Precision Crystals of all types in a wide variety of bases covering the complete range 50 Kc. to 18 Mc. in fundamental frequencies. All are made to extremely fine tolerances, and frequency adjustment can be given up to .005%. Plated electrodes of gold, silver or aluminium with wired in spot welded contact; are available. Quotations can be given for any type of cut or mode of oscillation including a complete range for filter circuits with zero temperature co-efficient over a sensibly wide temperature range. Our new works is equipped with up to the minute production technique methods, X-ray orientation ensuring accuracy of all cuts. Artificial aging by etching and plating by evaporation under vacuum ensure long term stability of the final calibration. Early delivery can be given of most types. Our regrind service is still available and in some cases we are prepared to quote for lowering the frequency of your existing crystals.

Special Offer:

200 kc. DT cut, zero temperature co-efficient over the range — 30° centigrade to + 55° centigrade. Frequency adjustment .005% or better. Mode: Face shear. Silver plated electrodes, wire mounted. Basing ½” pin spaced. Other bases to order, £1 each.

A 2-Metre Convertor of Outstanding Merit

4-6 Mc/s. I.F. — Crystal controlled. — Low noise triodes. — Adjustable matching.

PRICE, complete with valves and overtone crystal, £9/10/- (Cat. No. E5030(A)); or with power unit and cabinet, £15 (Cat. No. E5030).

Labgear (Cambridge) Ltd.
WILLOW PLACE, CAMBRIDGE. Tel. 2944

BROOKES Crystals

mean
DEPENDABLE
frequency control

Illustrated is a Type S Crystal unit from a range covering 100 kc/s to 15 Mc/s.

- Black bakelite case.
- 1½” high x 1½” wide x 3” thick.
- Two ¼” dia. pins spaced 3” centres.

ALL Brookes Crystals are made to exacting standards and close tolerances. They are available with a variety of bases and in a wide range of frequencies. There is a Brookes Crystal to suit your purpose—let us have your enquiry now.

Brookes Crystals Ltd
Suppliers to Ministry of Supply, Home Office, BBC, etc.
181/183 TRAFALGAR RD., LONDON, S.E.10.
Tel. GREenwich 1829. Grams: Xtals Green, London
A dependably accurate instrument for testing and fault location is indispensable to the amateur who builds or services his own set. Stocks are now available of these two famous "Avo" Instruments. If you have any difficulty in obtaining one locally, please send us the name and address of your nearest Radio Dealer.

THE UNIVERSAL AVO-MINOR

A small but highly accurate instrument for measuring A.C. and D.C. voltage, D.C. current, and also resistance. It provides 22 ranges of readings on a 3-inch scale, the required range being selected by plugging the leads supplied into appropriately marked sockets. An accurate moving-coil movement is employed, and the total resistance of the meter is 200,000 ohms.

The instrument is self-contained for resistance measurements up to 20,000 ohms and, by using an external source of voltage, the resistance ranges can be extended up to 10 megohms. The ohms compensator for incorrect voltage works on all ranges. The instrument is suitable for use as an output meter when the A.C. voltage ranges are being used.

Size: 4½ in. x 3½ in. x 1¼ in.
Nett weight: 18 oz.
Price: £12 0 0

THE D.C. AVO-MINOR

A conveniently compact 2½-inch moving coil precision meter for making D.C. measurements of milliamps, volts and ohms. The total resistance of the meter is 100,000 ohms. and full scale deflection of 300 v. or 600 v. is obtained for a current consumption of 3mA. or 6mA. respectively

Size: 4½ in. x 3½ in. x 1¼ in.
Nett weight: 12 oz.
Price: £8 5 0

Complete descriptive Booklet available on application to the Sole Proprietors and Manufacturers:

The AUTOMATIC COIL WINDER & ELECTRICAL EQUIPMENT CO., LTD.

AVOCET HOUSE, 92-96 VAUXHALL BRIDGE ROAD, LONDON, S.W.1. Telephone: Victoria 3404 (9 lines)
Now available for Immediate Delivery

★ THE RADIO HANDBOOK 14th Edition
American, Published by “Editors and Engineers,” 768 pages, 60s. Post Free.

★ RADIO AMATEUR CALL BOOK
Autumn (Fall) 1956 Edition
Abridged Edition excludes only American amateur stations. Otherwise complete with latest call sign-address listings for all countries, and including much DX data. In its 33rd year of publication.

★ THE RADIO AMATEUR’S HANDBOOK

ANTENNA HANDBOOK (7th Edition) 19s. 0d.
ANTENNA MANUAL 28s. 0d.
A COURSE IN RADIO FUNDAMENTALS (New Edition) 10s. 6d.
BASIC AUDIO COURSE 22s. 0d.
BASIC RADIO COURSE 19s. 0d.
BEAM ANTENNA HANDBOOK 22s. 0d.
HIGH FIDELITY by G. A. Briggs (Published by Wharfside Wireless) 12s. 6d.
HIGH-FIDELITY TECHNIQUES 8s. 6d.
HINTS AND KINKS, Vol. 5 11s. 0d.
HOW TO BECOME A RADIO AMATEUR (Published by ARRL) 5s. 0d.
HOW TO LISTEN TO THE WORLD (1956 Edition) 7s. 6d.
LEARNING THE RADIO TELEGRAPH CODE 4s. 6d.
MAINTAINING HI-FI EQUIPMENT 24s. 0d.
MOBILE HANDBOOK (Published by CQ) 17s. 6d.
MOBILE MANUAL (Published by ARRL) 22s. 0d.
MODEL CONTROL BY RADIO 8s. 6d.
OPERATING AN AMATEUR RADIO STATION (Published by ARRL) 2s. 8d.
PRACTICAL DISC RECORDING 6s. 6d.
RADIO AND TV HINTS 8s. 6d.
SERVICING RECORD CHANGERS 24s. 0d.
SINGLE SIDEBAND FOR THE RADIO AMATEUR 14s. 6d.
SINGLE SIDEBAND TECHNIQUES 14s. 6d.
SWEEP MARKER GENERATORS FOR TELEVISION RADIO 20s. 6d.
THE OSCILLOSCOPE 18s. 6d.
TRANSISTORS — THEORY AND PRACTICE 16s. 6d.
UHF ANTENNAS, CONVERTERS AND TUNERS 12s. 0d.
WORLD RADIO HANDBOOK (1956 Edition) 11s. 0d.
WORLD RADIO TELEVISION VALVE HANDBOOK (1956 Edition) 14s. 9d.
WORLD RADIO VALVE HANDBOOK 5s. 10d.

M A G A Z I N E S BY SUBSCRIPTION

AUDI O 40s. 0d.
CQ, RADIO AMATEUR’S JOURNAL 44s. 0d.
ELECTRONICS (Trade only) 160s. 0d.
POPULAR MECHANICS 32s. 0d.
POPULAR SCIENCE 45s. 0d.
QST, ARRL 36s. 0d.
RADIO AND TELEVISION NEWS 36s. 0d.
RADIO ELECTRONICS 33s. 0d.
SERVICE 24s. 0d.
TELEVISION 48s. 0d.
TELEVISION ENGINEERING 32s. 0d.
Subscription Service for all American Radio and Technical Periodicals.

SHORT WAVE MAGAZINE
(PUBLICATIONS DEPARTMENT)
55 VICTORIA STREET • LONDON • S.W.1 • ABBEY 5341
CALLING S.W. ENTHUSIASTS

COURSES FOR RADIO AMATEURS EXAMS AND P.M.G. 1st & 2nd CLASS CERTIFICATES (THEORY). ALSO GENERAL COURSES FOR S.W. LISTENERS

Take our special postal courses which have been written by experts both in these subjects and in modern methods of postal instruction. E.M.I. INSTITUTES are part of a world-wide electronics organisation, and many former students testify that our tuition was invaluable in ensuring their success in examinations.

POST THIS COUPON TODAY

Subject(s) of interest

Name

Address

E.M.I. INSTITUTES

An educational organisation serving the E.M.I. Group of Companies which include "HIS MASTER'S VOICE" MARCONIPHONE, ETC.

SPECIAL PRACTICAL KITS

are available as part of our Radio Courses. A typical course for beginners covers the design, construction and operation of a short wave 2 valve receiver. This equipment is supplied upon enrolment, and remains your property.

ON DEMONSTRATION AT WEBB'S

a new, unique receiver designed specifically and solely for the

AMATEUR BAND OPERATOR

EDDYSTONE '888'

Communications Receiver

Space limitation precludes us doing justice to its many features ... but every one of the multitude of design details are directed to one end ...

to ensure your station is well equipped for reception

We believe the '888' will become acknowledged as the answer to all problems of reception on amateur bands. Bandspread is inherent in the design, each of the six bands occupies the 12in. calibration scale.

Accurate dial readings. Crystal controlled Calibration Oscillator. Selectivity Bandwidth is variable 0-9 Kc/s to 3 Kcs. Audio Filter for CW with 100 c/s Bandwidth.

Cash Price £110 or on Webb's Extended Payment Terms—Deposit £55 and 12 payments of £5/0/10 (or 18 of £3/10/4)

Also under our Six Months Credit (No Interest) Scheme—Deposit £22 and 6 payments of £14/13/4 by Banker's order. Please ask for forms and conditions of supply.
For any equipment and for any application where low voltage stabilisers are normally employed, this 75 volt Mullard tube will give improved performance. Mechanically strong, the 75C1 combines zirconium electrodes and the sputtered envelope technique pioneered by Mullard. This design gives a combination of high stability and good regulation which has never before been achieved in one tube.

ADVANCED FEATURES INCLUDE:

Very wide current range of 2 to 60mA with a regulation of only 9 volts.

Variation of burning voltage of less than 1% per 1,000 hours.

Burning voltage of all tubes at 20mA confined within the extremely close range of 73 to 79 volts.

Inherently Rugged Construction

Special uranium oxide coating ensures that the maximum striking voltage is 110 volts in BOTH DAYLIGHT AND DARKNESS.

Further data on the 75C1 and other stabilisers in the Mullard range are readily available upon request.
INDEX TO
ADVERTISERS

PAGE
Altham Radio 447-448
Anglin 448
Automatic Coil 393
Brookes Crystals, Ltd. cover ii
Brown, S. G. 443
Candler System 445
E.M.I. Institutes 395
Harris, P............ 446
Henry's cover iv
Henley's 444
Home Radio 447
Labgear cover ii
Lawrence 446
Lyons Radio 445
Minimitter 443
Mullard 396
Proops 398
Rollet, H............ 447
Small Advertisements 445-448
Southern Radio 448
Standard Tel........ 444
S.W.M. Publications Dept. 394
Universal Electronics cover iii
Universal Quartz 448
Webb's 395
Whitaker cover ii
Young cover iii

SHORT WAVE
MAGAZINE

VOL. XIV OCTOBER 1956 No. 158

CONTENTS

Editorial 399
Conversion for the TA-12B Transmitter, Part I,
by R. T. Torrens (G13FWF) 400
Top Band Talking Box 406
The "Midge-Mod," by B. Wardman (G5GQ) 410
DX Commentary, by L. H. Thomas, M.B.E. (G6QB) 414
Zbor III, Beograd, 1956 420
The Southampton Mobile Rally 421
SSB Topics, Conducted by R. L. Glaisher (G6LX) 423
VHF Bands, by A. J. Devon 426
A Simple Oscilloscope 431
Band-Switched ATU, by N. P. Spooner (G2NS) 435
The Month with the Clubs — From Reports 440
Rules — MCC, 1956 441

Managing Editor: AUSTIN FORSYTH, O.B.E. (G6FO)

Advertisement Manager: P. H. FALKNER
Assistant Editor: L. H. THOMAS M.B.E. (G6QB)

Published the Friday following the first Wednesday each month at 55 Victoria
Street, London, S.W.1. Telephone: Abbey 5341/2

Annual Subscription: Home and Overseas 30s. post paid.

Copyright Reserved throughout the World. 397

AUTHORS’ MSS

Articles submitted for Editorial consideration must be typed double-spaced
with wide margins on one side only of quarto or foolscap sheets, with diagrams
shown separately. Photographs should be clearly identified on the back.
Payment is made for all material used, and it is a condition of acceptance
that full copyright passes to the Short Wave Magazine, Ltd., on publication
There is always a fine selection of equipment at The Walk-around Shop

BENDIX COMMUNICATIONS RECEIVER TYPE RA-10DB

A superb 8 valve 4 band receiver covering 150-400 kc/s, 400-1100 kc/s, 2.5 Mc/s, and 5-10 Mc/s. Valve line up: 6SK7 IF-Amplifiers, 6G7 Second Det, AVC and AF-Amplifier, 6CS BFO, 6K6, OP, 6H6 Sig. Limiter Diode.

Power supply 28V, d.c. 2A. to internal motor generator. If desired this can easily be changed to a similar generator with either 6 or 12V. input. Alternatively the generator may be removed and the space utilised for a converter. A circuit for a.c. mains conversion is available.

As a BOAT, TRUCK, CARAVAN or CAR RECEIVER it is UN-EQUALLED in value; converted to a.c. operation for fixed station use this can easily be changed over five times the price we ask.

Full technical details, servicing data and circuit are supplied with every receiver.

PRICE £5.10.0

MINIATURE I.F. STRIPS

RECEIVER UNIT Ex-1143A

Suitable for conversion to 2 METRES or F.M. Wrotham transmitters. Valve line up: (4) EF50; (1) EL32; (2) EF39; (1) ECC83; (1) EA50. Supplied with circuit diagrams. FullyY valved. Price 25/- each. Plus 3/- p.p.

BENDIX Potted Audio Output Transformer complete with integral smoothing choke. Ratings 44 watt, 9,000 ohm Primary, 600 and 4,000 ohm Secondary. Size: 4” x 1 1/2” x 2”. New and boxed, 4/6, p.p. 1/-.

TYPE 62A INDICATORS

Ideal for conversion to osciloscopes, T.V. units, etc. Containing V.C.R. 97, 12 VR. 91 (EF.50), 2 VR. 54 (EB.34), 3 VR. 92 (EF.50), 4 CV. 118 (SP.61). Slow-motion dial, 13 Pots and scores of useful components. Size 8” x 11” x 1 ½”. In wooden packing case ... Price £3 0 0

Carriage 7/6.

The Walk-around Shop

AN/APNJ TRANSDUCER

This unit consists of Magnet, and Coil which is attached to an aluminium diaphragm suspended freely and perforated to prevent air damping. Mounted on a C-Gram cover which sits over the diaphragm is a form of 2-Gram capacitor which has a swing from 10-50 pF.

The above unit is used as part of Wobbulator described on page 252 of the June Wireless World.

2 METRE RECEIVER Type R1392

Air Tested 15 Valve Superhet

Frequency 95-150 Mc/s (2 to 3 metres)

Valve line-up: 1st and 2nd R.F. Amp. VR.136 (EF.54), 1st Local Oscillator VR.65 (EF.61), 2 Oscillator Multipliers VR.136 (EF.54), 3 I.F. Amp VR.53 (EF.59), A.G.C. 6Q7, Output 6J5, Muting VR.92 (EA.50). Noise Limiter VR.92 (EA.50), B.F.F. 6J7. Mixer VR.92 (EF.54), De Mod. 6Q7. Slow motion Tuning over 95-150 Mc/s or can be Crystal controlled. Power supply required: 240-250 volts at 80 mA, 6.3 volts at 4 amps.

Size 19” x 10” x 10” Standard Rack Mounting. Price £19 6 0

Complete with valves and circuit diagram, checked and Air Tested. Packing and postage 17/6, 10/- returnable on packing case.

POWER PACK Type 234 for use with R1392. £4 10 0

Postage and packing 7/6d.

ABSORPTION WAVE METER

Easily converted to 2 metres or 70 cm. In copper-plated metal case 3½” x 4½” x 5½” with dial calibrated 0-100 and 80V Neon Tube. Coverage approx. 190-210 Mc/s.

New. 6/6 each, post paid.

I.F. AMPLIFIER UNIT

(As illustrated)

TYPE 81 MINIATURE TRANSMITTER STRIP

Complete with valves CV.415 (TT.15), CV.309 (QV.07), 2-6A6M, 2-EL91 and Crystal. Circuit supplied Free with unit.

Price £4 10 0 post paid.

Make a miniature POCKET RADIO

Incorporating high " Q " technique using the New Ferrite rod. Made possible by simple conversion of an ex-Govt. Hearing aid.

This conversion can be carried out in approximately 30 minutes.

All Components sold separately:

- Deaf Aid unit with earpiece ... £1 15 0
- Plastic Ear mould ... 2.0
- Ferrite Rod ... 5.0
- Conversion Components ... 4.0
- Batteries 1.5v. L.I. (Type D. 18) ... 8.0
- 30v. H.T. (Type B.119) ... 4.3

Make a miniature POCKET RADIO

Incorporating high " Q " technique using the New Ferrite rod. Made possible by simple conversion of an ex-Govt. Hearing aid.

This conversion can be carried out in approximately 30 minutes.

THE COMPLETE KIT OF PARTS includes a Type OL.10 Hearing Aid (with Crystal microphone) in perfect working order with miniature earphone and moulded ear insert attached: ferrite rod, germanium diode, components, circuit diagram and full instructions.

Price £1.60 (less batteries), post paid.

Carriage prices quoted apply only to England and Wales.

NOTE: Orders and Enquiries to Dept. 15 Shop hours 9 a.m. to 6 p.m. — Thurs. 9 a.m. to 1 p.m. OPEN ALL DAY SATURDAY. Telephone: LANgham 0141

PROOPS BROS. LTD., 52 TOTTENHAM COURT ROAD, LONDON, W.1.
EDITORIAL

Probation

The question of what the rules should be for the aspirant to an Amateur Radio licence has been something of a problem for many years. It is once again coming into the field of discussion. There are those who hold that today's procedure tends to make it unreasonably difficult for the genuine experimenter to obtain a licence; others consider that there should be much stricter control of probationers on the air. As a result of experience, opinion is tending to harden against the latest relaxations — permitting unrestricted operation at full power from the outset — and the obvious question now being asked is “Why the Morse test, anyway?”

As we see it, one solution would be to re-introduce the old AA (“artificial aerial”) procedure, the licence being granted on easier terms than at present. Then, at the end of twelve months, it should be convertible into a full radiating permit on passing the Morse test, followed by a six months' compulsory period of CW-only before reaching the full maturity of unrestricted operation. This would graduate the aspiring amateur in easy stages, and would ensure that operators came on the air with tested apparatus they had some knowledge of using.

It is sometimes said that for many of the professionals now taking out amateur licences this probationary process would be unnecessary. But experience shows that a professional qualification does not necessarily guarantee any particular competence in the practice and techniques of Amateur Radio. Our sort of radio demands an all-round competence and the practical approach; it is conducted in that peculiar atmosphere in which the keen schoolboy working from first principles and the specialist radionics engineer are on an equal footing and can meet on common ground. Indeed, this is “one of the things about” Amateur Radio!

Over the years, we have consistently advocated the principle of the AA Licence. Those who possess pre-war files of SHORT WAVE MAGAZINE may care to look up the editorial pages for June 1938, November 1938 and July 1939; they may agree that what was said then is broadly true for the situation we are in today. The only radical change called for is that whereas in pre-war years a licence was obtained by the vague process of “convincing the GPO that it was needed for experimental purposes” (and what stories were told to back that up!), nowadays the simple qualifying examination — with the exemptions as now agreed — is more appropriate, even for an AA Licence.
Conversion for the TA-12B Transmitter

BAND-SWITCHED ON SIX AMATEUR CHANNELS—CW AND PHONE—NBFM TELEPHONY—120 WATTS INPUT

PART I

R. T. TORRENS (G13FWF)

This article discusses what is a large-scale conversion of the TA-12, designed to make the fullest use of all the possibilities of this compact and very well-built “surplus” item. We first discussed the TA-12 transmitter series in SHORT WAVE MAGAZINE for December last year, since when some further material has appeared and many TA-12’s have found their way into amateur hands. Our contributor has gone into the matter in considerable detail, and shows how the TA-12 can be fully modified to emerge as a 120-watt CW/Phone transmitter, band-switched over the whole amateur communication range, properly TVI-proofed. The second part of his article, dealing with the constructional details, will appear in a later issue.—Editor.

One of the problems, when building a new transmitter, is the provision of a suitable case, panel and chassis. The Bendix TA-12B is certainly one very simple solution, providing as it does a beautiful table-model transmitter, weighing only 35 lbs. and containing almost everything one could wish to include in a modern HF transmitter (power supply and modulator excluded). The components are of exceptionally fine quality and three of the four independent VFO’s require only the addition of a suitable multiplier chain to provide operation on our six DX bands. (The fourth VFO operates on 300-600 kc.)

Unmodified

In its original form the Bendix TA 12-B is a channel switching transmitter covering four bands, each with its own VFO and independent tank circuit. The PA consists of a pair of 807’s in parallel driven by a single 807 doubler. VE3GG explains, in a very interesting and informative article appearing in the March issue of SHORT WAVE MAGAZINE, how the transmitter can be operated unmodified on 80 metres and on part of the 40-metre band, with full input at 750 volts HT. However, some of the transmitters available in this country appear to be adjusted for about 400 volts HT for the PA, and it is probably worth checking the value of screen resistors fitted to the 807’s before applying full HT.

Conversion

The idea behind the present conversion is to retain the operating convenience of channel switching by increasing the number of channels to six and allotting an amateur band to each channel. Also to use the original valves and operate the first 807 as a straight Class-B amplifier on all bands, thereby requiring very little RF power in the multiplier stages. The 600-metre tank inductance is removed and a two-wafer ceramic tank selector switch is fitted in its place. Three new tank inductances, with three associated Eddystone tuning condensers, are fitted for 20, 15 and 10 metres respectively. The three original tanks are rearranged to comply with amateur standards and operate on Forty, Eighty and One-Sixty metres respectively.

With the addition of three miniature valves and suitable wide-band coupler transformers, the transmitter will switch over the six bands and light up a 60-watt lamp load on each, without any tuning or loading adjustment. It is, however, necessary on 160 metres to reduce power. The original motor driven channel selector switch is removed and built into the aerial coupler unit so that automatic selection of aerial and correct coupler is provided for each band. The output from the pi-network tank circuits is adjusted to match into 50-70 ohms and is coupled via co-axial cable to the Send-Receive switch, low pass filter, the automatic co-axial switch in the aerial coupler unit and finally the tuned link, or screened link, coupled to the appropriate aerial inductance. A half-wave filter is sometimes used on 20 instead of the low-pass filter, in order to attenuate any possible 28 mc harmonic. The half wave filter is described in the Radio Handbook (fourteenth edition) and the low-pass filter is from an article by GM3IAZ in SHORT WAVE MAGAZINE, February, 1954. The performance of this filter is quite exceptional.

Modulation

AM is by a pair of 807’s to plate and screen of the PA. There is more than ample drive on all bands and the necessary 9 mA for this type of modulation is quite easily obtained.
with the drive control turned well down (R22). About 1 mA drive seems satisfactory for One-Sixty as, in this case, the grid leak is 66,000 ohms. Probably a certain amount of caution is indicated on 40 and 80 metres as the tank condenser vane spacing cannot have much in reserve, although the writer has experienced no trouble with 600 volts HT and full modulation. On all other bands there is ample spacing.

NBFM is by a modified edition of the very interesting little unit introduced to readers by G2NS (SHORT WAVE MAGAZINE, October, 1954) and originated by G8DL. In each VFO the grid condenser unit is easily identified, on the right of the valve. A wire is soldered to the inductance end of the condenser and taken to the 5 μF condenser and RFC, as described by G2NS, the only difference being that the unit is driven by the normal speech pre-amplifier via a 15:1 output transformer. Audio drive of about 41 volts peak at the anode of the 6J5 final in the pre-amplifier gives very nice modulation. Crystal or carbon microphone may be used. The figures quoted were recorded during a test on 20 metres, using an IN23A crystal and an RFC of about 1½ mH. G8DL’s little unit is very attractive and is used, although a reactance valve modulator is available. A feature of NBFM is the ease with which RF output to the aerial can be varied over a wide range, simply by adjusting the drive control; no adjustment of modulation is required and the clamp looks after the PA, making the transmitter very flexible.

One-Sixty Metres
At first one of the 807’s in the PA was arranged to have its heater supply cut for One-Sixty; however, results seemed to be just as good by allowing the pair to remain in circuit and simply switching in additional grid resistance to bring the total up to 66,000 ohms while reducing the screen supply to about 120 volts by switching a 10,000 ohms resistance (R31) in parallel with the clamp. With this arrangement and 350 volts HT results are satisfactory.

There is absolutely no trace of any 160-metre break-through while operating on any band above 1-8 mc. (This has been troublesome with unmodified samples of the TA-12.) Probably the screened compartments and the double tuned circuits would alone stop break through; however, as a precaution, all 160-metre leads from the VFO’s are run in screened wire.

CW Operation
Operation on CW is with 600 volts maximum HT, owing to the type of clamp circuit used. Screen current is about 12 mA, and with no drive the clamp draws 22 mA and the PA anode 80 mA. For higher values of HT it would be preferable to include an additional voltage stabilizer valve to act as a switch to isolate the screens during “key-up” intervals. (Reference A.R.R.L. Handbook, 1956). Drive for CW is 4½ mA on all bands except One-Sixty, where less than 1 mA is used.

Ten-Metre Band
Owing to the low resistance of the PA, quite a lot of tank capacity is required for good loaded “Q,” consequently the tank inductance is smaller than one would like. Brass strip is used where reasonably possible in con-
During all these tests Kirk o’ Shotts, 120 miles away, could be heard in the VHF receiver.

Circuit Points

All valves are protected so that drive can be removed at any time, for long periods, without causing any trouble. Fig. 1 shows the circuit complete, as modified.

Table of Values

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1, C2</td>
<td>.005 μF mica</td>
</tr>
<tr>
<td>C4, C27</td>
<td>.002 μF mica</td>
</tr>
<tr>
<td>C9, C25</td>
<td>.003 μF mica</td>
</tr>
<tr>
<td>C6</td>
<td>.006 μF mica</td>
</tr>
<tr>
<td>C8, C10</td>
<td>100 μF mica</td>
</tr>
<tr>
<td>C9, C9a</td>
<td>100 μF mica</td>
</tr>
<tr>
<td>C13, C14</td>
<td>.01 μF disc ceramic</td>
</tr>
<tr>
<td>C15, C19</td>
<td>.001 μF disc ceramic</td>
</tr>
<tr>
<td>C21, C23</td>
<td>.01 μF mica</td>
</tr>
<tr>
<td>C12</td>
<td>30 μF mica</td>
</tr>
<tr>
<td>C20</td>
<td>300 μF mica</td>
</tr>
<tr>
<td>C24</td>
<td>75 μF mica</td>
</tr>
<tr>
<td>C28</td>
<td>.001 μF disc ceramic</td>
</tr>
<tr>
<td>C31, C36</td>
<td>27 μF variable, .052 inch gap, Eddystone No. 388</td>
</tr>
<tr>
<td>C37, C39</td>
<td>12 μF variable, .022 inch gap, Eddystone No. 380</td>
</tr>
<tr>
<td>C41</td>
<td>50 μF variable, General Electric</td>
</tr>
<tr>
<td>C40</td>
<td>50 μF variable, Eddystone</td>
</tr>
<tr>
<td>C134</td>
<td>1% 15,000 ohms, 5-watt, carbon</td>
</tr>
<tr>
<td>C135</td>
<td>1% 15,000 ohms, 5-watt, carbon</td>
</tr>
<tr>
<td>R1, R19</td>
<td>72,000 ohms, 1-watt</td>
</tr>
<tr>
<td>R2, R26</td>
<td>4,700 ohms, 1-watt</td>
</tr>
<tr>
<td>R3, R7</td>
<td>500,000 ohms, 5-watt</td>
</tr>
<tr>
<td>R20, R28</td>
<td>100 μF mica</td>
</tr>
<tr>
<td>R4</td>
<td>7,500 ohms, 1-watt</td>
</tr>
<tr>
<td>R4A, R9</td>
<td>33,000 ohms, 1-watt</td>
</tr>
<tr>
<td>R5</td>
<td>300 ohms, 1-watt</td>
</tr>
<tr>
<td>R6</td>
<td>22,000 ohms, 1-watt</td>
</tr>
<tr>
<td>R8</td>
<td>270,000 ohms, 1-watt</td>
</tr>
<tr>
<td>R10</td>
<td>100 ohms, 1-watt</td>
</tr>
<tr>
<td>R18</td>
<td>100 ohms, 1-watt</td>
</tr>
<tr>
<td>R11</td>
<td>60,000 ohms, 1-watt</td>
</tr>
<tr>
<td>R118</td>
<td>10,000 ohms, 1-watt</td>
</tr>
<tr>
<td>R23</td>
<td>10,000 ohms, 1-watt</td>
</tr>
<tr>
<td>R24</td>
<td>56,000 ohms, 1-watt</td>
</tr>
<tr>
<td>R29</td>
<td>25,000 ohms, made up from original 15,000 ohms resistor with two 5,000 ohm 5-watt resistors, all in series</td>
</tr>
<tr>
<td>R30</td>
<td>250 μF mica</td>
</tr>
<tr>
<td>R31</td>
<td>10,000 ohms, 1-watt</td>
</tr>
<tr>
<td>R116</td>
<td>15,000 ohms, 1-watt</td>
</tr>
<tr>
<td>R118</td>
<td>15,000 ohms, original</td>
</tr>
<tr>
<td>R119</td>
<td>15,000 ohms, original</td>
</tr>
</tbody>
</table>

Power Supply Requirements

- **VFO and Multiplier Chain**: 250 volts 40 mA stabilized.
- **Driver 807 stage**: 350 volts 70 mA.
- **PA**: 600 volts 212 mA.
- **PA on One-Sixty**: 350 volts 42 mA (including 14 mA for screen voltage dividing network and screen).
- **PA (alternative HT voltage)**: Any voltage from 350 to 600 volts.
- **VFO heaters**: 25 volts 0.3 A.
- **Heaters (all other valves)**: 6.3 volts 4 A.
Three of the VFO's are used unmodified, while the fourth, which is in the original is the VFO for channel 1 and operates on 300-600 kc, has been modified to operate over 1-8-2-0 mc for 160 metres. This is more convenient than using VFO-2 for One-Sixty as it avoids changing VFO settings when changing from One-Sixty to, say, Eighty. The modification is easy and consists simply in re-winding the variometer tuner with slightly heavier Litz wire so that there are 10 turns on rotor and 10 on stator. The turns are well cemented with liquid polystyrene. Existing grid to cathode condenser is 0.015 µF and cathode to ground 0.003 µF. Maximum frequency at which the VFO will operate without changing these condensers is 2-4 mc provided only variable inductance is used for tuning, but no higher than 1-5 mc if the more usual inductance and series tuning condenser are used. (The latter makes a good 900 kc VFO for One-Sixty and the values tried were 35 µH and a 300 µµF variable condenser.)

Anode and screen current to the VFO in operation is about 5 mA only. A 12SK7 valve is fitted in each VFO originally and 25 volts AC is used now for heaters of the four valves, which are connected in series-parallel. This is perfectly satisfactory and the note on CW is T9x. While testing, if the note is not T9 it is a certain indication of parasites or instability, and the same may be said for chirp, provided the 250 volt HT is stabilized.

Section "A" Referring to Fig. 1, it will be seen that the circuit is divided into 11 sections, each identified by a letter along the foot. Section "A" contains the original tuned circuits which are ganged to the VFO's and are used unmodified for inter-stage coupling between V1 and V2. This is, to a certain extent, necessary in order to select the correct harmonic. For V1 a Z77 is ample and a low-value grid leak gives best results; 3,800 ohms seems about right. The anode and screen current is 7 mA and the output is twice VFO frequency, i.e., 3-5 mc for Eighty, Forty and Twenty, 5-25 mc for Fifteen, and 4-66 mc for Ten. It is perhaps important that RFC's should not be used in the multiplier chain (V1, V2 and V3).

Section "B" Again a Z77 is ample and with a 22,000 ohm grid leak, which is optimum, the anode and screen current is 7 mA. The stage doubles for 40, 20 and 15 metres, and trebles for 10 metres.

Section "C" Wide-band coupler transformers are tuned with 3-35 µµF ceramic trimmer condensers, and are well screened in a small coil box. The 10- and 20-metre WBC's are mounted vertically and the 15-metre horizontally. The capacity for the 10-metre grid coil (secondary) is a Philips concentric trimmer soldered directly to the band-change switch. Good screening is essential and long leads, e.g., the 40-metre lead, are in co-axial cable.

Section "D" A slightly larger valve is necessary for V3 if good results are to be obtained on 10-metre phone and about 20 mA anode current is required. A 5763 is very satisfactory and is run at about half its normal rating. The anode and screen current is 21 mA and the stage works as a doubler on Twenty, Fifteen and Ten, providing ample drive over the entire 2 mc of the 10-metre band.

Section "E" Wide-band couplers for Fifteen and Twenty are of similar type to those used in section "C" and are mounted in a screened box. The 10-metre anode coil (primary) is mounted in this box and is coupled by screened links to the secondary coil mounted direct to the band-selector switch in the grid compartment under V4, together with its ceramic trimmer condenser. An absorption trap tuned to 56 mc is coupled to this coil, and is effective in suppressing the harmonic at the grid of V4, although the final effect at the PA anode is not clear. The "notch" is, of course, quite narrow. The ceramic trimmer for 15 metres is also mounted in the grid compartment beneath V4. For 40 metres the WBC is made from two Aladdin formers mounted at right angles to each other and link coupled. Tuning is by dust cores and capacity is provided by the co-axial leads. The 1-inch co-axial cable used has a capacity of 1-71 µµF per inch. Coils in this box mounted vertically are 40-metre secondary and 15-metre primary and secondary. The 40-metre primary is mounted horizontally, in a recess above the box, and the remaining coils in the box are horizontal.

Section "F" A large screen, mounted vertically completely shuts off the power stages from the multiplier chain. V4 is the original 807 driver and it is used again with the original RFC (L107) and coupling condenser (C126). Potentiometer R22 is used to vary the screen potential and provides very smooth drive control from less than 1 mA to over 15 mA. The original intervalve screen can be seen in the photographs. The lead from the coupling condenser C126 descends through the chassis.
directly into the grid compartment of the PA (Section “G”). The usual 807 type of cylindrical screen is used for V4 and a grid stopper resistance of 150 ohms. The grid condenser C20 is inserted to provide a grid current indication at J1 during initial tuning operations and between 1/2 and 1 1/2 mA is obtained provided S3 is open and no HT is applied to V4. When tuning is complete condenser C20 can be short-circuited for Class-B operation, if desired. Anode and screen current is 50 mA with C20 in circuit and about 70 mA when C20 is short-circuited. There is plenty of drive either way. The condenser C124 is grounded to the under side of the chassis.

Section “G” Wide-band couplers for Forty and Twenty are mounted direct to the switch wafers of the band-selector switch in the grid compartment of the PA (S1j and S1k) together with the 21 and 28 mc inductances for the pi-network intervalve coupling used for these two bands for low harmonic content. Tuning condensers C40 and C41 have their shafts brought out to the front panel to provide peaking adjustment for 10 and 15 metres respectively, following a change of frequency within either band. Wide-band couplers are used for all other bands and no adjustment is necessary. The 160-metre wide-band coupler is mounted horizontally and the 80-metre vertically, at the end of the compartment, after all the other coils in this section have been tuned and wiring completed. The circuit of the WBC for One-Sixty is perhaps unusual: however, it is an easy way to obtain a flat top tuning curve which covers the band 1 1/8 to 2 mc and provides sharp attenuation beyond these points.

Caution is indicated when drilling the front panel for the extension shaft of C40 in order to avoid damage to the teeth of the counter wheels for the Channel 3 and Channel 4 rotating coils. The 1/8-inch hole is centred 1 13/16th inches above the base of the panel and equi-distant from the Channel 3 and Channel 4 counter dial apertures. This is the maximum height that can be drilled with safety.

Section “H” The original valves are used in the PA and probably the main attraction of the 807 is the comparatively low value of HT voltage required; 600v. at 200 mA. The stage seems quite stable and has given no trouble. The original stopper resistances in the grids are removed and the anode stoppers are modified by shunting a 5-turn coil, 1/2-inch inside diameter and 1/16-inch long, across each anode stopper. The original stoppers are not very suitable for 10 metres. Grid bias is entirely by grid leak with V7 acting as clamp for the screen, to limit input under no-drive conditions. About 4 1/2 mA grid current is required for CW and about twice this for plate-and-screen modulation. Alternatively fixed bias can be used and drive reduced for Class-AB1 operation, if desired.

Section “K” The original 600-metre tank inductance is removed and a 2-wafer 6-way ceramic band-selector switch is mounted in its place. The three rotating inductances are connected, with brass strip where possible, to the underside of the switch. The original Channel 2 loading condenser C142 is disconnected and wired direct to the rotor arm of the switch so as to act as “fine loading control” on all bands. The fixed condenser, mounted on the end of the Channel 2 tank unit, C143 300 μF.
CO will produce this level of drive with either a 1-8, 3-5 or 7 mc crystal; there being no tuned circuit to adjust in the CO, any band can be used merely by changing the crystal.

On the PA side, the tank circuit is parallel-fed in the familiar pi-section arrangement. The values for this have been chosen strictly for operation on 160 metres; C9 tuning is sharp on 80 metres, and tricky on 40 metres. L1 could probably be proportioned to cover both 1-8 and 3-5 mc, with C9 either nearly all-in or all-out—but this has not actually been done, since the original idea was that the "Talking Box" should be built as a Top Band unit.

In the model, the meter in the cathode of the PA is brought out on flying leads, since it is also the keying point for CW operation. With HT off the PA and the CO on, it will show the grid current—though for an accurate reading, an 0-5 mA meter should be temporarily substituted for this particular measurement. It is not necessary to meter the CO after the initial setting-up check.

The other items in this part of the circuit to mention particularly are the RF chokes. They are standard types, but should be of dissimilar characteristics to avoid any possibility of resonances. This can usually be achieved by mounting them so that mutual coupling is at a minimum.

System of Modulation

As the circuit shows, modulation is by control on the screen of the PA. It is about the simplest and most practicable system having regard to the uses for which the "Talking Box" is intended. The speech amplifier is V3, a 12AX7, and the modulator proper V4, a 6C4.

An obvious disadvantage of screen modulation is that, because the PA screen must be run at less than the usual HT voltage, the RF output is correspondingly reduced. Hence, one cannot modulate what would be the "full CW carrier" obtainable with the proper screen voltage. On the other hand, look at the simplicity of the speech-amplifier/modulator! Two valves give full control of the carrier, with a crystal microphone at that.

The important items in the modulator circuit—which is based on suggestions by G3IYX, who has collaborated in many of the tests with which the "Talking Box" has been used—are R16 and C17. The function of R16 is to reduce the V2 screen voltage to a value sufficient for increment (or "upwards") modulation to be obtained under normal loading of the PA; C17 is the audio by-pass condenser associated with R16. The value stated for this resistor is that which has been found to give the best results under the all-round conditions of use of the "Talking Box." However, it would be worth making R16 variable over a range of about 30,000-100,000 ohms by using a 100,000-ohm potentiometer in series with a fixed resistor of, say, 10,000 ohms, all paralleled by C17. This would permit accurate adjustment of the screen voltage under all conditions of load, and a setting could also be found for full RF output under CW conditions. Alternatively, this resistor could be switched in.

With any usual type of crystal microphone, the 12AX7 at V3 gives ample voltage gain and when the whole circuit is properly loaded for increment modulation, results on telephony are quite pleasing. It is just as well to use a crystal microphone as, for one thing, the input circuit is so much simplified, and for another, they can nowadays be obtained at
Circuit of the "Top Band Talking Box" as described in the article. The CO will go off with any crystal in the range 1.8-7.0 mc, but in the model as photographed the tank circuit C9, L1, C10 is designed for 160 metres. The resistor-condenser combination G17, R16, for obtaining modulation by screen control of the 6BW6 PA, is discussed in the text. All four valves used in this transmitter are Brimar miniatures in the current range.

such a reasonable price that there is no point in putting up with "carbon-mike quality" (with respect to those who do succeed in getting good speech output from a carbon microphone) or the complications of the types requiring special input transformers.

Construction

As illustrated here, the model is built into a box of 14g. aluminium 7ins. wide by 5ins. high by 4½ins. from back to front, with a tight-fitting lid and a detachable bottom plate.

The CO-PA section is put together on a small chassis which bolts into the bottom of the box. With the exception of the valves, crystal, output tank circuit, coupling condenser C8 and the RF meter, all components in this part of the circuit are in this chassis sub-space, which can be exposed by removing the bottom plate.

Condensers C9 and C10 are the small BC tuning types now readily available for a few shillings; C10 is a two-gang with its sections paralleled. These variable are mounted centrally on opposite walls of the box, with L1 between them, as shown in one of the photographs; this makes for a symmetrical layout.

Table of Values

<table>
<thead>
<tr>
<th>C1, C11</th>
<th>50 µF</th>
<th>C1, C12</th>
<th>0.005 µF</th>
</tr>
</thead>
<tbody>
<tr>
<td>C3, C13</td>
<td>0.002 µF</td>
<td>C4, C6, C7, C14</td>
<td>0.001 µF</td>
</tr>
<tr>
<td>C9</td>
<td>500 µF BC midget variable, single section</td>
<td>C10</td>
<td>800 µF BC midget variable, two-gang paralleled</td>
</tr>
<tr>
<td>R11, R12</td>
<td>27,000 ohms</td>
<td>R13</td>
<td>100,000 ohms</td>
</tr>
<tr>
<td>R14</td>
<td>2,000 ohms</td>
<td>R15</td>
<td>100,000 ohms</td>
</tr>
<tr>
<td>R16</td>
<td>75,000 ohms (see text)</td>
<td>R17</td>
<td>1,500 ohms</td>
</tr>
<tr>
<td>R18, R19</td>
<td>1,500 ohms</td>
<td>R20</td>
<td>470,000 ohms</td>
</tr>
<tr>
<td>R21</td>
<td>220,000 ohms</td>
<td>R22</td>
<td>27,000 ohms</td>
</tr>
<tr>
<td>R23</td>
<td>75,000 ohms (see text)</td>
<td>R24</td>
<td>47,000 ohms</td>
</tr>
<tr>
<td>RFC</td>
<td>Dissimilar RF chokes</td>
<td>RFC</td>
<td>2,000 ohms</td>
</tr>
</tbody>
</table>

The modulator section V3, V4, is built as an entirely separate unit, on a small chassis of its own, fitted into a corner of the box after construction and testing. The metal-work for the modulator consists simply of a piece of aluminium bent up to form a compartment 3½ins. deep by 1½ins. by 2½ins. on the 2½in. wall of which is fitted a small shelf for the V3, V4 valveholders; the height of this shelf is adjusted to bring the tops of the V3, V4
Interior view of the "Talking Box," showing general arrangement. The CO valve is upper left and the PA to the right of the coil; the crystal mounting is beside the CO, below the RF meter. The modulator section, with V3, V4 mounted close together (V4 left), is in the screened compartment at lower right. C9 is centred on the rear wall with C10 immediately opposite, alongside the RF meter on the front of the Box. The only adjustment is on C9, C10, as for a pi-section coupler, and the full tuning range of the model is 1800-3600 kc.

caps just flush with the top of the box. In the 1½in. by 2½in. by 1½in. sub-chassis space thus formed under the V3, V4 mounting shelf there is just room to get in all the V3, V4 circuit elements if small-sized (not necessarily miniature) components are used. At any rate, with a little juggling and squeezing it was possible on the model.

External connections to the modulator section are HT+, one side of LT, the connection to R17, C16, and the shielded lead to the microphone socket on the front panel; these leads are made slack enough for the modulator section to be tested and adjusted before finally bolting it into place in the box. The microphone connection is the only item in the V3, V4 assembly that is fitted above the sub-chassis level.

With the form of construction shown (and the lid on) screening is complete, internally and externally, with the modulator side entirely shut off from the RF section.

The external leads to the "Talking Box" are made several feet long for convenience, and are for LT (positive side earthed) HT+ CO, HT+ PA (normally joined together at the HT supply point, but brought out separately for meter check) and the meter/key leads to the cathode of the PA.

Power Supply

On the bench the "Talking Box" can be run from an AC supply for LT and any power pack giving 200-300 volts at up to 40-50 mA. Under portable/mobile conditions, the HT supply is from a vibrapack, and the heaters are fed from the 12-volt car battery. For this purpose, the heaters are actually connected in a series-parallel arrangement (V1-V2 and V3-V4) so that the LT feed can be either AC or DC at 12-13 volts. (As usual, the car electrics are positive-earthed.)

Owing to the dissimilar current ratings on the heaters, the 6AM6 CO and 6BW6 PA
The “Midge-Mod”

FREQUENCY MODULATION FOR FIVE SHILLINGS

B. WARDMAN (G5GQ)

Our contributor rightly claims that this is about the cheapest and simplest modulator — and modulating system — that is practicable for reasonable quality under modern operating conditions. What is described here is the modulator itself. Since anyone on phone will already have a one- or two-stage speech amplifier and microphone, the output from this is applied to the “Midge-Mod,” which produces FM in the normal VFO. The important advantage of frequency modulation is that it goes a long way to eliminating BCI and TVI, and is thus an excellent phone system for the HF bands in crowded residential areas. The unit itself as illustrated has been thoroughly tested in accordance with the operating instructions given in the article, and has been found to do all that is claimed for it.—Editor.

“I'd like to try NBFM to see if it would help with TVI,” say one's friends over the air, “but I can't just get down to building a special rig for it—never seem to have the time.”

That's a fair enough answer, and it was what started the development of this new unit. What was in mind was a whole lot of ideas, such as:

(a) Simplicity: A design which could be knocked up quickly, was completely uncritical as regards values and adjustment, and which could be used either as a built-in unit or else as a separate little box.

(b) Cost: The idea to start with was a maximum of about twenty-five shillings as an interesting figure; the unit described here costs five bob, and that's within reach of all.

(c) Flexibility: It must be usable with existing gear without any real modifications. As far as the RF side is concerned, it should have one extra connection only.

(d) Quality: Modulation quality to be reasonable compared with more complex circuits. If anything, this unit gives better quality than anything tried before, even than much more complicated efforts.

(e) Limitations: It will work with VFO's only, not with crystals.

The answer is shown in the photograph and circuit: one diode valve, three ½-watt resistances, one tiny variable (pre-set) and one fixed condenser.

First, however, since most of us like to know “what makes it tick,” a mention of the reasons why this design was developed.

Design Factors

To begin with, direct NBFM cannot be used with a crystal oscillator; what is known
as "indirect FM" is applied by means of a phase modulator, the phase shift being turned into FM subsequently in the circuit. In general, phase modulators are the most critical, especially when several different frequency bands are used in the oscillator. So far, although the writer has tried pretty hard, it has not been possible to find any sure-fire, simple method of FM with crystals. Therefore, reluctantly, that part had to be cut out.

Next, with VFO's, the standard approach is by using a reactance modulator; about the minimum requirement is an HF pentode (with several resistances and condensers) or—although more complex from the point of view of components—the pentagrid, which makes inter-action between the audio and RF components far less troublesome. But, because they are reactance modulators, they are part of the oscillator circuit, and their reactance does vary from band to band—with one adjustment, just a whisper of audio will give full modulation on Top Band with practically none on Ten; a slight difference in adjustment, and the reverse takes place. Hence it's a matter of compromise adjustment, and since they have so many components (allowing different reactances to occur) one can run into trouble trying to set them up. What is more, this bother varies from VFO to VFO, being dependent on layout.

Hence, the need can be seen to keep components to a minimum; it reduces setting-up adjustments enormously.

This narrowed down the possibilities, and so attention was turned to the other extreme, the simplest possible valve. And there can be none simpler than a diode. Reviewing every possible source of published information on this subject, there seemed to be two lines of approach:

(a) The Westinghouse series diode modulator. This is a brilliantly simple circuit, especially where centre frequency control is required (applicable to
commercial use) but it does present minor wiring problems on the speech amplifier because the final audio HT is fed via the cathode of the FM diode.

(b) The crystal diode modulator. Again very simple, but it is possible to have noisy crystals, and it's easy to burn them out if you run beefy VFO, like the one at G5GQ.

Hence the final decision to use a thermionic diode, as more robust, and also for the fact that it is accepted as the quietest and most distortion-free frequency modulator. And so it came to the final arrangement, circuit of Fig. 1, which incorporates all the wanted features, and in truth is a simple derivation of the frequency shift keying system used in Marconi transmitters for years. Not one item is critical — except the valve, and that is not really critical because it has been found that the EA50 (which can be picked up for a shilling or so anywhere) is just streets ahead of any other type tried. It has been tested against accepted ones like the metal version 6H6 and even more expensive types.

Circuit Development

As Fig. 1 shows, the circuit is simplicity itself. In Fig. 2 is shown the way it works. From the "hot" end of the VFO coil, L, the little pre-set condenser, VC, is connected to earth via a varying (not variable) resistance; this resistance (shown as VR) is the electrical equivalent of all the other bits and pieces, i.e., R1, R2, R3, V, and C. This equivalent resistance changes in accordance with speech. Therefore, the tuning across the VFO coil changes at speech frequency and we get frequency modulation.

Wiring up is so simple as to need no instructions. The power supply connections to heater transformer and to the 150v. HT can be done with flex or any other convenient method. Audio from the speech amplifier is plugged in; at G5GQ, the output from two RCCoupled amplifiers running from a crystal microphone is more than ample for all bands from 1-8 to 28 mc, and in many cases the output from a one stage pre-amplifier is adequate.

Setting Up

Now to the adjustment. Start with VC at minimum and connect it to the hot end of the VFO coil, with a lead as short as possible. Turn the microphone gain up and listen on side-tone, noting that you listen on the final output frequency. This does not mean switching on the PA or even the doublers — it means that you listen on the appropriate harmonic, and anything you hear from it will be exactly
as it will come out from the PA. To put this in figures: At G5GQ the VFO operates on 5-25 mc fundamental when driving the transmitter on 21 mc, so that the VFO modulation is checked on the 21 mc harmonic.

With VC at absolute minimum, it is unlikely that you will hear any modulation. So increase the capacity slightly and soon you will find it modulating very fully. Now, in doing this simple adjustment, you will find that:

(a) As the capacity of VC is increased, the amount of modulation will increase very rapidly until you find you are modulating fully with your audio gain turned well back.

(b) If, on the higher frequency bands, VC is too large, then there is a tendency for the VFO valve to stop oscillating.

(c) Increasing VC affects the VFO calibration more and more.

(d) A much larger value of VC is required on 1.8 mc than on 28 mc for the same depth of modulation.

Actually, it's much easier and quicker to do than to read these notes! The first time it was tried, this particular unit was lined up in under three minutes on all bands from 1-8 to 28 mc, with the exception of re-adjusting the VFO calibration.

There are no "ifs and buts" about it; the thing either works, or it doesn't. Whatever audio quality goes into it comes out as modulation, and it is impossible to get distortion as one can by mal-adjustment with other systems.

Finally, even this tiny unit is really far too big for the job. However, a box as large (!!) was used because it was thought that readers would wish to try it out as built—then, if they liked it, there would still be room for a one-stage microphone amplifier in it to make a complete unit.

Lastly, the name. It has been christened the "Midge-Mod" because it is really small, easy to connect up to those inaccessible VFO's some people have, and you can buzz it up and buzz it into action in half-an-hour from start to finish.

NEW MULLARD VALVE FOR UHF

The band now in use for mobile radio was allocated for Band III television some time ago. Eventually, therefore, it will be cleared of mobile users, some of whom may have to move to a new UHF band (450-460 mc). At present, no British commercial mobile station operates in this band, largely because technical problems bound up with the use of these frequencies greatly increase the cost of suitable equipment over that for normal VHF working. One such problem is that valves suitable for the present VHF band may be quite inefficient at the new frequencies. Types that have been available up to now have tended to be rather bulky, expensive, and of high power consumption.

A new Mullard valve, the QQVO2-6, marks an improvement on all three counts. Little bigger than a miniature receiving type, it will function efficiently up to 500 mc, giving enough power output for mobile working. The QQVO2-6 is a miniature double-tetrode RF amplifier on the noval (B9A) base. Its centre-tapped heater can be operated from either a 12.6V, 0.4A or a 6.3V, 0.8A supply. A high value of mutual conductance (7mA/V per section) has been obtained by incorporating the latest type of control grid, by means of which very fine grid wires are positioned very close to the cathode. The grid-anode capacitances are internally neutralised, so that stable operation is obtained when the two sections are used in push-pull amplifier circuits.

As a power amplifier at 490 mc, the QQVO2-6 delivers 3.5w. under typical circuit conditions when operated at maximum ratings with anode-and-screen modulation. The drive power needed is 1.4w., and this can readily be obtained from another QQVO2-6 operating as a frequency tripler from about 163 mc.

Working HT voltage is 180v., and no special cooling arrangements are necessary. The QQVO2-6 is of obvious interest for 430 mc amateur band operation. It is shown at left in this photograph, to compare with a normal miniature type.
DX COMMENTARY

L. H. THOMAS, M.B.E. (G6QB)

At the time of writing, the autumnal DX seems to be piling up very nicely, although we have had some blank spaces during the four weeks under review. Those readers who remember previous sunspot cycles on the rise (and it's strange to think that many who are reading this have never experienced one before) will remember that a high sunspot number is, in itself, no guarantee of lasting good conditions. All we can promise is that the good spells will become better and better, as well as more frequent.

Meanwhile it is, perhaps, a good thing to remember that the sun is losing roughly four million tons of its mass every second—all of which is converted into radiation of various kinds—and that it takes only an infinitesimal increase or decrease in this figure to disrupt all our communications, ninety-three million miles away! (We put that bit in to remind you that amateur DX is not terrifically important in the cosmic scheme of things)

Don't worry, by the way, about that four million tons a second; there is still enough left for a few hundred million years at that rate of radiation.

And so from the cosmic to the microscopic, and our own efforts at taming the universe, with special reference to the HF bands

Ten Metres

Ten is still pretty slow in awakening, although the old bogey of a low activity level is responsible for some of the trouble. Remember, also, that Fifteen has turned out to be such an excellent DX band that a vast amount of traffic which would otherwise be on Ten has been siphoned off.

G3GGS (Preston) is once again a six-band reporter; the only one this month. He finds Ten well open and reports working ZS3AB for a new one, also ZC4's, EA8, ZE, ST and VE8. He missed XW8AB on CW.

G3FPQ (Bordon) was active on phone and raised EL, KP4, OQ, VS1, 2 and 6, VP8BR (Antarctica), ZS3 and 4S. G3BHWH (Margate) found things improving but still rather patchy; he has heard little from the East, but probably because of his operating hours. Best contacts were ZD3BFC and CX2AY, both on phone.

G3DO (Sutton Coldfield) raised VP8BR on phone for a new one. G2CDI (Stokenchurch) lost his beam in a gale and was inactive for a while on this band, but since re-erecting it has booked SP, 4S, OE, OQ and ZE for new ones this year. VS6's and VK5 have also been worked.

GM3BCL (Aberdeen) works Ten more than any other band, and on phone has raised FB8BZ, T12GC and numerous CX, LU, PY, OQ, VK, VQ2, ZE and ZS stations. He has worked 49 countries on the band this year, through (as he says) "hanging aimlessly around" on Ten even when Fifteen is wide open."

Fifteen Metres

This is probably the best band now for real DX, and it is settling down into some sort of reliability at last. G3DO collected three new ones on phone in the shape of ZK1BS, VR2BC and KW6CA—a nice trio.

G6VC (Northfleet) also added three new ones—FM7, ZL and VU. G3FPQ's phone brought contacts with DU6IV, KH6's, KW6CA, PZ1AC, VK9DB, VP3YG, VP8BY, VR2BA, 2BC and 2BZ, ZD3BFC, ZD8SC and ZK1BS. His score on 15 metres is now 149 countries—the highest we know of, up to date.
G3BH W is not yet TVI-proofed for Fifteen, but in his restricted hours he worked CR5SP, MP4KAL, ZD4CF, ZS7C and 4S7GE, all on phone. Several QSO’s with South Africa and South America have been at the S9-plus level, both ways.

G3GGS is troubled with high local noise, but raised UC2 and XW8AB for two new ones, also HC on phone. He missed CR9AH (phone) and HB1MX/HE (phone and CW). G3GZJ (London, S.E.23) also complains about the noise; his new ones were HB1MX/HE, PY and ZS6ML.

Other DX heard on the band by a variety of people included ZD1FG, KX62B, KH6’s, KL7’s, VP5ES (Turks) and a very large bunch of JA’s and VK’s.

G2CDI’s bag included HZ1AB, YA1AA, CP1CJ, ZK1BS, FO8AK, M1PDN, LZ1KNB—all new ones—as well as BV1US, VS4NW, VP3, 4, 5, 6, 7 and 8, VK’s, FM, KH6, KL7, VR2, DU and VK9.

G2DC (Bulford) thinks Fifteen is improving rapidly and notes the return of ZS signals to the band. During the period 1800-2000 GMT he now finds it easy to work DX from East, West or South—meaning such as W6 and 7, KH6; VU, VS1, VS6, JA; CR6, CR7, ZD and ZS. New ones for the month were CR7BS, ST2NG, XW8AB, ZD8DCP and DJ2MB/LX.

‘Twenty Metres’

At last it seems that Twenty is being ousted by Fifteen as the premier DX band—in spite of the fact that twenty-metre conditions have been very good indeed.

However, it seems to be the main band for ‘expeditionaries’ still, and G3DO collected two of them—VR4AA (Danny Weil, ex-VK9TW) and SM8KV/Spitzbergen, both on phone.

G3FPO, on phone, worked AP2U, FB8ZZ, FO8AD, HR1FM, L0CDA, TG9MO, VKI1J (Maequarie), VP2KG, VR4AA, UH8KAA and ZK1BS. Not content with this, he also went on CW and raised CR4AH, PZ1AH, UA1KAE (Antarctica), UJ8, UL7, UP2 and UN1.

G3BH W collected two new ones—XK9XX (Papua) and IIAMO/M1, as well as CR4AH, FYY7YB, PZ1AI, UA0KQB and 9VB, and CO3YP. JA’s, KL7’s and VK’s were also numerous, but some tooth-gnashing was caused by the escape of ISRAG and VK1ALR—all this on CW only.

G2HPF (Chelmsford) reports for the first time in some years, and mentions FP8AP, SM8KV/Spitze, DL1CR/LX, UA0SB, VQ1JO and 8AG, and UL7CB—all worked; UJ8AF was heard. G2HPF also tells us that VQ4EF is looking out for QSO’s with his home town, Aldershot.

New ones for G3GGS were VQ1JO and PZ1AP, both CW. Heard, but missed, were BV1US, SV0WE, ET1US and two M1’s, all phone. CW gotaways were U18, ISRAG, CR4AH and CR5AD.

G3GZJ roped in PJ2CE, ZA4FH, HB1MX/HE, IT7Z/M1, and CVX, UG6, VP6, VU and YV, apart from the more usual VK’s, ZL’s and the like. OY2H and a UC2 were new ones for G3JW.

Fifty Metres

G3JWJ (London, S.E.22) writes in defence of poor old Forty” (some say “guddold Forty”), on which he finds it easier to work the DX (when it can be heard) than on any other band. The month’s offerings include VP6CJ, TI2PZ, UA9CM, UF6AA and HH3DL.

G3GGS worked 4X4CJ, UO5FC and UF6AA on CW, but even better ones that got away were XV8AB, FG7XE, UI8, UM8 and YA0, all around 2300 GMT. G2HPF worked UI8KAB. Note—all this was on 40 metres!

Top Band Topics

The Top Band should, by now, be coming back into its own. Static doesn’t trouble us any more, darkness falls at a reasonable hour, and activity is increasing. Nearly 140 users of the band have already claimed and received their WABC Certificates, but there are plenty more to come, and those who have already made the grade don’t seem satisfied until they have worked their score up to the 80’s or 90’s.

One of the latter is GM3EFS (Alexandria), who says he continues “dishing out Dunbartonshire QSO’s to all and sundry.” And...
keep us informed; meanwhile, any G's who want a definite sked should drop him a line.

ZB2Q (Gibraltar) reports that he, ZB2R and ZB2T are all active with 35 watts or so, mostly on 14 mc. ZB2V hopes to give Top Band a try this winter, and the others will also have a go at Eighty. ZB2Q is always happy to work G's, and says the worst QRM of all comes from W-land, followed by DL and YU. G's don't count as QRM!

"Tahiti-Nui"

As noted briefly last month (p.375, September SHORT WAVE MAGAZINE), an expedition is leaving Tahiti on or about October 15 with the object of carrying out what we might call a Kon-Tiki in reverse. They hope to prove it possible to navigate a Polynesian bamboo raft, 50 ft. by 16 ft., from Tahiti to South America and back. The craft is called Tahiti-Nui ("The Great Tahiti"), and among the crew of five will be Roland d'Assignies, using the call FO8AD/MM.

Frequencies will be chosen with regard to propagation conditions, on 7, 14, 21 and 28 mc, and it is hoped that European contacts will be made on 14 and 21 mc, CW, around 0800 and 1730 GMT. All operators should follow FO8AD's instructions after each call to avoid a pile-up — he will use QHM, QMH, QLM and QML, and contacts will normally be confined to an exchange of operators' names and RST. A special three-colour map of the itinerary is available from the R.E.F. for 480 francs (or 16 IRC's)—address B.P.42-01, Paris, R.P. Contacts may be marked on these maps, and at the conclusion of the expedition they will be verified and autographed by members of the expedition, free of charge.

W6YY (La Canada) sends another of his bulletins, from which we garner the following: XW8AB is back on 14 mc CW ... there will be an active DX station from September 29, using 300 watts and a 3-element beam. PK7ADM is active, details unknown ... VQ8AL and 8AR are both now using phone ... CRSSP is on phone and CW. 14 and 21 mc ... ZC55F may be found on 14012 kc, around 1330 GMT ... FR7ZC is a French naval officer stationed on Reunion, and puts out a nice signal.

DX heard regularly in W6 during recent weeks included VQ1JO, FL8AB, FB8ZZ, SM8KV/Spitz, FR7ZC and VR2BZ (all CW) and ZK1BL, DU7SV, ET2US, BV1US and FB8ZZ (all phone).

From the Circular Letter of the Radio Society of East Africa we get that those unfortunate chaps will actually have to pay for their licences now! They don't pretend to be pleased about this, but hope it will also bring a tightening up of regulations. Apparently they have a number of types out there who think nothing of introducing advertising blurbs into the Sunday morning nets, and behaving in a way that would soon have them off the air in the U.K.

From the same source we learn that VQ4ERR will be using a Minibeam for /P and /M work on his new car! (All we gather from this is that it's not an Austin A.30).

DL2ZO (RAF Burzeillerhof) is not G6ZO cropping up in yet another place, but G3KMQ, who has already booked 83 countries. On 14 and 21 mc he has worked lots of creditable DX (in his list are XW8AB, FB8BX. SM8KV/Spitz. EA9DF and many other good ones). But he finds the G's coming in so well on Top Band that he is very sad at not being able to use that frequency himself —so he wants to work them cross-band, from Forty. He is looking for them most nights, so if you're feeling DX-minded on Top Band, take a look round Forty for DL2ZO and you might have a surprise.

DX Strays

VQ8CB/8AB is now on Mauritius ... XW8AB will be active on all bands, Ten to Eighty, CW and phone ... VQ4AQ will be operating as VQ9AA during October ... HG8GC is on and gives QTH as William Guzman, San Cristobal, Galapagos Islands ... VR3D QSL's may be obtained from the operator, who first signed VE7ASL/VR3, and is now in KH6; QTH is C. H. Freeman, 99-139E Heen Way, Aiea, Hawaii. He was also VR2CD, ZL1BI, 3AE and 4FH. VR4AA (ex-VK9TW, VR1B and so on) is active now, but few first-hand reports as yet ... An SV7 or SV9 call may be heard during October, operated by SVÖWJ ... Y1AA is back in Lebanon and his station is being used by someone else for commercial traffic ... VQ5GC's trip to VQ9 may not come off. owing to shipping trouble, but see
earlier concerning VQ4AQ... UM8KAA has been heard on 7015 kc (2200-2300)...

The following calls and times give an idea of the DX being worked in the States, but might also serve as a guide to us in Europe. Only the rarest ones are quoted. Twenty CW: KM6FAA (0310), UA0PKQB (0500), KJ6BP (0430), ZC5SP (1250), YA1AM (1400), FL8AB (1500), FURBA (1700), KK6NC/KC6 (0530), HC8GC (0300), VR3B (0445), VR4AA (0500), VK1RW (1350), PK7ADM (1230). All times GMT.

W6AM (Long Beach) manages to tie with W1FH for the position of World Champion (267 countries)—but only until W1FH receives XE4A's card! We hear that W6AM drove more than 800 miles to get home in time to work this elusive one, but XE4A had gone QRT and left the island by the time W6AM got on the air! This rivalry at the top of the ladder is just about as hot as anything could be... eventually we shouldn't be surprised if one of the parties financed a DX-pedition on condition that the operators refused to work the other one!

From the East Africa Circular Letter we gather that CR5SP is one of the strongest signals out there—most nights after 2100, on 21200 kc. The VQ's are also busily filling in their gaps with the U stations, particularly the UA0's in Zones 18 and 19. Cards are flowing, and VQ4ERR says "the curtain is lifted... duck under quick, chaps, while the going is good."

Miscellaneous

G3INR (Hereford) feels strongly about CW QSO's that develop into "please listen for my phone," usually when the other man is a rare one and in the process of handing out snappy contacts in a row. He asks whether the perpetrator of this tactic, presumably chasing DXCC on phone, claims such a contact as a proper phone QSO? We have never been very happy about the mixing up of CW and phone: personally, we think a properly claimed phone contact should only be the result of both stations moving up to the phone band then and there.

The sensible procedure, of course, is for a rare DX station to work for so long on CW and then to go up to the phone band and work phone. If he is not equipped with a modulator himself he could stay put and announce that he is only tuning the phone band for the next thirty minutes or so. But whatever he did, someone would be annoyed!

MP4BBW writes from Solihull and tells us that on his way back from Bahrain he made personal QSO's in MP4K, O5D and PA. The O5D gang held a get-together in Beirut, and he met people from HZ, SM and SU as well as the locals. He also had a chat with YAI/A in person and collected his QSL. Further activity from YA may start up when the operator returns from his holiday in the States. MP4BBW will be back on the air around October 14, or within a week of that date.

G2HPF asks whether we cannot publish lists of results in the more important International Contests, showing how the G competitors fared. We have to some extent done so in the past and will continue to do what we can, and even to expand it if possible. Unfortunately, the results of the bigger contests come out so late nowadays (up to a year in some cases!) that one can hardly look on them as news when they do arrive. We will do our best to meet this request, though.

Contest Reminders

The following events are of interest to those who follow the competitive side of things, and the dates may also be useful as a warning to those who don't!

October 6-7, 1900-2600 GMT: VK/ZL Contest, Phone.

October 13-14, 1900-1000 GMT: VK/ZL Contest, CW.

October 13-14, 0001-2359 GMT: FOCC DX Marathon.

October 21, 0900-2300 GMT: FOCC Marathon (160, 80 and 40).

October 20-22, 0200-0200 GMT: FOCC World Wide DX Contest, Phone.

October 27-29, 0200-0200 GMT: FOCC World Wide DX Contest, CW.

November 10-11: RSGB Top-Band Contest.

November 17-18, 1600-1900 GMT: MCC (Club Contest, Top Band).

November 24-25, 1600-1900 GMT: ditto

November 24-25: RSGB 21/28 mc Phone Contest.

If you're looking for a quiet week-end, it seems to be on November 3-4—or has someone fixed something for that one already?

Late Flashes

W6ITH asks us to correct our statement (in the August issue) that YV0 (Aves Island) was only 38 miles from the Venezuelan mainland. It is actually 330 miles from the mainland, and 275 miles north of the nearest Venezuelan territory, Isla la Blanquilla. For the record, W6ITH adds "FS7RT and PJ2MC both licensed to me not PJ2MA, as given on p.311. FS7RT operated in February,
1956: FS7RT and PJ2MC both operated in June and July.” Still no news of his other new ventures, mentioned in this column last month.

Ethics Again

Time was when this Commentary regularly included a “hot-under-the-collar” section. Reading it gave one the impression of purple-faced characters sitting at their receiver controls, looking more like the drivers of fast cars thwarted by a crawler than mere chasers of DX.

Some of these types must still exist, but they have given up airing their grievances—or is it possible that this coming DX season will bring them out again and that their apoplectic countenances will be glaring at us once more?

Concerning all this, let us quote GM3BCL, thuswise: “I get rather annoyed at your various correspondents who complain of all sorts of things on the pretext that they are concerned with the ethics of operation, whereas in fact they are merely complaining that a certain station has not come back to their call.” (Hear, hear!)

To continue: “A station will not reply to you for two reasons, and two reasons only. They are (a) he doesn’t hear you, and/or (b) he doesn’t want to hear you. Both these reasons are good enough for me, hence no complaints.”

GM3BCL adds that the “thrill of the chase” is a major element in the DX rat-race—and how dull it would be if they all came back on the first call!

With all of the above we agree, but we must add that even if you are not chasing an exotic piece of DX, but merely listening round the bands (as we often are), you hear things and you observe behaviour that is either childish, unskilful or of the type corresponding to sheer road-hogging. We should be better off without it, but that applies to so many other things in this sad world.

Incidentally, it occurs to us that the sound of a really exotic piece of DX has exactly the same effect on certain operators as that Rock ’n Roll film has on teenagers. Instead of tearing up the seats, they wreck a section of the band.

That brings us to the end of this month’s piece, and it only remains for us to say that next month’s deadline is first post on Friday, October 19. The following one (overseas readers, please note) is Friday, November 16—plenty of time for the airmails. Address everything to “DX Commentary, Short Wave Magazine, 55 Victoria Street, London, S.W.1.”

ECHO FROM THE PAST

We were interested to have a letter recently from a (very senior) OT reader, whose query was the value and rating of a resistor in a particular transmitter, published in an early issue of SHORT WAVE MAGAZINE. This turned out to be the CO-PA design described by our original “A. A. Mawse” in the September and October issues dated 1938! Our correspondent still operates the transmitter.

VSI/VS2 AMATEUR LISTINGS

A recent issue of VS2DB’s Malayan Radio Amateur shows that there are 40 VSI’s licensed in the territory of Singapore, and 52 in the VS2 area (Federation of Malaya). Three VS4’s are shown for Sarawak, all in Kuching, and two in North Borneo—ZC5SS and ZC5VS. Another interesting statistic is that there are no less than 31 VS6’s licensed in Hong Kong.
ZBOR III, BEOGRAD, 1956
THE YUGO-SLAV AMATEUR CONVENTION

The writer was fortunate enough, on arrival in Belgrade on holiday in July, to find that an international Amateur Radio convention was to take place during July 7-9, at which the Iron Curtain countries were to be strongly represented.

Having succeeded in finding the Hq. of the S.R.J. (the Yugo-Slav national association of radio amateurs) and going on the air with their Hq. station signing the highly improbable call of G3FOO/YU0C, personal contact was soon made with the redoubtable Mirko, YU1AD—who, among his other talents, speaks about 12 languages.

The opening meeting of the convention was held on July 7, when delegates from DL, HA, HB9, LZ, OK, OZ, SM, SP, UA, YO/YU and 9S4 spoke. Quite a lot of discussion ensued, in spite of the fact that it all had to be interpreted (mainly by YU1AD).

In addition to a large exhibition of amateur-constructed gear and commercial apparatus of YU manufacture, a certain amount of foreign equipment was also on view, including one of the more de luxe British communication receivers.

On July 8, the second day, the main features of the proceedings were a two-metre D/F contest and a coach trip to Avala, a local beauty spot. The day concluded with a lecture on transistors, followed by a concert and dance. On the morning of the third and final day, all foreign visitors to the convention were asked to meet the Mayor of Belgrade—with appropriate refreshments in the mayor’s parlour—and in the afternoon the concluding business meeting took place. The “grand finale,” in the evening, was the Hamfest, at which prizes were distributed for the D/F events, the home-constructor sections and the high-speed Morse contests, with pennants and souvenirs for all foreign amateurs present. The festivities continued until daylight the following day!

General Impressions

The writer’s lasting memory is of the extreme friendliness and boundless hospitality shown him, as a chance (and the only) G visitor to this most cosmopolitan gathering, held in the capital of a country with a foot on both sides of the Curtain. More than 30 licensed amateurs from countries outside Yugoslavia were present, some with their wives, and for most of them (who had never been out of their own countries before) it was their first experience of a personal QSO with a British amateur.

In some cases, visas and passports were not granted until the very last moment; in fact, the LZ party’s documents only reached them in time because a fast car raced the train to the frontier station!

For the duration of the meeting, many of the visiting amateurs were quartered in a students’ hostel, the doors of which were adorned, very properly, with QSL cards. The evenings were taken up with gay parties sampling the local brew—šlivoviz, a Yugoslav concoction said to resemble brandy—and talking in the way that radio amateurs do the world over. An amusing experience on one of these occasions was with YU1DHI, who spoke no language except his own, but nevertheless managed quite well in Q-code with pencil-and-paper!

It was with real regret that the time came to say good-by—and the writer is sure that all foreign amateurs visiting this convention would be with him in thanking the S.R.J. for organising such a first-rate show. To all the YU’s—Hvala Yam! (We hope it’s all right!—Ed.).

Caught at the Yugo-Slav Amateur Radio convention in July last—the group round the šlivoviz includes, from left to right, YO3RF, YU1AD (Mirko), SP8FM, two YU’s not identified, and YU1AF on the near right, with G3FOO in the foreground. The only G present at the convention, he was lucky enough to run into it by chance during a holiday visit to Yugo-Slavia.

NEW QTH’s

Readers recently licensed, and those who have changed their address, are reminded that they should inform us immediately if they wish to be listed in “New QTH’s” and in the Radio Amateur Call Book, which is the world-directory of radio amateurs. There is no charge of any sort for making these appearances, which we are glad to arrange as one of our services for readers. Your name, address and call-sign should be clearly written on a separate slip, addressed to “QTH Section” (with a request to change your card in the index if you are a direct subscriber). Any U.K. amateur can use this service.

MAGAZINE CLUB CONTEST—“MCC”

The 11th annual Club event organised by Short Wave Magazine takes place this year during the week-ends November 17/18 and 24/25—see p.441 for rules. All 160-metre CW operators are invited to take part, as they can give Club stations single-point contacts. The fun is fast and the going furious, and non-Club stations will find that it is a real contest event.
THE SOUTHAMPTON MOBILE RALLY

ORGANISED by the Bournemouth Amateur Radio Society, the intention on this occasion was to make the Rally a get-together rather than a stage-managed event with a set programme. Though held in cold and depressing weather, about 75 people were present during the peak period and appeared to be thoroughly enjoying the opportunity for discussion and personal QSO's.

The 160-metre station, G3KYU, talked-in the following mobiles: G2FIX, G2FK, G2FSR, G3GMN, G3ISZ, G3VPQ, G3JXA, G3KAS, G4AP, G5PP, G8ML and G8QW. In addition, Top Band mobiles G2BRR and G3IPR were present. The two-metre station, G2HIF, brought in G2DSW, G3CGE, G3HKT, G3IRA and G3KSR. The 80-metre mobiles were G2AOK/M and G2CDN/M. This makes a total of 21 fitted vehicles (cars and motorcycles) present at the Rally.

Mobile on Two Wheels

For it will interest many readers, and potential mobiles, to know that G2FIX/M is on Top Band with his Triumph m/c, complete with a loaded whip bolted to the carrier bracket and the transmitter-receiver-power pack items disposed conveniently round the machine, making a neat and handy job. G3IRA/M is also a motor-cycle mobile, but on two metres, and with very much miniaturised apparatus—the PA runs a pair of 6AK5's in push-pull!

There were many other interesting equipments on view at the Rally—indeed, the ingenuity and resource of our mobiles knows no bounds, and all bands are being tackled with success. For instance, on 160 metres, G4AP/M has the first, and probably so far the only, all-transistorised receiver-transmitter assembly for mobile working; he is to be congratulated on his effort in this new field. Quite different is the approach of G3GMN/M, who runs a transmitter, with a TT11 PA, band-switched for all bands 160 to 10 metres.

The beautifully constructed miniaturised two-metre gear shown by G3CGE/M attracted much attention—it was built by SWL R. Bassett, well known on the VHF bands. By contrast, G2CDN/M has his Morris Traveller fitted with the latest American commercial mobile equipment, covering 80-10 metres inclusive, with a whip aerial that can be resonated at any frequency in the transmitter range. One of the 160-metre installations, that of G3JXA/M, was complete down to a miniature frequency meter and oscilloscope (1-in. tube) for modulation checking!

The Aerial Systems

For 160 metres, the resonant whip—either centre, base or top-loaded, with or without capacity hat—is the usual fit. On two metres, however, the aerials vary from quarter-wave spikes to the loop-dipole used by G2DSW/M (for which his XYL talks of crocheting a netball-net for keeping the juniors amused!) and the VHF skeleton sphere displayed by G3KSR/M; he also has a telescopic 4-element flattop, on a boat-hook mast, for /P operation when stationary.

Control Station Arrangements

G3KYU/P on 160 metres ran 10w. to a QVO4-7 PA, into a quarter-wave end-fed aerial, with an S.640
receiver—in case departing mobiles may have wondered why G3KYU was not on “to hear them away,” the reason was that the FC valve in the receiver blew just as the Rally was breaking up. G3GYK/P did not have a lot to do on 80 metres, for which a ZC1 was provided.

G2HIF/P, the two-metre control, has a screen-modulated 832 in the PA, and his receiver is a 14-valve miniature double-superhet; as much portable work is done, G2HIF has built himself a small petrol-electric generating set—capable of charging the car battery at 7 amps—which caught the attention of many people with the same sort of problem.

Among the visitors to the Rally were OD5BN, on leave from Beirut; G2FSR/M just back from Cyprus, who built and fitted the 160-metre /M gear into his Consul in less than a fortnight; Mr. Leslie Lowe, chairman of the BBC’s Radio Club, G3AYC; and a helicopter which circled purposefully for some time and was rumoured to be a mobile from Southampton! In addition to the /M operators already mentioned, there were about a dozen other G call signs present, with G5PP/M from Coventry as the most GDX arrival.

Altogether, the Rally was another very successful Amateur Radio occasion, and to G3KYU, honorary secretary, and the members of the Bournemouth A.R.S. responsible for the organisation, go the thanks and the congratulations of all who were there. We are informed that plans for another B.A.R.S. Mobile Rally are already under consideration for June next year, for which the experience gained from this last one will be invaluable.

(Editors Note: The photographs were taken by G2FK, and the details from which this account is written were supplied by G3KYU, on behalf of the Bournemouth Amateur Radio Society.)

CHANNEL CABLE PROJECT

The decision, recently announced, to commence the laying of an underwater cable to link the British and French electricity grid supply systems is of considerable technical interest, because the Channel cable is actually to transmit at DC. This involves the construction of converter stations at each end to effect the conversion for the cable link. It is understood that the AC/DC change-over will be by mercury-vapour rectifiers and that the transfer capacity of the linking system will be 150,000 kW.

QSL’s for SWL’s

If an SWL who gives “GPZ/21” as his listener identification will get in touch with us, we can let him have some cards held for him in our Bureau. And if the “BSWL” (no number given) who is expecting a QSL from, say, KG1FR, will do the same, we can likewise clear his cards.

CARDS IN THE BOX

Please send a stamped, self-addressed envelope, with name and call sign, to BCM/QSL, London, W.C.1, if your call appears in the list below—we have cards for you, but no forwarding address, because you are not yet in any published list. If you would like your call sign/address to appear in “New QTH’s” and in the Radio Amateur Call Book (for which we are sole agents for Europe) please mention it when sending in for your cards. The Call Book is the only directory to the amateur stations of the whole world, and as such circulates in all countries.

G2A1J, 2FPQ, 3DIA, 3IKJ, 310, 3JPP, 3KJ, 3KPV, 3KRV, 3KUV, 3KZE, 3LAI, 5BW, 5CZ, 5P, GW3GLI.
From small beginnings in 1933, when W6DEI first transmitted amateur Single-Sideband from a home-constructed LF-type filter transmitter on 75 metres, amateur SSB has developed into a fully established competitor to the more familiar amplitude modulation. Although, the commercial services have used SSB for point-to-point fixed frequency long-distance telephone communication for many years, until recently little or no consideration had been given to the adoption of sideband for the fixed-to-mobile and mobile-to-mobile services.

The continuing development of amateur sideband has aroused quite a lot of interest in official circles on both sides of the Atlantic. The saving in channel space, combined with the ability of Single-Sideband to get through under poor propagation conditions, is very attractive in these days of a heavy and constant demand for more and more frequencies.

The U.S. Armed Forces have not been slow in realising these advantages, and the U.S. Navy have recently specified that all new MF and HF communications equipment for Fleet use must have Single-Sideband capability. The U.S.A.F. have been testing amateur SSB equipment for long-distance air-to-ground communications.

On the British side, the Ministry of Civil Aviation are known to be interested and have already carried out some comparison AM and SSB tests. The GPO are considering how SSB could be introduced into the Maritime Mobile Radio-Telephone Service.

VHF Single-Sideband

According to ZL3AR, getting on two-metre SSB is no real problem. Following the recent notes in QST and being an active VHF exponent as well as having SSB interests on the DX bands, he decided to see what could be done with his present equipment and a minimum of extra units.

For the transmitter, he is using his normal phasing exciter with the output on 14.3 mc. This output is mixed with a 130 mc signal from an SCR-522 and the resultant 144.3 mc signal fed to an 829B Class-AB1 buffer, which drives push-pull 826's in Class-B to 300 watts peak envelope power. The mixer stage is the only additional item that had to be built, and this uses a Mullard QQV03-20 as a balanced mixer with cathode injection. A block diagram of the transmitter is shown in Fig. 1. The receiver in use at ZL3AR is a home-constructed selectable sideband type, preceded by suitable crystal-controlled converters for the band in use. The change to SSB was accomplished during a week-end, and the results have been very gratifying, with regular QSO's over the previously difficult 250-mile path to ZL2ACB in Wellington.

VHF SSB has caught on in a big way in the States, with more than 20 stations now active on the East Coast. With two-way SSB contacts a regular occurrence, the convenience of voice-controlled break-in working has produced a new TR switch circuit suitable for use with balanced feeders. The circuit is shown in Fig. 2 and is a modification of the cathode-follower type, first described by W9LSK in QST for May 1956. The insertion loss is reported to be less than 3.5 dB.

Although it has not yet been possible to test this switch at G6LX on two metres, it is in current use on 10, 15 and 20 metres with excellent results.

Query Department

At the request of several of the newcomers to Sideband, it has been decided to introduce a "Question and Answer" section which can deal with individual queries of general interest related to all aspects of Single-Sideband.

Query number one is from SWL Richardson (Ashton-under-Lyne), who has recently been doing quite a lot of listening on the "high-end" of 20 metres. He asks for information concerning methods of selectable sideband reception, and in particular for details of the Multiphase "Sideband Slicer," which is used by so many Sideband stations in the States.

The two basic methods of obtaining practical sideband selection are the McLaughlin and the out-phasing systems. The first arrangement relies on a selective IF amplifier having a bandwidth just wide enough to pass one sideband. Sideband switching is accomplished by changing the local oscillator frequency from one side of the signal frequency to the other. The necessary selectivity can be obtained either at the normal IF of the receiver by the use of a bandpass crystal or mechanical filter; or by double-conversion techniques with LC-type filters, or even a number of tuned circuits, e.g. the BC-453 "lazy-man's" Q5'er. In order to avoid slight retuning when switching sidebands, it is also necessary to

![Fig. 1. Block schematic of the two-metre SSB transmitter layout devised by ZL3AR, who is getting very satisfactory results with this arrangement—see text.](image-url)
Table of Values

Fig. 2. TR Switch for 300-ohm Balanced Feeders.

<table>
<thead>
<tr>
<th>C1, C2</th>
<th>50 μF</th>
<th>R1, R2</th>
<th>1.5 megohms</th>
</tr>
</thead>
<tbody>
<tr>
<td>C3, C4</td>
<td>.005 μF</td>
<td>R3, R4</td>
<td>220 ohms</td>
</tr>
<tr>
<td>C5</td>
<td>.001 μF</td>
<td>R5, R6</td>
<td>1,500 ohms</td>
</tr>
</tbody>
</table>

change the BFO frequency to the other side of the IF.

The phasing method, which is used in the "Slicer," was first described by Norgaard in QST for July 1948 and reprinted in the ARRL publication Single Sideband for the Radio Amateur. The circuit for the "Slicer" can be found in "Single-Sideband Techniques," by W3SHY, published by CQ Magazine.

The principle of operation is very similar in many respects to that of the phasing-type transmitter-excitation. The receiver IF output is mixed with a locally generated carrier, which has been split into two equal amplitude signals phase-separated by 90°. After detection, the two audio signals from a double-channel detector are fed through an AF phase-shift network to "sum" and "difference" combining circuits. By a switching arrangement, it is possible to select either sideband output from the combining circuit, the unwanted sideband being cancelled-out to a marked degree.

The phasing method is quite useful when used with receivers having an IF amplifier with poor "noise-to-signal" characteristics. Under practical conditions it can provide upwards of 25 dB improvement in unwanted sideband rejection. However, due to the lack of IF selectivity, it is very vulnerable to cross-modulation from strong signals on an adjacent channel. For this reason, the McLaughlin system is to be preferred, and the majority of the sideband receiving adaptors now available in the USA use the double conversion principle.

News and Views

On leave from the R.A.F., GW3IVS is active from his home in Llandudno. His last spell of overseas duty was in Hong Kong, where he operated VS6CW, and was for a time the only active Sideband station in the Colony. At present he is on 20 and 80 metres with a phasing-type transmitter.

G3AUB (Stockport) has recently migrated to Twenty after a long spell of 80-metre operation. In the first 10 days of DX-chasing he managed to collect 19 countries. G3GKF (Purley) reports that Fifteen is still paying off. With the increased South American activity, several new ones have been acquired during the last few weeks.

GW3EHN (Swansea) reports that he is very happy with the results he is getting on Sideband. Rumour has it that he has been burning midnight oil trying to make a two-way SSB W.A.S.

W4API, who was so busy last year on 80 and 20, reports that he has been posted to Paris and expects to be on early in October with an F7 call. He looks forward to working old friends on Eighty during the winter months.

A very welcome letter from G5BJ (Birmingham), who has recently discovered Single-Sideband. He reports that his phone DX results have improved out of all proportion, following the change from "ancient modulation!" At present he is using a G3CWC phasing-type exciter driving a QY3-125 in Class-AB1. (He has just purchased a new Eddystone 888 receiver and finds that it works very well on Sideband.) G3MY has been taking advantage of the improved conditions on 15 metres and has upped his country score to 44. Congratulations are in order, as he was the first G to work KC4USV.

G3KTU (Esher) is back on 80 metres from his A location in Mill Hill. He has recently returned from a holiday visit to Sweden where he met several of the SM5 Sidebanders. Recent sideband visitors to G6LX included W2DPZ, W2CFT, W0DRD, DL4EW and OH2ZA.

SSB Countries Worked Ladder

<table>
<thead>
<tr>
<th>STA TIO N</th>
<th>COUNTRIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>DL4SV</td>
<td>55</td>
</tr>
<tr>
<td>K2DW</td>
<td>50</td>
</tr>
<tr>
<td>ZS6KD</td>
<td>50</td>
</tr>
<tr>
<td>G6LX</td>
<td>46</td>
</tr>
<tr>
<td>VK3AEE</td>
<td>44</td>
</tr>
<tr>
<td>G3MY</td>
<td>43</td>
</tr>
<tr>
<td>AP2BP</td>
<td>42</td>
</tr>
<tr>
<td>G3GKF</td>
<td>42</td>
</tr>
<tr>
<td>G3BJ</td>
<td>28</td>
</tr>
<tr>
<td>G3BFP</td>
<td>24</td>
</tr>
<tr>
<td>G3AUB</td>
<td>20</td>
</tr>
</tbody>
</table>

DX Notes

Sideband activity from South America has taken a turn for the better, with the appearance of PY2JU and LU6DHR. From Bolivia CP5EK is back and OA4CL is again active following his recent visit to the U.K. CP5EK has a new linear using a 4-250A which has given him a much improved signal into
WSN QN, Opa Locka, Fl.a., runs Sideband on 10 and 15 metres, and works a lot of DX—but not with the valve he is holding, which is a blown QRO type from the local BG station.

Europe; although he prefers Fifteen he can sometimes be found on 28650 or 14300 kc. PY2IU is at present running 15 watts peak to a "barfaced" 20A, but a 500-watt linear is under construction. YV5FL, CX5AF and CE2HV continue to represent the remaining South American contingent.

From Central America HR2WG (21425 kc), KZ5GZ and KZ5LB are on, while the West Indies have a strong Sideband following led by KV4AA. KV4BB, COSFL, VP7NJ and VP9HH. VK3AEE reporting (on 14 mc) on Sideband happenings in the Pacific area, provides information that VR2CG is back on 15 metres after a rebuild; KG6AAY and KX6NB are on Twenty, but otherwise things are fairly static with little to report.

AP2BP and AP2CR have again been the main-stays for Asiatic contacts, with occasional appearances of JA1ACB and KA2YA. 4X4AA is new to SSB, having been bitten during a recent visit to the States. 457YL has a Sideband transmitter and can be persuaded to change to SSB, if you can first attract her attention. She can often be found working AM on the low end of 21 mc. VS6DA has a new SSB transmitter, but is inactive at present. VS6BE has just received a new KWS-1 and 75A-4 and should be on soon. (Thanks to GW31VS/V803CW and VK3AEE for the information.)

According to DL4YU, 28 mc Sideband is on the increase over there, with contacts being reported with all W districts, KZ5, KH6 and CP3. On the European front ZBICZ, TF3CJ and 9S4AX have been on 14 mc; ZB1CZ is G3FV8, who was so active a few months ago from Hull. 80-metre operation from Malta is planned when the other bands cool off.

Several stations have reported hearing EA0AC in Spanish Guinea (14310 kc). EL0A is none other than W4DGW, who has let his W call lapse. He is on the move again and is operating J/M on board the s.s. Del Campo. For those stations looking for a KL7 contact, the following are on: KL7PIV (0900 GMT 14 mc), KL7BGA (1800 GMT 21425 kc), KL7FX (1200 GMT 14 mc) and K0AIR/KL7 (1930 GMT 28600 kc).

Countries Worked Ladder

It seems that some readers, at least, like the idea suggested in the last "SSB Topics" of running a Countries Worked table for two-way SSB. It was thought, at the time, that because of increased activity on the higher-frequency bands, the Table would be more interesting if the scores were tabulated for each band. Perhaps this point was not made clear, as only one of the scores sent in included this data.

We still think it's a good idea, so please provide this information when sending in the next report. The top scorer this month is DL45V (Munich) with a total of 55 different countries worked. It is known that several G/SSB's have exceeded this total and in the States at least one station has 70-plus. We hope that in due course we shall get the necessary details from many more SSB operators.

Dead Line

Reports for the next offering under this heading, to appear in the December issue, are requested by October 31 latest, addressed: "SSB Topics," Short Wave Magazine, 55 Victoria Street, London, S.W.1.

CUAGN on December 7—or how time flies!

A FEW REMINDERS

That we are always glad to see good photographs of Amateur Radio interest for possible publication in Short Wave Magazine—all those used are paid for on appearance.

That contributions for our "Other Man's Station" series are always welcomed, from readers at home or overseas. The photograph should be a good one, and accompanied by all the necessary details from which the write-up can be prepared. Payment is made for the material.

That you can sell practically anything in the way of good, unwanted gear through our Readers' Small Advertisement columns, for which the rate is 3d. a word, with a minimum charge of 5s., plus 1s. 6d. for a box number if preferred.

That we accept six-monthly subscriptions at the rate of 15s. post free, entitling full two-way use of our QSL facilities—BCM/QSL, London, W.C.1.

That it is getting near enough the time to suggest that if you want to give a radio friend overseas a really useful present, how about a 12-month subscription to Short Wave Magazine? The cost is 30s. post free. anywhere in the world, for a year of 12 issues—besides reminding him of you each month. Few gifts could be more acceptable to an amateur (or so we are told!).

That if you live and read this outside the sterling area, our subscription rate is based on $4.00 U.S.

R.A.E. PREPARATION IN LIVERPOOL

Readers intending to take the May 1957 Radio Amateurs' Examination and living within reach of Liverpool may like to know that an evening course is starting at the Riversdale Technical College, Riversdale Road, Aigburth, with instruction in Morse as well as radio theory. Application for details should be made immediately to the Principal.
ALL things come to those who wait—and are on the band at the right time. In other words, it is good to be able to report, at last, a definite improvement in VHF conditions, with EDX again workable and many new contacts made. As several of our correspondents this month have remarked, it is the EDX breaks that make life worth living for the VHF-only fraternity.

However, for us the openings came just too late really to register with the International Contest during the September 8-9 weekend. Though in the U.K. conditions were quite good on the Saturday, they fell off noticeably on the Sunday, and activity was disappointing. On the other hand, in the Central European area, things were much better; interesting stations reported active include HBIIV, HB1RD, LX1ISI, OEBF, and 9S4BS, all making numerous contacts with DL and HB. It would certainly seem that, for their event, the D.A.R.C. had better conditions than we did in July, when there were two weekends from which to choose; at the same time, the area of good conditions during September 8-9 did not extend as far as the Channel coast.

Since the latest news is always the most interesting, let us survey the happenings of the last few weeks first... As the weather began to change for the better round about September 9-10, so conditions started to build up. bringing the nearer Europeans within range of the north of England by the 13th, with good openings over the next six days, especially on the 14th, when lots of things happened. G13GXP (Kilkkeel, Co. Down) was hearing F8XT (Chillace, Charente), a distance of about 670 miles, and good enough for checking on as a possible new European distance record, to say nothing of an F/GI "First," which has been wanted for a long time. However, no actual contact ensued, apparently because F8XT (who had started at S9 with G13GXP) went down into the noise by the time G3GPT got him listening for G13GXP—though even then a QSO might have been possible on CW.

Unfortunately, F8XT persisted with phone and so missed several other chances, apart from G13GXP. The latter was somewhat compensated for his abortive sortie with F8XT by getting a good QSO with GC3EBK (Guernsey), for the G1/GC "First." representing also a new country and a new county for them both; this was on the 14th, when GC3EBK was hearing ON4BZ and PE1PL (for the first time).

Taking a shifty at the map, one feels that, with the state of the band during September 13-14, there might have been a good chance for a West Country station to have worked EAICO (see p.375, last month). The path is more favourable than G13GXP-F8XT, and the distance Gijon-Plymouth about 500 miles, almost entirely over-sea. On September 16, DJ1BC and F3LQ were getting into southern England, and on the 19th DL3QH was being worked from East Anglia in the late evening, while ON4BZ was a good signal in the South Midlands; two of the Cambridgeshire stations, G3HT and G3WW, were shouting in down in the south-west and were among the strongest GDX signals on the band.

For G's generally, the most exciting EDX station was, of course, F8XT, who made many QSO's at distances around the 500-mile mark—for he is not just another F; his nearest G station cannot be much less than 350 miles distant.

ON4BZ at 16 Countries

For a long time now, the leading positions in the Countries Table have been held by G3GHO, G4MW, G5YV, G6NB and ON4BZ—each of whom had worked 15C, but not the same fifteen. ON4BZ has never succeeded with GD, nor have any of the front-row G's yet had LX (though LX1AS has been worked by G5MR for the G/LX "First").

Guy of ON4BZ, now has the bulge on everybody by his QSO with a most unusual one—9S4BS, of Neukirchen in the Saarland. This was on September 8, during the D.A.R.C. contest, so giving ON4BZ 16C, and the hot seat! The "loose" countries workable by the leaders are now GD, LX, 9S4 and (we think) EA, as soon as conditions give us another break.

ON4BZ must go for GD and EAICO (a very difficult QSO for him, but possible if he can work F8XT), while the G's must look for EAICO, LX1AS and 9S4BS, of whom LX1AS, on for every contest, is the easiest (so far as any of them could be regarded as "easy"!), with EAICO a good chance.

Anyway, congratulations to Guy for having broken through the crust at last and got to the top of Countries Worked. Apart from this, ON4BZ also had QSO's with HB1IV and HB1RD during the D.A.R.C. contest, when European activity was high.

Some 70 cm Items

G3JHM (Worthing) had a fortnight with F8MX at St. Valery...
earlier in the period, when conditions were not so good. In
spite of this, on each occasion during his stay G3GDR (Watford)
and G6NB (Brill) were worked on 70 centimetres—which to us seems
pretty good going! The interesting thing is that all the G’s worked on
430 mc, G3GDR was the outstanding signal, being consistently
12 dB or so up on G6NB. The other G’s raised, either direct or
on-screen bands, were G3FZL, G3HBW, G31RW, G4KD, G5MR
and G8AL. While in France, G3JHM also visited F8GH (Beauvais), who has since heard
him on 70 cm.

From home, G3JHM has got to five counties on 70 cm and now has a new QQQ06-40 PA, giving 25 watts RF out. His “best DX
heard over land on 430 mc” is G6NB (80 miles), but repeated
calls have so far failed to evoke any response from Bill.

G3KEQ (Sandestead) is trying hard with G3IRA and G3KA
for his 20th county on the band. G3KHA (Bristol) has heard
G2CIW (Cambridge) on 430 mc, the latest occasion reported being
on September 20. But G3HBW (Bushey) cannot be received in
Bristol yet. G2CV (Cambridge) is now at the top of 70-Centimetre
Counties with 27C’s worked, the latest being G5SL in Mablethorpe.

GDY on 25 Centimetres

This should be entitled “Another Mountain Epic.” For on
September 1st GW6DP/P was in position on the summit of
Snowdon, with GM2JT/P waiting for him on the top of Criffell
(1,866 ft.) in Kirkcud, overlooking the Solway Firth. At their heights, they had virtually an optical over-sea path, the distance being 130 miles. Signals were S7 at
GM2JT/P and S8-9 at GW6DP/P, on 1220 mc MCW. Their transmitter units were similar, consisting of a CV90 oscillator in a coaxial cavity, energising an 11-element Yagi
backed up by a plane reflector. GW6DP/P got his power from a hand-cranked generator, while
GM2JT/P had a P-E set for HT supply.

G2JT/G6DP, who have worked together on VHF and UHF for
many years, are to be congratulated on this very interesting new
result, which is the best British ground record, as well as being the
GM/GW “first”, for the 25 cm band. They have plans to extend the range to beat the world record, which, just at present, is held in W6 for a distance of 190 miles.

It is also very interesting to note that, back in October 1949,
G2JT/G6DP worked this same Snowdon-Criffell path on 70 centimetres; comparison with the log for that occasion shows that the 25 cm signals were much stronger than on 70 cm seven years ago.

From their home QTH’s, about 30 miles apart, G2JT and G6DP
do a lot of 1250 mc work, using CC equipment—and, incidentally, signals are not as good as they
were during the GM/GW test on September 1st. In those 25 cm
home-station transmitters, they do not multiply from 70 cm; this is
in order to keep as near as possible to the 1251 mc band-edge, where
efficiency tends to be higher than towards the HF end. Separate exciter chains are used, which multiply up to the 405 mc
region and are then triped. This has another advantage: By
choosing appropriately-spaced crystals (in their case 5633.3
and 5744.4 mc) the one exciter unit serves to produce both transmitter
drive and local oscillator injection for the receiver, to give an IF
of 24 mc. Later experiments have shown that it is even better to
multiply up into the 600 mc area, and then double, the crystal
frequency selection technique being as before. Of the aerial systems tried, including parasoloids, the multi-element Yagi
has proved the best.

The active 25 cm group in the Lancashire area now consists of G2JT,
G2OI, G3BPH, G3JUD and G6DP—so, as G2JT says, they have quite a nucleus of interested
people.

At this point, we might usefully draw attention to the merits of the
Brimar triode types 6AF4 and 6AM4, as potentially very useful
values for 1250 mc receivers. The 6AM4 is a GGT rated to 900 mc
for amplifier or mixer use, and the 6AF4 is a good oscillator up to
about 1300 mc. Both these values are classified as miniature receiv-

TWO-METRE ACTIVITY REPORT

(List of stations heard and worked are requested for this section, set out in the
form shown below, with call signs in strict alphabetical and numerical order.)

G3KEO, Sandestead, Surrey.

WORKED: G2CV/P, 2FJR, 2HRG, 2IAC, 3LBC, 3MCQ, 3FJP, 3FJTG, 3GK, 3HRH, 3I00, 3I1W, 3JWQ, 31Z1, 3JK, 3KLW, 3LDW, 3NM, 41AJ, 5BD, 5BM, 5ML, 6AGM, 6CL, 6SN, 6YU.

HEARD: G10C, FILO, 9EAP, G2AZD, 2BMZ, 2BWN, 3CRS, 2FNM, 3GPD, 3HRS, 3KPT, 3KUH, 3LU, 5SK, 5SY, 6L1, 6MX, 6W, G1UFX, G1W5U, G1NHN, PAOB, 0FB.

(70 CENTIMETRES ONLY)

WORKED: G2CIW, 2KX, 2NHZ, 3KFD, 3WY, 6YU.

HEARD: G12F, 2KX, 3JQN, 3JWQ, 3JZG, 5K, 6AG, 6L1, 6SK, 6WY, G1EAP, G1NHN, PE1L, (All over 50 miles—September 21 to September 20).

G3DLU/A, Dr. Bletchley.

WORKED: G2AN, 2FNW, 3AYL, 3B1Q, 3CKF, 3DQF, 3GHO, 3HBB, 3HHD, 3HKS, 3I1A, 3JKA, 3JPT, 3MA, 5PE, 6FP, 8VZ.

HEARD: G2AIW, 3FAN, 3JQN, 3JZG, 5K, 60X, G1CDK, (September 3 to 20).

G3DYD, Silwood, Sussex.

WORKED: F3LP, 8GH.

HEARD: 8KT, 9EAP, G2ANS, 2AIK, 2FJR, 3FIR, 2HRG, 2IAC, 3LBC, 3MCQ, 3FJP, 3FJTG, 3GK, 3HRH, 3I00, 3I1W, 3JWQ, 31Z1, 3JK, 3KLW, 3LDW, 3NM, 41AJ, 5BD, 5BM, 5ML, 6AGM, 6CL, 6SN, 6YU.

G3HKHA, Knowle, Bristol.

WORKED: G2AIW, 2CIW, 2CV/P, 2FMJ, 2FED, 3DLP/P, 3JEGW, 3GHO, 3HWB, 3HRH, 3ION, 3JTM, 3JTO, 3WQ, 3KBSP, 3KSRP, 3SWW, 3SKG, 3KW, 60X, 8AL, 8KUP, 8VZ, G1EAP, G1W5U, 8WHU, 8WGH.

HEARD: 3FJLQ, 8BXT, 8G2ANS, 2BNW, 3JWQ, 3JZG, 3KBC, 3WBH, 3HTY, 3HTY, 3JSH, 5YV, 6XX, 6W, G1EAP, G1W5U, 8WGH.

G3KPT, Kingswood.

WORKED: FMX/A, 8XT, 9EA/P, G2AN/P, 2AIM, 2CIF, 2CV/P, 2DWP, 2FNW, 2FHP, 2JF/P, 3HRI, 3KOB, 3JSH, 3PRE, 3P2J, 3P6P, 3SHP, 3SKB/P, 3SKM, 3SKW, 3SYV, 6AG, 6L1, 6SK, 8VZ, G1EAP, PE1L, (All over 50 miles—September 21 to September 18).

HEARD: 3FAL, 3LQ, 8GH, 9AL, PE1L, (August 15 to September 16).
Two Metres

Counties Worked Since September 1, 1955

<table>
<thead>
<tr>
<th>Worked</th>
<th>Station</th>
</tr>
</thead>
<tbody>
<tr>
<td>48</td>
<td>G5MA</td>
</tr>
<tr>
<td>43</td>
<td>G5GPT</td>
</tr>
<tr>
<td>41</td>
<td>G5GHO</td>
</tr>
<tr>
<td>38</td>
<td>G5DWD, G1P1H</td>
</tr>
<tr>
<td>36</td>
<td>G5DS, G5DW</td>
</tr>
<tr>
<td>35</td>
<td>G5UQ</td>
</tr>
<tr>
<td>34</td>
<td>G5HDZ</td>
</tr>
<tr>
<td>32</td>
<td>G5JOO, G5JZG</td>
</tr>
<tr>
<td>31</td>
<td>G5WW</td>
</tr>
<tr>
<td>29</td>
<td>G5KHA, G5WS, G5BM</td>
</tr>
<tr>
<td>28</td>
<td>G5JRA</td>
</tr>
<tr>
<td>24</td>
<td>G5HQ, G5DLU</td>
</tr>
<tr>
<td>23</td>
<td>G5JER, G4JJ/A, G5MR, G5VH</td>
</tr>
<tr>
<td>22</td>
<td>G5KPT</td>
</tr>
<tr>
<td>21</td>
<td>G5CKQ, G5JO, G5XN</td>
</tr>
<tr>
<td>20</td>
<td>G5HJW</td>
</tr>
<tr>
<td>18</td>
<td>G5HEX</td>
</tr>
<tr>
<td>17</td>
<td>G5HF</td>
</tr>
<tr>
<td>16</td>
<td>G5BW, G5M3DQ</td>
</tr>
</tbody>
</table>

This Annual Counties Worked Table closed on August 31st, 1956. The final placings for the year appear above. Annual Counties opened again w.e.f. September 1, 1956, and will run till August 31, 1957. All operators who have worked 14 or more Counties on Two Metres are eligible for entry in the Table.

European VHF Contest — July

The table herewith is a digest of the results of our European VHF Contest in July, held over the two week-ends July 14/15, 21/22, the overall winner being G5KW, as announced in last month’s “VHF Bands.”

It was a great disappointment to all concerned that we did not get a better break with conditions, as the spread of entries actually received shows that, had anything much more than semi-local working been possible for the generality of stations, this Contest would have been a real international event. However, we are grateful to all those who thought it worth while to send in an entry. Nearly all who did so commented on the rules. These were received very favourably—indeed, it was even suggested that they should be the model for all such events. It is, however, fair to say that one or two people (non-entrants) have said that the multiplier system did give an advantage (presumably unfair) to those in a position to work EDX. Well, we fully appreciate that; but surely it is clear that had we had an EDX break comparable with that during this recent September spell, when Europeans were generally workable, the multiplier system would have made the Contest all the more interesting. Everybody, or nearly everybody, would have been offered the chance of working Europeans and thereby gaining multipliers.

It was with the reasonable hope (based upon the experience of previous years) that there might be a good EDX opening during the period of the Contest that (a) It was set for July, over two week-ends, to double the chances; and (b) The country-multiplier system was devised. In the event, because conditions did not materialise, all the advantage went to well-placed stations.

Anyway, we do not see why the multiplier system should have deterred anybody from entering the contest, irrespective of conditions! Contests on the VHF bands are laid on primarily to promote activity and sort out the most effective stations. Only the best-placed (and best-operated) stations can get the leading places, whatever the rules may say.

Stations in the same locality should feel that they are competing—not necessarily for the lead—but with other stations in their own area, where conditions are the same for all in that area. The outright winner and any placing in the final table ought to be of secondary importance, since it will depend upon a number of factors over which individual entrants obviously have no control.

We suggest that it should not be a matter of looking over the rules to see where the advantages lie, and then deciding not to enter because “old so-and-so is bound to win it.” Unfortunately, this is very much the tendency nowadays! The fact is that however the rules are drawn they cannot give absolutely everybody the same chance—but they will always be fair as among groups of stations in particular areas, e.g., the West Midlands, or East Anglia, or South Wales.

So, having said all that, let us look at the results that did come in for the July International Contest. G5KW did extremely well to find four multipliers (F, GW, ON and PA) for the first leg, and six (DL, F, GC, GW, ON and PA) for the second. The next highest scorers in terms of multipliers were HB1RD (DL, F, ON and 9S4), DL6SV (G, ON and PA) and DL1SE (also G, ON, OZ and PA).

Among the best QSO’s recorded in terms of distance were G5GHO-DL1SE, G5KW-DL3QH, HB1RD-DL1IEI, DL6SV - G5KW and DL1SE-OZ2PF, all of which were at the over-500 km distance and worth 25 points. During the first week-end, July 14-15, HB1RD made 38 contacts, but DL6SV only 22, whereas G5DWD had 46 QSO’s to score. G5KW’s total for the first week-end was 45, and G5YV’s 52, of which five were at the distance, worth 12 points each; the conditions were dead against Harold making any long-haul QSO’s.

As the Table of Results suggests quite clearly, conditions were much better (though still far from good) during the second week-end; this produced more apparent activity and hence higher scores than for the July 14-15 leg. The fact that five stations succeeded in scoring aggregates of over 1,000 points—mainly as the result of long hours and hard work—makes it clear that there was a certain amount of DX available for those who could get to it. It also proves that G5KW, G5YV, HB1RD, DL6SV and DL1SE are among the best-placed, and best-operated, VHF stations in Europe.

It can also be said that for the first week-end any score of 200 points or over was good, and for
the second period anything over 500 points. This comparison is also just about the measure of conditions. The total entry for the first leg was 21 and for the second 27. Had we had anything like reasonable summer conditions, these figures would have been at least doubled, if not trebled.

To all who did enter and send in a log, and to the several European Amateur Radio periodicals which gave the Contest the necessary local publicity, our very best thanks.

Some Station Reports

Turning now to the domestic scene, we have quite a large clip of reports. First, let us mention that the Activity Report shows we have two very new stations on the two-metre air — G3LAY and G3LDW, who are welcomed.

In the year's final placing for Annual Counties, Bob of G5MA comes out top with 48C worked, with a total of 31 stations in the list. These are very much lower figures than last year [G5YV 67C, 45R listed] and undoubtedly reflect the poorer conditions during 1955-56. The table opened again w.e.f. September 1st, and we have already had some claims in. All who have worked 14C or more for the new Annual Counties are asked to put in their figures so that we can get it going in the next issue.

G3KUH (Rotherham) reports for the first time this month, and as he is one of the active northerners, should find himself in demand as a new station to work. G3DLU, normally of Sheffield, has had a few weeks of /A, /P operation in the Bucks./ Beds. district and was disappointed with activity during TV hours. An old friend in G3IOE (Newcastle) writes that his absence has been due to service with the R.A.F., but he hopes to be on again in due course with new gear. SWL Bastin (Coventry), well known as G3ML's 2nd operator and a keen VHF listener, will probably have his own call-sign by the time this is in print; he says he is looking forward to joining our "happy band of former SWL's-G3HAZ, G3HBW, G3IOE." (He might also have added G3GBO!) Frequency

<table>
<thead>
<tr>
<th>Station and Location</th>
<th>July 14-15</th>
<th>July 21-22</th>
<th>Grand Total</th>
<th>Placing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Score/Mult</td>
<td>Total</td>
<td>Score/Mult</td>
<td>Total</td>
</tr>
<tr>
<td>G5KW, Orpington</td>
<td>204/4</td>
<td>816</td>
<td>447/6</td>
<td>2,682</td>
</tr>
<tr>
<td>G3YV, Leeds</td>
<td>235/2</td>
<td>470</td>
<td>438/3</td>
<td>1,314</td>
</tr>
<tr>
<td>HBI1RD, M. Chaseral</td>
<td>206/3</td>
<td>618</td>
<td>250/4</td>
<td>1,000</td>
</tr>
<tr>
<td>DL6SV, Ahrensburg</td>
<td>97/2</td>
<td>194</td>
<td>281/4</td>
<td>1,124</td>
</tr>
<tr>
<td>GL2DY, Salford</td>
<td>119/2</td>
<td>238</td>
<td>218/3</td>
<td>654</td>
</tr>
<tr>
<td>G3GHO, Roade</td>
<td>115/2</td>
<td>230</td>
<td>133/2</td>
<td>266</td>
</tr>
<tr>
<td>DJ1XX, Osnabruck</td>
<td>36</td>
<td>36</td>
<td>194/2</td>
<td>388</td>
</tr>
<tr>
<td>GJWQ, Ripley</td>
<td>127</td>
<td>127</td>
<td>138/2</td>
<td>276</td>
</tr>
<tr>
<td>DL9LT, Espelkamp</td>
<td>39</td>
<td>39</td>
<td>138/2</td>
<td>276</td>
</tr>
<tr>
<td>G1KHA, Bristol</td>
<td>68</td>
<td>68</td>
<td>81/3</td>
<td>243</td>
</tr>
<tr>
<td>PA0BN, Oosterboek</td>
<td>16</td>
<td>16</td>
<td>86/2</td>
<td>172</td>
</tr>
<tr>
<td>OZ5AB, Copenhagen</td>
<td>70/2</td>
<td>140</td>
<td>42/2</td>
<td>182</td>
</tr>
<tr>
<td>G5MR, Hythe</td>
<td>58/2</td>
<td>116</td>
<td>28/2</td>
<td>144</td>
</tr>
<tr>
<td>G1EEO, Derby</td>
<td>62</td>
<td>62</td>
<td>32/2</td>
<td>94</td>
</tr>
<tr>
<td>G2CZS, Chelmsford</td>
<td>26</td>
<td>26</td>
<td>60/2</td>
<td>86</td>
</tr>
<tr>
<td>PA0APD, Apeldoorn</td>
<td>11</td>
<td>11</td>
<td>63/2</td>
<td>74</td>
</tr>
<tr>
<td>OZ23MD, Sohng</td>
<td>24</td>
<td>24</td>
<td>1/2</td>
<td>25</td>
</tr>
<tr>
<td>G2ADZ, Woolacombe</td>
<td>118/2</td>
<td>236</td>
<td>236</td>
<td>5</td>
</tr>
<tr>
<td>G3CQO, Luton</td>
<td>86</td>
<td>86</td>
<td>86</td>
<td>11</td>
</tr>
<tr>
<td>G3BFP/A. Selsdon</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>12</td>
</tr>
<tr>
<td>DL1E1, Kassel</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>15</td>
</tr>
<tr>
<td>DL1E1, Detnold</td>
<td>257/4</td>
<td>1,028</td>
<td>1,028</td>
<td>6</td>
</tr>
<tr>
<td>DL10NH, Hamburg</td>
<td>272/3</td>
<td>816</td>
<td>816</td>
<td>6</td>
</tr>
<tr>
<td>ON4QZ, Zandhoven</td>
<td>186/3</td>
<td>558</td>
<td>558</td>
<td>8</td>
</tr>
<tr>
<td>GW3BOC/P, Nr. Colwyn Bay</td>
<td>155/2</td>
<td>310</td>
<td>310</td>
<td>10</td>
</tr>
<tr>
<td>DL3H, Konigsclutter</td>
<td>136/2</td>
<td>272</td>
<td>272</td>
<td>13</td>
</tr>
<tr>
<td>PA0OZJ, Poeldijk</td>
<td>93/2</td>
<td>186</td>
<td>186</td>
<td>16</td>
</tr>
<tr>
<td>PA0DSW, Amsterdam</td>
<td>62/2</td>
<td>124</td>
<td>124</td>
<td>18</td>
</tr>
<tr>
<td>DL2WJ, Nr. Osterode</td>
<td>94</td>
<td>94</td>
<td>94</td>
<td>19</td>
</tr>
<tr>
<td>G3SO, Derby</td>
<td>67</td>
<td>67</td>
<td>67</td>
<td>20</td>
</tr>
<tr>
<td>PA0DEF, Haarlem</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>26</td>
</tr>
</tbody>
</table>

national and throughout the two-week period of the latter's visit there. In spite of the then bad conditions; GM3BOC/P was heard only once, however, at RST-529. G3BQ (Rugby) puts in claims, and reports more activity with the improved conditions since. G2CZS (Chelmsford) moves up by reason of his contact with G3EBK, who has been a great help to a lot of people lately; we should also say here that several correspondents
Their last contact was in September 14—his best QSO was ber 1953. and F8XT had not been
have remarked upon the high standard of operating at GC3EBK when he knows he is being heard
at GDX and that there are stations waiting to work him. Credit where it is due.
G3KPT, not well placed at Kingswood, nr. Bristol, and only running 15w., was very glad to
get in with F8XT and F9EA/P. And with reference to last month's comments about Bristol and the
West Midlands, G3HTY may be interested to know that G3KPT called him for two hours, on and
off, on September 13—but no joy, though G3HTY did work G3RS. From Plympton, G3JGJ is calling
CQ on 145.5 mc on a daily schedule from 1900 to 1930 clock time; he would like not only
contacts, but also SWL reports.
 Vernon of G5MR (Hythe) had been very pressed for time lately, but managed to be there when the
band opened to the south on September 14—his best QSO was with F8XT, S8-9 phone both ways.
Their last contact was in November 1953, and F8XT had not been heard at G5MR since then.
G3JWQ (Ripley, Derbs.) has been getting his share of the GDX, in the shape of welcome QSO's
with GI3GXP and GC3EBK, and has also been doing his share in maintaining activity on the band;
just over a year on two metres. G3JWQ has had 1,800 contacts, worked 37 counties and 6
countries, turned out for both our Contests, and gained his VHFCC. A very creditable record, particularly
in view of the generally poor conditions of the last twelve months. G3KHA (Knowle, Bristol)
though clear in most other directions, has difficulty with the northern stations, due to had local
screening: he now stands at 33/173 in All-Time Counties.
G2AIW chose a good week-end to visit EI2W; he was in Dublin during September 14-16, when
Henry was able to give him demonstration-QSO's with four counties, in the shape of EI9C,
G2HGR, G3EPW, GI3GXP and GM3DIQ — nice going! EI2W reports that EI6N, also of Dublin,
is now on two metres. G5DS (Surbiton) brings his ladder positions up to date; it is interesting to see that he now has 9C worked on 70 cm, with G3EGV for Hants, and G5TP for Oxon.
In his report, GC3EBK (Guernsey) remarks that during September 13-14 he worked no
less than 60 different stations, besides hearing several new Continental stations, including an unidentifiable DL?? on phone. When the right time comes, GC3EBK should have a very good chance with EA1CO. G2ADZ (Woolacombe) keeps in contact with EI4E,
G3FLZ and G5MA—of whom the EI at 250 miles is the strongest signal—and has in mind the possibility of putting a station on Lundy Island sometime in the future. It will raise one or two tricky points as regards status and call-sign! In the wanderings of his youth, your A.J.D. happens to have been to Lundy, and for several years afterwards kept a somewhat unauthorised schedule with Lloyd's signal station there—actually, the light-house keeper, who worked a particularly raucous band of R/T with his opposite
that the old five-metre days, listening tests from Lundy revealed that it was a very good site; stations from Cardiff, Newport, Bristol and Torquay could be heard on a two-stage squish box.
G2DVD (Slinfoeld, Sx.) was one of the several G's in for the D.A.R.C. international VHF contest;
he reports conditions as being very good on the Saturday evening, September 8, but poor on the
9th, with activity low. One of the more interesting Europeans coming through during the evening
of the 8th was ON4W1, actually a camp, near Ostend, of three DL's who had obtained an
ON licence for the occasion! When he arrived north-west, ON4W1 was an early QSO right into the Midlands and a push-over for most of the G's who were on: he is said to have had more than 70 contacts, including HB1LV, LX1SI and 9S4BS.
The Tabular Matter
Owing to pressure on space, with the Contest Report, certain of the tables do not appear this
month. All movements claimed have, however, been noted and the amended positions will be included
in the next showing of All-Time Counties, Countries Worked, and the "Firsts" tables.
All calls h/w lists received for the Activity Report this time have been printed—but, as mentioned
before, we can do with a lot more of them, in particular lists of stations heard. In fact, the worse
conditions are and the lower the activity, the more useful the Activity Report becomes.
Dead Line—
For the November issue, your A.J.D. would like to hear from you by October 24 latest—we have
a little more time this month—with everything addressed to: A. J. Devon, "VHF Bands," Short
Wave Magazine, 55 Victoria Street, London, S.W.1. There may have been another opening by
then, in which case we hope to be here on November 9 to discuss it.
possibly be made. It is the ordinary thyratron with a capacity-resistance combination in the plate circuit. This type of time base is very "unlinear" unless its operation is restricted to a small fraction of the HT available. About 120 volts of saw-tooth wave is required to make the spot sweep across most of the screen. After consulting Hallow's book *The Oscilloscope at Work*, it was felt that it would be possible to get a reasonably linear trace by applying the thyratron saw-tooth wave potential directly to one of the X-plates and feeding the thyratron from an HT supply of 800 volts. (The manufacturers recommend a maximum anode potential of 400 volts for the 6K25 thyratron, but it was reasoned that if the valve "strikes" at about 120 to 150 volts it would never actually have 800 volts on the plate and so would be safe.) The trace is quite linear and much better than expected. A toggle switch is provided to switch off the time-base when not required. The usual controls are fitted for coarse and fine adjustment of the sweep frequency and also amplitude of sweep. The latter two are somewhat interdependent on each other. A small portion of the signal can be taken from the Y-plate and applied to the grid of the thyratron for synchronizing the sweep with the input signal. The sweep amplitude control is not perfect as at one end position of the control the time-base "stops sweeping" and this should not be allowed to happen. It can easily be rectified by replacing the 5,000-ohm resistor R15 in series with the control by a larger value, say 10,000 ohms.

Constructional Points

When it comes to building the scope there are a few things to watch. The "Brilliance" and "Focus" controls (R2, R5 respectively in Fig. 1) are at a high potential and should be insulated from chassis. There should also be an insulated coupling between the potentiometer and knob, just to safeguard against accidents.

Do not play about with the unit when the power is on as it would be quite easy to get a fatal shock.

*Do not try to cut down on the negative and positive HT supply smoothing condensers. Anything less than two 4 \(\mu \text{F} \) in series will give you a non-linear sweep and "hum" visible on the trace, which is annoying, and unless
you know what to look for, the peculiarity of the trace will probably puzzle you. As long as the wiring is done with reasonably thick-walled wire no special precautions need be taken as regard insulation. Ordinary tag strips can be used to mount the smoothing condensers.

One of the terminals on the front panel is connected to the unearthed side of the 6.3 volt heater winding of the mains transformer. This is for calibration or comparison purposes. There are times when you wonder exactly what voltage is being applied to the Y-terminal and it is very useful to be able to put on 6.3 volts at this point and see how it compares in amplitude with the voltage you are examining.

It is very easy in any oscilloscope to get cross-coupling between the time-base and the Y-amplifier either by way of the HT supply or by stray capacity coupling in the wiring. This is the reason for the large number of smoothing condensers in the positive HT supply (see Fig. 1). To prevent capacity coupling in the wiring, avoid running the time-base connections with wiring associated with the amplifier and Y-plate wiring going to the back of the tube. The connections to the X-plates should be arranged so that the trace sweeps from left to right—though unless the trace is very slow it is impossible to tell which way it is travelling. Changing over the connections to X1 and X2 will reverse the direction. With only one valve in the Y-amplifier there is a phase change of 180° between grid and anode so when switching from “ampli-

Table of Values

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>0.25 µF, 1,000v.</td>
</tr>
<tr>
<td>C2, C3</td>
<td>4 µF</td>
</tr>
<tr>
<td>C4, C5</td>
<td>0.1 µF, 1,000v.</td>
</tr>
<tr>
<td>C6</td>
<td>50 µF</td>
</tr>
<tr>
<td>C7</td>
<td>See circuit</td>
</tr>
<tr>
<td>R1</td>
<td>2 megohm</td>
</tr>
<tr>
<td>R2</td>
<td>100,000 ohms</td>
</tr>
<tr>
<td>R3, R4</td>
<td>150,000 ohms</td>
</tr>
<tr>
<td>R5</td>
<td>3,300 ohms</td>
</tr>
<tr>
<td>R6</td>
<td>270,000 ohms</td>
</tr>
<tr>
<td>R7, R9</td>
<td>2.2 megohms</td>
</tr>
<tr>
<td>R8</td>
<td>0.25 megohm, Sync control</td>
</tr>
<tr>
<td>R10</td>
<td>22,000 ohms</td>
</tr>
<tr>
<td>R11</td>
<td>500,000 ohms</td>
</tr>
<tr>
<td>R12</td>
<td>220,000 ohms</td>
</tr>
<tr>
<td>R13</td>
<td>1 megohm, Time Base fine adjustment</td>
</tr>
<tr>
<td>R14</td>
<td>1 megohm</td>
</tr>
<tr>
<td>R15</td>
<td>5,000 ohms amplifier sweep</td>
</tr>
<tr>
<td>R16</td>
<td>25,000 ohms control</td>
</tr>
</tbody>
</table>

Fig. 2. Time Base and Amplifier Circuit.

![Diagram](attachment:oscilloscope_circuit.png)

Showing construction of the Oscilloscope, with the 6K25 thyatron (left) and EF37 amplifier stage in the foreground. The tube itself is a "surplus" VCR139A.
fier" to "direct" the picture inverts itself. (This is not really a drawback provided one knows what is happening.) Usually oscilloscopes are arranged for a positive voltage to deflect the beam upwards. If you wish to change the direction it is only a matter of reversing the connections to the Y1 and Y2 pins.

If metal rectifier units are not available a pencil EHT rectifier for say 1000v., to replace MR1 and MR2, capable of handling 2 mA, can be used. Rectifiers MR3 and MR4 have to be bigger as there is about 10 mA to supply to the EF37 and the 6K25 thyratron. If by any chance or misfortune you should overload metal rectifiers, particularly the selenium type, the only indication is a very bad smell—once they start to smell they are ruined and you can throw them out.

Applications

Possibly a few hints on using the 'scope may be of interest. If you wish to examine the carrier envelope switch the amplifier to "direct" and couple it through a small condenser C1 to the low impedance coax feeding the tuning unit or aerial. The value of capacity will depend upon the voltage across the coax, i.e., your transmitter power. In the writer's case the value was about one µµF, but each set-up will have to be adjusted individually until the trace is a ribbon about half-an-inch wide. Next, adjust the time-base for a slow sweep and speak into the microphone. If everything is as it should be you will get upward peaks on the ribbon and equal down peaks which should not cut the carrier. On the model, the trace is all right up to 14 mc, but at higher frequencies, 21 and 28 mc, starts to go lop-sided due to cross-coupling into the time-base circuits. To check the modulator again switch to "direct" and use the circuit shown in Fig. 3. If you have no audio oscillator the next best thing is to whistle into the microphone and adjust the time-base until a sine-wave trace is obtained after adjusting the potentiometer RV1 to give a reasonable height of trace. A clear whistle is a very good sine-wave, but unless you do get a sine-wave trace there is distortion, of course; it may be necessary to turn the gain of the modulator down until the distortion disappears. Anyway, keep the modulator gain as high as possible and hold the picture on the screen by adjusting the potentiometer RV1 (Fig. 3) which feeds the oscilloscope. Then speak into the microphone and adjust the modulator until the height of the trace is the same as with the whistle. Next, check the modulation envelope.
as previously described. If the envelope shows about 80% modulation you are correctly adjusted. If the modulation is only slight and you cannot increase the modulator gain without causing distortion, you are either short of modulator power or the final is not correctly adjusted. Whatever it is, an oscilloscope is the best and easiest method of adjusting a phone transmitter and will amply repay the cost and effort of building it.

The instrument described here has two small disadvantages. First, the spot is not very intense and is not easily seen in bright light, and secondly, there is a loss of focus due to non-symmetrical deflection — but these are minor points compared with the many uses to which it can be put.

Do not be afraid to try to build an oscilloscope. There is a first-time for everything, so do not hesitate to take the plunge. We all learn by making mistakes, and if you make a success of it nothing impresses a visitor to the shack more than a picture on the end of a cathode-ray tube—even a poor one!

Band-Switched ATU

SIX-BAND SELECTION, IN LINK COUPLED UNIT

N. P. SPOONER (G2NS)

The main purpose of this aerial tuning unit is that it should be part of a fully TVI-proofed installation — feeding only the wanted signal into the aerial. While once again our contributor makes good use of “surplus,” the same principles apply whatever the actual method of construction, the components available, or the power used. It is thus another practical offering on the general subject of TVI-proofing.

—Editor.

DEEPLY grooved into our present radio vocabulary by the scourge of television is that much over-worked term, “TVI.” The writer contends, however, that it is not applicable to amateur transmitters. With modern standardised suppression technique, it is not beyond average ability to keep transmitter harmonic radiation down to a reasonable level, and once that has been done, the chance of any particular neighbourhood being TVI-proof or not depends largely upon whether the manufacturers of local receivers have used frequencies on or near the amateur bands for their IF’s; whether they have taken steps to ensure good image response, and other vital points in circuitry design; whether local dealers are selling ineffectual aerial arrays; and whether individual viewers are tuning their receivers correctly.

Whatever the answers may be, amateur interest in general should still be centred upon ensuring adequate suppression. If sufficient shielding, filtering and by-passing is not applied to pack, supply leads, VFO, frequency-multipliers and buffer, the belated inclusion of a pi-network tank circuit in the final stage will not (with one discriminatory blow of its moving vanes) regain the ground previously lost, or miraculously kill off the harmonics. In other words, no single step is of great value by itself alone; the contribution of each must be combined to bring about the final level of rejection.

Pi-Tank Characteristics

Before discussing some very necessary measures, a passing word about Pi-tank circuits may be of interest. Although used for many years as networks between dissimilar impedances, their present deserved popularity is due to their high degree of harmonic discrimination and the ability to step the impedance of a PA down to that of a coaxial line. Both these characteristics are needed in a modern final stage, but a duplication of such good rejection should not always be expected under other conditions. When, for instance, a Pi-tank is used to match directly into a random length of aerial wire instead of into a coaxial line, the results may be less satisfactory. Alternatively, if the circuit constants are not reasonably correct or if adjustment is bad, a Pi-tank can still transfer energy to the aerial without keeping back any harmonics.

Further, a Pi-tank can misbehave when parallel-fed by a poorly-designed RF choke; the effects in such a case should not be confused with those exhibited by insufficient loading capacity. If, when testing a new transmitter, the anode current at once soars to a high value that cannot be reduced by tuning, any home-wound RF choke should at once be suspected, but the addition of fixed condensers in parallel with the variable loading condenser should also be tried. Quite a large...
amount of extra capacity may be needed on some bands before the variable tuning condenser is able to resonate the network and dip the plate current. Each successive addition of fixed capacity can conveniently be equal to the maximum of the variable loading condenser. When every stage from pack to PA has been "doctored," and when a correctly designed and handled Pi-tank is feeding as intended into a low-impedance coaxial line, it is still not advisable to connect the PA output straight into the aerial by earthing the outer braiding and connecting the inner conductor of the coaxial line directly to the condenser of a series-tuned aerial circuit or, alternatively, tapping it directly along the coil of a parallel-tuned aerial circuit. The proper set-up requires a low-pass harmonic filter, a change-over relay and an aerial couplant, matching or tuning unit with all inter-connections in coax and the link to the ATU itself shielded to prevent capacitative coupling which, in addition to inductive coupling, always appears when two coils (the link and the aerial) are presented to each other.

In suggesting a simple way of suppressing these harmonics, it is the purpose of this article to describe how a switched, shielded and parallel-tuned 6-band Aerial Tuning Unit, with Faraday coaxial link coupling, can easily be constructed.

Construtional Approach

Two "surplus" TU frames with a single new panel have been used, because these and other TU components happened to be on hand after using similar materials to construct a band-switched 813 PA— as described in the June, 1956, SHORT WAVE MAGAZINE. If "surplus" cabinet work of the TU variety is not available, the requirement could just as easily be met by a home-constructed metal

Fig. 1. Circuit of the Aerial Tuning Unit. CS1 is the input feed from the transmitter, by coax line—this is essential for good TVI-proofing. The ATU as described here covers all bands and the finalised version of the circuitry is shown in the photograph.

Constructional Approach

Two "surplus" TU frames with a single new panel have been used, because these and other TU components happened to be on hand after using similar materials to construct a band-switched 813 PA— as described in the June, 1956, SHORT WAVE MAGAZINE. If "surplus" cabinet work of the TU variety is not available, the requirement could just as easily be met by a home-constructed metal
Table of Values

Fig. 1. Circuit of the Band-Switched ATU.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>Ion coil</td>
<td>1.8 mc, 62 turns 20 SWG insulated, close-wound on 2-in. diam. ceramic (ex-TU) former, mounted on pillars.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Link L2, 5 turns coax, Faraday construction — see text.</td>
</tr>
<tr>
<td>L1</td>
<td>Ion coil</td>
<td>3.5 mc, 14 turns, 16 SWG, wound 13 t.p.i., 2-in. diam.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Link L2, 4 turns, Tap, 5 turns from either end.</td>
</tr>
<tr>
<td>L1</td>
<td>Ion coil</td>
<td>7 mc, 17 turns, 16 SWG, spaced 3-in., on 2-in. former.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Link L2, 3 turns, Tap, either end.</td>
</tr>
<tr>
<td>L1</td>
<td>Ion coil</td>
<td>14 mc, 13 turns 16 SWG, wound 6 t.p.i.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Link L2, 3 turns, Tap, 2 turns from end.</td>
</tr>
<tr>
<td>L1</td>
<td>Ion coil</td>
<td>21/26 mc, 4 turns 16 SWG wound over 24-in., 2-in. diam.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Link L2, 2 turns, Tap, either end.</td>
</tr>
</tbody>
</table>

Note: On the model, the taps were determined using a 260-f. aerial, and are for guidance only.

To ensure complete shielding if the original TU panels are used, unwanted holes should be stopped with bolts or masked with sheet tin. Should five TU aerial coupling switches not be available, their functions are equally well carried out by a single Yaxley, "Oak," Wearite or other make of ceramic, heavy-duty, ganged-wafer switch giving the required single-pole five-position action. While the unavoidable positioning of separate switches disturbs symmetry, with one lead to each coil-end longer than the other, this has no effect upon results operationally. Besides the switches, stand-off insulators and tuning condenser, the front panel carries a couple of 2-5-amp. RF thermo-ammeters for use with tuned untuned wires and a 1-amp, thermo for single end-on wires. If series Marconi or series-parallel Zepp tuning is required, these can easily be arranged for by modification, or by including extra tuning condensers in the top TU frame where there is ample space for experimental additions. The TU ceramic coil-formers, mounted on TU ceramic pillars as indicated by Fig. 2, allow inter-connecting coax to be used for the shielded links; the turns are wound on side-by-side over the centre of each coil and held closely together in two or more places by a length of insulating tape. With formers, of course, the degree of loading is pre-determined by the number of link turns and no variation of the physical distance between link and coil is required.

If for some bands open self-supporting coils are preferred, the present method of winding makes the total too bulky and it is then suggested that the links should be made as described by G2HJT in the January, 1956, issue of SHORT WAVE MAGAZINE. By his method, a length of large diameter coax sufficient to reach from the switch over to the coil and there circle the coil once, is first cut. The centre polythene with its inner conductor is then removed so that the outer insulation and the metal braiding form a hollow shielding "tube." To make up the link turns that go inside this tube, sufficient thin coax is cut to reach from

![Diagram of the Band-Switched ATU Circuit](image-url)
the switch over to the coil and there form three to four turns. The outer insulation and metal braiding are removed from this thin coax, leaving the polythene and inner conductor only. The whole is then made up by threading the thin inner right through the hollow shielding tube, bending the tube to the same circumference as the coil, and, where the circle meets, making a hole through the outer insulation and metal braiding of the hollow tube. The three or four turns of thin inner that are to form the link are then threaded in turn through this hole and pushed round the hollow centre. After the turns are pulled up tight, one end of the inner conductor is joined to its switch contact and the other end is carefully soldered to the metal braiding of the hollow tube. This forms a Faraday type of shielded coaxial link, both methods being clarified by Fig. 3.

A calibrated grid-dip oscillator will be found to save much time and labour when winding a coil and ascertaining its coverage by temporarily clipping its ends across the tuning condenser. The 21 and 28 mc bands are accommodated on one former, but, if preferred (and if six switched positions are available, as they are with the TU type) a separate coil could be used for each band. A harmonic check socket is wired in parallel with the input socket so that, by means of a harmonic indicator, any low-pass filter with variable adjustment can be correctly set for maximum harmonic rejection under working conditions.

Simplicity of Operation

Before putting the ATU to work, the best matching positions for the aerial in use must be determined for each coil. To do this, the following simple drill will be found useful: The ATU is coupled by coaxial line, via change-over relay and low-pass filter, to the transmitter output in the usual way:—

CW - plus - phone users should set the transmitter tuning to the centre of the first band selected for adjustment (CW - only and Phone-only users set it to the centre of their own favourite portions). The transmitter is then switched on and resonated at reduced power, one easy way of ensuring this safety precaution being the incorporation of a PA screen voltage clapper valve with variable input control as described by the writer in the September, 1955, issue of SHORT WAVE MAGAZINE. With a neon indicator or high-current loop-lamp held reasonably near to the selected coil, the ATU condenser is now tuned to the transmitter frequency and a note is made of its dial reading. The transmitter is switched off, and if a single-wire aerial is to be used, this is clipped on by means of a crocodile at some trial point along the ATU coil. With transmitter on again, the ATU is re-resonated at what is probably a different dial reading from that originally obtained. Another tapping position is tried and the process is repeated until a spot is found along the coil where the ATU dial reading with the aerial on is as nearly as possible the same as that with the aerial off. This will be the best matching position to hold good across the entire band, or the particular portion chosen, and a permanent connection between the tapping point thus found and the switch should then be made.

The aerial tuning unit complete, as described by G2NS. It is band-switched for 1.8 to 28 mc inclusive, with separate coils for each band. The dimensions across is approximately 15 inches, and construction is almost entirely from TU "surplus" items.
In general, the closer the aerial length is to a multiple of a half-wave, the nearer the tap is to the end of the coil. Each band is treated in the same way but twin wires are, of course, both tapped on at two trial points equi-distant from the coil centre.

Publicity on Suppression

At the beginning of this article mention was made of "modern standardised suppression technique," and although the writer cannot claim to be one of the early contributors to the principles now generally accepted as necessary for adequate harmonic rejection, he has since profited greatly by adopting the measures evolved by other operators with greater knowledge and skill in this matter. Practical personal experience, gained while following along the lines laid down by others, does show that it is wiser to be over-liberal with suppression than to skimp it on any one transmitter. To secure adequate rejection in "awkward" areas, the following points all require careful attention: Filtered AC mains; VHF chokes and by-passing of heaters; totally enclosed pack, transmitter and modulator, using chassis base-plates; screened wiring throughout except for RF leads; common earth points in each stage; screened and by-passed meters; screened and stabilised low-harmonic type VFO; early-stage keying; screened non-parasitic buffer; adjustable low drive; grid-leak bias; PA screen voltage clamerper valve with input control; screened and ventilated non-parasitic band-switched PA, Pi-tank tuning/loading variables and PA by-pass condensers taken to PA cathode earthing point; high-impedance wide-range PA RF choke; PA grid and anode parasitic suppressors; PA grid/anode screening and decoupling; low-pass harmonic filter; coaxial line inter-connections throughout; aerial change-over relay, coax type; screened Faraday link; shielded ATU; balun with coax feeder.

The Air Ministry Type G and Type 78A "surplus" coax relays are strongly recommended so that the transmitting aerial can be used for reception. By bringing in the received signal through a tuned aerial unit (ATU), an appreciable increase in gain is obtained in addition to any directional properties the aerial may possess.

In cold print, the foregoing list appears formidable, but in practice the stage-by-stage suppression of a new transmitter under construction is certainly not beyond average ability.

AMATEUR TELEVISION

The interests of amateurs keen on TV transmission on our 70-centimetre band are looked after by the British Amateur Television Club, of which G3CVO/T is the guiding spirit, with G2WJ/T as one of the best-known members, fully equipped for ATV transmission. The B.A.T.C. holds its third annual convention on October 27, at the Bonnington Hotel, Southampton Row, London, W.C.1, from 10.0 a.m. to 7.0 p.m. There will be an exhibition of amateur TV equipment, a film show, and short lectures on subjects of interest in the field of ATV transmission. Admission to the meeting is 5s. (2s. 6d. after 2.30 p.m.), and the nearest Tube station and parking place is Russell Square.
THE MONTH WITH THE CLUBS

By "Club Secretary"

(Dead-line for November Issue: OCTOBER 19)

THE Magazine Club Contest is now a well-established event, next month's MCC being the eleventh of the series—incidentally, it was also the very first Radio Club contest of its kind anywhere in the world. The rules are published in full here, and the competing Clubs will note that they are unchanged except for a shortening of the sessions from four hours to three hours each.

It seems that we have at last reached stability where this event is concerned—after several changes in rules, we have observed the same general principle now for some years past, in accordance with the wishes of the majority. The scoring system puts the accent on inter-Club working, with a total of twelve points available for working each other contestant four times (compared with a single point for each non-Club station worked). Furthermore, the loss of one hour in each of the operating periods will necessitate some pretty snappy operating if all the other Clubs are to be rounded up.

We recommend secretaries and keen Club members to digest these rules right away and to see if there is any reason why their own Club should not be among the contestants this year. Last year there were 33 entries . . . we hope to see more than 40 this time. Even if a Club feels it is not in a position to make a strong showing, remember that an entry is good experience and training for operators in contest working.

On the subject of winter programmes generally, the attention of honorary secretaries is drawn to the possibility of arranging visits to local institutions and organisations of technical interest—such as radio works, police and fire brigade radio stations, GPO automatic exchanges and, in some localities, Post Office coast stations. A lot depends upon how the approach is made, since in the nature of things, such visits have usually to take place at week-ends, meaning that some staff member must give up his leisure to show the party round.

For this reason, it is important to make sure that the immediate head of the organisation concerned receives a formal letter of appreciation from the Club, expressing their particular thanks to whoever took them round, as soon as possible after the visit. This little courtesy, which helps so much to maintain good relations locally, is too often overlooked.

ACTIVITY REPORTS

Slade have an interesting month before them, with a "Double Midnight D-F Test" on October 7, an exhibition of members' gear (for the Enterprise Trophy) on October 12, and the Annual Dinner at the Roebuck Inn, Erdington, on October 20.

Stoke-on-Trent meet every Thursday, and have enrolled a number of new members during the past two or three months. They are hoping to be active in MCC once more.

Worthing are holding a Junk Sale at 8 p.m. on October 8. Please note new secretary's name and address—in panel. Crystal Palace will be hearing all about the Minibeam from G4ZU, its originator, on October 20—7.30 p.m. at Windemere House, Westow Street, S.E.19.

The British Amateur Television Club met on September 13 to hear about Flying-Spot Scanners from G2DUS; at the next meeting, on October 17, Mr. Fred Turner will talk on 70-cm. Techniques.

The very fine array of test equipment available to the Baileul Radio Society, R.E.M.E., Aborfield, Berkshire. Fitted up by members, the cupboard and shelving accommodate, on the top deck: Valve tester, crystal calibrator, several Avo's and a wobulater; on the middle shelf, a VHF signal generator, valve voltmeter and a double-beam GRO. On the lower deck there is a calibrated BFO and a standard-coverage signal generator. We might also add that Baileul will be taking part in MCC next month!
The meetings are held at 10 Baddow Place Avenue, Great Baddow, Essex, and all are welcome, whether members of the Club or not. The B.A.T.C. convention takes place in London on October 27 — full details from the hon. secretary.

Cray Valley will be meeting at the Station Hotel, Sidcup, at 8 p.m. on October 23 for an exhibition of members' home-built gear. Awards will be made for the best exhibits. A full winter programme has been drawn up, and new members and interested visitors will be specially welcome.

Edinburgh resumes its weekly meetings (Wednesdays at Unity House, Hillside Crescent). The secretary will be glad to answer all enquiries, and for his new QTH, see panel.

Newbury hold their Hamfest on October 14, with High Tea. Films. Competitions for the YL and OM and, of course, the traditional "swindle" with over 40 prizes. The following meeting will be on November 9, with a lecture by G2UI.

Warrington have resumed their meetings on the first and third Thursdays of each month, 7.30 p.m. at the Royal Oak Hotel, Bridge Street. See panel for new secretary's name and address.

Clifton held their second Transmitting Field Day on September 2. G3HZI won this event, and also the Club Championship cup for 1955/6, as well as retaining the D-F Championship shield for another year. Runner-up was G3FNZ. October 5 and 19 are Constructional evenings; on October 12 there will be a demonstration of the Hamobile and Geloso equipment by G8KW; and on the 26th Mr. B. W. Kersting will talk on Transformers. All meetings 7.30 p.m. at 225 New Cross Road, S.E.14.

Plymouth have now acquired a T.1154 and a BC-348 towards the Club station. Another auction will be held shortly, and in November visits will be paid to the BBC at Plymouth and Start Point. Next meetings. October 16 and 30, 7.30 p.m., at Virginia House Settlement. Mitcham reopened for the winter season on August 29, and the next meeting is on October 12. They have not yet picked their team for MCC, but we are informed that "all the boys are training hard on Mitcham Common in vest and shorts"!

South Shields took part in the Corporation Flower Show, despite damp and windy weather and the fact that the Park was only a few hundred yards from the North Sea. GB3SPS was on all bands from Eighty to Ten, much equipment was on show, and tape-recorded programmes of music and interviews with local celebrities were used and played over the PA system. An interesting winter programme is now under way, with meetings on the last Wednesday of the month, at Trinity House Social Centre, 134 Laygate; at the same address the clubroom is open every night, Monday to Friday.

Surrey (Croydon) held a very successful Junk Sale in September, with an attendance of 43. On October 9, G3BLP will talk on Test Gear, in response to the requests made in a recent questionnaire. Meetings are at the Blacksmiths Arms, I South End, Croydon, on the second Tuesday of the month.

Yeovil is still very active, with G3CMH on the

MCC — ELEVENTH ANNUAL
TOP BAND CLUB TRANSMITTING CONTEST

RULES

1. **Duration**: Saturday, November 17; Sunday, November 18; Saturday, November 24; Sunday, November 25. On each of these days between the hours of 1600 and 1900, GMT (twelve operating hours in all).

2. **Frequency and Power**: All contacts will be made in the 1800-2000 kc amateur band, using CW only, with a power not exceeding 10 watts to the final stage. All reasonable precautions will be taken to avoid interference with other services using the band.

3. **Call Signs**: Where a Club has its own transmitting licence and call-sign, that call-sign is to be used. Clubs without their own call may use a member's station, provided this is nominated as their official entry by the Club Committee.

4. **Calling**: Club stations will call "QO MCC" (Magazine Club Contest) and will sign off at the end of each transmission with "AR MCC K", or "AR MCC VA." Clubs in contact with one another will identify themselves by giving, after the RST report, "QRA" instead of "QTH." This will be followed by the name of the Club, abbreviated forms being permitted, e.g. "QRA Clifton Club," or "QRA Salisbury Club," but the word CLUB must be sent in every case. Clubs working non-Clubs stations will send their QRA and will log the other station's QTH.

5. **Scoring**: Other Club stations may be worked once on each of the four days of the Contest, and will count for three points each time. Non-Club stations may be worked once only during the whole period of the Contest and will count for one point only. The three points for an inter-Club contact will not be claimed unless the "QRA" and the word "Club" have been logged. Thus any Club station may be worked four times, for a total of twelve points, but other amateur stations only once, for one point.

6. **Logs**: Contest logs to be set out as follows: Quarto or foolscap sheets should be ruled into seven columns, headed: Col. 1, Date and Time. Col. 2, Call of Station Worked. Col. 3, QRA, if Club. Col. 4, QTH, if non-Club. Col. 5, RST, outwards. Col. 6, RST, inwards. Col. 7, Points claimed for contact (3 or 1). Col. 7 must be totalled at the bottom of each page and the running totals brought forward.

The last page should contain the following summary: Club contacts (number) at 3 points each: — total figure. Non-Club contacts (number) at one point each: — total figure. Grand Total.

7. **Any Club stations receiving reports consistently worse than T9 will be liable to disqualification.

8. **Logs**: addressed to "Club Secretary," Short Wave Magazine, 55 Victoria Street, London, S.W.1, must be posted to reach us by Monday, December 3, 1956. The Editor's decision on the results will be final, and will be published in the January, 1957 issue of Short Wave Magazine.
Deadline for next month's reports is: Friday, October 19. They should be addressed to "Club Secretary," Short Wave Magazine, 55 Victoria Street, London, S.W.1. All Clubs are invited to report their activities.

DX bands during their weekly meetings. An Eddy-stone 888 was demonstrated at a recent meeting, and a Minibeam is under construction. G3CMH/A operated from a local Hobbies Exhibition, using one transmitter on 1.8 mc and another on 3.5-28 mc.

Liverpool meet on October 9 for G2AMV's lecture and demonstration on his home-made panadapter. October 16 is Open Night; October 23 is booked for G3LCO on Commercial VHF Equipment; and October 30 for G3HII on Printed Circuit Technique.

Purley will have had their visit to the BBC's very fine central receiving station at Tatsfield by the time this appears in print. It was arranged by the co-operation of the Engineering Dept. of the Corporation, and we look forward to hearing about it in time for our next.

RADIO AMATEURS' EXAMINATION, MAY 1957

We would draw the particular attention of all readers interested in the next R.A.E. to the very full list of instruction centres published on p.357 of the September issue of SHORT WAVE MAGAZINE, with the notes on the possibility of getting more courses started in other areas. Unless the facilities are asked for locally, they may never be provided—simply because nobody has asked for them. Club organisations can do (and many are doing) a great deal to help in this respect.

VHF SOUND BROADCASTING

The BBC announces that it is to proceed with the building of a further six VHF stations, constituting the second stage of the plan to provide nationwide coverage on VHF of its three sound programmes. These additional stations, together with the ten stations already authorised, will provide interference-free reception on VHF of the Home, Light, and Third programmes for about 96% of the population of the United Kingdom.

Each station will carry the Home, Light, and Third programmes, except Corwen, which will broadcast the Welsh Home Service only; this area will receive the Light and Third programmes satisfactorily from other VHF stations and can also receive them on long and medium wavelengths. The station at Sandale, near Carlisle, will carry the Scottish Home Service as well as the North Home Service and the Light and Third programmes; this is for the benefit of listeners in a considerable part of South-west Scotland who will be able to receive programmes from this station.

It is hoped that the new VHF stations at Rowridge, Kirk o'Shotts, Sandale, and Corwen will be completed by the end of 1957 and the other two during 1958.

Of the ten stations authorised in the first stage of the VHF plan, those at Wrotton, Pontop Pike, Divis, Meldrum and North Hessary Tor are already in full service.

A number of new receivers which will tune to the new VHF band (as well as the present medium and long waves) were seen at the National Radio Show. VHF adapters for use with existing receivers are also available. For listeners within the VHF areas much improved reception is possible, with better quality of sound and a most welcome reduction in interference of all kinds.

BBC VHF/FM broadcasting is in the band 88-95 mc, with a certain number of shared channels, and effective radiated power varies from 60 to 120 kW.

NEW VALVE FOR STABILISED POWER SUPPLIES

A new Mullard valve, the 6080, is a low-impedance twin power triode primarily intended for use as a series regulator valve in electronically stabilised power supplies. It is also suitable for use in servo-amplifiers. The outstanding feature of the 6080 is its very low anode resistance (280 ohms for each triode section at 125 mA) which results in a much lower voltage loss across the valve than is normally obtainable.

The 6080 has a heater rating of 6.3v. and 2.5A. The amplification factor is 2, and the slope is 7mA/V for each section. The maximum anode current and anode dissipation are 125 mA and 13 watts respectively, these values being for one triode section. The balance between the two triodes is good.
NOTE FOR OVERSEAS SWL's

Details of the BBC's transmissions for listeners overseas are given in a booklet, The BBC and its External Services, produced by the Corporation, and available from Broadcasting House, London, W.1.

Thirty-nine high-power short-wave transmitters (50-100 kW) are now in operation. Two at Tebrau in Johore State, Malaya, are under the control of the BBC Far Eastern Service and relay to the appropriate countries.

Medium-wave transmissions to Europe from the United Kingdom are largely on 224 metres.

Certain of the BBC's European services are also re-broadcast by a high-power medium-wave transmitter at Norden in north-west Germany, with a medium-power relay in Berlin operating on the same wavelength, and are rebroadcast additionally over a VHF/FM transmitter in Berlin, where a large number of suitable receivers are in general use locally.

To provide an effective signal in the area to be served, directional transmitting arrays are used. The system appropriate for the particular direction, time of day, season and stage of the solar cycle is selected from a complex of no less than 177 aerials at the various transmitting sites. Even with this large number, it is impossible to meet all propagation conditions, and a continuous schedule of aerial conversion to different bands is necessary to ensure that programmes are radiated on the most easily receivable frequency. This process of aerial conversion keeps pace with the trend of conditions which, during 1956, permitted the use of the 11-metre band for transmissions to Africa and to South and South-East Asia for the first time since 1951. During the next few years the BBC will make regular use of the higher frequency bands for its External Services.

The use of the 11-metre band in particular enables BBC transmissions to escape the severe interference which affects many of the External Service programmes on the longer wavelengths. Some of this interference is due to the overloading and unplanned operation of the bands allotted to short-wave broadcasting, but much of it is caused by the deliberate jamming of certain transmissions of the BBC and from other free countries of the world. This jamming affects not only the transmissions against which it is aimed, but also the adjacent channels.

The BBC welcomes reception reports from overseas listeners, which should be addressed to: The Service Superintendent Engineer, Broadcasting House, London, W.1.

HALF-YEAR SUBSCRIPTIONS

Readers are reminded that we can accept subscriptions, at 15s. only, for a half-year of six issues. This ensures postal delivery of SHORT WAVE MAGAZINE for six months, and also permits full both-way use of BCM/QSL for the same period.
SOLDERING?

for

25 years

the

best

25 watt Instrument Model

A model for every purpose

Leaflets on request from:

W. T. HENLEY'S TELEGRAPH WORKS CO. LTD.
51-53 Hatton Garden, London E.C.1
Tel: CHAncery 6822

BRIMAR
SPECIFIED

for the

top band
talking box

described in this issue

The BRIMAR types you want are:

6AM6
6BW6
12AX7
6C4

BRIMAR
VALVES and TELETUBES
— best for all equipments

Standard Telephones and Cables Limited
FOOTSCRAY, SIDCUP, KENT
FOOTscray 3333
From Government and trade surplus sources, bankrupt stocks, etc., (Price £10/-).

Small Advertisements, Trade—continued

QSL's and Logs by Minerva. The best there are.

—Samples from Minerva Press, 46 Queen's Road, Brentwood, Essex.

3CGD QSL's. Fixed and mobile samples on request. Printing enquiries welcomed.—30 St. Luke's Road, Cheltenham.

Readers' Advertisements

3d. per word, min. charge 5/-, payable with order. Box Numbers 1/6 extra. Replies to Box Numbers should be addressed to The Short Wave Magazine, 55 Victoria Street, S.W.1.

BaIRD Portable Tape Recorder, new condition, working order, £9 10s. 0d. (o.n.o.); brand-new 931A, £8 15s. 0d.; £9 10s. 0d.; new (8) 6AG5, 275AU; six EF50, £15 0s. 0d. Post extra—Box No. 1809, Short Wave Magazine Ltd., 55 Victoria Street, London, S.W.1.

CR-100, brand-new condition, unmodified, complete with Marconi Manual 8in. speaker, circuits for noise limiter and S-meter. Can be delivered. £20 (o.n.o.). Wanted: SX28A, Commander, AR88—Hayes, 7 Western Terrace, Northampton.

DST-100 RECEIVER with power pack; needs slight attention. Offers for R.1155 Receiver, modified; buyer collects.—Boustead, 17 Woodlands Crescent, West Benwell, Newcastle-on-Tyne.

Grundig-Recorder TK5, six months old, 6 tapes, £45 (or nearest offer)—A. J. Hawkin, Jun., Greengates, North Petherton, Somerset.

The ONLY RME-DB23 Presleeetor in England?

Five bands, minimum gain 25 dB, brand-new; first £25—G.3AAE, 18 Fairfield Way, Barnet, Herts. (Barnet 6703).

HRO COILS, set of 9, RF25 units, SCR522 TX/RX. Meters, 807, VR150/30, 6SN7's, etc.—W. Schaffer, 230 Walsall Road, Bridgton, Cannock, Staffs.

AR88L, perfect condition, with original manual, £45 0s. 0d.; R.1155, internal power supply and output stage, dial light, bandspread 8-meter external converter for 10 and 15 metres, perfect condition, £13 10s. 0d.; Army Sender, Type 12, complete and perfect, £12 10s. 0d.; 19 Set, TX/RX, complete with power pack, etc., perfect, £10 0s. 0d.; 22 Set, TX/RX, complete with power pack, etc., perfect, £10 0s. 0d.; "Resistance Movement" Mk. III TX/RX, mains or battery, complete as issued, all spares, key, phones, etc., £10 0s. 0d.; BC XXX 1.5 mc. brand new, £10 0s. 0d.; Car Radio (Masteradio), 12v., £8 10s. 0d.; 8-mm. Cine Camera, Bell Howell, perfect, £10 0s. 0d.—Barn Cottage, Walberton, Arundel. (Phone Easterly 3679).

SALE: 805's (2) with holders, £2 pair; Labgear wideband multiplier, £0.30; E5023/B (P-network). coil turret, 35/- or £4 pair; also 50+50 uF 1500v. split stator with swinging link 10m. coil and base; Eddystone 8-8 uF butterflies (2). 2/6 each—GW3CII, 7 Tynefleet Avenue, Tonna, Neath, Glam.
SMALL ADVERTISEMENTS, READERS—continued

OFFERS! FOR SALE: R1155 Communications Receiver, with power pack/output stage, speaker, complete with official manual; also R1155 Receiver with circuit. All in best condition; carriage extra.—Evans, 1 Pleasant View, Fochriw, Glam.

WANTED: Top Band CW and phone Tx; must be cheap. Also all-band Rx, e.g. CR-100.—Cpl. A. D. Bailey, Radio Servicing Flight, R.A.F. Valley, Anglesey.

LARGEGEAR LG300 Tx, with Labgear power unit/ modulator, complete, new, £130; Eddystone 750 Rx, mint. £48. WANTED: Collins 75A Rx.—Box No. 1806, Short Wave Magazine, Ltd., 55 Victoria Street, London, S.W.1.

813 40/-: 805, TZ40, 316A, 15/-; 826, 35T, 10/-; 24G, 616G/M, 7/-; 6K7G, 6K8G, 6MBG, 15/-; 1CS, 958A, 957, 1291, 616, 4/- (Most valves unboxed but guaranteed); 813 bases, 5/- Filt. Trans. pri. 230, 240, 250v, sec. 10v. 5 amps, 20/-; 80-ohm 50-watt carbon resistors for ATU, 2/6; 4 xF 1500v, condensers, 5/-; Command Receiver, BC453-B (190-550 kc) with valves and coils for BC conversion. 25/- Wilcox-Gay VFO and Manual, 60/- Q.C.C. crystals 7060, 7072, 7104, 7112, 7145, 7171, 7200, 7244, 7289 kc. Please add postage under 20/-; Labgear L.P. Filter required.—Bloxam, J.14 Highfield Lane, Southampton, Hants.

T.C.S. TRANSMITTER 1.5-12 mc, £9; Receiver, £5; two-metre transmitter and xtal, £2; VCR139A and ‘scope case, £1; 2 kw. EHT Transformer, 17/6; 6v. Vibrator Pack, 25/-; meters from 3/6.—J. B. Armstrong, 32 Hillfield Place, Aberporth, Cardigan.

AMATEUR SELLING UP: All gear, mainly good quality components, to be cleared at very low prices before sailing in November.—Write for list: Box No. 1808, Short Wave Magazine, Ltd., 55 Victoria Street, S.W.1.

HAM GOING ABROAD.—For Sale: Mackay Marine Radio; 1,000’s of spares, etc.; going cheap; s.a.e. please, for list.—R. Innes, 23 Institution Road, Fochabers, Moray.

FOR SALE: Two BC-624 receivers, unmodified, £2 each; BC-625 transmitter, partly stripped, less valves. 10/-; two ZB2 units, 10/- each; Type 3 power pack, £2; Pye 45 mc strip, 10/-; BC-605 interphone amplifier, £2; Command receivers, brand-new, £1-5-3 mc, 70/-; 3-6 mc, 35/-; rack for same (double). 10/-; Command transmitter rack (single), 6/- Brand-new RF units: ‘24, 10/-; ‘26, 25/-; ‘27, 30/-; AR88 Vibrator Pack, 42/6; Denco FM Feeder Unit, 90/-; S.27 Spares: Output transformer. 12/-; two IF transformers, 5/- each; signal genera- tor, 1196B.12/6; receiver 1132A. £2; SX28; S-meter, 45/-; Other units, valves, meters, etc. also for disposal.—Reynolds, 149 Waller Road, London, S.E.14. (New Cross 1443, after 7 p.m.).

BRASS, COPPER, BRONZE, ALUMINIUM, LIGHT ALLOYS IN ROD, BAR, SHEET, TUBE, STRIP, WIRE

3000 STANDARD STOCK SIZES

H. ROLLET & CO., LTD.

6, CHESHAM PLACE, LONDON, S.W.1.

SL.Osme 3463

Works: 36 ROSEBERY AVENUE, LONDON, E.C.I.

Branches at Liverpool, Manchester, Birmingham, Leeds.

“No Quantity too Small.”

HOME RADIO OF MITCHAM OFFICIAL STOCKISTS FOR THE PANDA CUB

TRANSMITTER

We will be pleased to forward full specification and details of this fine transmitter on request. We have a demonstration model available for inspection at our showroom and delivery is from stock.

Price £85 or H.P. terms

HOME RADIO (MITCHAM) LTD

187, LONDON ROAD, MITCHAM, SURREY.

MIT. 3282

“The QUALITY radio component specialists”

VOICE FREQUENCY RINGERS

101A (TP8) Quantity 24

101B “ 122

New, unused

TO BE SOLD CHEAPLY TO OVERSEAS BUYERS

ALTHAM RADIO CO., Jersey House, Jersey Street, Manchester, 4. Tel. Central 7834/5/6
PANDA PR120V, low pass filter, xtal microphone, £85; CR100, £15. Both mint. Buyer please collect.—J. D. Loader, 40 Parkwood Road, Wimbledon, London, S.W.19.

WANTED: Good keying crystals, 1800-2000 kc; 3500-3520 kc; 7000-7040 kc.—Details, price to: G3IDG, 95 Ramsden Road, London, S.W.12.

AMERICAN SSB CW AM and Phase Modulation Exciter, 160 to 10 metres, incorporating vco control unit for voice break-in; also linear amplifier running 4-80's in parallel; grey hammerstone cabinet.—Box No. 1805, Short Wave Magazine, Ltd., 55 Victoria Street, London, S.W.1.

FOR SALE (all the following items in good condition): Two-metre CC converter with two 6AK5 stages, £3; HRO and P/Pack, complete with all bandspread coils and steel cabinet if required, £25; Radiocraft TX 6L6/807, complete with 7 mc crystal, £2. Selection 7 mc crystals, 4/- each (and holders). Model 7 AVO, as new, £12; TBY-8 Transceiver and instruction book, £3. Prop-pitch motor battery and motor suitable for 6L6 modulator, 20 watts U/D output, £12; 832 valves, £1 each; two 12 v. miniature blower motors, £1 each; two generators, 12 v. input, one 400v./mA out, other 500v./mA out, £3 (o.n.o.). Mains Transformers 200/250 input, 1000-0-1000 output and transformer 350-0-350 output, £1 each. Selection meters, valves and relays. Ask for what you want.—Bartlett, G5QA, 53 Birch Barton Hill, Exeter.

Southern Radio’s Wireless Bargains

TRANSMITTERS Type "38" (Walk-in-Talkie). Complete with S-Valves. In Metal Carrying Case. Ready for use. Less external attachments: £10 per set 30/-.

RECEIVERS Type "18" Mark III. Two Units (Receiver and Sonder) contained in Metal Case. Complete with six microphones. £64/10/—.

BOMBSIGHT COMPUTERS £5 each. A wealth of components. £0 Motors: REV COUNTERS; GEAR WHEELS, etc., etc. Ideal for Model Makers, Experimenters, etc.

LUFIRA HOLE CUTTERS Adjustable 2" to 3". For Metal, wood, plastic, etc. £3

RESISTANCES 100 Assorted Useful Values. £1.50

CONDENSERS 100 Assorted. Pica Metal Tubular, etc. £1.50

PLASTIC CASES 14" x 10". Transparent. Ideal for Maps, Oils, etc. £1 each.

STAR IDENTIFIERS Type 1 A-N covers both hemispheres. £5

CONTACTOR TIME SWITCHES £1 each. In soundproof case. £5

MORSE TAPPERS Standard, 3/4". £1

MORSE PRACTICE SET with buzzer on base. £1/9

METERS AND AIRCRAFT INSTRUMENTS Only need adjustment or with broken cases. TWELVE INSTRUMENTS including 3 Brand new Aircraft Instruments 3/- for 13.

CRYSTAL MONITORS £2. New in transit case. £6/3

Postage or carriage extra. Full List of Radio Books 2/6d.

SOUTHERN RADIO SUPPLY LTD. 11, LITTLE NEWPORT STREET, LONDON, W.C.2

TRY OUR QUARTZ CRYSTAL REGRIND SERVICE

UNIVERSAL QUARTZ GRINDING CO., GREAT SHELFORD, CAMBS.

G4GZ’S BARGAINS

VALVES SP61, XPL5, 3/-; 12S7M, 2/6. £25, 1 8 8 , £25, 6 6 6 G, £25.

G4GZ’s BARGAINS

RECEPTORS £1 8 0 , £2 5 . £2 5 , £1 2 , £1 2 0 0 , £1 2 0 0 , 160 to 10 m. £10.

G4GZ’S BARGAINS

RECEPTORS £8 5 , £1 2 0 0 , £1 2 0 0 . £3 5 0 , £3 5 0 . £1 2 , £1 2 0 0 , £1 2 0 0 . £1 2 0 0 .

G4GZ’S BARGAINS

RECEPTORS £8 5 , £1 2 0 0 , £1 2 0 0 . £3 5 0 , £3 5 0 . £1 2 , £1 2 0 0 , £1 2 0 0 . £1 2 0 0 .

G4GZ’S BARGAINS

RECEPTORS £8 5 , £1 2 0 0 , £1 2 0 0 . £3 5 0 , £3 5 0 . £1 2 , £1 2 0 0 , £1 2 0 0 . £1 2 0 0 .

G4GZ’S BARGAINS

RECEPTORS £8 5 , £1 2 0 0 , £1 2 0 0 . £3 5 0 , £3 5 0 . £1 2 , £1 2 0 0 , £1 2 0 0 . £1 2 0 0 .

G4GZ’S BARGAINS

RECEPTORS £8 5 , £1 2 0 0 , £1 2 0 0 . £3 5 0 , £3 5 0 . £1 2 , £1 2 0 0 , £1 2 0 0 . £1 2 0 0 .

G4GZ’S BARGAINS

RECEPTORS £8 5 , £1 2 0 0 , £1 2 0 0 . £3 5 0 , £3 5 0 . £1 2 , £1 2 0 0 , £1 2 0 0 . £1 2 0 0 .

G4GZ’S BARGAINS

RECEPTORS £8 5 , £1 2 0 0 , £1 2 0 0 . £3 5 0 , £3 5 0 . £1 2 , £1 2 0 0 , £1 2 0 0 . £1 2 0 0 .

G4GZ’S BARGAINS

RECEPTORS £8 5 , £1 2 0 0 , £1 2 0 0 . £3 5 0 , £3 5 0 . £1 2 , £1 2 0 0 , £1 2 0 0 . £1 2 0 0 .

G4GZ’S BARGAINS

RECEPTORS £8 5 , £1 2 0 0 , £1 2 0 0 . £3 5 0 , £3 5 0 . £1 2 , £1 2 0 0 , £1 2 0 0 . £1 2 0 0 .

G4GZ’S BARGAINS

RECEPTORS £8 5 , £1 2 0 0 , £1 2 0 0 . £3 5 0 , £3 5 0 . £1 2 , £1 2 0 0 , £1 2 0 0 . £1 2 0 0 .

G4GZ’S BARGAINS

RECEPTORS £8 5 , £1 2 0 0 , £1 2 0 0 . £3 5 0 , £3 5 0 . £1 2 , £1 2 0 0 , £1 2 0 0 . £1 2 0 0 .

G4GZ’S BARGAINS

RECEPTORS £8 5 , £1 2 0 0 , £1 2 0 0 . £3 5 0 , £3 5 0 . £1 2 , £1 2 0 0 , £1 2 0 0 . £1 2 0 0 .

G4GZ’S BARGAINS

RECEPTORS £8 5 , £1 2 0 0 , £1 2 0 0 . £3 5 0 , £3 5 0 . £1 2 , £1 2 0 0 , £1 2 0 0 . £1 2 0 0 .

G4GZ’S BARGAINS

RECEPTORS £8 5 , £1 2 0 0 , £1 2 0 0 . £3 5 0 , £3 5 0 . £1 2 , £1 2 0 0 , £1 2 0 0 . £1 2 0 0 .

G4GZ’S BARGAINS

RECEPTORS £8 5 , £1 2 0 0 , £1 2 0 0 . £3 5 0 , £3 5 0 . £1 2 , £1 2 0 0 , £1 2 0 0 . £1 2 0 0 .

G4GZ’S BARGAINS

RECEPTORS £8 5 , £1 2 0 0 , £1 2 0 0 . £3 5 0 , £3 5 0 . £1 2 , £1 2 0 0 , £1 2 0 0 . £1 2 0 0 .

G4GZ’S BARGAINS

RECEPTORS £8 5 , £1 2 0 0 , £1 2 0 0 . £3 5 0 , £3 5 0 . £1 2 , £1 2 0 0 , £1 2 0 0 . £1 2 0 0 .

G4GZ’S BARGAINS

RECEPTORS £8 5 , £1 2 0 0 , £1 2 0 0 . £3 5 0 , £3 5 0 . £1 2 , £1 2 0 0 , £1 2 0 0 . £1 2 0 0 .
QUARTZ CRYSTALS

TYPE FT243 fundamental frequency 2.2 MHz, 2 pin jack spacing.
120 TYPES. 5675 Kc/s to 6850 (in steps of 25 Kc/s).
80 TYPES. 5706 Kc/s to 8340 Kc/s (in steps of 33.333 Kc/s).
ALL BRAND NEW, 10/- Each.
Special price for complete sets of 80 or 120.
Above are suitable for re-grinding.

PIRANI HIGH VACUUM TEST EQUIPMENT
Comprising: Pirani Control Unit; Pirani Bridge Unit; Gauge head with calibrator, and Pye scale lamp galvanometer, all items brand new, in original packing.
Offered at less than half original cost.
£33/10/0 Complete
Spare Pirani Heads (Edwards Mc), 15/-.

WE HAVE OVER 50,000 BRITISH AND AMERICAN VALVES AVAILABLE - LOW VALUE - SEND FOR LISTS

SPECIAL REDUCTION FOR SELECTS OF VALUES
IAG7, INSG7, HSG7, IAG5 (or IAG7), INSG5, HSG5...
10 EFSO (Ex-Brand New Units) 5/- each... 45/-. 55/-
10 EFSO (Red Synthts, ex-new units) 6/- ea... 55/-
6K8G, 6K7G, 6Q7G, 5Z4G, 6V4G... 35/-
1R5, 1B5, 1S4 or 1B4 or 3V4... 27/6
TP35, V239, H232/D0, PEN52 (or QP25)...
DK96, DP96, DA96, DL96...
6K8G, 6K7G, 6Q7G, 2A5G, 2A25 (or 2S15)...
12K8G, 12K7G (or I2Q7G), 352G7T, 35LG7T...
125G8, 125K8T, 12Q7T, 352G7T, 35LG7T, 35LG7T...
WHERE REMARKABLE.

TRANSMITTER/RECEIVER SCR 522
Comprising the well-known BCA25 and BCA24A.
Units complete with 17 values, types: 2E32, 12A6A, 3152G7, 39003, 9002, 6G6G, 12J57G, 12A7G7T, 12G8, 6357. The Complete unit is in very good condition, having various parts including Relays, Transformers, Condensers, etc. Less valves, £7/10/-, carr. paid.
With valves, £7/10/-, carr. paid.

CRYSTAL MICROPHONE INSECTS
Ideal for Tape Recording, Gramophone Amplifiers, etc. Very sensitive. Guaranteed and Tested, 5/- (ex-units) or 8/- Brand New and Boxed.

MINIATURE TRANSMITTING STRIP "TYPE B1"
Size 37in, x 6in, x 3in, Complete with Values. Type CV45, CV100, 2.4GH, 2.7DH and Quarts Crystal, 8.000 Kc/s. Fully wired with circuits. £16/10/0.

MINIATURE LF STRIP "TYPE B2"...
Brand new miniature L.F. Strip size 12in, x 2in, x 3in, high. High Line-up, 2E34, 12E1F, and B.P. circuit. With values, 45/- (less values, 8/-, post free). This L.F. Strip is part of above equipment.