OUITAS PMAEIBE , מivilin

STOPPRESS STOPPRESS STOPPRESS STOPPRESS

NEW! JUST PUBLISHED TOWERS INTERNATIONAL MICROPROCESSOR SELECTOR

ONLY £16.25 POST PAID

If you come into contact with microprocessors (whether as hobbyist, student, circuit engineer, programmer, buyer, teacher, serviceman, or just humble reader) you often find you would like data information on a specific microcircuit element. Specifications apart, you may be even more interested in where you can get the device in question. And perhaps even more important still (particularly with obsolete devices), you may be looking for guidance on a readilyavaiłable second source or possible substitute.

This microprocessor selector (working on the same basis as the TRANSISTOR, FET, and OPAMP LINEAR-IC selectors already compiled by the author) is designed to provide in one handy reference volume a comprehensive body of readily-accessible, user-slanted essential information across the field of microprocessors.

In the data tabulations will be found set out the essential basic specifications of over 7,000 commercially-available microprocessor 'chips', including not only the microprocessor elements themselves (e.g. MPUs and CPUs) but also the many other LSI 'support' circuits (e.g. ROMs, RAMs, PROMs, clocks, UARTs, I/Os) normally used in harness with the microprocessors proper to produce complete microcom-
puters or microcontrollers. For ease of reference, the descriptions and control specifications of the individual circuits are set out in the detailed data tables on separate single lines, arranged in alpha-numeric order by type number.

For the newcomer to the very new field of microprocessors, the selector includes a full introductory note on these devices before the data tables.

Besides this, the tables are supplemented by separate appendices giving additional information on: (a) Microprocessor chip applications (and codings); (b) Microprocessor 'families'; (c) Microprocessor LSI chip manufacturers (and codings); (d) Semiconductor LSI technologies (and codings); (e) Microprocessor chip packages (and codings); (f) Microprocessor trainer and development systems; (g) Microprocessor bibliography;' (h) Manufacturers' house codes; (i) Glossary of microprocessor terms; (j) Explanatory notes to tabulations.

This selector is fully international in scope and covers not only microprocessors and related devices from the USA and Continental Europe, but also from the UK and the Far East (Japan).

TO:- DATA PUBLICATIONS LTD, 57 MAIDA VALE, LONDON W9 1SN
Please send me
copy/copies of

> TOWERS INTERNATIONAL MICROPROCESSOR SELECTOR

NAME
ADDRESS

CONSTRUCTOR

APRIL 1981

Volume 34 No. 8
Published Monthly
First published in 1947
Incorporating The Radio Amateur

Editorial and Advertising Offices 57 MAIDA VALE LONDON W9 1SN

Telephone
01-286 6141
Telegrams
Databux, London
©Data Publications Ltd., 1981. Contents may only be reproduced after obtaining prior permission from the Editor. Short abstracts or references are allowable provided acknowledgement of source is given.

Annual Subscription: £9.50, Eire and Overseas $£ 10.50$ (U.S.A. and Canada $\$ 30.00$) including postage. Remittances should be made payable to "Data Publications Ltd". Overseas readers, please pay by cheque or International Money Order.

Technical Queries. We regret that we are unable to answer queries other than those arising from articles appearing in this magazine nor can we advise on modifications to equipment described. We regret that queries cannot be answered over the telephone, they must be submitted in writing and accompanied by a stamped addressed envelope for reply.

Correspondence should be addressed to the Editor, Advertising Manager, Subscription Manager or the Publishers as appropriate.

Opinions expressed by contributors are not necessarily those of the Editor or proprietors.

Production - Web Offset.
NEWS AND COMMENT 462
VOLTAGE CALIBRATOR FOR OSCILLOSCOPES Suggested Circuit by G.A. French 464
SOLDERINGIRON REMINDER-Unobtrusive aud- ible device - by John Baker 466
TRADE NOTE-Ratchet-operated cable cutter 469
TIMER WITH TRIGGER ACTION by F. Craig 470
FURTHER NOTES ON SOME RECENT RECEIVERS - Part 2 (Conclusion) by Sir Douglas Hall Bt., K.C.M.G. 472
MODEL TRAIN CONTROLLER - low impedance "constant voltage" output, low cost mains opera- tion by M.V. Hastings 474
GUITAR PRACTICE AMPLIFIER - Single i.c. design, 3 mixed inputs by R.A. Penfold 480
SHORT WAVE NEWS - For DX Listeners by Frank A. Baldwin 487
MEDIUM AND SHORTWAVERADIO
byl. M. Attrill 489
ASESSIONOFPUZZLES-No. 1 In Your Workshop 494
AGILE TARGETS - Ministry of Defence contract 498
IN NEXT MONTH'S ISSUE 499
RADIO TOPICS by Recorder 500
ACTIVE TONE CONTROL MODULE by A. P. Roberts 502
LINEAR AMPLIFICATION Electronics Data No. 68 iii

[^0]THE BI-PAK OPTO SHOW

EXPERIMENTOR BREADBOARDS

No soldering modular breadboards, simply plug components in and out of letter number identified nickel-silver contact holes. Start small and simply snap-lock boards together to build a breadboard of any size.
All EXP Breadboards have two bus-bars as an integral part of the board, if you need more than 2 buses simply snap on 4 more bus-bars with the aid of an EXP 4B.

EXP $325 £ 1.60$ The ideal breadboard for 1 chip circuits. Accepts 8, 14, 16 and up to 22 pin ICs. Has 130 contact points including two 10 point bus-bars.

EXP $\mathbf{3 5 0} \mathbf{£ 3 . 1 5}$ Specially designed for working with up to 40 pin ICs perfect for 3 \& 14 pin ICs.
Has 270 contact points including two 20 point bus-bars.

EXP 300 E5.75 The most widely bought bread-board in the UK With 550 contact
 points, two 40 point bus-bars, the EXP 300 will accept any size IC and up to 6×14 pin DIPS. Use this breadboard with Adventures in Microelectronics.
EXP $600 \mathbf{f 6 . 3 0}$ Most MICROPROCESSOR projects in magazines and educational books are built on the EXP 600

EXP $\mathbf{6 5 0} \mathbf{E 3 . 6 0}$ Has $\mathbf{~} 6^{\prime \prime}$ centre spacing so is perfect for MICROPROCESSOR applications.

EXP 4B £2.30 Four
more bus-bars in "snap-on" unit.

The above prices are exclusive of P\&P and 15% VAT.

THE GSC 24 HOUR SERVICE TELEPHONE (0799) 21682

With your Access, American Express, Barclaycard number and your order will be in the post immediately GLOBAL SPECIALTIES CORPORATION

G.S.C. (UK) Ltd, Dept. 16TT

Unit 1, Shire Hill Industrial Estate,
Saffron Walden, Essex CB11 3AQ.
Tel: Saffron Walden (0799) 21662
Telex: 817477

For full detailed instructions and layouts of Projects 10,11 and 12 , simply take the coupon to your nearest GSC stockist, or send direct to us, and you will receive the latest ‘ELECTRONICS BY NUMBERS' leaflet.

If you have missed projects, 1,2 and 3, or 4,5 and 6 , or 7,8 and 9 , please tick the appropriate box in the coupon.

PROTO-BOARDS

The ultimate in breadboards for the minimum of cost. Two easily assembled kits.

PB6 Kit, 630 contacts, four 5 -way binding posts accepts up to six 14-pin Dips.
PROTO-BOARD 6 KIT $\mathbf{E 9 . 2 0}$

PB 100 Kit complete with 760 contacts accepts up to ten 14-pin Dips, with two binding posts and sturdy base. Large capacity with Kit economy.
PROTO-BOARD 100 KIT £ $£ 11.80$

LATEST BOUND VOLUME No. 33.

of "Radio \& Electronics Constructor"

Comprising 752 pages inc. index

SEPTEMBER 1979
to AUGUST 1980

PRICE £6.20 P\&P £1.50
BOUND VOLUME No. 27 (August 1973 to July 1974)
BOUND VOLUME No. 28 (August 1974 to July 1975)
BOUND VOLUME No. 29 (August 1975 toJuly 1976)
BOUND VOLUME No. 30 (August 1976 to July 1977)
BOUND VOLUME No. 31 (August 1977 to August 1978)
BOUND VOLUME No. 32 (September 1978 to August 1979)

PRICE $£ 3.00$ p\&p $£ 1.50$
PRICE $£ 3.20$ p\&p $£ 1.50$ PRICE $£ 3.50$ p\&p $£ 1.50$
PRICE $£ 3.70 \mathrm{p} \mathrm{\& p} \mathrm{f} 1.50$
PRICE $\mathbf{£ 5 . 2 0} \mathbf{p \& p} \mathbf{~} \mathbf{E 1 . 5 0}$
PRICE $£ 5.20$ p\&p $£ 1.50$

We regret all other volumes are now completely sold out.
Available only from:
DATA PUBLICATIONS LTD., 57 MAIDA VALE, LONDON W9 1SN

RX 80 MkII - A DIY SOLID-STATE-OF-THE-ART MODULAR DUAL CONVERSION RECEIVER SYSTEM FOR THE ENTHUSIAST

PRICES EXCLUDE VAT (15\%). Postage 50p on orders under f12. Free postage on orders over f12, except please note any order including HARDWARE should be accompanied with a $£ 2$ carriage charge. General price lists are available FOC with an SAE - full AMBIT catalogues including a multitude of radio parts/components $£ 1.80$ a set - or 70p per section.

	ICS LINEA	R ICS	4000 ser	us	4000 ser		TTL	N
1.60	HA11223	2.15	4000	0.18	4068	0.25	TTL	'N
1.6	HA11225	1.45	4001	0.18	4069	0.25	7400	0.13
1.60	HA12002	1.45	4002	0.24	4070	0.30	7401	0.13
189	HA12017	0.80	4007	0.30	4071	0.24	7402	0.14
	HA12402	1.95	4008	0.80	4072	0.24	7403	0.14
	HA12411	1.20	4008AE	0.80	4073	0.24	7404	0.14
24	HA12412	1.55	4009	0.58	4075.	0.25	7405	0.18
. 28	LF13741	0.33	4010	0.58	4076.	0.90	7406	0.36
17	SN76660N	0.80	4011AE	0.24	4077	0.35	7407	0.38
	FREO DISF	PLAY	${ }^{40118}$	0.24	4078	0.30	7408	0.19
	AND SYNTH.		4012	0.55	4082	0.28	7409	0.21
	DEVICES		4015	0.95	415	1.15	7410	0.18
.	SAA1056	3.75	4016	0.52	4503	1.15	7412	0.27
189	SAA1058	3.35	4017	0.80	4506	0.68	7413	0.32
. 00	SAA1059	3.35	4019	0.60	4510	0.99	7414	0.51
. 70	11c90dC	14.00	4020	0.98	4511	1.49	7415	
. 84	LN1232	19.00	4021	0.82	4512	0.98	7416	0.30
35	LN1242	19.00	4022	0.96	4514	2.55	7417	0.30
. 40	MSL2318	3.84	4023	0.25	4518	1.03	7420	0.19
. 80	MSM5523	11.30	4024	0.76	4520	1.09	7421	0.38
. 90	MSM5524	11.30	4025	0.25	4521	2.36	7423	0.27
. 46	MSM5525	7.85	4026	1.80	4522	1.49	7425	0.27
20	MSM5526	7.85	4028	0.79	4529	1.61	7427	0.32
27	MSM5527	9.75	4029	1.04	4539	1.28	7428	0.35
2.85	MSM55271	9.75	4030	0.59	4549	3.50	7430	0.17
. 60	MSL2312	3.94	4035	1.20	4554	1.73	7432	0.32
. 68	SP8629	3.85	4040	0.98	4560	2.18	7437	0.40
80	SP8647	6.00	4042	0.85	4566	1.59	7438	0.33
80	95480pC	7.80	4043	0.85	4568	2.18	7440	0.20
	HD10561	2.45	4043AE	0.93	4569	3.03	7441	0.74
	HD44015	4.45	4044	0.94	4572	0.30	7442	0.70
. 95	HD12009	6.00	4046	1.30	4585	1.00	7443	1.15
	HD44752	8.00	4047	0.99			7444	1.12
	MC145151	12.45	4049	0.52			7445	1.05
. 09	MC145156	8.75	4050	0.55			7446	1.32
	MISC		4051	0.78			7447	
	ICM7106CP	9.55	4052	0.79 0.78			7448	0.56
.95	ICM7107CP	9.55		0.78				
	ICM7216BP	9.50	4063	1.18			7453	0.20
	ICM7555	0.94	(06	1.15				
29	CRYSTALS		CRVSTALS			RADIO CONTROL		
2.22	32.768kHz.	2.70	10.245		2.00	RC \times	TALS	
. 29	100 kHz	3.85	10.6985		2.50	AM T	X/RX	
1.29	455 kHz	5.00	10.700		2.00	FM R		
275	1.000 MHz	2.95	10.7015		2.50	3 rd ot	/30pF	
1.65	3.2768	2.70	11.00		2.00	HC25	U	1.65
2. 2	4.000	2.00	11.115		2.00	FMTX	C: Fund	
1.85	4.1934	200	11.520		2.00	20 pF	HC25U	
2.7	4.096	200	8.9985		2.00	1/2 freq		1.85
2.03	4.032	2.00	9.0015		2.00	PAIRS	S... AM	3.10
3.75	4.433619	200	21.000		200	PAIRS	S... FM	
. 75	4.800 5.000	2.00	24.000		2.00			
POA	5.000 6.5536	2.00	25.000		2.00	CHAN	NNELL	
OA	$\begin{aligned} & 6.5536 \\ & 7.000 \end{aligned}$	2.00	26.000		2.00	27MH	z. 50 k	
2.35	7.000	2.00	18.000		2.50	M	z: 20	
2.35	7.68 8.000	2.00	XTAL	FILT	TERS			
. 75	$\begin{aligned} & 8.000 \\ & 9.000 \end{aligned}$	2.00 2.00	10 M 4 E	1; 10	0.7Mhz,	15K	B	
	$\begin{aligned} & 9.000 \\ & 10.000 \end{aligned}$	200	8 pole.		0.7Mnz	24Kh		
. 95	10.240	200	10M22	D; 10				

PSN' MICROMARKET

THE MODERN BOOK CO

WORLD RADIO T.V. HANDBOOK 1981 EDITION $£ 10.50 p$

REPAIRING POCKET TRANSISTOR RADIOS
by I. R. Sinclair TEST GEAR PROJECTS
by T. Dixon
Price $£ 2.55$
Price $£ 4.50$
ELECTRONICS - BUILD \& LEARN
by R. A. Penfold
Price $£ 3.20$
AUDIO AMPLIFIERS FOR THE HOME
CONSTRUCTOR
by I. R. Sinclair Price $£ 3.00$ BEGINNER'S GUIDE TO INTEGRATED CIRCUITS
byI. R. Sinclair
Price $£ \mathbf{} \mathbf{3} 50$ BEGINNER'S GUIDE TO RADIO by G.J. King
ELECTRONIC PROJECTS IN THE WORKSHOP
by R. A. Penfold
Price $£ 3.50$
Price $£ 2.75$
ALARM PROJECTS
HOME CONSTRUCTOR
by R. M. Marston Price $£ 4.35$ UNDERSTANDING MICROPROCESSORS by Texas ins AMATEUR RADIO OPERATING MANUAL by R. J. Eckersley

Price $£ 4.70$

THE OSCILLOSCOPE IN USE by I. R. Sinclair

Price $£ \mathbf{3} .50$ PROJECTS FOR THE CAR \& GARAGE by G. Bishop SIMPLE CIRCUIT BUILDING
by P.C. Graham \quad Price $£ 2.75$ UNDERSTANDING HI FI SPECIFICATIONS by John Earl

Price $£ 3.40$
BEGINNER'S GUIDE TO DIGITAL
ELECTRONICS
by I. R. Sinclair Price $£ 3.50$ ELECTRONICS POCKET BOOK by P. J. McGoldrick Price $£ 5.00$ PROJECTS IN RADIO \& ELECTRONICS by I. R. Sinclair Price $\mathbf{£ 2 . 5 0}$ UNDERSTANDING CALCULATOR MATH by Texas Ins. Price $£ 4.00$ UNDERSTANDING SOLID STATE ELECTRONICS by Texas ins

AUDIO CIRCUITS \& PROJECTS

 by G. BishopPrice $£ 5.35$
PRINTED CIRCUIT ASSEMBLY
by M. J. Hughes
Price: £2.75
MICROPHONES IN ACTION
by V. Capel Price $£ 5.00$
BEGINNER'S GUIDE TO COLOUR TELEVISION by G. J. King

Price $£ 3.50$
HOW TO BUILD ELECTRONIC KITS by V. Capel

Price $£ 2.50$
ELECTRONIC GAME PROJECTS
by F. G. Rayer Price £2.75
UNDERSTANDING DIGITAL
ELECTRONICS
by Texas ins.
Price $£ 4.00$
OW TO BUIL
BEGINNER'S.GUIDE TO HAM RADIO
by L. Buckwalter
Price $£ 3.50$

DIRECT SUPPLY SERVICE TO READERS

TOWERS INTERNATIONAL TRANSISTOR SELECTOR
(NEW REVISED EDITION)

Would this replace it?

If it takes you longer than 1 minute to find out all about these transistors then you need a copy of TOWER'S INTERNATIONAL TRANSISTOR SELECTOR. It's one of the most useful working books you will be offered this year. And probably the cheapest!
In it, you will find a really international selection of 13,000 transistor types - British, Continental European, American and Japanese. And we think that they will solve 90% of your transistor enquiries.

Current and widely used obsolete types were carefully selected and arranged in Numero-Alphabetical order by an author who was uniquely qualified to do the job. With his compendium, all you need to know is the type number and you can learn all about a transistor's specification; who made it and where to contact them; or what to use to replace it.

TOWERS INTERNATIONAL FET SELECTOR

If you deal with field effect transistors, or fet's - whether as a student, a hobbyist, a circuit engineer, a buyer, a teacher or a serviceman - you often want data on a specific fet of which you know only the type number.

Specifications apart, you may be even more interested in where you can get the device in question. And perhaps more important still (particularly with obsolete devices), you may want guidance on a readily available possible substitute.

This fet compendium, a comprehensive tabulation of basic specification, offers information on:

1. Ratings
2. Characteristics
3. Case details
4. Terminal identifications
5. Applications use
6. Manufacturers
7. Substitution equivalents (both European and American)

The many fet's covered in this compendium are most of the more common current and widely-used obsolete types.

It is international in scope and covers fet's not only from the USA and Continental Europe, but also from the United Kingdom and the Far East (Japan).

Price $£ \mathbf{4}-\mathbf{6 0}$ inc $P \& P$

Price $£ 10-70$ inc $P \& P$

(Piease allow 21 days for delivery)

Tower's	by T. D. Towers
International	MBE, MA, BSc, C Eng, MIERE
Transistor	£10-70
Selector	*inc. post and packing
$\begin{aligned} & \text { To:- } \text { DATA } P \\ & 57 \text { MAIDA } \\ & \text { LONDO }\end{aligned}$	ICATIONS LTD. VALE 9 1SN
Please send m to the addres	. Copy/copie hown below
NAME
ADDRESS	*

```
Tower's
International
FET
Selector
```

```
To:-DATA PUBLICATIONS LTD.
```

To:-DATA PUBLICATIONS LTD.
57 MAIDA VALE
57 MAIDA VALE
LONDON W9 1SN

```
    LONDON W9 1SN
```

 Please send me copy/copies
 to the address shown below
 NAME
 ADDRESS
 (Block capitals)

OSCIILOSCOPES

 How to use them - How they work by lan Hickman
(4, 3

Oscilloscopes are essential tools for checking circuit
operation and diagnosing faults, and an enormous range of models is available. But which is the right scope for a particular applenatien?

Which features are essential which not so importaniz What
techniques will get the best out of the instrument?

- W) technigues wiligef the best out of the instrument?
electronics, has write n this took to hep al oscilloscope users - and
- potential users. After introducing basic pinciples tor readers pew to the
subject he explans in detail the features of yoical simpte and
advanced real time oscilloscopes olgs accessories such as probes and cameras fle advisescn how tochoose anc operate scopes, andhowt tozvoid
commen pitals, heaso describes speciap purpose ins runienisx trom small portablestopes to storage scopestand spectrum athd logic analyseis.

Finally to giveroaders"a better understanding of how osifiloscopes x? W. wok he explans the principles of the cathode ray tobe

Illustrated with many photographs and two colour ditarams the book will appeal to everyone who needs to know about oselloscopes,
from the schaol student to the graduate. from the hobtyist the the technician
Availabe from pu local boskseller or in case of dificulty from the Publishei:

BROADEN YOUR SCOPE NOW!

Cut out this coupon and return it to Patricia Davies, Marketing Manager, at the address below.
Please send me copy/copies of Oscilloscopes (Hickman) 040800472 X illustrated paperback $216 \times 318 \mathrm{~mm}$ 128 pages @ £3.45 each.

I enclose a cheque/PO for $£$ in total payment

From

Address
ewnes Technical Books
Borough Green, Sevenoaks, Kent TN15 8PH

Conquer the chip. will revolutionise every human activity over the next ten years.

Knowledge of its operation and its use is vital. Knowledge you can attain, through us, in simple, easy to understand stages.
Learn the technology of the future today in your own home.

MASTEPEEGTRNIGG
 LEARN THE PRACTICAL WAY BY SEEING AND DOING

- Building an oscilloscope. Recognition of components.
- Understanding circuit diagrams. - Handling all types Solid State 'Chips'. - Carry out over 40 experiments on basic circuits and on digital electronics. - Testing and servicing of Radio, T.V., Hi-Fi and all types of modern computerised equipment.

WHGTEPGOMTEDS

LEARN HOW TO REALLY UNDERSTAND COMPUTERS, HOW THEY WORK - THEIR 'LANGUAGE' AND HOW TO DO PROGRAMS.

- Complete Home Study library. - Special educational MiniComputer supplied ready for use. Self Test program exercise. - Servicés of skilled tutor available.

MASTEDTHERET

- Radio Amateurs Licence. Logic/Digital techniques.
- Examination courses (City \& Guilds etc.) in electronics,
- Semi-conductor technology.
- Kits for Signal Generators - Digital Meters etc.

BRIAN J. REED

INTEGRATED CIRCUITS

74196 Pre-set 50MHZ......... 36
$745196 / 82 S 90$ Decade Count/Latch. 65 74LS221 Dual Monostable M/VIE 74221 dual Mono Multi: Schm. Tin 74285 binary 4×4 mult.
74 LS290 Decade counter
74298 Quad 2 in multi plus store 74490
7905-5v Reg. 1 Amp
8080A C.P.U. 8 bit 8284 Binary up down
$82 \mathrm{~S} 126256 \times 4$ prom 82 S 129 Tri state prom 256×4 9093 DC
9112 DC
93 S 10

93 L 16 9370

93453

930399 Schottky prom 1024×4 930399-480 Bit Shift Register 930399-500 Bit Shift Register AY5-3507 31 Digit DVM AY5-8300 Ch/Time Displa BRCM300 Volt Regulator BTT822
C500 Caiculator
CA139AG Quad Volt Comparator
T)CA239G Quad volt comparato
(T)CA270AE 1 CA270CW/AW\} Signa T)CA270CE

CA920 TV Horiz. s
CA3001 RF Amp
CA3001 RF Amp

CA3044

CA3045 Transistor Array (5)
CA3060 Variable OP AMP
CA3080 Prog. Trảnsconduct. Amp. CA3083 NPN transistor array

$$
\begin{aligned}
& \text { CA3086 NPN } 5 \text { transisior array } \\
& \text { CA } 3089 \text { FM IF amp olus detect }
\end{aligned}
$$

$$
\begin{aligned}
& \text { CA3086 NPN } 5 \text { transisior array } \\
& \text { CA3089 FM IF. amp plus detector } 1.10
\end{aligned}
$$ CA3090 Q/AQ FM decoder CA3093

CA3094 Prog. Sw. Pwr. OP Amp. CA3123 AM Radio RF/IF Amp CA3132EM
$\begin{array}{ll}\text { CA3146E Hi-volt } 5 \text { transistor array } & \mathbf{~} 2.22 \\ 900\end{array}$ CA3183 NPN transistor array
CA3189 FM receive IF. system CA3189 FM receive IF CA3401 (LM3900) Quad OP Amp CD4002 Dual 4 Input Nor CD4004
CD4006 18 Stage Static Shift Reg.
CD4007 Dual Comp. Pair + Invert CD4007 DualComp. Pair + Invert
CD40084 Bit Binary Full Adder CD4008 4 Bit Binary
CD4010 Hex Buffers CD4012 Dual 4 Input Nand CD4013 Dual D Flip Flop CD40148 Bit Shift Register CD4016 Quad Bi-Lateral Switch CD4017 Decade Count/Divide CD4018 Preset Divide N Count
CD4019 Quad 2 Indut Multiplex CD4019 Quad 2 Invut Multiplex
CD4020 14 Stage Binary Counter CD4022 Divide by 8 Count/Divide CD4023 Triple 3 Input Nand CD4024 7-Stage Binary Cou CD4025 Triple 3 Input Nor CD4028/MC14028 BCD/Decimal
CD4029 Synch. Preset Bin/Deco CD4030 Quad Exclüsive or CD4031 64 stage static. shift
CD4032 Trip. Ser Add. Neg CD4033 Dec. Count 7 Seg $\quad 72 \mathrm{p}$ CD4034 Dec. Count. 7 Seg. Output 72p CD4035 4 Bit Part in out Shit CD4036 Word Buff. Store/decode $£ 2.90$ CD4037 triple and/or B1 Phase pairs 72p
CD4038 Triple serial adder CD4038 12 in serial adde CD4040 12 stage binary counter CD4041 Quad True/Comp. Buffer CD4043 Quad Nor R/S Latch CD4044 Quad Nand R/S Latch CD4045 4 Bit Par. in out shift CD4046 Micro Power CD4048 Exp 8 input gate CD4049 Hex inverter Buffers CD4051 Analogue Multi/Demulti CD4052 Analogue Muiti/Demulti CD4053 Analogue Multi/Demulti CD4054 4 LINE LCD driver/count
CD4055 BCD7SEG. Decode/Drive CD4055 BCD 7SEG. Decode/Drive
CD4061 256×1 Bit Static RAM CD4063 4 pit magnitude comp. CD4066 Quad Biateral SWitch
CD4067 1.16MULTIPLEXER CD4069 Hex invertor

CD4071 quad 2 input or buffer CD4072 dual 4 input or
CD4076 Quad D Flip-Flop CD4076 Quad D Flip-FIop CD4077 Quad Exclus
CD4078 8 Input Nor
CD4078 8 Input Nor
CD4081 Quad 2 Input and Buffer CD4081 Quad 2 Input and
CD4082 Dual 4 Input and
CD4085 Dual 2 in. 2 wide and or inv CD4086 4 Wide 2 input and/or Inv. CD4093 quad 2 input Nand S.T. CD4094 8 bit ser. par. hold bus reg. CD4095 JK. Gated flip flop non Inv. CD4096 gated JK flip flop

CD4097 mux/demux 8ch.

CD4502 Strobed Hex Invertor

 CD4508BF dual 4 bit latch CD4511 BCD7 seg. latch dec/drive CD4514 decoder
CD4515 decoder

CD45172×64 bit Shift Register
CD4519/MC145194 bit and/or Se
CD4520 Dual Synch. 4 Bit Bin
CD4527 BCD rate multiplier CD4532 8in Priority encoder CD4555 decoder
CD4556 Decoder
CD22 100 cross point switch CD40 10032 bit L/R Shift Reg. CD401019 bit Par. Gen. check CD40108 4×4 Multipart Reg. CD40160 Dec. Count. Async. clear
CD40162 4 bit synch. Dec. Count

CD40163 Bin. count synch. clear CD40181BE Quad 2 Input and CD40192 Sync 4 bit BCD U/D count CD40194 4 bit L/R SR
CD40208BF 16 bit multi port RAM 72 p CD40257 Data Selector $\mathbf{f 1 . 1 5 \mathrm { p }}$ CDP1833 Cosmac Rom 1824×8 CDP1834 Cosmac Rom 1024×8
CT1012 C Frequency synthesiser CT1115 Frequency Synthesiser CT1116 frequency synthesiser CT1119 Frequency synthesise FCH111 8 input Nand/Nor

FCH201 FCJ101

FPQ/MPO3725 4 Tr. Arra
FZH191

FZH20

ICL7103 43 Digit DVM/DPM
IM5623Prom. $256 \times 4.60 \mathrm{~ns}$ LM300 Volt Regulato

LM3900 (See CA3401)

MC830P
MC833P dual 4 input expander
MC837P Hex invert. fast rise

MC846P

MC862P

MC863P
MC1306P
MC/CA/BRC 1310PSt. Decoder
MC1312P-Stereo Decoder
MC1312P-
MC1314P
MC1314P
MC1315P
MC1350P Video I.F. Amp + A.G.C.
MC1357P sound I.F. + Demod.
MC3302L Quad amp ivolt comparat

MC4044P Phase/Frequency detector MC4344F
MK2686
MK4012 Memory Static Shift Reg
ML237B (6108) 6 channel tune
MM5335 Prom $256 \times 880 \mathrm{~ns}$
MP3202 $3 \frac{1}{2}$ Digit DV
MT300 Valt Regulat
MT300 Volt Regulator
MT305 Volt Regulator
MW4050D Static Ram 200 n
MWS5101 256×4 SOS CMOS RAM

SAA661

SAA 1025
SAA 5012 Teletext Binary Tuner $£ 2$ SAS580 4 Ch touch tune. + Disp. SAS5904 Ch. touch tune. + Disp.
SGS308 4 diode array
SL403A 3 Wt. Amp.
SL442 Chopper power supply
SN7528
SN15836
SN15845
SN15846
SN15851
GN15858N

SN15862SN75107interface					¢1.15
SN75108					36p
SN75110 Dual line driver					46p
					72p
SN751257line Rec. Interface					78p
SN75235N					$11 p$
SN75463 dual periph or driver					36p
					36p
SN76001					36p
SN76003 5Wt. Amp					36p
SN76013 5Wt. Amp					36p
SN76013N 5 Wt. Amplifier					92p
SN76023 SWV. Amp SN76110P					36p
					351 p
SN76115N Stereo Decoder					351 p
SN76131					58p
SN76227					59p
SN76228N					£1.60
SN76396 (TBA396)					351p
SN76620 F.M.I.F. AnSN76650N stage v					18p
					C. 50p
SN76650N $\frac{1}{2}$ stage video I.F. + A.G.C. SN76660N					3512
SN76666N Sound I.F. + Demod. +					+ Driver
SN158093					$35 \frac{1}{2} \mathrm{p}$ $\mathbf{5 0 p}$
					50p
SN158099					50p
SP4021 $\div 64 \mathrm{VHF/UHF} 50 \mathrm{mv}$ TTL O/P. 75 p					
					75p
					75p
TAA320 Integrated most AMP.					35p
TAA550 Volt Reg. TAA700					$10 \frac{12}{} \mathrm{p}$
					£2.30
TAD 100 AMRadio					£1.22
TBA120S/CO/SB/B TV Amp					36p
					£3.90
TBA3950					£1.50
TBA396 Luminence and chrom.					35p
					E1.25.
TBA560C Lum/Chrom control					52p
TBA800 Amp 5 Watt Audio					52p
					70p
TCA2700/SA/AE/OS Vid. Det.					£1
TCA270/SB synch. demadulater TCA440 A.M. Heceiver					55p
					- 1.25
TCA830S Ex. Equip A.F. Amp.					18p
	OS A.F	Amp.			37p
TCA4401 A.F. Amp.					£1.25
TCEP100					£1
TDA0470 Organ					37p
TDA1003 Pre-amp and iecord					£1
TDA2610 6watt audio amp TDA2680 T.V. Signal processor					71p
					£1.83
TID25A 16 diode array					4p
TL441 Log-antilog amp.					36p
TL/ μ A720 AM Radio RF/IF Amp TMS 3409 memory 80 bit shift Reg.					
					1.10p
TMS4034 Memory					£1.08
μ PD411AC 200ns Dynamic $4096 \times$					
					£1.30
XR215					£2
ZN414 AM Radio Receiver					79p
ZST13	$1 \mathrm{~A} 5 \ln$	ut Pow	wer NO		8p
	75 volt				
1	10p		10p	100	15p
2	10p	64	15p	220	22p
			Volt		
3	9 p	25	13p		111p
5	71 p	47	16p	680	11/P
20	13p	50	16 p		
22	13p	60	7 p		
			Volt		
1	15p	8	15p	32	23p
4	15p	70	16p	50	23p
4.7	15p	15	7p	80	26p
6.8	$15 p$	16	18p		
			Volt		
2	15p				
			Volt		
22	18p				
			Volt		
32	32p				
2	26p			10	1.0
	26		of 5)	10	
1	6 p	4	${ }^{6 p}$	10	8p
2	26p	4.7	26p	16	32p
		22	16p		
			Volt		
1	32p		10p		
			Volt		
2	22p	16	37p		
4.7	27p	22	37p		
			Volt		
0.47	32p	4.7	30, p	22	37p
1	23ip	10	20 p		

SESCO SECURITY LTD.
ingersoll 6 lever mortise shunt deadlock
with 2 SPDT Micro switches incorporated. All fittings plus 2 keys £13.00
1.5-6VDC Model Motors 22p. Sub. Min. 'Big Inch' 115 VAC 3 rpm Motors 32p. 6 volt standard cassette motors new £1.20. 8 track 12 V Replacement Motors 55p. Ex. Equip. BSR record player motors, C129, C197 type, $\mathbf{£ 1 . 2 0 .}$

SEMICONDUCTORS

LíM340 80p. BY103 10 p. 2N5062 100 V 800 mA SCR 18p. BX504 Opto isolator 25p. CA3130 95p. CA3020 45p. 741 22p. 741 S 35p. 723 35p. NE555 24p. 2N3773 £1.70. NE556 50p. ZN414 75p. BD238 28p. BD438 28p.CB4069 15p. $4^{\prime \prime}$ RedLed Displays, c.c. or c.a. 95p. Displays, c.c. or c.a. 95p.
TlL209 Red Leds 10 for 75p. Man3A 3 mm Led Displays 40p. BY223 20p.

PROJECT BOXES

Sturdy ABS black plastic boxes with brass inserts and lid. $75 \times 56 \times 35 \mathrm{~mm}$ 65 p. $95 \times 71 \times 35 \mathrm{~mm} 75 \mathrm{p}$. $115 \times 95 \times 37 \mathrm{~mm} 85 \mathrm{p}$.

2.5" Direct Radiating Tweeter, maximum rating 25 volts R.M.S. 100 watts across 8 ohms. Freq. range $\mathbf{3 . 8 k H z - 2 8 k H z}$, £3.65

TOOL SALE

Small side cutters $5^{\prime \prime}$ insulated handles $£ 1$. Radiopliers, snipe nosed insulated handles £1. Heavy. duty pliers insulated handles $\mathbf{E} 1.10$. Draper side handes $\mathbf{E} 1.10$. Draper siders spring loaded $£ 1$.

HANDY BENCH VICE

1" Jaw opening, $£ 2.95$.

Hand drill, double pinion with machine cut gears,. 5/48", only $\mathbf{£ 2 . 7 5 p}$ plus 50 p p\&p.

MORSE KEYS

Beginners practice key $\mathbf{~} 1.05$. All metal full adjustable type. $£ 2.60$

MINIATURE LEVEL

METERS

1 Centre Zero $17 \times 17 \mathrm{~mm}$ 75p. 2 (scaled $0-10$) $28 \times$ 25mm 75p. 3 Grundig $40 x$ 27 mm £1.25.

JVC NIVICO STEREO CASSETTE MECHANISM. Music centre type. Rev. counter, remote operation £13.50 and $£ 1.00$ p\&p.

JUMPER TEST LEAD SETS

10 pairs of leads with various coloured croc clips each end (20 clips) 90p per set.

TRANSFORMERS

All 240VAC Primary (postage per transformer is shown after price). MINIATURE RANGE: 6-0$6 \mathrm{~V} 100 \mathrm{~mA}, 9-0-9 \mathrm{~V} 75 \mathrm{~mA}$ and $12-0.12 \mathrm{~V} 50 \mathrm{~mA}$ all 79 p each (15p). $0-6,0-6 \mathrm{~V}$, 280 mA £1.20 (20p). 6V 500 mA E1.20 (15p). 12 V 2 amp $£ 2.75$ (45p). 30-030 V 1 amp £2.85 (54p). $20-0-20 \mathrm{~V} 2 \mathrm{amp} £ 3.65$ (54p). 0-12-15-20-24-30V 2 amp $£ 4.75$ (54 p). 24 volt 2 Amp £2.45 (54p).

TRIAC/XENON PULSE

TRANSFORMERS
1:1 (gpo style) 30p. 1:1 plus 1 sub. min, pcb mounting type 60p each.

MICROPHONES

Min. tie pin. Omni, uses deaf aid battery (supplied), £4.95, ECM105 low cost condenser, Omni, 600 ohms, on/off switch, standard jack plug, $£ 2.95$. EM507 Condenser, uni, 600 ohms, $30-18 \mathrm{kHz}$., highly polished metal body $£ 7.92$. DYNAMIC stick microphone dual imp., 600 ohms or $20 \mathrm{~K}, 70-\mathrm{kHz}$,, attractive black metal body $£ 7.75$. EM506 dual impedance condenser microphone 600 ohms or 50K, heavy chromed copper body, £12.95 CASSETTE replacement microphone with 2.5/3.5 plugs E1.35 GRUNDIG rts with FET pre amp, 3-6VDC operation $\mathbf{E 1 . 0 0}$

LIGHT DIMMER

240VAC 800 watts max. wall mounting, has built in photo cell for automatic swich on when dark $£ 4.50$

RIBBON CABLE

8 way single strand miniature 22p per metre.

> SPECIAL OFFER TAPE HEAD DEMAGNETIZER

240VAC with curved probe suitable for reel to reel or cassette machines, £1.95.

STEREO FM/GRAM TUNER AMPLIFIER CHASSIS, VHF and AM. Bass, treble and volume controls, Gram. 8track inputs, headphone output jack, 3 watts per channel with power supply. $\mathbf{£ 1 4 . 9 5}$ and $\mathbf{E 1 . 2 0}$ p\&p

Pocket Multimeter, 1,000 opv sensitivity. Ranges 1KV AC/DC Volts, 150 ma DC current, resistance 0 2.5K, 0-100K, £4.50

20,000 opv., 1,000 volts AC/DC, DC' current to $\mathrm{AC} / \mathrm{DC}$,
500 ma,
5 D ranges, current to to ance 4 ranges to 6 meg . Mirror scale, carrying handle, £975.

40 kHz Transducers. Rec $/$ Sender $£ 3.50$ pair.

TELEPHONE PICK UP

Sucker type with lead and 3.5 mm plug 62 p .

500 V electronic megger, push button operation. Ranges:Lo ohm Range 0-100 (MW scaie $5 \Omega) 0-100 \mathrm{M} \Omega$ Mid scale $5 \mathrm{MH} \Omega$) $\mathrm{E46} .75 \mathrm{p}$

Stabilized power supplies, 240 V A.C. input output 13.8 volts at $3 / 5 \mathrm{amps}$ D.C. $£ 14.75$ p

TERMS:

Cash with order LOfficial Orders welcomed from colleges etc). 30p postage please unless otherwise shown. VAT inctusive.
S.A.E. for illustrated lists

YN360 M/Meter. 20,000 ohms per volt. IKV AC/DC volts, 250 ma de current, 4 resistance ranges to 20 meg , also has built in transistor tester with leakage and gain ranges. $\mathbf{£ 1 2 . 5 0}$

CRIMPING TOOL

Combination type for crimping red blue and yellow terminations also incorporates a wire stripper (6 gauges) and wire cutter, with insultated handles only $£ 2.30$.

POWER SUPPLIES

SWITCHED TYPE, plugs into 13 amp socket, has 3-4.5-6-7.5 and 9 volt DC out at either 100 or 40 0 mA , switchable $£ 3.45$. HC244R STABLISED SUPPLY, 3-6-7.5-9 volts DC out at 400 mA max., with orvoff switch, polarity reversing switch and voltage selector switch, fully regulated to supply exact voltage from no load to max. current $£ 4.95$.

AMPHENOL
 \section*{CONNECTORS}

(PL259) PLUGS 47p. Chassis sockets 42p. Elbows PL259/ SO239 90p. Double in line male connector (2XPL259) 65p. Plug reducers 13p. PL259 Dummy load, 52 ohms 1 watt with indicator bulb 95p.

BUZZERS

miniature solid state BUZZERS, $33 \times 17 \times 15 \mathrm{~mm}$ white plastic case, output at three feet 70 db (approx), low consumption only 15 mA . voltage operating $4.15 \mathrm{VDC}, 75 \mathrm{p}$ each. LOUD 12 VDC BUZZER, with, metal case. 50 mm diam. $\times 30 \mathrm{~mm}$ high 63p. Carters 12 volt Minimite Alarm sirens £7.65p. 12 VDC siren, all metai rotary type, high pitched wail, £6.25.

TOOLS

SOLDER SUCKER, plunger type, high suction teflon nozzle, $\mathbf{£ 4 . 9 9}$ (spare nozzles 69 p each).
All Antex irons still at pre increase prices, order now as new stock will be going up next month.
Antex Model C 15 watt soldering irons, 240VAC £3.95
Antex Model CX 17 watt soldering irons, 240VAC £3.95
Antex Model X25 25 watt soldering irons, 240VAC £3.95
ANTEX ST3 iron stands, suits all above models £1.65
Antex heat shunts 12p each.
Servisol Solder Mop 50p each.
Neon Tester Screwdrivers $8^{\prime \prime}$ long 59p each.
Miyarna IC test clips 16 pin £1.95

SWITCHES
Sub. miniature toggles: SPST ($8 \times 5 \times 7 \mathrm{~mm}$) 42p. DPDT ($8 \times 7 \times 7 \mathrm{~mm}$) 55 p . DPDT centre off $12 \times 11 \times$ 9 mm 77p. PUSH SWITCHES, $16 \mathrm{~mm} \times 6 \mathrm{~mm}$, red top, push to make 14p each, push to break version (black top) 16p each.

TEI Mobile SWR metre, with field strength, PL259 connection, $\mathbf{£ 8 . 3 5}$.

RES. SUB BOX

Resistance Substitution Box. Swivelling disc provides close tolerance resistors of 36 values from 5 ohms to 1 meg. £3.95.

Signal Generator. Ranges $250 \mathrm{~Hz}-100 \mathrm{MHz}$ in 6 Bands, $100 \mathrm{MHz}-300 \mathrm{MHz}$ (harmonics) internal modulator at 100 Hz . R.F., output Max. 0.1 vRMS. All transistorised unit with calibrating device. 220-240VAC operation, £48.95.

TAPE HEADS

Mono cassette $£ 1.75$. Stereo cassette £3.90. Standard 8 track stereo £1.95 BSR MN1330 $\frac{1}{2}$ track 50p. BSR SRP90 $\frac{1}{4}$ track £1.95. TD10 tape head assembly - 2 heads both $\frac{1}{4}$ track R/P with built in erase, mounted on bracket £1.20

PROGRESSIVE RADIO

Self-Binder

 for "Radio \& Electronics

 for "Radio \& Electronics Constructor"

 Constructor"}

The "CORDEX" Patent SelfBinding Case will keep your issues in mint condition. Copies can be inserted or removed with the greatest of ease. Rich maroon finish, gold lettering on spine. Specially constructed Binding Cords are made from Super Linen of great strength, very hard twisted and twice doubled. They are attached to strong RUSTLESS Springs under tension, and the method adopted ensures PERMANENT RESILIENCE of the Cords. Any slack that may develop is immediately compensated for and the Cords will always remain taut and strong. It is impossible to overstretch the springs, as a safety check device is fitted to each.

including V.A.T.
For your other magazines
Plain-backed in Maroon or Green
(Please state colour choice)

PRICE $£ 2.25$ р. \&P. oо including VAT

Available only from:-
Data Publications Ltd. 57 Maida Vale London W9 1SN

First the EuroBreadBoard Now the EuroSolderBoard

Design on a EuroBreadBoard - Instal on a EuroSolderBoard
First the EuroBreadBoard
Will accept 0.3' and 0.6" pitch DIL IC's, Capacitors, Resistors, LED's, Transistors and components with up to .85 mm dia leads.
500 individual connections PLUS 4 integral Power Bus Strips along all edges for minimum inter-connection lengths.
All rows and columns numbered or lettered for exact location indexing (ideal for educational projects)
Long life, low resistance ($<10 \mathrm{~m}$ ohms) nickel silver contacts $£ 6.20$ each or $£ 11.70$ for 2
Now the EuroSolderBoard
New 100 mm square, 1.6 mm thick printed circuit board with pretinned tracks identically laid out, numbered and lettered to EuroBreadBoard pattern.
Four 2.5 mm dia fixing holes.
$£ 2.00$ for set of three ESB's
And don't forget the EuroSolderSucker
Ideal for tidying up messy solder joints or freeing multi-pin IC's, this 195 mm long, all metal, high suction desoldering tool has replaceable Teflon tip and enables removal of molten solder from all sizes of pcb pads and track. Primed and released by thumb, it costs only £7.25 including VAT \& PP

Snip out and post to David George Sales,
Unit 7, Higgs Industrial Estate, 2 Herne Hill Road, London SE24 OAU
David George Sales,
Unit 7, Higgs Ind. Est., 2 Herne Hill Rd., London SE24 0AU.
Please send me:-
1 EuroBreadBoard
$@ £ 6.20$ ○
or 2 EuroBreadBoards
@ $£ 11.70$ Please
or 3 EuroSolderBoards
$@ £ 2.00$ ○ Tick
or 1 EuroSolderSucker
@ $£ 7.25$ ○

All prices are applicable from Jan. 1st 1981 and include VAT \& PP but add 15% for overseas orders.

Name.
Company.
Address.

Tel. No.
Please make cheques/P.O. payable to David George Sales and allow 10 days for cheque clearance and order processing

NEWS

AND

NEW TRADE MARK WITH NEW RANGE OF DRILLS

Microflame (UK) Limited, Vinces Road, Diss, Norfolk IP22 3HQ have recently announced the birth of a brand-new trademark and range of low-voltage miniDrills.
The 'Drillmaster' range embraces two drills - 'Drillmaster' Junior and 'Drillmaster' Senior - and a comprehensive range of accessories for drilling, grinding, polishing, cutting, shaping, carving, engraving, de-burring and similar operations. Both drills are fitted with the latest telephone-type, "curly-tail" flexible cords, and are suitable for battery or transformer operation.
'Drillmaster' Junior has a unique, "curved triangular" shaped body which fits comfortably into the angle between the base of the user's thumb and forefinger, and close control is aided by the provision of a detachable chuck finger-shield. A chuck with 4 precision cut steel collets, $0.6 \mathrm{~mm}, 1.2 \mathrm{~mm}, 1.8 \mathrm{~mm}$ and 2.4 mm is fitted as standard.
'Drillmaster' Junior Drill Stand has a powerful magnifying glass attachment built-in.
'Drillmaster' Senior is supplied with an automatic 3-jaw chuck as standard, and a precision chuck with a set of 5 steel collets, $0.6 \mathrm{~mm}, 1.2 \mathrm{~mm}, 1.8 \mathrm{~mm}, 2.4 \mathrm{~mm}$ and 3.2 mm is available as an optional extra.

In addition to a robust Drill Stand for the 'Drillmaster' Senior, over 100 accessories are available for use with either the Junior or Senior Drill.

Leaflets and Price Lists are available.
S. \& R. Brewster Ltd., of 86-88 Union Street, Plymouth PL1 3HG, are sending their famous soldering irons to retail outlets in a different form of packing.

Previously packed for shelf display, the soldering irons can now be seen in very attractive boxes using the more modern hang-up display style. Instead of viewing the soldering irons end-on they can now be
seen full length.
The green boxes house the standard Type 1 mains voltage iron, the brown ones contain Type 112 volts iron and the yellow one their Model D.
The soldering irons can be supplied direct to individual customers as well as to the trade and the irons can, of course be obtained from many retail outlets.

TECHNICAL STANDARDS FOR TV AND LOCAL RADIO STATIONS

"Standards for Television and Local Radio Stations" - has recently been published . by the Independent Broadcasting Authority.

This 72-page book with many two-colour illustrations brings together the current IBA Technical Codes of Practice relating to television studio centres and to ILR studios and OB operations. These are mandatory codes for ITV and ILR programme companies and have special importance also to equipment suppliers and the broadcasting industry generally. For television, these codes will apply to the new ITV contracts from January 1982.

The book is intended for engineers, firms and students directly involved in the field of broadcasting.

IBA Technical Review No. 13, "Standards for Television and Local Radio Stations", technical editor John Lovell, published by IBA, London.

THE RADIO AMATEUR INVALID AND BLIND CLUB

We recently received the up-to-date membership list of the R.A.I.B.C.

The total membership is now 615 of whom 324 are licensed members and 291 short wave listeners. Due to helpful publicity by the R.S.G.B., during the past year, nearly 30 additional clubs and societies have promised their help.

Those of our readers not previously aware of the good offices of R.A.I.B.C. in assisting shortwave enthusiasts who are invalids, or blind, and feel that they could probably help should write to the Honorary Secretary, Mrs. Frances Woolley, 9 Rannoch Road, Adelaide Road, Surbiton, Surrey KT6 4 TE , for details.
The club was founded in 1954 and is affiliated to the R.S.G.B. and publishes 6 News Letters per year.

. . . COMMENT

AMSAT NEWS

With this year's AMSAT Membership Renewal Subscription Form, comes a message from Tom Clark, AMSAT's President. As he points out, last year the Phase III Satellite was nearing completion at the beginning of the year, when subscription renewal forms were being sent out; the first issue of AMSAT's magazine ORBIT was on the boards and everyone was looking forward to the dawn of a new era in the amateur radio satellite field. The loss of the Phase III satellite on May 23rd., last year, seemed at first to be a calamity from which AMSAT might well not have recovered, but the support which followed appeals for financial and practical help, enabled a second Phase III to be got on the stocks and AMSAT to come back stronger than ever. As Tom Clark points out, a lot is going on, as the following list of projects shows:-

In September 1981, the University of Surrey's UoSAT, Amateur Scientific Satellite will be launched. Much help for this project has come from AMSAT.

In February 1982, the replacement Phase III satellite will be launched.

In mid-1983, another Phase III type amateur radio satellite will be launched, which at the moment is designated Phase III C.
Sometime in 1984, SYNCART, the first sycchronous amateur radio satellite will be launched.
With such a list of projects in the pipe-line, AMSAT is still appealing for more subscribers and donations. The Overseas Subscription is now $\$ 20$ and a Life Membership subscription can be had for $\$ 200$. For those who would find it easier to pay into an account in this country, AMSAT-UK has agreed to accept the AMSAT Corporation subscriptions and donations and forward them on to Washington. They should contact AMSAT-UK's Secretary, Mr. Ron Broadbent, at 94, Herongate Road, Wanstead Park, London, E12 5EQ.
May we take this opportunity of congratulating Dr. Tom Clark, on the recent award to him, by NASA, of a NASA Exceptional Performance Award, for work he has carried out in his professional capacity as a professional radio astronomer. Dr. Clark was leader of a team doing work on "long base-line", radio space surveys.

SONY'S GUIDE TO VIDEOGRAPHY

With UK sales of video recorders forecast to pass the 300,000 mark by the end of the year, Sony has recognised the need both to assist existing owners in utilising their equipment to its best advantage, and also to explain to potential customers the full range of home entertainment which videography now provides.

The company has produced a 48 page full colour handbook containing comprehensive details not only
of the best ways to exploit all the facilities of video recorders, but also how to make home video movies, the use of sound and lighting and even the creation of professional style, special effects and titling.

Amply illustrated and using simple non-technical language the handbook - entitled 'How to Video' is currently on sale at Sony London Showroom, 134 Regent Street, London W.1., price 60 pence. It is also available by post from the Showroom (30 pence extra).

50 MHz QUAD TRACE OSCILLOSCOPE

The new leader LBO-517 has all the features expected on a professional 50 HMz oscillloscope plus an extremely useful quad trace facility.

Sensitivity is $5 \mathrm{mV} / \mathrm{DIV}$ for $50 \mathrm{MHz}, 1 \mathrm{mV} / \mathrm{DIV}$ (with MAG x5) for 10 MHz , and maximum sweep rate is $5 \mathrm{nS} / \mathrm{DIV}$ with MAG x 10 .

Comprehensive triggering and synchronisation facilities, a full specification calibrated timebase and variable hold off functions (including B ends A) make the LBO-517 ideal for a wide range of applications in R \& D, or for servicing TVs, VCRs, computer peripherals, etc.
Performance is further enhanced by the quad trace facility, channels 3 and 4 being accessed via rear panel sockets and controls, and various alarm indicators to eliminate mis-operations.

The $10 \times 8 \mathrm{~cm}$ high brightness display has an internal graticule to eliminate parallax errors, graticule illumination, and additional 10% and 90% scales to facilitate pulse measurements.

Further details can be obtained from: Sinclair Electronics Ltd., London Road, St. Ives, Huntingdon, Cambs. PE1 7 4HJ.

By G. A. French

From time to time we receive requests from readers for oscilloscope voltage calibrating units. Only a small proportion of home-constructors possess oscilloscopes, of course, and it is for this reason that voltage calibrator circuits appear less frequently than do circuits for more commonly employed items of amateurbuilt test equipment. On the other hand, oscilloscope voltage calibrator circuits represent an interesting branch of hobby electronics because they demonstrate how high degrees of accuracy can be achieved with only a few components in quite simple designs. Also, an oscilloscope voltage calibrator can double as an audio frequency signal generator!

CALIBRATOR CIRCUIT

The calibrator circuit appears in Fig. 1. In this, IC1 runs as an astable multivibrator whose frequency is controlled by R1, R2, R3 and C1. Because R2 is equal to R3, and R1 is equal to 4 times R2, the multivibrator produces a 50 : 50 square wave. The presence of R1 causes the oscillator frequency to be slightly higher than the calculated value taken from the values of R2, R3 and C1, and in practice it is approximately 1 kHz .

The 555 output, at its pin 3 , is applied via the constant current device IC2, to the potential divider chain consisting of R5, R6 and R7. A constant current flows through the chain when the 555 output is high, and there is zero current in the chain when the 555 output is low. Thus, a positive going square wave is built up across
the chain, its voltage magnitude depending upon the constant current and the resistance values in the chain.
The required constant current is 5 mA . It will be seen that the sum of the values of R5, R6 and $R 7$ is 200Ω whereupon, from Ohm's Law, a constant current of 5 mA will cause 1 volt to appear across the three

Fig. 1. The circuit of the voltage calibrator. A constant current of 5 mA passes through R5, R6 and R7 when the 555 output is high. No current flows through these resistors when the 555 output is low.
resistors. The values of R6 and R7 add up to 20Ω, so that the constant current of 5 mA produces a voltage of 100 mV across these two resistors. The value of R7 is 2Ω, allowing a voltage of 10 mV to appear across it. One of these three voltages is selected by S1 and passed to the calibrator output. The use of a relatively high constant current through the potential divider chain enables the calibrator output impedance to be low, and the d.c. output resistance is 200Ω maximum.

IC2 is an LM334Z and the constant current it passes is controlled by the external resistance between its pins 1 and 3. The current, in amps, is approximately equal to 0.0677 divided by the external resistance in ohms, and the calculated resistance value is equal to 13.54Ω. There is, however, a tolerance of 3% on the current value and it is necessary to make the external resistance adjustable about the calculated value. In Fig. 1 the external resistance is given by R4 in series with the pre-set potentiometer, VR1.

The square wave selected by

Fig. 2. If difficulty is experienced in obtaining a close tolerance 2Ω resistor for R7, a 2.2Ω resistor and a 22Ω resistor connected in parallel will provide the required resistance.

(a)

(b)

Fig. 3(a). For setting-up purposes, a voltmeter is connected to the output terminals, and S1 and S2 are put to the positions shown here.

(b). A temporary short-circuit is then placed across C1 to drive the 555 output high.

S1 is passed directly to the output terminals when S 2 is in the "D.C." position. Setting S2 to "A.C." allows a capacitive output. coupling via C2. S3 is the on-off switch, and the current drawn from the 9 volt supply is approximately 9 mA .

COMPONENTS

The 555 required for IC 1 is, of course, widely available. It should be noted that the CMOS version, the ICM7555, is not suitable for this circuit because it cannot provide the output source current required. The LM334Z required for IC2 is available from Maplin Electronic Supplies. In the inset showing its lead-outs, these lead-outs are pointing towards the reader.

R1, R2, R3 and R4 are all $\frac{1}{4}$ watt 5% resistors. R5, R6 and R7 are close tolerance $\frac{1}{4}$ or $\frac{1}{2}$ watt resistors, and these should be 2% or, better, 1% types. If difficulty is experienced in obtaining a 2Ω resistor in close tolerance for R7, a 2.2Ω and a 22Ω resistor can be connected in parallel, as shown in Fig. 2. These give a combined value of almost exactly 2Ω.

S1 is, of course, a 3-way rotary switch. Both S2 and S3 can
be s.p.s.t. toggle components. S 2 is shown as s.p.d.t. in Fig. 1 for ease of circuit presentation. The two capacitors may be polyester.

Because of its low value, VR1 is not normally available in the usual range of miniature preset potentiometers. A small wire-wound component should be employed here.
The calibration unit can be housed in a small metal case which is common with the negative supply rail. Alternatively a plastic case may be employed and the chassis connection shown in Fig. 1 is then ignored.

SETTING UP

A voltmeter, which can be a multimeter switched to a low volts range, is required for setting up. This is connected to the output terminals with S1 set to the " 1 V " position and S2 set to "D.C.", as shown in Fig. 3 (a). A short-circuit, as illustrated in Fig. 3(b), is then applied across C . This causes the 555 output to go high. VR1 is next adjusted for a reading of exactly 1 volt in the meter.

The voltmeter and shortcircuit are then removed, after which the voltage calibrator is ready for use.

OBITUARY

It is with deep regret that we have to inform readers that our Technical Editor, Mr. J. R. Davies, died on 7th. February after a very short illness.
Mr. Davies was 57 years of age and, prior to becoming a technical journalist, he was engineer in charge of the television component and sub-assembly factory of Ferguson Radio Corporation Ltd., (now Thorn Electric) at Enfield, Middlesex. Before being appointed Technical Editor of this magazine he had frequently written articles which appeared in these pages and his writing and his editing were notable for their thoroughness and accuracy. All of us who worked with him at Data Publications looked upon him as a personal friend and regarded him with affection - he will be greatly missed.
The funeral service took place at Taunton Crematorium on Wednesday 11th. February at which we were represented by the Production Editor and Advertisement Manager. To his daughter we extend our deep sympathy and condolences.

SOLDERING IRON REMINDER By John Baker UNOBTRUSIVE AUDIBLE DEVICE

 Functions when iron is

 Functions when iron is switched on

 switched on}

A common problem for radio and electronics constructors is that of inadvertently leaving a soldering iron switched on. This usually results in the iron running continuously for many hours before the oversight is discovered, with a consequent reduction in the life of the bit and element. Probably of greater importance is the fact that the soldering iron can present a fire hazard, and the author has some scorched circuit diagrams and carbon papers to illustrate this point. Yet another factor is that one can burn one's fingers or hand by touching an iron which is supposedly switched off. All these points led to the development of the very simple unit which is described in this article.

AUDIBLE REMINDER

In the author's experience there are no difficulties in remembering whether an iron is switched on if it is one of the thermostatically controlled types having an internal bi-metal strip temperature controller. An iron of this nature produces a quiet but clearly audible "clicking" as the bi-metal thermostat switches on and off. The sound helps to remind the user that the iron is switched on, and he is in consequence much more liable to remember to switch off the iron before leaving it.

One solution to the problem, therefore, is to have some form of audible reminder circuit connected in parallel with the iron, so that the user is frequently given a signal that the iron is switched on. Such a
reminder can be employed with ordinary irons which are not thermostatically controlled.

It is not necessary for the audible reminder signal to be especially loud or complex, since the unit will be in very close proximity to the user and it would be difficult to miss even a quiet and simple signal. In fact, a loud and complex sound is undesirable because it would soon become very tiresome and irritating! In practice a very suitable signal is a fairly quiet "click" produced at about 10 second intervals - the same sort of sound, in fact, as is given with a temperature controlled iron.

THE CIRCUIT

The circuit finally developed is extremely simple, and is shown in Fig. 1. The unit is permanently connected in parallel with the soldering iron so that it is powered whenever the iron is plugged into the mains supply. The live and neutral mains lines are coupled to the primary of mains transformer T1. The secondary voltage is full-wave rectified by D1 and D2, causing a smoothed voltage to appear across C1. This voltage, unloaded, is of the order of 17 volts. Since the main part of the circuit only consumes some 3 mA , the loaded supply voltage is not significantly different.

The rectified supply voltage is by no means critical, and the unit will work just as well with a mains transformer having a secondary voltage of $9-0-9$ volts or $6-0-6$ volts. It is quite in order to use one of these alternative transformers if the construc-

Fig. 1 The circuit of the soldering iron reminder. X1 is a piezoelectric acoustic transducer.

COMPONENTS

Resistors
(Both $\frac{1}{4}$ watt 5%)
R1 $680 \mathrm{k} \Omega$

R2 120Ω
Capacitors
C1 $10 \mu \mathrm{~F}$ electrolytic, 25 V . Wkg.
$\mathrm{C} 2 \quad 10 \mu \mathrm{~F}$ electrolytic, 25 V . Wkg.
Transformer
T1 mains transformer, secondary $12-0-12 \mathrm{~V}$ at 50 mA (see text)

The soldering iron reminder in its plastic case. The ceramic transducer is fitted on the outside.

Semiconductors
TR1 2N4871
D1 1N4001
D2 1N4001

Transducer

X1 ceramic transducer type PB-2720 (Ambit International)

Miscellaneous

Plastic case
Veroboard, 0.1 in. matrix
3 -way connector block
3 -core mains lead
2 grommets
Nuts, bolts, wire, etc.

The 3-way connector block and Veroboard assembly are mounted on the other side of the panel to which the transducer is fitted. The mains transformer is bolted to one side. The mains input lead was not fitted when these photographs were taken.

Fig. 2. Basic construction of a unijunction transistor.
tor happens to have one in the spares box.
A unijunction transistor relaxation oscillator generates the reminder signal. For those unfamiliar with the unijunction transistor, this has the basic construction shown in Fig. 2. There is a bar of silicon between the base 1 and base 2 terminals with an emitter junction nearer the base 2 end of the bar. Normally, the bar is N-type material and the emitter material is P-type. When the base 2 and base 1 are connected into circuit as in Fig. 1, and the voltage at the emitter is low, the bar presents a resistance in the order of 4 to $9 \mathrm{k} \Omega$. It therefore functions as a potential divider with a proportion of the voltage between the two bases appearing between the emitter junction and the base 1. This proportion is known as the "intrinsic stand-off ratio".

When the emitter is below the intrinsic stand-off level the only emitter current which flows is reverse leakage current in the emitter PN junction. This situation is maintained if the emitter is taken positive, but it changes abruptly when the emitter potential reaches intrinsic stand-off level plus about the 0.5 to 0.6 volt needed for a silicon diode to conduct. The device then exhibits a very low resistance between the emitter and the base 1 .

The reminder can be positioned at any
convenient point on the work bench.

Turning back to Fig. 1, capacitor C2 is discharged at switch-on, and it then commences to charge via R1. The voltage on the unijunction transistor emitter is, in consequence, going positive. When the voltage reaches triggering level the transistor exhibits the very low resistance between the emitter and base 1 , causing the capacitor to rapidly discharge into R 2 . The voltage across the capacitor falls to a low level before the transistor reverts to its previous state, after which the capacitor once more commences to charge through R1.

A sharp pulsed voltage is produced across R2 at each discharge of C 2 , and this is applied to the piezoelectric transducer, X1. The tranisducer produces a quiet "click" with each pulse, and the volume was found to be adequate for the application.

The values of R 1 and C 2 are chosen to give a nominal operating frequency of 0.1 Hz , or to produce one "click" every 10 seconds. However, the actual frequency will vary significantly between different units built to the circuit due, mainly, to the wide tolerance in the value of C 2 , and in the intrinsic stand-off ratio of the transistor. The latter is specified as 0.7 to 0.85 for the particular transistor

employed here. The operating frequency of the circuit is obviously of no great importance and a variation from the nominal value of 0.1 Hz presents no disadvantage.

CONSTRUCTION

The prototype was assembled in a small plastic case measuring 114 by 76 by 38 mm . This case is a type PB1, available from Maplin Electronic Supplies. Any other small plastic case which can accommodate the components can, of course, be used and there are many suitable types available. The general layout used for the prototype can be seen in the photographs. The transducer is mounted on the case exterior and can be used as a template when marking the positions of the two mounting holes in the case. The transducer mounting holes are very small but they can be enlarged slightly to take 8 or 6BA mounting bolts. A small hole must also be drilled just below the transducer to allow its leads to pass through.

A 3-way connector block is used to take the mains wiring and this is secured to the plastic case with suitable nuts and bolts. These connector blocks are usually sold in 12 -way strips, and the 3 -way block is cut from one of these with a sharp knife. Two holes fitted with grommets are required in one of the case sides. One takes a 3 -core lead from the mains plug and the other takes the lead from the soldering iron.

Apart from T1, which is bolted to one side of the case, the remaining components are assembled on a small piece of 0.1 in . Veroboard having 13 copper strips by 10 holes. Fig. 3 shows this board and the other wiring. No breaks in the copper strips are required. Note that there is a solder tag under one of the transformer mounting nuts. The mains earth connects to this tag, as also does the oscillator negative rail. Take care to ensure that all the mains wiring is properly carried out.

When it has been wired up, the Veroboard panel is secured inside the case with two 6BA bolts and

Fig. 3. Wiring up the soldering iron reminder.
nuts, spacing washers being employed to keep the board underside clear of the inside surface of the case. After the wiring has been completed and checked, the soldering iron reminder unit is ready to start "clicking". The lid of the plastic box must always be firmly screwed on when the unit is in use.

TRADE NOTE

 RATCHET-OPERATED CABLE CUTTERA new hand-held cable cutter, introduced by Klippon, features an integral ratchet mechanism to ensure positive gripping and cutting action when used with a range of copper or aluminium cables with an outer diameter up to 32 mm .

The KT 3's unique design enables cables to be cut with a fraction of the pressure normally associated with cable cutters whilst a cutting blade release lever enables the cutting process to be interrupted in any position. A grip locking/unlocking device is provided just below the cutter.

Weighing just 590 grammes, the KT 3 is manufactured from high-quality steel with heavy-duty vinyl protecting the handles and providing a firm grip. Finger-guards are provided on the handles to increase the safety aspects of the tool.

Replacement blades are available.
For further details, contact:- Klippon Electricals Ltd.,

The ratchet-operated cable cutter. Power Station Road, Sheerness, Kent ME12 3AB.

Timer With Trigger Action

By F. Craig

Positive feedback gives snap switching.

Electronic timers normally employ a resistor and capacitor to provide the timing period. A typical timer circuit is illustrated in Fig. 1(a), in which RA and CA are the timing components. Some form of voltage comparator is required to sense the voltage across the capacitor and this can be an operational amplifier with one input connected to the junction of the capacitor and resistor and the other input connected to a reference voltage which could, conveniently, be half the supply voltage.

CHARGING CAPACITOR

At the start of the timing period the capacitor is discharged. In our example the capacitor is connected to the non-inverting input of the op-amp and so the op-amp output is low and the transistor following the op-amp is cut off.

The capacitor is then allowed to charge. When its voltage closely approaches the reference voltage at the op-amp inverting input the op-amp output starts to go high. Due to the very high level of voltage gain

Fig. 1 (a). A typical electronic timer. Capacitor CA is discharged at the start of the timing period, the length of which is controlled by the values of CA and RA

> (b). Irregular relay operation at the end of very long timing periods can be eradicated by incorporating positive feedback around the voltage comparator
in an operational amplifier the relatively slow rise in voltage across the capacitor is translated into a much more rapid voltage swing at the op-amp output, whereupon the transistor is turned on and the relay is energised. The timing period is then at an end.

The arrangement of Fig. 1(a) is acceptable for long timing periods with heavy duty relays and can be employed for periods up to about a minute or two with lightweight relays such as the popular 410Ω "Open Relay", which is available from Maplin Electronic Supplies and other sources. When longer periods with a lightweight relay are required, the change in op-amp output voltage at the end of the timing period, although reasonably fast, is still too slow for reliable relay operation. With the Open Relay just referred to, the gradually increasing relay current at the end of the timing period can cause noticeable relay "chatter", with the armature moving irregularly between its two contacts.

This problem can be overcome by introducing positive feedback as shown in Fig. 1(b), where the feedback is provided by the two resistors RB and RC . When, during the timing period, the voltage across the capacitor is low and the op-amp output is similarly low, the voltage applied to the non-inverting input is equal to the fraction of the capacitor voltage which is given at the junction of RC and RB. As, with the capacitor charging, this voltage closely approaches the reference voltage at the inverting input the op-amp output starts to go positive. In doing so it causes the voltage at the non-inverting input to go positive as well, making the op-amp output more positive again. This positive feedback results in the op-amp output swinging rapidly high and thereby causing the relay to energise quickly without risk of chatter or any other similar effect.

WORKING CIRCUIT

The full working circuit of the timer is shown in Fig. 2. The operational amplifier is a CA3140E, which has very high resistance MOSFET inputs. A reference voltage equal to half the supply voltage is given at the junction of the equal value resistors R4 and R5, and this voltage is applied to the inverting input at pin 2. The timing resistance is given by R2 and VR1 in series, and the timing capacitance consists of whichever capacitor is switched into circuit by S1. The feedback resistors, RB and RC of Fig. 1(b), are now given

Fig. 2. Full working circuit of the timer with trigger action. The ranges selected by S1 are nominal, but should be within the travel of VR1 with most electrolytic capacitors
by R6 and R3 respectively. The op-amp output is coupled to TR1 base by way of R7, and the relay coil is connected in the transistor collector circuit. D1 is the usual protective diode which prevents the formation of a high back-e.m.f. when the relay deenergises.

S2(a) (b) is the Start - Reset switch. When this is in the Reset position, S2(a) short-circuits the timing capacitor selected by $\$ 1$ via the current limiting resistor, R1. At the same time, S2(b) keeps the controlled circuit open. Setting S2(a) (b) to Start takes the short-circuit off the timing capacitor. Also, S2(b) completes the controlled circuit by way of the break contacts of the relay.

The timing capacitor now charges. After a period dependent upon the value of the capacitor and the resistance inserted by VR1, the voltage at the noninverting input of the CA3140E closely approaches that at the inverting input. The positive feedback effect just described comes into action and the relay energises rapidly. Its break contacts break the controlled circuit and the timing period is over.

TIMING COMPONENTS

Due to the presence of R6 and R3 the timing period comes to an end when the voltage across the capacitor is 0.55 times the supply voltage. This calculates as 0.8 times the time constant of the timing components. However, since the timing capacitors are electrolytic with a typical tolerance on value of $-10+50 \%$, it can be expected that the actual values of C 1 and C 2 will be in excess of their nominal values. Because of this fact, it can be assumed that the length of a timing period is roughly equal to the time constant of the timing resistance and capacitance (which, in seconds, is equal to megohms multiplied by microfarads). Timing ranges can then be calculated by

COMPONENTS

Resistors
(All fixed values $\frac{1}{4}$ watt 5% unless otherwise stated)
R1 10Ω
R2 $6.8 \mathrm{k} \Omega$
R3 $1 \mathrm{M} \Omega$
R4 $100 \mathrm{k} \Omega$
R5 $100 \mathrm{k} \Omega$
R6 10M 10%
R7 $10 \mathrm{k} \Omega$
VR1 ${ }^{*} 100 \mathrm{k} \Omega$ potentiometer, linear
Capacitors
C1 $\quad 100 \mu \mathrm{~F}$ electrolytic, 10 V . Wkg.
C2 $1,000 \mu \mathrm{~F}$ electrolytic, 10 V . Wkg.
Semiconductors
IC1 CA3140E
TR1 2N3904
D1 1N4002

Relay

RLA Open Relay, 410Ω coil, changeover contacts

Switches

$$
\begin{array}{ll}
\text { S1 } & \text { s.p.d.t. toggle or rotary } \\
\text { S2 } & \text { d.p.d.t. toggle } \\
\text { S3 } & \text { s.p.s.t. toggle }
\end{array}
$$

Miscellaneous

9 volt battery
Pointer control knob
Wire, solder, etc.

Fig. 3. Alternative ranges can be incorporated by simply choosing different values of timing capacitor. Here, S1 is changed to a 3-way switch, offering three timing ranges
assuming that the minimum timing resistance is $10 \mathrm{k} \Omega$ and the maximum timing resistance is $100 \mathrm{k} \Omega$. Since R2 is considerably lower in value than $10 \mathrm{k} \Omega$, it should be possible to obtain, within the travel of VR1, the ranges quoted with most electrolytic capacitors. It is unlikely that C2 will be precisely 10 times C 1 , whereupon it will be necessary to provide two scales for VR1. To make up the scales some four well spread out calibration points are found on each range, and the scales are then marked out from these. The calibration points are found by checking timing periods
with a watch having a sweep second hand or a digital display.
Any capacitance values other than those specified can be employed. If desired, there could be three ranges, as illustrated in Fig. 3, with S1 being 3-way rotary. When there are two ranges, S1 can be rotary or toggle. S2(a) (b), on the other hand, must be toggle.

To withstand initial charging currents, VR1 should be $a \frac{1}{2}$ watt potentiometer. This is the normal rating for a standard sized linear carbon track potentiometer. Because of its MOSFET inputs, care should be taken to ensure that the CA3140E is not damaged by high static voltages, and it should be soldered into circuit with an iron having a reliably earthed bit. Alternatively, an 8 -way di.i.l. holder can be used, and the CA3140E plugged into this after all wiring has been completed and checked.

The 410Ω relay specified for RLA has contacts with a maximum rating of 5 amps at 24 volts d.c. or 240 volts a.c.

The current drawn from the 9 volt supply is approximately 1.5 mA during the timing period. This increases to some 23 mA when the relay energises at the end of the period. The prototype timer was checked with a temporary timing capacitance which produced a period in excess of 5 minutes. The relay energised quickly and properly at the end of this period.

Further Notes on Some Recent Receivers

Part 2 (Conclusion)

by Sir Douglas Hall, Bt., K.C.M.G.

More modifications to enhance the performance of recent receivers.

THE "DORIC"

This multi-band receiver appeared in the four issues between August and November 1979. The only problem encountered with this design has been that the volume control on the amplifier, when adjusted very nearly at its maximum position whilst listening on the short wave bands, has an effect on reaction. The snag is easily overcome by putting a $3.3 \mathrm{k} \Omega$ resistor between the short wave tuner and the amplifier as shown in Fig. 3.

In some circumstances on some of the short wave bands it may prove advantageous to set the length of the aerial to suit selectivity, adjust VR3 to a suitable setting and use VR1 as a very smooth vernier reaction control.

"LISA"

The article describing this receiver appeared in the magazine issues for September and October 1980. If for any reason it is found that the wavebands are not

Fig. 3(a). The "Doric" receiver can have a $3.3 \mathrm{k} \Omega$ resistor added to prevent slight interaction between volume and reaction controls on short waves.
(b). Showing how the added resistor is wired into circuit.
properly covered the values of C3 and C4 can be altered accordingly.

C10 and C11 are included in the interests of stability. In most cases C10 may be removed and C11 changed to $0.1 \mu \mathrm{~F}$ (using the C10 component), giving equal stability and a slight improvement in output quality.

Provided that it has proved possible to set up the receiver so that the reaction control does not have to be moved through more than about 20 degrees to maintain the receiver on the threshold of oscillation throughout the whole of the medium wave band it is worth carrying out the following modification. Change the value of VR3 from $2.2 \mathrm{k} \Omega$ to $1 \mathrm{k} \Omega$ and wire the slider of this new component to the outer unused tag of S1(b) instead of to the centre tag. When this $1 \mathrm{k} \Omega$ component is properly adjusted it should be found that reaction comes in extremely gradually. The altered wiring causes a little extra resistance to be included in the reaction circuit when switched to long waves, in order to maintain proper control on this band with the new pre-set potentiometer.

F.M. BANDS IN GENERAL

Finally, it might be useful to provide a few notes on problems which can arise when listening on the f.m. band with the "Jubilee," the "Band II Portable" or the "Doric". The comments also apply to any of the earlier receivers described by the author which provides an f.m. band and use a self-contained telescopic aerial, and to many similar non-superhet receivers in addition.

Excessive hiss or hand-capacitance effects nearly always mean that there is insufficient signal, either due to distance from the transmitter or screening. Different positions should be tried for the receiver. Sometimes there is one part of a room where the reception is much better than in other parts. Also, try different lengths of aerial, as well as different angles

(a)

(b)
and changes in the direction in which the aerial points. Aerial length can sometimes be quite critical in bad reception areas. The only other likely cause of excessive hiss and hand-capacitance effects is a faulty transistor. In the author's designs the culprit will be the Spontaflex amplifier - the one with the diode in its emitter circuit. This transistor is more critical than the input amplifier, to which the aerial is connected through a capacitor. On at least one occasion a marked improvement has been effected by swapping the two transistors round.

Other problems can arise when the receiver is in a very strong signal area, close to the transmitter. Here again the length of the aerial can be quite critical, this time to avoid overloading. Sometimes the receiver will work best in these conditions with the aerial completely closed or even removed altogether. Generally, however, some 12 in . of aerial, carefully orientated, will give best results.

(Concluded)

Mail Order Protection Scheme

The publishers of this magazine have given to the Director General of Fair Trading an undertaking to refund money sent by readers in response to mail order advertisements placed in this magazine by mail order traders who have become the subject of liquidation or bankruptcy proceedings and who fail to supply goods or refund money. These refunds are made voluntarily and are subject to proof that payment was made to the advertiser for goods ordered through an advertisement in this magazine. The arrangement does not apply to any falure to supply goods advertised in a catalogue or direct mail solicitation.

If a mail order trader fails, readers are advised to lodge a claim with the Advertisement Manager of this magazine within 3 months of the appearance of the advertisement.

For the purpose of this scheme mail order advertising is defined as:
"Direct response advertisements, display or postal bargains where cash has to be sent in advance of goods being delivered."

Classified and catalogue mail order advertising are excluded.

MODEL TRAIN CONTROLLER

By M. V. Hastings
Low impedance "constant voltage" output.
* * *
Continuously variable voltage control.

* * *
 Low cost mains operation.

On the front panel, from left to right, are the mains on-off switch, the pilot lamp, the output voltage control and the Forward-Reverse switch.

This simple model train controller has been designed for use with an inexpensive train set which was originally supplied with a combined battery box and controller. This employed six HP11 cells and, while their cost was not too high initially, the expense soon started to mount up as replacement sets became necessary. Battery operation became, in consequence, uneconomic in the long term. The controller section also had the intitial advantage of being very inexpensive but the control it exerted was rather limited, in that it only had three speed settings. These were "Stop", "Slow" (with four cells switched into circuit) and "Fast" (all six cells switched in).

These factors led to the design and construction of the mains powered controller which is described here. This can be built at reasonable cost and provides a continuously variable full range of speeds. It also gives a low output impedance at all output voltages, whereupon a good performance is given even at low running speeds.

TYPES OF CONTROLLER

The simplest type of mains driven controller giving a full range of speeds merely consists of a transformer to give isolation and step down the mains voltage to the required level, a rectifier to produce a pulsating d.c., and a large variable resistor in series with the output to vary the output current and act as a speed control. Some form of polarity reversal switching is usually incorporated so that the direction of the train can be altered.

A serious problem with this arrangement is that the output impedance of the controller becomes high at low speeds due to the relatively high resistance inserted by the variable speed controller. This is apt to lead to the train running fast down slight gradients
and stalling when trying to climb a gradient.
The reason for this effect is that the output impedance of the controller and the impedance of the train motor effectively form a potential divider. When the train attempts to climb a gradient its motor impedance reduces with the increased loading, and the voltage across it falls. Whilst this causes the current fed to the motor to be increased, the high output impedance of the controller results in the actual power applied remaining roughly the same or even decreasing! With the train requiring increased power, but getting the same or decreased power, it is not surprising that it should stall and come to a halt.

An opposite effect is given when the train runs down a gradient, with the motor requiring less current and having increased impedance. This results in a small decrease in the supply current which is counteracted by a rise in the voltage across the motor. The power fed to the motor therefore remains much the same or increases slightly, resulting in the train accelerating.

Another, related, problem with this type of controller is a poor starting performance. Slowly advancing the speed control from zero does not result in the train starting off smoothly, and gradually accelerating up to full speed. Instead, nothing happens at first and then the train suddenly starts off at high speed.

This last effect is caused by the motor having a very low impedance when it is stationary and a comparatively higher impedance when it is running. Thus, there is very little voltage across the motor at first, and when the train does begin to move the voltage across the motor rises dramatically, resulting in a start at a fast rate.

One way of obtaining improved performance is to use a controller of the so-called constant voltage
type. This employs a variable voltage regulator in place of the variable resistor, so that the voltage across the motor does not vary when its current consumption changes due to loading. If the motor tries to draw more current when the train is climbing a gradient it is therefore able to do so, and the increased power causes the risk of stalling to be greatly reduced. Conversely, if the motor tries to consume less current and power it is again able to do so. Improved starting is also given, and with a little skill and practice it is possible to have quite realistic starting. It is a train controller of this type which is described in this article.

CONTROLLER CIRCUIT

By taking advantage of an integrated circuit power amplifier it is possible, as is shown in Fig. 1, to make up a controller having only a small number of components.

S1(a) (b) is the on-off switch, and it controls the mains supply to the isolation and step-down transformer, T1. PL1 is a pilot lamp, and consists of a panel-mounting neon indicator with entegral series resistor suitable for 240 volt a.c. operation.

The rectified output from D1 and D2 is smoothed by C1. It is not necessary to have a smoothed d.c. supply for a d.c. electric motor, but the voltage control circuitry requires a reasonably well smoothed supply, and it is for this reason that C 1 is included.

IC1 is primarily intended to function as an audio power amplifier, but it is quite suitable for a wide range of other applications. It is very much like an operational amplifier, and has both inverting and non-inverting inputs. Unlike an operational amplifier which, in most cases, can provide an output current in the order of milliamps, the TDA2006 specified for IC1 can provide output currents up to a few amps. The i.c. is available from Maplin Electronic Supplies.
The output of the TDA2006 is connected directly to its inverting input, and the consequent 100% feedback causes it to function as a voltage follower. The output voltage, which is at low impedance, is then (within limits) equal to the voltage at the non-inverting input. The voltage at the non-inverting input can be varied from zero to the full supply potential by adjusting VR1. The output of the

COMPONENTS

Resistor

VR1 $10 \mathrm{k} \Omega$ potentiometer, linear
Capacitors
C1 $1,000 \mu \mathrm{~F}$ electrolytic, 16 V : Wkg.
C2 $10 \mu \mathrm{~F}$ electrolytic, 16 V . Wkg.
C3 $10 \mu \mathrm{~F}$ electrolytic, 16 V . Wkg.
Transformer
T1 mains transformer, secondary 9-0-9V, 1 A

Semiconductors

IC1 TDA2006
D1-D4 IN4001
Switches
S1(a) (b) d.p.s.t., mains rotary switch
S2(a) (b) d.p.d.t., toggle
Fuse
FS1 1A fuse, quick blow, 20mm. cartridge
Lamp
PL1 panel-mounting neon indicator with integral series resistor

Socket

SK1 4mm. insulated socket, red
SK2 4mm. insulated socket, black

Miscellaneous

Verocase type 75-1411-D (see text)
2 control knobs
Chassis mounting fuseholder, 20 mm .
Veroboard, 0.1in. matrix
18 s.w.g. aluminium (for heat sink)
Nuts, screws, wire, etc.

Fig. 1. The circuit of the model train controller. The rectified variable voltage output is given at sockets SK1 and SK2.

TDA2006 cannot quite reach either of these extremes, but it comes close enough for satisfactory results in the present application. VR1 thus operates as the speed control.

C2 and C3 are needed to aid circuit stability. D3 and D4 are protection diodes. S2 is the forward/reverse switch, and it alters the polarity of the supply fed to the output sockets when it is changed from one position to the other.

In common with most units of this type, a truly constant output voltage is not provided since loading
of the output causes the rectified voltage across C 1 to fall. This results in a slight drop in the voltage at VR1 slider. However, the output impedance of the unit is still quite low, and the output voltage is more than stable enough to give good results.

IC1 incorporates output short-circuit protection circuitry which prevents damage in the event of most overloads. A prolonged overload will cause fuse FS1 to blow and protect the components from damage. IC1, incidentally, also has built-in thermal shutdown protection.

The Veroboard component assembly. The L-shaped bracket bolted to IC1 heat tab is secured to the rear panel of the case.

Fig. 2(a). The L-shaped bracket before bending. The material is $18 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. aluminium and the bend is at right angles, with the upper section being bent towards the reader.
(b). After bending, IC1 heat tab is secured to the bracket section having one hole. The remaining section, with two holes, is bolted to the rear panel of the case. Bolts and nuts are 6BA or M3.

All dimensions in mm

(b)

Fig. 3. Wiring up the components on the Veroboard panel. The letter references from " A " to " H " correspond with the similar references in Fig. 4.

CONSTRUCTION

The prototype is housed in a Verocase type $75-1411-\mathrm{D}$, which has dimensions of 205 by 140 by 75 mm . Before obtaining the case it is advisable to check the dimensions of the particular transformer to be employed, to ensure that the case height is adequate.

Layout details are shown in the photographs. On the front panel, from left to right, are switch S1(a) (b), PL1, VR1 and S2(a) (b). The output sockets are 4 mm . insulated types and are mounted on the rear panel. The component panel is also secured to the rear panel by way of an L-shaped bracket which functions as a heat sink for IC1. This bracket is made from 18 s.w.g. aluminium and has the dimensions shown in Fig. 2(a). The bracket is fitted to IC1, after the component panel has been wired up, in the manner illustrated in Fig. 2(b). Also required in the rear panel is a hole, fitted with a grommet, for the

The two output sockets are mounted on the rear panel. This also has a hole, fitted with a grommet, for the mains lead. mains lead.

Fig. 4. Wiring external to the Veroboard. Check the tag positioning of S1 with a continuity tester before wiring to this component.

The mains transformer is secured to the base of the case behind $S 1(a)$ (b), with the fuseholder alongside it on the component panel side. A solder tag is held under one of the transformer mounting nuts to allow its frame to be earthed. A solder tag, secured with a countersunk 6BA bolt and nut, is fitted to the front panel at any unobtrusive point to allow this to be earthed as well. The rear panel is automatically earthed by way of IC1 heat tab, which is common with its negative supply pin.

VEROBOARD PANEL

The remaining components are fitted to a 0.1 in. matrix Veroboard having 14 copper strips by 23 holes. This has to be cut down from a larger board, using a small hacksaw. The Veroboard layout is illustrated in Fig. 3, and there are no breaks in any of the copper strips. IC1 has preformed lead-outs and these have to be opened out somewhat to fit into the appropriate Veroboard holes. After wiring on the Veroboard is completed the heat sink bracket is
secured to IC1 as already described. The component panel is not finally secured to the rear panel of the case until the wiring illustrated in Fig. 4 has been completed. It will be found that the Veroboard is held in place quite adequately by the heat sink, and no further mounting arrangements are required.

The train controller is then ready for use.

SHORT-CIRCUITS

Model train systems are prone to short-circuits from time to time due to derailments and similar mishaps. Since the controller incorporates a 1 amp fuse it might be thought that this fuse would blow for short-circuits of this nature. In practice the fuse does not blow with derailments, partly because the resulting short-circuits are too short in duration and partly because of the current limiting effect of IC1. The prototype controller has had quite a lot of use and, although derailments have occurred, the original fuse is still fitted and has not needed to be replaced.

The practice amplifier as seen from the front. The only items mounted on the front panel are the on-off switch and the neon pilot light.

Gui
 Am

Single i.c. design

MIXING CIRCUIT

The amplifier employs an integrated circuit which is rather like an operational amplifier having a Class AB output stage, and which has inverting and noninverting inputs. Fig. 1(a) shows an operational amplifier working in the inverting mode. The noninverting input is biased to a mid-supply voltage by RB and RC . The input signal is applied to the inverting input via d.c. blocking capacitor CA and RA. RD provides feedback from the output to the inverting input. An inherent feature of an operational amplifier is that, in a circuit of this nature, it functions to keep the inverting input at the same voltage as the noninverting input. Because of this action, the voltage gain of the amplifier is equal to RD divided by RA. If,

Fig. 1(a). An operational amplifier connected in the inverting mode. Voltage gain is equal to RD divided by RA, and there is a virtual earth at the inverting input.
(b). A second input can be mixed with the existing input by simply adding another d.c. blocking capacitor and input series resistor. The virtual earth at the op-amp inverting input prevents interaction between the two inputs.

Following Eire's decision to adopt $27 \mathrm{MHz}, 40$ channel FM for the basis of its CB system, the much delayed decision from the UK seems to have been arrived at for the worst possible reasons:

The Voice of the People

Depending on your viewpoint, it is not at all clear whether or not the UK CB phenomenon of the past year has been a gratifying example of beaurocracy overcome by sheer practical commonsense - or yet another unedifying example of the irresistability of large scale organised civil disobediance.
The practical realization of a personal communication facility with a minimum of administrative beaurocracy is a logical extension of any 'libertarian’ democracy provided it conforms to the usual criteria by which democratic 'freedom' has been established.
Namely, CB radio should not interfere with the freedom of any other citizen to pursue his legally established rights. The fact that 27 MHz CB radio (particularly AM mode operation) has grossly undermined the safety and confidence of the aero modeling fraternity was grudgingly recognized at the start of the year, when the Home Office allocated the almost universal 'Euro' band of 35.005 to 35.205 MHz to UK radio modellers although restricting its use to airborne applications only. At the same time, the first step towards CB was taken by the broad deregulation of the erstwhile 27 MHz model control band.
A victory for commonsense, but what a shame so many CBers are/were so badly informed on the subject of their responsibility to aero modellers in the first place. It's not enough to simply stay away from a channel when the characteristic buzz of digital proportional RC can be heard in the receiver - since the aircraft can hear a CBer over a range many times that which can be covered from the RC transmitter to the CB receiver (Fig. 1). The airborn antenna of the aircraft receiver can hear an enormous number of additional groundwave transmissions - so the answer is to stay clear of the RC spot channels at the very least. (Table 1). The use of intermediate or split frequencies is not really very common, and will probably die out as serious users migrate to 35 MHz .

RC colour code	CB channels to avoid	Freq. MHz
Black	(1)	26.945
Black/brown	2	26.975
Brown	$(2 / 3)$	26.995
Red/brown	6	27.025
Red	$(7 / 8)$	27.045
Orange/red	10	27.075
Orange	$(11 / 12)$	27.095
Yellow/orange	14	27.125
Yellow	$(15 / 16)$	27.145
Green/yellow	18	27.175
Green	$(19 / 20)$	27.195
Blue/green	22	27.225
Blue	23	27.255
(Channel numbers in brackets indicate adjacent channels)		
Table one: RC versus CB		

Interference to other TV/Radio/Audio equipment

Public enemy number one for the CBer and the Home Office is/will be interference to the democratic right of the public to watch TV. Even if the CB set is fully approved and in accordance with the regulations laid down, there will still be a great deal of scope for the inadequacy of most types of 'front end' used in UK TV sets to be brought into relief by the presence of a large number of strong RF fields. (Fig. 3) The fact that the RF field is at a frequency far removed from UHF band 4 TV makes little difference. The basic problems results from simple overloading of the input of the TV, and is not as a result of harmonically related spurii (multiples of the 27 MHz frequency).

Figure two: Know your broadcast frequencies...
Broadcast bands above 27 MHz :

1: $27 \mathrm{MHz} \quad 2: 45-68 \mathrm{MHz}$ Band 1 VHF TV
3: $88-108 \mathrm{MHz}$ Band 2 FM broadcasting
4: $175-230 \mathrm{MHz}$ Band 3 TV 5: Band 4 UHF TV

Figure four: AM CB in an audio amplifier

Table two: Harmonics of the 27 MHz band to 1000 MHz			
Number	Reference	Upper limit	Lower limit
1	27.000 MHz	27.405 MHz	26.965 MHz
2	54	54.81	53.93
3	81	82.215	80.895
4	108	109.62	107.86
5	135	137.025	134.825
6	162	164.43	161.79
7	189	191.835	188.755
8	216	219.24	215.72
9	243	246.645	242.685
10	270	274.050	269.650
11	297	301.455	296.615
12	324	328.860	323.580
13	351	356.265	353.545
14	378	383.670	377.510
15	405	411.075	404.475
16	432	438.480	431.440
17	459	465.885	458.405
18	486	493.290	485.370
19	513	520.695	51.335
20	540	548.100	539.300
21	567	575.505	566.265
22	594	602.910	593.230
23	621	630.315	620.195
24	648	657.20	647.160
25	675	685.125	674.125
26	702	712.530	701.090
27	729	739.935	728.055
28	756	767.340	755.020
29	783	794.745	781.985
30	810	822.50	8085
31	837	849.555	835.950
32	864	876.960	862.880
33	891	904.365	889.845
34	918	931.770	916.810
35	945	959.175	943.775
36	972	986.580	970.740
37	999	1013.985	997.705

Exact details of UK broadcast frequencies are

 obtainable from the IBA and BBC:IBA Eng. Inf. Dept., Crawley Court, Winchester, Hants SO21 2QA
B.B.C. Engineering Information Dept. Broadcasting House London W1A 1AA

The use of AM and SSB (both basically modes of speech that vary the transmitted output power in accordance with speech level) will also lead to interference in such unlikely things as HiFi and ordinary domestic MW receivers, where a powerful RF field can readily be rectified and amplified in the audio stages - regardless of what the RF selectivity may do. (Fig. 4).
FM modulation at least alleviates the problem of interference with HIFi - but it doesn't necessarily eradicate it altogether. An FM transmission can still drive an audio stage into non-linearity (and hence distortion), but the reason the CBer gets away with it, is that there is no actual speech coming from the amplifier since the RF carrier level is constant. FM CB will still give TV sets the 'wobblies', but since the match of the set to it's antenna is not so critical as with AM, the scope for really grotesque interference arising from the mismatch of an AM transmitter is rather less.
In fact, FM CB has many advantages from a technical viewpoint, although the predominance of AM and SSB CB equipment as the historical result of the USA's policy has left a legacy that will be hard to 'phase out'.

Euro-CB on 27 MHz

The fact that most of Europe already uses 27 MHz for $C B$ was obviously an influential force in the UK choicebut as you will see as we unwind each country in the course of this series - actual standards vary widely.....

No.	Country	Channels	Mode(s)	Output
1	UK	(?)40	FM	(?)4W
2	Eire	40	FM	4W
3	Holland	22	FM	0.5 W
4	W. Germany	22	AM/FM	0.5 W
5	Belgium	22	AM/FM/SSB	0.5 W
6	France	22	FM	2W
7	Switzerland	12	AM	0.1W
8	Italy	23	AM	5W
9	Spain	22	AM	5W
10	Portugal	40	AM/FM/SSB	5W
11	Greece	40	AM/FMं/SSB	5W
12	Sweden	25	(SSB)/AM/FM	2-5W
13	Yugoslavia	32	AM	2W
14	Poland	40	AM/SSB	4W
15	Denmark	23	AM/FM	0.5 W
16	Austria	12	AM/FM	0.5 W
17	Norway	23	AM/FM	0.5 W
18	Finland	24	AM/FM	0.5 W

Please note that one country's cbannels do not necessarily relate to those of another. A mucb more detailed analysis of Euro-CB will follow in subsequent issues.

CHANNEL v FREQUENCY - FOR THE STANDARD 40 CHANNEL SYSTEM USE 'LOW' COLUMN

CH	FREOUENCY IN MHZ		
	HI	MID	LOW
1	28.500	27.415	26.965
2	28.510	27.425	26.975
3	28.520	27.435	26.985
4	28.540	27.455	27.005
5	28.550	27.465	27.015
6	28.560	27.475	27.025
7	28.570	27.485	27.035
8	28.590	27.505	27.055
9	28.600	27.515	27.065
10	28.610	27.525	27.075
11	28.620	27.535	27.085
12	28.640	27.555	27.105
13	28.650	27.565	27.115
14	28.660	27.575	27.125
15	28.670	27.585	27.135
16	28.690	27.605	27.155
17	28.700	27.615	27.165
18	28.710	27.625	27.175
19	28.720	27.635	27.185
20	28.740	27.655	27.205

CHI	FREOUENCY IN MHZ		
	HI	MID	LOW
21	28.750	27.665	27.215
22	28.760	27.675	27.225
23	28.790	27.705	27.255
24	28.770	27.685	27.235
25	28.780	27.695	27.245
26	28.800	27.715	27.265
27	28.810	27.725	27.275
28	28.820	27.735	27.285
29	28.830	27.745	27.295
30	28.840	27.755	27.305
31	28.850	27.765	27.315
32	28.860	27.775	27.325
33	28.870	27.785	27.335
34	28.880	27.795	27.345
35	28.890	27.805	27.355
36	28.900	27.815	27.365
37	28.910	27.825	27.375
38	28.920	27.835	27.385
39	28.930	27.845	27.395
40	28.940	27.855	27.405

R\&EC and CB

Now that CB is here to stay, REC will ensure that all the adherents enjoy the maximum benefit - with minimum interference to the liberty of others. Which broadly means that your neighbours should be able to watch Crossroads without crosshatch - whilst you are able to hook the DX, without resorting to the sheer brute force and ignorance of illegal power boosters.
Contributors to this regular monthly supplement include the most knowledgeable people in the business of world CB. But furthermore, we think that CB will be an introduction to the broader spectrum of interests in Radio and Electronics for a good many CB enthusiats who find the topics of a CB-only publication just a little restrictive and subjective. Write and tell us what you want - and what you think.

The Evolution of CB

AM CB grew up in Europe (and much of the rest of the world) from the purely commercial expedient that a lot of surplus gear was available at very low cost as a result of the Boom and Bust of the US CB market in the 1977/8/9 period. The whole point of CB is that the user frequently doesn't care much about the technicalities of his rig - as long as it is cheap and enables him to talk to a passable number of other enthusiasts.
And the other reason is the naive reluctance of the Post Office (as it then was) followed by the Home Office (who took over the Post Office's responsibility for radio spectrum usage), to recognize that CB existed. Or even acknowledge the inevitability of a formal CB system in the UK - if only as a result of the frequently repeated experiences of the rest of the world.
The Post Office greedily guarded its communications monopoly; and the Home Office uttered dark things about the potential for illegal use of CB. It's hardly likely any criminal would be stupid enough to use the most populated frequency on the airwaves, when it is nearly as simple to obtain far more discrete amateur or private mobile/portable radio equipment. The experience of the USA bears out the simple fact that CB is a far more constructive medium than the UK authorities would like to admit.
After a while, the interminable buck passing in the Home Office during the last Labour administration led to the attraction of CB as an election issue. The Conservative Party - being nominally the party of individual freedom and against state monopoly agreed to the idea 'in principle' - and thus won the support of the CB Association. Not surprisingly, with the election in the bag and more pressing matters afoot, the CB lobby was conspicuously ignored while the Home Office replayed its usual round of worn out excuses:
Number one: "There isn't a demand for the service....."
Not to anyone's great surprise, this old chestnut quickly passed into disuse.
Number two: "There is no suitable frequency....."
This was one that the 'boffins' used most successfully to bamboozle the politicians. After all, the average MP will probably admit to having his scientific acumen strained when asked to change the batteries in a torch - so the 'blind 'em with science' ploy was very successful: The fact that the rest of the world found a frequency eventually got the better of the argument, although the wimpering continues with talk of the 'special factors' that apply to the British Isles.
Number three: It would be impossible to regulate the illegal misuse of CB , and people might say Rude Things.."
Oh dear, oh dear. The BBC and IBA somewhat preempted this argument by the saturation broadcast coverage of just the sort of thing that the anti-CB brigade claimed would undermine the nation's morality. Even the so-called responsible radio amateur fraternity have been thoroughly disgraced by the behaviour of some moronic souls on the 2 metre band in particular. Never mind, there is always that quaint switch marked 'Off'.
Number four: "The problems of interference to other users will be insurmountable....."

Now even the most ardent CB proponent must concede some ground here. Technical advances over the past couple of years have certainly reduced the chance of the CB set causing problems - and the ease with faults and problems can be identified and rectified. Nevertheless, the problem of simple overload cannot be ignored. The answer is to provide sufficient revenue from the CB licence to pay the relevant authority to go out and settle problems. Existing CB groups are already well organized, so that trouble shooting such problems should be quite an orderly affair. Most such problems conform with very standard phenomena, that are cured by equally standard solutions. With 2.4 million unemployed persons, the shortage of manpower to handle these situations is scarcely a convincing argument albeit a fairly minimal degree of training will be required.
But all these were all eventually ground down to the point at which Mr. Whitelaw made the infamous 'Open Channel' green paper available for discussion. The almost universal derision that this attracted from practical realists (be they fans of CB or otherwise) clearly underlined that 928 MHz was ludicrously inadequate as an answer to the growing band of illegal 27 MHz CB operators - hence the first crack in the facade appearing with the 35 MHz aero modellers' allocation. 928 MHz was simply the next most negative suggestion the Home Office could come up with compared to 'No CB at all'.
As country after country in Europe adopted the 27 MHz band, it was inevitable that the UK could not pretend it could avoid the question any longer. Cars and trucks fitted with CB from the continent simply could not be regulated, and the underground movement had acquired nearly 250,000 illegal sets. Not as the result of any careful planning or consideration, 27 MHz has simply happened.
The availability of another as yet unused 928 MHz frequency offers some opportunity for the future, when equipment for these frequencies will become more viable and attractive as 27 MHz clogs up.

Conclusions

No one can really be proud of the way CB has arrived here. There is very little scope for UK manufacturing to benefit - and we have a very indifferent technical solution compared to the system we could have had if the decision had been just two years ago. The capitulation to mass disobedience will lead to further erosion of public respect for politicians and the 'good sense' of authority.
In such circumstances there can be no victory - we have all lost something in this unseemly affair. Gleeful CBers might like to reflect on the other Great American 'democratic right' supported by a similar campaign of public obstinacy in the shape of the ludicrous gun laws. The ownership of firearms is a fait-accomplis, enshrined in as much law as can feasibly be enforced and stoked along by some unashamedly commercially biased considerations.

tar Practice

plifier ву.f. Pentold

inputs

 \title{Ideal for solo or
 \title{
Ideal for solo or group practice.
} group practice.
}
for instance, RD has twice the value of RA, an input signal going 1 volt positive would cause the operational amplifier output to swing 2 volts negative. The actual voltage change at the inverting input itself would be very small and it can be looked upon as providing a "virtual earth." The input impedance of the circuit is then equal to RA.

To obtain a mixing action at the inverting input it is merely necessary to add a second d.c. blocking capacitor and series input resistor, as are given by CC and RE in Fig. 1(b). The output now corresponds to
the sum of the two input signals and the required mixing is obtained. Also, since the inverting input provides a virtual earth there is negligible interaction between the two inputs. In the present application, this ensures that adjustments to the volume and tone controls of one guitar will have no effect on the output of another guitar connected to the second input.

Another advantage with this type of circuit is that it can accept any number of inputs within reason, without any adverse effect on performance. It is merely necessary to add a d.c. blocking capacitor and series resistor for each input required.

AMPLIFIER CIRCUIT

The circuit of the guitar practice amplifier is given in Fig. 2. This is basically similar to Fig. 1(b), but there are now three inputs. Guitar pick-ups need to work into a reasonably high impedance and they do not provide a very high output signal level. R1 to R3 give the circuit an input impedance of $33 \mathrm{k} \Omega$ at each input, and the value of feedback resistor R7 is chosen to give a voltage gain of about 46 dB , or 200 times.

This gives an input sensitivity of about 24 mV for full output, and any normal guitar pick-up will provide an output of adequate magnitude.

Unlike the operational amplifier in Figs. 1(a) and (b), the input impedance of the i.c. employed in the amplifier is not very high, and is comparable with the value of R7. Because of this, the non-inverting input cannot be biased to a mid-supply voltage by simply connecting it to the junction of two equal value resis-

COMPONENTS

Resistors

(All fixed values $\frac{1}{4}$ watt 5% unless otherwise stated)
R1 $33 \mathrm{k} \Omega$
R2 $33 \mathrm{k} \Omega$
R3 $33 \mathrm{k} \Omega$
R4 $8.2 \mathrm{k} \Omega$
R5 $47 \mathrm{k} \Omega$ pre-set potentiometer,
0.1 watt horizontal

R6 $22 \mathrm{k} \Omega$
R7 6.8M $\Omega 10 \%$

Capacitors

C1 $0.47 \mu \mathrm{~F}$ polyester type C280
C2 $0.47 \mu \mathrm{~F}$ polyester type C280
C3 $0.47 \mu \mathrm{~F}$ polyester type C280
C4 $330 \mu \mathrm{~F}$ electrolytic, 25 V . Wkg.
C5 $2,200 \mu \mathrm{~F}$ electrolytic, 16 V . Wkg., single-ended (see text)
C6 $100 \mu \mathrm{~F}$ electrolytic, 25 V . Wkg.
C7 $0.1 \mu \mathrm{~F}$ polyester type C280
C8 $2,200 \mu \mathrm{~F}$ electrolytic, 25 V . Wkg. (see text)

Semiconductors

IC1 TDA2006
D1-D6 1N4001

Transformer

T1 mains transformer, secondary 15 V at 500 mA (see text)

Fuse

FS1 500 mA cartridge fuse, 20 mm .

Switch

S1 d.p.s.t. rotary mains switch

Lamp

PL1 panel-mounting neon, with integral series resistor

Sockets

SK1-SK3 $\frac{1}{4}$ in. jack socket
SK4 3.5 mm . jack socket (see text)

Miscellaneous

Metal case (see text)
Control knob
Chassis-mounting fuseholder, 20 mm .
Veroboard, 0.1 in. matrix
Aluminium, 18 s.w.g. (for IC1 heat sink)
3 -core mains lead
Nuts, bolts, wire, etc.

Fig. 2. The circuit of the a.f. section of the guitar practice amplifier.
tors, and it is necessary to provide an adjustable bias voltage here. The bias voltage is given at the slider of pre-set potentiometer R5, which is adjusted for a mid-supply voltage at the amplifier output.

The non-iverting input is bypassed to chassis by way of C4. This capacitor is given a relatively high value to ensure that no hum or noise from the power supply is passed into the non-inverting input. The amplifier is designed for use with a non-stabilized supply, and the high value of C 4 causes quite a stable bias voltage to be given even when there are substantial fluctuations in supply voltage with high level signals. C4 prevents a form of positive feedback which could cause the biasing to be forced well off centre by strong sudden signals, resulting in clipping of one set of half-cycles.

D1 and D2 are protection diodes, and C6 and C7 are supply decoupling components. The amplifier has a quiescent current consumption of about 40 mA , but this rises to some 300 to 350 mA at full output.

POWER SUPPLY

The supply current required by the amplifier is much too high to be provided economically by batteries, and a mains power supply is required. The circuit of the supply used with the amplifier is shown in Fig. 3.

S1 is the on-off switch and is, incidentally, the only control for the unit. PL1 is a neon indicator with integral series resistor intended for operation from the 240 volt a.c. supply. T1 provides isolation from the mains supply and offers a secondary voltage of 15 volts at 500 mA . (Some important notes concerning this transformer are given later under the heading "Components").

The secondary voltage is applied via fuse FS1 to the bridge rectifier consisting of D1 to D4, and the rectified voltage is smoothed by capacitor C8. It might be thought that the initial surge of current at switch-on, as C 8 charges, could cause the fuse to blow, but it has been found in practice that a quickblow fuse withstands this surge, and there is no necessity to employ an anti-surge fuse for FS1.

COMPONENTS

The amplifier is assembled in a vinyl covered metal instrument case having dimensions of 229 by 133 by 63.5 mm , and this is a case type TP4 available from Maplin Electronic Supplies. Also available from Maplin Electronic Supplies is the integrated circuit type TDA2006 and suitable electrolytic capacitors for C5 and C8. C8 is an axial lead capacitor whilst C5 is a single-ended (i.e. both lead-outs are at one end) capacitor intended for printed circuit mounting. Both the Maplin capacitors will fit into the layout and case specified.

As will be evident from Fig. 3, the mains transformer has its two 15 volt secondaries connected in parallel. Mains transformer secondaries with the same nominal voltage should never be connected in parallel unless the transformer manufacturer states that it is safe to do so. This is because the transformer can overheat if one secondary should happen to have one or more turns in excess of the other. The author employed a transformer having two 250 mA secondaries, but this may be difficult to obtain and a satisfactory alternative is a 10 VA Miniature Transformer with two 15 volt 330 mA secondaries which is listed by Maplin Electronic Supplies. It is also in order, with this particular transformer, to connect the two secondaries in parallel. It would also be in order,

Fig. 3. The power supply section. There is no necessity for a stabilized supply.

The amplifier section. The three input leads do not need to be screened.
of course, to use a mains transformer having a single 15 volt secondary rated at 500 mA or more. Such a transformer may require a metal case of greater height than that used for the prototype unit.

CONSTRUCTION

As can be seen from the photograph of the internal layout, the use of a relatively large case allows the mains transformer to be mounted well away from the amplifier board, thereby causing minimal stray pickup of hum in the amplifier circuitry. Looking into the case from the front, the mains transformer is to the rear at the extreme left, with the power supply board to its right. On the right hand side of the case is mounted the amplifier board. On the front panel, to the left, is PL1 with S1 to its right. The chassismounting fuseholder is secured to the case bottom between S1 and the power supply board.

Output socketSK4 is fitted to the centre of the rear panel. A 3.5 mm jack socket was used in the protoype but any other type of 2-way socket or connector which may be preferred can be used instead. SK1, SK2 and

SK3 are all $\frac{1}{4} \mathrm{in}$. jack sockets and are mounted behind the amplifier board. A hole with a grommet for the mains lead is provided at the power supply end. The mains lead should be secured inside the case with a plastic or plastic-faced clip.

SUPPLY BOARD

Many of the power supply components are assembled on a piece of 0.1 in . Veroboard having 19 copper strips by 18 holes, and this is shown in Fig. 4. There are no breaks in the copper strips. The two mounting holes are 3.3 mm , in diameter and take 6 BA or M3 screws.

As is shown in Fig. 4, a solder tag is secured under one of the mounting nuts for the transformer, and this provides the chassis connection for the mains earth lead as well as the negative output of the power supply. Before connecting to S1, confirm relative tag positioning with a continuity tester in case the particular switch employed has a different tag layout to that shown in the diagram. An insulated lead about 150 mm . long is soldered to the Veroboard at the

Fig. 4. Wiring up the power supply. There are no breaks in the Veroboard copper strips.

Fig. 5. Component layout on the amplifier Veroboard.
positive output, for later connection to the amplifier board. The power supply board is secured to the case bottom with strip " A " towards the front of the case. Spacing washers 12.5 mm . long on the mounting bolts keep the board underside well clear of the inside metal surface of the case.

AMPLIFIER BOARD

A second 0.1 in . Veroboard is used for the amplifier, and details of this are given in Fig. 5. The board has 17 copper strips by 25 holes and there are three breaks in the strips. The lead-out wires of the TDA2006 are preformed, but will not fit the 0.1 in . matrix board unless they are splayed out slightly. The
i.c. requires a small heat sink which is made up as shown in Fig. 6. Fig. 7 gives a side view, illustrating how the heat sink is bolted to the i.c. and to the bottom of the metal case. The heat sink is made of aluminium of about 18 s.w.g., and it also provides the negative supply connection to the amplifier by way of the i.c. heat tab.

The completed amplifier board assembly is mounted at the extreme right hand end of the case, so that it is well away from the mains transformer and the mains wiring. Spacing washers 12.5 mm . long are used on the screws securing the board. If this is temporarily mounted in place the two holes for the heat sink can then be marked out using the heat sink itself

All dimensions in mm

Fig. 6. The heat sink for IC1 is made from a piece of $18 \mathrm{~s} . \mathbf{w . g . ~ a l u m i n i u m . ~}$ The two bends are at right angles and the sink is shown, after bending, in Fig. 7.

The mains transformer and power supply panel.

The rear panel. The three input sockets are to the left, and the output socket is positioned centrally.

as a template. The assembly is mounted with the heat sink to the rear.

The positive supply lead is connected to the amplifier board, as also are the leads to the four sockets. Because the amplifier is in a metal case the leads to SK1, SK2 and SK3 do not need to be screened, but they should be kept as short as is reasonably possible. All the jack sockets pick up their chassis connection by way of their mounting bushes and nuts. The nonearthy tags of the sockets can be determined by visual inspection.

If an alternative output socket is employed it may require a wired chassis connection. This can be provided by a solder tag under the nearer nut securing the heat sink to the case bottom.

Fig. 7. How the heat sink is secured to the integrated circuit heat tab and to the bottom of the metal case.

ADJUSTMENT

After the amplifier has been completed it needs to be checked and R5 has then to be adjusted. Initially, R5 should be given a central setting. A guitar is connected to one of the inputs and an 8Ω speaker to the output socket. Note that there is a short delay of a second or two after switch-on before the amplifier becomes fully operational, since some of the capacitors have to charge to their working levels. In its present state the amplifier should function reasonably well.

Next, set a multimeter to a suitable d.c. volts range (25 volts f.s.d. or more), connect its negative lead to chassis and its positive lead to the output of the TDA2006. A suitable point is the lower wire of R7 as shown in Fig. 5. R5 is then adjusted for an output voltage of 11 volts.

If a multimeter is not available, it is quite acceptable to simply adjust R 5 to the setting which gives the highest audible output before clipping and consequent severe distortion occur.

After R5 has been adjusted the case lid is fitted. The amplifier should always be employed with the lid firmly screwed in position.

SHort wavi news FOR DX LISTENERS

By Frank A. Baldwin

As the winter period comes to an end, signals from the Far East will fade out and those from the Latin American area will tend to build up - at least that is the usual pattern of events for those of us here in the U.K. and Europe. Instead of listening from around 1500 and 2200 GMT for those elusive transmissions from the East, we must instead strain our ears for the African signals from 1730 onwards and the Latin American transmissions from around 2200 through to 0600 or so - providing one has trouble with sleeping at nights! Insomniacs make good LA specialists!

Some LA signals heard of late have been -

- COLOMBIA

La Voz del Norte, Cucuta, on 4875 at 0415 , OM identification in Spanish followed by local announcements in which Cucuta was mentioned several times. The schedule is from 0930 to 0500 variable, reportedly closing sometimes at 0630 . The power is 5 kW .
Radio Guatapuri, Valledupar, on 4815 at 0722, local-style music, OM with station identification at 0726 and again at 0736. Local announcements, some with the echo-effect much beloved by the LA's. Still on the air as late as 0745 . The schedule is from 0930 to 0600 and the power is 10 kW . Reportedly edentifying as "Radio Favorita" it was "Radio Guatapuri" on both the above occasions.

- ECUADOR

Radio Federacion, Sucua, on 4960 at 0319 , OM with announcements in Spanish, YL with folk songs. The schedule is from 1030 (Sundays from 1100) to 0300 (Saturdays until 0400, Sundays until 0100). The power is 5 kW .

- SURINAM

Radio Apintie, Paramaribo, on a measured 5006 at 0305, light music European-style non-stop through to 0330 when announcements in Dutch. The schedule is from 0830 to 0430 and the power is unknown.

- ALGERIA

Algiers on a measured 15033 at 2057, OM (Old Man $=$ Male announcer) with announcements in French, local-style music. At 2100,5 pips timecheck, OM with station identification and details of frequencies with transmission times (this channel not mentioned) in English. Algerian frequencies are
subject to constant variations.

- PORTUGAL

Radio Renascenca, Lisbon, YL (Young Lady $=$ Female announcer) in Portuguese with the programme for Portuguese catholics abroad, scheduled from 1830 to 2230 on this particular channel.

YEMEN ARAB REPUBLIC

Radio Sana'a on 9780 at 1950, Arabic-type music, YL with songs in the Home Service which is entirely in Arabic. The schedule on this frequency is from 0300 to 0700 and from 1000 to 2130 , on Fridays additionally from 0700 to 1000 . The power is 50 kW .

OKUWAIT

Radio Kuwait on 11650 at 1830 , OM with station identification followed by news of the Arabic world in the English programme intended for Europe, scheduled on this channel from 1800 to 2100 . Also directed to the Arabian Gulf area.

BULGARIA

Radio Sofia on 9700 at 1954, YL with the English programme for the U.K. and Eire, scheduled from 1930 to 2000 - all about mineral springs in Bulgaria on this occasion.

EAST GERMANY

Radio Berlin International on 21500 at 1839 , OM with station identification, frequencies and times details in the English programme for Europe and West Africa, scheduled from 1800 to 1845.

- ETHIOPIA

Addis Ababa on 7165 at 1512, xylophone music. At 1515 , OM with a talk in English until 1520 then into a programme of European-style dance music until pips time-check at 1530 and a newscast after station identification by YL. All in the English programme, scheduled on this channel from 1500 to 1600.

- SOMALIA

SBS Mogadishu on 9585 at 1932, OM with news of African affairs in Somali (place names identified) then local music and songs by YL chorus. Lots of co-channel QRM (interference). This is the External Service which is scheduled from 1000 to 1930 (extended on this occasion). Domestic Service programmes are carried on this channel from 1530 to 1630 .

- ROMANIA

Radio Bucharest on $\mathbf{9 6 9 0}$ at 1957, OM with a talk about the libraries of Romania in the English programme for Europe, scheduled from 1930 to 2030.

- KENYA

Mombasa on a measured 4934 at 0341 , OM with a religious service in vernacular, choir with hymns in the North Eastern and Coastal Service, scheduled on this frequency from 0330 to 0630 and from 1400 to 2005. The power is 20 kW .

- MALI

Bomako on a measured 4838 at 2207, Africantype orchestra, YL with songs, OM's with chants. The schedule is from 0600 to 0800 and from 1800 (Friday to Sunday inclusive from 1830) to 2400. The power is 18 kW and this one is listed on 4825.

NETHERLANDS

Radio Nederland on 9895 at 0948 , OM with the English programme intended for Europe and scheduled on this channel from 0930 to 1020.

- INDONESIA

RRI (Radio Republik Indonesia) Ujung Padang on a measured 4719 at 1520, OM in Indonesian with Sousa march interludes. The schedule here is from 0830 to 1230 but has been noted here closing as late as 1532 on several occasions. The power is 50 kW .

RRI Jakarta on a measured 4774 at 1526, OM in Indonesian, short interludes of military music, almost certainly in parallel with Ujung Padang on this occasion. Jakarta transmits special events on this channel and is scheduled from 2200 to 0200 and from 0830 to 1600 . The power is 50 kW .

RRIBukittinggi on a measured 4828 at 1528 , OM in Indonesian, signal just audible. This one operates from 2300 to 0300,0500 to 0715 and from 0930 to 1600 , is listed on 4827 and has a power of just 1 kW .

RRI Yogyakarta on 5045 at 1535, OM's with a discussion in Indonesian. The schedule is from 0100 to 0300 , from 0455 to 0800 and from 0955 to 1700 . The power is 5 kW .

CHINA

Radio Peking on 9860 at 1920, OM with the English programme for Europe, scheduled from 1900 to 2000 . All about the mistakes made during the "Great'Cultural Revolution."

Radio Peking on 9880 at 1918 , Chinese music in the Portuguese programme for Europe and Africa, scheduled from 1900 to 2000.

Radio Peking on 9920 at 1915, OM with the Cantonese programme to Europe, scheduled from 1900 to 2000.

Radio Peking on 9945 at 1912, OM with the Romanian programme, scheduled from 1900 to 1930.

Radio Peking on $\mathbf{3 2 2 0}$ at 2150 , OM in Chinese in the Domestic Service 1 programme scheduled from 2000 to 2300 and from 1318 to 1733.

CHINA - REGIONALS

Kunming, Yunnan on 4760 at 1524 , YL in Chinese, piano music. This is Yunnan 1 operating from 2150 to 0600 (Tuesdays until 0800) and from 0920 to 1600. An English language lesson is radiated from 2200 to 2230 . (Yunnan People's

Broadcasting Station $=$ "Yunnan Ren-min Guangbo Dian-tai" as identified in Standard Chinese).

PLA (People's Liberation Army) Fuzhou on 4045 at $1514, \mathrm{OM}$ and YL alternate in Chinese. This transmitter radioes the Network 1 programme to Taiwan and other offshore islands from 2100 to 0145 and from 1000 to 1800 .

Lanzhou, Gansu on 4865 at 2215, YL in Chinese. The schedule is from 2145 to 0100 (Sundays until 0600), from 0320 to 0600 and from 1000 to 1600 .

Xizang, Tibet on 4750 at 1544 , OM in Chinese, local-type classical music. The schedule is from 2230 to 0645 (March to September from 2300) and from 1000 to 1545. "Hsi-Tang Ren-min Guang-bo Diantai."

Haerbin, Heilongjiang on 4840 at 2226, OM and YL in Chinese, OM with songs. The schedule is from 2040 to 0630 (Thursdays until 0510) and from 0830 to 1530 .

- THAILAND

Bangkok on 4830 at 1530 , OM song in Thai with local orchestral music. Radio Thailand operates from 2240 to 1630 on this channel. The power is 10 kW .

NORTH KOREA

Pyongyang on 9977 at 1315 , OM with a newscast, YL with a song in Korean in the English programme for South East Asia, scheduled from 1300 to 1450.

VIETNAM

Hanoi on a measured 9986 at 1345, YL with announcements in the Cambodian programme for South East Asia, scheduled from 1300 to 1400 .
Hanoi on a measured 4944 at 2208 , OM in Vietnamese in the Home Service 1 programme, scheduled on this channel from 2100 to 1615 (variable closing time, reported closing sometimes at 1630).

- MONGOLIA

Ulan Bator on a measured 4763 at 2221, OM and YL alternate in Mongolian, also logged in parallel on 4830. This transmitter radiates the Home Service 1 from 2200 to 0100 and from 1030 to 1500 ; relays the R. Moscow Mongolian programme from 0600 to 0650,0930 to 1000 and from 1200 to 1245 ; the Foreign Service in Russian from 1330 to 1400. Although scheduled to open at 2200 , it has always been noted here as opening at 2202 with the National Anthem (the tuning signal commences at 2200). The power is 50 kW .

- IRAQ

Radio Baghdad on 9745 at 2130, YL with station identification and opening announcements in the English programme for Europe, scheduled from 2130 to 2230 . This item according to one of our regular readers, A. Dupres of Cardiff, an enthusiast just $16 \frac{1}{2}$ years of age - have we any younger fans? I must listen to Baghdad sometime, I lived there for some time and know it well - but I never saw any magic carpets!

Alastair also logged AIR Delhi on 11620 at 1915, at which time every Saturday he listens to "Quiz Time" and has sent in some questions of his own.

Another of his regular loggings is United Nations Radio on 15230 at 0800 when they transmit a newscast in English to Africa.

Medium and

 Short Wave Radio umy Medium waves plus 25, 39 and 49 metre bands.Special grade ferrite aerial. Low cost design.

This unusual 3-transistor radio covers the standard medium wave band and the short wave broadcast bands within a frequency range of approximately 5 to 12 MHz . This range takes in the 25,39 and 49 metre bands. The output is intended for high impedance magnetic headphones $(2,000 \Omega$ or $4,000 \Omega$) or a crystal earphone, and there is plenty of volume from any reasonably strong signal.
Medium and short wave receivers usually employ a ferrite aerial for medium wave reception and a telescopic aerial for short waves, but this design uses a ferrite aerial for both wavebands. The ferrite rod grade normally encountered in portable receivers has a useful range for efficient reception from around 150 kHz to 2 MHz and covers the medium and long wave bands. The ferrite rod used in the design to be described is a special F16 grade, with a range from 500 kHz to 12 MHz . This allows the receiver to cover the medium wave band and the short wave range just mentioned.

THE CIRCUIT

The receiver employs a t.r.f. circuit in which all amplification before the detector stage is carried out at signal frequency. This is as opposed to a superhet which first converts the received signal to an intermediate frequency, this being passed into an i.f. amplifier before detection. Since the i.f. amplifier works at a fixed frequency it can provide a high level of sensitivity and selectivity, and the performance of a superhet is superior to that of a t.r.f. receiver in these respects. On the other hand a superhet is much more complicated than a basic t.r.f. receiver and, on completion, requires careful alignment. As can be seen from Fig.1, the circuit of the t.r.f. receiver to be described is quite simple and it requires only a small number of components. A further advantage is that, after completion, it requires no alignment whatsoever and is ready for immediate use.
L1 and L2 are the medium and short wave aerial coils respectively, and they are connected by

The prototype medium and short wave receiver is housed in a plastic case with the controls mounted on one of the longer sides.

Fig.1. The circuit of the medium and short wave radio. The aerial uses a special grade ferrite rod which is suitable for short wave reception.
wavechange switch S1 to tuning capacitor VC 1 and the gate of TR1. This is a Jfet having a very high input impedance, with the result that the aerial tuned circuit can be connected directly to the gate and there is no necessity for coupling windings. The coil specified for L1 has a coupling winding which is not shown in Fig.1. and no connections are made to this winding.

C3 couples the amplified signal from TR1 drain to the base of TR2, which functions as a broadband untuned r.f. amplifier. The aerial signal is inverted both by TR1 and by TR2, so that the signal at the
collector of TR2 is in phase with the signal at TR1 gate. This allows positive feedback (known as reaction or regeneration in this application) to be provided from TR2 collector, through C5, VR1 and C4, back to TR1 gate, the level of feedback being controlled by VR1. This feedback increases the effective Q of the aerial tuned circuit by an extremely high level, allowing the receiver to have good selectivity and sensitivity. For normal reception, VR1 is advanced to the stage where TR1 and TR2 are just short of going into oscillation.

COMPONENTS

Resistors

(All fixed values $\frac{1}{4}$ watt 5%)
R1 330Ω
R2 $1.5 \mathrm{k} \Omega$
R3 $680 \mathrm{k} \Omega$
R4 330Ω
R5 $1 \mathrm{k} \Omega$
R6 $22 \mathrm{k} \Omega$
R7 $1 \mathrm{M} \Omega$
R8 $3.3 \mathrm{k} \Omega$
VR1 $100 \mathrm{k} \Omega$ potentimeter, linear

Capacitors

C1 $100 \mu \mathrm{~F}$ electrolytic, 10 V . Wkg.
C2 $0.01 \mu \mathrm{~F}$ polyester type C280
C3 $0.0068 \mu \mathrm{~F}$ ceramic plate
C4 2.2 pF ceramic
C5 100 pF ceramic plate
C6 $0.047 \mu \mathrm{~F}$ polyester type C280
C7 $0.015 \mu \mathrm{~F}$ ceramic plate
C8 $0.1 \mu \mathrm{~F}$ polyester type C280
C $910 \mu \mathrm{~F}$ electrolytic, 10 V . Wkg.
C10 $100 \mu \mathrm{~F}$ electrolytic, 10 V . Wkg.
C11 560 pF ceramic plate
VC1 variable air-spaced (see text)

Inductors

L1 medium wave aerial coil type MWC2 (Ambit)
L2 see text

Semiconductors

TR1 BF244B
TR2 2N2369A
TR3 BC108
D1 OA91
D2 OA91
Switches
S1 s.p.d.t. toggle
S2 s.p.s.t. toggle

Socket

SK1 3.5 mm . jack socket

Miscellaneous

F16 grade ferrite rod, 200 mm . x 9.5 mm . (Ambit)
2 clips type FRPC (Ambit)
Plastic case (see text)
9 -volt battery type PP3
Battery connector
1 large control knob
1 small control knob
Crystal earphone or high impedance headphones with 3.5 mm . jack plug
Wire for L2 (see text)
Nuts, bolts, wire, solder etc.

The signal at the collector of TR2 passes through C6 to the detector circuit comprising D1, D2, R6 and C 7 , and the detected audio signal is fed via C 8 to the audio amplifier, TR3. C11, between the collector and base of TR3, provides negative feedback at the higher audio frequencies and thus rolls these off. The result is a lower noise level and a reduction in adjacent channel interference. C9 is the output d.c. blocking capacitor.

Supply decoupling is provided by $\mathrm{C} 1, \mathrm{R} 8$ and C 10 . The current consumption of the receiver is only about 3.5 mA , and a small PP3 battery is adequate.

COMPONENTS

The F16 grade ferrite aerial rod has a length of 200 mm . and a diameter of 9.5 mm . and is available, together with two mounting clips type FRPC, from Ambit International. Ambit International also supply the medium wave coil type MWC2. The BF244B required for TR1 is available from several retailers as are the $0.0068 \mu \mathrm{~F}$ and $0.015 \mu \mathrm{~F}$ ceramic plate capacitors, C 3 and C 7 . Tuning capacitor VC 1 can be any air-spaced variable component having a value between 200 and 250 pF . The author used the front $(208 \mathrm{pF})$ section of a 208 pF plus 176 pF 2 -gang capacitor. The receiver has to be housed in a plastic case to ensure that the ferrite aerial is not screened, and this has to be large enough to take the rather long ferrite rod. The case employed by the author has dimensions of 215 by 130 by 85 mm . and is a case type MB4 available from Maplin Electronic Supplies.

On the front panel the tuning control is on the left. S 2 is mounted approximately central with the potentiometer and S1 to its right.

SHORT WAVE COIL

The short wave aerial coil is wound by the constructor using multi-strand p.v.c. covered connecting wire. The author used $7 \times 0.2 \mathrm{~mm}$. wire and this is listed by Maplin Electronic Supplies as "Hook-up Wire". However any similar wire should give practically identical results provided that the length of the coil is about 10 m . The winding is illustrated in Fig.2.
Start by anchoring the wire to the end of the ferrite rod by a length of insulating tape 19 mm . ($\frac{3}{4} \mathrm{i} i n$.) wide, leaving a lead-out wire of adequate length, say about 200 mm . Then wind exactly 8 turns of wire around the rod, closely spaced so that the winding is about 10 mm . long. A second piece of insulating tape is then used to anchor the free end of the coil to the rod and to prevent the coil from unwinding. The free wire is then cut to a suitable length. The two lead-outs of the coil can be cut to their final length during the wiring of the receiver.

All dimensions in mm

Fig.2. The short wave coil is home-wound and uses ordinary stranded connecting wire as described in the text.

PRINTED BOARD

Most of the components are assembled on a printed circuit board, which is shown full-size in Fig.3. The board is prepared in the usual way.

The ferrite aerial is fitted to the board after the other components have been soldered in place. The two mounting clips are secured to the board by means of short 6BA bolts and nuts. The short wave coil takes up the position relative to the board which is shown in Fig.3. and the medium wave coil is fitted to the other end of the ferrite rod. It is positioned so that only about 2 mm . of the rod protrudes outside the end of the coil former and is then taped in this position.

The parts are mounted in the plastic case referred to earlier. This is rather larger than is really required, but it is necessary for it to have a dimension which will accommodate the ferrite aerial rod.
The front panel controls are laid out as shown in the photographs. The tuning capacitor is to the left, and on its.right, slightly right of centre, is the on-off switch S2. The next control is VR1 with S1 on its right. The precise positioning of these controls is not critical. The tuning capacitor requires a hole of about 16 mm . diameter for its spindle and bush. It will have 4BA tapped holes on its front plate and corresponding 4BA clear holes are needed in the front panel. A piece of paper with a $\frac{1}{4} \mathrm{in}$. hole in it is passed over the spindle of the capacitor and the positions of the three holes marked on it in pencil. The paper can then be used as a template to mark out the corresponding holes in the panel. The three 4BA bolts holding the capacitor in place must be very short since their ends must not pass more than fractionally beyond the inside surface of the capacitor front plate. Should the bolt ends pass too far into the capacitor the moving or fixed vanes may be damaged.
The printed board is fitted to the case bottom by means of two 6BA bolts and nuts, with spacing washers to keep the board underside clear of the inside surface of the case. The board is not finally fitted in place, however, until it has been connected to the controls, output socket and battery clip. The wiring should be kept reasonably short and direct. Try to keep the two non-earthy leads to VR1 fairly well spaced and not running closely side by side, otherwise

Fig.3. The majority of the components are assembled on a printed circuit board which is reproduced full size.

The printed board assembly is fitted to the bottom of the case with the ferrite rod aerial away from the panel controls.

A closer look at the printed board assembly
stray capacitance between them may render VR1 unable to control the level of regeneration properly. These are the two wires which connect to tags B and C of the potentiometer, as shown in Fig. 3.

On the front panel, VC1 should be fitted with a large control knob. A smaller knob will suffice for VR1.

USING THE SET

With a crystal earphone or high impedance head-. phones plugged into SK1, VR1 backed well off (i.e. turned anticlockwise) and S1 set to the medium wave position, it should be possible to tune in a few stations by means of VC1. Sensitivity and Selectivity will probably both be rather poor, and advancing VR1 clockwise will give improved results. If VR1 is advanced too far the circuit will oscillate, causing beat notes to be produced when tuning through a station, and satisfactory reception will be impossible. For optimum results, VR1 should be backed off slightly from the point at which oscillation starts. The best setting.required for VR1 will alter slightly after any significant adjustment of VC1. It will probably be found that, with VR1 advanced as far as possible without oscillation occurring at any setting of VC1, quite good results will be obtained over the entire medium wave band.

The receiver is operated in the same way when S1 is set to select short waves. The short wave broadcast bands are quite easy to locate as they provide what are normally the strongest signals, but reception on each band will vary somewhat according to the prevailing conditions. It is unlikely that there will be a single setting for VR1 which will give good results over the whole short wave tuning range, but it should be possible to find a setting for each broadcast band which gives good results over that band.

If, at some point on one of the tuning ranges the level of regeneration is excessive even with VR1 fully backed off, the gain of the r.f. amplifier must be slightly decreased. This can be achieved by increasing the value of R 3 to $1 \mathrm{M} \Omega$.

"But there's nothing to flaming well do!"
"We could," suggested Smithy, "have a game of swear-words Scrabble."
"'No, thank you," replied Dick bitterly. "You know more dirty words than I do and most of the ones I do know I don't know how to spell."
"How about tidying up your bench?"
"I've tidied it up."
"Couldn't you knock up some little gadget to pass the time?"
"I can't think of anything to knock up."

A FEW PUZZLES

Dick squatted morosely on his stool and scowled at the Serviceman.
'Well،" said Smithy, "I have to agree that things have been pretty quiet for the last few days and that we've completely cleared up everything that's in for repair."
"Exactly," confirmed Dick moodily, "and now there's nothing whatsoever to flaming well do. I'm bored rigid!"'

Smithy pondered for a moment, then brightened.
"I've just had an idea," he said cheerfully. "I'll set you a little puzzle and we'll see if you can solve it."
"A puzzle? What sort of a puzzle?"
"An electronics puzzle."
"You could do that," agreed Smithy, "but it wouldn't help you much."
"It's those darned batteries," complained Dick. "You've got no less than four of them distributed throughout the circuit.'
"If the batteries are worrying you, try simplifying them."
"How can I?"
"Think about it. To give you a hint I said just now that the same current flows through all the resistors and all the batteries."
"Which must of course be true," mused Dick. "Hang on a jiff! Will the same current flow if I take a battery out of one part of the circuit and insert it at another place?"
'Of course it will. Provided, that is, you don't reverse its polarity."

Dick picked up Smithy's pen and proceeded to draw in Smithy's note-pad.
"Then," he said excitedly, "I could move BY2 to the left so that it's next to BY1. And I could also move BY3 to the left so that it connects directly to BY4."
He quickly completed the new version of the circuit and
showed it to Smithy. (Fig. 2(a)).
"Keep at it," said Smithy. "You're on the right lines."
"I think I'm nearly there now. Well, BY1 and BY2 have their two negative ends together, which means that BY1 subtracts 4.5 volts from the 9 volt BY2. Sol can replace them with a single 4.5 volt battery having the same polarity as BY2. There's the same sort of thing with BY3 and BY4, and these can be replaced by a single 3 volt battery with its negative end connecting to R6." (Fig. 2(b)).
"That's perfectly correct. Now shift the lower battery so that it's next door to the upper battery. Be careful with its polarity."
' 1 'll bring it round to the left hand side of the upper battery." said Dick. "Now, the positive side of the lower battery points in the clockwise direction so, when I bring it round, its positive end will be to the right."

Dick scribbled out the new rearrangement of the circuit. (Fig. 2(c)).
"And that," said Smithy, "is very nearly the final step. The
two batteries are series-aiding and so they provide a total voltage of 7.5 volts. The next thing to do is to add up the values of the resistors."
"I'll do that next." said Dick. "Let's see what it is. Ah yes, the grand total comes to 15Ω."
"Which means that we've got 7.5 volts pushing a current through 15Ω. What will that current be?'
"It will be 7.5 volts divided by 15Ω. Which works out at half an amp?"
"Correct," confirmed Smithy. "The current which flows in the circuit is half an amp."

CIRCUIT ERROR

"This is great," said Dick, pleased at his success. "Let me try out one on you."
"Okay," said Smithy equably. "See if you can catch me out."
Dick walked over to his bench and returned with a sheet of paper.
"Here we are," he said. "I was making up a transistor phase splitter the other day and I got some very funny voltage readings. I made a note of them, and here they are."
Dick showed the paper to

Fig. 2(a). First stage in simplifying the circuit. BY2 and BY3 are moved left to connect directly to BY1 and BY4 respectively.
(b). The circuit is now effectively powered by two batteries.
(c). The final simplification consists of bringing round the lower battery. (Some solvers may have simply added and subtracted battery voltages, according to polarity, to arrive at the same solution as results from this diagram).

(c)

BY THE G3HSC RHYTHM METHOD!

These courses which have been sold for over 25 years, have been proven many times to be the fastest method of learning Morse. You start right away by learning the sounds of the various letters, numbers, etc., as you will in fact use them. Not a series of dots and dashes which later you will have to translate into letters and words. Using scientifically prepared 3 speed records you automatically learn to recognise the code RHYTHM without translating. You can't help it it's as easy as learning a tune. 18 WPM in 4 weeks guaranteed.
The Complete Course consists of three records as well as instruction books.
Complete Course $£ 5.50$ U.K. p/p 75p. (Overseas postage sufficient for 750 grm). Details only s.a.e.

THE G3HSC MORSE CENTRE

S. Bennett, (Box 8), 45 Green Lane, Purley, Surrey

Name
Address

MODERN BOOK CO.
Largest selection of English \& American radio and technical books in the country.

19-21 PRAED STREET LONDON W2 1NP
Tel: 01-402 9176

Please mention Radio \& Electronics Constructor

 when replying to advertisements

Fig. 3. There is a single error in this diagram.

Smithy. (Fig. 3).
"Dear me," stated Smithy. " must say that those voltages are very peculiar."
"There is one single error in that circuit drawing," said Dick. "I found out what it was later."
"Did you use an incorrect value resistor?"
"No."
Were the queer voltage readings due to a low resistance voltmeter?"
"No. I used a very high resistance voltmeter."
"Is it a silicon transistor?"
"It is," stated Dick, "and its base connects to R1, its collector to R2 and its emitter to R3. What you have to find is the single error which exists in the circuit."
(Can you, as you read this, spot the single error? You already know that all resistor values are correct. See if you can find the error before Smithy does).
Smithy gazed thoughtfully at Dick's circuit.
"Do you know what caused these funny voltages?"
"I know what the error was because I was able to put it right," said Dick a little uncomfortably. "But 1 don't know why the error caused the voltages to appear!"
"What happened," stated Smithy with complete certainty, "is that you made up the circuit with a p.n.p. transistor instead of an n.p.n. transistor."
Dick looked crestfallen at Smithy's quick solution to his problem.
"Yes," he said sheepishly, "That's exactly what I did do. After I got these queer voltages I checked the transistor marking and I found I'd soldered in. the wrong type."
'"So the error in the circuit
drawing," said Smithy, "is that the emitter arrow is pointing in the wrong direction. To get the voltages shown, the emitter arrow should be pointing inwards instead of outwards."
"That's exactly right. Now you tell me why the voltages appeared!"
"All right," said Smithy. "Well, if it had been an n.p.n. transistor there would have been a voltage drop of 0.6 volt only between the base and the emitter. But in your drawing there are 5.8 volts across R1 and 5.2 volts across R3. Subtract the sum of these from the 18 volts supply voltage and you're left with 7 volts across the base emitter junction. So that junction must be reverse biased. From which it follows that you used a p.n.p. transistor instead of an n.p.n. one."
"If the base-emitter junction is reverse biased," queried Dick, "why does it pass any current at all?"
"Because" replied Smithy," the base-emitter junction of most silicon transistors has a breakdown voltage in the region of 6 to 10 volts. When that breakdown voltage is reached the junction acts like a zener diode. The transistor you used happened to have a breakdown voltage of 7 volts. Now, because the transistor was p.n.p. instead of n.p.n. the collector-base junction was forward biased, and that explains the 0.6 volt difference between the voltage across R1 and the voltage across R2. Let's redraw the circuit using zener diode and ordinary diode symbols. This is how it looks."

Smithy picked up his pen and drew the equivalent circuit. (Fig. 4).

Fig. 4. An equivalent circuit incorporating diodes,

Fig. 5(a). A standard full-wave rectifying circuit in which the mains transformer has a centre-tapped secondary.
(b). By adding two rectifier diodes it is possible to obtain the same rectified voltage with only half the secondary winding.

STRANGE RECTIFIER

"Well," said Dick. "You've answered my little puzzle, so how about setting me another one?"'
"All right," replied Smithy obligingly. "What I'Il do is introduce you to an unfamiliar power supply rectifier circuit."
Dick settled himself more comfortably on his stool.
"Righty-ho," he said cheerfully. "Fire away!"
"As you know," said Smithy, drawing once more on his note-pad, "the usual full-wave rectifier circuit has two rectifier diodes connected to the outside ends of a mains transformer secondary. The secondary is centre-tapped, and the centre tap goes to the negative rectified supply rail. Like this:"

He pointed to the circuit which he had now completed. (Fig. 5(a).).
"That's basic enough," commented Dick. "On halfcycles when the upper end of the secondary is positive diode D1 conducts, and on halfcycles when the lower end is positive diode D2 conducts. Both diodes cause the reservoir capacitor to charge and stay charged."
"Fair enough," said Smithy. "Now, it's possible to get the same full-wave rectifying action and the same rectified voltage with only half the secondary winding which is
required in the ordinary fullwave circuit. All you have to do is to add two more rectifier diodes, giving you a circuit like this."

Smithy drew a further circuit. (Fig. 5(b).).
"How does that work?"
"It works like this," said Smithy. "We've got our original two diodes, D1 and D2. And I've now added two more diodes, D3 and D4. Let's see first what happens on halfcycles when the right-hand side of the transformer secondary is positive. Diode D3 prevents the left-hand side of the secondary going negative of chassis by any significant voltage, so virtually the full secondary voltage is applied through D1 to the reservoir capacitor. On the alternate half-cycles the left-hand end of the secondary is positive. This time, diode D4 prevents the right-hand end going negative of chassis, and virtually all the secondary voltage is applied through diode D2 to the reservoir capacitor. So, just by adding two diodes we get the same full-wave rectifier action as we had with the centretapped transformer secondary, and we only need half the secondary winding to give the same rectified voltage."
"But that's a marvellous rectifier circuit," stated Dick. "Why don't we see it used in practice?"

ELECTRONIC

TUTOR KITS

Learn electronics the effective way by experiments. Each kit contains an illustrated handbook, which takes you step by step through the fundamentals of electronics, plus all the components needed. No soldering. Safe and instructive for even the young enthusiast. Kit 1, $£ 5.85$. Kit 2, $\mathbf{£ 5 . 9 5}$. Kit 3, £6.15. SAE for leaflets on this and other RXG products.

RXG ELECTRONICS LTD.
15 Walnut Tree Crescent,
Sawbridgeworth, Herts, CM21 9EB.

Fig. 6. The familiar bridge rectifier.
"There's the mystery," replied Smithy. "See if you can fathom it out!"
(And can you fathom it out? On the face of it, Smithy's rectifier circuit cannot help but work. Can you remember it being used in a practical application? Be warned, there's a catch).
"There's something fishy
here," said Dick suspiciously. "I think you're reverting to your usual devious tactics."
Smithy presented an expression of utter innocence to his assistant.
"No, I'm not." he said. "I've drawn out a working rectifier circuit and it functions exactly as l've described it."
"Then why," queried Dick
scowling, "haven't | seen it used in practice? Or have I?"

Smithy remained silent.
"Four rectifier diodes and an untapped mains transformer secondary," muttered Dick.
"Now let me think about this."
He picked up Smithy's pen and traced the lines in the rectifier circuit. Suddenly his brow cleared and, decisively, he drew another rectifier circuit. (Fig. 6).
"You crafty devil," he grinned. "You really had me there! That circuit of yours is just a standard full-wave bridge rectifier!"
"It had you fooled for a bit though, didn't it?"'
"I'll say it did." agreed Dick. "It just shows how you get used to seeing circuits drawn out in a standard fashion. Now let's see if I can dream up another puzzle for you."

Dick and Smithy complete their session of puzzles next month.

AGILE TARGETS

Under a contract from the Ministry of Defence, EASAMS Limited, a member of the GEC-Marconi group of companies, is studying the feasibility of providing highly manoeuvrable and realistic "agile" targets for anti-tank weapons training.
Using a practical knowledge of the terrain, training programmes and support facilities on each of the Army's firing ranges, the EASAMS commission is to bring an imaginative approach to new and existing target system concepts. This will take into account the financial and logistic limitations within which the target system is to operate. EASAMS' task is to determine whether technically and economically feasible compromises can be reached among a number of conflicting requirements.
Anti-tank weapons are now able to engage modern armoured vehicles which are fast and highly manoeüvrable. New moving targets capable of varying speed and direction during a target run are required to train tank crews, anti-tank gunners and missile operators in the use of the new weapons.

Many training techniques, such as simulators and non-firing manoeuvres are available, but there is no substitute for live firing against realistic targets in the appropriate environment.
An ideal target should look and behave like the armoured
vehicle it represents and react realistically when hit. It should provide a cheap easily controlled solution, immune to intentional weapon strikes and to adverse range conditions. Also, it should make minimal demands on range facilities and manpower.

Eight frequency decades $\mathbf{- 1} \mathbf{H z}$ to $\mathbf{1 0 M H z}$ Harmonic-rich square wave outputs. Receiver calibration and digital applications.

3-STAGE M.W. SUPERHET

Two high gain transistors and an integrated a.f. amplifier.

Low component count.
BURGLAR ALARM WITH
ENTRANCE DELAY
Suggested Circuit

Full speaker output.
A SESSION OF PUZZLES No. 2.

In Your Workshop

- CB • $A M$ to $F M$ conversions examined -an objective assessment

PLUS MANY OTHER ARTICLES

Molex Electronics Limited announce a touch switch with a difference. Instead of controlling circuits by way of electronic semiconductor devices, the Molex switch simply causes two electrical surfaces to come into physical contact with each other. Touch pressure to operate the switch is only 6 to 10 ounces.
The switch has been made feasible by the development of a special process which allows a conductive silver polymer ink to be deposited on a flexible substrate. Two sections of thin flexible polyester sheet with conductive surfaces facing each other are separated by a thin insulated spacer layer with holes, and the whole assembly is sealed. It may be mounted on a flat surface whereupon, when the outer layer is lightly touched, the two conductive surfaces come into contact with each other and complete the circuit in which they appear.

The outer surface can be covered by a graphic overlay showing numbers, letters or words printed in an attractive design. As many individual switches as may be required can be provided in a given area, so that touching, say, the printed figure 1 on the overlay causes circuit 1 to be actuated, touching number 2 completes circuit 2 , and so on.

The new product is known as the 10900 Membrane Switch and is intended for low energy logic level switching applications. Switch systems can be custom designed for any particular function, and the manufacturers are Molex Electronics Limited, Holder Road, Aldershot, Hampshire.

PROBES AND PULSES

Of assistance in servicing and developing digital circuitry are two new probes available from OK Machine \& Tool (UK) Limited, Dutton Lane, Eastleigh, Hants, SO5 4AA. Both items are housed in narrow diameter cylindrical casings which can be held in the hand, and are provided with prod tips for connection to digital equipment on either side of the printed board.
The first item is the PRB-1 Digital Logic Probe, which costs less than $£ 30$ but has all the features of much more expensive units. It detects pulses as short as 10 nanosecond, has a frquency response of better than 50 MHz and automatic pulse stretching to 50 nanosecond. The Logic Probe is compatible with r.t.l., d.t.I., h.t.l., t.t.I., MOS, CMOS and microprocessor logic families, and it also features $120 \mathrm{~K} \Omega$ input impedance, power lead reversal protection and over-voltage protection up to 200 volts positive or negative. The supply voltage range is 4 to 15 volts, and an adaptor type PA-1 can be supplied for use with voltages from 15 to 25 volts.
The PLS-1 is the second item. This is a multi-mode high current pulse generator. It will superimpose a dynamic pulse train at 20 p.p.s. or a single pulse onto the circuit points under test, without having to unsolder pins or cut printed circuit traces, even when the circuit points are being clamped by digital outputs. It can source or sink sufficient current to force saturated output transistors in digital circuits into the opposite logic
state. Signal injection is by means of a pushbutton switch near the probe tip. When the button is depressed a single high-going or low-going 2 microsecond pulse is delivered to the circuit under test. Pulse polarity is automatic, and high level points are pulsed low and low level points are pulsed high. Holding the button down causes a series of pulses at 20 p.p.s. to be delivered to the digital circuit. The PLS-1 is ideally suited for use in conjunction with the PRB-1 probe and it also costs less than $£ 30$.

LONG SCALE MULTIMETER

The photograph shows the new $4 \frac{3}{4}$ digit multimeter Model 1503 which has been introduced by Thurlby Electronics. This has an unusually long scale of 32,768 (2 to the power of 15) counts or 15 bits on d.c. voltage and resistance, 16,384 counts or 14 bits on a.c. voltage and 8,192 counts or 13 bits on current. It is stated that the long scale length gives the 1503 much greater resolution and higher accuracy than competitive $3 \frac{1}{2}$ and $4 \frac{1}{2}$ digit meters.
Thirty measuring ranges are provided, covering the five basic functions of d.c. and a.c. voltage, d.c. and a.c. current, and resistance. In addition a diode test and crystal controlled frequency measurement up to 3.9999 MHz are included. Resolution is within 0.1 kHz , and frequency measurements can be extended to 7 MHz with display overflow. The 1503 has very high sensitivity figures of $10 \mu \mathrm{~V}, 10 \mathrm{M} \Omega$ and $0.001 \mu \mathrm{~A}$, and an input impedance of

$1,000 \mathrm{M} \Omega$ can be selected for low voltage readings as an alternative to the standard $10 \mathrm{M} \Omega$. Maximum voltage input is 1,200 volts and currents can be measured up to 25 amps .
The multimeter combines a clear liquid crystal display with low power circuitry to give hundreds of hours of operation from a set of batteries. The casing is tough knock-proof ABS plastic and the multi-tilt stand doubles as a carrying handle. In the laboratory the 1503 can be operated from its a.c. mains adaptor, or from batteries for near infinite common mode rejection.
The manufacturers are Thurlby Electronics Limited, Coach Mews, St. Ives, Huntingdon, Cambs, PE17 4BN.

LOW COST MICROCOMPUTER

A low cost Z80-based microcomputer system, the

Video Genie EG3000 Series, is now being offered by Cambridge Micro Computers Limited, Cambridge Science Park, Milton Road, Cambridge, CB4 4BN. The system hardware is shown in the second photograph and it is accompanied by software and support which make it ideally suited for industrial and educational applications. Designed to plug into a video monitor or u.h.f. television receiver, the Video Genie costs $£ 330$ (plus VAT), and Cambridge Micro Computers is also making available a Microsoft Z80 editor/ assembler package on magnetic tape cassette, at a price of $£ 24$ (plus VAT).

The Video Genie EG3000 Series is a fully self-contained system with its own built-in power supply, u.h.f modulator and cassette tape unit. Software is based on the well established BASIC interpreter used on the TRS-80, and the
standard system is supplied with a 16 K random-access memory plus 12 K of Microsoft BASIC in read-only memory. A 51-key typewriter-style keyboard with $10-$ key rollover facility is also included.
The system is ideally suited for education, particularly the teaching of BASIC software, as well as providing a low cost approach to Z 80 microprocessor system development. In addition to the wide range of software available on cassette, the Video Genie's interface capability allows it to be expanded with the use of flexible-disc stores and printers into a comprehensive microprocessor system.
The Video Genie comes complete with a BASIC demonstration tape, a video lead and a second cassette lead, as well as a user's manual, BASIC manual and beginner's programming manual.

Active Tone Control Module

 By A. P. Roberts Very low distortion and noise
Treble boost and cut

The tone control circuit to be described is primarily intended for those who are constructing their own amplifier systems, either from scratch or by using some of the excellent pre-amplifier and power amplifier modules which are currently available. The performance of the circuit is very good, the t.h.d. level being less than 0.05% over the audio frequency range provided the output is kept to about 1 volt r.m.s. or less, and this should be more than adequate to fully drive any normal power amplifier. The output has to reach about 5 volts r.m.s. before serious distortion occurs. The unweighted signal-to-noise ratio is better than -80 dB relative to an output of 1 volt r.m.s. The circuit has an input impedance of $500 \mathrm{k} \Omega$, so that there is minimal loading on the stage which drives the
circuit. An emitter follower output stage gives the circuit a low output impedance, whereupon the output should not be significantly loaded by the following power amplifier.

BASS AND TREBLE

Both bass and treble controls are included, and these can each provide about 12 dB of boost and cut (at 100 Hz for the bass control and at 10 kHz for the treble control) relative to 1 kHz . The circuit contains resistors which "tame" the response at the highest and lowest audio frequencies, so that the levels of boost and cut at these frequencies are little more than the figures just quoted for 100 Hz and 10 kHz . In practice this gives good results, and reduces the risk of

The prototype tone control circuit, assembled on its printed board

Fin 1. The eingit oftheactye tone contiol haglule. Yit provithe base boost and cut; whilse UR2 ghegstrbble lisost and cut
the complete audio system becoming unstable due to excessive high or low frequency gain.

The circuit is designed for use with an 18 volt supply and has a current consumption of only about 5 mA . However, it will work well with any supply voltage between 12 and 24 volts, the supply current varying from about 4 to 7 mA over this range.

THE CIRCUIT

Fig. 1 shows the full tone control circuit. This is only for one channel, and two such circuits, with ganged potentiometers for the bass and treble controls, would of course be required for stereo operation.

The tone control circuitry proper should be fed from a low impedance source, and this is provided by the buffer amplifier IC1. This i.c. also allows the circuit to have its high input impedance. IC1 has 100% negative feedback from its output to its inverting input and therefore gives a voltage gain of unity. R2 and R3 bias the non-inverting input to about half the supply voltage, whilst R1 and C2 prevent hum and noise from the positive supply rail reaching this input. C3 is the input d.c. blocking capacitor.

IC1 is a low noise and distortion operational amplifier having a Jfet input stage, and it can be obtained from Watford Electronics, 33/35 Cardiff Road, Watford, Herts. However, similar devices, such as the TLO81CP, LF351 and even the standard 741C will all give a good performance in this design.

The tone control circuitry is based on the amplifier given by TR1 and TR2, and operates by simply increasing negative feedback at frequencies where cut is required, or by reducing feedback at frequencies where boost is needed. TR1 is a straightforward common emitter amplifier directly coupled to emitter follower TR2. TR2 merely serves to give a low impedance output.

TREBLE CONTROL

Detailed operation of the circuit is quite complex and it helps to look upon it in the light of an operational amplifier working in the inverting mode. If, with such an amplifier, a feedback resistor is connected from the output back to the inverting input, and a series resistor is connected between the signal source and the inverting input, the voltage gain of the amplifier is equal to the feedback resistance divided by the input series resistance. In Fig. 1 the output is at the slider of R10 and the inverting input is at the base of TR1. The voltage gain is then controlled by the feedback impedance given by the tone control components, and by the input series impedance which these components also give.

We can consider first the functioning of the treble section, which employs VR2, C5 and C6. The feedback impedance is through C6 and the right-hand section of VR2 track (i.e. right of the slider) and the input series impedance is given by C5 and the lefthand section of VR2 track. At low and middle frequencies, C5 and C6 have a reactance which is high in comparison with the track resistance of VR2. Therefore, adjustment of VR2 has little effect on the relative values of the feedback and input series impedances which, since C5 and C6 have equal values, remain virtually the same.

At higher frequencies the situation is very different because C5 and C6 start to have a reactance which is comparable with VR2 track resistance, and at the highest frequency this reactance is considerably lower than the track resistance of VR2. Thus, with the slider of VR2 towards the C6 end of its track the feedback impedance becomes much lower than the input series impedance, giving significantly reduced gain, or treble cut. When the slider of VR2 is moved to the C5 end of the track the feedback impedance is much larger than the series input impedance, producing

Looking down on the printed board. Input, output and supply leads were not fitted when these photographs were taken

COMPONENTS		
Resistors (All fixed values $\frac{1}{4}$ watt 5% unless otherwise stated)	C 2	$100 \mu \mathrm{~F}$ electrolytic, 25 V . Wkg.
	C3	$0.047 \mu \mathrm{~F}$ polyester type C280 ${ }^{\circ}$.
R1 10k Ω,	C4	$4.7 \mu \mathrm{~F}$ electrolytic, 25 V . Wkg.
R2 $1 \mathrm{M} \Omega$	C5	$3,300 \mathrm{pF}$ polystyrene
$\begin{array}{ll}\text { R3 } & 1 \mathrm{M} \Omega \\ \mathrm{R} 4 & 10 \mathrm{k} \Omega\end{array}$	C6	$3,300 \mathrm{pF}$ polystyrene
R4. $10 \mathrm{k} \Omega$	C7	$0.047 \mu \mathrm{~F}$ polyester type C280
R5 $10 \mathrm{k} \Omega$	C8	$0.047 \mu \mathrm{~F}$ polyester type C 280
R6 $12 \mathrm{k} \Omega$	$\stackrel{C}{C 10}$	$4.7 \mu \mathrm{~F}$ electrolytic, 25 V . Wkg.
R8 $\quad 3.9 \mathrm{M} \Omega \quad 10 \%$	C10	$10 \mu \mathrm{~F}$ electrolytic, 25 V . Wk
R9 $10 \mathrm{k} \Omega$		
$\mathrm{R} 10 \quad 2.2 \mathrm{k} \Omega$ pre-set potentiometer, 0.1 watt hori-	Semiconductors	
R11 $1 \mathrm{k} \Omega$	IC1	TL071CP
	TR1	BC109C
VR2 $47 \mathrm{k} \Omega$ potentiometer, linear	TR2	BC109C
	Miscellaneous	
Capacitors	Printed circuit board	
C1 $100 \mu \mathrm{~F}$ electrolytic, 25 V . Wkg.	${ }^{2}$ cone	trol knobs solder, etc.

increased gain and treble boost. With VR2 slider at the centre of its track the two impedances are equal, a flat response is obtained and the high frequency amplifier gain becomes unity. In consequence, VR2 can provide a flat treble response, or any degree ot treble cut or boost within its range which is required.

BASS CONTROL

The bass control, VR1, operates in a similar manner. At high and middle frequencies C 7 and C 8 have a low reactance and virtually short-circuit VR1. Since R5 and R4 have the same values, the feedback impedance at these frequencies is equal to the series input impedance, and adjustment of VR1 has no significant
effect. At bass frequencies, the reactances of C 7 and C 8 are high in comparison with the track resistance of VR1, and they have little effect on the circuit. In this low frequency range, moving VR1 slider towards R5 makes the feedback impedance lower than the series input impedance, causing voltage gain to be reduced and giving bass cut. When VR1 slider is at the R4 end of its track the feedback impedance is greater than the series input impedance, resulting in bass boost. Since the bass control circuitry, like the treble circuitry, is symmetrical, unity gain and a flat bass response is achieved when VR1 slider is at the centre of its track.

VR1 can thus provide a flat response or the desired level of bass cut or boost, with R4 and R5 limiting the

maximum amounts of boost and cut respectively. R7 performs a similar limiting task in the treble control circuit and, together with R6, it also helps to minimise any interaction between the two controls.

When the slider of R10 is at the top of its track (and disregarding any cut or boost introduced by VR2 and VR1) the overall circuit has a nominal gain of unity. If required, the amplifier feedback can be reduced by adjusting the slider down the track, so that the circuit provides a small amount of voltage gain. The maximum gain available is a little over three times, or approximately 10 dB . The gain could be boosted still further by reducing the value of R11 but, in the
interests of obtaining good noise, distortion and overload performances, this is not recommended.

CONSTRUCTION

Any normal method of construction can be employed for this circuit; the prototype was built using the printed circuit design shown in Fig. 2. The layout is not particularly critical if some other method of construction is used, but the components should obviously be kept away from hum fields in order to minimise pick-up. The input connection should be made by way of screened cable.

DIRECT READER SERVICE RADIO \& ELECTRONICS BOOKS

18. 50 Projects Using IC CA3130
19. 50 CMOS IC Projects
20. A Practical Introduction to Digital IC's
21. Beginners Guide to Building Electronic Projects
22. Essential Theory for the Electronics Hobbyist
23. 52 Projects Using IC741
24. Two Transistor Electronic Projects
25. How to Build Your Own Metal and Treasure Locators
26. Electronic Calculator Users Handbook
27. Practical Repair and Renovation of Colour TV/
28. Handbook of IC Audio Preamplifier and Power Amplifier Construction
29. 50 Circuits Using Germanium, Silicon and Zener Diodes
30. 50 Projects Using Relays, SCR's and TRIACS
31. Fun and Games with your Electronic Calculator
32. 50 (FET) Field Effect Transistor Projects
33. 50 Simple L.E.D. Circuits
34. How to Make Walkie-Talkies
35. IC 555 Projects
f1. 25
£1.25
95p
. $\mathbf{£ 1 . 2 5}$
f1.25
95p
85p
£1.00
95p
£1.25
£1.25
75p
f1.25
75p
£1.25
75p
£1.25
£1.75
36. Projects in Opto-Electronics £1.25
37. Radio Circuits Using IC's £1.35
38. Mobile Discotheque Handbook £1.35
39. Electronic Projects for Beginners £1.35
40. Popular Electronic Projects £1.45
41. IC LM3900 Projects £1.35
42. Electronic Music and Creative Tape Recording £1.25
43. Practical Electronic Calculations and Formulae £2.25
44. Radio Stations Guide £1.45
45. Electronic Security Devices £1.45
46. How to. Build Your Own Solid State Oscilloscope £1.50
47. 50 Circuits Using 7400 Series IC's £1.45
48. Second Book of CMOS IC Projects £1.50
49. Practical Construction of Pre-Amps, Tone Controls, Fitters \& Attenuators £1.45
50. Beginners Guide to Digital Techniques 95p
51. 28 Tested Transistor Projects £1.25
52. Digital ic Equivalentsand Pin Connections£2.50
53. Linear IC Equivalents and Pin Connections £2.75

POSTAGE: 20p. PER BOOK. IF MORE THAN 3 BOOKS ORDERED: 10p PER BOOK

To: Data Publications Ltd., 57 Maida Vale, London W9 1SN Please send me within 21 days . copy/copies Book Nos:

I enclose Postal Order/Cheque for $£$
Name
Address
(Block Letters Please)
(We regret this offer is only available to readers in the U.K.)

SMALL ADVERTISEMENTS

Rate: 12p per word. Minimum charge £2.00
Box No. 30p extra
Advertisements must be prepaid and all copy must be received by the 4th of the month for insertion in the following month's issue. The Publishers cannot be held liable in any way for printing errors or omissions, nor can they accept responsibility for the bona fides of Advertisers. Where advertisements offer any equipment of a transmitting nature, readers are reminded that a licence is normally required. Replies to Box Numbers should be addressed to: Box No. -, Radio and Electronics Constructor; 57 Maida Vale, London, W9 1SN.

WIRELESS, VALVES, PRE-WAR ONWARD S.A.E. Modern bargains list 15 p. Sole Electronics, (REC), 37 Stanley Street, Ormskirk, Lancs., L39 2DH.
BOOKS FOR SALE: Experiments with Operational Amplifiers, by George B. Clayton. £3.75. Experimenting with Electronic Music by Brown \& Olsen. £1.20. Electric Model Car Racing by Laidlaw-Dickson. 60p. Electronics Unravelled by Kyle. $£ 1$. Auto Electronics Simplified, by Tab Books. £1.20. Box No. G394.

ANY SINGLE SERVICE SHEET $£ 1$ plus S.A.E. Thousands of different service/repair manuals/sheets in stock. Repair data your named TV £6 (with circuits £8). S.A.E newsletter, price lists, quotations. (0698-883334). Ausrec, 76 Churches, Larkhall, Lanarkshire.

ALMAG INDOOR TV AERIAL. New design. All groups. $£ 2.50+50$ p P. \& P. Refundable. Murphy, 6 London Road, Dalkeith, Midlothian.

FOR SALE: A number of "D \& S " three pin, fused, mains plugs and fuses. S.A.E. for details. Box No. G396.

PARCELS ASSORTED COMPONENTS: 100 $£ 2.50$. $200 £ 3.50$. Superpack $400 £ 4.75$. All post paid. C.W.O. only. Transway Services, P.O. Box 197, Ingatestone, Essex, CM4 OAR.

OSCILLOSCOPE, Calscope, (Scopex). Super 6, single beam 6 MHz . Little used, now surplus. £100. Telephone: Tonbridge (0732) 832923 after 6 p.m.

POSTAL ADVERTISING? This is the Holborn Service. Mailing lists, addressing, enclosing, wrapping, facsimile letters, automatic typing, copy service, campaign planning, design and artwork, printing and stationery. Please ask for price list. - The Holborn Direct Mail Company, Capacity House, 2-6 Rothsay Street, Tower Bridge Road, London, S.E.1. Telephone: 01-407 6444.
(Continued on page 509)

> Semi-Conductors • I.C.s - Optodevices • Rs and Cs ingreat variety - Pots - Switches - Knobs Accessories •Tools • Materials • Connectors

ELECTROVALUE

ELECTROVALUE LTD., (RC4), St. Jude's Rd.
Englefield Green, Egham, Surroy TW20 OHB
Phone: 33603 (London 87) STD 0784. Telex 264475.
NORTHERN BRANCH (Personal shoppers Only): 680 Burnage Lane, Burnage, Manchester M19 1NA. Phone (061) 4324945.

Learn how to become a radio amateur in contact with the whole world. We give skilled preparation for the G.P.O. licence.
No previous knowledge required.
\qquad
\qquad Brochure without obligation to :-
British National Radio
\& Electronic School
4 Cleveland Road, Jersey, Channel Islands.
 T

-

THE SPECTACULAR

 1981 GREENWELDComponent Catalogue Bigger and better than ever!!

* 60p discount vouchers
* First Class reply paid envelope

Free Bargain List
Priority Order Form

- VAT inclusive prices
* Quantity prices for bulk buyers SEND 75p FOR YOUR COPY NOWII

CALC CHIPS 60p!!!

New full spec. supplied with data. Type MK50321 - full function inc. memory. Only 60 p .

8 and 9 digit 7 -segment bubble type for above chips - most have minor faults dud segment etc. Mixture of 2 auld different types with data 5 for £1.00
NICADS

Ex-equip size
for $\mathbf{£ 8 . 0 0}$
1N4006 DIODES
Specia purchase of 1 A rects, Russian made. Packed in boxes of 300 , $\mathbf{8 8 . 5 0}$ per box; 4 boxes $£ 30.00$; 10 boxes £75.00

DISC CERAMICS
0.22 uF 12 V 9 mm dia. Ideal for decoupling. 100 for $£ 2.75 ; 1000 £ 20.00$ 0.05 uF 12 V 15 mm dia. 100 £1.50; 1000 £ 12.00
Pack of disc ceramics, assorted values and voiteges - 200 for $£ 1.00$ TRANSFORMERS
Mains primary, 50 V 20 A sec. $£ 20.00$ Mains pri. 110V 15A sec e30.00; 20A £40.00
FSRA60 relay. $2 \times 10 \mathrm{~A}$ contact, 1M, 1 B . Coit is 250 R , and rated 60 V ac, but works on $12-24 \mathrm{~V}$ DC. Solid Encapsulation with screw terminals makes it ideal for car use. £1. 20

ALL PRICES INCLUDE VAT: JUST ADD AOP POST

GREENWELロ

443G Millbrook Road Southampton SO1 OHX

LATEST PROJECT KITS

Double Output Test Oscillator Jan $81 \quad £ 5.95$
Car Voltage Monitor Jan 81
£2.75
Fuzz Box Jan 81
£7.15
Reverberation Unit Feb 81
£16.85
Single IC Signal Tracer Feb 81
£3.80
"Owizzee" Feb 81 (excludes p.c.b.) $£ 11.30$
Complete list of kits available on receipt of an S.A.E.
A selection from our new catalogue (45p post paid)
P.C.B. transfers (13 different sheets) 300p
5W amplifier module 530p
Small insulated crocodile clip 9p
Mains square lens neons, red or green 35p
Telephone pick up coil $\quad 75 \mathrm{p}$
$0.125^{\prime \prime}$ leds, red 12p green/yellow 21p. 0.2" 13p \&
Small $2_{2}^{1^{\prime \prime}}$ screwdrivers 18p $4^{\prime \prime}$ screwdrivers 22p
Set of 10 test leads with crocodile clips . 125p $2.5^{\prime \prime} \times 1$ " $0.1^{\prime \prime}$. Veroboard 16p + transistors, i.c.s. diodes, resistors, books, panel meters, nuts \& bolts, component packs etc etc.

T \& J ELECTRONIC COMPONENTS

98 Burrow Road Chigwell Essex IG7 4HB
Mail order only. Prices include VAT. No minimum order. Postage: components 40p, kits 65p. Orders are despatched same day as received. Catalogue 45 p post paid.

BUY THIS BEST SELLER

T.V. FAULT FINDING

 mONOCHROME 405/625 LINES

REVISED \& ENLARGED

Edited by J. R. Davies
132 pages
PRICE $£ 1.20$

Over 100 illustrations, including 60 photographs of a television screen after the appropriate faults have been deliberately introduced.

Comprehensive Fault Finding Guide cross-referenced to methods of fault rectification described at greater length in the text.

Price $\mathbf{£ 1 . 2 0}$ from your bookseller.
or post this Coupon together with remitance for $\mathbf{£ 1 . 5 0}$ (to include postage) to

DATA PUBLICATIONS LTD. 57 Maida Vale, London, W9 1SN

Please send me the 5th revised edition of TV Fault Finding. Data Book No. 5
/ enclose cheque/crossed postal order for
NAME
ADDRESS

SMALL ADVERTISEMENTS
 (Continued from page 507)

BURGLAR ALARM EQUIPMENT. Top quality brand new free catalogue and price list. Sigma Security Systems, 13 St. John's Street, Oulton, Leeds, Yorks. LS26 8 JT.

JOIN THE INTERNATIONAL S.W. LEAGUE. Free services to members including Q.S.L. Bureau, Amateur and Broadcast Translation, Technical and Identification Dept. - both Broadcast and Fixed Stations, DX Certificates, contests and activities for the SWL and transmitting members. Monthly magazine, Monitor, containing articles of general interest to Broadcast and Amateur SWLs, Transmitter Section and League affairs, etc. League supplies such as badges, headed notepaper and envelopes, QSL cards, etc., are available at reasonable cost. Send for League particulars. Membership including monthly magazine etc., $£ 9-00$ per annum U.K. Overseas rates on request, Secretary Grove Road, Lydney, Glos., GL15.5JE.
TELEPHONE ANSWERING MACHINE. Build your own for under $£ 10$ plus any cassette recorder. Send $£ 3$ for circuit and plans. S. D. Cross, 24 Thorney Road, Streetly, SuttonColdfield, West Midlands.

BOOK CLEARANCE. Bound volumes Radio \& Electronics Constructor Nos. 27, 28 and 29, $£ 3.00$ each. Cost Effective Projects Around the Home by John Watson, $£ 1.50$. Talk-Back TV: Two-Way Cable Television, by Richard Veith, £1.00. Solid State Short Wave Receivers for Beginners, by R. A. Penfold, 60p. 50 Simple LED Circuits, by K. N. Soar, 50p. All prices include postage. Box No. G399.

INTERESTED IN OSCAR? Then join AMSAT-UK. Newsletters, OSCAR NEWS Journal, prediction charts, etc. Details of membership from: Ron Broadbent, G3AAJ, 94 Herongate Road, Wanstead Park, London, E12 5EQ.
(Continued on page 510)

METALFILM RESISTORS 1\% Tolerance, $\frac{1}{4}$ Watt

ONLY 3P EACH
Minimum order £10 Minimum 5 pos per value 89 Values (E24)

Special Offer: 5 PCS of EACH (445 RESIS TORS) ONLY £11.50
High Quality, High Stability, High Strength VAT inclusive. Add $\mathbf{E 1 . 0 0}$ p\&p all areas.

ORION SCIENTIFIC PRODUCTS LTD. 10 Wardour St., London W1.

Wilmslow Audio
THE firm for speakers!

SEND 50p FOR THE WORLDS BEST CATALOGUE OF SPEAKERS, DRIVE UNITS KITS, CROSSOVERS ETC. AND DISCOUNT PRICE LIST

```
AUDAX - AUDIOMASTER - BAKER BOWERS \&
WILKINS © CASTLE - CELESTION CHARTWELL - COLES - DALESFORD DECCA - EAGLE - ELAC - EMI - FANE
``` GAUSS - GOODMANS - HARBETH

ISOPHON - I.M.F. -
JORDAN - JORDAN WATTS - KEF LOWTHER - McKENZIE - MISSION MONITOR AUDIO - MOTOROLA PEERLESS - RADFORD - RAM ROGERS - RICHARD ALLAN - SEAS SHACKMAN - STAG - TANNOY VIDEOTONE - WHARFEDALE

\section*{WILMSLOW AUDIO oefreme \\ 35/39 CHURCH STREET, WILMSLOW} CHESHIRE SK9 1AS.
Tel: 0625-529599 for Mail Order \& Export of Drive Units, Kits, etc.,
Tel: 0625-526213 (Swift of Wilmslow) for Hi-fi and complete speakers

\section*{A CAREER IN RADIO}

Start training today and make sure you are qualified to take advantage of the many opportunities open to the trained person. ICS can further your technical knowledge and provide the specialist training so essential to success.

ICS, the world's most experienced home study college, has helped thousands of ambitious men to move up into higher paid jobs - they can do the same for you.

Fill in the coupon below and find out how!
There is a wide range of courses to choose from, including:

CITY \& GULIDS CERTIFICATES
Telecommunications Technicians' Radio TV Electronics Technicians' Electrical Installations Technicians Electrical Installation Work Radio Amateurs'
MPT Radio Communications Cert EXAMINATION STUDENTS GUARANTEED COACHING UNTLL SUCCESSFUL

TECHNICAL TRAINING
ICS offer a wide choice of non-exam courses designed to equip you for a better job in your particular branch o electronics, incluaing:
Electronic Engineering \& Maintenance Computer Engineering/Programming Radio, TV \& Audio Engineering \& Servicing
Electrical Engineering Instailations \& Contracting

\footnotetext{
Technicians trained in TV Servicing are in constant demand. Learn all the techniques you need to service Colour and Mono TV sets through new home study course approved by leading manufacturer
}

POST THIS COUPON OR TELEPHONE FOR FREE PROSPECTUS

\section*{BECHARGEABLE} BATTERIES

\section*{TRADE ENQUIRIES WELCOME}

FULL RANGE AVAILABLE SEND SAE FOR LISTS. \(£ 1.45\) for Booklet Nickel Cadmium Power" plus Catalogue. Write or call:

\author{
NEW SEALED. \\ LEAD RANGE AVAILABLE
}

\section*{SANDWELL PLANT LTD}

\author{
2 Union Drive, Boldmere, Sutton Coldfield, West Midlands, 021-354 9764.
}

\section*{REVOR OPTICAL \& TECHNICAL}

We stock one of the largest selections of second hand microscopes and optical magnifiers, on and off stands. Please phone for details.

\section*{SMALL ADVERTISEMENTS \\ (Continued from page 509)}

CONNECTING WIRE, single strand, PVC covered. Ideal for electronics experiments and Proto-Board work. 10 colours. 50 yds. \(£ 1.50\). 100 yds. \(£ 2.50\). J.D. Electronics, 69 Well Heads, Thornton. Bradford. W. Yorks.
LEARN ELECTRONICS FAST. New, unique, brilliantly simple Tutronik system. Selected by BBC TV. No-soldering, 30-kwikbuild electronics projects. Learn fast to identify components, read circuit diagrams, break the colour code and connect circuits that really work. Kit complete with simple-to-follow instructions, circuit plans, components and Tutronic connection system in compact presentation wallet. Only \(£ 12.95\) plus 75p p. \& p. UK (\(£ 2.75\) p. \& p. elsewhere). Available only from Dept. RE, Technocentre Ltd., 140 Norton Road, Stockton-on-Tees, 'TS20 2BG.

FOR SALE: Oscilloscopes, Tektronix 545 with CA plug-in, double switched beam 15 MHz . £110. Solartron CD1017 (CT436) compact double beam, 6 MHz . \(£ 80\). Signal generators: RF/AM. \(100 \mathrm{kHz}-25 \mathrm{MHz} £ 20\). Audio, Advance \(20 \mathrm{~Hz}-50 \mathrm{kHz} £ 10\). Avo electronic multimeter (CT38) £20. Avo \(7 £ 20.500 \mathrm{~V}\) megger \(£ 15\). Large auto transformer \(240 / 115 \mathrm{~V} £ 10\). All working order with handbooks. S.A.E. enquiries please. Carriage extra. Box No. (Middlx.) G400.

WANTED: FAX equipment, manuals, service sheets, etc. G2UK, 21 Romany Road, Oulton Broad, Lowestoft, Suffolk. NR32 3PJ.

FOR SALE: Photographic enlarging equipment: Vivitar enlarger. Model E. 36 with 50 mm f. 3.5 and 75 mm f. 3.5 lenses. Kodak safety light. Kodak contrast filter set. 11 in. x 14 in. printing frame with copying facilities. Measuring flask. Three trays, three tweezers. Three plastic bottles. Clips. Printing paper. Antistatic brush for cleaning negatives. Kodak Photoguide Booklet. Man's protective apron. \(£ 75\) o.n.o. Pair of Goodman's speakers 8 ohms, 15 watts, \(£ 50\) o.n.o. R. L. Gee, 9 Glanmead, Shenfield, Essex.

2 WATT General Purpose I.C. Amplifier Module with volume and tone controls. Needs \(9 \mathrm{~V}-18 \mathrm{~V}\) p.s.u. or battery. \(£ 4.00\). R.H. Electronics. 119 Fraser Road, Sheffield, S8 0JH.

THE RADIO AMATEUR INVALID \& BLIND CLUB is a well established Society providing facilities for the physically handicapped to enjoy the hobby of Amateur Radio. Please become a supporter of this worthy cause. Details from the Hon. Secretary, Mrs. F. E. Woolley, 9 Rannoch Court, Adelaide Road, Surbiton, Surrey, KT6 4TE.
(Continued on page 511)

\section*{SMALL ADVERTISEMENTS \\ (Continued from page 510)}

100 1N4148 £1. 150 Resistors \(£ 1.100\) Capacitors £1. P. \& P. 25p. S.A.E. Lists. Dept. R, D. B. Products, P.O. Box 8, York, YO1 1FT.

FOR SALE: Damaged repairable cassette recorder and 10 cassettes. \(£ 15.00\). J. Fulton, Derrynaseer, Dromore, Co. Tyrone, N. Ireland.
INTERESTED IN RTTY? You should find the "RTTY Journal" of interest. Published in California, U.S.A., it gives a wide outlook on the current RTTY scene; RTTY-DX; DXCC Honour Roll; VHF RTTY news; and up to date technical articles are included. Specimen copies 35p from: The Subscription Manager, RTTY Journal, 21 Romany Road, Oulton Broad, Lowestoft, Suffolk, NR32 3PJ.

\section*{PERSONAL}

JANE SCOTT FOR GENUINE FRIENDS. Introductions to opposite sex with sincerity and thoughtfulness. Details free. Stamp to: Jane Scott, 3/Con North St. Quadrant, Brighton, Sussex, BN1 3GJ.

IF YOU HAVE ENJOYED A HOLIDAY on the Norfolk Broads, why not help to preserve these beautiful waterways. Join the Broads Society and play your part in determining Broadlands future. Further details from: - The Hon. Membership Secretary, The Broads Society,. "Icknield," Hilly Plantation, Thorpe St. Andrew, Norwich, N0R 85S.

BROADLANDS RESIDENTIAL CLUB for elderly people. Are you recently retired and looking for a home? We have a delightful top. floor room overlooking Oulton Broad, facing south. Write to: The Warden, Broadlands Residential Club, Borrow Road, Oulton Broad, Lowestoft, Suffolk.

SPONSORS required for exciting scientific project Norwich Astronomical Society are building a \(30^{\prime \prime}\) telescope to be housed in a \(20^{\prime \prime}\) dome of novel design. All labour being given by volunteers. Already supported by Industry and Commerce in Norfolk. Recreational. Educational. You can be involved. Write to: NAS Secretary; 195 White Woman Lane, Old Catton, Norwich, Norfolk.

\section*{SITUATION VACANT}

WANTED: Representatives to sell Electronic Components to shops and industries on good commission basis. Please send full details of experience to: Sunmit Electronics. 96 Peel Road, Wembley, Middlesex. Telephone: 01-904-6792.

\section*{PURE GOLD!}

Top-quality, low-profile, gold-plated contacts, IC SOCKETS
8 pin 8p 14 pin 14p 16 pin 16p 18 pin 18p 20 pin 20p 22 pin 22p 24 pin 24p 28 pin 28p 40 pin 40p 50 \(500+\) and 1 type lens 5\%
\(1000+\) any mix lens \(10 \%\)
Special Offer: \(10 \times 8\) pin, \(20 \times 14\) pin, \(20 \times 16\) pin, \(5 \times\) all others. £11.50

ORION
Orion Scientific Products Ltd., 10 Wardour St., London, W. 1

\section*{BUILD YOUR OWN}
P.A., GROUP \& DISCO SPEAKERS by R. F. C. Stephens

Save money with this practical guide. Plans for 17 different designs, Line source, I.B., Horn and Reflex types, for \(8^{\prime \prime}-18^{\prime \prime}\) drive units. \(£ 3.95\) post free (\(\$ 8\) overseas).
THE INFRA-BASS LOUDSPEAKER by G. Holliman
(full constructional details for versions using \(15^{\prime \prime}, 12^{\prime \prime}\) and \(10^{\prime \prime \prime}\) (drive units). £2.95 post free (\$6 overseas).
THE DALESFORD SPEAKER BOOK by R. F.C. Stephens
This books is a must for the keen home constructor. Latest technology DIY designs. Plans for I.B., and Reflex designs for \(10-100\) watts. Also unusual centre-bass system. £2.20 post free (\(\$ 5\) overseas).

VAN KAREN PUBLISHING 5 Swan Street, Wilmslow, Cheshire

\section*{PRINTED CIRCUIT BOARDS FOR "RADIO \& ELECTRONICS CONSTRUCTOR' PROJECTS. \\ OCT 20dB amp. Part 1 68p plus 25p P\&P NOV. 20dB amp. Part 2 62p plus 25p P\&P NOV. Basic Med. Wave radio 69p plus 25p P\&P DEC. Volume Expander \(\mathbf{£ 2 . 2 5}\) plus 25p P\&P \\ All boards ready for use, roller tinned and drilled, glassfibre. \\ Trade enquiries welcome. Highly competitive prices. \\ Write now for quote to: \\ BRB PRINTED CIRCUITS (REC) 109, Potter Street, Worksop, Notts. S80 2HL.}

\section*{VARTWIPE WIPER DELAY CONTROL}

The Vari Wipe provides intermittent operation of the windscreen wipers with adjustable control to delay each wipe between 3 and 60 seconds. Set the control to suit the conditions to clear light drizzle, fog, snow, sleet or spray. Easily fitted to British, Continental \& Japanese cars with 12 volt self park wipers. Complete kit contains all components, including timer chip; PCB, case, mounting panel, wire, etc., with full instructions.

\section*{RADIO \& ELECTRONICS CONSTRUCTOR}
Single CopiesPrice 60p each, p\&p 20pIssue(s) required
Annual SubscriptionPrice \(£ 9.50\) inland, \(\mathbf{£ 1 0 . 5 0}\) overseas (including Eire)post free, commence with

Bound Volumes:
\begin{tabular}{lc}
Vol. 27. & August 1973 to July 1974 \\
Vol. 28. & August 1974 to July 1975 \\
Vol. 29. & August 1975 to July 1976 \\
Vol. 30. & August 1976 to July 1977 \\
Vol. 31. & August 1977 to August 1978 \\
Vol. 32. & September 1978 to August 1979 \\
Vol. 33 & September 1979 to August 1980 \\
& (Available Mid-March)
\end{tabular}

August 1973 to July 1974
ust 1975 to July 1976 August 1976 to July 1977 August 1977 to August 1978 September 1978 to August 1979 September 1979 to August 1980 (Available Mid-March)issue

\section*{CORDEX SELF-BINDERS}

With title, 'RADIO \& ELECTRONICS CONSTRUCTOR' on spine,
maroon only
With no title on spine, maroon
With no title on spine, green

Price \(£ \mathbf{£ 3 0 0}\), post \(\&\) pkg \(£ 1.50\) Price \(£ 3.20\), post \& pkg \(£ 1.50\) Price \(\mathbf{£ 3 . 5 0}\), post \& pkg \(£ 1.50\) Price \(£ \mathbf{£ 3 0}\), post \& pkg \(£ 1.50\) Price \(£ 5.20\), post \& pkg \(£ 1.50\) Price \(\mathbf{£ 5 . 5 0}\), post \& pkg \(£ 1.50\) Price \(\mathbf{£ 6 . 2 0}\) post \& pkg. \(£ 1.50\)
Prices include V.A.T.
DATA BOOK SERIES

Price £2.25, post \& pkg 60p Price £2.25, post \& pkg 60p Price £2.25, post \& pkg 60p

DB5 TV Fault Finding, 132 pages
Price £1.20, P.\&P. 30p
DB6 Radio Amateur Operator's Handbook,
New edition in course of preparation
DB17 Understanding Television, 504 pages Price £3.95, P. \& P. £1.20
DB19 Simple Short Wave Receivers Price 80p, P. \& P. 30p 140 pages

\section*{STRIP-FIX PLASTIC PANEL SIGNS}

Set 3: Wording - White
Set 4: Wording - Black
Set 5: Dials
- 6 sheets
- 6 sheets
- 6 sheets

Prices include V.A.T.

I enclose Postal Order/Cheque for in payment for

NAME
ADDRESS

Postal Orders should be crossed and made payable to Data Publications Ltd.
Overseas customers please pay by International Money Order. All publications are obtainable through your local bookseller Data Publications Ltd., 57 Maida Vale, London W9 1SN
LINEAR AMPLIFICATION

3

e

(d)
-
 to the negative rail in (e), whereupon the transistor is turned off and
the collector voltage is the same as that of the positive rail.

In (f) the transistor and base resistor follow a CMOS NAND gate. The transistor acts as a digital inverter, producing a low collector voltage when the gate cutput is high and a high collector voltage when the gate output is low. Since the output of the NAND gate does not change states instantaneously, there is a brief moment during a change of state when the transistor exhibits linear amplification. The same applies to all digital devices which are driven by other devices. The operational amplifier in (a) is classed as linear whilst the NOR gate of (b) is classed as digital. All the i.c.'s in the t.t.I. and CMOS logic families are described as digital.

In practice, digital devices exhibit linear amplification whilst some linear devices can be employed in simple digital applications. The transistor in (c) has its base bias resistor returned to an input voltage which is a fraction, say one-quarter, of the supply voltage. half-way between the supply rails. In this state the transistor is capable of linear amplification: an increase in input voltage causes a fall in collector voltage and a decrease in input voltage causes a rise in collector voltage. In (d) the base bias resistor is returned to the positive rail and the transistor is turned fully on, producing a collector voltage which is virtually zero. The base resistor connects to the negative rail in (e), whereupon the transistor is turned off and when the gate output is low. Since the output of the collector volta
Most integrated circuits are categorised as linear or digital

\footnotetext{
digital devices.
}

\section*{Make it for \(\alpha\) Song!}

\title{
The New Maplin in Matinée
}

\title{
Amazing Value For Only \\ £299.95
} \(+£ 99.50\) for cabinet if required.

Easy to build. Latest technology - means less cost, less components and 80\% less wiring. Comparable with organs selling for up to £1,000.00. Two 49-note manuals. 13-note pedalboard. All organ voices on drawbars. Preset voices: Banjo, Accordion Harpsichord, Piano, Percussion. Piano sustain Sustain on both manuals, and pedalboard. Electronic rotor, fast and slow. Vibrato and Delayed vibrato. Reverb. Manual and Auto-Wah. Glide (Hawaiian Guitar Sound). Single finger chording plus memory. 30 Rhythms! 8-instrument voicing. Major, Minor and Seventh chords Unique walking bass lines with each rhythm. Unique countermelody line with each rhythm. Truly amazing value for money. Full construction details start in the March issue of Electronics \& Music Maker on sale Feb. 14th.

The complete buyers' guide to electronic components. With over 300 pages, it's a comprehensive guide to electronic components with thousands of photographs and illustrations and page aiter page of invaluable data. Get a copy now - it's the one catalogue you can't aflord to be without.

Maplin Electronic Supplies Ltd
All mail to: P.O. Box 3 , Rayleigh, Essex SS6 8LR
Telephone: Southend (O702) 554155. Sales (0702) 552911.
Shops:
159-161 King Street. Hammersmith, London W6. Telephone: (01) 7480926.
284 London Road, Westcliff-on-Sea, Essex. Telephone: Southend (0702) 554000
Both shops closed Moindays.```

[^0]: Published in Great Britain by the Proprietors and Publishers, Data Publications Ltd, 57 Maida Vale, London W9 1SN.

 The Radio \& Electronics Constructor is printed by LSG Printers, Portland Street, Lincoln.

