APRIL 1984 90p

Another 8-Page Pull-Out of

ICOM REG. WARD\& CO. ITD.

 AXMINSTER, DEVON, EX13 5NY. (Tel: 0297-34918) THE SOUTH-WEST'S LARGEST AMATEUR RADIO STOCKIST
OPEN MON-FRIDAY 9:00-5:30. SATURDAY 9:00-5:00. WED 9:00-1:00 (closed for lunch 1.00-2.00)
Instant credit
also available

$\mathbb{P}_{\text {tocticol }}$ гor the Radio
 wilieleßs
 APRIL 1984 VOL. 60 NO. 4 ISSUE 925

LOWE SHOPS in matlock,

TELEPHONE 0629.2817243040574995
Lowe Electronics in Matlock, located on the Chesterfield road out of Matlock, that is the A632 and open Tuesday to Friday from 9am to 5.30 pm (closed for lunch 12.30 to 1.30) and Saturday, open all day from 9 am to 5 pm . A visit to Matlock can be an outing for the family, the local scenery, the Heights of Abraham, Lovers Walk etc. Ample free parking in our car park and when you have browsed then lunch in one of the towns pleasant restaurants. Amateur Radio with the family in mind.

in glasgow,

TELEPHONE 041.945.2626
Lowe Electronics in Glasgow, located at $4 / 5$ Queen Margarets Road, which you will find off Queen Margarets Drive (take Great Western road out of the City and turn right at the Botanical Gardens traffic lights). A quiet sedate part of the city, easy street parking and a warm welcome from Sim, our shop manager. Open all day from Tuesday to Saturday, 9 am till 5.30 pm during the week and 9am till 5pm on Saturday. Whilst in the area the Botanical Gardens are well worth a visit. The Glasgow Shop has a full display of our range of amateur radio products and a stock room to meet your every demand. For your Amateur Radio needs visit Lowe Electronics in Glasgow.

in darlington,

TELEPHONE 0325.486121

Lowe Electronics in the North East of England, set in the delightful market town of Darlington, the shop displays the full range of amateur products sold by the company. Our address in the town is 56 North Road, that is the A167 Durham road out of Darlington. Open Tuesday to Friday from 9am till 5.30 pm , Saturday from $9 a m$ till 5 pm (closed for lunch 12.30 to 1.30). A huge free car park across the road, a large supermarket, bistro restaurant and banking facilities combine to make a visit to this delightful market town a pleasure for the whole family.

in london,

TELEPHONE 01.837.6702

Lowe Electronics in London, our shop in the Capital City, easily found on the lower sales floor of the Hepworths' shop on Pentonville Road, within 3 minutes walk of Kings Cross railway station. Open all day Monday to Saturday, six days a week, from 9.30am to 5.30 pm during the week and from 9.30am to 5 pm on Saturday, a warm and courteous welcome, together with sound advice awaits those who enter. The entire range of amateur products is on display, backed by a considerable amount of stock. When in the City, visit Lowe Electronics.

We cannot seem to keep the TR9130 in an "in stock" situation. No sooner has a shipment arrived than we are "out of stock". I must say that even I am surprised by its popularity. Based on the renowned TR9000, the TR9130 has additional features that make it the most popular multimode on today's market. We are still getting requests for second-hand TR9000's and even they are a rarity on our second-hand shelf. Having a clear green readout, reverse repeater, the
 ability to tune whilst transmitting, 25 watts output, 6 memories and of course memory scan: TRIO's two metre multimode, the TR9130.
TR9130 £442.52 inc. VAT. carriage $£ 6.00$
There are two schools of thought regarding two metre mobile FM equipment. One group are of the opinion that the simpler the rig the better and refer to the TRIO TR7500 as the ultimate mobile transceiver ever made. There are others who require their mobile rig to have memory channels and all associated facilities in order to gain operational flexibility. TRIO cater for both.
The TM201A and the TM401A are simple rigs, designed to fit into the smallest of today's cars and provide the simple functions that make mobile operation a pleasure. Repeater shift and lockable reverse repeater are included as well as superb receive performance. 25 watts from the 2 metre TM201A and 12.5 watts from its 70 centimetre cousin, the TM401A, ensures a strong transmitted signal. A separate 77 mm (3 inch) speakers in a solid enclosure gives high quality receive audio even whilst mobile.
TM201A . £269.00 inc VAT. carriage £6.00 TM401A . 299.00 inc VAT. carriage £ 6.00
A remote controller with a green backlit LCD frequency readout is also available as an optional accessory. The FC10 simply plugs into the side of the transceiver and comes complete with mounting bracket and velcro pads to ease
 fixing without drilling holes in the car's dashboard.
FC10.... $\mathbf{£ 4 1 . 2 0 \text { inc }}$ VAT. carriage $£ 6.00$
For a mobile transceiver having more operating features the TR7930 is the model to choose. The TR7930 is TRIO's logical progression from the very popular and reliable TR7800. The design of the TR7930 takes into account the minor and justifiable criticisms levelled against the TR7800. You will now find the frequency readout is a green backlit liquid crystal display that can be read in the brightest of sunlight. The memory allocation has been increased to a total of 21 channels and the rig can be instructed to hold on the received signal for either a timed period or until the signal disappears. Programmable band scan is also available between user defined limits. To make mobile operation safer the transceiver is preprogrammed so that if you select for example, 145.450 then the rig will adopt the simplex mode, if you select 145.650 then, automatically, you will get repeater mode. Of course TRIO have made it easy to over-ride this feature as you would naturally expect. I can say no more about the TR7930, a comprehensive rig for the mobile enthusiast.
TR7930
$\mathbf{£ 3 1 2 . 0 0}$ inc VAT. carriage $£ 6.00$
To improve mobile operation there is the TRIO MC55 boom microphone. Not jut an electret condenser microphone but having a transmission timer, up/down frequency shift switch, adjustable microphone gain and fitted with either a 6 or 8 pin microphone plug. To monitor the swr/output power of your mobile installation TRIO have produced the SWR100A/B. (model A: 1.8 to 150 MHz and model B: 140 to 450 MHz) Compact and easily fixed to your dashboard, be the first to know something is wrong with your mobile station.
MC55
$\mathbf{£ 3 8 . 6 4}$ inc VAT. carriage $£ 2.00$
SW100A/B
£37.26 inc VAT. carriage £2.50

For the real VHF/UHF enthusiast there is only one FM mobile rig that in one compact unit has both 2 metres and 70 centimetres. The TRIO TW4000A. Not a cheap piece of equipment, the TW4000A has to be seen to be appreciated. Having many features to assist mobile operation the TW4000A also speaks. Unless you have actually operated the rig with the optional VS1 voice synthesizer fitted, then you cannot really make a considered judgement. It is easy to say that such a feature is a gimmick but I , on my journeys up and down the country, have found that having the frequency, memory number etc announced in clear distinct voice is much better than stealing a glance at the display. A recent review in AMATEUR RADIO magazine (December 1983) tells more.
TW4000A $\mathbf{£ 4 6 9 . 0 0}$ inc VAT. carriage $£ 6.00$ VS1 $£ 24.50$ inc VAT. carriage $£ 0.75$ (in fact the VS1 is not a voice synthesizer, it is the digitally recorded voice of a Japanese girl programmed into a dedicated chip, her Japanese diction can be had as an alternative by moving an internal switch on the VS1 board from position EN to JA.)
Don't let us forget the two handhelds from TRIO, the 2 metre TR2500 and the 70 centimetre TR3500. Both very popular pieces of equipment. Reliable and functional. Each having ten memories, memory scan, programmable scan, repeater and reverse repeater shift and a comprehensive range of accessories compatible to both models.

TR2500£237.82 inc VAT. carriage $£ 6.00$ TR3500 ….....£256.45 inc VAT. carriage $£ 6.00$

Two general coverage receivers are available from TRIO, the R600 and the R2000. The R600 is the basic model and covers continuously frequencies from 150 KHz to 30 MHz having AM , CW and SSB modes. The R2000 is more sophisticated having the same coverage but FM in addition to the usual modes found on a high quality general coverage receiver. Ten memories, memory scan, programmable band scan between user defined limits all add to the enjoyment to be had from a TRIO R2000. To create the perfect receiver an optional VHF converter covering again continuously 118 to 174 MHz and fitting inside the receiver is available. The nice thing about the VHF converter is that the frequency readout of the R2000 is also corrected so that if you are tuned to 145.600 then that is what the readout displays.

R600 £263.00 inc VAT. carriage $£ 6.00$
R2000 . $\mathbf{£ 4 2 1 . 2 0 ~ i n c ~ V A T . ~ c a r r i a g e ~} £ 6.00$
VC10 $\ldots \ldots \ldots \ldots \ldots \ldots \ldots . . . \ldots 113.00$ inc VAT. carriage $£ 6.00$

HF equipment from TRIO provides you with a choice, solid state or valve. The NEW TS530SP from TRIO is the choice for those who require a rig that will give them world wide communication without frills. The TS830S has a receiver with variable band width and a transmitter having an RF speech processor. Both the TS530SP and the TS830S use a pair of the well known 6146B valves. There are also the four solid state rigs. The TS130 V and S amateur bands only, 25 watts and 200 watts PEP respectively, the TS430S covering the amateur bands and also being a general coverage receiver and the "FLAGSHIP" of the range, the incomparable TS930S, a piece of equipment whose specification and performance are well known.

TS530SP	$\mathbf{£ 6 3 8 . 0 0}$ inc VAT. carriage $£ 6.00$
TS830S	£731.40 inc VAT. carriage $£ 6.00$
TS130S	£555.45 inc VAT. carriage $£ 6.00$
TS430S	$\mathbf{£ 7 5 2 . 1 0}$ inc VAT. carriage $£ 6.00$
TS930S	. $£ 1150.00$ inc VAT. carriage $£ 6.00$

So that a full amateur radio station can be set up, TRIO have a comprehensive range of microphones, headphones, separate VFO's, aerial tuning units, for the TS430S and TS930S, the ATU's can be automatic, etc.
The items are too numerous to list, full details and prices can be obtained from any LOWE ELECTRONICS shop.

ڤ $\star \star \star$

\star The LOWE TX40 CB transceiver is now well known on \star \star the band. Many have bought other rigs, only to be dissatisfied. They have then heard about the TX40 from their \star friends, bought one and been delighted. The rig performs \star as a well designed rig should. And for those who think \star \star otherwise, the CB frequencies are now populated by opera-
tors having pleasant contacts. The band has come of age.

* The LOWE TX40 has been available for some time now for \star the sum of $£ 29.50$ inc VAT, carriage $£ 3.00$.
\star For the discerning a deluxe version is available for an \star additional $£ 8.50$.

This rig has an extra filter fitted to enhance listening when
\star the band is busy. Take this opportunity to buy at this special \star price a LOWE TX40 CB transceiver.
$\star \star \star$

LOWE FLFCTRONICS

Chesterfield Road, Matlock, Derbyshire. DE4 5LE.
Telephone 0629 2817, 2430, 4057, 4995. Telex 377482.

[G45, Latest Hf Transceiver

Hearing is believing, the IC745, a new all band HF transceiver with SSB. AM (receive only). CW. RTTY, FM option, and a $100 \mathrm{KHz}-30 \mathrm{MHz}$ general coverage receiver.

The IC745 has a terrific combination of features found on no other transceiver, at such a low price. The IC745 is the only transceiver today that has so many standard features. options and accessories. The IC745 is another superlative set in the ICOM range, see it in our retail shop at 95 Mortimer Street Herne Bay Kent, or contact our Reculver Road address for. more information. Your own local ICOM dealer will be able to help you too.

Corte, raiest and smallest finmoble

tame day It posiste.
Our locaI RETAIL premises have now moved to 95 Mortimer St. Herne Bay Kent.

And we thought that the IC25E was small! ICOM have now produced a new and even smaller 25W FM 2 meter mobile - the IC27E.

We have little information on the IC27E at the moment, but by the time you read this they should be available

Briefly, the IC27E offers two VFO's. 9 memories.
priority channel and scanning. The easy to read LCD displays frequency. memory channel, power. S-meter and functions. All this is packed into a case W140 $\times \mathrm{H} 38 \times$ D177mm. and weighing only 1.2 Kgs

The price has not yet been announced but give us a call for this and other information.

Tecroin
2-

When you buy from Amateur Electronics UK you are dealing with the FACTORY APPOINTED IMPORTER with the largest stocks of equipment and spares in the country. Our delivery and after-sales-service is second to none and for your convenience we offer the following facilities On-the-spot credit sales (against recognised bank or credit cards) OInterest free finance (50% deposit - balance over 12 months) - Free Securicor delivery on all major items FACTORY BACKED EQUIPMENT Extensive showroom demonstration facilities - Private large car park Your choice just has to be YAESU - write or phone for all the details.
Large stocks of: TET ANTENNAS • JAYBEAM • HI-MOUND•TOKYO HY-POWER • DATONG • MICROWAVE MODULES • BNOS • DAVTREND • WELTZ • MUTEK • RSGB PUBLICATIONS

FT-757GX The latest all-mode HF rig from YAESU
How do they do it? - To get so much in so small a package - Just look at the features.

- All-mode operation SSB, CW, AM and FIM are included as standard features. Full CW break-in. Dual VFO plus eight memories. - Programmable memory scanning.
- 600 Hz CW filter fitted. lambic keyer with dot-dash memory.
- IF shift and width filters. - TX coverage 160 thru 10 metres. - High performance general coverage $\mathrm{RX} 500 \mathrm{KHz}-29.999 \mathrm{MHz}$. Optional P.S.U.'s FP-757 (plinth type) FP-700.

FT-77 HF transceiver

Not just a mobile rig - with matching PSU and ATU this makes a first class budget station. FT-77s - (10W version)

FRG-7700 General coverage receiver

Attention FRG-7700 owners!
See us for your special requirements in converters and active antennas - complete range ex stock - Post free.

FT-102 HF transceiver

The superb 102 - Still the buy of a lifetime
FT-980 All-mode HF transceiver

The ultimate HF rig - Superb all-mode operation plus full general coverage receiver. Rolls Royce performance
BRANCHES
For your convenience we now have fully stocked branches at the following locations where you will be assured of prompt and personal service.

NORTHERN	SOUTH-WEST
Amateur Electronics UK/	Amateur Electronics UK/
Holdings,	Uppington,
45 Johnston St., Blackburn.	12-14 Pennywell Rd.,
Tel: 025459595	Bristol. Tel: 0272557732
Contact Harry G3LLL for all your requirements and specialised advice.	Call Peter or Bert G2BAR for prompt and friendly service.
Open: 9.15 am - 5.15 pm closed Thurs.	Open: $9 \mathrm{am}-6 \mathrm{pm}$. Sat: $9 \mathrm{am}-1 \mathrm{pm}$

YORKSHIRE

Amateur Electronics UK/ Hooker, 42 Nether Hall Rd., Doncaster.
Tel: 030225690
Alan G4OEM has a large stock of our product rangewhy not give him a ring and save yourself some petrol?
Open: $9 \mathrm{am}-6 \mathrm{pm}$ Mon. - Sat.

Wales \& West - Ross Clare, GW3NWS (0633) 880146

$$
\begin{array}{cc}
\text { AGENTS } & \text { East Anglia - Amateur Electronics UK, East Anglia, Dr. T. Thirst(TIM) G4CTT Norwich (0603) } 667189 \\
\text { North Staffs - Bob Ainge W5MJQ (O538) 754553 } \\
\text { Shropshire - Syd Poole G3IMP, Newport, SALOP (0952) } 814275
\end{array}
$$

[^0]As factory appointed importers we offer youwidest choice, largest stocks, quickest deal and fast sure service right through-

BHPAK BARGANS
 BRAND NEW LCD

MINIATURE TOOLS FOR HOBBYISTS
Miniature round nose side cutters insuiated handles $4 \frac{1}{5}$ inch length. Order No: Yo43.
Miniature long nose pliers
insulated handles 5inch length. Order No: YO44. Minature bend nose pliers isulated handles 5inch Miniature end nippers Minulated handles 4 ininch length. Order No: YO46.

Miniature snipe nose pliers with side cutter and serrated Jws - insulated handles 5 inch
length Order No: YO42.

FLEXEY DRIVER

A flexible shaft screwdriver for those awhward to get at screws. Overall blade 4 mm FS-2 Cross point no. 1 E1.75

GRIP-DRIVER

8inch long screwdriver with spring loaded grip on end to hold screws in position while reaching into those difficult places. Order No,
SD-1 Flat blade 4 mm SD- 2 Cross point no.0. £95p each.

MULTITESTERS

1,000 ppv Including lest leads t Barten
$A C$ vols $=0 \cdot 15-150-500-1,000$
OC volis - 0-15-150-500-1,000
OC curtents - $0.1 \mathrm{ma}-150 \mathrm{ma}$
Resistance - 0.25 K ohms 100 K ohms 01 ms - $90 \times 61 \times 30 \mathrm{~mm}$
. $\mathbf{0} / \mathrm{No}$. 1322.0 UR PRICE $\mathbf{~ 6 6 . 5 0 ~ O N L Y ~}$

The Electronic Components and Semiconductor Bargain of the Year! This collection

Price

TECASBOTY

SILICON BRIDGE RECTIFIERS of Components \& Semiconductors for the

Comprising 4×1
amp rectifiers
mounted on PCB
VRM - 150 vits
IFM - 1.5 Amps
Size: 1 inch square
10 off $£ 1.00$
50 oft $£ 4.50$
100 off $£ 7.50$
Order No. As:4RI
BRect.

REGULATED
 VARIABLE
 Stabilised
 POWER SUPPLY

Vatiable from 2.30 volts and 0.2 Amps. Kit includes
-VPS30 Module, $1-25$ volt 2 amp transformet, $0.50 \mathrm{v} 2^{" \prime}$ Panel Meter, $1-0.2 \mathrm{amp} 2^{"}$ Panel Meter, $1-470$ ohm witewound potentiometer,
wirebound potentiometer, Wirigg Diagram included. Order No. VPS30 KIT
\qquad MINIATURE FM TRANSMITTER Freq: $95-106 \mathrm{MHz}$. Range: $\frac{1}{2}$ mile Size: $45 \times 20 \mathrm{~mm}$. Ad
 Not licenced in U.K
$£ 5.50$

8 Bit MICROPROCESSOR National INSSOBOAN 40 Pin DIL N Channel Silico GATE MOS TECHNOLOGY AS NBOBO Micio Computer Family Instuction Cycle Time 2 uS Supplied with functional Block Diagram BRAND NEW

NOT seconds or reciams
100% perted ORDER NO 5×8080 Only Normal Sell price $f 450$ each $\mathbf{C 2} 00$ SO HURRY - LIMIIED STOCKS

40 Pin IC Socket to on 5×8080 Other pice ORDEA NO 1609 30p
TRANSISTOR CLEARANCE All Sorts Transistors. A mixed Bag NPN-PNP Silicon \& Germ. Mainly Uncoded You To Sort Pack
100 includes Instructions for Making Simple Transistor Tester. Super
Value. Order No. VP60
$\mathbf{£ 1 . 0 0}$
hobbyist is probably the most value-packed selection ever offered
consists of Resistors, carbon and wirewound of various values. Capacitors: All types, sorts and sizes including electrolitics. Potentiometers - single, dual, slider and preset. Switches, Fuses, Heatsinks, Wire, P.C.B. Board, Plugs, Sockets etc., PLUS a selection of Semiconductors for everyday use in popular Hobby Projects. These include: SCR's, Diodes, Rectifiers, Triacs \& Bridges as well as a first class mix of Transistors and I.C.'s. In all, we estimate the value of this in current retail catalogues to be over $£ 251$ So, help yourself to a great surprise and order a Box TODAY for just £6.50 ONLY at BI-PAK. Remember, stocks are limited so hurry! You can call us on 0920-3182/3412 and order
with your Barclaycard or Access Card - 24 hr
Answerphone Service NOW. Order No. V.P. 85.

MW3s8 NI-CAD CHARGER
case with ift indicators it up lid Charge Test switch. LED

Charges PP3 IVV

PP3 (9V)

U12 (1.5V penlit
$\mathrm{U11}(1.5 \mathrm{~V}$
$\mathrm{U} 2\left(1.5 \mathrm{~V}^{-2} \mathrm{CD}^{\prime \prime}\right)$
POWER SUPPLY OUR PRICE $£ 3.25$
Power supply fits directly into 13 amp socket
Fused for safety. Polarity reversing socket.
Voltage switch. Lead with multi plug
7.5, 9 \& 12V DC Rating -300 - $3,4,5,6$.

DISPLAY MULTITESTER RE 188m
CD 10 MEGOHM INPUT IMPEDANCE -3. digit $* 16$ ranges plus hFE test facility for PNP and NPN transistors *Auto zero, auto polarity *Single-handed, pushbutton operation -Over range indication ${ }^{*} 12.5 \mathrm{~mm} \mathrm{~g}$-inch) large LCD readout *Diode check *Fast circuit protection "Test leads, battery and instructions included.
Max indication 1999 or -1999
Polarity indication Negative only Positive readings appear without + sign
Input Impedance 10 Megohms
Zero adjust Automatic
Sampling time 250 mililiseconds
Temperature range $-5^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$
Power Supply $1 \times \mathrm{PP} 3$ or equivalent 9 V battery
Consumption 20 mW
Size $\quad 155 \times 88 \times 31 \mathrm{~mm}$
RANGES $£ 35.00$
OC Voltage $0-200 \mathrm{mV}$. 0 each
AC Voltage $0-200-1000 \mathrm{~V}$
Acc. 1% DC Current $0-200 u A$ $0-2-20-200 \mathrm{~mA}, 0-10 \mathrm{~A}$. Acc. 1.2% Resistance $0-2 \cdot 20-200 \mathrm{~K}$ ohms
$0-2$ Megohms. Acc. 1%
BI-PAK VERY LOWEST PRICE
DIGITAL VOLT METER MODULE 3×7 segment displays Basic Circuit $0.2 \mathrm{~V}=$ instructions provided to extend voltage \& current ranges
Operating voltage $9 / 12 \mathrm{v}$ Typ. Power Consumption 50 mA
$£ 9.95$
$0 / \mathrm{NO}$: $\mathrm{SX99}$ Once only price

Our Price: $£ 5.50$

CAT NEW 1984 CATALOGUE
Presented with a Professional Approach and Appeal to ALL who require Quality Electronic Components, Semiconductors and other Accessories ALL at realistic prices. There are no wasted pages of useless information so often included in Catalogues published nowadays. Just solid facts i.e. price, description and individual features of what sell quality STILL DO.

We hold vast stocks "in stock" for fast immediate delivery, all tems in our Catalogue are available ex stock. The Catalogue designed for use with our 24 hours "ansaphone" service
and the Visa/Access credit cards, which we accept over the telephone.
o receive your NEW 1984 BL-PAK Catalogue, send 75p PLUS 25p p\&p to:

SIREN ALARM MODULE
American Police type screamer powered from any 12 volt supply into 4 or 8 ohm speaker. Ideal for car burglar alarm, freezer breakdown and other security purposes. 5 watt, 12 v max.
$£ 3.85$
Order No. BP124.

为- The Third and Fourth Hand.. never got until now. This helpful unit with Rod mounted horizontally on Heavy Base Crocodile clips attached to rod ends. Six ball \& socket joints give infinite variation and positions through 360° also available attached to Rod a 2 d diam magnifier giving $25 \times$ magnification. Helping hand unit available with or without magnifier. Our price with magnifier as illustrated OROER NO. T402 £5.50 Without magnifier OROER NO. T400£4.75

TRIACS - PLASTIC

4 AMP - 400v - T0202-TAG 136G.			
1 OFF	10 OFF	50 OFF	100 OFF
40p	£3.75	£17.50	£30.00
8 AMP	- T0202	TAG 42	
60p	¢5.75	£27.50	£50.00

VOLTAGE REGULATORS TO220 $\begin{array}{ll}\text { Positive }+ & \text { Negative }+ \\ 7805-40 \mathrm{p} & 7905-50 p^{2}\end{array}$ $\begin{array}{ll}7805-40 \rho & 7905-50 p \\ 7812 & \\ 7912 & -50 p\end{array}$ $\begin{array}{ll}7815-40 \mathrm{p} & 7915-50 \mathrm{p}\end{array}$ $7824-40 \mathrm{p} \quad 7924-50 \mathrm{p}$

TUNE INTO THE WEATHER . . .
 using our complete 'meteosat' weather satellite RECEPTION SYSTEM

We supply the complete system from antenna to video monitor, at the lowest price ever imagined for such a comprehensive system. View the entire globe on your video screen, or select any enlarged portion of the earth, for example Europe, as seen by the satellite from 20,000 miles above the earth. Both visible light pictures and infra-red pictures can be selected, the latter giving useful temperature information.

Our complete system consists of the following items:-

1. ANTENNA; 1.1 metre diameter parabolic dish with feed, supplied in kit form to reduce costs and make transportation easier
2. ANTENNA PREAMPLIFIER: Gasfet low-noise preamplifier to be bolted on to the antenna, to overcome feeder losses and provide maximum sensitivity.
3. $\mathbf{1 6 9 0} \mathbf{M H z}$ CONVERTER: Frequency converter from 1690 MHz to 137.5 MHz to allow a conventional receiver to be utilised.
4. 137 MHz RECEIVER: The FM receiver, which demodulates the received encoded signal. Orbiting satellites on the $136-138 \mathrm{MHz}$ band can also be received using this receiver
5. DIGITAL FRAME STORE: The audio signal from the receiver is stored in a large Dynamic RAM memory, which then drives the monitor to provide a continuous display.
6. VIDEO MONITOR: A high quality black-and-white monitor, with 25 MHz bandwidth, ideal for displaying this type of image with excellent definition.

The above items are all that are necessary to obtain first-class pictures from Meteosat. ALL FOR $£ 1,375$ +VAT.
Individual items from the above system are also available.
Write or phone for further details.

DO YOU HAVE A REQUIREMENT FOR VHF/ UHF RECEIVERS OR TRANSMITTERS?

We have a comprehensive range of professional quality FM receiver and transmitter units, which can be supplied either as working printed circuit boards for inclusion as a sub-assembly in a more complex unit or as complete encased products, to operate in the frequency ranges: $130-180 \mathrm{MHz}$ and $400-500 \mathrm{MHz}$.

UNIT TYPE	PRICE (exc. VAT)
AR21 VHF FM Recerver	€149
AR71 UHF FM Receiver	€177
AT25 VHF FM Transmitei	£84
AT75 UHF FM Transmitter	$£ 110$

The above items carry a 12 month guarantee, and we normally carry good stocks to ensure the minimum of delivery delays. If you have a requirement, or would be interested in quantity discounts, please contact our sales department.

MICROWAVE MODLLES BROOKFIELD DRIVE, AINTREE, LIVERPOOL L9 7AN, ENGLAND Telephone: 051-523 4011 Telex: 628608 MICRO G

SCARAB SYSTEMS

39, Stafford Street, Gillingham, Kent ME7 5EN. (0634-570441)
141, Nelson Road, Gillingham, Kent ME7 4LT. (0634-575778)
AMATEUR RADIO PROGRAMS RTTY
Cassette \& PCB
Complete package
Assembled \& Tested

ZX. 81
£13.45
£25.10
£30.00

SPECTRUM £15.00 £29.55 £ 35.00

Split screen version now available for 48K Spectrum

For this please add $£ 2.50$ to Spectrum prices above
Please note these RTTY programmes do need a decoder/encoder.
BBC-B $£ 9.20$
PET $£ 9.50$
VIC-20 $£ 9.00$
MPTU-1 RTTY/AMTOR terminal uit for T.B.A all computer based systems. £69.70.
Morse Tutor programs all at $£ 5.00$ each for:-
BBC-B * DRAGON 32 * TRS-80 * SPECTRUM *. MORE BBC. PROGRAMS.
CW.OSO. Complete $\mathrm{R} \times / T x$ program $\mathbf{£ 7 . 5 0}$ MULTIFILE. A versatile filing system $£ 10.25$ TELLTEX. 21-page VIDEO MAGAZINE

All prices include VAT \& postage Please allow 14 days deliver. Write for further details of these and other programs. WANTED Amateur Radio, Technical \& Business software for all popular home micro's.

RST

	fp_{275}	EM81	2.50 2.50 705	PL509 PP519	6.00 600	6 6AK5	5.99	${ }^{6 L 6 G}$	3.00 3
AZ31	2.75	EM87	2.50	PL519	6.00	6AL5	1.50	6L6GC	3.00
CL33	4.00	EN91	7.05	PL802	6.00	6AM6	6.02	6 L 7	2.50
DY86/7	1.50	EY51	2.75	PY33	2.50	6AN5	4.75	6L06	7.50
DY802	1.50	EY86	1.75	PY81	1.50	6AN8A	3.50	607	3.75
E88CC	8.42	EY88	1.75	PY82	1.50	6A05	2.25	6SA7	3.00
E180F	10.20	EY500A	3.00	PY83	1.25	6 6AR5	3.50	6SC7	3.00 2
E810F	35.48	EZ80	1.50	PY88	2.00	6AS6	8.66	6SC7	2.75 3.25
EABC80	1.25	EZ81	1.50	PY500A	4.00	6AS7G	8.75	6S577	3.25 3.50
E891	1.50	GY501	300	PY800	1.50	6AT6	1.25	6SK7	3.50
E8F80	1.50	GZ32	4.00	PY801	1.50	6 6AU5GT	5.00	6SL7GT	3.00
E8F89	1.50 8.00	G233	4.75	QQV02.6	30.50	6AU6	2.50 3	6SN7GT	3.00
EC91	8.00	GZ34	4.75 3.00	QOV $03-10$	20.50	6AW8A	3.75 3	6SS7	2.75
ECC33	4.50 4.50	G237	3.75	QQV03-20A		687 688	3.25 3 3	6SG7M	2.50
$\begin{aligned} & \text { ECC35 } \\ & \text { ECC81 } \end{aligned}$	4.50 1.75	KT61	5.00	QQV06-40A	48.38	688 6846	3.25 1.50	6UBA	2.25
ECC82	1.75	KT66	12.00	QOVO6-40A	65.34	6BA6	1.50 500	6V6GT	2.25
ECC83	1.75	KT77	9.00	Qv03.12	6.80	6BE6	1.50	6X4	2.00
ECC85	1.75	KT88	15.00	R18	3.00	6BH6	2.50	6X5GT	1.75
ECC88	2.10	N78	15.00	R19	9.24	68J6	2.25	12AX7	1.75
ECC91	8.93	OA2	3.25	SP41	6.00	6BN6	2.00	12BA6	2.50
ECF80	1.50	OB2	4.35	SP61	4.00	6807A	3.50	12BE6	2.50
ECH35	3.00	OC3	2.50	U19	13.75	68R7	6.00	128Y7A	3.00
ECH42	3.50	OD3	2.50	U25	2.50	6BR8A	3.50	$12 \mathrm{HG7}$	4.50
ECH81	3.00	PC86	2.50	U26	2.50	6BS7	6.00	30FL1/2	1.38
ECL80	1.50	PC88	2.50	U37	12.00	68W6	6.00	30 P 4	250
ECL82	1.50	PC92	1.75	UABC80	1.25	6BW7	1.50	30 P 19	250
ECL83	3.00	PC97	1.75	UBF89	1.50	6826	2.75	30 1919	2.50 180
ECL86	1.75	PC900	1.75	UCH42	2.50	$6 \mathrm{CC4}$	1.25	30 PL 13 30 PL 14	1.80 180
EFF37A	5.00 2.075	PCF80	2.00	UCH81	2.50 1	$6 \mathrm{C6} 6$	1.75	30PL14	1.80
EF39	2.75	PCF82	1.50	UCL82	1.75	6CB6A	2.50	5728	30.00
EF41	3.50 4.50	PCF86	2.50	UCL83	2.75	6CD6GA	5.00	805	45.00
EF42	4.50	PCF801	2.50	UF89	2.00	${ }^{6 C L 6}$	3.75	807	3.75
EF50	2.50	PCF802	2.50	UL41	3.50	${ }_{6}^{6} \mathrm{CH} 6$	13.00	811 A	18.33
EF54	5.00 3.50 105	PCF805	1.70	UY44	1.75 225	6CW4	8.00	812A	18.33
EFF80	3.75 1.75	PCF808	1.70	UY85	2.25 2.25	606 6005	1.75 6.00	813	125.86
EF86	1.75	PCH200	3.00	VR105330	2.50 250	SEAB	3.00	866 A	20.03
EF91	2.95	PCL82	2.00	VR150/30	2.50	6EH5	1.85	872A	20.00
EF92	6.37	PCL83	3.00	2759	25.00	6 F6	3.00	931A	18.50
EF183	2.00	PCL84	2.00	Z803U	19.00	6Gk6	2.75	2050	7.00
EF184	2.00	PCL85	2.50	2 D 21	3.25	6H6	3.00	5763	4.50
EH90	1.75	PCL86	2.50	3 B 28	40.00	6HS6	3.77	5814A	4.00
EL32	2.50	PCL805	2.50	$4 \mathrm{CX250B}$	40.00	6 J 5	4.50	5842	12.00
EL33	4.00	PD500	6.00	5 R 4 GY	3.50	$6{ }^{6} 6$	8.93	6080	14.00
EL34	3.00	PFL200	2.50	$5 \mathrm{SU4G}$	3.00	$6{ }^{6} 7$	4.75	6146 A	8.25
EL36	2.50	PL36	2.50	5 V 4 G	2.50	6JB6A	5.00	6146 B	88.25
EL81	5.25	PL81	1.75	5 YYGGT	2.50	6JS6C	6.00		8.25
EL84	2.25	PL82	1.50	523	4.00	6 K 4 N	2.50	68838 6973	8.25 400
EL86	2.75	PL83	2.50	524 GT	2.50	$6 \mathrm{6K6GT}$	2.75 3	6973 7360	4.00 10.00
EL95	9.69 2.00	PL504	2.00 2.50	6/30L2 6 6B7	1.75 3.00	$6 K 7$ 668	3.00 3.00	7586	12.00
EL260	8.50	PL508	2.50	6AH6	5.00	6KD6	7.00	7587	18.50
Prices excl VAT add	$\begin{aligned} & \text { is C.V } \\ & \text { ling } \end{aligned}$	pen daily s, Tubes only, all Quotations Pos	callers Trans 7 day for an nd pac	Mon-Fri 9 a.m ors - Close or delivery. ypes not list ing 50p per		$72424 / 7 \text {. }$	$\begin{array}{r} \text { Telex } \\ 946708 \end{array}$	Prices when to p	rrect oing ss

DRESSLER AMPLIFIERS
These are high power 240 V linears using $4 \mathrm{C} \times 150$ or $4 \mathrm{C} \times 250$ or $4 \mathrm{C} \times 350$ Eimac Tubes NOT using the grounded Grid system.
Fully protected, no thermal damage to PA finals possible.

GASFET DRESSLER PRE-AMPS

DRESSLER AMPLIFIERS
D70 70cm 200wfm 400 PEP $£ 700.00$ D200 2 mtr 300 wfm 600 w PEP $£ 595.00$ D200S 2mtr 400wfm 1KW PEP $\mathbf{£ 6 9 5 . 0 0}$ D200C 2 mtr 100 w . Few left at $\mathbf{£ 2 7 5 . 0 0}$ W2
W2GAAS 150 W
W200GAAS 750 W N200GAAS 1 kW VV2RPS S0259 VV2RPS N Type VV7RPS S0259 VV7RPS N Type New W200 VOX

$\mathbf{£ 4 4 . 0 0}$

$£ 75.00$
£85.00
Non switching $£ 22.00$
$£ 24.00$
£22.00
$€ 24.00$
$\mathbf{£ 8 4 . 0 0}$ 250w PEP VOX
e linear or with separate interface.
$0.7-0.9 \mathrm{~dB}$ signal to noise GASFET MASTHEAD PRE-AMPS
0.2 dB insertion loss

3SK97 GASFET Available separately $\quad \mathbf{£ 5 . 0 0}$

TRIO/KENWOO TR9130 25W MULTIMODE COMP WITH TONNA 9XY ANTENNA £430.00	FRG 7700 With or without memory For price phone 01-556 1415		INC. 70CMS .+ SATELITE
$\begin{aligned} & \text { ROTATOR PRICE } \\ & \text { SLASHED } \\ & \text { EF50 } \end{aligned}$	PHONE DRESSLER $01-5561415$		

caddt hafivey lexton EAST LONDON HAM STORE DRESSLER (U.K.) LID., 191 FRANCIS ROAD LEETON E 10 $01-5561415$

ALL ACCESSORIES AVAILABLE - PLUGS SKTS CO-AX 2MTR COLINEAR £33.00 70CM COLINEAR £33.00.

S E UNION MILLS, ISLE OF MAN Tel: MAROWN (0624) 851277

S.E.M. TRANZMATCH. Now has wider range on 160 m . The best aerial matching system. Matches $15-5,000$ ohms BALANCED \& UNBALANCED up to 1 kW . Air coupled BALUN means no connection to equipment which can cure TVI both $\mathbf{3 . 5 - 3 0 M H z} £ 74.1,8-30 \mathrm{MHz} £ 83$. EZITUNE built in $£ \mathbf{2 9} .50$ extra. (See below for the much acclaimed EZITUNE) All Ex Stock. Please note that 90% we sell have the much acclaimed
the EZITUNE option.
S.E.M. IMABIC KEYER. We have replaced its plastic box, with an attractive plated steel case. No better fully auto keyer anywhere. Uses Curtis chip. R.F. proof. $\mathbf{£ 3 8}$. A first class twin paddle key $\mathbf{£ 1 5}$ Ex stock.

BRAID BREAKER/HI PASS FILTER. Stop TVI at TV. $\mathbf{f 6 . 5 0}$ Ex stock.
RF NOISE BRIDGE. Adjustable $0-1,000$ ohms, $3^{\prime \prime} \times 1 \mathbf{1}^{\prime \prime} \times 2^{\prime \prime}$ only. S0239s, 1 170 MHz . Neat, accurate \& economical. £29.50 Ex Stock.

3 WAY ANTENNA SWITCH 1Kw SO239s. Good to 2 metres. $£ 15.00$ Ex stock. Or 4th position to earth output $£ 17.50$ Ex stock
S.E.M. 2 METRE TRANZMATCH. $5 \mathrm{j}^{\prime \prime} \times \mathbf{2}^{\prime \prime}, \mathbf{3}^{\prime \prime}$ deep. SO239s. $\mathbf{£ 2 4 . 9 0} \mathbf{E x}$ stock. S.E.M. EZITUNE. New circuit. Gives MORE noise \& bomb proof operation.

Because no similar unit is made, it's usefulness is not appreciated until you have used one. Eliminates need for S.W.R. bridge.
Clean up the bands by tuning up without transmitting.
Connects in aerial lead, produces $\mathrm{S} 9+(1-170 \mathrm{MHz})$ noise in receiver. Adjust A.T.U. or aerial for minimum noise. You have now put an exact 50 Ohms into your transceiver. Fully protected, you can transmit through it, save your P.A. and stop in TRANZMATCH or any ATU £29.50 Ex Stock.

SENTINEL 2M LINEAR POWER/PRE-AMPLIFIERS
Feature either POWER AMP alone or PRE-AMP alone or both POWER AND PREAMP or STRAIGHT THROU when OFF. Plus a gain control on the PRE-AMP from 0 to 20 dB . N.F. around 1 dB with a neutralised strip line BF981.

Ultra LINEAR for all modes and R.F. or P.T.T. switched. 13.8 V nominal supply. SO239 sockets.

Three Models:

1. SENTINEL 35 Twelve times power gain. 3W IN 36W OUT, 4 amps. Max. drive 5W. $6^{\prime \prime} \times 22^{\prime \prime}$ front panel, $4 i^{\prime \prime}$ deep. $\mathbf{~} 65$ Ex stock.
2. SENTINEL 50 Five times power gain. 10 W IN 50 W OUT. Max drive 16 W 6 amps. Same size as the Sentinel 35 , $\mathbf{£ 7 9 . 5 0}$ Ex stock.
. SENTINEL 100 Ten times power gain. 10W IN 100W OUT. Max. drive 16 W .

SENTINEL AUTO 2 METRE or 4 METRE PRE-AMPLIFIER (R.F. Switched) 1dB N.F. and 20 dB gain, (gain control adjusts down to unity) 400W P.E.P. power rating. Use on any mode. 12 V 25 mA . Sizes: $12^{\prime \prime} \times 21^{\prime \prime} \times 4^{\prime \prime}$. £29.50* Ex stock.
PA5 Same specification as the Auto including 240V P.S.U. £33.00* SENTINEL STANDARD PRE-AMPLIFIER. No R.F. switch. £15.00* Ex stock.
S.E.M. AUDIO MULTIFILTER (A very good filter at a very good price)

To improve ANY receiver on ANY mode. The most versatile filter available. Gives "passband" tuning, "variable selectivity" and one or two notches. Switched Hipass, Lo-pass, peak or notch. Selectivity from 2.5 KHz to $\mathbf{2 0 H z}$. Tunable from 2.5 KHz to 250 Hz . PLUS another notch available in any of the four switch positions which covers 10 KHz to 100 Hz . 12 V supply. Sizes: $6^{\circ} \times 22^{1^{\prime \prime}}$ front panel, $32^{\prime \prime}$ deep, all for only $\mathbf{£ 5 7 . 0 0 ~ E x ~ s t o c k . ~}$
SENTINEL AUTO H.F. WIDEBAND PRE-AMPLIFIER $2-40 \mathrm{MHz}, 15 \mathrm{~dB}$ gain. Straight through when OFF, $9-12 \mathrm{~V} .2 \frac{1}{}^{\prime \prime} \times 1 \frac{1}{}^{\prime \prime} \times 3^{\prime} .200 \mathrm{~W}$ through power. £19.55* Ex stock.

SENTINEL STANDARD H.F. PRE-AMP. No R.F. switching. £12.62* Ex stock. S.E.M. VISA 80 METRE RECEIVER

Already a great success. If you want an 80 metre ($3.5-3.8 \mathrm{MHz}$) Rx. Only $22^{\circ} \times 6^{\prime \prime} \times$ $3^{\prime} .12$ volt operation. I.W. o/p. This is for you. $£ 45$.
12 MONTHS COMPLETE GUARANTEE INCLUDING ALL TRANSISTORS.
Prices include VAT and delivery. C.W.O. or phone your credit card number for same day service. -Means Belling Lee sockets, add $£ 1.90$ for S0239s or BNC sockets. Ring or write for more information. Place orders or request information on our Ansaphone at cheap rate times.
Goods normally by return.

...And A 60-Channel Programmable Scanner

${ }^{\text {s } 25995}$
 - 50 Public Service and Aircraft Channels

Realistic PRO-2003. No crystals to buy - direct keyboard entry of 20,584 frequencies! Use the search circuit to find new channels. When you find one that sounds interesting, store it in memory! Has 2-speed scan and search, Scan Delay, individual channel lockout, priority function and variable squelch control. Bands: VHF-Lo $68-87 \mathrm{MHz}$; FM Broadcast 88 - 107 MHz ; VHF-Air AM 108-136 MHz; Ham 138-148 MHz; VHF-Hi 148-174 MHz; $410-450 \mathrm{MHz}^{2}$ UHF-Lo 450-470 MHz; UHF-Hi 470-512 MHz. 20-9117

OVER 340 STORES AND DEALERSHIPS NATIONWIDE Mnown As Radio shack in the u.s.A. Check your phone book for the Tandy store or Dealer nearest you mha Pnot to itis advenisement, al quated reguar pnces have been charged dunng the last six months at the Tandy Siore. Tameway lower, Undge Street. Waisal wesi Madands wSit ila

FREE CAREER BOOKLET

Train for success in Electronics Engineering, T.V. Servicing, Electrical Engineering-or running your own business!

ICS have helped thousands of ambitious people to move up into higher paid, more secure jobs in the fields of electronics, T.V., electrical engineering-now it can be your turn. Whether you are a newcomer to the field or already working in these industries, ICS can provide you with the specialised training so essential to success.

Personal Tuition and 80 Years of Success

The expert and personal guidance by fully qualified tutors, backed by the long ICS record of success, is the key to our 'outstanding performance in the technical field. You study at the time and pace that suits you best and in your own home.

You study the subjects you enjoy, receive a formal Diploma, and you're ready for that better job, better pay.

TICK THE FREE BOOKLET YOU

Ex-Gov. 27ft telescopic aerial close to 5 ft . Good condition, complete with all base \& fittings £45. P\&P paid. Callers welcome $£ 25$.
Pye Pocketfone Nightcall for PF1/TX/RX. New boxed $£ 17.00$. Whip aerial Ex-Gov. 4ft collapsible $£ \mathbf{1 . 0 0}$.
Steel 2 in. Interlocking Mast sections 4 ft . Price $\mathbf{£ 3 . 5 0}$ each p\&p paid min. 5.
Crystals HC6U Ex. Equip. $5.000 \mathrm{mc} / \mathrm{s}, 7.000 \mathrm{mc} / \mathrm{s}, 8.000$ I.M.C $\mathrm{mc} / \mathrm{s}, 9.000 \mathrm{mc} / \mathrm{s}$. Also Glass Crystal $100 \mathrm{Kc} / \mathrm{s}$, to fit B7G base. All at $£ 2 \mathrm{p} \& \mathrm{p}$ paid.
Telephones - Type 706 good condition $\mathbf{£ 5} \mathrm{p} \& p$ paid.
Small 230 V fans, $4 \mathrm{in} . \times 2 \frac{1}{2}$ in. 2,500 r.p.m. $£ 4.50 \mathrm{p} \& \mathrm{p}$ paid.
Pye Pocketfone PF1, battery charger, 12 way with meter $£ 10$ p\&p paid. PFI TX batteries $\mathbf{£ 2}$ each p\&p paid.
We have also for sale the following items which are too numerous to advertise. Callers only, valves, transformers, tuning units, receivers, bases, wave-guide, scopes, plugs, sockets, power units, capacitors, aerials, headsets, cable, signal generators, BC221.
Ni-Cad batteries for Pye PF1 RX. 5 for $£ 2$ p\&p paid. Min. order 5. All these batteris are ex-eq. but good condition.
 p\&p paid. Contains pots, res., diodes, tagboards, caps., chassis, valve holders etc. Good value save $£ £ £^{\prime}$'s. Lucky dip service.
AVO multiminor test meter. Tested. $£ 20$. Ex eq. p\&p paid. AVO 7X. Tested. Ex. eq. $\mathbf{£ 4 0}$ p\&p paid.

Opening times:
Monday-Friday 8.30am-5.00pm, Saturday 8.30am-12am Please allow 14 days for delivery.

A. H. THACKER \& SONS LTD HIGH STREET, CHESLYN HAY NEAR WALSALL, STAFFS.

ambit international

the first name for:-
Linear ICs

ambit international

the first name for:ALPS switches
ambit international

The first name for:-
Value in electronics, communications and computing

the first name for:Solenoid cassette mechanisms

ambitinternational

01-422 9585 FOR FAST DELIVERY

ICOM IR70 GENERAL COVERAGE RECEIVER If you are one of the many hunting for a second hand ICOM R70 ... PLEASE! SAVE YOUR MONEY
This says it all for the high performance and classy appearance of the R70 "YOU BUY IT TO KEEP IT" We keep repeating it PEORMANCE SILKY SMOOTH, APPEARANCE SILKY SMOOTH, OPERATION SILKY SMOOTH. . . . PRICE? We thinh also SILKY SMOOTH, certainly smooth enough for you to cal us on 01-422 9585 and become one of the "YOU BUY IT TO KEEP IT" R70 Owners.

Are you REALLY THE KEY ELEMENT Are you REALLY SATISFIED with the performance of your phone not quite doing what you expected? It's is that microphone not quite doing what you expected? It's not surprising, most of the microphones used in communication today were designed 10 use with paging systems. Listen to the MARVEL-
LOUS AUDIO from the other side of the Atlantic, that's not LOUS AUDIO from the other side of the Atlantic, that's not
surprising either for a large number of the American operators surprising ether for a large number of the American operators are using the HEIL MICROPHONE CAPSULE, THE KEY ELEMENT in reproducing communication sound as it should be.
Not for them the "this is mic one, this is mic two, this is mc three etc." syndrome, all you get from that test is three different three etc." syndrome, all you get from that test is three different opinions from three different stations. We know you are looking
for INTELLIGIBILITY from first class ARTICULATION It's no available in the UK. The HC 3 is a tiny capsule which rolls off sharply under 350 Hz and above 3100 Hz and virtually flat in sharply under 350 Hz and above 3100 Hz and virtually flat in
between. If you care about PERFORMANCE, INTELIGIBILITY and BEING LISTENED TO RATHER THAN JUST HEARD, then the HEIL HC3 capsule is for you. Easily fitted in a matter of minutes to almost any microphone case and available at $£ 17.99$ including VAT and post.

AMTECH 300B ANTENNA COUPLER
BRITISH MADE and MADE TO LAST and PRICED TO SUIT YOUR POCKET, thousands already in use throughout the world. Rated at 300W pep the 300B is suitable for all coaxial fed or random wire antennas. Whats more it comes with a twin meter (3.5 to 170 Mhz) S.W.R. bridge ABSOLUTELY FREE. Compare the price with anything else available and you'll see why it has become our STAR BUY. CALL AMCOMM 01-422 9585 for FAST DELIVERY AND SUPER VALUE.

YAESU FT2GORB MULTI MODE TRANSCEIVER Looking back a year or so we're extremely surprised that the 290 has not had to face up to any competition. TRYING to see the other manufacturers attitude to it isn't easy could they better it? or did Yaesu GET IT RIGHT FIRST TIME. We know they did, why else has it become the world's Biggest and fastest selling ing of all time? CAN IT BE IMPROVED? functionally we can add a few refinements, you might like to add the MUTEK board if you feel you need it, we'd be happy to do anything like that for you but it still adds up to Yaesu's team doing the bio bit GETIING IT RIGHT FIRST TIME and leaving the opposition STRANDED. CALL AMCOMM 01-422 9585. We'll quote you a price and delivery . . . FAST DELIVERY.
DON'T FORGET THE OTHERS IN THE YAESU FAMILY THE FT230. THE 730 AND OF COURSE THE $790 \ldots$ ALL IN STOCK LOOKING FOR A GOOD HOME.

YAESU FT290RB 2m ALL MODE TRANSCEIVER The world's BIGGEST AND FASTEST SELLING TRANSCEIVER EVER, still without a competitor in sight. This transceiver is a real seasonal gift from AMCOMM to you at a price YOU'LI NEVER SEE AGAIN. You don't believe us? Call 01-422 9585 FOR YOUR BIG SURPRISE.

COMPETITORS PLEASE CALL AFTER 6 PM OR ANYTIME
SUNDAY OR MONDAY.

There are many on the market these days and it must be difficult YOU for we have exactly the same problem IT WORRY searched the specs, tested the performance and analysed the reliability and our findings are simple... THEY ARE ALL GOOD... some have this and some have that, some are black, some are grey but they all have one thing in common . . . VALUE FOR MONEY. If you like it and it suits you then it's the one for you. ... It leaves only one problem ... THE PRICE. We're always helping where it hurts - Try us on 01-422 9585 Now. We'll ease the pain.

> WHAT INFLATION

Cast your mind back seven or eight years to the introduction of the Yaesu FT 101E, it proved A WINNER FOR YAESU and a DELIGHT TO OWNERS. At £579 it was considered to be GOOD VALUE THEN. Reflect on this! and ask these questions: Did it have GENERAL COVERAGE ... IF SHIFT/WIDTH CONTROL . . TWO VFO'S . . MNRESTRICTED RIT ... AN RF PREAMP... FULL
FM ... UNRES FM . UNRESTRICTED RIT .AN RF PREAMP... FULL
BREAK IN . . SWITCHABLE AGC . . SCAN FACILITY? Both you and we know it didn't. Yet despite the passing of the years, and MASSNE INFLATION affecting other markets Yaesu can still offer you a transceiver with all these facilities AT VIRTUALLY THE SAME PRICE AS THE FT 101E WAS ALL THAT TIME AGO. Amateur radio expensive? Answer that one yourself. Oh! By the way the transceiver we are talking about is the FT 757 GX .

HIRSCHMANN 250. There is no better buy on the market than this. . . . A lightweight Rotor suitable for most VHF than this. . . . A lightweight Rotor suitable for most VHF
antennas. . . It's yours for $£ 45$. . Carr and ins. $£ 1: 50$. SKYKING SU4000. . . . An outstanding Rotor for large VHF arrays or light HF beams. .. A delightful illuminated compass readout. . . . NICE ONE AT £85:00 CARR \& INS. £1:50.
SKYKING 2000 . . . A super little rotor ideal for the smaller VHF array, already in use at G5VS and doing a grand job, he is detighted and so will you be at the performance and PRICE detighted and SO Will you be at the performance and and you
9.95 . . CAN YOU BELIEVE IT? Add $£ 1.25$ carriage and $£ 39.95$. . . CAN YOU BELLEVE II? Add $£ 1.25$ carrian well have it off to you at once. ANTENNA PARTS AND KITS
Includes the world's finest traps - REYCO, which are guaranteed for five years no condenser used - no blow up possible. Precision moulded coil forms with stainless hardware aluminium irridite finish - fully waterproofed and suitable for wire, vertical and beam antennas, rated at 2.5 Kw and weigh only 402 per trap - available for 7Mhz (KW40), 14Mhz (KW20), 21Mhz (KW15) and 28Mhz (KW10). £18.99 induding VAT and carriage.
The BALUN - The Unadilla W2AU is famous because it's the best, same rating as the traps and has a built-in lightning arrestor - available $1: 1$ and $4: 1$ - get it right first time with W2AU Balun - guaranteed for five years. £18.99 induding VAT and carriage.
THE KITS-AMCOMM 40-1 pair KW40 traps, 1 PL259, 1 W2AU Balun, 1 pair insulators and of course 120 ft soft drawn copper wire - coverage $80-10$ metres (induding 10Mhz). Full instructions included. 843.50 including VAT and carriage. AMCOMM 20 - 1 pair KW20 Traps, 1 W2AU Balun, 1 PL259, 1 pair insulators and 65 ft soft drawn copper wire - coverage 40 10 metres, full instructions included. $£ 41.50$ including VAT and carriage.
AMCOMM $38-1$ pair KW10 traps, 1 pair KW15 traps, 1 PL259, 1 W2AU Balun, 1 pair insulators and 30tt soft drawn copper wire - coverage $20 \mathrm{~m}, 15 \mathrm{~m}$ and 10 m . Full instructions included. £47.50 including VAT and carriage.
NEW WARC TRAPS - KW12, KW17 and KW30 now available from stock. $£ 18.99$ including VAT and carriage.

YAESU FT980

COVERA TRANSCEIVER Yaesu said the FT1 was an adventure in electronics and we agreed. The Fi980 is something quite different ACCOMPLISHMENT IN ELECTRONICS providing the operator with a brilliantly designed transceiver with a wealth of features. Every feature has been carefully designed in to ensure the operator has MAXIMUM BENEFIT without gimmicks vhile allowing INCREDIBLE EASE OF OPERATION. We'd need more than this page to do justice to the FI980 so we suggest you call in and try it for yourself or call 01-422 9585 for a beautifully illustrated leaflet with a full description. ... Yes it is expensive ... the best usually is unless a way can be found to ease
the pain ... AMCOMM ARE EXPERTS AT THAT . . TRY US. THE HANDHELDS
As we said last month "It's been a great year for the hanoheids especially the Yaesu FIZO8R, they are all extremely versatile BUT THE 208 HAS THE EDGE. Did you see the reviews? The certainly told you a lot.. WHAT THEY DID'NT TELL YOU WAS HOW TO OPERATE YOUR HF RIG FROM THE 208, from the garden, from the car, even the bath if your are willing to chance it. Whichever handheld you're interested in - Marine P.M.R. or Amateur. call us and we'll tell you, we'll even send P.M.R. or Amateur. call us and we lit
you the information. Call $01-4229585$.

YAESU FT726R $2 \mathrm{~m} / 70 \mathrm{cms} /$ SAT

If you've been enjoying your annual winter break in ULAN BATOR you've probably missed the VOLUMES OF SUPERLA TIVES being liberally dispersed about the YAESU 726R They're coming from all sources... THE REVIEWERS LUCKY OWNERS . . FRIENDS OF LUCKY OWNERS . . . eve from the VERY UNLUCKY DREAMERS ... LITLLE WON DER! . . ALL OF 2 MTS . . ALL OF 70 cms . . . and a large portion of the HF SPECTRUM . . . MORE . . . it rumours coming from JA prove correct it won't be too long before we have a 1296 FACILITY . . . add the SATELLITE DUPLEXER to that lot and you really have yourself a DREAM OF A RIG Performance figures? Like the rest of it TOP NOTCH . . bu don't take our word for it, call AMCOMM ON 01-422 9585

CALL 01-422 9585 FOR PRICE
UNION ELEC. WORLD TIME GLOBE
INSTANI TIME AT HOME AND ABROAD ... simply turn the globe displays a red FLASHING LIGHT on that country. ... Beneath. IT DISPLAYS THE TIME IN THE UK AND THE COUNTRY OF YOUR CHOICE. . . . LONQ life of batteries guaranteed by automatic switch off after 30 seconds beautiful and practical addition to the shack at any time . $£ 47: 50$ post
paid. COA CII NOW $01-42$
9585 FOR FAST DELIVERY.

OUR MAIL ORDER SERVICE

The words we hear most frequently are "I REALLY DIDN'T EXPECT IT UNTIL NEXT WEEK". THEY REFER TO OUR MAIL ORDER SERVICE and come both by telephone and letter. When we say "IT WILL GO TODAY" we really mean that, the same day via red label special Securicor or first class post. You have very little to do, refer to the list below, pick up the telephone, quote your credit card number and the product is on the way to you... or drop a cheque in the post and goods will be despatched on receipt WE PROMISE YOU ONE THING, the very least you'll save is the cost of a telephone call. TET, HYGAIN, YAESU, ICOM, TRIO/KENWOOD, MICROWAVE MODULES, BNOS, DATONG, JAYBEAM. TONNA, MORSE KEYS including HI-MOUND and the SWEDISH BRASS, UNADILLA, SKYKING, HIRSCHMANN, TONO, TASCO, JVC PADDLE, VALVES, WELZ, MUTEK, HANSEN, DAIWA and many more. If you need it we probably have it. If you've got the time we've got the phone lines.... We guarantee you'll save more than a phone call. All the year round call 01-422 9585 for fast quotes and fast delivery BACKED UP BY FIRST RATE AFTER SALES SERVICE.

I Wonder Why

THE REVISED UK CB RADIO LICENCE, which comes into effect on 5 March 1984, is mainly a "tidying-up" job in the light of the experience of the first two years of the service. The prohibition on transmitting music, or re-transmitting radio and TV broadcast material, is clearly spelled out now. The only signals permitted are speech, selective calling or digital identification signals, plus K-tone or pip-tone signals to indicate the end of a transmission. Repeater stations are ruled out, though they may later be authorised in the 934 MHz service. Use of a CB on board ship requires the consent of the ship's Master.

The restrictions on the form of antenna permitted for 27 MHz installations have been relaxed somewhat. The loading coil may now be placed anywhere in the antenna, instead of just at the base, but the length of the antenna is now limited to 1.65 m and its diameter to 55 mm , in both cases including the loading coil but excluding any ground-plane elements.

The requirement for transmitter power to be reduced when the $C B$ rig is used with an antenna more than a certain height above ground has been totally revised, so that the power limit is stated in watts, rather than in dB relative to full power as previously.

Two changes have been made to the limitations on who may operate a CB set under a particular licence. The first allows any person to operate the apparatus under the direct supervision of the licensee-a reasonable relaxing of the rules. The second change prevents anyone under the age of 14 holding a CB licence. In future a child under 14 can operate only under the direct supervision of
the licensee, or of another member of the licensee's household appointed to do so.

I was not aware that there had been any particular problems from young CBers, and I wonder why this rule has been made. After all, we have a minimum age limit of 14 for the Amateur Licence, but we still get plenty of "children" of all ages who abuse their licences and spoil other people's enjoyment of the hobby in the process.

Another "I wonder why" topic is the choice by British Telecom of the name Teletex for its new telephone data service. Surely, when the name Teletext is already in widespread use for the quite unrelated broadcast data services on TV (Ceefax and Oracle in the UK), it would have been wiser to select a name that didn't sound virtually identical when spoken. It's already caused confusion, for one national TV rental chain had a whole lot of display material printed for its shops proclaiming that several of their sets incorporated Teletex facilities. They didn't-they were Teletext sets!
 Services

QUERIES

While we will always try to assist readers in difficulties with a Practical Wireless project, we cannot offer advice on modifications to our designs, nor on commercial radio, TV or electronic equipment. Please address your letters to the Editor, ''Practical Wireless", Westover House, West Quay Road, Poole, Dorset BH15 1JG, giving a clear description of the problem and enclosing a stamped self-addressed envelope. Only one project per letter please.
Components for our projects are usually available from advertisers. For more difficult items, a source will be suggested in the "Buying Guide" box included in each constructional article.

PROJECT COST

The approximate cost quoted in each constructional article includes the box or case used for the prototype. For some projects the type of case may be critical; if so this will be mentioned in the Buying Guide.

INSURANCE

Turn to the following page for details of the PW Radio Users Insurance Scheme, exclusive to our readers.

CONSTRUCTION RATING

Each constructional project will in future be given a rating, to guide readers as to its complexity:

Beginner

A project that can be tackled by a beginner who is able to identify components and handle a soldering iron fairly competently. Generally this category will be used for simple projects, but sometimes for more complicated ones of wide appeal. In this case, construction and wiring will be dealt with in some detail.

Intermediate

A project likely to appeal to a wide range of constructors, and requiring only basic test equipment to complete any tests and adjustments. A fair degree of experience in building electronic or radio projects is assumed.

Advanced

A project likely to appeal to an experienced constructor, and often requiring access to workshop facilities and test equipment for construction, testing and alignment. Constructional information will generally be limited to the more critical aspects of the project. Definitely not recommended for a beginner to tackle on his own.

SUBSCRIPTIONS

Subscriptions are available at $£ 13$ per annum to UK addresses and $£ 14$ overseas, from "Practical Wireless" Subscription Department, Room 2816, King's Reach Tower, Stamford Street, London SE1 9LS. Airmail rates for overseas subscriptions can be quoted on request.

BACK NUMBERS AND BINDERS

Limited stocks of some recent issues of PW are available at $£ 1$ each, including post and packing to addresses at home and overseas.

Binders are available (Price $£ 5.50$ to UK addresses, $£ 5.75$ overseas, including post and packing) each accommodating one volume of PW. Please state the year and volume number for which the binder is required.

Send your orders to Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF. All prices include VAT where appropriate.

Please make cheques, postal orders, etc., payable to IPC Magazines Limited.

Be Prepared

Following PW's most successful first venture into organising an open 144 MHz contest last year, we will be repeating the event this year.

The "PW QRP 144 MHz Contest 1984" will take place on Sunday 17 June between 0900 and 1700GMT (10am to 6 pm local time).

Look out for further details nearer the date.

Tapes Catalogue for SWLs

The Handicapped Aid ProgrammeUK and the Canadian Handicapped Aid Program can supply twelve professionally produced tape recordings devoted to various aspects of the hobby of DXing, designed specifically for shortwave listeners everywhere.

Their publication entitled Tapes Catalogue contains descriptions of the subjects covered by the twelve tapes, order form and prices.

To obtain a free copy of the Tapes Catalogue, apply, enclosing return postage, to either: HAP-UK, PO Box 4 , St Ives, Huntingdon, Cambs. PE17 4ST, or CHAP, 6 Coolbreeze Avenue,

Pt Claire, Quebec, Canada H9S 5 G4.
The Handicapped Aid Programme is an international organisation that promotes s.w. radio amongst handicapped people and offers them practical assistance. All profits from sales of the tapes are ploughed back into the organisation.

Royal Television Society

It will soon be 50 years since the termination of the contract between the Baird Company and the BBC, whereby the 30 -line television service was broadcast on frequencies in the medium waveband, and received mainly in the homes of enthusiastic amateurs and experimenters.

The Midland Centre of the Royal Television Society plans to mark this anniversary with an event to be held towards the end of March and initially wishes to identify as many of those pioneer viewers as possible.

The Society, therefore, invites any of the original Baird viewers to contact their Honorary Secretary, John Grantham, BBC Network Production Centre, Pebble Mill Road, Birmingham B5 7QQ.

The 1983 Girl Technician Engineer of the Year

Mrs Frances Dagg, age 23, a Software Development Engineer from Coundon, Coventry, is the 1983 Girl Technician Engineer of the Year. At a ceremony in London on 19 January 1984, Baroness Platt of Writtle, Chairman of the Equal Opportunities Commission, presented her with a prize of $£ 250$ and an inscribed rose bowl. A special award of £100 was made to the runner-up, Mrs Lynne Holt, 29, also a Software Development Engineer from Coventry. Employed by GEC Telecommunications in Coventry, Frances work involves all aspects of computer programming, however, she is primarily concerned with writing CAD (computer-aided design) programs for electronic design purposes and assisting hardware engineers in their use. Her responsibilities also include training graduate engineers in the use of the Circuit Design System.

Seeing her software in action, providing increased efficiency in hardware design for a wide variety of applications, proves to be particularly rewarding for Frances. Her main leisure interests include, inevitably, her home computer, plus the works bridge club which she organises.

This Award, which is sponsored by The Caroline Haslett Memorial Trust and The Institution of Electrical and Electronics Incorporated Engineers, aims to focus attention on electrical and electronic engineering as a worthwhile professional career for women.

For details of the Award and how to nominate candidates for the 1984 award, contact: The Institution of Electrical and Electronics Incorporated Engineers, 2 Savoy Hill, London WC2R OBS. Tel: 01-836 3357.

Rallies and Events

The RSGB National VHF Convention will be held at Sandown Park Racecourse, Esher, Surrey, on Saturday 24 March 1984.

This one day event will include an exhibition by the trade, specialist groups and an equipment test facility will be operated by Don Hamilton G8DON. Also, a full lecture programme on v.h.f., u.h.f. and microwave subjects will run through the afternoon.

The Convention starts at 10.30am until 6.00 pm , with the address and presentation of trophies by RSGB President, Bob Barrett GW8HEZ, at 1.45 pm .

Refreshments and a licensed bar will be available throughout the day and admission will be $£ 1.00$ for adults, £0.50 for under 18 year olds and free for those under 14 years.

Buxton Mobile Rally, organised by the Buxton Amateur Radio Rally Group, will be held at The Transport Museum, Buxton, Derbyshire, on Sunday 8 April 1984.

Doors open at 11 a.m. (10.30a.m. for RAIBC) and admission will be 50 p, with under 14 year olds admitted free, provided they are accompanied by an adult.

There will be numerous trade stands, refreshments, talk-in on 144 MHz and 430 MHz , plus ample car parking is available.

For details, contact: Dave Cooper G6MIF, tel: Buxton (0298) 6174.

The White Rose Amateur Radio Society will be holding their 17th annual rally, for the third year running, at the University of Leeds, on Sunday 1 April 1984.

Starting at 11 a.m. there will be approximately 50 stands offering new and used amateur radio gear, components, computer products, surplus equipment, books, etc., plus repeater groups and BYLARA will be represented.

Talk-in will be available on 144 MHz and 430 MHz , and a demonstration station, GB2WRR, will be in operation. Car parking is free, but an entrance fee of 50 p will be charged (children and OAPs free).

Further details from: The Rally Manager, Alan Bramley G4NDU, tel: Leeds (0532) 689880.

Insurance

Readers who are interested in applying to the PW Radio Users Insurance Scheme are advised to use the coupon published on page 18 of last month's issue.

Special Event Station

A special event station, GB2RBL, will be run on behalf of the Royal British Legion Branch, London N12, starting at 1100GMT on 31 March 1984 until 8 April 1984-a total of nine days.

Dependent on operators being available and propagation conditions permitting, GB2RBL will be active on 144 MHz v.h.f. and the 14,7 and 3.5 MHz bands on h.f. For overseas DX, the station will be working $14 \cdot 185 \mathrm{MHz}$. Special event QSL cards will be available to all confirmed contacts, via the RSGB Bureau.

Further details from: Terry F. Owen G4PSH, 5 Station Close, Holden Road, London N12 7EG. Tel: 01-446 0266.

For Your Diaries

Amateur radio rallies and exhibitions during 1984 we've had dates for so far are:
NARSA Amateur Radio Weekend, Saturday/Sunday April 7/8 at Pontins Holiday Village, Southport, Lancs.
RSGB National Amateur Radio Exhibition, Saturday/Sunday April 28/29 at NEC, Birmingham.
27th Northern Mobile Rally, Sunday May 13 at the Great Yorkshire Showground, Harrogate, N. Yorkshire.
RNARS Mobile Rally, Sunday June 17 at HMS Mercury, Leydene, near Petersfield, Hants.
Longleat Amateur Radio Rally, Sunday June 24 at Longleat Park, Warminster, Wilts.
RSGB Woburn National Mobile Rally, Sunday August 5 at Woburn Abbey, Beds.

RAIBC/FRARS Hamfest '84, Sunday August 19 at Flight Refuelling Sports Ground, Merley, Wimborne, Dorset.
Scottish Amateur Radio Convention, Saturday September 8 at Cardonald College, Mosspark, Glasgow.
Welsh Amateur Radio Convention, Sunday September 30 at Oakdale Community College, Blackwood, Gwent.
Practical Wireless will be at all these events with recent copies of the magazine plus reprints and computer program cassettes, and PW parabolic dishes. We hope we'll see you there.

50MHz Licences to be Increased

The Department of Trade and Industry has asked the RSGB to make recommendations to them with regard to 60 additional stations taking part in 50 MHz experimental work. Originally, 40 special research permits for Class A licensees were issued.

Those amateurs who have already submitted a full questionnaire to the Society's VHF Manager, need only confirm, in writing, that they wish to be reconsidered.

Questionnaires from new applicants must be with the Society by 31 March 1984. They are obtainable from RSGB Headquarters, marking the envelope "The Secretary- 50 MHz ".

Completed questionnaires must then be sent to: The VHF Manager, Keith Fisher G3WSN, RSGB, Alma House, Cranborne Road, Potters Bar, Hertfordshire EN6 3JW. Tel: (0707) 59015.

Lowes Grows

Lowe Electronics, the Matlock based Trio main agents, are at it again, that is opening yet another branch, this time in the university town of Cambridge.

The new shop is located at 162 High Street, Chesterton, Cambridge, tel: (O223) 311230 , and will be opening at the beginning of April.

On Sunday 18 March, Lowes have booked the Trinity Suite in the Cambridge Post House Hotel at Lakeview, Bridge Road, Impington, Cambridge, between 2.00 and 4.30 pm . The purpose of this will be to introduce both themselves and the Trio range of equipment to the local amateur population and any other interested parties-all are welcome.

The manager of the new shop, Tony Collet G4NBS, a lad who rises from that neck of the woods, will be there to welcome everyone and early arrivals will receive a glass of vino and the odd peanut. Additionally, Lowes will be running a station at the Post House using the callsign G8LOW and talk-in will be available on S22.

For further information, contact: Lowe Electronics Ltd., Chesterfield Road, Matlock, Derbyshire DE4 5LE. Tel: (0629) 2817/2430/4057 and 4995.

On the Move

Would readers please note that one of the suppliers of p.c.b.s for Practical Wireless projects has moved.
C. Bowes Electronics Ltd. is the company, and their new premises are at: Unit 7, Kenwood Road, Reddish, Stockport, Cheshire SK5 6PH. Tel: 061-432 9434.

Repeater Management Group-Open Meeting in Poole

Would all licensed amateurs, short-wave listeners or anyone who is interested in the UK repeater network, please note that Practical Wireless are sponsoring an Open Meeting with members of the RSGB Repeater Management Group (RMG), to be held in Poole.

All who are able to get to Poole on a Saturday afternoon, are very welcome to attend the meeting, which will be held at The Mariner, West Quay Road, Poole, Dorset on Saturday 10 March, between 1.30 and 5.00 pm .

At the meeting, interested parties will learn of the very latest state in the development of UK repeaters, join in discussions and put questions to RMG officers.
$P W$ staff will be running a talk-in station and listening for initial contacts through the Bournemouth located 144 MHz repeater GB3SC on channel R1.

The Mariner has excellent luncheon facilities and a large comfortable licensed lounge bar, plus ample car parking space is available.

We look forward to meeting all who are able to attend, but would ask you to bear in mind that the conference room must be vacated at 5.00 pm , so the meeting will start promptly at 1.30 pm .

The walk from the Station to the Mariner will take approximately 10 minutes

GaAs-fet
 PRE-AmP FOR 430 mHz

by Sam Jewell G4DDK

The author's favourite band is undoubtedly 430 MHz . This is reflected in the wide range of home constructed equipment he has produced since gaining an amateur radio licence, always with the constant objective of improving the performance of the home station. It was realised early in this process that a masthead pre-amplifier could give a marked improvement in receive sensitivity.

One problem was what device to use? An early attempt at a masthead pre-amplifier used a wideband design by DJ7VY which appeared in the German publication VHF Communications. This performed well at first but its great advantage of broadband operation soon became a disadvantage. A newly licensed G6+3 moved in just 50 m away and began operating on 144 MHz . The "DJ7VY" provides 17 dB of broadband gain covering both 144 and 430 MHz -the results when G6 . . began operating were disastrous! Several attempts were made to add selectivity ahead of the pre-amplifier but the loss of the various filters tried just degraded the noise performance to the point where no advantage was gained in having a masthead preamplifier.
The answer lay in using a Gallium Arsenide f.e.t. with high Q, low loss input matching to give a degree of inherent selectivity. Conventional microwave GaAs-f.e.t. devices are relatively expensive and rather fragile and, since the author has an aversion to paýing good money for something likely to be destroyed in an instant, they were avoided. Fortunately an alternative exists, the consumer dual-gate GaAs -f.e.t.

These devices were developed by the semiconductor industry as a low-cost solution to the problem of reducing the noise figure of TV tuners. Dual-gate GaAs-f.e.t.s are designed for operation up to approximately 900 MHz . Because they operate at lower frequencies than their microwave counterparts they are able to use lower tolerance dimensions. This has resulted in low cost and less fragility-just what the author was looking for. The device chosen from those available was the Toshiba 3SK112 which is readily obtainable.

Pre-amplifier Design

The design of a pre-amplifier is largely dictated by its operating conditions. Unfortunately the data sheets for dual-gate GaAs-f.e.t.s do not usually give the optimum operating conditions for low-noise performance at 430 MHz . Therefore it was necessary to extrapolate values from the available data and then confirm these values once the pre-amplifier was built. Table 1 gives the d.c. operating conditions for optimum low-noise performance of a 3 SK 112 at 430 MHz .

Details of the input and output impedances are similarly not readily available, and this caused the greatest design difficulties. The problem was resolved by adopting widerange matching circuitry from a conventional GaAs -f.e.t. amplifier and empirically determining the correct values for the 3SK112. The final circuit is shown in Fig. 1.

Circuit Description

The gate 1 bias voltage $\mathrm{V}_{\text {GIs }}$ is developed automatically by placing resistor R1 in the source circuit. This form of auto-bias will be familiar to anyone who has designed and built valve equipment. The value of R1 is derived as follows:

$$
\begin{aligned}
\mathrm{R} 1 & =\frac{\mathrm{V}_{\mathrm{G} 1 \mathrm{I}}}{I_{\mathrm{d}}} \\
& =\frac{1 \cdot 75}{1^{-2}} \\
& =175 \Omega
\end{aligned}
$$

In practice the nearest preferred value of 180Ω is used.
Gate 2 -to-source voltage is set at zero by coupling the connections together through a $15 \mathrm{k} \Omega$ resistor, R 2 .
The source and gate 2 leads must be thoroughly bypassed to ground at 430 MHz and this is achieved by soldering the leads directly onto the leadless disc capacitors, C3 and C4. The actual value of capacitance of these two components is not too important, as long as it is

Air spaced trimmers C1/2, $5 / 6$ (Type SC8/18/A3) can be obtained from Oxley Developments, Priory Park, Ulverston, Cumbria (Tel: 0229 52621). The approximate cost shown below is for the preamplifier only without relays and enclosure.

Fig. 1: Circuit diagram of the 430 MHz GaAs -f.e.t. pre-amplifier

An internal view of the author's prototype pre-amplifier

Fig. 2: The final constructional arrangement of the pre-amplifier. Most components are mounted on or above the earthed ground plane. The drain of the GaAs-f.e.t. device, $\operatorname{Tr} 1$, passes to the output circuit through a $6 \times$ 4 mm rectangular hole cut through the vertical screen between the leadless disc capacitors C3/4. Resistor R2 is positioned under $\operatorname{Tr} 1$, across C3/4

within the range 220 to 1000 pF . Of greater importance is their size, which means using slightly higher voltage components. Leadless dise capacitors are notorious for exploding when heated during soldering. The use of higher voltage devices will lessen the likelihood of this happening.

Very high Q (low loss) components must be used in the input matching circuit if lowest noise performance is required. Air-spaced, silver-plated trimmers and silver-plated copper wire must be used. Output matching is not so critical, but a silver-plated coil and capacitors were again used to ensure the lowest loss and highest gain.

Protection Relay

A protection relay is used to give extra isolation between the transmitter and pre-amplifier. If a good quality relay is available for the antenna changeover then the protection relay may not be necessary. Most relays
measured by the author gave less than 40 dB crosstalk isolation between the transmitter and receiver. This means that with 100 watts output power more than 10 mW would appear at the pre-amplifier input. At this level of input the GaAs-f.e.t. would be driven into compression and could over dissipate, with a consequent risk of self-destruction. A protection relay can provide over 20 dB of extra isolation and virtually eliminate the problem.

A 50Ω non-inductive resistor may be connected to the receive port so that when transmitting the pre-amplifier input is correctly terminated, since this reduces the chances of self-oscillation. This resistor can also be useful as a built-in test if the protection is arranged such that it can be controlled separately from the main relay. By connecting the resistor to the input of the pre-amplifier, in place of the "cold" antenna, an increase in receiver noise output should be apparent. The difference in level will depend on what the antenna is "seeing" within its beam pattern.

If the antenna can see only "cold" sky an increase in the noise level of several dB can be expected when the preamplifier is connected to the resistor. A relay which shorts the receive port to ground whilst transmitting is obviously not suitable for this purpose, although it may be possible to remove the shorting contact by "tweaking" the receive lever spring of the relay. Great care should be exercised if this is to be attempted however.

Construction

No attempt has been made to produce a printed circuit board for the pre-amplifier as the design is better suited to the form of construction shown in Fig. 2.

Construction starts by cutting thin brass or copper sheet to form the screens. Suitably-sized holes are drilled in the screens to fit the GaAs-f.e.t. Tr 1 and the feedthrough capacitor C7 in the positions shown. Once the holes are drilled the leadless disc capacitors C3 and C4 should be soldered into place, as shown in Fig. 2. These capacitors must be located on the input side of the screen if complete stability is to be assured. The leadless discs are best fitted by tinning the part of the screen where they are to be located and then sliding the disc into place. Finally solder the disc into place by heating the screen from the reverse side. Wet tissue paper can be used to prevent the first disc from moving whilst the second one is being soldered into place.

Once the leadless discs are in position it is advisable to fit resistor R2 between them, as shown in Fig. 2; resistor R1 may also be fitted at this stage.

Next the screens should be soldered together and also soldered to the base plate. The base plate can be made of brass or copper sheet, or of copper-clad p.c.b. material. Its size will depend upon the box used to house the preamplifier. The author used a salvaged Belling Lee TV distribution amplifier box. This type of box has a rubber sealing gasket around the lid and two very convenient mounting lugs. Unfortunately no regular source of this type of box has been discovered, so it may be necessary to use an alternative, such as that sold by RS Components.

When the screens and base plate are assembled it is possible to solder into place the remaining components.

The input trimmer capacitor, C 1 , is supported at one end by the junction of C2 and L1. The other end of C1 is left floating and will eventually connect to the protection relay. The GaAs-f.e.t. should be mounted last and the correct orientation of the leads strictly observed.

When soldering any static-discharge-prone device such as the GaAs-f.e.t., certain precautions should be taken. It is wise to ensure that the soldering iron is at all times properly earthed and the author usually switches off the power to the iron whilst actually soldering the device into place. These types of GaAs-f.e.t.s are reasonably rugged, but there is no need to prove it!

A short length of ptfe coaxial line is used to connect the output trimmer to the output socket. The braid of this line should be connected to ground at both ends.

Power Supply and Control Unit

This unit would normally be situated in the shack in a convenient position, where the l.e.d.s can easily be seen. It contains a power supply for the pre-amplifier and a separate supply for the switching relays. A schematic diagram is shown in Fig. 3.

Desirable characteristics for any regulator used to power a masthead pre-amplifier are that it should produce a low noise output and be completely stable when connected to long supply leads. It is also desirable to have adjustable output volts to allow for voltage drop along the supply leads. Finally the regulator should be short-circuit proof, as it is all too easy to short the supply leads together when commissioning the new pre-amplifier. An LM317M adjustable regulator was chosen for the power supply and has given many months of reliable service without any problems.

Supervision of the control unit is provided by two l.e.d.s. Normally these are arranged to both be on when receiving and off when transmitting. The l.e.d.s are connected across the supplies to the two changeover relays. A single switch on the control unit is used to release the protection relay in order to terminate the pre-amplifier input in 50Ω as discussed earlier. A press to talk (p.t.t.) connection needs to be made to the control unit from the

components

transceiver. This "hard wired" connection controls relay. changeover.

It should be noted that the masthead relays are both arranged to be operated (energised) whilst on receive. Should the pre-amplifier fail this does allow the transmit feeder to be used for normal operation until the fault can be dealt with.

The power unit supplies the operate voltages for these relays and the choice of transformer will be dictated by the types of relays that the constructor is able to obtain. Most surplus relays seem to have $24-28$ volt d.c. operate coils. Details of interconnections between the control unit and the masthead unit are shown in Fig. 4.

Control Unit Construction

The power supply and control unit is built into a vinylclad steel enclosure approximately 75 mm square by 150 mm deep. Again no p.c.b. is used as the majority of the components are large, and therefore better mounted directly to the box itself.

No mains on/off switch is provided, therefore the unit is on as soon as it is plugged into a mains socket outlet. A 1 amp anti-surge fuse is fitted for protection.

Alignment

Pre-amplifiers are always difficult to align properly unless an automatic noise-figure meter is available. Assuming such equipment is not to hand, the most popular method of tuning is to listen to a distant signal of reasonably constant strength, such as that from a beacon.

POWER SUPPLY/CONTROL UNIT

Resistors

Carbon film	$\frac{1}{4} W 5 \%$	
220Ω	1	R2
$3.9 \mathrm{k} \Omega$	2	R4,5
$10 \mathrm{k} \Omega$	1	R3

Potentiometers
Min. horizontal preset
$4.7 \mathrm{k} \Omega$
1
R1

Capacitors
Tantalum bead
$0.1 \mu \mathrm{~F} 35 \mathrm{~V} \quad 1 \quad \mathrm{C} 2$
$1 \mu \mathrm{~F} 35 \mathrm{~V} \quad 1 \quad \mathrm{C} 3$
Electrolytic (axial)
1000μ F $35 \mathrm{~V} \quad 1 \quad$ C4
$1500 \mu \mathrm{~F} 35 \mathrm{~V} \quad 1 \quad \mathrm{C} 1$
Semiconductors
Diodes

1N4001	3	D1,4,5
1A 50V p.i.v. bridge	1	BR1
Red I.e.d.	2	D2,3
tegrated circuits LM317M 1	IC1	

Miscellaneous
Mains transformer (see text): 20 mm fuse holder with 1A anti-surge fuse; s.p. switch, S1: 4 pole c.o. relay (Continental series or equiv.) RLA; Coaxial c.o. relay (RS349-686 or equiv.) RLB; Coaxial c.o. relay (CX520D or equiv.) RLC; Mounting box.

The output circuit is first tuned for maximum signal strength followed by the input circuit for the largest signal to noise ratio.

Using this method it can be very difficult to convince yourself that an improvement in signal to noise ratio has actually been made. The adjustments are not made any easier by the vagaries of propagation.

For those enthusiasts who build more than the occasional pre-amplifier the answer is to build an alignment aid, such as the excellent device described by G4COM in the January 1976 issue of Radio Communication. The alignment aid is a simplified noise figure meter and although it does not indicate absolute noise figures, it does indicate any improvement in signal to noise ratio. If alignment of the pre-amplifier is carried out carefully, and everything is working as it should, then the pre-amplifier will not be far off optimum and even a professional noisefigure meter would not enable you to improve the results.

Fitting the Masthead Unit

Probably the biggest deterrent to fitting a masthead preamplifier is the problem of weatherproofing. If the preamplifier is housed in a properly sealed box, such as the previously mentioned RS Components box, and care is taken to ensure all leads and sockets connected to the box are properly sealed, then few problems should be encountered.

The arrangement used by the author for mounting the prototype system is shown in Fig. 5. A separate box is used to enclose the antenna changeover relay and this may seem unnecessary, but there is good reason for this. If a single larger box was used to house the pre-amplifier and

Fig. 4: System interconnections and relay control arrangements of the masthead pre-amplifier
both relays then the ultimate isolation between the antenna and pre-amplifier during transmit conditions would not be realised, due to crosstalk between the two relays. For low transmit power levels it may not be too important, but should be seriously considered if you are contemplating using high power.

Four-way screened lead is used to connect the masthead unit to the power supply and control box. The braid of this cable should be earthed at both ends of the run to maintain screen integrity. Using screened cable helps to prevent unwanted pick-up of noise and r.f. if the cable run happens to be close to other antennas.

Table 1

Parameter	Value
Drain Source Voltage V_{DS}	5 V
Gate 1 Source Volts $\mathrm{V}_{\mathrm{G} 1 \mathrm{~S}}$	-1.75 V
Gate 2 Source Volts $\mathrm{V}_{\mathrm{G} 2 \mathrm{~S}}$	0 V
Drain Current I_{D}	10 mA
Operating Parameters for 3 SK 112 at 430 MHz	

Fig. 5: Masthead mounting arrangements adopted by the author. For increased isolation on TX the antenna C/O relay RLC is fitted inside a separate weatherproof enclosure

Results

Within days of installation of the prototype masthead pre-amplifier system a widespread tropospheric opening occurred. During the opening much DX was worked from the author's Midlands QTH. What was unusual was that many of the stations worked were running only 5 or 10 watts output and were received at signal strengths of only a few dB above noise. It is certain that they would have been inaudible without the extra performance of the GaAs-f.e.t.

Solar noise runs consistently at 3 dB over "cold" sky using two $4 \cdot 2 \lambda$ long Yagis. When the transmit feeder is used to connect directly into the receive converter no solar noise is detectable at all.
The pre-amplifier has survived severe icing, one of the wettest Springs on record, and several weeks of British Summer heat-wave!

PLEASE MENTION PRACTICAL WIRELESS WHEN REPLYING TO ADVERTISERS

PHOTO

 ACOUSTICS LTD.58 HIGH STREET, NEWPORT PAGNELL, BUCKS, MK168AQ Tel: 0908610625

PART EXCHANGE WELCOME, ASK FOR KERRY OR DEREK Monday-Friday $9.30-5.30-$ Saturday 9.30 .5 .00

WARNING: Unfittered power can
damage your computer's health.

THE
 INTERNATIONAL VHF-FM GUIDE

Sixth Edition - 128 Pages.
A unique source of information for anyone who works through VHF REPEATERS IN U.K. \& ABROAD
Maps of coverage areas and locations of all UK VHF amateur repeaters together with full details of callsigns, channels, access and reaccess requirements, talk-through times, QTH locators etc. In fact everything you need to know to work through every repeater in the UK with confidence.
The overseas section covers most of Europe/Scandinavia plus S. Africa \& Australasia with country by country maps showing repeater locations keyed to full listings of callsigns, channels, locators, powers etc.
Anyone planning to operate abroad will find the
RECIPROCAL LICENSING INFORMATION
for 35 countries
to be invaluable. In what is undoubtedly the most comprehensive and up-to-date publication of its type in the world, we have collected addresses of licensing authorities, with details of the advance notice, payments and info that they each require to issue you with a licence to operate on your holiday or business trip.
The book also includes charts of FM repeater and simplex channel frequencies, 10 metre, 6 metre and VHF \& UHF beacons and a wealth of other useful information.
Now in its tenth year of publication the GUIDE has received world-wide acclaim and is perhaps the best value for money of any book published by and for Radio Amateurs.
Available from many Amateur Radio dealers or by post at $\mathbf{£ 2 + 3 0 p}$ p\&p direct from the publisher:
J. Baldwin G3UHK
41, Castle Drive,
Maidenhead,
Berks. SL6 6DB
NATIONAL GIRO No. 224424009

For the discerning DX man who wants only maximum performance!

> Tiger LY6
> £15.95
> Tiger LY8 £20.95
> Tiger LY10 £32.95
> Plus $£ 5.00$ Securicor delivery
> Excellent range of two meter antennae

GREAT VALUE FOR MONEY! Send cheque or money order TODAY

Have UK101 computer with manuals, value £80, signal generator a.m./f.m., $350 \mathrm{kHz}-20 \mathrm{MHz}$ in 5 bands with wobbulator output, TCS12 receiver, B41 v.l.f. receiver. Would exchange for 144 MHz gear, HRO coilpacks, Heathkit Mohican info w.h.y. Jim G6ETV. Tel: Kidderminster 3674.

U514
Have Trio 2200 GX mobile/portable 144 MHz TX/RX, NiCads, charger, rubber duck, mobile bracket, carry-case. Would exchange for Sony ICF2001. Keith. Tel: 0543376366 (West Midlands) at weekends.

U515
Have brand new 25 watt W \& D linear and mobile mount for FT290, gutter mount $7 / 8$ Oscar. Would exchange for working 430 MHz 3 or 4 -channel set, i.e. Palm IV. R. Goodge, 29 Adamson Court, Broadfield, Crawley, West Sussex. Tel: 0293 25032. U520

Have 500pF four-gang variable capacitor. Would exchange for reel-to-reel tape recorder in working order. Chris Aubrey. Tel: 01-370 3992.

U522
Have an IC $\frac{1}{8}$ scale model stock car, never races, with a Futaba radio system. Would exchange for TR-2500 or similar 144 MHz portable hand held or w.h.y. Tel: 0223862666 (Cambridge). U528

Have CB radios, 1 JWR and 1 Tandy hand held TCR 1001. Recent RAE. Struggling with Morse (have Datong will travel). W.h.y? Reg. Tel: 0943609551 (Ilkley).

U529
Have Video Genie 116 K computer. Would exchange for FRG7000 or FRG-7. W. E. Gates, 16 High Mill Drive, Scarborough. Tel: 0723365093.

U532
Have Realistic 140 kHz to 30 MHz DX 100 L receiver plus Binatone 12 channel hand held CB. Both as new. Would exchange for small dual beam oscilloscope. T. Nolan. Tel: Chester 313857.

U533
Have Transcom GBX4000 CB radio complete with many accessories. Would exchange for ZX Spectrum 48 K or similar computer. Or 144 MHz hand held (prefer IC-2E). Peter. Tel: Romford 46538.

U535
Have MMT144/432R transverter 1.6 shift, 10W out. Standard attenuator plus 7 dB attenuator. Would exchange for 144 MHz portable or something interesting. Tel: 01-446 4932 (evenings).

U543
Have Eddystone 730 communications receiver, value $£ 120$. Would exchange for good oscilloscope. Can deliver Lancashire or Cheshire area. W. E. Moore, 18 Brunswick Terrace, Stacksteads, Bacup. Tel: Bacup 874928 (7 p.m.)

U563
Have a 144 MHz f.m. full range hand held 1 and 5 watt transceiver including charger. Would exchange for 48 K Spectrum Mark III or dual beam oscilloscope. M. Ellis, 13 Dilworth Close. Summit, Heywood.

U566
Have Racal diversity unit, CB Persuader speech processor, medals, large collection military models $1 / 96$ scale die cast, two h.d. 12V 125Ahr batteries (new). Would exchange for EX W.D. receivers working or not. Can collect. Tel: 0908314095 (3 p.m.) (Milton Keynes).

U573
Have Sony ICF 6800W general coverage receiver f.m.-m.w., 29 s.w. bands, s.s.b. s.w. frequency counter, digital readout in good working order. Value approximately $£ 225$. Would exchange for VHS video recorder. Mr. Gordon, 24 Stanley Road, Poole, Tel: Poole 686521.

U579
Have Seagull Sentry 40+ outboard motor. Has had only four hours use from new. Would exchange for IC-2E plus accessories or consider other hand helds. G6XJB. Tel: Waterlooville (Hants.) 4587 (evenings).

U583

Have AR 88D receiver in perfect working order. Would exchange for good three row button key accordion. R. MacMaster, Shielbridge, Acharacle, Argyll.

U584
Have parts for H.F. valve linear; valves (813, 805, T100, TZ40) and bases, capacitors (fixed/variable), coils, switches, meters, transformers, and chokes. Would exchange for HRO, Heathkit/USA transceiver, good or faulty, or w.h.y. G4KWL. Tel: 0734871330 (Reading).

U585
Have Kodak Carousel S-AV slide projector, good condition with case. Would exchange for 144 MHz rig. Full details to Peter G6UMG, 252 Wilson Ave., Rochester, Kent.

U586
Have Krokus 35 photographic enlarger with lens and trays. Would exchange for $8-10 \mathrm{~dB} 144 \mathrm{MHz}$ Yagi beam with mast fittings. C . Gurney. Tel: Rochdale 41462 (evenings).

U587
Have LCL 40 channel f.m. CB transceiver, s.w.r./power meter, whip antenna, antenna matcher, no p.s.u. Would exchange for ZX81 plus 16 K RAM and etc., or amateur gear. W.h.y. Mr. McConnell, 415 Charter Ave., Coventry.

U588
Have Icom IC-451E 432 MHz multimode base station in very good condition. Original packing, all leads etc. Would exchange for Icom R70 or Trio R2000 receiver. Ian. Tel: 0509502989 after 6 p.m. (Shepshed, Leics.)

U599
Have TR 9000144 MHz multimode, power supply adjustable to 30 volts, microwave modules MML 144/100-5 10 watt in 100 watt out 144 MHz linear. Would exchange for FT-221 in very good condition. W.h.y? Tim. Tel: 079575093 evenings and weekends (Sittingbourne).

U600
Have Sony TC-651 reel to reel stereo tape recorder. Logic control, auto reverse, echo, dubbing and mixing facilities. In immaculate condition and including tapes and accessories. Would exchange for modern h.f. transceiver or separates. D. Andrews G4NNP. Tel: 027165522 (North Devon).

U601
Have professional 32 K add-on memory for Pet computer. Would exchange for anything 430 MHz or TV related. P. Saul. Tel: Towcester 0327-51716.

U614
Have Nikon EM Camera f1.8 as new. Would exchange for modern communications receiver or scanning monitor. Also have pair Goodmans twinaxioms and monitor audio micromonitor loudspeakers. W.h.y? Mr. Michaels. Tel: Watford 33034 (Room U).

U615

PW "SWAP SPOT"

Got a camera, want a receiver? Got a v.h.f. rig, want some h.f. gear to go with your new G4? In fact, have you got anything to trade radio-wise?
If so, why not advertise it FREE in our new feature SWAP SPOT. Send details, including what equipment you're looking for, to "SWAP SPOT", Practical Wireless, Westover House, West Quay Road, Poole, Dorset BH15 1JG, for inclusion in the first available issue of the magazine.
A FEW SIMPLE RULES: Your ad should follow the format of those appearing above; it must be typed or written in block letters; it must be not more than 40 words long including name and address/telephone number. Swaps only-no items for sale-and one of the items MUST be radio related. Adverts for ILLEGAL CB equipment will not be accepted.

This year's Midlands VHF Convention was held on Saturday, October 15 at the British Telecom Training College, Stone. The change from the previous venue at Wolverhampton Polytechnic was generally welcomed, particularly in view of the ample free on-site parking. The organisers had hoped that visitors might have set up demonstrations in the car park, unfortunately typical v.h.f. contest weather (horizontal rain) sent everyone scurrying for the warmth and comfort of the tea lounge.

A convention is very different from a rally with emphasis being placed on comfortable surroundings, really good catering and the social and technical aspects of the hobby to the virtual exclusion of the frantic commercial flavour of most amateur gatherings.

Throughout the afternoon the measurements area was busy measuring the special characteristics of numerous transceivers up to 10 GHz , a considerable quantity of test equipment having been made available by the British Telecom Training College. By far the most popular measurement was sensitivity of 144 and 430 MHz handheld f.m. equipment.

Two microwave enthusiasts tested out their 10 GHz narrowband systems and were able to see their output spectrum. Several wideband 10 GHz systems were also tested and a problem of stability was observed. One intrepid builder brought along a 133 MHz v.f.o., for use with a homebrew 144 MHz rig, to be aligned and measured.

After the interest shown in the f.m. sensitivity tests it would appear possible to stage a contest for "best on the day" f.m. receiver sensitivity. This would give far less trouble than the previously attempted noise figure contest.

As well as a few select trade stands there was a well stocked bookstall and a busy bring and buy stall. The large and comfortable social area included an exhibition of maps, charts, and other matters of radio interest. After the afternoon lecture session, the evening was rounded off with a buffet and evening bar accompanied by musical
entertainment from the South Manchester Radio Club.
The afternoon lecture session was opened by Keith Fisher G3WSN, the RSGB's VHF Manager. He also reported hopes for extended 50 MHz operation in the near future including the involvement of Class B licence holders in cross-band operations and the use of c.w. by Class B licence holders in the context of normal telephony QSOs.

He noted the vast quantity of information and reports received about the use of 50 MHz . He also said that the 144.875 MHz frequency in the beacon sub-band should have been vacated by RAYNET by January 1984, the traffic on this frequency moving to 144.775 MHz . RAYNET use of 144.850 MHz would continue for the time being. He was less happy about the future of the 430 MHz band, the secondary status of the band in the UK and the Syledis problem were particularly worrying. There were various proposals to be discussed at the IARU Region 11984 conference to reorganise the $430-435 \mathrm{MHz}$ band plan including putting the high-power DX stations near 435 MHz . He felt that the implementation of this proposal in the UK could result in us losing $432-433 \mathrm{MHz}$, and reported that the RSGB, in conjunction with the Danish society, EDR, were preparing a paper on the problems of 430 MHz . All comments and suggestions would be welcomed and should be forwarded via G3ZNU, the VHF Committee chairman.

The first speaker was Brian Bower G3COJ, who described his experience of 50 MHz operation and the history of the band in the UK. He started by recounting the details of a few pre-war transatlantic 5 m loggings.

The 1947 WARC found most European societies defunct so the 50 MHz allocation was lost in Region 1. However, there was some activity during the 1947 sunspot maximum, permits being generally available. Much of it featured MD5KW (Egypt) who, as G5KW, was sitting in the front row. The first UK transatlantic QSO was recorded in November 1947. By the 1956 sunspot maximum

Keith Fisher G3WSN, introduces Tony Whittaker G3RKL

Testing microwave gear in the Measurement Area

The Bring and Buy stand was popular throughout the day

Band I TV was very well established and only one UK station had a 50 MHz permit. There was much cross-band working and American stations worked all continents.

Brian noted the considerable variety of anomalous propagation modes likely to be encountered on 50 MHz . These include conventional v.h.f./u.h.f. troposcatter, meteor scatter, aurora and ionospheric modes including F layer reflection and single and multi-hop sporadic E-layer reflection.
In 1977 it became clear that Band I TV was declining and hope was raised that some permits might be obtained for the forthcoming (cycle 21) sunspot maximum. After some administrative hiccups, near disasters and false starts 40 permits for operation outside TV hours were issued in response to 200 applications for use from 1 February, 1983.
Brian explained how to get started on 50 MHz . All that is necessary is a dipole, a converter and some form of talkback. The most popular time seems to be 0700 to 0830 and there is an active UK 50 MHz group with G4JCC, QTHR, as Secretary. It was reported that the final close down of Band I TV was scheduled for 2 January, 1985.

After a brief interval allowing everybody to stretch their legs and get a cup of tea, Tony Whittaker G3RKL, took the stand to describe the GB3SF experimental pilot s.s.b. repeater project. Tony explained that he was not professionally involved in radio and went to some trouble to correct the common misapprehension that GB3SF was to be a linear repeater when it was actually intended to be a single-channel voice repeater. Tony reported that GB3SF was now licensed but unlikely to be operational for some time since it was being built as a student project.

Tony had gone to considerable effort to analyse the channel usage and geographical spacing of existing v.h.f. and u.h.f. repeaters finding 62144 MHz f.m. repeaters equally distributed among eight 25 kHz channels and 104 u.h.f. repeaters on nine channels with comparatively low occupancy of the recently designated odd numbered channels. There is considerable geographical overlap on some channels, the average separation between co-channel repeaters on 144 MHz being about 150 km and on 430 MHz about 95 km . An "average" 144 MHz repeater had its antennas at 250 m above sea level which gives a line of sight range of about 55 km to a station at sea level and 75 km to a station at an altitude of 30 m . Tony suggested that an idealised network would have co-channel repeaters every 150 km so the 30 m a.s.l. station would experience considerable areas of overlap. Tony produced many more charts and statistics to underline his contention that there is a significant need for more repeater channels.

The obvious solution, Tony explained, seems to be to use s.s.b. and an easily realisable 5 kHz channel spacing; this would give 40 channels rather than eight in a 400 kHz sub-band allowing v.h.f. repeaters to be much more closely spaced without overlap problems. Using this system the country could be covered with a network having only 2 or 3 repeaters per channel.

Tony then outlined the design principles of GB3SF which will have an input frequency of $145 \cdot 185 \mathrm{MHz}$ and an output frequency of 145.785 MHz .
After a detailed discussion of the GB3SF frequency plan Tony went on to describe the construction of the 100 dB isolation tuned coaxial cavity filters needed for the repeater, showing photographs of these. They provide an attenuation notch of almost 120 dB with an insertion loss of some 2-3dB.

Peter Chadwick G3RZP, made a welcome return to give the third lecture on the subject of amplifiers. Peter is well known for his forthright exposition of the home truths associated with many aspects of radio. The purpose of amplifiers, he said, was to make things bigger. An am-
plifier consisted of a supply, a load and an input control, but even this simple model must run into linearity problems and saturated at some power level.

Peter illustrated his lecture with several fascinating slides, some of which showed actual amplifiers.

The final formal part of the convention was a v.h.f. forum with a panel comprising Jack Hum G5UM, Tom Douglas G3BA, Brian Bower G3COJ, and Keith Fisher G3WSN. This was an opportunity for all those present to raise any v.h.f. topic of interest and get the panel's reactions and thoughts. It was also a useful opportunity for the panel members to discover what topics were of particular concern to the v.h.f. community.

It was clear that the use of the 430 MHz band was a very sensitive topic. In spite of this there was much informal encouragement of the use of the 430 MHz band both from the panel and from the floor. The possibility of IARU societies agreeing to trade some of the width of some of the u.h.f. and microwave bands for protected, primary status, narrower bands was commented on by panel members, as was IARU concern about the increasing incompatibility of national u.h.f. and microwave allocations.

Much discussion centred around band planning and novice licences. A suggestion that 20 kHz f.m. channel spacing be adopted instead of the current 25 kHz spacing received very little support. RTTY calling arrangements centred around 145.3 MHz were discussed and it seemed that most of the problems arose from the channelised mentality of operators in that part of the 144 MHz band.

There seemed to be little real support for the perennially discussed novice licence, the American style novice licence involving limited c.w. only with access to small parts of the h.f. bands would be welcome but a novice licence allowing use of commercial v.h.f. phone equipment would not get much support. The panel expressed hopes that a regular UK 50 MHz allocation for Class A and Class B licence holders would be forthcoming by 1986.

Some concern was expressed about the abuse of the UK band plan, particularly by newly licensed operators on the 144 MHz band. Several panellists expressed the opinion that, whilst some of the abuse was deliberate, most of it was due to ignorance. It was felt that the incorporation of the band plans into the licence would be a bad thing; however, suggestions to provide information sheets to new licence holders were being actively pursued and a suggestion that band planning be incorporated in the RAE was welcomed and noted for further investigation.

The panel outlined the background to the extraordinary situation which had overtaken their Belgian colleagues, many aspects of this only serving to underline the importance of a strong national amateur radio society enjoying the support of the majority of the country's licensed amateurs and a good working relationship with the licence issuing authority.

Kindly Note

PW Dart, November 1983

Diode D2 in the circuit diagram, Fig. 1, should be an 8.2V Zener diode BZY88. Also capacitor C3, 1 nF , should be inserted into the line joining the top ends of C2 and C4.

UPGRADING THE DX 160

The Realistic DX160 communications receiver was for several years available from Tandy in the UK and Radio Shack in the United States. There are still quite a few in use according to a recent survey reported in DX Party Line from HCJB (Voice of the Andes) and they can be picked up secondhand for quite a modest sum. This set has five bands. One from 150 kHz to 400 kHz includes longwave broadcasting and navigation beacons while four others give continuous coverage from 535 kHz to 30 MHz . In addition to features one would expect, such as bandspread, antenna trimmer, r.f. gain control, noise limiter, S-meter, and product detector, there are also facilities one would normally find only in a more expensive set. There is amplified a.g.c., a front panel a.g.c. time constant switch with fast and slow action, a socket and plug for standby operation and the "front end" uses f.e.t.s.
The DX160 is a rather interesting, well-made set, attractive in appearance, easy to use and probably underrated performance wise. It operates either from the mains or 12 volts d.c., the latter feature attracting it to the writer who was looking for a receiver for use in a caravan and boat. Rather than leave it idle during the winter it was decided to try to hot it up so that it could be used as a second receiver for DXing. The only constraint was that it should be easy to restore it to its original state. This was imposed, not so much to maintain any resale value as to ensure that the set was still fit for mobile use the following season. Drilling holes or making changes to the printed circuit wiring, was out.

Digital Readout

Once you have used digital readout you cannot do without it. Tuning round the bands is so easy. As an Honest Frequency Meter model FC5M was in use with another receiver, a coaxial socket was fitted to the rear of the DX160 so that the FC5M could be plugged into this set as well.

In principle it should be easy to connect up an external digital readout. All you have to do is to tap onto the

The Realistic DX160
receiver's local oscillator. Provided the frequency meter has the correct offset, i.e. it will subtract the value of the i.f., the correct frequency will be displayed. The problem is how to do it without upsetting the local oscillator. A small amplifier acting as a buffer would certainly solve the problem but it is possible to manage without one. Tap a fixed capacitor onto the junction of C12, R32 and the drain of Q 8 , a convenient soldering point being at C12 (Fig. 1). C12 is located on the main p.c.b. which is on the left hand side of the set as viewed above from the front. It is signwritten on the top side of the board. The other end of the new capacitor goes to a coaxial socket fitted in place of the EXT STD BY socket at the rear. The wires from the latter are tied back and insulated from each other so that

Fig. 1: DX160 digital readout
the external standby facility can be restored in future. The type of coaxial socket that stands proud will fit into the space available, even the holes for the self tappers line up.

A 10 pF fixed capacitor was used but the value may have to be found by trial and error if another frequency meter is used. It is a compromise between providing sufficient voltage at the lowest frequency and causing the least disturbance at the highest. A value of 33 pF gave a good steady reading with the set tuned to 150 kHz but detuned it by 7 kHz and weakened the signal slightly on the 26 MHz band, $4 \cdot 7 \mathrm{pF}$ gave an unstable reading on the long waves.

Band E

On this band (13 MHz to 30 MHz) the frequency displayed was 910 kHz lower than it should have been. This value is double the i.f. (455 kHz) and occurs because the local oscillator is adjusted to a frequency lower than the signal. On the other four bands the oscillator is higher than the incoming signal. This is not such a disaster as might at
first appear. Subtract 90 kHz and the last three digits of the display will be correct. If you want to set up on a particular channel there is always the pocket calculator to fall back on.
An examination of the circuit showed that while padders (C37, C39, C40, C41) were in use for bands A to D, there was none for band E so the oscillator could just as easily be set above as below the signal frequency. It turned out to be a simple job to make the changeover. Since the tracking points were unknown it was assumed they would be 14 MHz and 28 MHz . Set the pointer to 28 MHz and make a note of the actual reading on the digital display (not what it should be). Add 910 kHz and call this f 1 . Now set the pointer to 14 MHz , add 910 to the figure displayed and call this f 2 . Adjust the reading on the display to f 2 using a non-magnetic trimming tool on the core of T15. Now set the pointer to 28 MHz and adjust trimmer CT10 until f 1 is displayed. Go back to 14 MHz and readjust T15 and come back to 28 MHz for a final touch on CT10. A 10 pF capacitor bridged across CT10 will extend its range if necessary, the most convenient place to fit one being on the oscillator section of the wavechange switch, from the tag with the black wire to chassis.

If the mod is done this way there should be no need to re-align the r.f. circuits. If a signal generator is available then check the alignment and while you are at it check bands A to D as well.

Selectivity

According to the users' handbook the bandwidth of the DX160 is 4 kHz at the 6 dB points and 18 kHz at 40 dB . Not bad for short wave programme listening but not so good for DXing. Selectivity is obtained from a ceramic filter and three adjustable single tuned i.f. transformers T16, T17 and T18. The ceramic filter is housed in the same can as T16. The DX160 is an inexpensive set which is likely to have been "aligned" on the assembly line. Some may never have been really spot-on, a conclusion reached as a result of the widely different accounts given of this set's performance.
It is not difficult to check if T16, T17 and T18 are peaked onto the ceramic filter. They are located in a row, parallel to the front panel on the top of the left hand printed circuit board as viewed from the front of the set. They are clearly signwritten, each slug being a different colour. T16 is red, T17 is white, T18 is black. You will need a trimming tool and preferably a signal generator though you can get away with tuning the set to a weakish signal giving a peak around 4 on the lower scale of the S-meter. The medium or long-waves in daylight should deliver a suitable signal. Mark the position of the slug's screwdriver slot in pencil on the can so that you can go back to it if necessary. Adjust the core slowly in either direction for a peak on the S-meter. Do one at a time and check if the receiver is functioning properly before moving to the next.

Sharpening the I.F. Responses

If you are adept enough to work on a p.c.b. with a small soldering iron then you can sharpen up selectivity. Simply replace the emitter bypass capacitors C16 and C19 with ceramic resonators. These capacitors are used to prevent negative feedback with consequent drop in receiver gain. Remove one and the output drops dramatically. Replace with a 455 kHz resonator and the gain is restored but only close to 455 kHz . The result is an improvement in selectivity.

Start with C16 which is the easier of the two. It is found between T16 and T17 close to Q5, all being signwritten on the component side of the board. The emitter, base and

collector of Q5 are labelled e, b, con the lower side of the board, which helps in locating the solder points of C16. Using a small size soldering iron and a desoldering aid such as solder braid or a suction device, remove C16. The hole spacing on the board corresponds to the pin spacing of the resonator so the latter pushes in easily in place of C16. Solder below the board, check T16, T17 and T18 and try out the set.

If a further increase in selectivity is required, repeat the operation with C19 which lies between T17 and T18 and close to Q6. This time there is a problem as the hole spacing is wider but it is possible to spread out the flat pins of the resonator so that the tips partially enter the holes left by C19, from below the board, where they are soldered in place.

The ceramic resonators used are available from Ambit-ask for CFE455, 455 kHz series type, stock number 16-45575. The dimensions are approx. $9 \times 8 \times 3 \mathrm{~mm}$ with 5 mm pin spacing and they are, if anything, slightly smaller than C16 and C19 which they replace.

Wide/Narrow Selectivity

A receiver with fixed selectivity must be a compromise. If the selectivity is narrow, sideband cutting will occur. If it is wide, better quality audio will be paid for by an inability to winkle out DX. After C16 and C19 were replaced with resonators, sideband cutting was evident and detuning had to be resorted to for programme listening. The capacitor C19 value 40 nF , which was now spare, was tapped across the resonator fitted in its place. This brought an immediate improvement to audio quality. One wire from this capacitor was now soldered onto the live side of the resonator (farthest from front panel) and a lead from the other wire led off to a switch and chassis. The front panel standby switch and its wiring, which comes to the main board, were used. The two wires from the switch, red and mauve, were cut at the board and leaving behind a couple of millimetres with insulation so that the solder points could be found again in the future. The red wire was soldered to chassis and the mauve wire to the "free" end of the 40 nF capacitor (ex-C19).

In order to prevent the receiver being permanently on standby, go back to the two wires removed earlier from the standby socket and solder them together. If the standby socket was not removed, then insert a shorting plug in it. The standby switch now offers wide selectivity when in the rec position and narrow when moved to STD BY.

Using a Medium Wave Loop

Although there is a version of the DX160 that has a screened antenna tuning inductor (T2), the model in the possession of the writer has a ferrite rod antenna. It is mounted above the chassis close to the hardboard back and replaces T2 and also T3, the latter being the longwire coil. This ferrite rod performs a dual function being a tuning inductor as well as antenna. If it is removed then the receiver will not work on the medium waves or long waves.

Although there is a coupling winding on the ferrite rod which goes to the A1 and A2 terminals so that a loop antenna can be connected up, the loop is virtually useless. It cannot null out a signal picked up by the ferrite rod so its directional properties are masked. Since the cabinet is made of metal it is only through the hardboard back that signal pickup is possible. Replace the back with a metal one and the ferrite rod should be screened and the loop will be effective. As an experiment, the hardboard back was covered in kitchen foil. When refitted, the medium wave band, without antenna connected, was quiet except for a few strong local stations which now were barely audible. The loop performed very well and even when a few ventilation holes were cleared through the foil, near the sides, it continued to do so.

Fig. 2: Ferrite rod antenna, viewed from rear

Sensitivity on Medium Waves

Poor sensitivity on the medium waves is a complaint often made about the DX160 and one that is justified by the receiver specification. This quotes $50 \mu \mathrm{~V}$ for band A , $100 \mu \mathrm{~V}$ for band B (medium wave) and either $3 \mu \mathrm{~V}$ or $4 \mu \mathrm{~V}$ for bands C to E, all for a signal-to-noise ratio of 10 dB , measured as $(\mathrm{S}+\mathrm{N}) / \mathrm{N}$. It seems likely that the DX160 has been deliberately downgraded on the medium waves to ensure freedom from overloading on a band normally used for picking up local entertainment.

A modern screened r.f. transformer as a replacement for the ferrite rod antenna ought to provide a remedy and such a component, RW06A6408, stock number 3564080, was obtained from Ambit. The base connections are shown in Fig. 3 and the ferrite rod antenna as viewed from the rear, is shown in Fig. 2.

There are four wires coming from points on the p.c.b. to the medium wave winding on the ferrite rod. These should be cut near the winding and taken to the new r.f. transformer instead. Start with the yellow wire on its own on the right (Fig. 2). It is cut near the winding and the free end soldered to pin 1 (Fig. 3). Move now to the three wires on the left hand side of the winding. The green one which comes from a point marked B-GRN is now terminated on

pin 6, the black one from blk goes to pin 3 and the remaining yellow wire coming from b-yell is soldered to pin 4. The new r.f. transformer is soldered to a small bracket which is attached to the rear of the main tuning capacitor using the small screw that holds on a wiring clip. The four short ends of the wires left on the medium wave winding on the ferrite rod are tied onto the rod so that they are available in the future.

All that remains is to peak up at the l.f. end of the band using the slug on the new transformer, making sure that the antenna trimmer on the front panel is operative at the h.f. end. If not, then re-adjust the slug. There is no need to replace the hardboard back with a metal one as the ferrite rod antenna is now inoperative.

Fig. 3: Medium wave r.f. transformer connections

General Information

A copy of the DX160 circuit diagram, along with some notes, is available from the European DX Council, PO Box 4, St Ives, Huntingdon, PE17 4FE. Send 50p or three IRCs if abroad, and ask for the DX160 Receiver File. The circuit is of the version that does not have a ferrite rod antenna and the common end of the r.f. coupling windings instead of going to A2 are shown connected to chassis. This is probably an error in the drawing otherwise there would be no balanced antenna input.

The power socket at the rear of the DX160 allows 12 V d.c. to be connected in place of the mains supply. There is no switching but there is a diode to protect against reverse polarity. The pilot lamps are run from their own winding on the mains transformer and do not light up when the set is run from batteries. As a result the power consumed is only 37 mA with the volume at minimum which makes it

Take a look at the world's most advanced range of 2 metre Linear Amplifiers

> Over 40 years of design experience has gone into what is fast becoming acclaimed as the biggest break-through in linear technology.
> Performance and reliability have been designed in, which gives us the confidence to offer a free 5 -year warranty. Why not take a closer look at our products and see where value for money really counts.

The LPM144 Range

This sophisticated, but simple to use, range of amplifiers have performance characteristics and extra features previously not available in the UK. The pre-amplifier uses the highly regarded BF981 MOSFET, and an LED bargraph power meter is provided, to highlight only two of the amazing number of features.

The L144 Range

To complement the LPM range, we have introduced the L series linear-only versions for the amateur who may already be equipped with a good pre-amplifier and power meter. The excellent linear performance is maintained and both RF Vox and hard-wired changeover are standard.

- Linear all mode operation
- Continuous rated RF output power (RMS)
- RF\& HARD switched changeover with selectable delay
- Trouble-free RFswitching at low drive levels
- Straight-through mode when switched off
- Unique over-drive protection circuit
- Mobile mount on all 100 Watt models

LPM $144-1-100$	$£ 172.50$
LPM 144-3-100	$£ 172.50$
LPM $144-10-100$	$\mathbf{£ 1 4 9 . 5 0}$
LPM $144-25-160$	$£ 189.50$
LPM $144-3-180$	$£ 215.50$
LPM $144-10-180$	$£ 212.50$

BNOS ‘A’ Series Power Supplies

12/6A $\quad \mathbf{4 8 . 3 0}$

- $13.8 \mathrm{~V}, 6 \mathrm{~A}$ continuous output
- 7A maximum output current
- 10A current meter
- 10A output terminals
- LED shut down indicator
- Fully protected

12/25A $£ 125.45$

- $13 \cdot 8 \mathrm{~V}, 25 \mathrm{~A}$ continuous output
- 30A maximum output current
- Large 30A current meter
- 30A output terminals
- LED shut down indicator
- Fully protected

Our Guarantee Our aim is to provide you with high quality products at realistic prices, to give you the best value for your money.

All products that carry our logo are designed and built by our engineers in the UK and carry a full 12-month guarantee, which includes all parts and labour.

$12 / 12 \mathrm{~A} \quad £ 86.40$

- $13.8 \mathrm{~V}, 12 \mathrm{~A}$ continuous output
- 15 A maximum output current
- Large 20A current meter
- 15A output terminals
- LED shut down indicator
- Fully protected
$\mathbf{1 2 / 4 0 A} \quad \mathbf{2 2 5 . 4 0}$
- $13.8 \mathrm{~V}, 40 \mathrm{~A}$ continuous output
- 50 A maximum output current
- Large 50A current meter
- Large output meter
- LED shut down indicator
- LED out of regulation indicator
- Output sensing terminals
- Fully protected

Available direct or from one of our many UK agents or come and see us at most rallies and exhibitions

BNOS Electronics (Dept PW) Greenarbour, Duton Hill, Great Dunmow, Essex, CM6 3PT
Telephone (0371 84) 767 SAE for further details
All prices include VAT. Postage free on all Mainland UK orders, goods normally despatched by return.

by Chris Plummer G8APB

In the second part of this article the author's receiver is described with sufficient detail to enable you to build one for yourself.

The receiver was developed by Bill North G3TRY and the author and is constructed on a single printed circuit board.

The Circuit

The basic set is designed around the now elderly TAD100 integrated circuit, but the newer TAD110 can be used as a direct substitute. The oscillator, mixer, detector, and audio pre-amp. stages are in the i.c. and a separate f.e.t. r.f. amplifier and a bipolar audio amplifier and beat frequency oscillator are also provided. The TAD100 has, unfortunately for our purposes, internal a.g.c. but this can be disabled by putting a preset d.c. bias voltage on pin 1 via the mixer coil.

Looking at each of the stages separately and noting their particular features you will see that all r.f. signals enter the set via a tuned frame or ferrite rod antenna if the case screening is effective. The construction of a frame or loop is relatively simple, the size can be adjusted to suit the case chosen for the set and can form the carrying handle for the unit. Construction can be of wood bound with sticky insulation tape and the wire let into a groove, or a metal frame screen such as a trough of aluminium, with the wire inside the trough. Make sure, however, that the aluminium trough does not act as a shorting loop to the antenna or you won't hear much. The gap in the trough can be bridged with wood or a plastic material. A ferrite rod antenna is fairly simple to make by winding the coil on the centre of the rod and fitting it either in an insulating tube mount, or a metal tube with a slot (Fig. 2.3). As with the frame antenna the rod mounting can be used as the carrying handle. One thing to remember is that the bearing is taken along the axis of the coil, i.e. at right angles to a frame antenna and along the axis of a ferrite rod.

The r.f. stage is a fairly common arrangement, but here screening is important as leakage from the antenna across the r.f. stage can cause errors and confusion when close in to the transmitter. Attenuation of the incoming signal is by a variable resistor in the base of the 2N3819 f.e.t.

The TADI00 forms most of the circuitry with the exception of the tuned circuits. The oscillator is fairly standard and tends to be relatively easy to get going, the tuning range is $(1 \cdot 81-2 \cdot 0+$ i.f. $) \mathrm{MHz}$, i.e. $2 \cdot 275-2 \cdot 465 \mathrm{MHz}$ plus a small amount at both ends to allow for calibration. The local oscillator is deliberately set on the high side of the received signal to avoid i.f. image interference from medium wave signals.

The audio stage is self explanatory and needs no alignment. It will drive any commonly available high-impedance headphones. Headphones are used, of course, to keep your information to yourself and also help concentration, as well as being lighter, both in weight and battery consumption, than a more powerful amplifier and a loudspeaker.

The b.f.o. is a transformer feedback oscillator and only requires that the feedback winding is connected the right way round followed by a quick tune and adjustment of the injection to maintain oscillation and correct operation.

The final stage to consider is the sense amplifier. This is an untuned stage that amplifies the signal from the separate telescopic whip antenna and combines it with the signal from the main antenna at the correct level and phase relationship. This enables the operator to determine the correct direction from the main antenna, as previously described. The only adjustment required is to select the values of R1 and R2 to give the best sense operation.

BUYING GUIDE

Most of the components used are readily obtainable from advertisers in $P W$. The TAD 100 can be obtained from Watford Electronics. The p.c.b. is available from the usual suppliers or from the author QTHR. Toko coils and formers can be obtained from Ambit International. A suitable "vernier slow-motion drive" is available from Maplin Electronics as RX4OT vernier dial medium. Electrovalue stock Jackson variable capacitors.

The set has been built by some 150 people either for use as a good simple Top Band receiver or as a d.f. set and very few problems have arisen. The p.c.b. design, which is a single-sided board approximately $150 \times 50 \mathrm{~mm}$, is set out with plenty of room to use "junk box" components. Toko coil formers are recommended for the local oscillator and mixer coils, but unfortunately no prewound coils are available and to use these coil formers you need 42 s.w.g. enamelled wire or finer to be able to get all the turns required on the bobbin. It is of course possible to use other formers without problems but the turns will probably have to be adjusted. The filter is a standard Toko CFT455C,
similarly the b.f.o. coil is a standard prewound unit. Three forward-biased 1N914 silicon diodes have been used to produce a reference voltage of about 1.4 V as it was the cheapest way, but a $1 \cdot 5$ to 2 V Zener could be used.

The complete receiver is built into a die-cast box. The author's prototype used a box $222 \times 146 \times 55 \mathrm{~mm}$ in size. Remember that in use the receiver will probably be subjected to rain, mud, floods and other extremes of climate and temperature so make sure that there are no unnecessary holes in the case. The two-gang capacitor (C21,22) could be a Jackson C808 or other split-stator type according to price and availability.

Fig. 2.1: Full size printed circuit board track pattern and component placement drawing. Note the insulated lead coupling the b.f.o. output to the general area around IC1 pin 1. Its route is not critical but care must be taken to ensure that it does not short to any other component

WRM018

Viewed

 from topFig. 2.2: Coil winding details for (left) L2 and (right) L1

WRM021

Fig. 2.3: (Top) Outline constructional details of the ferrite rod antenna. (Above) Frame antenna details

The author's much used prototype receiver showing the ferrite rod antenna and vernier tuning dial

Alignment Notes

1) Beat frequency injection is achieved by taking an insulated wire from the collector of the b.f.o. transistor to somewhere near the TAD100. No direct connection will be required.
2) Set the i.f. gain control preset for maximum signal.
3) Depending on the local oscillator and mixer coil windings select those capacitors marked * (Fig. 1.4) to achieve correct bandspread and tracking.
4) The main antenna frame ($200 \times 250 \mathrm{~mm}$) can be made of hardwood or metal (remembering the break if metal is used), with windings to suit tuning, say about 13 turns. A 200 mm long ferrite rod 10 or 12.5 mm diameter with about 25 turns wound on it mounted in a plastics or split metal tube could also be used.
5) Select resistors R1, R2, R3 and R4 to give best operation. Typical values would be R1 $=7 \cdot 5 \mathrm{k} \Omega, \mathrm{R} 2=620 \Omega, \mathrm{R} 3=$ $220 \Omega, \mathrm{R} 4=230 \Omega$. Use a $10 \mathrm{k} \Omega$ preset in place of R1 for setting up. Set R1 to about $7 \cdot 5 \mathrm{k} \Omega$ and select R2 to give a drain current of about 3 mA . To select R1 to give best sense operation use the following method. Set up a friend with a transmitter and travel about 5 km away into open countryside. Adjust R1 to give the best sense circuit operation, i.e. greatest front to back ratio. Measure the value of the preset and replace with the nearest preferred value resistor.
6) Capacitor Cx is approximately 2 pF and is made from a twisted pair of insulated wires 30 mm long.
7) Set the local oscillator range on high side of $1.81-2.0 \mathrm{MHz}$ and then peak the mixer coil at midband.

Acknowledgements

My thanks must go to Bill North for the initial design work and trials, to Eric Mollart for the urge to write it down and Roy Powers G8CKN for being the "Devil's Advocate."

Good luck and good d.f.ing de Chris G8APB.

Further Developments

The receiver described is obviously of a specialised nature but can form the basis of a Top-Band monitor receiver and this will be described in another article.

PRACTIGAL NEW GUIDES

A Guide to Printed Circuit Board Design
 Charles Hamilton

Printed circuit boards can look, and sometimes are, extremely complicated. The high density of components on modern boards combined with the mass tracking can deter the would-be designer. This new book strips away the aura of mystique surrounding PCB design. A practical book covering design methods and practice currently employed in the modern drawing office, it describes a logical step by step approach to PCB design. Fully illustrated throughout, the book is an invaluable guide and practical aid to the young or inexperienced designer in the drawing office.

[^1]
Foundations of Wireless and Electronics

Tenth Edition

M G Scroggie assisted by S W Amos

A completely updated edition of this famous book. It has been revised to take account of recent changes and developments in electronics - in particular non-sinusoidal signals, waveform generators, computers and power supplies. All the circuit diagrams have been redrawn using the graphical symbols recommended by BSI. Ideal text book for higher BTEC and undergraduate students as well as the enthusiast.
Softcover 576 pages $0408012021 \quad 1984$ £8.95

A Newnes Technical Book Available from your nearest bookseller

New British Oscilloscope

A new general-purpose, dual trace oscilloscope announced by Bridage Scientific Instruments Ltd. of Skipton, costs only $£ 195$ (excluding VAT) and is British built. Designated the Bridage DB242, the instrument has been specially developed to take into account the needs of educational and industrial laboratories, test bays and service departments. Compact and highly portable, the new oscilloscope is also suitable for radio and TV maintenance, electronics enthusiasts and radio amateurs.

Speed and simplicity of use are two important parameters that have been applied in producing this instrument, which is both easy to understand yet highly versatile. This is immediately apparent in the display, in which a medium persistence phosphor gives

good trace readability on the $60 \times$ 50 mm display screen on which a calibrated graticule is superimposed. Considerable time savings in use may be achieved, utilising the trace location button which returns overscanned traces to the screen regardless of the setting of other operating controls and the auto brightline triggering system.

Simple, reliable, advanced circuit
techniques are employed to provide a worthwhile specification. Sensitivity can be varied from $50 \mathrm{mV} / \mathrm{cm}$ in independent switched sequences for each channel. Sweep speeds can be varied between $1 \mu \mathrm{~s} / \mathrm{cm}$ and $0.2 \mathrm{~s} / \mathrm{cm}$ using calibrated switch positions.

Designed and manufatured in Britain, the Bridage DB242 oscilloscope uses safety approved components that comply with British and EEC standards. An even more economically priced single trace version, the Bridage DB121, possesses a similar general specification, but without the twin channel facilities, and costs only $£ 175$ (excluding VAT).

For further details contact the manufacturers: Bridage Scientific Instruments Ltd., 63-65 High Street, Skipton, North Yorkshire BD23 1EF. Tel: (0756) 69511.

New DF System

The latest radio direction finding system from Datong Electronics Ltd. is the Model DF2. which utilises a proprietary error-cancelling version of the Doppler principle and is intended for general professional applications from h.f. to u.h.f., both in mobile and base station situations. It can handle signals carrying most types of modulation including f.m., a.m. and s.s.b.

Being microprocessor-based, the system offers a high degree of operational flexibility plus special signal processing techniques which reduce bearing jitter under multipath conditions or heavy signal modulation. This is achieved by real-time digital averaging of the incoming data. The averaging period is panel selectable from 0.065 to 6 seconds yet the
special software always ensures that the response time to new signals remains constant at 260 ms .

Bearings are immediately presented in both polar and digital form. The polar display gives five degree resolution on a circle of 36 l.e.d.s, while the 3 -digit display in the centre of the circle gives one degree resolution. A separate 20 -

l.e.d. bar array indicates signal strength (when connected to the receiver's a.g.c. line).

Other advanced features of Model DF2 include: storage and display of last received bearing without errors caused by "squelch tail"; remote display option; "sample-and-hold" mode; regular autozeroing for non-digital circuits; single coaxial cable link to head unit; cancellation of errors due to receiver phase-shifts.

For further details, apply to: Datong Electronics Ltd., Spence Mills, Mill Lane, Bramley, Leeds LS13 3HE. Tel: (0532) 552461.

More on page 59

MULLARD Transmitting \& Industrial Valves CURRENT SYSTEM		200	
CLASS	CONST	UCTION.	SERIAL NUMBER
X Photosensitive tube Y Vacuum ? z Gas-filled $\}$ * valve or tube (not photodevice)	A Diode C Trigger tube D Triode or double-triode G Miscellaneous H Travelling-wave tube J Magnetron K Klystron L Tetrode, pentode, doubletetrode or double-pentode	M Cold-cathode indicator or counter tube P Photomultiplier or radiation counter tube Q Camera tube T Thyratron X Ignitron, image intensifier or image converter Y Rectifier Z Voltage stabiliser	A group of four figures. The last figure is 0 for basic types: variants of the basic type are indicated by the figures 1-9

VOLTAGE STABILISERS

British Systems followed by two groups of figures separated by an oblique stroke. e.g. QS75/20
The first group is the nominal running imum tube current.
2. The type number consists of QS
followed by a four-figure serial number

 e.g. 150C4
|eu!wou әut әleग!pu! sam6! |e!n!u! au। running voltage. The remainder of the type number has no significance.
USA System

 electrodes). The primer or link are not
counted as useful electrodes.

SPECIAL QUALITY VALVES These are made by a number of manufacturers for applications where high reliability is required under adverse operating conditions.
They are electrically similar to a number of They are electrically similar to a number of
standard types, but use improved mechanical construction to give greater freedom from microphony and vibration failures. They are
 NUMBERING SYSTEMS FOR SPECIAL QUALITY VALVES tem 1 inq әpoo uonvoll-old ayt uo paseq s! s! 41 the Base Type and Serial Numbers are placed between the first and subsequent letters. e.g.

System 2
The initial letter is " M " followed by a fourfigure serial number beginning with 8 .
 type number is added to e.g. Standard Special Standard
277
B309

AMERICAN
System 1
A four-figure reference number. System 2
 "Wuffix "A" Military type, and often a further
sumified type. MILITARY VALVES AND
SEMICONDUCTORS yroq to suo!sian 'ajuenajol-asojo 'patojas sanjen it!eno le!pads pue plepueis
 the United Kingdom, identification numbers commence with the letters "CV" (Common Valve) followed by a three-or four-figure
serial number. Special Quality Valves mostly have numbers in the CV4000 group. generally used, prefixed by USA (army).

Are you bewildered by the choice of Software Programs on the market?
Not sure what Program you really need, what it does or where to get it?

SOFTWAR

 The most comprehensive magazine listing of Software programs for the eightleading Microcomputers. - BBC © COMMODORE 64 DRAGON \bullet VIC 20 - ORIC © ATARI 400/800 - SPECTRUM © ZX81Software Index takes the headache out of choosing the programs suited to your Micro. For people involved in electronics and specialist programs, Software Index will provide the information you need and be a valuable time-saving guide.
Games, education, business and personal management are also covered.
DON'T LET SOFTWARE GIVE YOU A HARD TIME, GET THE USER GUIDE TO MICROCOMPUTER SOFTWARE-

2,11

PROGPAMS

 LSTEDIN YOUR
NEWSAGENT'S NOW

User Guide to Mi

YAESU	
0070	F1
0020	Key 1901
0030	OCT
040	RAMTI
OSSO	fmuti
0050	XF8SKCN
0070	XF8.9KC
0030	xF89KA
0090	XF107kC
0100	F980
0170	SPs80
0130	FT102
0140	FC102
0150	FV1020
0150	SP102
0240	FM AM
131	MH1B8
0350	Ftn
asso	Marker uni
0450	FM Unit
ato	FP700
0420	FC700
1249	F22100\%
6810	F230A
Osto	FT790R
0850	NCIIC
Oass	CsCIA
a370	MMB1I
0530	F12010
070	F7288
arto	न7098
0350	NC9C
072	FWB2
0140	fbas
0180	NC7C
077	NCBC
\%rec	PA3
0850	MmB10
1000 1010	FT230R F730R
1020	F726R
1030	430726
1650	501726
1051	Hf7726R
1060	${ }_{\text {SAT726 }}$
1090	FRG700
100	FRG700M
170	MEMGRT700
1220	OCRG7mo
1130	FRT7m
1201	FRa7mo
1140	FF5
1150	FRVVTIOOA
1150	FRVTITOB
170	FRVTIOCC
1180	FRVITI000
1190	FRV7700E
1200	FRV700
asso	F7756x

ICOM

$\begin{array}{ll}2005 & 1 C 751 \\ 2021 & \text { IC745 }\end{array}$| 2088 |
| :--- |
| 2006 |
| 2010 |

2430 BU1 NEW - 100 W H.F.

- NEW
- 100 W H.F. Keyboard Freq. cont.

$$
\begin{array}{lll}
2006 & \text { PUU(int) } \\
2030 & \text { FM(EX242) }
\end{array}
$$ 230 v AC power supply

$$
\begin{array}{ll}
\text { 205 } \\
\text { FM(EX2421 } \\
\text { 2000 } & \text { KEYERIEX243) }
\end{array}
$$ FM module for above

$$
\begin{array}{ll}
2040 & \text { Keyerili } \\
2100 & \text { Icrun } \\
2130 & \text { F130 }
\end{array}
$$ Keyer module for above

$$
\begin{array}{ll}
2100 & \text { IC730 } \\
2120 & \mathrm{~F}[30 \\
2190 & \text { IC720A }
\end{array}
$$ 100w HF trans 12 v DC

$$
\begin{aligned}
& 2120 \\
& 2190 \\
& 2130 \\
& 2200 \\
& \text { ICSI20A }
\end{aligned}
$$ SSB pass band fitter

$$
\begin{aligned}
& 2190 \text { IC720A } \\
& 2200 \text { PS15 } \\
& 2210 \text { PS20 }
\end{aligned}
$$ 100 w HF trans plus gen cov.

$$
\begin{array}{ll}
2200 & \text { PS15 } \\
2210 & \text { PS20 } \\
2060 & \text { FL45 } \\
2130 & \text { Fl44 } \\
2220 & \mathrm{Fl32}
\end{array}
$$ 230 v ch. . for HF I'ceivers

$$
\begin{aligned}
& 2130 \\
& \text { FL4 } \\
& 2220 \\
& \text { 123 } \\
& \text { Fl3 }
\end{aligned}
$$ 500 Hz fiter for 740730 2.4 kHz SSB filter

$$
\begin{aligned}
& 2230 \text { FL34 } \\
& 2150 \text { EX202 }
\end{aligned}
$$

AM narrow filter for 720 AM filter for 720

$$
\begin{aligned}
& 1050 \text { Ex203 } \\
& 2170 \text { EX205 }
\end{aligned}
$$

CW audio filter for

$$
\begin{aligned}
& 2170 \text { EX205 } \\
& 2240 \\
& \hline 10
\end{aligned}
$$

TRV unit for 730

$$
\begin{array}{ll}
2240 & 810 \\
2290 & 1 \mathrm{C} 2 \mathrm{KL}+\mathrm{PSU}
\end{array}
$$

Memory back up for 720

$$
\begin{aligned}
& 2790 \\
& 2310 \text { ITLIOL P: }
\end{aligned}
$$

$$
\begin{array}{ll}
2310 & \text { AT100 } \\
2320 & \text { AT500 }
\end{array}
$$ 500 W solid state linear

$$
\begin{aligned}
& 2320 \text { AT500 } \\
& 2340 \text { CF1 }
\end{aligned}
$$ 100 watt HF Auto ATU 500 watt HF

Cooling fan

$$
\begin{array}{lll}
2970 & \mathrm{SP} \\
2360 & \mathrm{HP} \\
2960 & \mathrm{SM}
\end{array}
$$

Matching ext speaker Communication phones

$$
\begin{aligned}
& 2250 \mathrm{SMB} \\
& 2250 \mathrm{FM} 70 \\
& 2250
\end{aligned}
$$ Base microphone Comms rec 230 v AC

$$
\begin{aligned}
& 2260 \text { FM un } \\
& 270 \text { FL63 } \\
& 2120 \text { FA4 }
\end{aligned}
$$ Plug in module

$$
\begin{aligned}
& 2130 \text { flas } \\
& 2410 \text { IC290H }
\end{aligned}
$$

CW narrow filter
Xtal filter
Multimode 2m 12v DC
Back up supply
Multimode 70 cm

ICOM	
2450	IC490
2488	IC2E
2490	ICAE
2475	1C02E
2476	ICOAE
2810	MMB 3
2840	MMB12
2870	HM7
2890	HM9
2900	HMIC
2950	SM2
2560	SMS
2962	SM6
2970	SP3
2520	LC3
2570	BC25
2590	8 C 30
2610	BP2
2620	BP3
2630	BP4
2640	BP5
2650	CP1
2660	DC.

Multimode $70 \mathrm{~cm} 12 v$ DC
2 m synth theld 1.5 w Special 70 cm synth hiheld 1.5 w 144 MHz h'held with $\mathrm{k} / \mathrm{b}+\mathrm{LCD}$
432 MHz h'held with $\mathrm{k} / \mathrm{b}+\mathrm{LCD}$ 432 MHz h'held with $\mathrm{k} / \mathrm{b}+\mathrm{LCD}$ Mobile mounting bracke Mobile mounting bracke 8 pin hand mic. /S mic for IC2E/4E pin desk mic. 3 pin desk mic. Desk mic (745/751/271/471) External loudspeaker Cases for IC2E/4E Standard mains charger Base hod type charger Low voltage pack Standard pack
Empty battery box (AA cellis) High power battery pack Charger lead for 12 V supply

TRIO/KENWOOD

1450| 175.00 | 1450 | TSszas |
| :---: | :---: | :---: |
| 8.80 | 1450 | ATSE] |
| 21.45 | 1470 | SP93) |
| 5.65 | 1490 | YK884-1 |
| 52.58 | 1500 | YK88>-1 |
| 54.05 15.35 | 1510 | YG45ic-1 |
| 8.05 | 1520 | YG45icN. |
| PHONE | 1530 | TSA33S |
| 239.00 | 1540 | PSASO |

$160-10 \mathrm{~m}$ t'ceiver with gen cov $108 s 00$ Automatic ATU $80-10 \mathrm{~m} \quad 141.75$ External speaker unit 6 kHz AM filter
500 Hz CW filter
500 Hz CW filter 270 Hz CW filter 160-10m with gen cov rec
Mains PSU for TS430s Mains PSU for TS430S Speaker for TS430S FM option unit TS430S 500 Hz CW fiter 270 Hz CW filter 1.8 kHz SSB fiter $160-10 \mathrm{~m} 2 \mathrm{kw}$ linear
Desk microphone Desk mic with up/down Desk mic with pre-amp Fist mic 50 K imp Fist microphone 5000 hm imp Up/down mic for TR9000/7800 Up/down mic (TS930S LF low pass fitter $2 \mathrm{~m} / 70 \mathrm{~cm}$ all mode r'ceiver 2 m multi mode mobile 2 m FM synth handheld Base stand and charger Base stand and charger
Soft case and belt hook Mob stand and power unit Speaker/microphone Deluxe leather case Power supply from 12 V 70 cm handheld trans.
70 cm multimode mob

Gen cov convertor
Freq agile audio fitter Multi-mode audio fitter Auto filter for receivers r.f. speech clipper for Trio r.f. speech clipper for Yaesu Manual RF speech clipper Manual
Morse Tutor
Morse Tutor
Keyboard morse sender
RF switched pre-amp Active dipole indoor Active dipole outdoor
As above with mains p.s. As above with mains p.s.u. As above with mains p.s.u
Mains power unit Mains power uni RF speech clipper module Auto squelch unit

5000 RPCB 144 ub Ina

6010 RPCB 25lub
6020 HDRA 95u-1
5030 HDRA 95U-2 5040 BBBA 5000

6050 BBBA 850u
Microstripline be
HDRA95 \& B8B
UHF(f) to BNCI
5090 ATCS 144s $\begin{aligned} & \text { Transmit receive } \\ & \text { sequence and co }\end{aligned}$
WRAASE ELECTRONIC
SLOW SCAN H.F. EQUIPMEN 4720 SC140
$\begin{array}{ll}4730 & \text { SC1ED } \\ 4740 & \text { SC442A }\end{array}$
4775 SC. 1
4775
4750
SGG422A
4760 KB422A
4780 Prince
STV receive SSTV tranceiv SSTV TX/RX
SSTV + FAX Light pen Light pen
12* green disp

SCANNING RECEIVER

5573 Sony ICF7600D Digital receiver S54 Power supply mains. for above 580 Bearcat BC100 synthesised h/h 5610 Bearcat BC2020FB AM/FM VH 5650 Jit SX200N AM/FM VHF/UHF 5651 Jil S $\times 400$ 26-510MHz AM/FM 5641 AOR2001 Synth. $26-520$ AM/FM 5770 Fairmate AS32320 AM/FM VHF airband
5750 Corona CD6000 AM airband re 5781 FDK RX40 pocket synthesised 180 MHz
5790
5780 FDK ATC720 pocket synthesise

VHF/UHF AMPLIFIERS

TONO PRODUCTS
$53402 \mathrm{M}-50 \mathrm{~W}$
$53502 \mathrm{M}-100 \mathrm{~W}$
5350 MR-150W 5370
5380
MR-250W 5380
5390
M M 280

40 W linear for 210 W linear fo
100 W linear fo
$\begin{array}{lll}5670 & \mathrm{HC}-150 & 3.5 \mathrm{MHz} \text { to } 30 \mathrm{M} \\ 5690 & \mathrm{HC} 2000 & 1.8 \mathrm{MHz} \text { to } 30 \mathrm{~N}\end{array}$ $5600 \mathrm{HC} 2000 \quad 1.8 \mathrm{MHz}$ to 30 M
$5700 \mathrm{HL}-160 \mathrm{~V} \quad 2 \mathrm{M}$ linear amp 2M linear amp
includes J. Fet includes J.Fet
5709 HLA5U $\quad 70 \mathrm{~cm}$ linear
5711 HLsoU $\quad 70 \mathrm{~cm}$ linear an ALINCO ELECTRONICS
5720 ELH230E 2M linear min 5730 ELH710 \quad Psmall 3W $1 / \mathrm{P}$ 5741 ELH230D As ELH230 bu 5742 ELH2500 $\quad 2 \mathrm{M}$ linear 50 W pre-amp (switc) See full range of BNOS and Microw

DAVETREND LTD

4670 VHFIW

4650 4APSU
4650
4700
6APSU
12APSU
4710 24APSU
4710 24APSU
4711
MT1
4 amp 13.8 V p
5 amp 13.8 Vps
$6 \mathrm{amp} 13.8 \mathrm{~V} p$
12 amp 13.8 V
24 amp 13.8 V
Morse tutor w

> 24 HOUR ANSWERPHONE SERVICE AT BOTH PREMISES AVAILABLE

	$\begin{aligned} & \underset{\sim}{U} \\ & \underset{\sim}{\sim} \\ & \underset{U}{N} \\ & \underset{\omega}{\omega} \end{aligned}$	

(

$$
\boldsymbol{y}
$$

\mathbb{R}

\sum_{3}^{8}

Phico Radio Televison Lid
 International General Electric of New York
 song uosyjer
Lambda Electronics Co.

Merrimac Industries Inc.

solonpuosiwas elososo W Products preunn
D)

\star test measurements

Sensitivity:

Freq. (MHz)	Input e.m.f. ($\mu \mathrm{V}$) for$10 \mathrm{~dB}(\mathrm{~S}+\mathrm{N}) / \mathrm{N}$		Input e.m.f. $(\mu \mathrm{V})$ for S9 (s.s.b.)	Pre-amp gain (dB)
	c.w.*/s.s.b.	a.m.		
1.81	0.34	$2 \cdot 3$	248	6.5
3.51	0.36	$2 \cdot 2$	254	$7 \cdot 1$
7.01	0.27	2.0	219	8.4
10.11	0.27	1.9	215	8.9
14.01	0.26	1.9	237	$7 \cdot 3$
18.11	0.30	$2 \cdot 2$	265	5.9
21.01	0.34	1.9	231	$7 \cdot 1$
24.91	0.28	$2 \cdot 1$	271	$5 \cdot 7$
28.01	$0 \cdot 26$	$2 \cdot 1$	231	7.1
29.01	0.26	2.0	226	7.3
29.01	$\begin{aligned} & 0.67 \mu \mathrm{Ve} \\ & 13 \mathrm{kHz} \mathrm{de} \end{aligned}$	$\begin{aligned} & \text { af. for } \\ & \text { at } 1 \mathrm{kH} \end{aligned}$	dB SINAD	on f.m.

* The CW-N position improves sensitivity by 3 dB

Squelch threshold:
$0.4 \mu \vee \mathrm{~min}$.
$1.2 \mu \mathrm{~V}$ max.
S-Meter calibration: (At 14.01 MHz u.s.b.)

Reading	Input required	
	$\mu \mathrm{V}$ e.m.f.	$\mathrm{dB} \mu \mathrm{V}$
S2	6.0	16
S3	8.2	19
S4	11.7	22
S5	17.7	25
S6	28.0	29
S7	45.0	33
S8	76.0	38
S9	134.0	43
+20 dB	237.0	48
+40 dB	1.3 mV	63
	15 mV	84

specification

Frequency coverage:

Amateur Bands:	$1.8-2 \mathrm{MHz}(160 \mathrm{~m})$
	$3.5-4.1 \mathrm{MHz}(80 \mathrm{~m})$
	$6.9-7.5 \mathrm{MHz}(40 \mathrm{~m})$
	$9.9-10.5 \mathrm{MHz}(30 \mathrm{~m})$
	$13.9-14.5 \mathrm{MHz}(20 \mathrm{~m})$
	$17.9-18.5 \mathrm{MHz}(17 \mathrm{~m})$
	$20.9-21.5 \mathrm{MHz}(15 \mathrm{~m})$
	$24.5-25.1 \mathrm{MHz}(12 \mathrm{~m})$
	$28.0-30 \cdot 0 \mathrm{MHz}(10 \mathrm{~m})$
General coverage:	$0.1-30.0 \mathrm{MHz}$ in 30
	1 MHz segments
	$1 \mathrm{kHz}, 100 \mathrm{~Hz}$ or 10 Hz
Tuning steps:	$6-\mathrm{digit}, 100 \mathrm{~Hz}$ resolution

Sensitivity ($\mathbf{m i n}$) with pre-amp ON:

	Input for 10dB ($\mathrm{S}+\mathrm{N}$)/ N	
Mode	$<1.6 \mathrm{MHz}$	$>1.6 \mathrm{MHz}$
SSB/CW/RTTY	$1 \mu \mathrm{~V}$	$0.15 \mu \mathrm{~V}$
AM	$3 \mu \mathrm{~V}$	$0.5 \mu \mathrm{~V}$
FM	-	$0.3 \mu \mathrm{~V}$ for 12 dB

RF Attenuator: 20 dB

Image rejection: Better than 79dB

Selectivity:
WIDTH control at maximum, I.F. SHIFT centred

Mode (B/W)	-6 dB	-60 dB
SSB	2.1 kHz	3.4 kHz
CW (N)	550 Hz	1.4 kHz
AM	5.5 kHz	11 kHz
FM	14 kHz	21 kHz

RIT:
AGC:
$\pm 1 \mathrm{kHz}$
Output change for 110 dB input change, relative to $9 \mu \mathrm{~V}$ threshold: 0.5 dB

RF attenuator: 20 dB

Notch filter: $\quad 30 \mathrm{~dB}$ approx. at 1 kHz Tunable $250 \mathrm{~Hz}-2 \cdot 1 \mathrm{kHz}$

Audio output: $\quad 1.2 \mathrm{~W}$ into 8Ω with 0.6% t.h.d. on 1 kHz , for $100 \mu \mathrm{~V}$ input at 14 MHz .

Adjacent channel rejection:

a.m. 60 dB at 950 kHz (9 kHz channel spacing) f.m. 80 dB at 29.6 MHz (25 kHz channel spacing)

Frequency stability: Less than 250 Hz from 1 min . to 60 min . after switch-on Less than 50 Hz thereafter Less than 500 Hz from -10° to $+60^{\circ} \mathrm{C}$

Selectivity: WIDTH control at maximum

Mode	-6 dB	-60 dB
SSB/CW/RTTY	2.3 kHz	4.2 kHz
$\mathrm{CW}(\mathrm{N}) /$ RTTY (N)	500 Hz	1.5 kHz
AM	6 kHz	18 kHz
FM *	15 kHz	25 kHz
* Option		

Spurious response rejection ratio: More than 60 dB
Audio output: More than 2 W in 8Ω
Antenna impedance: 50Ω unbalanced (or single wire below 1.6 MHz)
Power requirements: 117 V or $235 \mathrm{~V} \pm 10 \%$, $50 / 60 \mathrm{~Hz}, 30 \mathrm{VA}$ (110/200/220V by internal modification)
Dimensions: $\quad 111 \times 286 \times 276 \mathrm{~mm}$
Weight:

The squelch threshold is controlled by the inner knob of a dual-concentric knob, the outer being TONE, and the squelch is operative on all modes. If you are not aware of this initially then you could be caught out and think that the set was faulty-we were!

The back panel carries the antenna sockets on one side and the external speaker jack, mute terminal and accessory socket on the other. The mute terminal is for use with a transmitter, grounding it mutes the set and monitors the transmitter. The 24 -way accessory socket provides access to various parts of the control system as well as supply rails and signals.

Handbook

The handbook follows the usual Icom layout explaining the operation of the various controls together with a circuit description and block diagrams. A full circuit diagram and printed circuit board layout drawings are also provided. Full instructions are given in the handbook for the installation of the various options and this is followed by a troubleshooting table to enable you to find out just what controls you have not set correctly!

Price

The IC-R70 costs $£ 499$ incl. VAT. The sets tested were loaned by Thanet Electronics, 143 Reculver Road, Herne Bay, Kent. Tel: 0227363859 to whom we extend our thanks.

Building an HF Linear Amplifier and ATU

Part 1

by I. Buffham
 BSc CEng MIEE G3TMA

In these days of increasingly complex equipment packed with dozens of integrated circuits and microprocessors it is becoming more and more difficult for the average amateur to build transmitters or receivers to compare favourably with the latest Japanese black boxes.

Fortunately two areas remain where the resourceful amateur can still beat the commercial manufacturers at their own game and save a great deal of money in the bargain! These two areas are h.f. linear amplifiers and antenna tuning units and examples can be seen in the photographs which show the author's station consisting of a Drake " C " line driving a home-made linear amplifier and a.t.u.

The purpose of this article is to serve as a guide to the production of similar equipment. It is not intended that the equipment described should be built exactly as described because of the difficulty of finding suitable identical components in sufficiently large quantities.

Outline Specification

It probably goes without saying that the aim of most constructors in
building an h.f. linear will be to achieve a p.e.p. output of at least 400 watts at the highest frequency of interest.

However, the one factor which has the greatest influence on the design of the amplifier is not the required power output but the available driving power from the station transmitter.

Some transceivers only have an r.f. output of 10 watts and so the linear preamplifier will be required to have a high power gain. This is only achievable by the operation of a valve in class $A B 1$ or $A B 2$ with the attendant complications of having to provide a stable screen grid supply, negative bias supply, neutralisation, and input tuning of the amplifier.

Fortunately most transceivers have a power output of around 100 watts p.e.p. permitting the construction of a class B grounded-grid amplifier with low power gain. Class B amplifiers are relatively easy to construct since they do not require screen grid or negative bias supplies or neutralisation. Also, in some amplifiers input tuning may be dispensed with.

The amplifier constructed by the author is a class B design and the front view is shown in the photographs.

Choice of Valve

After choosing the class of operation of the amplifier the next most important decision is the choice of the valve to be used. Many power triodes are available which are suitable for use in grounded-grid amplifiers and most of them may be rejected on the grounds of cost. Another consideration is the h.t. voltage required. In general the lower the h.t. voltage the simpler the construction of the amplifier. High h.t. voltages present problems with pi network component ratings and power supply construction.
The input impedance of the valve is also of interest. For grounded-grid amplifiers the input impedance, Z_{in}, is given by:-

$$
\mathrm{Z}_{\text {in }}=\frac{(\text { Peak r.f. driving voltage })^{2}}{2 \times \text { driving power }}
$$

Provided Z is in the range $40-100$ ohms then input tuning of the amplifier can be avoided.

A further consideration is the maximum frequency at which the valve may be used at full ratings, especially if the full 400 watts p.e.p. output is required on 28 MHz !

Finally, in the interests of constructional simplicity, it is worth trying to

Fig. 1.3: Circuit of the h.f. linear
amplifier described in this article

choose a valve which does not need any forced air cooling.

The characteristics of some common valves are listed in Table 1.

After much deliberation it was decided to construct the amplifier based on four 811 A valves in parallel. The input impedance of such an arrangement will be $322 / 4$ ohms i.e. 80 ohms so input tuning can be avoided. Also, as the 811 A only requires an h.t. rail of 1.25 kV the voltage ratings required for the pi network components are modest. One further advantage of the 811 A is that despite being a pre-1939 design it has instant-heat filaments and so is ready for use immediately on switch onjust like a transistor!

The possibility of building a transistor amplifier was briefly considered but discarded on grounds of cost and technical difficulty. No doubt in the future home-built 400 W solid-state amplifiers will become commonplace but valves are a much better bet for the time being.

Circuit Design

Having selected a valve for the amplifier it is then possible to proceed with the circuit design. A suitable circuit is shown in Fig. 1.3.
Filament Circuit: It can be seen from Fig. 1.3 that a bifilar wound r.f. choke is included in the filament circuit. This is to enable the filaments to be kept above r.f. ground. Such a choke can be simply constructed by making a bifilar winding of $1.5 \mathrm{~mm}^{2}$ pvc insulated copper wire along the entire

Table 1. Parameters of some common valves

Valve	Supply (kV)	Max. Frequency (MHz)	Input Impedance (Ω)	Power Output (W)	Notes
811 A	$1 \cdot 25$	60	322	165	
813	2.5	30	376	219	Grid and screen joined 572B
$2 \cdot 5$	30	275	400	750	Needs chimney and blower

length of a ferrite rod 150 mm long. Voltage drop across the choke should be very small but it is important to measure the filament volts at the valve pins. If necessary the primary taps of T1 should be adjusted to ensure the correct voltage at the valve pins (6.3 V at 4 A per valve). T1 should be mounted close to the valves to minimise lead lengths and voltage drops.

Ideally the secondary of T1 7.5 V r.m.s. at 16A) should have a centre tap to provide the h.t. ground return, but if such a transformer cannot be found a centre tap can be artificially provided by means of two resistors ($\mathrm{R} 1,2$) as shown in Fig. 1.3.
Input Circuit: A generalised input circuit is shown in Fig. 1.3. As explained earlier, with the correct choice of valve no input tuning will be necessary. If input tuning is required then this can be provided by a separate "L" network (Lin/Cin) for each band. The "L" network can be set up by connecting a v.s.w.r. bridge between the transmitter and amplifier
and adjusting the trimmer capacitor (Cin) for $1: 1$ v.s.w.r.
Anode Circuit: The principal component in the anode circuit is the r.f. choke, RFC1. This is designed to isolate the h.t. supply from the anode circuitry and so must have a sufficiently high reactance at the lowest frequency of interest. A value of inductance of $100 \mu \mathrm{H}$ will usually suffice. (i.e. a reactance of 2200 ohms at 3.5 MHz .) The choke must be capable of handling voltages of up to twice the h.t. voltage and it must be capable of handling the anode current. Also, the choke must have no resonances within the amateur bands. If there are any such resonances the choke will absorb large quantities of r.f. energy and emit smoke. This problem may be overcome by adding or removing a few turns from the choke and checking all bands again. A suitable choke can be made by winding 24 s.w.g. enamel wire to a length of approximately 87 mm on a 20 mm diameter ceramic former.

Also in the anode circuit are the antiparasitic chokes RFC2/R3. Identical chokes are fitted in each valve anode and they consist of four turns of 14 s.w.g. wire, 15 mm in diameter wound over a 50 ohm 2 W solid carbon resistor. The object of fitting these chokes is to suppress any possible v.h.f. parasitic oscillations in the amplifier.

The final component to be considered in the anode circuit is the capacitor C4. The task of C4 is to block the h.t. from the pi network whilst allowing the r.f. power through. The d.c. rating of the capacitor must be at least twice the h.t. voltage and a suitable value would be 1 nF .

PI Network Design

The purpose of the pi network is to efficiently transfer energy from the high output impedance valves into the 50 ohm load presented by the antenna. In Fig. 1.3 the components in the pi network are C1, C2, C3, L1, L2 and L3. The transfer of energy can be accomplished by more than

Practical Wireless, April 1984

Most of the components used in this project will have to be painstakingly gathered together from amateur radio rallies. Only attempt this design if you have the ability to modify the construction and design to suit the components available. Please do not ask Practical Wireless or the author for information on how and where to obtain the components.
one set of values of L and C at one particular frequency. However, by varying the L / C ratio the Q of the pi network changes. If the Q is too high then there will be very high circulating currents in the pi coil causing losses. If the Q is too low then the network will provide reduced harmonic suppression. An optimum value of Q is around 10 and Fig. 1.2 provides a means of determining the value of pi tuning capacitance on various amateur bands. For four 811As in parallel the ratio of anode voltage to anode current (anode characteristic impedance) is $1250 \mathrm{~V} / 400 \mathrm{~mA}$ or about $3 \cdot 1 \mathrm{k} \Omega$.

Hence the value of tuning capacitance required for 3.5 MHz is 300 pF . The value of tuning capacitance required for 28 MHz is 35 pF . However, the output capacitance of the four valves in parallel is 22.4 pF and so the pi tuning capacitor is only required to have a value of $12 \cdot 6 \mathrm{pF}$. It is difficult to find 300 pF tuning capacitors which have a minimum capacitance of 12 pF and so it was decided to fit two tuning capacitors in the amplifier. C1 is a 100 pF capacitor with a minimum capacitance of 8 pF and is switched in on the bands $14-28 \mathrm{MHz} . \mathrm{C} 2$ is a 600 pF and is switched in for the 3.5 and 7 MHz bands. C 3 is the loading capacitor and consists of four ganged 500 pF broadcast capacitors.

The pi tank coil consists of L1, L2 and L3. L1, the 28 MHz coil, is two turns of 10 s.w.g. copper wire, 45 mm diameter and 32 mm long. (L 2 is set to minimum for 28 MHz .) L 2 is the pi coil for 21 and 14 MHz and consists of a small "roller coaster" of approximately $10 \mu \mathrm{H}$ inductance. This coil will also be suitable for the 18 and 24 MHz bands as they become available and the use of a "roller coaster" obviates the need for a 7 position bandswitch.

The pi coil for 3.5 and 7 MHz (L3) consists of 27 turns of 12 s.w.g. wire 100 mm diameter and 124 mm long with 9 turns used for 7 MHz and 27 turns for 3.5 MHz . When initially tuning the amplifier on each band it is worth comparing the value of pi tuning capacitance actually used with the value obtained from Fig. 1.2. If necessary the pi inductor value should be changed so that the correct value of tuning capacitance is used. This will ensure operation of the pi network at the correct value of Q.

Metering and Tx/Rx Switching

Meters are included in the amplifier for measuring anode current and grid current. The anode current meter M1 is included in the negative lead of the h.t. supply to ensure that the meter is not at a high potential above ground. The grid current meter is M2. It is important to monitor grid current since this will give an indication of the tuning state of the amplifier.

If the correct pi network values are used and the amplifier is connected to a 50 ohm load the grid current will rise linearly with anode current as r.f. drive is applied. However, if incorrect pi network values are used or if the antenna has a high v.s.w.r. then grid current will rise rapidly as r.f. drive is applied with no corresponding increase in anode current.

Two heavy duty relays, RLA and RLB, are used to control the am-
plifier's transmit/receive switching. In the receive position the amplifier is by-passed enabling the antenna to be connected directly to the transmitter/receiver. Switch S2 is a front panel switch enabling the amplifier to be switched in and out of circuit as required.

Power Supply

In the receive condition it is necessary to apply a small negative voltage to the valve grids in order to cut them off. This is achieved by RLB. A 12 V negative supply is used for the relay coils and this supply is also used to cut-off the valves.

The power supply for the amplifier is shown in Fig. 1.1.

An h.t. supply rail of 1250 V is required and this can be achieved in a number of ways depending on the components to hand. I was able to track down an h.t. transformer having a 1380 V secondary. This will give the required 1250 V d.c. with a choke input filter (d.c. voltage is $0.9 \times$ a.c. voltage). However, an h.t. transformer with a secondary of 884 V will give 1250 V d.c. when used with a capacitor input filter (d.c. voltage is $1.414 \times$ a.c. voltage).

The capacitor input filter approach is the preferable one but the final choice of circuit depends on the h.t. transformer which can be obtained.

Each of the diodes D1-D4 consists of four 1N5408 diodes in series to give a total peak inverse rating of 4000 V and a forward current rating

of 3 A . Each diode is shunted by a $\operatorname{lnF} 1 \mathrm{kV}$ disc ceramic capacitor to give protection from mains spikes and a $100 \mathrm{k} \Omega 2 \mathrm{~W}$ resistor to equalise reverse voltages across the diodes. The theoretical reverse voltage rating for D1-D4 is $1.4 \times$ transformer secondary voltage i.e. $1.4 \times 1380 \mathrm{~V}$, 1932 V , but it is good practice to have a substantial safety margin.

A disadvantage of the choke input filter is its poor regulation at low currents. At low currents the filter behaves as a capacitor input filter and the output voltage will rise to $1380 \times$ 1.414 V i.e. 1952 V . However, once a critical value of current is taken from the supply the output voltage will drop to the correct level of $0.9 \times$ secondary voltage. This critical level of current is determined by the size of the choke L4 and can be determined from:
L4 $=\frac{\text { Required Supply Voltage }}{\text { Supply Current (mA) }}(\mathrm{H})$
The standing current taken by four 811 As in parallel is 100 mA , hence a choke with an inductance equal to or greater than $1250 / 100$, i.e. $12 \cdot 5 \mathrm{H}$, is required. So the h.t. supply will give an output voltage of 1952 V off load but will immediately drop to the required value of 1250 V when the amplifier is switcheci to transmit.

The smoothing capacitor bank C11-16 consists of six $250 \mu \mathrm{~F}, 450 \mathrm{~V}$ capacitors in series to give a total capacitance of $41 \mu \mathrm{~F}$ at a working

WARNING

The h.t. voltage used in this project is dangerous. Treat all parts of the circuit with respect. Play safe and keep one hand in your pocket.
voltage of 2700 V . The resistor chain R5-10 is fitted to equalise the voltage across the capacitors and also to discharge them on switching off. Each resistor is rated at $10 \mathrm{k} \Omega, 12$ watts, giving a total resistance rating of $60 \mathrm{k} \Omega$ at 72 watts. A resistance of $60 \mathrm{k} \Omega$ connected across a 1952 V supply will give a current flow of 32 mA . This is not sufficient to cause the voltage to drop to its final stable voltage of 1250 V but it is sufficient to drop the voltage to some intermediate value. In the case of the author's supply the resistor chain drops the offload voltage to approximately 1450 V .

The voltmeter (M3) used was a 300 V d.c. 1 mA f.s.d. meter with 10 resistors, each $270 \mathrm{k} \Omega$, in series to give a $0-3 \mathrm{kV}$ meter.
$\mathrm{A}-12 \mathrm{~V}$ supply is also required for the relays and to cut-off the valves during receive periods. This is simply provided by the transformer T3 with a bridge rectifier and capacitor input filter. The diodes D5-D8 are rated at 100 V p.i.v., 1 A and the capacitor (C17) is $50 \mu \mathrm{~F}, 25 \mathrm{~V}$ working.

Component Collection

Once the design of the amplifier has been established the most difficult

and time consuming part of the exercise can begin. This is the collection of suitable tuning capacitors, coils, valves, transformers, chokes etc. The nature of the components is such that it is not economic to try and buy brand new ones from manufacturers. However, six months of determined visits to mobile rallies, junk sales, exhibitions and local amateurs should be long enough to assemble a formidable collection of heavy duty components!

Metalwork

Having collected the major components it is then necessary to consider how they should be housed. There may be a great temptation to use a cabinet which is already to hand but Murphy's Law generally dictates that such a cabinet will be either slightly too small or the wrong shape. The only way to achieve a reasonable finished product is to design and build a cabinet specially to house the components which have been collected. The first step is to determine the physical layout of the major components and the only precaution to take is to ensure that the valves, the h.f. pi coil and the h.f. tuning capacitor are kept as close together as possible in order to minimise lead lengths. A sketch can then be made of a cabinet of ideal size to house the components. The sketch made for the author's amplifier is shown in Fig. 1.4. The cabinet consists of two parts. A heavy duty chassis of 14 s.w.g. aluminium and a wrap-over cover of 20 s.w.g. aluminium. Two 150 mm square cutouts are provided for ventilation of the valves. Some lucky amateurs may have sufficient workshop facilities to be able to build the cabinet themselves but most of us will have to resort to getting the names of local sheet metal workers from Yellow Pages. Three or four local sheet metal companies should be sent a copy of the sketch with a request for a quotation. In these difficult times of recession it should be possible to get quite reasonable quotations!

Once the cabinet has been constructed then follows the relatively easy task of mounting and wiring all the components. In the case of the author's amplifier the valves are mounted on a small subchassis plate. A separate cabinet is used to house the power supply unit. Any large, sturdy metal box can be used.

Part 2 of this article will cover the design and construction of a suitable v.s.w.r. meter and a.t.u. for use with the linear amplifier.

vOX Option Handie

South Midlands Communications Ltd. have supplied me with information on the very latest Yaesu 144 MHz f.m. handheld transceiver, entitled the FT203R.

The FT-203R follows the trend for smaller and smaller units and is housed in a high-impact plastics case that measures only $153 \times 65 \times 34 \mathrm{~mm}$, weighs 450 g yet delivers 2.5 W r.f. output power into 50Ω using the standard 10.8 V power pack.

Frequency range is 144 to 146 MHz in 5 kHz steps, selected via a three-digit thumbwheel switch and a push button for 0 or 5 kHz . Simplex or repeater shift operation is selected by a switch on the rear panel, whilst the p.t.t. and tone burst switches are located on the side of the unit.

The top control panel has, in addition to, volume, on/off, squelch, frequency and power select, earpiece and microphone sockets, and a signal/power out meter, which allows the transceiver to be used for general direction finding and "foxhunting" when a directional beam antenna is employed.

A very useful feature is the VOX system in the FT-203R, that when

used in conjunction with the optional YH-2 headset, provides voice-actuated transmit/receive switching, allowing the operator to have both hands free during QSOs.

Supplied as standard is a $10 \cdot 8 \mathrm{~V}-425 \mathrm{mAh}$ NiCad pack, soft case and helical rubber antenna. Optional accessories include a $12 \mathrm{~V}-500 \mathrm{mAh}$ NiCad pack (which will increase the r.f. power out), battery case for six AA size dry cells, d.c. car adaptor/trickle charger, mains charger, speaker microphone and, of course, the YH-2 headset which costs $£ 13.80$ inclusive of VAT and carriage.

The FT-203R costs $£ 169$, which includes VAT and carriage, and is available from: South Midlands Communications Ltd., S. M. House, Rumbridge Street, Totton, Southampton SO4 4DP. Tel: (0703) 867333.

Top-band Mobile/Base Transceiver

Latest information from Northampton Communications describes a dedicated top-band transceiver that has been designed and built in Northampton, and is suitable to fulfil the much needed requirement of mobile operation on the band.

The 1.8 MHz enthusiast will know that obtaining equipment for this band usually means either buying highpriced, imported, multiband rigs, or build your own.

This rig, entitled the Lencom LC160, is suitable as a base station, whilst being compact enough for mobile operation. Of modular, solid state, construction which permits easy access for servicing or owner modification, the LC160 is tuned via a central control knob, linked to a 12:1 reduction drive and readout is via a 150 mm long analogue dial. Frequency coverage is, of course, between 1.8 and 2.0 MHz .

Switchable modes are s.s.b. and a.m., with c.w. being automatically obtained on insertion of the key jack, carrier and side tone being electronically switched.

Excellent i.f. selectivity is obtained with a 2.1 kHz mechanical filter at 455 kHz ; further selectivity is effected with the integral audio filter, which can provide a tuned notch or peak function.

The bandwidth of notch and peak are variable.

The rugged p.a. delivers an r.f. power output of over 30 W p.e.p., into $40-70 \Omega$, and is fully controllable from the front panel. Audio output is 2 W into 3Ω, by way of an external speaker (available separately), and with the microphone supplied, audio clipping is set at a 12 dB level, the microphone gain being fixed.

For ease of mobile operating the audio output can be muted by a front panel control and an indicator light will be activated should any signals be present. Also transmit/receive may be switched either from the front panel or the p.t.t. on the microphone.

Other specifications include: stability of the v.f.o. less than $100 \mathrm{~Hz} / \mathrm{hr}$, c.i.o. less than $50 \mathrm{~Hz} / \mathrm{hr}$; bandwidth on s.s.b. 2.1 kHz , a.m. 8.0 kHz ; carrier suppression is better than 40 dB and the transceiver requires a 12 to 14 V d.c. power source with current consumption at 1.2 A on receive and 4 A on transmit.

The LC160 top-band transceiver is housed in a case measuring $300 \times$ $165 \times 90 \mathrm{~mm}$, is priced at $£ 199$ which includes VAT and is available exclusively from: Northampton Communications Ltd., Communications House, 76 Earl Street, Northampton NN1 3AX. Tel: (0604) 33936 or 38202.

VFM? Value For Money
 by G8YDK

A colleague had persuaded me to "have a quick look at it". The complaint was that when switched on the radio would work for just a few minutes and then stop. I suggested he buy a new battery, but he assured me that he kept buying new batteries, and had already spent more on batteries than he had on the radio!

The little red radio was still in its cardboard box with a price label clearly marked $£ 2.50$, so whatever I did could not be cost effective. When tested it was completely dead, the $6-$ F22 (PP3) battery was flat, measuring $2 \cdot 2$ volts, but then the switch was on when I took the radio out of its box, so the battery would be flat wouldn't it? With a 9 volt supply applied to the battery clip the little radio worked reasonably well, but if the supply was reduced to lower than 8 volts it stopped.

Now, there are many technical procedures to establish if the local oscillator has stopped oscillating, but the "subject" didn't seem worthy of any of them. Anyhow, I knew that the oscillator stopped whenever the supply went below 8 volts.

With the two small retaining screws removed the 50 mm square p.c.b. came out easily enough, but the leads to the speaker were a bit short. It wasn't too difficult to work out the details of the "front end" circuitry, and this is shown for reference in Fig. 1. I applaud the designer of this miniature superheterodyne receiver with its minimum of components.

With the supply set to 9 volts the first checks were made on the frequency changer transistor, $\operatorname{Tr} 1$: collector 5.9 V , emitter 0.6 V , base $1 \cdot 1 \mathrm{~V}$. Emitter volts, 0.6 , divided
by R3 at $3.3 \mathrm{k} \Omega$, using good old Ohm's Law, gave 182 microamps emitter current-low, even for a frequency changer stage. Collector volts also seemed to be low for the 9 V input and it was found that 3 volts were being dropped across R8. The 3 volt drop divided by R8 at 330Ω indicated a current of 9 mA -well it certainly wasn't going to Trl.
Back to $\operatorname{Tr} 1$; ignoring what should be the very low base current of Tr 1 , the potential at point A can be calculated to be the 6 volts measured at point B, divided by R1 + R2, multiplied by R2. This calculation worked out to be 1.95 volts, but point A measured $1 \cdot 1$ volts. So was R1 or R2 of incorrect value, or was capacitor C1 leaky? It was possible to unsolder the lead to the base coupling winding on the ferrite rod antenna at point A, and with Tr1 base isolated, resistance checks were made between points A and B and from point A to the 0 V supply rail. The readings obtained were $56 \mathrm{k} \Omega$ and $27 \mathrm{k} \Omega$ respectively, showing both R1 and R2 to be correct, and suggesting that Cl was also OK. A voltage check at point A now gave a reading of almost 2 volts, so it was Tr1 upsetting the potential.

By juggling with the figures it could be seen that $\operatorname{Tr} 1$ was requiring 47 microamps of base current, which was ridiculous considering the calculated 182 microamp emitter current-no wonder it was affecting the base potential divider network which would normally be designed to draw ten times the expected base current. Current in R1 and R2 from the 6 volts available is 72 microamps.

Still, I was only "having a quick look at it", so the line

of least resistance . . . changing R1 from $56 \mathrm{k} \Omega$ to $39 \mathrm{k} \Omega$ allowed the oscillator to function until the supply fell to 7.1 volts. I put the set back together at this stage, and it did work, but my conscience eventually got the better of me! I convinced myself that there were too many "birdies" as I tuned across the band. Where were the 9 milliamps through R8? And I really wasn't happy about changing the value of R1.

The Second Session

I first put back the original R1, and became an honest man dgain. Now, where were the 9 milliamps going? I already knew it wasn't to Trl. A screwdriver blade shorting the base/emitter junctions of $\operatorname{Tr} 2$ and $\operatorname{Tr} 3$ gave the clue; by switching off $\operatorname{Tr} 3$ the current through R8 (calculated each time by the measured voltage drop across it) reduced by approximately 1.5 mA . No substantial difference could be noticed when attempting to switch off Tr 2 , although the voltage across R8 did fluctuate. Even if the current was leaking through some other route, I was expecting to see a reduction proportional to the current in Tr2, but I didn't.

I next removed Tr2 and my May 1975 Television transistor tester showed it to have an infinite hre-obviously leaky. Now, what to replace it with? None of the transistors had any markings on them, although those long Japanese numbers don't mean much to me anyway-each piece of oriental equipment seems to have its own range of transistor numbers. Right! Silicon, npn, r.f., what did I have? I didn't really want to use something I had paid good money for. What was in that 50 p "goodies" pack I couldn't resist at the Electronics Hobbies Fair? A 2 N 2369 A , used for fast switching and v.h.f. multiplier
stages, was located-should work OK at 455 kHz . This was rapidly fitted into the $\operatorname{Tr} 2$ position, making sure that the collector "can" didn't touch the adjacent i.f. transformer.

With the supply set to 9 volts the current through R8 was now 4.5 milliamps, much better! However, even with the higher voltage this gave at point B, the oscillator still stopped when the supply was reduced much below 8 volts. I had already proved that Trl was unhappy, so in went yet another 2 N 2369 A . This transformed the frequency changer stage, giving the expected d.c. conditions; i.e. with point B at 7.5 volts, emitter 1.8 volts, base 2.4 volts and emitter current therefore 545 microamps. The set would now continue to work with the supply as low as 5 volts.

The p.c.b. was again refitted, with necessary repairs to the fraying speaker leads. The radio was now re-aligned, naughtily using the "known transmitter" method, which was in fact perfectly adequate for the dial calibration used. The radio was now considered to be giving a very respectable performance, for its simple pedigree, but in keeping with my usual pessimism I decided to "live with it" for a while and soon became aware of the background audio hiss, even with the volume control at minimum!

The Third Session

That hiss must be generated after the volume control and a screwdriver blade across the base/emitter junction of Tr3 stopped it dead. In went the third 2 N 2369 A -all now beautifully noise free and radio still working just as well.

Final reassembly, and triumphant return to owner"Thanks very much, I'll buy you a pint at Christmas". Still, I did know that I was only doing it in pursuance of my hobby, and there's only one thing I enjoy more than my radio hobby-it's not a pint at Christmas!

INTERMEDIATE FREQUENCY

The second topic highlighted for attention in the report on the May 1983 RAE results is the choice of the intermediate frequency in a superhet receiver.

Selectivity

What are we looking for in a radio receiver? The most important thing is an ability to receive just one signal at a time, without interference from other stations. This ability to select one station and reject the rest is called, appropriately enough, the selectivity of the receiver. It's achieved by having tuned circuits-coils and capacitors-which are arranged to resonate at the frequency of the wanted signal.

Unfortunately, you can't make a tuned circuit resonate at one frequency only, or even just across the narrow band of frequencies carrying the signal from a single station. It will still have some response at frequencies above and below the wanted station (Fig. 1), and you'll hear signals on those frequencies too. The sharpness of a tuned circuit is called its \boldsymbol{Q} factor (or just Q for short). The sharper the circuit the higher the Q.

There are several formulas for calculating Q, but the one of most use to us in our present discussion is

$$
Q=\frac{f_{0}}{B}
$$

where f_{0} is the resonant frequency of the tuned circuit and B is its bandwidth-the difference between the frequencies above and below f_{0} at which the output voltage from the tuned circuit is reduced to 0.707 times that at resonance (Fig. 2). If the output voltage has fallen to $0 \cdot 707$, the output power will be 0.707^{2} or roughly 0.5 (remember, power is proportional to voltage squared). Those frequencies are therefore called the half-power points, or (for those of you into such things) the -3 dB points.

Putting that formula into words, the Q factor is the ratio of the centre frequency to the bandwidth. Say you had a tuned circuit with a Q of 100. If its resonant frequency was 800 kHz in the medium-wave broadcast band, then its bandwidth would be $800 \div 100=8 \mathrm{kHz}$ (because the formula can be turned round to say $B=f_{0} \div Q$). On the other hand, if the resonant frequency was $14 \mathrm{MHz}(14000 \mathrm{kHz})$ at the bottom of the 20 m amateur band, its bandwidth would be $14000 \div 100=140 \mathrm{kHz}$. You can get an awful lot of stations into 140 kHz , so that wouldn't be much use to us, would it?

If you cascade several tuned circuits one after the other, in a suitable way, you can achieve a much sharper response
than each circuit produces on its own, but they must be very carefuly adjusted if you are to get a good response. If you have a receiver that is intended to receive on only one frequency there is no great problem, but if you want to tune to several stations, even just across the medium-wave broadcast band, for example, it means you've got to arrange to alter the resonant frequency of all the tuned circuits at the same time, keeping them in step with each other, a process called tracking. If each circuit has a reasonable Q factor, that's going to be very difficult, if not impossible. So, what's the solution?

The Superhet

The solution is the superhet receiver, or the supersonic heterodyne to give it its full name. The idea is that you convert the incoming wanted signal, whatever its frequency may be, to another frequency which is constant. This new frequency is called the intermediate frequency (or i.f.), so called because it is an in-between stage in converting the incoming radio-frequency signal to an audio-frequency one to feed the loudspeaker or headphones. All the selectivity needed to get rid of interfering signals on channels adjacent to the wanted station is put into the i.f. amplifier.

What should the intermediate frequency be? Well, we've already found out that it's easier to achieve narrow bandwidths at low frequencies than at high ones. So, let's go for a low frequency. Problem solved? No, because there's another snag we've not talked about yet, and it comes about just because we've converted the incoming signal to the i.f.

How is that conversion done? By taking an output from an oscillator in the receiver, called the local oscillator (l.o.) and mixing or heterodyning it with the incoming signal, to produce an output at the intermediate frequency (Fig. 3). If we wanted to receive that station transmitting on 800 kHz , and we chose a nice low i.f. of 100 kHz , our local oscillator could run at 900 kHz so that the "difference" frequency coming out of the mixer was $900-800=100 \mathrm{kHz}$. There would be a "sum" frequency output too, at $900+800=1700 \mathrm{kHz}$,

Fig 3

but that would be rejected by the i.f. amplifier tuned circuits, so no problem there.

Second ChanneI

But say there was another station, transmitting on 1000 kHz , and his signal arrived at the input to our mixer too. With our local oscillator at 900 kHz , this will produce a "difference" frequency of $1000-900=100 \mathrm{kHz}$ too. We can put a tuned circuit between the antenna and the mixer, tuned to 800 kHz , and that will cut down the response to the 1000 kHz signal, but it won't suppress it entirely (Fig. 4). If that r.f. tuned circuit had a Q of 100, it would reduce the interfering signal at 1000 kHz by around 33 dB . But that interfering signal might be 33 dB stronger than the wanted one, maybe even stronger than that, so obviously we need a lot more selectivity ahead of the mixer. Adding another tuned circuit would help, but we're back to the problem of tracking the adjustment of all the tuned circuits.

It's therefore better if we use a higher intermediate frequency, because somehow we've got to achieve much better rejection of interference from stations on frequencies $2 \times$ i.f. away from the wanted signal. This sort of interference is called second-channel, because of the fact that there are two signal-frequency channels that can mix with the local oscillator to give an output at the i.f., or image, because if you imagine the oscillator frequency to be a mirror, the unwanted signal is like the reflection of the wanted signal.

For simple receivers covering the long- and medium-wave broadcast bands an i.f. around $450-470 \mathrm{kHz}$ is chosen as giving a good compromise between the demands of adjacentchannel and second-channel rejection. With a single tuned circuit ($Q=100$) ahead of the mixer, the lowest secondchannel rejection figure (achieved when tuned to 1500 kHz) would be a useful 40 dB . If you tried to use that same i.f. on short waves, then at 21.5 MHz in the 13 m band you'd get no more than 20 dB of second-channel rejection, and you'd certainly need to add at least one more tuned circuit ahead of the mixer.

Using a still higher i.f. will improve second-channel rejec-

Fig 5

tion, and frequencies of 9 MHz or 10.7 MHz are often used. You've still got to find some way of getting back a reasonable adjacent-channel selectivity, but l'll look at that later.

General Coverage

Intermediate frequencies of 9 MHz or 10.7 MHz are alright providing your receiver covers only amateur bands (or broadcast bands) because they fall between bands. If you want a general-coverage receiver to listen to any frequency from, say 1.6 to 30 MHz , you've got a new problem, because you can't tune past the intermediate frequency without all sorts of nasty things happening!

There are two ways round this one. The first is to have a choice of two i.f.s, controlled by the receiver band-selector switch, so that the i.f. in use is always outside the frequency band selected. This method is used sometimes, but it means two lots of i.f. tuned circuits are needed, and the tracking between the local oscillator tuning and the signal frequency tuning is complicated. The other way is to have an i.f. which is higher than the highest frequency covered by the receiver. For a receiver covering up to 30 MHz , i.f.s of around 47 MHz or between 60 and 75 MHz have been used.

The advantage of this method is that, regardless of what frequency the receiver is tuned to, the second-channel is always above the highest frequency covered. For example, when tuned to 150 kHz , the second-channel frequency for a receiver with a 47 MHz i.f. is 94.15 MHz . So instead of having to tune the signal-frequency circuits and keep them all tracking together, we can have a fixed low-pass filter ahead of the mixer which passes all frequencies below 30 MHz and rejects all frequencies above that point. This system is ideal for synthesised receivers, because there is no need to tune the front-end amplifiers.

So, we've got round the problem of second-channel or image interference, but that high i.f. means that adjacent channel selectivity will be very poor indeed. The solution is the double superhet circuit (Fig. 5). The idea here is that the first i.f. signal is fed to a second mixer stage where it's converted to a second i.f., at a lower frequency where adequate adjacent channel selectivity is easy to achieve. There's no problem with second-channel interference at the second mixer, because there should be no signals at the image frequency of the first i.f.

Summing Up

To summarise-because the bandwidth of a tuned circuit is proportional to its tuned frequency (for a given Q factor), you get smaller bandwidths at lower frequencies. We can achieve a constant bandwidth by using the superhet principle, converting all incoming signals to a fixed frequency, called the i.f., where we concentrate our adjacent channel selectivity.

The mixer in the superhet brings with it the problem of second-channel (image) interference. To get rid of the image we need a high i.f., but to give good adjacent channel selectivity we need a low i.f. We can get both by the double superhet. The first i.f. is high, for good image rejection, the second is low, for adjacent channel rejection.

For a domestic long/medium wave broadcast receiver, a double superhet would be too expensive. Instead, a compromise i.f. of around 460 kHz is chosen.

AMATEUR BANDS
 by Eric Dowdeswell G4AR

Reports to: Eric Dowdeswell G4AR, 57 The Kingsway, Ewell Village, Epsom, Surrey, KT17 1NA.
Logs by bands in alphabetical order.

In view of the excellent DX reports that I get from my regular listeners it is not perhaps surprising if other readers sometimes express an element of doubt as to whether these stations have really been heard. After all, it is very easy to just sit on one of the DX nets that abound these days and copy the calls being worked by the net control station without bothering to copy the DX stations themselves.

However, after a while one gets to know pretty quickly whether a log is genuine or not and it is not hard to spot the spoofer! Given two somewhat similar station set-ups it is up to the operator as to what DX is heard and logged and I've come to the conclusion that a lot of DX is lost by the incorrect use of the r.f. gain control on the receiver. On most sets, according to the set's manual, the S-meter reading is correct only when the r.f. gain control is at maximum so there is a tendency to leave it there all the time in order to compare S-meter readings between stations, and that is just about the worst possible practice when looking for DX.

The r.f. gain control should never be advanced more than is neccessary and to hell with the S-meter! It is one of the biggest menaces on the average communications receiver yet its alleged virtues are taken for gospel by the user. It does not indicate actual signal strength since the set's sensitivity varies greatly from one end of a band to the other and more so between bands, and all it can ever tell you is that one signal is weaker or stronger than another. On the l.f. bands in particular using maximum r.f. gain will bring all kinds of problems, principally cross-modulation or overloading so that any signal strength indication is meaningless. CW signals that are really quite clean can sound awful with clicks and thumps if the front end is being overloaded. Turn back the r.f. gain and the signal sounds as it should do. Unfortunately many stations get adverse reports of their signal quality both on s.s.b. and c.w. when in fact the distortion is being generated in the receiver itself.

The golden rule is to turn up the audio to somewhere near maximum and then the r.f. gain as far as is necessary to copy the signal cleanly. The reduction in general noise level is quite remarkable and that is when the DX can be copied quite easily. I find it possible to copy DX stations that are perfectly readable yet make no movement on the S-meter at all and a genuine report would be something like 51 or 52 but turn the r.f. gain to maximum and they disappear in the attendant
noise. According to the report in $P W$ (July 1982) on the receiver side of my TS530S transceiver it is possible to copy a c.w. signal of 0.035 microvolt on the 21 MHz band and I can well believe it.

Listeners to the amateur bands often hear operators referring to transmitter power as " 100 watts p.e.p.", or whatever, which does not convey very much if one doesn't know the meaning of p.e.p. (peak envelope power) so a few words of explanation might be useful.

In a simple c.w. transmitter the maximum power output is realised when the key is down and is zero when the key is up. A few Morse characters are shown in Fig. 1(a) as they would appear on the screen of a suitably adjusted oscilloscope. Such a sharp turn-on of the output would produce heavy key clicks and thumps and would create a lot of interference in nearby radios. In practice suitable resistor/capacitance networks round off the keying waveform as in Fig. 1(b). The power input is simply output stage voltage times output stage current.

Next take an amplitude modulated transmitter as we are accustomed to listening to on the medium, long and s.w. broadcast bands. Here we have a constant carrier of the same amplitude as the c.w. case. The speech or music is impressed (modulated) on to the carrier and for the condition of 100 per cent modulation the carrier level either doubles in value or is reduced to zero, Fig. 1(c). If the modulating signal is excessive the positive excursion is more than double but the negative excursion cuts the carrier off, causing distortion and creating interference generally.

Since, with full modulation, the carrier level is doubled the input current to the output stage is also doubled, and derived from Ohm's Law, doubling the current in a constant resistance quadruples the power ($\mathrm{W}=\mathrm{I}^{2} \mathrm{R}$), theoretically anyway! If a sine wave is used to modulate the transmitter then the carrier envelope is as shown in Fig. 1(c). It should be remarked that the carrier is being radiated continuously even in the absence of modulation, a very inefficient state of affairs. The act of modulation mainly produces two similar sidebands. The carrier is needed at the distant receiver in order to demodulate the signal and produce an audio signal at the headphones or speaker.

If the wanted carrier can be reproduced in the receiver at exactly the same frequency (and preferably in the same phase) then the carrier can be sup-

(b)

(c)

Fig. 1: (a) Typical c.w. or Morse code characters where the power output is either maximum or zero. The sharp rise time would create a series of undesirable harmonics which are suppressed in the transmitter to produce a rounded waveform as in (b). In (c) a sinewave modulates the carrier to give twice the amplitude of the c.w. carrier

Fig. 2: Showing a typical speech waveform of an s.s.b. signal with average and peak envelope power indicated
pressed as well as one of the unwanted sidebands resulting in the well-known s.s.b. signal. Without going into technicalities it is generally reckoned that for a given power supply to a transmitter the effective peak power output on s.s.b. can be up to eight times that of an a.m. signal.

The waveform in Fig. 2 shows a typical s.s.b. signal with the upper and lower limits of the envelope similar to the 100 per cent a.m. condition. With the
human voice this only occurs for about 30 to 50 per cent of the time due to the peaks and troughs of the voice so that in order to keep this duty cycle as high as possible on s.s.b. it is now the fashion to incorporate or add speech processors to an s.s.b. transmitter to raise the value of the duty cycle. When done properly this can be very effective, especially when DXing but, as usual, this procedure has been abused on the amateur bands with severe speech clipping causing audio distortion and resulting interference to other stations, rather like over-modulation on a.m.

If you look at the S-meter on a receiver while copying s.s.b. without speech processing the signal level will rise and fall corresponding with the contours of the speech. With full speech processing the needle will stay virtually at the maximum level of the signal all the time the operator is speaking and the signal will have a great deal more punch and readability. What amazes me is the selfishness of operators who do not switch the speech processor off when working comparatively local stations but continue to inflict horribly distorted speech on our ears! Every intake of breath sounds like a hurricane!

General Notes

Paul Drinkwater up in Sutton Coldfield has been copying a few amateurs on s.s.b. the hard way using a m.w./l.w. pocket set and a Binatone clock radio with the local oscillator of one providing the necessary injection voltage for copying s.s.b. but it all sounds a bit haphazard and unrepeatable. Still, it is a start. From his report he seems to have copied a DL or two on the $3 \cdot 5 \mathrm{MHz}$ band.

We G's have a habit of carping at and criticising our liberal AR regs but perhaps we should consider ourselves lucky compared to, of all countries, Sweden. In a QSO with an SM on 3.5 MHz recently I was very surprised to learn that it is an offence for an amateur to possess any radio transmitter that will work outside the amateur bands. In this case my SM friend quoted an SM1 who bought a secondhand v.h.f. transceiver covering the maritime bands intending to modify it for the 144 MHz band, something fairly commonplace over here. However the SMI was arrested and the offending transceiver confiscated plus all his amateur bands gear! Eventually the case came to court and he was acquitted and his gear returned only for the matter to go to a higher court when his gear was confiscated again! The outcome is awaited with interest by the SM amateurs.

Incidentally, the Top Band allocation for SM is only 1.83 to 1.845 MHz and 10 W p.e.p. input and I was surprised to learn that the new WARC bands have not yet been released in SM-land.

One reader, Arthur Ryall in Stafford, is thinking of putting up a G5RV antenna for his JR310 receiver but wonders why flat twin feeder is frequently recommen-
ded over coaxial cable. Twin feeder is a balanced system to earth and any local electrical noise or TV timebase interference will have a better chance of being reduced or eliminated than with coaxial cable which is inherently unbalanced making cancellation of the interference less likely. Coaxial cable should not be connected to what is essentially a balanced antenna system, such as a simple dipole, unless a balun (balanced-tounbalanced transformer) is fitted between the feeder and the antenna. One other factor mitigating against coaxial feeder is its great weight compared to flat twin feeder thus dragging down the centre of an antenna unless a support such as a mast is provided. This may account in part for the great popularity of the inverted- V antenna.

Round the Bands

As this is being written the l.f. bands, particularly the 3.5 MHz and 1.8 MHz bands, are really producing the DX once dusk falls and on for an hour or so after sunrise. It is very important to ensure that the antenna is the best that one can get up for these bands with as much of the wire as possible in the vertical plane and either a resonant length, if you have enough garden, or brought to resonance by means of an antenna tuning unit.

If you can lay down some radial wires underneath the antenna so much the better and now is the time to do it before the grass starts growing again. A slot for the wire, a couple of inches below the surface, can be made with the edge of a spade and the wires can be as long as is practicable and need not be related to the wavelength in use. The inner ends of the wires should be soldered together and a heavy copper wire taken back to the station earth. Triple ("twin-and-earth") pvc-covered wire as used for domestic electrical wiring is eminently suitable for this.

On to Marcus Walden of Harrogate and his Realistic DX302 and a 20m-long wire in the attic and an a.t.u. being constructed. Good lad! Around 3.8 MHz he logged A71AD (QSL Box 4747 Doha, Qatar), A92HH (QSL W8LU), FM7WE, J88BC on St Vincent, OH0JN, OY8R, PJ2FR, VK3DWJ, VK6LK, VK2AVA, 5N2ARY, 6Y5IC and 7X5AB all on s.s.b. Due to the general QRM on 7 MHz only HZ1AB, YC4FW and 6V0DY were worth logging but on 14 MHz he caught HV3SJ (QSL I0DUD), J6LLO Box 800 St Lucia, plus ZF1GC. Finally on 21 MHz it was FM7BX (QSL Box 152 Martinique), HH7BV, J28DN, J37AE on Grenada, TA2WCY, TL8DX, V2AS on Antigua with cards to OE3ALW, VP2MSS, VQ9BC (QSL WB6WUH), 3X4EX, and 5T23RD for an odd one.

From Plymouth a very long log from Bob Stone from which the following are culled. On 3.8 MHz or thereabouts EA9JV, CT3CM, HK3DD, J88BC, VU2GI on the Laccadive Islands, N0XA, N7NG, T77V in San Marino,

Neat station set-up of Eric Fielding G4IHF in Rochdale covering the v.h.f. and h.f. bands. Eric is very active with the Bury RS, running a code class, and is a past treasurer of the club

YV5ANF, FM7CD, HH2MC, J3HSA on Grenada, and 5B4LP. Bob queries a special event station in Santa Maria, Brazil, with the call he swears was PY/KWS31M/A and being worked by all and sundry. Bob forgot to give any info on his receiving set-up but should be rectified by the next time around.

In Wellington, Somerset, Dave Price has been covering the bands from 28 MHz to $3 \cdot 5 \mathrm{MHz}$ although on the former the only item of note was VK6AEK, but more on 21 MHz and YV5EUX, C53BI, VK6AJW, ZS1AAQ, A82LC in Monrovia, Liberia and FY7CM. 14 MHz gave up YA1BGD, OY2A, VU7WCY, T77V, and so on to 7 MHz with TA8GM, 6V0Y in Senegal and cards to VE4SK, and T77B. Dave's 40 m loop antenna came into its own on 3.8 MHz with large numbers of US stations, A92P, VU2GI, with K0CS of note among the Americans. Dave's receiver is a Yaesu FRG-7.

Dave Shapiro ARS53844 has also been making the most of his receiver, a Realistic DX-200, plus a 20 m -long wire, a practice with which I heartly concur. It does seem a bit daft to spend a lot of money on a set only to listen to the easy stuff on 14 MHz s.s.b. when there are several other interesting bands available at the turn of a switch. Anyway, starting on the 1.8 MHz band Dave found a very good one in 5N8ARY and then 4X4DX. On to more goodies on 3.8 MHz and DF3NZ/ST2, JF1IST, HI8HLB, J37AH, J88BC, TA2BNK, TI5BPF, VP2MSS, VL6LK, YB0WR and 8R1RBF. More mouth-watering stuff on 7 MHz like HP3FL, J6LCV, KX6OH, TU2LE, VU7WCY, ZL4BO, 3 X4EX and 6W1DY. Dave notes the continued use of the WCY suffix although the WCY is now officially over. All of note on 14 MHz were XT2BM, TZ6WFP and KV4AD with just 5 R8AL and 8 P 6 OV on 28 MHz .

In Shepherd's Bush, London, the setup of Denis Norton comprises an FRDX500, Datong FL2 audio filter, SST6 a.t.u. all fed from a 20 m -long antenna, a halfwave vertical for 28 MHz and a fiveeighths wavelength vertical for 144 MHz . How did that thing creep in?? Good
enough to find VE1YX on 1.8 MHz and then CT2EF, FC2XN, 3A2GL and familiar 4UIITU. Up to 14 MHz and mainly JAs and ZLs during morning sessions, plus ZS6AOO and 7X2LS. Last band is 21 MHz for HPIXEK, SV1OL/SV5, VK3WCY, VP9DL and 5N9MBT.

Reports from readers are always most welcome and should consist of a selection of around a dozen of the best DX heard on the bands from 1.8 to 28 MHz and especially the new WARC bands on 10,18 and 24 MHz . Don't forget the c.w. stuff at the low end of each band. Time of day is rather important on the l.f. bands so that
others can make an effort to hear the DX. With everyone using a v.f.o. these days actual precise frequency is not important unless a station is consistently heard on a particular frequency. Rarity of the DX station is the main consideration rather than distance. Don't forget, reports direct to me by the 15 th of the month.

Club Time

Club magazine Q5 of the North Bristol ARC rightly points out that many members regard the AGM as a bit of a "yawn", a date NOT to be noted in the diary, which is patently unfair when they are prepared to turn up and use the facilities of the club for the other 51 meetings during the year, arranged and provided by others of course. What makes AR an interesting hobby is seen from a different angle by every individual and the NBARC has been pressing its members to elect a committee that reflects these various interests and age groups.

Apart from that excellent precept, if every member voted at the AGM the club would get the committee it deserves and there would be no room for the all-too-frequent gripes and groans that come from those that shun AGMs.

Acton, Brentford \& Chiswick ARC G3IIU Tuesday March 20 will have G3XPC giving his postponed chat on his further experiences in DXing in foreign countries. That is at 7.30 pm in the Chiswick Town Hall, High Road, Chiswick, London W4. Visitors and potential members always most welcome, according to W. G. Dyer G3GEH, 188 Gunnersbury Avenue, London W3, the hon sec.

Axe Vale ARC 7.30pm on the first Friday of the month at the Cavalier Inn, Axminster, according to sec Bob Newland G3VW available on Lyme Regis 5282 or try the publicity officer Roger Jones G3YMK on Upottery 468.

Bangor \& District RS Where the sec is Stewart Mackay GI4OCK of 11 Dellmount Park, Bangor, Co Down, NI, or you can meet him and the gang in the Sands Hotel, Bangor, at 7.45 onwards on the first Friday of the month with visitors assured of finding something to suit their interests. Advance notice now of the club's summer mobile rally in June with details later.

Biggin Hill ARC Third Tuesdays in St Marks Church Hall, Church Road, Biggin Hill, Kent, according to sec Ian Mitchell G4NSD, 37b The Grove, Biggin Hill, Westerham, Kent.

Bromsgrove ARS G4TUI Coming up to its first anniversary the club has been doing very well with lectures, demos, outside visits and generally promoting AR in the area. Second Tuesdays at Rigby Lane School, Bromsgrove at 8 pm with Alan Kelly G4LVK, 8 Green Slade Crescent, Bromsgrove, Worcs available on 021-445 2088 with details of future club happenings.

Bury RS G3BRS Latest issue of club's comprehensive magazine Feedback lists over 100 members which can't be bad and attributable to the standards maintained by the club in the way of lectures, outings and its many other activities including the Bury Ham-
fest which I have been assured was a great success as usual. Every Tuesday at 8 , in the club room at Mosses Centre, Cecil Street, Bury with the principal meeting on the second Tuesday but for details of the March highlight you'll have to chat with Brian Tyldesley G4TBT, 4 Colne Road, Burnley, otherwise Burnley 24254.

Cheshunt \& District ARC G4ECT G6CRC From the newly-named club mag Hamster (!) I see the club holds meetings every Wednesday at 8 in the Church Room, Church Lane, Wormsley, near Cheshunt, Herts, with a junk sale slated for March 7 under the auspices of G4TQG and the 14th a natter-nite. The GB3PI repeater group has the floor on the 21st, with another natter period on the 28th. Filling in the details is sec Roger Frisby G4OAA, 2 Westfield Road. Hoddesdon, Herts, otherwise H'don 464795.

Chichester \& District ARC Tuesday March 6 has John Outram discoursing on signal processing in microwave radar systems, in the Long Room of the Fernleigh Centre, 40 North Street, C'chester, at 7.30 pm , with a regular meeting in the Green Room on the 15th. All of which makes it the first Tuesday and the third Thursday of the month. Meetings are complemented by a club net on the 144 MHz band (Si1) every Wednesday at 7 pm . Make a note now of the AGM which is on Tuesday April 3 in the Long Room of the Centre. Club sec G4ETU has resigned so in the meantime I suggest you write to the club's chairman G4EHG, Marmanet, Salthill Road, Fishbourne, Chichester, Sx or have a chat on C'chester 789587.
Colchester RC Second and fourth Thursdays it seems, at the Colchester Institute, Sheepen Road, Colchester, at 7.30 with March 8 devoted to a talk by an RSGB rep on the AR repeater network and its administration while the 22nd will be Part 2 of a talk on Marconi and his work "Mainly Arcs and Sparks" by Stanley Wood. Note now the constructors' competition slated for April 5. Your sec is G3FIJ, 29 Kingswood Road, Colchester, otherwise (0206) 851189.

College of Technology, Belfast GI2BX RTTY with the ZX81 forms the main part of the evening's action on Wednesday March 28, by Ray Bowring GI8RKC, at 7 pm sharp, Room B10, which is the lecture theatre at the College to which the public is also invited seemingly. Your contact at the College is Jim Barr GIICET on Belfast 227244 ext 243 during any working day except Thursdays.

Coulsdon ATS You won't believe it but the club call of the CATS mob is G4FUR and that just can't be accidental! Anyway they meet on the second Monday at 7.45 for an 8pm start at St Swithun's Church Hall, Grovelands Road, Purley, Surrey, with the subject of d.f.ing on both 1.8 and 144 MHz being given a thorough airing by G3NPF on

March 12. CATS Publicity Officer Richard Goring G6VYT can be contacted at 54 The Glade, Old Coulsdon, Sy , or Downland 54319.

Darlington \& District ARS Nearing its first anniversary the club meets in the Hurworth Community Centre just south of the town on Fridays at 7.30 . Activities run to Morse code and RAE classes by G3UTI and G3GUV and periods on the air with the club station. Sec C. Webb G4NYJ will be glad to hear from anyone interested in joining the club, at 34 Cleveland Terrace, Darlington, or ring him on D'ton 467271.

Dartford Heath DF Club This club is devoted it seems to the art of d.f.ing but there is precious little useful information on its activities in the club newsletter. Seems hunts start at NGR 525730 on Dartford Heath and are run by "Pete" G8DYF he is on Greenhithe 844467. Next hunt starts at the Horse \& Groom on Tuesday March 6 with another the following Sunday. Mag editor is Rosie Keeling G8YDB, QTHR I suppose.

Derwentside ARC (Consett) G4PFQ The RAFA HQ is the spot every Monday at 7.30 in Sherburn Terrace, Consett, Co. Durham, where activities include code classes, Raynet participation and on-the-air sessions with the club's h.f. and v.h.f. gear. Potential members should get info from June Wallis GIAAJ, 10 Middlewood Road, Lanchester, Durham (0207) 520477.

Dudley ARC G4DAR The lecture by Joe Jacobs on "TV OBs 1950 to the 80 's" was postponed and will now take place on Tuesday March 13. Meetings are on the second and fourth Tuesdays at 7.45 at the Central Library in Dudley. Interesting item for the 27th is a chat by G3ZPF on DXing from impossible situations, applicable to many amateurs I suspect! Cheryl Wilding G4SQP, 92 Ravenhill Drive, Codsall, Wolverhampton is also available on Codsall 5636 for information on the activities of the club.

East Kent RS G3LTY G6EKR The Cabin, Kings Road, Herne Bay, Kent, on the first and third Thursdays with visitors and others particularly welcome says sec Stuart Alexander G6LZG, 66 Downs Road, Canterbury, Kent who will be glad to tell you of the club's forthcoming events.

Exeter ARS G4ARE "Static and chips" by G3RSJ ought to be interesting on March 12, with advance notice of a visit to Radio Devon on April 9 and a strict limit to the number of places available for this outing. Main meetings at the Community Centre, St Davids Hill, Exeter, on the second Monday while on other Mondays it's informal gatherings at the Scout Hut, Emmanuel Hall, Okehampton Road, Exeter, which houses the club station for on-theair activity plus code classes but R. R. Tipper G4KXR, 11 Chancel Court, Pinhoe, Exeter,

STANDARD C5800 MULTIMODE

Reception Specifications:
Reception System: FM: Double Super Heterodyne; SSB, CW: Single Super Heterodyne
intermediate Frequency: $F M$:
Intermediate Frequency: FM : 1st if 10.7 MHz ; 2nd 1 F 455 KHz ;
SSB, CW: 10.7 MHz
Sensitivity: FM: 0.19 uV (12dB SINAD); SSB, CW: 0.15 uv (10dB
SN S/N)
pass Bandwidth: FM: $\pm 6 \mathrm{KHz}, \mathrm{SSB}, \mathrm{CW}: 4.2 \mathrm{KHz}$
Selectivity (50 BB): $\mathrm{FM}: 25 \mathrm{KHz}$ SSB $\mathrm{CW}: 42 \mathrm{KHz}$
Squelch Selectivity: 0.15 VV (FM)
AF Output: More than 2 W (Into 8 Ohms with 10% THD) Transmission Specifications:
Power Output: $25 \mathrm{~W} / 1 \mathrm{LW}$
Moduataion: FM : Reactance Modulation; SSB: Balanced
Maximum Frequency Tolerance: $\pm 15 \times 10^{-8}\left(-10-+50^{\circ} \mathrm{C}\right)$
Spurious Attenuation: 60 dB
Undesired Side Band Suppression: 40dB Maximum Deviation: $\pm 5 \mathrm{KHz}$

STANDARD COMMUNICATIONS EQUIPMENT
C5800 The most advanced 2 M multi-mode mobile yet with 25 watts output in all modes. Spare Mounting Bracke
C8900 New slim fully synthesized 2M 10W Mobile with 5 memories, scanning facilities and
3900 - New slim fully sy mobile with 5 memories, scanning 10 MHz coverage and digital read-out etc.
spare Mounting Brackets for above
IW RF Power and tuning down to 100 HZ 1W RF Power and tuning down to 100 HZ
Fully synthesized $F M \quad 70 \mathrm{~cm}$ iW transportable

400 EDGWARE ROAD, LONDON W2
01-723 5521 T1x 298765

NORTHERN AGENTS:-

JOE BELL, G4PMY
134 CREWE ROAD, HASLINGTON,
CREWE
Tel. No. 0270-582849

T435 Twin Meter $144 / 432 \mathrm{MHz}$ SWR/Power 1.51 SWR150 Delux Twin SWR/Power Meter 3.5150MHz MORSE KEYERS

$\begin{array}{ll}\text { HK707 } & \text { Straight Up/Down Keye } \\ \text { BK100 } & \text { Semautomatic Bug }\end{array}$

$\begin{array}{ll}\text { BK100 } & \text { Semi-automatic Bug } \\ \text { HK702 } & \text { Up/Down Keyer On Marble Base }\end{array}$
Squeeze Paddle
Squeeze Paddle On Marble Base
Automatic Memory Keyer
Semi Automatic Keyer
Morse Code Practice Oscillator LOW PASS FILTERS 1Kw Low Pass Filters POWER SUPPLIES
5 MK04 Squeze 3A continuous 4A Max 13.8VDC fully 5A continuous 7A Max i38VDC fully stabilised. 25A continuous 30 Max i3.8VDC fully stabilised
13812 AMPS

DRAE 13.812 AMPS

DUMMY LOADS
T-25 DC-500 MHz 30 W with PL259 connection
T-100 DC-500 MHz 100W with SO239 Socket
T-200 DC-500 MHz 200W with S0239 Socket
WELZ PRODUCTS
$1.8-500 \mathrm{MHz} \quad 20 \mathrm{~W}$-200W-2KW Power/SWR meter
SP350 $\quad 1.8-500 \mathrm{MHz}$ 200W Power/SWR
$\begin{array}{ll}\text { SP3300 } & 18-500 \mathrm{MHz} \\ \text { SP } 200 \mathrm{~W} \\ \text { Dash Moun }\end{array}$

SP-10X	$1.8-500 \mathrm{MHz}$
SP15M	1800 W Pocket size
160 MHz	$5 \mathrm{~W}-20 \mathrm{~W}-200 \mathrm{~W}$

$1.8-160 \mathrm{MHz}$ 5W-20W-200W Power/SWR
${ }_{3.5-30 \mathrm{MHz} \text { coax ATU 200CW/400C PEP }}^{\text {met }}$
CT15A 50W Dummy Load ($3: 1 \mathrm{TX} / \mathrm{Rx}$ ratio - 4 minds) 25W cont.PL259 Plug
$5 / 50 \mathrm{~W}$ Dummy Load 450 MHz N. Plug
CT300 300/KW Dummy Load 250MHz PL259
CH20A 2 way Coax Switch 1KW SO239
$\begin{array}{cc}\text { CT-03M } & 2 \text { way Coax Switch } 1 \mathrm{KW} \text { "N" } \\ 3 W\end{array}$
All prices are inclusive of VAT and are correct at time to press. Postage + Packing on Rigs Postage + Packing on all other items
30.00
30.00

379.00
Multimode Audio Filter
Mudio Fiter \& Notch
Auto RF Speech Clipper (Trio or Yaesu
Plug).
Manually controlled RF Speech Clipper
RFC/M RF Speech Clipper Module
Morse Tutor
ndoor Active Antenna (ex-PSU)
Outdoor Active Antenna (ex-PSU
KK Keyboard Morse Sender
Codecall Selective Calling Device (Uink Prog)
odecall Selective Calling Device (Switch Prog)
Mains Power Unit
METRES
Single Meter SWR/Field Strength 3.5
METRES
SWR/Field
Meter SWR/Power/Field Strength
3.5-150MHzis
Single Meter
148008 and 432 MHz
SWR200B Twin Meter SWR/Power $3.5-150 \mathrm{MHz}$
TAL 172 Single Meter Professional SWR/Power
 underneath the CMB8
A 10 W linear amplifier
A 10W linear amplifier for C78 that bolts A carrying case for C58 and C78 with flap over top for added protection
Charger for the C58 and C78 when Ni-Cads are used.
10 Set of Ni-Cads for the C78/C58
Synthesized 2M 2 watt hand held 144 -148
MHz

C110 ACCESSORIES

FL2
FL3
ASP
D75
RFC/M
RFC/M
D70
AD270
MK
Codecall Selective Calling Device (Switch Prog) Mains Power Unit

SWR25 Twin Meter SWR/Power/Field Strength
UH-74 $\quad 3.5-150 \mathrm{MHz}$ Single Meter SWR/Power $5 / 20 / 120 \mathrm{~W}$ i44
TAL 172 Single Mer Pror $5 / 25 / 100 \mathrm{~W}$
Bracket available 148.174 MHz Optional Mounting

Normally 24 hr despatch but please allow 7 days for delivery.

AUDIO FILTERS
MODELS FL2, FL3, FL2/A
Model FL3 represents the ultimate in audio filters for SSB and CW.
audio filters for SSB and CW.
Connected in series with the loudspeaker, it gives variable extra selectivity better than a whole bank of expensive crystal filters, In addition it contains an automatic
notch filter which can remove a "tuner-upper" all by itself
Model FL2 is exactly the same but without the auto-notch. Any existing or new FL2 can be up-graded to an FL3 by adding Model FL2/A conversion kit, which is a standalone auto-notch unit. Datong filters frequently allow continued copy when Prices: FL2 89.70 FL3 $£ 129.37$. FL2IA $\mathbf{E 3 9 .}$
Prices: FL2 £89.70. FL3 £129.37, FL2/A £39.67

ACTIVE RIECEIVING ANTENNAS

Datong active antennas are ideal for modern broadband communications
eceiver: - especially where space is limited.

- highly sensitive (comparable to full-size dipoles)
- Broadt and coverage (below 200 kHz to over 30 MHz)
- needs no tuning, matching or other adjustments
- two versions AD270 for indoor mounting or AD370 (illustrated) for outdoor use - very conpact, only 3 metres overall length. - professional performance standards. Prices. Mod•1 AD270 lindnor use only) $£ 51.75$ Both prices include mains power unit. Model AD370 (for outdoor use) $\mathbf{£ 6 9 . 0 0}$

MORSE TUTOR

the uniquely effective method of Code proficiency. Effectiveness Code proficiency. Effectiveness
proven by

- D70's unique "DELAY" control allows Mou to in five character groups. high speed sound. Start with a long delay between each character with its correct reduce the delay. The speed within each character character and as you improve independent "SPEED" speed within each character always remains as set on the
- Features: Iong life battery oper
built-in loudspeaker plus personal earpiece
Our full catalogue plus further details of any product are available free on request.
Price: $\mathbf{£ 5 6 . 3 5}$ All prices include VAT and postage and packing. Barclaycard Goods normally despatched within 3 days subject to availability.

DEWsBun [is checmonics

West Midlands only authorised TRIO dealer

AR2001

CONTINUOUS COVERAGE FROM $25-550 \mathrm{MHz}$ WITH NO GAPS

FEATURES: $25-550 \mathrm{MHz}$ continuous coverage - Switchable modes (AM, FM narrow or FM wide) - Liquid Crystal display memory channels that store frequency and mode - a full range of scan facilities - Definitely not deaf, on FM (n) the typical sensitivity is $0.2 \mu \mathrm{~V}$ for 12 dB SINAD across the entire range.

PROVISIONAL PRICE $£ 325+£ 3 \mathbf{p} \& p$

Also stockists of DAIWA-WELTZ-DAVTREND-TASCO TELEREADERS MICROWAVE MODULES-ICS AMTOR-AEA PRODUCTS DRAE-BNOS-JRC
Dewsbury Electronics, 176 Lower High Street, Stourbridge, West Midlands.
Telephone: Stourbridge (0384) 390063. After Hours: Kidderminster (0562) 851255.

Closed Mondays
will be glad to bring you up to date on club happenings, or buzz Exeter 68065.

Fylde ARS The Kite Club, Blackpool Airport, first and third Tuesdays at 7.45 with a full house expected for the airport's senior air traffic controller on March 6 when he will describe how electronics have affected air navigation and air traffic control. G3AEP and G8GG will tackle something entirely different on the 20th with the construction of Top Band d.f. equipment the main topic. Next month's issue will be too late to tell you of the RTTY evening on April 3rd headed by G4RSA. Try H. Fenton, 5 Cromer Road, St Annes for an update on the club's programme, that is St Annes 723457.

Great Yarmouth RC G3YRC Every other Thursday which makes it March 15, 29 and so on, at the STC Sports \& Social Club, Beevor Road, South Denes, G. Yarmouth, with old, new and potential members most welcome. PRO for the club is John Noy G8VPE, 14 Poplar Drive, Filby, G. Yarmouth, Norfolk or ring (049377) 673, who will be glad to give details of current events at the club.

Horndean \& District ARC G4FBS Limitations of the club premises has forced a restriction to the membership of around 70. So with some 66 already on the books you'd better get along there pretty soon! Club facilities include a quarterly newsletter, computerised printout of membership list, special club QSL cards and a local award. Meetings at 7.30 at Merchistoun Hall, London Road, Horndean, Portsmouth, Hants, usually with club business followed by a talk, discussion or demo. On March 5 G4RLE will deal with the techniques of operating special event stations, and on to April 2 when G4BEQ talks on "A Year of Radio". Club Publicity Officer is R. E. Tribe G4SAQ, 32 Sutton Road, Cowplain, Portsmouth.

Leighton Linslade RC Gets together on the first and third Mondays in room A64 of the Vandyke Community College, Vandyke Road, Leighton Buzzard at 7pm usually running on to around 10 pm . More details from club sec Peter Brazier G6JFN, Kingsway Farm, Miletree Road, Leighton Buzzard, Beds, otherwise Heath and Reach 270.

Maesteg ARC Still quite new the club gets together at the 7777 Club, Llangwynyd, Maesteg, on the first and third Tuesday evenings and, needless to say, new members will be very welcome as will be visitors. Try M. R. Carey GW6ZIH, 47 Heol Ty-Gwyn, Maesteg, Mid-Glam, for an update on club events.

Norfolk ARC G4ARN A new headquarters is the good news from the club, situated at the Valley Drive Community Centre, Plumstead Road, Norwich, with meetings every Wednesday evening at 7.45. A permanent station should be on the air by the time this appears in print and a new programme of events and fixtures is promised for the near future. Up-to-date info from sec Peter Forster G3VWQ, 12 Thor Road, Thorpe-St-Andrew, Norwich, or Norwich 37709.

North Bristol ARC G4GCT Future event for the diary is the RSGB film show on Friday March 30 which includes The Secret Listeners, a graphic account of how many amateurs used their talents to intercept enemy radio communications during the last war. Club meetings every Friday at the Self-Help

Enterprise, 7 Braemar Crescent, Northville, Bristol, with Ted Bidmead G4EUV, 4 Pine Grove, Northville, B'tol anxious to answer your every query.
Radio Club of Thanet G2IC Second and fourth Tuesdays at 8 pm , the Grosvenor Club, Grosvenor Place, Margate, Kent, with an expose of the mysteries of Air Traffic Control being revealed by G6HXR on March 13. Ian Gain G4NEF, 17 Penshurst Road, Ramsgate, Kent, will tell you about the "do" on March 27 or anything else to do with the club, alternatively (0873) 54154.
Rhyl \& District ARC GW4ARC GWIARC The venue is the Ist Rhyl Scouts' Hut, Tynewydd Road, Rhyl, on the first and third Mondays so be there at 7.30 . Latest info on club happenings from sec John McCann GW4PFC, 67 Ashley Court, St Asaph, Clwyd or try (0745) 583467.

Ripon \& District ARS The usual format at 7 pm every Thursday is RAE and c.w. code classes, a coffee break and on to a talk, lecture or demonstration around 8 pm . All this at the St John Ambulance Hall, Ripon, but more info from Peter Fautley G6CUG, Parkside, Thornton-le-Street, Thirsk or buzz Thirsk 24945.

Salop ARS G3SRT Weekly on Thursdays at the Albert Hotel, Smithfield Road, Shrewsbury, with March 8 a natter-nite and the first of four d.f. fox hunts on the 15 th and another natter session on the 22nd. Don't forget to enter the construction contest due to be judged on April 12. More from Diane Parslow G6UDB, 1 Willington Close, Little Harlescott Lane, Shrewsbury, Salop (0743) 62737.

South Bristol ARC Every Wednesday at the Whitchurch Folk House, East Dundry Road, Whitchurch, the March 7 meeting featuring talks by G4KUQ and G4MCQ on AMTOR and ARQ respectively with the 14th a club project constructional evening. March 21 is for s.w.l.s, with computer addicts catered for on the 28 th. Data communications on April 4 will be covered by G4MCQ. Active promotion of AR in the area has included visits by journalists from the Bristol Journal resulting in interesting write-ups and photographs of members' shacks and equipment. As can be seen club interests run from QRP operation to AMTOR technology. Right, contact sec Len Baker G4RZY, 62 Court Farm Road, Whitchurch, Bristol which also houses (0272) 834282.
South East Kent (YMCA) ARC G3YMD G8YMD At the Dover YMCA, Godwynehurst, Leybourne Road, Dover, Kent, with main meetings on Wednesdays, RAE coaching and operating practice on Monday evenings, plus code classes by G3VSU on Tuesdays. Further details from sec Alan Moore G3VSU, 42 Nursery Lane, Whitfield, Dover or Dover 822738.

Southend \& District RS Liaison Officer John Weston G6XBM lives at 67 Victoria Road, Rayleigh, Essex (Rayleigh 742128) will update you on club fixtures, meetings taking place on Fridays at 7.30 at the Council Offices in Rayleigh, right opposite the church, where visitors are likely to be given a warm welcome.

Stevenage \& Districk ARS On March 6 G4ISO will talk on the workings of the WAB award programme while the 28 th is devoted to
the club's AGM which all members are expected to attend. That makes it the first and third Tuesdays at TS Andromeda, Fairlands Valley Park, Shephall View, Stevenage, Herts, at 8 , but before that there are code practice classes from 7.15 pm . Then there is the club net on Sundays at 7 pm on $145 \cdot 250 \mathrm{MHz}$ for the very latest news of club activities, or contact Cliff Barber G4BGP, 13 The Sycamores, Baldock, Herts, or more cheaply (0462) 893736.
Stourbridge \& District ARS G6OI G6SRS New gathering spot is the Robin Woods Centre (used sto be the Beauty Bank School), School Street, which is off Enville Street. S'bridge. Thoughtfully, an excellent map is now part of the re-vitalised STARS Newsletter. Meetings on first and third Mondays at 8 promptly, the informal one on March 5 covering constructional work, Morse code practice session and on-the-air activity, with the club's AGM down for the 19th. Interested? Then the contact is sec Malcolm Davies G8JTL, 25 Walker Avenue, Quarry Bank, Brierley Hill, also known under Lye 4019.

Street \& District ARS G6XYI Thanks to the efforts of W. Scriven G4EGO this club has been formed at the Strode College for the benefit of both students interested in AR and local enthusiasts. He has also been running an RAE course that has proven very successful. Meetings of the club are held in the electronics lab on the first Tuesday of the month at 7 pm with a collection of equipment for both h.f. and the 144 MHz band. Already a rally in November is on the cards with trader support being sought. So those of you in the Street area should make every effort to support EGO after the great start he has given the club and he can be found at the College, Church Road, Street, Somerset or try Street 42277.

Sutton \& Cheam RS Meetings either at the Sutton College of Liberal Arts or the Downs Tennis Club, Holland Avenue, Cheam, Surrey, that on March 16 being at the Downs Club where the winner of the club's constructional contest will be adjudged. The 35th annual dinner will be held at the Woodstock where a good time for all is promised. Club activity is maintained via three nets, Mondays at 8 pm on 144.390 MHz s.s.b., Tuesdays at 10.30 am on 3.770 MHz s.s.b. and Sundays at 10.30 am on 144.5 MHz f.m. Jack Korndorffer G2DMR, 19 Park Road, Banstead, Sy, will be pleased to supply the latest on club events and membership facilities.

Swansea ARS GW4CC Advance notice of a rally on Sunday April 8 at the Patti Pavilion, Swansea, next to the St Helens Cricket Ground which is on the A4067 Swansea to Mumbles coast road, from 10.30am to 5 pm . Usual delights of trade stands, RSGB bookstall, local repeater groups, bring and buy sale, licensed bar and light refreshments plus talk-in on S22 and good parking facilities. What more could one want! If there is more to tell you, you can get it from Roger Williams GW4HSH, 114 West Cross Lane, Swansea, or (0792) 404422, who is the club sec if you want details of club membership.
Todmorden \& District ARS Secretary Janet Gamble G6MDB of 283 Halifax Road, Todmorden, Lancs, tells me that the local lads and lassies have got together to form this new club, so let us all wish them well in this venture. It's first Mondays at the Queen Hotel,

Todmorden, with that on March 5 having a lecture asking "Satellites-How do they stay up?" and you'd better know now that April 2 is homebrew night. The 40 -odd members already recruited will welcome even more potential members and visitors.

Vale of the White Horse ARS First and third Tuesday of the month at the Lansdown Club, Milton Trading Estate, at 7.30 for an 8pm start. Lucky lads on March 6 when Petra Suckling G4KGC will reveal all on the subject of operating in v.h.f. contests. Club nets are held on Thursdays at 7.30 pm on 28.750 MHz
and on Sundays at 8 pm on $145 \cdot 2 \mathrm{MHz}$. Ian White G3SEK, 52 Abingdon Road, Drayton, Abingdon is the sec also to be raised on (0235) 31559.

Wirral ARS G3NWR Be at the Guide Hut, Westbourne Road, West Kirby, on the first and third Wednesdays at 7.45 if you want to join in the fun, like on March 7 when G3LEQ deals with h.f. propagation matters or on the 21st with G3EGX describing lessons learned about antenna masts, hopefully not the hard way! Must tell you now of the surplus equipment sale evening on April 4 while another
worthwhile event will be the video show of Dud Charman's Aerial Circus lecture on the 18th. Your club sec is Cedric Cawthorne G4KPY, 40 Westbourne Road, West Kirby (051-625 7311).

Photographs of club activities are very welcome for publication in this feature and should be black and white and well-focused. Do remove any beer glasses and sandwiches from the immediate area before taking a picture! Some otherwise excellent pics have had to be rejected because no effort had been made to set the scene.

Reports to: Charles Molloy G8BUS, 132 Segars Lane, Southport PR8 3JG.

The part of the medium waves above 1550 kHz is a fruitful source of DX both for the newcomer and the experienced DXer. Start off by locating Nice (France) on 1557 kHz and Sarnan (Switzerland) on 1566 kHz . The latter broadcasts in German and Romanisch.

Nice signs off for the night at 2300, clearing the channel for the English programme from Radio Mediterranean in Malta. This programme started at 2230 when it could be heard as a background to Nice but it is not practicable to separate the two with a loop as the bearings are too close together. The English programme from Malta which usually comes in well in the UK, lasts until 2330 . The station does QSL and reports should be sent to PO Box 2, Valetta, Malta.

Now move up to 1562 kHz and listen for the 1 kW outlet at Covilhã in Portugal. This broadcaster is on the air 24 hours a day and isn't too difficult to hear in the UK as it operates 4 kHz away from the nearest Geneva channel. Move now to 1566. Sarnan will have closed down for the night by now leaving the channel for Sfax in Tunisia, La Corruna in Spain and Leningrad in the USSR to fight it out between them. This is a frequency worth monitoring as you never know what may pop up.

Top End DX

Those who feel like staying up late will find the top end of the band can be rewarding. At this time of year it will be after midnight before Region 2 DX appears, two regulars from North America being WQXR on 1560 kHz and CKLM on 1570 kHz . WQXR is located in New York City so a loop will null out any QRM from Portugal on 1562 kHz . WQXR is quite different from the majority of broadcasters in the United States. It is a serious music station owned by the New York Times and comes in well in the UK though it does fade to inaudibility at times. Write to WQXR Radio, 229 West 43rd Street, New York, NY 10036, USA, for a QSL.

CKLM is located at Laval in Quebec which is part of greater Montreal. This station is unusual in that the programm-
ing is in Quebec-style French, which may create problems when gathering material for a reception report. The address of the station is CKLM Radio, 1600 Est Boulevard St Martin, Laval, PQ, Canada.

There are three interesting and contrasting stations in the Caribbean that are heard frequently at the top end. Listen after 0030 on 1555 kHz for Radio Cayman. Situated on a group of islands to the south of Cuba, Radio Cayman is sometimes quite a good signal in the UK. The time zone is GMT minus five hours, programming is in English and the address is PO Box 1110, Georgetown, Grand Cayman, British West Indies.

As a contrast listen on out-of-band 1610 kHz for the religious Caribbean Beacon located on Anguilla, the most northerly of the Leeward Islands and then tune to 1580 kHz for the Voice of America relay in Antigua which is also in the Leeward group. QRM can be a problem on 1580 but it does ease off considerably as sunrise approaches.

RSI

These letters stand for Radio Sweden International which is, as the name suggests, the external service of that country. Normally one would expect to find it on the short waves but owing to the proximity of Sweden to the UK, propagation is often better on the medium waves, especially after dark.

The daily programme, which lasts just half an hour, is varied, features such as Panorama, Saturday in Sweden, Mailbag, covering current affairs as well as different aspects of life in Sweden. Tuesday is the day for Sweden Calling DXers which has been on the air since 1948. It correctly styles itself as the longest running DX programme, appearing in five different language editions each week.

You can hear RSI on 1179 kHz (254 m) daily at 1830,2100 and 2300 hrs UTC plus the s.w. channels 9.63 MHz at 1100 and 6.065 MHz at 1600 and 1830 . The address, if you want to comment on the programme, ask for a schedule or send a contribution to Sweden Calling DXers, is RSI, S-105-10, Stockholm, Sweden.

Receivers for MW DXing

Last month we had a look at car radios and the possibility of adapting one for DXing. There is another specialised receiver almost tailor made for the DXer-a domestic style portable designed for taking radio bearings at sea.

I have such a set, the Hitachi "WH116011 transistor 4 band radio." At first sight it looks like an ordinary portable, somewhat smaller in size than the Vega 204. There is a scale marked in degrees fixed to the top of the set, above which is a rotatable plastics box measuring $210 \times$ $30 \times 28 \mathrm{~mm}$ which has a pointer that moves over the scale. The box contains the medium and longwave ferrite rod antenna. To use the set ashore just line the case onto true north, rotate the antenna box for a null and read off the bearing, or its reciprocal, from the scale. If you are not interested in d.f. then place the set in a convenient spot and rotate the antenna as required for optimum reception.

The circuitry of the WH-1160 is interesting. There is an r.f. stage for increased sensitivity and a b.f.o. selected by a switch at the rear. A front panel RADIO/DF switch, when in the DF position, helps one obtain a deep null by switching off the a.g.c. and switching in a level control in its place. The latter is a manually operated i.f. gain control. This arrangement really works well. It's a pity that the facility to switch off the a.g.c. is so rarely available on modern sets, even with quite expensive communications receivers.

The remaining two bands cover 1.6 MHz to 12 MHz using an internal ferrite rod antenna which has some directional properties. There is no provision for connecting an external antenna but a retractable whip is available to supplement the s.w. ferrite rod antenna.

This type of receiver is ideal for local radio DXing. It is very easy to use, is more sensitive on the medium waves than the average portable and it is possible to null-out TV buzz at my QTH with the rotatable antenna. The set performs well on the longwaves bringing in Sweden on 191 kHz , Leningrad on 200, Morocco on 209, Oslo on 218 , USSR on 236 and

QSL from Europe No. 1

Algeria on 254. The Hitachi WH-1160, which uses discrete components rather than i.c.s., is probably no longer available new but sets of this type are occasionally to be found on offer in radio shops though more often in small boat chandlers or in the advert columns of magazines such as the Practical Boat Owner. It would be interesting to hear from anyone who uses such a set for DXing.

Readers' Letters

Twelve year old Paul McCarthy who lives at Linwood in Scotland has been DXing for about a year using a Realistic DX200 receiver and a 25 m long random wire antenna. Recent DX heard on the medium waves with this set-up includes Dubai on 1481 kHz , Omdurman on 1295 kHz which causes a heterodyne with the BBC on 1296 kHz , Senegal on 765 kHz, CJYQ St John's on 930 kHz ,

WMRE in Boston on 1510 kHz , WNEW New York on 930, Radio Globo in Rio de Janeiro on 1220. Paul asks for the address of Europe No. 1 (185 kHz), which according to their QSL card, is Europe No. 1, PO Box 209, D663 Saarbrucken, West Germany.
Reader John Ratcliffe has been modifying the internal ferrite rod antenna of two early transistor receivers-a National and an AWR Radiola. The first "mod" was to rewind the main m.w. winding using Litz wire, which sharpened up the tuning considerably. Then John fitted an additional 7 turn coupling winding on the rod, which was brought out for connection to an external antenna or a loop. This winding was moved along the rod to find the best position and then
fixed with adhesive. "There are no birdies, whistles, images or what have you. If any reader is interested in modifying receivers this way then I would be pleased to hear from him and will pass on any information". John's address is I/37 Whiting Street, Southport 4215, Queensland, Australia.

My note about the Greek station on 981 kHz in the February issue brought an interesting response from reader Antony Vaughan of Southampton. The station on 981 kHz now carries the ERT2 programme of the Government owned network. A lettergram from ERT (Hellenic Radio) to Antony stated that ERT1 and ERT2 are to be merged and the address will be Messogion 102, Attiki, Greece.

SHORT WAVE BROADCAST BANDS
 by Charles Molloy G8BUS

Reports: as for Medium Wave DX, but please keep separate.

Telling the time is normally not a problem for most of us, except perhaps on the two occasions each year when the clocks go forward, or back, an hour. The s.w.l. though will find that life is not so simple. Listening to other parts of the world brings us in contact with different time zones. If we monitor the Pacific Service of Radio Australia on 6.035 MHz in the 49 m band, which comes in well in the UK in the evening, we will hear programmes intended for a breakfast audience on the far side of the world! The DXer has his own problems. He must decide whether to keep his \log in GMT, which is standard practice, even though it may be summertime. What time and date shall be quoted in a reception report? What do the letters UTC stand for?

What Time Is It?

Early last century it was agreed internationally that Greenwich Mean Time (GMT), centred on the Greenwich meridian, would be regarded as universal time. All other time zones are related to GMT, 15 degrees of longitude corresponding to
a one hour time difference. The east coast of USA for example, which is approx Long 75° West, has the time zone GMT minus five hours. This is called Eastern Standard Time (EST). Similarly, Sydney Australia, which is approx $150^{\circ} \mathrm{E}$, is ten hours ahead of GMT.

Again by international agreement, it was decided quite recently that Coordinated Universal Time, denoted by the letters UTC, would be the new universal time for radio purposes. There is a slight difference between UTC and GMT but the two are brought into line either on June 30 or December 31 each year by what is known as a leap second. For practical purposes GMT and UTC are the same.

Unfortunately, UTC is not yet in general use, as a period of a few years was allowed for the changeover, so the listener at the moment will come across both GMT and UTC. There is an alternative method of denoting GMT and that is by the small letter z. This practice occurs in navigation and occasionally creeps into radio literature. There is no problem really as $1100 \mathrm{GMT}=$
$1100 \mathrm{UTC}=1100 \mathrm{z}$. The 24 hour clock is always used, there being no place for am and pm in international broadcasting.

Reception Reports-Date and Time

The golden rule when writing to international broadcasters is to use UTC (GMT), even although summertime may be in operation. Quote what is known as the Greenwich Date. To go back to Radio Australia. If we are listening at 8pm on March 26 this corresponds to 6am local time on the 27th in Australia. Write out the reception report in the form 2000 hours UTC (GMT) on March 26. Ignore summertime, as it will certainly lead to confusion. There is no common changeoever date and summer in the northern hemisphere corresponds to winter in the southern and vice versa.

It is tempting, when writing to domestic broadcasters on the tropical bands or on the medium waves, to use the station's local time just in case GMT or UTC is not understood or there is a mis-

SELRCTRONIC

RADIO, TV AND RADIO COMMUNICATION SPECIALISTS $\star \quad 934 \mathrm{MHz}$ UHF RADIO EQUIPMENT $\quad \star$

We have in stock the full range of Reftec equipment, i.e. Mobile, Base station and Handheld Transceivers plus full range of aerials and fittings, etc. S.A.E. for full details.

AUTHORISED REFTEC SERVICE DEALER

* STOCKISTS OF AMATEUR RADIO EQUIPMENT:

Yaesu, Trio, F.D.K. Tonna, Jaybeam, Revco etc. * CREDIT TERMS AVAILABLE

For further information please ring Mike Machin on (0268) 691481.
Tandy

> 203 HIGH STREET,
> CANVEY ISLAND
bisA
G6YHB G6YHC
G4UVJ

TV-DXing - BANDS 1 TO UHF

 VHF-FM BAND 2 TO 108MHzThe one-stop shop for aerials, amplifiers, filters, mounting kits, cable etc. Airband, Marine, UOSAT aerials supplied. Band 1 Wideband TV-DXing range; deep fringe UHF aerials (all makes supplied). Prices competitive.
JAYBEAM Amateur Band Aerials supplied.
Special TV-DXing receivers:
PLUSTRON TVR5D 5" System B/G/I 625 line VHF/UHF, $5.5 / 6 \mathrm{MHz}$ sound switching, incorporates AM/FM Radio

We are DX specialists, our comprehensive Catalogue costs 54 p.
SAE with all your enquiries please. ACCESS \& VISA welcome. All prices inclusive of VAT and Carriage SOUTH WEST AERIALS (PW) 11 Kent Road, Parkstone, Poole, Dorset BH12 2EH.
Tel. 0202738232
\square

11 Kent Roase BH12 2EH, Poole,

TRANSFORMERS EX-STOCK MAINS ISOLATORS $50 / 25 \mathrm{~V}$ or $25-0-25 \mathrm{~V}$ $30 / 15 \mathrm{~V}$ or $15-0-15 \mathrm{~V}$										
Pri/Sec $0-120 \mathrm{~V} \times 2$			$\begin{gathered} 50 / 25 \mathrm{~V} \text { or } 25-0-25 \mathrm{~V} \\ 2 \times 25 \mathrm{~V} \text { tapped } \operatorname{secs} \text {. } \end{gathered}$				$2 \times 15 \mathrm{~V}$ Tap Sec. Volts			
VA	Price	P\&P	Volts	Sec V	5, 7 ,	8, 10.	3.4	5, 6,	9, 10.	12, 15
20	5.82	1.60	13,	17	20,	5, 30	18, 2	20,24	0 or 1	15V
60	9.49	1.80	33,40,		20,		30 V	15V	Price	P\&P
100	11.08	2.00	25 V				. 5		3.19	1.2
200	15.69	2.25	50 V		Pric		1	2	4.32	40
250	18.97	2.64	5		Price				6.99	. 60
350	23.47	2.70			4.13 8.69		3 A	A	8.10	185
500	29.23	2.95			8.69 1036				9.67	1.90
750	41.28	3.70			10.36	1.90			11.95	2.00
1000	53.00	4.00		8	14.10	2.12		P 12	13.52	2.00
1500	68.37	4.70		P 12	18.01	2.20		S 16	18.10	2.2
2000	8227	5.10	8	16	24.52	2.70	10	S_{20}	20.88	
3000	115.35	OA	10 S	S 20	30.23	3.00	12	24	23.20	
6000	203.65	OA	12	24	36.18	3.20	15	30	25.60	
-115	or 240 V	240 V					20	40	35.64	

$60 / 30 \mathrm{~V}$ or $30-030 \mathrm{~V}$ 400/440V ISOLATORS VA $200 / 240 \mathrm{~V}$ C. T

```
500W ........f239.50
```

 Tap Secs. Volts out 6 ,
 888,
$8,10,12,16,18,20,24$,
$30,36,40,48,60$,
24 or $30-030 \mathrm{~V}$
60 V 30V Price P\&P
$\begin{array}{lll}7.15 & 1.9 \\ 9.20 & 1.9\end{array}$

M	6
8	15

P	10	19
s	12	21

 \(12 / 24 \mathrm{~V}\) or \(12-0-12 \mathrm{~V}\)
 $2 \times 12 \mathrm{~V}$ Secs. Pri.
$2 \times 12 \mathrm{~V} \underset{240 \mathrm{~V}}{\mathrm{Sec}}$
끙
$\begin{array}{cc}12 V & 24 V \\ 0.3 & 15 \\ 241\end{array}$
$\begin{array}{llll}12 & 20 & 35.76 & 3.30 \\ 24 & 41.22 & 350\end{array}$
MINIATURES (SCR)
$\begin{array}{llll}\text { Sec V } & \text { A } & \text { Pri P\&P } \\ 3-0.3 & 2 A & 3.11 & .90\end{array}$
$\begin{array}{lllr}3.0 .3 & & 3.11 & .90 \\ 6 \times 2 & 1 A \times 2 & 3.45 & 1.20 \\ 9-0.9 & 1 & 2.59 & .90\end{array}$
$\begin{array}{lllll}9 \times 2 & 33 \times 2 & 2.41 & .90 \\ 8,9 \times 2 & .5 \times 2 & 3.36 & 1.20\end{array}$
$\begin{array}{lllll}8.9 \times 2 & 5 \times 2 & 3.36 & 1.20 \\ 8.9 \times 2 & 1 A \times 2 & 4.27 & 1.40 \\ 15 \times 2 & 2 A \times 2 & 2.41 & 90\end{array}$
$\begin{array}{llll}15 \times 2 & 2 \mathrm{~A} \times 2 & 2.41 & .90 \\ 12-0.12 & .05 & 3.11 & .90\end{array}$
$\begin{array}{llll}12-0.12 & .05 & 3.11 & .90 \\ 20 \times 2 & 3 \times 2 & 3.39 & 1.20\end{array}$
$\begin{array}{lll}20,12,0 & & \\ 1220 & 9 & 4.131 .20\end{array}$
$\begin{array}{llll}1220 & 9 & 4.13 & 1.20 \\ 1520-2 & 1 \mathrm{~A} \times 2 & 5.60 & 1.60\end{array}$
$\begin{array}{llll}15.20-2 & 1 A \times 2 & 5.60 & 1.60 \\ 15.27 \times 2 & 5 \times 2 & 4.83 & 1.40 \\ 15.27 \times 2 & 1.4 \times 2 & 1.30\end{array}$
$\begin{array}{llll}15.27 \times 2 & 1 \mathrm{~A} \times 2 & 7.30 & 1.60\end{array}$
PLEASE ADD 15\%
VAT TO ALL ITEMS
CONSTANT VOLTAGE
TRANSFORMERS
Spike-free stable mains
125
$105,115,220,230,240 \mathrm{~V}$
For step-up or down
VA Price P\&P

CONSTANT VOLTAGE TRANSFORMERS
pike-free stable mains

120VA	£131.12
250VA	f157. 36
500VA	E219.91
1kVA	E336.40
2kVA	15
5 kVA	£1587

AVOS \& MEGGERS 8 Mk. 5 (latest) $£ 128.10$ $\begin{array}{ll}73 \\ \text { MM5 Minor } & \mathbf{5 7 3 . 6 0} \\ \mathbf{f 4 6} 50\end{array}$ $\begin{array}{ll}\text { DA212 LCD } & \mathbf{8 8 9 . 5 0} \\ & \mathbf{8 8 9 . 9 0}\end{array}$ DA116 LCD DA117 Autorange LCD \begin{tabular}{ll}

\hline 107.40

\hline

Megger Batt. \& 885.50

\hline 1085

\hline
\end{tabular} 240 V to 115 V USA S.A.E.

UURGLAR ALARM Ulitrasonic portable, looks like a speaker, 999.00 . Just plugs in. No wiring. Loud siren. Exit/Entry delays. Rechargeable battery.

ELECTROSIL TRA 5\% RESISTORS $£ 1 / 100$ $12,33,47,390,430,510$,
$560,1 \mathrm{~K}, 1 \mathrm{~K} 1,1 \mathrm{~K}, ~ 1 \mathrm{KG}$, $1 \mathrm{~K} 8,2 \mathrm{~K}, 3 \mathrm{~K}, 3 \mathrm{Kg}, 15 \mathrm{~K}, 16 \mathrm{~K}$, $24 \mathrm{~K}, 27 \mathrm{~K}, 39 \mathrm{~K}, 56 \mathrm{~K}, 82 \mathrm{~K}$ $100 \mathrm{~K}, 110 \mathrm{~K}, 120 \mathrm{~K}, 130 \mathrm{~K}$ $150 \mathrm{~K}, 200 \mathrm{~K}, 220 \mathrm{~K}, 270 \mathrm{~K}$ 300 K .
Stock items by return BARRIE ELECTRONICS LTD Unit 211, Stratford Workshops Burford Road, London E15 2SP Tel: 01-555 0228 (3 lines)

YOUR CAREER..YOUR FUTURE..YOUR OWN BUSINESS..YOUR HOBBY H-IS S THE AGE OE E ECTBONCSI

the world's fastest growth industry... You will do the following:

Our new style course will enable anyone to have a real understanding of electronics by a modern, practical and visual method. No previous knowledge is required,
no maths, and an absolute minimum of theory.
You learn by the practical way in easy steps, mastering all the essentials of your hobby or to start, or further
a career in electronics or as a self-employed servicing
engineer. All the training can be carried out in the comfort
of your own home and at your own pace.
A tutor is available to whom you can write personally at any time, for advice or help during your work. A Certificate is given at the end of every course.

Build a modern oscilloscope

- Recognise and handle current electronic components
- Read, draw and understand circuit diagrams
- Carry out 40 experiments on basic electronic circuits used in modern
equipment using the oscilloscope
- Build and use digital electronic circuits and current solid state 'chips'
- Learn how to test and service every type of electronic device used in industry and commerce today. Servicing of radio, T.V., Hi-Fi, VCR and microprocessor/computer equipment.

FREE!
COLOUR
BROCHURE
am interested in.
NAME ADDRESS

COURSE IN ELECTRONICS as described above RADIO AMATEUR LICENCE MICROPROCESSORS OTHER SUBJECTS please state below

Post now to: BLOCK CAPS PLEASE
BritishNational Radio\&\&lectronics School Reading,Berks. RGI 1 BR CACC
OR TELEPHONE US 073451515 OR TELEX 22758 (24 HR SERVICE)

BUMIPER SPRINGISSUESS

FOR D.I.Y. HOME IMPROVEMENTS

APRIL ISSUE

MARCH 10th ISSUE MATM OUN

SPECIAL FEATURES:

 ADSS TO BETTER GARDENING-Hond Cultivators, Chemical
Weed Killers and sprayers.

EXTRA,EXTRA, Home Plus colour magazine, is also carried in these three issues. Feature Articles include Raising the Readies, Gadgets for the home and winter ravages repaired.

QSL card from Argentina sent in by Andrew Hill

OSL card from Red Cross sent in by Glen Hocking

QSL card from Voice of Nigeria sent in by Kevin Lewis

QSL card from Voice of Vietnam sent in by Glen Hocking

understanding over the date. It is better not to do this unless you are absolutely sure of local time, say as the result of a time check over the air. Use the local date on your report if you use local time and to be safe, give UTC and the Greenwich date as well.

Logs

Reader Simon Griggs complains that "the short wave section has very little if any lists of what stations have been heard" while D. Prince (Llandyssul) likes reading about "other bods' logs". Stations heard by other DXers are of considerable interest and form the backbone of DX club bulletins, where there is space for lengthy lists that are able to include the easy as well as the DX type loggings. Anyone with more than a passing interest in the hobby should join a DX club. A copy of the EDXC club list referred to in the February issue will give the prospective member a chance to obtain a specimen copy of several club bulletins, before deciding which one suits him. Clubs, like people, vary a lot.

Logs for this column should supplement rather than compete with DX club bulletins. New stations, rarities, unusual loggings, even everyday ones if made by newcomers using simple equipment. Readers will want to know the gear in use, the antenna, the time of day, the frequency, as it will help them when they try to pick up the same broadcasts themselves. Contributors to club bulletins follow this practice. Users of simple receivers will not be able to provide the exact frequency but even "the h.f. end of the 15 MHz band" would help others who might be tempted to try themselves.

Interval Signals

In order to assist listeners to home-in on a station before the start of the programme it has long since been the practice to transmit a distinctive interval signal. There is an infinite variety of them
ranging from a few bars of electronic music (AWR) to a recording of farmyard animals (Botswana). Perhaps the most famous and certainly the best known was the letter "V" in Morse used by the BBC during the last war to identify its transmission to occupied Europe.

The need for an interval signal will disappear as receivers with digital readout become the norm though one hopes they will remain as the station's signature tune. Interval signals are of great value to the DXer as an aid to station identification, that is if one can remember them. The $W R T H$ tries to help with some stations by printing a few bars, if the signal is a musical one. Not everyone can read music though. DX Party Line from HCJB which is on the air on Mondays and Saturdays at 2130 UTC on $15 \cdot 295 \mathrm{MHz}$ and $17 \cdot 79 \mathrm{MHz}$ features the "interval signal of the week". This is played several times before the identity of the broadcaster is revealed, which does help to imprint it on the memory.

Tape recordings of interval signals have been compiled from time to time, one currently being available from the Handicapped Aid Programme. The list which accompanies the tape classifies signals according to type, which does help a lot. Further information on this and other tapes of interest to DXers, is available by sending a SAE to HAP(UK), c/o EDXC, PO Box 4, St Ives, Huntingdon, Cambs, PE174FE.

Readers' Letters

"A sample copy of Contact, the publication of the World DX CLub, 17 Motspur Drive, Northampton NN2 6LY is available for 50 p or 2 IRCs (3 IRCs airmail). The bulletin is directed towards m.w. and s.w. broadcast band enthusiasts, and contains no amateur radio news" writes Arthur Ward who is the producer of Contact. He goes on to say that the WDXC has never gone over the 500 membership mark, always seeing that a quarter of the total reside overseas.
"I recently had a bargain of a lifetime" writes John L. Hopkins of Oxford who paid a "fiver" for a Codar CR70A with PR30 preselector and Joymatch antenna. John would like to know where he can purchase a manual for the CR70A as Codar are no longer in the radio business. Can anyone help?
"I now use a Tandy Realistic DX60 receiver" writes Adrian Childs of Dorchester who is full of praise for his latest acquisition which covers the medium waves, short waves: 3 MHz to 26 MHz in three bands, v.h.f. 88 to 108 MHz and CB. Using the receiver's whip, Adrian heard Radio Bagdad in English on 9.61 MHz at 2130 . When used with a roof-top v.h.f. two-element antenna the DX60 pulled in All India Radio on 9.665 MHz at 2015 , the Voice of Nigeria on $15 \cdot 12$ at 1800, Radio Hanoi on 10.04 at 1800, all with programming in English. A v.h.f. or TV antenna often makes a good short wave antenna.
"A good catch 1 recently had was Radio Impacto, a new station in San Jose, Costa Rica-around 0500 on 6.15 MHz " writes Shoyab Patel of Dewsbury who was using a Panasonic R50B receiver along with an 8 metre long external antenna. Our reader also mentions the Voice of Peace which is now on $6 \cdot 24 \mathrm{MHz}$ with a power of 400 watts to be raised to 10 kW . Reader J.R. Sadler of Bishop's Stortford picked up Radio Argentina on $15 \cdot 345 \mathrm{MHz}$ with his Astrad 6010, time of reception not mentioned, while S.R. Smith of Crewe heard Radio Kuwait on 11.675 MHz , no details of receiver or antenna quoted.

> PLEASE MENTION PRACTICAL WIRELESS WHEN REPLYING TO ADVERTISERS

VHF BANDS
 by Ron Ham BRS15744

Reports to: Ron Ham BRS15744, Faraday, Greyfriars, Storrington, West Sussex RH2O 4HE.

Reports from continental readers, 144 MHz QSOs in the Middle East, awards for BARTG members, a new solar magazine and the end-of-year tropospheric opening are among the goodies under discussion this time.

Solar

Readers interested in solar astronomy can find out more about the work of the London Solar Committee and their journal, Solar News, by writing to Bert Chapman, 15 Homersham Road, Kingston-Upon-Thames, Surrey, KT1 3PL. Bert tells me that they have members in London, Northern Ireland and Scotland with radio telescopes and others keen to learn more about the subject. Solar News is very well presented and full of gen and I see that the first edition for 1984 includes articles entitled, A Beginner's Guide to the Sun, 1983 Solar Report, Solar Radio Astronomy plus sunspot and other useful observational data.

Cmdr Henry Hatfield, Sevenoaks, using his spectrohelioscope, saw a few filaments on the sun's disc on December 30, one double spot, 11 filaments and a few prominences on January 4 and a similar situation on the 7th. It is possible that the double spot, then on the east limb, was responsible for the radio noise storm that Henry and I recorded, on 136 and 143 MHz respectively, on January 12,15 and 16. A few small bursts were also recorded on the 11th and 14th. Ted Waring, Bristol, counted 9 sunspots on December 17 and 7 on January 11.

The 28 MHz Band

"It's surprising what crops up out of a completely dead band", writes Dave Coggins, Knutsford, who concentrates much of his efforts on studying the propagation of signals in the 28 MHz band. Dave normally uses a 2 -element quad antenna but is currently building a vertical to work in conjunction with it. In
his 28 MHz log for December, Dave reports hearing signals from the Canary Islands on the 4 th, Ukraine on the 8 th and 10th, Australia on the 10th, 28th and 29th, Canada on the 15 th and plenty of activity from Europe and Scandinavia on the 11 th, 18th, 28th and 30th.

Peter Lincoln found a few ZS stations during the month prior to January 10 and a near neighbour of mine, Fred Pallant G3RNM, heard signals from DK, EA, OE, ZS3, 4 and 5 on the 2 nd and 3 rd, and at 1531 on the 2nd a W4, "was the only W on the band" said Fred, which emphasises just how patchy 28 MHz has been.

28MHz Beacons

Congratulations to Norman Hyde G2AIH, one of my regular beacon observers from Epsom Downs, on being awarded a special badge by the RSGB to mark his 50 years of membership, 1934/1984. His log, along with those from Dave Coggins, John Coulter, Henry Hatfield, Bill Kelly, Ted Owen, Ted Waring, Freddy De Witte and me provided the information to compile the monthly list of beacons heard seen in Fig. 1.

One of our Netherlands readers, Freddy De Witte NL7357, Fig. 2, is a keen radio and television DXer and over the period 1981 and 1982, he and a friend, Carlo NL5736 logged more than 1250 stations on the 50 MHz band and are the only two listener members of SMIRK, a six metre club. Among the beacons in Freddy's log are the South African ZS5VHF which he heard on December 19 and from the UK, GB3SX on the 20th.

Dave Coggins logged the beacons in Germany on the 18th, 22nd, 23rd, 29th and 31st and Norway on the 18th and 23rd via brief periods of sporadic-E. John Coulter, Winchester, heard W3VD every day between the 12 th and 16 th, Ted Owen, Maldon, reports hearing the Australian beacon VK6RTW on the 10th, also Henry Hatfield commented

A92C		17	18	,	21	22	24	25	27	2829	, 30	31	12	3	4	56	8	9	1011	1213	31415
DFOAAB																					
DKOTE																					
dloigl																					
lasten																					
vk2RSY																					
vpgiba																					
zSICTB																					
zSISTB																					
zS6PW																					
Z21ANB																					

about the very strong signal he received from DLOIGI at 1530 on January 12th.

While on the subject of beacons, Dave Coggins heard signals from the UK 50 MHz beacon GB3SIX, at 1342 on January 8.

Like John Coulter, Ted Waring heard signals from W3VD in December as well as KAIYE on the 11th and 14th.

Satellites

On December 4, while Belgian and French stations were pounding in on 144 MHz due to a prevailing tropospheric opening, the icing on the cake for Alan Taylor in Coventry was hearing the voice of Owen Garriott W5LFL, the first radio amateur in space operating from the American Space Shuttle, Columbia. At 1520 on the 4th, Bill Kelly, Belfast, heard W5 LFL calling stations in Europe. At the same time, Fraser Lees G6JIO, Ringmer, was staying in Italy with IW2BNA and with the Italian's FT-221 and 18-element Tonna antenna they heard a report from the space craft that they were "just going over Austria".

In Western Germany, Allan Sancto DD5FM (G6BWH), hopes to receive OSCAR signals by the spring when the weather is better for him to install a 22 element crossed-Yagi antenna on the roof to feed an FT-290R. On December 29, in Winchester, John Coulter logged, "W5EM SO ASTXA USPEHOW W NOVOM GODU HAPPY NEW YEAR", which continued for several days on 29.331 MHz from RS3A as well as sundry signals from Canadian, European and Icelandic stations working through the satellites. Another catch for John came on January 12 when he heard Arthur Gee G2UK, Chairman of AMSAT-UK, in contact with a UK3 via satellite.

Tropospheric

The atmospheric pressure, measured at my QTH with a Short and Mason barograph, at midday on December 16 was low, $29 \cdot 5$ in (998 mb) and by 1600 on the 19th it was very low at $28.9(978)$ and with the associated wind and rain, conditions were definitely not good for v.h.f. communications. However, a gradual rise followed and by 2200 on the 26th, the pressure was high at $30 \cdot 5$ (1032) where it stayed until noon on the 29th when a fall set in and, true to form, a tropospheric opening took place. After a slight recovery the pressure then dropped sharply from 30.4 (1029) at 1000 on the 31 st to 29.5 (998) at 0400 on January 3 and by 1400 on the 4th, it was back above $30 \cdot 0$ (1015) where it hovered until mid-

NL. 7357 The Netherlands

Sist, un
Aoperl 47

Fig. 2
day on the 11th, only to fall again to average around 29.5 as gales swept across the country for several days.

Looking back to the opening on December 1 and 2, Simon Hamer, New Radnor, heard signals through the 144 MHz repeaters in Buxton GB3HH R4, Horsham GB3BP R6, Lincoln GB3LN and Martlesham Heath GB3PO R3 and Dutch stations on one of the repeaters on R0. As I have said before, it is sometimes very difficult to identify a particular repeater during an opening because of the large number that use the same channel. On December 4, George Grzebieniak G6GGE, London, using his new antenna system, worked 4 OZs and a PA on 432 MHz . During the opening on the 29th, he exchanged good reports with 3 stations in France, 1 in Guernsey and 2 in Germany on 432 MHz and DK8SG on both 432 MHz and 1296 MHz . In his station, Fig. 3, George has an FRG-7 receiver fed by a 20 m long wire antenna, a Plustron TVR5D for DXTV, an IC-211E for 144 MHz and transverters for 430 MHz and 1296 MHz .

During the mornings of the 3rd and 4th, Fred Southwell G6ZRU, worked stations in France, Denmark and Holland and during the evenings of the 28th and 29th he worked into Belgium, France and Germany on 144 MHz . At his home in Henfield, Sussex, Fred uses a FT-101ZD, FTV-901R transverter and 8-element quad antenna for 144 MHz . Around 1730 on the 28th, I heard a Sussex G2 station, working through a repeater on R6 say "conditions are exceptional" and that he had heard French, Belgian and German stations on 144 MHz as well as several continental repeaters. Alan Taylor heard many 144 MHz repeaters on the 29 th and a very strong signal from DJ2HH.

Band II

That early December tropo produced strong signals for Simon Hamer from stations in Belgium BRT II, Egem, France TDF Cultur from Abbeville, Boulogne, Caen, Lille, Rennes and Vannes, Inter from Caen, Musique from Lille, Niort and Rennes, Holland NOS-1 from Goes and Smilde. In addition there were BBC Radios Devon, Kent, Sussex and York and ILR Orwell, Trent and Southern Sound. A similar report for the period, with the addition of the ILR stations BRMB, Capital Radio, Chiltern and

Fig. 3
2CR, came from 14-year-old Damien Read using an Amstrad TS35 and a Philips 901 music centre at his home in Newport.

Albert Moulder, Rainham, tells me that he has received confirmation from David Cox, Engineer in Charge of BBC Radio Sussex, for his reception report and says that following the World Administrative Radio Conference in 1979 many more broadcast stations will appear in the $102 / 104 \mathrm{MHz}$ region of Band II.

By the end of 1983, Brendan McNamee, Loughborough, using an Akai AJ500FL with its own telescopic antenna, added BBC Radios Cambridge and London, ILR Capital and Wiltshire and a French station to his DX score during the opening on December 29. Brendan has now received QSL cards from BBC Radios Sheffield and Sussex, ILR Chiltern and stickers from LBC and is looking forward to future openings when he can put his homebrew antenna preamplifier to the test. "On December 29 the Dutch, French and Germans were rocketing in", said Damien Read, who logged French stations on about 20 spots in Band II, heard Belgium for the first time and hopes that one day there will be a tropo big enough to receive stations from the USA. Don't we all Damien!

French stations were predominant in the logs of Harold Brodribb, St Leonards-on-Sea, who counted 23 in the band on the 28 th and 15 on the 29th. Ian Kelly, Reading, added detailed accounts of the stations he also received from Belgium, Germany and Holland between the 28th and 30th. "On the 29th, ILR Signal Radio was strong and the DJ Erika Hughes couldn't believe she was receiving phone calls from listeners in places such as Essex, Farnborough, Luton and Oxford", writes Ian, who also identified the station SWF-2 from Hornisgrinde on 96.2 MHz and heard other German stations in Band II on January 1.

In Belfast, Bill Kelly, using a Panasonic DR2800, heard French stations at 0515 on the 26th, French and German between 0500 and 0600 on the 29th and a German at 0420 on January 3. At times during December, Bill, with a Grundig Satellit 3000, received signals from BBC Radios Barrow in Furness, Cleveland, Clyde, Cumbria, Leeds, Scotland and Wales and ILR stations Ayr, BRMB, Manx and Red Rose.

Late on the 29th, Simon Hamer received signals from BRT-2 West Glan-

Fig. 4
ders, the German stations NDR-1 and 2 from Aurich and Harz, WDR-1, 2 and 3 from Teutoburger Wald and at 0040 on the 30th he listened to Rainy Days on Mondays by Paul Williams, on the BFBS station at Langenberg.

RTTY

Congratulations to Ted Double G8CDW on being made an honorary life member of the British Amateur Radio Teleprinter Group for his long service as contest manager and to their retiring chairman "Smudge" Lundegard G3GJW on his unanimous appointment as BARTG's President at their AGM. Congratulations also to Eric Yeomanson G3IIR, one of the founder members of BARTG, on becoming honorary vice president of the Radio Society of Great Britain and to Tony Oakley G4HYD, former BARTG newsletter editor, on receiving the Norman Keith Adams Prize, awarded by the RSGB for his article in RadComm on a simple tuning indicator for AMTOR and RTTY signals.

Readers wishing to join BARTG, who celebrate their Silver Jubilee during 1984, should send an s.a.e. to John Beedie G6MOK, 161 Tudor Road, Hayes, Middx. The current membership fee is $£ 5$ per annum and their quarterly newsletter, free to members, is packed full of information on such subjects as AMTOR, Computers, FAX, Mechanical Hardware, RTTY, satellites and telemetry.

During the month prior to January 10, Peter Lincoln BRS42979, Aldershot, found RTTY signals on 14 MHz coming mainly from Europe and a few from Asia in the daytime and occasionally from north-America during the late afternoons. On those days that the band remained open well into the evenings, Peter logged fairly strong signals from south-America. Although 21 MHz was generally quiet throughout the period, Peter did log some stations from the USA during the afternoons.

Peter's RTTY equipment, MM2001 and Tono Theta 550 terminal units and Panasonic TC800G monitor, can be seen along with his Icom IC-R 70 and Realistic DX300 receivers at his operating desk in Fig. 4.

At 1030 on December 25, I watched a station print a screen-filling Christmas tree made up of the letters "O" and "X" with the words MERRY CHRISTMAS
arranged in the middle. At 1102 on January 1, a Spanish station printed a large " 73 ", taking up several lines on the screen, as he signed off with an IT9.

Although Norman found RTTY activity generally quiet during the month preceding January 14 , he is very pleased with the signals he did receive on 14 and 21 MHz from stations in DU, FG7, JA, OX, VK2, 3 and 6, XE, ZS6, 5N3 and from FB8WK on Crozet Island. At 1700 on December 18 he copied a Belgian station on $14 \cdot 078 \mathrm{MHz}$ using 75 baud. Despite my limited operating between December 16 and January 15, I did copy RTTY signals from 11 prefixes, DL, EA, F, G, I, IT9, OE, OH, ON, SM and YU on 14 MHz around 14.090 MHz and 11
call areas, G, UW, VE, Ws 1, 2, 3, 4, 8, 9 and 0 and 9 K on 21 MHz around 21.090 MHz .

Tailpiece

Last September, Simon Poysden ZR6AGN (G1BND), Hillbrow, Republic of South Africa, spent four weeks in Cyprus and using the callsign ZR6AGN/5B4 from Limassol found propagation excellent and had no trouble accessing 144 MHz repeaters in Israel. During his trip, Simon worked stations in Cyprus 5B4 and ZC4, Israel 4X4 and 4X6, Lebanon ODS and Island of Rhodes SV5 and among his interesting

QSOs was one with KJIL/MM, sailing past the south coast of Turkey, via the Haifa repeater in Israel. Throughout the tour Simon used a Yaesu FT-480R and Araki $5 / 8$ colinear antenna and says that amateurs in both Cyprus and Israel are busy building repeaters for 430 MHz . Simon also managed a bit of h.f. working back to ZS from the station of 5B4BS.
"73s to all in UK" writes Edward Baker, Benidorm, Spain, who, with a Panasonic RF-3100 receiver and telescopic antenna, can hear stations in Alicante, Castellor and Valencia. He adds, "If one counts the RNE 2 and 3 outlets there are $32 \mathrm{f} . \mathrm{m}$. stations audible so DXing is hard due to this many filling the band."

TELEVISION ${ }_{\text {smamamessisu }}$

Reports: as for VHF Bands, but please keep separate.

Once again the main cause of the DX under review this time, is tropospheric. Roger Wallis, Solihull, has sent two weather pictures that he received from Anglia TV last September and RTBF Belgium in November, Figs. 1 and 2. They provide a quick source of information about the progress of the highpressure systems that are mainly responsible for the long-distance television pictures we all look for.

Amateur Television

The annual pram race for charity, which took place at Pagham, Sussex, on Boxing Day, attracted some 60 competitors and the event was recorded for posterity by Ted Brodie G6HTB, Richard Butterworth G6FDU, Brian Dubbins G80CN and Robin George G6AII. Ted's home-brew transmitters feeding MBM48 antennas were installed at two points on the 3 km route, the Lamb Inn, Fig. 3 and the Kings Beach Hotel, so that live pictures, including graphics and titles by Caroline Butterworth with a Commodore 64 computer, were seen at both places. Charles Nightingale G3IDX and wheelchair mobile Alf Maynard G3UPQ organised the 144 MHz talkback and progress reports of the race. The group wish to thank messrs Jaysound Audio of Bognor Regis for the loan of a JVC GX78 E camera used by G6AII at the Lamb Inn (Fig. 4), and Andy Hearny G3UEQ for his technical assistance. Andy received the 150 mW pictures from the event at his QTH in Chichester 10km away and a P2 reception report came from Henry Kaminski G5NBX who received the signals off the side of the beam. The edited tapes will be shown to the contestants and at local homes for the handicapped and hospitals. Congratulations to all concerned, I heard that at least 500 man hours went into organising and planning the filming of the race.

During the December openings Steve Green, Malvern received an ATV test card and picture, Figs. 5 and 6, from G6CUQ in Redditch and Ted Brodie,

Pagham, received ATV pictures from stations in Belgium and Germany with his 430 MHz up-converter into a Ferguson TX receiver and MBM48 antenna. Ted also has a Sony HVC20000P camera which he used at the Kings Beach Hotel during the pram race.

SSTV

During 1983, Richard Thurlow G3WW, March, made 204 SSTV QSOs mainly on 14 MHz with a few on 144 MHz , spread over 29 countries. Of this number, 106 were first-timers bringing Richard's worked-first-time score, since November 1972, to 1956. Two-way colour pictures, including the new 24 seconds single-frame colour, were exchanged with more than 25 stations world-wide. "G4NJI has received the "print out" board from the SC-1 from Volker Wrasse, believed to be the first in the UK." writes Richard and adds, "G4DYB and G4NJI can be found, almost nightly, on 144.5 MHz f.m. or $144 \cdot 23 \mathrm{MHz}$ s.s.b. with G 3 CCH around 2100 GMT ". Thanks for the gen Richard, no doubt Peter Lincoln, well-known for his SSTV viewing with a Volker Wrasse SC-140, will look out for them. "Among the rarer signals was HBOAWQ calling CQ with no reply and stations from DJ, 1, LA, YO and YU were seen quite often" writes Peter in his report for the month ending on January 10 .

Over in Germany, Allan Sancto DD5FM/G6BWH is building the SSTV analogue-to-digital converter described in the RSGB journal Radio Communication by Brian Smith G3WCY. Two of Allan's colleagues are also building the device and Allan thanks one of his local radio club experts, Udo Elstner DF4MO, for his technical assistance. I look forward to hearing more from all of you Allan.

Band I

On December 17, Ian Davidson, Carmarthen, using a Vega 402 DE receiver and pre-amplifier noted short bursts of
test card from Poland and an analogue clock showing 3 hours ahead of GMT on $\mathrm{Ch} . \mathrm{R} 149.75 \mathrm{MHz}$. Between 1700 and 1900 on the 18th, he watched a puppet show from Switzerland on Chs. E2 48.25 MHz and E3 $55 \cdot 25 \mathrm{MHz}$, a caption Artwelt on E2, and the news from Poland was fighting for predominance on Ch. R1 with Swiss television on Ch. E2. Ian was surprised at these results, especially as he was using a Band II Yagi at the time, however, Ian has plans for a wideband antenna for Band I and is looking forward to the 1984 sporadic-E season. Between 1400 and 1700 on January 11, Ian received a cartoon film and a sort of quiz programme from RAI Italy on their Ch. B $62 \cdot 25 \mathrm{MHz}$.

During a sporadic-E opening on December 23, Philip Heaney received pictures from Poland with the dt caption behind the newsreader on Ch. R1, as did Fraser Lees, Ringmer. He also identified Russian pictures on both Chs. R1 and R2. At midday on the 21st, Steve Green received a test card from TV1 Sweden on Ch. E2, YLE TV1 Finland on Ch. E3 and during a similar event on January 7, he logged pictures, possibly from the USSR, on Ch. R1. It looks as though the upset hung about because early the following morning, I received pictures of some form of wrestling, followed by news with a YL presenter on Chs. R1 and R2. Both Steve and I logged bursts of activity on Chs. E2 or R1 with glimpses of test card from Sweden on Ch. E2 and Poland on Ch. R1.

The majority of Band I enthusiasts have seen Russian words appear on their screens, especially during the sporadic-E season. Thanks to Cyril Fairchild G3YY, Brighton, who sent the following translations for the benefit of TVDXers. BPEMR $=$ Time(S), NEWS; CNOPT $=$ Sport; HOBOCTb $=$ News; NPORPAMMA = Programme; TACC $=$ TASS News Agency; CCCP $=$ S.S.S.R. (USSR); TB or $\mathrm{MB}=\mathrm{TV}$; COObWAET = Report or Information; YTPEHHNN-NOYTA $=$ Morning-Post-

Fig. 1

Fig. 5

Fig. 9

Fig. 13

Programme; MOCKBA $=$ Moscow; NPABAA = Pravda.

Readers, please remember, we cannot print some of the Cyrillic capitals correctly but our interpretation of the precise form sent by Cyril should suffice.

Tropospheric

Like many of us George Grzebieniak

 found Band III wide open when he received pictures from Belgium on Chs. E8, 10 and 11 and Holland on E5, 10 and 11 during the tropospheric openings on December 4 and 5 and 28 and 29 . He also logged DR Denmark on Ch. E7 and the 3rd and WDR Germany on E11 on the 29th. Among the pictures George showed me was a clock caption, Fig. 7, that he received from Denmark on Ch. E10 during a similar event on August 29.Like George, Philip Heaney, Norwich, received the test card from Denmark on the 3rd and 4th as well as seeing such captions as BRT-1, DR, FR3, PTT-NED 1 and 2, Sverige TV2, TDF and ZDF, plus a card showing a coat of arms with the words Niebull Canal and another saying Schleswig Canal 45, on the v.h.f. and u.h.f. bands.

Fig. 2

Fig. 6

Fig. 10

Fig. 14

Fig. 3

Fig. 7

Fig. 11

Fig. 15

Fig. 4

Fig. 8

Fig. 12

Fig. 16

On December 1, Simon Hamer, New Radnor, received pictures from France on 8 spots between Chs. 21 and 63 and on the 2 nd he watched a documentary about the German occupation of Brussels in 1940, as excellent pictures from BRT TV1 and TV2 pounded into Wales from Egem on Chs. E43 and 46. Between 1800 and midnight on the 29th, Simon saw a clock and Journal Televise from RTBF-1, Nos Journaal from Holland, a programme Orwell auf Jura from Germany on ZDF and the captions Ard Hessischer Rundfunk-3 and ARD/WDR1 spread between Bands III, IV and V.
"A really fine opening" said Alan Taylor, Coventry, whose report about Band III was similar to the others. He writes, "The u.h.f. band, Chs. 21 to 69 , was so good that I received London ITV at a better strength than my local Central TV! and there were many Dutch and German stations on at incredible strengths".

In December, Roger Wallis, Solihull, was given a 19in Hitachi colour set and on the 29th he used a Belgian PM5544
test card to adjust it correctly. On the 3rd, Roger received pictures from Denmark, Germany and Holland. Like myself on the 29th he watched the afternoon programmes from Belgium on Ch . E8 and logged a test card on E10. Roger also watched colour Teletext information from RTBF on Ch. 41 and Anderlues test card on Ch. 61. At 1715 I watched an episode of Chopper Squad, with subtitles, in colour from Belgium on Ch. E10 and saw the captions Beste Wensen 1984 SPD above a news reader on Ch. E9 and BRT Journaal on E10.
"All together a very good trop" writes Tony Palfreyman about those first few days in December after he logged most of the continentals that were about. These included German regionals like NDR-1, Fig. 8, WDR-1, Fig. 9, WDR III, Fig. 10 and his best catch of all was DDR-2 from East-Germany on Ch. 34. Tony's pictures of the German newscaster, Fig. 11, and Teletext, Fig. 12, will give some idea of the strength of the DXTV pictures received during the December openings.
"On December 2, I tuned to ZDF

on the air

West Germany, they were transmitting an experimental stereophonic broadcast programme with various items with stereo sound including Henry Mancini and speech in stereo", writes David Girdlestone, Norwich, who photographed one of their captions Fig. 13.

Last November, O.J. Jones, Stoke-onTrent, received bursts of signals between Chs. 6 and 8 in Band III and will no doubt be interested in the fluctuating conditions observed by Tony Palfreyman in Stannington during the late December tropo. "It started in the afternoon of the 29th, with snowy pictures from Holland on Chs. 39 and 45 and as the evening drew on these pictures became very strong. Checking the channels, I found Belgian stations on Chs. 42, 43, 46 and 62 . The pictures received at this time were suffering from co-channel interference and for about 10 minutes hardly anything was identifiable, even local pictures were rolling. Then German stations were seen on the channels where there had been Belgian and Dutch", writes Tony. He added "On our local IBA Channel 4 from Belmont on Ch. 32, a WDR III test card could be clearly seen in the background and as the German stations went off the air a lot of British stations came up. This was certainly a hard trop to work with the constant changing in selectivity of countries, but it was a very interesting
event". I am sure Tony that many newcomers to TVDXing will appreciate your description of this event and know now, that one can expect anything to happen when the atmospheric pressure is high and the troposphere is disturbed.
"TVDX on the 29th was remarkable", writes Harold Brodribb, who received a test card from RTL Luxembourg, Ch. E7, the film Jack of Diamonds and adverts for road safety and a building society on Ch. E5 and like the rest of us, some very strong continental pictures in Band III. He also saw a notice "RTE 1 regrets poor reception in some areas" on Ireland's Ch. D ($175 \cdot 25 \mathrm{MHz}$, same frequency as Ch. E5). "I have never seen Eire before", said Harold.

Station Reports

My thanks to Filip Rogister, Overijse, for the information that BRT is the abbreviation for Belgian Radio and Television-Flemish section and BRTTV1 and TV2 on the test cards are the first and second networks. RTBF is the French network in Belgium. Filip also tells me that the TV pictures, Figs. 5, 7 and 8 in our January issue are in fact Dutch and not German as I said (sorry about that) and that the NCRV in Fig. 7 is a Dutch programme company name as is Vara, Tros and Ikon. We often see
these names and enjoy the programmes when conditions are right Filip.
Thanks as well to Jan Van Der Horst, Arnhem, who also told me about the Dutch programme makers and adds the names Avro and Veronica and writes, "the programme company has broadcast time, NOS is the super-structure that coordinates everything, cameras, studios, etc, and the PTT provides the links between studios and the different transmitters."

While in Germany on Christmas Day 1982, Steve Green received a Merry Christmas caption from PTT-NL Holland, Fig. 14 at 200 km and among the DX signals he logged in the UK last December was a set of colour bars inscribed KRS3, Fig. 15, any ideas readers?

1 mentioned a test card with a digital clock and the name Wendelstein on it in a recent column and from Germany, Allan Sancto writes, "This could have been Germany 1 ARD, Wendelstein refers to the mountain on which the antennas are located, as the enclosed post-card, Fig. 16 , shows. It's 1840 m high and from the peak one can see through to Austria and Italy. Also located just below the antennas is a solar observatory". Allan tells me that his QTH is about 13 km from Wendelstein and he has a superb view of the range from his shack window.

UPGRADING THE DX160

\rightarrow continued from page 32
feasible to run the set from dry batteries as an alternative to a car battery. The socket connections are shown in Fig. 4. If the plug is missing then a Tandy 274-1210 plug can be made to fit by removing one of its pins.

DX150

This receiver, with either the suffix A or B, pre-dates the DX160 but superficially it looks the same. The DX150 has only four bands, the long waves being omitted. It has an internal loudspeaker, the external loudspeaker sockets for the DX160 at the rear being replaced by a switch for changeover from mains to 12 volt working.

Internally there is quite a difference between the two receivers though the circuitry appears to be the same. The main p.c.b. of the DX150 is not silkscreened though T16, T17 and T18 are easily located but it is more difficult to identify C16 and C19 below the board. The components associated with the "front end" are on a separate small

Mike is in hospital with appendix: He never did miss an opening!

Fig. 4: Power socket connections
board mounted at right angles to the chassis beside the wavechange switch. Capacitor C16 can be found without difficulty as it is the large component adjacent to the oscillator section of the switch. Tapping on a fixed capacitor provided digital readout as before though this time 22 pF was needed. The highest frequency band (D) has the oscillator on the l.f. side of the incoming signal. Un-screened coils are used in the r.f. and oscillator circuits but a space with hole is conveniently left for an r.f. coil for mediumwave use.

I'm sorry about my transmission this evening, old chum, but my daughter has gone to bed in the next room and as I don't want to disturb her I've switched to low power.
. . . heard on 144 MHz by M. Minns G4MIN

This repeater is very generous with its time-out; most repeaters only give you 90 seconds but this gives you $1 \frac{1}{2}$ minutes.
. heard on GB3SC by G6JYN

Do youknow Whatimeinis!

When the globe of this digital clock is revolved, a red lamp indicating a major city in the world will blink, and the current time of that city will be displayed. At a glance know the current times of 24 different time zones. This mini-globe clock stands 195 mm . high and also has an alarm fitted. This useful device should stop you getting your Amateur friends, on the other side of the world, out of bed in the middle of the night.

LEEDS AMATEUR RADID 27, Cookridge Street,Leeds.LS2 3AG. Tel. 452657
Ploase sond for our catalogue and/or Antenna Catalogue Barciarcapo
60p each or $\mathbf{£ 1 . 0 0}$ for both plus pricelist
Goods By Return Subject To Avallability PW
SALES/SERVICE/MAIL ORDER Depts. 60,Green Road.Meanwood.Leeds. LS6 4JP. Tel. 782224

FREOUENGY COUNTERS HENR

The brand new Meteor series of 8-digit Frequency Counters offer the lowest cost professional performance available anywhere.

* Measuring typically $2 \mathrm{~Hz}-1.2 \mathrm{GHz} \quad \star$ Low Pass Filter
* Sensitivity $<50 \mathrm{mV}$ at 1 GHz
* Setability 0.5 ppm
* High Accuracy
* 3 Gate Times

METEOR 100	$(100 \mathrm{MHz})$	$£ 104.36$
METEOR 600	$(600 \mathrm{MHz})$	$£ 134.26$
METEOR 1000	$(1 \mathrm{GHz})$	$£ 184.86$

* Battery or Mains
* Factory Calibrated
* 1-Year Guarantee
* $0.5^{\prime \prime}$ easy to read L.E.D. Display

METEOR $1000 \quad(1 \mathrm{GHz}) \quad £ 184.86$

Illustrated colour brochure with technical specification and prices available on request.

BLACK STAR LTD (DEPT. P.W.), 9A Crown Street, St. Ives, Huntingdon, Cambs. PE17 4EB, England. Tel: (0480) 62440 Telex: 32339

GAREX

(G3ZV1)
RESISTOR KITS a top-selling line for many years. E12 series, 5% carbon film, 10Ω to $1 \mathrm{M}, 61$ values, ratings $\frac{1}{2} \mathrm{~W}$ or $\frac{1}{2} \mathrm{~W}$ (state which).
Starter packs 5 each value (305 pieces) $£ 3.10$
Standard pack 10 each value (610 pieces) $£ 5.55$
Mixed pack, 5 each $1 \mathbf{W}+\frac{1}{2} W$ (610 pieces) $£ 5.55$
Giant pack, 25 each value (1525 pieces) $\mathbf{£ 1 3 . 6 0}$
SR-9 MONITOR RECEIVER 2 m FM with 144146 MHz full coverage VFO +11 xtal controlled channels; ideal for fixed/M/P use. 12 V DC operation £47.50. Mains adaptor $£ 9.50$
CRYSTALS FOR NR-56, SR-9, SR-11, HF-12, TM-56B All 2 m channels from $0(145.00)$ to 33 (145.825) incl. also $144.80,144.825,144.85$ Raynet at $£ 2.60(+20$ p post per order). Over 40 popular marine channels for SR9 , etc at $£ 3.00$ (+20 p post).
PYE RADIOTELEPHONE SPARES (see full list). Ex. equip., fully guaranteed. CAMBRIDGE AM10 10.7 MHz I.F. £3.65. 2nd mixer $£ 3$. 455 KHz block filter $12 \frac{1}{2} \mathrm{KHz} £ 9.40$. Ditto $25 \mathrm{KHz} £ 3.455 \mathrm{KHz}$ AM I.F. $£ 4.95$. Audio bd. $£ 1.95$. Aerial relays $£ 1.50$.
WESTMINSTER W15/W30 AM RX RF $68-88 \mathrm{MHz}$ or $148 / 174 \mathrm{MHz} £ 6.95$. 10.7 MHz IF (inc. $12 \frac{1}{2} \mathrm{KHz}$ xtal filter) $£ 8.25$. 2 nd Osc $£ 2.10 .455 \mathrm{KHz}$ IF $£ 5.65$. 455 KHz block filter $\left(12 \frac{1}{2} \mathrm{KHz}\right) £ 7.35$. Squelch $£ 1.45$.

SCOOP PURCHASE

OF BRAND NEW PYE WESTMINSTER \& PF70 SERIES SPARES s.a.e. list

GAREX FM DETECTOR \& squelch conversion for Pye R/T equipment. Ready assembled, full instructions. Tailor-made, easy-fit design, replaces existing squelch board, with minimum of modifications. For AM Cambridge £6.30; for Vanguard AM25B (Valve RX) £6.10; for Transistor Vanguard AM25T £6.95.

* REVCONE \star

A suberb quality 16 -element, all British made, VHF/UHF broadband fixed station aerial from Revco. Ideally suited to SX200 and other VHF/UHF receivers. Covers 50 to 500 MHz . PRICE $£ 24.95$ inc.

MAIN DISTRIBUTOR OF REVCO PRODUCTS PRICES INCLUDE UK POST \& PACKING \& 15% VAT.

\star THE CHOICE OF THE PROFESSIONALS * MICROPROCESSOR CONTROLLED 32,000 CHANNELS \star AM \& FM ALL BANDS
\star WIDER COVERAGE: $26-58,58-88,108-180,380-514 \mathrm{MHz}$; includes $10 \mathrm{~m}, 6 \mathrm{~m}, 4 \mathrm{~m}$, $2 \mathrm{~m}, \& 70 \mathrm{~cm}$ Amateur bands.
$\star 5 \mathrm{KHz} \& 12 \mathrm{KHz}$ FREQUENCY INCREMENTS

* 16 MEMORY CHANNELS WITH DIRECT ACCESS
* SPECIALLY DESIGNED FOR EUROPEAN MARKET
$\star 2$ SPEED SCAN SCAN DELAY CONTROL
$\star 2$ SPEED SEARCH UP AND DOWN
\star SEARCH BETWEEN PRESET LIMITS UP AND DOWN
$\star 3$ SQUELCH MODES inc. CARRIER \& AUDIO
* RELAY OUTPUT FOR Aux. CONTROL
\star INTERNAL SPEAKER, ALSO EXTERNAL SPEAKER \& TAPE OUTPUTS \star LARGE GREEN DIGITRON DISPLAY BRIGHT/DIM \star AM-PM CLOCK DISPLAY
* 12 V DC 230V AC OPERATION
* FACTORY BACKED SPARES \& SERVICE, 12 MONTH WARRANTY \& THE ALLIMPORTANT PRE-DELIVERY CHECK BY GAREX. THE MAIN SERVICE \& SALES AGENTS.

£299 INC. VAT Delivered

EXCITING NEW RANGE
OF SCANNERS AVAILABLE
SOON INCLUDING THE SX-400
s.a.e. for details

WOOD \& DOUGLAS

HAVE YOU an IC4E?

Would you like 10W output? Then you need our

NEW 70LIN10 UHF Linear

This module is based on our popular 70LIN3/10E pcb which incorporates not only a well designed linear amplifier stage but also a temperature compensated bias network and full r.f. changeover facility. The pin diode circuitry allows a straight network and full r.f. changeover facility. The pin diode circuitry allows a straight
through path during recelve periods or when the power supply is disconnected making the unit failsafe to accidental damage.
If you wish to use it for SSB transmissions the internal 'hang-time' will be advantageous as will the hard switching capability. Just apply 1.5 W of drive for 10 W output or 1W for typically TW output!
The board is available as a pcb kit or assembled tested module without external hardware although boxes and heatsinks are available if desired. INTRODUCTORY PRICE Kit: $£ 32.50 \quad$ Assembled: $\mathbf{£ 4 4 . 2 5}$

Have you seen our package offers?

1. 500 mW TV Transmit	3)	30.00
2. 500 mW TV Transceive	1 above plus TVUP2+PSI 433)	50.00
3. 10W TV Transmit	(As 1 above plus 70FM10+BDX35)	50.00
4. 10W TV Transce	(As 2 above plus 70FM10+BDX35)	70.00
5. 70 cms 500 mW FM Tran	(70T4+70R5+SSR1)	70.00
6. 70 cms 10 W FM Transceive	(As 5 above plus 70FM10)	90.00
7. Linear/Preamp 10W	(144PAA/S + 144UN10B)	36.00
8. Linear/Pre-amp 25W	(144PA4/S + 144LIN25B)	40.00
9. 70 cms Synthesised 10W Transceive	$(\mathrm{R} 5+\mathrm{SY}+\mathrm{AX}+\mathrm{MOD}+$ SSR $+70 \mathrm{FM} 10)$	120.00
10. 2M Synthesised 10W Transceive	(RS + SY + SY2T+SSR + 144FM10)	100.00
Delivery of our products is usually from stock but due to the heavy demand we have experienced in past months please allow 28 days maximum. Please include 75 p for postage and handling on your total order and an SAE with any written enquiries. Telephone orders are gladly accepted or try one of our many agents such as: ANNLEY TECHNICAL SERVICES Bristol 632622 AIRCOM DEWSBURY ELECTRONICS Abergavenney 2566 J. BIRKETT Stourbridge 390063 Lincoln 20767		

Try a Kit - we know you will enjoy it! UNIT 13, YOUNGS INDUSTRIAL ESTATE ALDERMASTON,
maneve NW

AMTRONICS (TONBRIDGE) G4 SYZ THE AMATEUR RADIO SPECIALISTS IN KENT

We are officially Appointed Dealers for the following: YAESU, FDK, ICOM, AZDEN, KDK, JAYBEAM, DIAMOND, SARGANT, MET, BNOS, DRAE, FORTOP (ATV), DATONG, TONO, AMTRON KITS, WELZ, ADONIS, UNIDEN AMATEUR. Comprehensive stocks of above.
Out of stock items can usually be obtained in 48 hours. We will be available at most of the major Amateur Rallies during the forthcoming season.
Send SAE for details or phone your ACCESS or VISA card no. for Fast Mail Order.

8 TOLLGATE BUILDINGS, HADLOW RD., TONBRIDGE. TEL: (0732)361850

RECHARGEABLE BATTERIES
 AND CHARGERS

PRIVATE OR TRADE ENQUIRIES WELCOME FULL RANGE AVAILABLE SEND SAE FOR LISTS $£ 1.45$ for booklet "Nickel Cadmium Power"

- TRADE PRICES FOR SCHOOLS \& COLLEGES -

SANDWELL PLANT LTD
656 Chester Road, Erdington, Birmingham B23 5TE
021-373 9487 After Hours Hitchin (0462) 733254 Litchfield 57977

Special Offer from MET

* COMPLETE 2 metre E.M.E. PACKAGE *

Join the growing E.M.E. stations. Just plug in your rig and Kiowatt amplifier and work the real DX! OFFERINCLUDES $\star 814419$ Yagis Gain 23dBd. \star Full stacking frame Kit. \star Power dividers and cable harness * Elevation and azimuth rotators. $\star 60 \mathrm{ft}$ crank up tower $\star 100 \mathrm{~m}$ LDF4/50 heliax (N plugs extra) * FREE MET Beacon map.
Vertical Non Metallic Mounting Kit available Access those distant repeaters. SEND TODAY 1-4-84! Offer limited to one per SEND TODAY 1-4-84! Offer limited to on
person. ONLY $£ 2813.47$ including VAT. person. ONLY£2813.47 including VAT 366 days for delivery.

* MATERIALS AND CONSTRUCTION

High strength 5 mm elements from HE3O aluminium and a 19 mm boom combine for low windage and long life. We use 19 mm bracing struts on the 14 and 19 element 2 M Yagis whilst aluminium fittings minimise any dissimilar materials problem.

* 'N' SOCKET TERMINATION

Low loss ' N ' sockets are used on all our antennas for an inherently weatherproof termination. Plug protection is provided by the silicon grease and universal cable boot we supply.

* EASY ASSEMBLY

All elements are numbered and colour coded for fast assembly so you won't need a tape measure.

* TILTING MAST CLAMP (included)

Not just any mast clamp' Ours allows the elevation of all our Yagis by up to 20° on a maximum of $2^{\prime \prime}$ mast. Horizontal, vertical, slant and in the case of crossed Yagis, X configurations are possible. The benefit to satellite users is obvious, but if you live in a low obstructed site, tilting your antenna can bring a vast improvement in signals. Clamp available separatelysee accessories.

Code $70 \mathrm{cms}$	Model	Length	Gain	Price (inc. VAT)
432/19T	19 Ele	22 m	14.2 dBd	£33.90
43217X	17 Ele crossed	2.2 m	13.4 dBd	£46.83
432/17T	17 Ele long	29 m	15 dBd	£37.33
2 M				
144/7T	7 Ele	1.6 m	10 dBd	£19.99
144/8T	8 Ele long	2.45 m	11 dBd	£31.26
144/14T	14 Ele	4.5 m	13 dBd	£44.49
144/19 T	19 Ele	6.57 m	14.2 dBd	£53.22
144/6X	6 Ele crossed	2.5 m	10.2 dBd	£37.86
4 M	U.K P\&P on all above is $£ 2.95$			
70/3	3 Ele	1.7 m	7.1 d8d	£28.69
70/5	5 Ele	3.45 m	9.2 dBd	¢43.56
	U.K PGP on above is E5.49			
144/GP $\quad 2 \mathrm{~m}$ Ground Plane $£ 14.41$ + PGP $£ 1.30$ ALt antennas uclude Beacon map and tilting clamp				

* MET ACCESSORIES

Titting mast-head clamp.
E2.25 inc VAT + 50p PGP $\mathrm{N}-\mathrm{Plug}$ (UR67 or RG213)
$\mathbf{£ 2 . 6 5}$ inc VAT + 20p PGP Beacon Maps 70CMSor 2M. E0.50 inc VAT +20 p Pap

NEW N
 NON-METALLIC MAST Exclusive from MEI

Polyester reinforced $11 / 2^{\prime \prime}$ diameter. 1.5 metres complete with fixing clamp.
RPM $1.5 \quad \mathbf{£ 1 7 . 2 5}$ inc VAT + £1.95 P\&P
3 metres complete with joiner and epoxy resin. RFM3 $£ 34.50$ inc VAT $+£ 2.25$ P\&P

* USER ADJUSTABLE MATCHING

All antennas are impedance matchedusing a gamma match with a PTFE dielectric for low loss. Both the tap point on the driven element and the coaxial capacitor are adjustable for minimum VSWR and better than KW power handling

* PROMPT SPARES SERVICE

A comprehensive range of spares for our products are readily available from MET and our stockists.
\star FREE BEACON MAP
Awall map of the European 2M or 70CMS beacons is given free with each antenna supplied. Available separately.

Callers welcome by prior appointment-PLEASE Please allow 14 days for delivery

```
J. B|RNETT 25 The Strait,
SUB-MINIATURE MULLARD Lincoin, LN2 1JF. Phone }2076
OC59 all matURE MULLARD GERMANIUM TRANSISTORS OC57, OC58,
FURTHER SUPPLY OF EX-GPO MULTI-METERS 2OK Per Volt, Movements OK
@ £3 each,4 for £10 Plus £1 for post and packing.
MED R.F. CHOKES, 2.5MH 100mA @ 50p
V-MOS POWER TRANSISTORS VN1OKM @ 50p, VN9OAA @ 80p.
50 ASSORTED BC107-8-9 TRANSISTORS untested for 80p.
MINIATURE MICRO-SWITCHES WITH LEVER EX-Equipment 10 for 75p.
20 ASSORTED TANTALUM CAPACITORS for 85p.
MORSE OSCILISTOR KITS with instructions @ @ &i.95.
144MHz WAVEMETER KIT ws in P.W Oct. 1983@ £4.65.
NUT FIXING FEED-THRUS 3000V RMS insulation @6 for 50
50 ASSORTED COIL FORMERS Ceramic, Phenolic etc. for £3.65.
20 UNMARKED GOOD 2.5 WATT ZENERS, each Diode identified for £1.15.
CRYSTALS. 10X Type. 7010, 7070, 8000, 8000769, 801882, 803538, 803625, 806118
10166\textrm{KHz}\mathrm{ AII 50p each, 10xAJ Type 7005, 701287, 7020, 7025, 7040, 7050,7080,}
7085,7090KHz@60% %- 
EX-SPARES FOR RADIO TELEPHONES Pre-Set Butterfly Variables, 25\times25pf @
50p.
50 ASSORTED STAND-OFFINSULATORS @45p, METAL SPACEERS assort-
ed }50\mathrm{ for 35p.
GOLD PLAFED NUT FIXING I" CERAMIC COILL FORMERS with core @ 20p.
FERRITE BEADS FX115@ @ 15p doz,
RFPOWER TRANSISTORS 2N5590@ £4.95,587BLY @ £3, BLY55@ £2.50,
BLY90@ £7.50, BLY97@ £3, BFR64@£4.
BARCLAY AND ACCESS CAROS ACCEPTED. Post and Packing 50p under £5. Goods normally by
```


Northampton

Communications

Top Band Base/Mobile Transceiver for only $£ 199.00$ inc. VAT! + carriage.

HOW?

With the new LENCOM LC160

Features ■ Solid state \quad - Rugged PA \quad 30W PEP \quad Full RF drive control ■ SSB, AM, CW ■ Audio filter \quad Visual signal indicator - A compact $12^{\prime \prime} \times 6 \frac{1}{2}^{\prime \prime} \times 3 \frac{1}{2}^{\prime \prime}$.

UK SOLE DISTRIBUTOR (Spec Sheet Available)
Northampton Communications Limited Communications House
76 Earl Street, Northampton NN1 3AX
Telephone: (0604) 33936 or 38202

COMMUNICATION CENTRE OF THE NORTH

The largest range of communications equipment available in the North. Full range of receivers, transceivers, antennas, power supplies, meters. Ali tubing - wall brackets etc.
We are the original amateur radio suppliers in the North West with 20 years experience in all types of equipment.
We are the only official TRIO stockists in the North West. Full range of equipment on display. Guaranteed after sales service.
RECEIVERS
TRIO R600 Solid State Receiver $£ 263.00$
TRIO R2000 Solid State Receiver £421.00
JRC NRD515 Receiver £965.00
YAESU FRG7700 Receiver £369.00
CD600A Airband Receiver $£ 99.00$
Wide Band Scanning Receiver AR2001,

$$
25-550 \mathrm{MHz}
$$

£325.00
R532 Airband Receiver £159.40
Please send SAE for full information and up-to-date prices as these fluctuate to change in sterling rates.
For the caller a wide range of Aluminium Tubing, Clamps, etc. at competitive prices, i.e. $12^{\prime} \times 2^{\prime \prime}$ Ali Tubing $£ 9.00$.

Part Exchanges welcome. Second hand lists daily. Send S.A.E. for details of any equipment. HP terms. Access/Barclaycard facilities.
Open 6 days a week. 24 Hour Mail Order Service.
Phone 0942-676790.

Stephens James LTd. 47 WARRINGTON ROAD, LEIGH, LANCS. WN7 3EA.

\& 250 W pep through-power handling
\& 1 dB typical noise figure
मे variable gain
\& unique balanced pair of BF981's for excellent dynamic performance
מ superb filtering (of course!)
\& ff or hard switching facilities
出 $£ 79.90+2.50 \mathrm{p} \& \mathrm{p}$ inc. vat
Want to know more? Then please ring or write for details.
If in stock, items usually delivered within seven days.
muTek limited
TuTek Iimined
Dept PW, Bradworthy Holsworthy Devon EX22 7TU.
Telephone: 0409 24-543

We are one of the largest stockists of valves etc. in the U.K. Open Monday to Friday $9-1 \mathrm{pm}, 2.00-5.30 \mathrm{pm}$. TRADE \& EXPORT 01-743 0899

Delivery by return of post
COLOMOR ELECTRONICS LTD.

38ft LATTICE MASTS DOUBLE SECTION TELESCOPIC FOLDOVER f195 Ex works inc. VAT NO EXTRAS
 Complete, Base, winch, cables etc. Delivery Service Available
 For Details - S.a.e. or Phone
 PEMBROKESHIRE COMMUNICATIONS Panteg, Ambleston, Haverfordwest, Dyfed.
 Tel. 0437-67820
 Lombard Tricity Finance Available

.D.C.I.I. 240 V two chan, 2 speeds $71 / 15$ takes up to $8^{\prime \prime}$ dia spools, in metal table case approx size $21 \times 18 \times 15^{\prime \prime}$ about 45 kg , these have 3 \& 600 ohm O/P with int. monitor speaker \& level meter, have separate Rec \& Playback amps for each chan plus mon amp, supplied with copy of handbook. £65. Also few only Ferrograph 2 chan units mounted in small $19^{\prime \prime}$ racks with amps. £85. ARMY C.12. HF Tx/Rx 1.6 to $10 \mathrm{Mc} / \mathrm{s}$ in two bands AM/CW uses 13 min valves reqs ext P.U. set wired for 12 v with book good cond. £75. POWER UNIT $240 \mathrm{v}, \mathrm{O} / \mathrm{P}$ stab 150 v at 100 Ma DC \& 6.3 v AC at 3 amps limited adjustment, size $11 \times 6 \times 5^{\circ}$ tested with circ. £11.50. CAR C.B. Aerials for $27 / 27.5 \mathrm{Mc} / \mathrm{s}$ with flex aerial element \& removable base loading coil with 11 ft of RG58 \& plug, approx $15^{\prime \prime}$ high, new. $\mathbf{~} 4.50$, spare $A e \&$ Coil £1.50. MORSE KEYS miniature type for use with A510 new. £3.50. ADVANCE FREQ DIVIDERS self-contained unit divides by 100 up to $40 \mathrm{Mc} / \mathrm{s}$ for use with old digital counters good cond £25. F.M. TUNER HEAD $88 / 108 \mathrm{Mc} / \mathrm{s} 10.7$ out reqs 12 v DC makes convertor when used with HF Rx new. £4.75. NAVY H.F. Tx 1.6 to $16 \mathrm{Mc} / \mathrm{s} 50$ watts, in soiled condition, sold for breakdown, less valves, contains good selection of parts for making ATU. £45. ARMY AERIAL KITS comprise $30 \mathrm{ft} 1^{\prime \prime}$ dia mast 10 section plus two 16 ft whip aerials with guys, adaptors, stakes, carrying bag, can be used as 30 ft mast or 46 ft ground plane aerial good cond £45. ARMY RADIO No. 31 old manpack set covers $40 / 48 \mathrm{Mc} / \mathrm{s}$ in 200Kc steps TX/RX F.M. reqs ext dry batts with book \& battery box £24.50. ROTARY CONV I/P 24v DC O/P 230v AC 50 c 100 watts sine wave about 10 amps I/P for full O/P. £27 or in case £45. ARMY RECT No. $7110 / 200 / 250 \mathrm{v} 50 \mathrm{c}$ I/P or 12 v DC gives $80-0-$ 80 v DC teleprinter magnet supply can also be used to give 240 v AC at 40 watts from $12 v$ DC I/P in case size $7 \times 9 \times 7^{\prime \prime}$ with circ. $\mathbf{\Sigma 8} .50$. BELLS general purpose 24 V DC $6^{\prime \prime}$ dia red fire bells new. £11.50. SOLENOIDS for use on 12 vDC approx size $2 \frac{1}{4} \times 1 \times 1 \frac{1}{2}^{\prime \prime}$ plunger $\frac{1^{\prime \prime}}{2}$ dia 18 mm stroke coil 10 watt cont new. £3.80. R.T.T.Y. TERMINAL UNITS Redifon CSF units for use with Rxs with IFs of $445 / 470 \mathrm{Kc}$ full spec on list. £65. ARMY T.S. Deviation No. 2 equiv to Marconi TF943 cal range 2.5 to $100 \mathrm{Mc} / \mathrm{s}$ useable to $250 \mathrm{Mc} / \mathrm{s}$, three ranges $75 / 25 / 5 \mathrm{Kc}$ deviation, meter indication, in transit case with book for 240 v . £55. RADIAC SIMULATORS training type Gieger Counter, hand held unit with meter read out in Rongtens, responds to RF signal on $40.68 \mathrm{Mc} / \mathrm{s}$ uses xtal controlled superhet Rx, reqs HP7 \& PP3 batts: good basis for field strength meter. £13.50.

Above prices include carr/postage \& V.AT.
Allow 14 days for delivery, goods ex equipment unless stated new. S.A.E. with enquiry or 2×16 p stamps for List 33 .

A. H. SUPPLIES

122, Handsworth Rd., SHEFFIELD S9 4AE
Tel. 444278 (0742)

ANTENNES TONNA (F9FT)		YOUR NUM 1250 MHz
50 MHz		23 elementt $\boldsymbol{£ 2 5 . 9 0}$
5 ele	£34.30(a)	4×23
144M		splitter - stacking fram
	£14.95	Telescopic Portable Masts
9 element fix	£17.71(a)	$4 \times 1 \mathrm{~m} £ 18.68(\mathrm{a}) \quad 3 \times 2 \mathrm{~m} £ 21.85$
9 element portable	£20.00(a)	$4 \times 2 \mathrm{~m} £ 33.20(a)$
9 element cro		ANDREW
NEW 17 element fix	£37.68	Attenuation per 100ft. $144 \mathrm{MHz}-0.8$
435 MHz		MHz-1.6dB. $12960 \mathrm{MHz} \mathrm{N}^{2.9 \mathrm{~dB}}$
19 element		
19 element crossed	E34.27(¢12
21 element 432 MHz	E29.67	¢12
21 element ATV	£29.67(a)	
Oscar Special		POWER SPITTERS
\& 19 element \dagger	¢34.27(a)	ANTENNAS
PLEASE ADD CARRIAGE AS SHOWN (a) f4.00. (b) f1.95. ALL PRICES INCLUDE VAT AT 15\%		
Terms: Cash with order, ACCESS - VISA - telephone your card number. FOR FULL SPECIFICATION OF OUR RANGE SEND 30p FOR CATALOGUE Callers welcome, but by telephone appointment only please. Goods by return.		
23000124		

B. BAMBER ELECTRONICS

Rohde \& Schwarz Enograph Type BN18531 £60
Rohde \& Schwarz Sweep Signal Generator Type BN4242/2 50 KHz to $12 \mathrm{MHz} £ 85$ Rohde \& Schwarn U. H. F. Signal Generator Type BN41026 1000 to 1900MHz £125 Rohde \& Schwarz Group Delay Measuring Equipment Indicator $\mathfrak{£} 50$
Rohde \& Schwarz Group Delay Measuring Equipment Mod/Demod. $\mathbf{E 5 0}$ Rohde \& Schwarz Power Signal Generator Type BN410530KHz to $300 \mathrm{MHz} £ 125$ Rohde \& Schwarz U.H.F. Millivolt Meter Type BN1091 20 mV to 10 V £50 Airmec Modulation Meter Type 2103 to 300 MHz £95 Hewlett Packard S.H.F. Signal Generator Model 618 B 3.8 to $7.6 \mathrm{GHz} \mathbf{£ 1 2 0}$ Hewlett Packard Square Wave Generator Model 211A $\mathbf{f 6 0}$ Pye 12 volt Power Unit Type AC15 $£ 25$
Wandel Golterman Carrier Frequency Level Meter Type TFPM76 £60 Rohde \& Schwarz Video Skop Type BN4241 $£ 250$ Schomantol Frequency Meter Type FD1 30 to 900 MHz £50 Tektronix Delay Cable Type $113 \mathrm{£50}$ Bruel \& Kjoer Vibration Meter Type 2502 £50 Advance Pulse Generator Type PG54 $\mathbf{5 4 0}$
Systron Donner L.F. Spectrum Analyzer Model $805 \mathbf{2 0 0 H z}$ to $1.6 \mathrm{MHz} \mathbf{f 5 5}$ Ministry Oscilloscope Type CT436 Dual Beam D.C. to $6 \mathrm{MHz} \mathrm{EB5}$
Marconi Signal Generator Type TF995A/3/S (CT402) $£ 95$
Marconi 100 Watt 7db Attenuator Type TM5280 150 to $185 \mathrm{MHz} \mathbf{£ 4 0}$
Pye Aerial Tuner Unit Type ATU4 2 to 9MHz Pre set f15
A.I.M. Electronics Pulse Generator with Clock Generator $\mathbf{£ 6 5}$

Marconi V.H.F. Signal Generator Type TF1064B/5M £125
Marconi Tx \& Rx Output Test Set Type TF1065 885
Marconi 1% Universal Bridge Type TF1313 £220
Tektronix L-C Meter Type 130 £65
Heathkit Harmonic Distortion Meter Type 1M-12U £20
Rohde \& Schwarz Polyskop 11 Type BN425/50 £350
A.E.W. Process Cycling Oven $\mathbf{1} 600$

Twin Clothes Lockers Nests of 2 with keys $£ 20$
Louvred Lin Bin Panels $4^{\prime} 6^{\prime \prime} \times 4^{\prime \prime} 6^{\prime \prime} £ 20$
Kodak Roll Film Drying Cabinet with Hangers $£ 150$
Potter Line Printer Type LP3000 £150
Digital Decwriter 11 Printer with keyboard $£ 100$
Rohde \& Schwarz 2-g Diagraph Type BN3562 300 to 2400 MHz 585

Marconi V.H.F. Alignment Oscilloscope Type TF1104/1 £150 ektronix Sampling Oscilloscope Type 661 with 4S2 plug in $£ 120$ Avo Valve Tester Type CT160 $£ 30$
Advance Oscilloscope Type OS25A DC to $3 \mathrm{MHz} £ 120$ elequipment Oscilloscope Type D43 DC to $10 \mathrm{MHz} £ 100$ elequipment Oscilloscope Type S43 DC to $10 \mathrm{MHz} £ 85$ Telequipment Oscilloscope Type S51 £75
Telequipment Oscilloscope Type S32A DC to $3 \mathrm{MHz} \mathbf{5 6 5}$ Tektronix Rack Mount Oscilloscope RM17 DC to $10 \mathrm{MHz} £ 85$ Tektronix Oscilloscope Type 317 DC to $15 \mathrm{MHz} £ 120$ Marconi R.C. Oscilloscope Type TF1101 £65
Airmec Millivolt Meter Type 301A £75
Advance Audio Generator Type H1 £2
Tektronix Oscilloscope Type 543A with Type B Plug in $\mathbf{£ 1 6 0}$ Tektronix Oscilloscope Type 531A with Type H Plug in $\mathbf{£ 1 6 0}$ Sander Oscillator Type CLC2-4 2 to $4.5 \mathrm{GHz} £ 95$ Bruel \& Kjoer Microphone Amplifier Type 2604 £50 Bruel \& Kioer Microphone Amplifier Type $2603 £ 50$ EMI Oscilloscope Wide Band Amplifier Type 7/1 £25 Airmec Sweep Signal Generator Type 352 20Hz to $200 \mathrm{KHz} \mathbf{£ 4 5}$ Belix Variable Power Unit 0 to 50v @ 2 amp. $£ 40$ BTR Silvertown Anti Static \& Conductive Footwear Tester $£ 25$ Dawe True RMS Valve Voltmeter Type 612A £20 Rohde \& Schwarz Power Signal Generator Type BN41001 0.1 to $30 \mathrm{MHz} £ 75$
Marconi Distortion Factor Meter Type TF142F $£ 85$ Marconi A.M. Signal Generator Type TF144H/4S £125
Tektronix Time Mark Generator Type 180A £125
Marconi F.M. Signal Generator Type TF1066B/1 $£ 280$
Marconi F.M. Signal Generator Type TF1066B/6 £300
Marconi Carrier Deviation Meter Type IF791D £95
Airmec Modulation Meter Type 409 £120
Marconi Universal Bridge Type TF868 £50
Marconi A.M./F.M. Signal Generator Type TF995A/5 £230
Marconi R.F. Power Meter Type TF1020A/4 300W 75 ohm £65 Marconi R.F. Power Meter Type TF1020A/1 100W 50 ohm $£ 65$

A2293	Surplus f6.50	$\begin{aligned} & \text { \& Ex-E } \\ & \text { EL. } \end{aligned}$	$£ 6.00$	Valves 6AV6	£1.00
DA41	$£ 21.50$	EL360	£7.75	6BA6	£1.00
DF61	¢4.00	El821	¢8.00	6BG6	£1.25
DY70	¢9.00	EL822	£12.00	6BH6	£1.95
E182CC	f9.00	EN91	¢1.10	6BJ6	£1.20
E282F	£19.00	EY81	£1.50	6B07A	£1.00
EAC91	¢2.50	EY84	£6.50	6BW6	f5.00
EBC90	E1.00	GZ32	¢1.00	6CB6	11.50
EC88	\$1.00	GZ34	¢2.00	6CH6	£10.00
EC91	¢7.00	KT66	¢6.50	6CL6	¢3.50
ECC35	£3.50	KT88	88.00	6DK6	£3.50
ECC85	£1.00	N78	£14.00	6F6G	$£ 2.00$
ECC88	¢1.00	0A2	£1.00	6 J 5	$£ 2.00$
ECC91	£2.00	PL82	£1.00	6SJ7	¢1.20
ECF80	f1.00	QQV03-10	¢4.00	6SL7	£1.00
ECF82	£1.00	QQV03-20	A	6 U 4	61.75
ECF804	£6.00		£15.00	6V6	£1.20
ECL80	£1.00	QQV06-40	A	6×4	£1.20
ECL82	¢1.00		f18.00	7 Y 4	£1.95
EF39	E1.00	QV04-7	¢4.00	12AT7	£1.00
EF54	¢2. 50	Q206-20	£15.00	12AU6	52.50
EF86	¢1.25	S11E12	f19.00	$12 A V 7$	¢3. 50
EF91	£1.25	U403	f2.40	12AX7	11.00
EF92	¢2.50	58254M	¢12.50	12B4	E3.50
EF95	E1.00	58255M	¢12.50	12BH7	¢1.80
EF184	£1.00	5R4G	¢2.80	12 BY 7	$£ 2.75$
EF732	f1.80	5V4	£1.25	12E1	£17.00
EK90	f1.00	5Y3GT	£1.00	25L6GT	¢2.75
EL34	¢2.25	6AG5	£1.50	85A2	£2.00
EL37	£9.00	6AG6G	$\underline{\$ 2.00}$	90C1	$¢ 2.70$
EL71	¢2. 50	6AG7	2.00	5642	88.00
EL81	£6.75	6AN5	E3. 95	5763	¢4.00
EL84	¢1.00	6AS6	£1.50	5965	¢2.25
EL85	¢4.50	6AS7G	$\underline{7.50}$	6080	£5.75
EL86	£1.00	6AL5	f1.00	6146	£7.00
EL90	¢1.25	6AU6	£1.00	6216	¢4.20

PYE POCKETFONE PF1 UHF RECEIVER
$440-470 \mathrm{MHz}$, Single Channel, int speaker and aerial. Supplied complete with rechargeable battery and service manual. $£ 6$ each plus $£ 1$ p.p.
plus VAT.

BREAKING TEK 545A SCOPES FOR SPARES
CRT Type T543 P2 £12.00 each.
Mains Transformers T601 f15.00
High Voltage Transformer T801 With Valves $£ 25.00$. Also Switches, Knobs, Fans, Capacitor \& Metalwork

RADIOSONDE RS21 METEOROLOGICAL BALLOON tRANSMITTER
with Water Activated Battery, contains allweather sensors, fully solid state. $£ 5$ each plus $£ 1$ p.p. plus VAT.

P \& P or Carriage and VAT at 15% on total must be added to all orders.
Callers very welcome strictly between $9 \mathrm{am}-1 \mathrm{pm}$ and $2-5 \mathrm{pm}$ Monday to Friday inc.

> Barclaycard and Access taken

Goods in stock delivery by return Official orders welcome.

TELECOM 6 NEW ST, BARNSLEY TEL 02265031			
ICOM	YAESU/	MICROWAVE	ALSO
IC720A	SOKA	MODULES	L.A.R.
IC45	F102	MML30LS	MODULES
IC740	FT77	MML50S	J BEAM
IC290H	FT790	MMLIOOS	CUSHCRAFT
IC25E	FT290R	MML100LS	REVCO
IC2E	F7707	MM2001	DATONG
IC4E	FRG7700	MMC144/28	
R70		MMA144V	TONO
RING US FOR PRICES barclaycard/access/ hp facilities			

(G8KBQ) AVCOMM LIMITED
 (G6HKT)
 25 Northload Street, Glastonbury, Somerset, BA6 9HB. Tel: 045833145

New 45pf + 45pf Split Stator variable capacitor $\mathbf{5 0}$
New 300pf wide spaced variable capacitor for 1 KW $£ 15.00$
New 45pf - 750pf TX variable capacitor $£ 15.00$
$\mathbf{£} 12.50$
New 4 gang 400pf RX variable capacitor £12.50
.$£ 2.50$
Ex. Equipment 100pf variable capacitor $£ 1.50$
Large 850pf +850 pf Split Stator variable capacitor suitable transmatch
(Ex. Equipment) . $£ 17.50$ 1 pole 4 way high power ceramic switches for atu $£ 2.00$ $680 \mathrm{pf} \& 1200 \mathrm{pf} 10 \mathrm{KV}$. High power ceramic capacitors $£ 3.00$ EIMAC SK. 640 4CX 250 HF bases, ex. equipment ... $£ 3.00$
$\mathbf{8 . 0 0}$ New Boxed QY4-250 Valves £30.00. Bases $£ 1.75$ New Boxed ITT 4CX250B Valves £17.50. OA2 valves 65p New SIFAM 21mm dia. instrument Knobs in Black each 35p or per $10 £ 3.00$
27 mm high \& 32 mm high ceramic standoff insulators35p $1^{\prime \prime}$ shaft flexible couplers

All prices exclusive VAT, p\&p on small items 60p,
on larger items extra. NEW March catalogue 30p All items by return.

SMALL ADS

The prepaid rate for classified advertisements is 36 pence per word (minimum 12 words), box number 60p extra. Semi-display setting $£ 12.00$ per single column centimetre (minimum 2.5 cms). All cheques, postal orders etc., to be made payable to Practical Wireless and crossed "Lloyds Bank Ltd". Treasury notes should always be sent registered post. Advertisements, together with remittance should be sent to the Classified Advertisement Dept., Practical Wireless, Room 2612, IPC Magazines Limited, King's Reach Tower, Stamford St, London, SE1 9LS. (Telephone 01-261 5785).

NOTICE TO READERS

Whilst prices of goods shown in advertisements are correct at the time of closing for press, readers are advised to check with the advertiser both prices and availability of goods before ordering from non-current issues of the magazine.

Software

MORSE TUTOR TAPES for Commodore 64, VIC 20, Dragon, Spectrum, ZX81-16K. Programmed learning from beginner to $30 \mathrm{wpm}+$. Random characters and plain language. Simple to use, full instructions £6. R. WILMOT, Fron, Caernarfon. LL54 7RF. Tel. 0286881886.
QTH LOCATOR TAPES for Commodore 64, Spectrum, ZX81-16K. Input locator or lat/long, gives distance, beam heading, context score. Worldwide coverage. Easy, accurate. £6. R. WILMOT. Fron, Caernarfon, LL54 7RF. Tel. 0286 881886.

ORIC PROGRAMS: RTTY (requires TU) $£ 7.50$, Morse Tutor $£ 4.50$. QTH Locator $£ 4.50$, also Electron, BBC. SAE details. Cheques to: VOMEK SOFTWARE, T. Tugwell, 11 The Dell. Stevenage, Herts.
RAE MATHS TUTOR tapes for Commodore 64, Spectrum, ZX81-16K. Comprehensively tests and gives practice in all RAE calculations. Don't let maths make you fail. £6. R. WILMOT, Fron, Caernarfon, LL54 7RF. Tel. 0286881886.
48 K SPECTRUM SOFTWAR. Q.R.A. Distance Bearing Log, Contest Score, Graphic Maps $£ 4.95$. Callsign Log with Search and List $£ 4.95$. Morse Tutor with dummy B.T. test $£ 4.95$ any two $£ 7.95$ all three $£ 12.00$. ALAN PARROTT, 72 Godstone Road, Kenley, Surrey CR2 5AA.

Veteran \& Vintage

VINTAGE RADIO'S repaired/restored. Over 200 radios stocked. 1922-1960. RADIO VINTAGE, 250 Seabrook Road, Seabrook, Hythe, Kent CT21 5RQ. Phone anytime (0303) 30693.

EARLY WIRELESS. Always required: Crystal sets, Piptop valves, 1920 s period wirelesses, bought, sold, exchanged. Stand 31/2, 288 Westbourne Grove, Portobello Market, London, W11 (Saturdays). Tel. 01-363 7494 (evenings).

Receivers and Components

RADIO CANADA
 RADIO PEKING, RADIO AUSTRALIA VOICE OF AMERICA
 A Vega 206 ($6 \times$ SW/MW/LW) pulls these and dozens more, $£ 23.45$.
 Year's guarantee. Return despatch.
 Corrigan-Radiowatch,
 Building 109,
 Prestwick Airport,
 KAS 2RT.

BOURNEMOUTH/BOSCOMBE. Electronic components specialists for 33 years. FORRESTERS (National Radio Supplies) late Holdenhurst Rd. now at 36. Ashley Rd., Boscombe. Tel. 302204. Closed Weds.
VHF CONVERTERS. $140-150 \mathrm{MHz}, 118-136 \mathrm{MHz}, 146-$ 174 MHz . All mechanically tuned, $10-7 \mathrm{MHz}$ IF output. Mosfet RF stage. High sensitivity. $\mathbf{£ 9 . 7 5}$ each. SAE data, lists: H. COCKS, Cripps Comer, Robertsbridge, Sussex. Tel. 058083317.

CRYSTALS Made to order for any purpose and large stocks of standard frequencies for computers, modems, etc. Amateur CW (QRP) freqs $£ 4.00$ and CB conversion crystals at $£ 4.50$. PROGRAMMABLE OSCILLATORS (PXO) for baud rates, MPU, and freq markers $£ 12.50$.
FILTERS Crystal, monolithic, mechanical and ceramic for all standard IFs. Special 10.695 MHz for big improvement to most CB rigs at $f 4.50$ each.

SA.E. FOR USTS. PRICES INCLUDE VAT AND POST
P. R. GOLLEDGE ELECTRONICS

G3EDW, Merriott, Somerset, TA16 5NS Tel. 046073718

COMPONENTS \& EQUIPMENT - 1984 Catalogue 70p + 20p P\&P. Callers: 18 Victoria Road, Tamworth. 369 Alumrock Road, Birmingham. 103 Coventry Street. Kidderminster, Express Mail Order Service. LIGHTNING ELECTRONICS, PO Box 8. Tamworth. Staffs.
TELEVISION VALVES Ecc82-EF85/183/184-DY86/802-PCF80/802-PCL82/84/85/86, PC86/88/92/97-PY88/800PL36/504. All 35p Each, P\&P 50p. ELECTRONIC MAILORDER. Ramsbottom, Lancashire, BLO 9AG.

Security

Aerials

50M (165ft) AERIAL WIRE. Strong PVC covered copper £4.80 inc. Post. W. H. WESTLAKE, Clawton, Holsworthy, Devon.
G2VF D.L.Y. H.F. long and medium wave frame antennas. S.a.e. for details. F. RYLANDS, 39 Parkside Avenue, Millbrook, Southampton.

G2DYM AERIALS KILL that interference ANTI-TVI ANTI-QRN

Data sheets, Large 23p SAE.
Aerial Guide 75p.
Callers for Appointment Tel. 03986-215
G2DYM, Uplowman, Tiverton, Devon.
AERIAL WIRE. Hard drawn Copper 140ft 14 swg $£ 6.90,50$ metres 16 swg $£ 5.90$ including postage. S. M. TATHAM, 1 Orchard Way. Fontwell, Arundel, W. Sussex.

AERIAL BOOSTERS

B45H/G-UHF TV. gain about 20dbs, Tunable over the complete UHF TV band. PRICE 88.70 .
BII-VHF/FM RADIO, gain about 14 dbs , when on the off position connects the aerial direct to the radio. $£ 7.70$. All Boosters we meke work off a PP3/D06p/6F22 type battery or $8 v$ to 18 V DC. P\&P 30p PER ORDER.
ELECTRONIC MAILORDER, 62 Bridge Street Ramsbottom, Lancs BLO SAG. Tel (070688) 3036 Access/Visa Cards Welcome.

SAE Leaflets

Educational

COURSE FOR CITY \& GUILDS, Radio Amateurs Examination. Pass this important examination and obtain your licence, with an RRC Home Study Course. For details of this and other courses (GCE, Career and professional examinations, etc.,) write or phone: THE RAPID RESULTS COLLEGE, Dept JX7, Tuition House, London, SW19 4DS. Tel. $01-9477272(9 \mathrm{am}-5 \mathrm{pm})$ or use our 24 hr Recordacall Service: 01-946 1102 quoting Dept JX7.

Wanted

WANTED TO BUY T1154 and/or R1155 (in original condition and working) if possible. M. A. O'KEEFE, 1 Julie Street, Blackburn Nth, 3130° Vic, Australia.

Books and Publications

RADIO \& RTTY BOOKS
CONFIDENTIAL FREOUENCY LIST lists $10,000 \mathrm{CW}$, aero, coastal, fax etc., frequencies $68.25+60 \mathrm{p} P \& P$. GUIDE TO RTTY FREQUENCIES lists 4500 commercial aero, UN, coastal, etc., frequencies $\mathrm{f7} 35+50 \mathrm{p}$ P\&P. WORLD PRESS SERVICES FREQUENCIES news RTTY services listing GMT, and country plus more $£ 4.55+50 \mathrm{p}$ P\&P. $2+$
books P\&P free. books P\&P free.
INTERPRODUCT LTD.

PW5, Stanley, Perth PH1 4QQ. Tel: 073882-575
HANDY GUIDE TO EUROPEAN BROADCASTS for home listener or DXer: new DIAL-SEARCH 1984. Now 48 pages: lists \& maps Europe \& UK (MW, LW); SW selection; signature tunes etc. $£ 2.75$ (abroad 15 IRCs) including postage. WILCOX (PW2), 9 Thurrock Close, Eastbourne BN20 9NF.

EARN CASH NOW

With New Published Manuals
Domestic appliance reconditioning and repair. Two volumes only $£ 12.50$ post free. Also, a professional guide to sewing machine repair for profit. Two volumes only $£ 8.50$ post free. Both with full repair and fault guides. Leaflets available.

MARCHANT (Dept PWT),
30 Chester Road East,
Shotton, Clwyd, N. Wales.

Courses

NEW!! Scientifically prepared courses to get you through the R.A.E. examinations. $01-3468597$ for free booklets.

CONQUER THE CHIP . . . Master modern electronics the PRACTICAL way by SEEING and DOING in your own home. Write for your free colour brochure now to BRITISH NATIONAL RADIO \& ELECTRONICS SCHOOL, Dept. C1, Reading, Berks RG1 1BR.

Service Sheets

30.000 SERVICE SHEETS IN STOCK COLOUR MANUALS ALSO AVAILABLE
 SAE. Stereograms \& Music Centres $£ 3.00$. Radiograms $£ 3.00$. Also Colour Avaliable. State if circuit will do it sheets are not in stock. Circuits $£ 3.00$ colour. All TV Sheets are full length $24 \times$ stock. Circuits $£ 3.00$ colour. Al the Sheets are fuil ength $24 \times$ 12 not in Bits $\&$ Pieces. All other Data full length. All sheets £3.00 excent colour. SAE please. Old Valve Radios $\mathrm{E} 3.00+$ SAE 9×3. Ensure payment with order.
 71 Beaufort Park, London NWWII 6BX. (Mail Order).

VINTAGE RADIO, T/V and Amplifier Service Sheets and Manuals, 1914-1960. S.A.E. or telephone for quotation. VINTAGE WIRELESS CP., Cossham Street, Mangotsfield, Bristol BS17 3EN. Tel. 0272565472.

BELL'S TELEVISION SERVICES for service sheets on Radio, TV, etc., $£ 1.50$ plus SAE. Service Manuals on Colour TV and Video Recorders, prices on request. SAE with enquiries to B.T.S., 190 Kings Road, Harrogate, N. Yorkshire. Tel. (0423) 55885.

TECHNICAL INFO SERVICES

76 Church St - Larkhall - Lanarks
FULL SIZE SERVICE SHEETS £2 and I.s.a.e.
CTVs/MusC £3 \& I.s.a.e.
Worlds largest collection
service manuals 30 's - date from $£ 4.50-£ 35$ each

Repair data/circuits almost any named TV/VCR £9.50
S.a.e. brings any quotation/

FREE 50p mag. inc. service sheet/
Pricelists unique elect. publications

FOR FAST QUOTES RING 0698883334

For Sale

COMMUNICATIONS SPECIALIST. Established 1952. G3EKX. Receivers, Transceivers, Scanners, Rotators, Beams, Co-Ax. Buying/Selling. S.S.B. PRODUCTS, Cornwall. 0872 862575.

YAESU FRG 7 RECEIVER. Excellent condition, $£ 135$ including delivery. 061-795 1765 evenings.

28 COPIES Practical Wireless, 1950s to 1962. Offers. Phone 09277-63703 after 6pm.

YAESU FT101ZD/AM FC 902 Tunnin Unit SP 902 ext. speaker. Yaesu Base Mike $£ 550$. Tel. Derby 675132 .

AMATEUR EQUIPMENT BOUGHT sold exchanged. Telephone 040-24-55733; or send SAE for current list. G3RCQ, 65 Cecil Avenue, Hornchurch, Essex.

CALL SIGN BADGES professionally engraved, by return of post. $£ 1.50$ cash with order. (State name and callsign.) AYLMER-KELLY (P), 2 Pickwick Road, Corsham, Wilts. SN12 9BJ.

PART-EXCHANGE FOR FT301D, FRG7, EC10-MK-2,640. AR88D, CR100, FRV7700, RS2000, Scanner, FC301, DX200, Century-21D, HA600A, Oscilloscopes, etc. In stock! S.S.B. PRODUCTS. 0872862575.

Situations Vacant

TRAINEE ASSISTANT FILM RECORDISTS

Would you like to specialise in sound with the BBC TV's Film Department in West London?
Trainee Assistant Film Recordists work in Sound Transfer and Dubbing areas. Prospects exist for moving on to location recording work after several years.
Applicants, who should be at least 18 years of age, must possess a minimum of ' 0 ' level standard of education or equivalent, including Physics and Mathematics, together with a knowledge of electronics. They must be able to demonstrate a practical interest in sound.
Normal hearing and colour vision are essential and applicants must hold a current driving licence or be prepared to obtain one within a reasonable period.
Successful applicants will start their three year training period in September 1984 at a salary of $£ 5,809$ (currently under review). An additional allowance is paid for shift work. Relocation expenses considered.
Contact us immediately for application form (quote ref. 1143/PW and enclose s.a.e.): BBC Appointments,
London W1A 1AA. Tel. 01-927 5799.
Preliminary interviews are expected to be held in June.

We are an Equal Opportunities employer

BBGtv

Miscellaneous

SUPERB INSTRUMENT CASES by Bazelli, manufactured from PVC. Faced steel. Vast range. Competitive prices start at a low $£ 1.50$. Punching facilities at very competitive prices. Suppliers only to Industry and the Trade. BAZELLI, (Dept. No. 25), St. Wilfrid's Foundary Lane, Halton, Lancaster LA2 6LT.

QSL. CARDS, printed to your own design on white or coloured gloss card. Send for samples. THE NUTLEY PRESS, 21 Holmethorpe Avenue, Redhill, Surrey RH1 2NB.

WAVEGUIDE, FLANGES \& DISHES. All standard sizes \& alloys (new material only) from stock. Special sizes to order. Call EARTH STATIONS, 01-228 7876. 22 Howie Street, London SW11 4AR.

LOSING DX?

RARE DX UNDER QRM? DIG it OUT with a Tunable Audio Notch Filter, between RX and speaker, BOOST your DX/QRM ratio, 40 dB notch, hear WEAK DX $£ 16.40$
$\mathbf{1 0 - 1 5 0 K H z}$ Receiver
£21.20
ANTENNA FAULT? Measure resonance and radiation resistance with an Antenna Noise Bridge, MORE DX $\quad \mathbf{£ 1 9 . 6 0}$
Each fun-to-build kit includes all parts, printed circuit, case, by-return postage etc, list of other kits.

CAMBRIDGE KITS
45 (PD) Old School Lane, Milton, Cambridge.
bURGLAR ALARM EQUIPMENT. Ring Bradford (0274) 308920 for our catalogue or call at our large showrooms opposite Odsal Stadium.

HIGH CLASS QSL cards fast delivery. S.A.E. for samples and prices to J.S. COATES, 57 Worrall Street, Morley, Leeds LS27 0PJ.

ORDER FORM PLEASE WRITE IN BLOCK CAPITALS

Please insert the advertisement below in the next available issue of Practical Wireless for ...
insertions I enclose Cheque/P.O. for $£$
(Cheques and Postal Orders should be crossed Lloyds Bank Ltd. and made payable to Practical Wireless).

Send to: Classified Advertisement Dept.,
NAME
PRACTICAL WIRELESS
ADDRESS
Classified Advertisement Dept, Rm 2612 King's Reach Tower, Stamford Street, London SE1 9LS Telephone 01-261 5785 Rate 36p per word, minimum 12 words. Box No. 60p extra.
Company registered in England. Registered No. 53626. Registered Office: King's Reach Tower, Stamford Street, London SE1 9LS.

 Northern Amateur Radio Societies Association

The Association is holding its 22nd Annual Radio/Electronics Exhibition at Pontins Holiday Village, Ainsdale, Southport on Saturday 7th April and Sunday 8th April 1984 opening at 11.00am each day. It will include inter club quiz, construction contest, grand raffle, R.S.G.B. book stall, amateur computers, N.A.R.S.A. stands and trophy, a demonstration station and trade stands featuring all types of radio/electronic equipment. Bring and Buy Sale.
Admission will be $£ 1$ per day but lots of 20 or more tickets may be booked in advance from Mike Bainbridge G4GSY, 7 Rothbury Close, Bury BL8 2TT at a 20% discount by sending the appropriate cash and s.a.e.
Chalets may be booked direct from Pontins 070477165 and range from $£ 11$ + V.A.T. (2 persons) to $£ 31+$ V.A.T. (6 persons).
Bar and restaurant facilities will be available during the day while the restaurant will be open for breakfasts and from 1700 to 1900 on the Saturday evening. There will be evening entertainment limited by the capacity of the entertainment hall. Children's play areas will be available during the days.
Car parking will be available at a small charge but please follow all instructions of attendants to avoid congestion.
Talk in will be available on S22 or other available simplex channels. Come along and enjoy yourself at this family weekend exhibition and make it a great success.
H.A.C. SHORT-WAVE KITS WORLD-WIDE RECEPTION

NO H.T. BATTERIES?

We have an excellent BATTERY ELIMINATOR KIT £12.00 for the complete kit It provides 90V H.T. and a choice of $3 \mathrm{~V}, 2 \mathrm{~V}$ or $1 \frac{1}{2} \mathrm{~V}$ L.T.
Also we supply several super short wave receivers in kit form.

All orders despatched within 7 days. Send stamped and addressed envelope now for free descriptive catalogue of kits and accessories.

SORRY, NO CATALOGUES WITHOUT S.A.E.
"H.A.C."
SHORT-WAVE PRODUCTS
P.O. Box No. 16, 10 Windmill Lane, Lewes Road, East Grinstead West Sussex RH19 3SZ.

ELECTRO - TECH CO

72 PRIMROSE HILL, HAVERHILL, SUFFOLK CB9 9LS, U.K.
Tel: (0440) 61113 Prop: Seneviratne
TERMS: Cash, Postal Order, Cheque. Postage - 50 pence. Goods over $£ 15$ post free - (60 p extra for every heavy item). All items brand new and guaranteed. Goods normally sent within 24 hrs, unless out of stock. Orders welcomed from clubs, schools, colleges, etc. PRICES ARE INCLUSIVE OF A 5\% DISCOUNT FOR A LIMITED PERIOD ONLY, so order soon. No V.A.T. on Export. Catalogue 20p. S.A.E. for free lists. Phone for appointments.

INS 8080A 8 bit microprocessor 244 p, TDA 1022550 p, ZN 41490 p, LM 390983 p, CA 314040 p. Heat sinks, Aluminium boxes, knobs, insulators, tools, plugs, capacitors etc., listed in our catalogue, and price lists.

ARE YOU TAKING THE RAE?

YOU MUST OBTAIN THE

RADIO AMATEURS'

 QUESTION + ANSWER REFERENCE MANUALby R.E.G. Petri, T.Eng (CEI) M.I.ELEC.I.E. G8CCJ

ISBN 0950933503
Size A5 ($210 \times 148 \mathrm{~mm}$)
Containing over 300 pages. 21 sections and over 1100 progressive multiple choice questions and answers on the RAE syllabus, some useful computer programs and the City \& Guilds examination syllabus.

Available from:

W.P. PUBLICATIONS

11 Wayville Road Dartford, Kent DA1 1RL

PRICE $\mathbf{£ 5} .95 \mathbf{+} \mathbf{f 1} \mathbf{p \&} \mathbf{p}$

By return post subject to availability

INDEX TO ADVERTISERS

A.H. Supplies
Allweld Engineering8
6
$6,7,88$
Amateur Electronics U.K. $.44,45$
Ambomm Services $\begin{array}{r}16 \\ \cdots \\ \hline 80 \\ \hline\end{array}$Amtronics.Ant ProductsAvcomm..Barrie Elect
BBC App
Bi-Pak.Birkett, JBlackstarBritish National Radio \& Electronics School
Butterworths
C-Tec SecurityCambridge KitCambridge KColomor ElectronicsCorrigan Radiowatch
Datong Electronics
Dewsbury Electronics
Dressler (U.K.) Ltd.
Electronic Mail Order
Electro-Tech
Electrovalue.
G2DYM Aerials
G.T. Technical Services
Garex Electronics
Golledge Electronics
Greatech Electronics
HAC Products
.C.S. Intertext
International VHF-FM Guide
Inter-Product
Lee Electronics
Leeds Amateur Radio ... 39
Maplin Supplies .. Cover 4
Marchant.

Meta Electronics
Microwave Modules
Mutek.
Northern Amateur Radio Society
Northampton Communications
Pembrokeshire Communications
Photo Acoustics
P.M. Components

Poole Logic
Power International
Radio Component Specialists
Radio Shack
Radsoft
Randam Electronics
R.E.G. Petri
R.S.T. Valve

Sandpiper Communications
Sandwell Plant
Scarab Systems
Scientific Wire Co.
Selectronic .
S.E.M.

Spectrum Comms.
Stephens-James Ltd
South West Aerials

Tandy.
Thacker, A.H.
Thanet Electronics
Ward \& Co., Reg. 88
Western Electronics
Wood \& Douglas

£12.50 (inc. p+p)
(with key $£ 26.50$)

24 cms A.T.V. CONVERTOR (Plugs into domestic T.V.) $£ 29.50$

HB9-CV ANTENNA
(2 METRE 2 EL. BEAM) $\mathbf{£ 8 . 5 0}$
AS ABOVE 70 cms
(BOTH INC. MOUNTING CLAMP)

MORSE TUTOR TAPE
(INC. SIMULATED TESTS) $£ 6.50$
OSCILLATOR - KEY - TAPE IF BOUGHT ALL TOGETHER JUST $£ 29.50$ inc. $\mathrm{p} \& \mathrm{p}$ 30 FOOT TELESCOPIC MAST
(Not Mail Order) $£ 28.50$ Extra Special - Slim Jim $£ 7.50$ (inc. $p+p$) EDDYSTONE RE1 MARINE GEN. COV. RECEIVER - FEW ONLY

Delivery normally within 7 days.

Electrovalie

Your SPEGIALIST SUPPLIERS for

 SOLDER TOOLSFrom a simple 15 watt model to a precision temperature controlled iron, we stock solder irons to suit all manual requirements together with supporting stocks of bits, desolder tools, materials, etc.

ANTEX
C. $240-15 \mathrm{~W} / 240 \mathrm{~V}$:

CSCN - 15W/240V
CS $-17 \mathrm{~W} / 240 \mathrm{~V}$
CSBP $-17 \mathrm{~W} / 240 \mathrm{~V}+13 \mathrm{~A}$ plug XS $-25 \mathrm{~W} / 240 \mathrm{~V}$
XSBP-25W/240V +13 A plug Replacement bits from $3 / 32^{\prime \prime}$ to ${ }^{\frac{1}{2}}$
De-solder heads, stands, elements and handles.
ERSA
'Sprint' high speed iron: 80/ $150 \mathrm{~W}, 240 \mathrm{~V}$. Heats in 10
seconds!

ORYX

Temperature controlled solder iron TC.82 45W/240V
with scale.
0 ryx $50-50$ watt version of above.
Standard types
Oryx $30-30 \mathrm{~W} / 240 \mathrm{~V}$
Viking - $27 \mathrm{~W} / 240 \mathrm{~V}$
Ory M. $3-17$ watts, 12 volts.
A wide range of replacement tips available for all models, also tips from 0.8 to 6.4 mm dia. and flat tips. Oryx safety stand.
Oryx de-solder tool
miniature solder station
SOLDER and DE-SOLDER BRAID SOLDER in many grades.
Please mention this publication when contacting Electrovalue.

BRITAN'S LEADING QUALITY COMPONENT SUPPLIERS-SEND FOR FREE 32 PAGE A-Z LIST attractive discounts free postage good service a deluvery

ELEGTROALUE LTD
28 St. Judes Rd., Englefield Green, Egham,
(0784) 33603; Telex 264475. Surrey TW20 OHB.
North - 680 Burnage Lane, Manchester. 061-432 4945.
EV Computing Shop -
700 Burnage Lane, Manchester. 061-431 4866.

RECEIVE RTTY MORSE

Complete systems including machine language programs plus our ready-made \& boxed terminal unit. Plug in and decode Morse 5-70 W.P.M. and RTTY at 45, 50, 56 and 75 baud. Please state your micro.
SPECTRUM COLOUR GENIE TRS80 VIDEO GENIE Only $£ 40$............... Only $£ 40$................ Only $£ 40$

TRANSCEIVE RTTY

Various systems from built-it-yourself to the all-made-ready-togo. All systems include our m / c programs which incorporate many, many excellent features including SPLIT SCREEN, AUTÓ CW ID., CALLSIGN CAPTURE. 10 BUFFERS, 4TX/RX SPEEDS, etc. etc. Prices from $£ 17.50$ to $£ 95$. State your micro. COLOUR GENIE

TRS80
VIDEO GENIE
Send SAE for catalogue of these and other amateur radio programs
RADSOFT
8 Leighton Road, Sunderland, SR2 9HQ. YAESU have now increased production on these popular and well proven models with the result that we can now offer the following most attractive prices. Now is your opportunity to get on this superb band at less outlay than for 2 metre operation.

FT-790R 1W/200mw multimode

 All the features of the FT-290R on 70 cms Incredible value
NOW IN STOCK!

 15249The world famous SHURE 444D dual impedance magnetic desk microphone. Features tailored frequency response for optimum speech intelligibility. This is the mike with the pedigree.
£49.50 Carriage paid

RADIO COMPONENT SPECIALISTS Dept 2, 337 WHITEHORSE ROAD, CROYDON,

SPECTRUM COMMUNICATIONS

NEW PRODUCTS

TRANSMIT AMPLIFIERS. 2 metre, 4 metre or 6 metre, linear all mode, 1-5 watt I/P, 10-25 O/P, carrier or DC switched. Types TA 2S/1, TA 4S/1, TA 6S/1. Boxed Kit $£ 22.95$, Built $£ 34.95$.
TRANSMIT AMPLIFIERS. 2 metre, 4 metre or 6 metre, linear all modes, 0.5 watts I/P, 25 watt O/P, unswitched, suits transmit converters. Types TA2/2, TA4/2, TA6/2. Unboxed Kit $£ 23.65$. Unboxed built £32.65.
RECEIVE PRE-AMPS. General purpose variable gain 0-20dB. Low noise 1 dB typical. New carrier and DC switching with pre-set hang time. Types RP2S, RP4S, RP6S, RP10S. Boxed Kit $£ 15.00$. Built $£ 19.50$.

Plus the usual range of receive and transmit converters and other products. YOUR DORSET SUPPLIER FOR YAESU, TRIO/KENWOOD \& ICOM Delivery within 7 days subject to availability. 24 hr answering service VAT inc. prices, add 35p for P\&P. Send SAE for product price list.

\rightarrow
 UNIT B6, MARABOUT INDUSTRIAL ESTATE, DORCHESTER, DORSET. TEL 030562250

BARGAI COBNER (4)
 WATCH THIS CORNER EVERY MONTH

KENWOOD TS-430S FITTED
FM-430 Unit £599 ONLY
Don't delay! Rush your Order in To-Day! (Special Warranty Applies) SECONDHAND EQUIPMENT
YAESU FT-101ZD (Shop Soiled - New)
YAESU FT-101E, Mic, CW Filter
£399
YAESU FT-707 + FV-707DM + Mic
YAESU FT-902DM, Mint Cond
£550
£635
YAESU FP-4 Power Supply

Wertern Electronies (UH) Lted

Fairfield Estate, Louth, Lincs. LN11 ONH Tel. Louth (0507) 604955 Telex 56121 WEST G Northern Ireland Agents: Tom \& Norma Greer G14TGR/G14TBP Drumbo (023 126) 645

"The Oldest Name In Amateur Radio" NEW

BRASS RACER IAMBIC The newest addition to the Vibroplex family - the Brass Racer lambic - A distinctive new design of lambic paddle crafted from solid brass and mounted on a base of polished hardwood. No springs to fly off the middle of a contact. Superior Vibroplex quality. Always worth the difference and now a new Vibroplex look.
NEW
\star
BRASS RACER EK-1
An even more exciting step is the new Brass Racer EK-1, an electronic keyer built into the base of our new Brass Racer lambic paddle. Using the Curtis 8044 chip, this self-contained keyer and paddle is fully lambic with dot/ dash insertion and adjustable speed control. Use on either tube or solid state rigs. The perfect unit for mobile, DXpedition, or just plain fun.

Standard or deluxe models available

Standard or deluxe models available

THE IAMBIC
The distinctive look and quality of the Vibroplex Original is fashioned into the finest lambic paddle anywhere. The dual paddles allows the operator to utilize automatic dot/dash insertion and other unique features of the modern electronic keyer. Vibroplex distinction for the modern operator.

THE VIBROKEYER
The Vibrokeyer is designed for "Bug" operators who want to move to electronic keyers without relearning keying. The single lever paddle initiates the automatic dots and dashes of the electronic keyer with the same motion used to operate the "Bug" For those who want to combine traditional skill with modern electronics.

THE ORIGINAL

In 1890 Horace Martin Searched for

Presentation, standard or deluxe models available relief from the "glass arm" telegraph operators were getting from pounding the straight keys. His answer, the Vibroplex Original was an instant success. The vibrating lever bar automatically produces dots while dashes are made manually. Still popular today, the distinctive sound of the "Bug" can still be heard. It is the signature of the true C.W. expert.

All of our keys are available in Standard and Deluxe models. The Original and the lambic are also available in the Presentation models.
Standard Model: All Standard models come with a neat, crisp, textured, painted base with polished and chromed top parts. Attention to detail in the finishing process gives Vibroplex an unexcelled quality appearance. Highly conductive large coin-silver contacts provide a clear, sharp signal, and non-skid rubber feet keep the keyer in its place.
Deluxe Model: All Deluxe models feature a chromed base, buffed and polished to a mirror finish. As in fine watches and other precision instruments, their jewelled movement serves to prolong life, maintain smoother, easier operation and prevent binding.
Presentation Model: The Presentation model is the top of the line at the top. Available in the Original and lambic, the Presentation features 24 carat gold-plated base top, engraved with name and call and makes a truly personal gift. The Original has the adjustable super speed control main spring for a wider range of sending speeds.

Direct-Access Keyboard Tuning of 22,884 Frequencies £22995
Available 15th January, 1984 Covers $68-88 \mathrm{MHz}$ VHFLO, 144 -148 MHz Ham, 108-136 MHz AM Aircraft, $138-144 \mathrm{MHz}$, 148-174 MHz VHF Hi, 380-450 MHz Ham, 450-470 MHz UHF-Lo, $470-512 \mathrm{MHz}$ UHF-Hi Realistic PRO-30. A full-feature, micro-processor-controlled scanner with extended frequency coverage - in a compact size you can carry wherever you go! Scan up to 16 of your favourite channels continuously, or search a selected frequency range for new or unpublished channels. Scan and Search in two speeds. Two-second Scan Delay, selectable for each channel prevents missed replies. Lockout feature temporarily bypasses unwanted channels. Big LCD display shows channels and frequencies being monitored or progammed as well as the status of the channels. Priority function monitors your favourite frequency while you listen to others. Frequencytracking front end assures top sensitivity on all bands. Squelch control eliminates noise between messages. Has jacks for external antenna and earphones. With flexible antenna. $7 \frac{1}{2} \times 2 \frac{14}{16} \times 1 \frac{1+7}{6}$ ". Requires six "AA" batteries or mains or DC adapter. Memory backup requires four silveroxide batteries £229.95 DC Adapter
£6.99
£4.49

COLLINS KWM-380 Transceiver

BC-20/20FB (with air band) 40 Channels AM/FM

RADIO SHACK LTD
188 BROADHURST GARDENS. LONDON NWG 3AY
(Just around the corner from West Hampstead Station on the Jubilee Line)
Giro Account No. 5887151 Telephone 01-624 7174 Telex: 23718

* Single-key selection of all major multi-key functions.
\star Plugs directly into Spectrum expansion port and extends port for other peripherals.
\star Can accept Atari-type joysticks (optional extra).
\star Absolutely no soldering or dismantling of Spectrum.
\star Available in kit-form or ready-built.
The kit is sold in three parts - the Keyboard Main Kit which allows you to make your own arrangements for connection to the Spectrum - the Adaptor Kit which contains the extension board and socket for the expansion port and the cable between the
extension board and the keyboard and the Case Kit which includes all the necessary mounting hardware.
Order As LK29G (Keyboard Main Kit) Price £28.50 LK30H (Adaptor Kit) XG35Q (Case)

Price $£ 6.50$
Price $£ 4.95$

Full construction details in Projects Book 9.
Also available ready-built for direct connection and including case. Order As XG36P (Spectrum Keyboard) Price £44.95

HEATHKIT SUPERB QUALITY KITS BRING THE EXCITEMENT BACK INTO AMATEUR RADIO

Experience the ultimate satisfaction of talking to someone on the other side of the world with a transceiver you actually built yourself. Just look at the wealth of state-of-the-art features on this quality HF SSB/CW Transceiver Kit. (HW-5400)

* PLL synthesised stability gives high accuracy
\star Covers all amateur bands 80 m to 10 m
\star Output 100W PEP (80W on 10 m).
\star Frequency display with resolution to 50 Hz .
\star Split memory permits instant channel selection.
\star Excellent VSWR foldback protection.
\star Excellent image \& I.F. rejection and I.F. shift tuning $\pm 600 \mathrm{~Hz}$.
\star VOX facility eases sideband operation.
\star Optional frequency entry keyboard.
\star Optional 4-pole sideband filter.
Plus a whole host of other excellent features.
Other Heathkit Amateur Radio Kits include:
- 2 kW PEP Load Resistor (HN-31A) - SSB/CW/RTTY Active Audio Filter (HD-1418) • QPR Transceiver (HW-8) • Antenna Co-ax Switch (HD-1234) • HF/VHF Wattmeter \& SWR Bridge (HM-9) • 50W Antenna Tuner with 4:1 Balun (HFT-9) • Morse Code Practice Oscillator (HD-1416) • Dual HF Wattmeter (HM-2140A) • Solid-State DIP Meter (HD1250) • Ultra-Pro CW Keyboard (HD-8999) • Micromatic Memory Keyer (SA-5010).
Full details of all these quality kits in the Maplin catalogue. For details of the complete Heathkit range send 50p for the Heathkit full-line international catalogue.
Order As HK00A.

Post this coupon now for your copy of the 1984 catalogue. Price $£ 1.35+30$ p post and packaging. If you live outside the U.K. send $£ 2.20$ or 11 International Reply Coupons. I enclose £1.65

Name

Address

Maplin's Fantastic Projects

Full details in our project books. Price 70p each.
In Book 3 (XA03D) ZX81 Keyboard with electronics - Stereo 25 W MOSFET Amplifier - Doppler Radar Intruder Detector - Remote Control for Train Controller
In Book 4 (XA04E) Telephone Exchange for 16 extensions. Frequency Counter 10 Hz to 600 MHz 。 Ultrasonic Intruder Detector \bullet I/O Port for ZX81 - Car Burglar Alarm Remote Contol for 25W Stereo Amp. In Book 5 (XA05F) Modem to European standard - 100 W 240 V AC Inverter - Sounds Generator for ZX81 - Central Heating Controller - Panic Button for Home Security System Model Train Projects - Timer for External Sounder

In Book 6 (XA06G) Speech Synthesiser for ZX81 \& VIC20 Module to Bridge two of our MOSFET amps to make a 350 W Amp - ZX81 Sound on your TV • Scratch Filter • Damp Meter - Four Simple Projects

In Book 7 (XA07H) Modem (RS232) Interface for ZX81/VIC20 • Digital Enlarger Timer/Controller - DXers Audio Processor - Sweep Oscillator • CMOS Crystal Calibrator.
In Book 8 (XA08J) Modem (RS232) Interface for Dragon and Spectrum Synchime - I/O Ports for Dragon Electronic Lock - Minilab Power Supply • Logic Probe - Doorbell for the Deaf.
In Book 9 (XA09K) Keyboard with electronics for ZX Spectrum - InfraRed Intruder Detector - Multimeter to Frequency Meter Converter - FM Radıo with no alignment - Hi-Res Graphics for ZX81 - Speech Synthesiser for Oric VIC Extendiboard •ZX81 ExtendiRAM Dynamic Noise Limiter for Personal Cassette Players - TTL Levels to Modem/RS232 Converter - Logic Pulser - Psuedo-Stereo AM Radio • Ni -Cad Charger Timer - AdderSubtractor - Syndrums Interface Microphone Pre-Amp Limiter.

Mail Order. P.O. Box 3, Rayleigh, Essex SS6 8LR. Tel: Southend (0702) 552911 - Shops at: 159-161 King Street. Hammersmith, London W6. Tel: 01-748-0926. • 8 Oxford Road, Manchester. Tel: 061-236-0281. - Lynton Square, Perry Barr, Birmingham. Tel: 021-3567292. - 282-284 London Road, Westcliff-on-Sea, Essex. Tel: 0702 554000. • 46-48 Bevois Valley Road, Southampton. Tel: 070325831. All shops closed all day Monday.
All prices include VAT and carriage. Please add 50p handling charge to orders under $£ 5$ total value (except catalogue).

[^0]: For full details of these new and exciting models, send today for our latest SHORT FORM CATALOGUE. All you need do to obtain the latest infotmation about these exciting developments from the World's No. 1 manufacturer of amateur radio equipment is to send 36 p in stamps and as an added bonus you will get our credit voucher value $£ 3 \cdot 60-\mathrm{a} 10$ to 1 winner !

[^1]: Softcover 104 pages $216 \times 138 \mathrm{~mm}$
 Illustrated $0408013982 \quad £ 7.50$ March 1984

