter at the same place.

S.W. Herts. UHF Group is the group responsible for the GB3HR, GB3SWH and GB3BH beacon/repeaters, and they indicate they are always willing to send members to give talks at other clubs. For details on this, and on joining, contact the Hon. Sec. — see Panel.

The venue for the **Spalding** crowd these days is the White Hart Hotel; on April 13 G6RNY will be talking about the radio control of models.

Next we turn to **Stourbridge** and their new Hq. at the Robin Woods Centre, School Street, off Eville Street, on the first and third Monday of the month.

Sad news at **Surrey**, namely the death of Sid Morley, G3FWR. Sid was a Past President, and Hon. Sec. for a long time, not to mention having been a member since 1935. He will be greatly missed by the members. The club must go on, though, and so you will find them at *TS Terra Nova*, on the first and third Monday evening of each month.

Deadline for "Clubs" for the next three months

May issue—	March 30th
June issue—	April 27th
July issue—	May 25th
August issue—	June 29th

Sutton & Cheam next, and here we see that the topics for April 6 and April 13 had not been finalised at the time of their newsletter; however, they always do have something set up at the Downs Lawn Tennis Club, Holland Avenue, Cheam. While that is the venue for the main April doings, they also have bookings at Sutton College of Liberal Arts. Contact the Hon. Sec. for full details.

Swale have changed their Hq. to the Ivy Leaf Club, Dover Street, Sittingbourne, on Monday evenings, as a result of a fire at the old place. It's an ill wind that blows no-one good — the consensus seems to be that the new venue is an improvement if anything!

Thanet are based at the Grosvenor Club, Grosvenor Place, Margate, on the second and fourth Tuesdays: April 10 is a video on commercial satellites and on 24th the subject was still to be finalised at the time of their letter.

April 2 is "Home-Brew Evening" for **Todmorden** group, at the Queen Hotel in Todmorden. This is a new club and we hope that is has got off to the good start that its founders hoped for.

A preview of G3ESEK's talk to the VHF Convention at NEC is the fare for the **Vale of White Horse** club on April 2. The general routine is to gather at the Landsdown Club, Milton Trading Estate, Abingdon, on first and third Tuesdays in each month.

Nice to hear again from **Verulam**, and to know they are still active; April 24 sees G8DKK giving a talk called "Improvements in Modern Mixer Systems" at the R.A.F.A. Hq. New Kent Road, off Marlborough Road, St. Albans. The routine is second and fourth Tuesdays in each month.

Wakefield has a place at Holmfield House, Denby Dale Road, Wakefield. On April 3 they have the AGM, and on 17th they have a visit to the West Yorks Police Hq. at Bradford.

Our note from **West Kent** doesn't cover April, but we do know it is the first and third Friday in the month at the Adult Education
Names and Addresses of Club Secretaries reporting in this issue:

ABERGAVENNY: D. F. Jones, G1WSSY, 80 Caeasoneen Park, Abergavenny, Gwent NP7 6LE. (0982 78674)
AXE VALE: P. L. Peach, G4GOS, The Firs, Goldsmiths Lane, All Saints, Axminster, Devon. (Axminster 7459)
BANGOR: S. Mackay, G1WQC, 70 Mount Park Street, Bangor, BT2 4UR, Northern Ireland. (Bangor 54059)
BIC: A. C. Ashley, G4UMM, 5 Stonebridge Drive, Frome, Somerset. (Frome 63639)
BELFAST: (College of Technology): J. Farr, GI5CET, 121 Kitchener Road, Belfast BT9 5HS.
BIGGIN HILL: I. Mitchell, G4NSD, Greenway Cottage, Tatfield, Westerham TN16 2BT. (Biggin Hill 276)
BRIDGEND: T. C. Morgan, GW3SSY, 10 Kingswood Road, Bridgend, Mid-Glamorgan.
BISHOPS STORTFORD: S. Mammatt, G6HKK, 31 White Hart Lane, Bishop's Stortford, Herts.
BROMSGROVE (A.R.S.): A. K. Kelly, G3GOS, The Firs, Goldsmiths Lane, All Saints, Axminster, Devon. (Axminster 7459)
BURY: B. Tyldesley, G4TBT, 4 Colne Road, Burnley, Lancs. (Burnley 24254)
BROMSGROVE (A.R.S.): A. K. Kelly, G3GOS, The Firs, Goldsmiths Lane, All Saints, Axminster, Devon. (Axminster 7459)
BISHOPS STORTFORD: S. Mammatt, G6HKK, 31 White Hart Lane, Bishop's Stortford, Herts.
BROMSGROVE (A.R.S.): A. K. Kelly, G3GOS, The Firs, Goldsmiths Lane, All Saints, Axminster, Devon. (Axminster 7459)
BISHOPS STORTFORD: S. Mammatt, G6HKK, 31 White Hart Lane, Bishop's Stortford, Herts.
BURY: B. Tyldesley, G4TBT, 4 Colne Road, Burnley, Lancs. (Burnley 24254)
CHELTENHAM: Mrs. G. Harmsworth, G6COH, 42 Leckhampton Road, Cheltenham, Glos. (Cheltenham 25162)
CsherHUT: R. Frisy, G4OAA, 2 Westfield Road, Hoddesdon, Herts. EN1 0QX.
CHicheSTER: T. M. Allen, G4ETH, 2 Hillside, West Stoke, Chichester, Sussex PO19 1BL. (West Chichester 463)
CIRENCESTER: F. R. Howe, G3FIJ, 29 Kingswood Road, Cirencester, Gloucestershire.
CROWTHORNE: A. E. F. Frazer, G3FEB, 126 Reigate Road, Crowhurst, East Grinstead.
DERBY: Mrs. J. Shardlow, G4EYM, 19 Portreath Drive, Darley Abbey, Derby DE3 1BJ. (0332 556875)
DERBY: Mrs. J. Shardlow, G4EYM, 19 Portreath Drive, Darley Abbey, Derby DE3 1BJ. (0332 556875)
DERBY: Mrs. J. Shardlow, G4EYM, 19 Portreath Drive, Darley Abbey, Derby DE3 1BJ. (0332 556875)
DORCHESTER: E. H. Godfrey, G3GC, Dorset Reach, 60 Chilton Grove, Yeovil, Somerset.
DARTFORD: A. R. Burchmore, G4BWV, 49 School Lane, Dartford Heath D/F, Kent.
DARTFORD HEATH D/F: A. R. Burchmore, G4BWV, 49 School Lane, Dartford Heath D/F, Kent.
DARTFORD HEATH D/F: A. R. Burchmore, G4BWV, 49 School Lane, Dartford Heath D/F, Kent.
DARTFORD HEATH D/F: A. R. Burchmore, G4BWV, 49 School Lane, Dartford Heath D/F, Kent.
DARTFORD HEATH D/F: A. R. Burchmore, G4BWV, 49 School Lane, Dartford Heath D/F, Kent.
DARTFORD HEATH D/F: A. R. Burchmore, G4BWV, 49 School Lane, Dartford Heath D/F, Kent.

If you are within striking distance of Kendal, you should go along to the Westmorland meetings, which are at the “Old Pheasant” in New Street - the former is a construction contest plus skittles evening, and the latter informal. On April 30 they move over to the Oddfellows Club in the same street, for a talk on electricity by the local Electricity Board.

April 5 is the Yeovil AGM; on April 12 G3MYM talks on simple repeaters, and on 26th the first meeting of the R.A.E. class. All are at the Recreation Centre, Chilton Grove, Yeovil.

Finally we head for York and 61 Micklegate, where the local club has a weekly booking on Fridays and visitors are always welcome; the name of the place by the way is the United Services Club. On a different tack we hear that, sadly, conditions have

Centre, Monson Road, Tunbridge Wells. In addition, the second and fourth Tuesdays are informal at the Drill Hall, Victoria Road, Tunbridge Wells.

For Wirral the venue is the Irby Cricket Club on the Wirral, on the second and fourth Wednesdays of each month. They also have informal at various pubs in the area, for details of which we must refer you to the Hon. Sec. - see Panel.

At Worcester the meetings are split between two venues; April 2 and 16 are both at the “Old Pheasant” in New Street - the

former is a construction contest plus skittles evening, and the latter informal. On April 30 they move over to the Oddfellows Club in the same street, for a talk on electricity by the local Electricity Board.

April 5 is the Yeovil AGM; on April 12 G3MYM talks on simple SSB receivers, April 19 G3GC on contest operating techniques, and on 26th the first meeting of the R.A.E. class. All are at the Recreation Centre, Chilton Grove, Yeovil.
Microwave Society

The Microwave Society, which looks after the interests of all those operating on, or interested in, frequencies above 10 GHz, has enjoyed a period of growth recently with nearly 200 new members joining during 1983. Their well-known "Datapack", which includes all you need to know to build a complete system for under £40, has been completely revised and is now in its 5th edition. The society produces a newsletter, Waveguide, and this year sees the start of awards and certificates for achievements above 10 GHz. Meet them on their stand at the N.E.C. Exhibition, April 28/29th. For more details about the society, write to The Microwave Society, 81 Ringwood Highway, Coventry CV2 2GT.

Stevenage A.R.S. 2m. FM Contest

Stevenage & District A.R.S. will be running a 2m. FM contest on April 15th, 1300 to 1700 GMT, in the 144.500-144.845 MHz and 145.200-145.475 MHz sections of the band. The contest is open to both members and non-members and there will be three classes of entry: stations running up to 25 watts output; stations running more than 25 watts output; short wave listeners. Further information is available from the Contest Secretary, Bernard Dean G6NZC, 82 Lingfield Road, Stevenage, Herts. SG1, 5SN; please enclose an s.a.e.

Special Event Station at Didcot

Vale of White Horse A.R.S. will be operating GB4GWR at Didcot Railway Centre, from 15th to 23rd April. The station will be located in a former Great Western Railway saloon carriage, No. 9005, built in 1930. During this Easter period, the Railway Centre will be open to the public and former GWR steam trains will be in action, together with other attractions of the steam-train age. Special QSL cards will be sent to all contacts, and activity will be on both VHF and HF bands. Didcot Railway Centre is attached to Didcot British Rail station, on the London to Bristol Inter-City 125 route.

Mobile Rallies, 1984 — a first listing

April 8, Buxton Mobile Rally, Pavilion Gardens, St. John's Road, Buxton, 11 a.m. to 5.30 p.m. (from 10.30 a.m. for RAIBC), admission 50p (children under 14 free), trade stands, family attractions, catering, ample parking. Full details from D. Cooper, G6M1F, on 0298-6174. April 8, Swansea A.R.S. Rally, Patti Pavilion (next to St. Helens Cricket Ground on A4067 Swansea-Mumbles road), Swansea, 10.30 to 5 p.m., trade stands, RSGB bookstall, local repeater groups, bring-and-buy, licensed bar, refreshments, good parking, talk-in on S22. Further details from Roger Williams, GW4HSH, QTHR (tel: Swansea 404422). April 15, Lough Erne Mobile Rally, Killyhevlin Hotel, Enniskillen, doors open 12 noon, trade stands, bring-and-buy, wide range of family attractions, admission £1, full hotel facilities. More information from Joe Maguire, GI4UHA, 124 Hillview Road, Enniskillen. May 13, Swindon Amateur Radio & Electronics Rally, Park Further Education Centre, Oakfield School, Marlowe Avenue, Swindon, Wilts., doors open 10 a.m., trade stands, BARTG display, children's entertainment, refreshments many items of general interest, ample parking. Further information from K. Saunders, G8FSM, QTHR. May 27, East Suffolk Wireless Revival, Civil Service Sportsground, The Hollies, Straight Road, Ipswich. Full details from J. Tootill, G4IF, QTHR (tel: 0473-44047). June 3, Welsh Amateur Radio Rally, Barry Leisure Centre, Greenwood Street, Barry, South Glam., 11 a.m. to 5 p.m., trade stands, bring-and-buy, licensed bar, family attractions, talk-in on S22, free refreshment. For more details, ring Reg. Rowles, GW4FOM, 0222-565656, evenings. July 21, West Kent A.R.S. Radio & Electronics Fair, Royal Victoria Hall, Southborough (between Tonbridge and Tunbridge Wells), 9.30 to 5 p.m., trade stands, special event station, adequate parking. Full details from D. Green, G4OTV, 13 Culverden Down, Tunbridge Wells, Kent (tel: 0892-28275). July 22, Anglian Mobile Rally, Stanway School, Colchester, doors open 10 a.m., talk-in on 2m. Full information from D. Sellery, G3XJ, on 0206-23938. August 5, East Kent Mobile Rally, Full details from S. Alexander, G6LZQ, 65 Downs Road, Canterbury, Kent. August 12, Derby Mobile Rally, Lower Bemrose School, St. Alban's Road, Derby, all the usual attractions, free admission and parking. More information from G4EYM (0332-556875) or G3SZJ, both QTHR. September 23, Lincoln Hamfest, Lincolnshire Showground (4 miles north of Lincoln on the A15), 11 a.m. to 5.30 p.m., trade stands, many family attractions, facilities for the disabled, talk-in on 144 MHz (S22) and 432 MHz (SU8), refreshments, licensed bar, ample parking, caravan and camping facilities. Full details from J. Middleton, G8VGF, c/o City Engineers' Club, Central Depot, Waterside South, Lincoln.

More rally dates will appear in subsequent issues. If you have not yet notified us of your rally, now is the time to do so! Send the information to our Club Secretary, marking the envelope "Mobile Rally". And don't forget, we are always glad to receive photographs of rally events for possible publication.

Finale

It has been put to us that in some areas, chaps are missing meetings early in the month because they are over before the local newsgagent stumps up with the copy of the Magazine. One answer to that is to have a subscription, and another is to thump the newsgagent hard! However, in future we will, if requested, include details of the goings-on for the first week of the following month if we receive them. Thus, you will just have sent us the May details, and if there is anything for the first week of June (NFD?), we will try and note it here. For the future, the deadlines for the arrival of your letters are in the ‘box’, and they should be addressed to your scribe, SHORT WAVE MAGAZINE, 34 High Street, Welwyn, Herts. AL6 9EQ. Adios!

“Cambridge Kits” Tuner Offer

Cambridge Kits are offering readers of Short Wave Magazine £4.00 off their new Antenna Tuner kit. This bandpass tuner is designed to improve reception from 0.1 to 30 MHz, and features switched series or parallel tuning to suit both long and short ended antennas and receivers with the usual low-impedance input, and is claimed to be especially effective with indoor antennas. Also included is a detector output for a meter which enables it to be adapted to an absorption wavemeter or field-strength meter, or with headphones to make a modulation monitor; it can handle transmitter powers up to 10 watts.

The kit contains all parts including ready-wound inductors, metal case, instructions and calibration chart, and is available at an introductory price of £21.20 inc. VAT and U.K. postage if we receive them. Thus, you will just have sent us the May details, and if there is anything for the first week of June (NFD?), we will try and note it here. For the future, the deadlines for the arrival of your letters are in the ‘box’, and they should be addressed to your scribe, SHORT WAVE MAGAZINE, 34 High Street, Welwyn, Herts. AL6 9EQ. Adios!

Correction

Peter Cook, G4NCA, author of “Digitalisation of the KW-200B Transceiver, Phase II” on page 638 of the February 1984 issue, writes to tell us that the values of RA and RC (ref: Fig. 4) should have been 470K in his original manuscript, not 10K as given, and apologises for the error.
S.E.M.
UNION MILLS, ISLE OF MAN
Tel: MAROWN (0624) 851277

Ultra LINEAR for all modes and R.F. or P.T.T. switched. 13.8V nominal supply. SO239 sockets.

Three Models:
1. SENTINEL 35 Twelve times power gain. 3W IN 36W OUT. 4 amps. Max. drive 5W, 8" x 2½" front panel, 4½" deep. £89.00 Ex stock.
2. SENTINEL 50 Five times power gain. 10W IN 100W OUT. Max. drive 16W 6amps. Same size as the Sentinel 35. £79.50 Ex stock.
3. SENTINEL 100 Ten times power gain. 100W IN 1000W OUT. Max. drive 16W. Size: 6½" x 4" front panel, 3½" deep. 12 amps. £115.00 Ex stock.

POWER SUPPLIES for our linear 6amps £34.00. 12amps £49.00.

SENTINEL AUTO 2Metre or 4METRE PRE-AMPLIFIER
400W.P.E.P. power rating. Use on any mode. 12V 25mA. £28.50 *Ex stock.

PA5 Same specification as the Auto including 240V P.S.U. £33.00
SENTINEL STANDARD H.F. PRE-AMPLIFIER
10KHz to 100Hz. 12V supply. Sizes: 6" x 2¾" front panel, 3½ " deep, all for only £29.75 inc VAT.

SENTINEL 432/19T YAGIS
4.5m £28.69 9.2 dBd
2.9m £21.99 10.2dBd
2.2m £19.99 14.2dBd
10.2dBd

ABSORBERS
Exclusive from MU
Polyester reinforced 1¾" diameter. 1.5 metres complete with fixing clamp
RPM £17.25 inc VAT + £1.95 P&P
3 metres complete with cinner and epoxy resin.
RPM £34.50 inc VAT + £2.25 P&P

S.E.M.
Kingsdown Road, St. Margarets-at-Cliffe, Dover, Kent CT15 6AZ
Telephone 0304 853021 Telex: 965644 LCL DOV
Enquiries from Dealers and Overseas Distributors welcome
The Short Wave Magazine

Many available ex-stock. A fist is available on request - please send S.A.E. / 3.27685.06888

TONEBUST, I.F. 6 kW CRYSTALS N HC18 E225 EACH

7.168MHz for 1750kHz Tonal 10245 MHz for 10.715MHz

FREQUENCY STANDARDS C2.75 each

22.1700 MHz 38.666MHz 70.000 96.000 101.000 101.500 116.000

CONVERTER CRYSTALS N HC18 E225 AT $2.95 each

5U8143377 RBO RB2 RB4 R801 R811 R813 RB14 R815.

For PVE PF1 PF2 PF70 seats. Wood & Douglas and FDK Multi UHF

70CM CRYSTALS E5.00/pr or (250 items)

TX a78250 RX 79.7800

4 METRE CRYSTALS FOR 7028in HC&U AT EZ25 each

HC25/1.1 12 MHz 30PPF 44MHz SERIES RES

HOW 46 8MHz 30PPF

TX CRYSTALS

CRYSTALS FOR 2 METRES

CACC

Address

Name

Address

SWM 4/84

BECOME A RADIO AMATEUR

Train now for the Radio Amateur Licence examination. An exciting hobby which will enable you to talk and listen to the whole world. No previous knowledge needed, only a few hours a week of home study for 3 to 6 months. We have successfully trained people over the past 40 years! Post coupon below for details or telephone 0734 651515 (24hr service).

British National Radio & Electronics School
Reading, Berks. RG1 1BR

FREE brochure without obligation from:

British National Radio & Electronics School
READING, BERKS. RG1 1BR

MBA-RO RTTY/CW/ASCII READER

The only self-contained reader available. Excellent performance. Just plug into the speaker output of your receiver, 12V supply. 32 Character built in display (blue). Add a new dimension to your hobby for just £198 £179 inc. VAT plus £2 P&P & Ins.

SPECIAL: Limited number of brand new Send/Receive versions of the above at 40% off list. First come, first served.

Will drive printer, keyboard. Call for details. AMTOR-RTTY-CW for BBC and Commodore micros. We have the best equipment available.

Send for details.

I.C.S. Electronics Ltd
PO Box 2, Arundel,
West Sussex BN18 ONX

Phone: (024 365) 590

All prices include VAT @ 15%
IC 271 Replacement Front-End — RPCB 271ub

Pictured left is the new replacement front-end for Icom’s IC 271 series of transceivers. It’s not we stress a preamplifier. In common with boards for Yaesu’s FT221/5 series and Icom’s IC211/251 series, the RPCB 271ub in fact replaces the existing front-end with a properly designed carefully engineered low-noise rf stage, superb bandpass filtering, double-balanced Schottky diode ring mixer, j-fet local oscillator buffer, and two high dynamic range IF stages with six poles of crystal filtering. As with our RPCB 251ub, an on-board antenna changeover relay is included, replacing the original diode switching system. Good attention has of course been paid to proper gain distribution — the most important aspect of high performance receiver design; a receiver doesn’t need to sound like a hot fat frier to be sensitive!

As far as installation is concerned, it’s mainly a “plug and socket” job, and our board fits in the position normally occupied by Icom’s optional ‘preamplifier’. It could hardly be simpler!

Stephen Prior, G4SJP

Price? £79.90 + £1.20 per inc. vat.

muTek limited — the rf technology company

Dept. S.W., Bradworthy, Holsworthy, Devon EX22 7TU (0409 24) 543
THE SHORT WAVE MAGAZINE

All prices INCLUDE delivery UK and 15% VAT

- **NEW SAMSON KEYERS**
 - **ETM-IC** — £32.95. Self-completing, jambic mode, with dot/dash memories (disabled by switch). 8-60 wpm. Sidetone generator. Use with your own paddle. Runs on 4-8 VDC (only 1 mA idling). Very compact case.
 - **ETM-IC MEMORY KEYER** — £124.95. 8 MEMORIES (each one will store approx. 50 Morse characters) — can run once only, or repeat continuously. Easy chaining of memory to build up longer message sequences. KEYPAD control of memories. Repeat, and Morse characters can run once only, or repeat continuously. Easy chaining of memory to build up longer message sequences. KEYPAD control of memories. Repeat, and Morse characters can run once only, or repeat continuously. Easy chaining of memory to build up longer message sequences. KEYPAD control of memories. Repeat, and Morse characters can run once only, or repeat continuously. Easy chaining of memory to build up longer message sequences. KEYPAD control of memories. Repeat, and Morse characters can run once only, or repeat continuously. Easy chaining of memory to build up longer message sequences. KEYPAD control of memories. Repeat, and Morse characters can run once only, or repeat continuously. Easy chaining of memory to build up longer message sequences. KEYPAD control of memories. Repeat, and Morse characters can run once only, or repeat continuously. Easy chaining of memory to build up longer message sequences. KEYPAD control of memories. Repeat, and Morse characters can run once only, or repeat continuously. Easy chaining of memory to build up longer message sequences. KEYPAD control of memories. Repeat, and Morse characters can run once only, or repeat continuously. Easy chaining of memory to build up longer message sequences. KEYPAD control of memories. Repeat, and Morse characters can run once only, or repeat continuously. Easy chaining of memory to build up longer message sequences. KEYPAD control of memories. Repeat, and Morse characters can run once only, or repeat continuously. Easy chaining of memory to build up longer message sequences. KEYPAD control of memories. Repeat, and Morse characters can run once only, or repeat continuously. Easy chaining of memory to build up longer message sequences. KEYPAD control of memories. Repeat, and Morse characters can run once only, or repeat continuously. Easy chaining of memory to build up longer message sequences. KEYPAD control of memories. Repeat, and Morse characters can run once only, or repeat continuously. Easy chaining of memory to build up longer message sequences. KEYPAD control of memories. Repeat, and Morse characters can run once only, or repeat continuously. Easy chaining of memory to build up longer message sequences. KEYPAD control of memories. Repeat, and Morse characters can run once only, or repeat continuously. Easy chaining of memory to build up longer message sequences. KEYPAD control of memories. Repeat, and Morse characters can run once only, or repeat continuously. Easy chaining of memory to build up longer message sequences. KEYPAD control of memories. Repeat, and Morse characters can run once only, or repeat continuously. Easy chaining of memory to build up longer message sequences. KEYPAD control of memories. Repeat, and Morse characters can run once only, or repeat continuously. Easy chaining of memory to build up longer message sequences. KEYPAD control of memories. Repeat, and Morse characters can run once only, or repeat continuously. Easy chaining of memory to build up longer message sequences. KEYPAD control of memories. Repeat, and Morse characters can run once only, or repeat continuously. Easy chaining of memory to build up longer message sequences. KEYPAD control of memories. Repeat, and Morse characters can run once only, or repeat continuously. Easy chaining of memory to build up longer message sequences. KEYPAD control of memories. Repeat, and Morse characters can run once only, or repeat continuously. Easy chaining of memory to build up longer message sequences. KEYPAD control of memories. Repeat, and Morse characters can run once only, or repeat continuously. Easy chaining of memory to build up longer message sequences. KEYPAD control of memories. Repeat, and Morse characters can run once only, or repeat continuously. Easy chaining of memory to build up longer message sequences. KEYPAD control of memories. Repeat, and Morse characters can run once only, or repeat continuously. Easy chaining of memory to build up longer message sequences. KEYPAD control of memories. Repeat, and Morse characters can run once only, or repeat continuously. Easy chaining of memory to build up longer message sequences. KEYPAD control of memories. Repeat, and Morse characters can run once only, or repeat continuously. Easy chaining of memory to build up longer message sequences. KEYPAD control of memories. Repeat, and Morse characters can run once only, or repeat continuously. Easy chaining of memory to build up longer message sequences. KEYPAD control of memories. Repeat, and Morse characters can run once only, or repeat continuously. Easy chaining of memory to build up longer message sequences. KEYPAD control of memories. Repeat, and Morse characters can run once only, or repeat continuously. Easy chaining of memory to build up longer message sequences. KEYPAD control of memories. Repeat, and Morse characters can run once only, or repeat continuously. Easy chaining of memory to build up longer message sequences. KEYPAD control of memories. Repeat, and Morse characters can run once only, or repeat continuously. Easy chaining of memory to build up longer message sequences. KEYPAD control of memories. Repeat, and Morse characters can run once only, or repeat continuously. Easy chaining of memory to build up longer message sequences. KEYPAD control of memories. Repeat, and Morse characters can run once only, or repeat continuously. Easy chaining of memory to build up longer message sequences. KEYPAD control of memories. Repeat, and Morse characters can run once only, or repeat continuously. Easy chaining of memory to build up longer message sequences. KEYPAD control of memories. Repeat, and Morse characters can run once only, or repeat continuously. Easy chaining of memory to build up longer message sequences. KEYPAD control of memories. Repeat, and Morse characters can run once only, or repeat continuously. Easy chaining of memory to build up longer message sequences. KEYPAD control of memories. Repeat, and Morse characters can run once only, or repeat continuously. Easy chaining of memory to build up longer message sequences. KEYPAD control of memories. Repeat, and Morse characters can run once only, or repeat continuously. Easy chaining of memory to build up longer message sequences. KEYPAD control of memories. Repeat, and Morse characters can run once only, or repeat continuously. Easy chaining of memory to build up longer message sequences. KEYPAD control of memories. Repeat, and Morse characters can run once only, or repeat continu

- **NEW WAVE FRAME ANTENNA**

TRADE

G5RV Type Aerials, half-size, £13.00; full-size, £14.95. New hard-drawn copper aerial wire, 140ft., 14 s.w.g., £7.90; 50 metres, 16 s.w.g., £6.90. 12 s.w.g. soft enamelled copper wire, 10 metres, £3.50; 1.4mm., 50 metres, £5.75. Ceramic egg insulators, large, 50p; small, 40p. Guy rope, 4mm., polypropylene, 50 metres, £3.95; 4mm. nylon, 50 metres, £6.90. All items post paid. — S. M. Tatham, 1 Orchard Way, Fontwell, Arundel, West Sussex.

Double your power with our 10-watt kit for 10-metre FM rigs, only £10 + 25p post/packing. State rig. — D. J. Stanton (Radio), 35 Upper Tything, Worcester WR1 1JZ.

Spectrum 16/48K Morse reader, simple connection to receiver, no interface required, tracks approx. 8/30 w.p.m., cassette £6.00. Morse tutor, variable speed, variable spacing, cassette £4.50. Both programs, £10.00. — J. Price, 4 Housman Walk, Kidderminster.

D.I.Y. — QSL’s, 5 colours, 8 designs—200 mixed, £4.20. Hampshire Logbook, £1.90. Send s.a.e. for list. — RWW, P.O. Box 11, Romsey S05 8XW.

Phone-Atlas gazetteer, find where that U.K. telephone number originates quickly, only £20 + 25p post/packing. — Topham Press, 69 Langston Drive, Exmouth, Devon EX8 4HZ.

MORSE READER PROGRAM FOR ZX81, unexpanded, 3 speeds covering most radio signals, clean spaced scroll action for full moving screen reading, £7.00 inclusive. — Pinehurst Data Studios, 69 Pinehurst Park, West Moors, Wimborne, Dorset BH22 0BP.

May issue: due to appear Friday, April 27th. Single copies at 90p post paid will be sent by first-class mail for orders received by Wednesday, April 25th., as available. — Circulation Dept., Short Wave Magazine Ltd., 34 High Street, Welwyn, Herts. AL6 9EQ.

New! Scientifically prepared courses to get you through the R.A.E. examination. — Ring 01-346 8597 for free booklet.

QSL cards. Sample pack and price list forwarded on receipt of 24p remittance, to the Classified Dept., Short Wave Magazine Ltd., 34 High Street, Welwyn, Herts. AL6 9EQ.
Tuition: self-test manual for R.A.E. students—"Questions & Answers", £2.75 inc. post/packing. For details please send s.a.e.—Peter Bubb (Tuition), G3UWJ, 58 Greenacres, Bath BA1 4NR.

CALL SIGN LAPEL BADGES. Professionally engraved, by return of post, £1.50 cash with order (state name and callsign).—AYLMER-KELLY (S), 2 Pickwick Road, Corsham, Wilts. SN12 9BJ.

Course for City & Guilds, Radio Amateur's Examination. Pass this important examination and obtain your licence, with an RRC Home Study Course. For details of this and other courses (GCE, Career and professional examinations, etc.) write or phone: THE RAPID RESULTS COLLEGE, Dept. JV4, Tuition House, London SW19 4DS. Tel: 01-947 7272 (9 a.m. to 5 p.m.) or use our 24 hour Recordacall Service, 01-946 1102 quoting Dept. JV4.

QSL cards. Gloss or tinted cards, send s.a.e. for samples to Twrog Press, Dept. S, Penybont, Gelli-ydan, Blaenau Ffestiniog, Gwynedd.

Ham holiday in Sri Lanka. Write to Spangles Travels, 84 Templers Road, Mount Lavinia, Sri Lanka. (Tel: 010 941 71347).

High-class QSL cards, fast delivery. Send s.a.e. for samples and prices. — J. S. Coates, 57 Worrall Street, Morley, Leeds LS27 0PJ.

READERS ADVERTISEMENTS
10p per word, minimum charge £1.50 payable with order. Add 25 per cent for Bold Face (Heavy Type). Please write clearly, using full punctuation and recognised abbreviations. No responsibility accepted for transcription errors. Box numbers 40p extra. Send copy, with remittance, to the Classified Dept., Short Wave Magazine Ltd., 34 High Street, Welwyn, Herts. AL6 9EQ.

Copy must be received by April 12th to be sure of inclusion in the May issue, published on April 27th.

READERS
For Sale: Yaesu FT-101Z(FM), 9 bands, with Yaesu FC-902 ATU, both under 10 hours Tx use from new, £490 or near offer.—Ring Franklin, Watford (0923) 676319.

Selling: Icom IC-R70 receiver with HS-5 headphones, only five months old, little used, mint condition, original packing, plus 1983 "Handbook", £465 secures. Reasonable offers invited.—Ring Bailey, Merstham 2095.

Selling: Collins multi-channel radio receiver, crystal controlled covering 220-400 MHz, AC mains, £150. Crystal frequency meter/signal generator, 20-300 MHz, AC mains, £65. Please send s.a.e. with enquiries; carriage extra.—Hayward, Sunnysields, Lighthouse Road, St. Margaret's Bay, Dover, Kent.

Sale: Sony CRF-320 32-band receiver, perfect condition (RRP £800), £250 for quick sale.—Ring Hauser, 0726-850129.

Wanted: Service manual for Heathkit Type RA-1 receiver.—Ring Peacock, G3TXU, Mossley 3536 (Lancs).

For Sale: FRG-7700 general coverage receiver with FRV-7700(D) VHF converter, perfect condition, £250.—Ring Caley, 01-851 1615 after 6 p.m. (S.E. London).

Selling: Microwave Modules MM-2001 RTTY to TV converter, also drives a printer, speeds are 45.5, 50, 75, 100 baud, 110, 300, 600 and 1200 ASCII, suitable for USAT, £100.—Ring Williams, 0376-23604.

Wanted: Air-band transceiver, 12VDC or nicads, full number of channels (limited number considered), must be lightweight for microflight.—Ring John, Burnley (0282) 32556, after 7 p.m.

For Sale: Microwave Modules MM-2001 RTTY to TV converter, as new, guarantee, any reasonable offer accepted.—Toogood, 22 Straight Mile, Ampfield, Romsey, Hants. SO5 9BB. (Tel: 0794-68733 ext. 36, office hours).

For Sale: CR-100, historic 1940 Royal Navy communications receiver, in working order, with manuals and spare set of valves, £100 or offer.—Ring Keefe, Bristol 684848.

Selling: NRD-515 receiver, immaculate condition, used few hours only, 300 Hz and 600 Hz filters fitted, £75.—Jones, GW3CF, QTHR. (Tel: Prestatyn 89039).

For Sale: Yaesu FR-101 receiver, 21 x 500 kHz bands, 4m. and 2m. converters built-in, 3 crystal filters, FM/AM/SSB/CW, 240/12 volt, very good condition, £260.—Ring Williams, 0376-23604 after 6 p.m.

Sale: LAR Modules SW L Omni-Match, £32.80.—Ring Wood, Straight Mile, Ampfield, Romsey, Hants. SO5 9BB. (Tel: Doncaster 770448).

Selling: Katsumi memory keyer with paddles, four memories, 12/240V, very good condition, £75.—Ring Catterall, G4OBK, Chorley 74451.

For Sale: Lowe SRX-30 Rx with Mk.II ATU, 2-metre converter with adaptor, £120.—Ring Hunter, Orpington 54496.

May issue: due to appear Friday, April 27th. Single copies at 90p post paid will be sent by first-class mail for orders received by Wednesday, April 25th., as available.—Circulation Dept., Short Wave Magazine, 34 High Street, Welwyn, Herts. AL6 9EQ.

Wanted: Yaesu FRG-7700 or FRG-7, or similar.—Ring Reed, Weymouth 782302.

For Sale: FT-290R with nicads and charger, plus mobile mounting bracket and ¾-wave mag. mount, as new, £200.—Ring Bird, G3GDB, 01-859 4879 after 7 p.m.

"S.W.M." DX ZONE MAP

Latest 10th Edition

Great Circle Projection on durable, quality, paper for wall mounting, 33% in. wide by 24 ¾ in. deep. Giving essential DX information — bearing and distance of all parts of the world relative to the U.K., the Zone areas into which the world is divided and most of the rare islands.

Price £4.35 inc. p/p

"S.W.M." DX ZONE MAP

AMATEUR RADIO OPERATING MANUAL

New Second Edition

Most of the chapters in the new 2nd edition of this popular RSG8 title by R. J. Eckersley, G4FTJ, have been revised and updated. Chapters cover: the Amateur Service; setting up a station; operating practices and procedures; DX; contests; portable and repeaters; amateur satellites; RTTY; SS/TV; special event stations; with appendices and index.

Extract from a review in "Short Wave Magazine": "... this book should be of greatest interest and use to the newly licensed amateur with little, practical operating experience, to whom it can be thoroughly recommended".

208 pages

AMATEUR ELECTRONICS UK

14 PENNYWELL ROAD, BRISTOL BS50TJ

Telephone: Bristol (0272) 557732

Your number one source for YAESU MUSEN

As factory appointed distributors we offer you — widest choice, largest stocks, quickest deal and fast sure service right through—

For Sale: Microwave Modules MM-2001 RTTY to TV converter, as new, guarantee, any reasonable offer accepted.—Toogood, 22 Straight Mile, Ampfield, Romsey, Hants. SO5 9BB. (Tel: 0794-68733 ext. 36, office hours).

For Sale: CR-100, historic 1940 Royal Navy communications receiver, in working order, with manuals and spare set of valves, £100 or offer.—Ring Keefe, Bristol 684848.

Selling: NRD-515 receiver, immaculate condition, used few hours only, 300 Hz and 600 Hz filters fitted, £75.—Jones, GW3CF, QTHR. (Tel: Prestatyn 89039).

For Sale: Yaesu FR-101 receiver, 21 x 500 kHz bands, 4m. and 2m. converters built-in, 3 crystal filters, FM/AM/SSB/CW, 240/12 volt, very good condition, £260.—Ring Williams, 0376-23604 after 6 p.m.

Sale: LAR Modules SW L Omni-Match, £32.80.—Ring Wood, Straight Mile, Ampfield, Romsey, Hants. SO5 9BB. (Tel: Doncaster 770448).

Selling: Katsumi memory keyer with paddles, four memories, 12/240V, very good condition, £75.—Ring Catterall, G4OBK, Chorley 74451.

For Sale: Lowe SRX-30 Rx with Mk.II ATU, 2-metre converter with adaptor, £120.—Ring Hunter, Orpington 54496.

May issue: due to appear Friday, April 27th. Single copies at 90p post paid will be sent by first-class mail for orders received by Wednesday, April 25th., as available.—Circulation Dept., Short Wave Magazine, 34 High Street, Welwyn, Herts. AL6 9EQ.

Wanted: Yaesu FRG-7700 or FRG-7, or similar.—Ring Reed, Weymouth 782302.

For Sale: FT-290R with nicads and charger, plus mobile mounting bracket and ¾-wave mag. mount, as new, £200.—Ring Bird, G3GDB, 01-859 4879 after 7 p.m.
Selling: DX-100U, Hallicrafters HT-11A Top Band Tx/Rx, HT-11 in bits, Pye SSB 125 in bits, M/G set (12VDC in, 240VAC out, 125W), SSB filters and carrier xtals, Mk. 128 spy set. Offers?

Wanted: R.107, Eddystone bug key, DX-40U. -Ring Medway 253056.

Sale: For BBC 'B', Morsel Morse tutor program, Morse-key and lead, £15.50.—Brooks, "Wayside", South Milton, Kingsbridge, Devon. Tel: Kingsbridge (0548) 560771.

Be different, listen to VLF! APW2698 receiver, Type B29, covers 15-560 kHz, extremely selective, £20.—Ring Smith, 06845-61254.

For Sale: Icom IC-02E, new, boxed, £200 or near offer. —Ring Gray, 0908-567264.

Selling: AR88LF, £40. Offers invited for Viceroy Tx with pair of new PA valves, Marconi TF-329G Q-meter, Mullard high speed valve tester. Prefer buyers collect.—Raby, G8RF, QTHR. (Tel: Codsall 2387).

For Sale: Sony ICF-7600D, new, £125 or very near offer. Grundig Satellit 1400SL, £80.—Razavi, Top Flat, 44 Herbert Road, Brighton BN1 6PB.

For Sale: Lowe SRX-30 Rx, excellent condition, £80. Wanted: 1.7 MHz to 4.0 MHz coil for HRO.—Davis, 5 Ludlow Close, Loughborough, Leics. LE11 3TB. (Tel: 0509-213051).

Wanted: Panasonic DR-22RF/DR-2200BS 8-band general coverage Rx with VHF marine band.—Ring Vic, 01-642 5921.

Wanted: W.W.II American, British and German Tx/Rx bags accessories. Marconi R-1155B and all accessories for R-1155 and T-1154; power units, cords, plugs, etc. Collins 51J-4 kHz filters. FUG10/16 manuals and mounting accessories. I will send my full listings of offers/wanted (valves, crystals, manuals) on request.—Gayot Pascal, F6GCO, 17 Rue St.-Bernard, 75011 Paris, France.

Please mention "SHORT WAVE MAGAZINE" when contacting Advertisers —it helps you, helps them and helps us.
SIMPLE, LOW-COST WIRE ANTENNAS
by William Orr, W6SA1

Latest Edition

This excellent and thoroughly recommended handbook is the publication on the practical approach to building aerials. After starting with aerial fundamentals there are discussions and descriptions of ground-plane, end-fed, DX dipole, vertical and wire beam antennas, plus coverage on a universal HF antenna system and working DX with an "invisible aerial"; the SWR meter and coaxial cable also have chapters to themselves. The whole book is presented in an authoritative, immensely clear, readable and enjoyable manner with the emphasis on the practical throughout — to the extent that even the chap who can hardly strip a piece of co-ax need not feel at all left out! Just as practical for the SWL, too!

192 pages £6.20 inc. post.

Order from:
Publications Dept.
Short Wave Magazine Ltd.
34 High Street, Welwyn, Herts. AL6 9EQ

PRACTICAL HANDBOOK OF VALVE RADIO REPAIR
by Chas. E. Miller

One of the latest titles in the "Newnes Technical Book" series, this book contains historical and technical information, together with a comprehensive and detailed description of fault-finding and repair techniques, on a wide range of vintage broadcast bands receivers from the 1920's to the 1950's. The basic information is of great value in the restoration of valved amateur bands receivers, too. Published in hardback.

221 pages £15.95 inc. p/p

Order from:
Publications Dept.
Short Wave Magazine Ltd.
34 High Street, Welwyn, Herts. AL6 9EQ

BEGINNER’S GUIDE TO AMATEUR RADIO
by F. G. Rayer, G3OGR

Frank Rayer, well-known to many Short Wave Magazine readers, completed this book, published by Newnes, just before he died. It is written especially for those who are interested in learning about radio communication and explains simply many of the aspects of radio that can be baffling to the newcomer. Contains a great deal of information helpful in the preparation for the Radio Amateurs’ Examination.

169 pages £4.95 inc. p/p

Order from:
Publications Dept.
Short Wave Magazine Ltd.
34 High Street, Welwyn, Herts. AL6 9EQ

TELEPRINTER HANDBOOK
New 2nd Edition

This RSGB book, edited by GBG0J, G311R and G2UK, is one of the most comprehensive guides available to the theory and practice of amateur RTTY, and is a "must" for anyone seriously interested in this mode. Fully illustrated with line diagrams and close-up photos, it provides descriptions and servicing information for several popular European and American machines as well as other essential RTTY equipment. Plus chapters on setting up an RTTY station and operating procedures. Published in hardback.

368 pages £13.70 inc. p/p

Order from:
Publications Dept.
Short Wave Magazine Ltd.
34 High Street, Welwyn, Herts. AL6 9EQ

EASIBINDERS

To hold together 12 copies of "Short Wave Magazine".

Strongly made with stiff covers, and bound in red Wintrel Achina, these handsome binders have the title and date frame blocked in gold on the spine. Price £4.65 including post/packing.

Order from:
Publications Dept.
Short Wave Magazine Ltd.
34 High Street, Welwyn, Herts. AL6 9EQ.
1984
CALL BOOK
"U.S. LISTINGS"

In this issue . . .
* 433,921 licensed U.S. radio amateurs
* 30,505 new licenses included, issued since the
 1983 edition
* 106,567 changes in listings
* Then & Now — call letter changes
* QSL managers
* ARRL Countries list
* Zip Codes and Licence Class on all listings
* Standard Time charts
* Census of U.S. Amateur Radio licenses
* Plus many other features

1214 pages £ 15.90 inc. postage

Order from:
Publications Dept.
SHORT WAVE MAGAZINE LTD.
34 HIGH STREET, WELWYN,
HERTS. AL6 9EQ

1984
CALL BOOK
"DX LISTINGS"

(i.e. all amateur call-signs outside the U.S.A. and its
Possessions)

In this issue . . .
* 413,852 licensed radio amateurs
* 37,265 new licenses included, issued since the
 1983 edition
* 115,940 changes in listings
* QSL managers
* Radio amateur prefixes of the world
* ARRL Countries list
* Great Circle bearings
* Standard Time charts
* Census of world Amateur Radio licenses
* Plus much, much more!

1206 pages £ 15.25 inc. postage

Order from:
Publications Dept.
SHORT WAVE MAGAZINE LTD.
34 HIGH STREET, WELWYN,
HERTS. AL6 9EQ

WORLD RADIO/TV
HANDBOOK 1984

no price increase for 1984!

The World's only complete reference guide to
International Radio & Television Broadcasting Stations.
It includes: Frequencies, time schedules, announce-
ments, personnel, slogs, interval signals and much
more besides of value to the listener.
Lists all International short-wave stations, including
frequencies, for each country; foreign broadcasts, long
and medium wave stations (AM broadcast Band), TV
stations and domestic programmes. Long recognised as
the established authority by broadcasters and listeners.
It is the only publication that enables you to identify BC
stations quickly and easily. Enables you to fill more
pages in your log book on the SW BC bands and helps
you add more BC-station QSL cards to your collection.

£ 12.15 inc. p/p

from
SHORT WAVE MAGAZINE
34 High Street, Welwyn, Herts. AL6 9EQ

THE RADIO
AMATEUR'S
HANDBOOK, 1984

(ARRL)
61st Edition

Still the reference book no radio amateur should be
without! As well as covering Ohm's Law to spread-
spectrum, new material in the 1984 edition includes:
new tables on low-pass, high-pass and band-pass
filters; an updated section on the classes of amplifier
operation; a new kilowatt amplifier for 160, 80 and
40m.; a refined version of the De luxe Audio Filter; plus
updated chapters on Specialised Communications
Systems and Interference. A new and better index is
included — and a full-colour foldout spectrum chart.
And much, much more!

640 pages hard cover, £ 15.75 inc. p/p
soft cover, £ 12.50 inc. p/p

Order from:
Publications Dept.
SHORT WAVE MAGAZINE LTD
34 HIGH STREET, WELWYN,
HERTS. AL6 9EQ
Technical Books and Manuals

(ENGLISH AND AMERICAN)

AERIAL INFORMATION
- Antenna Handbook (Orr and Cowan).......................... £4.55
- Practical Aerial Handbook, 2nd Edition (King).................. £10.60
- Beam Antenna Handbook.. £9.90
- Cubical Quad Antenna, 2nd Edition............................. £3.90
- Simple Low Cost Wire Antennas, by Orr......................... £6.20
- Aerial Projects (Penfold).. £6.95
- 73 Dipole and Long-Wire Antennas (E. M. Noll)................. £6.70
- Antenna Book (ARRL) latest 14th Edition...................... £6.65
- The (ARRL) Antenna Anthology................................ £3.65
- Two-metre Antenna Handbook, F. C. Judd...................... £6.35
- HF Antennas for All Locations (RSGB)........................ £6.10
- The Antenna Construction Handbook for Ham, CB and SWL (Tab).......................... £6.50
- 25 Simple Shortwave Broadcast Band Aerials (E. M. Noll) new title.......................... £2.25
- 25 Simple Amateur Band Aerials (E. M. Noll).................. £2.25
- VHF Propagation Handbook, by WA4MVI........................ £3.65

BOOKS FOR THE BEGINNER
- Amateur Radio (Lutterworth Press)............................ £9.60
- Elements of Electronics, Book 1............................... £2.90
- Elements of Electronics, Book 4............................... £3.36
- Solid State Short Wave Receivers for Beginners (R. A. Penfold).......................... £4.25
- Beginners Guide to Radio, 8th Edition........................ £5.06
- Beginners Guide to Electronics, 4th Edition................ £5.06
- Beginners Guide to Amateur Radio (Newnes)................... £4.96
- Morse Code for the Radio Amateur (RSGB)..................... £1.20
- Understanding Amateur Radio (ARRL)........................ £4.70

GENERAL
- Weekend Projects for the Radio Amateur (ARRL).............. £3.05
- Projects in Amateur Radio and Short Wave Listening (Newnes).......................... £3.65
- How to Build your Own Solid State Oscilloscope (Rayer).......................... £2.25
- How to Design and Make Your Own PCB's........................ £2.25
- How to Build Advanced Short Wave Receivers................ £2.25
- Better Short Wave Reception, 5th Edition.................... £6.20
- FM & Repeaters for the Radio Amateur (ARRL)................ £4.35
- EasiBender (to hold 12 copies of "Short Wave Magazine" together).......................... £4.65
- The World's Radio Broadcasting Stations and European FM/TV (Newnes)................ £7.60
- Guide to Broadcasting Stations (18th Edition)................ £5.00
- Radio Stations Guide... £2.05

HANDBOOKS AND MANUALS
- Radio Communication Handbook, Vols. 1 and 2 combined (paperback), RSGB........ £11.05
- Teletypewriter Handbook, New 2nd Ed. (RSGB)................ £13.70
- TVI Manual, 2nd Ed. (RSGB)..................................... £1.85
- The Radio Amateur's Handbook 1984 (ARRL), soft cover......................... £12.50
- The Radio Amateur's Handbook 1984 (ARRL), hard cover.......................... £15.75
- Learning to Work with Integrated Circuits (ARRL)............. £1.70
- Solid State Basics for the Radio Amateur (ARRL).............. £5.75
- The Satellite Experimenters' Handbook (ARRL), new title.......................... £8.45
- Test Equipment for the Radio Amateur (RSGB).................. £5.75
- Amateur Radio Operating Manual (RSGB) 2nd Ed.......................... £4.96
- Oscilloscopes -- How to Use Them, How They Work (Newnes)......................... £4.85
- Practical Handbook of Valve Radio Repair (Newnes)............ £15.95
- Radio Propagation Handbook, by W4LGF (Tab)................... £10.10

USEFUL REFERENCE BOOKS
- Solid State Design for the Radio Amateur (ARRL).............. £6.35
- Foundations of Wireless and Electronics, 9th Edition (Scroggins).......................... £10.10
- Amateur Radio Technique, 7th Edn. (RSGB)..................... £6.00
- U.K. Call Book 1984 (RSGB)..................................... £3.60
- Hints and Kinks (ARRL)... £12.50
- Electronics Data Book (ARRL)................................... £2.40
- Radio Frequency Interference (ARRL).......................... £3.40
- Electronics Pocket Book, 4th Edition (Newnes)................ £6.20

VALVE AND TRANSISTOR MANUALS
- Towers' International Transistor Selector, latest Edition (Up-Date No. 2)......... £10.60
- Semiconductor Data Book, 11th Edition (Newnes)................ £8.05
- International Transistor Equivalents Guide.................... £4.95
- International Diode Equivalents Guide........................ £2.60

VHF PUBLICATIONS
- VHF Handbook, Wm. I. Orr & W6SAI new 3rd Edition............... £8.50
- The UHF Compendium, Parts 1 and 2............................. £12.50

Available from

SHORT WAVE MAGAZINE
Publications Dept.
34 High Street, Welwyn, Herts. AL6 9EQ—Welwyn (043871) 5206/7

(Counter Service: 9.30-5.00 Mon. to Fri.)

(Addresses C.W.O)