FABULOUS PROFESSIONAL DISCO SYSTEM

F.A.L. De Luxe PROFESSIONAL Carr. CONSOLE (Powered)
Slide Fade Controls. Autorade with Push-button selector. Illuminated V.U. meters. Illuminated rocker switches. LED cue indicators. Tape or fingle inputs, unity gain. Mic. channel with Bass \& Treble. Slave outlet. Treble Control (Music Channel) Output into line (Slave) Treble Control (Mic. Channel) Autofade Recovery Bass Control (Mic. Channel) $\quad \begin{aligned} & \text { Tape/Jingle. 1/P }\end{aligned}$

PAIR MATCHING FULL RANGE De Luxe 80w LOUDSPEAKERS

Each inc. Pair of Powerful $12^{\prime \prime}$ Bass units (with aluminium centre domes), and High Frequency Horn unit to extend frequency range to above 17 kHz . Normally $£ 89.95$ ea.

DEPOSIT £28.88

TURNTABLES: Garrard 125SB Belt-drive with Low Mass 'S' arm and Magnetic Cartridge.
POWER: 120 watts continuous RMS into 4 ohms DECK LIGHTS: Fully adjustable flexi-beams over each turntable with independent switching. CABINET: Solidly made to withstand the rigours of transportingCovered in heavy duty leather cloth type material in attractive colour combinations Corner cap protectors
List $£ 320.76$

FAMTASTIC SPEAKER OFFER
tWin 12 " speaker cabinet PLUS PAIR |2" SPEAKERS
of Robust vibration-proof construction. Fitted protective corner pieces, Removable Vynair covered front with
silver effect trim. Sunken jack socket with escutcheon at the rear.
Pair $12^{\prime \prime} 20 \mathrm{w}$ speakers for wiring in series and front While stocks last mounting in above Thile stocks supplied to com-
plete a 40 watt unit for lead guitar
or P.A.

Carr. $£ 2.50$

CONTROL UNIT

(mains powered)
Vol. (Left) Vol, (Right) Tape input 525 and volume control. Bass, Treble, ON/OFF switch for each Table.
MONITOR UNIT With H/Phone Socket and Vol. Control Carr Free
FADER UNIT Carr Free
100w OUTPUT UNIT
Mains powered Carr. $\mathfrak{£ 1}$ 150

(1) TWIN T/TABLE CONSOLE with PRE-AMP, and POWER OUTPUT STAGES (2) \& (3) PAIR 50 WATT LOUDSPEAKERS including I $12^{\prime \prime}$ UNITS

4169'95
Carr. $£ 4.75$

\star Discomaror power ${ }^{\text {Disco }}$ Console with | integral Power Ampifier. |
| :--- |
| \times TWIN FULL STZE BS | t TWIN FULL STZE BSR

turntables
with
cueing - CARTRIDGES with Diamond Styli. 3 SEPARATE VOLUME
CONTROLS for each turntable and Mic each CONSOLE COMPLETE WITH LID. FULL HEADPHONE MONI-
TGRING FACILTIES TORING FACILITIES
Terms:
Deposit $£ 30 \cdot 00$ and 18 fortightly pymts, £9.80 (Total $£ 206$ 10.40). Also a vailable 200 WATT SYSTEM
£ 199.95

TITAN GROUP/DISCO SPKRS			
${ }^{\text {T12,4SR }} 12^{4} 45 \mathrm{w}$			
T12/60R $12^{\prime \prime}{ }^{\text {T }}$ / 120 w	± 2		
T15/60 15" 60 w	£26.00	${ }_{\text {217 }} 17.95$	
T15/70 15"70w	± 28.00	£19.95	
T15/100 15"100w	E41.00	£29.95	
T18/100 18" 100 w	£51.00	$\underline{39}$	
Carr. $\mathfrak{1}$ - 20 , und	er £18,	thi	d 6 p per $£ 1$
CABINETS FOR black Vynide	BOVE Vynair	ts.	finished in otective corner

[^0]

Published by IPC Magazines Ltd., Westover House, West Quay Rd., POOLE, Dorset BH15 1JG

QUERIES

While we will always try to assist readers in difficulties with a Practical Wireless project, we cannot offer advice on modifications to our designs, nor on commercial radio, TV or electronic equipment. Please address your letters to the Editor, Practical Wireless, at the above address, giving a clear description of the problem and enclosing a stamped self-addressed envelope. Only one project per letter please.
Components are usually available from advertisers. A source will be suggested for difficult items.

SUBSCRIPTIONS

Subscriptions are available to both home and overseas addresses at $£ 10.60$ per annum, from "Practical Wireless" Subscription Department, Oakfield House, Perrymount Road, Haywards Heath, West Sussex RH16 3DH.

BACK NUMBERS AND BINDERS

Limited stocks of some recent issues of $P W$ are available at 75 p each, including post and packing to addresses at home and overseas.

Binders are available (Price £2.85 to UK addresses or $£ 3.45$ overseas, including post and packing) each accommodating one volume of $P W$. Please state year and volume number for which the binder is required.
Send your orders to Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF.
All prices include VAT where appropriate. Please make cheques, postal orders, etc., payable to IPC Magazines Limited.

COPYRIGHT

(C) IPC Magazines Limited 1979. Copyright in all drawings, photographs and articles published in Practical Wireless is fully protected and reproduction or imitation in whole or in part is expressly forbidden.
All reasonable precautions are taken by Practical Wireless to ensure that the advice and data given to readers are reliable. We cannot however guarantee it and we cannot accept legal responsibility for it. Prices are those current as we go to press.

NEWS \& VIEWS

Editorial
Citizens' Band-Yes or No?
PW Personality
Peter Metalli
Citizens' Band Association A Letter to the Prime Minister
News . . . 4
Letters
Comments from PW readers
Kindly Note
PW "Hythe" Marine Band Receiver, February 1979
PW 'Wimborne" Music Centre
Production Lines Alan Martin Information on the latest products
Hotlines
. Ginsberg
Recent developments in electronics
RAE Reprint Announcement

FOR OUR CONSTRUCTORS

VHF/UHF Folded Colinear Aerial Array
Fred Judd
A simple design giving 3dB gain over a dipole
Follow-up to the PW 'Sandbanks'"
P.J. Wales Modified search-coil designs
VHF Monitor Receiver James M. Bryant A miniature high-performance design for n.b.f.m.
PW '"Winton' ${ }^{\text {Stereo Amplifier-2 }}$
E. A. Rule Beginning constructional details
Logical Noughts and Crosses-1 J. D. Mitchell Pit your wits against the machine
FM Multitester
D. Whitfield \& M. Tooley A comprehensive test-test for the v.h.f. enthusiast

GENERAL INTEREST

The Cassette Tape Medium

- Gordon J. King

The development of the Compact Cassette system
Simple Audio Filter Design
S. Skepper

An introduction to filter calculations
Wireless went to War
Ron Ham
Recollections of military communications up to 1939
Stereo Decoders-Devices \& Circuits-1 M. J. Darby A survey of current i.c.s and their application
On the Air
Amateur Bands Eric Dowdeswell
MW Broadcast Bands Charles Molloy
SW Broadcast Bands Charles Molloy
VHF Bands, including What do the VHFs have to offer?-3

Ron Ham
VHF Personality-Guy Stanbury Ron Ham

Our May issue will be published on 6 April
(for details see page 33)

OPEN UP THE EXCITING WORLD OF SHORT WAVE LISTENING

SRX-30
For the advanced, keen short wave listener, the choice of receiver has usually been between cheap and nasty or very good but very expensive equipment. We think that the SRX-30 will provide that listener with excellent performance at a reasonable cost and is the answer to this eternal problem. at any frequency between 500 KHz and 30 MHz together with easy to understand frequency Suitable for all users from raw beginners, thanks to it's simplicity of operation; to experienced listeners and amateur operators thanks to it's advanced technology, the SRX-30 is the best communication recerver available in it's price range today
Completely self contained, including operation from mains or 12 volts de, the SRX-30 is at home on broadcast or amateur bands. All mode reception of AM. CW. USB. and LSB is provided and receive selectivity is automatically switched to give optimum performance on any mode.
Send for full details today or give us a ring and we'll tell you all about the SRX-

Send for full details today or give us a ring and well tell you all about the SRX-30. Price $£ 175$ inc. vat Carriage by Securicor $£ 3$

NEW. Bellsonic power supply giving
 ully regulated 12 de output at 3 amp and 5 amps peak rating from $220-240$ V ac mains input. Automatic over current trip for safety Multitude of uses for the amateur experimente or professional user. Incredibly low price $£ 17.28$ inc. vat. P \& P 86p.

NEW. CL22 aerial tuner which will match almost any receiver to almost any aerial at any frequency between 1.5 and 30 MHz . Six switch ed ranges with fully tunabie recelver and aerial any SWL station and an instant improvement in aerial matching problems. Price $£ 15.75$ inc. vat P \& P 6 6 p.
NEW. Transform your TRIO 9R 59D, DE or DS with our digital readout unit giving direct readout of operating frequency.
Complete with fitting instructions. $£ 38.88$ inc.
vat. P \& P 2 p . vat. P \& P 28p.

We aiso stock the RAK Listener 3 aerial system for the man who demands the best and has the room for it. Double dipole system complete with H/D alloy wirc, insulators, coaxial feeder, centre connector P\& P 86p.

Also availa

Overall lenth only short waye bands. 5 feet due to use of loading col and element folding. Ideal aerial for any user of If you need professional oscilloscopes at reason.
TRIO range. Full range of other test equipment stocked.
For all that's good in Amateur Radio, contact:
LOWE ELECTRONICS LTD., 119 Cavendish Road, Matlock, Derbyshire. Tel: 06292430 or 2817 For fuit catalogue, simply send 45 p in stamps and request catalogue CPW.

Telephone: ELY (0353) 860185 (2 lines) Tuesday to Saturday

PLEASE ADD 8\% VAT UNLESS OTHERWISE STATED

CELESTION $8^{\prime \prime} \times 5^{\prime \prime}$ ELIPTICAL
 each + $12 \frac{1}{2} \%$ VAT
IC AUDIO AMP PCB. Output 2 watts into 3 IC AUDIO AMP PCB. Output 2 watts into $3^{\prime \prime}$
ohm speaker. 12 V DC supply, size approx. $5 \frac{1}{2}$ ohm speaker. $12 V D C$ supply. size approx. $5 \frac{1_{2}^{\prime \prime}}{2}$
$\times 1 \frac{1}{1 "}^{\prime \prime} \times 7^{\prime \prime}$ high, with integral heatsink, com-

NICAD CONVERTER PCB. (Low power int
verter). Size approx. $4^{\prime \prime} \times 1_{\frac{3}{4}} \times 1^{\prime \prime}$ high, 12 V DC supply. 60 V DC output, through pot on peb. for charging Nicads. etc. lideal for charging portabla batteries from mobile supplyl, Only needs one $8 F Y 50 / 51 / 52$ or similar transistor, which can be mounted direct on the pcb pins on board, fitted with a star-type heatsink (Not THE NEW EAGL
THE NEW EAGLE INTERNATIONAL CATALOGUE IS AVAILABLE ON REQUEST containing Audio, in-car, and test DECIMAL KEYBOARDS, pressure sensitive DECIMAL KEYBOARDS, pressure sensitiv type. when pressed contacts go rom en io ap Size approx. $3^{\prime \prime} \times 3^{\prime \prime}$, with large square touch plates. $0-9+$ Ciear, A, B, Dual Watch, and spare Few only, $£ 2.00$ while stocks last
TYPE 8079 FULL RANGE SPEAKER ${ }_{r} 10$ dia, 15 ohm . $\mathbf{£ 5} \cdot 00$ each (or 2 for f 9.00) $12 \frac{1}{2} \%$ VAT.
SEMICONDUCTORS
BSX20 (VHFOSc/Mult). 3 for 50p.
BC 10 B (metal can), 4 for 50 p .
PBC 108 (plastic BC 108), 5 for 50 p . BCY 72 Transistors, 4 for 50p.
PNP audio type TO5 Transistors, 12 for 25p. BF 152 (UHF amp/mixer). 3 for 50p. 2N3819 Fet. 3 for 60p
BC148 NPN SILICON, 4 for 50p. BC158 PNP SILICON, 4 for 50 p . BAY 31 Signal Diodes, 10 for 35 p.
iN 4148 iN 14110 . 25 p IN 4148 (IN914) 10 for 25 p.
SCRs 400 V at 3 A , stud type, 2 for $\mathbf{£ 1 . 0 0 .}$
Tip2955 Silicon PNP power transistor, 60V a 15 A .90 Watts, Flat pack type, 2 for $£ 1.50$. GERMANIUM DIODES approx 30 for $\mathbf{3 0 p}$.
741 CG op amps by RCA 4 for $\mathrm{E1}$
RED LEDe (min. type) 5 for 70p.
TO3 transistor insulator sets 10 for 50 p .

SPECIAL OFFER FOR COMPUTER BUILDERS. ETC 13 way ribbon cable. decimai coded 4 metres for 1.25 . PSU funs) 3 metres for $f i .50$
CLAREED REED RELAYS, complete with CLAREED REED RELAYS, complete with reeds, TYPE $9 V 400$ ohm coil, 35 p each. TYPE 2 . Size approx. $2 \frac{1}{2} \times 1 \frac{1}{2} \times \frac{1}{2}$ ". 2 pole make +2 pole break, $2 \times 9 \mathrm{~V} 200 \mathrm{ohm}$ coils. 60p each. VIDICON SCAN COILS (Transistor type. but no data) complete with vidicon base $\mathbf{£ 6} 50$ each. Brand New. soldered to pcb or in socket, Gold-plated pins, in buying one of each for f 3.50 .
GLASS BEAD FEEDTHROUGH INSU GLASS BEAD FEEDTHROUGH INSUATORS. Solder-in type, overall dia. approx
LASTIC PROJECT BOXES with screw on ids (in black ABS) with brass inserts. Type NBI approx. $3 \frac{1}{4}^{\prime \prime} \times 2 \frac{1}{4^{\prime \prime}} \times 1 \frac{13^{\prime \prime}}{4} 45 p$ each ype NB2 approx. $4^{\prime \prime} \times 3^{n} \times 1{ }^{\prime \prime} \times \frac{1}{n}^{n} 55$ peach

DIE/CAST ALUMINIUM BOXES
Send for Latest Price List.
PLUGS AND SOCKETS
NNC Plugs new 50p each.
/Type Plugs 50 ohm $\mathbf{6 0 p}$ each. 3 for $£ 1-50$. PL259 Piugs (PTFE) brand new, packed with educers. 75p each
(PTFE) brand new (4-hole fxing typel. 60p each.

SOLDER SUCKERS (Piunger type) Standard Model, £5-50. Skirted Model, £6. Spare Nozzles 60p each
NEW MARKSMAN RANGE OF SOLDERING IRONS
140040 W 240 V 4.50
S125DK $25 W 240 \mathrm{~V}+$ bits etc. KIT $£ 5.50$ BENCH STAND with spring and sponge for Marksman trons $\mathbf{£ 2} \mathbf{7 0}$.
Spare bits MT9 (for 15W) 60p, MT5 (for 25W) 50 p, MT 10 (for 40 W) 55p.

TCP2 TEMPERATURE CONTROLLED IRON
Temperature controlied iron and PSU. $£ 30+$ VAT (E2.401.
SPARE TIPS
Type CC single flat. Type K double flat fine tip Type P, very fine tip $£ 1.50$ each + VAT (8 p) -

WELLER SOLDERINGIRONS

EXPERT. Built-in-spotlight illuminates work Pistol grip with fingertip trigger. High efficiency copper soldering tip.
XPERT SOLDER GUN S100D £12.00. EXPERT SOLDER GUN KIT (spare bis case, etc.) $£ 15 \cdot 00$. Spare bits 40 p pair.
MIXED COMPONENT PACKS, containing sistors, Capachors, pots, etc. dreds of items $\mathbf{£ 2}$ per pack while stocks last

BSR AUTOCHARGE RECORD PLAYER DECKS with cue device, 33-45-78 RPM, for $7^{n} .10^{\prime \prime}, 12^{\prime \prime}$ records. Fitted with SC 12 M Stereo Ceramic cartridge and styli. Brand new $£ 14.00$ $+12 \frac{1}{2} \%$ VAT
GARRARD AUTOCHANGE RECORD PLAYER DECKS, Model 6.300, with cus
 tridge and styli Brand new $£ 16.00+12 \frac{1}{2} \%$ VAT. Please note, record decks sent by Roadline, allow 14 days for delivery.
FULL RANGE OF BERNARDS/BABANI FLECTRONICS BOOKS IN STOCK SAE FOR LIST.
VARICAP TUNERS Mullard type ELC 1043/05. Brand New. $\mathbf{5 5} \cdot \mathbf{0 0}+12 \frac{1}{2} \%$ VAT. BARGAIN PACK OF LOW VOLTAGE ELECTROLYTIC CAPACITORS. Up to 50 V working. Seatronit Manufact
$£ 1.50$ par pack $+12 \frac{1}{2} \%$ VAT.
Dubiller Electrolytics, 50 F. 450V, 2 for 50 p . Dubiller Electrolytics, $100{ }_{\mu} \mathrm{F}, 275 \mathrm{~V}, 2$ for 50 p . Plessey Electrolytics, $470 \mathrm{~F} .63 \mathrm{~V}, 3$ for 50 p . Dubiler Electrolytics, $5000 \mathrm{~F}, 35 \mathrm{~V} 50 \mathrm{p}$. Dubiller Electrolytics, 5000 F, $35 \mathrm{~V}, 50 \mathrm{p}$ each. Dubiller Electrolytics, 5000 F, $50 \mathrm{~V}, 60 \mathrm{p}$ each
1Π Electrolytics, 6800 F, 25 V , high grade screw terminals, with mounting clips. 50 p each. PLEASEADD 12 $\frac{1}{2} \%$ VAT TO ALL CAPACITORS.

The professional scopes you've always needed.

When it comes to oscilloscopes, you'll have to go a long way to equal the reliability and performance of Calscope
Calscope set new standards in their products, as you'll discover when you compare specification and price against the competition

The Calscope Super 10 , dual trace 10 MHz has probably the highest standard anywhere for a low cost general purpose oscilloscope. A 3\% accuracy is obtained by the use of stabilised power supplies which cope with mains fluctuations
The price £ 219 plus VAT
The Super 6 is a portable 6 MHz single beam model with easy to use controls and has a time base range of $1 \mu \mathrm{~s}$ to $100 \mathrm{~ms} / \mathrm{cm}$ with 10 mV sensitivity. Price f 162 plus VAT Prices correct at time of going to press.

CALSCOPE DISTRIBUTED BY

Marshalls Electronic Components,
Kingsgate House,
Kingsgate Place.
London, N.W.6.
Audio Electronics. 301 Edgware Road, London W. 2. Tel: 01-724 3564
Access and Barclay card facilities (Personal Shoppers)

Maplin Electronics Supplies Ltd. P.O. Box 3

Rayleigh, Essex
Tel: 0702715155
Mail Order

RADIO FECHANGH MMIYHD

NEW ELECTRONIC
 MASTER KIT

With special V.H.F. Tuner Module to construct. A completely Solderless Electronic Construction Kit, with ready drilled Bakelite Panels, Nuts, Bolts, Wood Screws, etc. Also in the kit: Transistors, Capacitors, Resistors, Pots, Switches, Wire, Sleeving, Knobs, Dials, $5^{\prime \prime} \times 3^{\prime \prime}$ Loudspeaker and Speaker Case, Crystal Earpiece, etc. Also ready wound Coils and Ferrite Rod Aerial. These are the Projects you can build with the components supplied with the kit, together with comprehensive Instruction Manual Pictorial and Circuit Diagrams.

Projects:

V.H.F. Tuner Module \star A.M. Tuner Module \star M.W. L.W. Diode Radio \star Six Transistor V.H.F. Earpiece Radio \star One Transistor M.W. L.W. Radio \star Two Transistor Metronome with variable beat control \star Three Transistor and Diode Radio M.W. L.W. \star Four Transistor Push Puli Amplifier \star Eight Transistor V.H.F. Loudspeaker Receiver \star Variable A.F. Oscillator \star Jiffy MultiTester \star Four Transistor and Diode M.W. L.W. Radio \star A.F. R.F. Signal Injector \star Five Transistor Push Pull Amplifier \star Sensitive Hearing Aid Amplifier \star Three Transistor and Diode Short Wave Radio \star Signal Tracer \star Three Transistor Push Pull Amplifier \star One Transistor Class A Output Stage to drive Loudspeaker \star Sensitive Transistor Pre-Amp \star Transistor Tester \star Sensitive Three Transistor Regenerative Radio
\star Four Transistor M.W. L.W. and \star Four Transistor M.W. L.W. and M.W. L.W. Trawler Band RegeneraM.W. L.W. Trawler Band Regenera-
tive Radio \star Five Transistor V.H.F. Tuner \star Three Transistor Code Practice Oscillator \star Five Transistor Regenerative Short Wave Radio M.W. L.W. Loudspeaker Radio \star Seven Transistor M.W. L.W. Radio
 \star One Transistor Home Broadcaster. 214.99 + P\& \& \& $1 \cdot 10$
V.H.F.

AIR
CONVERTER
KIT

Build this converter kit and receive the aircraft band by placing it by the side of a radio tuned to medium wave or the VHF band and operating as shown in the instructions supplied free with all parts. Uses a retractable chromeplated telescopic aerial, gain control, V.H.F. tuning capacitor, transistor, etc. Size $5 \frac{1^{\prime \prime}}{2} \times 1 \frac{1_{2}^{\prime \prime}}{2} \times 3 \frac{1^{\prime \prime}}{}{ }^{\prime \prime}$. All parts including case and plans. £4.95
 CONSTRUCTIOF

Self Contained Multi-Band V.H.F. Receiver Kit.

8 transistors and 3 diodes. Push pull output. 3 in . loudspeaker, gain control, 7 section chromegain control, 7 section chrome-
plated telescopic aerial, V.H.F. tuning capacitor, resistors, capacitors, transistors, etc. Will receive T.V. sound, public service band, aircraft, V.H.F. local stations, etc. Operates local stations, etc.
from a 9 volt P.P. 7 battery (not supplied with kit).
Complete kit of parts
$\mathbf{8 7 . 9 5}+\begin{gathered}\mathrm{P} \& \mathrm{P}_{\mathrm{P}} \mathrm{and} \\ \text { ins. } 90 \mathrm{p}\end{gathered}$
NEW MODEL R.K.1.

MultiBand A.M. Receiver. M.W.L.W. Trawler Band and Three Short Wave Bands. Seven Transistors and Four Diodes, Push Pull Output stage. $5^{\prime \prime} \times 3^{\prime \prime}$ Loudspeaker. Internal Ferrite Loudspeaker. Internal Ferrite
Rod Aerial. Kit includes all parts to build it up including Carrying Strap, Rubber Feet and ready-drilled Panels. Comprehensive Instruction Manual for stage by stage construction. Uses P.P. 9 Nine Volt Battery.

EDU KIT JUNIOR

Completely Solderless Electronic
Construction Kit. Build these projects without Soldering Iron or Solder
\star Crystal Radio Medium Wave Coverage-No Battery necessary * One Transistor Radio
$\star 2$ Transistor Regenerative Radio

+ 3 Transisior Earpiece Radio Medium Wave Coverage
$\star 4$ Transistor Medium Wave Loudspeaker Radio
* Electronic Noise Generator
* Electronic Metronome
$\star 4$ Transistor Push/Pull Amplifier All parts including Loudspeaker, Earpiece, M,W. Ferrite Road Aerial, Capacitors, Resistors, Transistors, etc. Complete kit of parts including construction plans.
$96.95+P$ \& P and
ins. $90 p$

NEW ROAMER TEN MQDEL R.K.3.

Multiband V.H.F. and
A.M. Receiver. 13 Transistors and Six Diodes. Quality $6^{\prime \prime}$ $\times 3^{\prime \prime}$ Loudspeaker
With Multiband V.H.F. section covering Mobiles, Aircraft, T.V. Sound, Public Service Band, Local V.H.F. Stations, etc. and Multiband A.M. section with Airspaced Tuning Capacitor for easier and accurate tuning, covering M.W.I, M.W.2, L.W. Three Short Wave Bands'S.W.I, S.W.2, S.W. 3 and Trawler Band. Built-in Ferrite Rod Aerial for Medium Wave, Long Wave and Trawler Band, etc., Chromeplated 7 section Telescopic Aerial, angled and rotatable for peak Short Wave and V.H.F. reception. Push-Pull output using 600 mW Transistors. Gain. WaveChange and Tone Controls. Plus two Slider Switches. Powered by P.P.9-9 volt Battery.
Complete kit of parts including carrying strap. Building Instructions and operating Manuals.

E.V. 6 PLUS ONE

Build this exciting new design. Now with 7 Transistors and 4 diodes. MW/LW. Powered by 9 V battery. Ferrite rod aerial, tuning condenser, volume control, and now with 3in. loudspeaker. Attractive case with red speaker grille. Size $9 \mathrm{in} . \times 5 \frac{1}{4} \mathrm{in}$. $\times 2 \frac{3}{4} \mathrm{in}$. approx. All parts including Case and Plans.
Total Building Costs:
ins. 90p

EDU-KIT MAJOR

Completely solderless Electronic Construction Kit. Build fifteen projects including:-
Signal Injector Tester NPN-PNP 7 Transistor Loudspeaker Radio MW/LW 5 Transistor Short Wave Radio.
Components include:

- 24 Resistors 21 Capacitors - 10 Transistors $5^{\prime \prime} \times 3^{\prime \prime}$ Loudspeaker Earpiece Mica Baseboard 3 I2-way Connectors - 2 Volume Controls 2 Slider Switches I Tuning Condenser - 3 Knobs Ready Wound MW/ LW/SW Coils Ferrite Rod 6i yards of wire I yard of sleeving, etc. Complete kit of parts including construction plans.
Total building costs:

RADIO CONSTRUCTION

KIT Q7

A compact small radio kit covering Medium Wave and Rugged Micanite construction and simple struction and simple
 for easy carrying and positioning. Ideal for the Garage, Workroom, and four Diodes, quality Loudspeaker ready wound Ferrite Rod Aerial and ready wound Ferrite Rod Aerial and
Carrying Strap. Size $43^{\prime \prime} \times 43^{\prime \prime} \times 4 \frac{3}{8}$. Carrying Strap. Size $4 \frac{2}{3} \times 4 \frac{3}{3} \times 4 \frac{3}{8}$.
All parts and plans excluding $9 v$ PP7 Battery.
$28.25+\mathrm{P} \& \underset{\mathrm{Ins}, 75 \mathrm{p}}{\mathrm{P}} \mathrm{F}$

POCKET

FIVE

NOW WITH $2 \frac{3}{4}$ "LOUDSPEAKER 3 Tuneable wavebands. M.W., L.W., and Trawler Band, 7 stages, 5 transistors and 2 diodes, supersensitive ferrite rod aerial, attractive black and gold case. Size $5 \frac{1^{\prime \prime}}{2} \times 1 \frac{1^{\prime \prime}}{} \times 3 \frac{1^{\prime \prime}}{}{ }^{\prime \prime}$ approx. All Parts including C ase and Plans.
Total Building Costs
$24.95+\begin{aligned} & \text { P\& } 8 \text { and } \\ & \text { ins. } 80 p\end{aligned}$

To: RADIO EXCHANGE LTD

61 High Street, Bedford MK40 ISA
Tel.: 023452367
Callers side entrance "Lavells" Shop.
Open 10-1, 230-4.30 Mon.-Fri. 9-12 Sat.
Reg. No. 788372

\qquad
\qquad

PW479

BENTLEY ACOUSTIC CORPORATION LTD．

7a GLOUCESTER ROAD，LITTLEHAMPTON，SUSSEX All prices inclusive of V．A．T．at $12 \frac{1}{2} \%$ Telephone 6743

	． 50		． 78		1.00	7H	1.00				
OZ4	． 75	6 A	． 50	6 F	1.00	7 V	2.00	14	1.00	50 B	1．00
1 A 3	60	6AR	1.05	${ }_{6} \mathrm{~F}^{2}$	1.00	7 Y	． 80		2.00		．75
1A5	． 55	6AS	． 50	6G6G	1.00	7 Z	． 80				
1A7C	． 00	6AT	． 75			8D	50				4.00
			． 62								
	1.00				$2 \cdot 00$	98	1.50				
ids	1.00	${ }_{6 A}^{6 A}$	1.15				1.00				00
	． 00		． 75		80		1.00	20D			75
$1{ }^{1}$	． 30	6B	． 65	${ }^{651}$	50	10	． 6	20D4	50		
	${ }_{1}^{1.00}$		1.00 70	${ }^{63} \mathrm{~J}$			1.00				
NS	． 00		0	6 b		10 F	1.50		1．20		50
IR	． 50		10		50	10	1.00		1.0		
	． 40		－ 10		50	10F18	． 75		1.00		1.00
iT4	． 40				.55 2.50		－ 3				
1 U 4	． 70		． 50		1.00		． 6		1．00		50
2 GK	1.00				5		－75				
${ }_{2}^{2 \mathrm{CK}}$	1.00 1.00		${ }_{1}^{2.00}$	6L	$\xrightarrow{2.00}$		3.0				${ }_{20}^{00}$
387	1.0		3.75	6LD12	． 50		1.00				
3 B 7	1.00 .40	6B 6	$\begin{array}{r}1.00 \\ \hline\end{array}$			${ }_{12}^{12}$	．80				0
	－80		． 50			12A	85		1.50		00
	1.00 .65		． 50		． 75		－50				70
3 V	1.00				75	12	． 6		1.00		
${ }_{4}^{4 \mathrm{C}}$	1.00		2．00				82				
5 C	$\xrightarrow{1.00} 1$		$\begin{array}{r}1.00 \\ \hline 65\end{array}$				－80				
	20		55		． 80		60		． 40		
	${ }^{2.00}$				．80		75				
	1.00		75				50				
	1.50		1.00						1.00		
	${ }^{7} 7$		． 75								
	1.00	6	1.00 1.09			12 L		30 P			
	1.40	6 D	1.00	6	． 00	12 O			65		
6 AC	． 8						．75		2.20		
	． 68		2.		． 60						
6AH	1.0		1.00		． 95		． 50			60	00
	．		.80 .70								
6 A			1.00		2.00	12 S			d		1.00
6 6K6	$\begin{array}{r}1.50 \\ \hline\end{array}$	${ }_{6 F 15}^{6 F 15}$	．85	7A7 78	1.50 1.50						0
6AL	． 40	6F18	1.00	$7 \mathrm{B7}$	1.00	Q7		35W4	． 60	${ }^{\text {A36 }}$	2.00
6AM6	． 70		1.00								

| 6AM6 | $\mathbf{- 7 0}$ | 6 F 23 | $\mathbf{1 . 0 0}$ |
| :--- | :--- | :--- | :--- | 1.00

$\mathbf{2} .00$.80 35Z3 B36
B719
 NayuつuつひU00
－

SOUTHERN VALVE CO．
Telephone 01－440／8641
SECOND FLOOR，8 POTT
NEW BARNET，HERTS．
NEW BARNET，HERTS．

All Nev and Boxed．＂Quality＂Branded Valves．Guaranteed 3 months．BVA etc．
6\％Allowed in lieu of Guaranteel Already deducted from our Prices！ NOTE：PLEASE VERIFY CURRENT PRICES．Correct only at time of going to press．


```
Items in stock at time of going to press but subject to possible market fluctuation
```

STOP PRESS !
STOCKISTS
$\frac{\text { One valve post } 13 \mathrm{p} \text {, each extra valve } 6 \mathrm{p} \text {. Large valves } 2 \mathrm{p}}{\text { MAX } 75 \mathrm{p} \text {. } \text { LISTS AND ENQUIRIES. S.A.E. PLEASE }}$

PRACTIGAL WIRELESS T．V．SOUND TUNER

（Nov． 75 article by A．C．Alnsile） Copy of orfolnal arlicle stupp／led on request
IF Sub－Assembly（G8）£6．80．P \＆P 75p．
Mullard ELC1043 V＇cap UHF Tuner£5．50．P \＆P35p．
3－way Station Control Unit £1－20．P \＆P 25p．
6 －way Station Control Unit（Special Offer）$£ 1.00$ ．
Power Supply Prtd Circuit Board $£ 1 \mathbf{0 0}$ ．P．\＆P 30p．
Res，Caps，Semiconds，etc．for above $£ 5 \mathbf{8 0}$ ．
Mains Transformer for above £2．50．P \＆P 30p．
Add 12 $\frac{1}{2} \%$ VAT to price of goods． P \＆ P all items 85p．
Callers welcome at shop premises．
MANOR SUPPLIES
172 WEST END LANE，LONDON NW6
（Near W．Hampstead Tube Stn．）Tel．01－794 8751

5 CORE $0 \cdot$ SOLDER

SAVBIT

handy solder dispenser Contains 2.3 metres approx. of 1.22 mm Ersin Multicore Savbit Solder. Savbit increases life of copper bits by 10 times. Size5 58p inc.VAT

For soldering fine joints
Two mone dispensers to simplify those smaller jobs. PC115 provides 6.4 metres approx. of 0.71 mm solder for fine wires, small components and printed circuits.

69p inc. VAT
Or size 19A for kit wifing or radio and TV repairs. 2.1 metres approx. of 1.22 mm solder.

Handy size reels and aispensers
of the world's finest cored solder to do a professional job at home

These latest Multicore solder reels are ideal for the toolbox. Popular specifications cover all general and electrical applications, plus a major advance in soldering aluminium. Ask for a free copy of 'Hintson Solderng' containing clearinstructions tomake everyjobeasy.

Ref.	Alloy	Diam. (mm)	Length metres approx	Use	$\begin{gathered} \text { Price } \\ \text { inc. VAT } \\ \hline \end{gathered}$
Size	$\begin{gathered} \hline 40 / 60 \\ \text { Tin/Lead } \end{gathered}$	1.6	10.0	For economical general purpose repairs and electrical joints.	£2.16
$\begin{gathered} \text { Size } \\ 4 \end{gathered}$	ALU-SOL	1.6	8.5	For aluminium repairs. Also solders aluminium to copper, brass etc.	£2.46
$\begin{gathered} \text { Size } \\ 10 \end{gathered}$	$\begin{gathered} 60 / 40 \\ \text { Tin/Lead } \end{gathered}$	0.7	39.6	For fine wires, small components and printed circuits.	£2.38
$\begin{gathered} \text { Size } \\ 12 \end{gathered}$	SAVBIT	1.2	13.7	For radio, TV and similar work. Increases copper-bit life tenfold.	£2.29

Bib HiFi Accessories Limited,
 Hemsl tempsiead. Herts. HP2 490

'ERSIN' A non-corrosive, rosin based flux for general and electrical soldering in conjunction with 'Ersin' Multicore solders Ref RF10 48p inc. VAT

BIB WIRE STRIPPER and CUTTER

Fitted with unique 8 -gauge selector and handle locking device. Sprung for automatic opening. Strips flex and cable in seconds.
Model 8B 97p inc. VAT
Pat. No. 144913

EMERGENCY SOLDER

Self-fluxing, tin/lead solder tape that melts with a match
For electrical and non-electrical applications.

TTLs BY TEXAS					$\begin{aligned} & 160 \mathrm{p} \\ & 140 \mathrm{p} \\ & 250 \mathrm{n} \end{aligned}$$256$	$\begin{aligned} & \text { 74LS192 } \\ & 745193 \end{aligned}$	$\begin{aligned} & 140 \mathrm{p} \\ & 140 \mathrm{p} \\ & \hline \end{aligned}$	$\begin{aligned} & 74 \mathrm{C} 157 \\ & 74 \mathrm{C} 160 \\ & 7 \mathrm{C} 161 \end{aligned}$		LINEAR I.C.S AY1-0212 600p AY1-1313 668p			$\begin{aligned} & 100 \mathrm{p} \\ & 120 \mathrm{p} \end{aligned}$	TRANSISTORS AC127/8 20p ${ }^{\text {BFY51/2 }}$			22p	TiP41C				${ }^{\text {O1OPLES }}$
		74100		742		74LS			15	-AY1-5050			120 p	AD161/2	${ }_{\text {45p }}$,	T1P2955	78	*2N4036	65 p	*OA81 15p
		741					100 p	74	155p	*AY5-1315		*MFC4000		BC107/8				TIP30	70 p	* ${ }^{\text {N4058/9 }}$		*OA85 15p
		74105 74107		74279	140 p		175		120 p	*AY5-1317	36p	,		${ }^{\text {BC109 }}$	11 p			*TS	${ }^{34 \mathrm{p}}$		2 P	*-OA90 9p
				74283	190p		175p	74	120 D	*AY5-1320	320p				9 p	BSX19/20	${ }^{200}$			* 2 N4123/4		-0A95 9p
				74284		74LS242	175 p	$74 \mathrm{C174}$	${ }^{1619}$			- N E5					190					9 ${ }^{\text {a }}$
7407		74						$74 \mathrm{C175}$	210 p	-CA5046		N	225				${ }^{2500}$	-ZTX500	15 p	-2N	20 p	-0A202 10 p
			200 p					${ }^{74 \mathrm{Cl} 193}$		${ }^{+} \mathrm{CA304}$		NE555	p	*BC159	11p		220		18p		27p	1N914 ${ }^{\text {ap }}$
						74LS2	1200	74 C 194		- Ca3039E		NE561	42				${ }_{145}$	"ZTX504	30p	2 N 427	90 p	* 1 N916 7p
						74		95		3090 AO		NE562	425				175	2N457	250	*2N471	60p	*1 ${ }^{41488} 4 \mathrm{p}$
	${ }_{20 \mathrm{p}}$		11	74365	150p		249p		175 p		375p	NE565	13		17 p	M		2N696		N		N4001/2
						74		4000 S	IES	CA3130S				*B		M ${ }^{\text {M } 2501}$	p		${ }_{45 p}^{25 p}$	-2N5172	27 p	1N4005 ${ }^{\text {N }}$
		74		${ }_{74368}^{74368}$		85LS95	120 p	01	15	CA3160E	75p	NE56451			30 p	M 33001	225 p	2N706A	20p	2N51		1N4006/7 7p
				74		81LS96	150p		17 p	FX209	750 p	*SN76003		${ }_{*} 8$ C187		*MJE340	${ }^{65 p}$	2N708A	,	$2{ }^{2} 5191$	p	$1{ }^{\text {N } 5401 / 3 ~}{ }^{149}$
7420	17p	74				81	${ }_{120}^{120}$		95 p	${ }_{1}$ CL77106	${ }^{925}$	- SN76013N	140p		11	M		2 N	45p	${ }_{*}^{2 N}$	0	TN5404/7
				74490	225p	$8{ }^{\text {828 }}$	${ }^{230 \mathrm{P}}$			LM301A								$2 \mathrm{~N} 1131 / 2$	20 p	-2N5296	55p	$2.7 \mathrm{~V}-33 \mathrm{~V}$
74	32 P	74141		5			${ }^{109}$	${ }_{4009}$	${ }_{40 \mathrm{p}}$	LM319	190p	*SN760	140 p					${ }_{2}{ }^{1} 1613$	25	-2N5401		${ }_{100}^{400} \mathrm{~mW}{ }^{\text {9p }}$
		744		74. ${ }^{\text {S } 00}$			${ }_{3165}$	4011	50	LM318	${ }^{200} 9$			*					250	${ }_{2}{ }^{2 N 54595}$		
						93			17p	LM334	70p			${ }^{*} \mathrm{BC}$	18			2N2		-2N5	${ }_{40}$	FFERES
						93		4012	\%		95p		750 p	${ }^{*} \mathrm{BC}$								
												${ }^{\text {-TBA }}$		*BC				2N2222A				
				74LSS13	38 p	93	165p	4015	84 p	-LM38					${ }^{18 p}$	"MPS		2N2369A	16 p	2N6247	190p	$100+555$
743	40p	74153		74LS	100 p	9322	50	4016	45p	*LM381		*tBa800						2N248		2N6254		¢20
		74154			22p	9322	150 p	4017	${ }^{80}$	*LM389N	140 p	-TBA810	100p		20	*				$2{ }^{2}$		100
					${ }^{285}$	9370	200 p	4018	p	LM709	68	${ }^{*}$			32p	*20	200p	2N2906A	24p	2 N 1	p	E 36
						937		4	45	LM710	50 p	${ }^{+}$TCA940	175p	-BF244B				2 N 2		3N1		ID
7442 A					90	96	100 p	4021	Op	LM743	${ }_{29} 0$	-	4				5	*2N2926	${ }^{9 p}$	3 N 201		S
7443		74460				9603				LM ${ }^{\text {747 }}$		$\times \mathrm{R} 22$						$2{ }^{\text {N3053 }}$		3N204		
	112		10	74LS	50p			4023	${ }^{22 p}$	LM748	35 p	-XR2216	675	*BFR39	30p		50p	${ }_{2}$		40360		20
								4025	${ }_{20} 20$	LM3800	P	XR:2		*BFR40	${ }^{30}$	tip3ic	62 p	2N3442		40361/2		*2A 50V 30p
								${ }_{4026}$	130 p	LM3911	130 p	- 2 N 4	,	*		TIP	68 p	2N3553		40364		*2A 100V 35p
7448						MC14	100 p	4027	50 p	LM4436	P0p	ZN425E	${ }^{1355}$				82	${ }^{2}{ }^{2} 3535$				*2A 400V 45p
	17 p		140			75	160 p	4028	84	MC1458	150p	ZN1034E	200 p	* ${ }^{\text {B }}$			890p	- 2 N 37		404		${ }^{3} 3 \mathrm{AA}$ 200V 600 V
							${ }_{1230}^{230}$	4029	mbp_{50}	MC1495	400p	95490	${ }^{800} \mathrm{p}$			A	115p			404		A 100 V 95 p
			24	${ }^{744593}$	${ }_{45}^{60}$	75451/2	72 p	${ }^{4031}$	200 p						34P	TiP34C	160 p	*2N3706/7	12p	40594	97p	*4A 400V 100p
	17 p		12		100 p	7549	${ }^{96}$	4033	1800	VOLTA		A		BFX84/5		TiP35A		-2N3708/9	P	40595		
	36 p	74174	93	74LS	75p		c.s	4034	200 p	Fixed P							270	${ }_{2}{ }^{2}$				0p
7472		74	${ }^{85}$	744	900 p		${ }_{25} 5$	4040	110 p			${ }_{5}^{14}{ }_{5}$		${ }^{\text {BFW}}$		TP36		- 2 N 3820				
		74		744		74	27	${ }_{4}^{4040}$	100	${ }_{12}^{5 V} V^{7805}$		$5 V$ 12 V 7912		BFY50				2N3823		4087		
		74	160			74	${ }^{277}$	4042	${ }^{80 p}$	15V 7885	${ }_{90} 9$	15 V 7915	${ }^{100 p}$									
			20		100p		${ }_{900}$	40		24 V 7824		24 V 7924										
	100p	74182	${ }^{909}$	74	60p		${ }^{277}$	40	190	100ma		50										
	${ }^{84}$						275		${ }_{550}$	${ }^{512} \mathrm{~V}^{78 L 05}$		5V 79L05										
7484		74186	${ }_{700 \mathrm{p}}$	74	10	$74{ }^{\text {7 }} 42$	110 p	4049	32 p	15 V 78 L 15	${ }^{35 p}$	15 V 79 L 15										
	19		100p		140p	${ }^{74} \mathrm{C}$	${ }^{2500}$	405	${ }_{80}^{49}$	OTHER R	Regula	ATORS		p\&p	d	t						
7489	210 p	84192	100p	74L	120 p	74 C 74	70p	4059	80 p	LM317T	${ }^{135} \mathrm{p}$	T8A625	${ }_{650}^{120 p}$	approp	priate	rates.						
749	33	74193	100 p	74	80	74 C		4053	${ }^{30 \mathrm{P}}$	LM3331	2095	784305	P									
		194	100p		Op		${ }^{65 p}$	${ }_{4}^{4655}$	1255	LM723	37p	78MGT2C	${ }^{675}$	orders	acce			17 BUR	RN	RO		
				74	${ }^{110} \mathrm{p}$	74	${ }^{130} \mathrm{p}$	4059	600 p					ll								
				${ }^{74 L 5181}$	3200	$74 \mathrm{C107}$	125p	${ }^{40}$	${ }^{1150}$													
1496				${ }_{74}$		${ }_{74 \text { C15t }}$	${ }_{250 \mathrm{p}}^{260}$	4066	${ }_{550}$	P7	P OR	90 p TIL78	70	ATURD	DAY	10.30-4		Tel: ${ }^{(01}$	01) 45	21500		x : 92280

U.K. RETURN OF POST MAIL-ORDER SERVICE ALSO WORLD WIDE EXPORT SERVICE

R.C.S. LOUDSPEAKER BARGAINS ohm. 6×4 in.
$\frac{1}{2}$ in. $£ 1.80 .8$ in. $£ 2.60 .10$ in. $£ 3$. 12 in. $£ 4$ $8 \mathrm{ohm} .2 \frac{3}{4} \mathrm{in} . £ 1-50$. $3 \mathrm{in} . £ 1 \cdot 50.5 \mathrm{in} . £ 1.50$. $10 \mathrm{in} . £ 3.12 \mathrm{in} . £ 4$. 16 ohm. $6 \times 4 \mathrm{in}, \mathfrak{£ 1} \cdot 50.7 \times 4 \mathrm{in} . £ 1 \cdot 50.5 \mathrm{in} . \mathfrak{£ 1} \cdot 50.8 \mathrm{in} . \mathfrak{£ 2} \mathbf{6 0}$. $10 \mathrm{in} . £ 3.12 \mathrm{in} . £ 4$.
THE "INSTANT" BULK TAPE ERASER Suitable for cassettes, and all sizes of tape reel A.C. mains 200 249

Leaflet S.A.E.
$\mathbf{f 5} 50{ }^{\text {Post }}$
A.C. ELECTRIC MOTOR
 Q.

BLANK ALUMINIUM CHASSIS, 18 s.w.g. $2 \frac{1}{2} \mathrm{in}$. sides, $6 \times 4 \mathrm{in}$. $95 \mathrm{p} ; 8 \times 6 \mathrm{in} . £ 1.40 ; 10 \times 7 \mathrm{in} £ .1.55 ; 14 \times 9 \mathrm{in} £ 1-$.90 ;
$£ 1.85 ; 12 \times 3 \mathrm{in} . £ 1.20 ; 16 \times 10 \mathrm{in} . £ 2.20 ; 12 \times 8 \mathrm{in} . £ 1.70$. ALUMINIUM PANELS, 18 s.w.g. $6 \times 4 \mathrm{in} .24 \mathrm{p} ; 8 \times 6 \mathrm{in} .38 \mathrm{p} ; 10 \times$ $7 \mathrm{in} .54 \mathrm{p} ; 12 \times 5 \mathrm{in} .44 \mathrm{p} ; 12 \times 8 \mathrm{in} .70 \mathrm{p} ; 16 \times 6 \mathrm{in} .70 \mathrm{p} ; 14 \times 9 \mathrm{in}, 94 \mathrm{p}$ $7 \mathrm{~m} .54 \mathrm{p} ; 12 \times 5 \mathrm{in}$. $44 \mathrm{p} ; 12 \times 8$ in.
$12 \times 12 \mathrm{in} . £ 1 ; 16 \times 10 \mathrm{in} . £ 1 \cdot 16$.
ALUMINIUM ANGLE BRACKET $6 \times \frac{3}{4} \times \frac{3}{4} \mathrm{in}$. 15 p .
ALUMINIUM BOXES, MANY SIZES IN STOCK
$4 \times 2 \times 2 \mathrm{in} .86 \mathrm{p} ; 3 \times 2 \times 1 \mathrm{in}$. $60 \mathrm{p} ; 6 \times 4 \times 2 \mathrm{in} . £ 1 ; 8 \times 6 \times 3 \mathrm{in}$

DELUXE BSR H-F AUTOCHANGER	
Auto or Manual. A high quality 8 \% ;***	f17.50
unit backed by BSR, rel	st
$200 / 250 \mathrm{~V}$. Size $13 \frac{1}{2} \times 11 \mathrm{in}$.	£1.
Above motor board $3 \frac{3}{4} \mathrm{in}$.	
Below motor board $2 \frac{1}{2} \mathrm{in}$.	
With CERAMIC STEREO CAR	
BSR Budget Autochanger stereo ceramic cartridge.	14
Garrard 5300. Autochanger with ceramic cartridge.	£14.95
Garrard Minichanger. Plays all size records.	
Ceramic cartridge. Stereo.	£8.95
BSR. P1 82. Snake arm, flared Aluminium Turntabl Stereo ceramic cartridge. Latest model.	f22.50
BSR. Disco Single Player	
Cueing Device 1 lin . Turntable. Budget price	£19.50

BAKER 150 WATT

QUALITY

TRANSISTO
MIXER/AMPLIFIER
Professional amplifier using advanced circuit design. Ideal for disco, groups, P.A. or musical instruments. 4 inputs 4 way mixing. Master treble, bases and volume controls. 3 speaker output sockets to suit various combinations of speaker $4-8-16$ ohm. Slave output. Guaranteed.
Details S.A.E. A/C mains 120 v and 24 £79 Carr
$£ 1.50$ BAKER 50 Watt AMPLIFIER 2 inputs f 59

DRILL SPEED CONTROLLER/LIGHT DIMMER KIT. Easy to

 build kit. Controls up to 480 watts AC mains. Post $35 \mathrm{p} \quad \mathbf{£ 3} \mathbf{2 5}$STEREO PRE-AMP KIT. All parts to build this pre-amp. 3 inputs for high medium or low gain per channel, with volume control and P.C. Board. Can be ganged to make multi-way stereo mixers.
R.C.S. SDUND TO LIGHT DISPLAY MK 2

Complete kit of parts with R.C.S. printed circuit. Three
channels. Up to 1,000 watts each, Will operate from 200 MV
to 100 watts signal source. Suitable for home $\mathrm{Hi}-\mathrm{Fi}$
and all Disco Amplifiers. Cabinet extra£4
f17
200 Watt Rear Reflecting White Light Bulbs. Ideal for Disco
Lights. EdisonS Rerew 75 p each or 6 for $£ 4$. or 12 for $£ 7.50$.

MAINS TRANSFORMERS

 30 VOLT 5 AMP. AND 34 VOLT 2 AMP CT $£ 3.45$ AMP. $£ 2 \cdot 5$ 20 VOLT 1 AMP. £2.00 20-0-20 VOLT 1 AMP. 22.95
30 VOLT $1 \frac{1}{2}$ AMP. $£ 2.7540$ VOLT 2 AMP. $£ 2.9530 \mathrm{~V} 2$ AMP. $£ 3$ $0-20-40-60$ VOLT 1 AMP. $£ 3.502 \times 18$ VOLT 6 AMP. £9. Low Voltage $0.8-12 \mathrm{~V} .3$ AMP $£ 3$.
Low Voltage 12-0-12V. 2 AMP $£ 3$
GENERAL PURPOSE LOW VOLTAGE. Voltages available at
$2 \mathrm{~A}, 3,4,5,6,8,9,10,12,15,18,24$ and 30 V $\begin{array}{ll}2 \mathrm{~A}, 3,4,5,6,8,9,10,12,15,18,24 \text { and } 30 \mathrm{~V} & \mathbf{5 5 . 8 0} \\ 1 \mathrm{~A}, 6,8,10,12,16,18,20,24,30,36,40,48,60 & \mathbf{~ 5 5 . 8 0}\end{array}$ $\begin{array}{lr}1 \mathrm{~A}, 6,8,10,12,16,18,20,24,30,36,40,48,60 & \mathbf{~} 5 \cdot 80 \\ 2 \mathrm{~A}, 6,8,10,12,16,18,20,24,30,36,40,48,60 & \mathbf{~ 8 . 5 0} \\ 3 \mathrm{~A}, 6,8,10,12,16,18,20,24,30,36,40,48,60 & \mathbf{£ 1 1 . 0 0}\end{array}$ $5 A, 6,8,10,12,16,18,20,24,30,36,40,48,60 \quad \dot{f} 14.50$
R.C.S. TEAK COMPACT SPEAKERS $13 \times 10 \times 6 \mathrm{in}$.
50 to $14,0,0 \mathrm{cps}$ 50 to $14,000 \mathrm{cps}$
12 watts rms. 8 ohms f19 pair

BAKER SPEAKERS
"BIG SOUND
Robustly constructed to stand up to long
periods of electronic power.
Useful response $30-13,000 \mathrm{cps}$.
Useful response $30-13,000$
Bass resonance 55 cps .
GROUP " 35 "
12in. 40 watt
4,8 or 16 ohms.
£14.00
GROUP " $50 / 12$ "
12in. 60 watt professional
model. 4,8 or 16 ohms. Response $30-16,000$ With aluminium presence dome ตfoup "50/15" $£ 33.00$ 15 in .75 watt
8 or 16 ohms.
Send for leaflets on Disco, P.A. and Group Gear,
E.M.I. 13 $\frac{1}{2} \times 8$ in

SPEAKER SALE!
With tweeter. And cross
10W. State 3 or 8 ohm
f8.95
15 W model Post 45p 8 ohms. £10.50 GOODMANS 20W Woofer ${ }^{\text {Size }} 12 \times 1$ ioin. 4 ohms. f9.95 Hi-Fi Bass unit. GOODMANS 20W Full Range 8in. 80 hm Hi-Fi Twin Cone f5.
R.C.S. MINI MODULE HI-FI KIT $15 \times 8 \frac{1}{4}$ in 3-way Loudspeaker System, EMI 5in, Bass 5in, Middle 5in, Tweeter with 3-way Crossover and Ready Cut Baffle. Full assembly instructions supplied. Response $=$ 60 to 20000 cps 12 watt RMS. 8 ohm. £10.95 per kit. Two kits £20. Postage 75p. One or two kits.

+ BATTERY FLUORESCENT LIGHTING

Type " A "
(12 in. or 21 in .)

(21 in.)

White Enamel cases as shown above, including lampholders. Type "A" or "B" $\mathbf{£ 1 - 5 0}$. Case only, $\mathbf{£ 1 . 0 0}$. Plastic Lampholders to suit 50p pair. Ceramic (adaptable) 40p pair. Tubes to fit (21 in .) £1-00. (These can only be supplied when cases are ordered due to risk of postal damage.) Case type " C " (18 in .) or Case type "D" (12 in.) including lampholders $\mathbf{f 1} 1-25$.
INVERTER TRANSFORMERS, special design for maximum efficiency
Transistor, Heat Sink, Circuit board cut to size, Resistor, Capacitors etc .
£1.00 each

THIS IS ABOUT HALF THE PRICE THAT A SIMILAR FITTING WOULD COST YOU ELSEWHERE!!!
WHY NOT DO AS MANY OTHERS ARE DOING, BUILD THEM AND SELL THEM TO YOUR CAMPING FRIENDS?
PRINTED CIRCUITS. WHY NOT MAKE YOUR OWN WITH FOTOLAK POSITIVE LIGHT SENSITIVE LACOUER
Now you can produce perfect printed circuits in minutes! Nethod: Spray cleaned board lightly with lacquer. When dry. place positive master of required circuit on now sensitised surface. Expose to daylight, develop and etch. Any number of exact copies can of course be made from one master. Widely used in industry for prototype work.

Giant packs of unused mixed components! Weight 4|bs., these contain an assortment Giant packs of unused mixed components! Weight 4 , es., these contain an assortment of resistors (carbon and wire-wound); capacitors, (electrolytic, paper, silver-mica, of $\begin{aligned} & \text { olyester and polystyrenel); transistors, diodes, volume and pre-set controls and hosts }\end{aligned}$ of other bits and pieces'. No two bags are the same, but all contain a jolly good mixture of parts. Ideal for the odds and ends box1!! Per bag
 SPECIAL OFFER! Few only 3-channel (each 750 watts) Sound-to-light units. Fantastic value for money! Plug into any loudspeaker socket and create your own disco-type light show! Any mains lamps may be used . . . £17.95

Brand new printed circuit boards containing I.C's.r transistors, diodes, resistors, capacitors etc. etc. It is quite impossible to list these so we are selling by weight at $\mathbf{£ 1 . 0 0}$ per Ib. This could include upwards of 100 integrated circuits! Send as many f 1 's as you wish, we will weigh as varied a parcel as possible and refund your change!
PLEASE NOTE: All lighting and printed-circuit materials plus 8\% VAT. Other goods $12 \frac{1}{2} \%$. No VAT on overseas orders. Postage INLAND 65p per order. Overseas include extra to cover. We will refund any excess paid. Any enquiries for further details MUST include stamped addressed envelope!

G. F. MILWARD

PROGRESSIVERADIO

MICROPHONES: EM506 Electret Dual Imp $(50 \mathrm{~K}+600 \mathrm{O})$ Imp Stick Mic, with Battery E11.00. Electret Model ECM 105 Pencll Hand Mics IK Ω impedance, with standard jack $£ 2.85$; EM104 Tie Clip, Electret suppliad with battery $1 \mathrm{Kimp} \mathbf{£ 4 . 9 5}$. UD 130 Dual $\mathrm{imp}(50 \mathrm{~K}+600 \Omega$ moving coil dynamic mic, cardiod response $\mathbf{£ 8} \mathbf{8 . 2 5 p}$. Solid state buzzers, miniature, 6-9-12-24 volt 15 ma 75 p each
MAINS TRANSFORMERS, all 240 V AC primary, postage
MAINS TRANSFORMERS, all 240 V AC primary, postage shown in brackets per tranformer

 £2.20 (54pl. Murata MA401L 40 KHZ rec/send transducers $\mathbf{£ 3}$.25 pair.
SMITHS TRANSISTORISED AUDIBLE WARNINGDEVICE, 6-12V. 30p.
BOARDS SURPLUS. Reed Board with 14 12v Reed S.P. make RLAS £1.75. LM 309 K 5 V Regulator Panel 65 P.
KRT100, 1000Ω. F.V. 1 kV AC/DC., 150 mA DC cursent $0-100 \mathrm{~K} \Omega$ res. mirror scale, switched
range selector, £4-65.
TAPE HEADS Mono Cassette $£ 1.30$. Stereo version $£ \mathbf{3 . 0 0}$.
SOLDER SUCKEF, high suction eye protection shield $£ 4.95$.
PROJECT BOXES; black plastic ABS with lid $75 \times 56 \times 3544 \mathrm{p}$; $95 \times 71 \times 35,52 \mathrm{p} 115 \times$ PROJECT BOX
$95 \times 3660 \mathrm{p}$.
TERMS cash with order, (or official orders from colleges etc). Postage 30 p unless otherwise shown, overseas post at cost. VAT inclusive prices. New lliustrated Catalogue now ready. S.A.E. please.

Progressive Radio, 31 Cheapside, Liverpool L2 2DY. Tel: 0512360982

STERNWAY ELECTRICAL LIMITED

```
        3 BRIDE COURT, LONDON EC4Y 8DU
        (OFF FLEET STREET)
        013538530
        SPECIAL OFFERS:-
    555 28p each or 10 for £2.10.
    556 55p each.
    ZN41465p each
    ORP12 60p each.
71 25p each or }10\mathrm{ for }\mathbf{£2.00
741 25p each or lo for £2.00.
l
```



```
            RESISTANCESUBSTITUTION BOXES:-
A neat swiveling disc provides close tolerance substitution of 36 preferred value resistors from
ohms to 1 megohm. Simply fix clips into circuit and swivel until optimum rasult is achievec.
83.95 each inclucing postage and V.A.T
                CAPACITANCE SUBSTITUTION BOXES:-
Similar to resistance box, covering .0001 to .22 mfd. £3-95 each including postage and V.A.T.
        PLEASE SEND S.A.E. FOR SPEGIAL OFFER LISTS.
Similar to resistance box, covering 0001 to \(\cdot 22\) mfd. \(£ 3-95\) each including postage and V.A.T. PLEASE SEND S.A.E. FOR SPECIAL OFFER LISTS.
```


SOLVE your component buying

 problems with this

famous catalogue

- The finest components 'catalogue yet published.
- 128 A-4-size pages.
- About 2,500 items clearly listed and indexed.
- Profusely illustrated.
- Bargain List sent free.
- At $£ 1.25$, incl. p. \& p., the catalogue is a bargain.
Send the coupon below now. HOME RADIO (Components) LTD., Dept. PW. ${ }^{234-240}$ London Road

POST THIS COUPON \qquad 6
MAME.
ADDRESS
1

HOME RADIO (Components) LTD., Dept.
(Regn No
P.W. 234-240 London Road, Mitcham, Surrey

CR4 3HD.
A. Marshall (London) Ltd., Dept: PW Head Office mail order: Kingsgate House, Kingsgate Place, NW6 4TA. Tel: 01-624 0805 Retail Sales London: 40-42. Cricklewood Broadway, NW2 3ET: Tel: 01-452.0161/2. Telex: 21492. London: 325 Edgware Road, W2. Tel: 01-723 4242 Glasgow: 85 West Regent Street, G2 2QD: Tel: 041-332 4133. Bristol: 1 Straits Parade, Fishponds Road, B516 2LX. Tel: 0272654201

15-240 Watts!

HY5

Preamplifier
The HY5 is a mono hybrid amplifier ideally suited for all applications. All common inpu functions (mag Cartridge, tuner, etc) are catered for internally. The desired function is achieved either by a multi-way switch or direct connection to the appropriate pins. The internal volume and tone circuits merely require connecting to external potentiometers (not included). The HY5 is compatible with all I.L.P. power amplifiers and power supplies. To ease construction and mounting a P.C. connector is supolied with each
FEATURES: Complete pre-amplifier in single pam-Med tor stereo
APPLICATIONS: Hi-Fi-Mixers-Disco-Gutar and Organ-Public address
SPECIFICATIONS:
INPUTS. Magnetic Pick-up 3 mV ; Ceramic Pick-up 30 mV ; Tuner 100 mV ; Microphone 10 mV : Auxiliary $3-100 \mathrm{mV}$; input impedance $47 \mathrm{k} \Omega$ at 1 kHz .
OUTPUTS. Tape 100 mV ; Main output 500 mV R.M.S.
OUTPUTS. Tape 100 mV ; Main output 500 mK R.M.S. 10 kHz ; Bass + at 100 Hz
ACTIVE TONE CONTROLS. Treble $\pm 120 \mathrm{~B}$ at 10 kHz ; Bass \pm at 100 Hz .
Price $\mathbf{E 6} \cdot 27+78 \mathrm{p}$ VAT P\&P free.

The HY30 is an exciting New kit from I.L.P. It features a virtually indestructible I.C. with short
circuit and thermal protection. The kit consists of I. C., heatsink, P.C. board. 4 restistors, 6 circuit and thermal protection. The kit consists of I,C., heatsink, P.C. board. 4 resistors, 6
capacitors, mounting kit, to This amplifier is ideally suited to the beginner in audio who wishes to use the most up-to-date technology available.
FEATURES: Complete Kit-Low Distortion-Short, Open and Thermal Protection-Easy to Build.
APPLICATIONS: Updating audio equipment-Guitar practice amplifier-Test amplifietaudio oscillator.
SPECIFICATIONS:
OUTPUT POWER 15W R.M.S. into 8Ω : DISTORTION 0.1% at 1.5 W .
INPUT SENSITIVITY 500 mV . FREQUENCY RESPONSE $10 \mathrm{~Hz}-16 \mathrm{kHz}-3 \mathrm{~dB}$.
Price $16.27+$ AGE $\pm 18 \mathrm{~V}$.
The HY50 leads I.L.P.'s totai integration approach to power amplifier design. The amplifier features an integral heatsink ogetner with the simplicity of no externai components. During the reliable and robust High Fidelity modules in the World.
FEATURES: Low Distortion-Integral Heatsink-Only five connections-7 amp output tran-sistors-No external components
APPLICATIONS: Medium Power Hi-Fi systems--Low power disco-Guitar amplifier
SPECIFICATIONS: INPUT SENSITIVITY 500 mV
(OMP 0.04% at 25 W
SIGNAL/NOISERATIO 75 dB FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}$.
SUPPLY VOLTAGE $\pm 25 \mathrm{~V}$ SIZE 1055025 mm
Price $\mathbf{E 8} 18+\mathrm{fil}_{1} 02$ VAT P\&P free
The HY120 is the baby of I.L.P.'s new high power range. Designed to meet the most exacting reguirements including load line and thermal protection this amplifier sets a new standard in modular design.
FEATURES: Very low distortion-Integral heatsink-Load line protection-Thermal protec-tion-Five connections-No external components
APPLICATIONS: Hi-Fi-High quality disco-Public address-Monitor amplifier-Guitar and organ
SPECIFICATIONS
OUTPUTPOWER 60W RMS into 8Ω LOAD IMPEDANCE 4-16 Ω DISTORTION 0.04% at 60 W at 1kHz SIGNAL/NOISE RATIO 90dB FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}$ SUPPLY VOLTAGE士25V
SIZE 1145085 mm
Price $\mathbf{£ 1 9 \cdot 0 1 + £ 1 . 5 2 \text { VAT P\&P free. }}$
The HY200 now improved to give an output of 120 Watts has been designed to stand the most rugged conditions such as disco or group while still retaining true Hi-Fi performance.
FEATURES: Thermal shutdown-Very low distortion-Load line protection-Integral heatsink - No external components

APPLICATIONS: Hi-Fi-Disco-Monitor-Power slave—Industrial-Pubtic Address
SPECIFICATIONS
OUTPUT POWER $120 W$ RMS into 8Ω LOADIMPEDANCE 4-16 Ω DISTORTION 0.05% at 100 W at 1 kHz . NOISERATIO G6dB FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}$ - 3 dB SUPPLY VOLTAGE $\stackrel{+45 V}{\text { SIZE }} 1145085 \mathrm{~mm}$
Price $£ 27 \cdot 99+£ 2 \cdot 24$ VAT P\&P free.

HY400
240 Watts into 4Ω

POWER SUPPLIES

The HY400 is I.L.P.'s 'Big Daddy' of the range producing 240W into 4Ω, It has been designed
Tor high power disco address applications it predulifier is to be used at continupus high power levels a cooling fan is recommended. The amplifier includes all the qualities of the rest of the family to lead the market as a true high power hi-fidelity power module.
FEATURES: Thermal shutdown-Very low distortion-Load line protection-No external components.
APPLICATIONS: Public address-Disco-Power slave--Industrial
SPECIFICATIONS
OUTPUT POWER 240W RMS into 4Ω LOAD IMPEDANCE $4-16 \Omega$ DISTORTION 0.1% at 240 W
SIGNAL NOISE RATIO 94 dB FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}$ SUPPLY VOLTAGE
$\pm 45 \mathrm{~V}$
INPUT SENSITIVITY 500 mV SIZE 11410085 mm
Price $\mathbf{5} 38 \cdot 61+£ 3.09$ VAT P\&P fres.
PSU36 suitable for two HY30's $\mathbf{2 6} 44$ plus 81 p VAT. P/P free.
PSU50 suitable for two HY5G's $£ 8.48$ plus $£ 1.02 \mathrm{VAT}$. P/P free.
PSU70 suitable for two HY120's $£ 14.58$ plus $£ 1 \cdot 17 \mathrm{VAT}$. P/P fiee.
PSU90 suitable tor two HYY 20 's $£ 14.58$ plus $£ 1 / 17$ VAT. P/P free

PSU180 £25 $42+£ 2 \cdot 03 V A T$.
I.L.P. ELECTRONICS LTD., GROSSLAND HOUSE, NACKINGTON CANTERBURY, KENT, CT4 7AD.

I.L.P. ELECTRONICS LTD.,
 GRAHAM BELL HOUSE,ROPER CLOSE, CANTERBURY, KENT, CT2 7EP.

Tel: (0227) 54778.
Regd No. 1032630.

Please Supply
Total Purchase Price
I Enclose Cheque \square Postal Orders \square Money Order \square
Please debit my Access account \square Barclaycard account \square
Account number
Name and Address
Signature

EVEN LOWER PRICES!!

FROM TIMETRON Recommended by TEMPUS A well known consumer magazine has published a report on digital watches which supports our conviction that CASIO and SEIKO are probably the best watches in the world, with CASIO offering unbeatabie value for moncy, All CASIO watches have a calendar display, night illumination, mineral glass and stainless steel cases, water resistant to 100 f (except sports watches-66)

SPORTS WATCHES

F-100
Left. 9.45 mm was $£ 29.95$ £19.95
52QS. 14B
Right 8 mm was $£ 44.95$ $£ 27.95$
Up to 25 functions. Net, lap and first and second place times to $1 / 100$ th sec. F-100. Resin case, strap 52 QS-14B. S/S encased version and S / S bracelet.

4 DIGIT WATCHES display hours, minutes, ten seconds, seconds by flash, am/pm; And with day, date and month. 1 second to 13 hours stopwatch. Dual time facility

31QR-20B

Left. 8.5 mm 4 digit. Was $£ 35.95$:
£22.95
54QS-16B
Right. 7.5 mm 6 digit. Was $£ 49.95$ $£ 29.95$

51QR-19B 6 digit. Round face. Was $£ 44-95$
$£ 24.95$
51QR-18B 6 digit. Round face. Was $£ 49.95$
6 DIGIT WATCHES (Not Sports) Hours, minutes, seconds and day of week. Model 54 QS has an optional display of hrs, mins date, day, ten seconds, seconds by hash, And day, date, month

CHRONOGRAPH AND ALARM CHRONOGRAPH

 $\underset{\text { Len. Chrono }}{45 \mathrm{CS} \text { 228 }} \quad £ 39.95$
Was $£ 69.95$
£39.95
$\underset{\text { Right. A/C. } 7.8 \mathrm{~mm}}{\text { 46CS-27B }} \mathbf{£ 7 4 . 9 5}$ Right. A/C.

CHRONOGRAPH. 6 digits as above, with stopwatch measuring net, lap and 1st and 2 nd place times from $1 / 100 \mathrm{sec}$ to 6 hrs . Dual time facility.

ALARM CHRONO. As Chrono above but without dual time. 24 hour alarm with optional hourly chime facility
$60 \mathrm{QS}-20 \mathrm{~B}$
on request.
RRP $£ 44.95$
£34.95
CALCULATING ALARM CLOCKS (LCD)

AQ-2000 With stopwatch and calendar. $£ 24.95$
MQ-10 As above.
$\pm \times 4 \hat{4} \times 1 \frac{1}{4}$ ins.
£35.95
MQ-HIAsabove
$£ 29.95$
CQ-82

6 digit LC Display of time, with night light. Four alarms, one with snooze facility. Calculator with $\%, \quad, K$. One year battery $1 \frac{1}{4} \times 5 \frac{1}{2} \times 2 \frac{1}{4}$ ins.
(524.95)
$£ 19.95$

[^1]

OSMABET LTD $\begin{gathered}\text { We make transformers } \\ \text { amongst other thinss }\end{gathered}$
LOW VOLTAGE TRANSFORMERS: Prim 240V ac.

 115.50;

TWIN SEC TRANSFORMERS: Prim 240V

 .75A $+15 V 0.75 A f 5.65 ; 15 V 1.5 A+15 V 1.5 A £ 7.75 ;$
$18 V 1 A+18 V 1 A 6.85 ; 18 V 15 A+18 V 15 A £ 8.50 ; 20 V$ $1.5 \mathrm{~A}+20 \mathrm{~V}$ 1.5A £8.50; $12 \mathrm{~V} 4 \mathrm{~A}+12 \mathrm{~V} 4 \mathrm{~A} \mathbf{£ 1 0 \cdot 5 0 ; 2 5 \mathrm { V }}$ $2 A+25 V$ 2A £10.50.
-O-6V 1 LACTIFIER TRANSFORMERS: Prim 240V ac. $6-0.6 \mathrm{~V} 1.5 \mathrm{~A}$ or $9-0-9 \mathrm{~V}$ 1A $£ 3.00$ each; $12 \mathrm{~V}-0-12 \mathrm{~V} 1 \mathrm{~A}$ ot 25A or 20V-0-20V $0.15 A$ £ 2.85 each
LTTRANSFORMERSTAPPEDSEC. prim 240V ac-
$0-10-12-14-16-18 V 2 A$ £6.50; 4A £8.25; O-12-15-20-
$24-30 V 2 A £ 7.35 ; 4 A$ £10.50; $0-20-30-60 V$ A $£ 8.25$; $24-30 V 2 A £ 7.35 ; 4 A$ £10.50; $0-20-30-60 V$ A $£ 8.25$ 2A f10.50; 0-40-50-60-80-100-10V IA f10.50
prim 240V ac. $2 \mathrm{Ma} 6 \mathrm{~V} 1 \mathrm{~A} £ 2.00 ; 250 \mathrm{~V} 100 \mathrm{Ma} .63 \mathrm{~V}$
LOUDSPEAKERS
2 in 8Ω, 2 in 8 or $25 \Omega, 2 \frac{\operatorname{in}}{}$ in $8 \Omega, 3$ in $35 \Omega, 31$ in $3,8,16$ or

"INSTANT" BULK CASSETTE/TAPE ERASER
instant erasure of cassettes, and any diameter of tape spools, Instant erasure of cassettes, and any diameter on tape POWER SUPPLY, TWIN OUTPUT: Prim 240V ac. New, British manufacture, smoothed d.c. output 20 V 1.5 A ,
pius stabilised output of 15 V 100 Ma , plus 12 V ac $0-5 \mathrm{~A}$ out U, complete with diaram EDGEWISE LEVEL METER FSD 200/ μ A
Size $19 \times 18 \times 20 \mathrm{~mm} 800 \Omega$ £1.10.
CHARGING METERS 13 ins diameter
$2 A$ or $3 A$ E1-25 each; $5 A$ or $10 A £ 1.50$ each.
SYNCHRONOUS GEARED MOTORS, 240 Vac. SYNCHRONOUS GEARED MOTORS, 240 Vac .
Brand new, built in gear box, 1 or 20 RPH 1.25 each.
O/P TRANSFORNERS FOR VALVE AMPLIFIERS P.P. Sec tapped $3-8-15 \Omega$, A-A GK. 30W £15-25; A-A 3 K 50W £22.75; 100W (EL31, KT88, etc.) £31-25 Covers valve amplifters 30 W to $400 \mathrm{~W} £ 1.00$.
MULTIWAY SCREENED CABLE, PVC COVERED 36 way f1.00; 25 way 75 p; 14 way 50 p; 6 way 25 p; 4 way $20 p ; 2$ way $10 p ; 1$ way $8 p ; 4$ way individually screen-
ed 250 per metre, fig; 8 win stereo do screened 15 p, metre.

meires.
CONDENSERS
Electrolvtic, 400/400V 75p; 2000/30V 30p; 1200/7550p
$2200 / 40 \mathrm{~V}$ 40p; Paper tubular. W/E 4/160V, $6 / 160 \mathrm{~V}$ 2/150V, 0.1/2000V 25p each

CARRIAGE EXTRA ON ALL ORDERS
ALL PRICES INCLUDEV.A.T.
Caliers by appointment only. S.A.E. Enquiries, Lists 46, Kenilworth Road, Edgware, Middx HA8 8YG. Tel: 01-9589314

Somic

 SPEAKERS

Imp 8 or 15 as app GITANantees: FANE LIFETIME OTHERS 1 year ALL PRICES INC. VAT

HI-FI TYPES
$5^{\prime \prime}$ FANE 501 Mid or Full range 8. A.F. Model 80 Dual Cone FANE $\mathbf{8}^{n} 808 T$ Dual WH FEDALE L'TON $3 \times P$ kit Pr $10^{\prime \prime}$ DENTON $2 \times \mathrm{PKIT}$ Pair
$10^{\prime \prime}$ GLENDALE $3 \times \mathrm{P}$ KiT A.F. FRI 8" SPKRKIT 8"FANE MODE ONE KIT

CABINETS (TEAK VENEERED
$20^{\prime \prime} \times 11 \frac{1^{\prime \prime}}{} \times 9 \frac{1}{2}^{\prime \prime}$ Suitable
Models $80^{2} .83$ or 8087 Spkrs. GROUP/DISCO TYPES $12^{\prime \prime} \mathrm{T}$
$12^{\prime \prime} \mathrm{T}$
$12^{\prime \prime} \mathrm{T}$
$12^{\prime \prime} \mathrm{C}$
$12^{\prime \prime} \mathrm{C}$
$12^{\prime \prime} \mathrm{C}$
$12^{\prime \prime} \mathrm{G}$
$12^{\prime \prime} \mathrm{G}$
$12^{\prime \prime} \mathrm{F}$
$12^{\prime \prime}$
$12^{\prime \prime}$
$12^{\prime \prime}$
$12^{\prime \prime}$
$12^{\prime \prime}$
$12^{\prime \prime} \mathrm{F}$
$12^{\prime \prime}$
$12^{\prime \prime}$
$12^{\prime \prime}$
$12^{\prime \prime}$
$15^{\prime \prime} \mathrm{T}$
$15^{\prime \prime} \mathrm{T}$
$15^{\prime \prime} \mathrm{F}$
$15^{\prime \prime}$
$15^{\prime \prime} \mathrm{G}$
$15^{\prime \prime} \mathrm{F}$
$15^{\prime \prime}$
$15^{\prime \prime}$
$15^{\prime \prime}$
$15^{\prime \prime}$
$18^{\prime \prime} \mathrm{T}$
$18^{\prime \prime} \mathrm{G}$
$18^{\prime \prime} \mathrm{C}$
$18^{\prime \prime} \mathrm{F}$
$18^{\prime \prime}$
$18^{\prime \prime}$ TITAN T12/60R CELESTION G12M $2^{\prime \prime}$ CELESTION G12/50
$2^{\prime \prime}$ GOODMANS 12 PD
$2^{\prime \prime}$ GOODMANS 12 PG $\mathbf{2}^{*}$ " FANE SPECIALIST P.A. 80 Lim Limited Number $£ 6.95$ ea ".
". $F_{A N}$
".
"."
TITA. DISCO 80
DISCO 100
GUITAR 801
GUITAR 100
GUITAR $80 B$ ÁNE CRESCOENDO 8080
80 LT
12 A 12 A
12 L
12 BASS
TITANT15/7̈0 70w
5" FANE T15 SPECIALIST' BASS
" GÓODMANS" 15 P BASS 100 5" FANE CRESCENDO/15

```
15/160 160w
```

TITAN T18/íOO COLOW
$8^{\prime \prime}$ GOODMANS 18 P $8^{\prime \prime}$ CEELESTIONS 18 C
$8^{\prime \prime}$ FANE CRESCEND

HORN UNITS
GELESTIDN MH
FANE 910 MK H II 50 w
$\begin{array}{ll}\text { £17.00 } & \mathbf{8 1 3 . 7 5} \\ £ 17.75 & \mathbf{8 1 0 . 9 9}\end{array}$
920100 w
J 4430.50 w
J73 50w
J10450.70w
$\begin{array}{rr}£ 62.95 & £ 44.50 \\ £ 7.95 & £ 4.95 \\ £ 11.75 & £ 7.95\end{array}$

HIGH POWER 'CROSS-DVERS'
FANE HP $\times 1$ or HP $\times 2$ R Carr. 35p $\quad £ 3.65 \quad £ 2.25$ ADD-ON HIGH FREOUENCY UNITS

$\begin{array}{ll}£ 41.95 & £ 35.95 \\ £ 33.00 & £ 23.95\end{array}$
TITAN TS2H 100w
TITAN T2H Carr. E
$\begin{array}{ll}£ 33.00 & £ 23.95 \\ £ 33.00 & £ 23.95 \\ £ 39.00 & £ 26.95\end{array}$

BIG DISCOUNTS ON

WHARFEDALE SPEAKER KITS

LINTON 3XP
List/value R.S.C. Power handing 30 watts DIN $\quad £ 60.70 \quad £ 35.95$
DENTON 2XP
Power handling 25 watts DIN
£39.15 £21.95
Also for personal shoppers only
AMPS, TTABLES, JINGLE MACHINES, disco consoles, lighting, CABINETS, CREDIT TERMS AVAILABLE $\begin{gathered}\text { orders } \\ \text { over } \\ \text { o20 }\end{gathered}$

Phone order
card holders.
403 SAUCHEHALL STREET Tel: 0413320700

GLASGOW
Mail Orders/Export enquiries onfy - it 24 Newgate Shopping Centre, NEWCASTLE. Add $\mathrm{f1}$ (1 carr on

A breadboardas big as your ic

 Perfect for checking out Microprocessors

 Accepts 8, 14, 16 and up to 22 pin IC's. Has 130 contact points including two 10 -point bus-bars.EXPERIMENTOR $600 £ 6.30$
The Breadboard for quick construction of Microprocessors and other circuits.
EXP 600 has 550 contacts including two 40 -point bus-bars with $0.6^{\prime \prime}$ centres.

No soldering simply plug all standard components in and out, nickelsilver contacts allow Breadboard and components to be used over and over again without damage.

Adaptable accepts any component without adaptors or jumper leads, use 22-30 gauge solid wire for jumper leads.

Mix and Match large and small chips in the same circuit. Use 300 series for smaller and $0.3^{\prime \prime}$ pitch DIP's. 600 series for Microprocessors with $0.6^{\prime \prime}$ centre channel for full fan-out with larger Chips.

Smallest to Biggest, remember CSC's Breadboards "snap-lock" together so you can start with a small idea and expand your ideas to as Big a Breadboarding area as you like.

Easy Permanent Mounting,

using four screws from front or six selftappers from rear. Vinyl-insulated backing lets you fasten to any surface.

EXPERIMENTOR $\mathbf{3 5 0} \mathbf{£ 3 . 1 5}$
EXP 350, specifically designed for the hobbyist working with up to 3×14 DIF IC's. With 270 contact points including two 20-point bus-bars the EXP 350 accepts any size DIP with $0.3^{\prime \prime}$ spacing.

Marked Contact Points transfer component by component from letter/number position on Breadboard to finished P.C. Board or Wiring Table.

Ruggedly built of abrasion-

resistant materials that withstand $100^{\circ} \mathrm{C}$.

EXP 650 has 270 contacts including two 20 -point bus-bars with $0.6^{\prime \prime}$ centres.

EXPERIMENTOR QUAD BUS
STRIP $\mathbf{E} \mathbf{2 . 3 0}$ Need more bus-bars, clip on an EXP 4B and you have four 40-point bus-strips with 8 -, 12 - and 16 -line address, create data-buses by combining EXP 4B, Bus Strips.

EXPERIMENTOR $300 £ 5.75$

The hobbyists ideal Breadboard, accepts 6×14 DIP or 5×16 DIP, has 550 contact points including two 40 -point bus-bars, accepts any size DIP with $0.3^{\prime \prime}$ spacing.

Tailor-Made Breadboards e.g. a project requires up to 5×14 DIP chips and needs up to six bus-bars. Which to buy? Easy from the table below select an EXP 300 plus an EXP 4B, total cost £10.58.

Pick any project that you want to build, or any part of a project that you want to test or modify. Count up the number of IC's you need for the project.
Then simply look up in the box opposite the Breadboard you require.
If you need more than two bus-bars simply add the correct number of Quad-Bus Strips. GET
STARTED NOW FOR AS LITTLE AS £2.54.

MODEL NO.	NUMBER OF CONTACTHOLES	ICCAPACITY (14-pin DiP's)	UNIT PRICE (includes Post \& VAT)
EXP 300	550	6	$\varepsilon 7.29$
EXP 600	550	use with $0.6^{\prime \prime}$ PITCH DIP's	$£ 7.88$
EXP 350	270	3	$£ 4.21$
EXP 650	270	use with $0.6^{\prime \prime}$ PITCH DIP's	$£ 4.70$
EXP 325	1	$£ 2.54$	
EXP4B	FOUR 40-point Bus-Bars	-	$£ 329$

TO ALL TRADERS, MAIL ORDER HOUSES

SUPERSOUND 13 HI-FI MONO AMPLIFIER

A superb solid state audio amplifier. Brand new components throughout. 5 silicon tran sistors plus 2 power output transistors in push-pull Full wave rectification Output approx.
watts r.m.s. into watts r.m.s. into ohms. Frequency re-
sponse $12 \mathrm{~Hz} 30 \mathrm{KHz} \pm$ 3db. Fully iniegrated pre-amplifier stage with separate Yolume. Bass boost and Treble cut controls Suitable for 8-15 ohm speakers. Input for ceramic or crystal cartridge. Sensitivity approx. 40 mV for full output. Supplied ready built and tested, with knobs escutcheon panel. input and output plugs. Overal

harversonic model P.a. TWO ZERO
An advanced solid state general
 purpose mono amplifier suitable
for Public Address system. trolled inputs (each input has a separate 2 stage preamp). Inpuc 1 . 15 mv into 47 k . Input 2 . 15 mv into 47 k (suitable for use with mic. or guitar-etc.). Input 3 200 mv into 1 meg. suitable for gram. turer, or tape etc. Full mixing facilities with full range bass \& treble controls. All inputs plug into standard jack sockets on front panel. Out put socket on rear of chassis for an 8 ohm or 16 ohm speaker. Output in excess of 20 watts made from black vinyl covered steel, with a brushed anodised aluminium front escutcheon. For ac mains operation $200 / 240 \mathrm{v}$. Size adprox. $12 \ddagger^{\prime \prime} w_{1} \times 5^{\prime \prime}$ h. $<7 \ddagger^{\prime \prime}$ d. Special introductory Price $£ 28 \cdot 00-£ 2 \cdot 50$ carr, \& pkg. "POLY PLANAR" WAFER-TYPE, WIDE RANGE ELECTRO-DYNAMIC SPEAKER
Size $114^{\prime \prime} \times 14 \frac{1}{15}{ }^{\prime \prime} \times 1 \frac{7}{16}{ }^{\prime \prime}$ deep. Weight 190z. Power handling 20W r.m.s. (40W peak). Impedance 8 ohm only. Response $40 \mathrm{~Hz}-20 \mathrm{kHz}$. Can be mounted on ceilings, walls, doors, under tables. etc., and used with or without baffie. Send S.A.E. for full details. Only $£ 8.40$ each + p. \& D . (one 90 p , two $£ 1-10$),
 rectangular. 10 watts RM .
P . \& P. (one 65 p , wo 75 p).
STEREO MAGNETIC PRE-AMP. Sens. 3 mV in for 100 mV out. 15 to 35 V neg. earth. Equ. $\pm 1 \mathrm{~dB}$ from
 2"PLASTIC CONE HF TWEETER $4 \mathrm{ohm}, \mathbf{£ 3} \cdot 50$ per
matched pair 50 p P \& P . matched pair t. 50p P \& P

MAINS OPERATED SOLID STATE AM/FM STEREO TUNER
 200/240V Mains oper-
ated Solid State FM AM ated Solid State FM AM Stereo Tuner. Covering
 $\begin{array}{lll}\mathrm{KHz} & \text { VHF/FM } \\ \mathrm{MHz} & 88-108\end{array}$ MHz
Built-in Built-in Ferrite rod aerial for M.W. Full AFC and
AGC on AM and FM. AGC on AM and FM.
Stereo Beacon Lamp Indicator. Built in Pre-amps with variable output voltage adjustable by pre-set control. Max o/p Voltage $600 \mathrm{~m} / \mathrm{V}$ RMS into 20 K . Simulated Teak finish cabinet. Will match alroost any amplifier. Size $81^{\prime \prime} w \times 4^{\prime \prime} h \times$ 91" ${ }^{\text {"d approx. }}$
LIMITED NUMEER ONLY at $£ 28 \cdot 00$: $£ 1 \cdot 50 \mathrm{P}$. \& P. 10/14 WATT HI-FI AMPLIFIER KIT
A stylishly finished monaural amplifter with an output of 14 watts from 2 EL84s in push-pull: Super reproduction of both music and speech with negligible hum Separate inputs for mike and gram allow records and announcements to follow each other. Fully shrouded section wound output transformer to mateh $3-15 \Omega$
speaker and 2 independent volume controls. and speaker and 2 independent volume controls, and
sebarate bass and treble controls are provided giving separate bass and treble controls are brovided giving
good lift and cut. Valve line-up 2 ELS4s. ECC83. good lift and cut. Valve Sine-ud instruction booklet 25D + SAE (Free with parts). All parts. sold separately. ONLY £15.50, P. \& P. £1.40. Also available ready built and tested $£ 20 \cdot 00$. P. \& P. $£ 1.40$.
STEREO DECODER
SIZE $2^{\prime \prime} \times 3^{\prime \prime} \times 1^{\text {" }}$ ready buitt. Pre-aligned and tested for $9-16 \mathrm{~V}$ neg. earth operation. Can be fitted to almost any FM VHF radio or tuner. Stereo beacon light can be fitted if required. Full detalls and instructions (inclusive of hints and tips) supplied. $£ 6 \cdot 00$ plus 20 D .
P. \& P. Stereo beacon light if required 40 pextra. P. \& P. Stereo beacon light if required 40p extra.

SPECIAL OFFER

Slightly shop soiled radios by well-known manufacturer Sor AC Mains or battery use. MW and FM bands. for AC Mains or battery use. MW and FM bands.
Dynamic M/coil speakers. telescopic aerial and internal ferrite aerial. Earpiece socket for personal listening. Finished in attractive simulated leatherette. Size $7^{\prime \prime} \mathbf{H} 9^{\frac{1}{2}}{ }^{\prime \prime} \mathrm{W} 4^{\prime \prime} \mathrm{D}$ approx. Fully guaranteed. Bargain price of only $£ 10 \cdot 00-£ 1 \cdot 30 \mathrm{p} . \& \mathrm{p}$.
MODEL FL4
Few only similar to above, but battery operation only and fitted with twin speakers. Four wave bands, MW FM and two VHF bands for reception of aircraft and Some public services. ONLY $\operatorname{VYNAIR~\& ~REXINE~SPEAKERS~\& ~CABINET~FABRICS~app.~}$ 54 in . wide. Our price $£ 2.00 \mathrm{yd}$. length. P. \& P. 50p per yd. (min. 1 yd.). S.A.E. for samples.

HARVERSONIC SUPERSOUND

10 - 10 STEREO AMPLIFIER KIT

A really first-class Hi-Fi Stereo Amplifier Kit. Uses 14 transistors including Silicon Transistors in the first flve stages on each channel resulting in even lower noise level with improved sensitivity. Integral pre-amp with Bass. Treble and two Volunte Controls. Suitable for use with Ceramic or Crystal cartridges. Very simple to modify to suit magnetic cartridge-instructions inohms Compact design. all parts supplied inchding drilled metalwork. high quality ready drilled printed circuit board with component identification clearly marked, smart brushed anodised aluminium front panel with matching knobs, wire, solder, nots, bolts-no extras to buy. Simple step by step instructions enable any constructor to build an amplifier to be proud of. Brief specification: Power output: 14 watts r.m.s. per channel into 5 ohms. Frequency response: $\pm 3 \mathrm{~dB}$ 12-30.000 Hz Sensitivity: ber $\mathrm{M} \Omega$: Full power bandwidh. $\pm 3 \mathrm{~dB} 12-15.000 \mathrm{~Hz}$. bass boos vegative feedback is 1 B over main amp Power requirements 35 v . at $1 \cdot 0 \mathrm{amp}$.
Power requirements $35 v$. at 10 amp
Overall Size $12^{\prime \prime} w . ~$
$8 " d$. $3^{\prime \prime} h$
Fulls detailed 7 pase construction manual and parts list free with kit or send 25p plus large S.A.E.
AMPLIFIER KIT (Magnetic input components 33p extra) POWER PACK KIT
£6.00 P. \& P. 95p CABINET
£6.00 P. \& P. 95 p
SPECIAL OFFER-only $\mathbf{£ 2 5} \mathbf{- 0 0}$ if all $\mathbf{3}$ items
ordered at one time plus $\boldsymbol{£ 1} \cdot \mathbf{2 5} \mathbf{p} . \& \mathbf{p}_{-}$
Also avail. ready built and tested $£ 31 \cdot 25, P$. \& P. $£ 1 \cdot 50$. HARVERSONIC STEREO 44
A solid state stereo amplifier chassis, with an output of $3-4$ watts per channel into 8 ohm speakers. Using the latest high technology integrated circuit amplifiers with
built in short term thermal overload prorection. Alt built in short term thermal overioad protection. Als
components including rectifier smonthing capacitor, fuse. tone control, volume controls, 2 ping din speaker sockets \& 5 pin din tape rec./play socket are mounted on the printed circuit panel, size approx. $91^{\prime \prime} \because 24^{\prime \prime} 1^{\prime \prime}$ max. depth. Supplied brand new \& tested. with knobs, brushed a nodised aluminium 2 way escutcheon (to allow the amplifier to be mounted horizontally or vertically) at only $\mathbf{£ 1 0 - 0 0}$ plus $50 p_{5} P \& P$. Mains transformer with an output of \mathbf{P} if required. Full connection details supplied

All prices and specifications correct at time of press and subject to alteration without notice.
PLEASE NOTE: P \& P CHARGFS OUOTED APPLY TO U.K. ONLY. SEND SAE WITH ALL ENQUIRIES.
ONDON, S.W.19.
Tel.: 01-540 3985
Open 9.30-5.30 Mon. to Fri. 9.30-5 Sat. Closed Wed,

Electronics. Make a job of it....

Enrol in the BNR \& E School and you'll have an entertaining and fascinating hobby. Stick with it and the opportunities and the big money await you, if qualified, in every field of Electronics today. We offer the finest home study training for all subjects in radio, television, etc., especially for the CITY AND GUILDS EXAMS (Technicians' Certificates); the Grad. Brit. I.E.R. Exam; the RADIO AMATEUR'S LICENCE; P.M.G. Certificates; the R.T.E.B. Servicing Certificates; etc. Also courses in Television; Transistors; Radar; Computers; Servo-mechanisms; Mathematics and Practical Transistor Radio course with equipment. We have OVER 20 YEARS' experience in teaching radio subjects and an unbroken record of exam successes. We are the only privately run British home study College specialising in electronics subjects only. Fullest details will be gladly sent without any obligation.

Become a Radio Amateur.

Learn how to become a radio-amateur in contact with the whole world. We give skilled preparation for the G.P.O. licence.

Brochure without obligation to:

British National Radio \& Electronic School
 P.O. Box 156, Jersey, Channel Islands.

NAME
ADDRESS

Logically laid out to accept both $0.3^{\prime \prime}$ and $0.6^{\prime \prime}$ pitch DIL packages as well as Capacitors; Resistors, LED's, Transistors and components with leads up to .85 mm dia.

500 individual connections in the central breadboarding area, spaced to accept all sizes of DIL package without running out of connection points.
4 Integral Power Bus Strips around all edges for minimum interconnection lengths.

Double-sided, nickel silver contacts for long life (10K insertions) and low contact resistance ($<10 \mathrm{~m}$.ohms)

Easily removable, non-slip rubber backing allows damaged contacts to be rapidly replaced.
What other breadboarding system has as many individual contacts, offers all these features and only costs $£ 5.80$ inclusive of VAT and P.P. - NONE.

At $£ 5.80$ each The EuroBreadBoard is unique value for money. At $£ 11$ for 2 The EuroBreadBoard is an indispensable design aid.

Snip out and Post

Technical Training in Radio, Television and Electronics

ICS have helped thousands of ambitious people to move up into higher paid, more secure jobs in the field of electronicsnow it can be your turn. Whether you are a newcomer to the field or are already working in the industry, ICS can provide you with the specialised training so essential to success.

Personal Tuition and Guaranteed Success

The expert and personal guidance by fully qualified tutors, backed by the ICS guarantee of tuition until successful is the key to our outstanding record in the technical training field. You study at the time and pace that suits you best and in your own home. In the words of one of our many successful students: "Since starting my course, my salary has trebled and I am expecting a further increase when my course is completed."

City and Guilds Certificates
Excellent job prospects await those who hold one of these recognised certificates. ICS can coach you for:
Telecommunications Technicians
Radio, TV Electronics Technicians
Technical Communications
Radio Servicing Theory
Radio Amateurs
Electrical Installation Work
Also MPT Radio Communications Certificate

Diploma Courses

Colour TV Servicing
Electronic Engineering and Maintenance
Computer Engineering and Programming
Radio, TV and Audio, Engineering and Servicing
Electrical Engineering, Installations and Contracting

Qualify for a New Career

Home study courses for leading professional examinations and diploma courses for business and technical subjects:-
G.C.E.

60 subjects
at "O" \&
" A " levels
Accountancy
Air
Conditioning
Building

POST OR PHONE TODAY FOR FREE BOOKLET.

Quality audio modules and accessories for

8451	FREQUENCY RANGE	88-108 Mhz
	SENSITIVITY	3.04 V
	BANOWIOTH	250 kHz
	SPURIOUS REJECTION	50 dB
	SELECTIVITY $\pm 400 \mathrm{kHz}$	55 dB
Dhase lock-1000	AUDIO OUTPUT (22.5 kHz	100 mV
f23.24	STEREO SEPARATION	30 dB
	SUPPLY REOUIREMENTS	20 to 30 V (90 mA max)
$\begin{aligned} & +40 p p \& p \\ & +12 \% \vee A T \end{aligned}$	AERIAL IMPEDANCE	75 ohms
	DIMENSIONS	$240 \mathrm{~mm} \times 110 \mathrm{~mm} \times 32 \mathrm{~mm}$

MPA30
magnetic cartridge PRE-AMPLIFIER

Enjoy the quality of a

£2.98
magnetic cartrid 9 e with your

he MPA 30 which is a high quality pre-
amplifer enabing magnetic cartridges to be used where facitities SENSITIVITY $\quad 3.5 \mathrm{mV}$ for 100 mV output $\frac{\text { SENSITIVITY }}{\text { EQUALISATION }} \quad \frac{3.5 \mathrm{mV} \text { tor } 100 \mathrm{mV} \text { output }}{\text { Within } \pm 1 \mathrm{~dB} \text { from } 20 \mathrm{~Hz} \text { to }}$
stat 450 tuner provides instant programme selection at the touch of a bution ensuring accufate funing or are-sentrols. stations, any of which may be altered as often as you choose, simply by changing the settin
Features include FET input stage. Vari-Cap diode tuning. Switched AFC LED Stereo Indicator

OUTPUT POWER	7 Watts RMS
LOAD IMPEDANCE	8 ohms
TÓTAL HARMONIC DISTORTION	Less than 5% (Typically 3%)
FREQUENCY RESPONSE	50 Hz to $20 \mathrm{kHz} \pm 3 \mathrm{dBs}$
TONE CONTROL RANGE	$\pm 12 \mathrm{dBs}$ at 100 Hz and 10 kHz
SENSITIVITY	190 mv for full oufput
INPUT IMPEDANCE	1 M ohms
TRANSFORMER REQUIREMENTS	22 V.A.C. rated at 1A
DIMENSIONS (Less controls and panel)	$200 \mathrm{~mm} \cdot 130 \mathrm{~mm} * 33 \mathrm{~mm}$

The Stereo 30 comprises a complete stereo pro-amplifler, power amplifiers and power supply. This, with onty the addition of a transformer or overwind will oroduce a high quality audio unit suitable for use with a wide range of inguts f.e. high quality ceramic pick-up, stereo tunef. stereo tape deck etc. Simple knobs. main switch. fuse and fuse holder and universal this unit Is supplet.
mounting brackets.

OUTPUT POWER	25 Walts RMS
SUPPLY	$30-50 \mathrm{~V}$
LOAD IMPEDANCE	$8-16 \mathrm{ohms}$
TOTAL HARMONIC DISTORTION	Less than 1% (Typically 06%
FREQUENCYRESPONSE	20 Hz to $30 \mathrm{kHz} \times 2 \mathrm{dBs}$
SENSITIVITY	280 mV for full qutput
MAX. HEAT SINK. TEMPERATURE	$90^{\circ} \mathrm{C}$
DIMENSIONS	$103 \mathrm{~mm} \times 64 \mathrm{~mm} \times 15 \mathrm{~mm}$

This high quaity audio amplifier module is tor use in audio equipment and stereo amplifiers and provides output powers ub to 25 RMS with distortion levels below 01%

	OUTPUT POWER	35 Watts RMS
	SUPPLY	40-60 V
	LOAD IMPEDANCE	$8-16$ ohms
	TOTAL HARMONIC DISTORTION	Less than 1% (Typically 06%)
	FREOUENCY RESPONSE	20 Hz to $30 \mathrm{kHz} \times 2 \mathrm{dBs}$
	SENSITIVITY	280 mV for futl output
	MAX. HEAT SINK TEMPERATURE	$90^{\circ} \mathrm{C}$
	DIMENSIONS	$103 \mathrm{~mm} \times 64 \mathrm{~mm} \times 15 \mathrm{~mm}$
The AL80 is similar in design to the AL60 above and is of the same high quality but provides output powers up to 35W with distortion levels below $0 . t \%$.		
1251 125 W R.M.S.	OUTPUT POWER	125 Watts RMS continuous
	OPERATING VOLTAGE	$50-80 \mathrm{~V}$
POWERAMPLIFIER	LOADS	4-18 ohms
	FREQUENCY RESPONSE	25 Hz 20 kHz measured at 100 Watts
	$\begin{aligned} & \text { SENSITIVITYFOR } 100 \text { WATTS } \\ & \text { OPPAT } 1 \text { kHz } \end{aligned}$	450 mV
	INPUTTMPEDANCE	33 K ohms
	TOTALHARMONIC DISTORTION 50 WATTS into 4 ohms 50 WATTS into 8 ohms	$\begin{aligned} & 0.1 \% \\ & 006 \% \end{aligned}$

This unit, designated AL250, is a power amplifier providing an output of up to 125 W RMS. into a 4 ahm load.

AL30A AUPIO AMPLIFIER MODULES	MAXIMUM SUPPLY VOLTAGE	30 V
	POWER OUTPUT for 2% THD	10 W atts RMS
	TOTAL HARMONIC DISTORTION	Less than 25%
	LOADIMPEOANCE	8-16 ohms
	INPUT IMPEDANCE	100 Kohms
	FREQUENCY RESPONSE	$50 \mathrm{~Hz}-25 \mathrm{kHz} \pm 3 \mathrm{dBs}$
	SENSITIVITY	75 mV for full output
	DIMENSIONS	$74 \mathrm{~mm} \times 63 \mathrm{~mm} \times 28 \mathrm{~mm}$

A tod quality stereo pre-amplifier and tone control unit, The PA100 provides a comprehensive solution to the ront end
requirements of stereo amplifiers or audio units. The six Dush button selector switch gives a choice of inputs together with
iwo fites two filters for high and low frequencies.

SUPPLY
DIMENSIONS 20 kHz 18 to 30 V -re earth $110<50-25 \mathrm{~mm}$ (inc DIN

PA12

STEREO
PRE-AMPLIFIER
The PA12 Sterea P
Amplifier chassis is designed and recommended for use with the AL $20 / 30$ Audio Amplifier Madules, the PS12 power supply and the TS38 Transformer. Features include onlof volume. Balance, Bass FREQUENCY RESPONSE
$20 \mathrm{~Hz}-20 \mathrm{kHz}(-3 \mathrm{~dB})$
BASS CONTROL $\pm 12 \mathrm{~dB}$ at 60 Hz

TREBLE CONTROL	$\pm 14 \mathrm{~dB}$ at 10 kHz
NPUT IMPEDANCE	1 Meq

INPUT IMPEDANCE NPUT SENSITIVITY $\quad \frac{1 \text { Meg. ohm }}{300 \mathrm{mV}}$ CROSSTALK

SE RATIO
$-\quad-60 \mathrm{~dB}$
SIGNAL/NOISE RATIO $\quad-65 d B$
OVERLOAD FACTOR
TAPE OUTPUT IMPEDANCE $\quad 25 \mathrm{~K} 0 \mathrm{hms}$ DIMENSIONS
$152 \mathrm{~mm} \times 84 \mathrm{~mm} \times 25 \mathrm{~mm}$

PS12 POWER SUPPLY MODULE

Power supply for AL20A-30A

A12, 5450 etc.
Transformer 7538
Input A.C. Voltage 15-20V. Output D.C. Voltage $22-30 \mathrm{~V}$ approx. (Dependent upon
input.)
Output Current 800 mA
Dimensions $60 \times 43 \times 26 \mathrm{~mm}$.

f1.90

$+12 \frac{1}{2} \%$ VAT $+35 p p \& p$
BP124 SIREN ALARM

MODULE

American Police screame
powered from any 12 voll supply
into 4 or 8 ohm speaker
Ideal for car burglar alarm,
other security purposes.
ONLY £3.50

MA60 HI-FI AMPLIFIER KIT

Build you own top quality amplifier, save yourself pounds. The MA60 kit comprises the following Bi-kits modules, $2 \times A L 60$ amps.
$1 \times$ PA 00 pre-amp, $1 \times$ SPM 80 stab. power $5 u p p l y, ~$ $1 \times$ PA 100 pre-amp, 1 \& SPM80 stab. power supply. 1 x BMT80
transt. giving 15 watts RMS per channel STEREO. All modules covered by the BI-PAK satistaction or money back guarantee. Details of the above modules are in this ad.

TC60 KIT

A beautifully designed genuine TEAK WOOO veneered cabine to put the professional touches to your home built amplifier. Full Sockets, Noen, etc. Ideal for the MA60. Size: $425 \mathrm{~mm} \times 290 \mathrm{~mm} \times$ Priee $\mathbf{9 5 1 9} \cdot \mathbf{9 s}+\mathbf{4 2} \frac{1}{2} \%$ VAT $+86 p$ pep

TRANSFORMERS

der No. 2036 050 For use with Stereo 30 der No. 2050 der No. 2050 Price: $\mathbf{£ 3} \cdot \mathbf{2 5}+55 \mathrm{p}$ p\&p + 121 $\%$ VAT der For use with AL6O SPan80 T250 For use with AL250 Price: $£ 5 \cdot 40+86 p p d p+12 \frac{1}{2} \%$ VAT der No. 2035 40. For use with AL60 der No. 2040 Price $£ 5 \cdot 20+80 p p \& p+12 \frac{1}{2} \%$ V.A.T. 41. For use with AL80, AL 120 and AL250 der No. 2041. Price $\mathbf{E 6} .80+86 p p \& p+12 \frac{1}{2} \%$ V.A.T CASES AK 30, $32 \times 23 \times 8 \mathrm{~cm}$. designed mainly for use with our stereo 30 udio System but has proved very helpful to home constructors. Fitted th solid uncut front and back. ofn 139. E5.95. $+12 \frac{1}{2} \%$ V.A.T. p\&p p.	

Professionals and Enthusiasts from BI-PAK

AL120 AUDIO	50W R.M.S.	OUTPUT POWER	50 Watts R.M.S.
		SUPPLY	70 Watts
AMPLIFIER		LOAD IMPEDANCE	$8-16 \mathrm{ohms}$
(With integral		TOTAL HARMONIC DISTORTION	05\% Max. (Typicaliy 02\%)
heat sink and		FREQUENCY RESPONSE丰1dB	25 Hz -20kHz
short-circuit	7y	SENSITIVITY	500 mV
£11.95		MAX HEAT SINK TEMP.	45 deg. C
		dimensions	$192 \times 89 \times 49 \mathrm{~mm}$

Introduced to fulfill the demand for a fully protected power amp., capable of driving high quality speaker systems at up to 50 w . with distortion levels below 05\%. Ideal for domestic use, Discos, P.A. systems, electronic organs etc. The generously rated com ponents ensure continuous operation at high output levels.

SPM120 STABILISED POWER SUPPLIES	AC INPUTS	
	SPM120/45	$40-48 \mathrm{v}$
SPM120/45	SPM 120/55	50-¢5v
SMP120/55	SPM120/65	60-65v
SMP120/65	OUTPUTCURRENT	2.5 A
f5.80	RIPPLE	1 A 100 mV
+ 12\% ${ }^{2} \%$ V.A.T. ${ }^{\text {a }}$		2A 150 mV

SPM 120 is a fixed voltage stabiliser available with an cutput voltage of eithe $45 \mathrm{v}, 55 \mathrm{v}$, or 65 v . Designed primarily for use in audio applications. the stabiliser which provides output currents up to 2.5 A , operates direct from a mains transformer requiring onfy the addition of 2 Electrolytic capacitors to complete the s / c protection.

| LE |
| :--- | :--- | :--- | :--- |

Only $155 \mathrm{~mm} \times 65 \mathrm{~mm} \times 50 \mathrm{~mm}$ including the $10 \times 10 \mathrm{~K} 1$ in slider potentiometers and knobs which are mounted on a board positioned above the circuitry. In the frequency range of 31 Hz to 20 KHz you can cut and boost $\pm 12 \mathrm{~dB}$ with the 10 sliders, each of which has its frequency marked on the circuit board. The GE 100 has numerous uses including mixers, P.A. systems and discos. It will also greatly improve the sound reproduction of your existing audio equipment. Power Supply for GE100, o/d SG30 E3.80.

VPS30

REGULATED VARIABLE
STABILISEO POWER SUPPLY

$A C$ Input Maximum	25 V
Voltage Regulation	$2-30 \mathrm{~V}$
Regulated Current	$0-2 \mathrm{~A}$
Incorporating short circuit protection	

£7.60
 $+8 \%$ V.A.T P. 2 P. 35

This NEW versatile Regulated Variable Slabilised Power Supply with short circuit protection and cufrent limiting, is a must for all electronics enthusiasts It incorporates adjustable voltage from $2 \mathrm{v}-30 \mathrm{v}$, with a cusrent limiting range of $0-2 \mathrm{~A}$. With this module there is no need to build a separate power supply for each of your projects, with the simple addition of a transformer (o/d 2033). O-1ma (o/d 1310 or 1305), plus a suitable shunt, a voltmeter (o/d 1311 or 1306), a 470 ohm pot lo/d 1896), a $4 \mathrm{~K} 7 \mathrm{pot}(\mathrm{o} / \mathrm{d}$ 1899), it can be used again and again as a self-contained bench, power supply. etiminating the use of batteries and thus saving

PA200

STERED
PRE-AMPLIFIER
£16.55
$+12 \frac{1}{2} \%$ V.A.T
P. $\&$ P. 40 p

FREQUENCY RESPONSE	20 Hz to $20 \mathrm{kHz} \times 1 \mathrm{~dB}$
TOTAL HARMONIC DISTORTION	Less than 1\% (Typically 70%)
SENSITIVITY 1. TAPE INPUTS 2. RADIO TUNER 3. MAGNETIC P.U.	$100 \mathrm{mv} / 100 \mathrm{~K}$ ohms for an $100 \mathrm{mV} / 100 \mathrm{~K}$ ohms output $3.5 \mathrm{mV} / 50 \mathrm{~K}$ ohms 500 mV
EQUALISATION	Within $\pm 1 \mathrm{~dB}$ from 20 Hz to 20 kHz
BASS CONTROL RANGE	$\pm 15 \mathrm{dBs}$ at 75 Hz
TREBLE CONTROLRANGE	$+10-20 \mathrm{dBs}$ at 15 kHz
SIGNAL/NOISE RATIO	Better than 65 dBs (All inputs)
INPUT OVERLOAD	Better than 2dBs (All inputs)
SUPPLY	3510706 v
DIMENSIONS	$300 \times 90 \times 33 \mathrm{~mm}$ itess controis

HEADPHONES

A top qual headonone with cushioned earpads and headband. Separate bálance/volume controls. Stereo or Mono switch. Impedance: 8 ohms. Frequency $30-$
$18.000 \mathrm{~Hz}, \mathbf{0} / \mathrm{n} 884$. $\mathrm{fB} .70 .+12 \frac{1}{2} \% \mathrm{VA}$. I. $\& \& \mathrm{Op}$. A brilliant compromise between price and performance. Superb stereo reproduction for the newcomer to Hi -FI. Impedance 8 ohms. Frequency
$30-15,000 \mathrm{~Hz} \mathbf{0 / n} 885 . \mathrm{E4.40}+12 \frac{1}{2} \% \mathrm{~V} . \mathrm{AT}$. p\&ip $30-1$
50 p

HI-FI ACCIBSSORIES
Paralle! Tracking GROOV KLEEN
The very latest in automatic record cleaning. DesigThe very latest in automatic record cleaning. Desigit is extremely efficient. Complete with two types of
base and three height extensions. $\mathbf{0} / \mathrm{n} 8101$. $\mathbf{8 3} \mathbf{6 8}$. base and three neight
$+8 \%$ V.A.T $\rho B_{\mathrm{R}} \mathrm{p} 3 \mathrm{Fp}$.

Cassette Tape Editing Kit

Enables casserte tapes to be edited and joined easity quickiy and accurately. Kit comprises: Tape Splicer
132 mml 2 Precision Tape Cuters Tape Pierce 9 Self-adhesive Labels. Reel of Splicing Tape Winders and removers and instructions, ail in
handy wallet. o/n 811 .f 2.40 . +V.A.T. p\&p 35 p . GROOV-STAT
The BIB Groov-Stat static reducer neutralises the static charge on records and other plastic surface T 0\&p35p.

Cassette Head Cleaner
Essential for cleaning of tape heads, capstans and head polisher tools. Flus bottle of special formula cleaning fluid and full instructions. o/n 832. ©0.64, + $12 \frac{1}{2} \%$ A.T. p\& 035 p

METERS

Miniature Balance \& Tuning Meter Miniature moving-coll meter for stereo balance
indicator, tuning indicator for FM or similar application. Pointer at centre indicates zero or nul position. Robust construction. Sensitivity
$100-0-100 \mathrm{MA}$. Dimensions: $23 \times 22 \times 26 \mathrm{~mm}$. /n $1318 . £ 1.95+8 \%$ V A.T. p\&p $35 p$

Balance and Tuning Meter
Clear view edgewise meter. Centre zero application. Sensitivity 100-0-100UA Dimensions. $45 \times 22 \times 34 \mathrm{~mm}$.
$1319 . £ 2.00,+8 \%$ VAT. p\&p 35 p.

Miniature Level Meter
Moving coil, for accurate level indication for tape recorders. amplifiers etc. Neat design. rugged con-struction- will withstand five times rated value.
Sensitivity. FSD: 200 UA. OdB: 130 UA. Dimensions: $23 \times 22 \times 26 \mathrm{~mm} . \mathrm{o} / \mathrm{n}$ 1320. $\mathbf{2 2 . 8 0} .+8 \%$ VAT p\& 235 p

Vu Meter
Calibrated -20 to +3 and 0-100\%, making it suitpower output indicatior Sensitivity 130 uA Dimensions $40 \times 29 \mathrm{~mm}$. o/n 1321.f2.00. $+8 \%$ V.A.T. p\& p 35p

GOOSENECK CHROME FLEXIBLE HOLDERS

FLOOR STAND Heavy chrome. Stow-away feet with rubber ends fo maximum stability. Draws to
f9.50. $12 \frac{1}{2} \%$ VA. T . 8 p p. BOOM ARM for use with the above stand, Heavy chromed metal, it
gives $30^{\prime \prime}$ reach from the stand. o/n $1337 £ 9.20 .+12 \frac{1}{2} \%$ V.AT p\&ip WINDSHIELD COVERS

AUDIO LEADS

107	FM Indoor Ribbon Aerial 3.5 mm Jack plug to 35 mm jack plug. Length 1.5 m 5 pin DIN plug to 3.5 mm . Jack connected to pins 3\&5. Length 1.5 m	$\begin{aligned} & £ 0.60^{\circ} \\ & £ 0.75^{*} \end{aligned}$
113		
14		
115		£0.85*
	5 pin DIN plug to 3.5 mm . Jack connected to pins 184 . Length 1.5 m	£0.85*
116	Car aerial extension. Screened insulated laad. Fitted plug \& skt.	
117		£1.10*
	AC mains connecting lead for cassette recorders \& radios. 2 metres	£0.68*
118	5 pin DIN phono plug to stereo head phone jack socket	
		£1.05*
119	$2+2$ חin DiN plugs to stereo jack socket with attenuation network for stereo	
120	Car stereo connector. Variable geometry plug to fit most car casserte. 8 irack cartridge \& combination units. Supplied	£0.90
	with inline fused power lead and instructions.	£0.60*
123	6.6 m Coiled Guitar Lead Mono Jack Plug to Mono Jack Flug BLACK	£1.50*
124125	3 pin DIN plug to 3 pin DIN plug. Length 1.5 m 5 pin DIN plugg to 5 pin DIN plug. Length 1.5 m 5 pin DIN plug to Tinned open end. Length 1.5 m 5 pin DIN plug to 4 Phono Plugs. All colour coded. Length 1.5 m	£0.75*
		£0.75*
126		£0.75*
127		
128129		£1.30*
	5 pin DIN plug to 5 pin DiN socket Length 1.5 m 5 pin DIN plug to 5 pin DIN plug mirror image Length 1.5 m	
		f1.05*
$\begin{aligned} & 130 \\ & 131 \end{aligned}$	2 pin DiN plug to 2 pin DiN inline socket. Length 5 m 5 pin DiN plug to 3 pin DIN glug 184 and 38.5 . Length 1.5 m	f0.68*
		¢0.83*
$\begin{aligned} & 132 \\ & 133 \end{aligned}$	2 pin DIN plug to 2 pin DIN socket. Length 10 m 5 pin DIN plug to 2 phono plugs.	£0.98*
		£0.75*
134	5 pin DIN plug to 2 phono sockets.Connected pins 38.5 . Length 23 cm	
		£0.68*
135	5 pin OIN socket to 2 phono plugs.	
		¢0.68*
136	Coiled stereo headphone extension lead. Black. Length 6 m	
		¢1.75*
178	AC mains lead for calculators etc.	£0.45*
	Please edd 12t\% V.A.T. to all the above lead	

EDITOR

Geoffrey C. Arnold

ASSISTANT EDITOR
Dick Ganderton C. Eng., MIERE
ART EDITOR
Peter Metalli
TECHNICAL EDITOR
Ted Parratt, BA
NEWS \& PRODUCTION EDITOR Alan Martin

TECHNICAL SUB-EDITOR Peter Preston

TECHNICAL ARTIST
Rob Mackie

ASSISTANT ART EDITOR

Keith Woodruff
SECRETARIAL
Sylvia Barrett Debbie Chapman

EDITORIAL OFFICES

Westover House,
West Quay Road,
POOLE, Dorset BH15 1JG
Telephone: Poole 71191

ADVERTISEMENT MANAGER

Telephone: 01-261 6671 Roy Smith

REPRESENTATIVE

Telephone: 01-261 6636 Dennis Brough
CLASSIFIED ADVERTISEMENTS
Telephone: 01-261 5762 Colin R. Brown
MAKE UP \& COPY DEPARTMENT Telephone: 01-261 6570 Dave Kerindi

ADVERTISEMENT OFFICES

Kings Reach Tower, Stamford St., London, SE1 9LS
TELEX: 915748 MAGDIV-G

Citizen's Band-Yes or No?

THE mention of a Citizens' Band for the UK can be relied upon to generate strong feelings, one way or another, among people with any interest in radio. This is evident from the letters received in response to J. S Goodier's proposals published in our December issue. A selection of these letters appears on page 29.

On the right, we print the text of a letter sent recently to the Prime Minister by the Citizens Band Association, urging the introduction of a UK CB service on a v.h.f. band. The Association's comments on four arguments against CB, while certainly valid in themselves, leave several questions unanswered. The adoption of a band other than 27 MHz has undoubted advantages from the point of view of reducing interference and illegal long-distance working, and providing a boost for the UK electronics industry. But what would be the price of these sophisticated v.h.f. sets? If it's anything like that of hand-portable transceivers operating in the marine or private-mobile v.h.f. and u.h.f. bands, it seems unlikely that many would be sold to private individuals.

If 27 MHz equipment continued to be imported and used, then little would have been gained. It is alleged that several thousand 27 MHz sets are presently operating regularly in a net in north London, but apart from an occasional prosecution there is little that the Home Office can do to control them. How would that situation be changed by introducing a legal service in parallel, on another band? And no doubt many would plead for the quoted 15000 existing users to be allowed to continue to operate their sets, though this figure does rather pale into insignificance against the current 66000 licensed users of radio model control and the numerous radiopaging systems having a long-standing legal right to the 27 MHz band in the UK. At the very least, the government would need to introduce legislation banning further imports of 27 MHz CB equipment.

Though the Association quotes several US authorities as now backing the use of CB as an aid to road safety, there have in the past been numerous published reports of CB channels being swamped, leaving broken-down road users and others unable to contact assistance. With the present growing contempt for law and order in some sections of the community, it seems unlikely that we would be spared the interfering carriers, high-powered transmitters, obscene language or continuous music which have plagued $C B$ in other countries.

There is no simple answer to these problems, and little use is served by claiming that there is. Whatever solution may be adopted is going to be unpopular with a lot of people.

Peter Metalli-Art Editor

From art school, Peter began his career in a newspaper feature agency in Fleet Street, receiving a solid grounding in drawing and publication methods. He remained there for 17 years, interrupted by four years (1943-47), in which he served in the RAF as a Flight Engineer.

In 1955 Peter joined "George Newnes" (incorporated now within (PC) working in the general art department "servicing" the "Practical Group"
magazines, and from there graduated to his present position in PW.

Peter, Gwen his wife, and daughter Angela, have all settled happily in Bournemouth after their move from Essex, following the company's relocation from London to Poole, Dorset.
Married son, Peter, and wife Alice, still back in Essex, have recently made him a proud grandfather.

Interests are model cars and aircraft, stamps, DIY and gardening.

Citizens Band Association

The Rt. Hon. Mr J. Callaghan, MP, PC, The House of Commons, London SW1
January 12th, 1979

Dear Prime Minister,
I am writing to you to ask you to reconsider your Government's opposition to the introduction of Citizens Band Radio in this country.

Eire and ourselves are the only countries left in Europe which do not allow private. citizens some form of short range radio communication. While care must be exercised to license a system which offers efficiency without interrupting other services, is it not somewhat repressive to deny the private citizen any access to short range communication in his everyday affairs?

In the past four main arguments have been advanced against CB:
(i) It may be used by criminals and for undesirable purposes;
(ii) The administration required to control it would be prohibitively complex;
(iii) No frequencies exist which might be used for such a purpose; and
(iv) Those countries which have it wish they did not.

I should like to comment on these objections in order:
(i) At present any criminals who use CB equipment are unlikely to be heard. As soon as CB is legal, however, the presence of large numbers of $C B$ users ensures that criminals using CB are heard and quite probably located and arrested. In the USA any criminal who is fool enough to try to use CB is almost invariably detected.
(ii) Modern "silicon chip" technology makes it not only possible but simple to fit every CB set sold, at the factory, with a unique identifying signal which cannot be tampered with without the resources of a microelectronics factory and without which the CB set will not transmit. The extra cost of such identification would be under 50p per set. Such a device makes the identification of CB sets simple and reduces the
administrative costs of a CB service to a low level. It also increases the impracticality of the criminal or antisocial use of CB.
(iii) Although there are no unallocated frequencies available for CB there are many MHz of spectrum throughout the v.h.f. and u.h.f. region which, though allocated, are thoroughly under-used. In particular the $220-240 \mathrm{MHz}$ range has unused sectors (some never used since 1944), there is space around 900 MHz , and the v.h.f. television channels are now so unused that spectrum there might well become available in the near future. Very little spectrum is needed for a Citizens Band--0.5 to 1 MHz would be ample and even 200 kHz could provide a reasonable service-and given political will it could be found.
(iv) This last reason is the weakest of all, though frequently advanced in official circles. In the USA it is Federal policy to encourage the use of CB radio because of its contribution to road safety, as a recent memorandum from the Secretary of the Department of Transportation, the Chairman of the Interstate Commerce Commission and the Chairman of the Federal Communications Commission makes plain. Over thirty countries, including a number not noted for their liberal regimes, now have CB and although there are inevitably some problems the benefits so far outweigh them that none regret introducing it.

However, I am not writing to you now to rehearse a dialogue which is some years old. There is at present a real danger of a less satisfactory form of CB being adopted in Britain in the future if action is not taken soon to define a better alternative.

In the past year three organisations, the National Electronics Council, the British Radio Equipment Manufacturers Association and the Electronic Engineering Association, have prepared reports on Citizens Band Radio in Britain. All are agreed that the Government should introduce CB and all are agreed that the American 27 MHz a.m. standard used in most countries having CB is unsuitable for a
small, densely-populated island like our own on various grounds including television interference, the probability of the market being swamped by equipment built in the Far East for the American market and the availability of equipment, legitimately manufactured for the 10 metre Amateur service, which can boost 27 MHz transmitters to illegally high powers. Instead they (and the Citizens Band Association) propose v.h.f. and frequency modulation (f.m.). Such a system offers many advantages including local manufacture (four British manufacturers are already prepared to manufacture such sets should CB be legalised), minimal interference and higher quality.

However, many people, angered by the continued illegality of CB in Britain, are now importing American and European equipment and using is illegally. The Citizens Band Association estimates that there are now some 15000 illegal users in this country and that their number is growing by about 1000 per month. If this continues your own or some future Government will be forced, as happened in Australia, to legalise what is being done. There will then be no possibility of introducing a more sophisticated system or such controls as the automatic identification mentioned above-it will be necessary to legalise another American-style system with most of the American problems. The CBA would prefer such a system to none at all but we feel that we would have missed a golden opportunity of leading the World into a new generation of Citizens Band Radio.
I therefore most earnestly urge you to reconsider your Government's opposition to CB and legalise a sophisticated v.h.f. system, with whatever controls you or your advisers may consider necessary, before you or your successors are forced, by pressure of illegal use, to permit the use of American 27 MHz equipment.

Yours sincerely, James M. Bryant, President, Citizens Band Association

Two folded half-wave elements driven in phase from a quarter-wave stub constitute the active parts of the device, originally built for use on the Norwich 70 cm repeater. The requirement called for a pair of aerials with at least 3 dB gain which could be mounted on a mast without undue effect on their omni-directional properties-i.e. with minimal distortion of the otherwise circular radiation pattern.

The theoretical configuration is shown in Fig. 1. Experimentation indicated that the minimum tolerable distance from a metal mast producing the least effect on radiation was 0.625λ. Accordingly, a long stub section is employed which also serves as a supporting mount for the aerial.

The folded radiating elements are voltage driven from a quarter-wave section of the whole stub, the current distribution being indicated by the arrows. The increase in gain over a conventional two-element colinear (gain normally around 1.8 dB) is obtained by the use of the folded elements, which contribute an additional 1.6 dB . This aerial therefore has a total gain of 3dB over a dipole. Note the break between the return sections, necessary to create a standing wave.

Construction

The diagram of Fig. 2 should provide enough information to enable this aerial to be constructed for either 70 cm or 2 m , detailed dimensions being given in Table 1. For u.h.f. the aerial will self-support but for v.h.f. some form of boom at right-angles to the mast may be necessary to take the weight of the stub and elementswhich are, of course appreciably longer than their u.h.f. counterparts. This could be constructed from wood, and reach at least as far as the quarter-wave section shorting bar. An alternative would be the use of larger diameter tubing for the elements and stubs, say $12.7 \mathrm{~mm}\left(\frac{1}{2} \mathrm{in}\right)$.

Connections to the feed point must be protected from rain and the prototype used an oblong plastic box with tight-fitting lid for this purpose. The insulator linking the two folded element sections should be of high quality material, such as ptfe, which is drilled to fit over the ends.

A piece of aluminium about 10 mm square may be used for the quarter-wave shorting bar, drilled to take the stub lines and tapped for the 4BA screws which lock the bar to the lines. Element dimensions are given for both versions, the velocity factor having been taken into account.

Adjustment

When the aerial has been completed it should be set up in fairly clear surroundings, approximately 2 metres above ground, with the full length of feeder cable attached. Adjust the feed tapping points and quarter-wave point (shorting bar) for maximum power and v.s.w.r. All v.h.f. aerials operate most efficiently when high up and clear of rooftops or other obstacles, such as tall trees. This is particularly true in the case of colinears with zero-angle radiation. Sizeable trees in full leaf can attenuate v.h.f. and u.h.f. signals by as much as 20 dB when placed in the path of radiation, even in dry weather. Brickwork can reduce signals by 10 dB or more.

The vertical angle polar pattern of Fig. 3 was taken from the Author's display unit and clearly shows the radiation characteristics of the u.h.f. prototype.

Fig. 2: Constructional details

Fig. 3: Vertical polar pattern of the $\mathbf{7 0} \mathrm{cm}$ prototype

MPU evaluation kit

Now available on an off-the-shelf basis from Distronic are two low-cost microprocessor development systems for the RCA CDP1800 COSMAC m.p.u. family. Costing $£ 100$ (plus VAT), the CDP18SO20 evaluation kit is a complete kit of components for building an evaluation board for the CDP 1802 COSMAC m.p.u., while the CDP18S021 Microterminal, which costs only $£ 70$ (plus VAT), is a lowcost, hand-held, non-hard-copy alternative to a teletypewriter data terminal.

The two systems are ideally suited to combined operation. The evaluation kit represents a valuable first step in the development of COSMAC programs and prototype systems, and incorporates on-board utility read-only memory for terminal control. The Microterminal provides a convenient means of controlling a COSMAC system, reading and modifying memory, and providing hexadecimal input/output capability. Distronic $L t d$, 50-51 Burnt Mill, Elizabeth Way, Harlow, Essex. Tel: (0279) 32947/39701.

On Station

For those interested in the whole spectrum of broadcasting, two recent publications are relevant. The 1979 "World Radio and TV Handbook", according to its Assistant Editor, contains comprehensive information on the world's transmitters (including recent frequency changes) and details of operating times, languages, DX clubs, time signal broadcasts, and even religious broadcasting organisations. The book is available at a cost of $£ 8.50$ from Billboard Publications, via Argus Books Ltd., 14 St. James Rd., Watford, Herts, at your bookshop.
"Radio Stations Guide", by B. B. Babani and M. Jay, has been considerably up-dated, and contains basic information on the world's radio broadcast transmitters, with a special supplement covering the changes in longand medium-wave transmissions in the United Kingdom. This guide is available at a cost of $£ 1.45$ direct from the publisher: Bernard Babani (publishing) Ltd., The Grampians, Shepherd's Bush Rd., London W6 7NF.

Rally date

The North Midlands Mobile Rally organised by The Midland Amateur Radio Society and The Stoke-on-Trent Amateur Radio Society, will take place on Sunday, 29 April 1979, at Drayton Manor Park near Tamworth, Staffordshire. The Park is located on the A4091, which is within easy reach of the M1, M5 and M6 motorways.

The rally will open at 11.30 am and visitors will be made very welcome. There will be a talk-in on 2 metres and 70 centimetres. For further details contact: Norman Gutteridge G8BHE, 68 Max Road, Quinton, Birmingham B32 1LB. Tel: 021-422 9787 .

Testing m.p.u.s

Programme details and synopses of papers for "Microtest", the Symposium on the testing, maintenance and reliability of microprocessor-based equipment, being held at the University of Sussex, from 4pm on Monday, 2 April 1979, until midday on Thursday, 5 April 1979, have now been finalised.
The papers being presented are from Industry, the Universities, Government Departments, and the Post Office.
The Symposium is being organised by the Society of Electronic and Radio Technicians in association with the IERE and the Microprocessor Application Group of the IEE.
The Symposium will open with a Keynote Address given by Colin Crook, Managing Director of Rank Precision Industries Ltd. on the evening of 2 April.

Further information and registration forms are available from: The Symposium Secretary (MS), SERT, Faraday House, 8-10 Charing Cross Road, London WC2H OHP. Tel: O1-240 1152.

New catalogues

Tirro Electronics, the mail order division of "Ritro" has issued a new, combined, catalogue/price-list/order form, available from them free of charge.

Products listed include a whole range of components from the AMICOS m.p.u. system, to resistors, diodes and capacitors. Other useful items included are transformers, i.c.s, aerials, tools, books, etc.

Each item is clearly priced (VAT included), with discounts for quantity orders. Tirro Electronics, Grenfell Place, Maidenhead, Berkshire. Tel: (O628) 36229.

Chloride Exide have just issued an updated list of their dry batteries and torches.

In twelve A4 pages plus covers, it gives all necessary information about high-power batteries; transistor equipment batteries; calculator batteries; extra power transistor batteries; low and high tension batteries; torch, lamp and special purpose batteries. It also includes an equivalents list, dry battery terminal diagrams and coloured illustrations of the top ten popular types.

Available on request from: Ch/oride Automotive Batteries Ltd., Chequers Lane, Dagenham, Essex RM9 6PX.

Home Radio

Due to a massive rise in the rent asked for their current premises, Home Radio (Components) Ltd., of Mitcham, Surrey are moving to new offices at the end of March. Because of this, they will be unable to maintain their retail counter facilities, and will in future trade by mail order only.

To dispose of some surplus stock items, there will be lots of bargains available to callers only in a clearance sale from 24-31 March at the existing address, $9 \mathrm{am}-5 \mathrm{pm}$ daily (close 1 pm on Wednesday).

The new postal address for mail order will be notified as soon as possible. For the present, customers should continue to write to: Home Radio (Components) Ltd., Dept. PW, 234-240 London Road, Mitcham, Surrey CR4 3HD.

Can I Help You!

Are you the secretary, organiser or general dog's body of your local radio club or any other group whose functions may interest readers of $P W$. If so, let me know and I will endeavour to publicise your rally, get-together whatever, through this column. Remember though, we compile the magazine some time ahead of publication day (e.g. this note was written in mid-January), so, the earlier I can have details, the better.

Alan Martin

J. BIRKETT

Radio Component Suppliers

25 The Strait, Lincoln LN2 1JF. Tel: 20767

400mW 2ENERS Unmarked Good 3.6.6.8, 10, 11, 12, 13, 16, 18, 24, 30, 33, 36v. All at 10 for 40 p .
ERIE RED CAP O1uf $100 \mathrm{v} . \mathrm{w}$. SUB-MINIATURE CAPACITORS © 5 p each
BD187 4 Amp NPN PLASTIC POWER NPN TRANSISTORS @ 5 for $£ 1$.
MURATA 10.7MHz CERAMIC FILTERS © 27p, VERNITRON FM4 10.7 MHz FILTER @ 50p, MURATA 455KHz BFE FILTER @ 30p.
10 Amp S.C.R.s 100 PIV @ 25p, 400 PIV @ 50p, 800 PIV @ 60p
DAU TRIMMERS 2 to 9 pf @ 10p, 6 to 45 pf @ 10p, 0 to 125 pf @ 12p, 8 to 140pf @
15p, TETFER VHF TRIMMERS 10 pf @ 18p.
VHF POWER TRANSISTORS unmarked Good 2N 3375 @ E1, 2N 3866 @ 3 for 75p,
) 3553 (0) 3 for $£ 1.10$.
ELECTROLYTIC CAPACITORS 1000uf 100v.w. @ 50p, 2200uf 100v.w. @ 60p,
HC6U CRYSTALS, $38 \mathrm{MHz}, 40 \mathrm{MHz} .44 .3 \mathrm{MHz}, 45.9 \mathrm{MHz}, 46.5 \mathrm{MHz}, 46.7 \mathrm{MHz}$, $48.3 \mathrm{MHz}, 50$ - 1 MHz . All at 50 p each.
3 PIN PLUG AND SOCKET like R.S. European Type with Two Metres of Cable @ 75p pair.
OASSORTED PUSH BUTTON BANKS less knobs for $\mathbf{£ 1}$-30
SUB-MINIATURE TANTALUM 4.7uf 10v.w., @ $5 p$, 6 for $25 p$.
502 Watt ZENERS assorted untested (a 57p
DISC CERAMICS . 1 i uf $50 \mathrm{v} . w$. © 20p doz, 1 uf $18 \mathrm{v} . \mathrm{w}$. @ 25p doz
VHF FETS 40673T © 33p CV 9637 pre-formed leads © 57p
2N 3819T © 20p.
MINIATURE BUTTERFIY asily extended 25×25 RFLY PRE-SET VARIABLE CAPACITORS spindles 50 VARI-CAP DIODES LIKE BA 102 untested @ 57 p .
$200 \frac{1}{4}, \frac{1}{2}$ Watt RESISTORS assorted for 75 p .
IULLARD VARIABLE CAPACITORS Solid Dielectric $195+80 \mathrm{pf}$ @ 40 p
30 ASSORTED 10XAJ CRYSTALS © $£ 1 \cdot 10,20$ FT 243 CRYSTALS assorted (1)
£1.50, 20 FT 241A CRYSTALS assorted @ $\mathbf{E 1 . 1 0}$.
$5010 \times$ CRYSTALS assorted @ $\mathbf{£ 1 . 5 0 \text { (P \& P. f1.50 }}$
TRANSISTORS BC 548 © 10p. 6 for 50p. BC 549 @ 10p, 6 for 50 p. PLASTICTRIACS 400 PIV 6 Amp © 60p each.
COIL FORMERS $\frac{3}{1 / 3}$ " Dia. with core at 6 for 25p.
McMURDO 8 PIN PLUGS © 20p, 8 PIN SOCKETS @ 20p, COVERS © 15p
G00MHz FREQUENCY 8 DIGITCOUNTERS HFC 600 @ £115.
2 GHz STRIPLINE NPN TRANSISTORS @ $\mathbb{C} 1$ each.
00uf 100v.w. WIRE ENDED ELECTROLYTICS 10p, 5 for 35p
MC 3340 ELECTRONIC ATTENUATOR I.C. with data @ 50p.
uf 25v.w, ELECTAOLYOS AND DARL
RU's.8pt 100 LINGTONS assorted untested @ $£$
SOLDER-IN FEED THRU's 6.8pf, 1000pt all 20p doz
MULLARD T PACK 800MHz TRANSISTORS BF 362 @ 25p.
CAYSTALS $10 \times 8010 \mathrm{KHz}$ @ 40p, $10 \times A J 7010 \mathrm{KHz} @ 30 \mathrm{p}$.
VARIABLE CAPACITORS $25+25+25 \mathrm{pf} \frac{1}{4}$ " Spindle direct drive (© 75p.
ELECTRET MICROPHONE INSERTS with FET Pre-amp @ E1.85.
Please add 20p for post and packing, unless otherwise stated, on U.K. orders under $£ 2$ Overseas post at cost.

P.C.B'S FOR
 PRACTICAL WIRELESS PROJECTS

Nov. 78. Sarum Q Meter
Nov. 78. Standard Charge Timer
Nov. 78. Porch Light Timer
Nov. 78. Battery Indicator
Dec. 78. Car Radio L.W. Converter
Dec. 78. Digital Door Chimes R017
Dec. 78. Car Radio L.W. Converter R032
Jan. 79. Acoustic Delay Line R018
Jan. 79. Dorchester
Feb. 79. Hythe Receiver
March 79. Hythe Receiver
March 79. Soundlite Converter
March 79. Tone Burst Generator
March 79. Wide Band Noise Souce

R030
AD212
AD222
AD225
R034

R033
WR037 Price f5. 94 \& 20 pence p
WR038 Price $£ 2.70$ \& 20 pence p \& p.
WK001 Price $£ 5.98$ \& 20 pence p \& p.
R023 Price $£ 1.60$ \& 15 pence p \& p.
WR036 Price $£ 0.70$ \& 12 pence p \& p.

Send order to:

C. BOWES \& CO. LTD., 4, wOOD STREET, CHEADLE, CHESHIRE SK8 1 AQ. Tel. 061-428-4497.

Please state type number and enclose cheque or postal order.

Can YOUR Antenna do all this?

A SMALL SELECTION FROM OUR HUGE FILE OF TESTIMONIAL LETTERS ON THE JOYSTICK VARIABLE FREQUENCY ANTENNA (.5-30M Hz).

Carl V. Guest, Mount Vernon, Ohio, writes-'I set the Joystick antenna on the floor of my operating room which is at street level. On 40 meter CW I worked out to a distance of 700 miles in the afternoon."
"CQ" Magazine-'If you are high enough the antenna will operate (especially at 15-20) as well as the well-known 3-element beam with which we compared it. The tests were 'operational, not theoretical!' We find that if we can hear 'em we can work 'em-and in most cases with a 100 watts input.'

K6MDJ_'Early results are astounding. I've been using a trap dipole for 40-2075 . This JOYSTICK out-performs the dipole 2×1."

G3UGB-'Extremely good reports on 160 meters and 80 meters.'
W5CJV-'"Do ! like the JOYSTICK? I guess so! I took five antennae down and now use the Joystick alone?"
IN USE BY AMATEUR TRANSMITTING AND SWL STATIONS WORLDWIDE AND IN GOVERNMENT COMMUNICATION

JOYSTICK ANTENNAS

SYSTEM "A"

f41.00
200 w. p.e.p. OR for the SWL
SYSTEM "J"
£47.95
500 w. p.e.p. (Improved " Q ' on receive)

"'PACKAGE DEALS"'
 COMPLETE RADIO STATIONS FOR ANY LOCATION

All packages include the JOYSTICK VFA (System "A") 8ft feeder, all necessary cables, matching communication headphones. Delivery Securicor our risk. ASSEMBLED IN SECONDS. You SAVE f14.75 on each PACKAGE DEAL!

PACKAGE No. 1. Features R. 300 Rx
£222.00
PACKAGE No. 2. Features FRG7 Rx £237.45 £212.45

PACKAGE No. 4. Our "Rolls"--Rx. FRG7000.

RECEIVERS ONLY
R. 300

SRX 30
£184.50
FRG7
£199.95
£174.95
FRG $\mathbf{7 0 0 0} £ \mathbf{£ 6 4} \mathbf{- 5 0}$

All prices are correct at time of going to press and include VAT at $12 \frac{1}{2} \%$ and carriage.

Just telephone your card number Phone 0843 62535(ext.5)
(or 62839 after
office hours)

or write for details, send 9p stamp

G3VFA
5, Patridge House, Prospect Road, Broadstairs, CT10-1 LD. (Callers by appointment).

Having in mind the miniscule 0.6 mm tracks of the Compact Cassette, and the low tape/head velocity of a mere $4.75 \mathrm{~cm} / \mathrm{s}$, it seems incredible that the medium is currently capable of high quality recording and replay up to frequencies approaching 20 kHz , and it is still improving. When the Compact Cassette system was launched by Philips way back in the Fifties the quality by today's hi-fi standards was, frankly, abysmal. The noise floor was little more than 40 dB below signal peaks of some 5 per cent distortion, the upper-frequency response commenced rolling-off around 7 to 8 kHz , and the wow and flutter figures could easily reach 0.5 per cent or more!

Assisted by the recent noise reduction systems, notably Dolby B, and the new psuedo-chrome (Cr) and pure Cr tapes, a noise floor as low as 65 dB (CCIR/ARMweighted) relative to an output of 3 per cent 3 rd-order distortion threshold is readily achievable at middle frequencies, which is virtually as good as can be expected from the best gramophone records. At the recording levels likely to be experienced in the treble regions by the vast majority of home recordists, the response holds well to frequencies of 15 kHz or more (which is the upper limit of most gramophone records and f.m. radio), while dramatic improvements to tape transport mechanisms have decreased the wow and flutter to less than 0.1 per cent DIN-weighted peak.

With these sort of performance figures, therefore, it is little wonder that more audiophiles and music lovers are turning to the cassette deck as a primary source of programme signal, which is regarded as having the edge on the record deck in terms of its recording attribute, if not in absolute music quality.

If a recording is made of a top quality gramophone record or stereo radio programme with a contemporary hifi deck using good tape, it is often difficult to determine conclusively whether one is hearing the original or the recording. Yes, the state-of-art is to this standard. Indeed, there are people who claim that the recording sometimes auditions more favourably than the original, which would appear to have significance, in that the replay distortion is "disguising" some of the less palatable distortion plaguing the original programme signal, but this is a different story!

So far as pre-recorded cassettes (e.g., Musicassettes) are concerned, the quality of the equivalent gramophone records is generally better. It is also more convenient to locate a particular track on a disc than on a cassette record, but even this cassette shortfall is being resolved by the microprocessor chip, such as found in the Optonica up-market cassette decks, for quickly locating a required
section of music for replay, without the frustration of having to make experimental fast winds and rewinds.

Cassette Shortcomings

So far, then, it might be supposed that the compact cassette medium no longer has any shortcomings and that all the problems have been resolved. This is certainly not true. For example, the medium cannot yet compete with wider-track reel-to-reel tape running at higher speed. However, with some of the latest tapes the performance can currently exceed that of reel-to-reel tape running at $9.5 \mathrm{~cm} / \mathrm{s}$, which is a truly remarkably achievement.

When the pure metal particle tapes are more readily available, along with machines to do them full justice, then the improvement will be even more dramatic, and we shall probably be able to obtain the existing cassette performance with a tape speed half that of the existing cassette tape speed! Conversely, by retaining the existing cassette speed, the performance will be lifted virtually to match that of most domestic type reel-to-reel machines running at high speed.

The biggest shortcoming of the cassette medium can be described with one word-compression. A tape can assimilate only a certain amount of magnetism depending on its magnetic properties. If the magnetising force is increased by passing an increasing current through the winding of the recording head, the magnetic flux density of the tape will increase until it can accept no more magnetism. At this point no matter how much more the force is increased there will be no further increase in tape flux. This means that the tape is fully saturated since all the available magnetic domains are then in alignment.

Fig. 1: Hysteresis loop of magnetisation. See text for description

The hysteresis loop in Fig. 1 describes the path taken by flux (B) as the magnetising force (H) is increased first in one direction, decreased, and then increased in the opposite direction. Initially, the flux follows the brokenline up to saturation; it then falls back from saturation as the force is reduced to zero, and rises to saturation in the opposite direction as the force is increased in the opposite direction. The loop shows that after the tape has been magnetised and the force is reduced to zero a flux remains on the tape of value (R) which is, in fact, the magnetism which has been imparted to the tape and retained by it. Points (R) on the loop are called the remanent points and thus signify the remanent magnetism remaining on the tape after the force has been removed.

The loop also shows that once the tape has been magnetised, an opposite field of force H_{c} is required to pull the remanent flux down to zero again, and hence to demagnetise the tape. This is called the coercive force, so the greater the coercivity of the tape, the better it holds its magnetism and the harder it is to demagnetise, which can be useful, particularly for recording high frequencies.

Transfer Non-Linearity

To combat the severe non-linearity at low values of magnetising force, the signal for recording is superimposed on a high-frequency sinewave of around 100 kHz . This caused the magnetic force, resulting from the signal, to swing on the upper reaches of the two halves of the $B H$ curve, which are more linear than the lower reaches. Even so, the resulting transfer characteristic is still not very linear, particularly as the signal pushes the tape towards saturation, which means that in spite of the recording signal being of very low distortion, the replay signal is bound to carry a greater level of distortion, especially at high recording levels.

The nature of the transfer characteristic, after the improvement by the h.f. biasing has been taken into account, is shown in Fig. 2. As this type of curve contains odd-order terms, most of the distortion is odd-harmonic, such as 3rd, 5th, 7th, etc., harmonic, with the 3rd harmonic predominating. Moreover, because the curve goes more non-linear as the tape approaches saturation, so the 3 rd harmonic distortion increases. If the signal being recorded is so strong as to push the tape into saturation, then there can be just as much 3rd- and odd-order distortion as there is fundamental! Hence the reason why cassette recordings sound abysmally poor when they are over-recorded on signal peaks.

The maximum output level (MOL) of a tape refers to the level of flux that it can accommodate up to a specified level of distortion-usually 3 per cent. In the SI units, magnetic flux density is expressed in webers per metre (Wb / m), but as tape flux is so small the expression $n W b / m$ is used, where n is the nano or 10^{-9} multiplying factor. Some idea of the flux level on a tape can be gleaned from the fact that the majority of Japanese cassette decks show +3 VU on their meters when the recorded tape flux corresponds to about $200 \mathrm{nWb} / \mathrm{m}$ which, incidentally, is the Dolby noise reduction reference level. This means, then, that at 0VU the tape flux is about $141.5 \mathrm{nWb} / \mathrm{m}$ (e.g., 3 dB down from $200 \mathrm{nWb} / \mathrm{m}$, which is 200×0.707).

The curves in Fig. 3 give some indication of how the 3rd harmonic distortion increases with increasing tape flux, based on the average of five different tapes as used in domestic cassette decks at low, middle and high frequencies. It should be noted that different machines and tapes of different samples might well result in a different distribution. For convenience, lines have been drawn to

Fig. 2: Transfer characteristic of magnetic tape showing non-linearity of odd-order terms, which is responsible for odd-order distortion on the output signal. The curve takes account of the correction provided by the h.f. bias

Fig. 3: Curves showing how the distortion increases at three different frequencies as the recorded level and hence the tape flux is increased. The results represent the averages of a number of samples and batches of the tape types indicated, when used with domestic cassette decks
indicate the $0 \mathrm{~dB} 200 \mathrm{nWb} / \mathrm{m}$ point on the horizontal scale and the 3 per cent distortion point on the vertical scale.

The curves show that with this particular combination the pseudo-Cr tape (such as Maxell UDXL II, TDK SA, etc.) is capable of the greatest flux at the low frequency of 333 Hz where, to the 3 per cent distortion point, a flux of +5 dB (corresponding to about $356 \mathrm{nWb} / \mathrm{m}$) can be accommodated. The basic $F e$ will only yield about +1 dB , basic $C r$ a trifle less, $C r$ Super (a recent BASF formulation) about $+2 \cdot 5$ (depending on bias), and ferrouschrome (FeCr) about +3 dB . Clearly, then, the pseudo-Cr is a clear winner so far as sheer flux is concerned at l.f.

Although a good deal of music energy and peaks reside at low and middle frequencies, this is not the whole story because high quality music can undoubtedly contain quite high-amplitude transients at much higher frequencies. Looking at the curves applicable to $10-11 \mathrm{kHz}$, it will be seen that the distribution has altered somewhat, for now
the greatest flux is yielded by the Super Cr to 3 per cent distortion at about $-8 \mathrm{~dB}(80 \mathrm{nWb} / \mathrm{m})$. The pseudo-Cr is down to about $-12 \mathrm{~dB}(50 \mathrm{nWb} / \mathrm{m})$, while the basic $F e$ is at the bottom at about $-14 \mathrm{~dB}(40 \mathrm{nWb} / \mathrm{m})$. The basic Cr is quite respectable at $-10 \mathrm{~dB}(63 \mathrm{nWb} / \mathrm{m})$ and the FeCr is not bad at $-11 \mathrm{~dB}(56 \mathrm{nWb} / \mathrm{m})$. These curves, then, indicate that Cr and FeCr are good upper-frequency performers.

The middle-frequency curves fail to reveal the upperfrequency attribute of the Cr and FeCr tapes, since the pseudo-Cr is still showing the highest flux at -2 dB $(159 \mathrm{nWb} / \mathrm{m})$. Nevertheless, the Super $C r$ is not far behind, nor is the basic Cr . The lowest output is given by the FeCr at $-6 \mathrm{~dB}(100 \mathrm{nWb} / \mathrm{m})$.

These curves, then, signify that as the frequency of the recorded signal increases, so the tape arrives at the beginning of saturation at decreasing levels of flux. If we were to record a tape at a constant level over the frequency spectrum, starting at, say, $200 \mathrm{nWb} / \mathrm{m}$ at 333 Hz , on replay we would find that the flux carried by the tape would gradually decrease with increasing frequency, as shown in Fig. 4. The upper-frequency rolloff of the curve is caused by the progressively increasing compression (that is, the inability of the tape to retain a given high level of magnetic flux as the frequency is increased).

This is the result of self-demagnetisation of the highfrequency, short-wavelength magnetic domains recorded on the tape oxide. For each half-cycle of recording signal the equivalent of a miniscule bar magnet is produced on the oxide, and because the poles get closer together as the frequency of the signal is raised, the ability of the magnet to sustain its strength is diminished.

The recorded wavelength is equal to the tape velocity divided by the frequency in Hz . Thus, at 15 kHz and at the cassette speed of $4.75 \mathrm{~cm} / \mathrm{s}$, the wavelength is a mere $3 \cdot 16 \mu \mathrm{~m}$, so each magnet has a length of $1.58 \mu \mathrm{~m}$. Little wonder, then, that there is a strong tendency towards demagnetisation! It is noteworthy that the length of the gap of the replay head must be of a similar small order fully to define the high-frequency components of the signal.

During recording, pre-emphasis is applied to the signal current fed to the head to help combat the h.f. loss. However, if excessive magnetic force is applied to the tape, the tape tends to demagnetise while it is actually being recorded, which can further worsen the compression distortion at h.f. Tapes which give the best h.f. performance with the least compression and hence h.f. distortion, are those of relatively high coercivity, such as the recent $\mathrm{Cr}, \mathrm{FeCr}$ and the latest high-energy Fe and pseudo- Cr formulations, the first mentioned particularly including the BASF Cr Super if the programme material warrants the extra price and the machine can do full justice to the tape.

Although there are more factors involved in tape choice, the performance at h.f. cannot be over-stressed for the adequate recording of high quality material, from microphone channels direct, from electronic music-making devices, and from synthesisers where the peaks and energy at h.f. are likely to be relatively high. For dubbing from gramophone records and f.m. stereo radio, tape choice is less exacting (but it is desirable always to use the best that can be afforded and never cheap non-proprietary brands which can quickly shed their oxide and clog up the head gaps) because of the limited high-frequency energy and signal peaks of this nature of signal.

Although the curve in Fig. 4 is interesting, more useful are those curves which refer a given level of distortion to tape flux over the lower, middle and upper parts of the frequency spectrum. Since odd-order distortion

Fig. 4: Compression curve. The magnetic flux assimilated by a tape recorded at high level corresponding to $200 \mathrm{nWb} / \mathbf{m}$ at 333 Hz falls off with frequency as shown. To avoid the effect of compression, the frequency response is taken at a recording level at least 20 dB below $200 \mathrm{nWb} / \mathrm{m}$, a curve shown by the broken-line is then achieved provided the bias and equalisation are set to suit the tape. If the bias is too low the upper frequencies will tend to show a boost, while if too high the upper frequencies will tend towards early roll-off
predominates (particularly 3rd-order), the distortion measured is 3 rd harmonic at l.f. (around 333 Hz) and $3 \mathrm{rd}-$ order intermodulation distortion at upper-middle $(4-5 \mathrm{kHz})$ and h.f. $(10-11 \mathrm{kHz})$.

There is no difficulty in measuring 3rd harmonic at l.f., for at 333 Hz it falls at 999 Hz , which is well within the passband of the system. At upper-middle and particularly h.f., the 3rd harmonic is likely to fall outside the passband and be affected by the replay equalisation. To avoid this, two-tone driving signals are used of f_{1} and f_{2} and the 3rdorder IM products of $2 \mathrm{f}_{1}-\mathrm{f}_{2}$ and $2 \mathrm{f}_{2}-\mathrm{f}_{1}$ measured in ratio to the driving signals. Since there is a mathematical relationship between 3rd harmonic and 3rd-order distortion, perfect correlation is achieved provided due attention is taken of the difference between the crest factors of the single-tone and two-tone signals.

For hi-fi applications, an upper limit distortion threshold of 3 per cent would appear to be appropriate, so the plan, then, is to find the flux assimilation of the tape when used with a specific domestic machine (or batch of such machines-taking the average) over the spectrum for 3 per cent distortion threshold.

NEXT MONTH

Spectral distortion, bias and equalisation, head problems, noise floor and dynamic range

The letter from J. S. Goodier regarding Citizen's Band in the UK, which appeared in our December 1978 issue, provoked a flood of letters from readers. These were fairly evenly divided between "for" and "against" CB. Several writers took violent exception to Mr Goodier's suggestion that part of the 2 metre band should be allocated for novice use, as a substitute for a Citizen's Band in the UK. We print here a selection of the letters received.

Sir: I have recently returned from Australia, where Citizen's Band radio has been legal for just over a year. I feel, however, that the Australian service follows too closely the American service. I also feel that the biggest problem with these two services is that a licence is far too easily obtained, and that a bad frequency band and emission type have been employed. A CB service could be introduced in this country, with heavy modifications to the American system of licensing.

I think that the following would greatly reduce the problems of such a service:

1. Correct radio procedure should be used, with proper station identification at the beginning and end of each transmission; only normal speech should be allowed, such as would be used on the telephone, with no "10-codes", which seem to make up the total vocabulary of many CBers.
2. The 11 metre h.f. band should be maintained, but the frequencies used changed to, say, $26 \mathrm{MHz}-27 \mathrm{MHz}$ ($11.538 \mathrm{~m}-11.111 \mathrm{~m}$), thus avoiding any overseas contacts. This band can be used in its entirety, perhaps utilising v.f.o. controlled transceivers, and allowing plenty of space for everyone.
3. Emission should be s.s.b. only, avoiding a.m. heterodyning and giving less overcrowding and more signal clarity.
4. A maximum output of 15 W p.e.p. to be allowed, with no directional or gain antennas of the beam or quad type.
5. Licensees would be required to undergo an examination on regulations, including possible interference problems and remedies, a procedural test, and show a basic knowledge of antennas for the frequencies used and their alignment.
6. A licence fee of $£ 7$ to $£ 10$ should be charged and a callsign allocated once the examination had been passed. A callsign could take the form SD123W, etc., where SD indicates the county, 123 is the licence number, and W is the initial of the town in which the licensee lives.

I feel that the "Toms, Dicks and Harrys" could be greatly reduced by the initial pre-licensing exam. There is obviously a demand for a service in the UK, so with the appropriate licensing conditions there is no valid reason for such a service to be denied to us.

Gerald Yates Watcombe Torquay

Sir: I do not think that Mr Goodier's idea of a novices' amateur band on $144.5-145.0 \mathrm{MHz}$ would be accepted by present 2 m users. The code-free facility of the present G8-type licence should not be beyond the capability of any interested enthusiasts, and any lowering of the licensing requirements would certainly make channelised f.m. on 2 m sound like $C B$.

Anyhow, quite a lot of the 144.5 MHz region and upwards is used for s.s.b. contacts, and $144 \cdot 90-145 \cdot 0 \mathrm{MHz}$ is used for beacon facilities. As one amateur using s.s.b. on 2 m and trying for beacons here in Ireland (both their reception from distant places and their establishment here too), I would not welcome private communication type facilities in the band.

We here in EI (Eire) have just been given the facility of a code-free v.h.f. licence, so we welcome the increased use of 2 m throughout the country. Only a small percentage of present amateurs are active on v.h.f. here-the silence has to be heard to be believed.

Perhaps the supporters of a novice type band could try for additional frequency allocations in the v.h.f. spectrum, say, $100-105 \mathrm{MHz}, 220-225 \mathrm{MHz}, 400 \mathrm{MHz}$, or some other unused band. Enthusiasm for private communications should be directed positively towards a technical service with technical requirements for operation, and also giving the home electronics industries a chance to manufacture the equipment. Re-crystalling of expensive imported 2 m f.m. equipment should be made very, very difficult. CB on 27 MHz has caused havoc in the USA, not only from the TV interference aspect but also by upsetting the balance of trade. A novices' v.h.f. band is a possibility for the UK.

Des Walsh EISCD
Carrick on Suir Co Tipperary

Sir: Why is it every now and then some crank wants to do something with 2 m below 145 MHz ? First G3RKL wanted to put repeaters and channels for s.s.b. Letters in Radio Communication told him where to put them! Now a reader in Stockport wants it for CB.

The 2 m band from 145 MHz down is for amateur usetrue amateur-with DX, RTTY, SSTV and all modes. If our reader gets a good 2 m receiver and antenna, he will be able to hear these signals.

The only people we want on the air in G-land are those who have passed the RAE.

John Tye
Dereham
Norfolk

Sir: Your correspondent J. S. Goodier suggests that if a Citizen's Band was permitted in the UK "they will come in their millions".

We must assume more than, say 1 million-perhaps as many as 5 million. If we take the price for an average 2 metre transceiver equipment, let's say $£ 200$, then the total market for 5 million sets will be worth $£ 1000$ million. On this will be charged 8 per cent VAT, which comes to $£ 80$ million. Good grief, man, what is the Chancellor of the Exchequer waiting for?

Who is fooling who? Cut the $\mathrm{b}^{* * * * * *}$ t and legalise what other sensible countries have already done.

> J. Acton
> Iver
> Bucks
continued on page 67

SIMPLEAUDIOFILTER DESIGN

 Knowing how to design a filter for a pre-amp or mixer is a very handy thing if you do a lot of playing with audio circuits, but can be uphill work if your knowledge of maths does not extend a great deal beyond Ohm's Law. If you fit

into this category then despair no more! To design passable (if you will pardon the pun) filter circuits, all one needs is a (modified) version of Ohm's Law (a pocket calculator helps, too!).

The simplest type of filter is the CR filter, so called because it uses only capacitors and resistors. Fig. 1(a) shows a low-pass filter, and Fig. 1(b) a high-pass filter.

Low Pass

The low-pass filter works like this: at low frequencies, the reactance (a.c. resistance) of C is much larger than the resistance of R, so the circuit functions as a voltage divider. Because the reactance of C (called X_{c}) is so much larger than R , the voltage dropped across R is very small, and the output is very nearly the same as the input. As the input frequency rises, the reactance C drops until, at a certain frequency called the cut-off frequency (abbreviated F_{c}) X_{c} equals R .

If we have a voltage divider composed of two equal resistors, then the output is exactly half the input. This is the frequency that gives the filter its name, e.g., we talk of a " 10 kHz low-pass filter", meaning it halves a 10 kHz signal and rejects all frequencies above, because as the input signal rises above the cut-off frequency, X_{c} gets smaller and smaller and the output drops off correspondingly. When we design a filter, we have to take into account the input impedance of the amplifier or pre-amp, Z in the circuits.

Now let's design a filter. The three things we may know or may not know are C, R and F_{c}, so the three formulae for calculating them are shown below:

$$
\begin{aligned}
\mathrm{F}_{\mathrm{c}} & =\frac{1}{6.28 \times \mathrm{R} \times \mathrm{C}} \\
\mathrm{R} & =\frac{1}{6.28 \times \mathrm{F}_{\mathrm{c}} \times \mathrm{C}} \\
\mathrm{C} & =\frac{1}{6.28 \times \mathrm{F}_{\mathrm{c}} \times \mathrm{R}}
\end{aligned}
$$

1. Design a scratch filter for an amplifier with an input Z of $100 \mathrm{k} \Omega$.

Scratch filters reject at about 15 kHz , so we know F_{c} approximately. As a general rule, at F_{c}, R should equal Z, so we now know R; $100 \mathrm{k} \Omega$. All that leaves is C. From the above equation we get:

C in $\mu \mathrm{F}$
$C=\frac{1}{6.28 \times 15 \times 100}$
R in $\mathrm{k} \Omega$

Fig. 1: Basic filter circuits and their response curves: (a) (Top) Low-pass. (b) (Bottom) High-pass
2. Design a rumble filter for a pre-amp with an input Z of $250 \mathrm{k} \Omega$. Rumble is mechanical noise from a record deck motor, and occurs at frequencies below about 25 Hz , so we know $\mathrm{F}_{\mathrm{c}}(25 \mathrm{~Hz})$ and $\mathrm{R}(250 \mathrm{k} \Omega)$;

$$
\begin{aligned}
C & =\frac{1}{6.28 \times 0.025 \times 250} \\
& =0.025 \mu \mathrm{~F}
\end{aligned}
$$

Band Pass

Finally, let us look at band-pass filters. The simplest form of band-pass filter is shown in Fig. 2. It is simply a combination of Fig. 1(a) and 1(b). Band-pass filters are used for a variety of things, such as "middle" channel separation in tone controls, or combined rumble and scratch filters. The only limitation of this circuit is that the upper cut-off frequency, F_{h}, must be at least ten times the lower cut-off frequency, F_{1}, or interaction between the two circuits will occur, and the filter will not have a smooth response curve. Only two equations are given, as $R=Z$, and Z is usually known. Units are in $\mathrm{kHz}, \mathrm{k} \Omega$ and $\mu \mathrm{F}$.

Fig. 2: A band-pass filter circuit and response
C_{s} determines F_{h} :

$$
\mathrm{C}_{\mathrm{s}}=\frac{\mathrm{R}+\mathrm{Z}}{6.28 \times \mathrm{F}_{\mathrm{h}} \times \mathrm{R} \times \mathrm{Z}}
$$

C_{c} determines F_{l} :

$$
C_{c}=\frac{1}{6 \cdot 28 \times F_{1} \times(R+Z)}
$$

3. Calculate a combined rumble and scratch filter for an amplifier with an input Z of $50 \mathrm{k} \Omega . \mathrm{R}=\mathrm{Z}=50 \mathrm{k} \Omega . \mathrm{F}_{\mathrm{h}}$ wants to be, say 12 kHz , and F_{1} about 40 Hz .

$$
\begin{aligned}
C_{s} & =\frac{50+50}{6.28 \times 12 \times 50 \times 50} \\
& =\frac{100}{188400} \\
& =0.0005 \mu \mathrm{~F} \text { or } 500 \mathrm{pF} \\
C_{c} & =\frac{1}{6.28 \times 0.04 \times(50+50)} \\
& =\frac{1}{25.12} \\
& =0.03 \mu \mathrm{~F}
\end{aligned}
$$

Phase Shift

The output signal from a CR network will always differ in phase (to a greater or lesser degree) from the input signal. Whether this is important depends on the application. In this introductory article, the effects of phase shift have been ignored.

EnIDL IOTE:

PW "Hythe" Receiver, February 1979.

IFI 1 is Denco type IFT $18 / 465$. IFT2 is filter type CFT455 from Ambit. IFI4 is Denco type IFT13.

Referring to the circuit diagram Fig. 2, presets VR4 and VR5 appear on the overlay (Fig. 4) as VR1 and VR2 respectively.

In Fig. 2, 12 (collector of Tr3) is unmarked. The BZY88/C6V2 diode from the junction of R17/L2 to ground should be shown at D1 (not D3).

The following may help those who are having difficulty locating specialised components:

The Denco coils are avallable from Maplin or Watford Electronics; C. Bowes \& Co. Ltd., 4 Wood Street, Cheadle, Cheshire (Tel: 061428 4497) supply the p.c.b. Front panels may be obtained from D. J. Pattle, "Juniper", Halbury Road, Alderholt, Fordingbridge, Hants (Tel: 0425 52081). The vernier drive is Home Radio Type DL66-it is necessary to re-calibrate the scale. Suitable knobs are avallable from Marshalls or West Hyde Developments. Instrument case Type BC2121 is from West Hyde Developments. The signal-strength meter is RS Components Type 259561 from Ace Mailtronics. Where no address is shown, see index to advertisers.

Wimborne Music Centre, October 1978.

The 2N6133 power transistors are incorrectly shown as "2N6103". RCA type BRC6103 is sultable, but alternative complementary pairs may be fitted where supplies are short. TIP41ATIP42A being an example.

The more experienced constructor, having built his "Sandbanks", may wish to increase its performance, and these notes are a guide as to how that may be achieved.

The locator works by transmitting a heavy magnetic field over the find (which we shall call the subject) and comparing the decay of that field in the subject, to the decay in the coil. Hence, if the rate of decay in the subject is faster than that in the coil, the subject will not be detected. Thus the first item to evaluate is the coil.

Energy Storage

To detect small and fast-conducting objects such as gold, silver or copper, the energy stored in the coil must be as low as possible. The energy is stored in three ways. First the magnetism, which we want as large as possible, secondly the inductance, which is very low in an air-cored inductor, and thirdly and most importantly, the capacitance, which has no effect other than to slow down the rate of decay of the magnetic field. The capacitance is produced by the proximity of the conductors in the coil, and they are only separated by the thickness of the insulating varnish, so a significant improvement can be obtained by insulating the wire used for the coil with a pve sleeve. Greater gains can be obtained by winding the coil, with the extra insulation, in a neat manner so that the inside turns are as far away from the outside turns as possible. This leads us on to a flat coil which has about twothirds of the capacitance of the wire bundle coil. However, it is very difficult to wind, but if you succeed, then Araldite the coil before potting it or the turns may move in the potting compound. By far the best solution is to use a printed circuit coil, as designed by the author and available from Plessis Electronics, Castle house, Old Road, Leighton Buzzard, Beds, which has a capacitance of about half that of a wire bundle.

Coil Shape and Size

The next stage in the coil design is to alter the size of the coil. Generally speaking, to maintain the same parameters within the machine, it is necessary to increase the number of turns when reducing the diameter of the coil. A small coil will locate objects very accurately, but its range is reduced. For greater range, the coil can be increased in diameter, and as a rough guide, doubling the coil size will double the range, within limits.

Square coils also have a lot to offer, because the range on a square coil is greater than that on a round coil of a similar size. Even greater range can be obtained by using a rectangular coil, and the optimum ratio of the sides is $4: 1$. One manufacturer of machines using the Pulse Induction principle offers a coil $1.83 \times 0.48 \mathrm{~m}(72 \times 18 \mathrm{in})$ as a standard with one of his detectors.

Modifications

Experimenting with coils for enormous range is very easy, but finding nails 3 m under hard ground is not very rewarding, so stay within reason. In order to take maximum advantage of any reduction in coil capacitance achieved, it is necessary to reduce the time between the transmit pulse and the sample pulse, called the delay time. The shorter the delay time, the more sensitive the detector is to gold. The delay time in the PW "Sandbanks" is altered by changing the value of R31 and R32. It is easiest to replace these two with $47 \mathrm{k} \Omega$ presets during tests, putting in suitable resistors when a satisfactory performance has been reached. It is best to check the delay time using a double-beam oscilloscope, but lacking one of these, the control VR2 should be set to its midpoint and VR1 adjusted to ensure that the output of the 709 is at 0 V . Then reducing the added presets until the speaker just starts clicking ensures the optimum delay time.

Internal Delays

It may be argued that the internal circuits produce their own delays and this is certainly true, but the circuit has a fall time of 3 microseconds and this is quite fast enough. No improvement was obtained with a $£ 4.50$ r.f. power transistor and low-capacitance diodes. The capacitance at the coil connections was measured as 231 pF and an ordinary coil as 681 pF . Reducing the 100Ω resistor R 7 will reduce the decay time but it will also reduce the current in the coil and its damping effect will alter, so leave it alone.

When you have wound the coil that meets with your requirements, do not forget to waterproof it and make it rigid. If it is left loose, the machine will drift all over the places as the coil capacitance changes when the coil moves.

This article describes the construction of a miniature, high-performance v.h.f. receiver for narrow-band frequency modulation, based on the Plessey SL6640 integrated circuit. The SL6640 is a complete i.f. strip, detector and audio system for n.b.f.m., requiring the minimum of external components. It consumes only 3.5 mA of current in the standby mode and can produce 200 mW of audio.

The receiver is so simple that it may be built even by the relatively inexperienced, and yet it gives a professional account of itself
with a sensitivity better than $0.4 \mu \mathrm{~V}$ for a 20 dB signal-to-noise ratio. Physically, the module is only $46 \times 82 \mathrm{~mm}(1.8 \times 3.2 \mathrm{in})$ and although the details given are for operation within the $144 \mathrm{MHz}(2 \mathrm{~m})$ amateur band, the receiver will easily tune to marine v.h.f. channels, and could be used to keep a watch on, say, channel 16 , the distress and calling frequency. In this respect it would be a useful project for the yachtsman or small boatowner, and is licensable for use on board such vessels.

The circuit diagram of the complete receiver is given in Fig. 1. It can be seen to consist of a double-tuned input arrangement feeding a dual-gate m.o.s.f.f.e.t. amplifier with a gain of 18 dB . Another double-tuned circuit couples the amplifier to a second dual-gate m.o.s.f.e.t. which acts as a
mixer whose conversion gain falls around 12 dB . The local oscillator uses a pnp v.h.f. transistor in an overtone configuration.
A crystal filter, specially designed by Cathodeon, filters the $10 \cdot 7 \mathrm{MHz}$ signal and then passes it directly to the

[^2]

Fig. 1: Complete circuit diagram of the single-channel version of the receiver

SL6640, which performs the functions of i.f. pre-amplifier, main i.f. limiting amplifier, quadrature detector, squelch and audio output stages.

Dual-gate m.o.s.f.e.t. devices were selected on the grounds of their good noise (about $4-6 \mathrm{~dB}$) and intermodulation performance. They will cope with large offchannel signals with the minimum of intermodulation distortion. Prototypes used the 3 N 210 in a plastic encapsulation, but $3 \mathrm{~N} 211,3 \mathrm{~N} 201$ or 40673 devices in the metal TO-72 packages will fit the board and work equally well.

Only five components, in addition to the capacitors and inductors of the tuned circuits, are employed in the r.f. amplifier: the m.o.s.f.e.t., two resistors to bias gate 2 of the m.o.s.f.e.t. and two decoupling capacitors. Standard Toko coils are used throughout, and the small ceramic capacitors are of ITW manufacture. At $2 \mathrm{~m}, \mathrm{C} 2$ is 12 pF , $\mathrm{C} 3-6.8 \mathrm{pF}, \mathrm{C} 7-8.2 \mathrm{pF}$ and $\mathrm{C} 8-6.8 \mathrm{pF}$. Note that C4 and C9 are not "real" components, but represent stray capacitance.

A $2 \mathrm{~N} 5771 p n p$ transistor has been chosen for the local oscillator. This reduces the number of devices necessary in the circuit, as the collector load coil is at d.c. ground potential and hence no coupling or bias components are needed for the second gate of the mixer m.o.s.f.e.t.

The oscillator is very simple and reliable, using only nine components. Any additional expense incurred by the selection of overtone crystals is easily justified against the increased complexity and power consumption of multiplier stages.

In the case of a 2 m receiver, C12 may have to be omitted or may be found to be as large as 1.8 pF , a certain amount of experimentation being necessary to determine the optimum value. Capacitor C13 will not usually be required; C11 is 6.8 pF and L5 a Toko $\mathrm{S} 18 / 301-\mathrm{SN}$ 0300.

Using 7th or 9th overtone crystals can lead to oscillator starting problems, but this circuit has been rigorously tested and found to be completely reliable, provided the
supply voltage remains stable. Crystal frequencies are calculated from the formula:

Crystal frequency $=$ Carrier frequency minus 10.7 MHz

If the receiver is required to work on more than one channel, some sort of d.c. switching will have to be evolved, as long leads are not permissible. Such techniques will be found to complement the use of scanners. A suitable method is shown in Fig. 2, where the diodes should exhibit low-capacitance characteristics, such as the 1N4313.

The mixer consists of another dual-gate m.o.s.f.e.t. with both gates at d.c. ground. Signals are applied to gate 1, whilst gate 2 is connected to the oscillator tank circuit, which drives it with about 2 volts r.m.s. of r.f. Better conversion gain and a lower local oscillator could be achieved by biasing gate 2 between 2.5 and 4.5 volts, but this would degrade the strong-signal performance of the front-end.

Two signals of 100 mV , one 50 kHz and the other 100 kHz off-channel, could be tolerated by the prototypes without receiving an intermodulation product. Never-theless, an even better performance may be obtained by sacrificing some front-end gain-and therefore sensitivity.

The mixer drives a crystal filter, designed specifically by Cathodeon for this receiver, which has a relatively low terminating impedance of 470Ω at 25 pF -eminently suited to the output of the dual-gate m.o.s.f.e.t. and the input of the SL6640. Other filters, some appreciably cheaper, are acknowledged as being available, but will almost certainly present the constructor with problems, due to their different terminating impedances. Although C14 and C17 may be changed if necessary, it is not possible to increase the value of R3 and R8 above 820Ω without upsetting the operation of both Tr3 and IC1. A reduction of their values, on the other hand, will cause the gain to deteriorate.

From the filter, the signal is applied to the pre-amplifier input (pin 16) of the SL6640, which has a gain of 46 dB and an output impedance of 330Ω. This matches the interstage ceramic filter between its output (pin 18) and the main i.f. amplifier input (pin 14). The pre-amplifier is biased, via R7 and R8, from its own output: R8 sets its input impedance and C18 decouples the bias line. Similarly, R9 and C25 provide bias and decoupling for the main i.f. amplifier input.

The interstage filter is intended only to limit broadband noise within the i.f. and not to determine the receiver passband. Thus an inexpensive ceramic device is employed for this purpose.

About 60 dB gain is available from the i.f. amplifier, giving the SL6640 in total an overall sensitivity of about $10 \mu \mathrm{~V}$. Such high gain makes bias decoupling essential and this is achieved by C19 and C20. The output of the main i.f. goes to the quadrature detector and squelch system.

The squelch works by detecting the amount of limiting in the i.f. amplifier, pre-set VR1 determining the operating threshold. This control could be panel-mounted, if required.

Resistor R11 sets the hysteresis of the squelch-that is, the amount by which the signal must drop in order to mute the receiver. With R11 at $390 \mathrm{k} \Omega$ and an 8 volt supply this is about $7-9 \mathrm{~dB}$. A reduction to $4-6 \mathrm{~dB}$ is possible by increasing R11 to $1 \cdot 5 \mathrm{M} \Omega$.

The muting arrangements control power to the detector and audio stages. In the absence of a signal they turn off, reducing the total current drain to around 3.5 mA . Under "signal applied" conditions, the current consumption would be in the region of 8 mA plus the amount drawn by the audio output stage.

A squelch output is also present on pin 3 of the SL6640, which is "high" in the absence of a signal and "low" when a signal is detected. This logic may be employed to control a scanner, if a multi-channel receiver is ultimately constructed, or to illuminate a l.e.d. status indicator (Fig. 3). The inclusion of C26 on pin 3 prevents the squelch fluttering if rapid changes of signal level occur.

The detector is self-contained, with the exception of the quadrature coil (Toko) connected between pins 4 and 5. Plessey Semiconductors SL6640 i.c. is intended for narrow-band f.m. applications and should not be confused with such devices as the CA3089, TBA 120 and CA3189, which are essentially for the domestic market and similar wide-band situations. It works well even with $10 \cdot 7 \mathrm{MHz}$
i.f.s, as the Q of the quadrature coil is not loaded by the resistance of the i.c. Signal-to-noise ratios of 50 dB for 2 kHz deviation with a 10.7 MHz i.f. can easily be achieved, whilst to produce the same performance from, say, a CA 3089 would require either a 455 kHz i.f. or a crystal quadrature element.

The detected audio is routed via a d.c. "volume control" (VR2) to the a.f. output stage. Any residual r.f. is filtered out by C28, C29 being used for interstage coupling. The potentiometer VR2 would normally be located on the front panel. Note that the output is at its highest when the resistance of this control is at maximum.

The a.f. output stage is biased by R13 and R16, negative feedback being applied via R14, R15 and C30. Overall gain can be varied by altering the value of R14, but this should not be reduced to below $1 \cdot 2 \mathrm{k} \Omega$, if excessive distortion is to be avoided. Up to 200 mW output is possible with the 8 volt supply. Any h.f. instability is decoupled by the tantalum capacitor C 23 .

The receiver module is powered from an 11-15 volt supply, which is reduced to 8 volts and regulated by IC2 for the crystal oscillator and the SL6640. Decoupling is provided in several places by $0 \cdot 1 \mu \mathrm{~F}$ ceramic capacitors. If the supply source impedance is likely to exceed 2Ω, l.f. decoupling may also be a necessary-a capacitor of a few hundred microfarads being called for.

Readily-available components were part of the design philosophy, so this aspect should present no problems to the constructor. The printed circuit board uses minimalinductance layout techniques which are very effective at v.h.f. and quite easy to assemble. Note that plated-through holes are necessary and all components should be mounted as close to the board as possible.

The alignment of the receiver is fairly simple, but of course if the constructor has access to an r.f. millivoltmeter and a good oscilloscope really professional performance can be attained.

Alignment

Initially the crystal oscillator coil L5 is adjusted for maximum output, consistent with reliable starting. To avoid loading the oscillator, the test probe should be connected to the drain of the m.o.s.f.e.t. $\operatorname{Tr} 3$ (mixer): coils L1, L2, L3, L4 are adjusted in turn for maximum gain from the aerial input.

Fig. 2 (left): Adding multi-channel facilities. Grounding one terminal ''T" activates the associated crystal
Fig. 3 (right): Driving a l.e.d. squelch indicator requires this simple buffer stage

Feed a $10 \cdot 7 \mathrm{MHz}$ frequency-modulated signal to the input side of the crystal filter. Now, with full audio gain and minimum setting of the squelch resistor, tune the quadrature coil for minimum distortion at the output. If clipping occurs, back off the audio gain slightly.

Adjustment without instrumentation is, of course, somewhat less precise. Never-the-less, acceptable results can be obtained and lack of test equipment should not deter the constructor from building this project.

With the presence of a strong v.h.f. signal, tune the local oscillator coil L5 until it is heard at maximum volume and
minimum distortion. Having done this, turn the power on and off several times to ensure that the oscillator will always start.

Next, set the quadrature coil for minimum apparent distortion with the squelch potentiometer at minimum resistance. Then reduce the strength of the alignment signal, perhaps by using progressively smaller aerial lengths, tuning L1, L2, L3 and L4 at each stage for the best signal-to-noise ratio.

Finally, the squelch control is set so that muting occurs when the signal-to-noise ratio becomes unacceptably low.

With a calibrated signal generator, this point should be between 0.15 and $0.5 \mu \mathrm{~V}$-however, it is preferable to set the squelch to a signal-to-noise ratio, rather than to an absolute input voltage.

No instrument case or mechanical details are given for this project, but the receiver is a complete module, requiring only the addition of a battery, volume control, squelch control and small loudspeaker as external components. It could therefore easily be constructed within an existing receiver, using the incoming v.h.f. signal to mute and over-ride the normal programme. For example, the marine version on channel 16 could mute an m.f. signal, or indeed another v.h.f. signal, thus giving priority to channel 16 traffic. On the other hand, it could easily be a self-contained unit.

Multi-channel Conversion

If coverage of more than one channel is necessary, then the circuit of Fig. 2 can be regarded as a working basis, and could probably be accommodated on a small subassembly. If a multi-channel facility is decided on at the outset, a small extension could possibly be made to the printed circuit board.

The 7th overtone WW239 crystals are relatively expensive, but on the other hand the end-product will hold its own with many professional receivers of its type. The original design work for this project was carried out for a specific professional application, and the specification of this version has in no way been degraded.

In the 1830 s, Samuel B. Morse invented a code which was used by signallers to convey military information along thousands of miles of telegraph lines during the American Civil War (1861-1865) and, some 40 years later, Alexander Graham Bell's telephone was extensively used by both sides throughout World War I.

To find out more about communications during that war, the author spoke to several old-timers who were there. One, Bert Knight, now 90 years old, a veteran of the Rifle Brigade, remembers seeing telephone cables at Ypres being laid from a large drum, mounted on a limber drawn by a team of horses, and signalmen in dugouts wearing headphones. However, this means of communications had its drawbacks because, the cables, whether overhead or underground, were vulnerable to secret tapping by enemy signalmen, calculated cutting of the wires, and being totally destroyed by artillery bombardment.

During the last decade of the 19th century, men like Edouard Branly, Oliver Lodge (later knighted), and Guglielmo Marconi, to name a few, were pioneering a means of transmitting both the Morse code and the human voice over great distances without wires. Before their ideas were fifty years old, wire-less communications (later called radio) was used during two world wars on land, sea and in the air.

The Great War

Wireless during the 1914/18 war rested mainly with the electric spark transmitter and receivers, using a coherer or catswhisker and crystal detectors and, for amplification, a limited range of bright-emitter (triode) valves, so called because their high filament current produced a lot of light.

Wireless installations were also vulnerable to enemy action, mainly because the high aerials required gave away the position of a signals unit to enemy spotters. Also, the noise from the transmitter spark gap and the receiver tuning büzzer could be heard for some distance on a quiet night.

The late Bill Longmire, G3TKL, joined the signals section of the 26th Canadian Battalion in 1914 and after three months training had to pass in Morse at 12 w.p.m. with buzzer, lamp and heliograph, and in semaphore and flags. "Serving in France in 1915," said Bill, "I found that war was a bloody business and that communications (by land-line) were not only most important but also dangerous." He used a "D3" telephone set, phone and Morse, with a single-strand wire and an earth return.

Later, Bill transferred to the Canadian Corps wireless section to learn the basic facts of radio and then was selected for a special, three week, training course in London. At the end of the course, a team of three could erect an aerial consisting of a 100 ft long wire on two 24 ft masts, with guys, earth rods and counterpoise, in under five minutes. On returning to France, Bill saw action at Vimy Ridge, and was told to set up a wireless station on a front where shell fire kept land lines out of action. For such an advanced post Bill said: "An NCO and two men with a 24 -hour watch and frequent checks with headquarters station, were required. Usually we had a $2-3$ week stretch in the line if the enemy was not too active."

The trench set illustrated in Fig. 1 consists of a spark transmitter, spark-gap and coil at bottom right, and a crystal detector receiver on top, with its tuning buzzer on front left. The output meter, stud-type aerial matching switch and Morse key are mounted on the top panel, all beautifully engineered and housed in a mahogany cabinet. Bill said that this type of set, plus six 6 volt storage batteries, aerial masts and earth mat was the equipment used in an advanced station. When possible, they tried to select a site for the station which was concealed from the enemy and had easy access from the rear for delivery, by carrying party or mules, of their food and replacement batteries.

Most messages were passed in cypher, code words and callsigns being changed daily, their lighting was by candle and heating by coke. Around midnight, the news could be

Fig. 1: 50 wast Trench set made by the Marconi Company
copied from Poldhu, Cornwall; Eiffel Tower, Paris; or Naum, Germany. "The extra copy taken to the local infantry or artillery cook-house was always good for a handout," said Bill, but Passchendaele was an exception. "Ten days in, four operators and self, one killed, four wounded, but station was able to handle all traffic in spite of the antenna being shot down eight times."

Wireless in the Air

Mark Denny, G6DN, said: "Before the war many amateurs became proficient in Morse by following a programme which started with a session of listening to the Eiffel Tower news bulletin, which was sent at 12 w.p.m. with a T1 note. Then followed a period of receiving the news from a German station at about 15 w.p.m. The final achievement was the ability to copy Cleethorpes Naval Station weather report sent at 10 pm each day. This was initially at 20 w.p.m. and repeated at 25 w.p.m." At that time the Navy required aspirants for entry to their W/T branch to copy, for five minutes, without error, a message in clear at 25 w.p.m.

In 1914, Mark entered the Royal Navy as a Wireless Telegraphist and in 1915 was commissioned in the (Army) Royal Flying Corps, later the RAF. While in the RN he was posted to a Naval Airship Station and along with a group of W/T matelots had to unpack and assemble the wireless equipment for airships, which consisted of a "Stirling" spark coil and a Marconi crystal receiver plus a hand-operated winch containing over 300 ft of wire, with a lead weight attached, for the aerial. Mark said: "We were ordered to install the apparatus in the airships and to assemble a ground station without delay. Our difficulty was that, whilst every material item necessary was provided, no written instructions or wiring diagrams were available. This is where our amateur, pre-knowledge of radio helped and we were on the air to the C/O's satisfaction."

The author showed Mark Denny a photograph of the Marconi transmitter in Fig. 2 and he recognised it as the type he used in the RNAS airships and in the RFC and said: "I used to feel rather apprehensive when adjusting the tuning clips on the helix, considering the thousands of cubic feet of hydrogen gas just above your head."

Their best DX from air to ground was a QSO with Malta Naval Station from the English Channel, using a half-inch spark coil. Sending Morse messages by spark, situated only a few feet below a gas bag, was one of the hazards of life in those days.

Fig. 2: Marconi spark transmitter from World War I

Fig. 3: Short-wave Tuner, Mark III made by Johnson and Philips

Aerial Installation

As a wireless officer in the RFC, Mark saw active service in France. At one stage he was supplied with portable sets, especially flown out from England for the use of certain gentlemen who were deposited over the lines, and later he listened to their transmissions. Soon after he established listening posts in "No Mans Land" and still has his pass permitting him to advance in front of the front line. Like Bill Longmire with his 24 ft masts, Mark also had aerial problems to solve. While in France, they used steel rods which were a loose fit in their rifle barrels, and marched down a village street firing these rods with cords attached over opposite houses. On joining the cords with aerial wire, they soon had an excellent antenna.

Later, back in England, Mark put up the first ground-to-air telephony stations for the Air Defence of Great Britain, which involved getting up in the early hours, before the traffic was about, because one antenna was across Horse Guards Parade, from the Foreign Office to the Horse Guards building in Whitehall, and from the Horse Guards to the War Office, just over the road in Whitehall.

The late John Clarricoats, G6CL, referring to the RFC in the $T \& R$ Bulletin (then the journal of the RSGB), December, 1939, wrote: "The chief job of the 1915-1918 wireless operator was to act as "the ears" between a roving plane and the battery to which he was attached; his equipment was primitive (usually a Mark III tuner) and his only means of communication with the observing machine was by means of "white" ground strips which, sad to relate, seldom lived up to their name." Mark Denny also remembers the Mark III tuner, as the set supplied to them
on the Western Front, and used by RFC wireless operators in their dugouts in conjunction with the Royal Artillery batteries.

The Wireless Reserves

In the 21 years which elapsed between the two world wars, radio made fantastic strides both in broadcasting and short-wave communications around the world, and it is well-known that amateur radio enthusiasts played their full part in both fields.

With the war clouds gathering again in the early 1930s, the authorities, knowing there would be a need for trained wireless operators if war came, once more called upon the amateur radio enthusiasts for assistance. On August 26, 1932, Wireless World commented: "At last British wireless amateurs are to be given the opportunity to assist His Majesty's Forces"; when they reported that: "The Secretary of the Admiralty announces the institution of a Royal Naval Wireless Auxiliary Reserve (RNWAR) in Great Britain and Northern Ireland, to be recruited largely from Wireless Amateurs owning transmitting sets." One of the objects of the RNWAR was, "to provide a reserve of operators trained in Naval procedure, for Naval service afloat or ashore in war or emergency."

The setting up of this organisation was the result of careful work by officials of the Admiralty and the Radio Society of Great Britain, as was the establishment, by the Air Ministry, in September, 1938, of the Royal Air Force Civilian Wireless Reserve (RAFCWR). The announcement, by the Air Ministry, reported in Wireless World, December 29, 1938, made it clear that the CWR was to "consist largely of amateur experimenters which would, if the need arose, provide a reserve of personnel experienced in the operating procedure of the RAF." Both the

Fig. 4: National Wireless Register, published in Wireless World on 26 January, 1939

RNWAR and the RAFCWR attracted several thousand radio enthusiasts from all walks of life. They divided the United Kingdom into areas where small groups could train to the required military standard. Experimental sections were manned by experienced radio amateurs who dealt with the design of transmitters and receivers to meet a particular section's needs; and all in harmony with the signals branch of their respective service.

National Wireless Register

Both the RSGB, through their journal, The $T \& R$ Bulletin, and Wireless World frequently reported the progress of the Wireless Reserves and, furthermore, Wireless World did much to find out what radio skills were available among their readers that would be of use to the armed forces in the event of war.

In their editorial on January 26, 1939, Wireless World comments: "In the event of an emergency which would require everyone to put himself at the service of the Country, the moment will arise when every individual will ask where he can offer his services so that such qualifications as he may possess will be of greatest value." As a pull-out in the same and some subsequent issues, $W W$ enclosed a printed OHMS form, addressed on one side to ... Secretary, Wireless Telegraphy Board, c/o Admiralty, Whitehall SW1, and with a general and technical ability questionnaire on the other. This document, Fig. 4, was

THE

 'VINTON'

 'VINTON' Stereo Amplifier

 Stereo Amplifier}

As the p.c.b. must be mounted into the chassis before the other parts, we will start construction by assembling the components onto the boards.

The leads of the components should be preformed and inserted into the holes, as shown in the component overlay Fig. 7. Turn the p.c.b. over so that it rests on a sponge or foam mat, which will then hold the components in close contact with the p.c.b. while they are soldered into place.

Coils

Before assembling the main p.c.b., the two coils L1a and LIb should be made up as shown in Fig. 6. Each coil consists of 30 turns of 18 s.w.g. insulated wire wound in three layers of ten turns each. The internal diameter of the first layer is 8 mm . If masking tape is wound over each layer after winding, the turns will stay in place while the next layer is wound. When the coil is completed the 1 W 10Ω resistor is fed through the centre of the coil and the leads soldered to the coil as shown. The coil ends are then opened out to a spacing of 22.5 mm to fit the p.c.b. It will, of course, be necessary to scrape the insulation from the coil ends before soldering.

Assembly should start with the terminal pins, which will be a tight fit and can be tapped into place with a light hammer, but you must support the p.c.b. from behind when doing this. Insert them from the top of the p.c.b. and then turn the board over and solder the pins to the track.

Once the pins are in place, the suggested order of assembly is resistors, small capacitors, transistors, electrolytics, switches, etc.

Fig. 6: Winding details of the two coils L1. Internal diameter 8 mm ; Length 15 mm ; 3 layers of 10 turns each (Total 30 turns) 18 s.w.g. enamel copper wire. R58 is $10 \Omega 1 \mathrm{~W}$ carbon resistor

Switches

Be sure to mount all electrolytics the correct way round as indicated on the overlay. This also applies to diodes and i.c.s. When fitting the push-button unit to the p.c.b., first make sure that all the pins are straight, then "walk" the pins into the holes by starting at one end of the switch with the switch at a slight angle to the p.c.b. and gradually lower the switch pins into the holes as the switch is levelled out. Make sure that the switch is parallel to, and in close contact with, the top of the p.c.b. before soldering the pins to the track, otherwise the push-buttons will not align with the front panel holes.

Use only the components specified as only then will the specification, of which the Winton is capable, be achieved.

Chassis

The main chassis is made in the form of an inverted " U " from aluminium sheet and the overall size required, before bending, is $462 \times 298 \mathrm{~mm}+$ twice the bend allowance for the thickness of metal used, i.e., $462 \times$ 300 mm when using 1.2 mm thick ($18 \mathrm{~s} . \mathrm{w} . \mathrm{g}$.) aluminium. Most d.i.y. suppliers will cut aluminium to size for a small charge, and it is well worth having this done as it will save work and ensure a "square sided" chassis. The author used aluminium of 2 mm ($16 \mathrm{~s} . \mathrm{w.g}$.) thickness for the main chassis but has access to a bender capable of folding this thickness. Unless a suitable bender is available, the 1.2 mm material will be found easier to work with and will still provide adequate strength.

Mark out the chassis as shown in the drawing (Fig. 14), not forgetting to scribe two lines to allow for the thickness of metal used when bending.

The centre height of the push-button holes must be 20 mm above the inside edge of the bent-up chassis, and this is the reason for scribing two lines. If the bottom line is used as the guide line in the bender the holes should be correctly positioned after bending.

Cut-outs

After drilling, all the holes should be deburred. The four large rectangular cut-outs in the chassis are provided so that the underside of the p.c.b. can be reached, as it would be almost impossible to remove and/or test the p.c.b. otherwise. These cut-outs are made using an Abrafile blade fitted to a standard hacksaw, any burrs being removed with a suitable file.

When all the holes and cut-outs have been made the chassis can be bent up. Make sure you bend it the correct way!!

design by $T \& T$ electronics
(C) copyright IPC magazines limites

Fig. 8: Above left, the full size copper track pattern of the PW Winton printed circuit board

Fig. 9: Far left, details of the output transistor heatsinks. Four of these are needed made from 1.2 mm thick aluminium sheet with all burrs removed and the mounting surfaces absolutely flat: Paint matt black when completed

Fig. 10: Centre, the baseplate which covers the cutouts in the aluminium chassis. Only one is needed from 1.2 mm thick aluminium

Fig. 11: Left, details of the earth terminal assembly

Heat Sinks

The four heat sinks can be made from the aluminium removed from the four rectangular cut-outs and should be made up as shown in Fig. 9. It is very important that the holes on the heat sinks are completely free from burrs, also the part in the centre should be flat and any high spots removed with a suitable file. The power f.e.t.s must be mounted on a perfectly flat surface and the parts used for this must be filed flat and freed of burrs.

Once the p.c.b. is fully assembled it should be very carefully checked for any errors. If possible get someone else to check your work for you. When you are satisfied that it is correct, it can be assembled into the main chassis.

First, fix the five p.c.b. pillars onto the chassis. These are held in place with No. 6 self-tapping screws approximately 9 mm long. The p.c.b. can then be mounted onto the pillars by lowering the push-button end so that the buttons line up with and project through the front panel holes. Then press the p.c.b. firmly onto the pillars. Check the action of the push-button switches, which must all be free to move without catching on the chassis. The use of a small file may prove helpful if problems exist but if the chassis has been made correctly, all should be well.

The c rer components can now be fitted to the chassis in the position shown in the drawings and photographs. Note that the volume, balance and tone controls are assembled onto their mounting bracket (Fig. 15), before the whole assembly is fitted to the chassis.

Control Spindles

First cut the control spindles to a length of 22 mm . Do not strain the control when doing this. Clamp the unwanted part of the spindle in a vice and hold the potentiometer end to steady it, while cutting the spindle with a small hacksaw. Then remove any burrs.

Assemble the controls into their respective positions on the mounting bracket and tighten all nuts firmly but do not overtighten. The bracket is fixed to the chassis front with countersunk 6BA screws, approximately 12 mm long, and spaced from it with two 6BA nuts. Finally it is held in place with another 6BA nut and lock washer.

When fitting the socket for the headphones, the tags come up either side of the phone/speaker switch and should be bent slightly outwards.

When the heat sinks are satisfactory, they should be painted matt black and left to dry thoroughly before using.

Finally, make up the chassis base plate and the control mounting bracket as shown in Figs. 10 and 12.

Fig. 12: Above, details of the control mounting bracket which is made from 1.2 mm thick aluminium

Fig. 13: Below, the mounting details of the power f.e.t.s and heat sinks

Fig. 14: Marking out details for the aluminium chassis which is made from $\mathbf{1 . 2 m m}$ thick sheet

Fig. 15: Method of mounting the control potentiometers using the pot mounting bracket

The black earth terminal on the rear of the chassis is mounted without its rear insulating washer to ensure a good electrical contact with the chassis (Fig. 11).

The output power f.e.t.s should be assembled onto the heat sinks and chassis as shown in Fig. 13, but it is very important to make sure that the pins do not touch the sides of the holes, and that the mica washers are not damaged. The use of a heat sink compound helps here. After assembly, a multimeter may be used to check for shorts between pins and chassis.

Both the $4700 \mu \mathrm{~F}$ reservoir capacitors are held in place with plastic cable ties. Four large plastic cable ties are used to hold the special toroidal mains transformer and should be firm but not over tightened, otherwise they may distort
the chassis. A piece of foam is placed between the transformer and chassis to reduce vibration. This method of fastening the transformer to the chassis has been used instead of the bolt and plastic centre method as it has proved to be considerably cheaper and is just as easy and reliable. Do not be tempted to use metal ties, wire, or a bolt and clamp bar through the centre of the transformer, any of these methods can create a shorted turn, overloading the transformer. The l.e.d. used as an "on" indicator is a firm push fit into the hole provided.

> Next month finishes the wiring of the amplifier and covers testing and setting-up procedures

P_{W}

WINTON

PW and T. \& T.

HAVE COLLABORATED TO BRING TO PW's READERS A WORLD first on the home constructor hi-fi kit scene.

Ted Rule, a member of the design team of T. \& T. Electronics was commissioned by P.W. to design a High Fidelity Stereophonic Amplifier in a form suitable for the Home Constructor which would supersede the now ageing "Texan".
This, bearing in mind the phenomenal success story of the Texan was a daunting brief for any design team, but we are both delighted and proud to announce that Ted as well as achieving his original design brief, has far exceeded it.
Ted, (who has 30 years experience in Hi Fi design) has excelled himself in producing the P.W. WINTON amplifier, which we sincerely believe to BETTER SIGNIFICANTLY ANYTHING CURRENTLY AVAILABLE TO THE HOME CONSTRUCTOR IN THIS POWER RANGE.
The almost unbelievable specification for this design (published in full in the WINTON article) was achieved by utilising the latest "state of the art" devices available including the revolutionary POWER MOS-FETS developed by HITACHI Ltd., and BI-FET Op Amps from TEXAS.
The HITACHI research has we feel rendered the use of Bi-Polar Power Output Transistors obsolete in any design which has any pretentions towards true HIGH FIDELITY.
Because we are so excited at the performance obtainable, and to avoid disappointment caused by the use of sub-standard components, we have decided to market a complete kit of parts to ensure that the Home Constructor can achieve the same superb results.
As with Rolls-Royce quality doesn't come cheaply, and we make no apologies at all for the fact that our kit costs a bit more than the average Bi-Polar design, we firmly believe that the standard of reproduction obtainable is a reflection in part of the quality of the components used in the kit, and that discerning Audiophiles the world over will recognise the inescapable truth that today you usually get just what you pay for. The WINTON Kit is available in the following form:-

Price Inc. V.A.T. \& carriage.
Pack (A) Capacitors \& Fixed Value Resistors
Pack (B) Switches, Potentiometers, Pre-Sets \& Knobs £21.45

Pack (B) Switches, Potentiometers, Pre-Sers \& Knobs
Pack (C) Printed Circuit Board, and Terminal Pins
£13.26
Pack (D) Hardware Pack, consisting of Chassis, Heat Sinks, Cabinet, Screws, Wire, Fuseholders etc., and a Brushed Aluminium Fascia Front Panel.
Pack (E) Semiconductors (including HITACHI MOS Power
Fets)
$£ 32.99$
$\mathbf{£ 3 0 . 5 3}$
Pack (F) Toroidal Mains Transformer $\quad \mathbf{£ 1 7 . 2 2}$
Complete Kit of all parts necessary to build the WINTON $\mathbf{£ 1 2 0 . 0 0}$
ORDER WITH COMPLETE CONFIDENCE (Cash with order please)

FROM:-

T. \& T. ELECTRONICS. GREEN HAYES, SURLINGHAM LANE, ROCKLAND ST. MARY, NORWICH, NORFOLK. NR14 7HH. PLEASE ALLOW 28 DAYS FOR DELIVERY.

SCOOP THISEXTRA!

> Don't miss the new Maplin 40-page bound-in illustrated guide and price list in our April issue!

plus these projects:

- "Autoranging Multimeter" - 5-function autoranging AC/DC instrument for measuring voltages, current and resistance.
"Phaser" - guitar sound effects unit with
-6 phase-shift networks. Creates superb "atmospheric whooshing"!

PRACTICAL

PRODJUCTION LINES

If you please

Would readers kindly mention "Production Lines", when applying to manufacturers or suppliers featured on this page.

Pattle's panels

We all know the problems of making a really good front panel for our projects. Dymo tape and typed sticky labels are no substitute for a photographically reproduced anodised aluminium panel. Several of our recent projects have featured front panels professionally made by D. J. Pattle to our designs. These panels are available to readers and come in a variety of styles, colours and thicknesses.

The thin type is available, selfadhesive backed, ready to be cut out and mounted on to a sub-panel. A full thickness aluminium version is available which also acts as the front panel.

If you want to add a touch of class to your shack, then the aluminium RSGB badge with your callign across the centre, is available to order from Pattle. Full details and prices from: D. J. Pattle, Juniper, Hillbury Road, Alderholt, Dorset. Tel: Fordingbridge 52081.

Grounded

A portable field service kit which can prevent electrostatic charge from damaging sensitive electronic components during construction or servicing operations is now available from 3 M UK Ltd.

This is the "Velostat" 8005 Field Service Grounding Kit, which provides an effective method of draining electrostatic charge from the individual to ground before it can damage or destroy sophisticated components, such as MOS, bi-polar devices and microprocessors.

Research has shown that thousands of volts of electrostatic charge can be
generated and stored in a technician's body by simply walking across floors and sliding on and off stools. When the individual then handles a p.c.b., the electrostatic charge flows from him through the circuitry, literally blowing components.
The kit consists of a "Velostat" Table Top $(614 \mathrm{~mm}$ square), a conductive wrist strap and a ground cord. The Table Top has convenient storage pockets and can be rolled or folded to fit neatly in tool cases.

For details of price and availability contact: 3M United Kingdom Ltd., 380-384 Harrow Road, London W9 2HU. Tel: 01-286 6044.

Battery holder

Most small equipment enclosures on the market today make no provision for battery housing and dismantling a complete instrument in order to replace an exhausted battery is both tedious and time consuming.

Vero Electronics Ltd. now make available an injection-moulded battery housing of simple clip-in design offering access for battery changing from outside the instrument.
The holder accepts a 9 V battery and may be easily fitted to a panel or enclosure with a thickness of 1.5 to 3 mm . All that is required for fitting is a rectangular cut-out into which the holder is pressed home.

Supplied as a kit, the battery holder comes complete with connector and lead for less than $£ 1$. Further details from: Vero Electronics Ltd., Industrial Estate, Chandler's Ford, Eastleigh, Hants SO5 3ZR. Tel: (042 15) 69911.

The game of Noughts and Crosses presented here is a less ambitious development than the automated opponents currently advertised, but has proved itself a source of great interest to friends and offspring alike. Babysitters particularly appreciate trying to beat the "computer" after the television closedown.

The game uses TTL integrated circuits, directly driven 1.e.d. displays, and inputs are made by touch-switches or alternatively with a simple prod. The circuit automatically remembers the first input and sets its program for the remainder of the game. With the advantage of first move, the player may win 126 or 16 of the 945 different possible games as explained later. This facility was added at the cost of a few extra gates. The programming could have been wired to.win or draw only, but there is little interest in competing against an infallible opponent. Mis-switches cannot override previously lit noughts and crosses.

Identifying the board squares as in Fig. 1(a), if the first input is to any outer square the reply is to 5 . Should the first move be to square 5 , the reply is to 1 . The first reply is directly gated, but this is not possible for subsequent replies and a 9 -bit event latch is used to set a program. The programs set by the first input made in each game are identified as in Fig. 1(b).

Figure 2 details the event latch, gating for the first reply, input latches which store the momentary Logic O 's from the touch-switches or probe, and display latches which directly drive the l.e.d. displays.

Six input latches are contained in IC13, type SN74118. The other three are cross-coupled 2 -input nand gates type SN7400. Capacitor C1 connected to the reset input prevents the discrete latches setting in the opposite polarity to those in IC13 on powering the circuit. All other capacitors shown are for decoupling.

Display latches

The display latches operate differently to the usual setreset of the input latches. Initially, both inputs are at Logic 0 . When one input is switched to Logic 1 , both inputs to one gate are then at l and its output is at 0 . The display in that square is thus lit.

Display gating. for squares 2, 4, 6 and 8, Fig. 2(b) are modified forms of the above latches. If a nought or cross input is made first, the display will be lit accordingly. If the third (inhibit) input is made first, a nought cannot then be
displayed although a subsequent cross can. Five 3 -input NAND gates are also used in the gating. Outputs from these are connected to the inhibit inputs of the latches. Two are spare type SN7410 as used in the 3 -input display latches. The other three are type SN7412 (o/c collector) so that two may be connected as a wired-or to the inhibit input of display latch 4. These latches with their associated gates prevent replies being made after the player has won a game.

Wired-OR gates

The 9-bit event latch comprises IC 10 and square 5's input and display latches. IC 10 is a dual 4 -bit latch with clear inputs, type SN74116. Each 4-bit latch also has two enable inputs, which are connected as two pairs on PCB 1. All outputs from IC 10 are connected as a wired-or gate into one pair of enable inputs. The other enable inputs are connected to the $\overline{\mathrm{Q}}$ output from square 5's input latch. When either pair of enable inputs is switched from Logic 0 to 1 , all eight latch outputs are held in the condition they were in previous to the switch. If the first input switched is 5 , all outputs from IC 10 are held at O. Display latch output $5 x$ is enabled, and inverted to enable program E. Output E is inverted again to enable display latch ouput Io. The inverters buffer display latch 5 . Should any other input be switched first (say $3 \mathbf{x}$), output 3 from IC 10 switches to Logic 1 and enables program C. The other programs remain disabled by the output of the wired-or gate, whilst display latch output 50 is enabled.

The nine outputs from the event latch circuit are taken to PCB 2 where they are connected with eight of the Input latch \bar{Q} outputs in a gated matrix. Input latch 5 is not re-

7	8	9
4	5	6
1	2	3

(a)

WTS002	G	H	J
	D	E	F
	A	B	C

(b)

Fig. 1: The identification of the squares on the board

 appropriate square

[^3]

Wired prog. $/$ (connections to nought display latches													
Inputs	A	B	C	0	E	F	G	H	J	$A+D$	$B+C$	$\mathrm{G}+\mathrm{H}$	$\mathrm{F}+\mathrm{J}$
1	-	3	2	7	-	-	-	-	-	-	-	4	2
2	-	-	1	-	8	1	-	-	4	3	-	6	-
3	-	1	-	-	7	9	-	-	6	2	-*	6	-
4	7	7	8	-	6	-	-	-	-	-	-	1	2
5	-	-	-	-	-	-	-	-	-	-	-	-	-
6	-	-	-	-	4	-	2	3	3	8	9	-	-
7	4	-	-	1	3	-	-	9	-	-	4	-	8
8	6	-	-	9	2	-	9	-	-	-	4	-	7
9	-	-	-	-	7	3	8	7	-	8	6	-	-

components

Resistors		
$\frac{1}{2} W 2 \%$ metal oxide		
270Ω	9	Display
$1 \mathrm{k} \Omega$	10	$R 8$ and input switching
$1.2 \mathrm{k} \Omega$	2	$R 3,9$
$1.5 \mathrm{k} \Omega$	1	$R 14$
$1.6 \mathrm{k} \Omega$	5	$R 10,11,12,13,15$
$2 \mathrm{k} \Omega$	1	$R 16$
$2.2 \mathrm{k} \Omega$	9	Input switching
$4.7 \mathrm{k} \Omega$	2	$R 1,4$
$7.5 \mathrm{k} \Omega$	1	$R 6$
$9.1 \mathrm{k} \Omega$	3	$R 2,5,7$

Fig. 3: Circuit board 2 connects the nine event latches to eight of the input latch \bar{Q} outputs in a gated matrix. All outputs with the same numbers are 'wired-OR' connected to the appropriate resistor on Board 2 and then to Nought inputs of display latches on Board 1

Fig. 4: Circuit diagram of one l.e.d. display. This forms the display for one square and nine of these are required for the complete game. The 270Ω resistor is the approximate value needed to limit total current to 10 mA
quired because of the direct gating used for the first reply. 2 -input o/c collector NAND gates type SN7403 are used for the matrix, their outputs connected as wired-or gatessee Fig. 3. To reduce the number of gates in the matrix, four 2-input-Or gates type SN7432 are used to provide outputs $\mathrm{A}+\mathrm{D}, \mathrm{B}+\mathrm{C}, \mathrm{F}+\mathrm{J}$ and $\mathrm{G}+\mathrm{H}$. The nand gate outputs are connected back to inverters on PCB 1 and then to the nought inputs of the display latches.

Outputs

Outputs from the display latches are connected directly to the display l.e.d.s, which are interconnected and positioned as shown in Fig. 4. Initially, both outputs of a latch are at Logic 1. If the " X " input to a display is switched to 0 V , current flow is from the positive rail via the four corner-mounted l.e.d.s, through the centre l.e.d. into the gate, displaying a cross in the appropriate square. If a " O " input to a display is switched low, current flow is via the corner l.e.d.s and through the top and bottom l.e.d.s to show a nought. The resistor is selected to limit current to $10-15 \mathrm{~mA}$.

[^4]
Lasers Again

Readers may remember the fuss over using lasers as part of London's Christmas decorations last year. Apparently some thought the beams would constitute a hazard.

In the American town of Atlanta they've been using lasers for some time to control traffic lights: Before anyone sees "red", the health hazard is virtually nil and the system has been given a fond, approving kiss by the US Bureau of Radiological Health Standards as being "safe for eyes".

Previously, the digital computer that controls the city's traffic lights was coupled to the lights via telephone lines, or by dedicated cables. The system can control up to 500 separate road junctions. At each set of lights is an optical transceiver that faces its neighbour at another junction.

Sensors, in the road, monitor the traffic density and this information is fed back along the laser chain to the computer. The digital computer "computes" all this information and, having computed sends a master command signal to the relevant traffic lights.

Tests on the laser's range showed reliable operation at distances of well over $\frac{1}{4}$ mile even in the very worst weather conditions (such as heavy fog, etc). In a good, clear, typical English summer's day (singular!) type weather, the range approaches 10 miles.

Peak power outputs of the GaAs laser diodes used are around 10 W , and these are pulsed at 2 kHz .

A shining example to traffic light manufacturers everywhere.

Thermometers

For those with an interest in electronic thermometers, keep an eye open for the magic number AD590. It's a completely self-contained temperature transducer with an accuracy of $\pm 0.5^{\circ} \mathrm{C}$ over the temperature range $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$. And it's only "transistor size" being housed in a standard TO-52 can. Better still, there are only two leadout wires.

During manufacture, the resistive elements are precision laser trimmed to precise values. The result is a sensor that is linear over the range. So much so that you can plug in different ones without any need to recalibrate. For the technical buffs, the output is $298 \cdot 2 \mu \mathrm{~A}$ at 298.2 K (that's $25^{\circ} \mathrm{C}$) and any tem-
perature change up or down gives a $1 \mu \mathrm{~A} K$ variation.

The cheapest version costs barely the equivalent of a single British quid. A miniature, ceramic flat pack version is also available. Note that these are the prices for 100 off, though!

Stronger yet Faster

High gain-bandwidth product and high collector-emitter breakdown voltage are two conflicting ideals according to many bipolar transistors. These comments are particularly pertinent in the field of switching applications.

The Japanese think they've found an answer, and it's quite a clever one. They've combined a field-effect transistor gate structure with a standard bipolar transistor. One of the beneficial effects observed is that, assuming the same base width, where a particular conventional transistor had a breakdown voltage of say 20 V , the new hybrid would make this figure 200V.

Not only does the new structure give a ten times increase in breakdown voltage, but it also offers a four times increase in gain-bandwidth product. One set of figures quotes $80 \mathrm{MHz} / 500 \mathrm{~V}$.

Midget Supplies

Ever since the advent of switching power supplies, these items seem to have shrunk ever smaller. An American company began one power supply development programme by asking itself a question. "As digital panel meters get smaller and smaller, how will they be able to keep the useful feature of being operable from d.c. supplies and mains?" Pointless to have a beautiful, small d.p.m. only to find a dirty great power supply (by comparison) is required to power it.

Since many miniature d.p.m.s use c.m.o.s. and require only small currents and voltages, their power needs are not great, never-the-less with mains one side and a d.c. voltage the other, something very small has to go in the middle.

The result is the $\mu \mathrm{S}-\mathrm{A}$ series power supplies. They measure only 12.5 mm cube and will supply from 1.5 to 15 V d.c. from a 120 or 240 V a.c. mains supply. They don't mind if the frequency of that supply is anywhere be-
tween 47 Hz and 440 Hz . The one-off price in the US is about the equivalent of $£ 4$ sterling. But the 100 off price plummets to just over $£ 1$.

Tiny Switch

Always well worth watching is the International Electron Devices Meeting. Among the many fascinating papers that caught my eye was one which described a small electromechanical switch. And when I say small, I really do mean small with a very little " s ". This intriguing device is built using semiconductor technology. The switching cantilever is just 76 micrometres long. It is fabricated from a very thin layer of metal coated on a membrane of silicon dioxide. The membrane itself certainly isn't very thick, either; only 3500 Ångströms! Switching takes place by electrostatic action on the membrane. Switching time is around 40 millionths of a second using a "switching" voltage of 60 V . The author claims the higher voltages give even shorter switching time-but one then starts to get contact bounce.

An important aspect of this new device is that the switch (or switches) could be fabricated on the same chip as the active devices.

A parting shot. It is thought that, after development, these tiny switches could be made to function at switching times to the order of $10 \mu \mathrm{~s}$ using 30 V max. and with a current carrying capability exceeding 100 mA .

Although obviously in its infancy, the idea seems to be promising when one examines the prototype test figures. Some of the switches under test in the laboratory have exhibited lifetimes of over 2 million switching operations while switching current densities of 5×10^{4} amperes per square centimetre.

It might be as well for readers who are avid constructors to purchase a powerful watchmakers glass as a precautionary aid to future projects!

Cimbers

M.J.DARBY

In previous articles we have seen how a basic f.m. receiver functions, and have also considered front-end devices and circuits in detail.

However, many f.m. transmissions carry stereo information, and this part of the series deals with the essentials of the stereo decoder.

The Multiplex Signal

The audio output from the demodulator of a stereo receiver consists of both audio frequencies and ultrasonic frequencies which carry the required information for both the left and right hand channels. These two channels are said to be "multiplexed" so that they can be present as a single signal. It would obviously be very uneconomical to employ two separate transmitters for the left and right hand signals.

The multiplex signal from the output of the receiver demodulator circuit contains a number of parts which are illustrated in Fig. 1 and listed below.

1. The audio frequency band from about 30 Hz up to 15 kHz contains the required audio signal and constitutes the sum of the signals in the left and right hand channels. In a monaural receiver, only this part of the signal will provide the output in the loudspeaker.

The transmitted signal is thus "compatible", which means that the one signal can be used to operate both monaural and stereo radio receivers.
2. A 19 kHz pilot tone which is transmitted at a relatively low signal level. This pilot tone is required for the operation of the stereo decoder circuit; if the tone is not present in any signal (or not present at an adequate amplitude), the stereo decoder circuit will switch to the monaural mode and the same signal (left-plus-right) will be fed to the two speakers.
3. A left-minus-right signal which is modulated onto a 38 kHz sub-carrier signal. The sub-carrier itself is suppressed so that there is a small gap of about 60 Hz in

Fig. 1 : Spectrum of the stereo multiplexed signal
width at 38 kHz . The left-minus-right signal covers a frequency band of about 30 Hz to 15 kHz . The sub-carrier modulation process generates signals of $38 \mathrm{kHz} \pm$ (left-minus-right frequency); this means that the lower sideband of the sub-carrier extends from $38-15=23 \mathrm{kHz}$ up to within 30 Hz of the 38 kHz frequency, whilst the upper sideband extends from 30 Hz above 38 kHz up to $38+15$ $=53 \mathrm{kHz}$. The upper and lower sidebands are shown in Fig. 1. The 38 kHz sub-carrier itself has an amplitude which does not normally exceed 1% of the total signal amplitude.

It is obvious from Fig. 1 that the stereo multiplex signal has a much wider bandwidth than the monaural signal which extends up to only 15 kHz . This wide bandwidth inevitably results in more noise being present in a stereo signal than in the same signal in the monaural mode. In practice the degradation in signal-to-noise ratio is some 20 dB , so a much better aerial is required for good, low noise stereo reception than is necessary for good reception of the same signal in the monaural mode.

When a broadcast is to be monaural for a period of more than a few minutes, the pilot tone at the 19 kHz frequency may be switched off so that stereo receivers are switched to the monaural mode. This automatically ensures that the optimum signal-to-noise ratio is obtained when only a monaural signal is being transmitted. Similarly, if the signal level falls below that required for good quality stereo reception, most stereo decoders will automatically switch to the monaural mode so that a better signal-to-noise ratio is automatically obtained without the listener having to take any action.

Decoder Types

Some of the earlier forms of stereo decoder circuits are of the so-called switching type. In such circuits the 19 kHz pilot tone is extracted from the multiplexed signal using a tuned circuit and is doubled in frequency to re-generate the 38 kHz sub-carrier frequency. This latter signal is used to switch the multiplexed input to the decoder between the left and right hand channels.

Switching circuits of this type are not at all easy to set up and to align. In addition, they have the disadvantage that they do not provide the optimum separation between the left and right hand channel signals and require ferrite cored inductors (which are always difficult to design effectively.

All modern circuits employ phase-locked loops in the stereo decoder circuit. The frequency of oscillation of the voitage controlled oscillator of the phase-locked loop automatically locks on to a harmonic of the pilot tone frequency and the loop will remain locked to this latter frequency until the pilot tone is switched off. Any normal

variation of the component values with temperature or normal ageing will not affect the performance of the circuit, so no critical component values are required in phase-locked loop decoders. In addition, this type of decoder is easy to set up, a simple adjustment of the loop free-running frequency being all that is required. Circuits employing a phase-locked loop for stereo decoding can provide excellent separation of the two channels, the interference between the channels normally being at least 40 dB below the signal level.

Special integrated circuits for the phase-locked loop decoding of stereo signals are readily available. We will now discuss the principles of operation of a phase-locked loop stereo decoder and look at some typical circuits. It is much simpler to use a monolithic device than to try to make a stereo decoder from discrete components.

The RCA CA3090AO

The first integrated circuit phase-locked loop stereo decoder to become available was the RCA Type CA3090Q in 1971, but this has been replaced by the CA3090AQ which is an improved version of the device, and provides an excellent performance. It has the disadvantage that the phase-locked loop is tuned by means of an inductor, whereas the other devices are tuned by a variable resistor; however, the thermal stability of the CA3090AQ is reputed to be better than that of other devices.

The internal circuit of the CA3090AQ is shown in block form in Fig. 2 together with a typical external circuit. This device is encapsulated in a 16 pin dual-in-line package and requires a supply of around 21 mA from a +12 V line. It can be seen that the internal circuit of the device is relatively complex, but the external circuit is quite simple and easy to construct.

A demodulated multiplexed stereo signal with a frequency spectrum like that shown in Fig. 1 is applied to pin 1 of the CA3090AQ; the input impedance at this pin is fairly high (about $50 \mathrm{k} \Omega$), so there is very little loading on the demodulator circuit which feeds pin 1. The signal is first amplified by a low-distortion pre-amplifier circuit inside the CA3090AQ and is then fed to both a 19 kHz phase-locked detector and to a 38 kHz detector of a similar type. In addition, the amplified signal is fed to a 19 kHz pilot tone detector, the output of which determines the state of a Schmitt trigger circuit which controls the mode of operation (monaural or stereo).

The voltage controlled oscillator in the CA3090AQ operates at the fourth harmonic of the pilot tone frequency, namely $4 \times 19=76 \mathrm{kHz}$, this 76 kHz signal being locked in frequency to the harmonic of the pilot tone. However, the 2 mH external inductance connected to pin 16 must be adjusted so that the free-running frequency of this voltage controlled oscillator is fairly close to 76 kHz ; when the pilot tone is applied with the signal to pin 1 , locking is then automatic.

The 76 kHz voltage controlled oscillator signal is divided in frequency by a factor of two to produce a

38 kHz signal exactly at the frequency of the suppressed sub-carrier; this 38 kHz signal is fed to the L-R (left-minus-right) signal detector. The 76 kHz signal is also divided in frequency by other circuits which produce two 19 kHz signals in phase quadrature (that is, 90° out of phase with one another. One of these 19 kHz signals is passed to the 19 kHz phase-lock detector which generates the error signal which keeps the loop in lock, whilst the other 19 kHz signal is required by the pilot tone detector.

The amplified multiplex signal and the output from the 38 kHz L-R detector are applied to a matrix circuit which produces the left and right hand audio signals. These signals are amplified internally before appearing at pins 9 and 10 . The 5 nF capacitor and the $10 \mathrm{k} \Omega$ resistor in each of these output circuits provide the required de-emphasis time constant.

If the pilot tone is absent or at such a low amplitude that the signal could not provide good stereo reception, the pilot tone detector does not switch the Schmitt trigger circuit to the stereo mode. The circuit therefore, operates in the monaural mode and the left-plus-right sum signal appears at both of the outputs so that both speakers produce a monaural output.

The signal from the Schmitt trigger also operates a lamp driver circuit. The latter causes the light emitting diode D1 to glow when the circuit is operating in the stereo mode. If no 19 kHz pilot tone is present at the input or if the pilot tone is too weak to cause the circuit to operate in the stereo mode, the light emitting diode does not glow. A light emitting diode consumes less current than a tungsten filament lamp and also has the advantage that it is more reliable (since filaments tend to break after much use!). Nevertheless, the light emitting diode and its series resistor R4 in Fig. 2 can be replaced by a suitable small tungsten filament lamp which requires not more than about 100 mA .

The Coil

The Toko coil type YXNS 30450NK has been especially designed for use with the CA3090AQ device; it has 270 turns on a ferrite core and a blue colour coded core adjuster. The use of this miniature coil (available from Ambit International) is much more convenient than trying to wind a suitable coil oneself.

In order to adjust the core, a stereo signal should be fed to the circuit of Fig. 2. The core of the coil should be rotated first in one direction and then in the other to find the points at which the circuit switches from the stereo to the monaural mode (as indicated by the light emitting diode, D1). The core should be set about half way between these two points. The centre frequency of the voltage controlled oscillator is then quite close to 76 kHz , but the setting is not very critical, as the capture range of the phase-locked loop circuit is some $\pm 10 \%$ of the centre frequency.

The mode of operation (stereo or monaural) can be controlled by the application of a suitable potential to pin 4 of Fig. 2. At potentials of more than about $+1 \cdot 2 \mathrm{~V}$, the circuit is switched to the stereo mode, whilst at voltages of less than about +1 V the circuit operates monaurally. If this mode switching facility is not required, pin 4 should be directly grounded.

The CA3090AQ provides a channel separation better than 25 dB , the typical value being about 40 dB . The 2 nd harmonic distortion in each of the outputs is some 0.2% typical, but higher order harmonics are less than 0.1% of the output amplitude.

The CA3090AQ is readily available from Arrow Electronics Ltd., Coptfold Road, Brentwood CM14 4BN,

Fig. 3: External circuitry required for the MC1310

Fig. 4: External circuitry for the National LM1310E
the current price being $£ 2.96$ including VAT, but 25 p is required for $\mathrm{p} \& \mathrm{p}$ on orders under $£ 5$.

The 1310 Types

The Motorola MC1310P first appeared on the market in 1972, but is now an "industry standard" type of device which is second sourced by many other manufacturers. For example, National Semiconductor market it as their LM1310, Signetics as the MC1310, RCA as their CA1310E, Texas Instruments as their SN76115N, Sprague as their ULN-2210 and Exar as their XR1310.

All of these devices can be used in the circuit shown in Fig. 3, although there may be minor differences between the various types, such as the exact supply voltage range over which they operate satisfactorily.

The circuit of Fig. 3 operates on very similar principles to that of Fig. 2, but the free-running frequency of the voltage controlled oscillator is set by the adjustment of VR1 instead of by the adjustment of the core of a coil. The adjustment can be made by connecting pin 10 to a frequency counter and adjusting VR1 with no input signal until the frequency at pin 10 is 19 kHz . The amplitude of the signal at pin 10 is about 3 V peak. However, it is usually far easier to adjust VR1 with a small stereo input signal so that it is set at about the centre of the range over which the light emitting diode D1 remains illuminated.

The value of the capacitor employed between pins 8 and 9 determines the stereo-monaural mode switching delay. The time constant for this switching is equal to the value of this capacitor multiplied by about $53 \mathrm{k} \Omega$. If pin 8 is connected to ground, the circuit will operate only in the monaural mode.

The capture range in the circuit of Fig. 3 is less than that in the case of the CA3090AQ, being typically about $\pm 3 \%$. However, it can be increased by reducing the capacitance between pin 14 and ground and increasing the resistors in parallel with this capacitor in proportion; nevertheless, care must be taken to ensure these changes do not result in increased beat note distortion at high signal levels due to oscillator phase jitter.

The MC1310P is available from Arrow Electronics Ltd., at $£ 3 \cdot 14$ including VAT.

Emitter Follower Outputs

A number of other devices, such as the National Semiconductor LM1310E, are available in 16 pin dual-inline packages. They are similar to the MC1310P, but include an emitter follower in each output circuit to provide low impedance outputs. A circuit for the use of the LM1310E is shown in Fig. 4. It can be seen that the deemphasis components in the pin 3 and pin 6 circuits are not connected to the output pins themselves, but rather in the base circuits of the internal emitter followers. In general the remarks made about the MC1310P also apply to the versions with emitter followers (with a change of pin number), but the emitter follower device circuits will not be discussed further, as they have been largely replaced by a rather better device.

The industry standard Types LM1800, CA758E, SN76116N, MC1311, $\mu \mathrm{A} 758$ and ULN- 2244 are similar to the LM1310E, but in addition to their emitter follower outputs, they incorporate a circuit which provides some 45 dB of power supply ripple rejection. In other words, they can give the lowest possible hum level. These devices are encapsulated in 16 pin dual-in-line packages and can be used in the circuit of Fig. 4. They are adjusted in the way already described and the remarks about the 1310 type of device also apply to these devices except for pin number changes.

It should be noted that the total harmonic distortion from devices of this type increases with increasing input signal level, as shown in Fig. 5. However, a low signal level will give rise to a poor signal-to-noise ratio. A suitable compromise between distortion level and signal-to-noise ratio must therefore be reached. The output typically consists of the wanted signal plus a second harmonic component at -52 dB down together with a 19 kHz pilot tone at -37 dB down, the 38 kHz suppressed carrier at -40 dB down and the sidebands of this sub-carrier at about -28 dB down. The channel separation in dB at

Fig. 5: Relationship between total harmonic distortion and input signal level

Fig. 6: Channel separation plotted against input signal level
various levels is shown in Fig. 6 for a typical device of this type.

The Sprague ULN-2244 device is available from Phoenix Electronics Ltd., 139 Havant Road, Drayton, Portsmouth PO6 2AA at $£ 3.38$ (including VAT) plus 20p $\mathrm{p} \& \mathrm{p}$ at the time of writing.

The TDA1005

The Mullard/Signetics TDA1005 phase-locked loop stereo decoder device has been designed so that it can provide an output which is very low in unwanted signal levels. The device was originally designed for use with an

Fig. 7: External circuitry for the TDA1005 in the frequency multiplex mode

Fig. 8: External circuitry for the TDA1005 operating in the time multiplex mode
inductor in a frequency multiplex decoder, but can also be used without any inductor in the so-called time multiplex circuit. Typical circuits of these types are shown in Figs. 7 and 8 respectively.

CONTINUED NEXT MONTH

Fig. 5: Now museum pieces, the R1155/T1154 stands proudly in the centre with three sets from the Heinkel 111 on the left and a piece of wartime RADAR on the right
called the National Wireless Register, and readers were invited to complete the form so that they might be classified into technical groups which would be useful to the authorities, and avoid the real danger that the ability of wireless men might be lost through individuals being hastily drafted into non-wireless categories.

The form itself states: "During the Great War the needs of the Services for operators were largely met, especially during the early stages, by the voluntary enlistment of trained Post Office operators, but as Morse is no longer used in the Post Office, this possible source of supply is rapidly dwindling. It is therefore imperative that all our readers who have at least a good working knowledge of Morse, or have other qualifications such as ability to service and repair wireless and electrical apparatus, should apply to help fill the vacancies which now exist in the RNV(W)R, the Royal Corps of Signals, TA, and the RAFCWR."

Less than a year later, Great Britain was at war and in the early days a party of 55 ex-Civilian Wireless Reservists went to the Maginot Line and were christened the "Early Birds" by the amateur radio fraternity. According to the RSGB journal, September, 1942, some 2500 of their members had joined the forces. By the end of the war, thousands of people from the radio fraternity had served their Country in one of the many branches of radio communications in the armed forces. Ex-service personnel still talk with affection about such famous pieces of equipment as the Army's Wireless Sets, Nos 18, 19, 38 and 46, the Navy's CR100, the RAF's R1155/T1154 combination, the AR88 and the B2 and MCR-1 Clandestine sets, all of which are now collectors' items and stand silent in various museums representing a period of time when Wireless and thousands of its enthusiasts went to war.

ACKNOWLEDGMENTS

We are indebted to the Editor of Wireless World for permission to reproduce Fig. 4 and other extracts from that journal, and to the RSGB for permission to quote from the $T \& R$ Bulletin.
The sets in the photographs are from the author's collection and are on display at The Chalk, Pits Museum, Houghton, Sussex.

BARGAIN BUYS \star
 Alprices $\begin{aligned} & \text { Alctude } \\ & \text { VAT } \\ & \text { add } 25 \text { posost }\end{aligned}$ from 443 B Millbrook Road Southampton SO 1 OHX add 25p post
 Tel: (0703) 772501/783740

SN76110 Stereo decoder 75p; 25/£15
100/£45.
BC184 Preformed for TO5 spacing 100/£4.50 1000/£30.
BC2 13 L straight leads $100 / \mathbf{1 0 5} 1000 / \mathbf{\$ 3 3}$. 2N5060 O.8A SCA 30V. Ig 200uA 10/£2 100/£15 1000/£120.
$1 N 4148$, bandoliered $1000 / £ 15$ $2500 / £ 3210,000 / \mathbf{£ 9 0}$. Loose, boxes of $10 \mathrm{k} / \mathrm{E75}$.
741 8DIL $10 / £ 1.80100 / £ 14.50$. 555 8DIL $10 /$ /\&2.40 $100 / £ 19.50$. 1N4003 100/£2.90 1000/£24. 1N4007 100/£4-90 1000/£44. Electralytics: 10 u 40 V PC mntg $\mathbf{2 5 / £ 1 . 2 5}$ $100 / £ 3: 4 \cdot 7 \mathrm{u} / 63 \mathrm{~V}$ V.PC mntg. $1 \mathrm{u} / 63 \mathrm{~V}$ H. PC mntg same price.
$1250 \mathrm{u} / 25 \mathrm{~V}$ can $10 / \mathrm{f1} .60100 / \mathrm{f10}$. $1500 \mathrm{u} / 40 \mathrm{~V}$ can 10/£2.20100/£15 $800 \mathrm{u} / 250 \mathrm{~V}$ can $10 / \mathbf{£ 5} .50100 / \mathbf{4} 44$
$400 \mathrm{u} / 400 \mathrm{~V}$ can $10 / \mathbf{~} 100 / \mathbf{5} 56$ $400 \mathrm{u} / 400 \mathrm{~V}$ can $10 / £ 8100 / £ 56$. $200 \mathrm{u} / 350 \mathrm{~V} \cdot 100+100+50 / 300 \mathrm{~V}$ (all in one cant $10 / £ 5100 / £ 36$.
Pots $-10 k$ lin std bush $\& ~$
Pots - 10k lin std bush \& spindle $1^{\prime \prime}$ long 10/£1 100/£7.50 1000/£50.
Slider 1.8 k lin 60 mm long prices as above. Dual 100 k lin PC or chassis mntg, min type $18 \times 13 \times 17 \mathrm{~mm} 0.125^{\prime \prime}$ spindle sup-
plied with smart knob $40 \mathrm{p} 10 / \mathrm{E3.50} 100 /$ plied with smart knob 40p $10 / \mathbf{£ 3} \cdot 50100 /$
$\mathbf{£ 3 0}$.
Compression trimmer, $10-100 \mathrm{pF} 10$ for £1-20 100/£8.50.
Resistors - $\frac{1}{4} \mathrm{~W} 5 \%$ carbon film, these values only: 220R 470R $1 \mathrm{k} 3 \mathrm{~kg} \mathrm{4k733k}$ 47 k 220 k 18R. All $1000 / \mathbf{£ 4}$ (min qt

NIXIE TUBES

ITT type GNP7AH. Supplied with data $\mathbf{6 0 p}$ each.
7 -seg display, wire ended tube NEC type LD80 $12 \frac{1}{\frac{1}{2} "}$ high. with data 65p. 7-seg display, (as above) Futaba type DG $10010 \cdot 3^{\prime \prime}$ char. 70p with data.

Audible Warning device - solid state circuit drives high efficiency transducer to give high output. Voltage req'd 6-18V. Can also be driven direct from TTL or CMOS. Module size $45 \times 21 \times 12 \mathrm{~mm}$. Comprehensive data supplied $£ 1 \cdot 20$. Vu meters -2 meters $40 \times 40 \mathrm{~mm}+$ driver board supplied with full data and circuit $\mathbf{E 3} \mathbf{5 0}$.

OSCILLOSCOPES

We have available from stock the following SCOPEX models: 4D10A - DC-10MHz; 10 mV sensitivity: Srab Power supplies, Dual beant ${ }^{2} 14$ accuracy. Excellent value at $£ 214$ inc VAT and Carr.
$4 S 6-\mathrm{DC}-6 \mathrm{MHz}: 10 \mathrm{mV}$ sensitivity: Ideal portable scope. Solid state circuitry. All for $£ 150$ inc VAT and Carr.

RESISTOR PACK

Carbon Film 5% mostly $\frac{1}{4} \mathrm{~W}$, tew $\frac{1}{2} \mathrm{~W}$
resistors. Brand new, but have preformed leads. ideal for PC mntg. Wide range of mixed popular values ot the unrepeatable price of $\mathbf{£ 2} \mathbf{5 0}$ per 1000 : $\mathbf{£ 1 1}$ per 5000 .

1979 CATALOGUE

64 big pages with 50p discount vouchers + qty prices for bulk buyers + reply paid envelope-Ali this for just $\mathbf{4 5 p}$ inc. post.

Relays, push button banks and variable caps, Switches, component packs etc, etc,
ail in our latest Bargain List - send SAE for your free copy.

Prices in this ad include VAT and are vatid until 30.4 .79 Add 25p UK/BFPO postage We buy surplus electronic components for cash.

Meet 'Uncle Tom' He's on your wayelength.

BUY BY POST OR CALL IN

For speedy delivery on your SRX-30, please send cheque/P.O. made out to Leeds Amateur Radio for $£ 178.00$ which includes $£ 3.00$ carriage and packing. We will deal with your order by return.
Alternatively, call in for a chat at 'Uncle Tom's Cabin'. The shop is just 10
minutes from Leeds City Station, and there's easy parking if you travel by car.
OInstant H.P. for Licenced Amateurs.OExtended Credit Terms
Available. Send 50 p for Catalogué and Price List.

LOWE TRIO DISTRIBUTOR

Leeds Amateur Radio are area distributors for Jay Beams, Antenna speciatists and Hilomast products.

EIEGTROULIUE

FOR A GOOD DEAL BETTER THAN MOST

WE PAY. POSTAGE on C.W.O. orders in U.K. over $£ 5.00$ list value. If under, add $27 p$ handling charge.
WE GIVE DISCOUNTS on U.K. C.W.O. orders- -5% for list value over $£ 10.00 ; 10 \%$ for list value over $£ 25.00$.
WE GUARANTEE all goods are brand new, clean and to specification-ino seconds, no surplus.
We Give Service to all orders large or small-to help we microfilm orders, use computer processing and double check all orders by personal supervision. EIEGTROVILLUABLES

Specialist Mail Order Since 1964
overstock items offered from time to
Electrovaluables'
NET AND
Electrovaluatly reduced prices: as advertised. PRICES and
 Integrated Circuits
16p, 7480 25p.
30p,
 $7499055 p^{2} 709$ (metal) $7442761 A 45$ TAA9910
Transistors
$2 N 4906$ f4, $A C Y$ 30p AD161 10 for 55 . $\mathrm{BC183}, \mathrm{BC238C}$, $\mathrm{BC} 157 \mathrm{~A}, \mathrm{BCT}$ any 10 for 60 p.
$\mathrm{BC} 328, \mathrm{BC338}$ any 10 for 80 p .
 BD130 BF195 any 10 for £4. Br $93.0 C 84$
Diodes
DA116, AA117, AA118, Diodes
AA113, AA116, AA1117, AA118,
any 10 for $60 p$ 8A133F any Recrifiar diodes any 10 for $80 p$ B0680 Bridge rectifiers
Big06
5 for
$£ 1.20$

$$
\begin{aligned}
& \text { Bridge reck } \\
& \text { B } 1906 \\
& \text { Thyristors } \\
& \text { B0 } 40.8026 \text { any } 5 \text { for } \mathbf{£ 1 . 2 5}
\end{aligned}
$$ B0140. B02. 26 any potanton track potentiometers $\mathrm{OR} 1 \mathrm{M} \log$

$\mathrm{P} 20:+$ switch $470 \mathrm{~g} \quad 4$ for $£ 1$

$$
\begin{aligned}
& 100 \mathrm{~K} \log , 2 \mathrm{M} / \log _{4} \text { for } \mathrm{f} 1 \\
& 1 \mathrm{M} \text { log, rev } \log _{4} \text { short- } \\
& \text { sor } \mathrm{findle}:
\end{aligned}
$$

$\begin{array}{ll}\text { spindle: } & 4 \text { for } \mathbf{E 1} \\ 8 \text {, slides, }\end{array}$
PG58, slides, 1 M in, $10 \mathrm{~K} \log _{1}, 47 \mathrm{~K}$
$\log _{\text {log }} 1 \mathbf{W l o g}$ log 6 for ft
potentiometers wire wound
Colvern $905 \mathrm{C} ; 15 \mathrm{~K}, 50 \mathrm{~K}$: any $2: \mathbf{f 1}$
$5 \mathrm{~K}, 15 \mathrm{~K}, 25 \mathrm{~K}$
RR15 presets 427 K 470 K
PR15 presets $2 K 2,47 K, 470 K$,
Horiz: $220,1 K, 2$ any 10 for 40p Horiz:
4 M 7
PR140 Presets 100 Kvert
10 M noriz, 10 for 60p pleseay MpWr moulded track Plessey MPWV $220,47 \mathrm{~K} .22 \mathrm{~K}, 1 \mathrm{M}$
$47 \Omega, 2$ any 4 for E Magneto resistor 5 for $\mathbf{£ 2 . 5 0}$ FP30L100E

$$
\begin{aligned}
& \text { Magneto } \\
& \text { FP30 Lio0 } \\
& \text { Thermistors } 500 \Omega \text { disc } 5 \text { for 40p }
\end{aligned}
$$

WE ARE NATIONAL DISTRIBUTORS FOR

Tom Beaumont - a radio enthusiast for 25 years - sells radio equipment for love! And he particularly loves Lowe - Trio for qualíty, value and reliability.

Tom is the sole authorised Lowe - Trio distributor he offers and North East England, and sales the best before-ano-afteron units like the

THE LOWE SRX-30
All the facilities of a top-class communications receiver in one top-quality, economically priced unit. Covers 500 KHz to 30 MHz with excellent dial readout and re-set accuracy. AM, CW, SSB reception. The SRX-30 is equally at home in broadcast or amateu bands.

Other features include RF gain, fine tuning selectable sidebands, built-in loudspeaker, AC mains or 12 V DC operation and

Leeds Amateur Radio, 27 Cookridge Street, Leeds 2, West Yorkshire Tel. Leeds 452657.
 Full ranges stocked including an

MICROPROCESSOR MOTOROLA 0.2 EVALUATION Microcomputer- \quad V.A.T. Ifor the M. 680

Two depots to serve you One North; Ona South
All communications, orders etc., to Englefieid Green address, Dept: PW4.
ELECTROVALUE LTD
28, ST. JUDES ROAD, ENGLEFIELD GREEN,
EGHAM, SURREY TW20 OHB
Telephone Egham 3603 Teiex 264475
Northern Branch'- 680, BURNAGE LANE,
BURNAGE, MANCHESTER M19 1NA(061)432 4945 Shop hours 9-5.30: 1.00 pm Sat.

D.WHITFIELD \& M.TOOLEY

This multitester was originally evolved as a constructional project for members of the UK F.M. Group in London, where several such instruments were very successfully built. Together with a suitable wavemeter, it forms the basic test equipment necessary to carry out performance checks on frequency-modulated v.h.f. equipment and meets Home Office requirements in this respect.

The majority of people owning commercial apparatus will possess basic test equipment but are unlikely to have the sophistication of r.f. power meters, deviation meters and so on. The unit to be described was developed as a means of carrying out rapid assessments of performance and offers an accuracy, after initial calibration, which is quite adequate for amateur use.

Receiver check, crystal test, power output (1W and 10 W) and frequency deviation are the four functions provided, together with a battery status indication. The instrument and battery pack is built into a small, diecast box, which makes it rugged and readily portable.

Functions

Function 1 selects the crystal oscillator, which puts out a low-level signal on a pre-determined frequency within the 2 m band. The choice of crystal is left to the constructor but perhaps the most useful channel to use would be S20 $(145.500 \mathrm{MHz})$, the UK calling frequency.
The oscillator operates at the fundamental frequency of the crystal - which falls in the 8 MHz range - the output frequency being achieved by a stage of multiplication. The facility may be used for checking receiver gain, S-meter calibration and alignment.

Function 2 provides a crystal test, and devices within the range $4-24 \mathrm{MHz}$ may be checked for performance. The internal crystal is removed and that to be tested plugged into its socket. If the constructor foresees regular use of this facility, it may be worthwhile bringing the socket to the outside of the unit - possibly putting several different types in parallel.

The measurement of r.f. power, to a maximum of 1 watt, may be carried out using Function 3 and the internal 50Ω dummy load, at a typical v.s.w.r. of $1 \cdot 1: 1$. Although the power scales are non-linear, it is possible to draw up a calibration chart for the instrument by reference to a commercial power meter.

Measurements of up to 10 watts may be made by selecting Function 4. The internal dummy load will handle these levels only for a short period however - typically 30 seconds.

Function 5 measures the deviation of an f.m. signal on a pre-calibrated scale of $0-10 \mathrm{kHz}$. The signal applied should be at a power level of between 500 mW and 10 W and must be of the same frequency as that used for the receiver check (Function 1).

A check on the carrier frequency is also possible using Function 5 . If the internal oscillator is accurately adjusted by means of a frequency meter or against a communications receiver with crystal calibrator, the meter will

Table 1

Fig. 1: Circuit of the Multitester
indicate a standing reading corresponding to the error, ir kilohertz. For example, a reading of 4 in the absence of modulation would indicate that the transmitter is 4 kHz off channel. Hence, the instrument can be used for checking both the receive and transmit frequencies once correctly calibrated.

The final function serves to test the internal batteries. Here the meter operates as a voltmeter with a full-scale deflection of 20 volts.

Circuit Description

Transistor Trl functions as a conventional Colpitt's oscillator, the frequency being adjusted by trimmer TC1, whilst Tr 2 acts as a multiplier and amplifier, the diode D7 improving the harmonic content of the signal at its base.

With suitable crystals, Tr 1 will readily oscillate at any frequency between 4 and 24 MHz . However, the circuit is optimised for operation at 8 MHz and when a crystal for

Fig. 2: Layout of the p.c.b. (shown full-size)

Fig. 3: Component layout
this frequency is used $(8.08333 \mathrm{MHz}$ for 145.5 MHz , for instance), Tr 2 multiplies 18 times, L1, together with the stray and internal capacitance of Tr 2 , resonating at approximately $145 \cdot 000 \mathrm{MHz}$.

The integrated circuit IC1 is arranged to operate as a very high gain audio-frequency amplifier and requires only a very small input voltage to achieve full limiting of its output. This means that a small sine-wave input is converted to a 6 volt peak square-wave output of the same frequency. Diodes D4 and D5, together with C12, form a charge-pump arrangement. Thus, the current through VR3 and the meter will depend on the frequency of the signal applied to IC1 and not on its amplitude. The relationship between the input signal frequency at C 7 and the meter current is substantially linear.

Potentiometer VR3 is used to calibrate the instrument. Diode D6 acts as a simple, but effective, mixer, the output of which passes through an r.f. filter formed by L2 and C6 and is the frequency difference between the output signal at Tr2 and the input from SK1. This is subsequently passed to IC1 and the circuit previously described. The diodes D1 and D2 form a limiting circuit to prevent the input to the mixer diode (D6) from exceeding 1.2 volts peak-
to-peak whilst D3 is used to sense the r.f. at SK1 for the power ranges, the calibration being by adjustment of VR1 and VR2.

Construction

In order to ensure the circuit operates satisfactorily, it is essential to closely follow the recommended layout. Newcomers to the construction of v.h.f. and u.h.f. equipment take heed that conventional wiring techniques will introduce stray reactance which will adversely affect the ultimate performance. Hencè̀ component leads must be as short as possible, the neatness of the wiring being a secondary consideration.

Most of the devices are mounted on a p.c.b., the remainder being fixed on the lid of the box. Ferrite beads provide the necessary r.f. decoupling, and these may be rigidly mounted by the application of a small amount of adhesive.

The dummy load resistors (R1-R4) are positioned on the screen and as close to SK1 as possible. In use, these are likely to become fairly warm, so the screen will also double as a heatsink. The free length of the resistor leads should not exceed 5 mm for minimum v.s.w.r.

The full circuit of the multitester is shown in Fig. 1 and the p.c.b. details and component layout in Figs. 2 and 3. It should be noted that many devices are vertically mounted and this should be borne in mind when shopping!

The inductor L1 consists of $3 \frac{1}{2}$ turns of 20 s.w.g. enamelled copper wire, wound on a 4 mm diameter ferritedust core. It is self-supporting and after initial adjustment should be secured with wax. Chokes L2 and L3 are each made from 6 turns of 36 s.w.g. enamelled copper wire, wound on a ferrite bead. Note the capacitor C23, which is mounted below the p.c.b. between the "hot" end of crystal X 1 and the junction of R12 and R13.

Holes marked:- $A=3.2 \mathrm{~mm}$ Dia.
All dimensions in mm
$B=6.5 \mathrm{~mm} \mathrm{Dia}$.
$C=2.5 \mathrm{~mm}$ Dia.
WAD292

$$
\mathrm{D}=4.0 \mathrm{~mm} \text { Dia. }
$$

Fig. 4: Drilling details for the box lid

Fig. 5: Construction of the tinplate screen

Testing and Calibration

Make a thorough visual examination of the p.c.b. when the assembly has been completed, paying particular attention to the polarity of components and soldering. Assuming all seems correct, connect the batteries and switch on, setting the function switch to "Battery Check". The meter should indicate " 6 " - corresponding to 12 volts - and the l.e.d. should illuminate.

Now set the function switch to "Crystal Test" and observe the meter reading: if the oscillator is working then some indication should be present. Adjust VC1 for max-

Internal view of the unit, showing arrangement of dummy load resistors

* components

2W High stab. carbon

180Ω	$2 \quad R 2,4$
2200	$2 \quad R 1,3$

Semiconductors
Transistors
BC109 $2: T r 1,2$
Integrated circuit
741 IC1 (Mini-dip type)
Diodes
$1 N 4148 \quad 3 \quad$ D1, 2,7
OA90 $\because 4$ D3, 4,5,6
LED 1 D8 (Red)
Crystal
Within 8 MHz range (see text), HC25 series 8.08333 MHz for $520(145.500 \mathrm{MHz})$ from P. . Golledge Electronics, Merriott, Somerset TA16 5NS

Sockets

50Ω BNC
HC25
2 SK1, 2

1. SK3 Crystal Holder (P. R. Golledge Electronics)

Switches
S1
S2 $\quad 1 \quad 2$-pole, 6 -way rotary

Potentiometers

Miniature skeleton pre-set, horizontal mtg
47 kR
$100 \mathrm{k} \Omega$
$220 \mathrm{k} \Omega$

Capacitors
Siver Mica

2.2 pF	2	$\mathrm{C} 1,2$
10 pF	1	$\mathrm{C5}$
Polystyrene		
68 pF	2	$\mathrm{C} 19,23$
100 pF	2	$\mathrm{C4} 20$
330 pF	2	C 13.14

Miniature disc ceramic

$1 n \mathrm{~F}$	8	$\mathrm{C3}, 6,8,11,15,17,18,21$
10 nF	2	$\mathrm{C7}, 12$
100 nF	2	$\mathrm{C} 10,16$
Electrolytic 16 V axial feads		
$1 \mu \mathrm{~F}$	1	$\mathrm{C9}$
$22 \mu \mathrm{~F}$	1	C 22

Timmer. Single turn miniature ceramic 2-22pF 1 VCl

Miscellaneous

$100 \mu \mathrm{~A}$ meter, edgewise-reading. RS type 259-561. Diecast box $171 \times 121 \times 55 \mathrm{~mm}$. Ferrite beads (14 off). Battery cradle (2) to accommodate $4 \times$ HP7-type cells. Pointer knob (Sifam). Feed-through insulators (3). 25 mm stand-off pillars for mounting p.c.b. (4). Piece of tinplate approx. $100 \times 60 \mathrm{~mm} \times 20 \mathrm{~s} w . \mathrm{g}$. Printed circuit board.
imum deflection. Connect a receiver (or transceiver) to SK2 "Receiver Test" and tune to the test channel frequency. Peak L1, with reference to the meter, adjusting VC1 also to obtain the best indication possible. If you are fortunate enough to have access to a reliable digital frequency meter, swing VC1 to the correct fundamental frequency, as measured at the emitter of $\operatorname{Tr} 2$. This completes the oscillator and multiplier alignment for functions 1 and 2.

Switch to the 1 watt r.f. function and set VR1 and VR2 to mid-position. Using a variable power supply, inject 4.6 volts at point "J" on the p.c.b. and adjust VR1 for a fullscale deflection on the meter. Now select the 10 watt r.f.
power function and inject 14.6 volts at point " J "; adjust VR2 for a full-scale reading. If a commercial power meter, such as the Antenna Specialists or Bird Throughline, is available, then the meter calibration may be very accurately carried out and a chart drawn up.

Finally, select the deviation function and apply a signal of between 0.5 and 1 volt r.m.s. at a frequency of 10 kHz (sine or square wave) to pin 2 of IC1, via a 10 nF capacitor. Adjust VR3 for full-scale deflection of the meter.

The alignment and calibration is now complete. Typical voltages are given in Table 1 to facilitate troubleshooting should problems subsequently arise, but in practice, little difficulty should be experienced with the instrument.

Sir: I agree entirely with Mr Goodier's letter. A lot of what people consider to be progress in this world is anything but. I think it must be because people don't hear what they don't like!

G. M. Pheasant
 Great Wyrley
 Walsall

Sir: I am an ardent supporter of CB, and unlike the majority of its critics, I have had five years of operating on a Citizen's Band in a more enlightened country, where I learned the true value of low-power radio communications for the general public.

I wonder why Mr Goodier singles out hikers and climbers? There are numerous situations where two-way radio could be a lifesaver. Yes, hikers would benefit-how many times do we hear of mountain and moorland rescue teams being called out each winter? But what about the owners of small boats that do not warrant a marine-band ship-to-shore radio? I think it fair to say that the lifeboat service would have been spared many hours of searching if small fishing boats and yachts had the right to carry a CB radio. What about the everyday motorist, broken down on the motorway or involved in an accident-both situations where CB would be of immense value? There are, of course, emergency telephones to cover these eventualities, but how often does one find these out of order due to vandalism? I think these points must surely form the basis of a good argument in favour of a UK Citizen's Band.

I am not so naive as to believe the band would be full of do-gooders permanently listening and waiting for emergencies. I am sure it would suffer misuse and abuse, but I think you will agree that there are very few aspects of modern life that are not abused by someone, somewhere. I can say in all honesty, that during my five years of operating CB, I encountered only a very small number of cases of illegal operating, such as the use of high-power r.f. amplifiers and v.f.o.s, etc.

I will agree with those who say the 27 MHz band is in some ways unsuitable due to the ease of DXing when conditions open up. Although this would contravene the terms of the licence, I feel it much less likely to offend the listener than the fiasco on GB3LO and other repeaters. I would like to see a portion of the v.h.f. spectrum opened up to CB, but to be practical I think the 27 MHz band would have to be accepted, as there is an unlimited amount of good-quality equipment already available at very modest prices.

I believe many people, especially some of my fellow amateurs, are being very guarded about this issue, but this is hardly surprising when Mr Goodier suggests using part of the amateur 2 m band. There is no connection between CB and amateur radio-they are worlds apart and will always remain that way.

The suggestion of a novices' band is excellent. I have spent many enjoyable hours working slow c.w. and giving American novices some overseas contacts, and it is towards the United States that we must look when considering such a band.

I rather suspect Mr Goodier's motives to be somewhat personal, and I see them as an attempt to use 2 metres without taking the RAE. When his proposals are carefully studied, I believe they would benefit neither amateur radio nor a Citizen's Band service.

John M. Southall G4DMT
Somersham
Suffolk

Sir: Contrary to Mr Goodier's suggestion, $144 \cdot 5-145 \cdot 0 \mathrm{MHz}$ is not "A dead part of the 2 metre band". Many local nets use this section of the band, including the Norfolk-Lincolnshire nets, also it contains various beacons and the Dutch National (similar to RAYNET) frequencies. Why should the small amateur frequency allocations be cut up for a Citizen's Band, albeit in the guise of a novices' band?

It is quite simple these days to obtain an amateur licence without having to study Morse. Also to allow a free-for-all with 10 watts is just inviting interference problems. One watt would be more than adequate in any novices' band, but let it not be in the amateur frequency allocations, please.
D. G. Blake G3MWV

Cromer
Norfolk

New publication

Sir: I intend launching a new publication called Innovation News, initially as a newsletter, devoted to new designs, ideas, inventions, etc.

If anyone is interested in this idea, either as a subscriber or contributor, would they please contact me at the address below. An s.a.e. would be appreciated.

B. McAleer
59 Castledine Street
Loughborough
Leicestershire
LE11 2DX

Information Please

Sir: | would be glad to hear from readers with any knowledge of pulsed High Frequency as used in Medicine.
G. H. Anthony

17 Ledbury Road
Hereford
HR1 2SY

So You Want to Pass the RAE?

For details and coupon see page 78

by Eric Dowdeswel/ G4AR

Letters from readers on aerial matters are very common, but reveal a certain misunderstanding on the results to be expected with simple half-wave dipoles. Such an aerial is usually cut to length using the formula $468 /$ frequency (MHz) giving the answer in feet. It is sufficient to take the middle of the band concerned rather than a specific frequency. On 20 m for example, take 14200 kHz , giving $468 / 14 \cdot 2=33 \mathrm{ft}$ approximately.

This length of wire is then cut in half and fed in the centre with low-impedance feeder, preferably 75 ohm , which is led to the receiver. Some readers seem to think that this aerial will virtually eliminate all signals except those on 20 m ! Such an aerial is similar in electrical characteristics to a simple tuned circuit which has quite a broad selectivity curve, so it will still work, albeit with decreasing efficiency, from 10 m to 160 m , peaking on 20 m . On the transmitting side one would not use a half-wave dipole on other than its design frequency, except perhaps on its third harmonic (a 7 MHz aerial on 21 MHz) but that is another matter.

I feel that it is rather pointless using an aerial designed for one band with a multi-band receiver. Much better to use a dipole, say 66 ft , centre-fed with open wire tuned feeder and an a.t.u. to give optimum performance on all bands. Details with possible feeder lengths can be found in most aerial handbooks. The end-fed version, known as the "Zepp", was one of the first aerials ever designed and can be very useful in certain locations.

I am surprised that readers do not progress to simple wire element beams from end-fed wires, as they need not cost anything but can be made from copper wire obtained from old transformers, with bits of plastic strip for insulators. It seems to be thought that such beams will not work well unless the elements are nice and straight, precisely vertical or horizontal, as they appear in the books.

Nothing could be further from the truth, as the ends of elements may be drooped down and attached to such sundry supports as are available. Simple V-beams are very useful provided the legs are each at least a wavelength long, which is easily obtainable for say the 10 and 15 m bands. An a.t.u. will permit operation on other bands and
still retain some gain. The legs of the " V " can even go from the top of a pole down to ground level if no distant supports are available.

The thing is to try out various designs and to experiment, but always use an a.t.u. to bring the whole system to resonance. The experience obtained will come in very useful indeed when a transmitting licence is eventually obtained.

On the Bands

In spite of finding it a problem to stay awake Ian Marquis A9140 of Leigh-on-Sea, Essex, has managed to cover all bands and it is very obvious that the 80 m band is really waking up now with prefixes like EP2, JA, TU, ZL showing up in Ian's log, caught on his FRG-7 and "multiband Slim Jim". A new one on me and I await details with great curiosity! On 20m Ian found a nice one in VK9XW on Christmas Island, very appropriate!

A pleasant letter from G4HLN, Lawrence Bennett of Bristol, who finds working DX a lot less easy than just listening to it! He has a Heathkit HW32A on 20 m s.s.b. but is very keen on c.w. and would like to see some c.w. logs in this column. I agree, being a code nut, and as there must be plenty of readers studying code for their " A " licence how about some c.w. logs for a change?

Regular Bill Rendell from Truro, Cornwall, got very excited when he heard the "long path effect" on some OH stations on 20 m and even went to the trouble of calculating the distances involved, having done some navigation in the past. However, I feel that there was probably an intense aurora borealis at the time, reflecting signals from the Scandinavian area. The effect is better known on the v.h.f. bands, when best results are obtained if all concerned turn their beams to the north. On 80 m Bill logged CT2, KG4, TF, W0 and ZL4 for his first look at this band this season.

David Parker BRS 40420 got his hands on some shiny new sets at the Leicester, show but didn't feel too jealous when he got back to his HQ120X. I'd plump for that set any day OM! David found Jan Mayen on 20 m in the form of JX9WI for a rare one, plus ZD7SD on St. Helena.

General Notes

From Stokenchurch, Bucks, Peter Recklin BRS 40425 found the $P W$ series on the RAE to be easy reading compared to other books on the subject. Having organised the series, I feel rather good about his remarks. He, like many others, comments on the lack of interest shown by the RSGB in the "very beginners" and adds: "after all, that is where the new generation of radio amateurs will come from". Precisely! Peter had a go at an RAE course but found the pace too hot for the time he had available,
but I'm sure it was good experience. Peter has an FRG-7 modified with a Toko MFL455 filter, as per Radio Communication, August '78. Naturally enough, he finds reception of s.s.b. signals greatly improved.

Greg Duffy of East Kilbride, Glasgow, has been using a 15 m dipole on several bands and still managed to copy things like HR3, 9 N 1 and YN1 on 20 m on his FR50B. You may be interested in my opening few paragraphs, OM. From 23 Palace Avenue, Paignton, Devon, Tom Hillier writes to ask for advice on improving his ex-naval B40 receiver. There are plenty still around so if you think that you can help Tom, drop him a line direct.

With little time for DXing Dave Wyatt in Oswestry, Salop, found ZD9GH on Tristan da Cunha, with his BC348 and 90 ft long wire on 20 m . Good luck with the exams OM. Another seeking information is Jim Clow of 7 Montagu Road, Datchet, Berks, who has a Collins TCS10 set and no manual. "Complete stranger" Colin Price of Leuven in Belgium hails from Cambridge and is keen on taking the RAE with a view to getting an ON ticket, to keep in touch with home. Having just finished a postgraduate course, Colin acquired a Marconi Electra set plus an old 19 set and an a.t.u., so he's well on the way.

Through the kindness of a reader, Chris Mortlock of Brackley, Northants, acquired an R107 and, with the help of G3YMQ, is getting it up to scratch. Chris has been playing around with pins in maps to see what his aerial is doing on 80 m as far as directivity is concerned. A good idea but a world map must be one of the great circle type that gives true direction and distance. Other maps are useless for this purpose.

Newcomers

Following my odd notes offering guidance to those newly acquainted with amateur radio, I have heard from a couple of dozen readers who were obviously standing on the sidelines, just looking in, but a bit shy to write in case they should be thought to be "slow". As I've said before, we all have to start somewhere, whatever the hobby, and it is only commonsense to seek advice and no-one will think less of us for that. John Bull (Laughton-en-le-Morthen [lovely!] South Yorks) wanted the aerial chart to go with his new SRX30 (Lowe Electronics).

George Grzebieniak, London W4, is 14 and collects old radios but now favours amateur radio. He has a Realistic DX160 and inside long wire. Ian Scrimshaw of Grimsby has an AR88 now and wonders about an aerial for 160 m . Well, other than a specialised one, a long wire around 132 ft and a.t.u. is probably the best answer, with a good earth connection if at all possible.

Glasgow University lecturer in biochemistry Barry Clark BSc, PhD, AIMLS, did not hesitate to write in, having been interested in crystal sets and simple valve sets a few years ago, at school. He is about to buy a receiver and intends to go on for his ticket. London W3 is the QTH of Peter Smith who has a National DR2800 but didn't have much luck with an a.t.u. I don't know this set but it sounds as if the "very long wire" is the trouble, already causing intermodulation problems on strong signals, compounded by the a.t.u.

David Allsop started recently with a CR100 in Abingdon, Oxon, and logged ZD7SS on St Helena. An FR50B has been added, greatly improving reception, with a 60 ft wire. Heart attack victim Len Wilson of Scarborough wanted the aerial chart to go with his DX160 receiver and 60 ft of wire in his bungalow loft. He, quite rightly, reckons amateur radio is for him now that he has to take things easy. Raised in the RAF on the R1155, AR88 and the R1475, Jim Bence, now of Hamilton,

Lanarkshire, has returned to radio with an Elizabethan Pathfinder set with 12 bands running from long waves to 470 MHz , after 27 years, so not quite a newcomer!

Electronics technician Eric Hayes (Freckleton, Lancs) specialises in the repair of hi-fi gear but got the bug when a friend brought in a Trio QR666, and finished up buying the set! He's tried a 60 ft wire and a vertical in the loft but wants something better. He intends to go for the RAE in the near future and I don't imagine you will have much difficulty OM.

In Stanford-le-Hope, Essex, Alan Taylor has "hung up his football boots" and with family ties having cut out sailing, gliding and skiing, he has turned to amateur radio, realising that it will keep him at home! Having been a 25 w.p.m. operator in the RAF he is well on the way to his G4 ticket. Alan, you almost had me in tears! Lastly, but certainly not the least, 13-year-old Paul Burgess of Lowestoft, Suffolk, has started off with a Heathkit AR3 valve set, but is concerned that it does not have a variable b.f.o. as he is keen on c.w. Hooray. If anyone can help with a manual or info write to Paul at 3 Andrew Way. With letters from 15 "newcomers" this month it ought to produce a couple of new licences at least, in due course!

Club News

Stevenage and District ARS meet first and third Thursdays at British Aerospace, Gunnels Wood Road, Stevenage, Herts, at 8pm. Programme arranged to August which gives us poor reporters a chance to get items in print in due time. Wish other clubs would do likewise! April 5 sees G3AGP talking on the problems of mobile operators, with a junk sale on the 19th. Newcomers, don't despise a junk sale, you'll never get better bargains anywhere! Sec. Trevor Tugwell G8KMV at 11 The Dell, Stevenage, for more info.

Southdown ARS meets on first Monday of the month (ex-Bank Holidays) at Chaseley Home for Disabled, Bolsover Road, South Cliff, Eastbourne at 1930 hours. Cyril Minns G3YSZ has ascended to the presidency and Dave Morgan G4FDW now handles the society's Newsletter. Copy please! Cyril Collins G8SC, prog. sec. would like to hear from anyone able to give talks, lectures, etc. Contact Dick Jeffries G8KQN, 16 James Avenue, Herstmonceux, East Sussex.

West Kent ARS have G4BWH talking on the engineering involved in the recent BBC programme changes, on March 16. On the 30th Tony Tory lectures on microprocessors in amateur radio. Meetings at the Adult Education Centre, Monson Road, Tunbridge Wells at 8 pm , plus alternate Tuesdays at 8 pm , at the Drill Hall, Victoria Road. More info from Brian Castle G4DYF, 6 Pinewood Avenue, Sevenoaks, Kent.

Wessex AR Group (sec. ed. Geoff Cole G4EMN, 3a Cavendish Road, Bournemouth) has a very special meeting at the lecture theatre, Bournemouth School, East Way, at 7.30 pm on Friday March 16, when L. Moxon G6XN, aerial expert par excellence, will talk on Aerials and Propagation, Multi-banding of Aerials and Miniaturised Beams. Next day, on to skittles and social evening at the Moose Centre, Malmesbury Park Road, Bournemouth with special prizes for the ladies. Info on this from Archie Hoggan G8ASX on Bournemouth 427582.

Thames Valley ARTS are in for a treat when Dr. A. McGregor talks to them about Radio Astronomy on March 6 at usual meeting place, Giggs Hill Green Library, Thames Ditton. Meetings there first Tuesday every month. Contact R. Blasdell G3ZNW, 92 Bridge Road, Chessington, Surrey.

Remember, logs, letters by 15 th of the month and allow for strikes, delays and other tribulations!

Log Extracts

W. Rendell:- $\mathbf{8 0 m}$ CT2QN KG4W TF1AW W0MC ZL4KE 20m C5ABK EA8LS FK8CU (New Caledonia) JY5MC P29JS VK9XW 8P6IB 9Y4OV 15m C5ABK KZ5AS OX3WO 9J2TJ
L. Bennett G4HLN (worked):-20m C31OZ CT2AO FP0EE HC1BU J28BA OY81 PJ8CO YI1BGO
G. Duffy:-20m HR3JJ YN1CR 9N1MM 15 m FY7AWZ KZ5RO OX3GW SU1CR TI2JV VP9JO YS1FAF ZL1BD 8P6FX 9L1AB 6W8AR
R. Bell:-20m ZL4HB ZL4LZ
I. Marquis:- 160 m (c.w.) K1PBW W1BB/1 80 m CN8DO D4CBK EP2SL JA4BCW TU2FH ZL4KE 5B4HD 20 m JY9DI VK9XW 15m VS6HG XT2AV 10m FR7ZL HZ1SH SUIDP TR8GDC

All s.s.b. except where stated otherwise.

MEDIUM WAVE DX

by Charles Molloy G8BUS

A DXer in the Shetland Islands, Arthur Tate, writes to say that he has modified his m.w. loop to work on the long waves simply by fitting a fixed capacitor (no value given) in parallel with the loop's tuning capacitor. Arthur asks for comments about this arrangement which works very well with BBC Radio 4 on 200 kHz . Radio 4 incidentally, appears to have become semi-DX in the Shetlands since the great change around last November.

Modifying a Loop for the Long waves

The disadvantage of Arthur's method is the very restricted tuning range that is obtained. With my 40 inch loop, a parallel capacitor of 2000 pF tunes it to 300 kHz , but the tuning capacitor would only adjust the frequency through a range of about 20 kHz ! At the l.f. end of the band the situation is worse. A fixed capacitor of 6700 pF tuned the loop to 155 kHz , but this time the tuning control had little effect.

To cover the band, a capacitance range of 2500 pF to 7200 pF is required which is obviously impracticable. None-the-less, this method is of value if you want to tune the loop to a single frequency as Arthur did. Fitting "in parallel" means joining one wire of the fixed capacitor to one terminal of the tuning capacitor on the loop and joining the other end to the other terminal. No need to disconnect anything, you just bridge the fixed capacitor across the variable one.

A better method is to insert a fixed inductor in series with the loop's main winding. Disconnect one of the two wires to the tuning capacitor. Connect this wire to one end of the inductor and run a wire from the other end of the inductor to the tuning capacitor in place of the disconnected wire. You may have to put the inductor inside a metal box, which should be earthed, in order to prevent it acting as an
aerial. The inductor should have a value of about $2000 \mu \mathrm{H}$, i.e. 2 millihenries, and the loop should now tune over the long-wave band. The secondary winding of a long-wave tuning coil would have about the right value of inductance. If the loop will not tune to a low enough frequency then more inductance is required. If it will not tune high enough, then remove some turns from the inductor or use one of a lower value.

Long-wave Loops

Both of these methods of modifying a m.w. loop are at best a makeshift, but they do enable the DXer to try out the long waves without too much effort. Anyone seriously interested in DXing on this band should construct a 1.w. loop. It will certainly have greater pick-up than a modified m.w. loop. Pick-up is proportional to the number of turns and to the size of the loop. A 40 inch 1.w. loop will have about $3 \frac{1}{2}$ times the number of turns of a 40 inch m.w. loop, and therefore will have $3 \frac{1}{2}$ times the pick-up.

It is difficult to specify the exact number of turns that are required as the self-capacitance of such a winding will be high. For a 40 inch loop the number should lie between 22 and 28 , and if you start with the higher figure you can remove turns one at a time until the desired range is achieved. The type of wire to use is not important so long as it is insulated and rigid when wound. A 500 pF tuning capacitor or thereabouts, should be adequate as the frequency ratio (highest to lowest) on the l.w.s is approx $2: 1$ instead of 3:1 on the m.w.s.

Readers' Letters

An interesting letter from \mathbf{N}. Soar, who lives near Sheffield, and is the author of 50 Circuits using Germanium, Silicon and Zener Diodes published by Babani. He describes how to boost the performance of a transistor portable, by placing it close to a crystal set tuning coil which in turn is connected to an aerial. If the receiver is tuned to a weak signal and the crystal set coil is tuned to the same frequency, then the coil will feed extra signal to the receiver by induction which greatly improves reception. With this set-up he was able to pick up Radios Manchester, Blackburn and Nottingham. Reception was good enough to listen to the programmes.

This method will be of interest to DXers who use a transistor portable that does not have an aerial socket, and it works on the same principle as mounting the receiver on a shelf fixed to a m.w. loop as described in this column in the December 1978 issue. You can also boost the signal by wrapping the aerial lead round the receiver two or three times, but you will boost all stations not just the one you are tuned to and this may cause overloading. It does help on some occasions though.

The well-known R1155 receiver is in use by Chris Marcroft at Ramsbottom, who obtained one for $£ 3$ and modified it along the lines described in an article I wrote for the March 1967 issue of $P W$. When connected to a 130 ft long wire and a.t.u., this rig pulled in WINS on 1010 kHz , WNEW on 1130 and VOCM 690, CJYQ 930 which are located in New York City and St John's in Newfoundland. Chris prefers his long wire to a m.w. loop as the pick-up is much greater, which is what one would expect. If you have a long wire and a loop, then it is worthwhile fixing a switch so that you can try each aerial in turn, to see which gives the best results with any particular station.

Reader Andrew Roger is puzzled by the number of layers in the ionosphere and how they affect DXing. So far
as the medium and long waves are concerned, only the bottom two layers, the D and the E are of interest. The D layer, which absorbs l.f. signals, is maintained by the sun and disappears after dark to allow DX to be heard. The E layer, which also is created by the sun, does not disappear entirely after dark and this is the layer that reflects the DX on the medium and long waves. In mid-winter the D layer may only appear around mid-day and consequently some DX can be heard at times during daylight hours of winter mornings and afternoons.

DX Heard

Our long-wave DXer Andrew Roger of Bristol reports hearing the USSR 1 st programme on 173 kHz , Tebessa Algeria on 251 kHz , Lahti in Finland on 254, an unidentified station behind Czechoslovakia on 271 (Novosibirsk Siberia?) and Minsk on 281. Reception was during the evening, using a Vega Spidola with internal aerial, and Andrew draws attention to the English programme from Tebessa which is on 251 kHz daily from 2000 to 2030.

Some Spanish DX comes from Bob Bell (Blyth) who used his Yaesu Musen FRG-7 and 20 inch mini-loop to pull in Seville on 683 kHz , Malaga 729, San Sebastian 774, Seville? on 792, Murcia 1179 and La Linea on 1314. Spanish stations have been conspicuous since last November, but there has been quite a shuffling about of frequencies and you have to listen for the identification to be certain.

Chris Mancroft asks about Radio Beacons on the medium waves and he reports hearing "MW" in Morse on 1008 kHz and "RO" on 1012, which appear to be at their strongest when DX conditions to North America are good. The medium waves are supposed to be used exclusively for broadcasting, though in practice some radio beacons are to be found within the band below 800 kHz . It has also been the practice in some countries to leave their m.w. transmitters on the air after the programmes finish and to key the transmitter with some sort of identification. Sottens in Switzerland, now on 765 kHz , used to transmit "SOT" during the night, though whether this was for navigation purposes or just to keep the frequency occupied and deter intruders, was not clear. Morse signals on the medium waves are very likely the harmonics of long-wave radio beacons. Such beacons would be of considerable value to the DXer if their locations were known as they could be used as a guide to propagation. Unfortunately it is not too easy ${ }^{+} J$ track down many of them.

SHORT-WAVE BROADCASTS

by Charles Molloy G8BUS

Readers often comment on the current state of the shortwave bands which are dominated by high-power broadcasts of political propaganda and jamming. T. W. G. Eltenham complains that smaller countries do not get a look-in, while George Rose comments on the increasing number of harmonics observed on the higher frequencies, caused no doubt by a combination of super-power trans-
mitters and beam antennas. In my opinion it is an absolute waste of time to write to the offenders, who have no interest in DXers or in the hobbyist s.w. listener, but there are several things that can be done to get round the problem. After all, if DXing were all that easy then it would cease to be attractive!

When to Listen

Not every band is dominated by high-power broadcasts all of the time. Generally speaking the higher frequencies are in use during the day and lower ones at night, but there is DX to be found when the bands are quiet. Latin Americans for example, are on the 19 m and 25 m bands during the late evening as the path to that area is still open then. Mixed paths of daylight and darkness can also produce signals on unexpected frequencies, usually at the middle of the spectrum. Low frequencies can yield interesting catches during the day.

Out of Band Stations

As a result of overcrowding there is an unofficial spreadout, up to 100 kHz beyond the limits of each s.w. band. Some of the late arrivals to international broadcasting are to be found here. Typical is Kuwait on 12085 kHz which is outside the h.f. limit of the 25 m band. This station has European-style programming and is widely reported. Countries to be found around the edges of the $49 \mathrm{~m}, 41 \mathrm{~m}, 31 \mathrm{~m}, 25 \mathrm{~m}$ and 19 m bands are Israel, Andorra, Egypt, Iran, Pakistan, Vietnam, Saudi Arabia, India, Bangladesh, Austria and Guinea, so that it is always worthwhile tuning near the upper and lower limits of each band and investigating weak signals.

Another area where interesting DX is to be found is in the spaces between the international bands, though telegraph QRM can be troublesome. Israel broadcasts its domestic service on approx 9020 kHz , which is well away from the 31 m band. Out-of-band transmissions appear to be used mainly for domestic broadcasting, particularly by China but also by India, Iran, Israel, Mongolia, Korea, Turkey and on the l.f. side of the 49 m band by Peru, Indonesia, Bolivia and Honduras. Always check a weak signal as real DX seldom comes roaring in.

The B40 Receiver

Many thanks to $P W$ readers G. A. Cartwright, John Markey, D. Porter and Bill Hentall, for responding to Roderick William's request in the January issue for suggestions for a suitable replacement for the output valve in his B40 wartime communications receiver. The B40 was used by the Navy and although bulky and heavy it is quite presentable in appearance. It has its own speaker and can be plugged straight into the mains and used without modification. It is the only set I have come across that has an anti-crossmodulation control which works by adjusting the bias to the control grid of the first r.f. valve. There were a number of variants of the B40 indicated by a suffix letter. There was also the B41, a low frequency version covering 15 kHz to 720 kHz in five bands-not much use for broadcast band DX as it stands.

A number of readers have referred to the B40 recently. Robert Round remarks wryly: "My first receiver was a B40, and to be honest I think I was a fool to get rid of it." I can sympathise Robert, I feel the same way about my old much-modified CR 100 which was disposed of some time ago. G. Stainton is desperate for a manual for his B40. Try Brooks, Farrant House, Winstanley Road, London SW11 2EJ who supply reprints of many manuals. John Markey
would like to fit an antenna trimmer to his B40. Connect a small variable capacitor of about 50 pF in parallel with the first r.f. section of the main tuning capacitor, if you can locate it. John would like to contact readers who have done any "mods" to the B40, replies direct to John please at 4 Harrison Way, Lydney Gdns, Gloucester GL4 5BN. Perhaps someone will start a club for B40 owners!

11 Metre Band

This band ($25605-26095 \mathrm{kHz}$) is gradually opening up now that increasing solar activity is bringing higher frequencies into use. Harold Brodribb of St. Leonards-on-Sea (AR88) reports hearing Radio RSA on 25790 kHz (also announcing 21535 and 15220) and Radio France on 25 630, both stations logged during the afternoon. K. H. Smith of Ross-on-Wye picked up the Voice of America in the early evening on his home-brew receiver on 26040 and Mark Hallam of Hereford (Realistic DX160 plus long wire) logged Radio RSA on 25790 from 1100-1200 and again between 1300 and 1530 with a very strong signal and English programming.

Other stations reported recently were Radio Liberty on 25690 and IBA Jerusalem on 25605 kHz .11 metres is a daytime band and worldwide reception is possible when it is open. Broadcasters will be tempted onto 11 metres to escape from the congestion on lower bands, even though it is outside the range of many domestic receivers. If your receiver will tune as high as 11 metres then it is worth giving the band a try.

Tropical Bands

The main tropical band is 60 metres which extends from 4750 to 5060 kHz . Unlike the main s.w. bands, 60 m is shared with commercial users and is only reserved for broadcasting in tropical areas and parts of Asia. As a result there is a lot of telegraph QRM on 60 m and the newcomer to the band, especially if he listens at the wrong time of day, may not hear any broadcasting stations at all. A path of darkness between Tx and Rx is required before reception is possible, so it is a waste of time looking for DX on 60 m in the middle of the day. A good outdoor aerial is an advantage, though many of the better portables will deliver DX with their internal aerial.

A good log of 60 m DX comes from Bob Bell who lives in Blyth and uses an FRG-7. He reports hearing Radio Universo in Venezuela on 4800 kHz at 0200 , Benin on 4870 at 1825 , Radio Casa Ecuador on 4930 at 0215, Radio Ecos Venezuela on 4980 at 0225 and two out-ofband catches, one in Chinese on 4380 at 1750 and an unidentified station in English on 4385 at 1805. L. Lewis (Pensilva in Cornwall) used his Realistic DX160, long wire and a.t.u. to pull in Radio Guatapuri in Colombia on 4817 kHz at 0535 , and Radio Garoua in Cameroon on 5010, with a programme in English at 1830. Mark Hattam picked up Radio ELWA Liberia on 4779 at 2200 and Radio Nigeria on 4990 at 1800 both in English.

DX Reported

A Trio 9R59D plus Joystick are in use at Mackworth near Derby by Roy Patrick who reports hearing Kabul, Afghanistan on 11805 with a programme in English at 1900, Radio Nacional Chile on 11720 at 2205 , Radio Australia on 11870 (replacing 11855) from 1500 to 1700. Roy mentions that Radio Monitors International DX programme from SLBC Sri Lanka is on the air on Sun-

Heports on the various bands are welcome and should be sent direct, by the 15 th of the month, to:
AMATEUR BANDS EICOONKOS SVell G4AR; SIVer Firs Leatherhead Road, \& Logs by bands; each in alperbetical order.
MEDIUM and SW BANDS Charles Molloy G8BUS, 132 Segars Lane, Southport PR8 3JG Reports for both bands must be kept separate.
VHF BANDS Ron Ham BRS 15744, Faraday Greyfriars, Stortington Sussex RH20 4HE
days at 1100 on $11835,15120,17850$ and again at 1900 on $9720,11870,15115$ and 17850 .

From RSA-land comes a log from David Webb who lives in Sunnyside, Pretoria and who uses an old domestic receiver of unknown origin together with a wire put round the picture rail. With this set-up he has managed to pull in Tirana on 9500 at 1930, Australia on 9570,11940 at 1500, Algiers on 9500 at 1915 in English and Radio Sweden on 15240 at 1845. A Racal 117E and 80ft long wire are in use by V. Frankl of Rotherham, who reports hearing out-of-band Pyongyang on 6576 kHz at 2000 , South Korea on 7550 at 1615 and Radio Athens on 9930 at 1920. Andrew Rogers of Bristol (Vega Spidola and whip) heard Amman in Jordan on 9560 at 1500 and Riyadh, Saudi Arabia on 6075 at 2110. Roger Shepherd of Whitstable has had his National Panasonic RF1105 for only two months, and during this time he has heard programmes in English from Turkey on 9515 at 0105, Israel on 9435 at 2005 and Spain on 9505 at 2030. J. Pritchard (Warsop) now has an ITT Touring CD108 with digital readout which picked up Pakistan on 17665 at 1104 and the Voice of Nigeria on 15185 at 1849.

by Ron Ham BRS15744

One of the most exciting things about the radio frequency spectrum above 30 MHz is that unexpected natural disturbance which can suddenly occur and take the most experienced v.h.f. enthusiast by surprise and, as my readers have shown, 1979 began in just that way.

Solar

Early in 1978, we observers of the sun were confidently expecting the then high level of sunspot activity to continue throughout the year, but, how wrong we were. Having recorded radio noise from the "active" sun on 108 out of the first 212 days (compared with 106 days for all of 1977), the count fell drastically to only 24 "active" days from the remaining 153, which means that, in future, we should consider sunspot activity on a day-to-day basis. At 1036 on December 31, John Branegan GM8OXQ, Saline, Fife, heard a strong burst of solar noise covering a wide frequency range, and Cmdr Henry Hatfield, Sevenoaks, Kent, and myself, recorded several individual bursts of solar noise, at 136 and 146 MHz , on January 3 and 4, and

-@T VALVE MAIL ORDER CO. CLIMAX HOUSE, FALLSBROOK ROAD, LONDON SW16 6ED SPECIAL EXPRESS MAIL ORDER SERVICE

SEMICONDUCTORS

BF19
BF19
BF19
BF199
BF20
BF22
BF24
BF25
BF25
BF25
BF333
BF33
BF33
BFS2
BFS2
BFS6
BFS9
BFW
BFW
BFX8
BFX8
BFX8
BFX8
BFY
BFY
BFY
BFY6
BFY9
BSX
BSX
BSX
BT10
BTY7

$\begin{array}{ll}\text { BZX61 } & 0.18 \\ \text { Series } & 0.13\end{array}$

0.65
.65
.65
1.50
1.75
2.25
2.75
3.25
1.00
1.00
1.50
1.75
1.75
1.75
2.50
2.50
2.50
1.75
1.25
0.75
2.25
2.75
.75
0.30
1.20
0.20
0.41
0.44
0.45
0.48
1.69
1.73
0.63
0.70
1.67
0.56
1.00
1.25

2N697
2N698
0.25
0.30
1.20 -

2N3055 0.70 $\begin{array}{ll}\text { N3440 } & 0.60 \\ \text { 2N344.1 } & 0.80\end{array}$ $\begin{array}{ll}2 N 3442 & 1.10 \\ 2\end{array}$ $\begin{array}{ll}\text { 2N3525 } & 0.80 \\ \text { 2N3614 } & 1.50\end{array}$ 2N37020.11*

$2 N 37030.13^{\circ}$ | 2N37030.13* |
| :--- |
| 2N37040.13* | | 2N37050.13* |
| :--- |
| 2N37060.13 |
| | 2N37070.13

$2 N 37090.13^{\circ}$
$2 N 37100.10^{\circ}$
2N3711 0.10°
$2 N 3771$
1.75
N3772 2.00
N3773 3.00

2N3819 0.36°
N3820
.45

N3823 0.55
N3866 0.72
N3904 $0.13^{\prime \prime}$
N39040.13
N39050.13*
N39060.13
2N4058 0.14°
2N40590.10**
N 40600.12^{*}
2N40600.12
N4 4240.15°
N41260.15
${ }^{2} \mathrm{~N} 42860.20^{\circ}$
$2 \mathrm{~N} 42880.22^{\circ}$
$2 \mathrm{~N} 42890.24^{\circ}$
2N54570.35*
2N5458 0.35°
$2 N 559$
2N5459 0.35*

VALVES

| AZ31 | 1.10^{*} | ECC831 | 0.55^{*} |
| :--- | :--- | :--- | :--- | :--- | :--- |

${ }_{\text {PL8 }}$
523 $\begin{array}{ll}\text { PL82 } & \mathbf{0 . 6 0} \\ \text { PL83 } & \mathbf{0 . 5 5} \\ \text { PL84 } & \mathbf{0 . 7 5} \\ \text { PL504/50.75 } \\ \text { PL508t } & \mathbf{1 . 4 0} \\ & \mathbf{1 . 8 0}\end{array}$

5Z4G
5Z4G
$6-30 L$
$6 A B 7$
$6 A C 7$
$6 A F 4$
$6 A G 7$
$6 A H 6$
$6 A K 5$
$6 A K 6$
$6 A L 5$
$6 A M$
$6 A M$
$6 A M$
$6 A N$
$6 A N$
$6 A$
$6 A 15$
$6 A R 5$
$6 A S$
$6 A S$
$6 A T$
$6 A U$
$6 A U$
$6 A V$
$6 A V$
$6 A W$
$6 A$

8136

TBA920	$\mathbf{2 . 9 0}$
TBA9200	

TBA9900 $\mathbf{2 . 9 9}$ $\begin{array}{ll}\text { TCA2700 } \\ \text { 2.99* } \\ \text { TCA760A } & \mathbf{1 . 3 8}\end{array}$ 11 Sockets INTEGRATED CIRCUITS

7400	$\mathbf{0 . 1 6}$	7412	$\mathbf{0 . 2 6}$	7432	0.3
7401	0.16	7413	0.32	7433	0
7402	0.16	7416	$\mathbf{0 . 3 2}$	7437	0
7403	0.16	7417	0.32	7438	0
7404	0.17	7420	0.17	7440	0
7405	0.16	7422	0.20	$74414 N$	0
7406	0.40	7423	0.32	7442	0
7407	0.40	7425	0.30	$7447 A N$	1
7408	0.20	7427	0.30	7450	0.1
7409	0.20	7428	$\mathbf{0 . 4 3}$	7451	0
7410	0.16	7430	$\mathbf{0 . 1 7}$	7453	0.

$\begin{array}{ll}\text { VCR517B** } & \mathbf{6 . 0 0} \\ \text { VCR517C* } & \mathbf{6 . 0 0}\end{array}$
 Tube Bases $*=$ Surplus VAT 8%

THORN NEW LIFE COLOUR TUBES FULLY GUARANTEED

A49-191/192X	$\mathbf{4 2 . 3 2}$	A63-200X	$\mathbf{5 2 . 5 0}$
A51-110X	$\mathbf{4 4 . 0 0}$	A66-120X	$\mathbf{5 3 . 6 1}$
A56-120X	$\mathbf{4 5 . 7 2}$	A67-120X	$\mathbf{5 3 . 6 1}$
A55-14X	$\mathbf{4 5 . 7 2}$	A67-150X	$\mathbf{5 4 . 6 0}$

AVAILABLE FROM STOCK FOR COLLECTION ONLY-OLD TUBE MUST BE RETURNED. ADD VAT $12 \frac{1}{2} \%$

[^5]10 to 16 , inclusive. These bursts were associated with about eight groups of sunspots, some with four and six spots, seen by Henry with his spectrohelioscope. On the 6th he saw five plages, on the 11th a small flare, and a bright active area was visible on the 12th and 13th.

Aurora

Considering this solar activity, it was not surprising that ionospheric disturbances were reported by the BBC World Service on January 5 and 6, and John Branegan noted auroral events on the 4th and 7th. Between 1810 and 1817 on the 4th, John heard tone " A " signals from the $2 m$ beacons in Wrotham, GB3VHF and Kiel, DLOPR, and although the auroral signals faded out on 2 m around 1820 they persisted on Band I TV until 1907. During the event, several of John's fellow GMs worked London stations on 2 m . Following an auroral alert from John Matthews G3WZT, near Horsham, Sussex, around 1900 on the 7th, John Cooper G8NGO, Cowfold, Sussex, heard a French station working a GM on 2 m s.s.b. and, in turn, phoned Alan Baker G4GNX, Newhaven, who heard some weak s.s.b. signals bouncing off the auroral display, while in nearby Lancing, Roy Bannister G4GPX, heard GM4DSZ. Alan also confirmed a report from Cecil Sadler G3JEO, Brighton, that signals in the 40 m band were being influenced by the aurora. Between 1500 and 2000 on the 7th, John Branegan received auroral signals from European TV in Band I, f.m. broadcast stations in Band II, strong 2 m signals from stations in DL, EI, G, GI, GM, GW, LA and SM and from beacons around the UK, in Cornwall, GB3CTC, Northern Ireland, GB3GI, Lerwick, GB3LER and Kent, GB3VHF. John also had three contacts through OSCAR-8J during the event and was told by SM5FUR that, the aurora was affecting all Sweden.

The 10 Metre Band

Mark Hattam, Hereford, using his Realistic DX-160 receiver and a long wire aerial, says that signals from Radio South Africa and Voice of America, in the 11 m band, were "pounding in" on January 9, and in the 10 m band he heard UN3CEY in QSO with an American station, and a harmonic of a Radio Moscow transmission around 28.750 MHz . Michael Mrzyglod, Wallingford, Oxford, who is in the process of joining the RSGB, reports hearing several European and Russian amateurs

Fig. 1: Test card from Poland on 49.75 MHz , received in Sussex on 20 December 1978
on 10 m around noon on December 26. From December 15 to January 17 I received signals, almost daily, from the International Beacon Project stations in Bahrain, A9XC, Germany, DLOIGI and Cyprus, 5B4CY and less frequently from Bermuda, VP9BA and Florida, N4RD. The majority of these signals were received on my FR101 with a long wire aerial and averaged around 539.

DX Television

At 0910 on December 19 I heard strong television sync pulses on 49.75 MHz with my R216, fed by a dipole aerial, which alerted me to switch on my JVC3060, also fed by a dipole, and there on Ch. R1, for a short while was a test card from YLE-HK 1, Finland. Between 0800 and 0920 on the 20th both Ian Rennison, Horsham, using a JVC3040, and myself, received a very strong test card from Poland (Fig. 1), on R1, accompanied by the sound, which I received on the R 216 , on $56 \cdot 25 \mathrm{MHz}$. From 0745 until about 0930 on January 4, Ian and myself received strong pictures from both Poland and Hungary on R1 (Fig. 2), and at times both signals were fighting for predominance on our receivers.

During the afternoon of the 7th, John Branegan, using his Eddystone 770R, heard video signals on $48 \cdot 25,49.75$ and 61.8 MHz and TV sound, in Spanish, on 53.75 and 60.75 MHz . John reports that the m.u.f. was up around 44 MHz to the USA on January 5, 6 and 7 and, at 1450 on the 6 th, he received French TV sound on 41.25 MHz and, "strangely enough," says John, "the aerial seemed to peak around 270°.

Tropospheric

Despite the poor conditions on December 26, Roy Bannister heard signals from the new Norfolk repeater, GB3FR, on R7 when the London repeater, GB3LO, was quiet, and, during a spell of good conditions on December 18, signals from the Burnley repeater, GB3RF, also on R7, were received by Don Campbell G5SD, in Clymping, on the Sussex coast. A mild tropospheric opening occurred on January 6 when the atmospheric pressure, which had reached $30 \cdot 4 \mathrm{in}$, began to fall. Throughout the day, I received strong signals from more than a dozen Continental f.m. stations in Band II and during the evening, Ian Rennison received a strong picture from the French TV station at Lille.

Fig. 2: Test card from Hungarian Television on 49.75M Hz, received in Sussex on January 4

Around 1300 , while I was receiving strong pictures from the IBA transmitter at Lichfield, Ch. $8,189 \mathrm{MHz}$, Alan Baker worked F1BBQ on 2 m c.w. and later had QSOs through the French repeater, FZ2THF, on R9. During another pressure drop, at 2030 on the 3rd, Fleming Jul-Christensen G8RMA (ex OZ1EVA), Eastbourne, using a TS700-S, heard OE5KEJ on 2 m s.s.b.

Microwaves

John Tye G4BYV, Dereham, Norfolk, is active on both 13 and 23 cm with home-brew equipment into a 4 ft dish aerial on both bands. During the second half of 1978 he had 10 QSOs with G stations, 11 with PA0 and 1 DK on 13 cm , and 33 with G, 40 with PA0, 22 in Germany, 3 ON and 1 GW on 23 cm which is a fine effort. John has now built a converter for 9 cm and is waiting for the right conditions to use it.

Satellites

To celebrate the new year, John Branegan had Hogmanay QSOs with WB2OXJ and WB2SBW, both in New Jersey, just a few minutes before midnight on OSCAR-8J. All-told, John worked 16 stations in 8 countries, DB, G, GM, HB, I, PE, SM and W via 8J on New Year's Eve, and with only 4 days operating during December he had 60 QSOs on 8J, 7 of them transatlantic, including W2GEZ and WB2SBW which are new ones for him. John now has a QSL card confirming his 8J contact with C31QO, Andorra and has now worked CN8AK, Morocco on OSCAR-8A.

Tail-piece

Congratulations to Ern Hoare G8BDJ, Brighton and Alec Painter G8EAQ, Worthing, on passing their Morse tests. They will, no doubt, soon be sporting their new callsigns.

I received a Christmas card from Frank Luman who, while on holiday with his parents in Denver, Colorado, is studying the DX-TV situation over there.

While on a round trip to Birmingham on January 10, Alan Baker worked through eight of the 2 m repeaters, GB3BC, BM, LO, MH, PI, SN, SR, and WH, showing that mobile operators need never be alone on their journeys through and around the UK.

What do the VHFs have to offer?

No one should harbour the idea that the v.h.f. bands have little excitement to offer the radio enthusiast. In fact, there is still so much to learn about the behaviour of radio waves between 1 and 10 metres that they are a haven for the DX hunter, experimenter and home constructor. To be successful in the world of v.h.f., one must pay great attention to detail, such as taking extra care when selecting components, keeping wiring as short as possible, soldering all joints, and making sure that aerials are securely mounted, and have a good-quality feeder. Remember, it is easy to ruin the performance of an expensive piece of v.h.f. gear with a poor aerial, badly-connected mains lead, loose loudspeaker, and microphone connections or an intermittent aerial plug.

The Home Station

Before equipping a v.h.f. station, the operator, whether a licensed amateur, broadcast or short-wave listener, radio-astronomer, satellite enthusiast or TV DXer, must decide first where to locate his shack and then where to put his aerials. These, ideally, should be as close to the shack as possible to avoid unnecessarily long and therefore lossy feeders. The choice and size of aerial depends upon the band being used and the space available, in some cases the consent of the local planning authority is required, it is best to play safe and get this point clarified.

The Transmitting Amateur

The holder of a class B transmitting licence (G8-plus-3letter callsign) may only use the 2 m band within the v.h.f. spectrum, whereas the holders of a "full" licence (those who have passed the Morse test in addition to the RAE) may also use the 4 m band. A typical aerial installation for the DX hunter is an 8 -element Yagi for 2 m and a 3element Yagi for 4 m , both horizontally polarised and mounted on an aerial rotator. The majority of amateurs are in favour of the VHF Band Plan, published by the RSGB, which recommends that c.w. contacts are made between 70.025 and 70.150 MHz and 144.00 and 144.150 MHz , and s.s.b. contacts on $70 \cdot 200 \mathrm{MHz}$ and between $144 \cdot 150$ and $144 \cdot 500 \mathrm{MHz}$.

Operators soon learn the possible range of QSOs on each band from their location, under normal atmospheric conditions, but the real DX comes during the sporadic-E season on 4 m and a tropospheric opening or aurora on 2 m . Apart from the sheer thrill of working v.h.f. stations at almost impossible distances, it is advisable to exchange QSL cards to confirm contacts, because these cards are the evidence required by RSGB members who wish to claim the "Four Metres and Down" certificates offered by the Society for confirmed QSOs from: 3 Countries and 20 Counties on $4 \mathrm{~m} ; 5$ Countries and 30 Counties on 2 m . Senior awards are also offered.

Under abnormal conditions it is possible to work DX through the national and European 2 m repeater network; these signals are frequency modulated and vertically polarised, so aerials such as dipoles, ground planes or crossed Yagis are normally used. Repeater contacts do not qualify for the RSGB certificates.

The Broadcast Listener

The v.h.f. hunting ground for the broadcast listener is the f.m. broadcast band, $88-108 \mathrm{MHz}$, which is full of Continental broadcast stations during a tropospheric opening. East-European broadcast stations are often heard in the UK between 65 and 73 MHz during the sporadic-E season. Many of my readers use a rotatable, multi-element Yagi for the broadcast DX in Band II, especially if they wish to resolve full stereo from the incoming signal.

The VHF Listener

The v.h.f. listener should make sure that his aerials are as efficient as those used by the transmitting amateurs. Listening on v.h.f. is very rewarding, especially during an atmospheric disturbance, when there is a host of DX signals about and a great opportunity to get a QSL card, from stations in rare Counties, which cannot be heard under normal conditions. To earn a QSL card, from either an amateur or a beacon keeper, the listener's report must be useful and contain such information as date, time, signal

AUDIO MODULES

1 Stereo Cassette Deck N999

Complete with electronics uses:-
music centres, disco consols, tape editing etc. Freq resp $63 \mathrm{~Hz}-10 \mathrm{kHz}$ WOW: 0.15% FLUTTER 0.18% channel: separation 55 dB . Electronic speed control. ALC Mic and line inputs. JAPANESE Manufacture - requires 12V DC. $\mathbf{£ 2 3 . 9 5}$. Top moulding $\mathbf{£ 1 . 0 0}$.

2 Preamp Amp - PSU Wimborne 11 W per channel

 Four Rotary controls. Vol Bass Treb Bal. $2 \times$ PSUs for RF Board - cassette deck, LM 387 preamp IC driver. TIP $31+$ TIP 32 Output Pairs. Special price includes transformer £16.95(October 1978 PW)

3 AMP 041

8 watt RMS per channel amp+preamp supplied with pots. Fully complementary requires 28 V DC. Price complete $\mathbf{£ 6 . 9 9}$

4 AMP 020

Stereo power amp 30W RMS per channel. Class ABI TIP 34A×TIP 33A. 16 Transistor circuit Fre resp $15 \mathrm{~Hz}-18 \mathrm{KHz}-1 \mathrm{~dB} . \mathbf{£ 7 . 9 9}$

5 Matching HiFi Preamplifier

Four rotary controls - Vol, Bal, Treb, Bass. Treble + or -14 dB . Bass + or -14 dB facility for loudness control $\mathbf{£ 6 . 9 9}$

RF MODULES

6 Surplus RF Board 020
Complete MW/LW/FM/MPX Tuner uses 3 stage FET front end 2 ceramic filters 3089 E 1310 Decoder. AM section built around 3132E, 2 stage tuning comes complete with 4 way switch - ferrite rod aerial - $\mathbf{£ 9} 99$

7 RF 030

improved version of above extra gain stage imposed S / N ratio and 1.5 uV sensitivity for $26 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$ way selector switch AFC stereo/mono switching -2 additional inputs $\mathbf{£ 1 9 . 9 5}$

8 RF 020

MW/LW/FM/MPX varicap tuned RF board as per 78 Nov/Dec PW Dual gate MOSFET front end. 2×1 Fgain stages 3189 Deviation mute, interstation mute, MPX filters. STab PSU 1 uV sensitivity and 75 dB S/N ratio. AM Section also varicap tuned HA1 197 excellent performance. Special price $£ \mathbf{2 8} \mathbf{9 5}$

9 VT04

FM FET Front end three stage tuning 26 dB gain AFC and AGC facility 10.7 MHz IF output $£ \mathbf{\$. 9 9}$

10 IF15

Matching IF Strip double conversion $10.7 \mathrm{MHz} / 470 \mathrm{kHz}$ AM/NB FM excellent performance $£ 12.95$

We have all parts in stock for the Wimborne Music Centre - parts for amps/tuner amps and music centres up to 25 Watts per channel. We stock all hardware and trim to give units a professional finish. Front panels, meters, knobs, sockets; etc.

CHIOMASOMIT electronics your soundest conmection in the world of components

Dept PW1, 56 FORTIS GREEN ROAD, MUSWELL HILL, LONDON, N10 3HN

The items shown in from Resistors to the this advert are just a latest in Micro small selection taken processers. Don't delay from our new 78/79 order your copy today from our new 78/79 Catalogue which is now available. It
contains everything
TELEPHONE: 01-883 3705

strength, any interference, beam headings, and mention the callsigns of other signals heard from the same area. Don't forget to enclose s.a.e.

Artificial Earth Satellites

A large cross-section of the v.h.f. fraternity are interested in receiving signals from both commercial and amateur radio satellites. A 10 -element crossed Yagi with an alt/azm (altitude and azimuth) mount is ideal for listening to or working through the amateur satellites. Although this aerial is specifically designed for the 2 m band it will suffice for receiving signals from the commercial birds in the $136 / 137 \mathrm{MHz}$ band. A permit from the Home Office is required to receive signals from commercial satellites. Both the AMSAT and Russian amateur radio satellites have uplink frequencies around 145.900 MHz and downlinks around 28.400 MHz . The latest information about these satellites can be obtained by listening to the AMSAT net at 1015 on Sunday on 3.780 MHz .

Radio Astronomy

Briefly, a radiotelescope consists of a high-gain aerial directed toward the celestial source being observed, a sensitive receiver tuned to the observational frequency, and a recording instrument-usually a pen recorder. Radio waves from heavenly bodies are very similar to the background noise of a radio receiver, therefore the telescope must be able to distinguish between the two.

The usual practice is to connect a local noise source to the aerial socket and see how far it deflects the pen, then disconnect it, couple the aerial and measure the difference between the noise source and the incoming celestial waves. The sun, which affects our daily communications around the world, is a very powerful transmitter of radio waves when sunspots are present. For solar radio observers there is the day-to-day excitement of never knowing when this nuclear furnace, 93 -million miles away, is going to send off a flare and emit radio waves between 100 and 200 MHz . Radio astronomy presents a challenge to the home constructor who wishes to build v.h.f. aerials, low noise pre-amplifiers, converters and d.c. amplifiers to drive a pen recorder.

PLEASE MENTION PRACTICAL WIRELESS WHEN REPLYING TO ADVERTISEMENTS

DX Television

It is well-known that the normal range of v.h.f. television signals is, subject to the terrain between the transmitter and receiver, about 50 miles. However, to receive signals at a greater distance, a large aerial system plus mast-head pre-amplifiers are required. Long-distance television reception is possible during an atmospheric disturbance which can affect both v.h.f. and u.h.f. signals over a wide area.

Within the UK, v.h.f. transmissions of the BBC are in Band I, $41-76 \mathrm{MHz}$, and the IBA in Band III, 176215 MHz , both 405 -line. Continental, African, Icelandic and Russian v.h.f. transmissions, which are the targets for the TV DXer, fall in two frequency ranges, $48-68 \mathrm{MHz}$ and $175-225 \mathrm{MHz}$. The lower range is subject to sporadicE and the higher range to tropospheric disturbances. Pictures from Russia can be received on Ch.R $1,49 \cdot 75 \mathrm{MHz}$ and R2, 59.25 MHz .

For super DX, which is not outside the bounds of possibility, there are American (525-line), Australian and New Zealand TV who also transmit between 46 and 68 MHz . Detailed information about international television is published in World Radio and TV Handbook.

Fig. 3: Pictures from Spain and Sweden received by the author during the 1978 sporadic-E season with only a dipole aerial feeding a JVC 3060 receiver. Both stations can be received on Channels E2 (48-25M Hz), E3 $(55.25 \mathrm{MHz})$, and $\mathrm{E} 4(62.25 \mathrm{MHz})$. In each case the sound is 5.5 M Hz higher than the vision frequency

GUY STANBURY

by RON HAM

For Christmas, 1963, the 9-year-old Guy Stanbury received a Philips electronic kit. Soon after, he was borrowing copies of Practical Wireless from his local library, and in 1968 he became a regular reader.

Guy's interest in v.h.f. began in 1971, when he visited Bob Dewick, a keen Band II DXer at Bradwell-on-Sea, Essex, and saw Bob's Hacker receiver which could be fed from either a Rhombic aerial or four Jaybeam 4-element Yagis stacked vertically and horizontally. Very soon, Guy, at his home in Chelmsford, began experimenting with v.h.f. aerials, starting with an Antiference 4E, mounted on a cable-controlled rotating spindle, then a 6 -over- 6 array on a rotator followed by various long Yagis. His current installation is two Fuba UKa Stereo 8 aerials, stacked and phased according to the instructions and mounted on a Stolle rotator.

His receivers progressed from a Rigonda "Symphony" stereogram, to a PW "Sandown", which he constructed in 1975, and used for about a year until he purchased his present equipment, a tuner and i.f. modules from Ambit International. In his station, Guy has both reel-to-reel and cassette recording facilities, a frequency counter which he is trying out, an oscilloscope, and all the tools needed by the home constructor. Although he is a Band II specialist, with signals heard from stations in Greece, Italy, the low countries, Western Germany and Yugoslavia, via sporadic-E and tropospheric propagation, Guy plans to expand into the field of u.h.f. DX-TV, using a Wolseley Colour King or Colour Prince aerial.

Guy is currently on an HNC course in Electrical and Electronic Engineering, and enjoys corresponding with his fellow Band II enthusiasts, and his many friends in the world of v.h.f. radio.

So You Want to Pass the RAE?

A reprint of the complete series, including details of the new examination format being introduced in 1979, is now available. The reprint costs 85 p, including postage and packing to addresses within the United Kingdom.

Order your copy by completing and returning the coupon, together with your remittance, to IPC Magazines Ltd., Post Sales Department, Lavington House, 25 Lavington Street, London SE1 OPF. Please ensure that your name and address are clearly legible.

PRACTICAL WIRELESS—Radio Amateur Examination Reprint

Please send your order and remittance to:

IPC Magazines Ltd., Post Sales Department, Lavington House, 25 Lavington Street, London SE1 OPF

Please send me . . copies at 85 p each to include postage and packing
I enclose P.O./Cheque No......... Value
Remittance must be crossed postal order or cheque (name and address on back please) and made payable to IPC MAGAZINES LTD

NAME
 (BLOCK LETTERS)

\qquad (BLOCK LETTERS)
\qquad

Remittances with overseas orders must be sufficient to cover despatch by sea or air mail as required. Payable by International Money Order only

Company registered in England. Regd. No. 53626
A subsidiary of Reed International Limited

HANIMEX Electronic LED Alarm Clock Same as ETI offer Thousands sold Alarm (Slide Switch)	LADIES LCD Only $25 \times 20 \mathrm{~mm}$ and 6 mm thick. 5 function: hours, mins, secs, day, date. back light and auto cal. Elegant metal bracelet in silver or gold. State preference. $£ 10.95$ Guaranteed same day despatch	5 FUNCTION LCD Hours, mins, secs, month, date, auto calendar, backlight, quality metal bracelet. £7.65 Guaranteed same day despatch Very slim, only 6 mm thick.	THOUSANDS SOLD 11 FUNCTION SLIM CHRONO 6 digit 11 functions * Hours, mins, secs. * Day, date, day of week. 1/100, 1/10, secs 10 x secs, mins. * Split and lap modes. * Back light, auto calendar. *Only 8 mm thick. This same watch is being sold for $£ 22.00$ in newspaper and magazine special offer ads. Metac Price $£ 12.65$ Guaranteed same day despatch
Feature and Specification \star Hour/minute display * Large LED display with p.m. and alarm on indicator $\star 24$ Hours alarm with on/off controf *Display flashing for power..loss indication * Repeatable 9-minute snooze * Display bright/dim modes control Size $5.15 \times 3.93 \times 2.36(131 \mathrm{~mm} \times 100 \mathrm{~mm}$ $\times 60 \mathrm{~mm}$). Weight $1.43 \mathrm{lbs}(0.65 \mathrm{~kg})$. Guaranteed same day despatch	All products carry full 12 months guarantee. Please add $30 p$ p\&p with all orders. All prices include VAT. Shops open 9.30 to 6.00 daily. Trade enquiries welcome. Delivery: One week. Except where same day delivery is stated.	ALARM CHRONOGRAPH WITH DUAL TIME ZONE FACILITY - Constant LCD display of hours and minutes, plus optional seconds or date display, plus day of the week and $\mathrm{am} / \mathrm{pm}$ indication. - Perpetual calendar, day, date, month and year. - 24 hour alarm with on/off indication. - 1/10 second chronograph measuring net, lap and first and second place times. - Dual time zone facility. Night light.	PLEASE NOTE All our products carry full money back 10 -day reassurance. Watches are despatched by FIRST-CLASS POST. They are fitted with new batteries, and include guarantee and instructions. Battery fitting service is available at our shops for no extra charge. We stock most watch batteries and this service is available to all. Metac have been selling electronic watches probably longer than anyone else in the UK. We take care of your watch not just this year but next year and the years after that.
Telephone Special 24-hour phone service Credit-card customers are welcome to buy by phone - simply phone 01-723 4753 with your credit-card number to place your order.	67 HIGH STREET 327 DAVENTRY, NORTHANTS LON Tel. (032 72) 76545	nics \& Time Centre OGWẢRE ROAD. Barclay \& Access ON W2 welcome 1) 7234753 Phone or Send Card	Buy it with Access barclaycard \square Number with order

You know it's easy with Heathkit.
 Heathkit self-mstruction electronics courses are

Electronics Courses

New series of courses on car electrical systems.
New series of courses on electronic equipment.
$D C$ electronics.
AC electronics.
Semi-conductors.
Electronic circuits.
Digital techniques.
Microprocessors.

NewKits

Line printer.
Dual floppy disc.
Dual trace 5 MHz and 35 MHz
oscilloscopes.
Memory expansion for digital trainer. 2 M hand-held transceiver. complete, low-cost learning systems. All you need is the will to learn and the Heathkit courses will teach you at your own pace.

It's easy because the courses are based on step-bystep programmed instructions, with audio records (or optional cassettes), self evaluation quizzes to test your understanding, and interesting experiments that encourage you to learn the easy "hands-on" way with the optional Heathkit experimenter-trainers.

Thousands of people just like you have aiready learnt electronics the easy Heathkit way - at home, in educational establishments and BARCLAYCARD in industry throughout the world.
You'll find it easy too. Fuil
VISA detals are in the Heathkit catalogue together with hundreds of kits you can build yourself; for the home, car and workshop.

There are Heathkit Electronics Centres at 233 Tottenham Court Road, London (01-636 7349) and at Bristol Road, Gloucester. (Gloucester 29451).

2 Gresham Raad, Brentwand,Es5em.

		SN		N	LSN		N'	SN		'N'	LSN		LSN
7400	13	20	7455	35	24	74126	57	44	74185	134		74377	124
7401	13	20	7460	17		7412	74		74188	275		74378	93
7402	14	20	7463			74132	73	78	74190	115	92	74379	130
7403	14	20	7470	28		74133		29	74191			74386	37
7404	14	24	7472	28		74136		40	74192	105	180	74390	140
7405	18	26	7473.	32		74138		60	74193	105	180	74395	139
7406	38		7474	27	38	74139		60	7419	105	187	74396	133
7407	38		7475	38	40	74141	56		7419	95	137	74398	180
7408	17	24	476	37		74142	265		74196	99	110	74399	150
7409	17	24	7478			74143	312		74197	85	110	74445	92
7410	15	24	7480	48		74144	312		74198	150		74447	90
7411	20	24	7481	86		74145	65		74199	160		74490	140
7412	17	24	7482	69		74147	175		74248		90	74668	110
7413	30	52	7483A			74148	109		74249		93	74670	249
7414	51	130	7484	97		74150	99		74251		90	MISCEL	LENY
7415		24	7485	104	99	74151	64	84	74253		105	NE555	30p
7416	30		7486		40	74153	64	54	74257		108	NE556	78 p
7417	30		7489	205		74154	96		74258		153	NE558	180p
7420	16	24	7490	33	90	${ }^{7} 74155$	54	110 110	74259		420		
7421	29	24	7491	76	110	74156	80	110	74260		753		950p
7422	24	24	7492	38	78	74157	67	55	74261		353		
7423	27		7493	32	99	74158		60	74266		40		
7425	27		7494	78		74159	210 82		74273		124	LCD D	$\begin{aligned} & \text { M IC } \\ & 9550 \end{aligned}$
7426	36	27	7495A	65	99	74160 74161	82	130 78	74275		312	LCD	M KIT
7427	27	29	7496	58	120	74167 74162	92	78 130	74279		52	LCD	2480p
7428 7430	35 17	32	7497 74100	185 119		74162 74163	92	130 78	74283 74290		120 90	$31 / 2$ digit	2480p
7430 7432	17 25	24	74100 74104	19 63		744164	$\stackrel{9}{104}$	78	74290		90 95	display	$1150 p$
7433	40	32	74105	62		74165	105		74295		120	ICL7107	LED
7437	40	24	74107	32	38	74166			74298		100	DVM K	2065p
7438	33	24	74109	63	38	74167	20		74324		157	ICM72	- 8 digit
7440	17	24	74110	54		74168			74325		242	10MH	FM
7441	74		74111	68		74169		200	6		247	timer	£19.82
7442	70	99	74112	88		74170	230	200	74327		237	(for	C.Cath)
7443	115		74113		38	74172	625		74352		100		
7444	112		74114		38	74173	170		74353		100		
7445	94		74116	198		7417	87	120	74362		715		$\begin{aligned} & 0 \mathrm{MHz} \\ & 100 \end{aligned}$
7446	94		74118	83		74175	87	110	74365		49		$420 \mathrm{p}$
7447	82		74119	119		74176	75		74366		49		
7448	56	99	74120	115		74177 74180	78 85		74367		43	$11 c 90$	$1400 \mathrm{p}$
7449 7450		99	74121 74122	25 46		74180	85 165	350	74368		49	8618	-divide
7451	7	24	74123	48		74182	160		74374		7	$\text { by } 100$	
7453	17		74124			74183		210	74375		,	for 120	60 MHz
7454	17	24	74125	38	44	74184	135						
The ICL7216BIPI is still the cheapest way to make a full 8 digit/ 10 MHz frequency counter/timer, and with 10 external components + display - it is also one of the simplest. For $£ 19.82$, it takes a lot of beating. The mains filters have been extended now to include a 6 amp IEC version at $\mathbf{£ 5} .10$, and with the amount of electronic noise on the average supply (next door's fridge, for instance) it is a really worthwhile addition to any sensitive aquipment. LPSN TTL now includes many more of latest types, all - of course - are absolutely prime first quality types. And don t forget our range of OPTO displays includes Hewlett Package high efficiency $0.43^{* \prime}$ types in all colours - renowned as the finest quality in the market. For other types of component - discrete LEDs, radio and audio devices, tuner modules, kits etc., see our other advertisement for more details - or send for the AMBIT catalogue system. Part one (45p) includes details of our background 'standard' items, and the new part two includes all the latest introductions and developments, plus a rundown on OSTS.													

I ST. MICHAELS TERRACE, WOOD GREEN, LONDON N22 4SJ. 01-888 3206

PUSH BUTTON HEADS OR TAILS Complete kit and full instructions supplied. A pocket game, easy to build and great to play. KIT PRICE $=\mathbf{f 5} \mathbf{2 5}+8 \%$ VAT. Post tree.

75 0HM

$2 \mathbf{1 " ~}^{\prime \prime}(57 \mathrm{~mm})$ LOUDSPEAKER BARGAIN This ever popular many project loudspeaker Only while stocks last. $65 p+12 \frac{1}{2} \%$ VAT.

REAR SHELF CAR SPEAKERS 5W 8 ohm good quality car stereo loudspeakers.
$\mathbf{S t i l l}$ only $f 3.75+12 \frac{1}{2} \%$ per pair.

HEAVY DUTY XOVER

A 2 way 8 ohm H/D Xover suitable for L/S systems up to 100 watt.
Fitted with screw terminals for input and a three position "HF LEVEL.' switch which selects either Flat, -3 dB or -6 dB .

ONLY $£ 3.00+8 \%$ VAT

A CRESCENT' 'SUPERBUY'

Goodmans 5" 8 ohm long throw H/D loudspeaker.
Mounting plate is integral with L/S chassis and has fixing holes with centres spaced at $5 \frac{1}{4}^{\prime \prime}$ (diagonally). ONLY $65.00+12 \frac{1}{2} \%$ VAT

CR. 3000. SCREWDRIVER SET
 In neat plastic case. Consists of:- awl,
jewellers screwdriver, watchmaker's screwcriver, radio screwariver, phillips screwdriver. All fit into master swivelling
handle.
CR. 4110 . DESOLDERING PUMP
ONLY £6
High suction pump with automatic ejection. Knurled, anti corrosive casing. Teflon nozzle.
CR.LV1.12vDRILL Ther £12.00p.
8\% VAT
BRITISH MADE "Versadrill', 12 volts DC. Compact battery operated power tool, sufficiently powerful to perform all the Dimensions:- $150 \times 50 \mathrm{~mm}$ (dia.)
C.180-'KEYNECTOR' MAINS Essential CQuipment for the showroom, workshop facshory, laboratory, home and hobby bench, the 'Keynector provides quick, efficient
and sate temporary mains connecion
$\mathbf{f 6 . 2 5}+8 \%$

P\& P. Orders up to $\mathbf{£ 5}$, add 30 p . Orders £5-£10, add 50p. All orders over £10 £5-£10, add 500. All orders over £10 post tree! Please add V.A.T. as

Personal callers welcome at: 21 Green Lanes, Palmers Green N13 Also 13 South Mali, Edmonton Green, Edmonton.

FOR YOUR GUIDANCE VALUE ADDED TAX

Unless otherwise shown, all prices in advertisements are inclusive of VAT. Where prices are exclusive, readers should ensure that they have added the correct amount of VAT before ordering.

Export orders are not subject to the addition of Value Added Tax.

QUALITY QUARTZ CRYSTALS QUICKLY OUR RANGE

 $10 \begin{array}{lllll} & 50 \mathrm{kHz} & 100 \mathrm{kHz} & 500 \mathrm{kHz} & 1 \mathrm{MHz} \\ 100 \mathrm{MHz} & 250 \mathrm{MHz}\end{array}$ PLEASE Indicate clearly the frequency range of your interest SEND SAE FOR APPROPRIATE DATA SHEETTELEX 46264 FRQNCY G

ambit weme

The PW Sandbanks Metal Locator: a kit based on this recently published design for this uniquely effective type of metal locator is available for only $£ 35.00+8 \%$ VAT. The kit closely resembles the appearance as published, except that a close fitting injection molded housing replaces the vacuum molded electronics box - to improve the enviromental suitability of the construction
The New Catalogue - "ecknowledgey Part 2 ,
Part 2 of the catalogue: by the time this advert reaches the press, part 2 should be on sale. Sorry it's late, but it contains so many new and interesting things that we felt we had to hold up production to include them. Part three by the autumn -and already there are many new items to go in! Part one. 45p, part 250 p . (inc PP etc).

Radio ICs

TDA1062
TDA1083
TDA1090 One chip AM/FM rx
TDA1220 One chip HiFi am/fm
$\begin{array}{ll}\text { TDA1220 } & \text { One chip am/fm rX } \\ \text { HAi197W } & \text { HiFi AM tuner iC }\end{array}$
CA3123E
TBA651
AM tuner IC
$\begin{array}{ll}\text { CA3089E } & \text { Famous FM IF system } \\ \text { CA3189E } & \text { As } 3089+\text { deviation mut }\end{array}$
As 3089+ deviation mute
AF preamp, adif, age
Improved S/N 3089
Improved $\mathrm{S} / \mathrm{N} 3089$
limiting amp+detector
high gain
agc'd IF preamp
synch AM/video detector
Cascode IF preamp
limiting FM preamp uA753 Communi SD6000 KB4412 DMOS RF/Mixer pair KB4413 Bal mixers, IF+age KB4417 AM/SSB det. squelch, age MC3357 mic processor $\begin{array}{ll}\text { MC3357 } & \text { best thing in NBFM yet } \\ \text { MC1496P }\end{array}$ Multiplex popular doubie bal mixer MC1310P popular PLI decoder $\begin{array}{ll}\text { uA758 } & \begin{array}{ll}\text { popular PLL decoder } \\ \text { buffered } 1310\end{array} \\ \end{array}$ $\begin{array}{ll}\text { UA758 } & \text { buffered } 1310 \\ \text { CA3090AO } & \text { RCA PLL decode }\end{array}$ HA1196 improved PLL decode with stereo preamps 19kHz pilot cancel,
distortion, high \mathbf{S} / N KB4437 as HA11223 with remote as HA11223 with remote
VCO kill facility stereo MUTING preamp
for post decoder mute for post decoder mute
impulse noise blanker
 grade types - absolutely no junk. 5 mm clips

for panel mounting 0.03 eat Misc. ICs for 0.03 each | MisC. ICs for radio/audio applications |
| :--- |
| U237B |
| 5 LED bargraph driver $0.80 *$ | $\begin{array}{lll}\text { U237B } & 5 \text { LED bargraph driver } & 0.80^{*} \\ \text { SAS6610 } & 4 \text { station touch tune IC } & 1.48^{*}\end{array}$ $\begin{array}{llll}\text { SASE610 } & \text { a station touch tune IC } & 1.48 \\ \text { SAS6710 adds } 4 \text { stations to } 6610 & 1.48\end{array}$ MSM5523/4 LW,MW,SW and FM digital frequency readout plus clock, timers, stopwatch $\mathrm{f} 14^{*}$ MSM5526 LW/MW/FM DFM with direct drive for LCD $\begin{array}{ll}\text { TCA730 } & \text { DC volume control }\end{array}$ $\begin{array}{ll}\text { TCA740 } & \text { DC tone control } \\ \text { TDA1028 } & \text { DC input switch }\end{array}$ TDA1028

TDA 1029 DC mode switch 3.50 Badio and Tuner modules
Badio and Tuner modules
We cannot really list all the details we would We cannot really list all the details we would
like to here . but with advent of the new mark like to here - but with advent of the new mark 3
tuner system, the Dorchester and matching AF units, Ambit offers you the widest choice ever, plus hardware and styling that matches the very
high standards we have set in this new range.

At lust, DIV Hi Fi which Inaks us if it isn't.

That's not to say it doesn't look like HiFi - just that it doesn't look like the usual sort of thing you have come to associate with DIY HiFi. The Mk3 outstrips and outperforms all British made HiFi tuners, and most imported ones too. Certainly at the price, there isn't one near it. But more than that, it looks superb. A small pic here would be an insult, so send an SAE for details on the kit that looks as if isn't. It's something else.

and now previewing the matching 60W/channel VMOS amplifier:
Γ^{\star} Matching both the style and design concepts of the MkIII HiFi FM tuner

* Hitachi VMOS power fets - characterized especially for HiFi application
* Power output readily multiplied by the addition of further MOSFET
* VU meters on the preamp - not simply dancing according to vol level

The PW Darthester-LW,IIW, 5W, \& Fm sterea tuner
the digital dorchester all band tuner

With styling and dimensions to fit in with the rest of AMBIT's new range of tuner \& audio equipment.

When the new range of OKI digital frequency display ICs was announced, the original prototype of the Dorchester had been made - but since so many of you wanted to use the OKI frequency counterdisplay system with the Dorchester, we quickly designed a unit to incorporate the necessary facilities. The Digital Dorchester is designed in 19 inch form, and forms a perfect match for the other units in the range. If you don't want to go to the expense of the full Ambit DFM1 module, with AM/FM/Time/Timers, then the MA1023 clock module can be used instead
The Dorchester has been described in PW Dec., Jan. and Feb. issues - but for those of you who may have missed it - it is an All Band broadcast tuner, covering LW/MW/SW and FM stereo in 6 switched ranges. Construction is very straightforward, with all the switching being PCB mounted - and the revolutionary TDA1090 IC used for AM/FM.
The electronics for the radio section of the Dorchester remain unchanged at $£ 33.00$,
with 12.5% VAT. The hardware package, of case, meter, PSU now costs $£ 33.00+8 \%$ with the MA1023 available for an extra $£ 5$ only.
For the fully digital version, with Ambit DFM1, the price is $f 56.50+8 \%$ VAT.

2 Gresham Roud, Brentwand,E5seK.

NOTICE TO READERS

When replying to Classified Advertisements please ensure:
(A) That you have clearly stated your requirements.
(B) That you have enclosed the right remittance
(C) That your name and address is written in block capitals, and
(D) That your letter is correctly addressed to the advertiser.
This will assist advertisers in processing and despatching orders with the minimum of delay.

Receivers and Components

 1920 to 1950

Receivers, valves, components, service data, historical research books, magazines, repairs and restorations. A com-
plete service for the collector and enthusiast of vintage radio.
S.a.e. with enquiries and for monthly newsheet. THE VINTAGE WIRELESS COMPANY, 64, Broad Streat, Staple Hill, Bristol BS16 5NL.' Tel.' Bristo 565472

BRAND NEW COMPONENTS BY RETURN

 $\begin{array}{llllll}21 / 35 \mathrm{~V} & \& & 4.7 / 25 \mathrm{~V} & 9 \mathrm{p} . & 10 / 25 \mathrm{~V} . & 15 / 16 \mathrm{~V}-12 \mathrm{p} . \\ 22 / 16 \mathrm{~V}, & 33 / 10 \mathrm{~V}, & 47 / 6 \mathrm{~V} . & 68 & \& & 100 \\ \text { @ } & 3 \mathrm{~V}-14 \mathrm{p} .\end{array}$

 $\underset{01}{\text { Mullard }}$ Polyester 250 V Vert. Mig. \quad E6 $\underset{47}{\text { Series }}$.68-11p. 70 14p. 15 20p. 22^{2} 24p. Mylar (Polyester) Film 100V. Vertical Mtg
$001, \cdot 002, \cdot 005-3 \frac{1}{2} p .07,02-4 \frac{1}{2} p-.04, \cdot 05-5 \frac{1}{2} p$ Miniature Film Resistors Highstab. E12 5\%. 0.125 watt $10 \Omega 2 \mathrm{M} 2 \Omega$.
0250 watt 1Ω to $10 \mathrm{M} \Omega$. $(10 \%$ over 1 M$) ~$ 0.500 watt 10Ω to $2 \mathrm{M} 7 \Omega$
1000 watt 10Ω to $10 \mathrm{M} \Omega$
 $\mathrm{BC} 107 / 8 / 9, \mathrm{BC} 147 / 8 / 9, \mathrm{BC} 157 / 8 / 9$. BF1944 \& 7-9p 20 mm . fuses $15,25,5,10,20,30 \& 5 A-3 p$ Post 10p (Free over £4). Prices VAT inclusive.

THE C. R. SUPPLY CO.
127, Chesterfield Road, Sheffield S8 ORN

VALVES

Radio - T.V. - Industrial - Transmitting Projector Lamps and Semiconductors

We Dispatch Valves to all parts of the world by return of post, Alf or Sea mail, 4000 Types in stock, 1930 to 1976 Obsolete types a speciality. List 30 p. Quotations S.A.E. Open to cailers Monday to Saturday 9.30 to 5.00 closed boxed Valves, Projector Lamps and Semiconductors.

COX RADIO (SUSSEX) LTD
Dept. P.W. The Parade, East Wittering,
West Wittering 2023 (STD Code 024366)

SMALL ADS

The prepaid rate for classified advertisements is 22 pence per word (minimum 12 words), box number 60p extra. Semi-display setting $£ 7.50$ per single column centimetre (minimum 2.5 cms). All cheques, postal orders etc., to be made payable to Practical Wireless and crossed "Lloyds Bank Ltd". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Manager, Practical Wireless, Room 2337, IPC Magazines Limited, King's Reach Tower, Stamford St., London, SE1 9LS. (Telephone 01-261 5846)

CONDITIONS OF ACCEPTANCE OF CLASSIFIED ADVERTISEMENTS

1. Advertisements are accepted subject to the conditions appearing on our current advertisement rate card and on the express understanding that the Advertiser warrants that the advertisement does not contravene any Act of Parliament nor is it an infringement of the British Code of Advertising Practice
2. The publishers reserve the right to refuse or withdraw any advertisement.
3. Although every care is taken, the Publishers shall not be fiable for clerical or printers' errors or their consequences.

RIBBON MICROPHONES with 4/8 Poleswitch 95p; Microswitches, Capacitors, Receiver and Microphone Capsules 10p each; Bakelite Telephones $£ 2.95$; Handsets 50 p; Magneto Generators £1.75. P.\&P. £1.50. CONVERSATION PIECES, 55 Swindon Road, Cheltenham. (35707)

b,Y.M. THERMOMETER KIT	
TOUCH CONTROLIED HIGHTING KITS	
Directly replace conventional light switches and control up to 300W of lighting No mains rewiring. Insulated touch plates. Easy to follow instructions. NEW! TD300K - TOUCHDIMMER. Single touchplate with alternate action. Brief touch switches lamp on and off, longer touch dims or brightens lamp. Neon lamp helps find the switch in the dark f8.99 Extension kit for TD300K permits operation from another location, two-way switching, etc. $\mathbf{£ 1}-50$	
TSD 300 K - TOUC ON/OF preset TS 300 K -ON/O TSA300K - Alates LD $300 \mathrm{Kariab}-300 \mathrm{~W}$	UCHSWITCH-DIMMER-One alternate FF action. TOUCHPLATE. Small knob for etting lamp brightness. /OFF TOUCHSWITCH. Two touch s OMATIC TOUCHSWITCH. Time $\mathbf{£ 4 . 3 0}$ ble 2 secs to $3 \frac{1}{2}$ mins. W LIGHTDIMMER KIT
Switches any appliance of up to 1 KW on and off at preset tumes once a day KIT contains: AY-5-1230 Clock/Applance Timer IC. 0.5° LED display mains supply, display drivers, switches LEDs triac. PCBs and full instructions. £14.90 White box $56 \times 131 \times 71 \mathrm{~mm}$ with red Acrylic window White box as above ready drilled for kit Ready-built in box, incl. mains cable	
HOU PLASTIC OPTO TOMPONFANTSTHIACS	
 ADD 8% VAT +25 p P\&P. Callers by appointment only. Tel:01-5799794 T. K. ELECTRONICS 106 STUDLEY GRANGE ROAD, LONDON W7 2LX	

TUNBRIDGE WELLS COMPONENTS, BALLARD'S, 108 Camden Road, Tunbridge Wells, Tel: 31803. No Lists. Enquiries S.A.E.

Equipment Wanted

Tempting prices paid for

Oscilloscopes-Signal Generators
DVM's -SmallComputers
Receivers.Teletypes.VDU's etc.

=- = Elecironic Brokers Lid 49/53 Pancras Road Londom NWI 2OB Telephone 01-837 7rax

Service Sheets

REG. OFFICE 14 B QUEENS PARADE, NORTH EALING W5 3HU

SERVICE SHEETS-COLOUR TV SERVICE MANUALS

Service Sheets for Mono TV, Radios, Record Players and Tape Recorders $£ 1$. Please send large Stamped Ad
We can supply manuals for most makes of Colour Television Receivers by return of post B.R.C. PYE ECKO PHILIPS ITT/KB SONY G.E.C. HITACHI BAIRD ULTRAINVICTA FERGUSON H.M.V. MARCONI AND MANY MORE

Let us quote you. Please send a Stamped Addressed Envelope for a prompt reply. Also comprehensive T.V. repair manuals by J. M. Court. S.A.E. for details. MAIL ONLY TO
G. T. TECHNICAL INFORMATION SERVICE

10 Dryden Chambers, 119 Oxford St., London W1R 1PA

SERVICE SHEETS for Radio, Television, Tape Recor ders, Stereo, etc., with free fault-finding guide, from 50 p and S.A.E. Catalogue 25p, and S.A.E. HAMILTON RADIO, 47 Bohemia Road, St. Leonards, Sussex.

LARGE SUPPLIER OF
 SERVICE SHEETS

and Colour Manuals, TV Mono Radios, Tuners, Tape Recorders. Record Players, Transistors. Stereograms, al at 75 p each + S A.E. except colour TV and Car Radios. State if Circuit will do. if sheets are not in stock. All TV Sheets are full lengths 24×12, not in Bits \& Pieces. Free Fault Finding Chart or TV Catalogue with order.
C. CARANNA (Mail Order)

71, Beaufort Park, London, NW116BX $01-4584882$

BELL'S TELEVISION SERVICES for Service Sheets on Radio. TV etc., $£ 1.00$ plus SAE Colour TV Service Mañuals on request. SAE with enquiries to B.T.S., 190 King's Road, Harrogate, N. Yorkshire. Tel: (0423) 55885.

SERVICE SHEETS, Radio, TV etc., 10,000 models. Catalogue 24 p, plus S.A.E. with orders, enquiries. TELRAY, 154 Brook Street, Preston PR 1 7HP.

Ladders

LADDERS varnished $22^{\prime \prime}$ extd. $£ 30$. Carriage $£ 2.80$. Leaflet. Also Alloy ext. up to $62 \frac{1}{2} \mathrm{ft}$. LADDER CENTRE (WLS3), Halesfield (1), Telford. Tel: 586644.

Educational

TELEVISION TRANING

18 MONTHS full-time course for beginners to include all the undermentioned subjects. Short courses, combining one or more subjects, for applicants with suitable education and electronics background such as $C \& G$, HND BSc etc.

- 13 WEEKS TECHNICAL MATHEMATICS \& ENGLISH
- 13 WEEKS ELECTRONICS \& RADIO
- 13 WEEKS MONOCROME TELEVISION
- 13 WEEKS COLOUR TELEVISION
- 13 WEEKS VIDEO SYSTEMS (CCTV, VCR, Teletext, etc.)
The training incorporates a high percentage of practical work.
Next session starts on April 23rd
(Also available 2 $\frac{1}{3}$ year course in Marine Electronics \& Radar for employment as ships Radio Officer)

Prospectus from:

LONDON ELECTRONICS COLLEGE

Dept. PWB4, 20 Penywern Road, London SW5 9SU.

Tel. 01-373 8721

COLOUR TV SERVICING

Learn the techniques of servicing Colour TV sets through new homestudy course approved by leading manufacturers. Covers principles, practice and alignment with numerous illustrations and diagrams. Other courses for radio and audio servicing. Full details from:

ICS SCHOOL OF ELECTRONICS
Dept. F277 Intertext House, London SW8 4UJ
Tel. 01-622 9911 (all hours)
State if under 18

TECHNICAL TRAINING

Get the training you need to move up into a higher paid job. Take the first step now-write or phone ICS for details of ICS specialist homestudy courses on Radio, TV, Audio Eng. and Servicing, Electronics, Computers, also self-build radio kits. Full details from:

ICS SCHOOL OF ELECTRONICS
Dept. F277 Intertext House, London SW8 4UJ
Tel. 01-622 9911 (all hours)
State if under 18

CITY \& GUILDS EXAMS

Study for success with ICS. An ICS homestudy course will ensure that you pass your C. \& G. exams. Special courses for: Telecoms, Technicians, Electrical Installations, Radio, TV \& Electronics Technicians, Radio Amateurs, Full details from:

ICS SCHOOL OF ELECTRONICS
Dept. F277 Intertext House, London SW8 4UJ Tel. 01-622 911 (all hours)

State if under 18
GO TO SEA as a Radio Officer. Write: Principal, Nautical College, Broadwater, Fleetwood, FY7 8JZ.

Record Accessories

STYLI for Hi-Fi. Music Centres. III. List free for S.A.E. also cartridges, leads, accessories. Details-FELSTEAD also cartridges, leads, accessories. Details-FELSTEAD
ELECTRONICS (PW), Longley Lane, Gatley, Cheadle, Ches. SK8 4EE.

For Sale

NEW BACK ISSUES of "PRACTICAL WIRELESS" available 70p each, post free. Open P.O. Cheque returned if not in stock-BELL'S TELEVISION SERVICE, 190 Kings Road, Harrogate, N. Yorks. Tel: (0423) 55885.
SEEN WHISTONS CAT? 5000 odds and ends. Mechanical/Electrical Cat Free. WHISTON, (Dept. PW), New Mills, Stockport.

TRIO R300 General Coverage Receiver as new $£ 159$ o.n.o. TRIO $2200 \mathrm{G} £ 114$ o.n.o. $1-20$ Watt 2 M P.A. $£ 34$ o.n.o. 021-453-4748.

BACK ISSUES P.W. 1966-75, E.E.- $1976+7750$ p each. Inclusive. Cheque/P.O. Returned if N/A. P. R. Sant, 10 Pevensey Close, Worcester.

Books and Publications

Build your own P.A., GROUP \&
 DISCO SPEAKERS bY R.F.C. Stephens

 drive units. $\mathbf{£} 3.95$ post free ($\$ 8$ overseas).
THE DALESFORDD SPEAKER BOOK by R.F.C. THE DALEESORD SPEAKER BOOK by R.F.C. structor. Latest technology DIY designs. Plans for I.B... and Reflex designs for $10-100$ watts. Also unusual centre-bass system. $\mathbf{£ 2} \mathbf{2 0}$ post free ($\$ 5$ overseas).

VAN KAREN PUBLISHING
5 SWAN STREET, WILMSLOW, CHESHIRE.

COMPREHENSIVE TV REPAIR INSTRUCTIONS for your set $£ 5.00$ with circuit (if requested). Free catalogue unique TV/other publications. AUSE (PW), 76 Church Street, Larkhall, Lanarkshire ML9 1HE.

Wanted

WANTED Diagram for Labgear Transmitter LG300 or/and information regarding best type of aerial. D. Collin, 8 High Street, Befford, Northumberland. NE70 7NH.

ELECTRONIC COMPONENTS PURCHASED. All Types Considered - Must be new. Send detailed list - Offer by return -. WALTONS, 55A Worcester Street, Wolverhampton.

Miscellaneous

THE SCIENTIFIC WIRE COMPANY PO Box 30, London E. 4 Reg. Office 22 Coningsby Gdns				
ENAMELLED COPPER WIRE				
Swg	1 lb	8 cz	408	20
10 to 19	2.65	1.45	. 75	. 60
20 to 29	2.85	1.65	. 90	. 70
30 to 34	3.05	1.75	1.00	. 75
35 to 40	3.40	1.95	1.15	. 84
41 to 43	4.55	2.55	1.95	1.30
44 to 46	5.05	3.05	2.15	1.70
47	8.00	5.00	3.00	1.80
48	15.00	9.00	6.00	3.30
SILVER PLATED COPPER WIRE				
14 \& 16	4.50	2.25	1.44	. 90
20 \& 22	5.00	2.85	1.74	1.06
24 \& 26	5.70	3.31	2.00	1.22
28\&30	6.67	3.86	2.35	1.44
Prices include $P \& P$ and VAT SAE brings list of copper \& resistance Wires Dealer Enquiries Invited				

SUPERB INSTRUMENT CASES by Bazelli, manufactured from P.V.C. Faced steel. Hundreds of people and industrial users are choosing the cases they require from our vast range. Competitive prices start at a low 90 p. Chassis vast range. Competitve prices stating facilities at very competitive prices, 400 models to punching facilities at very competitive prices, 400 models to
choose from, free literature (stamp would be appreciated). BAZELLI, Dept. No. 25, St. Wilfreds, Foundry Lane, Halton, Lancaster LA 6LT.

TIRRO's new mail order price list of electronic components now available on receipt of SAE. TIRRO ELECTRONICS, Grenfell Place, Maidenhead, Berks.

NICKEL CADMIUM BATTERIES

Rechargeable and suitable for 'fast charge' HP7 (AA) £1.13, $\mathrm{SUB} \mathrm{C} £ 1.47, \mathrm{HP} 11$ (C) $£ 2.15, \mathrm{HP} 2$ (D) $£ 3.27, \mathrm{PP}{ }^{2}$
$£ 4.09$ (PP3 not suitale for fast charge). PP3 charger £5.31. All above Nickel Cadmium batteries are guaranteed
EVER. READY' full spec, and are supplied complete with EVER READY' full spec, and are supplied complete with
solder tags (except PP3). Just in stock-New rechargeable solder tags (except PP3). Just in stock- New rechargeable sealed lead acid maintenance free batteries suitable for
bufglar alarms etc., $\mathbf{1 . 2}$ amp hr. 6 v . $\mathbf{£ 4 - 4 0} 6$ amp hr. 6 v . burglar alarms etc., $\mathbf{1 . 2} \mathrm{amp} \mathrm{hr}$. 6 v . £4-40 6 amp hr .6 v .
£5.65.

Quantity prices available on request. Date and charging circuits free on request with orders over $£ 10$ otherwise 30 p
post and handing (specify battery type), all prices include post and handiling (specify battery type), all prices include
VAT. Please add $10 \% \mathrm{P} \& \mathrm{P}$ on orders under $£ 10.5 \%$ over f10.
Cheques, postal orders, mail order to: SOLID STATE SECURITY DEPT. PW.1 1

ALFAC etch resist transfers and other p.c. board drawing materials available from stock. SAE details. Ramar Constructor Services, Masons Road, Stratford-upon-Avon. CV37 9NF.

PW October issue 2 m MOSFET CONVERTER units from the author G4CFY. Kit of parts for complete PCB $£ 8 \cdot 50$. Ready built and aligned units boxed $£ 17.00$. Parts available separately, 38.6667 Mhz Xtal £2.75, PCB £1.85.

1750 Tone Burst Board. Tested and Aligned 1.4in sq. £3.50.

© SPECTRUM COMMUNICATIONS

12 Weatherbury Way, Dorchester, Dorset DT1 2EF. Prices inclusive of P. \& P.

LOSING DX?

RARE DX UNDER QRM? Dig it out with a Tunable Audio Notch Filter, $350-5000 \mathrm{~Hz}, 40 \mathrm{~dB}$ notch RADIO 4 GONE? FRG7? AR88? 200 KHz to Mecium EXPLORE V.L.F. $10-150 \mathrm{KHz}$ Receiver f 10.70 TIMET MSF 60 KHz Receiver $£ 13.70$ or with sequentia year, month, date, day, hours, minutes, second SIG. GEN, $10 \mathrm{~Hz}-200 \mathrm{KHz}$, sine $/$ square, $f 10.80$ PROGRAM YOUR OWN tunes on a MUSICA DOORBELL, new tune each day, just needs bel How Low GAN speaker, $£ 19.50$.
HOW LOW CAN YOU GO? $100-600 \mathrm{KHz}$ to 4.1-4-6 MHz Converter only f 9.90
Giro 21-923-4000. Each easy-assembly kit inciudes all parts, printed circuit, case, postage etc, money back

CAMBRIDGE KITS

45 (PR) Old School Lane, Milton, Cambridge

MORSE CODE TUITION AIDS

Cassette A: 1-12 w.p.m. for amateur radio examination. Cassette B: 12-24 w.p.m. for professional examination preparation.
Morse Key and Buzzer Unit for sending practice.
Price each Cassette (including booklets) $£ 4.50$. Morse Key and Buzzer £4-50.
Prices include postage etc., Overseas Airmail $£ 1.50$ extra. MHEL ELECTRONICS (Dept. P.W.), 12 Longshore Way, Milton, Portsmouth PO4 8LS.

BUILD you own 7718 type Metal Detector, details SAE 117 Horton Road, Brighton, BN 1 7EG

GUITAR/PA/MUSIC/AMPLIFIERS

100 watt with superb treble bass overdrive, 12 months Twin channel sep treble/bass per channel £52; 60 watt $£ 46$ 200 watt $£ 69 ; 100$ watt four channel sep treble/bass pe channel $£ 65 ; 200$ watt $£ 79$; Slaves 100 watt $£ 32 ; 200$ watt
$£ 48$; Fuzz boxes great sound $£ 7.90$; Bass fuzz $£ 8.50 ; 100$ watt combo superb sound overdrive, sturdy construction castors, unbeatable $£ 85$; Twin channel $£ 95$; Bass Combo £95; Speakers 12 in. 100 watt $\mathbf{£ 2 2 . 5 0 ; ~} 60$ watt $£ 14.50$; Shure mic unidyne B $£ 26$ Send Cheque or P.O. to:

WILLIAMSON AMPLIFICATION
62 Thorncliffe Ave, Dukinfield, Cheshire. Tel. 061-344 5007

LET LYNWOOD ELECTRONICS quote for parts for you project at competitive prices. Send list of your requirements Interested and helpful service. 20 Stourcliffe Avenue, Bournemouth BH6 3PT

AERIAL BOOSTERS Improve weak VHF Radio and Television reception, price $£ 5-00$ S.A.E. for Leaflets. ELECTRONIC MAILORDER LTD., Ramsbottom, Bury, Lancashire BLO 9AG

DART STATIONERY Presents FOR THE AMATEUR Large variety of personalised QSL CARDS - see catalogue for prices LOG BOOKS \qquad E2.00 each FORTHE DX'or Personalised OSL CARDS. RECEPTION REPORT LETTERS. Professionally styled letters printed in two colours and supplied in pads of 100 letters. 1 Pad $£ 1.80$ 2+ Pads $\mathbf{£ 1 . 6 0}$ each. Loose Leaf LOG BOOKS with 100 sheets \qquad £2.50 FOR THE CB' $\boldsymbol{\theta}$ Personalised OSL CARDS. CATALOGUES available containing complete range of radio stationery PRICE 45p. EVERY ORDER CARRIES A MONEY BACK ASSURANCE IF NOT COMPLETELY SATISFIED. Please send cheques or P.O. payable to:- DART STATIONERY 20, Bromley Road, London E17 4PS, England Tel. 01-539 5412

NOTICE
 TO
 READERS

Whilst prices of goods shown in classified advertisements are correct at the time of closing for press, readers are advised to check with the advertiser both prices and availability of goods before ordering from non-current issues of the magazine.

ORDER FORM PLEASE WRITE IN BLOCK CAPITALS

Please insert the advertisement below in the next available issue of Practical Wireless for insertions
| enclose Cheque/P.O. for $£$
(Cheques and Postal Orders should be crossed Lloyds Bank Ltd. and made payable to Practical Wireless).

NAME.
Send to: Classified Advertisement Manage PRACTICAL WIRELESS
GMG, Classified Advertisement Dept., Rm. 2337, King's Reach Tower, Stamford Street, London SE1 9LS Tefephone 01-261 5846
Rate
22p per word, minimum 12 words. Box No. 60p extra

[^6]

Mail Order Protection Scheme

The Publishers of Practical Wireless are members of the Periodical Publishers Association which has given an undertaking to the Director General of Fair Trading to refund monies sent by readers in response to mail order advertisements, placed by mail order traders, who fail to supply goods or refund monies owing to liquidation or bankruptcy. This arrangement does not apply to any failure to supply goods advertised in a catalogue or in a direct mail solicitation.

In the unhappy event of the failure of a mail order trader readers are advised to lodge a claim with Practical Wireless within three months of the date of the appearance of the advertisement, providing proof of payment. Claims lodged after this period will be considered at the Publisher's discretion. Since all refunds are made by the magazine voluntarily and at its own expense, this undertaking enables you to respond to our mail order advertisers with the fullest confidence.
For the purpose of this scheme, mail order advertising is defined as:-
'Direct response advertisements, display or postal bargains where cash had to be sent in advance of goods being delivered'. Classified and catalogue mail ordei advertising are excluded.

THE firm for speakers!

SEND 15P STAMP FOR THE WORLD'S BEST CATALOGUE OF SPEAKERS, DRIVE UNITS, KITS, CROSSOVERS ETC. AND DISCOUNT PRICE LIST.

```
AUDAX - AUDIOMASTER - BAKER - BOWERS &
WILKINS CASTLE CELESTION CHARTWELL
COLES - DALESFORD - DECCA - EMI - EAGLE -
ELAC FANE GAUSS - GOODMANS I.M.F. -
ISOPHON - JR JORDAN WATTS - KEF - LEAK -
LOWTHER MCKENZIE - MONITOR AUDIO PEERLESS
- RADFORD RAM RICHARD ALLAN SEAS -
SHACKMAN STAG TANGENT - TANNOY 
VIDEOTONE WHARFEDALE YAMAHA
```


WILMSLOW AUDIO (Depp. ...w.)

SWAN WORKS, BANK SQUARE, WILMSLOW, CHESHIRE SK9 1HF

Discount Hi-Fi Etc. at 5 Swan Street and 10 Swan Street Speakers, Mail Order \& Export 0625529599 Hi-Fi 0625526213

WATFORD EEEGRONICS
 $33 / 35$, CARDIFF ROAD, WATFORD, HERTS, ENGLAND

ALL DEVICES BRAND NEW. FULL SPEC. AND FULLY GUARANTEED. ORDERS ALLDESCESED BY RETURN OF POSTHTERMS OF BUSINESS: CASH/CHEOUE/P.O.S OR BANKERSDRAFT WITH ORDER. GOVERNMENT AND EDUCATIONAL INSTITUTIONS OFFICIAL ORDERS ACCEPTED. TRADE AND OVE RSEAS ORDERS POSTAGE AT COST. SEND 50 P (plus 25 P P\&p) for our catalogue.					
VAT					
We stock many more items. It pays to visit us. We are situated behind Watford Foothati Ground. Nearest Underground/Br. Rail Station: Watford High Street. Open Monday to Saturday 9 a.m.-6 p.m. Ample Free Car Parking apace available.					
POLYESTER CAPACITORS: Axial lead type. (Value are in ,ff). $400 \mathrm{~V}: 0.001,0.0015,0.0022,0.0033,0.0047 .0 .0068,0.01,0.0159 \mathrm{p}, 0.01810 \mathrm{p}$ 0.022 .0 .03311 p; 0.047, $0.06814 \mathrm{p} ; 0.117 \mathrm{p} ; 0.15,0.22$ 24p; $0.33,0.4741 \mathrm{p} ; 0.68$ ${ }_{160 \mathrm{~V}}^{\mathrm{4Bp}}: 0.039,015,0.2211 \mathrm{p} ; 0.33,0.47$ 19p; $0.68,1.022 \mathrm{p} ; 1.5$ 29p; 2.2 32p; 4.7 36pillien: 1000V: 0.01, 0.015 20p; 0.022 22p; 0.047 26p; 0.1 38p; 0.47 53p; 1.0 175p.					
POLYESTER RADIAL LEAD (Values in μ). 250V:					
 $330,47032 \mathrm{p} ; 100050 \mathrm{p} ; 25 \mathrm{~V}=10.22,476 \mathrm{p} ; 80,100$, 160 8p; 220. 250 13p; 470 , 640 12p; 1000 14P: 3300. 4700 70p; 15.000 450p; 25V: 4700 68p; $200048 \mathrm{p} ; 40 \mathrm{~V}: 2000+200095 \mathrm{p}$.					
TANTALUM BEAD CAPACITORS $35 \mathrm{~V}: 0.1 \mu \mathrm{~F}, 0.22,0.33,0.47,0.68,1.0$ 16 p each. 10 v : $100 \mu \mathrm{~F} 35 \mathrm{p}$. 16 V : 47 , $100 \mu \mathrm{~F} 40 \mathrm{p}$.					
		SLIDER POTENTIOMETERS 0.25 W log and linsar values 60 mm track $5 \mathrm{~K} \Omega \cdot 500 \mathrm{~K} \Omega$ single gang			
		PRESETPOTENTIOMETERS 0.1W50』-2.2M Minl. Vert. \& Horiz. O. $25 \mathrm{~W} 100 \Omega-3.3 \mathrm{M} \Omega$ Horiz. $0.25 \mathrm{~W} 250 \Omega-4.7 \mathrm{M} \Omega$ Vert.			
POLYSTYRENECAPACITORS: 10pF to $1 \mathrm{nF}, 8 \mathrm{p}$. 1.5 nF to 47 nF 10 p .					
SILVERMICA(pF) 3.3,4.7,6.8,10. 12, 18. 22, 27, $33,47,50,68$, $\begin{array}{lll}150.200, & 250 & 9 p\end{array}$ each, 300, 330, 360, 390, 600 each.	S-DEC 350p* T-DEC 400p U-DEC 'A $465 p^{*}$ $U-D E C ~ ' 8 ' ~$ $699 p^{*}$				
			HAR	AR	
Jackso	ECAPS.				
	325		170 p		
				7454	

NE566**	
NE567V*	A
E571	450
RC41360	
SG3402	295
SN72710**	43
SN76003N	170
SN76013N	40
SN76013	
SN76018	148
SN76023	
SN76033	175
SN761	
SN76131**	15
SN76227N	
SN76477*	5
SN6660	
TAA621A	
TAA661A	5
TAA960	150
TAD 100	150
T8A120S	215
T8A5500	330
TBA64 1-A	
8×1	
TBA651	80
TBAB00	9
TAAB20	0
t8A9200	260
TCA965*	120
TDA1022	
TDA1024.	
TLOA2020	320
TLO62CP*	125
TLO64CN*	199
T1072 ${ }^{\text {THP* }}$	125
TLO74CN*	99
TLO81 ${ }^{\text {c }}$ *	48
TLO82CP*	96
L084 ${ }^{\text {a }}$	198
ZN414	90
424E	130 415

TRANSISTORS
 $A C 187$
$A C 188$
$A C Y$
$A C Y$

 3

 ตav

INDEX TO ADVERTISERS

2

Fidelity Fastenings Flairline Supplies

George Sales, David Golledge, P.R G.T. Information Services 83 Greenweld Electronics 61 H.A.C. Short Wave Supplies 88 Harverson
Heathkit
Home Radio

I.L.P. Electronics	\ldots	\ldots	\ldots	13
Intertext I.C.S.	\ldots	\ldots	\ldots	\ldots
17				

Kramer \& Co. 14

| Leeds Radio $\quad .$. | | | |
| :--- | :--- | :--- | :--- | :--- |
| London Electronics College | \ldots | \ldots | 61 |

Lowe Electronics

Manor Supplies

Maplin Electronic Supplies	\ldots	Cover IV	
Marshall A. (London) Ltd.	\ldots	\cdots	12
Mar			

Metac
Mhel Electronics
Milward, G.F.

Osmabet

Partridge Electronics
Progressive Radio
Powell, T8817821167913146183
25TimetronT. T. Electronics$\begin{array}{r}8 \\ 14 \\ \hline\end{array}$
Scientific Wire Co.
Scopex (Calscope) $\begin{array}{r}4 \\ 83 \\ \hline\end{array}$
Solid State Security

$$
\text { Sonic } \mathrm{Hi}-\mathrm{Fi}
$$

Southern Valve Co.Spectrum CommunicationsSquires, RogerSternway ElectronicsSwanley ElectronicsRadio Components SpecialistsRadio Exchange Ltd.
Reed Hampton (E.S.E.)
R.S.C (Hi Fi)
R.S.T. Valve Mail Örder Co.
Radio \& T.V. Components Ltd. 7
응
Van Karen Publishing
Vero
Vintage Wireless Company 83
81
8 82
Wales, P.J. (Plessis Electronics) 10
6.87
Webster Electronics Wilmamson Amp 84
85

A SELECTION FROM OUR STOCKS OF FULLY GUARANTEED FIRST QUALITY VALVES

			1.00	6 CY 5	1.00	12AT6	0.60	ECF200	0.90	EM84	0.60	PCL81	0.65	PY82	0.55	UCC84	0.75
$1 \mathrm{IR3GT}$	0.65 0.50	6 6AX5GT	1.30	${ }^{6 \mathrm{Cr}} 7$	1.00	12AT7	0.50	ECF201	0.90	EM87	1.00	PCL82	0.80	PY83	0.70	UCC85	0.55
IR5	0.50 1.20	6AX5GT	1.30 0.45	$6 \mathrm{DO6B}$	1.45	12AUS	0.65	ECF801	0.95	EY81	0.50	PCL84	0.75	PY88	0.75	UCF80	0.75
1X28	1.20 0.80	6BA6	0.45 0.48	6DT6	0.80	12AU7	0.47	ECF802	0.95	EY87	0.50	PCL86	0.85	PY500A	1.30	UCH42	0.90
5AT8	0.80 0.75	6BF5	0.85	6078	0.80	12AV6	0.85	ECH42	1.10	EY88	$0 \cdot 55$	PCL805	0.75	T21	7.80	UCH81	0.65
5 U G	0.60	6BF6	0.75	60W4	0.90	12AV7	1.00	ECH81	0.55	EY500A	1.50	PD510	3.35	122	7.80	UCL81	0.70
508	0.75	6BG6G	0.30	6ES5	1.00	$12 \mathrm{AK7}$	0.55	ECH200	0.80	E280	0.50	PL36	1.10	425	1.00	UCL83	0.80
5V4G	0.60	6BH6	0.85	6EV5	1.50	$12 \mathrm{AY7}$	0.85	ECL80	0.60	E281	$0 \cdot 50$	PL81	0.80	UABC	0.58	UF41	1.00
$5 \times 4 \mathrm{G}$	0.80	6BJ6	1.20	6EW6	0.80	12BA6	$0 \cdot 65$	ECL81	0.75	GY501	0.90	${ }_{\text {PL }} \mathrm{P} 82$	0.55	UAF41	0.80	UF80	0.50
5×8	0.90	6BJ7	0.65	6GH8A	0.80	12 BF 6	0.67	ECL82	0.60	G732	0.65	PL84	0.75	UBC4	0.70	UF85	0.50
5 Y 3 GT	0.65	6BK4B	1.40	6GK5	0.70	128H7A	0.75	ECL. 83	1.15	G732	0.65 3.80	PL504	1.05	UBC81	0.60	UL84	0.85
574 GT	$0-65$	6BN4A	0.90	6GK6	0.90	12 BL 6	0.70	ECL84	0.70	gzas	0.55	PL508	1.30	UBF80	0.60	UM80	0.60
6AB7	0.60	6BN6	0.80	6 J 4	1.20	$12 \mathrm{Ba6}$	0.90	ECL85	0.65	- 2		P1802	2.80	UBF89	0.60	UM81	0.75
6AC7	0.80	6807A	0.65	6J5GT	0.80	12BY7A	0.80	ECL86	0.85	OR2	0.75 0.60	PY81	2.80 0.70	UBL21	0.85	UM84	0.45
6 AD8	0.60	6BR8A	1.20	6J6	0.55	12CU6	0.90 0.75	EF85	0.48	-B3	0.75			Ubla			
6AF4A	0.80	6BS7	$2 \cdot 30$	6 J 7	0.80	19 ads	0.73	EF86	0.60	OC2	1.40						
6AG5	0.65	$6 \mathrm{BU8}$	0.85	6K5G7	0.75	19BG6G	0.50	EF86	0.75	0¢3	0.75						
6AG7	0.85	6BW7	1.00	6K6GT	0.85	35A3	0.70	EF92	- 0.70	$0{ }^{0}$	0.75		OS	LLO	PE	UB	
6AH6	0.95	$6 \mathrm{BZ6}$	0.65	6L6GT	0.85	35 B3	0.65 0.70	EF98	0.70 0.90	PABC80	0.45		rent	roduc	Ma	e in	
6AJ5	0.65	6827	0.70	${ }^{6} 607$ 7GT	0.85 0.90	35C5	1.00	EF183	0.70	PC86	0.85	Or		e T	,	1	
6AK5	0.55	6C4	0.55	607	0.90	505 C	0.85	EF184	0.70	PC88	0.85	On	h	-	-	1.	is
6 6AK6	0.75	6C5GT	0.60 0.50	6SA7	0.80 0.80	- 0 JF96	0.85 0.60	EFL200	1.70 1.20	PC96	0.50		rep	lacem	for	1 CP	Tube
6 6AK7	0.85 0.40	6C6 $6 \mathrm{C8G}$	0.50 0.60	6SG7 6SK7	0.80 0.80	DF96	0.60	EH90	0.60	PC97	0.95	cha		s are	tica	wit	se of
6AL5	0.40	6C8G	0.60 0.55	6SK7 6SL7GT	0.80 0.70	DF96 DK92	1.00	EL33	2.50	PC900	1.00	cha	,ist	s are	,	Wi	
6AM6	0.70 0.70	6CB6 $6 \mathrm{CG7} 7$	0.55 0.70	6SLIGT 6SN7GT	0.70 0.70	DL96	1.60 0.60	EL36	0.95	PCC84	0.50	1 CP	As	the con	ctio	s ar	rent
6AM8	0.70 2.50	6CG7 6CG8A	0.70 0.75	6SN7	0.70 0.80	ECC84	$0 \cdot 60$	EL81	0.65	PCC85	$0 \cdot 60$	the	e is	supplie	comp	ete	base,
6ANS	0.85	6CM7	0.80	6SR7	0.80	ECC85	0.48	EL82	0.60	PCC88	0.65 0.75		ion	diagr	and	-ch	data
6 6A05	0.85	6CN7	1.20	6V6GT	0.65	ECC88	1.25 0.75	EL83	0.60	PCC189	0.75 1.00		*				
6AS6	1.00	6 CO 8	0.75	6×4	0.60	ECC88	$0 \cdot 75$	EL84	0.45	PCF80	0.65	± 12	*	ree-i	tu	TY	BP1.
6AS7G	1.20	6CS7	0.85	$6 \times 56 \mathrm{~T}$ 6×8	0.60 0.80	ECC89 ECC189	0.80 0.80	EL86 EL. 95	0.75 0.70	PCF82	0.65 0.45	Thi	ll kn	wn tu	used	in "P	ECK''
6AT6	0.75	6CU5	1.00 1.00	6×8 1246	0.80 0.60	ECF80	0.80 0.60	EL504	0.70 0.80	PCF84	0.65						
6AU6	0.50 0.75	6CU6 6CW4	1.00 3.75	$12 A 6$ $12 A L 5$	0.80 0.65	ECF82	0.55	EM80	$0 \cdot 65$	PCF86	0.75		cop	can	促	80	
6AV6 6AW8A	0.75 0.75	6CW4 $6 \mathrm{CX8}$	3.75 1.00	$12 a 45$ $12 a L 5$	0.65 0.60	ECF86	0.80	EM81	0.60	PCF806	1.00		base	or the	ve	80	

VAT is not included. Please add $12 \frac{1}{2} \%$ on all items except those marked with asterisk, on which VAT is 8%. Postage and packing charges are $\mathbf{f 0} \mathbf{1 0} \mathbf{1 0}$ per f subject to a minimum of $\mathbf{£ 0 . 3 0}$. Minimum order charge for Approved Credit customers $\mathbf{£ 2 0 . 0 0}$. Minimum Transaction Charge for mail orders $£ 1.00$.

OUR NEW 1978/1979 CATALOGUE IS NOW READY AND WILL BE SENT ON RECEIPT OF REMITTANCE FOR $\mathbf{6 0} \mathbf{3 0}$
H.A.C. short-wave KITS WORLD-WIDE RECEPTION

H.A.C. well known by amateur constructors for its Short Wave receivers, now offers a
complete range of kits and accessories to suit complete range of kits and accessories to suit the novice and the expert.
$£ 10 \cdot 50$ INCLUSIVE-the ever popular and easy to construct DX receiver Mark III; containing all genuine short wave components.
drilled chassis, valve, accessories and full drilled chas
instructions.
instructions. T TWIN TRANSISTOR RECEIVER, selective, sensitive and with fantastic reception, yet needing only a single PP3 battery, at $£ 12.50$ this receiver is outstanding value, and will give you hours of interest and entertainment.
Lastly the K and K plus (illustrated above) for the more advanced constructor. This receiver has recently been re-designed for even better reception. All orders despatched within 7 days. Send stamped and addressed envelope now for free descriptive catalogue of kits and accessories.

SORRY, NO CATALOGUES WITHOUT S.A.E.
"H.A.C." SHORT-WAYE PRODUCTS
P.O. Box No. 16, 10 Windmill Lane Lewes Road, East Grinstead, West Sussex RH19 3SZ

[^0]: New Branches at
 \star LEEDS, *LIVERPOOL \& *WOLVERHAMPTON

 OPEN ALL DAY SATS (5 Day Week) Prices correct at 11.12.78 E. \& O.E. All items subject to availability

 RRADFORD 10 North Parade (Closed Wed.). Tei. 25349 BIRMINGHAM 30/31 Great Western Arcade.
 Carlisce 8 English Street (Closed Wed.) Tel. 021-2361279 C\&RLISLE 8 English Street (Closed Thurs.). Tel. 38744 COVENTRY 17 Shelton Sq., The Precinct. $\begin{gathered}\text { (Closed Thurs.) Tel. } 25983\end{gathered}$ DERBY 97 St. Peter's Street (Closed Wed.) Tel. 41361 DEWSEURY $9 / 11$ Kingsway (Closed Tues.) Tel. 468058
 DONCASTER 3 Queensgate, Waterdale Centre. EONCASTER 3 Queensgate, Waterdale Centre. ThBURGH 101 Lothian Rd, (closed Thurs). Tel. 63069

 Gla ASGOW 326 Argyle St. (Closed Tues.). Tel. 041-248 4158 HULL 7 Whitefriargate (Closed Thurs.). Tel. 20505 LEICESTER 32 High Street (Closed Thurs.). Tel. 56420 LONDON 238 Edgware Road, W. 2 (Closed Thurs.) * LFEDS 16.18 County (Mecca) Arcade, Briggate Tel. 7231629 (Closed Wed.). Tel. 489609 \star IVERPOOR 35 Dawson Way, St. John's Precinct $\begin{gathered}\text { (Closed Wed.). Tel, } 7089380\end{gathered}$ *MANCMESTER 60A Oldham Street $\begin{gathered}\text { (Olosed Wed.). Tel. } 2362778 \\ \text { (OR }\end{gathered}$

 AUDIO HOUSE, HENCONNER LANE, LEEDS, 18.
 MAlL ORDERS MUST NOT BE SENT TO SHOPS
 TERMS C.W.O. of C.O.D. No. C.O.D. Under A3. POSTAGE BOD PER
 MIDDLESEROUGH 103 Linthorpe Rd. (Cl. Wed.) Tel, 247098
 NEWCASTLE UPON TYNE 59 Grainger St.
 NOTTINGHAM 19/19A Market (Clioet $\begin{aligned} & \text { (Cled }\end{aligned}$
 SHEFFIELD 13 Exchange Stree (Closed Thurs.). Tel, 48088
 13 Exchange Street (Castle Mat. Blds.)
 $\left(\begin{array}{ll}\text { (Closed Thurs.). Tel. } 20716\end{array}\right)$
 *WOLVERHAMPTON $\begin{aligned} & 6 \text { Wulfrun Way } \\ & \text { (Closed Thurs.). TeI. } 28612\end{aligned}$ *MUSICAL INSTRUMENTS \& ACCESSORIES in stock at these branches

[^1]:
 LCD calculators with full memory, \%, , K. Most have LC-79 Sensor touch Mini Card with APO. 16
 LC-841 8 APO. Rigid $i \times 2 i \times 48$ ins. Pouch $E 12,95$ NEW HL series. Two AA batteries last $6,000-10,000$ hours. HL-801 8 digits $£ 9.95$. HL-101 (10) £12.95. HL-12 $1 . £ 19.95$. LCd Scientific Calculators. FX-48 $£ 19.95$. FX-2500 $£ 21.95$. FX- $3100 £ 25.95$. FX- $8000 £ 29.95$.
 Most CASIO products in stock. Send 15 p for brochures.
 Prices include VAT, P \& P. Send cheque, P.O. or phone your Access or B card number to

 ## TIMETRON

 Dept. P.W. Beaumont Suic. 164-167 East Road Cambridue CB1.1D Telephonc 0222367503

[^2]: * Applications Manager, Radio Communications Group, Plessey Semiconductors, Cheney Manor, Swindon Wilts

[^3]: Fig. 2(a): The input latches are contained in IC13, an SN74118. The 9-bit event latch is made up from IC10 (SN74116) and square 5 input and display latches. C 1 is to prevent the discrete latches from setting in the opposite polarity to those in IC13 when power is applied

[^4]: PART 2 will cover the construction of this interesting project together with the circuit diagrams and printed circuit board layouts

[^5]: Terms of business: CWO. postage and packing vaives and semiconductors 25p per order. CRTs 75p. Items markede add $12 \frac{1}{2} \%$
 Terms of business: CWO. postage and packirgion or aurplus, but also available by leading UK and USA manufacturars. Price
 VAT. Others 8%. Indicates cheap quality version ruling at time of despatch. Account facilities available to approved companies with minimum order charge $£ 10$. Carriags and
 packing $£ 1$ on cradit orders. Over 10,000 types of vaives, tubes and semiconductors in stock.
 OUOTATIONS FOR ANY TYPE NOT LISTED SAE.

[^6]: Company registered in England. Registered No. 53626. Registered office; King's Reach Tower, Stamford Street, London SE1 9LS

