

NEW! JUST PUBLISHED TOWERS INTERNATIONAL MICROPROCESSOR SELECTOR

If you come into contact with microprocessors (whether as hobbyist, student, circuit engineer, programmer, buyer, teacher, serviceman, or just humble reader) you often find you would like data information on a specific microcircuit element. Specifications apart, you may be even more interested in where you can get the device in question. And perhaps even more important still (particularly with obsolete devices), you may be looking for guidance on a readilyavailable second source or possible substitute.

This microprocessor selector (working on the same basis as the TRANSISTOR, FET, and OPAMP LINEAR-IC selectors already compiled by the author) is designed to provide in one handy reference volume a comprehensive body of readily-accessible, user-slanted essential information across the field of microprocessors.

In the data tabulations will be found set out the essential basic specifications of over 7,000 commercially-available microprocessor 'chips', including not only the microprocessor elements themselves (e.g. MPUs and CPUs) but also the many other LSI 'support' circuits (e.g. ROMs, RAMs, PROMs, clocks, UARTs, I/Os) normally used in harness with the microprocessors proper to produce complete microcomputers or microcontrollers. For ease of reference, the descriptions and control specifications of the individual circuits are set out in the detailed data tables on separate single lines, arranged in alpha-numeric order by type number.

ONLY

£16.25

POST PAID

For the newcomer to the very new field of microprocessors, the selector includes a full introductory note on these devices before the data tables.

Besides this, the tables are supplemented by separate appendices giving additional information on: (a) Microprocessor chip applications (and codings); (b) Microprocessor 'families'; (c) Microprocessor LSI chip manufacturers (and codings); (d) Semiconductor LSI technologies (and codings); (e) Microprocessor chip packages (and codings); (f) Microprocessor trainer and development systems; (g) Microprocessor bibliography; (h) Manufacturers' house codes; (i) Glossary of microprocessor terms; (j) Explanatory notes to tabulations.

This selector is fully international in scope and covers not only microprocessors and related devices from the USA and Continental Europe, but also from the UK and the Far East (Japan).

TO:- DATA	PUBLICATIONS	LTD, 57	MAIDA	VALE,	LONDON W9 1SN	

Please send me copy/copies of

TOWERS INTERNATIONAL MICROPROCESSOR SELECTOR

Price: £16.25 inc P&P NAME ADDRESS (BLOCK CAPITALS PLEASE)

NEWS AND COMMENT

Suggested Circuit by G.A. French

VOLTAGE CALIBRATOR FOR OSCILLOSCOPES

SOLDERING IRON REMINDER - Unobtrusive aud-

APRIL 1981 Volume 34 No. 8

Published Monthly

First published in 1947

Incorporating The Radio Amateur

Editorial and Advertising Offices 57 MAIDA VALE LONDON W9 1SN

Telephone 01-286 6141

Telegrams Databux, London

©Data Publications Ltd., 1981. Contents may only be reproduced after obtaining prior permission from the Editor. Short abstracts or references are allowable provided acknowledgement of source is given.

Annual Subscription: £9.50, Eire and Overseas £10.50 (U.S.A. and Canada \$30.00) including postage. Remittances should be made payable to "Data Publications Ltd". Overseas readers, please pay by cheque or International Money Order.

Technical Queries. We regret that we are unable to answer queries other than those arising from articles appearing in this magazine nor can we advise on modifications to equipment described. We regret that queries cannot be answered over the telephone, they must be submitted in writing and accompanied by a stamped addressed envelope for reply.

Correspondence should be addressed to the Editor, Advertising Manager, Sub-scription Manager or the Publishers as appropriate.

Opinions expressed by contributors are not necessarily those of the Editor or proprietors.

Production - Web Offset.

Published in Great Britain by the Proprietors and Publishers, Data Publications Ltd, 57 Maida Vale, London W9 1SN.

The Radio & Electronics Constructor is printed by LSG Printers, Portland Street, Lincoln.

ible device – by John Baker	466
TRADE NOTE – Ratchet-operated cable cutter	469
TIMER WITH TRIGGER ACTION by F. Craig	470
FURTHER NOTES ON SOME RECENT RECEIVERS – Part 2 (Conclusion) by Sir Douglas Hall Bt., K.C.M.G.	472
MODEL TRAIN CONTROLLER – low impedance "constant voltage" output, low cost mains opera- tion by M.V. Hastings	474
GUITAR PRACTICE AMPLIFIER - Single i.c. design, 3 mixed inputs by R.A. Penfold	480
SHORT WAVE NEWS – For DX Listeners by Frank A. Baldwin	487
MEDIUM AND SHORT WAVE RADIO by I. M. Attrill	489
A SESSION OF PUZZLES – No. 1 In Your Workshop	494
AGILE TARGETS – Ministry of Defence contract	498

IN NEXT MONTH'S ISSUE 499 **RADIO TOPICS** by Recorder 500 ACTIVE TONE CONTROL MODULE by A. P. Roberts

LINEAR AMPLIFICATION Electronics Data No. 68

OUR NEXT ISSUE WILL BE PUBLISHED 15th. APRIL

449

502

iii

462

464

THE BI-PAK OPTO SHOW

LEDs	NEW SHAPE LEDS	LED CLIPS AND HOUSINGS
1501 £0.10 TIL209 Red LED. 125". 1502 £0.16 TIL211 Green LED. 125". 1503 £0.16 TIL211 Yellow LED. 125". 1504 £0.16 FLV117 Red LED. 2". 1505 £0.16 FLV410 Green LED. 2". 1506 £0.16 FLV410 Vellow LED. 2". 1507 £0.80 20.40 Grade LED pack 10 assorted. 1522 £0.12 MIL32 Clear illuminating Red LED. 1523 £0.12 FLV110 Hear Illuminating Red LED. 1524 £0.52 COX21 Red Flashing LED. 1525 £0.75 COX95 two colour LED.		$\begin{array}{c} A \\ B \\ E \\ E \\ F \\ 1548 \\ 60.15 \\ 1548 \\ 60.15 \\ LED Plastic clips .125'' \\ LED Plastic clips .22'' \\ LED Plastic $
OPTO-ISOLATORS 1515 £0.55 Opto-isolator IL74 Single 1516 £1.16 Opto-isolator IL074 Dual 1517 £2.10 Opto-isolator IL074 Dual 7 SECMENT LED DISPLAYS 1508 £0.80 BDL307 7 segment LED display .3" 1509 £1.80 BDL527 dual 7 segment LED display .5" 1511 £0.98 BDL207 7 segment LED display .3"	1561 £0.26 3mm Cylindrical LED Red . 1562 £0.26 3mm Square LED Red 1563 £0.26 3mm Triangular LED Red 1564 £0.26 5mm Rectangular LED Red 1565 £0.26 5mm Square LED Red 1567 £0.26 5mm Triangular LED Red 1568 £0.28 5mm Triangular LED Red 1569 £0.28 5mm Triangular LED Red	1550 £0.26 LED Housing (nicke) plated) 125" A 1551 £0.22 LED Housing (nicke) plated) 125" B 1552 £0.37 LED Housing (matt black) 125" C 1554 £0.31 LED Housing (matt black) 125" D 1554 £0.34 LED Housing (inicke) plated) 2" E 1555 £0.28 LED Housing (inicke) plated) 2" F 1556 £0.44 LED Housing (matt black) 1.2" G 1557 £0.36 LED Housing (matt black) 2" H
1511 £1.75 BDL727 segment LED display. 6" 1512 £1.90 BDL727 dual 7 segment LED display .5" MISCELLANEOUS 5" 1514 £0.60 ORP12 Light Dependent Resistor 1518 £0.60 Photo transistor P20 NPN 1519 £0.26 Photo Darlington MEL11 NPN 1520 £0.40 Photo transistor OCP71 PNP 1526 £0.38 FPE100 Infra Red Emitter 1527 £0.38 CUV98 Infra Red LED	1569 £0.28 Jmm Square LED Green 1570 £028 Jmm Frangular LED Green 1571 £0.28 Smm Rectangular LED Green 1573 £0.28 Smm Square LED Green 1574 £0.28 Smm Triangular LED Green 1575 £0.28 Smm Triangular LED Green 1576 £0.28 Jmm Square LED Yellow 1576 £0.28 Jmm Square LED Yellow 1576 £0.28 Jmm Friangular LED Yellow 1578 £0.28 Smm Cylindrical LED Yellow 1578 £0.28 Smm Gylard LED Yellow 1578 £0.28 Smm Gylard LED Yellow 1578 £0.28 Smm Gylard LED Yellow 1579 £0.28 Smm Square LED Yellow 1580 £0.28 Smm Triangular LED Yellow 1581 £0.28 Smm Triangular LED Yellow 1581 £0.28 Smm Triangular LED Yellow	BULES AND NEONS 1534 40.24 LES Bulb 6.5v 1w 1535 f0.24 LES Bulb 6.5v 1w 1536 f0.24 LES Bulb 6.5v 1w 1538 f0.24 LES Bulb 14v 0.7bw 1538 f0.24 MES Bulb Round 6.5v .04A 1539 f0.20 MES Bulb Round 6.5v .05A 1540 f0.20 MES Bulb Round 12.0v .1A 1541 f0.20 MES Bulb Round 12.0v .1A 1542 f0.23 Neon Red Round 12.0v .2.2w 1543 f0.34 Neon Red Round 12.0v .2.4w 1543 f0.34 Neon Red Round 12.0v .2.4w 1545 f0.34 Neon Red Round 12.0v .2.4w 1545 f0.34 Neon Red Round 12.0v .2.4w 1545 f0.34 Neon Red Round 240v 1545 f0.34 Neon Grape Rectangular 240v 1545 f0.34 Neon Grape Rectangular 240v
Degram Degram Degram Degram A pack of well known transistors, As used in many popular projects, A must for beginners (and very useful to experienced constructors too). NPN 10 BC107/8 TO18 Metal NPN 10 BC237 TO92 Plastic NPN 5 BC217/18 TO18 Metal PNP 5 BC217 TO18 Metal PNP 6 BC17/18 TO18 Metal PNP 5 BC151 TO19 Metal PNP 5 BC161 TO39 Metal PNP 5 BC161 TO39 Metal PNP 5 BC161 TO39 Metal PNP 6 BD312/ML2955 TO3 Metal PNP 7 TIP29-31 TO220 Plastic PNP 10 OC17-76 Germanium PNP 5 AC128-188 Germanium Metal PNP	CERAMIC PAKS Containing a range of first quality miniature ceramic capacitors. MC1 40 miniature ceramic capacitors: 5 of each value: 22pt, 27pt, 33pt, 39pt, 56pt, 68pt, 82pt. 100pt, 120pt, 150pt, 180pt, 220pt, 270pt, 330pt, 390pt. MC3 40 miniature ceramic capacitors: 5 of each value: 470pt, 560pt, 680pt, 630pt, 1000pt, 1200pt, 2300pt, 300pt, 1000pt, 1200pt, 2300pt, 680pt, 630pt, 1000pt, 220pt, 2300pt, 200pt, 1000pt, 1500pt, 220pt, 230pt, 230pt, 200pt, 2	1547 0.18 MES Batten Holder CARBON FILM RESISTOR PAKS These paks contain a range of Carbon Film Resistors, assorted into the following groups: R1 80 Mixed ive 100chms – 820chms £1.00 R2 80 Mixed ive 100chms – 820chms £1.00 R3 80 Mixed ive 100chms – 820chms £1.00 R4 80 Mixed ive 100chms – 820chms £1.00 R5 60 Mixed ive 100chms – 820chms £1.00 R6 60 Mixed ive 100chms – 820chms £1.00 R7 60 Mixed ive 100chms – 820chms £1.00 R8 60 Mixed ive 100chms – 100 £1.00 R7 60 Mixed ive 100chms – 100 £1.00 R6 60 Mixed ive 100chms – 100 £1.00
5 AC127-187-188 Germanium Metal NPN 5 OC44-45 Germanium PNP 5 TIS43-UT46 Unijunction Plastic 2 2 X819 F.E.T. 2 2 BD131 T0126 Plastic NPN 2 BD132 T0126 Plastic NPN 100 TOTAL ALL devices - brand new and full spec as per device coding. Data and lead out details included in pak. Normal Retail Value £23.00 Our Special Offer Price £15.00 Beginners Pak : no.2 - 100 Rectifiers, SCR's, Triacs, Dides. 20 INs401-IN4X07 3 Amp Silicon Rectifier 20 IN448 Fast switch diodes Silicon 30 C106D Thyristor 400v T0202 Case Isolated Tab 2 Amp Triacs 400v T0202 Case Isolated Tab 2 Amp Triacs 400v T0220 Case Isolated Tab 3 Assorted JAmp Thyristors 50-600 volts T064- T066 Case Soleo0 volts T039	ML4 35 miningt/rig geramic zapacitors 50 i caure adult. 4 30 miningt/rig geramic zapacitors 50 i caure adult. .033ui, .033ui, .033ui, .033ui, .033ui, .047ui. SPEAKERS AND CROSSOVERS 1901 Dome Tweeter 30" 80hms 50w £3.20 1902 Dame Tweeter 30" 80hms 20w £3.80 1902 Dame Tweeter 30 Bohms 20w £3.80 1904 2 way crossover 10w 80hms £1.24 1905 2 way crossover 10w 80hms £3.50 1907 Piezo Tweeter £5.20 1916 3 way crossover 10w 80hms £3.50 1907 Piezo Tweeter £0.55 1916 5 mm 80 ohm speaker £0.55 1917 5 Chum 80 ohm speaker £0.75 1918 21" 80 ohm speaker £0.75 1917 21" 80 ohm speaker £0.75 1918 21" 80 ohm speaker £0.82 1920 51" whooler 80 hms 10w £3.30 1922 8" whooler 80 hms 10w £3.90 1922 8" whooler dual 4 plus 80 hms rubber edge 20w £7.80	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Case 6 OA81-91 General Purpose Germanium Diodes 100 TOTAL ALL devices brand new and full spec. Data and lead out details included.	DL SOCKETS: 1605 20 Pin 0.20 1601 8 Pin 0.09 1606 22 Pin 0.24 1602 14 Pin 0.11 1607 24 Pin 0.24 1603 16 Pin 0.12 1608 28 Pin 0.32 1604 18 Pin 0.18 1609 40 Pin 0.36	424 47uF 35V 0.18 425 6.8uF 35v 0.30 426 10.0uF 35v 0.38 FAIRCHILD/DARLINGTONS
United reliai value £17.00 Our Special Offer Price £11.00 UNTESTED SEMICONDUCTOR PAKS U1 150 germ Gold Bonded Diodes OA47 £1.00 U2 150 germ Gold Bonded Diodes OA47 £1.00 U3 150 Silicon G.P. 200mA Diodes OA200 £1.00 U4 150 Silicon Fast Switch Diodes IN4148 £1.00 U5 25 Stud type Silicon Rectifiers up to 10A £1.00 U5 25 Stud type Silicon Rectifiers up to 10A £1.00	LATE ADDITIONS - High Current Amps and switches VCEO VCBO LC Max BFT32 10.60 60 80 3A BFT33 10.62 80 100 3A BFT34 20.65 100 120 3A BFT37 20.95 100 120 3A RPY76A Infra Red Detector £0.65	TYPE Pol VCEO VCBO I.C. HFE CASE £ p 2N6052 PNP -100v -100v 12A 750-18K T03 1.50 2N6252 PNP 60v 60v 20A 756-18K T03 1.25 MJ3000 NPN 60v 60v 10A 1500 1722 0.90 SE3300 NPN 80v 80v 10A 1000 T0220 0.95 SE3306 NPN 80v 80v 10A 1000 T03 0.95 SE3306 NPN 100v 100v 10A 1000 T03 1.05 SE3305 NPN 80v 80v 10A 1000 T03 1.05 SE3305 NPN 80v 80v 10A 1000 T032 1.05
U7 40 Sil Trans NPN TO18 Case BC107/8/9 £1.00 U8 40 Sil Trans NPN TO18 Case BC107/8/9 £1.00 U9 40 Sil Trans NPN TO18 Case 2N706/8 £1.00 U10 40 Sil Trans NPN T018 Case 2N706/8 £1.00 U11 40 Sil Trans NPN T018 2N897/2N1711 £1.00 U11 40 Sil Trans NPN T038 BFY5-BC141 £1.00 U12 30 Sil Trans NPN T038 BFY5-BC141 £1.00 U13 30 Sil Trans NPN T038 BFY5-BC141 £1.00	POWER SUPPLIES 137 AC-DC Adaptor 6, 7; 9 & 12 volts £3.50 138 DC-DC Adaptor 6, 7; 9 volts £2.70 CABINETS 139 Teak 30 Case £7.00 140 Teak 60 Case £9.50	TIP115 PNP -60v -60v 2A 1K TO220 0.40 TIP117 PNP -100v -100v 2A 1K TO220 0.50 TIP120 NPN 60v 5A 1K TO220 0.60 TIP121 NPN 80v 5A 1K TO220 0.60 TIP122 NPN 100v 100v 5A 1K TO220 0.66 TIP122 NPN 100v 100v 5A 1K TO220 0.68 TIP125 PNP -80v -80v 5A 1K TO220 0.70 TIP127 PNP -100v 100v 5A 1K TO220 0.70
U14 10 Sii Trans NPN T03 2N3055 f.100 U15 10 Sii Trans NPN T0220 TIP29-31-33 f.100 U16 10 Sii Trans PNP T0220 TIP29-31-33 f.100 U17 30 Sii Trans NPN T039 High VIts. BF258/115 U18 40 Sii Trans T092 BC237/8 f.100 U19 40 Sii Trans T092 BC237/8 f.100 U20 40 Sii Trans T092 BC251 f.100 U21 40 Sii Trans NPN T092 BC257 AC212 f.100 U20 40 Sii Trans NPN T092 BC257 AC212 f.100 U21 40 Sii Trans NPN T092 BC257 AC212 f.100 U21 40 Sii Trans NPN T092 BC257 BC212 f.100 U21 40 Sii Trans NPN T092 BC376 f.100 U21 40 Sii Trans NPN T092 BC376 f.100 U21 40 Sii Trans NPN T092 BC376 f.100 Code No's mentioned above are given as a guide to the type of device in the pak. The devices themselves are normally unmarked. f.100	Access and Barclaycards accepted – just telephone our All prices exclude V.A.T., add 50p. postage per order. Postal Orders payable to Bi-Pak at address below.	r Orderline – Ware (STD 0920) 3182. Terms: C.W.O., cheques.
ELECTROLYTIC PAKS A range of paks each containing 25 first quality, mixed value miniature electrolytics. EC1 Values from 47mFD - 10mFD EC2 Values from 10mFD - 100mFD EC3 Values from 10mFD - 100mFD EC3 Values from 10mFD - 100mFD	SEMICONDUCTORS Dept. RC4 P.O. BOX 6, WARE, HERTS. Tel: Ware (STD 0920) 3442. Telex: 817861. Giro No. 3887006 Visit our shop at: 3, Baldock St, Ware, Her	Bay it with Access

THREE FOR FRE Electronics by Numbers Projects No 10, No 11, No 12

EXPERIMENTOR BREADBOARDS

No soldering modular breadboards, simply plug components in and out of letter number identified nickel-silver contact holes. Start small and simply snap-lock boards together to build a breadboard of any size.

All EXP Breadboards have two bus-bars as an integral part of the board, if you need more than 2 buses simply snap on 4 more bus-bars with the aid of an EXP 4B.

EXP 325 £1.60 The ideal breadboard

for 1 chip circuits. Accepts 8, 14, 16 and up to 22 pin ICs. Has 130 contact points including two 10 point bus-bars.

EXP 350 £3.15 Specially designed for working with up to 40 pin ICs perfect for 3 & 14 pin ICs. Has 270 contact points including two 20 point bus-bars.

BORNALLER COMPANY

EXP 300 £5.75 The most widely bought bread-board in the UK. With 550 contact

points, two 40 point bus-bars, the EXP 300 will accept any size IC and up to 6 × 14 pin DIPS. Use this breadboard with Adventures in Microelectronics

EXP 600 £6.30 Most MICROPROCESSOR projects in magazines are built on the EXP 600.

EXP 650 £3.60 Has .6" centre spacing so is perfect for MICROPROCESSOR applications.

EXP 4B £2.30 Four more bus-bars in "snap-on" unit.

The above prices are exclusive of P&P and 15% VAT.

THE GSC 24 HOUR SERVICE **TELEPHONE (0799) 21682**

With your Access, American Express, Barclaycard number and your order will be in the post immediately **GLOBAL SPECIALTIES CORPORATION**

G.S.C. (UK) Ltd, Dept. 16TT Unit 1, Shire Hill Industrial Estate, Saffron Walden, Essex CB11 3AQ Tel: Saffron Walden (0799) 21662 Telex: 817477

Available from selected stockists ELECTRONICS BY NUMBERS No. 10 SOIL MOISTURE TESTER

No more wilting houseplants with this soil moisture test. Just place the probes into the soil and it will light up to tell you whether the soil is "too wet" or "too dry". You don't even need green fingers.

No. 11 DIGITAL ROULETTE

The suspense and excitement of the casino. in your own home. Just press the button, the circle of lights go round and there is the sound of the roulette wheel as well, both gradually slowing down to reveal the winning number.

No. 12 EGG TIMER

How do you like your eggs done, hard or soft, just set the timer and it will sound when the egg is done to your liking. Long battery life because it switches itself off automatically. So get cracking now!

Want to get started on building exciting projects, but don't know how? Now using EXPERIMENTOR BREADBOARDS and following the instructions in our FREE 'Electronics By Numbers' leaflets, ANYBODY can build electronic projects. For example, take one of our earlier projects, a L.E.D. Bar Graph;

You will need; One EXP 300 or EXP 350 breadboard 15 silicon diodes

6 resistors 6 Light Emitting Diodes Just look at the diagram, Select R1, plug it into the lettered and numbered holes on the EXPERIMENTOR BREADBOARD, do the same with all the other components. connect to the battery, and your project's finished. All you have to do is follow the

large, clear layouts on the 'Electronics by Numbers' leaflets, and ANYBODY can build a perfect working project.

🗖 🚥 IT'S EASY WITH G.S.C. 🚥 🗖 . TO RECEIVE YOUR FREE COP Just clip the coupon

Give us your name and full postal address (in block capitals). Enclose cheque, postal order or credit card number and expiry date, indicating in the appropriate box(es) the breadboard(s) you require.

EXPERIMENTOR BREADBOARDS	CONTACT	IC CAPACITY 14 PIN.DIP	UNIT PRICE ING. P&P& 15% VAT	Oty req.	NAME
EXP 325	130	1	£ 2.70		ADDRESS
EXP 360	270	3	£ 4.48		
EXP 300	550	6	£ 7.76		•••
EXP 600			£ 8.39		and an in 19 Main in the
EXP 650	270	use with 0.6 pitch Dip's Strip Bus-Bar	£ 5.00		lenclose cheque/ Debit my Bar
EXP 4B	Four 40 Point Bus-Bars		°£ 3.50		American Express
ROTOBOARDS					If you missed pro
PB6	630	6	£11.73		1 to 9 tick box.
PB100	760	10	£14.72		For Free catalogue

For full detailed instructions and layouts of Projects 10, 11 and 12, simply take the coupon to your nearest GSC stockist, or send direct to us, and you will receive the latest 'ELECTRONICS BY NUMBERS' leaflet.

If you have missed projects, 1, 2 and 3, or 4, 5 and 6, or 7, 8 and 9, please tick the appropriate box in the coupon.

PROTO-BOARDS

The ultimate in breadboards for the minimum of cost. Two easily assembled kits.

PB6 Kit, 630 contacts, four 5-way binding posts accepts up to six 14-pin Dips.

PB 100 Kit complete with 760 contacts accepts up to ten 14-pin Dips, with two binding posts and sturdy base. Large capacity with Kit economy. PROTO-BOARD 100 KIT £11.80

Υ	OF	PROJ	ECTS	7,8	and 9	
F	or	imn	nedi	ate	acti	on
Т	he G	SC 24 hc	our, 5 da	ay a we	ek servi	ce.
т	elept	one (079	99) 216	82 and	give us	your A

American Express or Barclaycard number and your order will be in the post immediately

NAME.	
•••••••••••••••••••••••••••••••••••••••	
-contains the DM Dirichle of a line of τ is a set of the τ^{*}	
lenclose cheque/P.O. for £ Debit my Barclaycard, Ad American Express card No	ccess,
Expiry date .	• • • • • •
If you missed project No's 1 to 9 tick box	
For Free catalogue tick box on Walden, Essex CB11 3AQ. 817477.	

LINEAR IC	S LINE	AR ICS L	NEAR	ICS LINEA	RICS	4000 ser	185 4000 se	eries TTL	'N'	'LPSN'	TTL	'N'	'LPSN'	TTL	'N' 'L	PSN'	ττι	'N'	'LPSN'	MICROMA	RKET	LEDS	LEDS
TBA1205 L200 U2378 U247B U247B U2578 L26778 LM301H LM301N LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30278 LM30	1.00 1.155 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20	SL1610P SL1611P SL1611P SL1613P SL1613P SL1622P SL1622P SL1622P SL1622P SL1622P SL1622P SL1624C SL1622P SL1641P TDA2002 SL1641P TDA2002 SL1641P TDA2002 SL1641P TDA2002 SL1641P TDA2002 SL1641P TDA2002 SL1641P TDA2002 SL1641P TDA2002 SL1642P SL1641P TDA2002 SL1642P SL1641P TDA2002 SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642P SL1642	11.600 89171744892221111131001346089060221745088880008558092112102121212121212121212121212222428285500037555080906022270828088800085580958232121212122121121221211221221212222441111	HA11223 HA11225 HA12027 HA12017 HA12017 HA124017 HA124017 HA12402 HA12411 HA12412 LF137641N SV756600 SAA1056 SAA1056 SAA1056 SAA1058 SAA1058 SAA1058 SAA1059 ICOPOC LIVI232 HI12401 SAA1055 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA1058 SAA10000 SAA10000 SAA10000 SAA10000 SAA10000 SAA10000 SAA10000 SAA	2.155 1455 0.800 2.1455 0.800 2.1455 0.800 2.1455 0.800 2.1455 0.800 2.1455 0.800 2.1455 0.800 2.1455 0.800 2.1455 0.800 2.1455 0.800 2.1455 0.800 2.1455 0.800 2.1455 0.800 2.1455 0.800 2.1455 0.800 2.1455 0.800 2.1455 0.800 2.1455 0.800 2.1455 0.800 2.1455 0.800 2.1455 0.800 2.1455 0.800 2.1455 0.800 2.1455 0.800 2.1455 0.800 2.1555 0.800 2.1555 0.800 2.1555 0.800 2.1555 0.800 2.1555 0.800 2.1555 0.800 2.1555 0.800 2.1555 0.800 2.1555 0.800 2.1555 0.800 2.1555 0.800 2.1555 0.800 2.1555 0.800 2.1555 0.800 2.1555 0.800 2.1555 0.800 2.1555 0.800 2.1555 0.800 2.1555 0.800 2.1555 0.800 2.1555 0.800 2.1555 0.800 2.1555 0.800 2.1555 0.800 2.1555 0.800 2.1555 0.800 2.1555 0.800 2.1555 0.800 2.1555 0.800 2.1555 0.800 2.1555 0.800 2.1555 0.800 2.1555 0.800 2.1555 0.800 2.1555 0.800 2.1555 0.800 2.1555 0.800 2.1555 0.800 2.1555 0.800 2.1555 0.800 2.1555 0.800 2.1555 0.800 2.1555 0.800 2.1555 0.800 2.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.1555 0.15550 0.15550 0.15550000000000	(4000 4001 4002 4007 4008 4008 4008 4008 4008 40110 4013 4015 4011 4015 4015 4015 4015 4015 4015	0.18 4068 0.24 4070 0.24 4070 0.30 4071 0.80 4072 0.80 4073 0.80 4500 0.80 4500 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.20	0.25 TTL 0.25 7400 0.307 7401 0.247 7402 0.247 7404 0.25 7405 0.267 7408 0.257 7405 0.267 7408 0.257 7405 0.357 7407 0.368 7418 1.15 7411 1.15 7412 0.688 7418 0.99 7414 1.287 7438 0.99 7421 0.99 7421 0.99 7421 0.99 7421 0.99 7421 0.99 7421 0.99 7421 1.15 7417 1.15 7412 0.98 7418 1.15 7417 1.15 7412 0.98 7418 1.15 7417 1.28 7428 3.60 7430 1.13 7422 1.81 7427 1.28 7428 3.60 7430 7443 1.30 7443 1.13 7442 2.18 7449 7445 7445 7445 7445 7445 7445 7445	'N' 'N' 'N' 'N'	1.SN0 0.20 0.20 0.20 0.24 0.24 0.24 0.24 0.32 0.32 0.32 0.35 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.99 0.25 0.28 0.99 0.25 Terrifor for dett for to tperiod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod typeriod ty	171L 17456 17450 17450 17453 17453 17453 17453 17453 17453 17453 17453 17474 17475 17476 17476 17476 17476 17476 17476 17476 17476 17477 17476 17477 17476 17477 17476 17477 17476 17477 17476 17477 17476 17477 17476 17477 17476 17477 17476 17477 17476 17477 17476 17477 17476 17477 17476 17477 17476 17477 17476 17477 17476 17477 17476 17477 17476 17477 17476 17477 17476 17477 17476 17477 17476 17477 17476 17477 17476 17477 17476 17477 17476 17477 17476 17477 17476 17477 17476 17477 17476 17477 17476 17477 17477 17477 17477 17477 17477 17477 17477 17477 17477 17477 17477 17477 17477 17477 17477 17477 17477 17477 17477 17477 17477 17477 17477 17477 17477 17477 17477 17477 17477 17477 17477 17477 17477 17477 17477 17477 17477 17477 17477 17477 17477 17477 17477 17477 17477 17477 17477 17477 17477 17477 17477 17477 17477 17477 17477 17477 17477 17477 17477 17477 17477 17477 17477 17477 17477 17477 17477 17477 17477 17477 17477 17477 17477 174777 17477 174777 174777 174777 174777 174777 174777 174777 174777 174777 174777 174777 174777 174777 174777 174777 174777 174777 174777 174777 174777 174777 174777 174777 174777 174777 174777 174777 174777 174777 174777 174777 174777 174777 174777 174777 174777 174777 174777 174777 174777 174777 174777 174777 174777 1747777 174777 174777 1747777 1747777 1747777 174777777 17477777777	'N' 0.20 0.20 0.40 0.330 0.352 0.30 0.352 0.526 0.375 0.520 0.41 0.521 1.04 0.622 0.62 0.526 0.634 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.577 0.557 0.577 0.557 0.577 0.557 0.577 0.557 0.577 0.557 0.577 0.557 0.577 0.557 0.557 0.557 0.577 0.557 0.577 0.557 0.577 0.557 0.577 0.557 0.577 0.557 0.577	(LSN'	TTL TTL 741328 741328 741338 74138 74138 74150 74151 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74157 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74152 74157 74154 74157 74157 74157 74157 74157 7	⁷ N' 0.73 2.65 3.12 1.75 1.09 0.55 2.66 3.12 1.75 1.09 0.99 0.99 0.99 0.99 0.99 0.99 0.99	(LSN) (LSN) 0.420 0.420 0.420 0.420 0.420 0.420 0.420 1.19 0.90 0.85 1.10 0.85 1.10 0.85 1.10 0.85 1.30 0.97 1.30 0.93 1.30 1.30 1.30 1.30 1.30 1.31 1.32 1.30 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.2	TTL 174194 74196 74196 74197 74197 74287 74287 74287 74287 74287 74287 74287 74287 74287 74287 74287 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 74377 743777 74377 74377 74377 74377 74377 74377 74377 74377 74377	AGE 1.05 1.34 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1	¹ LSN ² 1.20 0.93 1.08 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0	8224 8251 8255 6800P 68255 6800P 6850 6850 6850 2114 MC2708 2113 HM4776 81127 2122 213 HM4776 81127 213 HM4776 81144 900 FLAT TO SUARE FLAT TO SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUARE SUA	3.50 3.52 3.52 3.52 3.52 3.52 3.52 3.52 3.52 3.52 4.85 5.77 4.85 5.77 4.85 5.77 4.85 5.77 4.85 5.77 4.85 5.77 4.85 5.77 4.85 5.77 4.85 5.77 4.85 5.77 4.85 5.77 4.85 5.77 4.85 5.77 4.85 5.77 4.85 5.77 4.85 5.77 4.85 5.77 4.85 5.77 4.85 5.77 4.85 5.77 4.85 5.77 4.85 5.77 4.85 5.77 4.85 5.77 4.85 5.77 4.85 5.77 4.85 5.77 4.85 5.77 4.85 5.77 4.85 5.77 5.75 5.77 4.85 5.77 5.75 5.77 4.85 5.77 5.75 5.77 4.85 5.77 5.75 5.77 4.85 5.77 5.75 5.77 4.85 5.77 5.75 5.77 5.75 5.77 5.75 5.77 5.75 5.77 5.75 5.77 5.75 5.77 5.75 5.77 5.75 5.77 5.75 5.77 5.75 5.77 5.75 5.77 5.75 5.77 5.75 5.77 5.75 5.77 5.75 5.77 5.75 5.77 5.75 5.77 5.75 5.77 5.75 5.77 5.75 5.77 5.75 5.77 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75	STD DOME STD DOME Smm RED Jamm RED Jamm RED Jamm RED Samm GRN Samm GRN Jamm GRN Samm GRN Jamm ORA Jamm ORA <td< td=""><td>ED TYPES ED TYPES edr 15p 12p edr 15p 15p 15p 15p 15p 120p 20p 20p 20p 20p 20p 20p 20p 20p 20p</td></td<>	ED TYPES ED TYPES edr 15p 12p edr 15p 15p 15p 15p 15p 120p 20p 20p 20p 20p 20p 20p 20p 20p 20p

T international) 200 North Service Road, Brentwood, Essex

THE MODERN BOOK CO

WORLD RADIO T.V. HANDBOOK 1981 EDITION £10.50p

REPAIRING POCKET TRANSISTOR RADIOS by I. R. Sinclair Price £2.55 TEST GEAR PROJECTS by T. Dixon Price £4.50 **ELECTRONICS - BUILD & LEARN** Price £3.20 by R. A. Penfold Price £ AUDIO AMPLIFIERS FOR THE HOME CONSTRUCTOR by I. R. Sinclair Price £3.00 **BEGINNER'S GUIDE TO INTEGRATED** CIRCUITS BEGINNER'S GUIDE TO RADIO Price £3.50 by G. J. King Pr ELECTRONIC PROJECTS IN THE WORKSHOP by R. A. Penfold Price £ 110 ELECTRONIC ALARM PROJECTS Price £2.75 FOR THE HOME CONSTRUCTOR by R. M. Marston Price £4.35 UNDERSTANDING MICROPROCESSORS Price £4.35 Price £4.00 by Texas Ins AMATEUR RADIO OPERATING MANUAL by R. J. Eckersley Price £4.70 THE OSCILLOSCOPE IN USE by I. R. Sinclair Price £ PROJECTS FOR THE CAR & GARAGE Price £3.50 Price £4.00 by G. Bishop SIMPLE CIRCUIT BUILDING by P.C. Graham Price £2.75 UNDERSTANDING HI FI SPECIFICATIONS by John Earl Price £3.40 **BEGINNER'S GUIDE TO DIGITAL** ELECTRONICS by L B. Sinclair Price £3.50 ELECTRONICS POCKET BOOK by P. J. McGoldrick Price £5.00 **PROJECTS IN RADIO & ELECTRONICS** Price £2.50 by I. R. Sinclair UNDERSTANDING CALCULATOR MATH by Texas Ins. Pri UNDERSTANDING SOLID STATE Price £4.00 ELECTRONICS by Texas Ins Pr AMATEUR RADIO TECHNIQUES Price £4.00 by P. Hawker Price: £3.70 COST EFFECTIVE PROJECTS AROUND

THE HOME by J. Watson Price 4.50

AUDIO CIRCUITS & PROJECT by G. Bishop	S Price £5.35
PRINTED CIRCUIT ASSEMBLY by M. J. Hughes	Y Price: £2.75
MICROPHONES IN ACTION by V. Capel	Price £5.00
BEGINNER'S GUIDE TO COLO	OUR
television by G. J. King	Price £3.50
HOW TO BUILD ELECTRONIC by V. Capel	KITS Price £2.50
ELECTRONIC GAME PROJEC by F. G. Rayer	TS Price £2.75
UNDERSTANDING DIGITAL	
ELECTRONICS by Texas Ins.	Price £4.00
HOW TO BUILD SPEAKER EN by A. Badmaieff BEGINNER'S GUIDE TO HAM by L. Buckwalter	CLOSURES Price £3.50 RADIO Price £3.50

We have the Finest Selection of English and American Radio Books in the Country **ALL PRICES INCLUDE POSTAGE**

19-21 PRAED STREET (Dept RC) LONDON W2 1NP Telephone: 01-402 9176

DIRECT SUPPLY SERVICE TO READERS

TOWERS INTERNATIONAL TRANSISTOR SELECTOR (NEW REVISED EDITION)

This is dead! Would this replace it? ()8)

If it takes you longer than 1 minute to find out all about these transistors then you need a copy of TOWER'S INTERNATIONAL TRANSISTOR SELECTOR. It's one of the most useful working books you will be offered this year. And probably the cheapest in it, you will find a really international selection of 13,000 transistor types — British, Continental European, American and Japanese. And we think that they will solve 90% of your transistor

enquiries. Current and widely used obsolete types were carefully selected and arranged in Numero-Alphabetical order by an author who was uniquely qualified to do the job. With his compendium, all about the brown of the provide the type and you can be an all about a you need to know is the type number and you can learn all about a transistor's specification; who made it and where to contact them; or what to use to replace it.

Price £10-70 inc P&P

TOWERS INTERNATIONAL FET SELECTOR

If you deal with field effect transistors, or fet's - whether as a student, a hobbyist, a circuit engineer, a buyer, a teacher or a

student, a noboyist, a circuit engineer, a buyer, a teacher of a serviceman — you often want data on a specific fet of which you know only the type number. Specifications apart, you may be even more interested in where you can get the device in question. And perhaps more important still (particularly with obsolete devices), you may want guidance on a readily available possible substitute. This is comprehensive tehulation of basis.

This fet compendium, a comprehensive tabulation of basic specification, offers information on:

- 1. Ratings 2. Characteristics
- Case details Terminal identifications 3. 4
- Applications use Manufacturers 5.
- 6.

Substitution equivalents (both European and American) The many fet's covered in this compendium are most of the more common current and widely-used obsolete types.

It is international in scope and covers fet's not only from the USA and Continental Europe, but also from the United Kingdom and the Far East (Japan).

Price £4-60 inc P&P

(Please allow 21 days for delivery)

Tower's International <u>Transistor</u> Selector	by T. D. Towers MBE, MA, BSc, C Eng, MIERE £10-70 inc. post and packing	Tower's International <u>FET</u> Selector	by T. D. TOWERS MBE, MA, BSc, C Eng, MIERE £4-60 inc. post and packing			
To:—DATA PUBI 57 MAIDA LONDON W	LICATIONS LTD. VALE V9 1SN	To:—DATA F 57 MAII LONDO	To:DATA PUBLICATIONS LTD. 57 MAIDA VALE LONDON W9 1SN			
Please send me . to the address sh	copy/copies	Please send r to the addres	Please send me copy/copies to the address shown below			
NAME		NAME				
ADDRESS		ADDRESS .	المحاجبة وتجرفه فالقافية			
			المعادية والمرابع ومعاده			
• • • • • • • • • • •	(Block capitals)		, (Block capitals)			

OSCITTOSCO	BROADEN
CONTRACTOR OF	YOUR SCOPE
How to use them – How they work · by	lan Hickman II NOW !
Oscilloscopes are essential tools for checkin operation and diagnosing faults, and an enormo	g circuit ous range of Cut out this coupon and return it to
Which features are essential, which not so impo techniques will get the best out of the jostr	rtant? What Patricia Davies, Marketing Manager, at the address below.
Ian Hickman, experienced in both professional a electronics, has written this book to help all oscilloso potential users. After introducing basic principles for r	Please send me copy/copies of Oscilloscopes (Hickman) 0 408 00472 X illustrated paperback 216 x 318mm 128 pages @ \$245 cach
subject; he explains in detail the features of typic advanced real time oscilloscopes, plus accessories su	al simple and ich as probes and I enclose a cheque/PO for £
common pitfalls; he also describes special purpose in small-portable scopes to storage scopes and spectrum	in total payment and logic analysets. From
Finally, to give readers a better understanding of ho work, he explains the principles of the cathod	woscilloscopes
and basic scope circuitry.	Address
NEW	
BOOK	
Illustrated with many photographs and two-color	ur diagrams,
the book will appeal to everyone who needs to know at from the school student to the graduate, from the	ocut oscilloscopes, ne hobbyist
Available from your local bookseller or in case of difficulty	/from the Publisher. Revnes Technical Books
Conduer	the chin
Be it a garger hobby on interest like it or n	
will revolutionise every human activity over the n	ext ten years.
Knowledge of its operation and its use is vital. A can attain, through us, in simple, easy to understa	Knowledge you and stages.
Learn the technology of the future today in you	ur own home.
MASIEK ELECTIONICS LEARN THE PR BY SEEING AN	D DOING
 Building an oscilloscope. Recognition of components. Understanding circuit diagrams. Handling all types Solid Statements 	ate 'Chips'.
 Carry out over 40 experiments on basic circuits and on digital Testing and servicing of Radio, T.V., Hi-Fi and all types of mod 	electronics. dern
computerised equipment.	
MASTER COMPUTERS	ow ow
MASTER COMPUTERS LEARN HOW TO REALLY UNDERSTAND COMPUTERS, HU THEY WORK - THEIR 'LANGUAGE' AND HOW TO DO PR	OW ROGRAMS.
MASTER COMPUTERS LEARN HOW TO REALLY <u>UNDERSTAND</u> COMPUTERS, H THEY WORK – THEIR 'LANGUAGE' AND HOW TO DO PR • Complete Home Study library. • Special educational Mini- Computer supplied ready for use. • Self Test program exercise • Services of skilled tutor available	OW ROGRAMS.
MASTER COMPUTERS LEARN HOW TO REALLY <u>UNDERSTAND</u> COMPUTERS, H THEY WORK – THEIR 'LANGUAGE' AND HOW TO DO PF • Complete Home Study library. Computer supplied ready for use. • Self Test program exercise • Services of skilled tutor available. MASTER THE DEST	OW ROGRAMS. Please send your FREE brochure without obligation to:- REC/4/813 Rec/4/813 Rec/4/813 COMPUTER TECHNOLOGY
MASTER COMPUTERS LEARN HOW TO REALLY UNDERSTAND COMPUTERS, H THEY WORK – THEIR 'LANGUAGE' AND HOW TO DO PF • Complete Home Study library. • Special educational Mini- Computer supplied ready for use. • Services of skilled tutor available. MASTER THE REST • Radio Amateurs Licence.	OW ROGRAMS. Image: Send your FREE brochure Image: Send your FREE brochure Without obligation to: REC/4/813 Practical Electronics COMPUTER TECHNOLOGY Address Other SUBJECTS Griese state your interest Computer state your interest
MASTER COMPUTERS LEARN HOW TO REALLY UNDERSTAND COMPUTERS, H THEY WORK - THEIR 'LANGUAGE' AND HOW TO DO PF • Complete Home Study library. • Special educational Mini-Computer supplied ready for use. • Services of skilled tutor available. MASTER THE REST • Radio Amateurs Licence. • Logic/Digital techniques. • Examination courses (City & Guilds etc.) in electronics, • Semi-conductor technology.	OW RCGRAMS. Image: Second system of the system o
MASTER COMPUTERS LEARN HOW TO REALLY UNDERSTAND COMPUTERS, H THEY WORK - THEIR 'LANGUAGE' AND HOW TO DO PF • Complete Home Study library. Computer supplied ready for use. • Special educational Mini- Computer supplied ready for use. • Services of skilled tutor available. MASTER THE REST • Radio Amateurs Licence. • Logic/Digital techniques. • Examination courses (City & Guilds etc.) in electronics, • Semi-conductor technology. • Kits for Signal Generators – Digital Meters etc.	OW OW COGRAMS. Image: Comparison of the state of the

TRANSISTORS	BCY11 28p BCY31 64v.6w 59p	BFY75 BFY90 30v .2w 59p	P77 Plastic 10wt 15p P346A 24p	2N3133 24p 2SA12 42p RESISTORS 2N3283 25p 2SA50 36p 1% 1/2 WATT	
AC126 30V.2w 16p AC127 32V.3wt 16p AC128 36V 1wt 5p	BCY70 50v .35w 9p BCY71 45v .35w 9p BCY72 25v .3w 9p	BR101 BRY39 BRY56 Junet 290	PXB103 25p RCP701A/B/D 10wT	2N3442 160v 117w 2SA83 36p 100 for45p 2N3442 160v 117w 2SA83 36p 100 for45p 2SA141 36p 1.210 820	₩ 8××
AC153 11p AC17632v.7w 11p AC17920v1.1w 40p	BCY79B 45v .3w 15p BCZ11 32p BD113 57p	BSV60 45v.8w 30p BSV64 100v 1w 36p BSV79 40v.4w 50p	30p R1039(2010) 54p R2008B660v85w£1.18 P2010B	2N3583 18p 2SA234 50p 643 665 2N3645 3p 2SA234 50p 643 665 2N3663 30v.2w 6p 2SA236 50p 870 887	
AC188 25V 1W 10p ACY20 40V 3W 30p ACY21 40V 3W 20p	BD115 35p BD(BRC)116 35p BD131 45v 15w 15p	BSV80 40v .4w 50p BSV81 Dep. Mos Fet 75p	R2010B. £1.18 R2306 100v 40w 26p R2540 £1.70	2N3702 40v 4w 4p 2SA360 34p 898 910 2N3703 50v 3w 3p 2SA367 56p 1K82 2k37 2N3704 50v 4w 4p 2SA367 56p 1K82 2k37	NHOI SCO OR OR
ACY28 22p AD161 20v 6wt 40p AD162 20v 6wt 40p	BD132 45v 15w 15p BD133 90v 15w 28p BD135 45v 13w 22p	BSX1940v.4w 15p BSX2040v.4w 7p BSX21120v.3w 10p	S3017 25p SB240 26p SFT357 26p	2N3707 30v 3w 4p 2SA634 80p 4K22 4K64 2N3711 30v 3w 8p 2SB75 25p 4K75 4K87	STON
AD164 25v 6w 40p AD165 25v 6w 40p AF119 35p	BD13645v13w 14p BD13760v8w 28p BD13860v8w 28p	BSX78 8p BSY40 30p BSY95A 20v 3w 10p	SL102 40p TE886 £1 TIP29 40v 30w 22p	2N3794 14p 2SB135 25p 5K9 7K5 2N3799 18p 2SB136 25p 7K8 2N3799 18p 2SB136 25p 7K87 8K	AS I AS I ON ION CU
AF124 27p AF126 27p AF127 27p	BD137/8 mtch pr 60p BD140 80v 8w 26p BD142 35p	BU105 1k5v 10w 64p BU105/04 78p BU105/04 78p	TIP30 40v 30w 22p TIP30C 100v 30w 26p	2N3904 60v 3w 74p 25B175 20p 2N3905 40v 3w 74p 25B175 20p 2N3905 40v 3w 74p 25B176 20p	
AF139 22v 1w 23p AF178 35p AF180 35p	BD156 50p BD182 70v 117w 44p BD201 45v 60w 86p	BU208 1k5v 12w £1.05	TIP31C 100v 40w 26p TIP32A 60v 40w 22p	2N3900 400 300 60 258187 259 2N4000 159 258457 259 2N4026 159 2SC106150v25w509	
AF181 33p AF239 20v .1w 35p ALZ10 50v .5w 37p	BD202 45v 60w 64p BD203 60v 60w 86p BD204 60v 60w 86p	C1544 PNP 4p C1601 NPN 4p	TIP41 40v 65w 15p TIP42C 100v 65w	2N4039 MOSFET 2SD234 60V 25w 50p RESISTORS 2N4039 MOSFET 2SD315D 80p PACKS OF 54p 353-340v 5wt 22p PACKS OF 2N4062 30V 4w 4 262 400 5wt 27p 10 FOR 5p	MOR MAI DS S
ASY60 35p ASY63 4p ASY73 35p	BD232 500v 15w 34p BD233 45v 25w 20p BD235 60v 25w 35p	Darlington 22p D40D1 30v 7wt 22p	TIP48 300v 40w 33p TIP 110 60v 50w Darl.	2N4285 17p Video Amp (B459) 1K5 1watt 2N42403 40v 3w 7 ¹ / ₂ p 30p 1K8 watt 2N4291 200 868.01 Plast 10wt 3K9 1watt	
AS221 4p AU110 £1.43 AU113 £1.03	BD238 80v 25w 25p BD239C 29p BD240 20p	D40D2 30V 7wt 15p D40D4 45v 7wt 22p D41D2 30v 7wt 22p	TIP112 100v 50w 45 TIP115 60v 50wt	2N4918 15p 15p 15p 5K6 watt 2N5058 300v.5w 11p 1034 Plast. 10wt 15p 120K 1/awatt 2N5058 300v.5w 11p 1034 Plast. 10wt 15p 120K 1/awatt	I ALCLUE
AUY10 70p BC107A/B 7p BC108/A/B/C 7p	BD240 30p BD241 45v 40w 22p BD242B 90v 40w 30p	D43C860v 13wt 30p D43C860v 13wt 13p D45C2 40v. 30w	TIP2955 100v 90w45p TIP3055 100v 90w34p	2N5293 80v 36w 30p BD238) 19p 3M3 2watt 2N5294 80v 36w 30p 40235 50p 22M 2watt	PAY PAY ANTI POS
BC109/B30v.3w 7p BC109C 30v.3w 7p BC125 50v.3w 4p	BD253 44p BD375 35p	220HFE 50MHz 50p DS70 Darl. 10wt 22p GET102 46p	TIS60GY 3p	2N5295 60V 36W 30p 40250VI (2N3054 + Ht. 2N5297 80V 36w 36p sink) 2N5297 80V 36w 36p sink) 2N549 30V 3w 2p 402514 60V 50w 36p	L - T - T BERS UAR LAR
BC125B 60V.3W 4p BC129A/B 50V.2W 7p	BD437 45V 36W 35p BD438 45V 36W 28p BD597 60V 55W 36p	GET111 45p GET120 30p M103G MOSFET 30p	TIS73L FET 7P TIS90 4p	2N5484 37p 40372 (2N3054 + Ht. 2N5492 75y 50w 36p sink) 40p MERCURY 2N5492 75y 50w 36p sink) 40p WETTED	VISI CALL GE. F GE. F ION
BC130A/C 25v 2w 7p BC131C 25v 2w 7p	BD677 60V 40W 50p BD678 Pwr. Darl. 60V 40W 50p	MA393 25p MD7000 £2.25 ME2 13p	TIS91 6p TIS92GY 14p TIS98 3p	2N5345 600 500 360 4034502 1600 100 100 100 100 100 100 100 100 10	Y A STACE. C STACE. C NSA'
BC140 40v.7w 11p BC140 40v.7w 15p BC141 60v.7w 11p	BDX33B Pwr. Dar.44p BDX42 60v. Darl. 36p	ME0412 14p ME0461 60v .3w 7½p	TK24 20p V435 20p U14710 20p	2N5954 P. 80v 40w, 40911 (2N6261 + Ht. 36p sink) 40p 79p	
BC14360V.8W 11p BC147/A/B/C 51p BC148/A/B/C 51p	BDX/780v60w 50p BDY2060v117w 86p BF11550v.2w 18p	ME6101 70v .36w 7½p ME6102 60v .4w 7½p ME8003 20p	ZT403P 30p ZT1486 £1.10	2N6028 PUJT 6p 2N6106 80v 40w 44p T.V. COILS	
BC154 40v .2w 7p BC154 40v .2w 7p BC157/A 50v .4w 52p	BF137 11p BF167 30v .15w 18p BF173 25v .2w 18p	MJ481 (BDY23) 25p MJE371 40p	ZTX341 9p 2G103 33p 2G302 12p	2N6109 60v 40w 44p AGO 8151 delay line output 47p 2N6111 40v 40w 36p AGO 6439 (T13) 38p 2N6124 24p AGO 6439 (T13) 33p	
BC158/A/B 54p BC159/B/C 54p BC160/10 40v 3.2w	BF178 23p BF179 23p BF180 30v .2w 12p	MJE2371 80p MJE2901T (Higain 2955) 50p	2G309 30p 2G339A 20p 2G371 18p	2N6178 100v 25w AGO 6425 6Mh trap 48p 2N6180 100v 25wt AGO 6425 ch Mtrap 48p	SSE
12p BC168B 20v.3w 7½p BC171B 4p	BF181 30v.2w 8p BF182 18p BF183 18p	Mn 15 Russian 25p Mn 41 Russian 25p MP8113 60v 3w 25p	2N388 73p 2N456A 71p 2N525 45v 3w 12p	30p L60 04 0 mm bits mine bits mine 50p 2N6181 75v 25w 30p L240 60p 2N6288 30v 40w 36p L240 60p	NTC NOL
BC172 64p BC172c 74p BC173 4p	BF184 20v 15w 18p BF185 20v 15w 18p BF1944 /B > 5in	MPF131 Dual MOSFET 15p	2N527 45v .2w 12p 2N597 16p 2N598 16p	2N6290 60v 40w 30p L727 28p 2N6292 80v 40w 30p L815 22p 2N6385 80v 100wt L815 40p	
BC177A 45v 4w 10±p BC178A/B/C 10±p	BF195/C/D AM 51p BF196 FM 51p BF197 201 //HE 51p	MPU131 Prog. Uni J. 15p	2N601 £1.50 2N644 22n 2N698 1207 8w 12n	Darlington 55p Loss form 50p 2N6486 40v 75w 36p R-G line 32p 2N6488 90v 75w 36p A 2Mb trap coil 28p	BRICE NUST
BC179B 20v.3w 14p BC182/AL 50v.3w5p BC182L 50v.3w 3p	BF198 30v .3w 51p BF200 30v .2w 13p BF200 4	MRF502 Improved BFY90 50p MST 1027 80v 100w	2N699 120v 6w 12p 2N706/A 25v 3w 10kn	25701 18p	
BC183A/AL/L/LC 3p BC184 5p BC186 21p	BF244C FET 30v 71p BF245 FET 6p BF255EET 8p	40p MST1072 300v 100w 50p	2N708 40v .4w 9p 2N718 60v .4w 10p 2N720A 120v .5w	TRIACS	UR MO
BC187 8p BC196A 30v 50mw 100 for £3.65p	BF256LB/LC FET 6p BF257 160v 5w 20p	MST2007 NPN 4p MST2013 PNP 4p MST2015 PNP TO18	2N720 120v .5w 12p 2N736 80v .5w 7jp	Amp Volt 0.1 40 7W84 4p 2.5 600 2N5757 44p	
BC197A 50v 50mw 4p BC198B 30v 50mw	BF263 29p BF263 29p	4p MST2018 PNP TO18 4p	2N914 15p 2N918 15v 2w 12p 2N929 45v 3w 16p	3.5 400 T2710D 58p 4 400 T2716D/40730 74p 6 200 T2500B/41014 54p	
100 for £3.65p BC199B 30V 50mw 100 for £3.65p	BF324 30V .3w 31p BF336 185V 3w 16p	MST 2038 100v 100w 40p A 16A Bussian 25p	2N930 45v.3w 7p 2N984 28p 2N987 45p	8 400 T2850D 72p 8 500 BT137-500 72p 12 500 BT138-500 90p	
BC204 50v .3w 11p BC212B 50v .3w 5p	BF355 300v 3w 15p BF394B 3p BF451 40v .3w 6p	NKT 49 23p NKT 49 23p NKT 452 20p	2N1091 16p 2N1132 14p 2N1302 25v 2w 16p	25 100 BTX94-100 £2.25 25 200 TIC256 £1.05 25 1200 BTX94-1200 £5	ds S C
BC213L45v.3w 5p BC213LA45v.3w 3p BC213LB45v.3w 4p	BF494 20v .3w 10p BF495 20v .3w 5p BF595c FM/AM/GP	NKTB54 30p NKT152 38p NKT153 24p	2N1303 30v.2w 16p 2N1395 25p 2N1484 36p	HUGHES	NEAR VEAR 1TO 5016
BC214B 45v.3w 5p BC214L 45v.3w 3ap BC214L 45v.3w 3ap	9±p BF615 27p BF617 27p	NKT154 26p NKT251 18p NKT775 16p	2N1485 60v 25w 36p 2N1487 90p 2N1490 £3	MICRO ELECTRONICS 400MW ZENER	STA 24 24 111 24 24 24
BC237B 50v .3w 72p BC238 20v .3w 5p BC238B/C 72p	BFQ35 15p BFQ37 16p	NKTME2 13p NSD102 45v 10wt 23p	2N1500 30p 2N1507 18p 2N1711 75v.8w 13p	COMPONENT BOX £2.40	ON S clude
BC239C 20v.3w 71p BC251 3p BC257B 71p	BFR38 68p BFR86 19p	NSD129 Plastic 10wt 23p NSD131 250v 10wt	2N1716 15p 2N1724A 118wt RF 180v 52 10	3V, 3.6V, 3.9V, 4.3V, 4.7V, 11V, or 13V. END OF LINE STOCK ITEMS AND COMPUTER	OND lepho pts in
BC258B/C 71p BC259C 71p BC259C 71p	BFS21 FET pair £3 BFS28DualM/Fet 50p BFT30 15p	30p NSD134 300v 10wt 30p	2N1748. 28p 2N2192A 15P	& AUDIO BOARDS/ASSEMBLIES WITH VARY- ING CONTENTS INCLUDE ZENER, GOLD	EA, L at. Te recei
BC304 15p BC307 45v .3w 7p BC308B/C 25v .3w	BFT31 15p BFT39 15p BFT41 15p	NSD151 30v 10wt Darlington 22p NSD457 160v 10wt	2N2222A 40v.5w 9p 2N2222A 40v.5w 8p 2N2369 40v.4w 10p	HIGH POWER TRANSISTORS AND DIODES, HI STAB RESISTORS, CAPACITORS, ELECTROLY-	
73p BC309B 20v.3w 73p BC327 45v.7w 5p	BFT60 6p BFT61 15p BFT70 15p	23p NSD U45 40v 10wt Darlington 30p	2N2401 7kp 2N2412 27p 2N2483 28p	TICS, TRIMPOTS, POT CORES, CHOKES, INTEGRATED CIRCUITS, ETC.	TT MATT
BC328 25v .7w 6p BC337 45v .7w 6p BC338 25v .7w 5p	BFW10 FET 30v 46p BFW11 FET 30v 46p BFW11 FET 30v 46p	NSD U51 30v 10wt 22p 0C41 4n	2N2484 60V 4w 10p 2N2586 15p 2N2614 4p	3lb for £2.80 7lb for £5.00	
BC382L 7½p BC384B 7½p BC546 80v 6w 5p	BFW30 20v 25w 15p BFW31 15p BFW57 18p	OC42 21p OC43 55p OC44 40	2N2887 £2 2N2894 11p 2N2904 60v .6w 9p	MARKED FULL SPEC DIGITAL I.C.'s Branded – New 25 for £1 Mixed	
BC547/A/B 45v 5p BC548/A/B/C 5p BC549C 30v 5w	BFW58 18p BFX12 23p BFX29 60v.6w 11p	0C45 15v.1w 13p 0C71 30v.2w 4p 0C72 32v 2w 4p	2N2905 60v.6w 15p 2N2906 60v.4w 9p 2N2907/A 60v.4w	7 MILLION CARBON FILM RESISTORS	S HO
BC556 80v.5w 5p BCC557/B 5p	BFX30 60v .6w 16p BFX37 60v .4w 16p BFX84 100v .8w 20p	0C76 15p 0C77 46p	2N2926Y 25v .2w 4p 2N2926 or 25v .2w	$\frac{1}{4} - \frac{1}{3} - \frac{1}{2} - \frac{3}{4} - 1 - \frac{1}{2}$ watt Iskra and Piher, mainly 5%, few 2%. Lucky Dip as	ST. J
BC559 30V .5w 5p BC559 30V .5w 5p BC612L 4p	BFX85 100v .8w 14p BFX88 40v .6w 20p BFX89 30v .2w 20p	OC84 30p OC200 41p	4p 2N2926R 25v .2w 4p	the packs come (will not duplicate under 20 packs) due to cartons packed tight and	
BCX32 10p BCX33 60v .75w 10p BCX34 10n	BFY39 20p BFY50,35v 1wt 15p BFY51 60v 1w 15p	OC201 66p OC202 66p OC603 50p	2N3020 140v .8w 25p 2N3054 90v 30w 35p 2N30558CA 100v	on top of each other to ceiling of warehouse.	÷ س
BCX36 60v 1.5w 10p	BFY52 40v 1w 15p	ON222 23p	115wt 68p	PACK OF 100 FOR 28p	

	OPTO	DIODES	FSY28A 40p	PPIDOE PECTIFIEDS
RICES SO LOW, THE POLICE INVESTIGATED ME TWICE JIRIES, ETC. MUST BE ACCOMPANIED BY A STAMPED ADDRESSED ENVELOPE	ELECTRONICS Photo Diodes: 30F2, 31F2, 32F2, 33F2, BPX40, BPY10, BPY68, BPY69, BPY17, CQY17, CQY77, All types 38p Wire end neons 50. Photo transistors: BPX43, BP103, 2N5777, Dar- lington, 36p. LED's (Mul- lard Siemens) Red 5mm 8p. 3mm 13p, Sireen 5mm 13p, 3mm 13p, Micro Yel- low LD481 7p. PHOTO SILICON CON- TROLLED SWITCH BPX66 PNPN 10 amp 36p. CA3062 Photo Detector and power amp. £1.05p 3" Red com. anode 81p .6" Green C.A. £1.77 5082-7650. Red com	AA118 90v 50ma 4p AA113 30v 35ma 7p AA133 100v 50ma 9p AA123 100v 50ma 9p AA215 100v 250ma 15p B1 11p BA101B varicap 10p BA127 60v 100ma 3p BA127 60v 100ma 3p BA128 21p BA145 21p BA148 12p BA148 12p BA148 22p BA148 2	HG 1005 1000 49ma 3p HG 1012 10p HG 1012 10p HS 1012 10p MPN3401 30p OA5 25p OA7 25p OA7 25p OA7 25p OA70 10p OA75 11p OA79 10p OA71 10p OA70 10p OA73 11p OA79 11p OA91 15v OA91 15v OA91 15v ISO 20v OA93 00v IGP7 11p IGP7 11p IGP7 11p IGP3 10p IN337 200v<200ma IN604 40v<300ma IN604 21p IN967 75v<20ma IN967 75v<20ma IN967 75v<20ma IN967 75v<20ma	JAMP GOVOLT BC30 C350 23p 1,600 BYX10 34p 0.6 110 EC433 20p 1 140 OSi401-200 25p 1 400V MDA104 29p 1 400V WO05 27p 1 200V WO2 Ex Equip 15p 1 400V WE4R1 12p 1 100V B40C800 12p 1 100V B40C800 12p 1 100V B40C800 12p 1 100V B40C800 12p 1 1000 W10 36p 13 75V IBIBY235 15p 21 100 1.R. 40p 22 500V 9E4 85p 3 50 KBS01 30p 3 400 KBS04 30p 3 600 KBS04 30p 3 600 K
	anode. 5082-7653 Red com. cath 5082-7600 Yellow com. anode. H.P. Highbrilliance .43″ 72p	BB113 3x Varicap 43p BB139 £1 BR100 Diac. 15p BY206 300v 400ma 73p BY207 600v 400ma 23p BY402 21p BY403 21p Centercell 3p	N3063 (BAV10) 6p IN3064 75v 10ma 21p IN4009 21p IN4149 75v 200ma 12p IN4149 100v 200ma 3p IN4145 100v 200ma 3p IN4145 150v 200ma 3p IN4151 50v 200ma 3p IN4152 40v 200ma 3p	THYRISTORS Amp Volt 18p 0.8 200 2N5064 18p 1 240 BTX18-200 35p 1 240 BTX30-200 35p 1 400 BTX18-300 41p 1 700 BT 106 70p 2 400 S2710D with heatsink 40p
& POST PAID JK 2nd Class or Parcel) JK 2nd Class or Parcel) CHER HANDLING COSTS (UNDER £1.00 CORER HANDLING COSTS (UNDER £1.00 SO INCLUDE FIRST CLASS S.A.E.)	HEWLIT PACKARD MULTIPLEXED 12" 7 SEGMENT LED DISPLAYS 3 Digit HP5082 7411 45p 4 Digit HP 5082 7411 45p 5 Digit HP 5082 7415 45p Infra red transmit diodes CQY11B or LD271 High power 1.6-2v or 3-3.5v Pulse 32p LD242 36p H15B Photon coupled isolator I.R. diode and NPN Photo-Darlington amp 26p CNY17/1 opto coupler 70p Cold cathode tubes I.T.T. G517A or 5870L 60p SPECIAL OFFER IN4004 or IN4006 Sealed manufacture carton of	CGB51 3p CR HG/3 10p CSD117YLZ 40p CV7095 21p CV7098 21p D3202Y Diac. 11p DC2845 Microwave 20p DOG53 DOG53 11p Type Volt BY126 650 BY127 1250 BY285 600 BY285 600 BY265 600 BY274 300 BY275 600 BY275 600 BY275 800 BY275 800 BY275 800 BY275 800 BY275 800 BYW55 800 BYW55 800 BYX92.200 200 BYX95 300 BYX25.200 300 BYX38 300R 300 BYX38 600 600	IN4446 100v 200ma 21p IN4445 100v 200ma 3p IN5154 25v 30ma 3p IN5456 15p 15p 15p IS922 150v 200ma 4p IS922 150v 200ma 3p 5082 2900 RF Schotky Barrier 50p FIERS Amp Price 1 5p 1 5p 5 13p 14 5 14p 7ip 3 15p 5 19kp 5 19kp 5 5 19kp 5 27p 2 4p 10mA 6p 15p 10p 2 10p 2 10p 2 10p 2 10p 15p 2 12p 14p 15p 2 12p 10p 2 10p 5p 2 10p 2 10p 5p 2 12p 12p	2 400 52/000 53p 3 600 T3N06C00 53p 3 100 T3N06C00 33p 3 100 T3N06C00 33p 4 50 S107F Sensitive Gate 36p 4 50 S2060F Sensitive Gate 36p 4 400 S2061D Sensitive Gate 38p 4 600 CN3228 36p 4 600 CN3228 36p 5 400 S3700D 44p 5 400 S5800D/R 36p 5 600 S5800D/R 36p 5 600 S5800D/R 36p 6.5 500 BT109/SCR957 71p 7 600 S2800A 36p 8 100 S2800A 36p 8 600 S122M 54p 12 1000 CH121103-RB £8 15 800 BTX35-800 Puise Modulated
Cheques require 9 Learance. Export – Learance, Export – Learance, Export – Learance, Export – MINIMUM ORDER FOR SMALL TOTAL AL	300. £6.85 I. C. SOCKETS Low Profile 9p 14 Dil/Q 8p 16 Dil 11p 16 Dil/Q 10p 22 Dil 20p 24 Dil/Q 10p 25 Dil 29p 28 Dil 29p 40 Dil 36p 5tandard 10p 14 Dil/Q 8p 16 Dil/Q 11p 25 Pin Sil 25.90	BYX38 900 900 BYX38 1200 1200 BYX42 300 300 BYX42 600 600 BYX42 900 900 BYX42 1200 1200 BYX46 300R 300 BYX46 400R 400 BYX46 500R 500 BYX48 500R 300 BYX48 600 600 BYX48 600 600 BYX48 1200 1200 BYX48 900R 900 BYX48 1200 1200 BYX49 300R 300 BYX49 300R 300 BYX49 1200 1200 BYX49 1200 1200 BYX49 1200 1200 BYX49 1200 1200 BYX47 150R 150 BYX72 150R 150 BYX72 500R 500 BYX72 500R 500 BYX72 500 250 EZ50C50 250 EZ50C50 250 EX511394 800 LT102 30	6 600 6 650 12 360 12 460 12 820 12 £1.07 15 Avaianche £1.75 15 £2.00 6 470 6 470 6 370 6 370 6 370 6 470 6 470 7 6 6 7 700 6 470 7 70 6 470 7 70 6 470 7 70 6 470 7 70 6 470 7 70 6 470 7 70 7 70	ZENER DIODES 4/500MW. BZY88, BZX97, etc. 51p 2v. 2v7. 3v. 3v3. 3v6. 3v9. 4v3. 4v7. 5v1. 5v6. 6v2. 6v8. 7v5. 8v2. 9v1. 10v. 11v. 12v. 13v. 13v5. 15v. 18v. 20v. 22v. 24v. 27v. 30v. 3v. 3v. BZY61 Laboratory Standard 400MW 7v5. Voltage Regulator Diode 12p 1.3/1.5WT BZX61, BZY97, etc. 11p 2v4. 2v7. 3v. 3v6. 3v9. 4v3. 4v7. 5v6. 6v2. 6v8. 8v2. 10v. 11v. 12v. 15v. 18v. 20v. 27v. 33v. 2.5WT BZX70, etc. 13p 2v4. 3v6. 3v9. 6v6. 6v2. 7v. 7v5. 8v. 9v. 10v. 11v. 14v. 15v. (8p). 20v. 22v. 26v. 5WT BZV40, etc. 15p 3v3. 3v6. 3v9. 4v3. 4v7. 5v1. 5v6. 6v2. 6v8. 7v5. 8v2. 8v7. 9v1. 10v. 11v. 12v. 15v. 20v. 33v. 68v. 120v. 10w TZ5D, Zx, 1550, etc. 20p 4v3. 4v7. 5v1. 5v6. 6v2. 6v8. 7v5. 8v2. 10v. 11v. 12v. 13v. 16v. 18v. 21v. 22v. 3v. 36v. 39v. 43v. 51v. 56v. 62v. 68v. 75v. 150v. 18wT BZV15C 12R 12volt 37p 20WT BZY93, etc. 37p 20WT BZY93, etc. 44p 8v2. 12v. 39v. 44p 8v2. 12v. 39v. 7v3. 9v01
stal Orders for prompt service. (n a Monday banking to ensure c draft (sterling) prompt service. Fc . VAT content becomes documen il postage for overseas mail.	HC 33u CRYSTALS STC XF1000 £1.00 Semitron ZS11.4 £1.00 LA 1216/D12 POT CORE 5pair bubble packed £2.80 METAL FILM 1/3rd WATT RESISTORS $\frac{1}{2}\%$ 100 for 45p 24.9(1 29.12(1 30.10.988(0)	MH850 600 MSR5 800 OA210 400 RAS3 10AF 1250 RAS508AF 1250 SKE4G 200 SR100 100 SR400 400 SR125 100 IN3254 400 IN4002 100 IN4004 400 IN4005 600 IN5059 200 IN5401 100 IN5402 200 IN5408 600	3 24p 5 33p 5 33p 14 Avalanche 15 60p 14 16p 6 22p 14 10p 50 75p 1 4p 1 6p 1 4p 1 6p 3 10p 3 19p 3 19p	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
UK – Po days froi banker's accepted additiona	910Ω 1K69 3K79 4K53 4K59 4K75 6K84 8K2	IS027 800 IS138 800 25G100 100 3052 200 16094P 900 16492 700	1½ 11p 4 2ip 60 £4.35 3 11p 2 15p 1½ 9p	□ 10 7½p 64 7½p 680 8p ★ 15 3p 100 6p 1000 39p ↓ 16 7p 150 8p 2200 35p 25 5p 220 7p 32 5p 250 15p

BRIAN J. REED

SEE PRECEDING PAGES FOR ORDERING INSTRUCTIONS Cut out and keep these 3 pages. Over the months they will bring to you some of the 6,000 items stocked.

343 4 bit comparator	4p
326 HINIL 2, 2, 3, 3, Input Nand	20p
371AJ (MC684) Decade count. HINIL	5p
542 Serva Amp	18p
702 CL OP AMP	25p
709/72709 OP Amp	18 p
723 2v – 37v 150ma Regulator	36p
724	20p
733 diffr wide band video amp	40p
741 OP Amp	17p
747 Dual OP Amp	44p
93000	4p
933DC	4p
93700	4p
946DC	4p An
949DC	40
961DC Dual 4in Ext. nand	40
963DC	40
1315P2	36p
2102 Memory 1024 static 450ns	73p
2107B see µPD411AC	
2125 1024X1 Static 125hs HAM £	1.25
25 LS 374 Octal D edge Trig F/F 3st	1.00
£	1.30
2708 Eprom 1024 x 8 £	2.60
2716 Eprom 2048 x 8	5.00
3351-2DC 40 x 9 Bit FIFO 2MHZ	1.07
3624-4 prom 512x8 90ns	£1
4060 Dynamic RAM 300ns £	1.45
74H00 Quad 2 Input	26p
74LS00 Positive Nand	13p
74S00 Gales	18p
7401 7 Quad 2 in put positive	7kp
74H01 Nand + O/C out	260
7404 Hex. Inverter	110
54/7406 Hex. Inv./Buff/Drive	15p
74LS08 Quad 2 in pos. and	15p
7410) Triple 3 Input	10p
74L10 > Positive Nand	25p
74H10 Gates	18p
7411 Hiple 3 In. Pos. and.	29n
7420) Dual 4 Input	11n
74S20 Positive Nand Gates	190
74S22 Dual 4 In. Pos. Nand o/c	18p
7425 dual 4in nor strobe	18p
7426 Quad 2 In 15v Interface	16p
74284 x 2in + Nor Buf/CL. Drive	16p
5430 7	12p
7430 8 In. Pos. Nand	11p
74L30) F4/7427 Qued 2 In Dee Need Buf	112P
7429 Quad 2in pand but Q/P	130
7436 Quad 211 Band Dur O/F	14p
7442 BCD to Decimal Decoder	26p
74LS42 BCD to Decimal Decoder	40p
7445 BCD Decimal Decoder	42p
Expandable Dual 2	
74H50J Wide 2 Input and/or Inv.	26p
7454 4 Wide 2 In. and or Inv.	11p
74L54 J E4/74702 And Coted W Master	11 <u>3</u> p
74/74/21 And Gated JK Waster	25n
5473 Dual IK Master	120
7473 Slave Flip Flops	170
74H73 with Clear	26p
7474) Dual D. Pos. Trigger	13p
74L74 5 FF 2/Preset + Clear	25p
7475 Quadlatch	24p
54/7476 Dual JK Mas./SL Flip Flop	19p
5480 gated full adder	22p
7482 2 Bit Binary Full Adder	35p
7483 (4 Bit Binary fulli 741 S92 Add + East corry	45p 47n
74L3637 AUG + Fast carry	10ln
5490/7490 Decade Counter	25n
7493 Binary Counter 4 Bit	250
54/74L95 4 Bit Ser./Par. In Out	25p
74LS98 4 bit storage register £	1.25
74107 Dual JK Flip Flop Clear	20p
74S112 Dual JK N.E.T. Flip Flop	38p
74118 Hex Reset latch	75p
74121 Monostable Multivibrator	12p
74122 Mono stable multivibrator	18p
54/74123 Dual Retrig. Multivibrator	35p
54\$124 dual volt cont. osc. £	1.10
74132 Quad 2 in nand schmitt	44p
74141 BCD To Decimal Dec/Drive	42p
74LS 145 BCD to decimal Dec/ Drive	93D
74153 Dual 4 to 1 multiplayer	36n
74154 16 Way Distribution	35n
74155 Dual 2 to 4 line decoder	12n
74157 Quad 2 line to 1 Data	120
741658 bit shift rea. Piso	58p
74167 Synch, Dec. Rate Multivibrator	23p
74173 Quad 3 state latch	44p
74174 Hex D F/F and clear	55p
74S174 Hex D Flip Flop + clear	72p
74176/8280 Pre-set 35MHZ Decode	30p
74180 8 bit parity gen.	12p
74 IST Arith. Logic Unit/funt. Gen.	200
74103 Dual lui adder	33n
THIS SYNCE Dec. Op/Down	600
(4) 5 19/1 (.ount + Duant.ion.k	

INTEGRATED CIRCUITS

74196 Pre-set 50MHZ 74S196/82S90 Decade Count/Latci	. 36p
74LS221 Dual Monostable M/VIB 74221 dual Mono Multi, Schm. Trig	52p
74285 binary 4 x 4 mult.	72p
74293 4 bit binary counter 74299 Quad 2 in multi plus store	80p
74490 dual decade ripple count	£1.30
7905 – 5v Reg. 1 Amp	£1.30 54p
8080A C.P.U. 8 bit 8284 Binary up down synch.	£3.60 36p
82S126 256 x 4 prom 82S129 Tri state prom 256 x 4	90p
9093DC 9112DC	40
93S10 9311	£1
93L16 9370	36p
93453 Schottky prom 1024 x 4	£1.83
930399-256 Bit Shift Register	4p 4p
AY5-3507 31 Digit DVM	4p £1.65
BRCM300 Volt Regulator	38p £1.40
BTT822 C500 Calculator	£1.25 39p
CA139AG Quad Volt Comparator CA239G Quad volt comparator	54p 54p
(T)CA270AE (T)CA270CW/AW Signal	£1 351p
(T)CA270CE Processing	36p
CA3001 RF Amp	86p
CA3026A balanced OF. AMP CA3044 CA3045 Transistor Array (5)	£1.20
CA3046 Transistor Array (5) NPN	40p
CA3060 Variable OP AMP CA3080 Prog. Transconduct. Amp.	72p 59p
CA3083 NPN transistor array CA3086 NPN 5 transistor array	65p 29p
CA3089 FM IF. amp plus detector CA3090 Q/AQ FM decoder	1.10p E1.72p
CA3093 CA3094 Prog. Sw. Pwr. OP Amp.	36p 36p
CA3123 AM Radio RF/IF Amp CA3132EM	73p
CA3146E Hi-volt 5 transistor array	90p
CA3189 FM receive IF. system CA3290 Comparator	£1.40
CA3401 (LM3900) Quad OP Amp CD4000 Dual 3 input Nor + Invert	36p
CD4002 Dual 4 Input Nor CD4004	12p
CD4006 18 Stage Static Shift Reg.	36p
CD4008 4 Bit Binary Full Adder	54p
CD4012 Dual 4 Input Nand	13p
CD4013 DdarD Flip Flop CD4014 8 Bit Shift Register	36p
CD4017 Decade Count/Divide	36p 54p
CD4019 Preset Divide N Count CD4019 Quad 2 Input Multiplex	43p 25p
CD4020 14 Stage Binary Counter CD4022 Divide by 8 Count/Divide	54p 36p
CD4023 Triple 3 Input Nand CD4024 7-Stage Binary Counter	19p 36p
CD4025 Triple 3 Input Nor CD4027 Dual JK Flip Flop + RS	14p 30p
CD4028/MC14028 BCD/Decimal CD4029 Synch. Preset Bin/Decode	42p 54p
CD4030 Quad Exclusive or CD4031 64 stage static. shift reg.	36p £1.20
CD4032 Trip. Ser. Add. Neg. CD4033 Dec. Count. 7 Seg. Output.	72p
CD4034 Static shift register f	1.48p
 CD4036 Word Buff. Store/decode CD4037 triple and/or B1 Phase pair 	£2.90
CD4038 Triple serial adder	54p
CD4041 Quad True/Comp. Buffer	54p
CD4042 Quad Clocked D type Catch CD4043 Quad Nor R/S Latch	56p
CD4045 4 Bit Par. in out shift	54p
CD4046 Micro Power PH. Lock Loop CD4047 monostable	72p
CD4048 Exp 8 input gate CD4049 Hex Inverter Buffers	36p
CD4051 Analogue Multi/Demulti CD4052 Analogue Multi/Demulti	36p 56p
CD4053 Analogue Multi/Demulti CD4054 4 LINE LCD driver/count	54p 72p
CD4055 BCD /SEG. Decode/Drive. CD4061 256 X 1 Bit Static RAM	£5.30
CD4063 4 bit magnitude comp. CD4066 Quad Bilateral Switch	27p
CD4067 T. TOMULTIPLEXER CD4069 Hex invertor	16p

,

CD4071 quad 2 input or buf CD4072 dual 4 input or CD4072 dual 4 input or CD4073 duad 5 Hip-Flop CD4077 Quad Exclusive No CD4078 Hourd 2 Input and CD4088 Dual 4 Input and CD4085 Dual 4 Input and CD4085 Dual 4 Input and CD4085 Qual 4 Input and CD4093 quad 2 input and CD4093 quad 2 input and CD4093 quad 2 input and CD4095 JK. Gated flip flop CD4096 gated JK flip flop CD4096 gated JK flip flop CD4096 gated JK flip flop CD4097 Aux/demux 8ch. CD4502 Strobed Hex Inver CD4508 fdual 4 bit latch CD4511 BCD 7 seg. latch de CD4514 decoder CD4519 /MC14519 4 bit and CD4527 BCD rate multiplie CD4526 decoder CD4550 decoder CD4550 decoder CD4550 decoder CD4556 decoder CD4556 decoder CD4550 hecoder CD4500 Z bit L/R Shift Re CD40101 9 bit Par. Gen. ch CD40101 4 x 4 Multiport Re CD40102 x 4 x 4 witiport Re CD40162 4 bit synch. Dec.	fer 16p 15p 54p r 30p 19p uffer 15p 15p 16 or inv. 72p 00 r inv. 72p 72p 5.T. 54p 1.78 5.T. 54p 1.78 6.2.90 tor 44p £1.45 £2.12 ster £3.60 1/or Sel. 54p inary 72p r £1.20 8r £1.08 r £1.78 8ck £1.08 r £1.78 8ck £1.08 r £1.78 8ck £1.08 r 22p Count R/S 72p
CD40163 Bin. count synch CD40181 BE Quad 2 Input a CD40181 BE Quad 2 Input a CD40182 Look ahead carry. CD40128 Sync 4 bit BCD U. CD402857 Data Selector CD40257 Data Selector CD40257 Data Selector CD40257 Data Selector CD40257 Data Selector CD1115 Frequency synthes CT1116 frequency synthes CT1116 frequency synthes CT1119 Frequency synthes CT1110 Frequency synthes CT1119 Frequency synthes CT1119 Frequency synthes CT1119 Frequency synthes CT1119 Frequency synthes CT1110 Frequency synthes CT1119 Frequency synthes CT1119 Frequency synthes CT1110 Frequency synthes CT1	clear 72p nd £2.12 block 72p D count 72p rtRAM £2.12 £1.15p 4x8 £3.60 4x8 £3.60 ssiser 75p ser 75p ser 75p ser 75p Nor 8p 50p 18p 18p 18p 18p 18p 18p 18p 18p 18p 18
LM3900 (See CA3401) MC833P dual 4 input expan MC833P dual 4 input expan MC837P Hex invert, fast ris MC846P MC862P MC863P MC1306P MC1307P MC1310F MC1310P Stereo Decoder MC1314P MC1315P MC135P Stereo Decoder MC1315P MC1350P Video I.F. 4 Dem MC3302 Uava amp (volt	4p der 4p 4p 4p 4p 35}p oder 35}p 40p 35}p 35}p 40p 35}p 35}p 35}p 35}p 35}p 0d. 35}p od. 35}p
MC4044P Phase/Frequenct MC40344P MIC7C MK2686 MK4012 Memory Static Sh MK2012 (6108) 6 channel tu MK2086 (6108) 6 channel tu MM8008 CP. U. M7305 Volt Regulator M7305 Volt Regulator MV35101 256x4 SOS CMC SAA601 SAA1025 SAA 5012 Teletext Binary T SA5580 4 Ch. touch tune. + SA5590 4 Ch. touch t	75p y detector £1 £3.50 25p 36p 36p 36p 36p 36p 36p 58p 50p 25p 36p 34p £1.60 36p 34p £4 01sp. 18p 01sp. 18p 01sp. 18p 4p 36p 36p 37p 50p 55p

,

SN755 SN755 SN755 SN755 SN756 SN765 SN765 SN766	07-Inter 08 10 Dual 125 7 Jine 50 535 N 151 Inter 163 dual 001 003 5Wt. 113 5 Wt. 013 N 5 N 023 5Wt. 110P 115 N Ste 131 227 228 N 396 (TBA 650 N } st 660 N	face line drive Rec. Ir face periph. Amp Wt. Amp Wt. Amp ereo Der A396) I.F. Ami tage vid bund I.F	ver or drive plifier coder p. + Der eo I.F. + . + Der	mod. ⊦A.G.	6p £1.15 36p 72p 78p 116p 36p 36p 36p 36p 36p 36p 36p 3
SN15 SN15 SN15 SP402	8093 8097 8099 21 ÷64 V	'HF/UH	F 50my	TTL (50p 4p 50p 0/P. 75p
TAA2 TAA3 TAA5 TAA7 TAD1 TBA1 TBA2 TBA3 TBA3 TBA3 TBA5 TBA5 TBA5	63 Amp 20 Integ 50 Volt F 00 AM R 20S/CQ/ 40 95Q 95Q 96 Lumi 50Q Syn 60C Lum 00 Amp	(low lev rated m Reg. adio /SB/B T SB/B T nence a ch. Sep n/Chron 5 Watt /	vel) ost AMI V Amp nd chro . + A.G. n. contro Audio	P. C. ol	75p 35p 101p £2.30 £1.22 36p £3.90 £1.50 35p £1.25 52p 52p
TCA2 TCA2 TCA4 TCA8 TCA8 TCA8 TCA8 TCA8 TCA9 TCA9 TCA9 TCA9 TCA9 TCA9 TCA9 TCA9	20 1 V LII 700/SB s ¹ 40 A.M. 1 30S Ex. 1 30S A.F. 401 100 470 Orga 510 6wa1 580 T.V.	AE/QS ynch. di Receive Equip A Amp. an amp and t audio Signal r	Vid. De emodul F. Amp F. Amp	t. ater h.	70p £1 55p £1.25 18p 37p £1.25 £1 37p £1 71p £1 83
TID25 TL441 TL/μ TMS 3	A 16 dic Log-ani A720 AN 3409 me 034 Men	ode arra tilog arr A Radio mory 8 nory 1	ny RF/IFA Obitsh	mp ift Reg f	4p 36p 73p 9.
μPD4 ram	11AC 20				£1.08
XR21 ZN41 ZST13	5 Hi-freq 4 AM Ra 31A 5 In	ons Dyr phase dio Rec put Pov	namic 4 lock loc eiver ver NOI	096 x p R	£1.08 1 £1.30 £2 79p 8p
XR211 ZN414 ZST13 Ele	5 Hi-freq 4 AM Ra 31A 5 In ectrolytic	Ons Dyn phase dio Rec put Pov c capac 75	namic 4 lock loc eiver ver NOI itors (w volt	096 x op R ire en	£1.08 1 £1.30 £2 79p 8p
XR211 ZN414 ZST13 Elec 1 2	5 Hi-freq 4 AM Ra 31A 5 In ectrolytic 10p 10p	Ons Dyn phase dio Rec put Pov c capaci 75 1 3 64 100	namic 4 lock loc eiver ver NOI itors (w volt 10p 15p Volt	096 x op ire en 100 220	£1.08 1 £1.30 £2 79p 8p ded) 15p 22p
XR211 ZN414 ZST11 2 1 2 3 5 20 22	5 Hi-freq 4 AM Ra 31A 5 In 10p 10p 9p 73p 13p 13p	0ns Dyn phase dio Rec put Pov c capaci 75 1 3 64 100 25 47 50 60	namic 4 lock loc eiver ver NOI itors (w volt 10p 15p Volt 13p 16p 16p 72p	096 x p ire en 100 220 330 680	£1.08 1 £1.30 £2 79p 8p ded) 15p 22p 11 ¹ 2p
XR211 ZN41- ZST13 Ele 1 2 3 5 20 22 1 4 4.7 6.8 2	5 Hi-freq 4 AM Ra 31A 5 In ctrolytic 10p 10p 10p 10p 13p 13p 13p 15p 15p 15p	0ns Dyn phase dio Rec put Pov c capaci c capaci c capaci c capaci 25 47 50 60 160 8 10 15 16 200	namic 4 lock loc eiver ver NOF volt 15p Volt 15p 72p Volt 15p 16p 72p Volt 15p 16p 72p Volt	096 x p ire en 100 220 330 680 32 50 80	f1.08 f1.30 f2 79p 8p ded) 15p 22p 11½p 11½p 23p 23p 26p
XR211 ZN414 ZST13 Eie 1 2 3 5 20 22 1 4 4 4.7 6.8 2 22 22 1 22	5 Hi-freq 4 AM Ras 10 p 10 p 9 p 7 j p 13 p 13 p 15 p 15 p 15 p 15 p 15 p 15 p 15 p 15	0ns Dyd phase dio Rec put Pov capaci	namic 4 lock lock eiver ver NOI itors (w volt 10p 15p 16p 73p Volt 15p 16p 73p Volt 15p 18p Volt 15p 18p Volt Volt Volt Volt Volt	096 x pp 3 100 220 330 680 	f1.08 1 1 f1.30 f2 79p ded) 15p 22p 11 ¹ / ₂ P 11 ¹ / ₂ P 23p 23p 26p
XR211 ZN414 ZST13 Ele 1 2 3 5 20 22 1 4 4.7 6.8 2 2 2 2 2 2 2 2 2 2 2 2 2	5 Hi-freq 4 AM Ras 10 p 10 p 10 p 10 p 13 p 13 p 15 p 15 p 15 p 15 p 15 p 15 p 15 p 16 p 17 b 17 b 18 b 18 c 18	0ns Dyi phase dio Rec put Pov capaci	namic 4 lock loc eiver ver NOF itors (w volt 10p 15p Volt 15p 75p Volt 16p 76p 76p 76p 76p 76p 76p 76p 76p 76p 7	096 x pp 3 100 220 330 680 32 50 80	f1.08 1 f1.30 f2 79p 8p dded) 15p 22p 11½p 11½p 23p 26p
XR211 ZN112 ZST13 2 3 5 20 22 1 4 4.7 6.8 2 22 32 22 32 22 32 2	5 Hi-freq 4 AM Ra 81A 5 In ectrolytic 10p 10p 10p 10p 10p 10p 10p 13p 13p 15p 15p 15p 15p 15p 15p 15p 26p 26p	0ns Dy/ phase dio Rec put Pov c capac c capac for c capac for c capac for for for for for for for for for for	namic 4 lock loc eiver ver NO(ttors (w volt 15p 16p 16p 16p 16p 16p 16p 16p 16p 16p 16	096 x pp 3 100 220 330 680 32 50 80 10 10	£1.08 £1.30 £2 79p 8p ded) 15p 22p 21j 23p 23p 23p 23p 23p 23p 23p 23p
XR211 ZM41. ZST1: Ele 3 5 20 22 1 4 4.7 6.8 2 22 22 32 22 1 2 2 2 1 2 2 2 2 2 2 2 2	5 Hi-freq 4 AM Ra 31A 5 In 10p 10p 7;p 115p 15p 15p 15p 15p 15p 15p 26p 26p 26p	0ns Dyn phase dio Recc c capac 75 3 64 100 25 47 50 60 100 8 10 100 25 47 50 60 8 10 15 16 200 25 300 8 8 (275 300 8 9 (275 300 8 47 275 30 8 275 30 8 275 30 10 275 30 275 30 10 275 30 10 275 30 275 30 10 275 30 10 275 30 10 275 30 10 275 30 275 30 275 30 275 30 275 30 275 30 275 30 275 30 275 30 275 30 275 30 275 30 275 30 275 30 275 30 275 30 275 277 275 30 275 277 277 277 277 277 277 277 277 277	namic 4 lock loc eiver ver NOI titors (w 10p 15p 13p 713p 73p 74p 74p 74p 74p 74p 74p 74p 74p 74p 74	096 x pp 100 220 330 680 32 50 80 10 10	f1.08 f1.0 f2 f3p gp gp f3p gp gp f1 gp g2 gp g2 gp g2 gp g2 gp g2 gp g2 gp g2 gp g2 gp g2 gp g2 gp g2 gp g2 gp g2 gp gp gp gp gp gp gp gp gp gp gp gp gp
XR211 ZM41. ZST1: Ele 1 2 3 5 20 22 1 4 4.7 6.8 2 22 22 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 2 1 1 2 2 2 1 1 2 1 2 2 1 1 2 1 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 2 1 2 2 1 2	5 Hi-freq 4 AM Ra 31A 5 In 10p 9p 7;p 115p 115p 15p 15p 15p 15p 26p 26p 26p 32p 22p	0ns Dy: phase dio Rec 25 3 4 100 25 4 7 5 6 4 10 25 6 4 7 5 5 6 4 10 25 10 8 8 10 10 25 10 8 25 10 8 25 10 8 25 10 8 25 10 8 25 10 8 25 10 10 10 10 10 10 10 10 10 10 10 10 10	namic 4 lock loc eiver ver NOI tiors (w volt 13p 15p 15p 16p 16p 7p 16p 7p 7p 18p 7p 7b 16p 70 15p 70 16p 70 16p 70 16p 70 16p 70 16p 70 16p 70 16p 70 16p 70 70 16p 70 70 16p 70 70 16p 70 70 70 70 70 70 70 70 70 70 70 70 70	096 x pp 3 100 220 330 680 50 80 10 10	£1.08 1 1 23 23 22p 23p 23p 25p £1.05p £1.05p 32p
XR211 ZM41. ZX11: Ele 1 2 3 5 20 22 1 4 4 4.7 6.8 2 22 22 1 4 4 4.7 6.8 2 22 22 1 2 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 1 2 2 1 1 2 2 1 1 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2	5 Hi-freq 4 AM Ra 31A 5 In 10p 10p 9p 7;p 13p 15p 15p 15p 15p 15p 15p 26p 26p 22p 22p 22p 22p 22p 22p 22p 22	0ns Dy: ,phase dio Rec 2 ,capac 75, 3 64 100 25 64 100 250 47 275 3 800 8 10 10 15 16 200 250 47 275 3 800 8 4,7 275 3 800 4,7 275 3 800 4,7 250 4,7 250 10 10 10 10 10 10 10 10 10 10 10 10 10	namic 4 lock loc eiver ver NOI tors (w rolt 10p 15p 13p 16p 16p 16p 16p 70 15p 70 15p 70 15p 70 15p 70 15p 70 15p 70 15p 70 15p 70 15p 70 15p 70 15p 70 15p 70 15p 70 15p 70 15p 70 15p 70 15p 70 15p 70 15p 70 70 70 70 70 70 70 70 70 70 70 70 70	096 x pp 100 220 330 680 32 50 80 10 10 10 10 16 22 22	f1.08 f1.0 f2 f3p gp gp gp cded) f5p g2p f1.05p f1.05p f1.05p g2p g2p g2p g2p g2p g2p g2p g2p g2p g2

MOTORS

1.5-6VDC Model Motors 22p. Sub. Min. 'Big Inch' 11EVAC 3rpm Motors 6 volt standard 32 D. 32p. cassette new motors £1.20. 8 track 12V Replacement Motors 55p. Ex. Equip. BSR record player motors, C129, player motors, C197 type, £1.20.

SEMICONDUCTORS

SEMICONDUCTORS LM340 80p. BY103 10p. 2N5062 100V 800mA SCR 18p. BX504 Opto Isolator 25p. CA3130 95p. CA3020 45p. 741 22p. 741S 35p. 723 35p. NE555 24p. 2N3773 £1.70. NE556 50p. ZN414 75p. BD238 28p. BD438 **£1.70.** NE555 500. 21414 75p. BD238 28p. BD438 28p.CB406915p.4''IRedLed Displays, c.c. or c.a. 95p. TIL209 Red Leds 10 for 75p. Man3A 3mm Led Displays 40p. BY223 20p.

PROJECT BOXES

Sturdy ABS black plastic boxes with brass inserts and lid. 75 x 56 x 35mm 65p. 95 x 71 x 35mm 75p. 115 x 95 x 37mm 85p

MOTOROLA PIEZO CERAMIC TWEETERS No crossover required

2.5" Direct Radiating Tweeter, maximum rating 25 volts R.M.S. 100 watts across 8 ohms. Freq. range 3.8kHz-28kHz, £3.65

TOOL SALE

Small side cutters 5" insulated handles £1. Radiopliers, snipe nosed insulated handles £1. Heavy. duty pliers insulated handles £1.10. Draper side cutters spring loaded £1.

HANDY BENCH VICE Jaw opening, £2.95.

Hand drill, double pinion with machine cut gears. with machine cut your solution of the solution

MORSE KEYS Beginners practice kev £1.05. All metal full adjustable type. £2.60

MINIATURE LEVEL METERS

1 Centre Zero 17 x 17mm 75p. 2 (scaled 0-10) 28 x 25mm 75p. 3 Grundig 40 x 27mm £1.25.

IVC NIVICO STEREO CASSETTE MECHANISM. Music centre type. Rev. counter, remote operation £13.50 and £1.00 p&p.

JUMPER TEST LEAD SETS

10 pairs of leads with various coloured croc clips each end (20 clips) 90p per set.

TRANSFORMERS

All 240VAC Primary (postper transformer age is age per transformer is shown after price). MINIATURE RANGE: 6-0-6V 100mA, 9-0-9V 75mA and 12-0-12V 50mA ail 79p each (15p). 0-6, 0 280mA £1.20 (20p). 0-6V 6Ý 280mA £1.20 (20p). 6V 500mA £1.20 (15p). 12V 2 amp £2.75 (45p). 30-0-30V 1 amp £2.85 (54p). 20-0-20V 2 amp £3.65 20-0-20V 2 amp £3.65 (54p). 0-12-15-20-24-30V 2 amp £4.75 (54p). 24 volt 2 Amp £2.45 (54p).

TRIAC/XENON PULSE TRANSFORMERS

1:1 (gpo style) 30p. 1:1 plus 1 sub. min. pcb mounting type 60p each.

MICROPHONES

Min, tie pin, Omni, uses deaf aid battery (supplied), £4.95, ECM105 low cost condenser, Omni, 600 ohms, on/off switch, stan-dard jack plug, £2.95 dard jack plug, £2.95. EM507 Condenser, uni, 600 ohms, 30-18kHz., highly polished metal body £7.92. DYNAMIC stick micro-phone dual imp., 600 ohms or 20K, 70-kHz., attractive black metal body £7.75. EM506 dual impedance condenser microphone 600 ohms or 50K, heavy chromed copper body, £12.95 CASSETTE replace heavy body, with ment microphone 2.5/3.5 plugs £1.35 GRUNDIG electric inserts with FET pre mp, 3-6VDC operation £1.00

LIGHT DIMMER

240VAC 800 watts max. wall mounting, has built in photo cell for automatic swich on when dark £4.50

RIBBON CABLE 8 wav single strand miniature 22p per metre.

SPECIAL OFFER TAPE HEAD DEMAGNETIZER

240VAC with curved probe suitable for reel to reel or cassette machines, £1.95.

STEREO FM/GRAM TUNER AMPLIFIER CHASSIS, VHF and AM. Bass, treble and volume controls, Gram. 8track inputs, headphone output jack, 3 watts per channel with power supply. £14.95 and £1.20 p&p MULTIMETER BARGAINS

Pocket Multimeter, 1,000 opv sensitivity. Ranges 1KV AC/DC Volts, 150ma DC current, resistance 0-2.5K, 0-100K, £4.50

20,000 opv., 1,000 volts AC/DC, DC current to 500ma, 5 ranges, resist-ance 4 ranges to 6 meg. Airror scale, carrying handle, £975.

40kHz Transducers. Rec/ Sender £3.50 pair.

TELEPHONE PICK UP COIL Sucker type with lead and

3.5mm plug 62p.

500v electronic megger, push button operation. Ranges:-L0 ohm Range 0 - 100 Ω (MW scale 50)0 - 100M Ω Mid scale 5MHΩ) £46.75p

Stabilized power sup-plies, 240V A.C. input out-put 13.8 volts at 3/5 amps D.C. £14.75p

KRT5001 50k/v range doubler multimeter, 0-1kv (125mv LO range) 0 – 1kv AC. 0 – 10amp DC. 0 – 20M Ω res. (LO ohm 0 – 2k range) 170 x 124 x 50mm £15.50.

YN360TR MULTIMETER

YN360 M/Meter. 20,000 ohms per volt. IKV AC/DC volts, 250ma de current, 4 resistance ranges to 20meg, also has built in transistor tester with leakage and gain ranges. £12.50

CRIMPING TOOL

Combination type for crimping red blue and yellow terminations also incorporates a wire stripper (6 gauges) and wire cutter, with insultated handles only £2.30.

POWER SUPPLIES

SWITCHED TYPE, plugs into 13 amp socket, has 3-4.5-6-7.5 and 9 volt DC out at either 100 or 40 0mA, switchable £3.45. HC244R STABLISED SUPPLY, 3-6-7.5-9 volts DC out at 400mA max., with or/off switch, polarity reversing switch and voltage selector switch, fully regulated to supply exact voltage from no load to max. current £4.95.

AMPHENOL

CONNECTORS (PL259) PLUGS 47p. Chassis sockets 42p. Elbows PL259/ SO239 90p. Double in line male connector (2XPL259) 65p. Plug reducers 13p. PL259 Dummy load, 52 ohms 1 watt with indicator bulb 95p.

BUZZERS

MINIATURE SOLID STATE BUZZERS, 33 x 17 x 15mm white plastic case, output at three feet 70db (approx), low consumption only 15mA, volt-age operating 4-15VDC, 75p each. LOUD 12VDC BUZZER, metal case. with, metal case. 50mm diam. x 30mm high 63p. Carters 50mm 12 volt Minimite Alarm sirens £7.65p. 12VDC siren, all metal rotary type, high pitched wail, £6.25.

31 CHEAPSIDE, LIVERPOOL 2. ALL ORDERS DESPATCHED BY RETURN POST

TOOLS SOLDER SUCKER, plunger type, high suction, teflon nozzle, £4.99 (spare nozzles 69p each). All Antex irons still at pre increase prices, order now as new stock will be going up next month. Antex Model C 15 watt soldering irons, 240VAC £3.95 Antex Model CX 17 watt soldering irons, 240VAC £3.95 Antex Model X25 25 watt soldering irons, 240VAC ANTEX ST3 iron stands. suits all above models f1.65 heat shunts 12p Antex Servisol Solder Mop 50p each. Neon Tester Screwdrivers ' long 59p each. Miyarna IC test clips 16 pin £1 95 SWITCHES Switches Sub. miniature toggles: SPST (8 x 5 x 7mm) 42p. DPDT (8 x 7 x 7mm) 55p. DPDT centre off 12 x 11 x 9mm 77p. PUSH 9mm 77p. PUSH SWITCHES, 16mm x 6mm, red top, push to make 14p each, push to break version (black top) 16p each. TEL Mobile SWB metre with field strength, PL259 connection, £8.35. RES. SUB BOX

£3.95

each.

Resistance Substitution Swivelling disc Box. provides close tolerance resistors of 36 values from 5 ohms to 1 meg. £3.95.

Signal Generator. Ranges 250Hz-100MHz in 6 Bands, 100MHz-300MHz (harmonics) internal modulator at 100Hz. R.F., output Max. 0.1vRMS. All transistorised unit with calibrating device. 220-240VAC operation, £48.95.

TAPE HEADS

£1.75. cassette Mono £3.90. cassette Stereo Standard 8 track stereo £1.95 BSR MN1330 1 track 50p. BSR SRP90 1 track £1.95. TD10 tape head assembly — 2 heads both 1 track R/P with built in erase, mounted on bracket £1.20

TERMS: Cash with order (Official Orders welcomed from colleges etc). 30p postage please unless otherwise shown. VAT inclusive.

S.A.E. for illustrated lists

BATTERIES NICAD rechargeable	CAPACITORS Ceramic – Auto Insertion TOL 10% 100v IN PFs PCM 5mm	RESISTORS E12 IN OHMS 10, 12, 15, 18, 22, 27, 33, 39, 47, 56, 68, 82.	
CABLE PVC round Grey 4. Audio screened overall 2 core 7/2mm 20p MTR. 5 Conc. write 16/2mm x 15" To each in Black, Red 2 Vellow 5p lot.	3p 4p 4p 5p 8. 10 12. 47 16. 150 20. 680 9. 15 13. 56 17. 220 21. 1K 10. 22 14. 82 18. 330 22. 1K5 11. 23 15. 100 19. 470 23. 3K3	TEM 710" 711" 339A Carbon Film 1W5%, 9 x 3mm 250v 10H-1 MEG E12 1p., 330 81106 1 339B Metal Film 1W2% 10 x 3mm 350v 10H 100K E12 2p. 8y Electrosil/Welwyn. 331 C106D 24 329B Metal Film 1W2% 10 x 3mm 350v 10H 100K E12 2p. 8y Electrosil/Welwyn. 332 274444 5 When ordering resistors state item no. giv, and resistance valve 333 2N5061 26	A) V 700 70p 1 400 35p 600 90p 5 60 7p
	BRIDGES 45. KBPC1005 2A 30p Bý GI, IR, MROLA MULLARD 46. W005 1A 20p 42. BY164 1.4A 50p 49. 2KBB40R 2A 43. BY19 1A 60p 50p 50p	SWITCHES 34. Push button PCB mounting, pins PCM 4mm push to make/push to break 19p. 35. Rocker parel mounting fits 11/4" x 1" hole on/off 15A 250v 199. 36. Toggle parel mounting fits 10mm hole on/off 15A 250v 190e. 112 x 22m	CK 337 10 way 5A nm red 29p .
46 2 13 6 LEADS 26 3.3 13×6 7 3×6 7 3×6 27. 4.7 13×6 34 22/63∨ ↑ 11×5 5p 28. 6.8 13×7 35 6.75 4.7(3)×7 11×5 5p All at Np 35 10/53∨ C 12×8 7p 35 10/53∨ C 12×8 7p 30. 18×7 35 10/53∨ C 12×8 7p 35 10/25∨ M 13×8 7p 31. 27 13×10 35 100/25∨ M 13×10 7p 32. 100 31×11 40 20/34∨ M 17×10 7p 32. 200 31×13 41 470/6×3 ψ 20×10 11p	44. BY261-400 25Å 50. 10DB1A 1.8A 20p CONNECTORS 90. DIN plug 5 pin 1804sg. 10p 21. Just chasis SKT 5 pin 1804sg. 15p 23. Just chasis SKT Sureno: 39p 34. Mains plug rubber white 3 pin 13a 55p	Case Construction Case Construction Case Construction Constru	IC Mac P Tot FT Min mA mW MHz 150 360 100 3A 10W - 3A 10W - 3A 11W 50 1A 12W 50
CAPACI LOHS POLVESTER PLUG IN RECT BOX STYLE TOL LOW SP EVOX MULL PLESSEY RODESTEIN SIMMENS All at 4p PCM All at 6p 1. 001/400v 10 80. 0689/100v 10 52. 0022/400v 10 82. 127280v 10 54. 0023/400v 10 83. 333/100v 15 55. 001/630v 10 64. 47/250v 22 56. 0022/250v 10 65. 66/100v 15 55. 003/100v 10 65. 1.5/100 25 59. 003/100v 10 66. 2.1/100v 22	VOLTS IFF AAAL STILE TOL IOW 71 /17600 72 /17600 73 /17600 74 /17600 75 /17600 76 /17700 77 /17600 78 /17700 78 /17700 79 /17700 70 /17700	Sarp Bachage Totize 30 N 200 300 120 438 BD176 TO126 46 P 348 BC2188 TO32 30 N 200 300 120 438 BD176 TO126 46 P 300 N 438 BD218 TO126 46 P 300 N 438 BD218 TO127 800 N 348 BC2188 TO32 30 P 200 300 200 438 BD248 TO132 800 N 300 N 3	3A 30W 33 150 11W 10 2A 25W 3 100 6W 40 3A 40W 3 3A 40W 3 500 360 400 500 360 500 500 360 500 500 360 500 700 1W 100 2A 1W 50
63 53/160 22 70 4.7/100 27 CAPACITORS TANT BEAD TOL 20% IN MFDS PCM 5mm 76. 2.2/20v \$p 77. 4.1/25v \$p 78. 2/25v 15p 79. 4/76v 15p	B0 1.1 10120 20 PB 5.1 20 10 201 10 201 80 10 201 10 201 10 201 10 201 11 21 11 21 11 21 11 21 11 21 11 21 10 300 80 10 10 30 80 81 42 20 15 200 87 47 20 15 200 87 47 20 5 30 33 47 5 10 300 88 100 5 20 700 83 43 5 10 300 89 220 10 10 500 84 6.6 10 10 300 89 220 10 10 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500	Sab Dissa TOB2 25 P 200 300 75 447 2015437 TOB2 25 P Skit Brissa TOB2 25 N 300 350 100 445 2015437 TOB2 25 N 300 100 445 2015437 TOB2 30 N Skit Brissa TOB2 40 N 800 625 100 445 2015443 TOB2 30 N Skit Brissa TOB2 40 N 800 625 100 all at 39p each 36 366 360 100 all at 39p each 635 365 360 360 100 all at 39p each 365 365 360 360 100 448 81240 TOB2 30 N 800 360 100 449 800 60 360 100 449 80240 TOB2 30 N 800 360 360 <th>200 360 100 800 360 100 20 360 100</th>	200 360 100 800 360 100 20 360 100
DIODES BY ITT, MULL, SESCOSEM, TEXAS, etc. All coded. 95. BA155 100mA 150V 59 105. OAA9 48mA 30 96. BAX15 75mA 35V 39 105. OAA9 10mA 30 98. BAY17 75mA 35V 39 106. OAA91 10mA 30 98. BAY27 2A125V 39 106. RCP108 110 99. BY272 2A025V 129 109. TA350 Stabilize 100. BY264 30mA 356V 139 110. IAV30 10mA 31 101. BY265 3A IK34V 39 111. IAV30 10mA 35 101. BY265 3A IK34V 39 113. IN4002 14. A000V 102. BY2573 200mA 150V. 39 114. IN4004 14. A00V 104. CV2793 200mA 150V. 39 114. IN4004 14. A00V 104. CV2793 200mA 150V. 39 14. IA400V 14. A00V 104. V2793 2011. 122 123	v 5p 115. IN4149 75mA 75v 1p 5p 115. IN4151 150mA 75v 3p 5p 116. IN4151 150mA 75v 3p 119. 119. 154. 150mA 75v 3p 119. 118. IN4161 150mA 75v 3p 119. 118. IN4161 150mA 75v 3p 119. 118. IN4161 34.800v 15p 119. 118. IN447 34.800v 15p 120. 125. TIL 209C SERIES 155. 155. 171.1220 series 10 15. 158. 159. 150.VL 16p 160.VL 16p 110 15. 158. 159. 160. 141 150 151. 152. 153. 154. 7p 1111. 150. 152. 153. 154. 7p 1111. 150. 159. DISPLAY 161.0R1 12.0PL DEP. DISPLAY 161.0R112.0PL DEP. DISPLAY 1	366 714706 TOGAG 800 625 100 450 BOS37 TOGAG 80 367 714710 TOGAG 80 360 100 451 BOS387 TOGAG 80 70 367 714710 TOGAG 80 360 100 451 BOS387 TOGAG 80 70 388 BC107 TO18 45 N<100	4A 40W 3 55 260 350 50 600 60 20 150 330 5A 65W 90 5A 65W 3 1A 40W 1 2A 50W - 15A 90W 1 2A 50W - 2A 50W - 2D 360 500 400 75 15A 15A 90W 10 14 36W 8 10A 35W 8 10A 35W 8 7A 40W 5
ICs DIL PINNING (-) 172 380(14) 175 556(14) 176 7 26 356 356 356 356 356 356 175 556(14) 176 75 176 65(14) 176 75 175 65(14) 176 75 175 65(14) 176 75 175 65(14) 176 75 175 65(14) 176 75 175 65(14) 176 75 175 65(14) 176 75 175 65(14) 176 75 175 65(14) 176 65(14) 176 65(14) 176 65(14) 176 65(14) 176 65(14) 176 65(14) 176 65(14) 176 65(14) 176 65(14) 176 65(14) 176 65(14) 176 65(14) 176 65(14) 176 65(14) 176 65(14) 176 65(14) 176 65(14) 176 65(14) 177 65(16) 177 65(16) 177 65(16) 177 65(16) 177 65(16) 177 56(16) 177 56(16) 177 56(16) 177 56(16) 177 56(16) 177 56(16) 177 56(16) 177 56(16) 177 56(16) 177 56(16) 177 56(16) 177 56(16) 177 56(16) 177 56(16) 177 56(16) 177 56(16) 177 56(16) 177 56(16) 177 56(16) 176 56(16) 176 56(16)	Image: system Image: s	331 XX3547 TÖ18 40 N 200 360 300 all at 89p each 332 XH5567 TO32 140 N 600 310 100 all at 89p each 332 XH5567 TO32 140 N 600 310 100 all at 89p each 334 AC107 15 P 10 80 1 486 BCV237 TO3 15 P 334 AC177 TO1 15 N 100 340 1.5 488 BL408 TO323 200 N 336 AC174 TO1 15 N 1A2 219 1 489 BL408 TO320 200 N 336 AC174 TO1 15 N 1A2 710 1 490 ME20 TO120 200 N 336 AC174 TO1 20 N 1A2 720 1 490 ME20 TO120	500 260 1 500 270 2 3000 270 2 3000 250 25 24 800 60 10 5502 25 360 50 10 364 250 2 56 600 10 364 2600 - 56 600 - 56 600 - 500 700 40 100 700 40 100 700 900
192 0.02 216 35 228 0.2 262 47 194 07 08 211 44 0231 02 262 47 70 194 07 08 219 42 241 05 265 73 196 09 220 43 242 06 266 70 197 10 221 44 243 07 266 76 198 12 224 46 244 06 266 77 70 201 14 225 50 247 17 70 520 243 107 260 789 70 53 54 51 10 200 93 32 250 247 171 93 32 32 260 48 14 271 146 244 16 274 145 244 145 246 16 274 145 <t< th=""><th>286 02 301 138 286 02 301 139 288 03 304 155 289 05 304 155 289 05 304 155 291 11 306 161 291 12 306 193 293 200 193 170 294 32 306 221 296 86 310 244 296 86 311 374 296 93 11 374 296 93 11 374 296 93 11 374 296 93 11 374 176 </th><td>ardis BC300 TO33 B0 N TA 850 E0 deg BC471 TO33 B0 P ZA 110 500 all at £1.39 each deg BC471 TO33 B0 P ZA 110 300 100 all at £1.39 each deg BC477 TO39 B0 N 140 300 100 all at £1.39 each deg BC477 TO39 252 N 100 800 80 400 B0 800 500 B02 R0 N</td><td>10A 630W 3 5A 300W 4 5A 12W 3 5A 65W 20 7A 652W 45 10A 156W 2 30A 156W 2 10A 156W 2 10A 156W 2 10A 156W 2 10A 156W 4 10A 150W 4</td></t<>	286 02 301 138 286 02 301 139 288 03 304 155 289 05 304 155 289 05 304 155 291 11 306 161 291 12 306 193 293 200 193 170 294 32 306 221 296 86 310 244 296 86 311 374 296 93 11 374 296 93 11 374 296 93 11 374 296 93 11 374 176	ardis BC300 TO33 B0 N TA 850 E0 deg BC471 TO33 B0 P ZA 110 500 all at £1.39 each deg BC471 TO33 B0 P ZA 110 300 100 all at £1.39 each deg BC477 TO39 B0 N 140 300 100 all at £1.39 each deg BC477 TO39 252 N 100 800 80 400 B0 800 500 B02 R0 N	10A 630W 3 5A 300W 4 5A 12W 3 5A 65W 20 7A 652W 45 10A 156W 2 30A 156W 2 10A 156W 2 10A 156W 2 10A 156W 2 10A 156W 4 10A 150W 4
210 23 4590 N 255 32 280. 211. 24 84p 132p 257. 7 261. 212. 25 232. 16 236. 38 282. 213. 11 128. 38 282. 236. 263. 232. 16 233. 28. 20. 263. 263. 232. 38 235. 38. 38. 38. 38.	177 745 N Low IC HOLDERS 193 312. 00 9706 9706 314. 04 315. 08 318. 16PIN 9 - 315. 08 318. 16PIN 9 - 316. 10 319. 24PIN 9	all at 29p each all at £1.89 each 424 AD151 SOB5 20 N 14 572 AU113 TO5 125 P 425 AD152 SOB5 20 P 1A 4W 1 572 AU113 TO5 125 P 425 AD152 SOB5 20 P 1A 4W 1 574 BU205 TO3 700 N 426 6C108C TO18 20 N 100 300 150 575 BU206 TO3 800 N	10A 30W 1 25A 10W 3 3A 10W 4 3A 10W 4
POTS Cermet 20 turn 1 ¹¹ rect. plug in item 320. 50R 70p. 321. 100R 50p Cermet Horiz round plug in 326. 50R 9p. 327. 10K 11p. 322. 100K 15p ORDER FORM CUT 41 ONC DOTTED LINE AND FOLD	. 322. 500R 60p. 323. 1K 55p. 324. 5K 55p. 325. 10K 55p.	DUALS PUTS PUTS V 516 BFY81 £1.89 516 200 502 2197.99 36p 5 516 BFY81 £1.89 516 2N3820 40p 553 2N6028 12p 5 520 ZN4547 30p UJTS 521 2N5459 40p 524 2N2646 48p	/ REGS 25 LM309K £1.20 .26 LM317K £2.40 127 CA3085 40p
PRICES FIRM UNTIL 30.681			
A D D		LTD.	E N W
R E S S Immediate despatch except Item	389 2 weeks.		Q PL UFCC RRSM E E S
Pay CASH WITH ORDER. £ Carriage is free. VAT 15% extra UK Only £	 TOTAL £	MINIMUM ORI CHARGE £4	DER L

Self-Binder for "Radio & Electronics Constructor"

The "CORDEX" Patent Self-Binding Case will keep your issues in mint condition. Copies can be inserted or removed with the greatest of ease. Rich maroon finish, gold lettering on spine.

Specially constructed Binding Cords are made from Super Linen of great strength, very hard twisted and twice doubled. They are attached to strong RUSTLESS Springs under tension, and the method adopted ensures PER-MANENT RESILIENCE of the Cords. Any slack that may develop is immediately compensated for and the Cords will always remain taut and strong. It is impossible to overstretch the springs, as a safety check device is fitted to each.

PRICE £2.25 P. & P. 60p . including V.A.T.

For your other magazines

Plain-backed in Maroon or Green (Please state colour choice)

PRICE £2.25 P. & P. 60p including VAT

First the EuroBreadBoard Now the EuroSolderBoard

Design on a EuroBreadBoard — Instal on a EuroSolderBoard

First the EuroBreadBoard

Will accept 0.3" and 0.6" pitch DIL IC's, Capacitors, Resistors, LED's, Transistors and components with up to .85mm dia leads. 500 individual connections PLUS 4 integral Power Bus Strips along all edges for minimum inter-connection lengths.

All rows and columns numbered or lettered for exact location indexing (ideal for educational projects)

Long life, low resistance (${<}10m$ ohms) nickel silver contacts £6.20 each or £11.70 for 2

Now the EuroSolderBoard

New 100mm square, 1.6mm thick printed circuit board with pretinned tracks identically laid out, numbered and lettered to Euro-BreadBoard pattern.

Four 2.5mm dia fixing holes. £2.00 for set of three ESB's

And don't forget the EuroSolderSucker

Ideal for tidying up messy solder joints or freeing multi-pin IC's, this 195mm long, all metal, high suction desoldering tool has replaceable Teflon tip and enables removal of molten solder from all sizes of pcb pads and track. Primed and released by thumb, it costs only £7.25 including VAT & PP

Snip out and post to David George Sales, Jnit 7, Higgs Industrial Estate, 2 Herne Hill Road, London SE24 0AU
David George Sales, Unit 7, Higgs Ind. Est., 2 Herne Hill Rd., London SE24 0AU. Please send me:—
1 EuroBreadBoard@ £ 6.20Oor 2 EuroBreadBoards@ £11.70Oor 3 EuroSolderBoards@ £ 2.00Oor 1 EuroSolderSucker@ £ 7.25O
All prices are applicable from Jan. 1st 1981 and include VAT & PP but add 15% for overseas orders.
Name
Company
Address
REC/4
Tel. No

NEW TRADE MARK WITH NEW RANGE OF DRILLS

NEWS

Microflame (UK) Limited, Vinces Road, Diss, Norfolk IP22 3HQ have recently announced the birth of a brand-new trademark and range of low-voltage mini-Drills.

AND

The 'Drillmaster' range embraces two drills - 'Drillmaster' Junior and 'Drillmaster' Senior - and a comprehensive range of accessories for drilling, grinding, polishing, cutting, shaping, carving, engraving, de-burring and similar operations. Both drills are fitted with the latest telephone-type, "curly-tail" flexible cords, and are suitable for battery or transformer operation.

'Drillmaster' Junior has a unique, "curved triangular" shaped body which fits comfortably into the angle between the base of the user's thumb and forefinger, and close control is aided by the provision of a detachable chuck finger-shield. A chuck with 4 precision cut steel collets, 0.6mm, 1.2mm, 1.8mm and 2.4mm is fitted as standard.

Drillmaster' Junior Drill Stand has a powerful magnifying glass attachment built-in.

Drillmaster' Senior is supplied with an automatic 3-jaw chuck as standard, and a precision chuck with a set of 5 steel collets, 0.6mm, 1.2mm, 1.8mm, 2.4mm and 3.2mm is available as an optional extra.

In addition to a robust Drill Stand for the **'Drillmaster'** Senior, over 100 accessories are available for use with either the Junior or Senior Drill.

Leaflets and Price Lists are available.

SOLDERING IRONS TO BE BETTER DISPLAYED

S. & R. Brewster Ltd., of 86-88 Union Street, Plymouth PL1 3HG, are sending their famous soldering irons to retail outlets in a different form of packing.

Previously packed for shelf display, the soldering irons can now be seen in very attractive boxes using the more modern hang-up display style. Instead of viewing the soldering irons end-on they can now be

TECHNICAL STANDARDS FOR TV AND LOCAL RADIO STATIONS

"Standards for Television and Local Radio Stations" – has recently been published by the Independent Broadcasting Authority.

This 72-page book with many two-colour illustrations brings together the current IBA Technical Codes of Practice relating to television studio centres and to ILR studios and OB operations. These are mandatory codes for ITV and ILR programme companies and have special importance also to equipment suppliers and the broadcasting industry generally. For television, these codes will apply to the new ITV contracts from January 1982.

The book is intended for engineers, firms and students directly involved in the field of broad-casting.

IBA Technical Review No. 13, "Standards for Television and Local Radio Stations", technical editor John Lovell, published by IBA, London. seen full length.

The green boxes house the standard Type 1 mains voltage iron, the brown ones contain Type 1 12 volts iron and the yellow one their Model D.

The soldering irons can be supplied direct to individual customers as well as to the trade and the irons can, of course be obtained from many retail . outlets.

THE RADIO AMATEUR INVALID AND BLIND CLUB

We recently received the up-to-date membership list of the R.A.I.B.C.

The total membership is now 615 of whom 324 are licensed members and 291 short wave listeners. Due to helpful publicity by the R.S.G.B., during the past year, nearly 30 additional clubs and societies have promised their help.

Those of our readers not previously aware of the good offices of R.A.I.B.C. in assisting shortwave enthusiasts who are invalids, or blind, and feel that they could probably help should write to the Honorary Secretary, Mrs. Frances Woolley, 9 Rannoch Road, Adelaide Road, Surbiton, Surrey KT6 4TE, for details.

• The club was founded in 1954 and is affiliated to the R.S.G.B. and publishes 6 News Letters per year.

. . COMMENT

AMSAT NEWS

With this year's AMSAT Membership Renewal Subscription Form, comes a message from Tom Clark, AMSAT's President. As he points out, last year the Phase III Satellite was nearing completion at the beginning of the year, when subscription renewal forms were being sent out; the first issue of AMSAT's magazine ORBIT was on the boards and everyone was looking forward to the dawn of a new era in the amateur radio satellite field. The loss of the Phase III satellite on May 23rd., last year, seemed at first to be a calamity from which AMSAT might well not have recovered, but the support which followed appeals for financial and practical help, enabled a second Phase III to be got on the stocks and AMSAT to come back stronger than ever. As Tom Clark points out, a lot is going on, as the following list of projects shows:-

In September 1981, the University of Surrey's UoSAT, Amateur Scientific Satellite will be launched. Much help for this project has come from AMSAT.

In February 1982, the replacement Phase III satellite will be launched.

In mid-1983, another Phase III type amateur radio satellite will be launched, which at the moment is designated Phase III C.

Sometime in 1984, SYNCART, the first sycchronous amateur radio satellite will be launched.

With such a list of projects in the pipe-line, AMSAT is still appealing for more subscribers and donations. The Overseas Subscription is now \$20 and a Life Membership subscription can be had for \$200. For those who would find it easier to pay into an account in this country, AMSAT-UK has agreed to accept the AMSAT Corporation subscriptions and donations and forward them on to Washington. They should contact AMSAT-UK's Secretary, Mr. Ron Broadbent, at 94, Herongate Road, Wanstead Park, London, E12 5EQ.

May we take this opportunity of congratulating Dr. Tom Clark, on the recent award to him, by NASA, of a NASA Exceptional Performance Award, for work he has carried out in his professional capacity as a professional radio astronomer. Dr. Clark was leader of a team doing work on "long base-line" radio space surveys.

SONY'S GUIDE TO VIDEOGRAPHY

With UK sales of video recorders forecast to pass the 300,000 mark by the end of the year, Sony has recognised the need both to assist existing owners in utilising their equipment to its best advantage, and also to explain to potential customers the full range of home entertainment which videography now provides.

The company has produced a 48 page full colour handbook containing comprehensive details not only

of the best ways to exploit all the facilities of video recorders, but also how to make home video movies, the use of sound and lighting and even the creation of professional style, special effects and titling.

Amply illustrated and using simple non-technical language the handbook – entitled 'How to Video' – is currently on sale at Sony London Showroom, 134 Regent Street, London W.1., price 60 pence. It is also available by post from the Showroom (30 pence extra).

50 MHz QUAD TRACE OSCILLOSCOPE

The new leader LBO-517 has all the features expected on a professional 50HMz oscilloscope plus an extremely useful quad trace facility.

Sensitivity is 5mV/DIV for 50MHz, 1mV/DIV (with MAG x5) for 10MHz, and maximum sweep rate is 5nS/DIV with MAG x10.

Comprehensive triggering and synchronisation facilities, a full specification calibrated timebase and variable hold off functions (including B ends A) make the LBO-517 ideal for a wide range of applications in R & D, or for servicing TVs, VCRs, computer peripherals, etc.

Performance is further enhanced by the quad trace facility, channels 3 and 4 being accessed via rear panel sockets and controls, and various alarm indicators to eliminate mis-operations.

The 10 x 8cm high brightness display has an internal graticule to eliminate parallax errors, graticule illumination, and additional 10% and 90% scales to facilitate pulse measurements.

APRIL, 1981

Further details can be obtained from: Sinclair Electronics Ltd., London Road, St. Ives, Huntingdon, Cambs. PE17 4HJ.

By G. A. French

From time to time we receive requests from readers for oscilloscope voltage calibrating units. Only a small proportion of home-constructors possess oscilloscopes, of course, and it is for this reason that voltage calibrator circuits appear less frequently than do circuits for more commonly employed items of amateurbuilt test equipment. On the other hand, oscilloscope voltage calibrator circuits represent an interesting branch of hobby electronics because they demonstrate how high degrees of accuracy can be achieved with only a few components in quite simple designs. Also, an oscilloscope voltage calibrator can double as an audio frequency signal generator!

CALIBRATOR CIRCUIT

The calibrator circuit appears in Fig. 1. In this, IC1 runs as an astable multivibrator whose frequency is controlled by R1, R2, R3 and C1. Because R2 is equal to R3, and R1 is equal to 4 times R2, the multivibrator produces a 50 : 50 square wave. The presence of R1 causes the oscillator frequency to be slightly higher than the calculated value taken from the values of R2, R3 and C1, and in practice it is approximately 1kHz. The 555 output, at its pin 3, is applied via the constant current device IC2, to the potential divider chain consisting of R5, R6 and R7. A constant current flows through the chain when the 555 output is high, and there is zero current in the chain when the 555 output is low. Thus, a positive going square wave is built up across the chain, its voltage magnitude depending upon the constant current and the resistance values in the chain.

The required constant current is 5mA. It will be seen that the sum of the values of R5, R6 and R7 is 200 Ω whereupon, from Ohm's Law, a constant current of 5mA will cause 1 volt to appear across the three

Fig. 1. The circuit of the voltage calibrator. A constant current of 5mA passes through R5, R6 and R7 when the 555 output is high. No current flows through these resistors when the 555 output is low.

464

resistors. The values of R6 and R7 add up to 20Ω , so that the constant current of 5mA produces a voltage of 100mV across these two resistors. The value of R7 is 2Ω , allowing a voltage of 10mV to appear across it. One of these three voltages is selected by S1 and passed to the calibrator output. The use of a relatively high constant current through the potential divider chain enables the calibrator output impedance to be low, and the d.c. output resistance is 200 Ω maximum.

IC2 is an LM334Z and the constant current it passes is controlled by the external resistance between its pins 1 and 3. The current, in amps, is approximately equal to 0.0677 divided by the external resistance in ohms, and the calculated resistance value is equal to 13.54 Ω . There is, however, a tolerance of 3% on the current value and it is necessary to make the external resistance adjustable about the calculated value. In Fig. 1 the external resistance is given by R4 in series with the pre-set potentiometer, VR1.

The square wave selected by

Fig. 2. If difficulty is experienced in obtaining a close tolerance 2Ω resistor for R7, a 2.2Ω resistor and a 22Ω resistor connected in parallel will provide the required resistance.

Fig. 3(a). For setting-up purposes, a voltmeter is connected to the output terminals, and S1 and S2 are put to the positions shown here.

(b). A temporary short-circuit is then placed across C1 to drive the 555 output high.

S1 is passed directly to the output terminals when S2 is in the "D.C." position. Setting S2 to "A.C." allows a capacitive output coupling via C2. S3 is the on-off switch, and the current drawn from the 9 volt supply is approximately 9mA.

COMPONENTS

The 555 required for IC1 is, of course, widely available. It should be noted that the CMOS version, the ICM7555, is not suitable for this circuit because it cannot provide the output source current required. The LM334Z required for IC2 is available from Maplin Electronic Supplies. In the inset showing its lead-outs, these lead-outs are pointing towards the reader.

R1, R2, R3 and R4 are all $\frac{1}{4}$ watt 5% resistors. R5, R6 and R7 are close tolerance $\frac{1}{4}$ or $\frac{1}{2}$ watt resistors, and these should be 2% or, better, 1% types. If difficulty is experienced in obtaining a 2Ω resistor in close tolerance for R7, a 2.2 Ω and a 22 Ω resistor can be connected in parallel, as shown in Fig. 2. These give a combined value of almost exactly 2Ω .

S1 is, of course, a 3-way rotary switch. Both S2 and S3 can be s.p.s.t. toggle components. S2 is shown as s.p.d.t. in Fig. 1 for ease of circuit presentation. The two capacitors may be polyester.

Because of its low value, VR1 is not normally available in the usual range of miniature preset potentiometers. A small wire-wound component should be employed here.

The calibration unit can be housed in a small metal case which is common with the negative supply rail. Alternatively a plastic case may be employed and the chassis connection shown in Fig. 1 is then ignored.

SETTING UP

A voltmeter, which can be a multimeter switched to a low volts range, is required for setting up. This is connected to the output terminals with S1 set to the "1V" position and S2 set to "D.C.", as shown in Fig. 3 (a). A short-circuit, as illustrated in Fig. 3(b), is then applied across C1. This causes the 555 output to go high. VR1 is next adjusted for a reading of exactly 1 volt in the meter.

The voltmeter and shortcircuit are then removed, after which the voltage calibrator is ready for use.

OBITUARY

It is with deep regret that we have to inform readers that our Technical Editor, Mr. J. R. Davies, died on 7th. February after a very short illness.

Mr. Davies was 57 years of age and, prior to becoming a technical journalist, he was engineer in charge of the television component and sub-assembly factory of Ferguson Radio Corporation Ltd., (now Thorn Electric) at Enfield, Middlesex. Before being appointed Technical Editor of this magazine he had frequently written articles which appeared in these pages and his writing and his editing were notable for their thoroughness and accuracy. All of us who worked with him at Data Publications looked upon him as a personal friend and regarded him with affection – he will be greatly missed.

The funeral service took place at Taunton Crematorium on Wednesday 11th. February at which we were represented by the Production Editor and Advertisement Manager.

To his daughter we extend our deep sympathy and condolences.

SOLDERING IRON REMINDER

By John Baker UNOBTRUSIVE AUDIBLE DEVICE Functions when iron is switched on

A common problem for radio and electronics constructors is that of inadvertently leaving a soldering iron switched on. This usually results in the iron running continuously for many hours before the oversight is discovered, with a consequent reduction in the life of the bit and element. Probably of greater importance is the fact that the soldering iron can present a fire hazard, and the author has some scorched circuit diagrams and carbon papers to illustrate this point. Yet another factor is that one can burn one's fingers or hand by touching an iron which is supposedly switched off. All these points led to the development of the very simple unit which is described in this article.

AUDIBLE REMINDER

In the author's experience there are no difficulties in remembering whether an iron is switched on if it is one of the thermostatically controlled types having an internal bi-metal strip temperature controller. An iron of this nature produces a quiet but clearly audible "clicking" as the bi-metal thermostat switches on and off. The sound helps to remind the user that the iron is switched on, and he is in consequence much more liable to remember to switch off the iron before leaving it.

One solution to the problem, therefore, is to have some form of audible reminder circuit connected in parallel with the iron, so that the user is frequently given a signal that the iron is switched on. Such a reminder can be employed with ordinary irons which are not thermostatically controlled.

It is not necessary for the audible reminder signal to be especially loud or complex, since the unit will be in very close proximity to the user and it would be difficult to miss even a quiet and simple signal. In fact, a loud and complex sound is undesirable because it would soon become very tiresome and irritating! In practice a very suitable signal is a fairly quiet "click" produced at about 10 second intervals – the same sort of sound, in fact, as is given with a temperature controlled iron.

THE CIRCUIT

The circuit finally developed is extremely simple, and is shown in Fig. 1. The unit is permanently connected in parallel with the soldering iron so that it is powered whenever the iron is plugged into the mains supply. The live and neutral mains lines are coupled to the primary of mains transformer T1. The secondary voltage is full-wave rectified by D1 and D2, causing a smoothed voltage to appear across C1. This voltage, unloaded, is of the order of 17 volts. Since the main part of the circuit only consumes some 3mA, the loaded supply voltage is not significantly different.

The rectified supply voltage is by no means critical, and the unit will work just as well with a mains transformer having a secondary voltage of 9-0-9 volts or 6-0-6 volts. It is quite in order to use one of these alternative transformers if the construc-

The soldering iron reminder in its plastic case. The ceramic transducer is fitted on the outside.

Fig. 1 The circuit of the soldering iron

reminder. X1 is a piezoelectric acoustic transducer.

Resistors (Both $\frac{1}{4}$ w

oth 🛊	watt 5%)
R 1	680kΩ
R2	1200

Capacitors

C1	$10\mu F$	electrolytic,	25V.	Wkg
C2	$10\mu F$	electrolytic	25V	Wko

Transformer

T1 mains transformer, secondary 12-0-12V at 50mA (see text)

Semiconductors

TR1	2N4871
D1	1N4001
D2	1N4001

Transducer

X1 ceramic transducer type PB-2720 (Ambit International)

Miscellaneous

Plastic case Veroboard, 0.1in. matrix 3-way connector block 3-core mains lead 2 grommets Nuts, bolts, wire, etc.

The 3-way connector block and Veroboard assembly are mounted on the other side of the panel to which the transducer is fitted. The mains transformer is bolted to one side. The mains input lead was not fitted when these photographs were taken.

Fig. 2. Basic construction of a unijunction transistor.

tor happens to have one in the spares box.

A unijunction transistor relaxation oscillator generates the reminder signal. For those unfamiliar with the unijunction transistor, this has the basic construction shown in Fig. 2. There is a bar of silicon between the base 1 and base 2 terminals with an emitter junction nearer the base 2 end of the bar. Normally, the bar is N-type material and the emitter material is P-type. When the base 2 and base 1 are connected into circuit as in Fig. 1, and the voltage at the emitter is low, the bar presents a resistance in the order of 4 to $9k\Omega$. It therefore functions as a potential divider with a proportion of the voltage between the two bases appearing between the emitter junction and the base 1. This proportion is known as the "intrinsic stand-off ratio".

When the emitter is below the intrinsic stand-off level the only emitter current which flows is reverse leakage current in the emitter PN junction. This situation is maintained if the emitter is taken positive, but it changes abruptly when the emitter potential reaches intrinsic stand-off level plus about the 0.5 to 0.6 volt needed for a silicon diode to conduct. The device then exhibits a very low resistance between the emitter and the base 1.

The reminder can be positioned at any convenient point on the work bench.

Turning back to Fig. 1, capacitor C2 is discharged at switch-on, and it then commences to charge via R1. The voltage on the unijunction transistor emitter is, in consequence, going positive. When the voltage reaches triggering level the transistor exhibits the very low resistance between the emitter and base 1, causing the capacitor to rapidly discharge into R2. The voltage across the capacitor falls to a low level before the transistor reverts to its previous state, after which the capacitor once more commences to charge through R1.

A sharp pulsed voltage is produced across R2 at each discharge of C2, and this is applied to the piezoelectric transducer, X1. The transducer produces a quiet "click" with each pulse, and the volume was found to be adequate for the application.

The values of R1 and C2 are chosen to give a nominal operating frequency of 0.1Hz, or to produce one "click" every 10 seconds. However, the actual frequency will vary significantly between different units built to the circuit due, mainly, to the wide tolerance in the value of C2, and in the intrinsic stand-off ratio of the transistor. The latter is specified as 0.7 to 0.85 for the particular transistor

employed here. The operating frequency of the circuit is obviously of no great importance and a variation from the nominal value of 0.1Hz presents no disadvantage.

CONSTRUCTION

The prototype was assembled in a small plastic case measuring 114 by 76 by 38mm. This case is a type PB1, available from Maplin Electronic Supplies. Any other small plastic case which can accommodate the components can, of course, be used and there are many suitable types available. The general layout used for the prototype can be seen in the photographs. The transducer is mounted on the case exterior and can be used as a template when marking the positions of the two mounting holes in the case. The transducer mounting holes are very small but they can be enlarged slightly to take 8 or 6BA mounting bolts. A small hole must also be drilled just below the transducer to allow its leads to pass through.

A 3-way connector block is used to take the mains wiring and this is secured to the plastic case with suitable nuts and bolts. These connector blocks are usually sold in 12-way strips, and the 3-way block is cut from one of these with a sharp knife. Two holes fitted with grommets are required in one of the case sides. One takes a 3-core lead from the mains plug and the other takes the lead from the soldering iron.

Apart from T1, which is bolted to one side of the case, the remaining components are assembled on a small piece of 0.1in. Veroboard having 13 copper strips by 10 holes. Fig. 3 shows this board and the other wiring. No breaks in the copper strips are required. Note that there is a solder tag under one of the transformer mounting nuts. The mains earth connects to this tag, as also does the oscillator negative rail. Take care to ensure that all the mains wiring is properly carried out.

When it has been wired up, the Veroboard panel is secured inside the case with two 6BA bolts and

Fig. 3. Wiring up the soldering iron reminder.

nuts, spacing washers being employed to keep the board underside clear of the inside surface of the case. After the wiring has been completed and checked, the soldering iron reminder unit is ready to start "clicking". The lid of the plastic box must always be firmly screwed on when the unit is in use.

TRADE NOTE RATCHET-OPERATED CABLE CUTTER

A new hand-held cable cutter, introduced by Klippon, features an integral ratchet mechanism to ensure positive gripping and cutting action when used with a range of copper or aluminium cables with an outer diameter up to 32mm.

The KT 3's unique design enables cables to be cut with a fraction of the pressure normally associated with cable cutters whilst a cutting blade release lever enables the cutting process to be interrupted in any position. A grip locking/unlocking device is provided just below the cutter

locking/unlocking device is provided just below the cutter. Weighing just 590 grammes, the KT 3 is manufactured from high-quality steel with heavy-duty vinyl protecting the handles and providing a firm grip. Finger-guards are provided on the handles to increase the safety aspects of the tool.

Replacement blades are available.

For further details, contact:- Klippon Electricals Ltd., Power Station Road, Sheerness, Kent ME12 3AB.

The ratchet-operated cable cutter.

Timer With Trigger Action

By F. Craig

Positive feedback gives snap switching.

Electronic timers normally employ a resistor and capacitor to provide the timing period. A typical timer circuit is illustrated in Fig. 1(a), in which RA and CA are the timing components. Some form of voltage comparator is required to sense the voltage across the capacitor and this can be an operational amplifier with one input connected to the junction of the capacitor and resistor and the other input connected to a reference voltage which could, conveniently, be half the supply voltage.

CHARGING CAPACITOR

At the start of the timing period the capacitor is discharged. In our example the capacitor is connected to the non-inverting input of the op-amp and so the op-amp output is low and the transistor following the op-amp is cut off.

The capacitor is then allowed to charge. When its voltage closely approaches the reference voltage at the op-amp inverting input the op-amp output starts to go high. Due to the very high level of voltage gain

Fig. 1(a). A typical electronic timer. Capacitor CA is discharged at the start of the timing period, the length of which is controlled by the values of CA and RA

(b). Irregular relay operation at the end of very long timing periods can be eradicated by incorporating positive feedback around the voltage comparator in an operational amplifier the relatively slow rise in voltage across the capacitor is translated into a much more rapid voltage swing at the op-amp output, whereupon the transistor is turned on and the relay is energised. The timing period is then at an end. The arrangement of Fig. 1(a) is acceptable for long

The arrangement of Fig. 1(a) is acceptable for long timing periods with heavy duty relays and can be employed for periods up to about a minute or two with lightweight relays such as the popular 410Ω "Open Relay" which is available from Maplin Electronic Supplies and other sources. When longer periods with a lightweight relay are required, the change in op-amp output voltage at the end of the timing period, although reasonably fast, is still too slow for reliable relay operation. With the Open Relay just referred to, the gradually increasing relay current at the end of the timing period can cause noticeable relay "chatter", with the armature moving irregularly between its two contacts.

This problem can be overcome by introducing positive feedback as shown in Fig. 1(b), where the feedback is provided by the two resistors RB and RC. When, during the timing period, the voltage across the capacitor is low and the op-amp output is similarly low, the voltage applied to the non-inverting input is equal to the fraction of the capacitor voltage which is given at the junction of RC and RB. As, with the capacitor charging, this voltage closely approaches the reference voltage at the inverting input the op-amp output starts to go positive. In doing so it causes the voltage at the non-inverting input to go positive as well, making the op-amp output more positive again. This positive feedback results in the op-amp output swinging rapidly high and thereby causing the relay to energise quickly without risk of chatter or any other similar effect.

WORKING CIRCUIT

The full working circuit of the timer is shown in Fig. 2. The operational amplifier is a CA3140E, which has very high resistance MOSFET inputs. A reference voltage equal to half the supply voltage is given at the junction of the equal value resistors R4 and R5, and this voltage is applied to the inverting input at pin 2. The timing resistance is given by R2 and VR1 in series, and the timing capacitance consists of whichever capacitor is switched into circuit by S1. The feedback resistors, RB and RC of Fig. 1(b), are now given

by R6 and R3 respectively. The op-amp output is coupled to TR1 base by way of R7, and the relay coil is connected in the transistor collector circuit. D1 is the usual protective diode which prevents the formation of a high back-e.m.f. when the relay deenergises.

S2(a) (b) is the Start – Reset switch. When this is in the Reset position, S2(a) short-circuits the timing capacitor selected by S1 via the current limiting resistor, R1. At the same time, S2(b) keeps the controlled circuit open. Setting S2(a) (b) to Start takes the short-circuit off the timing capacitor. Also, S2(b)completes the controlled circuit by way of the break contacts of the relay.

The timing capacitor now charges. After a period dependent upon the value of the capacitor and the resistance inserted by VR1, the voltage at the non-inverting input of the CA3140E closely approaches that at the inverting input. The positive feedback effect just described comes into action and the relay energises rapidly. Its break contacts break the controlled circuit and the timing period is over.

TIMING COMPONENTS

Due to the presence of R6 and R3 the timing period comes to an end when the voltage across the capacitor is 0.55 times the supply voltage. This calculates as 0.8 times the time constant of the timing components. However, since the timing capacitors are electrolytic with a typical tolerance on value of -10+50%, it can be expected that the actual values of C1 and C2 will be in excess of their nominal values. Because of this fact, it can be assumed that the length of a timing period is roughly equal to the time constant of the timing resistance and capacitance (which, in seconds, is equal to megohms multiplied by microfarads). Timing ranges can then be calculated by

COMPONENTS

Resistors

(All fixed values $\frac{1}{4}$ watt 5% unless otherwise stated)

- R1 10Ω
- R2 6.8kΩ
- R3 $1M\Omega$
- R4 100kΩ
- R5 $100k\Omega$
- R6 10MΩ 10%R7 10kΩ
- VR1 $100k\Omega$ potentiometer, linear

Capacitors

- $\tilde{C}1$ 100 μ F electrolytic, 10V. Wkg.
- C2 $1,000\mu$ F electrolytic, 10V. Wkg.

Semiconductors

- IC1 CA3140E
- TR1 2N3904
- D1 1N4002
- Relay

RLA Open Relay, 410Ω coil, changeover contacts

Switches

- S1 s.p.d.t. toggle or rotary
- S2 d.p.d.t. toggle
- S3 s.p.s.t. toggle

Miscellaneous

9 volt battery Pointer control knob Wire, solder, etc.

Fig. 3. Alternative ranges can be incorporated by simply choosing different values of timing capacitor. Here, S1 is changed to a 3-way switch, offering three timing ranges

assuming that the minimum timing resistance is $10k\Omega$ and the maximum timing resistance is $100k\Omega$. Since R2 is considerably lower in value than $10k\Omega$, it should be possible to obtain, within the travel of VR1, the ranges quoted with most electrolytic capacitors. It is unlikely that C2 will be precisely 10 times C1, whereupon it will be necessary to provide two scales for VR1. To make up the scales some four well spread out calibration points are found on each range, and the scales are then marked out from these. The calibration points are found by checking timing periods with a watch having a sweep second hand or a digital display.

Any capacitance values other than those specified can be employed. If desired, there could be three ranges, as illustrated in Fig. 3, with S1 being 3-way rotary. When there are two ranges, S1 can be rotary or toggle. S2(a) (b), on the other hand, must be toggle.

toggle. To withstand initial charging currents, VR1 should be a $\frac{1}{2}$ watt potentiometer. This is the normal rating for a standard sized linear carbon track potentiometer. Because of its MOSFET inputs, care should be taken to ensure that the CA3140E is not damaged by high static voltages, and it should be soldered into circuit with an iron having a reliably earthed bit. Alternatively, an 8-way d.i.l. holder can be used, and the CA3140E plugged into this after all wiring has been completed and checked.

The 410 Ω relay specified for RLA has contacts with a maximum rating of 5 amps at 24 volts d.c. or 240 volts a.c.

The current drawn from the 9 volt supply is approximately 1.5mA during the timing period. This increases to some 23mA when the relay energises at the end of the period. The prototype timer was checked with a temporary timing capacitance which produced a period in excess of 5 minutes. The relay energised quickly and properly at the end of this period.

Further Notes on Some Recent Receivers

Part 2 (Conclusion)

by Sir Douglas Hall, Bt., K.C.M.G.

More modifications to enhance the performance of recent receivers.

THE "DORIC"

This multi-band receiver appeared in the four issues between August and November 1979. The only problem encountered with this design has been that the volume control on the amplifier, when adjusted very nearly at its maximum position whilst listening on the short wave bands, has an effect on reaction. The snag is easily overcome by putting a $3.3k\Omega$ resistor between the short wave tuner and the amplifier as shown in Fig. 3. In some circumstances on some of the short wave bands it may prove advantageous to set the length of the aerial to suit selectivity, adjust VR3 to a suitable setting and use VR1 as a very smooth vernier reaction control.

"LISA"

The article describing this receiver appeared in the magazine issues for September and October 1980. If for any reason it is found that the wavebands are not

Fig. 3(a). The "Doric" receiver can have a $3.3k\Omega$ resistor added to prevent slight interaction between volume and reaction controls on short waves.

(b). Showing how the added resistor is wired into circuit.

properly covered the values of C3 and C4 can be altered accordingly.

C10 and C11 are included in the interests of stability. In most cases C10 may be removed and C11 changed to 0.1μ F (using the C10 component), giving equal stability and a slight improvement in output quality.

Provided that it has proved possible to set up the receiver so that the reaction control does not have to be moved through more than about 20 degrees to maintain the receiver on the threshold of oscillation throughout the whole of the medium wave band it is worth carrying out the following modification. Change the value of VR3 from $2.2k\Omega$ to $1k\Omega$ and wire the slider of this new component to the outer unused tag of S1(b) instead of to the centre tag. When this $1k\Omega$ component is properly adjusted it should be found that reaction comes in extremely gradually. The altered wiring causes a little extra resistance to be included in the reaction circuit when switched to long waves, in order to maintain proper control on this band with the new pre-set potentiometer.

F.M. BANDS IN GENERAL

Finally, it might be useful to provide a few notes on problems which can arise when listening on the f.m. band with the "Jubilee," the "Band II Portable" or the "Doric". The comments also apply to any of the earlier receivers described by the author which provides an f.m. band and use a self-contained telescopic aerial, and to many similar non-superhet receivers in addition.

Excessive hiss or hand-capacitance effects nearly always mean that there is insufficient signal, either due to distance from the transmitter or screening. Different positions should be tried for the receiver. Sometimes there is one part of a room where the reception is much better than in other parts. Also, try different lengths of aerial, as well as different angles and changes in the direction in which the aerial points. Aerial length can sometimes be quite critical in bad reception areas. The only other likely cause of excessive hiss and hand-capacitance effects is a faulty transistor. In the author's designs the culprit will be the Spontaflex amplifier – the one with the diode in its emitter circuit. This transistor is more critical than the input amplifier, to which the aerial is connected through a capacitor. On at least one occasion a marked improvement has been effected by swapping the two transistors round.

Other problems can arise when the receiver is in a very strong signal area, close to the transmitter. Here again the length of the aerial can be quite critical, this time to avoid overloading. Sometimes the receiver will work best in these conditions with the aerial completely closed or even removed altogether. Generally, however, some 12in. of aerial, carefully orientated, will give best results.

Mail Order Protection Scheme

The publishers of this magazine have given to the Director General of Fair Trading an undertaking to refund money sent by readers in response to mail order advertisements placed in this magazine by mail order traders who have become the subject of liquidation or bankruptcy proceedings and who fail to supply goods or refund money. These refunds are made voluntarily and are subject to proof that payment was made to the advertiser for goods ordered through an advertisement in this magazine. The arrangement does not apply to any falure to supply goods advertised in a catalogue or direct mail solicitation.

If a mail order trader fails, readers are advised to lodge a claim with the Advertisement Manager of this magazine within 3 months of the appearance of the advertisement.

For the purpose of this scheme mail order advertising is defined as:

"Direct response advertisements, display or postal bargains where cash has to be sent in advance of goods being delivered."

Classified and catalogue mail order advertising are excluded.

MODEL TRAIN CONTROLLER

By M. V. Hastings

Low impedance "constant voltage" output.

Continuously variable voltage control.

Low cost mains operation.

On the front panel, from left to right, are the mains on-off switch, the pilot lamp, the output voltage control and the Forward-Reverse switch.

This simple model train controller has been designed for use with an inexpensive train set which was originally supplied with a combined battery box and controller. This employed six HP11 cells and, while their cost was not too high initially, the expense soon started to mount up as replacement sets became necessary. Battery operation became, in consequence, uneconomic in the long term. The controller section also had the initial advantage of being very inexpensive but the control it exerted was rather limited, in that it only had three speed settings. These were "Stop", "Slow" (with four cells switched into circuit) and "Fast" (all six cells switched in).

These factors led to the design and construction of the mains powered controller which is described here. This can be built at reasonable cost and provides a continuously variable full range of speeds. It also gives a low output impedance at all output voltages, whereupon a good performance is given even at low running speeds.

TYPES OF CONTROLLER

The simplest type of mains driven controller giving a full range of speeds merely consists of a transformer to give isolation and step down the mains voltage to the required level, a rectifier to produce a pulsating d.c., and a large variable resistor in series with the output to vary the output current and act as a speed control. Some form of polarity reversal switching is usually incorporated so that the direction of the train can be altered.

A serious problem with this arrangement is that the output impedance of the controller becomes high at low speeds due to the relatively high resistance inserted by the variable speed controller. This is apt to lead to the train running fast down slight gradients and stalling when trying to climb a gradient.

The reason for this effect is that the output impedance of the controller and the impedance of the train motor effectively form a potential divider. When the train attempts to climb a gradient its motor impedance reduces with the increased loading, and the voltage across it falls. Whilst this causes the current fed to the motor to be increased, the high output impedance of the controller results in the actual power applied remaining roughly the same or even decreasing! With the train requiring increased power, but getting the same or decreased power, it is not surprising that it should stall and come to a halt.

An opposite effect is given when the train runs down a gradient, with the motor requiring less current and having increased impedance. This results in a small decrease in the supply current which is counteracted by a rise in the voltage across the motor. The power fed to the motor therefore remains much the same or increases slightly, resulting in the train accelerating.

Another, related, problem with this type of controller is a poor starting performance. Slowly advancing the speed control from zero does not result in the train starting off smoothly, and gradually accelerating up to full speed. Instead, nothing happens at first and then the train suddenly starts off at high speed.

This last effect is caused by the motor having a very low impedance when it is stationary and a comparatively higher impedance when it is running. Thus, there is very little voltage across the motor at first, and when the train does begin to move the voltage across the motor rises dramatically, resulting in a start at a fast rate.

One way of obtaining improved performance is to use a controller of the so-called constant voltage type. This employs a variable voltage regulator in place of the variable resistor, so that the voltage across the motor does not vary when its current consumption changes due to loading. If the motor tries to draw more current when the train is climbing a gradient it is therefore able to do so, and the increased power causes the risk of stalling to be greatly reduced. Conversely, if the motor tries to consume less current and power it is again able to do so. Improved starting is also given, and with a little skill and practice it is possible to have quite realistic starting. It is a train controller of this type which is described in this article.

CONTROLLER CIRCUIT

By taking advantage of an integrated circuit power amplifier it is possible, as is shown in Fig. 1, to make up a controller having only a small number of components.

S1(a) (b) is the on-off switch, and it controls the mains supply to the isolation and step-down transformer, T1. PL1 is a pilot lamp, and consists of a panel-mounting neon indicator with entegral series resistor suitable for 240 volt a.c. operation.

The rectified output from D1 and D2 is smoothed by C1. It is not necessary to have a smoothed d.c. supply for a d.c. electric motor, but the voltage control circuitry requires a reasonably well smoothed supply, and it is for this reason that C1 is included.

IC1 is primarily intended to function as an audio power amplifier, but it is quite suitable for a wide range of other applications. It is very much like an operational amplifier, and has both inverting and non-inverting inputs. Unlike an operational amplifier which, in most cases, can provide an output current in the order of milliamps, the TDA2006 specified for IC1 can provide output currents up to a few amps. The i.c. is available from Maplin Electronic Supplies.

The output of the TDA2006 is connected directly to its inverting input, and the consequent 100% feedback causes it to function as a voltage follower. The output voltage, which is at low impedance, is then (within limits) equal to the voltage at the non-inverting input. The voltage at the non-inverting input can be varied from zero to the full supply potential by adjusting VR1. The output of the

COMPONENTS

Resistor

VR1 10k Ω potentiometer, linear

Capacitors

- $\tilde{C}1$ 1,000 μ F electrolytic, 16V. Wkg.
- C2 10µF electrolytic, 16V. Wkg.
- C3 10µF electrolytic, 16V. Wkg.

Transformer

T1 mains transformer, secondary 9-0-9V, 1A

Semiconductors

IC1 TDA2006 D1-D4 IN4001

Switches

S1(a) (b) d.p.s.t., mains rotary switch S2(a) (b) d.p.d.t., toggle

Fuse

FS1 1A fuse, quick blow, 20mm. cartridge

Lamp

PL1 panel-mounting neon indicator with integral series resistor

Socket

SK1 4mm. insulated socket, red SK2 4mm. insulated socket, black

Miscellaneous

Verocase type 75-1411-D (see text) 2 control knobs Chassis mounting fuseholder, 20mm. Veroboard, 0.1in. matrix 18 s.w.g. aluminium (for heat sink) Nuts, screws, wire, etc.

Fig. 1. The circuit of the model train controller. The rectified variable voltage output is given at sockets SK1 and SK2.

TDA2006 cannot quite reach either of these extremes, but it comes close enough for satisfactory results in the present application. VR1 thus operates as the speed control.

C2 and C3 are needed to aid circuit stability. D3 and D4 are protection diodes. S2 is the forward-/reverse switch, and it alters the polarity of the supply fed to the output sockets when it is changed from one position to the other.

In common with most units of this type, a truly constant output voltage is not provided since loading of the output causes the rectified voltage across C1 to fall. This results in a slight drop in the voltage at VR1 slider. However, the output impedance of the unit is still quite low, and the output voltage is more than stable enough to give good results.

IC1 incorporates output short-circuit protection circuitry which prevents damage in the event of most overloads. A prolonged overload will cause fuse FS1 to blow and protect the components from damage. IC1, incidentally, also has built-in thermal shutdown protection.

The Veroboard component assembly. The L-shaped bracket bolted to IC1 heat tab is secured to the rear panel of the case.

Fig. 2(a). The L-shaped bracket before bending. The material is 18 s.w.g. aluminium and the bend is at right angles, with the upper section being bent towards the reader.

(b). After bending, IC1 heat tab is secured to the bracket section having one hole. The remaining section, with two holes, is bolted to the rear panel of the case. Bolts and nuts are 6BA or M3.

Fig. 3. Wiring up the components on the Veroboard panel. The letter references from "A" to "H" correspond with the similar references in Fig. 4.

CONSTRUCTION

The prototype is housed in a Verocase type 75-1411-D, which has dimensions of 205 by 140 by 75mm. Before obtaining the case it is advisable to check the dimensions of the particular transformer to be employed, to ensure that the case height is adequate.

Layout details are shown in the photographs. On the front panel, from left to right, are switch S1(a) (b), PL1, VR1 and S2(a) (b). The output sockets are 4mm. insulated types and are mounted on the rear panel. The component panel is also secured to the rear panel by way of an L-shaped bracket which functions as a heat sink for IC1. This bracket is made from 18 s.w.g. aluminium and has the dimensions shown in Fig. 2(a). The bracket is fitted to IC1, after the component panel has been wired up, in the manner illustrated in Fig. 2(b). Also required in the rear panel is a hole, fitted with a grommet, for the mains lead.

The two output sockets are mounted on the rear panel. This also has a hole, fitted with a grommet, for the mains lead.

Fig. 4. Wiring external to the Veroboard. Check the tag positioning of S1 with a continuity tester before wiring to this component.

The mains transformer is secured to the base of the case behind S1(a) (b), with the fuseholder alongside it on the component panel side. A solder tag is held under one of the transformer mounting nuts to allow its frame to be earthed. A solder tag, secured with a countersunk 6BA bolt and nut, is fitted to the front panel at any unobtrusive point to allow this to be earthed as well. The rear panel is automatically earthed by way of IC1 heat tab, which is common with its negative supply pin.

VEROBOARD PANEL

The remaining components are fitted to a 0.1in. matrix Veroboard having 14 copper strips by 23 holes. This has to be cut down from a larger board, using a small hacksaw. The Veroboard layout is illustrated in Fig. 3, and there are no breaks in any of the copper strips. IC1 has preformed lead-outs and these have to be opened out somewhat to fit into the appropriate Veroboard holes. After wiring on the Veroboard is completed the heat sink bracket is

APRIL, 1981,

secured to IC1 as already described. The component panel is not finally secured to the rear panel of the case until the wiring illustrated in Fig. 4 has been completed. It will be found that the Veroboard is held in place quite adequately by the heat sink, and no further mounting arrangements are required.

The train controller is then ready for use.

SHORT-CIRCUITS

Model train systems are prone to short-circuits from time to time due to derailments and similar mishaps. Since the controller incorporates a 1 amp fuse it might be thought that this fuse would blow for short-circuits of this nature. In practice the fuse does not blow with derailments, partly because the resulting short-circuits are too short in duration and partly because of the current limiting effect of IC1. The prototype controller has had quite a lot of use and, although derailments have occurred, the original fuse is still fitted and has not needed to be replaced.

Gui Am

The practice amplifier as seen from the front. The only items mounted on the front panel are the on-off switch and the neon pilot light.

Single i.c. design • 3 mixed

The acoustic sound output of solid electric guitars is quite small, and it is necessary to use an amplifier and speaker to boost the sound even when practicing, espeecially if two or more people are playing together. Stage equipment can be used when practicing at home, but it is better in most instances to use a low power amplifier specifically designed for this application.

Such an amplifier is described here, and it has an output power of up to about 3 watts r.m.s. into an 8Ω speaker. The circuit has a built-in mixing facility and has inputs for three guitars. Since normal electric guitars are fitted with volume and tone controls such controls are not provided with the amplifier, giving a consequent simplification in design.

MIXING CIRCUIT

The amplifier employs an integrated circuit which is rather like an operational amplifier having a Class AB output stage, and which has inverting and noninverting inputs. Fig. 1(a) shows an operational amplifier working in the inverting mode. The noninverting input is biased to a mid-supply voltage by RB and RC. The input signal is applied to the inverting input via d.c. blocking capacitor CA and RA. RD provides feedback from the output to the inverting input. An inherent feature of an operational amplifier is that, in a circuit of this nature, it functions to keep the inverting input. Because of this action, the voltage gain of the amplifier is equal to RD divided by RA. If,

(b). A second input can be mixed with the existing input by simply adding another d.c. blocking capacitor and input series resistor. The virtual earth at the op-amp inverting input prevents interaction between the two inputs.

Following Eire's decision to adopt 27MHz, 40 channel FM for the basis of its CB system, the much delayed decision from the UK seems to have been arrived at for the worst possible reasons:

The Voice of the People

Depending on your viewpoint, it is not at all clear whether or not the UK CB phenomenon of the past year has been a gratifying example of beaurocracy overcome by sheer practical commonsense - or yet another unedifying example of the irresistability of large scale organised civil disobediance.

The practical realization of a personal communication facility with a minimum of administrative beaurocracy is a logical extension of any 'libertarian' democracy provided it conforms to the usual criteria by which democratic 'freedom' has been established.

Namely, CB radio should not interfere with the freedom of any other citizen to pursue his legally established rights. The fact that 27MHz CB radio (particularly AM mode operation) has grossly undermined the safety and confidence of the aero modelling fraternity was grudgingly recognized at the start of the year, when the Home Office allocated the almost universal 'Euro' band of 35.005 to 35.205MHz to UK radio modellers although restricting its use to airborne applications only. At the same time, the first step towards CB was taken by the broad deregulation of the erstwhile 27MHz model control band.

A victory for commonsense, but what a shame so many CBers are/were so badly informed on the subject of their responsibility to aero modellers in the first place. It's not enough to simply stay away from a channel when the characteristic buzz of digital proportional RC can be heard in the receiver — since the aircraft can hear a CBer over a range many times that which can be covered from the RC transmitter to the CB receiver (Fig. 1). The airborn antenna of the aircraft receiver can hear an enormous number of additional groundwave transmissions — so the answer is to stay clear of the RC spot channels at the very least. (Table 1). The use of intermediate or split frequencies is not really very common, and will probably die out as serious users migrate to 35MHz.

The CB'ers dream: 100W all modes Sommerkamp TS-788 transceiver

RC colour code	CB channels to avoid	Freq. MHz
Black	(1)	26.945
Black/brown	2	26.975
Brown	(2/3)	26.995
Red/brown	6	27.025
Red	(7/8)	27.045
Orange/red	10	27.075
Orange	(11/12)	27.095
Yellow/orange	14	27.125
Yellow	(15/16)	27.145
Green/yellow	18	27.175
Green	(19/20)	27.195
Blue/green	22	27.225
Blue	23	27.255
(Channel numbers in brackets indicate adjacent channels)		
Table one: RC versus CB		

- CB ~ CB ~ CB ~ CB ~ CB ~ CB ~

Interference to other TV/Radio/Audio equipment

Public enemy number one for the CBer and the Home Office is/will be interference to the democratic right of the public to watch TV. Even if the CB set is fully approved and in accordance with the regulations laid down, there will still be a great deal of scope for the inadequacy of most types of 'front end' used in UK TV sets to be brought into relief by the presence of a large number of strong RF fields. (*Fig. 3*) The fact that the RF field is at a frequency far removed from UHF band 4 TV makes little difference. The basic problems results from simple overloading of the input of the TV, and is not as a result of harmonically related spurii (multiples of the 27MHz frequency).

Figure four: AM CB in an audio amplifier

Table two	: Harmonics of	the 27MHz ban	d to 1000MHz
Number	Reference	Upper limit	Lower limit
1	27.000 MHz	27.405 MHz	26.965 MHz
2	54	54.81	53.93
3	81	82.215	80.895
4	108	109.62	107.86
5	135	137.025	134.825
6	162	164.43	161.79 .
7	189	191.835	188.755
8	216	219.24	215.72
9	243	246.645	242.685
10	270	274.050	269.650
11	297	301.455	296.615
12	324	328.860	323.580
13	351	356.265	353.545
14	378	383.670	377.510
15	405	411.075	404.475
16	432	438.480	431.440
17	459	465.885	458.405
18	486	493.290	485.370
19	513	520.695	512.335
20	540	548.100	539.300
21	567	5/5.505	500.205
22	594	602.910	593.230
23	640	030.315	620.195
24	675	607.720 605.105	674 105
25	702	712 520	701.000
20	729	730 035	728.055
28	756	767 340	755 020
20	783	794 745	781 985
30	810	822 150	808 950
31	837	849.555	835,915
32	864	876,960	862,880
33	891	904.365	889,845
34	918	931.770	916.810
35	945	959.175	943.775
36	972	986.580	970.740
37	999	1013.985	997.705
			Line and the second

Exact details of UK broadcast frequencies are obtainable from the IBA and BBC:

IBA Eng. Inf. Dept.,	B.B.C. Engineering
Crawley Court,	Information Dept.,
Winchester,	Broadcasting House
Hants SO21 2QA	London W1A 1AA
the second s	***# DA

The use of AM and SSB (both basically modes of speech that vary the transmitted output power in accordance with speech level) will also lead to interference in such unlikely things as HiFi and ordinary domestic MW receivers, where a powerful RF field can readily be rectified and amplified in the audio stages — regardless of what the RF selectivity may do. (Fig. 4).

FM modulation at least alleviates the problem of interference with HIFi — but it doesn't necessarily eradicate it altogether. An FM transmission can still drive an audio stage into non-linearity (and hence distortion), but the reason the CBer gets away with it, is that there is no actual speech coming from the amplifier since the RF carrier level is constant. FM CB will still give TV sets the 'wobblies', but since the match of the set to it's antenna is not so critical as with AM, the scope for really grotesque interference arising from the mismatch of an AM transmitter is rather less.

In fact, FM CB has many advantages from a technical viewpoint, although the predominance of AM and SSB CB equipment as the historical result of the USA's policy has left a legacy that will be hard to 'phase out'.
~ CB ~ CB ~ CB ~ CB ~ CB ~ CB ~

Euro-CB on 27MHz

The fact that most of Europe already uses 27MHz for CB was obviously an influential force in the UK choicebut as you will see as we unwind each country in the course of this series - actual standards vary widely.....

No.	Country	Channels	Mode(s)	Output
1	UK	(?)40	FM	(?)4W
2	Eire	40	FM	4W
3	Holland	22	FM	0.5W
4	W. Germany	22	AM/FM	0.5W
5	Belgium	22	AM/FM/SSB	0.5W
6	France	22	FM	2W
7	Switzerland	12	AM	0.1W
8	Italy	23	AM	5W
9	Spain	22	AM	5W
10	Portugal	40	AM/FM/SSB	5W
11	Greece	40	AM/FM/SSB	5W
12	Sweden	25	(SSB)/AM/FM	2-5W
13	Yugoslavia	32	AM	2W
14	Poland	40	AM/SSB	4W
15	Denmark	23	AM/FM	0.5W
16	Austria	12	AM/FM	0.5W
17	Norway	23	AM/FM	0.5W
18	Finland	24	AM/FM	0.5W

Please note that one country's channels do not necessarily relate to those of another. A much more detailed analysis of Euro-CB will follow in subsequent issues.

CHANNEL v FREQUENCY — FOR THE STANDARD 40 CHANNEL SYSTEM USE 'LOW' COLUMN

	FREG	DUENCY IN	MHZ		FRE	QUENCY IN	MHZ
СН	н	MID	LOW	СН	HI	MID	LOW
1	28.500	27.415	26.965	21	28.750	27.665	27.215
2	28.510	27.425	26.975	2.2	28.760	27.675	27.225
3	28.520	27.435	26.985	23	28.790	27.705	27.255
4	28.540	27.455	27.005	24	28.770	27.685	27.235
5	28.550	27.465	27.015	25	28.780	27.695	27.245
6	28.560	27.475	27.025	26	28.800	27.715	27.265
7	28.570	27.485	27.035	27	28.810	27.725	27.275
8	28.590	27.505	27.055	28	28.820	27.735	27.285
9	28.600	27.515	27.065	29	28.830	27.745	27.295
10	28.610	27.525	27.075	30	28.840	27.755	27.305
11	28.620	27.535	27.085	31	28.850	27.765	27.315
12	28.640	27.555	27.105	32	28.860	27.775	27.325
13	28.650	27.565	27.115	33	28.870	27.785	27.335
14	28.660	27.575	27.125	34	28.880	27.795	27.345
15	28.670	27.585	27.135	35	28.890	27.805	27.355
16	28.690	27.605	27.155	36	28,900	27.815	27.365
17	28.700	27.615	27.165	37	28.910	27.825	27.375
18	28.710	27.625	27.175	38	28.920	27.835	27.385
19	28.720	27.635	27.185	39	28.930	27.845	27.395
20	28.740	27.655	27.205	40	28.940	27.855	27.405

R&EC and CB

Now that CB is here to stay, REC will ensure that all the adherents enjoy the maximum benefit — with minimum interference to the liberty of others. Which broadly means that your neighbours should be able to watch Crossroads without crosshatch — whilst you are able to hook the DX, without resorting to the sheer brute force and ignorance of illegal power boosters.

Contributors to this regular monthly supplement include the most knowledgeable people in the business of world CB. But furthermore, we think that CB will be an introduction to the broader spectrum of interests in Radio and Electronics for a good many CB enthusiats who find the topics of a CB-only publication just a little restrictive and subjective. Write and tell us what you want — and what you think.

~ CB ~ CB ~ CB ~ CB ~ CB ~ CB ~

The Evolution of CB

AM CB grew up in Europe (and much of the rest of the world) from the purely commercial expedient that a lot of surplus gear was available at very low cost as a result of the Boom and Bust of the US CB market in the 1977/8/9 period. The whole point of CB is that the user frequently doesn't care much about the technicalities of his rig — as long as it is cheap and enables him to talk to a passable number of other enthusiasts.

And the other reason is the naive reluctance of the Post Office (as it then was) followed by the Home Office (who took over the Post Office's responsibility for radio spectrum usage), to recognize that CB existed. Or even acknowledge the inevitability of a formal CB system in the UK — if only as a result of the frequently repeated experiences of the rest of the world.

The Post Office greedily guarded its communications monopoly; and the Home Office uttered dark things about the potential for illegal use of CB. It's hardly likely any criminal would be stupid enough to use the most populated frequency on the airwaves, when it is nearly as simple to obtain far more discrete amateur or private mobile/portable radio equipment. The experience of the USA bears out the simple fact that CB is a far more constructive medium than the UK authorities would like to admit.

After a while, the interminable buck passing in the Home Office during the last Labour administration led to the attraction of CB as an election issue. The Conservative Party — being nominally the party of individual freedom and against state monopoly agreed to the idea 'in principle' — and thus won the support of the CB Association. Not surprisingly, with the election in the bag and more pressing matters afoot, the CB lobby was conspicuously ignored while the Home Office replayed its usual round of worn out excuses:

Number one: "There isn't a demand for the service..... $^{\psi}$ Not to anyone's great surprise, this old chestnut quickly passed into disuse.

Number two: "There is no suitable frequency....."

This was one that the 'boffins' used most successfully to bamboozle the politicians. After all, the average MP will probably admit to having his scientific acumen strained when asked to change the batteries in a torch — so the 'blind 'em with science' ploy was very successful. The fact that the rest of the world found a frequency eventually got the better of the argument, although the wimpering continues with talk of the 'special factors' that apply to the British Isles.

Number three: It would be impossible to regulate the illegal misuse of CB, and people might say Rude Things..." Oh dear, oh dear. The BBC and IBA somewhat preempted this argument by the saturation broadcast coverage of just the sort of thing that the anti-CB brigade claimed would undermine the nation's morality. Even the so-called responsible radio amateur fraternity have been thoroughly disgraced by the behaviour of some moronic souls on the 2 metre band in particular. Never mind, there is always that quaint switch marked 'Off'.

Number four: "The problems of interference to other users will be insurmountable....."

Now even the most ardent CB proponent must concede some ground here. Technical advances over the past couple of years have certainly reduced the chance of the CB set causing problems — and the ease with faults and problems can be identified and rectified. Nevertheless, the problem of simple overload cannot be ignored. The answer is to provide sufficient revenue from the CB licence to pay the relevant authority to go out and settle problems. Existing CB groups are already well organized, so that trouble shooting such problems should be quite an orderly affair. Most such problems conform with very standard phenomena, that are cured by equally standard solutions. With 2.4 million unemployed persons, the shortage of manpower to handle these situations is scarcely a convincing argument albeit a fairly minimal degree of training will be required.

But all these were all eventually ground down to the point at which Mr. Whitelaw made the infamous 'Open Channel' green paper available for discussion. The almost universal derision that this attracted from practical realists (be they fans of CB or otherwise) clearly underlined that 928MHz was ludicrously inadequate as an answer to the growing band of illegal 27MHz CB operators — hence the first crack in the facade appearing with the 35MHz aero modellers' allocation. 928MHz was simply the next most negative suggestion the Home Office could come up with compared to 'No CB at all'.

As country after country in Europe adopted the 27MHz band, it was inevitable that the UK could not pretend it could avoid the question any longer. Cars and trucks fitted with CB from the continent simply could not be regulated, and the underground movement had acquired nearly 250,000 illegal sets. Not as the result of any careful planning or consideration, 27MHz has simply happened.

The availability of another as yet unused 928MHz frequency offers some opportunity for the future, when equipment for these frequencies will become more viable and attractive as 27MHz clogs up.

Conclusions

No one can really be proud of the way CB has arrived here. There is very little scope for UK manufacturing to benefit — and we have a very indifferent technical solution compared to the system we could have had if the decision had been just two years ago. The capitulation to mass disobedience will lead to further erosion of public respect for politicians and the 'good sense' of authority.

In such circumstances there can be no victory — we have all lost something in this unseemly affair. Gleeful CBers might like to reflect on the other Great American 'democratic right' supported by a similar campaign of public obstinacy in the shape of the ludicrous gun laws. The ownership of firearms is a fait-accomplis, enshrined in as much law as can feasibly be enforced and stoked along by some unashamedly commercially biased considerations.

AM to FM conversions examined 928MHz – our objective assessment

tar Practice plifier By R. A. Penfold

inputs • Ideal for solo or group practice.

for instance, RD has twice the value of RA, an input signal going 1 volt positive would cause the operational amplifier output to swing 2 volts negative. The actual voltage change at the inverting input itself would be very small and it can be looked upon as providing a "virtual earth." The input impedance of the circuit is then equal to RA.

To obtain a mixing action at the inverting input it is merely necessary to add a second d.c. blocking capacitor and series input resistor, as are given by CC and RE in Fig. 1(b). The output now corresponds to the sum of the two input signals and the required mixing is obtained. Also, since the inverting input provides a virtual earth there is negligible interaction between the two inputs. In the present application, this ensures that adjustments to the volume and tone controls of one guitar will have no effect on the output of another guitar connected to the second input.

Another advantage with this type of circuit is that it can accept any number of inputs within reason, without any adverse effect on performance. It is merely necessary to add a d.c. blocking capacitor and series resistor for each input required.

APRIL, 1981

AMPLIFIER CIRCUIT

The circuit of the guitar practice amplifier is given in Fig. 2. This is basically similar to Fig. 1(b), but there are now three inputs. Guitar pick-ups need to work into a reasonably high impedance and they do not provide a very high output signal level. R1 to R3 give the circuit an input impedance of $33k\Omega$ at each input, and the value of feedback resistor R7 is chosen to give a voltage gain of about 46dB, or 200 times. This gives an input sensitivity of about 24mV for full output, and any normal guitar pick-up will provide an output of adequate magnitude.

Unlike the operational amplifier in Figs. 1(a) and (b), the input impedance of the i.c. employed in the amplifier is not very high, and is comparable with the value of R7. Because of this, the non-inverting input cannot be biased to a mid-supply voltage by simply connecting it to the junction of two equal value resis-

COMPONENTS

Resistors

(All fixed values $\frac{1}{4}$ watt 5% unless otherwise stated)

R1 33kΩ

R2 $33k\Omega$

R3 33k Ω

R4 8.2kΩ

R5 47k Ω pre-set potentiometer,

0.1 watt horizontal

R6 $22k\Omega$

R7 6.8MΩ 10%

Capacitors

C1 0.47 μ F polyester type C280

C2 0.47µF polyester type C280

C3 0.47μ F polyester type C280 C4 330μ F electrolytic, 25V. Wkg.

C5 2,200µF electrolytic, 16V. Wkg., single-ended (see text) C6 100μ F electrolytic, 25V. Wkg.

C7 0.1μ F polyester type C280

C8 2,200µF electrolytic, 25V. Wkg. (see text)

Semiconductors

IC1 TDA2006 D1-D6 1N4001

Transformer

T1 mains transformer, secondary 15V at 500mA (see text)

Fuse

FS1 500mA cartridge fuse, 20mm.

Switch

S1 d.p.s.t. rotary mains switch

Lamp

PL1 panel-mounting neon, with integral series resistor

Sockets

SK1-SK3 ¹/₄in. jack socket SK4 3.5mm. jack socket (see text)

Miscellaneous

Metal case (see text) Control knob Chassis-mounting fuseholder, 20mm. Veroboard, 0.1in. matrix Aluminium, 18 s.w.g. (for IC1 heat sink) 3-core mains lead Nuts, bolts, wire, etc.

Fig. 2. The circuit of the a.f. section of the guitar practice amplifier.

tors, and it is necessary to provide an adjustable bias voltage here. The bias voltage is given at the slider of pre-set potentiometer R5, which is adjusted for a mid-supply voltage at the amplifier output.

The non-iverting input is bypassed to chassis by way of C4. This capacitor is given a relatively high value to ensure that no hum or noise from the power supply is passed into the non-inverting input. The amplifier is designed for use with a non-stabilized supply, and the high value of C4 causes quite a stable bias voltage to be given even when there are substantial fluctuations in supply voltage with high level signals. C4 prevents a form of positive feedback which could cause the biasing to be forced well off centre by strong sudden signals, resulting in clipping of one set of half-cycles.

D1 and D2 are protection diodes, and C6 and C7 are supply decoupling components. The amplifier has a quiescent current consumption of about 40mA, but this rises to some 300 to 350mA at full output.

POWER SUPPLY

The supply current required by the amplifier is much too high to be provided economically by batteries, and a mains power supply is required. The circuit of the supply used with the amplifier is shown in Fig. 3.

S1 is the on-off switch and is, incidentally, the only control for the unit. PL1 is a neon indicator with integral series resistor intended for operation from the 240 volt a.c. supply. T1 provides isolation from the mains supply and offers a secondary voltage of 15 volts at 500mA. (Some important notes concerning this transformer are given later under the heading "Components").

The secondary voltage is applied via fuse FS1 to the bridge rectifier consisting of D1 to D4, and the rectified voltage is smoothed by capacitor C8. It might be thought that the initial surge of current at switch-on, as C8 charges, could cause the fuse to blow, but it has been found in practice that a quickblow fuse withstands this surge, and there is no necessity to employ an anti-surge fuse for FS1.

COMPONENTS

The amplifier is assembled in a vinyl covered metal instrument case having dimensions of 229 by 133 by 63.5mm, and this is a case type TP4 available from Maplin Electronic Supplies. Also available from Maplin Electronic Supplies is the integrated circuit type TDA2006 and suitable electrolytic capacitors for C5 and C8. C8 is an axial lead capacitor whilst C5 is a single-ended (i.e. both lead-outs are at one end) capacitor intended for printed circuit mounting. Both the Maplin capacitors will fit into the layout and case specified.

As will be evident from Fig. 3, the mains transformer has its two 15 volt secondaries connected in parallel. Mains transformer secondaries with the same nominal voltage should never be connected in parallel unless the transformer manufacturer states that it is safe to do so. This is because the transformer can overheat if one secondary should happen to have one or more turns in excess of the other. The author employed a transformer having two 250mA secondaries, but this may be difficult to obtain and a satisfactory alternative is a 10VA Miniature Transformer with two 15 volt 330mA secondaries which is listed by Maplin Electronic Supplies. It is also in order, with this particular transformer, to connect the two secondaries in parallel. It would also be in order,

Fig. 3. The power supply section. There is no necessity for a stabilized supply.

The amplifier section. The three input leads do not need to be screened.

of course, to use a mains transformer having a single 15 volt secondary rated at 500mA or more. Such a transformer may require a metal case of greater height than that used for the prototype unit.

CONSTRUCTION

As can be seen from the photograph of the internal layout, the use of a relatively large case allows the mains transformer to be mounted well away from the amplifier board, thereby causing minimal stray pickup of hum in the amplifier circuitry. Looking into the case from the front, the mains transformer is to the rear at the extreme left, with the power supply board to its right. On the right hand side of the case is mounted the amplifier board. On the front panel, to the left, is PL1 with S1 to its right. The chassismounting fuseholder is secured to the case bottom between S1 and the power supply board.

Output socket SK4 is fitted to the centre of the rear panel. A 3.5mm jack socket was used in the protoype but any other type of 2-way socket or connector which may be preferred can be used instead. SK1, SK2 and SK3 are all in. jack sockets and are mounted behind the amplifier board. A hole with a grommet for the mains lead is provided at the power supply end. The mains lead should be secured inside the case with a plastic or plastic-faced clip.

SUPPLY BOARD

Many of the power supply components are assembled on a piece of 0.1in. Veroboard having 19 copper strips by 18 holes, and this is shown in Fig. 4. There are no breaks in the copper strips. The two mounting holes are 3.3mm, in diameter and take 6BA or M3 screws.

As is shown in Fig. 4, a solder tag is secured under one of the mounting nuts for the transformer, and this provides the chassis connection for the mains earth lead as well as the negative output of the power supply. Before connecting to S1, confirm relative tag positioning with a continuity tester in case the particular switch employed has a different tag layout to that shown in the diagram. An insulated lead about 150mm. long is soldered to the Veroboard at the

Fig. 4. Wiring up the power supply. There are no breaks in the Veroboard copper strips.

Fig. 5. Component layout on the amplifier Veroboard.

positive output, for later connection to the amplifier board. The power supply board is secured to the case bottom with strip "A" towards the front of the case. Spacing washers 12.5mm. long on the mounting bolts keep the board underside well clear of the inside metal surface of the case.

AMPLIFIER BOARD

A second 0.1in. Veroboard is used for the amplifier, and details of this are given in Fig. 5. The board has 17 copper strips by 25 holes and there are three breaks in the strips. The lead-out wires of the TDA2006 are preformed, but will not fit the 0.1in. matrix board unless they are splayed out slightly. The i.c. requires a small heat sink which is made up as shown in Fig. 6. Fig. 7 gives a side view, illustrating how the heat sink is bolted to the i.c. and to the bottom of the metal case. The heat sink is made of aluminium of about 18 s.w.g., and it also provides the negative supply connection to the amplifier by way of the i.c. heat tab.

The completed amplifier board assembly is mounted at the extreme right hand end of the case, so that it is well away from the mains transformer and the mains wiring. Spacing washers 12.5mm. long are used on the screws securing the board. If this is temporarily mounted in place the two holes for the heat sink can then be marked out using the heat sink itself

All dimensions in mm

Fig. 6. The heat sink for IC1 is made from a piece of 18 s.w.g. aluminium. The two bends are at right angles and the sink is shown, after bending, in Fig. 7.

The mains transformer and power supply panel.

The rear panel. The three input sockets are to the left, and the output socket is positioned centrally.

as a template. The assembly is mounted with the heat sink to the rear.

The positive supply lead is connected to the amplifier board, as also are the leads to the four sockets. Because the amplifier is in a metal case the leads to SK1, SK2 and SK3 do not need to be screened, but they should be kept as short as is reasonably possible. All the jack sockets pick up their chassis connection by way of their mounting bushes and nuts. The nonearthy tags of the sockets can be determined by visual inspection.

If an alternative output socket is employed it may require a wired chassis connection. This can be provided by a solder tag under the nearer nut securing the heat sink to the case bottom.

Fig. 7. How the heat sink is secured to the integrated circuit heat tab and to the bottom of the metal case.

ADJUSTMENT

After the amplifier has been completed it needs to be checked and R5 has then to be adjusted. Initially, R5 should be given a central setting. A guitar is connected to one of the inputs and an 8Ω speaker to the output socket. Note that there is a short delay of a second or two after switch-on before the amplifier becomes fully operational, since some of the capacitors have to charge to their working levels. In its present state the amplifier should function reasonably well.

Next, set a multimeter to a suitable d.c. volts range (25 volts f.s.d. or more), connect its negative lead to chassis and its positive lead to the output of the TDA2006. A suitable point is the lower wire of R7 as shown in Fig. 5. R5 is then adjusted for an output voltage of 11 volts.

If a multimeter is not available, it is quite acceptable to simply adjust R5 to the setting which gives the highest audible output before clipping and consequent severe distortion occur.

After R5 has been adjusted the case lid is fitted. The amplifier should always be employed with the lid firmly screwed in position.

As the winter period comes to an end, signals from the Far East will fade out and those from the Latin American area will tend to build up - at least that is the usual pattern of events for those of us here in the U.K. and Europe. Instead of listening from around 1500 and 2200GMT for those elusive transmissions from the East, we must instead strain our ears for the African signals from 1730 onwards and the Latin American transmissions from around 2200 through to 0600 or so - providing one has trouble with sleeping at nights! Insomniacs make good LA specialists!

Some LA signals heard of late have been -

COLOMBIA

La Voz del Norte, Cucuta, on 4875 at 0415, OM identification in Spanish followed by local announcements in which Cucuta was mentioned several times. The schedule is from 0930 to 0500 variable, reportedly closing sometimes at 0630. The power is 5kW.

Radio Guatapuri, Valledupar, on 4815 at 0722, local-style music, OM with station identification at 0726 and again at 0736. Local announcements, some with the echo-effect much beloved by the LA's. Still on the air as late as 0745. The schedule is from 0930 to 0600 and the power is 10kW. Reportedly edentifying as "Radio Favorita" it was "Radio Guatapuri" on both the above occasions.

•ECUADOR

Radio Federacion, Sucua, on 4960 at 0319, OM with announcements in Spanish, YL with folk songs. The schedule is from 1030 (Sundays from 1100) to 0300 (Saturdays until 0400, Sundays until 0100). The power is 5kW.

SURINAM

Radio Apintie, Paramaribo, on a measured 5006 at 0305, light music European-style non-stop through to 0330 when announcements in Dutch. The schedule is from 0830 to 0430 and the power is unknown.

OALGERIA

Algiers on a measured 15033 at 2057, OM (Old Man = Male announcer) with announcements in French, local-style music. At 2100, 5 pips timecheck, OM with station identification and details of frequencies with transmission times (this channel not mentioned) in English. Algerian frequencies are

subject to constant variations.

PORTUGAL

Radio Renascenca, Lisbon, YL (Young Lady = Female announcer) in Portuguese with the programme for Portuguese catholics abroad, scheduled from 1830 to 2230 on this particular channel.

Frequencies = kH:

OYEMEN ARAB REPUBLIC

Radio Sana'a on 9780 at 1950, Arabic-type music, YL with songs in the Home Service which is entirely in Arabic. The schedule on this frequency is from 0300 to 0700 and from 1000 to 2130, on Fridays additionally from 0700 to 1000. The power is 50kW.

•KUWAIT

Radio Kuwait on 11650 at 1830. OM with station identification followed by news of the Arabic world in the English programme intended for Europe, scheduled on this channel from 1800 to 2100. Also directed to the Arabian Gulf area.

BULGARIA

Radio Sofia on 9700 at 1954, YL with the English programme for the U.K. and Eire, scheduled from 1930 to 2000 – all about mineral springs in Bulgaria on this occasion.

●EAST GERMANY

Radio Berlin International on 21500 at 1839, OM with station identification, frequencies and times details in the English programme for Europe and West Africa, scheduled from 1800 to 1845.

• ETHIOPIA

Addis Ababa on 7165 at 1512, xylophone music. At 1515, OM with a talk in English until 1520 then into a programme of European-style dance music until pips time-check at 1530 and a newscast after station identification by YL. All in the English programme, scheduled on this channel from 1500 to 1600.

SOMALIA

SBS Mogadishu on 9585 at 1932, OM with news of African affairs in Somali (place names identified) then local music and songs by YL chorus. Lots of co-channel QRM (interference). This is the External Service which is scheduled from 1000 to 1930 (extended on this occasion). Domestic Service programmes are carried on this channel from 1530 to 1630.

•ROMANIA

Radio Bucharest on **9690** at 1957, OM with a talk about the libraries of Romania in the English programme for Europe, scheduled from 1930 to 2030.

•KENYA

Mombasa on a measured **4934** at 0341, OM with a religious service in vernacular, choir with hymns in the North Eastern and Coastal Service, scheduled on this frequency from 0330 to 0630 and from 1400 to 2005. The power is 20kW.

• MALI

Bomako on a measured **4838** at 2207, Africantype orchestra, YL with songs, OM's with chants. The schedule is from 0600 to 0800 and from 1800 (Friday to Sunday inclusive from 1830) to 2400. The power is 18kW and this one is listed on **4825**.

•NETHERLANDS

Radio Nederland on **9895** at 0948, OM with the English programme intended for Europe and scheduled on this channel from 0930 to 1020.

INDONESIA

RRI (Radio Republik Indonesia) Ujung Padang on a measured **4719** at 1520, OM in Indonesian with Sousa march interludes. The schedule here is from 0830 to 1230 but has been noted here closing as late as 1532 on several occasions. The power is 50kW.

RRI Jakarta on a measured **4774** at 1526, OM in Indonesian, short interludes of military music, almost certainly in parallel with Ujung Padang on this occasion. Jakarta transmits special events on this channel and is scheduled from 2200 to 0200 and from 0830 to 1600. The power is 50kW.

RRIBukittinggi on a measured **4828** at 1528, OM in Indonesian, signal just audible. This one operates from 2300 to 0300, 0500 to 0715 and from 0930 to 1600, is listed on **4827** and has a power of just 1kW.

RRI Yogyakarta on **5045** at 1535, OM's with a discussion in Indonesian. The schedule is from 0100 to 0300, from 0455 to 0800 and from 0955 to 1700. The power is 5kW.

• CHINA

Radio Peking on **9860** at 1920, OM with the English programme for Europe, scheduled from 1900 to 2000. All about the mistakes made during the "Great Cultural Revolution."

Radio Peking on **9880** at 1918, Chinese music in the Portuguese programme for Europe and Africa, scheduled from 1900 to 2000.

Radio Peking on **9920** at 1915, OM with the Cantonese programme to Europe, scheduled from 1900 to 2000.

Radio Peking on **9945** at 1912, OM with the Romanian programme, scheduled from 1900 to 1930.

Radio Peking on **3220** at 2150, OM in Chinese in the Domestic Service 1 programme scheduled from 2000 to 2300 and from 1318 to 1733.

• CHINA – REGIONALS

Kunming, Yunnan on **4760** at 1524, YL in Chinese, piano music. This is Yunnan 1 operating from 2150 to 0600 (Tuesdays until 0800) and from 0920 to 1600. An English language lesson is radiated from 2200 to 2230. (Yunnan People's Broadcasting Station = "Yunnan Ren-min Guangbo Dian-tai" as identified in Standard Chinese).

PLA (People's Liberation Army) Fuzhou on **4045** at 1514, OM and YL alternate in Chinese. This transmitter radioes the Network 1 programme to Taiwan and other offshore islands from 2100 to 0145 and from 1000 to 1800.

Lanzhou, Gansu on **4865** at 2215, YL in Chinese. The schedule is from 2145 to 0100 (Sundays until 0600), from 0320 to 0600 and from 1000 to 1600.

Xizang, Tibet on **4750** at 1544, OM in Chinese, local-type classical music. The schedule is from 2230 to 0645 (March to September from 2300) and from 1000 to 1545. "Hsi-Tang Ren-min Guang-bo Diantai."

Haerbin, Heilongjiang on **4840** at 2226, OM and YL in Chinese, OM with songs. The schedule is from 2040 to 0630 (Thursdays until 0510) and from 0830 to 1530.

• THAILAND

Bangkok on **4830** at 1530, OM song in Thai with local orchestral music. Radio Thailand operates from 2240 to 1630 on this channel. The power is 10kW.

• NORTH KOREA

Pyongyang on 9977 at 1315, OM with a newscast, YL with a song in Korean in the English programme for South East Asia, scheduled from 1300 to 1450.

• VIETNAM

Hanoi on a measured **9986** at 1345, YL with announcements in the Cambodian programme for South East Asia, scheduled from 1300 to 1400.

Hanoi on a measured **4944** at 2208, OM in Vietnamese in the Home Service 1 programme, scheduled on this channel from 2100 to 1615 (variable closing time, reported closing sometimes at 1630).

MONGOLIA

Ulan Bator on a measured **4763** at 2221, OM and YL alternate in Mongolian, also logged in parallel on **4830.** This transmitter radiates the Home Service 1 from 2200 to 0100 and from 1030 to 1500; relays the R. Moscow Mongolian programme from 0600 to 0650, 0930 to 1000 and from 1200 to 1245; the Foreign Service in Russian from 1330 to 1400. Although scheduled to open at 2200, it has always been noted here as opening at 2202 with the National Anthem (the tuning signal commences at 2200). The power is 50kW.

IRAQ

Radio Baghdad on **9745** at 2130, YL with station identification and opening announcements in the English programme for Europe, scheduled from 2130 to 2230. This item according to one of our regular readers, A. Dupres of Cardiff, an enthusiast just $16\frac{1}{2}$ years of age – have we any younger fans? I must listen to Baghdad sometime, L lived there for some time and know it well – but I never saw any magic carpets!

Alastair also logged AIR Delhi on **11620** at 1915, at which time every Saturday he listens to "Quiz Time" and has sent in some questions of his own.

Another of his regular loggings is United Nations Radio on **15230** at 0800 when they transmit a newscast in English to Africa.

Medium and
ShortAnd
WaveShortWaveShortBy
I.M. AttrillMedium waves plus 25, 39 and 49 metre bands

Medium waves plus 25, 39 and 49 metre bands. Special grade ferrite aerial. Low cost design.

This unusual 3-transistor radio covers the standard medium wave band and the short wave broadcast bands within a frequency range of approximately 5 to 12MHz. This range takes in the 25, 39 and 49 metre bands. The output is intended for high impedance magnetic headphones (2,000 Ω or 4,000 Ω) or a crystal earphone, and there is plenty of volume from any reasonably strong signal.

Medium and short wave receivers usually employ a ferrite aerial for medium wave reception and a telescopic aerial for short waves, but this design uses a ferrite aerial for both wavebands. The ferrite rod grade normally encountered in portable receivers has a useful range for efficient reception from around 150kHz to 2MHz and covers the medium and long wave bands. The ferrite rod used in the design to be described is a special F16 grade, with a range from 500kHz to 12MHz. This allows the receiver to cover the medium wave band and the short wave range just mentioned.

THE CIRCUIT

The receiver employs a t.r.f. circuit in which all amplification before the detector stage is carried out at signal frequency. This is as opposed to a superhet which first converts the received signal to an intermediate frequency, this being passed into an i.f. amplifier before detection. Since the i.f. amplifier works at a fixed frequency it can provide a high level of sensitivity and selectivity, and the performance of a superhet is superior to that of a t.r.f. receiver in these respects. On the other hand a superhet is much more complicated than a basic t.r.f. receiver and, on completion, requires careful alignment. As can be seen from Fig.1, the circuit of the t.r.f. receiver to be described is quite simple and it requires only a small number of components. A further advantage is that, after completion, it requires no alignment whatsoever and is ready for immediate use.

L1 and L2 are the medium and short wave aerial coils respectively, and they are connected by

The prototype medium and short wave receiver is housed in a plastic case with the controls mounted on one of the longer sides.

APRIL, 1981

489

Fig.1. The circuit of the medium and short wave radio. The aerial uses a special grade ferrite rod which is suitable for short wave reception.

wavechange switch S1 to tuning capacitor VC1 and the gate of TR1. This is a Jfet having a very high input impedance, with the result that the aerial tuned circuit can be connected directly to the gate and there is no necessity for coupling windings. The coil specified for L1 has a coupling winding which is not shown in Fig.1. and no connections are made to this winding.

C3 couples the amplified signal from TR1 drain to the base of TR2, which functions as a broadband untuned r.f. amplifier. The aerial signal is inverted both by TR1 and by TR2, so that the signal at the collector of TR2 is in phase with the signal at TR1 gate. This allows positive feedback (known as reaction or regeneration in this application) to be provided from TR2 collector, through C5, VR1 and C4, back to TR1 gate, the level of feedback being controlled by VR1. This feedback increases the effective Q of the aerial tuned circuit by an extremely high level, allowing the receiver to have good selectivity and sensitivity. For normal reception, VR1 is advanced to the stage where TR1 and TR2 are just short of going into oscillation.

COMPONENTS	Inductors L1 medium wave aerial coil type MWC2 (Ambit) L2 see text
Resistors(All fixed values $\frac{1}{4}$ watt 5%)R1 330 Ω R2 1.5k Ω R3 680k Ω R4 330 Ω R5 1k Ω R6 22k Ω	Semiconductors TR1 BF244B TR2 2N2369A TR3 BC108 D1 OA91 D2 OA91 Switches
R7 1MΩ R8 3.3kΩ VR1 100kΩ potentimeter, linear	S1 s.p.d.t. toggle S2 s.p.s.t. toggle
Capacitors C1 100 μ F electrolytic, 10V. Wkg. C2 0.01 μ F polyester type C280 C3 0.0068 μ F ceramic plate C4 2.2pF ceramic C5 100pF ceramic plate C6 0.047 μ F polyester type C280 C7 0.015 μ F ceramic plate C8 0.1 μ F polyester type C280 C9 10 μ F electrolytic, 10V. Wkg. C10 100 μ F electrolytic, 10V. Wkg. C11 560pF ceramic plate VC1 variable air-spaced (see text)	Socket SK1 3.5mm. jack socket Miscellaneous F16 grade ferrite rod, 200mm. x 9.5mm. (Ambit) 2 clips type FRPC (Ambit) Plastic case (see text) 9-volt battery type PP3 Battery connector 1 large control knob 1 small control knob Crystal earphone or high impedance headphones with 3.5mm. jack plug Wire for L2 (see text) Nuts, bolts, wire, solder etc.

The signal at the collector of TR2 passes through C6 to the detector circuit comprising D1, D2, R6 and C7, and the detected audio signal is fed via C8 to the audio amplifier, TR3. C11, between the collector and base of TR3, provides negative feedback at the higher audio frequencies and thus rolls these off. The result is a lower noise level and a reduction in adjacent channel interference. C9 is the output d.c. blocking capacitor.

Supply decoupling is provided by C1, R8 and C10. The current consumption of the receiver is only about 3.5mA, and a small PP3 battery is adequate.

COMPONENTS

The F16 grade ferrite aerial rod has a length of 200mm. and a diameter of 9.5mm. and is available, together with two mounting clips type FRPC, from Ambit International. Ambit International also supply the medium wave coil type MWC2. The BF244B required for TR1 is available from several retailers as are the 0.0068μ F and 0.015μ F ceramic plate capacitors, C3 and C7. Tuning capacitor VC1 can be any air-spaced variable component having a value between 200 and 250pF. The author used the front (208pF) section of a 208pF plus 176pF 2-gang capacitor. The receiver has to be housed in a plastic case to ensure that the ferrite aerial is not screened, and this has to be large enough to take the rather long ferrite rod. The case employed by the author has dimensions of 215 by 130 by 85mm, and is a case type MB4 available from Maplin Electronic Supplies.

On the front panel the tuning control is on the left. S2 is mounted approximately central with the potentiometer and S1 to its right.

SHORT WAVE COIL

The short wave aerial coil is wound by the constructor using multi-strand p.v.c. covered connecting wire. The author used 7 x 0.2mm. wire and this is listed by Maplin Electronic Supplies as "Hook-up Wire". However any similar wire should give practically identical results provided that the length of the coil is about 10m. The winding is illustrated in Fig.2.

Start by anchoring the wire to the end of the ferrite rod by a length of insulating tape 19mm. $(\frac{3}{4}in.)$ wide, leaving a lead-out wire of adequate length, say about 200mm. Then wind exactly 8 turns of wire around the rod, closely spaced so that the winding is about 10mm. long. A second piece of insulating tape is then used to anchor the free end of the coil to the rod and to prevent the coil from unwinding. The free wire is then cut to a suitable length. The two lead-outs of the coil can be cut to their final length during the wiring of the receiver.

All dimensions in mm

Fig.2. The short wave coil is home-wound and uses ordinary stranded connecting wire as described in the text.

PRINTED BOARD

Most of the components are assembled on a printed circuit board, which is shown full-size in Fig.3. The board is prepared in the usual way.

The ferrite aerial is fitted to the board after the other components have been soldered in place. The two mounting clips are secured to the board by means of short 6BA bolts and nuts. The short wave coil takes up the position relative to the board which is shown in Fig.3. and the medium wave coil is fitted to the other end of the ferrite rod. It is positioned so that only about 2mm. of the rod protrudes outside the end of the coil former and is then taped in this position.

The parts are mounted in the plastic case referred to earlier. This is rather larger than is really required, but it is necessary for it to have a dimension which will accommodate the ferrite aerial rod.

The front panel controls are laid out as shown in the photographs. The tuning capacitor is to the left, and on its right, slightly right of centre, is the on-off switch S2. The next control is VR1 with S1 on its right. The precise positioning of these controls is not critical. The tuning capacitor requires a hole of about 16mm. diameter for its spindle and bush. It will have 4BA tapped holes on its front plate and corresponding 4BA clear holes are needed in the front panel. A piece of paper with a $\frac{1}{4}$ in. hole in it is passed over the spindle of the capacitor and the positions of the three holes marked on it in pencil. The paper can then be used as a template to mark out the corresponding holes in the panel. The three 4BA bolts holding the capacitor in place must be very short since their ends must not pass more than fractionally beyond the inside surface of the capacitor front plate. Should the bolt ends pass too far into the capacitor the moving or fixed vanes may be damaged.

The printed board is fitted to the case bottom by means of two 6BA bolts and nuts, with spacing washers to keep the board underside clear of the inside surface of the case. The board is not finally fitted in place, however, until it has been connected to the controls, output socket and battery clip. The wiring should be kept reasonably short and direct. Try to keep the two non-earthy leads to VR1 fairly well spaced and not running closely side by side, otherwise

Fig.3. The majority of the components are assembled on a printed circuit board which is reproduced full size.

The printed board assembly is fitted to the bottom of the case with the ferrite rod aerial away from the panel controls.

A closer look at the printed board assembly

stray capacitance between them may render VR1 unable to control the level of regeneration properly. These are the two wires which connect to tags B and C of the potentiometer, as shown in Fig.3.

On the front panel, VC1 should be fitted with a large control knob. A smaller knob will suffice for VR1.

USING THE SET

With a crystal earphone or high impedance headphones plugged into SK1, VR1 backed well off (i.e. turned anticlockwise) and S1 set to the medium wave position, it should be possible to tune in a few stations by means of VC1. Sensitivity and Selectivity will probably both be rather poor, and advancing VR1 clockwise will give improved results. If VR1 is advanced too far the circuit will oscillate, causing beat notes to be produced when tuning through a station, and satisfactory reception will be impossible. For optimum results, VR1 should be backed off slightly from the point at which oscillation starts. The best setting required for VR1 will alter slightly after any significant adjustment of VC1. It will probably be found that, with VR1 advanced as far as possible without oscillation occurring at any setting of VC1, quite good results will be obtained over the entire medium wave band.

The receiver is operated in the same way when S1 is set to select short waves. The short wave broadcast bands are quite easy to locate as they provide what are normally the strongest signals, but reception on each band will vary somewhat according to the prevailing conditions. It is unlikely that there will be a single setting for VR1 which will give good results over the whole short wave tuning range, but it should be possible to find a setting for each broadcast band which gives good results over that band. If, at some point on one of the tuning ranges the level of regeneration is excessive even with VR1 fully backed off, the gain of the r.f. amplifier must be slightly decreased. This can be achieved by increasing the value of R3 to $1M\Omega$.

A Session of Puzzles. No. 1.

Puzzle along with Dick and Smithy.

"But there's nothing to flaming well do!"

"We could," suggested Smithy, "have a game of swear-words Scrabble."

"No, thank you," replied Dick bitterly. "You know more dirty words than I do and most of the ones I do know I don't know how to spell."

"How about tidying up your bench?"

"I've tidied it up."

"Couldn't you knock up some little gadget to pass the time?"

"I can't think of anything to knock up."

A FEW PUZZLES

Dick squatted morosely on his stool and scowled at the Serviceman.

"Well," said Smithy, "I have to agree that things have been pretty quiet for the last few days and that we've completely cleared up everything that's in for repair."

"Exactly," confirmed Dick moodily, "and now there's nothing whatsoever to flaming well do, I'm bored rigid!"

Smithy pondered for a moment, then brightened.

"I've just had an idea," he said cheerfully. "I'll set you a little puzzle and we'll see if you can solve it."

"A puzzle? What sort of a puzzle?"

"An electronics puzzle."

"That doesn't sound a bad idea at all," stated Dick, quickly enthusiastic. "What's the puzzle going to be?"

Smithy pulled his note-pad towards him.

"Come over here," he said, taking a ball-point pen from his pocket, "and I'll show you."

Dick carried his stool over to Smithy's bench and perched on it while the Serviceman carefully drew out a circuit. (Fig. 1).

⁴⁷There you are,⁷⁷ said Smithy, putting down his pen. "Here's a simple circuit with four batteries and eight resistors in it."

"What am I supposed to do?" "Find out the current which flows in the circuit. Everything is in series and so the same current flows through all the resistors and all the batteries."

(Would you, gentle reader, like to puzzle along with Dick and Smithy? If so, read no further and see if you can determine the current which flows in Smithy's circuit. Then come back to the events of the Workshop and discover whether your answer is the same as that reached by our servicing pair).

"I could start simplifying things a bit, I suppose," said Dick doubtfully, "by changing the four pairs of resistors to single resistors. For instance I could replace R1 and R2 by a single 3Ω resistor."

Fig. 1. If, this month, you would like to puzzle along with Dick and Smithy, avert your eyes from the following diagrams and their captions and proceed straightaway to the start of the text. This is the first puzzle which Smithy put to Dick.

494

"You could do that," agreed Smithy, "but it wouldn't help you much."

"It's those darned batteries," complained Dick. "You've got no less than four of them distributed throughout the circuit.'

"If the batteries are worrying you, try simplifying them.

'How can I?'

"Think about it. To give you a hint I said just now that the same current flows through all the resistors and all the batteries."

"Which must of course be true," mused Dick. "Hang on a iiff! Will the same current flow if I take a battery out of one part of the circuit and insert it at another place?"

Of course it will. Provided, that is, you don't reverse its polarity."

Dick picked up Smithy's pen and proceeded to draw in Smithy's note-pad.

"Then," he said excitedly, "I could move BY2 to the left so that it's next to BY1. And I could also move BY3 to the left so that it connects directly to BY4."

He quickly completed the new version of the circuit and showed it to Smithy. (Fig. 2(a)). 'Keep at it," said Smithy.

"You're on the right lines."

"I think I'm nearly there now. Well, BY1 and BY2 have their two negative ends together, which means that BY1 subtracts 4.5 volts from the 9 volt BY2. So I can replace them with a single 4.5 volt battery having the same polarity as BY2. There's the same sort of thing with BY3 and BY4, and these can be replaced by a single 3 volt battery with its negative end connecting to R6." (Fig. 2(b)).

"That's perfectly correct. Now shift the lower battery so that it's next door to the upper battery. Be careful with its polarity."

'I'll bring it round to the left hand side of the upper bat-tery." said Dick. "Now, the positive side of the lower battery points in the clockwise direction so, when I bring it round, its positive end will be to the right."

Dick scribbled out the new rearrangement of the circuit. (Fig. 2(c)).

"And that," said Smithy, "is very nearly the final step. The

4·5V

-

30

two batteries are series-aiding and so they provide a total voltage of 7.5 volts. The next thing to do is to add up the values of the resistors."

"I'll do that next." said Dick. "Let's see what it is. Ah yes, the grand total comes to 15Ω .

"Which means that we've got 7.5 volts pushing a current through 15 Ω . What will that current be?"

"It will be 7,5 volts divided by 15 Ω . Which works out at half an amp?'

Correct," confirmed Smithy. "The current which flows in the circuit is half an amp."

CIRCUIT ERROR

'This is great," said Dick, pleased at his success. "Let me try out one on you.'

'Okay," said Smithy equably. "See if you can catch me out."

Dick walked over to his bench and returned with a sheet of paper.

'Here we are," he said. "I was making up a transistor phase splitter the other day and I got some very funny voltage readings. I made a note of them, and here they are.'

Dick showed the paper to

R₂ WW

20

Fig. 2(a). First stage in simplifying the circuit. BY2 and BY3 are moved left to connect directly to BY1 and BY4 respectively.

(b). The circuit is now effectively powered by two batteries.

(c). The final simplification consists of bringing round the lower battery. (Some solvers may have simply added and subtracted battery voltages, according to polarity, to arrive at the same solution as results from this diagram).

(c)

IΩ

R

wŴ

In

THE

MODERN BOOK CO.

Largest selection of English & American radio and technical books in the country.

> 19-21 PRAED STREET LONDON W2 1NP Tel: 01-402 9176

Please mention

Radio & Electronics Constructor

when replying to advertisements

Fig. 3. There is a single error in this diagram.

Smithy. (Fig. 3).

"Dear me," stated Smithy. "I must say that those voltages are **very** peculiar."

"There is one single error in that circuit drawing," said Dick. "I found out what it was later."

"Did you use an incorrect value resistor?"

"No."

Were the queer voltage readings due to a low resistance voltmeter?"

"No. I used a very high resistance voltmeter."

"Is it a silicon transistor?"

"It is," stated Dick, "and its base connects to R1, its collector to R2 and its emitter to R3. What you have to find is the single error which exists in the circuit."

(Can you, as you read this, spot the single error? You already know that all resistor values are correct. See if you can find the error before Smithy does).

Smithy gazed thoughtfully at Dick's circuit.

"Do you know what caused these funny voltages?"

"I know what the error was because I was able to put it right," said Dick a little uncomfortably. "But I don't know why the error caused the voltages to appear!"

"What happened," stated Smithy with complete certainty, "is that you made up the circuit with a p.n.p. transistor instead of an n.p.n. transistor."

Dick looked crestfallen at Smithy's quick solution to his problem.

"Yes," he said sheepishly, "That's exactly what I did do. After I got these queer voltages I checked the transistor marking and I found I'd soldered in the wrong type."

'So the error in the circuit

drawing," said Smithy, "is that the emitter arrow is pointing in the wrong direction. To get the voltages shown, the emitter arrow should be pointing inwards instead of outwards."

"That's exactly right. Now you tell me why the voltages appeared!"

"All right," said Smithy. "Well, if it had been an n.p.n. transistor there would have been a voltage drop of 0.6 volt only between the base and the emitter. But in your drawing there are 5.8 volts across R1 and 5.2 volts across R3. Subtract the sum of these from the 18 volts supply voltage and you're left with 7 volts across the base emitter junction. So that junction must be reverse biased. From which it follows that you used a p.n.p. transistor instead of an n.p.n. one."

"If the base-emitter junction is reverse biased," queried Dick, "why does it pass any current at all?"

'Because" replied Smithy," the base-emitter junction of most silicon transistors has a breakdown voltage in the region of 6 to 10 volts. When that breakdown voltage is reached the junction acts like a zener diode. The transistor you used happened to have a breakdown voltage of 7 volts. Now, because the transistor was p.n.p. instead of n.p.n. the collector-base junction was forward biased, and that explains the 0.6 volt difference between the voltage across R1 and the voltage across R2. Let's redraw the circuit using zener diode and ordinary diode symbols. This is how it looks.

Smithy picked up his pen and drew the equivalent circuit. (Fig. 4).

Fig. 4. An equivalent circuit incorporating diodes,

Fig. 5(a). A standard full-wave rectifying circuit in which the mains transformer has a centre-tapped secondary.

(b). By adding two rectifier diodes it is possible to obtain the same rectified voltage with only half the secondary winding.

STRANGE RECTIFIER

"Well," said Dick. "You've answered my little puzzle, so how about setting me another one?"

"All right," replied Smithy obligingly. "What I'll do is introduce you to an unfamiliar power supply rectifier circuit."

Dick settled himself more comfortably on his stool.

"Righty-ho," he said cheerfully. "Fire away!"

"As you know," said Smithy, drawing once more on his note-pad, "the usual full-wave rectifier circuit has two rectifier diodes connected to the outside ends of a mains transformer secondary. The secondary is centre-tapped, and the centre tap goes to the negative rectified supply rail. Like this,"

He pointed to the circuit which he had now completed. (Fig. 5(a).).

"That's basic enough," commented Dick. "On halfcycles when the upper end of the secondary is positive diode D1 conducts, and on halfcycles when the lower end is positive diode D2 conducts. Both diodes cause the reservoir capacitor to charge and stay charged."

"Fair enough," said Smithy. "Now, it's possible to get the same full-wave rectifying action and the same rectified voltage with only half the secondary winding which is required in the ordinary fullwave circuit. All you have to do is to add two more rectifier diodes, giving you a circuit like this."

Smithy drew a further circuit. (Fig. 5(b).).

"How does that work?"

"It works like this," said Smithy. "We've got our original two diodes, D1 and D2. And I've now added two more diodes, D3 and D4. Let's see first what happens on halfcycles when the right-hand side of the transformer secondary is positive. Diode D3 prevents the left-hand side of the secondary going negative of chassis by any significant voltage, so virtually the full secondary voltage is applied through D1 to the reservoir capacitor. On the alternate half-cycles the left-hand end of the secondary is positive. This time, diode D4 prevents the right-hand end going negative of chassis, and virtually all the secondary voltage is applied through diode D2 to the reservoir capacitor. So, just by adding two diodes we get the same full-wave rectifier action as we had with the centretapped transformer secondary. and we only need half the secondary winding to give the same rectified voltage.

"But that's a marvellous rectifier circuit," stated Dick. "Why don't we see it used in practice?" ELECTRONIC COMPONENTS RADIO & TELEVISION For the convenience of Irish enthusiasts we supply: Radio & Electronics Constructor Data Books Panel Signs Transfers Also a postal service

PEATS for PARTS

ELECTRONIC

TUTOR KITS

Learn electronics the effective way by experiments. Each kit contains an illustrated handbook, which takes you step by step through the fundamentals of electronics, plus all the components needed. No soldering. Safe and instructive for even the young enthusiast. Kit 1, £5.85. Kit 2, £5.95. Kit 3, £6.15. SAE for leaflets on this and other RXG products.

RXG ELECTRONICS LTD. 15 Walnut Tree Crescent, Sawbridgeworth, Herts, CM21 9EB.

Fig. 6. The familiar bridge rectifier.

"There's the mystery," replied Smithy. "See if you can fathom it out!"

(And can **you** fathom it out? On the face of it, Smithy's rectifier circuit cannot help but work. Can you remember it being used in a practical application? Be warned, there's a catch).

"There's something fishy

here," said Dick suspiciously. "Ithink you're reverting to your usual devious tactics."

Smithy presented an expression of utter innocence to his assistant.

"No, I'm not." he said. "I've drawn out a working rectifier circuit and it functions exactly as I've described it."

"Then why," queried Dick

scowling, "haven't I seen it used in practice? Or have I?"

Smithy remained silent.

"Four rectifier diodes and an untapped mains transformer secondary," muttered Dick. "Now let me think about this."

He picked up Smithy's pen and traced the lines in the rectifier circuit. Suddenly his brow cleared and, decisively, he drew another rectifier circuit. (Fig. 6).

"You crafty devil," he grinned. "You really had me there! That circuit of yours is just a standard full-wave bridge rectifier!"

"It had you fooled for a bit though, didn't it?"

"I'll say it did." agreed Dick. "It just shows how you get used to seeing circuits drawn out in a standard fashion. Now let's see if I can dream up another puzzle for you."

Dick and Smithy complete their session of puzzles next month.

Under a contract from the Ministry of Defence, EASAMS Limited, a member of the GEC-Marconi group of companies, is studying the feasibility of providing highly manoeuvrable and realistic "agile" targets for anti-tank weapons training.

Using a practical knowledge of the terrain, training programmes and support facilities on each of the Army's firing ranges, the EASAMS commission is to bring an imaginative approach to new and existing target system concepts. This will take into account the financial and logistic limitations within which the target system is to operate. EASĂMS' task is to determine whether technically economically and feasible compromises can be reached among a number of conflicting requirements.

Anti-tank weapons are now able to engage modern armoured vehicles which are fast and highly manoeuvrable. New moving targets capable of varying speed and direction during a target run are required to train tank crews, anti-tank gunners and missile operators in the use of the new weapons.

AGILE TARGETS

Many training techniques, such as simulators and non-firing manoeuvres are available, but there is no substitute for live firing against realistic targets in the appropriate environment.

An ideal target should look and behave like the armoured vehicle it represents and react realistically when hit. It should provide a cheap easily controlled solution, immune to intentional weapon strikes and to adverse range conditions. Also, it should make minimal demands on range facilities and manpower.

RADIO AND ELECTRONICS CONSTRUCTOR

MAY 1981 **IN NEXT MONTH'S ISSUE** CRYSTAL CALIBRATOR

Eight frequency decades – 1Hz to 10MHz Harmonic-rich square wave outputs. Receiver calibration and digital applications.

3-STAGE M.W. SUPERHET Two high gain transistors and an integrated a.f. amplifier.

Low component count.

BURGLAR ALARM WITH ENTRANCE DELAY Suggested Circuit Full speaker output.

A SESSION OF PUZZLES No. 2.

In Your Workshop

-an objective assessment

PLUS MANY OTHER ARTICLES

Molex Electronics Limited announce a touch switch with a difference. Instead of controlling circuits by way of electronic semiconductor devices, the Molex switch simply causes two electrical surfaces to come into physical contact with each other. Touch pressure to operate the switch is only 6 to 10 ounces.

The switch has been made feasible by the development of a special process which allows a conductive silver polymer ink to be deposited on a flexible substrate. Two sections of thin flexible polyester sheet with conductive surfaces facing each other are separated by a thin insulated spacer layer with holes, and the whole assembly is sealed. It may be mounted on a flat surface whereupon, when the outer layer is lightly touched, the two conductive surfaces come into contact with each other and complete the circuit in which they appear.

The outer surface can be covered by a graphic overlay showing numbers, letters or words printed in an attractive design. As many individual switches as may be required can be provided in a given area, so that touching, say, the printed figure 1 on the overlay causes circuit 1 to be actuated, touching number 2 completes circuit 2, and so on.

The new product is known as the 10900 Membrane Switch and is intended for low energy logic level switching applications. Switch systems can be custom designed for any particular function, and the manufacturers are Molex Electronics Limited, Holder Road, Aldershot, Hampshire.

PROBES AND PULSES

Of assistance in servicing and developing digital circuitry are two new probes available from OK Machine & Tool (UK) Limited, Dutton Lane, Eastleigh, Hants, SO5 4AA. Both items are housed in narrow diameter cylindrical casings which can be held in the hand, and are provided with prod tips for connection to digital equipment on either side of the printed board.

The first item is the PRB-1 Digital Logic Probe, which costs less than £30 but has all the features of much more expensive units. It detects pulses short as as 10 nanosecond, has a frquency response of better than 50MHz and automatic pulse stretching to 50 nanosecond. The Logic Probe is compatible with r.t.l., d.t.l., h.t.l., t.t.l., MOS, CMOS and microprocessor logic families, and it also features 120KΩ input impedance, power lead reversal protection and over-voltage protection up 200 volts positive to or negative. The supply voltage range is 4 to 15 volts, and an adaptor type PA-1 can be supplied for use with voltages from 15 to 25 volts.

The PLS-1 is the second item. This is a multi-mode high current pulse generator. It will superimpose a dynamic pulse train at 20 p.p.s. or a single pulse onto the circuit points under test, without having to unsolder pins or cut printed circuit traces, even when the points circuit are beina clamped by digital outputs. It can source or sink sufficient current to force saturated output transistors in digital circuits into the opposite logic state. Signal injection is by means of a pushbutton switch near the probe tip. When the button is depressed a single high-going or low-going 2 microsecond pulse is delivered to the circuit under test. Pulse polarity is automatic, and high level points are pulsed low and low level points are pulsed high. Holding the button down causes a series of pulses at 20 p.p.s. to be delivered to the digital circuit. The PLS-1 is ideally suited for use in conjunction with the PRB-1 probe and it also costs less than £30.

LONG SCALE MULTIMETER

The photograph shows the new 4³/₄ digit multimeter Model 1503 which has been Thurlby introduced bv This Electronics. has an unusually long scale of 32,768 (2 to the power of 15) counts or 15 bits on d.c. voltage and resistance, 16,384 counts or 14 bits on a.c. voltage and 8,192 counts or 13 bits on current. It is stated that the long scale length gives the 1503 much greater resolution and higher accuracy than competitive 31/2 and 41 digit meters.

Thirty measuring ranges are provided, covering the five basic functions of d.c. and a.c. voltage, d.c. and a.c. current, and resistance. In addition a test and crystal diode controlled frequency measurement up to 3.9999MHz are included. Resolution is within 0.1kHz, and frequency measurements can be extended to 7MHz with display overflow. The 1503 has very high sensitivity figures of $10\mu V$, $10M\Omega$ and $0.001\mu A$, and input impedance an of

1,000M Ω can be selected for low voltage readings as an alternative to the standard 10M Ω . Maximum voltage input is 1,200 volts and currents can be measured up to 25 amps.

The multimeter combines a clear liquid crystal display with low power circuitry to give hundreds of hours of operation from a set of batteries. The casing is tough knock-proof ABS plastic and the multi-tilt stand doubles as a carrying handle. In the laboratory the 1503 can be operated from its a.c. mains adaptor, or from batteries for near infinite common mode rejection.

The manufacturers are Thurlby Electronics Limited, Coach Mews, St. Ives, Huntingdon, Cambs, PE17 4BN.

LOW COST MICROCOMPUTER A low cost Z80-based microcomputer system, the

The Video Genie EG3000 Series, offered with industrial and eductional support by Cambridge Micro Computers Limited.

Video Genie EG3000 Series, is now being offered by Cambridge Micro Computers Limited, Cambridge Science Park, Milton Road, Cambridge, 4BN. CB4 The system hardware is shown in the second photograph and it is accompanied by software and support which make it ideally suited for industrial and educational applications. Designed to plug into a video monitor or u.h.f. television receiver, the Video Genie costs £330 (plus VAT), and Cambridge Micro Computers is also making available a Microsoft Z80 editor/ assembler package on magnetic tape cassette, at a price of £24 (plus VAT).

The Video Genie EG3000 Series is a fully self-contained system with its own built-in power supply, u.h.f modulator and cassette tape unit. Software is based on the well established BASIC interpreter used on the TRS-80, and the standard system is supplied with a 16K random-access memory plus 12K of Microsoft BASIC in read-only memory. A 51-key typewriter-style keyboard with 10-key rollover facility is also included.

The system is ideally suited for education, particularly the teaching of BASIC software, as well as providing a low cost approach to Z80 microprocessor system development. In addition to the wide range of software available on cassette, the Genie's Video interface capability allows it to be expanded with the use of flexible-disc stores and printers into a comprehensive microprocessor system.

The Video Genie comes complete with a BASIC demonstration tape, a video lead and a second cassette lead, as well as a user's manual, BASIC manual and beginner's programming manual.

Active Tone Control Module By A. P. Roberts

Very low distortion and noise

Treble boost and cut • Bass boost and cut

The tone control circuit to be described is primarily intended for those who are constructing their own amplifier systems, either from scratch or by using some of the excellent pre-amplifier and power amplifier modules which are currently available. The performance of the circuit is very good, the t.h.d. level being less than 0.05% over the audio frequency range provided the output is kept to about 1 volt r.m.s. or less, and this should be more than adequate to fully drive any normal power amplifier. The output has to reach about 5 volts r.m.s. before serious distortion occurs. The unweighted signal-to-noise ratio is better than – 80dB relative to an output of 1 volt r.m.s. The circuit has an input impedance of 500k Ω , so that there is minimal loading on the stage which drives the circuit. An emitter follower output stage gives the circuit a low output impedance, whereupon the output should not be significantly loaded by the following power amplifier.

BASS AND TREBLE

Both bass and treble controls are included, and these can each provide about 12dB of boost and cut (at 100Hz for the bass control and at 10kHz for the treble control) relative to 1kHz. The circuit contains resistors which "tame" the response at the highest and lowest audio frequencies, so that the levels of boost and cut at these frequencies are little more than the figures just quoted for 100Hz and 10kHz. In practice this gives good results, and reduces the risk of

The prototype tone control circuit, assembled on its printed board

the complete audio system becoming unstable due to excessive high or low frequency gain.

The circuit is designed for use with an 18 volt supply and has a current consumption of only about 5mA. However, it will work well with any supply voltage between 12 and 24 volts, the supply current varying from about 4 to 7mA over this range.

THE CIRCUIT

Fig. 1 shows the full tone control circuit. This is only for one channel, and two such circuits, with ganged potentiometers for the bass and treble controls, would of course be required for stereo operation.

The tone control circuitry proper should be fed from a low impedance source, and this is provided by the buffer amplifier IC1. This i.c. also allows the circuit to have its high input impedance. IC1 has 100% negative feedback from its output to its inverting input and therefore gives a voltage gain of unity. R2 and R3 bias the non-inverting input to about half the supply voltage, whilst R1 and C2 prevent hum and noise from the positive supply rail reaching this input. C3 is the input d.c. blocking capacitor.

IC1 is a low noise and distortion operational amplifier having a Jfet input stage, and it can be obtained from Watford Electronics, 33/35 Cardiff Road, Watford, Herts. However, similar devices, such as the TLO81CP, LF351 and even the standard 741C will all give a good performance in this design.

The tone control circuitry is based on the amplifier given by TR1 and TR2, and operates by simply increasing negative feedback at frequencies where cut is required, or by reducing feedback at frequencies where boost is needed. TR1 is a straightforward common emitter amplifier directly coupled to emitter follower TR2. TR2 merely serves to give a low impedance output.

TREBLE CONTROL

Detailed operation of the circuit is quite complex and it helps to look upon it in the light of an operational amplifier working in the inverting mode. If, with such an amplifier, a feedback resistor is connected from the output back to the inverting input, and a series resistor is connected between the signal source and the inverting input, the voltage gain of the amplifier is equal to the feedback resistance divided by the input series resistance. In Fig. 1 the output is at the slider of R10 and the inverting input is at the base of TR1. The voltage gain is then controlled by the feedback impedance given by the tone control components, and by the input series impedance which these components also give.

We can consider first the functioning of the treble section, which employs VR2, C5 and C6. The feedback impedance is through C6 and the right-hand section of VR2 track (i.e. right of the slider) and the input series impedance is given by C5 and the lefthand section of VR2 track. At low and middle frequencies, C5 and C6 have a reactance which is high in comparison with the track resistance of VR2. Therefore, adjustment of VR2 has little effect on the relative values of the feedback and input series impedances which, since C5 and C6 have equal values, remain virtually the same.

At higher frequencies the situation is very different because C5 and C6 start to have a reactance which is comparable with VR2 track resistance, and at the highest frequency this reactance is considerably lower than the track resistance of VR2. Thus, with the slider of VR2 towards the C6 end of its track the feedback impedance becomes much lower than the input series impedance, giving significantly reduced gain, or treble cut. When the slider of VR2 is moved to the C5 end of the track the feedback impedance is much larger than the series input impedance, producing

Looking down on the printed board. Input, output and supply leads were not fitted when these photographs were taken

COMPONENTS

Resistors

(All fixed values $\frac{1}{4}$ watt 5% unless otherwise stated) R1 $10k\Omega$ **R**2 $1M\Omega$ **R3** $1M\Omega$ R4 $10k\Omega$ **R5** $10k\Omega$ **R6** $12k\Omega$ **R7** $5.6k\Omega$ 3.9MΩ 10% **R**8 **R9** $10k\Omega$ R10 $2.2k\Omega$ pre-set potentiometer, 0.1 watt horizontal R11 $1k\Omega$ $47k\Omega$ potentiometer, linear VR1 VR2 $47k\Omega$ potentiometer, linear Capacitors

C1 $100\mu F$ electrolytic, 25V. Wkg.

- 100µF electrolytic, 25 V. Wkg.
- C3 0.047μ F polyester type C280
- C4 4.7µF electrolytic, 25 V. Wkg.
- C5 3,300pF polystyrene
- C6
- 3,300pF polystyrene 0.047µF polyester type C280 C7
- **C**8
- C9
- 0.047μ F polyester type C280 4.7 μ F electrolytic, 25 V. Wkg. 10 μ F electrolytic, 25 V. Wkg. C10

Semiconductors

IC1	TL071CP
TR1	BC109C
TR2	BC109C

Miscellaneous

Printed circuit board 2 control knobs Wire, solder, etc.

increased gain and treble boost. With VR2 slider at the centre of its track the two impedances are equal, a flat response is obtained and the high frequency amplifier gain becomes unity. In consequence, VR2 can provide a flat treble response, or any degree of treble cut or boost within its range which is required.

BASS CONTROL

The bass control, VR1, operates in a similar manner. At high and middle frequencies C7 and C8 have a low reactance and virtually short-circuit VR1. Since R5 and R4 have the same values, the feedback impedance at these frequencies is equal to the series input impedance, and adjustment of VR1 has no significant

effect. At bass frequencies, the reactances of C7 and C8 are high in comparison with the track resistance of VR1, and they have little effect on the circuit. In this low frequency range, moving VR1 slider towards R5 makes the feedback impedance lower than the series input impedance, causing voltage gain to be reduced and giving bass cut. When VR1 slider is at the R4 end of its track the feedback impedance is greater than the series input impedance, resulting in bass boost. Since the bass control circuitry, like the treble circuitry, is symmetrical, unity gain and a flat bass response is achieved when VR1 slider is at the centre of its track.

VR1 can thus provide a flat response or the desired level of bass cut or boost, with R4 and R5 limiting the

maximum amounts of boost and cut respectively. R7 performs a similar limiting task in the treble control circuit and, together with R6, it also helps to minimise any interaction between the two controls.

When the slider of R10 is at the top of its track (and disregarding any cut or boost introduced by VR2 and VR1) the overall circuit has a nominal gain of unity. If required, the amplifier feedback can be reduced by adjusting the slider down the track, so that the circuit provides a small amount of voltage gain. The maximum gain available is a little over three times, or approximately 10dB. The gain could be boosted still further by reducing the value of R11 but, in the interests of obtaining good noise, distortion and overload performances, this is not recommended.

CONSTRUCTION

Any normal method of construction can be employed for this circuit; the prototype was built using the printed circuit design shown in Fig. 2. The layout is not particularly critical if some other method of construction is used, but the components should obviously be kept away from hum fields in order to minimise pick-up. The input connection should be made by way of screened cable.

DIRECT READER SERVICE RADIO & ELECTRONICS BOOKS

18.	50 Projects Using IC CA3130	£1.25	40. Projects in Opto-Electronics	£1.25
.19.	50 CMOS IC Projects	£1.25	41. Radio Circuits Using IC's	£1.35
20.	A Practical Introduction to Digital IC's	95p	42. Mobile Discothegue Handbook	£1.35
22.	Beginners Guide to Building Electronic Projects	£1.25	43. Electronic Projects for Beginners	£1.35
23.	Essential Theory for the Electronics Hobbyist	£1.25	44. Popular Electronic Projects	£1.45
26.	52 Projects Using IC741	95p	45. IC LM3900 Projects	£1 35
28.	Two Transistor Electronic Projects	85p	46. Electronic Music and Creative Tane Recording	£1.35
29.	How to Build Your Own Metal and Treasure		47. Practical Electronic Calculations and Formulae	£7.25
	Locators	£1.00	48 Radio Stations Guide	£1 45
30.	Electronic Calculator Users Handbook	95p	49. Electronic Security Devices	£1.40
31.	Practical Repair and Renovation of Colour TVs	£1.25	50. How to Build Your Own Solid State	II.45
32.	Handbook of IC Audio Preamplifier and Power		Oscilloscope	£1.50
	Amplifier Construction	£1.25	51. 50 Circuits Using 7400 Series IC's	£1.45
33.	50 Circuits Using Germanium, Silicon and Zener		52. Second Book of CMOS IC Projects	£1.50
	Diodes	75p	53. Practical Construction of Pre-Amps, Tone	
34.	50 Projects Using Relays, SCR's and TRIACS	£1.25	Controls, Fitters & Attenuators	£1.45
35.	Fun and Games with your Electronic Calculator	75p	54. Beginners Guide to Digital Techniques	95p
36.	50 (FET) Field Effect Transistor Projects	£1.25	55. 28 Tested Transistor Projects	£1.25
37.	50 Simple L.E.D. Circuits	75p	56. Digital IC Equivalents	
38.	How to Make Walkie-Talkies	£1.25	and rin connections	£2.50
39.	IC 555 Projects	f1 75	and Pin Connections	50 75
	,, ,			12./5

POSTAGE: 20p PER BOOK. IF MORE THAN 3 BOOKS ORDERED: 10p PER BOOK

	40° - 41	Тс);	Da	ta	Ρ	uŁ	olio	ca	tic	on	s	Lt	d.	. E	7	M	ai	da	v	al	e.	L	or	nd	or	י ר	W	9	15	ŝN	F							
	Please send m	e v	vit	hir	12	21	da	ays	s.		~		30	×		× .							1										C	on	v/	'cc	n	ies	
7	Book Nos:	• •						.,	• •			,	¥	×								é.	,																
	• * • • • • * *	а.	,		•	•	•				•		ŀ	•			Ĩ		Ŧ	•	ця.,	÷	ĩ		•	5 II.			•		2							-	
			s ș		•			•			•		•	•	•	•		۲	N		4	÷	¥		•	•)	6 4		¥			,	,						
	•		, I,	en	cl	os	е	Pc	s	al	0	rc	le	r/(Ch	eq	ue	e f	or	£		•		• ;	2	• •													
	Name			1		•	• •	n - ş				•	•	х. Х					e.				•	.4					~	ŝ		r	Ŧ		÷.	• *	n 40		
	Address			•	¥	•		,	*	ini N	9	÷	•		ŝ.	ε.		÷		•	a				•.								¥1	r i			,		
		ž		*	•	4	• 4	es •			- 41		×			a. 4			4	5	3k	•			,	•. * •	4	. ,						•					
																						(B	lo	ck	L	et	te	rs	Ρ	le	as	se							
		W	e	reg	ŗre	et	th	is	0	ffe	ər	is	0	n	y	av	ai	lai	ble	9 1	to	re	ea	de	ers	i i	n	th	e	U.	K	.)							

SMALL ADVERTISEMENTS Rate: 12p per word. Minimum charge £2.00 Box No. 30p extra

Advertisements must be prepaid and all copy must be received by the 4th of the month for insertion in the following month's issue. The Publishers cannot be held liable in any way for printing errors or omissions, nor can they accept responsibility for the **bona fides** of Advertisers. Where advertisements offer any equipment of a transmitting nature, readers are reminded that a licence is normally required. Replies to Box Numbers should be addressed to: Box No. -, Radio and Electronics Constructor, 57 Maida Vale, London, W9 1SN.

- WIRELESS, VALVES, PRE-WAR ONWARD S.A.E. Modern bargains list 15p. Sole Electronics, (REC), 37 Stanley Street, Ormskirk, Lancs., L39 2DH.
- BOOKS FOR SALE: Experiments with Operational Amplifiers, by George B. Clayton. £3.75. Experimenting with Electronic Music by Brown & Olsen. £1.20. Electric Model Car Racing by Laidlaw-Dickson. 60p. Electronics Unravelled by Kyle. £1. Auto Electronics Simplified, by Tab Books. £1.20. Box No. G394.
- ANY SINGLE SERVICE SHEET £1 plus S.A.E. Thousands of different service/repair manuals/sheets in stock. Repair data your named TV £6 (with circuits £8). S.A.E newsletter, price lists, quotations. (0698-883334). Ausrec, 76 Churches, Larkhall, Lanarkshire.
- ALMAG INDOOR TV AERIAL. New design. All groups. £2.50 + 50p P. & P. Refundable. Murphy, 6 London Road, Dalkeith, Midlothian.
- FOR SALE: A number of "D & S" three pin, fused, mains plugs and fuses. S.A.E. for details. Box No. G396.
- PARCELS ASSORTED COMPONENTS: 100 £2.50. 200 £3.50. Superpack 400 £4.75. All post paid. C.W.O. only. Transway Services, P.O. Box 197, Ingatestone, Essex, CM4 OAR.
- **OSCILLOSCOPE**, Calscope, (Scopex) Super 6, single beam 6MHz. Little used, now surplus. £100. Telephone: Tonbridge (0732) 832923 after 6 p.m.
- **POSTAL ADVERTISING?** This is the Holborn Service. Mailing lists, addressing, enclosing, wrapping, facsimile letters, automatic typing, copy service, campaign planning, design and artwork, printing and stationery. Please ask for price list. – The Holborn Direct Mail Company, Capacity House, 2-6 Rothsay Street, Tower Bridge Road, London, S.E.1. Telephone: 01-407 6444.

(Continued on page 509)

THE SPECTACULAR **1981 GREENWELD** Component Catalogue Bigger and better than ever!!!

60p discount vouchers

First Class reply paid envelope Free Bargain List Priority Order Form

* Priority Order Form * VAT inclusive prices * Quantity prices for bulk buyers SEND 75p FOR YOUR COPY NOW!!

CALC CHIPS 60p!!! New full spec: supplied with data. Type MK50321 - full function inc. memory. Only 60p. DISPLAYS 8 and 9 digit 7-segment bubble type for above chips - most have minor faults dud segment etc. Mixture of 2 or 3 different types with data. 5 for £1.00

NICADS Ex-equip size C approx. £1 each; 10 for £8.00

1N4006 DIODES 1N4006 DIODES Special purchase of 1A rects, Russian made. Packed in boxes of 300, £8.50 per box; 4 boxes £30.00; 10 boxes £75.00 DISC CERAMICS 0.22uF 12V 9mm dia. Ideal for de-coupling. 100 for £2.75; 1000 £20.00 0.05uF 12V 15mm dia. 100 £1.50; 1000 £12.00 Pack of disc ceramics, assorted values and voltages – 200 for £1.00

values and voltages – 200 for £1.00 TRANSFORMERS

Mains primary, 50V 20A sec. £20.00 Mains pri. 110V 15A sec £30.00; 20A

SLIDER POT SCOOPIU

 SLIDER POT SCOOP!!!

 Made by Piher, type PL40CP Silly

 prices for superb goods!!

 PL40CP - 69 x 16 x 9mm, 40mm

 slide length. 220R, 2k2 or 10k lin

 only. Prices (any mix): 1-24 20p; 25

 99 17p; 100+ 14p.

 TTL. LINEAR, OPTO

 All new full spec - Fairchild/SGS:

 TTL: 5400 5401 5402 5403 5404 5405

 5410 5421 5430 5450 5415 5453 5460

 - All 12p ea. 5470 5472 5474 5475

 5476 5480 54805 5490 54107 54121

 5482 54126-40p

 ea. Others (74S, H) on B/L 12 (SAE
please)

please) LINEAR: 9665 or 9666, 7 x 50V Darlingtons in 16 DIL 60p; 75452 or 4 dual periph driver 70p; XK1444 7 CMOS P-channel buffers, 15V 16DIL 24p. OPTO:

CPTO: Isolators, FCD831 60p; TIL115/118 60p; FPE100/106 Infra red LED £2.50; FND847 7 seg 0.8" CA £2.00; FND850 CC £2.00 (Data on request for linear & opto devices)

TRANSISTOR PACK K516

Take advantage of this unbelievable offer!! Small signal NPN/PNP tranoffer!! Small signal NPN/PNP tran-sistors in plastic package at an incredibly low, low price!! Almost all are marked with type number – almost all are full spec devices, some have been leads. Over 30 different types have been found by us, including BC184/212/238/307/ 328; BF196/7; ZTX107/8/9/342/ 450/550 etc. Only available as a mixed pack at £3/100; £7/250; £25/ 1000. 1000.

 Mains primary, 50V 20A sec. £20.00
 1000.

 Mains pri. 110V 15A sec £30.00; 20A
 REGULATED PSU PANEL

 £40.00
 Exclusive Greenweid design, fully variable 0-28V & 20mA-2A. Board transformer. Only £7.75.

 BL Coil is 250R, and rated 60V contains all components except but works on 12-24V DC. Solid Encapsulation with screw terminals makes it ideal for car use. £1.20
 Send SAE for fuller details.

 ALL PRICES INCLUDE VAT; JUST ADD 40p POST
 August 2000, 20

GREENWELD

443G Millbrook Road Southampton SO1 OHX

LATEST PROJECT KITS

Double Output Test Oscillator Jan 81	£5.95
Car Voltage Monitor Jan 81	£2.75
Fuzz Box Jan 81	£7.15
Reverberation Unit Feb 81	£16.85
Single IC Signal Tracer Feb 81	£3.80
"Owizzee" Feb 81 (excludes p.c.b.)	£11.30

Complete list of kits available on receipt of an S.A.E.

A selection from our new catalogue (45p post paid)

P.C.B. transfers (13 different sheets)	300p
5W amplifier module	530p
Small insulated crocodile clip	9p
Mains square lens neons, red or green	35p
Telephone pick up coil	75p
0.125" leds, red 12p green/yellow 21p. 0.2"	13p &
	22p
Small 2 ¹ / ₂ " screwdrivers 18p 4" screwdrivers	22p
Set of 10 test leads with crocodile clips	125p
2.5" x 1" 0.1" Veroboard	16p
+ transistors, i.c.s. diodes, resistors, books,	panel
meters, nuts & bolts, component packs etc e	etc.

T & J ELECTRONIC COMPONENTS

98 Burrow Road Chigwell Essex IG7 4HB

Mail order only. Prices include VAT. No minimum order. Postage: components 40p, kits 65p. Orders are despatched same day as received. Catalogue 45p post paid.

BUY THIS BEST SELLER

T.V. FAULT FINDING

MONOCHROME 405/625 LINES

REVISED & ENLARGED

Edited by J. R. Davies

132 pages

PRICE £1.20

Over 100 illustrations, including 60 photographs of a television screen after the appropriate faults have been deliberately introduced.

Comprehensive Fault Finding Guide cross-referenced to methods of fault rectification described at greater length in the text.

Price £1.20 from your bookseller.

or post this Coupon together with remitance for £1.50 (to include postage) to

DATA PUBLICATIONS LTD. 57 Maida Vale, London, W9 1SN

Please send me the 5th revised edition of TV Fault Finding. Data Book No. 5

l enclose cheque/crossed postal order for . .

NAME	•	,	•	-K	÷	×	×	¥,	à	÷		ų.	ź		A.		1. Aller	2	•	•
ADDRESS	•	•	•		•	•	•	•	•	•		•	•	•		·	k.	٠	•	•
	¥	×	,#	×	•	4	÷	•		¥	•) #+	*	•	×	.*	•	٠	×	×
* * * * * * *	•	B	LC	วc	к	LE	T1	E	RS	۰ P	Le	A	SE		ж.	¥	÷	ja.		APR

SMALL ADVERTISEMENTS

(Continued from page 507)

- BURGLAR ALARM EQUIPMENT. Top quality brand new free catalogue and price list. Sigma Security Systems, 13 St. John's Street, Oulton, Leeds, Yorks. LS26 8 JT.
- JOIN THE INTERNATIONAL S.W. LEAGUE. Free services to members including Q.S.L. Bureau, Amateur and Broadcast Translation, Technical and Identification Dept. - both Broadcast and Fixed Stations, DX Certificates, contests and activities for the SWL and transmitting members. Monthly magazine, Monitor, containing articles of general interest to Broadcast and Amateur SWLs, Transmitter Section and League affairs, etc. League supplies such as badges, headed notepaper and envelopes, QSL cards, etc., are available at reasonable cost. Send for League particulars. Membership including monthly magazine etc., £9-00 per annum U.K. Overseas rates on request, Secretary Grove Road, Lydney, Glos., GL15.5JE.
- **TELEPHONE ANSWERING MACHINE.** Build your own for under £10 plus any cassette recorder. Send £3 for circuit and plans. S. D. Cross, 24 Thorney Road, Streetly, Sutton Coldfield, West Midlands.
- BOOK CLEARANCE. Bound volumes Radio & Electronics Constructor Nos. 27, 28 and 29, £3.00 each. Cost Effective Projects Around the Home by John Watson, £1.50. Talk-Back TV: Two-Way Cable Television, by Richard Veith, £1.00. Solid State Short Wave Receivers for Beginners, by R. A. Penfold, 60p. 50 Simple LED Circuits, by R. N. Soar, 50p. All prices include postage. Box No. G399.
- INTERESTED IN OSCAR? Then join AMSAT-UK. Newsletters, OSCAR NEWS Journal, prediction charts, etc. Details of membership from: Ron Broadbent, G3AAJ, 94 Herongate Road, Wanstead Park, London, E12 5EQ.

(Continued on page 510)

RECHARGEABLE BATTERIES

TRADE ENQUIRIES WELCOME

FULL RANGE AVAILABLE SEND SAE FOR LISTS. **£1.45** for Booklet Nickel Cadmium Power" plus Catalogue. Write or call:

> *NEW SEALED LEAD RANGE AVAILABLE*

SANDWELL PLANT LTD

2 Union Drive, Boldmere, Sutton Coldfield, West Midlands, 021-354 9764.

SMALL ADVERTISEMENTS (Continued from page 509)

- **CONNECTING WIRE,** single strand, PVC covered. Ideal for electronics experiments and Proto-Board work. 10 colours. 50 yds. £1.50. 100 yds. £2.50. J.D. Electronics, 69 Well Heads, Thornton. Bradford. W. Yorks.
- LEARN ELECTRONICS FAST. New, unique, brilliantly simple Tutronik system. Selected by BBC TV. No-soldering, 30-kwikbuild electronics projects. Learn fast to identify components, read circuit diagrams, break the colour code and connect circuits that really work. Kit complete with simple-to-follow instructions, circuit plans, components and Tutronic connection system in compact presentation wallet. Only £12.95 plus 75p p. & p. UK (£2.75 p. & p. elsewhere). Available only from Dept. RE, Technocentre Ltd., 140 Norton Road, Stockton-on-Tees, TS20 2BG.
- FOR SALE: Oscilloscopes, Tektronix 545 with CA plug-in, double switched beam 15MHz. £110. Solartron CD1017 (CT436) compact double beam, 6MHz. £80. Signal generators: RF/AM 100kHz-25MHz £20. Audio, Advance 20Hz - 50kHz £10. Avo electronic multimeter (CT38) £20. Avo 7 £20. 500V megger £15. Large auto transformer 240/115V £10. All working order with handbooks. S.A.E. enquiries please. Carriage extra. Box No. (Middlx.) G400.
- WANTED: FAX equipment, manuals, service sheets, etc. G2UK, 21 Romany Road, Oulton Broad, Lowestoft, Suffolk. NR32 3PJ.
- FOR SALE: Photographic enlarging equipment: Vivitar enlarger. Model E.36 with 50mm f. 3.5 and 75mm f.3.5 lenses. Kodak safety light. Kodak contrast filter set. 11 in. x 14 in. printing frame with copying facilities. Measuring flask. Three trays, three tweezers. Three plastic bottles. Clips. Printing paper. Antistatic brush for cleaning negatives. Kodak Photoguide Booklet. Man's protective apron. £75 o.n.o. Pair of Goodman's speakers 8 ohms, 15 watts, £50 o.n.o. R. L. Gee, 9 Glanmead, Shenfield, Essex.
- 2 WATT General Purpose I.C. Amplifier Module with volume and tone controls. Needs 9V-18V p.s.u. or battery. £4.00. R.H. Electronics. 119 Fraser Road, Sheffield, S8 0JH.

THE RADIO AMATEUR INVALID & BLIND CLUB is a well established Society providing facilities for the physically handicapped to enjoy the hobby of Amateur Radio. Please become a supporter of this worthy cause. Details from the Hon. Secretary, Mrs. F. E. Woolley, 9 Rannoch Court, Adelaide Road, Surbiton, Surrey, KT6 4TE.

(Continued on page 511)

SMALL ADVERTISEMENTS (Continued from page 510)

100 1N4148 £1. 150 Resistors £1. 100 Capacitors £1. P. & P. 25p. S.A.E. Lists. Dept. R, D. B. Products, P.O. Box 8, York, YO1 1FT.

- FOR SALE: Damaged repairable cassette recorder and 10 cassettes. £15.00. J. Fulton, Derrynaseer, Dromore, Co. Tyrone, N. Ireland.
- **INTERESTED IN RTTY?** You should find the "*RTTY Journal*" of interest. Published in California, U.S.A., it gives a wide outlook on the current RTTY scene; RTTY-DX; DXCC Honour Roll; VHF RTTY news; and up to date technical articles are included. Specimen copies 35p from: The Subscription Manager, RTTY Journal, 21 Romany Road, Oulton Broad, Lowestoft, Suffolk, NR32 3PJ.

PERSONAL

- JANE SCOTT FOR GENUINE FRIENDS. Introductions to opposite sex with sincerity and thoughtfulness. Details free. Stamp to: Jane Scott, 3/Con North St. Quadrant, Brighton, Sussex, BN1 3GJ.
- IF YOU HAVE ENJOYED A HOLIDAY on the Norfolk Broads, why not help to preserve these beautiful waterways. Join the Broads Society and play your part in determining Broadlands future. Further details from: - The Hon. Membership Secretary, The Broads Society, "Icknield," Hilly Plantation, Thorpe St. Andrew, Norwich, NOR 85S.
- **BROADLANDS RESIDENTIAL CLUB** for elderly people. Are you recently retired and looking for a home? We have a delightful top floor room overlooking Oulton Broad, facing south. Write to: The Warden, Broadlands Residential Club, Borrow Road, Oulton Broad, Lowestoft, Suffolk.
- SPONSORS required for exciting scientific project Norwich Astronomical Society are building a 30" telescope to be housed in a 20" dome of novel design. All labour being given by volunteers. Already supported by Industry and Commerce in Norfolk. Recreational. Educational. You can be involved. Write to: NAS Secretary, 195 White Woman Lane, Old Catton, Norwich, Norfolk.

SITUATION VACANT

WANTED: Representatives to sell Electronic Components to shops and industries on good commission basis. Please send full details of experience to: Sunmit Electronics. 96 Peel Road, Wembley, Middlesex. Telephone: 01-904-6792.

PURE GOLD! Top-quality, low-profile, gold-plated contacts,

IC SOCKET	S	
8 pin 14 pin 16 pin 18 pin 20 pin 22 pin	8p 14p 16p 18p 20p 22p	
24 pin 28 pin	24p 28p	Unbeatable value!
40 pin	40p	Minimum order £10. Add £1 P & P
	500 100)+ and 1 type lens 5% 00+ any mix lens 10%

Special Offer: 10 x 8 pin, 20 x 14 pin, 20 x 16 pin, 5 x all others. **£11.50**

ORION Orion Scientific Products Ltd., 10 Wardour St., London, W.1

BUILD YOUR OWN

P.A., GROUP & DISCO SPEAKERS by R. F. C. Stephens Save money with this practical guide. Plans for 17 different designs, Line source, I.B., Horn and Reflex types, for 8"-18" drive units. £3.95 post free (\$8 overseas).

THE INFRA-BASS LOUDSPEAKER by G. Holliman (full constructional details for versions using 15", 12" and 10" (drive units). £2.95 post free (\$6 overseas).

THE DALESFORD SPEAKER BOOK by R. F. C. Stephens This books is a must for the keen home constructor. Latest technology DIY designs. Plans for I.B., and Reflex designs for 10-100 watts. Also unusual centre-bass system. £2.20 post free (\$5 overseas).

VAN KAREN PUBLISHING 5 Swan Street, Wilmslow, Cheshire

PRINTED CIRCUIT BOARDS FOR "RADIO & ELECTRONICS CONSTRUCTOR" PROJECTS.

OCT 20dB amp. Part 1 68p plus 25p P&P NOV. 20dB amp. Part 2 62p plus 25p P&P

NOV. Basic Med. Wave radio 69p plus 25p P&P DEC. Volume Expander £2.25 plus 25p P&P All boards ready for use, roller tinned and drilled, glassfibre.

Trade enquiries welcome. Highly competitive prices. Write now for guote to:

> BRB PRINTED CIRCUITS (REC) 109, Potter Street, Worksop, Notts, S80 2HL.

RADIO & ELECTRONICS CONSTRUCTOR

	Single Copies Price 60p each, p&p 20p Issue(s) required	-	• •
	Annual Subscription Price £9.50 inland, £10.50 overseas (including Ein post free, commence with	re) 	. issue
1	Bound Volumes:		
	Vol. 27. August 1973 to July 1974 Vol. 28. August 1974 to July 1975 Vol. 29. August 1975 to July 1976 Vol. 30. August 1976 to July 1977 Vol. 31. August 1977 to August 1978 Vol. 32. September 1978 to August 1979 Vol. 33 September 1979 to August 1980 (Available Mid-March)	Price £3.00, post & Price £3.20, post & Price £3.50, post & Price £3.70, post & Price £5.20, post & Price £5.50, post & Price £6.20 post & p	pkg £1.50 pkg £1.50 pkg £1.50 pkg £1.50 pkg £1.50 pkg £1.50 pkg. £1.50
	CORDEX SELF-BINDERS		5
	With title, 'RADIO & ELECTRONICS CONSTRUC' maroon only With no title on spine, maroon With no title on spine, green	TOR' on spine, Price £2.25 , post & Price £2.25 , post & Price £2.25 , post &	a pkg 60p a pkg 60p a pkg 60p a pkg 60p
	DATA DOOK CEDIEC		
	DATA BOOK SERIES DB5 TV Fault Finding, 132 pages DB6 Radio Amateur Operator's Handbook, New edition in course of prep DB17 Understanding Television, 504 pages DB19 Simple Short Wave Receivers 140 pages	Price £1.20 , P.8 aration Price £3.95 , P. 8 Price 80p , P. 8	kP. 30p kP. £1.20 kP. 30p
	STRIP-FIX PLASTIC PANEL SIGN	S	
	Set 3: Wording – White- 6 sheetsSet 4: Wording – Black- 6 sheetsSet 5: Dials- 6 sheetsPrices include V.A.T.	Price £1.50 , P. 8 Price £1.50 , P. 8 Price £1.50 , P. 8	k P. 13p k P. 13p k P. 13p
	I enclose Postal Order/Cheque for in payment for		
	NAME		
	ADDRESS	Na sasata kanalah	
			LETTERS PLEASE)
	Postal Orders should be crossed and made payable	to Data Publications	Ltd.
	Overseas customers please pay by Internation All publications are obtainable through you	onal Money Order. r local bookseller	
	Data Publications Ltd., 57 Maida Vale, Lo	ondon W9 1SN	

PLEASE MENTION THIS MAGAZINE WHEN WRITING TO ADVERTISERS

89

NEAR AMPLIFICATIO

Most integrated circuits are categorised as linear or digital devices. The operational amplifier in (a) is classed as linear whilst the NOR gate of (b) is classed as digital. All the i.c.'s in the t.t.l. and CMOS logic families are described as digital.

In practice, digital devices exhibit linear amplification whilst some linear devices can be employed in simple digital applications. The transistor in (c) has its base bias resistor returned to an input voltage which is a fraction, say one-quarter, of the supply voltage. Resistor values are such that the transistor collector has a voltage half-way between the supply rails. In this state the transistor is capable of linear amplification: an increase in input voltage causes a fall in collector voltage and a decrease in input voltage causes a rise in collector voltage. In (d) the base bias resistor is returned to the positive rail and the transistor is turned fully on, producing a collector voltage which is virtually zero. The base resistor connects to the negative rail in (e), whereupon the transistor is turned off and the collector voltage is the same as that of the positive rail.

In (f) the transistor and base resistor follow a CMOS NAND gate. The transistor acts as a digital inverter, producing a low collector voltage when the gate output is high and a high collector voltage when the gate output is low. Since the output of the NAND gate does not change states instantaneously, there is a brief moment during a change of state when the transistor exhibits linear amplification. The same applies to all digital devices which are driven by other digital devices.

The New Maplin in Matinée Amazing Value For Only £299.95 + £99.50 for cabinet if required.

Easy to build. Latest technology - means less cost, less components and 80% less wiring. Comparable with organs selling for up to £1,000.00. Two 49-note manuals. 13-note pedalboard. All organ voices on drawbars. Preset voices: Banjo, Accordion Harpsichord, Piano, Percussion. Piano sustain Sustain on both manuals, and pedalboard. Electronic rotor, fast and slow. Vibrato and Delayed vibrato. Reverb. Auto-Wah. Glide Manual and (Hawaiian Guitar Sound). Single finger chording plus memory. 30 Rhythms! 8-instrument voicing. Major, Minor and Seventh chords. Unique walking bass lines with each rhythm. Unique countermelody line with each rhythm. Truly amazing value for money. Full construction details start in the March issue of Electronics & Music Maker on sale Feb 14th

The complete buyers' guide to electronic components. With over 300 pages, it's a comprehensive guide to electronic components with thousands of photographs and illustrations and page after page of invaluable data. Get a copy now — it's the one catalogue you can't afford to be without.

Post this coupon now for your copy of our 1981 catalogue price £1. Please send me a copy of your 320 page catalogue. I enclose £1 (Plus 25p p&p.). If I am not completely satisfied I may return the catalogue to you and have my money refunded. If you live outside the UK send £1.68 or 12 International Reply Coupons.

Name		6 - ¹ - 1999	
π			
Address	×	0414 J	
Address			 REC/3/81

MARPLIN

MAN

Maplin Electronic Supplies Ltd. All mail to: P.O. Box 3, Rayleigh, Essex SS6 8LR Telephone: Southend (0702) 554155. Sales (0702) 552911.

Shops: 159-161 King Street, Hammersmith, London W6. Telephone: (01) 748 0926. 284 London Road, Westcliff-on-Sea, Essex. Telephone: Southend (0702) 554000 Both shops closed Mondays.

Catalogue now on sale in all branches of WHSMITH Price £1.00