

BAND spread

by ARMSTRONG
 The NEW EXP 119

TBLRIWESIVIDCICATION

1. Designed specifically for the Overseas inctener
2. 9 wave rances, (6 bandspread and 3 keneral coverase) 11-560 metres.
3. High slope pentode R.F. stage.
4. 2 stares of I.F. amplification. . Variable selectivity.

This model has been produced after exhaustive investigation into the requipemerts of Overseas Listeners. Ease of operation on the short-wave bands, high sensitivity and quality output have all been studied and incorporated in the EXP 119.
6. Automatic nolse limiter. 7. 10 watts push-pull oteput. 8. Separate A.C. power pack to acllitate operation from a vibrator if required
9. 11 valve circuit fineluding athode-ray tuning indica-
tor).
A few of these models are now avallable for the home market. 1'rice 536 plus tax.

Armistrong

Armatrong Whaless \& Trieviaion c'o. Idd. Warllers IRomat, Itulloway, Ifonctom, N. 7 . Telephone : NORth 3213

SOLE BIIEMINGHAM
IIavins company:
1 Aterester thed., Moseley,
Ifiriningham, 13.

SOUTHERN RADIO'S WIRELESS BARGAINS

 experimenters The best component value ever otered
 27 volts motor gearing howers. etc. ${ }^{2}$ - 6 . thermostatic control. 2 impulses ber second. Complete in sound-proof case. $10 /-$ plus 1 t
 with valves. etr.. 22.6. telescope, $17 / 6$. (33 49.1. sion metres. Complete with 6 valves. Ideal for easy rollvel cireuit to mains. ete. $1 / 6$.
circuit tomains.ete., ilf. wooden box. 20'-
 For use on wood, metal, plastic, etc.: 56 .
 31 n. dial 340 degrees. 13/6.
IRNTOTHIEIBM, Temperature qauges, from 200 to 500 degrees Fahrenheit. Cinromilum finish. $6^{\prime}-$
 $2^{\prime} 6$.
WES PLCPIORA, WxG and W112 types, \% 6 per dozen.
'IIIRON'I JIC'IR(PIIONIAS. Complete with lead and plug 3 '6.

RWsicil Anctis. 100 Assorted values, from f watt to 3 -watts. All useful values, g/- per 100.
(ONIDENsEIzs. 100 Assorted values. All useful sizes. Mica and tubular $15 /-$ per 100 .
NIII(AINIR NNT's. 'Jype BC 920A : 7 Valves 2×2 (1) 6X5 (1). 6 H 6 (2). 6G6 (1), 6SN7 (2). 3 BPI Tube. switching motor, etc. etc. Ideal ior Oscillator conversion. 44- plus 5 - carriage. IHFNE (:A1BLFS, for B.C.453/4/5. 14 ft . long with adaptors at either end. 8/6, post $1 /$ - extra.
 10 V alves. 717 (4), 12SH7 (3), 12s, 7 12). 12a6 (1). etc.. ctc. 100 - 151 mes. desimned for Crystal Control. $55 /=$ plus 5% Full List puolications. 211.
IRECEIVEISN TYEN IR1125-Brand new complete with 2

SOUTHERN RADIO SUPPLY LTD. 46, LISLE STREET, LONDON, W.C,

GIIIRraid 6653

CLIDESDALE
 Bargains in Fix-Sorvices TRadio and Eleqtionid Equipment

Infm-ided Imare Convmer Cell. Brand New, in Sniperscope. The famous \qquad Catseeve " tube used in Tabby " for nisht sniping and obser vation. Pro vides a silver Cæsium Oxide Screen for the conversion of Infra-red rays o visible rays, using an nfra-t'ed loht source Data provided. Dimensions overall : dia. in, x lith. Sereen dia. 3in.

CLYDTESDALE'S
 IRICE ONI.

$12 / 6$ each. POST FAID.

Snooperscope.

Nx. $-\mathrm{s}_{\mathrm{N}} \mathrm{A}, \mathrm{s}$. ('rytal Milifiblifur. t. we . N1-19468. A frequency Multiplier to cover 2-2d mes. with 807 and etc., external powei supply required No xtals supplied. In metal case 13in. loin. x 6in. With Instruction Booke.
CLYDESDALESS
PRICE ONLY
396 each.
CARRIAGE PAID. Wと. Arms, Wk. A 4-valve superhet chassis. Rance $6-9$ chassis. Rance 6-9
mes. (50-3. 3 moties). With ARP12's (VP23), F.C. 2 AR1 $12^{\prime} \mathrm{S}$ I. F. and AR8 (HL23DD) Audio Loc. Ose. and det. and A.V.C. slug-tunedI. F. trans. 465 ke s , etc. The complete receivir mounted on a chassis B! $\times 5 \times 1$ in. Unused. Power requirenients approx. 3 v. 0.2 a. H.T., 1.5 v. lias.

CT, EDESDAIES'S
PRICH ONLY
I'GGE PAID.

Orier

- 纺

N(I) IRIIIID
 (ADNTIRICTTAR

can afford to miss these bargains

CONSTRUCTOR'
PARCEL , A).
As illustrated.
Comprising heary
kauee metal chassis cut out for a 5 valve super-
het. overall size $14 i n$ x 6in. x 2in., with main transformer (250-0-25ח 60 ni.a. 0.3 v. at 3 din 2 amps.) and L.M. \& S. scale size Tin. x 5in., and back plate complete with supporting brackets and pulleys. drive drum Dointer and 2 -sperd spindle, all compirte with instructions showing. among othri things. how the string fits round pulleys and pointer

CONSEIRT("I'OI\&'

IP. NRCLI, (B)
As above but with 4\%. type transformer, same price.

THIS IIINTH'S SIPLCUIL

This is a beautifully made 10 in . P.M. Speaker, a real precision product made by a very lamous firm you will recognise inmediately. It is undoubtcdly a 10 in . speaker with a 12 in . quality reptoduction, and has these special features: (A) a solid diecast frame. (B) a dustproof speech coll arrangement, and (C) a patented speech coil suspension which gives-wider frequency response. Speerh coil is normal 2.3 ohm impedance. The correct retail price of this speaker is 35^{\prime}-. but we are able to offer them. while stocks last, for $16 / 6$ each, plus 2.6 carviage and insurance.

THE INSTRUMENT CO. 11, GUNNERSBURY LANE, ACTON, W.3.

Vision in Design

The ADVANCE Signal Generator (Type E2)

The Advance Signal Generator Type E. 2 has been designed with an eye to future developments in the Radio and Television fields. Its wide range of frequencies-from 100 Kc ;s to $100 \mathrm{Mc} / \mathrm{s}$ on fundamentals-caters for the rising frequency requirements of modern radio and communications. It is a fine example of 'Advance ' design and manufacture.
This generator offers an instrument of laboratory standard at a price within the reach of moderate purses. The remarkably high frequency accuracy of $\pm 1 \%$ extends over the whole range.

SEND FOR FULLY DESCRIPTIVE LEAFLET.

Range : $100 \mathrm{Kc}_{1}^{\prime}$ s-100 Mc's in 6 bands.
Frequency : Guoranteed within 1 per cent.
Output: Approximately 1 volt unattenuated and variable from $1 \mu \mathrm{~V}$ to
100 mV into a 75 -ohm load through a matched transmission line.
Stray Field: Less thon $3 \mu \mathrm{~V}$ ot $100 \mathrm{Mc} / \mathrm{s}$.
Illuminated Dial : Total seale length 30 in .
Power Supply: $110,210,230,250$ volts; $40-100 \mathrm{c} / \mathrm{s}$.
Dimension: 91 in . high $\times 13 \mathrm{in}$. wide $\times 8 \mathrm{in}$. deep.
Weight: 15 lb .

ADVANCE COMPONENTS LTD., BACK RD., SHERNHALL ST. WALTHAMSTOW LONDON, E.I7 Telephone : LARkswood 4366-7-8
"WE have heard this loudspeaker in operation and there can be little doubt that the makers' claim of a frequency range of 50 to 14,000 c's can be substantiated.' '
"ON a plane baffle the Concentric Duplex gives a clean and full-bodied bass response of surprisingly good quality for a 10 in . diaphragm. The diapliragm suspension is also of a type well suited for use in conjunction with a cabinet of the 'bass-reflex 'type if this is preferred.'

—hhat's arhat ther "- Wirelos.s Wiorld": sayss about
 (feradaray ISYe)
 De Luxe table cabinet model
 दII-3.0
 Corner console model. less Concentric Duplex

transformer $\$ 12.12 .0$

Leaflet
on
request.

HIGHEIDELITY REPRODUCER SPECIFICATION: Series Gap magnet of Alcomax 3. Flux in LF gap 12,000 gauss on 1 "pole ., ., HF .. 13,000 gauss , ,. ., Power handling capacity, 6 watts. Frequency range $50-14,000$ c.p.s. Fundamental bass resonance, 65 c.p.s.

Complete with' matching transformer and filter condenser:

WHITELEY ELECTRICAL RADIO CO. LTD. • MANSFIELD • NOTTS • ENGLAND

EVERY MONTH.
VOL. XXVI. NO. 526 MAY, 1950
Editor F.J.camm
COMMENTS OF THE MONTH
BY THE EDITOR

Programme Quality Declining

AHIGH pereentage of programme time is occupiod by recorded progtammes. especially in the case of mernar feature programmes, of which there are far ton many. There is also criticism of the third feature programmes, the complaint being that they are too high-brow. The recoded programme is a cheap way of filling programme time, and there are far too many feature programmes on similar lines. The gig writers are being oworworked and some of their efferts are inferior to these which may be read in a children's comic paper. The programmes, in fact, are wither too high-brow or too low-brow and it is time that there was a gemeral revision of them and an overhaul of responsible staff. Producers get tired and when they get tired they get into a mut. Criticism merely makes then turn in their grooves and, as, with the theatre, there should to a general change round of johs every year or so, so that frosh and enthusiast ic people with new outlooks aro able to infuse their ideas into new programmes. Thero is a general tendency once a feature has proved popular to overload the puiblic not only with that particular programme but with others of a similar nature. The programme which consists chicfly of interviews with nonentitios who have nothing much to say. the humom being obtaned from uneonscionsly humorons replies prompted by questions from the interviewer, who sniggers in a solf-satisfied way and scems to onjoy tho programmo immensely, shonld be abolished. Listemers do not want to know that a young lady from the cotton mills, for example, onjoys her work; that she has been engaged for a couple of years; that she has a young man but is not going to get married yet. That is the sort of undiluted drivel which is pumped out week after weck. The programme consisting of some slick wisecracks, largely Amorican in origin, is also being very much overdone. Why not appoint an independent commission to investigate the problem?

" Practical Television"

OUR new companion joumal, Practical Television, was an inst:untaneous success, the first issue being sold out before publication day, notwithstanding a very heavy print.

The second issue has similarly been absorbed. In these days of prorluction difficulties it is necessatry for publishers to know well in advanco how many copies do print. We suggest to every reader of this journal that. as Practical Telension is complementary to this journal. they should place a regular order now for its delivery each month. It is similar in style, format and prier, and it gives fuller details of television derelopments than is possible in this journal.

The New Wavelengths

THE Copenhagen Plan is now in being, the
Light Programme being radiated on 1,504 metres and 247 metres. the Third Programme on 464 netmes and 194 metres and thic 1 Lome Sorvier as follows: North. 434 metres and 261 metres, Scottist 371 motres, Wolsh $3+1$ metres. London 330 metres. West 285 metres and 206 metres, Midland 276 metres and Northem Ireland 261 metres. Elsewhere in this issue we show the new positions on which the stations appear on the seale. Owners of push-hatton recerivers will, of course, have to readjust the position of the cams in accordance with manufacturer's instructions. If the tuming dial of your receiver is marked in metres it is, only mecessary to set the pointer to the new wavelength of the station sou wish to listen to, although if station names are also maked on the dial they will not be in their correet places. Some mamifacturers intend to supply new seales. With those receivers with only. station names on the tuning dial cach station will be found slightly to one side of its name. Rovecivers which have pisil buttons only, and not mamual control, will not receive the new B.B.('. wavelengthw.except the light programme on long waves, until they have been readjusted.

Nearly every station in Europe is allocated a new wavelength under the Copenhagen Plan. A list of the principal continental stations is printed elsewhere in this issuc.

The new plan was. of course, rendered necessary because of the great increase in the number of broadcasting stations accommodated in the medium waveband. Moreover, the power of those stations has considerably inereased during the past ten years.

Broadcast Receiving Licences

THE following statement shows the approximate number of licencos jssued during the sors ended 31st Jannary, 10.50.

Ref(iont

London P'ostal 2,323.100
Home Counties
Midhand $\quad . \quad$.. 1,713.000
North Lastern 1, $87+, 0100$
North Western 1, instiono
South Western 1,04. . 000
Welsh and border Counties
Total England and Wales .. 10, Ran.000 Scotland 1,113,000 Northern Ireland . . . 200,000

$$
\text { Grand Total } \quad \text {. } 12,200,000
$$

National Radio Exhibition

T'HE National Radio Exhibition which is to be held at Custle Jromwich. Jimmingham, from September 6 thi to loth next, will be at Varls Cou't, London, in September 1951, 195: ank 1953.

The Radio Industry Council in announcing this recently, said that an earlier decision to lonil the exhibition at Olympia, London, in June, insteat of in the mutumn harl been changed, but this change came too late to secure convenient autumn dates and the necessary spare at ()lympia.

In view of the facilities offeren at Darla (Onrt, it was derided to go there rather thian hold the exhibition at. Olympial at a less convenicut time.

The National Karlio Exhibition, before going to Olympia in 1926, was held at the Royal Albert Hall in 19.4 and 192.5 . the White City in lase, and the Horticaltural Hall in $1!2 \cdot 2$. Nisten National Radio Exhibitions have been held in all. The one coinriding with the Festival of Britain will be the cighteenth.

Broadcasting Commiliee

THE Proadeasting Committer, under the phairmanship of the Rt. Hon. the land Peveridge, K.C.l... li.lB.A., heard oral evidence on Thmmay, March boh, lato, fom representatives of the Renters, Jeshibitors and Producers Joint Committee of the Film Industry.

The Committee would like it to be known that they wouk still weleome representations in witing on any subject within their terms of rejereme. These are:
"I'o consider the constitutina, control, finanee and other general asperts of the somud aud television broadcasting services of the Inited Kingdom (excluding those aspects of the overseas services for which the B.I.C. are not responsible) and to advise on the conditions under which these services and wire broadcast.
ing should be conducted after. December 3 Ist, 19.51."

All communications should be addressed to the Secretary, Broadcasting (\%ommittce, lron Trales House, I, Chester Street, London, S.W.I.

V.H.F. Contest for Amateurs

T'HE Anateur Division of E.M.I. is organising (in ronjunction with the Amalgamatel ShortWhae Press) a contest amongst amateurs operatiag on the Lft Me's band. E.M.I. are donating fond prizes-namaly, two pairs of heavy duty rectifier valves for the transmitting section of the contest, and two sets of three receiving valuns for the listener section.

A unique feature of the competition is that although oach station is ont to make as many contarts as possible, the "merit" of pach competitor will be determined by very careful consideration of the conditions unter which stations are working, thus competitors who only manage to make a small number of contacts may well he amongst the winners if they are working under difitult ronditions.

The competition is to be held from.08.00) hours

Interior of a mohile broadcast recording unit supplied by E.M.I. to Radio Luxembourg.
on April 2end umtil 24.00 honrs on April e3rd. 'The rlosing date for receipt of completede contest logs is May 8th.

Any interested amateur who does not receive a circular letter, can ohtain further information either from Mr. H. F E, Smitl. Anatemr livision, E.M.I. Sales \& Service, Ltd., Hayes, Middlesex, or
may be withdrawn, and ractio-controls enthusiasts may find themselves forced to operate moler the more stringent conditions imposed in otherementries.

Monitoring equipment of a simple type is cheap to construet and operate, and in the viow of the Rarlon ('ontrolled Mordels somiety, is essential in any radio-controlled demonstration.

The most northerly broadcasting station at Vadso, Norway.

B.I.R.E

THE following list of meetings has been arranged for April, 19.0):

London Section.-London Sehool of Hygiene and Tropical Medirine, Keppel street. W.C 1 (mectings commence at $6-30 \mathrm{p} . \mathrm{m}$.$) April 2(t \mathrm{~h}$, b. IV. Jleightman (Member), "U.H.r". Propagation and Charac teristics."

Hest Midlands Section.-Wolverhampton and Staffordshire Tech-* nical College, Wulfrume street, Wolverhampton (meetings commence at 7 p.m.). April 2 isth, (. R. Aıney, "Intermodulation Analysis."

Engineer-in-charge, Aberdeen

 $\mathrm{M}^{\text {ii. II. BALFOliR has been }}$ appented Engincer-in-Charge of the 1B.S.C. studio centre and tratumitting station at Aberdeen. He replaces Mr. W. W. Inder, who has rotired from the postfrom the Editor, Short Wace News, 57, Maida Vale, London, W.G.

Most Northerly Broadcasting Station

I' 1933. the most northerly brualoaster in the world was installed in Valso in the province of Fimmork, in Northern Norway. This 10 kW station was within tho Aretic ('irele, and furnished programmes to the northern half of Noway and Lapland. During the orcopation of Norway in the Second World War, the station was destroyed by the Germans.

A new station has now been built, and a 20 kW broadeaster was put into service recently to eover the same area, where about $4,5,000$ people are scattered over 19,000 square mites. By this means the Norwegian broadcasting alministration has angmented its service and improved the signal strength and clarity of its ratio programmes.

Both the original transmitter and the replacing transmitter were manufactured by Standard Telephones and Cables, L.td., in England, and supplied through their associate, Standard I'elefon og liabelfabrik A/S. Oslo.

Radio-controlled Models Society

THE Radio Controlled Models. Society is seriously perturbed at the number of radio-controlled models taking part in field ments at which no official frectuency monitoring is arranged. At these events, wer which the Sorinty has no juriscliction, models have been observed iperating outside the freguency bands allotted by the lostmaster-Ceneral for that purpose. It is of vital importance that these concessions are not aluused, otherwise they
of Finsimer-in- ("harge at Aberdeen. after 17 years servire

Mr. Balfom 'ame to the B.B.C', from the G. P.O. ratio station at, I'ort isliead in 1934, and has sinee had wide experience in the transmitter department. of the miginecring division. He is a native of Courock.

Newnes' Motorists' Touring Maps and Gazetteer

THIs book, specially produced for the motorist, has now been reviscel. It eomprises 90 skil. fully coloured maps eovering the whole of the British Isles. Fivery road classified by the Ministry of Transport is clearly shown. Wery main road is marked with its signpost number. It also shows the railways. level crossings, stations, churches contours. ate.

The scale is 5 miles to the inch, exerpt in the outlying parts of scotland, where the scale is smaller.

In addition to the 96 road maps, this handy size edition rontains a Gazettecr Index to Places(if additional pages giving place-name. county, mileage from nearest bige rentre, population, and map references so that the place. whether it bo city, town. latmlet, or even railway station, may be found in an instant.

The book roste 17. 保. and is obtainable from George Newnes. Jth., Tower House, Southampton street. Strand, W.C.2.

HIRELESS COILS, CHOKES AND TRANSFORMERS 8th Edition now ready.
 Price $6 /-$ by post $6 / 6 \mathrm{~d}$.

The Band-searcher Tuning Unit-4

Concluding Details of this Interesting Accessory for the Short-wave Enthusiast By J. R. DAVIES

TWHE antacls next neer to be manufactured. No great acouracy is nected here, as the mothod of fixing allows tho downward presSure as woll as the sideways movement of these contarts to he adjusted. Fig. 21 (a) and (b) givo 'details of the contarts. The material used may be springy brass (as obtained from a fash lamp battery). phosphor-hronze, or any other fairly springy metal. The contarts are self-wiping and are only needed to light a dial-lamp, so them is littlo noed to worry ahout special contact surfars. It will he seen that the contact is bent at, one end to fit the semi-cireolar contact holdor, part N. A 6 B.A. mut and bolt, are litterl to the two loles drilled in lig. . $2 l$ (a) to allow the contact to grip the holder tightly at the desired position. A small spot of solder holds the nut to the brase, making it an anchor mut. It will be seen that the screw is tightened and loosened from bohind.

The part of the contact, which tourhes the contact on the moving dise is made to present a slightly combex surfaen to that contact. See Fig. :2l (b) and (r). 'This ensures a smoother travel.
-4. The moving contact just mentioned is made from brass plate, as shown in Fig. :2 (d). It is mounted as shown in the plotograph, on the front side of the circular dise.

The Tuning Drum

25. The foming from is mounted to thren 6 3.A. bolte fixed to dise B. Two of these are alreaty holding parts B and C together (see Fig, 7). If the details in paragraph ti wore observed these serews should projert forwards at least ${ }_{4}^{3} \mathrm{in}$. A third screw may now be fixed to the remaining "f IB.A. rlear" holo in the dise B. This should also projed forward some 3 in. Theso screws hold the turing drum as shown in Fig. 2. (a) and (b). The long serew projecting from the centre of the drum may be fitted if it is desired to use a directlydriven pointer on the dial. This point is left to the readers own desires.

The tuning drum should have 8 diameter of some 2ins. Ordinary rimeular tin lids such as those used for boot blurking tins, bottle tops, ete., makn excellent drums, and their somewhat un-radiolike derivation may be easily camouflaged by a coat of paint! A small nut and bolt may be mounted somewhere along the periphery of the drum to give an anchoring point for the driving cord. In the case of the bandiset rondenser it is advisable to insert a spring in both cords going to the driver spindle, as shown in Fig. 22 (c). This is because the condenser, when being "pulled in " on going over to "bandspread," is liable to mose through a fow degrees of rotation. This would cause an undue strain to he placer on the cord, whose life would thus be shortened. The two springs take up
this strain, on whicherer side of the trum it may appoar.

The Bandspread Condenser

The bandspread two-gang condenser may be of riny type, so long as its dimensions to not exceed those quoted for the bandset condenser, The author used an ordinary 500 pF oondenser " cut down" by removing ali the moving avanes except one on both gangs. The capacity resulting may be easily calculated by counting the spaces between the fixed and moving vanes. Before stripping, the rondenser used by the author had 12 moving vanes. This"gave 22 spaces between fixed and moving vanes (both outside vanes were moving vanes). When out down there were then only two spaces between fixfol and moving vanes, i.e., one on either side of the remtining moving vane twhich was, incidentally, the centre vane). The remaining

Fig. 21.-(a) and (b). Details of fixed.contacts. (c) The convex contact point mentioned in the text. (d) The pointer.
capacity whs therefore $2 / 22$ of 500 pF , which is equal to 45.5 pF . This should give just sufficient capacity to "spread" all the short-wave broadcasting bands required.

The mounting of the bandspread condenser is left endirely to the reader, as no harl-and-fast rules may be given, owing to the non-standardisation of these components.

There is plenty of room on the chassis to hold this condenser, and if its spindle is arranged to bo at the same height as that of the bandset condenser. two pointers may bo used, giving a dial somewhat, on the times of that shown in Fig. $2: 2$ (1).

Fig, 22.-(a) and (b). How a drum for a cord drive may be fitted to the bandset tuming condenser. (c) A spring is fitted to both sides of the cord drive to avoid strain (see text). (d) Suggested dial layout for the unit.

Installation in the Receiver Chassis

The installation of the unit in the recoiver chassis should present few problems apart fiom thase of ohtaining symmetrical layout, etc. Three holes should bo sulficient for mounting purposes, two in the front corners of chassis part J and one in the rear contre. It would give a profersional touch if the chassis were mounted on soft rubber grommets at those points, thus making both tuning
condensers floating and less liable to microphonio feedhack from the speaker. The driving spindles for the cord drives would need to be mounted on the receiver chassis proper.

The tuning unit may be used on more than ono waverange. The only necessity is that the bandset condenser positions fur the required runges do not clash on different ranges. Either that or that they coincide !

The warning light contacts may be used to light a particular bulb for each band. each bulb, iltuminat ing a window or section of the dial and showing

Fig. 23.-(a) and (b). Various methods of connectirg the fixed contacts and bandspread indicating lamps to obtain different effects.
which band is in use. Alternatively, one bulb only may be used, the position of the bandset pointer indicating which band is being "spread." Fig. 23 shows how at single bulb or various bulbe may be connected to the wave-change switeh so as to enisuro that they only light when their particular rango is switched on.

Fig. 23 (a) shows a simple arrangement using a
single short-wave band. Assuming that the range of the coils used is from 12 to 35 metres, we then have availahle the $13,16,19,25$ and 31 metro bands. The bandspread indicating light will only shine when the short-wave range is switched on.

Fig. 23 (h) shows a more eomplicated arrangement Two short-wave ranges are now avalable. 'The S.W.I range is tho same as that of Fig. 23 (0) , i.e., 12 to 35 metres. The S.W. \because range (32 to 100 motres) gives us an additional band-the 49 metre band. The contact for this band is set between two used for the S.W.I range. It will be seen that a section of the wave-change switelh is again used to ensure that tho appropriate circuit is made for each waverange. Fig. 23 (e) shows a more ambitious scheme. In this diagram a different lamp is used to indicato earh band as the bandset condenser approarhes it. The effect of this arrangement is extremely im-

Fig. 24,-View underneath the unit. The D.P.S.T. switch mechanism is clearly visible. ("Condenser free" position, switch open.)
pressive, as may be imagined, and, combined with the case of tuning and simplicity of accurate bandspreading, inakes short-wave listening very pleasurable indeed.

RADIO SHOW PATRON

H^{3}.M. QUEEN MARY has again consented to be patron of the National Radio Exhibition which is to be held from September bith to 16 th this year at Castlo Bromwich, Birmingham, instead of in London. Her Majesty was patron of tho exhibitions at Olympia, London, in 1947 and 1949 , but has not beon able to visit the exhibition since 1947.

A prospectus and provisional plan have now been issued to prospective exhibitors with much new information about the size and scope of the exhibition.

Every possible facility is to be provided for

Pre-selting the Mechanism

When the tuner has been installed and wired, the coils, ete., should all be trimmed to their maximum performance. When the constructor is

Fig. 23.-(c). Further method of comnecting the contacts.
aatisfich on this point he may thon set up the locating mechanism.

Ho should first decide what hands the desires. He must then set the locating vikes F so that the bandset rontenser is, in each chsie, locked just at the high-frequency end of curh band. It is better to do this whilst actually receiving stations as the calibration of some signal generators'is not always sufliciently accurate for this purpose. When the locating spikes aro definitely and satisfactorily fixed. the lamp contarts may be adjusted. These should be set so as to affioril a contact at least a clegree of rotation on cither side of the locked position. The fixed contacts should perceptibly move as the moving contact passes them. On the other hand, of course. the contact must not be so tight as to impede the rotation of the bandset condenser. When adjusted, the light should remain lit for some appreciable movement of the tuning knol, and the lociating mechanism should "pull in " the appropriate locat ing spike at any point in which the light is shining.
working exhibits, subject to their prior sanction by the exhibition committee and subject to their not causing any electrical interference; with B.B.C. transmissions or with any of the cxhibition services.
The three principal exhibition features, namely, the B.B.C. studio, the communal television demonstration and exlibition control-room, are all arranged at the west end of the hall opposite the main entrance.
Varicty in stand designs will be permitted as in London. Space will he allotted by ballot and applications must reach the Radio Industry Council not later than April 15th.
Tho exhibition will be, open from il a.m. to 10 p.m. daily, except on Sunday.

Installing Car Radio-2

The Principles and Practice of Modern Car Radio By ERIC BALLS, A.M.I.M.I., M.A.E.T.

RADIO-frequency components in the ignition primary (low tension) circuit may be bypassed by the commection of a $0.5 \mu^{4}$ condenser between the ignition coil SW terminal and carth. It is well to check that the leads to the roil'terminals have not been crossed ower, as the comdenser must not he connected between earth and the load to the distributor fow tension terminal.
lanition interference is evidenced by a regular clicking noisó at tick-over speeds, increasing in periodicity: as the engine is reved up. In dificult corses it may the neressary to fit an additional suppressor resistor in cach plug leaul. Special resistors can be obtained for this purpose and they monst be positioned as close as possible to the respective plugs.

Upinions vary as to the effect on ignition efficiency of introducing resistance suppressors into high tension cirruits. Nevertheless, where trouble is supposedly caused by the presence of resistors the fault is more hikely to be due to some weakness or maladjustmont in the ignition system itself. This opinion is confirmed by War Department experience with radio equipped vehicles during the war years and is corroborated by tests carried out by the Institution of Automobile Engineers.

Inciliontally, an ignition system which is not functioning correctly will cause much more interfence than one which is operating efficiently. It is imporbent to keep sparking phigu clean and the gaps correctly set, and distributor contacts properiv adjusted. Defective parts such as cracked or perished plugs, wires, or bumt-away rotor arms should be replaced.

The Dynamo

A howl or whine which rises in pitch and intensity when the engine is speeded up is probably due to interference from the dynamo circuit and will be aggravated if lrushes are badly worn or commutator blaclsened or rough. Apart from correcting these defects adequate suppression can usually be obtained by connecting a $0.5 \mu \mathrm{~F}$ condenser bctween the dynamo main terminal find earth, and if the dynamo is a three-bruan one, between the fied terminal and earth as shown in Fig. 7. (On no account must a condenser be connccted to the field terminal if the charging system is a compensated voltage (two-brush dynamo) one.

On compensated voltage controlled sets trouble is sometimes experienced owing to regulator interference which makes itself heard as a buzz which comes on suddenly above a certain engine speed (i.e., when the regulator comes into operation). This can sometimes be cured by connecting a condenser between control box terminals A and E ; also botween terminals D and E. Messrs. Lucas are at present developing a filter for use with their control boards when persistent trouble is experienced. Delco-Romy-Hyatt have for some time been fitting specially designed tilters to their heavy duty lighting sets on vehicles originally intended to bo raclio equipped.

Considerable noise will be heard in the loudspeaker every time the self-starter is operated but it is hardly worth while attempting to suppress this infreguent interference.

Petrol Pumps

So far as petrol pumps, wiper motors or other arcessnries are concerned, should any of these give trouble $a 0.5 \quad \mu \mathrm{~F}$ condenser comnected betweon the live terminal and earth will usually be effective.

Noises due to static (irregular crackly noises) may be caused by accumulations of charge betwecn, for example, loose metal panets on the lurlywork,

Fig. 7.-Suppressor condensers on a dynamo.
or an ill-fitting bonnet. The locating of the source of trouble is often difficult but, once found, a cure can be effected by bonding the parts with copper braid. In the case of static developed between wheel hubs and axle shafts the remedy is to movide a discharge path by filling the bearings with graphite grease or the provision of some form of rubbing metallir contact.

When testing a car radio installation give it a fair chance--take the vehicle'on a country road where there is no screening by adjacent buildings and no possibility of interferme from nearby industrial marhinery or motor vehicles which may not be fitted with suppressors.

THE NEW NEWNES MONTHLY

Practical Television

Edited by F. J. Camm
No. I. Now on Sale Price 9d. Get Your Copy Now!

Miniature 465 K/cs Oscillator

A Simple Battery-operated Modulated Unit for the Experimenter By A. F. STEVENS

WHEN the averago homo constructor has built a superhet receiver from his spares hox, he usually switches on his newly-made set and nothing happens. Ho is then working very much in the dark when he tries to "line up." It was with this idea in mind that the oseillator was designed. It can be used to check the aurlio stages of n superhet or " straight" receiver and to " line up " thin I.F. stages of a superhet. The complete unit can be constructed on a chassis measuring only min. $\times 2$ in. and tho cost should not excend 30s.

The Circuit

The three valves are]T4 which are rasily obtainable on the doverument surplus market. $V=\frac{1}{2}$ and V3 constitute the modulating oscillator which is a multi-vibrator working at about $400 \mathrm{c} / \mathrm{s}$. Should any other modulating frequency be required the formula $f=2 R_{4} \bar{C}_{4}$ gives a good approxination (Note, C_{3} must equal C_{4} and $R_{4}=(x+y) ; x$ and y have been chosen to give between 30 per cent. and 40 per cent. modulation depth. The fact that the modulating frequency is a square wave need not be detrimental in any way to the type of testing for which the unit was dosigned.

The IV.F. sertion is screen modulated and this method seems quite stable in operation. The grid coil of tho R.F. valve is tuned to $465 \mathrm{ke} / \mathrm{s}$ and feed-back is obtained in the usual way by using a reaction coil. Care must be taken to connect the reaction coil the right way round; if the oscillator does not work immediately, the connertions to the reaction coil should he reversed. The grid coil and its reaction coil can be constructed from an I.F. transformer ($465 \mathrm{kc} / \mathrm{s}$) the necessary modifications t.) which are given below. The
F.F. choke is a standard component, hut should be as small
as possible if size is going to be as possible if size is going to be considered.

Modifying the I.F. Transformer

In the unit which the anthor constructed an ordinary midget I.F. ran was used with the following morlifieations. (a) Remove the present trimmers from the unit as they are not needed. (b) Remove approximately half the turns from one of the roils (this is to he feedback coil). Having done this, melt some wax on to the coil to prevent it unwinding further. Sufibient feal-back shoult take place with the eoils in their original relative positions, but it is advisable to redine the spacing of the coils to say $\frac{1}{2}$ in., and methorls of doing this will, no doubt, suggest theinselves to rearlers. It is not possible to

Theoretical circuit of the unit.
give them hero as a lat depends on circumstances. Having modificd the transformer bring the leads out to their normal terminations and replace it in its sercening can.

Construction

The lay-out of emmponents should not present any difficulty. The author's chassis measured jint. $\because 3 i n$., with lfin. sides. The positioning of components does not appear to make a great cleal of difforence to the functioning of the unit. The leads in the R.F. section, however, should be left as short as possiblo and fairly rigid. The two outputs (A.F. and IR.E.) shọuld be brought out on sercened leads, and in the author's case the unit was onclosed in a metal aabinet, but any other form of clesign could, of course, be used.

Aligaing the Unit

When tho unit is complete connect up power supplies and H.T., 45 v., J..T., 1.4 v. Inject the A. $\mathbf{k}^{\mathbf{*}}$. output into a pair of headphones, when tho $400 \mathrm{c} / \mathrm{s}$ note should be heard in the 'phones.

Having checked the A.F. section as abovo, inject the R.F. nutput on to the grid of the first I.F. stago of a normal broadcast receiver (I.F. $465 \mathrm{ke} / \mathrm{s}$). Tuno " C " in the oscillator until"unit maximum A.F. is heard in the loud speaker.

As the whole basis of the unit is simplicity, refinements such-as attenuated output or variable frequency control have not been inchuded but could be oulded by the constructor if desired.

It is possible to adapt the unit to frequency modulation by an adcitional 1T4 valve used as a reactance modulator. If such a unit were constructed it could be used in conjunction with tho Practical Wireless miniature Uscillosicope.

On Your Frequency?

APEDANTIC critic takes me to task for a minor lapse in grammar in our last insue. As a grammatical purist I bow the head, but in a general feature of this sort I take leave to take liberties with English and apologise in advance to the vencrable Mr, Fowler and his Modern English Usage. I will split infinitives, employ terminal prepositions and tinesis where to avoid them would be to pander to pedantry. Apparently my critic will alter "what are you a-doing of." to "of' what are you a-doing," a form of pectantry up with which I will not put!

My critic's letter is rendered amusing by the fact that he himself is guilty of grammatical errors ! This learls me however to his postscript which was to the effect that the title of this feature should be bronghit up to date and changed to "On Vour Frequoncy:" This suggestion caused my mind to rove back down the decades to those hectic rlays when the first issue of "Amateur Wireless," one of the first journals to fall by the wayside under the onslaught of Practical Wireless, was being prepared. I was the founder of that journal and ono of the problems which always arises when new journals are planned is the selection of titles for regular features. Members of the staff are invited to make suggestions and mine was selected for the feature to which my pseudonym has boen subseribed. From that point there was a discussion as to whether the heading should be type set or drawn. Finally it was agreed that it should be in the handwriting of a member of the staff, and as the calligraphy of your present scribe resembles the hieroglyphics of a writer in Choctan, the specimen submitted by one of my colleagues, a greater expert in pothooks and hangers, was selected. Ho was completely non-technical and presumably therefore had more time to form his characters neatly than your nimble Thermion. Howerar, it is a feature which has appeared in every issue from the commencement of the now defunct paper to the present ; for the first issue of this journal to absorb A. W. (remember at the time of the absorption our title was "Praetical and Amateur Wireless '") carried that feature over. Indeen, it was the only feature. For your present editor saw nothing in the old journal not more than adequately covered in his existing policy.

Those wore indeed interesting and hectie days. A new industry had started and the publie was eager to learn about it. There was searcely a home in the country where some member of the family was not building a crystal set, or had he wished to be a little more huxurious, a one-valve set, using bright ennitter valves which blue-glowed at the slightest provocation. They were, of course, of the 6 -volt variety with a consumption of about half an amp each, and accumulator charging stations did a roaring trade.

Jooking back on some of these old file copies
engentlers a nostalgia within me. Do you remember the Skinderviken microphone transmitter button? "Amatour Wireless" published a design for a crive al set incorporating one of these buttons and which it was (r)aimed would work a loudspenker! Indeed, the journal sponsored the publication of a bouk entitled "Loudspeaker (trystal Sets." as a reault of which we had plenty of queries from disuppointed roaders, just as I had forecast. 'Then the journal sponsored a receiver using full mains voltage to supply the valves by means of suitable resistances. It gave marvellous results in the olfice, lut no reader soemed to duplicate these results. Ther all complained of terrific mains hum, since there were no smoothing condensers of any sort incorporated in the circuit. Investigations showed that the office supply was from a hank of accumulators! Howerer, in the early days of any industry teething troubless such as these are inevitable.

In those days you could sell any wiroless component, however bad. There were the patent aerials. patent carths, spaghetti resistances, magic condensers, hedgehog transformers, special cat whiskers and patent crystals. Fortunes were made almost overnight by racketeers. Firms sprang up from private addresses and each spoke of its laboratories which usually consisted of the corner of the kitchen table. There were the quack journalists, too, who battened themselves like burnacles on to gullible editors who rould not even soleler a couple of wires together. The reputation of being a wirfless expert was easily made in those days by talking about cat whiskers and antenne. Of ail of the advertisers supporting radio journals in those days less than a dozen remain to-day.

For a period manufacturers deserted the con. structor market for the more alluring receiver market, having made up their minds that the constructor market was about to die a natural death, and it was about that time that your editor founded Practical Wirefess. It caine into the field when there were eleven competitors and. of course, it had to face the fierce onslanght of clefensive attack in print and out of it by those journals which resented what they consjdered to be an intrusion into their special domain. But F. T. ('. is a tough warrior and one by one I saw him skittle over his competitors, until to-day only one of them remains. I think it is the only occasion where the newest journal in a particular field has obliterated by merit its older-established rivals.

The specification for the constructor receiver in these carly journals was a catalogue. For the various components practically every maker was specified, and it was not surprising to find that a reader who selected his components from tho lists found that either the connections were different from the published designs, that the characteristice were entirely different, thus upsetting the component values, or that they could not be accommodated on the baseboard at all.

Radio

This Month Voltage Amplifying Pentodes are Dealt with

FIOR voltage amplification in normal radio applications pentodes are used almost exclusively, for no other type of value is capable of giving so great a stage gain when correctly operated in conjunction with suitable coupling circuits.

The reasons for this high performance as a voltage amplifier lie in part in the inherent properties of this type of valve, namely, a high mutual conductance and high internal resistance. For R.F. applications, however, and particularly for applications involving very high frequencics, performance is enhanced by the latest constructions and manufacturing techniques whereby the inter electrode capacitances and the lead inductances and capacitances, all of which contribute to the damping of the assoriated tuned circuits, are reduced to very small values.

Furthermore, tho performance of a valve at very high freguencies is affected by the transit time, that is to say, the time taken by the electrons in passing from the eathode to the anode. For very ligh frequencies tho transit time may be in the same order of magnitude as the periodic time of the R.F. signal. 'This may result in the phase difference between the anode current and the signal voltage heing less than the normal 90 deg. The anode current can then be considered as consisting of two components-one leading the signal voltage by 90 deg. and one in phase with the signal voltage. This latter component in the region between the cathode and control grid produces the same effect as a resistance connected between those electrodes. and exercises a damping effect upon the tuned grid eircuit, thereby reducing the effective signal voltage.

In the latest miniature valves, made possible by the all-glass form of construction, the electron path and therefore the transit time is considerably recluced, thus minimising this particular form of damping.

13roadly speaking, there are two main classes of voltage amplifying pentodes. The first is a short grid-base, steep slope type for use as a "straight" amplifier, that is to say, without A.G.C. The other is a long grid-base, medium slope type having an I_{a} / V_{g} curve of suitable form for operation with A.G.C. Some of these pentodes have a single diode in the same envelope, for use either as demodulator or as A.G.C. rectifier.

Pre-amplificrs

With the general adoption of the superheterodyne principle for normal radio receivers, amplification at radio frequency is not used to the same extent as it once was,
although an R.F. stage is often included in the e more expensive and de luxe models. But the use of a "pre-amplifier" or R.F. stage before the frequency changer has many advantages and is well worth the extra expense. Apart from the added range and selectivity which it gives to the receiver, such a stage greatly improves the signal-to-noise ratio. It also serves as a buffer to prevent oscillation from the frequency changer stage reaching the aerial circuit.

Some R.F. pentodes can be used with advantage in a frequency changer stage, one as the oscillator and another as mixer. Fig. 1 is a practical circuit for this application for use in television receivers, the two valves being Mullard Type EF91. The oscillator circuit consists of L 3 and C 7 , and is designed to resonate at $32 \mathrm{Mc} / \mathrm{s}$. The first I.F. circuit, which resonates at $13 \mathrm{Mc} / \mathrm{s}$. consists of L , C2 and R\%.

In the following tables, abridged ratings and characteristics of current British voltage amplifying pentodes are given, together with their rocommended applications. The list has been compited from manufacturers' current data, and an endeavour has been made to ensure that it is as complete as possible. Now types, however, are produced from time to time so that no list of this sort can remain up to dato for very long. New introductions, however, are regularly reported elsewhere in Practical Wifeless.

In order to include the maximum amount of useful information in the space available, the column headings in the various tables employ abbreviations in accordance with the latest standard symbols. For the convenience of those who are not familiar with these symbols, the following key is given :

$$
\begin{array}{ll}
\text { Heater voltage, } V_{h} & \text { Filament voltage, } V_{f} \\
\text { Heater current, } I_{h} & \text { Filament current, } I_{t}
\end{array}
$$

Fig. 1.-Typical television mixer circuit.

Input capacitance, i.e., the capacitance between the control grid and the cathode aud any other electrodes operating at the alternating potential of the cathode
Output capacitance, i.e., the capacitance between the anode and the cathode and any other eleetrode operating at the alternating potential of the rathode. $\mathrm{C}_{\text {out }}$
Feedback eapacitance. i.e., the capacitance hetween the anode and control grid. $\mathrm{C}_{\mathrm{a}-\mathrm{z}}$ Anode voltage, V_{a} Screen voltage, $V_{g 2}$ Control grid hias voltage, $V_{a t}$
Anode current, $I_{a} \quad$ Screen current, $I_{\text {E }}$

Mutual conduction, C_{ra} Anode resistance (internal), \mathbf{R}_{a}
For variable-mu valves the limits of the range of grid bias adjustment and the corresponding range of mutual conductance is quoted.

It may be of interest at this point to suggest a rough guide for use when selecting or comparing voltage amplifving pentodes. Of two such valves, that with the higher mutual conductance is the more sensitive, and in this respect is the better valve. Of two valves of similar sensitivity, that with the lower values of inter-electrode capacitances is the better valve for use in high-frequency (or intermediate frequency) stages.

Type	Description or Application	Construction and Base	$\begin{aligned} & V_{h} \end{aligned}$	$\begin{array}{r} I_{\mathrm{h}} \\ \mathrm{~A} \end{array}$	$\begin{aligned} & \mathrm{C}_{\text {in }} \\ & \mu \mu \mathrm{F} \end{aligned}$	$\mathrm{C}_{\text {out }}$ ${ }_{1 / 2} \mathrm{~F}$	$\mathrm{C}_{\mathrm{a}-3}$ $\mu \neq \mathrm{F}$	$\begin{gathered} \mathrm{V}_{\mathrm{a}} \\ \mathrm{v} \end{gathered}$	$\begin{gathered} V_{\mathrm{E} 2} \\ \mathrm{~V} \end{gathered}$	$\left\|\begin{array}{c} -\mathrm{V}_{\mathrm{g} 1} \\ \mathrm{~V} \end{array}\right\|$	$\begin{gathered} \mathrm{I}_{\mathrm{a}} \\ \mathrm{~mA} \end{gathered}$	$\begin{aligned} & I_{g 2} \\ & \mathrm{~mA} \end{aligned}$	G_{m} $\mathrm{mA} / \mathrm{N}^{\prime}$	$\mathbf{R}_{\mathbf{a}}$ $\mathrm{M} \Omega$
EF80	MULLARD 1-A.C. MAINS TYPES DOLINMHNT TYPHS R.F. amplifier or mixer in television receivers	All-glass Noval (B9A)	6.3	0.3	7.5	3.5	0.006	170	170	2	10	2.5	7.2	0.5
EBF	Double-diode variable-mu pentode. R.F., I.F.or A.F. amplifier,	All-glass Noval (B9A	6.3	0.3	4.0	4.6	(1).002	250	85	2	5	1.75	2.2	1.6
EF01	R.F. amplifier or mixer in television receivers	$\begin{aligned} & \text { Al1-glass } \\ & \text { B7G } \end{aligned}$	6.3	0.3	7.0	2.0	\$0.008	250	250	2	10	2.55	7.65	1.0
EF42	R.F. amplifier or mixer in television receivers	$\underset{\text { B8A }}{\substack{\text { All-glass }}}$	6.3	0.33	9.5	4.5	K0.005	250	250	2	10	2.3	9.5	0.44
EF41	Variable-mu pentode. R.F. or I.F. amplifier	$\underset{\text { B8A }}{\substack{\text { All-glass } \\ \hline}}$	6.3	0.2	4.7	8.0	<0.002	250	100	2.5 39.0	6	1.7	2.2 0.022	410
ET. 40	Low noise pentode. R.C.-coupled A.F. -amplifier	All-plass B8A	6.3	0.2	4.0	5.5	0.025	250	140	2	3	0.55	1.85	2.5
E.AF42	Single-diode variable-mu pentode. R.F. or I.F. amplifier	$\begin{gathered} \text { All-quass } \\ \text { B8A } \end{gathered}$	6.3	0.2	4.0	5.0	40.002	250	105	40.5	6.35	1.75	2.13 0.021	1.0
EF50	R.F. amplifier ...	$\underset{\mathrm{B9G}}{\underset{\mathrm{~A}}{\mathrm{Al}-\mathrm{glass}}}$	6.3	0.3	8.3	5.2	40.007	250	250	1.55	10	3	6.5	1.0
EF3\%	High gain. low microphony R.F., 1.F. or A.F. pentode for pre-amplifier stager	Octal	6.3	0.2	5.5	8.5	40.02	250	100	2	3	0.8	1.8	2.5
EF3TA	High gain. low hum. low microphony R.F.. I.F. or A.F. pentode for pre-smplifier stages	Octal	6.3	0.2	5.5	8.5	(0.02	250	100	2	3	0.8	1.8	2.5
EF39	Variable-mu pentode. R.F. or I.F. amplifier	Octal	6.3	0.2	5.5	7.2	(0.003	230	100	2.5 49.0	6	1.7	2.20	1.25
EF22	Variable-mu pentode. R.F. or l.F. amplifier	Loctal (B8G)	6.3	0.2	5.5	6.4	80.002	250	100	46.0	6	1.7	$\begin{aligned} & 2.2 \\ & 0.022 \end{aligned}$	1.2
EF92	REIPACEMENT TVPES Variable-mu pentode. R.F. or 1.F. amplifier	$\underset{\mathrm{B} 3 \mathrm{G}}{\mathrm{All-glass}}$	6.3	0.2	4.5	7.0	0.004	250	200	2.5 38.0	8	2.1	$\frac{2.5}{0.005}$	-
EF54	High-slope pentode. R.F. amplifier	$\underset{\text { B9G }}{\text { All-glass }}$	6.3	0.3	6.2	4.9	0.02	250	250	1.7	10	1.45	7.7	0.5
EF55	High slope pentode. R.F. amplifier	$\underset{B 9 G}{\substack{\text { All-glass }}}$	6.3	1.0	15.0	12.0	0.15	250	250	4.5	4.0	5.5	12.0	.085
EF36	General purpose voltage amplifier	Dctal	6.3	0.2	5.5	8.5	40.02	200	100	2	3	0.8	1.8	2.5
EF9	Variable-mu pentode. R.F. or I.F. amphtier	Side Contact	6.3	0.2	5.5	7.2	(0.02	250	100	2.5 49.0	6	1.	$\stackrel{2}{2.2}_{0.0015}$	$\begin{array}{r} 1.25 \\ 10.0 \end{array}$
SP4	R.F. or I.F. amplifier or detector	5-pin	4.0	1.0				200	100	2	3		2.3	2.2
$\mathrm{SP} 4 \mathrm{~B}$	R.F.. I.F. or A.F. amplifier or detector	7-pin	4.0	0.65	6.9	8.1	40.003	250	250	2.4	4	1.5	3.4	2.0
VP4	Variable-mu pentode. R.F. or I.F. amplıfier	$\underset{\substack{\text {-pin pin }}}{\substack{\text {-pr }}}$	4.0	1.0	12.4	10	40.005	200	100	2.0 50.0	4.5		${ }_{0}^{2.3}$	10.0
VP4A	Variable-mu pentode. R.F. or I.F. amplifier	7-pin or 5 -pin	4.0	1.2	12.5	16.2	(0.006	200	100	2	4.25	1.8	2.5	1.4
VP4B	Variable-mu pentode. R.F. or 1.F. amplifier 2-" ${ }^{\text {D D.C./A.C." TYPES }}$	7-pin	4.0	0.65	5.35	8.0	0.0023	250	250	3	11.5	4.25	2.0	-
UF41	EQUHPMENT TVPES Vartable-mu pentode. R.F., I.F. or A.F. amplifer	$\underset{\text { B8A }}{\text { AJI-glass }}$	12.6	0.1	4.7	8.0	«0.002	200	120	3 34	7.2	2.1	2.202	${ }_{10}^{1.0}$

NOTE.-Valves with 0.1A, 0.2A and 0.3A Heaters may be operated with their Heaters in Series with the Heatersof other valves of the same Heater rating.

Type	Description or Application	$\begin{gathered} \text { Construction } \\ \text { and } \\ \text { Base } \end{gathered}$	$\begin{gathered} V_{h} \\ v \end{gathered}$	$\begin{aligned} & I_{\mathrm{ll}} \\ & \mathrm{~A} \end{aligned}$	C_{in} $\mu \mu \mathrm{F}$	$\mathrm{C}_{\text {out }}$ $\mu \mu \mathrm{F}$	$\begin{aligned} & \mathrm{C}_{\mathrm{a}-\mathrm{g}} \\ & \mu \mu \mathrm{~F} \end{aligned}$	V_{a} V	$V_{g 2}$ V	$\left\lvert\, \begin{gathered} -V_{\mathrm{g} 1} \\ \mathrm{v} \end{gathered}\right.$	Ia mA	$\left(\begin{array}{l} \mathbf{r}_{\mathrm{g} 2} \\ \mathrm{~mA} \end{array}\right.$	$\begin{aligned} & \mathbf{G}_{\mathrm{m}} \\ & \mathrm{mA/V} \end{aligned}$	R_{i} $M O$
UBF80	Double-diode variable-mu pentode. R.F., I.F. or A.F. amplifier	$\begin{aligned} & \text { All-glass } \\ & \text { Noval } \\ & \text { (B9A) } \end{aligned}$		0.1	4.0	4.6	\$0.002	200	85	2	5.0		2.2	1.0
UAF42	Single-diode variable-mu pentode. R.F. or I.F, amplifier	$\underset{\text { B8. }}{\text { All-glass }}$	12.6	0.1	4.0	5.0	60.002	200	85	$\stackrel{2}{20.5}$	5. 5.0	1.4	2.0 0.02	810.
UF42	REPLACEMENT TYPES High slope pentode. R.F. amplifier in television receivers	$\underset{\text { B8A }}{\substack{\text { All-glass }}}$	21	0.1	9.5	4.5	0.005	170	170	2	10		0.5 ${ }^{-1}$	0.2
SP13	R.F., I.F. or A.F. amplifier or detector	Side Contact	13	0.2	7.1	7.7	40.003	200	100	2	3.3	-		1.3 .
SP13C	R.F. or I.F.amplifier or dotector	-	13	0.2	6.9	8.1	0.003	200	200	2.2	2.5	0.9	$2.8{ }^{\text { }}$	2.5
- VP13A	Variable-mu pentode. R.F, or 1.F. amplifier	Side Contact	13	0.2	-	-	-	200	100	2.0 18.0	4.0	1.4 ${ }^{\text {4 }}$	2.2	-
VP13C	Variable-mu pentode. R.F. or I.F, amplifier	7-pin	13	0.2	6.1	8.0	0.0023	200	200	2.0	9.0	3. 6	$2.2{ }^{\circ}$	-
	3-BATTERY TYPES EQUIPMENT TYPES		(V)	(I_{f}						\square				
DF91	Variable-mu pentode. R.F. or I.F. amplifier		1.4	0.05	3.6	7.5	\$0.01	90	67.5	0 16	3.5	1.4	0.91	0.5
DAF91	Single-diode pentode. R.F., I.F. or A.F. amplifier	$\begin{gathered} \text { All-glass } \\ \text { B7G } \end{gathered}$	1.4	0.05	2.2	2.4	0.2	90	90	0	2.7	0.5	0.72	0.5
DF33	Varlable-mu pentode. R.F. or I.F. amplifier	Octal	1.4	0.05	3.8	9.5	(10.007	90	90	0 4	1.2	0.3	0.75 0.005	1.5
DF63	Sub-miniature. Voltage amplifier for Hearing Atds	Wre ends	0.625	0.015	1.7	2.4	0.2	22.5	22.5	1.05	0.05	0.015		12
DF70	Sub-miniature. Voltage ampiifler for Hearing Alds	Wire ends	0.625	0.025	1.6	2.4	40.5	30	30	0	0.375	0.124	0.22	0.5
KF35	REPIACLMENT TYPES Variable-mu pentode. R.F. or I.F. amplificr	Octal	2.0	0.05	8.0	10.0	00.1	120	60	1.5 9.5	1.45	0.5	1.08 0.01	-
SP2	R.F.or I,F, amplifier or detector	7-pin	2.0	0.18	11.0	6.0	60.01	135	135	0	3.0	1.0	1.8	0.7
VP2	Variable-mu pentode. R.F. or I.F. amplifier	7-pin	2.0	0.18	10.7	6.3	0.007	135	135	0 7	3.0	1.25	1.5	0.4

NOTE.-Valves with 0.1A, 0.2 A and 0.3 A Heaters may be operated with their Heaters in Series with the Heaters of other Valves of the same Heater rating.

A Slow-speed Oscilloscope

ANEW instrument has been produced by A. E. (awkell for observing and comparing slow waveforms, for which the normal oscilloseope is unsuited, and waveforms of freguency as low as $.1 \mathrm{c} / \mathrm{s}$ may be easily observed on the long-persistenco cathode-ray tube. Alternatively, the instrument may be used like a conventional oseilloseope, ulthough the timo base frequency nommally extends upwards to $50 \mathrm{c} / \mathrm{s}$ onty. - Two beams are available which may te moved with respect to each other along any axis, and altered in amplitude and phase so as to be superimposed one upon the other. This enables the instrument to be used for waveform distortion comparisons at very low frequencies -is difficult procedure by any vther method.

Design

Two completely separate D.C. amplifiers are incorporated with push-pull output incorporating shift controls, their outputs being electronically switched to provide two beams. Beam interaction is very small. The-display is on a bin. long-persistenco cathode-ray tube with an orange filter.

A linear time baso is included with automatio synchronisation of range .25 to $50 \mathrm{c} / \mathrm{s}$. The time base (K) amplifier is also electronically switched enabling the beams to be independently shifted in the X direction by the controls. "The time base
voltage and the X amplifier input are available exterinally:

All necessary power supplies, incluting 2 KV for the tubo and a valve-stabilised general H'T supply, are constructed in a separato matching container with multicore cable connection.

Specification

Pouer Requirements,-210-250 volts A.C.
Tube-6in. diameter, $\overline{5}$ secs. afterglow approx. Orange filter fitted.

Input.-Impedance of amplifiers 2 megolms.
Amplifiers.-Two separate D.C. amplifiers with two electronically switched beams. Sensitivity. 100 nuv for 2 cms. P.P. vertical deflection. Push-pull deflection.

Time Base.-Linear with automatic synchronisation. Frequency .25-50 c/s. Electronically switched X amplifier. Time base voltage and X amplifier input available externally.

Pouer Supply.-2 KV E.H.T., ańd valve stabilised (.5 per cent.) for general H.T. Housed in scparate container.

Controls.-

YI Gain
Y: Gain
Yi Vertical shift
Y: Horizontal shift
Yl Horizontal shift Y: Vertical shift

X Gain
Brilliance Focus :
Time base \mathbf{f} coarse Time base ffine Time basé ext. switch The price is $£ 135$, and the makers are A. E. Cawkell, Electronic Engineers, 7, Victory Areade, The Broadway, Southall, Middlesex.

The Practical Wireless Television Receiver-6

Aligning the Receiver, and Coil Details for Sutton Coldfield

ASSUMTNG that the raster has been accurately obtained as described last month, the receiver is now ready for alignment. This may be carried out in either of two ways-with or without a signal generator. The latter method is definitely to be preferred, as it eliminates all gucsswork, and enables an accurate response curve of the receiver to be taken for checking purposes. As the method using the signal alone is simplest, it will be described first. All cores should be acljusted level with the top of the coil formers. Connect the acrial, and with brilliance right down and volume right up, turn up the contrast control until sound is heard from the speaker. If contrast has to be turnod right up without hearing any souncl, slowly turn u, the brilliance control until some modulation appears on the screen. If the circuits are nearly in tune, then the contrast will have to be reduced to avoid overloading. As soon as some sort of modulation is seen enteavour

With a Signal Generator

The most satisfactory method of lining up ralls for a good meter in addition to the generator. The anode circuit of the video amplifier should be opened and a meter shiunted by a . $001 \mu \mathrm{~F}$ condenser inserted. A range of about $20-30 \mathrm{~mA}$. is called for. An alternative is to use a meter with a full scale of 1 milliamp connected in series with cathode of the diode rectificr. Finally, the tube itself may be med. making all adjustments to obtain maximum black and white horizontal bars-keeping the input and brilliancy down to maintain the black and white bars of equal width. l'eaking frequencies for the coils are as follows:

Fig. I.-Details of the coils for Sutton Coldfield. Wire used is 28 S.W.G.
to adjust all cores to exactly $45 \mathrm{Mc} / \mathrm{s}$ or the vision frequency. 'I'his will be indicated by flaring on the tube face, but the brilliance control should be kept well down. Maximum flaring will indicate that all coils are more or less peaked at ti 1 ll 'res. The core of L4 should now be unscrewed $1 \frac{1}{2}$ turns, and that of L2 I turn. The core of L: should be given about $\frac{1}{2}$ a turn out, and all sound coils (L, $6, L 7$ and L, \&) adjusted for maximum sound output with the coil of LI unscrowed only a fraction. If the picture is now brightoned, and contrast correspondingly reduced, it should be well detailed, although perhaps not at its best. To obtain maximum detail the test card \mathbb{C} which is broadeast every morning (except Sunday) from 10 a.m. to 11 a.m. should be used. An endeavour should be made to obtain each of the central ruled squares clearly, without any white line following the right hand large white line. All the white ruled squares on the background should be truly sfluare and of equal size (adjusted at the time basc). and the correct setting of eontrast and brilliancy will permit each of the central blocks to stand out clearly from black up to white.

Sutton Coldfield

The above frequencies are, of course, for the London transmitter, and for the Bimmingham frequency alternative coils are required. In addition to the circuit as already shown one or two extra coils will be needed. Outside the "swamp" area only one extra coil is needed and this is inserted in the cathode circuit of V4 as shown in Fig. \because. Its exact position being on the side runner of the chassis as shown in Fig. 3. Nute that it is inserted between the bias and feed-back resistor. At closer distances, or where sound break-through is experienced on vision a further similar coll shotald be inserted in the cathode circuit of V3. The 33Ω resistor may not be needed. The Sutton Coldfield frequencies are as follows:

A small point may be mentioned here in connection with L6-the sound inprit coil. As shown in the theoretical diagram in the January issue this has no core. In some localities this will be found quite in order, but in some cases a slight modification may be made to this particular coil. Firstly the rore may he inserted and the coil peaked to provide the maximum sound output. In other localities it may be found that the sound output is not sufficient. An improvement may be effected by connecting a 47 pF silver-mica condenser across the coil-that is, from grid to chassis. This condenser is, of course, in atdition to the iron-core.

Queries

There have been one or two queries raised concerning parts of the complete installation, and these have concerned only minor points which have not been clear to individual readers.

One correction should bo mado here. In tho March issue it was stated that the separating serecns in the vision unit should be soldered to pins \bar{b} and 0 on the valve holders. As these pins are adjacent it is ohviously impossible to carry out the instruction, and the diagram in the same issue shows that the pins eoncerned are actually 5 and 9-the latter figure unfortunately having become inverted in printing.

Another major query concerns the uso of a 12 in . tube. The scanning power of the receiver as designed will permit of a lain. tuhe heing used without any modification. An alternative mounting slevico will be needed, of course, and the tube is slightly longer. Brillianey should be sufficient, but if it is found that a slightly greater brilliance is needed this may be accomplished by increasing tho H.T. supply to the E.H.'I', unit. Resistance R44 will thus have to be modified. If it is simply reduced in
value the H.T. applied to the E.H.T. unit will rise, but unfortmately this point also feerls the ELO3 output valve which is rated for a maxumum of 250 volts and it will not tolerate too great an overload. Therefore, two separate resistors will have to bo

Fig. 2.-Position of the rejector coil in the cathode circuit of V_{4}.
used, one to reduce the main H.T. line to. 250 for tho output valve and the other to give a full 300 t.o the E.IH.T. unit. Care must bo taken not to overload this unit in view of the risk of insulation breaklown, and under all normal conditions the 7.5 Kv, provided-is aderuate for all but aluminised tubes.

Stereophonic Music in Cinema

AN experiment with stereophonic reproduction of music has boen mado in a cinema in Einthoven by Philips. In contrast to previous demonstrations given in various places to invited guests or in private circles, this experiment was carried out as part of a nornal public programme.

In this case stercophonic reproduction was applied for the music played during the interval. It is not likely to be applied for the films themselves for some time, because film producers must first decide to have the sound track recorded sterenphonically, and although this is already possiblo technically, it seems that for the prosent tho , alterations neeessary in the apparatus and tho 1 resultant cost will be considered objectionable, Moreover, the improvement to be expected in the case of films will probably be lesss striking, since any faulty impression of the direction of the sound is more or less predominated and corrected by the strong visual impression of the picture. When music is played in the interval, howerer, direction is centred entirely upon the sound itself, particularly so when the music is reproducer mechanically, so that the audience is not distracted by the musicians.

It was therefore a promising experiment to apply stereophony for improving the reproduction under these circumstances, so as to eliminate as far as possible the mechanical nature of the music and thus afford the audience an opportunity to enjoy the music as much as if they were listening to an actual concert performance.

The music given was solected from a seriss of stereophonic recordings made by tho ElectroAcoustic Department of Ihilips, by the magnetic method.

Audience Reaction

Everyone in the audience was given a questionnaire and of the 7,300-old forms distributed more than 5,800 were returned completed and 500 only partly filled in. About 70 per cent. showed their appreciation, whilst less than 3 per cent. were definitely averse to the idea.

Although experience teaches that a statistical sounding of the publie does not always lead to reliable results, and we shall therefore refrain in this case from giving any comment of our own upon the result of the inquiry, it nevertheless scemed desirable to give publicity to the experiment and its results by means of this communication. An application on a large scale can of course only be'cxpected whon a sufficient variety of stereophonic recordings become available for this purpose.

Designing
 "Personal" Portables

Circuit Features of the Popular Mains-operated Bed-side and Similar Receivers By W. J. DELANEY (G2FMY)

ATY' T'E of receiver which is recciving increasing attention to-day is the small mains-operated bed-side receiver. Many listeners have purchased a television rereiver and have sold their broudeast receiver, and these small receivers enable odd items to be heard on "blind" radio when no television is being radiated. Some of the designs which manufacturers have produced are most interesting from a technical point of view and. in fact, quito a number of readers have asked for details of construction for this type of receiver. It lends itself more to individuality of design than ordinary broadcast receivers, and amateurs may be frorgivan for boing in some doubt as to what typo of rireuit to adopt. An attempt will therefore be made to cover the main features of this particular type

Fig. I (left).-Normal arrangement of heaters for A.C. or D.C. supply. Fig, ? (right).-H.T. smoothing at its simplest.
of receiver so that those who wish may have some grounds upon which to base their constructional work.

Mains Feed

The first and most import ant feature is what type of mains feed to employ. 'This really boils itself down to the simple problem as to where excessive heat is to be placed, or whether to dispense with such heat. On the H.T. side there is nothing to worry about from a heat point of view, but on the heater or L.T. side there is quite a prollem. If the receivor is to be of the A.C., I).C. type. then it is practically essential that the heaters shall be wired in series and some form of voltage dropper fitted to ensure that the heaters are operated at tho rorrect temperature. (Fig. 1). The last heater in the (hain (marked 1 on the illustration) should the the detector in order to keep down the risk of hum. Resistance R is the problem here. It has to carry the current taken by the heaters (w^{-h} hich olviously must all be of the same rating or otherwise adjusted by parallel resistors to ensure a constant current through the network), and must reduce the mains voltage to that required for the valves. For instance,
if the standarl 6.3 volt heaters are employed, four ius series would give a total of 25.2 vollts, and therefore resistance R would have to dissipate a wattago equivalent to over 200 volts at .3 amps. or 60 . Ohviously a standard type of resistor is out of the question, and the customary method is to employ a line-corrl which ronsists of a specially constructed flexible lead intemfed for commenting the receiver to the mains, and at the same time incorporating a resistance wire wound round a length of asbestos string. Naturally this gets quite warm. but to reduce the length and rating of it one uses valves with a higher heater voltage rating. Generally the early valves are of the ly volt type, whilst the output valves (and half-wave rectifict whieh is nected for the H.T. supply) are ustelly rated at 35 or 41 volts. 'This arrangement gives heat outside the cabinet and enables a more compact layout to be obtained, but the line-cord may run quite hot and this is not always convenient.

Cabinet Heat

An altemative armanement consists of mising higher rated A. ('./D.(. valves throughout, and then using one of the sumall spectal mains-itoppers in the cabinet. bint even these run fairly warm and it is generally neressary to put a sheet of ashestors inside the cabinct to prevent damage or fire risk, and obviously the cabinet cannot he made too eompact.

Where the recciver is designed for A.C. mains only, however, the prohlem is much simplified, but again there are one or two altematives to be considered. The series heater scheme may still be adopted, using the line-cord, bat if there is no intention of using I).C. mains stipplies this may be dispensed with and a simple mains transformer employed. 'These are available at quite a low figure, eitber new or ex-service, and are compact. Furthermore, ther enable standard (6.3 r .) valves to be used throughout and do not call for the highvoltage heater type of valve. In addition, as there is now no need to worry about heater current the rectifier may be of the metal-oxide type.

Fig. 3 (left).-Using a transformer for the heater
supply. Fig. 4 (right). -Isolating the receiver from
Fig. 3 (left).-Using a transformer for the heater
supply. Fig. 4 (right).-Isolating the receiver from the mains by a single transformer.

These take up mush leas room than a rectifying valve, and generally speaking a more compact type of receiver may be constructed, in spite of the use of the transformer.

H.T. Supply

There are, howerer, two alternatives still avail. able with this arrangement. The mains imput may be taken direct to the reetifier, in which case the receiver is "live" to the mains, or the heater transformer may be of the type having a further secondary winding rated at 200 voits or so. In this way the receiver is isolated from the mains supply, and thero is no undue inerease in bulk. Thero is no heat to worry about and ordinary flex may bo used to connect the set to the mains.

Other Design Features

The removal of heat from the cabinet enables the receiver to bo designed around certain components which could not otherwise be employed. Small electrolyties may be placed where desired for efliciency without the risk of breakdown due to high temperatures; more efficient (superhet) circuits may be used withont the risk of frequency drift and so on. Fior mains smoothing in these small
receivers it is not nocessary to employ a smoothing choke. The loudspeaker generally employed does not exceed 5in. in diameter and the hass reaponse of theso is so limited that slight rosichat hatin passes unnoticed. Therffore a simple fow-rating resistor is used for smonthing, in assoriation with the usual emmed electiolytios. Here spane is saved by using the "twe-in-one". type of unit.

The question as 't 0 whet her to employ a straight, or superhet circuit is bomond up with the manner in which the receiver is to be used. If required for general listening a superbet is obvionsly desimble. but if only used as a stand-by for news, cte.. or for the odd items not arailable on television, a straight two-station eirruit is obviously good ensugh. Another point here is the type of aerial to be used. With a straight cireuit there will not be much gain, and some dificulty migh be experienced with the aerial. A length of throw-ont wire may havo to bo fitted and this will limet the portability. of the receiver. On the other hand, a superhet will enable the set to be used with orly a small amonnt of wire inside the cabinet. or even a small wound framo built in, and will then provide a range of stations or at least, aderuate wolume from the loseals, and it may bo moved from room to room and pluged in as conveniently as an ordinary table lamp.

Mobile Broadcast Recording Van

EM.T. FACTORIEN, L'TD., were recently commisaioned by fadio-Lasembourg to supply a broadeast reonrling van suitably equipped for recording broadeast programmes on magnetic tape.

The interior of the ran has been laid out in such a mamer as to allow unhindered worling by tho recording engineers and is divided into two separato compartments. Tho forward one contains the recording equipment and operator's position, the rear compartmont housing the cables, cable entries, drums, ote. therefore, no loose cabling is, necessary in the operating mompartment at any time, and all input and output intereomecting cables are conrealed in wall ducts.

Sperial tranclurent roof windows allow the operator to work in matural light during the daytime, and thero is provision for artilicial lighting from A.C. mains supplies. The interior of the van is heated by an H.M.V. Cavendish convector heater.

Tape Recorders

The main items in the equipment are two of the well-known F.M.I. magnetic tape recorders; these, working together, enable high-ficlelity recordings of any duration to be made. Additionally, a lise recorder and replay desk are fitted, with provision for operation at 78 or $33 \frac{1}{3}$ r.p.m.

The control panel comprises a five-channel microphone pre-amplifior with individual fading, programme meter' and 'phone or loudspeaker monitoring facilities. This control console is so designed as to give the operator complote fexibility
of control and intercomection of the varinus items of equipment, and full dubbing, mixing and cross recorling faritities are avalable, enabling any type of studio work to be carriet ont. In addition, the complete console can be lifted ont and carried to the recording site when the distaneps involved make it undesirable to run bong miuro phone cables.

Two high-guality loudspeaker units are providerl for remote replay purposs on the recording site. Communication between the van and the reeording site is by a " talk-back " system and tho repording signalling system consists of three coloured signal lamps, buzers and a field telephone. Power supply is taken on site from suitable A.C. supplies, but stand-by lighting may be operated from the van"s clectrical system.

Close-up of the enginetr's control panel in the recording room of the mobile recording unit. Another picture appears on page 184.

AN ENTIRELY NEW AUTOCHANGER UNIT

MARCONIPHONE AC 100 M

- Lightweight pick-up ensures highest quality reproduction with minimum record wear, For 50 cycle A.C. mains supply, $100-130$ or $\mathbf{2 0 0 - 2 5 0}$ Volts. Maximum reliability. - Handles up to ten $10^{\prime \prime}$ or $12^{\prime \prime}$ records (unmixed).
\&7.0.0 plus \&3.0.8 Tax. Matching Transformer 10/- (no purchase tax). If desired the unit can be supplied without the transformer.

MARCOMIPHOME

Abstract

 Io. popular isisorted vajues tor \& wat tyo3, g^{2} or 1 watt. 89. (r)11. $-y^{\prime}$ or \& wat T.R.F. Ma*ched pais Mediun and Lons waves. 6 b pat". Weymouth T.R.F. Matched pair M, and L. Wdies, grapair. Superhet, Matrhe! pai، s M. and l Waves, 89 or 116 pair. All types Weavite P , Coils. $B^{\prime}=$ e unh, in stoctr. Vermouth vilaret lin. x dith., Iron Core. Aerial H. F

4 v. (C.T.) 14 amp., 4 v. 2 amp.. 6.3 v. (plus Rectifier) A.C. ${ }^{3}$, T.R.N. IREIFIVEIf. We can supply all the components. including valves. drilled chassis and M'coil speaker, to build this midset set, size 7in, x 4in. is bpecified in the November issue, at as total cost of calry. Reprint of detailed assembly instructions (incl. practical layout) and circuit supplied separately for 94. incl. postage. Side 3!in. x 2lin. x ifin. covering s.M and I,. Waves, Coils wound on Polvstyrene Formers with wired and allfned. F'rice including full circuits for superhet $4 \beta 5 \mathrm{k} / \mathrm{c}$. Unit. 33/- For T.R.F. circuit covering M. and L. waves ready wound Frame Aertal available at $3 \boldsymbol{y}$, lin.. ratio 60-1. $4 / 6$ (or ratio $90-1$. 46). Fistone Multi-ratio (over 12 ratios, some C.T.), of watts. ${ }^{6} / 6$, Sterns Heavy Duty Multi-ratio, all C/Topped, handles 13 watts and suits P.X.4s, 6L65, etc. 258. I. F. IIGKWN, Midpet 19 henry 250 nhm $40 \mathrm{~m} / \mathrm{A} .3 .6: 15-20$ henry 250 ohm 60 mn'A. 66 : 20 henry 300 ohm $100 \mathrm{~m} / \mathrm{A}, 12 / 9$ 5 henry 50 ohm $250 \mathrm{~m}^{\prime} \mathrm{A}, 186: 20 \mathrm{henry} 2500 \mathrm{hm} 120 \mathrm{~m}$ 'A, 18.6 5 henry 20 ohm $120 m^{\prime}$ A. 86. AIIMINIIM IIIANEIS. Subetantially made of rauge SELINIIUM RIXIIHIFRR. H.T, H, Wave, $250 \mathrm{v}, 50 \mathrm{~m} / \mathrm{A}, 5$, 5 200 v. $101 \mathrm{~m} / \mathrm{A} .5 / 9 ; 250 \mathrm{v} .100 \mathrm{~m}$ A. 6.12 v .11 amp .126. 12v. 3amp. $21 /$. 12 v. 5 amp. 25 . 24 v. 3 amp. 236. outputs 24 v . (tapped 15 v .9 v , and 4 v.$) 3$ amp. $216: 30 \mathrm{v}$. (tapped 15 v. and $)$ v.l. 3 amp. 22 - 15 v. (tapped 3 v.) 3 amp. $143: 1.7$ v. (tapped v.) $6.3 \mathrm{v} .1 \frac{1}{5}$ amp.. $7 / 6: 4 \mathrm{v} .1!$ amp.. 76 . Input 200259 v.. outnat

* Send 3d, stamp for our Comprehensive Stock Lis: which now shows varioue bits of parts and circuits available. Winen ordering please cover packing and postage.
STERN RADIO LTD., 109 \& 115, FLEET STREET, E.C.4.

Special Notice
This solder gun 1 s offered to you in the original nanufactuzers carton carrying thetr seitl. We guurantee eack Burgoyne Solder Gitn for TWO YEARSS. We cannot service or guaruntee any gun parchused eisewhere.

Terms: Cash with order MALI ORDER SUPPIV CO., The Radio Centre
33, Totternam Couri Rd.,. London, W. 1 Telophone: Museum-6667-8-9

Gamoners Ralozaz

will be pleased to send you a complimentary copy of their NEW 28 PAGE BROCHURE describing the " SOMERFORD" MAINS TRANSFORMERS
including the new types "BURLEY" and "HENGIST" POST THIS COUPON TO-DAY

To: GARDNERS RADIO LTD., SOMERFORD, CHRISTCHURCH, HANTS.

Please send me your New 28 page Brochure.

Name

Address
\qquad

A NEW CONVERTER for 1950
 Model No. 230;110A \& 10 . 15 . 0
 Incorporating many new and practical improvements to meet fluctuating mains-voltage supply.
 Specification: Inpu:, $180 / 270$ volts D.C. ; Output, 230 volts A.C., 110 watrs. R.F. and L.F. Suppression. Frequency: 50 and 60 cycles.
 Plug-in Vibrator, easily changed. Access to interior for tapping transformer by baseplate removal.
 Developed by the specialists in Vibratory conversion Famous since 1937
 Literature and supolies available from
 VALRADIO LIMITED, 57, FORTESS ROAD, LONDON, N.W. 5 GULIiver 5165

COVENTRY RADIO
 COMPONENT SPECIALISTS SINCE 1925.

SPECIAL OFFER

New $\frac{1}{2} / I$ watt Resistors, popular make, 25 standard values.
ASSORTMENT DF 100 FOR 15/(List Price value $50 /$-.)
This is an opportunity not to be missed. Stock your workshop now while stocks last.

COVENTRY RADIO
189, DUNSTABLE RD., LUTON, BEDS.

\because
 Stabilised Power Supplies

An Explanation of the Series-fed Type
By E. N. C.

THE stabilised power supply unit, to a large number of radio enthusiapts, seems to have an air of mystery around it, and it is the purpose of this article to try to explain the action of the stabilised unit and point out some of its useful features. There are two main types of eleretronically stahilised mits: these are the shmot stabiliser and the series stabiliser. 'The slount stabiliser works by virtue of placing a load on the - power unit which is always in opposition to the external load; for example, when the extemal load derreases the shunt load increases and vice versa, this tending towards a constant total load on the power unit, which therefore has a reasonably constant output voltage. The series regulator type of stabiliser is the one most rommonly used and it is this type whieh will be disenssed here. First of all. what is the stabilised power supply unit? Well, excluding batteries. it is the nearest approach to the perfect generator or power unit. Within its operating range the stabilised unit will deliver an output voltage which is independent of the input voltage, and also independent of the load current. The usefulness of this can be appreciated when one considers such things as (1) oscillators, where a drift in H.T. can cause a drift in frequency: (2) D.C. amplifiers, where a drift in H.T., can cause an error in the output ; (3) modulator units, where a high power unit internal impedance will cause distortion on heavy modulation, etc.; in fact, any piece of equipment where the performance is reteriorated by having an imperfect power supply.

Principle of Operation

The serins regulator type of stabiliser is really nothing-more than a cathorle follower stage with an amplifier between its cathode and grid, and it is with the aid of the cathode follower that its principles of operation will be explained. The importance of the amplifier section will be realised

Fig. I.-Characteristics of a heavy-duty triode ralve.
as the article goes on, The diagram Fig. 1, shows a set of characteristics of a heary-duty triode having the following constants: (1) anode dissipation maximum 15 watts; (2) $\mathrm{gm}=10 \mathrm{~mA} / \mathrm{v}$; (3) $\mu=12.5$; (4) $R a=1,250 \Omega$. The curves, as (an be seen, are anode current against grid volts for three values of anode volts, The circuit Fig. 2. shows a cathode-follower stage being ferl with H.T. from a generator or power supply having an internal resistance of 1,000 , and an output

Fig. 2.-A cathode-follozver stage.
voltage of 410 v . We shall see how the cathode follower reduces the effertive internal resistance and maintains the output voltage reasonably constant. in spite of variations of H.T'. input volts and output load current. From the circuit we see that the cathode resistance is 20,000 Q. the anode current 10 mA : and the output voltage consequently 200 v . The 10 mA , current causes a 10 v , drop in the $1,000 \mathrm{v}$. internal resistance of the generator. cansing the terminal voltage and therefore the anode to earth voltage of the valve to be 400 v . A battery of 180 v . is connected between grid and earth and therefore the actual grid bias voltagethat is, the voltage between g!id and cathodeis -14 v . Wo can see that these conditions agree with the valve characteristics. an anode voltage of 200 v . and a bias of -14 v , tiving an anode current of 10 mA . An external. Doad is available which is connected across the outpnat by closing the switch s. Now let the load be of such a value as to draw a current of 50 mA , and on closing switch s let us see what happens. First of all the terminal voltage of the generator will drop from 400 v . to 350 v . because, as one can see 50 mA . through 1,000 O produres a drop of 50 r . The output voltage of the regulator will tend to fall below its 200 v. level, but in doing so it causes the gridcathode bias on the valve to decrease, therefore allowing the valve to pass more current. The total current through the valve is now 60 mA . and the anode voltage has dropped to 150 v . because of the terminal voltage dropping from 400 v . to 350 v . We shall now see from the valve curves what the grid-cathole bias is to suit these new ronditions, and therofore arrive at what valve the output roltage comes to rest. Now from the curve of Va $=150 \mathrm{v}$, and $\operatorname{Ia}=60 \mathrm{~mA}$. we see that the grid-
cathorle bias is -4 v ., which means that the output voltage has fallen to 190 v , that is, a drop of 10 v . has occurred. Now the output impedance or output resistance is equal to the change in vortage divited by the change in current, which in this caso is $\frac{10 \mathrm{v}}{50 \mathrm{~m}} . \overline{\text {. }}$. which erguals 200 2. We therefore see that the regulator valve or, if yon like, cathorlefollower has reduced the effective output inpedance from $1,000 \Omega$ to 200Ω. How the amplifier reduces it still more we shall sce later. Approximate values are given so as not to confuse the argument.

Fig. 3.-A high-gain pentode added to the circuit of Fig. 2.

Inciflentally, the output impedance of a cathodefollower is given mathematically as being approximately equal to $\frac{R a}{\mu}$ or $\frac{1}{\mathrm{gm}}$ which in the case of this valve should be $\frac{1}{10 \mathrm{~mA} / \mathrm{v}}=100 \Omega$ and not 200Ω but so as not to confuse those who have seen that formula it should be pointed out that it only holds good if you are always working on the straight portion of the valve curves and there is no $1,000 \Omega$ generator resistance.

Independent Voltages

'l'his you can check for yourself. Let us now see just how independent the output voltage is upon variations of the input voltage. We will return to the position when switch S is open and the valve is passing its normal 10 mA . with an anode-cathode voltage of 200 v . Let us assume that the terminal voltage rises from 400 v , to 450 v . The anode-cathode voltage of the valve will rise to 250 v , and the extra current that flows through the $20,000 \Omega$ eathode resistor will tend to make the output voltage increase. But this increase in output voltage is causing the grid-cathode bias of the valve to be greater, this tending to restrict the rise in current. We will consult the curve of the valve for $\mathrm{Va}=250 \mathrm{v}$. and find the
value of bias required to keep the current as near as possible to 10 mA . According to the curve this value of bias is -18 v . and therefore the output has risen to 2194 v . This represents a rise in tho output of only 4 v . for a rise in the input of 50 v . We shall see later on how this variation is restribted even more with the aid of the amplifier. It is now becoming apparent that the cathode-follower is doing its best to deliver a constant output voltage of 200 v. regardlens of variations of input volts and load current, which is indeed what the perfect power unit should do. As you will have probably realized by now, what the past explanations boil down to is that the effective resistance of the regulator valve varies to suit the imput voltage and output current conditions at all times. We shall now see how with tho aid of an amplifier the cathode-follower givos almost perfect stability. In the circuit Fig. 3, we see our same cathodefollower, but with the addition of a high-gain pentode amplifier between its cathode and grid. The original regulator valve grid battery voltage of 186 v . has now been replaced by tho anodeeathorle voltage of the amplifier valve. The battery which is connected between the cathode of the regulator valve and the grid of the amplifier value is necessary in order to bias correctly the pentocle amplifier valve; if this battery were omitted the grid-rathode bias of the valve would be $+f 200 \mathrm{v}$. and the valve would obviously be saturated, and consequently would not operate. Now let us assume that the gain of the valve from grid to anode is 200 ; this is a gain which can easily bo got as pentodes can give a gain of over 400 . If we now revert to our original experiment of pressing switch s to put our 50 mA . load on the output, we saw with the original eireuit that a change in bias of 10 v . was required on the regulator valve in order to give the extra current. But now look at the new circuit; the output has only to drop $\frac{10}{200}$ or 0.0 volts to give the extra current because the amplifier which has its grad connected to the ontput is amplifying 200 timea, any change which is occurring and this amplitied change is being applied to the grid of the regnator valve. Our 10 v . change in grid-cathode kias has therefore resulted

Fig, 4.-A practical circuit incorporating the features dealt with in this article.
from a drop in the output of only 0.05 volts. Let us now calculate the output impedance which is the change in voltage divided ly the change in current. This is equal to $\frac{0.05 \mathrm{v}}{50 \mathrm{~mA}}=10$. Our unit therefore'now has an output impedance of only 1Ω instead of the original $1,000 \Omega$. If we now look at the second experiment which was to see how the output was proofed against input variations. we saw that the output rose by 4 v . to nullify the

input change of 50 v . But, as we can see with the amplifier in circuit, the output will only have to change by $\frac{4}{200}$ or 0.02 volts to nullify the input change of 50 v . And that is really all there is in the operation of the series regulator type of stabiliser

A Practical Unit

A circuit of a practical unit and some points of interest on the design and limitations of such units are given. Fig. 4 shows a practical unit capable of giving 100 mA . over the range 100 v. 250 v ., the output voltage being controlled by lill.

Output Power

The maximum output power ignoring the mains transformer and rectifier is governed by the anode dissipation of the regulator valves and the maximum safe running current is determined by the lowest output voltage. This is shown as follows. The anode-cathode voltage on the regulator valses is equal to the input voltage minus the output voltage and is therefore highest when the output voltage is at its lowest. Anode dissipation is equal to nnode-cathode volts times anode current. and so for a fixed maximum dissipation the anode current must come down if the anode volts go up. Therefore the maximum safe running current on the regulated unit is the current which gives the rated anode dissipation at the lowest output voltage, as this corresponds with the highest regulator valve anode voltage. It is obvious that if we could keep the anode-cathode volts at a reasonably low value we could increase the output current
before overrunning the valves. Some modern units achieve this by using grid-controlled reetafiers and using a two-gang output in control, so that when tho output volts are varied the input volts are varied in sympathy, so maintaining a reasonably constant anode voltage on the regulator valse. The rear stabiliscr feeding the screen of the amplifier or central valve as it is often referred to prevents long-term drift of the output volts. It can be seen that if the screen is not held stable any fluctuation of rectifier volts would communicate a signal to the output by virtue of the screen. The output fluctuation would be equal to the input fluctuation present at the sereen, divided by the control grid to screen grid voltage factor. The anocle and screen resistors on the regulator valves and the anode to gris condenser on the control valve are included to suppress any tendency to self oscillation.

Radio at the Wheel

0the new Philips MotoRadio Morlel 5745 the reception compares favourably with that obtained with domestic radio receivers, and the quality and fidelity of reproduction is fully retained under all kinds of motoring conditions. Of extremely compact design, and styled to suit every class of modern car, this new l"hilips Motokadio does, indeed, bring radio at the wheel close to, the perfection of radio in the comfort of the home.

The marketing of the new Philips receiver is being carried out under the guidance of Mr. Alen Knight, who is well known to all motor manufacturers and dealers as a pioneer of car radio in this country. From the year 1933 when he first introduced car radio in this country, Mr. Alan Knight has become fully conversant with all the many problems associated with car radio and its distribution. having studied this aspert of the business in the U.S.A. As the new Manager of the Philips Motor Radio Department, he thus brings with him a wealth of conmercial and technical experience.
In the design of the new MotoRadio Mondel $574 \mathrm{~T}^{2}$. particular attention has been given to the ease of installation and servicing. An attempt has also becn made to obtain the best possible appearance and performance so that the equipment will match and blend with the interior of even the most expensive cars, and will at the same time meet the needs of the most discriminating user of motor radio.

The equipment comprises two units, the radio unit proper, and a separate loudspeaker unit contained in a circular metal cakinet. The radio unit is designed for fitting immediately helow the lip in the centre of the car's instrument panel, or in the space available in those cars where special provision has been made for the installation of radio. The controls are thus within easy reach of the driver. The loudspeaker may if desired. be removed from its case and mounted behind the speaker grill provided in some cars. Both units have a pleasing hammered silver-grey finish, and their dimensions and weights are as follows :Radio init : (back), 45 ins ; height (froni), 3 k . ins. ; width, $6 \frac{1}{4}$ ins. ; depth, $10 \frac{1}{2}$ ins. ; weight. $13 \frac{1}{2} \mathrm{lb}$. Loudspeaker unit: diameter, 8 ins.; depth, $3 \frac{1}{2}$ ins. ; weight, $2 \frac{1}{2} \mathrm{lb}$.

THIS recciver was intended to provide entertainment from a large selection of stations, with volume and quality ample for all domestic purposes, and it fulfils these requirements well. It uses a radio-frequency amplifier before the frequency-changer and two intermediatefrequency stages, thus assuring a high degree of selectivity and sensitivity, while the push-pull output stage enables distortion in this section to be kept down and provides a satisfying reserve of power. By employing iron-cored, ready-made coils and a tuning scale to suit, difliculties in this direction are reduced and it is not difficult to align the whole receiver without any service oscillator being necessary. But this will be covered in detail later; it should meanwhile be noted that all coils and I.F. transformers throughout the circuit are iron-cored. and that the cores are adjustable. This explains why paddling and I.F. transformer cundensers arc fixed components.

9-valve All-w

A Compact Mains-operat
By F.
Actually, the circuit lends itself well to cortstruction in a simplified form. As a guide to the constructor who may be interested in this poin-, the original receiver was built up over a periocl, beginning with a five-valve circuit. If a chassus about 8 in . by 12 in . is used no alteration to the work already done will be required when extra stages are added to make up the complete circuit as described. The five-valve arrangement consisted of frequency-changer, I.F amplifier, double diode, output and rectifier. (This is similar to many commercial popular superhets.) Long-and

Fig. 1.-Theoretical circuit of the receiver.

LIST OF COMPONENTS

Radio Section

R1, R2, R3 and R4 (screen resistors), 47,000 ohm $\frac{1}{2}$ watt.
R5, R6, R7 and R8 (A.V.C. decoupling), . 5 megohm $\frac{1}{4}$ watt.
R9 (oscillator anode), 10,000 ohm \& watt.
R10 (oscillator grid); $50,000 \mathrm{ohm} \frac{1}{4}$ watt.
R11, R12, R13 and R14 (cathode resistors), 220 ohm $\frac{1}{2}$ watt. ,
R15 (diode A.F. load), . 5 megohm $\frac{1}{2}$ watt.
R16 (yolume control), .5 megohm potentiometer《 with switch.
R17. and ${ }^{\top}$ R18 (A.V.C. line), 5 megohm $\&$ watt.
C 1 (aerial condenser), $0003 \mu \mathrm{~F} 500$ volt.

C2, C3 and C4, 3-gang . $0005 \mu \mathrm{~F}$ tuning condenser.
C5 to C17, . 1μ F each.
$\mathrm{C} 18, \mathrm{C} 19$ and C 20 , . $0001 \mu \mathrm{~F}$ each.
C21, $.02 \mu \mathrm{~F}$.
C 22 (long-wave padder), $0002 \mu \mathrm{~F}$ (fixed).
C 23 (medium-wave padder), . $00045 \mu \mathrm{~F}$ (fixed).
Aerial, H.F. and Oscillator coils for 16 to 50 , 200 to 550 and $800^{\prime \prime}$ to 2,000 metres. (E.g., "Supacoils". types 3/1; 3/2, 3/3, 2/1, 2/2, $2 / 3,-1 / 1,1 / 2$ and $1 / 3$.) Nine . $00005 \mu \mathrm{~F}$. presets.
6-pole 4 way switch. 5 octal valveholders. 3465 kes. I.F. transformers. Wide-vision reduction drive and dial.

ave

Receiver in Two Units

RAYER

medium-wave coils only were used, but a four-way switch was fitted so that short waves and gramophone operation would be possible later.

Subsequently, a triode wie added between the double diode and output stages, and after a while the latter stage was changed to push-pull. The R.F. stage was then added, together with coils for the s.-w. range. Later, the second I.F. stage was added. However, the relative simplicity of an I.F. stage may result in the constructor adding the second I.F. before the R.F. is providerl, and a high standard will still be retained if the 12.F. is never added.
Amplifier and rectifier sections are built on a separate chassis, thus effectively dividing the \because construction into two parts.

The Radio Unit

- . "The circuit is shown in Fig. 1. Component values will be seen from the component list, but matters wil! be simplified if it is remembered all screen grid and cathode by-passing condensers are of $.1 \mu \mathrm{~F}$. capacity; this value is also used for
$!$ A.V.C. decoupling. On the s.-w. range A.V.C.
: is not applied to R.F. or frequency-changer valves.

An A.F.. volume control is incorporated in this section, being arranged so that it is also effective
\therefore when a pic̈k-up is used. The circuit proves very satisfactory for record playing, and R.F. and
$\because \quad$ frequency-changer stages are rendered inoperative to prevent possibility of radio = break-through.

The chassis layout of the - radio section is shown in
\therefore Fig. 2. The chassis is ap-
\therefore proximately 8 in. by 12 in .
\therefore When mounting the parts in the positions shown place the

- I.F." transformers so that the adjusting serews on the cores are easily accessible. For preference, the two left-hand transformers should have the serews to the left and the righthand transformer should have its screws to the right.

The coils are fixed by drilling a $\ddagger \mathrm{in}$. dianneter hole for each coil, passing the narrow stem
$3)^{+}$through, and pressing on the i self-locking clip provided, as illustrated in Fig. 4. Place the aerial coils below the chassis (see Fig. 3), with oscillator and frecquencychanger grid coils on top, as depicted in Fig. 2.

Wiring Details

The wiring plan is given in Fig. 3, but a few points should be noted. To reduce possibility of hum, keep heater wiring close against the chassis

Fig. 4.-Coil connection details.
and as far as possible from grid anode connections. All the leads shown can now be put on, leaving coil and wavechango switch coninections for the moment.

Fig. 2. -Chassis layout of the receiver section.

Some makes of I.F. transformers may have a different method of colour-coding, and this should be watched. As a rule it is quite easy to sce which pairs of leads are common to the transformer windings; if not, a test for continuity will reveal this.

All connections should be insulated and joints atud wire-ended resistors positioned so that no shortrircuit to chassis or elsewhere is possible. Where one end of the decoupling and by-pass condensers is marked with a band or the letters "O.F.." this denotes the outside foil, and this end of the component should be taken to the chassis. (All points marked " M.C'." should similarly bo taken to the (haswis.)

Coil Connections

Commertions for the specified coils are given in retail in Fig. 4. Note that each cuil has a noteh, against which the relative positions of the tags can bo identified. All the long- and medium-wave signal-frequency coil tags marked 4 are returned to the A.V.C. line. With the short-wave coils, these tags are connected to the chassis. Similarly, all the primary windings of the three aerial coils are returned to the chassis, and all the primary windings of the frequency-changer grid coils are taken to H.T. positive, so that wiring up is not dificult.
A. $.000105 \mu \mathbf{F}$. preset condenser is connected in
parallel with each tuned winding. and the best method to do this is to mount the condensers immediately above each coil, as shown in Fig. i. Connect the plate in contact with the adjusting screw of the condenser to chassis or A.V.C. line end of the coil ; otherwise the presence of a metal tool used for trimming will inaterially affect capacity and make the final aligning of the set difticult. (These presets are not shown in Figs. 2 or 3 or in the coil diagrams in Fig. 4, for clarity.)

Wavechange Switch Wiring

All the wavechange switch connections will be shown in Fig. 5. 'Jo simplify wiring up and to avoid instability, a switch with four wafers and a long spindle is used. Referring Fig. 5 to Fig. 3, the wafers are as follows:

Wafer 1 goes at rear and is for oscillator noils. Wafer 2 is immediately hefore this and is for the anode circuit of the R.F. valve and grid circuit of the frequenry-changer. Wafer 3 is for the aerial coils, and in near the front of the chassis. Wafer 4 is for radiogram switching and is nearest the control knob. When wiring up, note that the anode and grid circuits of the valces are not left open when the switch is in the " Giram " pissition, But that the control grids of the R,F. and frequencychanger valves are returned directly to the chassis.
(To be continued.)

Fig. 3.-Wiring details of the receiver section. The amplifier portion will be dealt with next month.

The Copenhagen Plan

ON March 15th last, the Copenhagen wavelength plan was put into effert with mixed results. There was some confurion at first but since the introduction conditions have sottled down and it would appear that the listeners will undoubtedly benefit in spite of "pirates"stations which have so far refinsed to adopt the new wavelengths allocated to them.

The Need for a Wavelength Plan

It must be remembered that broadeasting is only gne of many services using radio as a moans of communication, all demanding elear wavelength thannels which will not be subject to interlerence from wher services. The first refuirement is, therefore, to sogregate tho various services which is clone by allocating certain blocks of wavelengths, or wave-bands, to earh. This must be done on a world basis and the allocations need to be revised from time to time as the use of radio for all purposes expands. The latest revision was made at a conference of the laternational Telecommmication Union at Atlantic City in 1947, where the wavebands available for broadcasting wero slightly entarged compared with those ahocated at the previous (airo conference held in 1938. 'The two wave-bands allocated for broadeasting in the European area, known generally to listeners as the medium wave- and long wave-bands are as follows:

Frequcney
 kc / s

525-1605

Medium Wave-band
 Wabelength
 metres j71-187 Exclusive to broadcasting.

Long Wave-band

Frourney
lic's

1 iturlenyith
metre's
$\because 000-1875$
Shared with the maritime mobile service.
160-2.5. 1875-1176 1Exclusive to broancasting.
-259-285 1176-10.53 Shared with the maritione mobile service and with aeronautical radionavigation.

Broadcasting in Europe

The Atlantic City Regulations laid down that a European Reqional Conference should be hehl to allocate individual wavelengths to broadersting stations and this took place at copenhagen in 1048. 'I'hirty-three countries in the buropean area wero epresented at this confereme.

The neal for this tetailed allocation arises beranso the transmissions from a broadeasting station anywhere in Elurope nay well be audible in neighbouring countries in the daytime and throughout the greater part of the Continent after nightfall. Something must, therefore bo done in order that the transmissions from one station shall not interfere unduly with those from another and thus prevent listeners from hearing cloarly the programmes from their local stations. Iteilly, every transmitter would be given a different wavelength for more correctly a different frequenc-x ehannel), but this is not possible because the number of broadeasting stations greatly exceeds the number of frequency channels available.

Appearance of the standard Tuning Dial showing positions of the B.B.C. stations under the new plan.

Some sharing between broadcasting stations in different Nuropean countries is therefore inevitable, and fortunatoly. if suitable precautions are taken, this is possible without undue mutual interference. The object of the Copenhagen Plan is to reduce interference between stations to a minimum by allocating wavelengths to individual transmit ters and not just to countries. 'The wavelengths are allocated on a geographical basis, in such a way that stations that share wavelengths, or use adjacent wavelengths, are so far from each other that
mutual interference should be necligible. The maximum power of every transmitier and the precision with which its allotted frequency must be maintained are specified in the Plan.

Frequency Allocations

The tables below show the distribution of frequencies among tho broak asting stations of the European area and the maximum power which rach may use in accordance with the Copenhagen Plan.

Long Waves
Pand of $150-285 \mathrm{ke} / \mathrm{s}(2000$ to 1053 metres approximotely)

	Appror.				
Fres-	Watelengith			$\begin{aligned} & \text { rower } \\ & \text { h:H } \end{aligned}$	
quency	length metres	Station	Country		
155	1935	Brasov	Roumania	150	
		Tromso	Norway	10	
164	1899	Allonis	France	400	
173	1734	Moscow T	U.s.s.k.	501	
18:	1648	Hecykjavik	Ireland	100	
		Lulea	Swaden	10	
		Ankara	Turkey	1-1)	
191	15,7	Mutalia	Swedern	-010	
201	1504	Droitwich I	Unitad Kingdom	404	
209	1435	Kiev I	Likraine	1:010	
218	1376	Oslo	Norway	\%00	
-2\%	1322	Warsaw I	Pohand	2010	
236	$1 \geqslant 71$	Leningrad I	T.S.s.R.	100	
245	1294	Kalumillorg	Prenmark	150	
254	1181	laliti	Fiuland	- 10	
263	1141	Moscow $1[$	U.s.s.R.	150	
272	1103	Czechoslovakia	Czechoslovatia	200	
281	1068	Minsk	Bielorussia	100	
(i.e., stutioms athorised to work outside the bromdrastimy bends) 13ands of 415 to $400 \mathrm{kc} / \mathrm{s}$ and 510 to $52.5 \mathrm{ke} \mathrm{s}^{2}$.					
420	714	Ostersund	Sweden	10 (1)	
43%	693	Oulu	Finland	10 (2)	
520	577	Hamar	Norway	1 (:3)	

Medium Waves

band of 555 to $1605 \mathrm{ke} / \mathrm{s}$ (631 to 187 metres approximatedy).

(1) Directional acrial, protection south-west.
(2) Directional aerial; protertion outlowest.
(3) Directional acrial, protertion onth.
(4) Directional aerial, protertion Monte Ceneri.
(5) Directional acrial. Aplarent power indirection Sundsvall, $10 \mathrm{~kW}^{\mathrm{H}}$.
(b) Directional aerial. Apparent power in direction Sofia If, 20 kW .
(7) Directional arrial, protection Vigra.

- The Plan permit, lower-power stations to be symehromised on this fregueney. They will be at Edinburgh, dhasgow. Netveastle and Redmoss.

Frequency kel:	Approx ${ }_{\text {in math }}$ metris	Station	Coun'ry	Pouser h. 1
		Murmansk	U.S.S.R.	1.0
66.5	4.51	Vilnus	Lithuania	100
674	445	Marscilles	Frature	104
		hodi.	Norway	10
		Rostor. Don	U.s.s.it.	100
68.3	439	Belgrate I	Yugoslavia	150
602	434	Nicosin	Cypres	10
		Moorside Edge	United Kingdom	150
701	428	liabat II	Moroce	120
		Fimmmark	Norway	$\left.{ }^{2}\right)$
		Banska-Bystrica and symehronjxed hetwork	Czerhoslovakia	100
710	423	Limmoges	France	150
		Stalimo	likraine	1.9
719	117	Lishon Niational	Portugal	130
		bamaselus 1	Syria	50
728	411	Athent	Greece	100
737	407	seville	Spain	50
		Akireyri	Jerlamat	1
		derusilem [Palestine	20
		(thwice	Poland	511
$\begin{array}{r} 746 \\ 75.5 \end{array}$	402	Lilversum [Holland	120
		Kıopio	Finland	20
		Nurte Naciona	Portumal	510
		Tlimisoara	Rommania	5018
$\begin{aligned} & 764 \\ & 76: 3 \end{aligned}$	393	Sottens	Switzerland	150
	388	C'airol	Luypt	- 0
		storkitohm	Swelten	150 (9
782	381		Ukraine	100
		Soviet Troops in Germany		76
791	379	Renons	France	150
		Tlamsalonika	(irume	50
	37.5	Lamingrad 11	l's.s.R.	1013
804	371	Burulmad		10 H
		lRtulumss	United Kingdom	$\because 1$
		Wraterulen		101
		*ionulje	Fumoslavia	13:\%
818	367	Pranan	Poland	100
827	:263	Sotia 1	3ulgaria	100
836	35:1	Sanley	France	13
		Reyrouth I	Labanon	211
84.	355	Rome 1	Italy	150
85	351	Buelorest	Rommania	$1: 0$
40:3		Praris I	F'rather	13
$8 こ$	344	Noscow III	[.s.s.S.R.	1.0
881	341			
		Washford Wrexham	\int Lnital Kincrlon	$150(10$
		cotinje	Yugoslavia	20
890	337	Alıiers:	Alseria	100 (1t.
		Heraen North		20
		Kriatiansamed	Norway	20
		'Tromalatig		20
		Inieprojutrovsk	Ikraine	20
890	334	Milanl'	Italy	150
9 OR	3330	Lonton	Enited Kinglom	150
		(Brookmans lark)		
	327	Ljubljana	Yugoslavia	13.5
926	324	Brassuls Il	Belaium	150
93.	321	L voy	Ckraime	$1(1)$

(c) fonless a directional aerial protecting Norte Nacional is used. the power shall not exreed 20 kW .
(9) The reparent power of the station of stockholm in the direvtion of caite I shall mot cexerel $\because(0 \mathrm{~kW}$.
(to) Directiomal arrial. The apparent power in the direction Cetinje shall not exceced 1.0 kW .
(11) Directional aerial, protection Norway.

HOME STUDY backs radio experience with sound technical knowledge

MANY men who wished to link their radio experience with a sound technological background have received successful instruction by means of an J.C.S. Course. Its value has been proved not only to amateurs but to men who already have a professional interest in radio and television engineering, including those taking qualifying examinations. it is invaluable. also, to students who wish to prepare themselves for a job in this field. Courses of Instruction covering radio and. it necessary, television including the following:
Complete Radio Ensinecrins, Radio Service Ens:neer: Radio Service and Salcs. Adranced Short-Wave Radio Elementary Electronics. Radar, Radio abd Television Iechnology
And the following Radio Examinations.
British Institution of Radio Engineers
P.M.G. Certificates tor Wircless Operators

City and Guilds Telecommunications
Write today for our FREE "Radio" booklet, which fully describes the above ICS Courses.

Dapt. PW6, International Bldės., Kingsway, Londen. W.C. 2.
 connections and 1 -hole fixing the on is done in double quick time, yet effictently and cheaply. A stmple answer

As speadzed for Tupe 25 unit of the Type 25 unit of the $T R .1196$.

OSMOR
 'Q' COILPACKS

 Send ctamin for FREE circuits and our hew lists of coils coilpacks and mutched rutho commonents, ulso lates! Harkann Bulletin. Trude and Export enauiries tmated.
OSMOR RADIO PRODUCTS LTD. (Dept.P.4.) Bridge View Works, Borough Hill, Croydon, Surrey

Telephone : croydon 1220.

Hest Hritish Harguins! LIGHTING SETS. 300-watt D.C. plants, 12115 volts air-cooled 4-stroke, $\& 16$. Villiers 500-watt air-cooled 2 h.p. engine, single cylinder 4-stroke with switchboard and tank, $£ 22 / 10 /=$, 1,260-watt Villiers 2.5 h.p. engine, 35 volt dynamo and fuel tank, $\mathbf{£ 2 5}$, carriage extra.
A.C. LIGHTING PLANTS, 2.75 K.V.A. 3-phase 50 cycles twin cylinder air cooled engine, exciter, mag. ignition, 130 volt Enfield generator, switchboard fitted ammeter, voltmeter, frequency meter, etc. In steel case, as new, $\mathbf{E 2} 2 / 10 / \mathrm{m}$, carriage extra. MOTOR PUMPS. 230 volt A.C., for garden fountain, etc., compact unit by Stuart Turner, £5/lsi= (foot valve and strainer $\mid 6 /-$). 12 volt for caravan or boat, lift 2ft., throw loft., 100 g.p.h., $£ 51101-$. A.C. MOTORS, 230 volts 50 cycles S.P. $\frac{1}{4}$ h.p., 1,425 r.p.m., new, E5. Few s.h. $\frac{1}{3}$ h.p. 50 cy. S.P. 1,425 r.p.p., $631101-$. A.C. 3-phase motors, $\frac{1}{2}$ h.p. 440 voles, 1,400 r.p.m., E6/101-,
TRANSFORMERS.
Foster 100 watt 230 volts 50 cy . to 50 volts 2 amps., $151-$, postage 2%. Double wound transformer, 220 volts 50 cy ., input 53 volts 15 amps ., 30 and 60 volts 1 amp., 6 volts 5 amps., output, \&5. 900 watt Booster Transformer, 2001250 volts in 10 volt steps, $£ 5$.
RECTIFIER UNITS. Westinghouse, exG.P.O., 230 volts A.C. to 24 volts 6 amps in ven. metal case, 88.
DYNAMOS. D.C. 12 volt 10 amp., totally enclosed car type, l,400 r.p.m.., 401 -. 30 volt 5 amp., 1,500 r.p.m., 35 I . 24 volt 20 amp., l. 200 r.p.m., Eizilol-. Carriage on any dynamo, 51- extra.
Please include postoge for mail orders.
ELECTRADIX RADIOS
214, Queenstown Road, London, S.W.8

FOR

 PROMPT \& EFFICIENT SERVICECASH OR EASY TERMS
When you purchase on L.R.S. Convenient Terms Formalities are reduced to a Minimum and you deal direct with us from beginning to end.
ARMSTRONG ALL WAVE CHASSIS (incl. speaker and output transformer)
Model EXP/83/3.
Cash price
£18 171 , or $E 4120$ with orderand
12 monthly instalments of 261 -.
New Stentorian Duplex
speaker with matching transformer and filter
$£ 66$ cash or $£ 2$ with order and 5 monthly instalments of $£ 1$. Collaro R.C. 500 Auto Record Changer $£ 10150$ cash or $£ 3120$ with order and eight monthly instalments of $£ 100$. Also other models.
Also available on our Easy Terms Goodsell-Williamson Amplifier and Tuner Units
Goodman's Loudspeakers
Hartley-Turner Loudspeakers Wharfedale Loudspeakers Leaflets availahle
Please let us know your Radio requirements (enclosing $21 d$. stamp) and we shall be pleased to quote

Personal attention to all enquiries
THE LOMDON RADIO SUPPIY
COMPANY
BALCOMBE SUSSEX

We don't supply any-

 thing Ex-Government.All Brand New Goods

- fully guaranteed -

All Changers recently advertised still available.
Garrard RC 65A. A.C.-A.C./D.C. \& 70A, A.C. Collaro RC 500 Crystal or Hi-Ft. E.M.I. Al00 M.

Plessey A.C. Mivers.
VHWWM, SHFIR,-All Kits for the Birmingham and London trequencles now available
SGIUV SGLIBRIR IRONG, Pencil Bit, 21-, and Stratsht Bit, 18:6. alt voltages. Elements-spare bits, etc. available. T. YHAR THSNT (iENIR.-Entire range by this famous maker now available on HIRF PURCHASE. S.A.E. for catalogue and ternis.
All. IVG THNT GRAR NOW IN STOCK. including H/H Meter. "Avo 7 " Leather Cases, £2.2.6.
Ni.NFi-Largest stock in England. Over 1.000 types.
I'ICK IPG and IIF.ADS, by, Decea, connoisseur. Acos (GP20), BTH., Marconi Shaefl, potherme
SPE, KEEN.-By famous makers. All boxed and guaranteed new. 311n., 14,9: $5 i n ., 116$ and $15 /=$: 8in.. $17 / 8$ i $10 i n, .21 .-$ Wharfdale Colden, 10in.. fe: Golden loin.. C S. 8410 . Goodmans, $12 i n$. . Double Cone, s8'8: ; Single Cone, $46 / 15 /$
All items can be supplled C.O.D. up to 151 b . in weight. Otherwise casb with order please
Special attention to Ovargeas Orders. which are free of Purchase Tax.
MODERN ELEGTRIGB, ,HTD.,
164, Charing Cross Koad, Lórihon, 근, C!2 Telephone: Temple Bar 7587

HOME SERVICES

Transmilling S'tution						S'rogrtume	Ditfore the introdution of the Cupenhorenen I'mu			slfore the introduction of the ('openhryen I'lan			
						Freq. kes.	Ipprox. III/ 1 mities	l'ouer kIV	Ireq. kels	$\begin{gathered} \text { Approx. } \\ \text { IITh } \\ \text { metres } \end{gathered}$	I'unpr $k I^{*}$		
NOORSUDF EDGE							Northern	66\%	$44!$	100	692	434	151)
						Scottish	-1is	391	(i)	809	371	10.1	
131PR:\|llind						,	767	391	(1)	$815!$	371	100	
REDNTON		.	.		.		767	: 111	$\underline{9} 5$	$80!$	371	\cdots	
WASHPORD					.	Welsh	(1).4	37:3	60	8×1	341	150	
PENDON	,	8194	378	10	8×1	$3+1$	20	
WRLSHAM					. .		$\times 14$	23:3	1	881	341	5	
BROOKMANS PA!K゙			-		\cdots	Iomblon	$\times 7$	342	70.1	010 R	:334	150	
STAR'T POANT					.	Wrst	9	317	1010	1052	2×5	150	
1ROOTWHOH		.		.	.	Midland	101:3	296	60	1085	876	150	
Norwlen							011:3	296	1	10×8	270	21	
LASNAGARVEY..	-	.	.		.	N. Ireland	110.01	28.5	100	11.51	261	100	
LONDONDFRRY		.			.		(10:-1)	\cdots	1	1151	261	5	
STAGSHAW							10, 101	$\because 8$	J09	1151	261	100	
(LETEbON						West-	1:384	$\because 17$	$\because 0$	115	$\stackrel{216}{0}$	80	
13.ARTLEM	.	\cdots	\cdots	\ldots	\cdots	"	1:以	$\because 17$	10	14.5	$\because 06$	60	

LIGHT PROGRAMME

Iransmittiny station						leforis the inhtodiction of the 			After the introduction of the Copenhagen I'lun		
						Fren. ke/:	A prome. IS, 1 mptes	Poures k. $1 /$	Froq. he/s	$\begin{gathered} \text { Approx. } \\ 10 / 1 . \end{gathered}$ metres	Porer k! ${ }^{*}$
1)ROITWICH						200	1.2100	216	$\because 00$	15010	400
BROOKMANS PARK		.	-			$114!$	261	(i)	1294	247	60
BUR(iHLAW .						1149	201	$\because 0$	1214	$\because 47$	20
LISNAGARVEY		.				114%	261	10	1211	$\because 7$	10
IONDONDERKY						114	261	1	1214	247	1
MOORSHOE EDC:						1149	291	60	1214	$\because 47$	58
PLCMMOITH						1143	231	1	1214	$\bigcirc 47$	$\stackrel{?}{2}$
JEDMOSS						1149	201	2	1214	247	2
REFRUUTH		.				114!	$\cdots 1$	$\underline{-2}$	1214	247	2
sTAGSHAW	.	.	\cdots	.		1149	$\because 61$	10	-	-17	-
NWWCASTIGE			.			-	-17	-0	1214	$\stackrel{2}{9} 7$	10
W ESTRPR(HLEN	.	.			.	114.1	261	60	1314.	947	50

THIRD PROGRAMME

[^0]
Fixed Resistors
 Some Important Facts Regarding a Simple Component By ERIC LOWDON

THE resistor is, undoubledly, the simplest and unost widely used component in radio. It also gives tho least trouble-when properly used. In fact, ono might think that it is hardly worth while devoting an article cxelusively to resistors.

Nevertheless, there are some interesting points about resistors that are not generally appreciated by the inexperienced. Sometines evon the older experimenters run into difficultics.

For instance. consider the following comundrum, When is a one-watt resistor not a one-watt resistor? At first glance this may scem to bo rather silly and pointless. but tho answer is of prime importance in the rlesign of oscillographs. television receivers, and. in fact, any equipment where high operating potentiats are used. Under high voltage conditions a one-watt resistor may be capable of dissipating only $\frac{1}{8}$ watt with safety.

The reason for this is that if tho voltage impressed across a composition resistor exceds a certain value -irrespective of its nominal wattage rating-then the ohmic value of the resistor will be reduced considerably-sometimes by as much as 50 per cent. -thus causing a corresponding drop in operating voltage in the equipment.

The writer ran into this trouble himsolf when a resistor which appeared to be working woll within its rating kept on going down in value. It was not till a friend drew his attention to the following information that tho troublo was satisfactorily clear'ed up.

Voltage Limits

Resistors, in common with condensers, have voltage limits placed on them by the inanufacturers which are calculated to overcomo this trouble. One well-known firm gives the limits for their $\frac{1}{4}, \frac{1}{2}$ and 1 watt resistors as 250, 350 and 500 volts respectively. These figures will no doubt var', - slightly between one maker and another, but they I nay be taken as representative.

What offect, then, is this going to havo on our choice of resistor for a particular job?

Let us consider a 1 watt, - megohm resistot. As already stated, the maximum voltage which can bo safely developed across it is 500 . 'That is to say the watits risisipated at this figuro will be

$$
W=\frac{E^{2}}{12}=\frac{500^{2}}{2 \times 10^{5}}=.125 \text { watts. }
$$

Thus we hare the anomaly that a 1 watt 2 megohm resistor has an actual maximum rating of .12.3 watts. A higher elissipation then this moans, of course, that a roltage higher than tho spenified limit is developed aeross the resistor, and will lead to trouble.

To take another example. suppose in some pieco of equipment we have a 2 ,000 volt supply feeding into a resistor chain, through which is flowing : 0007 amp . If now wo have included in the chain a $\frac{1}{2}$ watt 1 megolim resistor, then the calculated dissipation will be
$W=1^{2} \times R=.0007^{2} \times 10^{6}=0.49$ watts.

At first glanco it would seem that our resistor is safely rated, but-what is the voltage across tho resistor?

$$
\mathrm{E}=\mathrm{I} \times \mathrm{R}=.0007 \times 10^{6}=700 \text { volts. }
$$

Twice tho maximun voltage specified for a half'wait resistor! It is even" 200 volts more than that specified for a one-watt resistor. In this case, therefore, it would be necessary to use a two-wat resistor to dissipate 0.49 watt.

A few simplo caleulations on the above lines will show that the trouble will occur mainly with tho higher resistance values and that in normal soundreceivor design the problem will not arise berauso the voltages involved are comparatively low.

Resistance Tolerances

Resistance tolerances, as we know, vary from 20 per eent. for general purpose resistors down tu I per cent. for accurate sperial purpose resistors. In cireuit diagrams the tolerance may be taken as 20 per eent. unless otherwise stated. That is to say, a resistor with a nominal valuo of 1,000 ohnas will in actual fact have a value somewhere between 800 and 1,200 ohms.

Iet how often does one see a beginnor who is assembling an experimental liook-up search despairingly through his junk box for a 1,000 ohm resistor when he las a selection of 680 ohm and 1,500 resistors, one of which may be 20 per cent. high or low to give a value as near the 1,000 ohm mark as a brand new nominal 1,000 ofm resistor.

If accuracy is important, there is no reason why the ohld dodgo of scraping a carbon resistor should not bo resorted to.

The idea is to sclect a resistor that is louer in value than that required and file it gradually, measuring the resistance after each stroke with the file until the clesired value is obtained. But it is cssential that tho measuring instrument be at least as accurate as the accuracy desired in the resistor. To attempt to get 5 per cent, aceuraey with an instrument that.can be relied on to only 20 per cent. would, of course, be the height of folly.

Don't forget also that if very much is scrapeat off the resistor, then the wat tage will be correspondingly reduced.

WORKSHOP CALCULATIONS TABLES AND FORMULAE Eighth Edition by F. J. CAMM

A handbook dealing with methods of calculation, solutions to workshop problems, and the rules and formulae necessary in various workshop processes. It contains all the information a mechanic normatly requires.
from all booksellers, 6/- net, by post $6 / 6$ from the publisher.
GEORGE NEWNES, LTD. (Book Dept.), _ـ Tower Heuse, Southampton Street, W.C.2.

Simple Valve Tester

An Adaptable Unit for Testing Special Valves By D. CAVE

DURINA the course of building a television receiver made from ex-(fovernment radar equipment, the writer acquired a large number of VR91 (EF50) and VR65 (SP61) valves, and it became imperative recently to test these valves, so the following simple tester unit was constructed. It was designed to test only the two types of valces indicated above; but if the principle of operation is understood it will be easy to adapt the unit for other types.

The most important factor of a valve is its mutual conductance (ofton called the "goodncss" of a valve); and this is the extent to which the anodo current changes for a change of one volt at the grid. Thus the makers quote the mutual conductance (gm.) of an EF50 as $6 \frac{1}{2} \mathrm{~mA}$. per volt and for an SP6l as $8 \frac{1}{2} \mathrm{~mA}$. per volt. 'This means that the anode current of the EFE0 will change by $6 \frac{1}{2} \mathrm{~mA}$., whilst that of the SP61 will change by 81 mA ., if the grid potential of either is changed by one volt over the working rango.

The stage gain of a pentode with an anode load much less than the Ra of the valve is given by the product of the mutual conductance and the value of the anode load. Thus. if we use an EF50 with an anorie load of 50,000 ohms the gain will be 325 .

As a valve ages the mutual conductance falls; consequently the stage gain falls as well.

The Circuit

In order to test the mutual conductance it is simplest to measure the anode current at two bias voltages ono volt different from one another. It is important to arrange that the one volt change rovers the normal working bias of the valve. In the case of the RFEO and SP' 61 valves the working bias is about -2 volts. Therofore, the anode currents should be measured at $-1 \frac{1}{2}$ volts and $-2 \frac{1}{2}$ volts grid bias. The resulting difference in anode current will be the mutual conductance of the valve. The circuit of the tester is as in Fig. l. The power supplies are obtained from a convenient receiver with an H.T. supply of about 250 volts, and a heater supply of 6.3 volts (one side earthed to chassis and negativo H.T.).

The battery B is a twin cell dry buttery with a switch S incorporated in its circuit so that battery life may be conserved when the unit is not in use. The resistances R1, R2 and R3 are chosen to give the requirod -1.5 volts and -2.5 volts grid bias. R3 should be 150,000 ohms, R2 100,000 ohms, and R1 depends on the exact voltage of the battery, which may be checked when purchasing. If it is 3 volts, then RI $=50,000$ ohms, if 3.1 volts, it is 60,000 ohms, and if 3.2 volts, then $1 R 1=70,000$ ohms. All the resistances should bo as close as possible to their values.

The switch T is a telephone press-button type and is chosen for its quick changeover action.

It is not wise to use a slow action switch becanse the grid will have no bias between the change resulting in a heary anode current momentarily. Ihe switch 'T should be so wired that in its nomal position the grid is connected to X. On pressing the button, connection is made with Y and the rise of anode current is noted. The milliammeter should have a full seale deflection of 20 or 25 mA .

The tester' was constructed from an A.M. control unit type 404. The cover was removed and a piece of $\frac{i n}{4}$. paxolin sheet $4 \frac{1}{2} \mathrm{in}$. by 10 in . was eut to fit the box. Holes were cut in the paxolin to take the meter, two valve hulders (EFo0 and SP61), the switch S and the press switch T (the last two were remosed from the cover of the control unit). Three holes were cirilled in the sides of the box to bring out the fles power supply leads which were terminated in crocodile clips. The two valveholders were wired in paralle!, the grid connection for the SP6l being brought out to a clip lead through a hole drilled near the valveholder.

Other Valves

If it is desired to test valves other than those quoted, then the reader must fit the required valreholders, choose a battery lis sufficient to supply the working bias of the valves, and calculate the new values of $\mathrm{R} 1, \mathrm{R} 2$ and R 3 . To calculate these resistances allow 100,000 ohms per volt. Thus if a valse of 6 volt working bias is to be tested use a 9 volt grid bias battery and make R3 550,000 ohms (-5.5 volts), $R \geq 100,000$ ohms (1 volt.) and RI 250,000 ohms (3.5 volts). On operating the switeh T the bins would change from -5.5 volts to -6.5 volts. From the makers' figures check the anode current of the valve at the working bias.

It must be remembered that the battery B has not an indefinite life, so that if the unit is not used for a long period the voltage should be checked. This might be clone conveniently by using the meter in the unit with the addition of a multiplier resistance R4 and a double pole two-way switch as in Fig. 2. The value of the resistance 144 would depend on the full scale deflection of the meter and the voltage range desired. Thus for a meter of 20 mA . full scale deflection, R4 might be 1,000 ohms, when the fill scale deffection would becone 20 volts. For a 25 mA . meter, R4 could bo 500 ohms and the full scale deflection would be 12.5 volts. Smaller values than 500 ohms for R4 should be avoided.

Figs. I and 2.-The circuit diagram and method of arranging battery check.

MIDLAND INSTRUMENT CO.

FOR GOVFT. SURPLUS STOGKK ETC.
INDICATOR UNITS TYPE 162, contains two C.R, tubes, bin, VCR-517 (suitable for television) and 21 In . VCR-139A, also 9 Valves,-VR-65 (3), VR-78 (2) VR-92 (2). SJ5 and VT-60A. also special CV-67 valve. 24 V . motor fitted centrifugal fan blower, wanel mtg, $0-1 \mathrm{~m} / \mathrm{A}$ meter and uther front panel controls, alsu stacks of other components, in metal case, size $18 \mathrm{in} . \times 11 \mathrm{in}$, \times bin, supplied unused in wood crates. ro's carriage 7, 6. INDIGATOR NNITS TYPE 198, consists of a VCR-138 34 in . C. R. tube. 8 valves, VR-65 (4), VR-92 (3) and VR54, with a mass of other component in metal cases, sizo $161 \mathrm{in}, \times 12 \mathrm{in}, \mathrm{x} 5 \mathrm{in}$. new unused, in manufacturer's. sealed cartons. $401-$ carriage $5 /-\quad A N$ APA-1 CHOICATOR NNTA, contains a 3BP1 3in, C.R. tube, amplifer with 11 valves 6SNT/GT (7) fG6G. $6 \times 5,2 \times 2,6 \mathrm{H} 6$, also contro unit and other spares, operating instruction handbook. will opelate from 230 V. A.C. mains with a 150 -watt lamp in series brand new, in manufacturer's sealed
 (2) 7193 contains 10 valves. 6 SH 7 (6). 6 H 6 (2) 7193 (2), also 2 relays. chokes, coils. mounted with cover. size 12 in. $X 8$ in. $\times 6 \mathrm{in}$. mounted with cover. size 12 in. $x 81 \mathrm{n}$. X 6 in. bargain, 12/6, post 14. ditto except has 12 valves. extra 11 an relay 15:-post $1 / 4$ MASLIR OSCIL, ANors uning requency tumb requencer 807 values accessortes operating, 1 spare, installation riving all da with inclite bookle brand new. in sealed cartons, 50 -, carrlage bran
IIG.
have you recelved a copy of uur new lists ontains hundreds on interestirs ectronie ama mechani .A.E. Fir
Moorpool Circle, Birmingham, 17. Tel.: HARborne 1308 or 2664

R.ivio is intcrestion. With a los Coll yuu can buld this crestal set. or $3^{2} 2_{2}$ and : valve sets. The nost cuaprehensive radto coll for simple ifro cuits. With full hlue print and ciretily, $\boldsymbol{b}_{\text {; }}$ -
HILLFIELDS RADIO. Dept. M, 8. Burnhsm Rd., Whitley, Coventry.
stPDCOILS

\star A complete range of High Q variable Iron dust cored cotls in waveliength $10-30,16-50.30-65,75-200,190-550$ and 800-2.000 netres Aertal, H.F ot Oscillator at the femarkablo price

- DIOINEL 30 famous 3 waveband super net Coll Packs. aligned...... $27 / 9$ inc - MODIL, 40 Coll Packs-similar. with R.F. stage, allgned............. $54 / 6$ inc.
t I.F. TRANGFORMERS, iron-cored high stability, aligned lu 465 kc 's.
* MODEL 30 TUNING UNIT con sisting of 30 con pack, pair 2-gang and attractlve Dial. Components aligned together as a unit and sealed
\star MODEI 40 TUNING UNIT, similar, with R.F. stas
* J.B. SL8 Horlzontal Spin Wheel tuning assembly and dial...25!- each
* comPUNLENTS.-Complete range of 1adio, television and grant components in stook at lowest prices.
\star FREL
A Copy of the enormously successful Home Constructar's Handbook will be corwarded FREE with orders of 20\% or more. or a copy can be obtained for 1/-from
SCPACOILS.
MAIL ORDER OFFICE, 88 , Gremway Alenue

bOCNOON CENTEAR RaADIO STOMES

6 VALVE SUPERHET RECEIVING UNIT No. 25. Easily adapted for S.W. reception for home use, Contains two EF36, two EF39, one EK32, one EBC33 valves, condensers, resistances, ctc. Circuit diagram frec with every set. $22 / 6$.

BRAND NEW 2-VOLT VIBRATORS. 7-pin. Self rectifying. 200 volts 60 mA . 716.
UNISELECTOR SWITCHES, 6 Bank, as new, 3716
BLOWER MOTORS, $12-24$ and 80 volt. $12 / 6$.
CARBON MIKE INSERTS, $2 /$-.
ELECTRIC MAGNETIC COUNTERS, EX-G.P.O. Every one perfect, as new. 500 ohm. coils counting to 9,000 . Operates from 25-50 v. D.C. 7/6.
NEW U.S.A. HEADPHONES, 120 ohms, 4/- pair.
EX-GOV. COPPER AERIAL wish Insulators, 4!3 100ft.
NEW 6.VOLT ACCUMULATORS, heavy duty 85 amps . Size $12 \times 9 \times 7$. weight 47lbs. British made, $\mathbf{6 3} \mathbf{1 0 s}$. Od. EX-R.A.F. II55 SET, complete with Power Pack and 8 inch Moving Coil Speaker, $\mathbf{E} 15$; for $200-250$ volt A.C.
NEW OSRAM PROJECTOR LAMPS, 12 volt 100 watt, 916 . Class F.

NEW CARBON TABLE MICROPHONES, 516 each.
12 inch V.C.R. 140 TUBES. Blue Screen Magnetic Deflection, magnetic focus 6 kv . Heater, 4 -volt International Octal Standard Connections, 64 10s. Od.
VALVES EF50, 516 each ; SP41, 4v, 6.3 316 ; $6 J 5.316$; EA50 and DI, 216 each. WALKIE TALKIE SETS in new condition, Icss ATP4 valve and Control Switch, 1816 . Wiring Diagram supplied with each set.
100 yds P.V.C. COVERED COPPER WIRE, 1120,516 coil.
TELEPHONE HAND SETS, 816. NEW 1/30 h.p. MOTORS, 220 rol A.C.ID.C. double ended, 3716 .

THROAT MICROPHONES, 3/per pair.
CAMERA MOTORS, 24 vole, 716.
MOVING COIL HAND MICRO. PHONES, 30 ohm Voice Coil, 516. MIDGET BATTERY VALVES, IS5 IT4 and IR5, 616 each ; 3S4, 716 cach. All new.

23, LISLE STREET, W.C.2. Telephone: GERrard 2969

Evenything for the

COMMAND RECEIVER for mediumwave operation.

Frequency coverage $200-600$ metres. Valve line-up: 3 of 12SK7, I of 12SR7, of 12K8 and 1 of 12A6-all GT types. Will readily convert Into a useful car radio or superfine domestic receiver. Unused and in excellent condition. An outstanding bargain at $\mathbb{E 4 . 1 9 . 6}$, plus $2 / 6$ carriage and packing.
COMMAND RECEIVER TYPE BC454. Frequency range $3-6$ Mcls. A 6 -valve superhet. complete with valves. line-up: 3 of 12SK7, I of 12SR7, I of 12K8 and I of 12A6-all GT types as for the mediumwave receiver. I.F. value $1,415 \mathrm{kc} / \mathrm{s}$. Unused and in very good condition. Only 3216, plus 216 carriage and packing.
R28IARC5 VHF RECEIVER. Frequency coverage 100 -156 Mcls. Valve line-up 4 of 717A, 2 of 12SH7, 2 of 12SL7, 1 of $12 S K 7$ and a 12A6. COMPLETE WITH FOUR CRYSTALS AND MOTOR TUNING. etc. Housed in metal case size $13+$ in. x 7in. x 41 in. Unused and in impeccable condition. 45s. p!us $2 / 6$ carriage and Dacking.
We hold large stocks of radio and television components and equipment, and varied items of unusual interest to every constructor. Why not visit us and inspect at your leisure? A cordiol invitation extended to all.

Best Bety at Britutu's
CHARLES BRITAIN (RADIO) LTD.

Lane, London, W.C. 2 TEM 0545
Shop hours: 9-6 p.m. (9-1 p.m. Thursdoy)

THE MODERN BOOF (OO.

The Radla, Amateur's Handbook1950 EAIt
Wireless Coils, (hukrc and Tranc formers. by F. J. Camm, 6Postage ba.
Ihatios servicing liquipment, by E. J. C. Lewis, 25\%. I'ostage 9 d

Prrsonal Poctables. by E. N. Bradtey. 2ヶ. 64. Postage 2 d .
liperni Advatres in Hablion Recervery
Postage 9d
Tuleviston Itwhatined, by W, E. Niller. 54. Postage 4 d

Simple Trancmitidne babipmant by W. H. Allen \& J. W, Mathews. 24, Pustage 2 d .
rractionl Wiratess Cipduixa, by F, J, Canim. 6x. Postage 4d.
Cathoule-1kay oredherablas. by J. H. Reyner, 8- 64. Postage 4d.
Principlos of Telesiston Rerepation, by A. W. Keen, 30: Postage ls. Diginerrs, by W. L. MoPherson, 5s. Postarer Pd,
Arrials for Centimetro Wale Gragths, by D. W. Fry EiF. K, Guward, 184. Postage Ed.

Dractiont Wiretess ${ }^{*}$ Sorver Mantiat, by F. J. Camm, 8s. © Postage 5 d .
Basic Wathematics for Radla studenis. by F. M, Colebrook, 10ヶ. 81 Postage 4d,
Imateur kadio Recelvers, by S. K. Lewer. 3s. 6ut. Postage 2d,
Hadio Valye Ibata-Compited by Wretess World." 3s. Bul. Postage 3d We have the finest selection of British and American radio books in the Country. Complete ists on appication.

19-23, PREAEID STRTERT
(Delit. P. 5)
PADdington 4185.

MAINS TRANSFORMERS

(Postage extra under $£ 2$)
(As supplicd by us to the ADMIRALTY, IINISTY B.B.C. EDUCATION AUTHORITIES. etc.)
Screened primaries $200 / 250 \mathrm{y}$. Interleaved and impregnated. Drop through type with top shroud.
(a) $\left.250-0-250 \mathrm{v} .60 \mathrm{~mA} ., 6.3 \mathrm{r}^{\circ} .3 \mathrm{~A} ., 5 \mathrm{v}, 2 \mathrm{~A}.\right\}$ (b) $250-0-250 \mathrm{v} .60 \mathrm{~mA} ., 4 \mathrm{v} .4 \mathrm{~A} .4 \mathrm{v} \cdot 2 \mathrm{~A}\} 15,$. Following Types have
L.T, Windings. $0-4-6.3 \mathrm{v} .4$ A. C.T. $0-4-5 \mathrm{v} .2$ A. (c) $250-0-250 \mathrm{v}$. 80 mA .
(d) $300-0-300 \mathrm{v}, 80 \mathrm{~mA}$.
(e) $350-0-350 \mathrm{~V} .80 \mathrm{~mA}$.
(f) $250-0-250 \mathrm{v}, 100 \mathrm{~mA}$.
(g) $300-0-300 \mathrm{~F}, 100 \mathrm{~mA}$
(h) $350-0-350 \mathrm{v} .100 \mathrm{~mA}$

Uprimht Types Fuily shrouded (i) $350-0-350 \mathrm{v} .150 \mathrm{~mA}, 0-4-6.3 \mathrm{v}, 6 \mathrm{~A}$. C.T. $0-4-5 \mathrm{~V}, 3 \mathrm{~A}$.
(J) $925-0.425 v, 180 \mathrm{~mA}, 6.36,4$ A. C.T
$0.3 \mathrm{~V} .4 \mathrm{~A}, \mathrm{C}, \mathrm{T} .5 \mathrm{~V} .3 \mathrm{~A}$
(iEARSVIELD ES-GOMT, VUNEX IC5. IN5. 524, 6AC7, 6B8, 6K7. 6J7, 6Q7, 6U7, 6y6. 6Y6. B07 at 6- ea. IS4. IS5. IT4.
 makers transit cases 32/6.
Many other types listed in catalogue. WINE IDETEXTOR AMIPLIFIPIRS with three ITA valves in ceramic valveholders
T1154 TLNINGI'ANEIN with three tuning eondensers

46
$40 \mathrm{~mA} .5^{-}-; 60 \mathrm{~mA} ., 6 / 6: 90 \mathrm{~mA} . .7 /-; 100 \mathrm{~mA}$.. 12/6: $200 \mathrm{~mA}, 21$
VIEW MASTLE T/V RECEDVER. All parts stocked.
Constructional envelopes, 5 -E.II'I'. KITs

Comprising Transformer, H.V. condensers. Resistor. Valve and circuit. Type A. $2,000 \mathrm{v}$.. 49/6: Type B, $2,500 \mathrm{~V}, .54 / 6$,
COULPHONE RADIO
The Return of Post Mail Order service," 53. Burscough street, ormahirk, lathes, Send 5d. Stamps for 64-nage catalonva.

R.F. . E.II.T.
 IIIGII VOLTAGE SLIPPLES FOR TELEVISION

Type SH 17/50
2-5.5 K.V. £3.15.0 retail
Type SH 8/50
5-8 K.V. £4.15.0 retail
(This is the type P.W. used in the Practical Wireless Televisor)

Coils supplied separately
Complete with full data sheets
Private and Trode enquiries welcomed
IIAZLLEIUURST DESIGSS LTD.
34, Pottery Lane, London, W.ll.

PARk 6955

YOU CAN MAKE A FINE AUTORADIOGRAM WITH THIS CHASSIS 1950.5 VALVE FOUR WAVEBAND A.C. facturer.

Dimensions. $14!$ in. x 8in, x 3in. Finished in cream cellulose. For A.C. operation only, 200-250 volts. 40-60 cycles. Consumption 60 watts.
FOUR W. IVEIB. INISs. $12-30 \mathrm{~m} . .30-60 \mathrm{~m}$. 200-550 m. $900-2.000 \mathrm{~m}$. Valve combination. Mazda TH41. VP41, HLA1DD. PEN45. UU6. Large illuminated glass dial. size 8 in. x 5in.. with coloured waveband scales and station names. coIls and I.F. Transformers.
HISIISEINCTIVITY and SHNNITIVITY WME-CD Sockets fitted and switched in Wavchange assembly. Power output $4 \frac{1}{3}$ watts.
Varlable tone control. Extra L.S. sockets. Price includes 8in. r.M. speaker. IN EVERY RESPECT INSTRUMEN
EVERY RES 196 Gartiagr bajel.
MARCON1 AETOMATIC RECOR1) CllinfiER with pick-up matching transformer.
IPOMITIDELIVERYPPIR PAKCLENER H'RSIA. SITISF ACTION AND SAFE:

DELIVERY (iCARINTEDIN.
H.P: RADIO SERVICES LTD. Brituin's Lectding Radio Mail Order houed

 | New |
| :---: | :---: |
| Boxed | ASESES \(\begin{gathered}6 / 3

Post Free\end{gathered}\) ถV6, 6K7. 6K8, 6Q7, 6N7. 6J7, 6SN7, 6X5, 6J5. 6AG6, KTW61. H63. 6F6. L63. U50. 5Z4. 5U4G, 6AC7. EL35, 1S4, 1T4, 1R5. 3S4, 807, БT33c. 2525, 80. KT2.

THIS MONTH'S SPECIAL:!! Quality 5 Valve Radiogran Chasit.
3 Waveband Superhet circuit. 6 V 6 Output. Large illuminated class dial. Tone selection switching. etc. Volume and Tone controls operate on Radio and Cram. Built-in Output transformer, with provision High Extn. Speaker. Complete whin Speaker.
Flux M.
Now w, Nowakers at the lililli price 5 in . 10 -, 6in. 11/6, 8in. 12/6, 10in, 156 . 12in. 35%, Last chance. 10 in. Eliptical 25 -.
This Month's Barqain List. 1d, Stamp.
RADIO UNLIMITED
ELM ROAD, WALTHAMSTOW, LONDON, E.17.

FIXED CRYSTAL DETECTOR

THE CRYSTAL VALVE
as used in radar receivers Amazing Results
Size 3 in. $x \frac{1}{4}$ in.. 316 each. Post $2 \frac{1}{2} d$, Protective Tube and Fixing Brackecs, 3d, extra.
CRYSTAL SET
Incorporating Crystal Valve
Adjustable Iron Cored Coil Reception Guaranteed
Polished wood cabinet, $15 /=$ post 9 d .
Send S.A.E. for lists of copper wires, screws, nuts, paxolin tubes, ebonite, tufnol rod and panels, etc.

POST RADIO SUPPLIES

 33 Bourne Gardens, London, E. 4
"YOU CAN RELY ON US" FOR CLEAN COMPONENTS AT COMPETITIVE PRICES

 IMMEDIATE DISPATCH LOOK-
VILIVS
CIC, 8/-; CCH35, 86; CY31, 76 ; 25L6gt, 8 - 6V6gt. 6 U50, w 6 EL32. 7 CZ32, 10'- SP4 (5-pin), 8.- 25Z6. 9/-: EM34, 6 : EL35, 9 / Pen3520 (Pen

 BARGMNNEU IßNNED (MOV, NLNHS 6H6gt. $3-$ Offer for this Month onlv,

Containing. Paper
Contaming. Paper tubular condensers. densers No condensers. Siver Mica con densers, NO odd values, NO junk. Oui WTILILANIILASLE (Midget Components) Midget 2-pole 2-way Oak tvpe switches. $2 \cdot 6$ Medium Wave Coll (iron-cored) with reaction. 36 . reaction $\% 6$. Super Midget Speaker Transformer to match 3S4. DL92. 154. 43.
Wearite I.F.s M400B. per pair, 21 8 mfd , plus 8 mfd .450 v Midget Electrolytic. $4{ }^{\circ}$
1 mifd. Midget Pico-pack. 26.
$.0005 \mathrm{mfd} . .0003 \mathrm{mfd}$. Solid dielectric Variables, $4=$

Write 'Phone, or Call for
(ATAMGALIE Nory, containing Data and
RADIO SERVICING CO. 444, WANDSWORTH ROAD, CLAPHAM, LONDON, S.W.8.

Telephone : MACaulay 4155.

17, 77A Bus: 26, 28 Tram. S,R. Station Wandsworth Road,

LYONS RADIO

3. Goulhaw IRoad, Iboul. M. IP. Slimolterds Buati, London, iv, 12. Telephone: SHEpherds Buch 1729 IREGFIVEIR INITS TIPE 25. The G-valve superhet receiver of the T/R 1196 . Frequency range (4.3 to $6.7 \mathrm{Mc} \mathrm{Mc}^{\prime}$). suitable for conversion to All-wave receiver, Details in Aupust issue of "Practical Wireless." Fitted with and VR55, 1 pr . of 460 Kc . I. F , transformers, variable condensers, etc. PRICE, with valves, $25^{\prime}=$; less valves, 10\%. Post $1 / 6$.
301'. AEIKIAY, M. ISTA. Consist of metal). Each of stout ashwood, 1 ; of metal. Each of the 9 sections finisued all fit firmly together. A complete set of guy ropes, clamps. sandbags (Unfilled) etc. are included, together with full illustrated assembly instructions. Absolutely nothing else needed. In brand new condition, supplied in maker's transit case. PRICE 45!-. Carrlage 46 .
IR.W. LNITs TVPD 25. We are again able to supply these $40-50 \mathrm{Mc}$.s. converters complete with valves and in good concition. Limited stock only PRICE 32.6. Post $1 / 6$.
AC'UHITLTORS. 2 volt 20 amp, hour. New Govt. Surplus. as new and unused. Overall size approx. 7in. x $21 \mathrm{in} . x$ 3!in. PRICE 96 . Post $1 / 3$. N. C. NINS POWVEIR NIT TVIPE, 24%. Input 230 V .50 cps outputs :
600 v . D.C. at 200 mA . fully smoothed f00 V. D.C. at $200 \mathrm{mA}$. . fully smoothed
and 6.3 v. A.C. at 3 A. Really handand 6.3 v. A.C. at 3 A. Really handsomely finished with indicator light inspection flap and instrument handles on front cover, Condition as brand
new and supplied in makers' transit new and supplied in makers' transit
case. PRICE 59.6, Carriage 5/6. case. PRICE 52'6. Carriage 5/6.
NEW ILLUSTRATED CATALOGUE OF GOVT. SURFLUS BARGAINS now ready. 3il. In stamps, please.

The aerial on the tower of Tower House.
ception and transmission. It is believed that Newnes \& Pearson are the first publishing house to adopt this method of keeping in touch with representatives.

Reception has proved satisfactory up to 15 miles radius, although on

One of our representatives using the car equipment.

Mr. E. D. Lush, publisher and director of G. Newnes Led. at the conirol point.
obtained at much greater distances. As is usual with mobile equipment, conditions vary in different localities, but so far there have been no grounds for serious complaint. Each representative has his own call sign, and the receiver is kept switched on during the day. When a call comes through he merely has to increase volume if the message is for him.

This new system will enable the publishers to give the trade a much better service in the London and Home Counties area, and in particular they are able to deal with urgent requirements with far greater rapidity than has hitherto been possible.

Programme Pointers

This Month, Our Contributor, MAURICE REEVE, Deals with Some More Recent Programmes

STUDIO audiences hase been a topic of recent discussion, so 1 shall be in the fashion if I add my quota of opinion to that given by others. It is a very vexing question, and would seem to concom one type of show and one only-that show in which humour, either in the dialogne spoken by the actors or in their antios and gestures, refuires the response of langhter from an atodience to maker it seem real and alive.

Seeing that magnificent concerts, theatres, discussjons. lectures, etc., are given every day without auchences, but with complete satisfaction to all concerned, tends to prove this to be the case. The symphony concert. in particular, proves the thesis right. because it is one of the very few, if not the only show we hear regalarly under both conditions, i.e., in the Abort Hall with an audience (rot specially assembled for the express purpose of applanding, it must be admitted) and in the studio without. Identical programmes, or types of programmes, are given in both places and, short "f being present and listening to the " live" show, the eonsmsus of opinion is that the latter are to lue preferred to the former.
lint. for reasons which I haven't time or space to expound here, whilst the satisfaction afforded by the most excellent performance of Shakespeare, Beethoven or Bertrand Russell is in no way impaired by the absence of rewarding applause, the comedian's jokes, gags and patter find it indispensable. Consequently, audiences have long been provided to give these shows life, substance and reality.

As we listen, however, day by day to the multitude of shows in which comodians take part, we cannot help but be struck by the way that their specially asisembled audience tend more and more to clefeat their object and reason for being there. Instead of, as would be the case at a " live" show; discretion boing shown in the reward accorded to the good and the bed. we find the applause accorded to studio artists utterly and completely indiscriminate. Good, had and indifferent alike, wellknown or unknown, fresh or stale; all are greeted and rewarded with a volume of applause whieb, if recorded on a recording instrument, would not, l venture to wager, show a variation in intensity of more than five per cent. The result is an offect of complete monotony, sameness and, I fear, mediocrity.

I have never been to a studio variety show, so I cannot say how, or even if, applause is whipped up. But I do know that in studio concerts there are very often large audiences which frequently applaud rociferously, but only after the red light has changod to green.

Furthermore, studio audiences have, I regret to say. a habit that is spreading in the West Find: I mean the breaking into applause over jokes, points or cracks before even the sentence has bean brought to its" conclusion is shocking in the last degree. So are the whistles, through the tceth-which always seem to come from the same
people, they are so precisely alike-which auto. matically and unthinkingly greet every " queen of song, that delightful personality," or "that bundlo of humour from the North, that comedian with a smile." So is the monotony of the stercotyped announcing. So is the eren more sterentyped signature tune. The whole thing wants drastic overhaul and revision. To modernise a famons motion of former days, " studio audiences aro bad, are getting worse, and should be improved." I wouldn't necessarily abolish them lock, stock and barrel, but 1 would definitely draw them up a completely new code of conduct, or "rules governing the artions and behaviour of audiences witnessing broadcasting performances in studios."

Goethe Poems

RICHARI) CAPFLL.'S talk on the Third, on schubert's settings of Goethe poems, was deeply interesting. Given as part of the Goethe centenary eelebrations, the speaker pointed out how, most often, the quality of the poom was the composer's chief inspiration in the writing of a song, and how the poems of Goethe, such as "Earl King," "Margaret at the Spinning Wheel," the songs of Mignon and The Harper from "Wilhelm Meister," and many others, were amongst the master's most glorious and imperishable examples. The upshot was that, not only did Schubert set more Goethe poems than anyone else but there are morc masterpieces amongst them than any one else's. There must be something in it.

"The Virginians"

THE Sunday evening serial adaptation of Tharkeray's "Tho Virginians," grievously suffers from far too much of Mr. Thackeray's narration. It clogs the works and acts as a huge brake on the sweep and action of the story, the more so as the author is made to sound so unctious and mealy-mouthed. I have no idea whether he was actually like it in real life. The story, in any ease, doesn't seem to have enough life or incident in it., in any case, to sustain it over so many weeks, delightful as it is to read.

Lord David Cecil

A NOTHER delightful tall--home sorvico-was the fourth in "The English Novel" series, " Sir Walter Scott's Vision of Life," given by Lord David Cecil. Quoting the poet Cray as saying he would be content to pass eternity reading French romances, Lord David expressed what would be his bliss at spending it reading Scott's novels. Personally, I would like to spend mine with both those abundant and ripe harrests plus Dickens. But I suppose 1 should be told by the customs officials on the other side of the Styx that I had exceeded the luggage limit, especially as.my "French romances " would include the last two hundred y ears' contributions, unknown tó Griay. What would he have said!
(Continuad on page 220)

Ideal for conversion into TELEVISION RECEIVERS

10 VALVE $1 \frac{1}{2}$ METRE SUPER-HET

Tdeal for conrersion into Television IRC ceivers. I.F yz Megs. Band
width 4 megs

4 Mnの Carriag
Fraid
Mizada

Co-axial input and Nains type VRos (SP6i) valves, 6.3 vult filaments.

ASH MASTS

30-feet Masts. Io-section best selected Ash. Stocketed ends complete with guy ropes, picke: posts, fixing instruc tions, etc. In manufacturer's sealed CASES.
£2/15/- plus 5/-carriage
Send stamped addressed envelope for Bargain Lists.

WIRELESS INSTRUMENTS

 (LEEDS) LTD
54-56 The Headrow, Leeds

 Telephone: 22262
(1) TELEVISION

TELEVISION RECEIVERS
SCANNING AND FOCUS COILS P.M. FOCUS UNITS

5/8 kv. R.F., E.H.T. UNITS
E.H.T. and OUTPUT TRANSFORMERS

Technical Publications post free.
"TELEVISION CIRCUITS" a booklet
compiled for the Constructor, post free 1/6
MYYYES BADID Lit Queenswa, Enfeleld, Middlesex. 6116. 5609.

The "Fiuxite Quins" at Work "We must FLUXITE our aerial." said EH Let's climb without further deloy."

I say, don't look now
There' $/ 1$ be a fine ruw,
"ve taken his ladder away!"
See that FLUXITE is always by yoü -In the hon - -arago-warkshopwherever sphedy molvering is needed. I ed for oritr th vears in Goveramett Work and ls tonllow emplat crs
 -In tiln. 10d. 16 allel 3i-
I'he FLUXITE GUN puts FLUXITE where sua whit it by asimple pressure. Price 2/6, or tilleal $3 / 6$.

When ordering please include sufficient for postase and packing. 'Phone : PAD.

TELE-RADIO (1943) LTD.,

177, Efgware Rd., London, W. 2

FLUXITE

SIMPLIEIES ALL SOLDERING
Write for Bonk on the Art of "SOFT" Soldering ant for Leaflets on CASEHARDENIG SIEEL GIA TEMPERING TOOLS with Pid Nind. Price ld. each.

FLINITE: I.tI., Debt. W.P.,
Bremontses vireet. London, S.E.E1

THE "ADCOLA" SOLDERING INSTRUMENTS Regd. Trade Mark

Designed to comply with the requirements of Radio Assembly, Maintenance. Instrument Makers, etc
Working time reached $1 \frac{1}{2}$ mins. Consumption 25 watts. Weight, 21 ors. Cool Handle. Supplied in voltage ranges from $617 \mathbf{v}_{\mathbf{y}}$ 2! ozs. 2301250 v .
$3 / 16 i n$. diameter copper bit Standard Model, $22 / 6$ each.
I/4in. diameter copper bit Model. 25/- each. Replacement Unit Bit Elements available.
British and Foreign Patents. Sole Manufacturers
ADCOLA PRODUCTS. LTD., ALLIANCE HOUSE, CAXTON HOUSE, S.W.I.
Write or Phone : Brixton 8075.

6 VALVE, SHORT WAVE RECEIVER (TR9)
31-80 Meters. Complete with 6 BatteryOperated Valves. 3 VR21's, 2 VR1e's. VRz2 or 118 in working order, 12/6. post $2 / 6$. BRAND NEW VALVES. $6 V 6$. $6 \mathrm{K7} 7$. $6 J 7.6 \mathrm{Q7}, 6 \times 5,5 \mathrm{Z4}, 5 \mathrm{U} 4,5 \mathrm{R} 4.807,6 \mathrm{BB}, 61$ - each 4 for 22/6. $6 \mathrm{~K} \%$. 6/6. GJ5. 4/6. post 4 A . BRAND NEW G-volt VIBRATOR UNITS. output 200 volts at 80 ma , $16 / 6$, post $1 / 9$. 80-volt BLOWER MOTORS. enclosed centrifugal fan blower, suitable for 230 v. A.C. Intermittent Duty) 10/6, post 1 -. DELCOMOTORS. A.C.-D.C. $6-27$ volts (5.400 r.p.m. $5 t$ x $2 t i n s$. spindle each end, 7/6, post 9d 2 assorted volume controls. 6/- post $6 d$ ALTIMETERS. 2/11, post 10d, SPEEDO and MLEEOMETER (50 M.p.h.), 4in. dial brand new. 11/6, post $1 /-$ FEV. COUNTERS 120-0-140 f.p.m. ENUT PILIERS. SIEEVE 12/6, pOSt 1-. NUT PLIERS, SLEEEVE FIXING PLIERS, $1 / 6$ pair, post 6d. R.A.F. COMPASS TYPE P.8, diameter 5ins. depth PAS. brand new, 11/6, post $1-$. Bromide paparanteed) gost 6d. 100 post card size, 3.6 STAN WHILETT'S.

WNHE BKOMWICI, STAFFS.

A FIIEE BOOK

on Morse Code I'raining

There are Candter Morse Code Courses for Beginners and Operators.

Send for this Free "BOOK OFFACTS" it gives full details concerning all Courses

THE CANDLER SYSTEM CO. (5.L.O.) 121, Kingsway, London, W.C.2.
Candler System Co., Denver. Colorado, U.S.A.

RADIOGUIDE CIRCUIT MANUSCRIPTS

All Components available separazely, Coil Packs. I.F. Transformers, Frame Aerials. supnlied ready allgned. Chassis ready punched. MBS2, First arain: A combined 4 valve 2 Dand Portable for AllDry batteries and Arans at the thek of a switch. 12-pase manuscript, 5%, BF'42. The Popular 4 -valve 2 -band Battery Portable. 8 pages, manuscrjpt. 3/-. Pp42. Personal Portable 4 -valve 2 -band. $81 \pi, x 5 i n, x 41 n$, 9 pages. 3 -. ACs, and ACiDC5, 3-band, 5 valve superhets. $1 /$ pages, $2 / 6$. AT LAST A wealth of mractical information on Magnetic Tape Recordjng : 13 pases 5/3 post free. 21d. stamp brings full details components lists. SOON ! The X100 3-band Midset Coil Pack.

BURLAND RADIO ACCESSORIES

4, CARLTON TERRACE, IPOHTBLAME, GUSNEX.

$$
\text { (Comtinued from paye } 218 \text {) }
$$

Firench Music

AMAGNIffCLNT pianist in the person oí Gioseking gave two marvellous programmes of French music on the Third: Debnssy's first book of Preludes and Ravel"s complete set of "Mirrors." Such glorions playing of this school of piano music. camot be matehed to-day and has not been matched since Cortort, was in his heyday. The variety of nuance, subtlety of rhythm and bringing to life of each picturo the pieces purtrayed, were matchless.

Solomon

THE lB.IS.C. Symphony Concert contained a lovely performance of a ravely hearl Haydn symphony. No, 69, under Sir Adrian, and a guosi average ono of the "Emperor," by Solomon. As with storion aulionces applanse, 1 am sure that the varicty of tone colour Mr. Solomon imparts into
cantabile passages and such pieces as concerto slow movements, eaunot vary by any greator amount, if as much.

"We Beg to Differ"

SINCH I commented on "We Beg to Differ," all doubts as to whether such a type of show would "stay the course" seem to havo been resolved into a very emplotic aflimative. It is now well establishorl, though 1 am a little lubious as to whether its sub-title "'a light-hearted discussion on topiss of the moment" (I think I ann right) is quite fair. It doesn't even suggest the main dhim of the show to fame. the sex war. Saredy one question is ever put to them which cannot be dismused from that angle, or which is not likely to wive rise to those fertings of sox superiorita. on fither side. which are so delightful and entertaining. Aay no one ever be so foolish as to send one in.

News from the Clubs

EAST SURREY RADIO CLUB

Hon. Sec. : Laslie línght (GbLK), Ratiohme, Maderia Walk, Reigate. surrey.
 A twice a month as and experimont. Rbent meetings ware
 mitter was demonstrafod, inther meetimes are detailed int the

A listening contesi. has been arranged aml the winner with be presented with a silver culg given liv Ti, h. of sutton Colditil. , The elabs bebigharters are at the Toc H liooms, station Road. Redhill, Hurrey.

READING RADIO SOCIETY

Hon. Sec. : Hrank liili ($-2 F / 1$), 997, Oxford Road, Tilehurst, Reating. Iberlis.
IN Fehrmary the Wikeo In, (tou Wote. Clend and Cotlision Warming - Hadar set was despribed, ambits hases discussed. A complete
 to show tha mantruct inf. ('masiderable interest was taken in the receiver traforary. ratrol sistem. and in partimular in the const ruction of the very himh gilin $45 \mathrm{Mc} / \mathrm{s}$. I.F. strip.

EDINBURGH AMATEUR RADIO GLUB

Hon. Sec.: bavid A. 1,. Fallison ((iM:3EQY), 56, KIm Row,

A f"bkils some disfarbins fartors which have rather upset.

 will the given and many more lectures of interest to the hams are sohedaled.

COVENTRV AMATEUR RADIO SOCIETY

 representalive.

 trophy awated to ihe menture why can read the fastest CW.

SOUTH MANGHESTER RADJO CLUB

Hon. Sec.: MT. I. Wilks(c:al'sW), is, hongley Lane, Northenden, Maroblester.

 on the hand-switathed ex.iose lat had jan completed. This was

 the talk, marmberk harl : " "Imakswo sale." Orisimatly plamed

 aheat, and the grongest menther (aced about 10 years) is one
(fi the keenest in the CW elass, eopying up to about six words a) minute.

Sus members keep coming aloner to the meetings, and braperetive members are always weleome-no noed to make

 ('hareh schools. Niorthemlen. (50 or 64 bax from M/c. lsicuadilly to Northenden Post Office.)

BRIGHTON AND DISTRICT RADIO CLUB

Hon. Sec.: La, Hohden, 17. Hartington Road. Brighton.
 it is hoped will hring forth many (gsors on so melres. Recent meetings influled a Quiz, a talk on AC vectors, and preparations for NFI). 'the Clul, magazine has taken oll urw mul improven stape under the ahle editorship of (i3d)Jl). The Hum. Aer. has promised further instatuents to his interesting ralk on the History of Wireless. ('lub nights, Tuesdays, 7.30 1.-II., at Eagle Im, (aloucester Road, Brighton.

WARRINGTON AND DISTRICT RADIO SOGIETY

Hon. Sec.: J. Speakman, Davyhulme Cottage, Dark Iane, Whitley. Nr. Warringlon.
M BMBLBS of the above society are now building a transOn M, mo nishts. On Mals nishts.
Mretingsare held on the first and third Monday of each month at $\overline{\mathrm{T}} .34 \mathrm{p}$ p.m. at the sea Cadet H.Q.. off Wimlerspool Canseway, and ansone interested in menbership is cordially invited.

STOURBRIDGE AND DISTRICT AMATEUR RADIO SOCIETY; Hon. Sec.: W. A. Higuins, ex, Khugsey Roall, Kingwinford. A JALK on "Matehing and Feerling sorstems and their AplicaA tion to Antemansytems" was given by Mr. J. F. Collett
 feedersathl methods of todancint, and a ta-element stacked dipole for $420 \mathrm{Mr} / \mathrm{s}$, were dexeribed.

Another new station licensed, Gi3GHCO bring total to 28 licensed members out of sum total of 50° society members.

TORBAY AMATEUR RADIO SOCIETY

Hon. Sec. : K. J. Grimes, is, Clarendon Park, Tor Vale, Torplay.
$T H \& \begin{aligned} & \text { last meeting of the Society was opened for Quest ions, }\end{aligned}$ - and many guries were askell and answered. The 1950 L.s.4.13. " F"ield bay " was disenssed.
(i, IDM\% was congratulated upon oltaining the 2 -metre Trozushheric Rerord ($3 x+$ miles).
In the absence of the chairman (G 2 aK) the chair was taken by (a:AV'F.
'I'he soriety's president, W. B. Sydenham, B.Sr. (GSSY), hopes to give his leeture, " Demonstration of Aerial Radiation latterns," with the aid of the 10 cm. Klystron, at the next,

Meetings are held every third Saturday in the month, at the Y. M.C.A., Castle Roat, at 7.30 p.m.

OPEF IVIISCUSSION

The Editor does not necessarily agree with the opinions expressed by his correspondrnts. All letters must
be accompanied by the name and address of the sender (not necessarily for publication).

Series Condenser Heater Circuits

STR,-I have been using this scheme in sets for two years with 100 per cent. success. I woukd recommond "AEROVOX " rondenser 2 /ub either (doo v. or l,jun vo, obtainable ex-Govermment, which have parcelain insulated terminals and san be momeded incertod on a chassis so that the terminals protrute unterneath. Solar condensers
 condensers should be avoided at all costs.

J have built receivers similar to the one deacribed in the Hard issue excepting that the valve line
 having a metal rectifier for H.'T. The total hoater voltario is -4 volts and the condensers required are $2 \mu \mathrm{~F}$ and $\frac{3}{2} / 1 \mathrm{~F}$ (total $2 \frac{1}{2} / \mu \mathrm{F}$), on 240 volt mains.

Thor same value of condensers give satisfactory operation even if only two or three valves of the above types are used, e.g., a T.R.F. set using only
 3! llet., and EL 32 output (netal rect. $11 . \mathrm{T}$. in each retso), a dial lamp 6 v. .3 amp, in serios does not make much difference either.

To operate two valves of the $6.3 \mathrm{v}, .3$ amp, type, $4 \mu \mathrm{~F}$ is required, whilst a single $2 \mu \mathrm{~F}$ is suitable for a 12 v. 15 amp. valve.

A good superhet can be built using a CCH 35 or EK 32 as frequency changer-EF 39 as IF amp. and EL 32 output. Detection is obtained by a Westector.
The receiver of the type I have built has three station pre-set tuning. As it was intended tor local station reception only, A.V.C. was considered unnecessary, although it could easily be akhed if desived. The set has been designed using the minimum number of components and kept as simple as possible whilst obtaining good results.
-The condenser in series with the valve hoaters consists of one ${ }^{2} \mu \mathrm{~F}$ and one $0.5 \mu \mathrm{~F}$ in paraltel. making $-\frac{1}{2} \mu \mathbf{F}$ in all.

A metal rectifier of the S.T.C. type is used for providing H.T. It should have a rating of 240 v . at 40 mA. Resistance capucity smoothing is quite sufficient.

The coils used are Wearite " p " coils, type PAㄹ and POZ. Small condensers of, say, 50 or 100 pF may be wired in parallel with the trimmers to modify the wavelength tuned.-P. E. Harvey (Peterborough).

Pentagrid v. Triode Hexode

$S^{I R},-$ With reforence to J l.ocke's letter on "Pentagrid v. Triode Hexome." may I submit that there is mothing extrandinary on the fact that one can change weer from pentagrid to tridud. hexold and vieeversa.

Atthough when building a rereiver, one would naturally use the rorrert rirenit for the type of frequency whanger valve one intonded to employthat is, tuned anode for 'I'.7!. valves and tumed arid for heptode, etc. 'Ihe rsillator section of tho value is a trioule to all intesto anti purposes, whether mutigrid or T.H. and the pins are mostly identional, tuo.

As regatits the difference in performance on tho medium frefuencios and high, fregmencies I suggest this is mothing more than inter-electrode rapacity and the necessity for re-trimming when replacing a valve, even when replucing with one of tho sitine trpe and make.

I recently replared an I.F. pentode with a multigrid F.C. value by mistaber. It worked perfectly and is still there. 1 suggest rader Lacke examines a list of valve bases and wutes in particular the American octal list, pins 4. Eand 6, for all F.C. valves carry $S G, O G$, OA, and valves of the octal base type, which do not use pin is for anode, aro cither "tunerays" or double dioutes.-T. Barker (Norwich).

VCR97

SIR,-I have been a close follumer of the VCR:97 correspondence over the past months raml perhaps my experiences and experiments bised on this correspondence may be of interest and use to new entrants to the T.V. fieht.
E.H.T. (Final anode volts on loadi).-1,0) 10 volts gives reasonable pieture, uzing single valve T.B.s. Slight trapezian disturtion and contrast rather shallow; 2,200 volts ueerts 2 valye 'T'B.s, but focus, brilliance and contrast are good enough for viewing in lighterl room withrsereen shiehled. Trapezium distortion nil.

Moduhtion. - 2,200 volts requires approximately 40 volts signal for full modulation'. 'This is obtained in writer's locality.

Time-Bases. - Miller integrators (paraphase amplifiors). Line linearity eood, perfected by 60t pF from amplifier grid to earth. Frame linearity not perfect, but difficult to trace faultionidioture (480 volts H.'T. supply).

Video.-Positive going picture requires bias
resistor lower than normal; 60 ohms approx. correct, and increases amplification of stage and power handling capacity.

Interlace-Although flybark interlaced, and half line was visible at top and bottom of picture. interlacing was not taking place. Irregular frame wavefurm apparently to bame, Much improved by condenzer (. 005 to .02) from oscillator grid to earth.

Focus.--Mr. Ward's trouble may be due to external fields as speaker and transformer fields affect beamup to about $3 f t$. from tube. Interlacing also appears to bo faulty as linos are scarcely distingnishable on an interlaced picture 4 in . high (approximately 96 lines per inch).

A shactow exists on line on my tube, but is of no consequence. A fanlt as yet uncured is freguency drift on line. If locked hard on switeching on drift is gradual until, after two hours, ling crumples to right. No voltnce change is apparent and no overheating takes plare. Any information from rearlers who have mumel this will be appre-ciated.--b: Shahwell (Oldham).

"Programme Pointers"

S[R,-In his reference to , Erskine Childers in "Programme Pointers," your contributor made a bad mistake, and casts a slur on the memory of a great man. Erskine Childers was not shot as a trator in the Irish Rebellion.

Ho was tried before the Military Court of the Pro-Treaty Party of Ireland, and he did not recognise the authority of this Court.

The charge against him was: "Being in unlawful possession of an automatic pistol."

His defence was that he was an officer of the Republican army taken in war.

The trial concluded late on the evening of November 23rd, 1922, and he was shot at dawn on the morning of November $94 t h$, in Beggars Bush Barracks.
The Irish Rebellion took place at Easter, 1916, and Frskine Childers was shot over six-and-a-half years later.-James W. Graham (Perth).
[Jom have your facts wromit, or. we shomhly porhaps sely, have omitfed those that really mattez. Iv will ricwllthm'the" rebellion" you mention was the Basfer Misin!!, and wrasul doun in a pery

 of the Irish lirre State, ff body still ark:nomtedylut whegiamee to the
 oppasitiom to any connection with linsluml thai lad him imso tromher with the neuty-constifuted Ginminment. Whather thut Govermment.
 woult dispmete the actmat terats of the rharte proffered wgoimst ('hildras. as quofed by ifou. liwt are feel you himer completely failed to dixprome the gromanien of that rhatide-trenson.
Details will be found in (hilders's hiomrtphy ill ithe latest edition

Delivery Delays

$S^{T R}$,-I have read vour remarks r long delivery times in the last two issues of Practical Wimespas.

I feel that these delays are due to the wholesaler
who is handling the manufacturers' goods. This system is all right for the normal run of goods but falls down on the itoms less frequently called for, even if listed in the maker's catalogue.

For example, before Christmas I ordered from my dealer some close-tolerance condensers of a famous make, I still wait!

Surely the retailer should be allowed to "shortcircuit " the wholesaler for special or unusual items. -J. E. Flilis (Harrow).

The General Effect of the Plan

The Plan crolved at ('openhagen is intended to improve listening conclitions in Europe as a whole. and. of course, as part of this to improve listening conditions in the United Kingdom. . The Itan calls for a change in the wavelength of almost every station in Europe. Such a change mans that in every country in Europe it is necessary to make important adjustments to the transmitters.

The listener. too, must play his part if the full benefit of the llan is to be realised. Listeners who wish to obtain the best reception will make sure that their receivers are properly installed in the first place and that an efficient outcloor acrial is used. The receiver and aerial system should have periodic skilled attention to repair the ineritable falling-off in performance which takes place in the course of time. This point is partieularly important when the listener lives at a considerable distance from the station to which he habitually listens, and if it is neglected, bad quality and interference from unwanted stations are likely.

The tables on pace 21 - show how the wavelengths of B.ls.C. stations have heen altered under the Plan.
 Sensational new domestic amplifier by N.R.S. The most flexible on the market to-day. Three channels; bass lift, treble lift. middle lift. trehle cut. negative feedback. For A.C. $100-250$ V. 5 w. ontputimpedence to suit your speaker (please Etate). Input for mafnetic. crsstal and hi-fi pickups. full provision for tuner Price imniediate dellvery
 No. 2. sut 1215 w. gush-pull output. Price. \&12 10*. Nut 1. Donirsichin i.IFINR. 4 w . output with special neg, feedback circuit yolume and tone controls. pickup and tuner
inputs. output impedence 3 ohms or to order. Price. $f 5$ 18*. 6 (1. Complete kit. N5 10. 2. M. AMIPLIFIFR. 12 w . push-pull Nu. 2. A. ABIPLIFIFIR. 12 w. push-pull cuit. kram. mike and tuner inputs 3.75 and 15 ohms output. Price 10 guinests. Complete kit s9. Available in black crackle cabinet ga extra.
No.1. IIIfilituALITYTUNEIR, specially rccommended for above amplifiers and Ieak I, Williamson and Charles Amplifiers. L. i, Willamson and Charles Amplifiers. L. detector. Absolutely complete, bult and tested 55 10*.. díto kit s4 10\%.
No. 2. L. N. \& S. - A AE SUPIEIRIFF' Tlivir, spectal quality bandwidth, beautiful full-vision dial assembly (10in. x $1 / 1 \mathrm{n}$. scale), $\& 810$. ditto, kit. £7 10.
HATTENT GIRAM UNBTS: COLILARO RC49 A.C. mixed 8 -record changer, crystal plok-up el4 6s. 8il. MARCONI A.C. 100 non-mixed 10 -record changer with hi-f sio 10\%. Tif. COLILARO A.C.504, single record piayer, with mag. pick-up. f5 35. 21. COLLARO A.C. 47 centre-drive motor with 12 in . non-magrietic turntable. 25 189. 4i. All our lines fully guaranteed. TEIE VISION CONSTRUCTORS: All parts avallable for the Viewmaster and Electronic Engineering circults gin, and 12in. tube (Loudon and Btrmingham models).
FItLI IH:ARGAEN CNTALAGUP: $21 d$. TERMS: c.w.o. or c.o.d. any amount. Noritiern Itadia Nerviers. 16. Kthes folloge Itil.. Swlis Cotinge, mandon,
N.W.3. Primrose \&314.

Does your Radio Crackle and Buzz. or is your Television Picture spoilt whenever a Vacuum Cleaner, Electric Motor or other appliance is in use? If so. fit an HX AIIE MINBEIRY IIEIVY IDUTY HANS SUIPIslisGOR UNIT AC/IDC
and onjoy uninterrapted sound and vision and onioy uninterrapted Sound and vision
for only 12 '6 Post Paid. Cash with order'

DEES, Dept. P.W.,

50, ROLLS PARK AVENUE,
SOUTH CHINGFORD, LONDON, E.4.

 your firqention! X RoR Padio Receptione
 กOHiSO

RADIO G200 ANNOUNCES

Mclit IRechliwer. -0.6 a 12 volt bridee ldeal for battery chargers. D.C. relays, etc. 4.6 ench. 2 for 86 . Transformer 200 Suitable for use with the above rectifiers Suitable for use with the above rectiflers.
Half-Wave Rectifers. $250 \mathrm{v} .80 \mathrm{ma} .3 / 6$: 250 V. $100 \mathrm{ma}, 46$.

Walif Iovr Own II.T. Super Capacity Eaticry with inert cells I The cheapest
way, you just have to fll up with ordinary tap water. 60 ave to fill up with ordinary $120 \mathrm{v} .20 /-$ plus $5 /-\mathrm{carriage}$. Sample 1.5 v . cell. 7! 4.0 for 26.
$12 v$. Vibrator Tuit No. 4. (Ex. No. 22 set). Rated 12 v. D.C. In 325 v. 80 ma out. Ideal carrad. lonirth: 14 w.w.E. enamelled copper
 $3 / 6$ doz., 40 for 101 -
Htyh Resistance Fieadphones, 56 pair 6 L 6 metal. $79,6 S \mathrm{N7}, 6.6$. VR91. EF50, 5.6.

ARTHUR HOILE

55, Union Street, Maidstone, Kent.

GREAT NEWS

for Gramophone Enthusiasts
THE GOLDRING 'JUNIOR' HEADMASTER brings you the World's Finest Pick-up for only £2-4-0 (plus Purchase Tax, 19/-).

- Response 40-15.009 cycles without resonances
* Interchangeable heads for all recordings.
* Negligible record-wear.
* "Floating-armature" design for perfect track ing-no distortion.
- Tonaliser: 3-point bass and treble equaliser for British and American records.
GOLDRING HEADMASTER with three heads, Tonaliser and Matching Transformer, £5-5-0 (plus 25/6 P.T.). GOLDRING 'JUNIOR' HEADMASTER with two heads (for widerange and pre-war recordings), f2-4-0 (plus 19/- P.T.)
Extra heads - 15/- (plus 6/6 P.T.) Full techinical information from

ERWIN SCHARF

49-5la, de Beauvoir Road, Kingsland Road, London, N.I

RADIOLECTRON

22, Franee's Sirert. Scunthorde, LInes.
CoNDENSERSW. Electyc. 450 y , whe. 4 mfd , 26:8. $8 /-; 16.4 /-8-8,48: 8-16$. $5 / 8:$ $16.4 / 3.8-8.49 \times 8-16.61:{ }^{2} 16-16.6 / 11$
 $.0005,6 \mathrm{~d} . \mathrm{to}^{2} .005,8 \mathrm{~d}$. to .1. 10t. : Mica up to .0003 .91 : to 002 . 1 /- , $0012,1 / 3$; 81. : to 300.91. . to 800,111 . to 4,500 . 1.4. Tuning, 0005 mfd ., per Sect. 1G. $51-$

VOL
11 CoNTROSS.-Lg. Spdis. all
29 ; whe SW. 46 with DP values. 29 ; with SW. 46 ; with DP.SW, $5 / 3$ i Midget Type. $1, \frac{1}{2} 2$ meg. $4 / 6$; with
SW. 6 : with DP.SW. 76 Wire Wound.
 RFSINTORS.-Carbon. all values. $\frac{1}{2}$ watt,
 CZ3. 16 :

10/- : 811 ln 11/- 8 in. 129 : 10 in . $17 /$ Sin, $10 /-$ Orders under

FIRST-CLASS RADIO COURSES

GET A CERTIFICATE! qUALIFY AT HOME-IN SPARE TIME

After brief. intensely interesting study -undertaken ce home in your spare time-YOU can secure your professional qualification. Prepare for YOUR share in the post-war boom in Radio. Let us show you bow!
-- - FREE GUIDE ---
pages of information of che greatest importance to those seeking such success compelling qualifications as
A.M.Brit.I.R.E., A.M.I.E.E., City and Guilds Final Radio, P.M.G.
Matric. London B.Sc. (Eng.), A.M.I.P.E. A.M.I.Mech.E. Draughtsmanship (aflbranclies), etc., together with particulars o our remarkable Guarantee of SUCCESS OR NO FEE
Write now for your copy of this invaluab'e publication. It may well prove to be the turning point in your carcer.
FOUNDED 1885-OVER
$- \pm 150,003$ SUCCESSES. . - . I
NATIONAL INSTITUTE OF ENGINNEERING
(Dept. 46I), I43, HOLBORN LONDON, E.C.I.

CARLTON COILWINDING CO.

Medium-wave Coll Units for BCA53. BCat BC4jö. 10/ with Data. State whicte mode required. Matns Transformers rol above recelvers, 316 ror BC348 301, BC221 26/= Ittexpenziw "I elevision Mains Transtormers for R135, 31 6. For VCR97 C.R.T. 52/6. Fllament, Transformer. 0-4-5-6.8. $12.6 \mathrm{v}, 2 \mathrm{a} ., 126$. Rewinding Servioe. Send for cataborue. 34.

RUUBAKEN MANCHESYER

Instrument Wire Insulation Macerials Varnish Fibre, Mica, Leathecotd, etc. Mains Transformers. Input 230 v. 50 cy sincie phase. output $50 \mathrm{v}, 11$ amp.: or with serles alteration 100 v, at 51 amp. weight Many other Radio. Electrical and Mechant cal Bargains. Send S.A.E. for list.

L. C. NORTHALL,

16, Holly Road, Quinton, Biriningham, 32. Tel. WOO 3166.

WIND YOUR OWN

K. Transformers, Chokes, Coils on a K A Y ITE wave wound coil winder.

 Standard 50/- De Luxe 84/Send stamp for detals to RICHARD SHEARGOLO \& CO. SUNBURY - OR - THAMESVOLTAGE DOUBLING UNIT
Dispenses with Hich Voltage Transformers and Rectifier. Roliable.

For $2.5 \mathrm{k} . \mathrm{v}$.
$\begin{array}{ll}\text { at } & 546 \\ \text { at } & 496\end{array}$
Diagram suppliedwith parts. Chassis extra.
Mains Transformers, Screened,
Fully Interleaved and Impregnated
IL.s. 63. Input 200/250 Output $2500250.60 \mathrm{~m}^{\prime} \mathrm{A} .6 .3 \mathrm{~V}$. at 3 amp. 5 v. at 2 amp. 4 v at 4 amp., 4 v at 2 amp r.s. 2. Input 200/250. Output 250/0/250, $80 \mathrm{~m}^{\prime} \mathrm{A}$.
Fin. 3. = Input 200/250, "Output 35010 $350.6 .3-4.0$ v. at 4 amp., 5-4.0 v. at 2 amp. H.N. 2\%. Windings os F.S.2)
H.N. 3x. Windings as F.S.3. F. $100 \mathrm{~m} / \mathrm{A}$.
F. 6. Filament. Transformer, Input 200/250. Output 6. 3 v . at. 2 amp.
Fiv. Filament. Transformer. Input 200/250 12.6 v. tapped at 6.3 v at 3 amp
F. 24. Filament. Transformer. Input $200 / 250,24$ v. tapped at 12 v . at 3 amp
43. Mains Transformer. Input 2001250 Output 425
 C.T. 5 v. at 3 arpo. 4 amp.

F 30 X. Matns Transformer. 30080200200, output. 3000 5 v , bo 2 amp. v amp.. 5v.at 2 amp. C.W.O. (add $1 /$ - in the s for carrlage Over $£ 2$ carriage paid.
H, ASHWORTH. 676, Gt. Horton Road, Bradford, Yorks.

Y(DU
 can become a first-elass IRADIO ENGINEEIB

We are specialists in Homestudy Tuition in Radio, Television and Mathematics. Post coupon now for free booklet and learn how you can qualify for well-paid employment or profitable spare-time work.

T. \& C. RADIO COLLEGE

To: R. Heath Bradley, T.C.R.C. 50, Harland Road,

Southbourne, Bournemouth.
NAME.
ADDRESS
P. 106

CABINETS \& COMPONENTS

 9in. x 7in. deep, 301-.
Any type or quantity of cabinets made to your specification. (Send a sketch and full details.) Send $2 / 6$ for lists and blueprints to build either a T.R.F. or Superhet Receiver in above cabinet.

4 and $4 t$ watt A.C. Quality Amplifiers with neg. feedback from 653 s . Od. 5 watt Universal similar to above from 6316 s .6 d . 15 watt Universal Quality Amplifier with Push-Pull output and neg. feedback from

E9 15s. Full details on request.
LEWIS RADIO CO. (Dept. K5).
322. High Road. Wood Green, London, N.22. Phone: BOWes Park 5997.

1kack liatutis. Crackle Finish. black or grey, other finishes to order.
19in. slotted to standard'Specification in 18 S.W.G. Mild Steel. Two long edres folded to provide additional strength.
1!in. $3 / 2 ; 3!1 \mathrm{f} ., 4 / 3 ; 54.5$ '4; 7in.. 6/5; 83in..

flasintis. 18 5.W.G. Aluminium with folded and riveted ends.
$8^{\circ} \times 6^{\prime \prime} \times 2 \frac{1}{}^{\prime \prime} 4 / 9: \quad 10^{*} \times 6^{\prime \prime} \times 2 t^{*} 54$ $12^{\prime \prime} \times 6^{*} \times 22^{\prime \prime} 5 / 7$: $\quad 12^{\prime \prime} \times 8^{\prime \prime} \times 24^{*} 6 / 4$ $14^{\prime \prime} \times 6^{\prime \prime} \times 2 \xi^{\prime 7} 71$: $\quad 14^{\prime \prime} \times 10^{\prime \prime} \times 21^{*} / 99$ $17^{\prime \prime} \times 10^{*} \times 2 k^{*} 8^{\prime 5}$ Mail Order Only.
Terms - Cash with Orler. Postage extru.

BURN ENGINEERING,
 30, Produce Exchange Bdgs.,

 8, Victoria Street, Liverpool, 2.Post, Road, or Rail, Free of all cost.
Electrical equipment of every description from a piece of fuse wire to a generator plant, no order too small or large, a discount on all orders. No packing charges. Goods dispatched anywhere. All makes supplied. Technical information free.

GENERAL

ELECTRICAL SERVICES,
15 Hall Lane, Chingford, London, E. 4.
Telephone: SILverthorn 5251.

HICHSTONE UTILITIES

Cesital sids. whtch are fitted with a permanent crystal detector. Why not have a set m your own room-9'6, post Grl. De Luxe receiver in polished oak cabinet. 186 bost 1 'hen ordered separately, 26 with each. When ordered separately, 2/6. With ileadphohes, in good order. $4^{\prime} 6$ and $5 / 6$. Mosflyhumes. 10. a pair. 7 Balanced armature type (very sensitive). 126 a pair, all post 8d Now Sinele Wirne a 36 . Bat, armature type. 46 : ex-R.A.F. earpieces, armature type. 46 e ex-1.A.F. listed are suitable for use with our crystal sets. Hand Microphones. with switch in handle. and lead, 4\%-. Similar instrument moving coil, 76 , post 6 a.
Sharkink plum Von Testers. with vest pocket clip. 3/3. and with gauge. 36. post 3i. solderint Ironh. Streamlined iron. with two interchangeable bits, one each straight
 Heary Du1s Iron, 150 w. 126 . all post 64. Mague1s, Small ex. 2in meters, 1/- each, post 3d. Telephome llami cirneralitr with handle, 7/6, post l'6. Bell. 46 , post 64t.
Lix-R.A.I: 2-Vatye (2-volt) Amplifiers. can be used to make up a deal ald outfit. intercommunication system. or with crystal set, complete with valves, 20 post 16 . Ditto, less valves, $10-$. Wooden box to hold amplifier, 2 - extra.
Murtra. $10 \mathrm{v} ., 2 \mathrm{in}$. Rertifier (a,c). in wooden carrying case, $146 ; 15 \mathrm{v} . .2 \mathrm{in}$.,

 $15600 \mathrm{v} . \mathrm{i} 2 \mathrm{in} ., \mathrm{m} c$. double reading, 8 -; $100 \mathrm{ma.} .2 \mathrm{in} ., \mathrm{m} \mathrm{c}_{.}, 7 / 6,3.5 \mathrm{amp}$. 2 in ., T.C. 5- $4 \mathrm{amp} ., 2 t$ in, T.C. in case with Switch, ni 6 Meter Movements, 2in. Size with magnet and case (500 microamp). 26. Units containing two movements, 5 -. Ail meters post extra. Money refunded if not completely satisfied.

HIGHSTOONE UTILIIES

58. New Wansteat. London. li.11. Letters only. New Illustrated List sent on request with lil. stamp and s.a.e.

ANOTHER WINNER FROM WALTON'S

Once again we have been fortunate to secure another unit which represents amazing value today. These are the Talkie. To conform to Fost Office regulations these have been partly stripped by the Ministry of Supply before release, but this only consists of removal of parts, and renaining components are in every way as new. These compact chassis are ideal for Short Waye Receivers, Battery Receivers. etc., but they are actually sold by us for the parts contained therein. which
include:- Air spaced variable condenser on ball bearing fitted with slow motion drive and dial.
$1.002 \cdot$ ditto.
1 Midgct Microphone transformer to suit carbon microphone.
1 Single pole 8 -way rotary wafer switch complete with knob.
1 2-pole 6 -way ditto.
1 Double pole change-over push switch.
3 Postage stamp trimmer condensers.
1 Westinghouse W. 1 Westector.
$\frac{1}{2}$ Oct Micro-amp. Meter Rectifier.
${ }_{2}$ Octol Valye Holders.
220 ohm volume Controls. (Ideal for speaker control.)
2 Standard Jack sockets.
Several Tag Strips.
1 Double Pole toggle switch.
About $121 / 4$ watt resistors.
About 12 Mica, Silver Mica and Paper condensers.
An assortment of Rubber Bushes.
Several Hundred small screws, nuts, washers, etc.
without special to can be easily removed Without special tools and should be as new in each case, as these sets have never been
in use.
OULE SPLCCLALPRICE is 10/6 per unit or 2 units for $1 \% / 8$. Send S.A.E. for latest lists.
WALTON'S WIRELESS STORES 203 Staveley Road, Wolverhampton

Impressions on the Wax

Review of the Latest Gramophone Records

THE new Brahms Violin Concerto in D, O_{p}. 7 , on И.M.V. DB:I000-4 (nine parts on five records, one single-sided) is a nost im. pressive alfair. Yohudi Menuhin and Wilhelm Furtwangler and the Lucerne Festival Orchestra hetween them contribute an intensity of feeling to this famous concerto which makes the recording very important. Many will say this is the finest reading of the work at present available. It at least deserves a hearing by those collectors who feel that their own set of the Brahms Concerto could not be improved upon.

A new addition to the "His Master's Voice" special list is a recording of Arnold Schonlerg's "Vorklarte Nucht," by the St. Louis Sympliony Orelestra, condueted by Vladimir Golschmann. on H.AH.V. DB9280.3. This most widely known of Schonberg's works is a tone poem which, undike his later work, demands the most modest of resources: no more than a string sextet, though the volume of tone produced by six instruments is so small that the composer recommends the use of a string orclicstra for concert performances. It is in this form that the work has been recorded.
"Concerto No. 3" was written by Bela Bartok in 1943 during the last months of his life. When he died he left the score unfinished by seventeen bars which were filled in by his friend and pupil, Tibor Serly. It has now been recorded by Gyorgy Sandor (piano) and the Philadelphia Orchestra, conducted by Eugene Ormandy, on Columbia LX1271.3. It is interesting to relate that Cyorgy Sandor was also a pupil of Bartok, and he, Bartok and Ormandy were all bom in Hungary.

The cuekoo's note has often been soluarled in music. The elavichord composers before Bach's day were specially fond of it and men like Kerl. with his "Cuekoo Capriceio" and Daquin, in "Le Coucou," have built up whole pieces on the baxis of its cry. Becthoven, in the "Pastoral Symphony." gave it a place. "On Hearing the First Cucisoo in Spring," by Delius, is a masterpicce of suggestion of the birl's song and has now bcen recorded by the Liverpool Philharmonic Orchestra, conducted by Sir Malcolm Sargent, on Columbia DX 1643 . The actual cuckoo plays his part in two passages: lie first sings his two notes at the interval of a minor third and then at major third, sounding again and again, each time more distant.

Vocal

The Italian film "Canzone Eterna" had its premiere at the Continentale Cinema in Jondon early in January. The world-famous tenor, Beniamino Gigli, features prominently in this pichure singing " Mamma" at intervals throughout the action frequently enough, in fact, for this attractive song to be considered the theme song. "Se wooi goter ta vita" also has a phace in the film, and those who have heard these pieces perhaps for the first time in the film will like to have Gigli's latest record of them on H.M.V. D-45397. The
record is a typical Gigli recording, even considered away from the picture, and no collection with a pretension to quality should be without it.
Another interesting recording has been made by Marimi Del Pozo, soprano, who sings "Lucia di Lammermoor" and "Carnevale di Venezia" on H.M.Y. C3967. This young, attractive sopram lives in Madrid. Sho visited England to make this recording, but has yet to appear in Great Britain in public. She has toured America and Scendinavia.
"The Spinning Wheel," which has now been reissued by public demand, is a traditional air sung in the lrish dialect for which it was written. It is sung by the singer who made it famous-Delia Murphy. On the reverse side is mother traditional air, " Three Lovely lassies "-H.M.V. BD1250. The guitar accompanist on both sides, Arthur Darley, has also made the arrangements.

Variety

Donald Prers, who is one of Britain's leading male exponents of popular songs, has this month recouted "Dear Hearts and Gentle Penple," coupled witls an old favourite, "I'll String Along with lon," on H.M.V. K9877.

That versatite artist, Ronnic Ronalde, presents an Italian and an 1rish song in his latest recordings. "Song of tho Mountains" arhieved papularity in the film "The Glass Mountain" and the number. features singing, yodelling and whistling. "If I Were a Blackbird" on the reverso is based on an Itish folk-song.

On her latest recording Dorotiry Squires gives her own treament to two popular favourites. "On the Sumy Side of the Strect" is sung in tempo and "Do I Worry" is taken very slowly. She is ancompanied in both tunes by Büly Reid and his Orchestra.

Dance Music

Fve Boswell, who made her recorded debut with the Geraldo Orchestra last sumner, comes up with anothre winner," Dear Hearts and Gentle P'eople." which is enhanced by an immaculate orlhestral accompaniment on Parlophone F2:302. On the reverse side Geraldo gives us a bearatifullyseored orchestral performance in waltz time of Castiglione"s "Serenadp," a Swiss song originally published under the title of "Komm Mit Mir."

Billy Thorburn's tuneful and toe-tapping combination of organ, dance band and piano this month puts its distinetive stamp on new American and British tumes. They are "Why Is It ?" and "Mamma Knows lest," "n Palophone F2403. For dance frins there is "Dear Hearts and Gentle People" anid "If You Could Care," in dance tompo of Joo Loss and his Orehestra on H.M.V. DBG06i, and "Best of All" and "Time on My Hands," by Victor Silvester and his Pallioon OrchostraParloplone FB35050.

THE HOLIDAYS are on the way! And what better conpany than a Personal Portable, especially one made by yourself to suit the area you are visiting? PERSONAL PORTABLES tells you how. With full data on both speaker type. Order, $2 / 8$ post free, from BRADBOOKS. Sennen, Penzance, Cornwall. Watch next month for the details of an amazing new TV book!
BRITISH SHORT WAVE LEAGUE (founded 1935) -over 20 departments (QSL Bureau; DX Certificates: Technical; Translations, etc.) and monthly "'Short Wave Review." For membership details send S.A.E. H.Q., 53 , Victoria Street, London, S.W.l

MATCHBOX RADIO SET.-With the aid of our full instructions you can build a complete radio set in a matchbox, using parts easily obtainable made possible by the use of the Crystal-valve Radar Detector-a wartime discovery. Tunes the B.B.C. wavelengths and Works off a short, indoor aerial in many districts. Powered entirely by the incoming signal. no batteries are required. Finl step-by-step instructions, workdiagram. Price $2 / 9$, post free. JOHN diagram Price 2/9, post iree. JonN Bristol. 6. Mail order only.
NEW R.S.G.B. Amateur Radio" Publications. Simple Transmitting Equipment, 52 p.p.1 $2 / 3$. Receivers. The Transmitting Licence (3rd Edition) 1/. (below)
R.S.G.B. Technical Publications.R.S.G.B. Bulletin, current issue, 1/6. Five recent issues, 2/6, V.H.F. Technique, 96 p.p., $3 / 9$. valve Technique. 104 p.p., 3/9. Microwave Technique, 68 p.p., 2/3. Transmitter Interference, 32 p.p., $1 / 6$. Service valve Equivalents. 32 p.p.e. $1 / 3$ Prices in-
clude postage. RADIO SOCIETY OF GREAT BRITAIN, 28, Little Russell Street, London. W.C.1.

REGEIVERS \& COMPONENTS

GOMPONENTS, ETC.-Pots. Colvern, 250 ohm, 5 K .120 K, 1/6; Morganite, 1M.. 1M., 1/9; Crystal Diodes, 2/9; Mike 10/-; ditto Condensers, 14/- Stamp for lists. See also this columm Receivers. Coils, etc. 6d. post on Receivers, Coils, etc. 6d. post on
orders under \&i, C.W.O. ELDRIDGE, orders under \&i, C.W.O. ELDR Green Rd., E.11. (Ley. 254,
4986.1
SNIP ! ! Don't miss thesc-FEW only R1116A Battery Double Superhets; 7 bands, $142 \mathrm{~K} / \mathrm{cs}-20$ M. cs. 8 valves, good condition $/$ working order not guaranteed Bargain price while they last. fis/15/- carriage paid. Grimsby

S'HET COILS, $3 W \mathrm{~B}$ 465kc, with diagram. 2/6 pair : Kit of Parts for Midget Coil Pack. LMS (iron cored). $465 \mathrm{kc}, 9 / 6$; iFr's, 6/: pair ex-RAF Output Trans., 9d. ; 1/.1.1.
 $2 / 9$ doz. Send for cheapest list in
England.
SUSSEX EZSCTRONICS. LTD. (P), Rilew Road. Brighton. 7.
2/- DOZ. 20pf, Ceramicons : 2/6 doz Dubilier 01 mfd mica, wire ends: $3 / 6$ doz. Sprague 01 mfd 1000 v . Micamould. $1 \mathrm{nfd} 350 \mathrm{v} ; 4 /$ - doz. T.C.C. action winding. boxed, with circuit 4/9 pair, $70-400 \mathrm{pf}+170-900 \mathrm{pf}$ Ceramic Padders. 1/3: 50 +50 pf Ceramic Trimmers, 50. P.K. Screws, 2/gross : Iqs. Sleeving. 1 m.m.. $1 /$ doz. yds. etc. List from T. HOWELL \&
CO., 29. McWillian Rd.. Brighton.

WE DON'T SELL JUNK but can offer you Collaro AC504 single record unit with magnetic head, $£ 5 / 3 / 2$, with crystal head $55 / 17 / 6 ; \mathrm{AC} 47$ Induction Motor (less headl, but with autostop, $87 / 6 / 2$; RC49 Autochanger, crystal head, £14/6/8; RC500 Auto changer. crystal head, f10/15/-; 2 Armstrong Chassis, "83,", £18/17/1; 103," £24/7/6; "125." £41/1/-; loin e3/15\%.: Truvox BXII, 12 in. £2/5/-; Celestion P44, 12 in.. $x 3 / 15 /-;$ Rola G12, £6/10/-; Extension Speakers with volume control, 5 in . unit $39 / 6$; 6 in. unit, 49/6; 8in. unit 84/-; Pifco A.C. ID.C. Radiometer, 25/.- Terms A.C./D.C. Radiometer, Corriage paid. Lists available. 1d. stamp please Mail order only. JAMES H. MARTIN \& CO., 58, Capworth Sireet, London. E. 10 .

TR9 TRANSMITTER - RECEIVERS, these were formerly sold at £6 each, the remaining few to be cleared at 25/- carriage paid. THE STAMFORD RADIO CO 199 Stamiord St, Ashton-under-Lyne, Lancs.
MIDDLESBROUGH.-Large stockS of Components and Radio Kits ; Components and Roil Packs, $30 /-$: Amplion Test Meters, 1.000 o.p.v.. 67/6; Dials. $11 / 9$; Denco Kits from $\mathrm{E}_{\mathrm{s} / 17 / 6 \text {, plus }}$ tax. Call in and discuss your problems. PALMERS, 114 . Waterloo Road.

5 CORE CABLE, rubber insulated,

 $9 / 012$ colour coded. rubber covered. $35 /-100$ yards: 7 core ditto, but cellulose covered, $45 /-100$ yards ; stamp samples, Belling Lee type 5 pin Plugs and Sockets. 80/ $\mathbf{~ p e r}$ 100: 7 pin ditto, 100/-per 100. High grade Panel Lights, frosted domed red glass crystal, plated bezel, M.B.C. $80 /$ per 100, £14 10r 400. CeramicEF50 Holders, $25 /$ per 100 ; VCR97 Holders, 18/' per dozen. Throat Mikes. 15/-per dozen. A. McMILLAN 5. Oakficld Road, Bristot. 8.

NEW BOXED VALVES : 1R5. 1S4. 7/6 807 (U.S.A.). 6J5GT, 6K8M, 6V6G. $5 Z 4 \mathrm{M}, 6 \mathrm{~N} 7 \mathrm{M}, 6 \mathrm{AG} 7 \mathrm{M}, 6 \mathrm{J7M}, 65 \mathrm{G}, \mathrm{GT}$ 6SL7CT, 6SJ7GT, 6B8G, 5U4G, 6K7G 1T4, 155, VP21, QP21. 6.6 each. valves inboxea, but guaranteed : EAs0, 3/EK32 EF39, EF36, EBC33, ELB2, EF50 KTW62, VP23, TT11, 12A6M, 12SC7M 6AC7M,
DSH7M, ML6, 8D2, 4/- each
L63, 6JSC,
6C5C, $9001 . ~ 9003 . ~$ DH63, L63, 6JSC. 6C5C. 9001. 9003.
$5 R 4 G Y, ~ H L 23 D D .5 /-~ e a c l ~: ~ X 65, ~ X 66, ~$ 5R4CY, HL23DD, 5/- each: X65, X66
ECH35. VU111, VU133, TH233, VP133, 6/6 еасू; 6L6G, 7/6; FW4/500. 8/6 Miniature I.F'. Transformers, 1 13/16in. x 13/16in. x $13 / 16 i n .$. list price 21, per pair, our price 15/: per pair New boxed 5in. P.M. Loudspeakers less transformer. manufactured specially for portable receivers. list price $25,-$ our price 15% R1125 price 20, - our price Receivers with two 8De vaives fguaranteed), LF transformer (3:1), cera mic valveholders. etc., in watertight cases, could be converted to television ple-annp, only 10/-. T1154 Transmitters, less valves and meters; these cover the amateur bands and can easily be put in working order, or broken up for components, which are worth many pounds, $45 / \%$ TR1 196 Transmitters with EF50, EL32 and TT11 valves (guaranteed), etc., 15/\%. Volume Controls, less switch, Lin. diam., $50 \mathrm{~K}, 100 \mathrm{~K} .200 \mathrm{~K}, 250 \mathrm{~K}$, only 1/6 each. Twin Plastic Flex. various colours, $3 /$ - per doz. yards, or $18 / 6$ for 100 yd. coll, sample sent on request. All goods post free. Send for free lists of other bargains. S.A.E with inquiries, please. ELECTRAD RADIO, 64, Gt. Victoria St., Belfast.

SIGNAL GENERATOR.-The now famous Homelab Signal Generator moderately priced at £6/11/-, plus moderately priced at postage and packing, has the refinements of an expensive instrument at a fraction of the cost Check the specification:-1: Fre quency coverage $100 \mathrm{kc} / \mathrm{s}$ to $130 \mathrm{Mc} / \mathrm{s}$ in 6 ranges; 2: Modulation 30% a 400 c.p.s., with provision for externa modulation or unmodulated carrier 3: Coarse and fine attenuator. 4 Output impedance 10 ohms; 5: Low leakige-R.F. oscillator double screened; 6: very stable R.F., oscil lator protected by buffer stage; 7 Accuracy of calibration 1% (operates from A.C. mains 200-250 volts). " 8 Twelve months guarantee. Do not be deceived by the very low price. This is really a first class instru ment, and by dealing directly with the manufacturers you save approximately \&8. The high standards of desifn and workmanship will satisfy the most critical. Send s.a.e. for full technical specification, enclos ing P.O. for $2 / 6$ if you want circuit diagram. Owing to the very large demand for the Homelab Signal Generator there is some delay in delivery, but all orders are being dealt with in strict rotation. This instriment can be seen at the following address: Homelab Instruments. 374, High Road. London. E. 11 Orders and enquiries can only be accepted by post and these should be addressed to HOMELAB INSTRU MENTS. 116. Grove Road, London. E. 17

MIDCO AMPLIFIERS, AA/55 watt hi fi model. superb chassis. £5/10/-, or with bass and treble tone controls 55/17/-; AA/10 10 watt with twin input faders and tone control. £10 PA'12T. superior instrument in smar case. with bass and treble tone con trols. twin input faders. £14. These amplifiers are of outstanding value and can be classed with instruments at much higher prices. All amplifiers are guaranteed for 12 months Trade terms. Catalogue gratis MIDLAND RADIO COIL PRODUUCTS 19. Newcomen Road. Wellingborotigh. 97/6, Charging Switchboards, $\overline{12} / 32 \mathrm{v}$ 500 and 1.260 watts, amps, cut-outs fuses. resistances. etc., 4 take-of superb unit, in case. 5 , , Din
 Rotary Converters. from
and 220 v
D.C. to $24 / 35 \mathrm{~V}$
D.C.,
\& 5. \&15. Motor Generators. $1-6 \mathrm{kw}$. 110 and $220 v$ D.C. to $24 / 35 v$ D.C. $£ 5$ £59. Mains Transformers, $1-200 \mathrm{KVA}$ from s9/10/-, all types. POWERCO Wandsworth Town Station, London, S.W.18. (BAT. 5234.)

50 ASS, RESISTORS, 5/-; Bakelite Terms.. 4d.; Nuts. Bolts, etc.. 6d. box 1/6 1b.; Toggle Switches. 9d. : Midget Output Trans., $2 /=$ List $2 \frac{1}{2}$ d CARTER'S. 67, Bell Lane, Marston Green. Birmingham.
T.V. LINE O.P. Valves, KT44, EHT Rects. 5Z4G. 72, VU120, 5/-; CV63. 2/6; CV73, $3 / 6$; Dust Cores. 10d. dozen. Small 4p 2 w Rotaries. with knob, 9d. Meter Jacks. 2 break. $6 d$ Morse Keys. brass. $1 / 6$. No C.O.D.
S.A.E. hists. ANNAKIN. 25. Ashfield Place. Otley, Yorks.
P.M. SPEAKERS (ex-Service), 8in Tannoy in cabinets, tested: guaranteed. Only 16/6. C.W.O. Post paid W. JOHNSON, Radio Corner, Lerwick. Shetland.
PHOTO-ELECTRIC Meter Compon-ents.-Selenium Light Cell, 6/6; Micro-amp. Meter Movement, 10/6; Perspex Instrument Case. 9/-i Assem bly Instructions. 2/6. S.A.E. full details. G. R. PRODUCTS, 78 Repton Rd.. Bristol. 4.
EVERYTHING for Radio Construc tors, Condensers. Coils. Valves, Resistors, etc. Send stamp for list. SMITH, 98. West End Road, More. cambe. Quick service.

SUPREME RADIO, 7463, Romford Road, Manor Park, London, E.12 (Tel: ILF: 1260) Midget Valves: 0.0005 mfd . Mica Dialectric variable Candensers, $2 / 9$ ea. $2 \frac{1 i n}{}$, and 3 in Moving Coil Speakers, $2-3$ ohm, voice coil, $14 / 11$ ea. Midget Personal Output Trans, for DL92, valves, etc. really liny. 4/. ea. B.7.G. Amphinol type valve Holders, 9d. ea. t wat Resistances: 10 ohm, $22,47,27,82$, $120,180,250,330,390,820$ ohms $1 \mathrm{~K}, 3.9 \mathrm{~K}, 11 \mathrm{~K}, 470 \mathrm{~K}$ and 10 megohm, only. watt Resistances, 2.2 K ohm 6.8 K . $16 \mathrm{~K}, 18 \mathrm{~K}, 33 \mathrm{~K}, 100 \mathrm{~K}, 150 \mathrm{~K}$ 220 K ohms, $2 /-$ doz., or assorted doz., 21. gross only- 1 watt Resistances, 220 olims, $270.470,1 \mathrm{~K}, 3.3 \mathrm{~K}, 8.2 \mathrm{~K}$ megohms. 4/. megohms, ${ }^{\text {mica }}$ Cond.: 40 PF , 50 PF , 60 PF $65 \mathrm{PF}, 70 \mathrm{PF}, 305 \mathrm{PF}, 307,500,530,570$ 590 , 1,800 and $4,550 \mathrm{PF}$, all at $2 / 6 \mathrm{doz}$ or assorted doz. only, CV102 Crystal Diodes. 2/6 ea. tin. bore brass bushed brown Knobs, 2/. doz, 200 v . $.120 \mathrm{M} / \mathrm{A}$ Selenium Metal Rectifiers or 250 v 75 MA , $4 /$ ea, I meg. Carbon and $5 \mathrm{k}-\mathrm{ohms} \mathrm{W} / \mathrm{W}$ vol. Controls, $1 /$. and 3 k meg Var. Carbon Controls, 7 id. ea. Nolse Suppressor Units, consisting of 2, 0.1 mfd Cond. and Iron-Cored Choke. Gd. ea., 5/- doz $100 \mathrm{k}-\mathrm{hm}$ Long Spindle Vol. Controls with S/P switch, $2 / 6$ ea. 0.25 meg Vol. Cont. less switch long spindle. Send $6 d$ extra for postare orders under £5. $2 \frac{1}{2}$ d. S.A.E. all enquiries and lists
A.C./D.C. MULTMETERS, 17 ranges small size, movement 200 A.M.C ranges. A.C./D.C. volts $10,50,100$ $500.1,000 \mathrm{v}$, at 4.500 ohms per volt D.C. current, $1,10,100,500 \mathrm{ma}$. Resis megonm. Alt selif contained. Price £5.10/- complete. Send S.A.E. for Thustrated leaflet. C \& W, ELEC TRON
Salop.
MAGNETIC SOUND Recording Wire, stainless steel. temporary wooden spools, approx. $1 \frac{1}{2}$ hours running spools, at 2 if. per sec.; $14 /-$ per spool. time at 2ft. per sec.; 14/-per spool.
A. SMART, 40, Grange Rd., Halesowen.

BRAND NEW GOOUS: Mains Trans-

 forners. fully interleaved and impregnated primaries $200-230-250 \mathrm{v} 50$ hrough peres $260-0-260 \mathrm{v} 70 \mathrm{ma} 63 \mathrm{v}$ 3a. $5 v 2 a$, qualrad, $12 / 11$; $350-0-350 \mathrm{v}$ 100 na . 4 v 4 a . 4 v 3a. $13 / 11 ; 250-0-250 \mathrm{v}$ 80 ma , 6.3 v 6a. 5 v 3a. for $1355 \mathrm{con-}$ fersion, 21/11: $350-0-350 \mathrm{v} 100 \mathrm{ma}$. 6.3 v matsion, $5 \mathrm{v}, 2 \mathrm{a}, 1 \mathrm{ig} 11 \mathrm{i}$. $350-0-350 \mathrm{v} 150 \mathrm{ma}$. $6.3 v 4 a, 5 v, 3 a, 26 / 9$ midget. $250-0$ 250 v 60 ma . $6.3 \mathrm{v} 2 \mathrm{a}, 5 \mathrm{v} 2 \mathrm{a}, 14 / 9$; fu山y shrouded, upright mounting types midget. size approx. $21 \times 3-3 \downarrow \mathrm{in} . \mathrm{o}$ 15/6; standard $350-0-350 \mathrm{v} \quad 100 \mathrm{ma}, 6.3 \mathrm{v}-4 \mathrm{v}$ $3 a$ c.t.. $5 v-4 v$ \&q, $21 / 9 ; 350-0-350 v$ $150 \mathrm{ma}, 6.3 \mathrm{v} 4 a, 5 \% 3 a, 27 / 9 ; 250-0-250 \mathrm{v}$ 80 ma . 6.3 v 6a. 5 v 3 a . for $1355.23 / 9$: $425-0-425 \mathrm{v}$ 200ma, $6.3 \mathrm{v}-4 \mathrm{v}$ a $\quad 4 \mathrm{a}$ c. $6.3 \mathrm{v}-4 \mathrm{v}$ ta c.t.. $5 \mathrm{v}-4 \mathrm{p} 3 \mathrm{a}$, $11 / 9$: drop through type. $350-0-350 \mathrm{y} 80 \mathrm{ma}, 6.3 \mathrm{~V}$$3 \mathrm{a}, 5 \mathrm{v} 2 \mathrm{a}, 14 / 11$. Resistors, $47 \mathrm{~K}, 1$ meg. \ddagger watt. 9/. per 100 . P.M. Speakers, 5in. Plessey. wiin trans. 17000 ohms) 12/5 ; 6hin. Goodmans. $2-3$ ohms, 11/9: 8in, Plessey, $2-3$ 16/9. Push Pull Output Trans. 8 watt tropicalised. 6 v 6 s to 3 ohms. $3 / 9$. Smoothing Chokes. $60 \mathrm{ma}, 400$ ohms, $15 \mathrm{~h}, 4 / 3 ; 100 \mathrm{ma}$. 300 ohms. 10 h . tropicalised, $6 / 9$. Centralab volume Controls. 5 meg. with switch and standard length spindle, $3 / 9$ ea.. $36 /$. doz. Metal Rectifiers. small. HW, 250 v 80 ma . 4/3. All goods guaranteed. Bargain list 3d. Special list for trade. C.W.O. or C.O.D. over El. Postage extra, E POWELL, 15. welcome $9 \mathrm{a} . \mathrm{m}$. to $5.30 \mathrm{p.m}$.)

DUKE \& CO. 219. Hford Lane. Ilford (0295), Essex. Summer Price List now available. 100 new Resistors, all popular sizes, 1 watt to 1 watt, 10/:. Phone bargains: single unit, L.Rest on metal headband collapsing, $1 / 9 ;$ D.L.R. 5 balance unit type-L.R., pair 3/6; Standard L.R. type, 2/6: Moving Coil, complete with M/C mike, 8/6; Tannoy R.N. pattern with mike, $8 / 6$, Valve Price Reductions: 6V6. 6F6, 6K8, 6K7, 6Q7, KT33C, $5 / 9$ each. S/Het set T.H. 132 VP133, HL1330D, PEN383, at 5/9 each. Enquire for any type you may require. Condensers-Bargain parcel: 25 mfd .25 v , and $4 \mathrm{mfd}, 200 \mathrm{v}, 3$ of
 $8 \mathrm{mfd}, 2 / 6 ;$ E.H.T. 2 K trans, $19 / 6$ or plus 2-0-2 heater, 27/6. Crystal Sets You are still ordering these at $8 / \mathrm{G}$ Extenslon Speakers, in cabinet, new 14/6. Speaker Trans. Standard nom. Gram.-Motors, A.C new, complete with turntable, 39/6 plus postage. Stamps only for lists All orders have money back guaranteed.
SWITCH UNITS.-Two switch units complete with knobs mounted in a metal box 8 in. x 3fin. x 1月in.; each unit consists of a 2-wafer each 21 way, single pole switch and a tapped resistor: by removing one switch and fiting a suitable meter the case and remaining switch could be turned remaining suitch could mee turned switches and tapped resistors could not normally be obtained at a price approaching ours; each one is brand newi and uinused, packed in a sealed carton. Price $2: 9$ each. Postage paid. S.A.E. for a copy of our SuperDetailed List. WILFLO PRODUCTS 222. Gorbals Street, Glasgow, C. 5
P.M. SPEAKERS : 5in. Rola in case 17/6: Condensers. paper block type, 8 mfd .750 volts, $10 / 6$; Co-axial Cable $75 \mathrm{ohm}, 10 / \mathrm{d}$. yd .: V^{2} alves: $6 \mathrm{~V} 6 \mathrm{f} / 6$ 5 U4G 7/6, SU2150A 12/6. Ef50 5/ EA503/6, D1 1/9, 807 10/G, 6F6 10/6: W3737 Receivers, 5-Valve Superhet. . to $10 \mathrm{M} / \mathrm{cs}$ including valves, less power pack. E3; Voltmeters, 0300 A.C. moving iron, $2 / \ln$. flush. 17/0, 31 in . surface type $22 / 6,0250$ moving coll rectifier type, 3 in. fiush $30 /-$ WILCO ELECTRONICS ${ }_{2}$ 204, Lower Addiscombe Road, Croydon.
ALL.WAVE Diode (batteryless) Kits 17/6. Gea. and List, 1d. Matchbox size Kits, $3 / 3$ i $200-550 \mathrm{M}$. Kits, $3 / 3$ ALEXTONE, Hillworth. Longdon Glos
SPECIAL RECEIVEIS, test gear anectronic apparatus, experimental and design work.-If you have a ling, write in first instance to J MORT, B.Sc.. A.M.I.E.E., BCM
HIFIDEL. London. W.C. 1

CLEARANCE SALE

Guaranteed Bargains

2 volte 20 A.F. Accs. 611 i. each. Heavy Alnico Magnets, lift 50 . $1 \mathrm{is} ., 76$ each. 20 Contact Stud Switches, $3 / 61$. each. Bomb Timors. 9/6is. each. Air Pumps, 196 . each. Capillary Thermometers 9'64. each. K24 Camera Magazines. 2/6d. each. and a larzo selection of equipment of all types.
S.A.E. for a copy of our Super Detailed List. Something for Everyone.

HAVE A GO WITI WILFLO.

WRITE NOIV.
WILFLO PRODUCTS
222. Gorbals Street, Giakgow, 0.5
sOUth 2385.
"TELEVISION SPECIAL :"-In response to 1,000 ! ! requests, we now offer the E. 9.3 "Foundation Kit" version send large SAF illustrated brochure bept. P.W. T-H PRODUCTS, 92, Leathwalte Road, S.W. 11

PRACTICAL VIHELESS Televisor Aladdin Former, with core, 10n. Tag Ring, 2 d. ; Set of Coils, London 16/6; Chassis. ©4: Mains Trans former. $350-0-350250 \mathrm{ma}$. $5 v 2 a$. 6.3 v 4a, 6.3v 4a, 68/6; Choke, S.A.E. list R. F. SHILTON, 19, Clarendon Road Salisbury Wils
2A DROPPERS 1/6; 50ft. Aerials, 1/- Plastic Cov. Connecting Wire 25 yos.
Herts.

REPAIRS AND REWINDS

"MOTOWIND SERVICES."- Practional H.P. Repairs, Armatures Fields, Coils: 7 day service. 27, Grosvenor Street: Chelienhich.
REPAIRS to loudspeakers. Comes, coils fitced. Fields altered, rewound. Output transtormers, clock coils. Prices quoted. Satisfaction guaranteed. L. S. REPAIR SERVICE, 49 Trinity Rd. Upper Tooting, S.W.17. l'Phone: Ballam 2359.)

VACUUM CLEANERS and Gram.

 Motors, repairs our speclanty. Armature rewinds. new bearings and com mutators fitted. also transformers rewound. speakers repaired. Conpetitive prices. Trade enquiries Invited, 2 to 5 days c.o.d. service Send s.a.e. for price lisis to: A.D.S CQ. (V.E.M. Dept.) 261-3. Lichtield Road. Aston, Birmingham. 6. Est. 1935.
EDUCATIONAL

TELEVISION.-The Gothic Television School specialises solely in training in television. Courses assume no previous television knowlodge and provide guaranteed training for Brit.I.R.E, and R.T.E.B. examinations All tutors possess unlversity degrees and or corporate membershp of professional institutions and are appointed individually to postal course students to ensure complete and thorough training. Princiyals M.B.E. B.Sc.. M.Brit.I.R.E., educa tlon committee members. etc. Numerous well-known companies have adopted the School's Basic Television Course as standard television train ing for their staffs. Moderate fees
Details from GOTHIC TELEVISION Details from GOTHIC TELEVISION SCHOOL. 13, North Ave.. London

WIRELESS. Land. Sea and Air. Stu dents, both sexes, from 14 years trained for good appointments in all branches of radio. Low fees. Boarders accepted. Stamp for Prospectus

THE INSTITUTE of Practical Radio Engineers have available Home Study Courses covering elementary, theoretical. mathematical, practical and laboratory tuition in radio and tele vision engineering; the text is suit able coaching matter for I.P.R.E. Service entry and progressive exams Tuitionary fees at prewar rates are moderate. The Sylnous of Instructlonal Text may be obtained, post free. from the SECRETARY, Fairfield Road. Crouch End, N. 8.
MERCHANT NAVY ANO ATA RADIO. Here is an opportunity to train as Radio Officer for merchant ships and the air. The big liners are open to Vou. but you must first qualty for
the P.M.G. Certificate. Established 30 years. We can put you through in the minimum-time. Day, evening and "Radiocerts" postiy courses. SCHOOL, 21. Manor Gattens. Hollo Way, London, N.7. ARC 3694.

IKIACNIVFRTVPF: 18. With 4 Battery operated valves. this superhet covers from 6-9 me s., but may be modified for other trequencies: the 465 ke's I.F., and I'WO R.F. colls inakeit the idealfoundation unit for conversion purposes, but it is ready for use. when batteries are connected. Complete with circuit and connertins data. 196. Or, bomplete with phones. H.T. battery and accumulator. 31/6.
 HATMIBIsos-the NEW type of dry battery. with an infinite shelf-life, these sealed units deliver 94 v. H.T. and 1,3 v. L.'I'.. sufficient H.T. and 1.3 v. $1 . .1$ v. valves. Of recent manufacture. OUR PRICE. 611.
 L, ITORN. measuring 11 Exide and oldham, to roby Exide and Oldham, to risi naval sperlficotions: $3 A$ capacity, they are BRAN? NEW and require only thi addition of acid Price 26
rach of a crate of $12.20-1$

RUCHIVTEIR TIPI: 21. One of to-day's greatest bargains. this miniature communications receiver, complete with 92 v . valves, coverrs from 4.2-7.5 and $18-31 \mathrm{mc} / \mathrm{s}$. (465 ke/s I.F.). Complete with circuit and connecting data 35.- Unused condition.

WIBTBATTR I'AGK 21. De-
signed for the above receiver, the output of this 6 v . input unft (150 y . at 40 mA .) makes it suitable for most small recelvers. In new condition,

196.

MID(il:i nomorts. Midget (11in. dia. x 2 in. motors. these will operate from 27 V . and develop 1135 h.p.! They are sumplied completo with a small removable fan and will find a varlety of uses in every home or work shop. AS NEW. ONLY $9 / 6$. if S. manufacture. 1
All goors sold as used

LASKY'S RADIO

I.F.F. RECFIFERS. Brand New and Unused. Supplied in Maker's Original Cartons. Contains 8 new valves: 4 Sp41: 1 FiA5 ; 1 VR78; 2 CV6. Also hosts of components. coils, condensers, resistances, switches, etc. A motor generator with an input of 24 volts and output of 480 volts.
LASKY'S PRICE
19/11
Carriage si6 extra. AHIEISIC'AN AIR C'ORPM IRIC'EIVEIR TYPE I36624. 10 Valve superhet. froquency $100-156 \mathrm{mc} / \mathrm{s}$. Valve line up: 39003 ; $19002 ; 1$ 12C8: $312 \mathrm{SG7}$; $12 \mathrm{J5:} \mathrm{i} \mathrm{12AH7}$. components, coils, variable condensers, etc. Size : $15 \mathrm{sin}, x 7 \mathrm{in} . \mathrm{x}$ Gin. Weight 28 lbs . Supplied less the buzzer.
IASKY゙S PRICE
19/11
Carriage 5/- extra.
F6? (AMIALIK かNIV. SPECLAL CLEARANCE:OF ODD EX-GOVERNMENT CHASSIS TOO NUMEROUS TO IIST. Some partly stripped. others complete. Indicators. Receivers. Transmitters. Modulators. etc.
Transmitters. Modulators ett. We strongly recommend you
to pay us a visit and see for yourself the barsains available.
ISIR ND NIU ANIS UNESBIN. In Maker's Original Cartorit ExA.M. Unit Type 567 coww. Containing 11 new valves: 2574 G $25 \mathrm{U4G}: 1$ VU120: 1 6X5GT: 1 EF50: 1 EF55: 16 F 6 F : 2 V 570 (voltage stabilisers). Dozens of various components. including hish voltase condensers, chokes, potimeters, resistances, condensers $114 \times 8 \mathrm{in}$. Weight 40 jbs . LASKY'S PRICE $\quad 49 / 6 \quad$ Carriage 5/= extra. V.H.F RLCIIVFIR UNITK. These units are partly stripped but contain a wealth of components. resistances, condensers, colls. I.F.. transtormers. etc. Also 4 valves : 2 EF39: 1 EBC33: 1 EL32. Overall dimensions $101 \times 7 \pm \times 6$ in.
LASKY'S PRICE \quad Carrlage 26 extra
 N'If!TiORA. 1 Pair Wearite Miniature I.F. Transformers. 463 kes. 4 Button Base Valve Holders. 1 Miniature . 000 s mfd. Lwogang tuning fondenser. $13 t i n$. Miniature Speaker.
LASKY's PRLCE FOR THE PARCEL $35 /-\quad$ Post Free. Send a $2 d$. stamp with your name and address in block letters pleasa for a copy of our current list of Ex-Government Bargains. The Lasky's Radio Bulletin.

LASKY'S RADIO

RADIO EXCHANGE CO. ${ }^{9}$ BAULDWERD Ph STREET

DON'T WANDER•IN CIRCLES

GET THERE -D/RECT!

The quickest way to the top is by studying at home in your spare time, guided by the world's most successful correspondence college. Individual tuition by experts fits you for highly-paid key positions, prosperity and an assured future. Write TO-DAY for FREE advice on the work that interests you.

CHOOSE YOUR CAREER

Blue Prints.
Book-keeping
Carpentry and Joinery.
Civil Enginecring.
All Conmercial subjects.
Shorthand (Pitman's)
Telecommunications (City and Guilds).
Draughtsmanship,
If you do not see your own on any subject. Full particulars free.
To DEPT. 104, THE BENNETT COLLEGE, LTD., SHEFFIELD.
Please send me (free of charge) particulars of........... Your private advice about. .
(Cross out line which does not apply.)
Name
Address
Radio Service Engineering. Mathematics.
Marriculation.
Plastics.
Wireless Telegraphy and Telephony.
Surveying.
Teachers of Handicrafts. Television.
\qquad
\qquad Address

3\%0. HARROW ROND. PAHPINGTON. LOVDON. W.g. (Opposite Paddington Hospital). Telephone Hours : Mon. to Sat. 9.30 a.m. to 6.p.m. Thurs. Half-Day.

The Principles of Television Reception

By A. W. Keen, M.I.R.E., A.M.Brit.I.R.E.

The author is a practising electronic research engineer and has produced a thorough, systematic work covering American as well as British practice. The entire receiving system is examined stage by stage, with diagrams, and complete circuits are given of four up-to-date commercial receivers. A chapter on colour television is also included. Profusely illustrated. 301-net.
"Very well written and arranged . . . can be thoroughly recommended to the student and service engineer . . . extremely well illustrated." -WIRELESS AND ELECTRICAL TRADER.

Obtainable from booksellers. Published by
SIR ISAAC PITMAN \& SONS, LTD., Parker Street, Kingsway, London, W.C.2.

PREMIER RA
 MORRIS \& CO. (REA)

We are now supplying
NEW LONG RANGETELEVISORKITS For the London or Birmingham frequencies at the same price as the standard kit. $\mathbf{£ 1 7} \mathbf{1 7}$ s. Od.
5 Easy to Assemble Kits are supplied
Vision Receiver with valves, $£ 3$ 13s. 6d. (Carriage $2 / 6$)
Sound Receiver with valves, $£ 2$ 14s. 6d. (Carriage 216)
Time Base with valves, $\mathbf{1 2 7 5}$. $6 d$. (Carriage 2/6)
Power Supply Unit with valves, E6 3s. Od. (Carriage 5/-)
Tube Assembly, $\mathbf{6 2}$ 18s. 6d. (Carriage and packing 2/6) This unit includes the VCR 97 Tube, Tube Fittings, and Socket and a 6 in. PM Moving Coil Speaker with closed field for Television.
The Instruction Book costs 216, but is credited if a Kit for the complete Televisor is purchased.
Any of these Kits may be purchased separately : in fact, any single part can be supplied. A complete priced list of all parts will be found in the Instruction Book.
20 valves are used, the coils are all wound and every part is tested. Alf you need to build a complete Television Receiver are a screwdriver, a pair of pliers, a soldering iron and the ability to read a theoretical diagram.
WORKING MODELS CAN BE SEEN DURING TRANSMITTING HOURS AT OUR FLEET STREET AND EDGWARE ROAD BRANCHES.

TV PRE-AMPLIFIER FOR FRINGE RECEPTION AREAS. We can supply the complete kit of parts to make this wide band width Pre-Amplifier, using 2 EF54 Pentodes. Powered by the TV Kit, it is completely screened. With all parts, valves, chassis, diagrams, ctc., 27\%. All parts available separately.

MAGI
picture size
WHITE RUBEEX
METER KIT. A FERRATV
with separate high stability
measure, $15,60,150$ and 600 v .
2 i in . 101 the complete kit.
PREMIER MIDGET RADIO K
production, we are now abte to a
reduced price. Including an attractive long $\times 5 \mathrm{in}$. wide $\times 6 \mathrm{ln}$. high. The valve 6V6 and a Selenium Rectifier in the A.C. 6J7, 25A6 and Selenium Rectifier in the A Both are for use on 200 to 250 volt mains. Th ated and the receiver presents a very attras Coverage is for the medium and long n including Purchase Tax.
Al07. One of the Army's Finest Receivers. (See "W.W." Augiust, 19 9 valves, R.F. amp. osc. Frequency Chang 2nd Detector, A.V.C. AI. amp. B.F.O. A. or 12 v . accumulator. Fréquency rarige me/s to $2.9 \mathrm{mc} / \mathrm{s}, 3.0$ to 1.2 mels. Monitr
plete. Write for full details. Price carriage and packing.

Have you had detaits ort
PREMIERMAGNETICTE
Using 9in. or 12 in
The New Premier Catalogue, now ready, inctudes all the new TV Kits, Receiver Kits and thousands of component bargains. Send 3d. for copy.

POST ORDERSTO 167, LOWER CLAPTON RD., E.5. CALLERS TO 152/3, FLEET ST., E.C.4. Central 2833. NEW BRANCH: 207, EDGWARE RD., W. 2. This Branch is open until 6 p.m. on Saturdays.

A CAR OR WIRELESS BATTERY CHARGER FOR 7/6.

When writing the title, we are assuming that the constructor will already have in his junk box such items as a mains transformer giving 4 v ., a lamp holder and odds and ends in the way of wire, etc. If you haven't got these items already, then, of course, it will cost you more than $7 / 6 \mathrm{~d}$., which is just the price of the Mercury Rectifier, bur not a lot more, for we can supply a suitable mains transformer for 6/6d., and a switch for $1 / 6 d$., a lamp holder for 9d., a pair of bull-dog clips for connecting to battery for $1 /-$. Wire, Id. per yard.
The Mercury Rectifier is, of course, suitable for many other iobs. Its data is as follows : Filament volts 4 y . Filament Current 9 amps., peak plate voltage 2,000, peak plate current 2.5 amps. Official price several pounds each, our price, 7/6d., six for 52 . All are Brand New and in Original <RO Cartons. Any faulty will be replaced within three days. This is one of our many Sale Bargains. Send 2td. for special "Sale PRELISION EOIITMPNT

[^1]
ENGINEERS!

Have you sent for your copy?

- ENGINEERING

 OFPORTUNITIES,is a highly informative guide to the best-paid Engineering posts. . It tells you how you can quickly prepare at home on "NO PASS-NO. FEE " terms for a recognised engineering qualification, out lines the widest range of modern Home-Study Courses in all branches of Engifieering and explains- the benefits of dur Employment Dept. If you're earning less than 110 a week you cannot afford to miss reading. this unique book. Send for your copy to-dayEREE.
. . - FREE COUPON ...
Please send the your FREE 176 -poge:
ENGINEERING OPPORTUNITIES
: NAME
ADDRESS
Subject or Exam.
that interests me
British Institute of Engineoring Technolo.............................
409B, Shakespeare House
17119, Stratford Place. London, W.

WHICH IS YOUR PET SUBJECT?

- Mechanical Eng.
\therefore Electrical Eng.
Civil: Engineering,
Radio Engineering
- Automobile Eng:
-Aéronautiolikas
Productio
Building
Draugh
Telerva
GET
LEYTE,
AFTER'YOU

NAME!

 A.MilMén.E. A.M.I.E.EA.MI.C.E
A.MT:P.E.
A.M.IM.I.
L. 1.O. B
A.F.R.A.B. B. S .
A.M.Brit.I.R.E. CITY \& GUILDS MATRICULA TION, etc.

[^0]: * Maximum permitted in the C'opornlutien I'lin.

[^1]: 7: Electron House, Ruislio Manor, Middx.

