

DAIWA SWV 118 H.
H.F/2M
DAIWA CN620A
H.F/2M DUMMY LOADS
DL30 PL259 30W MAX WELZ CT 15A 50W MAX PL259
WELZ CT 15N 50W MAX N type $\begin{array}{lll}\text { T100 } & \text { 100W MAX } & 450 \mathrm{MHz} \\ \text { T200 } & \text { 200W MAX } & 450 \mathrm{MHz}\end{array}$ YAESU FT1
FT902DM
FC902 FT902DM
FC902
SP901
FT102
FT707
FT707S F1707S
FP707
FTV707R(2)
FV707DM
FC707
MR7 $\begin{array}{ll}\text { FC707 } & \text { Digital V.F.O. } \\ \begin{array}{ll}\text { Matching A.T.U./Power Meter }\end{array} \\ \text { MR7 } & \text { Metal Rack for }\end{array}$ MMB2 Mobile Mout $\begin{array}{ll}\text { FRG7 } & \text { General Coverage Receiver } \\ \text { FRG7700 } & 200 \mathrm{KHz} \text {-30MHz }\end{array}$ FRG7700 $\begin{gathered}200 \mathrm{KHz}-30 \mathrm{MHz} \text { Gen. Covera } \\ \text { Receiver }\end{gathered}$
FRG7700M As above but with Memories FRG7700M As above but with
FRT7700 Antenna Tuning Unit
FRA7700 Active Antenna Unit $\begin{array}{ll}\text { FRAD700 } & \text { Active Antenna Unit } \\ \text { FT208R } & 2 M \text { FM Synthesised Handheld } \\ \text { FT708R } & 70 \mathrm{~cm} \text { FM Sm }\end{array}$ FT708R $\quad 70 \mathrm{~cm}$ FM Synthesised Handheld $\begin{array}{ll}\text { NC7 } & \text { Base Trickle Charger } \\ \text { NC8 } & \text { Base Fast/Trickle Cha }\end{array}$ $\begin{array}{ll}\text { NC8 } & \text { Base Fast/Trickle Charger } \\ \text { NC9C } & \text { Compact Trickle Charger }\end{array}$ $\begin{array}{ll}\text { NC9C } & \text { Compact Trickle Charger } \\ \text { FBA2 } & \text { Battery Sleeve for use with NC7/8 }\end{array}$ $\begin{array}{ll}\text { FNB2 } & \text { Spare Battery Pack } \\ \text { PA3 } & \text { 12V DC Adaptor }\end{array}$ FT480R 2 M Synthesised Multimode FP80 \quad Matching 230 V ($\begin{array}{ll}\text { FP80 } & \text { Matching 230V AC Power Supply } \\ \text { FT290R } & \text { 2M Portable Synthesised }\end{array}$ Multimode CSC1 Soft Carrying Case NC11C 240 V AC Trickle Charger $\begin{array}{ll}\text { FL2010 } & \text { Matching 10W Linear } \\ \text { Nicads } & \text { 2.2 AMP HR Nicads }\end{array}$ $\begin{array}{lll}\text { Nicads } & \text { 2.2 AMP HR Nicads } & \text { Each } \\ \text { FF501DX } & \text { H.F. Low Pass Filter } 1 \mathrm{~kW} & \end{array}$ $\begin{array}{ll}\text { FF501DX } & \text { M.F. Low Pass Filter } 1 \mathrm{~kW} \\ \text { FSP1 } & \text { Mobile External Speaker } 8 \text { ohm 6W } \\ \text { YH55 } & \text { H5 }\end{array}$ YH55 Headphones 8 ohm $\begin{array}{ll}\text { YH77 } & \text { Lightweight Headphones } 8 \text { ohm } \\ \text { QTR24D } & \text { World Clock (Ouartz) }\end{array}$ QTR24D World Clock (Quartz) $\begin{array}{ll}\text { YM24A } & \text { Speaker/Mic 207/208/708 } \\ \text { YD148 } & \text { Stand Microphone Dual IMP }\end{array}$ $\begin{array}{cc}\text { YD148 Stand Microph } \\ & 4 \text { Pin Plug }\end{array}$
YM34 As 148 but 8 Pin Plug
YM38 FDK VHF/UHF EQUIPMENT FDK VHF/UHF EQUIPMENT
Multi 700EX 2M FM Synthesised 25W Mobile Multi 750E 2M Multimode Mobile Expander $\quad 70 \mathrm{~cm}$ Transverter for M750E DRAE DRAE
Power Supplies

4 AMP | 4 AMP | 27.95 | (1.50) | 12 AMP | 69.00 | (2.00) |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 6 AMP | 44.95 | (2.00) | 24 AMP | 99.00 | (3.00) | VHF Wavemeter $130-450 \mathrm{MHz}$

WELZ SP15M

$\begin{aligned} & \text { WELZ } \\ & \text { SP15M } \end{aligned}$	SWR-PWR Meter HF/2M 200W
SP45M	SWR-PWR Meter 2M/70 cm 100W
SP200	SWR-PWR Meter H.F/2M 1 KW
SP300	SWR-PWR Meter H.F/2M/70 cm
SP400	SWR-PWR Meter 2M/70 cm 150W
SP10X	SWR-PWR Meter H.F/70cm compact
SP380	SWR-PWR Meter H.F/2M/70cm compact
AC38	A.T.U. 3.5 to 30 MHz 400 W PEP
CT15A	15/50W Dummy Load (PL259)
CT15N	15/50W Dummy Load (N type plug)
CT300	$300 / 1 \mathrm{~kW}$ Dummy Load 250 MHz (SO239)

£29.00 $\begin{array}{ll}\text { Model } 110 & \text { H.F/2M Calibrated Power Reading } \\ \text { SWR25 }\end{array}$ $\begin{array}{lll}\text { SWR25 } & \text { H.F/2M } & \text { Twin Meter } \\ \text { UH74 } & 2 \mathrm{M} / 70 \\ \text { T435N } & 2 \mathrm{M} / 70 \mathrm{CM} \text { Twin Meter } 120 \mathrm{~W}\end{array}$ $\begin{array}{lll}\text { DAIWA CN620A } & \text { H.F/2M } & \text { Cross Pointers } \\ \text { DAIWA CN630 } & \text { 2M/70 } & \text { Cross Pointers }\end{array}$

Superb H.F. Transceiver
$160-10 \mathrm{~m} 9$

\section*{| £ | Carr |
| :---: | :---: |
| 29.00 | |
| (1.00) | | $29.00(1.00)$

$45.00(1.00)$ $45.00(1.00)$
$59.00(1.50)$
79.00 $79.00(1.50)$

$59.00(1.50)$ 19.95 (0.75) $49.00(1.00)$ | 59.00 |
| ---: |
| 6.95 |
| 1.00$)$ |
| 1.75$)$ | $11.95(0.75)$ \\ $44.00 \quad(2.00)$ \\ 44.00 (2.00)}

$11.50(0.50)$
$11.50(0.50)$
$14.30(0.50)$
14.30
34.00
$(0.75$
34.00
$\mathbf{5 2 . 8 0}$ 52.80
71.00
$\begin{array}{ll}5.00 & (0.50) \\ 6.95 & (0.75)\end{array}$

5.00	(0.50)
6.95	(0.75)
11.95	(0.75)
22.55	

$11.95(0.75)$
$22.95(0.75)$
34.00 $60-10 \mathrm{~m} 9$ Band Transceiver External Speaker xternal Speaker
$160-10 \mathrm{~m} 9$ Band Transceiver 8 Band Transceiver 200W Pep 8 Band Transceiver 20W pep
$34.00(0.75)$
42.95

1295.00
$\begin{array}{lr}885.00 & (-) \\ 135.00 & (1.50) \\ 31.00 & (1.50) \\ 725.00 & (-)\end{array}$$\begin{array}{ll}\text { IC251E } & \text { 2M Multimode Base Station } \\ \text { IC25E } & 2 \mathrm{M} \text { Synter }\end{array}$2M Synthesised Compact 25WMobile

C290E 2M Multimode Mobile
C2E 2 M FM Synthesised Handheld IC L1/2/3 Soft Cases
$\begin{array}{ll}\text { IC HM9 } & \text { Speaker/Microphone } \\ \text { IC BC30 } & 230 \mathrm{VAC} \text { Base Charger and Hod }\end{array}$ $\begin{array}{ll}\text { IC BC30 } & 230 V \\ \text { IC BC25 Base Charger and } \\ \text { 230V AC Trickle Charger }\end{array}$ Car Charging Lead 6 V Nicad Pack for IC2E $\begin{array}{ll}\text { IC CP1 } & \text { Car Charging Lead } \\ \text { IC BP2 } & \text { 6V Nicad Pack for IC2E } \\ \text { IC BP3 } & \text { 9V Nicad Pack for IC2E } \\ \text { IC BP4 } & \text { Empty Case for 6xAA N } \\ \text { IC BP5 } & \text { 11.5V Nicad Pack for IC2 } \\ \text { IC DC1 } & \text { 12V Adaptor Pack for IC } \\ \text { IC ML1 } & \text { 10W Booster } \\ \text { TV INTERFERENCE AIDS }\end{array}$ Empty Case for $6 \times$ AA Nicads 11.5V Nicad Pack for IC2E 12 V Adaptor Pack for IC2E $\begin{array}{ll}\text { IC CP1 } & \text { Car Charging Lead } \\ \text { IC BP2 } & \text { 6V Nicad Pack fo } \\ \text { IC BP3 } & \text { 9V Nicad Pack fo } \\ \text { IC BP4 } & \text { Empty Case for } 6 \\ \text { IC BP5 } & \text { 11.5V Nicad Pack } \\ \text { IC DC1 } & \text { 12V Adaptor Pack } \\ \text { IC MLI } & \text { 1OW Booster } \\ \text { TV INTERFERENCE AIDS }\end{array}$ TV INTERFERENCE AIDS
Ferrite Rings $1 \frac{1}{2}$ dia. per pair Ferrite Rings $1 \frac{1}{2}$ dia. per pair
Toroid Filter TV Down Lead Low Pass Filter LP30 100W Yaesu Low Pass Filter FF501DX 1 kW HP4A High Pass Filter TV Down Lead ANTENNA BITS
H1-Q Balun 1:15kW pep (PL259 Fitting) ${ }^{-1 \mathrm{MHz} \text { Traps Pair }}$ T Piece Polyprop Dipole Centre Small E Strain Insulators Smane Egg insulators
Large Insulators 4 mm Polyester Guy Rope
(strength 400 kg) per metre
75 ohm Twin Feeder - Light Duty-Per Metre

Bredhust electronics

 f699.00 £
699.00
883.0
99.0
499.0
239.00
366.00
159.00
4.2
12.00
45.00
5.00
3.
29.
20.
6.
39
9.
59. Carr. MORSE EQUIPMENT

Please send total pos
Please send total postage indicated. Any excess

TS 930S $£ 1078$

TRIO

 TRIOTS930S New Transceiver
TS930S New Transceiver
TS830S $160-10 \mathrm{~m}$ Transceiver 9 Bands
VFO230 Digital V.F. VFO230 Digital V.F.O. With Memories
AT230 All Band ATU/Power Meter SP230 External Speaker Unit DFC230 Dig. Frequency Remote Controller YK88C 500 Hz CW Filter YK88CN 270 Hz CW Filter TS530S $160-10 \mathrm{~m}$ Transceiver TS130S 8 Band 200W Pep Transceiver
TS 130 V 8 Band 20W Pep Transceiver TS130V 8 Band 20W Pep Transceiver
VFO120 External V.F.O. $\begin{array}{ll}\text { TL120 } & \text { 200W Pep Linear for TS } 120 \mathrm{~V} \\ \text { MB100 } & \text { Mobile Mount for TS } 130 / 120\end{array}$ SP120 Base Station External Speaker AT130 100W Antenna Tuner $\begin{array}{ll}\text { PS20 } & \text { AC Power Supply - TS130V } \\ \text { PS30 } & \text { AC Power Supply - TS130S }\end{array}$ $\begin{array}{ll}\text { PS30 } & \text { AC Power Supply - TS } 130 \text { S } \\ \text { MA5 } & 5 \text { Band Mobile Aerial System }\end{array}$ MC50 Dual Impeadance Desk Microphone MC35S Fist Microphone 50 K ohm IMP MC30S Fist Microphone 500 ohm IMP $\begin{array}{ll}\text { LF30A } & \text { HF Low Pass Filter } 1 \mathrm{~kW} \\ \text { TR9130 } & 2 \mathrm{M} \text { Synthesised Multimode }\end{array}$ BO9 TR7800 2M Synthesised FM Mobile 25W TR7730 2M Synthesised FM Compact Mobile $\begin{array}{ll} & 25 \mathrm{~W} \\ \text { TR2300 } & \text { 2M Synthesised FM Portable } \\ \text { VB2300 } & \text { 10W Amplifier for TR2300 } \\ \text { MB2 } & \text { Mobile Mount for TR2300 }\end{array}$ $\begin{array}{ll}\text { VB2300 } & \text { 10W Amplifier for TR2300 } \\ \text { MB2 } & \text { Mobile Mount for TR2300 }\end{array}$ Flexible Rubber Antenna for TR2300 TR2500 2M FM Synthesised Handheld $\begin{array}{ll}\text { ST2 } & \text { Base Stand } \\ \text { SC4 } & \text { Soft Case }\end{array}$ MS1 Mobile Stand SMC25 Speaker Mike PB25 Spare Battery Pack TR8400 70 cm FM Synthesised Mobile Transceiver
PS10 Base Station Power Supply for 800 TR9500 70 cm Synthesised Multimode R1000 Synthesised $200 \mathrm{KHz}-30 \mathrm{MHz}$ Receiver
Gen. Cov, Recein
R600 Gen. Cov. Receiver
HC10 Digital Station World Time Clock HS5 Deluxe Headphones
HS4 4 Economy Headphones

EDITORIAL OFFICES
Practical Wireless Westover House West Quay Road Poole, Dorset BH15 1JG f Poole 671191

Geoff Arnold T.Eng(CEI) G3GSR Editor

Dick Ganderton C.Eng., MIERE,G8VFH Assistant Editor
Peter Metalli
Art Editor
John Fell G8MCP
Technical Editor

Alan Martin G8ZPW News \& Production Editor

Elaine Howard G4LFM Technical Sub-Editor

Rob Mackie
Technical Artist
Keith Woodruff Assistant Art Editor

Sylvia Barrett

Secretarial

ADVERTISEMENT OFFICES

Practical Wireless King's Reach Tower Stamford Street London SE1 9LS
Telex: 915748 MAGDIV-G
Dennis Brough
Advertisement Manager
601-2616636
f 01-261 6872
Roger Hall G8TNT (Sam)
Ad. Sales Executive
C 01-261 6807
Claire Gerrish
Secretary
f 01-2616636
Barbara Blake
Classified Supervisor f 01-261 5897

Dave Kerindi

Make-up \& Copy f 01-261 6570

COPYRIGHT

- IPC Magazines Limited 1982. Copyright in all drawings, photographs and articles published in Practical Wireless is fully protected and reproduction or imitation in whole or in part is expressly forbidden. All reasonable precautions are taken by Practical Wireless to ensure that the advice and data given to our readers are reliable. We cannot however guarantee it and we cannot accept legal responsibility for it. Prices are those current as we go to press.

$P_{\text {Iactikat }}$ வாア® OCTOBER 1982 VOL. 58 NO. 10 ISSUE 907

22 CB Operating Impressions-2 Gordon J. King

27 Are the Voltages Correct?-5
 Roger Lancaster

30 PW "Cranborne" 600MHz Frequency Meter-2
 Stephen Ibbs G4LBW

36 JFET Crystal Oscillators
M. J. Darby

40 Space Shuttle Communications-1
Brian Dance
49 Working DX
Jeff Maynard G4EJA
53 Radio Special Product Report
Shimizu SS-105S h.f. transceiver
$57 \star$ SPECIAL OFFER
FM4 a.m./f.m. tuner module
59 144 M Hz Ring-Base Antenna-2
F. C. Judd G2BCX

EXTRA THIS MONTH

(between pages 48 \& 49)
"It all began with F. J. Camm"
Our 24-page Golden Jubilee Special

95	Advert Index	21
Out of Thin Air		
80	Benny	48
Production Lines		
19 Comment	20	PW RUIS
44,56 Letters	19	Services
62 News	24	Swap Spot
47 Next Month	39	Uncle Ed
64 On The Air		

ok, it was always a good receiver, but now with FM the SRX 30D, todays rig, yesterdays price.

- Extended coverage $200 \mathrm{KHz}-30 \mathrm{MHz}$.
- Digital readout in large green display units which give true unambiguous frequency information - even when you switch sidebands or use the clarifier.
- All new frequency synthesis using Plessey SL 1600 series ICs for a new high standard of performance.
- All new audio system which produces outstandingly good quality on the built in speaker, and is capable of driving external hi fi speaker units for even better sound.
- All new IF filters with optimum bandwidth for mode in use. Automatic filter selection from mode switch.

We predict that the SRX30D will be a landmark in low cost, high performance SWL receivers. Just consider how much you should pay for a receiver covering $200 \mathrm{KHz}-30 \mathrm{MHz}$ with accurate digital readout; high performance FM/USB/LSB/AM with switched filters; drift cancelling frequency synthesis; built in mains supply and built in speaker; high quality construction and advanced design - and so much more.

SRX30D Now with FM but still ONLY $£ \mathbf{2 1 5}$ Carriage $\mathbf{£ 5 . 0 0}$

The TR-2500 is a compact 2 metre FM handheld transceiver featuring an LCD readout, 10 channel memory, lithium battery memory back-up, memory scan, programmable automatic band-scan and $\mathrm{Hi} /$ Lo power switch.

TR-2500 FEATURES

- Extremely compact size and lightweight 66 (25) W $\times 168$ (6⿻ㅢㄴ) H 40 (15ㄴㄴ) D, mm (inches) 540 g , (1.2 lbs) with $\mathrm{Ni}-\mathrm{Cd}$ pack.
- LCD digital frequency readout, with memory channel and function indication.
- Ten channel memory, includes "MO" memory for non-standard split frequencies.
- Memory scan, stops on busy channels, skips channels in which no data is stored.
- UP/DOWN manual scan in 5 kHz steps.
- 2.5 W or 300 mW RF output. (HI/LOW power switch.)
- Programmable automatic band scan allows upper and lower frequency limits and scan steps of 5 kHz and larger ($5,10,15,20$,
$25,30 \mathrm{kHz}$. . . etc) to be programmed.
- Repeater reverse operation.
- Keyboard frequency selection across full range.
- Frequency coverage, 144.000 to 145.995 MHz .
- Two lock switches for keyboard and transmit.

TR-2500 HANDHELD $£ 207$ Carriage $£ 5.00$
handability TR 2500

LOWE FLECTRONICS

Chesterfield Road, Matlock, Derbyshire. DE4 5LE.
Telephone 0629 $2817,2430,4057,4995$. Telex 377482.

AF606K

DAIWA ALL MODE ACTIVE FILTER $£ 56.50$
From Daiwa yet another aid to operating. In addition to the notch, SSB and CW filters, the AF606K is equipped with a PLL tone decoder; when the tone frequency of the CW signal and the free running frequenty of the PLL tone decoder are the same a locked signal is generated. This locked signal keys an audio oscillator which then reproduces the received CW signal. However, there is a tremendous difference between the produced signal and the received one no noise and, of course, no fading. ANOTHER PIECE OF EQUIPMENT TO ENHANCE YOUR LISTENING.

DK 210

DAIWA ELECTRONIC KEYER $£ 42.00$

With so many electronic keys and keyers on the market, it's hard to describe one that is better than the rest. Inevitably it is a matter of "feel", and the feel of the New Daiwa DK210 is superb. Being Daiwa, the quality of design and construction has to be of the best, but it's in use that the DK210 is so impressive. Designed to be used with an external paddie, to give greater personal choice, the DK210 is otherwise seif contained, even to buto or fully pouto keying and a tune position for ae of 10 to 50 W.p.m., built in sidetone, faciities for sem auto, or fully auto keying, and a tune position for adjusting your transmitter, but the outstanding feature is the adjustable "weight"control. This control gives an amazing improvement in the character of the sending, and completely removes that mechanical sounding "electronic morse" characteristic. Those experienced CW users who have tried out
So will you if you try it out.

NOW YOU HAVE A LOWE IN GLASGOW

OUR SHOP IN GLASGOW, LOCATED IN QUEEN MARGARET'S ROAD, OF QUEEN MARGARET'S DRIVE. THE SHOP WILL OPEN DURING SEPTEMBER. RING THE SHOP ON 041-945 2626 FOR DETAILS. IF NOT OPEN RING DAVID ON 06292817 OR THE OTHER MATLOCK NUMBERS FOR INFORMATION.

With the arrival of the TS780, the dual bander rig has come of age, giving the two band multimode facilities of the original concept, plus a wealth of additional operating facilities. Taking a trip across the front panel of the rig we have the repeater facilies, a non-locking tone switch, deal now that most repeaters are tone accessed and carrier maintained. The tone, of course, only works whilst the rig is in fun mode. Below the tone switch is the TX offset switch giving plus or minus 600 KHz or 1.6 MHz , depending on whether 2 metres or 70 cm is selected and last, but certainly not least, reverse repeater - to my way of thinking proof that
amateurs by amateurs.
The meter functions on receive as S. meter, ALC meter The meter functions on receive as S. meter, ALC meter
or as a centre meter, the functions being controlled from or as a centre meter, the functions being controlled from
a panel switch. On transmit the meter reads relative RF a panel switch. On transmit the meter reads relative RF memory/VFO indicator are indicating leds: a "busy" "ed indicating in FM mode whether the squelch is open indicating in FM mode whether the squelch is open the other station is transmitting. A "frequency lock" led the other station is transmitting. A frequency lock led inoperative. The "on air" led indicates the rig is transmit-
ting and the "offset" led reminds you that the TX offset switch is set to repeater.
The memory operation has been updated: instead of having to progressively move through the memory content in sequence, by means of a rotary switch any of the ten memories (two more than the TS770's) can be selected at will. Entering frequencies into the memory is easier, as anyone who has a TS770 series will explain. Two priority frequencies are included: 9 and 10. Push buttons to the left of the VFO knob allow either of the two programmed frequencies to be quickly selected, immediately cancelling the previous instructions given to the rig. Just the thing for local net frequencies. SSB mic gain needs no explanation, as does the AF/RF gain control.
On the same control knob as the squelch level is a switch enabling the frequency width of scan to be determined. Briefly, when the rig is set to scan either in FM, FM step or SSB mode you can determine the amount of band to be covered.
The ranges are $0.5,1,3,5$ and 10 MHz , thus you can limit the rig to scan just the section of the band used by the mode you have selected. Example: scan width 0.5 MHz , VFO set at 144.000 , coverage -144.000 to 144.5 ,
mode side band - result: free scanning of the SSB portion of the band. On FM the scan locks if a signal is present. On SSB the scan does not stop but you are made aware that there is activity on the band.
Another new control on the TS780 is the IF shift. Available for some time on HF equipment to cope with crowded band conditions, obviously the Trio design engineers have recognised that the 2 metre SSB end of the band can become crowded during contests or when there is "a bit of a lift on". At these times a rig, that has the "IF shift" facility will certainly "score points"
The send/receive Vox/Man, meter function, NB, low/ high power switches are all well known and have been found on previous generations of Trio base station equipment and again require no explanation. I could say the same thing about the mode switch but here you will notice alongside the standard FM position another marked FM CH. Put the mode switch in this position and instead of a free-running VFO you have a mechanical "click" step feel, the frequency now moving in either 12.5 KHz or 5 KHz steps. Of course the rig will also scan in these steps, controlled either by the scan switch or the up/down shift microphone. Again the Trio amateurs who design the equipment have here a major triumph.
By now you may be seeing why I am so enthusiastic
about the TS780 but there is still more to come How about the TS780 but there is still more to come. How about a memory scan system that will scan either the 2 metre frequencies stored in the memory or the 70 cm ones or, if you wish, both. Well that's another feature of the TS780. Add to this list variable VFO steps of either 20 Hz or 200 Hz , a selectable braked feel to the VFO knob, rapid up and down MHz switching and you have the most comprehensive rig ever seen.
Too complicated some may say. Rubbish say I. Trio thrive on rigs designed to be simple to operate. Do you remember what John wrote in Radcom about the TR7500 and its competitors? And, finally, how about a rig that
without resorting to a MHz switch will, by use of the VFO without resorting to a MHz switch will, by use of the VFO knob, tune from 144 to 146 MHz and from 430 to 440 MHz - only one rig -
the
£748 inc VAT carr $£ 5.00$

LOWF FLFGTRONICS

Chesterfield Road, Matlock, Derbyshire. DE4 SLE. Telephone 0629 2817, 2430, 4057, 4995. Telex 377482.

SMC UK DISTRIBUTORS FOR YAESU，KDK，HANSEN，KLM，
 BNC PL
UG88
UG958

UHF PLUG

PL259 Standard type 11.2 mm
$\begin{array}{ll}\text { PL259P } & \text { Push on type } 11.2 \mathrm{~mm} \\ \text { UG175 } & \text { Reducer } 5.0 \mathrm{~mm}\end{array}$
$\begin{array}{ll}\text { UG175 } & \text { Reducer } 5.0 \mathrm{~mm} \\ \text { UG176 } & \text { Reducer } 5.6 \mathrm{~mm}\end{array}$
$\begin{array}{ll}\text { UG176 } & \text { Reducer } 5.6 \mathrm{~mm} \\ \text { PL2s9R } & \text { Reduced type } 5.0 \mathrm{~mm}\end{array}$
$\begin{array}{ll}\text { PL259R } & \text { Reduced type } 5.0 \mathrm{~mm} \\ \text { PL25SA } & \text { De－luxe type } 11.2 \mathrm{~mm}\end{array}$
PL259B De－luxe type 5.0 mm
PL25sSL \quad＇Solderless＇ 11.2 mm
PL25sSS＇Solderless＇ 5.0 mm
PLZSEE Angle type 5.0 mm
PL259M Metric type standard 11.2 mm
PL2s9PM Panel mount 4 hole
UHF SOCKET
$\begin{array}{ll}\text { S0239F } & \text { Standard } 4 \text { hole fix } \\ \text { S0239F31000 } & 4 \text { hole PTFE Au plat }\end{array}$
$\begin{array}{ll}\text { SOZ39F31000 } & 4 \text { hole PTFE Au pl } \\ \text { S0239T } & 2 \text { hole fixing type }\end{array}$
SOz39NI Nut fixing inside type
SOz39N0 Nut fixing outside type
SOz39E Free angle type 5.0 mm
MX913／C Dust Cap c／w chain
MX913／M Dust
UHF COUPLER
$\begin{array}{ll}\text { PL258 } & \text { Back to back female } \\ \text { PL274 } & \text { Back to back chassis }\end{array}$
SMCPL／PL Back to back male
M359 Elbow male－female
M358 T＇ 2 female 1 male
$\begin{array}{ll}\text { M358AF } & \text { T．} 3 \text { female } \\ \text { M458 } & \text {－} 3 \text { female }\end{array}$
UHF INTERSERIES ADAPTOR
UG255 UHF socket－BNC plug UG273 UHF plug－BNC socket S0／25 UHF socket -2.5 mm jack $\begin{array}{ll}\text { So／35 } & \text { UHF socket }-3.5 \mathrm{~mm} \text { jack } \\ \text { SO／NF } & \text { UHF socket }-N \text { socket }\end{array}$ UG146 UHF socket－N plug

UHF CABLES

PL36PL \quad 3．0＇RG58 PL259 ends
N PLUG 500HMS
UG536 Small type 5.5 mm UG21 Standard type 11.2 mm
N SOCKET 50 OHMS
UG58 Standard 4 hole tix
UG1052 Free cable end 5.5 mm
$\begin{array}{ll}\text { UG23 } & \text { Free cable end } 11 \mathrm{~mm} \\ \text { MX913／C } & \text { Dust cap c／w chain }\end{array}$
N COUPLER 500 HMS
$\begin{array}{ll}\text { UG107 } & \text { T＇} 2 \text { female } 1 \text { male } \\ \text { UG28 } & \text { T＇} 3 \text { female }\end{array}$
UG57 Double male adaptor
$\begin{array}{ll}\text { UG57 } & \text { Double male adaptor } \\ \text { UG29 } & \text { Double female adaptor }\end{array}$
N INTERSERIES ADAPTORS 50 OHMS
UG201 N plug－BNC socket
UG349 N socket－BNC plug
UG606 $\quad \mathrm{N}$ socket－BNC socket
UG146 N plug－UHF socket
$\begin{array}{ll}\text { UG83 } & \text { N socket－UHF plug } \\ \text { S0／NF } & \mathrm{N} \text { socket－UHF socke }\end{array}$
S0／NF N socket－UHF socket

ANTENNAS HF FIXED

ANTENNAS VHF／UHF MOBILE

ASCOT			
	Base Stand ì $200-550$	30	050
310	Base Swivel $\mathrm{i} \lambda$ ¢ $0-550 \mathrm{MHz}$	¢4．20	0.50
344	Base Sprung ì $60-120 \mathrm{MHz}$	f6．38	0.50
440	Base Stand ix 3 dB 2 145 MHz	¢2．70	0.50
330	Base Swivel in 3dBl 145 MHz	E5．00	50
341	Base Sprung ì \times 3dBl 2145 MHz	57.30	0.50
350	Base Fine tune $\frac{1}{} \lambda 3$ 3dB1 145 MHz	57.30	60
351	Base Sprung $\frac{1}{2} 33 \mathrm{dBl} \frac{1}{2} 145 \mathrm{MHz}$	${ }^{2} 805$	080
057	Whip tapered SS 127 Cms	£1．96	20
056	Whip parallel SS 63 Cms	¢0．75	． 80
085	Mount cable i \＆$\frac{1}{2} \mathrm{c} / \mathrm{w} 4.5 \mathrm{M}$ cable	E3．05	0.8
0851	As 085 （but for Tupperware cars！）	¢3．85	
OSP	Mount bag i＇$\frac{1}{} \mathrm{c} / \mathrm{w} 4.5 \mathrm{M}$ cable	¢10．75	． 00
084	Mount cable $\frac{1}{2} \lambda$ ，c／w 4.5 M cable	E5．00	． 8
088	Mount cowl 1λ ，to S0239	E5．75	
091	Mount Magnetic ${ }_{2} \lambda$ ， $\mathrm{c} / \mathrm{w} 4.5 \mathrm{M}$ cable	¢10．75	0.9
089	Gutter Clip adaptor all bases	E5．00	0.8
093	Boot lip adaptor all bases	E3．80	0.60
BANTEX			
	Ele Stainless $42^{\prime \prime} 70 \mathrm{MHz}$ 込	E2．53	30
40GF	Ele Glassfibre $40^{\prime \prime} 70 \mathrm{MHz}$ 水	¢4．62	1.30
20SS	Ele Stainless $20^{\prime \prime} 144 \mathrm{MHz}$＋$\lambda$	$f 209$	0.90
186F	Ele Glassfibre 18＂144MHz ${ }^{\text {¢ }}$ 入	E3， 30	0.90
B5	Ele ${ }^{\text {I }}$ Glassfibre 144 MHz	¢9．68	1.30
BGASS	Ele $\frac{1}{2}$ Stainless 144 MHz	59.23	1.30
BGAC	Ele $\frac{1}{2}$ Glassfibre 144 MHz	£10．95	1.30
B5U	Ele I Stinless 432 MHz	E3，36	0.90
UCL	Ele Mid load coln 432MHz $亠+\frac{1}{2} \lambda$	£10．95	1.00
UDL	Ele Mid base load 432MHz i＋	¢18．09	1.00
BM	Base standard $l^{\prime \prime}$＇hole	¢2．91	1.30
BA	Base snap－in type $\mathrm{i}^{\prime \prime}$ hole	f3，80	1.00
BC	Base claw fixing 11.16 mm hole	f5．06	1.20
BD	Base trunk lip 2 screw fitting	E9．36	0.8
BMM	Base Magnetic c／w $12{ }^{\prime}$ cable	£16．01	
SMCHS			
SMC118M	Colinear 2M 11／8入 7dB2 $9.7{ }^{\prime}$	£28，35	2.20
SMC6P2T／PL	Telescopic 2M PL259 OdB	E3，45	
SMC6P2T／BN	C Telescopic 2M 8NC OdBl	E3．97	0.50
SMC2H／PL	Helical 2M PL259	E3，45	
SMC2H／BNC	Helical 2M BNC	¢4．43	0.50
SMCHS430	$\frac{1}{2} \lambda 432 \mathrm{MHz}$＂Handie＂2．5dBz	E5．75	0.60
SMCA	Êe 70 MHz \＆λ 仿 \quad dBl $3.4{ }^{\prime}$	E7．65	
SMCZ2aw		$\underline{2} 30$	
SMC2NE		E6．90	
SMC2VF		${ }_{68.63}$	
SMC78F		¢1225	
SMC78B	Ele 144MHz ${ }^{\text {3 }}$ ，ball ${ }^{\text {a }}$ ，${ }^{\prime}$	¢12．65	1.8
SMC78SF	Ele 144MHz ${ }^{3} \lambda$ short $4.7{ }^{\prime}$	11225	1.8
SMC88F		f16．10	． 8
SMC258		f11．50	1.8
SMC358		¢14．95	1.8
SMC70N2M	144 and $432 \mathrm{MHz} \quad 2.7 \mathrm{dBl}$－5．1dB ${ }^{\text {d }}$	£14．20	
SMCHS770	144／432 duplexer，50W，30dB，0．5dB	£13．40	1.30
SMCSOMM	Magnetic base c／w 4 M cable	88.45	12
SMCSOWM	Wing mount base	E3．45	0.7
SMCGCCA	Gutter clip，c／w 4M RG58，PL259	c8．80	1.2
SMCTMCAS	Trunk mount c／w 6M cable	57.30	0.95
SMCSOCAL	Cable assembly 239M，6M cable	¢4．20	0.50
SMCBSD	Bumper strap stainless	17.71	1.0
HS88BK	Bumper mount 144 MHz extension tube	f16．50	1.50
MX913／M	Dust cover fits SMCOCA	¢0．46	0.5
YCGA	Cable grip adhesive（ 5 off）	¢0．45	

ANTENNA PARTS

ANTENNA WIRE

ANTENNA	WIRE		
CU14SWG	Hard Drawn Copper	p / m	$\mathbf{5 0 . 2 0}$
CU7／029H	Hard Drawn Stranded	p / m	$\mathrm{E0.22}$
CU7／036	CAD Copper Stranded	p / m	20．32
CU／TER	CU／Terylene Braid About 3 mmD	p / m	$\mathrm{E0.20}$
CU／029S	Soft Copper Stranded（Radials）	p / m	$\mathrm{E0.19}$

$\begin{array}{lllll} & \text { Soft Copper Stranded（Radials）} & \mathrm{p} / \mathrm{m} & \mathrm{m} .19\end{array}$
$\begin{array}{llll}\text { BALUN TRANSFORMERS } \\ \text { By－Gain } \\ 1: 13-30 \mathrm{MHz} & \text { Ferrite } & \mathbf{E 1 5 . 5 3} \quad 0.90\end{array}$
H101 Van Gorden $1: 13-30 \mathrm{MHz}$ Air $\mathbf{£ 1 0 . 0 0}$ Free DIPOLE CENTRE PIECE

CCJ2BNC	Standard c／w fittings UG88 etc	¢5．69	5
CCJ2UHF	Standard c／w fittings PL259 etc	f5．69	0.65
CCJIUHF	HD type c／w fitting PL259 etc	£7．99	0.80
AJU	Polyprop．clamp and lug type	f1．09	0.55
INSULATORS END STRAIN			
SMCP2	Polypropylene 3 inch	¢0．55	0.45
PORC3	Porcelain 3 inch	£0．67	0.45
SMCP1	Polypropylene 8.5 inch	¢224	0.45
EG38	Porcelain Egg 1.5 ins	¢0．44	045

LIGHTNING ARRESTORS

$\begin{array}{llll}\text { SMC566 } & \text { Spark S0239／PL259 in line } & \text { €2．99 } & 0.55 \\ \text { SMC567 } & \text { Spark S0239／S0239 in line } & \mathbf{E 2 9 9} & 0.55\end{array}$
LA1

Spark S0239／S0239 in line
Gas Discharge Bulkhead
$\begin{array}{ll}22.99 & 0.55 \\ \mathbf{f 2 . 9 9} & 0.55\end{array}$ $\begin{array}{rr}\mathbf{f 2 . 9 9} & 0.55 \\ \mathbf{£ 4 8 . 1 9} & 0.90\end{array}$

SOUTH MIDLANDS COMMUNICATIONS LTD SHOWROOMS: SPANNING THE UK - TO SERVE YOU

SOUTHAMPTON S.M.C. Ltd., 36-38 Rumbridge Street, Totton, Southampton. Southampton (0703) 867333 9-5.30 Mon.-Sat.			LEEDS S.M.C. (Leeds), 257 Otley Road. Leeds 16, Yorkshire Leeds (O632) 9-5.30 Mon.-Sat.	CHESTERFIELD S.M.C. (Jack Twendy) Ltd., 102 High Street. New Whittington, Chesterfield, Chesterfield (0246) 453340 9-5 Tues.-Sat.			BUCKLEY S.M.C. (T.M.P.) Unit 27, Pinford Lane, Buckiey. CIwyd. Buckey (0244) 54956 $9.30-530$ 9.30-5.30 Tues.Sat.	STOKE S.M.C. (Stoke), 76 High Street. Talke Pits, Stoke Kidsgrove (07816) 72644 9-5.30 Tues.-Sat.		GRIMSBY S.M.C. (Grimsby). 247A Freeman Street. Grimsby, Lincs. Grimsby (O472) 5938 $9.30-5.30$ Tues.-Sat.	
Neath	John	GW4FOI	(0639) 55114 Day (0639) 2942 Eve		SM	C AGE	(02	Edinburgh	Jack		(031657) (031665) 240 240 Eve
Stourbridge	Brian	g3ZUL			(1)		076	Sers	Geoft	GJAICD	

The professional

IC-Rx70. The very latest from Icom!

The New Rx 70 receiver from Icom is designed to provide a really stunning performance at a price not much greater than its inferior competitors.

It covers all modes (when the FM option is included), uses 2 CPU - driven VFO's for split frequency working, has 3 IF frequencies $70 \mathrm{MHz}, 9 \mathrm{MHz}$ and 455 KHz and a dynamic range of 100 dB .

Other features are:-
Input switchable through a pre-amplifier, direct or via an attenuator. Selectable tuning steps of $1 \mathrm{KHz}, 100 \mathrm{~Hz}$ or 10 Hz . Adjustable IF bandwidth in 3 steps $(455 \mathrm{KHz})$ Noise limiter. Switchable AGC. Tunable notch filter. Squelch on all modes. RIT. Tone control.
Tuning LED for FM (discriminator centre indicator) Recorder output. Dimmer control.
Separate antenna sockets for LW-MW with automatic switching. Large front mounted loudspeaker -5.8 W output.
Frequency stability 1st hour $\pm 250 \mathrm{~Hz}$, thereafter $\pm 50 \mathrm{~Hz}$, sensitivity
$-S S B / C W / R T T Y$ better than $0.32 \mu v$ for $12 \mathrm{~dB} \frac{\mathrm{~S}+\mathrm{N} .}{\mathrm{N}}$.
Am - $0.5 \mu \mathrm{v}$, FM better than 0.32 for 12 dB Sinad.
Built in mains supply - DC optional.
Size $286 \mathrm{~mm} \times 110 \mathrm{~mm} \times 276 \mathrm{~mm}$ - weight 7.4 Kg .

IC-25E, The Tiny Tiger

 £239.inc.Amazingly small, yet very sensitive.
Two VFO's, five memories,
 priority channel, full duplex and reverse, LED S-meter, 25 KHz or 5 KHz step tuning. Same multi-scanning functions as the 290 from mic or front panel. All in all the best 2M FM mobile ICOM have ever made.

Remember we also stock Yaesu, Jaybeam, Datong, Welz G-Whip, Western, TAL, Bearcat, RSGB Publications.

Agents (phone first - all evenings and weekends only, except Scotland).
Scotland - Jack GM8 GEC (031 665 2420)
Midlands - Tony G8AVH (021 32 - 2305)
North West - Gordon G3LEQ (0565 4040 Ansafone available)

Introducing the NEW IC-740. $\varepsilon 699$.

This latest
transceiver contains
all the most asked-for features, in
the most advanced solidstate HF base station on the amateur market...performing to the delight of the most discerning operator.

Study the front panel controls of the ICOM IC-740. You will see that it has all of the functions to give maximum versatility to tailor the receiver and transmitter performance to each individual operator's requirements.

Features of the IC-740 receiver include a very effective variable width and continuously adjustable noise blanker, continuously adjustable speed AGC, adjustable IF shift and variable passband tuning built in. In addition, an adjustable notch filter for maximum receiver performance, along with switchable receiver preamp, and a selection of SSB and CW filters. Squelch on SSB Receive and all mode capability, including optional FM mode. Split frequency operation with two built-in VFO's for the serious DX'er.

The IC-740 allows maximum transmit flexibility with front panel adjustment of VOX gain and VOX delay along with ICOM's unique synthesized three speed tuning system and rock solid stability with electronic frequency lock. Maximum versatility with 2 VFO's built in as standard, plus 9 memories of frequency selection, one per band, including the new WARC bands.

With 10 independent receiver and 6 transmitter front panel adjustments, the IC-740 operator has full control of his station's operating requirements.

See and operate the versatile and full featured IC-740 at your authorized ICOM dealer.

Options include:

- FM Module
- Marker Module
- Electronic Keyer
- 2-9MHz IF Filters for CW
- 3.455 MHz Filters for CW
- Internal AC Power Supply

Accessories.

- SM5 Desk Microphone
- UP/DWN Microphone
- Linear Amplifer
- Autobandswitching Mobile Antenna
- Headphones
- External Speaker
- Memory Backup Supply
- Automatic Antenna Tuner
 antennas, the winners in recent tests!

The World's most popular portables IC-2E £159. IC4E £199.inc.

Nearly everybody has an IC-2E, the most popular amateur transceiver in the world, now there is the 70 cm version which is every bit as good and takes the same accessories.
Fully synthesized - Covering 144145.995 in 4005 KHz steps. (430-439.99 4E). Power output - 1.5W. BNC antenna output socket. Send/Battery indicator. Frequency selection - by thumbwheel switches, indicating the frequency. 5 KHz switch-adds 5 KHz to the indicated frequency. Duplex Simplex switch - gives simplex or plus 600 KHz or minus 600 KHz transmit $(1.6 \mathrm{MHz}$ and listen input on 4E). Hi-Low switch - 1.5W or 150 mW . External microphone jack. External speaker jack.
The IC-4E is revolutionising 70 cm !
Multimode Mobiles
IC-290E £366. IC-490E £445.inc.

$290 \mathrm{E}-144-146 \mathrm{MHz} / 490 \mathrm{E}-430-440 \mathrm{MHz}$. 10 W RF output on SSB, CW and FM. Standard and non-standard repeater shifts. 5 memories and priority channel.

Memory scan and band scan, controlled at front panel or microphone. Two VFO's. LED S-meter. 25 KHz and 1 KHz on FM 1 KHz and 100 KHz tuning steps on SSB. Instant listen for repeaters.

IC.720A Possibly the best choice in HF, £883.inc.

One way of keeping up with rapidly advancing technology is to look at what the IC-720A offers in it's BASIC form. How many of it's competitors have two VFO's as standard, or a memory which can be recalled, even when on a different band to the one in use, and result in instant retuning AND BANDCHANGING of the transceiver? How many include really excellent general coverage receiver covering all the way from 100 KHz to 30 MHz ? How many need no tuning or loading whatsoever? and take care of your PA, should you have a rotten antenna. How many have an automatic RIT which cancels itself when the main tuning dial is moved? How many will run full power out for long periods without overheating? How many have band data output to automatically change bands on a solid state linear AND an automatic antenna tuner unit?

The IC-720A may be just a little more expensive than some, but it's better than most! Make your choice an IC-720A. IC-PS15 Mains PSU £99.

Tono RTTY and CW computers 7000E £500. 9000E £650.inc.

The TONO range of communication computers take a lot of beating when it comes to trying to read RTTY and CW in the noise. Others don't always quite make it! Check the many facilities offered before you buy - especially look at the 9000E which also throws in a Word Processor. Previous ads have told you quite a lot about these products - but why not call us for further information and a brochure?

IC.730 The best for mobile or economy base station $£ 586$.inc.

ICOM's answer to your HF mobile problems - the IC-730. This new $80 \mathrm{~m}-10 \mathrm{~m}$, 8 band transceiver offers 100 W output on SSB, AM and CW. Outstanding receiver performance is achieved by an upconversion system using a high IF of 39 MHz offering excellent image and IF interference rejection, high sensitivity and above all, wide dynamic range. Built in Pass Band Shift allows you to continuously adjust the centre frequency of the IF pass band virtually eliminating close channel interference. Dual VFO's with $10 \mathrm{~Hz}, 100 \mathrm{~Hz}$ and 1 kHz steps allows effortless tuning and what's more a memory is provided for one channel per hand. Further convenience circuits are provided such as Noise Blanker, Vox, CW Monitor APC and SWR Detector to name a few. A built in Speech Processor boosts talk power on transmit and a switchable RF PreAmp is a boon on today's crowded bands.

Great base stations IC-251 £499. IC-451 £569.inc.
 perfect trio in the UHF base station range, ranging from 6 Meters through 2 Meters to 70 cms . Unfortunately you are not able to benefit from the 6 m product in this country, but you CAN own the IC-251E for your 2 Meter station and the 451 E for 70 cms . Mains or 12 volt supply. SSB, CW and FM.

Full details and prices in this issue of the exciting new-generation scanning receivers which we previewed last month... all synthesised and all with digital readout.

First, our scanning receivers, and to lead off, the MAXIMAL MK-4000 (right) with FM coverage of $70-87.9875 \mathrm{MHz}$ and $140-175.9875 \mathrm{MHz}$ in 12.5 kc steps on both bands. Sensitivity is $0.5 \mu \mathrm{~V} / \mathrm{N} 20 \mathrm{~dB}$, and selectivity $\pm 15 \mathrm{KHz}$ at -50 dB , and its AF output is more than 1.3W. All that. plus a built-in digital clock, for just $£ 99.00$.

Next, two really first-class digital-readout scanning receivers, the CORONA CD-3000 and CD-4000 (pictured). Their identical format presentation conceals totally different specifications as follows.
CD-3000 Professional-standard air-band receiver covering $110-139.995 \mathrm{MHz}$ on AM in 5 kc steps. With sensitivity of $0.5 \mu \mathrm{v} \mathrm{S} / \mathrm{N} 10 \mathrm{~dB}$, this is tremendous value at $£ 89.00$.

CD-4000 (left) For full coverage of public services, amateur and marine bands between 140 and 159.995 MHz on FM at a price of only $\mathbf{£ 6 9 . 0 0}$.

Finally, the FAIRMATE AS-10960 (below), which covers VHF from 140 to 175.995 MHz and UHF from 275 to 410 MHz and is programmable to 10 selected frequencies in 5 kc increments. Also featuring memory and priority channels, it is tremendous value at $£ 95.00$.

Reading specifications and looking at pictures are all very well, but the best way to appreciate the quality of these exclusive imports is to come and hear them if at all possible ... and that way you'll get a cup of Brenda's coffee too while you're making up your mind which one (ones?) to buy!

Another item seen on our trip to Japan...the new ICOM general coverage receiver. Having tried it, we are convinced that this could well become the market leader in its field. With features like these, everyone who wants the best in today's receiver technology will now be asking for ICOM.

ICR-70	- Tunable from 100kc to 30 MHz
	•AM/SSB/FM right across the range
	• Pass band tuning \bullet Scan facility
	• Notch filter \bullet Two VFO's

Whether you want to buy outright or part-exchange your existing receiver, phone or call in without delay and be one of the first to enjoy a remarkable new experience in general coverage radio reception.

Ever wanted to decipher all those funny morse code (CW) and radio teletype (RTTY) noises you hear on your communications receiver? Well, now you can - with the new TASCO Morsemaster CWR-600.

Simply connect the input side of the Morsemaster to your receiver or transceiver, and the output either to a domestic TV (UHF) or to a proper VDU which we can also supply. RTTY and CW will be automatically demodulated and displayed on the screen, CW at speeds of up to 250 characters per minute, RTTY between 45.5 and 110 Bauds.
£189

LICENSED CREDIT BROKERS * Ask for written quotation on HP terms. Also interest-free terms with 50\% deposit.

Prices are correct as we go to press, but we reserve the right to vary them if forced to do so by the time this advertisement appears.

[^0]| MM2001 | MML144/30-LS | MML144/100-LS | MTV435 |
| :---: | :---: | :---: | :---: |
| RTTY TO TV CONVERTER
 NOW WITH EXTRA FACILITIES! - SUITABLE FOR UOSAT
 This converter, MM2001, contains a terminal unit, requires only an audio input from a receiver and a 12 volt DC supply to enable a live display of "offair RTTY and ASC 11 on any standard domestic UHF TV set. The MM200I will decode these speeds: RTTY: $45.5,50,75,100$ baud; ASC 11: 110, $300,600,1200$ baud. A printer output received signals. This unit is compatible with amateur and commercial transmissions | 144MHz 30 WATT LINEAR \& RX PREAMP
 FEATURES:
 P 30 WATITS OUTPUT POWER TRANSCEIVERS 1 OR 3 WATT
 - LINEAR ALL MODE OPERATION
 WHEN TURNED OFF
 - ULTRA LOW NOISE RECEIVE
 PREAMP (3SK88), - EQUIPPED WITH
 - EQUIPPED WITH RFVOX
 This new product has been developed from our highly successful MML $144 / 25$. It is suitable for
 use with 1 watt or 3 watt transceivers and the in-
 put leve is switch selectable from the front pane.
 the switching circuitry allow the unit to be left in circuit at all times. The linear amplifier and the circuit low noise receive preamp can both be in- udependently switched in and out of circuit. In this way maximum versatility is afforded. Use this new and have mobile or base station performance at a realistic cost! | 144MHz 100 WATT LINEAR \& RX PREAMP
 (Appearance as 30 watt model)
 100 WATTS OUT FOR 1 OR 3 WATTS INPUT FEATURES: ON 144 MHz
 ULTRA LOW
 $\begin{array}{ll}\text { - } 100 \text { WATTS RF } & \text { NOSE RECEIVE } \\ \text { OUTPUT SUITABLE } \\ \text { PREAMP (} \\ \text { - }\end{array}$
 $\begin{array}{ll}\text { FOR } 1 \text { WATT OR } 3 & \text { © EQUIPPED } \\ \text { WATI } \\ \text { WITH RFVOX }\end{array}$
 - TRANSCEIVERS
 THROUGH MODE WHEN TURNED
 This new two stage 144 MHz solid-state linear amplifier has been introduced as a result of the large number of low power transceivers currently available. When used in conjunction with such transceivers this unit will provide an output of 100
 watts. Several front panel mounted switches controlling the switching circuitry allow the unit to be left in circuit at all times. The linear amplifier and the ultra low-noise receive preamp can both be inway maximum versatility and fexibility is this new amplifier with your FT90R, C58, TR 2300 etc. and performance. | 435MHz TELEVISION TRANSMITTER
 FEATURES: - 20 WATTS PSP OUTPUT POWER - 20 WAITS PSP OUTPUT POWER BUILTIN WAVEFORM TEST GENERATOR TWO VIDEO INPUTS - TWO VIDEO INPUTS RX CONYERTER CRYSTALS
 This high performance ATV transmitter consists of a two channel exciter, video modulator and of a two channee exciter, video modulator and a two stage 20 watt linear amplifier. The unit will accept both colour and monochrome signals, and a sync pulse clamp is incorporated to ensure maximum output. An internal pin diode aerial c/o receive connerter when in the receivi mode. switching is included together with an internal waverorm test generator which will assist the user in adjusting the gain and black level controls. |
| £189.00 inc. VAT (P+P ¢2.50) | $£ 69.95$ inc. VAT ($P+P$ £2.50) | f159.95 inc. VAT (P+P ¢ $)$ | f149 inc. VAT ($\mathrm{P}+\mathrm{P} \mathbf{f 3}$) |
| SPACE PERMITS ONLY A BRIEF DESCRIPTION OF THESE NEW PRODUCTS. HOWEVER A FULL DATA SHEET IS
 AVAILABLE FREE ON REQUEST. OTHER NEW PRODUCTS AVAILABLE INCLUDE:-

 | | | |
| | | | |
| ALL MICROWAVE M | MICROWAVE MODULES BROOKFIELD DRIVE, AINTREE, LIVERPOOL L9TAN, ENGLAND CALLERS ARE WELCOME, PLEASE TELEPHONE FIGST | | $\begin{gathered} \text { HOURS: } \\ \text { MONDAY TO FRIDAY } \\ 9-12.30,1-5.00 \\ \hline \end{gathered}$ |

PCB's FOR PW PROJECTS

We supply all the boards for the PW projects from $1978+$ some from before. Here is just some of the most popular and current projects.

WRO68 AF Speech Processor WRO67 Wideband RF Pre Amp WRO 73 Nimbus Transceiver WAD 634 Beginners $2 m$ Convert or WAD 927 SWR Warning Indicator WR 121 HF Converter
WR $103 \quad 70 / \mathrm{cm} 2$ Meter Converter $£ 2.68$ £1.05 $£ 5.50$ £1.38 £1.40 £2.40 WR 140 WR 14

3-Band Short Wave WR142 Converter
WR 131 Audible Field Strength Meter
per set $£ 2.50$

We also supply kits for the most popular boards. Everything we have in stock has a 24 hour turnover.

We are agents for R. S. Components and stockists of VARELCO products. Please 'phone for a quote.
For full list of boards send a 10×8 envelope and stamp.

C Bowes Electronics
28 Stockport Road,
Cheadle,
SK8 2EA.

ONLY

Made in U.S.A.
Explore a new world of short wave listening pleasure with the:-

A.E.A. MBA-RO MORSE/RTTY/ ASCII READER

- SIMPLE CONNECTION TO YOUR RECEIVER VIA SPEAKER OUTPUT.
- 32 CHARACTER FLUORESCENT DISPLAY (NO SEPARATE TV DISPLAY NEEDED).
- AUTOMATIC TRACKING AND DISPLAY OF MORSE SPEEDS TO 99 W.P.M.
- WIDE AND NARROW RTTY SHIFTS.
- 12V D.C. POWER INPUT.
- WELL PROVEN DESIGN - MANY THOUSANDS IN USE. PRICE $£ 175$ inc. ($\mathrm{P} \& \mathrm{P}$ \& ins $£ 2.50$)

A.E.A. ADVANCED MORSE KEYERS

Microprocessor controlled - multiple message memories beacon mode for VHF use - automatic contest serial number generation - programmable speeds - random character training program - SIMPLY THE WORLDS BEST!!

Prices as follows:
KT-2 Keyer/Trainer
$£ 89.00$ inc.
CK-2 "Contester" Memory Keyer $£ 99.00$ inc
MM-2 Morsematic Keyer £119.00 inc.
(Post and packing $£ 2$)
The MM-2 includes all features listed. The KT-2 and CK-2 include subsets.

I.C.S. ELECTRONICS LTD
P.O. Box 2
Arundel, West Sussex BN18 0NX
Tel: 024365590

Please allow 7 days for Delivery

DRESSLER AMPLIFIERS

D to A.T.V.

D70c to 70 cm
150FM 300W SSB £300.00 -300FM 600W SSB £499.00

These are high power 240 V linears using $4 \mathrm{C} \times 150$ or $4 \mathrm{C} \times 250$ or $4 \mathrm{C} \times 350$ Elmac Tubes NOT using the grounded Grid system. Fully protected, no thermal damage to PA finals possible.

EXCLUSIVE
TO US

ICOM

PORTABLES
IC2E FM 2 m
£159.00
IC4E 70 cm
£199.00
IC202 SSB
£169.00
IC402 70cm
£242.00
All accessories available see below

GASFET MASTHEAD PREAMPS

VV70GAAS	$£ 75.00$
VV2GAAS	$£ 40.00$
VV200GAS	$£ 69.00$
VV200GAS	$£ 75.00$

Powered by the linear or with separate ${ }^{\text {ST } 200 ~ 9 d B ~}$ signal to noise; .2dB insertion loss; 3SK97 GASFET.

ICOM ACCESSORIES
 BP5 IIV Pack

£30.50
BP4 Empty case for 6XAA $£ 5.80$ BP3 STA Noard Pk $£ 15.50$ BP2 6V Pack
£22.00
BC30 Base charger $\quad \mathbf{£ 3 9 . 0 0}$ $\begin{array}{lr}\text { DC1 } 12 \mathrm{~V} \text { adaptor } & \mathbf{£ 8 . 4 0}\end{array}$ $\begin{array}{lr}\text { WC19 Mic speaker } & \mathbf{£ 1 2 . 0 0} \\ & \mathbf{~} 12.20\end{array}$ CP1 Mobile Charging load $£ 3.20$ LC1/2/3 cases
ICMLI 10W Mobile booster for 2E
$£ 3.50$
$£ 49.00$
BC30 Base charger $\quad £ 39.00$ MML1 10W Booster
8Y/2M 8 ELE YAGI $£ 15.50$
10Y/2M 10 ELE YAGI £33.00
PBM 10/2M 10 ELEMENT
PARABEAM $£ 39.00$
8XY/2M 8 ELE X YAGI £31.00
X6/2M/X12/70CM DUAL
BAND CROSSED £41.40
MANY OTHERS IN STOCK
TRIO/KENWOOD
TS830S HF Transceiver $£ 690.00$ TS130S HF Transceiver $£ 520.00$ TR8400 UHF Mobile $£ 320.00$ TR9500 UHF Multimode $\mathbf{£ 4 4 5 . 0 0}$ TR7800 VHF mobile $£ 285.00$ TR7850 HP FM 2m £295.00 TR7730 $\mathbf{2 m F M} £ 235.00$ $\begin{array}{ll}\text { TR7730 } 2 \mathrm{~m} \text { FM } & \text { TR9000 } \\ \text { £370.00 }\end{array}$ TR2500 Portable Due In $£ \mathbf{2 0 0 . 0 0}$ PS30 201 amp PSU $£ 85.00$
Many Trio/Kenwood accessories available

LARGE DISCOUNTS ON
ALL YAESU EQUIPMENT
YAESU/SOMMERKAMP
FT1
FT90
FT902DM
FT1012
FT101ZDFM
FT101ZDAM
FI707 200W PEP
FP707 PSU
FL707 ATU
FL707 ATU
FV707DM

$$
\begin{aligned}
& \text { (FV707+ FI707+ FL707 } \\
& \text { SPECIALPRICE POA) }
\end{aligned}
$$

FT27720 Soko all extras inc.
FT7670X Soko all extras inc. FT902DM Soko
FC902 ATU
FV901DM VFO
SP901 Speaker
Y0901P Scope
FTV901 Transvertor
FT208 VHF
FT708 UHF
FT290 Multimode
FRG7700+ Opt memory
All accessories available

ROTATORS ETC

DIAWA
$\begin{array}{ll}\text { DR7600X } & £ 135.00\end{array}$
$\begin{array}{ll}\text { DR7600R } & £ 144.00 \\ & \text { ¢1450 }\end{array}$
DR7500R $£ 105.00$ CN620 1.8 150MHz Pwr/swr $£ 52.00$ CN2002 2.5 kW PEP auto
ATU
KENPRO

KR250

£44.85
CHANNEL MASTER $9502 \quad £ 50.00$ CN620 1.8 150 MHz Pwr/swr \quad £52.00 CN2002 2.5kW PEP auto

ATU $£ 190.00$ CARRIAGE FREE MAINLAND

> DATONG PRODUCTS PCI General coverage convertor PCI Generai coverage conventor FLI Frequency audio/fititer
ASP Auto speech processor
12. Multimode audio fiter AD270 Active receive aerial lindoon As bove A A 270 with PSU AD 370 Active rec. aerial lout As above with PSU A.O370 DC144/28 2 Meter receive convertor $\begin{array}{r}\text { E56.35 } \\ \text { E35.65 } \\ \hline\end{array}$ Keyboard Morse sender
Cadecall selective call unit (switch) $\begin{array}{r}\mathbf{£ 1 2 9 . 0 0} \\ £ 29.32\end{array}$ Cadecall selective call unit (switch)
All above corriage
free.

CUSHCRAFT AMATEUR ANTENNA

 NA

 NA}HF, A3 20/15/10 3 ele ARX 2 Ringo Ranger 6dB
beam 8bD £165.00

ATV3 20, 15, 10 Trapped
vertical $£ 38.30$
ATV5 10.15.20.40.80
Trapped vertical $£ 83.69$
214B 14 ele boomer
$15 \cdot 2 \mathrm{db}$
£55.77
vertical

CS100 Speaker A144.4 ele Yagi | | |
| :--- | :--- |
| | $\mathbf{£ 1 8 . 0 0}$ | A144.7 ele Yagi $£ 22.82$ A144.1 11 ele Yagi $£ 28.94$ $\begin{array}{lll}\text { A144.1 } & 11 \text { ele Yagi } & £ 28.94 \\ \text { ARX2B Ringo Mk11 } & £ 33.00\end{array}$ ARX2B Ringo Mk11 $£ \mathbf{£ 3 3 . 0 0}$

ARB2K Conversion kit RINGO

MICROWAVE MODULES MMA 144 V 2m Preamp \quad E34.90 MML $144 / 40$ RF AMP MML 144/40 MML 144/100S New with Preamp MMT 432/144 2-70 Transverter MMT 28/144 10 m Transverter MM2000 RTTY Receiver $£ 169.00$ MMI Morse Talker MM 4000 RTTY
 WORKING AT OUR SHOP £269.00 + keyboard Full range stocked.

STANDARD

C8800 2 mtr mobile C7800 70 cm mobile C 7870 cm portable C58 2 mtr port. SSB/FM CMB8 Mounting tray Le Carry case

$$
\begin{aligned}
& \text { Caty case } \\
& \text { Barger } \\
& \text { Nicads charger }
\end{aligned}
$$

Set Nicads

 CBP 5825 W linear CBP 7810 W 11.00 Due in soon, new standard mobile 2 mtr Multimode.£250.00
£270.00
£219.00
£239.00
$£ 19.95$
£6.95
$£ 7.95$
$£ 11.00$ Multimode. mobile 2 mt

FULL RANGE OF A.S.P. MOBILE ANTENNAS IN STOCK
$144+10 \mathrm{~T}+\mathrm{Yagi}$ OSCAR $144+20 \mathrm{~T}+\mathrm{Yagi}$

For vertical and horizontal Oscar specials

RECEIVERS ALLON
SPECIAL OFFER

R1000 FRG7700 Kenwood FRG7700 Yaesu $\begin{array}{ll}\text { Search II } & 2 \text { metre }\end{array}$ Sony IC2001 £140.00
 ALL POA
 ARE ON SPECIAL OFFERS

LARGE DISCOUNTS ON ALL YAESU EQUIPMENT - Phone 5561415

RSGB Publications

A Guide to Amateur Radio (18th edn,hardback) $\mathbf{£ 6} 5$
Amateur Radio Awards (2nd edn)...................................£3.4
Amateur Radio Operating Manual (2nd edn)£5.03
Amateur Radio Techniques (7th edn) $\mathbf{E 6 . 2 0}$
HF Antennas for All Locations (new)£6.67
Radio Amateurs' Examination Manual (new 10th edn).£3.42
Radio Communication Handbook (paperback 5th edn). £11.15
RSGB Amateur Radio Call Book (1982 edn)£4. 73
Test Equipment for the Radio Amateur (2nd edn)..........£6.07
Television Interference Manual (2nd edn)1.95
VHF/UHF Manual (3rd edn)
Logbooks
Amateur Radio Logbook ...£2.45
Mobile Logbook..£1.14
Receiving Station Logbook ..£2.72
Wall maps
Great Circle DX Map ..£2.12

QTH Locator Map of Western Europe..............................£1.37
World Prefix Map (in full colour)...£2.23

Other Publications

A Course in Radio Fundamentals (ARRL)£3.24
Active Filter Cookbook (Sams) ..12.71
All About Cubical Quad Antennas (RPI)...........................£2.99
Amateur Television Handbook (BATC)............................£2.39
Antenna Anthology (ARRL)...£3.32
ARRL Electronics Data Book ...£3.60
Beam Antenna Handbook (RPI) ...£4.13
Beginner's Handbook of Amateur Radio (Sams)................ 88.37
Better Short Wave Reception (RPI)..................................£3.42
Care \& Feeding of Power Grid Tubes (Varian)£2.98
CMOS Cookbook (Sams)...£9.70
Design of PLL Circuits (Sams) ..£11.78
Design of VMOS Circuits (Sams)....................................... 8.50
FM \& Repeaters for the Radio Amateur (ARRL).............£3.72
Hints and Kinks for the Radio Amateur (ARRL)...............£3.13
How to Program and Interface Your 6800 (Sams)........£12.80
IC Converter Cookbook (Sams)£11.51
IC Op-Amp Cookbook (Sams) ..£11.87
Knowing your Oscilloscope (Sams) ..
Practical Antennas for the Radio Amateur (Scelbi)£8.10
Radio Amateur Callbook (1982 DX Listings)£14.42
Radio Amateur Callbook (1982 USA Listings)£14.61
Radio Amateurs Handbook 1982 edn (ARRL).................. $\mathbf{£ 8 . 9 0}$
Radio Frequency Interference (ARRL)£2.69
RTTY the Easy Way (BARTG) ...£1.14
SCRs and Related Thyristor Devices $\mathbf{8} .99$
Simple Low-Cost Wire Antennas (RPI)............................£2.92
Single Sideband for the Radio Amateur (ARRL)£3.32
Solid-state Basics (ARRL) ..£3.93
Solid-state Design for the Radio Amateur (ARRL)55.64
The ARRL Antenna Book (new 14th edn)........................£8. 10
The Cheap Video Cookbook (Sams)................................. 55.47
The Complete Handbook of Slow Scan TV (Tab)............ $\mathbf{£ 6 . 3 7}$
The 8080A Bugbook (Sams) ...£9.59
Understanding Amateur Radio (ARRL)£4.14
World Atlas (RACI)..£1.91
World Radio TV Handbook (1982 edn)£11.15
80 m DXing (CTI).
..£3.12
6809 Microcomputer Programming (Sams)£10.89
8085A Cookbook (Sams)..£11.34
Prices include postage, packing and VAT where applicable. Postal terms: cheques/POs with order (not stamps or book tokens). Goods are obtainable (less P \& P) at RSGB HQ, $10 \mathrm{am}-4 \mathrm{pm}$, Monday - Friday. PLEASE ALLOW UP TO 28 DAYS FOR DELIVERY.
The RSGB is the national society representing all UK radio amateurs and membership is open to all interested in the hobby. including listeners. The Society also publishes a complete range of books, log books and maps for the radio amateur. Contact the membership services section for more information about amateur radio, the RSGB and its publications.

SYNTHESISED SCAN - AIRIMARINE ETC
SX200N - The ultimate scanner for 32,000 channels covering $26-88$, $108-180$,
$380-514 \mathrm{MHz}$ AM and FM, 16 memory channels, 2 speed scan, 3 squelch modes + 380.514 MHz AM and FM, 16 memory channels, 2 speed scan, 3 squelch modes +
Digital Clock display. Listen to $10 \mathrm{~m}-70 \mathrm{~cm}$ Amateur, Aircraft, and Marine Bands 240 V Digital Clock display. Listen to $10 \mathrm{~m}-70 \mathrm{~cm}$ Amateur, Aircraft, and Marine Bands 240 V
a.c./12V d.c. supply. New version with improved fitters etc. ALL FOR ONLY £264.50.

MEDIUM WAVEISHORT WAVE

 Trio R-600 is a new high class general coverage receiver covering 30 bands between150 kHz and 30 MHz with a PLL synthesiser. Digital display readout (1 kHz resolution) 150 kHz and 30 MHz with a PLL synthesiser. Digital display readout (1 kHz resolution) provided for easy and accurate tuning. The R-600 also includes three if fitters, RF ATF
and tone control, etc to ensure the best receiving conditions for each mode 240 V and tone control, etc to ensure the best receving
AC/12V DC supply. Catronics Price Now Only 2235.
Trio R-1000 - similar to R-600 but has built-in digital clock which may also be used as auto-timer. Also features additional anolog display for easy tuning and 4 position RF attenuator switch. Catronics price $\mathbf{£ 2 9 7 . 0 0}$.

AIRBAND (VHF)

| Signal R517 portable, fully tuneable 118 to | Signal R528 portable, crystal controlled |
| :--- | :--- | :--- |
| 143 MHz | | 143 MHz with provision for 3 crystals channels, with scanning. High perfor(extra) $1.8 \mu \mathrm{~V}$ sensitivity. Fine Tuning con- \quad mance, pocket size. Only $£ 89.50$ trol, Telescopic aerial. Catronics Price £49. crystals $\mathbf{f 2 . 8 0}$ ea.

MARINEIAMATEUR (VHF)

Search SR9 fully tuneable coverage $+\mid$ Lowe DS10 portable, 10 crystal controlled provision for 11 crystals. Fine tuning and channels automatically scanned. Squelch controls. 12V dc supply. A Rechargeable batteries \& charger Squelch controls. 12V dc supply. A
proved favourite and EXCELLENT VALUE $\begin{aligned} & \text { Rechargeable batteries \& charger } \\ & \text { included. Telescopic aerial } \mathbf{£ 7 5}+\text { crystals }\end{aligned}$ proved favourite and EXCELLENT VALUE

Additional crystals for above receivers: Airband \& Marine $£ 2.80$; Amateur $£ 2.50$.
All prices include VAT but add carriage: Mains receivers, $£ 5.50$; others $£ 1.50$.
Mail orders normally dealt with same day.
Goods may now be ordered via PRESTEL; use MALBOX account 016696701 or pay by Barclaycard, Trustcard, Visacard, Access, Eurocard, Master charge, etc.; cash cheque, H.P. or Catronics Credit Card.

Walkie-Talkies from $\mathbf{£ 1 9 . 9 5}$. Mobiles from $\mathbf{£ 3 9 . 9 5}$. Ask for details.
COMMUNICATIONS HOUSE (Dept 280) 20 WALLINGTON SQUARE, WALLINGTON, SURREY, SM6 8RG.
Tel. 01-669 6700 (9 a.m. to 5.30 p.m. Sat 12.45) Closed funch 12.45-1.45.

COMMUNICATION CENTRE OFTHENORTH

The largest range of communications equipment available in the North. Full range of receivers, transceivers, antennas, power supplies, meters. Ali tubing - wall brackets etc.
We are the only official TRIO stockists in the North West. Full range of equipment on display. Guaranteed after sales service.
We can offer a full range of receiver from the SR9 2 m $\mathbf{£ 4 6 . 0 0}$ to the Drake R7 at $\mathbf{£ 9 8 9}$ and the NRD515 at $£ 985.00$.

RECEIVERS

TRIO R1000 Solid State Receiver 200 KHz to $30 \mathrm{MHz} \mathbf{£ 2 9 7 . 0 0}$. TRIO R600 Solid State Receiver 150 KHz to $30 \mathrm{MHz} \mathbf{£ 2 3 5 . 0 0}$. Yaesu FRG7 Solid State Receiver £199.00. Yaesu FRG7700 Solid State Receiver $£ \mathbf{3 2 9 . 0 0}$.
For the caller a wide range of Aluminium Tubing, Clamps, etc. at competitive prices, i.e. $12^{\prime} \times 2^{\prime \prime} \mathrm{Ali}$ Tubing $£ 12.75$.

+ VHF - Aircraft Band Converters and Receivers.
Part Exchanges welcome. Second hand lists daily. Send S.A.E. for details of any equipment. HP terms. Access/Barclaycard facilities.
Open 6 days a week. 24 Hour Mail Order Service.
Phone 0942-676790.
Stephens James LTD.
47 WARRINGTON ROAD,
LEIGH, LANCS. WN7 3EA.

Lee Flectionics itt

2 METRE FM/SSB Portable/Mobile
 \star LCD display for low battery consumption

$\star 100 \mathrm{~Hz} / 1 \mathrm{KHz} / 25 / 12.5 \mathrm{KHz} / 5 \mathrm{KHz}$
\star Five programmable memories
\star Rit control for accurate ssb resolution
\star Effective noise blanker
\star Repeater and reverse repeater off-set
\star A full one watt R.F. Power
\star Automatic or manual tone burst
\star Full scanning facilities
\star Large range of optional accessories
\star Up/Down scan control on the microphone
\star Now available 25 Watt amp £79.95

£245.00

teLECOM TC9000 MK II CB RIG NOW IN STOCK
$\mathbf{£ 9 7 . 5 0}$ inc VAT \& Postage

We have improved and enlarged our workshop facilities to provide a better service for our customers.

AUTHORISED (D) ICOIVI YOUR OFFICIAL SOMMERKAMP IMPORTER DEALER
 WELZ BRIDGES IN STOCK

HF	Lôök SPECIAL PRICES			VHF

FT 290R 2 m all mode portable transceiver
FT 480R $£ 239$
FT $780 \quad 70 \mathrm{cms}$ version
Sommerkamp SC 1 base station console for 4838

780

FI ${ }^{780}$ 208RE 2 m Hand portable transceiver
FT 708RE 70 cms version of above
FT207 SPECIAL OFFER
FT 230 R **NEW** 25 W 2 m FM mobile $\mathrm{f}_{\mathrm{f} 159}$
TS 280 **NEW VERSION** 144-148 12125
output $£ 229$
FT 725 FM mobile. SPECIAL OFFER

LÖỎK SPECIAL PRICES

2m AMPLIFIERS

 FL $2050 \quad(100 \mathrm{~W})$FL 2010 (10W) Specially for use with FT 290 £65

RECEIVERS

FTT90 SOON IN STOCK
We also carry a range of products from other manufacturers such as JAYBEAM, MICROWAVE MODULES, L.A.R., DATONG, CUSHCRAFT etc.
A selection of marine and commercial equipment is also available.

£17.50

40 dB colinear, only
We stock genuine Sommerkamp quality accessories
NT30 12V3A regulated P/S £23 NT60 12 V 3 A regulated P/S £30. YS2000 SWR bridge \& power meter, reads 200 W output from YS2000 SWR bridge \& power meter $1.8-150 \mathrm{MHz} \mathrm{E54}$.

HF
 EQUIPMENT

FT $7 B$ \& YC $7 B$

$\begin{array}{r} \\ \mathbf{E 4 5 9} \\ \hline 85\end{array}$
$\begin{cases}\text { FP } 12 \text { (Matching p.s.u.) } \\ \text { FT } 767 \quad(=F T 707)\end{cases}$
$\mathbf{£ 8 8 3 . 0 0}$
$\mathbf{£ 9 9 . 0 0}$
$\mathbf{£} 99.00$
$\mathbf{£} 499.00$
FT 277ZD mic and CW filter
HF, with scanning
FT 277ZD (=FT101ZD) Sommerkamp unit with everything fitted (AM or FM, you choose)
FT 1 The ultimate in HF transceivers. Supplied with all extras fitted P.O.A.
FL 27TZD HF Amplifier 2 kW
External speakers, VFOs etc are all available

FT102 ALL OPTIONS £779

F Transceiver \& Gen. Cov Receiver
ower Supply for 720A 2M Multimode Base Station
2M Synthesised Compact 25W
Mobile
Mynthesised Compact 25W
M259.00

Mobile	$\mathbf{£ 2 5 9 . 0 0}$		
M Multimode Mobile	$\mathbf{£ 3 6 5 0 0}$		2M Multimode. Mobile
:---			
2M FM Synthesised Handheld $£ 169.00$			
15960			

Soft Cases $\quad £ 3.50$
peaker/Microphone
FT90R 70cms P.0.A.

4-3

wiirrulat

ALL BRITISH MICROPROCESSOR CONTROLLED TERMINAL UNIT FOR CW AND RTTY FEATURING
\star Integral video monitor.

* Professional keyboard with special functions.
\star Real time clock.
\star Three transmit-speeds on each mode.
\star Repeat function on transmit.
\star Character or page mode for transmit.
\star Receive CW speed tracking.
\star Transmit and receive simultaneously.
\star Users callsign programmed as standard.
\star Self check facility.
* Stylish two tone metal cabinet.
£439
(Inc. VAT and Carriage)

Write for full specification to:

POLEMARK LTD.
Lower Gower Road, Royston,
Herts. SG8 5EA.
Tel. ROYSTON (0763) 47874
NOW AVAILABLE . .
\star Printer interface board
$\star 80$ column printer or 40 column on-board printer

あWintek

All components guaranteed full specification.
INTEGRATED CIRCUITS
TAA661B fm if \& detector $\quad \mathbf{0 . 6 0}$
TBA820 2 watt audio amplifier $\quad \mathbf{0 . 5 0}$
DS8871 8 digit led cathode driver 0.25
CD4007 cmos dual comp. plus inv. 0.10
DS8874 9 digit shift i / p led driver 0.27
DISPLAYS
TIL313P $0.3^{\prime \prime}$ red led $\quad \mathbf{0 . 5 0}$
NSA1298 9 digit red led array $\quad 0.45$ NSA1582 8 digit red led array $\quad 0.40$
FG95A 9 digit green fluorescent $\mathbf{0 . 5 0}$
C.R.T.
A.E.G. DS 100W $2^{\prime \prime}$ crt

P4 phosphor, 35 mW heater $\quad 7.20$
Base for crt 0.25
DIODES
BB109 vhf varicap $5-30 \mathrm{pf} \quad \mathbf{0 . 1 5}$
MPN3404 pin vhf \& gp switching 0.10
C6V8 Ferranti $6.8 \mathrm{v} 5 \%$ zener $\mathbf{0 . 0 7}$
TRANSISTORS
BFR79 pnp Super Select (T092) 0.16 PN2222 npn general purpose (T092)0.06 SWITCHES

FUSEHOLDER

Panel mount, $1 \frac{1^{\prime \prime}}{}$ fuse
BATTERY HOLDER Hold $4 \times$ C size cell (SP11, HP11, MN1400 etc) 0.10
CAR CIGARETTE ADAPTOR
 lead 1.5 mm power-in
plug
0.10

CAPACITORS
High voltage tubular
$0.022 \mu \mathrm{~F}$ 1500v (Plessey)
$0.022 \mu \mathrm{~F} 2000 \mathrm{v}$ (Sprague)
Aluminium Electrolytics
$1 \mu \mathrm{~F} 100 \mathrm{v}$ radial
0.16
0.20
$1.5 \mu \mathrm{~F} 16 \mathrm{v}$ radial
$3.3 \mu \mathrm{~F} 63 \mathrm{v}$ radial
$33 \mu \mathrm{~F} 10 \mathrm{v}$ radial
$47 \mu \mathrm{~F} 16 \mathrm{v}$ radial
0.07
0.08

Ceramic Plate
$15 \mathrm{pF} 2 \%$
$33 \mathrm{pF} 2 \%$
$33 \mathrm{pF} 20 \%$
100pF 20\%
$1.8 \mathrm{nF} 10 \%$
$4.7 \mathrm{nF} 10 \%$
4.7nF 10\%
$0.02 \mu \mathrm{~F}$ ZK3 disc
0.1μ F Siemens ZDGU $\quad 0.60 / 10$
Trimmer Capacitor
Polar $0.5-2 \mathrm{pF}$ uhf ceramic
0.15 RESISTORS
Fixed $\mathrm{WW} 5 \mu$ carbon film
$56 \mathrm{R}, 180 \mathrm{R}, 12 \mathrm{~K}, 22 \mathrm{~K}, 56 \mathrm{~K}, \quad 0.50 / 100$ $470 \mathrm{~K}, 560 \mathrm{~K}, 10 \mathrm{M}, 15 \mathrm{M}$ (single value) Preset Horizontal
250R, 470R, 500R, 2K5, 0.30/10
$10 \mathrm{~K}, 22 \mathrm{~K}, 250 \mathrm{~K}, 1 \mathrm{M} \quad$ (single value)
Preset Vertical
Preset Vertical
$470 \mathrm{R}, 1 \mathrm{~K}, 2 \mathrm{~K} 2,22 \mathrm{~K}, \quad 0.30 / 10$
$47 \mathrm{~K}, 470 \mathrm{~K}, 10 \mathrm{M}$
(single value)

FERRITE CORE

Siemens 015 Cube Core with
former \& clamp T26 material,
AL400
0.47

SPECIAL OFFERS
Calculator ics, 8 function plus memory Mostek types MK50315, MK50321.
0.25 each

Approx 1000 mixed value preformed
resistors all $\frac{1}{2} \mathrm{~W}$. 2.0 per pack
TERMS: Cash or cheque with order. Please add 60 p per order $p \& p$. All components sold subject to availability. Orders normally despatched within 48 hours of receipt. Large quantity discount 10% on orders over $£ 100, \mathrm{p} \& \mathrm{p}$ free.
MAIL ORDER ONLY TO: Wintek Electronics, 39 Southgate Street, Winchester, Hants SO23 9EH.
Callers by appointment

WATERS \& STANTON ELECTRONICS

18/20 MAIN ROAD, HOCKLEY,
ESSEX. TEL (0702) 206835

THESE BOOKS FREE!

When you purchase one of these 3 short

 wave receivers.These two books entitled "Better Short Wave Listening" and "Simple Low Cost Wire Antennas" provide a mine of information to the short wave listener. Among the subjects covered are:- how receivers work and how to get the best performance, eavesdropping on the world, DX reception, Mysterious radio signals from outer space, plans to communicate with other worlds, simple low cost antennas, how to build efficient antennas for almost any location: etc etc. These two books are available to all our customers for 58 post free but to purchasers of any one of the three receivers below they will be sent free of charge.

SHORT WAVE RECEIVERS - WE STOCK THE LOT!

If you're a beginner just starting out in radio you'll be delighted with the performance that the R600 offers you. Considering the electronics that are packed into this receiver, the price is remarkably low. A few years
ago this performance would have cost you twice as much. Full digital readout and really simple tuning in of SSB signals makes this one of the few top receivers that the beginner should consider. With all the gloom and doom one hears about in the news these days, why not put a pair of headphones on your head, gloom and doom one hears aboutin the news these days, why not put a pair of headphones on your head, Australian outback or the flying dork radio amateur expeditions on some remote Pacific island signals Australian outback or the flying doctor, radio amateur expeditions on some remote Pacific island, signals from Russian amateurs or young American novices, the latest World news even before the BBC reports it, aircraiver. So don't delay, shypping distress frequencies; all receiver. So don't delay any further, send today for full details and introduce yourself to an exciting new hobby.

Sony are well known for the innovations and the new ICF2001 is no exception. This receiver covers the full
spectrum from 200 kHz to 30 mHz plus the FM broadcast band. The clear LCD display gives precise fre- 19 quency readout to 1 kHz and the set has six memories for storing popular frequencies. Its diminutive size and complete portability means you can take it anywhere. Powered from internal dry cells it is just as happy on an executive desk as it is in the radio shack. The telescopic aerial gives very creditable performance together with built in aerial tuner. Plug in the external aerial and the World is at your finger tips. It handles both SSB and AM signals and with excellent FM reception can equally double as a domestic receiver. The dual speed electronic tuning and fine tune vernier control make this set a remarkable package at a price that is quite amazing. As the only officially appointed amateur radio Sony dealer in the UK we can give you the kind of after sales service that has made us second to none

FREE 24 HOUR SECURICOR DELIVERY ON ALL THESE RECEIVERS

£329
The FRG7700 is for the advanced listener or for the enthusiast who demands the best in short wave reception. The receiver covers the complete spectrum 200 kHz to 30 mHz with a highly accurate digital display. The receiver offers excellent sensitivity and selectivity and has separate detectors for AM, FM and SSB, plus switched bandwidth on AM. Other controls include automatic gain control, noise blanker, attenuator, squelch, rf gain control and clock with timer. There is also facilities for fitting an optional 12 tuner to go with it. And if you are interested in VHF, there is a complete range of specially designed converters to go with the receiver that covers the amateur, aircraft and marine bands, etc. Why not send today for our coloured brochure and get to know more about what the FRG7700 has to offer.

- - - AND REMEMBER -
 EVERY RECEIVER WE SELL IS BENCH TESTED TO SPECIFICATION SO DON'T TAKE RISKS - - - COME TO SPECIALISTS - - - WHERE SATISFACTION COUNTS
 LEARNING MORSE?
 HERE'S A SPECIAL OFFER
 NEW AIRBAND MONITOR!

720 channels Rechargeable batteries £129 inc. VAT

The ATC720 will revolutionise air band monitoring. At the flick of a switch you can immediately dial up any one of the 720 VHF aircraft channels. In fact, it works just like the receivers built into the pilots cockpit. This means no more wondering whether you are tuned to the right frequency. The clear, white on black thumbwheel digits give instant confirmation of the channel frequency and the drift-free performance of the circuitry ensures that it will stay spot on channel indefinitely.
A new high sensitivity circuit ensures that even the weakest of signals can be copied and there is an external aerial socket so that it can be used indoors as a base station monitor. Extensive fatigue-free monitoring is possible using the squelch control setting and a built-in earphone socket provides for private listening. Included with the set is a flexible rubber antenna, rechargeable batteries and AC mains charger.

Available early October.

We've put together a complete package for anyone wanting to learn morse. It's based around the now famous Datong electronic morse tutor that we recommend as the best on the market. Add to this our special top grade morse key that plugs straight into the Datong D70 for sending practice plus our free copy of the RSGB morse code manual and you have a real bargain. Price $\mathbf{£ 6 5 . 9 5}$ ($\mathbf{p} \& \mathrm{p} £ 1.50$).

GLOBAL AT1000 ATU

£32 р8я $£ 1.75$

The Global AT1000 is the answer to top class reception. It's designed to perfectly match the aerial to any short wave receiver. We recommend this an accessory you should not be with out.

(0702) 206835 or 204965

Dear Customer,

Thank you for taking the trouble to read our advert. Our company are specialists in the field of amateur radio and short wave listening and was established 10 years ago Our reputation for friendly service has helped us become one of the best known names in the business. I personally have held an amateur radio licence for 22 years and both myself and my staff will be pleased to advise you on your requirements. We have huge stocks of equipment to choose from and can normally supply most brands from stock. All equipment can be demonstrated on the air and if you can visit us you will be made very welcome. If you are unable to visit us then please take advantage of our fast mail order service where you can place your order by telephone or post. Our latest summer catalogue is yours for the asking. I look forward to hearing from you. Orders normally despatched by return.

PETER WATERS

MAIL ORDER SLIP: to Waters \& Stanton Electronics, 18-20 Main Road, Hockley, Essex.
Please supply
Name \& Address

With Heathkit, you're all set for a great deal. And not just big savings.

Whichever kit you choose, you'll find it easy to build. Simple, but detailed instructions take you through every stage. Everything is included. Even the solder you need
 is there.

Follow the steps and you'll end up with a handcrafted, well-designed
piece of equipment. One you'll be proud
of. Because you built it yourself.
There are 10 great kits to start you off. An interesting choice of kits from a digital clock to a metal locator, including a short wave listener's receiver, windspeed and direction indicator, digital readout electronic scale and five more useful kits.

All at 30\% off to first-timers. Send for your catalogue right now for a start.

Hexin Youbuildonourexperience HEATHKIT

Get the Most from your VHF equipment with a PACKER COMMUNICATIONS VHF/UHF ANTENNA TUNING UNITS

IMPROVE YOUR V S W R !
We are often asked, 'Why and ATU at VHF?', well for exactly the same reason that apply at HF.
(1) Antennas are rarely 50Ω.
(2) Their VSWR is never constant across the band from CW, through SSB \& FM, to satellites.
(3) Many modern rigs are VSWR protected. Even a slight increase in VSWR can cause a dramatic loss in output.
(4) Roatation of a beam can cause reflections from nearby objects

Many customers are experimenting with long wires and with our AT-145Z (built-in balun) feeding rhombics, Vees and G5RVs. For mobile our AT-145B incorporates a LW/MW splitter to allow BC reception from your 5/8s. Try loading an ordinary car aerial if you have a vandalism problem.

$$
\text { USE FIXED OR MOBILE MATCHES } 50-10 / 500 \Omega 500 \mathrm{~W}
$$

AT-145 £22.85 SO-239 standard. N or BNC £23.75
AT-145Z $\mathbf{E 2 9 . 4 5} \quad$ SO-239 plus terminals for built-in balun.
AT-145B E27.35 SO-239 plus 1 m coax with car-radio plug.
AT-70 $\quad \mathbf{2 4 . 5 5}$ Any connector to order, see you on 4 ml
AT-432 £28.80 N standard, others to order, ideal for ATV.
YOU MUST HAVE A WAVEMETERI Over two thousand of our WM-2 two meter wavemeters are now in use.
They cover $130-300 \mathrm{MHz}$, well past the second harmonic demanded by the Home Office, and are VERY sensitive. $\mathbf{7 2 . 4 5}$
WM-4 for 4 m , similar to WM-2 and the same price.
WM-7 for $70 \mathrm{~cm} 400-900 \mathrm{MHz} £ 24.35$.
NEW... NB-52 Noise Bridge. Due to many requests we have just produced this versatile piece of test gear. With a general coverage receiver you can measure impedance from $1-250 \mathrm{MHz}$. Calibrated $15-120 \Omega \mathrm{SO}-239, \mathrm{~N}$ or BNC. Makes antenna adjustments simple, and WITHOUT a VSWR meter. $£ 34.25$.
adjustments simple, and $2-X Y$ POLARISATION SWITCH for XY antennas. Gives Vert, Horiz, righthand and lefthand polarisation. $\mathbf{£ 3 4 . 4 5}$. With built-in antenna tuner $£ 44.95$

Access - Visa - American Express Cards welcome. Order by phone.
OLD STATION, CONISTON, CUMBRIA LA21 8HQ. 09664-678

5020A $1 \mathrm{~Hz}-200 \mathrm{KHz}$ Function Generator $203331 / 2$-Digit L.C.D. Hand DMM 365-S Protoboard
LP-10 10 MHz Logic Probe
8110A 100 MHz 8 -Digit Frequency Meter 8610B 600 MHz 9 -Digit Frequency Meter

8000B 1 GHz 9 -Digit Frequency Meter PSC-65 600 MHz Prescaler AT-001 $\times 1$ Passive Probe AT-010 $\times 10$ Passive Probe AT-110 $\times 1: \times 10$ Passive Probe (Switchable)

Also Oscilloscopes $15-30 \mathrm{MHz}$ Single or Dual trace.
Test our low priced test equipment. It measures up to the best. Compare our specs and our prices-no-one can beat our price/performance ratio.

Illustrated brochure and price list from:
BLACK STAR LTD
9a Crown Street, St. Ives, Cambs. PE17 4EB
Tel: (0480) 62440. Telex: 32339

BHPAK BARGANS

5121 SCREWDRIVER SET

6 precision screwdrivers in hinged plastic case Sizes -08.14 .224 29 and 38 mm £1.75

5731 NUT DRIVER SET

5 precision nut drivers in hinged plastic case
With furning rod
4.45 and 5 mm ع1.75

ST41 TOOL SET

50 recision instruments in minged plastic case Crosspoint (Phillips' screwdrivers HO Ono H I Hex key wrenches -
152 and 2 mm £1.75
5tbl WRENCH SET
5 precision wrenches in hinged plastic case Sizes -4.45 .5 .55 and $6 \mathrm{~mm} \mathbf{£ 1 . 7 5}$ BUY ALL FOUR SETS $5121-5151$ and get HEX KEY SET FREE HEX KEY SET ON RING Sizes 15.2.25. 3 4. 5.55 and 6 mm Made ot hardened steel $H X / 1 £ 1.25$
"IRRESISTABLE RESISTOR BARGAINS'

 $5 \times 12 \quad 200$ Resistor

200 4 watt Carbon Ressitors
5×14150
$5 \times 15 \quad 100 \quad \begin{gathered}2 \mathrm{~m} 2 \text { Mixed } \\ 1 \text { and } 2 \text { mat }\end{gathered}$
anm 2 m 2 Mired
Paks $5 \times 12-15$ contan a range of Cabon Film Resustons of assorted values from 22 ohms to 22 mea Save pounds on these ressistor paks and hare a full range to cover rout projects
-Quantities approumate. count by weight
25 pieces of Audio Plugs. Sockets and Con${ }_{36} \mathrm{Pin}^{\text {n }}$, Speakers. Phor tude bin $180^{\circ}-240^{\circ}$ Inline 36 Pin, Speakers. Phono. Jack Stereo
and Monoetc Valued at well over $£$ normal Order No. SX25. Guaranteed to save you money.
SX26 3 Prs of 6 pin 240° DIN Plugs and
SX27A 60 Assorted Polystyrene Bead Capacitors Type 9500 Series PPD SX28A 50 Assorted Silver Mica Caps. Sx2ga $5.6 \mathrm{pF}-150 \mathrm{pF}$
SX29A 50 Assorted Silver Mica Caps. $180 \mathrm{pF}-4700 \mathrm{pF}$
SX30A 50 High Voliage Disc Ceramics 750v min up to 8 KV Assorted useful values $£ 1.00$ SX31A 50 Wirrewound 9 watt (avg) Resistors Assorted values 1ohm-12K

MINI VICE
This small cast ron quality made vice will clamp on to any bench or table having a max thickness of $1 /{ }^{\prime}$ " The $21 / \mathrm{c}^{*}$ 1aws open to max of $1 \% \%^{\circ}$ Approx size $80 \times 120 \times 66 \mathrm{~mm}$ Br-Pak's Mini Vice at

ORDER NO SXB2

BI-PAK SOLDER
 DESOLDER KIT

Kit COMORISes ORDER NO SX80
1 High Ouality 40 watt General Purpose Lightweight Soldering Iron 240v mans $\left.3 / 16^{-1} 147 \mathrm{~mm}\right)$ bil
1 Ouality Desoidering pump High Suction wit automatic ejection Knurled. anti-corrosive casing and telion nozzie
15 metres of De-soideting braid on piastic dispenser
$2 \mathrm{yds}(183 \mathrm{~m})$ Resin Cored Solder on Card 1 Heal Shunt tool tweezer Type
Total Retail Value over $£ \mathbf{1 2 . 0 0}$ OUR SPECIAL KIT PRICE £8.95

If TheThird and Fourth Hand...

 allached to rod ends Six ball \& socket joints give infinite variation and positions through 360° also available attached to Rod a $21 / 2$ diam magnitier giving $25 \times$ magnitication Helping hand unit available with or without magnitiet Our Price with magnitier as illusitated ORDER NO T402 £5.50 Without magnifier ORDER NO T400 £4.75
BI-PAK PCB ETCHANT

AND DRILL KIT
Complete PCB Kit comprises
1 Expo Mini Drill 10 . O00RPM 12v OC inci 3 collets \& $1 \times 1 \mathrm{~mm}$ Twist Dit
I Sheet PCB Transters $210 \mathrm{~mm} \times 150 \mathrm{~mm}$. 1 Etch Resist Pen
1/1/b pack FERRIC CHLORIDE ctyslals 3 sheets copper clad board 2 sheets fibreglass copper clad board Full instructions tor making yout own PC boards
Retarl Value over £15.00
OUR BI.PAK SPECIAL KIT PRICE $£ 9.75$ ORDER NO SX8:

TECASBOTY

The Electronic Componenis and Semiconductor Bargain of the Year A host of Electronic components including potentiometers - rotary and slider, presets - horizontal and vertica Resistors of mixed values 22 ohms to $2 \mathrm{M} 2-1 / 8102$ Watt A comprehensive range of capacitors including electrolytic and polyester types plus disc ceramics etcetera Audio plugs and sockets of various types plus switches, fuses, nealsinks, wire, nuts bolts. gromets, cable clips and tyes, knobs and P.C Board. Then add to that 100 Semiconduitors to include transistors, diodes. SCR's opto's, all of which are current everyday usable devices. In aH a Fantastic Parcel No rubbish all identiliable and valued in current catalogues at well over $£ 2500$. Out Fight Against Inflation Price -

- Beat the Budget JUST £6.50.

5

BHPAK

Send your orders to Dept PWIO BIPAK PO BOX 6 WARE HERTS TERMS: CASH WITH ORDER SAME DAY DESPATCH. ACCESS. BARCLAYCARD ALSO ACCEPIED TEL OS20) 3182 GIRO 3 7 700
Add 15\% VAT ANO 75p PER ORDER POSTAGE AND PACKING

"CAPABLE

 CAPACITORPAKS'| Pal Mo. | Ots | De | |
| :---: | :---: | :---: | :---: |
| SX16 | 250 | Capacitors Mixed Iypes | $f 1$ |
| SX17 | 200 | Ceramic Capacitors Minature Mixed | |
| S 518 | 100 | Mured Ceramics Ipt 56pl | ¢1 |
| 5×19 | 100 | Mixed Ceramics $68 \mathrm{pl} \cdot 0.5 \mathrm{mf}$ | ¢1 |
| 5 $\times 20$ | 100 | Assorted Polyestet/Polystrrene Capacitors | e |
| S 21 | 60 | Mised C280 type capacitors metal forl | I |
| S $\times 22$ | 100 | Electiolytics, all sorts | 5 |
| 5×23 | 50 | Quality Electrolytics 50.1000 ml | 1 |
| 5×24 | 20 | Tantalum Beads, mixed | 1 |

BARGAINS

Sx91 $20 \times$ large $2^{\prime \prime}$ RED LED Sx42 20 small 125 Red IED's SX43 10 Rectangular Green LED's ? SX46 30 Assorted Zener Diodes 250 mm .2 watt mixed voltages. all coded New
4 Black Instrument
Knobs-winged with pointer L4. Standard screw fit size 29x 20 mm
SX49 20 Assorted Slidet Knobs Black/Chiome etc
sixso 12 Neons and Filament Lamps. Low roltage and mairs - various types and colours - some panel mounting

a^{1}

SX52

6 Black Heatsunk will tht T0-3 and 10.220 Ready drlled Hall price value
SX53 | Power finned Heatsink This heatsink gives the greatest possible heat dissipation in the smallest space owing to :ts unique tagered hon design pre dulled $10-3$ Suze 45 mm squatex 20 mm high 40 SX54 $\quad 10.66$ sire $35 \mathrm{mmx} 30 \mathrm{mma} 12 \mathrm{~mm} \quad 35 \mathrm{p}$ SX55 I Heat Efficiency Power Finned Heatsink $90 \mathrm{~mm} \times 80 \mathrm{~mm} \times 35 \mathrm{~mm}$ High Duilled to take up to $4 x$ 0.3 dences $\$ 1.50$ each

PROGRAMMABLE UNIJUNCTION TRANSISTOR "PUT" case T0106 plastic MEU22 Similar to

2N6027/6028 PNPN Silicon Price: 1.9 $10-49 \quad 50-99 \quad 100$. | Price: 1.9 | $10-49$ | $50-99$ |
| :--- | :--- | :--- |
| Each: 20 p | 18 p | 15 p | Normal Retai SX33A 6 small (min (SDST/SPDT Toggle SX35A 6 small (min) Rocker Switches ${ }^{\text {fle }} 1.00$ -32-240v5amp

5nckets and adaptors. 2.5 m ,
 $£ 1.00$ ture: s out ol spec on volts or gain You test.
SX72 A mixed bundle ol Copper clad $£ 1.00$ Board Fibre glass and paper Single and double sided. A $\begin{array}{ll}\text { fantastic bargain } & £ 1.00\end{array}$

SX38 100 Silicon NPN Transistors-all perfect Coded mixed types with data and eqvi sheet. No rejects. Real value.
SX39 100 Silicon PNP Transistorsall perfect. Coded mixed types reiects. Fantastic valuet. ejecis. Fantastic value. $£ 3.0$ 2 M3055 The best known Powet Iransist
World - 2 N3055 NPN 115 Our B1.PAK Special Offer Price 10 off 50 off 100 ot $\begin{array}{lll} & £ 3.50 & £ 16.00 \\ & £ 30.00\end{array}$
B0312 COMPLIMENTARY PNP POWER TRANSISTORS: TO 2N3055.
Equivalent M12955 - 80312 - T03 SPECINL PRICE 50.70 anch 10 of 56.50

BRAND NEW LCD DISPLAY MULTITESTER. RE 188 m
LCD 10 MEGOHM INPUT IMPEDANCE

- 3 \% digit * 16 ranges plus hFE test tacility to PNP and NPN transistors *Auto zero, auto polarity ${ }^{*}$ Single-handed. pushbutton operation *Over range indication * 125 mm ($/ 2$ - -nch) large :CD readout * Dioue check -Fust circuil protection * Test leads. Dattery and instructions included
Maxindication 1999 or - 1999
Polarity indication Negative only Positive readings appeat without + sign
Input impedance 10 Megohms Zeroadjust Automatic Sampling time 250 milliseconds Temperature tange $-5^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ Power Supply $1 \times$ PP3 or equivalent $9 v$ Consumption battery Size $\quad 155 \times 88 \times 31 \mathrm{~mm}$ RANGES
DC Vollage 0.209 mV
0-2.20-200-1000V Acc 08% AC Voltage $0-200 \cdot 1000 \mathrm{~V}$
Acc 12% DC Current 0.200uA 0.2-20.200mA 0-10 A Acc 12 Resistance $0 \cdot 2-20-200 \mathrm{~K}$ ohms 0.2 Megohms Acc 1%

BI-PAK VERY LOWES! POSS PRICE
£35.00 each

\section*{SINGLE SIDED FIBREGLASS BOARD
 | Order Mo. Pieces Size | Sq.Ins. | Price | | |
| :--- | :--- | :--- | :--- | :--- |
| FB1 | 4 | $9 \times 2 y^{\prime \prime}$ | 100 | $£ 1.50$ |
| FB2 | 3 | $11 \times 3^{\prime \prime}$ | 100 | $£ 1.50$ |
| FB3 | 4 | $13 \times 3^{\prime \prime}$ | 156 | $£ 2.00$ |
| | | | | |
| DOUBLE SIDED FIBREGLASS | | | | |
| BOARD | | | | |}

FB4 $214 \times 4^{\prime \prime} \quad 110 \quad$ £2.00 SILICON POWER TRANSISTORS -703
NPN like 2N3055 - but not full spec 100 watts 50 V min.
0 for $£ 1.50$ - Very Good Value OOS of uses - no duds

5 watt (RM8) Audio Amp

High Quality audio amplifier Module Ideal for use record players. tape recorders. stereo amps and cassette players. etc full data and bach-up ciagrams with each module
Specilication

- Max Power Supply 30v • Power Output 5 watts RMS - Load Impedance 8-16 ohms - Frequency response 50 Hz to $25 \mathrm{KHz}-3 \mathrm{db} \cdot$ Sensitivity 70 mv or full output • input impedance 50 k ohms \bullet Size $85 \times 64 \times 30 \mathrm{~mm} \cdot$ Total Harmonic
distortion less than -5%
-PAK'S give away price
£2.25
Yew could not Build one
lor this price.

MORE BARGAINS!

SX51 60 metres PVC covered Hook. up wire single and stranded. Mixed colours.
SX58 25 Assorted TTL Gates 7400
$\begin{array}{ll}\text { SX59 } & \text { Senes. } 7401.7460 \\ 10 \text { Assorted flip Flops and MSI }\end{array}$
Sx60 20 Assorted Slider
SX62 40 Assorted Ple-Sets Hot/Vert
SX62 40 As
SX79 10 Reed Switches - glass type 3 Micro Switches - with levet

Use rour credit caid Ring us on Ware 3182 NOW and eft rour ader eren laster Goods nomalli, sent ?nd Ciss Mall
Remember row must ado val al is - 10 rowi ordet
Toul Pestute ado 75 p oer loul orde

Telephone: 761731 (2 lines) Telex: HAM UK 341928

YAESU
FT ONE
YAESU ULTIMATE HF

YAESU
FT 107
160-10 meter HF

YAESU

FT 208
2 meter Handheld

TS 930S

* DX-TRAORDINARY \star

YAESU

FT 480R
2 meter Mobile Multimode

ALL TRADE ENQUIRIES MOST WELCOME

MON-FRI 9am to 5.30 pm SATURDAY 9am to $\mathbf{1 2 . 1 5} \mathbf{~ p m}$ MAIL ORDER WELCOME

BREIATATD
VISA

THIS ISSUE marks the 50th birthday of Practical Wireless, which we commemorate with a special supplement in our centre pages. Looking back through our archives to select some of the advertisements and editorial that most seem to give the flavour of their era, we've been struck by the continual flow of developments, throughout those years.
It's not always the big things that capture the imagination, and that's as true today as it's ever been. Two recent developments that have appealed to me are small but effective. The first is in the sound channel of TV receivers, a neglected area, where we still put up with mono sound when in hi-fi, in-car-entertainment, and even portable radios and cassette players, we have grown accustomed to stereo all the way (almost). We're not likely to have stereo sound on the conventional TV system in the foreseeable future in the UK, but satellite TV will have the facility as standard. Several TV set makers have started putting stereo sound channels into their newest models in readiness, but how do they persuade the purchaser to part with the extra money when the service isn't there yet?

Ferguson have got round it in their new TX range by adding a pseudo-stereo circuit, called "Supersound", comprising an all-pass filter based on three transistors which delays the right-hand channel content by about $500 \mu \mathrm{~s}$. Not one for the purists perhaps, but it gives a really spacious feeling to some types of mono
programme material. One thing that worried Ferguson was the lack of visual stereo indication-no sub-carrier, so no stereo beacon. So they devised another natty circuit which looks at the content of the two audio channels, and if it finds that one differs from the other over a certain minimum period, concludes it must be "stereo" (pseudo or otherwise) and lights an l.e.d.

The other item that caught my eye was the "talking" transceiver which announced what channel it was set to. This was a CB rig, but there is no reason why the same principle shouldn't be applied to amateur mobile sets. Trying to snatch a quick glance at the channel or frequency indicator, or counting the number of clicks as you move the selector, is always a hairy business when driving. Though I hope they can do something about the voice, I'm sure that the talking rig could be a major contribution to road safety. (Where have I heard that phrase before?)

services

QUERIES

While we will always try to assist readers in difficulties with a Practical Wireless project, we cannot offer advice on modifications to our designs, nor on commercial radio, TV or electronic equipment. Please address your letters to the Editor, "Practical Wireless", Westover House, West Quay Road, Poole, Dorset BH15 1JG, giving a clear description of the problem and enclosing a stamped self-addressed envelope. Only one project per letter please.
Components for our projects are usually available from advertisers. For more difficult items, a source will be suggested in the "Buying Guide" box included in each constructional article.

PROJECT COST

The approximate cost quoted in each constructional article includes the box or case used for the prototype. For some projects the type of case may be critical; if so this will be mentioned in the Buying Guide.

CONSTRUCTION RATING

Each constructional project will in future be given a rating, to guide readers as to its complexity:

Beginner

A project that can be tackled by a beginner who is able to identify components and handle a soldering iron fairly competently. Generally this category will be used for simple projects, but sometimes for more complicated ones of wide appeal. In this case, construction and wiring will be dealt with in some detail.

Intermediate

A project likely to appeal to a wide range of constructors, and requiring only basic test equipment to complete any tests and adjustments. A fair degree of experience in building electronic or radio projects is assumed.

Advanced

A project likely to appeal to an experienced constructor, and often requiring access to workshop facilities and test equipment for construction, testing and alignment. Constructional information will generally be limited to the more critical aspects of the project. Definitely not recommended for a beginner to tackle on his own.

SUBSCRIPTIONS

Subscriptions are available to both home and overseas addresses at $£ 13$ per annum, from "Practical Wireless" Subscription Department, Room 2613, King's Reach Tower, Stamford Street, London SE1 9LS. Airmail rates for overseas subscriplions can be quoted on. request.

BACK NUMBERS AND BINDERS

Limited stocks of some recent issues of PW are available at 95 p each, including post and packing to addresses at home and overseas.
Binders are available (Price $£ 5.00$ to UK addresses, $£ 5.25$ overseas, including post and packing) each accommodating one volume of PW. Please state the year and volume number for which the binder is required.
Send your orders to Post Sales Departmont, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF. All prices include VAT where appropriate.
Please make cheques, postal orders, etc. payable to IPC Magazines Limited.

INSURANCE

Turn to the following page for details of the PW Radio Users Insurance Scheme, exclusive to our readers.

Pu Radio Users Insurance Scheme

Practical Wireless Radio Users Insurance Scheme was devised by Registered Insurance Brokers B. A. LAYMOND \& PARTNERS LIMITED following consultation with PRACTICAL WIRELESS to formulate an exclusive scheme designed to meet the needs and requirements of:
Amateur Radio Enthusiasts - CB Radio Users - Taxi Companies and Fleet Users with Radio Telephones and any individual or company needing cover for communications equipment which is legal to use and properly licensed.

SPECIAL FEATURES

- All Risks Cover
- "New Lamps for Old" Cover (as defined in policy)
- Index Linked Cover to combat inflation
- Licence protection-covers legal costs arising from any breach of your licence conditions - Equipment covered anywhere in the UK, Channel Islands and Isle of Man, but not Northern Ireland and Eire
- Fixed Antennas (Aerials) covered
- Frequency, Power and SWR Meters and similar radio-related test equipment covered
- 30 days cover in Western Europe included Free of Charge
- Absolute Security as this scheme is underwritten by a leading member of the British Insurance Association on the London Insurance Market
- Practical Wireless radio receiver and transmitter projects covered (when stated in feature)
- Available to Clubs and Organisations ${ }^{\dagger}$
- Available to Companies ${ }^{+}$
+Write directly to B. A. LAYMOND \& PARTNERS LTD, 562 North Circular Road, London NW2 70Z, for a special application form and full details, enclosing the coupon below.
B. A. Laymond \& Partners Limited, Practical Wireless and the Underwriters wish to make it clear that it is an offence to install or use an unlicensed radio transmitter in the United Kingdom and it is not their deliberate intention to encourage or condone the illegal use of any radio communications equipment.

COST OF PRACTICAL WIRELESS RADIO USERS INSURANCE SCHEME:

Sum to Insure	$£ 100$	$£ 150$	$£ 300$	$£ 500$	$£ 750$	$£ 1000$	$£ 2000$
Annual Premium	$£ 6.00$	$£ 6.50$	$£ 8.00$	$£ 9.00$	$£ 10.00$	$£ 12.00$	$£ 14.00$

The premium is charged on sums insured in pre-selected bands. Thus equipment totalling $£ 250$ would be in the band up to $£ 300$. Quotations for larger sums available on application.

Claims will be settled after deduction of the Policy Excess which is: $£ 10$ on sums insured up to $£ 500$; $£ 25$ on sums insured up to $£ 3000$.

HOW TO INSURE: Complete the application form below to obtain immediate insurance cover. Photocopies will not be accepted.
APPLICATION FOR PRACTICAL WIRELESS RADIOUSERS INSURANCE SCHEME
Name in full (State Mr, Mrs, Miss or Title)
Address

Post Code

DECLARATION: I/We hereby declare that: 1 . The sums insured represent the full replacement value of the equipment. $2.1 / \mathrm{We}$ have not* had insurance cancelled, declined, restricted, or other terms imposed in any way other than the normal Policy terms. 3. This proposal shall be the basis of the contract and that the contract will be on the Underwriters normal terms and conditions for All Risks and Legal Costs/Expenses cover unless otherwise agreed. 4. I/We have not* sustained any loss or damage to any radio communications equipment or been involved in litigation relating to use of radio equipment during the past three years, whether insured or not. 5 . All the above statements made in connection with this proposal are true and no material information has been withheld. 6. IWe understand no liability shall attach until this proposal shall have been accepted by Laymond's and the premium paid in full and a Certificate issued.

- If you have, please give details on a separate sheet

DELAY IN ARRANGING COVER COULD COST YOU A GREAT DEAL OF MONEY. COMPLETE THIS APPLICATION AND POST WITH

 YOUR PREMIUM MADE PAYABLE TO "LAYMOND'S" NOW. ADDRESS TO: PRACTICAL WIRELESS (INSURANCE), B. A. LAYMOND \& PARTNERS LTD., 562 NORTH CIRCULAR ROAD, LONDON NW2 7QZ. TELEPHONE: 01-452 6611.Over the past year, the amount of theft and vandalism of amateur and CB radio equipment and antennas has been steadily rising. Hardly a day passes without news reaching us of yet another incident, particularly affecting mobile installations.

Although some household contents and motor vehicle insurance policies can be extended to cover base station or mobile radio communications equipment, the rates quoted are not usually very attractive. Also, household policies do not generally cover "all risks", and on a motor vehicle policy a claim can affect your no-claims bonus.

It has seemed for some time to us on PW that there was a need for a competitively priced policy to cover radio communications equipment for the amateur, s.w.l. and CBer, and we have now negotiated a scheme which represents good value to any users of such equipment, and which is also available to radio clubs or to companies using private mobile radio systems.

The PW RADIO USERS INSURANCE SCHEME's principal features are outlined on the opposite page. The policy covers loss or damage to the insured equipment, which can include: receivers; base station, portable or mobile rigs; antennas except for suction or magnetic mount mobile types; masts; radio-related test equipment. It does not cover the use of 27 MHz a.m., s.s.b. or multi-mode CB equipment. Property seized by the Police or any other authority is not insured. Settlement of any claim following total loss or destruction will be the cost of replacement at the date of the loss (after deduction of the Policy Excess), in a condition equal to but not better than its condition when new. The sum insured shall at all times represent the cost of replacement of all the insured property. The policy is index-linked annually to combat inflation, in accordance with the Durable Household Goods Section of the General Index of Retail Prices published by HMSO.

The scheme also covers legal costs and expenses involved in the pursuit of legal rights, in or out of court, relating to any criminal prosecution brought under the Wireless Telegraphy Act 1949 and subsequent Acts and Amendments, or in an appeal against the decision of an official or administration to revoke, suspend, or curtail an existing radio licence. Providing that the insured person holds a valid radio licence or is authorised to operate the equipment under the terms of the licence. Claims are subject to a limit of $£ 500$ per incident. Prosecution shall not be deliberately or intentionally sought.

The full policy details may be inspected during normal office hours at the offices of:

1. B. A. Laymond \& Partners, Ltd., 562 North Circular Road, London NW2 7QZ, telephone 01-452 6611.
2. Practical Wireless, Westover House, West Quay Road, Poole, Dorset BH15 1JG, telephone Poole (0202) 671191.

In introducing PW RUIS, we are reviving an old publishing custom of offering insurance to readers, and we hope that you will find it an attractive scheme.

Aerials and aerial accessories are very definitely among the most popular topics covered in Practical Wireless. In response to requests from readers, we've reprinted a selection of articles from the past three years, plus two new features-one by Ron Ham on v.h.f. propagation, the other describing the "Ultra-Slim Jim", a new version of that most popular 2-metre aerial design by Fred Judd.
Out of Thin Air has $\mathbf{8 0}$ pages, $295 \times \mathbf{2 1 6 m m}$, and is available from Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF, price $\mathbf{£ 1 . 5 0}$ including postage and packing to UK addresses, or $\mathbf{£ 1 . 8 0}$ by surface mail overseas. Please ensure that your name and address are clearly legible.

OUT OF THIN AIR

Please send your order and remittance to:

> IPC Magazines Ltd., Post Sales Department, Lavington House, 25 Lavington Street, London SE1 OPF

Please send me........copies at $£ 1.50$ each to include postage and packing ($£ 1.80$ surface mail overseas
I enclose P.O./Cheque No..............Value
UK remittances must be by crossed postal order or cheque (name and address on back please) and made payable to IPC MAGAZINES LTD

NAME
 IETTERS
 (BLOCK LETTERS)

ADDRESS
(BLOCK LETTERS)

CB OPRIRAIING

Following the theoretical discussion of propagation in Part 1 we conclude with an explanation of the HO Information Sheet on CB antennas.

Signal Attenuation

Some idea now of how a normally propagated space wave is attenuated with distance will be of interest. Fig. 6 shows that a receiving antenna of height h_{r} receives the signal by two paths from transmitting antenna of height h_{t}. One path is direct, while the other path is via a reflection from earth. The two components add to give the net signal field at the receiving antenna. If they were in phase opposition, and of equal strength, of course, the net signal would be zero; but this is not the case at normal reception points because the path lengths are substantially different. The strength of the direct signal falls inversely with distance d (e.g., $1 / \mathrm{d}$). However, the reflected signal has a destructive influence on the net signal depending on the phase difference between the direct and reflected signals, which introduces another function of $1 / \mathrm{d}$. Normally, of course, d would be large compared with h_{t} and h_{r}, but because of the second $1 / \mathrm{d}$ the net signal falls inversely with the square of the distance. In fact, the signal field at the receiving antenna can be expressed by:

$$
\frac{4 \mathrm{~h}_{\mathrm{t}} \mathrm{~h}_{\mathrm{r}} \mathrm{E}_{\mathrm{o}}}{\mathrm{~d}^{2}}
$$

where E_{o} is the strength of the direct signal a unit distance from the transmitting antenna and the wavelength of the signal (e.g., wavelength in metres equals $300 /$ frequency in MHz).

Antenna Height and Power

The previous expression is very interesting because it shows that the signal field at the receiving point rises in direct proportion to the heights of the transmitting and receiving antennas. On the other hand, the signal strength rises only as the square root of a power increase. Thus a power increase of, say, four times, which is quite a lot, would only double the signal field. This is why CBers often wonder why it is that reception copy does not deteriorate as much as they might expect when the other end drops his power from 4 watts to 0.4 watt or, indeed, why the increase in received strength is not as dramatic as expected when a linear amplifier is switched in! The proportional increase in signal field with antenna height, though, shows why it is that the Home Office have specified a maximum height of 7 metres for the antenna when the transmitter is operated at the legal maximum of 4 watts.

You can, incidentally, start to increase distant signal field above that given when the transmitter is operated at 4 watts and the antenna elevated to the legal 7 metres above local terrain at that power by increasing the antenna height above about 22 metres and dropping the power to 0.4 watts as required by law.

Fig. 6: A receiving antenna responds to two signals over a direct and reflected path, the net signal then falling as a function of the inverse square of the distance

Tropospheric DXing

During May of this year many CBers delighted in communicating with breakers over abnormally long distances presumably some by way of tropospheric ducting. From my Brixham QTH I was personally in strong signal contact with many stations in the Scottish Highlands, at Glasgow, the Orkneys, Shetland Isles, Cumbria, Norfolk and London. The activity was remarkably strong and was thought to be caused by discontinuity of the normal

Fig. 7: Showing how the received signal varies with distance from the transmitting antenna
tropospheric temperature gradient, possibly encouraged by my part of the country being abnormally warm for the time of year and other parts suffering snow!

The station was operated under perfectly legal conditions. Transceiver was a Cybernet Beta 3000 and the antenna a Wot Pole mounted at a height not exceeding 7 metres from the bottom of the upper 1.5 m element loading coil to ground level (Fig. 8). The antenna was set off from a metal pole secured by brackets to the wall of my studio and was coupled to the transceiver through low-loss 50Ω coaxial cable. The standing wave ratio was $1 \cdot 3: 1$ on channel 36, the channel which I monitor for tropospheric and ionospheric activity at my Brixham QTH.

HO Antenna Data

It is interesting to note that the March 1982 issue by the Home Office Radio Regulatory Department of Information Sheet No. 5 dealing with Citizens' Band radio clarifies a number of points concerning antennas which have hitherto been somewhat hazy. For example, the HO interpretation of the ground plane has been brought into the open. It is stated that for a home base the ground plane can be: ". . . a sheet of metal, or wires or rods which are usually horizontal, drooping or downward sloping ...". Further: "The arrangement of the metal sheet, wires or rods and the size of the ground plane is left to individual preference". This, so far as I can judge, removes any doubt regarding the legality of the Wot Pole or other CB antenna of similar configuration-always assuming, of course, that the upper element connected to the inner conductor of the coaxial cable does not exceed 1.5 m in length and is resonated by an inductance at the bottom end.
I was also interested to read regarding effective radiated power that: "For sets with a socket for connecting an external antenna there is no limit on e.r.p. . . .". There is, of course, the 4 watt transmitter r.f. limit so with the 1.5 m restriction on the base-loaded top element it would be a bit of a job to get an e.r.p. up to 4 watts or more(!); but the preferential treatment of the ground plane (as defined by the HO) certainly gives food for thought in this area. Anyway, the HO go on to say that an e.r.p. of around 2 watts can be easily achieved, and I would certainly agree with this.

Antenna Efficiency

Indeed, field stength tests that I have made would indicate that most well-designed car-type ground plane antennas are capable of radiating at least 2 watts assuming a loading coil of low dynamic resistance $\left(R_{d}\right)$, that the antenna is accurately resonated and that the ground plane efficiency is high. A 1.5 m antenna working on 27 MHz has a radiation resistance around $7 \cdot 5 \Omega$. Thus, assuming a R_{d} of 4Ω and an earth plane resistance of 2Ω the e.r.p. with 4 watts r.f. (assuming little or no loss in the coaxial cable) can be calculated from:

$$
\frac{\mathrm{R}_{\mathrm{r}} \times \mathrm{W}_{\mathrm{t}}}{\mathrm{R}_{\mathrm{r}}+\mathrm{R}_{\mathrm{d}}+\mathrm{R}_{\mathrm{e}}}
$$

where R_{r} is the radiation resistance of the shortened quarter-wave monopole, W_{t} the r.f. watts from the transmitter and R_{e} the resistance of the earth plane. Substituting the figures given we get:

$$
\begin{aligned}
\text { Radiated power } & =\frac{7 \cdot 5 \times 4}{7 \cdot 5+4+2} \\
& =2 \cdot 2 \mathrm{~W}
\end{aligned}
$$

The losses produced by the other elements can be calculated proportionally.

The radiated power so calculated may appear to be optimistically high, and it would certainly be that much lower

Fig. 8: The antenna height definition of the HO. A height in excess of $7 \mathbf{m}$ requires the r.f. power from the transmitter to be reduced to 0.4 watt
with lower R_{r} and higher R_{d} and R_{e} but, as suggested by the HO, 2 watts e.r.p. should not be difficult to achieve from the car-mounted earth plane type of antenna.

It is also interesting to note that with a quarter-wave monopole the bottom part of the radiation is concentrated into a hemisphere above the earth plane thereby increasing the radiation intensity over that of a freely radiating halfwave dipole, but when the monopole is reduced in length to conform to the legal requirement the radiation intensity is reduced as we have seen.

Antenna Tests

I have measured surprisingly low values of R_{d}, and one of the lowest loss loading coils is that fitted to the American Avanti Moonraker car antenna. Another is that of the K40 antenna. These antennas and those of similar low-loss make-up work quite efficiently. As already noted, signa! launching and, seemingly, ground plane efficiency are increased at water level; at water level, with cliff backing, copy over sea can be outstandingly extended - the cliff presumably working as a kind of "reflector" and the sea aiding diffraction. Transmission from the car ferry on the river Dart (between Kingswear and Dartmouth) gives far better copy at my Brixham QTH than when the transmission is from the river bank either side. Indeed, I have measured as much as a 6 dB increase in received signal field when the ferried transmitter lies at river centre. I and a colleague have also noted the high incidence of distance copy emanating from stations sited close to water.

I have also been checking the loading coil used in the design of a "portable" type of CB antenna called the Hot Wire which has been designed and is being marketed by a Paignton firm called Link Up South West. This, again, was found to have low R_{d} and is in the form of two flexible elements, a 1.5 m top section and a longer bottom section ("ground plane") which, like the Wot Pole, constitutes a form of "asymmetrical dipole". Radiation efficiency would seem to be on par with a well-designed Wot Pole, suggesting an approach to at least 50 per cent when properly installed and s.w.r.ed. The wire elements can be coiled up for transportation in the glove pocket of a car, for example, the antenna then being available for field use or DX-trials from a car CB set. I do know that there is at least one CBer at Portland (others, too, I understand) using such an antenna at home base and with whom I am in

Have Tektronix type 551 double beam working oscilloscope with supply. No manual, probes, mains cable. Would exchange for working Eddystone v.h.f./u.h.f. receiver 770U or 770R. A. Thomson GM3VOX, 108 Tannahill Drive, Calderwood 12, East Kilbride, Glasgow, G74 3HT. Tel: 41329.

Have SG711 marine transceiver, 100W p.e.p., programmable as simplex or semi-duplex on A3A, A3H or A3J, 11 channel 1.6-9 MHz , built-in a.t.u., 13.6 V d.c. Would exchange for FRG-7700 or FRG-7700M. Tel: Gara Bridge 281.

P93
Have a Murphy B40 communications receiver. Would exchange or part exchange for any 2 m or 70 cm transceiver. T.J. Meloughlin, 214 Artic Rd., Cowes, IOW. Tel: Cowes 292612 (evenings). P95

Have Uniace 100 CB mobile transceiver with bracket. $13.8 \mathrm{~V} 3 / 5 \mathrm{~A}$ power supply. Loft antenna with ground plane radials and coaxial cable. Also v.s.w.r./power meter and patch cord. Would exchange for Sony ICF2001 receiver. J.W. Jemmison, 18 Fanshawe Rd., Bristol. Tel: 0272832996.

P96
Have 2 m Storno (12 channel, xtal) boot mount and 2 m Pye (6 channel, xtal) boot mount. Both fully operational, xtals included. Would exchange for Marconi TF-8334 convertor ($50-600 \mathrm{MHz}$) or similar for TF-2401A counter, and/or TF-995A signal generator. Reasonable or repairable condition please. A. Digby. Tel: Hitchin (0462) 700178.

P122
Have Praktica MTL3 camera plus electronic autoflash unit and fitting bracket. Would exchange for Morse tutor or wavemeter. Miller, 12 Ashmead House, Barton Hill, Bristol BS5 9SS.

P129
Have Trio TR-7800 2m f.m. mobile transceiver, Daiwa SW110A s.w.r. and power meter also 2 m GPV-5 $5 / 8$ wave colinear ground plane antenna and a mobile $5 / 8$ antenna. Would exchange for a good general coverage receiver. D. Russell. Tel: Sheffield 484679.

P137
Have Canon Electronic 1014 fully automatic zoom Super 8 cine camera also Eumig TV type sound projector/recorder and camera tripod. Would exchange for Trio TR-9000; PS20; BO9. N. Park. Tel: 0533600246 (day), 0533609538 (evenings). P152

Have three 24 in monochrome video monitors with sound. Would exchange for two 9in or 12 in monitors and Pye Lynx video camera (will separate). Andie Wilkes G4NTV, 34 Tideswell Road, Great Barr, Birmingham B42 2DT. Tel: 021-525 5445 (office hours).

P157
Have Sony three-head stereo tape recorder, type TC-399 reel-toreel upright operation also 35×50 Mark Scheffel binoculars. Would exchange for SX200N, FT-221R, FT-290R, C-58 or any 2 m portable. P. H. Drysdale, 121 Chapelle Crescent, Tillicoultry, Scotland FK13 6NL. Tel: 025950465.

P175
Have Himound HK706 Morse keyer as brand new, plus monitor EKM1 oscillator (used) perfect match. Would exchange for clean 1982 World Radio and TV Handbook or world time clock. Lane, 6 George V Avenue, Margate, Kent.

P177
Have 1956 Ekco TMB272 9in Radio TV (portable) and service sheets. Would exchange for v.h.f. and u.h.f. scanner. T. A. Cooper, 117 Love Lane, Burnham-on-Sea, Somerset TA8 1EZ.

P186
Have Yaesu s.s.b. transceiver FT-7 mint. Would exchange for scanner receiver SX200 or Bearcat. V. Willmott, 18 Mill Lane, Carbrooke, Thetford, Norfolk IP25 6TD.

P187

Have Ring 22 stamp album. World stamps, majority mint, mounted; fish, animals, aircraft, birds. Viscount Springback album, interplanetaries hinged-World Cup stamp also World Catalogue. Would exchange for modern general coverage receiver Eddystone or USA. Morgan, 17 St. Marys Place, London W5 5HA.

P217
Have 2 m base station, includes Trio Kenwood f.m. transceiver 25 watts (TR-7400A), 15A power supply, CN620A crossed needle s.w.r. and power meter, rotator, 4 -element quad antenna. Would exchange for dual beam 15 MHz oscilloscope. Tel: Daventry (03272) 76542.

P223
Have 2 GHz slotted line with probe and connectors. Slot length 120 mm also piston attenuator, rack and pinion control, piston sweep $130 \times 750 \mathrm{~mm}$. Would exchange for frequency counter. Critchley, 16 Finch Mill Avenue, Appley Bridge, Wigan WN6 9DF.

P224
Have vintage Philips B5G 64A receiver, needs new string for indicator only, otherwise good. Also HAC 2 -valve s.w. receiver and phones. Would exchange for grid dip oscillator with coils. J. Sawley, 81 London Road, Newark, Notts. Tel: 0636 73265. P239

Have Amplion horn loud speaker $16 \times 6 \times 6 \mathrm{in}$, collectors piece, circa 1928. Would exchange for an oscilloscope with cash adjustments. Lucking, 62 Ember Farm Way, East Molesey. Tel: 01-398 3603.

P245
Have first ten volumes of Electronics Today International complete and in very good condition. Would exchange for s.w. receiver or legal f.m. CB transceiver with 40 channels. G. Watkin, 16 Clovelly Way, Orpington, Kent BR6 OWD. Tel: Orpington 37431. P254

Have Codar Radio Co. AT5-12 watt mini transmitter with T28 receiver and T250 p.s.u. paddle Morse Key and headphones with mic. Amateur bands $1.8-2.0 \mathrm{MHz}$ and $3.5-4.0 \mathrm{MHz}, 10$ watts a.m., 14 watts c.w., v.f.o. Would exchange for w.h.y.-interests movie films 16 mm and 8 mm . Les Taylor, Kilconnell, Ballinasloe, Eire.

P255
Have Grundig Satellit 3400 s.w. radio four months old. Would exchange for SX200N scanner. Mr Bannister, 3 Eastbourne Walk, Liverpool 6. Tel: 051-263 6724.

P277
Have Labgear Televerta CM6022/RA perfect \& Labgear wide-band pre-amp (unused) model CM7065. Would exchange for a Band III pre-amplifier, 12 V without power unit such as MOSFET, etc. James. Lawrenny, Llanon, Dyfed SY23 5HW.

P286
Have new Eumig Super 8 mm sound camera still in box. Would exchange for good 2 m transceiver or good receiver. J. Wardle, 37 Cornwall Road, Barry, Glam. Tel: 746507.

P287

PW "SWAP SPOT"

Got a camera, want a receiver? Got a v.h.f. rig, want some h.f. gear to go with your new G4? In fact, have you got anything to trade radio-wise?

If so, why not advertise it FREE in our new feature SWAP SPOT. Send details, including what equipment you're looking for, to "SWAP SPOT", Practical Wireless, Westover House, West Quay Road, Poole, Dorset BH15 1JG, for inclusion in the first available issue of the magazine.
A FEW SIMPLE RULES: Your ad. should follow the format of those appearing above; it must be typed or written in block letters; it must be not more than 40 words long including name and address/telephone number. Swaps only-no items for sale. 2 year guarantee. Write or call for written detalls. Free items excluded.

YAESU FT 1

'An Astonishment'

electronics - and mor?! An astonishing piece of design and product engineering. Think of a feature, a facility, performance, reliability, flexibility, ergonomics, and value for money. The FT 1 has it all! We have the FT 1 complete with FM facility, AM and CW filter, keyer and microphone and two year guarantee - You have it! P.O.A.

ICOM 730
Mobile or Base Transceiver

An extremely compact 8 Band Transceiver with an output of 100 watts RF, dual VFO's with $10 \mathrm{~Hz}, 100 \mathrm{~Hz}$ and 1 KHz tuning rateplus an abundance of features including pass band tuning facility. N.B. Preamp and SWR Detector. $\mathbf{£ 5 6 9 . 0 0}$ including VAT and carriage. Two year guarantee.

ICOM 720A

General coverage or amateur transceiver.

Silky smooth tuning and easy operation makes this a delight for the amateur or commercial operator-a host of features which make it ICOM's pride and joy. It can be yours, too, at £883.00 VAT and carriage paid.

Two year guarantee.

A new 9 Bander in traditional ICOM livery-facilities galore and every one a practical and helpful function to assist and satisfy your operating needs. All mode inc. optional FM and built in Keyer - Notch Filter, IF/Pass band tuning-variable tuning rate-memory - split operation facility - dual VFO - variable AGC and variable noise blanker - we could tell you a lot more but you'll enjoy it more by calling in to try itit's on show now - if you can't make it forward a SAE and we'll send you a leaflet - $\mathbf{£ 6 5 9 . 0 0} \mathrm{inc}$. VAT and carriage and of course the two year AMCOMM guarantee.

YAESU FT 290R

The world's leading portable from Yaesu, "the people who know your needs". 2.5 Watt all mode SSB/CM/FM, 10 memories Price £249.00 includes FREE nicads and charger, carriage and VAT.
Two year guarantee.
YAESU FT 101ZD MKIII AM or FM

We think everybody
knows the 101 story! If you don't, listen around. It means value for money - and we'll even include FREE a choice of suitable microphones. The Shure 444D or Shure 526T including carriage and VAT at £665.00.
Two year guarantee.

NEW YAESU FT102 Now in stock Call for quote.

YAESU FRG 7700
General Coverage Receiver
$150 \mathrm{~Hz}-30 \mathrm{MHz}$

Must be top of your
list when shopping for a Receiver. You'll find it rewarding to use an antenna tuning unit and even more rewarding to get one from us! Buy an FRG 7700 or FRG 7700M and you can have the matching unit FRT 7700 completely FREE.
FRG 7700 + FRT 7700 £329.00 FRG 7700M + FRT 7700 £409.00 Carriage and VAT included.
Two year guarantee.
YAESU FT 480R

Big performance mobile station offering you all the options you expect in such a piece of equipment all mode - full scanning, two VFO's, satellite mode etc. Price includes absolutely FREE your own choice from our stock, any VHF base or mobile antenna at £379.00 including VAT and carriage.
Two year guarantee.
ICOM IC 290E

2 mtr . all mode with 5 memories from which priority channel can be selected - twin VFO's, scanning, reverse repeater -25 KHz tuning rate on FM 100 Hz on SSB. £369.00 including VAT and carriage. Two year guarantee.

Amcomm Services,
194, Northolt Road, South Harrow, Middlesex HAO 2EN.
Telephone: 01-864 1166, 01-422 9585.
Telex: 24263.
SHOWROOM OPENING HOURS
TUESDAY TO SATURDAY
10.00-6.00 CONTINUOUS

ALL ITEMS OVER £300
AVAILABLE ON EASY TERMS AT CASH PRICE

Amcomm Services,
Freepost, Harrow, Middlesex HA2 OBR.
Please send me \qquad
at \qquad enclosed cheque/P.O. for or charge my VISA/ACCESS
No.
Name
Address \qquad

MAIN YAESU MUSEN DEALER

Amateur H.F., V.H.F., U.H.F.
FT-ONE; 102; 902; 107; 101ZD \& 707 in stock.
SPECIAL OFFER: FT 107M+PSU+Mic. IR£954 VAT incl. IR£308 VAT incl.
FT230 (B), 25W

BEARCAT MAIN DEALER SEAFARER INTERNATIONAL MARINE MAIN DEALER

We Have a Dealer in Your Area:

R.T. Communications, Limerick 28568 Radcom Electronics, Cork 632725 Advanced Electronics, Waterford 72087 Q.T.H. Electronics, Dublin 803358 Barry Electronics, Killybegs 215 Mike Matthews, Newtownards 815859 Eddie Moore, Limavaddy 3687 Eastern Communications, 042-31554
Commercial Dealerships Available: N.I., Longford and Carlow Areas.

MANUFACTURERS - IMPORTERS EXPORTERS - DISTRIBUTORS
OF TELECOMMUNICATIONS EQUIPMENT U.K. callers: 0009-65166/65208 Mon: 8.30 am - 6.00 pm Fri.

FARTRIDEE G3CED

THE WIRELESS PIONEER OF THE 1920s OFFERS YOU A SOLUTION TO YOUR

ANTENNA PROBLEMS

Amateur HF and 2 m Bands - CB - Harmonic \& TVI Free Low Angle Omni-Directional and Directional.

WORLD WIDE COMMUNICATION WITH ONE ANTENNA!!

Prices Delivered - Allow 14 days. Joyframe Hand Rotatable Multi-Band Antenna (23ft Triangle).
QRP TX version
£120.00
Receive version . $£ 60.00$
QRP performance is truly amazing.
2 ft long COAX Fed CB System $1 / 1$ SWR
CB Antenna Tuner only - 1/1 SWR . 20.00 $20 f t$ single wire fed Mini-Multi Band systems - 2ft long Mini Antennas.
Transmit Version ...
Receive version $£ 55.00$
Extra feeder can be supplied if desired $£ 1.00$ per 20 ft (fitted).
WE SPECIALISE IN RESOLVING YOUR PARTICULAR PROBLEM - SEND S.A.E. OR TELEPHONE FOR PERSONAL ATTENTION AND ADVICE

PARTRIDGE

188 Newington Road, Ramsgate, Kent CT12 6PZ, England.

Sales: (0843) 53073
Technical: (0843) 62839

WOOD \& DOUGLAS

A NEW range of products is available from us to cover the increased interest in video transmission
TVUP2 TV UPCONVERTER is a two r.f. stage receive converter with a crystal controlled local oscillator. The pcb accepts signal at 70 cms and outputs them at channel 36 on a standard TV set. The TV output is filtered and there is a 'de-sense' input to allow monitoring of local signals without compression. Overall gain is 25 dB minimum, noise figure better than 2.5 dB
Kit - £19.60
Assembled - £26.95
TVM 1 TV Modulator. Converts any 70 cms transmit strip into a series modulated DSB video transmitter. The pcb accepts composite video signals and incorporates a sync pulse clamp and black level adjustment. With an external pass transistor the board will source up to 2 Amps current drive.
Kit - £5.30
Assembled - £8. 10
ATV-1 Video Transmitter. A boxed finished video transmitter giving 3W p.s.p. The unit is housed in a vinyl-topped enclosure measuring $8^{\prime \prime} \times 5^{\prime \prime} \times 2^{\prime \prime}$. Video input is via two independently switched BNC inputs, each having a front panel mounted level control. There is a receiver output via a PIN diode aerial switch for connection to an Up Converter such as the TVUP2. The rear panel also has a monitor output for waveform inspection on an oscilloscope. The unit has internal preset controls for black level and sync stretching circuitry. The unit is unique in that it has two modes. There is a NBFM modulator included to allow station indentification at 70 cms simply by plugging a microphone into the front panei socket. The whole unit runs from a 14 V maximum PSU and will give good reliable service in either mode. A one year guarantee is offered on parts and labour.

Boxed ready to go at $\mathbf{£ 8 7 . 0 0}$
ATV-2 Video Transceiver. The natural progression from the ATV-1. The highly successful ATV-1 and TVUP2 circuitry have been combined to give a complete video station. All you require is a standard TV set and a camera. What could be easier? Boxed ready to go at £119.00
Incidentally as both these units have NBFM facilities you will not be left high and dry with a white elephant should video be removed from 70 cms . Simply plug in a new crystal and you can work your local FM repeater.
70 LIN 3/10E is a 3W to 10W linear designed as a video booster for the ATV 1 or 2 to give 10W minimum output from our very popular video transmitters. The board is 'straight through' with no power supply connected or when in receive mode. It has course useable for NBFM operation with transceivers such as the IC4-E course useable for NBFM operation with transceivers such as the IC4-E
Kit- £28.95
Assembled - £39. 10
Just a few examples of our ever increasing range. An SAE will bring you the latest details and prices. Technical enquiries can be answered between 7-9 pm on either 073565324 or 0256 24611. Kits when in stock are return of post otherwise allow 28 days. Assembled/boxed items, allow 20/40 days. Prices include VAT at the current rate. Please include 70p postage and handling on total order except boxed items which should be $£ 1.00$ for recorded delivery.

9 HILLCREST, TADLEY,
BASINGSTOKE, HANTS RG28 6JB.

Solutions to last month's problems: The circuit is reproduced here in Fig. 5.1.

No. 1: To calculate the potentials at "A", "B" and "C" with respect to earth; R1 is shorted out by L1 so "A" is effectively connected to the +6 V line. Capacitor C 1 can be ignored from a d.c. point of view. Resistor R2 in parallel with R3 simplified to $50 / 15=3 \cdot 33 \mathrm{k} \Omega$. So the circuit simplifies to the equivalent one of Fig. 5.2.

Fig. 5.1

Immediately, we see the potential at " A " is $+\mathbf{6 V}$.
The total supply voltage is $6+9=15 \mathrm{~V}$. Diode D1 appears to be forward biased. Checking; its open-circuit voltage would be

$$
\frac{1 \times 15}{(3 \cdot 33+1+2 \cdot 2)}=\frac{15}{6 \cdot 53}=2 \cdot 3 \mathrm{~V}
$$

so it is indeed forward biased and therefore the voltage across D1/R4 is $0 \cdot 6 \mathrm{~V}$. By Kirchhoff's Second Law there must be $(15-0.6)=14.4 \mathrm{~V}$ distributed between R2/R3 and R5. So the voltage across R5 is given by

$$
\frac{2.2 \times 14.4}{2.2+3.33}=\frac{2.2 \times 14.4}{5.53}=5.73 \mathrm{~V} .
$$

Thus the potential at " C " is $-9+5.73=-3.27 \mathrm{~V}$ and that at " B " is $-3.27+0.6=-2.67 \mathrm{~V}$.

No. 2: With diode connections reversed, D1 will be reverse biased and such a high resistance that we can ignore it. The equivalent circuit will therefore be the same as in Fig. 5.2, but with D1 omitted.

Total resistance $=3.33+1+2.2=6.53 \mathrm{k} \Omega$

$$
\mathrm{V}_{\mathrm{R} 2 / \mathrm{R} 3}=\frac{3.33}{6.53} \times 15=7.65 \mathrm{~V}
$$

Therefore, potential at " B " $=+6-7.65=-\mathbf{1 . 6 5 V}$

$$
\mathrm{V}_{\mathrm{R} 5}=\frac{2.2}{6.53} \times 15=5.05 \mathrm{~V}
$$

Therefore, potential at " C " $=-9+5.05=-3.95 \mathrm{~V}$.
When diodes fail they can become short-circuit, opencircuit or resistive, each of these possibilities being quite common.

If the voltages measured indicate that a diode is probably faulty, it must be removed (or at least one of its connections unsoldered) for checking by ohmmeter. The checks to be made are illustrated in Fig. 5.3(a) and (b).

Fig. 5.3
A multimeter's terminals are labelled with the correct polarity for measuring d.c. voltage. When the meter is used on its resistance ranges, however, the internal battery provides a voltage across the meter terminals of opposite polarity, i.e. the "positive" terminal is at a negative potential with respect to the "negative" terminal. This is not the result of meter manufacturers' attempts to confuse everybody, but because the equivalent circuit of the meter on the ohms range is as shown in Fig. 5.4. The polarity of
the battery shown being necessary, when a circuit is completed, to provide the required forward movement of the needle. This must be borne in mind when testing semiconductors.

The ohmmeter test of Fig. 5.3(a) therefore means the diode is reversed biased and a high resistance should be indicated (the needle will probably not move off the back stop on the "ohms" range). The test of Fig. 5.3(b) should show a low resistance reading, usually between 500Ω and

WRM628

Fig. 5.4
$2 \mathrm{k} \Omega$ (depending upon the types of diode and meter) because the diode is now forward biased. It is not the meter polarity nor the actual readings obtained which are important, however, but the difference between the two readings, usually expressed as a ratio and commonly called the "back-to-front" ratio. This ratio of:
reverse biased resistance
forward biased resistance
must be high.
It is also advisable that the meter is used only on its "ohms" range. If used on its "ohms $\times 100$ " range the internal battery voltage is increased and the resulting forward current delivered to the diode could be excessive. If used on the "ohms $\div 100$ " range the limiting resistor is very low and high diode forward current could again result.

When replacing a diode, ensure that it is connected back into circuit the right way round, as shown in last month's article.

WRM629

Fig. 5.5(a)

Fig. 5.5(b)

Zener Diodes

The circuit symbol and physical markings of a typical Zener diode are shown in Figs. 5.5(a) and (b) respectively. Figs. 5.6(a) and (b) show the forward biased and reverse biased modes respectively.

The Zener diode behaves exactly like a silicon junction diode in its forward biased mode, so in Fig. 5.6(a), since its open-circuit voltage would be 9 V , it conducts with 0.6 V across it and the potential at " A " is +0.6 V .

In its reverse biased mode, however, the Zener diode also conducts, provided its open-circuit voltage exceeds its "Zener voltage", which in this example is $5 \cdot 6 \mathrm{~V}$. In Fig.
$5 \cdot 6$ (b) the open-circuit voltage would be 9 V , so the Zener conducts and when this happens in the reverse biased mode the voltage across the Zener diode will be equal to (or very close to) its "Zener voltage". So in this example the potential at "A" will be +5.6 V . If the open-circuit voltage was lower than the Zener diode voltage the diode would not conduct and would have to be treated as an open-circuit.

The Zener voltage is usually shown on the body of the device as illustrated in Fig. 5.5(b). The figure following the C shows the number of volts and the figure following the V shows the tenths of volts. Note the C means ± 5 per cent tolerance on the voltage. Zener voltages range from about 3.3 V (C3V3) up to 200 V (C200). Unfortunately, not all Zener diodes are marked with their Zener voltage and reference may have to be made to manufacturers' data if this information is required.

The Zener diode is usually employed as a voltage stabiliser, as in the circuit of Fig. 5.6(b). The potential at "A" will remain constant at +5.6 V even if the supply, voltage varies and even if any load resistance between " A " and earth changes, although always with the proviso that the diode open-circuit voltage would exceed its Zener voltage.

Ohmmeter tests on a Zener diode are the same as for a junction diode, but the real test for a Zener diode is whether its Zener voltage is developed across it when it is connected into a circuit such as that of Fig. 5.6(b).

As with other diodes, faulty Zener diodes can be opencircuit, short-circuit or resistive.

WRM630

(a)

Fig. 5.6

(b)

Bipolar Transistors

Like diodes, common bipolar transistors can be of silicon or germanium type, the former being by far the most common, germanium types generally being found in older equipment. Differences in these two types are minor, so unless otherwise stated the writer will refer to silicon transistors.

A much more significant classification of transistors is into pnp and npn types, the circuit symbols for these being shown in Fig. 5.7(a) and (b) respectively. The electrode names are not part of the symbol. It is useful to remember that the arrow always points to an n-type electrode.

Again like the diode, the transistor has two basic modes, conducting and non-conducting. Indeed, the baseemitter junction of a transistor is exactly like a diode, with p-type electrodes behaving like anodes and n-type electrodes like cathodes. Thus, when the base of a $p n p$ transistor is negative with respect to its emitter by something greater than 0.5 V , the transistor is in its conducting mode and base-emitter potential lies between 0.5 V and 1 V $(0.2 \mathrm{~V}$ to 1 V for germanium types). If this forward bias voltage is less than 0.5 V or if its polarity is reversed to make it reverse bias, the transistor will be in its nonconducting mode (or cut off). Incidentally, the easiest way to cut off a transistor is to make its base-emitter p.d. zero, e.g. by shorting base and emitter together. The $n p n$ tran-
sistor behaves exactly the same but with polarities reversed, i.e. base positive with respect to emitter for forward bias.

WRM631

(a)
(a)

Fig. 5.7

(b)

So the base-emitter potentials we can expect to measure are exactly the same as for the junction diode and, if suspect, the base-emitter junction can be tested by ohmmeter in exactly the same way as the diode.

Estimation of the collector potential of the transistor is much less straightforward, as this will depend not only on the degree of conduction of the transistor but also the supply potential and the components associated with the transistor in the circuit.

The transistor is basically a current-operated device and it is the currents flowing in the transistor to which we must turn for clues. Three currents are involved, as illustrated in Fig. 5.8. They are related by the equation:

WRM632
Fig. 5.8

$\mathrm{I}_{\mathrm{e}}=\mathrm{I}_{\mathrm{b}}+\mathrm{I}_{\mathrm{c}}$
Furthermore, I_{c} is much greater than I_{b} (typically, $I_{c}=$ $100 \times \mathrm{I}_{\mathrm{b}}$), so that we can usefully approximate by saying that $I_{e}=I_{c}$ for the purposes of estimating collector potential.

When the transistor is cut off, all these currents are zero (neglecting "leakage" currents, as these are insignificant in our voltage measurements). In the event, the circuit can be treated as if the transistor was not connected.

When the transistor is forward biased, however, we have to look at the whole circuit, bearing in mind the current relationship quoted above.

See Fig. 5.9 for an example. This is the circuit of a simple transistor audio amplifier stage.

If we ignore base current, the base potential will be $\frac{4.7}{16 \cdot 7} \times 9=+2.53 \mathrm{~V}$.
This would then be the open-circuit voltage between base and emitter, so the transistor conducts and baseemitter p.d. becomes (say) 0.6 V . Thus, emitter potential is $+2.53-0.6=+\mathbf{1 . 9 3 V}$. Emitter current flows through R4 so this will be given by

$$
\mathrm{I}_{\mathrm{e}}=\frac{\mathrm{V}_{\mathrm{R4}}}{\mathrm{R} 4}=\frac{1.93}{680} \mathrm{~A}=2.84 \mathrm{~mA} . \text { Assuming } \mathrm{I}_{\mathrm{e}}=\mathrm{I}_{\mathrm{c}} \text {, }
$$ this current will also flow through R3 and so

$$
\mathrm{V}_{\mathrm{R} 3}=\mathrm{I}_{\mathrm{c}} \mathrm{R} 3=\frac{2.84}{1000} \times 1000=2.84 \mathrm{~V}
$$

Thus the potential at the collector will be $+9 \mathrm{~V}-2.84=$ +6.16 V .

In any transistor circuit, these potentials of emitter, base and collector of each transistor stage are the most useful in fault-finding.

We shall not measure the voltage calculated exactly, however, because we have ignored base current. So we will look into this example further in next month's issue.

Fig. 5.10

Now for this month's problem. See Fig. 5.10. Calculate the potential at "A"
(i) when $\mathrm{R} 2=2 \cdot 2 \mathrm{k} \Omega$
(ii) when $\mathrm{R} 2=680 \Omega$

CB OPERATING

\rightarrow continued from page 23
fairly regular contact from Brixham (about 80 km distance over sea). This sort of antenna would appear to have an angle of radiation which, although slightly higher than a true half-wave dipole, is lower than that of a shortened quarter-wave monopole mounted on a flat ground plane (e.g., the roof of a car).

To summarise, therefore, the use of 27 MHz for high density CB traffic is certainly bringing to light some curios with respect to propagation at that frequency. Interference is far less troublesome now that f.m. is the order of the day; but I cannot reconcile the HO insistence on the use of a shortened antenna when easier matching can be achieved with a full length antenna leading, possibly, to less TVI-particularly chroma suck-out. My experience is that poorly matched shortened antennas have a greater interference potential than a well-designed quarter-wave monopole or even a full half-wave dipole! Looking around the country one can detect no mean number of half-wave CB antennas anyway, some of which appear not to be radiating as successfully as a "peaked up" legal antenna.

One sign of the onset of tropospheric propagation is a sudden drop in barometric pressure following an extended anticyclonic spell. Another is the development of a lowpressure weather front moving in the direction of the DXing QTH.
In conclusion, I would like to thank the very many friendly CBers whom I have quizzed over the channels for their help and observations. My thanks go in particular to George (The Prospector) to whom I (Quicksilver) wish the very best of luck with his projected RAE.

Stephen IBBS G4LBW

This month we conclude the basic two-range 600 MHz frequency meter project with full constructional information and optional variation details.

Construction

A p.c.b. is used and this is shown in Fig. 8. Insert the wire links and single-sided Veropins. It was decided that links and cable connections were easier, and therefore preferable, to trying to make a double-sided p.c.b. with its inherent problem of matching the two sides together. (This is not, however, a problem with the pre-scaler p.c.b.) Sockets were used for all the i.c.s and these were inserted along with the other components. The switch bank uses a 7 -way bracket and the switches are placed into this before being soldered to the board. S1 is an "interlocking" type switch but because it has no latchbar associated with it, it acts as a push-to-make switch for the reset function. S2, 6 and 7 are all "push-push" type switches and like the RESET switch are easy to insert. However, S3, 4 and 5-being interlocked-must have the 3 -way latchbar and spring included in the assembly before soldering to the p.c.b. (Fig. 9).

If constructors do not want to extend the range of the meter to 1.3 GHz , then S 7 and D2 can be omitted. The transformer, being p.c.b. mounted, makes for easy mains connections, and this section was tested before any i.c.s were inserted in their sockets.

Pre-scaler

A double-sided p.c.b. should be used for the 600 MHz pre-amp. module-a suggested design for which was given in Fig. 1. For those who have not made one before, the easiest way is to prepare the track side as normal, with etch-resist pen or transfers, and then cover the component side either with etch-resist or with insulating tape, overlapping the strips. When etched and cleaned, drill out the
holes from the track side and then from the component side counterbore all non-earth holes with a Verocutter or 3 mm drill bit.

Solder in the components, using leads as short as possible and the smallest capacitors available, making sure the i.c.s are inserted the right way around. Component leads going to earth are soldered on both sides of the board and i.c.s soldered in this way are nightmares to remove if inserted the wrong way around.

Mount the board in a die-cast box, already drilled to accept the BNC sockets and supply leads.

The case is connected to earth and the positive lead goes via L1, 2 turns of 28 s.w.g. on a ferrite bead and feedthrough capacitor C29 to the positive supply pin on the main p.c.b. The earth lead is also connected to the main p.c.b.

The front panel was drilled and cut out to take the display, switches, sockets and l.e.d.s and care must be given to the position of the switch bank holes because the p.c.b. must be mounted in such a way as to make the switches operate through the holes drilled. It is because the p.c.b. is mounted only some 10 mm away from the front panel that a section is cut away to make room for the display bezel p.c.b.

The prototype had extra holes drilled for the bracket mounting bolts but these have proved to be totally superfluous and can be ignored. The display bezel was mounted behind the front panel, with ribbon cable used to make the 61 connections to the main board by way of the Veropins by IC5 and 6 . The rows nearest the i.c.s go to the bottom row of pads on the bezel (and were, in fact, soldered to the underneath of the board in the prototype) and the outer rows go to the top row of pads on the bezel. Fig. 11 shows which segment pin goes to which segment pad. Four wires also go to IC10, the decimal point driver, and a final wire connects the backplane from IC8 and 9 to the display (pin 1). All possible wire links were made on the track side in the prototype to improve the appearance.

components

Resistors $\frac{1}{4}$ W 5\% Carbon film		
51Ω	2	R15,16
120Ω	1	R22
180Ω	1	R21
270Ω	2	R1,24
330Ω	3	R13,14,2
680Ω	1	R23
$2.2 \mathrm{k} \Omega$	1	R17
$4.7 \mathrm{k} \Omega$	4	R2,3,4,5
$10 \mathrm{k} \Omega$	3	R6,7,8
27k Ω	1	R11
$100 \mathrm{k} \Omega$	6	R10,12,2
$150 \mathrm{k} \Omega$	1	R19
$1 \mathrm{M} \Omega$	1	R18
$22 \mathrm{M} \Omega$	1	R9
Min. skeleton pre-set $1 \mathrm{k} \Omega$	1	R25
Capacitors		
Ceramic		
15 pF	1	C6
10pF	1	C26
68pF	4	C1,2,3,5
1 nF	14	C11 to 24
10 nF	2	C27,28
$0.1 \mu \mathrm{~F}$	2	C10,25
Polyester		
$0.22 \mu \mathrm{~F}$	1	C8
Electrolytic 16 V Radial		
$1000 \mu \mathrm{~F}$	1	C9
$2200 \mu \mathrm{~F}$	1	C7
Min. trimmer		
5-65pF	1	C4
Feed-through		
1 nF	1	C29

Resistors

$\frac{1}{4}$ W 5\% Carbon film

51Ω	2	$R 15,16$
120Ω	1	$R 22$
180Ω	1	$R 21$
270Ω	2	$R 1,24$
330Ω	3	$R 13,14,20$ (see text)
680Ω	1	$R 23$
$2.2 \mathrm{k} \Omega$	1	$R 17$
$4.7 \mathrm{k} \Omega$	4	$\mathrm{R} 2,3,4,5$
$10 \mathrm{k} \Omega$	3	$R 6,7,8$
$27 \mathrm{k} \Omega$	1	R 11
$100 \mathrm{k} \Omega$	6	$\mathrm{R} 10,12,26,27,28,29$
$150 \mathrm{k} \Omega$	1	R 19
$1 \mathrm{M} \Omega$	1	R 18
$22 \mathrm{M} \Omega$	1	R 9

Potentiometers
Min. skeleton pre-set $1 \mathrm{k} \Omega$

1 R25

Capacitors

Ceramic

Polyester
$0.22 \mu \mathrm{~F} \quad 1 \quad \mathrm{C8}$
Electrolytic 16 V Radial

$\frac{1}{4}$ W 5\% Carbon film		
51Ω	2	R15,
120Ω	1	R22
180Ω	1	R21
270Ω	2	R1,2
330Ω	3	R13.
680Ω	1	R23
$2.2 \mathrm{k} \Omega$	1	R17
$4.7 \mathrm{k} \Omega$	4	R2,3
$10 \mathrm{k} \Omega$	3	R6,7
$27 \mathrm{k} \Omega$	1	R11
$100 \mathrm{k} \Omega$	6	R10.
$150 \mathrm{k} \Omega$	1	R19
$1 \mathrm{M} \Omega$	1	R18
$22 \mathrm{M} \Omega$	1	R9
Potentiometers		
Min. skeleton pre-set	1	R25
Capacitors		
Ceramic		
15pF	1	C6
10pF	1	C26
68pF	4	C1,2,
1 nF	14	C11
10 nF	2	C27,
$0.1 \mu \mathrm{~F}$	2	C10,
Polyester		
$0.22 \mu \mathrm{~F}$	1	C8
Electrolytic 16V Radial		
$1000 \mu \mathrm{~F}$	1	C9
$2200 \mu \mathrm{~F}$	1	C7
Min. trimmer		
5-65pF	1	C4
Feed-through		
1 nF	1	C29

Min. trimmer $5-65 p F \quad 1 \quad$ C4

Feed-through 1 nF

Semiconductors

Diodes

1N4148	2	D1,2
Red l.e.d.	3	D3,4,5
1A Bridge	1	D6

Transistors		
BF375	2	Tr3,4
TIS88A	1	Tr2
2N3702	1	Tr1

Integrated circuits
4070
IC10
74LS74 1 IC12 (see text)
74LS132 1 IC6
74LS196 1 IC5
$\begin{array}{lll}74 \text { LSOO } & 1 & \text { IC4 }\end{array}$
7805
IC11
$\begin{array}{lll}\text { ICM7211A } & 2 & \text { IC8,9 }\end{array}$
ICM7226A 1 IC7
SL952 or SL565 1 IC1
SP8630B 1 IC2 (see text)
SP8660
Switches
Push-button (Ambit SUE series)

2p interlocking	4	S $1,3,4,5$
$2 p$ push-push	4	S2, $7,9,10$
$6 p$ push-push	1	S6
5A mains	1	S8

5 A mains
$7 w$ bracket $15 \mathrm{~mm} ; 2 \mathrm{w}$ bracket 15 mm ; 3 w latch bar and spring 15 mm ; knobs (10).

Miscellaneous

Mains transformer 6V, 6 V 3VA p.c.b. mounting; 10 MHz crystal HC18U; Mains socket and filter IEC type; Fuse holder, panel mounting; BNC 50Ω round sockets (4); 8-digit liquid crystal display (RS587-333); Bezel (RS587-462); Ferrite bead; 28 s.w.g. enamelled copper wire; Printed circuit boards; Die-cast box $114 \times 64 \times 30 \mathrm{~mm}$; Case, Centurion EX3H $(325 \times 187 \times 90 \mathrm{~mm})$; Sockets for i.c.s $40-\mathrm{pin}$ (3), 14-pin (6).

WRM644

Fig. 6: Circuit details of the optional divider stage to provide a 1 MHz calibration signal. The p.c.b. track will require modification

Fig. 7: Circuit details of the external oscillator divider and enabling switch to allow range extension up to 1.3GHz

Fig. 10: (Top) Component layout of the 600 MHz pre-scaler board. (Above) Component side ground plane, shown full size. (Top right) Non-component side p.c.b. track pattern

The rear panel was drilled for the mains socket, fuse and, if desired, the calibration out socket and switches. The 10 MHz and 1 MHz (if used) switch and hold switch were inserted using a two-way bracket.
Mount the p.c.b. in the case using nuts, bolts and spacers to position it correctly behind the switch bank holes. The die-cast 600 MHz module was secured to the front panel by the BNC socket and a lead run from the centre of the output BNC socket to the relevant position on the board. This arrangement made the module relatively easy to remove should it be needed elsewhere.

$\forall S S I \geq M$

Alignment

$0-50 \mathrm{MHz}$ pre-amplifier

Before applying an input signal, the operating point of the f.e.t. must be set. This is done by connecting a d.c. voltmeter to pin 8 of IC4 and rotating R25. At some point, the voltage should switch from low (around 0.5 V) to high (around 4.5 V) or vice versa. If this does not happen, the value of R20 needs to be changed. Whilst 330 ohms is specified, some f.e.t.s needed 220 ohms, others 470 ohms and, to facilitate this selection, it might be easier to insert two Veropins in the R20 position and then try different value resistors until a suitable one is found. Until this switching action is obtained, it is pointless to try to pass a signal through the amplifier.

Feed a signal of about 25 MHz and 200 mV r.m.s. into the input and a reading should be obtained. Steadily increase the signal and adjust R25 to maintain a stable display and it should be found that typically 60 MHz can be counted accurately. If a signal generator is not available, use a "sniffer" probe made from a coaxial cable terminated in a couple of turns of 20 s.w.g. wire. Obtain a stable display from a transmitter oscillator stage and gradually move the "sniffer" away-adjusting R25 until no more sensitivity can be achieved. If a 144 MHz transmitter is available, try measuring at the multiplier stages.

$\mathbf{5 0} \mathbf{- 6 0 0 \mathrm { MHz }}$ pre-amplifier

No adjustment is necessary on this range and the operation of a transmitter some distance away should trigger the counter with no problem at all.

It will be found that the circuit will self-oscillate in the absence of a signal and the Plessey data sheet does warn of this. The author chose to accept this because to "cure" it involved damping the inputs of the i.c.s, reducing the sensitivity.

Fig. 11: Connection details of the l.c.d. display together with segment notation. Non-notated pins are left unconnected

Photograph of the author's prototype 600 MHz frequency meter. The approximate cost to construct this version would be $£ 100$

Fig. 12: Pin-out details of the ICM 7226A device

If constructors wish to prevent this self-oscillation, Plessey advise the insertion of a $39 \mathrm{k} \Omega$ resistor between pin 8 (the differential input) of IC3 and earth-and a $15 \mathrm{k} \Omega$ resistor between pin 10 of IC2 and earth. It may also be necessary to damp the input of the SL952.

Check that the decimal points have been connected and illuminate when the appropriate range and gate times have been selected. The RESET switch should give a reading of noughts, as the whole counter begins its cycle all over again. The hold switch will freeze the display with the last measurement shown.

To trim capacitor C 4 either of the following procedures can be adopted. Feed a known accurate signal into the meter and adjust until the correct reading is displayed, or place the meter next to a receiver tuned to WWV $(10 \mathrm{MHz})$. The signals will beat together and the trimmer is adjusted for zero beat. The Intersil data actually specifies a 39 pF capacitor and trimmer but these were found to be insufficient. If the adjustment is too coarse, then altering the values of C 4 and C 5 will help.

Fig. 13: Connection details of the alternative l.e.d. display. All segment anodes are paralleled, cathodes connect to appropriate pins on IC7

Conclusion

By building this project as described, readers should end up with a highly sensitive meter, challenging many commercial units in terms of performance and value for money. However, constructors have several options open to them: principally, whether to extend the meter to 1.3 GHz ; whether to have a liquid crystal or l.e.d. display; whether to have the 1 MHz calibration out signal; the extra gate, etc. As an alternative to a mains power supply, rechargeable batteries could be used, with a charging socket on the rear panel. Please note that the external oscillator out pin will drive one low-power Schottky TTL device, so buffering is needed in the 10 MHz out signal if either a 74LS196 or 74LS74 is placed in the IC11 position. Future additions to be published will include a highstability ovened crystal oscillator and a $1 \cdot 3 \mathrm{GHz}$ preamplifier stage.

Errata

Please note that in Part 1, in Fig. 2, C7 should be $2200 \mu \mathrm{~F}$, under the heading "LED Display" on page 46, the digit strobe lines should be identified as " D_{0} (least significant digit, on the right looking from the front) to D_{7} (most significant digit)."

In Fig. 4, the top left-hand circuit block should be labelled " 1.3 GHz ", not $1-3 \mathrm{GHz}$ as shown.

The crystal oscillator still offers the ultimate in frequency stability for the home constructor, having done so since the early days of radio. Crystal oscillators provide Q factors of the order of tens of thousands - far higher than could be obtained by the use of an inductance-capacitance tuned circuit. Ceramic resonators are intermediate in stability between crystal oscillators and ordinary tuned circuits, but are cheaper than crystals and normally smaller. The stability of crystals can be improved by placing the crystal element in an "oven" which is kept at a constant temperature, but this is not normally necessary in home constructor work.

One important use of the crystal oscillator is in receiver calibration. A low power crystal oscillator operating at, say 1 MHz , will provide signals which can be detected by the receiver not only at 1 MHz , but also at all the harmonics (or multiples of this frequency) up to perhaps 30 MHz . The amplitude of the harmonics fall with increasing frequency. Thus a 1 MHz low-power oscillator placed near the receiver antenna will provide marker points at 1 MHz intervals. If the 1 MHz crystal is replaced by a 500 kHz crystal, intermediate marker points are obtained and one can thus calibrate the receiver dial with accurate frequency markings.

It is convenient to employ devices with a high impedance in crystal oscillator circuits so that as little loading as possible is placed on the crystal circuit. In the early days of radio, thermionic valves were used to obtain the high input impedance, but now field effect transistors (f.e.t.s) are commonly employed in crystal oscillator circuits.

Two examples of oscillator circuits employing junction field effect transistors (j.f.e.t.s) are given in this article, one being similar to the Pierce oscillator originally used with thermionic valves and the other being based on the Colpitts circuit as used with inductance-capacitance tuned circuits.

Pierce Oscillator

The Pierce oscillator circuit (Fig. 1) can be employed with various crystals over a relatively wide frequency range. No circuit modifications are required when one changes from a crystal of one frequency to one of another frequency provided that the high frequency choke L1 has a reasonably high impedance at the frequency of each crystal used.

The high impedance of the reverse biased f.e.t. gate electrode permits the use of a high value for R1 and the loading on the crystal can therefore be very small. This ensures that the Q factor and the frequency stability are high.

Fig. 1: A simple Pierce oscillator circuit
The type of f.e.t. employed is not at all critical, but naturally an n-channel junction type must be selected for the particular circuit configuration shown. Some variation in the excitation level (the amplitude of oscillation) can be made by varying the supply voltage or by connecting a small capacitor from the gate electrode to ground.

Colpitts Circuit

The Colpitts circuit (Fig. 2) is rather more suitable for use with low frequency crystals than the Pierce circuit, since no choke is required in the Colpitts circuit. Chokes for relatively low frequencies tend to be rather large and somewhat inefficient - apart from being more expensive.

First class frequency stability is again obtainable, since the load imposed by the f.e.t. on the crystal is very small and does not vary appreciably with temperature. The type of j.f.e.t. used is again not at all critical, although it must be an n-channel type for the circuit shown.

Fig. 2: A Colpitts crystal oscillator circuit

P-channel Devices

P-channel j.f.e.t. devices can be employed in exactly the same type of circuits as those shown provided that the positive power supply voltages shown are replaced with negative supplies of a similar value connected to the same point in the circuit concerned.

However, n-channel f.e.t. devices are more readily obtainable and tend to have a better performance owing to the higher mobility of the electrons in the n-channel material than the holes which carry the current in the channel of p-channel devices.

Try one of these simple circuits next time you need an oscillator circuit of a stable and known frequency or when you wish to calibrate a receiver using oscillator harmonics. If the output is used to trigger a bistable circuit, much higher levels of harmonics can be obtained, since square waves from the bistable circuit have a much higher harmonic content than the relatively pure sinewaves supplied by the simple circuits shown.

Once again YAESU lead the field with the exciting new FT-102 HF transceiverno other manufacturer offers so many innovative features.

Better Dynamic Range
The extra high-level receiver front end uses 24 VDC for both RF amplifier and mixer circuits, allowing an extremely wide dynamic range for solid copy of the weak signals even in the weekend crowds. For ultra clear quality on strong signals or noisy bands the high voltage JFET RF amplifier can be simply bypassed via a front panel switch. boosting dynamic range beyond 100 dB . A PLL system using six narrow band VCOs provides exceptionally clean local signals on all bands for both transmit and receive.
Total IF Flexibility
An extremely versatile IF Shift/Width system, using friction-linked concentric controls and a totally unique circuit design, gives the operator an infinite choice of bandwidths between 2.7 kHz and 500 Hz . which can then be tuned across the signal to the portion that provides the best copy sans QRM, even in a crowded band. A wide variety of crystal filters for fixed IF bandwidths are also available as options for both parallel and cascaded configurations. But that's not all; the 455 kHz third If also allows an extremely effective IF notch tunable across the selected passband to remove interfering carriers, while an independent audio peak filter can also be activated for single-signal CW reception. New Noise Blanker
The new noise blanker design in the FT- 102 enables front panel control of the blanking pulse
width. substantially increasing the number of types of noise interference that can be blanked, and vastly improving the utility of the noise blanker for all types of operation.
Commercial Quality Transmitter
The FT-102 represents significant strides in the advancement of amateur transmitter signal quality. introducing to amateur radio design concepts that have previously been restricted to top of-the-line commercial transmitters; far above and beyond government standards in both freedom from distortion and purity of emissions.
Transmitter Audio Tailoring
The microphone amplifier circuit incorporates a tunable audio network which can be adjusted by the operator to tailor the transmitter response to his individual voice characteristics before the signal is applied to the superb internal RF speech processor.
IF Transmit Monitor
An extra product detector allows audio monitoring of the transmitter IF signal, which, along with the dual meters on the front panel, enables precise setting of the speech processor and transmit audio so that the operator knows exactly what signal is being put on the air in all modes. A new "peak hold" system is incorporated into the ALC metering circuit to further take the guesswork out of transmitter adjustment.

New Purity Standard
Three 6146B final tubes in a specifically configured circuit provide a freedom from IMD products and an overall purity of emission unattainable in twotube and transistor designs, while a new DC fan motor gives whisper-quiet cooling as a standard feature. For the amateur who wants a truly professional quality signal, the answer is the Yaesu FT-102.
New VFO Design
Using a new IC module developed especially for Yaesu, the VFO in the FT-102 exhibits exceptional stability under all operating conditions.

ANCILLARY EQUIPMENT

SP-102 EXTERNAL SPEAKER/AUDIO FILTER The SP-102 features a large high-fidelity speaker with selectable low- and high-cut audio filters allowing twelve possible response curves. Headphones may also be connected to the SP-102 to take advantage of the filtering feature, which allows audio tailoring for each bandwidth and mode of operation to obtain optimum readability under a variety of conditions
FC-102 1.2 KW ANTENNA COUPLER
FV-102DM SYNTHESIZED, SCANNING EXTERNAL VFO
(230R 25wat 2m FM mobile

FT-290R All-mode 2 mportable
 10 memories, 2 VFO's, C size battery. easy car mounting tray 2.5 watts out

North West-Thanet Electronics Ltd. Gordon, G3LEO, Knutsford (0565) 4040
Wales \& West-Ross Clare, GW3NWS. Gwent (O633) 880 146 East Anglia-Amateur Electronics UK, East Anglia, Dr. T. Thirst
North East - North East Amateur Radio. Darlington 032555969 North East-North East Amateur Radio. Darlington 032555969
Shropshire-Syd Poole G3IMP, Newport. Salop 0952814275

or attractive H.P terms readily available for on. the spottransactions. Full demon stration facilities. Free Securicor delivery

Amateur Ilectronics UK 504-516 Alum Rock Road-Birmingham 8 Telephone:021-327 1497 or 021-327 6313 Telex:334312 PERLIC G Opening hours: $\mathbf{9 . 3 0}$ to 5.30 Tues. to Sat. continuous - CLOSED all day Monday.

For full details of these new and exciting models, send today for the latest YAESU PRICE LIST \& LEAFLETS. All you need do to obtain the latest information about these exciting developments from the World's No. 1 manufacturer of amateur radio equipment is to send 36 p in stamps and as an added bonus you will get our credit voucher value £3-60-a 10 to 1 winner!

As factory appointed distributors we offer youwidest choice, largest stocks, quickest deal and fast sure service right through-

toroidals

The toroidal transformer is now accepted as the standard in industry, overtaking the obsolete laminated type. Industry has been quick to recognise the advantages toroidals offer in size, weight, lower radiated field and, offer in size, weight, 10
thanks to I.L.P., PRICE.

Our large standard range is complemented by our SPECIAL DESIGN section which can offer a prototype service within 7 DAYS together with a short lead time on quantity orders which can be programmed to your requirements with no price penalty.

IMPORTANT: Regulation - All voltages quoted are FULL LOAD. Please add regulation figure to secondary voltage to obtain off load voltage.
The benefits of ILP toroidal transformers
ILP toroidal transtormers are only half the weight and height of their laminated equivalents, and are available with $110 \mathrm{~V}, 220 \mathrm{~V}$ or 240 V primaries coded as follows:
For 110 V primary insert " 0 " in place of " X " in type number.
For 220V primary (Europe) insert " 1 " in place of " X " in type number.
For 240V primary (UK) insert " 2 " in piace of " X " in type number.
How to order Freepost:
Use this coupon, or a separate sheet of paper, to order these products, or any products from other ILP Electronics advertisements. No stamp is needed if you address to Freepost. Cheques and postal orders must be crossed and payable to ILP Electronics Ltd. Access and Barclaycard welcome. All UK orders sent within 7 days of receipt of order for single and small quantity orders.
Also available at Electrovalue, Maplin and Technomatic
ILP Electronics Ltd.
Freepost 3, Graham Bell House, Roper Close, Canterbury CT2 7EP.

Please send
Total purchase price
I enclose Cheque $\square \quad$ Postal Otders $\square \quad$ Int. Money Order \square
Debit my Access/Barclaycard No.
Name
Address

Signature
Post to: ILP Electronics Ltd, Freepost, 3 Canterbury CT2 7EP, Kent, England.
elephone Sales (0227) 54778: Technical (0227) 64723: Telex 965780
(a division of
ILP Electronics Lid)
TRANSFORMERS

SOLENT

ELECTRONICS

 [GDSPDRT] LTD.ELMORE ROAD-LEE-ON-THE-SOLENT•HANTS-PO13 90T Tel Lee 550596

GOT AN FT 290?

(OR ANY OF THE OTHER LOW POWER 2 m RIGS). IF SO, HAVE YOU SEEN OUR RANGE OF 2 m LINEARS?

SEMA 144-15 linear AMP

The SEMA 144-15 was designed with the low power rig owner in mind. For an input of approximately 2.5 watts and a supply voltage of 13.8 volts the SEMA $144-15$ will deliver 15 watts into 50Ω Thus lifting the power level of the average portable rig to a reasonable base station or mobile level. This model is switchable between a class C mode for FM use or a class AB1 mode for SSB use. It also features automatic R.F. sense switch-over and vox delay for sideband, automatically selected when switched to SSB mode.
In the SEMA 144-15 you have a small reliable package for portable, mobile and base station use. The module come complete with power lead and plug to fit the module's power input socket.

Centre frequency 145 Mhz Supply current (Quiescent) 30 mA . nominal @
Supply voltage 13.8 Volts APPI 24 Amps RF Vowe Size: (L) $115 \mathrm{~mm} \times(W) 64 \mathrm{~mm} \times(\mathrm{H}) 45 \mathrm{~mm}$.
£46.90 inc. VAT ($\mathrm{p} \& \mathrm{p}$ E3)

SEMA 144-25 LINEAR AMP.

The SEMA 144-25 was also designed for the low power rig owner. For an input of approximately 2.5 watts and a supply voltage of 13.8 voits the SEMA $144-25$ will deliver 25 watts into 50Ω This model is switchable between a class C mode for FM use or a class AB1 mode for SSB use. It also features automatic R.F. sense switch-over and vox delay for sideband, automatically selected
when switched to SSB mode.

Centre frequency 145 MHz .	Supply current (Quiescent) 30 mA nominal @ 13.8 volts.
Supply voltage 13.8 Volts.	R.F. Power out (for 2.5 watts input) 25 watts
Supply current (Drive APP) 3 Amps.	R.F. Power input 0.5 Watts -3 Watts.

Size (L) $115 \mathrm{~mm} \times(\mathrm{W}) 64 \mathrm{~mm} \times(\mathrm{H}) 45 \mathrm{~mm}$.
£54.60 inc. VAT. (p\&p £3)
Coming soon: The SEMA $144-70$ - 10 W in for 70 W out
Personal callers by appointment. Please allow 14 days for delivery.

A monthly look at some aspect of the radio/electronics hobby that seems to bug the beginner, or occasionally a more advanced topic seen from an unusual angle.

TRANSMITTER POWER-2

Last month I looked at carrier power and mean power. This month it's the turn of peak envelope power (p.e.p.), defined in the Radio Regulations thus:
Peak Envelope Power (of a radio transmitter): The average power supplied to the antenna transmission line by a transmitter during one radio frequency cycle at the crest of the modulation envelope taken under normal operating conditions.

The "peak" bit of the title is in some ways an unfortunate choice of word since, as the definition says, it's talking about an average power. Actually, the "peak" ties up with the "crest" of the definition.

In the Amateur Service, p.e.p. is only specified in connection with single-sideband transmissions, but it can in fact be applied to other modes too. One of these, double-sideband amplitude modulation (d.s.b. a.m.), actually forms a good starting point for understanding p.e.p.

In Fig. 3, I've shown the display you'd see on the screen of an oscilloscope monitoring the output of a d.s.b. a.m. transmitter. In Fig. 3(a) there's just an unmodulated carrier (p.t.t. button pressed but no audio input), with a constant peak amplitude of V volts (an oscilloscope display normally indicates voltage). The r.m.s. amplitude is $0.707 \times 1 \mathrm{~V}=$ 0.707 V volts. In Fig. 3(b), 100 per cent sinusoidal modulation has been applied to the carrier and the peak amplitude of the carrier wave now varies between 2 V volts and zero. At the modulation peak, the r.m.s. amplitude is $0.707 \times 2 \mathrm{~V}$ $=1.414 \mathrm{~V}$ volts.

To relate the voltages to power levels, which is what we're interested in, we are back to our old friend-power is proportional to voltage squared. For Fig. 3(a), $0.707^{2}=0.5$. For Fig. 3(b), $1.414^{2}=2$. Therefore, the p.e.p. of a carrier modulated 100 per cent by a single sinusoidal tone is four times the unmodulated carrier power ($2=4 \times 0.5$).

When we move on to a single-sideband, suppressed carrier transmission, things become a little more complicated. If we consider an s.s.b. transmitter driven by a single tone, then the output viewed on an oscilloscope has a constant amplitude (again l've called it V volts), and looks just like an unmodulated carrier. In this case, the mean
power and p.e.p. are exactly the same (Fig. 4), because the "modulation peak" effectively lasts for ever. Why does the output of an s.s.b. transmitter modulated by a single tone look like carrier wave, so much so that a distant receiver couldn't tell the difference?

If you've got $P W$ for March and April 1981 you'll find an explanation there in Uncle Ed. One way of looking at it is to consider an s.s.b. transmitter as a frequency translator, taking in an audio frequency tone and producing a radio frequency output from it. Say you have an s.s.b. transmitter with a carrier frequency of 14100 kHz (except that the carrier is suppressed, so that there is virtually no output at that frequency), and a 1 kHz modulating tone applied to it. The transmitter will be operating on upper sideband (u.s.b.) so an r.f. output will be produced at $14100+1=$ 14101 kHz . The amplitude of the r.f. output from the transmitter will be proportional to the amplitude of the modulating tone input. So far as the distant receiver is concerned, it will be unable to tell the difference from a c.w. transmitter on 14101 kHz with the key held down.

If we add to the modulation another tone, of the same amplitude as the first but not harmonically related to it, on 1.6 kHz for example, the transmitter will produce two r.f. outputs, the one on 14101 kHz plus a new one on $14101 \cdot 6 \mathrm{kHz}$. These will beat together, running in and out of phase to produce the waveform of Fig. 5.

I've already said that the r.f. output amplitude is proportional to the amplitude of the modulating tone, and the same applies if more than one tone is applied at the same time. So, if the two tones have the same amplitude, the two r.f.
(b)

$$
\mathrm{Fig}^{3}
$$

Fig4

WRM654

Part 1

The launching of the Space Shuttle on its first manned orbital flight on Sunday, April 12th 1981 and its safe return from orbit, was watched by many hundreds of millions of television viewers throughout the world. Such world-wide TV links involve the use of satellites above the Atlantic, Indian and Pacific oceans in geostationary orbits some 36000 km above the equator. One of the most important tasks of the Space Shuttle will be to lift such communication satellites into earth orbit from where they can be cheaply boosted into the required geostationary orbits.

The demand for economical international telecommunications is increasing at a phenomenal rate, not only for the transmission of TV signals throughout the world, but also for international telephone, telex and military communications. In addition, direct broadcasting of TV (DBS) and sound radio signals from satellites in geostationary orbits over the equator to individual homes is planned for Britain and other countries within the next few years. Powerful, and therefore relatively heavy, satellites must be made available for such applications able to handle information at high rates.

It is confidently anticipated that the availability of the Space Shuttle facilities will enable us not only to launch satellites, but to construct huge antennas and associated facilities in space. Some of these antennas may be many square km in area and be put together by men working in earth orbit. The availability of such antennas will result in enormous advances in the field of space communications, including the wide use of electronic mail, facsimile transmission and perhaps even the provision of time signals for automatically setting, with great accuracy, your wrist watch.

On its sixth operational flight, it is planned to use the Space Shuttle to launch the first in the series of American Tracking and Data Relay Satellites (TDRS). The primary communications channel between the Shuttle and the earth in subsequent flights will involve the use of these powerful relay satellites. Although the use of the Space Shuttle for Spacelab type activities has received great publicity in the past few years, its use in the field of communications is equally important and will probably have a greater impact on the lives of ordinary people.

This article covers the communications, radar and tracking systems of the Space Shuttle itself, which are needed to enable it to operate safely and efficiently not only in earth orbit, but also in outer space and the intermediate regions of the upper atmosphere. The Shuttle Orbiter vehicle contains a mass of electronic equipment, including five computers with communications and radar equipment, which will enable these functions to be performed; indeed, it is the requirement for automatic or manual flight control in such very different regions that necessitates the use of such complex and diverse equipment.

Brian DANCE

Communications Systems

The Orbiter vehicle has about 20 communication antennas, mounted flush with the surface of the forward fuselage. Throughout each mission the communications systems will provide direct voice, command, telemetry and TV communications with the ground staff, crewmen on extra-vehicular activity (EVA) work and with payloads that have been detached from the Orbiter.

Main communications and tracking links for use in orbit are shown in Fig. 1. ${ }^{(1)}$ The whole system has been designed so that it has sufficient flexibility to accommodate the requirements of most types of payload and few changes will thus be required for special missions. The communications and tracking system in the Orbiter supports Orbiter-to-payload communications in addition to the transfer of payload telemetry, uplink data commands and voice signals to and from the space network ground stations.

The data processing and software sub-system furnishes the on-board digital computation required to support payload

(American Embassy)

Fig. 1: Communications links associated with Space Shuttle flights
management and handling. Functions in the computer are controlled by the crew through main memory loads from the tape memory. Flight deck stations for payload management and handling are equipped with data displays, cathode ray tubes and keyboards for monitoring by the crew and for controlling payload operations on a flight-by-flight basis using equipment supplied as part of the payload. ${ }^{(1)}$

Orbiter radio frequency systems include an S-band phase modulation (p.m.) transmitter-receiver for direct communication with the ground traciking and data network stations, a K-band transmitter/receiver integrated radar and communications subsystem, two independent S-band frequency modulation transmitters, and an S-band payload interrogator transmitter-receiver system. Table 1 gives further details of these systems. ${ }^{(2)}$

S-band PM System

The S-band p.m. equipment on the Orbiter can work directly with a tracking and data earth station or alternatively through a tracking and data relay satellite and its ground station. Four selectable omni-directional antennas are available for use with this system, one of these antennas being located in each quadrant of the Orbiter craft behind the cockpit. This S-band p.m. system can be used in all parts of all Orbiter flights, normally phase-locked to the up-link carrier, on either of the two frequencies shown in Table 1.

Table 1 shows that the Orbiter receiver can accept one command and two voice channels at its high data rate, or one channel of each type at the low data rate. Similarly the transmitter can send either two voice channels and one telemetry signal at the high data rate or one channel of each type at its low data rate. All of these signals may be sent directly to an earth station or alternatively through the TDRSS.

In addition, the S-band p.m. system provides a ranging capability by modulation of multiple tones on a 1.7 MHz subcarrier in the signal received from the ground Space Tracking and Data Network station. The modulated sub-carrier is then sent through the Orbiter transmitter back to the ground station. This ranging facility is not available for transmissions routed via the TDRSS. The range measurement together with the time, the earth station antenna angles and two-way Doppler derived from the coherent system provides the S-band metric data.

Payload Interrogator

In the later parts of the orbital flight test programme, a transmitter-receiver system known as the "payload interrogator" will be available for communications with detached payloads in space. It will be able to receive any one of 825 selectable channels with data rates of up to $16 \mathrm{~kb} / \mathrm{s}$ on a 1.024 MHz sub-carrier, whilst in the "bent-pipe" mode the maximum bandwidth is 4.5 MHz . The 1.024 MHz sub-carrier is routed to the Orbiter processors, whilst bent-pipe data is routed to the K -band transmitter.

The transmitter of the interrogator operates on any of 825 selectable channels and can convey command data to the payload at data rates of up to $2 \mathrm{~kb} / \mathrm{s}$. The S-band frequencies are shown in Table 1.

S-band FM

In addition to the S -band p.m. link direct with the ground station shown in Fig. 1, a single wide-band data channel is provided by the S-band f.m. transmitter using one of the two omnidirectional antennas located on the upper and lower hemispheres of the Orbiter. The frequency and the type of data are shown in Table 1.

S-band DFI

A further S -band transmitter provides the facility for sending development flight instrumentation (DFI) data in real time to the ground station. The transmitter employs the same antenna as that used by the f.m. S-band transmitter, a multiplexer antenna coupling being used.

K-band Communications

The Orbiter vehicle is equipped with an integrated radar and communications sub-system, manufactured by the Hughes Aircraft Company, which operates in the K-band. It can provide duplex communications between the Orbiter and the Mission Control Centre by the use of the TDRSS when the Orbiter is in direct line-of-sight with the satellite. This communications system employs a high-gain deployable antenna normally stored inside the payload bay and is thus only available when in orbit and when the payload bay doors are open.

The K-band transmitter accepts data in either of the two modes shown in Table 1, with three data channels in each mode. The K-band receive link provides the same $192 \mathrm{~kb} / \mathrm{s}$ communications facilities as the high data rate S-band link and, in addition, incorporates a $144 \mathrm{~kb} / \mathrm{s}$ text and graphics channel, the total data rate being $216 \mathrm{~kb} / \mathrm{s}$.

The K-band communications system shares its antenna and front-end electronics with the K-band rendezvous radar system. However, a second K-band communications antenna can be installed for missions which require greater communications capacity.

Before the K-band communications system can be used, an Sband signal is transmitted by the Orbiter to the TDRSS satellite as a broad beam. This conveys command signals which cause

Shuttle Integrated Radar and Communications subsystem for K-band use
(Hughes Aircraft Co. California)

TABLE 1
Orbiter RF Systems and Services

the high gain K-band satellite antenna to be pointed towards the Orbiter. The computing system of the Orbiter feeds the approximate location of the satellite to the K-band sub-system and the K -band antenna of the Orbiter then commences an eight degree spiral conical scan, which is automatically expanded to 20° if the signal from the satellite is not found. The scanning stops when the increase in signal level is detected, the maximum time for acquisition being 2 minutes. The Orbiter K-band antenna then automatically tracks the signal from the satellite.

Rendezvous Radar

The K-band rendezvous radar carried by the Orbiter vehicle greatly facilitates the ability of the Orbiter to rendezvous or to dock with other orbital vehicles, in either the co-operative or passive mode. A target equipped with a transponder is employed in the co-operative mode so that detection and tracking of the
target at a maximum range of 560 km is possible, whereas the maximum range in the passive mode, without a transponder, is in the order of 19 km . Minimum range in this mode is 30 m . The radar supplies four outputs to display the range, range rate, angle and the angle rate. In the passive mode optical angle tracking using the Orbiter star tracker can be employed to improve the radar performance.

Ground station contact using the wide frequency band of the K -band system is not required during rendezvous operations, so the radar system components can be shared with the communications system components. This permits maximum economy in weight, space and cost.

The rendezvous radar has many uses. For example, if a satellite is not operating correctly, the Orbiter could rendezvous with it and the crew could either repair the satellite in space using EVA techniques or the satellite could be loaded into the cargo bay and brought back to earth for checking and repair.

K-band Down Converter

The front-end of the K-band receiver raised many design problems ${ }^{(3)}$, but "state-of-the-art" GaAs f.e.t. devices have been employed by Avantek Inc. to construct a circuit of the form shown in Fig. 2. The complete circuit is mounted in a sealed aluminium box of outside dimensions $82.5 \times 36.2 \times 15.7 \mathrm{~mm}$, weighing about 0.113 kg .

Thin film hybrid circuitry was selected for this application because it can withstand shock, vibration and temperature cycling. In addition, thin film circuitry enables a consistent performance to be obtained because tolerances of thin film conductors can be held to within a few $\mu \mathrm{m}$ by the use of precision photolithographic techniques. The circuitry is protected by filling the box with dry nitrogen and hermetically sealing it, using a tungsten inert gas welding technique. Hermetic sealing is used to prevent gas leakage at any of the openings. The circuit has been designed for a mean-time-between-failures of more than 40000 hours under any combination of environmental parameters which occur naturally.

The circuit selected for the down converter includes three stages of balanced GaAs f.e.t. amplification at the incoming signal frequency, followed by a Chebyshev K-band bandpass filter to reject image frequencies. The filter is followed by an unusual type of single-balanced mixer, a single stage of i.f. gain in the 650 MHz band and a temperature controlled attenuator. Two monolithic i.c. voltage regulator devices are also employed.
Each functional stage, such as a single amplifier, is fabricated with thin-film gold conductors and tantalum nitride resistors are deposited on the aluminium oxide ceramic substrate which is bonded to a metal carrier. Each complete functional module is screwed to the metal case and the module interconnections are made with gold ribbon or wire.
The Avantek GaAs f.e.t. device ${ }^{(4)}$ selected for this application have a $0.5 \mu \mathrm{~m}$ gate length and are used in balanced pairs so that each amplifier can be assembled aligned and tested as a separate unit, with the additional advantage of an increased dynamic range. Quadrature hybrid couplers are used at both the input and output. Each amplifier stage is bonded to a carrier with an area of approximately $6.3 \times 6.3 \mathrm{~mm}$.

The image filter was required to provide a rejection of over 20 dB of noise power in the 12.481 to 12.685 GHz range. Various Chebyshev edge-coupled filters with four to six poles and 0.01 dB ripple were tried, but the simple four pole filter was selected because it gave the required image rejection, with less insertion loss, than the more complex filters. This four pole filter is fabricated on a $19.0 \times 6.3 \mathrm{~mm}$ substrate. The insertion loss is 1.5 to 1.6 dB , the v.s.w.r. less than $1 \cdot 3: 1$ at both input and output and the phase deviation is $\pm 0.25^{\circ}$.

The mixer stage employs Schottky barrier mixer diodes in their unpackaged chip form. These diodes are selected under expected operating conditions on an automatic network analyser. The use of a bandpass filter at the input of the mixer does create design problems, since the filter presents a varying out-of-passband source impedance.

Testing of the mixer and filter is done with these components connected together to minimise problems due to their interaction. The overall conversion loss of the mixer and filter is some 6 dB .

Fig. 2: Schematic diagram of the K-band down converter

STDN ground station provides communications with the Orbiter during launch and landing (NASA)
Large capacitors, normally used in a 650 MHz i.f. amplifier, have been replaced by small value m.o.s. chips in order to obtain the good pulse recovery characteristics required for quick recovery after a transmitted radar pulse. A unique temperature controlled attenuator is employed to compensate for the additional gain of the GaAs f.e.t. stages at lower temperatures; it employs a fairly conventional pi-type attenuator with a glass bead thermistor as part of the series resistance leg. The gain variation with temperature is thus limited to 4 dB .

Atmospheric Aids

In additon to the communications systems already described for use in orbit, the Orbiter also possesses various systems to assist its flight through the earth's atmosphere. They include v.h.f. voice communications equipment, radar altimeter, tactical air navigational system (TACAN) and a multi-scanning beam landing system.

The microwave scanning beam landing system is one of the most important items of equipment on board the Orbiter vehicle. After a mission has been completed, the orbital manoeuvring system engines are used to cause the Orbiter vehicle to enter the atmosphere. During re-entry friction causes the lower surface of the Orbiter to glow at temperatures up to $1250^{\circ} \mathrm{C}$. Unlike an aircraft, the Orbiter has no engines to alter its path once the landing operation has commenced. The microwave beam landing system is therefore used to provide three dimensional information to the Orbiter, which allows its computers to steer the vehicle along the best landing path. The Orbiter has three independent K-band microwave beam landing systems which commence to operate about 13 km from the landing site.

Additional Orbiter Systems

Apart from the actual transmitters and receivers themselves, the Orbiter must carry suitable additional equipment to interface with these transmitters and receivers. For example, a TV system is required to provide the Orbiter crew with a better image of space objects and to provide such information to people on the earth. The system currently planned can accept inputs from up to 10 TV cameras, but at some later date a video tape recorder may be added. The camera outputs may be switched to two onboard monitor screens and can be transmitted to earth by Sband f.m. or K-band links. The basic cameras are monochrome equipped with changeable lens configurations including a field sequential colour wheel system.

The p.c.m. master unit will accept data from payloads (attached or detached from the Orbiter), the Orbiter itself, or its computers and provides outputs or operational telemetry at both the $64 \mathrm{~kb} / \mathrm{s}$ and $128 \mathrm{~kb} / \mathrm{s}$ rates. These outputs may be fed to the network signal processor (which also accepts analogue voice data signals and converts them into digital signals). The signals are suitably multiplexed and the outputs fed to the S-band p.m. transmitter, the K-band signal processor, or the recording system. The network signal processor also accepts command and voice signals received by the Orbiter systems, separates the multiplexed signals, converts voice signals into the analogue form, and then routes all signals to the appropriate destination.

The f.m. signal processor and the K-band signal processor accept suitable input signals and route them to the appropriate transmitter. Other interface circuits are used in connection with payloads.

The concluding part of this article examines the role of the Tracking and Data Relay Satellite System

The RSGB-A Good Buy?

Sir: There is firm evidence to suggest that all is not well, and indications are that matters are worsening, in the relationship between the ordinary membership of the RSGB and its governing Council. The latter consist of 18 men and 1 token woman who together form the decision-making and policy implementation arm of the Society. From these people flow directives that steer the course of the RSGB, but in the process they fail to take on board much oi the constructive advice and innovatory remarks made by the paid-up crew numbering well over 30000 people. Hence it is quite common, as one spins the dial through 80 and 40 metres, to hear the malcontentment being voiced against what some cynics refer to as the London Wireless Society. Letters of justified heartfelt criticism appear regularly in periodicals embracing radio amateurs among their readers. In essence, what people in the main are complaining about, as we fast approach the 21 st century, is the inability or unwillingness of the Council to accept change. Change of a nature that is designed both to improve services to subscribers and give them more say in the Council's affairs.

Certainly, many object to the steadily rising cost of membership- $£ 14.50$ for being a corporate member, who form the bulk-to give the Society an income well towards $\mathrm{f} \frac{3}{4}$ million in this financial year. Much of the money is spent in the maintenance of 35 Doughty Street, and on the salaries of a growing number of full-time staff. Some years ago it was argued that the headquarters should be moved to the Birmingham area, an easier place to reach by rail and road with cheaper overnight accommodation plus the high probability of buying larger premises, perhaps to include our own exhibition hall. To contemplate such a move now would probably necessitate expensive redundancy payments, though rumour has it that the Council are currently negotiating for fresh premises but still to be located in the Great Wen. Until recently it might have been argued that being within consulting distance of the Radio Regulatory Department of the Home Office was a sound major reason for remaining in the nation's capital. However, the recent farce in the London Gazette re the new licence conditions glaringly shows this claim lacks substance, like the reputed excellent rapport twixt its civil servants and the RSBG officials. That's why new licensees are receiving their callsigns by return post.

Tied inextricably to money matters is the shape of the total package of practical information available over such enquiries as planning permission for antennas, Sunday news broadcasts, listing stolen equipment, etc. Whilst generally there is minimal dispute over their appropriateness and efficiency, maybe the up-to-date amateur radio news via the land-line is rather an elaborate gimmick. True it is a service, so too could 24 -hour marriage guidance counselling be merited as an even more valuable provision for members
snuggling up cold to the XYL at 3 a.m. after DX chasing. At a time when large numbers of members are placed on shorttime working or retire, an effort should be made to stabilise the subscription rate for at least the next few years. Some savings surely could be made by stringent examination of the necessity to call so many Council meetings and of its members' subsistence and travelling expenses at home and frequently abroad on official business. Indeed, what is admittedly a token gesture would be the Council reversing their latest decision to give themselves free copies of every RSGB publication, or refusing to accept the none-too-cheap plaques commemorating their term of office. True altruism has no tangible rewards.

Next, whilst it is neither sound nor good journalistic practice for Practical Wireless to openly knock another publication, what follows may be excused on the grounds that first and foremost it is published for commercial reasons as purchasers are well aware. RADio COMmunication, in sharp contrast, is primarily supposed to be directed towards sustaining members' amateur radio welfare. It definitely does this judging by the thick wad of advertisements at the beginning and end of each issue. In the middle, readers are offered a very mixed diet. At times, state-of-the-art papers are printed, but copy more often contains material filched from other publications and bland descriptive reviews of factory-made equipment that say little more than its handbook. Even the merest hint of pointing out a product's shortcomings is skilfully avoided; the income from adverts precludes RAD COM from entering into meaningful debate over the vast price increase and the dealers' attendant cartel on its adherence regarding imported transceivers. Through a policy of selection and exclusion, articles and letters faultfinding the RSGB are never printed. To all intents and purposes the members are one big happy family. But of late, newcomers last three years before quitting; they want value for money.

Finally, what other paramount changes should the Council ideally consider initiating? One should be that no Council member should serve more than 2 years in any 12 -year period, thereby avoiding the notion of the self-perpetuating clique and admitting no one is irreplaceable. Power groups within the cabal would also be dissipated or at least neutralised. Also candidates for Council vacancies should be positively encouraged to send substantial election manifestoes to members, to include canvassing on the air waves. The obligatory participation of a Council member at the local annual major rally in open forum would offer members a valuable democratic opportunity to exchange their opinions with their representative about the hobby's future directions. Furthermore, at the same time recruitment to the various sub-committees could be publicly handled. Sadly, being offered a place is now based 'on who you know'. The biggest example of the phenomenon is the election of the President of the RSGB by a handful of people who claim the gift of wisdom in selecting one from their number. In certain instances the accolade has blessed the same person more than once. What a thick lot the rest of us must be.

To conclude, it cannot be denied that British radio amateurs need a national organisation similar to the RSGB in order to protect our hard-won privileges. What is obviously not being offered is a willingness to pay attention to, and occasionally follow, grassroot opinion. Ironical failure in a way, since the hobby is all about communication.
A. Harada G4INX

Chester

The RSGB Replies

Sir: Mr Harada has raised in his letter a large number of points, the majority of which have been voiced by others at
one time or another but with considerably more grace. He, as a responsible member of RSGB, should already know the answers to most of them-or at least have been able to find out after a little homework. My reply, therefore, is directed at readers who are not members of RSGB and who may be misled by some of the statements made in his letter. I am grateful to the Editor of Practical Wireless for sending me a copy of Mr Harada's letter and for the space to reply. Because of the complexity of a Society such as RSGB, I regret that the answers will need to go into some detail.

Structure of the Society

Mr Harada presents a picture of the Society as an autocratic Council, divided from an informed and constructive ordinary membership. He tries to erect the classic "them-and-us" situation, with the "them" being the RSGB hierarchy and the "us" being the "grass roots" of the Society. Unfortunately for Mr Harada, in amateur radio the situation is not quite so simple: this is firstly because the hierarchical "them" also happen to be very ordinary amateurs practising their hobby in the same way as everyone else and secondly, because a remarkable number of the "us" play a vital role in the running of their (not the) Society. RSGB in fact has an unusually broad base compared with other Societies as the following will illustrate.

The RSGB functions as the result of the combined efforts of three bodies: its representative system, its non-elected volunteer effort and, by no means least, its professional administration. Considering each in turn:

Representative System

The RSGB Council consists of 18 members (not 19!), all of whom, with the exception of the Honorary Treasurer and sometimes the President, have been elected to Council by members of the Society. Seven of the members of Council, Zonal Members, are elected by only those members who live in one of the seven zones covering the whole of the UK, and their primary responsibility is to the general supervision of Society affairs in their zone.

The current practice is for Council to hold about seven meetings per year, each of which lasts typically seven hours. During some 1000 man-hours per year, it has to review all the activities of the Society, especially the work of its HQ, its 15 committees and all its honorary officers and managers, and also to consider future policies. Needless to say, there is never sufficient time in practice, and there are as many opinions on what changes need to be made-such as whether to hold more frequent Council meetings, as was past practice, or to circulate more paperwork-as there are Council members. There is no easy answer; indeed, with the growing complexity of amateur radio, the problem predictably will get worse.

The UK is further divided into twenty regions, each of which is the responsibility of a Regional Representative who is also elected directly by only those members who reside in the region. The names of all Regional Representatives, Council Members and Honorary Officers are published every month in the Society's journal Radio Communication. In addition, members in any sizeable area may nominate Area Representatives to act as links with the Society at the local level: these number over 100.

Non-Elected Volunteer Effort

One feature of RSGB is the way in which the effort of a large number of volunteers is integrated directly into its organisation. Their main use is in the 15 specialist committees and subsidiary working groups of Council, each of which has specific tasks dictated by its terms of reference. Each committee has the responsibility to design its own membership to best deal with its duties. In some cases, this
requires the committee to have a representational basis. The Membership and Representation Committee is the classic example: it includes all Zonal Members of Council and some Regional Representatives. However, most committees areand should be-made up by people who not only have the specialist and general knowledge appropriate to the work of the committee, but must also be able to engender a sense of team work. This is essential to the operation of all successful committees. For most committees, being "representative", geographically speaking, is not normally relevant; nevertheless, a large number of committee members live at a distance and are still prepared to participate despite the burden of travelling. In practice, approximately 138 volunteers occupy the present 200 committee places; some people occupy more than one position for obvious liaison purposes.

Committee members represent a large resource of effort and expertise, on which RSGB capitalises to an extent that is unique amongst radio societies throughout the world. Not only do they contribute to the organisation itself, but they also provide yet another set of links between RSGB and its membership. We are indeed fortunate that the Society can attract and be subsidised by this volunteer effort-there is no way it could afford the several thousand man-hours of effort each year at anything approaching normal rates.

In addition to the above committee effort, volunteers provide invaluable service in other areas: the scale of this can be judged from the summary given in the Annual Report for the year ending 30 June 1981 which Mr Harada, like all members, received with their November 1981 Radio Communication.

11	Honorary Officers
12	Intruder Watchers
14	BREMA/CCIR/BSI/IERE Liaison Members
16	Planning Panel Members
18	Council Members
20	Regional Representatives
20	Amateur Radio Observation Service Listeners
31	Beacon Keepers
43	QSL Bureau Sub-Managers
39	Slow-Morse Transmitters
80	Newsreaders and Reserves
$100+$ Area Representatives	
133	Repeater Keepers
162	Raynet Controllers
175	Committee Members

Professional Effort

The main brunt of Society administrative work is borne by its Headquarters staff; the 20 or so full-time staff represent approximately 50000 man-hours of effort per year. While a proportion of this necessarily is concerned with the routine administration associated with any company (which is what we are), a large and increasing proportion is devoted to the development of amateur radio itself. The thousand or so letters received each day represent a very direct "grass roots" contact with the membership. Each letter may take anything from one minute to several hours to answer: this reply is an example of the latter. Telephone calls, and the presence of the HQ staff at exhibitions, rallies and meetings provide further direct links with members. HQ staff frequently give talks to affiliated clubs; during the last three weeks I have personally spoken about the Society's work at three clubs, at Brighton, Burnham Beeches and Shrewsbury.

Viewed as a whole, the above represents a comprehensive structure in which a large number of members participate directly and which provides a multiplicity of links at many levels with the membership at large. It is a far cry from the simplistic picture which Mr Harada attempts to paint. Nevertheless, while much of this organisation works reasonably well, it is not fully exploited. Improvements will
continue to be made as part of the normal development of the Society.

Cost of Membership

Mr Harada complains about the cost of membership of RSGB and suggests that subscriptions alone give the Society an income well towards $£ \frac{3}{4}$ million in this financial year. If he had referred to his copy of the 1980/81 Accounts, he would have seen that this figure was the rather smaller one of $£ 264084$.

Being a member of RSGB implies that you believe in amateur radio, you feel that it is worth defending, you are prepared to help others to enjoy what you enjoy, and you see it as a means of repaying some of the effort that others have put in to amateur radio and from which you have derived much benefit-and you are prepared to back your beliefs with a positive commitment. You also receive many benefits in the way of services.

To put the $£ 14.50$ subscription into perspective: (a) this still represents less than 4 p per day; (b) taking into account the effect of inflation, the subscription is lower in absolute terms than in the past; (c) it compares with the "subscription rates" of other magazines which have some amateur radio content, while in the case of RSGB, its journal is devoted entirely to amateur radio and represents only one of a large number of services to members.

Headquarters

Mr Harada again is quite wrong when he suggests that the number of full-time staff employed in its Headquarters is growing. In fact, the number has remained substantially constant over the last five years, during which time the membership has increased by over 50 per cent and services to members have expanded considerably. This has been achieved by greatly improving the effectiveness of staff effort by the exploitation of modern data processing techniques-one of the major innovatory changes in the Society that Mr Harada has chosen to ignore.

If Mr Harada cares to study the Annual Report that he will have received, he will realise that this effectiveness is reflected in the relatively low staffing costs in terms of cost per head of staff compared with other institutions. At this time, the main Headquarters problem is the urgent need to employ more staff, not fewer. This will be done as soon as larger headquarters premises have been obtained.

Home Office

In recent years, links between the Home Office and RSGB have grown closer and stronger. One outcome has been that RSGB has been able to take over some of the responsibility for the day-to-day control of amateur radio. This, in general terms, is to be welcomed. There is little doubt that, had RSGB not accepted the task of the initial vetting of proposals for services such as beacons, repeaters and special event callsigns, the expansion of these services to radio amateurs would have been curtailed.

However, not all Home Office matters have gone so smoothly. Many readers will be aware of the problems associated with the issuing of a new licence schedule earlier this year. The reason for this was that the newly appointed Home Office staff did not fully appreciate the intricacies and implications of the schedule modifications put forward by their own technical department following the World Administrative Radio Conference in 1979 (WARC '79), and therefore did not see the need to trouble RSGB: the situation was made worse by printing errors in the London Gazette. RSGB did much to get the major errors corrected in order to establish the present temporary schedule. Negotiations will continue with a view to producing a final version which includes all the modifications pending from WARC ' 79.

The delays in issuing amateur licences are due to two reasons: the problems with the schedule which are described above, and the effects of staff cut-backs at the Home Office at the same time as a huge increase in the numbers applying. In the case of the schedule problem, the RSGB was able to provide direct help: however, in the case of licensing delays, RSGB can do little other than make the Home Office fully aware of the frustration and heartbreak that these delays cause to those who have worked hard to pass their exams.

Communication

Mr Harada in his letter seems to welcome various services and modes of communication with members, but singles out the Headline News Service, on 01-837 4118, as a gimmick. The 600-800 calls received each week suggest otherwise.

Books

Books represent one of the most important services RSGB provide to radio amateurs throughout the world. It is a service to be proud of and represents annual sales approaching $£ \frac{1}{4}$ million. Council members need to have a clear and up-to-date picture of our publishing programme; to issue copies of each new edition to them is a sensible way of achieving this.

Radio Communication

Because this journal is circulated to all members who, by definition, have an interest in amateur radio, the Society is able to attract considerable advertising revenue. The advertisements are of direct interest to most members and therefore this can be regarded as a service in itself. What they do not do is to take pages away from that part of the magazine devoted to articles, features and news. On the contrary, by off-setting some of the production costs, they enable the journal to be expanded.

Mr Harada's assertion that much material is "filched" from other publications is ridiculous. There is an agreement between national radio societies that articles may be reproduced-with due acknowledgements, of course. RSGB does reproduce exceptional articles: it would be failing its members if it did not. A rather higher number of RSGB articles are published in other journals than vice versa.

Technical reviews of equipment are appreciated by the majority of amateurs. However, it is not easy to produce a review that, in one article, provides a technically accurate description of the effectiveness of an equipment relative to its specification and in a form which is both comprehensive and interesting to a readership which covers the widest possible range of technical background. A second difficulty arises from the fact that technical quality and features, like beauty, are very much in the eye of the beholder. A particular feature that one amateur may regard as essential and its omission a serious deficiency, may to another amateur, be seen as an unnecessary extravagance, a complication and a potential source of unserviceability. The best that can be done, surely, is to present a fair and accurate description in terms of its specification and to leave it to the reader to judge its value-for-money in terms of his particular requirements.

Regarding the suggested conflict of interest between the advertising and reviewing of equipment, this cannot be the case as on a day-to-day basis they are entirely separate operations. Advertising is essentially a commercial activity which is dealt with by HQ staff, whereas technical reviews are the responsibility of the volunteer members of the Technical \& Publication Committee.

As regards the cost of equipment in this country, RSGB have attempted to determine the justification for UK prices. However, the situation is by no means stable: I understand
that Americans can now buy certain equipment at a lower price in the UK than in the USA.

Period of Service on Council

If Mr Harada is serious in suggesting that Council members should serve only two years in any 12 year period, then he clearly has no concept of the level at which an organisation, the size and complexity of RSGB, has to work. The biggest task facing Council members is to ensure that, in making decisions, all the factors affecting the problem and all the implications that inevitably impinge on other areas are understood. It is my opinion, and that of other experienced people, that it can take many years' close involvement before one begins to understand the conflicting demands placed upon our resource of effort and money. Even then, this experience does not guarantee the wisdom necessary to judge the conflicting and other intangible factors involved. However, having served this long apprenticeship, people do expect to be better placed to make decisions about Presidents.

Even within the space of this extended letter, I have only been able to deal with some of the points raised by Mr Harada. The involvement of members is crucial to the Society and it is appreciated that Mr Harada shows such concern in its operation. However, we believe that vituperative and destructive criticism is counter-productive, and alien to the spirit which permeates amateur radio and which is, in fact, its driving force. The RSGB clearly is responsive to the amateur spirit emanating from its members in so many ways.

If readers would like any further information, or details of how to become a member of RSGB, please will they write directly to me at 35 Doughty Street, London WC1N 2AE.

David Evans
General Manager/Secretary, RSGB

Uncle Ed's Page

\mapsto continued from page 39
outputs will have the same amplitude too, and they will each have the same average power. The two-tone output shown in Fig. 5 will therefore have twice the average power of the output due to either tone on its own.

When it comes to talking about peak envelope power of the two-tone output, you will note that the peaks have got an amplitude of 2 V volts. I'm sure you won't need me to tell you that this means that the p.e.p. of the two-tone output will be four times the average power due to either tone on its own, or twice the average power due to the two tones together.

So, for a 100 per cent tone-modulated d.s.b. transmission, p.e.p. $=4 \times P_{c}\left(P_{c}\right.$ is unmodulated carrier power), and for a two-tone modulated s.s.b. transmission, p.e.p. $=2 \times P_{m}\left(P_{m}\right.$ is mean power). If you compare the waveforms of Fig. $3(\mathrm{~b}$) and Fig. 5, you'll see that they have quite a different shape, especially near the centre line.

If the modulation input level is turned up too far, the amplitude of the r.f. output signal is no longer proportional to the input signal level. In other words, the output becomes distorted. The power level at which the acceptable distortion level is just reached is the rated output p.e.p. of the transmitter (see Understanding Transmitter Parameters, PW June 1982, for further details), which is the same whether it's putting out the two-tone test signal or the more useful speech signals, but see also next month's discussion on transmitter ratings for various modes, and how they relate to each other.

ALAN MAARTIN GBZPW

Broadband Pre-amplifier

One of the latest additions to the Datong Electronics product range is a broadband r.f. switched pre-amplifier, called the RFA.

Typical applications for the RFA include: weak signal reception of all amateur bands between 5 MHz and 200 MHz ; long distance reception of v.h.f. f.m. broadcasts and v.h.f. TV signals; CB transceivers; private mobile v.h.f. radio transceivers; reception of marine and aeronautical bands; v.h.f. scanner receivers; and compensating for signal loss in long antenna feeders. The wide bandwidth of the unit makes it particularly suitable for use with broadband antennas.

The RFA is intended for indoor use and is very simply installed between the antenna and receiver/transceiver. Send/receive switching is automatic, using r.f. sensing and internal bypass relay. Also the unit features excellent large-signal handling (intercept point

+20 dBm) and is suitable for use with transceivers with a maximum transmitter power out of up to 30 watts.

Other technical parameters are: frequency range 5 to 200 MHz ; noise figure better than 3 dB ; overall gain 9 dB ; input and output impedance 50Ω, via standard SO239 u.h.f. connectors.

An aluminium diecast case, measuring $113 \times 62 \times 31 \mathrm{~mm}$, houses the unit. Two l.e.d.s indicate power on and transmit, and an external power supply of 10 to 14 V d.c. at 40 mA is required.

Costing $£ 33.92$, which includes VAT and carriage, the model RFA plus optional mains power supply unit and coaxial jumper lead are available from: Datong Electronics Ltd., Spence Mills, Mill Lane, Bramley, Leeds LS13 3HE. Tel: (0532) 552461.

Scientific Calculator with

a Difference

Dorman Smith Instrumentation have introduced a well equipped scientific calculator capable of complex calculations and have combined it with a digital multimeter.

Called the Hioki 3208, the unit provides a versatile, pocket-sized, goanywhere electrical or electronic tester/calculator facility, and is housed in a case measuring only $170 \times 76 \times$ 20 mm . It is claimed that the internal battery will power the unit for 100 hours of continuous working.

A single function key immediately converts d.m.m. data to scientific notation on the calculator display with the d.m.m. ranges covering d.c. volts, a.c. volts, two current ranges, ohms and low power ohms for in-circuit resistance.

The 3208 is supplied complete with battery and test probes, costs $£ 75.00$ plus $£ 3.00$ p\&p and is available mail order direct from: Dorman Smith Instrumentation, Blackpool Road, Preston PR2 2DQ. Tel: (O772). 728271.

Low-cost Digital Multimeters

Recently introduced by Armon Electronics Ltd. are two digital multimeters, called the model 6010 and model 7030. Specifications for both the instruments are the same excepting for the d.c. accuracy figure, on the model 6010 it is 0.5% and on the model 7030 0.1\%.

Specification for both units is as follows: a.c. volts- 200 mV to 750 V over five ranges; d.c. volts- 200 mV to 1000 V over six ranges; resistance200Ω to $20 M \Omega$ over six ranges; a.c. and d.c. current- $200 \mu \mathrm{~A}$ to 10 A over six ranges; input impedance- $10 \mathrm{M} \Omega$ and full overload protection is provided over all the ranges.

Measurements are indicated on a $3 \frac{1}{2}$ digit, 13 mm high l.c.d. display and the instruments are powered by a single 9 V battery (alkaline) with an estimated operating life of 200 hours.

Other features include, auto polarity, auto zero, battery-low indicator, and the unit is housed in an ABS plastic case with fitted tilt stand. Test leads are supplied and the only optional accessory is a soft carrying case.
The model 6010 costs $£ 29.95$ plus VAT and the model $7030 £ 35.95$ plus VAT, post and packing is free of charge.

Both the instruments are available from: Armon Electronics Ltd., Cottrell House, 53-63 Wembley Hill Road, Wembley, Middlesex HA9 8BH. Tel: 01-902 4321 (3 lines).

It has been said that information is power; witness the establishment of computer-controlled data banks by Government and security agencies throughout the world. You might be forgiven for wondering what relevance this statement has to improved DX working, or to any other aspect of amateur radio. My experience of operating phone, c.w. and RTTY on the h.f. bands leads me to conclude that we can regard information as being equivalent to power (in the transmitted sense, as you will see).

My proposals outlined in this article are primarily of use to the transmitting amateur; however the amateur and broadcast bands s.w.l. might find some useful tips on logkeeping, operating procedures and so on.

The major problems in working DX, apart from finding it (but more of that later), seems to be static or other QRM and the inevitable pile-up, more often than not from multikilowatt Mediterranean stations. Both can be overcome by increasing the amount of r.f. transmitted. Easy, then, to work DX-all that is needed is a kilowatt linear amplifier and a TH6DX at 30 metres a.g.l. The main obstacles will be the XYL and the Home Office!

Apart from the enormous cost of such equipment there may be one or two objections raised on aesthetic grounds to a 30 metre high tower in the middle of the lawn; the argument that the guy ropes can be used to hang washing from is not, in my experience, acceptable. The practical solution is therefore to make the most of the equipment available.

Equipment and Station Layout

I believe that a well organised shack can contribute to success in DXing.

Before looking at the methods (essentially administrative) a word or two about equipment and layout. The equipment in use at G4EJA comprises the following:

Rigs:

Antenna
Systems:

RTTY:

Miscellaneous:

Yaesu FT-101B transceiver and remote v.f.o.
Europa B transverter 144 MHz (2m) band
Trio $2200 \mathrm{GX}, 144-146 \mathrm{MHz}$ f.m. transceiver
Atlas 210 h.f. transceiver
Trio R-1000 general coverage h.f. receiver
2-element triband Yagi for h.f.
14-element Yagi for $144 \mathrm{MHz}(2 \mathrm{~m})$ band

Mounted on a 12 m tower Inverted " V " for $3 \cdot 8 \mathrm{MHz}(80 \mathrm{~m})$ band
Dipole for $7.0 \mathrm{MHz}(40 \mathrm{~m})$ band
Ground plane for 144 MHz
Home made terminal unit (see the recent $P W$ series Introducing RTTY), v.d.u. and printer together with a big fan (needed to cool the Atlas heat sink!)
Xitex Morse transceiver, 150 MHz digital frequency meter, s.w.r. bridges covering the h.f. and v.h.f. bands

Low-pass filter (on the h.f. beam)
Datong active filter
Tape recorder
Speech processor (G3LLL type)

I have tried to arrange this equipment for ease of use, grouping together items used together. For example, the RTTY equipment is located at one end of the operating table next to the Atlas transceiver. Similarly the kit used for phone operations is also grouped together.

The equipment is arranged into two levels. On top, at eye level, are the miscellaneous items-s.w.r. bridges, filters, antenna rotator controller and so on. Desk-level space is reserved for rigs and the station log-book. The two transceivers are arranged symmetrically about the centre of the operating area and inclined inwards. The station log-book and notepaper can then be conveniently situated in the middle (don't forget a supply of pens and scribbling paper).

Audio from all the receivers is brought to a jackfield together with input and output connections for filters, terminal units, speakers, tape recorder and so on. It is then a very simple matter to cross-connect between items. Any such connection can be made without having to delve behind the rigs or search for a particular type of connecting lead. In the same way that audio connections are standardised on PO style 3-pole jacks, so antenna connections are all of the PL-259 variety (rigs have sockets, leads have plugs and a supply of back-to-back sockets is to hand).

The shack is laid out as shown in Figs. 1 and 2, in accordance with simple ergonomics with all connectors and interfaces being standardised.

So far, we have only made the shack comfortable to operate in and have minimised the effort required to change to any desired operating configuration.

No shack can be considered complete without a 24 hour clock. Not only must the operator be aware of his own time of day, for log-keeping purposes, but he must also know the time of day at the location of the station he is attempting to work or listen for.

On the wall above my operating table is a time zone map which indicates the difference between local time and GMT for the various areas of the world. The simplest use of this valuable operating aid is to decide whether to say "good morning" or "good evening" when eventually contact is made.

More important is the relationship between the time of day and propagation. Forecasts for amateur h.f. band propagation are given in Radio Communication each month and-in more general terms-can be found in the RSGB publication Amateur Radio Operating Manual. Although these forecasts are only a guide it is usually a waste of time to call CQ in a direction for which no propagation is forecast.

Another possible timewaster is to call, say, "CQ Australia" just after tea, because most of our antipodean cousins will be tucked up in bed. Any Australian amateur station on the air at that time will probably be at the other end of a pile-up anyway.

Having selected a direction in which to point the beam, and a time of day when you and some DX are likely to be awake, you can then scan the dials. This is probably the most widely practised method but can be improved on.

Experience has shown that far more DX is on the air during a contest than on an average weekend (and weekends in general are busier than weekdays). Contest operating is almost a subject in itself and benefits from advance planning.

Incidentally, DX need not necessarily mean long distance, even though the term originally meant just that for c.w. operating. A station that is rare or in some way unusual can be classed as DX. For example, I once tried for two hours before finally working an RTTY station located on Aaland Island- OH 0 , off the coast of Finland.

Contests

Contests are of many types including single-operator, multi-operator, multi-band and so on, covering in the course of a year all the main modes of transmission (c.w., phone, RTTY and SSTV). Contests are held for bands right up into the microwave regions, although it is the h.f. contests that are primarily of interest for our current discussion.

A number of contests have become well established in the amateur calendar and attract a tremendous interest throughout the world-including that of DXpeditions, about which more later. These include the following:
ARRL DX Contest: held in the spring when the rest of the world work stations in North America. Very useful for the collection of US States and Counties.
RSGB Commonwealth Contest: also takes place in the spring and requires contacts with current or one-time members of the British Commonwealth.

Fig. 1: Plan view of the operating area

WPX contest: run by the US Magazine $C Q$ is also held in the spring and requires contacts with different prefixes.
Worked All Europe (WAE): organised by the German amateur body DARC is split into three sections for phone, c.w. and RTTY. An interesting feature of WAE is the use of QTC, or information about previous contest QSOs passed to another participant, for which additional points are earned.
CQ WW DX (CQ Magazine World Wide DX). This contest is probably the biggest event of the year (one each for phone and c.w.) where the object is just to work as many other stations as possible.

In addition to those mentioned there are many other contests throughout the year such as the VK-ZL Oceanic Contest, the Bermuda Contest and even the International Police Association Contest! The keen DX'er will keep a diary of important contests from dates and information gleaned from $P W$, Radio Communication and other magazines. Incidentally, sending an entry to a contest usually guarantees advance notice from the organisers, by way of post, for that contest for a few years at least.

The foregoing brief list of contests shown gives an indication of the different objectives required. Contests can also require the exchange of different information for a valid contest QSO. The most usual contest exchange is a combined signal report and serial number. Thus in a phone contest exchanges would begin with: $59001,59002,59003$ and so on up to, perhaps 59364. The first two digits of the exchange give respectively signal readability and signal strength with the final three digits providing the QSO serial number in the contest.

Fig. 2: Layout of the equipment on the top shelf

There are two things to notice about the contest report. First the readability and strength always seems to be " 59 ". This is an anathema to the purists of course, particularly when comments such as the following are heard:
"Your report is 59 but I don't copy your callsign or report". Nevertheless, it does save time if all reports are the same; some contest DXpeditions even print 59 as an integral part of their QSL cards! Secondly, the serial number comprises three digits, even for the first few QSOs. This can improve readability in conditions of heavy QRM.

Other information to be added to signal reports for contest exchanges can include: zone number ($C Q$ or $I T U$); input power; county; age (YL's allowed 00 for this one!) There may also be restrictions on who to work or when; for example, work only non-Europeans or a specified maximum of 12 hours of continuous operating.

It is most important that the rules for a contest are studied in advance. Sending the wrong information, such as serial number when zone number is required, not only wastes your time it wastes that of a busy DX station who will not thank you for it. Having determined the date and operating detail requirements of a contest there are two approaches to entering; to win and to chase DX.

The first approach, that of entering to win, is really outside the scope of this discussion. However, the main points can be summarised as follows:

Study the rules
Ensure all your gear is fully operational
Study propagation forecasts
Plan an operating schedule band by band
Keep a duplicate log
The main benefit of contest operation to the average amateur is the availability of good DX. This is particularly true for the major contests outlined previously when many special stations are established in otherwise quiet countries. These stations are often operated by amateurs from the US whose willingness to QSL is to be admired.

On a particularly busy contest day it may be difficult to know which DX to chase simply because there is so much. This will be particlarly true for a station who is perhaps running QRP and knows that it will take some time to make contact with the DX station through the inevitable pile-up. To maximise operating time it is essential to be certain that a particular station needs to be worked. Many special prefixes appear during contests and it is wasteful, for example, to sit through a pile-up trying to work a station prefixed EE3, only to realise later that this is an EA3 station. A regular contest prefix is ZZ 2 , who turns out to be PY2, and therefore of less interest from the DX point of view.

Russian stations also appear with some exotic prefixes such as 4 J and EX, which usually turn out to be club stations in Moscow! So, if you are not sure about a prefix, check it. Many books include a list of callsign block allocations as issued by the ITU. The March 1982 PW prefix and QTH locator pull-out is also highly recommended. Take care however because these generally do not contain sufficient information. For example, you may hear OHOBB calling CQ contest; a look at the callsign allocation indicates that prefixes $\mathrm{OF}-\mathrm{OJ}$ belong to Finland. Fine, an easy country that you have worked many times, so you QSY. However, OH0 indicates a station on Aaland Island which, although belonging to Finland, is classed as a separate country and would have been DX worthy.

There are many other and more obscure examples of this problem. A detailed listing of callsigns together with their status for DXCC (organised by the ARRL) is necessary. The best list I know of is that available from DX News Sheet publisher Geoff Watts. This lists current and special callsigns, continent, DXCC status, and zone numbers. Russian club station callsigns (those beginning

UK) are listed by individual country (for example UK2G-is a club station operating from UQ2, Latvia).

It is not always enough to know the location of a prefix, particularly if your geography is a little rusty, as mine is. For example, knowing that VQ9 is Chagos Island is much more useful if you also know that it is in the Indian Ocean on a beam heading of 108°. So a map, chart, or atlas together with a Great Circle Map, to provide true beam headings, are tools with which no DX seeker's shack should be without.

The next hurdle is to decide if this particular country has been worked on this band and using this mode previously. Fortunately, there is no need to study the station log-book for the last 10 years. The system I use takes only a few seconds to provide answers to these questions.

The " 5 band DXCC Insta-Gress", from Dick Morley WAICFT, provides a simple yet effective record book of h.f. band country/mode/band worked and confirmed information. Fig. 3 illustrates a portion of one page of the Insta-Gress system.

WAD036
Fig. 3
Countries are listed in prefix order with crossreferencing from out-dated or duplicated prefixes. Alongside each prefix is a series of columns, one for each h.f. band in the "worked" section with the same "confirmed". Each prefix column entry is split diagonally, the upper portion representing c.w., filled in with a red pencil, the lower representing "phone", filled in with a black or blue pencil.

When a country is worked on a particular mode, the appropriate box is filled in. For example, Fig. 3 shows that the Philippines, prefix DU, has been worked on 15 m phone. As QSL cards arrive the corresponding "confirmed" entry is made. Thus, referring to Fig. 3 again, East Germany, prefix DM, has been confirmed on c.w. on 10 m .

The Insta-Gress is easy and quick to use and provides valuable information. Suppose that, during a contest, a pile-up is heard for a Canary Islands station, EA8ABC working phone on 20 m , a look at the Insta-Gress shows that this country has been confirmed already on this band in this mode. If perhaps you heard the station say he would be on 10 m later, the chart would reveal that although already worked, this had not been confirmed. Incidentally, I use the square boxes on the edges of the chart to indicate RTTY worked and confirmed. For example, Spain (EA) has been worked on RTTY but not confirmed, whilst the Canary Islands (EA8) has been both worked and confirmed.

Getting through the pile-up is the next hurdle. And it is this one for which there is very little advice. The DX station will only reply to you if he has your callsign; this does not mean you need to shout or interrupt established QSOs (both practices heard all too often). The following tips might help in making the contact:

1) Don't repeat his callsign, he knows it!
2) Count to ten before attempting to transmit your call.
3) Use only the suffix of your call (unless of course you are a GD, GJ or GU).
4) Speak clearly and confidently.

If all else fails try transmitting a few hundred hertz off frequency.

Another very helpful (and fun to use) trick is to transmit a phrase or two in the DX operator's own language, assuming it is not English of course. This technique is particularly applicable to c.w. and RTTY where there is no problem with pronunciation.

The Radio Amateurs Conversation Guide published by OH1BR and OH2BAD lists 147 useful amateur radio phrases in English, German, French, Spanish, Russian (Cyrillic script), Russian (phonetic) and Japanese. Optional add-ons provide less popular languages. In addition to the phrases is a 500 word dictionary covering everything from "absorption to Yagi".

I have found that during RTTY QSOs other stations, particularly Japanese, really appreciate an attempt to use their language. It is often necessary to explain that you are not able to understand a long tract of, say, Japanese in return!

All of these techniques will hopefully contribute towards achieving a DX QSO. That of course is only stage one; the contact cannot be considered complete until the relevant QSL card is received. Since most DX stations only QSL in response to an incoming card, it is necesary for the DX hunter to send his own card.

A particularly rare DX station may make several thousand QSOs over a single weekend and the resulting influx of QSL cards could be enough to give the village postman a heart attack. When operating GT4CDA/A from the Douglas Bay Hotel on the Isle of Man for 3 days in July 1979, some QSL cards were received by post before we closed down!

Faced with an enormous heap of QSL cards the DX operator, or his QSL manager, will more than appreciate neatness and accuracy. Having acted as QSL manager for GT4CDA, GT4EJA/MM and F0EDB, I am amazed at the sloppy nature of some QSL cards even from stations who have sent stamps or money for a prompt reply.
WAD037

TO RADIO W9ABC confirming our QSD				
DATE	TIME	BAND	MODE	REPORT
10 $0 C T$ 180	1320	$10 M$	SSB	57

Fig. 4: The essentials of a QSL card

Fig. 4 shows the essential details to be entered on a QSL card. It might seem obvious but a lot of radio amateurs seem unable to work out the time in GMT at their own QTH, and since date and time are essential for locating a QSO in the station log this does not help. Many foreigners including Americans express dates as MM/DD/YY rather than our DD/MM/YY. So $12 / 06 / 80$ could be the 12 th of June or the 6th December. To circumvent this problem write the month as a word-i.e. 12 Jun 80 or 6 Dec 80: Some operators use Roman numerals for the month-12 VI 80 or 6 XII 80. Either way it helps the QSL recipient to find the correct log page. Apart from writing neatly the only other QSL tip is to include the contest number received from the DX station where applicable. Short wave listeners should include other information on their QSL card (including the callsign of the station being worked) as an aid to the DX operator.

A bureau system can be used for the exchange of QSL cards. Members of the RSGB can send all their outgoing cards to the RSGB QSL Manager for distribution abroad
and can lodge stamped addressed envelopes with the bureau sub-manager, appropriate to their callsign, for incoming cards. A QSL bureau is also operated by the International Short Wave League.

The drawback of the bureau system is the necessary processing time delay involved. I recently received a card from a UK2 station for a QSO in December 1975! Sending a QSL direct to the DX station is the only way to reduce this time delay, sometimes!

Many DX stations will quote a QSL address over the air, as a PO Box number, or as a manager's callsign. In the latter case, or where no information is given, some recourse to available literature is necessary. Two large volumes list USA and rest of the world names and addresses by callsign and are available from RSGB. A number of QSL manager publications are also published but these tend to get out of date quickly. I keep my own QSL manager update list from information gleaned from magazines, GB2RS news bulletins and heard on the air.

When writing to a DX station or his manager for a QSL make sure you provide the following information and adhere to the rules for writing QSLs already mentioned.

1) Sufficient i.r.c.s (International Reply Coupons); two or three is usually adequate.
2) A self-addressed envelope or sticky label with your address.
3) A postcard of your locality or some other item of interest.
Hopefully after all this effort you will end up with a goodly collection of DX and an equally impressive collection of QSL cards.

Operating Awards

Although nice to decorate the shack wall, QSL cards do generally serve a more practical purpose. This is to demonstrate proof of a QSO for the purpose of obtaining operating awards.

There are many different amateur radio awards avaiiable for working, or hearing, a wide range of stations. For example awards can be obtained for:

Working five Nigerian stations
Contacting 100 German large cities
Working 50 cities with international airports
Contacting 300 different prefixes
Working stations in Cheshire (details from the author!)
Some of the more impressive, by virtue of the difficulty in obtaining them or their colourful nature are described.

Worked All Continents, WAC, requires a contact (phone, c.w. or mixed) with each of the six continents, N . America, S. America, Europe, Asia, Africa and Oceania. Administration of the awards is by IARU, HQ in USA. A WAC RTTY award is also available from the RTTY Journal published in the USA.

DX Century Club, DXCC, requires contacts with 100 different countries, as defined in the DXCC Countries List available from the sponsors ARRL (American Radio Relay League). The DXCC costs US $\$ 5$.

Worked All Zones, WAZ, needs a confirmed contact with each of the 40 worldwide zones as defined by the award administration, CQ Magazine.

The Counties Award, CA, for contacting a minimum of 500 US counties, from a total of 3079 at the time of writing. This award is given to the operator rather than the station and QSOs from any location are therefore valid. Application must be made in the special booklet available from the sponsors, CQ Magazine.

Award hunting can be quite interesting itself; there are many tips to be passed on and publications available to help the award hunter. But that's another story.

Radio SPECIAL PRODUCT REPORT

SHIIIIZU 5S-1058 SEMI-KII HF TRANSEEINER

So far as I know the Shimizu SS-105S is unique, certainly in the UK, being a part-built, part-kit h.f. transceiver. For someone with a reasonable amount of constructional experience, it provides a useful insight into the system design of a multi-mode rig which, though it lacks many of the frills and gadgets which seem to cram every new "black-box" these days, nevertheless provides all the basic requirements for c.w. or s.s.b. operating, and n.b.f.m. too, if you so desire.

Circuit Description

The handbook doesn't have a circuit description, so you have to deduce it for yourself from the block diagram, circuit diagram (very difficult to read), and inter-unit wiring diagram.

In outline, the SS-105S is a single-conversion transceiver, with a 9 MHz i.f. chain employing a crystal filter. Frequency generation is by a pre-mix system, using a conventional $\angle C$ tuned v.f.o. covering $5-5.5 \mathrm{MHz}$, and crystal-controlled band oscillators running at frequencies between 21.5 and 44 MHz .
Transmit a.l.c. is derived from a pre-driver stage, and applied to two 9 MHz i.f. and one r.f. amplifier. Receive a.g.c. is applied to three i.f. amplifiers and the r.f. amplifier (this is separate from the optional r.f. a.g.c. described later), which is a 3SK49 driving a balanced first mixer using a pair of 3SK41s.

Separate, switched low-pass filters are provided for each band. These are accessible via a coaxial link on the back panel, and are rated at 100 W . The reason behind this is that there is a 100 W version of the SS-105 (not available in the UK) which has its final amplifier module mounted externally, and the filters are the same for both versions. Obviously you could insert any suitable linear amplifier into this link. A multi-pole connector is also provided for remote control of a linear amplifier or transverter.
On c.w., sidetone and semi-break-in facilities are included.

Assembly

The SS-105S comes with all the mechanical assembly done, and those p.c.b.s carrying circuits likely to present difficulties in alignment already assembled and lined up. Two p.c.b.s are left for you to assemble and set up, but you need nothing more in the way of test equipment than a multimeter, an r.f. diode probe made up from components supplied as part of the kit, and an h.f. receiver.

The kit as supplied

The first p.c.b. is the SE-IF module, which carries the transmitter i.f. amplifier, balanced modulator, carrier oscillator, receiver i.f. amplifier and receiver detector. Assembly involves fitting 2 coils, 71 capacitors, 3 potentiometers, 4 trimmer capacitors, 86 resistors, 28 diodes, 13 transistors, a crystal filter and 3 crystals, and 6 i.f. transformers. This took me just $4 \frac{3}{4}$ hours. No layout drawing is provided, but the p.c.b. is printed with a full component identification, and there are no problems.

The second p.c.b. is the SE-LO module, which holds the band oscillators and pre-mixer. This board carries 62 capacitors, 9 coils, 60 resistors, 18 diodes, 17 transistors, and holders for up to 8 band crystals. Assembly of this one took slightly under 4 hours.

Fitting and wiring the two boards and going through the lining-up procedure took me around 4 hours. I think this could be reduced if the instructions were clearer, but let me explain the problem.

The Shimizu handbook leaves a lot to be desired. The section on assembly has a comprehensive component checklist, with identification drawings which are very helpful. The wiring instructions (everything via push-on connectors) are good too. But the alignment details are very poor, partly due to the excruciating "Japanese English". To try to overcome this, importers Lowe Electronics got G4IDI to assemble several kits for them and write up his own notes on the procedure. These are a great help, but being only notes, you still need to refer to the manufacturer's handbook too, and I found myself getting rather confused in the process. I got there in the end but it was hard work at times.

Radio SPECRAL PRODUCT REPORT

Front and back views of the transceiver

Operating Impressions

Was it worth all that hard work? My answer to that is an unqualified yes. The receiver is very sensitive, as the test figures bear out, and the transmitter's nominal 10W output has given me QSOs with a whole list of stations without too much effort.

The evening I finished lining the rig up, I put it on the air, called CQ on 21 MHz s.s.b., and back came VE3QE near Toronto with a report of R5 and S7-8 and good speech quality, which can't be bad. At that time, I was using a Zmatch and long wire antenna, but the following contacts were made using an HF5V trapped vertical mounted on a ground post in a far-from-ideal situation almost surrounded by trees. Prefixes in italics were c.w. stations:
3.5MHz: DJ4, G4 (Birmingham). 7MHz: G3 (Essex), YU3, C31 (through the pile-up). 14MHz: UA1, PY1, $12, \mathrm{HBO}$ (through the pile-up again). 21 MHz KA1, KA3, 8P6. 28MHz: OK1, G6 (Poole - real DX!). And on 29.6 MHz f.m., PAO.

Top view of the completed SS-105S with a full complement of modules installed

Bottom view, with the SE-LO board (bottom right) still to have its components fitted

The p.a. stage is broad-banded, but there is a TUNE control which peaks up the receiver front-end coils and the transmitter drive as well. It's quite sharp on the higher bands, and if you don't set it carefully, you get little or no received signals and some nasty spurii and harmonics on transmit. It's simple to tune using the meter provided, but be warned.

One thing which put me off the SS-105S before I actually laid hands on one was the lack of a digital frequency readout. How we do become lazy. But in fact, the analogue dial is so good that it's not a problem in operation. The scale is calibrated in kilohertz divisions, each about 2 mm wide, and the tracking between the scale and the v.f.o. is so good that there is a maximum error of 2 kHz at any 25 kHz crystal check-point right across each 500 kHz band. The tuning and meter scales ("S" meter on receive, "Power out" or "ALC" on transmit) are both illuminated.

The tuning rate of the main knob is between 15 and 17 kHz per revolution, and there is a substantial overlap at

specifications

Frequency coverage:	$3 \cdot 5-4.0 \mathrm{MHz}(80 \mathrm{~m})$
	$7.0-7.5 \mathrm{MHz}(40 \mathrm{~m})$
	$14.0-15 \cdot 0 \mathrm{MHz}(20 \mathrm{~m})^{4}$
	$21.0-21.5 \mathrm{MHz}(15 \mathrm{~m})$
	$28.0-30.0 \mathrm{MHz}(10 \mathrm{~m})^{4}$
Types of emission:	A1A (c.w.), J3E (u.s.b.)
Power output:	10W
Spurious ratio:	Less than -40dB
Image ratio:	Better than 50d
Antenna impedance:	50Ω

test measurements

TRANSMITTER

Outputs in A1A (c.w.) mode:

Freq.		Harmonic outputs (dBc)			
		2nd	3 rd	4th	5th
3.6	12.5	-64	-61	-	-61
7.1	13.1	-54	-	-68	-58
$14 \cdot 1$	11.0	-52	-53	-	-
21.1	11.0	-59	-58	-67	-70
28.1	8.5	-69	-59	-	-
28.6	7.0	-	-58	-	
29.1	7.5	-	-58	-	
29.6	7.5	-	-58		

Carrier suppression:

Unwanted sideband suppression:

42 dB relative to full power A1A or p.e.p.

Two-tone intermodulation: -28 dB relative to either tone
Frequency stability: \quad Drift $<200 \mathrm{~Hz}$ during first hour from switch-on

NOTES

Receiver sensitivity measurements were made for a $10 \mathrm{~dB}(\mathrm{~S}+\mathrm{N}) / \mathrm{N}$ ratio to correspond to the manufacturer's specification. On 14 MHz J3E, an identical input level was required to achieve 12 dB SINAD.
All measurements were made on the transceiver set up according to instructions given, and without further adjustment.

Receive sensitivity:	J3E $0.25 \mu \mathrm{~V}$ for 10 dB S F3E $0.5 \mu \mathrm{~V}$ for 20 dB quieting
Frequency stability:	Within $\pm 1 \mathrm{kHz}$ from 1 m to 60 min . after switch Then within 100 Hz per min.
Microphone impedance:	$500 \Omega-50 \mathrm{k} \Omega$
Audio output:	1.5W max. into 8Ω
Power requirements:	13.5 V d.c. 3 A
Dimensions:	$124 \times 178 \times 272 \mathrm{~mm}$
Weight:	5 kg

the band edges, +115 kHz and -75 kHz on the review sample.

The RIT operates on a varicap diode across the v.f.o. tuned circuit, and gives a variation in received frequency of ± 2 to $\pm 2 \cdot 5 \mathrm{kHz}$, depending on whereabouts in the band you are.

Options

From the basic kit, you get a c.w./s.s.b. transceiver which operates on the whole of the $3 \cdot 5,7,14$ and 21 MHz amateur bands, and on $28-28.5 \mathrm{MHz}$, using the standard s.s.b. filter for c.w. reception as well. A 500 Hz c.w. filter and band crystals for $14.5-15 \mathrm{MHz}$ (for WWV reception) and for the rest of the 28 MHz amateur band are available as optional extras. You can also get four more modules, providing additional features as follows.

SE-NB, noise-blanker and r.f. a.g.c. unit. The noise blanker seems very effective on some types of interference but far less so on others. The r.f. a.g.c., applied to the first two stages of the receiver, comes from a separate detector driven via a buffer from the output of the first mixer. It is therefore more broad-banded than the normal a.g.c., derived from the final i.f. amplifier, and is very effective indeed at reducing cross-mod spurii from high-power broadcasters in the 7 MHz band. SE-MK is a crystal oscillator providing a spectrum of 25 kHz markers right up to 30 MHz . SE-FMT and SE-FMR are f.m. modulator and demodulator modules respectively, useful either for the f.m. section of the $28-29.7 \mathrm{MHz}$ band, or when using transverters for 144 MHz or 432 MHz . A special socket is provided on the back panel of the SS-105S, giving a 100 mW output to drive upconverters, and there is a switch to turn off the 10 W p.a. On f.m., the receiver becomes a double superhet, with a second i.f. of 455 kHz .

These four optional modules come ready built, but you do have to do some lining up.

Criticisms

Very few. The main one, as you'll have gathered, is the combined operating and assembly handbook. Really, I think that this transceiver deserves a very much better one, easier to follow in the construction and alignment section, and with at least some sort of circuit description to aid the constructor in understanding what he is doing. And that circuit diagram-Ugh! Having said all that, I should tell you that I like the SS-105S so much I've bought one, so that should be some recommendation.
I'll be making two small modifications to mine. One will be to fit a knob with a winding handle to the main tuning. At over 29 revolutions to get from one end of the v.f.o. span to the other, life can get tedious especially on the 28 MHz band. The other will be to find some way of bringing the FM sQuelch control out to the front panel. As designed, it's a preset control accessible, along with the other main level adjustments on the FMT, FMR and AF boards, through a little door in the top of the case. Unless you're operating on an exclusive channel, or the only station you want to hear is very, very much stronger than all the rest on channel (which effectively amounts to the same thing), I've always found preset squelch controls to be an absolute pain.

Oh yes, l'll be fitting an earth terminal on the back panel. It's strange it doesn't come with one.

Prices

The SS-105S is available from Lowe Electronics Ltd., Chesterfield Road, Matlock, Derbyshire DE4 5LE, telephone 0629 2817. Prices including VAT are as follows (carriage in brackets): SS-105S semi-kit $£ 275.00$ ($£ 5$ Securicor); 500 Hz c.w. filter $£ 23.50$ (50 p p. \& p.); extra band crystals $£ 3.45$ each ($25 p$); SE-NB $£ 11.50$ (50 p); SEFMR £25.00 (£1); SE-FMT £14.00 (£1); SE-MK £15.00 (50p).

Geoff Arnold

Can You Help?

We regularly receive letters from readers seeking information, circuit diagrams, sources of spares etc. for a variety of electronic equipment, and where possible we reply directly
to them. However, in some instances we are unable to help and would like to ask fellow enthusiasts if they can help. Brief details of some of the requests are listed below:

Hallicrafters Model S120 Communications Receiver, require circuit diagram or service sheet. J. E. Ware, 40 Stone Park Avenue, Beckenham, Kent BR3 3LX.
Blaupunkt "Arkansas" Radiogram Type No. 40320/40330, require spares or would consider buying complete set if available. E. Watson, 20 Warden Road, Rochester, Kent. Tel: Medway 813165.
Murphy Radio Receiver, similar to Model A92 with the following Nos. stamped on the chassis: 217360, 257926 and 16126, require circuit diagram. M. Meenagh, 23 Herbert Street, Kihikihi, TE AMAMUTU, New Zealand.
Simon S.P./2 Tape Recorder, require circuit diagram. C. Challacombe, 8 Old Malvern Road, Powick, Worcs. WR2 4RX.
Ekco A222 Clock Radio which has four valves and was built around 1950, require circuit diagram or service manual. Mr Lynch, 17 Ardrossan Gardens, Worcester Park, Surrey. Tel: 01-337 8399.
Trio R-300 Communications Receiver, require copy of instruction manual. T. Smith, 49 Stannes Road, Denton, Manchester M34 3DY.

This module contains a complete m.w., I.w. and v.h.f. stereo tuner suitable for use with a d.c. power supply and a stereo audio amplifier.

For those readers who have our special offer DFC4 frequency readout full instructions on where to connect it to this tuner are provided.

The brief specifications are: VHF Section 87.5 to $108 \mathrm{MHz} ; 2 \cdot 5 \mu \mathrm{~V}$ sensitivity ($30 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$); 58 dB ultimate S / N ratio; 49 dB selectivity (alternate channel); 53 dB image rejection; IF $10.7 \mathrm{MHz} ; 50 \mu$ s de-emphasis; 75Ω antenna input. AM Section 525 to 1650 kHz and 155 to 270 kHz ; $320 \mu \mathrm{~V} / \mathrm{m}$ sensitivity; 46 dB image rejection; 49 dB i.f. rejection; ferrite rod antenna. Audio Section 100 mV r.m.s. nominal output; $12 \mathrm{k} \Omega$ output impedance; Power supply requirements 12 V d.c. These units are complete and tested and are of Indonesian and Japanese origin.

HERE'S HOW TO ORDER

Fill in both coupons with your name and full postal address in BLOCK LETTERS and send them with your crossed cheque or postal order(s), made payable to IPC Magazines Ltd. (your name and address on the back please) to: Practical Wireless, Dept. PWL14, Rochester X, Kent ME99 1AA. Only available while stocks last to readers in England, Scotland, Wales and Northern Ireland. Not available in Eire, Channel Islands or overseas. Orders are normally despatched within 28 days, but please allow time for carriage. You will be notified if a longer delay is expected. Closing date is 31 st December, 1982, subject to availability.

[^1]
To: PRACTICAL WIRELESS

Dept PWL14, Rochester X, Kent ME99 1AA. Please send me the FM4 Tuners as indicated @

I enclose P.O./Cheque No.
Value
Number of FM4 Tuners required

Name

Address
\qquad

Tel. No. (Home or Work)

Number of FM4 Tuners required

Name

Address.

From PRACTICAL WIRELESS Dept PWL14, Rochester X, Kent ME99 1AA

cau Werlern for youn yastu and trio neauremeners A selection from the range . . . LOWEST PRICES . . . FINE SERVICE YAESU WAS INTRODUCED TO THE UK BY 'WESTERN'. BUY WHERE EXPERIENCE COUNTS!

NEW! TR-9130 2m. ALL-MODE TRANSCEIVER

Not only ...

HF ALL-MODE TRANSCEIVER

but also

NEW! TS-930S

Save at 'Western'!

 TS-930S, $\mathbf{£ 9 9 9}$.You save $£ 84$ TR-9130, £369. FT-102, $£ 719$.

You save $£ 26$
You save $£ \mathbf{£ 1}$

YAESU PRICE LIST. 2 YR WARRANTY. FREE DELIVERY.

Prices include Carrivat				1271	144TV	2M Unit tor FTV-901R
hF EQU				1239	F-707	
${ }_{1225}$	FI. 1	150 Khr 3 30Mhz TCVR	1240.00	1238	Ep. 707	ACPSU
1222	F. 1012	Transceiver	539.00	1237	Fc. 707	Atu for $\mathrm{F}-7.707$
1223	F. 10120	Transceiver	599.00	1203	Mm. ${ }^{\text {M }}$-2	Mobile mount for ' 707
122	FT-101ziam	1012 plus AM unit	555.00	1246	Fl-21002	HF 1200 W lineat
1225	Fr-10,	10120 plus AM unit, digital	570.00	1206	frg-7	Receiver
122	$\underset{\text { FT-10120/FM }}{ }$	(1012 plus m M unit	83500	1248	ERG-7700	
1263	FV. 101	Remote VFo	109.00	1255	FFRV.77000	Conv 118/30 $140 / 150$ 70/80 Mhz
1274	$\mathrm{Fan}^{\text {B }}$	Fan for F-101	1300	1254	FFT. 7700	Antenna tuner
	F-107	Solid state broad band	699.00	vhF E		
1231	FP. 107	PSU for FT-107	99.00	1233	¢-227RB	$2 \mathrm{M} \mathrm{FM} \mathrm{10W} \mathrm{TCVR}$
1232	DMS-107	Memory for FT- 107	89.00	1234	F1.290R	2 M Muti-mode
1264	F-107	VFo tor F-107	9500	1202	CSC. 1	Case for F-2908
1265	SP. 107	Speaker	28.00	1210	Mmb-11	Mounting bracket 290
1266	${ }^{\text {c-. }}$ - 107	${ }_{\text {A }}$	50.00	1595	CNicads	Set of 8 for Fo
1268	(17.9020 ${ }_{\text {SP. } 901}$	SSB/AMFM TVM	30.00	1348	Fl-2010	10w
1267	SP.901p	Phone patch/spkt	55.20	1252	F-2088	2M Hand held
1247	FV.901DM	Remote VFo for 901	250.00	1251	F-708R	70 cm Hand held
1245	FC. 902	ATU for 1012 g02	130.00	1236	H.4800	2 mall mode
1269	FTV.9018	TVTR plus 2 M unit	${ }^{270.00}$	1243	${ }_{\text {FP. }}^{\text {FPOA }}$	70 cm Mait-mode
1270	430TV	70cm Unit tor above	170.00	1220	EP.BOA	${ }^{\text {AC PSU, } 4.5 A}$

TRIOKENWOOD PRICE LIST. 2 YR WARRANTY. FREE DELIVERY.

Carriage free*		Inc VAT				
Car No.	Itam	4294			Speaker to match TS. $530 \mathrm{~S} / 830 \mathrm{~S}$	
1301 ST. 1	Base stand/chargee for T T-2400 Mobile mount for T P-2300	${ }^{12554}$	1330	IS.830	All band HF TCVY, digital	879.00
1303 SC-3	Sott vinyl case for TR-2400	10.95	1332	R. 1000	Gen covo receive	
130580.9	Base plinth tor TR-9000/TR-9500	3500	1333	ock-1	OC operating kit for P -1000	26
1307 PS.20	OC PSU tor TR-9000	47.95		TR.2300	$2 \mathrm{~m} / \mathrm{M}$ portable TCVR, smith	95
1308 P8.24k	Spare battery pack for TR-2400	18.00	1337	TR. 2400	2 m FM hand porrable transceivet	00
1309 MC.30S	Hand microphone: 500 oh		${ }^{1338}$	TR-7625	2 mFM 25 W TCVR + memor	00
1310 PS. 30	OC PSU for TS. $120 \mathrm{~S} / 130 \mathrm{~S} / 180 \mathrm{~S}$		1341	TR-9500	$70 \mathrm{~cm} \mathrm{FM/SSB/CW}$ mobile TCVR	
1312 MC. 50	Desk microphone: 500 ohm/ 50 k	2345	1343	TR.8400	$70 \mathrm{~cm} \mathrm{FM} \mathrm{mobile} \mathrm{ICVR}$,	289.00
1315 YK-88CN	270 Hz CW filter for TS-130S/830S	30.00	1344		OC.DC converie	
1316 YK-88SN	1.8 KHz SSB fiter for TS. $130 \mathrm{~S} / 830 \mathrm{~S}$	24.50	1345	SMC-24	Speake/mictophone tor $T 8.2400$	95
1317 M8.100	Mobile mount for TS-130S	1850				
1318 Sp. 100	Matching speaker for P .1000	25.00				
1319 SP. 120	Matching speaker for TS - 130 S etic.	2300				
1321 AT-130	Antenna tunerf to match TS-130S	59.00				
1322 IS-1305	Solid state Hf Hransceiver	5				
1323 OfC.230	Diq. rem. Irequ- controliet	1590				
1324 TS.180S	Solid state TlVh, $160 \cdot 10 \mathrm{~m}$	659.00				
1325 AT-230	Antenna tunet to malch is-830S	119.00				
1326 TS-530S	All-band HF TCVR, digital	529.00				

9500	1200	NC. 1	Desk charget	19.00
31500	1204	NC. 2	Chatget	39.00
549.00	1201	PA. 1	0 C Unit	19.00
119.00	1205	EP. 4	AC PSU 4A. 13.8 v	4200
8200	1258	NC.7	Base tickle charger	28.00
15.00	1253		Base fasturickie charges	2200
16.00	1260	fear 2	Battery sleeve for NC-7. NC-8	300
399.00	1262	NC.gC	Compact trickle charger	${ }_{17}^{8.00}$
189.00	1349	${ }_{\text {NR8-2 }}$	spare battery pack	. 00
31500	1350	(1.2050	Linear amp $\mathrm{Fl}-480 \mathrm{Bemic}$	0
69.75	1351	MM-24a	Spkt/Mic. F- F -208/08	1600
1245	124	F1.720RU	70 cm FM mobilie transceive!	28400
37.00	1242	F1. 220 AV	2 m FM mobile transciver	239.00
	1263	FT-230R	2 mFM motile transceivet	229.00
179.00	HEADPHONES, MICS, Ete			
3390	${ }_{1208}^{1213}$	cita		27.00
${ }^{22.00}$	1215	YM.36	Noise cancelling mic	1300
21.20	1214	YM. 35	Hand. scanning	1300
6200	1352	YM.37	Hand mic	6.90
199.00	1353	YM.38	Desk scanning	24.00
209.00	1221	Y0.148	Desk mic	20.00
360.00	1216	Үн-55	Headphones	10.00
43500	1217	E72.l	Remote cable tor fT-720	19.50
59.00	1218	S72	Switching box, F-720	52.00

SSB POWER METER

GIVES STEADY READING ON SPEECH.
The PM-2000 is an accurate means of measuring your peak envelope output of power on SSB. The unit has been inspected by the home office and found suitable for its purpose. SWR measurements can also be made, what the PM 2000 does ers cannot do; i.e. tell you your peak output power as required in your
licence. PRICE f46 PM-2000 2-30MHz, 2Kw. PM-2001. 50-150MHz.

PART 2
 F.C.JUDD G2BCX

The electrical theory behind the ring-base antenna was given in Part 1, together with details for construction, on a simplified basis, for either 144 MHz base station operation or for the 156 MHz marine communications band when suitably tuned.

The designs presented here are for 144 MHz , suitable for either mobile or base station operation, but are much more complex with regard to construction. A lathe and bench drill will be required to turn out most of the parts. However those constructors who have access to these tools may find that the project is not so difficult as might first appear.

There is no difference between the base station and mobile versions except for the cable connections at the base. Constructional details are given in Fig. 6 which show a PL259 plug at the base so that the antenna can be used for mobile operation and connected to a matching UHF socket fitted on a gutter mount, or directly onto the car body. Ideally, the mobile version should be roof-mounted to achieve maximum height above ground. The omnidirectional properties of any v.h.f. antenna can be affected by wing, side or boot mounting.

Construction

The base section to which the PL259 plug is attached and the section for holding the base ring can be turned from brass. The radiator base section or ferrule can be made from 9.5 mm diameter aluminium rod drilled
through as indicated. Details for the ring base are also given in Fig. 6 and this can easily be formed into a circle by hand if done carefully. For the antenna described here the ring is made from 3 mm diameter aluminium or brass rod. The assembly of the finished antenna with a PL259 base connection and set up on a gutter mount is shown in the photograph below. The inductor must, of course, be covered as will be explained later.

Details for the lower section of the base station version are also shown in Fig. 6. The base is turned from brass as is the section attached to it to hold the ring-base. The inductor and the remainder of the antenna are constructed as shown. Assembly and details for a base station mounting bracket are also shown in Fig. 6.

The inductor on either model must be protected against rainwater and is covered with heat-shrink sleeving with a bore diameter of 19 mm . When heated, the sleeve will wrap tightly around the inductor and the lower part of the antenna ferrule, as can be seen in the photo. The length of heat shrink sleeve required is 65 mm .
The alternative antenna for mobile operation has a coaxial socket built into the base section as shown in Fig. 6. This fitting is suitable for standard magmounts with an ASP type coaxial connector but which would be somewhat difficult to make. The illustration is included however, so that readers may recognize the type of fitting.

All three versions of the ring-base antenna as described will be available in kit form with finished parts for assembly of the complete antenna, and an engineering company has been appointed to supply the kits. For details, see under "Kits".

Assembly and Tuning

For either version of the ring-base antenna the inductor L consists of five turns of 16 s.w.g. tinned copper wire with the turns evenly spaced as shown in the diagram. It is

Gutter-mounted mobile version of the ring-base antenna, fitted with PL259 plug. The inductor has not yet been sleeved

The assembled base station version, showing the mounting bracket and base assembly
advisable not to put the heat shrink sleeve on until the antenna has been checked and a satisfactory v.s.w.r. obtained. The whip section should be approximately the length given (1346 mm) although the whip section supplied with the kits is a little longer and will require trimming by 25 mm or so depending on whether the antenna is used in a "free space" condition e.g., as a base station antenna, or on a glassfibre vehicle or boat, or on a metal-bodied car. The whip section supplied with the kit of machined parts will be in two sections which are joined with a thin, threaded sleeve supplied with the kit.

Free-space radiation plot obtained from a 941.9 MHz scale model of the ring-base antenna

For v.s.w.r. checking use the centre frequency of the band i.e., 145 MHz . First set the bottom end of the whip about half-way down the base ferrule and lock with the set screw. Check v.s.w.r. at band centre and it will almost certainly be fairly high. Note the reading. Now cut about 25 mm off the top of the whip and check v.s.w.r. again. If this is now a much lower value then adjust by altering the length within the ferrule at the base. If further trimming of the whip section seems necessary, snip off only 10 mm at a time in conjunction with adjustment at the ferrule. If the top section of the whip is accidentally reduced too much in length a new one can be supplied at very minimal cost. The v.s.w.r. curve for the antenna when tuned is shown in Fig. 4 (Part 1).

The final job is to put the heat shrink sleeve on and heat this until it closes tightly around the inductor and lower portion of the antenna as shown in the adjacent photo.

Trials

Prototypes of each version of the ring-base antenna have been tested under all kinds of conditions and in all weathers. The magmount version will remain stable at speed providing a suitable magmount with reasonable magnetic strength is used. The performance of a base station version has not been affected by snow, rain or frost during several months of use but it is advisable to put grease on metal parts, including the whip section and the mounting bracket, and also ensure that the cable connection is absolutely water tight by carefully covering with adhesive PVC tape and then giving the whole a coat of rubberised sealant.

The complete kit of parts required to produce the 144 MHz mobile version

The photograph (left) shows the vertical angle radiation from a scale model of the 144 MHz ring-base antenna operating at 941.9 MHz under the writer's special HO licence and call G9BTN. Radiation from a full-size version of the antenna was given as Fig. 3 in Part 1. Note that these are vertical angle radiation patterns for the freespace condition. When mounted on a vehicle for mobile operation these patterns might be modified slightly depending on the position of the antenna.

Kits

Complete designer approved kits are available for each version of the antenna from ZL Communications, Cantley, Nr. Norwich, Norfolk, NR 13 3RT.

For identification the kits are coded as follows: Kit A mobile, gutter mounting; Kit B mobile, for use with ASP type magmount; Kit C base station. A zinc-plated mounting bracket and mast clamp is also available for the base station version.

RAE Courses

Courses to prepare students for the Radio Amateurs Examination (City and Guilds 765) will be available at the following locations:-
Canterbury-Canterbury College of Technology, New Dover Road, Canterbury, tel: (0227) 66081, commencing 20 September at 18.30 hrs , enrolment 13 September between 08.30 and 19.00 hrs . Course Tutor G3LCK.

East Devon-Axe Valley Adult Education Area, St Clare's Centre, Fore Street, Seaton, East Devon, commencing 7 October at 19.30 hrs , enrolment 21 September. Course Tutor is G. R. Smith BSc, C.Eng., MIEE, G8AOJ and further details from D. W. Tinkler, the Warden at the Centre.
Manchester-North Trafford College of Further Education, Talbot Road, Stretford, tel: 061-872 3731, to be held on Monday or Thursday evenings between 18.00 and 21.00 hrs , enrolment 6, 7 and 8 September. Course Tutor J. T. Beaumont T.Eng (CEI), MIElectIE, MASEE, G3NGD.
Newcastle upon Tyne-Gosforth Adult Education Association Classes, Gosforth Secondary School, Gosforth, Newcastle upon Tyne, to be held on Tuesday evenings between $19.00-21.00 \mathrm{hrs}$. Course Tutor D. R. Loveday G3FPE. Further information from either the Principal at the school or telephone (0632) 668439.
Kettering-Latimer School Adult Education Centre, Castle Way, Barton Seagrave, Kettering NN15 6SW, tel: 1053 672) 4219, commencing 23 September, enrolment, at the centre 6 and 7 September from 19.00 to 20.30 hrs , and by post from 8 September. Course Tutor Alan Course and further details available from lan F. Wibberley at the centre.
Nr Stamford, Lincs.-Great Casterton Community Centre, Ryhall Road, Great Casterton, Nr Stamford, Lincs., commencing 23 September at 19.00 hrs , enrolment at the Centre 6 September at 19.00 hrs or by post addressed to the Principal. Course Tutor J. M. Tripp G3YWO.

Bracknell - Bracknell College, Church Road, Bracknell RG12 1DJ. Tel: (0344) 20411, commencing 21 September between 19.00 and 21.00 hrs. Course Tutor G. Redman and further details from the College.

Crawley, West Sussex—Sarah Robinson School, Ifield, Crawley, West Sussex, two courses commencing on either 20 or 23 September between 19.00 and 21.00 hrs , enrolment for either course on 6 and 8 September between 19.00 and 21.00 hrs . Further details from R. Scrivens G3LNM, tel: (0293) 22540.

Glenrothes, Fife - Balwaerie Community School, Kirkaldy, commencing in September, enrolment 20 September between 19.00 and 21.00 hrs . The course is two part with a Morse class on Tuesday evenings and a theory class on Thursday evenings. Further details from John Haliburton GM4AQO. Tel: (0592) 266287.
Redhill, Surrey - Reigate and Banstead Adult Education Institute, Redstone School, Redhill, Surrey, enrolment 7 September between 19.00 and 21.00 hrs. Further details from the Course Tutor J. H. Backus. Tel: (073 72) 40574.
Hemel Hempstead-Dacorum College, Marlowes, Hemel Hempstead HP1 1HD, commencing 22 September between 18.30 and 21.00 hrs , enrolment 6 September. Course Tutor C. B. Burke G3VOZ. Further details from the College, tel: (0442) 63771.
Bath-All Saints Church Hall, Weston, Bath, commencing late September. Details from the Course Tutor, Peter Bubb G3UWJ, 58 Greenacres, Bath, tel: (0225) 27467. Alternatively, Peter Bubb runs a five day residential course at the Apsley Garden House Hotel, an elegant and charming building dating back to the times of William IV. Full details of the course are available from Peter Bubb at the address mentioned above.

Morse Course

A Morse course has been arranged at the Beckenham Adult Education Centre, 28 Beckenham Road, Beckenham, Kent. Comprising of 28 two hour lessons, the course will start at 19.30 hrs on Tuesday 21 September. Further details from the Course Tutor, Steve Palmer, tel: 01-650 1383 or 015604208.

Unfortunately, the RAE course at the centre, mentioned on page 41 of our August issue, has had to be cancelled due to the lack of available space at the centre.

Rallies and Events

Peterborough Radio and Electronics Society, G3DQW, will be holding the Peterborough Mobile Rally on Sunday 19 September in the Wirrina Sports Stadium, Bishops Road, Peterborough. Doors open between 10.30 and 17.00.

Details from: Rally Secretary, D. T. Wilson G4KSW, 4 Conway Avenue, Peterborough. Tel: (0733) 76238.

This year's Welsh Amateur Radio Convention will be held at the usual venue-Oakdale Community College, Blackwood, Gwent-on Sunday 26 September. Doors will be open from 10.00 hrs and admission will be $£ 1.00$. Along with the usual interesting programme of lectures and films will be talk-in on S22 plus refreshments.

Further details from: R. B. Davies GW3KYA, QTHR. TeI: (O495) 225825.

The Telford Amateur Radio Rally and Exhibition will be held at Telford New Town Centre Malls, Telford, Shropshire on Sunday, 12 September. Opening at 11.00 hrs (10.45 for the disabled, with special parking and access facilities) there will be a talk-in via GB4TRG on 144 MHz (S22) and 432 MHz (SU8/22), plus all the usual attractions including free parking.

Some seventy stands (including one for Practical Wireless) will be laid out in the air-conditioned Malls, with a selection of catering facilities available.

Further details from: Ken G8DIR (tel: Shrewsbury 64273), Jim G8UGL (tel: Telford 584173) or Martyn G3UKV (tel: Telford 55416). All QTHR.

Morse Stateside

If you think the UK 12 w.p.m. Morse test is difficult-spare a thought for our friends in the US. A recent exam conducted by the Seattle Office of the FCC resulted in failure by all candidates trying for the 20 w.p.m. extra class licence. The reason? To a man they corrected spelling errors they found within the text. Unfortunately the people from the FCC considered their misspelt words were perfectly valid elements of the text. The moral here is "just copy, don't think!"

As an aside all current classes of US amateur licence require knowledge of Morse, but receive only. A Class B type system is currently under consideration.

News from the RSGB

Emergency Use of Amateur Radio: The RSGB, at a Home Office meeting in April, stated that the Society believes that radio amateurs should have the freedom to act, as appropriate, in an emergency situation where risk to life is apparent. Present licensing conditions, however, do not permit the transmission of any thirdparty message, other than with the users specified in the UK licence. Whilst the only opportunities to practise procedures and improve user service/RAYNET liaison under practical conditions are restricted to County Shows and similar events, the Society holds the view that there is a need for greater freedom in this area, especially during events such as marathons, charity walks, orienteering, etc. The H.O. agreed to consider this matter and requested further information from the Society, which has since been sent.
Greetings Messages: The RSGB is continuing to press the H.O. to permit, once again, licensed stations to handle short greetings messages to and from non-licensed persons. Having thought about the Society's suggestion, the H.O. expressed the view that some relaxation could soon be considered, and were looking into the international implications of such messages and would advise the RSGB of their conclusions.
$70 \mathrm{MHz}(4 \mathrm{~m})$: Although this band is not internationally allocated to the amateur service, it is available to UK amateurs, on a special basis, until further notice. The H.O. would continue to explore the possibility of Class B usage, in the context of how the potential increase in occupancy might affect the use of this portion of the spectrum by the primary users in the UK. The

RSGB agreed that it was necessary to proceed cautiously.
Use of Morse by Class B Licensees: The RSGB has put the following statement to the H.O., "As amateur radio is a service of self-training, the Society wishes to explore the concept of permitting Class B licensees to use Morse code, primarily for practice purposes". The H.O. replied that it would consider the proposal prior to any further discussion.
$50 \mathrm{MHz}(6 \mathrm{~m})$: The RSGB is continuing in discussions with the H.O. regarding the use of 50 MHz for experimentation purposes. The possibility of timesharing with broadcasters is still under review.
18 and 24 MHz (17 and 12 m): Under international agreement, primary status of the amateur service would not be achieved until all assignments to the fixed and mobile services have been transferred. This procedure has to be completed not later than 1 July 1989. Until the process is complete, the amateur service has no right to use these frequencies. The H.O. will continue to examine the UK position in respect of other services currently registered on these frequencies.
Novice Licence: For many years, the RSGB has been putting forward the concept of a novice licence to the H.O. Regrettably, the H.O. response has been that, although there were no objections in principle, it has been ruled out purely for administrative reasons. However, when the H.O.'s computerisation system has reached a more advanced stage, it would be possible to consider the matter further. PW Comment: Nothing exactly positive in the above, but at least the often "swept under the carpet" subjects have had a public airing.

UK DBS News

The Home Secretary has authorised the BBC to begin transmissions via the first UK "Direct Broadcast Satellite" during 1986.

The DBS will be geostationary and basic data is as follows: Longitudinal position- 31° West; Angle of elevation from the UK-varies from about 28° (Lands End) to 17° (Shetland); Transmission band- 11.7 to 12.1 GHz (Channels 1 to 20) and 12.1 to 12.5 GHz (Channels 21 to 40); Television broadcast channels allocated to the UK-4, 8, 12, 16 and 20 (two of these will be used for the BBC's services-no plans have been announced for the other channels); Type of modulation-f.m. $\quad(27 \mathrm{MHz}$ channel width); Polarisation-Circular (righthand); Minimum power flux density throughout the UK- $-103 \mathrm{~dB}\left(\mathrm{~W} / \mathrm{m}^{2}\right)$.

Of the two channels provided, one
will be a subscription channel and the other a non-encoded service entitled "Window on the World". Many television programmes on both services will be broadcast with accompanying stereo sound, and in addition to the TV services, it is hoped to provide several radio channels. The BBC would like to use some of these for digital transmission of new high-quality musical services.

Radio Rally

Aberdeen Amateur Radio Society will be holding their radio rally in the Aberdeen University buildings on Saturday 11 September. Following the rally, in the evening, a dinner will be held at the Stackis Royal Dorroch Hotel in Cults.

For further details contact: Findlay Baxter GM3VEC, tel: (0224) 868263.

The 1982 Girl Technician Engineer of the Year

The search is on for the 1982 Girl Technician Engineer of the Year. Sponsored by the Caroline Haslett Memorial Trust and the Institute of Electrical and Electronic Incorporated Engineers, the award has already established itself as a worthwhile and successful competition, increasingly well supported by the electrical and electronics industries.

The aim of the award is to focus attention on electrical and electronic engineering as a worthwhile professional career for women by selecting the most outstanding girl technician engineer, who will have undertaken the necessary education and training, and have proved herself capable of holding a responsible job.
Nominations for this award, with its $£ 250$ prize, are required no later than 1 October, 1982.
For further details and copies of the 1982 award nomination form, apply to: The Secretary, IEEIE, 2 Savoy Hill, London WC2R OBS. Tel: 01-936 3357.

UOSAT

The July 1982 edition of Oscar News, the official journal of AMSAT-UK, includes a brief update on UOSAT, currently troubled by command input desensitisation.

Latest attempts to re-access and reprogram the satellite have included utilising the 35 dB gain, 46 metre diameter parabolic dish antenna system of K1WHS, together with 3kW of r.f. to feed into it! Yes, if my calculations are correct, that means 9.5MW e.r.p. $(\mathrm{M}=\mathrm{Mega})$.

In his progress report No. 9 (June 1982), Dr M. N. Sweeting G3YJO, the UOSAT spacecraft project leader, made reference to the current problem. He said, "it was not possible before launch to achieve as great a degree of isolation from the v.h.f./u.h.f. antenna hybrid as was desired". Notwithstanding these problems, the UOSAT project has proved without doubt, that a small team of highly specialised members, can within a very short timescale, successfully generate and manage the resources necessary to design, build and operate a small spacecraft capable of worthwhile science and engineering contribution.

Can I Help You!

Are you the secretary, organiser or general dog's body of your local radio club or any other group whose functions may interest readers of $P W$? If so, let me know and I will endeavour to publicise your rally, get-together whatever, through this column.

Until the recent advent of the three new h.f. amateur bands the then existing bands were harmonically related, at least as far as the l.f. ends of the bands were concerned (on Top Band we used to start at 1750 kHz !), the bands being of varying widths. This harmonic concept by the Post Office in the early days meant that harmonics of amateur transmissions fell into amateur bands and thus did not interfere with other services. We even had to submit a certificate for the quartz crystal used in the transmitter!

It also meant that frequency doublers and triplers then were fairly simple affairs. Getting on to the new 10,18 and 24 MHz bands is quite a problem if one attempts to modify modern equipment. A pity the new allocations were not on $10 \cdot 5$, 17.5 and $24.5 \mathrm{MHz}(3.5 \mathrm{MHz} \times 3, \times 5$ and $\times 7$). What I am really working up to is a realisation that the length of a long wire antenna, if chosen correctly, will enable it to be used on its harmonic frequencies, including the new bands, although it will only be correct on one band but perfectly acceptable on the others.

Taking a wire for Top Band (1.8 MHz) this should be about 78 m ($143 / \mathrm{f}$) for a half-wave but as a long wire on 28 MHz where it is 16 half-waves long the length should be about 85 m from:
$150(\mathrm{n}-0.05) / \mathrm{f}($ in MHz$)$
due to what is known as "end effect", and where " n " is the number of halfwaves on the wire.

This train of thought was initiated by a reader who, thinking of improving his antenna system by putting up a wire 52 m long then proceeded to tear it down because "it wasn't any better". Hardly surprising, since the wire was resonant around 2.75 MHz ! Need I say that had he used an a.t.u. to resonate the wire on each band he would have had a big increase in signal strengths all round.

What our experimenting reader did not appreciate is that any wire a half-wave long on the lowest band in use has a very high impedance at the receiver end on that band and all harmonically related bands. The antenna input impedance on
the average communications receiver is very low, around 50 to 70Ω, hence giving a very bad mismatch and severe reduction in signal levels.

A properly adjusted a.t.u. used with the wire would have converted the high impedance to a low value and should never be omitted in these particular circumstances. The only time an antenna wire can be connected directly to the receiver antenna terminal is when it is a quarter wave long at the frequency concerned, say 41 m at 3.5 MHz , or with odd multiples of a quarter wave.

While, over short distances, it is usually reckoned that the best signal will be received if both the receiving and transmitting antennas have the same polarisation, horizontal or vertical in practice, it is worth remembering that when a DX signal has been reflected two or three times by the ionosphere the original polarisation may be completely reversed by the time it reaches the receiver. Thus it is highly desirable that one is able to have the choice of polarisation by using two separate antennas, one horizontal and the other vertical, with a changeover switch in the a.t.u. or feeders. Sticking to just one antenna all the time is like tuning in the DX with one hand tied behind the back, it can be done but with difficulty!

On the Bands

From Knutsford, Cheshire, Dave Coggins doesn't reckon much of the bands of late although he did find 7 MHz open to Asia during the evenings. He's started listening to those f.m. stations on 28 MHz and was surprised at the number of Ws there. His FRG-7700 with 2 element Yagi plus 10 metre-long wire caught these on $7 \mathrm{MHz}(40 \mathrm{~m})$: CE3DKZ, JX7FD, UH8EAA and 9H1EU, with EA3VY of sole interest on Top Band.

In Earl Shilton, Leics, our RTTY expert Dennis Sheppard is now using an FTDX401 with trapped dipole as an inverted-V covering 28 to 3.5 MHz . However it's s.s.b. from A92F, CX5BW, J28DL, VP8NO, Z21GN, 5N3RTF, 7Q7LW and 9 J 2 TY on $28 \mathrm{MHz}(10 \mathrm{~m})$, plus D44BC, S79MC and EL5C on $21 \mathrm{MHz}(15 \mathrm{~m})$. Then comes 7 MHz with JW5VAA, JX1CY, TG9WE, and TL8CK. The long wire, or should I say "random length wire" of Philip Morris in Llanmorlais, Swansea, plus his CR100 and an a.t.u. got EA 8 QL on 1.8 MHz $(160 \mathrm{~m})$ and on $14 \mathrm{MHz}(20 \mathrm{~m})$ it was TYA11 (QSL W2TK), K5YY/J8 and 5 N 3 BH . It seemed a bit better on 21 MHz
with TU2JL, TL8DC, 7P8BY and VQ9CI. Philip's toll of countries on 1.8 MHz is now 40 which is not bad going.

Viv Doidge of Callington, in Cornwall, also has an FRG-7700 plus a.t.u. and long wire to capture HL1AHZ, J73PP, VS5PP, YC2CMC, Z21GN, DUINER, FM7BK and 5N8HEM not to mention 9A2KK in San Marino, not exactly DX in the usual way but not heard all that often, all on 21 MHz s.s.b. The 14 MHz band came up with DK9VC/DU1, XT2AW, 4S7WP, 6D5VHF (!) in Mexico City, 6Y5SG, VP9CT, VQ9CI and VP2KX, while 7MHz produced CX4PS and OA4OS. From Brian Patchett in Sheffield a problem. Does he get an a.t.u. for his Grundig 1400 and EC 10 or buy a 144 MHz receiver? Problems, problems! Personally speaking I'd junk the two sets and get a decent communications receiver. As for 144 MHz , need I say more? Regarding the a.t.u., he should make one, it's not too difficult and much more rewarding. With a loft antenna Brian copied CE2MM, C6ADC, HC5ML, HH5CB (QSL K9WJU), J73CJB, KL7FI, YB2BNJ, VP5RAC, 5 N 8 HEM and 6 W 8 GT all on the 21 MHz band with 7Q7LW in the c.w. mode. Little of interest on 14 MHz except V2AO and 7 X 5 KWW .

BRS45205 is Jonathan Kempster of Berkhamsted, Herts who, having finished his studies for the time being, is now concentrating on the RAE in December but still managed to get V2AO, ZL3MA and C6ANU on 14 MHz , with WA7LUU/HB0 and 3A2EE on 7 MHz . From Whitehaven, Cumbria, Paul Williams expresses disappointment with conditions as found on his Realistic DX100L and 15 metre-long antenna but logged VP2KK, J3ABA, HH2VP (QSL N4XR), 8P6OV, VP5RAC and HI8VAT on 21 MHz band. Old faithful 14 MHz turned up CM2VG, OJ0AM, 4S7WP, SV0AU, VP9HK, and FM7CF who wants cards through WB3AKI.

Stephen Pearson (Arundel, W. Sx) heard VP8QI who it seems was on his way home from Antarctica via the Falklands when he got caught up in the goings-on, and is now active there. The BC 348 J and a.t.u. fed from a wire caught VP2MDG, 6W8DB, VP9CI (QSL WA4UPJ), VQ9IB on Diego Garcia, VP5WJR, VS5DP, and VP8QI just mentioned. All that was found on 7 MHz was 5H3JR. A first report from Mike Hunter in S. Croydon, Surrey, lists DX heard on his HAC Triple-T receiver and a short inside wire which just shows what can be done with simple gear, like JY9RV, VK 2 XT and 5 Z 4 CX on 21 MHz together with A $92 \mathrm{NH}, \mathrm{CX} 2 \mathrm{CS}, \mathrm{OA} 4 \mathrm{AX}$, lots of PYs, VK3AOS, 7X2LK, and 9X5SL who asks for QSLs via DL8DF. A log only from C. Griffiths in Northam, N. Devon, says he uses a CR150 with three separate long wires to log quite a lot of stuff on 21 MHz such as CT2CR, TR2DX, TU2CL, VS5PP, VQ9PG, VP5JEX, VP2DMG, J73D and VP5WJR, all on s.s.b. of course. Doesn't anyone copy any c.w. DX these days?

A new venture totally unconnected with any other amateur radio retailer THE ENFIELD EMPORIUM

Dave, G8SYG would like to welcome you to his new emporium which is situated just 1 mile from the North Circular Road in Enfield. There is plenty of room to park and cups of cocoa will be available to those in need of refreshment.
There will be two licensed engineers in attendance to help you with any problems that you may have and they will be willing to repair rigs that were bought elsewhere! We will even offer you the use of a LOAN SET while yours is being repaired!!!

VALVES - We've got hundreds of RF valves - For example, the two valves used in the homebrew 1 kW HF linear in the May issue of Radcom should cost $£ 91$ each. We are asking $£ 40$ for TWO!!

WE STOCK THE FULL RANGE OF

EQUIPMENT AND ALL ACCESSORIES WILL BE AVAILABLE

WE WILL BE ABLE TO SUPPLY EQUIPMENT AND ACCESSORIES FOR

TRIO \& YAESU

WE ARE ASP ANTENNA STOCKISTS

Got an IC2E? Then let us MOD IT. We can add an l.e.d. S-meter to your IC2E (or 4E) while you wait. We supply a completely new faceplate and this mod can be carried out in our workshop or we will sell a kit of parts for you to fit yourself. 'Phone for the latest price.
TONO - We have in stock the full range of Tono equipment, including their wonderful linear amplifiers. The QUALITY of the workmanship that goes into these has to be seen to be believed.

TONO PRICE LIST 7000E	Communications CW/RTTY/ASC11 Terminal Tx/Rx	$\begin{gathered} \mathbf{£} \mathbf{~ p} \\ 599.00 \end{gathered}$
350	CW/RTTY/ASC11 Terminal Rx Only	259.00
CRT 120G	VDU 12 inch Green Screen Mains Power	125.00
HC900	Intelligent Line Printer 4 Cases +	590.00
HC800	Line Printer Centronics	449.00
SK7	Plug Adaptor For Printers	8.50
2M-50W	40 Watt Linear For 2 Metres	65.00
2M-100W	90 Watt Linear For 2 Metres + switchable pre-amp.	115.00
MR-150W	140 Watt Linear For 2 Metres + switchable pre-amp.	159.00
MR-250W	210 Watt Linear For 2 Metres + switchable pre-amp.	259.00
MR28	100 Watt Linear For 10 Metres + switchable pre-amp.	65.00
UC70	50 Watt Linear For $70 \mathrm{cms}+$ switchable pre-amp. Preamps	149.00
RX-144	Mast Head Preamp For 2 Metres	65.00
RX-430	Mast Head Preamp For 2 Metres SWR/Power	70.00
$\begin{aligned} & \text { ASW-180 } \\ & \text { ASW-430 } \end{aligned}$	$\begin{aligned} & \text { 1.8-160 Mhz } \\ & \text { 430 Mhz } \end{aligned}$	$\begin{aligned} & 45.80 \\ & 49.50 \end{aligned}$
	TASCO TELEREADER Communications	
CWR-685	CW/RTTY Terminal + VDU + Keyboard. Tx \& Rx	699.00
CWR-680	CW/RTTY Terminal Rx Only No VDU	189.00
CWR-670	As Above But De-Luxe Model	259.00

ROTATORS - We have in stock the superb Daiwa 7500 and 7600 heavyweight rotators and we are expecting many more models in soon.

All prices include VAT. Goods normally despatched by return, but please allow up to 7 days.

SELECTRONIC SERVICES

DO YOU WANT AN ANTENNA WITH A DIFFERENCE?

Over the coming months we will be producing over 14 different types of antennas for the amateur bands, i.e. from LF through to microwave.
Our aim is to manufacture a range of antennas to suit every operator and every pocket. Remember if you would like something extra special or you have a problem fitting a high performance antenna into a small space, get in touch and we can discuss your particular requirements.
The VHF/UHF range are made from glass fibre, removing all unnecessary metalwork from the field of the antenna, allowing performance to come closer to the magic theoretical maximum. You will not see your investment fall to pieces with a Selectronic Services glass fibre beam.
If required we can design an antenna for your needs from low cost wire to military specifications.

SATELLITE ANTENNAS

GET READY FOR PHASE 3B with our Helix antennas range designed for 70 cms and 23 cms . Remember Helix antennas are wide band and very high gain also a very important factor is no-compromise circular polarization. Just think with one important factor is no-compromise circular polarization. JUSt think with one
Helix antenna you can work through satellites - repeaters and SSB/CW tropo which as you will know require different polarizations.

ATV ANTENNAS

There are some excellent ATV transmitters on the market now. Why not compliment their excellent performance with an excellent ATV antenna.
Wide bandwidth and immense gain is a very important factor with ATV. These antennas will be available in multiples of 16 element stacks, i.e. $16,32,64$, etc. Their gain is unquestionable as stacked arrays have been successfully used for E.M.E. The bandwidth is far greater than any so called ATV antenna available today, 7 MHz for 70 cms is a typical figure and even wider for 23 cms . Incidentally these antennas can be tuned to any part of the 23 cms T.V. band by one adjustment.
Our ATV antennas are of course constructed from glass fibre for lightness, strength and less corrosion problems. These antennas also make an excellent tropo array. A good buy for an all-round high performer.

NOT INTERESTED IN SATELLITES OR ATV? RATHER STICK TO THE HF BANDS?

Why not try our 10 MHz and 14 MHz Broadside arrays, excellent performance with this classic design and, of course low cost. These are also very unobtrusive to neighbours and very simple to erect - superb for Q.R.P.

For further information contact:

SELECTRONIC SERVICES
Unit BT50/55B, Perry Avenue,
Teesside Industrial Estate, Thornaby, Stockton-on-Tees, Cleveland TS17 9LíN.

Tel: (0642) 760093

PROGRESSIVE RADIO

on the air

At the time of writing to me in July Jim Dunnett of Prestatyn, Clwyd, had not got the result of his RAE or a date for his code test. Expect it will all happen at the same time! The FT-101 is all set to go with the G5RV antenna. In the meantime it was logger/tea maker duties in the v.h.f./u.h.f. field day at GW4NLD/P. Ah, a c.w. log at last! Jim found quite a lot of stuff on all the h.f. bands on c.w. like 28 MHz where it was A51PN (POB 166 Thimpu), BY1PK (at last) who said QSL POB6106, Beijing which is also Peking, HP1XEK, HV1CN, K5YY/J6, PZ2AA, SV0CJ/SV5 (POB 349, Rhodes), YC2BDJ, ZL1AH, ZS3TL, 3B8FK (QSL POB1080, St Louis), 9V1VB and 9 Y 4 W . On 21 MHz s.s.b. Jim caught C53CC, TU2JL, VQ9CI, YB8QD, 8R1RBF. On 14 MHz it was CEODK, CM7RM, OJ0AM, 4N6N (YU-land) and 9 U 5 WR . Now to c.w. on that 10 MHz band for FG7BG, DK8CB/HB0, XT2AW and ZL3GQ. The same mode on 7 MHz found FM 7 AZ , JW8MY, DK3GI/HK1 and 4K1D (QSL UA1AFM) with $\mathrm{OH} 6 \mathrm{VM} / \mathrm{OH} 0$ on s.s.b. The $3 \cdot 5 \mathrm{MHz}$ band found some PYs and LUs plus CN2AQ on c.w., while the only RTTY logged was IZOUSF and 5Z4RT on 14 MHz .

By the time this appears in print most readers will have heard about the massive sunspot that was visible to the naked eye (through a proper filter, of course), and which wiped out all communications on the h.f. bands from around 0900 to 1400 hours on July 12th. The 144 MHz v.h.f. band was open to Europe and excellent aurora were reported. Predictions had anticipated some activity but not to the extent that finally occurred.

Using a Sony ICF2001 and a long wire antenna, Tony Pinnell BRS50886 of Reigate, Surrey has been roving between 3.5 and 28 MHz but is still not quite sure what constitutes "DX". Among what I consider DX is EA9FE and PY4LJ on 3.5 MHz , then $\mathrm{J} 6 \mathrm{LB}, 6 \mathrm{Y} 5 \mathrm{AG}$ and VK6LK on 7 MHz , plus J3AH, J6LB, K5YY/J8, VK9YB, VS6CT and 9L1DR on 14 MHz . DX catches on 21 MHz included DU6SSB, D44BC, J73PP, S79WHW, TL8CK, TU2IJ, TYA11, VP8QG, VQ9CI and 9X5SL while 28 MHz saw TU2IJ, TYA11, 7P8CI and 5 N3RTF. DX, as far as this column is concerned, is a mixture of rarity and distance and not distance alone. Tony seems to have done very well in this instance.

Odd Items

An appeal from Graham Fear of Whitegates, Bunces Lane, Burghfield Common, near Reading, for info/circuit diagram of the R1155 receiver. Stand by for the deluge OM!

A while ago D. L. Broadley of Frome, Somerset, was put in touch with G3DVW of Liverpool by yours truly concerning an HRO. Being in the Liverpool area recently DLB called to see G3DVW who turned out to be an old school chum, last met together some 28 years ago! Nothing too much trouble for $P W$!

Dick Benham-Holman G2DYM of DYM Aerials has asked me to mention a certain "Inverted-V trapped dipole" being sold through a distributor in Merseyside which, in fact, has loading coils but not traps and thus needs an a.t.u. to function on several bands. It seems that this is a matter of misunderstanding the original Italian manufacturer's instruction leaflet, which specifies the need for an a.t.u., rather than deliberate deception. Thought I'd mention it. It is expected that the advertiser will make matters clear in future ads.

Around the Clubs

To assist all concerned I'd like to point out that if club secretaries or PROs care to send in a fixture list for, say, a few months ahead, together with meeting place and dates, there will be no need to write in every month with bits and pieces of information. Apart from the savings in postage all round it might even persuade a few club committees to stir themselves and formulate such a list!

Wirral \& District ARC Second and fourth Wednesdays at the new club venue at the Irby Cricket Club. Dates are Sept. 8 for Gordon Adams G3LEQ on Sun, Earth and Radio-Part 1, with second part on Sept. 22. Meetings at 8 pm with visitors most welcome, which goes for all clubs, of course. Local club channel is S13, but more from Neil McLaren G4OAR, 596 Woodchurch Road, Oxton, Birkenhead.

Mid Ulster ARC First Sunday at the QTH of GI4BAC in Banbridge at 3pm. Because of the s.s.b. Field Day the AGM will be held on Sept. 12, says Danny Campbell GI4NKD, 109 Drumgor Park, Craigavon, Co. Armagh or (0762) 42620.

Bury RS Second Tuesdays at the Mosses Youth \& Community Centre, Cecil Street, Bury. Sept. 14 has G8LIR declaiming on Radiography, and a reminder of the construction competition on October 12. Try D. Hensby G8TKD at the Centre.

Wakefield \& District RS Meetings in Room 2 or 3, Holmfield House, Denby Dale Road, Wakefield at 8 pm , like Tuesday Sept. 7 for a home-brew equipment evening or the 12th when G4DXA talks on Interference. Early warning of the club project night on October 5 QSO Rick Sterry G4BLT on Wakefield 255515.

Worthing \& District ARC Every Tuesday, 7.30, the Amenity Centre, Pond Lane, Durrington with details of club programme, etc., from Joyce Lillywhite, 41 Brendon Road, Worthing, W. Sx. also Worthing 63062.

Abergavenny \& Nevill Hall ARC Aiding the handicapped and blind at the Nevill Hall Hospital, Abergavenny, the club meets every Thursday at 7.30 at Pen-y-Fal Hospital, A'gavenny with a club net on S17 Sundays 8pm. RAE courses held starting September until May next. The club location also an official RAE exam centre. Drop a line to Dave Jones GW3SSY at 2 Dalwyn Houses, Llanover Road, Blaenavon,

Gwent or buzz (0495) 791617.
Aberdeen ARS New club rooms at 35 Thistle Lane, every Friday at 7.30 with lectures, instruction in RAE and code, junk raffles and sales and so on. All I have on the secretary is Stan on A'deen 691716! Now to the Scottish AR Convention on Saturday Sept 11 in the Natural Philosophy Dept of A'deen University in Bedford Road, off St. Machar Drive. Trade stands, Bring and Buy, RSGB stand, and lectures culminating in a grand dinner in the evening. A portable CTV is the big raffle prize. Time 10am to 5 pm with dinner at the Royal Darroch Hotel, Cults, at 7.30 pm . Convention entrance a mere $£ 1.50$. More from Findlay Baxter GM3VEY, 24 Hillview Crescent, Cults, Aberdeen or (0224) 868263.
Farnborough \& District RS Second and fourth Wednesdays at 7.30, Railway Enthusiasts Club, Access Road, off Hawley Lane, F'borough, near the M3 bridge. On Sept 8 a pre-AGM gettogether with the construction contest on the 22 nd, the lucky winner getting a cup. It's sec Ivor Ireland G4BJQ, 118 Mychett Road, near Camberley, Surrey, or F'boro 43036.

Dumfries \& Galloway Radio \& Electronics Club Big event September 9 to 12 is the Robert Burns World Federation visit with special event station GB4RB from St. Michaels Church Hall in Dumfries. Operation all h.f. bands plus 144 MHz with special QSL. Normally meetings held first and third Mondays at 7.30 in the Cargenholm Hotel, New Abbey Road, Dumfries. GM4NNC C. Rodgers, 5 Elder Avenue, Lincluden, Dumfries is waiting to answer all your questions.

Bournemouth RS First and third Fridays at Pelhams Community Centre, Milhams Lane, Kinson, B'mouth but Arthur Bagley G4EKE, 8 Larks Rise, Ferndown, Wimborne will give you all the details. Suffice to say that a talk on Prestel is scheduled for Sept 3 although this may be too early for this issue but on the 17 th SMC should be putting on a show of amateur equipment. Must tell you now of the AGM on October 1 with the club social the next evening. Note, too, a talk on October 15 on fast scan TV.

Spen Valley RS To remind you that the new venue is the Old Bank WMC, Old Bank, Mirfield, W. Yorks, with next meetings on September 16 and 30 which makes it every other Thursday at 8 pm . Hon sec is Ian Jones G4MLW, 54 Milton Road, Liversedge, Heckmondwike, W. Yorks or H'wike 409739.

Acton, Brentford \& Chiswick ARC Oscillators are the subject on Tuesday September 21 at 7.30 at the Chiswick Town Hall, High Road, Chiswick, London W4, delivered by G3IGM, with everybody welcome of course. More from W. Dyer G3GEH, 188 Gunnersbury Avenue, Acton, London W4.

Fareham RC Every Wednesday, 7.30, Room 12, Portchester Community Centre with G3CCB describing a tuned balun for the h.f. bands, on September 8, which

on the air

I'd dearly love to hear about! On the 22nd it's demo night with Telecomms of Portsmouth putting on a show of Trio gear. This is always a good idea, getting local retailers to show their products, and very popular. It costs the club nothing and the retailer may make a sale or two with a small percentage to the club funds! Try Brian Davey G4ITG, c/o 31 Somervell Drive, Fareham, Hants or F'ham 234904.

Edgware \& District RS Second and fourth Thursdays at 8pm at 145 Orange Hill Road, Burnt Oak, Edgware, Middx, says sec Howard Drury G4HMD, 11 Batchworth Lane, Northwood. Slow Morse at meetings is supplemented by over-the-air stuff on Top Band and 144 MHz by G3ASR and there is a club net on 1875 kHz Mondays at 10 pm .

Radio Society of Harrow Fridays at the Roxeth Room, Harrow Arts Centre, High Road, Harrow Weald, Middx, or opposite the Alma pub if that is how you navigate around! Here are bar facilities or coffee and biscuits and plenty of parking space. Sept 10 is constructional contest night with a surplus equipment sale on the 17th while practical and informal is how Sept 24 is described by Chris Friel G4AUF, 17 Clitheroe Avenue, Harrow, also 01-868 5002. Talk-in if you're lost on GB3HR on RB14.

Echelford ARS Second and last Thursdays at The Hall, St Martins Court, Kingstan Crescent, Ashford, Middx, plus a Sunday net on 1930 kHz at 1000 hours. More from Anton Matthews G3VFB, 13a King Street, Twickenham, Middx or dial 01-892 2229.

Cheshunt \& District ARC All "go" up there with meets every Wednesday at 8 pm Church Room, Church Lane, Wormley, near Cheshunt, Herts, plus RAE course at the East Herts College at Turnford now under way (or should it be "weigh"?) plus a beginners' course in the Morse code. September 8 an open discussion with the theme "Amateur Radio-a very special hobby?" while on the 22 nd G6BTQ deals with r.f. measurement techniques. Advance notice of G3YPZ on 28 MHz f.m. operation on October 6 in case your $P W$ is a bit late arriving. Do contact Jim Sleight G3OJI, 18 Coltsfoot Road, Ware, Herts which is also (0920) 4316.

White Rose ARS New year starts with newly-installed chairman G3KWT and future programme including goodies like G4DZU on moon-bounce, G4OAT "looking into the past" and Datong Ltd dealing with DF matters and other products, and there is to be a constructional contest to round things off. Wednesdays at 7.30, Moortown Rugby Club with clubhouse facilities also available every pm and Sunday lunch time. QSO Peter G3WSZ at the club QTH.

Thames Valley ARTS DX working is the subject to be dealt with by G3TXF and G3SXW, who was EP2IA and YAIR and therefore knows of what he speaks, on September 7 at the Thames Ditton Library, Watts Road, Giggshill, Thames Ditton, Surrey at 8 pm .

Otherwise it's the first Tuesday of the month. Write or ring Julian Axe G4EHN, 65 Ridgway Place, Wimbledon, London SW 19, or 01-946 5669.

Salop ARS Thursdays 8pm Albert Hotel, Smithfield Road, Shrewsbury, with G6AKE Edwin Arnold, 30 Leamore Crescent, Belle Vue, Shrewsbury on S'bury 66969. Several new calls in the club following the May RAE. September events include a station at the Uffington Fete on Saturday Sept 4, talk on sporadic-E by G3USF on the 9th, computers by G6FHM on the 23rd and natter nights in between. Reminder, AGM October 14.

Horsham ARC First Thursdays, 8pm, Girl Guides HQ, Denne Road, Horsham with autumn junk sale on October 7. If you are intending to visit do take your junk along. More from Tony Wadsworth G3NPF QTHR or Nancy Hubbard G6DHH, 33 Amberley Road, Horsham, Sussex.

Sutton Coldfield RS Second and fourth Mondays at 7.30 at the Central Library, Sutton Coldfield, from Derek Turner G8TUR who can be found on 021-353 2061. September 13 will be devoted to welcoming new members and a general natter, but on the 27th it's communicating by satellites as the talk of the evening.

Stevenage \& District ARS Being so efficient PRO Les Mather G8OKI is now also editor of the club newsletter! First and third Thursdays at the British Aerospace Dynamics Staff Canteen, Site B, Argyle Way, Stevenage, Herts, at 8 pm but get there at 7.15 if you want to join in the code classes. RAE classes start in the autumn and there are DF hunts on the fourth Thursdays normally, meeting at Fairlands Valley Lakes car park at 7.30. Contact Len at 63 Woodhall Lane, Welwyn Garden City, Herts.

Nene Valley RC "A newly-formed club struggling for members and cash" says L. Parker, secretary, of 128 Northampton Road, Wellingborough, Northants (W'boro 79539). How can you resist that appeal, if you live anywhere in the area? So it's Wednesdays 8 pm at the Royal pub in Knox Road, W'boro. Soon h.f. and v.h.f. nights begin, so new members and visitors can see what amateur radio is all about, plus a social evening and ladies' night being arranged for Sept 29. A programme to the end of the year has been compiled which includes the RSGB video show on September 22, with G3DOT holding forth on the subject of amateur radio in Norway, on October 6.

North Bristol ARC A new RAE class has now begun, with continuing c.w. classes run by G4FMH. It's every Friday at 7pm at the Self-Help Enterprise Centre, Braemar Crescent, Northville with a series of lectures now starting on the last Fridays. Ted Bidmead G4EUV, 4 Pine Grove, Northville, Bristol is your contact for more info.

Rossendale Valley ARC Meetings at the Bishop Blaize Hotel, Burnley Road, Rawtenstall, Lancs with a full programme of events being finalised,

Beyond that I know nowt! However you'll be glad to know that Celia Adams G6GZM, 373 Bury Road, Rawtenstall, Rossendale, Lancs is awaiting calls from potential members and visitors on (0706) 220935. Or you can try Mrs. B. Hughes on R'dale (0706) 212306, her rank in the hierarchy being unknown! Late news! It's Wednesdays at 8 pm . Celia's OM is G6GZN with both due to take the code test 'ere long. Good Luck!

Radio Club of Thanet Second and fourth Fridays at 8 pm the talk on September 10 being on construction techniques and that on the 24th dealing with RTTY, followed by the AGM on October 1. Meeting spot is the Birchington Village Centre but let Ian Gane G8HLG (or is it G4 now?) of 17 Penshurst Road, Ramsgate, Kent answer your queries on (0843) 54154.

Denby Dale \& District ARS News of the four-day "weekend" activity aimed at the members and their families. This was extended to a week this year, July 24 to August 1, but the news was received too late for $P W$. Hope everyone enjoyed themselves, nevertheless. Wednesdays, 8 pm , the Pie Hall, Denby Dale, with September 8 on computer programming, the Sat Sept 11 event being the station demo at the Denby Dale Carnival. Following Sat/Sunday will be spent with the Newsome Scouts. Back to normal, more or less, for a junk sale on September 22. I managed to contact sec Jack Clegg G3FQH, 8 Hillside, Leak Hall Lane, Denby Dale, Huddersfield, on $3 \cdot 5 \mathrm{MHz}$ recently and he filled me in on the significance of the Pie Hall.

Hastings Electronics \& Radio Club Principal gatherings at West Hill Community Centre, Hastings but the club room at 479 Bexhill Road, St Leonards-on-Sea is open on Mondays and Fridays for computer and socialites respectively. On Tuesdays it's RAE classes at the William Parker School at 7.30. Club mag Vital Spark has an ad from a member offering a tunable u.f.o. for sale. That's a new twist. What will the Japs think of next? Don't forget the Churchwood School Fete on Saturday September 11 at 11am. I forgot to mention the G4ITM Morse classes also at 479 Bexhill Road on Tuesdays at 7.30 pm . If there is anything else that can be told about the club I suggest you contact George North G2LL, Fontwell Avenue, Little Common, Bexhill-on-Sea, E. Sussex, also Cooden 4645.

Meirion ARS The new club venue at the Nannau Country Club, which is two miles NE of Dolgellau, has been received with general acclaim by the membership evidenced by a doubling in attendance in recent meetings. Much interest has been shown in a $432 \mathrm{MHz}(70 \mathrm{~cm})$ colour TV demonstration with gear constructed by GW8WNB and GW6ARL in cooperation with GW3FDZ who has received reports on his own signals from 100 miles away. Note the RSGB film show on October 2. Normally the club meets the first Thursday at the Club, Llanfachreth. More from the PRO Len

anhifi
 INTERNATIONAL
 THE MOST COMPREHENSIVE RANGE OF COMPONENTS, KITS AND MODULES IN THE WORLD \& THERE'S ONLY ROOM FOR A FRACTION HERE, GET THE CATALOGUE AND FIND THE REST.

Bridges GW6COM, c/o Tremidris, Llanelltyd, near Dolgellau, Gwynedd, or (0341) 422568.

West Kent ARS QTH is the Adult Education Centre, Monson Road, Tunbridge Wells, Kent, at 8pm alternate Fridays plus Tuesday evenings at the Drill Hall, Victoria Road, with a 144 MHz DF foxhunt on September 17 and an Open evening on October 1 when beginners are especially welcome. It would be a good idea to contact Brian Castle G4DYF, 6 Pinewood Avenue, Sevenoaks, Kent for details of some very interesting talks coming up in October and November. A ring on (0732) 456708 will do.

Milton Keynes \& District ARS Miss L. Taylor G4FYR tells me that the club meets on the second Monday at 8 pm at the Lovat Hall, Silver Street, Newport Pagnell and on the fourth Monday at the Globe, Long Street, Hanslope. However if you want more details and info on the
club's activities then it is D. White G3ZPA, Rose Cottage, Shenley Brook End or buzz (0908) 501310.

Aylesbury Vale RS Monthly at Stone Village Hall, Stone, at 8 pm with, on September 7, G3RZP gives the lowdown on frequency synthesisers. Must also tell you of G6AGE dealing with British Telecom on October 5. Everybody welcome with coffee and a raffle at every gathering. It is Mike Marsden G8BQH, Hunters Moon, Buckingham Road, Hardwick, Aylesbury, Bucks.

Wimbledon \& District RS Following resignation of sec Ted Allen G3DRN the new incumbent is Ken Bailey G3EPU of 32 Strathern Road, Wimbledon Park, London SW19, or 01-946 1390; club meets second and last Friday at St. John Ambulance HQ, 124 Kingston Road, W'don at 8 pm with tea and biscuits as an incentive to visitors. Net 144.875 f.m. 9 pm Mondays.

North Wakefield RC Carr Gate Working Men's Club, 7.45, Thursdays. Don't just sit there but get along for the junk sale on September 9 with the 23rd devoted to a natternite. Neil G8WWE awaits your calls at 81 Denshaw Grove, Morley, Leeds, W. Yorks.

Now for some news of an RAE course held under the auspices of the Rugeley Evening Institute at the Aelgar Comp School, Taylors Lane, Rugeley, every Thursday at 7 pm starting on September 16th. The important info is the enrolment dates, September 6, 7 and 8th between 7 and 8.30 pm at the school. Nonexamination candidates are very welcome because, in the past, several have gone on to take the RAE. So don't be shy! All this from instructor C. J. Terce G4DBR of 29 Armitage Lane, Brereton, Rugeley, Staffs who welcomes enquiries on the course. He is also Rugeley 2921.

That's it for this time folks.

It was a past Editor of Practical Wireless who suggested, half seriously I think, that it was really the readers who write this column for me. There is a lot of truth in the assertion since it is from readers' letters that most of the stimulus comes. It seems appropriate then, in this anniversary issue of $P W$, to thank all those who have written to this column over the years and more recently, to the short wave section as well.

Loop Amplifiers

Duncan Fraser sends me the sequel to his experiences in New Zealand and the UK using a "straight" loop pre-amplifier (Fig. 2) and mentioned in this column in the July issue. A fellow member of the World DX Club made up a d.m.a. (differential matching amplifier) for Duncan, who now finds that overloading is virtually cured. "I do wonder what is the difference; while the straight one goes between loop and set, the d.m.a. goes across

Fig. 1: Ordinary loop
the loop (across the capacitor) which seems odd." This observation goes right to the heart of the way a loop functions so perhaps we'd better start from first principles.

Matching

A loop is really a parallel tuned circuit which can be rotated. Ignore the directional properties for a moment. When we peak a station with the loop's tuning control we adjust its tuned circuit so that it offers a high impedance to that station and a low impedance at other frequencies. The loop gives a boost to the station by developing a voltage across this high impedance and the problem now is to lead this voltage away from the loop and apply it to the receiver. If we joined a piece

Fig. 2: Ordinary loop with amplifier
of cable across the tuned circuit we would detune it, since the self-capacitance of the cable would be in parallel with the loop's tuner. We would also shunt the high impedance of the tuned loop with the combined impedance of cable and receiver. In short we would damp and detune the loop.

To avoid these problems a single-turn coupling winding is wound on the loop. Fig. 1 shows the arrangement. The tuned circuit is formed by C1 and L1, C1 being the tuner and L1 the main winding, C 2 is the coupling winding. Inductors L1 and L2 together form a step-down transformer and providing the coupling is not too tight, we can connect L 2 to a cable going to the receiver, without adversely affecting the performance of the loop.

Fig. 3: Loop with d.m.a. but without coupling winding

A coupling winding is really a rather crude solution to the problem. There are bound to be losses and consequent reduction in signal strength. This is where the d.m.a. comes in. It is an amplifier with a high input and a low output impedance. Since the input impedance is high it can, if the leads are kept short, be connected directly to the main winding without loading it. The most convenient way of doing this is to tap across the tuning capacitor C1 (Fig. 3). The output from the d.m.a. is taken by cable to the receiver and the two, receiver and loop, are now isolated from each other.

As the name suggests, the d.m.a. is primarily a matching amplifier, any gain obtained being incidental. Usually this gain is kept low to avoid problems with overloading. Even if the gain of the d.m.a. is unity, i.e. zero, there will still be a boost to signal strength as a result of the elimination of the losses that occur when a coupling winding is used. All the voltage developed across the loop is applied to the d.m.a.

There is a lot more to the tuneable loop antenna than meets the eye. We have not even considered its directional properties! Newcomers to the hobby should not be deterred from constructing the ordinary loop with coupling winding. It works very well indeed and although I possess a d.m.a. it is not often that it is used. For those who are interested in experimenting or who wish to squeeze a few more drops of signal out of the loop, then the d.m.a. is a useful accessory. It is advisable though to build an ordinary loop first just to gain experience with it, before introducing any frills.

Selectivity

"I started DXing on a modern hi-fi and a cheap s.w. portable" writes 17 -year-old Antonio Gomes from Goodwood in RSA. During the holidays he made enough money to purchase a "shining new FRG-7". There is one snag though. "My FRG-7 is rather unselective. Bandwidth is 6 kHz and is wide." Antonio wonders if there is a filter available that would improve selectivity and could be inserted between the receiver and the phones or speaker.

Any filter would have to be inserted in the i.f. stages inside the set. A suitable 2.4 kHz bandwidth filter is available from Yaesu distributors South Midland Communications at Totton, or a d.c.-switched module is available from Ambit International. Remember though that installing either of these means attacking the receiver with screwdriver and soldering iron, which will invalidate the guarantee on a new set. The later FRG-7700 has two degrees of selectivity that can be chosen by a switch. Wide, gives poor selectivity but good audio quality. Narrow, gives improved selectivity but poor audio. Both s.w.l. and DXer are satisfied. A receiver with fixed selectivity will probably lean towards the s.w.l. rather than the DXer and this appears to have occurred with the FRG-7.

Antonio enclosed a mouthwatering log which includes Madeira, with pop music on 1331 kHz at 2225 UTC, Malawi on 540 at 2000, Canary Islands 621 at 0055, Reunion, in French on 666 at 1800 and Sao Paulo, Brazil on 1410 kHz at 1550 .

The latter is interesting as this path is supposed to be a difficult one.

DX-160 Communications Receiver

I have just acquired a DX-160. I was really looking for a more powerful portable for the caravanette, when I came across it. Since the DX-160 will operate from a 12 volt car battery and you need an additional antenna anyway when using a portable inside a caravan owing to screening effects, it seemed a good choice.

Regular readers will remember the problems m.w. DXers have had with the DX-160. The original version was a good receiver for m.w. DXing judging from reports from readers and it could be used with a medium wave loop. Then the manufacturer replaced the medium and long wave antenna tuning inductors with a ferrite rod antenna. There were two versions. One had the ferrite rod mounted externally at the rear while the other, which is the one I have, has the rod mounted internally.

The result in each case is the same. You can no longer use a loop! If you null out a station with the loop, you will still pick it up with the ferrite rod antenna.

The rear of the DX-160 is interesting. Only the top half, which is made of hardboard, is removable. The remainder of the cabinet, including the back plate for the tuning scale, is of metal so it can only be through the hardboard panel that signal reaches the ferrite rod. The latter is 10 mm in diameter and 120 mm in length
and is mounted on two plastics brackets fixed to the chassis immediately behind the hardboard panel. It should not be too difficult to screen the ferrite rod either by covering the hardboard panel with earthed metal foil or replacing the panel with a metal one. How well the modified receiver would perform with a loop remains to be seen. I hope to have the answer next time.

Antenna Projects

"Can you recommend any books that cover medium wave DXing?" is a question often asked by readers but one that is not easy to answer. Media Network, of Radio Netherlands, produce a useful pamphlet called Medium Wave What Now, which is available for the asking but otherwise there was until recently nothing currently in print that covered the subject. The new paperback Aerial Projects by R. A. Penfold, published by Babani, is a welcome arrival. Although intended for the short wave hobbyist as well, it does have sections which include constructional data on a conventional loop, an active loop and an unusual differential loop antenna. The remainder of the book applies equally to short wave listening, covering various types of outdoor antenna and antenna accessories such as a preselector, attenuator, antenna tuning unit. Aerial Projects (BP105) is available in the UK, price $£ 1.95$ from bookshops, or direct from Bernard Babani (publishing) Ltd., The Grampians, Shepherds Bush Road, London W6 7NF (post and packing 25 p to UK and 50 p to overseas addresses).

"I am a comparative newcomer to short wave listening" writes reader L. Hollis from Brandon in Suffolk, who goes on to say that he followed the advice given in this column some time ago which was to purchase a portable receiver with telescopic antenna in order to gain experience of short wave listening before investing in an expensive receiver. He has now graduated to an FRG-7 which he uses with the Windom antenna and antenna tuning unit described in the Aerial Data Chart presented with the November 1979 edition of Practical Wireless. Our reader comments on the amount of jamming on some of the bands these days,
in particular on $11 \mathrm{MHz}, 15 \mathrm{MHz}$ and 18 MHz . He wonders what, if anything, other readers of the magazine are able to do in an attempt to overcome it.

Jamming

"What if anything" is the operative phrase for it is difficult, though not impossible, to construct a movable directional antenna for those frequencies and this is really what is required. On the medium waves it is easy to null out an unwanted signal simply by rotating the receiver to make use of the directional properties of the internal antenna, if it is a portable, or by using a medium wave loop antenna. I have, on the short waves, tried the whip in a horizontal position and by pointing it in different directions have on occasion, managed to suppress an incoming signal. A rather hit-and-miss procedure but it does work sometimes.

To digress a little, it is interesting to look at some of the technical problems involved both in jamming and its avoidance. The range of the ground wave from a transmitter is inversely proportional to the frequency in use. On the medium waves it is easy to cover a dis-
tance of 100 miles with the ground wave. On the higher short wave bands this range may literally be reduced to a few miles. In order to jam a station on the h.f. bands one must either be very close to the listener and use the ground wave or else the sky wave must be employed. Both have their problems.

Ground wave jamming means large numbers of jammers close to the main areas of population. Sky wave jamming means going beyond the skip (dead) zone which at times may extend for a thousand miles around the jamming transmitter. Unless you can transmit from the same

QSL card from Australia

HCJB from Ecuador
direction as the broadcaster you are trying to interfere with, then there are serious problems. Different paths may have different propagation characteristics at any particular time and may not even be in daylight together. This means a number of jamming stations at different localities all on the air at the same time. Sometimes you can hear a jammer on its own, which probably means that the path from the jamming station to us is open, while the path from the station being jammed, is not.

A recent edition of Media Network, which is broadcast over Radio Netherlands on a Thursday, had a feature on the local jamming set-up which is

Fig. 1: Antenna switching
common around cities in Eastern Europe. It described a complicated arrangement where a "listener" could order jammers over the telephone to move onto different frequencies as required. In order to assess their effectiveness, each jamming station has its own callsign which is transmitted in Morse so that it can be identified. You can often hear this Morse identifier among short wave jamming and it has occurred to me that it really would be something if you could get a QSL from one of them!

Jamming is a sad reflection on our times but it does exist and the listener has to live with and if possible try to combat it.

Lightning Protection

The piece I wrote about lightning protection in the March issue prompted F. E. Wellstead (Northampton) to ask if I could give more detailed information, including a diagram, of the antenna switching arrangement at my QTH.

The set-up (Fig. 1) is centred on an antenna switch model CX3 which was obtained from Progressive Radio in Liverpool. The input/outputs at the switch consist of sockets type SO239 and a set of plugs PL259 are required for the connecting cables. The lightning arrestor type LA15, which has a PL259 plug at one end and an SO239 at the other, is inserted into the "input" of the switch as shown. The antenna lead is plugged into the opposite end of LA15. If the antenna lead is a single wire then it can be terminated on a large-size wander plug (4 mm pin) which is plugged into the socket end of LA15. Otherwise a PL259 is required.

The leads from outputs 1 and 2 must have a PL259 at one end and whatever terminal is required at the other end to match the antenna socket of the receiver. The lead from output 3 goes to earth as does the terminal attached to the body of LA15. The spark gap inside LAd5 protects the receiver when the antenna is in use. When the antenna is not in use, the switch is placed in position 3 which earths the antenna and also isolates it from the receiver.

This arrangement is suitable for use with a random wire, an inverted "L" or any other antenna that has a single wire or coaxial downlead. It is unsuitable for use with an antenna having a twin feeder, which would be connected to the dipole sockets (A1, A2) of the receiver.

Switch CX3, according to its markings, is intended to switch a receiver to any one of three antennas. When used this way, the cable from the receiver would plug into the single socket currently occupied by LA15 while the antenna leads would go to the top sockets (Fig. 1), preferably via an LA15 in each case.

QSLs

"Enclosed are two QSLs I received recently from Taiwan" writes Alex Stewart from Carstairs Junction. His receiver is a Satellit 1400 with telescopic rod antenna. "Due to the present QTH an outside antenna is not possible, but as you say the modern portable is a marvellous piece of technology, so the telescopic rod works just fine."
"I am a keen collector of QSLs and treasure them greatly" says R. N. Carrick (Barrow-in-Furness) who has trusted me with two of his recent acquisitions. One is from Australia and the other from HCJB, the Voice of the Andes in Ecuador. Vic Dye (Carshalton) encloses a QSL just received from Radio New Zealand. This station is still on the air relaying domestic programmes for the time being at any rate. Vic quotes the Pacific Service frequencies which at the moment are 11.96 MHz from 1800 to 2105 , 17.705 MHz from 2115 to 0815 and $15 \cdot 485 \mathrm{MHz}$ from 0825 to 1215 and again from 1800 to 2100 . These may change during the autumn but are the only ones available at the moment.

Two beautiful cards from Taiwan

Portable Receivers

Recently retired reader William Savage of Warrington writes to say that since he bought his Triumph four-band SRR-3000 portable early this year he has identified approximately 130 stations located in 46 different countries. In an effort to hear a few more, he is using a set-top TV antenna joined to the end of the vertical radio antenna. The quest for even more DX led him to think of installing a loft antenna but he wonders now, from what I have written on the subject recently, whether such a course is desirable.

A total of 46 countries is not bad for a portable with whip antenna and illustrates the point I have been making, that the modern portable receiver is a selfcontained unit capable of providing worldwide reception. It will not harm a portable to connect a long wire to it, so one can experiment in safety but you have to proceed warily. As well as pick-
ing up weaker stations you may also pick up a lot of electrical interference. If you tune across a busy band such as 6 MHz , the stronger stations will overload the receiver giving rise to unpleasant results. On the other hand if you tune across a quiet band, say 15 MHz just after dark, and if you live in an electrically quiet locality, then the extra antenna may

The latest one from New Zealand
be useful. It is a question of suck it and see. Readers who are unable or unwilling to put up an antenna should not be deterred from taking up short wave listening though. The modern portable with its telescopic antenna will not disappoint you.

Listeners' Letters

"The National Service of Radio Uganda can be heard between 1830 and 2100 on 5.026 MHz -a transmitter on this frequency was destroyed in Spring 1981 and seems to have been replaced/repaired" writes Peter Walker from Kenton in Middlesex. Reader Paul Hardy is on the lookout for a Sony ICF5900 W portable receiver, a model no longer made. Anyone who has one for disposal should write to Paul at 43 Sheridan Avenue, Caversham, Reading, Berks, RG4 7QB.

When Practical Wireless was born in 1932 much of the radio frequency spectrum above 30 MHz was unexplored, but now, fifty years later, I have the pleasure of writing about readers who take advantage of such natural disturbances as aurora, sporadic-E and tropospheric scatter for DX QSOs and freely communicate on frequency bands from 28 MHz to 10 GHz .

Solar

After Cmdr Henry Hatfield, Sevenoaks, Reg Taylor, Shillington, and I had recorded a few small bursts of solar radio noise, around the 144 MHz (2m) band, on June 20 and a noise storm on the 22 nd and 23 rd the sun remained quiet until July 8, when we recorded a few strong bursts (Fig. 1). During the morning Henry looked at the sun with his spectrohelioscope and saw plages and sprays of gas high on the east limb. At 0835 on the 9 th, I heard a massive, 4 -minute duration burst at 28 and 50 MHz and although the sun, at that time, was well outside the beamwidth of my radio telescope, the burst was recorded by this instrument at 143 MHz . Although more individual bursts, similar to Fig. 1, were recorded on the 10th, 11th, 13th and 17th, the big event was the severe noise storm on the 12th which was also heard on 144 MHz by Phil Hodson G8RBY, Leicester and

George Grzebieniak G6GGE, London, who said: "The noise was so strong I heard it on the back of my beam". Ted Waring, Bristol, observed 48 sunspots on June 25, 6 on the 29th, 4 on July 3, 9 on the 7th and 54 on the 11th, so with all the large amount of solar activity around July 12, I was not surprised when the auroral alert was sounded by members of Phil Hodson's network. A sudden ionospheric disturbance (s.i.d.) upsetting the h.f. bands was reported by Norman Fitch G3FPK, Purley on the 12th and an h.f. blackout noted by Ian Kelly, Reading, on the 13th.

Aurora

Jim Penny GM4JLY, Aberdeen, worked stations in Germany and Scandinavia on $144 \mathrm{MHz}(2 \mathrm{~m})$ c.w. during an auroral event between 1715 and 1835 on July 11 and suggests that " G " stations should take a look for contacts on the 432 MHz band when aurora is present. Ray Lowes G4NJW, worked a station in

Fig. 1: Solar burst recorded by the author on July 8

Denmark via aurora around 1900 on the 12th and George Grzebieniak heard toneA signals from G4DEE and GM6CFN. Also on the 12th, John Heys made auroral c.w. contacts with 4 stations in Sweden and 1 in Norway. According to various reports, a major auroral disturbance began around 1800 on July 13, ebbed and flowed with several peaks and waned about 0400 on the 14th. At 1902, John Cooper G8NGO, Cowfold, Sussex, worked into Germany and Scotland on $144 \mathrm{MHz}(2 \mathrm{~m})$ s.s.b. and between 0014 and 0300 had contacts in Austria and Sweden, but his real prize came at 0102 when he worked F1CCC, 100 km east of Moulins. "A long way south for an auroral QSO", said a delighted John. "Pandemonium" said Alan Baker G4GNX, Newhaven, at 0140 while sorting out the auroral c.w. and s.s.b. stations active on 144 MHz . This event disturbed a wide range of frequencies, at 1853 I counted 25 signals with auroral burble from broadcast stations between 40 and 73 MHz . At 0109 I heard the ghostly auroral whisper from G8RAF in Locking on 144 MHz s.s.b. and 55A signals from the 28 MHz beacons in Germany DFOAAB and DLOIGI, Norway LA5TEN, UK GB3SX and many tone-A twitters in Band II.

The 28MHz Band

"The bands are rather dead lately" writes Frank Whitfield BRS 47262, Widnes, on June 30, who concentrates his efforts on the 21 and 28 MHz bands and like me, Harold Brodribb, St Leonards-on-Sea, heard mainly European stations on 28 MHz between June 18 and July 18 . During this period George Coulter, Dover, heard 9J2NO and 9J2TJ on c.w. and Z21AE on s.s.b. and around midday on July 11 Gerry Brownlow G3WMU/P

OVER 290 STORES AND DEALERSHIPS NATIONWIDE Known as Racio shack in the USA Check your phone book for the Tandy Store or Dealer nearest you

Prices may vary at individual stores. man Offers subject to availability.

S.E.M. UNION MILLS, ISLE OF MAN Tel: MAROWN (0624) 851277

SENTINEL 2M LINEAR POWER/PRE-AMPLIFIERS.
Now feature either POWER AMP alone or PRE-AMP alone or both POWER AND PRE-AMP or STRAIGHT THROU when OFF, Plus a pre-amp GAIN control from 0 to 20 dB . N.F. around 1dB with a neutralised strip line DUAL GATE MOSFET.
Ultra LINEAR for all modes and R.F. or P.T.T. switched. 13.8 V nominal supply. SO239 sockets.
Three Models:

1. SENTINEL 36 Twelve times power gain. 3W IN 36W OUT, 4 amps. Max. drive 5W. 2. SENTINEL 50 Five times power gain. 10W IN 50W OUT. Max. drive 16 W 6 amps .

Same size as the Sentinel 35. $\mathbf{£ 7 4 . 5 0}$ Ex stock.
3. SENTINEL 100 Ten times power gain. 10 W IN 100 W OUT. Max. drive 16 W . Size: $62^{\prime \prime} \times 4^{\prime \prime}$ front panel, $3 \frac{1}{2}^{\prime \prime}$ deep. 12 amps. $£ 100$ Ex stock.
All available less pre-amp for $\mathbf{£ 8 . 0 0}$ less.
POWER SUPPLIES for our linears 6 amp £34. $12 \mathrm{amp} \mathbf{£ 4 9 .}$
SENTINEL AUTO 2 METRE or 4 METRE PRE-AMPLIFIER
Around 1 dB N.F. and 20 dB gain, (gain control adjusts down to unity). 400W P.E.P. through power rating. Use on any mode. 12 V 25 mA . Sizes: $1 \frac{1}{2}^{\prime \prime} \times 21^{\prime \prime} \times 4^{\prime \prime}, \mathfrak{£ 2 8 . 0 0 ^ { \circ } \mathrm { Ex }}$ stock.
PA5 Same specification as the Auto including 240 V P.S.U. $£ 33.00^{*}$.
SENTINEL STANDARD PRE-AMPLIFIER. £15 Ex stock.
PA3. 1 cubic inch p.c.b. to fit inside your equipment. $£ 10$ Ex stock. $\mathbf{7 0} \mathrm{cm}$ versions of these (except PA5) $\mathbf{£ 4 . 0 0}$ extra. All ex stock.

S.E.M. TRANZMATCH

The most VERSATILE Ant. Matching system. Will match from 15-5000 Ohms BALANCED or UNBALANCED at up to 1 kW Link coupled balun means no connection to the equipment which can cure TV1 both ways. SO239 and 4 mm connectors for the equipment which can cure co-ax wire feed. 160 -10 metres TRANSMATCH $£ 69.60$ Ex stock. $80-10$ metres $\mathbf{f 6 2} 60$. EZITUNE built in for $\mathbf{f 1 9 5 0}$ extra. (See below for details of EZITUNE), All ex £62.60. EZITUNE built in for $\mathbf{£ 1 9 . 5 0}$ extra. (See below for details of EZITUNE). All ex 3 WAY ANTENNA SWITCH 1 Kw SO239s $£ 15.00$.
S.E.M. 2 METRE TRANZMATCH. $51^{\prime \prime} \times 2^{\prime \prime}, 3^{\prime \prime}$ deep. SO239s $£ 25.30$ Ex stock.
S.E.M. EZITUNE

Clean up the bands by tuning up without transmitting
Connects in aerial lead, produces $\mathrm{S} 9+(1-170 \mathrm{MHz})$ noise in receiver. Adjust A.T.U. or aerial for minimum noise. You have now put an exact 50 Ohms into your transceiver. Fully protected, you can transmit through it, save your P.A. and stop QRM. $£ 25.00^{*}$ Ex stock.
S.E.M. AUDIO MULTIFILTER. To improve ANY receiver on ANY mode. The most versatile filter available. Gives "passband" tuning, "variable selectivity" and one or versatile filter available. Gives passband tuning, variable selectivity and one or
two notches. Switched Hi-pass, Lo-pass, peak or notch. Selectivity from 2.5 KHz to
 four switch positions which covers 10 KHz to 100 Hz .12 V supply. Sizes: $6^{\prime \prime} \times 22^{\prime \prime}$ front panel, $32^{\prime \prime}$ deep, all for only $£ 57.00$ Ex stock.
SENTINEL AUTO H.F. WIDEBAND PRE-AMPLIFIER $2-40 \mathrm{MHz}, 15 \mathrm{~dB}$ gain. Straight through when OFF. $9-12 \mathrm{~V} .2 \frac{1}{}^{\prime \prime} \times 1 \frac{1}{\prime \prime}^{\prime \prime} \times 3^{\prime \prime} .200 \mathrm{~W}$ through power. $£ 19.55$ Ex stock. SENTINEL STANDARD H.F. PRE-AMPLIFIER. No R.F. switching. $\mathbf{£ 1 2 . 6 2 *}$ Ex stock. S.E.M. IAMBIC KEYER

The ultimate auto keyer using the CURTIS custom LSICMOS chip. Tune and sidetone Switching. $\mathbf{£ 3 4 . 5 0}$ Ex stock. Twin paddle touch key. $£ 12.50$ Ex stock.

AN IMPORTANT NEW RECEIVER BREAKTHROUGH
Following our development of an rX for commercial watchkeeping, we are Following our developmeteur.
Although this is a very small and economically priced unit, it is NOT a "toy", as the spec below shows. It is ideal as a first receiver for the beginner or an additional one for the shack or pocket.

'IF Breakthrough, NONE; *IMAGE, NONE; *Selectivity $\pm 2 \mathrm{KHz}$; ${ }^{*}$ OUTPUT, 2W *Sensitivity $1 \mathrm{uV} ;{ }^{*} 9-12 \mathrm{~V}, 20 \mathrm{~mA}$ quiescent; ${ }^{*} 2 \mathrm{~h}^{\prime \prime} \times 6^{\prime \prime} \times 3^{\prime \prime}$; ${ }^{\circ}$ OVERLOAD, Wanted sig. 30 uV , UNWANTED, 100 MV .50 KHz away. No degredation; ${ }^{\circ}$ Case: Ca. plated steel. Black AI. cover; ${ }^{*}$ Freq.: $3.5-3.8 \mathrm{MHz}$ (80 metres); ${ }^{\circ}$ Modes: ${ }^{\circ}$ SSB/CW.
Since nothing like this has appeared before, you may be a little sceptical, (especially when you get to the price). So if you are not delighted or amazed with its performance, we will refund your money in full if it is returned within 14 days. PRICE: $£ 39.00$.

12 MONTHS COMPLETE GUARANTEE INCLUDING ALL TRANSISTORS.
Prices include VAT and delivery. C.W.O. or phone your credit card number for same day service. -Means Belling Lee sockets, add f 1.90 for SO239s or BNC sockets. Ring or write for more information. Place orders or request information on our Ansaphone at cheap rate times

Your Radio Amateurs Exam - our guarantee of success

Pass first time - or up to 4 years' continued tuition at our expense.
RRC's complete tuition service

- Self-contained courses, regularly updated for The City and Guilds Radio Amateurs Exam - Fully inclusive fees
- No costly, time consuming text books to buy
- Everything you need in booklet lecture form
- Regular tests ensure you are fully prepared - Enrol at any time - Timetable to suit you - Up to 4 years' containued tuition at no extra cost if you don't pass first time.
FREEPROSPECTUS\&ADVISORY SERVICE
$-\mathbb{R} \mathbb{R}$? Write or 'phone today for full details, and a Free copy of our prospectus, without obligation.
THE RAPID RESULTS COLLEGE
Dept. JX3 . Tuition House, London SW19 4DS T-Tel: 01.9477272 ($9 \mathrm{am}-5 \mathrm{pm}$) - or use our 24 -hour Recordacall Service:01-946 1102 quoting Dept. JX3

YES Please send me my FREE prospectus right away
NAME
ADDRESS
Piloce capltals prtast

Postcode

My interest is
THE RAPDD BESDLS COLAEHE

ELECTRONIC Lighyning
 COMPONENTS

DO YOU NEED:- Electronic components, Tools, Test Equipment, Cases, Cabinets and Hardware etc. IN A HURRY ?7???????
THEN YOU NEED:- LIGHTNING Electronic Components.
WHY ?7?? Because LIGHTNING Strikes out where others fail:-
Express Despatch
All Low Prices
In Depth Stock
All New Guaranteed Goods from Leading
Manufacturers
With all that gong for us, Going to you can you really afford to be without a copy of our brand new exciting CATALOGUE
Many Prices Reduced - Many More Stock Lines
Send For YOUR Copy Now ONLY 70p Post Paid.
LIGHTNING ELECTRONIC COMPONENTS
84 Birchmoor Road, Birchmoor, Tamworth Staffs B78 1 AB (NOTE New Address)

HIGH GAIN
 AERIAL

BOOSTERS
B45 H/G UHF Television Tunable over the complete UHF band. Gain above 20 dB , noise 2.8 dBs .

B14-Band 3 VHF Television Tunable over the complete Band 3 (Channels (E) 5 to 13). Also covers Aircraft \& 2 meter Amateur Bands. Gain above 28 dBs . Noise 2.8 dB .
PRICE each $£ 8.70$.

AERIAL AMPLIFIERS
Aerial amplifiers can produce remarkable improvement on the picture and sound in fringe or difficult areas. B45 - For Mono or Colour this is tunable over complete UHF television band.
B11 - For stereo or standard VHF/FM radio.
B12 - for VHF television band $1 \& 3$.
All amplifiers are complete and ready to use Battery type PP3 or 8 V to 18 V DC next to the set type fitting. PRICES £6.70 each.

MAINS UNIT Converts 250V to 3V-6V-9V DC.
300MA Fused for Radios, Tape Recorders, Calculators etc. PRICE £3.50 each.
All Prices include VAT at 15% P\&P per order 30p. S.A.E. for Leaflets. Access. Barclay Cards. Allow 14 days for delivery.
ELECTRONIC MAILORDER LTD,
62 Bridge St, Ramsbottom, via Bury, Lancs. BLO 9AGW.
Tel. Rams (070 682) 3036. Goods by return of post.
at Amberley, Sussex, heard a PY but could not raise him. Mike Steventon G4GWH, using a TS 120 V , linear amplifier and rotatable 28 MHz dipole, worked stations in VU and YV from his home in Bognor Regis, first with 100W to establish the QSO and then with only 10W to prove the feasibility of low power on 28 MHz . Susan Beech RS50969, Dollar, Scotland, is a keen listener on the h.f. bands and has just reached the grand total of 100 countries heard on 14,21 and 28 MHz . Susan is taking the RAE in December and we wish her the best of luck.

28MHz Beacons

Having read Richard Brownlow's report of the "4VHTIAIET" beacon signal in our August issue, Ian Traynor, York, using an FRG-7, long wire antenna and a.t.u., phoned me to say that he also heard this signal at 1042 on July 3. There seems to be some doubt about the validity of this callsign because I received letters from Ted Cawkwell G8VEL, Aylesbury, John Coulter, Winchester, Mike Matthews, G3JFF, Portsmouth, Dave Newman G4GLT, Leicester, Tony Usher G4HZW, Knutsford and Ted Waring all suggesting that this signal was in fact the "space" transmission and not the "mark" of the Cyprus beacon 5B4CY. "He will kick himself as I did when he finds out that this wonderful callsign is the 'spaces' to the f.s.k. mode of 5B4CY. If he tunes to DLOIGI on 28.205 MHz he will find not only DLOIGI but the callsign 'FUEEEEKEAA' as I did in 1980," writes Dave Newman. Thanks for your letters lads, I was with Richard when he heard it and I fell into the "space" trap myself, hi, but on the other hand it could have been a signal from one of these beacons which appear for a short time, so I feel that any unusual callsigns are always worth reporting. Early in July, George Coulter heard signals from the beacons in Gough Island ZD9GI and Mauritius 3B8MS, Ted Waring heard DFOTHD repeating in a beacon-like mode on June 24 and Dave Newman heard OA4CK at 2012 on July 10, a new beacon from Argentina LU4FM 28.232 MHz , at 1355 on July 11 and also VK5WI at 0723 . The beacon signals listed in Fig. 2 are mainly due to sporadic-E and compiled from the observations of John Coulter, Dave Newman, Henry Hatfield, Ted Waring, Susan Beech and myself.

The 50MHz (6m) Band

I am told that readers wishing to test a 50 MHz converter should look out for the UK beacon in Anglesey GB3SIX on $50 \cdot 020 \mathrm{MHz}$ operational between 0100 and 0830GMT daily. Dave Newman logged the French Guiana beacon FY7THF 50.038 MHz , via sporadic-E between 2100 and 2125 on June 17, 1724

Fig. 2: Distribution of 28 MHz beacon signals
and 1822 on the 18th and again during the evenings of July 6,7 and 9.

During the latter opening, the Gibraltar beacon ZB2VHF 50.035 MHz was often heard and the Cyprus beacon 5 B 4 CY 50.501 MHz , was logged at 599 around 2215. "The most frustrating part of the opening to FY7 is that 28 MHz is invariably closed to south America and the Caribbean thus preventing cross-band operators alerting 50 MHz operators to the good conditions" writes Dave. Another strong argument for the UK amateurs to get the 50 MHz band. "The Gibraltar beacon was heard in the UK for several hours almost daily throughout June and early July", says Dave who periodically logged 5B4CY at good strength during the same period.

RTTY

Although the h.f. bands were below normal between June 18 and July 18, I managed to log 50 stations in 16 countries, AM, CN, DF, EA, F, G, HB9, I, LA, LX, OE, OH, OZ, SM, SV and W on 14 MHz RTTY. At 1907 on June 24, I copied a strong signal from ED5RCB, "Radio Club Burjassot" in Valencia. Phil Hodson is looking for 144 MHz RTTY skeds with stations in EI, GI, the Shetlands and QRA squares AK, XK, XM, XN, YJ, YO and YP. Readers interested can contact Phil on 0664-67118. By June 22, Phil had worked 8 countries and 23 QTH locator squares and earlier in the year he received the BARTG No. I VHF/UHF Century Award for making more than 100 RTTY contacts on 144 MHz . Our congratulations to Phil and also to Paul Melton G6AEA, Gareth Abel G6EJG and Shaun Kinton, who under the Melton Mowbray Amateur Radio Society's call, G4FOX, won the BARTG Spring VHF RTTY Contest for the second year running. Well done lads, what about the hat-trick?, hi.

Microwaves

Both Ron Allen G2DSP and Terry Allen G4ETU operating their respective 10 GHz gear during the contest on June 20 worked the Vectis Wireless Group G3IW on the Isle of Wight, G8MCQ Dorset, G8GKV Sussex and 5 and 9 contacts both ways with F1BHL, F6DCK and F8WN. "Conditions were really good because we could receive signals
from the Alderney beacon GB3ALD on open wave-guide" said Ron who has now built a small 10 GHz beacon transmitter comprising a Gunn oscillator, horn antenna and a pulsing tone unit which he intends to leave running, repeating his own callsign, beamed towards France during contests. Ron's 10 GHz home-brew transceiver has a 760 mm dish antenna with a beamwidth of about 3 degrees, a Gunn oscillator in both transmitter and receiver, a 100 MHz i.f. strip all beautifully mounted on a tripod and powered by a 12 volt battery. During the third RSGB Cumulative Microwave Contest on July 11, Ron and Terry were portable again on Trundle Hill the old WWII Radar site near Chichester, and individually worked G3IW, G3JHM, G8GKV, F6DCK and F8WN both 18 km south of Le Havre and F1BQ in Le Havre. The current joint project between Ron and Terry is equipment for 24 GHz .

Sporadic-E

During the more intense sporadic-E disturbances on June 24 and July 3, 7, 8, 10,11 and 15 , I logged a daily average of 33 very strong f.m. signals from eastEuropean broadcast stations between 66 and 73 MHz with a peak of 44 stations at 2215 on July 10. Harold Brodribb counted 8 such signals on June 18, 20 on July 8 and 26 on the 10th. Throughout most of these events a variety of continental radiotelephone stations were received between 40 and 46 MHz . During a short burst of sporadic on July 7, John Heys G3BDQ, Hastings, worked UB5EDT on 144 MHz s.s.b., giving John his best v.h.f. DX at 2414 km .

Tropospheric

The atmospheric pressure, measured at my QTH, was mainly below $30 \cdot 0 \mathrm{in}$. (1015 mb) from June 19 until the 30th, when it rose to $30 \cdot 2$ (1022) and fell back again at midday on July 2. A sharp rise to $30 \cdot 1$ (1019) took place on July 4 and pressure varied slightly around this level until 0600 on the 13th, when it fell to 29.9 (1012) and did not return to 30.1 until 1400 on the 16th.

During VHF NFD on July 3/4, George Grzebieniak used his 10W 432 MHz gear and 17 -element Yagi, some 16 km south of Aldershot and worked 81 stations with F 1 KCP at 375 km being
best DX. On 1296 MHz G6AWM/P, running 1.3 W into a 23 -element Yagi made 38 QSOs with a best DX of 230 km .

On July 4, John Cooper worked GD3KMI; on the 7th DL9MCC near the Austrian border; on the 8th 4U1ITU, HB9, I and OE; and at 2154 on the 12th he worked GM4LBE via tropo during the aurora. Conditions were very good on the 8th because Elaine Howard G4LFM had a simplex QSO with G4BCO in Hastings from her car in Bournemouth. On June 6, G6GGE heard EI6AIB and EI8AQB/P; on the 7th GI4GVS, PE, F and DL; on the 8th two GMs; on the 11 th 3GUs, and on the 12th worked into Scandinavia for the first time through a pile-up as well as a QSO with GM4LBE in Shetland. Between 1900 and midnight on the 12th, both Phil Hodson and Julie Rose G8MKD, Warley, worked into Germany, Scandinavia and Shetland on 144 MHz s.s.b. Julie was running 10W and Phil 50W. Around the same time Jim Penny worked stations in LA and OZ. "Tropo conditions favoured a southerly direction, particularly G, on the 13 th", writes Jim, who heard and had QSOs through the 144 MHz repeaters GB3CE, GY, LE and NM, as well as with many G stations. Jim will have to keep a look out for Mike Tatham G3RSY, Fontwell, who operates on 144 MHz with a FT-208 from his Reliant Robin car.

Band II

"Using my Grundig Melody Boy, I received signals via sporadic-E in Band II between 2000 and 2015 on June 24, around 1030 on July 3 and 1900 on the 7 th", writes David Hackwell, Warrington. He counted more than 18 Italian and Spanish stations between 100 and 108 MHz on the 7th, as did George Grzebieniak on the 7th and 8th. On July 8, Harold Brodribb heard 22 French stations via tropo in Band II, and at 0700 on the 9th, Ian Kelly received many editions of Inter and Musique and Cultur from Bologne, Caen, Lille and Rouen and two editions of Frequence Nord from Bologne and Lille. At 2200 on July 12, Ian received signals from Hilversum 1 and early on the 13th he heard BBC Radios Bristol, Derby and Northampton.

During the morning of June 20, Simon Hamer, Presteigne, also heard the French stations and BRT II from Egem. During the evening of July 6 he received testtones and announcements from Radio Wyvern in Hereford, the usual French stations and BBC Radios Cambridge, London, Northampton, Solent and Stoke-
on-Trent and programmes from stations in Austria, Sweden and Yugoslavia on the 7th.

For most of July 16, while the pressure was rising, I received strong signals from France between 96 and 100 MHz , using the radio section of my Plustron TVR5D while mobile in east-Sussex.

During the sporadic-E on June 23rd, George Grzebieniak found the best spots for Italian and Spanish stations are between 87 and 88 MHz and 98 and 106 MHz . Fourteen-year-old Alan Beech, Dollar, received local radio stations in Northern Ireland and Northern England during the good conditions between July 7 and 15.

Special Items

Newly ligensed Albert Vickers G6IAR, Crawley, uses a FT-480R on 144 MHz and has a TS-130S ready for operation on the h.f. bands when he passes the Morse test. As a member of AMSAT UK, Albert uses the TS-130 for listening to OSCAR 8 and the RS satellites on 28 MHz and in due course intends to become active in the field of ATV. DXers in the Crawley area wishing to talk to Albert about DXTV or ATV should ring 0293515711.

Two members of the Veteran Car Club, Derek Crossmark from Hurstpierpoint and John Tanner G8AEV from Andover were among the drivers on the veteran car run on July 4. At home, Derek uses a Trio R-1000 and a long wire antenna for 21 and 28 MHz and a Bearcat 220 FM scanner receiver and dipole for the v.h.f. bands. John, former editor of CQ-TV, uses home-brew gear for ATV and a TS 770, and enjoys operating mobile on 144 MHz from his 1900 Daimler with "Hot wire ignition" ("no electrics to cause interference" said John), and a big 1904 Berliet.

Also on July 4, members of the Chichester Amateur Radio Society installed 6 radio check-points operating in the 144 MHz band to control a sponsored walk on the South Downs and Terry Allen G4ETU, completed the 25 km walk, with a hand-held as the back marker.

About 100 people, including representatives from the Horndean, Marconi, Southdown and Worthing Amateur Radio Societies and Practical Wireless, attended the Chichester annual mobile rally, on July 5 , organised by the Chichester Amateur Radio Society and held near the main grandstand on Goodwood racecourse.

Fig. 3: Commemorative QSL Card
The talk-in station G3ISO/P using a FT290R to a home-brew colinear some 9 m a.g.l. made 28 QSOs, including GU6JVM and the talk-in station of the South Down ARS who were holding their annual barbecue at Eastbourne. The majority of visitors sampled the burgers, hot dogs and rolls, cooked by Charles Nightingale G3IDX and the ever popular raffle and bring and buy sale.

On July 9 and 10, members of the club laid on an impressive amateur radio exhibition in the 13th-century Priory at Chichester as their contribution to the town's annual festival. Using the callsign GB2CHI (Fig. 3) they had a FT-221R and 10 -element Yagi on 144 MHz , a FTDX401 and Tribander on the h.f. bands in addition to ATV equipment on 432 MHz with a 48 -element Multibeam. Club treasurer John Francis G8ZTD demonstrated computer log-keeping with his Commodore 4032 and Tink Shaw G3NW, exhibited club projects such as a band-edge marker for 144 MHz , Morse practice oscillator, wavemeter and c.w. mini-computer which replays your own fist at a variety of speeds.

Among the other exhibits was the microwave gear of G2DSP, RTTY equipment by the club President, Mike Rowe G8JVE, a collection of badges and certificates of the late G2NM and a 1920s crystal set with a 2 -valve amplifier.

Radio enthusiasts visiting the astronomical exhibition at Herstmonceux Castle, in Sussex, should be sure to see the photographs of the 75 m dish at Jodrell Bank, still the world's largest steerable antenna, and of the " Y " configuration of 27 dishes in New Mexico. These are adjustable along some 40 km of railway track to get fine detail when the instrument is mapping a celestial radio source. There are also photographs of the Sun taken during the Skylab mission, and a comparison between the optical image, as seen by the 200 in telescope at Mount Palomar, and the radio observation at 1480 MHz , of the Whirlpool Galaxy.

"Readers have been accustomed, by means of 'wireless', to hear voices which came from hundreds or even thousands of miles away. Television, therefore, is all the more important, as when perfected it will complete the process of hearing by adding wireless vision . . .", said F. J. Camm, our first and very famous Editor
in his book Newnes Wireless Constructor's Encyclopedia advertised in our first issue on September 24, 1932. I wonder if F. J. Camm could have guessed that television would become world-wide, in fact inter-planetary, and replace the wireless set as the family's main entertainment.

Amateur Television

The Horndean and District Amateur Radio Club have amateur television very much in mind, their Chairman, Doug Hotchkiss G4BEQ and Secretary Dan Bernard G6GBM have ATV transmitters on the air using a combination of homebrew and Wood and Douglas gear and a large number of their 40 members have receiver boards under construction. The club meets at Merchistoun Hall, Horndean, every second Thursday of the month. Details from Dan on 0705593429.

Between 2015 and 2215 on July 13, Jim Penny GM4JLY, Aberdeen, exchanged pictures with G4AGE, G4DYB and G8RWV, all members of a net in Sheffield. Back in May, Jim worked G6BIA in South Shields (Fig. 1), G8GHH in Margate (Fig. 2) and PE1HTG (Fig. 3). The strangest signal verification recorded by Jim so far is a kilted figure with the words "OCH AYE" written below. I like that, ATV certainly lends itself to good humour.

Fig. 1

Fig. 4

Fig. 7

SSTV

On July 12, Richard Thurlow G3WW, March, exchanged slow scan television pictures with PE1DUP on 144.5 MHz giving him his first contact with the UK and Richard his 1766th station worked for the first time. Earlier in the evening, PEIDUP had a two-way QSO with a DL and Richard worked OZ1BEP/P and OZ6FH. Around 1750 on March 17, Sam Faulkner, Burton-on-Trent, received pictures on 28.680 MHz from FM7CD in Martinique (Fig. 4) while he was working Richard and in April, Sam logged 8 P 6 NC in Barbados calling CQ (Fig. 5) and PY2AJK also calling CQ at 1800 on June 12. During early July, Richard had monochrome QSOs with stations in Denmark, France, Germany, Spain and the USA and colour QSOs with DJ4GL and on several occasions with ZS6BTE. He reached another target during the evening of July 16 when he worked C31JX in Andora giving him his 110th country on SSTV.

Fig. 2

Fig. 5

Fig. 8

Tropospheric

Tim Anderson, Stroud, using a Plustron TVR5D and a 12 -element array received pictures in Band III from Radio Telefis Eireann, RTE1 on June 20 and 25 and July 7 and 11. Between 1200 and 1300 on July 7, Albert Vickers, Crawley, using a Hugh Cocks converter, a Philips 20in receiver, Fuba antenna and wideband pre-amp, saw a documentary, captions and a police film from France on Ch. 21. Around 2030, Brian Renforth, Chippenham, also received strong pictures from TDF on Ch. 21 in addition to Anglia TV from Sudbury and Channel Television from Fremont Point on Ch. 41. During the evening of the 8 th, Brian received pictures from Belgium on Ch . 25, Holland on Chs. 29 and 32, ZDF West Germany on Ch. 35 and test cards scribed "Leglise Canal 60", "Wavre Canal " 28 " and the ZDF close down caption "Sendeschluss".

Around 1700 on July 16, I used my Plustron TVR5D, about 30 m a.s.l. near

Fig. 3

Fig. 6

Fig. 9

Herstmonceux Castle and received a strong test card from FR3 on Chs. 55 and 60 and other French pictures such as tennis and test cards on about 7 spots between Chs. 22 and 60. At 1924 I was parked on the north side of the South Downs, with some 152 m of hill immediately above me and saw the end of the French news programme TeleJournal and the FR3 caption on Ch. 26.

Sporadic-E

At 1700 on July 8, David Hackwell received a caption NCT (Fig. 6) from an Italian private station seen previously by Dave Cawser, Burton-on-Trent and Sam Faulkner on June 12. When Sam saw it at 1630 on the 24th the FM100 was missing from the listing. Tim Anderson received the captions EPP on Ch. E4 and UDP on Ch. E3 on July 7, written under what looked to Tim like a globe. Any ideas?

You do not have to be a technical genius to enjoy DXTV, especially during the sporadic-E season, when signals from transmitters within the countries ranging from Iceland to Italy and Scandinavia to the USSR are fighting for predominance on your screen. Although the sound signal from these countries is not always received, my readers are conversant with the test cards, captions, clocks and programmes such as documentaries and news, films often American and British with local sub-titles, sport and scientific from the different countries.

At 1530 on June 26, Brian Renforth watched The Time Machine from RTVE Spain on Chs. E2, 3 and 4 and at 1925 on July 3 he saw Magnum and London Weekend's A Fine Romance, both with sub-titles, from Sweden on Ch. E2. "Spain was very prominent all through the month, the highlight being my first
reception of colour signals on the Bradford/Hugh Cocks tuner with the world cup football on Chs. E2, 3 and 4 on June 17 and 23 ", writes Tim Anderson, who also watched the TVE2 programme Estudio Abierto between 2130 and 2200 on July 7.

Between Tim, David Appleyard, Sweden, Dave Cawser, Sam Faulkner, Simon Hamer, David Hackwell, Nicholas Wythe and Albert Vickers, Band I test cards and pictures were identified from stations in Austria (Figs. 7 and 8), Czechoslovakia, Denmark, Finland, Germany, Hungary, Italy, Iceland, Norway Bagn, Bremanger, Gamlem, Gulen, Hermnes, Melhus, Steigen and Televerket, Poland, Portugal, Spain, Sweden, Switzerland, Yugoslavia (Fig. 9) and the USSR. Among the Spanish captions seen by Dave Cawser were Ailanta, Aragon, Control Central, Lamcila and Tele Murcia.

Kevin Piper G8TGM, Pagham, using a Hugh Cocks converter into a Philips receiver and a Band I dipole added Rumania to the list. Up in Perthshire, J. Horn, has installed a 12 in Sharp monochrome receiver for DXTV and has seen microcube championships from Budapest, basket ball, bull-fighting and dancing from Spain, and a music and folk festival from Germany. Several football matches in the world cup series in Spain were seen from various countries by Harold Brodribb, Dave Cawser and Brian Renforth and among the adverts seen by Dave were Broom Fly Spray, Frigo Ice Cream, Kelloggs Crisps and Timex Watches.

During the period June 18 to July 18, I saw the captions 'dt' and 'TP1' from Poland, HOBOCTON and YL announcer and TB CCCP from the USSR, Praha from Czechoslovakia, TV Hirado and

Fig. 10
clocks from TP Poland and MTV1 Hungary both 2 hours ahead of GMT.

David Appleyard saw the cartoons Bratislava Lyra from Czechoslovakia, A Small Girl And a Dog from Austria and a Charlie Chaplin silent movie with a German commentator from West Germany.

On June 18, Harold Brodribb received a weather map of Hungary and at 1800 saw the MTV1 clock showing 2000. On July 9, Harold saw the Spanish captions La Prensa and Espana and the figures 82 in the middle of a large letter "C". Like Simon Hamer, Harold watched plenty of football from Italy and Spain and Simon received a Hungarian YL announcer called Kisk Almar, a circus, an American film featuring truck drivers and CB radio and an advert for Fuji film.

Well known TV-DXers, Keith Hamer and Garry Smith from Derby sent a photograph (Fig. 10) of the Italian RAI3 test card and Keith said: "DX conditions have been quite good with several sightings of ZTV, Gwelo, using possibly a colour-bar pattern with a grey (or probably red) band at the bottom of the pattern."

33 Indy

7, 8, 9th ОСТОВЕR A DATE FOR YOUR DIARY.

THE
 NATIONAL AMATEUR RADIO SHOW AT LEICESTER

VENUE
GRANBY HALLS
OPEN 10AM-6PM EACH DAY, AMPLE CAR PARKING ADMISSION £1.00
FOR PARTIES OF 15 AND OVER ADMISSION 75p. TICKETS BY APPLICATION FROM ARRA, BOX 36, LOUGHBOROUGH, LEICESTER, LE11 1DW.

Sinclair ZX Spectr

16K or 48K RAM... full-size movingkey keyboard.... colour and sound... high-resolution graphics... From only E125!

First, there was the world-beating Sinclair ZX80. The first personal computer for under $£ 100$.

Then, the ZX81. With up to 16K RAM available, and the $Z \times$ Printer. Giving more power and more flexibility. Together, they've sold over 500,000 so far, to make Sinclair world leaders in personal computing. And the $\mathrm{ZX81}$ remains the ideal low-cost introduction to computing.

Now there's the ZX Spectrum! With up to 48K of RAM. A full-size moving-key keyboard. Vivid colour and sound. Highresolution graphics. And a low price that's unrivalled.

Professional powerpersonal computer price!

The ZX Spectrum incorporates all the proven features of the ZX 81 . But its new 16K BASIC ROM dramatically increases your computing power.

You have access to a range of 8 colours for foreground, background and border, together with a sound generator and high-resolution graphics.

You have the facility to support separate data files.

You have a choice of storage capacities (governed by the amount of RAM). 16 K of RAM (which you can uprate later to 48 K of RAM) or a massive 48 K of RAM.

Yet the price of the Spectrum 16K is an amazing $£ 125$! Even the popular 48 K version costs only $£ 175$!

You may decide to begin with the 16 K version. If so, you can still return it later for an upgrade. The cost? Around $£ 60$.

Ready to use today, easy to expand tomorrow

Your ZX Spectrum comes with a mains adaptor and all the necessary leads to connect to most cassette recorders and TVs (colour or black and white).

Employing Sinclair BASIC (now used in over 500,000 computers worldwide) the ZX Spectrum comes complete with two manuals which together represent a detailed course in BASIC programming. Whether you're a beginner or a competent programmer, you'll find them both of immense help. Depending on your computer experience, you'll quickly be moving into the colourful world of ZX Spectrum professional-level computing.

There's no need to stop there. The ZXPrinter-available now-is fully compatible with the ZX Spectrum. And later this year there will be Microdrives for massive amounts of extra on-line storage, plus an RS232 / network interface board.

Key features of the Sinclair ZX Spectrum

- Full colour-8 colours each for foreground, background and border, plus flashing and brightness-intensity control.
- Sound-BEEP command with variable pitch and duration.
- Massive RAM-16K or 48 K .
- Full-size moving-key keyboard- all keys at normal typewriter pitch, with repeat facility on each key.
- High-resolution-256 dots horizontally $\times 192$ vertically, each individually addressable for true highresolution graphics.
- ASCII character set - with upper- and lower-case characters.
- Teletext-compatible-user software can generate 40 characters per line or other settings.
- High speed LOAD \& SAVE-16K in 100 seconds via cassette, with VERIFY \& MERGE for programs and separate data files.
- Sinclair 16 K extended BASICincorporating unique 'one-touch' keyword entry, syntax check, and report codes.

The ZX Printeravailable now

Designed exclusively for use with the Sinclair ZX range of computers, the printer offers ZX Spectrum owners the full ASCII character set-including lower-case characters and high-resolution graphics. A special feature is COPY which prints out exactly what is on the whole TV screen without the need for further instructions. Printing speed is 50 characters per second, with 32 characters per line and 9 lines per vertical inch.

The ZX Printer connects to the rear of your ZX Spectrum. A roll of paper (65 ft long and 4 in wide) is supplied, along with full instructions. Further supplies of paper are available in packs of five rolls.

The ZX Microdrivecoming soon

The new Microdrives, designed especially for the ZX Spectrum, are set to change the face of personal computing.

Each Microdrive is capable of holding up to 100 K bytes using a single interchangeable microfloppy.

The transfer rate is 16 K bytes per second, with average access time of 3.5 seconds. And you'll be able to connect up to 8ZX Microdrives to your ZX Spectrum.

All the BASIC commands required for the Microdrives are included on the Spectrum

A remarkable breakthrough at a remarkable price. The Microdrives are available later this year, for around $£ 50$.

How to order your ZX Spectrum

BY PHONE-Access, Barclaycard or Trustcard holders can call 01-200 0200 for personal attention 24 hours a day, every day. BY FREEPOST-use the no-stamp needed coupon below. You can pay by cheque, postal order, Access,

Barclaycard or Trustcard. EITHER WAY-please allow up to 28 days for delivery. And there's a 14-day money-back option, of course. We want you to be satisfied beyond doubt - and we have no doubt that you will be.

THE

CENTRE

LONDON'S NEWEST AND BRIGHTEST EMPORIUM 10 MERTON PARK PARADE, KINGSTON RD., LONDON SW19 TEL: 5435150

 We are open till 8 pm Wednesdays ACCESS - BARCLAYCARD INSTANT CREDIT THROUGH TRICITY FINANCE
2 METRE SLIM JIM

We can now supply this antenna by Mail Order at $£ 8.50$ with 4 metres of co-ax (inc. post \& package). The cheapest antenna in the business.

HB9-CV COMPACT 2 EL. BEAM

4.5 dB gain, 18 dB front to back. $£ 8.50$ (with clamp) now available.
Also in 70 cms version (same gain)
N.B. We regret we cannot supply the 2 metre version on Mail Order as it is too long to go by post.
Please allow up to 28 days for Delivery

NEW AND SECOND HAND EQUIPMENT ALL FULLY GUARANTEED YAESU - ICOM - SOMMERKAMP STANDARD - TRIO - AZDEN - FDK

 Full range of Mobile/Base Antennas by G Whip - Jaybeam - S.M.C.Poles - Lashing Kits - Cable - Rotators - Plugs and Sockets

STOP PRESS

THE NEW G4HXZ MORSE TAPE
15 MINS LETTERS 5 WPM
15 MINS NUMBERS 5 WPM
15 MINS MIXED 10 WPM
15 MINS LETTERS 15 WPM

DEALERS FOUND GUILTY!

The CQ Centre in Merton Park were recently found guilty of paying excessive prices for second-hand radio equipment. Roads in the district were totally jammed as eager customers flocked in to take advantage of the generous prices being offered. A spokesman for the company would only comment that this was a firm policy and would be continued in the future. Further investigations revealed that there was a sale or return service in operation for which the charges are only 10%. It was also found that copious amounts of tea and coffee were being served on the premises.

TUITION

R.A.E.
 RESIDENTIAL COURSE

Join us and relax in the elegant charm of Georgian Bath and at the same time prepare for your Radio Amateurs Examination. A few days break, free from the pressure and diversions that inevitably surround you at home and work, will do you the world of good. Furthermore you will benefit from uninterrupted and experienced tuition. Please send a stamped addressed envelope for full details.

PETER BUBB - Tuition
58 Greenacres, Bath, Avon BA1 4NR or telephone 022527467

	มิธ
	"

DRAE POWER SUPPLIES

VHF Wavemeter	£24.95
4 Amp 13.8V PSU	$\mathrm{f} 27.95+\mathrm{f} 1.50$ carr.
6 Amp 13.8V PSU	$\mathrm{f} 44.95+£ 2.50$ carr.
12 Amp 13.8V PSU	$\mathrm{f69.00}+\mathrm{f} 2.50$ carr.
24 Amp 13.8V PSU	£99.00 $+\mathrm{f3} 3.50$ carr.
Morse Tutor	$\mathrm{f} 46.90+\mathrm{f} 1.00$ carr.
12 Amp PSU Module	$\mathbf{f 1 8 . 0 0}+\mathrm{f} 1.50$ carr.
24 Amp 16.5V Transf	ormer
	£25.00 + £2.50 carr.
12 Amp 17.0V Transf	ormer
	$\mathrm{f} 15.00+\mathrm{f} 2.00$ carr.
to 12 V 6 Amp Co	Converter
	£39.95 + £1.50 carr.
ALL PRICES INCLUDE	Vat Access welcome

> J. BIRKETT
> (Partners: J. H. Birkett, J. L Birkett) Radio Component Suppliers
> SPECIAL OFFER OF ALLEN BRADLEY CERMET FILM RESISTORS Type CC 2 watt. 16.2, 18.2, 30.1, 33.2, 49.9, 100, 113, 267, 287, 294, 442, 475, 499, 511 , $562,665,909$, OHMS, $1.020 \mathrm{~K}, 1.070 \mathrm{~K}, 1.370 \mathrm{~K}, 1.470 \mathrm{~K}, 1.580 \mathrm{~K}, 1.820 \mathrm{~K}, 2.050 \mathrm{~K}$, 2.210K, 2.550K, 3.010K, 4.420K, 4.870K, 5.110K, 5.490K, 5.620K, 5.90K, 6.340K, $7.68 \mathrm{~K}, 7.87 \mathrm{~K}, 22.1 \mathrm{~K}, 22.6 \mathrm{~K}, 33.2 \mathrm{~K}, 36.5 \mathrm{~K}, 47.5 \mathrm{~K}, 5 \mathrm{I} .1 \mathrm{~K}, 68.1 \mathrm{~K}, 78.7 \mathrm{~K}, 210 \mathrm{~K}$, 1.82 Meg , All 1\% Tolerance at 6p each. 20 Assorted @ fI .

> 30 ASSORTED SILVER MICA CAPACITORS for 60 p .
> 20 HC6U CRYSTALS Assorted Frequencies for $\mathbf{£ 1} .30$.
> 50 ASSORTED BCI07-8-9 TRANSISTORS untested for 60 p .
> CERAMIC PLATE CAPACITORS 22pf, 33pf, 270pf, 0.01uf, 50.V.W. All @ 20p doz
> VARIABLE CAPACITORS. 5pf @ 75p, 10+10+10pf @ 75p, 25 +25pf @85p, $100+300$ pf @ 85p, 250+250pf @ 85p.
> 14 PIN DIL 741 OP-AMPS at 10 for $\mathbf{C 1}$.
> TRANSISTORS BSX19, BSX21, BC548, BC558 All @ 6 for 50p.
> HC6U CRYSTALS 3.495, 3.867, 4.718, 5.081, 6.017, 8.873, 8.931, 9.027, 9.030, $9.0075,9.0095,10.0062,10.1125,10.125,10.150,10.212,10.225,10.325,10.514$, 10.9785, II.100, I2.033, I2.9673, 14.3257, 14.725, 15.300, I5.800, I8.006. All at $£ \mathbf{I}$ each.
> 25 VARI-CAP DIODES Assorted for 60 p .
> Please add 30p for post and packing. Orders over $\mathrm{f3}$ post free. Allow 14 days for delivery.

Alexandra Pavilion November 18-211982

Launched in response to demand for a major national show of the highest quality, PRACTICAL WIRELESS, PRACTICAL ELECTRONICS and EVERYDAY ELECTRONICS are presenting the biggest and best event ever to be staged for the electronic hobbies enthusiast.
If your company is involved in the manufacture of electronic components, equipment, ancillary systems for
electronic projects, home computers, amateur radio, citizens band, video games, musical instruments-you should be there!
For further information about exhibiting Contact: The Exhibition Manager, Electronic Hobbies Fair, IPC Exhibitions Ltd., Surrey House, 1 Throwley Way, Sutton, Surrey SM14QQ. Tel: 01-643 8040. Extn. 4873.

Please send me details about exhibiting at the

Name
Position in Company
Company
Address

Tel

Send to: The Exhibition Manager, Electronic Hobbies Fair, IPC Exhibitions Ltd., Surrey House, 1 Throwley Way, Sutton, Surrey SM140Q.

MODULAR ELECTRONICS
95 HIGH STREET SELSEY. NI CHICHESTER. distrieutor for sold state michowave (thompson csf) pe products

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline ${ }^{T 10}$ \& P/out \& 6 m \& Vols \& Frew \& Alici \& Motorola MC12013t + 10 Prescaler IC with fall

\hline ${ }^{2 N 3865}$ \& ${ }^{1 w}$ \& 1008 \& 28 \& 175 MHz \& ${ }^{11} 101$ \& data instuctions $\mathrm{E11.50}$

\hline 2 20427 \& in \& 1008 \& 12 \& 175 MHE \& ${ }^{11} 122$ \& $8 \mathrm{BR103}$ Varicap Dicdes 60.50

\hline 263553
2×5913 \& 25% \& 948 \& 28 \& 175MHz \& 11.34
11.95 \& B8103 Vancay Dicdes
TiP33 $0.58: 2 N 918$ ¢0.50; BF180 $60.50 ;$ BF115
f0.50

\hline 2 N 5913 \& 2w \& 168 \& 12 \& 470 MHz \& ${ }^{17.95}$ \& U1P33 ¢0.58: 2 N 918 ¢0.50; BF180 ¢0.50; BF115 ¢0.50;

\hline 501127 \& 4w \& 1208 \& 12 \& 175 MHe \& 22.75 \& $2 \mathrm{N5179}$ c0.82: BFY90 ¢1.15; ST2110-BSX20/2N2369a

\hline $2 \mathrm{N6080}$ \& 4w \& 1268 \& 12 \& 175 MHz \& ${ }^{65.97}$ \& ¢0.30.

\hline 501143 \& 10w \& 1048 \& 12 \& 175 MHz \& ${ }^{6} 7.75$ \&

\hline 2 W 6081 \& 15w \& 6368 \& 12 \& 175 MHE \& c8.55 \&

\hline 2N6082 \& 25w \& 5788 \& 12 \& 175 MHE \& 69.49 \&

\hline 2N8084 \& 40w \& 4598 \& 12 \& 175 MHz \& ¢13.90 \&

\hline S01428 \& 45 w \& 6588 \& 12 \& 175 MHz \& ¢17.55 \& TRIMMERS

\hline \$01416 \& 10w \& ${ }_{6} 768$ \& 12 \& 175 MHz \& c26.75 \& Tetter PTFE 1.10pF 44p. DAU PTFE Film 1 to 9pF or 1.5

\hline 501477 \& 100w \& 6088+ \& 12 \& 175 MHz \& 631.50 \& 18pF 34p. Surplus $2.5-25 \mathrm{pF} 22 \mathrm{p}$.

\hline 2 N 5590 \& 10w \& 5248 \& 136 \& 175 MHz \& 67.10 \& SPRAGUE (Grade 1) Mica Trimmers (500v) for RF Amps.

\hline 2N5591 \& 25w \& 4.468 \& 136 \& 175 MH \& 69.15 \& 25.7pF

\hline 2N5944 \& 2 w \& 948 \& 12 \& 470 MHz \& ${ }^{2747}$ \& 2.5-7pF 81p. 4.20pf 86p. 7-40pF 86 p . 16.100 pF 98 p . 25.150 pf f1.09. 40-200 pF $£ 1.15$.

\hline 2N5945 \& ${ }^{4 *}$ \& 848 \& 12 \& 470 MHz \& 69.65 \& 25-150pf f1.09. 40-200pF f1.15.

\hline \$01135 \& $5 \times$ \& 1.588 \& 12 \& 470M \& ${ }^{6} 6.99$ \& HEATSINKS ssingle sided ideal for RF amps. Redpoint

\hline 501136 \& 10w \& 646 \& 12 \& 4700 HH \& f9.50 \& 6 M1 $26 \mathrm{deg} / \mathrm{w}$ ($\quad \mathbf{~} 2.20$

\hline 2011596

S01088 \& 10** \& 648 \& 12 \& ${ }^{470 \mathrm{MH}}$ \& ${ }_{6} 12.02$ \&

\hline 501068 \& 25w \& 6888 \& 12 \& 470 MH \& [21.50 \&

\hline 501089 \& 40w \& 4368 \& 12 \& ${ }^{470 \mathrm{Mitg}}$ \& C3125 \&

\hline 501434 \& 50w \& 6048 \& 12 \& 470 MHz \& c28.33 \& FINISHED MADE UP ANO TESTED EQUIPMENT

\hline \multicolumn{5}{|l|}{Ex Equip 2 N 50702.30 MHz 25 wPEP} \& ¢288 \& PA2 Preamplifier for 2 meters, using the latest UHF

\hline \multicolumn{5}{|l|}{2 N 5645 Mot .12 v 470 MHz 4 W out.} \& ¢4.50 \& stupline MOSFET the BF900 1\%" square for fitting in the

\hline \multicolumn{5}{|l|}{2 N 5914 RCA 12 v 470 MHz 2 w 7 dB} \& ¢4.60 \& tig 500 in'out ung Only $\mathbf{8 8 . 0 5}$ with instructions

\hline \multicolumn{5}{|l|}{218BLY Mul Studless BLY38 2w 470 MHz} \& ¢345 \& PaU2 432MHz Preamp, stripline using the BFR34a 146B

\hline \multicolumn{5}{|l|}{61387 RCA Studiess Sim C1-12 CTC} \& ¢3.45 \& gain NF < 2 dB ¢8.63.

\hline \multicolumn{6}{|l|}{Free data sheets with all purchases which include trpical cricuits etc} \&

\hline \multicolumn{6}{|l|}{LOW NOISE SMALL SIGNAL SEMICONDUCTORS.} \& LINEAR AMPLIFIER MODULES for 144 MHz without

\hline BFR90 \& al T Pack \& - 25 dB \& UF 16 \& \& ¢2.82 \& $\mathrm{Ch} /$ /ver. Size $55 \times 93 \mathrm{~mm}$ with thermal interface. 500 .

\hline BFR91 \& ul 1 Pack \& k 2588 \& /F 1.2 \& \& ¢345 \& PM2.10 0.4w in 10w out. 138v

\hline BFR343 \& Pack 4 \& dB NF \& \& \& f225 \& PM2 1515 w in 15w out 138 y (621.75

\hline $8 \mathrm{FI66}$ \& \% Interm \& od. T072 \& \& \& ¢259 \& PM2 25 4w in 25 w out. 138 vv e22.95

\hline 50306 \& D- MOS \& MOSFET \& \& \& ¢260 \& CPM LINEAR AMPS with full RF Changeover. Size

\hline 40673 \& CA MOSF \& \& \& \& 60.92 \& $82 \times 102 \mathrm{~mm}$. Preann can be fitted in RX path. Spec., as

\hline BF900 \& HF MOSF \& I Equiv \& SK88 \& \& ¢1.30 \& for PM Series. Specity CPM type and add $£ 7.00$ to PM series prices.

\hline \multicolumn{6}{|l|}{\multirow[t]{3}{*}{unetco Cased rf Mica Caps. Following PFs 1020 30/40/50/60/70/80pF f1.61; 100/150/180/250pF £1.73: 1000 pFF f .84.}} \&

\hline \& \& \& \& \& \&

\hline \& \& \& \& \& \& PRESCALER BOARD $\div 10$ Sire $55 \times 93 \mathrm{~mm}$ with inpal

\hline \multicolumn{3}{|l|}{C1.73:
PTFE Sheet 0.25 mm 300} \& Squar \& \& 12.30 \& amplifier ($2 \times$ BFR 543) sens 40 mV 432 mc uses MOT

\hline \multirow[t]{2}{*}{HP 5082
HP 5082} \& 22800 \& Hor Cat \& des \& \& 11.12 \& MC120121 IC, 500 MHz typ 600 MH e Only $£ 23.00 .5 \mathrm{smeq}$

\hline \& 2835 \& Cat. \& \& \& C0.98 \& E supply

\hline \multicolumn{7}{|c|}{Allow 7 days for delivery.}

\hline \multicolumn{7}{|c|}{Barclaycand or Access on orders above f10.}

\hline \multicolumn{7}{|c|}{\multirow[t]{2}{*}{POST and PACKING ADD 50 p TO ALL ORDERS.}}

\hline \& \& \& \& \& \& St where weight pernits.

\hline \multicolumn{7}{|c|}{SAME DAY dispatch on all in stock items.}

\hline \multicolumn{7}{|c|}{Minimum invoiced order to approved customers $£ 15.00$.}

\hline \multicolumn{7}{|c|}{All paices now include vat at 15\%}

\hline
\end{tabular}

QUALITY REEL TO REEL \& CASSETTE TAPE HEADS
FITIING A NEW TAPE HEAD CAN TRANSFORM THE PERFORMANCE OF YOUR TAPE RECORDER. OUR FULL CATALOGUE IPRICE 5Op) ALSO INCLUDES TAPE TRANSPORTS, DISC ORIVES, PRE-AMPLIFIERS AND ACCESSORIES POPULAR UNIVERSAL CASSETTE HEADS TO EIAJ STANDARDS C21RPS 18 MOND A P
 Hole Contres 17 mm Apart, 12 mm from Hasd Face C42RPH 20 STEREO R/P SENDUST FOR C42RPHO4 STEMEME/METAL TAPES............f10.67 4 STEREO R/P GLASS FERRITE THE ULTIMATE LONG LIFE, THE ULTIMATE LONG LIFE.
HIGH PERFORMANCE HEADf13.34 C2IESI8 MONO/STEREO ERASE Tel: 045074321. Telex: 46305 MONLTH G.

35/39 Church Street, Wilmslow, Cheshire SK9 1AS 1982 Catalogue - 11.50 post free
Lightning service on telephoned credit card orders! Please allow up to 7 days for Delivery

L. B. ELEGTRONICS

Cannon "D" 25 way femail to femail lead $1 \frac{1}{4}$ meters with covers £3.50. P+P 50p.
2516 (5V) Eprom, used once fully erased and guaranteed by us. Only $£ 1.95$ or 10 for $£ 17$. $\mathrm{P}+\mathrm{P}$ free.

SPECIAL OFFER!!

Edge Connector 22×22.156 inch. Only 50p. P+P 25p
Amphenol 36 way plug (used) for all your printers. Only $£ 1.50$ with cover. P+P 35p.
Used Cannon "D" 25 way Soldier plug £1. Right-angled plug PCB £1.75. P+P 25p.
HP 5082 Dule 7×5 Dot matrix display (LED). Only $£ 5$ with data. P+P 30p.
18 SWG Soldier ILB £5.50, 22 SWG Soldier ILB $£ 6.50$. P +P 75 p. All prices include VAT. Allow 14 days for delivery.

L. B. ELECTRONICS

11 Hercied Road, Hillingdon, Uxbridge, Middx. VB10 9LS. Tel: (0895) 55399.

LOSING DX?

RARE DX UNDER QRM? DIG it OUT with a Tunable Audio Notch Filter, between your receiver and speaker, BOOST your DX/QRM ratio, 40dB notch, hear WEAK DX, £16.40.
ANTENNA FAULT? Poor reports? Check FAST with an Antenna Noise Bridge, MEASURE resonance $1-150 \mathrm{MHz}$ and radiation resistance 2-1000 ohms, GET answers, MORE DX, £18.60.
V.LF? EXPLORE $10-150 \mathrm{KHz}$, Receiver $£ 19.40$.

MISSING DX? Make them HEAR YOU with a Speech Compressor, between your microphone and transmitter, BOOST your POWER up to four times, 60dB agc, SOUND BIG, £15.30.
Crystal Calibrator $\mathbf{£ 2 8 2 0}, \mathbf{1 0 0} \mathbf{- 6 0 0 K H z}$ Converter $\mathbf{£ 1 8 . 7 0}$
Each fun-to-build kit includes all parts, printed circuit, case, postage etc, instructions, money back assurance so GET yours NOW.

CAMBRIDGE KITS
45 (PK) Old School Lane, Milton, Cambridge.

Technical Training in Radio, Television and Electronics

ICS have helped thousands of ambitious people to move up into higher paid, more secure jobs in the field of electronics-now it can be your turn. Whether you are a newcomer to the field or already working in the industry, ICS can provide you with the specialised training so essential to success.
Personal Tuition and Guaranteed Success
The expert and personal guidance by fully qualified tutors, backed by the ICS guarantee of tuition until successful is the key to our outstanding record in the technical training field. You study at the time and pace that suits you best and in your own home. In the words of one of our many successful students: "Since starting my course, my salary has trebled and I am expecting a further increase when my course is completed".

CITY AND GUILDS CERTIFICATES

Excellent job prospects await those who hold one of these recognised certificates. ICS can coach you for:
Basic Electronic Engineering (C\&G/ICS)
Radio Amateurs

CERTIFICATE COURSES

TV \& Audio Servicing
TV, Radio and Audio Engineering
Radio \& Amplifier Construction
Electronic Engineering*
Computer Electronics*
Industrial Electronics*
Radio Frequency Electronics*
Introduction to Microprocessing*
Electrical Engineering*
Electrical Contracting \& Installation
*Qualify for IET Associate Membership

Member of ABCC
POST OR PHONE TODAY FOR FREE BOOKLET

[^2] PHO
NEW BRANDED VALVES

A2087	11.50	ECC804	$\mathbf{0 . 6 0}$	EY84	$\mathbf{8 . 0 0}$
A2134	17.50	ECC807	1.95	EY86／87	0.50

A2 2134	17.50	ECC807	1.95	EY86／87	0.50
A2293	7.20	ECF80	0.65	EY88	0.60

A2900	$\mathbf{1 3 . 0 0}$	ECF80	$\mathbf{0 . 6 5}$	EY88	$\mathbf{0 . 6 0}$

C1148A60．00	ECF86	$\mathbf{1 . 2 5}$	EZ81	$\mathbf{0 . 5 6}$

DAF91 0.45
DAF91
DAF91
DF92
DF96
DK91

DK9
DK92
DK96
DK92
0×9
0×5
Ok
0
b

DLS
$\begin{array}{l}\text { DLS } \\ \text { D．s．} \\ \text { OM1 } \\ \text { O8 }\end{array}$

DK96	$\mathbf{2 . 5 0}$	ECL82	$\mathbf{0 . 6 0}$	GY501	$\mathbf{1 . 2 0}$	PL
DL92	$\mathbf{0 . 6 0}$	ECL84	$\mathbf{0 . 7 4}$	GZ30	$\mathbf{1 . 0 0}$	PY
DL96	$\mathbf{2 . 5 0}$	ECL86	$\mathbf{0 . 7 4}$	GZ32	$\mathbf{1 . 0 0}$	PY
DLS10	$\mathbf{8 . 0 0}$	EF37A	$\mathbf{2 . 0 0}$	GZ33	$\mathbf{4 . 5 0}$	PY
DLS16	$\mathbf{1 0 . 0 0}$	EF39	$\mathbf{1 . 0 0}$	GZ34	$\mathbf{2 . 1 5}$	PY
DM16／	$\mathbf{2 . 7 5}$	EF42	$\mathbf{2 . 5 0}$	GZ37	$\mathbf{4 . 5 0}$	QO
DY86／87．55	EF55	$\mathbf{2 . 2 5}$	KT61	$\mathbf{3 . 5 0}$		
DY802	$\mathbf{0 . 6 0}$	EF80	$\mathbf{0 . 5 5}$	KT66 USA．	Q	
E55L	$\mathbf{2 1 . 5 0}$	EF83	$\mathbf{3 . 5 0}$		$\mathbf{6 . 0 0}$	
E80CC	$\mathbf{7 . 0 0}$	EF85	$\mathbf{0 . 5 0}$	KT66 UK	$\mathbf{9 . 0 0}$	Q

E80CC
E80CF
E80F
PCL83
PCL84
PCL85
PCL86
PCL80
PD50
PFL2
PL36
CL83
CL84
CL85
CL86
CL805
D500
PL200 2.50
0.75
0.80
0.65
0.90
3.50
1.25

0	6AB8	$\mathbf{0 . 6 6}$	7027 A	$\mathbf{4 . 6 5}$	INTEGRATED		
$\mathbf{5}$	6 AC7	$\mathbf{1 . 0 0}$	7591 A	$\mathbf{2} .35$	CIRCUITS		35
:---							
50							
5	ĀN AN2140						

AN240
HA1151 LA4031P
LA4400 LA4400

LC7120 \begin{tabular}{l}
ECF86

5

\hline

 ECF806 $^{\text {ECH3 }}$ $5 \begin{aligned} & 5 \\ & 0\end{aligned}$

.25 \& EZ90 \& 0.96

\hline 25 \& $\mathrm{G} 1 / 371 \mathrm{~K}$ \&

30.00

 G55／1K

30.00

9.00

\hline $120 / 18$

8.00
\end{tabular} G120／18 8.00

GS10C
GXU50
GX．50
GY50 PL81A
PL84
PL500
PL504 PL504
PL508
PL509

$\mathbf{0} .65$	ECH81	$\mathbf{1 . 5 8}$
20	ECH84	0.59
50	ECLB2	

教

路

教

प్ర్ర

| | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| ECC85 | $\mathbf{0 . 5 0}$ | EM87 | $\mathbf{1 . 1 0}$ | PCF8055 | $\mathbf{1 . 4 8}$ |
| ECC88 | $\mathbf{0 . 6 5}$ | EN91 | $\mathbf{0 . 5 0}$ | PCF808 | $\mathbf{1 . 2 5}$ |

MARCO TRADING

Ref．	Voltage	VOLTAGE Current	EGULATORS Price Each	$100+$	Style
Ref．	＋5V	$100 \mathrm{~m} / \mathrm{a}$	Price ${ }^{\text {30p }}$	20p 7	Style
78 LI 2	$+12 \mathrm{~V}$	$100 \mathrm{~m} / \mathrm{a}$	30p	20p	TO92
78LIS	$+15 \mathrm{~V}$	$100 \mathrm{~m} / \mathrm{a}$	30p	20p	
78L18	$+18 \mathrm{~V}$	$100 \mathrm{~m} / \mathrm{a}$	30p	20p	
7805	$+5 \mathrm{~V}$	1 Amp	55p	30 p 7	
7812	$+12 \mathrm{~V}$	｜Amp	55p	30p	TO220
7815	$+15 \mathrm{~V}$	｜Amp	55p	30p	
7818	$+18 \mathrm{~V}$	1 Amp	55p	30p	

Mixing within each current rating is O．K．to obtain quantity price． 10 Million carbon film 5\％resistors from stock．

1／4W Range：IOR to $820 \mathrm{~K} £ 3.00$ per 1,000 （NO MIXING OF VALUES）

50 per 100 （NO MIXING OF VALUES）
Our Stock List of the above Resistors is available upon request．
TRANSFORMERS British made transformers at very attractive prices．

Manufacturers note：We can supply FROM STOCK， $1000+$ quantities of the above transformers and adaptors below．
These very high quality British made two pin European adaptors are ideal for driving Radios，cassette recorders．TV games，calculators etc．The adaptors fit the UK shaver socket．

socket．	EUROPEAN	REF．	D．C．Volt	Current	$1+$	$10+$	$100+$
		ADAPTORS	EO8	4.5 V	$200 \mathrm{~m} / \mathrm{a}$	50 p	45 p

Please note that there is no extra P／P charge on the above transformers and adaptors．
Export please add Sea／Air mail at cost．
Callers welcome Mon－Fri 9－5．
This advert is only a fraction of our range，send 25 p for our latest catalogue．Please add 35 p P／P to all orders．Add 15\％VAT to total．Send orders to：

Dept．PW9，MARCO TRADING，
The Maltings，High Street，Wem，Shropshire SY4 5EN．
Latest Catalogue 25p per copy．Includes Multimeters，Chart Recorders，and Components．
All orders despatched by return of mail．

TELEVISION ．．．the only magazine in Britain that gives the amateur en－ thusiast and professional engineer alike a comprehensive up－to－date coverage of TV technology．Coverage includes the latest developments in circuitry，video and long－distance Television ．．．with a special emphasis

MASHFR FTFOYRONICS NOWT

 The Practical way!This new style course will enable anyone to have a real understanding of electronics by a modern, practical and visual method. No previous knowledge is required, no maths, and an absolute minimum of theory.

You learn the practical way in easy steps mastering all the essentials of your hobby or to start or further a career in electronics or as a selfemployed servicing engineer.

All the training can be carried out in the comfort of your own home and at your own pace. A tutor is available to whom you can write personally at any time, for advice or help during your work. A Certificate is given at the end of every course.

You will do the following:

- Build a modern oscilloscope
- Recognise and handle current electronic components
- Read,draw and understand circuit diagrams
- Carry out 40 experiments on basic electronic circuits used in modern equipment
- Build and use digital electronic circuits and current solid state 'chips'
- Learn how to test and service every type of electronic device used in industry and commerce today. Servicing of radio, T.V., $\mathrm{Hi}-\mathrm{Fi}$ and microprocessor/computer equipment.

NewJob?NewCareer?NewHobby?GetintoElectronics Now!
FFREET
Please send your brochure without any obligation to 1 am interested in:

'Phone (0204) 21059

Oscilloscopes

Limited quantities at Unrepeatable Prices! MODEL 5810
$5^{\prime \prime}$ DC-10MHz f169.95 10-1 PROBE INCLUDED FREE PRICES TO RISE 20\% WHEN CURRENT SUPPLIES EXHAUSTED.
Featuring fully calibrated time base circuits, automatic blanking and stabilized power supply. They are rugged $+5 \%$ to provide twelve steps from 10 mV to 50 V per division. Cheques. Access Auclercen makcome 10 day moner per division. Cheques, Access, Barcluycrard welcome 10 day monevback Allow 14 days for delivery.
Eureka Electronics Lid. Castile House, 27 Castle Street, Brighton, East Sussex BN1 2 HO England
Telephone: Brighton 10273 202016/7

AERIAL ROTATOR UNIT for use on 24 V DC about 1 amp approx ext size inc drive shaft $7 \times 6^{\prime \prime}$ dia supplied with two 360 bearing Ind $3 \& 5^{\prime \prime}$ dia unit will work one or both of these, these are ex A/C Radio Compass drive unit will turn small 2 mt beam with connections. $£ 37$

PYE PF. 1 UHF Pocket Phone Rx nom $450 \mathrm{Mc} / \mathrm{s}$ FM req $9 v$ Batt int Ae \& Spk with circ will mod for 70 cm . $\mathbf{£ 9 . 5 0}$.
H.F. TUNING ASS from Tx unit tunes $2 / 18 \mathrm{Mc} / \mathrm{s}$ as 3 Roller coaster coils tuning $2 x$ Amp \& P.A. stage, trimmers, etc will make 100 watt Tx with circ. £12.50.
MORSE KEYS small ex Army general purpose key in new cond with small $9 v$ buzzer. £5.50.
R1937 M.F. Rx tunes 150 Kc to $1.5 \mathrm{Mc} / \mathrm{s}$ cont as RF stage $\& 2 \times \mathrm{I} . \mathrm{Fs}$ BFO etc normal remote control supplied with control box showing freq, tuning meter, vol control etc these req 24 v DC only or 24 v DC and 230 v HT some tech info available. £45.
HEADSETS with THROAT MIKES ex Army in new condition with lead \& control box £7.50.
VALVES Tx type 4X150 ex equip tested. $\mathbf{£ 4 . 5 0}$ ea or 2 for $\mathbf{£ 8}$.
VALVE KIT inc 6BA6x5, 6BE6x2, EF91×4, EB91×3, EL91. £10.
FREQ METER type BC221 Hetrodyne freq meter 125 Kc to $20 \mathrm{Mc} / \mathrm{s}$ in two bands with 1 Mc / s check req 135 v HT \& 6.3 AC tested with charts in carrying case. £45.

SPEAKER UNITS ex aircraft cabin spks size $17 \times 3 \frac{1}{2} \times 2 \xi^{\prime \prime}$ with 4×3 ohm spks size $3 \times 3^{\prime \prime}$ finished in black crakle. $\mathbf{£ 6 . 5 0}$. Small Amp unit that fits into spk case needs pre amp with circ. $£ 3.50$.

HANDSETS lightweight with MC mike 50 ohm press to talk with fitted ext cord. $\mathbf{£ 4 . 5 0}$. BLOWER FANS small 24 v DC will work on 12 v single ended snail type $£ 3.50$ also large mains type powerful new. £13.50.
BATTERIES Nic Cad type 6v size $2 \frac{1}{2} \times 1 \frac{1}{\prime \prime}^{\prime \prime} 500 \mathrm{Ma} / \mathrm{Hr}$ new. £4.50.
RADIOSONDE UNITS Type 11. Comprises a small Tx on $27 \mathrm{Mc} / \mathrm{s}$ the O / P of this is tone modulated at AF freqs by the O/P from 3 sensors that meas Temp, Press \& RH the O/P from these is selected in turn by rot swt, uses 3 valves and reqs 90 v HT \& 2v LT new cond with circ \& chart $£ 7.50$.

ROTARY CONVERTORS I/P 24v DC about 10 amps for AC O/P of 230v 50c Sine Wave 140 watts complete in carrying case good cond. $£ 45$ or Conv only S/Hand tested at £27.
HEADPHONES Army type DLR. 5 balanced armature low res can be used to make sound powered intercorn new £4.50 or S/H £3.50.

Above prices inc carr/postage \& VAT. Please allow 14 days for delivery. Goods ex equipment unless stated new. SAE with enquiry or $2 \times 15 \mathrm{p}$ stamps for List 28/1.

A. H. SUPPLIES

122, Handsworth Rd., Sheffield S9 4AE. Ph. 444278 (0742).

Receivers and Components

VHF CONVERTOR. $45-220 \mathrm{MHz}$ Tunable IF. Very sensitive unit $£ 9.00$ inc. P\&P. TVDX VHF to UHF Convertor $£ 11.90$ inc. P\&P. SAE data/ists. H. Cocks, Cripps Corner, Robertsbridge. Sussex. Tel. 058 083-317.
STYLI for Music Centres etc. Free list for S.A.E., includes other accessories. Felstead Electronics, Longley Lane, Gatley, Cheadle, Cheshire SK8 4EE.

CRYSTALS Brand new high-precision. You benefit from very large stocks held for industrial supplies. All normal freq
standards, baud rates, MPU , and all magazine projects inc: standards, baud rates. MPU, and all magazine projects inc: $5 \cdot 0,6 \cdot 0,7 \cdot 0.8 .0,9.0,10 \cdot 0,10 \cdot 7,12 \cdot 0,15 \cdot 0,16.0,18.0$ $20.0,38.6667 \mathrm{MHz}, £ 3.35$. Selected freqs stocked in Glider, Marine and 27 MHz bands. Any freq made to order in 8 weeks from $£ 4-10.2-3$ week service available FILTERS Your best source for 6 and 8 pole and monolithics
for AM, CW, SSB, FM, on $455 \mathrm{kHz}, 1.6,9.0,10.7,21.4$ MHz , etc.
MHz , etc.
Prices inc. VAT and UK post. SAE lists.

> P. R. GOLLEDGE ELECTRONICS G3EDW, Merriott, Somerset, TA16 5 NS. Tol: 046073718

ELECTRONICS COMPONENTS SHOP in Maidstone, Kent. THYRONICS CONTROL SYSTEMS, 8, Sandling Road. Maidstone. Maidstone 675354

BRAND NEW COMPONENTS BY RETURN

HIGH STABILITY MINIATURE FILM RESISTORS 5\% $\frac{1}{4} \mathrm{~W}$ E24 Series 0.51R-10MO. (Except 7M5, 9M1)-1p
 W Metal Film Ei 12 series 10 R to 1 MO $5 \%-2$ p. 1\%-3p. CAPACITORS
CAPACITORS.
MULLARD Min. Ceramic E12 100V 2\% 1.8 pff . to 47 pf . - 3 p
M\% 56 pf. to 330 pff . 4 p . $10 \% 3$ 390pf. to 4700 pf . -4 p Plate Ceramic 50 V Wkg. Vertical Mounting. E12 22 pf . to 1000 pf . \& E6 1 K 5 pf . to $47 \mathrm{Kpf} .-2 \mathrm{p}$
Miniature Polyester 250 V Wkg. Vertical Mounting.
 $0.68-11$ p. 1.0-15p. 1.5-20p. 2.2-22p ELECTROLYTIC. Wire Ended (Mfds/Volts).

0.47/50	5p 22/25		/25		/25	
1.0/50	5g 22/50	6 p	100/50		Bp 470/40	
22/50	5p 47/15	6 p	220/16		8 p 1000/15	
4.7/50	5p 47/25	5	220/25		8 p 1000/25	
10/50	5p 47/50	6p	220/50		Op 1000/40	35p
22/16	$6 \mathrm{p} \quad 100 / 16$	7p	470/16		1p 2200/16	20 p
TANTALUM BEAD SUBMINIATURE ELECTROLYTICS $0.1,0.22,0.47,1.0,2.2,35 \mathrm{~V}$ \& $4.7 * 6.3 \mathrm{~V}-14 \mathrm{p}$ $4.7 / 16 \mathrm{~V}$ \& $25 \mathrm{~V}-15 \mathrm{p}$. $10 / 16$ \& $22 / 6-20 \mathrm{p}$. $10 / 25-29 \mathrm{p}$ $10 / 35 \mathrm{~V}, 22 / 16 \mathrm{~V}, 1476.3 \mathrm{~V}$. $68 / 3 \mathrm{~V}$ \& $\& 100 / 3 \mathrm{~V}-30 \mathrm{p}$ $15 / 25,22 / 25,47 / 10^{-35 p .47 / 16-80 p . ~ 220 / 16-£ 1.20}$ Polystyrene $63 V$ Wkg. E12 Series Long Axial Wires. 10 pf. to 820 pf.- $\mathbf{3 p}$. 1000 pf. to $10,000 \mathrm{pf}$. 4 p						
TRANSISTORS.						
BC107/	8/9 12p BC	BC182L		8p BF	BF197	10p
BC147	8/9 10p \quad B	BC184L		8 p BF	BFY50/51/52	
BC157/	8/9 10p B	BC212L		8 p 8F	BFX88	25p
BC547C	/8C/9C7p BCr	8CY70		15 p 2N	2N2926	7 p
BC557	C/8C/9C7p B	BF195		10p 2N	2N3055	50p
8 Pin D.I.L. i.c's $741 \mathrm{Op} / \mathrm{amp}$ - $\mathbf{1 8} \mathrm{p}$. 555 Timer- 24 p Holders 8 Pin-9p. 14 Pin-12p. 16 Pin-14p. 18 Pin16p. 28 Pin-25p. 40 Pin-30p.						
DIODES (p.i.v./amps).						
75/25m	A 1N4148	8 2p	1250	50/1A	8 Y 127	
100/1A	1N4002	2 4p	400/3	0/3A	1N5404	
800/1A	1N4006	6p	60/1.	1.5A	S1M1	5p
1000/1	A 1N4007	7 7p	30/1	150 mA	A AY32	12p
ZENER DIODES. ${ }_{\text {E }}$ S ${ }^{\text {Series }} 3 \mathrm{~V} 3$ to $33 \mathrm{~V} 400 \mathrm{~mW}-8 \mathrm{p}$, $1 \mathrm{~W}-14 \mathrm{p}$						
L.E.D. ${ }^{\text {a }} 3 \mathrm{~mm}$ \& ${ }^{\text {a }} 5 \mathrm{~mm}$. Red- 10p. Green, Yellow- 14 p						
FUSES. 20 mm . Glass, 100 mA to 5 CA . Q.B. $5 \mathrm{5p}$. AS - 8 p .						
$5 \mathrm{~V}, 8 \mathrm{~V}, 12 \mathrm{~V}, 15 \mathrm{~V}, 18 \mathrm{~V}$ \& $24 \mathrm{~V}, 1 \mathrm{~A}-55 \mathrm{p}$						
ET POTENTIOMETERS						
\& $\frac{1}{4} \mathrm{~W} 100 \mathrm{R}$ to 1MO-						

THE C. R. SUPPLY CO.

127, Chesterfield Road, Sheffield S8 ORN.
V.A.T. Inclusive Prices, Postage 15p (FREE over £5.00)

SMALL ADS

The prepaid rate for classified advertisements is 32 pence per word (minimum 12 words), box number 60p extra. Semi-display setting $£ 10.70$ per single column centimetre (minimum 2.5 cms). All cheques, postal orders etc., to be made payable to Practical Wireless and crossed "Lloyds Bank Ltd". Treasury notes should always be sent registered post. Advertisements, together with remittance should be sent to the Classified Advertisement Dept., Practical Wireless, Room 2612, IPC Magazines Limited, King's Reach Tower, Stamford St., London, SE1 9LS. (Telephone 01-261 5846)

NOTICE TO
 READERS

Whilst prices of goods shown in advertisements are correct at the time of closing for press, readers are advised to check with the advertiser both prices and availability of goods before ordering from non-current issues of the magazine.

P.C. BOARD S.S. $12^{\prime \prime} \times 12^{*}-3$ for $£ 2.00$. Glass fibre P. L. Board S.S. or D.S. $12^{\prime \prime} \times 12^{\prime \prime} £ 1.00$ each. Add 60 p P\&P any quantity. Cooper, 16, Lodge Road, Hockley, Birmingham B185PN.

VOICE OF AMERICA, Radio Canada, Radio Peking, Radio Moscow. A Vega 308 (short, medium, f.m.), pulls these and more, nightly, £17.99 inclusive. Corrigan-Radiowatch. Building 109, Prestwick Airport, KA9 2RT.
BOURNEMOUTH/BOSCOMBE Electronic components specialists for 33 years. Forresters (National Radio Supplies) late Holdenhurst Rd. now at 36, Ashley Rd., Boscombe. Tel. 302204. Closed Weds.

Do your spare FT 101 valves work?

Try them, some brands don't function correctly. Who else in U.K. has original NEC in original coloured boxes. Too expensive to hold, final trade/retail offer. Buy now or regret it later. 6JS6C Matched pair as recommended YAESU $£ 13.30$ pair, $\mathbf{2 2}$. 2 pairs; $£ 303$ pairs, 28010 pairs; $£ 17525$ pairs. 12BY7A Each $£ 330 ; 3$ for $£ 6 ; 10$ for $£ 18$; Box $50 £ 75$. Also G.E. 61468 recom-
mended YAESU \& TR10 (some other brands nosy mended YAES a 5 . matched pair $£ 17.50 ; 2$ pairs $£ 30 ; 3$ pairs $£ 42$; 10 pairs $£ 120$, al inc. VAT \& POST.

HOLDINGS LTD.,
39/41, Mincing Lane, Blackburn.
Tel: (0254) 59595. ACCESS/B. CARD.

Books and Publications

"WORLD RADIO TV HANDBOOK", $£ 10.99$, "Broadcasts to Europe", quarterly frequency guide, $£ 4.50$ yearly (sample copy $£ 1.30$). Send payment or Access/Visa number to Point. sea. 25 Westgate, North Berwick, East Lothian.
POPULAR FREQUENCY CHECKLIST (Europe \& U.K: medium \& long wave) with unique map for bearings anywhere. £1 postpaid or 7 IRC. - DIAL-SEARCH, 9 Thurrock Close, Eastbourne, BN20 9NF.
AIRCRAFT COMMUNICATIONS HANDBOOK including spot MF, HF, VHF, UHF, frequencies, airports, air traffic control centres, weather reports, broadcast times, beacons, long range stations, callsigns, maps, etc. 384 pages $£ 7.50$ p post \& packing $£ 1.00$. PLH Electronics, 97 Broadway, Frome, Somerset BAll 3HD

Miscellaneous

SUPERB INSTRUMENT CASES by Bazelli, manufactured from PVC Faced Steel. Hundreds of people and industrial users are choosing the cases they require from our vast range. Competitive prices start at a low $£ 1.05$. Chassis punching facilities at very competitive prices. 400 models to choose from. Suppliers only to Industry and the Trade. BAZELLI, (Dept No. 25). St. Wilfred's Foundry Lane. Halton, Lancaster LAI 6LT.

TOP QUALITY SOLDERING IRONS 25 and 30 watt only $£ 3.99$ plus 50 p P\&P. Hawkwood Marketing Limited. 3, Delderfield. Leatherhead. Surrey. KT22 8UA. Trade enquiries welcome.
ALUMINIUM TUBES FOR AERIALS, various sizes available. Nerva Metals. Tel. 01-904 4647.
AERIALS TELEVISION RADIO C.B. Amplifiers Brackets Towers. 132 Hermon Hill, E18. 01-530 6118.

WAVEGUIDE, FLANGES \& DISHES. All standard sizes \& alloys stock. Special sizes to order. Call Earth Stations, 01-228 7876. 22, Howie Street, London SW11 4AR.

BURGLAR ALARM EQUIPMENT. Ring Bradford (0274) 308920 for our catalogue or call at our large showroom opposite Odsal Stadium
AVIATION FREQUENCY LISTS (Europe). 384 pages $£ 5.00$. AOS (PW), West London Building, White Waltham Aerodrome, Maidenhead SL. 6 3MJ.

MORSE CODE CASSETTES

Cassette A: 1-12 w.p.m. for amateur radio examina tion.
Cassette B: 12-25 w.p.m. for professional examination preparation. Each cassette is type C90. Price each Cassette (including booklets) $\mathbf{£ 4 . 7 5}$ Price includes postage etc. UK only.

> MH ELECTRONICS (Dept PW)
> 12 Longshore Way, Milton, Portsmouth PO4 8LS.

Services

SHEET METAL WORK, fine or general front panels chassis covers, boxes, prototypes. 1 off or batch work, fast turnround 01-449 2695. M. GEAR LTD. 179a Victoria Road, New Barnet, Herts.

Courses

CONQUER THE CHIP . . . Master modern electronics the PRACTICAL way by SEEING and DOING in your own home. Write for your free colour brochure now to British National Radio \& Electronics School. Dept. C2, Reading, Berks. RG1 1BR

Aerials

COPPER AERIAL WIRE 14 swg hard drawn 70^{\prime} E5.34, 140^{\prime} £8.84 inc. VAT. Postage $£ 1.75$. T.M.P. ELECTRONIC SUPPLIES, Unit 27, Pinfold Workshops, Pinfold Lane, Buckley. Clwyd. North Wales.

G2DYM ANTI-INTERFERENCE

 ANTI-TVI TRAP DIPOLES TX \& S.W.L. MODELS OR KITSData Sheets Large SAE. Aerial Guide 50p. Indoor and Invisible Aerials $£ 3.50$.
Callers welcome Tel: 03986-215
G2DYM, Uplowman, Tiverton, Devon.
GIVE YOUR HAND PORTABLE A BIG BOOST. Fit a VOCOM $5 / 8$-wave antenna. Lots of gain over a rubber duck. $47^{\prime \prime}$ collapsible to $8^{\prime \prime}$ for monitoring or carrying. BNC terminated, base spring/loading coil, low SWR $144-148 \mathrm{MHz}$. A quality product made in USA. Inclusive price $£ 17.50$. Write: Zedwyn Electronics. 38 Downlands. Waltham Abbey, Essex. EN9 IUH.

PLANNING PERMISSION

Agent for aerial planning applications and appeals:
Stephen A. Craske, BSc CPA EPA G3ZLS, 347 Widney Road, Knowle, Solihull, West Midlands, B93 980.
Tel: Knowle (056 45) 70235.

Educational

COURSES - RADIO AMATEURS EXAMINATION. City \& Guilds. Pass this important examination and obtain your licence, with any RRC Home Study Course. For details of this and other courses (GCE, professional examinations, etc.) write or phone - THE RAPID RESULTS COLLEGE. Dept JX1, Tuition House, London SW19 4DS. Tel: 01-947 7272 ($9 \mathrm{am}-5 \mathrm{pm}$) or use our 24 hr Recordacall Service: 01-946 1102 quoting Dept. JX2.

TELEVISION COMPUTER RADIOCOMMUNICATIONS \& RADAR SERVICING

2 $\frac{1}{3}$ YEAR full-time Modular Diploma course to include a high percentage of practical work.

- ELECTRONIC PRINCIPLES (1st)
- ELECTRONIC PRINCIPLES (2nd)
- MONOCHROME TV
- COLOUR TV, CCTV \& VCR
- MICROELECTRONICS \& DIGITAL TECHNIQUES
- MICROPROCESSORS \& COMPUTERS
- RADIOCOMMUNICATIONS \& RADAR
Each of the above Modules are 13 weeks in duration. Individual Modules can be arranged for applicants with suitable electronics background.
Subject to approval, students will be awarded a TEC Diploma in Electronics \& Communication Engineering on completion of the full course.
Next session starts September 13th.
Prospectus from:

LONDON ELECTRONICS COLLEGE

Dept: PP, 20 Penywern Road, London SW5 9SU. Tel:01-373 8721.

Service Sheets

G.T.

TECHNICAL INFORMATION SERVICE

76 CHURCH ST., LARKHALL, LANARKS.

All published full size service sheets $£ 2$ each plus I.s.a.e.
except CTVs/music centres from $£ 3$.
Repair data your named T.V. $£ 6.50$ (with circuits $£ 8.50$)
Collection of 11 T.V. Repair Manuals covering almost every British \& Foreign, colour, standard mono, portables only £65.
L.S.A.E. brings free 50 p magazine, quotations, details of unique publications and bargain offers. 2 big catalogues list thousands service sheets/manuals plus $£ 4$ vouchers for $\mathbf{£ 2}+$ large s.a.e. Complete British Colour TV circuits, etc. in 3 huge binders only $\mathbf{£ 3 9 . 5 0}$.
Phone: 0698883334 anytime. Callers 4-6 pm weekdays, Sat. 11-1.

CLEARANCE SALE of Service Sheets 1 p each. S.a.e. for details: Hamiltons, 47 Bohemia Road, St Leonards, Sussex.

Wanted

ELECTRONIC COMPONENTS PURCHASED. All types considered - Must be new. Send detailed list - Offer by return - WALTONS, 55A Worcester Street, Wolverhampton.

GERMAN WW II RADIO EQUIPMENT for collection. Any condition, also spares. Call or write: Friedrich Biedermann. 20. The Dene, London W13 8AY. 01-998 9286.

For Sale

MORSE TUTOR KIT, generates text or letter/number groups, speed fully adjustable. PCB, components, case $£ 21.71$ $+\quad £ 3.28$ V.A.T. SAE details, Whitehythe Electronics Limited, Ockham Works, Ewhurst Green, Robertsbridge, E. Sussex, TN32 5RD.

AMATEUR EQUIPMENT bought and sold. Cash waiting. Contact G3RCQ Hornchurch 55733 evenings.

YAESU FRG7000 receiver $£ 160$ o.n.o. Sommerkamp
FL200B transmitter FR50B Receiver $£ 190$ pair. East Kent Telecoms (02273) 3792.

CALL SIGN BADGES professionally engraved. by return of post. $£ 1.50$ cash with order. State name and call sign. A-K Badges-P. 2 Pickwick Road. Corsham. Wilts. SN13 9BJ.

VINTAGE RADIO's over 200 vintage radio's always in stock - open everyday - phone anytime. The Clock Shop. 78 They Bayle, Folkestone, Kent. Tel:- (0303) 54233.

Situations Vacant

non-current issues of the magazine.
Whilst prices of goods shown in advertisements are correct at the time of closing for press, readers are advised to check with the advertiser both prices and availability of goods before ordering from

Radio/ Electronic Technician

London based organisation seeks enthusiastic Radio/Electronic Technician with a broad
knowledge of Communication Techniques Radio/Electronic Technician with a broad
knowledge of Communication Techniques and associated systems. Applicants should preferably be aged between 25 and 40 with desirable qualifications of City and Guilds Certificate/T.E.C. in Telecommunications or equivalent in experience. Some overseas travel is a possibility in this position.

Salary according to qualifications and experience but not less than $£ 7,300$.

Please write with personal and career details to Confidential Reply Service, details to Confidential Reply Service,
Ref. BMR 8482, Austin Knight Limited. London, W1A IDS.

Applications are forwarded to the client concerned, therefore companies in which you are not interested should be listed in a covering letter to the Confidential Reply Supervisor.

AK

$$
\text { perience but not less than } £ 7,300 \text {. }
$$ Austin

ALL DEVICES BRAND NEW. FULL SPEC. AND FULLY GUARANTEED. ORDERS
 (TELEPHONE ORDERS BY ACCESS NOW ACCEPTED Minimum $£ 10.00$ plasa).
TRADE AND EXPORT INQUIRY WELCOME. P \& ADD 50 p TO ALL ORDERS VAT

Export orders no VAT. Applicable to U.K. Customers only. Unless
stated otherwise, all prices are oxclusive of VAT. Please add 15% to the total cost including p \& p.
Wo stock many more items. It pays to visit us. We are situated behind Watford Monday to Saturday 9 a.m.-6 p.m. Ample Free Car Parking space available.

POLYESTER RADIAL LEAD CAPACITORS: 250V;
10n, 15n 22n 27n 6p; 33n, 47n, 68n. 100 n 7 p ; 150 n , 220n 10p;

ELECTROLYTIC CAPACITORS (Values in μ F). 500V: 10 52p; 47 78p; 63V: 0.47, 1.0

 TAG-END TYPE: 70V: 4700 245p; 64V: 3300 198p; 2200 139p; 50V: 3300 154p;
2200 110p; 40V: 4700 160p; 25V: 4700 98p; 10,000 320p; 15,000 345p.

TANTALUM BEAD CAPACITORS: 35V: $0.1 \mu, 0.22,0.3315 p ; 0.47,0.68$. 1.0. 1.5 16p; 2.2, 3.3 18p; 4.7, 6.8 22p; $1028 \mathrm{p} ; 16 \mathrm{~V}: 2 \cdot 2,3.3 .16 \mathrm{p} ; 4.7$ $6.8,10$ 18p; 15 36p; 22 30p; 33, 47 40p; $10075 \mathrm{p} ; 22088 \mathrm{p} ; 10 \mathrm{~V}: 15,22$ 26p; 33, 47 35p; 100 55p.

POTENTIOMETERS: Carbon Track $0.25 \mathrm{~W} \log \&$ Linear Valves. $470 \Omega, 680 \Omega 1 \mathrm{~K}, 2 \mathrm{~K}$ (Lin only) Single $\mathbf{3 0 p}$ 5 K to 2 M S Single gang $\mathbf{3 0 p}$ $5 \mathrm{~K} \Omega$ to $2 \mathrm{M} \Omega$ Single with D / P switch $\mathbf{7 8 p}$ 5 K to 2 M Dual gang 88 p WW Wirewound $50 \Omega-20 \mathrm{~K}$ $\mathbf{1 1 5 p}$	

POLYESTER (MYLAR) CAPACITORS:
100V: $1 \mathrm{nF}, 2 \mathrm{n}, 4 \mathrm{n}, 4 \mathrm{n} 7,10 \mathrm{n} 6 \mathrm{p} ; 15 \mathrm{nF}$, 100V: $1 \mathrm{nF}, 2 \mathrm{n}, 4 \mathrm{n}, 4 \mathrm{n7}, 10 \mathrm{n} 6 \mathrm{p} ; 15 \mathrm{nF}$,
$22 \mathrm{n}, 30 \mathrm{n}, 40,47 \mathrm{p} ; 56,100 \mathrm{n}, 2009 \mathrm{p} ;$
$50 \mathrm{~V} ; 470 \mathrm{nF}, 12 \mathrm{p}$. CERAMIC CAPACITORS 50V
Range: 0.5 pf to 10nf

SLIDER POTENTIOMETERS $0.25 \mathrm{~W} \log$ and linear values 60 mm tra $5 \mathrm{~K} \Omega 500 \mathrm{~K} \Omega$ Single gang $10 \mathrm{~K} \Omega 500 \mathrm{~K} \Omega$ Dual gang Self-Stick graduated Alum. Bezels	70p $110 p$ $40 p$
PRESET POTENTIOMETERS 0 1W 500-2.2M Minl. Vert. \& Horiz. $0.25 \mathrm{~W} 100 \Omega-3.3 \mathrm{M} \Omega$ Horiz. larger	7p 10p 10p

POLYSTYRENE CAPACITORS
10pF to $1 \mathrm{nF}, 8 \mathrm{p}$

RESISTORS-5\% carbon, High Stab.
Miniature, Low Noise.

 VER

COPPER CLAD BOARDS

AF

$$
\begin{aligned}
& \text { LIN } \\
& 702 \\
& 709 \\
& 71 \\
& 733
\end{aligned}
$$

SOLDERCON	VERO WIRING PEN
PINS	
100 pins 70p;	spaool 310p
500 pins 325p	

EDGE
\qquad

Low	Wire			-1	156
profile	wrap	2	10 way	-	$135 p$
$8 p$	$25 p$	2	15 way	-	$140 p$
$10 p$	$35 p$	2	18 way	$180 p$	$145 p$
$10 p$	$42 p$	2	22 way	$199 p$	$200 p$
$16 p$	$52 p$	2	23 way	$210 p$	

8 pin 8 p
14 pin 10 p
16 pin
18 pin
18 pin 1
20 pin
22 pin
pin 22p
2 pin 25p
pin 25p
pin 28p

DENCO COILS

VALVE TYPE Ranges:1-5

Ranges: $1-5 \mathrm{BI}, \mathrm{YI}$.
Rd. Wht.
122 p
\qquad
$\begin{array}{lll}\text { T-type (Transistor } 1 \text { IFT } 18 / 465 \\ \text { Tuning). } & \text { TOC1 } \\ \text { Ranges: } 1-5 & \text { BI. YI. }\end{array}$

JACKSONS VARIABLE CAPS.
$\begin{array}{llll}\text { Dielectric } & & \text { O-2-365pF with slow } \\ 100 / 300 \mathrm{pF} & \text { 220p motion Drive } & \text { 495p } \\ 500 \mathrm{pF} & \text { 250p } 00-2-208 / 176 & \text { 435p }\end{array}$ $\begin{array}{ll}500 \mathrm{pF} & 250 \mathrm{p} \text { 00-2-208/176 435p } \\ 6: 1 \text { Ball Drive } & \\ \text { 451 }\end{array}$ $\begin{array}{llll}\text { 4511/DAF } & \text { 185p } & \text { motion drive } & \text { 495p } \\ \text { Dial Drive } 4103 & \text { 775p } & \text { C804:5pF: } 10 & \text { 278p } \\ 6: 1 / 36: 1 & & \text { 755p } & \text { 25pF } \\ \text { 290p } & \text { 290p }\end{array}$ Drum 54 mm $00-2-365 \mathrm{pF}$
$00-2-650 \mathrm{pF}$ $\dot{C} \cdot 3 \times 310 \mathrm{pF}$
$0.3 \times 25 \mathrm{pF}$

H.A.C short-wave
 KITS

WORLD-WIDE RECEPTION

If you prefer a valve receiver the

MODEL DX
 MARK III

is still as popular as ever
$£ 15.00$
for the complete kit.
To replace H.T. batteries we can now supply a
BATTERY ELIMINATOR KIT
90 v HT. $3 \mathrm{v}, 2 \mathrm{v}$ \& $1 \frac{1}{2} \mathrm{v}$ LT
£11.00

Also suitable HEADPHONES for use with the DX

$$
£ 6.75
$$

All orders despatched within 7 days. Send stamped and addressed envelope now for free descriptive catalogue of kits and accessories.

SORRY, NO CATALOGUES WITHOUT S.A.E.
 "H.A.C." SHORT-WAVE PRODUCTS

P.O. Box No. 16, 10 Windmill Lane Lewes Road, East Grinstead, West Sussex RH19 3SZ.

Designer Approved
 PW 'WINTON'

Tuner and Amplifier Kits

Matching Tuner and Stereo Amplifier of the highest quality and great versatility. Both designed by the renowned Ted Rule and described in the pages of this Magazine.
The Tuner covers no less than 5 wavebands, LW, MW, SW, FM and TV Sound. I.F. Stages have switchable bandwidth and use the very latest low-noise chip and double discriminator coils to give you a clean undistorted sound. Frequency indication is by a vacuum fluorescent digital readout with clock and timer functions. Stereo decoding is performed by another very advanced chip having noise cancelling and low-distortion characteristics. The ready built and aligned FM Front end has no less than 6 Varicap tuned stages keeping image responses more than 100db down but giving very high gain on the wanted frequency. The unique AM Front end is also supplied ready built and tested. Power supply uses a special miniature low-field toroidal transformer.
The stereo amplifier is of similarly advanced design using Hitachi Power MosFets in the output stages. Power rating is 50 watts per channel and 5 push button selected inputs are provided. Power supply again uses a Toroidal mains transformer of substantial rating. This amplifier received an excellent review from Gordon King, if you would like a reprint just drop us an SAE.
Both units have solid aluminium chassis, silver anodised Front Plates with black lettering and fit in beautiful wood veneered cabinets. Very full assembly instructions are included with both kits. Printed circuit boards are roller tinned for ease of soldering and have component locations marked to remain visible after assembly. All components are of the standard which has made HART KITS the most trusted for 20 years.
$\begin{array}{ll}\text { Complete Kit of all parts for Tuner } & \mathbf{£ 1 6 3} \\ \text { Complete Kit of all parts for Amplifier } & \mathbf{£ 1 0 9}\end{array}$ Complete Kit of all parts for Amplifier Packing and
Prices Plus VAT and $£ 1.50$ Post, Pas Insurance.
We are Importers and Stockists of a comprehensive range of Cassette Heads and Decks. Write or phone for your free copy of our illustrated lists.

HART ELECTRONIC KITS LTD. Penylan Mill
Oswestry, Shropshire SY10 9AF.
Tel: 06912894
Personal callers are always very welcome but please note that we are closed all day Saturday.

INDEX TO ADVERTISERS

A.H. Supplies
A.K. Confidentia
A.K. Developments Ltd

Alweld Engineering
Amateur Electronics U.K.
Amateur Radio Exchang
Amateur Radio Exchange
Ambit international
Amcomm Services
Anglia Components
Auto Marine Development Co.
Bi-Pak

Birkett J

Black Star Ltd
C. Bowes Electronics Ltd

Bredhurst Electronics
C.a. Centre

Cambridge Kits
Cambridge
Catronics Ltd
Colomor Electronics Ltd
CR Supply Co. 91
93
96
84
37
89
69
25
88
70
91
17
86
16
10
ver 2
91

Craske, S.A.
Davtrend Ltd
Dubilier Condensor Co. Lid. .. "Supplement
Electrovalue Ltd
Electronic Hobbies Fair
Electronic Mail Order Ltd
Enfield Emporium

Evans, D.C

Ferranti Electronics

Garex Electronics

Gemini Communications
G.T. Technical Information Services

G2 Dym Aerials

Golledge Electronics

Goodmans Loudspeakers A.A.C. Shortwave Product Ham International
Hart Electronic Kits
Heath Electronics (UK) Ltd
Henry's Radio
Holdings F.A.C.
I.C.S. Electronics Ltd
I.C.S. Intertext
I.L.P. Electronics Ltd

Jackson Bros.			Supplement		
L.B. Electronics					89
Lee Electronics Ltd		.			
Leeds Amateur Radio		.			
H. Lexton Ltd					
Lightening Electronic Components					76
M.H. Electronics Maplin Electronic Supplies					92
Marco Trading	.	.	\cdots	\cdots	
Microwave Modules	..	.			
Modular Electronics					88
Monolith Electronics	.	..			
eosid Small Orders	..				85
Packer Communication					16
Partridge Electronics		..	\cdots	..	
P.M. Components Ltd	.	..	\cdots	\cdots	
Photo Acoustics Ltd	
Pole Mark Ltd		14
Progressive Radio		..	\cdots		66
Proto Design					
R.S.T. Valve Mail OrderRadio Component Specialists		..		-	96
		\cdots	.		95
Radio Component Specialists Radio Society of Great Britain					12
Randam Electronics	..	.	\cdots		66
Rapid Results College		\cdots			76
Relay-a-Quip Products		.			
S.E.M.			.		6
Scientific Wire Co.			.		
Selectronic Services		.	..		
Sinclair Research					
Solent Electronics (Gosport) Ltd			.		38
South Midlands Communications					5
Stephens-James Ltd	\cdots		12
Stort Technology			
Tandy Corporation					75
Tannoy Products Ltd					
Technomatic			.		85
Telecomms Ltd			.		
Thanet Electronics Ltd		
Tuition - Peter Bubb	.				
Waters \& Stanton Electronics					15
Watford Electronics					
Western CommunicationsWestern Electronics (UK) Ltd			\bullet		26
					96
Wilmslow Audio			\cdots		39
Wintek Electronics					14
	.				26

NEW MODEL MINI-MULTI TESTER Deluxe pocket size precision moving - 4000 o.p.v. Battery included. 11 ins tant ranges measure: $D C$ volts 5,25 ,
250,500 . AC volts $10,50,500,1000$. DC amps $0-250 \mu \mathrm{a}: \mathbf{0 - 2 5 0 \mathrm { ma } \text { . Con- }}$

NEW PANEL METERS $\mathbf{£ 4 . 5 0}$ $50 \mu \mathrm{a}, 100 \mu \mathrm{a}, 500 \mu \mathrm{a}, 1 \mathrm{ma}$, $5 \mathrm{ma}, 50 \mathrm{ma}, 100 \mathrm{ma}, 25 \mathrm{vol}$ VU Meter. 500 ma ,
$1 \mathrm{amp}, 2 \mathrm{amp}$
Facia $2 \frac{1}{4} \times 2 \times 1 \frac{1}{4} \mathrm{in}$. Post 65p.

FAMOUS LOUDSPEAKERS
Post $£ 2$ each

Make	Model	Size	Watts	Ohms	Price
Goodmans	Tweeter	$3 \frac{1}{2}$ in	25	8	¢4.00
Seas	Tweeter	4 in	50	8	¢9.50
Audax	Tweeter	4 in	30	8	¢6.50
Audax	Mid-Range	4 in	50	8	¢7.50
Seas	Mid-Range	$4 \frac{1}{2}$ in	100	8	£12.50
Seas	Mid-Range	5 in	80	8	£12.00
Goodmans	Woofer	8 in	25	4 or 8	f6.50
Audax	Woofer	8 in	40	8	£14.00
Audax	Woofer	10 in	50	8	£16.00
Goodmans	8HB	8 in	60	8	£12.50
Rigonda	Full-Range	10 in	15	8	£5.00
Baker Hi -Fi	Deluxe	12 in	15	8	£14.00
Baker Hi -Fi	Major	12 in	30	4/8/16	£14.00
Baker Hi -Fi	Supert	12 in	30	8/16	£24.00
Baker P.A.	Group 45	12 in	45	4/8/16	£14.00
Baker $\mathrm{Hi}-\mathrm{Fi}$	Auditorium	12 in	45	8/16	£22.00
Baker $\mathrm{Hi}-\mathrm{Fi}$	Auditorium	15 in	60	8/16	£34.00
Baker P.A.	Group 75	12 in	75	4/8/16	£18.00
Goodmans	GR (P.A.)	12in	90	8/16	£27.50
Baker P.A.	Group 100	12in	100	8/16	£24.00
Baker P.A.	Disco 100	12 in	100	8/16	£24.00
Baker P.A.	Group 100	15 in	100	8/16	£32.00
Baker P.A.	Disco 100	15 in	100	8/16	£32.00
Goodmans	HPD (P.A.)	12 in	120	8	¢29.50
EMI	450	13×8 in	10	3/8	£9.50
EMI	Bass	13×8 in	20	15	£12.50
Goodmans	HP (P.A.)	18 in	230	8	£80.00

BATTERY ELIMINATOR MAINS to 9 VOLT DC Stabilised output, 9 volt $400 \mathrm{~m} . a$. UK made with terminals. Overload cut out. $5 \times 3 \frac{1}{4} \times 2 \frac{1}{2} \mathrm{in}$. Transformer Rectifier Unit. Suitable Radios. Cassettes. £4.50. Post 50p.
R.C.S. LOUDSPEAKER BARGAINS $3 \mathrm{ohm}, 5 \mathrm{in} .7 \times 4 \mathrm{in} . \mathfrak{£ 2 . 5 0 ;} 8 \times 5 \mathrm{in} .6 \frac{1}{2} \mathrm{in} . £ 3 ; 8 \mathrm{in} . \mathfrak{£ 3 . 5 0} ; 10 \mathrm{in} . \mathfrak{£ 5}$ $8 \mathrm{ohm}, 2 \mathrm{in} .2 \mathrm{tin} . £ 2.00 ; 3 \mathrm{in} .5 \mathrm{in}, 5 \times 3 \mathrm{in}$.
$6+\mathrm{in} . £ 3 ; 8 \mathrm{in} . £ 4.50 ; 10 \mathrm{in} . £ 5 ; 12 \mathrm{in} . \mathbf{£ 6}$.
$15 \mathrm{ohm}, 3 \mathrm{in} .5 \times 3 \mathrm{in} .6 \times 4 \mathrm{in} .7 \times 4 \mathrm{in} .5 \mathrm{in} . £ 2.50$
$25 \mathrm{ohm}, 3 \mathrm{in} .5 \times 3 \mathrm{in} .7 \times 4 \mathrm{in} . £ 2.50 ; 120 \mathrm{ohm}, 3 \mathrm{i} \mathrm{in}$. dia. $\mathbf{£ 1 . 5 0}$.

LOW VOLTAGE ELECTROLYTIC

1, 2, 4, 5, 8, 16, 25, $30,50,100,200 \mathrm{mF} 15 \mathrm{~V} 10 \mathrm{p}$.
$500 \mathrm{mF} 12 \mathrm{~V} 15 \mathrm{p} ; 25 \mathrm{~V} 20 \mathrm{p}: 50 \mathrm{~V} 30 \mathrm{p}:$
$1000 \mathrm{mF} 12 \mathrm{~V} 20 \mathrm{p}: 25 \mathrm{~V} 35 \mathrm{p}: 50 \mathrm{~V} 50 \mathrm{p} ; 1200 \mathrm{mF} / 78 \mathrm{~V} 80 \mathrm{p}$
$2200 \mathrm{mF} 6 \mathrm{~V} 25 \mathrm{p} ; 25 \mathrm{~V} 42 \mathrm{p} ; 40 \mathrm{~V} 60 \mathrm{p} ; 2000 \mathrm{mF} / 100 \mathrm{~V} \mathrm{f} 1.20$
$2500 \mathrm{mF} 50 \mathrm{~V} 70 \mathrm{p} ; 3000 \mathrm{mF} 25 \mathrm{~V} 50 \mathrm{p} ; 50 \mathrm{~V} 65 \mathrm{p}$.
$3300 \mathrm{mF} 63 \mathrm{~V} £ 1 \cdot 20 ; 4700 \mathrm{mF} 63 \mathrm{~V} 1 \cdot 20 ; 2700 \mathrm{mF} / 76 \mathrm{~V} £ 1$.
$4700 \mathrm{mF} 40 \mathrm{~V} 85 \mathrm{p} ; 1000 \mathrm{mF} 100 \mathrm{~V}$ £ 1

HIGH VOLTAGE ELECTROLYTICS
$8 / 450 \mathrm{~V}$
45 p
$8-8 / 450 \mathrm{~V}$
75 p
$10.50 / 300 \mathrm{~V}$

TRIMMERS 30pF, 50pF, 10p. 100pF, 150pF, 15p. 500pF 30p TRIMNERS
CONDENSERS VARIOUS, 1 pF to $0.01 \mathrm{mF} 350 \mathrm{~V}, 5 \mathrm{p}$.
$400 \mathrm{~V}-0.001$ to 0.05 5p: $0.115 \mathrm{p} ; 0.25 \mathbf{2 5 p}: 0.4735$ $400 \mathrm{~V}-0.001$ to $0.055 \mathrm{p} ; 0.115 \mathrm{p} ; 0.2525 \mathrm{p} ; 0.4735 \mathrm{p}$.
$1000 \mathrm{~V} 0.1 \mathrm{mF} 25 \mathrm{p} ; 0.22 \mathrm{mF} 30 \mathrm{p} ; 0.47 \mathrm{mF} 60 \mathrm{p} ; 1750 \mathrm{~V} 0.22 \mathrm{mF} 5 \mathrm{l}$ WAFER SWITCHES. 1 pole $12 \mathrm{~W}, 2$ pole $6 \mathrm{~W}, 3$ pole 4 W , 4 pole $3 W, 2$ pole $2 \mathrm{~W}, 4$ pole 2 W 60 p ea.
TWIN GANGS 120 pF 50 p ; $500+200 \mathrm{pF} £ 1$.
TWIN GANGS 120pF 50 p; 5IC 100 pF 500 pF £1.50.
SINGLE SOLID DIELECTRIC $100 \mathrm{pF}, 500 \mathrm{pF} \mathrm{£1.50}$.
GEARED TWIN GANGS 25 p 95p: $365+365+25+25 \mathrm{pF}$ £1. SLOW MOTION DRIVE 6:190p. REVERSE VERNIER 60p. VERNIER DIALS $36 \mathrm{~mm} £ 2.2550 \mathrm{~mm} £ 2.75$
SPINDLE EXTENDERS 60 p. COUPLERS 40 p.
NEON PANEL INDICATORS 250V. Red $1 \frac{1}{4} \times \frac{1}{4}$ 4p.
RESISTORS. 10 IO 1010 M . 1 W IW, 20% 2p, $2 \mathrm{~W}, 10 \mathrm{p}$.
RESISTORS. 10 Q to $10 \mathrm{M} . \frac{1}{\mathrm{~W}} \mathrm{~W}$, $1 \mathrm{~W}, 20 \%$ 2p, 2 W , 10p.
HIGH STABILITY. $\mathbf{2}$. 2% ohms to 10 meg., 8 pp .
HIGH STABILITY, $\frac{\ddagger}{2}$ W $2 \% 10$ ohms to $1 \mathrm{meg} ., 8 \mathrm{p}$.
Ditto 5%. Preferred values 10 ohms to 10 meg . 3 p.
WIRE-WOUND 10 ohm to 10 K 5 watt, 10 watt, 20p.
BLANK ALUMINIUM CHASSIS. $6 \times 4-£ 1.45 ; 8 \times 6-£ 1.80$ $10 \times 7-£ 2.30 ; 12 \times 8-£ 2.60 ; 14 \times 9-£ 3.00 ; 16 \times 6-£ 2.90:$
$16 \times 10-\mathrm{f} 3.20$. All $2 \frac{1}{2} \mathrm{in} .18$ swg. ANGLE ALI. $6 \times \frac{3}{2} \times \frac{3}{2} \mathrm{in} .25 \mathrm{p}$. $16 \times 10-\mathrm{fz3.20}$. All $2 \frac{1}{2} \mathrm{in}$. 18 swg . ANGLE ALi. $6 \times \frac{2}{2} \times \frac{3}{2} \mathrm{in} 25 \mathrm{pp}$.
ALUMINIUM PANELS, 18 swg . $6 \times 4-45 \mathrm{p} ; 8 \times 6-75 \mathrm{p}$
 PLASTIC box with aluminium facia $6 \frac{1}{2} \times 4 \frac{2}{2} \times 2^{\prime \prime} \mathrm{£1.50}$.
ALUMINIUM BOXES WITH LIDS
ALUMINIUM BOXES WITH LIDS
$3 \times 2 \times 1 £ 1.4 \times 2 \frac{1}{7} \times 2 £ 1.4 \times 4 \times 2 \frac{1}{2} 1.35$
$3 \times 2 \times 1 £ 1.4 \times 2 \frac{1}{2} \times 2 £ 1.4 \times 4 \times 2 \frac{1}{2} £ 1.35$.
$6 \times 4 \times 2 £ 1.60 .7 \times 5 \times 3 £ 2.40 .8 \times 6 \times 3 £ 2.50$
$10 \times 7 \times 3 £ 3.12 \times 5 \times 3 £ 2.75 .12 \times 8 \times 3 £ 3.60$.
BRIDGE RECTIFIER 200 V PIV $\ddagger \mathrm{amp} \mathbf{5 0} \mathrm{p} .2 \mathrm{amp} \mathbf{£ 1 . 0 0}$ $4 \mathrm{amp} £ 1.50$. 8 amp £2.50. DIODES 1a, 10p; 3a, 30p. TOGGLE SWITCHES SP 40p. DPST 50p. DPDT 60p.
MINIATURE TOGGLES SP, 40p; DPDT, 60p.

MAINS TRANSFORMERS

[^3]

		EM87	1.50 3.50	$\begin{array}{ll}\text { PY81 } & \mathbf{0 . 8 4} \\ \text { PY82 } & 0.80 \\ \text { PY83 }\end{array}$	6AN5	4.74 3.45	607	2.20 1.45
AZ31	1.10	EN91	3.50	PY82 0.80	6AN8A	3.45	6SA7	1.45
CL33	2.00	EY51	1.75	PY83 0.70	6A05	0.96	6SC7	1.50
DY86/7	0.84	EY86	0.84	PY88 0.88	6AR5	1.98	6SJ7	1.60
DY802	0.84	EY88	1.75	PY500A 1.80	6AS6	4.98	6SK7	1.30
E88CC	3.36	EY500A	1.94	PY800 0.84	6AS7GA	6.75	6SL7GT	2.68
E180F	8.40	EZ80	0.84	PY801 0.84	6ATG	0.85	6SN7GT	1.60
E810F	14.47	EZ81	0.84	QQVO2-6 14.06	6AU5GT	4.32	6SS7	1.80
EABC80	1.20	GY501	2.75	QQV03-10	6AU6	1.08	6SG7M	2.50
E891	0.82	GZ32	1.25	5.80	6AWBA	3.39	648	0.80
EBF80	0.50	Gz33	4.00	QQV03-20A	687	1.50	6V6GT	1.60
EBF89	0.85	GZ34	2.50	17.50	688	1.75	6×4	1.20
EC91	7.56	G237	4.00	QQV06-40A	6B46	1.00	6X5GT	0.85
ECC33	3.50	KT61	3.50	¢55.10	6847	5.12	7 C 5	2.95
ECC35	3.50	KT66	10.00	QV03-12 4.46	6BE6	1.08	$7 \mathrm{C6}$	2.25
ECC81	0.88	KT77	8.00	R18 $\quad \mathbf{4 - 2 5}$	6BH6	1.52	757	2.25
ECC82	0.72	KT88	12.00	R19 $\quad \mathbf{1 . 2 0}$	68 J 6	1.08	12AT6	1.20
ECC83	0.88	N78	9.00	SP41 6.00	6BN6	1.65	12AT7	0.88
ECC85	1.20	OA2	2.00	SP61 2.00	6B07A	3.72	$12 \mathrm{AU7}$	0.72
ECC88	1.90	OB2	2.55	U19 13.75	6BR7	4.00	$12 \mathrm{AX7}$	0.88
ECC91	8.93	OC3	1.92	U25 1.16	68R8	1.75	$128 A 6$	2.19
ECF80	1.08	OD3	1.92	U26 $\quad 1.44$	6BS7	4.00	128E6	2.43
ECH35	2.00	PC86	1.40	$\begin{array}{ll}\text { U37 } & \mathbf{9 . 0 0}\end{array}$	6BW6	4.00	$12 \mathrm{BY7}$	2.70
ECH42	1.15	PC88	1.40	UABC80 1.25	68W7	1.52	128Y7A	2.70
ECH81	1.20	PC92	1.28	UBF89 $\mathbf{1 . 2 0}$	6BZ6	2.37	12HG7	4.17
ECL80	1.00	PC97	1.20		$6 \mathrm{C4}$	0.88	30FL1/2	1.12
ECL82	1.00	PC900	1.20	$\begin{array}{ll}\text { UCH81 } & \mathbf{2 . 3 2}\end{array}$	6 C 6	1.75	30 P 4	1.20
ECL83	1.50	PCF80	1.00	UCL82 $\quad 1.04$	6CB6A	2.49	30P19	1.20
ECL86	1.20	PCF82	1.00	UCL83 1.44	6CD6GA	5.07	30 PL 13	1.80
EF37A	3.50	PCF86	1.60	UF89 $\quad 1.44$	6CL6	£3.72	30 PL 14	1.68
EF39	2.75	PCF801	1.60	UL41 $\quad \mathbf{2 . 5 0}$	6CH6	10.40	75C1	2.35
EF41	2.00	PCF802	1.90	UL84 $\quad 1.20$	6CW4	7.68	85A2	2.39
EF42	2.00	PCF805	1.60	UY41 1.25	606	1.75	90 Cl 1	2.44
EF50	1.50	PCF808	1.60	UY85 1.04	6005	5.94	150B2	3.02
EF54	5.00	PCH200	1.60	VR105/30 1.92	6EA8	2.94	150 C 2	1.92
EF55	2.50	PCL82	1.00	VR150/30 1.92	6 EH5	1.85	$150 \mathrm{C4}$	$2{ }^{3}$
EF80	0.80	PCL83	2.00	$2759 \quad 16.80$	6 F6	1.75	5728	27.50
EF86	1.52	PCL84	1.00	Z803U 7.90	6Gk6	2.67	805	20.00
EF91	1.80	PCL85	1.08	$2 \mathrm{D} 21 \quad 3.50$	$6 \mathrm{H}^{6}$	1.50	807	3.75
EF92	5.81	PCL86	1.08	$3 \mathrm{B28}$ 14-35	6HS6	3.77	811 A	18.33
EF183	0.80	PCL805	1.08	$4 \mathrm{CX250B}$	6 J 5	2.50	812 A	18.33
EF184	0.84	PD500	3 -60	45.00	$6 J 6$	3.50	813	79.26
EH90	1.40	PFL200	1.80	$5 \mathrm{R4GY} 3.50$	6.57	2.50	866A	15.27
EL32	1.50	PL36	1.20	$5 \mathrm{~L} 4 \mathrm{G} \quad 1.52$	6JB6A	4.56	872A	21.47
EL33	3.50	PL81	1.20	$5 \mathrm{~V} 4 \mathrm{G} \quad 1.52$	6JS6C	5.58	931A	15.78
EL34	2.20	PL82	1.20	5Y3GT 0.85	6 K 4 N	1.25	2050	6.96
EL36	1.60	PL83	2.22	523 1-50	6 K 6 GT	1.30	5763	
EL81	3.56	PL84	1.08	524 GT 1.50	$6 K 7$	1.50	5814 A	3.72 12.09
EL84	1.00	PL504	1.40	6/3DL2 1.56	6 K 8	1.75	5842	12.09 6.85
EL86	2.50	PL508	1.80	6 6AB7 1.50	6 6. 06	6.36	6080	6.85
EL91	7.14 1.32	PL509	5.00	6AH66AK5 $\mathbf{4 . 7 1}$	${ }^{6 L 6 G}$	2.50	6146A	10.64 8.12
EL95	1.32	PL519	5.00	6 6K5 $\quad 3.60$	${ }_{6 L} 6.6 \mathrm{GC}$	2.50	61468	8.12 12.73
El360	8.50 1.00	PL802	2.96 1.90	$\begin{array}{ll} \text { 6AL5 } & \mathbf{0 . 8 2} \\ \text { 6AM6 } & \mathbf{1 . 8 0} \end{array}$	617 6106	2.00 6.72	${ }_{69838}^{688}$	12.73 3.87
Prices excluding VAT add 15\%		Open daily to callers: Mon-Fri 9 a.m. -5 p.m. Valves, Tubes and Transistors. Closed Saturday Terms C.W.O. only - Tel. 01-677 2424-7. Quotations for any types not listed S.A.E. Post and packing 50p per order					$\begin{aligned} & 7860 \\ & 7586 \\ & 7587 \end{aligned}$	$\begin{array}{r} 9.96 \\ 10.14 \\ 17.49 \end{array}$
		Prices when to p	correct going ess					

If you see an advertisement in the press, in print, on posters or a cinema commercial which you find unacceptable, write to us at the address below. (TV and radio commercials are dealt with by the I.B.A.)
The Advertising Standards Authority. If an advertisement is wrong, we're here to put it right.

ASA Ltd. Brook House,Torrington Place, London WCIE THN.

Western "BARGAIN CORNER"
 WATCH THIS CORNER EVERY MONTH!
 We have reserved this space so that you know exactly where to turn for those SPECIAL OFFERS. Each month we shall feature item/s for A LIMITED PERIOD ONLY.
 THIS MONTH'S SPECIAL OFFERS until 30th Sept. (or sold out)
 LINEAR AMPLIFIER
 THE FABULOUS
 DENTRON
 CLIPPERTON 'L'
 2 KW. ONLY £399 (A FRACTION OF
 THE ORIGINAL COST!)
 CB
 40CH MOBILES
 FM SETS TO UK SPEC. SMALL SIZE!
 ONLY 4i" WIDE $\times 7$ lan $^{\prime \prime}$ DEEP $\times 1 \frac{1}{2}$ " HIGH.
 SMALL PRICE!
 ONLY $£ 35.00$
 FAIRFIELD ESTATE, LOUTH, LINCS LN11 OJH

Tel: Louth (0507) 604955 Telex: 56121 WEST G.

\star South Coast TRIO Superstore \star

TS830S	160-10 m transceiver 9 bands	£694.00
VFO230	Digital VFO with memories	215.00 (5.00)
AT230	All-band ATU power meter	119.00 (2.25)
SP230	External speaker unit	34.95 (1.50)
DS2	Optional dc pack for TS830S	43.95 (1.50)
DFC230	Dig frequency remote controller	179.00 (1.50)
YK88C	500 Hz CW filter	29.60 (1.00)
YK88CN	270 Hz CW filter	32.60 (1.00)
TS530SE	$160 \cdot 10 \mathrm{~m}$ trans 200 W pep digital	534.00 (5.00)
VFO240	External VFO	92.50 (5.00)
SM220	Station monitor scope	198.00 (5.00)
BS8	Pan display TS820/180/830	44.85 (.50)
BS5	As above for TS520	44.85 (.50)
R820	Amateur band receiver	589.00 (5.00)
YG455C	500 Hz CW filter	61.00 (.50)
YG455CN	250 Hz CW filter	65.00 (.50)
YG88A	6 kHz AM filter	35.40 (.50)
TS180S	$160-10 \mathrm{~m}$ S/State transceive	679.65 (5.00)
VFO180	External VFO	96.60 (1.50)
SP180	External speaker unit	36.80 (1.50)
AT180	Matching 200W antenna tuner	95.45 (5.00)
YK88C	500 Hz CW filter	29.60 (.50)
YK88S	Second SSB filter option	29.20 (.50)
PS30	AC power supply for TS180S	88.50 (5.00)
TS130S	8 band 200W pep	525.00 (5.00)
TS130V	8 band 200 W pep	445.00 (5.00)
DFC230	Dig frequency remote controller	179.00 (1.50)
TL120	200W pep linear for TS 120 V	144.00 (5.00)
MB100	Mobile mount for TS120/130	17.00 (1.00)
YK88C	500 Hz CW filter	29.60 (.50)
YK88S	2nd SSB filter option	32.60 (. 50)
VFO120	External VFO	85.00 (5.00)
SP120	Base station external speaker	23.00 (1.25)
SP40	New mobile speaker unit	12.40 (1.50)
AT130	100W antenna tuner	79.00 (1.50)
PS20	AC power supply TS $120 / 130 \mathrm{~V}$	49.45 (5.00)
PS30	AC power supply TS 120/130S	88.50 (5.00)
MA5	5 band mobile aerial system	88.75 (4.50)
TL922	160-10 metre 2 kW linear	624.00 (5.00)

Dual impedance desk microphone Fist microphone 50 K impedance Fist microphone 500 ohm imp. HF lowpass filter, 1 kW 1 kW oil filled dummy load $2 \mathrm{~m} / 70 \mathrm{~cm}$ all mode transceiver External speaker uni 2 m synthesised multimode 70 cm all mode \quad Base plinth for TR9000 Base plinth for TR9000
2 m FM synthesised 2 m FM synthesised mobile 70 cm FM synthesised 70 cm FM synthes
AC psu for above AC psu for above
2 m
FM synthesised portable 10W amplifier for TR2300 Mobile mount TR2300/VB2300 Rubber flexible antenna AC power unit and charger 2 m FM synthesised handheld External speaker/mic Base stand and quick charger 12 V quick charger
Soft carrying case Hard leather holster Spare battery pack/charge lead Mobile stand and charger Gen, coverage receiver Gen. coverage receiver External speaker
Digital desk world clock Deluxe Comm, headphones Standard headphones
Dip meter
New 25W FM transceive
$£ 25.75(1.50)$
$13.80(1.00)$ $13.80(1.00)$ $19.30(1.00)$ $52.00(1.50$ $748.00(5.00)$ $18.60(1.00$
359.00 $359.00(5.00$
$449.00(5.00$ $449.00(5.00)$ 34.95 (5.00) $257.00(5.00)$
$314.00(2.50)$ $314.00(2.50)$ $299.00(2.50)$
$64.75(2.50)$ $64.75(2.50)$
$166.75(5.00)$ $16.75(5.00)$
$58.00(1.50)$ 17.70 (1.00) 6.90 (.50) $6.90(.50)$
$29.50(1.50$ 207.00 (5.00 24.4911 .00 $45.00(1.50)$ $18.40(1.50)$ 12.19 (. 50) 12.19
21.39 (. 50 22.31 (1.50 $28.00(1.50)$ 235.0015 .00 $295.00(5.00)$ $26.90(2.50)$ $58.75(1.50$ $21.85(1.00)$
$10.35(1.00)$ $10.35(1.00$
$60.00(1.75$ $60.00(1.75$
$247.00(5.00$ $247.00(5.00)$
$395.00(5.00)$

C5/2M	5 dB glass fibre colinear	¢47.70 (3.50)
$5 \mathrm{Y} / 2 \mathrm{M}$	5 element yagi	12.07 (2.00)
BY/ 2 M	8 element yagi	15.50 (2.50)
10Y/2M	10 element 'long yagi'	33.36 (3.50)
PBM10/2M	10 element Parabeam	39.67 (3.50)
PBM/14/2M	14 element Parabeam	48.30 (4.50)
$5 \mathrm{XY} / 2 \mathrm{M}$	Crossed 5 element yagi	21.72 (3.00)
$8 \mathrm{XY} / 2 \mathrm{M}$	Crossed 8 element yagi	31.00 (3.50)
10XY/2M	Crossed 10 element yagi	40.80 (4.00)
X6.2M6X12	70 cm Dual band crossed yagi	41.40 (4.50)
PMH/2C	2 way phasing harness	8.00 (75)
Q4/2M	4 element quad yagi	25.87 (2.50)
Q6/2M	6 element quad yagi	33.90 (4.50)
D5/2M	Double 5 slot-fed yagi	21.85 (2.50)
D8 2 M	Double 8 slot-fed yagi	29.32 (4.00)
SVMK $/ 2 \mathrm{M}$	Kit for vertical polarization	5.15 (1.50)
UGP / 2 M	Ground plane	10.90 (1.50)
HO/2M	Mobile 'halo' head only	5.75 (1.75)
HM/2M	Mobile 'halo' with 24 mast	5.75 (1.75)
PMH2/2M	2 way phasing harness	10.90 (1.00)
PMH4/2M	4 way phasing harness	25.30 (1.75)

70 cm Antennas
$\mathrm{C} 8 / 70 \mathrm{~cm} \quad 8 \mathrm{~dB}$ glass fibre colinea
54.00 (3.50)

D8/70 cm \quad Double 8 slot-fed yagi $\quad 22.40$ (2.50
PBM18/70cm 18 element Parabeam $\quad 27.60(2.50$
MBM $48 / 70 \mathrm{~cm} 43$ element Multibeam $\quad 31.00$ (3.00
MBM88/70 cm 88 element Multibeam $\quad 42.55$ (4.50
$8 \mathrm{XY} / 70 \mathrm{~cm} \quad$ Crossed 8 element yagi $\quad 36.80(4.50$ PMH $4 / 70 \mathrm{~cm} 4$ way phasing harness

KEYBOARD KIT WITH ELECTRONICS FOR ZX81

＊A full size，full travel 43 －key keyboard that＇s simple to add to your ZX81（no soldering in 2X81）．
＊Complete with the electronics to make＂Shift Lock＂，＂Function＂and＂Graphics 2＂single key selections making entry far easier．
＊Powered from ZX81＇s own standard power supply－with special adaptor supplied．
＊Two－colour print for key caps．
＊Amazing low price．
Full details in our projects book．Price 60p．Order As XAO3D．
Complete kit for only $\mathbf{£ 1 9 . 9 5}$ incl．VAT and carriage．Order As LW72P．

 A superb new amplifier at a remarkably low price．

＊Over 26 W per channel into 8Ω at 1 kHz both channels driven．
＊Frequency response 20 Hz to $40 \mathrm{kHz} \pm 1 \mathrm{~dB}$ ．
＊Low distortion，low noise and high reliability power MOSFET output stage．
＊Extremely easy to build．Almost everything fits on main pcb．
cutting interwiring to just 7 wires（plus toroidal transformer and mains lead terminations）．
＊Complete kit contains everything you need including pre－ drilled and printed chassis and wooden cabinet．
Full details in our projects book．Price 60p．Order As XA03D
Complete kit for only $£ 49.95$ incl．VAT and carriage．Order As LW71N

MAPLIN＇S FANTASTIC PROJECTS

Full details in our project books only 60 p each．
In Book 1 （XAO1B）120W rms MOSFET Combo－Amplifier • Universal Timer with 18 program times and 4 outputs－Temperature Gauge－Six Vero Projects
In Book 2 （XAO2C）Home Security System－Train Controller for 14 trains on one circuit Stopwatch with multiple modes－Miles－per－Gallon Meter
In Book 3 （XA03D）ZX81 Keyboard with electronics • Stereo 25W MOSFET Amplifier Doppler Radar Intruder Detector－Remote Control for Train Controller
In Book 4 （ADAE）＊Telephone Exchange expandable up to 32 extensions．Ultrasonic Intruder Detector－Frequency Counter 100 Hz to 500 MHz －Remote Control for 25W Stereo Amplifier

MORE GREAT KITS FROM MAPLIN

Matinée Organ（see box above）
Spectrum Synthesiser．Full details in book XH56L．Price $£ 1.00$
3800 Synthesiser \quad 5600S Synthesiser $\}$ Full details in book XF11M．Price $£ 2.00$
5600S Synthesiser
150W Power Amp Kit LW32K．Price $£ 17.95^{*}$
75W MOSFET Power Amp Kit LW51F．Price £11．49＊
50W Power Amp Kit LW350．Price $£ 14.95^{*}$
15W Power Amp Kit Y043W．Price $\mathbf{£ 6 . 4 5}^{*}$
$8 W$ Power Amp Kit LW36P．Price $£ 4.45^{*}$
${ }^{\bullet}$ Construction details with kit．（Power supply not included－details with kit）．

P．O．Box 3，Rayleigh，Essex SS6 8LR
Tel：Sales（0702） 552911 General（0702） 554155
Shopsat：
159 King St．，Hammersmith，London W6．Tel：01－748092€
284 London Rd．，Westcliff－on－Sea，Essex．Tel：（0702） 554000
Lynton Square，Perry Barr，Birmingham．Tel：（021） 3567292
Note：Shops closed Mondays

MATINÉE ORGAN
Easy－to－build，superb specification Comparable，with organs selling for up to $£ 1,000$ ．Full constructiong for in our book．Price f2 250 ． ${ }^{\text {In O}}$ Our book．Prite $£ 2.50$ ．
Order As XH55K．
Complete kits available：
Electronics－$£ 299.95$ ，
Cabinet－ $\mathbf{f 9 9} .50$（carriage extra）．
emo cassette price f1．99．Order As XX43W

Sixinde Six independent channels－2 or 4 wire of protection and long term reliability． Full details in our projects book． Price 60 p ．
Order As XAOZC．

米莱米米米米米米米米
＊Maplin launches MAPCARD
A new way of buying from Maplin！
Now Maplin have their own credit card．
You could have one too！

来米米米米米米米米米米米米米米
NEW SHOP IN BIRMINGHAM
Visit our brand new shop in Birmingham for our complete range of electronic components and computers．
Come and see us at Lynton Square，Perry Barr，Birmingham fust off the junction of the Outer Ring Road A4040 and Birchfield Road A34）．Tel：021－356－7292．Excellent free parking．
Opening Tuesday 24th August， 1982

Don＇t miss out－get a copy of our catalogue now！ Over 140,000 copies sold already！
On sale now in all branches of WHSVIITH 算 price fI ．
320 big pages packed with data and pictures of over 5,500 items．

Post this coupon now！

Please send me a copy of your 320 page catalogue．I enclose f 1.25 （inc． 25 p pqp）．If I am not completely satisfied I may return the catalogue to you and have my money refunded．
If you live outside the U．K．send f 1.68 or 12 International Reply Coupons．

Name

Address

Delivery within 14 days．
PW／10／82

[^0]:

 ## 373 UXBRIDGE ROAD, ACTON, LONDON W3 9RH

 Tel: 01-992 5765/6/7 Just 500 yards east of Ealing Common station
 on the District and Piccadilly Lines, and 207 bus stops outside.

 136 GLADSTONE STREET, ST HELENS, MERSEYSIDE
 Tel: 074453157 Our North West branch run by Mike (G4NAR), just around the corner from the Rugby Ground.
 Closed Wednesday at Acton and Monday at St Helens, but use our 24 -hour Ansafone service at either shop.

[^1]: A Division of IPC Magazines Ltd., King's Reach Tower, Stamford Street, London SE1 9LS (Reg. No. 53626 England)

[^2]: Please send me your FREE School of Electronics Prospectus
 Subject of Interest
 Name
 Address

 Post to: Dept 276
 ICS School of Electronic
 160 Stewarts Road
 London SW8 4UJ
 London SW8 4UJ

 01.6229911
 (All Hours)

[^3]: Radio Component Specialists 337 WHITEHORSE ROAD
 CROYDON, SURREY, U.K. TEL: 01-684 1665

