RIDIDEEETRONLCE MAR~~ 1981 CONSTRUCTOR

7229.60

NI-CAD BATTERY CHMRGER DIODE EVALUATOR

 ssヨyad z
3
n
\vdots
\vdots
\vdots
\vdots
\vdots
\vdots
\vdots
\vdots
10
13
-1
0
0

3
$\overline{1}$
0
0
0
0
0
0
0

3
0
0
3
3
3
3
0
0
0
0
0
0
0
0
0

 If you come into contact with microprocessors（whether as
hobbyist，student，circuit engineer，programmer，buiyer，
descriptions and control specifications of the individual
circuits are set out in the detailed data tables on separate

186I HOYVW

$$
\begin{aligned}
& \text { 1.sно qәM - uogonposd } \\
& \begin{array}{l}
\text { Opinions expressed by contributors are } \\
\text { not necessarily those of the Editor or prop- } \\
\text { rietors. }
\end{array}
\end{aligned}
$$

$\begin{aligned} & \text { NEW PRODUCTS } \\ & \text { LOW INDUCTANCE COILS－} \\ & \quad \text { Electronics Data No．} 67\end{aligned}$
 Correspondance should be addressed to
the Editor，Advertisin Manager Sub－

 Annual Subscription：E9．50，Eire and
Overseas $£ 10.50$（U．S．A．and Canâda abstracts or reterences are allowable
provided acknowledgement of source is
given． Qoata Publications Ltd，1981．Contents
may only be reproduced atter obtioning Databux，London
OOsta publications Ltd．， 198

57 MAIDA VALE LONDON W9 1 ISN
 LD6LL u peysilqna 2 sits A！Yłuow pous！｜qnd L ON \downarrow © eunton L86t youew m NEW PRODUCTS RECEIVER ARTICLES Hall，Bt．，K．C．M．G FURTHER NOTES ON SOME RECENT at almost negligible cost
by P. R．Arthur

NICAD BATTERY CHARGER－Run your radio TROPO CHANNELS OHM＇S LAW REVISITED－In Your Workshop trade news transistor gain tester by R．A．Penfold SHORT WAVE NEWS－For DX Listeners
by Frank A．Baldwin

HIGH QUALITY COMPRESSOR－High compression IN NEXT MONTH＇S ISSUE sбunseh \wedge ．W 人q BATTERY VOLTAGE MONITOR－Low

き $\therefore \quad 4.2 .93 \quad \mathrm{R}$ DE GRAFF

B $\quad 2$

\equiv E
w
OUR NEXT ISSUE
WILL BE PUBLISHED
MID－MARCH

Sit
としt

凨 555 astable multivibrator
oscillating at a frequency of given in Fig． 1 ．IC IC is a standard
555 astable multivibrator ALTERNATOR diode being checked is short－
circuit or open－circuit． mistakable and striking man－ diode evaluator which indi－
cates diode polarity in an un－
mistakable and striking man－

 alogues or readily available and of dodes which are not
listed in component cat－ often be difficult to determine
 series，and these soon lose the
white band which indicates the ings become erased are
rectifier diodes in the iN4000 the components whose mark－ components become com－

 Electronic experimenters，on
the other hand，frequently tory and are then left alone．

 about 150 Hz ．Because R1 has a
value which is much lower
than that of R2 the charge and biased．

 an inverter．When pin 3 of IC1 is
high，pin 3 of IC2 is low，and another 555 which functions as applied to pins 2 and 6 of IC2， neat is close to being a $50: 50$
 because these are reverse

GOVdS GNV NVN，

ary to touch the test diode
instances，it is merely necess－
te paxpos uado ue yulm sad
$\begin{aligned} & \text { layout is shown in Fig．3．The } \\ & \text { two terminals can be insulated }\end{aligned}$
aued yuout parsab6ns e pue
case which can accommodate

> NOLIOnHISNOT
> $\begin{aligned} & \text { determine the pola } \\ & \text { light-emitting diodes! }\end{aligned}$
10．9dd e aq IIIM Məueq alqe
ol sasil siul lyE！le sapop
positioned
sino－pea pajeןd 人pua！uar pareulunill A！pears aq
 әро！p 1sat əu

RADIO AND ELECTRONICS CONSTRUCTOR

扇

 ulators with sample gear design is achieved by demonstrating the
Value of programmate calic－
vulators with sample gear design scientific programmable calc－
ulators and imircomputers．This
is achieved by demomotrats．
． ners or gears and gearing to take
full advantage of the potentia of
scientific programmable calc－ encourage non－specialist desig－
ners or gears and dearing to take
ful

 A major project to encourage
computer aided design of gearing

S甘OLVTODTVD GTGVWWV\＆NO甘d PROJECT ENCOURAGING USE OF

NEWS

 couraging．

 ачң Iе раq!

 IC1 is a CA3140 operational amplifier employed
as a voltage comparator. Its output is low when its
non-inverting input is negative of the inverting input,
\qquad
 feeds the full-wave rectifier consisting of D1 and D2,
 on-off switch S1. PL1 is the mains indicator neon jo Кем Кq IL, Iawiofsuen unop-də1S pue uople affect the accuracy of the unit at all, and The seenlater, wide variations in the supply voltage and an Power for the control circuit is obtaned from a
simple unregulated mains power supply. As will be
yoLDny isnoj soinoxajans anv oiavy

 T 1 mains transformer, secondary $12-0-12 \mathrm{~V}$
100 mA Transformer C1 $220 \mu \mathrm{~F}$ electrolytic, 25 V . Wkg Capacitor VR1 $10 \mathrm{k} \Omega$ potentiometer, linear R6 10M ${ }^{\text {R }} 10 \%$

R1 $15 \mathrm{k} \Omega$
R2 $15 \mathrm{k} \Omega$
R $35 \mathrm{k} \Omega$ (All fixed values $\frac{1}{4}$ watt 5% unless otherwise stated) SLNENOCNOS
 passes through the centre grommet
was not fitted when these photo
graphs were taken 3-core mains output lead, which device is fitted outside the rear pane
at the left, as seen in this view. The The thermistor temperature sensing

MARCH 1981 of the relay, and to make the circuit impervious to
noise and hum pick-up at the i.c. inputs. change in the thermistor, but the positive feedback
sufficient to cause rapid energising and de-energisin takes piace over only a small range of resistanct high values of R6, R5 and R4, this hysteresis effect resistance now has to increase to a slightly highe
 to go negative of the inverting invput the i.c. output
 these are effectively in parallel with R3, causing the
 problems are overcome by introducing a smank ievel and hum voltages at the inputs of IC1. These Erratic operation is also possible due to small noise fairly rapidly from one state to the other when the HYSTERESIS once again.

 resistance decreases. Whel (which has been pre-set by
reaches the desired livel
VR1) the resistance of the thermistor falls to a value

 passed through to the inside of the case. A small

 holes in the rear panel for the 3 -core mains input and
output leads must be fitted with grommets. The lead photographs, and it is not particularly critical. The layout of the prototype can be seen in the

[^0]皆

 relay coil when the relay de-energises. D3 is the usual protective diode which prevents the
formation of high back-em.. voltages across the
relay coil when the relay de-energises.

-

Rear view showing the wiring to the front pahel components

克
है

 Fig. 2. The component lead-out wires should be lon

 the thermistor leads just inside the grommets, and
these held the thermistor in position. Constructors
desiring a more secure form of mounting can fit a they are soldered together in the manner shown in appropriate positions with their lead-out wires bent
flat against the underside of the panel, after which

łuauoducos s!ч7 of
 shown here, pass in a trailing 13 amp suleur aroo- ε e ołu! ssed 'әjay umoys

in simple systems，without it other micro－
processors
chips．＂
 sindino pue sindu！｜le eot pasin uauts！पi！

 cumulator is not zero．

 In the program as shown，there＇s no reason for
the address to jump．Since we started with a

słdnıəұu！pue s6e｜f＇słndu！әsuəs

 I861 Hวчvw ture of any microprocessor system wourrupt sequence，and it＇s a mosti m
高 －テ

 We will keep SENSE－A earthed for the moment ${ }_{83}$ the other end into Y 2 and return the first end to

 address tor a new tune．If the tune eprogram were
long，we could use the indexing address simply the star of at tine progrd then index a new
the trense－
address for a new tune．I the tune program were

 su
0
0

 Now switch off and remove the earth connec－
tion from the SENSE－8 input at line B3 of the

 the sequence of adaresses．Next，swity adin，re－
SENSE－A to the positive rail and try
 then continues with a few instructions which are
arranged to increment the addresses normally； a number ito the eigh ede odresses exchange，and
le．d．willightwhenthe
then continues with a few instructions which are changing ind wrom as shown．The program loads what this does． star ．
lowe already established for
the
 \square

LDI	11000100	
00	00000000	
cSA	00000110	
XR！	11100100	
BYT	00010000	
Jz	10011000	Note address
о3	00000011	Note address
NOP	00001000	Note address

き

 go through the whole re-loading, procedure
again, but this mould be very tedious, and it's the service routine. The interrupt
system has to be re-armed by the IEN instruction

 microprocessors use a special instruction called
PUSH

celled.
P3 At the same time, the IEN instruction is can
celled.

 plemented; instead, the routine starts with the

 any part of the main program after the
IEN instruction, the INS8060 completes the insWhen the interrupt occurs, which can be in

 iNS8060 system. Unusually, the example addres-

 jump. Two neat points of detarus is not armed
ible. one is the fact an interrupt
immediately after the IEN instruction but one injump. Two neat points of detail make this poss-

MARCH 1981 1981 catalogue can be obtaine
 offering surplus lines at
There are five vouchers, each w

sample of the instructions ts can be used. What's
what programming method
the next step? That depends very much on your

 go the interrupt service routine and control
by torned to the main program.
returney through the pressing any key will cause the SENSE-A line to
go high. The keyboard is then read and decoded having the microprocessor continually scanning
the kevboard, the keyboard is arranged so that One very common use of ayboard. Instead of
type we've described is for a keybor after the other will cause an interrupt.
One very common use of an interrupt of the Where NOP steps following IEN are not counted as
that
instructions, the other is that two IEN steps, one

 if the interrupt had never occurred.

 again. The program counter will now have the
address of the last complete step of the -main
 jump back This returns the program counter to the instruction after that. The next instruction is a
jump back to the XPPC(3) code at the start of the

 then there are two options opento you aridge MK.

 your interest and started you on the fatal fascinown tastes and needs. If this series has aroused

210
practice, a significant collector current only when the
 TR3 is cut off if the supply voltage is lower than 10.6
vols. If the supply voltage is raised above 10.6 volts 8
0
0
0
0
0
o
0
0
0
0
0
0
0
0
0
0
0
 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
 CIRCUIT OPERATION or 12 volts if preferred.

 of which turns on when the battery voltage is above a
certain threshold level. whilst the other lights up wherede. level. The unit thas two light-emitting diodes, one
able

 S! Jol!uou a8ey!

\pm
yoLDOyISNOD SIDNOYLDヨาส anv OIavy

元

 861 HวyษW

		いいールん～を Win

JINOYLOJ73 ± 0 NOISS3S \forall
 GヨONIWJY NOYI YNIYヨOTOS

$$
\text { Single IC design----- } 3 \text { mixed inputs }
$$

－Low impedance＂Constant Voltage＂output \bullet Continuously variable voltage control \bullet Low cost mains operation

| －Low impedance＂Constant Voltage＂output
 \bullet Continuously variable voltage control
 \bullet Low cost mains operation |
| :---: | （2

Sヨd09S07719SO yos yolvyailvo ヨ9v170＾

metre aerial

OIOVY ヨニ甘M IYOHS ONV WחILヨW

 er diode could also be employed and this would
 volt zener diode gives a threshold voltage of approx－
imately 10 volts，whilst an 11 volt diode gives a

 COMPONENTS
HOLOMZISNOD SOINO

 u!e6 गə!!!|due uo

 recorders having automatic recording level con
trol. Such a control reduces amplifier gain with

 output signal is obtained from the output of this
 The block circuit diagram of Fig. 1 shows the
various stages of the compressor. The input OPERATION simple to fit the compressor into
and it will quite readily fit between, say, a hi-fi
tuner and a cassette deck.

yoefte fSe」

'U0!7.107S!p ұпочұ!м о! е.л ио!ssaıduоэ 46!Н

 rises to the level at which compression is
 and further reduced gain in the amplifief. t . level results in brighter inumination of the l.e.d.

The prototype compressor is assembled in a small metal instru
ment case.

 p/OYSO147 -1
$<$
$\stackrel{ \pm}{\infty}$

paonpas sasneo 'p.a' ачң u! ssauzu

 रии!

 -siousem buiveds yमıM sinu pue sұloq
 adjustment of the input threshoid lever at which
compression commences, with maximum gain
corresponding to minimum threshold level.
 иəчM (sam! $0 Z$) gpgi snoqe s! pue "əueisisas by the emitter resistance, whereupon the gain is
approximately unity when VR1 inserts maximum ing VR1. The gain is roughly equal to R6 divided
iny the emitter resistance, whereupon the gain is the emitter circuit is not bypassed, and the vol-

 unity or more, whereas in this application the
voltage gain can drop to well below unity. This
necessitates the use of a large capacitor to ensure an operational amplifier to have a voltageg gain of
anity or more, whereas in this application the necessary. This is because most circuits require

 inverting input of IC1 to half supply voltage, and amplifier gain is unity. R2 and R3 bias the nonphotocell resistance has a minimum value of
$200 \mathrm{M} \Omega$ and since R1 and R4 are both $1 \mathrm{M} \Omega$, the resistance divided by R1. In the dark condition the tively low signal source resistance, the voltage
gain of the amplifier is equal to the feedback and the photocell in parallel. Assuming a relafrom the output to the input being given by R4 The input signal is applied via C2 and R1 to the The full circuit of the compressor is given in
was found that the
photocell was not sufficient to prevent distortion such as a PP6 size

 quickly to increases in illumination, and signitic-
antly more slowly to decreases in illumination

 D1 and D2 rectify the output from TR1, and the

人lddns əyt sill pue youms Ho-uo aut uo s! IS

 puodsal of sylun uoissajduio sot fémsou s! il

 Capacitors

VR1 $4.7 \mathrm{k} \Omega$ potentiometer, linear
Resistors
(All fixed values $\frac{1}{4}$ watt 5% unless otherwise
stated) Nuts, bolts, wire, etc.

186t hว४丬w

 compression, with atput of only about 4 dB

 voltages up to about 70 mV , and there is only a plastic sleeving, or to bind some p.v.c. insulating

 aul inq ‘Lyヘ to 6uinas aył uo spuadap Nisno!^qo

эコNVNYO-3y]d

 Supplies.of 0.2 in. supplies. The TIL220 is a red I.e.d. with a diameter

 흘
 NOLLOnyisnos

1861 HכมฟW
 чłoq p!nous slayjos xวe! indzno pue indu! əul

든

 - lisera power is 10 kW .

 to 2400 (variable closing time. The power is
and programmes are in French and vernaculars.
and from 1300 to 2400 . Sundays from 0415 through
to 2400 (variable closing time). The power is 30 kW nacuiar in the Home Service, scheduled from 0415
(Sundays from 05050) to 0800 (Saturdays until 1100)
and from 1300 to 2400 . Sundays from 0415 through Cotonou on 4870 at 2039, OM with a talk in ver-
nacular in the Home Service, scheduled from 0415

the English programme for Europe, scheduied on this
channel from 2100 to 2130 . Bucharest on 9690 at 2111, YL with a newscast in

WINB Red Lion on 15185 at 2050, OM with a
religious programme in English. U.S.A.

Gulf, East and South East Asia, scheduled on this
frequency from 0500 through to 0800 . the English p programme intended for the Arabian
Gulf, East and South East Asia, scheduled on this

TRT Ankara on 15220 at 1915 , local music and
songs in the Turkish programme for Turks abroad,
scheduied on this channel from 0425 to 1930 . - TURKEY general guide for both the short wave listener and the
Dxer. The transmission details published here are
correct at the time of writing. All items included in this article are intended as a
general guide for both the short wave listener and the
Dxer. The transmission details published here are Accra on 4915 at 2034, OM in vernacular. This is
GBC 1, operating from 0530 to 0800 (Sundays until
2300 and from 1200 o 2305 in English and vernacu-
lars. The power is 10 kW .
in English and vernaculars
ramme. The power is 20 kW

- NAMIBIA
Windhoek on 4965 at 2032, OM with a talk in
Afrikans. The schedule is from 0300 to 0615 and
from 1515 to 2200 . The power is 20 kW .
L NIGERIA
Lagos on 4990 at 0535 , OM announcer, OM ballad,
all in English, a good ciear signal at this time. The
schedule is from 0430 to 1000 and from 1700 to 2310
in English and vernaculars in the National Prog-
ramme. The power is 20 kW . on a xylophone-like instrument. The schedule is from
0430 (Sundays from 0530 to to 0630 and from 1630 to
2400 . The power is 100 kW . on a xylophone-like instrument. The schedule is from Accra on 4915 at 2034 OM in vernacular. This is VNVHS•

KUWAIT
KBS Kuwait on 21545 at 0640 , continuous pops in

SHORT WAME NEWS
SHORT WMVE NEWS

SHORT WAVE NEWS
RADIO AND ELECTRONICS CONSTRUCTOR - KENYA 0900), from 0900 to 1200 (Saturdays and Sundays
until 2100) and from 1700 to 2100 . The power is
5 kW .

 Radio Rwanda, Kigali, on 3330 at 1744, YL in
ver a Nouakchot on 4845 at $2053,0 \mathrm{M}$ with a
080 c . The shedule is from 0600 (Sundays from
0800) to 090 and from 1758 (Sundays from 1700) to MAURITANIA
Nouakchott on 4845 at 2053, OM with a talk in
2 1845. The power is 20 kW schedule being from 0427 to 0830 and from 1630 to
2230 with an English newscast timed from 1830 to
1845. The power is 20 kW . Bafoussam on 4000 at $2046, \mathrm{OM}$ chanting in ver-
nacular, African-type orchestra. Bafoussam radiates
both local and the National programmes, the Bafoussam on 4000 at 2046, OM chanting in ver-- BENIN
 -

186I нวуш~

 Programmes in Spanish are scheduied from0300 and in English from 0300 to 0500 . The power is
5 kW . ramme announcements, time and frequency details,
Programes in Spanish are scheduied from 1100 to La Voz Evangelica, Tegucigalpa, on 4820 at 0301 ,
OM with station identification in English, prog - honduras 10 kW . marimbedule is from 0930 to 0600 and the power is Radio Guatapuri, Valledupar, on 4815 at 0250 The schedule is on a 24 -hour basis and the power is
 - COLOMBIA Radio Super, Medellin, on 4875 at 0530, OM with
 ured 4801.5 at 0359 OM with a ballad in Spanish, The schedule is from 1100 to 0400 (Sundays until
300). The power is 10 kW .
Radio Popular Independiente, Cuenca, on a measwith echo-effect, National Anthem and off at 0255 .
The schedule is from 1100 to 0400 (Sundays until Radio Iris, Esmeraldas, on a measured $\mathbf{3 3 8 1}$ at
0256, OM announcements and station identification (Saturdays until 0400 , Sundays until 0100). The
power is 5 kW . with a sporting commentary in Spanish. The schedule
of this one is from 1030 (Sundays 1100) to 0300
(Saturdays until 0400 , Sundays until 0100). The Radio Federacion, Sucua, on 4960 at 0319, OM
with a sporting commentary in Spanish. The schedule directed to the South Pacific. Station identification at
0830 . HCJB Quito on 9745 at 0827, OM with news of
Latin American affairs in an English programme
directed to times are variable, reportedly opening as late as 1100
and closing at 0648 . The power is 5 kW .
HCJB Quito on 9745 at 0827 OM with news of from 1000 to 0415 but both the opening and closing
times are variable, reportedly opening as late as 1100 5062 at 0125, OM with a talk in Spanish about local
affairs. Listed on 5060 , R.N. Progresso has a schedule

- ECUADOR

 to resolve this one, signal sandwiched between tele-
type and CW. The schedule is from 0255 to 0630
(Sundays from 0330 and from 1300 to 2010 (Satur-
days until 2110). The General Service in English is
featured on this channel. The power is just 1 kW .
tions. The schedule is from 0900 to 0500 and the
power is 10 kW . to 0400 and the power is 5 kW but
an extended schedule when logged

one has a schedue trom time signals over the programme. The power is 5 kW . | 0 |
| :--- |
| 3 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |

 0300 and the power is 1 kW .
 0420. Gone at 0500 retune. This one operates irregu-
larly and was not reported at all in the short wave political speech in Spanish, full and clear station iden-
tification at 0415 and again at 0418. YL with songs at
0420 . Gone at 0500 retune. This one operates irregu-- bolivia announcements in English, recorded local pops. The
schedule is from 1100 (Sundays from 1200) to 0510
and the power is just 1 kW .
 MYS but from 0300 until closing time, reportedly as late as
0430 , the language used is English. The power is
 -801d sno!

念

 "bar" of l.e.d.'s, the number of l.e.d.'s which
switched on depending upon the input voltage to bargraph, incidentally, merely consists of a row interesting and useful device. The bargraph used is ircuit operation functioning of the bargraph i.c., which is a very Before proceeding to a description of the tester BARGRAPH I.C.

Also checks leakage and diodes

 Idunsuoo 북웅영
\% not light up. TR3 efffectively shori-circuits D3 to D5, and these do
 the output of comparator 2 goes low and turns off
TR2. TR3 3 remains turned on, and so a current from Should the inpur vollage be taken above 0.4 volt, lights up. However, 1 R2, diverts current away rime hrough D1 and TR2 from the current source, and D1
 In the input voltage is taken above 0.2 voit, the
inverting input of omparator 1 will then be at a
higher volatape than its non-inverting inpurt taking iss Ifr lighting up.
If the input voltage is taken above 0.2 volt, the
for current source, but as TR1 1 is turned on it will divert
the full 20 mA current and prevent any of the l.e.d.'s
then

 nput volage is hovering close to its threshold
volage.
Withe input volage at zero, the non-inverting preventh flickerening of an L.e.d. indicator when the
input voltage is hovering close to its threshold threshold voltage (about 10 mV less with the U233B)
before the l.e.d turns off agan .he hyseresis
prevent
 mall amount of hysteresis, se that when the inpur turned on or turned off. The comparatars also have a
small amount of hysteresis, so that when the input triggering. This ensures that each l.e.d. is either between the high and low states during the rapid
transition between the two states due to input signal comparators are similart to operational amplifiers, but
differ stighty
between the thin that the aund the output car only
oxist compartive input levels are reversed. The
comparators are similar to operational amplifiers, but input is positive of the non-inverting input, or high (at
virtually the full positive supply porentia) if the
comparative tinput levels are peversed the
 vol. These are fed to the non-innering inputs of equal-value resistors, and which therefore provides
aodititional referencee voltages of $0.8,0.6,0.4$ and 0.2
 1 volit voltage source, but only comparator 5 is fed
from direct trom this source. The other four are fed these. The non-inverting inputs are fed from a stable The basis of the i.c. is five voltage comparators, and
the input signa i s taken to the inverting inputs of all of

D1 to D 5 are discrete l.e.d.' s, and are not part of the encapsulated in as stand aram pin di.i.l. plastict package Fig. 1 shews the internal arrangement of the
U237B and its pin numbers. The device is
 circuit. In the case of the U237B the threshold
voltages for turning on the fivel.e.e. s. sha 0.2 voli,.0.4
volt, 0.6 volt, 0.8 volt and 1 volt. Thus, an input

$\stackrel{3}{4}$ \qquad

\&

be left unconnected
位 are ч?y
 needed if a display with five 1. .ed 's sis to be used.

 으․
0
0
0
0

 and the fact that TR1 consumes the 20 mA constant
current when none of the 1.e.d.'s is alight. Most cause D3 to light up on is own
 across this resistor equal 101 volt and dase D D 3 and
D 4 to turn on. About 0.6 mA is needed i order to
or 3 mA must flow through R3 to make the volage R3. The base couples to the negative rail via R1 or
R2, and D1 and D2. A coiliccior current of about

 st गә1521
RADIO AND ELECTRONICS CONSTRUCTOR

on the base panel of the case after all the wiring h
been completed.

 position. If the l.e.d.'s light up with S1 in both

 open-circuit. In either case it is unlikely to be of any the "Low" position, then the test device either has an
extremely low gain or, more probably, it is
open-circuit. In either case it is unlikely to be of any neither of the l.e.d. indicators turns on when. S2 is in
the "Low" position, then the test device either has an and D4 then become 100 and 500 respectively. If BC 169 , etc., S2 can be switched to the "High", D 4 will additionally switch on if the current gain is in is connected to the tester. D3 then lights up if the "Low" position and the base lead of the test transistor leakage current difficulties. produced by a base bias current. It is only germanium
transistors which are liable to cause any serious current flows in addition to any collector current indication of a device's gain will be obtained if it has a
high leakage current, due to the fact that the leakage serviceable component if both D3 and D4 light up. It
should be borne in mind that a rather optimistic stisfactory device may well cause it is unlikely that the test device will be a to have rather high leakage currents and a perfectly silicon devices this should be too small to cause either
3 or D4 to switch on. Germanium transistors tend transistor are connected to the tester. Only the n.p.n.). and the emitter and collector leads of the test
transistor are connected to the tester. Only the
 USING THE TESTER

Conforming to Issue 6 Prestel Terminal Sp
ation, it can be used with any size of screen.

 low power cCnsumpe of the most flexible pieces of test
make the
equild service, laboratory, technical education, or
equipment on the market, equally suitable for use in
amateur electronics. specinv sensitivity combined with attractive styling
10 m
low power consumption, mains or battery peperation
 oscope, fitting easily into a briefcase or toolkit, and
weighing less than $2 \frac{1}{2}$ lbs, with a 2 in. C.R.T. The basic The SC110 is a truly portable professional oscill in eastern europe, and from the several thousand
 Huntingdon, was the only British product to win a
gold medal at the 1980 BRNO Trade Fair in CzechoThe Thandar SC110 portable oscilloscope from
Sinclair Electronics Ltd., of London Road, St. Ives,
GOLD MEDAL FOR BRITISH COMPANY AT
CZECHOSLOVAKIAN TRADE FAIR
GOLD MEDAL FOR BRITISH COMPANY AT
CZECHOSLOVAKIAN TRADE FAIR
or table.

 keypad and he is then automaticaly
selected Prestel/viewdata computer.

 signals and a range of uhf signals in addition to those
used in the UK. It accepts UK, European, US and
Australasian mains supply voltages. played in German and Swedish and it will produce vhf
signals and a range of uhf signals in addition to those

GOLD MEDAL FOR BRITISH COMPANY AT
CZECHOLLOVAKIAN TRADE FAIR

 $\stackrel{T}{i}$ $\stackrel{\text { 亏．}}{\substack{3 \\ 9}}$
 3

空彩

 e se paran！

 0
0
0
0
0
0
0
0
0

 ours is so jam－packed with ser－ the amplifier outputs by way of
270Ω resistors．＂ phone plug is inserted．The two
stereo phones then connect to

 speak the phone socket．

 the service manual for the

negative and causes the amp－
lifier output to go negative，too．
In consequence the emitter of

 0.
0
0
0
0
0
0
0
0
0
0
0
0

 ＇Кपч！

 neGative feedback 구우̃

 above the two bias diodes，D1
and D2，consists of the resis－
tors R9 and R10．You＇ll note acts as acomts collector load，
lifier and ite
above the two bias diodes，D1
 ＂TR2 will be the driver trans－

 feeedoaz toes that menn？＂

 a
0
 dit
 Huilla no＇s． 14 asin in io． St Aq iliop Aip рaumoi，${ }^{2}$ ，＇，＇mou ass

 output voltage of the amplifie
to
mitr
and

$$
\begin{aligned}
& \text { (20) } \\
& \begin{array}{l}
\text { way - } 0.6 \text { divided by } \\
\text { Dick pressed the buttons on } \\
\text { his calculator. }
\end{array}
\end{aligned}
$$

"Righty-ho," said Dick. He
$\begin{aligned} & \text { which flows in R11, and this } \\ & \text { will be the emitter current of } \\ & \text { TR2. Try it out, Dick, o. } \\ & \text { by } 39 \text { divided }\end{aligned}$
$\begin{aligned} 0 \\ 0\end{aligned}$
dropped across the base-
$\begin{aligned} & \text { Fig. } 4 \text {. The voltages at the } \\ & \text { emitter of TR2 and the } \\ & \text { collector of TR1. }\end{aligned}$

$$
\begin{aligned}
& \stackrel{\text { 咢 }}{ }
\end{aligned}
$$

$\begin{aligned} & \text { "Amps, of course. We're } \\ & \text { using volts and oums and so } \\ & \text { the answer comes out in amps. }\end{aligned}$
$\begin{aligned} & \text { to } 2 \text { significant figures is more } \\ & \text { than near enought.,"et's say the }\end{aligned}$
$\begin{aligned} & 3 \\ & 3 \\ & 0 \\ & 0\end{aligned}$
$\begin{aligned} & \text { "For goodness sake,", grated } \\ & \text { Smithy, "iust because a cal- }\end{aligned}$
"What does the calculator
$\begin{aligned} & \text { "Well, blow me," he } \\ & \text { remarke,. "Another simple } \\ & \text { enswer". }\end{aligned}$
Fig.2. Two equations for

yownyilsno soinoylozา3 anv oiayy

 Fig. 7(a). R6, R1 and R2 effectively form a potential
divider across the 45 volt supply. With no current

 makes the mistakes.
"Don't keep on about it."
Dick piled it on. conswers whilst it's "me who
anser that it's normally you wh
comes out whith all the righ

 pawn, e4 "dn ew las nol" " иo ake kuols e pount ay pue axil $6 u$ uil piseq e uo dn ", buld Ачи!

weekend. And it was on
devoting ail his spare
solving the puzze that
finally discovered the
Late on Sunday evenin
taken the music centre
manual home to study o

 assistant. But we can sti Serviceman friend
hands of his usually on unhappy experience of

 fo emuers!sea zndu! eut

 flying leads rather than solder tags and the two prim－

 COMPONENT BOARD

1861 hวyचw

 צヨコ४ォHO ЭHL ONISก battery connector is correčt．
 웅
等 цᄀ ssoive

$\begin{array}{l}\text { is likely to be so with other receivers built to the } \\ \text { design. }\end{array} \begin{array}{l}\text { using a knob without a brass bush atits centre. It is } \\ \text { an advantage to stiffen the "chassis" since noise or }\end{array}$

 beneficial results. Reaction control remains If the receiver is used near mains wiring, hum may
satisfactory at the higher frequencies and, with the sometimes be induced when the fingers grip the knob prototype $\mathrm{C1}$ has been changed to 470 pF with drive.
beneficial results. Reaction control remains If the receiver is used near mains wiring, hum may is now more important than ever, and in the capacitor and the bolt anchoring the slow motion and so a compromise value of 680 pF was f.m. band. The position is improved by connecting a
recommended. Selectivity on the medium wave band wire between the moving vanes of the tuning while very good.selectivity was obtained with 470 pF ,
and so a compromise value of 680 pF was
 between the moving vanes of the tuning capacitor and capacitance tap for reaction. This capacitor is wired

 THE "M5" light of experience. Component numbers referred to
are those used in the original articles. have been made as they suggested themselves in the
light of experience. Component numbers referred to
 details of a few modifications I have made to some of
the receivers which I have described in this magazine
during the last three or four years. In each case the The object of these two short articles is to give
details of a few modifications I have made to some of recently published receivers. recently published receivers.

Modifications which can enhance the performance of three
 1 7.10d

\qquad added at the wavechange switch as shown in Fig. 1. medium wave band is virtually unaffected, and the
 can be prevented by connecting a $2.2 \mathrm{M} \Omega$ resistor so
that it is across the tuned circuit coil when the receiver particularly noisy form of audio oscillation when the
wavechange switch is turned to medium waves. This station has been received on the long wave band with
reaction well advanced, there is sometimes a
particularly noisy form of audio oscillation when the First, some constructors will have noticed that, if a it has been built in large numbers. Several small
 THE "JUBILEE"

 zoguns y yom $8 \mathbf{y}$

LHL DILVLSS-ILNV צGggกy

 SINHNOAWOD
ALL-WEATHER SAFETY CASE FOR FRAGIL
 exists. higher capacitance than the value quoted on them.
Try changing from $10 \mu \mathrm{~F}$ to $4.7 \mu \mathrm{~F}$ if the problem shown in Fig. 7 of the original article is operated. This
is because some electrolytic capacitors have a much
higher capacitance than the value quoted on them.

prevent a "banshee" howl when sw lectrolytic capacitors discharging ven if not a serious fault. revent a "banshee" howl when switching dd a wire between the unused centre

[^0]: NOUORUISNOJ

