

JULY 1978 • VOLUME 54•NUMBER 3

batialas leading jounal for the radio \& eleGtronic gonstauctor

Published by IPC Magazines Ltd., Westover House, West Quay Rd., POOLE, Dorset BH15 1JG

News and Views

```20 EDITORIAL-Standards21 NEWS . . . NEWS . . . NEWS24 SPECIAL PRODUCT REPORT-SES Electronic Ignition Kit27 PW READER'S PCB SERVICE-Prices and details of the PCBs available28 STRAY SIGNALS.Point Contact
```

38 SHOW ROUND-UP-IEA/Electrex; Wireless Show; Energy Show
43 PRACTICAL WIRELESS--Preview of our next issue
52 NEW BOOKS-Comments on the latest books in the electronics field

```53 HOTLINES-Recent developments in electronics..Ginsberg
```

54 PRODUCTION LINES-Information on the latest products Alan Martin
60 KINDLY NOTE-"Bovington" Tank Game, June 1978
ON THE AIR-Amateur Bands

```Eric Dowdeswell G4AR
```

SW Broadcast Bands. Charles Molloy G8BUS
MW Broadcast Bands Charles Molloy G8BUS
VHF Bands Ron Ham BRS15744
VHF Personality-John Branegan. .Ron Ham BRS15744
For our Constructors
22 PHASE-LOCKED CALIBRATOR. C. H. Luck
An off-air frequency standard receiver
.Ian Hickman
The Y-amplifier
44 PW"AVON" 2m TRANSMITTER-1 B. L. Phillips G8FWM
Beginning the circuit description and constructional details
FOLLOW-UP TO THE MORSE TUTOR

```Extra information on our project of August, 1977
```

55 IDEAS DEPARTMENT
Stereo headphone blender. Electronic switch
56 DIGITAL LOCK.

```A multi-combination, multi-purpose lock
```

FOLLOW-UP TO THE "JUBILEE" ORGAN

```Extra information on this popular project
```

61 IDECNOLOGY Project No. 4 .David Gibson
Fuzz box
General Interest
25 THE START OF EMPIRE BROADCASTING Ron Ham

```How our overseas broadcasting system started29 INTRODUCTION TO LOGIC-1.S. A. MoneyWhat can electronic logic do for us? Gates
```

IC OF THE MONTH

```.Brian Dance M.Sc.The ESM532 audio amplifier
```

50 MAKING IT WORK

```.Ian HickmanA step-by-step approach to fault finding
```


COPYRIGHT

© IPC Magazines Limited 1978. Copyright in all drawings, photographs and articles published in 'Practical Wireless' is fully protected and reproduction or imitation in whole or in part is expressly forbidden. All reasonable precautions are taken by 'Practical Wireless' to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it and we cannot accept legal responsibility for it. Prices are those current as we go to press.

RECEIVER UNIT small personnel type made for use by Army covers 500 Kc to $18 \mathrm{Mc} / \mathrm{s}$ by means of a 4 way plug in coil unit, uses 5 min valves inc 8FO in superhet circ reqs $67.5 \mathrm{VHT} \& 1.5 \mathrm{~L} . \mathrm{T}$, as o/p for 4 K phones supplied tested with circ $\boldsymbol{£ 1 3}$. HT batteries if req $\mathbf{£ I} \mathbf{I} \mathbf{3 0}$ ea or 2 or more $\boldsymbol{£} \boldsymbol{l}$ ea
AERIAL DRIVE UNIT suitable 2 mt beam $\&$ up, 24 v DC motors max speed 6 RPM supplied with remote 360^{\prime} Ind again $24 v$ DC \& connections, ex aircraft radio compass two items $\mathbf{\$ 1 3}$.
HANDSETS rubber covered m.c. type nom 100 ohm with press to talke swt suit 19 or 62 sets store soiled elec okay $£ 2 \cdot 50$.

VALVE TESTER ADAPTOR type MX849 for use with American 1.177 valve tester extends range, in case with data $£ 5.40$.
V.H.F. TEST SET type 210 contains sig gen covering 20 to $88 \mathrm{Mc} / \mathrm{s}$ in 4 bands good second harmonic o/p, int $2 \mathrm{Mc} / \mathrm{s} \times$ xal check, int pulse mod or CW o/p, noise generator with 50 Ma meter, all in case with cal charts \& circ, note these req 200 v DC \& $6 \cdot 3 \mathrm{v} £ 13$.
DYNAMOTOR UNIT $27.5 v$ DC $1 / P$ o/p 200 or 400 v DC 280 Ma int rating, these can be used as motor only by removing ext fan ass, will run on 6 to 24 v DC very powerful as $1 \times \frac{1 / \prime \prime}{4}$ shaft approx motor size $6 \frac{1}{2} \times 3 \frac{1}{2}$ dia new American surplus $\mathbf{£ 6 \cdot 5 0}$.
CRYSTAL OVEN small type takes $2 \times \mathrm{Hcl} 8$ size $2 \times 1 \frac{1}{4} \times \frac{3 / 4}{4} 12 / 24 \mathrm{y}$ new El-20.
CABLE min 25 core non scr colour coded new 10 mts for $£ 3$.
METERS panel mt type 1 Ma fed special scale $\mathbf{2}^{\prime \prime}$ £1. $\mathbf{3 0}$ also 100 Ua FSD scale 0 to $1002^{\prime \prime}$ £ 3 both new.

CRYSTAL UNIT dual $100 \mathrm{Kc} \& \mathrm{I} \mathrm{Mc} / \mathrm{s}$ in 10 X case with suggested circ $\notin 2 \cdot 80$.
TRANSISTOR VHF pwr type 2 N 3375 stud mt $7 \cdot 5 \mathrm{w}$ at $100 \mathrm{Mc} / \mathrm{s} 3 \mathrm{w}$ at $400 \mathrm{Mc} / \mathrm{s}$ new $\mathrm{fl} \cdot 80$ ea

BATTERIES sealed lead acid type 6 v rechargeable $1.8 \mathrm{~A} / \mathrm{Hr}$ size $2 \frac{3}{4} \times 2 \times$ $2^{\prime \prime}$ new $£ 5 \cdot 40$.

RECEIVER UNIT single channel crystal controlled for use in range 225 to $400 \mathrm{Mc} / \mathrm{s}$ double superhet 21 min valves $230 \mathrm{~V} 50 \mathrm{c} / \mathrm{s} 1 / \mathrm{P} 19^{\prime \prime}$ rack mt with circ $£ 30$.

FREQ METERS type BC221 125 Kc to $20 \mathrm{Mc} / \mathrm{s}$ req 135 v HT \& $6 \cdot 3 \mathrm{v}$ with handbook \& charts few only $\mathbf{E 2 7}$.

DIODES power types 100 PIV 10 amps 4 for $£ 1.60 .1000$ PIV 10 amps 4 for $\boldsymbol{£ 2} \mathbf{5 0}$ both new full spec. C.R.T.s
 trace $\mathbf{\$ 8} \mathbf{8 0} \mathbf{5}$ all electrostatic types new.
C.R.T. VISOR complete with magnifier \& padded eye piece approx size $5 \times 4 \times 7^{\prime \prime}$ okay for colour slide viewer new $£ 3$.

TRANSFORMERS HT type Pria $230 \mathrm{v} \mathrm{sec} 1125-0-1125 \mathrm{v}$ at 565 Ma new $\mathbf{\in} 1 \mathbf{2} \cdot \mathbf{5 0}$, lsolating type pria $\mathbf{2 4 0} \sec 120 \mathrm{v}$ at 60 watts enclosed new $\mathbf{£ 3}$. Auto type $230 / 115 \mathrm{v}$ at I Kva $£ 13$.

RECTIFIER UNIT general purpose unit made for operation of Army telephone \& teleprinter units $1 / \mathrm{P} 200 / 250 \mathrm{v}$ o/p dual $12 \mathrm{v} D C$ at 3 amps ea circ. connected for 24 v ct complere in case very conservative rating will do 8 amps okay for battery charger with circ $\mathbf{f 8} 5 \mathbf{5 0}$.

TEST SET special purpose complete in case size $14 \times 16 \times 10^{\prime \prime}$ contains large number of good quality parts as follows, HD rotary swts, plugs \& sks, trips, power filters, relays, Ind lamps, pots, small $400 \mathrm{c} / \mathrm{s}$ variac etc $\mathbf{£ 1 6}$.
TEST SET special purpose contains 4 panel meters as follows, 0 to 500 Ma $\times 2,0$ to 1 amp DC mirror scale, 0 to $40 \mathrm{v} D C$, plus lamps, tog swts, fuse holders ete in case size $17 \times 12 \times 7^{\prime \prime} .69$.
TEST SET M. 7 C used for testing telephone circs contains mains p.u. meter 200 Ua $3 \frac{1}{2}$ ", 3x AF atten swt $10,40 \& 60 \mathrm{Db}$, valve amp, filters etc in neat case with front cover \& circ size $19 \times 9 \times 9^{\prime \prime}$ £ $10 \cdot 80$.

TEST SET̀ 1.F. used to check $30 \mathrm{Mc} / \mathrm{s}$ head amps, contains mains p.u. with trans $225.0-225 v$ at 70 Ma 6.3 v etc, also high grade 100 Ua meter scale 0 to $1004^{\prime \prime} \mathrm{dia}, 30 \mathrm{Mc} / \mathrm{s}$ amp, misc coax fittings etc in case size $19 \times 7 \times 10^{\prime \prime}$ t10.80.
CRYSTALS mixed type 10 X \& 10 XJ] in range 5 to $\mathbf{8 M c / s} 20$ for $£ \mathbf{2} \cdot \mathbf{2 0}$.
BLOWER MOTORS single ended 50 cfm outlet $2 \times 1 \frac{3}{4} \mathbf{2 4 0 y}$ new $\mathbf{8 6} \mathbf{6 0}$.

Above prices include post \& V.A.T. good ex equipment unless stated new, SAE for list 19 or enquire. Shop open Tues to Sat.

A. H. SUPPLIES 122 Handsworth Road Sheffield S9 4AE

Phone 444278 (0742)

BADIO EXGHANGE LTD.

NEW ELECTRONIC MASTER KIT

WITH SPECIAL V.H.F. TUNER MODULETO CONSTRUCT. A completely Solderless Electronic Construction Kit, with ready drifled Bakelite Panels, Nuts, Bolts, Wood Screws etc. Also in the kit: Transistors, Capacitors, Resistors, Pots, Switches, Wire, Sleeving, Knobs, Dials, 5" $\times 3^{\prime \prime}$ Loudspeaker and Speaker Case, Crystal Earpiece, etc. Also ready wound Coils and Ferrite Rod Aerial. These are the Projects you can build with the components supplied with the kit, together, with comprehensive Instruction Manual Pictorial and Circuit Diagrams.
PROJECTS: V.HF. Tuner Module \star A.M. Tuner Module \star M.W. L.W. Diode Radio \star Six Transistor V.H.F, Earpiece Radio * One Transistor M.W. L.W. Radio \& Two Transistor Metronome with variable beat control \star Three Transistor and Diode Radio M.W. L. W. \& Four Transistor Push Pull Amplifier \star Eight Transistor V.H.F. Loudspeaker Receiver \star Variable A.F. Oscillator \star Jiffy MultiTester \star Four Transistor and Diode M.W.L.W. Radio \star A.F. R.F. Signal Injector $\&$ Five Transistor Push Pull Amplifier $九$ Sensitive Hearing Aid Amplifier \star Three Transistor and Diode Short Wave Radio \star Signal Tracer \star Three TransistoI Push Pull Amplifier $*$ One Transistor Class A Output Stage to drive Loudspeaker \star Sensitive Transistor Pre-Amp \star Transistor Tester \star Sensitive Three Transistor Regenerative Radio \star Four Transistor M.W. L.W. and Diode Tuner \star Five Transistor M.W. L.W. Trawler Band Regenerative Radio \star Five Transistor V.H.F. Tuner * Three Transistor Code Practice Oscillator \star Five Transistor Regenerative Short Wave Radio A Four Transistor and two Diodes M.W. L.W. Loudspeaker Radio
 * One Transistor Home Broadcaster.

NEW ROAMER TEN MODEL R.K. 3

MULTIBAND V.H.F. AND A.M. RECEIVER.
13 TRANSISTORS AND SIX DIODES. QUALITY $4^{\prime \prime}$ ROUND LOUDSPEAKER.
WITH Multiband V.H.F. section covering Mobiles, Aircraft, T.V. Sound, Public Service Band, Local V.H.F. Stations. etc. and Multiband A.M. section with Airspaced Tuning Capacitor for easier and accurate tuning, covering M.W.I, M.W.2, L.W. Three Short Wave Bands S.W.I, S.W.2, S.W. 3 and Trawler Band. Built-in Ferrite Rod Aerial for Medium Wave, Long Wave and Trawler. Band, etc., Chome Plated section Telescopic Aerial, angled and rotatable for peak Short Wave and w. H.F. reception.
using 600 mW Transistors. Gain, Wave-Change and Tone Controls. Plus two Slider Switches.
using 600 mW Wransistors. Gain, W
Powered by P.P. $9 \rightarrow 9$ volt Battery.

Complete kit of parts including carrying strap.
Building Instructions and operating Manals.

NEW

MODEL
R.K.I

MultiBand A.M. Receiver. M. W. L. W. Trawler Band and Three Short Wave
Bands. Seven Transistors and Four Diode Pull Output stage. $5^{\prime \prime} \times 3^{\prime \prime}$ Loudspeaker. Internal Ferrite Rod Aerial. Kit includes all parts to build it up including Carrying Strap. Rubber Feet and ready-drilled Panels. Comprehensive Instruction Manual for stage by stage construction. Uses P.P. 9 Nine Volt Battery.

NEW

MODEL

R.K. 2

MW, LW and Air Band Receiver. Eight Transistors and Four Diodes. $3^{\text {and }}$ Lour Doudspeaker. Telescopic Aerial, Internal Ferrite Rod
 Aerial. Complete
and ready.drilled Panels and all
components necessary for construction. A sensitive
Receiver with the additional luxury of an Air Band section to pick up Aircraft from many miles away. Full Instruction Manual enables stage by stage construction Uses P.P. 9 and P.P. 3 Nine Volt Batteries.

ELECTRONIC

 CONSTRUCTION KITE.C.K. 2 Self Contained Multi-Band

E.V.6. PLUs

Build this exciting new design. Now with 4 diodes. MW/LW and 4 diodes. MW/LW

Powered by $9 V$ battery. Ferrite rod
aerial, tuning condenser, volume control, and now with 3 in. loudspeaker. Attractive case with red All parts including Case and Plans.

Total Building Costs
66.95

ALL PRICES INCLUDE VAT

Com-
plete
kit of
pitt of
parts inparts in-
cluding construc-construc-
tion plans Total building costs
69.99
+P\&Pand
+P\&Pand
Ins. £1.10

8 transistors and 3 diodes. Push pull output. 3in. loudspeaker, gain control, 7 section chrome plated telescopic aerial V.H.F. tuning capacitor, resistors, capacitors, transistors, etc. Will receive T.V. sound, public service band, aircraft, V.H.F. local stations, etc. Operates from a ${ }^{2}$

Complete kit of parts £7.95 + P \& P and Ins. 90 p

LOOK! Here's how you master electronics.

 the practical way.

This new style course will enable anyone to have a real understanding of electronics by a modern, practical and visual method. No previous knowledge is required, no maths, and an absolute minimum of theory.

You learn the practical way in easy steps mastering all the essentials of your hobby or to further your career in electronics or as a selfemployed electronics engineer.

All the training can be carried out in the comfort of your own home and at your own pace. A tutor is available to whom you can write, at any time, for advice or help during your work. A Certificate is given at the end of every course.

1 Buildan oscilloscope.

As the first stage of your training, vou actually build your own Cathode ray oscilloscope! This is no toy, but a test instrument that you will need not only for the course's practical experiments, but also later if you decide to develop your knowledge and enter the profession. It remains your property and represents a very large saving over buying a similar piece of essential equipment

2 Read,drawand understand circuitdiagrams.

In a short time you will be able to read and draw circuit diagrams, understand the very fundamentals of television, radio, computors and countless other electronic devices and their servicing procedures.

3 Carry out over 40 experiments on basic circuits.

We show you how to conduct experiments on a wide variety of different circuits and turn the information gained into a working k nowledge of testing, servicing and maintaining all types of electronic equipment, radio, t.v etc.

All students enrolling in our courses receive a free circuit board originating from a computer and contailning many different components that can be used in experiments and provide an excellent example of current electronic practice.

To find out more about how to learn electronics in a new, exciting and absorbing way, just clip the coupon for a free colour brochure and full details of enrolment.
British National Radio \& Electronic School
P.O. Box 156, Jersey, Channel Islands.

NAME
ADDRESS \qquad

15-240 Watts!

Preamplifier	The HY5 is a mono hybrid amplifier ideally suited for all applications. All common input functions (mag Cartridge, tuner, etc) are catered for internally. The desired function is achieved either by a multi-way switch or direct connection to the appropriate pins. The internal volume and tone circuits merely require connecting to external potentiometers (not included). The HY5 is compatible with all I.L.P. power amplifiers and power supplies. To ease construction and mounting a P.C. connector is supplied with each pre-amplifier. FEATURES: Complete pre-amplifier in single pack-Multi-function equalization-Low noise Low distortion-High overload-Two simply combined for stereo. APPLICATIONS: Hi-Fi-Mixers-Disco-Guitar and Organ-Public address SPECIFICATIONS: INPUTS. Magnetic Pick-up 3 mV ; Ceramic Pick-up 30 mV ; Tuner 100 mV ; Microphone 10 mV : Auxiliary $3-100 \mathrm{mV}$ input impedance $4.7 \mathrm{k} \Omega$ at 1 kHz . OUTPUTS. Tape 100 mV ; Main output 500 mV R.M.S. ACTIVE TONE CONTROLS. Treble $\pm 12 \mathrm{~dB}$ at 10 kHz Bass \pm at 100 Hz . DISTORTION. 0.1% at 1 kHz . Signal/Noise Ratio 68 dB . OVERLOAD. 38 dB on Magnetic Pick-up. SUPPLY VOLTAGE $\pm 16-50 \mathrm{~V}$. Price £5-22 + 65p VAT P\&P free.
ner i5 Natts into 8Ω	The HY30 is an excling New kit from I.L.P. It features a virtually indestructible I.C. with short circuit and thermal protection. The kit consists of I.C., heatsink, P.C. board, 4 resistors, 6 capacitors, mounting kit, together with easy to follow construction and operating instructions. This amplifer/s ideally suited to the beginner in audio who wishes to use the most up-to-date technology available. FEATURES: Complete Kit-Low Distortion-Short, Open and Thermal Protection-Easy to Build. APPLICATIONS: Updating audio equipment-Guitar practice amplifier-Test amplifieraudio oscillator. SPECIFICATIONS: OUTPUT POWER 15W R.M.S. into 8Ω : DISTORTION 0.1% at 1.5 W . INPUT SENSITIVITY 500 mV . FREQUENCY RESPONSE $10 \mathrm{~Hz}-16 \mathrm{kHz}-3 \mathrm{~dB}$. SUPPLY VOLTAGE $\pm 1 \mathrm{BV}$. Price $55 \cdot 22+65$ P VAT P\&P iree.
	The HY50 leads I.L.P.'s total integration approach to power amplifier design. The amplifier features an Integral heatsink together with the simplicity of no external components. During the past three years the amplifier has been refined to the extent that it must be one of the most reliable and robust High Fidelity modules in the World. FEATURES: Low Distortion-Integral Heatsink-Only five connections-7 amp output tran-sistors-No external components APPLICATIONS : Medium Power Hi-Fi systems-Low power disco-Guitar amptifier SPECIFICATIONS: INPUT SENSITIVITY 500 mV OUTPUT POWER 25W RMS into 8Ω LOAD IMPEDANCE 4-16ת DISTORTION 0.04% at 25 W at 1 kHz SIGNAL/NOISE RATIO 75 dB FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}$. SUPPLY VOLTAGE $\pm 25 \mathrm{~V}$ SIZE 1055025 mm Frice $\mathbf{6} 6$ - $62+85$ P VAT P\&P free
60 Watts into 8Ω	The HY120 is the baby of I.L.P.'s new high power range. Designed to meet the most exacting requirements including load line and thermal protection this amplifier sets a new standard in modular design. FEATURES: Very low distortion-Integral heatsink-Load line protection-Thermal protec-tion--Five connections-No external components APPLICATIONS: Hi-Fi-High quality disco-Public address-Monitor amplfier-Gultar and organ SPECIFICATIONS INPUT SENSITIVITY 500 mV . OUTPUT POWER 60W RMS into 8Ω LOAD IMPEDANCE $4-16 \Omega$ DISTORTION 0.04% at 60 W at 1 kHz SIG 4 ALINOISE RATIO 90dB FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}$-3dB SUPPLY VOLTAGE $\pm{ }^{2} 25 \mathrm{~V}$ SIZE 1145085 mm Price $\mathbf{1 5} \mathbf{8 4}$ + £1 27 VAT P\&P free.
120 Watts into 8Ω	The HY200 now improved to give an output of 120 Watts has been designed to stand the most rugged conditions such as disco or group while still retaining true $\mathrm{Hi}-\mathrm{Fi}$ performance. FEATURES: Thermal shutdown-Very low distortion-Load line protection-integral heatsink -No external components APPLICATIONS: Hi-Fi-Disco-Monitor-Power slave-Industrial-Public Address SPECIFICATIONS INPUT SENSITIVITY 500 mV OUTPUT POWER 120 W RMS into 8Ω LOAD IMPEDANCE $4-16 \Omega$ DISTORTION 0.05% at 100 W at 1 kHz . SIGNAL/NOISE RATIO 96dB FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}$ SUPPLY YOLTAGE $\pm 45 \mathrm{~V}$ SIZE 1145085 mm Price $\mathbf{£ 2 3} \mathbf{3 2}+£ \mathbf{f 1} \mathbf{8 7}$ VAT P\&P free.
240 Watts into 4Ω	The HY400 is I,L.P.'s "Big Daddy" of the range producing 240 W into 4Ω ! It has been designed for high power disco address applications. If the amplifier is to be used at continuous high power levels a cooling fan is recommended. The amplifier includes all the qualities of the rest of the family to lead the market as a true high power hi-fidelity power module. FEATURES: Thermal shutdown-Very low distortion-Load line protection-No external components. APPLICATIONS: Public address-Disco-Power slave-industrial SPECIFICATIONS OUTPUT POWER 240W RMS into 4Ω LOAD IMPEDANCE $4-16 \Omega$ DISTORTION 0.1% at 240 W at 1 kHz SIGNAL NOISE RATIO 94dB FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}$-3dB SUPPLY VOLTAGE $\pm 45 \mathrm{~V}$ INPUT SENSITIVITY 500 mV SIZE 11410085 mm Price £ $32 \cdot 17+£ 2 \cdot 57$ VAT P\&P free.
$\begin{aligned} & \text { POWER } \\ & \text { SUPPLIES } \end{aligned}$	PSU36 suitable for two HY30's $£ 5 \mathbf{2 2}$ plus 65p VAT. P/P free. PSU50 suitable for two HY50's $\mathbf{£ 6} 82$ plus 85p VAT. P/P free. PSU70 suitable for two HY120's £13 75 plus $£ 1.10 \mathrm{VAT}$. P/P free. PSU90 suitable for one HY200 £12. 65 plus £1-01 VAT. P/P free. PSU180 £23. 40 + £1-85 VAT. B1 $\mathbf{5 0 \cdot 4 8 + £ 0 \cdot 0 6 \text { VAT. }}$

TWO YEARS' GUARANTEE ON ALL OUR PRODUCTS
I.L.P. ELECTRONICS LTD., CROSSLAND HOUSE, NAGKINGTON, GANTERBURY, KENT, CT4 7AD.
> I.L.P. ELECTRONICS LTD., CROSSLAND HOUSE, NAGKINGTON, CANTERBURY, KENT, CT4 7AD.

Please Supply
Total Purchase Price
1 Enclose Cheque \square Postal Orders $[$] Money Order [] Please debit my Access account \square Barclaycard account [] Account number -
Name and Address \qquad
\square

Signature

GREENWELD

443 Millbrook Road Southampton SO1 OHX Tel:(O703) 772501

All prices quoted include VAT. Add 25p UK/BFPO postage. Most orders des patched on day of receipt. SAE with
enquiries please. MINIMUM ORDER VALUE \&i. Official orders accepted
from sehools, etc. (Minimum invoice charge £5). Export/Wholesale enquiries welcome. Wholesale list now avaiiable
for bona-fide traders. Surplus ponents always wanted.

BUY A COMPLETE RANGE OF COMPONENTS AND THESE PACKS WILL HELP YOU

* SAVE ON TIME-No delays in waiting for parts to come or shops to open!
* SAVE ON MONEY-Bulk buying means lowest prices-just com pare with others!
* HAVE THE RIGHT PART-No guesswork or substitution necessary!
ALL PACKS CONTAIN FULR SPEC, BRAND NEW, MARKED DEVICESINCLUSIVE PRICES.
5001 50V ceramic plate capacitors, 5%. 10 of each value 22 pF to 1000 pF . Total 210, £3-35
K 002 Extended range, 22 pF to $0.1 \mu \mathrm{~F}$. . 3 020 vaiues $£ 4.90$ K0e3 Polyester
Khes Polyester capacitors, 10 each of
these values: $0.01,0.015,0.022,0.033$ $\begin{array}{llll} & 0.047, \\ 0.047, & 0.068, & 0.1 & 0.15, \\ 0.47, & 0.22, & 0.33, & 0.33,\end{array}$ $0.47 \mu \mathrm{~F} .110$ altogether for $£ 4.75$ Koes Mylar capacitors, min 1 COV type.
10 each all values from 1000 pF to $10,000 \mathrm{p}$. Total 130 for $£ 3 \cdot 75$ $K 005$ Polystyrene capacitors, 10 each value from 10 pF to $10,000 \mathrm{pF}$, E12 series $5 \% 160 \mathrm{~V}$. Total 370 for $\mathbf{\$ 1 2 . 3 0}$ K006 Tantalum bead capacitors. 10 $0.33,0.47,0.68,1,2.2,3 \cdot 3,4.7,6 \cdot 8$, all $35 \mathrm{~V}: 10 / 2515 / 1622 / 16$ 33/10 $47 / 6 \quad 100 / 3$. Total 170 tants for $£ 14.20$
K007 Electrolytic capaeitors 25 V working, small physical size 10 each
of these popular values: $1,2 \cdot 2,4 \cdot 7$, $10,22,47,100 \mu \mathrm{~F}$. Total 70 for $£ 3 \cdot 50$ Koos Extended range, as above, also including 220,470 and $1000 \mu \mathrm{~F}$. Total 100 tor 25.90
K021 Miniature carbon film 5% resistors,
CR25 or similar. 10 of 10R to 1M, E12 series. Total 510 resistors,
K6.00 Extended range, total 850 resistors from $1 R$ to $10 \mathrm{M} £ 88.30$ Katc. 10 of each value from 27 V to 36 V ,
etc ER4 series. Total 280 for $£: 57 \cdot 30$ to 36 V , $\underset{£ 8.70}{K 042}$ As above but 5 of each value £ 8.70

EDGE CONNECTORS

Spectal purchase of these $0 \cdot 1^{\prime \prime}$ pitch double-sided goid-plated connectors enables us to offer them at less than
 40 way 90 p .

SOLAR CELLS
As used on space labs. ntc., these tiny cells five powering small C-MOS prolects, etc. Can be banked together for greater power output. Size $19 \times 6 \cdot 5 \mathrm{~mm}$.

POWER PACK

Wood grained metal case $90 \times 80 \times$ 75 mm containing mains transformer giving 6V (a) $200 \mathrm{~mA}, 2$ comax. sockets, etc. Only 75p. fuseholder R's C's,

S-DECS \& T-DECS
S-DEC Breadboard
T-DEC Breadboard
2.3.25
5.4 .20

SIRENS

Work off $4 \times$ HP7 batteries, emit yery loud noise. Overall size $110 \times 75 \times$ 60 mm . Use as Burglar Alarm in car,
house, workshop, etc. ONLY $£\{.95$.

PC ETCHING KIT MKIH Now contains 200 sq. ins. copper clad
board, 11 b . Ferric Chloride, DALO etch. resist pen, abrasive cleaner, two miniature drill bits, etching dish and instruc* tions. £3.9)
SEND 45p FOR OUR 1977/8 CATALOGUE. CONTAINS 50p DISCOUNT VOUCHERS. AMENDMENT SHEET
NO. 2 GIVES DETAILS OF OVER 100 No. 2 GIVES DETAILS OF OVER 100
ITEMS SLASHED $59 \% 111$ (Send SAE if you've already got cat.) Our latest Bargain Sheet is FREE, send SAE for your copy.
DARLINGTON COMP PAIR BD695A and BD696A-45V 8A 70W
plastic power!! gain 750 @ 4 A . PNP. plastic power!! gain $750 @ 4 A$. PNP.
NPN pair $£ \mathbf{1} \cdot \mathbf{5 0 .}$

VEROCASES

Plastic top and bottom ally panels fron and back
\qquad
VERO PLASTIC BOXES Professional quality two tone grey polystyrene with threaded inserts for mount
 SLOPING FRONT BOXES $\begin{array}{lll}1798 & 171 \times 121 \times 75 / 37.5 & £ 4.19 \\ 2528 & 220 \times 174 \times 100 / 53 & \mathbf{E 6 . 9 0}\end{array}$ Potting box. $71 \times 49 \times 24 \mathrm{~mm}$ black or Hand controller box $94 \times 61 \times 23 \mathrm{~mm}$ White $\mathbf{6 4 p}$
We keep a very large range of VERO products, including their recently II boxes. SAE for their catalogue. VEROBOARD
Our packs of vero offcuts are one of our biggest sellers-and no wonder, they ar 8 pieces to make up a total area of 100 sa ins. All packs are the same price, $\& \cdot 30$ each and are avallable a ollows:
Pack A all $0.1^{\prime \prime}$ pitch
Pack C mixed $0.1 \& 0.15^{\prime \prime}$
Pack D ail $0.1^{\prime \prime}$ plain
Pack D all $0 \cdot \mathbf{1}^{\prime \prime}$ plain
Also avallable by weigh $11 \mathrm{~b} £ 3 \cdot \mathbf{9 5}$ 10 lbs £32-50
Regular size vero
$17 \times 33^{\frac{3}{3}} \times 0.1^{\prime \prime}{ }^{\prime \prime} \mathbf{E 2 \cdot 0 0} 10$ strips $\mathbf{£ 1 5}$ $17 \times 3 \frac{3}{\pi} \times 0 \cdot 15^{\prime \prime}$ 天1 $76 ; 0 \cdot 1^{\prime \prime}$ plain $£ 1.63$ DIP Breadboard size $6_{1} 15 \times 4 \cdot 5^{\prime \prime}$, can
accommodate 20×14 pin ICs $£ 2.35^{\prime}$ accommodate 20×14 pin ICs $£ 2.35$ VQ Board, size $148 \times 75 \mathrm{~mm} 0 \cdot 1^{\prime \prime}$ pitch. Copper strips in rows of 4 to faciltat provided 85 p rovided 8 p
VERO PINS AND TOOL
Spot face cutter for 0.1 or 0.15 pitch 75 p
0.1 " pins single sided 30 p/100 0.1" pins single sided 30p/100
$0.9^{\prime \prime}$ pins double sided $35 \mathrm{p} / 100$ $0.15^{\prime \prime}$ pins single sided $30 \mathrm{p} / 100$ $0 \cdot 15^{\prime \prime}$ pins double sheets 35p/100

LOW COST
PLASTIC BOXES
Made of high impact ABS. The lids are rtained by 4 screws into brass inserts rierior of box has PCB guide slots
$\vee 210 \quad 80 \times 62 \times 40 \mathrm{~mm}$ black
$\mathrm{V} 213 \quad 100 \times 75 \times 40 \mathrm{~mm}$ black $\vee 219 \quad 120 \times 100 \times 45 \mathrm{~mm}$ black

CALCULATOR CHIP Type C500 by GI. 4 function + constant 3 digit. Multiplexed output for simple keyboard interfacing 24 pin DIL. With
comprehensive data + socket $£ 1 \cdot 50$.
RESISTOR OFFER. Miniature $\frac{ \pm}{4} W$ 5% carbon film, but the leads, although eritical mounting. Now in the following vertical mounting. Now in the following
values only: $68 \mathrm{R}, 150 \mathrm{R}, 330 \mathrm{R}, 390 \mathrm{R}$, 470 R , $1 \mathrm{k}, 1 \mathrm{k} 2,2 \mathrm{k} 7$. 3 kg , 5 k 6 , 15k, 22k, 27 k , 33 k , $68 \mathrm{k} 100 \mathrm{k}, 470 \mathrm{k}$, $820 \mathrm{k}, 1 \mathrm{M}$ - 19 values altogether. 100 off each value, total 1900
resistors for $£ 6$. Or 1000 of each value, total 19000 resistors for $£ 45$ (this works out at $0-2368$ p per resistor!!)

SPECIAL
 TRANSISTOR OFFERS

Plastic versions of these popular types. BC108-9 BCY70-71-72 at very low prices. PN108 (BC108) 18 for $£$ PN72 (BCY72) $\cdots \ldots \ldots \ldots . .$. PN109 (BC109) 16 for $£ 1$ PN71 (BCY71) 14 for $£ 1$ Complementary Power Pair. BD525 \& devices, normally 94 p pair. Specia devices, normally 94p pair. Specia frier price 50p pair.
Small signal PNP transistors, like N3702 (Marked MSPS 1218) 20 for $£ 1$. mant ${ }^{\text {BEAD }} 4 \mathrm{p}$ each. Our special offer price 12 for E 1.

The Antenna that Hertz missed out on!

We suppose it was quite an achievement to predict radio-wave transmission and then devise a shockexcited VHF dipole in those far off days, but what a time the Grand Old Man could have had on the range $\cdot 5-30 \mathrm{MHz}$. if only he'd had a Joystick VFA (Variable Frequency Antenna) to play with. And what's more, whilst his original experiment was transmission across a room, with the Joystick many delighted users have found an indoor installation (it's only $7^{\prime} \mathbf{~ 6 / ' I}^{\prime \prime}$ long) has got them better DX (receiving and transmitting) than experienced on previous antennae.

In use by Amateur Transmitting and SWL Stations world-wide and in government communication.

SYSTEM "A"
£36.00
250 w. p.e.p. OR for the SWL.
SYSTEM "J"
£42.60
500 w. p.e.p. (improved ' Q ' on receive).

PARTRIDGE SUPER PACKAGES

COMPLETE RADIO STATIONS FOR ANY LOCATION
All Packages feature the World Record Joystick Aerial (System 'A'), with $8 \mathrm{ft}^{2}$, feeder, all necessary cables, matching communication headphones. Deliv. Securicor our risk. ASSEMBLED IN SECONDS! BIG CASH SAVINGS:
PACKAGE No. I
As above with R. 300 RX. SAVE $\mathbf{f l 7} \cdot 28!$
£210.55
PACKAGE No. 2

PACKAGE No. 3
Here is a lower-price, high-quality package featuring the LOWE SRX30.. with all the Partridge extras. SAVE
$\mathbf{£} 12 \cdot 21$! © $12 \cdot 21$!
£177.00
RECEIVERS ONLY, inclusive delivery, etc.
R. 300 £ $184.50 \quad$ FRG7 $£ 162.00 \quad$ SRX $\mathbf{~} \mathbf{~} \mathbf{£ 1 4 6 . 2 5}$

All prices are correct at time of going to press and include VAT at $12 \frac{1}{2} \%$ and carriage.

or write for details, send 9p stamp

G3VFA
5, Partridge House, Prospect Road, Broadstairs, CTIO-ILD. (Callers by appointment).

MAINS TRANSFORMERS

All these have $\mathbf{2 3 0} / \mathbf{2 4 0 v} \mathbf{5 0 H}$ VOLTAGE	z Primary CURRENT		
VV	${ }_{2} \mathrm{amp}$	RMi	Pres
${ }_{4}^{2} 4 \mathrm{v}$	5 map	TM 2	E1.62
4 v	7 amp	TM32	¢2.70
6 V	${ }^{\frac{2}{2}} \mathrm{amp}$	TM 3	85
6.5v	Stamp	TM ${ }^{37}$	85
6.5v	200 ma	TM 21	¢1.62
$6.5 \mathrm{v}-0-6.5 \mathrm{y}$	100 mA	TM 21	E1. 62
$6.5 v-0-6 \cdot 5 v$ $6.3 v-0.5 .3 v$	750 mA	TM 7	${ }_{\text {¢ } 2.16}$
$6 \cdot 3 v-0-6 \cdot 3 v$	100 mA	TM ${ }^{33}$	${ }^{21.62}$
6.3 V 8.5 5	2 amp	TM 4	£1. 89
	1 amp	TM 12	cif 62
$8.5 \mathrm{v}+8.5 \mathrm{vsep}$ winding	$\frac{1}{1}$ amp	TM 12	${ }^{\text {f1 } 1.62}$
9 v	1 amp	TM 5	${ }^{21} \cdot 62$
9 v	1 amp 'c' core	TM 6	£1-80
${ }_{9}^{9 v}$	$\frac{31}{3 \frac{1}{2 m p}}{ }_{5}$	TM 11	¢2.70
9V	5 amp	TM 38	E3.24
10 V	25 amp	TM 15	${ }^{\text {¢ } 4.86 ~}$
10v-0-10v	12, amp	TM 15	£4.86
12v-0-12v	4 amp	TM 27	E4.32
12 V	$\frac{1}{4} \mathrm{mp}$	TM 9	f1.05
13 V 12 V	${ }_{1}{ }^{\text {amp }} \mathrm{amp}$	TM 70	新. 18
12v-0-12v	50 mA	TM 19	${ }_{\text {¢1 }} 162$
12v-0-12v	1 amp	TM 41	E3. 24
15 v tapped 9v	2 amp	TM 11	£2.70
15 v	7 amp	TM 27	E4.32
15v-0-15v	3itamp	TM 27	£4.32
15v-0-15v	$3 \frac{1}{2}$ amp	TM 35	${ }^{\text {E4 }} 86$
178 188	崖 amp	TM 12	${ }^{1} 1.62$
18 l 20 20	\%amp	TM 13	
20 v		TM 27	
20	${ }^{12 \frac{1}{2}} \mathrm{amp}$	TM 15	c4.86
$20 \mathrm{~V}-0-20 \mathrm{~V}$ 13 O	6 amp	TM 15	¢4.86
13 V 24 24	100 mA	TM 21	${ }^{1} 1 \cdot 62$
${ }_{248}^{24 v}$	$1 \frac{1}{2}$ amp	TM 16	¢2. 12
	2 amp	TM 17	£2.70
$24 \mathrm{v}+2 \mathrm{v} 7 \mathrm{amp}$	2 amp	TM 39	¢2. 97
24v	4 amp	TM 40	c3.78
25V 86 v	12 1 amp	TM 18	c2.43
${ }^{26 \mathrm{v}}$ 30ped 24, 20, 15 \& 12	2 amp	TM 39	E2. 98
30v tapped 24, 20, 15 \& 12	${ }^{3 \frac{1}{2}}$ amp	TM 27	£4.32
${ }_{37 \mathrm{v}}^{30 \mathrm{~V}}$	83 mp	TM 15	${ }^{\text {c } 4.86}$
40 v tapped at $30 \mathrm{v}, 20 \mathrm{v}$ \& $10 \mathrm{v}{ }^{3}$	37 amp 6 amp	TM ${ }^{15}$	
$50 \mathrm{v}-2 \mathrm{amp}$ with 6.3 v shrouded		TM 22	E4.86
50 v - ${ }_{5}^{8}$	8 amp	TM 29	£11.65
	5 amp	TM ${ }^{24}$	c8. 810
$75 \mathrm{v}-3 \mathrm{amp}$ with $6 \cdot 3 \mathrm{v}$ shrouded		TM 23	¢8. 10
	$4 \frac{1}{2}$ amp	TM 24	87.02
	4 amp	TM 24	87.02
$100 v$ $1000-0-100 v$	1 amp	TM 25	¢ 71.02
130 v tapped 120v	$\frac{1}{2} \mathrm{amp}$	TM 28	${ }^{15} \cdot 78$
200 V	\%	TM 25	17.02
$250 \mathrm{v}-\mathrm{O}-250 \mathrm{v}$ with 6.3 v 2 A	50 mA	TM 36	£3.78
250V	100 mA	TM ${ }^{36}$	E3.78
	50 mA	TM ${ }^{36}$	${ }^{53} 38$
${ }^{260 \mathrm{~V}} 1 \mathrm{Kv}$	60 mA	TM 44	P.O.A.
2 KV		TM 44	P.O.A.
${ }_{8}^{5 \mathrm{KV}} \mathrm{KYV}$	5 mA	TM ${ }^{30}$	${ }_{\text {c }} \mathbf{\varepsilon 7} 7.02$
8.5 KV	10 mA	TM 31	£10-26

Quality prices avallable. Please, unless you are calling, add
25% to your order to cover the cost of carriage, Also if you Quick Cuppa. Mini immersion betor
Quick Cuppa. Mini immersion heater, ideal for taking on
holiday, for making a "quick cuppa"' tea, or for having by the holday, tor making a quick cupa tea, or tor havor by the
bedside for baby's feed etc. 250 w heater @ 230 volts or ap-

 size approximately ${ }^{4}$ square at the front and ${ }^{4}{ }^{2}$ deep.
Intended for panel mounting, its scale is callibrated $0-7$ and it was intended to be used as rev. counter. $£ 14$ each. Pressure Switch. Adjustable through a range of pressures from where it can be operated by sucking or lowing to
approx. 50 psi-10 amp changeover microswitch, metal body apith threaded inlet. Price $£ 2.90$
Push-Push Switch. Fixed through panel this is a ratchet action, double pole changover swanch, the to a a ratchet
understand are hard gold plated. Spindle is de diameter so understand are hard gold plated. Spindile is $\frac{1^{\prime \prime}}{\prime \prime}$ diameter so
that a standard radio knob can be fitted. Price $30 \mathrm{p}+3 \mathrm{p}$. Good that a standard radio knob can be fitted
quantity available at usual discounts.
C.R.T. Display Unit. We feel this would be easy to convert to an oscilloscope, it has ali the , "ecessary ingredients. It
is in a case size is $\times 10^{\prime \prime} \times 11^{\prime \prime}$ approx. with a carrying
hand handle and a front protection flap. Plenty of controls and is mains operated through step down transformer. Size of the
tube is ${ }^{3^{\prime}}$ Price $£ 16$. 75 . Yube is Meter Edgewise
 scale is not calibrated but has very modern appearance.
Cassette Mechanism. Jap. made to rigid specification These will fit many music centres and cassette players.
Chassis size approx. $4 \frac{1}{2}{ }^{\frac{1}{2}}$ wide by $5 \mathbf{x}^{\prime \prime}$ deep, 6 v motor and tape position counter at the rear., The six levers for toray' fast forward " "rew ind" "stop", record and eject are all
at the front, as is the auto mechanism to stop the motor when at the front, as is the auto mechanism to stop the motor when
tape end is reached. These are new and unused and have record playback and erase heads. Limited quantity. Price
£15. 50 . Shortened 3kw Tangential Heater. This is in fact near enough the same size as the normal 2 kw tangential. Motor runs a bit faster to compensate for the increased
heating and the fan impellers are metal to save any possibility of extra heat distorting them. The heater element is bility of extra heat distorting them. The heater element is
tapped so that 1,2 or 3 kw s. of heating can be used or of
course this will blow cold. Price $£ 8.95$, post $£ 1.50 \mathrm{p}+12 \mathrm{p}$. Omron 410 Relay. Built like a contactor, this has a clear plastic cover over the working parts but the terminals are
all brought ouf of the front so that connection may be made all brought out of the front so that connection may be made
without removing the cover also the relay may be fitted into without removing the cover also the relay may be fitted into
position and the wires brought to it afterwards generousiy rated at 10 amps whe contacts are really more like 15 amps.
they they are changeover and there are 4 sets of them. A really
robust relay which looks as though it will give a lifetime of service. Size $3 \frac{1}{2}_{\prime \prime} \times 3^{\prime \prime} \times 3^{\prime \prime}{ }^{\frac{1}{2} \prime \prime}$ high. Price $£ 4 \cdot 50$. 8 Track Cartridge Players. In car units with amplifiers but this amplifier may need attention, mechanism guaranteed
Low rpm Crouzet Meters. Two more types have just come in;
these are 2 rpm and 15 rpm , both 115 v motors but as these these are 2 pm and 15 rpm , both 115 v motors but as these
consume only two to three watts it is a simple matter to divide the mains voltage using a mains working condenser,
resistor auto transformer or of course use them in pairs. resistor auto transformer or of
Price $£ 2 \cdot 25, £ 2 \cdot 00+16 p$ each.
$\mathbf{4 2}$ voit Miniature Relay. Gold plated contacts with plastic

MULLARD UNILEX

A mains operated 4+4 stereo system. Rated one of the finest
performers in the stereo field this would make a wonderful gift
for almost anyone in easy-tofor almost anyone in easy-to-
assemble modular form and
 speakers this should sell at about £30-but due to a special speakers this shoul sell at about $£ 30-$ but due to a special
bulk buy and as ancentive for you to buy this month we
offer the system complete at only $£ 15$ including VAT and offer the
postage
SPIT MOTOR WITH CARTER G/BOX

Probably one of the best spit motors made. Originally intended to be used
in very high priced cookers, however this can be put to plenty of other uses,
for instance your garden barbeque or to drive a tumbier for instance your garden barbeque or to
to its uses. Normal mains operation. in fact there are no ends
$£ 4-32$.

PP3/PP9 REPLACEMENT MAINS UNIT
Japanese made in plastic container with leads size $2^{\prime \prime} \times 11^{\prime \prime} \times 1 \frac{1}{2}^{\prime \prime}$, this
is ideal to power a calculator or radio,
it has a full it has a full wave rectified and smoothed output of 9 volts suitable for a loading
of up to $100 \mathrm{~mA} . £ 2 \cdot 53$.

SHORTWAVE CRYSTAL SET
Although this uses no battery it gives
really amazing results. You will receive an amazing assortment of stations over the 19, 25, 29, 31 metre
bands. Kit contains chassis front bands. Kit contains chassis front
panel and all the parts £1.94-mcrystal earphone
postage.

RADIO STETHOSCOPE

Easiest way to fault find, traces signal from aerial to speaker when signal stops you've found the fault. Use it on Radio, transistors and parts including probe transistors and parts inclu
tube, twin stetho-set. $£ 3.95$.

BREAKDOWN PARCEL

Four unused, made for computer units Containing most useful components,
and these components unlike those and these components unlike those
from most computer panels, have wire ends of usable length. The transis-
tors for instance have leads over 1 " longtors for instance have leads. over 1 " long-
the diodes have approx. $\frac{1}{2}^{\prime \prime}$ leads. the diodes have approx. $\frac{1}{2}$ " leads.
components is as follows: -17 assorted List of the major components is as follows:-17 assorted
transistors- 38 assorted diodes- 60 assorted resistors and condensers-4 gold plated olugs in units which can serve as multipin plugs or as hook up boards for experimental or quickly changed circuits (note we can supply the socket
boards which were made to receive these units). The price of this four unit parcel is $£ 1$ including VAT and post (con siderably less than value of the transis
DON'TMISS THIS SPLENDID OFFER.

INFRA RED BINOCULARS

Made for military purposes during and immediately after the last war to
enable snipers, vehicle drivers, efc. to see in the dark. The binoculars have to be fed from a high voltage source (5 KV approx.) and providing the objects are
in the rays of an infra red beam then the binoculars will enable these objects to binoculars will enable these objects to
be seen. Each binocular eye tube
contains contains a complete optical lens
system as well as the infra red cell system as well as the infra red cell,
technical data on which is available. technical data on which is available.
The binoculars are unused, believed
to be good order. Sold without to be thee
guarante
Price 17 .

SOUND TO LIGHT UNIT Add colour or white light to your amplifier.
Wil operate 1,2 or 3 lamps (maximum

MINI-MULTI TESTER

 Amazing, deluxe pocket size pre-
cision moving coil instrument-
jewelled bearings- 1000 opv-mirrored scale.
11 instant ranges measure:DC volts $10,50,250,1000$ AC volts $10,50,250,1000$
$D C$ amps $0-1, m A$ and $\begin{array}{ll}\mathrm{DC} \text { amps } \\ \text { Continuity } \\ \text { and } \\ \mathrm{mA} \\ \text { resistance } \\ 0-100 & \mathrm{~mA} \\ 0-150 \mathrm{~K}\end{array}$ Complete with insulated probes, leads, battery, circuit diagram and Unbelievable value only $\mathbf{£ 5} 5 \mathbf{5 0 p}+\mathbf{5 0}$ p post and insurance.
FREE Amps ranges kit enable you to read AC current from $0-10 \mathrm{amps}$, directly on the $0-10 \mathrm{scale}$. It's free if you purchase
quickly, but if you aiready own a mini tester and would like quickly, but if you
one send $£ 1-50$.
Terms: Prices include Post \& VAT. But orders under $\mathbf{8 6} \cdot \mathbf{0 0}$ please add 50p to offset packing. Bulk enquiries-Please Phone for Generous Discounts 6881833.

J. BULL (EEECTRCAL) LTD
 (Dept. P. W.), 103 TAMWORTH RD. CROYDON CR8 1SG

IT'SFREE!
Our monthly Advance Advertising Bargains List gives details of bargains arriving or just arrived-often bargains sell out before our advertisement can appear-It's an interesting list and it's free-just send S.A.E. Below are a few of the Bargains still available from previous lists.
Mains Transformer. Small 2 secondaries, 115 volts at 10 mA and 6.3 volt @ $\frac{1}{2} \mathrm{~A}$, a useful transformer for many instruments 25 Watt Audio Systems in Cabinets. Comprising $8^{\prime \prime}$ woofer mounted in simulated teak finish cabinet with fabric front These are extremely good quality units comparable with thos selling at twice the price. Cabinet size approx. $20^{\prime \prime}$ high $10 \frac{3}{4}$ " wide and $8 \frac{1}{2 \prime \prime}$ deep, heavy cabinet made of thick block-
board. Price $£ 25.00$ the pair, well worth your coming in to board. Price $£ 25.00$ the pair, well worth your coming in to
collect them but if you cannot collect them, then still worth adding $55 \cdot 00$ the pair for carriage.
Another Special Ifem, for callers this month is a pen re-
corder. Mains operated this is biggish instrument which corder. Mains operated this is biggish instrument which
probably cost originally several hundreds of pounds. We probably cost originally several hundreds of pounds. We are having a reverse auction on this. The starting price is
$£ 50$ but the price will come down $£ 5 \cdot 00$ per week until it is sold. Electronics. Two special bargains in this field, the OPCP 70, price 75p and the ORP 12, price 85 p.
Tilt S witth 15 amp. Meant to switch off heater should it when it is in the upright position. It could be incorporated in burglar alarm, car alarms etc. Contacts look quite able to cope with 15 amp loads at mains voltage. Price $50 \mathrm{p}+4 \mathrm{p}$. Neon Indicator Lamp. Two features about this particular
one are-it has screw down terminal connectors for wiring one are-it has screw down terminal connectors for wiring
and is fixed by a single threaded screw. The lens is clear so you could colour to sult your needs. Price 35p. Indicator La mp Holders. For low voltage lamps (Liliput)
type, we have these in five different colours-red, yellow, type, we have these in five different colours-red, yellow blue, green and white. Price 35 p .
Twin Padded Flex. 5 amp ideal f
Twin Padded Flex. 5 amp ideal for some electric irons and
appliances which require very flexible lead, 10 metre lengths
Price $£ 4.50$. Heating Pads. These measure $11^{\prime \prime}$ long $\times 8 \frac{1}{\prime \prime}_{\prime \prime}$ wide and are fiat. Look rather like pieces of thick blotting naper. Wire ended 250 watt or joined in series they would be approximately
$\mathbf{8 1} 50$.
Rod Thermostat, For high temperatures up to $550^{\circ} \mathrm{F}$. This is
adjustable either at the head or remotely by a length of flexible drive. Price £2.95.
Interval Timer. As used in schools and similar establishments to trigger off the bell which sounds the end of lessons callers only. It is in polish hardwood case, glass fronted, comprises a 24 hour switch, a targe brass disc and other smaller discs on which the time is set out in relatively small
intervals and a pair of contacts to switch a bell or something similar at precise times during the week. Price £55.00. Two More Mullard Modules. Pre amp module ref. 1181/1183, stereo or mono. It is on a printed circuit board with wire
connections. Supplied complete with connection diagram. connection
Price 99p.
 18
bide $\times \frac{5}{8}$ thick. Can be mounted on a printed circu
bonnection to wire lead outs. Price fi- 25 billcon Diodes. Two special bargains this month. 400 voi 1 amp, 10 for $£ 1-25$. 50 volt 1 amp, 20 for $£ 1-25$. Large quan-
tities available at very much discounted prices. ities avanable at very
Flex Cable Bargains. Core size 5 mm 2 white pvc outer, pve
covered cores. Coloured coded with the usual blue, brown and green/yellow. Price 100 metre coil for $£ 10 \cdot 25$. Electrical Instaliation Work. We have good stocks of al the mains items required for ring mains and light installations for example we have $2 \cdot 5 \mathrm{~mm}$ twin and earth pve cover
$£ 12.50+£ 1-00$. Carriage $£ 2 \cdot 00+16 \mathrm{p}$. We hope to make a there is anything you are wanting by all means give us a ring.
Plastic Case Sections. Small very tough plastic cases at
very reasonable prices, always repeatable. The case is $2-11 / 16^{\prime \prime}$ very reasonable prices, always repeatable. The case is $2-11 / 16$ long. Section A is $\frac{2}{4}^{\prime \prime}$ deep and section $B 1^{\prime \prime}$ deep, use 2AA's
 the case of 15 " thick. Price, section A $25 p$. B 30p.
Computor Capacitors. Made by famous American com panies for working under very exacting conditions. These are you want to make a large storage bank 15,500 uf 10 volts work you want to
ing, $\uparrow 5$ volts surge, 10 for $£ 8$.
Alarm Bells. Holiday time can often be a heyday for house breakers; why not fit a really loud alarm as good a metho as any is to use trigger mats under carpets, at windows and
doorways. Join them all in series through a latching circuit to sound off a really loud bell or hooter, prices of these various parts are as follows:
Loud Ringing Bell, industrial type with $6^{\prime \prime}$ gong, 24 v , DC operated, price £7-50.
Switch Trigger Mat, size $24^{\prime \prime} \times 18^{\prime \prime}$ for going under carpet
24 v Relay with latching contacts. Price 95p.
Secret Switch with key, Price 85p.
24v 1 a mp DC Power Supply Price $\mathbf{£ 5} \mathbf{5 0}$.
Circuit Diagram. No charge, just request.
Mouth Operated Switch. Probably not made with this use in mind, more likely made for washing machines to control water level etc. this is a sensitive low pressure device which operates three 1 pole changeover switches at different levels of pressure bur all within a normat 1 sersons blowing capaclity blow gently into it and No. 1 switch operates, blow a little
stronger and No. 2 operates, blow harder still and No. 3 operates. The switch is airtight so weight of water or other fluid substance could operate it. Undoubtedly a switch with very many applications mately $3 \frac{t^{\prime \prime}}{\prime \prime}$ dia. $\times 1 \frac{1}{3}^{\prime \prime}$. thick-the air entry is a pipe approxi-
mately $3 / 16^{\prime \prime}$ diametermelectrical contacts we estimate 10 amp clo a 230 volt connection by push on tags. Order ref. PS.4. Price 1 1-95. Large quantity available.
Powerful induction Motor. $1 \frac{1}{2}$ stack, double ended, would drive a small lathe, dritl or grinder or would power a blowing or extracting fan. Fit suitable pulleys and it would drive a in either direction. Can also be fixed from either end, fixing bolts are fitted and these are 17"' apart. Spindles $\frac{t^{\prime \prime}}{2}$ diameter extend $1 \frac{3}{3}$ " beyond each end plate. A motor like this would cost at least $£ 3$ from makes but
offer at $£ 2-50$, Order Ref. MM. 10.
Can any reader help! We urgently need some reasonably priced decoders to go with the F.M. tuner we have. If you can
help us to find a supply we will be very much obliged and will try to do you a good turn some day-thank you.

MINI CONSOLES Ideal for small desk control panels and consoles． Moulded in orange，blue， black and grey ABS． Incorporates slots for holding 1.5 mm thick pob＇s Aluminium panel sits recessed into front of console and held by screws running into integral brass bushes． MC $161 \times 96 \times 58 \mathrm{~mm} \quad £ 2.12(1-9)$（Includes VAT） MC $215 \times 130 \times 75 \mathrm{~mm}$ £2．94（1－9）（Includes VAT） （Prices include VAT \＆P．P．）	Stop wasting time soldering The NEW MW BREADBOARD accepts ／Transistors，LED＇s，Diodes，Resistors，Capacitors and alf DIL packages with 6 to 40 pins	SC bOXES Easily drilled or punched， orange，blue，black and grey ABS．Incorporate slots for holding 9.5 mm thick $\mathrm{pcb}^{\prime} \mathrm{s}$ ． Aluminium panel sits recessed into front of the box and held by screws running into integral brass bushes． SC $85 \times 56 \times 35 \mathrm{~mm} \quad 97 \mathrm{p}(1-9)$（Includes VAT） SC $111 \times 71 \times 48 \mathrm{~mm} \quad £ 1.29$（1－9）（includes VAT） SC $161 \times 96 \times 59 \mathrm{~mm}$ £1．81（1－9）includesVAT） Add 25 p per $£ 1$ order value for Post $\&$ Packing
ECONOMY QUALITY LED＇s 50 for only £5－100 for only $£ 9$ Mixed bags，all sizes，various colours	Includes slot－in Component Support Bracket and has 470 individual sockets，plus Vcc and Ground Bus Strips Price $£ 9.72$（includes VAT \＆P．P．）	
Full specification LED＇s also available Red（specify size）75p per pack Green，Yellow，Orange（specify size）$£ 1.20$ per pack Packs contain 5 LED＇s，mounting clips and data	TYPE MP NEON INDICATOR Supplied with resistor for 240 Voits operation 150 mm leads，held in 6.4 mm hole by nut Red，Amber，Clear，Opal 20 p each	240 VOLTS MINI HAND DRILLS Ideal for drilling peb＇s，chassis etc as well as model making． Supplied with 3 collets that accept tools and drills with $1 \mathrm{~mm}, 2 \mathrm{~mm}$ and $1 / 8^{\prime \prime} \mathrm{dia}$ shanks． £9．72（includes VAT \＆P．P．） Accessory tools．．． 5 Burrs， $1 \mathrm{~mm}, 2 \mathrm{~mm}, 1 / 8 \mathrm{th}$ Drilis， 3／32＂Collet Price $£ 1.75$（ （ncludes VAT \＆P．P．）
TYPE A NE ON INDICATORS Supplied with resistor for 240 Volts operation Held in 8 mm hole by plastic bezel 150 mm wire leads	SEVEN SEGMENT DISPLAYS Economy quality Red，yellow and green Only 45p each Common Anode－0．3＂－Left Decima： Full specification displays also available as above Red＠98p each Green and Yelfow＠$£ 1.35$ each． Data supplied with full spec． displays only．	
12 VOLTS MINI HAND DRILL Ideal for drilling pcb，chassis ete as well as model making． Supplied with 2 collets that	Quantity quotations on request $\begin{array}{l}\text { P．P．Note Unless included in price add 25p Post \＆Packing } \\ \text { for orders totalling under } £ 10 \text { ．All prices include VAT and }\end{array}$	RC $112 \times 62 \times 31 \mathrm{~mm}$ 79 p 94 p 1.23 RC $120 \times 65 \times 40 \mathrm{~mm}$ 88 p 1.22 1.59 RC $150 \times 80 \times 50 \mathrm{~mm}$ 1.03 1.64 2.11 RC $190 \times 110 \times 60 \mathrm{~mm}$ 1.77 2.53 3.08
accept tools and drills with． $3 / 32^{\prime \prime}$ and $0.50^{\prime \prime}$ dia shanks． £．7．56（Includes VAT \＆P．P．）	are valid in UK only for 2 months from journal issue date IIIchael Williams Electronirs 47 Vicarage Av．Cheadle Hulme，Cheshire SK8 7．JP	Polystyrene version in grey only，no slots，no integral brass bushes $R C(P) 112 \times 61 \times 31 \mathrm{~mm} 61 \mathrm{p}$ All prices are 1－9 off，include VAT，but please add 25 p per $£ 1$ order value for Post \＆Packing

－Jones Supplies

TTL

7400	二	0.13	7447	－	80
7401	－	－ 0.13	7447	－	e． 16 0.30
7403	－	0.16	7472	－	－． 28
7404	－	0.19	7474	－	0．30
7406	－	－ $\begin{array}{r}0.36 \\ 0.36\end{array}$	7474	二	0.30 0.40
7408	－	－ 0.19	7746	二	${ }_{0} .35$
7410	－	0.14	7486	－	0.35
77413	二	－ $\begin{aligned} & 0.36 \\ & 0.74\end{aligned}$	7479		0.85 0.35
7416	二	． 36	7496	－	0．82
7420	－	0.16	74107		32
7442	－	0.35	74141	－	0.70

MAINS TRANSFORMERS
P\＆P60p each
$6-0-6 \quad 100 \mathrm{~mA} \quad £ 1 \cdot 10$
9－0－9 $\quad 75 \mathrm{~mA} \quad$ £1－10
12－0－12 $50 \mathrm{~mA} \quad$ £1－15
12－0－12 $\quad 100 \mathrm{~mA} \quad$ £！ 40
$\begin{array}{lll}\text { 9－0－9 } & 1 \mathrm{Amp} \text { Sh．} & £ 2 \cdot 44 \\ 12-0-12 & 1 \text { Amp ．，} & £ 3 \cdot 12\end{array}$
15－0－15 1 Amp ；\quad £3．60
30－0－30 1 Amp＂， $\mathbf{8 4 . 2 4}$
20－0－20 2 Amp Unsh．£5．75
30－0－30 2 Amp Unsh．£7．00
Stereo amp module $6+6$ watts
£7． 99 o．p．imp． 8Ω ． 34 v ，d．c．
F．M．Tuner module． 9 v dc．£7． 99

CMOS

4009	－	0.17	4047	－	0.95
11	－	－． 0.19	4049 4050	－	0
4013	－	0.45	4070	－	0
4014	－	0． 85	${ }_{4502}^{4502}$	－	0
4015	－	－ $\begin{aligned} & \text { 0．} 85 \\ & 0.52\end{aligned}$	4510	二	1
4017	－	0.85	4519	－	1.7
4018	－	0．85	4514	－	$2 \cdot 9$
27	＝	－ $\begin{array}{r}\text { 0．} 19 \\ 0.52\end{array}$	${ }_{4518}^{4516}$		${ }^{1} 9$
4028	－	0．97	4528		1.
4042	－	0.85 1.40	4536	－	

MISCELLANEOUS
U_{2} size N CAD BAT．$£ 1 \cdot 95$ （ $\mathrm{p} \& \mathrm{p} 30 \mathrm{p}$ ） 8 pin 741
Scope Probe，BNC plug £14．99 BNC Socket $\quad 0.90$ Signal Injector $\mathbf{£ 5 . 2 0}$ Multimeter 1,000 OPV． 11 ranges（ p \＆ p 50 p ） $\mathbf{8 6} \mathbf{2 5}$ Telephone pick－up coil 0.92 $3^{\prime \prime} 8 \Omega$ Spkr．（20p p \＆p） 0.99 $4^{\prime \prime} 8 \Omega$ Spkr（ 30 p p \＆p）$\quad £ 1 \cdot \mathbf{4 4}$ $0-1 \mathrm{~mA}$ panel meter £4．20 $240 \mathrm{vAC} / 9 \mathrm{v} 120 \mathrm{~mA} \quad$ £3．78 Regulated supply in plastic case

Prices．Please add 8\％VAT．P．\＆P．10p，except where shown Retail \＆Mail order．

588，Ashton Rd．，Hathershaw，Oldham，Lancs．061－652－9879

vainine
a tremendous range from Mainline, a division of one of the -argest industrial electronic component distribution groups in the business.
The enormous resources, buying power and organisation guarantees fast reliable service and top quality components at the right price.

Diodes
Transistors
Integrated circuits
Resistors
Capacitors
Switches
Relays
Diecast Boxes
Potentiometers

Fill in coupon below for the Mainline Components Catalogue.

Learn all about MICROPROCESSORS with the MOTOROLA Microprocessor Evaluation Design Kit M6800.
featuring:-

- 24 Key Keyboard
- 7 Segment Display
- Cassette Interface
- EROM Expandable
- RAM Expandable
- Wire Wrap Capability
- Parallel and Serial Interface Capability - Single 5 Volt Supply Required - Layout on Boards - Documentation

Please send for detailed descriptive leaflet \& prices.

Mainline

380 Bath Road, Slough, Berks. Tel: 06286 (Burnham) 63616

Manufacturers and trade enquiries invited for larger quantities.

Motorola Semiconductors.

We are pleased to announce that in conjunction with our parent company we can offer the complete range of Motorola semiconductors including zener diodes, diodes, transistors, SCR's, Triacs, digital and linear integrated circuits etc. As the available range is far too large to be listed please ask for your specific requirements.
TO: MAINLINE, 380 BATH ROAD, SLOUGH, BERKS.
Tel: 06286 (Burnham) 63616
W 7/78
Please send me your latest
FREE catalogue
I enclose cheque/P.O. E \qquad
Please send me the following devices

The following are the more popular types of 2 N TRANSISTORS by well known manufacturers such as Motorola, SGS, RCA, Fairchild. They are brand new and should not be confused with surplus offers often being advertised! Also we stock, or can obtain, other 2 N transistor types not listed below. So please write and let us know what you are looking for.
Please add 8\% VAT to your 2 N transistor orders, plus 25 p per order for postage and packing.

Type	price	Type	price
2N697	£0.36	2N3442	£1.63
2N706	0.37	2N3766	0.86
2N706A	0.24	2N3866	1.05
2N708	0.30	2N4033	0.60
2N718	0.41	2N4123	1.94
2N914	0.32	2N4125	0.20
2N916	0.96	2N4400	0.15
2N918	0.38	2N4401	0.18
2N929	0.24	2N4402	0.21
2N930	0.24	2N4403	0.23
2N930A	0.25	2N4441	1.06
2N1132	0.85	2N4442	1.30
2N1613	1.27	2N4443	1.43
2N1711	0.32	2N4444	1.88
2N1890	0.77	2N4870	0.78
2N1893	0.30	2N4871	0.74
2N2102	0.93	2N4918	0.67
2N2218	0.29	2N4919	0.70
2N2218A	0.32	2N4920	0.74
2N2219	0.30	2N4921	0.63
2N2219A	0.31	2N4922	0.67
2N2221	0.23	2N4923	0.70
2N2221A	0.26	2N5060	0.42
2N2222	0.18	2N5061	0.43
2N2222A	0.21	2N5062	0.49
2N2369	0.21	2N5063	0.52
2N2369A	0.23	2N5064	0.55
2N2646	0.56	2N5088	0.21
2N2904	0.30	2N5108	4.03
2N2904A	0.31	2N5190	0.69
2N2905	0.38	2N5191	0.74
2N2905A	0.32	2N5192	0.80
2N2906	0.23	2N5193	0.75
2N2906A	0.23	2N5194	0.80
2N2907	0.23	2N5195	0.85
2N2907A	0.23	2N5400	0.27
2N3053	0.35	2N5401	0.28
2N3054A	0.84	2N5415	0.81
2N3055	0.89	2N5416	1.11
2 N 3055 H	1.08	2N6027	0.62
2N3439	1.09	2N6028	0.79
2N3440	0.83		

Special quotations for quantities of 25 or more of one type.

Mainline

TRANSISTOR/IC PRICE LIST. RETAIL

COMPONENTS AND TEST EQUIPMENT

Standards

EDITOR

Geoffrey C. Arnold

ASSISTANT EDITOR
Dick Ganderton, C. Eng., MIERE
ART EDITOR
Peter Metalli
TECHNICAL EDITOR
Ted Parratt, BA
NEWS \& PRODUCTION EDITOR
Alan Martin
TECHNICAL SUB-EDITOR
Peter Preston
TECHNICAL ARTIST
Rob Mackie
SECRETARIAL
Sylvia Barrett
Debbie Chapman
EDITORIAL OFFICES
Westover House, West Quay Road, POOLE, Dorset BH15 1JG
Telephone: Poole 71191

ADVERTISEMENT MANAGER

01-261 $6671 \quad$ Roy Smith
CLASSIFIED ADVERTISEMENTS
$01-2615762 \quad$ Colin R. Brown

ADVERTISEMENT OFFICES
King's Reach Tower, Stamford Street, London SE1 9LS

BINDERS

Binders, for either the old or the new format, are $£ 2 \cdot 85$ and Indexes are 45 p (inc VAT) and can be obtained from the Post Sales Department, IPC Magazines Ltd., Lavington House, Lavington Street, London SE1 OPF. Remittances with overseas orders for binders should include 60 p to cover despatch and postage.

BACK NUMBERS

We are very glad to announce the re-establishment of a PW Back Numbers Service for our readers. In future back numbers dated from June 1977 only will be available from our Post Sales Department for 65p, which includes postage and packing. Cheques and Postal Orders should be made payable to IPC Magazines Ltd.
Send your orders to:- Post Sales Department, IPC Magazines Ltd., Lavington House, Lavington Street, London SE1 OPF.

FROM time to time, Practical Wireless receives letters decrying the fact that we continue to publish circuit diagrams in which symbols other than those laid down in BS:3939 are used. We are by no means the only "offender", and in fact a letter published in the latest issue of Electronic Technology, the journal of the Society of Radio and Electronic Technicians, slates the whole of the UK technical press, with the exception of the text-book publishers.

The writer of that letter, a lecturer in Radio and TV studies at a south coast technical college, complains that his students have to learn not only the BS:3939 symbols for their examinations, but also a variety of other symbols in order to understand circuits published in technical journals. He sees this as a waste of time, and exhorts those responsible to get into line.

While I am, in general, in favour of standardisation, it is as well to realise that we live in a real world. Even if all UK technical journals and magazines used BS:3939 symbols exclusively from now on, there is a wealth of material, both existing and still coming in from abroad, which uses other symbols. If we are not to dismiss that material completely, we must accept that there is this variety and learn to interpret the various forms encountered.

It is, in any case, arguable whether some of the BS:3939 symbols are the best. Taking the humble resistor as an example, while the rectangular box may be simple for a computer or other mechanical draughting machine to draw, the zigzag is much easier to draw freehand with a little practice. Since many draughtsmen now use rubdown transfers to produce finished drawings, it makes little difference to them anyway, so why not make life a little easier for the student and development engineer trying to produce a neat sketch, by sticking with the zigzag? Again, with logic symbols, it has always struck me that the familiar shapes of MIL-STD-806B make a diagram much easier to understand than do the featureless outlines of their BS:3939 counterparts.

It has been said that the prime reason for the adoption of some of the BS:3939 symbols was that they were easier for machines to draw. Since the vast majority of circuit diagrams must surely still be produced by human means, the justification for those symbols is therefore highly questionable. It makes one wonder whether, at some time in the future, the standard which will replace BS: 3939 will consist merely of rectangular boxes containing numbers from 1 to n, each indicating a different type of circuit element!

Geoffrey C. Arnold

PLEASE NOTE-CORRESPONDENCE

We do not operate a Technical Query Service except on matters concerning constructional articles published in PW. We do not supply service sheets or information on commercial radios, TV's or electronic equipment.
All queries must be accompanied by a stamped self-addressed envelope otherwise a reply cannot be guaranteed.

Mid for R \& D

The Dept. of Industry has set up an Electrical Technology Requirements Board (ETRB) to fund research and development in the electrical engineering industry. The Board will be composed of eminent British engineers and chaired by Mr. T. W. B. Sallitt, Director, Hawker Sidderly Group Ltd.

The Board will cover such products as motors and generators, transformers, switchgear, cables and accessories, domestic appliances, and miscellaneous electrical equipment including lamps and batteries.

Major objectives of The Board will be to identify those areas which will most benefit from additional research and development, so as to promote technological innovation and to increase the application of known technology.

The Board welcomes applications from private companies as well as research organisations, for financial support on research and development projects, usually on a co-operative basis, in any of the fields mentioned above.

Enquiries should be addressed to: Dr. L: Goldstone, Executive Officer/ Secretary ETRB, Abell House, John Islip Street, London SW1. Tel: 012113450.

Look in

Five new promotional films, to be shown by Independent Television programme companies, have been made by the IBA to promote 'better viewing'.
The five films are:
(1) The importance of the receiving aerial (30 seconds).
(2) The importance of correct receiver adjustment (60 seconds).
(3) The expanding coverage of the IBA transmitter networks (60 seconds).
(4) New technical developments in television broadcasting (60 seconds).
(5) Controlling the day-to-day quality of ITV broadcasts (30 seconds).
Film (2) on receiver adjustment is to be backed by a special leaflet which dealers and rental companies will be encouraged to distribute to viewers.

The films include shots of many IBA engineering installations and
developments, including the unique Emley Moor concrete aerial tower, low-power solid-state transmitters for local relay stations, the special SABRE adaptive receiving aerial that brings ITV colour to the Channel Islands, DICE-the IBA's pioneering digital standards converter used for intercontinental relays, optional subtitling for the deaf which may become possible by using ORACLE teletext techniques, etc.

New source

Amtest Radio and Electronic Equipment, is a new company set up to specialise in equipment and aerials for s.w. listeners.

They hope in the near future to provide a similar service for long, medium and v.h.f. listeners with the emphasis on DXing.
The company will answer any enquiry, provided it is accompanied by a SAE.
Amtest Radio and Electronic Equipment, 55 Vauxhall Hill, Worcester WR3 8PA. Tel: 090522704.

The Wireless?

A foreign spy, an astronaut in deep space, a man in the street... what have they in common? A radio receiver!

The cost and sophistication varies enormously over the range of available equipment, from a few pounds for the portable 'transistor' to thousands for radar and satellite communications. No matter what the application the advances since the days of the cat's whisker crystal detector have been considerable and it is proposed to survey the subject at a conference on 'Radio Receivers and Associated Systems' organised by the I.E.R.E. to be held at the University of Southampton from 11-14 July, 1978.

Thirty-seven papers will be delivered formally and a further twenty will be presented in poster-booth sessions. An exhibition of relevant equipment is to be organised by the Electrical Research Association. Further details from:
Conference Secretariat, I.E.R.E., 99 Gower Street, London WC1E 6AZ. Tel: 01-388 3071.

Mobile Rally

The Nunsfield House Community Association Amateur Radio Group are holding a mobile radio rally on Sunday 11 June 1978 at Elvaston Castle Country Park, which is located 5 miles south-east of Derby on the B5010.
Talk-in stations will be available from 10.00 am ; G3EEO/P on 160 m , G3ZBI/P on $2 m$ f.m. ch. S22, and on 70 cm G8KGC/P on f.m. chs. SU8 and SU20. All the usual rally attractions will be present; over 40 trade stands housed in two marquees, bring and buy sale, RSGB bookstall, childrens rides and entertainments, sideshows and a full catering service at competitive prices. The I.B.A. will also be present demonstrating their ORACLE teletext service. The rally will be open from 11.00am and should provide an ideal day out for all the family. Further details are available from: Ian Cage G4CTZ, 25 Petersham Drive, Alvaston, Derby DE2 OJU.

Summer School

The Dept. of Electrical Engineering Science at the University of Essex will be holding its annual electronics summer school for teachers during the week 10-14th July, 1978. This year, as well as running two established courses in linear and digital circuit design, a third course in Electronics Systems is being introduced. The object of the course being to cover some of the more difficult material of the AEB Electronics Systems syllabus as well as discussing the teaching aspects of the ' A ' level.

The linear design course is concerned with the use of transistors and operational amplifiers in analogue applications; particular emphasis being placed upon design related to basic circuits in a hi-fi amplifier. The digital design course concentrates on the use of the transistor as a switch and develops design using integrated logic circuits. A programme of laboratory work is included on each course. Teachers who require further information contact: R. J. Mack, Dept. of Electrical Engineering Science, University of Essex, Wivenhoe Park, Colchester. Tel: 020644144 Ext. 2408/ 2299.

The purpose of this project is to provide an accurate calibration source for digital frequency meters. The 200 kHz Long Wave BBC signal is the standard frequency employed, and by regeneration is formed into a 4 volt peak to peak square wave output. It is emphasised that the calibrator requires moderate signal strength for reliable operation, but should function in most areas of the British Isles.

Circuit Description

The aerial coil is tuned by a trimmer in addition to a fixed capacitor. The signal is fed direct to the gate of Tr, an f.e.t., which is used purely as a high impedance buffer and works in the source follower mode. This feeds its output through C2 to the base of $\operatorname{Tr} 2$ which forms a direct coupled amplifier with $\operatorname{Tr} 3 . \operatorname{Tr} 4$ is another buffer used to feed the digital frequency meter without influencing circuit performance.
Regeneration is effected principally by capacitive coupling between the can of Tr3 and the aerial circuit. The overall gain of $\operatorname{Tr} 2-\operatorname{Tr} 3$ is sufficient to clip what would otherwise be a sine wave into a sloping square wave at the collector of Tr3. Transistors 2-4 are not run at the full 9 volt supply but are fed via a decoupled resistor, R7, at about 4.5 volts. This, in conjunction with aerial damping resistor R1, serves to restrict the degree of feedback. This technique was adopted when trying to lock on to a French transmission at 180 kHz , a rather weaker signal than the 200 kHz transmission.

Phase Locking

The circuit as a whole constitutes a free-running multivibrator which happens to use a tuned aerial as part of its feedback loop. Now, as with any multivibrator, it can be triggered by a suitably strong impulse, and the closer the triggering frequency is to that of the multivibrator, the more readily will phase locking occur. By adjusting the aerial close to 200 kHz we allow the received signal to trigger the circuit.
However, we have a problem with triggering in that the received signal strength will vary by vast amounts, depending mainly on the distance from the transmitter. One way to overcome this problem is to devise a multivibrator with minimal feedback level, thereby reducing the trigger level required: hence the technique described here.

Construction

The m.w. winding supplied with the ferrite rod is discarded. Only leads 3 and 5 on the l.w. winding are used; lead 4 may be cut short, the ends carefully cleaned, and the two wires resoldered. If "P" clips are not available for mounting the rod it can be glued with Araldite direct to the top of the board.

The board is drilled to take four 4 BA mounting bolts, two of which secure the " P " clips, and also, as appropriate, for the type of trimmer used. These bolts may also be used to mount the unit in a suitable case if desired.

The components are back-wired on 0.15 in matrix plain Veroboard and the layout shown should be adhered to, as spurious feedback plays such an important role.

The leads of R8 are formed into loops close to the resistor body before they pass through the board; these loops form the earth and output terminals. A PP3 type connector is fitted enabling either a PP3 or PP6 to be used.

\star components

AD129

Fig. 1 : (above) The complete circuit diagram of the Phase-Locked Calibrator

Alignment

The equipment required for setting up is no more than a Long Wave receiver and an insulated trimming tool (a plastic knitting needle filed to shape will serve). Proceed as follows.

1. Screw down TC1, then unscrew ${ }^{1} 2$ to ${ }^{3} 4$ of a turn.
2. Connect the frequency meter earth to the $0 V$ side of R8 and the probe to the output loop. Ensure that the unshielded section of the probe runs directly away from the aerial.
3. Connect a battery to the calibrator and then tune in 200 kHz on the receiver which is placed nearby with both aligned for best reception.
4. Adjust the coil former on the ferrite rod until a heterodyne whistle is heard from the receiver; continue until the note is fairly low.
5. Using the trimming tool adjust TC1 until the beat disappears altogether. At this point the calibrator is phase locked to 200 kHz .

Fig. 2: (below) Component layout and wiring of the perforated board

6. Switch on the frequency meter, and after a suitable warming-up period make any adjustment necessary.

The coil former may be fixed in place with a few drops of candle wax melted with a soldering iron.

Final Notes

Remember that any digital frequency meter will have a last digit error of plus or minus one, so don't expect the readout to be rock steady. Static or manmade interference, including radiations from the meter itself, if too close, can cause a momentary spurious reading. The circuit, which consumes about 4 mA , is quite tolerant of falling battery voltage.

The prototype was used some 90 miles from the transmitter at which range locking occurs without difficulty, but at appreciably greater ranges it could be more of a problem.

Receiver with Screened-grid H.F. Amplification" covering 20-48 metres. The circuit consisted of a screened grid h.f. stage followed by a leaky grid detector with reaction and two l.f. stages; the price, $£ 25$, exclusive of royalty, valves and batteries.

Receiver Designs

Somewhat different to the Short-Wave 2 described by H. B. Dent, Wireless World (4.11.32) covering from 15 to 80 metres with 5 plug-in coils. The blueprint was obtainable from $W W$ for ls.6d, post free, the receiver was available for inspection at their Editorial Offices in Fleet Street and the approximate cost of the parts, excluding valves, was $£ 4.12 \mathrm{~s} .0 \mathrm{~d}$.

For some years, up until the end of 1924, Wireless World was the official organ of the Radio Society of Great Britain, and in July 1925 the first issue of the T and R Bulletin, forerunner of today's Radio Communication, was published at the instigation of Henry Bevan Swift, G2TI, and Gerald Marcuse.

In later years the Marcuse family moved to the picturesque seaside village of Bosham, Sussex, where today, outside the church stands a teak seat on which is a bronze plaque inscribed:-"In Memory of Gerald Marcuse, G2NM, Pioneer of Empire Broadcasting, President RSGB 1929-30", accompanied by the badges of both the RSGB and RAOTA. This memorial seat was handed over to the Chairman of Bosham Parish Council (Mr Frank Parham) by representatives of the Radio Amateur Old Timers' Association at a short ceremony outside the church on July 21st, 1962. In the same year RAOTA also arranged for a commemoration plaque to be installed at Gerry's former home in Caterham which reads:-"From this house Gerald Marcuse, G2NM, inaugurated Empire Broadcasting in September 1927".

 of Onowester ond District Onetuw Radioclub

TO RADO	DATE	GMT	MHZ	RET

The QSL card of special event station G2NM, operating from Bosham, West Sussex, on 24/25th June, 1978

To commemorate the 50 years of Empire Broadcasting, the Chichester and District Amateur Radio Club are operating a station from Bosham on June 24th and 25th, and have a special QSL card to mark the occasion. Although they will be active on 2 m , G8NMF, they intend to concentrate their efforts on the DX bands, as Gerry did. Owing to the limited space available, people wishing to visit the station must first contact Terry Allen, G4ETU, QTHR, to make arrangements.

Please supply PCB/s as indicated by tick/s in box/es......

Issue	Project	Ref	Price P/P	
Dec 75	Sound-To-Light Display	DN0798	$1 \cdot 15+12$	\square
Dec 75	Disco System, Amp. (2 req'd) each	'd) each AM0421	$4 \cdot 40+22$	\square
Dec 75	Disco System, Light Modulator	lator AM0423	$3 \cdot 50+22$	\square
Mar 76	CMOS Crystal Calibrator	AM0438	$1 \cdot 19+12$	\square
July 76	Disco Preamplifier	A003	$0 \cdot 65+12$	\square
Oct 76	Digital Car Clock (set) A01	A011/012/013	$2 \cdot 58+12$	\square
Oct 76	Interwipe	DN8JM	0. $80+12$	\square
Oct 76	Video-Writer (set) D002/3/4	D002/3/4/6 A007	$21 \cdot 44+50$	\square
Nov 76	Cirtest Probe	A018	$0 \cdot 48+12$	\square
Nov 76	Burglar Alarm	A019	$0 \cdot 50+12$	\square
Dec 76	Chromachase	A021	$5 \cdot 70+22$	\square
Jan 77	Oscilloscope Calibrator	A023	$1 \cdot 25+12$	\square
Apr 77	Gas/Smoke Sensor Alarm	A028	$0 \cdot 65+12$	\square
May 77	2-Way Intercom	D019	$1 \cdot 28+12$	\square
May 77	Protected Battery Charger	A027	$2 \cdot 38+12$	\square
May 77	Seekit Metal Locator	A031	$3 \cdot 38+12$	\square
June 77	Versatile AF Generator	A033	$2 \cdot 38+12$	\square
June 77	Tele-Games	D029	3-22+18	\square
July 77	20W IC Amplifler	A034	$1 \cdot 38+12$	\square
July 77	Radio 2 Tuner	A035	$1 \cdot 68+12$	\square
July 77	Digital Clock Timer	A036	$3 \cdot 28+12$	\square
Aug 77	Shoot (Telegames)	D035	$1 \cdot 55+15$	\square
Aug 77	Atomic Time Receiver	D036	$2 \cdot 65+15$	\square
Aug 77	Morse Code Tutor Cards (SRBP)	(SRBP) A037	$4 \cdot 75+15$	\square
Sept 77	Jubllee Electronic Organ	A038	$18 \cdot 00+75$	\square
Sept 77	Electronic Car Voltage Regulator	gulator D037	$1 \cdot 25+12$	\square
Oct 77	Audio Level Indicator	D039	$0 \cdot 98+12$	\square
Oct 77	Sine-Square Wave Generator	ator D040	$2 \cdot 35+15$	\square
Nov 77	Laboratory Power Supply	A039	$3 \cdot 50+12$	\square
Jan 78	Direct Conversion Receiver	D D043	$1 \cdot 85+15$	\square
Jan 78	Proportional Power Controller	oller DN9JM	$0 \cdot 78+12$	\square
Mar 78	Audio/Visual Logic Probe	R001	$1 \cdot 40+15$	\square
Apr 78	Europa Stereo Amplifier	R002	$9 \cdot 55+45$	\square
May 78	DX'ers Audio Filter	D001	$2 \cdot 35+15$	\square
June 78	Bovington Tank Game	R006	$3.80+20$	\square
June 78	Audio Distortion Meter (set) R00	et) R007/8/9/10	6:75+25	\square
June 78	Darkroom Timer	R011	$1 \cdot 55+15$	\square
July 78	Avon Transmitter R015	R015/16/19/20	$5 \cdot 10+40$	\square
July 78	Digital Lock	D002	$1 \cdot 25+15$	\square

Juiy 78 Morse Tutor
R014 2.35+15
Post and packing is for one board or set of boards. Prices include VAT. Remittances with overseas orders must be sufficient to cover despatch by sea or air mall as required.
1 enclose Postal Order/Cheque ACCESS welcome.
Send card number only.
No........................
for $£$. . . made payable to READERS PCB SERVICES LTD
NAME ...
ADDRESS ..
\qquad
\qquad
Any correspondence concerning this service must be addressed to READERS PCB SERVICES and not to the Editorial offices.

mintodncilin LDGIG~1

During the past few years something of a revolution has taken place in the field of amateur electronics. The valves and transistors of the past have been overtaken by a wide range of integrated circuits (i.c.s) or "chips" as they are often called. These new devices make possible amateur electronic projects which, only a few years ago, would have been just science fiction dreams. The integrated circuits available range from simple two- or three-stage audio amplifiers up to microprocessors with some 20,000 or more transistors packed on to a tiny chip of silicon.

Some integrated circuits, such as those for audio, radio or television applioations, are linear types and they work in much the same way as their discrete component counterparts. It will be noticed however, that the great majority of i.c.s advertised have type numbers in the 74 and 4000 series. These are logic devices originally developed for use in digital computers and industrial control systems.

What can Logic do for us?

So all of these digital logic chips are available but how can they be used in amateur projects? Let us consider radio communication. Amateur radio operators and keen short wave listeners often need to measure frequencies accurately. The old methods of using heterodyne wavemeters, calibration charts or even crystal markers work quite well but they are rather inconvenient. Modern communications receivers often indicate the frequency, to perhaps the nearest 100 hertz, as a number on a digital display. This facility is achieved by using logic circuits.
Basically all we need do to measure frequency is to count the number of cycles of the signal that occur in an accurate time period. If the time period is a millisecond then the answer will be the frequency in kilohertz. Logic devices are very good at counting things and measuring time periods.

To measure time we simply count down from an accurate crystal-controlled oscillator. The count can be arranged to provide the answer in hours, minutes and seconds. In fact this is precisely how a digital watch or clock works.

Many amateur radio stations use the radioteletype (RTTY) mode of communication where signals from a typewriter-style keyboard are converted into coded patterns of pulses and then transmitted. At the receiving end, the pulse patterns are decoded and the message is printed out as text on a sheet of paper. Because printers are rather expensive some stations display the messages as text on a modified television receiver. Extensive use is made of digital logic for coding, decoding and displaying the RTTY messages. Morse code, still used by many radio amateurs, can be dealt with in the same way. Messages, typed on a
keyboard, are converted by logic to perfect Morse code and at the receiver the signals are decoded and displayed as text on a TV screen

Logic is very good at sequential control tasks such as running a model railway, controlling a machine, or even switching the lights on a Christmas tree There are many ways we can use this capability for amateur projects.

Recently logic has crept into television in the form of TV games and Ceefax/Oracle decoders. There are some TV sets which can display the time or channel number on the screen by using logic. In other cases, digital techniques may be used for tuning and for remote control. Even those touch switches on the front of some sets use digital logic.
Some large scale integrated (l.s.i.) digital circuits have been specially developed for use in electronic orgians, digital multimeters, digital clocks and calculators. By far the most complex of the logic devices are microprocessors which, unlike the more specialised circuits, can easily be programmed to perform an almost infinite variety of tasks perhaps only limited by the imagination of the user.
People sometimes regard digital circuits as rather mysterious. It is true that when we enter the digital world we shall meet some new concepts, new devices, new circuit symbols and a whole new vocabulary of technical terms. In fact, however, digital systems are not too difficult to understand, and in this series we shall explore the way in which they work and some of the ways in which they can be used.

Digital Signals

First, let us take a look at the signals involved in a digital logic system. Readers will already have met analogue signals, such as those in an audio amplifier, where the level of the voltage or current in the circuit varies in proportion to the signal level. Thus the amplitude can vary continuously over the whole range of signal levels, to give a virtually infinite number of discrete voltage or current levels.

In contrast to the analogue case the signals in a digital logic system can have only two possible levels. One of these is called the "zero" or 0 level, and this corresponds to the signal being turned off. The second level is called the "one" or 1 level and is equivalent to the signal being turned on.

Sometimes in the literature and in data sheets for logic circuits, other names may be used to describe these two signal levels. As an example the 0 level may be referred to as the "low" or "false" level, but it will still have the same value as the 0 level. Alternative names for the 1 level are "high" and "true" respectively. In this series we shall use the 0 and 1 terminology since it seems to be the most popular.

When both A AND B inputs are set at 1 both of the diodes will cut off and no current will flow in R. Now the output level will rise to +5 V to give a 1 output state. Thus the diode circuit produces the same logical results as the electrical lamp and switch circuit.

If we needed to have more input signals these could be provided by merely adding more diodes. With more inputs the 1 at the output should only occur when all of the input lines are at the 1 level.

Truth Table

A convenient way of setting down the various logic conditions in a gate circuit is by means of a Truth Table. In this table all of the possible combinations of input states are listed, together with their corresponding output states.

For a two-input AND gate such as that shown in Fig. 2 the truth table would be as shown in Table 1. In the case of an AND gate which has three inputs the truth table will have eight possible states as shown in Table 2.

TABLE 1

Input		Output
A	B	\mathbf{Y}
0	0	0
1	0	0
0	1	0
1	1	1

TABLE 2

	Input		Output
A	\mathbf{B}	\mathbf{C}	\mathbf{Y}
$\mathbf{0}$	0	0	0
1	0	0	0
0	1	0	0
1	1	0	0
0	0	1	0
1	0	1	0
0	1	1	0
1	1	1	1

Try working out the truth table for a four-input AND gate and you should end up with 16 combinations but the output will be at 1 only when all of the inputs are at 1 .

Integrated Gate Circuits

In an actual TTL 2-input AND gate the circuit is roughly as shown in Fig. 3 and is much more complex than our simple diode gate.

The gate action proper occurs in transistor Trl which has two emitters. This stage acts in much the same way as the diode gate so that the transistor

Fig. 3: A typical TTL AND gate
stops conducting if both emitter inputs are at 1 . Transistors Tr5 and Tr6 form a "totem pole" output stage which gives a low output impedance and fast switching. For a 1 output Tr5 is "on" and Tr6 is "off" and vice versa for the 0 state. Thus the output is clamped to either 0 V or +5 V through one or other of the output transistors. The other transistors in the circuit provide the required drive signals for the output stage.

In the 4000 -series CMOS circuit a 2 -input AND gate would be made up roughly as shown in Fig. 4. In this circuit the series n-channel transistors provide the AND gate action operating in much the same way as the series switches in our electrical circuit. The pchannel f.e.t.s $\operatorname{Tr} 1$ and $\operatorname{Tr} 2$ are used to pull the point X up to the supply rail if either of the inputs is at 0 . When both inputs are at 1 Tr 3 and $\operatorname{Tr} 4$ will both conduct to bring point X down to $0 V$. The output stage in this case is a push-pull complementary pair. If X is at $0, \operatorname{Tr} 6$ will be "off" and $\operatorname{Tr} 5$ will be "on" so the output terminal will be clamped to the positive supply rail to give a 1 output. If X is at 1 the output level will be clamped to 0 via $\operatorname{Tr} 6$. In some cases there may be several other stages to provide full drive for the output stage but the operation is much the same.

For more inputs a TTL gate would have more emitters on Trl, whilst a CMOS gate will have more transistors in series.

Symbol for an AND Gate

Obviously we cannot draw out the complete circuit for every gate so a special symbol is used to indicate an AND gate. This is shown in Fig. 5(a) for a 3-input gate. Where there are a lot of inputs the gate symbol may be modified as in Fig. 5(b) for drawing convenience.

Fig. 4: A typical CMOS AND gate
continued on page 60

'purbeck'

Part 4

IAN HICKMAN

OSBMLICSBOTE

This month's instalment deals with the construction of Board 3, the Y amplifier. This board uses a ground plane, in view of the high gain and wide bandwidth. With a ground plane, a low impedance earth return is available everywhere, ensuring that decoupling capacitors are fully effective.

As double sided boards were ruled out on the grounds of excessive cost, the component interconnections use conventional wiring. It may well be possible to produce a successful single sided printed wiring layout, but the author lost a considerable amount of time trying to do just this and therefore returned to the ground plane construction used in a previous oscilloscope design. Figs. 3 and 5 show the component layout and wiring, which should be followed closely to avoid instability. Note that i.c. sockets must not be used.

Up to this point, the components mentioned have all been fairly conventional, apart from the special mains transformer and the tube itself, of course. On this board we encounter some more out of the way components, but their use is more than justified by the performance which is obtained.

Take the dual junction gate f.e.t. type E421 (Siliconix) used in the input stage for example. The low temperature coefficient of input offset results in no drift of the trace level from switch on, even on the most sensitive setting of about 2.5 mV per division.

This dual f.e.t. acts as a source follower, providing the necessary high input impedance for use with the
frequency compensated input attenuator S3 and a low output impedance to drive the 733 video amplifier IC301. Network R301, R302 and C301 protects $\operatorname{Tr} 301$ a from excessive input voltages without causing deterioration of high frequency response. R303, R304 and R306, R307 provide d.c. level shifting of $\operatorname{Tr} 301$'s outputs to bring them within the input range of IC301. They result in a small degree of attenuation of the input signal at d.c. and are therefore not bypassed, to keep the a.c. and d.c. gains equal.

The purpose and adjustment of VR301 is covered in the last article, and at this stage it should simply be set to mid-travel.

The 733 video amplifier IC301 forms the main gain block, and its gain is switched by S301 to provide an overall sensitivity for the complete instrument of 5 , 10 and $20 \mathrm{mV} /$ division. A fourth position of S301 brings VR302 into circuit, providing a continuously variable gain facility and incidentally providing a maximum sensitivity of approximately 2.5 mV per division.

The bandwidth of the 733 varies with gain, but even at maximum gain it is 40 MHz , so that in practice the bandwidth of the complete instrument is determined entirely by the Y deflection amplifier Tr303 to 308.

Note that owing to its common mode rejection (typically 60 dB even at 5 MHz) the output of IC301 is balanced, even though an unbalanced input is applied at pin 1.

Fig. 1: The circuit diagram of the Y amplifier, clearly showing how the essential bandwidth is achieved; gain block IC301 couples to the Y deflection amplifier, and the $R 326$ by-passing C / R network maintains upper frequency response. Note that $\mathbf{R} 329$ and $R 332$ are connected to the -6 V supply and that the unmarked resistors in the collector circuits of Tr307 and Tr308 are both 47Ω (R327, 328)

Tr302 is the trigger pick off amplifier. This is by no means a trivial function, as the action of an oscilloscope's trigger slicer circuit can easily reflect back a small disturbance into the Y amplifier. This results in slight notches in each cycle of the displayed waveform, which move up and down as the Trigger Level control is varied. Here, R311, R312 attenuate the signal by a factor of 2 and emitter follower Tr302 acts as a buffer.

An emitter follower provides only limited reverse isolation at high frequencies, but disturbances emanating from the trigger circuit, before they can reach the Y deflection amplifier input, are also attenuated by the ratio of R311 to the output impedance of IC301. This ratio is very much greater than 2:1, as IC301's output stages are emitter followers.

Further buffering is provided by another emitter follower and 2:1 attenuator on Board 4, described next month. R314, like the 47Ω resistors in the Y
deflection amplifier, is an anti-parasitic stopper resistance.
The bandwidth of an oscilloscope is usually limited by the Y deflection amplifier. Certain steps can be taken to maximise the bandwidth and a fairly obvious one is to use symmetrical deflection, i.e. to drive the deflection plates in antiphase. For if only one of the two plates were driven, twice the voltage swing would be required, so needing twice as high a collector supply voltage.

For a given deflection transistor dissipation, we would then have to halve the standing current through the output transistor. Twice the voltage at half the current means four times the collector load resistance and this would result in a quarter of the bandwidth!
The Y output transistors $\operatorname{Tr} 303$ and $\operatorname{Tr} 304$ are used in the grounded base mode. The low input impedance at their emitters results in virtually no signal voltage
swing at the collectors of $\operatorname{Tr} 305$ and $\operatorname{Tr} 306$. There is therefore no Miller multiplication of their internal collector/base capacitance, minimising capacitive loading on IC301's outputs.

The collector/base capacitance of a BF336 is approximately 3.5 pF and this, together with the Y plate capacitance of the 3BP1 c.r.t. and wiring strays, results in a total capacitive loading at the output of $\operatorname{Tr} 303$ (and $\operatorname{Tr} 304$) of around 10 pF . A peak to peak voltage swing of around 90 V is required to provide a reasonable degree of overscan and choosing a conservative value of dissipation for $\operatorname{Tr} 303$ and 304 leads us to a standing current for each of just over 15 mA , with $3 \cdot 3 \mathrm{k} \Omega$ collector loads. Allowing a minimum Vce of 10 V to maintain a good high frequency response leaves us with an h.t. requirement of 120 V -the excess 30 V is dropped by R 316 .

\star components

Now $3 \cdot 3 \mathrm{k} \Omega$ and 10 pF gives a time constant of $3 \cdot 3 \times$ $10^{-8} \mathrm{sec}$ corresponding to a -3 dB point of 5 MHz and this is in fact the measured -3dB frequency of the oscilloscope for full screen Y deflection. With suitable inductive peaking in the collector circuits, this could be extended by about 20 per cent to 6 MHz or a shade more if overshoot were accepted on fast edges. This bandwidth would be independent of the amplitude of the Y deflection. However, in this design a different approach has been adopted. The voltage gain of the Y deflection amplifier from the bases of $\operatorname{Tr} 305,306$ to the collectors of $\operatorname{Tr} 303,304$ is the ratio of the collector to collector load resistance ($3 \cdot 3 \mathrm{k} \Omega+$ $3 \cdot 3 \mathrm{k} \Omega$) to the emitter to emitter resistance (R326, 220Ω).

A gain of 30 for a cascade stage is quite modest, considerably more gain could be obtained by using a lower value for R326.

Advantage has been taken of this extra available gain by partially bypassing R326 at high frequencies with capacitors C309, 310, 311 and 314. This provides increased output current swing at $\operatorname{Tr} 303$, $\operatorname{Tr} 304$ collectors at high frequencies to charge the capacitance of the Y plates, so maintaining the frequency response level.
This substantially reduces the rise time when displaying pulses or square waves, but there is a limit.

After all, the available current through $\operatorname{Tr} 303$ and Tr304 together is set by the tail resistor R333. All the input signal can do is alter its distribution between them.

If due to the large size and fast risetime of an input square-wave, the current needed to charge the deflection plate capacitance quickly enough exceeds the tailcurrent, then we cannot faithfully display the waveform.

The "in" phrase for this is to say that the output voltage of the Y deflection amplifier is "slew-ratelimited". If either the amplitude of the input were

Fig. 2: An ideal square wave is shown in (a) with typical degradations which occur in practice shown in (b). At (c) are the output waveforms from a slew-rate-limited amplifier for three increasing values of input

Fig. 4: The copper ground plain pattern of the Y amplifier board
smaller, the higher their frequency.
In other words, the amplitude/frequency characteristic of the amplifier matches the requirements for displaying square waves and pulses. For a vertical deflection of 1 division, the rise time of the oscilloscope is 20 ns , so the display of a 5 MHz square wave looks commendably square, whilst even a 10 MHz square wave looks as if it is obviously meant to be

WARNING

Extra care must be taken when working on any part of this instrument while power is switched on. 1100 volts can kill. When delving into the insides of the scope for any reason with power on keep one hand in your pocket
square! L301, 302 provide a modest degree of peaking, as do L1 and L2, but are not in any way critical. L301, 302 are 35 turns of $38 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. wire on $100 \mathrm{k} \Omega$ carbon composition resistors. L1, 2 (see Part 3) are similarly constructed with 15 turns of 38 s.w.g. wire. R308 and R325 shape the peaking provided by C311, 314 to give a flat frequency response and minimise overshoot and ringing on fast edges.
The emitter current of $\operatorname{Tr} 305,306$ is provided by a long tailed pair TR307, 308. These provide a convenient means of injecting the Y shift voltage via R315. If the Y shift were injected ahead of IC301, the position of the trace would change when the Y gain selected by S301 was changed.
The author has not seen six transistors used in this configuration before: readers might like to think up a name for it-a long-tailed cas-cascode perhaps.

Fig. 5: Back wiring of the board, in relation to the components. This layout of the wiring should be followed to avoid any possibility of instability occurring

When Board 3 has been assembled, check each power supply pin to 0 V with an ohmmeter to make sure none is short circuit and centre all pre-set pots and C309. Then plug it into the main frame, disconnect the Y plates from the temporary $47 \mathrm{k} \Omega$ and $100 \mathrm{k} \Omega$ resistor chain across the +150 V STAB supply (see last month) and connect them via R21, L1 and R20, L2 sockets to pins Y1 and Y2 of the board.

Don't forget the ground link at the rear of the board either. You can also put up a crude timebase of sorts by disconnecting one of the X plates from the $47 \mathrm{k} \Omega$ and $100 \mathrm{k} \Omega$ resistors and reconnecting it via a $47 \mathrm{k} \Omega$ resistor. A $0 \cdot 1 \mu \mathrm{~F}$ capacitor from the Y plate to pin 2 of Board 1 will give a small 50 Hz sinusoidal X deflection. So, plug in briefly and check that all
stabilised supply voltages are normal, indicating no short circuits anywhere.
It should be possible to centre the trace vertically with the Y shift control. If not, adjust VR301 as necessary. With a suitable range selected at S3, feed in a sine wave from an audio oscillator. When its frequency is carefully adjusted to exactly 50 Hz , $100 \mathrm{~Hz}, 150 \mathrm{~Hz}$, etc, a stationary pattern known as a Lissajous figure should be obtained. At 50 Hz , this will vary from a line to an ellipse and more complicated figures will be obtained at higher frequencies.
This simple test will enable you to check that the Y amplifier is basically operational and to test that the Y shift works, also that the gain can be varied in steps by S301 and in position 1, by VR302.
Next month we will look at the construction of Board 4, which carries the timebase circuits.
therefore not multiplied by the audio frequency gain of the circuit and the quiescent output voltage is very close to the ground potential; the steady quiescent current passing through the loudspeaker can therefore be kept very small.

The bandwidth (or rather the high frequency response) of the circuit is controlled by the value of C3, the compensation capacitor. The bandwidth is approximately equal to $2 \cdot 7 \times 10^{-.4} \mathrm{R} 2 / \mathrm{R} 5 \mathrm{C} 3$; thus with the values shown, the response extends to about 160 kHz , but can be reduced by increasing C3.

The capacitors C6 and C7 are required for good high frequency decoupling to ensure stability; they should be soldered close to the ESM 532. Although these capacitors are connected in parallel with very much larger capacitors in the power supply, the latter capacitors are electrolytics with a fairly large effective series inductance and may be some distance from the device. C6 and C7 have a far smaller series inductance than electrolytics.

Power Supply

A simple power supply for feeding the circuit of Fig. 2 is shown in Fig. 3. D1 to D4 may be four separate diodes (e.g. 1N4002) or a single bridge rectifier containing four diodes (e.g. type REC 63 from Doram). Full wave rectification occurs in this circuit, the output voltage being nearly $1^{1} 2$ times the transformer secondary voltage.

The use of the light emitting diode and its series resistor R1 to indicate when the power supply is switched on is, of course, optional.

Fig. 3. A power supply circuit suitable for driving the Fig. 2 circuit

Single Supply

The circuit of Fig. 4 has a similar performance to that of Fig. 2, but a single power supply is used. A positive bias must be applied to the non-inverting input in this circuit otherwise the output would be at a low voltage and would not be able to swing lower in voltage to amplify negative going peaks. The positive bias brings the output potential to a positive quiescent value and therefore a large electrolytic capacitor C4 must be included in series with the loudspeaker to prevent a constant quiescent current from flowing through the loudspeaker.

The gain of the circuit is approximately equal to R7/R5 +1 or about 28 (29 db) with the circuit values shown. The bandwidth is about 12 Hz to 140 kHz with the value of C 5 shown. At high values of gain a capacitor in seriess with a resistor should be connected from the junction of R7 and R5 to ground, the

Fig. 4. A 20W amplifier using a single power supply
product of the values of this capacitor and resistor being appreciably less than the product of the value of C4 and the loudspeaker impedance.

Comparison

In general readers will find the circuit of Fig. 2 more convenient than that of Fig. 4, since no large output capacitor is needed in series with the loudspeaker. Thus the high switch-on transient currents are eliminated together with the switch-on 'plop' noise and one obtains optimum response at low frequencies. On the other hand, the power supply used with the Fig. 2 circuit does require a tapped secondary winding on the mains transformer.

Heat sinks suitable for use with the ESM 532 are available from Staver Thermal Products Ltd., Heron Trading Estate, Bruce Grove, Wickford, Essex SS11 8BS under the type numbers V3-3-2020 and V3-5-2020, the latter having the lower thermal resistance of $4 \cdot 5^{\circ} \mathrm{C} / \mathrm{W}$. When the ESM 532 has been connected on its circuit board, silicone grease should be placed on it and the heat sink bolted to the board so that it is held in good contact with the ESM 532. Readers can make their own heat sinks using a sheet of metal of area not less than about $70 \mathrm{sq} . \mathrm{cm}$. and bending it as required, leaving the part in contact with the device quite flat.

Other devices

One may well ask how the ESM 532 compares with other 20 W devices? It has the same maximum current rating as the SGS-ATES TDA2020, but has a somewhat lower voltage rating than the latter. At present the ESM 532 appears to be somewhat cheaper than the TDA2020 and has the advantage that its typical quiescent current is only 25 mA at 28 V . The TDA2020 has the lower thermal resistance of $3^{\circ} \mathrm{C} / \mathrm{W}$ (junction to case). The other characteristics of the two devices are quite similar, but the connections are different.

A lower voltage version of the ESM 532 is produced with a maximum rating of 30 V under the type number ESM 432. The ESM 532 N is similar to the ESM 532 , but has a bracket for the connection of a heat sink.

Availability

The ESM 532 is available from Phoenix Electronics Ltd., 46 Osborne Road, Southsea, Hants at $£ 2.95$ including VAT and packing and postage.

nete

Using a soft, lead pencil, draw out the islands on the board, and then draw around these and the interconnections of the earth plane edge. The small islands and fine connections are then filled in by means of an etch-resist pen or fine paint brush, using quick drying paint, such as car touch-up paint, thinned down if necessary. The larger areas are then put in care-

Readers who intend to operate the Avon Transmitter should be in possession of the appropriate licence issued by the Home Office to those who have passed the City and Guilds Radio Amateurs' Examination. Details may be obtained from: The Home Office, Radio Regulatory Department, Amateur Licensing Section, Waterloo Bridge House, Waterloo Road, London SE1 8UA.
fully and when the board is dry, each island and connection examined to make sure no copper bridges exist between them. One should also ensure adequate clearances.

Place the board in a suitable plastic or earthenware container and pour on just sufficient ferric chloride solution as is necessary to cover it. The solution can be purchased ready-mixed from most radio component stores, or can be made up by a chemist. It is however a corrosive, albeit a mild one, so handle carefully and wash off any of the solution that comes into contact with the skin immediately.

Initially, leave the board submerged for about twenty minutes, agitating occasionally. You will see the chemical action taking place quite clearly and when all the unwanted copper has been eroded, take out the p.c.b., wash in clean water and then dry.

Using a wet abrasive pad-such as a Brillo padthe paint is now removed and a final wash and dry will leave the copper gleaming. After a final check of the work, drill the mounting holes for fixing to the metal chassis.

Each board in the transmitter is etched in this way and provided the simple instructions are followed you should easily be able to provide good examples.

Fig. 1: Circuit diagram for the Crystal Oscillator and Audio Stages-Board 1

Fig. 2: Copper side layout of Board 1. Available from Reader's PCB Service (see page 27)

Fig. 3: Component layout of Board 1. Note components soldered direct to copper side of the p.c.b.

Mounting Components (Fig. 3)

There is no hard-and-fast rule about fixing the components to the board, but the Author favours soldering the resistors first, followed by the capacitors, the coils and finally the transistors. Keep lead lengths
short-typically $6-12 \mathrm{~mm}$ for transistors-and solder neatly, holding the iron in place just long enough for the solder to flow to the joint. An iron of 15 W rating with a bit size of 3 mm or so is to be preferred for work of this nature.

Fig. 5: Copper side layout of Board 2. Available from Reader's PCB Service (see page 27)

Fig. 6 : Component layout of Board 2. Note components soldered direct to copper side of p.c.b.

Nothing is more frustrating than getting all the bits to build a $P W$ project, spending time putting it all together and then switching on only to find it doesn't work! Unfortunately, however much care one takes in the constructional stage, this is always a possibility and when it happens, many readers are at a loss to know how to proceed.

From time to time articles have appeared purporting to give the answer to this problem, but people still get stuck, as my postbag shows. Yet really, with a methodical approach one can steadily and reliably progress through a circuit and finish up with it all working. So how? Instead of abstract generalisations, readers may get a much better insight into how to go about it if I give a specific example-a "case study" if you like. And since it has proved such a popular constructional project, I've chosen my 'Handy-Mini Power Supply" published in the August 1977 issue, page 260 , as the example.

Systematic Approach

With so many readers building this design, one or two were bound to hit some snag or other, e.g. ". . have completed the Mini Power Supply... cannot adjust it at all with VR3... please can you help?", from J. D. of Huddersfield. This is where a systematic approach comes into its own, resulting in ". . . After following your instructions . . . Another Tr4 and everything is working correctly... Thanking you once again for your help" from-you've guessed it-our old friend J. D. again.

So how do we go about it? Well, let's assume you've made up a Handy-Mini Power Supply, tried it and found that it doesn't work. First of all, you may have noticed a slip-up in the editing (mea culpa!). Fig. 3 incorrectly labels the capacitor between base and emitter of $\operatorname{Tr} 3$ as C 5 , actually it's $\mathrm{C} 4,5 \mu \mathrm{~F}$, as shown in the circuit of Fig. 1 reproduced here, and the

component list. (A correction has, in fact, since been published, but never mind, either value in either place would actually work.)

Multimeter

The technique is to get the circuit working bit by bit. First of all, check that all the circuitry is completely insulated from the metal box, heatsink, etc. Use the highest ohm range on your multimeter for this purpose. If you haven't got a multimeter yet, you really should. It's not necessary to pay an enormous

Fig. 1 : Circuit diagram of the Handy-Mini Power Supply, pub/ished in the August, 1977 issue of PW.

price, but it is worth getting one with a sensitivity of at least 10,000 ohms per volt. Very good value for money is the U4324, advertised in this magazine at $£ 14.50$ upwards, but adequate multimeters can be found at a few pounds less than this. They usually use 3 V internal batteries for the ohms range and are not likely to damage any common diodes or transistors on any of the ohms ranges.

Stage by Stage

Next, set all preset pots to mid travel, put a short circuit across R 4 and disconnect: Tr 1 collector, Tr 2 base and collector, $\operatorname{Tr} 3$ collector, $\operatorname{Tr} 4$ base and emitter and the point P. Switch S2 to OFF. These moves have isolated the current limit circuit (Tr1, etc.) and divided the rest of the circuit up into sections so we can bring it into operation in stages. With experience you will get into the habit of building a circuit in stages and testing it again and again as each stage is added. Now switch on and check that there is approximately 18 V across C 1 and 36 V acrossi C 2 . (All voltages measured with the negative lead of the voltmeter on the negative lead of C5).

If only one of the voltages is correct, most likely the wiring or B1 is faulty. Before replacing the latter, remember it may have been damaged by a shortcircuited C1 or C2, so check these as well. If neither voltage is there, the trouble may be the wiring, the fuse or T1. From now on, I won't keep saying "the wiring" every time when pointing out possible faults, but remember that if you are using good quality components from a reliable supplier, the wiring is always the most likely cause of trouble. If you are using salvaged components or gems from the junk box-well, good luck! Apart from costing you a lot of time, dud components can cost you money by burning out other good components.

Safety

So now you've checked your "naw supplies" are present and correct, reconnect point P and check that there is approximately 26 V across C 3 and 16 V across D1. ALWAYS PULL OUT THE MAINS PLUG AND DISCHARGE C1 AND C2 THROUGH A 470 Ω RESISTOR BEFORE WORKING ON THE UNIT. Faults should be fairly obvious, e.g. 30 V or so across D1-it's open circuit; just under 1V-it's in back to front! Having checked that the voltages are now right, measure the voltage across the track of VR3 and set it to $12 \cdot 7 \mathrm{~V}$ by adjusting VR2. Check that the voltage at the slider of VR3 can be adjusted from 0 to $12 \cdot 7 \mathrm{~V}$. Reconnect the base of Tr 2 and temporarily link its collector to point "c"-i.e. top end of R5. We have thus connected $\operatorname{Tr} 2$ as a straightforward emitter follower and adjusting VR3 should swing the voltage at $\operatorname{Tr} 2$ emitter from 0 to 12 V . If it doesn't, it can only be wiring or components and our bit-by-bit approach has only added $\mathrm{R} 9, \mathrm{Tr} 2$ and R 7 since the last stage.

Progressing

So assuming you've surmounted that hurdle, remove the temporary connection from Tr2 collector and conneot the collector to R6 as in Fig. 1. Also reconneot Tr3 collector to R10. You should now be able to vary Tr 2 emitter voltage from 0 to 12 V with

VR3 as before. Tr2 and Tr3 are now acting as a "complementary compound emitter follower". Sounds technical doesn't it? All it means is that $\operatorname{Tr} 3$ does most of the work, with Tr2 turning on just enough to provide sufficient base current to $\operatorname{Tr} 3$ to cause it to turn on and pull $\operatorname{Tr} 2$ emitter up to about 0.6 V below the voltage at the slider of VR3. So Tr3 is supplying most of the current drawn by the load, which in this case consists just of R7 and your voltmeter.

If for any reason you aren't getting this negative feedback from $\operatorname{Tr} 3$ via R10-C4 short circuit or $\operatorname{Tr} 3$ open circuit for example- $\operatorname{Tr} 2$ emitter voltage might not quite make 12 V because now all the load current will have to pass through R6. To make quite sure, temporarily put $2 \cdot 7 \mathrm{k} \Omega$ in parallel with R7-you should still be able to make 12 V at $\operatorname{Tr} 2$ emitter.

Assuming all is well, reconneot $\operatorname{Tr} 4$ base and emitter. Now we have two d.c.-coupled complementary stages of amplification (Tr2 and $\operatorname{Tr} 3$) driving an emitter follower which provides 100 per cent negative feedback to the emitter of Tr2, and again we should be able to adjust the output from 0 to 12 V with VR3. At this stage, we have only added a single component, $\operatorname{Tr} 4$, so if something is wrong now the answer is pretty obvious.

Load Testing

Set the voltage at $\operatorname{Tr} 2$ emitter to 12 V and connect a 100Ω resistor (at least $1_{2} \mathrm{~W}$ rating) in parallel with the voltmeter. The output voltage as measured by the voltmeter should not change by more than the thickness of the pointer. With S1 open, remove the short from across R 4 and reconnect Tr colleotor. Check that VR3 can set Tr2 emitter volts to 12 V as before. Now on connecting 100Ω in parallel with the meter the output voltage should fall (set VR1 so that it falls to around 5V) but should return to 12 V on closing S1. If this is not the case, one of the components in the current limit circuit, R3, S1, R4, VR1 or Tr 1 , is faulty. For example, output stuck at 0 V Tr 1 collector-emitter short circuit. Now close S2 and check that 0 to 12 V is available at the output terminals. We have now checked that everything is functional and it only remains to calibrate the unit as in the original article.

The principles of systematically gietting a circuit going stage by stage are well illustrated by the above. If you are new to electronics or sometimes have problems getting a circuit to work, it would be well worth while studying the circuit of the original article in conjunction with the systematic approach described above, even if you have no intention of making up a Handy-Mini Power Supply. You will then grasp the principles and be able to apply them to repairing a transistor radio or getting a hi-fi amplifier to work, etc. Although the example given is a simple one, the principles are quite general and the more complex the circuit, the more important it is to divide it up and get it going stage by stage.

Purbeck Oscilloscope

This approach is followed in the $P W$ Purbeck now being published, and should allow any $P W$ reader with an elementary knowledge of how tnanssistors work and a little constructional experience to build a high-performance oscilloscope for a fraction of the cost of a comparable commercial instruinent.

Although we try to take every reasonable precaution to ensure accuracy of presentation and technical efficiency in our constructional projects, it sometimes happens that circuit references turn out to be incorrect or the occasional instance of a reversed diode or capacitor causes universal consternation. When this happens, the editorial department attempts to publish a correction as soon as possible.

In the case of the Morse Tutor, of our August 1977 issue, the details have only just emerged of a divergence between the theoretical and practical instructions. The details are as follows:

The circuit diagram on p. 264 is correct except for the omission of the input B connection to IC2. This should be shown as pin 1. In the "Pin Connections" table on p. 266, " R " and " S " are reversed, i.e. " S " is the 0 V terminal.

Copper track layout of the p.c.b.

Component layout of the Morse Tutor
The facts concerning the layout on Veroboard are not so simple. It appears that the component overlay relating to a p.c.b. layout was somehow confused with a Veroboard layout, resulting in the essential interconnections being lost. This refers to board A only, and the two remaining boards are correct. How the error arose is not clear, but was probably due to the major changes occurring at the time in the editorial team, with a retiring member handing over the halfformed details to his replacement, the fault probably appearing at the original artwork stage.
Whatever the facts, we have now prepared an accurate p.c.b. layout, complete with component overlay, to assist those who attempted this project. The new p.c.b. and the original code cards are available from Reader's PCB Service.

NEW BOOKS

THE SECRET WAR

by Brian Johnsone
Published by the British Broadcasting Corporation, 35 Marylebone High Street, London W1M 4AA 352 pages, $243 \times 170 \mathrm{~mm}$. Price $\mathbf{£ 6} \mathbf{5 0}$
Those who have been fascinated by the recent BBC Television Series The Secret War will be enthralled by this book, which is based upon it, with some additional material. The earliest developments in radar and other radionavigational systems by both the combatants are described in some detail, with a wealth of photographs and drawings. In all, there are over 350 illustrations in the book, many of them previously unpublished.

GCA
 not been proved by us, and we cannot therefore guarantee their effectiveness. They should at least provide a basis for experimentation.
Why not send us your idea? If it is published, you will receive payment according to its merits. Articles submitted should follow the usual style of PW in circuit diagrams and the use of abbreviations. Diagrams should be clearly drawn on separate sheets, not included in the text.
Each idea should be accompanied by a declaration that it is the original work of the person submitting it, and that it has not been accepted for publication elsewhere.

This circuit was developed to improve the stereo effect experienced when listening with stereo headphones. When listening with loudspeakers the stereo effect is produced by the interaction between the two speakers. With headphones, however, there is no such interaction and to obtain a realistic stereo image some form of blend circuit is needed.

The network of capacitors and inductors alters the amount of blend with frequency, the amount increasing at those frequencies which provide the main directional information.

The phones used for the prototype were of an inexpensive type which could be taken apart easily and the components were mounted inside the headphone bodies. The 10 mH chokes used were Repanco type OH 4 and the capacitors were of the tantalum variety. An extra wire was threaded through the headband to connect the right- and left-hand parts of the circuit. The original signal wires to the headsets need to be disconnected and the blend circuit inserted. R1, C1, C2 and L1 are mounted inside the left headphone and R2, C3 and L2 inside the righthand one. The circuit can be used with all stereo headphones of 4 to 8Ω nominal impedance.
R. N. Soar,

Mexborough, S. Yorks.

고 8) 9의

4] 5] 6ix] (1) 2) 3] 의더업

Introduction

This is a design for an electronic lock which can replace the standard mechanical lock in many applications. It is impossible to "pick" as with a mechanical lock, and can have over 250,000 million different combinations, which will take all but the luckiest thief many hours to work through!

The lock can be used to disable a burglar alarm, taking the place of a mechanical key switch. Operation of the lock consists of depressing five keys on a keyboard in the correct sequence, the first key resetting the lock, and the other four keys providing the code.

The circuit can easily be extended with the addition of another i.c. and a few diodes to accept a nine digit code, which provides for extra security, although for most applications it is very tedious keying nine digits once the novelty has worn off, let alone trying to remember them! The operating code is programmed into the lock by the wiring between the keyboard and the p.c.b. and can easily be changed in the future.

The lock uses CMOS logic integrated circuits which have the advantage of negligible power consumption, thus continuous battery operation is quite feasible.

On the prototype, the quiescent current was about $1 \mu \mathrm{~A}$, giving a battery life of well over 6 months. The output can be used to switch almost any solenoid, via a separate relay, if necessary, or can be used to disable a burglar alarm direct.

Operation

The operation of the lock is dependent on a decoded decimal counter type CD4017. From the truth table for this device given in Fig. 1, it can be seen that for each clock pulse, the counter switches to another output in sequence. The circuit for the lock is shown in Fig. 2.

Each time a key is depressed, one of the diodes D1-D5 conducts and C1 charges through R2. When the voltage on Cl reaches the threshold voltage of ICld, the output will go low, charging C2 through R3 thus producing a pulse of about 50 ms duration at the output of IC1c. C1 and R2 delay the production of the pulse to eliminate any effects due to contact bounce in the keyboard switches.

The first key to be depressed can be any one of the keys connected to the "reset keys" input. Irrespective of the position of the counter, none of the keys will be gated to R 4 , therefore it will be at logic 0 . The pulse
produced by depressing the key is therefore gated through IClb to the reset input of IC3, which resets the counter. After a short delay due to R5 and C3, this pulse clocks the counter to output 1 , enabling IC2c, which is an analogue switch. This sounds rather complex, but can be considered as an electronic relay.

When the control terminal is low, there is a very high resistance between the input and output (about $10^{19} \Omega$), and is effectively an open switch. However, when the control terminal is high, the resistance between the input and output is about 300Ω, which is virtually a closed switch. Thus any voltage on pin 8 of IC2 will appear across R4 when the counter is at position 1. This effectively connects the first key of the code to R4, and if this key is depressed, pin 6 of ICl will be at logic 1 , and the pulse will be inhibited from the reset input of the counter by the action of the NOR gate IClb. The clock pulse will still reach the counter and advance it to output 2 . This enables the second key, and the process is repeated.
If the wrong key is depressed at any time, R4 will be at logic 0 and the counter will reset to its initial condition as described above. As the correct keys are

AD047
Fig. 1: Truth table for the CD4017 counter

Fig. 2: Circuit diagram for the complete digital lock
depressed, the counter will increment to output 5, which will switch on the complementary output pair, Tr 1 and $\operatorname{Tr} 2$. This energises the load, D6 providing protection against back e.m.f. from inductive loads. C4 also charges through R6, and after about $2^{1{ }_{2}^{2}}$ seconds, the counter is reset to its initial condition via gate ICla. C5 provides suppression of spikes that can appear on the supply line and interfere with the logic activity.

Component Selection

Probably the mast difficult item to obtain will be the calculator keyboard. This consists of 19 switches mounted on a p.c.b., which should be waterproof types, for use outdoors. These are dome type switches, operated by a thin piece of domed metal collapsing and making contact when pressure is applied.

This type of keyboard really needs a mounting frame and buttons, which are not readily available, however, the following method makes a presentable unit from this keyboard.

A small piece of white Fablon may be stuck over the entire front face of the unit, and Letraset numbers (or letters if you are hopeless at remembering numbers-the code can easily consist of an easily memorised word) put over the top of each dome.

The entire keyboard is then covered with a sheet of transparent self-adhesive plastic to protect the Letraset from rubbing off while in use. The keys can still be operated through the layers of plastic, and this makes the keyboard reasonably immune to cups of coffee being spilt over it!

Many types of calculator keyboard have the keys wired in a matrix arrangement, as opposed to one common rail and a lead to each switch. If this is the case, it will be necessary to remove the interconnecting tracks from the board, and rewire the unit.

If a keyboard is available, with more than 12 keys, the remainder can be wired to the "reset keys" input on the p.c.b., thus effectively increasing the number of combinations available. Indeed as few as five keys could be used, with only one key connected to the "reset keys" input, the number of different combinations going down to a mere 3,125 .

Solenoid selection can also be a problem. The lock will operate on any supply voltage between 4 and 15 volts, and the solenoid should be chosen to suit this.

The other components are non-critical: almost any silicon diodes can be used; and most silicon transistors will suffice for the output stage, although the current rating of Tr2 should be well in excess of the load current of the solenoid.

Construction

Most of the components are mounted on a p.c.b., the track and component layout being shown in Figs. 3 and 4 respectively. There are four links needed on the board, and these should be inserted first, followed

Connections to the integrated circuits and transistors

Fig. 3 (above): PCB viewed from the copper side. This board is available from the PW Reader's PCB Service
Fig. 4 (above right): Component layout of the digital lock
by the other components, leaving the integrated circuits until last, as they are easily damaged by static. The use of sockets is advised unless you have a properly earthed soldering iron. $\operatorname{Tr} 2$ is mounted with its metal face in contact with the board, with a short 6BA nut and bolt securing the transistor to the board. It is a good idea to connect fairly long wires from the keyboard to the p.c.b. as the code, and consequently the wiring, may need to be changed in the future. The load should not be connected yet, but if a spare l.e.d. is available, this can be connected across the load pins on the board with a $1 \mathrm{k} \Omega$ series resistor for testing purposes.

components

```
Resistors
    R1 100k\Omega
    R2 220k\Omega
    R3 1M\Omega
    R4 1M\Omega
    R5 10k\Omega
    R6 1M\Omega
    R7 1k\Omega
    All 
Capacitors
    C1 47nF Ceramic
    C2 47nF Ceramic
    C3 10nF Ceramic
    C4 2.5 }\mu\textrm{F}\mathrm{ Electrolytic (16V)
    C5 100nF Ceramic
Semiconductors
    D1-D6 1N914,1N4148
    Tr1 2N3704
    Tr2 BD132
    IC1 CD4001AE or MC14001CP
    IC2 CD4016AE or MC14016CP
    IC3 CD4017AE or MC14017CP
```


Other Components

2 off 14 pin DIL sockets
1 off 16 pin DIL socket
Keyboard (see text)
Solenoid (see text)
PP9 Battery and Connector
Printed Circuit Board

Testing

If the lock does not work, connect a voltmeter between pin 10 and IC1 and earth. Each time a key is pressed, the voltmeter should give a short positive "kick" and then return to zero. This should be checked for all the keys, and they must work every time if the lock is to be reliable.
If that does not identify the problem, connect a voltmeter across R4. The meter should read almost supply volts while the correct keys are pressed. When the lock is working, connect the supply direct to the board, and the load across the output. After further checking, the digital lock can be installed.

Possible Modifications

If a nine digit code is required, an extra CD4016 can be wired to switch 4 more keys to R4, controlled from outputs 5-8 of IC3. The output stage is taken from output 9 of IC3. Remember to include a diode from each extra key to R1, so that these keys produce a clocking pulse to operate the circuit.

If the lock is to be used with a burglar alarm, a relay can be used to disable the alarm, and the output stage can be made to stay on until another key is pressed by removing R6 and replacing C4 with a link.

However, the current drawn when the relay is on for long periods will probably be too high for economical battery operation, therefore the lock could draw its supply from a mains operated power supply, or from the burglar alarm itself.

If the load is to be switched on for other periods the values of R6 and C4 can be altered, the time the load is on being approximately given by $\mathrm{T}=\mathrm{R} 6 \times \mathrm{C} 4$. R6 can be increased up to about $10 \mathrm{M} \Omega$, but if an electrolytic capacitor is used for C4, R6 should not be increased above $4 \cdot 7 \mathrm{M} \Omega$, due to leakage current in the capacitor causing large timing errors. Care should be taken to prevent voltage spikes greater than 15 V reaching the CMOS, since they can cause irreparable damage.

PLEASE MENTION PRACTICAL WIRELESS WHEN REPLYING TO ADVERTISEMENTS

THE ELECTRONIC ORGAN P\% "Tutlec?

Notes on the Jubilee Organ project

Although the Jubilee Organ has undoubtedly emerged as very popular, in the time which has elapsed since its final part was published in our January 1978 issue, certain points have arisen which could cause some confusion. In order to dispose of these details, the following notes are provided as a complete list of published corrections, along with suggested modifications.

General Constructional Corrections:

(1) September 1977, p 353. Transistor BFY71 should read BCY71.
(2) November 1977, p 509. The circuit diagram of the accompaniment section shows the base of Tr5 connected to the 12 V positive rail. This connection should be broken, leaving the base of Tr5 connected to the free end of R44 (1M $)$) only. The p.c.b. provided via Reader's PCB Services is correct.
The end of R45, shown connected to the 12 V positive rail, should be connected to the junction of R40 and C17. Again, the recommended p.c.b. is correct.
(3) The collated components list, September 1977 p 353, contains the information " 3 -off 33 nF ". This should read " 3 -off $3 \cdot 3 \mathrm{nF}$ Polystyrene".

Operational and Setting-Up Instructions:

November 1977, p 506-in describing the interim keying tests, a mistake was made in the text. When the flying lead is connected to the +12 V point (positive end of C8) the note is inhibited. It is when the lead is removed from this point that the note will sound, and it is under this condition that VR5 should be adjusted. Re-applying the 12 V will terminate the tone according to the sustain setting of VR6. When S2 is open the tone burst will occur when the flying lead is removed from the 12 V point. The same reversed logic would apply to testing the repeat percussion effect.

Our "Postscript" in the final part of the article (January 1978) gave details of a modification to enable major chords to be memorised, thereby intro-
ducing a continuous "vamp" facility. The fact that no drawings accompanied the text seems to have caused considerable confusion, so in order to illuminate the situation, the relevant diagram, showing the necessary switching, is now provided for reference.

Circuit diagram of the Major Chords Memory modification

As published originally, the text could be misleading, and should have said that to enable the memory, pin 35 of IC13 should be connected to +15 V , while pin 5 should normally be at 0 V , but momentarily connected to +15 V via the push-button changeover when the memory is to be reset. This will cancel any previously selected chord.

Suggested Modifications

Manfred Pfeifer of Bristol suggests in a letter to the author the following swell pedal modification:
"The volume is controlled by a foot operated pedal, linked via a l.d.r. To maintain a suitable range, the 1.d.r. (ORP12) is connected in series with a $16 \mu \mathrm{~F}$ capacitor, and then wired in parallel with R92. A smiall bell transformer supplies 5 V a.c. to provide a light source for the l.d.r."
Another constructor, Lorin Knight, of Letchworth, suggests some further improvements. He has included three extra stops (one for future use), with one used for continuous rhythm as already described, and one used as an additional percussion stop for the melody. C12 is shunted with a $47 \mathrm{k} \Omega$ preset and an extra $4 \cdot 7 \mu \mathrm{~F}$. The preset is adjusted so that the amplitude only drops $6-10 \mathrm{~dB}$ after the percussive attack, giving rise to a gradually "flattening" envelope shape, similar to that of a piano.

INTRODUCTION TO LOGIC-continued from page 31

Fig. 5: AND gate symbols

Practical Gate Devices

Let's now take a look at some of the actual AND gates available in integrated circuits.

In 74-series TTL the most commonly met AND gate is likely to be the 7408, which contains four separate 2 -input AND gates in one package. Other types are the 7411 which has three 3 -input AND gates, and the 7421 which is a dual 4 input AND gate. The function and pin connections for these types are shown in Fig. 6.

Fig. 6: Some actual TTL AND gates

Fig. 7: Some actual CMOS AND gates

Fig. 8: Cascading AND gates to provide more inputs
The 4081 in the CMOS series provides the same logic functions as a 7408 but the pin layout is different. Other gates in the CMOS series are the 4073 triple 3 -input AND gates and the 4082 which contains two 4 -input AND gates. Fig. 7 shows the pin connections and functions of these CMOS devices.

If we wanted a 6 -input AND gate this could be made up by using two 3 -input gates feeding into a 2-input gate to form a cascaded tree of gates as shown in Fig. 8. This principle could be extended to give any number of inputs if desired.

Next month we shall look at some of the other types of gate circuit used in logic systems.

He also suggests modification of the DIN output socket, to introduce stereo effect. This gives drums to the left, melody centre, and accompaniment to the right.

Circuit diagram for Stereo Effect modification

Several readers have requested detailed cutting and drilling instructions for alternative keyboard versions. It was felt that in cases where the calculator keyboard was not opted for, general details for other types would necessitate a proliferation of differing instructions. Aside from this confusion, the conventional keyboard, for which we had approximate constructional details, appeared to be in limited supply (very limited supply as it eventually proved), and so we decided to confine our constructional notes to the details for the calculator version in general, and the initial measurements for the front and back panels. This was considered enough to cover the bare essentials, and the majority of constructors seem to have come to terms with this problem.

HIDIL HOTE:

Povington Tank Batte Game, June, page 38

The coll winding detalls for this project were Inadvertently, omitted from the components Lst LL 80 furns 40 s. w. g enam. copper wire on 6 mm dia lormer with dust core. 122 luins 22 sw. 8 tined copper wire 6 mm dia 48 mm long air-spaced, tapped ${ }^{3} 4$ turn from top.
Tll should be a BClos.
C24 should be connected to the tap on 12 , not as shown in the crecut diagram (the printed cricuit board s correct)
A smatl section of track is missing from the pob copper track pattern shown in the article. To overeone this a thin wire Thk should be used to connect together the pads for the + ve ends of C12 and C13 Solder this link onto the copper track side.
D3 to D12 are type NA4148.
H32 selected according to type of indicator used (Shown in Fig. 7.)

\boldsymbol{p}-Decnology

In recent years "fuzz boxes" have been rife on the pop scene particularly with regard to guitars. The idea seems to be that one uses a fuzz box to make a guitar not sound like a guitar!

This month's μ DeCnology circuit shows a very simple circuit for obtaining a fuzz effect. It is very sensitive and can be used to fuzz sound direct from a microphone or even a record player.

The commonest approach to fuzzing involves taking a luckless sine wave, chopping the tops or peaks off (known by the purists as "squaring"), and then amplifying the resultant noise with an ordinary audio amplifier.

We are cheating a little with our circuit by simply using the very high gain of the 741 op . amp. with no

H0044

Practical Wireless, July 1978
negative feedback. To increase the sensitivity still further, an extra stage of preamplification has been added by using a BC107 transistor. This preamp stage is also very simple, being reduced to a bare minimum of components.

When you have "plugged" the components into your $\mu \mathrm{DeC}$ by their own leads (see Fig. 1) you should connect 6 V to holes $\mathrm{Q} 1(+) \mathrm{Q} 23(-)$. The input is connected to holes F22 and E23. On test it was found that almost any microphone would work well and give a horrendously fuzzed voice output. Those tried included a cheap crystal insert, a commercial crystal microphone, a magnetic type (some 300Ω impedance), and a small loudspeaker. Even small earpieces were tried and found to work.

Six volts proved ample for good sensitivity. Increasing this to 12 V made the circuit super sensitive and if this is done there is a good chance of positive feedback which will make the circuit oscillate. In a permanent form, one could transfer the components from $\mu \mathrm{DeC}$ to Blob Board and then put the Blob Board in a metal case thus screening the circuitry from both the output loudspeaker and the microphone. This should prevent instability and make a useful fuzz box which could be used in many applications. For example, as a party game or at a disco, records could be announced with fuzz in followed by the record. Alternatively, the participants might be

Marshalis
 Cone and get a great deal
 Call inand see us 9-530 Mon-Fri 9-500 Sat
 Express Masil Ordor Tel. orders on credit cards \$10 mir. trade and export enquiries welcome

A. Marshall (London) Ltd, Dept: PW London : 40-42 Cricklewood Broadway, NW2 3ET Tel: 01-452 0161 Telex: 21492 \& 325 Edgware Road, W2 Tel: 01-723 4242. Glasgow: 85 West Regent Str, G2 2QD Tel: 041-332 4133. Bristol: 1 Straits Parade, Fishponds Road, BS16 2LX Tel: 0272654201

"OASTLE ELEGTRONIGS"
 7, CASTLE STREET, HASTINGS, SUSSEX Tel: (0424) 437875
 2" METERS:-
 All new ex WD. Panel 0--40v, 0-25MA, HF Ammeters 0-2A. Thermometer 70-160F Chrome Front Bezel-all $\mathbf{£ 2 \cdot 2 5}$.
 POWER SUPPLIES
 New ex GPO $250 \mathrm{v}, 24 \mathrm{vo} / \mathrm{p} \pm 2 \mathrm{v} 500 \mathrm{M} / \mathrm{A} \mathbf{6 6} \cdot 00$.
 VALVES:-
 New Mullard \& Brimar 6 CH6, 4 for $\mathbf{6 1}$. EF83 3 for fl. PC97 + EF 80, 2 for $\mathbf{E 1 .}$.
 NICADS:-
 All new
 $6 \times 1 \cdot 2 v(=7 \cdot 2 v) 250 \mathrm{M} / \mathrm{AH}$
 t1. 75
 $5 \times 1 \cdot 2 v(6 v) 50 \mathrm{M} / \mathrm{AH}$
 E1.6t $2.4 v 20 \mathrm{AH}$ Vented $8^{\prime \prime} \mathrm{H} 3^{\prime \prime}$ Dia
 66.50
 Buzzers $12 v \times 1^{\prime \prime} \times \frac{1}{2}{ }^{\prime \prime} 2$ for $\mathbf{f l}$. Min. High Power Motors, $6-12 v D C$ German $I_{\frac{1}{2}}^{\prime \prime} \times \mathbf{I}_{\mathbf{t}^{\prime \prime}} \mathbf{f i} \cdot \mathbf{2 5}$. Ilb new assorted components $\mathbf{£ I} .95$.
 Verotype boxes $2 \times 4 \times \mathbf{1}^{\prime \prime} \mathbf{5 0 p} 6 \times 3 \times \mathbf{2}^{\prime \prime} \mathbf{f 1}$, Micro Switches 5A 240v c/o Button 10 for $\mathbf{f 1}$. Headphones-New ex tank $\mathbf{6 2} \mathbf{2 5 0}$. New ex Army £2.25. Stereo Slider Controls, $3 \frac{1}{2}{ }^{\prime \prime}$ long loK. $50 \mathrm{~K}, 100 \mathrm{~K}, 250 \mathrm{~K}$. 3 for $\mathbf{£ 1} \cdot \mathbf{2 0}$. Bridge Rectifiers 2A 40v 3 for fil Jackson Slow Motion Drives 6:1 2 for $\mathbf{E 1} \cdot 50$
 Wavechange Switches-New 3×1 P7W $+2 \times$
 P4W $+2 \times$ IP2W, $4 \times$ IPIOW, Lever Switch 4P2W-all 75p.
 SAE for list new Ex. WD panel meters-all $\mathbf{£ 2} \mathbf{2 5}$. Amtron Electronic Kits-Components.
 all prices include vat, post and packing.
 "GASTLE ELECTRONIICS"

HIGH QUALITY AUDIO AND RF MODULES FOR MUSIC CENTRES AND OTHER HI-FI EQUIPMENT

Fully aligned-S meter-tuning meter output-Ceramic filters at 10.7 Mhz and 470 kHz -MPX Decoder.

This is a complete and fully tested 3 band receiver module with AFC and mute.
$521 \cdot 95$

FM 050 STEREO FET AM/FM TUNER

Similar circuitry to 020 but has a 6-way selector panel with MW L.W/ Mono/FM Stereo plus two spare stereo inputs for tape and phono.
£21.95
IF 005 HIFI $10 \cdot 7$ MHZ IF STRIP
Complete FM IF strip with MPX Decoder can be used with any mechanically tuned or varicap front end. Has a complete MW/LW Superhed recelver only requiring a tuning capacitor. Fully aligned, same switch configuration as FM 050.
£16.95
PA 020 STEREO POWER AMPLIFIER
25 Watts RMS per channel

£9.50

\star Class AB Operation
$\star 16$ Transistor Circuit
\star Unstabilised supply required
\star Tip 34A + Tip 33A Output
\star Supply Voltage 50V DC
nominal

$\star 30 \mathrm{~Hz}-18 \mathrm{KHz}$ @ -1 dB

* Output 8 ohm
* Input 50 Kohm

This power amplifier which features an advanced designed design with complementary pair of transistors in class AB push pull. Wial comfortably deliver 25 watts per channel. And comes complete with heat sink.

PR 020 Hi -Fi Preamplifier
The PR 020 is a low noise preamplifier with full bass and treble cut and boost. It has four rotary controls and four specially selected transistors. It is designed to match most high quality power amplifiers.
£8.95

SW 0208 Way Selector Panel
£3. 95
When used in conjunction with PR 020 provides switching for different inputs. Features Mono/ differeo switch. Loudness/Filter/ Stereo switch. replay playback, Phono, Tape replay playback, Phono,
Auxiliary + two other inputs. Has PC Board mounting 5 Way Din socket for tape deck.

UTO2. Low noise varicap front end 10.7 MHz IF out $88-108 \mathrm{MHz}$ in. Image rejection 60 dB . Dual gate MOS FETS
$£ 10 \cdot 90$ UT01 115-150 MHz covers amateur bands, aircraft etc. $\quad \mathbf{£ 1 0 . 9 0}$ IF 15 Narrow band IF amp. Dual conversion 10.7 MHz 455 KHz AM-FM Detector.
£13.95
AG 020 Super low noise magnetic pick up amplifier 56.99

Pe 020 Power supply board. 18 bolts stabilised +50 volts D.C. output
£3.90

The above items are only a small range of the modules we have in stock. We also carry knobs, chassis front and rear extrusions, dials to match the FM 020 meters, front ends, cabinets. In fact everything you need to make a piece of equlpment that not only meets prafessional se please send a SAE $+15 p$ postal order. Prices include VAT and postage.

REED HAMPTON LTD.,
19 CHURCH LANE, WALLINGTON, SURREY
Tel: (01) 661 1825/6

THE COMMUNICATIONS RECEIVER THAT HAS IT ALL ...

The finest general-coverage synthesised communications receiver on the market

2173.00 inc. VAT

Also available from us with special 2 m converter, all for just an extra $£ 15 \cdot \mathbf{0 0}$

*

\star

AMATEUR RADIO EXCHANGE

2 Northfield Road, Ealing, London, W.I3.
Tel: 01-579 531I

Easy terms up to	Credit Card Sales 3 years	Closed all day Wednesday

-@ VALVE MAIL ORDER CO. CLIMAX HOUSE, FALLSBROOK ROAD, LONDON SW16 6ED SPECIAL EXPRESS MAIL ORDER SERVICE

SEMICONDUCTORS

AA119	0.20	ASY26	0.4	BC159	0.13**
AAY30	0.13	ASY27	0. 50	BC167	0.13*
AAY32	0.15	ASZ15	$1 \cdot 25$	BC170	$0.16{ }^{\circ}$
AAZ13	0.25	ASZ16	1.25	BC171	$0.14{ }^{*}$
AAZ15	0.31	ASZ17	$1 \cdot 25$	8C172	0.13"
AAZ17	0.25	ASZ20	0.75	BC173	$0.15 *$
AC107	0.75	ASZ21	$1 \cdot 50$	BC177	0.19
AC125	$0 \cdot 30$	AU110	1.70"	BC178	$0 \cdot 18$
AC126	0.25	AU113	$1{ }^{\text {170* }}$	BC179	0.20
AC127	0.25	AUY10	$1.70{ }^{*}$	BC182	$0 \cdot 11{ }^{*}$
AC128	$0 \cdot 25$	BA145	0.15*	BC183	0.11*
AC!41	0.20	BA148	0.15*	BC184	$0.12{ }^{\circ}$
AC141K	0.35	BA154	0.10	BC212	0.14*
AC142	0.20	BA155	0.12	EC213	$0.14{ }^{*}$
AC142K	0.30	BA156	0.13	EC214	0-17*
AC176	0.25	BAW62	0.05	BC237	0.17*
AC187	0.25	BAX13	0.67	BC238	0.12*
AC188	0.25	BAX16	0.07	BC301	0.45
${ }^{\text {ACY17 }}$	0.65	BC107	0.12	BC303	0.60
ACY18	0.65	BC108	0.12	BC307	0-20*
ACY19	0.65	BC109	0.13	BC308	0.18**
ACY20	0.65	BC113	0.15*	BC327	0.22*
ACY21	0.65	BC14	0.18*	BC328	0.18**
ACY39	1.25	BC115	0.19*	BC337	0.19*
AD149	0.70	BC116	0.19*	BC338	0-18**
AD161	0.75	BC117	0.22*	BCY30	$1 \cdot 00$
AD162	0.75	BC118	0-16**	BCY31	1.00
AF106	0.45	BC125	0.18*	BCY32	$1 \cdot 00$
AF114	0.25	BC128	0.25*	BCY33	0.90
AF115	0.25	8C135	$0 \cdot 15 *$	BCY34	0.90
AF116	0.25	BC136	0.19*	BCY39	3.00
AF117	0.25	8C137	e-16*	BCY40	$1 \cdot 25$
AF139	0.40	BC147	0.10*	BCY42	0.30
AF186	1.50	BC148	-10*	BCY43	$0 \cdot 32$
AF239	0.45	BC149	$0.13 *$	BCY58	0.23
AFZ11	2.75	BC157	0.12*	BCY70	0.18
AFZ12	2.75	BC458	0-11*	BCY71	$0 \cdot 22$

VALVES

INTEGRATED CIRCUITS

\section*{BASES CRT'S
 } | B7G skirted | 0.30 | 2AP1* |
| :--- | :--- | :--- |
| B9A unskirted | 0.15 | $2 B P 1^{*}$ | | B9A unskirted 0.15 | 2BP1* | |
| :--- | :--- | :--- |
| B9A skirted | 0.30 | $38{ }^{3} 1 *$ | 89A 8kirted

int Octai

Loctal
8 pIn DIL
14 pin DIL
$\begin{array}{lr}16 \text { pin DIL } & 0.15 \\ \text { Valve } & 0.17\end{array}$

cans all sizes 0.30	$3 K P 1^{*}$	10.00
carp1*	$\mathbf{1 5} 00$	

OC3t OD3	$\begin{aligned} & 0.45 \\ & 0.45 \end{aligned}$
$\mathrm{OZ4}^{\circ}$	$0.75{ }^{\circ}$
PC86 \dagger	0.85**
PC8st	$0.85{ }^{*}$
PC97	1.08*
PC900t	0.75**
PCC84 \dagger	0.45*
PCC88	0.65*
PCC89 \dagger	1.05*
PCC189 \dagger	+6.6*
PCF80	$0.96{ }^{\circ}$
PCFR2† \dagger	0.50*
PCF86 \dagger	0.65*
PCFB7 \dagger	1.00*
PCF200 \dagger	1.05*
PCF201t	$1.05{ }^{\text {" }}$
PCF801 +	0.35*
PCFB02 \dagger	0.88*
PCF805	1.44*
PCF806	0.80*
PCF808	1-44*
PCL82 \dagger	0.50"
PCL83 \dagger	0.92"
PCL84 \dagger	0.50*
PCL85t	0.96"
PCL86 \dagger	0.65*
PCL805/8	
	0.96*
PD500	$3.60{ }^{*}$
PFLz00	1.12**
PL81	0.55*
PL81A \dagger	1.12*
PL82	0.60*
PL83 \dagger	0.55*

OC

 N0.

SAVBIT

handy solder dispenser

Contains 2.3 metres approx. of 1.22 mm Ersin Multicore Savbit Solder. Savbit increases life of copper bits by 10 times.
Size 5 58p
For soldering fine joints Two more dispensers to simplify those smaller jobs PC115 provides 6.4 metres approx. of 0.71 mm solder fo fine wires, small components and printed circuits.
PC115 69p
Or size 19A for kit wiring or radio and TV repairs. 2.1 metres approx. of 1.22 mm solder

Size 19A 63p

Handy size Reels \& Dispensers о о тU A PROFESSIONAL JOB AT HOME
 Ersin Multicore Solder contains 5 cores of non-corrosive flux that instantly cleans heavily

 oxidised surfaces and makes fast, reliable soldering easy. No extra flux is required. in soldering aluminium. Ask for a free copy of 'Hints on Soldering' containing clear instructions to make every job easy.

Ref.	Alloy	Diam. mm	Length metres approx.	Use	Price
$\underset{3}{\text { Size }}$	$\begin{gathered} 40 / 60 \\ \text { Tin/Lead } \end{gathered}$	1.6	10.0	For economical general purpose repairs and electrical joints.	£2.16
Size 4	ALU-SOL	1.6	8.5	For aluminium repairs. Also solders aluminium to copper, brass etc.	£2.46
$\begin{gathered} \text { Size } \\ 10 \end{gathered}$	$\begin{gathered} 60 / 40 \\ \text { Tin/Lead } \end{gathered}$	0.7	39.6	For fine wires, small components and printed circuits.	£2.38
$\begin{gathered} \text { Size } \\ 12 \end{gathered}$	SAVBIT	1.2	13.7	For radio, TV and similar work. Increases copper-bit life tenfold.	£2.29

Absorbssolder

instantly from
tags, printed

BIB WIRE STRIPPER \& CUTTER

Fitted with unique 8 -gauge selector and handle locking device Sprung for automatic opening. Strips flex and cable in seconds.

Model 8B 97p

SOLDER-

circuitsetc. Onlyneeds 40-50 Watt soldering iron. Quick and easy to use. Non-corrosive

Size AB10 97p

Sole U, K Sates Concessimnaires: Priges shawn are recommended retall, inc. WAT. From Electrical
 Bio HFFF Aceessories Limited,
 and Hardware Shops. In difficulty send direct, plus 20pP\&P
 Kelsey House, Wood Lane End. Hemel Hempsteàd, Herts. HP2 4RQ. Frices and specificatiuns subject to change ynthout notice.

PROGRESSIVE RADIO

93 DALE STREET, LIVERPOOL. L2 2JD. TeI: 051-236-0982
SEMICONDUCTORS ALL FULL SPEC. BC212, BC182, BC237, BF197 BC159 all 8p each. LM380 80p, LM38195p, NE555 33p, 7418 PIN 23p, 741 S (wide bandwidth) 8 pin 35p. TIL305 Alpha numerical display (with data) $£ 2.50 \mathrm{p}$. BX504 opto isolators infra red led to photo cell, 4 lead $25 p$, BFY50 piastic 14p, STC 3 volt Watt zener diodes 7p each, 4045 14p, SL301 dual matched pair sil npn transistors fi. 300mhz 30p. Intel C1103 1024 bit mos rams 95p, TBA $80080 \mathrm{p}, \mathrm{CD} 405145 \mathrm{p}, 72314$ pin I.C.'s. 35 p .
DIODES, BY127 9p, IN4002 4p, IN4005 7p, 600v 3 amp 17p, Lucas bridge recs, 400v 1.5 amp 30p.
MAN3A 3 mm led displays 50 p , Min. Nixie 587 OST 75p.
Pot core unit, has six pot cores including one FX2243 (45 mm) and two FX2242 (35 mm) 3 TO3 sil. power transistors on heat sink, 32 hm panel fuseholders and panel with various transistors, diodes and a 5 amp plastic SCR, 1 . 75 p plus 5 p postage.
24 OVAC SYNCH. MOTORS WITH GE'ARBOX, $1 / 5 \mathrm{r} . \mathrm{p} . \mathrm{m} .75 \mathrm{p}, 1 / 24$ th r.p.m. $75 \mathrm{p}, 15 \mathrm{r} . \mathrm{p} . \mathrm{m}$ £1.20p, Crouzet 115 VAC 4 r.p.m. 95p.
HI-SPEED MORSE KEY, ALL METAL £2-25p.
HI-IMP MONO HEADPHONES $2 \mathrm{~K} \mid \mathrm{MP}$ £ 1 -95p
Crystal microphone inserts 37 mm 45p, Grundig electret condenser inserts with built in FET preamp £\{ 50, ELECTRET PENCIL HAND MICROPHONES 1 K IMP WITH STAN DARD JACK PLUG $£ 2 \cdot 85 \mathrm{p}$, TIE CLIP CONDENSER MIKES OMNI, 1 K IMP, (uses deaf
SOLDER SUCKER, high suction, eye protection shield $\mathbf{£ 4} \mathbf{9 5} \mathbf{9 5}$.
PROJECT BOXES, BLACK ABS PLASTIC WITH BRASS INSERTS AND LID, $75 \times$ $56 \times 3544 \mathrm{p}, 95 \times 71 \times 35 \mathbf{5 2 p}, 115 \times 95 \times 36 \mathbf{6 0 p}$.
BUZZERS, GPO open type 3-6v 30p. Large plastic domed type loud note 6 or 12 volts 50 p , Solid State buzzers, miniature, 6 -9-12-24 voit 15 ma 75 p each
TAPE HEADS, Mono Cassette fis-30p. Stereo cassette £3.00, BSR MNI330 half track dual imped. heads $£ 1 \cdot \mathbf{7 5 p}$, TD10 Dual head assemblies 2 heads both $\frac{1}{4}$ track R/P with built in erase, mounted on bracket, $\mathbf{£ 1} \cdot \mathbf{2 0 p}$.
Relays, Min. sealed 12v dc type 4 pole changover $55 \mathrm{p}, \mathrm{Min} 24 \mathrm{v}$ dc 2 pole c/o 3 amp contacts 55p, Min sealed 220V AC 2 pole c/o $\mathbf{4 0 p}$, Dpen type 12 V dc 4 pole c/o $50 \mathrm{p}, 4$ pole reed relays

CRYSTALS, $300 \mathrm{khz} 40 \mathrm{p}, 4.43 \mathrm{mhz}$ CTV 45p. Aerosol 'Touch up' paint one colour yellow grey, 602 can 35p. 50 V AC cam units, motor switching ten c/o micro switches, supplied with capacitor for 240 V AC use $£ 1 \cdot 95$ p plus 35 p postage.
Belling bee L4305 masthead amplifiers and mains power unit, new but only for group A
UHF 57.500 . UHF £7.50p.
TRANSFORMERS, $6-0-6 \mathrm{v} 100 \mathrm{ma}, 9-0975 \mathrm{ma}, 12-01250 \mathrm{ma} 75 \mathrm{p}$ each, $12-012100 \mathrm{ma} 95 \mathrm{p}$, 12v $500 \mathrm{ma} 95 \mathrm{p}, 1: 1$ triac/xenon pulse transformers 30 p , CHOK 5 , TV Tuners, push button (not varicap) new and boxed 82.50 p . Miniature toggle switches,
SPST $8 \times 5 \times 745 \mathrm{p}$, DPDT $8 \times 7 \times 750 \mathrm{p}$, DPDT $/ \mathrm{F} / \mathrm{12} \times 11 \times 975 \mathrm{p}$, Min. push to make or push to break $16 \times 16 \mathrm{~mm} 15 \mathrm{p}$ each type. Slider switches, DPDT standard 15p, Min 12p, Std. c/o 20p. Roller action micro switches 15p.
TOOLS Smali side cutters $5^{\prime \prime}$ insulated handles $\mathbf{E 1} \cdot \mathbf{3 5}$ p. Snub nosed pliers $5^{\prime \prime}$ insulated handles $£ 1 \cdot 35 \mathrm{p}$. Watchmakers screwdriver sets, 5 drivers in wallet $£ 1 \cdot \mathbf{0 0 p}$, Large mains croc clips each end, different colours 80p. Telephone pick up coil, suction type with $\mathbf{3 . 5 m m}$
 way 15p. Amplifier modules, OTL410 10 watt mono into 8 ohms 28 v dc max $\mathbf{£ 4} \cdot 65 \mathrm{p}$. 555 S Ster 240 v ac with on/off switch, straight probe £2.00, curved probe (cassette) $£ 2 \cdot 35 \mathrm{p}$.
TERMS: cash with order, (or offlcial orders from colleges etc). Postage 30p unless other
Progressive Radio, 31 Cheapside, Liverpod L2 2DY. Tel: 0512360982.

THE SINCLAIR PDM35 DIGITAL MULTIMETER

Now a digital mulit-meter al an anafogue price, and look the spec!
i.C. VOLTS 1 mv-1000
A.C. VOLTS $1 v-500 \mathrm{c}$
$5 \mathrm{~Hz}(1 \%+2$ counts). O.C. CURRENT $1 \mathrm{nA}-200 \mathrm{~m}$ ($1 \%+1$ count). RESISTANCE $1 \Omega-20 \mathrm{~m} \Omega$ $(1-5 \%+\dagger$ count $)$
Company, Govt., etc orders accepted by ohode or
subiect to availability.
£28.95 inc VAT (£1 P\&P)
deluxe padded carrying case
30Kv probe avallable SAE

KRAMER \& CO.
October Place, Holders Hill Road, London NW4 \{Ed Tel: 01-203 2473 or Telex : 888941
 among the first enthusiasts in the world to build your own electronic musical door chime-a door chime with no moving parts. There are 24 of the world's favourite and best known tunes pre-programmed onto the microcomputer chip so that all you have to do is to set the Chroma-Chime's built-in selector switches to a code to index the "tune of the day" from the repertoire.
Since everything is done by precise mathematics, it cannot play the notes out of tune.

The unit has comprehensive built-in controls so that you can not only select the "tune of the day" but the volume, tempo and envelope decay rate to change the sound according to taste.

Not only visitors to the front door will be amazed, if you like you can connect an additional push button for a back door which plays a different tune!

This kit has been carefully prepared so that practically anyone capable of neat soldering will have complete success in building it The kit manual contains step-by-step constructional details together with a fault finding guide, circuit description, installation details and operational instructions all well illustrated with numerous figures and diagrams
The CHROMA-CHIME is exclusively designed by

SMALL ADS

The prepaid rate for classified advertisements is 20 pence per word (minimum 12 words), box number 60 p extra. Semi-display setting $£ 6.80$ per single column centimetre (minimum 2.5 cms). All cheques, postal orders etc., to be made payable to Practical Wireless and crossed "Lloyds Bank Ltd". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Manager, Practical Wireless, Room 2337, IPC Magazines Limited, King's Reach Tower, Stamford St., London, SE1 9LS. (Telephone 01-261 5846)

CONDITIONS OF ACCEPTANCE OF CLASSIFIED ADVERTISEMENTS

Abstract

1. Advertisements are accepted sublect to the conditions appearing on our current advertisement rate card and on the express understanding that the Advertiser warrants that the advertisement does not contravene any Act of Parliament nor is it an infringement of the British Code of Advertising Practice. 2. The publishers reserve the right to refuse or withdraw any advertisement. 3. Although every care is taken, the Publishers shail not be liable for clerical or printers' errore or thely consequences.

Receivers and Components

ELECTRONIC COMPONENTS since 1966. Price list and 50 mixed resistors FREE on request. J. R. Hartley, $78 B$ High Street, Bridgnorth, Salop WV16 4DY.

TRANSISTORS, RESISTORS, CAPS, POTS, Plugs \& Sockets, Zeners, TTL, Cable, Boxes. All at very good prices. 65 Railway Road, All at Very good prices. 65 Railway
Leigh, Lancs. Telephone Leigh 679575.

BRAND NEW COMPONENTS BY RETURN.

THE C. R. SUPPLY CO.

127, Chesterfield Road, Sheffield SB ORN
ASSORTED small Japanese L.F. Transformers 20 for $£ 1 \cdot 25$. Assorted Nuts, Bolts, Washers, Eyelets, Self Tapping, Self Cutting Screws. A real bargain 11 b weight $£ 1 \cdot 75$. Assorted Ceramic Capacitors 100 for £1.00. Assorted Polystyrene Capacitors 100 for $£ 1 \cdot 50$. Assorted Polyester Capacitors 100 for $£ 2 \cdot 00$. Assorted Carbon and Carbon Film Resistors 100 for $£ 1 \cdot 00$. Assorted Wirewound Resistors 100 for $£ 2 \cdot 00$. Assorted Transistors/Zeners, Diodes, all marked, 100 Transistors/ $£ 2 \cdot 00$. All above prices include VAT and Postage. T. Powell, 306 St Paul's Road, London N.1. Telephone 01-226 1489.

S'CONDUCT'S BC 107 9p	BU $208 £ 1 \cdot 90 \quad$ CAPACITORS $0.4 / 600 \mathrm{~V} 5 \mathrm{p}$
$\begin{aligned} & \text { BC } 107 \text { 9p } \\ & \text { BC } 132 \text { 10p } \end{aligned}$	BY 127 10p 25/25v5p
BC 1478	TIP 2935 p
BC 204B 9p	IN 64514 P W/W RESIST'S
BC 354 14p	
BD 131 34p	LM 7418 BP DIL 19p 10W Axial 9 P
BT $106 \mathrm{Ef} \cdot 19$	M252 Bt AA fi.00 15W Radial 11p
BU $20551 \cdot 80$	(Rhythm Gen.)
BRIDGE RECT.	is bo5 (1A/50v) 16p Min Order £2. p\&p
25p. Prices Includ	VAT SAE FOR LISTS
Export and Whole	sale enquiries welcome
K \& A DISTF SYSTON, LEIC	RIBUTORS, 52 BARKBY ROAD, ESTER. TEL. 0533609391

TIRRO ELECTRONICS the mail order division of RITRO ELECTRONICS UK offers a wide range of components for the amateur enthusiast. Large SAE or 20p brings list. GRENFELL PLACE, MAIDENHEAD, BERKS SL6 1HL.

VALVES

Radio - T.V. - Industrial - Transmitting Projector Lamps and Semiconductors We Dispatch Valves to all parts of the world by return of post. Air or Sea mail, 2700 Types in stock, 1930 to 1976 . Obsolete types 2 speciality. List 20p. Quotation S.A.E. Open to callers Monday to Saturday 9.30 to 5.00 closed Wednesday 1.00 Valves, Projector Lamps and Semiconductors.

COX RADIO (SUSSEX) LTD.
Dept. P.W. The Parade, East Wittering, Sussex PO20 8BN
West Wittering 2023 (STD Code 024366)

TRANSISTORS		IN4004	${ }^{6 p}$	$\begin{aligned} & 7410 \\ & 7411 \end{aligned}$	19p 26p
ACY22 64 p	ZTX300 14p	IN4148	3p		
AFZ12 250 p	ZTX450 15p			74	18
ASY50 ${ }^{\text {A }}$	${ }_{2 N 3053}^{24 \times 50017 p}$				370
BC108 ${ }^{10 p}$	2N3055 65p	741	45	7437	37
${ }^{\text {BC109C }} 110$	Diodes	TTL		74	
BC154 40p		7400			
	-	7402 7403	18		
BFY51 23p	- 14009	7404	25 p	7476	37 p
${ }^{\text {BS }}$-20 24 p	IN4002	${ }_{7408}$	${ }_{23}{ }_{29}$	7493	36
OC35 150p	ELECTROLYTIC CAPACITIORS (V/UF) $6.3 \mathrm{~V} / 470$				
22, 33 7p; 47, $100 \mathrm{8p}$; 330, 470 76p ; 1000023 p :					
THESISTORS CARBON					
METAL FILM CAPACHTORS μ F/160v					
0056, 0058, 0082 3p. $01,-012,-015,-022,-033,-037$, 047, 056 4p.-068, $082, \cdot 1,-12,-15,-18 p,-2,-225 p$.					
$33,-47 \mathrm{6p} .56$. 68 7p. 82 , 1-5 10p.					
Mail order only. P. \&P. 25P. Prices incluad VA.I. U.W.U. STE Lidd., System Techniques (Electronics) Ltd., PWR,					

$\begin{aligned} & \text { SELTRONICS LOW PRICE SEMICON- } \\ & \text { DUCTORS BRAND NEW CODED AND }\end{aligned}$
GUCTORSTERA
GCl07/8/9 8p.AC128 14p. 2N2926G 10p. ZTX300
11 p . 2 N 5458 . 31 p . UT46 19p. TIS43 20p. BC212L
10p OA47 5p. BR 100 22p. D32 22p. OA 200 5p.
OA2025p. NE555 35p. 741 P 20 p . Postage 10 p .
S.A.E. for lists sheques and P.O.'s made payable
to:-
SELTRONICS
9, Rodney Gardens, Braintree, Essex.

COMPONENTS FOR P.W. PROJECTS. Components lists with prices available for P.W. projects from October 1977 onwards. Send SAE stating project and month of publication (maximum four projects per SAE). Lists sent by return together with ACE order form/catalogue. ACE MAILTRONDX, Tootal Street, Wakefield, W. Yorks WFl 5JR.

TRANSFORMERS

TWIN PRIMARIES $115 / 230 \mathrm{~V}$
TWIN ISOLATED SECONDARIES

```
0.45.04.5
0.60.6 6VA-7
            0.150.15
```

British Made-Great Value

Try us for all your component requirements

T. D. COMPONENTS

Unit Four, Staincliffe Mills, Dewsbury, W. Yorks. 0924-409040

Ladders

LADDERS. Varnished 20ft 9in extd., $£ 29.72$, carr. $£ 2 \cdot 40$. Leaflets. Also alloy ext. up to 62 ft 6 in . Ladder Centre (WLS2), Halesfield (1) Telford. Tel: 586644. Callers welcome.

Educational

GO TO SEA as a Radio Officer. Write: Principal, Nautical College, Broadwater, Fleet wood FY7 8JZ.

Books and Publications

SIMPLIFIED TV REPAIRS. Full repair instructions individual British sets $£ 4 \cdot 50$, request free circuit diagram. Stamp brings details unique. TV Publications (Ause PW) 76 Church Street. Larkhall, Lanarkshire.

YOU CAN'T HELP BUT MAKE MONEY If you follow the planned and detailed information on how to start your own business rewinding Armatures, set out in the new manual which is profusely illustrated and leads you through easily understood
stages of fault diagnosis. taking data. test stages of fault diagnosis, taking data. test procedures, laying down new windings, where to obtain work how to cost jobs etc.
NO PREVIOUS ELECTRICAL KNOWNO PREVIOUS ELECTRICAL KNOWmanual, £4 plus 30p P\&P. CWO. Copper Supplies, 102 Parrswood Road, Withington Manchester 20. Dept. PWB.

THE DALESFORD SPEAKER BOOK
 by R. F. C. Stephens.

This book is a must for the keen home constructor: Latest technology DIY speaker designs. Contalne fuli plans for inflinte baffle and reflex designs for $10-100$ watts, also unusual centre-bass system for those who wald. $\$ 5$ Overseas).

VANKAREN PUELISHING
5 SWAN STREET
WIMSSOW
CHESHIRE

Service Sheets

SERVICE SHEETS, Radio, TV etc, 10,000 models. Catalogue 24p, plus SAE with orders, enquiries. Telray, 154 Brook Street, Preston PR1 7HP.

BELL'S TELEVISION SERVICES for Service Sheets on Radio, TV, etc., 75 p plus S.A.E. Colour TV Service Manuals on request. S.A.E. with enquiries to B.T.S. 190 King's Road, Harrogate, N Yorkshire Tel: (0423) 55885.

REMHRRGEABEE BATTEDES
'AA' pencell (HP7) $£ 1$.32; Sub 'C' £1 64; ' C ' (HP11) £2. 43 ; ' D ' (HPR) 23.56 ; PP3 £4. 98 . Matching chargers £6.98 each except PP3 charger £5•82. Charging holders cells only 80 p . Prices include VAT size holders, package and insurance orders under £20. 5% over £20 SAE for full details plus 75p for 'Nickel Cadmium Power booklet, $250 / 12$ volt inverters now avaliable. Mall Orders to Dept. PW, SANDWELL PLANT LTD. 201 Monmouth 0764. Callers to T.L.C., 32 Craven Street, Charing Cross LondonWC2.

GOVERNMENT SURPLUS SUPER SWITCH PACK

10 Reed Switches (Open) 8 Microswitches 5 D.P. Toggle switches 5 instrument knobs with fixing screws Flus
free gifts. Send $£ 2.50+50 \mathrm{p} P \mathrm{PP}$ to
B.B. SUPPLIES DEPT P.W.

125 High Street, Deal, Kent.
4 T inserts $4 \frac{7}{8} \times \frac{5}{8} 20 \mathrm{ohm} \mathrm{DC}$. Ideal for microphone or speaker use, 50 p each incl. PP. Quantity discounts available.

Radio Receivers

SHORTWAVE $3 \cdot 2-12 \quad \mathrm{MHz}+\mathrm{M} . \mathrm{W}$. Small Portables (Superhet+INT.Speaker) £10.95, headphones for use with this set $£ 4.95$. VHF/Airband 88-135 MHz+M.W. Pocket Sets (Superhet+Int Spur.) $£ 9.95$ available without Air ($108-135 \mathrm{MHz}$) Band at $£ 8.45$. Mains-Battery MW+VHF + Air (108-174 MHz) Portables $£ 13 \cdot 55$. Prices include P \& P, Accs \& VAT. Noble Electronics, 26 Lloyd Street, Altrincham, Cheshire WA14 2DE, Tel: 061-941 4510.

Situations Vacant

ORDER FORM please write in block capitals

Please insert the advertisement below in the next available issue of Practical Wireless for insertions

1 enclose Cheque/P.O. for $\boldsymbol{£}$
(Cheques and Postal Orders should be crossed Lloyds Bank Ltd. and made payable to Practical Wireless).

NAME	Send to: Classifled Advertisement Manager
	practical wireless, GMG, Classified Advertisement Dept., Rm. 2337,
ADDRESS	King's Reach Tower, Stamford Street. London SE1 gLS Telephone 01-261 5846
	Rate 20 p per word, minimum 12 words. Box No. 60p extra.

[^0]

NO
BATTERIES NO WIRES £32.99
PER PAIR

+ VAT 54.12
The modern way of instant 2 -way communications. Supplfed with 3-core wire. Just plug into power socket. Ready for
use. Crystal clear communieations from toom to use. Crystal clear communieations from room to room
Eange $\frac{1}{2}$ mile on the same mains phase. On/ofi ewitch. Volume control. Useful as inter-otfioe intercom. betwee 4 SEATONINTEBCOM

£19.95
Solve your communication problems with this
4 -Station Transistor Intercom syatem (I master and 3 Subs) in robust plastic cabinets for desk or wall mounting. Call] talk/histen from Master to Subs and Subs to Master. Ideally Operates on one 9 V battery. On/off switch. Volume control Complete with 3 connecting wires each 66ft. A Battery
NEW! AMERICAN TYPE CRADLE TELEPHONE AMPLIFIER

£15.95

Latest transistorised Telephone Amplifier with detached plug-In speaker. Placing the receiver on to the cradl without holding the handset. Many people can listen at time. Increase efficfency in office, shop, workshop, Perfect for 'conference"' calls: leaves the user's hands free to make noles, consult files. No long waiting, saves time with longdistance calls. On/aff spitch, volunie control, conversation
recordiag model at $£ 18.85+$ VAT $£ 1.52$. P. \& P. 89 p. 10-dav price refund guarantee on all 1 tems.
WEST LONDON DIRECT SUPPLIES (PW7) 169 KEFSIMGTON HIGH STREET, LONDON, W8 01-937 5548

H.A.C. SHORT-WAVE KITS

WORLD-WIDE RECEPTION

'H.A.C.' well known by amateur constructors for its Short Wave receivers, now offers a complete range of kits and accessories to suit e9.00 INCLUSIVE-the ever popular and easy to construct DX receiver Mark III: containing all genuine short wave components, drilled chassis, valve, accessories and full instructions. selective, sensitive and with fantastic reception, selective, sensitive and with fantastic reception,
yet needing only a single PP 3 batery. Special introductory offer at $£ 9 \cdot 70$ inclusive-CAN ONLY BE HELD AT THIS PRICE WHILE STOCKS LAST
Lastly the \mathbf{K} and \mathbf{K} plus (illustrated above) for the more advanced constructor. This receiver has recently been re-designed for even better reception. All orders despatched within 7 days. Send stamped and addressed envelope now for free descriptive catalogue of kits and accessories.

SORRY, NO CATALOGUES WITHOUT S.A.E.
"H.A.C." SHORT-WAVE PRODUCTS
P.O. Box No. 16, 10 Windmill Lane Lewes Road, East Grinstead, West Sussex RH19 3SZ

creating more than 20
practical applications

You learn all about the most up to date electronic circuits; how to calculate, repair, and design them, while pursuing your favourite hobby. Start from scratch, or improve your present knowledge, train and earn money in your spare eime, turn you pastime into valuable job opportunities.
Compare our prices: you receive the entire course, "mini laboratory" and components fo LESS than the price of the components alone

COMPLETE KIT: nothing else to buy*

You get:

- Instruction manual: over 200 pages of detailed step-by-step instructions. Start from scratch explains basic laws and physics of Electricity semiconductor principles and operation electronic circulis: form diodes (including diac, zener)
transistors, triacs to integrated circuits (C.MOS operational amplifiers) etc.
Over 200 Electronic components: aerospace tech nology. Printed circuit experiment board, photo transistor, triac thyristor l.C.S. transistors capacitors, miliameter, potentiometers, variable capacitor, etc. . . etr . . etc.
measuring instruments (you assemble yourself from among components furnished in kit). MEASURING AMPLIFIER LOGIC INRICAENCY REGULATED POWER SUPPLY. MULTIAMTER.

You perform

Over 100 different experiments: from the most basic voltage measurements to radio transmitte tions. Triac use, etc...etc. . . etc

You construct:
More than 20 complete functional systems: ligh modulator. hish fidelity amplifier, radio contro set, radio receiver and transmitter, electronic gadgets and games and many. many more.
*Hand tools not furnished.

SAVE $£ 10$ - mail coupon today - SAVE $£ 10$
SAOd P.O. Box 401, Kingsmead, Kings Lane, Chipperfield, Nr. Kings Langley. Herts WD4 9PB.
Please send me - (QTY) IK2 KIT(S)
I enclose cheque (money order) for
\pm
Name
Address
A. A.

WATFORD ELEGTRONIES
 $33 / 35$ ，CARDIFF ROAD，WATFORD，HERTS，ENGLAND
 MAIL ORDER，CALLERS WELCOME．Tel．Watford 40588／9

ALL DEVICES RRAND NEW，FULL SPEC AND FTLLY GUARANEESES
 TRADEAND EXPORT INOUIRY NELCOME．P \＆PADD 3 AO＂TOSAL

VAT Export orders no VAT．Applisable to U．K．Customers only．Uniess o devices marked ${ }^{\text {．To the rest add } 121 \%}$
We stock many more items．It pays to vistt us．We are situated behind Waftord Football Ground．Nearest Underground／Br．Rall Station：Watford High Street
POLYESTER CAPACITORS：Ax｜al lead type．（Values are In μ ff）．$\quad . \quad .018$ 9p； 0.022 ， 0.033 ．10p； $0.047,0.068,14 \mathrm{p} ; 0.1,15 \mathrm{p} ; 0.150 .22,22 \mathrm{p} ; \mathbf{0 . 3 3 , 0 . 4 7 3 9 \mathrm { p } ; 0 . 6 8 4 5 \mathrm { p }}$

ELECTROLYTIC CAPACITORS：Axlal lead type（Values are in μ F）．
250v： 10065 p ； $83 \mathrm{v}: 0.47,1 \cdot 0,1 \cdot 5,2 \cdot 2,2 \cdot 5.3 \cdot 3,4 \cdot 7,6 \cdot 8,8,10,15,228 \mathrm{p}$ ；47， $32,11 \mathrm{p}$ ； $63,100,27 \mathrm{p} ; 50 \mathrm{~V} ; 1 \cdot 0,7 \mathrm{p} ; 50,100,220,25 \mathrm{p} \mathrm{i}^{2} 470,50 \mathrm{p} ; 100,330 ; 470,32 \mathrm{p} ; 1000,49 \mathrm{p}$

 | TANTALUM BEAD CAPACITORS | POTENTIONETERS |
| :--- | :--- | :--- |
| （AB or EGEN） | | $35 \mathrm{~V} ; 0.1 \mu \mathrm{~F}, 0 \cdot 22,0.33$,

$2 \cdot 2 \mu \mathrm{~F}, 3 \cdot 3,4-7,6 \cdot 8.25 \mathrm{~V}$ $1.5 \mu \mathrm{~F} \quad{ }^{13 \mathrm{p}}$ each． $10 \mathrm{~V}: 22 \mu \mathrm{~F}$,
$6 \mathrm{~V}: 22 \mu \mathrm{~F}, 47,68,3 \mathrm{~V}: 100 \mu \mathrm{~F} 20 \mathrm{p}$ each
$10 \mathrm{~V}: 100 \mu \mathrm{~F} 30 \mathrm{p} .16 \mathrm{~V}: 47,100 \mu \mathrm{~F} 40 \mathrm{p}$ MYLAR FILM CAPACITORS
$100 \mathrm{~V}: 0.091,0.002,0.005,0.01 \mu \mathrm{~F}$ $100 \mathrm{~V}=0.001,0.002,0.005,0.01 \mu \mathrm{~F}$
$0.015,0.02,0.03,0.04,0.05,0.056 \mu \mathrm{~F}$
0.0 p CERAMICCAPACITORS 50V．
Range： $0.5 p \mathrm{p}$ 10 10 nF
15nF，22nF， $33 \mathrm{nF}, 47 \mathrm{nF}, 4 \mathrm{p} .100 \mathrm{nF}$ 6p POLYSTYRENE CAPACITORS：
10pF to $1 \mathrm{nF}, 8 \mathrm{pp}$ ．${ }^{2} 5 \mathrm{nF}$ to $47 \mathrm{nF}, 10 \mathrm{p}$ ．

 TiP428＊＊
TP2955＊

2N2160＊
2N2117
2N278A
2N219A
2N2020A
2N20
2N229A
$2 \mathrm{~N}_{2} 2221 \mathrm{~A}$
2 N 2222 A
$2 \mathrm{~N} 233^{\circ}$
2 N 2368
2N2368
2N239
2N2483
2N24B4
$2 \mathrm{~N}_{2} 8$ Bib $^{\circ}$
2 N 2784
2N2904
2N2905A
2N2906＊
2 NN2907 $^{\circ}$
$2 \mathrm{~N}^{\circ} 907 \mathrm{~A}^{\circ}$
2N2926G
2N3011．
$2 \mathrm{~N}^{2} 053^{\circ}$
2N3054＊＊
2N3555＊
2N30
2N

N
2 N 37
2 N 370
2 N 37
2 N 37
2 N 370
2 N 370
2 N 370
2N37
2N37
2N371

$2 N 372^{*}$
$2{ }^{2}$

2N381
2N382
2N38
$2 N$
2N3824＊＊
2N3866
2N390
2N390
2N390
2N3906
2N4037＊
2N4041＊
云咢

2N4859
2N4922 *

Matche
Pair

CAPACITORS

2－7UF； $4-15 \mathrm{pF}$ ： 6 | 2－7uF； |
| :--- |
| 8－30pF |

 2. 5-6pF: 3-10pF
 COMPRESSION

$25-200 \mathrm{pF}$	60 pF	
12 p		
$100-500 \mathrm{pF}$	1250 pF	35 p

Buzzers 6 V or $12 \mathrm{~V} 65 \mathrm{p}^{*}$
TRANS FORMERS* (Mains PrIm. 220-240V)

$\begin{array}{ll}0-120-12 & 0.5 A \\ 280 p+ \\ 15-0-15 V & 0.5 A \\ 24-0-24 V & 0.5 A \\ 260 p+ \\ 260 p+\end{array}$
$\begin{array}{lll}120024 & 1 \mathrm{AA} & 260 \mathrm{p}+ \\ 9-0-9-12 \mathrm{~V} & 1 \mathrm{~A} & 275 \mathrm{p}+\end{array} \quad$ "Purbeck"
0-12 0-12V 1A 295p+ Transformer 7559

30-24-20-15-12-0.1A	$250-0-250 ;$	$12 \cdot 9-0-$
Multi tappings	$360 \mathrm{p}+$	$12 \cdot 9 ; 6.3 \mathrm{~V}$

Multi appings
$30-24-20-15-12-0$

$\begin{array}{lll}30-0-30 V 1 A & 315 p+ & \text { MOT Min. O/P Pri. } \\ 20-0-202 \mathrm{~A} & 340 \mathrm{p}+ & 1 \cdot 2 \mathrm{~K}, \mathrm{Sec} \text {. } 8 \Omega \\ \mathbf{3 8 p}\end{array}$
(Piease add 48 p pep charge to all prices
marked + , above our normal postal charge.)
DENCO COILS B9A Valve Base 25p
$\begin{array}{ll}\text { VALVE TYPE } & \text { RDT2 } 2 \text { chokes } \\ \text { Range 1-5 } B, Y, R, W & R F C 5 \text { chom }\end{array}$
$\begin{array}{lll}6-7 & \text { B,Y, R, } 75 \mathrm{p} & 1 \mathrm{FT} \\ 1-5 & 13 / 14 / 45 / 46\end{array}$
'T' Type (Trns. tun- 1FT 18/1-6 or 4659

WATr	RD ELEC	Onlcs	OPTO ELECTRONICS* LEDS + CIID 7 Segment Displays		SWITCHES* TOGGLE 2A 250V SPST					-
(Continued from opposite side)			TiL211 Grn 12212 Yellow $0 \cdot 2^{\prime \prime}$ Yellow,		DPST					
DIODES				2-5" ${ }^{\text {" }}$ C.Cth ${ }^{\text {c.Cth }}$	SUB-MIN					
AA119 15	Rectifiers	8 c 0.3 W	ORP61 ${ }^{\text {ORP1 }}$	707 $3^{\prime \prime \prime}$ C. Anod 99	eover 59					
AA129 25	(plastic case)		$\begin{array}{ll}\text { ORP12 } & 63 \\ \text { 2N577 } & \text { 54 }\end{array}$		SPST on off 54					
AAY30 A A 15	$1 \mathrm{~A} / 50 \mathrm{~V}$		OPTO ${ }^{\text {24, }}$	N351. $3^{\prime \prime}$ Green ${ }^{\text {P180 }}$	SPST blased 85					
AEY11 60	$\begin{array}{ll}\text { A } 1 / 100 \mathrm{~V} & 22 \\ \text { 1A/200V } & 25\end{array}$	${ }^{64 \Omega}{ }^{2} 2.5^{\prime \prime} 65$	ISOLATORS 105 XAN	N625.6 Green 250	DPDT 6 tags DPDT C/OFF					
BA100	${ }^{1} \mathrm{~A} / 400 \mathrm{~V}$	${ }^{80}{ }^{\prime \prime} \times 4^{\prime \prime}{ }^{\prime \prime} 190$	TiL1142	uid Crystal Display	DPDT Blased 115					TANK
BY126	$\begin{array}{ll}\text { 1A/B00V } & 34 \\ \text { 2A } / 50 \mathrm{~V} & 35\end{array}$	$8 \Omega^{x} 3 W$ $6^{\prime \prime} \times 4^{\prime \prime}$ 160	T1L117 16413120	R 4 digit 975p						Build this fantastic TV
BY127 74	2A/100V 44	${ }^{6 \times \times 4}$	Voltage regulat	ORS*	1 A DPDT C/O 15					GAME with realistic battle
OA9 OA47 75 12	${ }_{2}{ }_{2} \mathrm{~A} / 2000 \mathrm{~V}$	TRIACS* ${ }_{\text {6A }}{ }^{\text {d }}$	TO3 Can Type	Plastic (TO220) case						Steer
OA70 12	2A/400V 53 65	${ }_{6} 6$ A500V 95	1A +ve: $5 \mathrm{LV}, 12 \mathrm{l}$,		4 pole 2-way PUSH BUTTON					Controllable Sheil Trajec-
OA79 12	4 A 100 V 72		$\begin{array}{ll}\text { 15V, } 18 \mathrm{~V} & \text { 145p each } \\ \text { LM } 309 \mathrm{~K} & 135\end{array}$	$8.2,12$ -ve 1 A	Sush butcon					tory and Minefields to
OA81	4A/200V $4 \mathrm{~A} / 400 \mathrm{~V}$ 79	$\begin{array}{ll}8 A 500 V \\ 10 A 500 V & 140 \\ 140\end{array}$	LM309K $\mathbf{1 3 5}$ LM323K 625	LM320-12-ve 165	Latching					avoid. Complete kit incl.
${ }^{0490} 5$	$4 \mathrm{~A} / 400 \mathrm{~V}$ $4 \mathrm{~A} / 600 \mathrm{~V}$ 105	${ }^{15 A 4400 V} 1650$	MVR5 or 12 $\mathbf{8 5 0}$ 120	LM320-15-ve LM341-15+ve 169	SPST on off 60 SPDT C/over 65					Cases, Controls and Mains
OA91	$4 \mathrm{~A} / 800 \mathrm{~V} 120$	${ }^{1644000} 1805$	1A -ve: $5 \mathrm{~V}, 12 \mathrm{~V} 220$	Variable Type ${ }^{\text {a }}$	DPDT 6 Tag ${ }^{\text {as }}$					Detachable Power Supply.
OA950	6A 1100 V $6 \mathrm{~A} / 200 \mathrm{~V}$ 78	$\begin{array}{ll}16 \text { A500V } & 210 \\ 40430 & 125\end{array}$	Plastic Case: +ve	$723+2$ to +37 V	Miniature ${ }^{\text {cose }}$					No extras required. Only
OA202		${ }^{40528} \times 150$	Plastic Case: +1	LM3304H0 to + 40 V 240	Non Lockling Push to make					£24-30*. (P\&P add 30p).
N914 N916		$40669 \quad 95$	$8.2 \mathrm{~V}, 12 \mathrm{~V}, 15 \mathrm{~V}$ 5i	LM $317 \mathrm{~K}+1.2$ to 37350	Push Break					
in916 (N4001/2	VM18 DIL 40	${ }_{\text {D1AC* }}^{\text {ST2 }}$	$\begin{aligned} & 1 \mathrm{~A}(\mathrm{TO} 020) 5 \mathrm{~V}, 12 \mathrm{~V} \\ & 15 \mathrm{~V}, 18 \mathrm{~V}, 24 \mathrm{~V} \end{aligned}$	LM325N $\pm 15 \mathrm{~V}$ 240 LM326N 242 V						IC AY-3-8710 £ \quad 78*
N4003*******	ZENERS				23					Basic Kit (just add controls)
N4004/5* N4006/7*	$\begin{aligned} & \text { Rng: } 2 V 7-39 \mathrm{~V} \\ & \text { 400 } \mathrm{mW} \end{aligned}$	VEROEOARD	$\begin{gathered} \text { Pitch } \\ 0.75 \end{gathered}$	ROCKER: (whfte) 5 over centre off	A 250 V SP change-	UTHOR A		VED P	PARTS	Only £17.98- (p\&p 30p)
N4148 S 44 20 1			er clad) ${ }_{33 \mathrm{c}}{ }^{\text {(plain) }}$	ROCKER: (lllumi	d, red)					
3A/100V* 15			45 p	Bezel 5A 250V SP	52					
$3 \mathrm{~A} / 400 \mathrm{~V} *$	VARICAPS			ROTARY: ''Make-A your own multiway S	ke					
$3 \mathrm{~A} / 600 \mathrm{~V}$ *	MVAM115 105		129p	your own mult way Stop Shating as	witch. Adjustable	d S	for	aflet.		$30 \mathrm{p} \text {) }$
3 A 11000 V * 30	$\begin{array}{ll}\text { BA102 } \\ \text { BR104 } & 25 \\ 40\end{array}$	3 ${ }^{\frac{3}{2} \times 17^{\prime \prime}} \times 1959$	163p 128p 107 p	Accommodates up to	06 Wafers 69					
50	B8105B ${ }^{\text {B }}$	4tx of 36 pins	${ }_{30}^{165}$	Mains Swith DPST	to fit 34	JACK PL		SOCKE	TS	
SCR's*	BB106 $\quad 40$	Spot face cutte		ore Make	Wafers, 1 pole/ Wayay, $4 \mathrm{p} / 3$ way					$3 \frac{1}{2}$ DIGIT LCD
				6p/2 way	47		p	P		I. METER
$\begin{array}{ll} 1 \mathrm{~A} 50 \mathrm{~V} & 38 \\ 1 \mathrm{~A} 100 \mathrm{~V} & 42 \end{array}$	$\underline{Z 5 J} \quad 160$	Spare Wire (SD	$\begin{aligned} & \text { GPEN* + Spool } 325 \mathrm{p} \\ & \text { OOOD Bopi Combs 10p ea. } \end{aligned}$	Spacer and Screen		$\begin{array}{ll} 5 \mathrm{~mm} \\ 5 \mathrm{~mm} & 12 \mathrm{p} \\ \hline \end{array}$	$\begin{gathered} 8 p \\ 10 p \end{gathered}$	${ }_{80}^{8 p}$		
${ }^{1} \mathrm{~A} 200 \mathrm{~V}{ }^{47}$		FERRIC CHLO	R101 ${ }^{\text {+ }}$	ROTARY: (Adjusta	lable Stop)	MONO	$\begin{aligned} & 14 p \\ & 95 p \end{aligned}$	13 p		Complete kit for low current mA at 9 V) 200 mV or 2 V F.S.D.
1 A 400 V 52	ALUM. BOXES	116 bag Anhyd	roup $65 \mathrm{p}+30 \mathrm{p}$ p. \% p .	1 pole/2 to 12 way,	p/2 to 8 way, 3 pole/	STEREO 31p	${ }^{8 .}$		24P	
${ }_{3 A 500}{ }^{30}$	with lid	DALO ETCH	IS	2 to 4 way, 4 pole 2 t	to 3 way ${ }^{\text {a }}$		lugs			
3 A 100		(The extra spa used in No. 18	ne gained is to b	ROTARY: Mains 250	OV AC, 4 Amp					ly one IC and a few com-
	$4 \times 4 \times 11^{\prime \prime}{ }^{2} \quad 68$	used in No. ${ }^{\text {cosper }}$		PW PROJECTS		$3,4 \& 5$ pin A	13p	8p	20p	onents-Bult in
3 3600V 120		COPPER CLA	BOARDS* ${ }^{\text {Double- }}$ SRbP						20p	ry high input
5 A 400 V 120	${ }^{4 \times 5 \times 5 \times 1}$			Receiver; Chromach	hase, 24 hrs . Digital	CO-AXIAL (TV)	14p	14p	14p	S)
$7 \mathrm{~A} 400 \mathrm{~V} \quad 125$	5x4x2			Clock, 'JUBiLEE'	Elecironic Organ,					tial divider for DMM etc
8A400V 150	${ }_{6 \times 4 \times}$	- $\times 12$		eneral Purpose SW	W Receiver, Gas \&	assorted colours		p 2-w		ze $5 \chi^{\prime \prime} \times 3{ }^{3} \chi^{\prime \prime}$ incl. large LCD
BT106 $\quad 150$	${ }_{8 \times 6 \times 3}$	SOLOERCON	PINS* ${ }^{1000}$ pins 35	Smoke Sensor Alar	rm, 'SEEKIT' Metal		12p	45p 3-way	$20 \mathrm{p}$	isplay. Complete with as
C106D 55	10x7x3" 172			Locator, 'PPURBEC	CK' Oscilloscope,	BANANA 4 mm				
T1C44	10x4 $\times \times 3$ " 142	DIL SOCKET	S* Low Profile(textas)	Tank Batte ''Boving	gton' Game, Audio	BANANA 4mm				
TIC45	$12 \times 5 \times 3{ }^{\prime \prime} 16$			Distortion Meter.	'AVON' 2 m FM					Price: £21-56* ONLY
2N4444 140	$12 \times 8 \times{ }^{\prime \prime}$	28pin 42p; 40	$\begin{aligned} & 22 \text { pon } \\ & \text { pin } 55 \text { p } \end{aligned}$	Transmitter. Send S	SAE plus 5p per list.	ANDER 3 mm	$8 \mathrm{8p}$			(p\&p 30p)

INDEX TO ADVERTISERS

Radio Book Services 82
Radio Components Specialists ..., cover lll
Radio Exchange Ltd.
Ramar Constructor Services $\quad \cdots \quad \cdots \quad . .$.
Reed Hampton 78
R.S.C. (Hi-Fi)
R.S.G.B.
R.S.T. Valve Mail Order Co

Radio \& T.V. Components Ltd. ... 64

Saga Ltd.	\ldots	...	\cdots	85
Salop Electronics ...	\ldots	\ldots	\ldots	83
Sandwell Plant Ltd.	\ldots	\cdots	...	84
Science of Cambridge	\ldots	, \%,	\ldots	68
Scientific Wire Co., The		$\mathrm{y}_{4} \mathrm{c}$, .	83
Selray Book Co.	\cdots	14
Seltronicsin	\cdots	\cdots		82
Sentinel Supplies ...	\ldots	\ldots	\cdots	14
Sonic ($\mathrm{Hi}-\mathrm{Fi}$) ...	\ldots	...	\cdots	85
Sonic Sound Audio	s.	\%	\cdots	2
Southern Valve Co.	...	\ldots		76
S.T.E. Ltd.	\ldots	***	\cdots	82
Stirling Sound	..	**	\cdots	73
Swanley Electronics	\ldots	\cdots	\cdots	4
T.D. Components	.,.	...	\ldots	82
Technomatic Ltd. .		\cdots		16
Teleradio	s,	\%.	\cdots	88
Tempus		\ldots		6
The Trading Post		...	\cdots	77
T.K. Electronics	$5 \times$	18.	...	82
Trampus		\ldots.		80
Van Karen Publishing	\cdots	\ldots		82
Watford Electronics		6...	86	87
West London Direct Sup	pplies	...		85
Williams, Michael		...	\cdots	10
Williamson Amplification		...		83
Wilmslow Audio		6
Z \& I Aero Services	\cdots	.	\ldots	88

U．K．RETURN OF POST MAIL－ORDER SERVIGE ALSO WORLD WIDE EXPORT SERVICE
 R．C．S． 100 watt MIXER／AMPLIFIER ALL VALVE
 褑AKR MAJOR \｜2＂
 Post 81 90－14，500 c／a，12in．doublo cone，Foofer sud tweeter cono torether with a BKKER

 BAKER DISCO SPEAKERS

 BAKER DISCO SPEAKERS HIGH SUALITY－GRITISH MADE HIGH SUALITY－GRITISH MADE

 $2 \times 12^{\prime \prime}$ CABINETS

 $2 \times 12^{\prime \prime}$ CABINETS}

Four inpuks．Four was mixing，master volume，treble and bana controly Suity all speskers．This protessional quality amplifies
chatais is suitable for sll groups disco pat，whers hich quslity chasais is suitible for all groaps，disco，P，A，Whers high qusilf outpus．Produced by demand or e quality vaive ampiifer． send loz details．

Chassis only $\mathbf{4} 94 \mathrm{cars}$ ． 25

CASSETTE TAPE TRANSPORT MECHANISM

 domplete with mono recod／playback and erase headz． xess motor，braxã new $£ 3 \cdot 50$ yost cop．
$10^{\prime \prime}$ ELAC

HI－FI SPEAKER

Large ceramig magnet．
Response： $50-18.000 \mathrm{cp}$
Basa zesonance 55 cis．
6 oim jupedance
10 watis．Posit 400
teak veneer hi－fl speaker cabinets MODEL＂A＂． $20 \times 13 \times 12 \mathrm{in}$ ．For 12 in
 nisstrated MODEL＂B＂BOOKSHELP
 MODEL＂C＂BOOKSHELH
For 3 zin and tweeter． $\mathbf{E} 5.95$ vost 75
LOCDSPEARER CABINET WADDING 18in．wide，20p it．

GOODMANS CONE TWEETER

3 Hin．diam． 18,000 C．P．S． 25 watts 8Ω

10 in ． 30 watt GOODMKNS mooter $4 \mathrm{ohm} \approx 10.05$ ．
ELAC TWEETER 40 hm 20 watt 30.50
BARGAIN 4 CHANNEL TRAXSTETOR MOFO FIXERE．Add musiceni hiphightz snd sound effecta to recordings．Will
mim Micraphone，records，tepo mind tunet with sepsrate contrels into single oubput B yoll battery C6．75

TWO CMANNEL STEREO VERSTOR OF ABOVE $\$ 8.50$
BARGAMN 3 WATY AMPLIFIER．4 Trangisior $\quad \mathbf{4 . 9 5}$ Fush－Pull Ready buit wish Folume
soatrols． 18 vodt battery 0jerated．

TRE＂INSTANT＂EUE TAPE ERASER \＆ HEAD DEMAGNETSER
『utitble for cansetiest sind
reels．A． C ．mains $200 / 249 \mathrm{~V}$
Lequet S．A．E．
64． 95 Post

ELECTRIC MOTORS
2 Pole，240V， 2 AmD ．Spindie－ $1.43 \times 0.212 \mathrm{in}$ ． 21.75 2 Pole，240V， 15 Amp．Double spindle－ $1795 \times 0.16 \mathrm{in}$ Tach 91.50 ，${ }^{2}$ Pole， $120 V_{s}$ ． 5 Amp．Spindle $-0.95 \times 0.2 \mathrm{in}$ Two in serieg－ $240 \mathrm{~V}, 75 \mathrm{p}$ eacis．Brash Motor．From Spindle $-0.5 \times 0.25 i n, ~ s 2.95$ esch．

 ALUMENIUM PANELS，IS 8．W．g． $8 \times 4 \mathrm{~m}$ ． $24 \mathrm{p} ; 8 \times 8 \mathrm{in} .38 \mathrm{p}$ $10 \times 7 \mathrm{in} .54 \mathrm{p} ; 12 \times 5 \mathrm{in} .44 \mathrm{p} ; 12 \times 8 \mathrm{in}, 70 \mathrm{p} ; 16 \times 6 \mathrm{in} .70 \mathrm{p}$

ALUMINIUM BOXES，MANE SIZES IN STOOK．

[^1] of 145，000 Mareells．Eass resonanes 40 16 ohms muet be stated．

MAIOR MODULE KIT
$30 \mathrm{k} / 000$ e／f With tweeter，crotsoye bifle 19×12 in．Pleaze 49.00 arie ar 8 or 10 olime． Post．1＋83

BAKER SPEAKERS ＂BIG SOUND＂

Robusty conitructed to tiand up to long
periods of electronic powes as wead by leeding groups．
Useful responge $30-18,000 \mathrm{eps}$
GUUP＂筑D＂
$12 \mathrm{in}_{6} 80$ matt
4， 8 or 18 ohms．
GRODP＂35＂
18 in .40 Fty
4,8 or 16 chms
＊ROUP＂50／12＊
 E21．00 2in． 60 waid prolenio Pow $81 \cdot 60$ Respopse $=80-13_{0} 000$ cps． With niluminium prenence dome GROUP＂ $50 / 15$＂ 15 xin .75 Watt
80 g .16 ohma．

Send for leatein on Disco，P．A．and Gzeup Gomp．

BAKER 150 WATT
Quality
TRANSISTOR MBEE／AMPLFIER

Yolearional amplifer wink safanced circuit degign．Tion tor filaco，groups，P．A．or mugical imatrumenis． 4 inputa 4 way mixing． Hester kreble．basis zind yolume controla．a speazer output nockete
 GuEtmbeet．Detsils R．A． 675

10R MATE DISCO AMPLIFER
MADE BY JENRIHGS MOSICAE INETRGMENTS
ETpasker outputs volume tredle，bass，controls
CAR EE VSED AS 100 WATM SLAVE
Garr． 11

B．S．R．SINGLE PLAYER DECK

3 apeed．Playa all pizs records． Stereo Cartridge．Cuaing device， Idiosl Dinco Deck．

417．50 Post 51.00

DRILL SYEED OONTROLLER／LIGHT DIMMER KIT．EAG build kit．Will control uy to 500 watta AC maninit
 lor high medjum or low grin per chsanal，with folume eontro
 thereo mizert．

R．C．S．SOUND TO LIGHT DISPLAY MK 2

 to 100 watta signal mource．Suitiable for home pae． exbinet oxtrs ef．

200 Wat Reat Refecting White Light Bulbe．Ideal Ror Diaco Lights．Ediaon Screm Fitting 75p．Wach

MAINS TRANSFORMERS ${ }^{\text {Pof }}$
6 VOLT
 20 VOLT 1 AKF． $22 \cdot 00$ 20－0－20 VOLT 1 ABMP． 22.95 30 VOLT 17 ARP， 62.5040 VORT 2 AKP．$\$ 2.95$ $0-20$－40－80 YOLT 1 AMP． 23502×18 YOLT 6 AJPP． 29. GENTRAL PORPOSE LOW VOLTAGE．Voitages available at
$2 A, 3,4,5,6,8,8,10,12,15,18.24$ and 30% $2 \mathrm{~A}, 3,4,5,8,8,8,10,12,15,18,24 \mathrm{and} 30 \mathrm{~V}$
$1 \mathrm{~A}, 8,8,10,12,16,18,20,24,30,36,40,48,60$
$2 \mathrm{~A}, 8,8,10,12,16,19,20,24,30,38,40,48,80$

R．C．S．TEAK

BOOKSHELF
SPEAKERS
$13 \times 10 \times 6$ in．
12 watts rms． 8 ohms
C19 pair Post 81.50
for Disco or PA all fitted with carrying handles and cornern．Black 60 WATTR．M．S $E 52$
With one horn 160
With two horns 168 Carr．${ }^{5}$

QOWATTR．M．S． 456
With one horn 664
With two horns c72

100 WATT
R．M．S．${ }^{6} 6$
With one horn ¢78
With two horns \＆86

SINGLE lZinch
 30 WATT R．M．S．632．WITH HORN 440. 40 WATT R．M．S．E34．WITH HORN £42． 60 WATT R．M．S．E4l．WITH HORN £49． CARR £3 EA．

＂SUPERE HI－Fi＂

S2in 25 watts
A high quality lotadspeaker，its remarkabls low cons resonance Bnapura olear reproduction of the
despeat hass．Fittod with a special despent baxz．Fitted with a spscial iffettor cono resulting in full range reproduction with xemerk－ able efficiency in the upper Eexiater．
Baze Rezonance 25cps $\begin{array}{ll}\text { Tluy Density } & \text { 16，500 Rauk } \\ \text { Uueful responze } & 20-17,000 \mathrm{cp}\end{array}$ 8 or 18 ohras models．
622.00 \％

＂AUDITORIUM＂

I2in． 35 watts

A tull pange reproducer for high Dowty leal hor mioni en Disecthequas，Electric Guitars， public sddress，multi－speaier aystems．electric orgens． | Basi Remonance |
| :--- |
| Fluz Dandity |
| 15000 35cpu |

 Bor 16 ohin modela．
$421 \cdot 00$ 笽

＂AUDITORIUM＂

15 in ． 45 watts
A high wattags loudgreater of exceptiona quality winh e leve regponse to above $8,000 \mathrm{cps}$ ．Idea for Putoni instrvo Dis andues， home $\mathrm{Hi}-\mathrm{Fi}_{\mathrm{i}}$ ．
Rate Resonance
Flux Density $\quad 15,000 \begin{aligned} & 35 \mathrm{cps} \\ & \text { gauss }\end{aligned}$ $\begin{array}{lr}\text { Useful response } & \text { 20－14，000cps }\end{array}$ 8 or 16 ohms moūe

$£ 26 \cdot 00$

 Post$£ 1.60$
Loudspeaker Cabinet Wadding 18in wide， $20 p$ per ft ．
Hi－Fi Eticlosure Manual containing plans，designs，crossover
data and cubic tahles， 85 p ．

E．M．I． $13 \frac{1}{2} \times 8$ in
SPEAKER SALE！
With tweeter．And cross
10W．State 3 or 8 ohm．
t7．95
Post 45p
15W model
E 10.50
G00DMANS 20W Woofer

Hi－Fi base unit．Post 65p

337 WHITEHORSE ROAD，CROYDON

Open 9－6 Wed．9－i Sat．9－5（Closed for lunch 1．15－2．38）

[^0]: Company registered in England. Registered No. 53626. Regitered offce: King's Reach Tower, Stamford Street, London SE1 gLS

[^1]: DE LUXE BSR HI－FI AUTOCHANGER
 playg 12in． 10 in ．or 7in．fecord Auto or manua．A high qualit unit gacked by BSR reliability with 12 months guarantee．A．C $200 / 250 \mathrm{~V}$ ．Size $13 \mathrm{k} \times 21 \frac{1}{2} \mathrm{in}$
 Above motor board 3 3in．
 With MAGNETIC STEREO CARTRIDGE $621 \cdot 50$
 With MAgrein stereo cantriban HEW DECKS
 ESR HRP60／P128 with Goldring Gá50 magnetie cartridge．
 BSR Budget Autochanger with ceramic cartridge．
 Garrard AP76．Single player less cartriase．
 BSR．P163．Belt drive Turatable，less cartridge．
 Garrard 5800 ．Autochanger with ceramic cartridge．
 524.50 812．05 328.50 £2\％ 50 £14．95

