

RSG HIGH-FIDELITY STEREO PACKAGEEFERS
 Four fully wired units ready to 'plug in'
 \star SUPER 30 AMPLIFIER $(15+15$ Gatt) in veneered housing
 * Garrard SP25 MK III Turn-
 - GOLDRING CS90 Ceram up Cartridge with diamond stylus - PAIR OF STANWAY II Speaker Units Specia
 Total Price f70. 00 Terms: Deposit $\mathrm{c12}$ $\frac{\text { payments } 18 \cdot 55 \text { (Total } £ 88 \cdot 95 \text {). }}{\star \text { (Super } 30 \text { Amplifier }(15+15 \text { watt }}$ in veneered housing
 * Goldring GL69 II Transcription Turntable on Plinth as illustrated Goldring Magnetic P.U. Cartridge. * Pair of Stanway II f $\mathbf{*} 7.7 \mathrm{Carr}$ speaker units. Terms: Deposit $£ 15$ and 9 monthly ferms: Deposit $£ 15$ and 9 mon payments $£ 10.53$ (Total $£ 114 \cdot 55$).
 ATTRACTIVE AFRORMOSIA VENEERED CABEERED AND PLINTHS
 Send SAE cond S.A.E. for howing other mone saving offers.
 Matching as recommended for optimum performanc
 Package prices apply providing all individy al units are purchased from any branch within 3 months. See leaflet.

'YORK' HIGH-FIDELITY 3 SPEAKER SYSTEM
$\begin{array}{ll}\star & \text { Moderate size only } 25 \times 14 \times 10 \mathrm{in} . \\ \star \text { Regponse } 30-20,000 \text { c.p.s. } & \text { KIT }\end{array}$
Regponse $30-20,000$ c.p.s. \quad KIT
Impedance 15 ohms
\star Pertormance comparable with units costing considerably more. Consists of (1) 12 in . 15 watt Bass unit with cast chassis, Roll rubber cone tion series cross-ound for uitra low resonance, and ceramic magnet. (2) 3-way quarter efficiency tweeters-(5) Appropriate quantity acoustic damping material. (6) Handsome Teak veneered cabinet. (7) Circtit and full instructions. Terms: Dep. $84 \cdot 60$ and 9 monthly payments $\mathbf{6 2 \cdot 4 7}$ (Total e26.83)

DEMONSTRATIONS AT ALL ERANCHES

BSE G66 Mhut $6+5$ WATT high quality STEREO AMPLIFIET

Individual Ganged Controls: Bass, Treble, Volume and Balance. Printed circuit conItruction employing 10 Transistors plus Diodes. Output rating I.H.F.M. Frequency range $20-20,000$ c.p.s. Bass Control \pm 12db. Treble Control $\pm 13 \mathrm{db}$. Selector switch for P.U. or Tape/Radio. For loudspeaker output
impedances of 3 to 15 ohms. For standard $200-1$ 250 v . A.c. mains operation. Attractive Brack and Silver finished metal facia plate and matching control knobs.
COMPLETE KIT OF PARTS INOLUDING FULLY WIRED PRINTED CTRCTIT and $\left.\begin{array}{ll}\text { comprehensive wiring } \\ \text { diagram and instructions }\end{array} \quad £ \right\rvert\, \mathbf{5 0} \quad$ Carr.
Or FAcTORy RUTLT IN TEAK VENEERED CABINET as illustrated $\mathbf{8 1 5 . 9 8}$ or dep. $£ 3 \cdot 20$ and 9 monthly payments $£ 1-70$ (Total $£ 18 \cdot 50$).

AUDIOTRINE HI-FI SPEAKER SYSTEMS

Consisting of matched 12in. 11,000 line 15 Watt 15 ohm high quality speaker, cross-over unit and tweeter. Smooth response and extended frequency range $£ 5.75$ Carr ens SENTOR 15 WATT INCLUDING 46.75 30p HF126 15,000 LNE SPEAKER $\pm 6.75 \mathrm{Carr}_{35 \mathrm{p}}$ HF126 15,000

AUDIOTRINE HIGH FIDELITY SPEAKERS Heavy construction. Latest high efficiency ceramic magnets, Treated Cone surround. "D" indicates Tweeter Cone providing extended frequency range up tolices. Exceptional performance $\begin{array}{lccccccc}\text { at low cost. } & \text { " } & & & & \\ \text { HF808T } & 8^{\prime \prime} & 10 \mathrm{~W} & £ 2.88 & \text { HF120D } & 12^{\prime \prime} & 15 \mathrm{~W} & £ 4.75 \\ \text { HF102D } & 10^{\prime \prime} & 10 \mathrm{~W} & \mathbf{£ 3 . 4 0} & \text { HF126 } & 12^{\prime \prime} & 15 \mathrm{~W} & £ 5.50\end{array}$
 FANE 807 HIGH FIDELITY SPEAKER A full range sin. 10 watt unit for excellent sound quality, in suitable enclosure. Cast chassis Roll P.V.C. cane surround of low fundamental resonance of 30 c.p.s. Tweeter cone is fitted to extend high note response. Frequency range 25 Hz to 15 KHz . Gauss 10,000. Tmpedance 3 or $8-15 \Omega$. STATE $£ 3.50$

HIGH FIDELITY LOUDSPEAKER UNITS

Cabinets latest style Satin Teak veneer. Acoustically lined or filled
acoustic damping. Ported where appropriate. Credit terms available. DORCHESTER (Illustrated) Size $16 \times 11 \times 9$ in. appr. Range $45-15,000$ c.p.s. Rating $8-10$ watts. Fitted High flux $13 \times 8 \mathrm{in}$, $\mathbf{t 9 . 4 5}$
Dual Cone speaker. Jnp. 3 or 15 ohms.

STANWAY II Size $20 \times 10 \pm \times 9$ inin. approx. Rating 10 watts. Tnc $13 \times 8 \mathrm{in}$, with highly flexible cone surround, long throw voice coil and 10,000 line magnet. High 8 ohmseeter. Handsome Scandinavian design cabinet. Range $35 \cdot 20,000$ c.p.s. Trap. 8 ohms. Gives smooth realistic sound output. See 'package offers' for ≤ 17.85
R.S.C. TAI2 MKIII $6.5+6.5$ WATT STEREO AMPLIFIER FULLY TRANSISTORISED, SOLID STATE CONSTRUCTION
HIGH FIDELITY OUTPUT OF 6.5 WATTS PER CHANNEL Designed for optimum performance with any crystal or ceramic Gram. P.U. cartridge, Radio tuner, Tape recorder etc. $\star 3$ separate switched input sockets on each channel \star Separate Bass and Treble controls太 Slide Switch for mono use \star Speaker Output S-15 ohms $\$$ For $200-250 \mathrm{v}$. A.d. mains \star Frequency
Response $20-20,000$ c.p.s. $-2 \mathrm{~dB} \star$ Harmonic Distortion 0.3% at 1,000 c.p.s. Hum and Noise $-70 \mathrm{~dB} \star$ Seasitivities (1) 50 mV (2) 400 mV (3) 100 mV . Output rating I.H.F.M. \star Handsome finish Facia plate \& Knobs.
 Deposit $£ 3$ and 9 mthly pymts $£ 2 \cdot 15$ (Total $£ 28 \cdot 35)$. Or in Teak veneer housing $£ 23$
Dep. $£ 3 \& 9$ mthly payments $£ 2 \cdot 55$ (Total $£ 25 \cdot 95$). Send S.A.E. for leaflet.
HI-FI SPEAKER ENCLOSURES MODERN DESIGN Teak veneer finish. Acoustically lined. All sizes approx.
Teak veneer finish. Acou
Carr. 30p. per enclosure.

JE8 Size $16 \times 11 \times 9 \mathrm{in}$. Pressurised. SE8 For optimum performance Gives pleasing resuits with $£ 5.35$ | any sin. Hi-Fi speaker. | $\begin{array}{l}\text { speak } \\ \text { Porte }\end{array}$ |
| :--- | :--- |

SE10 For outstanding results SE12 For exclnt primene with 12 in
 Size $24 \times 15 \times 10 \mathrm{in}$. Ph'td. $\mathbf{L 6 . 7 4} \quad \begin{aligned} & \text { Hi-Fi speaker and Tweeter. } \mathbf{~} \mathbf{~} 7.87 \\ & \text { Size } 25 \times 16 \times 10 \frac{1}{2} \text { in. }\end{aligned}$

R.S.C. BATTERY/MAINS CONVERSION UNITS

TYPE BM1. An all-dry battery eliminator. Size $5 \frac{1}{2} \times 4 \frac{2}{2} \times 2 \mathrm{in}$. approx. Completely replaces batteries supplying 1.5 v and 90 v ,

to battery radio where A.C. mains $200 / 250 \mathrm{v}$. $50 \mathrm{c} / \mathrm{s}$ is available. | COMPACN KIT |
| :--- |
| WITH DIAGRAM |
| $\mathbf{E} 3.25 \quad$ ASSEMBLED READY $\mathbf{E 3}$ |
| 15 |

R.S.C. TA6 6 Watt HI-FI AMPLIFIER

 200-250v. AC mains operated. Frequency Response $30-20,000$ e.p.s. \qquad Treble 'lift and cut' controls. 3 input sockets for Mike, Gram, Radio or Tape. Input selector switch. Output for $3-15$ ohm spirss. Max Output rating I.H.F.M. Fully enclosed enamelled case, $91 \times 2 \frac{4}{4} \times 5 \times 1$ in brushed silver finish facia plate $101 \times 3 \frac{1}{2}$ in. and matching knobs. Complete kit of parts with fuil wiring diagrams and instructions.OR FACTORY BUILT WITH 12 FONTHS' GUARANTEE 69.75
R.S.C. MkIII SUPER 30 HIGH FIDELITY STEREO AMPLIFIER

A COMPLETELY NEW DESIGN FURTHER IMPROVED IN BOTH APPEARANCE and PERFORMANCE. REPRESENTING VALUE FAR HIGHER THAN THE PRICES SUGGEST
Only high grade components by leading manufacturers.
COMPLETE KIT OF PARTS Or FACTORY BUILT with 12 moth guarantee. Dep. $£ 5.75$ with 9 months $\mathbf{9} \mathbf{9 3} .75$
 Or FACTORY BUILT in cabinet as Y 97.7
 CONTROLS: PUSH-BUTTON SELECTOR (1) where appropriate) (4) Mono L (5) Mo 4) Mono L(5) Mono R (6) SPEAKER DIS (7 (7) Mains on/of.
Bass, Treble and Balance. Plus Ceramic Mag P.U. Switch. TWENTY SILICON TRANSISTORS. FOUR DIODESI - phg. Black edged knobs with bright silver centres. K NEON INDICATOR * JACK SOCKET FOR HEADPHONES CABINETED MODEL VENEERED IN SATIN UP CARTRIDGE CERAMIC or MAGNETIC. REGARDLESS OF PRICE. WE RECOMMEND USE WITH THE BEST ANCILLA

OUTPUT: 15 watts R.M.S. (Continuous) into 8 ohms
 HUM \& NOISE-75dB Min. Vol. -65dB FuII Vol. HARMONIC DISTORTION FREQUENCY RESPONSE: - 3 dB 7 Hz to $70 \mathrm{kHz} \quad 0.1 \%$ at 1000 Hz 10 Watts TREBLE CONTROL: +16 dB to -12 dB at 14 kHz BASS CONTROL: +17 dB to -16 dB at 40 Hz CROSS TALK -58 dB . REAR PANEL SOCKETS ARE FOR 3 PAIRS OF INPUTS (1) P.U. (2) Radio. (3) Tape Amp. Plus pair for tape recorder signal take off and 2 pairs for speaker

АT HOME soloering ?

Our miniature irons are used all over the world in that most exacting marketthe modern electronics industry, the rapidly developing technology of which has made possible the enormous growth of activities available to the technical hobbyist.

He now also requires equipment to the highest commercial standards. Like our soldering irons, for example.

Look at the ADAMIN Model 15. If there is a smaller iron for mains use, we haven't seen it. It weighs a mere $\frac{1}{2}$ oz (less flex) and is about 7 inches long.

But it has a big performance. Used with interchangeable bits from $\frac{3}{64}$ " to $\frac{3}{16}$ " it is suitable for all work, from Hearing Alds to Colour Television.

Use the mains version at home or clip the 12 volt model to the car battery or 12 volt power unit (consumption only 1.25A). of Model 15 iron with four bits, $\frac{8}{6^{\prime \prime}}{ }^{\prime \prime}, \frac{3}{32^{\prime \prime}}$, $\frac{1}{8 \prime}$, $\frac{3}{16}{ }^{\prime \prime}$ and tube of Bit Lubricant. State voltage required-12v or 220/240v.

PRICE: HOBBY PACK $£ 2 \cdot 30$ p \& p FREE

LIGHT SOLDERING DEVELOPMENTS LTD.

28 Sydenham Road, Croydon, CR9 2LL Telephone 01-688 8589 and 4559

All fully coded, all from well-known manufacturers and now available, while stocks last, at better than bulk-buyer's prices! Cash with order only.
(=1N914)

1N50	1 Amp Rectifier 400V.	
(=A14D)	avalanche protected	7 for 50p
2N2923	NPN Silicon Transistor	
	hfe 90-180 (25v)	7 for 50p
2N2926	NPN Silicon Transist	
(Red)	hfe 55-110	8 for 5
2N3391A	Si NPN Hi Gain (250-500)	
	low noise transistor	
2N3402	Medium power (drive	
	mw 25v Hfe 75-225	
6 U	amp general purpose	
	SCR in T05	

Post and packing 10p for 1 or 2 packs; 3 packs or more post free.
Order any quantity, till sold (but we regret packs

2N3391A Si NPN Hi Gain (250-500) ow noise transistor 900 mw 25 v Hfe $75-2256$ for 50p
1.6 amp general purpose

AMAZING MINI•DRILL
 sion drilling, grinding, polishing, etching, gouging, shaping. Precision power for the enthusiast. Shockproof. Completely portable power from $4 \frac{1}{2}$ volt external battery. So much more scope with MINI-DRILL. Super Kit (extra power, interchangeable chuck) E4.50, p.p.13p. De Luxe Professional Kit with 17 tools $£ 7.00$ p.p. 23p. Money ref. g'tee.

FANTASTIC! WHARFEDALE

SPEAKER BARGAINS DENTON 2 SAVE $£ 8.40$

Sold in matched pairs for a perfectly balanced stereo system. Each Denton contains an 8in."bass unit with by a Wharfedale crossover network. Rated inpur: 18 vatts maximum. Frequency response: $65-17,000$ Cabinet $9 \frac{1}{4} \mathrm{in}$. $\times 14 \mathrm{in} . \times 8 \mathrm{tin}$.
All speakers available in Teak or Walnut

BSR McDONALD MP60
High precision low-mass counterbalanced
pick-up arm, heavy balanced turntable. simple to operate controls, viscous cueing
dovice, slide in cartridge carrier, 4 pole
motor.
BSR McDONALD
UNITS \& PACKAGES
UNITS \& PACKAGES
A. Chassis only. B. Complete with Lasky's plinth and cover. CO. Complete with Lasky's plinth. cover and AD76K cartridge. D. Comp. wired on
BSR plinth with cover
E. As D plus AD76K MODEL
MP. 60
MP. 60
HT. 70
610
510
210
MP. 60 TPD2 Styrene base

GARRARD UNITS AND PACKAGES

GARRARD SL 55B
Four speed autochanger
LASKY'S E10.25 ${ }_{50 \mathrm{p}}^{\mathrm{c}} \mathrm{P}$
Now available ZERO Iops
\&43.50, C \& P © 1.50

Garrard SP25 Mk. III. ... $\mathrm{fll} \cdot 50$

Garrard SL40B
 Garrard AP76 without cart.
Garrard 3000 with 9 TAA cart.

\& $10 \cdot 50$ | Garrard | | | |
| :---: | :---: | :---: | :---: |
| cart. | \ldots | \ldots | \ldots |

cart.

Garrard AP76 with Micro M2100/e cart, and Lasky's plinth and cover $\mathbf{E 3 1}$. 50 Garrard AP76 with Shure M44E cart. and Lasky's plinth and cover 633.75 Garrard SP25 Mk. Ill, AD76K cart. and Lasky's plinth and eover...
Garrand SP25 MK. Ill with Shure M3 cart. and Lasky's plinth bind cover
E 27.95

LASKY'S NEW LOW NOISE CASSETTES FROM THE USA

Type	Singles	5	10	20
C. 60	32p	¢1.52	£2.96	65.60
C. 90	50p	£2.37	£4.62	¢8.75
C. 120	69p	¢ $3 \cdot 28$	E6.38	E10.85
Carr	each-7p.	0-40		

INTERNATIONAL

MAGNETIC RECORDING TAPE FROM THE U.S.A. AT LASKY'S RECORD LOW PRICES
 3if. RT. 21 Triple play, 600 ft . 5 in. RT. 23 Mylar Double play, 1.200 ft . ${ }^{50 \mathrm{p}} \mathrm{p}$ Sin. RT.IB Long play, 900ft 5in. RT. 17 Scetate Stard play 600ft. 43 p 5zin. RT.is Double play, 1,800 t. 54in. RT. 16 Long play $1,200 \mathrm{ft}$. 5 itin. RT. 24 Standard play 900 ft . 5zin. RT. 14 P.V.C. Long play $1,200 \mathrm{ft}$. P. \& P. 5p extra per reel, 4 reels \& over Post Free. Special quotes for quantitios

OUT NOW! 1972 AUDIO TRONICS

The great new 1972 edition of Lasky's famous Audio-Tronics catalogue is now available-FREE on request. The 44 newspaper size pagesmany in full colour-are packed with 1,000's of items from the largest stocks in Great Britain of everything for the Radio and Hi-Fi enthusiast, Electronics hobbyist, Serviceman and Communications Ham. Over half the pages are devoted exclusively to every aspect of Hi-Fi (including Lasky's budget Stereo Systems and Package Deals). Tape recording and Audio accessories and don't miss LASKY'S AUDIO TRONICS
CREDIT CARD SCHEME offering holders one months interest free CREDIT CARD SCHEME offering holders one months interest free credit up to 650 . Send your name and address and 15p for post and inclusion on our regular mailing list. ALSO the fantastic $£ 1,000$ plus SONY COLOUR TV Audio Tronics '72 Competion

DIGITAL CLOCK SCOOP

BARGAIN SCOOP!

PYE S.W. CAR RADIO CONVERTER

 MODEL 2649High quality transistorised and ulera compact Shortwave Converter for use with any suitable MW (AM) Car Radio. Self powered for use on 12 V positive or negative earth systems. The model 2649 is simply connected to the radio via the aerial socket and provides shortwave covering in 9 push button selected band spread ranges ($13,16,19,25$. $31,41,49.60 \& 90 \mathrm{M}$) combined with the normal radio tuning to give full cover from $3 \cdot 2 \mathrm{MHz}-21 \cdot 75 \mathrm{MHz}$. On/off switch and by-pass switch for normal M.W. radio use. Complete with mounting bracket fitting and alignment instructions. Black hammer crackle finished case-size:
$6(W) \times 1 \frac{1}{(H)} \times 3 \frac{D}{}(D)$ in $C \& 20 p$ $6(W) \times 1 \frac{1}{2}(H) \times 3 \frac{1}{\mathrm{~d}}(\mathrm{D})$ in. C \& P 20 p .
$\begin{array}{ll}\text { Made to sell } & \text { LASKY'S } \mathbf{3} \text { : } 75 \\ \text { approx. } £ 20 & \text { PRICE }\end{array}$

Brancties
207.EDGWARE ROAD.LONDON. W. 2 Tel: 01723327

33 TOTTENHAM Ci. RD. LONDON. WI Tel: 01.6362605
Open oll day. $9 \mathrm{a} . \mathrm{m}-6 \mathrm{p} \mathrm{m}$ Mondoy to Solurdoy
152/3 FLEET STREET. IONDOON.E.C. 4 Tel: 01-353 2833
Open all day Thursday, early closing ip.m. Solurday
Open all doy Thursday, arily closinglp.m Solurday
ALL MAIL ORDERS AND CORRESPONDENCE T0: $\mathbf{3 - 1 5}$ CAVELL ST. TOWER HAMLETS, LONDON, E. 1 Tel.: 01 -790 4821

OVER 1000 ITEMS ALWAYS IN STOCK all fully guaranteed WITH AFTER-SALES SERVICE

All items offered are brand new, latest models in manufacturers' sealed cartons

	Retail	Comet		$\begin{gathered} \text { Reta/I } \\ \text { Pr } / c e \end{gathered}$ $145 \cdot 95$	$\begin{gathered} \text { Comet } \\ \text { Price } \\ \hline 10500 \end{gathered}$
	${ }^{\text {Price }}$	crice	AKAI 1800SD	153.00	
Triton (pair)	$72 \cdot 16$	37.05	AKAl 2000SD	289.	216.00
Unit 3 Speaker K	12.53	9.70	AKA GXC 400 Casselte Tape De		
Unit 4 Soeaker KIt	18.00	12.50	AKAI GXC 40 Cassatie recorder	105.00	79.95 16.95 2.85
Unit 5 Speaker	28.00	18.50	BUSH Discassette D		16.95
CHASSIS SPEAKERS BUSH TP70 Cassette, battery/main's			BUSH TP60 Cassette tape recorder		
GOODMANS Twin-axiette 8	$8 \cdot 84$	6.95		28.91	5
GOODMANS Axiom 201	14.45	10.45	DANSETTE DCT 105		
GOODMANS Axlom 401	17.86	13.95	FERGUSON 3245 Twin track	${ }_{42}{ }^{36} 50$	26.95 31.95
GOODMANS Twin Ax	9.86 5	4.05	FREGUSON 32474 -track	47.95	
GOODMANS Audiom 10 P	5.83	4.50	FERGUSON 3248 4-track	53.75	41.95
GOODMANS Audiom	12.37	9.50	FERGUSON 3252 4-track	$100 \cdot 52$	${ }^{80} 8.95$
GOODMANS Audiom 15	20.00	16.50 25.95	FERGUSON 3258 4-track.	72.40 220.22	55.95
GOODMANS Audiom ${ }^{\text {G }}$	34.00 4.50	25.95 3.25	FERROGRAPH 704/W ${ }^{\text {F }}$-track tape		
GOODMANS Trebax 100	$8 \cdot 60$	5. 50	deck		185.00
GOODMANS Axent 100	6.90	4.95	FERR	-256.52	229.00
GOODMANS Midax 650	${ }_{3}^{12} \times 1.95$	8.50 2.25			
GOODMANS Attenuator			FERROGRAPH 722 Doiby	308.55	262.00
X0,950/5000	9.75	$7 \cdot 15$	GRUNDIG C200 De Lu		
OODMANS Crossover Networks		5.50	GRUNDIG TK 121 twin tra	57.90 63.90	12.95 47.95
GOODMA ${ }^{\text {PS }}$ Crossover			GRUNDIG TK 146 4-track Aüto	68.90	53.95
XO/5000	$2 \cdot 65$	1.85	GRUNDIG TK 147 4-track Auto	95.75	79.95
WHARFEDALE Bin.Bronze/RS	4.82	3.50	GRUNDIG C410 Cassette recorder		33.95
WHARFEDALE Super 8/RS/DD	8.19 11.20	6.75 9.50	PHILIPS 2202 cassette PHite.i.l.	26.90 32.30	21.95 25.95
WHARFEDALE Super Whrs/DD	11.20	9.50	PHILIPS 2204 cassette, battery/mains	23.05	17.50
Transformer ...	0. 84	0.70	PHHLPS 4303 new		
DANSETTE Concort Stereo	33.74	29.95	PHILLPS 44074 -track stereo recor	108.20	86.95
AMSTRAD Stereo 1000	48.00	${ }^{36}$-95	PHILIPS 4500 4-track stereo tape		
DECCA Sound 613		57.95 54.95	PHILIPS 440 B 4 -rack stereo	+ $\begin{aligned} & 121.65 \\ & 134.20\end{aligned}$	$195 \cdot 95$
DECCA Sound 14	89.44	72.95	PHILIPS 2503 Cassette Stereo		
DECCA Compact 3	119.56	103.95		52.05	5.95
DECCA 403 -			PHILIPS 2400 stereo		
ELIZABETHIAN L2101	59.95	42. 95 $\mathbf{6 1 . 9 5}$. 95
FERGUSON 3450 with ra			PYE 9109		
FIDELITY UA2 Music Master	50	34.95	TANDBERG 1841 4-track stereo		
			tape deck \ldots................		54.95 91.00
radio		79.9	TANDEERG 3021X twin trac	107.00 107.00	
System FM/35W. R.M.S. (less LIS)	65.00	129.00	TANDEERG $3041 \times$-rrack stere	174.00	145.00
S			NDDERG 4041 X 4 -track stere	174.00	143.95
ODMANS Max-amp Stereo			NDBERG 6041 X 4 -track ster		
Ampilfier, Goodmans Stereo-max			TANDBERG 6021 X twin track	188.00	58.00
			TELETON TC110 cassette battery		
			TELETON TRC130 cassette with	20.7	8.95
Goldring G.800 Cartridge. Beauti-			HF/AM Radio, batt//malns, twin		
fully finished in Walnut	257.13	155.00	WHARFEDALE Dolby DC9 cas-		
H.M.V. 2404/5/6 with radio	${ }^{198.00}$	153.00 54.95	sette stereo tape deck	110.0	50
	134.20	109.00			
MARCONI 4452		57.95	bases and covers		
PHILCSO Ford M 1500	${ }^{99}$	68.50 79.95	GARRARD WB1 Base	3.71	3.25
PHILIPS $808 / 910$			GARrard wbi base	$5 \cdot 49$	4.75
PHILIPS 580/481/105	47.80	${ }^{57} 9.95$	GARRARD SPC1	3.600	2.95
ILIPS	67.10	${ }_{53} 5.95$	GARRARD SPC4 Cove	$4 \cdot 27$	$2 \cdot 75$
			GARRARD SP25, SL55, SL65B and 3500		
CEEPLETONE Stereo system.	41.75	33.95			
ELETON STP 8-track Stereo			GOLDRING Pin	8.60	7.00
ULTRA 6405	$\begin{aligned} & 54.75 \\ & 77.00 \end{aligned}$	$\begin{aligned} & 47.00 \\ & 64.95 \end{aligned}$	GOLDRING Plinth 69	$8 \cdot 60$	7.00
TAPE RECORDERS AND TAPE			GOLDRING Covers for 69 P and 72P	$4 \cdot 48$	3.75
			r ṪDi25Ä	8.52	6.95
KAl 4000 D-track stereo deck ${ }^{\text {de... }}$	89.95	64.95		4.26	3.75
AKAl CR80D 8 -track stereo tape			D 1	5.04	12.45
	79.95 99.95	55.95 69.95	SMETPRITh SYstem	5.22	3.25

Coment

COMAET HIGH FIDELITY discount warehouses

(Dept. P.W.) 78 Reservoir Rd., Cloush Rd., Hull HU6 7QD Tel. 407906 and 407877 (Dept. P.W.) 68A Armley Rd., Leeds LSI2 2EF Tel. 40551 (10 lines)
(Dept. P.W.) Teesway, Portrack Lane, North Teesside Industrial Estate, Teesside, TS18 2RH Tel. 66132 and 65215
(Dept. P.W.) Heeler Road, Selly Oak, Birmingham Tel. 021-4726181 (Dept. P.W.) 7, Newhaven Road, Edinbursh EH6 5QX Tel. 5548501 (Dept. P.W.) Syston Street, Leicester Tel. 52236
(Dept. P.W.) Corner of Well i' th' Lane and Queensway, Rochdale Tel. 50606

Comet guarantee that all prices quoted are genuine. All items offered avallable at these prices at the time this lasue closed for press. Add 75p for postage, packing and insurance on al orders
(Cartridgee 20p) or if Securicor delivery required add EI-75 only. Make eheques, Money Order payable to "COMET"

COMPLETE HI-FI SYSTEMS
Completely wired mounted and ready for use

c. Retall \(\begin{gathered}Comet
Price
Price\end{gathered}\)

GOODMANS AUDIO SUITE Goodmans Maxamp stereo ampliFM' Tuner with decoder. Palr of Goodmans Magnum K2 speakers, Garrard AP76 turntable in base, complete with cover and Gold-

THORENS TD 150AB Mk. I with
TX11 dust cover, SHURE M55
fler, 2 Wharfedale Dovedale 3
Speakers....................
speakers
GARRARD AP76 with base and
cover with Shure M55E cartridge
Cover with Shure MS5E cartridge
Arena AM/FM and SW Tuner/
amp and 2 Goodmans Mezzo III
speakers 229.43149 .00
GOLDRING GL75 complete with
base and cover, G800 Cartridge,
base and cover, G800 Cartridge,
Wharfedale $100-1$ Tuner/A mp
Wharfedale 100-1 Dharfedale Dovedale il
and 2 Wharfedale Dovedale il
speaker's
GOODMANS Module 80 Tuner!
Amplifler, Garrard AP78 Turn
table with Goldring G800 Cart.
ridge and 2 Goodmans Minister
Speakers 1....................... 189-95 137.95
GOLDRING 705P Turntable fully
850 Cartridge, Amstrad stereo
8000 amplifier and 2 Metrosound

METROSOUND 448 8-track stereo
play-back unit complete with
2 HFS 103 Speakers.......... . $83.56 \quad 70.95$
LINTON Systems with Wharfedale
Linton Amplifier, Linton Turntable
with Shure M47 Cartridge and pair
of Linton Mk It Speakers.................944.90 109.95
ALBA UA 700, Garrard SP25 with plinth and cover and palr of Arena $\begin{aligned} & \text { plinth and cover and palr of Arena } \\ & \text { speakers }\end{aligned} \quad 110 . \mathbf{n}^{2} \quad \mathbf{6 5 . 9 5}$
AMSTRAD 8000 Mk. II Amplifier,
including base, plinth and cover and
pair of Voltex speakers
PHILIPS 308 Transcription Turn-
table, complete with plinth, base
and cover and fitted with Empire
$909 \mathrm{E} / \mathrm{X}$ cartridge, Rank Rotel 310
Amplifler and palr of Wharfedale
Triton Speakers.................. $169.63 \quad 112.00$

All in-stock items delivered by
SHCUFMOOF WITHIN 72 HOURS
(Add £1-75 only for Securicor delivery)
ALL GOODS FULLY INSURED AGAINST
LOSS OR DAMAGE WHILST IN TRANSIT
 SIGNED FOR WORLD WIDE RECEPTION. OnIb put into
production after incorporation of every conceivable poasible production atter incorporation of every conceivable poasible ap-to-date technological improverent had been caretulily considered and thoroushly
examined. So advanced it will probabls make your present radin it's far better than any 6 -wave radio even they have produced I Weem like a "crystal set" away at $29.97-\mathrm{a}$ mere traction of even today's Russian mirate re blmost giving them you to compare performance and value with that of $£ 34$ radios 1 ? Instant retund it \mathbf{y}.
 fantastic ability in electronics-bection : Once again the Russians have proved their technigues in the field of spaceship and satellite commanications. YOU GET THI AMAZING SET FROM US AT A PRICE THAT BEARS NO RELATION TO TRUE YALUE Yes, 6 separate wavebands, including standard Long, Medium and Short Wave
to cover the world ! Jnique side control wavebsad selection unit gives incredible ease
 hours a day, even messages from all over the world ! suyerb, aweet tone-controlled from a whisper to a raar. Push-pull output 1 Separate ON/OFF volume and Treble/Bass tone controls I Take it anywhere-runs economically on standard batteries. Internal ferrite rod aerial plus built-in telescopic aerial extending to full 331in. length. It's also a tabulous
CAR RADIO- any speed requires no additional aerial. UNIQEE \& Elegant Black, White CAR RADIO- any speed requires no additional aerial. UNIQUE: Elegant Black, White
and Chrome finish case. $\operatorname{SIZE} 10$ in. $\times 8$ in. $\times 3$ in. overall approx. Magnificently designed, made to give years of perfect service. With WhiT TEM GUARAFTEE. manual with simple operating instructions and circuit diagram. ONLY 69.97 , POST, ETC., 43p. Standard batteries 25 p extra, if required. Can also be used through, extension amplifer,
tape recorder or public address system. Refund guarantee. tape recorder or public address system. Refund guarantee.

SHOPERTUNITIES LTD. EIL

Dept. WP/I5, 164 UXBRIDGE ROAD, LONDON WI2 $8 A$ (facing Shepherds Bush Green) (THURSDAY I. FRIDAY 7).
Also at $37 / 39$ High Holborn, LONDON, W.C.I (Wed. Also at ${ }^{37 / 39}$ High Holborn,

PRACTICAL WIREEESS ELECTRONIC IGNTITON SYSTEM

This Capacitor-discharge Electronic Ignition system was recently described in Practical
Wireless and has proved extremely popular. We are able to offer the kit in two forms; the Standard kit containing the electronic components only, enabling the customer to tailor these to his own layout, or the De-luxe version
containing a ready-drilled roller-trimmed containing a ready-drilled roller-trimmed
printed circuit board and futly machined die-cast case with electrical connection block. Each kit is supplied with a custom wound transformer, firstograde components and full construction details. Suitable for 12 V . systems
only, pos. or neg. earth. All components only pos. or neg. earth. All components,
available separately. Case size $4 \frac{x^{\prime \prime}}{} \times 3 \frac{10}{4}{ }^{\prime \prime} \times 2^{\prime \prime}$ Complete assembly and wiring manual 25 p, refundable on purchase of kit.
Price : Standard kit \quad.. $£ 7.25$ post free Trade De-luxe invited. " $\quad \mathbf{~ M} \cdot \mathbf{7 5}$ post ree State pos, or neg. earth when ordering.

> DABAR ELECTRONIC PRODUCTS

98a, LICHFIELD STREET WALSALL, STAFFS. WSI IUZ Tel. Waisall 34365

E. 24020 watt 240 volts soldering iron fitted with 1/4" iron coated bit. Spare bits $3 / 32^{\prime \prime}$, $1 / 8^{\prime \prime}$ and $3 / 16^{\prime \prime}$ available. Can also be supplied for 220 and 110 volts. Price $f 1.80$.
ES. 24025 watt 240 volts soldering iron fitted with $1 / 8^{\prime \prime}$ iron coated bit and packed in a transparent display box. Spare bits $3 / 32^{\prime \prime}, 3 / 16^{\prime \prime}$ and $y_{2}^{\prime \prime \prime}$ available. Can also be supplied for 220^{\prime} and 110 volts. Price $£ 1.83$

CN.240/2 Miniature soldering iron 15 watt 240 volts, fitted with nickel plated 3/32" bit and packed in transparent display box. Also available for 220 volts. Price $£ 1.70$
CN. 240 Miniature soldering iron 15 watt 240 volts, fitted with iron coated 3/32" bit. Up to 18 interchangeable spare bits obtainable. This iron can also be supplied for 220 , 110,50 or 24 volts. Price $£ 1.70$
G.240 Miniature soldering iron 18 watt 240 vol ts extensively used by H.M. Forces. Suitable for high speed soldering and fitted with iron coated $3 / 32^{\prime \prime}$ bit. Also available for 220 volts. Spare bits $1 / 8^{\prime \prime}, 3 / 16^{\prime \prime}$ and $1 / 4^{\prime \prime}$ are obtalnable. Price $\mathbf{£ 1 . 8 3}$.

ANXTEXX your solderins applance speciaists.

CCN. 240 New model 15 watt 240 volts miniature soldering iron with ceramic shaft to ensure perfect insulation (4,000 v A.C.). Will solder live transistors in perfect safety: fitted with $3 / 32^{\prime \prime}$ iron coated bit. Spare bits $1 / 8^{\prime \prime}$ $3 / 16^{\prime \prime}$ and $1 / /^{\prime \prime}$ available. Can also be supplied for 220 volts. Price $£ 1.80$
CCN.240/7 The same soldering iron fitted with our new 7 -star high efficiency bit for very high speed soldering The triple-coated bits are iron, nickel and chromium plated. Price $£ 1.95$

SK. 2
 SOLDERING KIT

This kit contains a 15 watt 240 volts soldering iron fitted with a $3 / 16^{\prime \prime}$ bit, nickel plated spare bits of $5 / 32^{\prime \prime}$ and $3 / 32^{\prime \prime}$, a reel of solder, Heat Sink, 1 amp fuse and booklet "How to Solder"

MES. 12

A battery operated 12 volts 25 watt soldering iron complete with 15^{\prime} lead, two crocodile clips for connection to car battery and a booklet "How to Solder" packed in a strong plastic wallet. Price $£ 1.95$.

SK. 1

SOLDERING KIT
The kit contains a 15 watt 240 volts soldering iron
fitted with a 3/16" bit
nickel plated spare bits of $5 / 32^{\prime \prime}$ and $3 / 32^{\prime \prime}$, a reel of solder, heat sink,
Price $£ 2.75$ cleaning pad, stand and booklet "How to Solder'. Also available for 220 volts.

signhere to answer all your soldering problems.

THE BEST OF BOTH WORLDS

FOR THE OPERATOR
EQUIPMENT TO SATISFY THE MOST VERSATILE \& EXACTING REQUIREMENTS!
FOR THE XYL:
A DELIGHT TO THE EYE!!

\star AND
 SPECIAL BARGAIN OFFERS!

Finish: Gold stove enamel with
fascia off-white on maroon.

Size: $6^{\prime \prime} \times 2 \frac{1^{\prime \prime}}{} \times 4 \frac{3}{8}{ }^{\prime \prime}$
Weight: 21b

YOU HAVE EARTHING PROBLEMS? -DO PLEASE CONTACT US!

Protected by World Patents and Trade Marks

7' 6" (2-28m) long. Wt. $1 \frac{1}{2} \mathrm{lb}$. The new improved "JOYSTICK" V.F.A.
In matching gold stove enamel, black and red finish.
The "JOYMATCH" 111 "A.T.U. for RECEIVING ONLY tunes the "JOYSTICK" V.F.A. and many other antennae from 500 kHz through 30 mHz plus.
The new "JOYSTICK" V.F.A. is extremely lightweight, exceptionally strong, rigid, tough and weather proofed when assembled by screwing three sections together in seconds.
The new "JOYSTICK" V.F.A. OUTPERFORMS many beam antennae in practice BECAUSE of its low reflected power factor and absence of harmonics.
On RECEPTION-High Selectivity \& Sensitivity on both Amateur \& Broadcast Bands.
\star GENUINE BARGAINS - MAIL ORDER ONLY - WHILE STOCKS LAST!

1. Superb A.T.U. in kit form with step by step assembly and operating instructions $£ 4 \cdot 50$; or $£ 5 \cdot 50$ assembled. Tunes Receiver (communications or solid state) 1.2 mHz to 32 mHz . On Transmit Handles 300 w PEP (PA input) 160 thru 10m-with "JOYSTICK" V.F.A.
2. Lo-z "JOYMATCH" A.T.U. (the world famous one!) £9.50.
3. New "JOYSTICK" V.F.A. in white stove enamel plus FREE external mounting insuiators $\mathbf{£ 8 . 0 0}$. Add 40 p p/p or $45 p$ if two items ordered together.
Details 3p stamp (not S.A.E.)
Phone: (Thanet) 084362535
\qquad

PADGETTS RADIO STORE OLD TOWN HALL, LIVERSEDGE, YORKS WF15, 6PQ
 TEL. HECKMONDWIKE 4285

Amplifier Unit Type A413. Complete with $5 Z 4$ \& 6V6GT valves. 250,230 Volt Transformer. Clean condition untested. £1-25. Carriage 75p.
Air Position Indicator. Contains Gears. Ball Races. Dimmer Unit. Lamps. Four numbered Counters. 24 Volr Motor etc. Great interest to the model makers. Good condition 75p. Carriage 50p.
Ground Position Indicator. Contains 24 Volt Lamp. Prisms Mirror and Gears. Couid interest schools and model makers. 75p. Carriage 75p.
Latest Air Ministry Release Radio Receiver. Type R4487. $2 \cdot 8$ to 18 MHZ In Three Bands. Complete with 17 miniature valves. 26 Volt Motor. Power supply 75 p .
Control Unit. Type 4190. Complete with three miniature valves. $1 \frac{1}{2} * 500 \mu \mathrm{~A}$ Meter. Six Relays. Model makers Motor with Gears. 24 Press Buttons. Lots of arriage and insurance 75p.
Autostabiliser Amplifier Unit. Complete with Carpenter Relay and Base. Many
spares. 50 p. P/P 33 p.
Special Offer. Aircraft Sighting Head. Comprising flexible drive, lens prism unit, Giro. Useful for model constructors, schools, etc. Condtion fair. 75p. Carr. 75p.
Rectaimed T.V. Tubes. All with 12 months guarantee.
AW43/88. £2. AW43/80. £1 50 . MW $43 / 69 £ 1$. Special offer Brand New Brimar Tubes C17P.M. £f. Many oider types in stock. Carriage and insurance on any
tube $£ 1 \cdot 10$.

Breaking-tup. Ferguson Model 506T. Tested L.O.P.T. £1-45. Posi paid. Fireball Tuner Unit with Valves less Knobs. 75p. Post paid. S. A.E. for Price List of other spares for this set and other types.
Valve List Ex Equipment Al! Valves Tested on a Mullard Valve Tester before despatched. 3 Months Guarantee on all Valves Singie Valves PiP 3p. Over three Valves P/P Paid.

ARP12 EB91	5pp	${ }_{\text {PCCF84 }}$	5p	U191	20 p
		PCF80	5 p	U251	1210
EF85	$12 \frac{1}{2} \mathrm{p}$	PCL82	$12 \frac{1}{2} \mathrm{P}$	6BW7	10p
EBFB0	$12 \frac{1}{2} \mathrm{P}$	PCL83	121p	6 U 4	10 p
EBF89	12, ${ }^{\text {P }}$ p	PCF82	$12 \frac{1}{2}$	6 F 23	20p
ECC81	10p	PL36	20p	20P1	20p
ECC82	12 ${ }_{1}{ }^{\text {p }}$ p	PL8 \dagger	171 ${ }^{\text {p }}$ p	20 P 3	10p
ECL. 80	$7 \frac{1}{2} p$	PY81	$7 \frac{1}{1}$ p	20 D 1	10p
EF80	$7 \frac{1}{2}$	PY33	1712	30 P 4	20p
EF91	4p	PY82	$7{ }^{\frac{1}{2}} \mathrm{p}$	30 P 12	20p
EY86	20p	PL82	7\% ${ }^{\frac{1}{2}}$	30 FL 1	20p
EF50	60p per dozen	PL83	$7 \frac{1}{2} p$	6/30L2	20p
		PCL84	1212 ${ }^{2}$	$30 \mathrm{F5}$	10p

960

EXTRACTOR FAN Cleans the air at the rate of
10,000 cubic ft. per hour Suitable for kitchens, bat. rooms, factories, changing rooms, ete., it's so quiet it can hardly be heard. Compact, $5 \frac{1}{2}$ casing with $5 \lambda^{\prime \prime}$ fan blades. blades, sheet steel casing, pull switch, mains connector, and fixing brackets, 22 plus 36 p post and ins.

MAINS MOTOR rrecision made in as and tape recordersideal also for extracto etc. New and perfect.
Snip at 50p. Postage 15 p for first one then 5p for each one
ordered.

TELEPHONE DIAL
Ex-G.P.O. Perfect working order

TELEPHONE HAND SET Fx-G.P.O. Perfect order.
50p each +20 p p .
G.P.O. DESK TELEPHONES

Complete with dial and hand set. Believed in goo order $\& 1 \cdot 50$ plus 25p p. \& p.

SELECTOR SWITCHES

 6 pole 92.00 pol Plus 20 D porp

Qulck CUPPA

Mini Immersion Heater, 350 w 200/240v. Boils full cup in about lamp holder. Have at bedside for tea, baby's food, etc. $\mathbf{2 1}-25$, post and insurance 14 p . 12 v . car model
also available same price. Jug heater $£ 1.50$ olus n . $\& \mathrm{p}$. 14 p .

MAINS TRANSISTOR POWER PACK
Designed to operate transistor sets and amplifiers. Adjustable output 6v.. 9v., 12 volts for up to 500mA (class B working). Takes the place of any of the following batteries: PP1, PP3, PP4, PP6, PP7, PP9 and others. Kit comprises: mains condensers and instructions. Real snip at'only 88p, plus 20p postage.
MICRO SWITCH
5 amp, changeover contacts, 9 p each, $£ 1$ doz. 15 am
100 each or 21.05 doz.

CAPACITOR DISCHARGE CAR IGNITION This system which has proved to be amazingly Wireless Forld about a year ago. We can supply kit of parts for an improved and even more efficien ESCTRONAC IGNITIN: Juae). Price 44.85 plus 20 p post. When ordering version (Practical Wer ror positive or negative systems please state whether for ignition systems for 6 v . vebicles, $85 \cdot 25$ plus 20 p .

RADIO STETHOSCOPE
Easiest way to fault find-traces signal from aerial to speaker-when signal stops you've found the anit. Use it on Radio, x amplifier, anything - - complete kit comprises two special transistors and all parts incloding probe tube and crystal set instead of earpiece 75p
extra-post and ins. 20p.

No. of Poles	Standard size l^{\prime} wafer-silver-plated 5 -amp contact standard $3^{\prime \prime}$ spindle $2^{\prime \prime}$ long-with locking washer and nut.								
	2 way	way	av	way	6 way	8 way	9 way	way	ay
1 pole	40p	40p	40 p	40p	40]	40p	40p	40p	40 p
2 poles	40p	40 p	40 p	40p	40p	40p	40 p	70 p	70 p
3 poles	40p	40 p	40 p	40 p	70p	70 p	70 p	95p	959
4 poles	40 p	40 D	40 p	70 p	70 p	70p	70 p	E1.20	£1-20
5 poles	40 p	40p	70p	70 p	95p	95 p	95p	81.45	81.45
6 poles	40p	70 p	70p	70p	95p	95p	95p	c1.70	81.70
7 poles	709	709	70p	$95 p$	£1-29	81.20	£1.20	$\underline{12.95}$	£1.95
8 poles	70 p	70 p	70 p	95 p	£1-29	£1.20	E1-20	22.20	82. 20
9 poles	70p	70 p	95p	95 p	£1.45	¢1.45	£1.45	¢2. 45	22-45
10 poles	70p	70 p	95 p	\&1.20	£1-45	£1.45	\$1.45	${ }^{22} \times 2$	22.70
11 polès	70 p	95 p	95 p	81.20	81.70	${ }_{\text {c1 }} 1.70$	E1.70	¢2.95	82.95
12 poles	70p	95D	95p	£1.20	81.70	\&1.70	21.70		23.20

TANGENTIAL HEATER UNITS This heater unit is the very latest type, most and blower heaters costing 215 and more. We have and blower heaters only. Comprises motor, impeller, 2 kW a few only. Cornprises motor, inpeller,
element and 1 kW element allowing switching 1 2 and 3 kW and with thermal safety cut-out. Can be 氏̂tted into any metal line case or cabinet. Only need control switeh. 2 kilowatts f 2.50 . Don't miss this. Control Switch 35p. P. \& P. 40p.

THIS MONTH'S SNIP

 MULLARD AUDIO AMPLIFIER MODULE
Uses 4 transistors, and has an output of 750 mW into ohms speakers. Input suitable for crystal mic. or
$1^{\prime 2}$
$2^{\prime \prime}$
wide

POCKET CIRCUIT

TESTER

Test continuity for any low resistance circuit, house
wiring, car electrics. Tests polarity or sigual injector (circuit supplied), 30p or fiers. Also ideal size

HONEYWELL PROGRAMMER
This is a drum type timing device, the drum being catibrated in equal divisions for switch setting purposes with trips
which are infinitely adjustable for position. which are infinitely adjustable for position.
They are also arranged to allow 2 operaThey are also arranged to ans per switch per rotation. There are 15 changeocer micro switches each of 10 amp type operated by the trips thus 15 circuits may
be changed per revolution. Drive motor is
mains operated 5 revs per min. Some of the many uses of this timer are Machinery. control, Boiler firing, Dispensing and Vending machines, Displaylighting animated and signs, 5.75 plus 25 p post and insurance. Don't miss this terrifte bargain.

INTEGRATED CIRCUIT BARGAIN A parcel of integrated circuits made by the famous Plessey Company. A once-in-a-iffetime offer of Micro-electronic devices well below cost of manu* facture. The parcel contains 5 ICs all new and perfect, first-grade derice, definitely not sub-standard or seconds. 4 of the TCs are single silicon chip GP amplifiers. The 5th is a monolithic NPN matched pair. Regular price of parcel well over 55. Fuil circuit details of the ICs are included and in addition you will receive a list of many different ICs ayailable at barcain prices $5 /-$ upwards with circuits and technical data of each. Complete parcel only \&1 post paid. DON'T MTSS THIS TERRIFIC BARGAIN.

BATTERY CONDITION TESTER

Made by Mallory but suitable for all batteries made by Ever Ready and others, most of which are zinc carbon types but also mercury manganese-nicad-qiver oxide dummy load on the battery and the meter scale indicates the condition depending upon which section the pointer rests. The section reads "replace" "weak" or "good". The tester is complete in its case, size 3 "" $^{x} \times 6_{4}^{1 / \prime}$
and prods. Price 51.75 plus 20 p postage.

Where postage is not stated then order over 25 are post free. Below $£ 5$ add 20 p Semi-conductors add 5p post. Over \&l post free. S.A.E. with enquiries please. free. S.A.E. with enquiries please.

Type "A" 15 amp. for controlling room heaters, greenhouses, airing cupboard. Has spindie for 40 p . Calibrated dial 20 p extra. Suitable box for Type "B" mounting 25p.
Type "B" 15 amp. This is a 17 in . long rod type made by the famous Sunvic Co. Spindle adjusts
 alarm 40p plus $12 \frac{1}{2}$ p postinand insurance. Type "D" We call this the Ice-stat as it cuts in and out at around freezing point. $2 / 3 \mathrm{amps}$. Has many uses one of which would be to keep the loft pipes trom freezing. If a length of our blanket wire (16 yd 50 p) is wound round the pipes, 40 p .
Type "E"". This is standard refrigerator thermostat. Spindle adjus 50 p aver normal refrigera.
Type "F". Glass encased for controlling the temp. Type "F". Glass encased for controling the thens. vats or sink-thermostat is held (half submerged) by rubber sucker or wire clip-ideal for fish tanksdevelopers and chemical baths of an
Adjustable over range 50° to $150^{\circ} \mathrm{F}$, Price 80

HIGH ACCURACY THERMO STAT Uses differential comparator 1.C. With thermister as probe. Designer claims temperature control the power pack $\mathbf{E 5} 50$.

AUTO-ELECTRIC CAR
AERIAL
with dashboard control switeh-
fully extendable to 40 in or fully retractable. Suitable for 12 v positive or negative earth. Supplied complete
with gitting instructions and ready With gitling instructions and ready $25 p$ post andins.
AUTO-LITE
AUTO-LITE as Circuit in this month's issu

TOGGLE SWITCH
3 amp . 250 v . With fixing ring 77 p each, 75 p doz. CAR ELECTRIC PLUG
OH \Longrightarrow Fits in place of cigarette lighter connection into the car electrical
sstem. 38p each or 10 for $£ 3 \cdot 42$.
ROCKER SWITCH
13 amp self-ixing into an oblong hole,
10 for 54p.
MAINS RELAY BARGAIN
Special this month are some single double and treble pole changeover relays. Contacts rated at 15 amps. Operating coil Found for 240 A.C. ment. Size ap prox. $1 \frac{1}{2}^{n} \times 1^{\prime \prime}$.
$\begin{array}{lll}\text { Single pole } & \text { 25p each } & 10 \text { for } \mathbf{4 2 . 2 5} \\ \text { Treble pole } & 40 \mathrm{p} \text { each } & 10 \text { for } £ 3.06\end{array}$

BALANCED ARMATURE

UNIT
500 ohm, operates speaker or micro

$2 \frac{1}{2} k W$ FAN HEATER
Three position switching to suit changes in the weather.
Switch up for full heater (2t Switch up for full heater ($2 \frac{1}{2}$
kW), switch down for half $k W)$, switch down for
heat (1 $\left.\frac{1}{2} k W\right), ~ s w i t c h ~ c e n t r a l$ blows cold for summer cooling
-adjustable thermostat acts as auto control and safety cut as aut. Complete kit
out.
Post and ins. 38 p.

unitsatlowest prices?".. TOP VALUE TOP ©UALTY ACCESSORIES THAT EVERY HLFI ENTHUSIAST NEEDS TO COMPLETE HIS SYSTEM
 Compare our prices with any other unit on the hi-fi market, and you'll find you won't beat ROC

Land's End!
Tand a End: look at all these super audio equipTake a good look are all on demonstration at ment bargains. They Monday to Saturday. our Shop from 9 p.m. Monday to Saturday, late night Thursday until 7 p.m. But don't worry if you can't get there yourself. Our Mail Order service is at your disposal. With the same ex-
clusive ROC equipment - and at the same clusive ROC equipment - and at the same super value-for-money prices!
When you invest in ROC equipment you're getting much more than an exclusive product. You're getting value for money that is literally unbeatable. ROC units are bought direct from the manufacturen, and ALL the savings ROC derive from this are passed on to youl At ROC Electronics, we take extra care to select only the best buys. We check everything before you do - and it's fully guaranteed whether you its fuly at the shop or by Mail Order.
 Every item shown here is the best of its kind within its price range. Buy thein
separately or at the same time as the other top-value audio products listed.

THORENS TD150AB/II
Transeription Turnabia. ranseription Turniabie.
 EAGLE SE-AI STUDIO STERED HEAD PHDNE Here's the ultimate in head-
phane design! Apart from its fantastic ability to reproduce all the frequancies from 20 to $20,000 \mathrm{~Hz}$, the SE-80 has eliminated the discomfort and strain design. Eagle pave designed and produced solution to thes and loudspeakers. here's the ideal pair of headphonas which breaks with all solution to the probiem. and amplifier plug in your previeus concepts. You hear all the sounds headphones-and you're ready to take over! At the crisp and tiear. In fact. the reproduction is flick of a slide switch. you can have headphon the most expensive hi-fi speaker systems. alone. or speakers al sube. with amplifiers rated
 earpiece. Impedance: 8 ohm per channel.
ROC PRICE $f 14.90$ ROC PRICE E14.90 $\overline{\text { TEC HR-007 HEAD. }}$ O. PHONE RABIO When When ynu want to listen to Then this will solve the problem. Separate volume and tuning controis with easy-to-use knobs. Frequancy range is Maximum output is 300 mW .

Sman black, tough. plastic cases. bach Smart black, tough. plastic cases. bach
containing a high flux 110 mm diameter speaker unit. Just what you need to ga with the CS.B Carridge Flayer or any other car slereo systam. Fitted with over three yards of connecting
 ance: 8 ohms per speaker. Rating: 5 walls max
per speaker. ROC PRICE f 372
Normal Price 99.45 ROC PRICE 67.65

R.t52 STEREO CAR

 SPEAKERSThese sloping front $=-3 f=3$
spazkers match the CS 8 Carritge Player or any
other car stereo system. Fitted with high flux
110 mm diameter speaker unit. and over three yards of connacting cable. Dimensions: $6 \mathrm{H}^{-} \times$
 Rating: 5 watts max. per speaker
ROC PRICE 4.96
EAGLE LC. 05 STERED
MAGNETIC CARTRIDGE For fabulous reoroduc: tion at a very low price.

you'll find it hard to beat.
0.7 mil diamond stylus. Dut-
put: 6 mV per channel. Frequency range. Channel separation: 20dB. Recommended styust pressure: 2-4 prams $9 \times 106 \mathrm{~cm}$ dine ADC PRICEf4.75

EAGIE LC OT STERE EAGLELC. 07 STEREO CARTRIDGE
Hera's your opportunity

CARTRIDGE
Hera's your opportunity

Palace SSA-16 Stereo Tuner Amplifier, Garrard 2025 T/C auto changer with stereo ceramic cartridge, plinth and cover and a par of ROC R. 446 Speakers Normal Price $£ 84.98$
RDC PRICE E66. 30

REALISTIC 12-694 SYSTEM Realistic 12-694 Stareo Tuñer Amplifier with matching speakers and Garrard SP25 Mk III with Eagle LC. 07 Stereo Magnetic Cartridge and plinth and cover. Normal Price $£ 144$-05 ROC PRICE f 124.50

ROC EI SYSTEM
ROC E1 8 track Stereo Cartridge Player complete with a pair of ROC R. 0884 watt Speakers. Normal Price 559.10 ROCPRICE 4945

PALACE SYSTEM
OLSON AM-357 SYSTEM Olson AM-357 Stereo Amplifier, Garfard 2025 T/C Autochanger with Stereo ceramic cartridge, R. 0884 watt Speakers. Normal Price $£ 45-28$
ROC PRICE $£ 36.70$
 Matching TM-100 Stereo Tuner £ $23 \cdot 25$ extra if required Normal Price f 63.98 ROC PRICE E4760
 AM-395 SYSTEEM Olson AM-395 Stereo Amplifien Garrard SP25 Mk Ill Record Player with Eagle LCO7 Stereo Magnetic Cartridge, plinth and cover and a pair of Eagle DL. 67 Speakers. Matching RA. 310 Stereo Tuner f. 39.95 extra if required. Normal Price $£ 106$-65 RDC PRICE $\mathbf{E 9 2} .60$

WEYRAD

COILS \& TRANSFORMERS FOR CONSTRUCTORS

Special versions of our P50 Series are now available for AF117 or OC45 Transistors. They can be used in the standard superhet circuit with slight changes in component values.

0	P50/1AC (For OC45)	P50/1AC (For AF117)	33p
1st I.F. Transfo	P50/2CC (For OC45)	P51/1 (For AF117)	36p
2nd I.F. Transformer	P50/2CC (For OC45)	P51/2 (For AF117)	36p
3rd I.F. Transforme	.P50/3CC (For OC45)	P50/3V (For AF117)	36

I.F. TRANSFORMERS FOR "PRACTICAL WIRELESS" CIRCUITS

Components for several receivers are available, including the following for the "Clubman".

T41/1E	1st
T41/2E	2nd I.F. Transformer
T41/3T	3rd I.F. Transformer
T41/3T	B.F.O. Coil

Details of these and our other components are given in an illustrated folder which will be supplied on request with postage please.

WEYRAD (ELECTRONICS) LIMITED SCHOOL STREET, WEYMOUTH, DORSET

FANTASTIC BARGAW OFFER! TRANSEUROPEAN

Transistorised Stereophonic High Fidelity AM/FM Tuner Amplifier System.

This system includes this elegantly styled solid state Teak finished cabinet tuner/amplifier. Covering VHF/FM. Short, medium and long wavebands. The latest 4 Speed B.S.R. Mono/Stereo record changer with 2 - 10 in. $\times 6$ inmatching elliptical speakers. A complete Hi+F1 Stereo ked
at less than half normal price. SPECIAL OFFER Easiily itted no techni knowledge necessary. Credit Terms available First monthly payment
of $\$ 5.83$ followed by of $£ 5.83$ followed by
9 monthly payments of E4.95. Total Credit Sale priee E 49.83 today.

FABULOUS VALUE

Hi-fi stereo at a new low. System Ten-Ten; 4 speed BSR autochanger with cue and pause control plus solid state amplifier, 20 wate total output. Frequency res
64.93

DOWN
CREDIT SALE TERMS: Send E4.93 (being the first of TEN monthiy payments of $£ 4.05$ plus 88p. Carriage and Packing). To be followed by NWE monchly payments of $\mathbf{E 4 - 0 5}$ Total Credit Sale Price 640.50).
EASY TO IMSTALL NO TECHRICAL KNOWLEDGE REQUIRED.
Post coaps please \$END ME FREE DETAILS OF YOUR RANGE Post coupt
MDW for.
NOW for ...
B
lemflots

When in IUIION, BEDS, you must visit the
SRIF-SERVICE RADIO COMPONDNTS SHOP

Serve yourself from a selection of 1,200 boxes of Manulacturer's surpins stocks and saye money.

9 a.m. to $5.30 \mathrm{p} . \mathrm{m}$. every day. Closed all day Wednesday.

SURPISCTRONICS
216 I, LagRAvE ROND, LUTON, BEDS

AERIAL BOOSTERS	19" TV 46.50
We make four types of Aerial Boosters.	$19^{\prime \prime}$ an shimline Televisions in gond
L45 625 U.H.F., L12 V.F.F. TV.	Working order, with complete aet of
L11 V.H.F. Radio, L10 M/W \& S/W. Price E45, L12 \& Lil E2:95, 110 E2.45.	pare valyes.
VALVE BARGAINS	PRINTED CIRCUIT BOARD
Any $5=45 \mathrm{p}, 10=70 \mathrm{p}$:	$2-8$ ins by 4 ins boards complete with
ECC82, ECLB0, THP80, EF85, EF183,	etching compound and instructions-407.
EF184, EBF89, EB91, EY86, PCC84,	
PCC89, PC97, PCF80, PCF86, PCL82,	500MFD CAPACITORS
PY82, PY800, PY801, 30L15, 30C15,	Onfd-25y/w Brand New Electrolytic
6-3012.	with long leads. 11p each.
POST \& PACKING under \$1.5p Over 21.10p. S.A.E. for leaflets on all items. Money back guarantee it not completely satisfied.	
62A Bridge Street, Ramsbottom, Bury, Lancs.	

TEGHNIGAL training in radio television and electronics

Whether you are a newcomer to radio and electronics, or are engaged in the industry and wish to prepare for a recognized examination, ICS can further your technical knowledge and provide the specialized training so essential to success. ICS have helped thousands of ambitious men to move up into higher paid jobs-they can help you too! Why not fill in the coupon below and find out how?

Many diploma and examination courses available, including expert coaching for:

- C. \& G. Telecommunications Techns'. Certs.
- Radio Amateurs' Examination
- General Radiocommunications Certificate
- C. \& G. Radio Servicing Theory
- General Certificate of Education, etc.

Now available Colour T.V. Servicing
Examination Students coached until successful

NEW ${ }_{\text {self-build radio courses }}$

Learn as you build. You can learn both the theory and practice of valve and transistor circuits, and servicing work while building your own 5 -valve receiver, transistor portable, and high-grade test instruments-all under expert tuition. Transistor Portable available as separate course.

POST THIS COUPON TODAY

for full details of ICS courses in Radio, T.V. and Electronics.

SAVBIT ALLOY ALSO REDUCES COPPER BIT WEAR. Ecomically packed for
general electrical
and electronic
soldering, 75 ft.
18 gauge on
plastic reel.
Recommended
retail price 75p
Size 12
for fast, easy, reliable soldering
Contains 5 cores of non-corrosive flux, instantly cleaning heavily oxidised surfaces. No extra flux required.

THIN GAUGE SOLDER, ESSENTIAL FOR
soldering small components and thin wires. High tin content, low melting point, 60/40 alloy, 170 ft . 22 gauge on plastic reel. Recommended retail price 75p Size 10

invaluable for stripping

 FLEX, THE NEW AUTDMATIC OPENING BIB WIRE STRIPPER AND CUTTER, easily adjustable for all standard diameters. Plastic covered handles can also be used as wire cutter. Recommended retail price 50pFiom Elsctrital and Hardware shops. If unghtainabls. write to: Multicore Solders Ltd., Hemel Hempstead, Herts.

EFW PRMEL METE

USED EXTENSIVELY BY INDUSTRY，GOVERNMENT DEPARTMENTS， －LOW COST QUIGK DELIVERY OTER OVER VOOR RANGES IN STOCK

	IGSEM： DESI PLASTIC BAKELIT METERS METERS TYPESW． 100 TYPE S－80 $100 \times 80 \mathrm{~mm}$. 80 mm. square fronts		N
	50V．D．C．．． 88.10	$50-0-50 \mu \mathrm{~A}$ 退 88.10	50V．D．C．．． 28260
$50-0-50 \mu \mathrm{~A}$－ 83.46	300 V ．D．C． 5810		300 V ．D．C． 82.60
$100 \mu \mathrm{~A} \ldots . .23 .20$	1 amp ．D．C．E8－10	100－0－100 2 A 58810	1 amp．D．C．
${ }^{100-0-100 \mu \mathrm{~A}} \mathbf{8 3} 8.45$		$\begin{aligned} & 500 \mu \mathrm{~A}\end{aligned} . . .888 .00$	5 anp．D．C． 300V．A．C． E2．60
	300 V VU Meter A．C． M		300 M．A．C．${ }^{\text {VU }}$ Meter．． 88.37

＂SEW＂CLEAR PLASTIC METERS

	50 mA ．．．． 82.80
	100 maA ．．．． 28.80
	500mA ．．．． 28.80
	1 amp．．．． 28.80
	$5 \mathrm{amp}882 .80$
	$15 \mathrm{mmp} . . .$.
	$30 \mathrm{mmp}82 .90$
	20V．D．C．．．${ }^{58} 80$
	$50 \mathrm{~V} . \mathrm{D} . \mathrm{C} . .$. 钟80
	150V．D．C． 22.80
$50-0-50 \mu \mathrm{~A} \quad 23.10$	300V．D．C． 52.80
$100 \mu \mathrm{~A}$ ．．．．$\$ 3 \cdot 10$	15 V A．O．．． 22.80
100－0－100 4 A 82.00	300V．A．C． 28.80
$200 \mu \mathrm{~A}$ ．．． 83.00	S Meter lima 28.87
	VU Meter．： 83.60
$500-0-500 \mu \mathrm{~A} 92.80$	1 amp ．A．C．＊ 82.80
1 mA ．．．．．$\times 2.80$	5 amp A．C．＊ 22.80
1－0－1mA ．． 28.80	10 amp ．A．C．＊28－80
5mA ．．．．． 8.80	20 mmp A．C．＊ 28.80
10 mA ．．．． 52.80	30 mmp A．C．＊＊2．80

Type MR．52P． $2 \frac{3}{4} \mathrm{in}$ ．square tronts．		
$50 \mu \mathrm{~A}$	88.10	10V．D．C．．．${ }^{\text {ces }} 00$
$50-0-50 \mu \mathrm{~A}$	22－60	$20 \mathrm{Y}, \mathrm{D}, \mathrm{C} . . . \mathrm{e} 2.00$
$100 \mu \mathrm{~A}$	2． 60	50 V ．D．C．．． 28.00
100－0－100 2 A	42－50	300V．D．C．$£ 2.00$
$500 \mu \mathrm{~A}$	22－30	15 V ．A．C．．． $2 \cdot 10$
ImA	28．00	300 V ．A．C． e 2.10
5 mA	22.00	S Meter 1mA
10 mA	E2．00	VU Meter ．．． 53.80
50 mma	22.00	1 amp．A．C．＊ $22-00$
100 mA	\＄2．00	5 amp A．C．＊ 88.00
500 mA	22．00	10 amp ．A．C． 422.00
$1 \mathrm{mmp} . . .$.	9\％00	20 amp ．A．C．＂．fer 00
\％amp．．．．．	2200	
TYpo Mr．65P．3fin．$\times 3$ fin．fronta．		
$50 \mu \mathrm{~A}$	43.37	10V．D．C．．． 22.20
$50-0-50 \mu \mathrm{~A}$	28.75	20V．D．C．．． 22.20
$100 \mu \mathrm{~A}$	22．75	50 V. D．C．．． 22.20
100－u－100 2 A2	82－65	150V．D．C．．． 82.20
$200 \mu \mathrm{~A}$	砍．85	3007. D．C． 52.20
$500 \mu \mathrm{~A}$ …	22．40	15 V ．A．C．
$500-0-500 \mu \mathrm{~A}$	52． 20	50 V. A．C．．． 22.30
1 mA	E2． 20	150V．A．C． 82.30
5 mA	82．20	300 V ．A．C． $82 \cdot 30$
10 mA	28－2	500 V ．A．C． 82.30
50 ma	220	\＄Meter 1 mA A 2.37
100 mA	82．20	VU Meter．． 23 －37
500 mA	e2． 20	50 mA A．C．${ }^{\text {¢ }}$ ¢2 20
1 amp ．	£2－20	100 mA A．C．${ }^{\text {P } 22.20}$
5 amp．	22．20	200 mA A．C．＊ $\mathbf{2 8} \cdot 20$
10 amp		500 mA A．C．＊${ }^{(28.20}$
15 amp ．	E2．20	1 amp A．C．＊ 22.20
20 amp ．	28．20	5 amp ．A．C．＊${ }^{\text {c }}$－20
$30 \mathrm{amp} . \therefore 8$	22.80	$10 \mathrm{amp}, \mathrm{ACC}, * \pm 2 \cdot 20$
50 amp ．．．	22－50	20 amp A．C．$*$ ¢2． 20
gY．D．C．．．	82．20	30 amp ．A．C．＊

＊MOVING IRON－ ALLOTHERS MOVING COH

 Please add postage

EDGWISE METERS

Type PE．70． $817 / 82 \mathrm{in}, \times 1$ 15／32m．\times

$100-0-100 \mu \mathrm{~A}$	22.90	300 V．A．C．
$200 \mu \mathrm{~A}$	28.45	
58.90	VU Meter．．	28.40

Panel Meters－discounta for quantities．

MULTIMETERS for GUERY purpose／

MODEL TE－800． 30.000 O．P．V．Mirror scale，overioad
protection $0 / 6 / 3 / 5 / 60 / 300 /$ $1,200 \mathrm{~V} . \mathrm{A.C} ..6 / 30 \mathrm{uA} / 6 \mathrm{~mA} /$
$60 \mathrm{ma} / 300 \mathrm{~mA} / 600 \mathrm{~mA} \quad 0 / 8 \mathrm{~K}$ $80 \mathrm{~K} / 800 \mathrm{~K} / 8 \mathrm{meg} . \mathrm{ohm}-20 \mathrm{t}$ to

MODEL LT． 1011000 O．P．V $0 / 10 / 50 / 250 / 1000$ v．A．C． o／1／100 M．A． $0 / 150 \mathrm{~K}$ ohms £1．97．P．\＆P．15p．

ODEL PL43 $\mathrm{k} \Omega /$ Volt D．C． Mirror scale． $-6 / 3 / 12 / 30 / 120 / 600 \mathrm{~V}$ D．C．${ }^{3} 30 / 120 / 600 \mathrm{~V}$ A．C． $50 / 600 \mathrm{uA} / 60$ $0 \mathrm{~mA} .10 / 100 \mathrm{~K}$ db． $66.07 \pm \mathrm{P} \& \mathrm{P}$ 12tp MODEL 502X 57 Ranges．
Glant 5 th．Meter，
Reolarity Reverse Switch．
Senitivity： $50 \mathrm{~K} /$ Volt D．C
$5 K /$ Volt $5 K / V o l t$
$-125,-25$,
$1.25,5$,
5 A，C．Volts： $1 \cdot 5,3,5,10,25$ D．C．Current： 25, 501A， $2 \cdot 5,5.25,50,250$ 100K， $1 \mathrm{MEG}, 10 \mathrm{MEG}$ ．Decibels：－ 20 to
$\frac{+85 \mathrm{~dB} . £ 12 \cdot 50 \text { ．P．\＆P．} 17 \text { ！p．}}{\text { TMK MODEL TW．} 20 \mathrm{CB} \text { FEATVRES RE }}$ SETTABLE OVERLOAD BUT SK Ω / V olt A．C．

 $200,1,005,5 . C$. Currents： Resistance： $0.5 \mathrm{~K}, 50 \mathrm{~K}, 0.500 \mathrm{~K}$
5 MRG．Decibels：-20 to +52 bB E11．50．P．\＆P． $17 \frac{1}{2} p$. ROUND SCALE TYPE PENCIL TESTER

Completely portable，simple to use pocket sized tester．
Ranges $0 / 3 / 30 / 300 \mathrm{~V} \quad \mathrm{AC}$ and DC at 2,000 o．p．v ONLY \＆1．07 P．\＆P． 18 p ． TME MODEL 117 F．E．T．ELECTRONIC VOLNOSETERR
Battery operated，
11 meg input， 26

 DG VOLTS O．
1200 AC VOLT
$3-300 \mathrm{~V}$ RMS 8.0 800 V P－P．DC OUR RENT $12-12 \mathrm{MA}$ Resistance up to 2000 M ohm．Decibe
-20 to +51 db Complete with leads／instruc tions． 817.50, P．\＆P．20p．

ENSITIVITY
A．C VOLTMETER 10 meg．input 10 ranges 01／．003／ $1 / 3 / 3 / 1 / 3 / 10 / 10 / 100$
$\mathbf{3 0 0 V}$ ．R．M．S． $4 \mathrm{cps}-1-2 \mathrm{Mc} / \mathrm{s}$
 supplied brand new complete with leads and instructions
Operation 230 V．A．C．$£ 17.50$.

TAEE WAV Sine： 20 eps to 200 square：20cps to $30 \mathrm{ke} / \mathrm{s}$ ．Output impedance 8,000 ohms， $200 / 250 \mathrm{~V}$
A．C． A．C．operation new and guaran
teed with ingtruc tion manual and leads． $217 \cdot 60$ ．Carr． 37 tp ． TE－2ORF SIGNAL GENERATOR
 ing 120 kc／s－260
Mc / s on g bands． $\begin{array}{ll}\text { Me／s on } & \text { bands．} \\ \text { Directly } & \text { calibrated } \\ \text { variable } & \text { R．F．at．} \\ \text { tenuator．} & \text { Operation }\end{array}$ tenuator．Operation
$200 / 240 \mathrm{~V}$ A．C． 200／240 A．C．
Brand new with in
struction struction． 815.
P．\＆P． 37 th．S．A．E． TRANSISTORISED LC．R．A．

A new portable
bridgeoffering ex－
cellent range ond accurscy at low acest． cost．Ranges： K
$1 \Omega-11.1$ meg Ω 6 Ranges $\pm 1 \%$
L． $1 \mu \mathrm{H}$ HENRYS 6 Ranges2 $=\%$ C． $10 \mathrm{pF} \pm 1110 \mathrm{mF}$ 1 1illoo． 6 Ranges $\pm 1 \%$ ．Bridge voltage at 1,000 cps．Operated from 9 voits． $100 \mu \mathrm{~A}$ ．

TMK TAB TESTER． Scale Buzzer Short Cir cuit Check．Sensitivity； 100，0000．P．V．D．C． 5 K
Voit A．C．D．C．Volts：
$-5,2.5,10,50,250,1,000$ V．A．C．Yolts： $3,10,50$
$00,250,500,1,000 \mathrm{~V}$ ． D．C．Current： $10,100 \mu \mathrm{~A}$ amp ．Resistance： $1 \mathrm{IK}_{\mathrm{y}}, 10 \mathrm{~K}, 100 \mathrm{~K}, 10 \mathrm{MEG}$, 100 MEG Ω ．iDecibels：-10 to +49 db ．Plas
 RUSSIAN 22 RANGE MULTIMETER Model U437 10，000 o．p．v． strument manutactured in
U．s．s．R．to the highest gtandards．Ranges：h． $2 \cdot / 10 /$ 50／250／500／1000v D．C． $2 \cdot 5$ ］ DC Current $100 \mathrm{wA} / 1 / 10 /$ $100 \mathrm{~mA} / \mathrm{LA}$ ．Aesistance
$300 \mathrm{ohms} / 3 / 30 / 300 \mathrm{~K} / 3 \mathrm{M} \Omega$ ． 300 ohms $/ 3 / 30 / 300 \mathrm{~K} / 3 \mathrm{M} \Omega$ ．
Complete
with Complete with batteries
test leads，instructions and sturdy steel carrying ease．
OUR PRICE \＆5－97 P．\＆P ．
25p． A general purpose low cost economy oscilloscope
for everyday use．Y for everyday use．Y amp．
Bandwidth $2 \mathrm{CPS}-\mathbf{1} \mathbf{M H Z}$. Input imp． 2 meg $\Omega 25$ P．F．Illuminated scale．
2in．tube． $115 \times 180 \times$ 2in．tube． $115 \times 180 \times$
230 mm ．Welght 81 b ．
$220 / 240$ y $220 / 240 \mathrm{~V}$ a．c．supplied brand new Fith hand
book． 222.50 ．Carr． 50 p ． FTC－401 TRANSISTOR TESTER Full capabilities for mea－
suring $A, B \cdot$ and ICO. NPN or PNP．Equally adaptable for checking diodes．Supplied com－ plete with instructions battery and leads．
$86.97 t$. P．\＆P． 10 p． HOMEYWELL： DIGTRAL
VOLTMETER VT． 100
Can be
Can be panel or
bench mounted． Baxic meter mea－
gures 1 volt D．C．
but can be used to measure a wide range of AC and DC volt，current and ohms with
optional plug in cards．Specifcation：Accu－ racy： $\pm 0-2, \pm 1$ digit．Resolution： 1 mV ． Number of digits： 8 plus fourth overrange digit．Overrange： 100%（up to 1－999）．Input
impedance： 1000 Meg ohm．Measuring cycle： impedance： 1000 Meg ohm．Measuirling cycle：
i per second．Adjustment：Automatic zero－ ing，full acale odjustment againat an internal rererence voltage．Overload：to 100v．D．C．
Input：Fully floating（ 3 poles）．Input $110-230 \mathrm{v}$ A．A． $50 / 80$ cveles．Overall size： 5 inin．$x 213 / 16 \mathrm{in}$ ． $\mathrm{x} 83 / 16 \mathrm{in}$ ．AVAILABLE BRAND NEW AND FULLY GUARAN－ 849．972．Carr． 50 p ．

G．W．SMITH
\＆CO（RADIO）LTD．
Also see next two pages

SEMIFCONDUCTORS/VALVES

ALL DEVICES ヨRAND NEVNAND FULLY GUARANTEED

\begin{abstract}

TRRANSISTOR DISCOUNTS:- $12+10 \%$;
$25+15 \% ; 100+20 \%$ any one type. Pogt-
age on all Semi Conductors 7 p extra.
8.A.E. FOR YuLL

VALVES

LOW PRIGE, HIGH OUALITY SPEAKER SYSTEMS
 All cabinets are new and carefully designed acoustically with speakers mounted on speakers are ex-TV high quality with hinflux magnets carefully matehed and tested.

ELF

An extension speaker of quality; $9 \times$ $5 \frac{1}{2} \times 3 \frac{1}{2}$ in. veneered in natural teak with smart goid and mottled yyair inch thick. A real bargain at 11.85 P. \& P. $37 \frac{1}{2}$ p.

THE
SHELLEY
Size $21^{\circ} \times 11 \times 6 \frac{1}{3}$ in. An extremely elegant speaker system made of 12 mm . chipboard covered with black leathercloth with mottled Vynai front. This unique system uses three ex tested. Will handle 10 watts and will mateh 8 ohms impedance, if preferred the speakers can be wired in series parallel to match 3 ohms impedance. A real bargain at $£ 4.95$ plus 70 p P. \& P. MATCHING TRANSFORMER for 15 ohms 85p post free.

CARTRIDGES-Stereo

Sonotone 9TA H/C Diamond $£ 2.40$. Ronette Sl 105 Medium Output, $£ 1.40$. S 106 High Output $£ 1 \cdot 40$. Acos GP93/I Sapphire I.90. GP94 I Sapphire, E2. TA700 equivalent to B.S.R. SXIM 61.75. Japanese equivalent to B.S.R. TC8s, $£ 1.75$. P. \& P. $7 P$

SPEAKERS

E.M.I. $13 \frac{1}{2} \times 8$ in, 3 ohm $£ 2.50$, 15 ohm. P. \& P. 30p. E.M.I. $13 \frac{1}{2} \times 8$ in. fitted two $2 \frac{1}{4}$ in. tweeters, 15 ohm 64.50 . P. \& $P, 30 \mathrm{p}$. E.M.I. $13 \frac{1}{2} \times 8 \mathrm{in}$. (15 ohm) Hi-Fi quality f 6.25 . P. \& P. 35 p . Bakers 12 in. 25 watt 8 and 15 ohms £7. P. \& P. 30p. Eagle

VYNAIR

Widths from 50 to $54 \mathrm{in}$. 75p yd. off roll P. \& P. $10 \mathrm{p}, \frac{1}{2}$ yard 40p. P. \& P. 10 p end $5 p$ stamps for samples.

IMP

Wedge shaped extension speaker $7 \frac{1}{2} \times 6 \frac{1}{2} \times 4 \mathrm{in}$ (max.). Covered in walnut wood grain cloth with mottled Vynair front. Keyhole slot at back. Fitted with 3 ohm speaker unit. Only GI-25. P. \& P. 36p each

CARTRIDGES-Mono

GP. 91 Stereo Compatible $£ 1$-25. Acos GP67/2 will replace Collaro and Garrard Mono cartridges, ${ }^{\text {95P. T.I.C. Crystal }}$
High Gain, 75p. B.S.R. TCBH Jap. equivalent $61 \cdot 25$. P. \& P. 7p.

BIOSTHESOUTO
 E2.95CAXTON SPEAKRES P. \& P. 57p Makes all the difference to volume and quality. Contains 3 speakers in serjes-ex-TV with hi-fi flux magnet recon., tested for Mono or Stereo. Output 8 watts. Impedance 9 ohms. Available in black leathercloth. Size $23 \frac{1}{2}^{\prime \prime} \times 5 \frac{1}{1 "}^{\prime \prime} \times 5 \frac{1^{\prime \prime}}{}{ }^{\prime \prime}$. Keyhole slot for wall mounting. Twin connecting cable $12 y d s$., 35p min. Matching transformers if required for other output impedance 85 p post free.

CLARENCE

$11^{\prime \prime}$ wide $\times 8 \frac{1}{2}^{\prime \prime}$
$\times 4 \frac{1}{2}$ " deep with volume contro rexine and Mort rexine and
led
Vynair. E2-25 P \& P 25p.

HI-FI STEREO HEADPHONES

Padded ear cushions seal out room noise. Perfect coupling between reproducer and ears assure full response imped
ance 8 ohms. frequency range $30-15,000 \mathrm{~Hz} 6 \mathrm{ft}$. cord and standard stereo plug. Only \&2.57 $\frac{1}{2}$. P. \& P. 27p

Stereo Headphone Junction Box
Simple unit connects direct to amplifier and speakers to give attenuated headphone output has 2 position switch P. \& P. $12 \frac{1}{2}$ P.

AMPEX 7.5v. D.C. MOTOR. motor designed for use in the AMPEX model AG20 portable
recorder. Torque $450 \mathrm{GM} / \mathrm{CM}$. recorder. Torque $450 \mathrm{GM} / \mathrm{CM}$.
Stall load at $500 \mathrm{ma}$. Draws
60 ma on run. $600 \mathrm{rpm}+5 \%$ 50 ma on run. 600 rpm $+5 \%$
speed adjustment, internal AF/RF suppression $\mathbf{1}^{\prime \prime}$ dia. I"' spindle. f16.50. Our price $84 \cdot \mathbf{2 5}$. P. \& P. 25p. Mu-metal enclosure available 75 p each.

SYNCHRONOUS MOTORS SMITHS, 250 v . $50 \mathrm{H}_{2}$. Available in the following R.P.M. 2-3-6-10-30-60. Price ${ }^{75} \mathrm{P}$ each. Carr. paid.
CROUZET. $220 / 380 \mathrm{v}$. $50 / 60 \mathrm{~Hz}^{250-300} \mathrm{rpm}$. M5p. Carr Paid. $\frac{3^{\prime \prime}}{\mathrm{P}^{\prime \prime}}$ \& ${ }^{\text {spindle, }}$ P. weight $\frac{3}{4} \mathrm{lb}$. Powerful. 88p each. ELECTR GEARED MOTORS
ELECTRO CONTROL (CHICAGO). Shaded
pole $240 \mathrm{v} .50 \mathrm{~Hz}, 200 \mathrm{rpm}$. $101 \mathrm{~b} . \mathrm{in} . £ 2 \cdot 50, \mathrm{P}$ \& P. 25 p . MYCALEX. Open frame, shaded pole motors, $240 v .50 \mathrm{~Hz} 7$ rpm. 28 lb . in. 80 rpm .12 ib . in.
$62 \cdot 25$ each. P . P . 25 p .
 $50 \mathrm{~Hz} 47 / 68$ watts. $50{ }^{965}$ rpm. Stoutiy
constructed. Size: $21^{\prime \prime}$ dia. $\times 3 t^{\prime \prime}$ constructed. Size: $2+y^{\prime \prime}$ dia $\times 3 \frac{1}{n}^{\prime \prime}$
long plus spindle, $x^{\prime \prime} \times \frac{1}{\prime \prime}^{\prime \prime}$ dia. Anti-
 TYPE 955.
P. \& P. 25p.
 "MALLORY" LONG LIFE BATTERIES. Type A. RM12 cel
$1.35 v .3,600$ ma/H. CAP. $250 / 300$ $1 \cdot 35 \mathrm{v}$. 3,600 ma/H. CAP, ${ }^{250 / 300}$
ma cont. current. Size: ${ }^{2 \prime} \times{ }^{10}$.
5 for $£ 1.00$ or $£ 2.00$ per doz. Carr. 5 for $£ 1-00$ or $£ 2 \cdot 00$ per doz. Carr. cells. Nom. volts. I .35 each 10.5 v
Overall, $350 \mathrm{ma} / \mathrm{H}$ CAP. $20 / 25 \mathrm{ma}$ Overall, $350 \mathrm{ma} / \mathrm{H}$ CAP. $20 / 25 \mathrm{ma}$
 Paid. ID.C. MIIRON AMMETERS. 0.5 amps or 0.8 amps (suitable
battery chargers, etc.).
Perspex battery chargers, etc. Perspex
front. Size: $1 \frac{1}{3} \times 1 \frac{7}{\prime \prime}^{\prime \prime}$. Any 2 for EI-10. Carr. Paid.
ERNESTTURNER 800μ METER 160Ω movement, $2^{\prime \prime}$ case eliptic. plastic front, Green-Red-Green
uncalibrated Carriage paid.

FIIETipDITCH SALES

PROGRAMME TIMER BY HONEYWELL
 A bank of 15 micro-switches are
each independently operated by each independently operated by
15 pairs of cams which in turn are individually adjustable to give indilidually
switching
seconds with infinitely variable combinations. A mains synchronous motor drive the cam shaft at
Orisinally cost $\mathrm{E} 15 \cdot 00$ plus. Many applications such as lighting effects, etc. New in original makers cartons. First class value at $\mathbf{8 5}$. 7 plus 25 p P. \& P PRECISION FAN CO (SMITHS INDUS-
TRIES) DOUBLE ENTRY CENTRIFUGAL FAN/BLOWER. This is a beautifully balanced particularly quiet running unit giving approx. 90 cubic fu./min. The motor is a 2 pole shaded pole Mycalex. drawing only Sizes: case dia. $3 \cdot 1$ ins., width (case only) $3 \cdot 125$ ins. Width overall (inc.) 5.25 ins. Aper-
ture $3 \cdot 125$ ins. 1.85 ins. Offered well below makers price at 2295, P. \& P. 25p.
Perspex enclosed, plug in, with base. Size: $1 \frac{1}{\prime \prime}^{\prime \prime}$ 2h, 4 c/o. 60p each. SANGAMO WESTON. Moving coil relay 315Ω 310μ a, complete with base, 75p each.
S.T.C. Midget Sealed Relay type 4109EC. 12v. ma 170Ω, single H.D. makc. 53p each.
"B. \& R"' 3 c/o. 10 amp contacts (silver) operates on 2 volts D.C. Dr
"ENGLE \& GIBBS" 240v. A.C. Plug-in relay 3 c: 0
perspex enclosed $\mathbf{I} \cdot 00$
NEW "FI.R.E." PLUG - IN RELAY.- $115 v$. Coil $50 / 60$ c.p.5.
3 heavy duty silver change-over contacts. Very robust. 63p. NEW "ISKRA" 240v. A.C. RELAY. 3 X
contacts. 63 p.
SIEMENS HIGH SPEED RELAY. Type 89L, $1,700 \Omega$
 BUSINESS HOURS
9a.m.-6p.m. MON. TO SAT. (PWI)

28watts, r.m.s. 40 Hz to $40 \mathrm{kHz} \pm 3 \mathrm{~dB}$

PRICES SYSTEM I
Viscount III RIOI amplifier $£ 22 \cdot 00+90$ p p\&p $2 \times$ Duo Type 11 speakers, $£ 14 \cdot 00+£ 2$ p\&p Garrard SP25 Mk. III with MAG.
cartridge plinth and cover $£ 23 \cdot 00+£ 1 \cdot 50$
Total $\quad £ 59.00$
Available complete for only $\mathbf{£ 5 2} \cdot \mathbf{0 0}+£ 3 \cdot 50$
p\&p
SYSTEM 2
Viscount R101 amplifier $\quad £ 22 \cdot 00+90 \mathrm{p}$ p\&p $2 \times$ Duo Type III speakers $£ 32 \cdot 00+£ 3 \mathrm{p} \& \mathrm{p}$ Garrard SP25 Mk. III with MAG.
cartridge, plinth and cover $£ 23 \cdot 00+£ 1 \cdot 50$
Total $\quad £ 77.00$
Available complete for $\mathbf{f 6 9 + £ 4} \mathbf{p \&} \mathbf{p}$
SYSTEM 3
Viscount III Amplifier R100 f17.00+90p p\&p
$2 \times$ Duo Type II speakers, pair $£ 14 \cdot 00+£ 2$ p\&p
Garrard SP25 Mk. III with CER. diamond
cartridge, plinth and cover $£ 21 \cdot 00+£ 1 \cdot 50$
Total $£ 52.00$
Available complete for onty $\mathbf{£ 4 9} \cdot \mathbf{0 0}+£ 3 \cdot 50$
p\&p

SPEAKERS Duo Type II
Size approx $17^{\prime \prime} \times 10 \frac{3^{\prime \prime}}{4} \times 6 \frac{3^{\prime \prime}}{4}$. Drive unit $13^{\prime \prime} \times 8^{\prime \prime}$ with parasitic tweeter. Max. power 10 watts. 3 ohms. Simulated Teak cabinet. £ 14 pair + ¢ 2 p\&p.
Duo Type III Size approx $23 \frac{1^{\prime \prime}}{2} \times 11 \frac{1}{2}^{\prime \prime} \times 9 \frac{1^{\prime \prime}}{}{ }^{\prime \prime}$. Drive unit $13 \frac{1^{\prime \prime}}{} \times 8 \frac{1^{\prime \prime}}{4}$ with H.F. speaker. Max. power 20 watts at 3 ohms. Freq. range 20 Hz to 20 kHz . Teak veneer cabinet. $£ \mathbf{3 2}$ pair $+£ 3 \mathrm{p}$ \& p .

SPECIFICATION RIOI
14 watts per channel into 3 to 4 ohms. Total distortion @10W@ $1 \mathrm{kHz} 0.1 \%$ P.U.I (for ceramic cartridges). 150 mV into 3 Meg. P.U. 2 (for magnetic cartridges) $4 \mathrm{mV} @ 1 \mathrm{kHz}$ into 47 K . equalised within $\pm 1 \mathrm{~dB}$ R.I.A.A. Radio 150 mV into 220K. (Sensitivities given at full power). Tape out facilities; headphone socket, power out 250 mW per channel. Tone controls and filter characteristics. Bass: +12 dB to $-17 \mathrm{~dB} @ 60 \mathrm{~Hz}$. Bass filter: 6dB per octave cut. Treble control: treble +12 dB to $-12 \mathrm{~dB} @ 15 \mathrm{kHz}$. Treble filter: 12 dB per octave. Signal to noise rotio: (all controls at max) R101-P.U.I and radio-65dB. P.U.2. -58 dB . RI00 same as R101 but P.U. 2 (for crystal cartridges) 450 mV into 3 Meg. Cross talk better than -35 dB on all inputs. Overload characteristics better than 26 dB on all inputs. Size approx $13 \frac{3}{4}{ }^{\prime \prime} \times 9^{\prime \prime} \times 3 \frac{34^{\prime \prime}}{}$.

SOUND 50

50 WATT AMPLIFIER \& SPEAKER SYSTEM

The Sound Fifty valve amplifier and speakers are sturdily constructed with smart housings and thoroughly tested electronics. They are designed to last-to withstand the knocks and bumps of life on the road. Built for the small and medium sized gig, they are easy to handle and quick to set up and can be relied upon to come over with all the quality and power you need.
Output Power: 45 watts R.M.S. (Sine wave drive). Frequency response: -3 dB points 30 Hz at 18 KHz . Total distortion: less than 2% at rated utput. Signai to noise ratio: better than 60 dB
peaker Impedance: 3,8 or 15 ohms. Bass Control Range: $\pm 13 \mathrm{~dB}$ at 60 Hz . Treble Control Range: $\pm 12 \mathrm{~dB}$ at 10 KHz . Inputs: 4 inputs at m into 470 K . Each pair of inputs controlled by separate volume ontrol. 2 inputs at $200 \mathrm{~m} V$ into 470 K
To protect the output valves, the incorporated fail safe circuit will enable the amplifier to be used at half power.
SPEAKERS! Size $20^{\prime \prime} \times 20^{\prime \prime} \times 10^{\prime \prime}$ incorporating $12^{\prime \prime}$ heavy duty 25 watt high flux, quality loudspeaker with cast frame. Cabinets attractively finished in two tone colour scheme-Black and grey.

COMPLETE SYSTEM
 Sound 50 amp and 2 speakers
 £50
 Plus $£ 6$
 P. \& $\quad \stackrel{\&}{8}$ P.

or available separately.
Amplifier $\mathbf{£ 2 8 . 5 0}$ plus $£ 1.50$ P. \& P. Speakers $£ 12.50$ each plus $£ 2.25$ P. \& P.

RELIANT mk.IV

Provides a high standard of sound reproduction, with full mixing facilities. It's versatility makes it suitable for: Discotheque, P.A., Home Entertainment Applications, etc.

\star Five Electronically Mixed Inputs

\star Three Individual Mixing Controls
\star Separate base and treble controls common to all five inputs
\star Mixer employing F.E.T. (Field Effect Transistor)
\star Solid State Circuitry \star Attractive Styling

EQ, 50 plus P. \& P. 60p.

INPUTS:-i. Cfystal Mic or Gultar 9 mV . 2. Moving coll Mic or Guitar 8 mV . inputs $3,4 \& 5$ are suitable for a wide range of medium output equipment (Gram. Tuner, Monitor, Organ, etc.). All 250 mV sensitivity.
CONTROLS: - $\mathbf{3}$ Volume controls. Bass control range : 13 db @ 60 Hz , Treble control range $\pm 12 \mathrm{db}$ @ 15 KHz . Separate ON/OFF Switch. Neon Indicator
WMA MOISE
SIGNAL/NOIS: Bellar
SUPPLY:-220-250 AC Mains. SIZE:-121" $\times 6^{\prime \prime} \times 3 \frac{1}{\prime \prime}^{\prime \prime}$

THE ELEGANT SEVEN Mk. III (350 m W Output)

7 transistor fully-tunable M.W.-L.W. superhet portable. Set of parts. Complete with all components, including ready etched and drilled printed circuit board-back printed for foolproof priated circa
MAINS POWER PACK KIT: 75p extra
Price $\mathbf{£ 5 . 2 5}$ plus 50p. P. \& P.
Circuit 13p FREE WITH PARTS.
THE DORSET (600mw Output)

7-transistor fuily tunable M.W.-L.W. superhet portable. Set of parts. The latest modulised and pre-alignment techniques make this simple to build. Sizes: $12 \times 8 \times 3$ in,

Price $\mathbf{£ 5 . 2 5}$ plus 50 p P. \& P. Circuit 13p FREE WITH PARTS

CONTINENTAL 4 TRACK, 3 SPEED TAPE DECK
with high impedance heads R.C. 74 tape deck. Three speeds-71, $3 \frac{3}{4}$ and 17 ips.
 4-track record/playback head. Plus 4-track erase head. Positive pressure pad system. Takes any tape spool up to and including 7". The R.C. 74 is driven by a powerful $200 / 250 \mathrm{~V} 50$-cycle A.C. motor. A heavy, accurately balanced, flywheel brings wow and flutter levels down to approx. 0.3% total at $3 \frac{3}{4}$ and $7 \frac{1}{2}$ ips. Fast rewind in both directions.
Controls couldn't be simpler! Just five push buttons that interlock to cut out accidental tape damage. Efficient servo-action type braking. Easy drop-in tape loading.
The R.C. 74 comes with an attractive moulded deck cover, which has positions for tone and volume controls. The unit is built into a rigid die-cast frame, and overall size of the whole unit is $12 \frac{7}{6} \times 11 \frac{7}{8} \times 6$ inches. Every single deck fully tested before dispatch. Spools not supplied. Price complete £15-00. Plus 75p P. \& P.

TOURIST CAR RADIO

ALL TRANSISTOR

Beautifully designed to blend with the interiors of all cars. Permeability tuning and long wave loading coils ensure excellent tracking, sensitivity and selectivity on both wave bands. R.F. sensitivity at 1 MHz is better than 8 micro volts. Power output into 3 ohm speaker is 3 watts. Pre-aligned 1.F. module and tuner together with comprehensive instructions guarantees success first time, 12 volts negative or positive earth. Size 7 in $\times 2$ in $\times 4 \frac{1}{2}$ in deep.

SET OF PARTS
 £6.30

plus P. \& P. 50p. Circult dlagram 13p. Free with parts xtra plus 255. o. \& p. Postage free when ordered with parts.

See previous page
for address

TO: BRITISH NATIONAL RADIO SCHOOL, READING, BERKS. Please send your free brochure, without obligation, to: we do not employ representatives

NAME	BLOCK CAPS
ADDRESS	PLEASE P.W. 6

DX JUBILEE

ACCORDING to reliable eye (or ear?)-witnesses, such as our venerable columnist Henry and the antedeluvian researchers Colin Riches and Arthur Dow, founders of Going Back (official organ of the P.W. Darby and Joan Club), one of the major impacts at the dawn of broadcasting was not so much the material transmitted as the fascination of hearing something-anything-from a point far removed from the listener's ear.

Although they would have been horrified at the thought, these ancient radio listeners were, in fact, the first DX'ers. it is, of course, a far cry from pulling in 2LO with an adroit twiddle of the catswhisker in 1922 to phasing in an exotic Pacific station with the crystal filter in 1972. Nevertheless the motivation and reactions are similar.
Since the pioneer London broadcasting station 2LO officially opened in November 1922, this year we can celebrate (or mourn, according to taste) 50 years of broadcasting. More apposite to P.W. readers, we can hang out the bunting for 50 years of DXing. In that time, of course, many changes have taken place, not only in equipment but in the art and style of DX listening.
In the early stages of the hobby, the main criterion was actual distance-first the local stations, then Europe, then North America (all on medium waves), followed by the development of the short wave bands which permitted reception of the USA during daylight hours and extended the listening ear to all parts of the world. But then, as useable frequencies became higher, the old aim of maximum distance took a back seat, for on v.h.f., and later on u.h.f., a DX catch could be judged in hundreds instead of thousands of miles. One of the latest activities is DX television.
The style of transmissions has changed dramatically over the years; the early short wave programmes were of the pure entertainment type and they could be picked up on relatively simple recelvers on bands that were blissfully uncluttered; amateurs had a wonderful time operating on low power-and getting through. The 30 's, however, saw a change of direction. The Spanish Civil War brought with it jamming for the first time, together with the first invasion of amateur territory by propaganda broadcasting. The process has continued to the present day with its multitude of high powered political broadcasters, many disregarding international agreements, and the further erosion of amateur bands and consequent congestion.

Despite all these changes (many of them obviously for the worst), the DX bug still exerts its fascination.
We hope that the wall chart contained in this issue will be helpful to some of the newer recruits to the ranks of long distance listeners.
W. N. STEVENS-Editor.

NEWS AND COMMENT

Leader
News . . . News . . . News . . . 976
New Books

Electronotes by S. Ginsberg
999

MW Column by Charles Molloy 1010
On the Short Waves
by Malcolm Connah and
David Gibson, G3JDG

Letters

CQ! CQ! CQ! CQ! CQ!

CONSTRUCTIONAL

Car Radio Signal Booster by Caleb R. Bradley
A Darkroom Thermometer by R. A. Bottomley
Take 20, No. 34, Magic Candle by Julian Anderson
Quality Hi-Fi System, Part 2 by C. R. Bradley
The P.W. Cube Radio 7 Transistor Superhet by R. F, Graham

Comprehensive Multi-Band Receiver (Further Notes) by F. G. Rayer, G3OGR

OTHER FEATURES

DX Reception of VHF "Local"
Radio by Keith Pitt

Transistor Circuitry for Beginners, Part 6 by H. W. Hellyer and Michael Hollier
Going Back by Colin Riches and Arthur Dow
IC of the Month, Toshiba TH9013P 20W Audio Amplifier by L. A. J. Ireland

[^0]
NEWS... NEWS...

NEWS...

The BRC Stereo Service

The BBC is planning to expand its stereo service considerably during the next few years. The extension beyond the present Radio 3 service will take place in three phases.
(1.) The installation of stereo origination facilities for Radio 2 (with Radio 1) and Radio 4. This has called for a major re-equipment programme involving modifications to the continuity suites and central control equipment in London as well as a considerable increase throughout the United Kingdom in the number of tape machines, gramophone desks, studios and outside broadcast units equipped for stereo. This phase is already in progress, and it is expected that it will be possible to originate a major proportion of stereo programmes on Radio 2 by the end of 1972, and also to make possible the transmission of some stereo programmes on Radio 4. Further increases in stereo capability will continue during the succeeding years.
(2.) The extension of Radio 2 and Radio 4 stereo to those transmitters already radiating Radio 3 in stereo. For this a new system of s.h.f. radio links is planned, using pulse code modulation (PCM) (see below). It is expected that the three-network service, which involves the construction of several new radio link sites on the main route, will be available in the London area and the Midlands by the end of 1972 and in the North of England during 1973. Rowridge, serving central southern England, will be included in this phase and a full stereo service from Belmont, serving Lincolnshire, will follow the extension to the North of England.
(3.) The extension of the three network stereo service northwards to Central Scotland and westwards to the Bristol Channel area. The Post Office Corporation and the BBC are working towards this phase which it is expected will start in 1974. The transmitters expected to be included' are Kirk o'Shotts (Lanarkshire), Pontop Pike (Durham), Sandale (Cumberland), and Wenvoe (Glamorgan). It is hoped also to include North Hessary Tor (Devonshire) in this phase, as well as certain of the relay stations associated with the main transmitters mentioned.

The PCM system to be used on the s.h.f. radio links has been developed by the BBC. It will carry 10 audio circuits. Each stereo programme will use two circuits, for the A and B channels, and the stereo coding will be carried out at each main transmitting station. The PCM system will provide improved quality in respect of both audio bandwidth and signal to noise ratio, from which mono as well as stereo listeners will benefit. It thus forms part of the BBC's plan to improve still further the quality of its v.h.f. transmissions throughout the country.

Golden Silence

976

Picture shows Gloria Connell, actress daughter of the chairman of the Noise Abatement Society enjoying peace and quiet against a background of noise which would be intolerable without the Ear Defenders which reduce the noise of the road drills to a mere whisper. The Survey Meter's red lamp lights up when noise reaches danger levels. Ideal for "pop" fans who can't stand classical music and "classics" fans who can't stand pop music, the meter costs $£ 10$ and the Ear Defenders cost $£ 5$ from local stores or carriage paid from Noise Abatement Society, 6 Old Bond Street, London W.1.

The Accelerator Spinwheel Drive is a cord drive unit intended for modern radio receivers with extra-long scales. It incorporates a $2^{1}{ }_{4}$-inch-diameter (57 mm) zincalloy flywheel driven through nylon-to-brass step-up gears at more than twice the speed of the drive-shaft. The complete unit weighs only $60 z(170 \mathrm{~g})$ but provides an inertial effect equivalent to a much larger flywheel, permitting rapid traverse of the scale. Jackson Brothers (London) Ltd., Croydon CR9 4DG, England.

Adcola

Soldering Station

To complement the Invader range of soldering irons, Adcola Products Ltd has introduced the "Invader Soldering Station." It consists of a cast aluminium base, finished in hammered silver grey, containing an integral wiping sponge to facilitate the removal of solder from the tip of an instrument.

NEWS...
 NEWS...
 NEWS...

EMI Speaker Kils

F.MI has entered the loudspeaker enclosure market with a range of high quality enclosures in kit form. Available in polished wood veneers, the enclosures have been introduced by EMI Sound Products Limited, of Hayes, Middlesex, for use with its range of matched loudspeaker systems.

The enclosures are priced from $£ 5 \cdot 80$, for a $12 \mathrm{in} . \times 6 \mathrm{in}$. x 8 in . bookshelf model, to $£ 29 \cdot 50$ for a large floor-standing enclosure measuring 33in. x 20in. x 15in. They have been designed to incorporate each of the eight different EMI loudspeaker systems which cover the 6 to 35 watts r.m.s. output range.

Coax Relay

This is the Series 951 Co-axial Relay from Magnetic Devices for aerial switching at frequencies in the order of 450 megacycles.

For further information please contact Magnetic Devices Limited, Newmarket, Suffolk. Telephone Newmarket 3451.

BBC Scholarship

Mr I. G. Phillipps graduated with an upper second class honours degree in the Electrical Sciences Tripos at the University of Cambridge in 1971, and has been awarded a three-year BBC Research Scholarship to undertake research in the Department of Engineering at the University of Cambridge, under the supervision of Professor P. S. Brandon, MA. The subject of Mr Phillipps' research will be "ways of reducing the channel capacity required by a television signal or improving the quality of a television image within a given channel capacity, by the use of digital electronic techniques."

Radio Amateur Invalid \& Bedfast Club

The address to which all correspondence concerning the Radio Amateur Invalid \& Bedfast Club should now be sent is: Mrs. Frances Woolley, G3LWY, Woodsclose, Penselwood, Wincanton, Somerset.

Bedfast Club membership is almost at the 400 mark and covers 13 countries. Any handicapped licensed amateur or short-wave listener, wherever he or she may live, who does not already belong to the Club is invited to apply to the Hon. Secretary at the address above for full details of membership, enclosing a stamped, addressed envelope.

Readers will be interested to know that Mr. Cecil Lewis, of Bude, received three letters telling him of the R.A.I.B.C. following his appeal for help which we printed in Practical Wireless last year.

Criterion Mic. X

We recently had the opportunity to try the Lasky's Criterion Mk X speakers. They are bookshelf types employing the sealed infinite baffle enclosure principle and they are well worthy of consideration by the budget-conscious $\mathrm{Hi}-\mathrm{Fi}$ enthusiast. An 8in. woofer, 5 in . mid-range and $2_{2}{ }_{2} \mathrm{in}$. tweeter are used and the cabinets are oiled walnut with black woven speaker grilles. Frequency response is $40 \mathrm{~Hz}-20 \mathrm{kHz}$ and maximum power handling capacity is 20 W . The impedance is 8Ω. A useful feature of these speakers is that two types of speaker lead connection are supplied-phono or screw terminals. Cabinet size is $18{ }_{3} \times 97_{8} \times 97_{8}$ in. and the very reasonable price is $£ 25$ the pair. Postage is 50 p and the speakers are available singly for $£ 13 \cdot 50$. Lasky's Radio Limited, 3•15 Cavell Street, Tower Hamlets, London, E.1. Tel. 01-790-4821.

The Practical Wireless CQ! Column

Items in the CQ! Column are carried free of charge as a service to readers. We only ask that those making use of the service answer all correspondence resulting and reimburse postage and all reasonable expenses. We cannot guarantee inclusion and requests for inclusion will not be acknowledged and will be dealt with in strict rotation. It would also help if readers could write out their "CQ!" in the style used in P.W. as this would help to speed things up.
Material for inclusion should be sent to Practical Wireless Editorial, Fleetway House, Farringdon Street, London, EC4A 4AD.

the car can also contribute interference and in the author's experience capacitor-discharge transistor ignition systems can be especially troublesome.

INTERFERENCE REDUCTION

The car aerial should be mounted as far from the engine as possible. With front-engined vehicles this means on a rear wing, or at least on the roof. If the existing aerial cable needs to be extended, a 10 ft . coaxial cable already fitted with appropriate plug and socket can be purchased (Norman type SL11).

The cable screen must make a good electrical connection to the car body at the aerial end. Paint must be scraped off to permit this and the underside of the aerial mounting should be sealed against road filth as rust can ruin the connection.

All modern cars are fitted by law with ignition suppression in the form of resistance in the high voltage paths, possibly in the form of spark plug connectors incorporating resistors, or special resistive
h.t. cable. Add-on suppressor resistors, typically $50 \mathrm{k} \Omega$, are sold for older cars or addition to others, and can be screwed into the middle of the h.t. lead from coil to distributor (e.g. Belling-Lee Sparkmaster L.1274/S). In conjunction with stray capacitance, such resistors form a top-cut filter which bypasses the r.f. component of the fast-rising spark voltage but has negligible effect on the strength of the spark.

The metalwork of the engine compartment helps screen ignition interference from the aerial, but poor bonding between the body, the bonnet and the engine block can reduce its effectiveness. The engine compartments of fibreglass bodied cars have to be lined with metal foil to obtain this screening. For ultimate interference suppression it is possible to replace all the h.t. wiring with coaxial cable. Use solid-dielectric TV co-ax as low-loss cellular dielectric type will not withstand the ignition voltage (perhaps 30 kV peak), and earth all the screens to the coil mounting bracket. Such measures though are hardly necessary for domestic reception.

Another type of interference is a whine which also changes with engine speed and is caused by the generator. This is cured by connecting a standard car suppressor capacitor (still called condenser in the motor trade) between chassis and the brush (larger) terminal. Switches, both manual and automatic such as the brake pressure switch, and the motors of the wipers and heater can similarly be silenced by capacitors across their terminals. Car suppressor capacitors are usually about $0.5 \mu \mathrm{~F}$ and are built much more ruggedly than corresponding electronics components.

Other circuits, such as the lights, should not cause

(

 -1
5

interference unless there is an intermittent connection somewhere. Indicator flashers normally contain their own suppressor capacitors.

HEAD AMPLIFIER

The circuit of the unit is shown in Fig. 1 (negative earth cars) and Fig. 2 (positive earth cars). The difference lies only in the way the h.t. supply is derived, and the voltage readings with respect to chassis are different of course.

Two silicon planar transistors are used with d.c. feedback to stabilise the circuit against wide changes of temperature and supply voltage. Commonemitter stage Trl operates at low collector current $(100 \mu \mathrm{~A})$ and provides the voltage gain of the circuit. Tuned circuits and chokes could have been used to give more amplification and less noise but in practice a small amount of untuned amplification is quite adequate and avoids overloading the aerial circuit of the car radio. Emitter resistor R2 gives Tr1 a high input impedance to minimise loading of the aerial. The amplified signal across R1 is direct-coupled to emitter follower Tr2 which provides no voltage amplification but acts as an impedance converter, giving a low impedance output to the aerial cable. Bias for Tr 1 base is taken from the divider R4/R5 in $\operatorname{Tr} 2$ emitter to give negative feedback; R3 has a high value to preserve the high input impedance.

Fig. 1: Circuit suitable for negative chassis cars. All resistors are $\frac{1}{8} W, 5 \%$ and the capacitors should be at least 20 V working.

The output isolating capacitor C2 is not essential since the radio will probably have an aerial isolating capacitor, but it does protect $\operatorname{Tr} 2$ against shorts in the cable or plug. It may seem curious that the h.t. supply is decoupled by both a large value electrolytic capacitor C4 and a small value ceramic C3. This is because the electrolytic may not be as effective at r.f. due to its own stray inductance; C 3 ensures effective decoupling at r.f.

CONSTRUCTION

While conventional wiring on, say, a piece of Veroboard can be employed, the method used by the author is simplicity itself. The components are simply wired together and encapsulated in candle wax inside a 35 mm film cassette tin which serves as a screen. The arrangement is shown in Fig. 3. If you have a choice of cans use an Ilford tin as it has

Fig. 2: The modified circuit designed for use with cars having a positive chassis.
slightly more room than the Kodak one. The tin cap is held under the aerial mounting nut (with insulating washer between) so it makes good contact with the car chassis. The body of the tin is then screwed onto the cap from underneath. The aerial cable and power wire leave through holes in the base of the tin. The input end of Cl is anchored under the aerial nut with sufficient lead to allow the tin to be screwed through about 3_{4} turn, all that is required. The chassis connection to the circuit is by a short length of wire that can conveniently be trapped between the body and the cap threads. Note that if this connection is not made the circuit will still amplify, due to the chassis return via the aerial cable screen, but interference will be at a high level.
There is no need to switch the amplifier with the radio since the drain on the battery is negligible; the power lead can therefore be connected to the same point from which the radio gets its supply, often the ignition or light switch. Plug the aerial cable into the radio and unscrew fully the aerial trimmer if the radio has one. Since there is now plenty of signal, this can be done to minimise the loading on the first tuned circuit to improve selectivity.

PERFORMANCE

The design of the amplifier was prompted by the author's difficulty in receiving news bulletins while driving through London, where tall steel-framed buildings prove effective Faraday screens. and in receiving British broadcasts on the continent. While the amplifier cannot cure completely non-existent signals or interference from other vehicles, the improvement is remarkable; it is now just possible to hear uninterrupted Radio 1 while driving under the Holborn Viaduct outside the PW offices (should one ever feel this to be necessary!).

THE conventional mercury or spirit filled thermometer is a thoroughly reliable instrument but, especially from the photographic worker's point of view, it is less than ideal on two counts. In the first instance the scale can be difficult to read in daylight let alone in the subdued light of the darkroom. Again, even those which incorporate a magnifying lens have to be viewed from a fairly critical angle and this can be exasperating. Secondly, the slow response time of the conventional thermometer can be an inconvenience. It was with these two points in mind that it was decided to build a thermometer incorporating a thermistor. The thermistor has an almost immediate response time and by use of the appropriate circuitry its measurement of temperature can be presented on the scale of a panel meter which is very much more easily read.

Principle of operation

The thermistor is a resistor with a very pronounced negative temperature co-efficient. In other words its resistance decreases with increasing temperature. By measuring the value of its resistance, one can arrive at the temperature of the medium in which the thermistor is immersed. One might, as with an ordinary resistor, apply a known voltage and measure the resultant current which flows ... the principle of the simple ohmmeter. A more precise way to measure resistance, however, is to incorporate the unknown in one arm of a Wheatstone bridge and this is the principle which has been adopted in the instrument to be described. By a suitable choice of component values an expanded scale has been achieved and this scale, as far as can be determined, is linear. The scale can be read to an accuracy of $\pm 0.1^{\circ} \mathrm{C}$ and, with $20^{\circ} \mathrm{C}$ at mid scale and plus and minus $6^{\circ} \mathrm{C}$ spread over the rest of the scale, it should meet most of the darkroom workers' needs.

Circuit description

A 9V battery (type PP6) powers the instrument. This is preferable to a mains unit since the instrument is going to be handled in proximity to a water supply. This voltage is reduced by way of two zener diodes, ZD1, ZD2, to approximately $3 \cdot 3 \mathrm{~V}$. There are two reasons for this. By adopting a relatively low voltage to energise the bridge, self-heating effects

Fig. 1 : The circuit of the thermometer.
of the thermistor are minimised. Additionally, the cascaded zener diodes stabilise the bridge voltage effectively so that there is no variation of the instrument's indications over the useful life of the battery. The bridge itself is formed by the components TH1, R1, R3, R4 and VR1, and it is in balance at approximately $14^{\circ} \mathrm{C}$ as indicated by zero deflection of the meter at this temperature. As the temperature rises, so the resistance of the thermistor falls and the pointer of the meter moves up scale accordingly. At this point it might be as well to describe the function of R2. It is only brought into circuit when the probe is disconnected. Were it not for its presence, an excessive current would pass through the meter under this condition. However, it also serves the dual purpose of reference standard whose resistance approximately equals the resistance of the thermistor at $20^{\circ} \mathrm{C}$. If all is well, the pointer of the meter will always take up the same position on the scale when the probe is disconnected. A note can be kept of this reading or a "calibration" mark can be inscribed on the scale. The switch SW1 has three positions. In position " 1 " the instrument is off. In position " 2 " the meter, in conjunction with R7, is converted to a voltmeter so that one can have an indication of the state of the battery. In position " 3 " the meter is connected across the detector points of the bridge for temperature measurement.

* components list

An internal view showing the Veroboard mounted on the meter terminals.

Construction

The circuit is so simple that there is no need to elaborate upon its construction. There is absolutely nothing critical about its layout and tag strip, tag board or Veroboard (as in the prototype) can be employed. If a Veroboard layout is adopted there should scarcely be "any need to stress that the copper strip should be cleared away around the meter terminals. All the components, with the exception of the switch and the jack, are mounted on the Veroboard panel which is supported by the meter terminals. The meter, switch and jack are mounted on a small aluminium panel and this panel is mounted in a small plywood box covered with leatherette. The thermistor itself is mounted into a suitable housing with the aid of Araldite. In the

The thermistor can be mounted into a test probe or a ballooint pen case.
case of the prototype, this housing took the form of a redundant test-meter probe, turned to a smaller diameter at one end. The case of a spent ballpoint pen suggests itself as another suitable container and in this instance the thermistor tip would be protected, when not in use, by the cap of the pen.

There is nothing difficult about calibration but it should be borne in mind that the final accuracy of the instrument depends both on the care with which this is done and upon the accuracy of the thermometer which is used as standard. It is also worth noting that hot and cold water, like most dissimilar liquids, do not mix immediately. It is for this reason that it is recommended that a fairly large basin be used when calibrating and that the water be stirred thorougly before making a reading. First the water bath should be adjusted to $20^{\circ} \mathrm{C}$ exactly and, when this is stabilised, VR1 should be adjusted so that the meter indicates exactly $50 \mu \mathrm{~A}$ or mid scale. Once again adjust the temperature of the water bath, this time to $15^{\circ} \mathrm{C}$ and when this is stable note the reading on the meter. Increase the temperature of the water bath to $25^{\circ} \mathrm{C}$ and, once again, note the reading. When plotted on a graph these three points will be found to lie on a straight line and the intermediate points on the scale can be determined from this graph. In the case of the prototype an increase of $1^{\circ} \mathrm{C}$ was represented by an increase of $8 \mu \mathrm{~A}$, which is four divisions on the meter scale. Thus it can be seen that it is not difficult to read to $0.1^{\circ} \mathrm{C}$.

One final note. If the water is not thoroughly mixed during the calibration procedure, the pointer of the meter will be seen to oscillate. This is because the thermistor is so sensitive and has such a fast response time that it indicates the variation in temperature of the water bath due to convection currents.

The instrument is so sensitive that it can even determine the slight temperature gradient between the bottom and top of a 35 mm developing tank.

THE extension of the BBC local radio network to 20 stations has made available an additional service to about 74% of the population of England. Inevitably, in addition to many areas with no official coverage from any of the locals, there are other areas with signals available from a number of transmitters. The promised new IBA network of 60 commercial stations will add to the choice of programmes in many areas.

The BBC local radio stations are, at present, on v.h.f. mainly in the band $94 \cdot 6$ to $97 \cdot 0 \mathrm{MHz}$. The main BBC networks, Radios 2, 3 and 4, transmit almost exclusively between $88 \cdot 1$ and $94 \cdot 5 \mathrm{MHz}$.

The powers used for the local radio transmitters range from 9 W for the Rotherham relay to 16.5 kW for Radio London. The complete list of stations is given in Table 1. All except Blackburn, Derby and Manchester, use horizontal polarisation. These three use slant polarisation. Very little loss of quality will be observed, except in the weakest signal strength areas, if horizontal aerials are used to receive slant polarisation.

COVERAGE

The coverage of a v.h.f. station in Band 2 is controlled by a number of factors. Like the other v.h.f. bands its signals behave rather like light waves and are obstructed by objects such as hills where the signal strength on the side away from the transmitter is much reduced. However, unlike Band 3 and u.h.f. which are used for televison, a significant amount of signal is diffracted over a hill or the horizon. This then gives considerably greater coverage than might be expected from simple predictions.

One of the most important factors in determining signal strength at any point is the distance from the transmitter, since the field strength is inversely proportional to the square of the distance. Transmitter power, however, has less effect than might be expected, as the signal is proportional to the square root of the power. The height of both aerials is also of prime importance since these will determine whether or not the receiver is within the radio horizon. Signal strength diminishes quite rapidly beyond it because only diffracted waves bend over it. To a close approximation the distance of the horizon in miles is given by $1 \cdot 3$ times the square root of the height in feet. To approximate still further, the sum of the distances for the receiving and trancmitting aerials gives the radio line of sight between them, assuming there are no major obstacles in the way.

To determine whether worthwhile results may be obtained from any given station, the following actions are necessary. First, the approximate receiving and transmitting aerial heights should be found. Secondly, using an Ordnance Survey map, measure their distance apart and determine whether any large hills get in the way. Thirdly, determine the transmitter
power. In practice, a low power station, under half a kilowatt will not be effective for more than 25-30 miles, except under very favourable conditions. Medium power, up to $10-20 \mathrm{~kW}$, will often give reasonable results up to $40-50$ miles. A high power station may often be receivable regularly at distances of up to 100 miles.

As a general rule, for long distance reception, the higher the receiving aerial above sea level, the greater the chance of good reception. The author lives in North London at about 350 ft . above sea level and regularly has reliable reception from both Rowridge and Tacolneston at about 80-90 miles. Of the "local" stations, both London and Medway, which

TABLE 1 BBC LOCAL RADIO STATIONS
A

All transmitters except those marked * have directional aerials. Stations marked S have slant polarisation.
are transmitted from Wrotham, are received well. (It should be noted that quoted powers are usually the maximum, but that the power radiated may be very low in some directions to avoid interference with other stations or to reduce wastage where coverage is not required.) For this reason, Medway is relatively weak, despite being within line of sight, because its power in a NW direction is very low, while London is beamed strongly in that direction.

Consistent signals are also obtained from Solent at about 85 miles, while Oxford with the same power and half the distance, is very weak. This is because nearby hills obstruct the latter but the former is quite clear for nearly 40 miles.

AERIALS

Most BBC local radio stations radiate horizontally polarised signals. This means that a single dipole

BETTER GET 'SET'

BEST OFFER YET : FAMOUS BC. 221 FREQUENCY METER $125 \mathrm{KHz}-20 \underset{\text { MHz Complete }}{ }$ with valves, crystal and cbl
ONLY $£ 13 \cdot 50$. Carr. $\varepsilon 1 \cdot 50$ Less charts 86 , carriage 1 1.5. Less

CRYSTAL CALIBRATOR No. 10 Crystal controlled heterodyne wave-meter covering $500 \mathrm{KHz-10} \mathrm{MHz}$ (Harmonics

 FEW ONL
R. 209 MK II COMMUNICATION RECEIVERS. 11 valve. Covers $1-20$ Mc/s. 4 bands. AM/FM. CW. BFO. As New. Tested. $£ 18$-50. Carr. $£ 1-50$
 as New. Tested. $£ 18 \cdot 50$. Carr. $£ 1 \cdot 50$
MARCONI 8OIA SIGNAL GENERATOR $10-310 \mathrm{MHz}$. In original transit case. $£ 45$. Carr.

AERIAL RODS 3ft. Screw-in $1^{\prime \prime}$ dia. sections. Brand New, green finish. Suitable for many other uses. 10 for 28. Carr. 50p. 25 for 25 . Carr. Paid.

UNER (A.T.U.) Cylinder design $10^{*} \times 41^{\prime \prime}$. Pre-
cision calibrated scale. Suitable cision calibrated scale. Suitable ncreased signal strength. A mus TM. Full instructions.
ONLY $21.75 . \quad$ P. \& p, 25p. R.F. ANTENNA TUNER (A.T.U.) OPEN
 Coaster" design 16 G f. "Roller silver plated wheel traversing on wire on ceramic former. Will handle considerable R.F. in original packing. As used

No. 19 SET TRANSMITTER RECEIVER Rebuilt. Complete station £22:50. Carr. 23

No. 19 SET 500uA METERS Scaled $0-600$ and $0-15 \mathrm{~V}$. Brand new boxed 11.25 Post Paid. (Quantity prices on request.)

R.F. AMPLIFIER. To increas output of No. 19 Set. output of 88.75 Car.
ONLI.
Instruction Book for RF Amp.
 ALL No. 19 SPARES IN STOCK
Complete instruction book with circuits for No. 19
Equipment. $87 \frac{1}{2} \mathrm{p}$ Post Paid. HEAVY DUTY BATTERIES
New in metal cases with oarrying handles.
6V. 100/125AH, $15^{*} \times 11^{*} \times 7^{*}$ 25.25. ChFr. $£ 1 \cdot 25$. LIQUID PRISMATIC COMPASSES
2" diameter 87.50 , p. \& p. 25p
FAMOUS TELE 'F' FIELD TELEPHONES Suitable for Farms, Buildin to 5 miles or more. Rugged construction, will last a lifetime.
ONITY 86.25 PAIR. Carr. 81.25
Twin telephone wire for above available-ask for price.) Many other Ex-Govb. Surpltes Equipment items in stock. Enquiries invited. LIST 85p Post Paid. (Refundable against purchases over £3.)
C.W.O. Carriage charges apply to Mainiand only,
Minimum Export Order 250 .

Surplus Flectronic Trading

DRIVERS END LANE, CODICOTE, HITCHIN, HERTS, Sc4 $8 T P$
Hours of business: 8-5 Mon.-Fri., 8-12 Sa

RUN YOUR TAPE RECORDER OFF A.C. MAINS

Mains unit supplied com plete and ready to plug into your cassette re-
corder. (State voltage, model and piug required, £2.50 P. \& P. 15p
12 VOLT CAR BATTERY UNIT
nables you to run your cassette recorder off 12V required.) E2.10 P.\& P. 15p

PLUS-3
 MAINS UNIT

Propides three separate
switched output voltages $6 \mathrm{v}_{\text {. }} 7 \frac{7 \mathrm{I}}{2} \mathrm{~V}$, and 9 v . DC. attrac Ive case with indicator ight, mains lead outpu Size $4 \frac{1}{2} \times 3 \frac{1}{2} \times 2 \frac{1}{2} \mathrm{in}$.
83-10 P. \& P. 15p.
MAINS UNIT FOR
 PP3 TYPE CHIUSING
 MAIN UNITS

For single outputs, $6 \mathrm{v}, 9 \mathrm{v}, 12 \mathrm{v}, 18 \mathrm{v}, \ldots 2.00$
 per unit.' (Please state oulputs reqd).
All units are completely isolated from mains by double wound
R.C.S. PRODUGTS (RADIO) LTD.
(Dept. P.W.), 31 Ollver Road, London, E. 17

belling lee insulated terminals. Red or Black, 5 amp max. 10p pair, pp $2 \frac{1}{2} \mathrm{p}$
BERCOSTAT WIREWOUND RHEOSTAT. 50 wolt, $800 \Omega 25$ watts, $2^{\prime \prime}$ dia. 25p. pp 7 thp.
FINNED ALUMISIUM HEATSINE $9^{*} \times 13^{\prime \prime}$, Ready Driled. 20p, pp 5p
SMITHS CIRCULAR TAPE POSITION INDIOATORS Resetable, $50 \mathrm{p}, \mathrm{pp} 5 \mathrm{p}$.
G.E.C. 5 AMP 240 VOLT A.C. CIRCUTT BREAKER 75p, pp 10p
SUB MIN CROC CLIPS. Red or Black, insulated 4p Min. quantity, 6 pp . 3 p .
GARRARD MAG TAPE DECKS: $17 \mathrm{ips}, 50 \mathrm{v}$ solenoid
operated brakes etc., Mains voltage motors $£ 7.50$ each, pp $£ 1 \cdot 23$.
$4 \frac{1}{2 \prime}$ PLANNAIR FANS. Complete, capacitor, ex
equip. 2,800 r.p.m. $\mathrm{E} 3 \cdot 50$, pp 40 p .
equip. 2,800 r.p.m. $£ 8 \cdot 50$, pp 40 p
ELECTRIC MOTORS, HOOVER OR CROMPTON 1 h.p. 1,440 r.p.m. 83.75 pp $£ 1 \cdot 0$
$\frac{1}{2}$ h.p. 1,425 r.p.m. or 2,800 r.p.m. $\mathrm{f} 6 \cdot 75$ ppel-25
1 h.p. 1,440 r.p.m. $\mathbf{4 2 - 2 5 \quad \text { pp 75p }}$
AUDIO CONNECTORS

PHONO PLOGS: Red or Black 3p each.
pp on above items 3p.
B.S.R. MINI AUTO-CHANGER.

Mono Cartridge $£ 4.75 \mathrm{pp} 30 \mathrm{p}$.
MAINS NEONS.
Red or Green. Size: $\frac{1}{2}{ }^{\prime \prime} \times 1 \frac{1}{2}{ }^{\prime \prime} 15 \mathrm{p}$, pp 3p.
LEVER ACTION P.0.1000 TYPE SWITCHES.
LOCK 2 POLE CHANGEOVER 10p pp 3p. (ex-equip.)
AUDIO LEADS
SOREENED PHONO LEADS 46" long, 15p
$8 \cdot 5 \mathrm{~mm}$ JACK $/ 3 \cdot 5 \mathrm{~mm}$ JACK $7^{\prime} 6^{\prime \prime}$ long 40 p 5-PIN DIN A TYPE. Approx 5^{\prime} long 70p. pp above帾
PIEZO DYNAMIC MIOROPHONE
$50 \mathrm{k} \Omega £ 1.00 \mathrm{pp} 8 \mathrm{p}$
MOLLLARD SCREW TERMINAL CAPACITORS 4,500 uf 64 v . 7100 ut 40 v . 50p each pp 10 p
BELLING LEE 1.5 amp in-line rubber covered interference suppressor 25p pp 8p.
RUBBER 3 PIN 5 AMP NON REVERSIBLE CABLE CONFECTORS 20p pp 5p.
EIBRE GLASS TAPE 3^{*} wide 50 yd roll. 50p pp 10 p .
SOLENOIDS 18 VOLT PULL ACTION
$2^{\prime \prime} \times 1^{\prime \prime} \times \mathbf{4}^{\prime \prime} 40 \mathrm{ppp} 8 \mathrm{p}$.
STC SEALED RELAYS DOUBLE POLE
CHANGEOVER
48v 2500 Ex-equip. 15p pp 5p.
SIEMEESS MINIATURE RELAY. Double pole changeover dust cover/base 48 v 2500 50p pp 5p new. STC MINIATURE RELAY 280Ω Perspex Cover $6-15 \mathrm{v}$ new, 35 p pp 5p.
GARDNER'S POTTED TRANSFORMER $0-250 \mathrm{v}$ Input: $18 \mathrm{v} 500 \mathrm{~m} / \mathrm{n} 50 \mathrm{~V} 150 \mathrm{~m} / \mathrm{a}, 6 \mathrm{~V} 250 \mathrm{~m} / \mathrm{a}$ Output. size $3 \times 25 \times 21 \cdot 00, p p 20 p$. Ex equip tested, TELESCOPIC AERIALS
Ohromed $7^{\prime \prime}$ closed $28^{\prime \prime}$ extended 6 section ball jointed base 23 p pp 8 p new
MOLLARD 4 DM 160 INDICATORS in plastic holder/cover
$36 \mathrm{p} p \mathrm{p}$.
PRINTEED CIRCUIT BOARD/19 AOY $19^{\prime} s 10$ OA200
Diodes: 1 reed relay: 10 AZ 229 zenner ass. capacitor/ resistors. Power supply $22 \mathrm{v} 250 \mathrm{~m} / \mathrm{A} \mathrm{DC}$. Output 240v, AC 81 pp 20 p ex-equip.
TOGGLE SWITCHES. Single pole Double Throw ex-equip. new condition. 50 p doz. pp 13p.
PAINTON PLUG SOCKETS Type 159 series working voltage 350 v AC/DC current max. $3 \mathrm{amp} \mathrm{AC} / \mathrm{DC}$ 7 pin plug \& socket 50 p pp 6 p . 15 pin plug \& socket
\&1 pp 6 p . 31 WAX PLUG SOCKET . \&1.50. £1 pp
pp 10 p.

CASH WITH ORDER PLEASE

FIELD
 ELECTRIC LIMITED

3 Shenley Road, Borehamwood, Herts.
Adjacent Elstree Mainline Station Tel: 01-953 6009.
has some directional properties and thus does not receive equally well from all directions. The maximum signal strength is obtained with the aerial at right angles to a line joining the transmitter and the receiver. An improvement in directivity and gain can be obtained by the addition of a reflector and, perhaps, one or more directors.

Figure 1 shows the dimensions of a simple Band 2 aerial. No attempt has been made to allow for mismatch at the dipole caused by the addition of two directors and a reflector. If need be, the dipole can be folded when the input impedance will then afford a reasonable match to 72Ω coaxial feeder. If the object of the exercise is to obtain as many stations as possible, then, while the additional gain is very useful, the aerial will need re-alignment towards each one. A rotary system would then be worthwhile, but a simple expedient is to use two simple dipoles at right angles with two feeder cables and to switch over to the more effective one when tuning in a station.

Fig. 1: A four element Yagi beam. If the dipole is folded it will provide a better match to 70Ω feeder. If constructed of metal tubing the centres of the directors and reflector may be clamped directly to the boom.

In practice, if only one aerial is possible, whether indoors or outside, it should be mounted as high as possible. Its direction should be chosen so that it gives the maximum possible pickup of the weakest of the available stations consistent with minimum loss on any of the others. The author uses two separate aerials, a four element for Solent, which still gives acceptable results on Medway and London, and a single dipole for Oxford. The latter is insufficient to reduce the interference from the adjacent Radio London. This raises the other critical point in reception of v.h.f. stations; receiver properties.

REGEIVERS

Most commercial v.l.f. receivers can resolve clearly two adjacent stations 0.5 MHz apart, but, in some cases, the spread of a local may be so great that it can cover almost a whole MHz of the spectrum, rendering adjacent stations very difficult to find and resolve. On one portable the author could just separate Oxford on 95 MHz from London on $95 \cdot 3 \mathrm{MHz}$ and listen to the former, and yet the same set produced some traces of London on Solent on $96 \cdot 1 \mathrm{MHz}$. Similarly, other sets spread Wrotham Radio 4 on $93 \cdot 5 \mathrm{MHz}$ from just over 93 to 94 MHz . BBC 4 Oxford on $93 \cdot 9 \mathrm{MHz}$ cannot be separated from Wrotham on any of the four sets the author has tried. This
spread rather limits the usefulness of some of the weaker stations.
Reception is also made worse by "spurious signals" which sometimes appear at places on the dial where there is no true signal, although this is more a function of the quality of the receiver. Quite often portables give better results using their own aerial, carefully positioned for maximum signal than when using a high outside aerial. This is because spurious signals appear to be produced in many sets much more strongly when an external aerial is used.
In conclusion, there will be many areas where satisfactory results will be obtained from two or more "local" radio stations. Unless they are very strong, a good aerial system will probably be required to give the best results. It will, however, happen that in some cases spread within the set may spoil the reception of weaker signals close to a local.

TELEVISION

MARCH ISSUE

RENOVATING THE RENTALS

A large number of ex-rental sets are now appearing on the second-hand market and with judicious renovation can be made to give useful service for some time -particularly for the booming market in second sets. Many of these sets exhibit common stock faults and in this new series we shall be passing on tips and advice to help get-and keep-these sets going.

LINE TIMEBASES OF THE FUTURE

One of the developments that is likely to be with us before long is the slimline colour set, i.e. one fitted with a 110° shadowmask tube. The main technical difficulty concerns the line scanning and this month we shall be examining an interesting develop-ment-a thyristor line output stage-that has been evolved for this application.

COLOUR RECEIVER INSIGHT

A great deal of uncommon circuitry is to be found in colour chassis-the sort of thing you've not come across before and can spend hours puzzling over. So we've decided to take the lid off, so to speak, and explain in detail just what those apparent circuit mazes do. Starting with the ITT-KB CVC5 chassis.

SERVICING TELEVISION RECEIVERS

The next chassis to be covered in this popular feature is the Bush TV103/TV105 series.
plus all the regular features
Advance News: Starting in the April issue, the TELEVISION Colour Receiver for the Constructor.

ON SALE FEBRUARY 21

TAKE JULLAN ANDERSON

PART of the fun of electronics is in being able to 'amaze and mystify' members of the family and friends with little tricks. Those unfamiliar with the mysteries of electronics invariably assume that anyone who has tackled even the simplest crystal set is a true genius and, even when they see how few parts are employed, refuse to believe that 'that's all there is to it'. When they can't see the components that make an item tick they are even more impressed -let us not shatter their illusions, let us allow the uninitiated to marvel at our unquestionable brilliance!

Our project this month is purely for fun; to my knowledge it has no practical use whatsoever but it should amuse and it does fall within our budget of $£ 1$.

Using the constructional layout shown none of the component leads need be cut short and this will allow the components to be employed later for some more practical purpose.

The title of magic candle is self explanatory: the wick and flame are replaced by a small light bulb; when a lighted match or cigarette lighter is moved near it the bulb lights up and remains alight until "snuffed" by turning it off.

Apart from the battery, only four components are used: a light dependent resistor (LDR), a thyristor (SCR), a potentiometer (VR1) and the bulb itself.
At normal light levels the resistance of the LDR will be several hundred ohms (though this varies enormously with the specimen and the actual light level) and with VR1 at maximum setting there will not be sufficient current flowing in the gate circuit to trigger the SCR. However, if VR1 is reduced in value and the light level on the LDR increases there will be an increase in current, the SCR will turn on and apply the battery volts across the bulb. Because of the action of an SCR, even when the triggering current falls away completely, current will still be passed in the anode-cathode circuit.

VR1 acts as the sensitivity control; when it is set to minimum resistance and with a sensitive LDR, even quite low light levels will trigger the circuit. At maximum resistance the bulb will probably not light at all.

Ideally one would use both a battery and a bulb of the same voltage but SCRs don't seem to work well at voltages much below 9 V and 9 V bulbs with low current consumption are not widely available. If one can be obtained (note that the current should be no higher than 60 mA) the circuit is exactly as shown. However $6 \mathrm{~V}, 40 \mathrm{~mA}$ bulbs are available and cheap but to avoid blowing it a 68Ω resistor should be wired in series with the bulb at the point marked both in the circuit and the constructional layout.
The circuit is best built to look something like a wax candle. A cardboard tube, such as aluminium foil is supplied on, is suitable. The battery sits on the bottom to give stability with VR1 just above this. For ease of wiring it is best to wire up VR1 first with three long leads, two to come out of the top and one that goes down to the battery and then to fit it into a hole cut out of the side.

No. 34
MAGIC CANDLE

Fig. 2: The components can all be mounted inside a cardboard tube.

\star components list

Prices are those recently advertised in Practical Wireless and may have changed. No allowance is made for minimum order costs or for postage and packing; these points should be checked carefully before ordering.

A stout card disc, cut to go over the top, can then be fitted with the bulb and the LDR which should be lightly glued under a small hole about $1_{4} \mathrm{in}$. in diameter. This should be as near to the bulb as possible. The SCR can be either left floating as shown or it can be glued to the top cardboard disc. A long wire should be fitted to the cathode which is fed down the tube to the battery negative terminal. Once working the tube and top may be painted white to give the appearance of a candle.

SUPERSOUND 13 HI -FI MONO AMPLIFIER

A speeb pand mplifer. Brand new components throughout. 8 plics 2 power out put translstors in push-pull. Full wave reotifica. tion. output

approx. 18 watte $12 \mathrm{~Hz}-30 \mathrm{KHz}$ in 3db. Fully integrated preamplifter stage wlth separate Volume. Bass boost and Treble cut contros. Suitable for 8-15 ohm speakers. Input for ceramic or crystal captridge.
Sensitivity approx. 40 mv for full output. Supplied ready built and tested, with knobs, escutcheon panel, input and output plugs, Overall size $3^{\prime \prime}$ high $\times 6^{\prime \prime}$ wide $\times 7 \mathbf{t}^{\prime \prime}$ deep. AC 200/250
PRIOE 210.60 . P. \& P. 24 p

A. O. mains
 heavyduty fully isola: ted mains
tranisformer with full Wave rectigivation
giving ade-
u a t e quag t en
smoothing with negli-
Falve line up:-2 \times ECL86 Trlode Pentodes. $1 \times$ EZ 80 as rectifer. Two dual potentiometers are prowided for
bass and treble control. giving bass and treble boost and cut. A dual volume control is used. Palance of the left and right hand channels can be adjusted by means of a sepa rate Balance control itted at the rear of he chassis output of 4 watta per channel (8 watts mono), into 30 hm speasisers. Full negative feedback in a carefuly calculated circuit, allows high volume levela to be used with negligible ${ }^{\text {distortion. Supplied }} 11^{\prime \prime} \mathrm{w} \times 4^{\prime \prime} \mathrm{d}$. Overall height including valves $\mathrm{E}^{\prime \prime}$. Ready built \& teated to a hizh standard. PRIOE 88.92 P. \& P. 45p. 8PECIAL PUROEASE OF MANUFACTURERE SUEPLUSI All Tran*istor F.M. tuner hear with twin A.M. Gan All Transistor F.M. tuner head with twin A.M. Gang
incorporated. Beautifuly engineered with precialon geared reduction drive. Fu RF Transigtor, oscllator/Mixer and ftrst I.F. stage (10.7 Ms/s out-
put) with optional A FC connection put) with optional AFG connection. fuly screened. Extremely stable over range 88-108Mc/s. Brand new

 which can be connected to ntandard Which can be connected to atandard if required. LIMTTED NUMBER.
Only $£ 2.25$ post free. Connection Only 22.25 post free. Connection
details supplied.

SPECIAL PURCHASE!

BRAMD HEW FM MULYIPLEX BNEREO DECODERS. Manufactured by PHILIPS. Slze $2^{\prime \prime} \times 31^{\prime \prime} \times 1^{*} \times$ Al
ransistor 24v. at fmA. Supplled pre-allgned with tull circuit dirgram and connection details. At each. Post Free. IAPUT MATCHING TRABgFORMER. Beautifully made in heavy Mu-metal eylindrical case for mininum hum pick-up. Size $1 \frac{k^{n}}{} \mathrm{hlgh} \times 1 \frac{1}{n}^{n}$ dia. Ratio $160: 1$ approx. alkes or pick up from low to high impedance or vice versa. 75p oach, Post Free.
BLACK ANODIBED 16g. ALUMMIUM HEAT SMIES. For TQs, complete with mica's and bushex. Slze $2 \hbar^{\prime \prime} \times$
HIGK GRADE COPPER LAMIHATE BOARDS.
TELESCOPIC AERIALS WITH SWIVEL JOINT. Can be angled and rotated in any direction. 6 section Iacquered Brass. Extends from onn. to 22 in. in. approx. Maximum
diameter tin. 25 each. P. \& P. 52 . BRAND HEW MULTI-RATIO MAMS TRATSFORMERS. Giving 13 alternatives. Primary: $0-210-2400$. balf wave at 1 amp . or $10-0-10,20-0-20,30-0-30 \mathrm{v}$. at 2 amps full wave. Size 31 in . long $\times 3$ in. wide $\times 3 \mathrm{in}$. deep. Price $\$ 1.75$ P. \& P. 30
MANS TRANSFORMER. For transistor power supplies. Pri. 200/240v. Sec. $9-0-9$ at. 500 mA . 70p. P. \& P. 139 P .
 Tapped Primary $200-220-240 \mathrm{v}$. Sec. 21.5 v . at 500 mA . 68p. Y. \& P. 13p.
4 AMP BATTERY CHARGMR TRANBFORMER. Brand new. For 6 or 12 F .240 v . Primary. Secondary rolts rms 3^{*}. Weight 3 lbs Limited number at 21.85 . P. \& P . 35 p

4-SPEDD RHCORD PLAYER BARGAMS
 With latest mono compatie cartrid. LATEST GARRARD HODELS. S.A.E. Tor lateat Pricen : PRETSHON EIGUNMRED PLIMTEF Beartifully constructed to heary gauge "Colorcoat" Garrard $1025,2000,2025 T \mathrm{C}, 2500,2000,3500,5100$, $\mathrm{SPD5}$ II and III, SLA5B, AT60 etc. or B.S.R. C109,
 grain inilh. gize $12 f^{x}$ x $14 \mathrm{t}^{x}$ x PRICE 550 . P. \& P. 60p.
LATEGT ACOS GP91/ISC mono compatible cartridge with LATEGT ACOS GP91/18C mono compatible cartridge with
t/o styius ior LP/EP/78. Univeral monnting bracket \&1. 50 P. \& P. 8 p .
SOMOTONE 9TAFC COMPATIBLE ETRREO CARTRIDGE TOO stylus Dlamond Stereo LP and Sapphire 78 . OMLY 22.50 P. \& P. 10p. Also available fited with twin Diamond LATE\&T RONETHE T/O ITEREO/COMPATIBLE LATEAGT ROKETYES T/O MONO COMPATIBLE OART,
 on mono equipment. OnJy \&1.50 P. \& P. 10 p . QUALITY RECORD PLAYER AMPLIFIRR MK L
 and rectifer. Separate Bass, Treble and volume controls. Complete with output transformer matched for 2 ohm gpeaker. Size 7 in . Wide $\times 3 \mathrm{in}$. deep $\times 6 \mathrm{in}$. 1
built and teated. PBICE 48.75 , \& P . 40 p
ALSO AVAILABLE monnted on board with output transformer and speaker ready to fit into cabinet below. PRICE $\$ 4,88$ P. \& P. 50p.
DELUXE QUALITY PORTABLE R/P OABMETT MKT IT. Uncut motor board size $14 \hat{} \times$ 32in. clearance $2 i n$, helow,
5 gh. above. Will take above amplifier and any B.S.R. or GARRARD changer or Single Player (exeept AT00 and SP25). Size $18 \times 15 \times 8 \mathrm{Bin}$. PRTCE 24.75 , P. \& P . 50p.

SPECIAL OFFER !

HI-FI LOUDSPEAKER SYSTEMS

Beautifully made teak fulsh enclosure With most

 crossover. Power handling 10 watts. Avallable 3 or

OUR PRICE $\mathbf{8 8 . 4 0 ~ C a r r . ~ 6 5 p ~}$

Alse ser available deparately 44.50 Carr 60 p

 Also avalisble in 8 ohms with ENTI $13^{*} \times 8^{*}$ bassspeaker with parasitic tweeter 86.60 Cart 6 .

LOUDSPEAKER BARGAIMS

 E.M.I. $134 \times 8 \mathrm{in} .3$ ohna with high flux certmic magnet 8. 10 (16 ohm 82.25 , P. \& P. 80p. E.M.I. $18 \times 8 \mathrm{ln} .8,8$ or 15 ohm with two inbullt tweeters and crossover net-
work $84-20$, P. \& P. 30p. E.m.I. $18 \times 8 \mathrm{in}$. twin cone (parasitic tweeter) 8 ohm 28.25, P. \& P, 30 p .
BRAND NHW. 18 in . 15 w . H/D Speakers, 3 or 15 ohms. Current production by well-known British maker. Now with Hiflux ceramic ferrobar magnet assembly E 5.50 .
 E.M.I. 8 in. HEAVY DUTY TWEETERS. Powerful
ceramio magnet. Availahle in 3 or 8 or 15 ohms 88p ceramio magnet.
each. P. \& P. 13p.
121n. "RA" TWIM CONE LOUDSPEAKER. 10 watts peak handling. 3, 8 or 15 ohm 12.20, P. \& P. 30p. 35 ohm SPEAKMR "POLY PLANAR" WAFBR-TYPE, WIDE RAMGE
 handling 20 W r.m.s. (40 W peak). Tmpedance 8 ohm only. Response $40 \mathrm{~Hz}-20 \mathrm{kHz}$. Can be mounted on cellings, wails, doors, under tables, etc.r and used with or withou P. \& P. 25 p .

VYMAIR \& REXINESPEAKERS \& CABDET FABRICS app. 64 in . Wide. Uswally $\mathrm{R1} .75$ yd, our price 75 yg yd. length. P. \& P. 15 p (min 1 yd.) S.A.E. for samples.

HI-FI STEREO HEADPHONES

Adjustable headband with comfortable flexifoam ear mufts. Wired and fitted with standard atereo im jack
plug. Frequency response $30-15.000 \mathrm{~Hz}$. aratching impedance $8-16$ ohms. Easily converted for Mono PRICE \& 2.95, P. \& P. 16p.
HIGE DMPEDANCE CRYSTAL STICK MIKERS
OUR PROUA \&1-05, P. A P. 8p
GENERAL PURPORE HIGE STABILITY TRANBIBTOK PRE-AMELIERE: For P.U. Tape, Mike, Guitar, ete. and suitable for use with valve or transistor equipment. $9-18 \mathrm{~V}$.
battery or from $\mathrm{H} . \mathrm{T}_{\text {. Hue }} 200 / 300 \mathrm{v}$. Frequency battery or from H.T. hine $200 / 800 \mathrm{v}$. Frequency
response $15 \mathrm{~Hz}-25 \mathrm{KHz}$. Gain 260B. Solid encap-
 suiation size
with instructions, Price
ssp. P. \& P. 13p.
CENTRE ZERO MINIATURE MOVING COIL MRTEER $100 \mu \mathrm{~A}$. For balance or tuning, Approx. alze
deep. Limited number. 75 p . P. \& P. 10p.

HARVERSONIC SUPER SOUND $10+10$ STEREO AMPLIFIER KIT

NEW MPROVBD MODEL WITH HIGHER OUTREADYDRTLLED PRINTED CIROUIT BOARD FOR GA8Y OOESTRDOTIOR

A really trst-clase Hi-Fy Stereo Amplifer Kit transistors including Silicon Transistors in the first five tages on each channel resulting in even lower nolse level with improved sensitivity, Integrated preamp with Bass, Treble and two Volume Controls. Suitable for ue apeakers from 5 to 15 ohrus. Compact design, all part supplied including driled metal work, high quelity ready drilled printed circuit board, attractive front pane. knobs. Wire, soider, nuts, bolts-no extras to buy to build an ampuffer to be proud of. Brief specification: Power output: 14 watte t.m.s. per channel into 5 ohme Frequency responge $=3 \mathrm{rB}$ 12-30,000 Hz Sersitivity better than 80 mV into $1 \mathrm{~m} \Omega$. Ful power bandwidth 4 AdB $12-18,000 \mathrm{~Hz}$. Bass boost approx. to $\pm 12 \mathrm{~dB}$ over main amp. Power requirements 35 v . at 1.0 amp .
0 verall size $12^{*} \mathrm{w}$. x $8^{\prime \prime} \mathrm{d}$. $\mathrm{x} 2 \mathrm{sf}^{*} h$.
Fully detalied 7 page construction manual and parts lat free with kit or send $18 p$ plus large B.A.E.
PRICES
OWERESK KIT
210.50 P. \& P. 75p

POWER PACK KIT
(Post Free if all units purchased at same time)
Also available ready butler sales sestrice fen - 50 . Post Free. Also svailable ready built and tested
Note: $T h e$ above amplifter is suilabio for feeding two mono sources tmio inputs (e.g. mithe, radio, twiv record decke, ete.)
and will then provide mixing and fading facilitis for medasd will then provide mixing and fading f

AMPLIFIER BEACDEIS II Designed for Hi-Fi reproduc tion of records. A.C. Mains
operation. Ready bullt on plated heavy gauge metal
 NLI 84, Ezsio valves. Heary
duty. double wound main! ransformer and output transapeaker. Separate y fune control and now with improved wide range tone controls giving bass and troble litt and
cut. Negative feedback line. Output 44 watta. Front panel can be detached and leads extended for remote mounting of controls. Complete with knobs, ralves, etc., wired and tested tor only \$4.75. P. \& P. 35p. GSL "FOUR" AMPLIFIER KIT. Bimilar in appearance to Ha84 above bat employs entirely different and P. \& P. 40 p .

HARVERSOX'S SUPRE MOHO AMPLIFIER A super quality gram amplifier uslng a double wound fully
liolated mains transformer, rectifer and ECL82 triod pentode raive as audio amplifer and power output stage, Impedance 3 ohms, Ontput approx. 3.5 watts. Volume and tone controls. Chassis size oniy 7 in . Wide
$\times 3 \mathrm{in}$. deep $\times 6 \mathrm{in}$, high overall. AO mains $200 / 240 \mathrm{v}$. Supplied absolutely Brand New completely wired and tested with good quality output transiormer.
BARGAIN PBICE
f2.75 ${ }^{2} \mathrm{P}, 5,5$

10144 TATT EI-FI
AMRLITWR KIT AMPLItizin Kin
A atyltahly finighed monaural amplife 14 Watts from :
EL84s in push-pull. Super zeprodaction of both music and
speech, with negligible hum. Separate inputs for mike and gram allow record.
and announcernent to follow each other Fuily ghrouded section wrond output transtornuer to match $3-15 \Omega$ speaker and 2 inde ependent volume controls, and separate base and treble controla are provided
giving good lift and cut. Valve lne-up 2 ELSA4, ECCB3, giving good ift and cut. Vaive ime-up
EF86 and Ez80 rectifer, Simple Instruction booklet 13 p (Free with par
$67.97 \mathrm{P} . \& \mathrm{P} .55 \mathrm{p}$.

EQUDBOOR OF TRAYSISTOR

A must for service suberirutes
Including namy 1000's of Britiah, U.S.A., European

Open 9-5,30 Monday to

Saturday
Early closing Wed. I p.m,
A Jew Tuhe Station.

170 HIGH ST., MERTON, LONDON, S.W. 19
SEND STAMPED ADDRESSED ENVELOPE WITH ALL ENQUIRIES
(Please write clearly) PLIEASE NOTE: PD TO D.K. ONLY. P. \& P. ON OVERSEA
EXTRA.

$0-200-230-250 v .50 \mathrm{~Hz}$ A.C. mains operation. Inputs for magnetic or Ceramic Pickup, Tape or Ceramic Pick
Radio Tuner.

TECHNICAL DETAILS

Bass Control $\pm 12 \mathrm{dE}$ at 40 Hz . Treble Control $\pm 12 \mathrm{~dB}$ at 14 KHz . Senslifivities Mag. P.U. 3.5 m.v. into 47 K ohm R.I.A.A. Ceramlc
P.u. $35 \mathrm{~m} . \mathrm{V}$. into 100 K onm. Tape P.u. $35 \mathrm{~m} . \mathrm{v}$, into 100 K ohm. Tape
Amp. $100 \mathrm{~m} . \mathrm{v}^{2}$ Into 100 K . Radio
 Crosstaik 53 dB .
Hum and Nolse-75 dB min.
H. 0 os max. vol Total Harmonic
Distortion 0.1% at 1 wa into 15 ohms.
Output (per channel)
6.5 watts I.H.F.M.
\star A modestly priced solid state unit.
\star The Silver Facia with black lettering enhanced by matching control knobs, provides a high standard of appearance.
\star Suitable for crystal or ceramic Gram. Pick-up cartridges, and Radio input.

* A wide range of tone variation is provided by the separate Bass and Treble 'lift' and 'cut' controls.
* A selector switch permits instantaneous selection of Gram. or Radio.
* Speaker impedances between 3 and 15 ohms are suitable.

TECHNICAL DETAILS

Frequency Range 20 Hz to

 20 KHzOutput (per channei) 5 watts I.H.F.M.

Bass Control $\pm 12 \mathrm{~dB}$ at 60 Hz .
Treble Control $\pm 14 \mathrm{~dB}$. at 14 KHz .

RINTED CIRCUIT CONSTRUCTIO
EMPLOYING 10 TRAHSISTORS
ALL LINEAR AMPLIFIERS GUARANTEED FOR 12 MONTHS

VAL ${ }^{\text {W }}$					SAME DAY SERVICE NEW! TESTED! GUARANTEED!						
SETS 1R5, 185, 7T4, 384, 3V4, DAF91, DF91, DK91, DL92, DL94. Set of 4 for 81.02. DAF96. DF96, DK96, DL96, 4 for 11 -48.											
$1 \mathrm{R5}$. 32	UABcbo	
185	. 22	30015	. 58	C8	. 38	EM80	.88	P	. 57	UAF42	
$1 T$. 18	30017		${ }_{\text {EB41 }}^{\text {EAF42 }}$	- 50	EM81	${ }^{-38}$	PCL84	$\stackrel{34}{ } .8$	UBC41	- 58
384 384	$\cdot{ }_{3}{ }^{26}$	${ }^{30018}$		EB91	- 10	${ }^{\text {EM }} 8$.84	PCL86	.38	UBF89	-38
5U49	-31	30 FLI	. 61	EbC33	. 40	EYS1	. 83	PCL88	-6.5	UCC84	$\cdot 32$
5V4G	-35	30FLI9	. 69	EBC41	. 54	EY86	. 29	PCL800	$\cdot 75$	tccis	
5 Y 3 CT	-26	$30 \mathrm{FL14}$			-29	EZ40		PENA4	. 77		-58
5Z4G	. 35	${ }^{30 \mathrm{Ll}}$. 28	EBF80	-89	EZ41	.43	${ }^{\text {PENS }}$ PFL200	.78 . 8	UCH81	.58
6/30L2	- 54	$30 \mathrm{L15}$		EBF89		E280	-2a	PFL200	.	UCL89	82
gals	-13	${ }_{30 \mathrm{P} 4}^{3017}$	${ }_{.67} .6$	ECC88	. 20	Cz80	.84	PL8I	. 44	UCL83	. 55
6AQ	. 22	${ }^{30} \mathrm{P} 12$		ECCBs	. 35	G2z3	40	PL81.A	. 47	EF41	5
6atb		30 P 19	. 57	ECC85	. 34	OZ34	. 48	PL82	-81	U589	
6 6aU6	-20	80PL1	-60	ECC304	. 54	KT41		PL83	. 38		
68E6	. 20	${ }^{30 \mathrm{PL} 13}$		ECP80	. 88	KT61	. 78	${ }_{\text {PL } 500}$		UL84	1.30 .30
${ }_{68 \mathrm{BE}} 6$.41	${ }_{35 \mathrm{~L} 6}$.45	ECH30	. 55	LN319	. 63	${ }^{1} \mathrm{PL504}$	-63	UM84	.22
6BW7	-52	35 W 4		ECH 42	-59	LN329	72	PM84	. 88	UY41	42
6 Fl 14	- 4	35Z4GT	$\cdot 25$	ECH81	-980	LN339	-63	PX25	$\stackrel{-95}{ }$		
${ }^{6723}$	-68	807		ECH83		N78	. 87	${ }_{\text {PY }}^{\text {P3 }}$. 48
25	-58	18063		ECH84	. 80	${ }_{\text {Pabic30 }}$.40	PY831	. 25	277	. 22
${ }_{6 K 7}{ }^{\text {d }}$. 18	${ }^{\text {B } 249}$		ECL82	. 81		-47	PY82	. 25	Transf	tors
6 KBG	$\cdot 17$	8729	-62	ECL86	. 35	PC8B	-47	PY83	. 28	$\mathrm{ACl}^{\text {c }} 1$	-18
BQ7G	. 85	COH35		EF39	. 38	${ }^{\text {PC96 }}$	-42	PY88	-88	AC127	18
6SN7GT	. 30	CY31		EF41	-60	PC97					0
${ }^{6} \mathbf{6 V G G}$. 28	DAF91		${ }_{\text {RF80 }}$. 28	${ }_{\text {PCC8 }}$. 29	${ }_{\text {P18 }}$.80	AF115	20
6V6GT	28	DAF96		EF86	.88	${ }^{\text {PCC84 }}$.29				20
	.28	${ }_{\text {DF93 }}$		EF86		PCC88	. 40	U25	. 68	AF118	48
10 P 13	. 58	DF96		EF91	. 18	PCC89	. 45	U26	56	AF123	-17
12AT7	$\cdot 17$	DH77	$\cdot 20$	EF92	- 80	PCC189	. 48	U47	de	${ }^{\text {AF127 }}$	17
12AC6	-20	DE32		EF98	\%	PCC805	. 58	U49	. 58		12
12AU7	- 20	DK91		${ }_{\text {EF184 }}$		${ }^{\text {PCFF88 }}$.28				. 18
12AX7	. 22	DK96		EH90		PCF86	. 48		-24	OC71	18
19BG6G	. 80	DL35	40	EL33	. 65	PCF800	. 58	U191	- 68	OC72	-18
20F2	-67	DL9a	. 28	EL34		PCFs01	. 28	U193		OC75	.19
20 P 3	$\cdot 77$	DL94	. 87	EL41	. 54	POF802	40	U251	-64	$0 \mathrm{CB1D}$	12
20P4	- 62	DL96	. 88	EL84		PCF805	$\cdot 61$	U301			12
23L6at	. 19	DY88	24	EL90	26	PCF80	. 56	U329		OC82D	12
 READERS RADIO 85 TORQUAY GARDENS, REDBRIDGE, ILFORD, ESSEX. Tel. 01.5507441. Post and packing on 1 valve $6 p$, on 2 or more valves $3 p$ per valve extrat. Any parcel insured against damage in transit $3 p$ extra.											

Books reviewed on this page are normally obtainable through any retail bookshop. In this instance, the information printed in heavy type should be quoted.

HANDBOOK OF TRANSISTOR EQUIVALENTS AND SUBSTITUTES Published by Babani Press 78 pages, $7 \times 4 \mathrm{in}$. Price: 40 p .

ONE hardly needs to review a book of this typethe title itself (and the modest price) is enough to make the mouth water. Such a book has long been needed and congratulations to the publishers for introducing it.

Personally I have never met anyone who has known more than a handful of the transistor types available and as far as substitutes are concerned no one has worked out the perfect way of presenting these. This handbook has, however, made a brave attempt (and largely successful one) to give equivalents of transistors in a thoroughly practical way. Equivalents, by the way, only refers to parameters and ignores encapsulation, a sensible thing to do as it opens the field considerably.

About 3,000 types have their equivalents given and in most cases several alternatives are shown; take for instance the OC71, an old fashioned but very well known transistor, here 15 equivalents are shown and this is not untypical.

One of the best points (and if all the other virtues were missing this only would make the book a good buy) is the inclusion of a mass of Japanese types. There must be hundreds of thousands of small transistor radios imported from the Far East which have been written off because a dud transistor is unidentifiable. I have never come across a better list of these types.

Altogether an excellent handbook and, for those who need to find equivalents, indispensable. H.W.M.

PUBLIC ADDRESS HANDBOOK
By Vivian Capel
Published by Fountain Press,
46 Chancery Lane, London. WC2.
208 pages, $8 \times 5 i n$. Price : $£ 3.00$. IVA Vivian! This contribution to the literature of audio is like a light in darkness. With the growing world of discos, clubs and semi-pro 'do's' at the local Church Hall, some guidance is necessary for the well-meaning PA operator. Until now, his only recourse was to very specialist works that told him a lot about the acoustics of the City Hall in Walamazoo but little about hooking up an ailing 10W amplifier to the vicar's home-made loudspeákers.

Public Address Handbook is very soundly based on the author's practical experience. Anyone who has attempted PA will know that the most unexpected problems can crop up. Mr. Capel has worked in small halls and large, on private jamborees and public demonstrations and passes on to us the benefit of his know-how.

There is little theoretical depth. The author argues that you would not be reading the handbook if you
had not at least a glimmering of the background and the acumen to seek out more in the appropriate places. But he takes full cognisance of our probable ignorance where public address is concerned and guides us through the mysteries of microphones and mixers, amplifiers and loudspeakers-always from a practical point of view.

The author is a practising musician and this becomes apparent when one reads his Chapter 10 , 'Live Music.' His advice is firsthand and authentic. Practical systems are described in another chapter; nine working hookups based on requirements that vary between the small hall and the football stadium, taking in a factory canteen on the way.

Still more practical, the final two chapters deal with fault-finding and setting-up. I was tickled pink by Mr. Capel's advice on page 80: 'Never panic, even though the programme may be held up while you try to rectify matters!' There speaks the voice of experience as it does, indeed, throughout this' excellent and rare book on a little-known and infrequently explored subject. For amateur and professional both, this public address handbook is to be recommended.
H.W.H.

GUIDE TO PRINTED CIRCUITS
 By Gordon J. King
 Published by Fountain Press
 148 pages, $8 \frac{1}{2} \times 5 \frac{1}{2}$ in. Price: $\mathbf{5 2 . 5 0}$

AN excellent and timely book, written, as the author says, "with the enthusiastic amateur, experimenter and the radio service apprentice and technician in mind."
The six chapters begin with the reasons for the introduction of the printed circuit board and the early problems involved and continues with the design methods and manufacture of boards in the electronic industry. For the reviewer the chapter on "rolling one's own" printed circuit boards was the most interesting with its detailed advice and guidance. Interest was maintained at a high level in the following chapter which covers the alternative systems to the pcb, such as Veroboard, Cir-Kit and S-DeC. Many readers will find the information on converting a circuit diagram into a finished circuit board of the greatest use.

A book such as this would not be complete without detailed information on the methods of servicing pcb's. The author, who has accumulated many years of servicing expertise, has been able to incorporate some of that experience into Chapter Five. Other useful guidance covers the field of soldering irons and guns, solders and soldering aids and the few other accessories which will enable the amateur to turn out a professional pcb.

The book is well written with many photographs and line drawings. $£ 2 \cdot 50$ is little enough to pay for such a mine of information.
A.E.D.

Continued from the February issue

The circuit of the plinth is shown in Fig. 6. This comprises the power supply, the left and right power amplifier modules and the left and right preamplifiers. The preamplifiers are separately constructed on pieces of Veroboard which plug into two 24 -way edge connectors on the back of the control panel. In return for their small extra cost, the use of edge connectors has some important advantages.
First, construction is simplified since construction of each preamplifier and the fairly complicated wiring around the controls can be separately completed and checked, with improved accessibility in both cases. Secondly, either preamplifier board can be removed in seconds for fault finding; it is very helpful when tracing a fault to be able to swap the preamplifiers and observe whether the fault changes channel. Thirdly, all the small-signal carrying wires are kept as short as possible and run close to the aluminium front panel so that fewer wires have to be screened to avoid instability, hum pickup or radio pickup problems. The latter is especially important since the equipment uses silicon transistors throughout which individually have responses extending far beyond audio into radio frequencies.

Preamplifier Circuit

This will be fully described as it contains some unusual features. The BC109 transistor was an obvious choice for all stages since it has a very low noise factor and is commendably cheap. Non-branded BC109's may not be as good.
The low level signal is received by the equalisation stage $\operatorname{Tr} 1$ and $\operatorname{Tr} 2$. These are connected as a d.c. coupled pair in which $\operatorname{Tr} 1$ runs at a low collector current of $75 \mu \mathrm{~A}$ to minimise the electrical noise introduced at this vital point. D.C. stabilisation is performed by R8 since if $\operatorname{Tr} 1$ collector current should_rise, Tr2 base voltage drops, $\operatorname{Tr} 2$ emitter voltage follows and $\operatorname{Tr} 1$ base bias is therefore reduced. R8 also provides some signal feedback but the main signal feedback path is from Tr2 collector through C3 and the components selected by S1b to Trl emit-
ter. For radio tuner input the feedback through R11 provides flat frequency response and 150 mV sensitivity at the input. For magnetic cartridge input R13/C5/C6 provide frequency conscious feedback to obtain the standard RIAA disc playback responsesee Fig. 8. Almost any desired input sensitivity and impedance can be made available at the AUXILIARY position of S1 by choosing component values from Table 1. Clearly there is scope for arranging any desired selection of inputs by Sl from the values given, although if planning to introduce more complex switching it is important to bear in mind that this area of circuit is where hum pickup and crosstalk are most likely to occur. For the purpose of the components list it is assumed that the AUXILIARY position is fitted with components for 300 mV input sensitivity, useful for, say, the low level outputs from a stereo tape recorder.

TABLE 1
Component values for different AUXILIARY input characteristics

Virtually all of the preamplifier gain is provided by $\operatorname{Tr} 1$ and $\operatorname{Tr} 2$ which are followed by the stereo volume control VR1. For this a linear track component is chosen rather than the logarithmic type usually used in this position. This has the advantage that the two ganged sections will be better matched than in a cheap logarithmic control so channel balance will be maintained at different volume settings. The preset gain controls VR2 in each channel are a means of overcoming the usual disadvantage of linear volume controls i.e: most of the subjective volume range being compressed into the first few degrees of rotation. The preset controls are intended to be set to give the maximum likely listening

Fig. 6: Circuit of plinth unit. Preamplifier and power amplifier for left channel only are shown, plus balance control VR5. Some components in right channel speaker output shown for clarlty. Rlght channel is identical. All voltages are positive with respect to chassis.
volume with the manual control at maximum, so that its whole range can be utilised. They also allow any difference in the gains of the left and right channels, due to component tolerances, to be compensated so that the manual balance control normally rests midway.

Emitter Follower Buffer

In most preamplifier designs a Baxandall tone control stage follows immediately after the equalisation stage. Here however an extra emitter follower stage $\operatorname{Tr} 3$ is used as a buffer between the equalisation stage $\operatorname{Tr} 1 / \operatorname{Tr} 2$ and the tone control stage $\operatorname{Tr} 4$. This reduces distortion since the high input impedance of the emitter follower minimises the loading (via the volume controls) on Tr2, and the low output impedance ensures a constant-voltage drive to the varying load presented by the tone controls.

Tone Controls

Although the Baxandall tone control circuit, with its familiar bass and treble boost and cut characteristic shown in Fig. 9, is used with minor variation in almost all modern high fidelity equipment, its operation is seldom explained and is not obvious. It is best

Flg. 7: Distortion curves for Sanken SI-1020A amplifier module, taken from manufacturer's data sheet

Fig. 8: On modern L.P. recordings high frequencies are boosted to a standard (RIAA) speciflcation to overcome surface noise. The output of a magnetic pickup must be passed through a preamplifier whose frequency response shown above is a mirror image of the recording response i.e. boost at low frequencies, to regain the original sound.
understood by separately considering how the circuit appears at high and low frequencies.

Resistors present the same impedance to signals of all frequencies whereas the impedance of capacitors decreases with rising frequency. Hence at very high frequencies C9/C10/C11 are virtually short circuits and the circuit reduces to Fig. 10a. Conversely at very low frequencies the same capacitors are virtually open circuits and the circuit reduces to Fig. 10b. In both these simplified circuits the components which are ineffective are dotted.

Now both the simplified circuits are just elaborations of Fig. 10c in which a transistor base is fed from the slider of a potentiometer connected between input and output. Assuming the transistor itself has sufficiently high gain, the stage gain is $\mathbf{R b}$ (which Ra
simple relation is the root of all operational amplifier theory). This confirms what is fairly obvious, that the gain is high when the slider is at the input

Fig. 9: Tone control response with C12 linked to NORMAL. Curves are dotted over mid-frequency range where both Bass and Treble controls have some effect.

Fig. 10a: Active parts of tone control circuit at very high audio frequencies
end of the track and drops as it moves to the right due to increasing negative feedback from the output. Thus in Figs. 10a and 10b the active potentiometer simply acts as a gain control at the frequency concerned while the dotted control has no effect. The arrows across the sliders indicate the direction of clockwise rotation and boost. At other than very high or low frequencies the assumptions made about the action of the capacitors become less true and it is only a matter of choosing component values to make the controls progressively effective over desired frequency ranges.

Figs. 10 do not show the base bias arrangement for $\operatorname{Tr} 4$ which is a bleed via R23/R24 from its collector with decoupling by C13 to prevent signal feedback by this route. Stability at all tone control settings is ensured by top-cut capacitor C14.

Cl 2 prevents d.c. flowing in the tone controls and is large enough for its impedance to be negligible at all audio frequencies. It is normally connected to the junction of R25 and R26. It can alternatively be connected directly to Tr 4 collector whereupon the range of the tone controls becomes wider than the specification since they have more negative feedback to "play" with. For normal listening however there is no need for great extremes of tone control.

The signal at $\operatorname{Tr} 4$ collector is taken to a spare pin on the edge connector in case a mono-stereo switch is required. This would just link pin 20 on the left and right preamplifiers for mono operation. But for
record playing at least, where a mono record reproduces through both channels anyway, such a switch seems superfluous. If occasionally one wishes to feed an external mono signal (e.g. from an a.m. radio tuner) into both channels, this can be done by making up a suitable linking adaptor to plug into the auxiliary input sockets.
The left and right preamplifier outputs are taken from a resistor divider whose mid-point is the earthed slider of the Balance control. In anticipation that this preamplifier may be used with other power amplifiers there is provision in the board layout for an. isolating capacitor at the output. This is not needed (though does no harm) with the Sanken amplifiers specified which contain their own input blocking capacitors.

Power Amplifiers Z1, Z2

The Sanken SI-1020A monolithic power amplifier has already been described in "IC of the Month" and its internal (and inaccessible) circuit is the conventional quasi-complementary Class AB push-pull arrangement. The convenience of its packaging is far more remarkable since its metal case can be bolted directly to a heatsink without any electrical isolation. This i.c. was possibly overshadowed at its introduction by its 50 watt sister (SI-1050) but its excellent distortion claims are the reason for choosing it for the system.

Fig. 6 shows an unusual arrangement at the loudspeaker outputs which solves two problems common to high power push-pull amplifiers. Firstly one may inadvertently overload stereo headphones with resulting distress to ears and/or headphones. Secondly there is the familiar thump from each speaker when the amplifier is switched on, caused by the output capacitor (C19) charging through the speaker. This may or may not be damaging to the speakers but one is certainly better off without it. Accordingly the on/off switch 52 is arranged to pass through a HEADPHONES position between OFF and SPEAKERS. If it is switched through this intermediate position not too fast, C 19 will have charged up via R30 and R31 before being connected to its speaker, so there will be no thump. These resistors also attenuate the headphone signal level to give a reasonable range of volume.

Power Supply

The simple unstabilised power supply in Fig. 6 delivers 45 V via separate fuses FS1/FS2 to the power amplifiers, and a well smoothed common 30 V supply to the preamplifier boards. The mains input is also fused. A reservoir capacity of $2000 \mu \mathrm{~F}$ is required and can be made up from two $1000 \mu \mathrm{~F}$ capacitors in parallel as shown ($\mathrm{Cl} 17, \mathrm{C18)}$ or a single component used if available. In either case the capacitor(s) should be good quality components intended for power supply use since there is a hefty 100 Hz ripple current from the bridge rectifier D1-4. The current surge as the capacitors charge up at switch-on is limited to a safe value by R32 which should not be omitted.

The mains input is switched by $\mathrm{S} 2 \mathrm{a} / \mathrm{b}$ to the power supply transformer T1, the turntable (which has its own switch and pilot lamp) and to a neon pilot lamp on the front panel. C20 may be of some use in suppressing r.f. interference from the mains; it is most important that no suppressor capacitor is connected between mains live and the chassis since this would make exposed metal parts live if ever the mains earth connection were broken.

Turntable, Arm and Pickup

The choice of these three can be left to the constructor since any good quality equipment can be used. Comparative judgments on magnetic cartridges especially are rather subjective.

The author's equipment illustrated uses a Connoisseur Craftsman turntable (very simply but soundly made), Goldring L75 pickup arm and Eagle LC07 moving magnet cartridge. The latter is a fairly recent Japanese product which the author regards as a "best buy" at about $£ 7$ since its performance on a test record is comparable to, say, a Goldring G800E at several pounds more. Tracking is at $1^{1}{ }_{2} \mathrm{gm}$, which can be set accurately on the Goldring arm without a gauge. Readers might well find the Connoisseur BD1 "do-it-yourself" turntable kit a good buy for the system. For economy one of the better BSR or Garrard players would give fair results but a cheap autochanger should certainly not be used since

Photograph shows inside of assembled plinth
the amount of wow and flutter would be unacceptable.

Plinth Construction

The carpentry is straightforward, the cabinet being made up from five pieces of 1_{2} in. chipboard fixed by countersunk screws to ${ }_{1}{ }_{2} \mathrm{in}$. square corner battenssee Fig. 11. A rectangular aperture is cut in the rear board for the rear panel. The turntable mounting board is cut out to suit the unit and arm chosen after having made sure everything will fit under the Goldring perspex lid. The space available here is about $17^{1}{ }_{4} \mathrm{in}$. wide $\times 13^{1}{ }_{2} \mathrm{in}$. deep $\times 2^{3}{ }_{4} \mathrm{in}$. high and it was only barely possible to fit in the author's units, the Craftsman turntable having to be positioned with the motor at rear left. It is not essential for the turntable board to be screwed down to the battens on which its rests, so there need be no screw heads visible after all exposed wood surfaces have been veneered. For access to the electronics the turntable board is simply lifted clear.

Two eyelet screws can be bent to serve as hinges for the rear of the perspex cover and screwed to the turntable board as shown in Fig. 11. A small wood wedge is glued to the board to support the prop-up arm which is part of the lid.

The front panel is an aluminium sheet cut as shown in Fig. 12a. A length of L-shaped aluminium girder is used to hold the two preamplifier edge connectors behind the front panel (or some other support can be arranged) and has tabs ready for
\star components list

Fig. 13: Cutting out and mounting details of rear panel/heatsink.

Fig. 12(a) : Front panel (front view). Fig. 12(b) : Girder. Fig. 12 (c): Cross section of front panel and girder showing method of fixing connectors.
mounting two more edge connectors in case of future needs-see Fig. 12b and c. The girder is held to the front panel by the controls so no screw heads need show at the front. The front panel assembly should fit snugly enough in its slightly recessed position to need no fixing to the cabinet.

A second aluminium sheet forms the heatsink for Z1 and Z2 and also the rear panel carrying four stereo pairs of phono sockets-see Fig. 13. It is fixed to the cabinet by four screws from the inside. The amplifiers should be bolted tightly to the aluminium making sure they make contact over the whole of their bases. A thermally conductive grease can be used to improve the heat transfer but this is not essential for normal listening use.

NOTE

On page 905 of the February issue, reference is made to strip "S in Fig. 1." This should have referred to Fig. 2.

To the materials list on page 907, the following shouold be added to the FRAME: 4 off $16 \mathrm{in} . \times 7_{8} \mathrm{in}$. $\times 7_{\mathrm{B}}$ in. pine.

The construction details of the inner sheets on page 907 show screw holes in the vertical corner edges of the hardboard-these should be ignored. It would be impossible to use wood screws in this position and they are in fact unnecessary.

THIS is an attractive 7-transistor receiver of straightforward construction, tuning long and medium waves. The receiver is assembled as a complete working unit on a single piece of Veroboard (except for the loudspeaker) and actual building is simplified by using a small, ready-made audio amplifier module. Thus only the mixer and i.f. amplifier are built from separate components.

CIRCUIT

Fig. 1 is the circuit, and a brief description should be helpful to beginners.

Ferrite Aerial. The ferrite rod has medium wave section L1 and long wave section L2. Switch S1 shorts out the l.w. section for m.w. reception. VC1 tunes the aerial together with trimmer TCI. Trimmer TC3 is for l.w. trimming. A coupling winding on L1 and tapping on L2 applies the signal to Tr 1 base via Cl . Tr 1 is an OC44 mixer/oscillator.
Oscillator Coil L3. This is tuned by VC2, with
trimmer TC2. Capacitor C4 provides "tracking" so that the oscillator circuit always tunes 470 kHz higher in frequency than the aerial circuit. With S1 in the l.w. position C3 and TC4 are across the oscillator winding for long wave reception.
Intermediate Frequency Amplifier. The 470 kHz output of Tr 1 passes to the first intermediate frequency transformer IFT1. Signals pass to the first i.f. amplifier Tr2 an AF117, then from IFT2 to Tr3, another AF117. The three IFTs are tuned to 470 kHz by tineans of adjustable cores.
Emitter Detector. The 0C71 Tr 4 demodulates the output of IFT3 and amplified audio signals appear at the collector and are taken via Cll to the volume control VR1.
Automatic Gain Control. Strong signals increase Tr4 collector current causing an increased voltage drop across R10. The base potential of $\operatorname{Tr} 2$ thus becomes more positive, the change in voltage being applied via R6. As à result, amplification provided by Tr 2 is reduced when strong signals are present,

Fig. 1: Circuit of the Cube Radio. The audio amplifier is obtained as a module, the circuit being given here for reference purposes only.

and the output of the i.f. amplifier is relatively con stant, despite changes in signal level.
Audio Section. The slider of VR1 is taken to pin 1 of the a.f. module which is a small separate unit, mounted on the receiver board, and having only four external connections. The module contains a driver/ amplifier, followed by a pair of transistors in a complementary single-ended push-pull circuit. This drives a 40 ohm or similar miniature speaker, $2^{{ }^{1}}{ }_{2}$ in in diameter.

CIRCUIT BOARD

The plain Veroboard is $3_{8} \times{ }^{8}{ }^{5} \mathrm{in}$. to fit inside the $4 \times 4 \mathrm{in}$. case. It is cut to clear the corner strips and speaker as in Fig. 2.
Holes are drilled or enlarged to match the pins and screening can tags of L3 and the IFT's, noting that L3 will be fitted in the way which results in pins located as in Fig. 2.

Holes are also drilled for TC3 and TC4, the rod

Fig. 2: Wiring details of the underside of the Veroboard panel on which the receiver is constructed.
mounting and 6BA bolts holding the a.f. amplifier. A clearance hole is needed for $\mathrm{VCl} / 2$, and three holes which match up with the tapped holes in the front of the capacitor frame.

In many places resistor ends and other leads are soldered to Vero pins inserted in the board. These are most easily inserted with the correct tool, which resembles a small screwdriver with a hole, so that when a pin is pushed in it projects equally each side of the board. With $\operatorname{Tr} 2, \operatorname{Tr} 3$ and $\operatorname{Tr} 4$ it is more convenient to put the wire ends through the holes, anchoring only the collector of $\operatorname{Tr} 3$ at a pin.

When wiring is complete, the Veroboard is secured to a $4 \times 4 \mathrm{in}$. panel of ${ }_{16} \mathrm{in}$. black polished paxolin with about ${ }_{16}$ in. space between the two, to clear wiring, pins and VR1. VCl/2 is secured with 4BA bolts or studding which can project about ${ }_{16} \mathrm{in}$. on the capacitor side of the board. Longer bolts will damage the capacitor plates: Another way is to secure the capacitor with short bolts, with washers under their heads, if required. Pancl and board are then drilled with matching holes to take three 6BA bolts. These are countersunk at the panel, and have extra lock nuts, so that panel and board will be held about $7_{16} \mathrm{in}$. apart. The positions of the bolts does not matter, provided they clear resistors, etc., since their heads will be covered by the metal dial.

FERRITE AERIAL

As the ferrite rod normally supplied is too long for the case, it was snapped off at about $3^{1}{ }_{2} \mathrm{in}$. by securing it in a vice and giving the rod a sharp tap.

L 1 is placed so that the base winding $6-7$ is towards the middle of the rod. Thin sleeving was put on all leads. Lead 1, Fig. 3, goes to the larger section (front) of the capacitor, VC1/2. Lead 2 runs to the wavechange switch $S 1$.

L2 is put on the rod so that its turns are in the same direction as those of L1, which can be seen by looking at the windings. If L2 is reversed, l.w. alignment is impossible, and the winding should be taken off the rod, turned round, and replaced. The

[010063
Fig. 3 : Topside of board showing location of the major components. Ensure that IFT's and L3 are correctly orientated to give pin positions shown in Fig. 2.
outer lead 3 of $\mathbf{L 2}$ joins lead 2 at the switch. The lead 5 taken to positive line must be that which is adjacent to tap 4, which is not at the centre of the winding.
Those lead ends which are single strand wire can be cut, if necessary, carefully scraped, and soldered. But the finely stranded (Litz) wire is difficult to deal with, so the ready tinned ends should be left. Excess length can be taken round the rod in the same direction as the winding.
The rod is mounted by means of a strip of plastic material clamped round it, with a $3_{4} \mathrm{in}$. 6 BA bolt and spacer, or extra nuts, so that it easily clears TC3, TC4, etc. It is as well-to leave fitting of the rod until last.

WIRING

Switch S1 is mounted by passing its tags through holes in the board. The tag MC is securely held at one of the fixing screws of VCI/2.
Place transistors so that their leads come as in Fig. 3, with sleeving on the wires. Put suitable lengths of sleeving on the wires which project, bend these over, and solder to the IFT's etc. as in Fig. 2.
The screening can tags of the IFT's and L3 must be connected to the positive line, as in Fig. 2. It proves helpful to use red sleeving on this circuit, black on negative circuits, and some other colour on other wiring; $26 \mathrm{~s} . \mathrm{w} . g$. or similar tinned copper wire and small sleeving will be convenient.

components list

Capacitórs

C5
C6. 0.047 F F
Minimum woiking voltage: 94
TC1/2 part of VCH2
TC3 60 p compresston trimmer
TC4 600F comptassion inmmer
VC1/2 $208+176 \mathrm{FF}$, slow motion, with trimmors (Jachson)

Semiconductors
Tr1 OC44 Tr3 AF117
Tr2 AF11? Tt4 OC71
Inductors
L1/2 Ferite rod aeifal (Denco MW/LWSFR)
L3. Ospillator coll (Denco TOC1)
IFT1 IE Transformer (Denco IFT13)
HT2 IF Transformer (Denco IFT13)
IFT3 IF Transformer (Denco IFT14)

Miscellaneous

Switch S1, two-way slide switch. Audio amplifier 125 mW (Newmarket PCA). Dlat and knob (Home Radio DL64 and KN64). Plain veroboard 0-151h.
 so ohms.

A general yiew of the completed receiver. It may be tested and alligned in this form before finally fitting it into its case.

Volume control VR1 is fixed with a small bolt and connected as in Fig. 2. Solder the correct clips to red and black flex for the battery.

AF AMPLIFIER

Connections shown in Fig. 3 are when looking at the amplifier from the components side. Thread thin wires down through the small holes, and solder to the foil below.

Mount the amplifier with bolts, using a few washers to avoid contact with the bolt holding VR1. Take lead 1 through the board to VRI slider (centre tag). Twist leads 2 and 3 together, leaving these long enough to reach the speaker. Take a second lead 3 through the board to battery negative, Fig. 2. Lead 4 goes to the positive line.

Leads 2 and 3 should be soldered to the speaker so that the receiver can be tested before adding the panel.

IF ALIGNMENT

Use a Denco TT5 or other correct tool for adjusting the IFT's and L3 since a screwdriver or wedgeshaped blade may easily break the cores.

If a signal generator is to hand, set it to 470 kHz connect it to Cl , and adjust the IFT cores for best volume, keeping this low by reducing generator input.

If no generator is available, alignment may be made with any signal tuned in, following by more careful adjustment with a weak signal, if necessary. Do not use strong signals, with VR1 turned towards minimum volume, because the a.g.c. action tends to make adjustment of the cores seem flat with no sharp peak.

When IF alignment is finished, these cores need not be touched again.

MW ALIGNMENT

The core of L3 has a considerable influence on band coverage. With S 1 at m.w., tune in a station with VC1/2 near maximum capacity and move L1 on the rod for maximum. If dial readings are badly in error, rotate the core of L3, following the signal with VC1/2, to correct this and re-adjust L1 on the rod.

Move to the h.f. end of the band (VC1/2 nearly fully open) and set TC2 for a suitable dial indication, peaking TC1 for maximum volume.
These adjustments should be repeated a few times until no further improvement is obtained. If a generator is available use it at suitable frequencies instead of selecting actual stations.

LW ALIGNMENT

With Sl at l.w., tune in any transmission, and move L2 on the rod for best volume. Subsequently, it will be found that oscillator coverage can be adjusted with TC4, so that the setting of TC4 and core position of L3 governs band coverage. Then TC3 is peaked for best results towards the h.f. end of the band, and L2 is moved on the rod at the l.f. end of the band.
If any slight adjustment is made to the core of L3, m.w. alignment will have to be repeated. Otherwise merely touch up m.w. adjustments, after completing l.w. alignment.

CABINET

The cabinet is made of clear Perspex for its novelty effect. The bottom is 4×4 in. and ${ }^{1}$ sin. thick while the sides are 4×3 in. and ${ }_{16}$ in. thick. Front and back are also ${ }_{16}$ in. thick, but are $41_{8} \times 3$ in. to overlap the sides. The front is drilled to take the speaker with a grid of holes over the cone area.

The pieces should be accurately cut and the edges smoothed with a file. After cementing together a strip $1_{4} \times 1_{4} \mathrm{in}$. and $2^{3}{ }_{4} \mathrm{in}$. long is cemented in each corner to strengthen the box. The strips were tapped 6BA at the top, to take four bolts which pass through the receiver panel, which is slightly inset in the case top. The Perspex could be drilled for selftapping screws.

A clip is made and fixed to the case bottom with a countersunk bolt, to hold the battery. The speaker leads are long enough to allow the receiver to be lifted out leaving the speaker in the case. A slot is filed to clear the knob of the volume control. Another slot is required for the wave-change switch.

DIAL

The dial listed has four metal lugs, which pass through slots in the panel. The slots can be made by drilling two or three small holes very closely together and finishing with a very small flat file.

The panel is fixed in the manner described earlier and the dial then put on the lugs being turned over behind the panel. The tuning indicator fitted was a disc of ${ }_{16} \mathrm{in}$. Perspex, with a black line each side to travel over the m.w. and l.w. scales, and fixed to a brass bush which is locked on the capacitor spindle with a set-screw. A Perspex disc is readily cut with an adjustable tank cutter and the bush made by sawing through a ${ }^{1}{ }_{4}$ in. brass shaft coupling. An alternative is to use a stout wire pointer.

HAVE you ever thought just how those complex integrated circuits are made? These innocent looking little slabs of plastic with some 16 pins sticking out of the side are now common to most shops selling components for the constructor.

One of the most difficult parts of the whole process is aligning masks. A slice of silicon is taken and coated with a photoresist. A photographic mask is then laid carefully over the slice and an exposure made. The resultant image is transferred to the slice which, in turn is then taken for processing.

After this first processing, the slice is given the same treatment again; another coating and exposure, then further processing. There may be several printing exposures made during the manufacture of the slice which can quite easily contain thousands of individual tiny semiconductors.

As can be appreciated, because individual devices on the chip are so very very tiny, it is absolutely imperative that during the printing of the individual masks, these must be aligned very, very precisely.

A normal method is to have an operative peering at the chip and the relevant mask through a high powered microscope and the mask guided into position by the operative. While this is successful it does take time since, if the mask is not aligned accurately, several hundred integrated circuits on the slice may be ruined.
A British company has now developed a machine which will align the mask and chip automatically. The secret is the printing of two minute crosses between the pattern for the circuit required. These crosses have their members made up of shaded lines. The machine uses these to align subsequent masks to within 10 micro-inches. Circuit patterns down to $0 \cdot 0001 \mathrm{in}$. can be printed. The entire printing process from when the operative puts the new slice into the holder to the time it is ejected is only 25 seconds.
A further advantage of this British invention is that the masks are not in direct contact with the slice. Thus there is no abrasion on either slice or mask and the life of the masks, which are very expensive indeed to produce, is considerably prolonged.

Once set up, the machine needs no further attention during the run. The slices are lifted automatically in and out of the photo-electric system by precision mechanical arms. The machine is also self-checking and will stop and/or throw up warning lights if anything goes wrong. For example, if there were no slice in the input receptacle the machine would stop. If a slice were to be damaged the machine would stop and flash a light.

Last month the first part of this article described the case, power supply, display units and initial testing. This second part concludes the article.

DEFLECTION AMPLIFIERS

The next phase of the construction is concerned with the deflection amplifiers. Two of these are required, one each for the X and Y plates. The deflection sensitivity of the CRT used is such that about 100 V peak-to-peak is required to give a full scan on the tube. Most cathode ray tubes require push-pull deflection to give a scan which is free from trapezium distortion. In order to give something extra in hand on scanning ability the push-pull deflection amplifiers have been designed to give 140 V peak-to-peak scan.

The theoretical circuit of the deflection amplifiers is shown in Fig. 10. Tr3a acts as a phase splitter and low gain amplifier. Counterphase signals of equal amplitude appear across R15a and R16a. The only disadvantage of this type of phase splitter is that the two signals have differing source impedances. We therefore push the outputs from the phase splitters into the emitter followers of Tr4a and Tr6a which have a high impedance and are not fussy about signal source impedance. The emitter followers serve a further purpose of controlling the working points

Fig. 10: Circuit of the deflection amplifiers-two are required, one for the X and one for the Y amp. See text regarding R17 and R18.
of the output transistors $\operatorname{Tr} 5 a$ and $\operatorname{Tr} 7 a$ by means of the standing currents in R19a and R20a. Tr5a and $\operatorname{Tr} 7 \mathrm{a}$ are directly coupled to these emitter followers. The voltage gain of the complete amplifier is 12 when referred to a single ended output or 24 when referred to the push-pull output. As the transistors Tr4a and Tr6a control the working points of the output transistors they must be low leakage types. Suspect transistors must be avoided at all costs.

CONSTRUCTION

The remaining units are built up on a $0 \cdot 1$ in matrix Veroboard panel. The board used in the prototype was $6^{1}{ }_{2} \mathrm{in} \times 4 \mathrm{in}$. It is recommended that at this stage all the breaks in the copper strip should be milled out before construction commences. This prevents disasters due to cross wiring as a result of forgetting a hole (here again the voice of experience speaks). The Veroboard layout, also including the Timebase and Y preamplifier, is shown in Fig. 13.
When using $0 \cdot$ lin matrix Veroboard, some care is necessary to avoid shorting out between conductor strips and when the wiring is complete, run a penknife along between the strips to make sure that no solder overlaps the conductors and that no small blobs of solder are shorting out any of the copper

Fig. 11: The Timebase unit circuit.

Fig. 12: The Y-preamp circuit. Note that the emitter resistor of Tr13 should be shown as R35, not as R37; the value shown is correct.

An internal view of the completed prototype. The main circuit board can be seen face on while CB. and C9 (a and b) can be seen mounted below the c.r.t. The sync unit is mounted on the base and cannot be seen.
strips. Wire in all the components with the exception of R17a and b and R18a and b when fixed resistors are preferred as their value must be determined empirically. Do not connect in the h.t. ends of the resistors R21a and b and R22a and b.

Connect the meter between R21a and the h.t. line and switch on. Only a very small leakage current should be indicated on the meter ($250 \mu \mathrm{~A}$ maximum). If the current is more than this, switch off and check the wiring. If the wiring looks satisfactory, check $\operatorname{Tr} 4 a$ for leakage. If all is well R17a may be wired in place and adjusted to give a standing current of 4 mA in the collector of Tr5a. For those wishing to use a fixed resistor for R17a the following procedure should be followed. Take a $330 \mathrm{k} \Omega$ resistor and bridge between the base of $\operatorname{Tr} 4$ (a) and the 12 V line. Note the current taken. If the current taken by Tr5a is more than 4 mA , increase the value of the bridging resistor until there is a standing current of 4 mA through the collector of Tr5a if the current is less than this figuredecrease the value of this resistor. Repeat the above procedure for R18a and Tr7a.

The construction and testing of the second deflection amplifier (b components) follows exactly that outlined above.
When all is satisfactory connect the output capacitors to the relevant input terminations on the display unit.

TESTING

Switch on the complete unit and connect the low level signal to the X amplifier input. A horizontal line of approximately 4 cm long should be shown on the tube face. Next apply the signal to the Y amplifier input when a similar line in the vertical plane should be displayed. Next couple the X and Y inputs to the test unit via two $0 \cdot 1 \mu \mathrm{~F}$ capacitors when a circle or elipse similar in shape to that shown when testing the display unit should be seen. Whatever shape is displayed it should be regular with no flats, ripples or waves in it. Any distortions which do occur will almost certainly be due to incorrect selection of the bias resistors R17a and b and R18a and b.

TIMEBASE UNIT

The theoretical diagram of the ramp generator is shown in Fig. 11. Tr 8 acts as a constant current source-the current being determined by the variable resistor VR5 and R27. The output from the constant current source is used to charge the timing capacitor CT selected by SW1. The charge on the capacitor rises until the voltage on the capacitor is sufficient to cause the unijunction transistor $\operatorname{Tr} 9$ to fire. When

1002

Tr9 fires it discharges the capacitor and the cycle repeats.

The voltage across the capacitor takes the form of an almost pure sawtooth waveform. Tr10 is employed as an emitter follower-serving to isolate the timing capacitor from the loading effects of the deflection amplifier. VR6 varies the voltage output and, therefore, the scan width. The main advantage of the circuit is that the amplitude of the output waveform is independent of operating frequency for all practical purposes.

Fig. 13 (left): The main component board. The deflection amplifiers are in the middle and at the bottom; the Y-preamp is top left and the Timebase top right.

CONSTRUCTION

The scan generator is built on the same piece of Veroboard as the main deflection amplifiers and comprises the components on the top righthand side of Fig. 13. SW1 and the frequency control resistor VR5 are mounted on the front chassis and flying leads taken back to the Veroboard. The timing capacitors CT are mounted around the course frequency control SW1. Note that Tr8 is a PNP type and is, therefore, connected upside-down in the circuit.

The timing capacitors CTa to CTd are the subject of individual choice but for general purpose audio work the values shown in Fig. 11 should suffice.

Having connected the timebase unit to the X amplifier switch the coarse speed control switch SW1 to select the $1 \mu \mathrm{~F}$ capacitor. Connect the power supply and set VR6 to the top end (emitter end) of its travel. A horizontal line should now be traced across the screen. Adjust VR6 until the ends of the trace are just visible at each end of the tube. Some adjustment of the X shift control may be required. Apply a signal from the low level output of the test generator to the input of the Y amplifier. A sine-wave should now be displayed on the tube face. The number of waves seen will depend on the setting of the fine speed control VR5. It may be that the peaks of the sine-waves may disappear over the top and bottom of the tube-this is quite in order-the tops of the sinewaves should, however, not be flat. Any flattening of the trace is due to incorrect adjustment of the standing current in the Y amplifier output transistors.

The performance of the X amplifier may also be checked for correct biasing by applying the timebase output to the Y amplifier and the test signal to the X amplifier and following the above procedure.

Y PREAMPLIFIER

The theoretical circuit of the Y pre-amplifier is shown in Fig. 12. Trll and Trl2 are employed as a bootstrapped amplifier. This configuration offers a very high input impedance (most desirable for an oscilloscope) but gives very little gain, as a consequence the bootstrapped amplifier is followed by the voltage amplifier of Tr13. The gain of the preamplifier is controlled by VR7 which is placed in the low impedance part of the circuit to minimise stray current pick-up in the connecting leads.
The input impedance of the original unit was measured as $1 \cdot 8 \mathrm{M} \Omega$ and the voltage gain 7 .

CONSTRUCTION

The pre-amplifier is built on the main Veroboard panel shown in Fig. 13. The components around Trll and $\operatorname{Tr} 12$ must have leads which are as short as possible as a precaution against pick-up of stray signals. Screened leads must be used for the connection to VR7 earthing the outer braid to the chassis line at one point only. If the leads of the input capacitor are longer than 10 mm each these too should be screened.

TESTING

This is probably the easiest circuit to test! Switch on the whole unit and apply a finger to the input capacitor C 11 . With a $1 \mu \mathrm{~F}$ capacitor switched in on the time base unit, a series of sine-waves will be displayed on the tube face (the amplitude of which may be varied by VR7). The input capacitor C11 should now be shorted to chassis-no vertical trace should be seen on the CRT face. If a trace can be seen then more attention must be paid to input screening. The area to concentrate on is the circuitry around $\operatorname{Tr} 11$ and Trl2.

INPUT ATTENUATOR

The circuit of the input attenuator is shown in Fig. 14. The attenuation provides two decades of attenuation- 10 and 100. As is the convention, the 100 stage is assigned the level 1 and the two other switch positions are referred to this and represent x10 and x100 gain. In the xl position the sensitivity is $20 \mathrm{~V} / \mathrm{cm}, 2 \mathrm{~V} / \mathrm{cm}$ in the $x 10$ and $200 \mathrm{mV} / \mathrm{cm}$ in x100 position.

Fig. 14 : The input attenuator circuit.

CONSTRUCTION

All components are mounted on the switch. As the layout is absolutely straight forward and depends to a large extent on the components used, no wiring diagram is shown.

SYNC CIRCUIT

The theoretical circuit of the sync unit is shown in Fig. 15. The function of the sync unit is to present a stable trace on the CRT screen. While this can be achieved by careful adjustment of the fine frequency control, the sync unit enables traces of waveforms of varying frequency to be displayed.
$\operatorname{Tr} 17$ acts as a switch and is effectively wired across

The main component board; compare this with Fig. 13.
the timing capacitor CT. When $\operatorname{Tr} 17$ is switched on, CT is shorted and cannot charge from the constant current source. As soon as the base of Tr 17 is open circuited Tr17 then becomes effectively a high resistance across CT allowing CT to charge in the normal way. The resistance of Tr17 in the open circuit mode is sufficiently high not to affect the charge in CT.
$\operatorname{Tr} 17$ is switched by the bistable built around $\operatorname{Tr} 15$ and Tr16. Negative pulses applied to the base of Tr16 switch off Tr17. Negative pulses applied to Tr15 base switch $\operatorname{Tr} 17$ on.
The operational sequence is as follows: as the unijunction $\operatorname{Tr} 9$ fires and discharges the timing capacitor CT, a negative pulse is developed across R29. This pulse is fed to the base of Tr15 and this switches Tr17 on-shorting out the timing capacitor CT. The timebase is now switched off and will not start again until a negative pulse is applied to the base of Tr16, thereby "opening .the gate". These negative opening pulses are effectively the sync pulses and are derived from the Y amplifier circuit.

The sync pulses are derived from the Y amplifier by means of the squarer circuit around $\operatorname{Tr} 14 . \operatorname{Tr} 14$ is an over-driven amplifier producing square waves from any sine-wave or square wave input. The square-wave produced across R42 is put into the differentiator circuit of C16 and R43. From the differentiator circuit two sets of pulses are produced -one set positive going and the other negative going. The positive pulses are rejected by D7 and only negative going pulses are applied to Tr 15 . It must be noted that the resistor R 43 does not repre-
sent the full resistance in the differentiator as the resistance of R45 is effectively across R43 during the negative pulse.

The input to the squarer circuit is derived either from R16 " b " in the Y amplifier or from an input on the front panel for external sync.

CONSTRUCTION

The original unit was built as a separate unit from the main chassis although there is more than ample room for the sync unit on this board. The layout is shown in Fig. 16.

TESTING

Wire in the complete unit with the exception of the connection to R29. Switch on and apply a signal to the Y input. The timebase should run as normal. Disconnect the input to the Y pre-amplifier and make up the connection to R29. It will be found that the timebase will not run. Next apply a signal to the Y input when the timebase will fire normally. The degree of synchronisation can be assessed by noting the intensity of the spot at the right hand side of the trace. The brighter the spot the wider the difference between the fundamental frequency of the timebase and the input frequency signal. The "pull-in" range of the sync unit will be found to be very wide.

CALIBRATION

For maximum usefulness the Y amplifier must be calibrated to determine the deffection sensitivity and the timebase frequency evaluated. The Y amplifier sensitivity can be calibrated using the circuit of Fig. 7. With a mains input of 240 V , a peak-to-peak voltage of 48 V is obtained from the high level output and 4.3 V peak-to-peak from the low level output. By feeding the appropriate output from the calibrator into the Y input, the deflection sensitivities can be measured. It is usual to express the sensitivity in terms of volts per centimetre.

The timebase frequency may now be determined. Before proceeding further the multivibrator of Fig. 17 must be constructed. With the highest value capacitor switched into the CT position, feed in a 50 Hz signal from the calibrator (Fig. 8). Count the number of complete cycles displayed. As each complete cycle occupies 20 milliseconds, the ramp speeds may be computed. The timebase speed is expressed in terms of milliseconds per centimetre. Set the timebase speed so that only one complete cycle is displayed with the sync unit switched off. Apply the output from the calibration multivibrator to the Y input. Set the timing resistor VR300 so that 20 sets of complete square waves are seen. The multivibrator is now set to 1 kHz and is, therefore, producing pulses with a repetition speed of 1 millisecond. This 1 millisecond calibrator may then be used to measure the

Fig. 17: A circuit which may be used for calibration.

Fig. 18: The siting of the controls on the front panel.
speed of the timebase on the higher ranges.
Using the calibrated Y input set the output of the multivibrator to $1 V$ peak-to-peak and seal the output potentiometer VR301 and the timing resistor VR300. The calibrator may then be built into the oscilloscope unit if required. No constructional details are given of this simple circuit.

A rear view of the completed unit showing the resistors makingupR12.

GENERAL

As stated in the introduction, a wide range of transistors may be used in the circuit. With the exception of the deflection output transistors all the NPN transistors can be almost any type satisfying the following criteria:
a Silicon construction (or low leakage germanium)
b Voe greater than 15V
c Dissipation greater than 250 mW
d Gain greater than 40
The PNP transistors must be of silicon construction as the circuits in which they are employed rely on the transistors having low leakage. Within this limit any silicon PNP working at a low voltage greater than 15 V will be satisfactory.

The output transistors can be any type having a $V_{\text {oe }}$ greater than 120 V and a gain greater than 20.

Back Numbers

We regret to inform readers that owing to the closure by the Company of the department concerned it will no longer be possible to supply back numbers of Practical Wireless and Television.

To ensure obtaining regular copies of these magazines readers are strongly urged to place a regular order with their local newsagent, or to take out an annual postal subscription.

Reference to past issues of the magazines may sometimes be obtained at certain public libraries who may hold bound volumes. A few libraries are said to offer a photostat service. Alternatively, we are always willing to insert " free request for specific back numbers in our " CQ " column which appears in most issues.

COMPREHENSIVE multiband recelver (PW Nov-Dec. 1971)
 FURTHER NOTES
 By
 F. G. RAYER

On the short wave ranges, coverage is approximately $1 \cdot 7.5 \cdot 0 \mathrm{MHz}, 5-15 \mathrm{MHz}$ and 11.31 MHz , similar to that provided with many receivers. As plug-in coils are used, it is easy to split up coverage to include one extra range. This opens out tuning a little, but its main advantage arises if a v.h.f. convertor requiring continuous tuning from $4-6 \mathrm{MHz}$ is added, as this then falls in a single range, avoiding coil-changing.

To add this range, adjust the coil cores for ranges of $1 \cdot 6-3 \cdot 8 \mathrm{MHz}, 7 \cdot 14 \cdot 5 \mathrm{MHz}$ and $13-31 \mathrm{MHz}$. The new or additional range is $2 \cdot 5 \cdot 6 \cdot 0 \mathrm{MHz}$. The coils for this coverage are as follows:

Aerial. "Blue" Range 3. Remove 12 turns from the tuned section, and re-solder.

Mixer. "Yellow" Range 3. Modify as for aerial coil.
Oscillator. Use a "White" Range 3 oscillator coil, instead of the "Red" Range 3 oscillator coil, padder values and connections remaining unchanged.

Proper ganging will be obtained, after adjusting the aerial and mixer coil cores in the way described.

TUNING METER

Space is available to the left of the tuning scales for a 42 mm square S-Meter (1 mA f.s.d.), and a suitable circuit is shown in Fig. 1. With aerial shorted to earth, VRI is rotated until the S-Meter reads zero. When a signal is tuned in, the a.g.c. voltage reduces the i.f. stage cathode current through R1. Less voltage is dropped across R1, causing the negative terminal of the meter to become negative, so that a reading is produced. Sensitivity can be modified by changing the value of R2.

Fig. 1: Additional circuitry required for installing the S-meter
All trimming or other receiver adjustments are directed towards obtaining the highest meter reading. External improvements, as to the aerial-earth system, will also increase meter readings.

TRANSISTOR CREUITRY Inf hagimers PART 6

 H.W. HELLYER \& MICHAEL HOLLLER

 H.W. HELLYER \& MICHAEL HOLLLER}

Upper and Lower-case

Those of you who are still with us, and old hands at transistor circuit building, may not need reminding; newcomers may wonder what the heck I am talking about; but recent correspondence reveals that it is necessary to recap on one vital point-the use of upper-case (capital) and lower-case (small) letters when we are discussing transistor parameters.

More than ever necessary when we ourselves are guilty of the cardinal error of using them wrongly. My excuse could easily be that I could not read Michael's scribble that accompanied the little module that we made the subject of Part 5. But I should have spotted that in the section headed "input Impedance", the second sentence of the second paragraph began . . . "H parameters again, but $h_{i e}$ simply means. . . ."
That capital H should have been a small one, of course, and I should have rewritten the sentence so that it did not kick off with " H ".
Later on, talking about the base bias, I committed a similar crime. "The base current I_{B} is found from the formula $I_{B}=\frac{I_{C}}{H_{F E}}$ where $H_{F E}$ is the d.c. current gain of the transistor.

Our capitals are quite right on the suffix-FE refers to the d.c. current gain, certainly, while fe is the forward current gain with output shorted and in the common emitter mode. But the capital H is wrong. As you will have noted from the December 1971 issue, page 711, hybrid parameters have their own strict code of symbolism; and we use h, as in $h_{\text {ie }}$ or $h_{f e}$ or $h_{\text {FE, }}$, and so on. On another page, friend Henry, who is probably poking gentle fun at our flounderings, would be quick to tell you that capital H means something quite different!

Super Alpha

Back then to our subject, the Darlington Pair of transistors, or, to give them their alternative title, the Super Alpha circuit. Their purpose, to recap to the end of Part 5 , to increase the input impedance of our buffer amplifier circuit, without despoiling any other of its good points. Remember, we pointed
out that good matching was more easily achieved if the impedance of the device into which the signal was being fed was ten times or more that of the output which was feeding it.
There is no cast-iron rule about this, but the generalisation needs stating, for, so often, manufacturers fail to agree with any known standard in stating their specifications, and $100 \mathrm{k} \Omega$ might mean the input "wants to see" $100 \mathrm{k} \Omega$, and is actually considerably higher if measured, or might mean that it actually is $100 \mathrm{k} \Omega$.

Then, you see, if you try to match some circuits with $100 \mathrm{k} \Omega$ output into this "specified" input, you simply would not get the conditions that the specifications might have led you to expect.

This is a practical problem, and I make no apology for introducing it at this point, for the Darlington circuit, on the face of it, looks like a complicated way of achieving what could be done much more simply. Not so, as we shall demonstrate by a step-by-step design exercise.

Why high?

Accept, first of all, that we need a high impedance input. Harking back to the prototype that Mike built, we were able to measure $105 \mathrm{k} \Omega$ input impedance on the built-up model, and could probably have improved somewhat on this with a bit of fiddling. But did you notice the underlined remark that followed? To summarise, frequency limits are affected by the source impedance.

There are occasions when we want to match something whose source impedance is (a) much higher than a tenth, or even a fifth, of our input impedance, or (b) alters drastically with frequency, i.e., is reactive. A perfect case in point is the crystal microphone. There are a lot of these about, and they are often capable of giving much better results than they do when matched into the tape recorders or "Disco" mixers with which they are sold. Don't always blame the microphone: if you don't believe me, ask Cosmocord Ltd., who market a wide range of these devices under the Acos label and get very hot under the collar when they think of some of the ways in which their products are used-or misused!

So, what are the limiting factors that prevent us achieving a higher input impedance, or, to be technical Z_{in} ? First, the forward current gain, h_{fe}. The larger this is, the greater the input resistance will be, $h_{\text {ie }}$. Check back with part 5 to see the significance of this and go on to r_{e}. This (often overlooked) internal resistance of the transistor itself matters a lot. Because it doesn't show up on circuit diagrams, the clever dicks who simply alter calculated circuits, like the well-engineered Mullard, Ferranti or Motorola published circuits, find their finished construction behaving in unpredictable ways. It is a fixed value. It cannot be altered, but, though small in relation to RE, it has to be allowed for.
RE, the external resistance, seems to give us scope for manoeuvre. Increase this and, as we have seen, we increase the input impedance. Lovely-except that an increase in resistance here will mean an increase in the voltage dropped across the resistor, so we now need a higher supply. Even if this can be made available, it is not always desirable for input stages, where, in general, the higher the operating voltages, the more the noise problem rears its ugly head.

Base bias resistors also have to be considered. Remember, in Part 5, we were very concerned with their effect on the overall circuit. To put it into plain language, if you calculate them to get the best d.c. conditions, you may very well find your circuit unable to cope with the a.c. conditions or the match-ing-which, after all, is why the darned thing is being built!
If the values of base bias resistors are increased, we can reduce their shunting effect on the transistor input d.c. resistance (h_{i}). But under a.c. conditions, we may very well find the stability of the circuit seriously affected.
So, accepting that there are limits to what we can do in the way of altering components and voltages of a common emitter amplifier circuit in order to achieve a high input impedance, let's turn immediately to the solution, and see what, in fact, it does.

Darlington Pair

There is nothing magical about the term Darlington. Without delving into the historical context, we are simply referring to a method of combining two transistors in such a way that they effectively form one, but with different characteristics.

Fig. 26 : The rudiments of the Darlington Pair circuit.

Fig. 27: Consider only Tr2, isolated from the rest of the circuit, with imaginary bias.

Take a look at Fig. 26, and you will see this done in the emitter follower mode. As I hope to show later, this is not the only configuration in which it applies, but it suits our purpose at the moment to rip it to bits and discuss the design.

If you want to make a buffer circuit yourself, with a high impedance output, then the following notes may help you adapt your own bits and pieces rather than have to mourn about "those lucky blokes at PW who can lay their hands on anything they want" as a recent correspondent said.

Fig. 26 shows two n.p.n. transistors, connected so that both collectors are taken to the positive rail, the input to the base of the first, $\operatorname{Tr} 1$, is biased in the way we have already seen, but whose emitter is taken to the base of $\operatorname{Tr} 2$. Looked at one way $\operatorname{Tr} 2$ forms the emitter load of Trl; another way, Trl and its operating conditions, determine the base input conditions of $\operatorname{Tr} 2$.

Looking first at Tr2, and referring to Part 5, we see that the output is taken across R_{e}, the emitter resistor, via $\mathrm{C}_{\mathrm{nkt}}$, but the base bias, instead of being derived from two resistors (as with Tr) depends on Trl and its operation. So let's pretend for a moment that Trl doesn't exist, and that $\operatorname{Tr} 2$ has conventional biasing, repeating last month's circuit, but with dotted lines to show that the BC109 between them is really the $\operatorname{Tr} 2$ of our present Fig. 26. We now have Fig. 27, where some values are inserted and a few more details are given.

Calculations

Recapping again, we chose a typical transistor and typical operating conditions, so in Fig. 27 we state an I_{c} of 1 mA , an $h_{\text {FE }}$ of 380 and as the base current I_{b} is the former dividend by the latter,

$$
\mathrm{I}_{\mathrm{b}}=\frac{\mathrm{I}_{\mathrm{c}}}{\mathrm{~h}_{\mathrm{FE}}} \text { or } \frac{1 \mathrm{~mA}}{380}
$$

which is $2 \cdot 6 \% \mathrm{~A}$.
If now we refer back to Fig. 26. and connect Trl in the base circuit of Tr2, making them similar transistors, as it happens, though they don't necessarily have to be, we shall see that base current of $\operatorname{Tr} 2$ will flow through $\operatorname{Tr} 1$ emitter, so we can immediately say that the emitter current of Trl is $2 \cdot 6 \mu \mathrm{~A}$.

Unfortunately-there's always a catch, isn't there? -at such a low current, almost all forms of transistor likely to be used in our buffer circuits

Fig. 28: Typical variations of forward current transfer ratio hfe with collector current Ic. Note that curve is for specific collector voltage VCE.
would have a very small a.c. current gain $h_{f e}$ in these circumstances. Now do you see why I began with that upper-case and lower-case argument.

We must do something about this. Increasing the current in Tr 1 is the obvious first thought, so we refer to the $h_{F E} / I_{c}$ graph for the transistor in question.

Messrs Mullard, as ever, are immensely helpful, and can provide graphs that tell us practically everything except the Sign of the Zodiac when the transistor was born, so our Fig. 28. is a reproduction of their "typical variation of forward current transfer ratio with collector current". Please note, this is at a particular collector-emitter voltage, in this case $\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}$. But from this we can get some idea of what we want, and this is the sort of collector current it would be desirable to use. Here, we see the lowest usable value is down around $10 \mu \mathrm{~A}$. We shall use a collector current of around $50 \mu \mathrm{~A}$, and from the graph we can see that this will give us a d.c. current gain, $h_{F E}$, of somewhere around 260 .

Increasing I_{E}

We have $2 \cdot 6 \mu \mathrm{~A}$ of emitter current so far, and we need $50 \mu \mathrm{~A}$. Let's just revert to previous theory and stick in another resistor $\mathbf{R}_{\text {el }}$ from the ennitter of Trl to the negative line, as in Fig. 29. Now, this circuit is not for construction: it is deliberately

Fig. 29 : The voltage and current plan of the simple circuit from which the final working model will evolve.
drawn to illustrate the design theory; please bear with me!

We have included the known voltages and currents, that is the collector current of $\operatorname{Tr} 2$, which is 1 mA , and the base current of $\operatorname{Tr} 2$, which is $2 \cdot 6 \mu \mathrm{~A}$. So the emitter current is effectively the same as the collector current, as the effect of the very small base current, which also flows through $\mathrm{R}_{\mathrm{e} 2}$, can be ignored. 1 mA flowing through $2 \cdot 7 \mathrm{k} \Omega$ gives a voltage drop of $2,700 / 1,000$ or $2 \cdot 7 \mathrm{~V}$. That's our emitter voltage of $\operatorname{Tr} 2$ fixed.

The base to emitter voltage of a silicon transistor is around 0.6 V , so we come up with a base voltage for $\operatorname{Tr} 2$ of $2 \cdot 7+0 \cdot 6=3 \cdot 3 \mathrm{~V}$. Take another look at Fig. 29. This is now the emitter voltage of Tr 1 , which was one of the missing factors. Again add 0.6 V and we get a figure for the base voltage of $\operatorname{Tr} 1$, i.e., $3 \cdot 3+0 \cdot 6=3 \cdot 9 \mathrm{~V}$.
$R_{\text {el }}$ is the mystery component. The emitter current of Trl will be the sum of that base current previously considered and the current flowing through R_{el}. But we have already said that the required emitter current is to be $50 \mu \mathrm{~A}$. So that leaves us with $50+$ $2 \cdot 6$ or $52 \cdot 6 \mu \mathrm{~A}$ as the actual emitter current.

Fig. 30 : The end result, a Darlington Pair input circuit with reasonably high impedance, good stability and the gain required.

The collector current I_{C} of $\operatorname{Tr} 1$ flows through $R_{e 1}$ and we know the emitter voltage. So R_{el} the emitter resistor

$$
=\frac{3 \cdot 3 \mathrm{~V}}{50 \mu \mathrm{~A}} \text { or } \frac{3 \cdot 3}{50 \times 10^{-6}} \text { or } \frac{3 \cdot 3 \times 1,000,000}{50}=66,000 \Omega
$$

Choosing components within a 5% tolerance range, we can settle for a preferred value of $68 \mathrm{k} \Omega$, and this is now marked in on Fig. 29.

Base current Tr1

We now have the correct base current in $\operatorname{Tr} 2$ and the correct emitter current in Trl so can go on to calculate the values of bias resistor we shall need.

The base current of $\operatorname{Tr} 1$ will be its collector current (which we know) divided by $h_{\text {FE }}$, the d.c. current gain. But this base current is only a very small fraction of the emitter current, and can be ignored for the next calculation.

Taking the collector current I_{c} of $\operatorname{Tr} 1$ to be the same as its emitter current, $52 \cdot 6 \mu \mathrm{~A}$, we prove this point by saying:

$$
I_{b}\left(1_{1}\right)=\frac{I_{c}\left({ }_{1}\right)}{h_{F E(1)}}=\frac{52 \cdot 6 \mu \mathrm{~A}}{260}
$$

somewhere near $0 \cdot 2 \mu \mathrm{~A}$.
Developing our final circuit, Fig. 30., and ignoring for the moment that I've already marked in the values of R1 and R2, let's calculate their ohmic values from what we already have. First, a proviso: for good stability, we want about five times as much current flowing in the bias chain as we have base current. So, $0 \cdot 2 \times 5=1 \mu \mathrm{~A}$ as a guiding value.

We know the base voltage of $\operatorname{Tr} 1$ is 3.9 V . The lower resistor, R1, has our desired figure of $1 \mu \mathrm{~A}$ through it, so the value is

$$
R 1=\frac{3.9}{1 \times 10^{-6}} \text { or } 3.9 \times 1,000,000=3.9 \mathrm{M} \Omega
$$

This is a standard value, and a 5% tolerance component would be used.

R2 has a voltage dropped across it which is the difference between the collector voltage (in this case, the positive rail after decoupling) and the base voltage, $=7 \cdot 7-3 \cdot 9=3 \cdot 8 \mathrm{~V}$. So

$$
R 2=\frac{3.8}{1.2 \times 10^{-6}}
$$

where the denominator in this case is the $1 \mu \mathrm{~A}$ flowing through R1 plus the $0 \cdot 2 \mu \mathrm{~A}$ of base current.

$$
\mathrm{R} 2=\frac{38,000,000}{12}=3,166 \mathrm{k} \Omega
$$

A $3 \mathrm{M} \Omega$ resistor, 5%, is near enough, and two $1.5 \mathrm{M} \Omega$ resistors in series may be a more practical solution.

If you are in doubt about this tolerance business and having to make up values with series or parallel resistor combinations, bear in mind the simple rule: in series, variations in the biggest resistor have most effect-in parallel, variations in the smallest resistor have most effect.

Input resistance

Looking into the base of Trl, ignoring R1 and R2 for the moment, the input resistance is calculated from $R_{i n}=h_{\text {fe(} 1)} \times h_{h_{\text {e }(2)}} \times \operatorname{RE}(2)$. Approximatelybecause we now ignore those tricky hidden resistors, r_{e} of each transistor, which are now very small in comparison with the values of external R_{e} we have calculated.

Provided $R_{e t}$ is many times larger than $R_{e s,}$, its shunting effect on the input of Tr 2 will be negligible. Make it between 5 and 30 times the value of $R_{\text {e2 }}$ and we shall not have many worries, so our Rel is $68 \mathrm{k} \Omega$.
Harking back to the formula for $\mathrm{R}_{\text {in }}$, we get the $h_{f e}$ figures from the published data sheets ($h_{\text {fe }}$ rising as collector current rises, remember), see Fig. 31. $\mathrm{R}_{\text {in }}=240 \times 440 \times 2,700=285 \cdot 12 \mathrm{M} \Omega$ to be exact.
The Stage Resistance is the parallel combination of this with R1 and R2, which is-work this one out from the formula

$$
\frac{1}{\mathrm{R}_{\mathrm{IN}}}=\frac{1}{\mathrm{R} 1}+\frac{1}{\mathrm{R} 2}+\frac{1}{\mathrm{R}_{\mathrm{in}}}=\frac{1}{3 \cdot 9 \mathrm{M} \Omega}+\frac{1}{3 \mathrm{M} \Omega}+\frac{1}{285 \mathrm{M} \Omega}
$$

Decoupling

Theory and practice never coincide, and the desired rail voltage may be quite a lot less than a convenient battery size. So we drop the residual voltage and decouple the line to prevent alternating signals modulating the battery resistance and causing the supply voltage to vary.
The components used are shown in Fig. 30. and are calculated from the voltage difference $9 \mathrm{~V}-7 \cdot 7 \mathrm{~V}$ $=1 \cdot 3 \mathrm{~V}$ divided by the total current. This is the collector current of $\operatorname{Tr} 1,0.05 \mathrm{~mA}$, of $\operatorname{Tr} 2,1 \mathrm{~mA}$ and in R2, 0.0012 mA , total 1.0512 mA .

We can take this as 1 mA through $\mathrm{R}_{\text {dor }}$, giving $1 \cdot 3$ $\frac{1.3}{1 \times 10^{-3}}$ or $1.3 \mathrm{k} \Omega$. Again, using the nearest preferred value, within tolerance, we'll settle for $1 \cdot 2 k \Omega$ at 5%.

The decoupling capacitor needs to be quite large, as we have already discussed, and a practical value is $100 \mu \mathrm{~F}$. Similarly, a practical value of the output coupling capacitor, C CmI , would be around $10 / \mathrm{F}$.

Fig. 31: Graph of variation of input impedance with collector current.
But $C_{i u}$ need not now be so large as we previously needed. The a.c. resistance (impedance) into which it is feeding is so much higher than before that a value such as $0.022 \mu \mathrm{~F}$ could be used. To check this, take the value that gives the same reactance to your desired lower frequency limit as does the input impedance of the circuit-i.e., the -6 dB point (voltage). This works out to around 4 Hz for $0 \cdot 022_{\mu} \mathrm{F}$ which is plenty good enough for our purpose.

Before leaving the subject, I revert to that designation "Super Alpha". The term alpha, symbol x, you will remember from previous notes is in our case the same as $h_{\text {f. }}$. As we obtained our $R_{\text {in }}$ by multiplying the two $h_{\text {fe }}$ figures, the effective $h_{\text {re }}$ of the Darlington Pair is called Super Alpha.

Other uses

We have only been talking about input circuitry, and an impression may have been given that the Darlington pair is explicitly an input device. Not so, and just to prove it, but without any calculations, Fig. 32 shows four possible configurations of complementary push-pull output stages of audio amplifiers. These are stripped to their essentials, and have all been used in some form or another.

The use of the Darlington pair in power amplifiers

Fig. 32: Four variations of the Darlington Pair as used in push-pull output circults of commercial power amplifiers.
overcomes (to some extent) a disadvantage of complementary symmetry, which is high current dissipation of a Class A driver transistor. Some other solutions exist, of course, such as quasi-complementary circuits, where the driving pair are "opposites" and the driven pair a matched and similar pair of transistors. This is not the place to talk about power amplifiers-a fascinating subject-but to illustrate the Darlington pair, so first to Fig. 32(a), where the two "halves" of the complementary circuit are formed from two pairs, much the same as we have already dealt with.

The drawback here is a biassing problem: base/ emitter voltage at the point of conduction differs widely between driver and output transistor. Some bias adjustments are needed to supplement the work of the diodes.

Fig. 32(b) is an alternative, solving some problems, but really doing no more than turning the Darlington pairs upside down.

If we try, instead, the pair "inside out", we produce the cascaded complementary configuration of Fig. 32 (c) where each set operates as an emitter follower. It is easier to provide bias because the diodes are more easily matched, but Fig. 32 (d) shows the more usual solution, where we get the power gain of the two cascaded common emitters and a better bias system. But it has a drawback not always taken care of in eventual construction, and that is a more touchy thermal stability.

TO BE CONTINUED

- wave loop antenna. North American stations logged include WOR New York on 710 kHz ; CBM Montreal on 940 kHz ; WINS New York 1010kHz; CBA Moncton on 1070 kHz ; WBAL Baltimore 1090 kHz ; WNEW New York 1130 kHz . He asks if medium wave DX is best during periods of anticyclonic weather. Although high pressure systems affect v.h.f. reception they appear to have no effect on the medium waves. Propagation on the lower frequencies is through the ionosphere which lies far above the thin shell of weather that surrounds the earth.
P. J. Kay who lives in Magull near Liverpool, reports reception of WNEW 1130 kHz at 0030 hrs on November 15th using a Perdio transistor portable. Very occasionally, high power North American medium wave stations such as WNEW, which is 50 kW , are received in this country at considerable strength and can be heard from a favourable location on simple equipment. More reliable reception will be obtained by using a sensitive and selective receiver of communications standard along with an outdoor aerial or an indoor medium wave loop. Search before midnight for the following stations, all of which have been logged frequently during recent months. CBN St John's, Newfoundland on 640 kHz ; CJOX Grand Bank, Nfld and WOR New York, both on 710 kHz ; WDHN Boston on 850 kHz ; CJON St. John's 930 kHz ; CHER Sydney 950 kHz ; WINS New York 1010 kHz ; CBA Moncton 1070 kHz ; WNEW 1130 kHz . These broadcasters are easy to identify as they use their callsigns frequently. After midnight look for Godhavn in Greenland on 650 kHz . It can usually be heard with programmes in Danish or "Greenlandic", when reception from North America is favourable.

Harold Emblem of Mirfield, Yorkshire, reports reception of the new EAK5, Radio Popular Las Palmas in the Canary Islands on 836 kHz . Michael Barraclough of Whitby mentions that this newcomer to the band is anxious for reception reports which should go to AP744, Las Palmas de Gran Canaria-1, Canary Islands. Harold has also logged. the new outlet at Abu Dhabi in the Persian Gulf on 809 kHz at 0230 hrs . Radio Pakistan has been heard testing on 1010 kHz and has been logged by the writer at 2320 hrs. This station is believed to be in West Pakistan.

Gordon Darling of South Harrow draws attention to a recent supplement to the Post Office Guide which says that Commonwealth Reply Coupons are no longer accepted in Canada, Australia, Ceylon, Trinidad and Tobago. In future, MW DXers sending reports to Canada will have to enclose an International Reply Coupon.

Please send reports and information about the medium waves to the author at 132 Segars Lane, Southport, PR8 3JG.

INCREASE YOUR KNOWLEDGE

MANY COURSES TO CHOOSE FROM incl.
RADIO \& TV ENGINEERING \& SERVICING,
TRANSISTOR \& PRINTED CIRCUIT SERVICING,
COLOUR TV SERVICING, ELECTRONICS,
NUMERICAL CONTROL ELECTRONICS,
TELEMETRY TECHNIQUES, CONTROL SYSTEMS,
ELECTRONICS FOR AUTOMATION,
COMPUTERS, ETC.

ALSO EXAMINATION COURSES FOR

C. \& G. Telecommunication Technicians' Certificates

General Radio Communicanons Certificate
Radio Amateurs' Examination
General Certificate of Education, etc.
BUILD YOUR OWN RADIO AND INSTRUMENTS
With an ICS Practical Radio \& Electronics Course you gain a sound knowledge of circuits and applications as you build your Sound knowledge of circuits and applications as 5 -valve Superhet Receiver, Transistor Portable, and highgrade test instruments (shown below). Everything simply explained. All components and tools supplied. For illustrated brochure, post coupon below.

MEMBEF OF THE ASSOCIATION OF BRITISH CORRESPONDENCE COLLEGES

C \& G Radio Servicing Theory

THERE IS AN CS cOURSE FOR YOU

Whether you need a basic grounding, tuition to complete your technical qualifications, or further specialized knowledge, ICS can help you with a course individually adapted to your requirements.
There is a place for you among the fully-trained men. They are the highly paid men-the men of the future. If you want to get to the top, or to succeed in your own business," put your technical training in our experienced hands.
ICS Courses are written in clear, simple and direct language, fully illustrated and specially edited to facilitate individual home study. You will learn in the comfort of your own home-at your own speed. The unique ICS teaching method embodies the teacher in the text; it combines expert practical experience with clearly explained theoretical training. Let ICS help you to develop your ambitions and ensure a successful future. Invest in your own capabilities.

FILL IN AND POST THIS COUPON TODAY
You will recenve the FREE ICS Prospectus listing the examination and ICS technical courses in radio, television and electronics PLUS detal/s of over 150 specialized subjects.
Accredited by the CACC.

\square
please send free book on.
(BLOCK CAPITALS PLEASE)
\qquad
INTERNATIONAL CORRESPONDENCE SCHOOLS
Dept. FB28, INTERTEXT HOUSE, STEWARTS ROAD, London, SW8 4UJ.

NOW that we have all recovered from the Festive Season we can get back to our shacks and start logging some DX. Many of you will have received new equipment as presents so how about putting it to good use and sending in a report.

Logs

The first report this time comes from Bryan Ewing in Seven Kings, Ilford. Bryan's equipment consists of a Codar CR70A, an ATU and a 50 foot long-wire, his log included:-
6025 Radio Portugal at 2112.
6075 R.A.I., Rome, Italy at 0436.
6120 S.B.C., Berne, Switzerland at 0152.
6170 Radio Sofia, Bulgaria at 1900.
7105 R.N.E., Spain at 2030.
7230 Radio Monte Carlo at 1125.
7290 Trans World Radio, Monaco at 1525.
9460 Radio Pakistan at 2005.
9525 All India Radio at 2015.
9615 H.C.J.B., Quito, Ecuador at 0402.
9625 Radio Sweden at 1115.
9645 Vatican Radio at 2030.
9680 Trans World Radio, Monaco at 0925.
9710 H.C.J.B., Quito, Ecuador at 0146.
9912 All India Radio at 2015.
11710 R.A.E., Argentina at 2345.
11730 R. Nederland, Bonaire at 0200.
11750 Finnish B.S. at 1000.
11815 Trans World Radio, Bonaire at 0110.
11830 Radio Havana, Cuba at 0109.
11835 R.T.V. Algerienne in French at 2100.
11875 R.S.A., South Africa at 2347.
11895 All India Radio at 2330.
11955 Voice of the Lebanon at 0230.
15200 Vatican Radio at 1500.
15200 Voice of Nigeria at 0648.
15325 Radio Canada at 1520.
15410 United Nations Radio at 1700.
17820 Radio Canada at 0743.
17945 Radio Pakistan at 1345.
21545 Radio Accra, Ghana at 1445.
21590 Radio Pakistan at 0806.
(All these transmissions were in English except where otherwise stated.)

Robin Yates of Deganwy, Caernarvonshire heard the following stations on his Alba stereogram:-
5960 H.C.J.B. Quito, Ecuador at 0800.
5990 Radio Canada at 0715.
7310 Radio Vilnius, Lithuania at 2230.
9530 All India Radio at 1930.
9690 WNYW, U.S.A. at 2100.

THE BROADCAST BANDS Malcolm Connah Frequencies in kHz - Times in GMT

9805 Radio Cairo at 2145.
11935 FEBA, Seychelles noted at 1730. 15130 WNYW, U.S.A. at 2000.
15155 Radio Havana, Cuba at 2010.
17720 WINB, Red Lion noted at 1930.
17855 NHK, Japan at 0800.
Clive Jones of Colliers Hatch near Epping describes his equipment as "a four valve domestic receiver with a looped, coiled and bent, untuned dipole!" This equipment enabled him to hear:-
6025 Radio Portugal in English at 2100.
9009 Kol Israel in English at 2120.
9480 Radio Kiev, Ukraine at 1950.
9545 R. Accra, Ghana in English at 2115.
9630 R. Sweden, Saturday Show at 1100.
9695 R.S.A., South Africa at 0040.
11720 Radio Canada in English at 2120.
11765 Radio Australia at 0900.
17880 H.C.J.B., Quito, Ecuador at 1915.
Julian Moss of Rayleigh has a Meridian 10 transistor superhet and a 60 foot long-wire enabling him to hear:-
5960 H.C.J.B., Quito, Ecuador at 0815.
6025 R. Portugal, Voice of the West at 2130.
7235 R. Australia in English at 1530.
9460 R. Pakistan with news at 2100.
9525 R.S.A., South Africa, English at 2245.
9530 A.I.R., Delhi in English at 1915.
9530 V.O.A., Monrovia, sign-off at 2230.
9545 R. Accra, Ghana in English at 2045.
9550 Finnish B.S. in English at 1830.
9570 R. Australia with DX News at 0735.
9575 R.A.I., Rome in Italian at 2130.
9620 R. Belgrade, Yugoslavia at 1550.
9625 R. Sweden in English at 1255.
9625 Radio Canada at 0720.
9670 Damascus, Syria, news in English at 2030.
9690 WNYW, U.S.A. at 2000.
9695 R.S.A., South Africa in English at 2215.
9745 R. Baghdad, Iraq in German at 2045.
11720 Radio Canada in English at 2120.
11765 Radio Australia in English at 0735.
11770 A.F.R.T.S., football match at 1950.
11790 A.I.R., Delhi; news in English at 2200.
11805 VOA, Greenville, N. Carolina at 1930.
11970 R.S.A., South Africa news in English at 2238.

Reports should arrive by the 15 th of the month and be addressed to me at 5 Ranelagh Gardens, Cranbrook, Ilford, Essex.

Changing Clock

Times certainly are changing．Eighteen months ago you would have been lucky to afford the components for a digital clock even if you could have tound a supplier－ but 1972 sees the dawning of a new age． While digital techniques become better known，prices continue to fall（about 50% last year）．This digital clock is mains fre－ quency operated and although it uses 12 i．c．＇s（price at the time of writing 67 p each） there is practically nothing else apart from the readout tubes．For the serious con－ structor now is the time to enter the digital field and how better than with a really practical project such as our digital clock．

UITE an easy month on the Amateur bands with not too many scribes sending in logs. I expect you're all still getting over the excitement of Christmas plus the novelty of the presents. Hands up all those who got a nice new receiver?

Some reporters have bemoaned the difficulties of learning to read c.w. signals and have asked if there is any "easy" way to pick up the morse code. If you own a tape recorder then you're half way there. All you need is some sort of morse key and buzzer (or better still an oscillator) and you can record your own morse. This will give you practice at sending and you can then play the tape back and practice reading also. Advantage is that you can send at just the right speed for your particular ability at receiving. Hint; use groups of mixed letters which don't make any sense, i.e., AMSZX, ATHQP, etc. This stops you anticipating the next character and makes sure that you really do "read" every symbol.

Another aid is the many slow morse transmissions which members of the R.S.G.B. put out specifically for those wishing to learn to read c.w. Topband is a favourite and since these stations are located all over the country there is almost certain to be a local station near you. In any case, you can see how many of the slow c.w. members you can log. There is some very good d.x. to be heard on c.w. On topband, for example, down very close to 1.8 MHz you can often hear W stations. So get a copy of the code, learn it and start using your receiver to the full. Incidentally, you need a b.f.o. for c.w. reception and if you are one of the many who are just getting your feet wet on the amateur bands with a commercial broadcast-type receiver which happens to cover short waves but which doesn't have a b.f.o., then take a peep at the January 1972 issue of Practical Wireless. On page iii of the Experimenters Circuits Supplement you will find a very simple circuit for a b.f.o. which can be used in conjunction with most receivers. Check that your receiver has an i.f. of 465 kHz or 1.6 MHz otherwise you will need to change the i.f. transformer shown in the circuit. Incidentally, this external b.f.o. will also enable you resolve single sideband too.

If you kid yourself that you are already well proficient in the gentle art of reading c.w., try tuning in at 1900 g.m.t. on the first Tuesday of each month. Listen on $3 \cdot 520 \mathrm{MHz}$ for the G3BZU morse proficiency transmissions. These rattle merrily away at $20,25,30,35$, and 40 words per minute. If you get it all down 100 per cent correct and send it with 10p to the QRQ Manager, RNARS, H.M.S. Mercury, Leydene, Petersfield, Hants, you get a nice certificate which tells all and sundry what a super dot and dash sorter-outer you really are.
Another query which keeps cropping up in the mail is the one involving some poor s.w.l. who, while reading about beams and long wires, is stuck in a

THE AMATEUR BANDS David Githson, G3JDG

Frequencies in kHz - Times in GMT

room on the umpteenth floor of a "no aerials allowed" block of flats.

One idea is to build an a.t.u. (antena tuning unit) and put a length of wire around the picture rail. Another sneaky (but effective) aerial is made by getting a length of enamelled copper wire, about 24 s.w.g., boring a hole in a small sorbo ball and pushing the end of the wire through and anchoring or tieing it. You can now lower the ball out of the window and play out the wire. You've virtually got a vertical antenna and the good thing is that even with Al vision, 24 s.w.g. enam. is invisible at more than a few feet. Idea of the rubber ball is to weight the wire and hold it down and also, if it's windy, the ball doesn't stove in someone's window 22 floors down. The idea of using some form of metal rod clipped to the window ledge will work but there is always the hazard that it will fall off and skewer some poor soul to the sidewalk-definitely not recommended!

Gibby's been chattering again and not getting on with the logs, but some questions in the mail come up agaïn and again, so periodically it seems a good idea to answer these.

Chris Kitchener (Haverhill) has been swotting for O-levels and the R.A.E. (gd lk OM). Time between "swots" brought signals from SV0WII, SM4DIT/MM, VK2YU, ZD3D, ZL3RB, 4X4SM, 8R1J, 9H1CU and 9 J 2 JY all on a TR500SE receiver and PR30 preselector plus a tank whip at 36 ft .
Interesting letter from John Stevenson (Woking) who has been playing with a solid state direct conversion receiver. This has two BCl08's as a product detector fed from the aerial, BC108 b.f.o. and another three BC108's as an a.f. amplifier. Aerial is 50 ft . end fed "wrapped round an oak tree." (Bet it brings in the signals a "Treet"). Preliminary peeps on 14 MHz raised visions of CT1BT, IS1LID, IT9CLB, PY7EXY, UA3IQ0, UB5AD, ZE1BP, 5Z4GK, 9H1GK.

Howard Dearing has dropped the s.w.l. prefix and now talks back signing G3XVX. Rig is a homebrew running 25W p.e.p. and 10 W c.w. Receiver is a Hammerlund Super Pro with a homebrew topband converter using $3 \cdot 1-3 \cdot 3 \mathrm{MHz}$ as an i.f. Howard's log for 1.8 MHz stations worked (I'm green already) reads: K2GNC, K8RNE, VE3EK, W1WQC, W2FD, W2IU, W2UEZ, W3GM, W4WFL/1, W4QCW, ZD8AY (Ascension Island) all on c.w. On s.s.b. the log reads: WlWQC, W1HGT, W2HCW. Antenna is an inverted L Marconi with 55 ft . vertical section some 10 ft . longer than an electrical quarter wave and tuned with a series capacitor. Earth system is a radial affair plus 12 buried copper pipes.

[^1] BY ATES • EMIHUS • FAIRCHILD • FERRANTI • I.T.T. MULLARD • NEWMARKET P PHILIPS • R.C.A. - TEXAS

OUR RANGE IS ALWAYS EXPANDING - Enquiries invited for new types arriving daily
ADDITIONAL DISCOUNTS - 10% 12+: $15 \% 25+: 20 \% 100+$-DELIVERY IS FROM STOCK

WOW! A FAST EASY WAY TO LEARN BASIC RADIO \& ELECTRONICS

Build as you learn with the exciting new TECHNATRON Outfit! No mathematics. No soldering-you learn the practical way.

Learn basic Radio and Electronics at home-the fast, modern way. Give yourself essential technical "know-how"-like reading circuits, Give yourself essential technical experimenting, building-quickly and without effort, and enioy every moment, , Self.Build Outfit take the Method and the remarkable TECHNAIRON self-Buind Outit

Even if you don't know the first thing about Radio now, you'll build your own Radio set within a month or so!
and what's more, you will understand exactly what you are doing. The TECHNATRON Outft contains everything you need, from cools to transistors-even a versatile Multimeter which we teach you to use. All you need give is a little of your spare time and the surprisingly low fee, payable monthly if you wish. And the equipmient remains yours, so you can use it again and again.

You LEARN-but it's as fascinating as a hobby Among many other interesting experiments, the Radio set you build-and it's a good one-is really a bonus. This is first and last a teaching course, but the training is as fascinating as any hobby and it could be the spring-board for a career in Radio and Electronics.

A 14-year-old could understand and benefit from this Course-but it teaches tne real thing. The easy to understand, practical projectsfrom a burglar-alarm to a sophisticated Radio set-help you master basic Radio and Electronics-even if you are a "non-technical" type. And, if you want to make it a career, B.I.E.T. has a fine range of Courses up to City and Guilds standards.

New Specialist Booklet
If you wish to make a career in Electronics, send for your FREE coDy of "OPPORTUNITIES IN TELECOMMUNICATIONS / TV AND RADIO'. This brand new booklet-just out-tells you all about TECHNATRON and B.I.E.T.'s full range of courses.

BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY

Dept. B8, ALDERMASTON COURT, READING RG7 4PF

WICKS
FOR BARGAINS
E.A. STEREO AMPLIFIER:

5 watts per channel; In attractive afrormosia veneered sleeve. Controls: On-off volume: Bass: Treble: Balance: Selector: Headphone Jack. Ceramic or Magnetic PU. Radio and Tape Inputs: Tape output and speaker output. Fully guaranteed 12 months parts. 6 months free service. Size $144^{\prime \prime} \mathrm{W} \times 9$ sisín $^{\prime \prime} \mathrm{D} 45^{\prime \prime} \mathrm{H}$ approx. £ 16.50 inc. post.
3 WAY SPEAKER SYSTEM: $8^{\prime \prime}$ twin cone Bass speaker and $3^{\prime \prime}$ tweeter, fitted in extremely elegant teak veneered cabinet. Size : $18 \frac{1}{2}{ }^{\prime \prime} \mathrm{H} x$ $11 \frac{3}{4} \mathrm{~W} \times 10^{\prime \prime} \mathrm{D} .8 \mathrm{ohms}$ handle 10 watts. 57.50 inc. Carr.

GARRARD OFFERS
Garrard SP25 Mk III (Rec. Price (f15-85) Our Price £11-25. Carr. \& Ins. 50p.
Garrard SP25 Mk III ready wired in beautiful teak plinth with tinted perspex cover. (Fitted with 5 -pin DIN plug or phono plugs-state cholce) (Rec. phono plugs-state choice) (Rec.
Price £23.19). Our Price £16. Carr. \& Ins. 75p.
Or with choice of fitted cartridges. SP25 Mk III/Sonotone 9TAHC (Rec, Price £27.29) Our Price £18. Carr. \& Ins. 75p,
SP25 Mk III/Shure M3DM (Rec
Price £31-02) Our Price £20. Carr. \& Ins. 75p.
SP25 Mk III/Goldring G800 (Rec. Price £36-19) Our Price £21. Carr. \& Ins. 75p.
SP25 Mk III/Shure M55E (Rec. Price £36-16) Our Price £21. Carr. \& Ins. 75p. Note! Garrard SL65B (Automatic Note I Garrard SL6SB (Automatic
Changer version of SP25 Mk III) alternatively supplied-please add £3 to above prices.
Garrard AP76 (Rec. Price $£ 27$-85) Our Price $£ 18 \cdot 85$. Carr. \& Ins. 50p. Garrard AP76 ready wired in beautiful teak plinth with perspex cover (fitted teak plinth with perspex cover (f
Please state choice. (Rec. Price £39-85). Our Price $£ 24.94$ Carr, \& Ins. 75 p. OR WITH CHOICE OF FITTED CARTRIDGES.
Garrard AP76/Shure M3D (Rec Price $£ 47 \cdot 26$) Our Price £28.94. Carr. \& Ins. 75p. Garrard AP76/Shure M55E (Rec. Price £52•82), Our Price £31-35. Carr. \& Ins. 75p.
Garrard AP76/Goldring G800 (Rec. Price $£ 52 \cdot 82$) Our Price $\mathbf{£ 3 1} \mathbf{3 5}$. Carr. \& Ins. 75p.
Garrard 2025TC fitted with stereo mono cartridge. $£ 8 \cdot 99$. Carr. Paid,
TEAK PLINTH \& PERSPEX COVER Ready cut to take 2025TC, SP25 III, SL65B avallable at $\$ 4 \cdot 99$. Carr, \& Ins, 35p. CARTRIDGES (All with diamond stylus) Sonotone 9TAHC dia. Rec. Price £4-10. Our Price £1-99
Shure M3DM (Rec. Price \&7-41) Our Price £4.87.
Shure M55E (Rec. Price £12-97) Our Price $89 \cdot 00$.
Goldring 800 (Rec. Price $£ 13.00$ Our Price £7. 50 .
Goldring 800 H (Rec. Price $£ 10 \cdot 69$)
Our Price E6.99:
P \& P 18p any type

Bottled-up

With regard to Mr. D. Smith's letter (January 1972 issue), I would like to point out to him that he most certainly is not the last of a "dying breed." Speaking as an ardent valve lover, I personally believe that the transistor will never completely overcome the valve, as if it does it would bring about the downfall of amateur radio as we know it. As for integrated circuits, they are beneath contempt and unworthy of further comment. So Mr. Smith is definitely not alone and does most decidedly have "relatives somewhere" as far as valve lovers are concerned - 807's in par-ticular.-P. I. Martin (Sussex).

Having worked on several transistor radios which almost fall to pieces when you try to service them I can appreciate D. H. O. Smith's preference for valves.

However I am wondering if valve enthusiasts can take hope, for I notice that quite a number of instruments are using a device which in effect is a miniature valve and called a nuvistor. Is this the valve making a comeback? Having unsuccessfully tried to obtain some literature on these nuvistors I am wishing some day the editor will commission an article on these to lighten our darkness.

Until the happy day when valves return may we not lift any printed circuits with soldering irons or blow up half a dozen transistors when searching for one faulty one.-K. Freeby (Plymouth).

I too suffer from being one of that dying breed. Mr. Smith has my complete sympathy. $99 \cdot 9 \%$ of my equipment is fully "bottleized," including a 50 watt r.m.s. (sine wave drive) amplifier which has given no trouble for about 3 years. Everything I build with valves works first time and goes on working. Few people realize how easy and cheap valve
equipment is to make, and in my opinion valves are best for starting people off on electronics, because, electrically, they are infinitely more robust than transistors. To any other valve enthu-siasts-please, please write to this column and make your existence known. Incidentally the 50 watt amplifier can be made for $£ 30$ complete.-T. Watton (Hull).

I agree with D. H. O. Smith (Herts) "Dying Breed"-January '72. He is not alone in his support for the radio valve.

I do a fair amount of servicing of valve sets and I would support the valve against the transistor for tone and quality (except for the larger transistor sets which have larger loudspeakers, etc.J. F. Wade, (Leyland, Lancs).

Cassette deck

With the advent of the tape cassette isn't it about time some manufacturers put onto the market a cassette deck.

By this I don't mean a recorder with pre-amps and record amps to be used with an external amplifier such as a Hi-Fi system. But strictly speaking a tape transport. Where the individual can build his own tape recorder as he would with a reel to reel machine. It is pleasing to see in Practical Wireless the building of recorders but there is an increasing lack of tape transporters, only one being advertised at the present time in this magazine.

For a variation one has to go to the upper price brackets such as Brenell and TRD decks. So come on manufacturers how about a tape transport for cassette tape-recorders.-V. C. Watts (Bath, Somerset).

Join the club

I should be most grateful if some publicity could be given to our club through the medium of Practical Wirless. The club was formed early in 1970 and today,
with over a hundred members, has its own club rooms at 81 Virginia Street, Glasgow, C1.
Meetings are held each Friday at 8 p.m., at which slow morse is given by GM3HLQ. Lectures by club members and the occasional film form the main subject material of our meetings.

On the premises we have our own club station, with call sign GM4AGG, which is active on the HF bands with a KW2000, 70 MHz with a Pye Ranger, and 144 MHz with an IC2F.

On December 10th we held our first annual dinner at which GM3AEL (Zonal Rep.)) presented our club with the Scottish N.F.D. Irophy for 1971.-Victor T. Budas, GM3VTB, (Hon. Sec. 28 Kelvinside Gardens, Glasgow, N.W.)

Transformed!

May I reply to Mr. R. Wibberley's letter in the December issue in which he condemns modern methods of transformer winding.

He states, "Enamelled wires are clearly inferior and unreliable. More so when wax impregnated." Correctly used, with the layers of wire separated with suitable insulation, enamelled windings are extremely hardy. Why else would they have become practically the standard material in low to medium power transformers? As a bonus, enamelled wire is cheaper and much less bulky than Mr. Wibberley's preferred silkcovered winding.

Mr. Wibberley also says, "Oil insulated windings are inferior, especially when mains voltages are used in primary windings." May I point out that National Grid transformers are completely immersed in oil for cooling purposes and these devices operate reliably at voltages between 11 kV and 400 kV .-C. Wright (Northants).

[^2]

V.P. MILLS, writing from 9 Fryars Bay, Beaumaris, Anglesey, Wales, says, 'I possess a piece of ancient equipment owned by my father. It is a Sterling 2 -valve upright cabinet receiver type BR2, instrument number 198 manufactured by Sterling Telephone and Electric Co. Ltd., London. Manufactured circa 1926 and using Marconi-Osram bright emitter valves types R5, red spot and green spot or alternatively type DER. The set is complete with Sterling headphones.

Unfortunately at some time the set was dismantled and whilst I have rescued the components concerned, I am devoid of the all important circuit diagram.

Recently I have been lucky enough to purchase another set found in an old workshop perched on a Welsh hillside. It is an exceptionally small receiver with valve holders and reaction coils located externally on top of the metal case. The set is titled "Polar Twin Receiving Set" (no Model No. or Serial No. given) and bearing a notice stating "Use with Mullard-Polar Valves".
Valves actually used are believed to be PM1 and PM1A. This set is also believed to date from 1925-6.
A very small S. G. Brown Hornspeaker was available, this has been restored and is now operational. There are a few loose ends within the receiver however which I think I can unravel.
I am particularly anxious to get these receivers

Mr. D. J. Lord's receiver.
operational and Hamilton Radio who offer service sheets back to 1925 have not been able to help so I am writing in the hope that as a focal point of Veteran Radio you may be able to help or alternatively suggest a possible source of supply of relevant circuits.

I would also be very pleased to hear of any known source of supply of R5 or DER valves. Meanwhile keep the good work going, I hope to be able to join in shortly."

Mr. D. J. Lord, of 61 Empingham Road, Stamford, Lincs. tells us that although he was not around during the 20 's and 30 's, he has found the "Going Back" articles on the early days of radio most interesting.

On reading the article in last April's issue, he saw that Mr. F. C. Burgess has an old Marconiphone 2 valve set, which from his description must be very similar to the one that he has himself.

Mr . Lord enclosed a photograph of his set, the details of which are:-

Marconiphone V2A Long Range Model Type RB1B, Long Range Model M19, Inst. No. S/E 3926, G.P.O. Reg. No. 0175. Approved by the Postmaster Gen.
The set is still in working order, and is complete with a Marconi Distributor Unit for up to four pairs of headphones, and plug in coils and regenerator units covering the range $340-440 \mathrm{~m}, 390-530 \mathrm{~m}$ and $1300-1700 \mathrm{~m}$ Long Wave.

The date of manufacture, or the original cost are not known, but he has always assumed that it was about 1923, and would be interested to learn the exact year if any reader can advise him. (We at P.W. would have said about 1924-1926)

He also has a copy of the BBC Hand Book for 1928. which contains an interesting selection of photographs and descriptions of the range of wireless sets available at that time, all of which appear to be of a considerably later design than his Marconiphone model.

Fintage $\mathbb{C O}$

EOOKS FOR Disposal 1923. The first circuit is No. 68 and they go on to No. 151. Offers invited.-J. H. Greer, North Lodge, Great Ponton, Grantham, Lincolnshire.
...a three-volume copy of the Harmsworth's Wireless Encyclopedia and a bound copy of Wireless World sor October 1923 to March 1924 . I will sell to the highest bidder.-d. C. Porter, 15 Millais Gardens, Edgware, Middlesex . clean condition. Offers please.-C. Lesser, 7. Clippesby Close, Chessington, Surrey. ... a three-volume set of Harmsworth's Wireless Encyclopedia (1923),-Peter Thornhili, 5 Fourth Avenue, Scampton, Lincolnshire

Build yourselfa TRANSSTOR RADIO

ROAMER SIX
6 Tunable WaveGW1, SW2, Traw er band plus an xtra M.W. band or easier tuning of Luxembourg etc. Senaltive ferritescoplc aerial and
or Short Waves
31n. Speaker. 8
tages - transistors and 2 olodes fncluding Microdioy R.F. Transistora, etc. Attractive black case with ed grille, dial and black knobs with pollshed metal aserts. Size $9 \times \delta \frac{1}{}{ }^{\circ} \times{ }^{2} \mathrm{in}$. approx, Easy build plans and parta price list 15p (FREE With parts). Earpiece fith plug and switched socket for private listening
Band. Extra Medlum waveband provides easier tuning of Radio Luxembourg, etc. Built in ferrite rod serial
for MW and LW. Retractable 4 section 24 in. chrome for MW and LW. Retractable 4 section 24 in. chrome
plated telescopic aerial for $8 W$. Bocket for Car Aerial. plated telescopic aerial for 8 . Socket ior Car herial. including Micro-Alloy R.F. Transistors. $8{ }^{\circ} \times 2 \mathbf{H}^{\prime \prime}$

Total building costs
(Overseas P. \& P. \&1) speaker. Air spaced ganged tuning condenser. Volume/ on/of, tuning and wave chango controls. Attractive
case with carrying handie. Bize $9 \times 7 \times 4$ in. approx. Easy to follow instructions and diagrams. Parts price list and easy build plans 15p (FREE with parts). Earpiece with plug and switched socket for private listening, 80 p extra.
Total building costs
(Overseas P. \& P. \&1)
(Overseas P. \& P. \&17
TRANSONA FIVE

NOW WITH 3in SPEAKER

3 Tunable Wavebands: MW, LW and Trawler Rand. 7 stage- 5 transistors: and 2 diodes, ferrite rod aerial. turing condenser volume control, Ane tone 3 in . grille. Blze $61 \times 4 \frac{1}{2} \times 1 \frac{1}{2}$ in. Easy build plans and parts price liat 10 p (FREE with parts). Earpiece with plug and switched socket for private listening 30p extra.

bands: MW, WW,
awn, sw2, sw
Sensltive ferrite rod aerial for M.W. and L.W. Terescople gerial for Short Waves. 3in. Speaker. 8 improved type transistors plus 3 diodes. Attractive case in black Fith red grille, dlai and black knobs with polished
metal inserts. Bize $9 \times 5 \ddagger \times 2_{\text {gin }}^{3}$ in. approx. Push pull metal ingerts. Bize $9 \times 5!\times 2$. \times in. approx. Push pul
output. Battery economiger ewlth for extended battery ife. Ample power to drive a larger speaker. Perts price list and easy buidd plans 85 p (FREF, with parts). price ist and easy
Eiarpiece with plug and switched socket for private
Listening 30 extra.
 RADIO EXCHANGE CO
NEW! "EDU-KIT"
 wints incluilicg mastir unir To compointis iclude
Truing Condenser: 2 Volume Controls: 2 slider

 Boarda: Balanced Armature Tnit: 10 Trankiators:
4 Diodes: Restators: Capsedtors: Three \boldsymbol{i}^{-1} Knobs. Units once conatructed are detachable from Master Unit, enabling them to be
stored for future use. Ideal for Schools, Educational Authorities and all those interested in radio construction
 Case and Plans

FULL AFTER) * Callers side entrance Barratts Shoe Shop SALES \quad * Open 10-1, 2.30-4.30 Mon.-Fri. g-12 Sat. SERVICE
| 61 HIGH STREET, BEDFORD
Tel. 023452367
I enclose $£$

please send items marked ROAMER TEN \square ROAMER SEVEN ROAMER EIGHT \square TRANS EIGHT TRANSONA FIVE \square ROAMER SIX POCKET FIVE \square EDU-KIT

Parts price list and plans for \qquad

Address
I

SOME time ago this column featured its first hybrid i.c., a 50 watt audio amplifier from Sanken of Japan. The hybrid approach, in which no attempt is made to fabricate the complete circuit of the unit on a single silicon chip (the "monolithic" approach), is particularly suited to high power or ultra high frequency applications.

Operation in these conditions poses requirements, such as component separation for minimum thermal or capacitative interaction, which are difficult to achieve within a single semiconductor slice. In audio circuits in particular it is advantageous to separate the output transistors, with their high current and thermal dissipation problems, from the driver stage which may usefully be monolithic.

Together with "chip" capacitors, which are also difficult to fabricate monolithically, these elements may be assembled into a single module or hybrid integrated circuit. This month's unit is an imported hybrid audio amplifier whose 20 watt rating fills the gap between the Sanken device already mentioned and the increasingly popular monolithics, whose power dissipation is of the order of 5 watts (G.E. type PA246, etc.).

The device is available from Erie Distribution Division, Erie Electronics Ltd., Gt. Yarmouth, Norfolk, and is quoted in the latest available price list at $£ 4 \cdot 31$ for small numbers.

Fig. 1: Circuit of the hybrid audio amplifier.

Circuit

Now for a detailed consideration of the capabilities of the unit. The high intercomponent leakage resistance possible with hybrid construction permits the use of supply voltages higher than is usual in i.c. work, with consequent lower currents for the same output, and the TH9013P therefore has a maximum supply rating of 50 volts at a current of $1 \cdot 2$ amps. The device should be attached to a heat sink of 300 sq.cms., giving a thermal resistance of $4^{\circ} \mathrm{C} / \mathrm{W}$ or lower. This should retain the operating temperature of the device at $50^{\circ} \mathrm{C}$ or lower, but allowable case temperatures range from 0 to $90^{\circ} \mathrm{C}$ during operation, giving considerable latitude.

The circuit in Fig. 1 indicates that the device follows fairly conventional Class B lines, with identical n.p.n. silicon power transistors in push-pull, preceded by a complementary pair phase-splitter driving stage. A considerable advantage is the selfregulating character of the circuit, which does not require an external preset resistor to obtain symmetry of operation. Crossover distortion is therefore minimised, and ease of operation assured. In fact, the overall distortion figure quoted for the unit, at a signal frequency of 1 kHz , is 0.3% at the full rated output of 20 watts, while the frequency response is flat to within 2 dB from 10 Hz to 40 kHz . So it follows that if a pair of these devices is incorporated in a stereo outfit, departures from hi-fi standards should be sought in the record deck, the speakers or the preamps. Anywhere, in fact, except the power output stages!

Power supplies

It is recommended that operation of the unit should be from twin power supplies rated at $\pm 22 \cdot 5$ volts. Such supplies are easily constructed using four silicon diodes of appropriate rating to make up a dual full wave rectifier set, working from a transformer with centre-tapped 45 volt secondary followed by suitable smoothing capacitors (at least $500 \mu \mathrm{~F}, 50 \mathrm{~V}$).

Fig. 2 indicates the connections necessary for operation in a standard audio system, with the dual power supply mentioned; it also puts forward a method of operation from a single 45 volt supply should that prove necessary, using a $2000 \mu \mathrm{~F}$ d.c.
blocking capacitor between the output of the amplifier and the 8ohm loudspeaker load. It is important to include the fuse link in the circuit; operation into an inadequate load can permanently damage the output transistors and some form of protection is vital. It should be noted that in the single supply case, the fuse link is in the power supply line, since otherwise the charging surge of the blocking capacitor could well blow the fuse.

Fig. 2a: Connections to the TH9013P when using a dual power supply.

Fig. 2b: A single 45 volt power supply simpliffes the external circuitry.

Notes

Several i.c.'s suitable as preamps for the Toshiba unit have appeared from time to time in these columns, with associated tone and volume controls, so details of these accessories will not be pursued here.

The unit is presented in a sealed package $3 \times 2 \times$ 5_{8} in. with a machined face and mounting holes for heat sink attachment. Connections are via eight pins on the side of the package; the numbering in Fig. 1 is from left, when facing the pins with the heat sinking face downwards. For a convenient, economical and effective power amplifier for domestic applications, the TH9013P is certainly worth consideration.

ISSUES WANTED

...Practical Electronics Feb. 1971.-P. Arden, Hallam Grange, Hallam Grange Rise, Fulwood, Sheffield, S 104 BE
...Practical Wreless for June 1969 (final part of "Double 12" article), -W. Pidduck
...Practical Wireless December 1963.-D. Hillman, 46 Spenser Street, Bootle, Lancashire, L20 4 LW .
...Practical Wireless for May and June 1969. M. Jones, 44 Sturge Street, Sheffield. S2 3DP. Yorkshire.
...Practical Wireless December 1964, January 1969 to July 1970, September 1970, December 1970 and Practical Electronics for June and July 1970.-I. Moor, 6 Dykelands Road, Sunderland, Co. Durham, SR6 8EP, 43 Holmlea Road, Goring-on-Thames, Reading, Berkshire, RG8 9EX
Priblueprint for the P.W. 35W Guitar Amplifier (May 1964 issue).-R. Cross, 38 Priory Road, Fishtoft, Boston, Lincs.
..Feb. 1971 issue of P.W. and April, May and June 1971 issues of P.E. and any other
 Hatfield, Herts.
...P., E. for Jan., Feb., Mar. and Oct. 1965, Feb., Apl., Aug. and Sept. 1966. "Television'' for Oct 1967, Api. Jun. to Dec. 1968, Jan., Feb., Mar. and May 1969 and Feb., We.P. W. Jan. 1968 to Feb. 1969 and P.E. Jan. 1968 to Dec. 1970.-M. F. Green, 12A West Road, Weavertham, Northwich, Cheshire, CW8 3 HQ .
...July 1960 P.W. with article on mods to the R1392 Rx.-G. W. Kilbee, 10 Woodands Road, Ilford, Essex.
...Jan., Feb., Mar, and May P.W. for 1971.-C. Jennings, 13 Stonefield Street,
...May and Jun. 1969 P.W.-G. A. Brooks, 227 St, Andrews Road, Couldson, Surrey.
...P.W. back numbers in exchange for Indian magazines.-N. Mohanty, M.Sc.. Townhali Road, Cuttack-9, Orissa, India
...P.W. for Apl. 1970 (General Coverage Receiver).-J, L. Littler, 61 Kent Road. Orpington, Kent, BR54AB,
aining Mr. Cameron's decoder (May 1970),-G. R. Hunt:
...P.W. 1952-1955 and Radio Constructor 1952-1959.-Luxton. 12 The Vale, Acton. London, W3.7SB.
...P.W. for Aug. 1967, Oct. 1969 and Jan. 1971. P.E. for Mar. 1971 and Radio Constructor for 1965 issue of P.W. containing PC tuner article.-W. Pleass, 12 Farmadine Grove, Saffron Walden, Essex.
O..P.W. for Jan. and June 1970 and P.E. for Jul 1967, Jan. 1968, May 1968, Sept. 1968, Oct. 1968, Feb. 1969, April 1969 and Mar. 1969.-C. Zammit Mangion, 59 St Mary Street. Slema, Malta.
M. Tracey, 2 Manewas Way, Newquay, Cornwal
..P. W. tor June $1969 .-$ M. J. Burrows, 7 Lyndhurst Road, Keynsham, Bristol.
....May 1971 issue of P. W.-A. Vermaak, 82 Kruger Avenue, Discovery, Transvaal. South Africa.
ISSUES FOR DISPOSAL
...Three years P. W. 1967-1971. Hi Fi News and Sound 1967-1971. ?£2.-W. Pearce, 32 Wathen Road, Dorkina, Surrey. W., P.E., and R.C.-J. Partington, 30 Ings Way, Bradford, Yorkshire, BD8 OLU
EQUIPMENT FORDISPOSAL
Beeson \& Co. "Prototype" trombone, perfect condition and is silver. It is comlouth Wales.
Willesden "Blenheim" .i.WHesden "Blenheim" series oil-cooled mains tansformer, ex-oscilloscope. Solartron spares dept. quote is £30.75. Any offers?-R, Knight, 'Lincoln's Imp", ...S.H. Electronic equipment for sale. Transistors, Valves, all types of capacitors, resistors, tagboards, transformers, variable resistors, tuning capacitors, diodes etc.
All at ridiculously low prices. Send for list.-A. Harman, 27 Norby Estate, Thirsk, Yorkshire.
CORRESPONDENTS AND TAPESPONDENTS WANTED
Rise Road my own age (16), I have a Bush cassette recorder.-S. Martin, 77 Meadow ...girl near my own age (16). I have Marconiphone 4-track machine with speeds 1^{7} and 3 iaips. I am interested in all forms of music - S. Glbbs 382 Dereham Road, Norich, Norfolk, NOR 42.J.
anyone who is interested in short wave and radio listening and L.P records to Furness, Lancashire.
...Club secretaries of radio clubs near my home, as : am interested in loining to earn wireless as a hobby.-J. Tyson, 3 Friars Rise, Scaws Estate, Penrith, Cumberland.
... anyone to correspond. I am 13 and interested in electronics and simple circuits.. Wigglesworth, 4 Ellabridge Close, Keynsham, Bristol.
..boy or giri of my own age (15) interested in electronics.-Sidney Birla, 3/1 Raja Santosh Road, Calcutta-27, India

APPARATUS REQUIRED

...a direct Disck Recorde and information about this piece of apparatus.-F. Legrande, 81 Bangaree Road, Wilson, W. Australia 6107 . Also anywhere where I can Get Dansette spares, James Wood, 76 a Arncliffe Road.
Aiso anywhere,
...Philips Novosonic loudspeaker system type AD5010.-J. C. Wilson, 59 Meadway, Harpenden, Herts.
\ldots Radivet type 211 by Airmec Ltd. New or in working condition. Details and price to
-G. A. Gray, 4 Bengal Road, Iford, Essex.
. Grundig TK8 motor.-A.' Panton, 49 Peaksfield Avenue, Grimsby, Lincs.
a. Denco blue coils range 4 , whlte range 4 (one of each). Two $2 N 2626$ transistors, one OCP71 and data of 2 N2926 against stamps, view cards and International Reply Coupons.-P.S. Chalokia, 2192, Sector 27C Chandigarh, India.

EXCHANGE

...sale or exchange quantity of electrical/electronic "junk" including valves, transformers, capacifors and $1 W$ audio amp, for small quantity of LP and single records
(POP only). Send s.a.e. for lists.-Mike Barnett, 17 Randall Avenue, London, NW2 7RL.
... 100 small and 30 big valves which are all marked clearly. All these I will exchange mut second-hand general purpose audio amplifier of about 10 W or a second-hand multimeter-A Harman, 27 Norby Estate Thirsk Yorkshire, Y071BN

EVERYTHING BRAND NEW AND TO SPECIFICATION

No surplus，clearance lines or manufacturers＇seconds．

ELECTROVALUE Electronic Component Specialists

SEMI－CONDUCTORS

All power types with
free insulating sets

1N914	5 p	${ }^{\text {ACl42H }}$	$2{ }^{2} \mathrm{p}$	${ }^{\text {BDI }} 131$	79
1 916	10 p	${ }^{\mathrm{AC}} \mathbf{4} 42 \mathrm{HK}$	${ }_{29}^{29}$	BD13．2	
	24 p			${ }^{\text {BDI }}$	
1 1N3764		AD176			
1N3399	21 p	AC1785	17 p	BDY20	
1N5402	2sp	AC187K	17 p	BF1	
1 S 44	9 p	ACY17	31 p	BF162	
18940	5 p	ACY18	19p	BF173	
696	17 p	ACY19	${ }^{230}$	BF177	
2 N 697	18p	ACY20		${ }^{\text {BF }} 194$	
706	12p	ACY21	${ }^{21}$	${ }^{\text {BF }} 195$	
930	29 p	ACY22	$21 p$	BF254	d
2 N 1132	29p	ACY39	63 p	${ }^{\text {BF225 }}$	
2 N 1302	19p	ACY40	179	BFX	
2 N 1303	19 p	ACY41	18 p	BFX 84	
2N1304	26p	ACY4．	31	BF	
2 N1305	26p	AD142	50 p	BFX87	
2N1306	33p	AD149	580	BFX88	6
2N1307	33p	AD150	50 p	BFY50	
2×1309	36p	AD161	${ }^{33 \mathrm{p}}$	BFY51	
2N1613	23p	AD162	${ }^{36 \mathrm{p}}$	${ }_{\text {Bry }}$	
2N1711	26 p	AF14	${ }_{2}^{24}$	${ }_{\text {BYx }}$	
2N1893	54 p	AF15	${ }^{24}$	BY164	㖪
2 N 2147	95 p	AF16	${ }_{22 \mathrm{p}}$	BY238	18
2N2218	34 p	AF17	22P	BYX 88.300	
${ }_{2}{ }^{\text {N2218A }}$	${ }^{44 \mathrm{p}}$	AF18	82	${ }_{\text {Cra }}{ }^{\text {c }}$	
2 N 2219	38 p	AF124	2		
2 N 2270	${ }^{62 p}$	AF125	24		
2 L 2369 A	19 p	AF126	222	EB383	析
2N2483	35p	${ }_{\text {AF }}{ }^{\text {AF9 }}$	33 p	EC401	18
		AF239	36 p	EC402	
2 N 2904	38p	A8Y26	27 p	NKT211	25
2 N 2905	${ }^{44} \mathbf{P}$	ASY27		NKT212	
$2 \mathrm{~N}^{2} 9905 \mathrm{~A}$	47p	${ }^{\text {ABY }}$	${ }_{36} 27$	NKT213	25
2 N 2924	20 p	AU111	97	－	d
${ }_{2}$	${ }_{12 \mathrm{p}}$	${ }_{\text {B } 30 \mathrm{C} 250}$	240	NKT26	
2N3053	27 p	81912	66 p	NKT271	18
2N3054	${ }^{60 p}$	B50．41	${ }^{72 \mathrm{p}}$	NKT274	
$2{ }^{2} 3702$	13p	Bal02	258	NKT403	${ }^{65}$
2N3703	13p	baliso	22 p	NKT405	
2N3704	13 p	Ba145	20	NK139	
2N3705	13p	BA156	${ }^{135}$	NKT644	${ }_{2}^{24}$
$2 \mathrm{~N}^{37} 96$	13p	BB103／B	16 p	OA47	
2N3708	10p				
2N3710	$1{ }^{1}$	8C10	$1{ }^{1}$	OA	
2N3711	13p	BC122	21 p	OA200	9
2N3794	15p	BC125	${ }^{15}$	oaz20	
2N3819	${ }^{23 \mathrm{p}}$	${ }^{\mathrm{BCC}} 12 \mathrm{~s}$	22 P	${ }^{\text {OC19 }}$	50
－2N38904	${ }_{\substack{\text { 35P }}}$	${ }_{\text {BC147 }}$		${ }^{\circ} \mathrm{OC} 29$	76
2N3006	35 p	BC148	9 p	OC35．	
2 N 4036	55 p	BC149	10 p	OC36	65
2 N 4058	13p	BC153	19p	OC41	42
2N4059	10p	BC169	11 p	${ }^{\text {OC4 }}$	1
2 $\mathrm{N}^{2} 060$	$11 p$	${ }^{\text {BC177 }}$	14	OC70	
2N40B1	11 p	BC178	13p	$\mathrm{oc}^{\text {c }}$	38
2N4124	18p	${ }^{\mathrm{BCl} 19}$	14	${ }^{\mathrm{OC7}}$	，
2N4126	27p	${ }^{\text {BCLI82L }}$	11	$0 \mathrm{C8}$	25
2N4284	15 p	BC183L	10 p	${ }^{0 C 881 D}$	矿
V4288	15p	BC184L	119	0 C 83	${ }^{25}$
F4289	16 p	BC186	42 p	OC84	5
2N4291	15p	BC212L	16 p	p346A	
2N4410	24 p	BC213L	16 p	S．CN1	10
J991	62p	BC214L	16p	SDl	10
2 N 5082	${ }_{6} 1 \mathrm{p}$	${ }^{\text {BC257 }}$	$9 p$	8D4	边
2N5457	49p	${ }^{\text {BC259 }}$	9 p	V763	28
2N5459	49p	${ }^{\text {BC223 }}$	17 p	W106B	45
250	$71 p$	BC268	15	w02	40
40251	89 p	BC299	17 p		
40361	55p	BC300	49 p	ZTX300	14
362	68 p	BC301	${ }^{37}$	zTx301	
40602	52p	BC303	60	ZTX 302	20
AC107	46 p	BCY30	${ }^{60 p}$	zTX303	22
		${ }^{\text {RCY31 }}$	${ }^{65}$	ztx304	27
AC127	${ }^{20, p}$	${ }^{\text {BCY70 }}$	18 p	\％TX330	23
C128	20p	${ }^{\text {BCY7 }}$	${ }^{33 \mathrm{p}}$	ZTX331	27
AC14．H	34 p	BCx72	15 p		
AC141HK	37 p	edi30	50 p	ZTX500	18

ES．IO－I5 BAXENDALL SPEAKER
As designed by P．J．Baxandall and originally deseriben in＂Wireless World＂．Complete kiti including spoaker unit，equalising network and special ceabine
$\left(18^{*} \times 12^{2} \times 10^{*}\right.$ when assenbleal supplied out to eize． 10 watte／ 18 ohme．Cark．free in U．K．
f｜3．90

Add good appearance to your building SIEMENS CAPACITORS

These electrolyte capacitors are all in the These electrolyte capactors are all in the
same style and colour and greatly enhance
the appearance of the flnished article when same style and colour and greatly enhane
the appearance of the finhed aricle when
built．Yith axial leads and clearly marked built．Yith axial leads and clearly marked

 $2200 / 16 \mathrm{~V} ., 1000 / 35 \mathrm{~V}$ ．， $220 / 100 \mathrm{~V} ., \mathrm{g}_{2} \mathrm{p}: 4700 / 16 \mathrm{~V}$ ．， 39 p ．（Fage 34 of catalogue for full list of more than 60 values．
SIEMENS TTL I．Cs－wide range in stock at an all time low in prices．

RESISTORS 10\％－5\％－2\％

AMPLIFIERS

30 WATT BAILEY PARTS Transistors and PCB for one
channel 86.46 channel $£ 6.46$
Capacitors，resistors（metal Oxide）， and transistors，one chaníel．£8－41． Complete unregulated power supply pack． 84.75 Suitable heatsink 10DN400C．55p MAINLINE 70 W ．main amplifier module
s12．80 nett． $\{12.80$ nett．
Power supply kit 56.00 nett Suitable pre－amp
（less chassis \＆panel）
Above for mono only．
STEREO PACE OF UNITS tor hailding into your own cabinet－ unit，power supply unit and matched controls，nett $£ 88: 40$ ．

MULLARD polyester C280 series $250 \mathrm{~V} 20 \%$ 0．01： 0.022 ；0－033， 0.047 3p ea． 0.068 ； $0.1,0.154 \mathrm{p}, \mathrm{0} .2 .2 \mathrm{6p}, 10 \% 0.337 \mathrm{p}, 0.47 \mathrm{8p}$ ． $0.68 \mathrm{11p}$ ， $1 \mu \mathrm{~F} 14 \mathrm{p} .1 \cdot 5 \mu \mathrm{~F} 21 \mathrm{p}, 2 \cdot 2 \mu \mathrm{~F} 24 \mathrm{p}$ ．	ZENER DIODES	
	400mW： 2.7 V to 30 V 15 p e	
	1\％： 6.8 V to 82 V 27 p each $1.5 \mathrm{~W}: 4.7 \mathrm{~V}$ to 78 V 60p each	
MULLARD SUB－MIN ELECTROLYTIC		
C428 range axial lead	CAREON TRACK	
Values（ $\mu \mathrm{F} / \mathrm{V}$ ）$: 0.64 / 64 ; 1 / 40: 1-6 / 25 ; 2.5 / 16 ; 9.5 / 64 ; 4 / 10$ ；	POTENTIOMETERS，long spindles	
4／40；5／64； $6.4 / 6 \cdot 4 ; 6.4 / 25 ; 8 / 4 ; 8 / 40 ; 10 / 25 \cdot 5 ; 10 / 16 ; 10 / 64 ;$		
12－5／25；16／40；20／16；20／64；25／6．4；25／25；32／4；32／10	Double wiper ensures mininum noise level．	
	Single gang linear 100Ω ，to $2.2 \mathrm{M} \Omega$ Single mang log $4.7 \mathrm{~K} \Omega$ to $2.2 \mathrm{M} \Omega$ 12p 12 p	
64／10； $80 / 2.5 ; 80 / 16 ; 80 / 25 ; 100 / 6.4 ; 125 / 4 ; 120 / 10$ ；		
125／16； $160 / 2 \cdot 6 ; 200 / 0 \cdot 4 ; 200 / 10 ; 250 / 4 ; 320 / 2 \cdot 5 ;$	$\begin{array}{lll}\text { Single gang log } & 4.7 \mathrm{~K} \Omega \text { to } 2.2 \mathrm{M} \Omega \\ \text { Dual gang linear } & 4.7 \mathrm{~K} \Omega \text { to } 2.2 \mathrm{M} \Omega & 12 \mathrm{p} \\ \text { dep }\end{array}$	
LARGE CAPACITORS Any type w		
High ripple carrent types：1000／25 28p；1000／50 41p	Please note：only decades of 10.22 and 4 ？are available uithin ranges quoled．	
2500／64 77p；2500／70 98p； $5000 / 25$ 62p；5000／50 £1－10； $5000 / 100$ £2． 91 ．		
	CARBON SKELETON PRE－SETS	
POLYCARBONATE CAPIÇITORS	Small high qualits，type PR，linear only $100 \Omega, 220 \Omega$ $470 \Omega, 1 \mathrm{~K}, 2 \mathrm{~K} 2,4 \mathrm{~K} 7,10 \mathrm{~K}, 22 \mathrm{~K}, 47 \mathrm{~K}, 100 \mathrm{~K}, 220 \mathrm{~K}, 470 \mathrm{~K}$ ，	
250 V up to $0.1 \mathrm{mF}, 100 \mathrm{~V} 0.1 \mathrm{mF}$ and above．	1M，2M2， $5 \mathrm{M}, 10 \mathrm{M} \Omega$ Vertical or horizontal mounting 5 D each．	
$0.01,0.12,0.015,0.018,0.022 .0 .0275 p$ $0.033,0.047,0.056,0.068, ~ 0.081, ~ 0.01, ~$		
$0 \cdot 33,0 \cdot 39,9 \mathrm{p}, 0 \cdot 47.10 \mathrm{p}, 0 \cdot 56$ ，	Handbook of transistor equivalent and substitates，40p． （Postage 3p if ordered alone）．	
DUAL CONCENTRIC POTS． Carbon track．Sections in same values as single gang （next column）．Avainble in any combination of values， less switch 80 p ．With switch 78p．		
	POSTAGE AND PACKING Free on orders over $\mathbf{4 2}$ ．Please add 10 p it orders under $\mathbf{~ 2 2}$ ．	
S：DeCS Manujacturer＇s prices increabe rouphly by $\mathbf{3 0 \%}$ on these on pages 51 ， 52 and 53 since printing our calalogue．S－DeC \＄1－44，Four pack 25－10，DeCSTOR pack \＆2－88．T．Dec， may be temperature－cycled（ 208 points）， $82 \cdot 88 . \mu$ DecA， $28-18, \mu \mathrm{DecB}, \mathrm{£5}$－94．Also I．C．carriers．		
	overseas orders welcome；carriage and insurance are charged ai cost．	
	U．S．A．OUSTOMERS are invited to contact ELECTRO－	
	VALUE AMERICA，P．o．Box 27，Swarthmore；PA 19081 for special prices	

M, \& B, COMPONENTS (LEEDS) LTD,
 (INCORPORATING M. \& B. RADIO)

PO Box 125, 38 BRIDGE END, LEEDS 1 Telephone 0532-35649
PYE AM25B VANGUARDS. 12 V Boot mounting radio-telephones. 20 watts RF output from QQV03/20A. High band and low band in stock. Ideal for 2 or 4 metre mobile operation. Less mike and control
Box and Speaker $\quad\{20$ each plus 90 carr. UK.

MARCONI DIVERSITY TELEGRAPH RECEIVER TYPE R2I7. As new in 7 ' rack.

ONLY $\& 150$ delivery arranged UK.

BRAND NEW SIFA M $2 \frac{1}{4}$ sq $\mathbf{2 5 - 0 - 2 5}$ uA meters
ONLY $95 p$ each plus 10 p carr. UK.
WALKIE TALKIES TYPE 88. 4 crystal controlled channels. Untested. Less handset. In clean condition with circuit.

ONLY ± 4.75 or $\mathbf{f} 8$ for 2 inc. carr.UK.
RCA POWER TRANSISTORS TYPE 2N3773 on hefty heat sink. Ideal for high power Amps.
$60 p$ each or fil a pair plus lop carr. UK.
9 TRANSISTOR $455 \mathrm{Ke} / \mathrm{s}$ IF STRIPS. Ideal basis for Receiver. ONLY 11,20 inc, carr. UK.

TRANSISTOR TRANSMITTER PANELS. $\frac{1}{2}$ watt output on 68-88 MHZ. FM modulated. Needs external 2 transistor mike pre amp. Brand New. Ex-Pye, with circuit. (
EX-GPO DESK TELEPHONES. Used but in working condition
Ideal for intercoms. TWO for $£ 2$ inc. carr UK. Ideal for intercoms.
QQVO3-10 Ex equipment THREE for $£ 1$ plus IOp carr. UK.
Send SAE for full list with many bargains of general interest.

PRINTED CIRCUIT KIT

build 50 INTERESTING PROJECTS on a PRINTED CIRCOIT CEASSIS with PABTS and TRANSISTORS from your SPARES BOX
CONTENTS: (1) 2 Copper Laminate Roards $44^{* *} \times\left(21^{*}\right.$. (2) 1 Board for Matcb(6) Etchanit. (7) CleanerfiDe reaser. (8) 16 -page Boosilet Printed Circuits for Amateurs

 tor the first time, including 10 new circuits.

EXPERIMENTERS PRINTED CIRCUIT KIT

60p

Postage \& Pack. 10p. (U.K.) Commonwealth: SURFACE MAIL 20p AIR MAIL 60p Australia, New Zealand, South Africa, Canada T) Crystal Set with biaged Detector. (2) Crystai Set with poltage-quadrupler detector. (3) Crystal Set with Dynamic Loudspeaker. (4) Crystal Tumer with Audio Amplifer. (5) atrier Power Conversion Receiver. (6). Silit. Load Neutralised Double Refiex, (7) Matchobox or Photceell Radio. (8) "TRI-FLEXON" Triple Reflex with The smajlest 3 deeing y yet oftered to the Home Constructor any where in the World.
 if you know of a smaller design pubitished anywhere. (10) Postage Stamp Radio.

 com. (17) 1-valve Amplifer. (18) Reliable Burglar Alarm. (19) Light-Seeking An'mal, Guided Misile. (20) Perpetual Motion Machine. (221) Metal Detector. (22)) Transistor Tester. (23) Human Body Radiation Detector, (24) Man/Woman Discriminator. Volume Intarcom. (28) Remote Control of Models by Induction. (29) Inductive-Loop Transmitter. (30) Pocket Triple Reflex Radio. (31) Wristwatch Transmitter/ Wireless Miterophone. (32) Rain Alarm. (33), Ulirasenic Switch/Alarin. (34) Stereo Preamplifier. (35) Quality stereo Push-Puil Ampilifier. (36) Light-Beam Telephone "Photophone". (37) Light-Beam Transmitter, (38) Silent TV Bound Adaptor. (39). eleetrie Circuits, Alarms, Modulators, Stabilisers. . .

YORK ELECTRICS, Mail Order Dept. 335 Battersea Park Road, London, S.W. 11 Send a S.A.E. for full むetaits, and a brtef deseription of all Kitt and Projects.

new

 Super IC-12

 Super IC-12}

High fidelity Monolithic Integrated Circuit Amplifier

Two years ago Sinclair Radionics announced the Worid's first monolithic integrated circuit $\mathrm{Hi}-\mathrm{Fi}$ amplifier, the IC.10. Now we are delighted to be able to introduce its successor, the Super IC.12. This 22 transistor unit has all the virtues of the original $\mathbb{C} .10$ plus the following advantages

1. Higher power.
2. Fewer external components
3. Lower quiescent consumption.
4. Compatible with Project 60 modules.
5. Specially designed built-in heat sink. No other heat sink needed.
6. Full output into $3,4,5$ or 8 ohms.
7. Works on any voltage from 6 to 28 volts without adjustment.
8. NEW 22 transistor circuit.
[^3]Output power 6 watts RMS continuous (12 watts peak).
Frequency Response 5 Hz to $100 \mathrm{KHz} \pm$ 1 dB .
Total Harmonic Distortion Less than 1%. (Typical 0.1\%) at all output powers and all frequencies in the audio band.
Load Impedance 3 to 15 ohms.
Input Impedance 250 Kohms nominal.
Power Gain 90dB (1,00@,000.000 times) after feedback
Supply Voltage 6 to 28 volts (Sinclair PZ-5 or PZ-6 power supplies ideal).
Quiescent current 8 mA at 28 volts; low enough to make the IC. 12 ideal also for battery operation.
Size $22 \times 45 \times 28 \mathrm{~mm}$ including pins and heat sink.

With the addition of only a very few external resistors and capacitors the Super IC. 12 makes a complete high fidelity audio amplifier suitable for use with pick-up, F.M. tuner etc. Alternatively, for more elaborate systems, modules in the Project- 60 range such as the Stereo 60 and A.F.U. may be added.

FREE 44 page instruction manual now included with all units. Available free on request to present IC. 12 users, Gives full circuit and wiring diagrams for many applications including car-radios, oscillators, etc.

Sinclair Project 60

The World's leading range of high fidelity modules

New!

Project 605

The easy way to buy and build Project 60

Project 605 is one pack containing: one PZ5 two Z30's, one Stereo 60 and one Masterlink This new module contains all the input sockets and output components needed together with all necessary leads cur to length and fitted with neat little clips to plug straight on to the modules. Thus al soldering and hunting for the odd part is limin You will be to further Project 0 miled. You the beable to Project 605 method of connecting the Project 605 method of connecting
Complete Project 605 pack with $£ 29.95$ comprehensive manual, post free 22,0 stereo amplifier

Sinclair Radionics Limited, London Road.
St. Ives, Huntingdonshire PE17 4HJ.
Tel : St Ives (04806) 4311

Project 60 offers more advantage to the constructor and user of high fidelity equipment than any other system in the world.
Performance characteristics are so good they hold their own with any other available system irrespective of price or size.
Project 60 modules are more versatile - using them you can have anything from a simple record player or car radio amplifier to a sophisticated and powerful stereo tuner-amplifier. Either power amplifier can be used in a wide variety of applications as well as high fidelity. The Stereo 60 pre-amplifier control unit may also be used with any other power amplifier system, as can the AFU filter unit. The stereo FM tuner operates on the unique phase lock loop principle to provide the best ever standards of sensitivity and audio quality. Project 60 modules are very easily connected together by following the 48 page manual supplied free with all Project 60 equipment. The modules are great space savers too and are sold individually boxed in distinctive white and black cartons. With all these wonderful advantages, there remains the most attractive of all - price. When you choose Project 60 you know you are going to get the best high fidelity in the world, yet thanks to Sinclair's vast manufacturing resources (the largest in Europe) prices are fantastically low and everything you buy is covered by the famous Sinclair guarantee of reliability and satisfaction.
Typical Project 60 applications

System	The Units to use	together with	Cost of Units
Simple battery record player	Z.30	Crystal P.U.. 12 V battery volume control	¢4.48
Mains powered record player	Z.30, PZ.5	Crystal or ceramic P.U. volume control etc.	£9.45
$20+20$ W. stereo amplifier for most needs	$\begin{aligned} & 2 \times \mathrm{Z.30s,} \mathrm{Stereo} \mathrm{60,} \\ & \text { PZ. } 5 \end{aligned}$	Crystal. ceramic or mag. P.U..F.M. Tuner. etc	E23.90
$20+20 \mathrm{~W}$. stereo amplifier with high performance spkrs.	$\begin{aligned} & 2 \times 2.30 \text { s, Stereo 60, } \\ & \text { PZ. } 6 \end{aligned}$	High quality ceramic or magnetic P.U., F.M. Tuner, Tape Deck, etc.	£26.90
$40+40$ W. R.M.S. de-luxe stereo amplifier	2×2.50 s, Stereo 60 PZ.8, mains trsfrmr	As above	£34.88
Indoor P.A.	Z.50, PZ.8, mains transformer	Mic., guitar, speakers, etc.. controls	f19.43

[^4]
from a simple amplifier to a complete stereo tuner amplifier with Project 60 modules

Z. 30 \& $\mathbf{Z . 5 0}$ power amplifiers

The $Z .30$ and $Z .50$ are of advanced design using silicon eptaxial planar transistors to achieve unsurpassed standards of performance. Total harmonic distortion is an incredibly low 0.02% at full output and all lower outputs. Whether you use $Z .30$ or $Z .50$ amplifiers in your Project 60 system will depend on personal preference, but they are the same size and may be used with other units in the Project 60 range equally well. SPECIFICATIONS (Z.50 units are inter-
changeable with $Z .30$ s in all applications). Power Outputs
$\mathbf{2 . 3 0} 15$ watts R.M.S. into 8 ohms using 35 volts: 20 watts R.M.S. into 30 oms using 30 volts.
Z.50 40 watts R.M.S. into 3 ohms using 40 volts: 30 watts R.M.S. into 8 ohms using 50 volts.
Frequency response: 30 to $300.000 \mathrm{~Hz} \pm 1 \mathrm{~dB}$.
Distortion: 0.02% into 80 hms .
Signal to noise ratio: better than 70 dB unweighted. Input sensitivity: 250 mV into 100 Kohms .
For speakers from 3 to 15 ohms impedance.
Size: $14 \times 80 \times 57 \mathrm{~mm}$.
2.30

Built, tested and guaranteed with circuits and instructions manual.
2.50
with circuits and instruc-

Built, tested and guaranteed with circu
tions manual.
$\mathbf{~} 5.48$

Power Supply Units

Designed special for use with the Project 60 system of your choice. Use PZ. 5 for normal Z. 30 assemblies and PZ. 6 where a stabilised supply is essential.
PZ.5 30 volts unstabilised $£ 4.98$ PZ. 635 volts stabilised $£ 7.98$ PZ. 845 volts stabilised (/ess mains transformer) £7.98 PZ. 8 mains transformer $£ 5.98$

The Sinclair Guarantee

If within 3 months of purchasing Project 60 modules direct/y from us. you are dissatisfied with them, we will refund yourmoney at once. Each module is guaranteed to work perfectly and should any defect arise in normal use we will service it at once and without any cost to you whatsoever provided that it is returned to us within 2 years of the purchase date. There will be a small charge for service thereafter. No charge for postage by surface mail. Air-mail charged at cost.

Project 60 Stereo F.M. Tuner

The phase lock loop principle was used for receiving signals from space craft because of its vastly improved signal to noise ratio. Now. Sinclair have applied the principle to an F.M. tuner with fantastically good results. Other original features include varicap diode tuning. printed circuit coils, an I.C. in the specially designed stereo decoder and squelch circuit for silent tuning between stations. Good reception is possible in diffivult areas. and often a few inches of wire are enough for an aerial. In terms of a high fidelity this tuner has a lower level of distortion than any other tuner we know. Stereo broadcasts are received automatically as the tuning control is rotated, a panel indicator lighting up as the stereo signal is tuned in. This tuner can also be used to advantage with any other high fidelity system.
SPECIFICATIONS—Number of transistors: 16 plus 20 in I.C. Tuning range: 87.5 to 108 MHz , Capture ratio: 1.5 dB . Sensitivity: $2 \mu \mathrm{~V}$ for 30dB quieting: $7 \mu \mathrm{~V}$ for lock-in over full deviation. Squelch level: 20μ V. A.F.C. range: $\pm 200 \mathrm{KHz}$. Signal to noise ratio: $>65 \mathrm{~dB}$. Audio frequency response: $10 \mathrm{~Hz}-15 \mathrm{KHz}$ ($\pm 1 \mathrm{~dB}$). Total harmonic distortion: 0.15% for 30% modulation. Stereo decoder operating level: $2 \mu \mathrm{~V}$. Cross talk: 40 dB . Output voltage: $2 \times 150 \mathrm{mV}$ R.M.S. Operating voltage: $25-30 \mathrm{VDC}$. Indicators : Power on/tuning/stereo.

Size: $93 \times 40 \times 207 \mathrm{~mm}$.
Built and tested. Post free.
£25

Stereo 60 Pre-amp/control unit

Designed for Project 60 range but suitable for use with any high quality power amplifier. Again silicon epitaxial planar transistors are used throughout, achieving a really high signal-to-noise ratio and excellent tracking between channels. Input selection is by means of push buttons and accurate equalisation is provided for all the usual inputs.
SPECIFICATIONS-Input sensitivities: Radio - up to 3 mV . Mag. p.u. 3 mV : correct to R.I.A.A curve $\pm 1 \mathrm{~dB}: 20$ to 25.000 Hz . Ceramic p.u. - up to 3 mV : Aux-up to 3 mV . Output: 250 mV . Signal to noise ratio: better than 70 dB . Channel matching: within 1dB. Tone controls: TREBLE +15 to -15 dB at 10 KHz : BASS +15 to -15 dB at 100 Hz . Front panel: : brushed aluminium with black knobs and controls, Size : $66 \times 40 \times 207 \mathrm{~mm} . £ 9.98$
Buith tested and guaranteed.
Built tested and guaranteed.

A.F.U. High \& Low Pass Filter Unit

For use between Stereo 60 unit and two $Z .30$ s or $Z .50 \mathrm{~s}$. and is easily mounted. It is unique in that the cut-off frequencies are continuously variable, and as attenuation in the rejected band is rapid ($12 \mathrm{~dB} / o c t a v e$). there is less loss of the wanted signal than has previously been possible. Amplitude and phase distortion are negligible. The A.F.U. is suitable for use with any other amplifier system. Two filter stages - rumble (high pass) and scratch (low pass). Supply voltage -15 to 35 V . Current - 3mA. H.F. cut-off (-3 dB) variable from 28 KHz to 5 KHz . L.F. cut-off (-3 dB) variable from 25 Hz to 100 Hz . Distortion at 1 KHz (35 V . supply (0.02% at rated £5.98 output. Size: $66 \times 40 \times 90 \mathrm{~mm}$.

Built tested and guaranteed.

TWO YEARS' GUARANTEE
405/625: 19" £25.95
23" £35.95
CARR $£ 1.95$
free catalogue

19 NOW £11.95

DAILY DEMONSTRATIONS FOR PERSONAL SHOPPERS

TV TUBES REBUILT GUARANTEED 2 YEARS

$14^{\prime \prime} £ 3.95 ; 17^{\prime \prime}$ and $18^{\prime \prime} £ 5.95 ;\left.2\right|^{\prime \prime}$ and $23^{\prime \prime} £ 6.45$ Exchange Bowls carr. 55p

COMPONENTS MUST BE CLEARED

Transistor Radio Cases: 25p
 Speakers: ${ }^{35}$ p. $^{\frac{2}{2}}{ }^{2 \frac{1^{\prime \prime}}{2}} 8 \dot{\Omega}$. Brand new. Post 15p. megs. takes ECC85: 95p. 88-108 (extra). Post i5p.
Radio: $£ 3.958$ transistor LWI MW. Free case, battery. Post $15 p$.
Precision Tape Motors: 61.95. Precision. Tape Motors: fl 95.
$200 / 250 \mathrm{~V}$. Famous German manufacturer. Post 20p.

Transistor Gang Condensers:
20p. Miniature AM. Post free Mop. Miniature AM. Post free.
Modern Gang Condensers: 30 p . Modern Gang Condensers: 30p.
AM/FM or AM only 20p. Post 10 p . AM/FM or AM only 20p. Post 10 p .
Transistors 15 p each. Post free.
 OC45, OC71, OC81, OCBID. Valve ELL80 50p. O'nly stock in the country. Pots.: 25p each. Post 5p. D /SW
$500 / 500 \mathrm{~K} \Omega$. D/SW 500 . 500/500 K Ω. D/SW $500 / 100 \mathrm{~K} \Omega$.
D/SW I meg. $1100 \mathrm{~K} \Omega$. S/SW D/SW
$500 / 500 \mathrm{~K} \Omega$. S/SW 50011
meg.

REEDS REEDS REEDS

We offer a comprehensive range of reed switch devices. These are not "seconds" or "job lots", but genuine manufacturers stock lines. Send S.A.E. for full data and prices.

INTRODUCTORY OFFERS

Reed Relay type 2/E 3V \quad Re $A \frac{1}{2} \dot{A} 200 V$
Miniature Reed Switches type
25p each

Reed Push Button Switches \mid contact 85p each

REED COILS

$\begin{array}{rlllll}\text { 3, 6, 9, 12, 24V Miniature } & \cdots & . & . . & \cdots & \text { 27p } \\ \text { Small } & \cdots & \cdots & \cdots & \cdots & \text { 27p } \\ \text { Standard } & \cdots & \cdots & \cdots & . & \text { 34p }\end{array}$
REED SWITCHES
Large range of many sizes, types and manufactures
Popular types: E Small normally open .. 10 for 50p
A Miniature normally open ... 24p each
B Standard change over 40p each
REED RELAYS

REED PUSH BUTTON SOWITCHES

Momentary Action
2 contact
E 1.25
lluminated 1 contact
lluminated 2 contacts
$\left.\begin{array}{l}\text { E } 1.30 \\ \text { E1.55 }\end{array}\right\}$ inc. P. Tax
reels of enamelied copper Wire
20 s.w.ga to 47 s.w.g.
mis and 500 grams.
Packing and postage $7 p$ on all orders.
C.B.M. ELECTRONIC COMPONENTS LTD.

26 Avon Trading Estate, Avonmore Road, London, W. 14

FELSTEAD ELECTRONICS (PW 54)
LONGLEY LANE, GATLEY, CHEADLE, CHES. SK8 4EE selection from our List, sent free for stamped addressed envelope. (Free overseas), Cash Selection from our with Order only-No C.O.D. or Caller service. Charges (Min. 6p) in brackets after all items apply to G.B. \& Eire only. Regret Orders under 25p plus charges unacceptable. S.A.E., please, for enquiries or cannot be replied to. Overgeas Orders welcomed.
RECORDING TAPE; Finest quality/value British Mylar available: STANDARD $5^{*} 600 \mathrm{ft}$.
 30p: ($7 \frac{1}{2} 90$ ont. $5^{\prime \prime}$ and $5 \mathrm{~s}^{\prime \prime}, 9 \mathrm{p}$ on 7^{*}). Other sizes, Casettes and accessories in List. 90p. ($7 \frac{1}{2} p$ on $5^{\prime \prime}$ and $5 \mathrm{~g}^{\prime \prime}, 9 \mathrm{p}$ on 7°). Other sizes, Casettes and accessories in List.
CARTRIDGES. All with standard tittinge and stylli. Stereo-compatible Monn GP91/Sc £1.10; STEREO GP93 \&1-40; Stereo Ceranic GP94 $\mathbf{5 1} 95$. (All at 6 p each.) Comparatives shown in List, with nore types incl. Sonotone $9 T A H C$, Goldring ete. at lowest price.
DIAMOND STYLII: Single tip tyues: Aroc GP37, GP59, GP65/G7, GP71, BSR TC8/LP/ST: DIAMOND STYLII: Single tip tyues: Aros GP37, GPE, GCS $/ 10$, GCE/I2. RONETTE RF40, O. P and T. PHILIPS 3001 ($3060,3066,3302,3304$), 3010/12/13/15. SONOTONE $19 T / 20 \mathrm{~T}$ ALL AT 40p each (6 p). SAFPHTRE 17\% (6 p). Double-tip turn over types (78 vap. on other side). For ACOS GP73, GP91 (for cartridges GP93, GP94 etc.), GP91SC (tor stereo-conpat. types) GP104, BSR ST4 (ST3. ST5), ST9 (\$T8), §T12/14/15. SONOTONE 3TA, 9TA. 9TABC. PHILIPS 3306 (3310. 3294. 3228/22, GP280).
 SAPPHIRE 35p (6p). DOUBLE DIAMOND STYILI: (Same dia. tip each side: no 78) All ty pes £1.50 (fip). SAPPHTRE DOUBLE ST/LP. TIPPED 40p (6D). PICK-UP WIRE; Super thin twin flex screened, sheather, 6 p per yard (Up to 6 yds., 6 p over charges paid).
 CML0 Crean Plastic hand 521p: CM21. Grey Plastic Hand/Desk 62pp: both have 3 . mm 'iack plug and lead (9 either). "STICK" 60 £1-02: CM77 "PLAN ETM Metal tapered, with hand grip 81.00 . ALL with leads all 9p). MICROPYONE INSERTS: 0.9" 273p ($O p$ to 5 for 6 p). DYN AMIC: 209 Cardioid Ball. $50 \mathrm{~K} / 600 \Omega$ built-in volume control.

 paid. SMALL $23^{\prime \prime} 3 \Omega$ or 8Ω, (state which) 377^{2} (6 p). More speakers in List. HEADPHONES: High resistance 2000Ω a ajustable: 92 pp (5 P), EARPIEGES. With lead and min. 2.5 mm or 3.5 mmm (state which) jack plug, MAGNETIC 9p. CRYSTAL (3.5 mm plug
nnly) 24 p (Tp to 3 for 6 p any type). SOLDERING IRON. Slim, modern, British high speed, nnly) 24 p (Up to 3 for $6 p$ any type). SOLDERING IR ON. Slim, modern, British high speed,
$81^{\prime \prime}$, all parts renlareable, highest quality fully guaranteed $£ 117 \frac{1}{4}$ (10p). TRANSFORMERS: Sub-min $11 \times 11 \times 12 \mathrm{~mm}$. OUTPUT (3Ω for OC72, etc.) 14 p or DRIVER 15 p (Up to 12 for Ap). CONNECIING WIRE. Packs of 5 coils, each coil 5 yds. asstd. cols. SOLID CORE 14 p . FLEXIETJE or SUPER THIN for transistor wiring, etc. either 16 p (Any pack 6p), RETRACTABLE FLEXIBLE LEADS. (CTRLIEAS): With phoio plux, each end, 6 ft 20 p.

 AC/26 $12 \frac{1}{2} \mathrm{p}$, AF155 20 p , AF116 15p, AF11720p, OAS 10p, OA10 10p, OA81 10p, OC44 14p, OC45, OC71, OC72, OC75, OC81D, OC82D, all at 121p each, OC81 15p. OC170 20p. OC171 12 2 p. BY100/800 pir 14p. Many more incl. power types. thyristors, etc. in List. MAANS BATTERY ELIMINATOR. Tnput $240 \mathrm{v}-A C$, Dutput 3, $6,7 \frac{1}{2}$ and $9 \mathrm{v}-\mathrm{DC}$ by switc h selector, On/oft switch, pilot lamp, leads, plug, adaptor to suit most transistor sets anil eassette recorders. Sutitable for model use: $\mathbf{5 3 . 1 5}$ (24p).
OUR CURRENT LIST (see heading) includes more details of all above plus cartridge replacement table, many unrepeatable Special OPers, and cable, croc. clips, Volume controng Dind plugs. Cocord Player accessories, panel and Test meters and equipment, Multimeters, min. motors, test prods, switches-rotary, toggle, slide, cabinet, lamp, etc., electrolytics, terminals. Veroboard, valve holders, extending aerials for cars and portable sets, ind. lamps and bulbs, dials, mikes, telephone ampliders and pick-ups, drive cord, inter-coms. condenser and LIST SENT FREE WITH ALL ORDFRS IF REQUESTED.

ADCDLA Soldering Instruments add to your efficiency

THE NEW 'INVADER'

 ADCOLA L. 646for Factory Bench Line Assembly
A precision instrument-supplied with standard $3 / 16^{\prime \prime}$ (4.75 mm) diameter, detachable copper chisel-face bit*,
Standard temp. $360^{\circ} \mathrm{C}$ at 23 watts.
Special temps. from $250^{\circ} \mathrm{C}-$ $410^{\circ} \mathrm{c}$.
*Additional Stock Bits
(illustrated) available
COPPER

B $58^{-\frac{1}{4}}-6.34 \mathrm{~mm}$ Chisel face
LONG LIFE

chisel face

B 38 LL $\frac{1^{*}}{}{ }^{-} 3.2 \mathrm{~mm}$ Chisel face
B 14 LL $\frac{3}{32}^{*}-2.4 \mathrm{~mm}$ chisel face

chisel face
B 44 LL $\frac{3}{16}{ }^{*}-4.75 \mathrm{~mm} \underset{\text { FACE }}{\text { SCREWDRIVER }}$

Don't take chances. We don't. All our ADCOLA Soldering Instruments are of impeccable quality. You can depend on ADCOLA day after day. That's why they're so popular. You get consistent good service . . . reliability . . . from our famous thermally controlled ADCOLA Element and the tough steel construction of this ideal production tool.

*
Write for price list and catalogue
ADCOLA PRODUCTS LTD.,
(Dept. M), ADCOLA HOUSE, GAUDEN RD., LONDON, S.W.4. Telephone: 01-622 0291/3 - Telegrams: Soljoint London Telex - Telex: Adcola London 21851

Train for tomorrow's world in
Radio and Television at The
Pembridge College of Electronics Your first day on Television: 6th September, 1972

Setting up home?
 FREE 16-page
 Home Improvement Supplement

Exciting, modern designs . . . easy-to-follow instructional articles . . . handy hints and ideas - all you need to make your house the home of your dreams!

Also in this issue . . .
FREE Plan Sheet for a 9ft Crest Car-top Sailing Dinghy.

PRACTICAL
WOODWORKING Out 14th February only 20p

G. T. ELEGTRONIGS

FOR REAL SERVICE WITH THE LARGEST SELECTION OF ELECTRONIC COMPONENTS AND TEST EQUIPMENT YOU MUST VISIT:-

C. T. ELEGTRONIOS

267 ACTON LANE, CHISWICK, LONDON W. 4 9.30 a.m.-6.c0 p.m. Mon.-Sat.

BSR LATEST SUPERSLIM STEREO AND MONO Plays $12^{\prime \prime}, 10^{\prime \prime}$ or 7 " records.
Auto or Manual. A high Auto or Manual. A high
quality unit backed by BSR quality unit backed by BS, guarantee.
Size $13 \frac{1}{8} \times 11$ in
Above motor board 3 3in.
below motor board 2 in.
with STEREO and MONO XTAL
\&7.75
25p

RCS
DEIth
2-stage triode pentode valve, 3 watts
3 output. Tone with 2-stage triode pentode valve, 3 watts output. Tone
and volume controls. Isolated mains transformer, knobs and volume coniros. ECL82, EZ8O/88.
londspeaker valver
Response $50-12,000$ cps. Sensitivity 200 mV . Post 25p, $£ 4$
R.C.S. PORTABLE PLAYER CABINET

Really smart appearanoe with space for R.C.S. Ampliflers
 GARRARD SINGLE PLAY TA MK II $\quad £ \mid 0$ GARRARD PLAYERS with Sonotone 9TA Cartridges Stereo Diamond and Mono Sapphire. SP25 MI III £16. R.C.S. TEAKWOOD BASE. Ready cut out \quad (2.75 R.C.S. PLASTIC COVERS FOR ABOVE BASE, 62.25 EMI PICK-UP ARM with mono xtal and stylus $£ 1.25$.
HIT-FI PICK.UP CARTRIDGES. Diamond Stere 9TA £2.50; GP94 \&2.50; GP93 52.00; Mono GP91 f1.50;
ACOS Standerd fiting with LP Sivlus onls. 50 .
E.M.I. WOOFERAND
45.75 Post 25

Comprising a fine example of a Woofer $109 \times 6 \frac{1}{2} \mathrm{in}$. with a massive Ceramic Magnet, $440 z, ~ G a u s s ~$
Aluminium Cone
Lines. Aluminium Cone centre to improve
middle and top response. Also the E.M.I.
 Twester $3 \frac{1}{\text { inn. }}$ square has a special light-
weight paper cone and magnet fux 10,000 jines.
Impedance Standard
Maximum Power.
Useful Response. .
Base Resonance. \qquad
Ra2W Ferrite Aerial.
RA2 W5P/1AC ABrial.
Onc. P50/2Cc $470 \mathrm{kc} / \mathrm{s}$ Srd I.F. P50/3CC. P50/3V 65 p
80 p
38 p

80 Mullard Fortite Rod $8 \times \frac{3}{3} \mathrm{in} .20 \mathrm{p}, 6 \times \frac{1}{2} \mathrm{in} .25 \mathrm{p}$. VOLUNE CONTROLS 800hm Coax 4p. yd. Long spindles. Midget Size BRITISH AERIALITE LIN. L/S 15p. D.P. 25 p .40 yd . $11.40 ; 60 \mathrm{yd} .82$. | STEREO L/S 55p. D.P. 75p. | FRINGE LOW |
| :--- | :--- |
| Edge 5K. S.P. Transistor 25p | Ideal 625 and colour. | Op yd. WIRE-WOUND 3-WATT POTS. WIRE-WOUNDS-WATT

Small type with small knob.
STANDARD SIZE POTS.
 $21 \times 5 \mathrm{in} .26 \mathrm{p} .24 \times 84$ in 17 FD 0.15 MATRRX

PINS 36 per packet 21 p. FACE CUTTERS 38 p.

BLANK ALUMINIÜM CHASSTS $18 \mathrm{~s}, \mathrm{w} . \mathrm{g}, 2 \mathrm{in}$, sides. $7 \times 4 \mathrm{in}$. $45 \mathrm{p} ; 9 \times 7 \mathrm{in}, 60 \mathrm{p} ; 11 \times 7 \mathrm{in} .70 \mathrm{p} ; 13 \times 9 \mathrm{in} .90 \mathrm{p} ; 14 \times 11 \mathrm{in}$ $95 \mathrm{p} ; 15 \times 14 \mathrm{in}, 99 \mathrm{p} ; 11 \times 8 \mathrm{in} .50 \mathrm{p}$.
ALUMNIUM PANHLS $18 \mathrm{~s} . \mathrm{w} . \mathrm{g}$.
\times
$14 \times 3 \mathrm{in}, 16 \mathrm{p} ; 10 \times 7 \mathrm{Fin} .18 \mathrm{p} ; 12 \times 5 \mathrm{in} .20 \mathrm{p} ; 12 \times 8 \mathrm{Bin} .28 \mathrm{p} ;$ 14×3 in. $16 \mathrm{p} ; 10 \times 7 \mathrm{in} .19 \mathrm{p} ; 12 \times 5 \mathrm{in} .20 \mathrm{p} ; 12 \times 8 \mathrm{in} .28 \mathrm{p} ;$
$16 \times 6 \mathrm{in} .28 \mathrm{p} ; 14 \times 9 \mathrm{in} .44 \mathrm{p} ; 12 \times 12 \mathrm{in} 40 \mathrm{p}$. 14 inch DIAMETER WAVE-CHANGE SWITCHES 25p. 2 . 2-way, or 2 p . 6-way or 3 p . 4 -way 25 p eaoh. 1 p .12 -way,
or 4 p. 2 -way, or 4 p. 3 -way 25 p. or 4 p. 2 -way, or 4 p. 3 -way 25 p.
SILICON REC. $40-L U C A S ~ 2 D S 500$ RECTIFIERS CONTACT COOLED $\frac{1}{2}$ Wave 60 mA 38 p ; BYZ13 30p; BY100 30p; BY127 30p.
"THE INSTANT" BULK TAPE ERASER \& HEAD DEMAGNETISER $200 / 250 \mathrm{v}$. A.C. $\{2.35$ Post
Leaffet S.A.E.
R.C.S. STABILISED POWER PACK KITS All parts and instructions with Zener Diode, Printed Circait, Bridge Rectifers and Double Wound Mains Transformer
input $200 / 2407$. AC. Output voltages available 6 or 9 or 12 or 15 or 18 or 200 . $D C$ at 100 mA or less. 12 or 15 or 18 or 20 F DC at 100mA or less.
PLEASE STATE VOLTAGE REQUIRED. 22. PRST
Details SA.E. Size 32×1. $\times 1$ Rin.
GENERAL PURPOSE TRANSISTOR PRE - AMPLIFIER BRITISH MADE Ideal for Mike, Tape, P.U., Guitar. Can be used with
Battery $9-12 \mathrm{v}$ or H.T. line $200-800 \mathrm{v}$ D.c. operation.

 NEW TUBULAR ELECTROL XTICS CAN TYPES

$32 / 450 \mathrm{~V}$	20 p	$8+8 / 450 \mathrm{~V}$	18 p	$32+32 / 450 \mathrm{~V} .$.	33 p					
$25 / 25 \mathrm{~V}$	10 p	$8+16 / 450 \mathrm{~V}$	20 p	$350+55 / 325 \mathrm{~V}$	50 p					
$50 / 50 \mathrm{~V}$	10 p	$16+16 / 450 \mathrm{~V}$	25 p	$38+32+32 / 350 \mathrm{~V}$	43 p		$50 / 50 \mathrm{~V}$			
:---	:---	:---	:---							
$100 / 25 \mathrm{~V}$	10 p	$16+16 / 450 \mathrm{~V} 25 \mathrm{p}$	$32+32+32 / 350 \mathrm{~V} 43 \mathrm{p}$							
$32+32 / 350 \mathrm{~V} 25 \mathrm{p}$	$100+50+50 / 350 \mathrm{~V} 48 \mathrm{p}$			LOW VOLTAGE ELEETROLYTICS $1,2,4,5,8,16.25,30,50,100,200 \mathrm{mF} .15 \mathrm{~V} .10 \mathrm{p}$.						

$500 \mathrm{mF}, 12 \mathrm{~V}, 15 \mathrm{p} ; 25 \mathrm{~V}, 20 \mathrm{p}, 50 \mathrm{~V} 20 \mathrm{sin}$
 $2000 \mathrm{mF} .6 \mathrm{~V}, 25 \mathrm{p} ; 25 \mathrm{~V} .42 \mathrm{p} ; 50 \mathrm{~V} .57 \mathrm{p}$.
$2500 \mathrm{mF} .50 \mathrm{~V} .62 \mathrm{p} ; 3000 \mathrm{mF} .25 \mathrm{~V} .47 \mathrm{p} ; 5 \mathrm{p}$. 5000 mF . $6 \mathrm{~V} .25 \mathrm{p} ; 12 \mathrm{~V} .42 \mathrm{p} ; 25 \mathrm{~V} .75 \mathrm{p} ; 35 \mathrm{~V} .85 \mathrm{p} ; 50 \mathrm{~V} .85 \mathrm{p}$. CERAMIC 1pF to $0.01 \mathrm{mF}, 4 \mathrm{p}$. Silver Mica 2 to $5000 \mathrm{pF}, 4 \mathrm{p}$ PAPER 350V-0.1 $4 \mathrm{p}, 0.513 \mathrm{p} ; 1 \mathrm{mF} 15 \mathrm{p} ; 2 \mathrm{mF} 150 \mathrm{~V} 15 \mathrm{p}$
$500 \mathrm{~V}-0.001$ to $0.054 \mathrm{p} ; 0.15 \mathrm{p} ; 0.258 \mathrm{p} ; 0.4725 \mathrm{p}$. $500 \mathrm{~V}-0.001$ to $0.054 \mathrm{p} ; 0.15 \mathrm{p} ; 0.258 \mathrm{p} ; 0.4725 \mathrm{p}$.
 pF 10p; 2,00-0,00p 20p, TWWIN GANG. "0-0" $208 \mathrm{pF}+176 \mathrm{pF}$, 65p; Slow motion drive 45p; small 3 -gang 500 p Fi1 60 .
SHORT WAVE, SINGLE. 10pF 30p; 25pF 55p: 50pF 55p CHROME TELESCOPIC AERIAL, swivel base, 23in. 20p NEON PANEL INDICATORS 250V AC/DC Red or Amber 20p. RESISTORS. $\frac{1}{2} \mathrm{w}$., $\frac{1}{2} \mathrm{w} ., 20 \% 1 \mathrm{p} ; 2 \mathrm{w} .5 \mathrm{p} 10$ ohms to 10 meg HIGH STABBLITY. $\frac{1}{2} \mathrm{w} .2 \% 10$ ohms to 1 meg., 10 p . High sTABILITY,
Ditto 5% Preferred
values
10 WIRE-WODND RESISTORS 5 watt, 10 watt, 15 Watt,
10 ohms to $100 \mathrm{~K}, 10 \mathrm{p}$ each; $2 \frac{1}{2}$ watt, 1 ohm to 8.2 ohms 10 p .

SCOOP! METATHTC PLINTHER

 Cut inw woid aud o $£ 5 \cdot 50$ Dosition. in batest leatherette. Post 25pCovered
Antimagnetic. $12 \frac{1}{2} \times 14 \frac{1}{2} \times 7 \frac{1}{2}$ in.

MAINS TRANSFORMERS

 MINI-MAINS $20 \mathrm{v}, 100 \mathrm{~mA}$.
HEATER TRANS. 6.3 v .3
 at 2 amp. 3, 4, 5, 6, 8, $8,10,12,15,18,24$ and $30 \mathrm{~V} . \pm 225$
1 amp., $8,8,10,12,16,18,20,24,30,3640,48,60,2.25$
2 $2 \mathrm{amp} .6,8,10,12,16,18,20,24,30,36,40,48,60.43 \cdot 25$
5 amp. $6,8,10,12,16,18,20,24,30,36,40,48.60 .88 .75$
 CHARGER TRANSFORMERS. Input 200/250v.
 FULL WAVE BRIDGE CHAR GER RECTIFIERS:
6 or 12 v . outputs, $1 \frac{1}{2} \mathrm{amp} .40 \mathrm{p} ; 2 \mathrm{amp}$. $21 \cdot 80: 4 \mathrm{amp}$. $2 \cdot 25$. 6 or 12 v . outputs, $1 \frac{1}{2}$ amp. $40 \mathrm{p} ; 2 \mathrm{amp} \mathrm{fl}-80: 4 \mathrm{~A}$
All transformers Postage 25p extra.

E.M I. $13 \frac{1}{2} \times 8 \mathrm{in}$. LOUDSPEAKERS With twin tweeters
and crossover, 10 watt. $\quad \mathbf{4}$ State 3 or 8 or 15 ohm . (As illustrated) With fared tweeter cone and ceramic
magnet. 10 watts.
Bass res. $45-60 \mathrm{cps}$. Bass res. $45-60 \mathrm{cps}$. Flux 10,000 gauss. State 3 or 8 or 15 ohm . Recommended Teak Cabinet
Size $16 \times 10 \times$ Oin. Post 25 p

IOW MINI-MODULE $£ 3.25$ LOUDSPEAKER KIT Post 25p

 Triple speaker system combining on ready cut baffle.in. chipboard $15 \mathrm{in} \times$.8 in. Separate Bass, Middle and Treble loudspeakers and crossozer condenser. The heavy duty 5 in. Bass Woofer unit has a low resonance cone. The mid-Range unit is specially designed to add drive to the middle register and the tweeter recreates the top end of the musical spectrum. Total response 20-15,000 cps. Fuil instructions for 3 or 15 ohm. TEAK 10×9 9in. Modern design with
16×5 Post 25p
futed wood front. Highly recommended.

ALL POST
25p each Post 15p cerami Post 15p $\frac{\text { Post } 15 \mathrm{p}}{45}$ 65

ALL MODELS "BAKER SPEAKERS" IN STOCK BAKER 1 2in. MAJOR $£ 9$

TEAK HI-FI SPEAKER CABINETS. Fluted wood front For 12 in. or 10 in . dia. speaker $20 \times 18 \times$ 9in. 89. Post 25 p

GOODMANS $6 \frac{1}{2}$ in. HI-FI WOOFER 8 ohm, 10 watt. Large cersmic magnet. response $30-12,000 \mathrm{cps}$. Ideal P.A. Columns, $\mathrm{Hi}-\mathrm{Fi}$ Enclosures Systems, etc.

$t 4$

ELAC CONE TWEETER
The moving coil diaphragm gives a good radiation pattern to the higher frequencies trom $1,000 \mathrm{cps}$ to 18,000 eps. Size $3 k \times$ $3 \frac{1}{} \times 2 \mathrm{in}$. deep. Rating 10 watts. 3 ohm or 15 ohm models. $£ \mid .90$
 Horn Tweeters $2-16 \mathrm{~kg} / \mathrm{s}, 10 \mathrm{~W} 8$ ohm or 15 ohm 81.50 . De Luxe Horn Tweeters $2-18 \mathrm{Kc} / \mathrm{s}, 15 \mathrm{~W}, 15$ ohm $£ 3$.
TWO-WAY 300 cps CROSSOVERS 3 or 8 or 15 ohm 95 p .

 8 ohm, $6 \times 4 \mathrm{in}, 3$ ohm. 2 sin. $3 \mathrm{in}, 5 \mathrm{in}, 5 \times 3 \mathrm{in}, 7 \times 4 \mathrm{in}$,
 $8 \times 2 \frac{1}{2} \mathrm{in} .90 \mathrm{p} ; 8 \mathrm{in}$. $£ 1.75: 10 \times 6 \mathrm{in}, ~ £ 1.90$. Sin. WOOFER 8 watts max. $20-10,000 \mathrm{eps} .8$ or 15 ohm. $81-80$.
GLAC 10 in. 10 W . De Luxe Ceramic. 8 ohm. 84 . RICHARD ALLAN TWIN CONE LOUDSPEAKERS. 8 in . dia. 4 watt; 10 in . dia. 5 watt; 12 in . dia. 6 watt 3 or 8 or 15 ohm models $\mathrm{E}_{1} .85$ each. Post 15p.
OUTPUT TRANS. EL34 etc. 25p; MIKE TRANS. $50: 1$ 25p, GPEAKER COYERIGG MATERIALS. Samples Large S.A.E. for valves EL84 etc., 3, 8 and 15 ohms 85p. Post 20p. BAKER 100 WATT ALL PURPOSE PO
AMPLIFIER
4 inprits speech and music.
Mixing facilities. Response Mixing facilities. Response
$10-30,000$ ops. Matches 10-30,000 ops, Matches
all $10 u d$ speekers. A.C. $200 / 250 \mathrm{v}$. Separste Treble and Bass controls.

ALL EAGLE PRODUCTS

BARGAIN AM TUNER. Medium Wave.
Transistor Superhet. Ferrite aerial. 8 volt.
BARGAIM 4 CHANNEL TRANSISTOR MONO MIXER Add masical highlights and sound effects ts recordings. Will mix Mifrophone, records, tape and tuner
with sepprate controls into single output. 9 yolt. with sepsrate controls into single output. 9 rolt. STEREO VERSION OF ABOVE E4.25.
BARGAIN FM TUNER 88-108 Mc/s Six Transistor. 9 volt
Printed Circuit. Calibrated slide dial tuning. Printed Circuit. Calibrated slide dial tuning.
Wainut Cabinet. Size $7 \times 5 \times 412$ BARGAIN FM TUNER as above less cabinet $£ 7.50$ RARGAIN 3 WATT AMPLIFIER. 4 Transistor
Push-Full Ready built, with volume control. 97 $\mathbf{£ 3 . 5 0}$ COAXIAL PLUG 6p, PANEL SOCKETS 6p. LINE 18p OUTLETT BOXES, SURFAGE OR FLUSH 25 p . BALANCED TWIN FEEDERS 5p yd. 80 ohms or 300 ohms. JACK SOCKEFT Std. open-circuit 14p, closed circuit 23 p Chrome Lead Socket 45p. Phono Plugs 5p. Phono Socket 5p SOCKETS Chastis 3-pin 10p; 15-pin 10p. DIN SOCKETS Dead
3-pin 18p; 5-pin 25p. DIN PLUGS 3 -pin 18p; 5-pin 25 p . VALVE HOLDERS, 5p; CERAMIC 8p; CANS 5p. E.M.I. TAPE MOTORSPost 15p.

 135mA. Spindie 0.187×0.75 in. CI 25 BALFOUR GRAM MOTORS
 $2 \frac{1}{2} \times 2 \mathrm{k} . \times 1 \frac{1 \mathrm{in}}{} \times$ Post 15 p
CALLERS WELCOME
CAR PARK CUSTOMERS FREE CAR PARK CALLERS WELCOME
7 WHITEHORSE ROAD, CROYDON Open 9-6 p.m. (Wednesdays 9-I p.m., Saturdays $9-5$ p.m.) Buses 50, 68, 159 pass door. Rail Selhurst Tel. 01-684-1665

The largest selection

NEW LOW PRICE TESTED S.C.R.'s

SIL. RECTS. TESTED

PIV 300 mA 750 ma 1 A				1.5A	3A	10A	30A
PIV 300 mA		fp	fp	fp	${ }^{\text {ep }}$	${ }^{\text {fp }}$	fy
	0.40	0.05	0.05	0.07	0.14	0.21	0.47
100	0.04	0.08	0.05	0.13	0.16	0.28	0.75
	0.05	0.09	0.08	$0 \cdot 14$	0.20	0.24	1.00
	0.08	0.13	0.07	0.20	0.27	0.37	1.25
600	0.67	0.16	0.10	0.83	0.34	0.45	1.85
	0.10	0.17	0.18	0.25	0.37	0.35	2.00
	0.11	0.25	0.15	0.80	0.48	${ }^{0.83}$	2.50
1200		0.33		0.38	0.57	0.75	
TRIACS LUCAS SILICON RECTIFIERS							
	TO-1 T0-66 TO-88			$35 \mathrm{amp}, 400$ p.i.v. stud trpe. \&1.10p each			
	£p	\&p	£p	diacs			
	30	50	76	FOR USE			ITH
200	50	60	90				
400	70	75	1-10	$\mathrm{TRIACS}_{\text {BR100 }}$		32)	p each

TNIJUNCTIOS

UT46. Equt. 2 N 2646 Eqvt. TIS43. BEN3000 ${ }^{270}$ UP 20p.

NPN SLICON PLANAR
 8p each; 1,000 ofis, 7 p each. Fully-tested
and coded TO. 18 case. and coded TO-18 case.

FREE

One 50p Pak of your orders valued ft 4 or over.

AF239 PNP GERM, SIEMENS VHF TRANSISTORS. RF MIXER \& OBC USP TO 900
MHZ. USE AS RE. AF139.AF188 \& $100^{\prime} s$ OF OTHER USES IN LOW PRICE:- $1-24$ 37p Lach. 25-99: 34p each $100+80 \mathrm{p}$ each.

SPECIAL OFFER

 2 N 2926 (Y) (O)10 for
20,000
TO

CADMIUM CELLS ORP12 43p
ORP60, ORP61 40p each

PHOTO TRANS.
OCP71 Type. 43p
SIL. G.P. DIODES \&p 300 mW
40PIV(Min.) $\quad 100 . .0 .50$
150.50 Sub-Min.
Full Test Fult Teated $1,000.9 .00$

D13D1 Silicon Unilateral switch 50 pecah.
A silicon Planar, monohaving thyriatior electrical characteristics, but with an anole gate and a built-in "Zener" diode between gate and
cathode. Full data and application circuits avail-

KING OF THE PAKS Unequalled Value and Quality SUPER PAKS NEW BI-PAK UNTESTED

	60 Mixed germanium transistors AF/RF.................... 0.50
	75 Germanium gold bonded diodes sim.
	40 (dermanium transigtors like OC
U5	$60200 \mathrm{~mA} \mathrm{sub}-\mathrm{min}$. Sill diodes
U6	30 silicon planar transistors NPN
U7	16 gilicon rectifers Top-Hat 750 mA up to $1,000 \mathrm{~V}$
U8	50 sil. planar diodes $250 \mathrm{~mA}, \mathrm{OA} / 200$
U9	20 Mired volts 1 watt Zener diodes
11	30 PNP silicon planar transistors TO
13	30 PNP-NPN sil. translistors 0 C200 \& 28104
U14	150 Mixed silicon a ad germanium dodes
5	25 NPN 8llicon planar transisto
U76	$103 \cdot \mathrm{Amp}$ silicon rectiflers stad type up to 1000 PIV
$\overline{\mathrm{V} 17}$	30 Germanium PNP AF transis
U18	86 -Amp eflicon rectifera HYZ13 ¢ype up to 600
U19	25 Silicon KPN translators like BCl
U20	121.5 Amp silicon rectiflers Top-Hat up
U21	39 A.F. germanium alloy transistors 2 G
23	30 Madt's like MAT seriea PNP transistors
	20 Germanium 1-Amp rectifiere GJM up
U25	$25300 \mathrm{Mc} / \mathrm{s}$ NPN Bllicon transigiters 2 N 708 ,
U26	30 Fast switching silicon diodes like 1N914 micro-min 050
U29	10 -Amp SCR's TO-5 can up to 600 PIV CRE1/25-600........ $1 \cdot 00$
	20 Sil. Planar NPN trans. low
	25 Zener diodes 400 mW D07 case mixed volts, 3-18............0.50
प33	51 Plastic case 1 amp gilicon rectiflers IN 4000 series 0.50
U	25 Sil. planar trane. PNP TO-18 2N2906....................... 0.50
	25 月il. planar PNP trans. To
U37	30 Sil. alloy trans. 80.2 PNP, OC200 283
U38	20 Fast switching sil. trans. NPN, 400M
039	30 RF germ. PNP trans. 2N1303 5 TO-5
	10 Dual trans. 6 lead
$\overline{\text { U41 }}$	25 RF germ. trans. TO-1 OC45
	10 VHF germ. PNP trans. To-1
U43	25 Sil. trans. plastic TO-18 A.F. BC113/114
V44	20 Sil. trans. p

Code Nos. mentioned above are given as a guide to the type of device in the Pak. The devices themselves are normally unmarked.

POWER TRANSISTOR BONANZA!

PRINTED CIRCUITS-EX-COMPUTER Packed with semiconductors and components.
10 boards give a guaranteed 30 trans and 30 diodes 10 boards give a gusanteed 30 trans and 30 diode

NEW EDITION 1971

 TRAFSISTOR EQUIVALEHTS BODE. A complefe cross reference and equivalents book ior European, American and Exclusive to BI-PAK 90p each.F.E.T.'S

PHOTO TRANS.

OCP71 Type. 48p
SILIGOR PHOTO TRANNPN Sim. to BP $\times 25$ and $\mathbf{P 2 2}$. NPN Sim. to BPX $\times 25$ and data available. Fully guaranteed. $\begin{array}{llll}\text { Qty. } & 1.2425 \cdot 99100 \mathrm{up} \\ \text { Price each } & 45 \mathrm{p} & \mathbf{4 0 p} & 85 \mathrm{p}\end{array}$ Dual-in-Lint Low Profle Sockets
14 and 16 Lead Sockets for use Dual-in-Line Integrated Circuits

- Price each

Order Fo. l-24 25-99 100 up $\begin{array}{llll}\text { TSO 14 pin type } & \mathbf{3 0 p} & \mathbf{2 7 p} & \mathbf{2 5 p} \\ \text { TSO } 16 \text { pin type } & \mathbf{3 5 p} & \mathbf{3 2 p} & \mathbf{3 0 p}\end{array}$

-the lowest prices!

74 Series T.T.L. I.C'S DOWN AGAIN IN PRICE

Check our 74 Series List before you buy any I.C's. Our prices ar

BI-PAK
Order No.
$\mathrm{BP} 00=\mathrm{SN} 7400$
$\mathrm{BP} 01=\mathrm{SN} 7401$ BP02 $=8 \mathrm{~F} 7402$ BP03-SN7403 BP04 $=$ SN7404
BP0S $=$ SN7408 BP07 $=$ SN7407 BP08-KN7408 $\mathrm{BPO0}=$ SN7409 BP10 \quad 8N7410 BP13 $=$ SN
BP BP17=8N7417 $\mathrm{BP} 20=\mathrm{gN} 7420$ BP30-SN7430 $\mathrm{BP} 40=\mathrm{gN} 7440$ BP41
BP $42=$ SN
S 4_{44} BP43
BP
8N 7443 BP44=SN7444 BP45 = 8 SN 7445 BP46- EN7446 BP47
BP
GN7
GN744 BP48 $=8 \mathrm{AN} 748$
$\mathrm{BP5} 0$
$=\mathrm{SN} 7450$ BP51=SN7451 BP53 $=8 \mathrm{SN} 7453$ BP54=9N7454
$\mathrm{BP} 60=8 N 7460$
$\mathrm{BP} 70=\mathrm{SN} 7470$ BP70 $=$ SN 7470
BP72 $=$ SN7472 BP73 $=$ SN 7473 BP74-SN7474 $\mathrm{P} 75=\mathrm{SN} 7475$ BP80= SN7480 BP81-8N7481 BP82=SN7482 BP83=SN7483

H0000000000 	

 BP91=8N7491.AN BP92 $=$ 8N7492
BP93 $=$ SN 7493 BP94- $=$ SN7494 BP95 = SN7495 BP96 $=$ BN7496 BP100 $=$ EN 74100
BP104 $=$ SN 74104 $\mathrm{BP} 104=$ SN74104
$\mathrm{BP} 105=8 \mathrm{~N} 74105$ BP10 $=8 N 74105$
BP107 $=$ EN 74107 BF110=SN74110 $\mathrm{BP11}=8 \mathrm{BN}_{2} 4111$
$\mathrm{BP} 113=\mathrm{BN} 4118$ BP118-8N74119 $\mathrm{BP} 119=\mathrm{BN} 74119$
$\mathrm{BP} 121=\mathrm{BN} 74121$ BP1 $=8 N 74121$
BP145 $=8 N 74145$ $\mathrm{BP} 150=8 \mathrm{~F} 74180$ BP151=8N74151 BP153 $=$ SN7 74169
BP154
SN74154 BP154-8N74154
BP155- 8 N 74155 BP158 =8N74156 BP160 = GN74160 BP161-SN74161
BP164 $=$ SN 74184 $\mathrm{BP} 164=\mathrm{SN} 74164$
$\mathrm{BP} 165=\mathrm{BN} 74165$ BP165 $=8 \mathrm{ANT} 4165$
$\mathrm{BP} 181=\mathrm{SN} 74181$ BP18182 $=$ SN74182
BP1 BP190=SN74190
BP191=SN74191 BP192 $=$ GN74192
BP193 $=$ SN 74193 BP195=SN74195 BP196 $=$ SN74
BP19196 BP197 $\sin 74197$ BP198 = SN74198
BP199 $=$ SN74199

B

Prlee and aty. pricon
$1-24$
25099
20.900

PRICE-MIX. Devices may be mixed to qualify for quantity prices, PRICES for quantities in excess of 500 pieces mixed, on application.
0 wing to the ever increasing range of TTL 74 series, please check with us for supplie of any devices not listed above, as it is probably now in stock. Ware 3442.

NUMERICAL INDICATOR TUBE TYpe MG-17G

Cold Cathode gas-filled side-viewing numerals ($0-9$) and Decimal Point.
COLOUR : Neon Red.
DATA: Anode supply voltage 180 min Vdc.
Cathode current : 0.35 Nom mA dc.
Ideal for use in constructing Digital Clocks, Desk Calculators etc., and mrny products described in this magazine. We recommend use of BP41 or BP141 to drive this tube.

Full data available on request.

PRICE I-5 $£ 1 \cdot 55.6-25 £ 1 \cdot 40$
ACTUAL
SIZE
BRAND NEW LINEAR I.C's-FULL SPEC.

Type Ko.
Spe NO.
\mathbf{P} 201C-SL201C
BP 701C-SL701C
BP 702C-SL702
BP 702-72702
BP 709—72709 BP 709P- $\mu \mathrm{A} 709 \mathrm{C}$ BP 710-72710
 $\mu \mathrm{A} 703 \mathrm{C}-\mu \mathrm{A} 708 \mathrm{C}$ TAA 263-
TAA 293-
TAA 350

Case	Leads
TO-5	8
TO-5.	8
TO-5	8
D.I.L.	14
D.I.L.	14
TO-5.	8
D.I.L.	14
TO-5.	10
D.I.L.	14
TO-5	6
TO-72	4
TO-74	10
TO5	8

Description	1-24
G.P. Amp	63p
OP Amp	
OP Amp Direct OP	68p
G.P. OP Amp Wide	
Band)	58p
High OP Amp	53 p
High Gain OP Amp	53p
Difterential comparator	58
Dual comparstor	38]
$\begin{aligned} & \text { High Galn 0P Amp } \\ & \text { (Protected) } \end{aligned}$	758
R.F,-I.F. Amp	48p
A.F. Amp	70p
G.P. Amp	90]
Wide band limiting amplifier	

45 p
$45 p$
45 p
40 p
40 p
40 p
40 p
45 p
50 p
27 p
55 p
70 p
150 p

STOP PRESS! NOW OPEN

BI-PACKS NEW COMPONENT SHOP
A wide range of all types of electronic components and equipment
available at competitive prices. Expert technical advice freely
8. BALDOCK ST. (A10), ${ }^{\text {given. WARE, HERTS. Tel. : } 61593}$ OPEN 9.15-6 TUES. to SATS. FRIDAYS UNTIL 8 p.m.

ANOTHER BI-PAK FIRST!

THE NEW S.G.S. EA 1000 AUDIO AMPLIFIER MODULE *GUARANTEED NOT LESS THAN 3 WATTS RMS

Especlally designed by s.c.s. Lncorporating their proven Linear I.C. Audio Amp. TA/621 providing unliralted applications for the enthuslast in the conatruction of radios, record playerg, Audio and
Stereo units. Also Ideal for intercom systems, monitoring applications and phone answering machines. OTHER USES: porlable applicalions where supply raile of low at 9 V are of prime imporlatce

- Senativits 40 mp for 1 watt. OLTAGA GAM for some applica
Hignal to Moise Ratio 8edR. Frequency reaponse better
50 Hz to 25 KHz for -88 B .
Normal supply Voitage g-24V. Quantity - Trpicel Total Hermonic alitartion *Bupply wolfage (7s) -24% isohm load. ed and Guaraneed.
 Larger quantities quoted on request. Full hook-up diagrams and complete technical data supplied free with each module Full hooiz-up diagrams and complete

DTL \& TTL INTEGRATED CIRCUITS

Manufacturers' "Fall outs"-out of spec. devices including functional units and part function but classed as out of spec. from the manufacturers' very rigld specifica Pay T_{0}.
$\mathrm{UIC930}=12 \times \mu \mathrm{A} 930$

 UIC936 $=12 \times \mu$ A 936
UIC944 $=12 \times \mu A 944$ UIC944 $=12 \times \mu \mathrm{A} 944$
UIC945 $=8 \times \mu \mathrm{A} 945$
$50 \mathrm{p} \quad \begin{aligned} & \text { Pak No. } \\ & \text { UTC948 }\end{aligned}$
 Packs cannot be split but 25 Assorted Pieces (our mix) is available as Pack UICX ${ }^{7}$ Data Booklet available for the BP930 Serles, PRICE 13p UIC $00=12 \times 7400 \mathrm{~N} \quad 50 \mathrm{p} \quad$ UIC46 $=5 \times 7446 \mathrm{~N} \quad 50 \mathrm{p}$ UIC01 $=12 \times 7401 \mathrm{~N}$ $\mathrm{UIC02}=12 \times 7402 \mathrm{~N}$
$\mathrm{UICO}=12 \times 7303 \mathrm{~N}$ UICO4 $=12 \times 7404 \mathrm{~N}$ UICOS $=12 \times 7405 \mathrm{~N}$ $\mathrm{UIC10}=12 \times 7410 \mathrm{~N}$
$\mathrm{UIC13}=8 \times 7413 \mathrm{~N}$ $\begin{aligned} & \text { UIC13 } \\ & \text { UIC } 20\end{aligned}=12 \times 7420 \mathrm{~N}$ UIC40 $=12 \times 7440 \mathrm{~N}$ UTC41 $=5 \times 7441 \mathrm{~A}$ UIC42=5 $5 \times 7442 \mathrm{~N}$ UTC43 $=5 \times 7443 \mathrm{~N}$
UIC44 $=5 \times 7444 \mathrm{~N}$ UIC45 $=5 \times 7445 \mathrm{~N}$

50 p
50 p
50 p

All prices quoted in new pence Giro No. 388-7006
Please send all orders direct to warehouse and despatch department

P.O. BOX 6, WARE • HERTS

Postage and packing add $7 p$. Overseas add extra for airmail. Minimum order 50p. Gash with order please. Guaranteed Satisfaction or Money Back

Practical Wireless Classified Advertisements

The pre-paid rate for classified advertisements is 9 p per word (minimum 12 words), box number 10p extra. Semi-displayed setting $£ 6.50$ per single column inch. All cheques, postal orders, etc., to be made payable to PRACTICAL WIRELESS and crossed "Lloyds Bank Ltd." Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Manager, PRACTICAL WIRELESS, IPC Magazines Ltd., Fleetway House, Farringdon Street, London, EC4A 4AD for insertion in the next available issue.

THE NEW

ELECTRONIC MUSIC FOR YOU

Then how about making yourself an electric organ? Constructional data available - full circuits. drawings and notes! It has 5 octaves, 2 manuals and pedals with 24 attack you can play Classics and Swing. Write NoW for free leaflet and further details to C. \& S., 20 Maude Street. Darlington, Durham. Send $2 \frac{1}{2}$ p stamp.

RADIO AM selling up quantity of equipment. SAE for list. 18 Knowles Place, Fairfield, Buxton.

Miscellaneous

Miscellaneous

BRHOMSOMITE electronies 1972 CATALOGUE

IOp post free
56 FORTIS GREEN ROAD, LONDON N10 3EN

Situations Vacant

RADIO

 OPERATORSDO YOU HAVE PMG I, PMG HI, MPT
2 YEARS OPERATING'EXPERIENCE? 2 YEARS OPERATING EXPERIENCE? Possession of one of these qualifles you for con-
sideration for a Radio Operator post with the sideration for a Radio Operator post with the
Composite Signals Organisation.
On satisfactory completion of a 7-month specialist training course, successful applicants are paid on scale rising to $£ 2200 \mathrm{pa}$; commencing salary according to age-25 years and over f 1548 pa . During training salary also by age, 25 and over E 1152 pa with free accommodation.
The future holds good opportunities for established (i.e. pensionable) status, service overseas and promotion.
Training courses commence every January, April and September. Earliest possible application advised.
Applications only from Britishborn UK residents up to 35 years of age (40 years if exceptionally well qualified) will be considered. Full details from:
RECRUITMENT OFFICER, GOVERNMENT COMMUNICATIONS HEADQUARTERS,
Room A/IIO5, Oakley Priors Road,
CHELTENHAM, Glos. GL52 5AJ,
(Telephone: Cheltenham 21491, Ext. 2270)

Educational

TRAIN FOR SUCCESS WITH ICS

Study at home for a progressive post in Radio, TV \& Electronics. Expert tuition for C \& G (Telecoms Techn's Cert and Radio Amateurs') RTEB, etc. Many non-exam courses including Colour TV Servicing, Numerical Control and Computers. Also self-build kit courses-valve and transistor. Write for FREE prospectus and find out how ICS can help you in your career.

ICS, DEPT. 541 INTERTEXT HOUSE,
STEWARTS RD., LONDON, SW8 4UJ
"Accredited by the cacc"

Educational

CIE, AMSE, City \& Guilds, etc. Thousands of exam successes. Postal Courses in all branches of Engineering. Prospectus FREE. State subject of interest: BIET Reading RG7 4PF. maston Court, Rea

Go TO SEA as a Radio Officer. Write: Principal, Nautical College, Broadwater, Fleetwood FY7 8 JZ .

RADIO, TV, RTEB CERTS., City and Guilds, Computers, Radio Amateurs Cert., Practical Electronics (with kit). Thousands of successes. Details of home study courses and illustrated book FREE: BIET (Dept. H.7), Alder-
maston Court, Reading RG7 4PF. maston Court, Read

MEN! You can earn $£ 50$ p.w. Learn computer operating. Send for FREE brochure-London Computer Operators Training Centre. E46 Oxford House, 9-15 Oxford Street, London, W1.

For Sale

AMATEUR'S EQUIPMENT and Junk for sale. Cheap. Room needed. S.A.E. list. Box No. 100.

CRYSTAL CALIBRATED Oscillator, complete as P.W. Oct. 67, $£ 10$ Calibrated DX Receiver, 10 valve, $13 \mathrm{mc} / \mathrm{s}$ $150 \mathrm{Kc} / \mathrm{s}, £ 30$. Telephone Castle Hill 2842 (Dorset).

SEEN MY CAT? 5,000 items. Mechanical \& Electricai Gear, and materials. S.A.E. K. R. WHISTON, Dept. PW, NEW MILLS, Stockport.

TELEPHONE ANSWERING Machines. New and Reconditioned. $£ 55 / £ 160$. S.T.A.M.Co., 182A New North Road, N.1. 01-286 6119 .

MORSE MADE!

FACT NOT FICTION if you start RIGHT you will be reading amateur and commercial Morse within a month (normal progress to be expected).
Using scientifically prepared $3 \cdot$ speed records you outomatically learn to recognise the code RHYTHM learning a tune. 18 W.P.M. in 4 weeks guaranteas. Complete Course 24.50 (Overseas $£ 1.00$ Extra) Details only 4 p stamp. 01-660 2896 or 01-668 3255. GaHisc (Box 19), 45 GREESK LANE. PURLEY, SURREY

RECEIVER A.R.88.D. As New. Used four times. Complete Manual Spares. Phone: Stannington 386.

Wanted

WE BUY New Valves, Transistors and clean new components, large or smal quantities, all details, quotation by return. WALTON'S, 55 Worcester Street, Wolverhampton.

TOP PRICES PAID for NEW VALVES
popular T.V. and Radio types.
KENSINGTON SUPPLIES (C).
367 Kensington Street, Bradford 8, Yorkshire.

HIGHEST POSSIBLE cash prices for Akai, B. \& O., Brenell, Ferrograph, Akai, B ${ }^{\&}$ O.: Brenell, Ferrograph,
Revox, Sanyo, Sony, Tandberg, Uher, Revox, Sanyo, Sony, Tandberg, Uhe
Vortexion, etc. $9.30-5.00$. 01-242' 7401 .

CASH PAID for New Valves. Payment by return. WILLOW VALE, ELECTRONICS, 4 The Broadway, Hanwell, London, W.7. 01-567/5400-2971.

baines for High Frequency Aerials and POSTAGE PAID ON ALLES AERIALS INLAND UHF Aerials: Multibeams. MBM 10 £1.90: MBM 18 £ 2.65; MBM 30 . £ 3.60; MBM 38 VHF Aerials: \mathcal{E} BBC Dipole $\mathcal{E} 1.75 ;$ BBC H

 $£ 4 \cdot 10$; $\mathrm{FMM}^{\mathrm{M}}$ Dipole $£ 1.40 ;$ FM 2 element $£ 2$. re-Amps: Masthead £6; Colourbooster e3.88. orders.
11 Dale Cres, Tupton, Chesterfield

GENUINE FULL SIZE

18 element TV aerial
as used by leading rental companies

A fantastic FOR ONLY yourself. Receives BBC1,
BBC2 and ITV on UHF 625 channels, colour and black/white. 18 element aerial with grid reflector for better reception. A proper aerial, usually supplied only by riggers. Buy now and cat out the middle man. An ideal aerial for the person who likes to do it himself. Complete with fixing clamp and IMPERIAL TRADING
Dept. PW10), 45 AREWRIGHT ST., NOTTINGHAM

```
    * Service Sheets and Manuals *
COVEING RADIOS, TELEVISIONS; TAPE RECORDERS, RECORD PLAYERS, ETC. FFOM 1933 UP-TO-DATE
    M 4OP. EACH - 1971 SERVIC SHEET NDEX LIST 2OD. SIONS.E. WITH ENGUIRIES PLEAS
    BEGINNER'S GUIDE TO RADIO by Gordon KBOOKS & PUBLICATIONS
    BEGINNER'S GU1DE TO TELEVISION by Gordon J. King. 208 pages
    RADIO VALVE AND TRANSISTOR DATA by A.M. Boll. 9th Edition., 232 pages
    UNDERSTANDING THE SEMICONDUCTOR by C.N.G. Motthews. }128\mathrm{ pages.
    NNDERSTANDING TEL EVISION by J.R. Davies. 512 peges
    THE PRACTICAL AERIAL HANDBOOK by Gordon J. King. 232 pages
    COLCUR TELEVISION PICTURE FAULTS by K.J, Bohlmen. AM.lnst.E. ilustrated in Colour
    1971-1972 T FINDING BOOK by Data Publications Ltd. 405/625 Edition. 124 poges.
    1970-1971 MLLLLARD DATA BOOK. Data on Valves & Semiconductors
    1970-1971 MULLARD DATA BOOK. Data on Valves & Semiconductors,
    COLOUR CODE NOICATOR DISC
```



```
Albert Place, Harrogate, Yorkshire. Telephone 0423-86844
```


TRADER SERVICE SHEETS

40p. each plus postage
We can supply Trader Service Sheets for most makes and types of Radios, Tape Recorders and Televisions-Manuals forsome.

Cheques and open P.O.s returned if sheets not available.

OAKFIELD ENTERPRISES
 LIMITED
 29 CHURCH ROAD, TUNBRIDGE WELLS, KENT

Make	Model	Radio/TV

1972 List now available at 10 \qquad plus postage indicate with X

From
Address
enclose remittance of
(and a stamped addressed enveiope) s.a.e. with enquiries please

MAIL ORDER ONLY

SERVICE SHEETS (1925-1971) for Televisions, Radios, Transistors, Tape Recorders, Record Players, etc., by return post, with free Fault-Finding Guide. Prices from 5p. Over 8,000 models available. Catalogue 13p. Please send S.A.E. with all orders/enquiries. Hamilton Radio, 54 London Road, Bexhill, Sussex. Telephone Bexhill 7097.

RADIO, TELEVISION and Tape Recorders, 50 mixed odd sheets 50 p . Also large stock of obsolete/Current Valves. John Gilbert TV, 1B Shepherds Bush Road, London W6. 01-743 8441 . SAE enquiries.

SERVICE SHEETS. Radio, TV etc. 8,000 models. List 10p. S.A.E. enquiries. TELRAY, 11 Maudland Bank, Preston

LARGE SUPPLIER OF SERVICE SHEETS

(T.V., RADIO, TAPE RECORDERS, RECORD PLAYERS, TRANSISTORS, STEREOGRAMS, RADIOGRAMS, CAR RADIOS)
Only 25 p each.
upLEASE ENCLOSE LARGE S.A.E. WITH ALL ENQUIRIES \& ORDERS" Otherwise cannot be attended to (Uncrossed P.O.'s please, original
returned if service shoets not available.)

C. CARANNA

71 BEAUFORT PARK LONDON, N.W. 11
We have the largest supplies of Service Sheets (strictly by return of post). Please state make and model number alternative.
Free TV fault tracing chart or TV list on request with order.
Mail order only.

Ladders

LADDERS, timber, 20ft. $£ 7$, 29 ft . £10.25. Carr. 80p. Brochure. Order C.O.D. Phone 02-993 5222 (Dept WLS) Home Sales, Baldwin Road, Stourport, Worcs. Callers welcome.

Receivers and Components

COMMUNICATION RECEIVERS
Checked, tested B40, R209, etc. and many
others. SAE requirements. others. SAE requirements.
Latest release, with super S/M drive in fine bands. BFO, tuning ind. etc. Tested with CCT £ 10 , carriage £ 1 .
VHF RX
67907
Compact double conversion RX with 20 min Valves. AM/FM. 10 ch . XTAL controlled, etc., suitiaple for conversion to 2 M £ 4.50 ,
 Goole, Yorksinire.

BRAND NEW COMPONENTS by return. Electrolytics 15 or $25 \mathrm{~V} 1,2,5$, 10 mfds. $-3.5 \mathrm{p} ; 25$, $50-4 \mathrm{p} ; 100-5 \mathrm{p}$. Mylar Film $100 \mathrm{~V} \cdot 001, \cdot 002, \cdot 005 \cdot 01, \cdot 02-2 \mathrm{p}$; -04, -05-2.5p; .068, 1-3p. Mullard miniature Carbon Film resistors $\mathrm{E}, 12$ series $1_{3} W 1 \Omega-10 \mathrm{M} \Omega 8$ for 5 p . Insured postage $8 p$. The C.R. Supply Co., 127, Chesterfield Rd., Sheffield So.

WITWORTH TRANSFORMERS

TV LINE OUT-PUT TRANSFORMERS Manufacturers of the largest range in the country. All makes supplied.

Free catalogue
Modern BAIRD, BUSH, GEC, PHILIPS Replacement types ex-stock.
For "By-return" service, contact:
London: 01-948 3702
Tidman Mail Order Ltd., Dept. PW, 236 Sandycombe Rd., Richmond, Surrey

Valves, Tubes, Condensers, Resistors, Rectifiers and Frame out-put Transformers also stocked

> CALLERS WELCOME

> (LOUGUND SUPPLIES SOUTON CO. LTD. for Eagle International and International Rectifier Products. TOA P.A. Equipment and Mikes. Capacitors, Resistors, Plugs, Sockets, Cables, Audio Leads, Semiconductors, Valves, Vero Board, etc., for the constructor. ELECTRONICS DEPARTMENT, 12 Smarts Lane, Loughton, Essex. Tel. 01-508 2715. Hours: 9.30 a.m.-1 p.m. 2-6 p.m. Mon., Tues., Wed. \& Fri. 9.30 a.m.- p.m. 2-5.30 p.m. Sat. Closed all day Thurs.

SHARPEN YOUR RESPONSES with Vernitron ceramic i.f. resonators. Set of four $\mathbf{T F}-04442,455 \mathrm{kHz}$, with associated capacitors for bandwidth $2,4,5 \cdot 7,7 \cdot 5$. 10 or 12 kHz (state which), £1.85, U.K. post 5p. Mail order only. AMATRONIX LTD., 396 Selsdon Road, South Croydon, Surrey CR2 ODE.

NEW
 RIuntrinifi £375

A great new 1:2 watt Hifi amplifier is now a atailable at the low cost of 53.75 . Just look at the specification -Power 13 Watts R.M.S., frequency response 15 cs Signal to noise ratio better than 70 db , Harmonic distortion 0.1%. Input sensitivity 750mv into 2 k These factors make the \mathbf{H} Electronics Hiri amplifier the beat at its price-order now.
HELECTRONICS.
105,Grange Road, London. S.E. 25

```
200 Mired Resistors- \(\frac{1}{2}, 1\) watt types
\(5 \times 700 \mathrm{hm}\) Relays 2 p 2 co (very small). \(5 \times 350 \mathrm{hm}\) Moving Coll small sealed type
\(10 \times 2 \mathrm{k}\) Wire Wound small pots \(\quad\).
1 watt, 5 transistor Amplifiers 9 v 3ohm output 81 each
``` MAIL ORDER ONLY. P. \& P. 10p.
A. J. MANLEY, 13 Randisbourne Gardens, Bromley Road, London S.E. 6

EX-GOVT. COMMUNICATIONS RECEIVERS, calibrators, signal genera tors, components, etc., with money back guarantee. S.A.E. list. Callers welcome, please phone first. P. P : ton, Devon. (STD 08-052) 2411.

\section*{SINCLAIR IC-12}
£2.45
Integrated eircuit amplifler and pre-amp with 6 W rms output. Frequency response 5 Hz -100kHz-
Harmonic distortion less than \(1 \%\) and typically \(0.1 \%\). Suppiied complete with instructions and free printed circuit. Also available kits of parts including simple volume and tone controls to version \(£ 2.45\). Loudspeakers \(5^{\prime \prime}(3 \mathrm{ohm}) 90 \mathrm{p}\), \(8^{\prime \prime} \times 5^{\prime \prime}(8 \mathrm{ohm})\) £1 35. Ideal power supply for the \(1 \mathrm{C}-12\) is the Sinclair P25 E4.00.

\section*{SINCLAIR PROJECT 605}

The easy new way to buy and build project 60 . Comes in one handy pack containing PZ5, two Z30 amplifiers, Stereo 60 and the new masterlink module, which has all the input sockets and output components needed. Special cut to length leads make all soldering unnecessary.
ONLY 20.95

\section*{TRANSISTOR SENSATION}

Thanks to bulk buying we have been able to Smash the price of our well known surplus PNP are untested and unmarked but we guarantee that at least \(80 \%\) are good useable transistors. 100 for \(55 \mathrm{p}, 200\) for \(£ 1 \cdot \mathbf{0 0}, 1000\) for \(£ 3 \cdot 60\)

\section*{S-DECS AND T-DECS}
 Carriers with sockets to mount 14 and 16 pin in
line ICs on \(T\)-DeC and \(\mu\)-DeC A \(£ 1 \cdot 10\).

\section*{AUDIO CABLES AND PLUGS}

DIN audio line plugs: 2 way 12p, 3 way 13p. 5 way 15p.
DIN chassis mounting sockets: 2 way 10p, 3 way 12p, 5 way 12 p
Screened cable with grey PVC outer sheath: tandara single 6p per yd., twin screened 9p
per yd.
3 core standard mains cable \(8 p\) per yd. Flat twin PVC loudspeaker cable 3 p per yd.

\section*{PROJECT 60 OFFERS}

Stereo 60/2 Z301PZ5...
Stereo \(60 / 2\) Z30/PZ6..
tereo 60/2 250/P28.
Transformer for PZ8
Completion kit (see below)
Project 60 FM Tuner
Active Filter Unit
PZ5 Power unit, \(30 V\) unstabilized
PZ6 Power unit, 35 V stabilized
PZ8 Power unit 45 V stabilized
z30 Amplifier, 15 W rms into 8 ohms Z50 Amplifier, 30 W rms into 8 ohms. Stereo 60 Preamp/Control unit
Q1s Loudspeaker

PROJECT 60 KIT
Our extremely poputar completion kit contains
the extra capacitors, DiN plugs and sockets, cables and fuse holder meeded to complete

MULLARD UNILEX
 EP8002 Power unit £
Unilex booklet \(£ 0 \cdot 22\).

\section*{SWANLEY ELECTRONICS}

32 Goldsel Road, Swanley, Kent
Mail order only. Postage 37p on Project 60 orders 10p on others

\section*{NEW MODEL V.H.F. KIT MK2} Our latest Eit, improved design and performance
plus extra Amplifier Stage, reoeives Aircratt, Amateurs, Mobile, Radio 2, 3, 4, etc.
This novel little set will give you en This novel littie set will give you endless hours of
pleasure and can be built in one evening. Powered pleasure and can be built in one evening. Powered instructions and built in Jack Socket for use with Earphones or Amplifier.

Only ef-40. P. \& P. Free U.E. only
Illuatratoi Catalogua of Seiected Kita and Components 18 pp . P. \& P. Free.

Cheques, Postal Ordera to:
Dept. P.W.
Galloon Trading Co., 25 Avelon Road, Romlord, Eanex

HEW Bin. 8PEAKEERS 15 ohma 75p. p. * p. 10p,
 82.75 plus \(\delta 2 \frac{1}{2} p\) p.p. \(; 561 b\) at 84.50 plus 81.25 p.p.; Contain
 PARTASMIC BARGAIN. New 6 inch tubes. E4500 4/B/Lh
4VE, medium Persistance, green. Ideal scope fube. Lint price, \(\pm 5\). Our price \(£ 1-40\) carriage paid.
\(\mathbf{0 0 0} \mu\) AMP METERS. Approx. \(1_{4}^{1 \mu}\) on panel with plus and awitch ex new equip. 75p p. \& p. paid.
WEW HEAVY COAX CABLE dia 30 ohms approx. D. \& g . 0 0 p .

VEF AERIAL TUKING UNITS consisting of the following: 2-1t" 500 nilcro/ampmeter. 1 smanl 2 -gang 75 PF copachor, Pair gears B.N.C. type sockets. Will tune 10 mtri

CRYBTALS AS NEW: BC 6u, 5,\(845 ; 5,030 ; 5,006 ; 4,945\) CRYEALS AS NEW: HC 6u, 5,\(845 ; 3,030 ; 5,006 ; 4,945\) : \(2,295 \mathrm{Kc} / \mathrm{s}\). 50 p each plus 8 p . p.p.
SCOOP PURCKASE OF BRAND NEW CARBON RESIS roRS. \(10 \%\) tolerance \({ }^{2} \&\) it watt. Preferred values in 300,500 at \(£ 2 \cdot 121\). Our selection. p.p. 8 p per 100 and \(2 \frac{1}{2}\), per extra 100.
TRIMMER BARGAINS. These are 10PF sub-min. wir npaced trimmers on board with min. Wire ended Xtal ceramic caps. Xtal frequency 3RD overtone \(249 \mathrm{mc} / \mathrm{m}\) \(250 \mathrm{Mc} / \mathrm{s}, 255 \mathrm{Mc} / \mathrm{s}\). No choice.
Trimmers without Xtal-60p per doz. plus \(17 \frac{1}{2} \mathrm{p}\) p. F .
Trimmers with Xtad- 75 p per doz. plus 172 p p. p . Trinmers with Xtal-75p per doz. p
Also 20 PF min. brand new air spaced. ANY HEIGET AERIAL TUBULAR SEGTIONA \({ }^{\circ}\) dia \(x 3\) ft. Jong. Brass screw in endg, copper coated and
painted. Good condition. \(20 \mathrm{p}, \mathrm{p}\). \&p. 5 p each. Minaimum order 10.
BRAND NEW HARTLEX O8CILLOSCOPES CTB16 in original packing. Band width up to \(\overline{5}\) Me/s. Mains supply Price ex, p. \& p. 2150 .
AERIALS NEW CONDIMON. Whip type 4ft. 25p, 11 ft 75p. 14ft. 87\%p. Used condition 4 ft 20p. 14ft. 75p. A1 collapsible type. P. \& p. 4ft. 10p, rest at \(17 \frac{1}{3}\) p. Neww bases on adjustable clamp for above 82ap \(p\). \& p. \(2 \bar{p} p\)
HeF matcking unit coax connection for above 80 p p. p .
Huge release of valves for the 62 set TX/RX, in origins

R209. Set of valvee 82ip. p.p. \(2 \pi \mathrm{p}\)
NKW AERIAL WIRE ON BOARDS \(7 / 22\) UNOOVERED 75 ft . \(40 \mathrm{p}, 90 \mathrm{tt}\). 47 sp , 100 tt . \(65 \mathrm{p}, 180 \mathrm{ft}\). 95 p .250 ft . 81.80 p , p. \& p. 20p.

MUTRHEAD DECADE A.F. SIGNAL GENERATOR.
This precision instrument can be used:
3. To Measure LLoss up to 45 dbs.
4. As on Audio Frequencs Gemerstor covering 100 Hz to 41 kHz . With a dial getting accuracy of \(\pm 0.5 \mathrm{~Hz}\).
Output \(:-1 \mathrm{M} / \mathrm{W}\) into 600 SL. Cornplete with mains power unit. Tested. Good Condition. \(812, \mathrm{p} \& \mathrm{p} .75 \mathrm{p}\).
EHNCLOSED AERIAL RHLAY COIL. Res. 700 ohms approx. 25 watts RF BNC ontlet, working voltage 12 v . 75 p ,

condition, price Coax in +30 . 35 coits with BNO pluge good condition. price \(81+30 \mathrm{p}\). p.p.
NEW BOXED AMP METERS \(13{ }^{3}\) 20-0-20 de. ©6p. p. \& p. 8 p .

AS HEW UNUSED REJEGTOR UNTTS for rejecting unwanted signals. Four ranges \(1-2-10 \mathrm{Mc} / \mathrm{s}\). 31.50

AS REYT UNUSED AERIAL AVRIOMETER. Cyllader denign \(10^{*} \times{ }^{4 y^{\prime \prime}}\) suitable for tuning most aerialn for
signal strength. 51.50 p. a
p. 25 p .

ZEW HEADPHONES AFD MIKE RUBBER mut type low impedance 97 kp p . \& p . 17 kp . Also DLR number 5 , ow impedance used condition 62tp p. \& p. 17 tp .
Tri449 signal Generators. Good condition fig p. a p. \(\times 1 \cdot 50\)
C.w.o. Carriage charges mainlanid only

FOULD CUSTOMERS PLEASE ENSURE THAT ALL IGCLUDE YOUR ADDRESS.

\section*{A. H. THACKER, \\ Radio Dept., \\ HIGH STREET. CHESLYN HAY. Nr. Waleall. Staffs.}

\section*{Receivers and Components}

EX-RENTAL TV's (UNTESTED)
Complete with 13 channel taners. Good cabinets.

\(17^{\prime \prime}\) Semi Slim \({ }^{17^{\prime}} 21^{\prime \prime} \operatorname{Slim}\left(10^{\circ}\right.\) Tube)
\(17^{n} / 21^{\prime \prime}\) Slimm
\(19^{\prime \prime}\) Slimpline
\(03^{n}\) Slimline
\(23^{n}\) Slimline
\(19^{n}\) BBC 2 Sets

\section*{}

TUBES EX EQUIPMENT (Tested)

\section*{SINGLE PANEL}

PERFECT SPEAKERS EX T.V.
\({ }_{2} \mathrm{Pm} 3\) ohm (minimum order two) 5 in . round. 8 in . by 2 in . rectangular- \(12 \frac{1}{2} \mathrm{p}\) each. Add \(7 \frac{1}{2} p\) per speaker \(p\). \(\& \mathrm{p}\). Special offer:-100 Speakers delivered for \(\mathbf{5 1 5} \cdot \mathbf{0 0}\).

\section*{VALVES EX EQUIPMENT}
\begin{tabular}{|c|c|c|c|c|c|}
\hline E891 & 5p & \(30 \mathrm{L15}\) & 1212 & PL36 & \(22 \frac{1}{2}\) p \\
\hline EBF89 & 122 \({ }^{1}\) & 30P4 & 12 L & PL81 & 174p \\
\hline ECC82 & 121p & PC97 & 172p & PY81 & 15p \\
\hline EC180 & 7 \% & PCF86 & 175 & PY800 & 15p \\
\hline EF80 & \(12 \frac{1}{2}\) & PC84 & 7 7 \({ }^{\text {p }}\) & PY82 & 71p \\
\hline EF85 & 121p & PCF80 & \(7 \frac{15}{}\) & PY33 & \({ }^{22} 17 \mathrm{p}\) \\
\hline EF183 & 12 p & PCC89 & \(12 \frac{1}{2}\) & U191 & \(17 \frac{1}{2}\) \\
\hline EF184 & 12 p & PCL85 & \(22 \frac{1}{2}\) & \(6 \mathrm{~F}^{2} 3\) & 17318 \\
\hline EY86 & 1781 & PCL82 & \(17 \%\) & 30PL1 & 229 \\
\hline \(30 \mathrm{PL13}\) & 20p & PCL86 & 1717p & 30 Pl 2 & 20p \\
\hline 630LZ & 1812 & PCL83 & \(12 \frac{1}{2}\) & 30F5 & 10p \\
\hline \multicolumn{6}{|l|}{Add \(2 \frac{1}{2} \mathrm{p}\) per valve p. \& p., orders over \(£ 1 \mathrm{p}\). \& p. free} \\
\hline
\end{tabular}

\section*{UHF TUNERS}

For Ferguson 850900 chassis. Adaptable for most UHF Chassis \(\mathbf{5 2} \cdot 50\), p. \& p. 50 p .

\section*{TRADE DISPOSALS (Dept. PW/TS)}

Thornbury Ronndabout, Leeds Rd., Bradiford. Telephone 0874/665670

2N2926, GUARANTEED, 8p. OC23 Power Transistor, ex-equipment tested 18p, p\&p 8p. Mr. R. Tustin, 45 Brockhurst Street, Walsall

BEST QUALITY WIRE, PVC covering \(1 / 036 \mathrm{in}\). \(50 \mathrm{~m} .60 \mathrm{p} ; 100 \mathrm{~m}\) £1. \(23 / 0 \cdot 19 \mathrm{~mm}\) - 50 m 80p; \(100 \mathrm{~m} £ 1 \cdot 50.37 / 006 \mathrm{in}\). Silver plated copper- 50 m £1; 100 m £1-75. New Po 3000 Relays \(1,000 \Omega, 4\) H.O. contacts-35p; p\&p 10 p per item. Similar used repairable relays 10 for \(£ 1.25\) incl. postage. Poole Electronics, 68 Danecourt Road, Poole, Dorset.

Assorted Wire-Wound Resistors. A very good selection. 50 for 60 p . P.P. 10p.

Assorted Tag Strips. Many different types. 100 for 50 p. P.P. 10 p.
Muilard BY127 Silicon Diodes. 800 P.I.V. 1 Amp. 15p post paid. Carbon Film Resistors. \(1_{2}\) watt \(5 \%\). Complete range stocked. \(1_{2} \mathrm{p}\) each or El per 100 your selection.
Assorted Potentiometers. Includes ganged types etc. 10 for 50 p . P.P. 10 p .
Plessey 1 Meg. Inv. Log. +1
Meg. Inv. Log., \(\quad \mathrm{D} / \mathrm{P}\) switched. 50 p .
Toggle Switches. S.P.S.T. 12p each.

Mail Order only.
XEROZA RADIO
1 East Street, Bishops-Tawton, DEVON

\section*{TRIO}

Thinking of buying a TRiO?
TS. 510, JR. 310 , 9R-59-DS, etc. on demonstration. Send large SAE for Top Band test report on JR. 144 MHz with etc. Borrow a manual for seven days. Deposit \(£ 2\).

Hire purchase-Part exchange-Photo/ Hi-fi equipment, etc.

HOLDINGS
39-41 Mincing Lane, Blackburn BB2 2AF Tel: 59595/6
rand TRAMPUS ELECTRONIX
BCl07 8p. RClos 8 p . BCl09 8ack Guaranteed.
 \(\AA 1 \cdot 49\). TAD100/110 Rx 81.67 . Zeners 400 mW W23 LIGHT EMITTING DIODES. Visible red 2 v 67 p . 1a. 50 v . bridge 30p. IC Photo Detector \& amp \(5 \mathbf{5 p}\). Numerical Indieator. \(0-9\), Dec Pt. 5y 8 mo bar 7 segment type 3015F 61 93. Fits DIL Sockets. 16 Pin 140, 14 Pin 12 p . 7447 driver \(£ 1.23\). FREE CATA-LIST SAE, Data Sheets 6 p. P.O. BOX 29 , BRACKNELL, BERKS.

RADIOSPARES COMPONENTS specified for projects in this, and other fied for projects in this, and other magazines supplied on request. SAE
with all enquiries. The Hobbies Shop, 32 The Parade, Cwmbran Town Centre, 32 The Parade,

\section*{INCOMPARABLE V.H.F. KIT}

Johnsons CV2-unique triple-purpose (Converter, Receiver, Tuner-Feeder) kit for the Aerter, Receiver, Tuner-Feeder) kit for the Amateur enthusiast. Fantastic performance, World Wide Sales. Complete performance, Worid Wide Sales. Complete 80 m 180 mHZ , plus easy/build diagrams and \(80-180 \mathrm{mHZ}\), plus easy/build diagrams and S.A.E. for free literature.

JOHNSONS (RADIO)
ST. MARTINS GATE
Est. 1943
Tel. 24864
(A division of the G-BAN Organization)
SHORT WAVE \& CRYSTAL SET KITS
AVAILABLE SOON

\title{
Discosound \\ Manufacturers of a comprehensive range of High Quality Equipment DISCOTHEQUES • PA AMPLIFIERS MIXERS - LIGHT CONTROL UNITS SPEAKERS ETC.
}

Send for full details of the Discosound range

\section*{NEW VALVES \& guaranteed and tested}

\section*{24-HOUR SERVICE}

\section*{INDEX TO ADVERTISERS}

\title{
In just 2 minutes, find out how you can qualify for promotion or a better job in Engineering . . .
}

That's how long it will take you to fill in the coupon below. Mail it to B.I.E.T. and we'll send you full details and a free book. B.I.E.T. has successfully trained thousands of men at home - equipped them for higher pay and better, more interesting jobs. We can do as much for YOU. A low-cost B.I.E.T. Home Study Course gets results fast - makes learning easier and something you look forward to. There are no books to buy and you can pay-as-you-learn.
If you'd like to know how just a few hours a week of your spare time, doing something constructive and enjoyable, could put you out in front, post the coupon today. No obligation.

A.M.S.E. (Mech.)

Inst. of Enginecrs Mechanical Eng. Waintenam
Gelding
General Diesel Eng.
iseet Metal Wor
1.is. Inspection
F:it. Metallurgy

F:in. Metaliurgy
C. \& G. Fabrication

Draughtsmanship
A.M.I.E.D.

Gen. Draughtsmanship
Die \& Press Tools Elec. Draughtsmanship
Jig \& Tool Design Design of Elec. Destgn of Elec. Machines Technical Drawing Buiding

Electrical \& Electronic
A.M.S.E. (Elec.)
C. \& G. Elec. Eng General Elec. Eng. Installations \& Wiring Exctrical Maths. Computer Electronics Leetronic Eng.

Radio \& Telecomms.
C. \& G. Telecomms. Radio Amateurs' Exam
Radio Amateurs' Exam
Kadio \& TV Engineering
Radio \& T V Eng
Fractical Televisio
TV Servicing
Colour 17
Practical Radio \& Electronics (with kit)

Auto \& Aero
A.M.I.M.I.

MAA/IMI Diploma
C. \&G. Auto Eng.

General Auto Eng.
Motor Mechanics
A.R.B. Certs.
A.R.b. Certs.
Gen. Aero Eng.

Management \&
Production
Computer Programming
Inst. of Marketing
A.C.W.A.

Works Managoment
Work Study
Production Eng
Storekceping
Estimating
Personnel Management
Quality Control
Electronic Dat Processing Namerical Control Planning Engincering
Materials Handling Operational Rescarch Metrication

Constructional
A.M.S.E. Cir
C. \& G. Structural

Road Engincering
Civil Engineering Building
Air Conditioning
Heating \& Ventilating
Carpentry \& Joinery
Clerk of Works
Building Drawing
Surveying
Painting and
Decorating
Architecture
Builders' Quantitics

General
C.E.I.

Petrolcum Tech.
Practical Maths.
Refrigerator
Refrigerator
Servicing.
Rubber Technology
Sales Engincer
Timber Trade
Farm Science
Agricultural Eng.
Ggencral Plastics
General Certificate
of Education
Choose from \(4^{2}\)
O' and 'A' Level
subjects including:
English
General Scinace
General
Phusics
Mathenatics
Mathenanics
Technical Drawing
Fennical
French
German
Russiont
Rtussiant
Spanisht
Spamish
B.I.E.T. and its
wssociated schools
hate recorded well over 10,000 G.C.E.
successes at 'O' and 'A' level.
WE COVER A WIDE RANGE OF TECHNICAL AND PROFESSIONAL EXAMINATIONS.

Over 3,000 of our Students have obtained City \& Guilds Certificates. Thousands of
other exam successes.

\section*{THEY DID ITSO COULD YOU}
"My income has almost trebled . . . my life is fuller and happier." - Case History G/321.
"In addition to having my salary doubled, my future is assured."-Case History H/493.
'Completing your -Course meant going írom a job I detested to a job I love." Case History B/461.

\section*{FIND OUT FOR YOURSELF}

These letters - and there are many more on file at Aldermaston Court - speak of the rewards that come to the man who has given himself the specialised knowhow employers seek. There's no surer way of getting ahead or of opening up new opportunities for yourself. It will cost you a stamp to find out how we can help you.

\section*{7ree!}

Why not do the thing that really interests you? Without losing a day's pay, you could quietly turn yourself into something of an expert. Complete the coupon (or write if you prefer not to cut the page). We'll send you full details and a FREE illustrated book. No obligation and nobody will call on you . . . but it could be the best thing you ever did.

Dept B2, Aldermaston
Court, Reading RG7 4PF.
(Write if you prefer not to cut this page)

\footnotetext{
Fublished approximately on the 7th of each month by IPC Magazines Limited, Fleetiray House, Farxinglon Street, London, E.C.4. Tel: 01-634 4444. Printed in England by Index Printers, Dunstable, Beds. Sole Agents for Australia and New Zealand-Gordon and Gotch (A/sia) Ltd.; South Africa-Central News Agency Ltd.; Rhodesia and Zambia-Kingston Ltd.; East Africa-Stationery and Offce Supplies Ltd. Subscription rate (including postage); For one year to any part of the world \(£ 2.6 .3\).
PRACTICAL WIRELESS is sold subiect to the following conditions, namely, that it shall not, without the written consent of the Publishers first given, be lent, resold, hired out or otherwise disposed of by way of Trade at more than the recommended selling price shown on the cover, and that it shall not be lent, resold or hired out or otherwise disposed of in a mutilated condition or any unauthorised cover by way of Trade, or afficed to as part of any publication or advertising, literary or pictorial matter whatsoever.
}

Hifli - ELECTRONIC COMPONENTS 10th EDITION
CATALOGUE

Send to this address--Henry's Radio Ltd., (Dept. PW), 3 Albemarle Way, London, E.C.I-for catalogue by post only.

A NEW HENRY'S CATALOGUE IS
A MUST FOR ELECTRONICS TODAY!

\section*{HOME EQUIPMENT}

AF105 \(50 \mathrm{k} / \mathrm{V}\) multimeter (illus.).
Price \(88 \cdot 50\), P.P. 20p. Leather case \(£ 1 \cdot 42\). Price \(£ 3.87\), p.p. 20p. Case 62p. \(50030 \mathrm{k} / \mathrm{V}\) multimeter.
Price 68.87 , p.p. 20p. Leather case \(\mathbf{t I} \cdot 50\) Price \(\mathrm{E8} \cdot 87\), P.p. 20p. Leather case
THL \(23 \mathrm{k} / \mathrm{V}\).
Price E4.12, p.p. 15 p . Leather case \(\mathrm{fl} \cdot 15\). TE65 Valve voltmeter
Frice f17.50, p.p. 40 p. Frice \(\mathbf{6} 17.50\), P.p. 40p.
SE250 B Pocket pencil sig \(\mathbf{3 E 2 5 0 B}\) Pocket pencil signal
injector. Price \(£ 1 \cdot 75\), p. injector. Price \(£ 1 \cdot 75\), p.p.
\(15 p\).
signal tracer. Price \(\mathrm{fl} \cdot \mathbf{5 0}\), SE500 Po
 TE22D Matching audio generator. Price \(£ 17\) p.P. \({ }^{40 \mathrm{p}}\). TE22 Audio Generator. Price f17, p.p. 40p. C1-5 Pulse Scope. E39.00, p.p. 50p. \(C 1-5\) Pulse Scope. Eltitester and transistor test
U431 AC/DC Mult.
Current. In steel case. Price \(\mathrm{f} 10 \cdot 50\), p.p. 15 p . Current. In steel case. Price \(\neq 10 \cdot 50\), p.p. 5 P. p. Leather case LARGEST RANGE of Panel Merers, Edge Meters and Test Equipment of every sort. Full details in latest catalogue-see above.

COST HI-FI SPEAKERS
E.M.1. Size \(13 \frac{1}{2 \prime}^{\prime \prime} \times 8 \frac{1^{\prime \prime}}{}\). Large Cer
TYPE \(1506{ }^{2}\) watt. 3,8 or 15
ohms \(62 \cdot 20\). Post 22p.
TYPE 150TC Twin con
TYPE \(42 \cdot 75\). Post 22 p .
YPE 450 10 watt with twin
tweerers and crossover. 3,8
or 15 ohms. \(\mathbf{~} 3 \cdot 85\). Post 25 p .
TYPE 35020 watt with tweeter
TYPE 35020 watt with tweeter
and crossover. 8 and 15 ohms.
and crossover.
POLISH
Post 30p.
SPEAKER KITS
WHARFEDALE \(4-8\) ohms. PEERLESS \({ }^{8}\) ohm Systems.
 Unit 5. \(12^{\prime \prime} 35 \mathrm{~W}\). \(£ 19 \cdot 50\). \(4-3011212^{\prime \prime} 40 \mathrm{~W} \in 22 \cdot 75\). GOODMANS DIN 20 KIT 20W 4 ohm \(E 10 \cdot 75\)

TEST P PA. DISCOTHEQUE • LIGHTING MAIL ORDER

STEREO HEADPHONES STEREO HEADP HONES
With stereo jack, Post 15p.
Dulci SH650D

BUILD THIS YHF FM TUNER 5 MULLARD TRANSISTORS \(300 \mathrm{kc} / \mathrm{s}\)
BAND-WIDTH, PRINTED CIRCUIT BAND-WIDTH, PRINTED CIRCUIT,
HIGH FIDELITY REPRODUCTION: MONO AND STEREO.
A popular VHF FM Tuner for quality and reception of mono and stereo.
There is no doubt about it-VHF FM gives the REAL sound, All parts sold
separately. Free Leaflet No. \(3 \& 7\) TOTAL \(£ 6 \cdot 97\), P.p. 20p. Cabinet 100 p . Decoder Kit E5-97. Tuning meter \(\mathrm{fl} \cdot 75\)
Mains unit (optional) Model PS900 £2-47.
Mains unit (or Tuner and Decoder PSI200 £2-62.
HIGH QUALITY SILICON AMPLIFIER AND
PRE-AMPLIFIERS

FET \(9 / 4\) Mono or single channel. All facilities plu

\section*{SPECIAL OFFER \(£ 10.50\)}

SILICON POWER AMPLIFIERS RMS OUTFUT
PA 2525 watts into 8 ohms \(£ 7 \cdot 50\).
PA 5050 watts into 4 ohms \(E 9 \cdot 50\).
MU442 Power Supply for I or 2 PA25's or 1 only PA50, \(60-00\). POSt 20p. ALE UNITS INTERCONNECTING. ON DEMONSTRATION AT'"356".

FREE BROCHURES * TRANSISTORS, I.C.'s No. 36
20 WATT I.C. AMPLIFIER Toshiba 20 watt Power Ampli Toshiba Pre-Amplifier I.C., Cl 50. Data and suggested circuits
No. 42 l 0 p. SL403D 3 watt I.C. with page data and eircuits \(£ 1\)
TEXAS PRE-AMPLIFIERS
\& I-100w AMPLIFIERS Circuits, layouts and data
Cl. 25 post paid. el 25 post paid.
NIXIE TUBES (post 15p per order)
XN 3 or XNI \(30-9\) side view with data sheet. 85 p each.
GN4 end view \(0-9\) with socket and data, \(\mathrm{Cl} \cdot 75\). All
I.C.'s for Digital Clocks I.C.s for Sigital Clocks in
stoek. HENRY'SLOCK
CIRCUIT No. \(29 / 2\) 15p.

(P) SPECIAL PRICE WITH CARTRIDGE-ADD All magnetic - Recom: nended Y940 (=AD \(76 K)\) £3-25; AT66 \(£ 4 \cdot 95\);
G850 \(£ 4 \cdot 25\) AT21 69.60 ; G8800 \(£ 7 \cdot 45\) G800H \(86 \cdot 55\);
M44.7 M44.7 or C \(£ 7 \cdot 45\)
deck PBSR Deluxe \(\mathbf{6 6 - 2 5}\), Post ete.: \(=\)
Carts. 15 p.
300 mW TRANSISTOR AMPLIFIER MODEL-4-300
Fully assembled 4TR Amplifier. Size \(51 \times x\)
Output \(3-8\) ohms. Fitted Vol. control.
9 volt operated. Thousands of uses plus
Pow cost.
Price \(£ 1.75, ~ p . p . ~ 15 p ~(o r ~\)
P for \(\mathbf{5 3 . 2 5 ,}\)
p.p. (5p).

SINCLAIR PROJECT 60 PACKAGE DEALS
-SAVE POUNDS!
\(\begin{array}{ll}2 \times 230 & \text { amplifier, } \\ \text { stereo } & 60 \\ \text { pre-amp, }\end{array}\)
stereo 60 pre-amp,
PZ5 power supply,
Carr. 40 p . Or with PZ6 power

 system \(£ 20.97\). Any of the above with Active Filter unit add
\(£ 4.75\) or with pair 16 speakers add \(£ 16\). Also new \(F M\) Tuner \(\mathbf{E 2 0} \cdot \mathbf{2 5}\). 2000 Amplifier \(\mathrm{f} \mathbf{2 3} \cdot \mathbf{7 5}\), p.p. 50 p. 3000 Amplifier \(\mathrm{E} 31 \cdot 50\). Also IC 12 \&2.50.

\section*{"BANDSPREAD" PORTABLE TO BUILD}

Printed circuit all transistor design and Long Wave bands plus Medium Wave Bandspread for extra slectivity. Also slow motion geared tuning, 600 mW push-pull output, fibre glass PVC appearance and performance appearance and performance.
TOTAL \(C O S T\) TO BUILD
67.98,
 stock-Leaflet No. 1 .
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{6}{*}{Electronic. Components, Audfo and'Test.Gear Centre 356 EDGWARE ROAD, LONDON, W.2. Teİ: 01-402.4736} & High Fidelity Sales 8 & P.A., Disco & n \\
\hline & Demonstrations Cent & 8 Lighting Centre & Shop, Industrial Sales \\
\hline & 354 EDGWAREROAD, & 309 EDGWARE ROAD, & 303 EDGWARE ROAD, \\
\hline & LONDON, W. 2 & EONDON, W.2. & LONDON, W.2. \\
\hline & Tel: & Tकीl:01-7236963 & Tel: 01-723 1008/9 \\
\hline & OFEN SIX FULL Dat & 7 to 6 pri MON & SATURDAY . \\
\hline
\end{tabular}```

[^0]: (CIPC Magazines Limited 1972. Copytight in all drawings, photographs and artleles published in "Practical Wireless" is fully protected, and reproduction or imitations in whole or in part are expressly forbldden. All reasonable precautions are taken by "Practical Wireless" to ensure that the advice and data given to readers are rellable We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices are those current as we go to press. All correspondence Intend ed for the Edito should be addressed to Fleetway House, Farrlngdon Street, London, EC4A 4 AD . Queries must be accompanled by a stamped, addressed envelope. Address correspon
 dence regarding advertisements to Advertisement Manager, Fleetway House, Farringdon Street, London, EC4A 4AD.

[^1]: Logs, in alphabetical order please, to arrive by the 15th of the month to:

 12 Cross Way, Harpenden, Herts.

[^2]: DIARY DATE:
 Paris Audio Festival March 9-14

[^3]: SINCLAIR GENERAL GUARANTEE
 Should vou not be completely satisfied with your purchase when you receive it fiom us, return the goods winhout celay and your moner wat be refunded whith question Full service facilitiss ar once and witho facilities are avalable to all Sinclarr customers.

[^4]: F.M. Stereo Tuner (£25) \& A.F.U. Filter Unit (£5.98) may be added as required

