not only a general coverage receiver but also an amateur band transceiver

160-10 Metres, with 150 kHz – 30 MHz general coverage receiver.
Covers all Amateur frequencies from 160 – 10 metres, including new WARC, 30, 17, and 12 metre bands, on SSB, CW, FSK, and AM. Features 150 kHz – 30 MHz general coverage receiver. Separate Amateur band access keys allow speedy band selection. UP/DOWN bandswitch changes in 1 MHz steps. A new, innovative, quadruple conversion, digital PLL synthesized circuit provides superior frequency accuracy and stability, plus greatly enhanced selectivity.

All solid state, 28 volt operated final amplifier.
The final amplifier operates on 28 VDC for lowest IM distortion. Power input rated at 250 W on SSB, CW, and FSK, and at 80 W on AM. Final amplifier protection circuit with cooling fan, SWR/Power meter built-in. Automatic antenna tuner, built-in. Available with AT-930 antenna tuner built-in, or as an option. Covers Amateur bands 80 – 10 metres, including the new WARC bands. Tuning range automatically pre-selected with band selection to minimize tuning time. “AUTO-THRU” switch on front panel.

CW full break-in.
CW full break-in circuit uses CMOS logic IC plus reed relay for maximum flexibility, coupled with smooth, quiet operation. Switchable to semi-break-in.

Dual digital VFO’s.
10 Hz step dual digital VFO’s include band information. Each VFO tunes continuously from band to band. A large, heavy, flywheel type knob is used for improved tuning ease. T.F. Set switch allows fast transmit frequency setting for split frequency operations. A = B switch for equalizing one VFO frequency to the other. VFO “Lock” switch provided. RIT control for ±9.9. kHz receive frequency shift.

Eight memory channels.
Stores both frequency and band information. VFO-MEMO switch allows use of each memory as an independent VFO, the original memory frequency can be recalled at will, or as a fixed frequency. Internal Battery memory back-up.

Dual mode noise blanker (“pulse” or “woodpecker”).
NB-1, with threshold control, for pulse-type noise. NB-2 for longer duration “woodpecker” type noise.

SSB IF slope tuning.
Allows independent adjustment of the low and/or high frequency slopes of the IF passband, for best interference rejection.

CW VBT and pitch controls.
CW VBT (Variable Bandwidth Tuning) control tunes out interfering signals. CW pitch controls shifts IF passband simultaneously changes the pitch of the beat frequency. A “Narrow/Wide” filter selector switch is provided.

IF notch filter.
100 kHz IF notch circuit gives deep, sharp, notch, better than – 40 dB.

Audio filter built-in.
Tunable, peak-type audio filter for CW.

LOWE ELECTRONICS
CHESTERFIELD ROAD
MATLOCK
DERBYSHIRE DE45LE TEL 0629 2817; 2430; 4057.
A familiar name, but a whole new receiver behind it. Outstanding new features are:

- Extended coverage 200 KHz-30MHz.
- Digital readout in large green display units which give true unambiguous frequency information — even when you switch sidebands or use the clarifier.
- All new frequency synthesis using Plessey SL 1600 series ICs for a new high standard of performance.
- All new audio system which produces outstandingly good quality on the built in speaker, and is capable of driving external hi fi speaker units for even better sound.
- All new IF filters with optimum bandwidth for mode in use. Automatic filter selection from mode switch. We predict that the SRX300 will be a landmark in low cost, high performance SWL receivers. Just consider how much you should pay for a receiver covering 200 KHz-30 MHz with accurate digital readout; high performance USB/LSB/AM with switched filters; drift cancelling frequency synthesis; built in mains supply and built in speaker; high quality construction and advanced design — and so much more.

SRX 30D £215.00 inc VAT. Securicor carriage £5.00.

The NRD515, complete with the optional 24 channel memory unit and speaker, was a superb piece of equipment for the dedicated shortwave listener.

Now with the arrival of the 96 channel memory unit, which is available at £198.00, (the same price as the 24 channel unit was sold for); JRC have provided the ultimate in shortwave receivers. The NRD is a PLL-synthesised communications receiver of the highest class featuring advanced radio technology combined with the latest digital techniques.

The new NRD515 is full of performance advantages, including general coverage, all modes of operation, PLL digital VFO for digital tuning, direct mixing, pass-band tuning, etc. JRC’s 65 years of radio communications experience will give you ‘the world at your fingertips’. The NRD515 is but a single item from the JRC product range which extends all the way to full marine radio installations for supertankers.

NRD 515 £1090.20 inc VAT. Securicor carriage £5.00.

The TR-7730 is an incredibly compact, reasonably priced, 25-watt, 2-meter FM mobile transceiver with five memories, memory scan, automatic band scan, and other convenient operating features.

TR 7730 FEATURES:
- Smallest ever TRIO mobile
- Measures only 5⅞ inches wide, 2 inches high, and 7¼ inches deep. Mounts even in the smallest car, and is an ideal combination with the equally compact TR-800D synthesized 70-cm FM mobile transceiver.
- 25 watts RF output power
- Hi/Low power switch selects 25-W or 5-W output.
- Five memories
- May be operated in simplex mode or repeater mode with the transmit frequency offset ±600 kHz. The fifth memory stores both receive and transmit frequency independently. Memory backup terminal on rear panel.
- Memory scan
- Automatically locks on busy memory channel and resumes when signal disappears or when SCAN switch is pushed. Scan HOLD or microphone PTT switch cancels scan.
- Automatic band scan
- Scans entire band in 5kHz or 25 kHz steps and locks on busy channel. Scan resumes when signal disappears or when SCAN switch is pushed. Scan HOLD or microphone PTT switch cancels scan.
- UP/DOWN frequency control from microphonic Manual UP/DOWN scan of entire band in 5kHz or 25 kHz steps is possible.
- Offset switch
- Allows VFO and four of five memory frequencies to be offset ±600 KHz for repeater access or simplex.
- Four-digit LED frequency display
- Indicates receive and transmit frequency.
- S/RF bar meter and LED indicators
- Bar meter of multicolor LEDs shows S/RF levels. Other LEDs indicate BUSY, ON AIR, and REPEATER offset.
- Tone switch

TR 7730 £247.94 inc VAT. Securicor carriage £5.00.
The TR-2500 is a compact 2 metre FM handheld transceiver featuring an LCD readout, 10 channel memory, lithium battery memory back-up, memory scan, programmable automatic band-scan and Hi/Lo power switch.

TR-2500 FEATURES:
- Extremely compact size and light weight: 6612.5/81W x 16816.5/8H x 4011.5/8D, mm (inches), 540g (1.2lbs) with Ni-Cd pack.
- LCD digital frequency readout, with memory channel and function indication.
- Ten channel memory, includes "MO" memory for non-standard split frequencies.
- Lithium battery memory back-up built-in, (estimated 5 year life) saves memory when Ni-Cd pack discharged.
- Memory scan, stops on busy channels, skips channels in which no data is stored.
- UP/DOWN manual scan in 5kHz steps.
- 2.5W or 300mW RF output. (HI/LOW power switch.)
- Programmable automatic band scan allows upper and lower frequency limits and scan steps of 5kHz and larger (5, 10, 15, 20, 25, 30kHz... etc) to be programmed.
- Slide-lock battery pack.
- Repeater reverse operation.
- Keyboard frequency selection across full range.
- Frequency coverage, 144.030 to 145.995 MHz.
- Optional power source, MS-1 mobile or ST-2 AC charger/power supply allows operation while charging. (Automatic drop-in connections.)
- High impact plastic case.
- Battery status indicator.
- Two lock switches for keyboard and transmit.

STANDARD ACCESSORIES
- Flexible rubberized and antenna with BNC connector.
- 400mA heavy-duty Ni-Cd battery pack.
- AC charger.

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>TR 2500</td>
<td>HANDHELD TRANSCEIVER</td>
<td>£207.00</td>
</tr>
<tr>
<td>ST 2</td>
<td>BASE STAND/CHARGER</td>
<td>£46.23</td>
</tr>
<tr>
<td>SC 4</td>
<td>SOFT CASE</td>
<td>£12.19</td>
</tr>
<tr>
<td>MS 1</td>
<td>MOBILE STAND</td>
<td>£28.29</td>
</tr>
<tr>
<td>SMC 25</td>
<td>SPEAKER/MIKE</td>
<td>£14.49</td>
</tr>
<tr>
<td>PB 25</td>
<td>NICAD PACK</td>
<td>£22.31</td>
</tr>
<tr>
<td>LH 2</td>
<td>LEATHER CASE</td>
<td>£21.39</td>
</tr>
</tbody>
</table>

So the TR2300 now costs less than its predecessor did in 1976. Not only that, the TR2200GX of 1976 only had 12 channels where the TR2300 of today covers the full amateur band.

So we rest our case — the TR2300 has to be, in today’s market, outstanding value for money and, what is more, the TR2300 has an unprecedented reliability factor.

There is no need to talk of full 2metre band coverage, the 1 watt of perfect transmitted signal, the fully comprehensive list of included accessories: carrying case, Nicad charger, 12 volt power cord, shoulder strap, hand microphone, collapsible whip antenna, reverse repeater facility, automatic tone burst, switchable illuminated frequency dial, consequent long life operation out in the field.

Don’t ask us about the Trio TR2300 — ask our best form of advertisement: one of the 5,000 owners!

TR2300 PORTABLE TRANSCEIVER £166.75
Securicor Carriage £5.00

handability
TR 2500

portability
TR 2300

HEAD OFFICE AND SERVICE CENTRE
Chesterfield Road, Matlock, Derbys. Tel. 0629 2817 or 2430.
Open Tuesday-Friday 9-5.30, Saturday 9-5.00. Closed for lunch 12.30-1.30.
For all that’s best in ham radio, contact us at Matlock.
For full catalogues send 70p in stamps with your address. Mark enquiry SWM.
FT-ONE SUPER HF TRANSCEIVER

The ultimate in HF transceivers—the new FT-ONE provides continuous RX coverage of 150KHz - 30MHz plus all nine amateur bands (160 thru 10m).

All mode operation LSB, USB, CW, FSK, AM, FM

10 VFO system

FULL break-in on CW, audio peak filter, notch filter, variable bandwidth and IF shift, keyboard scanning and entry, RX dynamic range over 95dB! and NO band switch!!!

FT-101ZD MkIII

YAESSU's FT-101ZD WITH FM is the most popular HF rig on the market thanks to its very comprehensive specification and competitive price. Incorporates notch filter, audio peak filter, variable IF bandwidth plus many other features.

FT-902DM Competition grade HF transceiver

The YAESU world famous pace-setter with the acknowledged unbeatable reputation. 160 thru 10 metres including the new WARC bands

All-mode capability, SSB, CW, AM, FSK and FM transmit and receive. Teamed with the FTV-901R transverter coverage extends to 144 & 430MHz

FT-707 All solid-state HF mobile transceiver

The definitive HF mobile rig, digital, variable IF bandwidth, 100 watts PEP SSB, AM, CW (pictured here with 12 channel memory VFO) Latest bands

FRG-7700 High performance communications receiver

YAESSU's top of the range receiver. All mode capability USB, LSB, CW, AM and FM 12 memory channels with back up. Digital quartz clock feature with timer. Pictured here with matching FRT-7700 Antenna tuner and FRV-7700 VHF converter
Once again YAESU
lead the field with the
exciting new FT-102
HF transceiver—no other manufacturer
offers so many innovative features.

Better Dynamic Range
The extra high-level receiver front end uses
24 VDC for both RF amplifier and mixer circuits,
allowing an extremely wide dynamic range for solid
copy of the weak signals even in the weekend
crowds. For ultra clear quality on strong signals or
noisy bands the high voltage JFET RF amplifier can
be simply bypassed via a front panel switch,
boosting dynamic range beyond 100dB. A PLL
system using six narrow band VCOs provides
exceptionally clean local signals on all bands for
both transmit and receive.
Total IF Flexibility
An extremely versatile IF Shift/Width system, using
friction-linked concentric controls and a totally
unique circuit design, gives the operator an infinite
choice of bandwidths between 2.7kHz and 500Hz,
which can then be tuned across the signal to the
portion that provides the best copy sans ORM,
even in a crowded band. A wide variety of crystal
filters for fixed IF bandwidths are also available as
options for both parallel and cascaded configurations.
But that's not all; the 455kHz third IF also
allows an extremely effective IF notch tunable
across the selected passband to remove interfering
signals. But that's not all; the 455kHz third IF also
allows an extremely effective IF notch tunable
across the selected passband to remove interfering
signals. But that's not all; the 455kHz third IF also
allows an extremely effective IF notch tunable
across the selected passband to remove interfering
signals. But that's not all; the 455kHz third IF also
allows an extremely effective IF notch tunable
across the selected passband to remove interfering
signals. But that's not all; the 455kHz third IF also
allows an extremely effective IF notch tunable
across the selected passband to remove interfering
signals. But that's not all; the 455kHz third IF also
allows an extremely effective IF notch tunable
across the selected passband to remove interfering
signals. But that's not all; the 455kHz third IF also
allows an extremely effective IF notch tunable
across the selected passband to remove interfering
signals. But that's not all; the 455kHz third IF also
allows an extremely effective IF notch tunable
across the selected passband to remove interfering
signals. But that's not all; the 455kHz third IF also
allows an extremely effective IF notch tunable
across the selected passband to remove interfering
signals. But that's not all; the 455kHz third IF also
allows an extremely effective IF notch tunable
across the selected passband to remove interfering
signals. But that's not all; the 455kHz third IF also
allows an extremely effective IF notch tunable
across the selected passband to remove interfering
signals. But that's not all; the 455kHz third IF also
allows an extremely effective IF notch tunable
across the selected passband to remove interfering
signals. But that's not all; the 455kHz third IF also
allows an extremely effective IF notch tunable
across the selected passband to remove interfering
signals. But that's not all; the 455kHz third IF also
allows an extremely effective IF notch tunable
across the selected passband to remove interfering

TET ANTENNA SYSTEMS

THE ANTENNA WITH THE DIFFERENCE

TET HF antennas are unique in that they employ dual driven elements with the following distinct advantages:

- Improved gain over conventional arrays.
- Broader bandwidth with lower SWR.
- Enhanced front to back ratio.
- Better matching into solid state transceivers without an A.T.U.
- High power handling capacity.

TET manufacture an exciting range of multi-element HF beams including superb monobanders plus HF verticals. Also there is a full range of VHF/UHF antennas most of which have multi-element drive or distinctive technical features.

NEW from TOKYO HY-POWER LABS

VHF 160W Plus Linear
FEATURES:
160W output achieved with a pair of rugged MRF247 transistors. Drive requirements as low as 10W or 3W from hand-held. Selectable hi/lo output. Newly designed effective heat sink and high reliability one board construction.

SPECIFICATION:

VHF 85W Plus Linear
FEATURES:
A compact 144MHZ band amp with receive preamp and power output meter.

SPECIFICATION:

VHF 30W Linear
FEATURES:
A compact and light-weight 144MHZ band amp with 30W output. Drive power of 1W to 5W from hand-held radio. Hi/Lo output selection.

SPECIFICATION:

WHERE TO FIND US

Amateur Electronics UK
508-516 Alum Rock Road, Birmingham 8
Telephone: 021-327 1497 or 021-327 6313
Telex: 337045
Opening hours: 9.30 to 5.30 Tues. to Sat., continuous - CLOSED all day Monday.

H833SP 3 element tri-band beam with dual drive for 14/21/28 MHz
DOPPLER DIRECTION FINDER

Model DF is an omni-directional finding attachment for use with existing narrow band FM receivers and transceivers.

Two units, the display unit and the special antenna combiner convert your NBFM transceiver plus four omnidirectional antennas into a radio direction finder. A built-in r.f. activated bypass relay allows easy use with any receiver or transceiver.

Applications

- Model DF costs between ten and a hundred times less than conventional RDF systems, and therefore opens up new applications for both professional and hobby users.
- Possible applications include: VHF amateur radio, Citizen's Band radio, aircraft spotting, tracking and locating small aircraft, private mobile VHF radio transceivers, reception of marine and aeroplane bands, VHF scanner receivers, compensating for signal loss in long antenna feeders, and use with broadcast antennas and scanner receivers.

Features

- Extra wide bandwidth saves the cost of separate narrow band preamps.
- Handles strong signals without overload thanks to special low noise feedback technique and intercept point better than +40dBm.
- Low noise figure.
- Carefully chosen gain level minimizes receiver overload and cross modulation.
- R.F. activated bypass relay allows easy use with transceivers.
- Rugged diecast aluminium case with S0239 connectors and microphone preamplifier out of circuit during transmit or when the power is off.

Complete Mobile DF System

Complete Mobile DF System (Model DF display unit, antenna combiner, and four Model NBFM quarter wavelength narrow band antennas cut for 145 MHz).

Prices

- **Model DF** Display Unit: £25.50 + VAT (29.32)
- **Model DFA2** Combiner Unit: £31.00 + VAT (35.65)
- **Model RFA** Wide Band Preamplifier: £37.00 + VAT (42.55)
- **Model DFA2** Combiner Unit: £49.00 + VAT (56.35)
- **Model AD270** Keyboard Morse: £33.00 (37.95)
- **Model AD70** Speaker: £23.00 (26.45)
- **Model AD70** Speaker: £112.20 (129.00)

MONITORING

SELECTIVE CALLING DEVICE

CODECALL

- **Feature 1**: Each "CODECALL" unit acts as a call generator and a call receiver.
- **Feature 2**: No electrical connection is needed at the transmitter, simply hook "CODECALL" into the microphone.
- **Feature 3**: At the receiver simply plug "CODECALL" into the external speaker jack.
- **Feature 4**: Over four thousand different codes virtually eliminate the chance of false alarms.
- **Feature 5**: Selective calling has long life since no current is used while monitoring a squelched channel.
- **Feature 6**: Works over any voice link, whether VHF, AM, or SSB.
- **Feature 7**: Codes selected by either of the six voice switches (Model S) or by altering twelve internal wire links (Model L).
- **Feature 8**: Compact: only 4 x 2 inches overall size.

Two Versions

- **Model S** illustrated has three 16-way rotary switches on the front panel giving a total of 4096 combinations. Suitable for infrequent use, or for unskilled users who are not likely to be altered often, or for unsupervised installations where no false warnings are likely to be set off.
- **Model L** (Link programmable) is suitable for installations where codes are not likely to be altered often, or for trained radio operators who are likely to be altered often, or for installations where the system is likely to be highly supervised.

Prizes

- **Model S** CODECALL: £131.00 (150.70)
- **Model L** (Link programmable): £234.00 (270.60)
- **Model AD270** Keyboard Morse: £33.00 (37.95)
- **Model AD70** Speaker: £23.00 (26.45)
- **Model AD70** Speaker: £112.20 (129.00)
- **Model DFA2** Combiner Unit: £31.00 + VAT (35.65)

CODECALL

"CODECALL" is ideal wherever there is a need to monitor a well used radio channel or for one particular call over long periods. It gives the same convenience as a telephone bell, in that the receiver remains silent while monitoring and therefore causes no disruption to other radio users.

"CODECALL" ensures that the emergency channel remains at full efficiency at all times. Without "CODECALL" the desired call is often missed by the listener, especially when the volume has been reduced to cut down the radio’s nuisance level.
Microwave Modules

<table>
<thead>
<tr>
<th>Module</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMT144/28</td>
<td>2M Transverter for HF Rig</td>
<td>98.00</td>
</tr>
<tr>
<td>MMT432/28S</td>
<td>70cm Transverter for HF Rig</td>
<td>148.00</td>
</tr>
<tr>
<td>MMT432/28S</td>
<td>70cm Transverter for 2M Rig</td>
<td>184.00</td>
</tr>
<tr>
<td>MMT70/43</td>
<td>4M Transverter for HF Rig</td>
<td>115.00</td>
</tr>
<tr>
<td>MMT70/28</td>
<td>4M Transverter for 2M Rig</td>
<td>115.00</td>
</tr>
<tr>
<td>MMT1296/144</td>
<td>23cm Transverter for 2M Rig</td>
<td>184.00</td>
</tr>
<tr>
<td>MML144/25</td>
<td>2M 25W Linear Amp (3W I/P)</td>
<td>58.00</td>
</tr>
<tr>
<td>MML144/40</td>
<td>2M 40W Linear Amp (10W I/P)</td>
<td>77.00</td>
</tr>
<tr>
<td>MML144/100S</td>
<td>2M 100W Linear Amp (10W I/P)</td>
<td>129.00</td>
</tr>
<tr>
<td>MML432/20</td>
<td>70cm 20W Linear Amp (3W I/P)</td>
<td>77.00</td>
</tr>
<tr>
<td>MML432/50</td>
<td>70cm 50W Linear Amp</td>
<td>119.00</td>
</tr>
<tr>
<td>MML432/100</td>
<td>70cm 100W Linear Amp</td>
<td>228.64</td>
</tr>
<tr>
<td>MML2000</td>
<td>RTTY to TV Converter</td>
<td>168.00</td>
</tr>
<tr>
<td>MM4000</td>
<td>RTTY Transceiver</td>
<td>268.00</td>
</tr>
<tr>
<td>MMC50/28</td>
<td>6M Converter to HF Rig</td>
<td>27.90</td>
</tr>
<tr>
<td>MMC70/28</td>
<td>4M Converter to HF Rig</td>
<td>27.90</td>
</tr>
<tr>
<td>MMC144/28</td>
<td>2M Converter to HF Rig</td>
<td>27.90</td>
</tr>
<tr>
<td>MMC432/28S</td>
<td>70cm Converter to HF Rig</td>
<td>34.90</td>
</tr>
<tr>
<td>MMC432/144</td>
<td>70cm Converter to 2M Rig</td>
<td>34.90</td>
</tr>
<tr>
<td>MMC432/600</td>
<td>70cm ATV Converter</td>
<td>34.90</td>
</tr>
<tr>
<td>MMK1296/144</td>
<td>23cm Converter to 2M Rig</td>
<td>58.80</td>
</tr>
<tr>
<td>MMD050/500</td>
<td>500MHz Dig. Frequency Meter</td>
<td>68.00</td>
</tr>
<tr>
<td>MMD600P</td>
<td>600MHz Preselector</td>
<td>23.00</td>
</tr>
<tr>
<td>MMDP1</td>
<td>Frequency Counter Probe</td>
<td>11.50</td>
</tr>
<tr>
<td>MAA28</td>
<td>10M Preamp</td>
<td>14.95</td>
</tr>
<tr>
<td>MAA144V</td>
<td>2M RF Switched Preamp</td>
<td>34.90</td>
</tr>
<tr>
<td>MMF144</td>
<td>2M Band Pass Filter</td>
<td>9.90</td>
</tr>
<tr>
<td>MMF432</td>
<td>70cm Band Pass Filter</td>
<td>9.90</td>
</tr>
<tr>
<td>MMS1</td>
<td>The Morse Talker</td>
<td>115.00</td>
</tr>
</tbody>
</table>

Morse Equipment

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>MK704</td>
<td>Squeeze Paddle</td>
<td>10.50</td>
</tr>
<tr>
<td>HK707</td>
<td>Up/Down Key</td>
<td>10.50</td>
</tr>
<tr>
<td>HK704</td>
<td>Deluxe Up/Down Key</td>
<td>14.50</td>
</tr>
</tbody>
</table>

YAESU Transceivers

<table>
<thead>
<tr>
<th>Transceiver</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>FT-ONE</td>
<td>1,295.00</td>
</tr>
<tr>
<td>FT-902</td>
<td>885.00</td>
</tr>
<tr>
<td>FT-102AM/FM</td>
<td>t.b.a.</td>
</tr>
<tr>
<td>FT-1012D FM</td>
<td>665.00</td>
</tr>
<tr>
<td>FT-1012D AM</td>
<td>650.00</td>
</tr>
<tr>
<td>FT-1012 FM</td>
<td>590.00</td>
</tr>
<tr>
<td>FT-1012 AM</td>
<td>575.00</td>
</tr>
<tr>
<td>FT-107</td>
<td>725.00</td>
</tr>
<tr>
<td>FT-707</td>
<td>568.00</td>
</tr>
</tbody>
</table>

YAESU Receivers and Accessories

<table>
<thead>
<tr>
<th>Receiver</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>FT-ONE</td>
<td>1,295.00</td>
</tr>
<tr>
<td>FT-902</td>
<td>885.00</td>
</tr>
<tr>
<td>FT-102AM/FM</td>
<td>t.b.a.</td>
</tr>
<tr>
<td>FT-1012D FM</td>
<td>665.00</td>
</tr>
<tr>
<td>FT-1012D AM</td>
<td>650.00</td>
</tr>
<tr>
<td>FT-1012 FM</td>
<td>590.00</td>
</tr>
<tr>
<td>FT-1012 AM</td>
<td>575.00</td>
</tr>
<tr>
<td>FT-107</td>
<td>725.00</td>
</tr>
<tr>
<td>FT-707</td>
<td>568.00</td>
</tr>
<tr>
<td>FT-2100</td>
<td>425.00</td>
</tr>
<tr>
<td>FT-480</td>
<td>378.00</td>
</tr>
<tr>
<td>FT-290</td>
<td>248.00</td>
</tr>
<tr>
<td>FT-230</td>
<td>239.00</td>
</tr>
<tr>
<td>FT-790UFH</td>
<td>t.b.a.</td>
</tr>
</tbody>
</table>

ICOM

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC-720A</td>
<td>189.00</td>
</tr>
<tr>
<td>IC-730</td>
<td>329.00</td>
</tr>
<tr>
<td>IC-451</td>
<td>408.00</td>
</tr>
<tr>
<td>IC-251</td>
<td>37.00</td>
</tr>
<tr>
<td>IC-290</td>
<td>68.00</td>
</tr>
<tr>
<td>IC-25E</td>
<td>75.00</td>
</tr>
<tr>
<td>PS-15</td>
<td>65.00</td>
</tr>
<tr>
<td>IC-2E</td>
<td>72.00</td>
</tr>
<tr>
<td>IC-4E</td>
<td>139.96</td>
</tr>
</tbody>
</table>

TRI

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>TS-930</td>
<td>Prices on application</td>
</tr>
<tr>
<td>TS-830</td>
<td>Prices on application</td>
</tr>
</tbody>
</table>

Morse Equipment

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>MK704</td>
<td>10.50</td>
</tr>
<tr>
<td>HK707</td>
<td>10.50</td>
</tr>
<tr>
<td>HK704</td>
<td>14.50</td>
</tr>
</tbody>
</table>

TRIO

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>BY1</td>
<td>32.00</td>
</tr>
<tr>
<td>BY2</td>
<td>39.95</td>
</tr>
<tr>
<td>BY3</td>
<td>92.00</td>
</tr>
</tbody>
</table>

Rotators

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>KR250</td>
<td>44.96</td>
</tr>
<tr>
<td>9502B</td>
<td>48.96</td>
</tr>
<tr>
<td>KR400RC</td>
<td>98.96</td>
</tr>
<tr>
<td>KR600RC</td>
<td>139.96</td>
</tr>
</tbody>
</table>

DESK MICROPHONES

<table>
<thead>
<tr>
<th>Microphone</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHURE 444D</td>
<td>33.00</td>
</tr>
<tr>
<td>SHURE 526T</td>
<td>46.00</td>
</tr>
<tr>
<td>ADONIS AM502</td>
<td>38.00</td>
</tr>
<tr>
<td>ADONIS AM601</td>
<td>48.00</td>
</tr>
<tr>
<td>ADONIS AM802</td>
<td>68.00</td>
</tr>
</tbody>
</table>

Mobile Safety

<table>
<thead>
<tr>
<th>Microphone</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADONIS AM 202S Clip-on</td>
<td>20.96</td>
</tr>
<tr>
<td>ADONIS AM 202F Swan Neck + Up/Down Buttons</td>
<td>30.00</td>
</tr>
<tr>
<td>ADONIS AM 202H Head Band Up/Down Buttons</td>
<td>30.96</td>
</tr>
</tbody>
</table>

Pipeline Products

<table>
<thead>
<tr>
<th>Component</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 Amp</td>
<td>27.95</td>
</tr>
<tr>
<td>12 Amp</td>
<td>68.00</td>
</tr>
<tr>
<td>6 Amp</td>
<td>44.95</td>
</tr>
<tr>
<td>24 Amp</td>
<td>98.00</td>
</tr>
<tr>
<td>VHF Wavemeter 130-450MHz</td>
<td>24.96</td>
</tr>
<tr>
<td>Morse Tutor — new product</td>
<td>47.00</td>
</tr>
</tbody>
</table>

Test Equipment

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>DM81</td>
<td>63.25</td>
</tr>
<tr>
<td>AT145</td>
<td>19.96</td>
</tr>
<tr>
<td>Welz SP15M</td>
<td>29.00</td>
</tr>
</tbody>
</table>

Prices are correct as we go to press, but we reserve the right to vary them if forced to do so by the time this advertisement appears.
OUR STOCK IS JUST A PHONE CALL AWAY

In London's leading amateur radio store, Brenda and Bernie are now geared up to provide Britain's best phone and mail order service too. So, whether you want an HF transceiver or just a meter and a couple of PL-259s, try us. Any item in stock—and in our new premises we carry an even wider range than before—which is ordered before 2pm will normally be despatched the same day.

Carriage is free within mainland UK, and delivery will be as rapid as insured Post or Securicor can make it.

When it comes to paying the choice is yours. If you want to use your Access or VISA Credit Card, just give us your name, address and Card number, and your order is on its way. However, if you prefer to send a cheque, there won't even be a delay to clear it if you are in the Call Book. Indeed, if you are a licensed Amateur (or if you have a Cheque or Credit Card), we can even arrange HP on the telephone, with free credit for up to 12 months if you put down a 50% deposit. Alternatively, we can offer normal HP terms over varying periods with smaller down-payments, including a special 10% deposit scheme on transceivers.

This advertisement can only list a selection from our complete range, so please phone for up-to-date price and stock information, or send 50p for our full Stock List (refundable against any purchase over £5).

It's the next-best thing to browsing round the store... and don't worry about missing your cup of Brenda's coffee. We've even found a way of organise this for our post and telephone customers!

OTHER RANGES AND PRODUCTS

- **Standard** • **Welz** • **Datong** • **Sota** • **Packer** • **Wood & Douglas Kits**
- Antennas and accessories by Cushcraft, G-Whip, Jaybeam etc.
- Scanning receivers by Bearcat, also the SX200N and AR-22.
- Tono VHF amps. Tasco CW readers. Wraase SSTV kits etc etc.

FT-790
Yaesu's popular 2m Portable format now available for 70cm as well, with full 10MHz coverage, all-mode FM/CW/USB/LSB, 25/50kc steps, 1.6MHz shift for repeater operation, toneburst, etc.

PHONE FOR FULL DETAILS AND PRICE

FT-102
Yaesu's latest HF transceiver... a worthy successor to the evergreen FT-101 series, with so many extra features
- RF processing
- Tunable audio network for speech tailoring
- SSB/CW/AM/FM

PHONE FOR FULL DETAILS OF THE TRANSCEIVER ITSELF AND OF THE RANGE OF MATCHING ACCESSORIES.

5-YEAR GUARANTEE

2 years free—up to 3 years further cover available at 2½% pa.

YAESU ONLY

373 UXBRIDGE ROAD, ACTON, LONDON W3 9RH
Tel: 01-992 5765/6/7 Just 500 yards east of Ealing Common station on the District and Piccadilly Lines, and 207 bus stops outside.

136 GLADSTONE STREET, ST HELENS, MERSEYSIDE
Tel: 0744 53157 Our North West branch run by Mike (G4NARA), just around the corner from the Rugby Ground.

Closed Wednesday at Acton and Monday at St Helens, but use our 24-hour Ansafone service at either shop.
WATERS & STANTON ELECTRONICS
18/20 MAIN ROAD, HOCKLEY, ESSEX. TEL (0702) 206835

TRIO — Official UK Dealers
New R600 RECEIVER

£235

It really is a fantastic performer!

CALL IN AT OUR SUPER STORE
LARGEST STOCKS IN SOUTH EAST

TELEPHONE YOUR CREDIT CARD NO.
SAME DAY DESPATCH

SEND CHEQUE OR P.O.
BY RETURN DESPATCH

NOW STOCKING SONY VIDEO — C5 RECORDERS £429

ICOM
FULL RANGE STOCKED — RING FOR
OUR COMPETITIVE PRICES NOW

SUPER POWER METERS

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>TS380</td>
<td>£215.00</td>
</tr>
</tbody>
</table>

YAESU — Good stocks. Good prices £5.95)

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>TS780E</td>
<td>£250.00</td>
</tr>
</tbody>
</table>

FT102Z — New arrival

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>FT102Z</td>
<td>£150.00</td>
</tr>
</tbody>
</table>

SPRING BARGAINS
YW-3 SWR METERS 3-150MHz
The best we know at the price!

DATONG MORSE TUTOR D70

Self contained electronic Morse sender £48.45 post free

NEW DIPOLe KIT

Includes T-piece with 239 socket, insulators, guy rope, 50ft terminated coax, ideal for the D.I.Y. man. Suits any power. Few only at £13.99 (£11.99 for sp.

NEW STOCK NOW AVAILABLE

Prices correct at time of going to press. Carriage charges in brackets.

18-20 MAIN ROAD, HOCKLEY, ESSEX
OPEN MON SAT 9.30 E.C. WED 1.00 PM
FASTEST MAIL ORDER SERVICE IN THE BUSINESS!
NEW YAESU HF MULTIMODE TRANSCEIVER FT102.

Stop press — FT102: — For the ultimate signal + Rx front end operates on 24V Dc and RF Stage (JFET) is bypassable extending the dynamic range over 100dB + Ultra Clean PLL system uses 6 narrow band VCO’s + versatile IF shift/width system 2.7kHz → 500Hz + wide variety of crystal filters for fixed bandwidths with parallel and cascade configurations + IF tunable notch filter + audio peak filter + new noise blanker with control of pulse width + microphone amp with tunable audio network adjustable to tailor response to individual voice characteristics before application to the superb internal RF speech processor + extra product detector allows AF monitoring of Tx signal + dual meters allows precise setting of processor and audio levels + peak hold ALC meter + three 6146B’s in special configuration + DC fan whisper quiet + VFO uses custom IC module low component count within cast aluminium housing + external receiver provision + separate Rx antenna + AM/FM option module + full line of accessories + 12 Channel memory option with fine tune.

1kHz digital, plus analogue, display.

2 Selectivities on AM, squelch on FM.

2.7kHz, 5kHz, 12kHz, 15kHz, @ - 6dB.

SSB (LSB/USB), CW, AM, FM.

Up conversion, 48kHz first IF.

Antenna 500kHz to 2MHz, 50MHz to 30MHz.

Audio peak filter + new noise blanker with control of pulse width + microphone amp with tunable audio network adjustable to tailor response to individual voice characteristics before application to the superb internal RF speech processor + extra product detector allows AF monitoring of Tx signal + dual meters allows precise setting of processor and audio levels + peak hold ALC meter + three 6146B’s in special configuration + DC fan whisper quiet + VFO uses custom IC module low component count within cast aluminium housing + external receiver provision + separate Rx antenna + AM/FM option module + full line of accessories + 12 Channel memory option with fine tune.

1kHz digital, plus analogue, display.

2 Selectivities on AM, squelch on FM.

2.7kHz, 5kHz, 12kHz, 15kHz, @ - 6dB.

SSB (LSB/USB), CW, AM, FM.

Up conversion, 48kHz first IF.

Antenna 500kHz to 2MHz, 50MHz to 30MHz.

Audio peak filter + new noise blanker with control of pulse width + microphone amp with tunable audio network adjustable to tailor response to individual voice characteristics before application to the superb internal RF speech processor + extra product detector allows AF monitoring of Tx signal + dual meters allows precise setting of processor and audio levels + peak hold ALC meter + three 6146B’s in special configuration + DC fan whisper quiet + VFO uses custom IC module low component count within cast aluminium housing + external receiver provision + separate Rx antenna + AM/FM option module + full line of accessories + 12 Channel memory option with fine tune.

1kHz digital, plus analogue, display.

2 Selectivities on AM, squelch on FM.

2.7kHz, 5kHz, 12kHz, 15kHz, @ - 6dB.

SSB (LSB/USB), CW, AM, FM.

Up conversion, 48kHz first IF.

Antenna 500kHz to 2MHz, 50MHz to 30MHz.

Audio peak filter + new noise blanker with control of pulse width + microphone amp with tunable audio network adjustable to tailor response to individual voice characteristics before application to the superb internal RF speech processor + extra product detector allows AF monitoring of Tx signal + dual meters allows precise setting of processor and audio levels + peak hold ALC meter + three 6146B’s in special configuration + DC fan whisper quiet + VFO uses custom IC module low component count within cast aluminium housing + external receiver provision + separate Rx antenna + AM/FM option module + full line of accessories + 12 Channel memory option with fine tune.

1kHz digital, plus analogue, display.

2 Selectivities on AM, squelch on FM.

2.7kHz, 5kHz, 12kHz, 15kHz, @ - 6dB.

SSB (LSB/USB), CW, AM, FM.

Up conversion, 48kHz first IF.

Antenna 500kHz to 2MHz, 50MHz to 30MHz.
FT ONE £1,295 inc. & SECURICOR

- 160-10-metres including new allocations.
- Variable IF bandwidth 2.4kHz down to 300Hz.
- Audio Peak and independent notch controls.
- AM, FSK, USB, LSB, CW, FM, (TX and RX).
- Semi-break in, inbuilt Curtis IC Keyer.
- Digital plus analogue frequency displays.
- VOX built-in and adjustable.
- Instant write in memory channel.
- Tune up button (10 sec. of full power).
- Switchable AGC and RF attenuator.
- Optional 350 or 600 Hz CW, 6kHz, AM filters.
- Clarifier (RIT) switchable on TX, RX or both.
- Fully adjustable RF Speech processor.
- Ergonomically designed with necessary LEDs.
- Incredible range of matching accessories.
- Universal power supply 110-234V AC and 12V DC.

FT902DM £885 inc. & SECURICOR

- 160-10-metres including new allocations.
- Variable IF bandwidth 2.4kHz down to 300Hz.
- Selectable CW fixed bandwidth CW-W and CW-N.
- Semi-break in with sidetone for excellent CW.
- Digital plus analogue frequency displays.
- 180W PIP and 31dB 3rd order intermod.
- RF speech processor fitted — adjustable level.
- VOX built-in and is adjustable from the front panel.
- Wide dynamic range for big signal handling.
- High usable sensitivity, for those weak ones.
- Superb noise blanker — adjustable threshold.
- Attenuator, 0-10-20dB, AGC, slow-fast-off.
- Clarifier (RIT) switchable on TX, RX or both.
- Low level transvertor drive output facility.
- Universal power supply 110-234V AC and 12V DC.
- Incredible range of matching accessories.
- 6 models: Digital/Analogue — AM/FM options.

FT101ZD £635 inc. & SECURICOR

- 160-10-metres (including 10, 18, and 24MHz).
- USB-LSB-CW-FSK-AM multi-mode.
- Full broad band “no tune” power amplifier.
- 240W PIP. 75 per cent power output at 3.1 VSWR.
- 12 memory channels with clarifier on memory.
- Up/down scanning control from microphone.
- Variable IF bandwidth — 16 poles of selectivity.
- Bandwidths: 2.4kHz—300Hz, 600Hz* or 300Hz*.
- Selectable CW “fixed” widths CW-W and CW-N.
- Tunable Audio Peak (AFP) and Notch filter.
- Diode ring mixer for very high Rx dynamic range.
- Noise blanker — front panel adjustable threshold.
- AGC; slow-fast-off. Attenuator 0-20dB switchable.
- RF speech processor fitted — front panel adjustable.
- Digital (100Hz) plus analogue frequency display.
- Choice of built-in or separate power supply units.

FT 707 £569 inc. & SECURICOR

- 80-10-metres (including 10, 18 and 24MHz bands).
- USB-LSB-CW-FSK-CW-AM (Tx and RX operation).
- 100W PEP. 50% power output at 3.1 VSWR.
- Full "broad band" no tune output stage.
- Excellent Rx dynamic range, power transistor buffers.
- Rx Schottky diode ring mixer module.
- Local oscillator with ultra-low noise floor.
- Variable IF bandwidth — 16 crystal poles.
- Bandwidths 6kHz* 2.4kHz—300Hz 600Hz* or 350Hz*.
- AGC; slow-fast switchable VOX built-in.
- Semi-break in with side tone for excellent CW.
- Digital (100Hz) plus analogue frequency display.
- LED Level meter reads: S, PO and ALC.
- Indicators for: calibrator, fix, int/ext VFO.
- Receiver offset tuning (RIT-clarifier) control.
- Advanced noise blanker with local loop AGC.
Reductions shown are taken from previously advertised prices and are not necessarily those that the equipment has been offered continuously for the last 28 days. Certain items are shop soiled/ex demo — please enquire.

2m SYNTHESISED £205 inc.
CPU2500RKS. 10W keyboard mic up/down tuning etc., 26W RK model £210, 25kHz stepper version £220.

2m, 25W, FM, £239 inc.
FT230R 6" x 2" x 7", 12½/25kHz = 600kHz, special LCD display, 10 memories, memory and band scan, RX priority feature, two independent VFO's.

2m, 250W (+) PEP. £499
NAG 144XL LINEAR. 4CX350F tube, 10W nom. drive, switchable pre-amp, RF and hard switching, Thermal delay, etc., etc.

2m, 25W, FM. £175 inc.
FT227RB. 10W remote tuning transceiver.
FT227RXS. 227 fitted special scanner £195.

2m, 25W, FM, £199 inc.
2025 MARK II Full coverage 2M Transceiver, 12½kHz (set 12½-200kHz), rapid tune, 10" easy write' memory channels, memory or band-scan between programmable limits, auto scan stop dependent on squelch and centre zero.

2m. 160W OUTPUT, £164
MIRAGE B3016 LINEAR. 12VDC. Nominal 30W drive, switch pre-amp., etc. B106 10-80W £120.75. B108 10-160W £189.75.

FT480R (2m) £379 inc.
- Bandpass filter no tune design.
- Bandwidth 2.4kHz and 1kHz at 6dB.
- Semi break in with side tone.
- Very bright blue 100kHz digital display.
- Display shows Tx & Rx freq (inc RIT).
- String LED display for 'S' and PO.
- Digital receiver offset tuning.

FT780R (70cm) £449 inc.
- 144-146MHz (143.5-148.5 MHz possible).
- Excellent dynamic range and sensitivity.
- FM: 25, 12½, 1kHz steps.
- SSB: 1,000, 100, 10Hz steps.
- Any TX Rx split with dual VFO's.
- 600kHz standard repeater split.
- Four easy write-in memory channels.

FT790R 1.6 fitted 1.6 MHz Shift £459 inc.
- 430-434MHz (440-445) possible.
- GaAs Fet RF for incredible sensitivity.
- NMOS four bit micro control.
- FM: 100kHz, 25kHz, 1kHz, steps.
- SSB: 1,000, 100, 10Hz steps.
- Repeater access by use of dual VFO's.
- Four easy write-in memory channels.
SPRINGTIME — TIME TO BE THINKING HAND PORTABLE

FT207R

£169 inc. VAT @ 15% & POSTAGE

- 144-146MHz (144-148 possible)
- 12.5 kHz synthesizer steps
- 4 bit CPU chip for freq. control
- Keyboard entry of frequencies
- Keyboard lockout safety feature
- Digital display to hundreds of Hz
- Display auto shutdown timer
- Four Channels of memory
- Memory back up disable
- Up/down manual tuning

FT208R (2m)

£209 inc. VAT @ 15% & POSTAGE

- 4 bit CPU chip frequency control
- Keyboard entry of frequencies/splits
- LCD digital display with backlight
- Ten channels of memory
- Memory back up five-year lifetime cell
- Up/down manual tuning
- Manual or auto scan for busy/clear
- Priority channel with search back
- Memory scanning feature
- Scan between any two frequencies
- Auto scan restart
- Quick change NiCad pack
- 1.75 kHz tone burst
- Built in condenser microphone
- 500mW AF to int/ext speaker
- External speaker/mic available
- Keyboard offers 16 tone DTMF
- 168(H) x 61(W) x 39(D)mm
- C/w NiCad pack, helical

FT708R (70cm)

£219 inc. VAT @ 15% & POSTAGE

- 144-148MHz (144-148 possible)
- 12.5/25kHz synthesizer steps
- Any split or + or - programmable
- +600kHz repeater split
- 2.5 or 0.3W RF output
- Rx: 20mA squelch, 150mA AF
- Tx: 800mA at 2.5W RF
- 0.251.4V for 12dB SINAD
- Dual conversion 16.9MHz and 455kHz

FT290R MULTIMODE PORTABLE/MOBILE

£249 inc. VAT @ 15% & POSTAGE

- 144-146MHz (144-148 possible)
- Multimode USB, LSB, FM, CW
- 2.5W PEP, 2.5W RMS/300mW output
- LED's, “ON AIR”, “BUSY” MC meter, S.P.O
- Integral telescopic antenna
- Bandwidth 2.4kHz and 14kHz
- Optically coupled main tuning
- LCD digital display with backlight
- Ten memory channels “5 year” backup
- FM: 25kHz and 12.5kHz steps
- SSB: 1kHz and 1001-1kHz steps
- Any TX/RX split with dual VFOs
- ±600kHz repeater split 1750kHz burst
- Up/down tuning from microphone
- AF output 1W @ 10% TMD
- 58 (H) x 150 (W) x 195 (D) (1.3kg)
- Rx, 70mA, Tx; 800mA (FM maximum)
- Mobile bracket available (MMB II)
- Matching 10W linear Amplifier
- 8.5 - 15.2V DC External
- 8'C' NiCads or Drys
- SMC 2.2 A/Hr NiCad £2.70 inc

SOUTH MIDLANDS COMMUNICATIONS LTD

S.M. HOUSE, OSBORNE ROAD, TOTTEN, SOUTHAMPTON, SO4 4DN, ENGLAND

Tel: Totton (0703) 867333, Telex: 477351 SMCOMM G, Telegram: “Aerial" Southampton
THE ONLY APPROVED TRIO DEALER FOR NORTH WEST ENGLAND

TR7730 the new compact 2m Transceiver

TR2300
TR2300 2m Synthesised Portable Transceiver. We have lost count of the number of this model we have sold in the last 12 months. Hikers, climbers, climbers, you can hear them all over the country and reliability which is the essence of TRIO equipment. £166.75

TR9000
The TR9000 is a compact lightweight 2mtr. FM USB/LSB/CW Transceiver with an outstanding array of functions. FM/LSB/TX-SW steps for full MSK precision 100 Hz steps (for base station use). Microprocessor control giving many advanced features. Built in 5 channel memory. New type microphone with UT/DOWN switching in high performance. N. Blank. Side tone for CW. £374.90

TRIO
TS830S HF Transceiver £694.83
AT230 All band Antenna Tuner/SWR £118.93
TS5300 HF Transceiver £1534.98
SP200 Speaker £34.96
DK290 Digital remote control £179.96
TS306 Solid State HF Transceiver £525.09
TS307 Solid State 2m Transceiver £445.96
P520 Power supply £49.45
P300 Power supply £89.55
AT100 Antenna Tuner £79.12
TS720 2.6Kw Linear Amplifier £624.91
TR2300 Portable 2m Transceiver £166.75
TR2902 Hand Held 2m Transceiver £207.00
TR1770 2m FM Transceiver £247.00
TS830A 2.5Watt 2m FM Transceiver £284.97
TS830D 2m Transceiver £314.67
TR900D 2m Multimode Transceiver £1000.00
TR900C 2m Multimode Transceiver £440.96
TR840C 70cm FM Mobile Transceiver £334.98
R1000 Solid State Receiver £237.85
Send £50.00

DATING PRODUCTS
PCI General Coverage Converter £120.75
Low Frequency Coverage Converter £21.75
RF Frequency Audio Filter £67.85
RF Multi Mode Audio Filter £89.33
Automatic FM Speech Clipping £78.35
RF Speech Clipping £26.46
D70 Morse Tutor £49.46
AD3/0 Active Antenna (outdoor) £51.75
AD3/0 Active Antenna (indoors) £37.95
CM2 Converter £36.66
Keyboard Morse Sender £128.00

MOD. 1210 S
SOLID STATE STABILISED POWER SUPPLIES
Maximum ratings quoted. Prices include post. Model 1210-1 15V 5amp £29.90
Model 1210-2 15V 10amp Twin Mirror £40.60
Model 1210-3 12V 10amp Twin Mirror £33.05

RECEIVERS AND TRANSCEIVERS
SR4 Tunable 144-146Mhz Receiver £46.00
SR10 Aircraft Band 2m Transceiver £135.00
Regency Digital Flight Scan Synthesised Aircraft Band £215.00
Yates FG7 Receiver £198.00
Sky ACE Hand Held Aircraft Band Receiver £49.50
AR22 2m Hand Held Model £83.00
HS20 Hand Held Aircraft Receiver £66.50
FX1 Station Wavecounter £28.00
2-way Antenna Switch 3-30MHz £5.00
3-way Antenna Switch 3-30MHz £10.00
F DX40 Transceiver £150.00
F DX70E Transceiver £259.00
DL500 900mW Dummy Load £19.00
DL500 Dummy Load/Wattmeter 1 Kw £95.00
400-600MHz £30.00

TRIO R1000
R1000 Receiver £297.96

TR8700
Continuing TRIO’s policy of presenting the Radio Amateur with the finest equipment available, we were pleased to announce the NEW TR8700 2m FM Mobile Transceiver. 15 memory channels - Priority channels with simple £600 KHz or non-standard operation - “Priority alert” when signal on M14 priority channel. ±600 KHz or non-standard operation - Transceiver. 15 memory channels - Priority channels £254.98

J.H. NRD 156
General coverage receiver 100 KHz to 30 MHz Fully synthesised Digital readout PLL synth. with rotary type encoder pass band tuning - modular construction. £1,096.00

Matching Transmitter Solid State 100 Watts available.

ACCESS & BARCLAYCARD facilities. Instant HP service. Licensed Credit Broker - quotations upon request.

Try our new “Oveterne” service for 66.00. Guaranteed 24 hour service if order placed before 11 a.m. (except North GM). Part exchange always welcome. Spot cash paid for good clean equipment. If you have equipment surplus to your requirement we would be pleased to sell this on commission for you.

Shop Hours: 9.30 to 5.30 Monday to Friday.

Telephone (0942) 676790

LANCASTER & THE NORTH WEST’S LEADING RETAILER IN AMATEUR RADIO. 20 YEARS SERVING THE AMATEURS BY AMATEURS SPECIALIZING ONLY IN AMATEUR RADIO EQUIPMENT.

J.H. NRD 156

FULL RANGE OF DIWA ANTENNA ROTATORS, SWR METERS, AUTOMATIC ANTENNA TUNERS, WELLZ SWR METERS AND ATU’S IN STOCK.

ALSO AVAILABLE FROM STOCK G4MH MINIBEAMS AND A WIDE RANGE OF HY-GAIN ANTENNAS

MN7 ATU/RF Meter 250 Watts £124.20
MN2100 ATU 2KW £207.00
DL 300 Dummy Load 300 Watts £20.70
DL 1000 Dummy Load 1KW £37.95
TV 3300 Low Pass Filter £18.40
ATL Doublet Antenna 12m top with 470ohm Feeder £23.00

TRIO TS530S NEW £534.98
ALL BAND HF TRANSCEIVER

TS830S
HF SSB TRANSCEIVER £649.98

THE SHORT WAVE MAGAZINE
June, 1982

www.theshortwavemagazine.com
ADVERTISERS’ INDEX

Page
Amateur Electronics UK 174, 175, 176
Amateur Radio Exchange 178, 179
Amcomm Services 218
Arrow Electronics Ltd. 218
J. Birkett 228
Bredhurst Electronics 180
British National Radio and
 Electronics School 224
Catronics Ltd. 223
Colomor Electronics Ltd. 226
Datong Electronics Ltd. 177
Granville Mill 228
G2DYM Aerials 226
G3HSC (Rhythm Morse Courses) ... 226
D.I.P. Hobbs Ltd 228
I.C.S. Electronics Ltd. 222
Johns Radio 223
K.W. Communications Ltd. 221
Lee Electronics Ltd. 222
Leeds Amateur Radio 225
H. Lexton Ltd. 188
Lowe Electronics Ltd. 228
Microwave Modules Ltd. 220
MuTek Ltd. 223
North West Communications 221
Partridge 224
P.M. Electronics Services 227
Pojemar Ltd. 227
Quartslab Marketing Ltd. 219
Radio Shack Ltd. 219
R. T. & I. Electronics Ltd. 227
S.E.M. 220
Small Advertisements 224, 225, 226
S.M.C. (T.M.P. Electronics) 228
South Midlands Communications
 Ltd. 182, 183, 184, 185
Spacemark Ltd. 226
Stephen-James Ltd. 186
S.W. M. Publications 226
Tuition — Peter Bubb 223
Uppington Tele/Radio (Bristol)
 Ltd. 225
Reg Ward & Co. Ltd. 228
Waters & Stanton Electronics 181
Geoff Watts 228
W. H. Westlake 226
Wood & Douglas 227

SHORT WAVE
MAGAZINE

(GB3SWM)

ISSN: 0037-4261

Vol. XL JUNE, 1982 No. 464

CONTENTS

Page
VHF Bands, by N. A. S. Fitch, G3FPK 189
Better Front-End Selectivity for the Yaesu FT-707, by Ian White, G3SEK 193
Plug In Your Soldering Iron and Begin Here, Part I, by Rev. G. C. Dobbs, G3RV 194
Icom IC-202S Sidetone Modification, by N. R. Pascoe, G3IOJ 198
160-Metre Transverter for the FT-707, by Ian Keyser, G3ROO 199
Clubs Roundup, by “Club Secretary” 204
“A Word in Edgeways” — Letters to the Editor 207
The VK2AOU and DJ2UT Periodic Multiband Antenna System, translated
 by H. M. Lilienthal, F6DYG/DL7AH 208
The LAR Modules HF Omni-Match — Equipment Review 210
Modifications to the Trio TS-520S for 10 MHz Operation, by H. Allison, G3XSE 211
A Simple Two-Metre Window Mount Antenna, by A. Renouf, G4JSBT 212
A Ten-Metre to Two-Metre Converter, by G. Robinson, G4AKW 212
Altron SM30 Mast 213
Communication and DX News, by E. P. Essery, G3KEF 214
New QTH’s 217

Editor: PAUL ESSERY, G3KFE/G3SWM
Advertising: Charles Forsyth

Published at 34 High Street, Welwyn, Herts. AL6 9EQ, on the last Friday of the month, dated the
month following.
Telephone: 04-3871 5206 & 5207

Annual Subscription:
 Home: £8.40, 12 issues, post paid
 Overseas: £8.40 ($17.00 U.S.), post paid surface mail

Editorial Address: Short Wave Magazine,
34 High Street, Welwyn, Herts. AL6 9EQ, England.

Prices shown in advertising in this issue do not necessarily constitute a contract and may be subject
to change.

AUTHOR’S MSS

Articles submitted for Editorial consideration must be typed double-spaced with wide margins on
one side only of A4 sheets. Photographs should be lightly identified in pencil on the back with details
on a separate sheet. All drawings and diagrams should also be shown separately, and tables of values
prepared in accordance with our normal setting convention — see any issue. Payment is made for all
material used, and it is a condition of acceptance that full copyright passes to the Short Wave
Magazine, Ltd., on publication.

Short Wave Magazine Ltd.

E. & O. E. VAT Reg. No. 239 4864 25
DRESSLER AMPLIFIERS

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>D707c 70cm</td>
<td>£159.00</td>
</tr>
<tr>
<td>D200C 150FM 300W SSB</td>
<td>£169.00</td>
</tr>
<tr>
<td>D200 70cm</td>
<td>£242.00</td>
</tr>
<tr>
<td>D402 FM 70cm</td>
<td>£199.00</td>
</tr>
</tbody>
</table>

YAESU

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>FT102 DM</td>
<td>£129.00</td>
</tr>
<tr>
<td>FT102Z</td>
<td>£119.00</td>
</tr>
<tr>
<td>FT1012Z</td>
<td>£119.00</td>
</tr>
<tr>
<td>FT102DAM</td>
<td>£119.00</td>
</tr>
<tr>
<td>FT707 200W PEP</td>
<td>£349.00</td>
</tr>
<tr>
<td>FT907 PSU</td>
<td>£199.00</td>
</tr>
<tr>
<td>FT707 ATU</td>
<td>£199.00</td>
</tr>
<tr>
<td>FT707 + FP707 + FC707</td>
<td>£370.00</td>
</tr>
</tbody>
</table>

EXCLUSIVE TO US

- **Microwave Modules**
 - MMA 144 MHz Preamp: £34.90
 - MML 144: £59.00
 - MML 144: £77.00
 - MML 144-100S New with Preamp: £129.95
 - MMT 342: £184.00
 - MMT 28: £184.00
 - MM 81 Morse Talker: £215.00
 - MM 400RTTY: £215.00
 - SEE IT WORKING AT OUR SHOP: £18.00 (incl. keyboard)

GASFET MASTHEAD PREMPS

- **Rotators Etc**
 - **Dowden**
 - DR7600X: £129.00
 - DR7600R: £144.00
 - DR7600N: £166.00
 - **Kenpro**
 - KR250: £44.00
 - KR400: £90.00
 - **Hamm IV**
 - 400W 1.8-150MHz Pwr/swt: £50.00
 - 200W 2.5-4.5kW PEP auto ATU: £190.00

DATONG

- **PNI G/C**: Power by the linear or with separate ST200
 - £85.00
 - £88.00
 - £89.00

YAESU FM MOBILES

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC251 2m</td>
<td>£495.00</td>
</tr>
<tr>
<td>IC451 70cm</td>
<td>£199.00</td>
</tr>
<tr>
<td>IC290 2m</td>
<td>£366.00</td>
</tr>
</tbody>
</table>

MICROWAVE MODULES

- **MMA 144 2m Preamp**: £34.90
- **MML 144:5 RF AMP**: £59.00
- **MML 144:40**: £77.00
- **MML 144-100S New with Preamp**: £129.95
- **MMT 342:144**: £184.00
- **MMT 28:144 10m Transverter**: £184.00
- **MM 81 Morse Talker**: £215.00
- **MM 400RTTY**: £215.00

STANDARD

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>FT5000ATU</td>
<td>£135.00</td>
</tr>
<tr>
<td>FT670X</td>
<td>£119.00</td>
</tr>
<tr>
<td>FT502DM</td>
<td>£119.00</td>
</tr>
<tr>
<td>FT707VHF</td>
<td>£199.00</td>
</tr>
<tr>
<td>FT706HUF</td>
<td>£199.00</td>
</tr>
</tbody>
</table>

CUSHCRAFT ANTENNA

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>HA3 20-15-10-3:1e</td>
<td>£25.00</td>
</tr>
<tr>
<td>beam 86:47 D: £25.00</td>
<td></td>
</tr>
<tr>
<td>144 10-10 x Yagi £215.00</td>
<td></td>
</tr>
<tr>
<td>Trapped vertical £215.00</td>
<td></td>
</tr>
<tr>
<td>A144.77 £23.00</td>
<td></td>
</tr>
<tr>
<td>A144.11 £23.00</td>
<td></td>
</tr>
<tr>
<td>Mkt to Ringo £14.18</td>
<td></td>
</tr>
</tbody>
</table>

IC6 PORTABLES

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC250 2m</td>
<td>£495.00</td>
</tr>
<tr>
<td>IC251 2m</td>
<td>£159.00</td>
</tr>
<tr>
<td>IC200 70cm</td>
<td>£159.00</td>
</tr>
</tbody>
</table>

IC6 FM MOBILES

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC250</td>
<td>£166.00</td>
</tr>
<tr>
<td>IC251</td>
<td>£269.00</td>
</tr>
</tbody>
</table>

ICOM ACCESSORIES

<table>
<thead>
<tr>
<th>Pack</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP514V Pack</td>
<td>£30.15</td>
</tr>
<tr>
<td>BP4 Empty case for AXAA</td>
<td>£5.80</td>
</tr>
<tr>
<td>BP3 STO Pack</td>
<td>£15.00</td>
</tr>
<tr>
<td>BP2 6V Pack</td>
<td>£22.00</td>
</tr>
<tr>
<td>DC1 12V adaptor</td>
<td>£8.40</td>
</tr>
<tr>
<td>WM9 Mic speaker</td>
<td>£12.00</td>
</tr>
<tr>
<td>CP1 Mobile Charging load</td>
<td>£3.20</td>
</tr>
<tr>
<td>LC1/2/3 cases</td>
<td>£3.50</td>
</tr>
<tr>
<td>BC30base charger</td>
<td>£36.00</td>
</tr>
<tr>
<td>MML 110W Booster</td>
<td>48.00</td>
</tr>
</tbody>
</table>

Many Triu/Kenwood accessories available

TRIO/KENWOOD

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>TS930S</td>
<td>£60.00</td>
</tr>
<tr>
<td>TS130S 1430 FS Transceiver</td>
<td>£50.00</td>
</tr>
<tr>
<td>TRB600DHF mobile</td>
<td>£59.00</td>
</tr>
<tr>
<td>TRB600UHF Multimode</td>
<td>£46.00</td>
</tr>
<tr>
<td>TR7800HF mobile</td>
<td>£269.00</td>
</tr>
<tr>
<td>TR7800HFPM 2m</td>
<td>£285.00</td>
</tr>
<tr>
<td>TR7730 2mFM</td>
<td>£230.00</td>
</tr>
<tr>
<td>TR9000</td>
<td>£370.00</td>
</tr>
</tbody>
</table>

ALL ACCESSORIES AVAILABLE

- Many Trio/Kenwood accessories available

GENERAL

- See it working at our shop: £18.00 (incl. keyboard)
- Full range stocked

TRANSEIVERS

- **Dressler Amplifiers**
 - D707c 70cm: £159.00
 - D200C 150FM 300W SS: £169.00

MASTHEAD PREMPS

- **Gasfet Masthead Premps**
 - **Rotators Etc**
 - **Dowden**
 - DR7600X: £129.00
 - DR7600R: £144.00
 - DR7600N: £166.00
 - **Kenpro**
 - KR250: £44.00
 - KR400: £90.00
 - **Hamm IV**
 - 400W 1.8-150MHz Pwr/swt: £50.00
 - 200W 2.5-4.5kW PEP auto ATU: £190.00

DATONG

- **PNI G/C**: Power by the linear or with separate ST200
 - £85.00
 - £88.00
 - £89.00

YAESU FM MOBILES

- **ICOM Portables**
 - IC251 2m: £495.00
 - IC200 70cm: £159.00

- **ICOM FM MOBILES**
 - IC250: £166.00
 - IC251: £269.00

ICOM ACCESSORIES

- BP514V Pack: £30.15
- BP4 Empty case for AXAA: £5.80
- BP3 STO Pack: £15.00
- BP2 6V Pack: £22.00
- DC1 12V adaptor: £8.40
- WM9 Mic speaker: £12.00
- CP1 Mobile Charging load: £3.20
- LC1/2/3 cases: £3.50
- BC30 base charger: £36.00
- MML 110W Booster: 48.00

TRIO/KENWOOD

- TS930S 1430 FS Transceiver: £60.00
- TS130S 1430 FS Transceiver: £50.00
- TRB600DHF mobile: £59.00
- TRB600UHF Multimode: £46.00
- TR7800HF mobile: £269.00
- TR7800HFPM 2m: £285.00
- TR7730 2mFM: £230.00
- TR9000: £370.00

ALL ACCESSORIES AVAILABLE

- Many Trio/Kenwood accessories available

Prices Include VAT at the Present Rate of 15%

Open Mon.-Friday 9.00-5.30 Saturday 10.00-3.00 Instant HP Facility Available

Easy Access M2-M11-M1 North Circular Road—Easy Parking
BANDS

NORMAN FITCH, G3FPK

Sporadic E

The first *Sporadic E* propagation of the summer for British amateurs occurred on May 9, after the written copy deadline. Geoff Brown, GJ4ICD, telephoned your scribe at 1300 to report contacts with OK stations, but the brief event was about over by then. In a later QSO with G3UNU (Nottingham) operated by Mark Turner, GB8OB, it was learned that the opening lasted from 1222 to 1303 in which period six YO6 stations were worked on CW; YO6CBM/6 (NG71d), 'AFP (MG33a), 'AZL (MG33b), 'XR (MG33d), 'ADW (NG33d), and 'KNX (MG33a). CBM/6 was heard on SS at 1247 and all signals were S9-plus.

Nick Button, G4IRX, (Beds.) worked YO6BCW (MG33) running 100w. to an HB9CV aerial fixed to a wardrobe in the bedroom! Paul Gobey, G8IYG, (Staffs.) was S9-plus.

The 101 confirmed squares comprised 3 Ar Rabbitts, G8LFB, (London) heard a brief snatch of YU2CCB at 1300. On the 20m. VHF net, a German station mentioned that the path SM4 to 18 had been worked which, with the G3UNU results, suggests the reflecting layer has been over northern Czechoslovakia.

Awards News

Another, the 20th, QTH Squares Century Club certificate has been issued, this one going to Jon Stow, G4MCU, from Billericay, Essex, and was dated April 23. The 101 confirmed squares comprised 3 Ar QSOs on CW, all the rest being SSB, two via E's, the remaining 96 on tropo. Jon was first licensed as G8LFJ in January 1976, but admits to not discovering the bottom end of 2m. till the following June when, within hours of buying a *Liner* 2, he had worked SM7JFE. The present station consists of a Yaesu FT-221R with *muTek* "front end," a solid-state 180w. amplifier and a 16-ele. *Tonna Yagi*.

Vaclav Homolka, OK1GA, was elected to membership of the 2m. VHF Century Club last month and now joins those in the 70cm. branch. Certificate no. 31 was issued on May 5. His previous call was OK1FDG, by the way. The majority of the QSOs were with other OK stations, but QSOs with Y, SP, DL, OZ and SM folk are listed. The contacts were an even mixture of AM, FM, CW and SSB modes dating back to October 1966.

For details of the rules for the QTHCC and VHFCC send an s.a.e. to the Awards Dept. at Welwyn.

Beacon Notes

From Brian Bower, G3COJ, news that certain UK beacon call signs are to be changed from two to three letter suffixes. On 4m., GB3SX in 70.04 MHz will become GB3JHA, and GB3SU on 70.05 MHz will be GB3BXU. This latter has had its FSK adjusted to 170 Hz in anticipation of future RTTY identification. GB3ANG became operational on 70.06 MHz on April 15 with a power output of 30w. to a 3-ele. *Yagi* pointing south. Normal ident. is at 12 w.p.m. with 100 w.p.m. in between for MS purposes. Reports to GM3WOJ (QTHR).

On 2m., GB3GI on 144.945 MHz is to become GB3GIB. The 2m. Angus beacon, GB3ANG on 144.975 MHz, has had a change of feeder and aerial resulting in more reliable and frequent reception at G3FPK, for example. Reports to GM6BZX (QTHR). On 70cm. the Emley Moor beacon, GB2EM, on 432.910 MHz will become GB3MLY. On 3cm., GB3SWL, located at Bushey Heath, Herts., is now back on 10.368 GHz and G4KUJ would like reception reports. His 'phone number is 09277 62201.

Finally, Geoff Brown, GJ4ICD, reports that the *Jersey Amateur Electronic Club* members are considering installing beacons for various bands on the Island and to operate and maintain them on behalf of the *RSGB*. The club was due to meet on May 12 to discuss the proposals.

The Satellite Scene

It seems to be *status quo* regarding *U-9*. At the time of editing, *AMSAT-UK* was relying on the assistance of a station in Maine, U.S.A., with a large dish aerial, to attempt to regain proper command of the satellite. The reasons for the present trouble are explained in detail in the *Spring issue of Oscar News*. Stimming from this interminable delay in getting this satellite fully operational, AMSAT-UK has received a number of complaints from schools who say they have invested money and effort in building reception hardware which they have thus far been unable to use. Well, in fairness, the organization has reluctantly refrained from providing p.c.b.'s and will not offer these until everything is working satisfactorily. It must be appreciated that satellites are a risky venture and not even the professional and military people can ensure 100% success.

Concerning the first Phase III satellite — discounting the one last year that ended up in the sea — it would appear that a launch before the Spring of 1983 is unlikely. This is due to inevitable slippages in the E.S.A programme, outside the control of *AMSAT*. On the vexed subject of the 1,269- to 436 MHz transponder, your scribe has failed to get any information from *AMSAT* to enable some ideas of ground station Rx. and Tx. requirements to be recommended. Frankly, all we are getting is "waffle," suggesting somebody has not thought these problems through.

From German sources, it seems that Dr. Karl Meinzer, who built the transponder, refuses to talk to potential users. This is a ridiculous state of affairs considering the users' donations have been used for his work! Unless details of the transponder's aerials, 1,269 MHz Rx. and 436 MHz Tx. are provided immediately, manufacturers will be unable to design and develop equipment for anyone to use this "Mode L" system. The transponder is already built. Surely somebody can reveal its power output and receiver sensitivity and the gain of the aerials?

The second part of the annual orbital calendar, published by *AMSAT-UK*, has been received. It covers predictions for O-8, U-0-9 and RS-3 to 8 up to July 5 for O-8 and July 2 for the Russian "birds." The *U-0-9* data goes up to June 5 and, with such a low orbit, could be somewhat out by then. For details of *AMSAT-UK* and its many services to members, contact at 94 Herongate Road, London E12 5EQ, enclosing an s.a.e.

Contests

The 70MHz Contest is on June 13, from 0900-1600, in two sections; fixed and all other. On June 20, 0900-2000, there is the next leg of the 10 GHz *Cumulatives*. On Saturday, June 26, the 2m. session of the AGCW-DL contest takes place from 1900-2300. Operate in the section 144.010 to 144.150 MHz, otherwise rules as for the 432 MHz event, detailed on page 673 in the *February Magazine*. On June 27, the WAB phone contest is scheduled for the 2m. and 70cm. bands. For rules, apply to G4FQO (QTHR).

VHF NFD weekend is July 3/4 and this year the period is earlier, 1400-1400. Every group must send site details with NGR reference by June 11 to the VHF Contests Committee, c/o G8ACJ (QTHR). Another change is that the 70 MHz section will be run as two, separate events; 'phone only from 1400 to 2300, CW only 0600-1400 with silence from 2300-0600. Again there is a Restricted section with 25w. maximum CW or PEP output, only one aerial per band no more than 35ft. a.g.l.

DX Notes

In a recent QSO with CT2DL on 15m., your scribe asked Maňuel about VHF activity in the Azores Islands. With repeaters now in operation, there has been growing interest in 2m. and some CT2s have already worked into EA8 and CT3
TWENTY-THREE CENTIMETRES ALL-TIME TABLE

<table>
<thead>
<tr>
<th>Station</th>
<th>Countries</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>GJXN</td>
<td>46</td>
<td>12</td>
</tr>
<tr>
<td>GDSO</td>
<td>40</td>
<td>9</td>
</tr>
<tr>
<td>GDSK</td>
<td>37</td>
<td>9</td>
</tr>
<tr>
<td>GDNB</td>
<td>28</td>
<td>7</td>
</tr>
<tr>
<td>GFPMK</td>
<td>32</td>
<td>3</td>
</tr>
<tr>
<td>GREF</td>
<td>28</td>
<td>5</td>
</tr>
<tr>
<td>G3XDY</td>
<td>25</td>
<td>7</td>
</tr>
<tr>
<td>GHNHE</td>
<td>24</td>
<td>5</td>
</tr>
<tr>
<td>G3DZY</td>
<td>19</td>
<td>8</td>
</tr>
<tr>
<td>G4EN</td>
<td>16</td>
<td>6</td>
</tr>
<tr>
<td>GRKM</td>
<td>14</td>
<td>3</td>
</tr>
<tr>
<td>G4LEF</td>
<td>12</td>
<td>4</td>
</tr>
<tr>
<td>GRAM</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>GAXWZ</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>G3FPJ</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>G4HII</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>G8 위한</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>GROPR</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Based on administrative counties

(Madeira). Most of the fellows use low power transceivers but with horizontal aerals. Maijuel mentioned CT2AK and CT2CE, both in Ponta Delgada, and CTZBC in Lagoa, where he lives, on the island of Sáo Miguel in NX square. The other main island is Terceira, which is in MY square. The QTF from Britain is about 240° and in the E.B.U. List of VHF Broadcasting Stations, a 1kW. transmitter is shown on 97.9 MHz for E's watchers.

The Liverpool University ARS is planning an all-band DX-Petition to the Lizard Point (XJ) from July 14 to 21, with operation on 144 and 432 MHz, and 1.3, 5.6 and 10 GHz. For more information and skeds, contact the club's secretary under G3OUL, (QTHR).

Moonbounce

A number of overseas stations, such as K1WHS, have such "big ears" that they are able to copy E-M-E signals from stations only running 3kW. e.r.p. Consequently, more serious DX-ers are trying their hands at 2m. E-M-E work. In the Apr. 3/4 Moonbounce Contest, Doug Parker, G4DZU, (Leeds) who has four, 19- ele. Cushcraft aerals, completed the first 2m. W.A.C. from England with G8ZYL via tropo. on the latter at 75 miles. Beacons GB3SU and GB3ANG were received as east European BC stations. G3PBV took part in the last three Cumulatives sessions, in between reading the GB2RS news bulletins, best DX being G4ANT in Norwich.

Roger Greengrass, G4NRG, hopes to include a 4m. score next time, so will be a new station from Essex. Arthur Breese, GM3TAL, has 2-ele. Yagi at 20ft. He was on for the Apr. 25, 20 34 G8ZYL.
continued his MS operation which has and OHIA (LU) and UP2BOZ (LQ) squares. UP2BJB (LP) was also worked UQ2GLO (KQ) on the GM4FZH (YS), with LA8UU (CT) and

Volume XL

would again suggest the choice of odd so avoiding this problem. Your scribe choosing any clear frequency to call “CQ” calling frequency is less necessary. Time is another reader who feels that, with band running lOw! He received a 64 secs. burst YU2DI (JF) on May 5 who was only mins., I3TJQ (GF) on the 26th. and 21/2 min. periods and completed in 12 QRG, OK1OA again on the 26th, using (HG) on the 21st on the random CW

meteors, Paul needed just “JE” letters to for past MS and E’s QSOs.

from UA3LBO and SV2JT have arrived WQ, WR, YT, ZT, ZU, etc., and Mike is contacted on Apr. 20 for another 1982 night

GM6CFN (XR) on SSB. In a short late event on the 2nd and was on for the big one QSO-ed GM8TSI at the tail end of the some notable Ar successes in April. He received a burst GM8OFV (YP) and G4LAA (YO). QTFs 1658, getting one new county and square counties have been added to Arthur’s

operated from 1556 to 1834 in the Apr. 10 and GM8BKE (XP) was a new square. Other Q5Os were: G4C4ZO/P (WO), DL6FAW/P (EO), GM3ZXE(YQ), GM8YPI(YP) and GM6CFN (XR) on SSB. In a short late night, Mick’s CQ call raised OZ1FKR (EP). On tropto., GU8NIS was contacted on Apr. 20 for another 1982 country-county. George Gullis, G8MFJ, (Wiltls.) operated from 1556 to 1834 in the Apr. 10 Ar and GM8BKE (XP) was a new square. Other Q5Os were: G4C4ZO/P, DD0OZ (FN), DC4LM (EN), PE1DTN (DP), GW8YUJ (XN), G8YMYV (XO), GM8OFV (YP) and G4LAA (YO). QTFs were between 20° and 40°. Jackie and John Brakespear, G8RZO and ’RZP, were on for the Apr. 10 Ar from 1504 to 1658, getting one new country and square — G15MPS (WO) in Armagh. They made 146 Q5Os in the FM contest on Apr. 11, worth 952 pts., best DX being PE1GXC (DK). EI9Q was heard on the 24th but no QSO resulted.

Chris Easton, G8TFI, (Gloucs.) now

In the Apr. 2 Ar, Roger Greengrass, frequencies; why always use fives or zeros? "QSY" frequency so Terry suggests

Terry Hackwill, G4MUT, (Berks.) is

Jackie and John Brakespear, G8RZO and ’RZP, were on for the Apr. 10 Ar from 1504 to 1658, getting one new country and square — G15MPS (WO) in Armagh. They made 146 Q5Os in the FM contest on Apr. 11, worth 952 pts., best DX being PE1GXC (DK). EI9Q was heard on the 24th but no QSO resulted.

three bands only count for points. Non-scoring figures in italics.

Three bands only count for points. Non-scoring figures in italics.
LA8OW (EU), with DL4NA A (EJ) on the 18th, SM0IOT (JT) on the 21st and SM3JGG (HV) on the 22nd. On tropo., Walt worked the Cambridge University team on SSB at G36CUW (YJ) on the 12th and G8UVE/P (XJ) on the Lizard. May I brought a CW QSO with PA01HD/P (BL) with SSB to assorted F, ON and PA folk. In the Apr. 10 Ar Walt managed 18 squares and eight countries in the two phases, 1530-1845 and 2215-2310. He mentions many Gs, Gs and GWs, plus near continentals and SM4GVF (HT). The May 3 event was a weak affair between 1730 and 1820.

Seventy Centimetres

G3PBV found conditions very poor in the May 1/2 Contest and only worked nine stations from Newton Abbot. G8SFI was the only contact over 400 kms. G2AXI picked up just Humberside, G4APA/P, in the contest. G3YVF worked the Heligoland uses the DK0IK/P (DO) on May 5 for the 94th square on the band. G4MUT used the contest to work some countries for the annual table and also picked up the elusive AN square, as well.

Your scribe was pleased to receive a letter from Malcolm Pemberton G6DAY, from South Croydon, since it was the first he had ever written to a radio magazine. The home station is a Trio TR-8400 with a Hamburger 16-ele. Yagi in vertical mode, at 40ft. In a letter dated Apr. 9, here refers to a recent lift during which signals were heard on 438.925 MHz. On Mar. 25 at 0820, the same signals were heard, so he programmed the TR-8400 for a 7.6 MHz repeater shift. A CQ call on 431.325 MHz brought a reply from a YL operator, DG4HAW, who told Malcolm he had accessed the Hamburger repeater, DB0ZE. Later, using just one watt, he again got into DB0ZE for a six minute contact with DF5HR/P. On Mar. 27, he was able to work GB3IH in Ipswich with an FT-708 hand-held from the back garden.

G8RZO worked G3PBV in Devon on Apr. 25, Jackie reckoning that to be an elusive county on the band. Chris Easton, G8TFI, has sent details of the April 4 Contest in which he operated from Sheppey, chez-Brakespear. The four 16-ele. DL6WU Yagis were stacked one above the other at 1.2m. spacing to keep the beamwidth sensibly wide. An SM6CKU power divider was used and the 192 stations worked were worth 1,890 pts. in flat conditions. Best DX was DL7QY (FF61) at 680 kms. on SSB at 15 dB.

The home station is a Trio TR-8400 with a Hamburger 16-de. Yagi in vertical mode, at 44ft. For GW3NYY, G8UVE/P (XJ) was worked on SSB on Apr. 13.

Gigahertz Band

G3PBV only made one contact in the May Contest that was with G4JR/P in ZK at 187 kms. with nothing else heard. Dave Robinson, G4FRE, (Ipswich) asks if we would consider a sort of "half-VHFC" for 23 cm. operation. Is there a demand for another certificate of this sort? Comments please. Dave's home QTH is his parents' home in Nuneaton, Warks., but he rarely operates from there these days. Main interest is in UHF/SHF now and he has the reciprocal call, ON9QK which was used in Belgium last year for two weeks in July on 2,304 MHz. The call has been reissued for a 1982 visit about now during which he hoped to operate to 2,320 MHz and 10 GHz SSB.

In the May UHF/SHF Contest, the South Bucks. lads operated from Sheppey and their one watt from G4NBS/P did reach 20 stations, including some PAs, and another 20 could have been worked with a little more power. In the 1,296 MHz Trophy Contest on Apr. 3, G2DHDZ worked GW4HWA/P (Clwyd) for a new 1982 county and country. GM4CXP writes: "I have an antenna for the band and am thinking of doing something with it!"

GW3CCF (Clwyd) is always on 23 cm. on Sunday mornings between 11 and 12 o'clock local time, also on Monday and Tuesday evenings from 8.30 p.m. He says: "'Please turn your antennas towards Clwyd'!" GW8TYX (W. Glam.) is trying to concentrate on 23 cm. this year. He has a couple of regular skeds., with G6FK (Staffs.) and G8KAX (Essex). Another one soon will be G3WDC. Richard recently completed a QSO with G4MAW in Paignton, Devon, at the second attempt. Not bad for one watt.

Operating Notes

Dave Sellers, G3PBV, is not alone in reckoning that operating standards seem to be declining even further. He offers two theories. First that the new G6s have never even listened on 2m. SSB before they got their licences and bought their multimode sets. Second, that it is not nearly as easy to tune the band and wink the out the weak stations on the modern "click-tune" rigs. He feels you cannot beat a free-tuning VFO for carefully searching the band.

Although initially opposed to the concept of a second, local calling frequency, he now wonders if it is, after all, meritorious in view of the congestion on 144.30 MHz.

Your scribe would once again suggest that everyone, when calling CQ, states where they are and where they are coming from. This is particularly desirable for those not listed in a Call Book. Listening in recent contests revealed most operators of portable stations giving no indication of their whereabouts. One had no idea if they were distant or just locals off the side of the beam. One way to beat this is to never reply to a station who does not say where he is!

Deadlines

Not too much excitement this time. Next month, no doubt there will be some E's to report. Copy for the July feature should reach us by June 2, and for August, by July 7. Send it to:— "VHF Bands", SHORT WAVE MAGAZINE, 34 High Street, WELWYN, Herts. AL6 9EQ. 73 de G3FPK.

Stop Press!

A low orbit Soviet amateur radio satellite, ISKRA 2, was launched by the crew of Salyut 7 on May 17. The initial period was 90.78 mins., the inclination 51.59° and the track separation 23.09° west per orbit. The altitude would be 316 km. approximately. The telemetry channel is 29.58 MHz and there is a 21.29 MHz transponder. For latest details check the AMSAT net on 3780 kHz at 1900 local, Monday to Saturday.
The Yaesu FT-707 is an excellent little transceiver, both in the car and in the shack. One of its few faults is its tendency on the bands above 18 MHz to pick up signals that are actually on the lower part of the HF band. Only 21 MHz and 28 MHz are of immediate interest, and the problem is not particularly significant when those bands are wide-open and full of amateur signals. But the spurious signals can be very annoying to the DX'er who is looking for contacts on an apparently dead band, or to the VHF'er who uses the FT-707 as a tunable IF. Incidentally, although the problem seems quite well known to FT-707 owners, only the Short Wave Magazine's reviewer has mentioned it in print (November 1980, p. 567).

This article describes a modification which completely eliminates the spurious received signals. Since it involves cutting tracks on a PC board, and some delicate work on miniature coils, it is not for the faint-hearted or the fumble-fingered.

Cause of the Problem

As noted in the Short Wave Magazine review, the spurious signals appear to be due to a lack of front-end selectivity, and can be removed by frequency-selective antennas and/or an ATU. Further investigation reveals the true cause, a design fault. On the 18, 21, 24 and 28 MHz bands the designer has dispensed with the conventional link coupling in the RF input circuit, as used on the lower bands (Fig. 1a). On the higher bands the input circuits are pi-networks (Fig. 1b), the necessary impedance transformation being achieved by making the capacitance at the input much larger than that at the output to the RF amplifier Q01. But a pi-network is also a low-pass filter, and although it is resonant at the wanted frequency it is also "transparent" to strong unwanted signals at lower frequencies. When the FT-707 is switched to 28 MHz, signals in the 5-15 MHz region can develop several volts of RF at the drain of Q01! The following double-tuned circuit will eliminate the fundamental frequencies, but by then it is too late: the RF input circuit, indicating last-minute design changes, and the actual circuit did not conform entirely to that shown in the handbook. The following instructions may not therefore be directly applicable to all production runs of the FT-707. Referring to the pin numbering in Fig. 2a, cut the PC track joining pins 3 and 5. Separate pin 4 from the main ground plane, leaving an isolated pad of copper, and wire this pad to pin 3 (Fig. 2b). Replace C26 with a 10 nF disk ceramic bypass.

On TO8 itself, wind a 2 1/2 turn link at the "cold" end of the main winding, and connect the link to pins 4 and 5. Do not glue the link into place yet, and leave enough slack to allow the position of the link to be adjusted. Replace TO8 (but not its can) in the board, and the board in the FT-707.

Alignment

Switch on, and trim the core of TO8 for a noise peak on receive at 28.85 MHz, the middle of the band. Tune across the band using a non-selective antenna, and the spurious signals will be gone.

If the FT-707 were only a receiver, the modification would be complete. However, TO8 is also used on transmit so the link coupling has be adjusted to restore the correct drive level. Set the CAR (carrier level) control to the correct position by tuning-up on another band, according to the instructions in the handbook. Now switch to 28.85 MHz without moving the CAR control. Carefully adjust the position of the coupling link on TO8 until at resonance the correct RF power level is achieved. You will probably have noticed that the settings of the CAR and MIC controls need to be varied a little in order to achieve precisely the same RF power on every band, so the adjustment of the new link is not ultra-critical.

When all is well, glue the link into place, refit the can over TO8, and remove its can by alternately unsoldering each of the two lug and "walking" the can upwards. This method will not work for the coil itself, which has 5 pins (Fig. 2a) and is easily damaged by excessive heat. Instead, carefully cut and shape a piece of aluminium so that it just fits within the rectangular area between the coil pins. Heat the aluminium with a soldering iron, and all 5 pins will be unsoldered at once, allowing TO8 to drop out undamaged.

The modifications to TO8 and to the board are intended to copy the link-coupled circuitry used on the lower bands. The RF Unit board on my FT-707 had some unused holes in the vicinity of the RF input circuit, indicating last-minute design changes, and the actual circuit did not conform entirely to that shown in the handbook. The following instructions may not therefore be directly applicable to all production runs of the FT-707. Referring to the pin numbering in Fig. 2a, cut the PC track joining pins 3 and 5. Separate pin 4 from the main ground plane, leaving an isolated pad of copper, and wire this pad to pin 3 (Fig. 2b). Replace C26 with a 10 nF disk ceramic bypass.

On TO8 itself, wind a 2 1/2 turn link at the "cold" end of the main winding, and connect the link to pins 4 and 5. Do not glue the link into place yet, and leave enough slack to allow the position of the link to be adjusted. Replace TO8 (but not its can) in the board, and the board in the FT-707.

Dire Warnings

The modifications described in this article should only be undertaken by experienced constructors — or modifiers — of miniaturised solid-state equipment. If you flinch at the thought of putting your FT-707 under the surgeon’s scalpel (literally) and the soldering iron, these modifications are not for you. I regret that I am not prepared either to modify other FT-707s, or to rescue the over-confident! If you are still prepared to have a go, despite these dire warnings, you will find that the modifications add considerably to the pleasure of using your FT-707. Maybe Yaesu will read this too...
PLUG IN YOUR SOLDERING IRON AND BEGIN HERE, PART I
A GUIDE FOR THE INEXPERIENCED IN THE METHODS, TECHNIQUES, PITFALLS AND FOLKLORE OF BUILDING EQUIPMENT, WITH PRACTICAL PROJECTS TO BUILD ALONG THE WAY

REV. G. C. DOBBS, G3RJV

"T"HE engineer is the man who can build for five bob what the fool buys for a pound" the old saying went, but these days in the KISS-KIDS battle, the KIDS are winning. (KISS = Keep It Simple Stupid, KIDS = Keep It Difficult Stupid) I thought we would have learned our lesson from the autochanger. Remember in the '50s when automatic record decks became all the rage and within a couple of weeks they had seized up, jammed in mid-cycle or carved additional grooves on our records? Well we didn’t learn, and people now crave televisions with ultra-sonic channel switching which the jingle of a bunch of keys or junior treading on the cat can send off wildly hunting for channels we do not want to watch. We even think digital watches are pretty neat — what is 7.47?

There was a time when most of amateur radio was a hobby of the constructor, the fiddler, the experimenter, but now, sadly, the credit card seems to have superseded the soldering iron as our chief tool of the trade. “This fellow is a typical clergyman”, they say, "he lives in the past". Yet the odd thing is that those were the days of large pieces of equipment, dangerously high voltages and the risk of treading on the cat can send all singing, all dancing, digital readout Japanese Box hobby. But he warned, it is infectious! You may be tempted to leave your all-singing, all-dancing, digital readout Japanese Box hobby - the Armchair Constructor. The Armchair Constructor, who seeks upon anything that is written of a practical nature about amateur radio. He begs, borrows and even buys amateur radio magazines, and happily I have been one for years, is the fellow who seizes the rage and within a couple of weeks they had seized up, jammed in mid-cycle or carved additional grooves on our records? Well we didn’t learn, and people now crave televisions with ultra-sonic channel switching which the jingle of a bunch of keys or junior treading on the cat can send off wildly hunting for channels we do not want to watch. We even think digital watches are pretty neat — what is 7.47?

There was a time when most of amateur radio was a hobby of the constructor, the fiddler, the experimenter, but now, sadly, the credit card seems to have superseded the soldering iron as our chief tool of the trade. “This fellow is a typical clergyman”, they say, "he lives in the past". Yet the odd thing is that those were the days of large pieces of equipment, dangerously high voltages and the risk of treading on the cat can send all singing, all dancing, digital readout Japanese Box hobby - the Armchair Constructor. The Armchair Constructor, who seeks upon anything that is written of a practical nature about amateur radio. He begs, borrows and even buys amateur radio magazines, and happily I have been one for years, is the fellow who seizes the rage and within a couple of weeks they had seized up, jammed in mid-cycle or carved additional grooves on our records? Well we didn’t learn, and people now crave televisions with ultra-sonic channel switching which the jingle of a bunch of keys or junior treading on the cat can send off wildly hunting for channels we do not want to watch. We even think digital watches are pretty neat — what is 7.47?

There was a time when most of amateur radio was a hobby of the constructor, the fiddler, the experimenter, but now, sadly, the credit card seems to have superseded the soldering iron as our chief tool of the trade. “This fellow is a typical clergyman”, they say, "he lives in the past". Yet the odd thing is that those were the days of large pieces of equipment, dangerously high voltages and the risk of treading on the cat can send all singing, all dancing, digital readout Japanese Box hobby - the Armchair Constructor. The Armchair Constructor, who seeks upon anything that is written of a practical nature about amateur radio. He begs, borrows and even buys amateur radio magazines, and happily I have been one for years, is the fellow who seizes the rage and within a couple of weeks they had seized up, jammed in mid-cycle or carved additional grooves on our records? Well we didn’t learn, and people now crave televisions with ultra-sonic channel switching which the jingle of a bunch of keys or junior treading on the cat can send off wildly hunting for channels we do not want to watch. We even think digital watches are pretty neat — what is 7.47?

Getting the Bits
Many would-be constructors claim that finding the required components is a real problem. On the one hand there are those articles which assume we want to spend £50-plus on exotic components, and on the other those which assume that we can dip into a ‘junk box’ the size of a well stocked component mail order company. What is worse our little radio junk shop, just off the High Street, closed down in 1963. A junk box is an important asset for any constructor but sadly life has changed and unless one is adept at experimentation or substitution, it is unlikely that just dipping into a drawer of cast-offs will provide all that is required for building modern radio projects. This does not mean, however, that the answer lies in spending lots of hard earned money; part of the joy of home construction should be saving money.

These days we do not have ‘junk boxes’ so much but rather a ‘basic stock’. Let me expand upon the basic stock concept. There are certain basic components which are commonly featured in all manner of circuits. These include the range of resistors, capacitors, coil formers, potentiometers, switches, switches, switches, switches, relays, bits of hardware, etc., which appear frequently enough to know they will be required in the future. Build up a stock of such things as cheaply as possible, and supplement with the special components and devices required for a particular project when these are required.

What are these bits, and how can they be had cheaply? In order to discover the identity of the basic building blocks of radio circuits, we have to meet one of the significant characters of our hobby — the Armchair Constructor. The Armchair Constructor, and happily I have been one for years, is the fellow who seizes upon anything that is written of a practical nature about amateur radio. He begs, borrows and even buys amateur radio magazines, he searches public libraries for the diminutive amateur radio section (a tip — look for the darkest corner of the library and try an inch up from the ground), and looks in vain for suitable titles in book shops. Then armed with an array of circuits, he settles into his armchair (in my case in the seat in the ‘loo’) and builds amazing pieces of equipment in pipe smoke in the air. A useless exercise? By no means — the armchair constructor becomes immersed in ideas and current practices and he knows what bits go into most amateur radio projects.

The secret then is to buy such components when they come up at cheap prices. It is obvious that many circuits use values like
0.01μF and 0.1μF as decoupling capacitors, and so on, so try to have these common values always in stock. Some types of transistors, diodes, LEDs, even integrated circuits, appear frequently, so get some when they are available. The most expensive way to build anything is to take a complete shopping list of components to a shop or, worse still, order every component at one time from a mail order company. Most junk shops and cheap ‘bits’ shops have disappeared, but the saving grace for the modern radio amateur is the Radio Rally. These weekend events, which occur throughout the summer in most parts of Great Britain, bring an amazing array of bargain price traders out of the woodwork. Get to as many rallies as possible and take lists of requirements; scour the stalls for cheap buys, but look around every stall before laying out money, the next one always has it cheaper. Failing that, try to attend one of the major amateur radio conventions or exhibitions, some good dealers usually attend these events.

There is a sliding scale of value for money that is worth remembering. At the most expensive end are the smart radio shops or the large mail order companies with expensive catalogues, less costly come the small scruffy shops (lucky if you can find one) and the small mail order concerns with a limited range, and cheapest of all are usually the stall holders (again look for untidy small ones) at amateur radio events. The cheapest ones are those to use when building up the basic stock, as you may well have to spend good money on specialist items, often the active devices, at the more expensive sources. You live in a beautiful, but remote spot and have to buy everything by mail order? Fortunately I live within easy range of several major rallies, but have you ever been in Birmingham when it’s raining! All is not lost if mail order is your only viable source of components. Many dealers offer good bargains, useful cheap packs (but be careful) and some attractive deals when ordering quantities of the basic components. Several companies offer resistor starter kits, usually 5 or 10 each of the preferred values, which for the would-be constructor with little, can be a good buy. But compare prices over several advertisers in several magazines.

Hardware hurts!...or the case can cost more than the rest. One of the shocks for the new constructor, or the shocking fact for the old hand is that the hardware used in a project can cost more than the rest of it added up. As the preacher might say, is it something of a parable of modern life when the case costs more than all the electronics inside it, a knob can cost more than most transistors and a moving coil meter can add 50% to component costs? These are premium items to be sought at low prices and hoarded. I will say more about meters later, but collect old cases, new cases, single and matching sets of knobs and hang on to them. At junk sales it is well worth paying a pound or two for a useless item of equipment if it is in a neat case complete with matching knobs. (We will look further into refurbishing old cases and building simple new ones later in this series). Those useless items of equipment might contain some very useful components, which brings us to the subject of stripping surplus boards.

It would be possible to argue equally that buying surplus printed circuit boards to strip-off the components is good practice or pointless. Truth to tell, I hate stripping printed circuit boards: it is tedious, laborious, often difficult, and I usually burn my fingers! But for someone with a small stock of components, or none, this can be a very inexpensive way of building up the stock. Once again the art is to look for boards that contain expensive or commonly used items. Avoid boards with oddly coded transistors, unless the coding can be deciphered and, for normal mortals, removing integrated circuits from boards is too difficult. Getting the stuff off the board can be more of a problem than a beginner might imagine. “Melt the solder and pull” sounds like the answer, but manufacturers have a fiendish way of bending leads under and making the leads so short as to render the salvaged component useless.

A lot of people swear by (when stripping PCBs, a lot of people just swear!) solder suckers. These are like miniature spring loaded bike pumps in reverse, that suck up melted solder from a joint. They are very useful but expensive. I have one but often revert to my old method of heating the joint and prizing back the bent lead with a small steel jeweller’s screwdriver with a sharp blade; when the leads have been prised back the joint can be reheated and the wire pulled free. Stripping boards is above all boring and could best be done while watching television, but insensitive wives tend to frown upon splashes of solder in the carpet. Try doing it while waiting your turn in that pile-up for a DX station.

There is so much more to say about choosing and buying components. Quite a lot will be said about this when we come to the practical projects in this series. A Good rule to follow is NEVER BEGIN A PROJECT UNTIL YOU HAVE GOT ALL THE BITS. Nothing is more frustrating than on a wet Saturday night trying to find that the essential component required to complete a project is missing. Gather all the components first and put them into a box, then begin.

What's an MPS-DO4?

Well it’s an NPN Silicon universal transistor, Darlington type, 25v, 0.3A, 0.625W, with a TO98 base connection. Thankfully quite a few articles on construction include full information on the devices and components used, but many do not. In such cases we are left to sort out for ourselves codings and connections on the various components. Colour codings and some common types of connection on components are dealt with in the available data handbooks, useful to have if much construction is envisaged. Transistor and semiconductor information is listed in some catalogues of components, but it may be safer to have a comprehensive manual. Manufacturers issue manuals for their own devices, but as these list only their own types and may only be available to the trade, a comprehensive semiconductor manual is a useful, but expensive, buy. The occasional constructor can probably find the information in the reference section of a public library. Amongst such manuals, the “Towers International Transistor Selector” offers a very comprehensive source of information. I use the slightly more expensive TVT transistor guides, German books, a volume each for 2N and A-Z coded types; they cost a lot, but they ain’t ‘alf got some transistors in ‘em! It is probably a good policy for a local radio club to buy manuals for use by their members.

What about Tools?

For any practical work there is a necessary list of tools. The tools of the trade for the home constructor are relatively few and reasonably inexpensive. Top of the list comes a good soldering iron. Soldering irons seem to have held their own against inflation, but avoid buying the very cheapest or unknown Far Eastern instruments. Probably the best type is a small 15 watt iron with a small pencil bit and devoid of technical frills; large irons with small bits ought to be avoided as it is difficult to accurately place the bit into tight corners weighed down by a hefty piece of hardware. Other essentials include something to cut and strip PVC covered wire, a pair of diagonal cutters and penknife serve very well, although many like to use special wire cutting and stripping tools. A pair of small long-nosed pliers are useful for bending leads and a selection of screwdrivers just about completes the list. Such a modest collection of tools would enable anyone to build the majority of practical projects in amateur radio. Tools are always useful, so collect them, buy the best that can be afforded and keep them in good condition.

Test equipment is another concern for a beginner: it all seems expensive and old hands seem to have such a valuable array of test gear. However, a good deal of useful work in amateur radio can be done with simple test equipment and home made test items; the only real essential to buy at first is a multimeter. A meter of the sort our brethren across the Atlantic call a VOM (volt/ohm/milliamper) meter, and a low cost, imported, meter will suffice for most purposes. Additions such as an RF probe can easily be built to use with the meter. Many amateurs seem to have frequency counters these days and they can certainly be useful and
Failure is a Bad Joint

It is not too sweeping a statement to say that badly soldered connections are the chief cause of trouble for the beginner in electronic construction. It is useless being able to read and understand a circuit, amass the components and get the layout correct if the connections are poor. Although I do not wish to teach grandmothers to suck eggs, a brief outline of proper soldering technique seems appropriate to a beginners series.

Considering the tools, the rules are simple: keep the soldering iron bit clean and bright and only use resin cored solder of good quality. Many people use one of the little sponges sold to clean soldering irons: amazing little things, look like a thin strip of cardboard when bought, but add the water and up it grows to a useful thing of beauty. Such sponges have to be used wet for wiping the bit clean. More frequently used, and just as good, is a piece of old cloth for the same purpose. The textbooks say that the bit must be kept tinned, which means it should have a nice thin coating of gleaming solder at the business end. If this coating is not wiped clean and remade from time to time a nasty grey oxidized coating forms. This not only impairs the usefulness of the bit, but begins to eat it away. Some kind of holder for the soldering iron is important and one which sheaths the bit is the best type. This is not only safer — stops the XYL in her best dress fooling by components straight out of their wrappings. The third is make sure that the joint is hot enough to melt the solder — we know the iron tip will. So putting those into practice, the procedure for making a good joint goes something like this:

1. Clean the surfaces to be soldered — nice gleaming copper is pleasant to the eye so scrape the surfaces until they shine. Even tinned leads on components are usually filthy, look at one under magnification. Use a knife blade or abrasive surface and do not be fooled by components straight out of their wrappings.

2. Make a good physical joint before soldering begins — bend wires around tags, twist wires together or whatever is required for the two surfaces to make a contact that has not got to be externally held together. Don’t try to bridge gaps with solder.

3. Heat the joint with the clean soldering iron bit and apply the end of the solder to the joint, not to the soldering iron bit. This is the only guarantee that the joint is hot enough for the solder to flow and stick. The solder should flow freely over the joint until it is just sufficiently covered. Too much solder is almost as bad as too little solder.

4. Inspect the joint when it is cool, but do not cool it artificially. The chief faults to look for are a weak connection or the dreaded ‘dry joint’. The dry joint, called more correctly the ‘cold joint’ in the U.S.A. (perhaps that is too much like Monday’s dinner for the U.K.) is a bad connection caused by the sections joined being too cool. A good joint has a natural flow of solder over its surface and is bright. The dry joint is often a dull grey and a ‘blob’ of solder rather than a smooth layer. It is not a bad idea, if possible, to give the joint if it is a wire, a slight tug to see if it is a good strong connection. Dubious joints in inaccessible places can be checked with a multimeter on a low ohms scale; this is a good idea for checking made-up leads which have soldered terminations.

Follow these simple rules and no problems should occur. Some beginners find soldering printed circuit boards difficult, but here the secret is to jam the bit between the protruding wire and the copper track, so that it is in contact with both, before the solder is melted.

So far all the we have discussed is theory, the only real way to become a confident constructor is by building things. A useful starting point is to make something using simple point-to-point wiring techniques. This is a method of construction which, using no terminations apart from those provided by the components themselves, means no complicated tagboard mountings or circuits boards are required.

A Simple Transistor Tester

Several of the practical projects in this series will be pieces of test equipment and a transistor tester represents a useful addition to any collection of practical equipment in the shack. This particular circuit is simple to build with direct wiring techniques and a version of this instrument has been in constant use on the G3RJV workbench for 10 years. The transistor tester described here will measure leakage current and small signal gain of almost any NPN or PNP types. It can also grade unknown transistors into NPN or PNP and can match up pairs of transistors when required.

The Circuit

The circuit, shown in Fig. 1., tests the devices in the common emitter mode, the most important parameter to be measured is the small signal gain (Hfe). S1 is the gain switch, which in the position shown in Fig. 1. gives a full scale reading equal to a gain of 100; switching over gives a full scale reading of 500. Pressing PB1 allows the reading of the gain to be taken. PB2 increases the full scale reading of the meter by a factor of 10, useful for checking the leakage current of some germanium types.

When the transistor is plugged into the socket SK1 any reading showing on the meter is the leakage, and this can be read directly off the meter in µA, unless the reading is so high that PB2 (x 10) has to be used. Pressing PB1 gives the readout of the Hfe on the scale with the option of 100 or 500 as full scale deflection. The polarity (NPN or PNP) of a transistor can be found by just plugging in the device and if the meter flicks hard over it is not the
Construction

The prototype tester was built in a metal box, but any housing would serve the purpose — see what can be had at low cost. The wiring is all done on the inside of the lid and the layout is shown in Fig. 2. No dimensions are given because this will depend upon the size of the box and the meter. Begin by laying out the front panel components to achieve a balanced layout and mark out the positions with a pencil prior to attacking the panel. If it is metal, drill and file to fit the components in place. I have a useful little tool called a 'nibbler' which cuts thin sheet metal to almost any shape. This is a recent luxury and "drill and file" was, for years, my only method.

A good technique when beginning a project is to decide which will be the most expensive component. Then try to substitute something cheaper, as we are not in home construction to spend money! (If I ever became a CB-er — what am I saying! — I would call myself 'Mean Man'). The most expensive component here is the meter. A useful source of inexpensive meters are the surplus tape recorder meters sold by some dealers. These are much cheaper than manufacturer's purpose-made meters and may sometimes be called VU meters. What is required is a meter with a full scale deflection of 100 µA. "Here he goes", they say, "get it on the surplus market, but how do we know that any of those unmarked meters on the junk stall are 100 µA or even any good?"

Well, after this, I will describe a fiendish little beastie which will become a very useful item of test equipment.

PB1 and PB2 are simple press-to-make push button switches of any type. The wiring of the circuit under the lid is shown in Fig. 2. The wiring is quite simple and point-to-point but a few factors have to be considered. There are three free standing solder junctions — R3/R4, R2/R3, and R1/R2. These joints must be made firm by twisting the leads before application of the solder; when they are soldered, they should be bent away from the front panel to avoid accidental shorting. Also the crossed wires on S2 must not make electrical contact and are best wired using PVC covered cable. The prototype used three types of transistor holder to increase the instrument's usefulness, these were wired in parallel with SK1.

Operation

The transistor tester is simple in use and much of the operation has already been outlined. The two parameters to be tested are the gain (Hfe) and the leakage (Ico) of the transistor. The leakage is simple, just plug in the transistor and it is indicated. The correct base connections have to be applied to the appropriate hole of SK1, and any good transistor manual will give this information.

The circuit, what there is of it, is shown in Fig. 3a. It is simply a simple device which can both show if they are good meters and also give an indication of the full scale value. Such a device is the 'Tripuss', so called because when built it looks like an octopus with three arms. All the device does is provide a low voltage passing through a resistance to give the desired current flow to check a meter.

The Circuit

The circuit, what there is of it, is shown in Fig. 3a. It is simply a single 1.5 volt cell with a series resistor, or rather a choice of two series resistors. If a meter is connected between the negative lead and R1 a current of near enough 1mA will follow, and with R2 the current is 50 µA. This does not take into account the resistance of the meter, but this is normally so small compared with the values of R1 and R2 as not to be important. Besides — what do you expect for something which costs next to nothing and can be carried in the pocket? The termination on the leads consists of small crocodile clips which can be conveniently latched onto whatever connections are offered to the meter.
Construction

The Tripuss is simple to build and the method is shown in Fig. 3b. The only likely problem may come when soldering the leads directly onto the HP7 battery. The most difficult connection is the one to the negative, which is the zinc casing of the cell. Clean the end of the case very well with a knife edge, heat it with a soldering iron and let solder form a tinned surface on part of the casing. The lead can then be soldered to the tinned portion. Here we break my rules because it is not possible to make a secure mechanical joint before soldering on the wire. Just hope for the best! The two resistors are soldered onto the positive cap in a similar way, but this is usually easier. R1 and R2 are spaced apart along the side of the battery; leads are then added to the ends of R1 and R2. It is best to have unequal lead lengths for all three wires to prevent accidental shorting out of the circuit. The whole of the body of the Tripuss is covered with a binding of black PVC tape which holds the resistors in place and incidentally gives it the three-armed octopus appearance.

Operation

The use of the Tripuss is as simple as the circuit. The negative lead is connected to the negative side of the meter and positive lead to the positive, and the needle will indicate the appropriate current. 50 μA and 1mA were chosen for the two current values as a compromise which should be useful for quite a range of meter scales. Very few surplus meters are less than 50 μA full scale deflection and very few are over 100mA f.s.d. unless externally shunted. Try the test on the 50 μA scale first, then if the reading is very low try the 1mA range. The test is also very useful as an indication of the state of the meter as it instantly shows up non-working meters or ones with needles which stick. What happens if a dealer refused to let you try the Tripuss on a meter? — Take your trade elsewhere!

This first article has explored some of the basics of building radio and associated equipment. In future parts we will explore various construction methods, each to be linked with practical projects to build. Construction is not difficult and is certainly fun, so ... plug in your soldering iron and begin here.

Sources of Components: The components for the Transistor Tester and Tripuss should be readily available as mentioned in the text, or from J. Birkett who advertises in Short Wave Magazine.

ICOM IC-202S SIDETONE MODIFICATION

N. R. PASCOE, G3IOI

The writer considers his IC-202S 3-watt SSB/CW portable rig for 144 MHz an excellent little piece of gear and after 18 months use, still thinks it was one of his best buys. Excellent results have been obtained /P using just the internal whip whilst from the home QTH with a homebrew 7 element cubical quad, hundreds of European QSO's have been made during lift conditions.

There is, however, a design feature that almost certainly annoys those who use the rig in the CW mode, in that the output of the sidetone monitor oscillator is tied in with the audio gain control, as shown in Fig. 1. The result is that with the control at a high setting to copy a weak CW signal, switching to transmit and keying the rig is an earshattering experience. The design engineer was obviously not a CW man! A preset level of sidetone volume, independent of other controls is to be preferred and the circuit of Fig. 2 enables this to be done.

Remove the left side cover of the transceiver to reveal the AF gain control potentiometer, R2, behind the front panel. The writer must admit to requiring a magnifying glass to identify the connections to this component. The modification is then effected, using a small soldering iron, as follows:—

1. Disconnect the wire from the sidetone oscillator (the unscreened wire on the uppermost tag).
2. Disconnect the wire to the audio amplifier (the screened wire on the centre tag).
3. Connect a 0.068µF capacitor between the screened wire to audio amplifier and the centre tag.
4. Connect a miniature 4.7K skeleton potentiometer with a 4.7K 1/4-watt resistor in series between the junction of the 0.068µF capacitor/screened wire to the audio amplifier and earthing tag located between the AF gain potentiometer and key and external speaker jack.
5. Connect wire from sidetone oscillator to the slider of the skeleton potentiometer.

Bearing in mind the compactness of the construction, make sure there are no shorts between the existing and additional components. The sidetone level can now be adjusted to one's personal liking. Finally, before replacing the side cover, stick a strip of insulating tape to it where it covers the mod. to ensure that it does not short to the new sidetone level adjusting potentiometer — and that's that!

Fig. 1 Original wiring to AF gain control

Fig. 2 Modified wiring to AF gain control with additional components to provide preset sidetone level facility.
160-METRE TRANSVERTER FOR THE FT-707

IAN KEYSER, G3R00

BEFORE changing my car, the FT-707 was brought into the shack prior to re-fitting in the new vehicle, and during this period it was, inevitably, connected to a car battery (with microphone gain reduced to help lower the charging requirements) and the station rhombic to see how it worked. The receiver handled very well, even on Eighty and Forty at night, though the extra power didn't really make a tremendous difference in signal strength - this being confirmed by running the QRP rig in tandem. In the event, the set became a permanent part of shack equipment, with a number of accessories needed to complement the rig.

The first things that came to mind were a QRP PA to enable the rig to be used in QRP contests (it is not sufficient just to wind the power down as the rig must have a designed output power of less than 5 watts), and an external VFO. However, the real downfall of the set is its lack of 160m. The circuit was explored with the idea of changing one of the new bands to 160m., but this approach was soon discarded with thoughts turning to possible re-sale problems with a modified set. The next best thing was a transverter.

The FT-707 is fitted with a number of outputs on the backdrop, including a low-level output for transverter use, an 8-pin socket for the external VFO (see Fig. 6b), and a further 7-pin socket for other accessories. On exploring the circuit, the accessory socket did not have the required supplies, but the external VFO socket had everything needed — including 12 volts, 8 volts, and 8 volts on transmit. A complication here is that when the transverter is in use an external VFO cannot be used unless it can be plugged into the back of the transverter, and this requires a suitable switched socket to achieve the necessary switching. Rummaging through the junk box revealed the ideal thing — a 5-pin DIN socket with an integral two-pole changeover switch; actually, all that is required is a single break contact when a plug is inserted.

Design Considerations

It was decided to keep the power levels within the QRP range, and so 5 watts DC in was to be the target; after all, to go to the maximum permitted power would only give just over one S-point increase, and problems of stability would be compounded. Also, having just completed the "Tunbridge" (Short Wave Magazine, November and December 1981) I wanted to confirm that the RF circuits could be made to cover 160m. which really meant using a
similar circuit; there had been no problems with the "Tunbridge"—so why not? On the receive side, a "rat's nest" showed that an MD108 with oscillator injection on 27 MHz did not require preselection even at night when fed with a dipole, and that the insertion loss was not a problem due to the sensitivity of the FT-707 and the high noise level experienced on 160 metres. This could make for a very simple receiver section, but it was decided to play safe and include an overcoupled bandpass circuit "just in case".

There is no requirement for switching on the input (signal) to the transverter due to the availability of the transverter output socket, but the aerial side had to be switched. Pin diodes were considered but ruled out on the grounds of cost, after a small Claire relay with two poles of changeover had been found and purloined from G2ACG's junk box! There is no reason why pin switching could not be used for aerial switching; however, there is still the necessity for the 12v. supply to the PA to be switched, and the two functions are easily combined in a relay. As in the "Tunbridge", an SWR bridge is a 'must' — if only to put something on the front panel!

Description

To enable the FT-707 low power output to be used it is necessary to disable the PA unit in the rig. This is simply done by breaking the link in the power plug (Fig. 6a) which removes the base bias from the output stages, so cutting off these devices. The low level output from the 'Transverter' socket on the 10B range
oscillator, and the difference signal is selected by T1 at the open r.m.s., and this is fed directly to the signal input of an SL641 (28.5 to 29 MHz) has an amplitude of approximately 100 mV and being run in Class -A it can use almost any RF capstan type of transistor. A drawback is that it is run in Class-A in that there is a requirement for a larger-than-usual heatsink to dissipate the heat generated by the high standing current. In this design I only use a 2½-in. square piece of ½-in. aluminium, with a suitable cut-out for the drive input, pin-mounted on the back of the PCB and painted black. This is not really sufficient and ideally fins should be fitted to aid cooling. In practice it runs fairly hot on transmit, but cools on receive.

The low pass filter for the transmitter has been included on the PCB in the form of L1, L2, C17, C18 and C19. The output of the filter is fed via a short length of co-ax through the centre of L3 to provide an electromagnetic coupling into the reflectometer circuit, the reference signal being adjusted by the ratio of R8 and RV1. It is very important that the length of co-ax is only earthed at one end, the other end being insulated from earth — this way it acts as an electromagnetic screen only. The RF energy is switched to the 160m. aerial by a contact on RL1.

Receiver Section

In the receive mode the aerial is switched to the bandpass tuned circuits T5 and T6 by the relay RL1; these circuits are slightly overcoupled, and one should be tuned to 1950 kHz and the other to 1850 kHz. Due to the tight coupling between them there is considerable interaction in this procedure, and it should be repeated several times to get it right. The low impedance output of T6 drives the input of the MD108, and the sum output of the signal input and the local oscillator signal is fed to the aerial input of the FT-707. It must be stressed at this point that the link in the power plug must be removed (Fig. 6a) otherwise the accidental activation of the FT-707 Tx will destroy the MD108 — and they are not cheap!

Crystal Oscillator

To enable the digital dial of the FT-707 to read ‘kHz’ accurately, a 27 MHz third overtone crystal is used: this gives a tuning range of 28.800 to 29.000, to cover 1.800 to 2.000 MHz. Unfortunately these crystals do not seem to be available “off the shelf” in England; however, if you’re going to Paris for the weekend. . . .

Transistors TR3 and TR4 form the oscillator circuit. The emitter load of TR3 is a miniature preset, RV2, to enable the injection to the mixer to be set up accurately, and an output is also taken from the emitter of TR4 to the base of TR5; this transistor is needed to increase the injection to the MD108 to the required minimum of +3 dBm.
Printed Circuit Board

The thought of making a double-sided PCB, especially for those who have never made a PCB before (there's a new series just for them starting in this issue! — Ed.), might be rather a daunting prospect, but with a little care it's not so bad, and when completed looks very professional!

Firstly, cut out a piece of double-sided PCB to the required size and, placing it under Fig. 3, accurately prick all the holes through to the board using a sharp scribe; using these marks, drill the board with a 1 mm. drill. Here I use my electric drill in a bench stand, the drill shank held in an Eclipse pin chuck which in turn is held in the power tool's chuck. (An important thing if you are going to buy one of these pin chucks is to make sure that the cross in the jaws has been accurately cut, as they do have a tendency to be out of centre).

Now carefully remove all burrs with fine emery paper and, using a 3/16-in. drill and referring to Fig. 4, remove the copper from all the holes shown to about 3/16-in. dia. to protect against the component leads shorting to the groundplane. All the other holes are earth connections, and when the PCB is working properly these leads should be soldered both sides of the PCB. The next move is to clean the PCB thoroughly: I use a clean green pan scrubber until the metal is shining on both sided, and then wipe over with a carbon-tetrachloride based fluid.

Drawing the Boards

Here I use a combination of Dalo pen and nail varnish (a relatively cheap way of buying a suitable resist and brush — and something which can often just be 'borrowed' from other members of the family when they're not looking!) Referring to Fig. 4 again, now carefully draw the pads onto the copper surface using the Dalo pen; don't rush this as it is the surface to be on view. A word of advice about the pen: if it is a new one I have found it better to lightly press in the nib to get the ink to flow then, having removed any excess (you may have pressed too hard if it is your 'first time' and flooded the pen!), put the cap back on and leave for a few hours. This way I find that the pen draws a better line, presumably due to a slight softening of the nib fibres.

Having done the pads, now do the more fiddly sections of the groundplane with the pen and complete the rest with the nail varnish. After checking that there are no missed areas, allow the surface to dry for at least an hour.

Now turn the board over onto a soft surface, such as a tissue, and referring to Fig. 2, draw this side of the board in the same way. When completed and dry, the board should be etched on its edge in a bath of ferric chloride; by inserting a couple of pieces of copper wire through holes at each end of the board it can be supported in the etching bath. When etching is complete the board should be washed in warm water and dried on an old piece of rag (don't use anything better as ferric chloride seems to permanently stain brown). The resist can then be cleaned from the board using a solvent, and finally the holes cleaned out using the drill by hand.

Next drill out the holes for mounting the power transistor and heatsink. The hole in the PCB for the power transistor should be large enough not to foul the transistor, and the metal shank of the transistor must sit flat on the face of the heatsink to ensure maximum heat transfer; a little silicon grease helps this process. Having done this and mounted the transistor, begin adding the smallest components, then the next largest, and so on, until finally the inductors finish the board. In this way the fiddle of getting the smaller components between the larger ones is avoided.

There is one link on the board, and this is under RV2 and must not be missed out. The relay in the prototype was fitted on the board, but it is unlikely that generally one small enough will be to hand, so the relay should be mounted in a convenient position on the chassis and the necessary connections made from the board.

Setting-Up

On receive, apply power and adjust the core of T7 while listening to 27 MHz on a general coverage receiver; sufficient pick-up will be obtained with a short piece of wire from the
receiver aerial terminal lying close to the PCB. When the oscillator starts, adjust the core to the mid-point between the two settings where it does so. Now remove power for an instant to ensure that the oscillator commences without problem. Next, listening to the FT-707 tuned to about 28.9 MHz, peak T8 for maximum signal strength on any signal that can be found. Now find a signal at about 28.95 (1.95) MHz and peak T6, re-tune to 28.85 (1.85) MHz and peak a signal there. Repeat this procedure a couple of times to get it “on the nose”. This completes receiver alignment.

Setting up the transmitter is only a little more complex, and a ‘scope or VTVM with an RF probe makes it very simple — providing there are no wiring faults! Firstly, to keep track of what’s happening, use a multimeter on its 1 amp range in the 12V supply to the PA to monitor its current, then set RV2 fully anti-clockwise and RV3 fully clockwise. Power should now be applied and if there are no obvious signs of stress (such as rising smoke), RV3 can be set to adjust the PA standing current to 400 mA. Ensuring that the link in the FT-707 power plug has been removed, apply drive from the FT-707 Tx on CW and with a little luck there will be a slight kick in the PA current. If no increase or kick, don’t despair — with the VTM and RF probe, or ‘scope, check that drive is reaching the PCB: if it is, move the probe to the hot end of T1 and peak for maximum signal. Now move the probe to the collector of TR1 and peak the core of T2: there should be a noticeable increase in the PA current (in the case of the prototype it increased by 600 mA).

Next connect a dummy load to the 160m. aerial socket and connect the RF probe to measure the voltage across it. Under full drive conditions, now slowly reduce RV2 until there is a sudden drop in the output power — this is the correct setting point for RV2. All being well, re-tune T1 to 1850 kHz and T2 to 1950 kHz and then check that the response is reasonably flat over the whole band. If it isn’t, it will be necessary to damp the offending transformer until it is.

After all this setting-up, the drive level might be a little low, but this can be re-set by reducing the value of R4; however, if it is necessary to reduce below 47 ohms there is something wrong, and the fault should be traced. The final value used in the original was 150 ohms, and this gave a PA current of 425 mA at full drive.

It now only remains for the reflectometer to be set up. It will be evident which is the forward and reflected position of the switch and, when the reflectometer is set up, it should be pointed at the switch, and set R11 for full scale deflection. This completes setting up the transverter.

Metal Work

One of the worst problems with home-constructed gear is the final 'boxing-up' of the equipment. It can either make or break a project, and as much time should be spent in the design of the case as possible. I always try and use the same size case for all equipment, and my 'standard' size is 6 x 3-in. front panel and 9-in. deep. However, H. L. Smith, 287-289 Edgware Road, London W2 will make cases to individual requirements at very reasonable prices; all that is needed is a sketch of the case and the gauge of the aluminium specified. I would suggest 16 s.w.g. for all casework, and 18 s.w.g. for screens.

Conclusion

The transverter is a fairly cheap way of getting on to 160m., and during QSO’s reports have all been very favourable. As changeover is accomplished by the Tx + 8v. line, VOX and CW both work very well, and by using an external VFO split frequency working is possible. Incidentally, the external VFO for the FT-707 is to be the subject of another article in Short Wave Magazine in the near future.

Finally, I would like to thank G6LD for suggesting the idea and G2ACG for all his valuable help and time in the testing of the transverter during its entire evolution.

“Short Wave Magazine” is the only periodical freely available from newsagents throughout the U.K. which is devoted **exclusively** to the pursuit and interests of Amateur Radio.
CLUBS ROUNDUP

By "Club Secretary"

Alert readers and Club members will notice that this time the piece is shorter than of late... if your club has disappeared, then you forgot to send us in the update.

Again this time we have the odd new club, but this month they appear in the alphabetical listing.

The Mail

"It's an ill wind that blows no-one a gain": the Hon. Sec. at Acton, Brentford and Chiswick has turned it into a subject for the discussion evening on Tuesday, June 15, at Chiswick Town Hall.

Next we have A.R.M.S.; this is the club for all who enjoy operating in the /M mode, whether at MF, HF, VHF or UHF. Details from the Hon. Sec. - see Panel for his details.

Over the water to Antrim, where the recently-formed group have a place in the Board Room, Antrim Forum on the third Thursday in each month; and they do like to see visitors or, even better, potential new members.

Biggin Hill have their place in the Memorial Library; on June 22, they have a film from RSGB, on microwaves.

One who took our hint about up-dating was the Borders Hon. Sec. They are still foregathering on the first and third Fridays in each month, but the venue has been moved to the "Waterloo Arms", Chirnside, Berwickshire.

Now to Brighton, where the HQ is changed from the Cromwell Road address to the YMCA in Marmon Road, on every second Wednesday. On June 16 they have an Evening Rally at the racecourse, no doubt as a sighting shot for the real thing - the Brighton Rally on July 18.

June in Braintree is noted in the diary as June 7 and 21; on the former date they will learn of the club's history from Bob Willicombe, and on the latter G3PEN will unravel the mysteries of VSWR and dummy loads. On July 11 they will go to Hatfield Forest for a picnic. As for the HQ, this is at Braintree Community Centre, Victoria Street, Braintree, next to the bus station.

On to Bromsgrove, where the HQ is at Avoncroft Arts Centre. June 11 is just described as a "club night", June 25 is a session on QRP, and on June 26 they will probably have a float in the Bromsgrove Carnival, and also a station in Sanders Park.

Normally the Cambridge group are at the Visual Aids Room, Coleridge Community Centre, Radegund Road; but on June 4 they move to Camberton Village Hall for a junk sale; June 11 is an informal at Coleridge C.C. and on the 18th G6GPH will talk about model aircraft.

At Chelmsford, the venue is the Marconi College in Lecture Room 1, and the subject of the June meeting is the Construction Contest - all we don't have is the date! for which we must refer you to the Hon. Sec.

Cheltenham have June 3 and 18 booked at the Old Bakery, Chester Walk; the former is down to Severn Sound for a talk, and the latter is a natter night.

On to Cheshunt and here the HQ is at Church Room, Church Lane, Wormley, and used every Wednesday evening. June 2 is down to G3T1K, and there is a natter session on 9th; on 16th G8NDR will talk about and demonstrate a video disc system, and on 23rd another natter. Finally, on June 30, they will be out with portable 144 MHz gear on Bass Hill Common.

Colchester are based on Colchester Institute in Sheepen Road; on June 10 G4JIG takes them "sailing round the Essex coast", and G3FJ takes them on 25th into measurement of frequency and wavelength.

A new group to us is the one at Connemara, although they have been foregathering, in fact, for several months. For more details - and indeed for details of any activity in West Ireland - contact the Hon. Sec. at the address in the Panel.

On the second Thursday of each month, the Conwy Valley members make their way to Green Lawns Hotel, Bay View Road, Colwyn Bay; in June the AGM on 10th will be preceded by a sale of surplus equipment, so the scheme is to arrive sharp at 7.30 p.m.

Another new one to us is at Copeland where they meet on the first and third Wednesday in every month at the Market Hall, Egremont, West Cumbria.

Crawley have June 3 for a talk on AMSAT-UK; this will be at their usual place, the SWEB Clubroom, Pool, Camborne.

Turning now to Coventry, we find they are still taking every Friday evening at the Scout HQ in Nicholas Road, Radford, Coventry.

Crawley are at Trinity Church, Ifield, Crawley on the second Wednesday of the month; there is also an informal on the fourth Wednesday, which is held at the home of one of the members.

Cray Valley have meetings on June 3 for a natter, and June 17 for a talk on Radio and Aviation by G4FXR; both are at Christchurch Centre, High Street, Eltham, London SE9.

Last of the C's is Crystal Palace where the June meeting is at Emmanuel Church Hall, Barry Road, London SE22, and of course the third Saturday. As for the subject, amateur radio D/F is being tackled by Peter Lisle.

Every Wednesday evening, the Derby gang are to be noted heading for 119 Green Lane, Derby, where they have the whole Top Floor. For June we see: June 2, a junk sale; June 9, a technical quiz; June 16 a demonstration of S/S/TV by G3KER; and on 23rd they will be having the Barbecue at Drum Hill, Little Eaton. Finally, June 30 will be a night-on-the-air.

Deadlines for 'Clubs' for the next three months—

July issue — May 28th
August issue — June 25th
September issue — July 30th
October issue — August 27th
Please be sure to note these dates!

Next Edgware, at 145 Orange Hill Road, Burnt Oak, Edgware, on the second and fourth Thursdays. June 10 is a quiz evening, set up by G3PSP, while the informal on June 24 will include a briefing on VHF NFD.

June for Fareham sees natter nights on June 2, 16 and 30; in between they have June 9 for the Ferguson TX Concept, by G3GWM, and June 23 when G4ITF will talk about the use of the oscilloscope in fault-finding. As ever, look for them in Room 12 at Portchester Community Centre.

Our next stop is up in GM-land, to Glenrothes, where they foregather at Provosts Land, Leslie, every Wednesday evening and on the third Sunday.

For Greater Peterborough we have it that they have visits planned for both June and July; this being so we suggest you get a detailed assessment of what's on from the Hon. Sec. - see Panel.

We see June 11 and 25 as the dates for the Guildford crew; the former is a natter evening and the latter one is down for G4BCY to talk about QRP, both being at the Guildford Model Engineers' club HQ in Stoke Park.

Moving on to Harrow, we find them gathering every Friday evening at Harrow Arts Centre, High Road, Harrow Weald. June 4 is "Practical and Informal", while June 11 sees a talk on orienteering. On June 18 there is a surplus sale, and on 25th it is again informal and practical. Harrow is one of the largest clubs in the London area, and part at least of their success is the way in which they contrive to involve all their newcomers in the club activities as soon as possible.
Hastings next, and for them the third Wednesday sees the main meeting at West Hill Community Centre. On Friday evenings they have their chat nights, at 479 Bexhill Road. One extra we notice for this time is that they have a Summer Social slated for June 16.

We have an update from the Havering group where the Hq is at Fairkyltes Arts Centre, Billet Lane, Hornchurch every Wednesday. June 9 is informal, and on 16th they have a D/F hunt on Top Band starting from Hq. On June 23 they plan for VHF NFD, and on June 30 they have a film show.

Next we head for Hereford, who have their place at the Civil Defence Hq, County Control, Gaol Street, Hereford. On June 4 they have a meeting which was at the time of writing still 'open' as to subject. Next comes June 18, for the informal evening. In between they will be operating NFD of course, and on June 19 they will be going to the HF Convention at Oxford.

Over to EI, where we have the IRTS newsletter to hand; they have had their AGM, and things seem to be back on the rails after a bad year with the newsletter. For anyone who wants to know what is happening in EI-land, then a contact with the IRTS Hon. Sec. seems the correct answer.

Back in England again, to Itchen Valley where the club, formed in February, seems to be making good progress. Find them at the St. John Ambulance Hall which lies at the corner of Desborough Road, and Blenheim Road, on alternate Thursdays.

Over in Limerick the College of Art, Commerce and Technology have a club and station, which is at the College of Engineering, O’Connell Avenue: details from the Hon. Sec.—see Panel.

As for the Lincoln group, now celebrating their Diamond Jubilee Year, they are to be found at the City Engineers’ Club, Central Depot, Waterside South, Lincoln. For the other details we have to refer you to the Hon. Sec, at the address in the Panel.

Fornightly on Tuesdays the Loughor gang foregather at the local Scouts Hall, and they are putting together the best programme they can manage. Details from the Hon. Sec. in the Panel.

The Malvern group have their Hq at the "Red Lion", St. Ann’s Road, Great Malvern, on the second Tuesday in the month. They start with some Morse at 7.30, and the main meeting is at 8 p.m.

GW3SOW takes the floor at the June meeting of the Meirion club, on June 3; his subject is not mentioned. This lot get together at the Royal Ship Hotel, Dolgelau on the first Thursday of each month.

June 18 for Melton Mowbray is a visit to Radio Trent, so one assumes they will not be having their usual evening at the St. John Ambulance Hall, Asfordby Hill, Melton Mowbray.

Turning to Midland they seem to be settling in nicely at their Hq in 394A Broad Street, which is opposite the Birmingham Repertory Theatre. On June 15 they have a talk on 10 GHz given by G3KPT and G8ASW. Incidentally, Midland’s G8FTU obtained some good publicity for the local anti-jamming activity, when he and some others visited a couple of known repeater-jammers in the Barley Green area; G8FTU managed to get himself arrested and spent a night in the cells, before being brought up the next morning, when he was able to state his case himself arrested and spent a night in the cells, before being brought up the next morning. The police, prosecution, and magistrates were given in April’s CDXN). We could add that they are on the lookout for new members, and would like to be in contact with any other amateur radio groups within the British Telecom orbit. Contact them via the Hon. Sec.—see Panel.

Reading Telephone Area club come next, and enclose a copy of the programme for GB2BT, which they are putting on to celebrate the end of the first year of British Telecom (this is mentioned in detail in “CDXN”). We could add that they are on the lookout for new members, and would like to be in contact with any other amateur radio groups within the British Telecom orbit. Contact them via the Hon. Sec.—see Panel.

At Reigate we find the locals in the upstairs committee room at the Constitutional and Conservative Centre, Warwick Road, Redhill, where on June 15, G3WZT will be talking about VHF DX, including Aurora and M/S.

The Silverthorn club are to be found every Friday evening at Friday Hill House, Simmons Lane, Chingford, E4. Details from the Hon. Sec.—see Panel.

The club called Southdown covers the Eastbourne area, the Hq being at the Chasely Home for Disabled Ex-Servicemen, Southliff, Eastbourne, on the first Monday of each month. Incidentally, we reckon the current issue of the Southdown newsletter is one of the best we have seen for a long time.

Stevenage comes next, and they have the first and third Thursday in each month, at the Staff Canteen, British Aerospace Dynamics, Plant ‘B’ in Argyle Way. On June 3 G3XAP will expound on Aerials, and on 17th they have a rig test evening.

There is a club in Stirling; they meet on the second and fourth Wednesdays of each month, in the upper lounge, ‘Checkmate’, Baker Street, Stirling. Visitors and potential new members welcome of course to this recently-started club.

We turn now to Surrey and that means TS Terra Nova, 34 The
Names and Addresses of Club Secretaries reporting in this issue:

ACTON, BRENTHAM & CHISWICK: W. G. Dyer, G1GHE, 188 Gunnersbury Avenue, Acton, London W3 8LB. (01-922 3778) A.R.M.S.: N. A. S. Fitz, G3FPK, 40 Eskdale Gardens, Furley, Surrey CR2 8EZ.

ANTRIM: Dr. D. Hutchinson, G44FUN, 8 Oakglen, Greystone Road, Antrim, Co. Antrim.

BIGNOULLY HILL: L. Mitchell, G6EMW, 37B The Grove, Biggin Hill, Westerham, Kent TN16 3TA. (05804-735785)

BORDER: A. McCreacle, G5GYP, 16 Fancoarse Place, Eyemouth, Borders (Eyemouth 5062)

BRIGHTON: G. Miles, G9VBE, 65 Montgomery Street, Hove.

BRAINTREE: A. Heritage, G4EGC, 25 York Gardens, Braintree. (Braintree 5106)

BROMSGROVE: A. Kelly, G4LVK, 8 Green Slade Crescent, Malvern, Worcs. (Malvern 62098)

MEIRION: Mrs. J. Jones, G6WYK, 25 Ford Dyfrig, Tywyn, Gwynedd. (Tywyn 710420)

MELTON MOWBRAY: R. Winters, G4NYK, 12 Redwood Avenue, Melton Mowbray, Leics. LE13 1TZ. (Melton Mowbray 63569)

MIDLAND: N. Gutteridge, G8BHE, 68 Max Road, Quinton, Birmingham B13 8LW. (Birmingham 5046)

MID-ULSTER: D. Campbell, G4NNK, 19 Drumgor Park, Craigavon, Co. Armagh, Northern Ireland BT65 4AH.

NENE VALLEY: A. E. Harrowell, G3BH, 31 Eastfield Crescent, Finedon, Wellingborough, Northants. NN9 5DJ.

NORFOLK: P. Gunther, G6XBT, 6 Malvern Road, Norwich NR1 4BA. (Norwich 61247)

NORTH WAKEFIELD: N. D. Horne, 81 Denham Grove, Morley, Leeds LS17 8SA.

PONTFRACT: N. Whittingham, G4ISU, 7 Ridgedate Mount, Pontefract WF9 1SR.

R.I.B.C.: Mrs. F. Woolley, G4LWY, 9 Rannoch Court, Adelaide Road, Surbiton KT6 4TE.

READING (Telephone Area): N. W. Jaques, G4QRV, 40 Broad Lane, Upper Bucklebury, Reading RG17 6QJ.

REigate: C. S. Barnes, G8GEE, 25 Harrow Drive, Woodhatch, Reigate, Surrey RH2 8ET.

SILVERTHORN: C. J. Hoare, G4AIA, 41 Lynton Road, South Chingford, London E4A 9EA. (01-329 2325)

SOUTHDOWN: J. Pitt, G8GRT, 1 Kingsmead Court, 3 Hurst Lane, Cranham, Brentwood, Essex (Billericay 6472)

STEVENAGE: J. O'Loughlin, EI9ARB, Connemara Experimenters Club, Reuse, Co. Galway, Eire. (Reese 8)

THAMES VALLEY: J. Axe, G4EHN, 65 Ridgway Place, Wimbledon, London SW19 4SP. (01-946 5669)

THAME: J. V. Smith, G8AEB, 3 Grove Road, Thame. (01-858 3703)

THURLESTONE: J. O'Loughlin, EI9ARB, Connemara Experimenters Club, Reuse, Co. Galway, Eire. (Reese 8)

TORBAY: J. W. Roberts, G3TWO, 124 Belgrave Road, New Torquay. (01-676 8782)

TổRBY: D. H. Davies, G4VPS, 12 Warlingham Road, Lewes. (01-776 5729)

TOTTENHAM: J. V. Smith, G8AEB, 3 Grove Road, Thame. (01-858 3703)

WADDESDON: D. Wither, G8WY, 10 Old Town, Aylesbury. (Aylesbury 354)

WALSALL: Mrs. F. Woolley, G4LWY, 9 Rannoch Court, Adelaide Road, Surbiton KT6 4TE.

WELLINGBOROUGH: G. Scott, G6XBT, 6 Malvern Road, Wellingborough, Northants.

WILMOUTH: S. Drummond, G4NNK, 19 Drumgor Park, Craigavon, Co. Armagh, Northern Ireland BT65 4AH.

WOLFEBROOK: Mrs. J. Jones, G6WYK, 25 Ford Dyfrig, Tywyn, Gwynedd. (Tywyn 710420)

WORCESTER: D. S. Pritt, G8TZE, 15 Paxhill Lane, Twyning, Nr. Tewkesbury, Glos.

WORTHING: R. Poore, G8LBN, 30 Melbourne Avenue, Worthing, Worthing, Nr. Tewkesbury, Glos.

WYTHALL: D. R. Knowles, G3YWL, 12 Loddon Road, Wythall, Nr. Tewkesbury, Glos.

WYTHENSHAWE: R. Carruthers, G8WY, 14 Thurnby Lane, WyTHENSHAWE. (Silver End 83094)

WYE: H. G. Schulz, G5SBC, 32 Woodside Drive, Wye. (Wye 710420)

WYTHENSHAWE: R. Carruthers, G8WY, 14 Thurnby Lane, WyTHENSHAWE. (Silver End 83094)

YORK: K. R. Ciss, G3WO, 4 Heworth Avenue, Acton, London W3 8LB. (01-992 3778)

YORKSHIRE: Mrs. J. Jones, G6WYK, 25 Ford Dyfrig, Tywyn, Gwynedd. (Tywyn 710420)

YORKSHIRE: Mrs. J. Jones, G6WYK, 25 Ford Dyfrig, Tywyn, Gwynedd. (Tywyn 710420)

YORKSHIRE: Mrs. J. Jones, G6WYK, 25 Ford Dyfrig, Tywyn, Gwynedd. (Tywyn 710420)

YORKSHIRE: Mrs. J. Jones, G6WYK, 25 Ford Dyfrig, Tywyn, Gwynedd. (Tywyn 710420)

YORKSHIRE: Mrs. J. Jones, G6WYK, 25 Ford Dyfrig, Tywyn, Gwynedd. (Tywyn 710420)

YORKSHIRE: Mrs. J. Jones, G6WYK, 25 Ford Dyfrig, Tywyn, Gwynedd. (Tywyn 710420)

YORKSHIRE: Mrs. J. Jones, G6WYK, 25 Ford Dyfrig, Tywyn, Gwynedd. (Tywyn 710420)

YORKSHIRE: Mrs. J. Jones, G6WYK, 25 Ford Dyfrig, Tywyn, Gwynedd. (Tywyn 710420)

YORKSHIRE: Mrs. J. Jones, G6WYK, 25 Ford Dyfrig, Tywyn, Gwynedd. (Tywyn 710420)

YORKSHIRE: Mrs. J. Jones, G6WYK, 25 Ford Dyfrig, Tywyn, Gwynedd. (Tywyn 710420)

YORKSHIRE: Mrs. J. Jones, G6WYK, 25 Ford Dyfrig, Tywyn, Gwynedd. (Tywyn 710420)

YORKSHIRE: Mrs. J. Jones, G6WYK, 25 Ford Dyfrig, Tywyn, Gwynedd. (Tywyn 710420)

YORKSHIRE: Mrs. J. Jones, G6WYK, 25 Ford Dyfrig, Tywyn, Gwynedd. (Tywyn 710420)

Waldrons, on the first and third Mondays, in the Mess Deck on the first floor. As they have just passed the AGM we await details of the programme — but they usually have something of interest. Details from the Hon. Sec. — see Panel.

Sutton & Cheam alternate their meetings between the Sutton College of Liberal Arts and the Banstead Institute. So, we must refer you to the Hon. Sec. — see Panel — for the dates and details. On a different tack, we wonder whether either of the two last mentioned clubs have ever thought of a visit to Sutton Waterworks to see the electronics there?

Thames Valley have June 1 for a talk about the 10 MHz band by G3JNB, at Thames Ditton library meeting room, Watts Road, Gigg's Hill, Thames Ditton, Surrey.

June 4 and 18 are the dates for Thetford, the former being a business meeting followed by a natter, and the latter is a D/F contest. The venue is still Birchington Village Centre.

On June 2, the Thornbury club have their AGM, and the covering letter suggests that for more details you contact G8AZT at the address given in the Panel.

The letter from Torbay this month is taken up with details of June 1 and 22 at the Falcon Hotel, Torquay, where they have informal events every Friday evening. Incidentally the Rally just mentioned is at 1TT Social Centre, handy for the beaches and all under cover, so you can't lose!

The Tyndale group have June 1 and 22 at the Falcon Hotel,
Prudhoe, Tyne and Wear, and we understand they have a programme mapped out. More details from the Hon. Sec., or why not just roll up and see?

Now we go to the Vale of the White Horse, where the meeting is on the first Tuesday of the month, and is at the White Hart Inn in Harwell Village. The start is at 7.30 and since the June meeting is provisionally down for a D/F Hunt we suggest a sharp arrival.

G3LXP is the speaker at the next meeting of the Verulam group, on June 22 at the Charles Morris Memorial Hall, Tyttenhanger Green, Tyttenhanger, near St. Albans. They also have informal sessions on the second Tuesday of each month at the RAFA, New Kent Road, St. Albans.

Now to Wakefield, where they are based at Room 2, Holmfield House, Denby Dale Road, Wakefield. June 1 is down for a VHF Fox-Hunt, and on June 15 the RSGB Region 2 representative, G4DAX, will be able to answer any queries. That leaves June 29 for an on-the-air and natter evening.

WACRAL is an association, world-wide, of Christian radio amateurs; details from the Hon. Sec. at the address in the Panel.

Our next stop is at Watford, and here the gang have a place on the first and third Wednesdays of each month in the Small Hall, Christ Church, St. Albans Road, North Watford.

A sigh of relief from G4DYF, having off-loaded his task as Hon. Sec. of West Kent — but he remains the committee member charged with finding the programme. June 25 sees them listening to G3BIA talking about his DX-pedition to Andorra, at the Adult Education Centre, Monson Road, Tunbridge Wells.

Now to Worthing, where they can be found on Tuesday evenings.

At Winchester, and this means the United Services Club, 61 Micklegate, York, every Friday except the third one in each month. We couldn't help but laugh at the tale of the Construction Contest, and the entry from G4EEMA which was an Electronic Contest, and the impression I get is this: far too many of the contests are too long. Four hours is a far too many of the contests are too long. Four hours is a short contest, but it is a long time for an individual; thus clubs, who can work shifts, have an advantage to add to their usually better gear. I know you will receive letters from people who regularly operate eight hours at a stretch, but why not have a one or two hour contest — or possibly one that runs for an hour a day regularly operate eight hours at a stretch, but why not have a one or two hour contest — or possibly one that runs for an hour a day.

Worthing have a base at the Amenity Centre, Pond Lane, Worthing where they can be found on Tuesday evenings.

Yeovil have every Thursday evening at Building 101, Houndstone Camp, Yeovil; on June 3, G3MYM will talk about electromagnetic radiation, and on 10th G3KSK will tell how to double your Morse speed overnight. The shock of this is allowed to subside until June 17, when G3MYM comes back to talk about the club propagation research project; and on June 24 they have a committee and natter evening.

Finally York, and this means the United Services Club, 61 Micklegate, York, every Friday except the third one in each month. We couldn't help but laugh at the tale of the Construction Contest, and the entry from G4EEMA which was an Electronic Contest, and the impression I get is this: far too many of the contests are too long. Four hours is a short contest, but it is a long time for an individual; thus clubs, who can work shifts, have an advantage to add to their usually better gear. I know you will receive letters from people who regularly operate eight hours at a stretch, but why not have a one or two hour contest — or possibly one that runs for an hour a day over a few days.

dear Sir — I am writing about the letters page. In any magazine, I enjoy the letters pages very much as they are a forum for letting off steam, free speech and new ideas. However, S.W.M. chooses not to edit the letters (actually, we do! — Ed.), which means that only three a month get published.

I have found the recent “diatribe” between G3NXC and G8ADD most interesting, but to print a 700-word letter in full on a single-sided letters page is a bit much.

Of course, you could expand the column — but if you don’t, “entries” should be cut down to no longer than this letter in order to get in a reasonable spread.

I have found the recent “diatribe” between G3NXC and G8ADD most interesting, but to print a 700-word letter in full on a single-sided letters page is a bit much.

Of course, you could expand the column — but if you don’t, “entries” should be cut down to no longer than this letter in order to get in a reasonable spread.

Now — MCC. I realise that I am not in a position to talk about this, but I have observed and kept log for an organised club station (G8KUC/G3UKC) during contests, and the impression f is far too many of the contests are too long. Four hours is a short contest, but it is a long time for an individual; thus clubs, who can work shifts, have an advantage to add to their usually better gear. I know you will receive letters from people who regularly operate eight hours at a stretch, but why not have a one or two hour contest — or possibly one that runs for an hour a day over a few days.

Letters to the Editor

The views expressed here are not necessarily those of the Editor, nor should they be taken to represent any particular SHORT WAVE MAGAZINE policy.

Dear Sir — I was disappointed to read your May Editorial which I rather interpret as “new amateurs regardless of standards”. It is evident by listening, on the two-metre band particularly, that your opening sentence under the heading “Information” is true. It is many years since that band had much relationship to an amateur band, and particularly in the last year it has gone “down the nick”. Far from encouraging actions that would deteriorate operating standards even further, and the average intelligence evident even lower, I think that you should try and devise ways to send much of the 2-metre population on to 27 MHz where they evidently belong!

Perhaps you might also try getting the H.O./P.O. to push back their desks, being careful not to dislodge the piled up coffee cups, and do something about standards — especially the lack of use, and abuse, of callsigns.

A. Jaques, G3PTD

Stolen Equipment

A KW-Ten-Tec “Delta” transceiver, serial no. 2415, was stolen recently between Chatham and Dublin. Information in full confidence to Rowley Shears, M.D., KW Communications Ltd. There will be a reward for information leading to recovery of this unit.

"A Word in Edgeways"

Letters to the Editor

The views expressed here are not necessarily those of the Editor, nor should they be taken to represent any particular SHORT WAVE MAGAZINE policy.

Dear Sir — I was disappointed to read your May Editorial which I rather interpret as “new amateurs regardless of standards”. It is evident by listening, on the two-metre band particularly, that your opening sentence under the heading “Information” is true. It is many years since that band had much relationship to an amateur band, and particularly in the last year it has gone “down the nick”. Far from encouraging actions that would deteriorate operating standards even further, and the average intelligence evident even lower, I think that you should try and devise ways to send much of the 2-metre population on to 27 MHz where they evidently belong!

Perhaps you might also try getting the H.O./P.O. to push back their desks, being careful not to dislodge the piled up coffee cups, and do something about standards — especially the lack of use, and abuse, of callsigns.

A. Jaques, G3PTD

Address your letters for this column to "A Word in Edgeways", SHORT WAVE MAGAZINE, 34 High Street, Welwyn, Herts. AL6 9EQ.

Please mention "Short Wave Magazine" when contacting Advertisers — it helps you, helps them and helps us.
THE VK2AOU and DJ2UT PERIODIC MULTIBAND ANTENNA SYSTEM

This article was first published in the German magazine "QVR".

Authorised Translation by H. M. LILIENTHAL, F6DYG/DL7AH

History

The first multiband beam antenna designs are known to have been tried out as early as 1942. They featured the trap-principle and were operated successfully fed by a single line. Unfortunately, a design with traps in the elements will not satisfy the builder in every respect, as some inherent properties are outright contrary to each other: a high Q of the traps yields an undesired small bandwidth. For best results, however, the traps should be physically small, yet still be able to handle a fairly high amount of power. Radiation losses due to the drastically reduced antenna surface of a trap beam are most adversely felt on the 20m. band; here, the elements are shortened to a length of only 7.5m., representing quite a reduction as compared to their full-size lengths of around 10m. Physical size in proportion to the wavelength, tied in with the effective surface of the antenna, are fundamentally consequential factors for the resulting radiation resistance, the formation of the radiation pattern and, finally, the obtainable gain.

It appeared to be obvious, that only a complete new design using full-size elements would have a chance of success. Here, VK2AOU (ex-DL1EZ) found already 20 years ago the leading conclusions towards a radically new multiband antenna system which rightfully carries his name. Several articles by DL1FK and DL7BB describing it were published at the time in DL-QTC. Rothammel, DM2ABK, has incorporated its complete design in detail into his antenna book. It has, however, taken many years of experimenting and testing in order to render VK2AOU's ingenious idea entirely foolproof. Although its operating principles are easily understood, a detailed description is given hereunder in order to do away with some misconceptions circulating about it.

The VK2AOU 3-Band-Element

The so-called "Fuchs" resonant circuit may be known to everyone. Suppose such a tuned parallel-resonance circuit (for example on 28 MHz) is being connected to the "hot" end of a half-wave radiator. Properly fed, it would result in a resonator length of some 5m. This simple antenna can easily be extended to a full wave system by adding a second radiator of 5m. length to the cold end of the coil. A collinear array with a 2dB gain over a dipole on 20m. will then be of negligible importance. This 2-band antenna by VK2AOU becomes a 3-band system by adding another parallel resonant circuit to be placed in the centre of the radiator. The next best band would be 15m. An intelligent selection of the L/C ratio of both resonant circuits as well as a perfect approach to the correct element lengths will result in a 3-band element which covers 14, 21 and 28 MHz and is the basis of the VK2AOU-DJ2UT multiband-beam. It is designed as a parasitic element and acts as a director.

In actual practice, the inductances needed consists of so-called "hair pins" made of 10mm. o/d aluminium tubing with 7mm. o/d aluminium bows, sliding in-and out on trombone fashion. The "C" component is made of pieces of RG213/U co-ax cable placed inside the element. All the connections are made weather-proof and are effectively sealed. Fig. 1 shows the basic circuit diagram. The voltage distribution on each band shows clearly that the system is energized as a collinear full-wave element on both 10m. and 15m., but as a typical half-wave dipole on 20m. Imagine now three of the 3-band elements be put together to form a complete beam antenna. As a result, a different technical problem will appear on each of the 3 bands considered. As seen from Fig. 1, the Periodic 5 beam antenna makes use of two more mono-band elements. Their function will be explained hereafter.

On 20m. the Periodic 5 operates quite similar to a ZL-special (HB9CV) antenna, in fact like a log periodic broadband system. The heart of the antenna is a so-called "periodic log cell", consisting of two 3-band elements being fed by a phasing line. The director element being itself a 3-band element, is placed 2m. in front of the log cell. The multiband phasing lines are hardly active, even when operating on 20m.

Element spacing, as well as element lengths, have been designed to favour a best possible forward gain within the bands whilst keeping a most favourable front-to-back ratio. Although log periodic antennas are known to possess exceptionally large bandwidths, some of the width reaching frequencies out of band was forsaken in order to insure forward gain. An expensive double T-match system permits offering an almost purely resistive load to a 50 ohm co-ax cable. The log elements 1 and 2 have been cut to the customary monoband antenna lengths of 10m. and 10.6m. respectively.

On 15m. the 3-band elements are energized in collinear fashion. Each voltage "null" lies at about 2.50m. as measured from each element tip. The tie-in points of the double T-match feed lines have been selected to present an impedance of between 250 and 400 ohms. At this feed-point, a unique 50 ohms matching impedance equally suitable for all bands cannot be obtained without applying a fairly simple trick. It permits getting the 'Z' down to an acceptable 50 ohms without altering any 15m. or 20m. settings. An additional parasitic element, being cut to the correct length and adjusted to the right spacing, acting as a director only on 10m. leads to a perfect 50 ohms match. It is self-understood that the introduction of a parasitic element increases both antenna surface and gain.

Operating on 10m., the phasing line has a length of 0.24, which yields slightly more pronounced horizontal and vertical apertures of the radiation pattern. By means of scaled down antennas, these increased apertures can be reproduced easily. Unfortunately, this type of measuring procedure has no really significant meaning as far as the antenna gain for DX communications is concerned. Be it as it may, the Periodic 5 antenna has a gain on the 10m. band, which corresponds to the gain of a 3-element full-size beam. The low-loss multiband phasing lines allow operation of the antenna also on 10m. using input powers which may without fear be "Californian Kilowatts"!

For perfect operation on 15m, still another parasitic element comes into play. It is placed 0.4m. in front of the log element 1 and is actively fed, just like the latter. The log element 1 as well as the 15m. matching element present either predominant 'C' or 'L' properties on their respective resonance frequencies. As a net result, the antenna offers a purely resistive load of about 50 ohms within the amateur band. Placing the 15m. matching element in front of the log element 1 and 2 had another important reason. The phasing section between log element 1 and 2 has not got the required length on 15m. by virtue of the elapsed time taken by the HF-energy to travel to the matching element sitting at 0.40m. distance, the effective electrical length of this phasing section is shortened to 1.6m. which equals a desirable phase-shift of 0.11, thus creating again an ideal matching condition.

At the outset it was feared, that the parasitic as well as the forced coupling of elements would give rise to undesired side-
lobes. However, this was not the case; the performance of the Periodic 5 antenna equals a full-size 3-element beam. There are no input power restrictions on 15m. either. The antenna is fed by 50 ohms co-ax cable at feed point F, through a decoupling coil which is absolutely indispensable for a correct functioning of the array. Omission of the choke coil renders the beam almost useless. It must be realised that the element centres on 15m. and 10m. carry voltage loops and are thus high-impedance points.

The designer must insure that the feed point — at which there is also a voltage loop — stays well decoupled from the feeder line itself. Otherwise the outer braid of the co-ax cable, located close to the metal antenna support would badly detune the antenna. The feed line would become a parasitic element, and uncontrollable standing wave problems would appear.

For the above reasons it is understood, that probes for impedance — or SWR — measurements cannot be connected directly to feed-point F but only via the indispensable decoupling coil which is in fact an integral part of the antenna. It permits decoupling the feed-point from the co-ax feeder line and must be manufactured of exactly the same type of co-ax cable as the feeder itself; normally, co-ax cables of the types RG8/U or RG213/U are used. The decoupling choke has 6 turns and a diameter of 0.2m. which equals a cable length of some 3.5m., representing 1/4 on 15m.; the 6 turns are wound close-spaced. The choke coil is then connected to the feed-point F.

Many amateurs possess some lengths of 60 or 75 ohm co-ax and would like to feed their Periodic 5 antenna with it. Experience, however, has shown that the SWR rises out of proportion using that type of co-ax and can only be controlled by altering the spacing of the beam element as well as the phasing section.

A 1:1 balun could replace the decoupling coil. However, none of the known baluns are either sufficiently broadbanded or flat enough as a coupling device to stand up to the not exactly prudish power levels sometimes use by some individuals. Finally, no other decoupling device is as practical and cheap as the choke coil made of a few turns of co-ax cable.

Mechanical Considerations

In comparison with trap-beams where the longest elements measure only about 7.5m., the Periodic 5 antenna, with its full-size elements throughout, requires another approach as to tapering-off of the aluminium tubing. By a sensible choice of outer diameters and thicknesses as well as top quality alloys, it can be ensured that the entire array would not only 'give' in a heavy storm, but that the elements would flex in response to sudden gusts. A very heavy line squall in northern Rhenania in 1972 proved these considerations to be important. An 18m. high heavy steel tower at DJ2NN was twisted by 55° in azimuth despite its guy wires; the Periodic 5 antenna elements took momentarily the form of half moons, element tips moved at times ± 3m. horizontally. When everything was over, it was found that the beam had not suffered in any way at all. In contrast to that, a 20-ple., 144 MHz Cush-Craft array with a very much smaller wind surface area was entirely destroyed.

The Periodic 5 aluminium tubing is tapered off as follows:

- 30mm. o/d by 26mm. i/d, 25mm. o/d by 21mm. i/d, 20mm. o/d by 17mm. i/d, 15mm. o/d by 13mm. i/d, 12mm. o/d by 10mm. i/d.
- The boom consists of two parallel 25mm. o/d by 21mm. i/d tubing possessing the inherent elasticity to give way should a twisting motion be induced. No superfluous masses should be installed on top of a tower. The Periodic 5 antenna fulfils this requirement and represents statically and dynamically the option obtainable in this respect. Damage due to high winds or even nasty line squalls are the exception indeed. A boom to mast plate of heavy aluminium angle stock accepts masts up to 50mm. o/d.

Problems and Limiting Areas

Every system has its physical limits, and the Periodic 5 antenna is no exception. We need not underline the need for an installation location free of parasitic wires or high-tension lines. Yet, there are always a few thoughtless radio amateurs who would install their DX-antenna a few metres above a steel-reinforced roof; still others would install a 40m. dipole horizontally just 1m. under or 3m. over the beam. We have seen a W3DZZ-antenna installed in the immediate vicinity of the beam. Well, everything is possible, but the beam would lose its properties and its owner become disappointed!

A thumbrule in TV-antenna construction tells of a one to two wavelength minimum distance required between two antennas. Transforming this rule into HF-antenna considerations, a distance of only 3m. to the skin of a metal roof or to an open wire line would just be a nonsense. Nobody would attempt to mount a 2m. Yagi antenna just 0.30m. above a sheetmetal roof.

The Periodic 5 antenna is highly adaptable to varying locations, though every beam must be pre-tuned at manufacture. However, a fine tuning can be performed at the operating location itself. For instance on 10m., within the relatively large amateur band from 28.0 to 29.7 MHz, the gain of the antenna is not distributed in an equal fashion. An adjustment is possible, permitting an increase of antenna gain commensurate with an increasing frequency up to a point around 29.6 MHz where the gain drops rapidly. On the other hand, its gain may be optimized on 28.5 MHz with a marked decrease around 29.0 MHz. Intermediate settings are possible. This is not inherent in the Periodic 5 antenna. Quite contrary, however, most monoband- and trap-Yagis exhibit smaller bandwidths. They permit only CW- or Phone-settings. The Periodic 5 covers a full megahertz within which its SWR stays well within ± 1.2 or better. Still better SWR-curves are maintained on the much smaller 15m. and 20m. bands.

Even at rather confined operating locations, the Periodic 5 antenna can be optimized easily within each of the bands. Granted, to optimize doesn’t mean to arrange for best conditions surrounding the beam. It is a fact that especially low-loss beams with their increased absorption surface are very sensitive to a disadvantageous operating location. It appears that compromise-antennas react much less violently to poor surroundings than a high-class low-loss beam. Be it as it may, an excellent 50 ohms dummy-load doesn’t react either to poor surroundings and nobody would ever consider it to be a good antenna.
THE LAR MODULES
HF OMNI-MATCH

The pi-network has been a popular PA tank circuit in transmitter designs for many years. When transmitters were built like battleships, the plate tuning and output loading capacitors were continuously variable, enabling optimum matching to be achieved between the PA valve and an unbalanced-fed aerial system. When more compact equipment became the norm, many manufacturers designed their transmitters and transceivers for a nominal 50 ohms output impedance, thus replacing the bulky variable capacitor by small, fixed ones selected by a band switch wafer, but still retaining the plate tuning variable "C". Today's transceivers, particularly those aimed at the mobile operator market, tend to have no tuning controls at all for the PA stage, the designers having adopted the broadband, three octave amplifiers. This means that one must provide as near a 50 ohms, non-reactive load as possible to avoid damaging very expensive power transistors and/or to ensure that maximum power is delivered to the aerial system.

The text books tell us that the radiation resistance of a half wave dipole in free space is 72 ohms, but for practical cases, this could be anything from 20 to 100 ohms. Likewise, multiband Yagi and vertical aerials are nominally 50 ohms impedance but often vary widely from band-to-band, with considerable reactance to cope with away from resonance. Consequently, as equipment has become "one knob" control for the transceiver and PA matching, the transmitter aerial matching units between transceiver and aerials have become virtually essential.

Over the years there have been many designs for ATU's, mainly using air wound coil stock. These tend to make for rather bulky items by the time they are respectably boxed. For example, the reviewer's, home-built Transmatch dwarfs the IC-730 transceiver and looks rather ridiculous. The present generation of ATU's no longer use air wound coils, but instead utilise the range of powdered iron toroids now available. These make possible the production of very compact ATU's capable of handling several hundreds of watts of RF. The LAR HF Omni-Match is a typical, British example.

The Circuit

The basic circuit is a very simple one; the "T-network" as shown in Fig. 1. C1 and C2 are twin-gang, broadcast-type variables with a 170 pF swing per section. L comprises three coils, two wound on toroids, the third being an air wound one. There are six band switch positions covering 1.8, 3.5, 7 and 10, 14 and 18, 21 and 24, and 28 MHz, selected by a two-wafer, four-pole ceramic component. In the 1.8 and 3.5 MHz band positions, the two gangs of each capacitor are switched in parallel, while in the other four positions, they are switched in series. One of the toroids is only in circuit on 1.8 MHz, the other being progressively shorted out as higher frequencies are selected. Only the small, air wound coil is used on 24 MHz and part of that is shorted out on 28 MHz. The through power of the unit is 250 watts p.e.p. or 120 watts on 10 to 250 ohms, plus reactance.

Conductors

The components are mounted on the chassis part of a sturdy case of cadmium-plated, passivated steel. Since the capacitors cannot be grounded, nylon fixings are used and to avoid hand capacity effects, the extension shafts on the capacitors are of insulating material. The three knobs are smart, collet-fixing types and the silver finished front panel carries bold, black lettering. The input and output sockets on the rear are SO-239 types. The inverted "U" forming the top and sides of the case is finished in dark blue crackle paint. Four nylon feet are provided.

Tests

The HF Omni-Match was first connected between a 3.5 to 30 MHz transceiver, incorporating a VSWR bridge, and a 50 ohms dummy load. It was not possible to try the 1.8 MHz position but all others, including the three new ones, were investigated. For guidance as to setting up, the approximate positions of the knobs marked "R-TUNE" and "X-TUNE" are shown in Fig. 2. Obviously, different input and/or output impedances will result in different settings; that is what the unit is for, after all! Low power was used to set up the ATU initially, full power being used for final, fine adjustment.

The HF Omni-Match enabled a 1:1 VSWR to be achieved on any frequency in all three bands. No aerial matching unit can be loss-less, so an attempt was made to ascertain the power loss through the HF Omni-Match. The only frequency at which the transceiver showed a 1:1 VSWR into the dummy load direct was 3.4 MHz, the power being 95.9 watts, representing a loss of just 0.3 dB., a quite negligible amount. This compared to a 0.5 dB. loss through the aforementioned Transmatch ATU with its air wound coils.

<table>
<thead>
<tr>
<th>Frequency MHz</th>
<th>"R-TUNE"</th>
<th>"X-TUNE"</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.8</td>
<td>not tried</td>
<td>5.8</td>
</tr>
<tr>
<td>3.65</td>
<td>6.2</td>
<td>5.8</td>
</tr>
<tr>
<td>7.05</td>
<td>7.8</td>
<td>7.2</td>
</tr>
<tr>
<td>10.125</td>
<td>4.4</td>
<td>3.7</td>
</tr>
<tr>
<td>14.175</td>
<td>5.6</td>
<td>5.8</td>
</tr>
<tr>
<td>18.118</td>
<td>3.0</td>
<td>3.3</td>
</tr>
<tr>
<td>21.225</td>
<td>3.0</td>
<td>4.0</td>
</tr>
<tr>
<td>24.34</td>
<td>1.2</td>
<td>2.0</td>
</tr>
<tr>
<td>28.85</td>
<td>2.7</td>
<td>3.2</td>
</tr>
</tbody>
</table>

Next the unit was used with a ground plane aerial made from half the driven element of an old tri-band Yagi and mounted vertically about five feet above the lawn with three sets of three radial wires for the 14, 21 and 28 MHz bands. The characteristics of this makeshift aerial were measured with an antenna noise bridge, the resonant frequencies and impedances being respectively:—28.700 MHz at 90 ohms; 21.112 MHz at 78 ohms, and 14.581 MHz at 30 ohms. The HF Omni-Match enabled a 1:1 VSWR to be achieved on any frequency in all three bands.

No aerial matching unit can be loss-less, so an attempt was made to ascertain the power loss through the HF Omni-Match. The only frequency at which the transceiver showed a 1:1 VSWR into the dummy load direct was 3.4 MHz, the power being 95.9 watts. With the ATU in circuit, carefully adjusted to give a 1:1 VSWR at the same frequency, the power was 89.5 watts, representing a loss of just 0.3 dB., a quite negligible amount. This compared to a 0.5 dB. loss through the aforementioned Transmatch ATU with its air wound coils.
Conclusions

The LAR HF Omni-Match proved to be a very useful and versatile ATU for home stations use, doing all the maker claims for it. Its usefulness can be further extended to cope with balanced feeder systems by the addition of an external balun transformer. The price of £69.25 seemed a bit high, at first, for such a rather simple product, so a parts cost exercise was undertaken, using equivalent items from several well-known component supply houses. This totalled about £22 — it is surprising how expensive twin-gang capacitors are, nowadays — to which has to be added something for development, manufacturing time and overheads, company profit, advertising, dealer mark up and, not least, VAT. Taking all these often overlooked costs into account, the retail price seems fair.

The ATU was kindly loaned by the manufacturer, LAR Modules Limited, of 60 Green Road, LEEDS, LS6 4JP, and came with an explanatory leaflet and a "mini-article" entitled, "The Plain Truth about SWR — Does it Matter?" and which contained some down-to-earth comments on the subject.

N.A.S.F.

Footnote: Since this review was completed LAR Modules Ltd. have informed us that, in response to popular demand, the HF Omni-Match can now be used with an end-fed wire. A robust wing-nut earth terminal on the rear panel has been fitted, and an end-fed wire can now be plugged into the antenna SO-239 socket, either by PL-259 plug or a 4mm. banana plug. Providing the impedance is within those quoted on the leaflet, the HF Omni-Match will do a good job of feeding this Marconi-type antenna. In practice, the wire (including earth) needs to be near a quarter-wavelength (or odd multiples thereof) at the frequency in use.

MODIFICATIONS TO THE TRIO TS-520S FOR 10 MHZ OPERATION

H. Allison, G3XSE

Does the sight of the 'AUX' switch on your TS-520S (or SE) give you thoughts about adding the new 10 MHz band to the rig? Then — read on, but remember this is not an 'official' modification and could have a bearing on your Warranty position. Also, bear in mind that this modification is based on experience with just two transceivers. So — go carefully!

Technical Bit

The IF of the transceiver is 3.395 MHz (CW, transmit); the VFO runs 5.5 to 4.9 MHz, and we want to transmit 10.1 — 10.15 MHz. Doing a sum indicates that a crystal around 18.5 MHz from the junk-box is needed, but obviously we can have a crystal almost at 19 MHz and still get this narrow band within the range of the main tuning dial. Purists, and rich people who buy their crystals, can do the sum more carefully and obtain a rock to make the band edges line up at chosen points on the dial.

The Easy Bit

Open the rig up, top and bottom as shown in the manual — or by commonsense if you haven't got a manual. Locate the heterodyne board, X44 — 1160 — 00, at the front and underneath. This board has lots of crystals on it, and a clear marking shows where the AUX crystal goes. Fit your crystals here — and notice you don't have to remove the board to carry out this operation. Now look for the holes for the AUX coil. All the coils are four pin ones with only the top two pins used. 'Tops' here means the uppermost two of the four while the transceiver is upside-down. To resonate at 18.5 MHz, 28 turns on a 1/4-in. former with a slug are indicated. With coil and crystal fitted, stand the rig on its edge, and connect a scope to TP3, which is the output of Q7, via a probe, and tune for maximum 18.5 MHz RF. Do not hang the probe on pin OL of the board, which looks a likely spot to try: the crystal oscillator won't start on this, or any, band — not good for weak hearts!

The Receiver

Assuming you have obtained your 18.5 MHz RF output as in the last paragraph, locate board X44 — 1170 — 00, and on that board locate the AUX coil position. Again we need the top two holes with rig inverted. These holes may be linked, just to confuse you. Cut the link, and install a coil, 30 turns on 1/4-in. former with slug. Switch on, and poke a fairly hefty signal up the aerial hole — 10 mV should do. Work out where the dial should be set, to get 10.1 MHz, and set it there. Put the drive control at mid-swing and tune the coil with the slug for maximum on the S-meter. Do not be despondent at the low sensitivity; instead, locate board X44 — 1180 — 00, find the AUX holes, cut the link, and install another coil of 30 turns on a 1/4-in. former with slug. Switch on, set as in the previous step, and again tune for maximum urge at 10.1 MHz. Receive sensitivity should now be OK.

The Hard Bit-The PA

This is where we nearly gave up! In the AUX switch position you are stuck with the ten-metre coil; thus you have three options. 1. Rewire the PA coil assembly (not recommended — look!). 2. Open up one of the shorted sections of the PA coil—the 14 MHz one works well. 3. Add extra capacitance to the PA 'Tune' control. Either of the last two require a switch to be fitted in the PA compartment. To do this, remove PA shielding, drill a hole above the ident. plate, and bolt in a switch. If you opt for the capacitance (which G3XSE did) then you want about 600 pF worth of at least 1 kV working rating. The Q is a bit low—but it works!

Check the output with an absorption wavemeter to make sure, put all the covers back, put the rig back on the bench, connect aerial and ATU, tune up, and work all the people with "Ben" transceivers!
A SIMPLE TWO-METRE WINDOW MOUNT ANTENNA

A. RENOUF, GJ8SBT

A HANDY antenna which can clip easily onto any car without the need to drill holes can be extremely useful. In conjunction with a portable rig this antenna allows you to descend on any unsuspecting car and instantly turn it into a mobile installation.

Fig. 1

Fig. 2

The Whip

Construction

Construction of the whip is very simple. A 60cm. length of stainless steel rod is taken and clamped in a vice. One end of this is filed down to a point in the same manner as the pin in the N plug. The thicker PTFE ring from the plug should be drilled out to the diameter of the whip; the parts are then assembled as in Fig. 3. A small amount of Araldite is mixed and pushed into the plug. After this has set, the pin must be checked to make sure that it is central. If there are no problems fill the rest of the plug, making sure to overfill it so that in use water will run off easily.

The antenna can now be tuned in the normal way. An almost perfect SWR was obtained when the whip length was 52cm. This is measured from the top of the N plug as the section inside behaves like a normal piece of transmission line.

Use

The antenna is simply passed through the car window which is then shut. In practice the mount is very secure and long whip lengths can be used at high motorway speeds. As the window almost completely closes there were no problems in the rain, also the use of N type connectors ensures no water can seep in between the whip and mount.

When using UR43 there may be a problem getting the window to hold the mount firmly. This problem may be overcome by passing the co-ax through the next window or by using thinner cable, depending on how much output power is being used.

Although this design is not the best method for a permanent installation it can provide a quick and cheap answer for going /M at a moment’s notice.

A TEN-METRE TO TWO-METRE CONVERTER

G. ROBINSON, G4AKW

MANY of the older general coverage receivers, whilst being adequate for the LF amateur bands, lack the stability and sensitivity required on the higher bands. The problem is generally most acute on 10 metres. As my main receiver fell in this category I was prompted to construct this converter which enabled the 10 metre band to be received on the station 2 metre receiver.

The Circuit

An attempt was made to keep the circuit, shown in Fig. 1, as simple as possible. The tuned circuit formed by L2, C4 and C5 is resonant at about 29 MHz and input signals are coupled to it via C3. Mixing occurs in TR2 between a 116 MHz signal provided by TR1, and the input 10 metre signals. Sum and difference frequencies are produced and the output tuned circuit L3 and C7 selects the sum frequencies around 145 MHz.

Construction

The converter was built using the normal VHF breadboard method. A sheet of copper-clad board measuring 3” by 2” was used as the Gt ground plane on which to mount the components. The three coils are all self-supporting and were wound using a pencil of diameter 7mm. as a former. L1 is 3 turns of 20 s.w.g. and
Allweld Engineering, it transpired that their engineer had allowed the base to move a quarter inch relative to the bottom, this would not mean fall right over, or collapse but rather that, at some time, the re-erected, extended mast might not be truly vertical. Many were an inch wide and quite deep. Under such conditions, the soil surrounding the base of a mast could shrink away. This would be a scenario for the above-described tilting phenomenon and a reason why, in this engineer’s opinion, passive resistance should be a scenario for the above-described tilting phenomenon and a reason why, in this engineer’s opinion, passive resistance should not be relied upon to any large degree. However, all this has become rather academic now because in their current leaflet, Allweld Engineering are recommending a 2' -0" by 2' -0" concrete base, 3' -5" deep and this is sufficient to provide a factor of safety against overturning of 1.89 when tilting over the retracted mast with a fifty pounds load at its head, without any need to take passive resistance into account.

When a free-standing mast is subjected to any sideways load, it imparts a rotational effect, called an overturning moment, to the base in which it is set. This is inescapable. It is resisted in two ways, the more obvious and important of which is the righting moment provided by the self weight of the mast and base acting about the edge of the base. The second effect is the passive resistance of the soil, its effectiveness depending upon the nature and consolidation of the soil immediately surrounding the base. Obviously, a well compacted, firm and cohesive soil will be much more effective than loose, dry sand or waterlogged ground. It must be appreciated that passive resistance can only occur once the whole lot would tilt over, it did not mean fall right over, or collapse but rather that, at some time, the re-erected, extended mast might not be truly vertical.

During the exceptional summer of 1976, large cracks appeared in the lawns and between the lawn edges and concrete paths. Many were an inch wide and quite deep. Under such conditions, soil surrounding the base of a mast could shrink away. This would be a scenario for the above-described tilting phenomenon and a reason why, in this engineer’s opinion, passive resistance should be a scenario for the above-described tilting phenomenon and a reason why, in this engineer’s opinion, passive resistance should not be relied upon to any large degree. However, all this has become rather academic now because in their current leaflet, Allweld Engineering are recommending a 2' -0" by 2' -0" concrete base, 3' -5" deep and this is sufficient to provide a factor of safety against overturning of 1.89 when tilting over the retracted mast with a fifty pounds load at its head, without any need to take passive resistance into account.

Nowhere in the review was it inferred that the SM30 was anything other than a perfectly sound design. In any case, the manufacturer invited would- by customers to seek his advice on installation matters as part of the service. Incidentally, a ground socket is now available for an extra £22, into which the ground post can be inserted. So, if you move, you would not have to leave behind the ground post, only the concrete base. Additionally, this makes the mast genuinely a temporary structure thus probably not requiring planning permission.

Performance

The sensitivity of the converter in conjunction with an Icom IC-202S was measured as shown in Fig. 2. An HP-8654A signal generator, Marconi TF-2163 variable attenuator and an HP-3400A true r.m.s. voltmeter were used. The sensitivity was measured as — 121dBm for 12dB s + n/o (SINAD) which is equivalent to about 0.2µV. For comparison the sensitivity of the IC-202S was also measured at the same time, without the converter, and it was 4dB better at — 125dBm for 12dB s + n/n. Although it was not possible to measure the intermodulation and strong signal performance of the converter it appeared, after much listening, to be quite good. With regard to the converter’s bad points, the main one appeared to be its lack of rejection of signals at around half the input frequency. The rejection of these 14 MHz signals was measured as only about 30dB. This however did not cause any real problems and the converter has, on the whole performed very well.

Table of Values

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>220K</td>
</tr>
<tr>
<td>R2</td>
<td>100K</td>
</tr>
<tr>
<td>R3</td>
<td>100Ω</td>
</tr>
<tr>
<td>C1</td>
<td>10 to 40pF trimmer</td>
</tr>
<tr>
<td>C2</td>
<td>2n2</td>
</tr>
<tr>
<td>C3, C6, C8</td>
<td>1nF</td>
</tr>
<tr>
<td>C4</td>
<td>27pF</td>
</tr>
</tbody>
</table>

has a length of about 8mm; L2 consists of 9 turns of 22 s.w.g. close-wound and tapped 2 turns from the earth end; L3 consists of 3 turns of 20 s.w.g. tapped 1 turn from the + v supply end, and is about 12mm long. None of the components should have lead lengths greater than approximately 5mm., and the decoupling capacitors C9 and C10 should be as close to the supply end of the tuned circuits as possible. Once constructed C1 should be adjusted until oscillation occurs, and then C5 peaked for maximum output.
COMMUNICATION and DX NEWS

E. P. Essery, G3KFE

Here and There

CONDITIONS seemed pretty fair up until mid-April, after which the warm weather accompanied the typical signs of ‘summer conditions.’

With the BYs back on the air — there are some seven reported on 15 and 20m. CW — one has to expect that some sort of a diseased mind bootlegging them would appear. It has. Another favourite in piratical terms is ZA, and now the BYs are back, EA2AJH/ZA in strength seems to be possible which would remove another favourite Phoney. It is understood that there have already been 8 QSOs as a demonstration to the Albanian authorities and hopes are high for a full-blown DX-pedition by the EAs. We’ll believe it when we have been shown the QSL card — or got one ourselves.

Trindade seems to have been put out for the count by the Falklands business; the two PYs who were going had their military transportation cancelled. And the Mellish operation by VK2BJL and Company, featuring the boat Banyanah is due to be cancelled. But a quick peep doesn’t reveal a pile-up as yet. But the name of the boat, and her skipper KB7NW seems to warrant this one as a goer.

Looking a little further ahead we wonder about Heard Is. — this time with the support of WIA, says the DX Bulletin. The proposition talks of a couple of weeks in January or February of next year. Until mid-April, G5RV at about 25-30 feet, and on Eighty — true

Eighty

A much maligned band in terms of DX, particularly on CW; but it has a further virtue says G3ZPF (Dudley) in that he has strong evidence that his RF, from aerials always relatively low to the ground, is a guaranteed shot-in-the-arm for plants which happen to be beneath the voltage points. While looking to the improvement of the garden, David worked JX5VAA, CY1IF, CT2ARA, V2AH (Antigua), ZB2GW, CY11F (Newfoundland), and DA2AR/HB0.

G2NJ (Peterborough) stuck to Eighty CW, and notes his best CW QSO was with UA1AOB who had just one watt. PA3BFE near Amsterdam was a 599 signal with a rig which he said was made from old TV parts and ran ten watts. On the mobile front there was a long QSO with G3CLJ/M who was keying in fine style between Rugby and through to Chesham in Bucks. Turning to the /MMs, Nick listened to PA3ARE/MM, a booming signal one afternoon, working a couple of PAs; unfortunately he went QRT before G2NJ could give him a shout.

The Bands

We have already indicated that we have come into the summer doldrums, but at the time of writing the forecast seemed a bit ‘iffy’ with some good and some bad ones to come.

Top Band

David Whitaker (Harrogate) reckons his catch of the season as being an F. — the first one ever logged. As the SMs are now licenced for the band (1830-1845 kHz) he will doubtless add that one. In addition of course, the East Coast Ws have been in evidence around dawn, as did some Caribbean signals, leaving the evenings to Europe and the Asiatic Russians providing the nightlife.

Now G2HKU (Minster) who seems to be well on the mend now, and battling against the spring influx of insect life into the shack, although at the time of his letter the wasps had only sent a few reconnaissance parties out. Ted says he will fight them from prepared positions! His Top Band SSB contactsd with PA0PNN are still going, and on CW Ted offers UT5AB, OZ1W, 4N0SM, G3J6UW, SM4AAYY, SM7BIC, F6ETO and SM1JBM.

G3PKS (Well) says he hasn’t been on the band much, as he has been having a shack clear-out in the course of which he came across a 1951 copy of the Short Wave Magazine and “DX Commentary” by G6QOB included a note from G3ATU which station Jack had just worked!

Forty

Much neglected in the U.K. due to the very high noise level generated partly by receiver overload; but the savvy operators can still drag a few interesting ones to book, and there isn’t any shortage of DX — but the Red Army Choir doesn’t exactly assist matters!

G2HKU mentions just one QSO; that was a CW one with VC31XE who turns out to be a special prefix for Canada.

— CDXN —

Please be sure to note these dates
found VP2MGQ, VP2EC, FG0DYM/FS, SM0GMC/CT3, VP9AD, VP2EX, 6D5PEP, HP3FL, HT12GB, HC5MRZ NP4A, TI2GCC, J73PP, CE0DFL, VE6JD, TI3RFS, KV4FZ, 8P6EZ, KP4BZ, and KP2A/KP1. The evening stint started at around 2100z and carried on until 2300 and a bit. In time order again this period showed with U6F6FBX, OE1EHB/YK, UP0L22, ZP5JAL, CM7RM, YV5DPO, UI8ZAC, T72AP, A92P, and UK0AAB.

Jottings

Lloyd and Iris Colvin's stop in P12 resulted in some 9000 contacts with 148 countries; and a total of 56000 QSOs on this trip. They are back in the U.S.A. but will be off again in the Autumn.

Those AM, AN, and AO prefixes from Spain are, it would seem, related to the World Cup, and are used respectively by stations whose normal prefixes are EA, EB and EC. Rather more worthy of note is the stations whose normal prefixes are EA, EBSpain are, it would seem, related to the countries; and a total of 56000 QSOs on this band.

Douglas Byrne, G3KPO, recently visited Brigadier General Kamchui Chotikul, HS1WR, in Thailand. HS1WR, who operates on all bands in all modes, has one of the strongest 20-metre signals heard from the Far East — perhaps his full-size 5-element Yagi atop a 140-ft. lattice tower (complete with red warning lights) has something to do with it! Kamchui obviously believes in starting off his young son in the right direction, as he can be seen here feeding signals into the SSTV computer; the camera is on the right of the picture.

21 MHz

Twenty

G3PKS only bothered with one quick peep just to be sure everything was OK; and that quick look included CW to VE3PT.

G3FKP mentions working ZM7WU in Tokelau on CW; Carl was going on to Niue and Rarotonga, after making some 7500 contacts from Tokelau. Otherwise, all that Norman reckoned worthwhile were FP8HL, JT1AU, and ZK1CQ.

Twenty for G2HKU included SSB contacts with ZP6DN, 6Y5DJ, PJ8UQ, HV1CN, KA4GKZ, ZL3FV, and ZL3RS; then CW to LU9CV, VK2AHK, U2B2K, HC2XA, and KG6I — who turned out to be in Oregon, would you believe!

We have two letters to hand from G4LDS (Chelmsford); Chris says that Ten has finally died on him, and so he has looked to 21 and 14 MHz for the pay-dirt. He mentions, on this band, SV9PR, VK2CU/2, VK3WJ, ZL0AFL, K2JFE, WB1AOK and sundry small fry.

Although he hasn't been too active on this band, G3NOF (Yeovil) reckons it hasn't been too bad; the morning openings around 0630 took in VK, ZL, the Pacific and Zone 19, VQ91B, VO2CW, ZL1BQD, ZL4PO/C, 3X3JA, 5T5ZR, XZ9A, ZB2CJ, ZB2GW, ZK1CG, ZL1BQD, ZL4PO/C, 3X3JA, 5T5ZR, 5W1DQ, ZL4OY/A, and 7Q7LW.

G3FKP mentions a CW QSO with UA0BL which was notable for the fact that the UA0 was such a weak signal even though he reported 'PK5 at 579.

At G3FKP it was CW all the way; this yielded Abil Ail (J2OZ) for brand new one number 311, and an oddity was 8J5SUN from Japan. 3X5DX was heard on the afternoon of May 6 and worked quickly, just in time to hear the rest of the world reacting; by the end of the QSO the band was awash with JA4 calling him. Others of interest included FP0FSZ who said QSL to VO1F, and HL5AMU.

G2HKU split his time between QRP CW and the high-power stuff. The QRP CW raised UW9SU which is quite a far

The Short Wave Magazine

Volume XL

THE SHORT WAVE MAGAZINE
hauled in distance for just four watts; and on the FT101ZD JAOEKI, VK2DY, and OZ1W were all raised.

Conditions have finally gone for 28 MHz, says G4LDS in accounting for his change of scene to 21 MHz. We wouldn't reckon to take money on that one! Chris notes 1E1FG, 6W8DS, PY8B1, 5N9ACO/8 who came back to a CQ and was followed by AH8AA over the Pole, ZL1CD who was 33 on both paths at once, local lad ZL0AAF who is G3PMX on holiday, T1CK notable for a very quick QSL via DL1HH, Y1FUE, JA8AARCO, VE1BYD who was a QSL via JR3WRG, WA4TWS, WA3CKN, KOADY, EP2TY, VK4OX, VE1AI/1 on Sable Is., KAEW, WA5TWS, W33CN, K0ADY, EP2TY who nowadays QSLs via JR3WRG, JA9QD, and JH9AEF. Then KB6JK, VSS5DD, 424MK, VE1BYD who was a handsomely 59 off the back of the beam, VE3JW, EA8QY, J6LTH, and an assortment of JA and WS stations. One of the latter being WB9JLL who is a manager of WPLY; this resulted in a long chat and some tape-exchanging.

28 MHz

Despite all the moans and groans, it really does seem that there has been DX about at times. The locals around Dudley use the band too for a local net, says G3ZPF, and of course there is always the odd CB-er to move along. On that question, the writer is a bit annoyed to see an exotic suffix we just can't decipher (!) and of course the usual crop of small fry; and after April 17, just — silence.

Scraps

Most of the letters mention the spring gales and the effect on aerials; my own new aerial went up for its first test and wouldn't load up at all, at which time I had to go away on business for a few days, returning to find the aerial had obeyed the dictates of gravity and a sickly stay that had parted in two — the high winds. Repairs had to be put off for a few days, but once it was into its element. Perfect proof to the NHS that they get here on or before the dates mentioned in the deadlines 'box', and are admitted to hospital externally but was very bad inside, out of gravity and a sickly stay that had parted in two — the high winds. Repairs had to be put off for a few days, but once it was into its element. Perfect proof to the NHS that they get here on or before the dates mentioned in the deadlines 'box', and are admitted to hospital.

Finale

That's about it for another time; of course we can always use more reports, if they get here on or before the dates mentioned in the deadlines 'box', and are addressed to "CDXN", SHORT WAVE MAGAZINE, 34 High Street, WELWYN, Herts. AL6 9EQ. Meantime, may your mower-blades be always sharp!

"... wake up Sid, I think we've got into a repeater... "

G3NOF describes the band as patchy and becoming very poor towards the end of the month; VK/28 MHz openings on the short path occurred on occasion around noon, and the Africans were sometimes good in the afternoon. Don worked 44X3N, DL2VK/ST3, DU1RD, HP1XKJ, HS1AMH, J6LZA, JE1LZZ, S83H, T1LCK, TN8AJ, UA0WAM, VK4AFG, VK9NND, VU2ALQ, SH3BH, 8P6PG and 8P6PO.

Turning to G3PKS, Jack reckoned the band was no great shakes, and on at least one morning a 15-minute CQ-calling session raised precisely — nothing. Better days saw CW to HS1ALF, UA9UGD, W3NZ, UO5BEX, UA9UGD, UA9TEB, JH7AKT and JA7ASY.

Moving on to G3FPK, Norman took it as he found it; on April 2 P29DJ was raised on SSB for the 309th country, while CW fished up DJ6SI/3X for number 310. One evening at 2304z a weak ZL was heard on an otherwise dead band and worked quite happily. Again as late as May 4, Norman cranked the bandswitch to Ten at 2325z and was surprised to find some East Coast Ws, of whom one was N2IT. Several 10-UK members have been worked late at night too, around 28.30 MHz. And of course there are always the CB intruders, who are quite effectively removed by a spot of CW practice, usually by giving them a beat note of between 800 and 1000 Hz.

G2HKU notes an odd effect with the Woodpecker noises in that on his ZL contacts, when the FT-101ZD noise limiter is effective, the limiter on the FT-350 at the ZL end is not; and vice versa. Wherefore, he enquires, though your scribe must admit he has noted that on his rig the noise limiter doesn't always kill that Pest. To return to 28 MHz, Ted used the Rig to work OZ1W, and the four-watt job saw off UK5QCM and UL7GAA.

G2BON stuck to SSB as usual, and he found this got him over to JG1NBD, RH5HCV, VK5RX, H5AIR, and H5AIF; a shorter than usual list which Tom blames onto the garden.

Finally G4LDS, who offers VK4VAG, UA4NAG, A4XIU, ZS6EJ, UA6LWB, a station signing DX1TRC and claiming to be in Manila at a time when there was nothing else about save Southern EUs, 9H3BN, K4KQJ, AK4C, KH5HJD, WB2WLD, VK7NAQ, JH9GAT, VK6UA, KI1W, H5AHF, V56JW, VK2WJ, CP8AL, PY2FOA/P, UO5OFB, VK2WVJ, J92DS, a K6 with an exotic suffix we just can't decipher (!) and of course the usual crop of small fry;
NEWQTH's

This space is for the publication of the addresses of holders of new callsigns, or change of address, inEI, G, GJ, GU, GD, GI, GM and GW of stations not already listed. All addresses published here will appear in the U.K. section of the American "CALL BOOK" in preparation. Please write clearly on a separate slip and address to QTH Section. Be sure to give correct County designation and postcode. In the case of direct subscribers needing Change of Address, please state for card index adjustment. Address items for this space to: "QTH Section," SHORT WAVE MAGAZINE, 34 HIGH STREET, WELWYN, HERTS. AL6 9EQ.

Change of Address

G2HII, R. S. Ashley, Moorcroft, Beck Garth, Hatton-Le-Hole, North Yorkshire. YO6 6DS.
GM3BTQ, J. B. Staker, 9 S. Fillans Crescent, Aberdour, Fife.
G3MFR, C. L. T. Dwyer, 197 Windhill Old Road, Thackley, Bradford, West Yorkshire. BD10 0TR.
G3GDI, R. B. Wilson, 100 Almond Street, Derby. DE3 6LX.
G3HJD, L. J. Smith, 118 Charnwood Avenue, Weston, Northampton. NN1 3DY.
GMVZ, W. E. Stephen (ex-GM3VZ), 44 Petty's Brook Road, Sherfield Park, Chineham, Basingstoke, Hants. RG24 0RW.
G3JUT, T. J. Jones, 12 Cardigan Crescent, Westover-super-Mare, Avon. BS22 8NT.
G3KII, G. W. Jenner, 3 Silhill Hall Road, Solihull, West Midlands. B91 1JX.
G3LPY, A. H. J. Catts, School Flats, High Street, Alderney.
G3MPP, C. F. Smith, Flat No. 1, 11 Leicester Street, Southport, Merseyside.
G3NUG, E. N. Cheadle, School Flats, High Street, Alderney.
G3SGH, J. R. M. Hewitt, 19 Rectory Way, Kennington, Ashford, Kent.
G3WAY, L. E. Jones, 2 Dalwyn Houses, Llanover Road, Blaenavon, Gwent. NP4 9HY. (Tel: 0495-791617).
G3UOF, M. R. Wadsworth, Corporation Road, Walpole Marsh, Wilsbech, Cambs. PE14 7JH.
G3ZFY, S. J. Scott, Hillside, Ashford, Kent.
G4BBM, A. M. Brown, Ashford, Kent.
G4GMP, B. C. Wheaton, 27 Endavies Street, Troon, Camborne, Cornwall. TR14 9EG.
G4HKV, J. Henderson, 1 Rossiebank Crescent, Westmuir, Kirriemuir, Angus. DD8 5LB.
G4HHW, J. W. Henderson, 1 Rossiebank Crescent, Westmuir, Kirriemuir, Angus. DD8 5LB.
G4JED, R. Keys, 4 Glannor Crescent, Newquay. G4JED, R. Keys, 4 Glannor Crescent, Newport, Gwent. NP7 8AX.
G4JPL, P. Morgan, 2 Cliff Road, Worlebury, Weston-super-Mare, Avon. BS22 9SF. (Tel: 0934-26903).
G6BOX, T. N. Hordley, 3 Blandford St. Mary, Blandford Forum, Dorset. DT11 9LH.
G6CQC, R. Mills, 48 Lady Bank, Birch Hill, Bracknell, Berks.

"Short Wave Magazine" is independent and unsubsidised and now in its 40th volume.
SOUND ADVICE — SOUND VALUE

A GOOD START is essential to short wave listening and expert advice is important in achieving this — so here's some — if you've made up your mind to buy a receiver you should be aware it will perform only as well as the antenna it sees. The old adage "As long and as high as you can" is still good, but at best is only good for PEAK PERFORMANCE on one or two frequencies, at worst none.

Whenever frequency you tune your receiver to, for PEAK PERFORMANCE on all frequencies you need good matching between your receiver and Antenna to hear the best from it. If you plan to listen on the high frequency bands up to 30MHz then you know whichever frequency you tune your receiver to, for PEAK PERFORMANCE on all frequencies you need good matching between your antennas "As long and as high as you can" is still good, but at best is only good for PEAK PERFORMANCE on one or two frequencies, at worst none.

You'll see many antennas being advertised under gimmicky names, but when it comes down to it they're only random wires or odd configurations. At the end of the day, if you're expecting the performance the manufacturers specified, then you have to buy an antenna tuning unit. Tell you what we'll do — we'll prove to you — we'll give you absolutely free when you buy your FRG 7700 or FRG 7700M and we'll give you complete advice on an antenna to suit your available space, which should only cost you a couple of pounds!

So let's put the offer in big print for you!

1 YAESU FRG 7700M + FRT 7700 £409.00
1 YAESU FRG 7700 + FRT 7700 £329.00

VAT included

What can you lose? So get cracking MAKE A GOOD START! HAVE PEAK PERFORMANCE FROM THE OFF AND DON'T FORGET, ADD £5.00 IF YOU REQUIRE SECURICOR DELIVERY.

YAESU — JAYBEAM — HYGAIN — BANTEX — AMTECH — CUSHCRAFT — SWAN — ATLAS — ICOM and 50 other major lines — all ex stock

AMCOMM SERVICES
194A NORTHOLT ROAD, SOUTH HARROW, MIDDX. LONDON.
Tel: 01-864 1166 & 01-422 9585
Opening hours: Tues-Sat 9.00-5.30.
Closed Monday.
DO A DEAL WITH RADIO SHACK!

AND EVERYTHING ELSE IN AMATEUR RADIO

Just around the corner from West Hampstead Station, Jubilee Line.
30p in stamps for full list + details.

RADIO SHACK LTD.
188 BROADHURST GARDENS, LONDON NW6 3AY
Giro Account No. 5887151 Telephone: 01-624 7174 Cables: Radio Shack, NW6 Telex: 23718

FOR QUALITY CRYSTALS — AT COMPETITIVE PRICES. POPULAR FREQUENCIES IN STOCK

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Price (per crystal)</th>
<th>Delivery</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>500KHz</td>
<td>£15.00 (minimum 5)</td>
<td>3-5 weeks</td>
<td>Crystal sockets HC6/U or HC25/U (20p or 30p)</td>
</tr>
<tr>
<td>1MHz</td>
<td>£20.00 (minimum 10)</td>
<td>3-5 weeks</td>
<td></td>
</tr>
<tr>
<td>2MHz</td>
<td>£25.00 (minimum 20)</td>
<td>3-5 weeks</td>
<td></td>
</tr>
<tr>
<td>5MHz</td>
<td>£30.00 (minimum 50)</td>
<td>3-5 weeks</td>
<td></td>
</tr>
</tbody>
</table>

MADE TO ORDER CRYSTALS: SINGLE UNIT PRICING

<table>
<thead>
<tr>
<th>Price Group</th>
<th>Tolerance ppm</th>
<th>Frequency Ranges</th>
<th>Price and Delivery</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1kHz-100MHz</td>
<td>£20.00</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>100MHz-1GHz</td>
<td>£25.00</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>1GHz-10GHz</td>
<td>£30.00</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>10GHz-100GHz</td>
<td>£35.00</td>
</tr>
</tbody>
</table>

DISCOUNTS: 5% mixed frequency discount for 5 or more crystals at one frequency. Prices include postage to UK and Irish addresses. Please note Southern Irish cheques and postal orders are subject to VAT.

TERMS: Cash on order. Postage and packing charges apply. Please note the above prices apply to new, unused crystals. We would be pleased to quote for larger quantities or crystals for professional use.

EMERGENCY SERVICE SURCHARGES: £3.00 surcharge applies to each crystal not ordered and are subject to VAT.

CRYSTAL SOCKETS HC6/U or HC25/U: 20p. MINIMUM ORDER CHARGE £1.50.

PRICES ARE EX VAT. PLEASE ADD 15%
THE MM2001 WILL DECODER THESE transmissions.

This unit allows hard copy of received signals. This unit is compatible with ASCII: 110, 300, 600, 1200 baud RTTY: 45.5, 50, 70, 100 baud ASCII on any standard domestic UHF TV set.

from a receiver and a 12 volt DC supply to interface, and requires only an audio input. A printer output (compatibility) allows hard copy of received signals. This unit is compatible with amateur and commercial transmitters.

S.E.M. 2 METRE TRANZMATCH
3 WAY ANTENNA SWITCH 1Kw SO239s £15.00 Ex stock.
EZITUNE built in for £19.50 extra. (See below for details of EZITUNE). All ex stock.
The most VERSATILE Ant. Matching system. Will match from 155-5000 Ohms to your equipment. £10.00 Ex stock.

PA3 Same specification as the Sentinel Auto above. 1 cubic inch p.c.b. to fit inside 3/4" panel, 3" deep. Sizes: 6' x 2" front panel, 3" deep. £6250 Ex stock.

Three Models:
1. SENTINEL 35 Twelve times power gain. 3W in 30W OUT. 4 amps. Max. drive SW. 6" x 2" front panel. 4" deep: £62.90 Ex stock.
2. SENTINEL 90 Six times power gain. 10W in 50W OUT. Max. drive 16W 6amps. Same size as the Sentinel 35. £74.50 Ex stock.
3. SENTINEL 100 Ten times power gain. 10W in 100W OUT. Max. drive 16W. Sizes: 6" x 2" front panel. 3" deep: £120.00 Ex stock.
All available pre-amp for £8.00 less.

SENTINEL AUTO 2 METRE 5 WATTS PREAMP
Uses a neutralised strip line DUAL GATE MOSFET giving a maximum of 100W PEP power. The power amplifier uses the latest matched set of transistors with AIN LINEAR for all modes and R.F. or P.T.T. switching. £57.00 Ex stock.

The power amplifiers use the latest infinity S.W.R. protected transistors with AIR LINE DUAL GATE MOSFET. The linear amplifier and the ultra low noise receive preamps can both be independently switched in and out of circuit. In this way maximum versatility is afforded.

MM2001
RTTY TO TV CONVERTER
144 Mhz 30 WATT LINEAR & RX PREAMP
144 Mhz 100 WATT LINEAR & RX PREAMP
435 Mhz TELEVISION TRANSMITTER

S.E.M. UNISON MILLS, ISLE OF MAN Tel: MAROW (0624) 851277

MICROWAVE MODULES Ltd.
BROOKFIELD DRIVE, ANY TIEE, LIVERPOOL L10 9AN, ENGLAND Telephone: 051 523 4011 Telex 629308 MICRO G

ALL MICROWAVE MODULES PRODUCTS ARE FULLY GUARANTEED FOR 12 MONTHS (Including PA Transistors)

SPACE PERMITS ONLY A BRIEF DESCRIPTION OF THESE NEW PRODUCTS, HOWEVER A FULL DATA SHEET IS AVAILABLE FREE ON REQUEST. OTHER NEW PRODUCTS INCLUDE:

- NEW SENTINEL 2114 LINEAR POWER/PRE-AMPS.
- NOW WITH EXTRA FACILITIES!
- PERMITTED TO EXHIBIT ALL OUR PRODUCTS AT MOST OF THE 1982 MOBILE RALLIES OF OUR SALES TEAM. SEE YOU THERE ...

S.E.M. EJXTUNE
Clean up the bands by tuning up without transmitting.

Connections in a 'call-ahead', produces 59 (+ 1 - 1000Hz) noise in receiver. Adjust A T.U. or R.F. or for minimum noise. You have now put an exact NOIZmatch into your transceiver. Fully protected, you cannot transmit through it, save your P.A. and stop GRA. £25.00 Ex stock.

S.E.M. AUDIO MULTIPERFIL For improving ANY receiver on ANY mode. The most versatile filter available. Gives "passband" tuning, "variable selectivity" and one or two notches. Switched Hi-pass, Low-pass, peak or notch. Selectivity from 2.5KHz to 20Hz. Tunable from 2.5KHz to 250 Hz. PLUS another notch available in any of the four switch positions which covers 10 kHz to 100 Hz. £57.00 Ex stock.

SENTINEL AUTO H.F. WIDEBAND PRE-AMPLIFIER 2-40 Mhz. £150 gain. Straight through when OFF. 9-12V 2W 1/4" x 3". 3W 200V through power. £18.50 Ex stock.

SENTINEL STANDARD H.F. PRE-AMPLIFIER Same specification as above pre-amp but with no R.F. switching. £16.62 Ex stock.

S.E.M. IAMBIC KEYER
The ultimate auto keyer using the CURTIG custom LSCMG chip. Tune and sidetone switching. £34.50 Ex stock. Twin paddle touch key £12.90 Ex stock.

FREQUENCY CONVERTERS. S.E.M. D.G. MOSFET 2 or 4 metre converters N.F. Switching. £34.50 Ex stock. Twin paddle touch key £12.90 Ex stock.

SENTINEL X 2 METRE CON. Same as above plus mains power supply £28.50 Ex stock.

SENTINEL LF. 10 kHz 2 Mhz in. 20 MHz OUT. £20.80 Ex stock
SENTINEL TOP BAND 1.8 2.3 Mhz in. 14.45 Mhz OUT. £20.80 Ex stock.

12 MONTHS COMPLETE GUARANTEE INCLUDING ALL TRANSISTORS.

Prices include VAT and delivery, C.W.O. or phone your credit card number for same day service.

* Means felling Lee sockets, add £1.90 for SO239s or BNC sockets. Ring or write for more information. Place orders or request information on our Annapaphone at cheap rate times.
Introducing a New Concept in HF communications

A NEW SERIES WITH NEW FEATURES, NEW PERFORMANCE, AND ALL 9 HF BANDS.

CONTINUING THE SUCCESS OF A GREAT RANGE OF TRANSCEIVERS BACKED BY KW SERVICE—
The OMNI-C (TOP of any class)
The DELTA (an excellent "workhorse" for Home station or Mobile)
The ARGONAUT (amazing performance at low-cost)

Come to KW for all your other amateur radio requirements KW service and guarantee — KW maintains the tradition of service the company is renowned for. Output-transistors unconditionally guaranteed for 12 months. The KW + TEN-TEC units offered above are introduced as a prelude to fully UK assembled equipment.

KW + TEN-TEC ARGOSY HF SSB/CW TRANSCEIVER 10-80 metres, 100 watts (Switchable to 10 watts). Notch Filter. Full break-in on CW. Automatic normal sideband selection plus reverse. 12 - 14v D.C. input. All solid-state. For the price of £320.00+VAT. A WINNER AT LOW COST.

KW COMMUNICATIONS LTD
Vanguard Works, Jenkins Dale, Chatham ME4 5RT
Tel: 0634-815173 Telex: 965834 KW COMM G

G8XKS TONY
SPARES & SERVICE

NORTH WEST COMMUNICATIONS (LIVERPOOL)

2M + H.F. AT ITS BEST

"YAESU"

FT208

FT207

FT707

THE FT290R

LOOK AT WHAT YOU GET FOR ONLY £339.00.

BASIC SET + NI-CADS + MM 144/25W LINEAR AMP + CHARGER + CASE.

A GREAT ALL ROUNDER.

FT101ZD Mk 3

FT290R

117 OXFORD ROAD, WATERLOO, LIVERPOOL L22 7RE
051-920 7483

MIZUHO CDE MICROWAVE MODULES RSGB PUBLICATIONS
Explore a new world of short wave listening pleasure with the:

A.E.A MBA-RO
MORSE/RTTY/ASCII READER

Now available with full after sales service in Great Britain.

- 32 CHARACTER FLUORESCENT DISPLAY (NO SEPARATE T.V. DISPLAY NEEDED)
- AUTOMATIC TRACKING AND DISPLAY OF MORSE SPEEDS TO 99 W.P.M.
- WIDE AND NARROW RTTY SHIFTS
- 12v D.C. POWER INPUT

Price: £169 inc. (p. & p. £2)

I.C.S. ELECTRONICS LTD.,
P.O. Box 2,
Arundel, West Sussex, BN18 0NX.
Telephone 024 365 590

Lee Electronics Ltd

London's Leading Stockists of:
STANDARD YAESU ICOM FDK KDK MICROWAVE MODULES LUNAR SST SHURE HI-MOUND CDE STOLLE
TELECOMM ANTENNAE J-BEAM SWAN KATSUMI, ETC.

FT-230R
25 Watt 2 metre FM mobile
★ Two independent VFO's
★ 10 Memories
★ Priority function
★ Memory and band scan
★ 12.5-25 kHz steps
★ Large LED readout

Price £239.00 Inc. VAT.

YAESU MUSEN
★ LCD display
★ 10 Memories
★ Memory and bandscan
★ Priority function
★ Internal lithium battery back-up

FT-208R 2mtr £209 inc.
FT-708R 70cm £219 inc.

ALL ACCESSORIES AVAILABLE

Send 25p for full details of our range.

Recommended by Catronics Experts — Best Value-for-Money in Microcomputers — the

Video Genie System

Advanced features are:

1. Built-in TV interface, the user’s TV set may be used as the display terminal, thus saving money.
2. Main Control Unit contains the CPU plus:
 a) A 5 key typewriter keyboard, with 10 key rollover.
 b) High quality cassette recorder, enabling recording and playback of programs, data and the use of pre-recorded tapes.
3. Built-in audio interface for connecting another cassette recorder to serve as cheap and compact storage for large amounts of data on tapes.
4. 16k user RAM included, expandable to 48k.
5. Fully TRS 80 level II software compatible so a huge range of software is already available.
6. Full 128k Microsoft BASIC in ROM.
7. Full expansion capability to Disks and Printer, a small system with big possibilities.
8. Self-contained, all in one attractive case.
9. The system uses the powerful Z80 processor.

Catronics Price only £343 incl. VAT (£5.50 carriage).

Also available 12" Monitor EG 100 - £79.

Full range of supporting programs and accessories available, including Amateur Radio Packages.

New RTTY Terminal Unit/Program for Computers

Fabulous new program now available to send and receive RTTY. Complete with Receive Terminal Unit and Transmit AFSK on PCB assembly. Suitable for Video Genie and TRS80 computers. Tape version (16K level II) £121.90 (+ £1.50 pp). COMING SOON...a disk version at approx. £135.

Why not pay us a personal visit? Catronics are 300 yards from Wallington Railway Station London Bridge or Victoria. Frequent buses from Croydon and Sutton. Three big car parks within 100 yards. Hire purchase facilities available on equipment. Credit Cards accepted. Mail orders are normally dealt with on day of receipt. All prices INCLUDE VAT.

JOHNS RADIO
Whitehall Works, 84 Whitehall Road East, Birkenshaw, Bradford, BD 12 ZER
Tel. No. 0572-550007 — Demonstration by Appointment — V.A.T. not included.

LARGE PURCHASE OF RACAL EQPT. COMMUNICATIONS RECEIVERS.
500k = 30mcs in 30 bands 1MHz wide. RA114 = £175. RA117 = £225, a few sets available as new at £75 extra. All receivers are artistically and calibrated in our workshop, supplied with full manual, dust cover, in factory condition, New black metal louvered cases for all sets £25 each. RA218 = £550 (fine tune for RA117 = £50). TRANSMITTER DRIVE UNIT MA79 1.5Mc = 50mc/s/SSB/DSB-PSK-CW = £150. AERIAL TUNING UNIT & protection unit MA197B = £150. £50 DECADE FREQUENCY GENERATORS MA398B (solid state synthesiser for MA79 or MA117 = RA217 = £150 to £200. MA250 = 1 Mc/s to 31.6mc/s = £150. (New) MA2990 precision frequency standard = 6mc/s/10mc/s/30mc/s/100mc/s up to 100 to £250. RA70 is 9078 frequency shift converter — £50. DIVERSITY UNIT MA198 new box contains product detector for SSB & FSK = £25. Most above supplied with full manuals. RACAL SPARES new & boxed = RA17, Chaska = £25, £15. F. Stop = £15, Calibrator = £15, OSCILLOSCOPES C/S 1950 = £25, Quad Beam = Solid State = £175 with manual. EXTRE TRANSMART MATRIX PRINTERS 15 level baud rate, accepts speeds up to 300 bauds, supplied set to 30175 bauds, switched, tested with manual = £165. TETRONIC OSCILLOSCOPES 647 & 647A Solid State 50mc/s and 100mc/s bandwidth = £250 and £300, tested circuit and instructions.

JOURNEY INTO THE EXCITING WORLD OF AMATEUR RADIO

Take the first important step of that journey now. Send a stamped addressed envelope for our new brochure of five day residential and non-residential courses. For less than the cost of a decent hand-held rig you can prepare for the City & Guilds Radio Amateurs Examination in the beautiful surroundings of Georgian Bath. Students of all ages and backgrounds have benefited from this tuition since 1968; why not join them — on the air!

PETER BUBB — Tuition
58 Greenacres, Bath, Avon, BA1 4NR.
or telephone 0225 27467
BECOME A
RADIO AMATEUR

Learn how to become a radio amateur in contact with the whole world. We give skilled preparation for the G.P.O. licence. No previous knowledge required.

Brochure without obligation to -
British National Radio & Electronic School
READING, BERKS. RG1 1BR

Name ..
Address ...

STW 6/815 BLOCK CAPS PLEASE

PARTRIDGE
G3CED

THE WIRELESS PIONEER OF THE 1920s OFFERS YOU A SOLUTION TO YOUR
ANTENNA PROBLEMS
AMATEUR HF AND 2M BANDS, CB HARMONIC AND TVI FREE - LOW ANGLE - OMNI-DIRECTIONAL
WORLD WIDE COMMUNICATION WITH ONE 2 FOOT ANTENNA!!!

PRICES DELIVERED. ANTENNAS PLUS ATU

Mini-multiband - 80 thru 10 + 2M + CB coax fed. £80
Mini-multiband - 80 thru 10 + 2M + CB 10ft. wire fed. £80
(Extra feeder - 60p per 10ft. fitted)

Stand-off wall bracket .. £6
Both above systems for receiving only each £50
CB only system - 1/1 SWR for more power £45
CB antenna tuner for 1/1 SWR £20

"Joyframe" hand rotatable multiband antenna

Receive version £60
ORPT TX version £110

(Coaxial cable not included in the above prices)
SEND STAMP FOR FULL DETAILS OF THE
"DO IT ALL WITH THE MIGHTY MINI OR JOYFRAME"

PARTRIDGE
188 NEWINGTON ROAD, RAMSGATE, KENT CT12 8PZ
Tel. 0632 53073 For Technical Info. 0632 62639

TRADE

RTTY/CW Decoder: easy to build kit with 8-character alphanumeric LED display (expandable), or with latched ASC11 output and strobe for computer interface — requires same connections and software as parallel encoded keyboard. 45 and 50 baud RTTY, 5 to 30 w.p.m. Morse. Kit price (excluding case) £64.50 with display, £39.75 as interface. Parts available separately; construction data £3.95 plus s.a.e. — MacRitchie (Micros), 100 Drakies Avenue, Inverness IV2 3SD.

July issue: due to appear June 25th. Single copies at 80p post paid will be sent by first-class mail for orders received by Wednesday, June 23rd, as available. — Circulation Dept., Short Wave Magazine, 34 High Street, Welwyn, Herts. AL6 9EQ.

DIY QSL’s. 100 mixed designs, £1.90. Eight designs, coloured card, s.a.e. for samples. See us at H.M.S. Mercury and Longleat. RWW, P.O. Box 11, Romsey, SO5 8XW.

Aerial wire, 14 s.w.g. hard-drawn copper, 70-ft. coils, £5.75; 140-ft. coils, £9.50. TVI/AFI, cure it with ferrite rings, 67p each. Amstat 28 MHz pre-amp. kits, complete, £7.85. All prices include postage and VAT. — TMP Electronics, Unit 27, Pinfold Workshops, Pinfold Lane, Buckley. Clwyd CH7 3PL.

Personalised QSL’s 100 for £12.50, 5000 for £42. Log books available. Send s.a.e. for samples. — Printshop, 69 Langstone Drive, Exmouth, Devon EX8 8LT.

TRAP DIPOLES, CUSTOM BUILT, ANTI-TVI MODELS, Tx-ing, SWL-ing 24-ft. to 108-ft. Send s.a.e for lists. — G2DYM, Uplowman, Tiverton, Devon. (Tel: 03986-215).

QSL cards. Sample pack and price list forwarded on receipt of 22p stamp. — Derwent Press, 69 Langstone Drive, Exmouth, Devon EX8 8LT.

Amateur Equipment bought and sold, cash waiting. Contact G3RCQ. Hornchurch 5733 evenings.

Courses — RADIO AMATEURS EXAMINATION, City and Guilds. Pass this important examination and obtain your licence, with an RCC Home Study Course. For details of this and other courses (GCE, professional examinations, etc.) write or phone: THE RAPID RESULTS COLLEGE, Dept. JV1, Tuition House, London SW19 4DS. Tel: 01-947 7272 (9 a.m. to 5 p.m.), or use our 24-hr Recordacall Service, 01-946 1102, quoting Dept. JV1.

Listener and QSL cards, quality printing on coloured gloss cards, at competitive prices. Send s.a.e. for samples. — S.M Tatham, "Woodside", Orchard Way, Fontwell, Arundel, West Sussex.

READERS WANTED: Hammarlund communications receivers, in reasonable condition. Details and price (preferably including carriage) please. For Sale: MMC 432/28 converter. — Ring Cunningham, Evesham 881310 evenings.

For Sale: Icom IC-2E complete with speaker/Mic., ni-cad pack, battery pack, BC-25E mains charger, IC-BP4 (new, boxed), IC-M1 10 watt amplifier, and 3.2dB portable antenna, (cost £240), £190. — Ring Dean, G8UZB, Crowmarsh 695 evenings only.

Selling: AR88LF, £45. K. W. Vespa 90W Tx, 160-10m., £45. reperforator (6 bit parallel input), plus S-P converter, £12. For Sale: Icom IC-2E complete with speaker/Mic., ni-cad pack, battery pack, BC-25E mains charger, IC-BP4 (new, boxed), IC-M1 10 watt amplifier, and 3.2dB portable antenna, (cost £240), £190. — Ring Dean, G8UZB, Crowmarsh 695 evenings only.

Selling: AR88LF, £45. K. W. Vespa 90W Tx, 160-10m., £45. reperforator (6 bit parallel input), plus S-P converter, £12. For Sale: Icom IC-2E complete with speaker/Mic., ni-cad pack, battery pack, BC-25E mains charger, IC-BP4 (new, boxed), IC-M1 10 watt amplifier, and 3.2dB portable antenna, (cost £240), £190. — Ring Dean, G8UZB, Crowmarsh 695 evenings only.

Selling: AR88LF, £45. K. W. Vespa 90W Tx, 160-10m., £45. reperforator (6 bit parallel input), plus S-P converter, £12. For Sale: Icom IC-2E complete with speaker/Mic., ni-cad pack, battery pack, BC-25E mains charger, IC-BP4 (new, boxed), IC-M1 10 watt amplifier, and 3.2dB portable antenna, (cost £240), £190. — Ring Dean, G8UZB, Crowmarsh 695 evenings only.

Selling: AR88LF, £45. K. W. Vespa 90W Tx, 160-10m., £45. reperforator (6 bit parallel input), plus S-P converter, £12. For Sale: Icom IC-2E complete with speaker/Mic., ni-cad pack, battery pack, BC-25E mains charger, IC-BP4 (new, boxed), IC-M1 10 watt amplifier, and 3.2dB portable antenna, (cost £240), £190. — Ring Dean, G8UZB, Crowmarsh 695 evenings only.

NEW!
SAMSON ETM-9C MEMORY KEYER

- 2xmemories (each one will store approx. 900 morse characters) - can run once only, or repeat continuously.
- Easy chaining of memory texts to build up longer message sequences.
- Keypad control of memories, REPEAT, & key-down TUNE functions.
- Spots 9.50 wpm, self-competing, variable (weighting) ratio.
- Normal or squeeze keying with the well-known built in Samson fully-adjustable precision twin paddle unit.
- Uses 4 AA batteries: only 2mA idling current - Why switch off?!
- Keys ty by reed relay or transistor.
- Complete C-MOS keyer & controls on one PCB (CS-III sockets).
- New style case, 4.5” x 7” x 6.5” D: ETM-8C: £12.95.
- ETM-3C C-MOS KEYER. Used worldwide for years by Pro, Jr Amateur stations. Fully-adjustable Samson twin paddles built-in for normal or squeeze keying. 9.50 wpm. Relay or transistor keying. 5A idling current (uses 4 AA batts). ETM-3C: £9.95.
- JUNKER PRECISION HAND KEY. Still going strong after 50 years in professional use.
- Adjustable Samson twin paddles built-in for normal or squeeze keying. 8-50 wpm. Relay or transistor keying. 5A idling current (uses 4 AA batts).

BAUER SINGLE PADDLE UNIT. 134”

JUNKER ETM-8C MEMORY KEYER

- Complete 8-bit C-MOS keyer controls on one PCB. (CS-III sockets).
- New style case, 4.5” x 7” x 6.5” D: ETM-8C: £12.95.
- ETM-3C C-MOS KEYER. Used worldwide for years by Pro, Jr Amateur stations. Fully-adjustable Samson twin paddles built-in for normal or squeeze keying. 9.50 wpm. Relay or transistor keying. 5A idling current (uses 4 AA batts). ETM-3C: £9.95.

JUNKER ETM-3C MEMORY KEYER

- Complete 8-bit C-MOS keyer controls on one PCB. (CS-III sockets).
- New style case, 4.5” x 7” x 6.5” D: ETM-8C: £12.95.
- ETM-3C C-MOS KEYER. Used worldwide for years by Pro, Jr Amateur stations. Fully-adjustable Samson twin paddles built-in for normal or squeeze keying. 9.50 wpm. Relay or transistor keying. 5A idling current (uses 4 AA batts). ETM-3C: £9.95.

BAUER SINGLE PADDLE UNIT. 134”

Callers Welcome.
03986-215

ANTI-TVI TRAP DIPOLES inc. WARC NEW BANDS

Call or phone for a most courteous quotation

AMATEUR RADIO by Gordon Stokes and Peter Bubb

The Lutterworth Press are the publishers of this book, which is intended for those wishing to study for the R.A.E. It comprises nineteen chapters, plus introduction and index, covering the basic, technical material the would-be candidate needs to obtain a "pass". Copiously illustrated with simple diagrams and excellent plates. Published in hardback.

250 pages.

Call or phone for a most courteous quotation

We are one of the largest stockists of valves etc. in the U.K.

COLOMOR ELECTRONICS LTD.

"S.W.M." DX ZONE MAP

9th Edition!

Great Circle Projection on durable, quality, paper for wall mounting. 33% in. wide by 24% in. deep. Giving essential DX information - bearing and distance of all parts of the world relative to the U.K., the Zone areas into which the world is divided for Amateur Radio purposes, with major prefixes listed separately. Distance scale in miles and kilometres. Time scale relative to the U.K., the Zone areas into which the world is divided for Amateur Radio purposes.

Price £3.50 inc. p/p

Publications Dept.

Short Wave Magazine Ltd.,
34 High Street, Welwyn, Herts. AL6 9EQ.

Tel: Welwyn (0438) 25007

Send for a free copy of "S.W.M." DX ZONE MAP

CALL CABLE OFFERS

UR35 50 ohm, stranded conductor 20 per M (33pm)
UR97 50 ohm stranded conductor 20 per M (33pm)
UR17 50 ohm low loss 70p per M (1.56pm)
UR97 50 ohm low loss 70p per M (1.56pm)
UR97 75 ohm standard well over a year old 25p per M (59pm)
UR95 50 ohm miniature 25p per M (59pm)
300V twin Ribbons 1.22 p/m (2.7pm)
75ohm twin feeder 1.8p/m (4.1pm)
14s w/g Hard Drawn Copper 25p per M (59pm)

Postage included in brackets. S.A.E. for full list.

W. H. WESTLAKE, CLAWTON, HOLSWORTHY, DEVON.

MORSE MADE EASY BY THE RHYTHM METHOD!

No expensive equipment required only a turntable - if you start RIGHT you will be reading amateur and commercial Morse within a month. (Most students take about three weeks). That's why after 25 YEARS we still use these scientifically prepared special records with which you cannot fail to learn the MORSE RHYTHM automatically. It's as easy as learning a tune. 15w.p.m. in 4 weeks guaranteed. Complete course comprising 2 x 12" + 1 x 7" multi-speed records + books. U.K. p.p. £7.00. Overseas, sufficient for 750 grams, £12.60. Dispatch by return from: - S. Bennett, G3HSC, Box 30, 40 Green Lane, Purley, Surrey CR2 3PD. 01-680-2696.

June, 1982
COMMUNICATION EQUIPMENT IN THE SOUTH WEST

FT 1 £1295.00 YAESU FT 230 £229.00
FT 1012DFM £665.00 FT 290 £249.00
FT 902D £885.00 FT 208 £209.00
FC 902 £135.00 FT 480 £379.00
FT 707 £569.00 FRG 7 £199.00
FT 707 £85.10 FRG 7700 £329.00
PP 707 £125.25 FRG 770OM £409.00
FT 107DMS £799.00 FT 708 £219.00

EASIBINDERS

To hold together 12 copies of “Short Wave Magazine”

Strongly made with stiff covers, and bound in red

Wintrel Achina, these handsome binders have the title

and date frame blocked in gold on the spine. Price £4.65

including post/packaging.

Publications Dept.
Short Wave Magazine Ltd.,
34 High Street, Welwyn, Herts. AL6 9EQ.
WORLD RADIO/TV HANDBOOK 1982

The World's only complete reference guide to International Radio & Television Broadcasting Stations. It includes: Frequencies, time schedules, announcements, personnel, slogans, interval signals and much more besides of value to the listener. Lists all International short-wave stations, including frequencies, for each country; foreign broadcasts, long and medium wave stations (AM Broadcast Band), TV stations and domestic programmes. Long recognised as the established authority by broadcasters and listeners. It is the only publication that enables you to identify BC stations quickly and easily. Enables you to fill more pages in your log book on the SW BC bands and helps you add more BC-station QSL cards to your collection.

£11.35
(The above price includes postage and packing).

from
SHORT WAVE MAGAZINE
34 High Street, Welwyn, Herts. AL6 9EQ

SIMPLE, LOW-COST WIRE ANTENNAS
by William Orr, W6SA1

Now with data on the new amateur bands!

This excellent and thoroughly recommended handbook is the publication on the practical approach to building aerials. After starting with aerial fundamentals there are discussions and descriptions of ground-plane, end-fed, DX dipole, vertical and wire beam antennas, plus coverage on a universal HF antenna system and working DX with an 'invisible aerial'; the SWR meter and coaxial cable also have chapters to themselves.

The whole book is presented in an authoritative, immensely clear, readable and enjoyable manner with the emphasis on the practical throughout — to the extent that even the chap who can hardly strip a piece of co-ax need not feel at all left out! Just as practical for the SWL, too!

192 pages £4.45 inc. post

Order from
Publications Dept.
Short Wave Magazine Ltd.
34 High Street, Welwyn, Herts. AL6 9EQ

CALL BOOKS

INTERNATIONAL:
RADIO AMATEUR CALL BOOKS (1982)
Foreign ("DX") Listings £11.80
U.S. Listings .. £12.40
U.K. Callbook, 1982 Edn. (RSGB) £4.60

MAPS
"SHORT WAVE MAGAZINE" DX ZONE MAP
(GREAT CIRCLE) in colour. Latest 9th edition £3.50
AMATEUR RADIO MAP OF WORLD Mercator Projection — Much DX Information — in colour. Latest 14th edition .. £1.10
RADIO AMATEUR'S WORLD ATLAS in booklet form, Mercator projection, for desk use. Gives Zones and Prefixes. Latest 11th edition £1.65

LOG BOOKS
Amateur Radio Logbook £2.80
Receiving Station Log £2.60
Mobile Logbook ... £1.10
(The above prices include postage and packing)

Available from:
Publications Dept.
Short Wave Magazine
34 High Street, Welwyn, Herts. AL6 9EQ
Tel: Welwyn 10438711 5206/7
(Counter Service, 9.30-5.00 Mon. to Fri.)
(Giro A/c No. 547 6151)

BETTER SHORT WAVE RECEPTION
by William I. Orr W6SAI and Stuart D. Cowan W2LX

New 1981 (5th) Edition!

In the latest edition of this excellent work for all those who own (or intend to own) a radio receiver, these two well-known and respected writers have produced chapters covering: the radio spectrum and what you can actually hear world-wide; the tuning of a shortwave receiver; the business of buying a receiver, both new and secondhand; a description of the SW Rx in non-technical terms, together with receiver adjustment and alignment; DX-ing above 30 MHz; a description of the VHF receiver; building and adjusting efficient aerials; reception techniques. Thoroughly readable and "digestible", this book is without doubt a very valuable addition to the bookshelf of any SWL.

160 pages £3.80 inc. post.

Order from:
Publications Dept.
Short Wave Magazine Ltd.
34 High Street, Welwyn, Herts. AL6 9EQ
Technical Books and Manuals

(ENGLISH AND AMERICAN)

AERIAL INFORMATION

- **Antenna Handbook (Orr and Cowan)**
 - £4.45
- **Practical Aerial Handbook, 2nd Edition (King)**
 - £7.95
- **Beam Antenna Handbook**
 - £3.96
- **Cubical Quad Antennae, 2nd Edition**
 - £3.15
- **Simple Low Cost Wire Antennas, by Orr**
 - £4.45
- **73 Vertical Beam and Triangle Antennas (E. M. Noll)**
 - £0/S
- **73 Dipole and Long-Wire Antennas (E. M. Noll)**
 - £4.36
- **Antenna Book (ARRL)** 13th Edition
 - £4.15
- **The (ARRL) Antenna Anthology**
 - £6.10

BOOKS FOR THE BEGINNER

- **Amateur Radio (Lutterworth Press)**
 - £8.60
- **Questions and Answers on Amateur Radio, by F. C. Judd**
 - £2.25
- **Transistors Q & A, (Newnes), new edition**
 - £2.05
- **Electronics Q & A (Newnes), 2nd Ed.**
 - £2.36
- **Elements of Electronics, Book 1.**
 - £2.50
- **Elements of Electronics, Book 2.**
 - £2.50
- **Elements of Electronics, Book 3.**
 - £2.50
- **Elements of Electronics, Book 4.**
 - £3.36
- **Elements of Electronics, Book 5.**
 - £3.36
- **Solid State Short Wave Receivers for Beginners** (R. A. Penfold)
 - £1.50
- **Beginners Guide to Electronics, 3rd Edition**
 - £4.36
- **Beginners Guide to Microprocessors and Computing**
 - £2.05
- **Course in Radio Fundamentals, (ARRL)**
 - £3.10
- **Guide to Crystal Radio, 18th Edition (RSGB)**
 - £2.10
- **Ham Radio (A Beginners Guide) by R. H. Warring**
 - £4.10
- **Morse Code for the Radio Amateur** (RSGB)
 - £2.45
 - £9.25
- **Beginners Guide to Electronics, 2nd Edition**
 - £4.36
- **Beginners Guide to Microprocessors and Computing**
 - £2.05
- **Course in Radio Fundamentals, (ARRL)**
 - £3.10
- **Guide to Crystal Radio, 18th Edition (RSGB)**
 - £2.10
- **Ham Radio (A Beginners Guide) by R. H. Warring**
 - £4.10
- **Morse Code for the Radio Amateur** (RSGB)
 - £2.45
 - £9.25
- **Beginners Guide to Electronics, 2nd Edition**
 - £4.36
- **Beginners Guide to Microprocessors and Computing**
 - £2.05
- **Course in Radio Fundamentals, (ARRL)**
 - £3.10
- **Guide to Crystal Radio, 18th Edition (RSGB)**
 - £2.10
- **Ham Radio (A Beginners Guide) by R. H. Warring**
 - £4.10
- **Morse Code for the Radio Amateur** (RSGB)
 - £2.45
 - £9.25

GENERAL

- **Projects in Amateur Radio and Short Wave Listening (Newnes)**
 - £3.30
- **How to build your own Solid State Oscilloscope (Rayer)**
 - £1.75
- **How to make Walkie Talkies (Rayer)**
 - £1.75
- **How to Build Advanced Short Wave Receivers (Penfold)**
 - £1.40
- **Better Short Wave Reception, 1981 (6th Ed.)**
 - £3.80
- **FM & Repeaters for the Radio Amateur (ARRL)**
 - £3.70
- **Easibinder (to hold 12 copies of "Short Wave Magazine" together) new A4 size**
 - £4.65
- **Oscar - Amateur Radio Satellites (Rayer)**
 - £3.30
 - £11.35
- **The World's Radio Broadcasting Stations and European FM TV (Newnes) new title.**
 - £6.10
- **World DX Guide.**
 - £5.40
- **Guide to Broadcasting Stations (new 18th Edition)**
 - £3.40
- **Radio Stations Guide**
 - £2.05
- **Long Distance Television Reception (TV-DX) for the Enthusiast (revised edition).**
 - £2.25
- **Solid State Basics for the Radio Amateur.**
 - £3.70
- **New Introduction to Radio DXing.**
 - £2.30
- **Radio Amateurs DX Guide (14th Edition).**
 - £2.05
- **Electronic Test Equipment Construction (Rayer).**
 - £2.05
- **Power Supply Projects (Penfold).**
 - £2.05

HANDBOOKS AND MANUALS

- **Radio Communication Handbook, Vols. 1 and 2 combined (paperback), RSGB.**
 - £11.05
- **TVI Manual (2nd Edn.) (RSGB).**
 - £1.85
- **Radio and Electronic Laboratory Handbook by Scroggie-Howe, latest 9th Edn.**
 - £21.25
- **RTTY Handbook (73 Magazine).**
 - £0/S
- **Slow Scan Television Handbook (73 Magazine).**
 - £0/S
- **Working with the Oscilloscope**
 - £4.05
 - £9.25
- **Beginners Guide to Electronics, 3rd Edition**
 - £4.36
- **Beginners Guide to Electronics, 2nd Edition**
 - £4.36
- **Beginners Guide to Microprocessors and Computing**
 - £2.05
- **Course in Radio Fundamentals, (ARRL)**
 - £3.10
- **Guide to Crystal Radio, 18th Edition (RSGB)**
 - £2.10
- **Ham Radio (A Beginners Guide) by R. H. Warring**
 - £4.10
- **Morse Code for the Radio Amateur** (RSGB)
 - £2.45
- **Understanding Amateur Radio (ARRL)**
 - £4.05
 - £3.00

USEFUL REFERENCE BOOKS

- **Solid State Design for the Radio Amateur (ARRL).**
 - £5.20
- **Foundations of Wireless and Electronics, 9th Edition (Scroggie).**
 - £6.35
- **Amateur Radio Techniques, 7th Edn. (RSGB).**
 - £6.00
- **U.K. Call Book 1982 (RSGB).**
 - £4.60
- **Hints and Kinks (ARRL).**
 - £3.10
- **Radio Frequency Interference (ARRL).**
 - £2.40
- **Amateur Radio Awards, (RSGB).**
 - £3.40
- **Amateur Radio Operating Manual (RSGB) 2nd Ed.**
 - £4.95
- **Practical Electronics Handbook (Newnes).**
 - £4.40
- **Oscilloscopes - How to Use Them, How They Work (Newnes).**
 - £3.05

VALVE AND TRANSISTOR MANUALS

- **Towers' International Transistor Selector, latest Edition (Scroggie).**
 - £6.35
- **Radio Valve and Semiconductor Data.**
 - £6.00
- **Radio Valve and Semiconductor Data.**
 - £6.00
- **Radio Data Reference Book (RSGB).**
 - £0/P
- **Electronics Data Book (ARRL).**
 - £3.15
- **Radio Frequency Interference (ARRL).**
 - £2.40
- **International Transistor Equivalents Guide.**
 - £3.35

VHF PUBLICATIONS

- **VHF Handbook, Wm. 1. Orr.**
 - £3.85
- **VHF Manual (ARRL).**
 - £0/P
- **VHF/LHF Manual (RSGB) 3rd Edition.**
 - £8.80

Available from

SHORT WAVE MAGAZINE Publications Dept.

34 High Street, Welwyn, Herts. AL69EQ — Welwyn (043871) 5206/7

(Counter Service: 9.30-5.00 Mon. to Fri.)

The above prices include postage and packing.

O/P (Out of print) THE ABOVE PRICES INCLUDE POSTAGE AND PACKING

O/S (Out of stock) Many of these titles are American in origin (Terms C.W.O)

Prices are subject to alteration without notice.

Available from **SHORT WAVE MAGAZINE** Publications Dept.

34 High Street, Welwyn, Herts. AL69EQ — Welwyn (043871) 5206/7

(June 1982)