XTALS. The complete Xtal Kit in sealed cartons for the SCR 536 (BCG11) Walkie Talkie. 14 xtabs in all with 14 coils, 7 osc, and 7 final covering the complete freq. range of the unit. There are 7 tx. freqs. and a further 7 xtabs spaced 455 kc for the receiver. All are in Ft 243 holders with 3 pin spacing. The complete range is as follows: 3585/4340, 4080/4585, 4280/4735, 4397/4852, 4840/5295, 5327/5785, 5437/5882 kc. The complete kit including coils 5/-, post free. Set of 14 xtabs less coils, 45/-, set of 14 coils, 8/-.
Any pair of xtabs, 8/-, with the exception of 5652 and 5829, these 7/6 each. All xtabs are by leading U.S. manufacturers.

XTALS. 1000 kc Bliley, Valpey or Somerset, standard 4 pin spacing 20/-, 100 kc RCA, Bille at 102 standards, 17/6, Marconi, etc., 500 British 4 pin spacing, 6/-. Western Elec.
500 kc 4³/₈ Ft 243 holders, 7/6.
X.T.A.S. 15/4 Mc Band any spot freq., 15/-.
XTALS. 1Fs A complete range 450 kc to 500 kc any spot freq., 4³/₈ Ft 243 holders, by Western Elec. 11/- each.

FOR 144 Mc. Any freq. 800 kc to 8110 kc Ft 243 fitting at 15/-.
A few Bendix 4 pin spacing 8076.9 kc at 12/6.

FOR 1 F Mt holders. Any spot freq. from 7 Mc to 7500 kc at 12/6, with the following specials. 7200, 7225, 7250, 7275, 7300, 7325, 7350, 7475, 7400, 14/6. Complete with holders including coils 56/-, post free.

valve holders. The complete range is as follows: 5652 and 5829, these 7/6 each. material.

PLATE TRANSFORMERS. Thermador, Primary 210/250v 50 cy. Secondary. 2120/2528 at 800 Mills. Porcelain standoffs, and completely screened at 50/-. Woden, UM1, 2, 3, or 4, immediate delivery from stock.

FILAMENT TRANSFORMERS. RCA, Input 230/50cy Output 10v. et twice for a pair of 813s, terminal connections, and completely screened, 25/-.

SMOOTHING CONDENSERS. TCC etc., 4mf 2000v. wkg 5 1/2 x 3 1/2 x 3/4", 24mf 5 1/2 x 3 1/2 x 3/4", Kello 4 - 4 3/4 x 2 1/2 x 3/4", 1mf 650v. wkg in brown crinkle case with Dzus lid, condenser detachable from case, 7/6. 10mf 1000v. wkg 5 x 4 x 3 1/2 Trouble.

MICA BI PASS. 350/1000v. wkg. 100 assorted, about 10 values, all normal sizes at 10/- per 100, baking cas cornel-Dubiller, Solar, etc., .005 8000v. wkg, 6/-, .001 5000v. wkg, 2/-, 250v. wkg.

BENDIX TA-12c. The well known Tx with four channel Osc. 807 buffer, and pair of 807s in the final, the note of this Tx is equivalent to Xtal, and is easily modified to 4 switched Amateur bands. Complete.

R.C.A. ET 4336 H. Tx. Freq. coverage 2Mc to 20 Mc. Bft. panel and rack. Weight 4 cwt. Input 230v 50 cy. Line up is an 807 driving a pair of 813s, modulated by a pair of 805. Complete with all valves including 4 866 Rectifiers. New and unused in perfect condition. A speech Amplifier is required, giving approx. 120 v. 20 v. 2000 volts, to drive the 805s, the input circuit of which is for 5000mH line. Suitable Plate transformers are available at 618 anodes to 500 ohm line for use in constructing a speech amp. Offered at the nominal price of 660 complete as above, carr. paid.
AMERICAN PUBLICATIONS

<table>
<thead>
<tr>
<th>Title</th>
<th>Description</th>
<th>Price</th>
<th>Postage</th>
</tr>
</thead>
<tbody>
<tr>
<td>RADIO HANDBOOK</td>
<td>Eleventh Edition, 1949. Theory with emphasis on Amateur Radio. 25s. Post 1s.</td>
<td>25s.</td>
<td>1s.</td>
</tr>
<tr>
<td>CQ</td>
<td>An independent American magazine for Radio Amateurs, published monthly. Full of general-interest and sound constructive articles, with special activity sections. CQ is successor to the well-known pre-war magazine Radio. For a year of 12 issues: 29s.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANTENNA MANUAL</td>
<td>Design and Construction of Aerials of every kind, for Radio Amateurs, Engineers and Technicians. (300 pages).</td>
<td>27s.</td>
<td>1d.</td>
</tr>
<tr>
<td>RADIO AMATEUR CALL BOOK</td>
<td>The World's only directory of amateur stations—Over 100,000 call signs and addresses, alphabetically. Constantly revised and kept up to date.</td>
<td>16s.</td>
<td>1d.</td>
</tr>
<tr>
<td>QST</td>
<td>The leading American monthly on Amateur Radio, established over 30 years ago as the official journal of the American Radio Relay League. Subscribers become associate members automatically. For a year of 12 issues.</td>
<td>36s.</td>
<td></td>
</tr>
<tr>
<td>POPULAR MECHANICS</td>
<td>America's leading hobbies and handyman's magazine. Monthly, 300 pages, many in colour, 125 articles and 500 pictures. Yearly subscription 32s. "Written so you can understand it."</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANTENNA HANDBOOK</td>
<td>Latest edition of the A.R.R.L's own publication on Aerial Theory and Installation Written to be of practical value to amateurs and engineers engaged on the design of all types of receiving and transmitting aerials. Immediate delivery. Post free</td>
<td>11s. 7d.</td>
<td></td>
</tr>
<tr>
<td>HINTS AND KINKS</td>
<td>Useful collection of technical ideas and practical workshop data, with plenty of diagrams, written up in shortened form. Latest edition of a recommended A.R.R.L publication. Immediate delivery 11s. Post 5d.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SURPLUS CONVERSION MANUALS</td>
<td>Giving much detailed practical information on the adaptation of a wide range of American surplus items. Well illustrated with circuit diagrams, drawings and photographs. In two vols. Immediate delivery.</td>
<td>per Volume 21s.</td>
<td>5d.</td>
</tr>
<tr>
<td>RADIO AMATEUR NEWCOMER</td>
<td>As its title suggests, a very useful handbook for the beginner in Amateur Radio. Though American in outlook, it covers much that is common ground on both sides of the Atlantic. Immediate delivery. Post free 8s. 4d.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>POST WAR COMMUNICATIONS RECEIVER MANUAL</td>
<td>Gives essential data on a wider range of modern American ground, air and communications type receivers. (See p. 371 October SHORT WAVE MAGAZINE for fuller details).</td>
<td>Post free £1 8s. 4d.</td>
<td></td>
</tr>
</tbody>
</table>

GAGE & POLLARD, Publishers' Agents

49 VICTORIA STREET, LONDON, S.W.1.

Abbey 5342
YOUR EQUIPMENT CAN HAVE THE PROFESSIONAL LOOK—

BY USING WODEN POTTED COMPONENTS

Woden Potted Transformers and Chokes ensure a clean layout with uniform smart appearance. They are used by many leading radio and television manufacturers, and this is sufficient testimony to the high standard of efficiency which characterises these components. Available for “Wireless World” Williamson Amplifier, “Electronic Engineering,” Home-built Televisor and other popular circuits.

THE EQUIPMENT SHOWN IS THE TOP DAND CABINET TRANSMITTER AS DESCRIBED IN THE “SHORT WAVE MAGAZINE.”

Send for illustrated literature and price lists of our complete range

Moxley Road Bilston Staffs
Phone Bilston 41959

J.T.L.

‘THE FAMOUS’

R.C.A. TRANSMITTER ET4336B.

THIS MAGNIFICENT PHONE AND C.W. TRANSMITTER IS COMPLETE IN ONE TOTALLY ENCLOSED RACK AND INCLUDES AERIAL TUNING PANEL

TUBE LINE UP: 807 C.O./Buffer. Two 813 P.A. Two 805 P.P. Class B Modulator. Four 866A Rectifiers.

CONTROLS: Manual or Remote.

POWER OUTPUT: Normal 350 watts, but with the fitted QRP SWITCH output is 100 watts.

FREQUENCY COVERAGE: Normal 2 to 20mcs but by doubling in final, excellent output may be obtained on 28mcs.

FREQUENCY CONTROL. THE TRANSMITTER HAS A DETACHABLE FRONT PANEL FOR INSERTION OF WILCOX GAY V.F.O. OR CRYSTAL MULTIPLIER.

ALL YOU NEED TO GET GOING IS THE INSERTION OF VALVES, CONNECTION TO MAINS AND AERIAL! 20 page manual and circuit diagram with each equipment.

EVERY INSTRUMENT IS AIR TESTED AND GUARANTEED PERFECT.

Price to Licensed Amateurs £60 including CRYSTAL MULTIPLIER AND ALL VALVES.

DELIVERY CHARGE up to £5 included

McELROY-ADAMS Manufacturing Group Ltd.
(HALLICRAFTER)

Phone Fulham 1802. 46 GREYHOUND ROAD, LONDON W.6. Cables Hallicraft London.
LAURENCEs

A Guarantee of Satisfaction. with everything we sell

NEW VALVES——At 2/9. 7193, EA50, LD210, LP220, SP41. At 4/-; 6J5GT, 6SH7, PM2, EB54, Vu120. At 5/-; 2X2, 2CA6A, 6517, 7L7, 7V7, 12A6, 12C8, 12AH7, 12J5, 12SCH7, 12SG7, 12SR7, 15C20, 2BD7, 37, 710A, 805, 806, 806Q, ARP12, AR8, EF91, P61, SP61, D2, V972, VT32. At 6/-; 305GT, 5R4, 5U4G, 5Y3G, 5Z4G, 6AB7, 6C5, 6J5, 6K6, 6K7GT, 6K7T, 6L5T, 6M7T, 6N7T, 65G7, 6V6GT, 6V6G, 6X5GT, 6Y6G, 807, 857, 9001, 9003. EB39, EF86, EF50, EC52, EL35, AU5, AR7, KT241, RS75, 2P70A, VU11, VB101, VR130, VR137. At 7/-; 1A5, 1R5, 1S4, 13B6, 6AC7, 6AG5, 6B4, 6C4, 6F7, 6J7, 6LT7, 6SA7, 6SF5, 6SG7, 2EBP, 72, 73, 80V. 204L, EF50, CV66, EHC35, AR182. At 10/-; 6L6, 717A, 616, 1507, P727, P05. At 15/-; 833, 868A, 721A, 724A, 3FP7. At 25/-; 8012, 8025, At 27/6; 931A, (photo. with holder) 8013A. At 35/-; 805, 806. At 45/-; 4C27, 5BP1, 5NP1. At 75/-; 723A/B.

All guaranteed. Two or more valves post free. Otherwise add 6d.

WALKIE-TALKIE TRANSMITTER RECEIVERS TYPE 38. Compact, Portable, equipment operating on battery or on 6-9 m.c. Complete with throat microphone, headset, microphone switch, whip aerial, microphone jack, and comfortable to use. Rack contains parts, 65/-; ea.

ROTARY CONVERTERS TYPE 5U/2610. Input 12v. AC. Output 230v. AC. 50 cycles. The robust motor alternator mounted in cabinet with filter components, etc. Ideal for mobile amplifiers, fluorescent lighting, etc. 25/-.

NEW METAL STORE ROOM CABINETS of improved design, fitted with twelve sliding drawers, overall dimensions—10½ x 7 ft x 6 ins. Extremely useful for segregation and neat storage of small parts. Price 17/6 each.

BUDIX RADIO COMPASS RECEIVERS TYPE BC 439. These superb sets are commercially modified for operation on 230v. AC and have been fitted with a carefully designed front panel which mounts tuning meter, slow motion dial, volume control etc. Other mods. include push/pull 6L6 output stage delivering 15 watts audio. A wonderfully sensitive instrument tuning 200-1750 Kc/s. A choice of three front cabinet types. Guaranteed perfect. 12/- valves.

COMMAND RECEIVER MOUNTING RACKS. Sets of the BC 453-4-5 class slide into this unit completing electrical circuits brought out to socket at rear of set. Rack contains miniature relays, fuses, headphones, etc., for housing relays, etc. Black wrinkle finish. Type B mounts 2 sets side by side. Price 7/- each. Type B mounts 3 sets. Price 7/6 each.

HEADSET TYPE DLRS. Excellent reproduction and comfortable to wear. 7/-.

RADIOMATIC END INDICATORS AFS contains tube type 5FP7, complete with focus and deflection coils, etc. Store soiled, 27/6.

COMMAND RECEIVER SPARES for BC 453-4-5. New Dynamotors type DM32. Genuine plug-in type 28v.—250v. 60 m.a., 12/6; AC plug-in Power packs, operates set from mains. Complete with rectifier valve 45/-; M. Wave conversion coils easily fitted—state set involved 10/-; Flex tuning shafts, New, 6/6; Command tuning heads, contains functional switches V-control, etc.; Employed with last item, 7/6. Plated plugs 8-pin PL 152, 2/6 each.

SELENIUM METAL RECTIFIERS. 250v. 40 m.a. Half-wave, compact, 4/6 each.

MOVING COIL METER RECTIFIERS BY WESTINGHOUSE. For 1 m.A movement, 3/6.

MIDGET OUTPUT TRANSFORMERS U.S.A. Ratio 40/1, 3/6.

AMERICAN AIR BLOWERS. 28v. DC. Operate satisfactorily on Transformer AC. Powerful blast employed for cooling valves, etc., 8/6.

TUNING CONDENSERS—2-gang, 00016 mfd, 2/6. 3-gang .00016 mfd. 3/6. 4-gang broadcast 5/- each.

CRYSTAL DIODE VALVES—MINIATURE CARTRIDGE. Plug-in type for signal rectification at all freqs. 5/6.

SLOW MOTION TUNING DIALS. Micro type 200-1 with Vernier release, 4/6.

NEW PHOTO MULTIPLIER CELLS TYPE 933A. High Vacuum type with high response in visible region. Great sensitivity, low noise level, freedom from distortion, low dark current and small size. Ideal for Film scanning, Colorimetric measurement. Spectrography astronomical measurement, electron microscope and small particle transmission. Directly equivalent to type 25M Ediswan. Complete with special RCA lightproof chamber incorporating holder, resistance network, etc., 27/6 with circuit. Guaranteed perfect.

NEW BULLENS HIGH-SPEED TELEGRAPH KEYS. Type 26063A. A very popular type fully enclosed with precise contact adjustment. Black wrinkle finish. A fine buy at 7/6.

THERMOSTATIC SWITCHES. Small glass evacuated type, heavy contacts. Open circuit around 58 deg. F. 3/9 each.

MISCELLANEOUS CLEARANCE BARGAINS. Moving coil meters imperfect, various types 2/- for 6d.—T.P. Chokes 10/- 4/9; Whip aerials 9d. collapsible 3/-; ditto. Auto type, 6/6; Antenna Tuning Units BC 306A, 10/-; Resistance boards minimum 12 small resistors and number micro condensers, 2/6; R.C. Cable tin-multi-strand 500 yds., 40/-; E.H.T. Valve caps, 6d.; I.F.F. Chassis, contains numerous parts, 3/-; R.F. Chokes, 1/- each; Dust cond. 9d. each; VHF receivers Turret coils Tune approx. 2 metres—use 4—EP50 less valves, 5/-; Dynamotors type 31, 6-12v. 200v., 5/-; Moving coil headphones with M.C. Mike, 5/-; RX No. 19, control panels, 3/-; New Bulgin toggle switches SPST plated, 1/9. DPST rotary, 1/9. Co-ax cable connector with 2 Pye plugs. U.S.A. Inertia switches miniature symmetric, 8/-; Dummy load lamps for TX, 3/6. Jones plugs and sockets various 1/6 pr. Receivers BC923A double superhet, 8/-.

Experienced export shippers. All prices include U.K. carriage. Terms C.W.O.

Satisfaction guaranteed or money immediately refunded.

Lawrences, 61 Byrom Street, Liverpool, 3.

GENtral 4430
H.F. QUARTZ CRYSTAL UNITS
(TYPE FO)

These crystals are now available in the fundamental frequency range from 15 Mcs. to 27 Mcs. They are overtone type plates designed for operation at series resonance in low power transmitters, and in v.h.f. receiver oscillators, in which the i.f. section of the receiver is tuned. The Squier circuit is especially recommended, and full circuit details will be found in "Q.S.T." for Oct., 1948, and "Proceedings R.S.G.B.," Summer, 1949. Maximum r.f. volts across the crystal should not exceed 15 volts r.m.s., and the h.t. volts at the anode of the c.o. valve should not exceed 150.

The crystal is mounted in our type F miniature mount, which is directly interchangeable with the U.S.A. pattern FT243. Two units, back to back, plug in to the standard International octal valve socket.

Prices:

TYPE FO QUARTZ CRYSTAL UNITS FOR ANY FUNDAMENTAL FREQUENCY BETWEEN 15 AND 27 MEGACYCLES

<table>
<thead>
<tr>
<th>Tolerance from nominal frequency</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plus minus 0.1%</td>
<td>£1/12/6</td>
</tr>
<tr>
<td>Plus minus 0.05%</td>
<td>£1/17/6</td>
</tr>
<tr>
<td>Plus minus 0.02%</td>
<td>£2/2/6</td>
</tr>
<tr>
<td>Plus minus 0.01%</td>
<td>£2/15/-</td>
</tr>
</tbody>
</table>

THE QUARTZ CRYSTAL CO., LTD.
(Directors: E. A. Dedman, G2NH, N. H. Munday, GSMA, W. J. Thompson, G2MR)

63-71 KINGSTON ROAD, NEW MALDEN, SURREY

Telephone: MALDEN 0334. Cables: QUARTZCO, NEW MALDEN

RADIO CLEARANCE LTD.
27, TOTTENHAM COURT ROAD, W.1
MUS 9188

SPECIAL LINE TELEVISION COMPONENTS

Comprising, Line Transformer with E.H.T. winding, (gives 7KV using E.Y.51), Scanning Coils (low impedance line and frame), and Focus Coil (res 10,000 ohms, current approx 20 ma). Special offer at £2/- the set, Post 1/-, while they last. We have also, Scanning Coils for Viewmaster at 12/6, plus 1/- postage, available separate.

MEDIUM-WAVE PERSONAL RECEIVERS

50 WATT MODULATORS

We offer the remainder of our stock of these units, at bargain price to clear. 6C5 trans coupled to 6C5's push pull, trans coupled to 807's push pull. Complete with power supply operating from 110-200-250v 50c/s, providing 500v 200ma, 6.3v 5a in addition to supply for Mod. 21in. rack mounting. Complete with valves and circuit diagram. £3/10/0 carried paid.

MOVING COIL METERS

Metal-cased 2" circular 0/15-600v (500 micro-A. F.S.D.); 6/-; 0-20A, 0-40A, with shunts, 5/-; 2" square bakelite cased, 0-1 ma, 8/-; 0-5mA, 6/-; 0-50mA, 7/-; 0-20v, 5/-; 2" circular bakelite cased, 0-30mA, 6/-; 0-100mA, 9/-; 0-200mA, 9/-; 2" square bakelite cased moving iron, 0-20v, 7/-

ROTARY POWER UNITS

Type 104. 12v D.C. input, outputs 250v 65mA, 6.5v 2.5A, D.C. F.M. rotary on chassis with cover, size 8½ x 4½ x 6½, 6/-, post paid. Type 87, input 24v, output as Type 104, 5/- post paid.

MAINS TRANSFORMERS

Primary 0-110/210/240v 50c/s. Sec. 300-0-330v, 80mA, 6.3v 2.5A, 4v 2A, 15/-, post paid. Primary 200/250v 50c/s. Sec. 293-0-293v, 80mA, 6.3v 2.5A, 6.3v 6.6A, 16/-, post paid. Primary 220/250v. 50c/s. Sec. 460v 200ma, 210v 15mA, 6.3v 5A, 12/.6.

SMOOTHING CHokes

6H, 200mA, 100 Ω	6/-
10H, 650mA, 50 Ω	24/-
20H, 80mA, 350 Ω	6/6
5H, 200mA, 100 Ω	5/6
8H, 250mA, 50 Ω potted	10/-

C. MARKS & CO.
30 COMMERCIAL, ROAD NEWPORT, MON. Phone 4711

TEST SET TYPE 210 - IDEAL FOR TV OR "HAMS"

Range 20 to 85 mc/s in 4 bands. Used as Signal Generator and Heterodyne Wavemeter, together with Noise Generator, originally for use with R135, RF26 and 62 Unit, etc. 3 Outputs provided.

1. RF (Pulse modulated at 15 kc/s) 10m volts.
2. RF only, 10m volts.
3. Noise only, 5 microvolts at 30 m.a. on meter. Contains EF50 oscillator, EF50 Buffer, EF50 Crystal Calibrator (2 mo/s), EF50 Detector/Mixer, EF50 Crystal Oscillator (75 kc/s), EF50 Divider/Modulator (15 kc/s), EF50 Anti-Jitter Valve, CV172 Noise Generator and S24 Rectifier. Meter to register noise. EF50 Crystal Oscillator supplied. EF50 Antijitter Valve, CV172 Noise Generator and S24 Rectifier. Meter to register noise. Diodcurrent. Muirhead S.M. Drive (Sin. dia.) with adjustable Vernier. Chart of calibration points on 4 ranges fixed to lid. Expanded graphs may be drawn or frequencies determined by interpolation. Accuracy is of the highest order, this test set being used to check wavemeters W1615, W1616, etc. All sub-chassis are silver-plated and a headphone socket is provided to check crystal points and for use as Heterodyne Wavemeter working quite easily on harmonics from 80, 40, 20 and 10 meter bands.

The R.F. output is rich in harmonic content, making this test set invaluable for 2-metre checks. The Pulse Output will synch. a TV time base and provide a pattern of dots. The Transformer is a 200-0-500v. at 40 m.a. but 1000cps, which needs replacement with a 50 cps type. Circuit provided free. Price £7/5/0 carriage paid. Full details and pages of operating instructions, etc. available at 5/- extra.

OSCILLOSCOPE UNIT TYPE 198. Contains 4 VR65's, 1 VR54, 3 EA59's, VCR 138 C.R.T. with MU-Metal Screen, 13 Potentiometers, high voltage Condensers, Delay-Networks, etc. The ideal unit for making a compact Oscilloscope. Brand new in sealed cartons. 35/- each plus 5/- carriage.

38 SETS. Containing 4-ARP12 Valves also 1 ATP4 Valve (but less Send/Rec. Switch). 17/6 carriage paid, and with circuit.

PHOTO ELECTRIC MULTIPLIERS 93A. Complete with Resistor Network and Screening Can. Full data available. 22/6 each, post free.

CONDENSERS. Block Type TCC. 10mfd. 450v wkg. 3 for 10/-, also 4 mfd 1000v wkg. as above, 4 for 10/-. .25mfd micamold 350v wkg. 5/- per doz. .001 mfd 4kv. wkg. Bakelite Tubular 8 for 5/-. ALL GUARANTEED.

VALVES. ECS5 at 42/- per doz. or 5/- each. ATP4 at 6/6 each or 60/- per doz.

SLEEVING. Varnished Fabric with glass insulation. Approx. 1 yd. lengths, 12 lengths 2/- or 81 per gross lengths.

NEON BULBS. Siemens B.C. Type. 85 volt wkg at 1/6 each. 15/- per doz.

IRON DUST CORES. Standard Type, with Formers. 2/6 per doz.

PYE PLUGS AND SOCKETS. At Special Price. 6d. per pair.

For further particulars apply to :-

G.E.C.
QUARTZ CRYSTAL UNITS
FOR AMATEURS

TYPE 2 QUARTZ CRYSTAL UNIT SPECIALLY FOR AMATEUR TRANSMITTER USE

JCF 200 QUARTZ CRYSTAL UNIT FOR USE AS A FREQUENCY SUBSTANDARD

SALFORD ELECTRICAL INSTRUMENTS LTD
PEEL WORKS - SILK STREET - SALFORD 3 - LANC'S ENGLAND
A subsidiary of THE GENERAL ELECTRIC CO. LTD. OF ENGLAND
P.C.A. RADIO

HALLICRAFTERS. BC.610 (or HT.48) operating over 2 Mc to 18 Mc and modified for 21 and 28 Mc. Crystal and VFO on all bands complete with speech amplifier, autotuner, unit, exciter units and coils for all bands, set of x-tals especially made for BC.610 and new valves.

RCA TRANSMITTERS. Type ET-4336. Complete with matched speech amplifier, crystal multiplier and VFO units; Brand new.

A.R.88 D's, S.77's, Hallicrater's S.77 (V.H.F. from 130 Mc—210 Mc). AR.77's, HRO's with power pack and coils.

All above items in excellent working condition with new valves, working demonstration on request.

TX VALVES. 803, 805, 807, 813, 814, 829, 861, 866A, 6LM and many others.

Large stock of transmitting condensers, crystals and coils. Alignment and repair of communication receivers and all other amateur equipment undertaken.

P.C.A. RADIO

NEW BOXED VALVES. 715B, 303A, 809, 805, 884, 15/-; CCH35, ECH35 (Metalized), TP25, TP25, PEN25, PEN45DD, KT66, 1207GT, 42, 1D5, 6J8, EF29, 9D8, X65, EL33, PEN333, 3Q4, 25L6GT, 25Z6GT, 6A8, 6K8, 12K6, 3616, 25A6, 6EL6, 6LM, 10/-; 1R5, 1T7, 1V7, 1W5, 1X5, 1Y5, 1Z5. VR133, HL133DD, VP4, SP4, MVS/PEN/B, MS/PEN/B, VP1320, TDD15, V63, 210VP, SP210, PB1 (Glass), EF80, EBC33, 220B, VR105/10, VR15/10, PEN220A, QP1, 1A5, 1L4, 3A4, 8J6; 1S4, 6AG6, 6AG7M, 6Y6, 6Q7, 6V6, 524, 6K7M, 6SA7, 6SJ7, 6XS, 5Y6, 6BG, 807, 6L7M, 6L7M, HL23DD, KTW6, DHH3, 7D5, 15D2, ATP4, S103, 7/6; 6K7G, 6AC7M, 6C4, 815M, 6F6G, 6G7GT, 6G5GT, 6SG7M, 6SL7GT, 12A6M, 6J7M, 6SN7GT, 6S7M, 6F7, 1361, 1642, 7450, 9701, 9002, 9003, 6/6; Unboxed but guaranteed, T111, ML6, 8D2, VP23, 6AC7M, 6S7H7M, 12S7CM, 5J; EF32, EF69, EBC33, EL52, 6D4, 6/6, 6A5, KT15, EF50, 12/6.

Many other types of brand new valves, including 4 volt types, at approx. £ (two-thirds) old list price. Stamp with enquiries please.

ELECTROLYTIC CONDENSERS. 8 and 8 mfd. 450v wkg. 2/9; 50 mfd 50v wkg, 1/9.

NON-POLARIZED CONDENSERS. 20 mfd. 450v + 10 mfd. 350v + 5 mfd. 150v. ± 5 mfd.

Aerovox tubular can (slightly dented), 2/7 each, or 5 for 10/- post free.

MICROPHONE PHONES AND HAND MIC:

Complete with leads, 7/6 set.

Satisfaction or money back. S.A.E. for List.

Add please postage on orders under £1.

ELECTRAD RADIO

64 Grt. Victoria Street, Belfast, N.I.
RECEIVER TYPE 21. The receiver portion of the WR 21 operating from 4-5 to 5 Mc/s. Double superhet, from 18-30 Mc/s. Incorporating B.P.O. and crystal limiter. Valve line-up 7-AP13, VP23, and 2A18. Absolutely brand new, complete with circuit. Only 45/- complete. Vibration power unit for above brand new, 17/- only.

EX-B.P.O. INDICATOR UNIT TYPE 86. Containing VC31-97 CRT with two masks, and valves 1X5/862 (6P11), 3X354 (6E5), 3X355 (6E5C), etc.; two deck chokes in metal case. 18 x 14 x 11". New condition. 67/- each. Plus 7/- packing and carriage.

931A. PHOTO-CCELL MULTIPLIER AMPLIFIER UNIT 67/- each. Plus deck cards in metal CRT with mu-metal screen 7-AEP72 (VP23).

5X. Attractive advantage purchase enables 2 DUAL PURPOSE MAINS TRANSFORMERS. Special 350-0-345 volts, of frequencies amplifier provides 12/0.

6A137 of 5X. 600 volts, type Electrostatic, 465 volts, 25/- only. Limited 35/.- complete, poet etc., etc. Panel lighting, warming systems, locating foreign COMPLETE.

465/46. 8547 RECEIVERS. Type. Electrostatic 260-0-250 volts.

SPECIAL VALUE IN MAINS TRANSFORMERS. Price 45/- complete, poet etc., etc. Panel lighting, warming systems, locating foreign COMPLETE.

7/6. PANEL LIGHTING, WARMING SYSTEMS, LOCATING FOREIGN COMPLETE.

8/8. BAKELITE RECEIVER (plus 350-0-345 volts, 25/- only. Limited 35/.- complete, poet etc., etc. Panel lighting, warming systems, locating foreign COMPLETE.

465/46. 8547 RECEIVERS. Type. Electrostatic 260-0-250 volts.

SPECIAL VALUE IN MAINS TRANSFORMERS. Price 45/- complete, poet etc., etc. Panel lighting, warming systems, locating foreign COMPLETE.

7/6. PANEL LIGHTING, WARMING SYSTEMS, LOCATING FOREIGN COMPLETE.

8/8. BAKELITE RECEIVER (plus 350-0-345 volts, 25/- only. Limited 35/.- complete, poet etc., etc. Panel lighting, warming systems, locating foreign COMPLETE.

465/46. 8547 RECEIVERS. Type. Electrostatic 260-0-250 volts.

SPECIAL VALUE IN MAINS TRANSFORMERS. Price 45/- complete, poet etc., etc. Panel lighting, warming systems, locating foreign COMPLETE.

7/6. PANEL LIGHTING, WARMING SYSTEMS, LOCATING FOREIGN COMPLETE.

8/8. BAKELITE RECEIVER (plus 350-0-345 volts, 25/- only. Limited 35/.- complete, poet etc., etc. Panel lighting, warming systems, locating foreign COMPLETE.

465/46. 8547 RECEIVERS. Type. Electrostatic 260-0-250 volts.

SPECIAL VALUE IN MAINS TRANSFORMERS. Price 45/- complete, poet etc., etc. Panel lighting, warming systems, locating foreign COMPLETE.

7/6. PANEL LIGHTING, WARMING SYSTEMS, LOCATING FOREIGN COMPLETE.

8/8. BAKELITE RECEIVER (plus 350-0-345 volts, 25/- only. Limited 35/.- complete, poet etc., etc. Panel lighting, warming systems, locating foreign COMPLETE.

465/46. 8547 RECEIVERS. Type. Electrostatic 260-0-250 volts.
THE NEW 1355 CONVERSION!

At last it is possible to build a complete TV set on ONE 1355 chassis. TIME BASES, VISION, SOUND, POWER PACK and SPEAKER, all within the 1355 case.

Data for London or Birmingham—3/- per copy.

NEW 1355's, in original cases, 55/-.

RECEIVER P40 Covering 85-95 mc/s with two (2.9 mc/s) IF's, these have one RF stage, with a crystal controlled local oscillator (two stages of subsequent multiplication). Complete with 4 EF54's, 1 EC52, 2 EF39's, 1 EB34, 1 6J5 and 1 6V6, these may easily be modified for other UHF bands. Brand new, 65/-; a few soiled 39/6.

AC MAINS POWER UNIT S41B. Providing 300v at 200mA, DC, 12v 3A AC and 3v DC, these have separate individually controlled transformers for HT and LT, separate HT and LT jewelled indicators, and are fully fused. Additionally the HT may be controlled by means of a London relay, BRAND NEW in maker's cartons, 65/-; a few soiled 50/-.

RECEIVER 3547 Containing 15 EF50's, a 'Pyre 45mc/s Strip,' eight other useful valves, a midget motor and a host of parts, these are BRAND NEW in original maker's cases. ONLY 55/12/6.

CONTROL UNIT 214, with 3 EF 50's, 2 EB34's, 1 D1, and dozens of components. They are in sealed maker's cartons, 19/6.

INDICATOR 198. Ideal for a scope or modulation indicator; complete with 3 inch (VCR 138A) tube, eight valves, and full of pots, resistors, condensers, etc., they are in original sealed cartons, 35/6.

MODULATION TRANSFORMERS. These will handle approx 100 watts audio, but may be used as mains 200/250-115v auto transformers, 6/6. Input transformers for class B 211's, 4/6.

RECEIVER AND VIBRATOR PACK 21. The receiver covers 4.2-7.5 and 18-31 mc/s and is complete with BFO, interference limiter, 9 valves, circuit and connecting data. The switch spindle is broken but the washers are intact. The vibrator pack (6v input—150v 40 ma output) is designed to supply this receiver and its associated transmitter. ONLY 32/6.

TRANSMITTER 21. The transmitters for the above, they will work CW, MCW or speech, and are complete with valves, circuit, control box and key. The PA coils and relays have been stripped by the Ministry of Supply, but may easily be replaced. IN GOOD CONDITION 19/6.

AMPLIFIER 1135A. Twin inputs, complete with EBC3, EK32, EL32 circuit and our '10 min. Conversion data.' OUR PRICE 15/-.

EX-GOVERNMENT SURPLUS

ELECTROLYCS

<table>
<thead>
<tr>
<th>Value</th>
<th>4 mfd</th>
<th>8 mfd</th>
<th>8 x 8 mfd</th>
<th>16 mfd</th>
<th>2000 mfd</th>
<th>25 mfd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>350v</td>
<td>450v</td>
<td>500v</td>
<td>500v</td>
<td>500v</td>
<td>25v</td>
</tr>
<tr>
<td>Value</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Value</td>
<td>3 for 2/1-</td>
<td>3 for 4/6</td>
<td>2 for 5/-</td>
<td>2 for 4/-</td>
<td>2 for 7/-</td>
<td>3 for 1/6</td>
</tr>
<tr>
<td>Value</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

METERS

<table>
<thead>
<tr>
<th>Value</th>
<th>500 ma, Rd. 21ins. USA Black Face</th>
<th>5A, T.C. Sq. 21ins. Brit. White</th>
<th>1A, T.C. Rod.</th>
<th>1A.T.C. Rd. 21ins.</th>
<th>All above are substandard and many ex. apparatus but movements are O.K. Need cleaning.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>2/-</td>
<td>2/-</td>
<td>2/-</td>
<td>2/-</td>
<td>All above are substandard and many ex. apparatus but movements are O.K. Need cleaning.</td>
</tr>
<tr>
<td>Value</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LF CHOKES

<table>
<thead>
<tr>
<th>Value</th>
<th>Parmeko 4/6H</th>
<th>250 ma Swinging Type.</th>
<th>250 now left at</th>
<th>4H, 450 ma. USA Potted</th>
<th>Value</th>
<th>4/6</th>
<th>5/-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Value</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SPECIAL TRANSFORMER OFFER

Pri. 200/300/50 In. Out 350, 0.350 80ma. 4/6 |
3v. 4A. 4/5v. 2A. Drop through or upright mount. First class job. 19/6 |
| Philips! or heater type. 200/50 input. Output tapped 2, 4, 6, 8, 10, 12, 15V. at 8 amps. Wonderful line | 12/- |

SPECIAL VALVE OFFER!

6Y6G 5/-; 721A 5/-; 7V7 3/-; 2C22GT 1/-; 6AG7 5/- ALL NEW BOXED

COAXIAL CABLE

Standard 3in. Multicore P.V.C. Black outer cover. Copper screened. 75 ohms R.F. Impedance. 12 yards or over at 9d. yd.

E.H.T. TRANSFORMERS

A few to be cleared at very low prices. All have 115V, A.C. input at 50/60 Cycles. 10,000V 33ma 15/- |
2,100V 350ma 20/- |

SUNDARY

Pneumatic cylinder ram. U.S.A. new 2/6 |
RCA Intervalue Transformer. P. Pull C.1. | | | | | | | |
Ratios 2.3 and 8 : 1 out	2/6
2Huns. x 2Huns. x 2Huns.	3/6
Loading unit MC432, with 5 way switching. 4Huns. x 2Huns. round	3/6
Switch Bulgin Sp.S.T. Nickel. 3A.	1/6
Indicator Panel Mounting Red	6d.
Plug USA Type PLE8 6d.	
All above are new goods.	

Cash with order. Add 6d. to 5/- value. 1/- to 10/- value for post. Free over 10/-.

WESTON PRODUCTS (Liverpool) LTD. 71 Great George Street - Liverpool - Telephone Royal 5754/5

RADIO EXCHANGE CO. 9 CAULDWELL STREET, BEDFORD Phone 5568
PANDA RADIO CO.

INSULATORS. Glass ribbed type 3in. 9d., 7in. 5/-. 12in. 7/6. large brown strain type 4/6.

TRANSFORMERS. (Power). Pri. 230v. 50c. 500-0-500v. 170 m/a and 4v. 4a. 19/6. (Driver). Split secs. 500 ohms to 805 grids. 6/-. Pri. 230v. 50c. sec. 24, 26, 28, 30v. 3 amps. 7/6.

CHOKES. 15H. 150 m/a. 7/6. 9H. 100 m/a. 5/6. 20H. 80 m/a. 5/6. L.F. type approx. 1H. 2 amps. 5/6. Small adjustable type .3 to .8H. 25 m/a. 1/9. Double wound choke 10H. 150 m/a. each section 8/6.

CONDENSERS. 2mfd. 750v. wrkg. for 7/6. 4 + 4 500v. w. 2 for 4/6. 1 mfd. 400v. wrkg. 5/6.

RECTIFIERS. Selenium 650v. 15 m/a. 2/3 24v. 3 amp. Bridge type, 12/6. 12v. 2 amp. Bridge type. 7/6.

VARIACs. 0-250v. 9 amp. from 230v. supply. £9/10/0. BC 221's. From 6/5. also complete with power packs.

HEATERS. 230v. 50c. 500 watt. complete with mesh front and mounting brackets. 6/9.

INTERFERENCE SUPPRESSORS. (Mains). A "must" for curing B.C.I. and T.V.I. made to Admiralty Standards. 230v. 5 amps. 5/9.

XTALS. 4 for 9/6 our choice freqs. 5 to 6.8 m/cs. also 81/8 and 82/8 and 8007 at 4/6 each. 4/6.

WIRE. We can supply any length any gauge in H.D. Copper for special purposes.

We can supply any of the above in large quantities if required and will quote accordingly.

We can supply most of your requirements per return and guarantee absolute satisfaction.

We specialise in EXPORT requirements to all parts of the world.

All prices INCLUDE POSTAGE AND PACKING

Send large S.A.E. for 1951 Lists of Bargains!

58 SCHOOL LANE, ROCHDALE

THE RADIO & ELECTRICAL MART
OF 253-B PORTOBELLO ROAD, LONDON, W.11

Remember money back guarantee. Phone: Park 6026 Please add postage when writing.

Valves. 607GT, 6/6; 960 EHT rectifiers, 5kv 10ma, 6/6; 9001, 9002, 9003, 5/-; 6K7, 7/6; 954, 955, 3/6; 6V6, 6CB, 807, 5U4G, 7/6 each; 155-15A, 6/6; 174-1R5, 7/6. Y63 Tuning Eye, 8/-; 35A, 6AG5, 8/6; 6L6, 10/6; 117Z6, 12/6. All post paid. 6S67's better than EFP50's, 4/-. Selenium Rectifiers. H. W. 250v 60mA, 5/-; 120mA, 7/6 Postage 6d; F.W. 6 or 12v 1A, 8/6 or 6 or 12v, 4A, 25/- Postage 10d.

New and Boxed P.M. Speakers 6", 13/6 each, plus 1/- postage.

5", 16/- each, plus 1/- postage.

10", 20/- each, plus 1/- postage.

New IN34 Crystal Diode Cartridges, 5/3. Post paid.

Type R1350 Receiver Power Pack. In grey steel cage 8" x 9" x 6", contains two separate complete power units with outputs of 390v at 80 mA and 300v at 60mA. Each with 6.3v 3A LT. Price £4/12/6.

Mains Transformers. Input 200/240v, output 6.3v 1.5A, 7/6. Post 10d. 300-0-300 80mA, 6.3v 3.5A, 5v 2.5A, 21/6, also 350-0-350, at same price, post 1/- Special 230/4 or 6v 4A, 6/10. Post paid.

Multi-Ratio Output Trans., 30 watts, 25/-, post 10d.

New MINI transformers, in ali. cans, 450v 8 mfd., 3/6. 16 x 8 mfd., 8 x 8 mfd. and 32 mfd. 16 x 16 mfd., 4/10 each. Post paid. 32 x 32 mfd., 250v, 4/-.

TUBB Units. Complete in black crackle cases, 17/6. Carriage paid.

RII32A. We have a few of these splendid 10v Receivers 100/120mcs. New, £4/19/6. Carriage and Packing, 10/-.

RF24 Units. Converted to 28 mcs band, variable tuned with 100-1 geared SM. dial. Complete with plug and leads for immediate use. £2 5/- Post paid.

New Morse Keys, 2/10, post paid.

Input 200/240. Output 6.3v 5.5A, 6.3v 7.5A, 6.3v 8.5A, 35/- plus 2/6.

M/C. 0-300v. 2in., 10/-.

0-350 Milliameters. 2", 10/- Post paid.

Army Morse Key and signalling lamp sets in metal case, 8" x 8" x 6". 12/- Post 1/6.

FL8A Filters. 16/- post paid.

Admiralty S.M. Dial. 100.1 with Vernier white Iovine Dial 0-100. Worm Driven. Beautifully made. New and Boxed. 8/6 post paid.
Germanium diodes have many advantages—electrical and physical, which make a substantial appeal to the professional radio engineer and the serious experimenter. Being so small they can be soldered directly into the part of the circuit where they are wanted and without any consideration of mounting methods or special holders.

They require no heater power and therefore the danger of introducing hum does not exist, neither has screening to be considered.

A minimum life of 10,000 hours means that they need not be easily accessible for replacement and the special sealed and robust construction ensures immunity from damage by vibration or atmospheric conditions.

As replacements for thermionic diodes, G.E.C. germanium diodes are always worth considering and the main points which have to be taken into account are reverse resistance and permissible reverse voltage. Their low shunt capacitance will always be advantageous compared with thermionic diodes.

From the point of view of the experimental worker they are invaluable because of their versatility, and they can equally well be used for say, an improvised source of bias from a heater supply, a probe voltmeter at television frequencies or in one of the many circuits of which the following are typical examples. For further information write to: Osram Valve and Electronics Dept., Magnet House, Kingsway, W.C.2.
INDEX TO ADVERTISERS

Adoola .. 776
Alpha Radio 773
Amateur Radio Service 768
Anglin, J. T. 776
Ashworth, H. 766
Barnes Radio 772
Benson ... 708
B.I.T ... 706
Brookes Crystals, Ltd. 769
Brown, S. G. 770
Candler System 773
Clydesdale Supply Co. Ltd. cover iv
Easibind 774
Electraf Radio 718
Electraf Radios 771
E.M.I ... 775
Pantherpe 718
Frith Radiocraft 719
G.E.C .. 722
G.S.V., Co. 710
Gage & Pollard 713
H.A.C. Short-Wave Products 776
Henry's ... 719
Hillfield Radio 774
Holle, A.C. 775
H.P. Radio Services, Ltd. 769
Johnsons 774
Lawrence, G. 715
Lyons Radio 721
Marks, C 714
McElroy Adams 714
Multico .. 706
Panda Radio 724
P.C.A. Radio 718
Pearsen, M. J. 774
Precision Equipment cover iv
Premier Radio 724
Pullin (M.I.) 771
Q.C.C ... 716
Radio & Elect. Mart 721
Radio Clearance 716
Radio Exchange 720
Radio Servicing Co. 771
Radio Supply Co. 770
Reed & Ford 776
Reosound 772
Rock Radio 775
Rollett, H 775
Samsons Surplus Stores 770
Salford Radio 717
Short Wave (Hull) 772
Small Advertisements 772-776
Smith, H. L. 769
Southern Radio 770
Southern Radio & Elect. 769
U.E.I .. 766
Weston Products 720
Whitaker cover vi
Young ... 767

SHORT WAVE MAGAZINE

FOR THE RADIO AMATEUR & AMATEUR RADIO

Vol VIII JANUARY 1951 No. 90

CONTENTS

Editorial .. 725
Linear Transformers for Aerial Matching 726
Remote Controlled Relay System by R. E. B. Hickman 732
Starting on Two Metres by N. P. Spooner (G2NS) 734
Cheap VFO Conversion by G. Proctor (GM8SQ) 737
Practical Rotary Dipole for Ten by W. E. Green (G3BTC) 739
DX Commentary by L. H. Thomas, M.B.E. (G6QB) 740
Using the Type 1 Visual Indicator by R. W. Rogers (G6YR) 747
VHF Bands by E. J. Williams, B.Sc. (G2XC) 751
Results—1950 Magazine VHF Contest 751-753
Modified RF Monitor by A. M. H. Fergus (G2ZC) 758
Other Man's Station—G2BJY 759
New QTH's 760
Here and There 761
The Fifth MCC—Results 1950 Club Contest 762

Editor: AUSTIN FORSYTH, O.B.E. (G6FO)

Advertisement Manager: P. H. FALKNER

Assistant Editor: L. H. THOMAS, M.B.E. (G6QB)

Published the Friday following the first Wednesday each month at 53 Victoria Street, London, S.W.1.
Telephone: Abbey 2384

Annual Subscription: Inland 20s. Abroad 22s. post paid

Copyright Reserved throughout the World

AUTHORS' MS

Articles submitted for editorial consideration must be typed double-spaced with wide margins on one side only of quarto sheets, with diagrams shown separately. Photographs should be clearly identified on the back. Payment is made for all material used, and a figure quoted on the letter of acceptance. It is a condition of acceptance that copyright of all material used passes to the Short Wave Magazine Ltd., on publication.

THE SHORT WAVE LISTENER ASSOCIATED WITH THIS MAGAZINE IS SPECIALLY FOR THE RECEIVING ENTHUSIAST
TRF MIDGET KIT
Redesigned and easier to build. Includes an attractive walnut or cream plastic cabinet 12ins. x 5ins. x 6ins. The valve line-up is 6K7, 6SH7 and beam power output (CV1510) in the A.C. model and 6K7, 6SH7 and 12A6 in the A.C./D.C. model. Both use metal rectifiers and are for use on 200-250 volt mains. The dial is illuminated and the receiver presents an attractive appearance. Medium and long waveband coverage. Complete Kit or parts with valves, speaker, cabinet and parts-to-point diagrams. Please state if A.C. or A.C./D.C. is required. £4/19/6 inc. P.T.

TELEPHONE KITS
Build yourself a 2-Station Telephone with 2 complete balanced Armature Units. No Batteries needed. 10/- Set of 2 Units. With diagrams.

METER KIT
A FERRANTI 500 MICROAMP M/C METER, with separate High Stability, High Accuracy, Resistors to measure, 15, 60, 150 and 600 volts D.C. Scale length 12ins. diameter 2½ins., 10/- complete kit.

NEW A.C. ALL-WAVE SUPERHET KIT.
Seven valve (plus rectifiers) for 200-250 v., 40-60 cycle A.C. mains. Wavebands, 13,6-52, 51-190, 190-540, 200-250, 900-2,100 metres. Pick-up input. Used 6K7, 6K8, 6K7, 658, 6J5 and 2-6V6 in push-pull, giving an output of 10 watts. Specially designed QP transformer to match 6V6's to 3 and 15 ohm speakers. Negative feedback is applied over 3 stages giving a high fidelity output. Tone control is incorporated, £14/5/0. Also available for A.C./D.C. Mains. Specification as above except that valve line-up is 6K7, 6K8, 6K7, 6Q7, 6J7, 2-KT33C. In Kit form at £13/8/10.

NEW 3-BAND MIDGET SUPERHET KIT
Redesigned to cover the short, medium and long wavebands (16-50, 190-540, 1,000-2,000 metres). A.C. valve line-up, 6K8, 6K7, 6Q7 CV1510 Beam Power output. A.C./D.C. valve line-up is the same excepting output valve is 12A6. Both use metal rectifiers and are for use on 200-250 v. mains. In cream or walnut cabinet as illustrated. Illuminated dial. An attractive and powerful receiver. Complete kit of parts with Valves, Speaker, Cabinet and point-to-point diagrams. Please state if A.C. or A.C./D.C. is required. £6/19/6 inc. P.T.

HAND CARBON MICROPHONE
Military Surplus. Has switch in handle. 2/11 Transformer for same. 2/6

GRAMOPHONE AMPLIFIER KIT
Consists of Complete Kit of Parts for a 2½ watt, Mains-operated 2-stage Amplifier for use with any type of pick-up. Volume and tone controls are incorporated. Output impedance is 3 ohms. Cat. No. AMPI47. Price complete. 65/- For 200-250 v. mains with valves and diagrams.

NEW PRE-AMPLIFIER FOR FRINGE RECEPTION AREA
We can supply the complete kit of parts to make this wide band width Pre-Amplifier using 2-717A Pentodes. For use with Televisers able to supply 130v. 20 ma., H.T. and 6.3v., 0.3 amps. L.T. Completely screened. Includes valves, chassis, diagrams, etc. 27/6

SEPARATE POWER SUPPLY UNIT KIT IF REQUIRED
21/-

TERMS OF BUSINESS
Postage and packing is free for orders over £2 in value unless otherwise stated. Under this amount, please include 1/- for orders up to 10/- and 1/6 for orders over 10/-. C.O.D. orders cannot be sent under 20/-.
Resolutions

It is customary at this season to scatter a few words of blessing and goodwill—and also to offer some sound advice on the importance of making and keeping a good resolution or two.

So far as Amateur Radio is concerned, this is all quite easy. Here are the resolutions: Take your phone away from the LF end; run the lowest possible input when working locals; check the gear on artificial load and never on open aerial; cultivate the art of snappy operating; learn to avoid blather when working on phone; do not criticise, over the air, other operators’ manners or methods; if you promise anyone a card, send it; remember that Amateur Radio is a hobby and that, for intelligent people, life holds many other interests.

All these are obviously good resolutions, worth making and keeping. If they were all kept by everyone on the air today, many of our most urgent problems would solve themselves. But as always amateurs will remain individuals, who pursue a great hobby as the spirit moves them—they are not really much concerned about what others may be doing or thinking. The very fact that there are so many aspects of Amateur Radio is one of the reasons why it always remains so fascinating, even after years of activity and a long experience on the air.

So we would simply say to those who may glance over this page that we wish all our readers, all over the world, the best of luck, happiness and good fortune for the coming year, and the utmost success in whatever direction their amateur activities may lead them in 1951.

AUSTIN FORSYTH, G6FO.
LINEAR TRANSFORMERS FOR AERIAL MATCHING

Influence of the SWR, Checking Feeder Characteristics, and Adjusting Matched Open-Wire Systems

The open-wire type of feeder is more widely used in commercial radio practice than any other; it is also deservedly popular amongst amateurs, especially those who are fortunate in having at their disposal sufficient space for the erection of radiating systems designed on well-established principles. The open-wire aerial feeder line has certain clear advantages over other types, viz: the initial cost is low, when correctly installed the loss is extremely low, it is easy to check for correct operation, it is unaffected to any great extent by weather conditions, and it is relatively light in weight.

Basic Principles

As is well known, a feeder consisting of a pair of parallel wires may be operated either as a matched transmission line or as a resonant system. In the latter case the transmitter end of the feeder is reactive and the reactance has to be tuned out by some form of aerial coupler at the transmitter. The feeder is, in effect, merely part of the aerial folded in such a way that equal and opposite currents flow in the adjacent wires, which do not therefore contribute to aerial radiation. In the case of a matched line, the transmitter has to load into a pure resistance equal in value to the characteristic, or surge impedance, of the line (usually 500 to 700 ohms). This latter arrangement may simplify the design of the aerial coupling method, and it also has the further advantages that the losses are lower, no high impedance points occur on the line (thus reducing possible causes of TVI and BCI), and there cannot be a high impedance point within the station, which fact removes one of the chief causes of RF feedback in amateur layouts. Furthermore, if a broadband radiator is used, e.g., a folded dipole, a whole amateur band can be covered without the necessity for readjustment of the coupling between transmitter and feeder; in the case of resonant transmitter it is often found that aerial coupling arrangements have to be altered considerably when the transmitter frequency is moved from one end of a band to the other. A feeder which is not operating in a matched condition has standing waves along its length, that is to say, maxima and minima of current occur along the whole length at intervals of a quarter wavelength. Incidentally, a point of minimum current (current node) corresponds to one of maximum voltage and vice versa. The "goodness" of a matched transmission line is expressed in terms of its "Standing Wave Ratio," i.e., the ratio of maximum to minimum current along its length (or maximum to minimum voltage). A matched feeder naturally has a SWR of 1:1; ratios up to about 3:1 are of little consequence in amateur work, but a ratio of 10:1 is very poor.

Adjustment of a matched line consists merely of connecting it to a resistance equal in value to its characteristic impedance. If the line is to be used to feed an aerial, arrangements must be made so that it is connected in such a way that, at the point of connection, the aerial presents an impedance equal to the characteristic impedance of the feeder. There are many ways of accomplishing this, e.g., by the use of delta-match, T-match, Q-bar or Linear Transformer methods. A pair of Q-bars form a quarter-wave linear transformer, but this article deals with the type of linear transformer often referred to as a Matching Stub.

Test Gear

In setting up aerial systems, one or two items of simple test gear are needed. A Standing Wave Indicator is a necessity and a small but sensitive absorption wavemeter, of the type described on page 541 of the October 1950 issue of...
Fig. 1. A simple Standing Wave Indicator consisting of a loop and thermo-milliammeter mounted on a suitable carriage. The operation of this device, and the precautions to be taken in using it, are explained in the text.

Short Wave Magazine, is also useful for giving a final check on feeder balance, presence of harmonics, and so on.

The simple standing wave indicator shown in Fig. 1 consists of a loop of stiff copper wire connected across an 0-250 thermo-milliammeter. The loop and meter should be mounted on a small wooden or bakelite carriage which can be run up and down the feeder. The diagram shows a suggested arrangement; the loop should be as loosely coupled to the feeder as possible consistent with reasonable meter deflection, and should be symmetrically disposed between the feeder wires. The small arrow is mounted on the carriage so that reasonably accurate distance measurements on the feeder can be made, the arrow being taken as a reference point. If a thermo-milliammeter is not available, a 0-1 or 0-5 mA meter may be used in series with a crystal diode. The meter should be shunted by a 0.001 µF mica condenser and the coupling loop should be quite small and loosely coupled to the feeder, otherwise the meter may be overloaded. If a thermal instrument is used, great care must be exercised in order not to exceed full-scale deflection under any circumstances. These instruments are very delicate and, since they operate on the current value squared, they are easily burnt out.

In using the standing wave indicator, it is merely hooked on the feeder line and run up and down over a distance of about half a wavelength: naturally the power output of the transmitter would have been adjusted to give reasonable meter deflections. The standing wave ratio is simply the maximum reading divided by the minimum reading. If the ratio is high, some difficulty may be encountered in finding the exact position of minimum current; in this case the
approximate position of the minimum should be noted and the indicator then moved to either side of this point until readable deflections are obtained. The actual position of the current minimum is then midway between positions of equal current on each side.

Linear Transformer Aerial Matching

The quarter-wave linear matching transformer shown in Fig. 2 offers one most effective method of matching a non-resonant feeder to an aerial: it consists merely of a quarter wavelength of open wire transmission line short-circuited at one end. It has the property of possessing a high impedance at the open end AB and, obviously, a low impedance at the short-circuited end. Between the two the impedance varies from high to low along the length. It may, of course, be considered as a half-wave dipole folded back on itself; thus, the points AB are readily seen to be high voltage, zero current points and SS to be zero voltage, high current points.

Fig. 3A shows the method of matching a non-resonant line to a high impedance aerial system (in this instance two half-waves in phase). In such an instance, the impedance across AB is high, but at SS it is low, and it is possible to select points XY at which the impedance equals that of a non-resonant feeder. Clearly, the resonant frequency of the aerial and linear transformer may be varied by altering the position of the short-circuit SS.

In the case of Fig. 3B, which shows a similar method of matching a feeder to a half-wave dipole, the points AB are at low impedance, and thus an open quarter-wave matching transformer is used; the points OO are at high impedance, and, as before, the feeder is attached at some intermediate position. The open quarter-wave section has the disadvantage that points OO are at high RF potential and require adequate protection. Further, the system cannot be brought to resonance by sliding a shorting bar up and down; it must be done by adding or subtracting lengths of wire from the free end of OO.

A more convenient method of feeding a dipole at its centre is shown in Fig. 3C. In this case the matching section is extended to a half wavelength; a low impedance position again occurs at SS and a shorting bar may be used for resonance adjustment.

Methods of feeding the simplest types of aerial have been described, but, generalising, it will be appreciated that a short-circuited quarter-wave section can be employed for matching a feeder line to any high impedance aerial and a short-circuited half-wave section may be used in the case of any low impedance aerial. The terms "high impedance" and "low impedance" imply aerials whose impedances at the point of attachment of the feeder and matching systems are respectively greater or less than that of the characteristic impedance of the feeder. In general, centre-fed dipoles, parasitic beams and similar types are low-impedance systems; all end-fed aerials, two half-waves in phase and their derivatives, are high-impedance systems. Symmetrical aerials, i.e., centre-fed, are very much to be preferred to end-fed systems owing to the difficulty of obtaining feeder current balance with the latter type.

Setting-up Procedure

Having decided to feed the aerial through a non-resonant line and to use a linear matching transformer, the following paragraphs give complete setting-up and matching procedure, stage by stage:

![Fig. 2. A quarter-wave linear transformer.](Sign is inverted)
Fig. 3. (A) A short-circuited quarter-wave linear transformer used for matching an open-wire feeder to a high-impedance aerial. (B) An open-circuited quarter-wave transformer used for matching an open-wire feeder into a low-impedance aerial. (C) A short-circuited half-wave transformer for matching an open-wire feeder to a low-impedance aerial.

1. Cut the aerial to length using the accepted formulae. Make up the matching section using the same wire gauge and spacing as is intended for the feeder itself and attach the matching section to the aerial. Set the shorting strip a quarter-wave from the point of connection to the aerial if the latter is of high impedance type, or a half-wave distant if the aerial is being fed at a low impedance point. Include an extra 2 or 3 feet of matching section beyond the shorting strip to allow for its adjustment.
(2) Construct the feeder of such length that it will reach to any point on the matching transformer, but do not connect it. Make sure that at least a half-wave run of feeder (anywhere along its length) is accessible for SWR measurements.

(3) Excite the disconnected feeder by the transmitter, thus setting up standing waves and, using the standing wave indicator, explore the feeder for any point of minimum current. Mark its position with a piece of sticky tape.

(4) Move the standing wave indicator slowly towards the aerial end of the feeder and mark the position of the first current maximum. This will be a quarter-wave distant from the point of minimum current. (The minimum and maximum current positions are represented by points L and H respectively in Fig. 4.)

(5) Attach the feeder to the matching section, at the top if the section is a quarter-wave long, half-way along if it is a half-wave long. Explore the feeder near position L, for a new current minimum (this may not be so pronounced as previously). If this new point lies between L and the aerial, move the shorting strip a little way up the stub; if it is on the transmitter side of L, move the shorting strip down. After moving the shorting strip, search for the current minimum again and repeat the process until the new current minimum coincides exactly with L. This procedure has tuned the radiator and matching section to the frequency of the transmitter, and the only further adjustment of the shorting strip will be that necessitated by any slight detuning effect caused by moving the point of attachment of the feeders described in the next operation.

(6) Compare the currents at L and H by means of the standing wave indicator. Move the position of the feeder taps down a short distance and again compare readings at L and H. Repeat the process until a tapping point is found where the reading at L is identical with that at H.

(7) Final matching is now merely a question of trimming previous adjustments, but first, run the SW indicator along the line and find maximum and minimum readings. The ratio gives the standing wave ratio on the line and will probably not now exceed about 24:1. To reduce this figure still further, search for a minimum or maximum reading (it does not matter which) near point L; this will be rather broad and not very deep, of course. If it does not coincide with L, move the position of the shorting strip slightly; upwards if the minimum or maximum is between L and the aerial, downwards if between L and the transmitter. Continue until the minimum or maximum does coincide with L.

(8) Again compare currents at L and H and, if they are not equal, adjust the feeder taps slightly. If the current at H is greater than at L, move the taps down; if smaller, move them up until currents at L and H are identical.

In most cases it will now be found that the standing wave ratio is very low—certainly not higher than about 1.5:1—but if for any reason this is not the case, stages 7 and 8 may be repeated as many times as necessary.

Points To Remember

It may not always be very clear beforehand whether a particular type of aerial system has a high or low impedance feed point. A few measurements will readily solve the problem. Construct the feeder and, without connecting it to the aerial, find positions L and H in Fig. 4. Now connect the feeder directly to the aerial without a matching section. Again compare readings at L and H: If the current at H is greater than that at L, the aerial requires a high impedance feed; if the current at L is the greater, a low impedance feed is needed. The appropriate matching transformer may then be constructed. It may happen that currents at L and H are equal when the feeder is directly attached to the aerial. If this is the case, the feeder should be explored for standing waves; if they are present, it is safe to assume that the aerial requires a high impedance feed, but if it so happens that the S.W.R. is already 1:1, obviously no matching transformer is needed at all.

In matching feeder lines to parasitic beam aerials, all adjustments of the element lengths to give the desired beam performance must be done before final adjustment of the matching section shorting strip and the position of the feeder taps.

If a feeder system and aerial appear to load the transmitter easily, i.e., very loose-coupling produces high PA current, it must never be assumed that the feeder matching is all in order. It usually means that a high SWR exists on the feeder. Difficult loading, often associated with the necessity for large adjustments of the aerial matching circuits as the
transmitter frequency is moved a few kilocycles, also means the presence of high SWR's. Parasitic and "W8JK beams" are inherently frequency selective, and it is not possible to achieve very low SWR's on their feeders as the transmitter frequency is moved from one end of a band to the other. The only solution is to make the bandwidth of the radiating elements as great as possible by the use of thick elements, or multi-wire elements, and by tuning up the system at the mid frequency of the band in use.

Finally, it is suggested that aerial work of the type described in this article should be limited to periods when DX signals are absent, and that it should be carried out in a manner which gives other amateurs who may be active on the band the least possible inconvenience.

MORE ABOUT THE RF-25 UNIT

The current (January) issue of Short Wave Listener & Television Review carries a useful and interesting practical article on the modification of the RF-25 to work as an RF preamplifier for TV reception; it should thus be very helpful to those who, in fringe areas, need a bit more gain at the front end to produce a really good picture. A few copies of this issue are available at 1s. 7d. post free. Circulation Manager, Short Wave Magazine, Ltd., 53 Victoria Street, London, S.W.1.

HOME SERVICE BROADCAST

Those of our readers who are in the habit of listening to the BBC (Home Service) during the hours before breakfast may be interested to know that Howard Thomas will be "at the Theatre Organ" during the period 0630-0655 on January 12. So if you would like to hear G6QB (for it will be none other than the talented contributor of our "DX Commentary" feature) modulate a few of the BBC's megawatts, then is the time to listen—with the morning cup of tea!
REMOTE CONTROLLED RELAY SYSTEM

Using the OA4-G Glow Discharge Tube

By R. E. B. HICKMAN
(R.C.A. Photophone, Ltd.)

A REMOTE control system for a radio receiver or transmitter which eliminates special cables and gives the operator the utmost flexibility in choice of control position can be designed using a cold-cathode, glow-discharge tube of the starter-anode type as the control relay. Such a relay may be operated by RF impulses transmitted over the mains supplying the equipment to be controlled.

A suitable tube is the OA4-G, which consists of a cathode K, a starter-anode P1 and an anode P2, as shown diagrammatically in Fig. 1. One of the major advantages of glow-discharge tubes for relay circuits results from the use of a cold cathode, thus eliminating the filament supply; hence, the tube consumes no power during stand-by periods.

In normal operation of the OA4-G a relatively small amount of energy initiates a glow-discharge between cathode and starter-anode. This discharge produces free ions which assist in initiating the main discharge between cathode and anode. The anode current which flows during the cathode-anode discharge can be used to actuate a relay or other device connected in the anode circuit. It may be of interest to consider the characteristics of the OA4-G and its operation in a typical carrier-actuated system.

Breakdown Characteristics

Any of six different discharges may occur in a gas-triode, depending upon the circuit arrangements, i.e., the relative potential differences between the electrodes, and upon the tube design characteristics such as the inter-electrode spacing. The closed curve shown in Fig. 2, which describes the voltage conditions necessary for breakdown between any two electrodes in a tube of given geometry, is called the “breakdown characteristic” of the tube.

From Fig 2 it will be noted that when the voltage on the anode is less than approximately 285v, no discharge will be initiated until the starter-anode voltage is approximately 85v. When this value is reached, a discharge occurs between cathode and starter-anode. This condition is shown in section A of the curve.

When the anode voltage is increased to 285v, a breakdown occurs between cathode and anode. The value of anode voltage required for breakdown between cathode and anode is substantially independent of starter-anode voltage in the range approximately 18 volts to 85 volts. This condition is shown by section B of the curve.

In section C a discharge occurs between starter-anode and anode, the starter-anode acting in this case as a cathode. In section D the discharge is between starter-anode and cathode. These are the same electrodes that figure in section A, but in the present case, the starter-anode, being at negative potential with respect to the cathode, functions as the cathode.

Section E and F show the relation between anode voltage and starter-anode voltage which are required to initiate discharges between anode and cathode and between anode and starter-anode respectively.

Characteristics of OA4-G

The OA4-G is designed for operation under the conditions shown in section A of Fig. 2. The tube will of course function in the other regions, but due to its physical characteristics, its operation in these regions is unstable. In normal...
operation, a discharge between cathode and starter-anode assists in initiating the main discharge between cathode and anode. As the starter-anode supply voltage is increased above the value at which the K-Pr discharge occurs the starter-anode current increases in proportion and the starter-anode voltage remains substantially constant at approximately 60 volts. Over the useful operating range of the tube the anode-cathode voltage drop remains very nearly constant at 70 volts. Operation is best confined to a range anode currents from 5 to 25 mA.

OA4-G in a Carrier Actuated System

The circuit of a typical relay system for remote control of a receiver is shown in Fig. 3. 115v AC is applied between anode and cathode through the relay S and the RF coil L. A portion of this voltage is also supplied between starter-anode and cathode by means of the potential divider R1, R2. In addition, the supply line also carries an RF voltage generated at the operating position. The resonant frequency of the components L and C is the same as the frequency of the applied RF voltage, so that a high RF voltage is generated across L.

This RF voltage is modulated 100% at the supply frequency. With proper adjustments of the amplitude and frequency of the applied RF voltage a discharge between starter-anode and cathode may be initiated. In practice it is found that the RF signal need not supply all the power required to initiate the discharge. R2 is usually adjusted so that the voltage across it is rather less than the breakdown value. Then, the RF voltage need only be large enough to supply the difference between the breakdown voltage and the applied low frequency voltage. It is recommended that an RF voltage of approximately 55 volts peak across L be provided. With a 50 c.p.s. supply and an RF source at approximately 100 kc it is recommended that the voltage across R2 plus the voltage across L should not be less than 110 volts peak.

Fig. 2. This curve shows what is known as the "breakdown characteristic." See text for explanation in relation to the OA4-G.

Fig. 3. Practical circuit for a remote control system, using the OA4-G. Values are given in the table.

Table of Values

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>L, C</td>
<td>High-Q tuned RF circuit</td>
</tr>
<tr>
<td>R1</td>
<td>15,000 ohms</td>
</tr>
<tr>
<td>R2</td>
<td>10,000 ohms</td>
</tr>
<tr>
<td>S</td>
<td>Relay, contacts as required</td>
</tr>
</tbody>
</table>

Will Your Station Pass an Insurance Inspection?

Are Your Power Circuits Safe?
STARTING ON TWO METRES

The Economical Approach

By N. P. SPOONER (G2NS)

While a station has at times almost to fight for a hearing on the LF bands, many operators feel that they suddenly become nothing more than a small voice crying in the wilderness when they turn to the VHF's. The apparent lack of activity encountered thereon is said to be the reason for slow recruitment to 144 mc. Though the newcomer joyfully discovers the absence of serious interference he quickly becomes overawed by the uninhabited width of the open spaces, by the encroaching scourge of TV that casts a spell of silence over its victims during certain evil hours of the night, and by the preoccupation at other times of intimate circles of rag-chewing friends.

Getting Started

True as these complaints may be, the writer feels, however, that the real deterrents to migration are the prospects of having to acquire a new technique and purchase new gear. Both these snags, as will be shown, may reasonably be overcome—and here it can be strongly recommended in regard to the first that the mass of excellent material appearing in the Magazine be carefully studied, while at the same time personal contact is made with the nearest VHF worker. Harmonic-hunting is no joy for a newcomer, and to plunge in without the help and advice of an already active amateur is much the same thing as putting to sea without a compass. The existing LF receiver will identify an 8 mc or other suitable crystal fundamental, and if the tuning-range extends to 32 mc then both 16 and 24 mc will be found with the receiver when needed.

Further to this, some simple wave-meters of the absorption type, consisting

In showing how easy it is to get started on Two with a good transmitter, our contributor is describing his own recent experiences and problems. As a practical man, he puts his finger on the first essential—the necessity for a calibrated absorption wavemeter to find 144 mc and the multiplier frequencies to reach that band. This is not so easy if there is no local activity—but when these frequencies are found, the transmitter side is plain sailing.—Editor.

This circuit diagram gives, in three sections, the general arrangement of the 144 mc transmitter as described by G2NS. The article shows that it is both easy and cheap to get a good Tx going on the two-metre band.

(Sections A, B, C, should be read as one diagram).
Table of Values

Circuit of the 144 mc Transmitter

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1, C3, C8, C10</td>
<td>30 µF trimmer</td>
</tr>
<tr>
<td>C2, C4, C6, C7, C9, C11, C13, C20, C21</td>
<td>0.002 µF</td>
</tr>
<tr>
<td>C5</td>
<td>100 µF</td>
</tr>
<tr>
<td>C14, C15, C23</td>
<td>Split stator 25 × 25 µF</td>
</tr>
<tr>
<td>C12, C16, C17, C18</td>
<td>500 µF</td>
</tr>
<tr>
<td>C19, C22</td>
<td>8 µF trimmer</td>
</tr>
<tr>
<td>R1, R2, R4</td>
<td>50,000 ohms, 1 watt</td>
</tr>
<tr>
<td>R3</td>
<td>1,200 ohms, 3 watts</td>
</tr>
<tr>
<td>R5, R9</td>
<td>250 ohms, 2 watts</td>
</tr>
<tr>
<td>R6</td>
<td>27,000 ohms, 1 watt</td>
</tr>
<tr>
<td>R7</td>
<td>4,500 ohms, 1 watt</td>
</tr>
<tr>
<td>R8</td>
<td>2,000 ohms, 1 watt</td>
</tr>
<tr>
<td>RFC1, 2, 3</td>
<td>35 t., 18 SWG, enameled, close, 1” dia.</td>
</tr>
<tr>
<td>X</td>
<td>8 mc Xtal</td>
</tr>
<tr>
<td>M1 to M6</td>
<td>0-50 mA or closed cct., jacks.</td>
</tr>
<tr>
<td>J</td>
<td>Closed cct., keying jack.</td>
</tr>
<tr>
<td>V1, V2</td>
<td>6V6</td>
</tr>
<tr>
<td>V3</td>
<td>7193</td>
</tr>
<tr>
<td>V4, V5</td>
<td>7193</td>
</tr>
<tr>
<td>F</td>
<td>40 mA Fuse bulb</td>
</tr>
<tr>
<td>S, S</td>
<td>S130 Stabilisers (or VR150/40)</td>
</tr>
<tr>
<td>L1</td>
<td>20t., 22SWG, enameled, 4” dia.</td>
</tr>
<tr>
<td>L2</td>
<td>11t., 14SWG, enameled, 4” dia.</td>
</tr>
<tr>
<td>L3</td>
<td>6t., 14 SWG, enameled, 4” dia.</td>
</tr>
<tr>
<td>L4, 5, 8, 9</td>
<td>1 turn link</td>
</tr>
<tr>
<td>L6</td>
<td>13t., 14 SWG, enameled, 4” dia.</td>
</tr>
<tr>
<td>L7, 10, 11</td>
<td>2t., 14 SWG, enameled, 4” dia.</td>
</tr>
<tr>
<td>L12</td>
<td>1t., loop to aerial co-ax</td>
</tr>
</tbody>
</table>
each of a few turns of wire tuned by a small variable condenser, or trimmer, should be taken along to the man-who-knows-for his calibration in the region of 48, 72 and 144 mc. Armed then with these guides to one’s whereabouts the chance of getting lost between stages is eliminated.

Next for consideration and dispatch comes the “new gear” bogey. Fortunately, in these days of austerity the old truth remains ever fresh that quite 75% of a station’s performance depends entirely on the type and efficiency of the aerial. This means that the appearance and nobility of what is actually used to generate the RF is in comparison of little importance.

The Transmitter

Having thus turned our thoughts in the what-have-you direction, another comforting fact is that a couple of 6V6 valves, surely to be found in quite junk-boxes, will happily and efficiently transport us in two stages as far as 48 mc. From there can been seen the desired 144 mc horizon only three more hops away. For this driver stage on 144 mc, and to save expense, one might even be lucky enough to find an old pre-war RK34 valve. Lastly, comes the PA, and here the Magazine surplus component advertisers help us. A couple of excellent low-power VHF triodes can be had for as little as four shillings, and as we have already from the same source secured a suitable crystal for around eight shillings it becomes increasingly obvious that to start from scratch and build with junk-box and surplus components is going to provide far more instruction and satisfaction than will be obtained from struggling to follow out and modify a rat-nest ex-Service transmitter originally intended for some quite different purpose.

While of course full power can be used, a modest start with ten or fifteen watts input will nevertheless quickly demonstrate the truth that, reckoning five or six dB as being equal to one S-point, the signal put down at the receiving end under normal conditions will be only a couple of S-points weaker than that which should appear when the input is increased to as much as 100 watts.

The construction of the transmitter to the circuit shown needs no detailed description beyond advising the short grid and anode leads obtainable by bunching condensers and coils close up together at their valve bases or caps. With the exception of the CO cathode, all coils are of 14 gauge enamelled wire and self-supporting; the number of turns suggested will vary with individual circuits. By using the calibrated wave-meters the turns should as required be opened or closed, increased or lessened, in order to find the desired harmonic at each stage.

Setting Up

With HT off the PA, neutralising is carried out simply by varying two 8 μF trimmers equally until no movement of the grid current meter is visible when the tank condenser is tuned slowly through resonance. (If with plate modulation of the PA these trimmers are not heard to flash over then the series fixed .002 μF condensers need not be included!) Any stage may be keyed, but a spacer might be reported if this is done in the 144 mc driver or PA. Should the 48 mc doubler be keyed, as shown, the voltage-dropping resistor and stabilisers in the HT lead to the CO need not be included unless chirp results.

Nothing has been said about the receiving side, but an excellent threestage converter can be made from an RF26 or 27 unit obtainable for a pound or thirty shillings. Many articles describing their conversion and the construction of suitable receivers have already appeared, as also have details of rotary beams for combined transmitting and receiving.

The present story is of the steps taken by the writer to break into the VHF’s and sincere thanks are due to the many active amateurs, too numerous to mention singly, who gave personal and over-the-air help and advice. Although the apprenticeship is still being served at G2NS this article is offered for the encouragement of those who still hesitate to strike out on the VHF bands.

★ ★ ★

“RADIO FOR THE AMATEUR LICENCE”

This is the title of a very good postal Course offered by E.M.I. Institutes, Ltd., for those wishing to secure a pass in the Radio Amateurs’ Examination. Having been established for some years, the Course has been well tried, and many transmitters now on the air can testify to the assistance it gave them to get through the R.A.E.
CHEAP VFO CONVERSION

Driver for Five Shillings

By G. PROCTOR (GM8SQ)

The writer hastens to say that five shillings represents the cost of a Command transmitter chassis; the valves and a few extra resistors, condensers and so on required were unearthed from his junk box. Most amateurs will have these additional parts on hand, but, in any event, their cost is trifling. This transmitter is supplied with the tuning coils stripped of wire, but is otherwise complete. For the VFO to be described the unit covering 3-4 mc was used.

The original circuit is a Hartley high-output triode oscillator (1629) inductively coupled to two 1625's in parallel, running at about 100 watts. The idea of a single oscillator driving two other valves to 100 watts input. The new circuit below shows that the Clapp oscillator is conventional, but instead of the more usual capacity coupling to the buffer stage, it was thought worth while to try the effect of retaining the inductive coupling, which is inside the oscillator coil. This saved some cutting up of the original wiring and proved to be very satisfactory. The rest of the circuit is straightforward.

Constructional Details

The first step is to remove the aerial and oscillator relays and their associated wiring. The coil formers should be unscrewed and the wiring points carefully unsoldered. No difficulty should be experienced in replacing the coils, except at the bottom of the buffer stage coil, where the bakelite wheel is close to the former. Wind on the turns on the top part of the coil, then calculate roughly the amount of wire required for the bottom half. Snip

Table of Values

<table>
<thead>
<tr>
<th>The Oscillator-Buffer Driver Unit</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>.01 µF</td>
</tr>
<tr>
<td>C2, C3</td>
<td>.001 µF</td>
</tr>
<tr>
<td>C7</td>
<td>.01 µF</td>
</tr>
<tr>
<td>C4, C5, C6, C8, C9, C10, C11</td>
<td>Tuning and bypass condensers as already fitted in unit</td>
</tr>
<tr>
<td>R1</td>
<td>47,000 ohms</td>
</tr>
<tr>
<td>R2</td>
<td>5,000 ohms</td>
</tr>
<tr>
<td>R3</td>
<td>15,000 (part of unit)</td>
</tr>
<tr>
<td>R4</td>
<td>500 ohms, 6 watt</td>
</tr>
<tr>
<td>R5</td>
<td>10,000 ohms</td>
</tr>
<tr>
<td>L1</td>
<td>28 turns, 20 SWG</td>
</tr>
<tr>
<td>L2, L4</td>
<td>Already wired</td>
</tr>
<tr>
<td>L3</td>
<td>26 turns, 20 SWG</td>
</tr>
<tr>
<td>V1, V2</td>
<td>6AG7, 807</td>
</tr>
</tbody>
</table>

Circuit of the Oscillator-Buffer conversion described in the accompanying article.
off this length from the reel of wire and carefully thread each turn through between the wheel and the former, keeping the turns tight as they are put on. The aerial inductance can be ignored or removed and the aerial terminal replaced by a coaxial socket. The end of the coupling coil (L4) is wired to this socket.

The heaters of the 1629 and 1625's are wired for a 24-volt supply, and these must be rearranged to suit the new valves. The oscillator heater is connected through a coupling coil on the oscillator inductance, and this is removed. In order to make room for wiring up the oscillator stage, the oscillator condenser (C4) can be loosened from the chassis, lifted out and bent over at the end of the driving cable. Otherwise the space is rather cramped for manipulating a soldering iron. The 1625 sockets are 7-pin, but careful filing of the appropriate holes will enable an 807 to be inserted. A slight alteration to the screen and anode connections is necessary to suit the 807. The screen dropping resistor is wired across the valve holder and the screen voltage supply to the rear plug is removed.

Keying is obtained by fitting a telephone type jack in the bottom left-hand side of the front panel (there is a convenient blank space). The writer at present keys the buffer cathode, but other methods can be adopted.

The power supply socket at the rear was removed by slitting the side half-way round with a knife and applying "brute force" with the fingers. An octal socket replaced it and an octal valve base supplied the plug. No millimeter was provided, although it could be conveniently mounted on the top half of the panel, if desired. In the VFO as constructed, the meter is jacked into the cathode circuit of the buffer valve in place of the key when current readings are taken.

Operation

To line up the circuit, the dial is set at 3.5 mc and the oscillator preset condenser (C5) revolved until the signal zero-beats at 3.5 mc on a frequency meter or crystal multi-vibrator. The buffer valve is then plugged in and Cro adjusted, with a millimeter in circuit and a flash lamp bulb across the output. It is probable that the calibration on the dial will not line up with the new circuit, but some juggling with the size of the oscillator coil should rectify this, which failing, the old frequencies can be blacked out and new readings marked on the dial. Any small variation in the setting can be readjusted by the small trimmer on top of C5.

In the model converted, stability was very good, and loading of the buffer stage had little effect on the frequency of the oscillator. In this respect, it compared favourably with another VFO having an extra untuned buffer stage. The whole outfit has a neat and "professional" appearance, especially if one is fortunate enough to get a unit with a black crackle finish.

Since completing the conversion, it has been used for a few nights as a QRP transmitter on 3.5 mc and reports have been consistently T9.

PAPER STRINGENCY

Many of our readers will be aware that paper is now among the primary commodities which are getting scarcer and increasingly expensive. In common with other publishers, we can only supply the Magazine to order, so as to conserve paper stocks. This means that though newsagents can always obtain *Short Wave Magazine* to order, we cannot let them have copies for chance sales. Readers are therefore particularly asked to assist us by placing firm orders—either direct with us or through their newsagents—also informing us if they have any difficulty in obtaining a regular copy locally. The immediate solution to that difficulty is, of course, a direct subscription.

XTAL XCHANGE

Below are the offerings for this month: all negotiations should be conducted direct. If you want a notice in this space, set it out in the form show here, on a separate slip headed "XTAL Xchange—Free Insertion."

G3FZS, 26 Redhill Drive, Fishponds, Bristol.

Has Billey 3570 kc crystal, 3/4-in. mounting, no certificate. Wants 100, 500 or 1000 kc bar.

G3GMY, 68 The Drive, Barnet, Herts.

Has Type FT-243 crystals 8075 and 8100 kc, no certificates. Wants frequencies between 8038 and 8047 kc.

G3HRH, 60 Longcroft Lane, Welwyn Garden City, Herts.

Has 3615 kc crystal, 3/4-in. pin spacing. Wants any frequency 3825-3860 kc, same mounting.
PRACTICAL ROTARY DIPOLE FOR TEN

By W. E. GREEN (G3BTC)

The ideal of most amateurs is to erect an aerial which is as high, mechanically strong and as light as it is possible to achieve. The following explanation of a 10-metre rotating dipole erected at the writer's QTH covers these desirables and gives rotation as well. The existing pole is 40 ft. high, and it was required to erect and revolve a 10-metre dipole without lowering the pole, or being involved in mechanical difficulties.

The sketches with these notes are self-explanatory. Two telescopic dural tubes were mounted on insulators screwed on to a piece of oak 4 ft. x 2 in. x 1½ in. A ¼-in. hole was drilled through the centre of the oak batten and a piece of ½-in. electrical conduit, about 4 ft. long, threaded for 2 in. at one end was pushed through the hole in the oak and locknuts applied (Fig. 1). Two pieces of wood were cut, 5 in. x 3 in. x 1½ in. and a ¼-in. clearance hole drilled through the 3-in. width section. Two clips were attached to each block, made of mild steel, approximately 6 in. x ½ in. x ¾ in. (Fig. 2). These blocks were screwed to two pieces of wood 3 ft. x 1½ in. x ½ in. (Fig. 3) and two screw-hooks attached.

The dipole, complete with the 4-ft. tube attached, was then dropped through the upper piece of wood and then through the lower piece, a length of 1-in. dia. tube 6 in. long being placed over the ½-in. tube to act as a spacer. The coax. cable was then passed through the tube and attached to the aerial, the rope taken to the top screw-hook and the whole lot hoisted up the pole. The two pieces of mild steel act as a guide and go round each side of the pole; they must therefore be bent so as to clear the pole by about ½ in. The free end of the rope should be attached to the lower screw eye and can be used as a steadying line while raising the dipole. (It is assumed that the pulley on the pole will be within 6 in. of the top, otherwise a longer spacing tube will be required.)

To rotate the dipole, cords are attached to each end of the dipole support and simply pulled to move the aerial as required. If necessary, the ½ in. tube could be lengthened and operated from the bottom of the pole, but the original idea was to make something light and easy to handle; it is clear that, by clipping in extensions to each half of the dipole, a 20-metre aerial can be constructed and raised in the same way.

The complete job should look something like Fig. 4. It is the writer's experience that even having a rotating dipole certainly pays dividends when trying to raise distant stations.
JUST for once we propose to take time off from the reporting of individual DX feats, and to consider the broader aspects of the whole subject. These thoughts are occasioned by the fact that this is January, 1951—and that most of the pre-war amateurs regained their licences in January, 1946. We therefore have five years of Amateur Radio (post-war variety) to look back upon.

What kind of years have they been? There are, as always, several points of view. From that of the keen DX-chasing type—the Pot-Hunter, the Country-Counter, the Record-Smasher—those five years have been more eventful than any five-year stretch before the war. The first three of them, at least, saw an extremely good period of DX conditions, and these, allied with our better receivers, better transmitters, better aerial systems and (above all) the general use of 150 watts, brought a new meaning to the expression DX.

It may seem strange, but it is perfectly true, that many of the Old Timers now wiping up the DX with 150 watts seldom or ever used more than 10 watts before the war; and the great majority of them certainly never used more than 50.

This increase in the power of the G stations, together with the other technical improvements, has altered the standards of DX work completely. The alteration may be measured, roughly, by the fact that the working of 100 countries in the pre-war years was a feat just about equivalent to the scoring of, say, 180 or 190 since the war. In the 1930's the mere thought that anyone would ever reach a score of 200 would have appeared completely ridiculous and impossible. For the DX man, then, the first five years of the Post-War era have been pretty eventful.

Rising Population

What of the type—much more frequently met with—who takes his hobby in a leisurely way, doesn’t enter for contests, and wouldn’t dream of waiting half-an-hour in a queue for a new country? Because (let’s face it) he is much more representative of Amateur Radio than the really rabid ‘chaser. He builds nice gear, taking a long time over it; tests it out with care, generally with locals; puts out a nice-quality signal, sends slowly but meticulously; and when a nice piece of DX happens to come his way, he is as pleased as a dog with two tails. You all know him!

In our opinion, he hasn’t fared quite so well. The bands are crowded, now, at all times of the day and night. He doesn’t claim to be a red-hot operator,
and if the QRM is too bad he will pack up and either read a book or start building something else. So his hours on the air have been somewhat curtailed. Furthermore, he doesn’t approve of the way everyone hustles him these days; in the middle of a nice leisurely QSO with someone or other, a completely different station appears on the frequency and starts calling him (much too fast!) and it all seems pointless. The fact that the said station wants to tell him he is on top of 5B3ZZ (or someone) doesn’t mean a thing—he was there first and it isn’t his fault if some DX station pops up on his frequency.

Experiences like this have shaken a lot of the pre-war amateurs into believing that what was once a leisurely hobby has turned into a perpetual rough-and-tumble with no peace for anyone—and maybe there is something to be said for that view.

On the LF bands, of course, the change has been tremendous. Such people as our gentle friend could formerly work on 1.7 mc with a particular crony of theirs in the next town and rarely hear another station; now they have a job to pick out the one they want from the crowd on the frequency.

Bad Temper and Bad Manners

The worst change of all, in our opinion, has been the decline in the general level of “behaviour”—a term which embraces operating manners, both on Phone and CW, together with “what one says and what one does” in all circumstances.

As in every walk of life, it is the worst that attracts most attention. Thus the types that we have already dubbed “Spivs” seem to be far more numerous than they really are, and many completely innocent operators who unwittingly sit on a frequency or cause QRM in any way are classed with the few bad-mannered oafs whose technique is confined to the “Gercher—get out of my way!” manner.

So, to the Old Timers, the bands now seem to be packed with an impatent, thrusting crowd of quite a different type from the pre-war amateurs. And to what purpose? Chiefly, we regret to say, bent on the amassing of new countries—a pursuit which we are frequently accused of fostering more than most others!

Well, it has already been argued that we must have some sort of competitive urge for the good health of the technical side of radio. Likewise, the keenness of the continual stream of newcomers is not satisfied by just sitting back and working whoever happens to fall most easily within range.

At the FOC Dinner on Saturday, November 25. Left to right: G6QB (of "DX Commentary"); G5PS (Joint Honorary Secretary, FOC); G4FO (Editor, *Short Wave Magazine*) and G2NM (President, First Class Operators’ Club).
So we must have this continual competition—but must it always be of the cut-throat variety? Are the days of friendly rivalry over? If you don’t pick up that VK9 or ZS7 this week, won’t he still be there next week? Just ponder on these questions and decide how much your DX achievements mean to you—and how much they ought to mean to you, regarded in a level-headed way.

FOUR BAND DX

FINAL 1950 LISTING

<table>
<thead>
<tr>
<th>Station</th>
<th>Total Score</th>
<th>3.5 mc</th>
<th>7 mc</th>
<th>14 mc</th>
<th>28 mc</th>
<th>Countries</th>
</tr>
</thead>
<tbody>
<tr>
<td>W2QHH</td>
<td>464</td>
<td>76</td>
<td>74</td>
<td>200</td>
<td>104</td>
<td>201</td>
</tr>
<tr>
<td>G6QB</td>
<td>442</td>
<td>41</td>
<td>81</td>
<td>187</td>
<td>133</td>
<td>210</td>
</tr>
<tr>
<td>G3ATU</td>
<td>408</td>
<td>27</td>
<td>87</td>
<td>194</td>
<td>100</td>
<td>202</td>
</tr>
<tr>
<td>G2AV</td>
<td>378</td>
<td>24</td>
<td>66</td>
<td>179</td>
<td>106</td>
<td>196</td>
</tr>
<tr>
<td>G2VD</td>
<td>362</td>
<td>29</td>
<td>68</td>
<td>164</td>
<td>101</td>
<td>171</td>
</tr>
<tr>
<td>G2WW</td>
<td>349</td>
<td>21</td>
<td>53</td>
<td>170</td>
<td>105</td>
<td>181</td>
</tr>
<tr>
<td>G5FA</td>
<td>330</td>
<td>24</td>
<td>97</td>
<td>137</td>
<td>72</td>
<td>150</td>
</tr>
<tr>
<td>G2AVP</td>
<td>297</td>
<td>28</td>
<td>73</td>
<td>164</td>
<td>64</td>
<td>171</td>
</tr>
<tr>
<td>G3FNJ</td>
<td>290</td>
<td>24</td>
<td>53</td>
<td>129</td>
<td>93</td>
<td>150</td>
</tr>
<tr>
<td>G6BB</td>
<td>277</td>
<td>32</td>
<td>70</td>
<td>121</td>
<td>54</td>
<td>136</td>
</tr>
<tr>
<td>G8PW</td>
<td>253</td>
<td>20</td>
<td>60</td>
<td>115</td>
<td>58</td>
<td>129</td>
</tr>
<tr>
<td>G8IP</td>
<td>249</td>
<td>15</td>
<td>49</td>
<td>115</td>
<td>70</td>
<td>133</td>
</tr>
<tr>
<td>G2BLY</td>
<td>249</td>
<td>4</td>
<td>25</td>
<td>115</td>
<td>105</td>
<td>150</td>
</tr>
<tr>
<td>G3FQT</td>
<td>239</td>
<td>33</td>
<td>42</td>
<td>110</td>
<td>54</td>
<td>129</td>
</tr>
<tr>
<td>ZBIAR</td>
<td>233</td>
<td>41</td>
<td>53</td>
<td>113</td>
<td>44</td>
<td>120</td>
</tr>
<tr>
<td>G8VG</td>
<td>226</td>
<td>27</td>
<td>61</td>
<td>112</td>
<td>26</td>
<td>128</td>
</tr>
<tr>
<td>G2YS</td>
<td>214</td>
<td>24</td>
<td>33</td>
<td>117</td>
<td>40</td>
<td>130</td>
</tr>
<tr>
<td>G3ABG</td>
<td>212</td>
<td>22</td>
<td>62</td>
<td>121</td>
<td>7</td>
<td>127</td>
</tr>
<tr>
<td>G6QX</td>
<td>208</td>
<td>19</td>
<td>35</td>
<td>108</td>
<td>46</td>
<td>123</td>
</tr>
<tr>
<td>G2FYT</td>
<td>197</td>
<td>5</td>
<td>35</td>
<td>126</td>
<td>31</td>
<td>133</td>
</tr>
<tr>
<td>G3FXB</td>
<td>191</td>
<td>21</td>
<td>48</td>
<td>91</td>
<td>31</td>
<td>102</td>
</tr>
<tr>
<td>G2VJ</td>
<td>173</td>
<td>4</td>
<td>13</td>
<td>100</td>
<td>56</td>
<td>116</td>
</tr>
<tr>
<td>G6TC</td>
<td>173</td>
<td>11</td>
<td>45</td>
<td>99</td>
<td>18</td>
<td>107</td>
</tr>
<tr>
<td>GM3EST</td>
<td>170</td>
<td>20</td>
<td>24</td>
<td>124</td>
<td>2</td>
<td>126</td>
</tr>
<tr>
<td>G2HKU</td>
<td>168</td>
<td>1</td>
<td>42</td>
<td>111</td>
<td>14</td>
<td>120</td>
</tr>
<tr>
<td>G6AT</td>
<td>160</td>
<td>31</td>
<td>46</td>
<td>92</td>
<td>1</td>
<td>97</td>
</tr>
<tr>
<td>G2DHV</td>
<td>147</td>
<td>2</td>
<td>20</td>
<td>92</td>
<td>13</td>
<td>97</td>
</tr>
<tr>
<td>GM3DBX</td>
<td>145</td>
<td>5</td>
<td>23</td>
<td>62</td>
<td>55</td>
<td>92</td>
</tr>
</tbody>
</table>

Why These Countries?

And here is another big change in Amateur Radio since the early days. DX used to be measured in distance. When Goyder of G2SZ made the first British contact with New Zealand, that was the DX to end all DX. It might have been more difficult, from an operating point of view, for him to have worked Monaco, or Liechenstein, or to have extracted a QSL from Luxembourg—but the supreme technical achievement was that of getting signals to New Zealand.

Well, nowadays we can all do it. G5QA, of Exeter, has done it nearly every day for nearly ten years! So, to find something more difficult to do, we have adopted the (rather ridiculous) standard of Country Prefixes as a yardstick. And now the difficulty of the DX depends no longer on distance or, in fact, on any technical aspect at all, but purely on whether we can push sufficiently hard through the crowd to make the lone operator in Monaco, or Andorra, or Marion Island, listen to our call and come back with “Ur 569 will QSL 73 benu” before disappearing again for ever (as far as we are concerned).

It’s a pity . . . but there it is. There will always be those to whom the number of countries worked means more than everything else that Amateur Radio has to offer. We can’t do much about it, either. But we can just remind everyone that there are many other things to do; you can use the bands for making friends, instead of enemies. And that, in itself, is not a bad thing to do.

If you believe in New Year Resolutions, and all that, now is the time to do yourself a bit of good. Make a resolution that you are going to get more enjoyment out of Amateur Radio during 1951, simply by trying things that you have not tried before. Work on other bands; use phone instead of CW, or *vice versa*; stop ignoring that European who comes back to all your CQ’s and find out what sort of a fellow he is. Try telling a W or a VE that there’s no hurry, instead of saying “Won’t hold you now.” And when you hear a pile-up for a new one, just for once don’t join it but look round the band for some of the other nice types who feel the same way! You’ll be surprised.

As for ourselves—we’re going to make a set of Bad Resolutions so as to feel
News From Overseas

Eric Trebilcock, that OT among Australian SWL's sends some very interesting items. First, the current VK1 list, in full, shows that VK1HV, rPG and rYG are on Heard Island, while VK1JW, rRB and rYM are on Macquarie Island. There are no others. FB8ZZ, Eric says, is still active, and he is, and always was, on Amsterdam Island. Two new ones are on from Canton Island in the British Phoenix Group—VR1E and VR1F, both on 14 mc.

VP1NW (Belize) writes to say that he runs 25 watts to a "lump of wire," all day and any day on 14 mc. He wants to work stations in the Dover or Folkstone area.

ST2KC (Port Sudan) hopes to be active by January 1 on 14, 21 and 28 mc, running about 100 watts. He has DC mains which are "500 nominal," meaning anything between 350 and 600. VG0BFC (Hargeisa, British Somaliland), to whom reference has been made in the last two issues, now writes with his own story. It is, of course, Bill Wheeler, of G3BFC and MT2BFC, and he is officially licensed. Far from "paying a fleeting visit," as we suggested, he says he will be on the air for at least a year. VG0BFC will be on 14, 7 and 3.5 mc; every night from 1900 onwards he will be somewhere near 14200 kc or slightly lower. All that he had worked at the time of writing was "several VK'S and our old friend, Ken Ellis."

ZD2A1 is a new station in Lagos: the operator is ex-VQ4AJ and G3G AJ. He will be on 7, 14 and 28 mc, starting up on 14 mc CW and Phone.

VP7NM (Nassau) sends a new list of Bahamas stations; they are now VP7NG, 7NH, 7NJ, 7NL, 7NM, 7NN, 7NO, 7NR and 7NU. VP7NM, who is QSL Manager, particularly wants to contact a GD; surely there's a GD who wants a VP7?

In a last-minute contact with HZ1KE on 7 mc, we gathered that he has been doing pretty well on 14 mc phone. Here's his list: VR1F, VR2BT, VP8AO, VK1HV, VK1PG, PK5AA, KS4AI, ZD1PW, ZD2LO, ZD6JL, ZK1AB, ZK2AA and ZS7E..."among others." And Ken mentioned a seven-way phone contact in which the seven were himself, KH6OR, KH6BA, VQ4RF, ZL2GX, ZK2AA and VR1F, with KJ6AL standing by.

HZ1KE has a ground-plane for 7 mc and was roaring in at S8/9 when we worked him. He has worked W6DFY, PK4DA and UA0KQB on the band.

ZD4AB tells us of an unusual portable expedition: ZD4AD/P is bound for England, via the Sahara, in a Jeep! He works phone on 14300 kc after 1730 each day. Probably some of the 'chasers will have found and worked him by now.

And MT2E writes to say that he is now QRT from Tripoli, with all QSO's acknowledged by card via the various bureaux. He hopes to be on again shortly as VS9E from Aden, and also mentions that anyone working "MD2WY" was in contact with an unregistered station for whom any cards sent have been destroyed.

From Ismailliia, GM3ECI writes that the as yet unlicensed MD5 boys are "rarin' to go, and would make it a hive of activity if only they could get on the air; as it is, all they can do is to read about DX, listen to it—and hope! Bad luck.

OZ2NU (Aalborg) sends a most amusing letter headed "Play with Russian QSL's" and encloses five Russian SWL reports, all on the same transmission (which he didn't make) and all with different "pretty pictures." They are all signed by the same person. He tried to contact Box 88 and to tell them that such reports were of no value and not required in future, but still they come. We suggested to OZ2NU—and now pass it on for what it's worth—that all such cards should be stamped "Reception Verified" or "Reception Not Verified" and shot back to Box 88. After all, if the chap the other end wants a verification, he gets it that way! If a few hundred G's would do

This is a view of the station of ZL1HM, Papa-toteoe, New Zealand, who is active on the DX bands.
At the Amateur Radio Exhibition on the opening day, November 22. Left to right: J. C. Clarricoats, G6CL (Editor, RSGB Bulletin); Austin Forsyth, G6FO (Editor, Short Wave Magazine and Short Wave Listener & Television Review); W. A. Scarr, G3WS (President, Radio Society of Great Britain); P. H. Falkner (Advertisement Manager, Short Wave Magazine, Ltd.) and, near right, Hugh S. Pocock (Managing Editor, Wireless World and The Wireless Engineer).

This, it might make a difference, or something.

Anyone who worked ZE3SY during three days in September made a contact that will not be repeated. We have received one of their special souvenir QSL's showing that the station was operated from the Royal Show at Salisbury and the call specially allotted for the occasion. There were eleven different operators (all licensed ZE's) and the 100-watt rig was loaned by ZE2KZ. All contacts will be QSL'd—a total of roughly 130. This information by courtesy of ZE3JO.

The Four Band Table

As we said last month, this is the last Four Band DX table in its present form—for the nonce. During 1951 we want to run this table as a 1951 Marathon, starting right away. So when you write in this month (deadline is the 15th) send your Four-Band scores so that we can at least get the table started. For goodness sake, don't hold back just because of low scores; we are making this clear start simply because we want to see some new calls coming to the top. Everybody starts equal at midnight on December 31 with a score of four noughts!

Please remember one thing in this connection: you must keep your score up-to-date month by month. You can't just leave it blank for six months and then suddenly weigh in with a load of accumulated DX. All claims must refer to contacts not more than two months in arrears.

DX of the Month

December seemed pretty grim to us on all bands, although at the middle of the month the 14 mc band livened up a lot during the afternoons. Once or twice the W6's and 7's were hanging
through between 1500 and 1600 in quite the old 1947 style.

ZS2MI (Marion Island) has showed up again and is rather difficult to work because of somewhat peculiar tactics. Look for him anywhere between 14000 and 14100, T6-7, with a "commercial fist." HS1VR is another good one that everyone else seems to be calling. VS6's have been heard working him on 14100 at about 0900. VT1DF in Kuwait is also a nice 14 mc scoop.

G3C0J (Hull) is just due for his call-up, but had a final fling on 14 mc and collected FQ8AE and ZD6EF (CW) and EA9A1 and VT1DF (Phone). He reminds us that a good indicator for Pacific DX is WWV1 (Hawaii) on 2.5 mc—sometimes audible for two hours at a time. On 7 mc 'C0J worked CE4AG, KZ5ES, KP4KD and some VK's and ZL's. A VK gave him R5, S6 on 7 mc phone, but he couldn't make it a two-way. Other stations heard were FM2EWF (2330), W1FAX/KW6 (0815) and LZ1KSR.

G3VT (Bishops Stortford) and others tell us that ZS7C is now active on 28 mc phone. ZS7C passes along the news that ZS7D is now licensed, but will probably be on CW only for a year.

G3BXO (Leeds) is pre-war VU2FX, and sends along some interesting documents to prove that he did work Afghanistan (YA5) before the war. Our "flat refusal to believe that anyone had worked YA" was only meant to apply to this Post-War era, but it's nice to find that there was a genuine contact once upon a time.

G8IP (Hampton) has got back to the DX bands at last and celebrated by working VK1YG and FF8JC for new ones. The VK was raised at 1625 GMT on a CQ call (14030). 28 mc has needed some digging, but resulted in QSO's with CN, VQ2, HZ, TA, ZE, ZS, MI3 and the like. On 7 mc 'IP had a fine QSO with ZD4AB, 579 both ways and no QRM, but, in general, he thought the band was terrible.

G3BNE (London, N.W.3) has found 14 mc pretty poor, but with 30 watts of supermodulated phone he has worked quite a bit of DX, including 3A2AB, EA6AR and IS1AEX for new ones. He says the outstanding phone stations are XZ2SY, VQ4RF and PK4DA, all of whom appear about 1600 GMT.

G2AVP (Thaxted) is another 7 mc devotee and has worked VQ4, VP6; VK 2, 3 and 5; FY 1, 2, 3, 4 and 7; ZS 2 and 6; and ZB2. Among those that got away were a CR6, a KR6 and a KW6.

GM8SV (Aberdeen) reports for the first time, and comments on G6AB's claim of the first G/UR contact; we hoped we had made it clear that this referred to the Top Band. 'SV lives on the end of a grid line and his volts fluctuate between 152 and 350! He has lost several rectifiers, condensers and a complete power pack, and now sits with a large AC voltmeter right in front of him all the time. He comments on the frequent "echo" effect on 14 mc signals—both phone and CW; we have had several days of that, but it is probably even more prevalent up there in GM. 'SV has been off the air during eight months' illness, but hopes to report regularly in future. We hope so, too.

GM3EST (Motherwell) has now applied for DXCC and has been working new ones apace—such as KG4AD, VQ8CB, FQ8AE and LZ1JW. He has found conditions terrible, 14 mc being dead from 1600 onwards. That seems to be a penalty of living in the Land

ZONES WORKED LISTING

POST WAR

<table>
<thead>
<tr>
<th>Station</th>
<th>Z</th>
<th>G</th>
<th>Station</th>
<th>Z</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phone and CW</td>
<td>Phone and CW</td>
<td>W</td>
<td>A</td>
<td>Z</td>
<td>W</td>
</tr>
<tr>
<td>Phone only</td>
<td>W</td>
<td>A</td>
<td>Z</td>
<td>W</td>
<td>A</td>
</tr>
</tbody>
</table>
of the Midnight Sun—but it might also have its compensations!

G3HDA (Kiddermister) is a newcomer but a very keen and experienced SWL. To demonstrate the value of this, he has worked, in a week or two, such DX as VK1YG, CR4AD, FF8AC, EQ3FM, VS6, AP, HZ, KP4, YL, YV and so on—all with 18 watts. With conditions as they are, it seems pretty good to work 58 countries in 24 Zones during one’s first ten days on the air!

G3ALE/A (lately back in Wales as GW3ALE) tells us that he will probably be heard in the future from VI, AP, VS7 or EP. He should, by now, be in Calcutta, but expects to do some travelling around, returning home in about 1951!

GM2DBX (Methilhill) breaks into both DX tables with a Phone-Only score. He works mostly on Ten, in spite of conditions; since September he has had QSO’s with CR7, ZS7, VS9, ZC4, YV, XE, CO, CX, FF8, KV4, ZD4 and ZS.

G3FXB (Hove) is now running 120 watts on 14 mc, and finds a marked difference between this and his old 25-watt VE’s, W’s, VK’s, ZL’s all fall into the bag now, as well as CE5AW and KP4KD. PX1BU was worked; does anyone know of this one? Safe to assume that all PX’s are phone!

GW3ASW (Aberdare) moved from his old QTH last September to a spot where he hopes to open up a really good station. Unfortunately, sudden illness and a bereavement in October has completely upset all his plans. (He asks G2ANT, address unknown, to note).

Now, however, he does expect to get going, 800 ft. a.s.l. and “aerial troubles negligible.” He hopes to be on Top Band with a broadside to the States.

G2AJ (Biggin Hill) caught us just too late for last month with a report of nice DX worked in the various November contests. On 7 mc he raised FM8AD, VP5BF, ZD4AB, VP8AI, EK1AO and VK3AZW (at 1520 GMT). On 28 mc CW during the CQ Contest he worked EA8BE, VQ9AA, TI2BR, VP4TG, O44BR, KS4, KZ5 and all that. New ones on 14 mc phone were VP2DC, 3A2AB, ZS7C and PJ5FN; on 14 mc CW, VP8AJ and CR4AC. One other point of interest is that ‘AJ worked HZ1KE on all four bands within twelve hours.

Top Band Topics

First and foremost—don’t forget the Top Band Transatlantic Tests. To refresh your memories, the main dates are

January 14 and 28; February 11 and 25; March 11.

Full details on p.679 of the December issue, and even fuller details on the Log Sheets now available from the office. To get these, please send a large S.A.E. to the Circulation Manager, Short Wave Magazine, 53 Victoria Street, London, S.W.1, with a card marked “Top Band Test Logs,” and they will be forwarded. So get weavimg, but for goodness’ sake don’t transmit in the American band (1800-1825 kc) and don’t call CQ when you ought to be listening.

G2HKU (Sheerness) says he has finally got out of England and has worked OK1AJB, OK1VW, DL2TH and DL2QM—all with his 4 watts to half of a 7 mc dipole.

G2N (Peterborough) received OK1AJB working DL2QM at 1538 GMT, and also tells us that UA3IS and UA4FC were heard on the band by G3KP. Further, G3GGN and GD3UB have heard the W’s already, the former having logged W4CZW on phone!

G2YY (Berwick-on-Tweed) reports that UA3KLA, UA3IS and UA4FC have all been active round about 1820 kc at 1800 GMT or thereabouts.

For further Top-Band news, read the report of the Fifth MCC elsewhere in this issue. You may be surprised at some of the achievements mentioned therein.

So that’s all for the present—our
parting salute to 1950. May 1951 be no worse as a DX year—we can hardly expect it to be any better, unless the sunspot cycle has become more than usually asymmetrical this time!

Two final reminders: Get cracking in the Top Band Tests, and work enough countries on the other four bands to send in an early entry for the Four Band Marathon. Deadline for the next issue is first post January 15. Address it all to "DX Commentary," Short Wave Magazine, 53 Victoria Street, London, S.W.I. For overseas readers, the next deadline will be February 12; home readers had better note that too, because it is immediately after publication of the February issue. Until January 15—73, BCNU and Good Hunting.

USING THE TYPE 1 VISUAL INDICATOR

Some Practical Applications

By R. W. ROGERS (G6YR)

A n instrument which has received little or no mention in technical journals, and may be unfamiliar to many, is the Visual Indicator Type 1. It is available on the surplus market at a price of a few shillings only, from at least one regular advertiser in the pages of Short Wave Magazine.

Fundamentally, the instrument comprises two very sensitive moving coil microammeters in a single 3½-in. diameter case. The pointer needles are so positioned that they cross one another and, with equal deflections of both needles, the cross-over occurs somewhere over a vertical line marked on the dial, as shown in Fig. 1(A). This indicator was originally designed for use with the R1155 for D/F purposes, but, with slight modifications, it lends itself admirable to many amateur applications, among which may be mentioned:

(a) In push-pull anode or grid circuits, to read simultaneously the separate currents or voltages in both halves of the circuit and at a glance show whether the stage is correctly balanced (or for any other application where currents are to be balanced).

(b) To read both plate and grid currents in a transmitter stage, or both plate and screen currents in pentodes and tetrodes.

(c) As a very sensitive field-strength meter indicator in conjunction with a crystal diode and tuned circuit. By using one section to indicate RF pick-up and the other to measure the audio component of the signal, modulation percentages can be read off directly.

(d) As a basis for a multi-range test-meter, using one section for voltage ranges and the other for current, enabling both to be used simultaneously in a circuit.

(e) Many other circuits requiring a sensitive indicator, such as a grid-dip oscillator, S-meter and in similar instruments.

The Movement

The two moving-coil assemblies are exceptionally well made and have a resistance of approximately 900 ohms each. Their basic sensitivity varies somewhat, but lies in the range 30 to 60 μA for maximum deflection. As supplied, the movements are invariably shunted to pass 120 μA at full-scale deflection, irrespective of their basic sensitivities. In this connection, it might be mentioned that there seem to be at least two different versions on the market (by different manufacturers), and, although the dials are the same, the internal construction is quite different. The more sensitive type can be identified by a deeper case, 2½-in., as compared with the 2-in. depth of the other.

The uses to which the instrument discussed in this article can be put are not very obvious at first glance. But as the Type 1 Visual Indicator consists actually of a pair of sensitive, high-grade 0-50 microamp movements, it is well worth considering the suggestions put forward by our contributor.—Editor.
but this can be increased to about 65° without in any way affecting the sensitivity, but setting back the zero. In order to keep the scale as linear as possible, both the normal zero adjuster and a similar preset adjuster at the other end of the moving coil should be gradually moved by equal amounts in the same direction until the needle takes up the required zero position. In this way the original tension on the two hair-springs will be maintained; these hair-springs are wound in opposite directions, as viewed from the front. By treating both movements in this way, the available scale length can be increased up to about 24-in., which is practically equal to that of the conventional 34-in. diameter meter.

Calibration

The actual calibration naturally will depend on the purpose for which the meter is to be used. Where advantage is to be taken of the maximum sensitivity of the movements, the shunts should be removed and the meters calibrated in terms of their actual sensitivity in micro-amperes. But if they are to be used in balanced circuits, probably the wisest course is to leave the movements shunted as they are and then both scales are certain to be equal. The shunts are wound on small bobbins, of which there are four. Two are the actual parallel shunts, the others being series resistors, which should not be touched.

The original dial is finished matt black and the calibration may be inked on with white photographic ink or a paper scale can be glued on and marked in black Indian ink.

To set about calibrating the two movements, the zero marks having been fixed, the first thing is to settle the position for full-scale reading. The most sensitive and accurate meter available should be used as a standard and run in series with the two meter movements, a battery and a variable resistance. Assuming, for instance, that the most sensitive meter is 0-500 µA and it is found that the movements give a suitable maximum of 50 µA, the current passing should be set as accurately as possible on the 50 µA mark of the 500 µA meter, and the points can then be marked on the scale of the indicator, under the two needle tips. It is very helpful to use a magnifying glass in order to set the 50 µA mark accurately, and also the meter glass should be gently tapped to ensure that the needle

Fig. 1. (A) Appearance of an unmodified Visual Indicator, Type 1. (B) A specimen instrument as modified and calibrated by G6YR, for 50 µA maximum reading on both scales. When both needles are equally deflected, as when reading balanced currents, the cross-over always occurs over the centre line of the dial. The significance of this is explained in the accompanying article.
is not sticking slightly. It will be appreciated that final accuracy will depend on the care with which these full-scale deflection points are fixed.

Once the full-scale and zero points have been established, a different technique is advisable for completing the rest of the calibration—unless the reader is fortunate enough to have been using a 0–50 microammeter as the standard. To mark in all the sub-divisions, each movement should be separately shunted by a variable resistor so that it passes exactly the same current as the standard meter at maximum deflection. –500 μA in our case. The various sub-divisions should then be carefully marked in by adjusting the current to read each division in turn on the standard. Perhaps it is worth mentioning that it is important to shield all draughts from the meter whilst calibrating, or very erratic results are to be expected.

Fig. 1(B) shows a completed meter calibrated in this way by the writer, giving a full-scale deflection of 50 μA on both scales.

Further Notes On Application

When the meter is to be used to indicate balance in push-pull circuits, suitable points of connection in the circuit must be selected. Fig. 2 shows how grid, cathode, screen or anode currents may be read in a push-pull amplifier, and if suitable shunts are connected permanently in each lead (according to the normal current passed) one indicator may be readily switched to check the balance on each pair of electrodes. A big advantage of the instrument is that when balanced currents are passing the needles always cross each other exactly over the centre line, irrespective of the magnitude of the currents, so that it is not necessary to read off the individual currents to see that they agree numerically. This is particularly advantageous when used in a Class-B audio stage where the actual current is constantly fluctuating. The needle cross-over moves straight up and down the centre line if the valves are balanced in every way. Some valves may pass the same standing current, but vary considerably when driven, and this will show up on the indicator.

When used in a Class-B audio stage, the indicator may conveniently be inserted in the cathode circuits. With directly heated valves, separate filament windings must be provided. Audio voltages rather than current flowing may be checked by connecting one movement across each half of the modulation transformer through small metal rectifiers, or crystal diodes and high series resistors. In this way, balanced input and output voltages can be checked. Naturally, in applications like this, the series rectifiers and resistors should themselves be checked for balance before putting into commission. This is easily done by checking a test voltage on both movements, which should read alike.

Modulation Percentage Indicator

A modulation percentage indicator can be combined with a field strength meter by arranging to measure the audio component of the received signal. A suitable circuit is shown in Fig. 3. The movement used to measure the audio should be unsheathed, both from the point of view of maximum sensitivity and also because the movements are very well damped and any low resistance...
shunt makes the needle rather sluggish. Of course, as a programme meter or average level indicator, this is ideal, but generally the amateur is more interested in keeping an eye on the higher peaks of speech.

The RF movement should be shunted so that with a reading of, say, 80% full scale, 100% modulation registers nearly full scale on the audio meter. The percentage modulation will have to be calibrated with the aid of an oscilloscope or by other means. The use of separate movements to indicate carrier level and depth of modulation is found, in practice, to be much more convenient than the more usual switching of one meter to either circuit, as a constant check can be made on the carrier level which ensures that the modulation scale is reading correctly.

Multi Range Instrument

When the instrument is to be used as the foundation for a multi-range test meter, it is suggested that voltages be on one movement and current ranges on the other. It is possible to obtain a voltmeter of up to 20,000 ohms per volt if one is lucky in one's choice of indicator, but in any case, 10,000 ohms per volt or better should always be obtainable. If resistance ranges are added, it will be possible to measure up to ten or twenty times the value of resistance attained with the conventional 0-1 mA meter, under the same conditions.

For those with a really delicate touch, it is possible to obtain a real razor-edge pointer by giving a 90° twist to the needle, along its length. This is not recommended unless the reader is prepared to exercise plenty of patience, but it does give a very suitable needle where several concentric scales are to be used, and estimation to a fifth of a division, on a 50-division scale, can easily be made—probably greater accuracy than the movement itself justifies.

Conclusion

There are many other uses for which the instrument is eminently suitable, where a sensitive micro-ammetimeter is required, such as for a harmonic checker for TVI; for measuring the oscillator injection on frequency changers; for S-meters, where two separate meters can be provided, if desired—one to cover the ten-metre band or where the main receiver is used with a converter and the gain differs from that on the lower frequency bands; or as a grid current meter in a grid dip oscillator; and so on.

The moving-coils and needles are very light and the damping is very high, so a useful tip—when it is necessary to shunt a movement to read much higher current and it is desirable to prevent the meter from becoming very slow in following variations—is to place a resistor of a few thousand ohms in series with the moving coil and then shunt the whole.

It is hoped that the foregoing notes will prove useful to those not already familiar with the Visual Indicator, or who have not fully appreciated its potentialities, especially as it is available at a price lower than that charged for most single meters of the conventional type, of much poorer sensitivity.

Table of Values

<table>
<thead>
<tr>
<th>Table of Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 3. Circuit of the Modulation Level indicator.</td>
</tr>
<tr>
<td>C1 = 25 µµ F</td>
</tr>
<tr>
<td>C2, C4 = .001 µµ F</td>
</tr>
<tr>
<td>C3 = 2 µµ F</td>
</tr>
<tr>
<td>R1 = 1,000 ohms</td>
</tr>
<tr>
<td>R2 = 2,000 ohms</td>
</tr>
<tr>
<td>R3 = 1,000 ohms variable</td>
</tr>
<tr>
<td>X1, X2 = Crystal Diodes</td>
</tr>
</tbody>
</table>

Fig. 3. Circuit of a suitable modulation indicator, using the modified Type 1 instrument. R3 should be adjusted so that with a 100% modulated test signal reading full scale on movement B, the deflection on A is some arbitrary figure near full scale; the R3 adjustment is then locked, and thereafter modulation depth is correctly indicated on scale B when scale A is set to the "standard deflection" by varying RF pickup; this can be done by adjusting physically the degree of stray coupling between the indicating device and the aerial tuning unit.

VALVE REPLACEMENT GUIDE

Of particular interest to dealers is the new Mullard Valve Replacement Guide, now available from wholesalers at 2s. 6d. This edition of the Guide covers all receivers manufactured between the years 1933 and 1949 inclusive, and gives full replacement data.
Ey E. J. WILLIAMS, B.Sc. (G2XC)

Two-Metre Contest Results—

G5BY Leads Again—

Score Tables in Detail—

Survey of Equipment Used

FOR the second time in three years G5BY (Bolt Tail) has achieved first place in the annual Short Wave Magazine Two-Metre Contest, and again his lead is so great that the main competition has been to see who would occupy second place. In 1948, three out of the first four placings were filled by the Devonshire stations; in 1949, the first three were all from the South London area. But this year, with Devon, Surrey and Leicester stations occupying the leading positions, no one area can claim to have been specially favoured by either conditions or scoring. This is, in fact, the sort of result we like to see, and although there were criticisms of the method of scoring it is felt that the Contest result has fully justified the existing system.

Several competitors, particularly from the North, suggested that the Contest should have been for DX contacts only. So, in order to show the effect of such a restriction, two other Tables of Results have been compiled: One with points for contacts under 50 miles deleted; and the other with everything under 100 miles omitted. To your conductor, the chief effect of this seems to be to place G5BY still further in the lead! Other competitors suggested that one or other of the zones was at a serious disadvantage—so a fourth Table has been produced to show the winners and placings inside each zone.

To all who have reached high positions in any of these tables Short Wave Magazine offers congratulations, which will be echoed by all who follow this piece. And to those who failed to reach the top, often because of insurmountable local difficulties, our sincere sympathies and our thanks for having put in an entry. In 1948, there were 28 entries; in 1949, 58 came in; and this year, no less than 72 British operators sent in Contest scores. Additionally, in 1949 there were 10 European entrants, while the 1950 Contest has produced 18, together with a large number of "check logs."

So, in terms of support given and results achieved, the 1950 Magazine Contest has been by far the most important and interesting yet held in Europe—and for that we have to thank everyone who came on the air during the Contest period.

The Winners

G5BY, using 145 watts to a push-pull VT62 stage for transmitter, and two converters, worked G3APY and G8UZ (both around the 230-mile mark) for his best DX. No less than 24 contacts were over distances in excess of the 150 miles. Amongst the "super-DX" which was heard but not worked were G201, G2XW, G3DAH, G3WW and G4MW. Had the repeated calls which G5BY made to these stations produced contacts his score would have been at least 150 points greater than it was! The converters were first, the usual 6J6 plus two 954 RF stages, 954 mixer and 955 oscillator which G5BY has had in use for some time, and secondly, a new all-6J6 circuit with only 20 volts on the oscillator.

G3BLP (Selsdon) was in 3rd place last year, and many, especially the Midland competitors, thought he would be first this time. The London area stations are at a disadvantage when it comes to the number of DX contacts which can be made, but G3BLP did much to overcome this by working the enormous total of 103 stations in all. Of these only five were in the over-150 mile category. His transmitter used 100 watts to push-pull 826 in the final. A crystal-controlled
THE SHORT WAVE MAGAZINE

TWO-METRE CONTEST

NOVEMBER 11-12, 1950

(See page 560 October issue for Rules)

<table>
<thead>
<tr>
<th>Position</th>
<th>Call</th>
<th>Location</th>
<th>Points</th>
<th>Input (Watts)</th>
<th>Aerial System</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>G5BY</td>
<td>Bolt Tail, Devon</td>
<td>409</td>
<td>145</td>
<td>4/4/4/4</td>
</tr>
<tr>
<td>2</td>
<td>G3BLP</td>
<td>Seldon, Devon</td>
<td>306</td>
<td>100</td>
<td>Various</td>
</tr>
<tr>
<td>3</td>
<td>G3ENS</td>
<td>Loughborough, Leics.</td>
<td>281</td>
<td>75</td>
<td>5 Yagi</td>
</tr>
<tr>
<td>4</td>
<td>G6NB</td>
<td>Aylesbury, Bucks</td>
<td>266</td>
<td>150</td>
<td>16 Stack</td>
</tr>
<tr>
<td>5</td>
<td>G3APY</td>
<td>Kirkby, Notts.</td>
<td>234</td>
<td>50</td>
<td>5 Yagi</td>
</tr>
<tr>
<td>6</td>
<td>G3ABH</td>
<td>Sandbanks, Dorset</td>
<td>223</td>
<td>95</td>
<td>5 Yagi</td>
</tr>
<tr>
<td>7</td>
<td>G3ABA</td>
<td>Coventry, Warw.</td>
<td>218</td>
<td>140</td>
<td>16 Stack</td>
</tr>
<tr>
<td>8</td>
<td>G2XC</td>
<td>Portsmouth, Hants.</td>
<td>216</td>
<td>25</td>
<td>4/4</td>
</tr>
<tr>
<td>9</td>
<td>G2GFL</td>
<td>Lowestoft, Suffolk</td>
<td>213</td>
<td>20</td>
<td>4 Yagi</td>
</tr>
<tr>
<td>10</td>
<td>G2AJ</td>
<td>Biggin Hill, Kent</td>
<td>212</td>
<td>75</td>
<td>16 Stack</td>
</tr>
<tr>
<td>11</td>
<td>G5RP</td>
<td>Abingdon, Berks.</td>
<td>209</td>
<td>100</td>
<td>5/5</td>
</tr>
<tr>
<td>12</td>
<td>G4CI</td>
<td>Worcester Park, Surrey</td>
<td>202</td>
<td>140</td>
<td>4/4</td>
</tr>
<tr>
<td>13</td>
<td>G3WW</td>
<td>March, Camb.</td>
<td>190</td>
<td>110</td>
<td>5/5</td>
</tr>
<tr>
<td>14</td>
<td>G5WP</td>
<td>Woking, Surrey</td>
<td>184</td>
<td>60</td>
<td>16 Stack</td>
</tr>
<tr>
<td>15</td>
<td>G2XV</td>
<td>Cambridge</td>
<td>182</td>
<td>5/3/3</td>
<td>4 Yagi</td>
</tr>
<tr>
<td>16</td>
<td>G3DAH</td>
<td>Herne Bay, Kent</td>
<td>173</td>
<td>60</td>
<td>4 Yagi</td>
</tr>
<tr>
<td>17</td>
<td>G5MA</td>
<td>Ashstead, Surrey</td>
<td>171</td>
<td>90</td>
<td>4/4</td>
</tr>
<tr>
<td>18</td>
<td>G8IL</td>
<td>Salisbury, Wilts.</td>
<td>168</td>
<td>90</td>
<td>4/4</td>
</tr>
<tr>
<td>19</td>
<td>G4HT</td>
<td>Ealing, Middlesex</td>
<td>167</td>
<td>100</td>
<td>Various</td>
</tr>
<tr>
<td>20</td>
<td>G3VM</td>
<td>Norwich, Norfolk</td>
<td>164</td>
<td>18</td>
<td>4/4</td>
</tr>
<tr>
<td>21</td>
<td>G3BOB</td>
<td>Bromley, Kent</td>
<td>161</td>
<td>20</td>
<td>12 Stack</td>
</tr>
<tr>
<td>22</td>
<td>G2A1Q</td>
<td>Histon, Camb.</td>
<td>155</td>
<td>18</td>
<td>4 Yagi</td>
</tr>
<tr>
<td>23</td>
<td>G6CW</td>
<td>Nottingham</td>
<td>144</td>
<td>18</td>
<td>4 Yagi</td>
</tr>
<tr>
<td>24</td>
<td>G2MV</td>
<td>Kenley, Surrey</td>
<td>143</td>
<td>25</td>
<td>Bi-Square</td>
</tr>
<tr>
<td>25</td>
<td>G2ANT</td>
<td>Godalming, Surrey</td>
<td>141</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>G8DS</td>
<td>Surbiton, Surrey</td>
<td>139</td>
<td>20</td>
<td>12 Stack</td>
</tr>
<tr>
<td>27</td>
<td>G2OI</td>
<td>Eccles, Lancs.</td>
<td>126</td>
<td>50</td>
<td>5 Yagi</td>
</tr>
<tr>
<td>28</td>
<td>G3CGO</td>
<td>Luton, Beds.</td>
<td>126</td>
<td>40</td>
<td>4 Yagi</td>
</tr>
<tr>
<td>29</td>
<td>G3BA</td>
<td>Daventry, Warw.</td>
<td>128</td>
<td>3/5</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>G3FXG</td>
<td>Clapham, London</td>
<td>127</td>
<td>25</td>
<td>4 Yagi</td>
</tr>
<tr>
<td>31</td>
<td>G3FAN</td>
<td>Ryde, I.O.W., Hants.</td>
<td>120</td>
<td>15</td>
<td>4 Yagi</td>
</tr>
<tr>
<td>32</td>
<td>G6LI</td>
<td>Grimsby, Lincs.</td>
<td>114</td>
<td>150</td>
<td>4 Stack</td>
</tr>
<tr>
<td>33</td>
<td>G5NF</td>
<td>Farnham, Surrey</td>
<td>112</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>G2UJ</td>
<td>Tunbridge Wells, Kent</td>
<td>110</td>
<td>65</td>
<td>6 Stack</td>
</tr>
<tr>
<td>35</td>
<td>G3GSE</td>
<td>Kingsbury, Middlesex</td>
<td>102</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>G3FD</td>
<td>Southgate, Herts.</td>
<td>100</td>
<td>45</td>
<td>4/4</td>
</tr>
</tbody>
</table>

The transmitter ran an 829B PA, while the receiver had a CV139 RF stage, CV1360 mixer and 6C4 oscillator; his 5-element Yagi was up at 72 feet above ground. G3ENS heard a large number of stations which he could not raise in spite of repeated calls.

The Zone C winner, G2OI (Eccles), was unable to be active on the Saturday afternoon and worked only 30 stations. Undoubtedly he and all others in the Northern counties were at a disadvantage in this Contest, with conditions as they were. His best contacts were three over-150 mile QSO’s, all made within half-an-hour of each other on the Saturday evening. His transmitter consisted of an SCR522 to drive an 829, while the receiver used CV53, EF91 and 6AK5 RF stages, with EAC91 osc-mixer into a 28 mc IF. His most consistent station
was G3ENS—and G3ENS says much the same about G2OI in the reverse direction.

G6NB (Aylesbury) made the highest score in Zone G. Unfortunately, he missed the first few hours, but in spite of that worked 95 stations. His transmitter runs push-pull HK54's and the 16-element beam is 40 feet high. A CC converter has 6J6 RF and mixer stages. Runner-up in this Zone was G2CPL (Lowestoft) who made his score from 34 contacts, of which one with G8IL (Salisbury) at 182 miles was the best; his 832 PA running at low power was helped by a beam 60 feet high. The converter had two RF stages, the first with a 6J6 and the second pp EF91's.

In spite of his position on the coast G2CPL heard no Continental stations.

G3ABH (Poole), who has given many of us the fright of our lives, just beat G2XC to it for Zone H winner. (By the way, if it happens that you do not, like to see G2XC's call in the table, just draw a line through it and raise everyone else with a smaller score up one place!)

G3ABH worked 51 stations, with G3APY as his best. The receiver had two 6A1J5 RF stages, a 6J6 mixer and crystal oscillator, and the transmitter ran 95 watts whenever the mains voltage permitted.

European winner was PA0WI (Schagen), who from his location in

<table>
<thead>
<tr>
<th>Position</th>
<th>Call</th>
<th>Location</th>
<th>Points</th>
<th>Input (Watts)</th>
<th>Aerial System</th>
</tr>
</thead>
<tbody>
<tr>
<td>37</td>
<td>G2NH</td>
<td>New Malden, Surrey</td>
<td>93</td>
<td>60</td>
<td>4/4</td>
</tr>
<tr>
<td>38</td>
<td>G3GBO</td>
<td>Denham, Bucks.</td>
<td>91</td>
<td>4/4</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>G5PY</td>
<td>Clapham Park, London</td>
<td>91</td>
<td>70</td>
<td>4/4</td>
</tr>
<tr>
<td>40</td>
<td>G3GDR</td>
<td>Watford, Herts.</td>
<td>89</td>
<td>10</td>
<td>4/4</td>
</tr>
<tr>
<td>41</td>
<td>G4CB</td>
<td>Wimbledon, Surrey</td>
<td>88</td>
<td>50</td>
<td>3/3/3</td>
</tr>
<tr>
<td>42</td>
<td>G2WS</td>
<td>Shortlands, Kent</td>
<td>83</td>
<td>50</td>
<td>3/3</td>
</tr>
<tr>
<td>43</td>
<td>G5UM</td>
<td>Knebworth, Herts.</td>
<td>76</td>
<td>16</td>
<td>3 Yagi</td>
</tr>
<tr>
<td>43</td>
<td>G8IP</td>
<td>Hampton, Middlesex</td>
<td>76</td>
<td>16</td>
<td>4/4</td>
</tr>
<tr>
<td>45</td>
<td>G8UZ</td>
<td>Sutton, Notts.</td>
<td>75</td>
<td>30</td>
<td>5 Yagi</td>
</tr>
<tr>
<td>46</td>
<td>G2AHP</td>
<td>Perivale, Middlesex</td>
<td>70</td>
<td>12 Stack</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>G5HN</td>
<td>Reading, Berks.</td>
<td>62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>G6FR</td>
<td>Slough, Bucks.</td>
<td>62</td>
<td>16</td>
<td>2/2</td>
</tr>
<tr>
<td>49</td>
<td>G2DYO</td>
<td>Tooting, London</td>
<td>61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>G3BHS</td>
<td>Eastleigh, Hants.</td>
<td>58</td>
<td>28</td>
<td>4 Yagi</td>
</tr>
<tr>
<td>51</td>
<td>G5JU</td>
<td>Birmingham, Warw.</td>
<td>57</td>
<td>30</td>
<td>4 Indoor</td>
</tr>
<tr>
<td>52</td>
<td>G5LO</td>
<td>Chiswick, Middlesex</td>
<td>56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>G2DLJ/A</td>
<td>Derby</td>
<td>54</td>
<td>12</td>
<td>16 Stack</td>
</tr>
<tr>
<td>53</td>
<td>G3SM</td>
<td>North Harrow, Middlesex</td>
<td>54</td>
<td>16</td>
<td>3/3</td>
</tr>
<tr>
<td>53</td>
<td>G3CGE</td>
<td>Southampton, Hants</td>
<td>48</td>
<td>20</td>
<td>3 Yagi</td>
</tr>
<tr>
<td>56</td>
<td>G3BUN</td>
<td>Horsey, Middlesex</td>
<td>47</td>
<td>18</td>
<td>4 Yagi</td>
</tr>
<tr>
<td>57</td>
<td>G3CAZ</td>
<td>Gillingham, Kent</td>
<td>46</td>
<td>24</td>
<td>Various</td>
</tr>
<tr>
<td>58</td>
<td>G2FNW</td>
<td>Melton Mowbray, Leics.</td>
<td>42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>G2XS</td>
<td>Mansfield, Notts.</td>
<td>39</td>
<td>40</td>
<td>6 Stack</td>
</tr>
<tr>
<td>60</td>
<td>G3BOC</td>
<td>Hessell, Cheshire</td>
<td>35</td>
<td>15</td>
<td>3 Yagi</td>
</tr>
<tr>
<td>61</td>
<td>G8GL</td>
<td>Northallerton, Yorks.</td>
<td>33</td>
<td>12</td>
<td>4 Yagi</td>
</tr>
<tr>
<td>62</td>
<td>G2DCI</td>
<td>Speke, Lancs.</td>
<td>28</td>
<td>20</td>
<td>6 Indoor</td>
</tr>
<tr>
<td>63</td>
<td>G3EMJ</td>
<td>Derby</td>
<td>22</td>
<td>18</td>
<td>3 Yagi</td>
</tr>
<tr>
<td>64</td>
<td>G8LN</td>
<td>London, S.E.18</td>
<td>20</td>
<td>12</td>
<td>Dipole</td>
</tr>
<tr>
<td>65</td>
<td>G4SC</td>
<td>Ewell, Surrey</td>
<td>19</td>
<td>22</td>
<td>4 Yagi</td>
</tr>
<tr>
<td>66</td>
<td>G4LX</td>
<td>Newcastle, Northumberland</td>
<td>14</td>
<td></td>
<td>12 Stack</td>
</tr>
<tr>
<td>67</td>
<td>G3LY</td>
<td>Lee-on-Solent, Hants.</td>
<td>11</td>
<td>18</td>
<td>4 Yagi</td>
</tr>
<tr>
<td>68</td>
<td>G3GRA</td>
<td>Barnet, Herts.</td>
<td>10</td>
<td>14</td>
<td>Dipole</td>
</tr>
<tr>
<td>68</td>
<td>G4TS</td>
<td>Bournemouth, Hants.</td>
<td>10</td>
<td>13</td>
<td>Rotary D.</td>
</tr>
<tr>
<td>70</td>
<td>G6PJ</td>
<td>Sheffield, Yorks.</td>
<td>9</td>
<td>18</td>
<td>5 Yagi</td>
</tr>
<tr>
<td>71</td>
<td>G3YH</td>
<td>Bristol, Glo's.</td>
<td>6</td>
<td>25</td>
<td>6</td>
</tr>
<tr>
<td>72</td>
<td>G6TG</td>
<td>Scarborough, Yorks.</td>
<td>4</td>
<td>15</td>
<td>4/4/4</td>
</tr>
</tbody>
</table>

Note: Figures in the "Aerial System" column give number of elements, e.g. 3/3 denotes 3-over-3.
North Holland worked several Belgian stations as well as a dozen or so in the Netherlands. He heard no signals from G or DL, and so once again conditions spoilt the chances for some interesting Continental working. Transmitter at PA0WI ran an 832 in the PA with only 15 watts, while the converter is a 6J6 type based on the Short Wave Magazine design.

Other Competitors

About two-thirds of the entries show that converters with 6J6 RF stages were in use. The 6AK5, however, is still the favourite at many stations, including several in the first dozen places in the table. RF26 and RF27 units, modified in various ways, were also not uncommon, while G5MA used three 954 RF stages, and several other competitors had modified ZB2 units. On the transmitter side, 832's and 826's figured prominently as PA valves. G3ABA and G3WW were different with a pair of 24G's, G2WS an 815, G4CI a pair of 803's, G3GRA pp DET20, G3GDR an RK34, G5JU a QQV06/40, G5UM a TT15 and G3BUN a pair of 7193's. With a few exceptions, therefore, two-metre equipment appears to have reached a reasonably consistent design standard throughout the country. Whether or not this is a good thing is, of course, debatable.

The aerial systems in use at all stations are indicated in the Table of Results. They appear to consist of three main types—simple Yagis, stacked Yagis and stacked collinear arrays. All three types are represented in the first three positions. Readers will no doubt draw their own conclusions regarding the merits of each.

Conditions

There is little doubt that conditions were superior to those existing last year, but in spite of that no contacts were made between this country and the Continent. Considering the scale of activity, especially in the Netherlands, this was both surprising and disappointing. GDX was reasonably good throughout Saturday afternoon and evening, but deteriorated very noticeably on the Sunday. This coincided with a marked change for the worse in the weather.

General Comments

General operating technique appeared, to your conductor, to be quite good, and the more frequent use of QLH and QHL signals by many operators was noticeable. These signals result in a great saving of time and QRM and their use at all times is commended. On the debit side must be mentioned the unnecessarily long calls made by some stations, both when calling CQ and other stations. It may seem hardly credible but G2XC was actually called for six minutes by one competitor! Several operators also indulged in, long CQ calls after completing each contact, apparently failing to realise others were already waiting to call them.

TWO-METRE CONTEST

EUROPEAN COMPETITORS

<table>
<thead>
<tr>
<th>Position</th>
<th>Call</th>
<th>Location</th>
<th>Points</th>
<th>Input</th>
<th>Aerial Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PA0WI</td>
<td>Schagen</td>
<td>61</td>
<td>15</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>PA0FB</td>
<td>Hague</td>
<td>50</td>
<td>25</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>PA0GC</td>
<td>Maasluis</td>
<td>40</td>
<td>35</td>
<td>5/5</td>
</tr>
<tr>
<td>4</td>
<td>PA0NO</td>
<td>Maasluis</td>
<td>37</td>
<td>15</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>PA0PN</td>
<td>Middelburg</td>
<td>36</td>
<td>50</td>
<td>4/4</td>
</tr>
<tr>
<td>6</td>
<td>ON4HN</td>
<td>Antwerp</td>
<td>33</td>
<td>75</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>PA0TG</td>
<td>Rotterdam</td>
<td>32</td>
<td>27</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>PA0NL</td>
<td>Amsterdam</td>
<td>26</td>
<td>15</td>
<td>3/3/3</td>
</tr>
<tr>
<td>9</td>
<td>PA0PAX</td>
<td>Hilversum</td>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>PA0TF</td>
<td>Breda</td>
<td>26</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>PA0LU</td>
<td>Voorburg</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>PA0LDG</td>
<td>Rotterdam</td>
<td>15</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>13</td>
<td>PA0OD</td>
<td>Rotterdam</td>
<td>15</td>
<td>15</td>
<td>3</td>
</tr>
<tr>
<td>14</td>
<td>PA0RK</td>
<td>Scheveningen</td>
<td>15</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>15</td>
<td>PA0BAL</td>
<td>Rotterdam</td>
<td>12</td>
<td>20</td>
<td>4</td>
</tr>
<tr>
<td>16</td>
<td>PA0J0B</td>
<td>Rotterdam</td>
<td>9</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>17</td>
<td>DL3FM</td>
<td>Mulheim/Ruhr</td>
<td>8</td>
<td>130</td>
<td>4</td>
</tr>
<tr>
<td>18</td>
<td>PA0HI</td>
<td>Gouda</td>
<td>1</td>
<td>10</td>
<td>4</td>
</tr>
</tbody>
</table>
and a short QRZ? or CQ was all that was necessary.

A number of competitors have asked that the next Contest be CW only. Although regretting the inability of many phone stations to work (or, in some cases, it would seem, read) CW, it is felt that one of the great objectives of this annual Contest is to get as many stations as possible on the band at the same time and that as many as possible of VHF operators should be able to join in the fun. There have also been a number of requests for another Contest in the spring or early summer, and while no decision has yet been made on this, it may be possible to organise such an event and at the same time use it to try out some of the ideas put forward by competitors in the 1950 Contest.

Almost all who entered commented on how much the Contest was enjoyed, and your conductor is indeed grateful for all the kind things said about the organisation for the event. To satisfy everyone completely is, as most competitors realise, virtually an impossibility. One operator's suggestions are cancelled out by the next man's, and often to change the rules to meet criticism from one quarter would only call down a shower of abuse from another direction! All the impressions, suggestions and criticisms which came in with the logs were read with much interest—and will be read again before next year's Contest is staged. But no promise can be given of any violent change, for the reasons already stated.

Our thanks are also due to all those who sent in check logs. They were of great value in working out the results, and it is hoped that next year some of these check entries will come in as full Contest entries. Some at least merited honourable placing in the Tables.

More Comments

A few more extracts from the "impressions" accompanying the logs are appended as food for thought, and to show the good humour and sporting spirit displayed by competitors generally.

"Dare one ask for a QRP 2-metre contest? 5 watts or one watt and under. Yes, I think it could be done and DX worked. (G3LN) "Brickbats to the Electricity Board for complete power failure on three occasions on Sunday." (G5VM) "During the Contest that part of the band which should be used by the South Western, Welsh and Irish stations was completely unused as far as I was concerned." (G3WW) "These Contests stimulate one's interest in the bands and I think cause one to strive for still better results." (G3CGQ) "The short times I was able to devote to the Contest coincided with the periods of lowest activity." (G3EMJ) "I enjoy hearing stuff even if I cannot work it." (G3EYV) "One fault to find—station who call CQ in one direction on CW and then QSO the loudest station calling them on phone in a different direction." (G3LY) "A very good show, with excellent operating by all." (G2MV) "No matter what I did to attract their attention G3DAH, G3WW, ...
G2XV and G4MW continued to work semi-locals." (G2BY) "Best DX heard was G5BY. The signals were RST569 for quite long periods." (G3DAH).

And there we must leave the 1950 Two-Metre Contest. If your conductor has appeared to be somewhat inactive on VHF for the past few weeks his excuse must be the Tables which appear here-with. Thank you all for your support.

Other News

An interesting letter from DL4XS arrived just too late for last month's issue. He includes a list of G's worked in chronological order, and as it will undoubtedly interest many here it is:

June 9: G3DIV/A.
June 11: G3DIV/A.
August 20: G3DIV/A.

September 12: G3DIV/A, G2XC, G3BHS, G4AU, G6WU, G3EBW, G4MW.
September 13: G3EBW, G2AVR, G2BMZ, G6LR, G3GDR, G8W, G3BHC, G4MV.
G6XM, G3ABV, G6AG, G2XC, G6WU.
G2JCF, G8SY, G8BM.

October: G3DEP, G3DIV/A, G5RO.

<table>
<thead>
<tr>
<th>TWO-METRE CONTEST</th>
<th>OVER-100-MILE SCORES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 G2BY</td>
<td>384</td>
</tr>
<tr>
<td>2 G5YNS</td>
<td>185</td>
</tr>
<tr>
<td>3 G2CPU</td>
<td>176</td>
</tr>
<tr>
<td>4 GIJY</td>
<td>155</td>
</tr>
<tr>
<td>5 G3VM</td>
<td>136</td>
</tr>
<tr>
<td>6 G3BLP</td>
<td>132</td>
</tr>
<tr>
<td>7 G2AJ</td>
<td>122</td>
</tr>
<tr>
<td>8 GI2I</td>
<td>92</td>
</tr>
<tr>
<td>9 G4C1</td>
<td>58</td>
</tr>
<tr>
<td>10 G8IL</td>
<td>59</td>
</tr>
<tr>
<td>11 G2XC</td>
<td>43</td>
</tr>
<tr>
<td>12 G3ABH</td>
<td>76</td>
</tr>
<tr>
<td>13 G3DAH</td>
<td>72</td>
</tr>
<tr>
<td>14 G3ABA</td>
<td>68</td>
</tr>
<tr>
<td>15 G5MA</td>
<td>64</td>
</tr>
<tr>
<td>16 G5WP</td>
<td>60</td>
</tr>
<tr>
<td>17 G6LI</td>
<td>52</td>
</tr>
<tr>
<td>18 G2AQ</td>
<td>45</td>
</tr>
<tr>
<td>19 GI8U</td>
<td>47</td>
</tr>
<tr>
<td>20 G3BB</td>
<td>44</td>
</tr>
<tr>
<td>21 G3P</td>
<td>40</td>
</tr>
<tr>
<td>22 G2ANT</td>
<td>36</td>
</tr>
<tr>
<td>23 G5DS</td>
<td>32</td>
</tr>
</tbody>
</table>

In all DL4XS has worked 6 countries, 21 G's in 9 counties, 14 PA's, 9 ON's, 4 HB's and 4 F's, as well as 52 DL's. This splendid record includes 30 contacts at over 350 miles. He comments that according to the local weather man "it has been a poor year." DL4XS has now moved to Rhein/Main near Frankfurt and is active from there on both Two and Seventy-cm. He hopes to work some of us via Aurora this winter and suggests that whenever there are signs of Aurora effects watch be kept for him.

On 70 cm he has a pair of 8025's on 433.3 mc and for receiver there is an APR-4 working into a Super-Pro. Other DL4 stations are also just about ready. DL nationals are not at present allowed to operate on 420 mc.

G8LN (South-East London) says he is still at a loss to understand why 144 mc is deserted most evenings in South London, whereas 1.7 mc is cluttered up to breaking point with local phone chats. However, he experienced some good conditions during the recent foggy spells.

G8IP (Hampton) wonders if some of those who complain about lack of activity ever do anything except Amateur Radio: his rebuilding is still not finished, mainly due to lack of available time. A disappointing evening was November 26 when G3BHE and G4NB were good signals at G8IP but could not be raised.

G3YH (Bristol) also notes November 26 as a good date; he has been trying out a 6-element broadside stack with encouraging results, but has been temporarily put out of action by a gale.

G3DVQ (Purley) made his first 2-metre contact on September 21, and is using a modified RF132A until a G2I converter is finished; the aerial is a 2-over-2 in the roof-space and his frequency 145-08 mc. G2JU (Wittering) has been temporarily inactive, but is now back again on Saturdays. G3HBW (Wembley) has been on Two since November 28 with about 5 to 10 watts to a pair of 6C4 valves, and on 70 cm since December 1 with 3 watts to a 6J6 tripler; a few locals have been worked on Two and G2DD and G8SM on the higher frequency band.

G6PG (Dartford) reports working G2FKZ and G3FZL/A on 420 mc; his frequency is 435.3 mc and he is on it nightly at 2100 and onwards.

G3ELT (Salford) tells us there is some increase of activity on the VHF bands in the Lancashire area, although conditions are far from good; his beam is now 26 feet higher up, but so far this has shown little improvement over
In Conclusion

Publication of the Contest Results has meant dropping the usual tables from these columns this month, but they will be back again next time. And comment on a number of report letters received just as this was going down is also being held over for the next issue. Due to the Christmas rush this offering of "VHF Bands" has had to go to press earlier than usual and it is probable that more of the mail has not reached us in time.

To any who have written and not received mention here as a result of this, we offer apologies. The latest date for next month's mail is January 16 and the address is E. J. Williams, G2XC, Short Wave Magazine, 53 Victoria Street, London, S.W.1. With you again on February 9.
MODIFIED RF MONITOR
Ideas for the Absorption Wavemeter

By A. M. H. Fergus (G2ZC)

Several articles have appeared on the construction of a Monitor/Field Strength meter, all of which conform to a basic design, so no new originality is claimed in this brief comment on the same subject.

Many months ago the writer constructed a combination instrument incorporating an absorption meter with the monitor/field strength type, with some slight modifications.

Referring to the article by GM6LS in the December, 1948, issue of the Short Wave Magazine, the following modifications are suggested, indicated by the heavy lines in the accompanying diagram. Comparison may be made between the original circuit and the one published here.

To start with, when using the instrument as an absorption meter proper, portability and size are important features, so the writer’s instrument is built into a metal cabinet measuring 4½ in. high, 3½ in. broad and 2½ in. deep. This prohibited the microammeter being permanently mounted, which is actually no disadvantage, as if it be inserted via a standard phone plug it can be introduced at will, or withdrawn to protect the sensitive meter when absorption tests are being undertaken.

Referring to the diagram, the phone jack therefore serves the dual purpose of bringing in either the headphones or the microammeter, and, when an absorption check is being done, neither are in circuit.

Germanium and selenium crystals appeared to be slightly different in sensitivity, so one of each was provided; either can be brought in by means of the SPDT toggle switch S1.

When operating as an absorption wave-meter, it is imperative that the crystals should be protected, so the switch S2 was incorporated, which shorts them out of circuit when such readings are being taken—or for the reason given in GM6LS’s article, where he advocates detuning.

The modification to the coils lies in the mounting of L1 and L2, using four-pin formers. L1 is soldered to the grid/plate pins, and L2 to the filament pins. L2 is connected to the usual “peanut” bulb, and loose coupled to L1. Experiment will decide as to the number of turns required and the position of the coupling (influenced somewhat by the power used), but there is nothing critical about this, as the untuned coil L2 mere “picks up” from the tuned coil L1, and gives a much sharper resonance setting. About five turns is a safe number to suggest for the first trial.

Stand-by BC Rx!

The last modification is the mounting of an earth terminal. When the unit is connected between a good aerial and earth (with, of course, a coil of suitable size) in comes the B.B.C.!! That idea may cause derision, but in these days of “shedding the load” all-mains stations still need a means of obtaining time signals and the news. So the idea is not so foolish as it may at first sight appear. Most of us have forgotten, and many have never known, the quality of broadcast signals as received on the simple crystal set against a dead silent background. Yet here we have just that “something for nothing” which is preferable to a dead silent station when the power it out!

IMPORTANCE OF THE AERIAL

At the National Radio Exhibition, the GPO had an interesting exhibit designed to illustrate the importance of providing a good aerial. Its inspiration was the fact that last year the Engineering Department dealt with 94,272 complaints of TV/BC interference. Of these, no less than 15,000 were explainable by the fact that poor aerials were being used with the receivers affected.
The other man's station G2BJY

GEOFF JOHNSON of G2BJY (22 Lynton Avenue, Hateley Heath, West Bromwich, Staffs.) has been a very successful DX operator for some time now, 'even though, as he puts it, 'the input is only 25 watts.' Nor does he make any apologies for what he calls the 'bare-bones appearance of the rig' which is designed for accessibility and quick band changing.

The station was first licensed AA in 1937, full radiating facilities being granted in March, 1946. Activity is on all bands, the preference being for 28 mc phone and 14 mc CW, with a maximum input of 25 watts—except for the Top Band, where a QRP one-watt rig is used with an O-V-1 receiver. The main transmitter on the HF bands runs 807-6L6-6L6-6L6-807 PA, the exciter unit giving output on 3.5, 7, 14 or 28 mc as required. For speech working, a pair of KT66's plate-screen modulate the 807 PA.

The receiver is entirely home-constructed and is under almost continuous modification; it is an 8-valve job with an EF50 RF amplifier. Auxiliary gear includes a BC-221, an oscilloscope, a signal generator, and a field strength meter-phone monitor.

Aerials are a three-element close spaced beam for Ten, a full-wave wire for Twenty and a 7 mc dipole. The station record includes the DXCC certificate, with two more States required for WAS and two zones for WAZ. Of the 138 countries worked, 114 had been confirmed as at the end of August, 1950. Altogether, an interesting station and good record, saying much for the less elaborate approach to amateur DX working.

NEW QTH's

All addresses appearing under this heading are inserted only at the direct request of the holder of the callsign, and appearance in 'New QTH's' ensures publication in the quarterly issue of the Radio Amateur Call Book in preparation.

We do not, as is apparently often thought, confine this feature to direct subscribers—any reader who cares to send us the necessary details is assured of entry in his turn. But it is advisable to inform us promptly.
NEW QTH's

This space is available for the publication of the addresses of all holders of new U.K. call-signs, as issued, or changes of address of transmitters already licensed. All addresses published here are reprinted in the quarterly issue of the "RADIO AMATEUR" issued in June, September, December. QTH's are inserted as they are received, up to the limit of the space allowance each month. Please write clearly and address on a separate slip to QTH Section.

E1SB R. J. Toby (G2CDN, ex-SUIXZT2C), Fintangh, Knapton Road, Dun Laoghaire, Co. Dublin, Eire.
G2APN R. A. Ferrymar (ex-ZC6R/PVS1D), Hillside, Whitehill, Borden, Hants. (Tel.: Bordon 213).
G2FGQ G. Jenkinson, 86 East Ella Drive, Choppil, Yorkshire.
G2FwJ F. Simmons, 28 Melton Gardens, Romford, Essex.
G3MCB J. Paterson, 37 Burnhead Street, Greenock, Renfrewshire.
G3CHQ C. W. Fleming, Brockhampton Court, Brockhampton, Andover, Hants.
G3FBR J. F. Len, 42 Gar ih Road, Forest Hill, London, S.E.23.
G3FXF South West Essex Radio Society, 367 Green Road, Romford, Essex.
G3MCHC A. Johnston, 16 Whinhill Terrace, Banff, Banffshire.
G3GCO S. A. Bowen, 43 Turreff Avenue, Donington, Nr. Wellington. Salop.
G3GHM P. Maxwell, 93 Bowerdean Road, Wycombe, Bucks.
G3GOV W. W. Smith, 62 Cobbett Road, Honicknowle, Plymouth, Devon.
G3GBS W. J. Galloway, 5 Regency Road, Malvern Link, Wors.
G3GBS/A W. J. Galloway, Donaloney, Lurgan, Co. Armagh, Ulster, N. Ireland.
G3GTB T. F. Barr, 71 Cedars Avenue, Coventry, Warks.
G3GWW J. E. Holt, Ardwyn, London Road, Charlton Kings, Cheltenham, Glos.
G3GBX E. Greenwood, Briery Road, Shafton, N. Barnsley, Yorkshire.
G3GXS H. Hass, Greengarth Hall, Holmrook, Cumberland.
G3GYH E. R. Boothroyd, 85 Bank End Lane, Almonbury, Huddersfield.
G3GYK J. E. Prims, Pin Glen Avenue, Ferndown, Wimborne, Dorset.
G3GZM L. Dyke, 5 College Terrace, Berrington Road, Tenbury Wells, Worcs.
G3HAD Kidworth Radio and Television Society, c/o 30 School Lane, Kineton, Warks.
G3HAG R. P. Hughes, 6 Segrain Road, Roby, Liverpool, Lancs.
G3HBE M. A. Brett, 57 Woodlands Road, Birmingham, 11.
G3HBR R. Barry, 10 Barlee Crescent, Cowley, Uxbridge, Middlesex.
G3HBT T. Hall, Glenburn, Doagh, Co. Antrim.
G3HCC G. E. Veasey, 6 Golf Road, Colhams Green Road, Hillingdon, Middlesex.
G3HCF T. Shackleton, 48 High Green Road, Altotfes, Norman ton, Yorkshire.
G3HCl W. Campbell, 83 Cattersey Road, Balfast. (Tel.: Belfast 87665).
G3HCK T. Foot, The Beeches, London Road, Hurst Green, Sussex.

G3HCO G. A. Errook, 28 Burns Street, Mansfield, Notts.
G3HDD Sgd. Seeney, No. 3 Trg. En. (TELS), Baillieard Camp, Aberfield, Reading, Berks.
G3JDT D. I. Thompson, Strathmore, A.2 Baghill Lane, Pontefract, Yorkshire. (Tel.: Pontefract 545).
G3SUJ S. G. Wood, 80 East Bawtry Road, Rotherham, Yorkshire.
G6VG T. J. Petersen, 3 Belle Vue Crescent, Tynemouth, North Shields, Co. Durham.

CHANGE OF ADDRESS

E1JR T. A. Hurley, Collins Barracks, Cork, Eire.
G2HX L. O. Rogers, 50 Hillview Drive, Hucclecote, Gloucester.
G2JI G. M. Keyworth, Golden Ball Hotel, Worxop, Notts.
G3AAE J. D. Kay, Gothic House, Hadley Common, Barnet, Herts.
G3BAA A. H. S. Bridgman, B.S.C., Highbury, Oakd Road, Breett Lane, Stourbridge, Worcs.
G3BDR H. E. Hubbert, 7 Fir Tree Grove, Moortown, Leeds, Yorkshire.
G3BRK I.E.M.E. Technical Society, Ministry of Supply, Agila, Golf Road, Bickley, Kent.
G3BUX M. P. Faraday, (ex-G3BU), R.A.F., Llandaff, Cowbridge Road, Ely, Cardiiff.
G3CBU P. J. Sterry, 1 Lower Park Road, Belvedere, Kent.
G3CII R. Haigh, Green Farm Cottage, Clifton, Bri gbury, Hertfordshire.
G3CRC A. W. Watkins, 116 East Street, Prittlewell, Essex.
G3CRY P. J. McCracken, 22 Womersley Mews, Flesbwy, nr. Chelmsford, Essex.
G3DBF F. Knowles, 98 Laurel Avenue, Forest Town, Mansfield, Notts.
G3DCJ J. E. Wootton, Atlantic Breezes, Sennen, Lands End, Penzance, Cornwall.
G3EJO K. J. Marley, Barreg Priory, West Barming, nr. Maidstone, Kent.
G3EJR J. B. Armstrong, Greengarth Hall, Holmrook, Cumberland.
G3EOS A. H. Greasley, East Mill House, Brechin, Angus.
G3FCH Miss Jean Knowles, 98 Laurel Avenue, Holmrook, Cumberland.
G3FPD R. Surman, Lyncoat, Colsefield Drive, Burgham, Guildford, Surrey.
G3GJJ A. H. G. Watson, 122 Huntingdon Road, Cambridge.
G3SY C. Dawson, 5 Monkhouse Road, Salterbeck, Workington, Cumberland.
G4NS J. Hudson, 16 Monkhouse Road, Salterbeck, Workington, Cumberland.
G4OU F. G. Maynard, 51 Fleet Avenue, Sheerness, Kent.
G5WQ J. R. Witty, 116 Marple Road, Stockport, Cheshire.
G6XY R. H. Webb, 233 Warwick Road, Kenilworth, Warks.

CORRECTION

EI6X B. Fogerty, c/o Cliff Power Station, Cloghore, Ballyshannon, Co. Donegal, Eire.
G3FNN J. Shields, Haveringon Road, Benley, Billericay, Essex.
Festival of Britain

It is probably not yet generally known that there is to be a mobile version of the Festival of Britain Exhibition next year. In a great baggage train of more than 100 lorries, about 5,000 exhibits will be transported in turn to Manchester (May 4-26), Leeds (June 23-July 14), Birmingham (August 4-25) and Nottingham (September 15 to October 6). Divided into several sections, the Hobbies Division of the Exhibition is to cover Amateur Radio. At each location where the station is to be in operation, a local amateur will be nominated in charge, with the transmitting licence made out in his name. The GPO will issue a special call sign for use during the period of the Exhibition, and a suitable QSL card is also being designed for the Exhibition station. We shall be keeping readers fully informed on all details as the project gets under way and takes its final shape. Regular activity reports, covering operating experiences at each location, will also appear.

To Whom It May Concern

With reference to the nomination papers circulated to the membership in connection with the recent RSGB Council election, we desire to make it clear that Basil Wardman, Gs5GQ, ceased to be associated with Short Wave Magazine, Ltd., in March, 1938, and since then has not been connected with the Magazine in any way whatever. At that date, thirteen years ago, Short Wave Magazine came under the present Editorial direction, which has remained unbroken ever since.

Radio Amateurs’ Examination—1950

The results of the Examination held in May, 1950, show that a total of 833 candidates sat (898 in 1949), of whom 660 were passed (630 in 1949). The pass rate has therefore improved to 79% compared with 71% passed in 1949. The Radio Amateurs’ Examination is held under the aegis of the City and Guilds of London Institute, for the benefit of prospective amateurs who do not possess the necessary exempting qualifications. The questions set for the 1950 R.A.E., together with extracts from the Examiner’s Report, appear in full in the current (January) issue of our Short Wave Listener & Television Review.

Disturbing News

Further to the note in this space in our last issue, it is now reported that Robert W. Ford, AC4RF, is facing a charge, by the Chinese Communists who captured him at Chendo on October 10, of having “poisoned a high Llama priest.” In the Straits Times of December 5, it is also said that the Chinese are accusing AC4RF of being a “British secret agent.” There is still no news of AC4YN, who is thought to be in Lhasa. For the moment, the Kremlin has stopped the Chinese advance towards the ancient capital of harmless and unarmed Tibet.

Contest Complications

The recent Top Band Club Contest (MCC), organised by Short Wave Magazine and now in its fifth year, is reported elsewhere in this issue. There has been a certain amount of misunderstanding (and protest) by reason of the fact that there was some slight clashing with other contests on the same band. The trouble is, of course, that with so many contests of various kinds on different bands (as there are now) it is almost impossible to avoid over-lapping. The contest season is October-November and January-April, because May to September are holiday months, and December brings preoccupations of its own. Furthermore, so far as we are concerned, contests are always arranged for dates which will enable us to report the results in the next-issue-but-one after the event; so, having regard to the periods available, a glance at the calendar will show that there are, in fact, only a few week-ends during the accepted periods when this condition is satisfied. Hence, it is inevitable that dates clash with other events organised on the same principles. In point of fact, this clashing is hardly ever at all serious and does not in any way affect the level of activity.
The Fifth MCC

The Magazine Top-Band Club Contest

The hat-trick goes to Rhigos, GW3FFE! For the third year in succession this Club has finished well ahead of the nearest challenger. Many of us prophesied that this would be the result, and, sure enough, it is. This Fifth MCC has had more support than any of the previous events, and we finally received entries and logs from 36 Clubs, as compared with 25 last year.

Here, in the traditional position of honour, are the first three—all of them the same as last year:

1st: Rhigos & District Radio Club, GW3FFE (11,917)
2nd: Neath, Port Talbot & District Radio Society, GW3EOP (12,580)
3rd: Coventry Amateur Radio Society, G3FAB (11,250)

Congratulations to these three on maintaining their leading positions. All matters of scoring, location, and so on can be neglected when reviewing the fact that they did make the largest number of contacts and the highest scores.

In fourth place are our old friends of Grafton, G3AFT, who, had it not been for the activities of numerous "phonies," would have ranked second by virtue of their claimed score. But more of that anon.

General Activity

This contest was undoubtedly the busiest of the series. More countries were on the air, as shown by the top multipliers of 11, as compared with 8 last year. Unfortunately, a lot of peculiar people thought it clever to put even more on the air. This caused the judges a lot of trouble, but they feel that their final decision on the question of "phonies" is the fair one.

After due deliberation, this is the

Ruling with regard to the doubtful stations worked by various Clubs:

UA3AKB: This station was not genuine; up to the present, the only three-letter call-signs used in Russia are the Club calls, which begin with K. Had this phoney called himself UA3AKB the judges might have been taken in. One Club, in fact, claimed to have worked UA3AKB, but as it was within minutes of the times at which the others worked UA3AKB, this would appear to have been wishful thinking.

FBOD: Struck off because French stations are not licensed on the Top Band. True, he may have been a French pirate, but might just as well have been anywhere else.

HIATS: This station was worked by a few Clubs and heard by quite a number of them. Those in the North were getting him at RST 589 with no fading, and, on one occasion, his back wave with the key up was audible! He gave his QTH as Milano, which doesn't check with the Call Book, and he used a few Italian phrases including several words that were spelt incorrectly. So the judges had to strike him off too.

There was also a certain amount of doubt about HA5BK/1, but, after due reflection, it has been decided that he might well be genuine and we allowed him to count. Various OK stations also cropped up, but one Club, at least, lost a possible multiplier here by working OK1AJB and logging him (in fact, working him) as "OK1AJ." Others got the four points for the same reason, but only one lost a multiplier.

This left eleven countries as "possible": G, GC, GD, GI, GM, GW, DL, EI, HA, OK and OZ. The latter was represented by the old reliable, OZ1W, but only two Clubs managed to work him, and he was only on the air for a short time. Contacts with GD and EI were numerous, thanks to the stout efforts of GD3UB and El9j.

Reduction of Scores

Practically all Clubs claimed a larger score than they have finally been credited with. In most cases the reduction was due to a number of six-point claims for stations that were not Clubs. But Grafton were particularly unfor-
TABLE I

POSITIONS AND SCORING

<table>
<thead>
<tr>
<th>CLUB</th>
<th>CALL-SIGN</th>
<th>POINTS</th>
<th>MULTIPLIER</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Rhigos</td>
<td>GW3FFE</td>
<td>1447</td>
<td>11</td>
<td>15,917</td>
</tr>
<tr>
<td>2. Neath and Port Talbot</td>
<td>GW3EOP</td>
<td>1258</td>
<td>10</td>
<td>12,580</td>
</tr>
<tr>
<td>3. Coventry</td>
<td>G3FAB</td>
<td>1125</td>
<td>10</td>
<td>11,250</td>
</tr>
<tr>
<td>4. Grafton</td>
<td>G3AFT</td>
<td>842</td>
<td>11</td>
<td>9,262</td>
</tr>
<tr>
<td>5. Gravesend</td>
<td>G3GRS/A</td>
<td>875</td>
<td>9</td>
<td>7,875</td>
</tr>
<tr>
<td>6. Chester</td>
<td>G2YS</td>
<td>829</td>
<td>9</td>
<td>7,461</td>
</tr>
<tr>
<td>7. Edinburgh</td>
<td>GM3HAM/P</td>
<td>825</td>
<td>8</td>
<td>6,600</td>
</tr>
<tr>
<td>8. Harrow</td>
<td>G3EFX/P</td>
<td>672</td>
<td>9</td>
<td>6,048</td>
</tr>
<tr>
<td>9. Medway</td>
<td>G2FJA</td>
<td>650</td>
<td>9</td>
<td>5,850</td>
</tr>
<tr>
<td>10. Edgware</td>
<td>G3ASR</td>
<td>727</td>
<td>8</td>
<td>5,816</td>
</tr>
<tr>
<td>11. Slough</td>
<td>G3BTP</td>
<td>624</td>
<td>9</td>
<td>5,616</td>
</tr>
<tr>
<td>12. West Cornwall (Penzance)</td>
<td>G3DIV</td>
<td>507</td>
<td>8</td>
<td>5,463</td>
</tr>
<tr>
<td>13. Surrey (Croydon)</td>
<td>G8TB</td>
<td>600</td>
<td>9</td>
<td>5,400</td>
</tr>
<tr>
<td>14. Wirral</td>
<td>G2AMV</td>
<td>594</td>
<td>9</td>
<td>5,346</td>
</tr>
<tr>
<td>15. West Middlesex</td>
<td>G3EDH/A</td>
<td>516</td>
<td>10</td>
<td>5,160</td>
</tr>
<tr>
<td>16. Baldock</td>
<td>G3AXP/P</td>
<td>461</td>
<td>10</td>
<td>4,610</td>
</tr>
<tr>
<td>17. Salisbury</td>
<td>G3FKF</td>
<td>506</td>
<td>9</td>
<td>4,554</td>
</tr>
<tr>
<td>18. QAU (Jersey)</td>
<td>GC2FMV</td>
<td>632</td>
<td>7</td>
<td>4,424</td>
</tr>
<tr>
<td>19. Scarborough</td>
<td>G4BP</td>
<td>480</td>
<td>9</td>
<td>4,320</td>
</tr>
<tr>
<td>20. Torbay</td>
<td>G3GDW</td>
<td>435</td>
<td>9</td>
<td>3,915</td>
</tr>
<tr>
<td>21. West Kent</td>
<td>G3FCQ</td>
<td>474</td>
<td>8</td>
<td>3,792</td>
</tr>
<tr>
<td>22. Warrington</td>
<td>G3CKR/A</td>
<td>433</td>
<td>8</td>
<td>3,464</td>
</tr>
<tr>
<td>23. West Cornwall (Falmouth)</td>
<td>G2AYQ</td>
<td>377</td>
<td>9</td>
<td>3,393</td>
</tr>
<tr>
<td>24. Rotherham</td>
<td>G6ZA</td>
<td>396</td>
<td>8</td>
<td>3,168</td>
</tr>
<tr>
<td>25. Birmingham</td>
<td>G2BON</td>
<td>427</td>
<td>7</td>
<td>2,989</td>
</tr>
<tr>
<td>26. Tyneside</td>
<td>G2BOI</td>
<td>371</td>
<td>8</td>
<td>2,968</td>
</tr>
<tr>
<td>27. Southend</td>
<td>G3AXN</td>
<td>494</td>
<td>6</td>
<td>2,964</td>
</tr>
<tr>
<td>28. Sheffield</td>
<td>G8JP</td>
<td>367</td>
<td>8</td>
<td>2,936</td>
</tr>
<tr>
<td>29. Plumstead & Woolwich</td>
<td>G3EIW</td>
<td>351</td>
<td>8</td>
<td>2,808</td>
</tr>
<tr>
<td>30. Wanstead</td>
<td>G3BRX</td>
<td>352</td>
<td>7</td>
<td>2,464</td>
</tr>
<tr>
<td>31. Nottingham</td>
<td>G3E1W</td>
<td>393</td>
<td>6</td>
<td>2,358</td>
</tr>
<tr>
<td>32. Clifton</td>
<td>G3GHN</td>
<td>385</td>
<td>6</td>
<td>2,319</td>
</tr>
<tr>
<td>33. Lincoln</td>
<td>G4BU</td>
<td>251</td>
<td>8</td>
<td>2,008</td>
</tr>
<tr>
<td>34. Grimsby</td>
<td>G3B1X</td>
<td>297</td>
<td>5</td>
<td>1,485</td>
</tr>
<tr>
<td>35. Sutton and Cheam</td>
<td>G3GFA</td>
<td>259</td>
<td>5</td>
<td>1,295</td>
</tr>
<tr>
<td>36. Derby</td>
<td>G3ERD</td>
<td>201</td>
<td>4</td>
<td>804</td>
</tr>
</tbody>
</table>

The business of claiming six points for stations that might have been Clubs, but weren't, was really a sorry affair. We are fully aware that no up-to-date list was published; we have made it clear, in previous years, that this cannot be done on account of last-minute entries and, in some cases, changes of callsign.
The fact is that if all Clubs would do as they are asked and send in entry details by the given date, we could publish a more reliable acceptance list.

But this contest was never meant to be a hit-and-run affair, and surely it was up to the contestants to find out whether the station they worked was another Club or not. (The judges rather regret that they did not institute a rule by which points could be deducted from the score for mistaken claims). Some of the Clubs had extraordinarily optimistic scores in this respect, but it is noteworthy that others did not over-claim a single point. There is a moral in this, somewhere. We have, in any case, definitely decided that in the next MCC the exchange of QTH's will have to include the name of the Club, not merely the location. Many Clubs also lost points for incorrect logging of callsigns and QTH's, and for making more than one contact with the same station.

Criticism of Rules

A number of well-thought-out criticisms were offered in the covering letters. Highest on the list was this business of stations calling 'MCC' although not participating. That has already been dealt with above, and is obviously a matter over which no one will ever have any control.

Next, many Clubs consider that the multiplier system was unfair, placing undue emphasis on the number of countries worked. We are inclined to agree.

Again, almost everyone (including the winning GW stations) considers that the "loading" worked heavily in favour of the GW's, but no one denies that they deserved to win if only on the strength of the large number of contacts they succeeded in making. The "loading" was intended to make scoring fairer for GM, GI and GC, but it certainly made things rather too easy for GW.

Individual comments: Grafton and several others would like to see private single-operator stations excluded in future. Plumstead thought nine days too long. Edinburgh rightly said that the GM stations were handicapped by geography. Slough suggested that, in future, contacts within four miles or less should not be allowed; this would prevent all the local Club members giving points to their own station but no others!

Lincoln would like to see a limit on the length of aerials. Neath and Port Talbot suggests that all Clubs ought to use the callsign allotted to them and should not be allowed to use members' stations.

Gravesend sent in an interesting analysis of past Top Band contests to prove that a shorter operating period favours the "wiley" operator, and were in favour of abolishing the multiplier in favour of a system giving, say, six points for the first contact in each prefix area, five for the second, and so on, until all contacts only counted one.

Many other Clubs made comments on the lines of one or other of the above.

General Criticism

It was surprising to find several Clubs complaining that MCC "overlapped" the RSGB Top Band Contest. Considering that the overlap lasted for only two hours (2100-2300 on the last Saturday) out of 30 hours allowed, we cannot take this seriously. No Club need have been on the air during those two hours; as it was, they all came on and scored many extra points as a result thereof! In any case, for reasons explained elsewhere (see "Here and There," this issue) the calendar of contests has become so crowded that it is no longer possible to avoid a clash with somebody somewhere.

Most people thought the operating standard was high and conditions very good, but a few Clubs criticised certain black sheep who worked a DX station and then stayed on the frequency—certainly not the nicest thing to do.

The QAU Club, Jersey, point out that every single contact, for them, was over a hundred miles. Falmouth heard an "UB5," Southend say that the DX stations were coming in, but for long periods their own signals seemed to go no further than the kitchen sink! Coventry heard UA3AKB, LA7KA, AC4RF and VE6DAjF, as well as sundry W's... They remark that GC and GD were much easier this year. Birmingham had doubts about the HA5, Wirral heard an OE1, and ON3FT being called.

Derby's low score must be excused by the fact that their transmitter was operating from the Club room for the first time, and could only be on the air during school hours, which cut their time drastically. They were operating in a sub-basement 20 ft. down, with a vertical aerial.

Finally, it is pleasing to read Rotherham's remark that all their equipment was home-made, including the electric clocks used for logging purposes.
TABLE II
SHOWING PREFIXES WORKED BY ENTRANTS

<table>
<thead>
<tr>
<th>Club Station</th>
<th>G</th>
<th>GC</th>
<th>GM</th>
<th>GW</th>
<th>DL</th>
<th>EI</th>
<th>GD</th>
<th>GI</th>
<th>OK</th>
<th>HA</th>
<th>OZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>GW3FFE</td>
<td></td>
</tr>
<tr>
<td>G3AFT</td>
<td></td>
</tr>
<tr>
<td>GW3EOP</td>
<td>(10)</td>
<td></td>
</tr>
<tr>
<td>G3EDH/A</td>
<td>(10)</td>
<td></td>
</tr>
<tr>
<td>G3FAB</td>
<td>(10)</td>
<td></td>
</tr>
<tr>
<td>G3AXP/P</td>
<td>(10)</td>
<td></td>
</tr>
<tr>
<td>G3EFX/P</td>
<td>(9)</td>
<td></td>
</tr>
<tr>
<td>G2AMV</td>
<td>(9)</td>
<td></td>
</tr>
<tr>
<td>G3DHY</td>
<td>(9)</td>
<td></td>
</tr>
<tr>
<td>G2YS</td>
<td>(9)</td>
<td></td>
</tr>
<tr>
<td>G3F3K</td>
<td>(9)</td>
<td></td>
</tr>
<tr>
<td>G4BP</td>
<td>(9)</td>
<td></td>
</tr>
<tr>
<td>G3CDW</td>
<td>(9)</td>
<td></td>
</tr>
<tr>
<td>G3GRS/A</td>
<td>(8)</td>
<td></td>
</tr>
<tr>
<td>G2AYQ</td>
<td>(8)</td>
<td></td>
</tr>
<tr>
<td>G3EBO</td>
<td>(8)</td>
<td></td>
</tr>
<tr>
<td>G3TP</td>
<td>(8)</td>
<td></td>
</tr>
<tr>
<td>G2FJA</td>
<td>(8)</td>
<td></td>
</tr>
<tr>
<td>GM3HAM/P</td>
<td>(8)</td>
<td></td>
</tr>
<tr>
<td>G3EIW</td>
<td>(8)</td>
<td></td>
</tr>
<tr>
<td>G6J3P</td>
<td>(8)</td>
<td></td>
</tr>
<tr>
<td>G3ASR</td>
<td>(8)</td>
<td></td>
</tr>
<tr>
<td>G3CKR/A</td>
<td>(8)</td>
<td></td>
</tr>
<tr>
<td>G4BU</td>
<td>(8)</td>
<td></td>
</tr>
<tr>
<td>G3F3Q</td>
<td>(8)</td>
<td></td>
</tr>
<tr>
<td>G6Z3A</td>
<td>(8)</td>
<td></td>
</tr>
<tr>
<td>G2BOI</td>
<td>(8)</td>
<td></td>
</tr>
<tr>
<td>G3BRX</td>
<td>(7)</td>
<td></td>
</tr>
<tr>
<td>G2BON</td>
<td>(7)</td>
<td></td>
</tr>
<tr>
<td>G3F3MV</td>
<td>(7)</td>
<td></td>
</tr>
<tr>
<td>G3GHN</td>
<td>(6)</td>
<td></td>
</tr>
<tr>
<td>G3AXN</td>
<td>(6)</td>
<td></td>
</tr>
<tr>
<td>G3EKW</td>
<td>(6)</td>
<td></td>
</tr>
<tr>
<td>G3CNX</td>
<td>(5)</td>
<td></td>
</tr>
<tr>
<td>G3F3A</td>
<td>(5)</td>
<td></td>
</tr>
<tr>
<td>G3ERD</td>
<td>(4)</td>
<td></td>
</tr>
</tbody>
</table>

Judges' Summing-Up

There is no doubt that most of the criticisms made this year are both sound and sensible. The points loading is now considered unfair, and the multiplier constitutes an invitation to the would-be "phony" to enjoy himself. But all Clubs seem to have found "MCC" a bracing affair again, and most of them promise to be on the mark for the next. Some remark that it is good experience for the younger members, many of whom learn the importance of log-keeping and tight organisation for the first time. Some of them, too, become interested in CW as a result of the contest.

The present line of thought is that future contests in the series should be confined to Club stations operated by the members from the Club room; and possibly that only contacts with other such Club stations should count. In this case, the interest would be sustained by allowing one such contact every day instead of only once during the whole period. But these decisions are for the future, and we have no doubt that "MCC" can be made to keep its essential character, with some of the present unsatisfactory features removed.

In conclusion, we offer our congratulations to the winners; our thanks to all participants for their enthusiasm and their painstaking comments after the event; and to the many transmitters and listeners who went to the trouble of send in Check Logs, again thanks. Here's to the Next!

Date for next "Month with the Clubs" Report: January 15.
Experimenting with T.V. Transmission?

If so, you will need receivers of extreme sensitivity at the minimum cost. Radar receivers, designed for this purpose, and precision built regardless of cost are your best bet, and as releases by the Ministry of Supply are lessening you should obtain your equipment without delay. Below are listed several items we can supply now, many already well known to "Hams," but of course we cannot say how long stocks will last.

RECEIVER R.1355. Has five stages of I.F. with diode detector. Complete with 8 valves VR 65, and 1 each SU4G, VU 120, VR 92. Unboxed, but NEW and UNUSED. ONLY 55/- (carriage, etc. 7/6).

RF UNITS for use in the above receivers comprise the RF, Mixer and Oscillator sections. Type 24 covers 15-30 mcs, type 25 30-45 mcs. They are complete with valves, and are slightly used, price 17/6 each (postage 1/6). New 24s also available 25/- (plus postage 1/6).

I.F. STRIP 194. Has six stages of I.F. with diode detector. A most sensitive strip which is easily modified. Complete with 6 valves VR 65, and 1 each VR 53 and VR 92. NEW and UNUSED. ONLY 45/- (postage, etc. 2/6).

RECEIVER R.3547. Contains the well known "Type" 45 I.F. Strip, and 15 valves EF50, 3 of BB34, 2 of SP61 and 1 each EA50, EBCC3, EF36. NEW and UNUSED IN MAKERS CRATES. ONLY 120/- (carriage 7/6).

RECEIVER R.3004. A very sensitive unit containing 7 valves EF50, 2 EF54 and 1 each VH3A, HVR2, EA50, and a 30 mc I.F. Strip with 4 mcs bandwidth. NEW and UNUSED IN MAKERS CRATES. ONLY 59/- (carriage, etc. 5/-).

INDICATOR UNIT TYPE 6. Contains a 6" VCR 97 CRT Tube, 4 valves EF50 and 3 of BB34. NEW and UNUSED IN MAKERS CASES. ONLY 90/- (carriage 7/6).

THE CLASS A WAVE METER. Another small quantity have become available since our sell out last December. Recommended and reviewed in the "Bulletin" this is essential for all who require a first class crystal controlled wavemeter. Covers 1.8-8.0 mcs and is complete with 100,000 kcs dual crystal, 1 valve ARITH2 and 1 6 volt vibrator. Designed for 6v DC operation, but modification for AC supplied only 79/- (postage 2/6). Transformer for AC modification 7/6.

Cash with order please.

Print name and address clearly.

U.E.I. CORP.
THE RADIO CORNER

(Phone T.E.Rinus 7937)

Open until 6 p.m., weekdays, 1 p.m. Saturdays. We are 2 minutes from Hilda Holborn (Chancery Lane), 5 minutes from Kings Cross by bus.
G2AK

This Month's Bargains

TRANSFORMERS. Input 200/250v in 10v steps. Sec. 500/500v 120 ma. 4v 3.5a ct., 4v 4a., 4v 4a ct., and 10v 1a., 4v can be connected to give 6v if required. First class job. Our price 30/- Post 1/6.

HEAVY DUTY L.F. CHOKEs. FULLY POTTED. 30 Hy. 100 ma. 150 ohms (weight 14 lbs.) Price 15/6. 200 hy. 260 ma. 100 ohms (weight 14 lbs.) Price 15/6. 30 Hy. 150 ma. 150 ohms. (weight 18 lbs.) Price 17/6. All carriage paid. Eire 5/- extra.

MASTER OSCILLATOR UNITS. Type 123. This consists of a silver plated box 6 ins. X 3ins. X 3ins. containing a rotating coil of 50 turns on a 1/4in. x 3in. former. This is driven by a J.B. type S-1 reduction drive fitted with a 0-100 engraved dial. Given away at 5/- plus 1/ post.

SCR522 TRANSMITTERS. (Part stripped), 10/- each. Post and packing 2/6.

VIBRATOR PACKS. 6v input, output 180v. 40 ma., fully smoothed 19/6 post 1/6 extra.

TWIN FEEDER. 300 ohm Heavy Twin Ribbon Feeder 5d., per yd. Standard K55 300 ohm Twin Ribbon Feeder 9d., per yd. Co-ax Cable 4.5in. dia. 70 ohm 8d. per yd. 4.5in. dia., 1/- per yd. Post on above feeder and cable 1/6 any length. COMPLETE NOISE LIMITERS. Wired on a small sub chassis with 6H6 type valve, boxed, with circuit and instructions. Only 5/- post free.

OIL FILLED CONDENSERS. Best U.S.A. makes. 2 mfd 3000v 5/- each.

STATION LOG BOOKS. 200 pages printed one side only. Size 8ins. X 11ins. First class paper and bound with heavy cover. Price 17/6 Post free.

BC306A ANTENNA UNITS. These consist of a very fine black crackle case 16ins. high, 8ins. wide and 8ins. deep. Three-bank 5-position low capacity switch (all ceramic). Smart slow motion drive and dial. Pair of large stand-off insulators on top of cabinet. Excellent for V.F.O.'s Top band Transmitter, etc. Brand new in original cartons. Price only 12/6 post free.

MOVING COIL HEADPHONES with moving coil hand microphone. Price 6/- plus post 1/.

AR88D SPARE CRYSTALS. 455Kc/s 15/- each.

CHAS. H. YOUNG, G2AK
All Callers to 110 Dale End, Birmingham CENTRAL 1635
Mail Orders to 102 Holloway Head, Birmingham MIDLAND 3254

THE FINEST CORED SOLDERS IN THE WORLD—NOW PRESENTED IN

a Complete Kit for every soldering job

At last—you can buy a complete range of Multicore Solder enabling you to do perfect soldering on your equipment, for only 2/1/2. The Multicore Solder Kit contains two specifications of Ersin Multicore Solder and two of Arax Multicore Solder, providing the right solder for all radio, television and electrical work, as well as for ordinary metals, soldering chassis construction, etc. Your workshop is not complete without the Multicore Solder Kit—the finest two-shillingworth on the market.

The Multicore Solder Kit contains a carton of each of the following specifications:

- Ersin Multicore Solder
 - 4 ft. 60/40 alloy 15 S.W.G.
 - 3 ft. 40/60 alloy 16 S.W.G.

- Arax Multicore Solder
 - 4 ft. 60/40 alloy 18 S.W.G.
 - 3 ft. 40/60 alloy 16 S.W.G.

These specifications, as well as other gauges of the same alloys, are also available for larger users in Ersin Multicore Size One and Arax Multicore Size Eight Cartons, price 5/- each.

Ask your usual retailer for the Multicore Solder Kit. In case of difficulty, send 2/- with name of your usual stockist.
Benson's Better Bargains

TERS: C.W.O. CARR. PAID OVER 7/6. S.A.E. ENQUIRIES PLEASE

W. A. BENSON, 308 Rathbone Rd., Liverpool, 13

THE AMATEUR RADIO SERVICE

Moorside Mills, Lomax St., Bury, Lancs.
Phone: Bury 1778

VALVES: 807's 6/-; 1628 3/-; TT11 4/-; EL32 4/-; 5L4G 5/-; GLM 7/-; VR150/50 (brand new and boxed) 5/6; 615 GT (brand new and boxed) 2/6; EF50 4/6; EB3 1/-; 6Q7 G 5/-; 860 3/-; 9AX 3d.

VALVE HOLDERS: Brand new Ceramic B9G for EF50, etc., 4d. each. 3/- per box.

R.C.A. MODULATION TRANSFORMER $1.25; $3.10 per box. 3/- each. 6/- per 4 boxes.

R.C.A. DRIVER TRANSFORMER 500 ohm to 800 grids split sec. 6/-; 1/6 P.P.

MAINS TRANSFORMER: Primary 110/200/225/250V. 50 cycles, Secondary 670-0-679V. 200 ma. 5v. 3 amp. 63v. 2 amp. (Admiralty ratings), brand new. Size Ss. x Ss. x Ss. high. Only 25/-; 1/6 P.P.

ET4436 TRANSMITTER CASE with side and rear panels, 1/4, plus 10/-.

TEST SET TYPE 74. Ideal foundation for oscilloscope consists of a special purpose test set which is easily modified. Built in power pack uses 250v. 50 cycles and provides both E.H.T. for the tube and HT for the time base and amplifiers and all LT supplies. The unit is complete except for the 3n. C.R. tube, type V.C.R. 139 and contains 1 5Z4, 1 VU120, 5 V6C6's, 1 6L6 and 1 6AQ5. Housed in attractive metal case 10 x 12 1/4 with "X" Shift, "Y" Shift, "Brightness" "Focus" Controls brought out on front panel. Our price £3, plus 3/- each.

1131 MODULATOR UNIT in very good condition less valves but with meter. Designed for mounting in standard rack (19ins.) with a 10in. panel. Consisting of completely screened speech amplifier for use with B.W.A. Mike. The Modulator Driver stages are in P.P. and the output stages delivers 150 watts using 2.T.Z.40's. Full output is obtained with an input of 0.6v. Our price £3/15/6, plus 10/-.

1131 MODULATOR POWER UNITS. In good condition but less rectifiers. Input 230v. 50 cycles, output 1000v. 300v. 63v. and 7.5v. Our price £5, plus 3/-.

1131 P.A. POWER UNITS. In good condition but less rectifiers. Input 230v. 50 cycles, output 1000v. 300v. 7.5v. Both of these Power Units have standard rack panels which are 19ins. high. £5, plus 17/6.

1131 CONTROL UNITS in fair condition require slight attention only 25/- plus 7/6.

1131 P.A. UNITS as previously advertised less meters and valves 10/- plus 7/6 carr.

YAXLEY TYPE SWITCHES 4-pole 3-way 4-bank, new and unused, 1/6 each.

R.F. CHOKES TYPE 1010 as previously advertised, 9d. each. 7/6 each.

BOWTIE TYPE RESISTORS for ET4436 TX. Brand new. 6/- each.

Ignite Jack Sockets 1 1/4. Plug with 5ft. lead for same, 1/4.

Pye Co-ax plugs and sockets, 6d. per pair.

Co-ax connectors, 4d. each.

RESISTORS: 100 ohms 40W. 6d., 30K. 15W. 3d., 40 ohm 5W., 47 ohm 4W., 10K 2W. preset pot 6d.

Please include sufficient to cover postage and packing. S.A.E. for our latest comprehensive list of Radio Components.
BROOKES FOR CRYSTALS
with a World-Wide Regn'ation for Quality

TYPE "M"
Range 8 to 17 mc/s.
Hermetically sealed metal can 1/8" pin spacing,
3/32" diameter pins .75" high, .75" wide and .35" thick.

BROOKES CRYSTALS LIMITED
10 Stockwell Street, Greenwich,
London, S.E.10
Phone: Greenwich 1828. Grn.: Xtsls.

G2ACC OFFERS YOU—
BEST MAKES—PROMPT DELIVERY

• BELLING-LEE

• EDYSTONE
"740" Receiver £32/10/0.; "750" £59/10/0.; "680" £89/5/0.; 689 Semi-automatic Speed Key 85/3; 669 "S" Meter 115/6.; 145 Mcs. Beam Aerial Kit 96/3.; 145 Mcs. Tuning Assembly 19/3.; 598 Full Vision Dial 19/3.; All other components in stock.

• G.E.C.
BTM400 14 valve Communications Receiver £120/0/0. Send for illustrated brochure.

• WODEN
Complete range of Driver, Mains, Filament and Microphone transformers, smoothing and swinging chokes normally in stock.

• TELCON
K25 300 ohm twin feeder 9d., yd. K35 300 ohm low loss tubular feeder 1/3 yd.
Postage extra on orders under £2.
All leading makes Amateur Equipment Supplied.

SOUTHERN RADIO AND ELECTRICAL SUPPLIES
85, FISHERTON STREET, SALISBURY, WILTS.
Telephone: Salisbury 2108.

Come to SMITH'S OF
EDGWARE ROAD
THE FRIENDLY SHOP
FOR ALL RADIO COMPONENTS
We stock everything the constructor needs—our 25 years' experience of handling radio parts and accessories enables us to select the best of the regular lines and the most useful items from the surplus market in:

Loudspeakers and Phones Valves and CR Tubes
Transformers and Chokes Cabinets and Cases
Meters and Test Equipment Capacitors and Resistors
Pickups and Turntables Coils and Formers
Switches and Dials Plugs and Sockets
Metalwork and Bakelite Aerials and Insulators
Books and Tools Motors and Generators
Valve Holders and Caps Wires and Cables
Metal Rectifiers Panel Lights and Fuses
Sleeving, Nuts and Bolts, Tags, Clips, Grommets and all other bits and pieces.

NOTHING TOO LARGE—NOTHING TOO SMALL
Everything you need under one roof—at keenest possible prices

No general catalogue is issued owing to constantly varying stocks and prices, but we shall be pleased to quote you. Lists are available for the following lines, in which we specialize, and can thoroughly recommend:

1. The increasingly popular "Electro-Voice" range of Transformers and Chokes, "As good as the best—but cost little more than the cheapest"
2. The "G.L.G." 14-gauge Aluminium Chassis. "For the man who takes a pride in his rig."

H. L. SMITH & Co. Ltd.
287/9 Edgware Rd., London, W.2
Tel.: Paddington 2991. Hours 9 till 6 (Thurs. 1 o'clock)
Near Edgware Road stations, Metropolitan and Bakerloo

Communications Transmitter
ET-4336B
We have been fortunate in securing a small number of these magnificent transmitters which are brand new and unused. (Outer cases may have slight blemishes).

TECHNICAL SUMMARY

£60 each

H.P. RADIO SERVICES LTD.
Britain's Leading Radio Mail Order House.
55 County Road, Walton, Liverpool, 4
Estb.: 1935
SAMSONS
SURPLUS STORES

36ths. AERIAL MAST. R.A.F. 'Type 50.' Complete kit consists of nine Tubular Steel Sections, length 4ft., diam. 2ins. Set of pickets, top plates, guys, and all fittings. Ideal for Television Aerial Mast. Price £8/6/0. Carr. 7/6.

HEAVY DUTY AUTO TRANSFORMERS. 1.5 KVA. Tapped 0. 110, 150. 190. 230v. Price £4/10/0. Carr. 6/6.

30ft. LENGTH COILS CO-AXIAL CABLE. With Pye sockets on each end. Price 8/6. post 9d.

16/9/17 EDGWARE ROAD
LONDON, W.2. Tel: PAD 7851

125 Tottenham Court Road, W.1. Tel: EUS 4982

HUNDREDS OF BARGAINS FOR CALLERS

Edgware Road Branch Open All Day Saturday.

All orders & enquiries to our Edgware Rd. branch please

CONTROL CABLES, 14 ft., with adaptors or B.C.453/4/5. 9/6 each. R.A.F. BOMBSIGHT COMPUTERS. Complete, brand new, with motors, gyro gears, blowers, etc., etc. Ideal for model makers, etc. The best component value ever offered. £3/5/-. each, plus 5/-. LUFBRA HOLE CUTTERS. Adjustable from 1 1/2 to 3" for use on wood, metal, plastics, etc. 5/6.

CONTACTOR TIME SWITCHES. By Smith or Vanner. 10-hour movement with thermostat control. 2 impulses per second. Complete in sound-proof case. 1/14.

HAND GENERATORS. 6 volts at 5 amps. Complete with crank. 20/-.

RADIO CLOTHES INDICATORS, with internal Selvyn motor. 3" dial, 13/6; 5" dial 15/6.

INVERTER UNITS, Type (P.E. 206A) 206-A D.C. input 27 volts at 38 amps., 6000 r.p.m. A.C. output, 80 volts, 600 cycles. Complete brand new with spares. £3/10/0 each.

CHANCERY LONG PLAYING ATTACHMENTS—NEW—using I.F. records on radiogram or Record Player with high fidelity Decca Pick-up, £6/5/0 including carriage and packing.

Full list of Radio Publications, 2/4d.

SOUTHERN RADIO SUPPLY LTD.
11 Little Newport St., London, W.C.2. Gerrard 6653

QUALITY REPRODUCTION

High quality Reproduction is one of the outstanding characteristics of S. G. BROWN Type "K" Moving Coil Headphones. Excellent for DX work, laboratory purposes, monitoring, etc.

D.C. Resistance 47 ohms. Impedance 52 ohms at 1,000 c.p.s. Sensitivity 12.5 x 10-12 watts at 1 K.C. = 0.002 DYNE/CM2.

Where High Sensitivity is desired it is definitely obtainable when you choose and use S. G. BROWN Type "F" (Featherweight) Headphones.

D.C. Resistance 4,000 ohms. Impedance 14,000 ohms at 1,000 c.p.s. Sensitivity 8 Dbs below 1 microwatt per bar at 1,500 c.p.s. Weight 9 ozs.

Write for Brochure "S" it gives details of all types of S. G. Brown headphones.

S. G. Brown, Ltd.

SHAKESPEARE STREET, WATFORD, HERTS.

RADIO SUPPLY CO.
34, Hanover Street, Park Lane, Leed.

BRAND NEW GUARANTEED GOOD MAIDS TRANSFORMERS. Fully interleaved and impregnated. Primaries 200-230v 60 cycles increased.

Drop through types, with TOP Shroud

250-0-250v 70ma., 6-3v 5a. 18/11

250-0-250v 60ma., 6-3v 5a. Midget, 24-28/1.

350-0-350v 60ma., 6-3v 5a. 14/11

350-0-350v 80ma., 6-3v 5a. 17/9

350-0-350v 120ma., 6-3v 5a. 10/6

450-0-450v 120ma., 6-3v 5a. 25/9

550-0-550v 150ma., 6-3v 5a. 20/9

Fully Shrouded Upright Mounting Types

250-0-250v 60ma., 6-3v 5a. Midget, 21-5/- 15/6

250-0-250v 100ma., 6-3v 5a. 20/9

350-0-350v 100ma., 6-3v 5a. C.T., 0-4-5v 3a. 24/6

450-0-450v 150ma., 6-3v 5a. C.T., 0-4-5v 3a. 27/9

550-0-550v 200ma., 6-3v 5a. C.T., 0-4-5v 3a. 42/6

ELECTROLIGHTS. 8 mfd. 450v small smel. tube, 1/12 ea.; 16 mfd. 500v small cases, 2/8 ea., 18/6 doz.; 8-16 mfd. 4-5v cans, 2/8 ea.; 50mfd. 12v, 8d.; 4 mfd. 200v tube, 6/- doz.

SMOOTHING CHOKES. 40 ma. 10. 360 ohms, 2/3

60 ma. 15. 400 ohms, 2/3 ea., 18/- 10. 360 ohms, 2/3 ea., 15/-; 60 ma. 15. 360 ohms, 2/3 ea., 16/-; 60 ma. 10. 100 ohms, 2/3 ea., 16/-; 60 ma. 8. 100 ohms, 2/3 ea., 16/-; 60 ma. 5. 100 ohms, 2/3 ea., 16/-; 60 ma. 3. 100 ohms, 2/3 ea., 16/-.

OUTPUT TRANS. 6V5 to 2-3 ohms (small), 1/11; push-pull 10 to 6W, P34/6, 2/3-3-15 ohms, 15/-. Williamson type, exact to author's spec., 6/-. MISC. ITEMS. Ex-Govt. Aludite Coil Formers size 7m. 4-1/2" dia. 100. 12/6; 4-1/2" dia. 200. 22/6; 6-1/2" dia. 200. 22/6; RECEIVER CABS, size approx. 16 x 4 x 7-1/4. Out for dial and speaker. Fitted speaker fabric and back relieved in cream cellulose, 10/6 ea. T.V. shades, 12" cream, 12/6.

TERMS. C.W.O. or C.O.D. over £1. Post extra under £2.

Full list 8d. Special list for trade, 6d.
CONSISTENTLY Accurate

PULLIN SERIES 100 TEST SET

Sensitivity 10,000 ohms/volt with A.C./D.C. Voltage Multiplier for 2,500v and 5,000v. Volts A.C. and D.C.
Range: 10, 25, 100, 250, 500, 1,000. Milliamps D.C.
only: 2.5, 10, 25, 100, 500. Ohms: 0-10,000 and 0-4 megohm. A.C. Current Transformer. Range: 0-100, 0-250, 0-500, 0-1k, 0-5k, 0-250 amps.

We can give early deliveries.

Address all enquiries to:

MEASURING INSTRUMENTS (PULLIN) LTD.
DEPT. L ELECTRIN WORKS, WINCHESTER ST., LONDON, W.3. Telephone: ACorns 4651/3 and 4995

More Useful Bargains!

NIKE CELLS. Type F, 4 new 12 V, 45 a.h., 9 cells in wood crate £210/0, carriage extra.

Inverters. 28 V, d.c., input 115 V, 21.6 A, 400 cycle, a.c. output, £1210/0, carriage extra.

WIRE. Glass covered 21 gauge on 14/20 lb. reels, 4/6 lb. large quantities at special prices. Amber silk tape $1 width 21/2 roll. Insulation tape 1d, roll, post 1d. Field wire, new D.S., twin, 1 mile drum twin wire, 28/10/0.

THE RAYCRAFT KIT, new, comprising 10,000 ohm relay, light ray cell in bakelite case, megastat, valve holder, condenser, etc., with instruction book, 45/0.

RELAYS. S.P.O. bank of 20 100 ohm relays, enclosed in metal case, 10/0, post 2/. G.P.O. relays in circular metal cases, as new, operate on 6-12v 30 ohms. 2 S.P.C.O. contacts 185 ohms. D.P.C.O. contacts 1,000 ohms, 2,000 ohms, both 2 S.P.C.O. contacts, 2/6 each, post 6d, or 1 doz. for 25/-, post 2/6.

MORSE KEYS, Brush up your Morse! A. M. Morse Keys, precision made on ebene base with insulated knob, beautifully balanced, 21/2, post 9d. Practice Buzzer in metal case, tunable note, 2/6. G.P.O. twin-coil buzzer, 2/6, post 6d. High note, tiny Townsend Buzzer, tunable note, 5/0.

MOTOR GENERATORS. A.C./D.C. 2 h.p. 200/250 volt 50 cy. S.P. induction motor direct coupled on C.I. Base to 100 volt 1.4 kw. D.C. Generator, 2,850 r.p.m.

THE DEM. CONTINUITY TESTER. A self-contained portable circuit tester for all electrical circuits; totally enclosed in polished wood case 4ins. x 3ins. x 2ins., with carrying strap and contact switch, price with battery and single phone, 8/-, post 1/4.

ELECTRADOX RADIOS

214 QUEENSTOWN ROAD, LONDON, S.W.8

Telephone: MACaulay 2159
SHORT WAVE MAGAZINE

S648 RECEIVER as new £21. AR88D Showroom Condition £45 carr. paid. POWER PACKS 230v. input, 500v. 250mm. output in grey cabinet with Pilot Lamp £21/15/0 plus carr. TRANSMITTER, complete Fone/cw. Y.F.O. Band Switched Exciter 30 watt, in table type black crackle cabinet with external power packs, £45 carr. paid. PAN ADAPTORS, in good working order. A ready made scope, £7/10/0, DIALS, 4in. m.p. engraved 4/6 each. H.V. CONDENSERS, 4 m.f.d., 1000v., w.k.g., 5/- each. COILS, P.A. Plug in, 28mc, 14mc, 7mc, 3/6 each. Rx., 6-pin, all sizes, 1/6 each. Rx., 4-pin, few left, 1/10 each. STEEL CRACKLE CABINETS, all shapes and sizes from 17/6 each. TRANSFORMERS, all voltages, from 6.3 to 2000v. Get our price. VARIABLE CONDENSERS Midget and Standard Rx. types, all values, 1/- each. METERS, 0-5 and 0-500 ma, 6/6 each.

BARGAIN PARCELS. Tx. assortment including Meter, Valves, Coils, Dials, Condensers, Chokes, etc. £1/10/0. Rx. assortment including Valves, Dials, Variable Condensers, Fixed Condensers, Valve Holders, Set Coils, Jack, etc. £1/10/0.

MONEY REFUNDED IF NOT SATISFIED. Please include carriage unless stated otherwise.

SHORT WAVE (HULL)

30-32, PRINCES AVENUE, HULL.

Barnes Rad. - Elec. & Wholesale Co.

12 Pipers Row, Wolverhampton, (Central).

Insulated test prods with knob 1/9 pair: swinging chokes 3.6-4.2h at 150 m.a., 204 at 1/m/s 15/-; B.C.624 for 2 metres, etc., new but less relay, 11 valves, few left, 36/-; new Ferranti LF interstage transformers, A.F., 6/-; Set of 5 car plug and dist: suppressors, 6/6; Valves (new) K903 3/9, K902 7/6, 5.130 voltage stabilisers 10/- pair; E.H.T. V.U.120 9/-; 6SV7 4/6; 1.5v telephone batteries 4/6 doz. delivered; Vitreous resis. 20 watt 3", 300 ohm 1/6, 174 ohm 1/9, 100 ohm 1/6 or dozens: 16/-, 19/-, 16/-. 75PF. Ceramic variables double ended for F.A.24 etc., 4/-; New block 4 mf 2000v oil 15/-; 4 mf 1000v porcelain tops 5/-. R1116 all-wave battery receivers, tested, special leaflet, 3d.; Swimmers lifebelt, new, 4ins. diam. by 3ft. with string, 4/-.

WANTED . . .

All types of receiving and transmitting valves, regulator, control and special purpose valves. V.H.F. and S.H.F. valves.

Klystrons and magnetrons.

Radar units and accessories.

Wave guide sections and pieces.

Cathode Ray Tubes.

Centimetric instruments and equipment.

Large or small quantities.

Details to BOX OFFICE No. 839.

SMALL ADVERTISEMENTS

9d. per word, minimum charge 12/-. No series discount; all charges payable with order. Insertions of radio interest only accepted. Add 25% for Bold Face (Heavy Type). No responsibility accepted for errors.

TRADE

HEADPHONES: LR brand new, 5/6 pair. Meters: 0.5 amp RF thermo-couple, 4/6 each. 500 micro-amp m/c, 7/6. Stamp for lists. Bold & Burrows, 12 Verulam Road, St. Albans. (Tel. 5951).

INDIVIDUAL service covers details, calibration, conversions all equipments and surplus. S.A.E. A. J. Schöffel, A.M.I.E.E., 3 Sussex Chambers, Havelock Road, Hastings.

OSL’s and LOGS by MINERVA. The best there are. Samples from Minerva Press, 45 Queens Road, Brentwood, Essex.

WANTED: RCA speech amplifiers Type MI-11220 J or K and telephones Type E8S. Offers stating quantity and price to Box 859, c/o Spiers Service, 69 Fleet Street, E.C.4.

DE LUXE INSTRUMENT CASE

13" x 8" x 8" in 150. Steel with Radiused Top Corners, Louvred Back and fitted with Chromium Plated 4" Handle and four P.V.C. feet. Finished in Black, Grey or Brown Wrinkle Grain. £1 10/0.

With Front Panel in 164. Aluminium £1 2/6.

Small Steel Chassis with Angle Brackets to 91, Black £1 6/6.

Postage and Packing, 1/-/d. Carriage Paid on Orders over £2. Illustrated Lists on Request. TRADE Enquiries invited.

REDSOUND ENGINEERING & ELECTRICAL COMPANY

"REDSOUND WORKS."

COLESHILL ROAD, SUTTON COLDFIELD.

Tel.: SUT. 4685.

Grams: Reosound, Sutton Coldfield.
SMALL ADVERTISEMENTS

TRADE—continued

HALLICRAFTER BC614 speech amplifiers, complete with valves, £18/0/0 delivered. Bendix Frequency Meters, Type BC221, new, perfect, £29/0/0. Type T665 Units from the BC610. Types TU6, TU7/8/9/10 and TU28B, all new with covers, 12/6. BC348 Receivers, reconditioned and perfect, with valves, £28/0/0 each. Spares for Hallicrafters BC610, RCA E74396, Transmitters, American Transmitting Valves in stock. McElroy Adams Mfg. Group, Ltd., 46 Greyhound Road, London, W.6. (Phone: Fulham 1802, Cable: HALLICRAFTER, LONDON.)

W.E. will buy: 250 TH Tubes (new) also AR88D Receivers, and any surplus Commercial Radio parts and equipment. Box No. 861.

QLS CARDS AND LOG BOOKS. APPROVED G.P.O. SAMPLES FREE. ATKINSON BROS., PRINTERS, ELLELAND, YORKS.

LANCASHIRE CONSTABULARY. SALE OF SURPLUS RADIO EQUIPMENT. The following radio equipment will be available for inspection at the County Police Office, Northumberland Road, Old Trafford, Manchester 16, from Monday, 22nd January, 1951 to Friday, 26th January, 1951, inclusive, between 9 a.m. and 5 p.m. 146 “National” Type 1-10 and regenerative Receivers. 82 Ferrari 12 volt Power Packs for “National” Type 1-10 Receivers. 28 Masteradio 12 VHF telephony mobile Transmitters for “National” Type 1-10 receivers. 34 VHF telephony mobile Transmitters Type S.440, by Straton & Co. 12 VHF telephony mobile Transmitters Type S.440C, by Straton & Co. 16 VHF telephony mobile Transmitters by Straton & Co. 6 VHF telephony mobile Transmitters. The equipment is for sale IN FULL and no guarantee attaches to the equipment which is for inspection and not later than the 5th February, 1951. R. Adcock, Clerk, of the Standing Joint Committee. County Offices, Preston.

MAGNETIC Tape Recorder Construction. Electrical and Mechanical Theory, full constructional data and dimensioned sketches for building a Recorder needing one motor only. 21/14 caps pages, 11 sketches, 7/6 post free. GM6LS, 15 Constorphine Hill Road, Edinburgh.

110v. Double ended Fan motor in metal case 22/6 plus 2/6 carr. 110v. Mains Trans. 0-20V. 20mA output. Potted Type, 20/plus 1/9 carr. 110v. Mains Trans. 450-0-450V. 200ma 5v. 3A. 6v. 3A Twice, Potted Type, 20/plus 1/6 P.P. 110v. HV Insulated Heater Trans. 6.3v. 2 amps. 8/6 plus 1/6 P.P. Well assorted packs of 2BA, 4BA and 6BA nuts and screws, etc., 2/6. The Amateur Radio Service, Moorside Mills, Lomax Street, Bury, Lancs. (Phone Bury 1778).

READERS’ ADVERTISEMENTS

3d. per word, min. charge 5/-, payable with order. Box numbers 1/6 extra.

1 mc calibration crystal by R.C.A., 12/6. 465 kc resonator, 5/-, SX28, Offers? Wanted B2 or cabinet transmitter. Offers to Box No. 871.

FOR Sale. HRO Senior, with power pack and all coils amateur bands, xtal phasing, and S-Meter, perfect, £30 or offer? For Sale. Hallicrafter S27, £25 or offer? Box No. 873.

R.208 excellent condition, 10-60 mc, extra IF amplifier, spade, and all valves: 134 countries, 37 Zones, £12. Norden (BRS14237), 9 Leaside Crescent, Golders Green, N.W.11. (SPE 5186).

PUBLIC OPINIONS!

Read these extracts from letters requesting a copy of the Candler "Book of Facts."

"I have heard such lavish praise from members of the R.S.G.B. and personal friends regarding your methods of teaching Morse that I write for your 'Book of Facts."

"I am an absolute beginner, but knowing of the efficacy of the Candler System, I should be glad if you would forward your 'Book of Facts."

"I was a beginner of Morse and I would like to improve. I have heard glowing reports of your system and am very interested."

"Kindly send me details of your 'Scientific Code Course for Beginners.' I know enough of your system and am not interested to require any particulars."

The following extracts are from letters sent only by Candler students:

"I would like to take this opportunity of thanking you, not only for the Course, which I consider to be invaluable 'value for money,' but also for your kindness and personal attention."

REF. 3001. X.H.

"I have successfully passed the P.M.O. amateur's licence test and have been allotted my callsign. I took it with ease, after completing lesson 3."

REF. 3390. F.H.T.

"Have passed out on the final Morse exam, here with a plain language speed of 50 w.p.m. and code, letter groups mixed at 20 w.p.m. Sending at 30 w.p.m."

REF. 3004. E.L.

"I passed the code test to obtain my Amateur Licence with flying colours. The Telegraph Inspector wanted to know where I had learnt to do Morse with such precision and co-ordination. I could do nothing but give all the honours to the Candler System."

REF. 2908. P.J.L.

There are CANDLER MORSE CODE COURSES for Beginners and Operators. Write for the Candler "BOOK OF FACTS." Free on request.

VALVES

ABSOLOUTELY BRAND NEW ORIGINAL CARTONS

6V6, 5Z4, 6K7
5U4, EBC33, EF39
37, EB8, 6N7
6X5, 807, 6AJ7
EL32, EK32, VR54
77, 78, 3Q5
6K7GT, 6Q7, 607GT
6C5, 6C6, 6D6
EF36, VR137, EC52
6G6, 6SK7, 7Q7
5Y4, 5Y3, 6AG7
6J7, 12A6, 6F6
VR150/30, 6SG7

MOST OTHER TYPES

SEND FOR LISTS. C.O.D. OR C.W.O. CARRIAGE PAID OVER 15/-.

ALPHA RADIO SUPPLY CO. 5/6, Vincen Chas., Victoria Square, LEEDS, 1.
M. & J. PEARSON
263 GALLOWGATE, GLASGOW, C.4
Offer the following Clearance Lines.
0.500 Micro Ammeters 2½in. Flush Type, New. 16/6 each. 0.100 Micro Ammeters 2½in. Flush Type Calibrated 0.1500, 16/6 each. 0.20 Volt A.C. 2½in. Flush Type, 8/- each. 0.5 amp R.F. meters 2½in. square, 3¾ each. 0.50 M.A. Amp 2½in. surface mounting, 6½ each. 100 w/c Crystal R.R.C.A. or Biley, 12/6 each. Selenium Rectifiers 24 Volt. 4 amp. Full Wave, 25/- each. Selenium Rectifiers 12 Volt. 4 Amp, Full Wave, 15/- each. Choke 10½H. 650 M.A. Totally enclosed 7½ins. x 7½ins. x 7½ins. Weight 30 lbs. Made by Parmeko, 2½ each. Swinging Chokes 3.6/4.2H. 250 M.A. Totally enclosed. 4½ins. x 4½ins. x 3½ins., 7 lbs. Parmeko, 7½.
All prices include postage.

— EASIBINDERS —
for
THE "SHORT WAVE MAGAZINE"
Bind your issues in the Easibinder. By a simple operation the journals are inserted with a steel wire, and at once become a neatly bound volume for the Bookshelf.
The Easibinder is bound in green cloth, and gold-blocked with title and year on the spine. It will hold 12 issues. (One volume).

PRICE II/3 (Post Free)
A Binder can be sent on approval if requested. When ordering please state the years to be blocked.

EASIBIND LTD
PILOT HOUSE, MALLOW ST, LONDON E.C.1

SUPERIOR SHORT WAVE KITS
Proven Performance—Minimum Cost!
NEW JUNIOR "GLOBE KING" KIT 21/-
Includes: Machine drilled metal chassis, coil, all components, together with simplified "Easy-Build" charts and wiring diagrams. Price includes post and packing. (Available in "GLOBE KING" Senior Model Kit 49/6d. RADIACRAFT "DX-2" superb new kit, price only 78/6. A.C. operated 2v, using EF50's and latest miniature Eddyzone Coils. Write for interesting free literature and catalogue—enclose stamp for postage.

JOHNSONS (RADIO) N/2 MACCLEFIELD
CHESHIRE - ENGLAND

TRANSFORMERS
1. 250-0-250V. 80m.a.; 4v. 5a; 6.3v. 4a; 4v. 2a; 5v. 2a.
2. Same as 1 but 350-0-350v.
3. 24v. 2a. tapped to give steps of 3v. up to 24v.
All secondaries 200-220-240v.
1½v. each all types. Postage 4/- or more post free.

HILLFIELDS — RADIO —
8, Burnham Road, Whitley, Coventry.

SMALL ADVERTISEMENTS
READERS'—continued

EXCHANGE: R107 (S-meter), FB condition.
Also Type 38 Mk II transceiver, with throat mike and aerial, RP24 unit, both new. Will exchange for BC438, 200/250v AC input. |840; or what offers? Equipment, not cash. B.S.WL 8334, 154 Mill Hill, Deal, Kent.

Offers: G3DAM, Offenham Road, Evesham.

HRO complete, 6 coils (4 Bandspread), power pack, speaker, 150 watt Tx complete in steel cabinet, separate self-contained VFO/CO, all in excellent condition, £50 or near offer. Box No. 888.

B2 outfit required complete, must be in good condition. Write immediately: G3EDE, 39 Wimborne Drive, Eastcot, Pinner, Middlesex.

1134 AF amplifier with valves, 4/-, 1/6 post. 405, 5/-, 6J5, 2/8. S.A.E. for list. G3FXY, 26 Landseer Road, Hove 4, Sussex.

FOR Sale: B2 Tx/Rx, complete all spares. Excellent condition. Also Zeiss-Ikon camera. Exchange for No. 19 set or good receiver. G2DHF, Pendennis, St. Erth, Cornwall.

GOING VHF: All present equipment for sale at low prices. Eddyzone 750 receiver, latest model, brand new condition. BC221 Freq-Meter, with stabilised power pack. 150-watt rack transmitter, also large quantity of radio gear. G5SN, 7 Sidwell Terrace, Exeter.

AR88 in first-class condition wanted by amateur. Collection arranged. Details and lowest price to Box. 848.

SALE new boxed valves. 4- RCA 813, £1/10/0 each. 6-TZ40, £1 each. 12 866A 10/- each. 8 Elmar 39E, £1/5/0 each. Case for BC221, £2/10/0. Collins T.C.S. Tx Rx and tuning unit, as new, £11. RAC77E good condition, £25. You collect. 123 Hamil Road, Burslem, Stoke-on-Trent.

R.C.A. Transformer 400-350-0-340-400 at 200 ma. 6.3v. at 6 amps, 5v. at 3 amps. Chassis, 10 Hy choke, condensers, fuseholders, switch, £2/15/0. 35 Milton Street, Patricroft, Manchester.

WANTED CV90, kystrons suitable hamband conversion, waveguide sections, crystal diodes, other micro-wave gear. Will, Moor View, Wrefords Lane, Exeter.

SMALL ADVERTISEMENTS
READERS—continued

(V55R) and (BC348-L) Rx for sale. Both excellent condition. £15 each. Internal P/P, also loud speakers. Box No. 860.

MARCONI B36 (less valves) new, £7/10/0 plus carriage. Set and odd ranges Eddystone 358X coils. Offers: 200 Queens Road, Keighley.

COMPLETE Station—AR88D almost new, with crackle speaker, set spare valves. 80 watt Tx, 813 final, mercury relays, spare valves. VFO with P/P, crystal and carbon mic. Wave meter. 3-element rotary beam. Sundries £90. Consider 16mm talkie and/or Home recorder. Box No. 883.

HALICRAFTERS S27 (modified 28-150 mc; Panadaptor, spare 3BP1; F88 Rx 280-880 mc; GGRF, SCR522 TX modified, metered, rack mounted 144 mc; another 480 mc. Marconi Sig Gen 140-300 mc. Lot £70 or offers separately. S.A.E. details. G8NF, Dartmouth Street, Slithwaite, Huddersfield.

WANTED. Complete 90 mc AM receiver, with push-pull 6J6 converter, 2 IFs, infinite impedance detector and own AC power pack. Box No. 882.

HALICRAFTERS SX34, crystal, S-meter, ANL 550kc-43 mc, £20. Burgess, 8 Bradford Drive, Ewell, Surrey. (Ewell 2611).

BC221 calibrated, mint condition, in copper lined case, handbook, £7/10/0. FB R1155A, internal P/P, £7/10/0. BC455, with 24V 1A, 63 trans, £25/0. Bug key, £1/0/0. New Sixtus detector RF, £10/0. (Ewell 2611).

FOR sale. 150 watt Phone/CW Tx, perfect condition, complete on rack panel, 3 power packs, 3 stage exciter, pair 35Ts in final, full power mod plus pre-amp. Offers. Butcher, 4 Bruce Castle Road, Tottenham, N.17.

25 watt Dr-Band Tx and power supply, 882 PA, 6A6, 2 3-valve clapp VFO, 5AG7 output 3.5/7 mc. 1-V-2 battery Rx with eliminator and accumulators. The above are as new. Constructed of highest quality components. Commercial appearance. Photos available. Also bodied-up BC438, 6 ACT RF, S-meter, 230v AC, £19. 1155 with external power pack, good condition. £10. G3FPQ, Hilland, Bordon, Hants. (Reading Down 2254).

EDDYSTONE S840 matched speaker and phones, £2/0. 1355, modified sound, 30/- Vision 50/- (Sutton). Q8er, with AC p/p, 70/-, Bencel AC motor, £1. 8 volt vibrator pack with new spare valve, 25/- Carriage paid. Box No. 885.

SELLING up. Denco DCR 19, £38/10/0. Mains Power Unit Type 3, £2/5/0. RF26 unused, 25/-, RF27, 21/-, M.C.R.I. complete, £5. Wave meter L191, £9/10/0. All fine condition. Fox, 25 Brook Street, Thurston, Leicester.

150 watt rack-mounting CW transmitter, with 1500 watt power pack, £25 or sell separately (£12/10/0 each unit). Also S27 receiver (27-143 mc) realigned and realigned, £25. Owner going abroad. Box 870.

RADIO G2000 ANNOUNCES

VALVES. 6H6 2/8; 854, 856, 615G7/G 4/6; VR92, VR278, 3/6; CV6, CV63, DBT26, RF50, VR157, VU111, 5/6; 6C4, 6/6; VU120, 1619 (the 2.5v. 6L6) 7/6; CME8 (BDS) 10/6; VR150/30 8/6; 12v, 4-pin vibrators 5/-.

MAINS TRANSFORMERS. 250-0-250 or 350-0-350. Both types tapped heater windings as follows: 6.3v, tapped 4v, 4 amps, 5v, tapped 4v, 2 amps. Price 21/-.

ALTIMETER UNIT, Type ARN1. 440 Mc/s Tx, 4 acorns, 8 metal octals and a VR150/30 voltage stabilizer. New in original carton. Price only 50/- 100 ft. Bronze Aerial Wire 8/-. 140 ft. 14 S.W.G., enamelled Copper Wire 12/6 plus 1/2 postage. ARTHUR HOILE 55 UNION STREET, MAIDSTONE, KENT Phone: 2812

P.M.G. CERTIFICATE

NEXT EXAM MAY '51
PREPARE NOW by taking our special POSTAL COURSE. Many former students testify that our tuition was invaluable in ensuring their success in previous examinations.

Full details in FREE BROCHURE from E.M.I. INSTITUTES Dept. 14

Telephone: BA'swater 5131/2.

1.21.

ROCK RADIO (G3LN)

PROP. PITCH MOTORS. New, U.S.A. Type, will turn any mast or beam. 3/60 volts, 3/6 amps, reversible, 10,000 to 1 reduction gearing. A.C./D.C. £2/2/6. D.C. £1/17/6. Carriage 5/-.

VALVES. 807, 6/6T, 6X5, 5/-, 8J6G, 3/3, EA50, 2/-.

DURAL TUBE. 1m. x 16sw.g. 6d. ft., fin. x 16, 7d. ft. pin. x 20, 4d., fin. x 18, 3d., small stocks, please state alternatives. Carriage extra.

FEEDER. 300 ohm HD, 70 ohm, 5d. yd. carr. extra. AR88D. As new, £45, callers only.

BC312. As new, with crystal gate, £17, another, no crystal gate, £16, both callers only.

CHOKES. Midget 5H, 2/-, swinging 3.6/4.2H 150 ma, 5/-, PO standard jack plugs, 4d., large type 4-way plugs and sockets, 6d. pair.

CERAMIC SWITCHES for 150 watts, 3-bank, 2-way, 5/- or 3 for 12/6, 2-bank 3/6, or 3 for 9/-.

1801 Fersohde Road, Birmingham, 30 Kin. 2797

BRASS, COPPER, DURAL, ALUMINIUM, BRONZE

ROD, BAR, SHEET, TUBE, STRIP, WIRE

3,000 Standard Stock Sizes

NO QUANTITY TOO SMALL

List on Application

H. ROLLET & CO. LTD.

London, 5, Cheaps Place, S.W.1.
Kirkby Estate
SL.Gane 3463

Simonswood 3271
BRAND NEW EX-GOVT. VALVES

The following valves are brand new and in their Original Cartons:—6J9GT, 3/9; 2C26, 2X2, 6C5, 6N7GT, 4/9; 6J5, 6SK7GT, 6SK7, 5/3; 6AC7, 5/6; 6K7GT, 6K7C, 6K7F, 6K7A, 6K7E, 6K7; 807, 810, 813; 807GT, 6C4, 6FG6, 6F9; 251L6GT, 7/3; 6J6, 10/-

The following are new, but in plain cartons or unboxed—EB34, 21/-; 125H7T, 3/-; 2C36, 2X2, 6C3, 4/3; 6SK7GT, 6SK7, 4/9; BAXC, 6B8, 6SL7GT, 125J7, RL18 (EC53), 5/-; 3R4G5, 5A4, 5/9; 6J7, 6/-; 6C4, 6V6G, 6V6G, 6FG6, 6F9; 7V7, 6V6, KT6V6, 7V7, 6V6, 6J7, 6F4G5, 6/10. 2000 Volt D.C. TEST 6mf Condensers, 3/3 each.

SMOOTHING CHOICES. 15 Henry 60 ma "potted" type, 4/6 plus 9d. postage. 20 Henry 60 Ma, 6/6 plus 9d. postage. 5 Henry 200 Ma, Parmluna, 9/6 plus 9d. postage. 6, 8, and 12 way JONES PLUGS, 6d. a pair. 100 well assured RESISTORS for 10/-.

REED & FORD.
46B, GROSVENOR ROAD, SOUTHPORT.

H.A.C.

Short-Wave Equipment

Noted for over 15 years for ... Short Wave Receivers and Kits of quality.

One Valve Kit, Model "C" Price 20/-
Two "E" 43/-

These kits are complete with all components, accessories and full instructions. Before ordering send addressed envelope for descriptive Catalogue.

"H.A.C." SHORT-WAVE PRODUCTS

Dept.VG) 66 New Bond St., London, W.1

G4G2's BARGAINS.

NEW BOXED MC METERS. 34in. rd. fl. mtg. (24in. dial) 0-800 mA, 0-30 mA, 0-15v. AC (MG Cal. at 50 cycles), 0-2 amps RF T/C, all 9/6 each. 3in. sq. mtg. 0-200 mA, 0-300v, 8/- each. 0-3 amps RF T/C, 5/6, 0-500 mA RF T/C 4/6. Yaxley Switches 25 6w, 3 for 5/-, 17 6w. 807 ceramic v/holders 6 for 10/-/doz. Mains xfmr. upright mtg. 230v input, 5v Samp 18v lamp, 220, 260, 300v (11W) 80 mA O/P 2 11/- each. BC642 Mod xfmrs. (used) 4/3 each. 18ft. lengths 9in. coil axed with plug each end 4/9 each. Mica Condensers, .002ufd 5Kv, 4 for 5/-, 500ufd 600v, 5/- each. RS 4/9 each. 6332 Mod xfmrs. used 4/3 each.

Tent heights in. coin. axed with plug each end 4/9 each. Mica Condensers, .002ufd 5Kv, 4 for 5/-, 500ufd 600v, 5/- each. RS 4/9 each. 6332 Mod xfmrs. used 4/3 each.

106, Cleethorpe Road, Grimsby, Lincs.

ADCOLA (Regd. Trade Mark)

SOLDERING INSTRUMENTS

Reg. Design No. 860302
British Pat. 604555. U.S. Pat. 2,518265 & Foreign Pats.

Supplied for all volt ranges from 6/7v-230/250v.

Meets every requirement for radio assembly, maintenance, test-communications, etc. High Temperature.

Quick Heating, Low Consumption, Light Weight 3/16" Dia. Bit Standard Model 1/4" Dia. Bit Standard Model 3/16" Dia. Detachable Bit Type

Sole Manufacturers: ADOCAL PRODUCTS LTD

Sales & Service: 50 Clapham High Street, London, S.W.4. (MCauley 4272)

SMALL ADVERTISEMENTS

READERS'—continued

144 mc Eddystone convertor, £3/10/0. Denco TCF76 coil pack, £3/0/0. Variable IF cans, 10/-, 500-5000 etc. £1/10/0. BAXC, 6B8, 6SL7GT, 125J7, RL18 (EC53), 5/-; 3R4G5, 5A4, 5/9; 6J7, 6/-; 6C4, 6V6G, 6V6G, 6FG6, 6F9; 7V7, 6V6, KT6V6, 7V7, 6V6, 6J7, 6F4G5, 6/10. 2000 Volt D.C. TEST 6mf Condensers, 3/3 each.

CHANGING.
15 Henry 60 ma "potted" type, 4/6 plus 9d. postage. 20 Henry 60 Ma, 6/6 plus 9d. postage. 5 Henry 200 Ma, Parmluna, 9/6 plus 9d. postage. 6, 8, 12 way JONES PLUGS, 6d. a pair. 100 well assured RESISTORS for 10/-.

REED & FORD.
46B, GROSVENOR ROAD, SOUTHPORT.

SOLDING INSTRUMENTS

Reg. Design No. 860302
British Pat. 604555. U.S. Pat. 2,518265 & Foreign Pats.

Supplied for all volt ranges from 6/7v-230/250v.

Meets every requirement for radio assembly, maintenance, test-communications, etc. High Temperature.

Quick Heating, Low Consumption, Light Weight 3/16" Dia. Bit Standard Model 1/4" Dia. Bit Standard Model 3/16" Dia. Detachable Bit Type

Sole Manufacturers: ADOCAL PRODUCTS LTD

Sales & Service: 50 Clapham High Street, London, S.W.4. (MCauley 4272)

EDDYSTONE S440, in very good condition, £18.

G3DPJ, 28 Delamere Crescent, Croydon.

BC625 new, unused, complete valves, etc.

Offers? Wanted: Comm. Rx covering 10 metres, condition unimportant. GSHNC, 270 Spottland Road, Rochdale.

813 R.C.A., G.E.C. 17/6. 811, 10/-; 6AG5 6/6.

All new, guaranteed. Box No. 872.

DON'T MISS THESE BARGAINS

P.M. SPEAKERS
All speakers are by very famous makers such as Rola, Celestion, Goodmans, etc.

<table>
<thead>
<tr>
<th>Size</th>
<th>With Trans.</th>
<th>Less Trans.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2½in.</td>
<td>—</td>
<td>10 6</td>
</tr>
<tr>
<td>3in.</td>
<td>—</td>
<td>10 6</td>
</tr>
<tr>
<td>5in.</td>
<td>12 3</td>
<td>10 6</td>
</tr>
<tr>
<td>6½in.</td>
<td>12 6</td>
<td>10 6</td>
</tr>
<tr>
<td>8in.</td>
<td>13 6</td>
<td>11 6</td>
</tr>
<tr>
<td>10in.</td>
<td>18 6</td>
<td>16 6</td>
</tr>
<tr>
<td>12in.</td>
<td>—</td>
<td>39 6</td>
</tr>
</tbody>
</table>

ELECTROLYTIC CONDENSERS

<table>
<thead>
<tr>
<th>Value</th>
<th>Resistance</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 mfd.</td>
<td>450 v.</td>
<td>1 6</td>
</tr>
<tr>
<td>8 mfd.</td>
<td>150 v.</td>
<td>1 3</td>
</tr>
<tr>
<td>8 mfd.</td>
<td>350 v.</td>
<td>1 6</td>
</tr>
<tr>
<td>8 mfd.</td>
<td>450 v.</td>
<td>1 1</td>
</tr>
<tr>
<td>8 mfd.</td>
<td>500 v.</td>
<td>2 6</td>
</tr>
<tr>
<td>16 mfd.</td>
<td>350 v.</td>
<td>1 1</td>
</tr>
<tr>
<td>16 mfd.</td>
<td>450 v.</td>
<td>2 8</td>
</tr>
<tr>
<td>16 mfd.</td>
<td>500 v.</td>
<td>3 6</td>
</tr>
<tr>
<td>32 mfd.</td>
<td>350 v.</td>
<td>2 8</td>
</tr>
<tr>
<td>32 mfd.</td>
<td>450 v.</td>
<td>3 6</td>
</tr>
<tr>
<td>10 mfd.</td>
<td>25 v.</td>
<td>1 0</td>
</tr>
<tr>
<td>25 mfd.</td>
<td>25 v.</td>
<td>1 0</td>
</tr>
<tr>
<td>50 mfd.</td>
<td>12 v.</td>
<td>10 6</td>
</tr>
<tr>
<td>8 mfd. x 8 mfd. at 450 v.</td>
<td>3 4</td>
<td></td>
</tr>
<tr>
<td>8 mfd. x 16 mfd. at 350 v.</td>
<td>2 6</td>
<td></td>
</tr>
<tr>
<td>8 mfd. x 16 mfd. at 450 v.</td>
<td>3 6</td>
<td></td>
</tr>
<tr>
<td>16 mfd. x 16 mfd. at 350 v.</td>
<td>3 0</td>
<td></td>
</tr>
<tr>
<td>16 mfd. x 16 mfd. at 450 v.</td>
<td>3 9</td>
<td></td>
</tr>
<tr>
<td>25 mfd. x 25 mfd. at 200 v.</td>
<td>3 11</td>
<td></td>
</tr>
<tr>
<td>16 mfd. x 8 mfd. at 350 v.</td>
<td>2 6</td>
<td></td>
</tr>
<tr>
<td>16 mfd. x 8 mfd. at 500 v.</td>
<td>4 6</td>
<td></td>
</tr>
</tbody>
</table>

FOR YOUR LABORATORY
You many times have felt the need of a device which would enable you to put resistance or capacity into a circuit. We have a small quantity of resistances and capacity boxes which, by the simple manipulation of plugs, will enable you to do this. With these boxes you can put in 1 ohm, 2 ohms, 8 ohms, 4 ohms, and so on, in steps of 1 ohm, right up to 6,000 ohms. In a similar way capacity can be put into circuit by small amounts, thus making it simple for you to find optimum working conditions. These boxes made for Government Laboratories, are available while they last at £1 6/6 each, plus 1/6 post and packing. Don't delay—order by return.

VOLUME CONTROLS
All have full-length spindle and are complete with fixing nuts. We stock full range of values between 2,000 ohms and 2 megohms, prices are less switch, 2 6 each; single-pole switch 3 9 each.

LIQUIDATOR'S STOCK—

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polished walnut radio cabinet size 20 x 12 x 7 in. complete with L., M. and S. dial, size 7 x 6½ in. and backplate with magic eye cutout, also with drilled chassis and hardboard back.</td>
<td>£15</td>
</tr>
</tbody>
</table>

Orders under £2 add 1/6, under £1 add 1/-. Postage items can be sent C.O.D. additional charge approx. 1/-. Good stock of all items at time of going to press. List 6d.

ELECTRONIC PRECISION EQUIPMENT
3 Electron House, Windmill Hill, Ruislip Manor, Middlesex. Tel: Ruislip 5780
This is a New Line Commercial Radio Construction

Has your XYL or mother had the idea she would like a new Radio? Well, why not build it yourself? We have a sound basis for this new set!

Professionally built finely finished WALNUT WOODEN CABINET with an inside dimension of 15ins. x 8ins. x 7½ins., complete with a finished dial aperture 5½ins. x 3½ins. Three ⅜ins. holes are drilled symmetrically below the dial aperture to provide feed-way for the control spindles and a further aperture 5½ins. x 4½ins. is provided for the Speaker. These Cabinets alone provide the incentive to build a new set. Refer number H. 394M.

Clydesdales Price Only £1.50 each POST PAID

Dial Glass (Graduated) H410 M.

A three WAVEBAND DIAL GLASS to suit the cabinet detailed on the left, completely graduated with station names and wavelength. Dimensions 6½ins. x 4½ins.

Clydesdales Price Only 1/3 each POST PAID

Control Knobs.

Ivory control knobs ¼in. diam. ⅜in. deep with serrated edges suitable to fit ⅜in. spindle with flat side. ½ knob complete with spring clip. Refer H403 M.

Clydesdales Price Only 9d. each POST PAID

H404M. as above finished in BROWN.

Clydesdales Price only 8d. each Post Paid.

Wavechange Switch.

H. 393.M

An extremely robust yet compact 2 wafer switch, 3 pole-4 way each section, 2 inches between each wafer with a spindle ⅜ins. long, standard ¼ in. diam. flattened.

Clydesdales Price Only 4/6 each POST PAID

Condensers.

H399M. 2 Gang .00035 Tuning Condenser less trimmers with ⅜in. spindle ¼in. long, dimensions 2⅜ins. x 2⅜ins.

Clydesdale Price only 7/6 each Post Paid.

1M. 4/40 pf Trimmers.

Clydesdale Price only 6d. each Post Paid.

2M. MED and Long Wave 150/400 pf. respectively Trimmers. combined in ceramic mounting with small fixing bracket.

Clydesdale Price only 1/9 each Post Paid.

H400M. 8mfd 450V A.I. can condenser ⅝in. x 1¾in. diameter.

Clydesdale Price only 2/9 each Post Paid.

H 400M Clips suit 4d. each.

H. 401M 16 x 24 mfd. 450V Electrolytic condensers 2⅜in. x 1¾in. dia.

Clydesdale Price only 4/6 each Post Paid.

H. 401 AM Clips to suit 3d. each 2½d doz.

Loudspeakers.

H. 396M. Bin. Moving Coil P.M. replacement Type Loudspeaker with matching Transformer.

Clydesdale Price only 17/6 each POST PAID

With each 4336 a further 807 buffer stage follows the Oscillator. The ET 4336 is ready for use on AC Mains 200/250 Volt and is fitted with a reduced power switch bringing the input within license limits. **WEIGHT** 550lbs.

Clydesdale's Price only **£60** Carriage Paid U.K.

Brances in Scotland, England and Northern Ireland.

Clydesdale Supply Co. Ltd.

2 Bridge Street

Glasgow - C.5

Send now for new illustrated lists

Please print Name and Address.

Phone: South 2706/9