an amateur band transceiver for the discerning, the JST100

The Japan Radio Company has, in the manufacture of the JST100, produced an amateur band transceiver, the quality of which would doubt have only been able to dream about. While other manufacturers have concentrated on producing transceivers which appeal with the amateur bands include a general coverage receiver, JRC has devoted time and effort to produce the finest performer possible on many of the amateur bands. Their considerable efforts have been amply rewarded, the JST100 is the finest amateur band transceiver that we have seen for many years. To produce perfection is not easy, neither is it cheap, and these amateur band transceivers which cost less than the JST100, but at it is as large, but we are certain that none of them is anywhere near as expensive as the JST100. However, there is no one thing that is certain. As with other rigs in the Japan Radio Company's range, and I am referring to the JRC600, and this JST100 general coverage receiver, they become the property of the discerning few. Indeed, it is true that one can often improve the impression of owning a JST100 transceiver without even switching it on.

Taking a look across the front panel one finds a comprehensive display of operating information: a digital frequency readout down to 10 Hz which at shift mode indicates the frequency difference between VFO's 1 and 2. Above the readout are a string of LEDs showing that the transceiver is ready for the frequency shift, transmitting, that the mike gain is set high, and that the transmitter is at the optimum setting. The LED's on the left show the transmitter power and cold conditions which are either in use or has been accessed and which of the four modes is being used. A fully dedicated meter indicates Vc, lc, transmitter output power, compression level and reflected power to be closely and accurately monitored. While an selectable filter is as a switch, front panel controls adjust the sensitivity of the readout, set the mike gain and compression levels, adjust the threshold level of the noise blanker and provide VOX control. Transmitted power is adjustable, a front panel knob reducing output from 100 watts PEP to approximately 10 watts. All the usual modes of communication are available on the transceiver, USB, LSB, RTTY and CW wide, narrow RED/RED and narrow CW (300Hz). The transceiver has 11 memory channels, each channel holding not only the frequency and band but also the operating mode. Two digital VFO's are incorporated in the transceiver, each tuning across the band in 10 Hz steps. Use of the two VFO's together permits swift frequency changes, and the

LOWE ELECTRONICS
Chesterfield Road, Matlock, Derbyshire. DE4 5LE.
Telephone 0629 2817, 2430, 4057, 4995. Telex 377428.
The TW4000A covers in one compact transceiver both the 2 metre band (144.000 to 148.000 MHz) and also the full 10 MHz of the 70 centimetre band (430.000 to 440.100 MHz). Measuring 60mm high, 161mm wide, 217mm deep and weighing only slightly more than 2.0 kg, the TW4000A is smaller than most current 2m a.

Added to the exceptional receive performance, now a Tri standard by which others are judged, is the TW4000A's 25 watt capability on both 2 metres and 70 centimetres. Using the TW4000A not only can you hear weak signals on either band but they can hear you too. A Hi/LO switch reduces the output power to 5 watts when required.

A green backlit liquid crystal display gives frequency, memory channel, repeater offset, VFO A or B, scan function, channel occupied and "ON AIR" information. Brightly illuminated, the display can easily be read under unfavourable conditions. All important controls are illuminated for easy operation during darkness.

Ten memory channels are provided with store frequency, band and repeater offsetion 2 metres minus 600 kHz shift, or 70 centimetres plus 1.6 MHz shift. Memory 1 is used for priority watch, memories Band 8 for instant recall and memory 0 for split channel use (cross band operation). An internally fitted lithium battery gives memory backup.

Frequency scan is extremely versatile in that the rig can be programmed to scan either all memory channels or those holding either 2 metre or 70 centimetre frequencies. The rig can also be programmed to skip those channels which the operator does not wish to monitor. The scan direction can also be changed by using the UP/DOWN switch on the microphone. In order that an important contact is not missed, when in priority watch mode, the rig switches back from the frequency in use to memory channel 1 for one second out of ten. The two most used frequencies can be placed in memories Band 9 respectively, common channel scan checking each alternatively for approximately 5 seconds.

The use of GaAs FETs in the RF amplifiers on both 2 metres and 70 centimetres, as well as the use of high performance MCF's in the last IF section, provides a high receive sensitivity and an excellent dynamic range.

Two VFO's are provided tuning in either 5 or 25 kHz steps, the UP/DOWN shift switch on the microphone providing control. Full repeater facilities are included giving the correct frequency shift, 1750 Hz access tone, and of course the essential repeater shift.

The use of advanced diecasting techniques in the fabrication of the combined chassis/heat sink, as well as in the RF shielding results in greatly improved mechanical strength, plus a higher immunity to RF interference.

OPTIONAL ACCESSORIES

LOWE IN LONDON, Open monday to saturday, six days a week lower sales floor, Hepworths, Pentonville Rd, London telephone 01.537.6702

LOWE IN GLASGOW, Open tuesday to saturday 4.5 Queen Margarets Rd, Glasgow telephone 041.945.3526
AUTOMATIC WOODPECKER BLANKER MODEL: SW22

All too often in the past the appearance of the Woodpecker has led to the belief that this is a DX rig, whether this is correct or not. With our new 4M400 series now in production, the DX rig has come back to life again and you can now copy the original signal. What happens is that the receiver is tuned to a frequency where there is a strong signal, and the blanker is switched on. When the blanker is switched off, you can then hear the original signal. This is a very useful feature, as it allows you to copy the original signal without the interference of a strong signal.

MODELS: FL2, FL3, FL2A

Model FL2 represents the ultimate in audio filters for SSB and CW. Connected in series with the blanker, it gives variable extra selectivity better than a single bank of expensive filter. In addition it contains an automatic notch filter which can remove a "tuner upper" of all types.

Model FL2 is exactly the same but without the audio notch.

Any existing FL or FL3 can be converted to FL2 by adding Model FL2A conversion kit which is a fully tested auto-notch module in P.C. board. Detachable filters electronically allow complete configuration whenever a GAR would have been mandatory.

Prices: FL2 £280.00 with VAT £289.70, FL3 £112.50 with VAT £122.37, FL2A £34.00 with VAT £35.67.

MODELS AD73/AD70

Model AD70 is a unique dual mode audio filter designed to connect in series with a receivers loud speaker. As an automatic notch filter it makes a continuous tone disappear within about half a second. You just leave it permanently in circuit and forget about problems from "tuner upper".

As a CW filter it has a pole tunable filter dramatically pulls out weak signals from noise.

At all times the 16 LED bar graph display shows the filter's centre frequency. In auto-notch mode for example, you can see the notch sweeping from the filter's tuning range every second. Until it finds a tone to notch out.

Performance independent of receiver volume setting thanks to a built-in compander chip, and the notch depth is typically well over 40 db.

Price: £59.00 plus VAT (£67.85 total). Available now. Free data sheet on request.

Prices: AD70 £41.00 with VAT £47.15, AD70 £36.00 with VAT £41.40

COMPACT RECEIVING ANTENNAS MODELS AD79/AD70

Datong Active Antennas solve the generic problem of receiver location for a "hard" receiving aerial. Model AD79 is a dual mode aerial. Model AD70 has dual mode generally connectivity to the much larger conventional aerial market. Only 2.65 m (8 ft) long and very lightweight.

Moreover they do not suffer from interference picked up by the feeder cable. Each pickup can be a problem with conventional aerials because it is hard to maintain a signal balance over a broad of frequencies. In most cases antennas are designed to be used in the market by Datong only a few hours high in the market, but many times have been brought by reality and experience. Datong Active Antennas represent an advanced solution to a common problem, and as far as we know have no serious competition in terms of performance at the price. They are clearly what you would expect from an active designer who really cares.

Datong Active Antennas are available from your usual suppliers on a normal ready to ship basis, and at the price quoted which is not fixed on our order book and subject to change.

Whether you have a dual mode aerial, or just need an "active" aerial. Your needs can be satisfied.

PRICE

All Datong products are designed and built in the U.K.

DATA TONG

Accessories available delivery in 6 to 8 weeks. Orders subject to VAT and other local taxes.

DATONG ELECTRONICS LIMITED

Dept SW, Spence Mills, Mill Lane, Bromley, Leeds LS13 3HE, England. Tel: (0532) 528246.
AMATEUR ELECTRONICS UK

Your number one source for YAESU MUSEN

When you buy from Amateur Electronics UK you are dealing with a FACTORY APPOINTED IMPORTER with the largest stocks of equipment and spares in the country. Our delivery and after-sales-service is second to none and for your convenience we offer the following facilities:

- On-the-spot credit sales (against recognised bank or credit cards)
- Interest free finance (50% deposit - balance over 12 months)
- Free Securicor delivery on all major items
- FACTORY BACKED EQUIPMENT - write or phone for all the details.

YAESU - Latest...

Latest news from YAESU - Expected in August is the new FT-757GX all-mode HF transceiver - 160 thru ten of course plus general coverage RX, FM and all options fitted including dual VFO's, eight memories, programmable memory scan, full break-in on CW, 100 watts PEP/DC output at 100% duty cycle and all this in a package measuring 238W x 93H x 238Dmm!

KEEP AHEAD WITH THE YAESU FT-102!

- Better Dynamic Range
- Total IF Flexibility
- New Noise Blanking
- Commercial Quality Transmitter
- Transmitter Audio Tailoring
- New VFO Design
- IF Transmit Monitor
- New TX Purity Standard

ANCILLARY EQUIPMENT

SP-102 EXTERNAL SPEAKER/AUDIO FILTER
FC-102 1.2 KW ANTENNA COUPLER
FV-102DM SYNTHESIZED, SCANNING EXTERNAL VFO

FT-290R/790R
2m & 70cm PORTABLES
10 memories, 2 VFO's, LCD display, C size battery, easy car mounting tray.
FT-290R 0.5 low/2.5 high watts out
FT-790R 0.2 low/10.0 high watts out (incorporates speech compressor).

FT-230R/730R
2m & 70cm FM MOBILES
- Two Independent VFO's
- Priority function
- Memory and band scan
- 12.5/25kHz steps
- USB/LSB/FM/CW full scanning

FT-480R/780R
2m & 70cm MOBILES
The most advanced 2 metre and 70 cm mobiles available today - USB, LSB, FM, CW full scanning with priority channel, 4 memory channel, dual synthesized VFO system.
This incredible new transceiver incorporates the highest level of microprocessor control ever offered in an HF all solid-state receiver including a general coverage (0.18-30MHz) receiver with its own separate front end. This amateur transceiver offers a new dimension in frequency control, whereby all frequencies can be entered by either front panel keyboard, or front panel dial, and then scanned in selectable steps either freely or between any two programmable limits. Twelve memories include four with special protection, and two large digital displays allow full flexibility and control for split frequency operation while two meters allow full transmitter information.

Additional controls include IF Width and Shift on concordant controls, AMGC (Automatic Mic Gain Control) to set microphone input threshold, RF Speech Processor, AEC (Automatic Echo Cancellation), IF Noise and Audio Peak filters, Transmit Monitor, Noise Blanker and CW Full Break-In, Controls are also provided for FM Squelch and CW Keyer Speed when the optional FM and Keyer Units are installed.

The most important feature of the FT-980 is that practically all of the above features can be controlled by the user's separate personal computer when connected through an optional interface also available from Yaesu. Where up to now the few amateur transceivers that offered any kind of computer interfacing at all permitted only frequency control, the FT-980 permits almost total control of all functions from a separate microcomputer including Mode, IF Width and Shift, Scanner Step, Speed and Limits, and switching of most other functions. (Microcomputers are not available from Yaesu.)

FT-77 THRTFY HF TRANSCIEVER

FT-726R VHF/UHF Multi-bander

Reliable Computer-aided design of the circuit boards in the FT-77 assures the most efficient component layout possible in the smallest space, while automatic parts insertion and soldering greatly diminish the chance for human error. Reliability and quality control are thus improved and simplified beyond the degree previously attainable in amateur equipment. This means longer equipment life with less chance of breakdown.

Expandable The extremely compact size and simple control layout make the FT-77 ideal for mobile operation or as the heart of a complete base station with the optional FT-700 AC Power Supply, FT-7080M Digital Scanning VFO and Memory System, FT- 700 VHF Transceiver and the FT-700 Scanner Tuner. The competitive price of the FT-77, coupled with the expansion capabilities presented by these accessories, make this transceiver the perfect choice for those new to amateur HF communication, or as a practical second rig for OIC liners.

For full details of these new and exciting models, send today for our latest SHORT FORM CATALOGUE. All you need to do to obtain the latest information about these exciting developments from the World's No.1 manufacturer of amateur radio equipment is to send 3p in stamps and an added bonus you will get our credit voucher: value £35 - a Q10 winner.

Amateur Electronics UK

504-516 Alum Rock Road, Birmingham 8

Telephone: 021-327 1497 or 021-327 6313

Telex: 334312 PERLEC G

Opening hours: 9.30 to 5.30 Tues, to Sat, continuous - CLOSED all day Monday.
Input Power vs Output Power

<table>
<thead>
<tr>
<th>Input Power</th>
<th>Output Power (R.M.S.)</th>
<th>Modes of Operation</th>
<th>Product</th>
<th>Pre-Amplifier</th>
<th>Power Requirements</th>
<th>RF Connectors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 or 3W</td>
<td>30W</td>
<td>SSB</td>
<td>MML144/30-LS</td>
<td>12dB</td>
<td>13.8V @ 4A</td>
<td>SO239</td>
</tr>
<tr>
<td>10W</td>
<td>50W</td>
<td>FM</td>
<td>MML144/50-S</td>
<td><1.5dB</td>
<td>13.8V @ 6A</td>
<td>SO239</td>
</tr>
<tr>
<td>10W</td>
<td>100W</td>
<td>AM</td>
<td>MML144/100-S</td>
<td></td>
<td>13.8V @ 12A</td>
<td>SO239</td>
</tr>
<tr>
<td>1 or 3W</td>
<td>100W</td>
<td>CW</td>
<td>MML144/100-LS</td>
<td></td>
<td>13.8V @ 14A</td>
<td>SO239</td>
</tr>
</tbody>
</table>

PRICES (inc. VAT)

- **MML144/30-LS**: £69.95 (p+p £2.50)
- **MML144/50-S**: £85.00 (p+p £2.50)
- **MML144/100-S**: £139.95 (p+p £3.00)
- **MML144/100-LS**: £159.95 (p+p £3.00)
- **MML432/30-L**: £99.00 (p+p £3.00)
- **MML432/50**: £109.95 (p+p £3.00)
- **MML432/100**: £228.65 (p+p £4.00)

Specifications

- **Input Power**: 1 or 3W, 10W, 100W
- **Output Power (R.M.S.)**: 30W, 50W, 100W
- **Modes of Operation**: SSB (Single Sideband), FM (Frequency Modulation), AM (Amplitude Modulation), CW (Continuous Wave)
- **Product Models**: MML144/30-LS, MML144/50-S, MML144/100-S, MML144/100-LS, MML432/30-L, MML432/50, MML432/100
- **Pre-Amplifier Gain**: 12dB, <1.5dB
- **Power Requirements**: 13.8V @ 4A, 13.8V @ 6A, 13.8V @ 12A, 13.8V @ 14A
- **RF Connectors**: SO239, SO239

This advertisement represents a cross-section of our extensive range of linear power amplifiers, currently available for the 144 and 432 MHz bands.

We offer the widest choice of superb quality, British-made products, to suit all transceivers, from handheld to basic station models, and provide guaranteed value for money on ALL OF OUR PRODUCTS ARE FULLY GUARANTEED FOR 12 MONTHS INCLUDING PA TRANSISTORS.

Although cheaper amplifiers have appeared on the market, we seriously advise the potential buyer to consider the following points:

1. Has the company manufacturing the product been in business since 1999?
2. Is the product manufactured solely in the UK? If not, what happens when you need service facilities?
3. Does the amplifier you are considering have a "realistic" power output specification? Be sure to check if the power rating is RMS or PEP!
4. Is the amplifier fully guaranteed for 12 months, including PA devices?
5. If the answer to any of these questions is No, then you should telephone us immediately for help.

All Microwave Modules products are fully guaranteed for 12 months (including PA Transistors).

MICROWAVE MODULES LTD
BROOKFIELD DRIVE, AINTREE, LIVERPOOL L9 7AN, ENGLAND
Telephone: 051-523 4011 Telex 628608 MICRO G
CALLERS ARE WELCOME PLEASE TELEPHONE FIRST
South Wales Communications Ltd

At S.W.C. you will find an extensive range of amateur radio equipment. Our informal showroom provides a relaxing atmosphere to view and compare equipment. Our friendly and experienced licensed staff are on hand to advise you, and of one thing you can be sure, S.W.C. are fully AUTHORIZED DEALERS with full factory and importer backup.

Don't forget the S.W.C. members' discount!

Price

- **FT 200:** £125.00
- **C40:** £79.00
- **IC73:** £59.00
- **IC91:** £79.00
- **IC7100:** £249.00
- **IC720:** £159.00
- **FT 200:** £199.00
- **FT 400:** £279.00
- **FT 500:** £289.00
- **FT 700:** £399.00

S.W.C. CLUB MEMBERS' SALE

- S.W.C. club members have a special offer on some of the above models, with up to 20% off the list price. Check with our Sales Staff for details.

ACCESSORIES

- Full range of ICOM accessories available.

MICRODOT

Enjoy mobile operation this year with a MICRODOT! Ideal for the mobile enthusiast.

FT 200R

- 10-memory LCD display
- 2W x 1/2W from mic
- NCAB 20kHz/10kHz/20kHz B.W.
- SOFT CASE £4.50 inc. Post
- ANP BDA £8.50 inc.

OCASAR

- 10W transceiver
- 5W x 1/2W from mic
- NCAB 20kHz/10kHz/20kHz B.W.
- SOFT CASE £4.50 inc. Post
- ANP BDA £8.50 inc.

NEW VHF 1290

25 WATTS RF OUTPUT

On/Off switch and FL, standard and 12V 12V standard, times and IF.

FT 200R

- £195.00 inc.

PY7700

- HORIZON 12V-DC PM SSB ASK/FSK CW 10m dual-dial analog/digital

PYA7000

- HORIZON 12V-DC PM SSB ASK/FSK CW 10m dual-dial analog/digital

MAIL ORDERS EXPRESS

Opening hours: 10.30-5.30 weekdays, 10.30-4.30 Saturday.

Showroom closed Mondays

GRANGY MASTER PENYCAEMARW, NR. USK, GWENT

IN ASSOCIATION WITH THE HASTERTY LTD GROUP OF ENTERPRISES
NEW BRANCH OPEN
EAST OF LONDON
FEW MINUTES FROM M25

12 NORTH STREET, HORNCHURCH, ESSEX

SPECIAL OPENING OFFERS TO CALLERS AT HORNCHURCH
FULL DEMONSTRATION FACILITIES AT BOTH BRANCHES
COME AND SEE THE LATEST EQUIPMENT

G30JV
TRIO TS430
150 kHz 25 MHz, 150 watt transceiver. SSB CW AM/FM. All solid state. Come and try it for yourself. Remember nobody else in Essex can offer you the benefit of Trio's UK after sales service.

G6VJO
TRIO TS830
160 10W, SSB & CW, 100 watts, 280v AC. A complete self contained station. Incredible value, incredible performance.

TRIO R600
2000 Hz - 20 MHz receiver. Another winner from Trio. We rate this as one of the best buys in receivers today. We will be happy to demonstrate it.

AZDEN PCS4000
YAESU FRG7700
FDK M750X
3W FM 25 watts
FM SSB CW 10 watts

As sole distributor of this range of products we can offer you unparalleled service back up. Possibly the most advanced FMing available. No less than 16 Memories, 12x or 20x QST steps, comprehensive scanning, reverse repeater, complete with microphone and mounting brackets.

PART EXCHANGE WELCOME
INSTANT CREDIT AVAILABLE

Retail Sales, Service and Mail Order
18-20, MAIN ROAD, HOCKLEY, ESSEX. Tel: (0702) 206835
Retail Sales
12 NORTH STREET, HORNCHURCH, ESSEX. Tel: (04024) 44765
Open 9-5.30, E.C. 1 p.m. Wednesday.
ADVERTISERS' INDEX

<table>
<thead>
<tr>
<th>Company</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amateur Electronics UK</td>
<td>224, 235</td>
</tr>
<tr>
<td>Amateur Radio Exchange</td>
<td>Back cover</td>
</tr>
<tr>
<td>J. Birkett</td>
<td>276</td>
</tr>
<tr>
<td>Brethurst Electronics</td>
<td>239</td>
</tr>
<tr>
<td>British National Radio and Electronics School</td>
<td>274</td>
</tr>
<tr>
<td>Colomor Electronics Ltd</td>
<td>278</td>
</tr>
<tr>
<td>Datong Electronics Ltd</td>
<td>233</td>
</tr>
<tr>
<td>Dewhury Electronics</td>
<td>273</td>
</tr>
<tr>
<td>Granville Mill</td>
<td>279</td>
</tr>
<tr>
<td>G2DYM Aerials</td>
<td>278</td>
</tr>
<tr>
<td>G3HSC (Rhythm Morse Courses)</td>
<td>278</td>
</tr>
<tr>
<td>D. P. Hobbs Ltd</td>
<td>279</td>
</tr>
<tr>
<td>Jack & Tony</td>
<td>275</td>
</tr>
<tr>
<td>KW Ten-Tec Ltd</td>
<td>277</td>
</tr>
<tr>
<td>Leeds Amateur Radio</td>
<td>275</td>
</tr>
<tr>
<td>List-A-Rig (G3RCQ)</td>
<td>279</td>
</tr>
<tr>
<td>Lowe Electronics Ltd</td>
<td>225</td>
</tr>
<tr>
<td>Metalfayre</td>
<td>274</td>
</tr>
<tr>
<td>Mcknight: Crystal Co., Ltd</td>
<td>278</td>
</tr>
<tr>
<td>Microwave Modules Ltd</td>
<td>236</td>
</tr>
<tr>
<td>MitTek Ltd</td>
<td>275</td>
</tr>
<tr>
<td>P.M. Electronics Services</td>
<td>275</td>
</tr>
<tr>
<td>Quartshak Marketing Ltd</td>
<td>275</td>
</tr>
<tr>
<td>Radio Shack Ltd</td>
<td>272</td>
</tr>
<tr>
<td>R.T. & J Electronics Ltd</td>
<td>274</td>
</tr>
<tr>
<td>F.G. Rylands</td>
<td>279</td>
</tr>
<tr>
<td>S.E.M.</td>
<td>272</td>
</tr>
<tr>
<td>South Midlands Communications Ltd</td>
<td>226, 227, 228, 229</td>
</tr>
<tr>
<td>South Wales Communications (Hastery) Ltd</td>
<td>237</td>
</tr>
<tr>
<td>Spacemark Ltd</td>
<td>279</td>
</tr>
<tr>
<td>Stephen James Ltd</td>
<td>232</td>
</tr>
<tr>
<td>S.W.M. Publications</td>
<td>inside back cover, 276, 277, 278, 279, 280</td>
</tr>
<tr>
<td>Thelan Electronics Ltd</td>
<td>230, 231</td>
</tr>
<tr>
<td>Uppington Tele/Radio (Bristol) Ltd</td>
<td>279</td>
</tr>
<tr>
<td>Reg Ward & Co. Ltd</td>
<td>277</td>
</tr>
<tr>
<td>Waters & Stanton Electronics</td>
<td>215</td>
</tr>
<tr>
<td>Geoff Watts</td>
<td>276</td>
</tr>
<tr>
<td>W.H. Westlake</td>
<td>277</td>
</tr>
</tbody>
</table>

CONTENTS

Editorial — Licence Fees. ... 241
Communication and DX News, by E. P. Essery, G3KFE 242
"Kitchen-Table Technology", by Rev. G. C. Dobbs, G3RJV 245
Simple Regulated Power Supply Units, 248
Datong Automatic Audio Notch Filter, Model ANF — Equipment Review. 252
VHF Bands, by N. A. S. Fitch, G3FPK 254
The "Whitfield" SSB/CW/QSK Transceiver, Part V, by Ian Keyser, G3ROO 258
"SWL" — Listener Feature ... 262
Basics for the SWL and R.A.E. Candidate, Part XI 265
Clubs Roundup, by "Club Secretary" 268

Editor: PAUL ESSERY, G3KFE/G3SWM
Advertising: Charles Forsyth
Published at 34 High Street, Welwyn, Herts. AL6 9EQ, on the last Friday of the month, dated the month following.
Telephone: 04-3871 5206 & 5207
Annual Subscription:
Home: £19.00, 12 issues, post paid.
Overseas: £24.00 (£17.00 U.S.), post paid surface mail

Editorial Address: Short Wave Magazine,
34 High Street, Welwyn, Herts. AL6 9EQ, England.

Prices shown in advertising in this issue do not necessarily constitute a contract and may be subject to change.

AUTHOR'S MSS
Articles submitted for Editorial consideration must be typed double-spaced with wide margins on one side only of A4 sheets. Photographs should be lightly identified in pencil on the back with details on a separate sheet. All drawings and diagrams should also be shown separately, and tables of values prepared in accordance with our normal setting convention — see any issue. Payment is made for all material used, and it is a condition of acceptance that full copyright passes to the Short Wave Magazine, Ltd., on publication.

Short Wave Magazine Ltd
E. & O. E. VAT Reg. No. 239 4864 25
OVERHEARD ON 80 METRES:
"Bredhurst Electronics — a little gem. An Aladdin’s cave — well worth a visit. Why don’t you try our service too?"

MAIL ORDER
Mon-Sat. 9.30-12.30 / 1.30-5.30

BREDHURST ELECTRONICS

All prices correct at time of going to press.

RETAIL
Mon-Sat. 9.12 noon / 1.30-5.30

July, 1983

THE SHORT WAVE MAGAZINE
Licence Fees

The Home Office recently announced that fees for the different types of radio licence available are to be varied. Among other changes this means that our licence will now cost £12 per year, while some PMR and ship licences will cost less. The H.O. has told the RSGB that it “hopes the increased revenue will enable an improved service to be provided”. Quite rightly, the RSGB has questioned this stinging rise, and asked for a more detailed explanation of what is intended.

CB

Still with the Home Office, a new frequency allocation for the CB 934 MHz band has been announced. The change, in accordance with the Conference of European Posts and Telegraphs Administrations (CEPT) will have the effect of moving the UK channels down in frequency by 12.5 kHz. There has been consultation with the two manufacturers involved; Reftec, who are in production, will shortly announce arrangements for the modification of their sets, while Grandstand, who are about to enter production, have indicated that they will change almost immediately. There is a date, yet to be fixed, by which all sets produced must be to the new specification, and also a date by which all sets in use must be modified or withdrawn from service. Performance specification MPT1321 is being amended as appropriate.

Does this mean more out-of-band operation?
We seem to have swung into more summery conditions on the bands, even if the weather hasn’t played along as well. The low bands have been plagued by static and rain noise, and conditions generally have been very much like the curate’s egg. However, there have been some small bright patches; the evening before we started this piece the 28 MHz band was open around 2200 to the U.S.A., and a couple of evenings earlier your scribe’s doubts about his twenty-metre aerial were somewhat shaken by finding the Phone end of the band—a spot he rarely looks at these days bubbling nicely with DX. So—while there’s life, there’s hope!

Top Band

Our first item has to be a letter we have received from Steve Perry, W1BB, the doyen of Top Band activity for so many years. Steve writes to say he has a health problem which for the moment, and for some time past, has restricted his Top Band activity to the odd early-evening opening when circumstances has allowed him to be at the rig. This is indeed sad, and we feel sure all the Top Band types who have had the pleasure of working W1BB, or of receiving his Bulletin, over the years, will join with us in offering our best wishes for a speedy recovery; and we would also ask readers to pass the word around known Top Band addicts, who may care in addition to drop Steve a line themselves. The band doesn’t seem the same somehow without the W1BB signal to show us how it ought to be done!

Another letter from the States is that invaluable effort by W1WY; in it he includes some provisional high scores for the 1983 CW WW 160m. Contest, and an interesting breakdown it makes. In the SSB contest, none of the single-op stations were outside the Americas, but in the multi-op category OK3KFO won handily, and at eleventh was OK1KO; congratulations to both. As for the CW section, the highest of the U.K. multi-op stations was GW3YDX, plus quite a decent sprinkling of Europeans scattered throughout the list in both multi-op and single-op categories, but at the time the list was printed it was by no means definitive, as some of the entries were still to arrive.

A turn now to G3ZGC, who wrote from home about his last trip to the Caribbean where he signed at one time or another G3ZGC/J7, G3ZGC/J8, G3ZGC/J6L, G3ZGC/J8P6, and of course G3ZGC/A1M. As far as Top Band was concerned nothing at all was heard on either the March or the April/May trips; but we believe Richard did put out a call or two as your scribe heard a signal in the noise at his QTH which copied as G3ZGCsuffix something-or-other—but no more. G3HKU (Sheppey) says both conditions and his own activity were poor; so he records QSOs on SSB with PA0PN and, on CW, UK9YER.

Apart from work commitments, holidays, and other such interruptions, not to mention ear-splitting static, GA4KY(Sharow) did at least look at the band for a short period of regular DXing, and came up with CW contacts to: GM3XMK, GM3FQA, U8AIW, EZ1IACE, EZ1IWSN, U8AIW1L, U8AIW8B, U8AIW9A, UK1IAO (Karelia), UK2IPCR, DI610H, SP3GVA, SP2DPA, SP1AKM, OK1AEH, OK2BAS, OI1CMT, OK1FKQ, OK2BQ5, OI1NDW, OI1SID, OI1LKE, E81KQ (Mellela), UL73BO, UL7NC (Kazakh), ER2CF, UK9KFR, U9AFK, LZ2KVK, LZ2BZ, LZ1KSN, LZ3RF, LZ3CI, LA2G1V, LAX1O, GW81WJ, HB1EX, 4N9OLY (QSL via YU4EXA), YZ1EYK, YZ3AFR, YZ4ET, YZ1L, DA1WA/HD0, OH1HQ, PA2ABB/A, YP3A in Romania, and QV1ML. As far as SSB contacts, there was just the one with 1X1TW. We have printed Dave’s list in full, by countries, because we feel it just shows how the summer static can, Allied with poorish conditions, reduce the potential of even one of the top-dog DXers on the band. That YP3A was doubly optimistic at first, but there seems more than enough proof to demonstrate his validity—he’s the ‘Real McCoy’ all right!

Odds

Back in the May column, G2NJ reported the signals from ON4AHT, and now we have a nice long letter from the man himself, Paul, in the Belgian city of Liege. Paul used a crystal-controlled TS120 to put into around 40 metres of wire fed through an ATU: but the authorities stepped on the band, and stopped the activity of the ‘beacon’ after receiving reports from Sweden, Spain and Greece. On a different tack, ON4AHT says that commercial equipment is about 30% cheaper in the UK than in Belgium, so that it is economic to travel there to buy a rig. Why can’t we send our own3kV on the anode, and of course G3ZGC/A1M. As far as Top Band was...
the **TR 3500** handheld for those seventy centimetre contacts

Without a doubt one of life's great mysteries to me is why, when the two metre band is at times so busy, few people are to be found communicating on the wide open spaces of the seventy centimetre band.

I have come to the conclusion that misapprehensions exist about the band. The first being the lack of activity. From my first comments you will have gleaned the fact that seventy centimetres is not a busy band, however there are stations on, myself (G8) and my colleagues David G4TN and Roy G8OR from the nucleus of a UK group here in Matlock, there are many others like us up and down the country. Seventy centimetre repeaters abound and are a perfect means of communication, their somewhat shorter range serving well their immediate area and, please remember, in the words of the doyen of seventy centimetres Jack G8UN, "Activity breeds activity", simple but true. The second misapprehension is that the equipment is expensive. Not so, the Trio T14250 comes in at 8210, only slightly more than its matching stable mate, the TR2500 and here again, with the same sensible approach which we have come to expect from Trio, the accessories which you bought for your TR2500 are compatible with the new TR3500. The appearance, size and weight are similar to the TR2500, output power is 1.5 watts high and 300 milliwatts low, repeater shift is programmable, ten memory channels are provided and frequency scan between operator defined limits is included. The conventional memory scan and reverse repeater facilities help to make operating a pleasure no matter how difficult the conditions. With the Trio TR3500 handheld as part of your station, you are equipped to expand your operating and begin communicating on the wide open spaces of the seventy centimetre band.

£250.70 inc. VAT, carriage £6.00

and the **TR 7930** for the two metre mobile operator.

Any amateur who has used or owned a Trio TR7930 has had the finest piece of 2 metre mobile technology at his fingertips. The TR7930 had simply everything that the keen mobile operator could ever want. Of course, there were a few points which customers said could be improved and, to an extent, the majority of cases, agreed. Two, with the introduction of the new TR7930, have taken note of this feedback of information and the results we are sure you will agree, is as close to perfection as you will find in a rig.

The improvements are, a green liquid crystal frequency readout which does not disappear in strong sunlight, additional memory channels, both fixed and control scan hold on occupied channels, selectable memory channels for the priority frequency and manually corrected mode selection complex or repeated without having to interrupt the rig. The most significant change is the liquid crystal frequency readout on a green illuminated background, but closely following this must be the ability to store specific memory channels when scanning, and the programmable scan between user designated frequencies. This gives the rig the ability to scan complex channels only, without holding on to repeaters.

The Trio TR7930. The mobile 2 metre FM rig designed with ease of operation coupled to outstanding performance.

£309.21 inc. VAT; carriage £6.00

LOWE ELECTRONICS

Chesterfield Road, Matlock, Derbyshire. DE4 5LE.

Telephone 0629 2817, 2430, 4057, 4995. Telex 377482.
next-door neighbour is G4MLG, who is amenable to giving help in the matter of loaded whips for the band; the latter effort, it seems, can be tuned by means of a motorised sley in the loading coil, while the VSWR of the line from aerial to rig can be adjusted from the cab of G4MLG's Land-Rover.

Forty

Only two reports; G3ZGC says he worked nothing of interest from the Caribbean on the band under any of his callsigns; while G4LDS mentions HZ1AB with G8ECI at the controls, GU4NYT, for a new one, and GD4MNS.

Which is quite odd, as there is DX about on the band, and it is being worked by the savvy types without too much bother or anything very exotic in the aerial-system line. So - why don't we get reports?

The New Bands

If we don't use them more, we're going to run away to loving them. And, after all, the power and aerial requirements are such as to demonstrate that if all is level-peging, than there is a lot less QRM

GM4BYF (Edinburgh) says he is more of a VHF buff, but he tries the new bands regularly just to ensure someone can be said to have used them! Pete uses an IC-730, and his scoring so far is rather like this: 10 MHz, using frequencies in the area 10.1-10.1 MHz, G3KLW ran and lost in deep QSB, E2AALV, K8MP, and ZP5XGG. On 18 MHz, a couple of bits gave F5ZN for Pete's first and third contact on the band; and GM3PPE, who is all of 800 yards distant. Pete notes that after much listening these are the very first amateur signals he has heard on the band. For 24 MHz, the situation is the same - not an amateur signal heard on the band yet. Pete (and your conductor) feel this is somewhat sad, and GM4BYF says he is only too pleased to offer and GM4BYF offers CP6EL, JY9TS, K1HSLG, KA91BG/P4J (Bonaire), VK2APT, A4XQ, KP44BQ, and VK3INQ, all worked in the early session before breakfast.

G6QQ (Hove) missed the bus last time, so we are lucky enough to have two reports; and he enclosed a QSL which is exactly the same as the one he used back in the 1932 period, before the long ORT. The April period seems to have been productive, with such as VK2APK, KL7H, VK3MR, HK1DD, some Ws, and MIKY; the second letter, containing the May gleanings, showed with Ws, VK5, OA4LS, OY2H, AU1VC, T77V, KH6J, FP2AAM. There is now a list of 92 contacts in the log, post-war - created with the help of his FT-102, not FT-101 as mentioned in the May column.

If we now turn to the letter from G4LDS, Chris seems to be performing his CW a little of late, but the contacts of interest here were SSB, with JA1LI, J64VA, HL1MV, VK2XG, JY9CL, W3FI, VK5AVC and VP8ANT. G4HKU has found himself a new hazard in the garden, thanks to the awful Spring weather; the garden pond has a gale of large frogs washed into it, and Ted has 'received his orders' from the boss about these. Added to this of course is the inevitable colony of ants in the greenhouse, and the inspection parties of wasps prospecting the roof defences prior to open warfare. Turning from the frogs to the DX, we find Ted's SSB made it over to ZL3JY, ZL3RS, and 9H1GY, while CW accounted for ZL4CO, VP2FM, VK3RJ, HH2VP, OH1YYY, WS, YV1AD, and VK3MJ. That left the QRP CW box, which was used for a two-way QRP-QRP contact with OK2BMA.

Twenty

Is, and one supposes always will be, where most of the world's DX business is transacted, when one considers the entire spotless cycle. Let's see what our reporters have to excite our interest.

On Twenty, says Richard, it came about that he actually did manage to sign G3ZGC/MM, and in that guise, on May 1, ZB2HO was worked.

G3N0F (Yeovil) doesn't seem to operate a lot on Twenty these days, but he does listen; he finds VK peaking around 0730 and staying about until 0900; a few W6 and W7 were heard, while in the evenings around 2100 the East Coast Ws were workable along with South America. Don made SSB contacts with PG1ITU and W7IXS.

Turning to G28ON (Alb ridge), Tom seems to have cut his activity back a little, but he still finds them - on 14 MHz he offers CP6EL, JY9TS, K1HSLG, KA91BG/P4J (Bonaire), VK2APT, A4XQ, KP44BQ, and VK3INQ, all worked in the early session before breakfast.

G6QQ (Hove) missed the bus last time, so we are lucky enough to have two reports; and he enclosed a QSL which is exactly the same as the one he used back in the 1932 period, before the long ORT. The April period seems to have been productive, with such as VK2APK, KL7H, VK3MR, HK1DD, some Ws, and MIKY; the second letter, containing the May gleanings, showed with Ws, VK5, OA4LS, OY2H, AU1VC, T77V, KH6J, FP2AAM. There is now a list of 92 contacts in the log, post-war - created with the help of his FT-102, not FT-101 as mentioned in the May column.

If we now turn to the letter from G4LDS, Chris seems to be performing his CW a little of late, but the contacts of interest here were SSB, with JA1LI, J64VA, HL1MV, VK2XG, JY9CL, W3FI, VK5AVC and VP8ANT. G4HKU has found himself a new hazard in the garden, thanks to the awful Spring weather; the garden pond has a gale of large frogs washed into it, and Ted has 'received his orders' from the boss about these. Added to this of course is the inevitable colony of ants in the greenhouse, and the inspection parties of wasps prospecting the roof defences prior to open warfare. Turning from the frogs to the DX, we find Ted's SSB made it over to ZL3JY, ZL3RS, and 9H1GY, while CW accounted for ZL4CO, VP2FM, VK3RJ, HH2VP, OH1YYY, WS, YV1AD, and VK3MJ. That left the QRP CW box, which was used for a two-way QRP-QRP contact with OK2BMA.

Oddments

By the way this is written, HClJB will have come and gone (see p. 203 in last month's issue). HClJB was the personal call of Clarence Moore, who was HClJ B's chief engineer during the 1950s, and who invented the Quad aerial as a solution to the problems of corona with the high powered beam aerials of HClJB.

If you lack Zone 23, then you probably missed out on W0VY back in 1979. We hear that W0VY is getting things all sorted out for another longish bash, from October to November 30, using the same call, all bands, and modes, and with an entry in the CW WW Contest very likely.

Z2A heard on Twenty, bears the stamp of ploniness, we are told, and we wonder a little about Z2EU who is giving LASNM as his QSL manager, and says he will be in Bangladesh till mid-July.

The ISICK operation from Spratly by DUC1K resulted in some 2000 QSOs using dipoles and list operation. The group were landed in Pauanau Cay, which we understand is Philippine-occupied, by way of a Lockheed C-130 transport plane, and we understand that they prefer to receive dollar bills rather than IRCs for QSLs, as "IRC's cannot be exchanged in the Philippines" - likewise, don't put callsigns on envelopes. The latter seems a sensible precaution in any correspondence in this lawless age, but the one about IRCs not being exchangeable in the Philippines is news to the writer and probably the Philippine Government too; we suspect the difficulty is probably spelt g-r-e-e-d. Or are we being cynical?

The recent SMOM operation didn't come off, for some good reasons, and so 10MGM is reported as having said he will try to get something organised during June; if that fails through there'll be no point to the later autumn from 1AKKM.

If you worked TT6KP on the LF bands, there seems a strong feeling that he was a phoney; and if you want XT2AW on the LF bands you're too late - we understand
the operator has sold his linear and taken down the LF aerials, ready for a return to DL land before this piece lands on your doorstep.

457FVR runs a guest house in Sri Lanka if you are thinking of a holiday there, and makes a thing of welcoming radio amateurs. P. M. A. Perera, 'Spangles', 84 Templars Road, Mount Lavinia, Sri Lanka, should reach him.

“CDXN” deadlines for the next three months:

<table>
<thead>
<tr>
<th>Issue</th>
<th>Deadline</th>
</tr>
</thead>
<tbody>
<tr>
<td>August</td>
<td>July 7th</td>
</tr>
<tr>
<td>September</td>
<td>August 4th</td>
</tr>
<tr>
<td>October</td>
<td>September 1st</td>
</tr>
</tbody>
</table>

Please be sure to note these dates

Fifteen Metres

G3ZGC simply comments that for him the band had nothing of interest.

On the other hand, G3NOF seems to have been luckier; Don found the band patchy, with fade-outs, and the North American stations scarce, although on good days they have been around from 1300z to late as 2200z. The JA short path has been open between around 1000 and 1600z, and in the same path also opened to the Pacific on occasion, noting particularly DU, YB and V5S; and of course there were Africans to be found anywhere from 1100 through to 2000z.

Don made his SSB penetrate to: A811C, A2ZP, C211K, CP61M, CR8AN, DU7R1C, EA6DE, EA6ZH, F0OEE, G4IFM/JA, HH2JD, IS9US, JA7IH, NT6R, TR8CR, TR8MYA, TUsJH, TUSJL, UK8BAA, UKO0AM, UL7ATY, UMMFK, V3TJ, VKM9M, VP3MKD, VP8ANT, VP9QO, VS6DK, VS6GA, VU2ICOC, W6RTN, W6E5Y, W7LKX, XE1KB, XT2AW, YB6MF, YC4FNQ, YD1GD, YJYTT, ZB2CR, ZB2CN, ZB2HP, ZD9XM, ZD7CW, ZK2JS, 4U1VIC (UN, Vienna), 5B1BS, 5O3DM, 5N8HEM, 5TSAI, 5TSRY, 6W8DS, 6W8EX and 9V1P, hooked as late as 2000z.

G4PTY (Brocknell) wrote some while back after working LU3ZI, asking about the QSL address, GACW; the answer we gave him was the right one, as he is now proudly displaying his QSL card for the LU3ZI contact — LU3ZI in South Shetlands group.

We have quite a long list of stations worked by G2BON; Tom stuck to SSI for his contacts with TR8JD, TR8IG, EC9GS, UKO0AM, UAO5DB, HLC0BA, 4X4HQ, VP8ANT, VE7CZ/H4U on the Golan Heights, YK, CY1YX, TP38X, JW0A, EA901, TUS2C, ZS3RA, F0OEE, and ZD7WH. Tom adds a note about the stations EI1A, EK1B, EI6C, etc., which are to do with a special Russian Arctic expedition travelling from the Barents Sea; the party includes some 16 men and fifty dogs, according to the information received from UK9CAE.

G6QO next; David’s first letter indicates some concentration on 15 MHz, with lots of JAs, South Americans and WS placed in the CW bag. Perhaps the best single day was April 21, which accounted for VU2LY, HC2HM, KP4ER, 38BCF, WS2, ZS9GH, PY, and JA stations. In the second letter there is a daunting list of DX, all of the calibre which objects to being thinned out. For instance, CW with ZL2UQ, JA5, K2AOE, W2ZZI, W1TGCM, PY1AJB, 4X6DF, KA9KH, 4X5YH, UK6GMM, PI8OQ, ZS4CV, and 2V7IF on SSB; PT7WJ, ZS6ADZ, K6CK, W8IXG, W2G2P, NP40, N4F6GO, VP2MDG and VP2PW on SSB; W4VUB, 9V1P, TX2CK, KB9MK, EC7KU/5N2D, 4X5DF, VP2WH, HS2V, PT9CJ, NAE4A, CX7BY, LUS5B, 4Z4UNF, VE2QFE, CY3NIE, and XT2AW.

G4LDS was able to spend most of the Bank Holiday on the air, while the XYL was away, and he found the JAs crashing through 21, Z2K both heard under a pile-up, China has been practising its CW on novices and Russians, while he gets used to a straight key. The list of real DX includes CX4CC, CP61M, JA1W1H, WB2EZM, 9V1P, ZL7WY, CY1YX who was a special for World Communication Year, W4A1ZZ on CW, COTAM, CE6DFY, JY9CL, CW with a couple of SMs and KA2QOF, 9V1LP again, AP7C, a pile-up of JAs to a QSO call, a thirty-minute ragchew with C211BD, EL3BDA, VS6DK, K6K/YA, KH6FL in Washington, KZ0Z, ZD7BW, 9V1LM, KB7TQ (Jakarta), K6UD and W6P/C.

For G4FZD was a matter of coming down from a dead-six-metre band to work 9V1SG, 9NIM (QLS to N7EB), 9N1VM again (QLS to VU2DX), and FK3CE (QLS to K2ZOR).

28 MHz

Our first reporter is G3ZGC/1J, who found just one G contact, with G4LAN, on what appeared to be a dead band towards U.K., on April 29.

G3NOF says he often found the band dead, but notes openings in the mornings to USSR, and in the afternoons to South America and Africa, plus other openings at odd times; for example, FG8HUL/FS was the only signal audible on the band on May 29, at 2206z, working North Americans who were definitely audible in this country; be that as it may, Don managed to raise the FS station for himself. SS1 contacts were booked in with CE83PP, FGOHUL/FS, JA5, PY2AC, V5S8R, XT2AT, and ZP3ICY.

G6QO in his first letter mentions just C2XCT and ZD7WH-T, while in the second letter, covering the May period, David noted and raised ZC4R1H, LI9XU, SP3ZFH, UP2BKK, 4X6FF, SP9PDJ, CX7BY and ZS1KO, which filled in a few gaps in the countries worked listing for him.

For G4LDS, there was the pleasure of CW QSOs at the bottom of the band, despite the G5s, plus VP8ANT for a new one, AE2ZC, EL2ZK, CE3DNP, and ZD7BW.

G3UJA (Cheshunt) writes to say that he has noted a new beacon which has appeared on 28.2275 MHz with somewhat intermittent operation. It signs EA6AU and says it is ‘Pn Pn. Thanks for the accurate frequency — another one for the records!

G4HIWZ (Knutford) found that in order to maintain his all-28 MHz record, he had to return to the key, as many QSOs were just not possible on Phone. The list includes SQ2-4CQ, CE5DF, CE6DFN, CBX8AC, DL, F, I, JF6HE, JH7DNO, JR1CGJ, J95CL, J95AZ, L5HFG, L5HR, L6JF, L6RF, L6UCF, L6VE, OA, OQ8J, OY2R, OY2U, OY9M, OY9SM, SP3HLM, SKH, PY8FEY, Z112, TF3HY, TUIJ, UK2PCR, UI8ADF, R18LU, UI8BI, UK71AI, UL7AAS, UL7ABA, UL7TAG, UL7ECU, UA65, UA85, UK0AMM, FE6N2Z, SI2, V5S8R (this at 1700z), VU2BX, W1, W8, YC6DNT, Z211F, ZD7HW who came back to a QO on a dead band, ZP5CF, ZS1WQ, and ZS4KBY. It is of interest to note the number of Europeans worked, presumably by scatter propagation modes, at such low strength.

Our final offering on this band is G2A2DZ (Chessington) who agrees with us about the dearth of activity on the band being half the trouble. Bill worked one station whose call he found so rough he couldn’t copy the call but whose QSL manager’s call he did get. So, out of curiosity off went a QSL card, and it has just come back to reveal that the QRQ merchant was FE6BZQ, May 5 was a good day, with beacons V5S8W, VKW2J, ZD9GJ, ZS6PW, Z211AN, a VP8, other ZSs and PY2AM were pounding in, as the JAs were two-a-penny, as it were. Bill settled for a long letter with VK6CI! Other QSOs of interest during the period included 5Z4DR, CX7BY, TR8JD, KB1/J39/89, VK6G0, and YI5AES.

Finale

Various kind souls have seen in lists of QSL addresses, but we will have to hold over a list till next time; and the deadline for next month is in the box as usual. Address your letters to your conductor, “CDXN”, SHORT WAVE MAGAZINE, 34 High Street, Welwyn, Herts. AL6 9EQ. Meanwhile don’t forget to ground the aerials when the weather is thundery!
“KITCHEN-TABLE TECHNOLOGY”

A SERIES OF OCCASIONAL ARTICLES TO PUT THE ‘AMATEUR’ BACK INTO AMATEUR RADIO

REV. G. C. DOBBS, G3RJV

No. 1: Checking Junk Crystals

O

VER the last several years, in my own meager, haphazard way I have tried to show readers of Short Wave Magazine that amateur radio is about fun, not money. One reader had told me it was possible to obtain amateur hand crystals and as I recall, there were at least two people who have used them. The idea that for some people they can be precious items... Naturally the would-be constructor does not want to part with good money for non-working crystal, so a simple means of checking their activity is very useful.

Some years ago I built a Crystal Checker for taking with me on crystal hunting expeditions. It is not a fancy jewel; just a small plastic box with a push button, and LED and a couple of crocodile clip leads — but what a useful little item it has become. The leads can be clipped onto any type of crystal, the button pressed and if it is active, the LED lights. “Handy, but limited in usefulness”, I thought when I first made it, but it has become a very commonly used item in the shack. I have used it as a calibration oscillator to find spot frequencies on the bands; I have a crystal on each of the International QRP Calling Frequencies and it has often been used to check my receiver calibration at those frequencies. I added an output to drive a frequency counter so it can be used to check the frequency of an unknown crystal or one of those marked with a frequency other than the fundamental. It has become one of those little items I wonder how I did without before I built it.

The circuit diagram is shown in Fig. 1. All very simple stuff. TR1 is a Colpitts oscillator circuit with short leads terminated with miniature crocodile clips to take the crystal to be tested. The output is coupled via C3 to a pair of diodes, D1 and D2, which rectify the RF output from TR1. TR2 acts as a simple DC amplifier feeding a light emitting diode (LED) in series with the limiting resistor, R3. If the crystal is active, TR2 will oscillate and drive TR2 to light the LED. The circuitry around TR1 seems to give a wide range of frequencies over which results can be had from an active crystal. I have no problems with crystals from 100 kHz upwards — if they are active the LED glows. Some of the larger, older crystals do struggle a little if they are low in frequency but this is a good indication of how well, or not, such crystals might function in solid state circuitry.

Fig. 2. shows the layout of the circuit board. I used an offcut of Veroboard. Never throw away odd pieces of Veroboard, they often find a later use! The size of board required in 0.1” matrix is 12 holes by 7 holes. The layout is very compact to get the whole unit into a small case with a battery; this small layout depends on getting small physical size capacitors. I had some small polysyntec types for C1 and C2 and some miniature disc types for C3 and C4, which nearly gives me enough room to keep my rally sandwiches in the box as well. The resistors are ½ watt types, but ¼ watt would be better. The two diodes, D1 and D2, are just junk box germanium diodes of any type. The Veroboard layout is very simple and the only tracks to be removed are the lines between the two stages, that come between the two leads of C3, except for the 9 volt and ground tracks.

The layout is compact so remember all the Veroboard ‘rules’. Clean all the tracks before building the board; I think Veroboard is bad enough to solder without having to contend with sticky tracks. The holes are usually too large for most component leads so jam the tip of the soldering iron between the lead and the track and use the opposite end of the lead-track junction to melt the solder. We all know the iron tip will melt the solder, but the joint is only ready for soldering if the heat of the track and lead will melt it. Use the minimum of solder needed to make a good joint as the majority of problems on Veroboard come from shorts between adjacent tracks made by surplus solder. I use a small sharp twist drill to make the breaks in the tracks in the hole positions shown in Fig. 2. Do clean the board after making the breaks to ensure that no whiskers of copper track connect to an adjacent track.

Fig. 3. shows how I housed my Crystal Checker. It is mounted in a small plastic box complete with a PP3 battery. My box is one of the commonly available types measuring 100mm x 50mm x 25mm deep, or so they tell me; in English that is about 4” x 2” x 1”.

Table of Values

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>39k</td>
</tr>
<tr>
<td>R2</td>
<td>1k</td>
</tr>
<tr>
<td>R3</td>
<td>100R</td>
</tr>
<tr>
<td>R4</td>
<td>10k</td>
</tr>
<tr>
<td>C1</td>
<td>680 pF</td>
</tr>
<tr>
<td>C2</td>
<td>150 pF</td>
</tr>
<tr>
<td>C3</td>
<td>2200 pF</td>
</tr>
<tr>
<td>C4</td>
<td>10000 pF</td>
</tr>
</tbody>
</table>

Fig. 5 shows a typical Crystal Checker circuit.
deep. The LED is mounted through two small holes and secured with a spot of glue. A miniature push button switch is required for this size of box; mine came off an old item of surplus equipment, but they can be bought . . . if you insist. RS Components do a very nice one which would add a touch of class — but so it ought to at the sort of price it is! The circuit board is ‘blatacked’ to the inside of the case with two short leads to the miniature croc clips. A PP3 battery will just fit inside the case and although the battery lasts for years, a snap on connector is useful. Do not buy snap on battery connectors! Pull the tops off old batteries, solder leads on what used to be the inside, and use them as connectors.

The Crystal Checker may be used to drive a frequency counter. This simply involves taking some of the RF output from TR1 via a capacitor to a socket. My capacitor was soldered onto the TR2 end of C3, but that was only because I could get at it easily; the TR1 side is probably better. The value of capacitor depends upon how much drive the counter needs. I used a 50pF capacitor, but mine is an ‘el-cheapo’ type which needs a small neon bulb to get it ticking. Try it and see; a lower value might be more suitable for many counters. I took my output to a phone socket mounted between the two leads; any type of socket will serve but I use phono for everything. They might be cheap and nasty but I concentrate on their cheap qualities and have never had any problems with them up to 5 watts, up to 30 MHz . . . my part of the ship.

One minor problem is that the reading on the frequency counter may not be the exact nominal frequency of the crystal, since the crystal is loaded in the circuit by C1 and C2. In practice I have found that it can be up to 3 kHz low at 20 MHz and almost 1 kHz low at 7 MHz. The lower the frequency the less the effect. Placing a capacitor in series with the top of C1 and the crystal would probably reduce this effect but makes the frequency range of the checker somewhat more limited. I find this no real problem as usually I only want to know the approximate frequency of the crystal as it will be loaded by the circuit in which it is finally used, and my final check is to try it in that circuit and listen for it on a receiver.

Surplus crystals come in a whole variety of types and housings, some are the modern sealed HC25U or HC6U types and others have the older PT243 or 10X and 10XJ mountings. These latter types sometimes cause problems in modern solid-state circuits as they were usually designed to be ‘kicked into action’ by valve circuitry. The chances are that if they will light the Crystal Checker they are a viable bet for many solid-state applications. Naturally armed with the Crystal Checker, the junk hunter can sort out the active ones at point of sale . . . as they say these days. Often the older type of crystal represents a good buy, sometimes in a “stick your hand in anywhere for 10p” type of sale. Although they are large and prone to sluggishness at least they can be opened and fiddled with, unlike the modern sealed housings. Open heart surgery on old crystals can sometimes be very fruitful. Whereas small modern crystals usually have contacts welded onto the quartz plate, the openable type have pressure mounted thin slabs of quartz.

Pepping up a sluggish crystal can sometimes be worthwhile. Doubtless you may have heard the stories of the wild and woolly 1920’s when amateurs kept a toffee hammer by their crystal oscillators to bang the crystal into oscillation. Perhaps not appropriate in today’s genteel technology, but sluggish crystals might just be lazy through old age and capable of revival. I thank Gordon, G3DNF, for reminding me of an old dodge which I thought to be just part of amateur radio mythology until I tried it with some success. That is cleaning a sluggish crystal using toothpaste! Toothpaste, the white type is required, is a useful mild abrasive and can help crystals . . . it’s not bad on teeth either.

An essential item for crystal surgery is a supply of clean paper tissues used for cleaning and keeping the bits together. Unscrew the housing, of whatever type, over an outspread tissue to gather the pieces as the crystal comes apart; all types of mounting hold the quartz plates under pressure so take care that the precious little piece of rock does not just fall out and break, or injure the cat. It’s not a bad idea to try breaking in slowly to ensure that the method of mounting is understood for the replacement stage. Gently place the contents onto the tissue. It will usually be a quartz sandwich of a thin quartz plate between two milled metal surfaces held under tension. The cleaning process is very easy, just rub the quartz plate between the finger and thumb which have both been dipped in toothpaste and water. The plate can then be cleaned in warm water, blotted on tissues and dried in the air. Grease from the fingers can have an adverse effect on crystal activity so a pair of plastic, normally closed, tweezers of the sort sometimes used in photographic work are useful. Use these to gently hold the edges of the crystal for rinsing and drying. Put it all back together again and with any luck it might be better.

As all the old hands will tell you it is possible to grind crystals to move their frequency. This is moving the frequency higher . . . think about it, we grind it smaller to the resonant frequency rises. Some old timers swear that a crystal can be lowered in frequency by rubbing one side with a soft pencil. It never seemed to work for me but it might for you! There are many bold tales in the saga of crystal grinding about how far various people have shifted a crystal but my previous experience is that crystals below 4 MHz easily move up 100 or 200 kHz and above 7 MHz they can be moved up as much as 500 kHz. It’s all a question of technique and...
The chief enemy being uneven grinding. Some amateurs etch crystals in deadly chemicals, but I find that stocking ferric chloride is enough to contend with in a home where two boys seem to constitute a major unlawful gathering.

Fig. 5 CRYSTAL TEST CIRCUIT (For 2-20MHz fundamental pressure mounted crystals recommended by JAN Crystals)

A few words of advice might be useful and I owe these to some bitter experience, a fine article by G3DNF in the Q-RP Club "Circuit Handbook", and W9PBI in QST for September, 1969. The technique is simple and just involves grinding the quartz plate with grinding paste on a plate-glass bed. There are all manner of tips for the practice. The grinding paste can be graded aluminium oxide (about 145 grit) or the carborundum paste used for polishing gems; hobby shops sell the rock polishing grit and only the fine and medium grit are required. Whatever the grinding agent, it must be kept wet throughout the whole process of grinding so water must be at hand. The grinding is best done with overlapping circular strokes or in a figure-of-eight pattern. Only one side of the quartz plate should be ground and frequent turning is important to help maintain a plane surface. Some people grind both surfaces but this increases the risk of having non-parallel plates.

A very useful tip comes from W9PBI. A common method of holding a quartz plate for grinding is to place the first two fingers onto the plate and press evenly on the grinding glass; this can lead to an uneven grinding even with frequent changes in direction and holding. W9PBI suggests making up a grinding plate to press the quartz plate to the glass; he uses a small brass plate cut just larger than the crystal plate. I have found a better method based upon this idea is to use a plate from rejected crystal. Begin by taking a reject crystal of the large 10X or 10X1 type and pulling it apart. Even if a such a crystal has to be bought it will only cost a few pence at a junk stall. The crystal is sandwiched between two milled plates and one of these is used to make the grinding plate. Select a low frequency crystal to obtain a plate that will be larger than most of the crystals that are to be ground; these plates have a milled surface for making contact with the quartz. As the plates are rounded at the edges it should be somewhat larger than the quartz plate to be ground.

The milled plate (or piece of brass plate, if this is used) should be punched very lightly with a centre punch to make a mark in the centre of the outside edge. This outer edge will probably also be milled and the circular marks from milling will give an accurate centre point. This punch mark can be enlarged slightly with the tip of a small twist drill. One corner of the plate is marked with a small dot of paint later used as a reference point when turning the crystal during grinding. A piece of PVC tape is then stretched over the milled flat of the plate and stuck down as evenly as possible. Excess tape can be cut away. The grinding plate is now complete and is used as shown in Fig. 4. A pointed stylus or scriber, or even a centre punch, is placed into the indentation to provide the pressure and movement. The quartz plate goes between the PVC surface and the grinding glass.
The procedure goes something like this. . . Before grinding
mark one edge of one side of the quartz plate with a pencil dot;
since only one surface is to be ground this marks the non-grinding
surface. Measure the quartz plate and PVC tape with saliva and
the crystal should hold against the tape. So don't eat cream
cookies when grinding! Use a small amount of grit, about a level
teaspoon, and wet until a creamy sludge. Place the grinding
assembly, crystal down into the sludge, insert the pointed stylus
and grinding can begin. The sludge should remain wet enough for
easy movement of the crystal. Try between 10 and 15 circular
movements before testing the crystal. Remove the grinding
assembly, hold it carefully by the edges, using tweezers if possible,
rinse it in warm clean water, dab it with clean tissue and air-dry it.
The XYL's hair dryer can be useful here. The reassembled crystal
is then placed in a circular grinding movement before testing the crystal. Remove the grinding
crystals can be ground individually, after the grinding is complete.
The sludge should stay creamy sludge. Place the grinding
assembly back into the sludge, and grind can begin. The sludge remains
wet until the grinding assembly is used to give a final
careful wash in distilled water before mounting back into the
holder. The whole secret is to take care, not to try to rush the job
and keep the quartz plate as clean and grease free as possible. HF
crystals can be ground a long way with care, some people claim 2
to 3 MHz which is a little ambitious but 500 kHz on crystals above
7 MHz should present no problems. A good and useful way to take
crystals into another amateur band. Grinding for filters can be
another issue as sometimes ground crystals shift a little in
frequency after they have been in use for some time.

So perhaps crystals need not be the problem some think.
Certainly suitable frequencies in the amateur bands are difficult to
get but look around the junk stalls at rallies, use the Crystal
Checker, and perhaps grind a few to get onto a band. Try
practicing with some cheap old ones at first, some of my crystals
are older than me.

References

'Dr. G. Bennett, G3DNF, G-QRP Club "Circuit Handbook".
J. B. Rosenberg, W9PBI, "Grinding Techniques for Surplus

Available Band Crystals

One of the few sources of crystals for the amateur bands is P. R.
Gellette, Electromat, Merril, Somerset, who supply the QRP
Calling Frequencies of 3560, 7030, 14060 and 21060 kHz plus 20m
crystals on 14030, 14040 and 14050 kHz, all at 3.75 each inc. The
price is £3.00 for members of the G-QRP Club.

SIMPLE REGULATED POWER SUPPLY UNITS

N. G. HYDE, C.Eng, MRAeS, MIERE, G2AHI

Both the two power supply units described are based on
the use of three-terminal integrated circuit voltage
regulators. The first delivers a current of up to one amp. at
a voltage variable between approximately 9 and 14, and is suitable
for use as a base station power supply for most of the VHF and
UHF handheld transceivers that are very popular at the
present time. The second unit has a current capability of up to 5A
at a fixed output voltage of 12.6, and is thus capable of powering
many types of 2 metre FM and multi-band transceivers.

Low-Current Regulator

Fig. 1 shows the circuit of the 1A version. A variable output
voltage from the 7808 8V regulator, ICI, is obtained by the npn
transistor, TR1, in the common ground lead of the regulator. VR1
determines the base voltage of TR1 which has the effect of
increasing the IC potential from 0.6V to approximately 6V above
earth, this is added to the normal output voltage of the IC, giving
a voltage variable between 8.6 and 14.4 at the output of the
regulator. The type of npn transistor used for TR1 is not critical.

Input and output circuit decoupling is provided by C2, C3 and
C4 respectively. D3, connected across the input and output
terminals, prevents any damage should a short-circuit occur on
the input side of the regulator. Overvoltage protection is provided
by a 1A fuse F2 and zener diode D4.

All major components, with the exception of the mains
transformer, are mounted on one printed circuit board measuring
3½in x 3 in. Figs. 2 and 3 show the PCB track layout and location
of components on the topside of the board. It should be noted
that the cathode of the stud-mounted diode D4 is connected to the
PCB track via a short wire link.

When supplying currents in the order of 1A and in the short-
circuited condition (450mA), ICI runs very hot and in accordance
with the manufacturer's recommendations adequate heat sinking
must be provided. This is achieved by mounting the IC in a mica
insulating washer and bush on a heat sink consisting of a 3½in
length of ⅛in. aluminium angle fixed to the board. The
aluminium angle is in turn bolted to a larger external heat sink,
which could conventionally consist of the backplate of any case into
which the complete unit is fitted. Heat transfer between the IC
and the heat sink is assisted by the application of Thermalflow or
similar type of silicone grease.

The 5A Regulator

The circuit diagram of this power unit is shown in Fig. 4. The
unit is used in the order of 250mA through the regulator IC, TR1 switches on and passes all
current in excess of this, in practice, the current through IC
increases to some 350 to 450mA when the power unit is delivering
as full load current of 5A.
Should the current through TR1 emitter resistor R2 rise to such a value as to give a voltage drop of 0.6V across this resistor, TR2 switches on; TR2 then puts a short-circuit across R1 with the result that the base of TR1 becomes positive with respect to the emitter, thus switching off the pass transistor. In this condition excessive current cannot be drawn through IC1 as the regulator overload circuit comes into operation, limiting the current to approximately 350mA in the short-circuit condition.

The output voltage of the regulator is increased from 12V to 13.6V by D1 and D2 in series in the common ground lead. If desired an LED may be substituted for the two diodes; this also has the effect of raising the IC approximately 1.5V above earth, and at the same time can function as a front-panel indicator that the unit is switched on. Input and output decoupling and short-circuit protection of the IC is similar to that employed in the IA circuit.

The PCB measures 3½in. x 2½in., and Figs. 5 and 6 show the track layout and component location respectively. TR1 is mounted externally on a large finned heat sink with emitter, base and collector connections made through three studs fitted to the PCB. IC1 and TR2 are mounted on the PCB, being fitted to two small heat sinks made from 3/8in. aluminium channel section.

Table of Values

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>15k, ¼W</td>
</tr>
<tr>
<td>R2</td>
<td>10K, 100mW horizontal preset</td>
</tr>
<tr>
<td>C1</td>
<td>2K2 µF, 40V</td>
</tr>
<tr>
<td>C2</td>
<td>0.47 µF, 35V tantalum bead</td>
</tr>
<tr>
<td>C3</td>
<td>100nF, 35V ceramic disc</td>
</tr>
<tr>
<td>C4</td>
<td>6.8 µF, 25V tantalum bead</td>
</tr>
<tr>
<td>C5</td>
<td>100 µF, 40V</td>
</tr>
<tr>
<td>D3</td>
<td>IN4002</td>
</tr>
<tr>
<td>D4</td>
<td>15V 25W zener diode</td>
</tr>
<tr>
<td>TR1</td>
<td>BCY72</td>
</tr>
<tr>
<td>IC1</td>
<td>7808</td>
</tr>
<tr>
<td>T1</td>
<td>15-0-15V, 1A</td>
</tr>
<tr>
<td>F1</td>
<td>250mA</td>
</tr>
<tr>
<td>F2</td>
<td>1A, 20mA, with PCB clips</td>
</tr>
<tr>
<td>S1</td>
<td>SPST switch</td>
</tr>
</tbody>
</table>

1½in. long, painted matt black. The connection to TR2 emitter is made by a wire link, designated "X" on Fig. 6, on the top side of the board.

The configuration as described will not withstand sustained short-circuits on the output, and if these are anticipated it is
Table of Values

Fig. 4

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>3Ω3 wirewound</td>
</tr>
<tr>
<td>R2</td>
<td>0.15Ω approx. (see text)</td>
</tr>
<tr>
<td>C1</td>
<td>8K μF, 35V</td>
</tr>
<tr>
<td>C2</td>
<td>0.33 μF tantalum bead</td>
</tr>
<tr>
<td>C3</td>
<td>6.8 μF, 25V tantalum bead</td>
</tr>
<tr>
<td>C4</td>
<td>6.8 μF, 25V tantal bead</td>
</tr>
<tr>
<td>C5</td>
<td>100μF, 50V</td>
</tr>
<tr>
<td>TR1</td>
<td>MJE2955</td>
</tr>
<tr>
<td>TR2</td>
<td>TIP32A</td>
</tr>
<tr>
<td>IC1</td>
<td>7812</td>
</tr>
<tr>
<td>D1</td>
<td>100V, 20A bridge</td>
</tr>
<tr>
<td>D2</td>
<td>IN4148</td>
</tr>
<tr>
<td>D3</td>
<td>IN4002</td>
</tr>
<tr>
<td>F1</td>
<td>1A</td>
</tr>
<tr>
<td>S1</td>
<td>SPST switch</td>
</tr>
</tbody>
</table>

Recommended that IC1 is detached from the board and located on a larger external heatsink. This may be the same as that carrying the pass transistor, provided that both devices are fitted with mica washers and insulating bushes.

The value of the current limit resistor R2, which is mounted external to the PCB, is approximately equal to 0.6/I. Thus for a limiting current of 5A through the pass transistor, R2 should have a value of 0.12 ohms. Resistors of such a low value may be made up by connecting a number of low-value high-wattage wirewound resistors in parallel. In the particular application for which this power supply was designed a current limit of 4A was adequate and the required resistance of 0.15 ohms was obtained by connecting three 0.47-ohm high-wattage resistors in parallel.

August issue due to appear on Friday, July 29th
CROWBAR CIRCUIT FOR THE FT-707 POWER SUPPLY

IAN KEYSER, G3ROO

WHEN working on the power supply for the Yaesu-Muses FT-707 (Short Wave Magazine, January 1983) a simple crowbar protection circuit was tried but with little success. The problem was that although a rapid voltage rise would trip the SCR, a slow rise could cause an overdrive situation in the gate circuit of the SCR, thereby destroying it. By increasing the gate current limiting resistor to try and overcome this problem it was found that the voltage level for tripping was not consistent, and so it was decided to omit the crowbar until more time could be spent in designing a suitable circuit. At this point I removed the crowbar from the circuit but, to my later embarrassment, failed to remove reference to it from the final text.

What is really required is a comparator circuit whose output goes high as the input exceeds the reference circuit. When this was being investigated it was noticed that in the Radiospares catalogue there is a device designed specifically for this purpose, the RS3423; with a couple of external resistors to set the trigger voltage, and an SCR to do the dirty work, the problem is solved.

As the PSU could supply a peak output current in excess of 40 amps, it was decided to use the largest possible SCR that could be found on the open market. This turned out to be the THY 500-40, which is also available from Radiospares (part no. 261-889) — and although rather expensive it is a cheap price to pay when one considers the value of the equipment that is likely to be hung on the power supply.

With the values shown on the circuit diagram the trip voltage is 14.77 volts. To test this, wire the crowbar circuit across the output terminals of the PSU and wire a 12v. light bulb across the output along with a voltmeter. Now increase the output voltage using the preset on the regulator PCB while observing the output voltage. As the voltage passes the 14.7v. mark the circuit will fire and the bulb will light up. Reduce the preset to its original position, unplug the supply, and wait until the capacitors have fully discharged. Turn on the supply again and reset the output voltage to the required level (13.6v.) and replace the bulb with fusewire of the correct rating.

For final mounting, the SCR should be mounted on the PSU chassis using suitable mica insulating washers and thermal grease. This is not strictly necessary as the device should blow the fuse within a second, and so the heating should be minimal; however, there is the possibility that the fuse will not blow (having forgotten to replace that bit of fuse wire used when the fuse blew last year), and but for this simple precaution it might be necessary to spend out on a new SCR, new pass transistors — and a new FT-707!
EQUIPMENT REVIEW

DATONG AUTOMATIC AUDIO NOTCH FILTER, MODEL ANF

In 1976, Datong Electronics Limited introduced their unique Frequency Agile Filter, type FL-2, which was reviewed in the July 1976 issue of the Short Wave Magazine. The Automatic Audio Notch Filter plus CW Filter, Model ANF, reviewed here, is the logical development of the FL-2 idea, though in size more in keeping with the diminishing measurements of 1980s communications equipment.

Specification

The ANF is an audio frequency device consisting of:

(i) A tunable, two-pole notch filter with a notch depth better than 40dB at 3.5 kHz.

(ii) Two cascaded two-pole tunable bandpass filters for peaking the chosen audio frequency for CW reception with a bandwidth of 60 Hz at the -3dB points, at 800 Hz.

(iii) A continuous scanning circuit covering the range 270 to 3,500 Hz for use in “AUTO” mode.

(iv) Input and output automatic gain control circuitry forming a comparator to achieve an overall gain of unity.

(v) A bar LED display to indicate the frequency of the peak or notch.

(vi) An audio output stage providing two watts into eight ohms with a 15 volts supply.

The input threshold for correct operation is one millivolt RMS and the lock threshold is 6dB below the noise level. The input impedance is 100 k ohms and the output impedance is suitable for loads of three ohms or more.

Description

The filter is housed in a small, robust extruded aluminium case 90mm. wide, 42mm. deep and 150mm. from front to back. It is painted black and the general appearance can be seen from the photograph. Fig. 1 shows the two glass fibre PCBs which are actually one single board during manufacture, but split into two prior to assembly. Flow soldering is used and the construction and components are of the professional standards expected from Datong Electronics Ltd. The front and rear panels are 2mm. thick aluminium, silver anodized finish with black lettering, and the two PCBs are attached to brass pillars at each corner, resulting in an extremely robust construction. The unit weighs 450 grammes.

The rear panel contains input and output phono sockets, a 3.5mm. jack socket for headphones and a 2.1mm. coaxial DC power socket.

Installation

Two screened jumper leads, about one metre long and fitted with a phono plug at one end, are supplied. The “INPUT” of the filter is connected to the loudspeaker socket on the receiver or transceiver, while its “OUTPUT” is connected to a loudspeaker. An unstabilised DC supply of 11 to 18 volts at a maximum current of 400 milliamps is required and Datong’s own “MPU AC Adaptor” was used for this purpose. The station transceiver has a 13.8v. stabilised DC outlet which could have been used instead.

Results

Particularly on the HF bands, one often suffers from anonymous carriers which appear within the passband during a QSO. To deal with this interference, the ANF can be used in “AUTO NOTCH” mode by depressing the two buttons so identified. The unit will then scan the AF range from 270 to 3,500 Hz about 45 times a minute. As soon as any steady heterodyne is detected, the scanning circuit latches onto it and attenuates it by some 40dB. If the heterodyne is of the “happy wanderer” variety, its frequency will be tracked, rather like a ferret after a rabbit; there is no escape!
South Midlands

FREE FINANCE

FT ONE £1,450 inc.

- Rs. 150kHz-30MHz.
- In-band, out-of-band, and out-of-band selectability.
- Switchable gain control. 10, 30, 60 dB.
- Audio level and notch filter - 40dB.
- Switchable RFI and noise reduction.
- Dedicated digital display for RFI display.
- Receiver dynamic range up to 100 cm.
- IFs and VHF/IF receive.
- Switchable internal/external 24 dB.
- Unique new mode of digital type.
- Replacement of 100 kHz tuning information.
- Memory retains mode information.

FREE SECUROCOR

INSTANT FINANCE

FT 980 £1,215 inc.

- Rs. 150kHz-30MHz.
- IF switch 24, 40, 60 MHz selectable.
- Multi-channel memory - programmable scan limits.
- Optional computer interface available.
- Notch filter 3kHz (AGC immune to noise reduction).
- Full break-in facility, 1000/1000/1000 Hz.
- Unique analogue scale of digital type.
- Component-type 100 kHz tuning information.
- Memory retains mode information.

FT 102 £839 inc.

- 100 kHz-30 MHz.
- Variable RFI bandwidth 2 kHz to 30 MHz.
- Audio level and independent notch controls.
- AM, FM, LSB, SSB, CW, WM, (2kHz) and (2kHz).
- Semi-break-in, Phat Circuit Eq.
- Digital dial plus frequency doubling.
- TX built-in and adjustable.
- Instant write-back in memory channels.
- Tune-up button (10 sec.
- Switchable A/D and B/F meter.
- 500 or 600 MHz CW, 6kHz AM, less modulated.
- Contact noise analysis on TX, F1, fix or both.
- Plug-in module, computer style connection.
- Fully adjustable RF Speech processor.
- Economy pricing designed for dedicated LEDB.
- INNOVABLE range of matching components.
- Universal power supply 110/250 VAC and 12V DC.

FREE TV/301R transverse frame with every FT 902.

List £195.00

FT 902DM £885 inc.

- Rs. 150kHz-30MHz.
- IF switch 24, 40, 60 MHz selectable.
- Multi-channel memory - programmable scan limits.
- Optional computer interface available.
- Notch filter 3kHz (AGC immune to noise reduction).
- Full break-in facility, 1000/1000/1000 Hz.
- Unique analogue scale of digital type.
- Component-type 100 kHz tuning information.
- Memory retains mode information.

URGENT! THEN USE HOTLINE NUMBERS

SMC SERVICE

Free Seurocencor delivery on major equipment.
Access and backward over the phone.
Suggested branch agent and dealer network.
Suggested "B" Service contract at £4.46.
Suggested stockist of amateur equipment.

FREE FINANCE

On many recommended items SMC offers
Free Finance for productive balances over £120.
30% down and the balance over a year.
You pay no more than the cash price.

SMC SERVICE

0703 863330

0703 861829

0703 863333
While silently scanning for a carrier, the row of ten LEDs are illuminated one after the other, from left-to-right, then right-to-left, and so on. Once a whistle has been detected, this furious scanning stops and one of nine LEDs will stay on, and the extreme right-hand one, marked “LOCK,” will also light to confirm the quarry has been caught. Figures 1, 2 and 3 above the row of LEDs indicate the frequency in kilohertz of the interfering signal. In “AUTO” mode, the filter will stay latched onto a fast CW signal but, if dealing with a slow one, it will likely resume scanning during a space. Therefore the “MANUAL” mode should be used by tuning out the unwanted signal with the knob on the right. As mentioned in the caption to Fig. 1, the upper and lower scanning limits and the depth of the notch can be adjusted via preset pots by the user.

If only the “NOTCH” button is pressed, the filter must be tuned manually to the unwanted heterodyne, one of the LEDs indicating the approximate frequency. Sometimes two adjacent LEDs will light up alternately in rapid succession, however. The tuning is quite sharp but there is a limited AFC action with a pull-in range of about 100 Hz.

For CW reception, the ANF is used in “PEAK” mode, the manual tuning knob being used to select the preferred beat note. In the reviewer’s case, the transmitter side-tone oscillator frequency is 800 Hz and setting onto a signal is by matching this to the incoming beat note, so the peak frequency was set to 800 Hz.

The very narrow 60 Hz bandwidth at 800 Hz transforms what seems to be a crowded band into one where the wanted signal is usually QRM-free. However, your receiver and the other person’s transmitter must be very stable in order to be able to take advantage of such a narrow bandwidth. The earlier FL-1 model featured variable bandwidth so you could increase it to cope with less stable signals. You also need a very good, back-lash-free slow-motion tuning drive. The receiver used in these tests was part of the Tecno IC-730 transceiver which has a synthesised VFO with tuning steps of 10, 100 and 1,000 Hz and only the 10 Hz rate was really satisfactory. Those readers using VFOs of this type with a lowest step rate of 100 Hz could miss signals completely unless an RTF facility is provided.

In “PEAK” mode, the review model generated some noise of its own, the pitch of which varied with filter tuning. Since no block diagrams were supplied, no suggestions can be offered as to the cause of this noise.

A demonstration of the effectiveness of the ANF in either mode can be made by depressing both the “NOTCH” and “PEAK” buttons, when the filters are bypassed. The result is usually quite dramatic. When the “OFF” button is pushed in, the unit is switched off and the output from the receiver goes straight to the loudspeaker.

Conclusions

The Datong Auto Notch Filter proved to be a very useful accessory which did all that is claimed for it. The reviewer’s IC-730 has the narrow CW filter and passband tuning filter installed. Nevertheless, the CW performance was notably superior with the ANF in use and only the wide, SSB filter, than with the basic transceiver “with all the stops pulled out.” However, a 60 Hz bandwidth is narrow enough to cause a little “ringing” on fast CW signals and some users may find this a slight disadvantage of a single, fixed bandwidth.

In common with many other transceivers in its class, the IC-730 lacks a tunable notch filter and the few that do, as far as can be recalled, do not offer automatic tuning. Consequently, the ANF increased the overall receiver efficiency in this area, too. The product comes with four pages of typed operating instructions and can be highly recommended to anyone whose receiver or transceiver lacks the facilities it provides. The price is currently £59 plus VAT — a total of £67.85 in the U.K. — and is available either directly from Datong Electronics Limited, Science Mills, Mill Lane, Bramley, Leeds, LS13 3HE, or from various dealers.

N.A.S.F.
VHF BANDS
NORMAN FITCH, G3FPK

In last July's issue, much space was devoted to the first extensive sporadic E opening on June 5, 1982. Unfortunately, nothing similar has occurred this year, so far, for British listeners. Such E openings as there have been have been confined to Band 1 TV with fairly frequent reception of Soviet bloc stations and some from Spain, Portugal and Italy. While E's propagation has occasionally reached to the 70 MHz FM broadcast band, it does not seem to have affected Band 2 FM.

Awards News

All this month's news concerns the QTH Squares Century Club which has two new members, while two others have been awarded stickers, all for the 2m band. Congratulations to Doug Mellor, G8WPD, from Berkshire, who is member no. 25. His station comprises a Trio TS770E transceiver, a NAG amplifier and two 9-ele. Tonna Yagis at 40ft., the site being about 1 mile east of his residence. Future plans are to build a better PA using a pair of the popular 4CX250B valves, and to double up on the antennas. Currently, Doug is de-bugging a 200 w.p.m. send and receive Morse program for a Sinclair ZX-81, with EPROMS, with a view to going for his Class 'A' licence. However, with current squares worked at 19, he wants to work 200 before turning to CW. His confirmed total for his certificate, issued on May 19, is 100 and consisted of 56 tropo, 6 via E's, 2 on MS and 36 via auroral mode. Best DX was ROSOA (OH) by E3 on June 7, 1981, a distance of 2,270 kms.

Certificate No. 26 went to John Neal, G4NQG, from Cardiff in southeast London, and is dated May 26. His confirmed total is 103 from 21 countries made up of 93 tropo contacts, 9 via Ar and just one via E's. First licensed in Sept. 1981 as G6GQZ, he passed the Morse test in December but had to wait until April 1982 for the "A" call. His first 2m station comprised a Yaesu FT-450D plus transverter and a pair of 14-ele. Cushcraft Yagis and most of the squares were worked with that combination. The present set-up is a Yaesu FT-250RD with mTek board and a Dressler D-2000 preamplifier. The antennas are now a box of four 17-ele. Tonna Yagis with 3SK97 Gaffers masthead preamplifier.

The launch of the Hound dog station 1 was on June 16

Satellite Notes

As this is being compiled, the news from AMSAT-UK that the Phase 3B satellite is due for launch around midday on June 16. The launch vehicle is the Ariane E-6 which will be blasted off from the European Space Agency's site at Kourou in French Guiana. Two hours before "lift off" the "ALlNs" launch information was scheduled to relay the proceedings. If all goes well this time, A-0-10 should be in orbit and the transponders working seven days after launch, just about publication date for this issue.

Two transponders are incorporated in A-0-10. The "U" transponder is a linear converter with a 150 kHz bandwidth. The uplink band is 435.025 to 435.175 MHz and an EIRP - effective isotropic radiated power - of 21.5 dBW is required for a 20 dB signal-to-noise ratio on the downlink. This equates to about 10 watts at the antenna, whose gain should be at least 10 dB. The downlink band is nominally 145.975 to 146.525 MHz and, assuming a 2m Rx with a 5 dB noise figure and a 2.4 kHz bandwidth, an 8 dB or more gain antenna is suggested. There is an engineering beacon on 145.987 MHz to transmit by phase-shift keying, data about the satellite's internal system at 400 bits/second. A general beacon on 145.810 MHz is for general information to users.

The "L" transponder has a bandwidth of 800 kHz, the uplink being from 1,269.0510 to 1,269.85 MHz. 28.8 dBW is the suggested EIRP, e.g. 3 watts to a 22 dB gain antenna, or 50 watts to a 10 dB gain antenna. The downlink band is 435.95 to 436.15 MHz nominally and, assuming an Rx noise figure of 3 dB and a 2.4 kHz bandwidth, the antenna gain required is 12 dB or better. Engineering and general beacons are on 436.02 and 436.05 MHz respectively. All antennas should have right-hand circular polarisation to counteract the effects of spin modulation.

If the launch has been a success, information will be discussed on the 80m net around 3,780 kHz from about 1800 GMT, no doubt daily. It is likely that the 2m net on 14,280 MHz will be operating from about 2100 GMT, monitored by many through the country. Hopefully, some first impressions can be printed in the August feature.

Your scribe telephoned the University of Surrey's UO2AF answering service, the latest information being recorded on June 1. The only item of news was that the 2.4 GHz beacon had been switched on and was received in the U.K. and Belgium. The period at orbit no. 9141 on June 1 was given as 94 66814 minutes with a drag factor of 5.19467 x 10^-5 (orbit no. -9141) to be subtracted. The track separation was 23.666156 with a drag factor of 1.307028 x 10^-5 (N=9141) to be subtracted. A reference orbit for June 8 was no. 9247, equator crossing at 14.18s 1m 16s at 345.4°W. No news about possible on-smuggling of the fouled magnetometer cables along the gravity gradient boom.

The June issue of AMSAT-UK's excellent journal Oscar News has been published along with the latest orbital calendars. Members were also sent a reprint of a May 1983 Wireless World article by J.R. Miller, G3RDU, describing a Data Decoder for UOSAT. For full details of AMSAT-UK membership and services, send an s.a.e. to: AMSAT-UK, London E12 4EQ.

On the operational side, Russell Coward, G6HRI (Blackpool) has been active on 80m and on several of the Soviet satellites, mainly working U.S.A. stations. He uses a Commodore VIC-20, expanded to 32K, for orbit predictions and tracking, and has written his own program that takes about two seconds to produce the day's predictions for each satellite. He will send this program to any reader who supplies a blank tape and return postage. It will run on a basic, unexpanded VIC-20, by the way, and he also has an option, expanded, for tracking the RS satellites. He is QTHR.

Tim Kirby, G6TU, (Cheltenham) is now using the satellites and mentions the advice and encouragement given by John Hawes, G8CQX. So far, Tim has worked a few German stations plus NOAN (Iowa) and TL21ST in the Ivory Coast, but complains of bursts of QRM marred reception at times, possibly from a central heating system.

Contest News

Michael Toms, RS31976, has sent the results of the Barking Radio and Electronics Society's 3m contest held on March 27. In spite of terrible conditions, it attracted the largest entry yet. The high power section was won by G4PSX (Hants) with 11,715 points, with G4ZD (Kent) runner-up with 10,660 pts. C65K5V

THE SHORT WAVE MAGAZINE
July, 1983
The Agcw-Dl 2m. CW contest is on June 25 from 1900 to 2300 GMT; full details on page 186 in the June issue. June 26, from 1400 to 2100 GMT is when the 2m. and 70cm. W-AB phone event takes place, as detailed last month. VHF-NFD takes place the weekend of July 2-3 and on July 31, 0900-1700 GMT, there is the 70cm. low power event limited to 15 watts output. Which is a fixed station, and all other station affairs.

On the Cumulative scene, further legs of the 10GHz contest are on June 26 and July 24, 0900-2000 GMT. June 26, same hours, for the 3.4 GHz section of the Microwave contest, with a 24GHz session on July 24.

DX Notes

Roger Thorpe, G3CHN, passes along details of operation from YX square in southern Spain from June 30 through July 6. The call will be ED7YDG from YX74F, 3140m, a.s.l. in the Sierra Nevada mountains, 25 kms. southwest of Grenada. The gear sounds formidable: 144.333 MHz, 18KW with two 17-ele. Yagis; on 322.333 MHz, 1kW with four 21-ele. Yagis and on 12.933 MHz, 100W with four 23-ele. Yagis. Tropo and MS skeds can be made over the 20m. VHF net, around 14 345 MHz. Operation from the same location by FJADT was also mentioned on July 9, 10, 15 and 17.

Rainer Bertelsen, DJ9BV, has sent full details of the Hamburg VHF/HUF/SHF Group’s trip to Heligoland (D07P) mentioned in a Stop Press item last month. The dates are July 2 to 8, the call DJ9DV/P. On 70cm. they will operate on 432.225 MHz CW/SBB with 700W to four 23-ele. Yagis and MGF1400 preamp. On 23cm, 1196.390 MHz CW/SBB with 130W to four 29-ele. Yagis and MGF1402 preamp. On 13cm. 10W to a 13m. dish with MGF1402 preamp, on 2320.200 MHz. Tropo skeds can be made by telephoning the shack, direct, on 01049 472 5310 from the U.K.

As stated in the May VHF Bands, the HADRABS group will be operating from Arizona from July 16 to 24. The call G3JX/V will be used on all bands above 30 MHz, and for the 3.5 to 28 MHz operation, they will use CS1YR/P. 6m. operation will be on 50.433 MHz, SSB/CW using 28.885 MHz for daytime talk-back. E-M-E skeds and random working will be on 144.033 MHz, 144.333 MHz being proposed for CW MS skeds. 144.233 MHz will be used for CW/SSB tropo and random MS QSOs on SSB. The 70cm. working QRC will be 432.233 MHz CW/SBB.

They will be QRV on the 20m. VHF net daily most of the time, with U.K. skeds at 0900 GMT.

From July 17-24 inclusive, they will be on 2m. between 0900 and 1100 GMT for tropo and random MS and from the 18th to 23rd on 2m. from 1800-2300 for tropo. Due to the frequent occurrence of night-time storms, they may have to close down for safety reasons so prefer not to make advanced skeds but rather making them over the VHF net just 24 hours in advance. Maximum. All E-M-E skeds to be made via the 20m. net or VE7BGH and all CW MS skeds over the VHF net. Sporadic E openings will take priority over all MS skeds and good 70cm. tropo conditions will take priority over 2m. tropo.

Listener reports and cassette recordings in particular, are sought and will be QS£-ed and cassettes returned. It is hoped to take video recording equipment too with a view to cutting lecture material for later on. Thanks to Robin Lucas, G8APZ, for all this detailed information. He is QTHR for direct QSLs, if desired.

Another British team, the Falcon Contest Group, G4SK, plan operation from Luxembourg from July 25th to Aug. 14 with the call G4SK/LX on 2m. SSB, 10w to two 17-ele. Yagis is hoped for, with MS skeds the priority in the Perseids shower. Operation from CJ, CK, DJ and DK squares is possible and skeds can be arranged either by writing to P.O. Box 30, Shepted, Loughborough, Leics., LlB1 9S9. or via the 20m. VHF net during the fair. An s.a.e. should be sent if a reply is needed. Thanks to Matthew Reed, G4NPPX, for the foregoing information.

Six and Four Metres

Geoff Brown, G4JCD, has opted out of the 6m. tests and the Home Office has replaced his call by GUZ2ML, the first Guernsey licensee and a new country to work. A number of the other 39 6m. operators have reported working him.

Dennis Jones, G3URV, (Merseyside) reports an E’s opening to Gibraltar on May 25 on both 6m. and 4m. which resulted in a QSO on 4m. CW with Jim Bruzon, ZB2BL, for country no. 7 this year. The Auroras in May 11 and 24 brought good 4m. QSOs with G3YRH (Tyne & Wear). G4KVR (Gwent) and G3TV (Huntsbridge). G4AHL/A (Yorkshire) had a good tropo QSO on the 29th on SSB.

Paul Turner, G4JLE, (Essex) made a successful 6m./2m. crossband CW test with Y02IS (KJ) on May 22, SSB getting 12 bbls. and many pings from Paul using an 2-el. Quad antenna in his loft. Paul got 12b, 6p. from the V.O over the 5.875 km. path. His tests with CMS WCS and W01 continue.
Dave Lewis, GW4HBI, found May a quiet month till the 24th, when he was on the air. The first station worked was GM4GJ at 1720, the last G0UVB at 1840, with G4DEE and G2FH in between. EI3RP, from St. Austell in Cornwall, who is now G4TJX. His father is G4HFO, and both are looking forward to the QRP season. They often call to call the east most evenings. Up to May 14, John King, G6ADH (Surrey) had only operated a total of 14 hours this year due to frequent business trips overseas. However, he has now retired so is eagerly looking forward to some good summer DX.

Two Metres

Although the opening remarks it was stated that no major Es openings had occurred, nevertheless there have been a few, very brief, manifestations. John Hunter, G3JMV, (Bucks.) heard HG7KSV calling “CQ” on CW for about a minute at 1346 on May 11. On June 2, G0SHD (Notts) worked L2ZWA (ID) and L2ZQA (OD) and half made it with Y0MTY (JE) between 1655 and 1701. There was also Es propagation between Y and UB5 the same day. On June 6, around 1340 GMT, 1B1US (1Z54F) popped up briefly on the SSB calling frequency and was worked by John Neal, G3NQC, (London) at 12 both ways and some others. The odd thing was that there was no sign of Es on any lower VHF bands.

While some contributors have concluded that May was rather a poor month, G3UVR found it rewarding for the annual table score, adding another seven counties. These included Co Louth, F7BVL, on tropo on the 23rd, and GW6RAW in Mid Glam on the 28th. In the Ar on the 14th, Dennis worked GM3WML (Halifands) and LA9BM (EU), and in another event on the 22nd, SM5BEI (IU).

G4JRF reports the following MS contacts in May:— 11th, YU9TUZ (KP), who got a one minute burst from Paul for an X38 report, 17th, O8EW (IG), 19th, EA6FB (AY) on SSB for a new square, SM1AZV (IX) another new one, and FG9HS (BD). On the 22nd, Paul worked GM8NS (WW) for a new square and country no. 51. G3JMV also worked SM1AZV on MS, on June 3 in about 15 minutes from G40. Then from 0600, he had a sked with HG8KWC (G), moving a little faster during the second period, but nothing thereafter.

Tony Collett, G4NBS, (Berk.) was pleased to actually catch the Ar on May 11, but not till 1711. It faded out at 1850 and he could not understand any of the SSB signals and also the CW was extremely rough and wide. QRTs were from 0° to 25° and he worked GM4LSL (YR24), GM4MAO (YR), GM3JLI (WS69) and G4OMK (QX31) between 1725 and 1820. G14TAP was the last signal heard, still calling for DX. Rod Burman, G4O3N, has been out of the country a bit lately but did catch the tail end of the May 24 Ar. He heard, but did not contact, G4TAP.

Congratulations to Julian Blythe, G0XGR, from St. Austell in Cornwall, who is now G4TJX. His father is G4HFO, and both are looking forward to the QRP season. They often call to call the east most evenings. Up to May 14, John King, G6ADH (Surrey) had only operated a total of 14 hours this year due to frequent business trips overseas. However, he has now retired so is eagerly looking forward to some good summer DX.

Mick Cuckoo, G6ECM, (Kent) found May conditions generally very poor with just a few brighter spots like the 8th, which yielded tropo QSOs with GM4OPH and G4TAP, both in XQ, and with GM4CXM (XP) on the 19th. The 22nd saw contacts with DC1ZK (EK) and DF1IK and D1ONW both in EJ, G16VPT (XO) and GM5YU (YO). In the May 11 Ar, Mick worked R38 (XO), and GM8VX (YR), and the one on the 24th provided G16ATZ again, GM4PWR (XQ) and GJ5FM (VW47 Y) for a new square.

Phil Ingham, G6HDD, (Bolton) mentions the “... QSB playing havoc...” with reception and this has been noticed at G3FPK during much of May, with many stations sounding as if they were mobile. G6FKR worked a couple of French portable stations in May, and heard FD1PU/P (ZL). On the 24th, Russell worked G1HLP/P (Devon) and on the 15th, G4SKV (Co. Tyrone). E19EH and E12EZ were contacted at 59 plus on the 24th.

G6ITU missed last month’s deadline so listed some of his April successes. During May, the 1st saw a QSO with G4OPH (XQ) and the 4th brought one with TO2YT (BK). (The French amateurs are using TO instead of F as their prefix, if they wish). Tim reckons that the 7/8 contest weekend was splendid as it brought stations in F, ON and PA in AK, AI, BL, EI and FM 1222/1223, and GM6WIX/P (YR) and on the 29th, GD3YDB who was running 10w to an indoor antenna. GM4LIG/P (YO) was also very loud on 10w and he ended this session working E14AE8 (WN). Tim is looking for stations in Norfolk and Suffolk and wonders where all the Jersey stations have gone.

During HF NFD on June 4/5, there was a VHF contest on the continent as well and this generated a fair amount of activity. Jim Rabbitts, G8GBF, London had 55 QSOs, with a station in DH the best DX heard. Nothing further south than the “H” line was heard at G3FPK. John Fitzgerald, G8XJX, (Bucks.) just sent a postcard to update his scores and to report being off the air for three weeks, “... with a blown front end!!”

Kelvin Weaver, GW6JD, (Gwent) also found things rather dead in May and so took to the hills for the QRP contest on the 8th with GW6GW/P in YYL5E, 18000 a.s.f. Very strong winds during erection of the tent almost turned it into a.
whaglider. He has passed the Morse test in mid-May so awaits the GW4 call. He mentions very strong Spanish TV on Band 1 on the 28th for over an hour and a slight opening on FM Band 2. By the way, Kelvin sexual there is no minimum report for QSOs counting for scores in the tables, if both parties are genuinely satisfied that reports have been exchanged, that is sufficient. After all, one hears "five and zero" reports given, just because the listener's 5-meter is a bit weak.

A 144 MHz contest over the weekend May 21/22 was run as the RSGB's Contest Calendar, but later dropped. However, an unofficial event was organised by John Reid, G8BVO, at the eleventh hour. By June 6, your scribe heard John telling someone that about a dozen logs had been received. A few stations were taking it seriously but a few others were making a few contacts to get them point in rather flat conditions. With seven minutes to go, G4DEZ/A was on their 7th QSO and G6H1/P ended up with 690. With ten minutes left, G6CHL/P was up to 521.

Seventy Centimetres

May brought another five counties for GBUV: on the 3rd, G4ACV (Antrim) and G4AGM (Down), GI being country no. 11 for 1983; G8TF/P (Gwent) on the 7th; G4HXV (Tyne) on the 25th, with WO another country, and J3BM in Surrey on the 29th. G4BNS was on for the contest on May 7/8 and made 82 QSOs, mostly "local," but the following receive better DX: — GW4SS/O (YM44), GW4TF/P (YL25), G4TUB/P (Z045), G4KCT (Z605), G4HGT/P (Z055), DF7KB/P (DK), DL0LC (DL), PA3AOH (DL), PA0FRE (CL), PA0EZM (CM) and ON7R/WA (CK). All this effort for just 325 pts. in generally poor conditions and 'twas activity. Tony, as usual, a lot of time monitoring the band but activity seems very low outside of contests.

G6H1R lists a couple of new, 1983 counties and worked G5UHE/P (ZN) on May 7; Ray Cox, G8FV/K, confirms that contest conditions were very poor with no enhancement detected at any time, so he concentrated on 23 cm. Gordon Emmerson, G8PNN, (Northumberland) managed G4DDC/P (Beds.) and GW4SS/O/P (Powys) for a couple of new, 1983 counties on May 7, the latter an all-time new one for Pete Godfrey, G6ULU, (Kent). May 14 brought a QSO with G3OBD (Dorset) and on the 25th, G4UK in Durham. GW66J/K's antenna was down in the contest, so he had to be content with a dummy load one on which he worked GW4TF/P!

Twenty-three Centimetres

Martin Blythe, G4HTO, (Cornwall) writes that he and G4JXW work into the continent, they are always being asked for 23 cm. QSOs, so they are contemplating getting active. G4NBS stayed home for the May contest and put up a single 23-time 'local' at 26th, on the side of the mast with the transverter immediately below it. This resulted in 25 complete QSOs worth about 1,400 pts. Tony's "prize contact" was GW4BVY/P at 177 km. on CW operating from the hill he had occupied in the April 2 contest. Other noteworthy QSOs were:— G4ODA/A (Jews) on CW, G4LOH/P (Leics.), G3DY/P (AM67) on CW and G4KDH (AL35) on SSB. This activity brought 14 counties for the table but once again, G3WFM (Herts.) heard in every contest, was missed. G4TFI went out -7/P on the 9th to give Tony another new county, but he forgot to state which.

Adrian Chamberlain was active in the contest, too, but wished stations would give their QTH when calling. As most are portable, the Call Book is no use. He lists G3DY/P (Sussex), GW4BVY/P (Gwent) on the 7th, and G6FSSN/P (Glos.) on the 22nd. G4FMK stuck to 23 cm. in the contest and made 23 QSOs, best DX being G3XDPY/P, GW4BVY/P in Gwent was all-time county no. 37 for Ray.

G8PNN worked G8PRR (N. Yorks) and G3NWU (Cleveland) for all-time new ones on May 24, plus GW4BVY in Norfolk for this year's total. G8ULU is glad to hear so many stations on 2 m. and 70 cm. say they intend to get going on 23 cm., but Ray particularly hears the PAOQHN beacon in CM53, mostly just above the noise. His best DX was on Apr. 15 and 16 when three PAs in CL and CM were worked. However, with only one watt available, he has to rely on conditions being favourable.

Odd Interference

Last month, mention was made of two-way computer interference between the 2 m. G3FPK station and a BBC Micro on the other side of the party wall. Another complaint has been received from next door. This time that the RF from one or more bands in use is rendering their telephones unusable, according to a couple of British Telecom engineers with the hapless task of dealing with the problem. Now the older style telephones, like the wall and Triphone types in your scribe's abode, are low impedance devices which work quite happily next to lots of RF. It seems that the neighbour has some new style marvels which are high impedance devices, designed so that unbalanced RF can be paralleled up. The BT chaps said that a whiff of RF is sufficient to ruin all the dialling tones and they complained that these devices were designed and installed with no inquiries of them as to possible drawbacks of high impedance devices. It seems it will be a very difficult problem to cure but one thing is quite certain: your scribe will absolutely refuse any request, if it should be made, to curtail operations on any band.

For about a year, some weak carriers around 144.44 MHz have been noticed. They beam up to the north, are about S5 and there all the time. It was thought they were "birdies" in the receiver but now transparens that many other 2m. operators have the same problem. Accordingly, with the help of Ken Miles, G9GSK, in Selkirk, some very accurate bearings were taken which suggested the signals originated in the business centre of Croydon, about three miles away. Subsequently, other London stations took bearing but with very ambiguous results and it seems that we are not all listening to the same signals.

Some desert inquires seem to indicate that the interference originates in offices with a particular type of digital telephone exchange. But again there is, as yet, no conclusive proof and it would be irresponsible to name names at present. Meanwhile, perhaps readers would like to search around 144.44 MHz in their area for these odd carriers.

Yet another source of VHF QRM has been reported, affecting the 4 m. and 6 m. bands and which manifests itself as carriers every 38 kHz. In one case in Shropshire, the QRM was coming from a house with a burglar alarm system, so have any readers been suffering from this kind of QRM?

Late News

As this was being compiled in the afternoon of June 7, from about 1400 GMT, there were fleeting E's openings to the Mediterranean. Many London stations worked some 9H3s in the 9H Falcon Contest and some 06s were on, too. The 2 m. band was in an odd state with a mixture of good tropo and E's for several hours.

Deadlines

Now quite such an early deadline for the August issue. It is July 6 and for the following month, it will be August 3. As usual the address is:— "VHF Bands," SHORT WAVE MAGAZINE, LTD., 34 High Street, WELWYN, Herts., AL6 9EQ.

Subscription rate to
SHORT WAVE MAGAZINE
is £9.00
for a year of twelve issues, post paid

SHORT WAVE MAGAZINE, LTD.
34 HIGH STREET,
WELWYN, HERTS. AL6 9EQ
THE "WHITFIELD" SSB/CW/QSK TRANSCEIVER, PART V
AN EASY-TO-BUILD, 5 WATTS OUTPUT, MODERN DESIGN COVERING 160 METRES, 80 METRES, AND 3—3.5 MHz
IAN KEYSER, G3ROO

THIS month the set should begin to look like a set! But before we start on the metalwork it is necessary to complete the low pass filtering on the output of the transmitter and the aerial switching.

At first this was to be included on a PCB, but on further investigation it was decided that the work involved in building on tagstrip was far less than the work in making the PCB! The reason for this is that the switch wafer is in the middle of the box and there is plenty of room either side of the wafer to take the filters, and plenty of room below it for the aerial relay. The layout of this box is therefore left to the individual constructor and only the circuit is given. There is one point that is worth mentioning, though, and this concerns the input and output sockets which have to protrude through the back panel: to overcome this problem I mounted the sockets on long pillars so that the flanges of the sockets were flush with the edge of the LPF box.

The LPF Circuit

The reason why we require a low pass filter after the transmitter PA is that inevitably there are harmonics generated of the required signal. These have to be removed as they are potential sources of interference to others even though they may be many dB's below the required signal. What we mean by a low pass filter is that all signals below the cut-off frequency of the filter are allowed to pass unattenuated, but all frequencies above the cut-off frequencies are attenuated by about 30dB. There are several designs available to the constructor but here we are using the simplest, which is a double pi-network. See Fig. 20.

For the 1.8 MHz band we use a cut-off at about 2.2 MHz and this circuit is C6001, C6002 and C6003 in conjunction with L6001 and L6002. For the 3.0 and 3.5 MHz bands we use the same filter with a cut-off at about 4.3 MHz, as the second harmonics of the 3.0 MHz signal will be on 6 MHz and outside the filter; this filter is made up of C6004, C6005 and C6006 with L6003 and L6004. The required filter is selected by the switch wafer S3001d, which is the rear wafer of the bandswitch. Relay RL6001 is used to switch the filter from the receiver input and transmitter output, and switch the +12 volt supply for the PA bias and muting, etc. RL6001 is not energised directly from the Tx/Rx control PCB but by a transistor Q6001. This reduced the output current requirements of the control PCB and so simplifying this circuit.

Tables of Values
Fig. 20

<table>
<thead>
<tr>
<th>Component</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>L6001, L6002</td>
<td>31 turns, 26 swg, T50-2 cores</td>
</tr>
<tr>
<td>L6003, L6004</td>
<td>21 turns, 26 swg, T50-2 cores</td>
</tr>
<tr>
<td>C6001, C6003</td>
<td>1800 pF poly.</td>
</tr>
<tr>
<td>C6002</td>
<td>3600 pF poly.</td>
</tr>
<tr>
<td>C6004, C6005, C6006</td>
<td>750 pF poly.</td>
</tr>
<tr>
<td>C6005</td>
<td>1500 pF poly.</td>
</tr>
<tr>
<td>RL6001</td>
<td>10K, 1/4-watt</td>
</tr>
<tr>
<td>Q6001</td>
<td>BC107 or similar</td>
</tr>
<tr>
<td>RL6001d</td>
<td>see Part III, May, p. 140</td>
</tr>
</tbody>
</table>
Metal Bashing

In fact this is the worst part of the construction, in my view, as I always manage to drill holes in the wrong position and have to file them out, but with a little care these mistakes can be covered up and all looks well in the end!

The case is fairly complex, the reason for this is to be able to gain access to the circuitry without having to dismantle the whole set. The principle behind this construction is that the receiver section is mounted on the front panel, the transmitter on the rear panel, and the base holds the two together. The top cover then slips over the assembly and is fixed to the baseplate with either self-tapping screws or adhesive tape! Sellotape is my favourite as there is then no problem with gaining access rapidly and there are no unsightly screws showing.

The front and back panels are fixed with 6BA screws through the baseplate into little brass strips ‘Araldited’ to the flanges and then drilled and tapped 6BA. This means that there is no problem in the future when the time comes to remove these panels. Of course, self-tapping screws can be used, but with repeated use these soon open up the holes in the aluminium thereby creating problems.

The first fixing are these brass strips. For this I use one-inch lengths of 1/4 x 1/16 inch strip obtainable from model shops. To ensure good adhesion to the aluminium it is necessary to clean both surfaces thoroughly and roughen the surface of the aluminium with a screwdriver. Fix one strip to each side flange and at least two, if not three or four, along the long flange, see Fig. 23. To drill the holes in the correct position is difficult, but I found that the best accurate way was to drill and tap the holes first and then, holding the panel in the correct position on the base plate, mark through the holes with a scriber.

The next problem is drilling the holes for the controls and the dial cut-out. There is only one way to do this, and that is by ‘dead reckoning’; the method I used was to place the receiver module on the edge of a table (ensuring that the VFO box lid is on) and measuring the positions of the existing controls relative to the table surface and marking them on the front panel, then the other holes that will be filled with panel mounted controls can be located by measurement from the centre line. Having got the existing controls poking through the front panel it is a fairly simple job to locate the position of the dial cut-out. Fig. 24 shows my dimensions but these are only for reference to check your figures by, and not as a drilling guide.

Having fitted the front to the base the next move is to fix in position the dial supports. These frames not only act as dial supports but also as supports for some of the other controls, and they will have to be cut to serve this dual function. It is impossible for any guidance to be given on this matter as there are too many variables involved, but with a little thought it is surprising what can be accomplished with very little work. Examples of what I have done can be seen in the photographs.

Fitting the driver box is the next problem, as this sets the exact...
Fig. 22 WHITFIELD CASE DETAILS (16 swg Aluminium)

Showing the method of cutting the dial support to hold the mode switch; the mic. socket is to its left.

Brass plates secured with Araldite to front and rear panels.

Fig. 23 "WHITFIELD" BRASS PLATE POSITIONING
spacing between the front and back panels. This box is supported on the left-hand dial support (looking from the front) about half-an-inch above the baseplate. The exact position is set by the position of VC4001 (Tx driver tuning) and this has to align with the hole in the front panel. Having decided on all these variables (and these depend on the physical size of the components used), the driver box is fitted to the dial support with a nut and bolt in a suitable position that is accessible. Having done that, it is now possible to place the back panel in position and fix the driver box to it, using the mounted nuts for the driver output socket (the driver output is available on the back panel for use with transverters and is routed via a coax cable to the input of the PA).

The microphone socket, a five pin DIN, is mounted in the normal fashion on the front of the panel, but on the rear of the panel with the front panel hole enlarged to enable the plug body to pass through. To allow easy fixing of the socket I soldered two 6BA nuts to the rear of the socket flange so that the fixing screws pass through the front panel to pick up these captured nuts. Fixing this way enables complete removal of the front panel without unsoldering the wires to the socket.

The rest of the metal work is fairly straightforward and in any case there will be differences due to different components and ideas. There is plenty of room in the base and boxes to accept these variations as well as any additional circuitry required by the individual.

Having completed the case it is now necessary to make up two coax leads, one to couple the driver output to the PA input and the other to connect the PA output signal to the LPF box. I have available a few right-angled sockets which make these connections neatly and these are available for an s.a.e. until the source is exhausted).

The Front Panel

Finishing off the front panel can be a problem. Over the years I have come to favour perspex as the finishing touch, using Letraset on the face and spraying the back with paint; this gives a high gloss finish with a "relief" effect on the letters — but the problem is that the lettering easily rubs off. Having recently seen G3RJV's finish of using coloured paper and careful lettering, and then perspex, this is the system that I would now recommend; though of course the whole effect depends on the quality of workmanship.

In the next, and final, part we will cover the Tx control PCB and the optional RF amplifier.
Perhaps it would be interesting this time to talk about the shack and the layout of its contents, and what to be preferred — we know that none of us have a perfect shack, but it is nice to know how far from perfection ours really is!

Let’s look at the things we would like first: privacy, warmth, access to aerials and earth by the shortest routes possible, and no sharing with other hobbies or activities.

Immediately we come to the basic question of a quickly heatable outside shack or a place indoors. Most would go for the latter, but there are good arguments in favour of a shack at the far end of the garden, especially in terms of the local man-made noise, of access to aerials and earth, and privacy. Getting the place warm quickly is then merely a matter of a breezy enough mains lead out to the shed, plus enough kilowatts to get the temperature up quickly.

Inside the house, there are various places which can be considered: a separate room is an ideal, but the coal-cellar or the corner of a less-used room are easily made snug and easy for the expenditure of a few hours effort. Up in the loft is superficially attractive, but needs very careful thought before committing oneself — for example can you get the gear up there; can you get the operating desk up there; is the access easy for you and any visitors?

Now, having chosen the place (or been pushed into one corner of the sideboard!) you have to consider the details. The height of the operating surface is critical to less than an inch for best comfort and is related, of course, to the height of the chair you are using. Most people are right-handed and therefore need to tune the receiver with the left, leaving the right hand free for logging, reaching for books or pencils and so on. Thus the receiver tends to sit on the left of centre, the speaker maybe at the centre, leaving room to the right for a small filing-box for records, an RTTY or SS/TV set-up, or even a home-computer. When one turns to VHF, of course there are some more questions to be answered: as far as your scribe is concerned, he uses an FM rig occasionally but by far the majority of his listening on VHF/UHF/SHF is done by way of converters.

On the other side of the room, ideally one wants a workbench with room for test equipment shelves overhead can be a nuisance as they tend to cause the head to be wagging continuously from whatever is under test to the display on the test gear. Also, a rack on the wall to hold a few small tools, and the soldering-iron and stand should have a convenient site so that the iron needs no more than switching on.

We have talked a little about ideals — and one writer’s ideals at that. Obviously, no one has the same approach to the hobby as someone else, or the same degree of commitment, or the same financial constraints, or even the same degree of tolerance (or lack of it) from the family and near neighbours. All we can do is to look to the ideal, and then trim as near as we can.

Home Brew

Most operators have something home-brew around the place, and most of them are items which either can’t be bought commercially or which replace things that the owner couldn’t afford to buy. So — we are going to have us a little competition!

If you’ve built something, then we want a description, a photograph (b/w or colour), and the story of exactly what it does in your own scheme of things. If you would like to see your pride and joy in these pages, then the picture should be a good sharp black-and-white print. We will award marks for the idea, the design, the construction, etc. In other words, we would like to see everything, from a tyro’s first try at a published circuit right through to the beautiful work of someone who constructs electronic equipment for a living; not forgetting the ‘lash-up’ job of someone who just wants to prove a design point.

There will be some marks spare for us to award for the effort put into photographing and describing the masterpiece — but not for the typing! And, if there are enough entries, we may well dig deep into our pockets for a little prize of some kind, one for the OMs and another for the YLs. The deadline will be as for the bunch of letters for next January’s piece, which a glance at the calendar says is November 17th. So... get you cracking, folks!

The Letters

B. Patchett (Shffield) was a bit upset by an RAE question last time about propagation over 4000 miles at night in midwinter — he says that while he answered the question as best he could, it was plumb daft because whoever heard of propagation at night in midwinter on 21 MHz? Most of us who have lived through a sunspot peak would be a pretty fair answer! In fact, one can often hear a signal with a pronounced ‘echo’ on it, due to having gone right round the globe, which implies it has gone right through the night! (Think about it — it takes about 1½ second to grid the globe, passing on the way the night zone and the day zone.) This is a manifestation of night-time propagation which Brian implicitly denies exists! But, seriously, at a sunspot peak one will often find late-evening openings on any of the HF bands; and if there is activity at each end of the path, you are made aware of the path’s presence. See how much more lively any band becomes during, say, the ARRL, the CQ WW, or the Russian world-wide contests, and be aware that it’s not due so much to ‘hfl’ conditions as to activity in the right places. One’s normal reaction to a ‘cler’ band is to crank the bandwidth — and so is everyone else! This is very definitely the time for a speculative ‘CQ’ call or two. On a different tack, Brian hopes to have the G4 call-sign in the bag by the next letter, so we must abide in hope — and hope he reports to CQDX as well as continuing SWL activity!

D. P. Shapiro (Prestwich) ruefully remarks that he has projected himself into the All-Time Table — over-enthusiastic, doubtless! On a different tack, he has been somewhat diverted by his studies for another ‘O’ level pass (in Computing) and the ‘A’ levels which are almost upon him. A little puzzle is the use of the term ‘G4 + 3’ to refer to post-war call-signs. It all goes back quite a long way to when all the three-letter suffixed calls were of post-war origin, except for the few who had G2 + three letters, who in the pre-war years had held them, without the G, as the so-called AA licences, who could tune up but not transmit; these calls were all given full permits with just the G added when the ‘licences’ reappeared after the war. Thus, since there were as many pre-war calls as post-war ones about, the late G6FO referred to the post-war chaps as G3 + 3 to distinguish them from the post-war G3 + 2 calls; the term, like so many of his, stuck, and in 1983 can be said to include all the post-war issues.

Aero-Mobiles

C. H. Kirk (Leeds 15) noticed an /AM call and wonders about its legality, Aeronautical Mobile is permissible in some countries, one of which is U.S.A. — and Charles’ chap was KA9BRO /AM, oddly enough working an Italian station who was an off-duty air traffic controller. Now his second letter, from which we gather he has two sets of aerial wire: the first one is a set of three dipoles on common feeder up in the loft, while the other one is a sixty-odd foot wire fed through an ATU, with counterpoise ears of quarter wave for each band all connected to the ATU earth terminal and ‘lost’ under the shack carpet. The dipoles, with their ‘inverted’ shape, seem to perform better for Europe, but the...
MAIN DISTRIBUTOR FACTORY BACKED

FT 707 £515 inc.

- 3 Bands: 100kHz, 200kHz, & 1MHz
- Full Duplex
- 2m/3m/70cm AM & FM
- Transistor frame
- Excellent shortwave and 2m/3m

- **FT 726R £699 inc.**

- AVAILABLE SOON
- **HF Module**
- **FM Module**
- **FM Module**

KDK FM 2030 £199 inc.

- 12 QRM to 100kHz
- 12 QRM memory options
- 12 QRM memory options

12 MEMORY RECEIVER: FRG 7700 £399 inc.

- 10 kHz to 100 kHz
- 10 kHz to 100 kHz
- 10 kHz to 100 kHz

JRC COMMUNICATION RECEIVER NRD515 £985 inc.

- 30 kHz to 10 kHz
- 30 kHz to 10 kHz
- 30 kHz to 10 kHz

SEND US FOR 26 PAGE CATALOGUE & PRICE LIST

AN AS FOR INFORMATION ON YAESU RADIO EQUIPMENT, S.A.E.

DATA ON TOWERS, ANTENNAS, MASTS, etc.

SOUTHAMPTON
SAC 11
36-38 Embankment Street
Southampton, Hampshire
Southampton: 0703 80 2003

CHESTERFIELD
SAC 20
Chestfield: 45 55 50

BUCKLEY
SAC 30
BUCKLEY 5200

STOKE
SAC 40
STOKE 75 00

DEERFIELD
SAC 50
DEERFIELD 59 50

NEW BRANCH IN SCOTLAND

KIRKCALDY
SAC 60
KIRKCALDY 59 50

EDINBURGH
SAC 70
EDINBURGH 59 50

JERSEY
SAC 80
JERSEY 59 50
first assessment of the end-fed wire is that on DX it outperforms the
dipoles. In a postscript comes a question about what are known
as 'active aerals'. These are in essence small aerals with a
fitted amplifier in the base and an output feeder at some specified
impedance which is taken away to the shack and receiver. It must
be remembered firstly that no active device, valve, transistor, FET
or whatever, is free from noise, and secondly that by far the most
important parameter in the receiver system is the 'dynamic range'
between the minimum detectable signal and the maximum before
blocking or other effects occur (that's a bit of a simplification but
it'll do for now!) Now, on the face of it, that means the active
aerial isn't a lot of use — but we must take into account that,
certainly at HF, most of the noise at the aerial terminal is
manmade, and probably generated in our house or the next
door. Why if we take an active aerial to the bottom of the garden,
where it is farthest away from houses and hence noise, we might
find that we have made a vast improvement. The answer has to be
the old one — suck it and see!

A second letter from B. Patchett comes to the top now, and
contains something of interest for those who like to get a bit of
Morse practice: Brian notes only 52 which he finds sitting around
7.0 MHz between 0900 and 1500, Mondays to Fridays. It starts
about 35 w.p.m. and gradually works its way up to 16 w.p.m. as the
day progresses, always in five-letter groups, and is presumably of
Belgian origin.

D. Woods (Swindon) set up shop with an HF5V and an R-600
receiver fed from it, back in March, and is now ready for a first
entry of 433 in the 1983 Table, which looks OK. One minor point
that arises is that Doug, after listing all the prefixes in terms of
complete callsigns, broken down to band and time — beautiful
— then added a complete list of the prefixes themselves, which he
added up and totalled. This (and Doug's not the only one who
does) is a duplication of effort; and it's easier to check the main
list anyway and count 'em at the same time. We don't much mind
how you present the required facts, but that having been said, it
seems worth while to avoid duplication of work around deadline
time! On a different tack, we notice Douglas is another RAE
candidate, so we hope to hear before long of that other pass-
slip.

R. Hurst (London SE23) started again in 1982, after a break
of fifteen years, while he got married and had a family. The receiver
is an Eddystrong S740, bought second-hand twenty years ago, and
stored in the garden shed for most of that time. A little 'rejuvenation'
on it and it was a matter of back to business.

Turning to P. Oliver (Paisley) we find Pete has been a BC band
SWL for four years, but in January he bought a Realistic DX-200
and found the amateur bands, to which he has remained glued
ever since!

Barking

Thanks to an ex-regular of this piece, M. Toms, we have the
results of the Barking club contest, which had sections for licensed
operators and SWLs. There were lots of licensees, but only two
SWLs — Mrs. J. Charles of Colchester with 1848 points, and N.
Hurst of Northfield who for many years also adorned this piece.
Congratulations to both — and from Barking an appeal for more
SWL support next time round, lest they withdraw the SWL
section!

Our next letter comes from the Sage of Nottingham, B. Ward.
It is nice to see that he is once again able to use a pen rather than
the typewriter — as he says, there isn't the same sense of
involvement. For the moment, Barry's XYL still has him in the
throses of decorating and D-I-Y activities. However, the books are
still being worked at, and some progress is being made, to judge by
the additional understanding of the articles he reads in the
magazines. The 'shack' corner of the room has been completed,
and looks good, while the rest of the room has also been decorated
— albeit Barry reckons the rest of the family don't have enough
respect for his kindness in letting them dink in his shack! Barry has
tried to explain that this is a shrine to radio, and not just a place
in which Dad does his thing with dits and dahs, and they don't listen
when he explains about those two saints Henry and Farad, let
alone the idea that they will each have a cloud of their own with
360 degree take-off to DX! Sad.

On a different tack, Barry wonders about the great strength of
signal the West Coast Africans can dump on to his aerial. Well
they are, after all, about 3000 miles away which would make them
mostly somewhere near first-hop signals if they have good aerals.
Changing subject again, Barry has discovered that the spacing
between his house and the one next door is greater than he had
thought, and so the next project is a set of dipoles for 7-30 MHz
using common feeder, plus the making of a balun, and a
compatible ATU. Barry goes on to wonder about dipoles of
different lengths on a common feeder, and how about that
unused ones don't upset the one in use. We suspect that they do
interact, but that the reactance of the shorter ones is such that no
power is fed into them, while the longer ones are either high
impedance anyway or have opposite-sign reactance. Anyway,
the scheme works well enough.

R. Woods (Staines) and others mention the odd SP station
again operational on the bands; he also noted VK7PPW/MM
aboard the Sea Shepherd on March 26, one of the protesters at the
deal call, being monitored closely by the Coast Guard — until his
batteries went flat. An April Fool's call sign on Twenty was
signing TV6ICE — a comment on the weather?

The Ladies

The pick of this time includes the current letter from Mrs. R. Smith
(Nuneaton) plus her letter postmarked 28 September 1981 —
good going for the postal service! In Ruth's latest one she gently
chides us for the slip in the Ladder which put her lower down than
she should have been — sorry!

Apart from her first place in the Barking contest, which we have
already mentioned, Mrs. J. Charles (Colchester) has continued to
wend her way toward the magic 1000 mark. On the way, June
found OA21 on Twenty and wonders about his worth; suffice it to
say that if the last digit was 1 and not 0, then he's all present and
correct in the current world Call Book.
Mrs. T. Parry (Blackpool) seems to have settled down nicely to the new place and the aura of domesticity, but still with a steady influx of new prefixes noted in the Ladder. Tina seems to have picked up another April Joker in 1F1E, heard on both 14 and 21 MHz on the magic day — but that still won’t make him into a Good ‘Un!

Next we come to W. G. Skipton (Rye) who remarks that his typerwriter is, like himself, a learner — we know the feeling! George started back in 1937 with a home-brew two-valver, with which he heard various stations including Moscow; and the resulting QSL card plus parcel of propaganda made him very unpopular with a Conservative Parent! The outbreak of War saw the end of George’s interest in the hobby until 1962; now in Rye, he is able to get together with N. Jennings each week for a ragchew. The station comprises a DX-302 plus an AD370 active aerial from Daron.

Turning next to N. Jennings (Rye) we see the results of his efforts largely on George Skipton’s list(!) and in his letter Norman reckons that many more SWLs, whether to the broadcast or amateur bands, will find it worth their while to become members of ISWL — a sentiment with which we agree. On a different tack, Norman wonders just how long it will be before someone else joins the RTTY section of the HFX Ladder.

J. Goodrick (Newport, I.o.W.) is all nostalgic, recalling the good old days back before any of his SX28 Philips Short Wave receivers had SX28s. An SKL and his SKL/VA despite a good location near Huddersfield, 200 feet of wire out and an ATU on Twenty. This was probably because the long wire — and it was a true longwire at that length on Twenty — was probably too directive and the VK/ ZLs is in the minor lobes or nulls of the aerial. And, of course, there was the far greater Top Band activity — mostly AM and CW of course, and some of the AM was of real BBC quality.

Our congratulations are due to R. Fox (Northampton) who has gained an RAE pass and obtained G6UTI; but this is just the prelude to some effort being applied to passing the Morse test. In readiness for the upgrade he has changed the FRI-G300 in favour of an Icom 740 and its matching automatic ATU, with a transverter to produce the needful on two metres. On the aerial front, a trap dipole arrangement has been put up for the HF bands, plus an eight-element Quad for 144 MHz and twin Paraboons for 432 MHz. As for the Apple II, that is being pressed into service for Oscar predictions and, in the near future, RTTY if all goes to plan. An interesting point is that the REI problem from the Apple has disappeared now that the motherboard has been changed and updated following a problem with software and interfacing.

Disaster

That’s what struck A. P. Lincoln (Aldershot) recently, when he went into the shack for the first time for a period and found that the roof had been leaking for some time and — of course — all over the gear. It was all dried out with the aid of a hair-drier, although the R70 receiver was a mice slow to respond to the treatment; but it all sorted itself out in the end. In such a case as this, probably the best thing to do is what Peter did, unless one happens to live near a big city. Often the rain in such an area can be quite corrosive, in which case the best bet is probably to give the gear a full-blown bath in clean water, followed by a good dry out and some attention to the points which may need lubrication. Turning to SS/TV, Peter reckons that the bands have been open later due to the longer days has resulted in some more countries having been seen.

T. Morris (Leading) bravely waded through the flood waters to put in three sessions on each day of the CQ WW WPX contest, to a total of around 13½ hours. As predicted, she was Not Amused! Nevertheless the trade-off was in the form of some 93 new prefixes to make it worthwhile. On the matter of portable, in the U.S.A. when a station goes out portable, as for a Field Day or such, the station signs with its own call suffixed by an oblique stroke and the call area in which the operation occurs. This is the same as our ’alternative address’ and ‘alternative location’ /A and /P.

ANNUAL HPX LADDER

Starting date, January 1, 1983

<table>
<thead>
<tr>
<th>SWL</th>
<th>PREFIXES</th>
</tr>
</thead>
<tbody>
<tr>
<td>D. Woods (Swindon)</td>
<td>452</td>
</tr>
<tr>
<td>G. Skipton (Rye)</td>
<td>435</td>
</tr>
<tr>
<td>R. G. Hurst (London)SE23</td>
<td>426</td>
</tr>
<tr>
<td>T. Morris (Walsall)</td>
<td>341</td>
</tr>
<tr>
<td>G. A. Carnachan (Lincoln)</td>
<td>331</td>
</tr>
</tbody>
</table>

200 prefixes to have been seen since January 1, 1983, for an entry to be made, in accordance with HPX Rules, p. p. 26, March issue. At score of 506, transfer to the All-Time listings is automatic.

However, to distinguish between them, the Stateside station will sign, if out portable, for instance W6/ZZZ/P6 which says he is out portable in the sixth call area (California). Should he decide to go portable in the seventh call area, he would sign W6/ZZZ/P7, and so on. The picture is a little complicated of recent years because while an American station who has a permanent address in each of two call areas would have a basic call sign in each area, it seems that nowadays they only have the one call, and if operating in another call area, whether temporary or on a semi-permanent basis, sign the original call stroke number of the call area from which he is operating.

A return to the fold sums it up for J. Doughty (Cheshunt Hay) who re-enters the table after all absence due to the pressures of a hectic life. However, he admits that part of the trouble is that he goes into the shack to make up the list and then, having switched on the rig, “gets interested” and the paper work just doesn’t get finished!

H. M. Graham (Stamoch) hasn’t been this low in the pile for years — but we picked it up and inverted for it a change! Among Maurice’s list, we wondered about his TARS/MSC — we understand that TA1 and TA2 are the only prefixes being used, but since all the TAs are ‘undercover’ (amateur radio is only just beginning to be legalised after many years), it is just possible that some variations may occur.

Breakfast TV has got up the nose of D. A. Whitaker (Harrogate) — as he says, we have the blasted time-base QRM for 18 hours daily now. And, of course, the morning period is by far the best time for DX operating, with most of the EU QRM still there or getting off to work. All of which is a side-issue, because David actually wrote on behalf of White Rose club, with results of their annual SWL Contest for 1983. Looking at these results, we note that Trecherer — who writes the RadCom SWL column — is at eighth, while David Whitaker himself is at sixth place. Another old-time reader of this column is N. Henbrey at nth, Sadly, there were only seven entries in the CW section and none from UK, despite the White Rose picking the weekend of the CQ WW 160 contest and the French DX contest! Top Band was buzzing, while some 92 DXCC countries were noted in the 3.5 MHz European logs, with 69 DXCC countries reported on Forty. Again, the pity of it is that more CW entries were not made, as the 1F bands are very definitely the place where it all happens on CW.

Others

We acknowledge, and thank, the following for their entries — why not add a letter with some news to your next list? B. F. Hughes (Harvington); D. J. S. Williams (Wanstead); G. A. Carman (Lincoln); G. W. Raven (London SE13); A. Pyne (Bradford 6); J. Heath (St. Ives); A. Pilkington (Chesterfield); N. Askew (Coventry); A. F. Roberts (Kidderminster); H. B. Cole (Cardiff). To you all, many thanks — and keep ’em rolling!

Wind-up

Which it where we give you the deadline for next time out as Thursday, July 21, to arrive first post, the address as always being to your J.C., “SWL”, SHORT WAVE MAGAZINE, 34 High Street, WEIny, Herts. AL6 9EQ. Till then, Good Hunting!
BASICS FOR THE S.W.L AND R.A.E. CANDIDATE
PART XI

SUGAR-COATED THEORY

LAST time we finished by saying that this instalment would cover directional aerials. That was a mildly premature statement, insofar as we must pay a little more attention to the matter of half-wave and quarter-wave aerials and their relationships with earth in the real world.

In general, aerials are erected either such that they radiate horizontally or vertically, in terms of the electric field; conveniently this coincides with the radiator being either horizontal or vertical respectively. So — when the chap at the club talks about a horizontal aerial, he’s also talking about a horizontally polarised aerial. Let’s consider a half-wave dipole in free space and imagine we can energise it at the centre with some suitable source of RF; a wander round the thing with a field-strength meter and plotting the results would give us a ‘polar diagram’ of the radiation in ‘3-D’, which would look for all the world like a doughnut with our half-wave dipole poking through the hole in the middle. This is not a shape that we can plot on a piece of paper, even though we could represent it in 3-D with the help of plasticine or putty. However, if we assume for a minute that the dipole is horizontal, the doughnut will be standing up, and if we took a section horizontally through the doughnut, then we could plot this on a piece of paper — it would look like a figure-of-eight lying on its side, and the dipole, which is in the same plane, would lie across the neck of the ‘eight’. This tells us that the aerial will radiate horizontally with the maximum strength at right angles to the wire, the strength tailing off as we look round towards the end of the wire. This is a ‘horizontal polar diagram’ of the dipole in free space.

Using the same argument, a section at right angles to the first one, cutting through the centre of the dipole would show a ‘vertical polar diagram’ and this one would draw out on the paper as a circle round the point representing the aerial. One usually sees these sorts of diagrams drawn on ‘polar’ graph paper, where the lines of the paper radiate from the centre like the spokes of a wheel; this is handy as we can use the length along a line to describe the field strength, and the angle for the other argument. Sometimes — not usually in amateur publications — one may see the polar diagram plotted on ‘ordinary’ graph paper, using field-strength on the ‘Y’ axis and the angle along the ‘X’ axis. This is confusing except for special purposes.

Of course, we can draw sections at all sorts of angles in between vertical and horizontal, but when we talk in normal terms about a polar diagram we are referring to a section parallel with the earth — under the aerial — so let’s go right back there and shed the freespace nuts.

In our free-space aerial, it didn’t take a lot to see that we couldn’t expect much radiation off the end of the dipole, since we couldn’t see any of the wire. Now our horizontal dipole is sitting above its own little bit of earth, and we agreed last time that the earth will contain a mirror image of the aerial. Now walk out to the ends of the dipole; if you can’t see the dipole, you can see some of the reflection. Try it with a horizontal pin over a bowl of water — try as you might, you won’t get shot of both the end of the dipole and of its image at the same time. Ergo, deduction suggests that the horizontal dipole hung up over an earth plane will in fact show signs of radiation off the ends. An interesting point is that a vertical aerial will see this bit of radiation off the ends better than a horizontal, as you will see if you continue the experiment with the pin and mirror.

Now, when we energise our half-wave dipole above ground some of the RF will be aimed down towards the ground, some horizontal and some upwards. Over a ‘perfect’ ground all the RF that hits the ground will be reflected upwards again, and so we would expect the resulting polar diagram to depend on the height of the dipole above ground. For radiation hitting the ground at a very shallow angle a particular effect occurs and the wave reflected off the ground is phase-reversed, which modifies the picture slightly, but essentially the argument holds good. Practically, we may say that at a quarter-wave above earth our half-wave dipole (horizontal, of course) will radiate a large proportion of its RF at very high angles — most of it, in fact. Taking the aerial up to a half-wave above ground, this large component at near vertical angles disappears and most of the RF goes out at more sensible angles. Go up higher again, to 3/4-wavelength high, and the vertical lobe reappears, though not so strongly, and the lower angle lobe comes nearer the horizontal. At one wavelength above ground the vertical lobe disappears again, and the lower angle radiation peaks at yet again a bit nearer the horizontal. This, we may say that our half-wave dipole wants to be, preferably, at a height of a half-wave or multiples thereof, and that in any case the higher the better.

Turning to the vertical quarter-wave aerial, here we have a complication. This is that our quarter-wave aerial needs the image in the earth in order to even accept power, regardless of the effect of the image on the radiation pattern. Hence the old saying that verticals radiate equally inefficiently in all directions! We must first do as much work as possible on improving the ground. One way is to lay in lots of radials just below the surface to ‘silver the mirror’ — and we find in practice that lots of shorter radials use a given length of wire better than a few long ones. Another way of attacking the problem is to use an artificial ground by way of a ‘counterpoise’ — a quarter-wave long running just above ground (which usually means around seven feet high to avoid garroting the OM or the XYL while gardening or hanging out the washing!)

A third way is to elevate the whole works and use a groundplane of two or four quarter-wave radials disposed exactly round the compass. If we consider the quarter-wave above an earth well dosed with buried radials, application of our pin-and-mirror experiment shows no radiation directly upwards and maximum radiation horizontally outwards from the aerial; if we look at the ground-plane or the counter-poise scheme we would instinctively expect some vertical radiation off the lower half, and in practice that seems to be the case. Practically, too, our earth will always be less than perfect, even over sea-water, and so the achieved result will be a peak of radiation at a low angle above the horizontal, just how much depending on how much the ground departs from the ideal.
An interesting follow-up to this argument concerns the case of a low horizontal erected over ground sloping downwards (and upwards in the opposite direction) parallel to the direction of maximum radiation. Applying the pin and mirror to this situation reveals that if we look at this situation from the direction in which we can see the image in the glass, we would expect much more radiation near the horizontal looking downhill away from the aerial, and indeed G6XN has reported results on the path to VK/ZL which confirm this argument with some force; it also tends to confirm the essential validity of the pin and mirror demonstration. We have obtained directivity by simply using the shape of the terrain.

Now, we can start to consider ways of augmenting the radiation in one or more directions at the expense of others. To do this we use more than one half-wave element; we may drive all the elements with chosen phase relationships (all driven arrays) or we may use parasitic excitation, in which the parasitic element is excited by its proximity to the drive element (parasitic, or in particular, Yagi arrays such as the three-element beam beloved by the DX-er) or combination of the two methods (which used to be a favourite with VHF DX-ers, and is much used commercially). To make the main beam point in the desired direction we adjust the phase relationships of an all-driven array, or rotate the whole works as is done with Yagis and VHF phased arrays, thus avoiding fiddling with the phasing.

The operating frequency has a lot to do with the choice of steered arrays by phasing or rotation of the whole aerial; a Top Band or eighty-metre rotary beam would be a jumbo-sized engineering problem indeed (although at least one American amateur did at one time have a two-element rotatable Delta-Loop beam!). With verticals, phased arrays seem to be preferred, although there is intrinsically nothing against vertically-polarised Yagis at frequencies in the VHF region and above. A practical problem arises here, in that, at VHF, one would want the antenna to be polarised in the same way as the station one is going to communicate with, ideally; hence the FM mobiles and repeater users favour vertical as it is better for the mobile, while the CW/SSB buffs tend to prefer horizontal aerals. This problem does not arise at HF due to the effect of the ionosphere, save that it may matter to some slight degree locally, where one is communicating by virtue of the ground-wave rather than using ionospheric reflection.

Design

As we have already said, one can make any old bit of metal into an aerial if one is prepared to accept that its efficiency and polar diagram are in the lap of the gods as far as rational prediction goes. We have also said that the amateur is confined very largely to simple test-equipment in the aerial department, which at best can only give indications that a chosen theoretical design might have been put up and be near enough for the last little tweak to bring it on the nose. Furthermore, most amateurs don’t know enough about aerials to be able to do more than copy a design or, at best, scale an aerial from one band to another; thus they either hang up an end-fed wire, use an ATU and live with the results, or start into cutting dipoles (or chicken out and go buy a commercial job!).

Thus, we need some formulae and relationships. Let us start with the basic half-wave dipole; this is in fact a wee bit less than a half-wave long physically, thanks to what are termed ‘end effects’. The normal formula is length in feet, \(L = \frac{F}{2} \), where \(F \) is in MHz. Let us take a practical example of the use of this formula. Imagine we want to make a dipole to cover all the 14 MHz band, we would take \(F \) as being the centre of the band, namely 14.175 MHz; whence \(L = \frac{14.175}{2} \) feet, or 3.03 feet. Most of us would take a 33’ piece of wire, cut it exactly at centre (16’ 6’’), connect it to a length of coaxial feeder of 30c: 75 ohms at a centre insulator, use an insulator at the ends, and hang it all up, as in Fig. 4. What more can we do? Practically, most people solder the thing together, and if the ends are taken in a loop round an insulator and soldered back to themselves (Fig. 4), then the correct length is to the end of the loop; the argument is that the wire splits into two parallel parts of the same length between the soldered joint and the end of the loop, and therefore the overall length of each leg is from centre to the furthest point of the end loop.
Secondly, lots of people ask about the gap in the middle; just take each side as being of length half that of the wire cutting formula \(L = \frac{468}{F} \), and arrange to keep the centre gap as small as conveniently possible. Third, we come to the making of the centre bit. Your scribe prefers solderless construction and a bit of ‘chocolate-block’ connector, but above all the construction method must be such that once it is erected there is no way that water can seep into the coaxial cable. (Apart from ruining the coaxial cable the water may appear in the bottom of the ATU or the PA compartment!). The coaxial will become lossy, and so the mismatch will improve with some cases and get worse with others, depending on the cable length and type.

Assume for the moment you have made your dipole and put it up, what comes next? If you don’t just mean to ‘live with it’ you should now do a test. Tune up at 20 kHz steps from the bottom to the top of the band, and note the SWR at each stop. Plot the results and you should see a curve something after the style of Fig. 2. You have aimed to get the lowest SWR to occur at 14.175 MHz in the design; you would hope that the best SWR does occur at 14.175 MHz, and that the SWR remains within ‘acceptable’ limits over the whole band. What is acceptable? If the rig is commercial and you don’t have an ATU, take the handbook requirements. If your rig specifies a range of impedances it will cope with, then turn these into SWR: say, a normal 50-ohm rig needs 25 to 100 ohms, then common sense and a simple bit of mental arithmetic says it wants better than 2:1. No information, assume 2:1, or on an older rig 3:1. If you have a solid-state PA, you want unity SWR because the PA hasn’t got a tuning control. No tuning control in the PA means you must tune the aerial with an ATU — a contrivance, not a simplification.

If your plot shows best SWR at, say, 14.1 MHz, but still acceptable across the band, live with it. If it is too high at the HF end and best at 14.1 or so, drop the aerial, hack an inch off each end, and put it back up for another run of measurements; repeat until you have an acceptable SWR across the band, with the best point at around mid-band.

Bandwidth

Bandwidth is usually defined as the range of frequencies between which the SWR is at a specified maximum or better. If nothing is said, one can assume an SWR of 2:1 or better. By that criterion, there is no way you are going to make a dipole cover all of Top Band, or all of Eighty, or all of Ten. So — what to do? One possibility is to cut the dipole for a chosen part of the band and restrict one’s operating to that section of the band. Another way is to cut for mid-band and use an ATU to achieve the desired low SWR between the ATU and the rig while letting the SWR on the serial-feeder system go where it will. The choice is your own.

Feeder

We haven’t made any distinction yet with regard to the feeder. Impedance to be used with our dipole. The centre impedance of a dipole in free space is about 74 ohms, but the practical dipole may vary widely from this. G6XN’s book *HF Antennas for All Locations* gives figures between 50 and 75 ohms, even when the dipole is very low, so on the face of it 75-ohm feeder looks a best bet. However, the Americans standardised on 50 ohms and most transmitters are 50 ohm output nominally, so you pay your money and takes your choice! However, whatever impedance coaxial cable you choose, get the best you can afford, and if it is at all possible have it all in one length — every joint is a weak spot for ingress of moisture, and moisture is death to the insides of a bit of coax.

To keep a check on the state of your coax, it’s best to start with new cable. Put on the connector (and it is important to do it properly with a soldering iron and in accord with the instructions) and the aerial centre-insulator connection, but not the aerial wires. Lay it out in a straight line as far as possible, connect the ‘home’ end to a SWR meter, and the SWR meter to the rig, or to a GDO as may be required by your station set-up. Measure and record the SWR. It should be approaching infinity for a normal run of coax and a measurement at 28 MHz. If you are talking about VHF, then you should expect greater than about 10:1, but in any case it depends on the length of run. Now you can put up the aerial after proper weatherproofing, but if you have any doubts, or each time the aerial is down for maintenance, then you can repeat the measurement. And remember, any sign of an ‘improvement’ in SWR tells of deterioration of the cable.

Back to our Beams!

Just a little time left to look at parasitic beams, of the Yagi type.

If we take a dipole, and nearby we put another dipole, minus centre connection (i.e. a single length) but a bit longer, we will find that we will tend to radiate more in the direction away from the parasitic — Fig. 3(a). Make the parasitic a bit shorter than the dipole, and again we will find a change in the radiation pattern — this time, the array will radiate in the direction of the parasitic, as in Fig. 3(b). The first case parasitic is called a ‘reflector’ because that is what it seems to be doing, and in the second case the parasitic is called a ‘director’. We have just created two versions of the two-element Yagi beam!

Having nicely whetted your appetite, we’ll leave it there till next time!

to be continued
CLUS ROUNDUP

By "Club Secretary"

O NE of the problems in setting out this column lies, oddly enough, in the Address Panel, and that is in the manner of giving telephone numbers. Now that the trend is to amalgamate telephone exchanges into groups, one really needs to have the following information, namely: exchange name, STD code, and the number. If we get less than the full information, then we can have problems. After all, if we can't figure out what the full code is, we just sit back and cuss the Hon. Sec.—but if it's a potential new chum who is looking for the details and hates writing letters, your club has almost certainly lost a recruit. Enough said!

The Clubs

Chiswick town hall is home for the Acton, Brentford & Chiswick group, and their next get-together is on July 19, when they have set up a demonstration of amateur test gear.

A place which your scribe used to go through regularly but never ever stopped at is Bishop Auckland. A local group of enthusiasts has now formed a club, which is based on the Travellers Rest, Everwood, Bishop Auckland, where they are to be found each Monday evening. We understand that there is an activity going on through a separate entrance to the clubroom to allow access outside licensing hours, and so increase the range of their doings.

Bishops Stortford have always had their base at the British Legion Club in Windhill on the third Monday, but of late they have added to that an informal session on the first Thursday of the month, so that those who can't get to the main meetings can still keep in touch personally, and of course there is a lot of local activity on the air on two-metres and the local UHF repeater.

On to Brighton now, where we note meetings on July 13 and 27 at the YMCA in Marmon Road, Hove; July 13 was "open" at the time they last wrote, while on 27th there is a talk on fox-hunting by G3WMP. For the latest details we suggest a contact with the Hon. Sec.—see Panel.

At Bristol the publicity lad has a computer to write the programme out for him—but we guess it didn't do the telephoning! They assemble at the YMCA, Park Road, Kingswood, every Tuesday and, reading the programme through, one sees something is organised for every meeting, with due allowance being made for the time of year.

British Rail get in touch once in a while to let us know they are still around, but this time they wrote to tell us that they were at the ceremonial opening of the new rail link between the Conwy Valley and the Cambrian Coast, which is operated by the Ffestiniog Railway. They had G62FL from the new station at Blaenau Ffestiniog over the weekend around April 30 and had many visitors. Details of the club from the Hon. Sec.—see Panel.

Bury have a rather interesting and amusing newsletter: the current issue is quite superb on the subject of G4OPT's ZX81 computer. Every Tuesday evening you can find the gang at Mosses Community Centre, Cecil Street, Bury, but one of these—July 19—is a formal, in this case a surplus equipment sale. We are also reminded in a later letter that the HQ is closed on July 5 and 12, so there will be no meetings on those dates.

Cambridge have their place at Coleridge Community Centre, Radegund Road on Fridays in term-time. The general form is to alternate between informal, at which the club station is operated, and lectures, films, etc. Details from the Hon. Sec.—see Panel.

The Chesham HQ is at the Stable Loft, Bury Farm, Pedmore Road, Chesham, where they are to be found every Wednesday evening. More details, if wanted, from the Hon. Sec.—see Panel for his details.

The Chichester people have a visitor from RSGB on July 5, and there is another meeting on July 21, not to mention the Sussex Mobile Rally on July 17 at which they will be running the bring-and-buy stall. The HQs are at the Green Room, Fernleigh Centre, 40 North Street, Chichester.

The old Civil Service group died many years ago, but a new generation of radio enthusiasts seems to have grown up and the club is reformed. They now get together in the lunch hours of the first and third Mondays of the month, at the Civil Service Recreational Centre in Monk Street, just off Horseferry Road, London SW1. The group is being run as a national affair—details from the Hon. Sec.

Down west now, to Cornish, which has a temporary move for July to St. Stephen's Church Hall, Treleigh, Redruth, which is close to Treleigh Junior School. On July 7 G3WVK will talk under the heading "You and Interference". We suggest you get there early—there is usually a full house, as the writer knows only too well!

Turning to Crawley, we find them at Trinity Church Hall, Field, Crawley, on the fourth Wednesday of each month; the programme details are not given this month as there has been much other material to fill the pages of the newsletter, so for the latest details we must refer you to the Hon. Sec.—see Panel.

The Cray Valley gang have just had their AGM, but the latest newsletter doesn't give details of the July dates at Christ Church Centre, High Street, Etham, for which we must refer you to the Hon. Sec.—see Panel for his details.

A familiar handwriting comes next; the Hon. Sec. of the Crystal Palace group tells us that they are booked in on July 16 for a talk and demonstration on UHF operating, with a home-brew 432 MHz transverter, and equipment for 23cm and 13cm. This will be followed by a discussion. The venue is easy to find—All Saints Parish Church Rooms, Upper Norwood, are opposite the base of the IBA TV transmitting mast, at the junction of Beulah Hill and Church Road.

If you are into direction-finding, the Dartford Heath D/F club is worth looking at. As they have recently had their AGM, we must refer you to the Hon. Sec. for the details of their hunts and social gatherings—the latter are usually at the "Malt Shovel" at Eynsford, Kent.

The visit by G5RV must be the highlight of the month for Denby Dale on July 13, and on July 27, the RSGB's RR, G4DAX, comes along to make his number with them. Both are at Pie Hall, Denby Dale.

At Derby, the HQ is at 119 Green Lane, every Wednesday evening from 7.30; on July 6 they have a junk sale, and on 13th a talk by local magistrate Bob Eccles. July 20 is set aside for a session on radio control, and on 27th they have a practice at two-metre D/F.

Although they have now worked many countries, the Derwentside club hasn't yet had any offers of skeds with the club station, G4PQ; club evenings are every Monday, at the R.A.F. Association HQ, Sherburn, Consett, and usually they have something of interest in the way of a talk, film, or activities. Details from the Hon. Sec. at the address in the Panel.

Now we turn to East London RSGB; the group have a place at Wanstead House, Wanstead, London E11, which is 100 yards behind Wanstead underground station. The new committee is busy putting together a programme for the meetings on the third Sunday in each month. Again, more details from the Hon. Sec. at the address in the Panel.

The Ecclesfield crowd seem coy about their meetings, but we have it that they are held at The Hall, St. Martin's Court, Kingston Crescent, Ashford, Middd., on the second Monday and the last Thursday of each month.

The same comment could be applied to Farnborough, but we know they are to be found at the Railway Enthusiasts Club, Access Road, Hawley Lane (near the M3 Bridge), Farnborough, on the second and fourth Wednesday of the month.
Edgware offer a demonstration of RTTY, in particular the all-electronic variety, on July 14, thanks to G3SHY and G4HMD; while on July 28 they have an informal with the club station on the air. Both are at 145 Orange Hill Road, Burnt Oak, Edgware.

Over in El-land, the Fingal radio club have every Monday evening at the Scout Hall, Ballygall Road, East, Dublin 11; they run classes for the Radio Experimenter’s Licence exam, which are their equivalent to the RAE, and have regular lectures and film shows; twice yearly they have junk sales which they reckon are the largest and best in all EI. At the time of writing they were planning a construction project in the form of a QRP rig. Details, of course, from the Hon. Sec. — see Panel; or go and meet them, as they like meeting visitors from outside EI.

Fylde have their base at the Kite Club, at Blackpool Airport, on the first and third Tuesdays; July 3 is an introduction to computers by G6HEA, and on 19th they have the informal.

For the Gloucester gang the venue is St. Barnabas Hall, Stroud Road, on most Wednesdays. More details from the Hon. Sec. at the address in the Panel.

We mustn’t forget the G-QRP Club; this has now over 2000 members, with many from overseas; the common interests are low-power operating and also the home-building of equipment for the purpose. Details from the Hon. Sec.

The date of the Greater Peterborough meeting is the fourth Thursday of the month at Southfields Junior School, Stanground. More details from the Hon. Sec.

Deadlines for “Clubs” for the next three months —

August issue — June 24th

September issue — July 29th

October issue — August 26th

November issue — September 30th

Please be sure to note these dates!

Fridays at Harrow are taken at the Harrow Arts Centre, High Road, Harrow Weald. July 8 is a talk on vertical aerials at HF, and on 17th they are out with D/F gear and a barbecue. The July 22 talk was still ‘open’ when they wrote, but on 29th they have an equipment testing evening. Looking forward to August, all the Friday evening sessions will be informal and practical.

The main meeting of the Hastings group is on the third Wednesday of each month, July 20 being down to crime prevention/police communications. Other Wednesdays there are also meetings at Ashdown Farm Community Centre, and this venue is also used for the RAE and Morse classes on Tuesdays and the Friday evening ‘Chat Night’. In mid-month of course they will be on show at the Sussex Mobile Rally.

July for flaving is still a matter of Wednesdays at Fairlytes Arts Centre, Billet Lane, Hornchurch. July 6 is the quarterly business meeting, while G3AAJ is down for July 13 to talk on Amsat; should the satellite launch interfere with Ron’s talk, it will be put back to 20th. On 27th, G0KXG will give his postponed talk.

In view of the problems surrounding the Hereford HQ we feel that it would be best for you to contact the Hon. Sec. The formal are, at the time of writing, being held in the Lord Scudamore School, Friar Street, and the informal at the “Antelope Inn.” For subjects, July 1 is the G4HHI “New Approach to D/F”, while the informal is on July 15 — but do check the venues.

We now head for Ipswich, where they gather at the “Rose and Crown” at the junction of Norwich Road and Bramford Road, on the second and last Wednesday in each month; July 13 is a D/F Hunt on VHF, entrants returning to the clubroom to finish the meeting off, and on 27th they have a talk on the Microdot computer, by Palemark Ltd.

Reitering secretary Don McLean, G3NOF, left, receiving a shield and cheque from the Yeovil A.R.C., presented by ‘Nobby’ Clark, G3BEC, the club president. Don, who has been secretary for the past 37 years, was also made a life member of the club in appreciation of his long and faithful service. The new Hon. Sec. is Adrian Desing, G4BBH. As many readers will know, G3NOF is a regular reporter to “Communication and DX News”, and has been for many years. Enjoy your retirement, Don! — photo by G4PDD

Back to El-land again, to IRTS, where the main item of news is that they now have the new bands opened to them. This is the group to contact if you want to know what’s what on a licence in EI, or anything about the amateur radio scene in that country, in particular local club meetings. Details from the Hon. Sec. — see Panel.

The Itchen Valley group meets every other Thursday evening at the St. John Ambulance HQ at the corner of Blenheim Road and Desborough Road, Eastleigh; and looking forward to August 20, they are putting on a demonstration station of amateur radio at the Debenhams department store in Southampton, which sounds like a good idea.

Kidderminster have July 5 for an HF night-on-the-air, and July 19 for a VHF operating evening at Aghborough Community Centre, Hoo Road, Kidderminster, and visitors are always welcome.

Up at Lincoln the HQ is at the City Engineer’s Club, Central Depot, Waterside South, Lincoln, on July 7 they have a visit to the Lincolnshire Standard Group printing works, and on July 13 at HQ there is a talk on electricity distribution by the local Electricity Board people. G6AJL takes the stand on July 27 to give a talk on video. Looking at the programme it seems the alternate Wednesdays are taken up with RAE and CW classes.

Next we turn to Malaby; this young club already has an average attendance of forty members every Friday evening at the Methodist Church Hall, Blyth Road, Malaby. More details of what goes on from the Hon. Sec. — see Panel for his details.

On Fridays, the Number One Hall, St. Luke’s Church, King William Road, Gillingham, is occupied by the Medway chaps; the July dates are July 8 for a social evening, with talk-in available on VHF, and July 29 is down for a film evening. Again, more details can be had from the Hon. Sec. — see Panel for his details.

Turning to Midland, we see they have the main meeting on the third Tuesday, the computer section have the second Tuesday, and the committee meeting is on the first one. Wednesday evening is Morse class, general matter, and amateur TV activity; Monday evening is the Working Party night for work on the completion of the HQ and its upkeep, Thursdays are HF nights-on-the-air, Fridays the RAE class, and weekends are used by the Working Party. All this at the club HQ, which is at 294A Broad Street, opposite Birmingham Repertory Theatre.
A rather nice idea appears from North Wakefield this time, by way of a pre-printed postcard which gives the main details but leaves space for the current programme details. They are to be found at Carr Gate Working Men’s Club every Thursday evening, and on July 7 have a talk on “Radio and Air Navigation” by G3OWW, plus, on August 4, a demonstration by the local rep. for Forrester Components.

The Perth group have their own club room at Perth City Sports and Social Club, Leonardo Street, Perth, where they are to be found every Tuesday evening, starting later than most—after 8.30 p.m. Wednesday evening are down for Morse tuition. More details from the Hon. Sec.—see Panel.

One of the nice things about looking at the current issue of R.A.I.B.’s Radar is the report of a large number of new members of clubs making donations to repeater groups (how about a few donations to R.A.I.B. (a far more worthy cause in our humble opinion) and, equally important, some practical support? Details from the Hon. Sec.

Next we have a note from St. Neots, who foregather on alternate Mondays at the “Horseshoe Inn”, Offord Darcy, near Huntingdon; more details from the Hon. Sec.—see Panel for his vital statistics.

For Sheffield, the dates are July 7, VHF NFD Post-Mortem, plus a slide show; July 14 a junk sale, and July 21 a natter-nite. On July 28 they will be planning their attack on SSB NFD. As for August the club will be closed down for the month. The HQ is at the Church Hall, Amphill Road, Sheffield.

The Southdown club have their HQ at Chasewater Home for Disabled Ex-Servicemen, Southdill, Eastbourne, on the first Monday in the month; for programme data we must refer you to the Hon. Sec.—see Panel.

S.E. Kent YMCA is another name for the Dover group, due to their HQ in Godmanchester, the “Birch House”. For August the club will be closed down for the month. The HQ is at the Grass Green, Northfleet.

Further reading and details of the many other events taking place can be found in the “Radio Times” and the “Radio & Electronics World”.
After many years serving the Chesham & District A.R.S. on the committee, 'Steve' Stephenson, G3CJ, left, has had to step down through pressure of work. Club chairman Peter Carbon, G3OST, presents G3CJ with a pack of his favourite brew.

photo by G3LKS

details from the Hon. Sec.

On now to South Essex, where the 100+ plus members are to be found on any Wednesday evening at the Paddock's Community Centre on Canvey Island starting at 1900. July 6 is an informal, and on July 8 they go to visit the Medway club. July 13 is a Top Band D/F Hunt, and on 30th G3VUE will demonstrate, weather permitting, how to build a Top Band vertical. That leaves a barbecue on July 23, and the Late Summer Junk Sale on July 27.

Over to Spalding, where they have the "White Hart", Market Place, Spalding, on July 8 for a two-metre D/F Hunt.

Next we must mention that the STC Sports & Social Club at Footscray now holds G3STC, and they propose to activate it as much as may be in this 100th year of the company's existence. Details from the Hon. Sec. — see Panel.

Nowadays the Stevenage crowd meet on first and third Tuesdays in each month at 75 Andromeda, Fairlands Valley Park, Shephall View, Stevenage. There is a meeting on July 5, details not finalised at the time they wrote, and on 17th we gather they are off to the Sussex Mobile Rally at Brighton.

At Stourbridge the calendar seems rather full, but if we extract the club meetings as such, we get July 4 for the informal, and July 18 for the main meeting, both at "The Garibaldi", Cross Street, Stourbridge.

Looking through the Surrey club newsletter, there seems to be no reference to meetings in July — June and August, yes, but now for July. This being so, we can only suggest you contact the Hon. Sec. for details.

At Thames Valley they have a place in Thames Ditton Library Meeting Room, Watto Road, Giggshill, Thames Ditton, where they get together on July 5 for a talk on HF aerials and equipment, by Louis Varney, G5RY.

July 3 at Thanet is down for a Fox Hunt, and on 12th they have a Business meeting followed by a supper. July 26 is down for a talk, the details of which were not finalised when they wrote.

Turning to Torbay, we find they have a talk by GBXNE on his Stateside visit, at Bath Lane, rear of 94 Belgrave Road, Torquay; the date of this is July 30, but they also have a weekly informal at the same QTH every Friday evening.

The UK FM Group (Southern) have their monthly meetings on the first Wednesday of the month, at Chineham House, Shakespeare Road, Popple Way, Basingstoke; we are awaiting details on their programme for future meetings.

UK FM Group (Western) spent some £300 on the ten repeaters they control, and another £400 on the newsletter, which is an awful warning to any small club thinking of an ambitious club publication! The Group has a booking at Grappenhall Community Centre, Bellhouse Lane, Grappenhall, Warrington, on the first Thursday of each month.

We come now to Verulam, and here for the first time in many moons we don't have the current data, so we must refer to the Hon. Sec. — see Panel.

WACRAL is the group of radio amateurs and SWLs who are committed Christians, with a membership list that is world-wide. Details from the Hon. Sec. — see Panel.

We have a note from the new Hon. Sec. at Wakefield giving his details, and we must in turn refer you to him for details of the club and its meetings — see Panel.

Yet another group who seem to have overlooked the need for an up-date is West Kent; they are based on the Adult Education Centre, Monson Road, Tunbridge Wells, but for the rest we refer you to the Hon. Sec. — see Panel.

Revival

This refers to the Westmorland club, based in the "Strickland Arms", just south of Kendal on the A6, where they are to be found on the second Tuesday of each month, with visitors and new members, licensed or SWL, all welcome. We hope that this time the group will go from strength to strength.

July 4 is 'Oddfellows' night for Worcester, the Oddfellows Club being in New Street, Worcester. In the same street is the "Old Pheasant Inn", where they gather on July 18 at 8 p.m. for an informal evening session.

Finally, Yeovil, where the meetings are every Thursday at Milford Recreation Centre, Milford Park, Yeovil.

QRT

That's it for another month; deadlines for the next few times are shown in the 'box', and are the dates for the words of wisdom to arrive, addressed to your "Club Secretary", SHORT WAVE MAGAZINE, 34 High Street, Welwyn, Herts. AL6 9EQ.

Special Event Stations

The Southampton A.R.C. will be operating two special event stations in July. G82SOU and G88SOU at the Annual Southampton Show, July 8-10; and G12CAV and GB2CAV from H.M.S. Cavalier, which is a City of Southampton museum, July 1st to 28th. Special QSL cards will be issued. More details from R. Stanley, G6LOB, on Southampton 771251.

Mobile Rally

July 24, McMichael A.R.S., Burnham Beeches A.R.S., Home Counties ATV Group and Maidenhead & District A.R.C. are holding a combined Mobile Rally at the McMichael Sports and Social Club, Bells Hill, Stoke Poges, Bucks. Doors open at 11 a.m., and there will be trade stands, tea market, and many other attractions.

Money!

The stand operated jointly by R.A.I.B.C. and the Molly Wisdom Hospice at the recent Maidstone Rally raised a total of £223.30 for the two charities. Peter Poole, G4EVY, who is Rochester R.A.I.B.C. representative and who helped run the stand, would like to thank all those who gave so generously to the scheme and the visitors who then parted so readily with their hard-earned cash.
TR5 High Standard Low Cost Amateur Band Transceiver

L7E High Power Linear Amplifier

Collins KWM-380 Transceiver

DRAKE EQUIPMENT

TR5 High Standard Low Cost Amateur Band Transceiver

L7E High Power Linear Amplifier

TR-5 Digital Transceiver 499.96 D
PS-75 P.S.U. 124.95 D
NB-5 N. Blanker for TR-5 69.00 A

BEARCAT SCANNING RECEIVERS

BC-100 16 channels (VHF) 345.00 D
BC-100E 10 channels 144.90 D
BC-250F 50 channels 258.75 D
BC-200F 40 channels 258.75 D
BC-24 THINSCAN on 2 Bands 87.29 C
BC-46 THINSCAN on 4 Bands 106.26 C

BENCHER PRODUCTS

BY-1 Paddle (Black base) 36.84 C
BY-2 Paddle (Chrome base) 43.73 C
BY-3 Paddle (Gold plated) 92.00 C
ZA-1 Balun (Dipole) 3.5-30MHz 15.00 A
ZA-2A Balun (Beam) 14-30MHz 17.25 A
ZX-2 CW AUDIO FILTER 57.60 B

Plus all our other goodies including: COLLINS, HY-GAIN, ICOM, JAYBEAM, YAESU, FASTFIT, DRAKE, TRIO, HUSTLER, G-WHIP, DATONG, ASTATIC, C.D.E., MICROWAVE MODULES, FDK, CONNECTORS, STRUMECH TOWERS.

30p in stamps for price list and details of Creditcharge Budget Account.

RADIO SHACK LTD.
(Just around the corner from West Hampstead on Jubilee Line)
188 BROADHURST GARDENS, LONDON NW6 2AY

S.E.M.
UNION MILLS, ISLE OF MAN
Tel: MAROWN (0624) 851277

PLEASE NOTE.*

all our Dual Gate MOSFET and Power amplifiers have always used the BFWEL 01 Ohms equipment which un

ure TV not feed.

1. SENTINEL 36 Twelve times power gain. 3W N 30OUT. 4m. Max. drive 9W.

2. SENTINEL 60 Twenty times power gain. 10W N 30OUT. Max. drive 16W.

3. SENTINEL 100 Ten times power gain. 10W N 105OUT. Max. drive 16W.

POWER SUPPLIES for our Transmitters £34.00. £14.99.

SENTRY AUTO 2 METER or 4 METER PRE-AMPLIFIER

1/8 in. and 3/8 in. gain control and down to unity (30V P.E.P. power rating.

The tuning on all models, 1.20KHz. 11.5" x 2" x 4". £35.00 Ex stock.

Three Models:

1. SENTINEL 36 Twelve times power gain. 3W N 30OUT. Max. drive 9W.

2. SENTINEL 50 Twenty times power gain. 10W N 30OUT. Max. drive 16W.

3. SENTINEL 100 Ten times power gain. 10W N 105OUT. Max. drive 16W.

S.E.M. AUDIO MULTIFILTER (improved). Sentinel 36.

S.E.M. STANDARD H.F. RIFAMPFLER. No R.F.

SEN Tin 36. £16.00. Includes all modes end power.

S.E.M. STAND. POWER AMP. £15.00 Ex stock.

SEN Tin 36. £4.00 extra. All ex stock.

S.E.M. AUDIO MULTIFILTER (improved).

To improve any T.C. or any other receiver.

We have a wide variety of filter available. Giving the "best" results. Our technical "tuning" and one time "tuning". Start with the lowest to 2 kHz and 3 kHz. Plus a choice of three filters or any one of the four switch positions or any power available. With 2 kHz to 10 kHz. 12 volt supply. Sizes from 2" x 1" x 4". £50.00 Ex stock.

SEN Tin 36. £19.50. £12.95. £10.50. £10.00.

S.E.M. AUDIO MULTIFILTER (improved). Sentinel 2.

The ultimate choice when using the CURTIS 261M 245LS chip. Tone and sidetone.

Switching. £35.00 Ex stock. Twin paddle switch key. £12.99. £12.95. £10.50. £10.00.

S.E.M. V.F.A. BEACON RECEIVER

Available in all models.

SEN Tin 36. £25.00. £22.50. £19.50. £15.00. £12.95. £10.50. £10.00.

FRED. CONVERTERS from 1C10 to 2 metres in all models 12 MONTHS COMPLETE GUARANTEE INCLUDING ALL TRANSISTORS.

Please include VAT and delivery.

C.O.D. or phone your credit card number for same day service.

* Meter Belling Lee sockets, or £1.00 for SO239 or BNC sockets. Ring or write for more information. Payment on nearest basis or cash on delivery.

S.E.M. AUDIO MULTIFILTER.

The ultimate choice when using the CURTIS 261M 245LS chip. Tone and sidetone.

Switching. £35.00 Ex stock. Twin paddle switch key. £12.99. £12.95. £10.50. £10.00.

S.E.M. V.F.A. BEACON RECEIVER

Available in all models.

SEN Tin 36. £25.00. £22.50. £19.50. £15.00. £12.95. £10.50. £10.00.

FRED. CONVERTERS from 1C10 to 2 metres in all models 12 MONTHS COMPLETE GUARANTEE INCLUDING ALL TRANSISTORS.

Please include VAT and delivery.

C.O.D. or phone your credit card number for same day service.

S.E.M. V.F.A. BEACON RECEIVER

Available in all models.

SEN Tin 36. £25.00. £22.50. £19.50. £15.00. £12.95. £10.50. £10.00.

FRED. CONVERTERS from 1C10 to 2 metres in all models 12 MONTHS COMPLETE GUARANTEE INCLUDING ALL TRANSISTORS.

Please include VAT and delivery.

C.O.D. or phone your credit card number for same day service.

S.E.M. V.F.A. BEACON RECEIVER

Available in all models.

SEN Tin 36. £25.00. £22.50. £19.50. £15.00. £12.95. £10.50. £10.00.

FRED. CONVERTERS from 1C10 to 2 metres in all models 12 MONTHS COMPLETE GUARANTEE INCLUDING ALL TRANSISTORS.

Please include VAT and delivery.

C.O.D. or phone your credit card number for same day service.

S.E.M. V.F.A. BEACON RECEIVER

Available in all models.

SEN Tin 36. £25.00. £22.50. £19.50. £15.00. £12.95. £10.50. £10.00.

FRED. CONVERTERS from 1C10 to 2 metres in all models 12 MONTHS COMPLETE GUARANTEE INCLUDING ALL TRANSISTORS.

Please include VAT and delivery.

C.O.D. or phone your credit card number for same day service.

S.E.M. V.F.A. BEACON RECEIVER

Available in all models.

SEN Tin 36. £25.00. £22.50. £19.50. £15.00. £12.95. £10.50. £10.00.

FRED. CONVERTERS from 1C10 to 2 metres in all models 12 MONTHS COMPLETE GUARANTEE INCLUDING ALL TRANSISTORS.

Please include VAT and delivery.

C.O.D. or phone your credit card number for same day service.

S.E.M. V.F.A. BEACON RECEIVER

Available in all models.

SEN Tin 36. £25.00. £22.50. £19.50. £15.00. £12.95. £10.50. £10.00.
BARGAIN CORNER

S.M.C. Morse Equipment

VHF, UHF, BASE STATION ANTENNAS

SMC-HS

HF, VHF, UHF, BASE STATION ANTENNAS

SMC-HS is a range of base station antennas covering from 10M through to 70cm. All have SO-239 connectors and are supplied complete with all required mounting hardware.

MORSE EQUIPMENT

Morse Keys

BARGAIN CORNER

SMC-HS

MORSE EQUIPMENT

BARGAIN CORNER

Morse Keys

BARGAIN CORNER

Morse Keys
Introducing a New Concept in HFcommunications

A NEW SERIES WITH NEW FEATURES, NEW PERFORMANCE, AND ALL 9 HF BANDS.
CONTINUING THE SUCCESS OF A GREAT RANGE OF TRANSCEIVERS BACKED BY KW SERVICE —

The OMN1C
(Top of any class)
Covers 10-160 Metres
Including the new
WARC bands, 200
watts DC input.
Now available
KW + TEN-TEC 227,
228 and 229 ATU’s.
Please ask for details.

Come to KW for all your other amateur radio requirements KW service and guarantee — KW maintains the tradition of service the company is renowned for. Output-transistors unconditionally guaranteed for 12 months. The KW + TEN-TEC units offered above are introduced as a prelude to fully UK assembled equipment.

KW + TEN-TEC ARGOSY HF SSB/CW TRANSCEIVER
10-80 metres, 100 watts (Switchable to 10 watts).
Notch Filter. Full break-in on CW. Automatic normal sideband selection plus reverse. 12 -14v D.C. input. All solid-state.
A WINNER AT LOW COST.

KW TEN-TEC LTD
Vanguard Works, Jenkins Dale, Chatham ME4 5RT
Tel: 0634-815173 Telex: 965834 KW COMM G

RADIOSTATE has 12 & 24 hour notation and the red and green sectors are to remind radio operators to listen out during the silence periods for emergency telegraphy or telephony transmissions. Also available without the 24 hour notation.

PRICE:
4" - £34.50 + VAT
6" - £46.50 + VAT

We also supply Hardwood mounting plates these are made of high quality Sapele, finished in a matt varnish to enhance the appearance.

PRICE: Single - £6.50 + VAT. Double - £7.50 + VAT

Dewsbury Electronics offer a full range of Trio Equipment always in stock.
We are also stockists of DAIWA - WELTZ - DAVTREND - TASCO TELEREADERS - MICROWAVE MODULES - ICS AMATOR - AEA PRODUCTS - DRAE

Dewsbury Electronics, 176 Lower High Street, Stourbridge, West Midlands.
Telephone: Stourbridge (0384) 390063. After Hours: Kidderminster (0562) 851255
Closed Thursday
TALK TO THE WHOLE WORLD

Study now for the
RADIO AMATEUR'S EXAMINATION

We have had 40 years successful experience in training men and women for the G.P.O. Transmitting licence.

FREE R.A.E. brochure without obligation from:
British National Radio & Electronics School
READING, BERKS. RG1 1BR

Name:
Address:

SW7/7138

BLOCK CAPS PLEASE

R. T. & I. ELECTRONICS LTD.
Ashville Old Hall, Ashville Road, London E14 4AW. Tel. 01-888 4486 Nearest Station: Leytonstone (Central Line)

We are MAIN DISTRIBUTORS for
AVO, MEAGGER, TAYLOR & SELDEN INSTRUMENTS

FULLY OVERHAULED EQUIPMENT

EDYSTONE 600X RECEIVER £166.75
EDYSTONE 900X RECEIVER £236.90
EDYSTONE 1625 AMATEUR S. RECEIVER £256.00
EDYSTONE 8000 RECEIVER £420.00
EDYSTONE 12000 RECEIVER £671.00
EDYSTONE 8000 RECEIVER P.A.
HAWKES & MASON, W2GAM, AMATEUR S. RECEIVER £725.00
KW21 AMATEUR S. RECEIVER £157.25
KW201 AMATEUR S. RECEIVER £198.25
KW 401 VSWP, TRANSMITTER £150.00
CATHODE LAMP RECI. £62.00

NEW EQUIPMENT

FENT 9 3000X RECEIVER £192.98
VASEL FRG 700X Receiver £199.00
VASEL FRG 700X Receiver £256.00

AVO & MEAGGER EQUIPMENT (A Few Examples)

AVO Digital Multimeter Model DA62 £89.13
AVO Digital Multimeter Model DA10 £115.94
AVO Digital Multimeter Model 1011 Auto Range £76.36
AVO Digital Multimeter Model DA100 £180.00
AVO Digital Multimeter Model DA115 £256.71
Taylor Analog Multimeter Model 121 £94.69
Taylor Analog Multimeter Model 122 £34.31

Cases for AVO, TAYLOR & MEAGGER instruments in stock. Send for Details.
We also repair all types of Instruments. Touch and Go service especially requested.

SINCLAIR RD125 Digital Multimeter £215.36
Carrying Case for DM 235 £8.99
Marine Adaptor for DM 235 £12.69
SINCLAIR P0035 Pocket Digital Multimeter £38.86

BROWNS TYPE T HEADPHONES 40, 20, 10 and 5p Each £2.95 per box
RUBBER LEATHER 3.5mm per pair

CROFTON ODOMETERS IN STOCK

TM4 METERS: Model 17105, £92.15, Model 2007UK £148.65, Model 1202 02, £113.00, Model 1225 £79.00, Model 1250 £133.00, £113.60. Alain Chêne Leather Cover for above Model 7001 £101.48. Full details on request.

In present conditions we regret that all prices are subject to alteration without notice. ALL PRICES INCLUDE VAT AND CARTRIDGE. Terms: C.O.D., Approved Monthly Accounts. New Purchase and Part Exchange. Special facilities for export.

HOURS: Mon–Sat 9.30 am – 5.30 pm Mon. Fri. CLOSED SATURDAYS
Dear Fellow Amateurs and S.W.L.'s,

Are you fed up with not receiving good signals on 2M? Namely 160-220 and 40, because that is what we can help. Why not use open feeder balanced? Too much hassle, too heavy! Not any more.

Have you not tried the revolutionary, unique, clip-on feeder spacer which can be fitted in seconds? You can make 50 feet of feeder laminate at a cost of only £0.50 for a packet of twenty. Not only that, you get a bonus - two spacers double for your end insulators and one for the centre insulator. Send P.O. or cheque for £0.50 or 99p postage and packaging and all other technical information.

We also make bunads and A.T.U.'s for the S.W.L., O.R.P. amateur of O.R.O. amateur, serials, etc.

Tony Johnson
G4OOP
For feeder spacers, baluns and A.T.U.'s
Tel. Tony on 0696 273948

For the best in amateur radio
116 DARLINGTON STREET EAST,
WIGAN, LANCASHIRE.
AMPLE PARKING FACILITIES

New 2 metre transceivers and H.F. transceivers, power supplies and all accessories, aerials, etc.

For all information on feeders, aerials, A.T.U.'s, baluns, etc., please send P.O. or cheque for £0.80 to:
116, Darlington Street East,
Wigan, Lancashire.

We can supply most of your needs for the 2M band, so why not ring either Jack on 0942 279540 for feeders and aerials.

Jack Stephens
G3LBJ and G4OOP
JACK TONY
AMATEUR RADIO OPERATING MANUAL
New Second Edition
Most of the chapters in the new 2nd edition of this popular RSGB title by R. J. Eckerley, G4FTI, have been revised and updated. Chapters cover: the Amateur Service; setting up a station, operating practices and procedures; DX contests, mobile, portable and repeaters; amateur satellite; SSTV; special event stations, with appendix and index. Extract from a review in "Short Wave Magazine" :- this book should be of greatest interest and use to the newly licensed amateur with little practical operating experience, to whom it can be thoroughly recommended.

200 pages
Publications Dept. £4.95 inc. p&p
Short Wave Magazine Ltd.,
34 High Street, Welwyn, Herts. AL6 9EQ.

PRACTICAL HANDBOOK OF VALVE RADIO REPAIR
by Chas. E. Miller
One of the latest titles in the "Newnes Technical Book" series, this book contains historical and technical information, together with a comprehensive and detailed description of fault-finding and repair techniques, on a wide range of vintage broadcast bands receivers from the 1920's to the 1950's. The basic information is of great value in the restoration of valued amateur bands receivers, too. Published in hardback.
221 pages
Publications Dept.
Short Wave Magazine Ltd.,
34 High Street, Welwyn, Herts. AL6 9EQ.

READERS ADVERTISEMENTS
Wanted for collection: German military radio equipment of W.W.II vintage. — Box No. 5788, Short Wave Magazine, 34 High Street, Welwyn, Herts. AL6 9EQ.

Offering: Eddystone S.400, original valves, good working order. Offers? — S. Downie, 9 Danesway, Pinfem, Exeter EX4 9ES.

For Sale: Yaesu FT-200 transceiver with FP-200 PSU (black model), £225. Heathkit HW-8 QRP CW transceiver, £75. — Ring Sherlock, Canvey Island 09904.

For Sale: 10 meter 4-element beam antenna and rotator, very good condition, £75.

Selling: Realistic DX-302, 0-30 MHz, LED digital readout, whip and wire aerials, £100. Securicor delivery. — Ring Boxall, Scalford 897909 (East Sussex).

For Sale: SX-200N scanner receiver, approx. 14 years old, little used, £200 or near offer. — Ring Crick, Knockholt 32548 (Kent).

Wanted: AR88 in good working order. — Ring Brabook, 099421-524 evenings.

Sale: Racial RA-17 professional receiver, 0-32 MHz, offers over £400. Sony ICF-2001 portable digital synthesised receiver, with BFO, memory and scan. £100 or near offer. Yaesu FT-707 HF mobile, latest model, as new, offers over £400. Prestel, Tantal adaptor, 8000 pages of information, any television or monitor, virtually unused, only £145. — Ring Higgins, 0943-600737.

For Sale: Sony ICF-2001 digital receiver with AC-12 mains unit, mini condition, £100. — Ring Duke, 0-727 3199.

Selling: Trio TR-7500, later model in immaculate condition, with unused mobile mount, used as base station only, no modifications, £150. — Jacques, G3PTD, QTHR. (Tel: 061-747 2021).

Sale: Amatech 200 ATU (random wires), boxed, as new, £20. — Tee, G8UJA, 33 Red Rocks Road, Burnley, Lancs.

Copy must be received by July 14th for inclusion in the August issue.

READERS
Wanted for collection: German military radio equipment of W.W.II vintage. — Short Wave Magazine, 34 High Street, Welwyn, Herts. AL6 9EQ.
For Sale: Yaesu FT-227R, 100-watt FM, 9 amp. battery, SWR meter, £130. — Ring lanter, Coventry 504982.

Selling: Yaesu FRG-7 receiver, 0.5 to 29.9 MHz, perfect condition, £125. — Ring Owen, Exmouth 74321 any time.

For Sale: Lowe SRX-30 receiver, very good condition, £85. — Jones, G8CXQ, QTH: (Tel: 0292-313669).

Selling: Realistic DX-2000 5-band receiver, as new, with manual and carton, £80 or near offer. — Ring Knowles, Penarth (0222) 709456.

Sale: Yaesu FRG-7700, immaculate condition, with Type-C FRV-F7700 (still boxed), and new copper long wire (still coiled), £250. — Ring Upminster 2590.

('SITUATIONS' AND 'TRADE')

£5 per word. Maximum charge £30. No series discount. All ads payable with order. Adverts of radio interest only accepted. Add 50 pence per word to Full Text Listings, no responsibility accepted for information errors. Ad. Numbers, Ad. costs, send copy, with remittance to the Classified Dept., Short Wave Magazine Ltd., 34 High Street, Welwyn, Herts. AL6 9EQ.

Copy must be received by July 14th for inclusion in the August issue.

SITUATION

Applications are invited from Class-C amateurs, age immaterial, for the post of Sales-person in a thriving and growing firm of amateur radio retailers in the West Midland and North Bristol areas. Salary to be negotiated, but future assured for applicants who have the ability to sell himself and our products. Apply in writing with full CV—Box No. 5789, Short Wave Magazine, 34 High Street, Welwyn, Herts. AL6 9EQ.

TRADE

Aircraft Communications Handbook (UK/Europe), including spot MF, HF, VHF, UHF frequencies, military and civil stations, air-traffic control centres, long range stations, meteorological broadcasts, broadcast times, navigation beacons, co-ordinates, call-signs, maps, etc., £7.50 plus £1 post/packing.—PLH Electronics, 70 Vallis Road, Frome, Somerset BA11 3EL.

New!! Scientifically prepared courses to get you through the R.A.E. examination.—Ring 01-346 8597 for free booklet.

Artificial wire, 14 s.w.g. hard-drawn copper, 70-ft. coils, £5.50; 140-ft., £8.00 (inc. VAT and postage). Amidon (torded, etc., TVI/A11 ferrite rings. Send s.a.e. for lists. Business hours: 9:30-5:00, Tues-Sat.—SMC/TMP Electronics, Unit 27, Pinfold Workshops, Buckley, Chwyd CH7 1PL.

August issue: due to appear Friday, July 29th. Single copies at 85p post paid will be sent by first-class mail for orders received by Wednesday, July 27th, as available. —Circulation Dept., Short Wave Magazine, 34 High Street, Welwyn, Herts. AL6 9EQ.

QSL cards. Sample pack and price list forwarded on receipt of 24p stamp.—Dover Press. 69 Langstone Drive, Exmouth, Devon EX8 1HZ.

NEW H100 50% GAIN has half the cost of UR67 yet is about the same size and takes normal connectors. £25 per M (post 3p/m) — Quantity discounts. Send SAE for full data and sample.

Other High Quality Cables

<table>
<thead>
<tr>
<th>Description</th>
<th>Price Per Metre</th>
</tr>
</thead>
<tbody>
<tr>
<td>UR67, 50 ohm, stranded conductor, 30p per m (3p/m)</td>
<td></td>
</tr>
<tr>
<td>UR67, 60 ohm twin, low loss, 30p per m (3p/m)</td>
<td></td>
</tr>
<tr>
<td>UR67, 75 ohm twin, 20p per m (2p/m)</td>
<td></td>
</tr>
</tbody>
</table>

All prices include VAT.

LOW LOSS UHF TV FEEDER: £20 per M (post 20p/m) with sample pack.

STAY WIRE, copper clad (post 5p/m). (excl. VAT)

Strong PVC covered aerial wire, 6p per m (3p/m)

AMATEUR RADIO CARDS ARE 105'S £215

SAE for lists or samples of any above.

W.H. Westlake, G8MMW, Claverton, Holsworthy, Devon

AMATEUR RADIO EQUIPMENT IN THE SOUTHWEST

YAESU APPOINTED AGENTS FOR

ICOM

FT 83 FT 88 FT 709 IC 26 IC 720
FT 84 FT 4400 FT 4600 IC 48 IC 130
FT 90 FT 2000 FT 2500 IC 760
FT 102 FT 2050 FT 2550 IC 760
FT 20 FT 30 FT 50 FT 2000 IC 3008
FT 77 FT 300 FT 309 IC RX 70
FT 25 FT 200 FT 2001 FT 2500 IC RX 70

Extra offered: reed detector kit, half range of accessories.

Yaesu receivers, etc. 20% off.

TWO NEW! TRUNKING RECEIVERS: £120 per M (2p/m) for full alignment and tuning.

COLLECTORS GUIDE: £5.50 (post 5p/m).

All new items are normally in stock.

REG. WARD & CO. LTD.

GEORGE STREET, AXMINSTER, DEVON EX13 5DP

Phone: (0297) 33163

CALL BOOKS

INTERNATIONAL RADIO AMATEUR CALL BOOKS (1983)

Foreign ('DX') Listings: £4.95

U.S. Listings: £19.95

U.K. Callbook, 1983 Edn. (RSGB) £8.25

MAPS

"SHORT WAVE MAGAZINE" DX ZONE MAP (GREAT CIRCLE) in colour. New 10th edition £4.35

AMATEUR RADIO MAP OF THE U.S.A. AND NORTH AMERICA State Boundaries and Prefixes, size 24" x 30", latest 7th edition £5.95

AMATEUR RADIO'S WORLD ATLAS in booklet form. Mercator projection, 136 pages, Gives Zones and Prefixes. Latest 12th edition £2.70

LOG BOOKS

Amateur Radio Logbook £2.35

Receiving Station Log £2.70

Mobile Logbook £1.30

(The above prices include postage and packing)

Available from:

Publications Dept.

Short Wave Magazine

34 High Street, Welwyn, Herts. AL6 9EQ

Tel: Welwyn (043871) 52067

(Counter Service, 9:30 a.m. to 6 p.m.)

(Giro A/c No. 547 6151)
MORSE MADE EASY BY THE RHYTHM METHOD

FACTORY PRACTICE.
No expensive equipment needed only a tunable
If you start RIGHT you will be reading and making words within a month. Most
students take about three weeks. That's why after 20 YEARS we still use this scientifically
proven simplified method with which you cannot fail to master the MORSE KEYING METHOD
in just a few lessons. For full particulars order your book today. One pound deposit.

CALL SIGN LAPEL BADGES Professionally engraved, by return of post. £1.50 cash with order/state name and
calling).—AYLMER-KELLY (S.), 2 Pickwick Road, Corsham, Wilts. SN12 9B1.

Listener and QSL cards, quality printing on coloured and white
gloss card at competitive prices. Send s.a.e. for samples.—S.M.
Tatham, "Woodside", Orchard Way, Fontwell, Arundel, West Sussex.

For restricted space HF QTHs
a G2DYM UNI-POLE or TRAP DIPOLE
will be your answer — Tx or SWL
Data Sheets, Large S.A.E. Aerial Guide 75p
G2DYM, ULOWMAN, TIVERTON, DEVON
Callers Welcome

AMATEUR RADIO
by Gordon Stokes and Peter Bubb
The Lutterworth Press are the publishers of this book, which is
intended for those wishing to study for the R.A.E. and
comprises nineteen chapters, plus Introduction and index,
covering the basic, technical material the would-be candidate
needs to obtain a "pass". Cursively illustrated with simple
diagrams and excellent plates. Published in hardback.
192 pages
Publications Dept.
SHORT WAVE MAGAZINE LTD.
94 HIGHT STREET, WELWYN,
HERTS. AL6 8EQ.

SIMPLE, LOW-COST
WIRE ANTENNAS
by William Orr, G6SA1

Now with data on the new amateur bands!
This excellent and thoroughly recommended
handbook is the publication on the practical
approach to building aerials. After starting with
aerial fundamentals there are discussions and
descriptions of ground-plane, end-fed, DX dipole,
vertical and wire beam antennas, plus coverage
on a universal HF antenna system and working
DX with an "invisible aerial", the SWR meter and
coaxial cable also have chapters to themselves.
The whole book is presented in an
authentic, immensely clear, readable and
enjoyable manner with the emphasis on the practical
throughout — to the extent that even
the chap who can hardly strip a piece of co-ax
need not feel at all left out! Just as practical for the
SWL, too!
192 pages
£4.85 inc. post.
Order from
Publications Dept.
Short Wave Magazine Ltd.
34 High Street, Welwyn, Herts. AL6 7EQ.
LIST-A-RIG & G3RCQ ELECTRONICS

G 3NFV Inventor and proprietor of Patent for VARIABLE HIGH FREQUENCY FRAME ANTENNA wishes all Hams and SWL’s to benefit from his invention and offers circuit and full assembly details for the modest sum of £5. A Do-It-Yourself project. Components required to be found in most Ham shack stores. Most expensive component, two variable tuning capacitors. Antenna twenty-one inches square, mounted on top of control box, fully rotatable from operating position, tunable all the way 80 to 10 metres there being only one inductance. SWR One to One 40. 15 and 10 and One Point Five to One 80 and 20. R9on CW from JA, W8s Oct 9. VE 1 to 6 and all Europe. Ninety awards obtained with frame. Maximum power 100 watts, ideal for flat dwellers. Cheques or Money Orders to:
F. G. Rylands, 39 Parkside Avenue Millbrook, Southampton SO1 9AB

EASIBINDERS

To hold together 12 copies of "Short Wave Magazine".

Strongly made with stiff covers, and bound in red Wintrel Achina, these handsome binders have the title and date frame blocked in gold on the spine. Price £4.66 including post/packing.

Publications Dept
Short Wave Magazine Ltd.,
34 High Street, Welwyn, Herts, AL8 9EO.
THE RADIO AMATEUR'S HANDBOOK, 1983
(ARRL)
60th Edition

Added material to the 1983 edition includes computer and calculator programs for tracking celestial bodies; TVI troubleshooting flow chart; expanded coverage of ATV, including basic TV principles; updated satellite information, including complete RS and Phase III information; plus several new construction projects. This book is still the radio amateur's 'bible', covering Ohm's Law onwards.

640 pages

hard cover: £14.85 inc. p/p
soft cover: £11.95 inc. p/p

Publications Dept.
SHORT WAVE MAGAZINE LTD
34 HIGH STREET, WELWYN,
HERTS. AL6 9EQ

WORLD RADIO/TV HANDBOOK 1983

The World's only complete reference guide to International Radio & Television Broadcasting Stations. It includes: Frequencies, time schedules, announcements, personnel, slogans, interval signals and much more besides of value to the listener. Lists all International short-wave stations, including frequencies, for each country; foreign broadcasts, long and medium wave stations; TV stations and domestic programmes. Long recognised as the established authority by broadcasters and listeners. It is the only publication that enables you to identify BC stations quickly and easily. Enables you to fill more pages in your log book on the SW BC bands and helps you add more BC-station QSL cards to your collection.

£12.15
(The above price includes postage and packing)

from
SHORT WAVE MAGAZINE
34 High Street, Welwyn, Herts. AL6 9EQ

1983 AMATEUR RADIO "CALLBOOKS"

Foreign ("DX") Listings £14.85
U.S. Listings £15.50

The above prices include postage and packing

Publications Dept.

Short Wave Magazine
34 High Street, Welwyn, Herts. AL6 9EQ
Tel: Welwyn (043871) 5206/7

Butterworth Group publications now in stock

- Practical Aerial Handbook, 2nd edition £9.95
- Two-Metre Antenna Handbook £5.90
- Questions and Answers on Amateur Radio £2.25
- Beginners Guide to Radio, 8th edition £4.50
- Beginners Guide to Electronics, new 4th edition £4.50
- Electronics Q. & A., 2nd edition £2.35
- Beginners Guide to Amateur Radio, new title £4.80
- Projects in Amateur Radio and Short Wave Listening £3.85
- Guide to Broadcasting Stations, latest 18th edition £4.30
- The World's Radio Broadcasting Stations and European FM/TV Guide £6.60
- Semiconductor Data Book, new 11th edition £7.10
- Foundations of Wireless and Electronics, 9th edition £7.10
- Practical Handbook of Valve Radio Repair, new title £14.90
- Electronics Pocket Book, 4th edition £6.20
- Oscilloscopes — How to Use Them, How They Work £4.45

prices include postage and packing

Publications Dept.
SHORT WAVE MAGAZINE LTD.
34 HIGH STREET, WELWYN,
HERTS. AL6 9EQ
Technical Books and Manuals

AERIAL INFORMATION

<table>
<thead>
<tr>
<th>Title</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antenna Handbook (Cowan & Cowan)</td>
<td>£4.55</td>
</tr>
<tr>
<td>Beam Antenna Handbook</td>
<td>£4.35</td>
</tr>
<tr>
<td>Cubical Quad Antenna, 2nd Edition</td>
<td>£3.90</td>
</tr>
<tr>
<td>Simple Low Cost Wire Antennas, by Orr</td>
<td>£4.85</td>
</tr>
<tr>
<td>Aerial Projects (Pentland)</td>
<td>£2.30</td>
</tr>
<tr>
<td>73 Dipole and Long-Wire Antennas (N. Novi)</td>
<td>£6.55</td>
</tr>
<tr>
<td>Antenna Book (ARRL), New 14th Edition</td>
<td>£6.70</td>
</tr>
<tr>
<td>The (ARRL) Antenna Anthology</td>
<td>£3.95</td>
</tr>
<tr>
<td>Two-meter Antenna Handbook, F. C. Judd</td>
<td>£5.90</td>
</tr>
<tr>
<td>HF Antennas for All Locations (RSGB)</td>
<td>£6.10</td>
</tr>
<tr>
<td>How to Build Hidden Limit Space Antennas</td>
<td>£3.95</td>
</tr>
<tr>
<td>That Work, by WKBKTC (Tab)</td>
<td></td>
</tr>
<tr>
<td>The Antenna Construction Handbook for Ham,</td>
<td></td>
</tr>
<tr>
<td>CB and SWL (Tab)</td>
<td></td>
</tr>
<tr>
<td>Home Brew HF/VHF Antenna Handbook</td>
<td>£6.55</td>
</tr>
<tr>
<td>The Shortwave Listener's Antenna Handbook</td>
<td>£6.60</td>
</tr>
</tbody>
</table>

BOOKS FOR THE BEGINNER

<table>
<thead>
<tr>
<th>Title</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amateur Radio (Lutterworth Press)</td>
<td>£6.90</td>
</tr>
<tr>
<td>Questions and Answers on Amateur Radio, by</td>
<td>£2.25</td>
</tr>
<tr>
<td>F. C. Judd (2nd Ed)</td>
<td>£2.25</td>
</tr>
<tr>
<td>Electronics A.B.A (Newnes), 2nd Ed.</td>
<td>£2.50</td>
</tr>
<tr>
<td>Elements of Electronics, Book 1</td>
<td>£2.50</td>
</tr>
<tr>
<td>Elements of Electronics, Book 2</td>
<td>£2.50</td>
</tr>
<tr>
<td>Elements of Electronics, Book 3</td>
<td>£3.35</td>
</tr>
<tr>
<td>Elements of Electronics, Book 4</td>
<td></td>
</tr>
<tr>
<td>Elements of Electronics, Book 5</td>
<td></td>
</tr>
<tr>
<td>Solid State Short Wave Receivers for:</td>
<td></td>
</tr>
<tr>
<td>Beginners Guide to Electronics, new 7th Ed</td>
<td>£4.50</td>
</tr>
<tr>
<td>Beginners Guide to Amateur Radio (Newnes)</td>
<td>£4.80</td>
</tr>
<tr>
<td>new title</td>
<td></td>
</tr>
<tr>
<td>Guide to Amateur Radio, new 14th Edition</td>
<td>£1.20</td>
</tr>
<tr>
<td>Morse Code for the Radio Amateur (RSGB)</td>
<td>£4.70</td>
</tr>
<tr>
<td>Understanding Amateur Radio (ARRL)</td>
<td></td>
</tr>
<tr>
<td>Radio Amateur's Examination Manual, Latest</td>
<td>£1.35</td>
</tr>
<tr>
<td>11th Edition (RSGB)</td>
<td></td>
</tr>
</tbody>
</table>

GENERAL

<table>
<thead>
<tr>
<th>Title</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Projects in Amateur Radio and Short Wave</td>
<td>£3.65</td>
</tr>
<tr>
<td>Listening (Newnes)</td>
<td></td>
</tr>
<tr>
<td>How to Build your own Solid State Oscilloscope (Rayle)</td>
<td>£1.75</td>
</tr>
<tr>
<td>How to Make Walkie Talkies (Rayle)</td>
<td></td>
</tr>
<tr>
<td>Better Short Wave Reception, 5th Ed.</td>
<td>£4.30</td>
</tr>
<tr>
<td>FM & Repeaters for the Radio Amateur (ARRL)</td>
<td>£4.35</td>
</tr>
<tr>
<td>Enthusiast (1st ed) 12 copies of ''Wave</td>
<td>£4.65</td>
</tr>
<tr>
<td>Magic and together)</td>
<td>O/S</td>
</tr>
<tr>
<td>Oscar - Amateur Radio Satellites</td>
<td></td>
</tr>
<tr>
<td>World Radio & TV Handbook 1963</td>
<td>£12.15</td>
</tr>
<tr>
<td>The World's Radio Broadcasting Stations</td>
<td></td>
</tr>
<tr>
<td>and European PM/TV (Newnes)</td>
<td>£6.60</td>
</tr>
<tr>
<td>World DX Guide</td>
<td>£5.40</td>
</tr>
<tr>
<td>Guide to Broadcasting Stations (11th Ed.)</td>
<td>£4.30</td>
</tr>
</tbody>
</table>

Radio Stations Guide | £2.05 |
Long Distance Television Reception (TV DX) for the Enthusiast (revised edition) | £2.25 |
Solid State Basics for the Radio Amateur | £2.30 |
An Introduction to Radio DXing | £2.05 |
Radio Amateurs DX Guide (14th Ed.) | £2.05 |
Electronic Test Equipment Construction (Rayle) | £2.05 |
Power Supply Projects (Pentland) | £2.05 |

HANDBOOKS AND MANUALS

<table>
<thead>
<tr>
<th>Title</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radio Communication Handbook, Vols. 1 and 2 combined (paperback)</td>
<td>£11.05</td>
</tr>
<tr>
<td>Teleprinter Handbook, New 2nd Ed. (RSGB)</td>
<td>£9.50</td>
</tr>
<tr>
<td>TVI Manual (2nd Edn.) (RSGB)</td>
<td>£5.00</td>
</tr>
<tr>
<td>Working with the Oscilloscope</td>
<td></td>
</tr>
<tr>
<td>The Radio Amateur's Handbook 1983 (ARRL),</td>
<td></td>
</tr>
<tr>
<td>Books cover</td>
<td></td>
</tr>
<tr>
<td>The Radio Amateur's Handbook 1983 (ARRL),</td>
<td></td>
</tr>
<tr>
<td>hardcover</td>
<td></td>
</tr>
<tr>
<td>Learning to Work with Integrated Circuits (ARRL)</td>
<td>£7.60</td>
</tr>
<tr>
<td>Weather Satellite Handbook</td>
<td></td>
</tr>
<tr>
<td>Single Sideband for the Radio Amateur (ARRL)</td>
<td>£4.95</td>
</tr>
<tr>
<td>Test Equipment for the Radio Amateur (RSGB)</td>
<td>£9.75</td>
</tr>
<tr>
<td>Amateur Radio Operating Manual (RSGB) 2nd Ed</td>
<td></td>
</tr>
<tr>
<td>Oscilloscopes - How to Use Them, How They Work (Newnes)</td>
<td>£4.45</td>
</tr>
<tr>
<td>Practical Handbook of Valve Radio Repair (Newnes), new title</td>
<td>£14.90</td>
</tr>
<tr>
<td>The Complete Shortwave Listener's Handbook 2nd Ed. (Tab),</td>
<td>£9.65</td>
</tr>
<tr>
<td>Radio Propagation Handbook, by W4LGF (Tab)</td>
<td>£10.10</td>
</tr>
</tbody>
</table>

USEFUL REFERENCE BOOKS

<table>
<thead>
<tr>
<th>Title</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solid State Design for the Radio Amateur (ARRL)</td>
<td>£6.35</td>
</tr>
<tr>
<td>Foundations of Wireless and Electronics, 9th Edition (Scores)</td>
<td>£7.10</td>
</tr>
<tr>
<td>Amateur Radio Techniques, 7th Edn. (RSGB)</td>
<td>£6.00</td>
</tr>
<tr>
<td>U.K. Call Book 1983 (RSGB)</td>
<td>£5.25</td>
</tr>
<tr>
<td>Ham and Kings (ARRL)</td>
<td>£3.90</td>
</tr>
<tr>
<td>Electronics Data Book (ARRL)</td>
<td>£3.15</td>
</tr>
<tr>
<td>Radio Frequency Interference (ARRL)</td>
<td>£3.40</td>
</tr>
<tr>
<td>Amateur Radio Awards, (RSGB)</td>
<td></td>
</tr>
<tr>
<td>Electronics Pocket Book, 4th Edition (Newnes)</td>
<td>£6.20</td>
</tr>
</tbody>
</table>

VALVE AND TRANSISTOR MANUALS

<table>
<thead>
<tr>
<th>Title</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valve International Translator Selector, latest Edition (Up Date No. 2)</td>
<td>£10.60</td>
</tr>
<tr>
<td>Transistor Data Book, 11th Edition (Newnes)</td>
<td>£7.10</td>
</tr>
<tr>
<td>International Transistor Equivalents Guide</td>
<td>£3.35</td>
</tr>
<tr>
<td>International Diode Equivalents Guide</td>
<td>£2.60</td>
</tr>
</tbody>
</table>

VHF PUBLICATIONS

<table>
<thead>
<tr>
<th>Title</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>VHF Handbook, Wm. 1, 1961 W5A (new 3rd Edition)</td>
<td>£8.50</td>
</tr>
</tbody>
</table>

Prices are subject to alteration without notice.

Available from SHORT WAVE MAGAZINE

Publications Dept.

34 High Street, Welwyn, Herts. AL6 9EQ — Welwyn (043871) 5206/7

(Counter Service: 9:30-5:00 Mon. to Fri.)

O/P (Out of print) Many of these titles are American in origin

D/S (Out of stock) (Terms C.W.O) The above prices include postage and packing

orders despatched by return of post

Printed in England
HF ANTENNAS

S. M. C. have the greatest range of HF antennas eg. Multi-Beam Quadral, over 20 models. Shown below is the sensational new Explorer 14 - contact us for full details.

VERTICALS
12AVO Vertical 100-MHz £50.00 £2.75
14AVO Vertical 40-MHz £64.90 £2.75
16AVO Vertical 100-MHz £64.90 £2.75
18 Vertical 100-MHz £64.90 £2.75
23 Vertical 100-MHz £64.90 £2.90
38 Vertical 100-MHz £64.90 £2.90
TRAP DIPOLE
SMDT/50 High Power 100-MHz £41.41 £2.60
SMDT/P Portable loco dips

MOBILE
Triband 10/20/30-MHz £79.95 £3.50
Multiband 10/20/30-MHz £79.95 £3.50
Floor mount £10.95 £3.00
Bases For sale £6.75 £1.10
Extra Cost for above £15 £7.90 £1.35

POWER METERS

POWER/SWR BRIDGES
P.E.P., R.M.S. 1.8-440 Mhz

The Hansen range covers 3D quality models with top of the line the FS700. This is a full frequency range two tone power and average in one revolution with many novel features. Notable among them is being the power independent SWR scale - not forward power calibration, but direct reading SWR.

HANSEN FS700
FS710 1.8-60 KHz 111/210/150/200W PEP £89.90 FOC
FS711 60-180 KHz 115/100/60/200W PEP £89.90 FOC
FS712 180-600 KHz 35/30/20/100W PEP £89.90 FOC
FS713 600-1800 KHz 15/10/5/2.5W PEP £89.90 FOC
FS714 1.8-60 KHz 111/210/150/200W Auto £89.90 FOC
FS715 200-600 KHz 35/30/20/100W PEP £89.90 FOC
FS716 600-1800 KHz 15/10/5/2.5W PEP £89.90 FOC
FS717 1.8-60 KHz 111/210/150/200W £89.90 FOC

GRUNDIG

GRUNDIG T models are all new and are likely to be the new standard. They are based on the Grundig T-950, which has been a reliable and popular model. The T models have been improved in many ways, including better reception and a more user-friendly interface. The T models are available in a range of colors and finishes, making them a trendy addition to any home or office. Whether you are a music lover, a radio enthusiast, or simply looking for a reliable and stylish radio, the Grundig T models are a great choice. Prices start at £120.00.
Than E.T.

YOU’LL MEET THE MOST INTERESTING PEOPLE

IC-25E

The FM mobile of choice has to be the ICOM IC-25E. It is amazingly small yet has a powerful voice (25 Watts) and a sensitive receiver. There are five easily programmable memories and facilities for changing the repeater shift from the default value of 600kHz. You can tune the VFO while in a memory without losing or changing the memory. Of course you can instantly listen on the input and there are also priority channel facilities should you want to be sure of not missing that private message. The HM10 scanning mike is supplied as standard, but the HM11, with tone call on the mike, can be used.

IC-2E, IC-4E

Nearly everybody has an IC2E - the most popular amateur transceiver in the world - now there is the 70cm version which is every bit as good and takes the same accessories.

Fully synthesized - Covering 144 - 145.995 in the 400 5KHz steps (430-439 999 4E).

Power output - 1.5W with the 9v. rechargeable battery pack as supplied - but lower or higher output available with the optional 6v or 12v packs. Rapid slide-on charging facility.

BNC antenna output socket - 50 ohms for connecting to another antenna or use the Rubber Duck supplied (flexible whip - 4E).

Send/battery indicator - Lights during transmit but when battery power falls below 6V it does not light, indicating the need for a recharge.

Frequency selection - by thumbwheel switches, indicating the frequency, 5KHz switch - adds 5KHz to indicated frequency. Duplex simplex switch - gives simplex or plus 600KHz or minus 600KHz (transmit 1.6MHz and listen input on 4E).

Hi-Low switch - reduces power output from 1.5W to 150mW reducing battery drain.

External microphone jack - If you do not wish to use the built-in electret condenser mike an optional microphone speaker with PTT control can be used. Useful for pocket operation.

External speaker jack - for speaker or earphone. This little beauty is supplied ready to go complete with nicad battery pack, charger, rubber duck.

290H, 490E

The recently introduced IC-290H has proved so popular that we have decided to concentrate on the (25W) model multimode. With its bright green display, 5 memories, scan facilities on either memories or the whole band, tone call button on the microphone and instant listen input for repeaters, this little box really is a beauty. The 70cm version, the IC-490E has similar features (although the output is only 10W in this case). These two multimodes make an ideal pair.
CWR-610E

As UK importers of TELEREADER and TONO products we can offer you a wide range of devices from a simple morse and RTTY reader which can be plugged into your TV to complete send and receive systems with memories and built-in displays or outputs for a high definition VDU. MR-250, 9000E, CWR-670, CWR-885E and CWR-610E. Please call us for further details or visit us or your dealer for a demonstration.

9000E

And remember we also sell Yaesu, Jaybeam, Datong, Welz, G-Whip, Western, TAL, Bearcat, Versatower and RSGB publications from our shop and showroom at the address below.

Come in for a demonstration or just a chat, our qualified sales staff and technicians will be glad to assist you.

Listed below are other sets available from Thanet Electronics, a more detailed specification of these will appear in future advertisements. Prices are inclusive of VAT. IC-730, IC-720, IC-2KL + PSU, IC-PS15, IC-ML1, IC-505, IC-SP3, IC-AT500, IC490, IC-AT100, IC-551, IC-PS20, IC-F70, IC-740.

IC-251
IC-451

ICOM produce a perfect trio in the UHF base station range, ranging from 6 Meters through 2 Meters to 70 cms. Unfortunately, you are not able to benefit from the 6m product in this country, but you CAN own the IC-251E 2 Meter station and the 451E for 70 cms.

CUE DEE antennas

The BEST in recent tests and really well made too. Send for a catalogue of these DX antennas. Here's part of the range:

- 4el 2m yagi VHF 14444 8.75dB £24.93
- 10el 2m yagi VHF 14444 11.3 dB £35.16
- 15el 2m yagi VHF 14444 14 dB £38.00
- 17el 70cm yagi UHF 17432 14.5 dB £48.00
- 4el HF Beam DU02 50 MHz 8 dB £45.75
- 10 and 15 element yagis.

Agents (Phone first - all evenings and weekends only)
Scotland: Jack GMB EL350 AS8 2A00
North West: Gordon G3K EM Knutsford (0665) 0040 Assistance available

Securicor or post despatch free
Same day if possible
The TS930S, the latest transmitter from Trio Price: £1,216.00 inc. VAT.

TRIO TS430's
£736.00

TRIO R600 RECEIVER
£257.00

TRIO R2000 RECEIVER
£398.00

TRIO TS833S
HF SSB TRANSCIEVER
£697.00

As the North West's only official Transceiver we carry our full range of equipment and accessories. Full service facilities. Send for up-to-date information.