AUGUST 1981

Uuldeced

Australia $\$ 1.25$

YAESU

2M
HANDHELD

Price on application

AIRBAND RECEIVERS R517 £49.50
inc. VAT

NOW BACKIN STOCK!!!

H.F. RECEIVERS

TRIO

 R1000 £285inc. VAT \& carriage

2404
$£ 418$

TRIOTS 130 V
YFESE FT 707S
TRIO TS I30S
YAESU FT 1012 Mk III
SWAN FT 101ZD Mh III
TRIOTS 830 S
YAESU FT 107M
SWAN 102 BX
2M F.M. MOBILES
F.D.K. MULTI 700 EX

AZDEN PCS 3000
ICOM IC 55 .
TRIO TR 7800
(1) $8400(70 \mathrm{~cm})$

HANDHELD F.M.
YAESUFT 208R
TRIO TR 2300
TRIO TR 2400
STANDARD C78 170 cm)

MULTIMODES

STANDARD C58 (portable)
F.D.K. MULTI 750 F (a)

ICOM IC 260E
TRIO TR 9000
CAFSU FT 480R
TRIO TR $9500(70 \mathrm{~cm})$

ACCESSORIES

£27.95 (£1.50)
£44.95 ($£ 2.00)$ $269.00(22.50)$
$£ 99.00(2.00)$
£ $10.50(50.50)$
 £29.95 (£0.75)
E 10.95 (20.50) 110.95
$\Sigma 74.00(-)$

ACCESSORIES	
SAFETY MICROPHONES	
ADONIS MM1202S Clip on	£20.95 ($\mathbf{E 0 . 5 0)}$
ADONIS M M1202H Head band - Up/Down	£29.00 (20.50)
ADONIS M11202FU' Swan Kneck - Up/Down	£30.00 ($£ 0.50$)
DESK MICROPHONES	
YAESU YMI ${ }^{\text {d }}$ (Dual Impedance)	£18.80 (£1.50)
TRIO MC501Dual Impedancel	£24.15 (£1.50)
SHLRE 44. ${ }^{\text {d (Dual Impedance) }}$	£29.95 (£1.50)
SHURE 526T series 11 Power Mic	£39.95 (£1.50)
ADONIS AM502 Compressor Mic	£39.00 (£0.75)
ADONIS AM802 Compreswr Mic 30/P's	£59.00 (£0.75)
TEST EQUIPMENT	
DRAE WAIE SETER 130450 MH	£24.95 (£0.75)
FXI WAVE METER (700 K 250 SH Hz	£28.00 (£0.75)
TRIODME801 Dip Meter (Up to 250 MHz	£ 51.00 (£0.75)
DUMMY LOADS	
DI. 20130 W Max) PLL25y	$\underline{5.00}$ (£0.50)
DL. 60 (60W Max) PL254	$\underline{88.80}$ ($£ 0.50$)
DL to (60W Max) NTMge	£16.50 (£0.50)
DL. $150(150 \mathrm{~W}$ Max) PL259	£14.95 (£0.75)
DL. HMK0 (300W Cont. IWW Mav) PL259	£29.95 (£1.50)
T.V.I. PROBLEMS	
YAFSUFE 501 DX Low pasw filter (1 kW)	£22.25 ($£ 0.75$)
TRIO1.F 30A Low pas fiter (1 hW)	¢18.40(£0.75)
TV I 30 Luw pass filter (150w)	¢5.95 ($£ 0.60$)
I1P 4λ High pass filter (TY down lead	£4.95 ($£ 0.50$)
Ferrite Rink- Top qualits 1! " dia - Per pair	£0.80(£0.20)
HEADPHONES	
YAESU YHS3	¢9.95 ($\mathbf{(2 0 . 5 0)}$
YAESU YH7\% New liphtu cight	£10.75 (20.50)
TRIO 1154	£ $10.35(\underline{1} 0.50)$
TRIO H5S (Luxury 'phones)	£21.85 (20.50)
SWR/POWER METERS	
DNIWASIW 1104	£35.00 ($\mathbf{5 0 . 7 5)}$
	£52.80 (-)
D\W A C- n 30 Crow pothter 210	£71.00(-)

EDITORIAL OFFICES
Practical Wireless Westover House West Quay Road Poole, Dorset BH15 1JG f Poole 71191

Geoff Arnold T.Eng(CEI) G3GSR Editor

Dick Ganderton C.Eng., MIERE,G8VFH
Assistant Editor
Peter Metalli Art Editor

John Fell G8MCP
Technical Editor
Alan Martin G8zPW News \& Production Editor

Elaine Howard G4LFM Technical Sub-Editor

Rob Mackie
Technical Artist
Keith Woodruff Assistant Art Editor

Sylvia Barrett Secretarial

ADVERTISEMENT OFFICES
Practical Wireless King's Reach Tower Stamford Street
London SE1 9LS
Telex: 915748 MAGDIV-G
Dennis Brough Advertisement Manager f 01-261 6636
C 01-261 6872
Roger Hall G8TNT (Sam)
Ad. Sales Executive

- 01-2616807

Claire Gerrish
Secretary
C01-2616636
Colin R. Brown Classified Advertisements
f 01-2615762
Dave Kerindi
Make-up \& Copy
f 01-2616570
COPYRIGHT
(c) IPC Magazines Limited 1981. Copyright in all drawings, photographs and articles published in Practical Wireless is fully protected and.reproduction or imitation in whole or in part is expressly forbidden. All reasonable precautions are taken by Practical Wireless to ensure that the advice and data given to our readers are reliable. We cannot however guarantee it and we cannot accept legal responsibility for it. Prices are those current as we go to press.

18 Passport to Amateur Radio-1
John Thornton Lawrence GW3JGA
20 PW 'Exe"' Microwave Transceiver-3
Dick Ganderton G8VFH and John M. Fell G8MCP

24 All Change! The New Emission Codes
26 Air Test
Soar FC-841 Digital Frequency Meter
30 Winding Reproduction Vintage Coils
B. C. Howard BA

32 Power Supply for Vintage Radios
G. Thompson

34 Suppressing and Protecting Thyristors-3 Ben J. Duncan

41 Introducing SSTV-1
Mervyn J. Axson G8WHG
44 PW 'Stour' Top-Band Transceiver-3
David G. Barrell G4BMC
52 Computers in Radio
Mervyn J. Axson G8WHG
58 Radio Special Product Report
Trio TS-830S HF Transceiver

87
Adrortindex
26 Air Test
17 Comment
54 Kindly Note
29 Mods
40 News

43 Next Month
62 On the Air
23 Out of Thin Air
50 Production Lines
17 Services
39 Uncle Ed

DAIWA POWER METERS

CN620A $1.8-150 \mathrm{MHz}$ up to 1 KW CN630 $\quad 140-450 \mathrm{MHz}$ up to 200 W CN650 $1.2-2.5 \mathrm{GHz}$ up to 20 W
$\mathbf{£ 5 2 . 8 1}$ inc VAT $\mathbf{£ 7 1 . 0 0}$ inc VAT $\mathbf{£ 9 5 . 0 0}$ inc VAT

DAIWA CORILESS INFRA RÉD

 MTESRM 940 E45.00 WeVAT
S9 spare senson 6.50 inc VAT
M9 spare mike $£ 13.00$
incvat s
Windshield for mike
75 p each.

CARRIAGE ON MIKE SYSTEM $£ 1.50$

Until recently, the in-line measurement of RF power and SWR involved calculation or the use of two instruments. Now, DAIWA have introduced a range of power meters which provide an elegant solution to the whole problem of RF measurements. Utilising two toriodal current transformers to detect true fowward and reflected power, and feeding the outputs to a twin movement meter with crossed pointers, it is now possible to measure forward power (LH scale), reflected power (RH scale) and SWR (where the pointers cross) at a single glance. The DAIWA CN series power meters represent the ultimate power meter for the professional and amateur alike, and are indispensable in the fully equipped station. Three models are currently available covering freguencies right up to 2.5 GHz so there's one foryou whatever your interests.

POWER SUPRIESSt

THESMODELS
all woil is 20 valis it wevi:
the PP13054 amp 1388 volts d.c. $\mathbf{£ 1 8 . 4 0}$ inc. VAT. the PP132 7 amp 13.8 volts d.c. $£ 32.00$ inc. VAT. The PP 131010 amp 13.8 volts d.c. $£ 49.50$ inc. VAT. Jrac 2 arampacio Co, Ate C
NRB 515
The NRD 515 is a PLL-synthesised communications receiver of the highest class featuring advanced fadio technology combined with the latest digital techniques.
The new NRD 515 is full of performance advantages including general coverage, all modes of operation, PLL digital VFO for digital tuning, 24channel frequency memory toption), direct mixing, pass-band tuning, etc. JRC's 65 years of radio communications experience will give you "the world at your fingertips".
The NRD 515 is but a single item from the JRC product range which extends all the way to full marine radio installations for supertankers.

LOWE ELECTRONICS

NRD 515 SYNTHESISED HG RECEIVER NHD 515 MULTI CHANNEL MEMORY UNIT NVA 515 LOUDSPEAKER CFL 260600 Hz CW FILTER

The Daiwa infrared mike systami, comprising of a control box, sensor and infrared mike enables you to dispense with the hand mike and cable when operating in your car or shack. By using an infrated beam audio is transmitted from the mike to the sensop and then to the control box which activates the transmitter. To transmit, press the locking switch on the mike and talk. To receive, release the switch and yourt tig mmediately returns to receive. When you have flrished your contact return the mike to its slot in the control box and the mike nicad battery is maintained at full charge. For those of you wholikefresh air and drive with $6 l l$ windows open there isia matcring wind shield avallable at an additional 75 p socthere we are, 㡽e latest technology to bring safety 40 yey mobile operations the Daiwa infrared mike.

LOWE SRX 30D

a familiar name, but a whole new receiver

A familiar name, but a whole new receiver behind it. Building on all the excellent features of the SRX-30, including the drift cancelling system covering 500 kHz to 30 MHz ; the selectable sidebands and $A M$; the easy to use tuning system; we now introduce the all new SRX30D which incorporates the suggestions made by our customers. Outstanding new features are:

- Extended coverage $200 \mathrm{kHz}-30 \mathrm{MHz}$
- Digital readout in large green display units which give true unambiguous frequency information - even when you switch sidebands or use the clarifier.
- All new frequency synthesis using Plessey SL6 1641 double balanced modulator ICs for a new high standard of performance.
- All new audio system which produces outstandingly good quality on the built in speaker, and is capable of driving external hi-fi speaker units for even better sound.
- All new IF filters with optimum bandwidth for mode in use. Automatic filter selection from mode switch.
There is so much that is impressive about the SRX30D that you have to see it and handle it to really appreciate the performance.
We predict that the SRX30D will be a landmark in low cost, high performance SWL receivers. Just consider how much you should pay for a receiver covering $200 \mathrm{kHz}-30 \mathrm{MHz}$ with accurate digital readout; high performance USB/LSB/AM with switched filters; drift cancelling frequency synthesis; built in mains supply and built in speaker; high quality construction and advanced design - and so much more.
Then look at our price for the SRX30D and you will be even more impressed.

$£ 195.00$ inc VAT. Securicor carriage $£ 4.50$

Accessories for the short-wave listener

Inc VAT Carr
HF5 80-10m HF vertical. No radials required when on
\qquad
EIS Small egg insulator. Glazed ceramic 40cm long.. $30 \quad .25$
EIL Large egg insulator. Glaced ceramic 50cm long.. . 45 . 36

SIL Ribbed strain insulator for dipole end or centre
45.36

70 cm long ...
$.35 \quad .36$

MIZUHO

KX2 Top quality $500 \mathrm{kHz}-30 \mathrm{MHz}$ aerial tuner. Perfect match for R1000
29.901 .50

AX1 Aerial switching system. Handles 6 aerials \& 6 receivers ...
APM1 Audio peak and notch filter. Variable bandwidth active filters ..
SR1 Mini rack for above the system 27.031 .00

MP1 Rack mount for APM1 ...
33.001 .00

ФTRIO
pacesetter in amateur radio

Trio 8400 the new way to 70 cm FM mobile, a fully synthesized 430 440 MHz 10 watt output, mobile transceiver with memories, 2 separate VFO's all in a truly amazing compact package. Complete with up/down frequency shift microphone and car mounting bracket the TR8400 is the way to $g o . . .70 \mathrm{~cm}$ is on the move.

TR-8400
 70 cm FM mobile

£279 inc VAT. Securicor carriage $£ 4.50$

TR-7800 Trio's remarkable TR-7800 2-metre FM mobile transceiver provides all the features you could desire for maximum operating enjoyment. Frequency selection is easier than ever, and the rig incorporates new memory development for repeater shift, priority, and scan. The TR-7800 by Trio, the only FM mobile.

TR-7800
 The Ultimate 2 Metre Mobile FM rig

£268 inc VAT. Carriage by Securicor $£ 4.50$

HEAD OFFICE AND SERVICE CENTRE

Chesterfield Road, Matlock, Derbys. Tel. 06292817 or 2430.
Open Tuesday-Friday 9-5.30, Saturday 9-5.00. Closed for lunch 12.30-1.30.
For all that's best in ham radio, contact us at Matlock.
For full catalogues send 70p in stamps with your address. Mark enquiry PW.

All over the World
they haven't been able
to get enough!
(But things are getting better)

ICOM's new 9-band HF Transceiver - the IC-720A beats the lot!

Some features

- 9 Bands Top to Ten including new ones!
- General Coverage Receiver -100 KHz to 30 MHz .
- Tuning down to 10 Hz steps - YES! 10 Hz - yet stable as a rock!
- Built-in Speech Compressor which really gets excellent reports.
- The famous ICOM Band Pass Tuning.
- Memory - it even does all the band changing for you.
- Self cancelling RIT.
- 3 rates of Tuning.
- Two Independent VFOs (in band duplex possible).
- 100 W Output.
- Modes AM, SSB, CW and RTTY.

A lot in a small packet for $£ 795$ inc. VAT (13.6 V operation- matching mains PSU $£ 100$).

IC2KL Matching Kilowatt Linear Amplifier

* All solid state.
* All bands 1.8 MHz to 30 MHz .
* Full 500W RF output.
* Switches bands automatically with the IC720A.
* Protected against mismatching, overheating, overcurrent, overdriving and the PA units unbalancing.
* Broad band - no tuning necessary.
* Appearance matches IC701-720-720A.

Price $\mathbf{f 8 0 0}$ inc. VAT.
Matching Power Supply IC2KLPS $£ 199$ inc. VAT. WE STOCK CUSHCRAFT ANTENNAS
H.F.

A3
ATV5
ATV3
VHF (144MHz)
A3219 19ele Long 'Boomer' Yagi 16.2dB gain £62.00
214B 14ele Jnr 'Boomer' Yagi 15.2dB gain £49.50
ARX2 Ringo Ranger 6dB gain vertical £24.75
A144-4 4ele Yagi 9.0dB gain £16.25
A144-7 7ele Yagi 10.0dB gain £20.31
A144-11 11ele Yagi 11.3dB gain £25.72
DX120 20ele Array 13.2dB gain £47.20
ARX2B Ringo Ranger II £28.75
ARB2K Conversion Kit for Ringo to Mk II version £12.75
WEALSO STOCK:-
J-BEAM - MICROWAVE MODULES © YAESU O WESTERN RSGB BOOKS - BEARCAT © JIL © TAL ANTENNAS © VIDEO GENIE

Now you get a 2 YEAR WARRANTY If you buy

Thanet for

ICOM
143 RECULVER RD. BELTINGE, HERNE BAY, KENT. Tel: 02273/63859

$\{$ Probably The Best Portable In The World - with loads of optional accessories.

IC-2E HandyTalky $\boldsymbol{£ 1 5 9}_{\text {wcl. }}$

CHECK THE FEATURES

FULLY SYNTHESIZED - covering 144-145.995 in 4005 kHz steps. POWER OUTPUT -1.5 W with the 9 V rechargeable battery pack as supplied - but lower or higher output available with the optional 6 V or 12 V packs. BNC ANTENNA OUTPUT SOCKET 50 ohms for connecting to another antenna or use the Rubber Duck supplied.

SEND/BATTERY INDICATOR - Lights during transmit, but when battery power falls below 6 V it doesn't light indicating the need for a recharge. FREQUENCY SELECTION - by thumbwheel switches, indicating the frequency.
+5 kHz SWITCH - adds 5 kHz to the indicated frequency. DUPLEX SIMPLEX SWITCH - gives simplex or plus 600 kHz or minus 600 kHz Transmit.
HI-LOW SWITCH - reduces power output from 1.5 W to 150 mW reducing battery drain.
EXTERNAL MICROPHONE JACK If you do not wish to use the built-in electret condenser mic an optional microphone/speaker with PTT control can be used. Useful for pocket operation. EXTERNAL SPEAKER JACK - for speaker or earphone.
This little beauty is supplied ready to go complete with nicad battery pack, charger, rubber duck.

BATTERY PACKS		
ICBP3	9 VOLT PACK (AS FITTED)	$£ 15.50$
	REPLACEMENT	
ICBP2	(7.2 VOLT) (1 WATT)	$£ 22.00$
ICBP4	EMPTY CASE (WILL TAKE SIX	$£ 5.00$
	'AA' SIZE NI-CADS)	
ICBP5	11 VOLT PACK (2-3 WATTS)	$£ 30.50$
ICML1	IOW LINEAR AMP WITH ALL	$£ 49.00$

CHARGERS ETC		
IC-DC1	9 VOLT REGULATOR PACK	£7.50
IC-CP1	CAR CHARGER LEAD WITH CIGAR PLUG	£2.75
IC-BC25	CHARGER FOR BP3 AS SUPPLIED	£3.70
IC-BC30	DESK CHARGER FOR ALL NI-CAD PACKS FAST FOR I C-BP5 + BP2	$\begin{aligned} & £ 34.00 \\ & \text { urs) } \end{aligned}$

THE LATEST 2M MULTIMODE BASE STATION the ICOM IC 251E - £479
 INCL.

Facilities Include:
Fm, USB, LSB \& CW.
Built in scanner and memories.
Bright Green Digital
Readout.
Two VFO,S
Variable Power 1-10W.
Mains or 12 V .

Scotland	Jack GM8GEC (031-665-2420)
North West	Gordon G3LEQ (Knutsford (0565) 4040)
	Ansafone Service available

[^0]

Vero Computer Frames
$19 \times 8^{\prime \prime}$ with 64 wnors \& pides.
List price $£ 43$. Our price $£ 17.95$.
National 4116 Dynamic (16K RAM)
$200 \mathrm{~N} /$ Seconds f 1.95
Less 10% per 4.15% per 8 .

All items inclusive of VAT \& Post Paid. Quantity Discounts 15% per 10.20% per 50 .

SCOOP ONLY ONLY E29.95

 $+$ 52 KEY 7 BIT ASCII CODED POSITIVE STROBE $+5 \mathrm{~V} .12 \mathrm{~V}$FULL ASCII
CHARACTERS
PARALLEL OUTPUT WITH STROBE POWER LIGHT ON CONTROL
CHIP BY GENERAL INSTRUMENT (G.L) TreOUTPUT SUPERBLY MAD
SIZE $13 \times 55 \times$ SIZE $13 \times$
1.5 ins

Professional ASCIIKeyboards

The 'CHERRY' Computer Keyboard BLACK KEYS WITH Ideal for use with TANGERINE. WHITE LEDGENS ESCAPE SHIF
RETURN \& RESET KEYS CONTROL REPEAT
\& BELL
Complete with DATA
$4 /=N / 2 \leq-$

TRITON. TUSCAN, APPLE and mos
computers. Ex-Stock from HENRY'S
This is definitely the BEST BUY FULIY GUARANTEED Supplied BRANO UEW in manulacturets original packing Just post 404 Edgware Road, London, W2,
England.

RX 80 MkII - A DIY SOLID-STATE-OF-THE-ART MODULAR DUAL CONVERSION RECEIVER SYSTEM FOR THE ENTHUSIAST

* LOW DRIFT VARICAP TUNING (READILY ADAPTABLE FOR SYNTHESISED/ HUFF\&PUFF STABILIZATION)
* DUAL CONVERSION BASED ON A $3-4 \mathrm{MHz}$ SSB IF, WITH MECHANICAL IF FILTER, AUDIO DERIVED AGC, BALANCED MIXER, WITH ON-BOARD AF AMP AND VOLTAGE REGULATOR
* CAPACITY FOR UP TO $12 \mathrm{HF} / \mathrm{VHF} / \mathrm{UHF} 1 \mathrm{MHz}$ WIDE CRYSTAL CONTROLLED CONVERTERS WITH TRACKED RF TUNING
* EACH CONVERTER SELF CONTAINED - SO MORE CAN BE USED EXTERNALLY IF REQUIRED. RF PATHS ARE DC SWITCHED AT LOW IMPEDANCE

* LCD DFM with built in IF offset, interface PCB
* HUFF/PUFF vfo stabilizer
* NBFM adapter inc $8 \mathbf{k H z}$ multielement ceramic IF filter
* Constant Z PIN diode attenuator
* 12v low RF noise mains PSU
..f23.75
... $\mathbf{~} 9.60$
.. $\mathbf{5 9 . 9 5}$
. .54 .95
. .57 .95

Wilmslow Audio

THE firm for speakers!

 SEND 50p FOR THE WORLD'S BEST CATALOGUE OF SPEAKERS, DRIVE UNITS, KITS, CROSSOVERS ETC. AND DISCOUNT PRICE LIST.AUDAX - AUDIOMASTER - BAKER BOWER \& WILKINS - CASTLE - CELESTION - CHARTWELL - COLES - DALESFORD DECCA - EAGLE ELAC - EMI - FANE GAUSS - GOODMANS - HARBETH ISOPHON I.M.F. - JORDAN - JORDAN WATTS - KEF - LOWTHER - McKENZIE - MISSION MONITOR AUDIO - MOTOROLA - PEERLESS - RADFORD - RAM - ROGERS RICHARD ALLAN - SEAS SHACKMAN - TANGENT - TANNOY VIDEOTONE - WHARFEDALE -

WILMSLOW AUDIO LTD. (Dept. P.W.)
35/39 CHURCH STREET, WILMSLOW, CHESHIRE SK9 1AS

Tel: 0625529599
FOR MAIL ORDER \& EXPORT OF DRIVE UNITS, KITS ETC.
Tel: 0625526213
(SWIFT OF WILMSLOW) FOR HI-FI \& COMPLETE SPEAKERS

J. BIRKETT
 Partners: J. H. Birkett, J. L. Birkett) Radio Component Suppliers 25 The Strait, Lincoln. LN2 1JF

EDDYSTONE TRANSMITTING VARIABLES $30+30 \mathrm{pf}(60 \mathrm{pf})=\mathbf{£ 2 . 2 0}$ FERRANTI WIRE ENDED DIODES 800 PIV 750 mA 12 for $\mathbf{£ 1}$.
500 METRE REEL OF PVC CABLE 13 Strands . 019 at $£ 10$ carriage paid. $\mathbf{8 0 M}$ CRYSTALS $10 X$ Type, 3642.5 KHz or 3750 KHz . Both 40 p each.
MINIATURE CERAMIC TRIMMERS 2.5 to $6 \mathrm{pf}, 3$ to $10 \mathrm{pf}, 4.7$ to $20 \mathrm{pf}, 7$ to $35 \mathrm{pf}, 10$ to 40 pf . 10 to 60 pf , All at 15 p each.
MAINS TRANSFORMERS 240 Volt input, Output 24 volt Tapped at 14 volt $1 \mathrm{amp}=\mathbf{£ 1 . 3 0}\left(\begin{array}{l}\text { (P\&P 30p). }\end{array}\right.$ MAINS
(P\&P 30p).
JUMBO ORP12 CADMIUM SULPHIDE PHOTOCONDUCTIVE CELL TYPE RPY18 £1.65 each.
LEAD SULPHIDE PHOTOCONDUCTIVE CELL RPY 75 with data - $\mathbf{3 . 5 0}$
RPY75A WITH GERMANIUM FILTER $\times \mathbf{£ 4 . 5 0}$.
ORP62 CELL with data - £1.30.
SUB-MINIATURE AXIAL RED LEDS-CQY60 ~ 20p each
MULLARD PHOTO TRANSISTORS BPX 70~50p.
SLOTTED OPTO INFRA RED SOURCE SWITCH - £1.50.
X BAND GUNN DIODES with data $+\mathbf{£ 1} .65$.
SOLDER-IN FEED THRUS $6.8 \mathrm{pf}, 27 \mathrm{pf}, 300 \mathrm{pf}$, 1000 pf . 20p doz.
4500 PIV 2 AMP DIODES
4500 PIV 2 AMP DIODES at $£ 1.50$ each.
VARIABLE CAPACITORS $10+10+10 \mathrm{pf}-75$ p each
6.2 VOLT WIRE ENDED 2 WATT ZENERS - $15 \mathrm{p}, 5$ for 60p.

HEWLETT PACKARD HOT CARRIER DIODES 5082-2800 - 40p.
VHF FETS J304 - 30p, BF 256C / 4 for 75p.
FERRITE BEADS FX1115 - 15p doz. $\frac{1}{2 \prime \prime}$ Long Type 6 for 10 p .
MULLARD SUB-MINIATURE DISCS $1000 \mathrm{pf} 63 \mathrm{v} . \mathrm{w}$., 25p doz.
DISC CERAMICS . 1 uf $18 \mathrm{vv.w},. 22 \mathrm{uf} 7 \mathrm{v} . \mathrm{w} ., .5 \mathrm{uf} 12 \mathrm{v} . w$., All 5 p each.
VERNITRON FM4 10.7 MHz FILTERS - 3 for $£ 1$.
VERNITRON FM4 10.7MHz FILTERS $=3$ for $£ 1$.
MINIATURE CERAMIC TAG STRIPS 12 way Opp 15 p .21 way - 20p.
3/16" COIL FORMERS with core at 6 for 25p.
H.F-VHF POWER TRANSISTOR 587 BLY 40 , Output 30 Volt 500 mA - $\mathbf{£ 2 . 3 0}$.
H.F-VHF POWER TRANSISTOR 587 BLY 40 watts, 26 to $70 \mathrm{MHz}-£ 3$ each.

2 CHANNEL HIGH SPEED DRIVER WITH SPST J FET SWITCHES Type OG 182 with data - E1.15 each
$\mathbf{6 5 p}$, SDT 96306300 Volt 50 amp at $£ 1.65$, OC $36=50$ p.
GENERAL PURPOSE NPN TRANSISTORS BSY95A - 6 for 50 p .
TRW UHF POWER TRANSISTORS useful up to 980 MHz FT 1200 MHz 12 Volt 2 watt out Type PT 4642 - £2.50,
VARIABLE CAPACITORS 5pf - 75p, 10. $10+10 \mathrm{pf}$ - 75p, 250-250pf - 85p, $200+200+20+20 \mathrm{pf}=75 \mathrm{p}, 250+250+20+20+20 \mathrm{pf}=75$ p.
R. F. CHOKES 10U.H., 33U.H., 330U.H., All at 7p, 1000 U.H. - 12p.

MULLARD BLY55 175 MHz 13 Volt 4 watt 400 mW Drive $=\mathbf{£ 4}$.
MULLARD 175 MHz 40 watt 5 watt Drive. $5708 L Y 28$ voit $\mathbf{~ £ 8 . 3 0 . ~}$
MULLARD 1000pf 63v.w., DISC CERAMICS at 25p doz.
MULLARD UHF POWER MODULE BGY22C, $\mathbf{3 8 0 - 4 1 2 M H z}, 2.5$ watt - $\mathbf{£ 1 2 . 5 0 .}$
Please add 30 p for post and packing. Orders over $£ 3$ post free.

\square RAE

FULLY PROTECTED

 13.5 volt TRANSCEIVER POWER SUPPLIES1 Short Circuit Proof
2 Foldback Current Limit
3 Overvoltage Crowbar Protection
4 Amp $£ 27.95+£ 1.00$ Carr.
4 Fused Output Protection
510 mV (Max.) Output Ripple
6 Better Than 1\% Regulation
7 Thermal Overload Protection
8 Surge Rating $1 \times$ Cont. Rating
NEW VHF WAVEMETER
$130 \mathrm{MH}_{2}$ to $450 \mathrm{MH}_{3}$. £24.95 inc VAT and Carr.
DAVTREND LIMITED
Access Cards Accepted 89, Kimbolton Road, Portsmouth, Hants.
Ports (0705) 816237

6 Amp $£ 44.954 £ 2.00$ Carr
12 Amp $£ 69.00+£ 2.00$ Carr 24 Amp $£ 92.00+£ 3.00$ Carr.

BRAND NEW FROM FLUKE NOW AVAILABLE THE 8024A HAND HELD DMM This model incorporates all the features of the 8020A but in addition has: A peak hold switch which can be used in AC or DC for volts and current furtctions. Audible continuity testing and level detection for sensing logic levels. A remperature $\left({ }^{\circ} \mathrm{C}\right)$ range for use with a thermocouple. £155 Carriage and Insurance $£ 3$ The following accessories are in stock now $\begin{array}{ll}\text { Y8008 Touch and Hold Probe } & \mathbf{£ 2 9 . 0 0} \\ 80 \mathrm{~K}-40 \text { High Voltage Probe } & \mathbf{5} 51.00\end{array}$ $80 \mathrm{~K}-40$ High Voltage Probe.................................... 35.00 81RF RF Probe to 100 MHZ 80T-150C Temperature Probe (C)........ $\mathbf{£ 6 6 . 0 0}$ $\begin{array}{ll}801-600 \text { Clamp-on AC Current Probe } & \mathbf{£ 6 1 . 0 0} \\ 80 \mathrm{~J}-10 \text { Current Probe................... } & \mathbf{£ 2 2 . 0 0}\end{array}$	HERE IT IS... THE EVER POPULAR 8022A HAND-HELD DMM Consider the following features: 6 resistance ranges from 200 ohm 20 ohms 8 current ranges from $2 \mathrm{~mA}-2 \mathrm{~A}$ $\mathrm{AC} D \mathrm{DC}$ 10 voltage ranges from 200 mv . 1000 v DC- $200 \mathrm{mc}-750 \mathrm{~V}$ AC. Pocket size - weighing only 370 gms. Full overload protection - will withstand 6 kv spikes. Rugged construction - virtually indestructable. Meets tough military specs - drop proof. In line, pushbutton operation for single-handed useage Incorporates low power cmos chip for low power consumption. All this plus a $2 \cdot$ vear full guarantee. $\mathbf{£ 8 9}$ Soft carrying case Castiage and Insurance f3 £8 extra Even more sophisticated the Fluke 8020A. Identical in most respects to the 8022A but in addition incorporates a conductance range from $2 \mathrm{mS}-200 \mathrm{nS}$. Price $£ 125$ Carriage and Insurance £ $£ .00$ A handsome soft carrying case is included (this model only)	60.3 8010A AND 8012A BENCH MODEL D.M.M.s The 8010A is a general purpose, bench/portable digital multimeter with more functions and features than ever offered for such a low price. Its companion, the 8012A, has identical characteristics except that it has two additional low resistance ranges, 2Ω and 20Ω to replace the 8010A's 10 ampere current range. The 8010A and 8012A feature: 10 voltage ranges from $200 \mathrm{mv}-1000 \mathrm{v} \mathrm{dc}, 200 \mathrm{mv}-75 \mathrm{v}$ ac. 3 conductance ranges from $2 \mathrm{mS}-200 \mathrm{nS}$. 6 resistance ranges from $200 \Omega-20 \mathrm{~m} \Omega$ - the 8012 A has two additional resistance ranges 2Ω and 20Ω. 10 current ranges from $200 \mu \mathrm{~A}-2 \mathrm{~A} \mathrm{AC} / \mathrm{DC}$ - the 8010 A has two additional current ranges $10 \mathrm{~A} A C$ and 10 ADC . 80 10A $£ 167 \quad 8012 A £ 218$ Carriage and Insurance £3. The 8010A is also available with two rechargeable Nicad size C batteries installed in option $-01 a+\mathbf{£ 1 9 3 . 0 0}$.

PLEASE ADD 15\% VAT TO ALL ORDERS except where items marked "VAT Included". CALLERS WELCOME.
We are open 9 a.m.-6 p.m. Monday-Saturdays. We carry a very large selection of electronic components and electro-mechanical items. Special quotations on quantities.

ELECTRO-TECH COMPONENTS LTD. 364 EDGWARE ROAD, LONDON, W.2. TEL: 01-723 5667

PCB's FOR PRACTICAL WIRELESS PROJECTS

FROM

 AMCOMM

 AMCOMM}

by two way FREEPOST

MORSE KEYS	
HK 707 Straight Up/Dowri keyer	£11.44
BK 100 Semi-automatic mechanical bu	$\mathrm{g} £ 17.88$
MK 702 Up/Down keyer on marble	
base	£22.43
MK 702 Manipulator	£22.43
MK 704 Squeeze paddle	£14.38
MK 705 Squeeze paddle on marble base	£22.43
EKM 1A Morse code practice oscillator	f8.63
MK 1024 Automatic memory keyer	£135.13
EK 150 Semi/Automatic keyer	£74.75
LINEAR AMPLIFIERS	
output with 9 dB preamp	£138.00
$2 \mathrm{M} 25-150 \mathrm{P} 144 \mathrm{MHz} 25 \mathrm{~W}$ input/150W	
output with 9 dB preamp	£184.00
$2 \mathrm{M} 10-150 \mathrm{P} 144 \mathrm{MHz} 10 \mathrm{~W}$ input/150W	
output with 9dB preamp	£209.88
$\begin{array}{ll}2 \mathrm{M} 3-150 \mathrm{P} & \begin{array}{l}144 \mathrm{MHz} 3 \mathrm{~W} \text { input/150W } \\ \text { output with } 9 \mathrm{~dB} \text { preamp }\end{array}\end{array}$	£209.88
G. WHIP Mobile Antennas	
Tribander 10-20 Slide	£24.73.
L.F. Coil 40/80/160 MTS	£6.56
L.F. Whip Telescopic	£3.34
Multimobile 10-20 Auto	£28.75
M/Mobile Coil 40/80/160	£6.56
M/Mobile Whip Telescopic	£3.34
Flexiwhip 10M Mast	£17.25
F/Whip Coils 40/80/160	£6.56
Base Standard	£4.49
Base Heavy Duty	£5.75
Extenarod	£11.50

MICROWAVE MODULES	
MMT 432/28S	£149.00
MMR 432/144R	£184.00
MMT 28/144	£199.00
MMT 144/28	£99.00
MMC 28/136	£27.90
MMC 28/156	£27.90
MMC 28/144	£27.90
MMC 144/any IF	£27.90
MMC 144/28LO	£29.90
MMC 70/any IF	£27.90
MMC 432/28S	£34.90
MMC 432/144S	£34.90
MMC 1296/any IF	£32.20
MMC 050/500	£69.00
MMA 28 preamp	£14.95
MMA 144 V preamp	£34.90
MMV 1296/28	¢32.20
MML 144/100 linamp	£142.60
MML 432/100 linamp	£228.85
MML 144/25 linamp	£59.00
MML 432/50 linamp	£119.00
MM2000	£169.00

UNADILLA/REYCO
 Antenna Traps-

Precision moulded coil forms stainless - hardware - Aluminium tube irridit finish - Coated aluminium wire. Fully waterproofed.
Available 7/14/21 MHz $\quad \mathbf{£ 1 0 . 9 9}$
W2AU BALUN
$3.5 / 30 \mathrm{MHz} 2.5 \mathrm{Kw}$ with Lighting Arrestor - Suitable Vees, Yagis, Doublets, Quads etc. $\quad \mathbf{£ 1 0 . 9 9}$

STANDARD
C8800 2m, Tcur $\quad £ 252.00$
C7800 70 cms Tcvr
£275.00
DENTRON
GLA 1000 Linear Amp

$$
10 / 801 \mathrm{Kw}
$$

MLA 2500 Linear Amp $10 / 1602 \mathrm{Kw}$
£295.00
$10 / 1602 \mathrm{Kw}$
$£ 699.00$
MT 3000 3Kw Tuner/SWR/Dummy Load

FDK Multi 700EX £199.00 FDK Multi 750E £299.00
Send 30p for our bumper bundle literature
No Quibble Guarantee Same Day Despatch All Items Advertised

Choose your AMTECH here
Amtech 100 Mobile Match

SHURE MICS

20
$202 \begin{aligned} & \text { high impedance } \\ & \text { Hand ceramic noise }\end{aligned}$
reducing high impedance
401A Hand controlled magnetic high impedance
401B Hand controlled mag. low impedance (200 ohms)
444 Desk adjustable height controlled magnetic
526T Desk controlled response transistor preamp
$£ 14.49$ £15.18 £16.56 £16.56 £32.43 £39.33

DUMMY LOADS

DL20 30W DC-150MHz with PL259
T-80 $\quad 80 \mathrm{~W}$ DC- 500 MHz with SO239 connector
$\begin{array}{ll}\text { T-150 } & 150 \mathrm{~W} \text { DC-500M Hz with } \\ & \text { SO239 connector }\end{array}$ SO239 connector £32.78

STILL HELPING WHERE IT HURTS

Here's a list below to make buying easier for you Work it out yourself - You'll see - It really is easy!

Product

Yaesu FT 902DM
Yaesu FRG 7700/S
Yaesu FRG 7700S/2M
Yaesu FRG 7700 M
Yaesu FRG 7700 M
Yaesu FRG $770 \mathrm{M} / 2 \mathrm{M}$
Yaesu FRG 7000
Yaesu FT 101ZD
Yaesu FT $101 Z$
Yaesu FT 225RD
Yaesu FL 2100 Z
Yaesu FT 707
Yaesu FT 707
Yaesu FT 480 R
Trio R 1000
Standard C8800
Standard C7800

List		12 Pay- Price
Deposit		
ments		
$£ 399$	$£ 312$	$£ 40.54$
$£ 309$	$£ 120$	$£ 15.80$
$£ 315$	$£ 120$	$£ 16.29$
$£ 389$	$£ 189$	$£ 16.69$
$£ 399$	$£ 199$	$£ 16.69$
$£ 299$	$£ 115$	$£ 15.30$
$£ 569$	$£ 223$	$£ 28.81$
$£ 488$	$£ 190$	$£ 24.84$
$£ 499$	$£ 194$	$£ 25.43$
$£ 362$	$£ 180$	$£ 15.20$
$£ 500$	$£ 200$	$£ 25.04$
$£ 359$	$£ 175$	$£ 15.30$
$£ 298$	$£ 115$	$£ 15.20$
$£ 252$	$£ 99$	$£ 12.71$
$£ 275$	$£ 109$	$£ 13.81$

Many Other Items Available on Similar Terms Call for Details

MONITOR RECEIVERS	
SWAN CUBIC	
103 due heres shortly	POA
Swan Cubic 1500 Z	POA

ROTATORS

Skyking SU 4000
Emoto 502CXX
KR 400
£79.00

AR 40
KR 950 2A
£139.75

Rotor Bearing
£59.00
£50.00
-All items VAT and carriage paid.

USED EQUIPMENT
 Over 100 pieces HFNHF equipment available.
 Call for details.

> | SWR/RF POWER METERS | | |
| :--- | ---: | :---: |
| SWR $25 \mathrm{3.5} / 170 \mathrm{MHz}$ | $\mathbf{£ 1 2 . 9 4}$ | |
| LEADER LPM $885-\mathrm{HF} 1 \mathrm{Kw} \mathbf{£ 5 8 . 0 0}$ | | |
| HANSON 3.5/150MHz 200w | | |
| | $\mathbf{£ 2 8 . 7 5}$ | |
| REECE UHF 74 144/432 | $\mathbf{£ 1 6 . 2 8}$ | |
| HANSON FS 500 H | | |
| 1.8/60MHz 2Kw | $\mathbf{£ 6 7 . 8 5}$ | |
| $\begin{array}{l}\text { OSKAR SWR 200 }\end{array}$ | | |
| 3.30 MHz 2Kw | $\mathbf{£ 4 0 . 0 0}$ | |

AMCOMM SERVICES

194 NORTHOLT ROAD, SOUTH HARROW, MIDDX. Telephone: 01-864 1166, 01-422 9585

Opposite South Harrow Tube Station on Piccadilly Line

> All items over $£ 100$ available on easy terms at List Price

AMCOMM SERVICES (PW1),
AMCOMM SERVICES (PW1),
FREEPOST,
HARROW HA2 OBR.
\qquad
at
Amtech 200 Random Wire ATU $10-160 \mathrm{~m} 200 \mathrm{w}$ pep
£16.95
Amtech 300 Random and Coax Fed ATU 300w pep
$£ 29.95$
$\mathbf{£ 4 3 . 9 5}$
Amtech CW 250 - The most outstanding CW filter available
Amtech Channelguard - A plug in device to eliminate those
unwanted stations Decoder
Sender
£15.25
Amtech FM7: FM Demodulator for FRG 7
$£ 7.25$
$\mathbf{£ 1 1 . 9 0}$

ANTENNAS

Wide range in stock including JAYBEAM - HYGAIN - CUSHCART ASP TELECON - HOKUSHIN etc.
Bantex $5 / 8$ whip complete antenna $\quad £ 8.99$
Bantex $\frac{1}{4} w$ whip complete antenna
$£ 3.50$

NO POSTAGE REQUIRED

 .enclosed cheque/P.O. for\qquad
\qquad

COMMUNICATIONS RECEIVERS made by Murphy Radio for R.N. covers 60 to 560 Kc in two bands $\& 1.5$ to $30 \mathrm{Mc} / \mathrm{s}$ in 3 bands uses $13 \mathrm{B7g}$ type valves as 2 RF stages $3 \times \mathrm{IF}$ stages at 800 Kc , N.Lim, AVC, $2 \times$ AF stages, BFO, 800 Kc cal, the o/p stage matches to 100 ohm phone or 600 ohm speaker line at 2 watts. Controls Main tune, Band Sel, RF \& LF gain, Phone gain, AVC on/off, Selectivity at $8,3,1 \mathrm{Kc}$ or $200 \mathrm{c} / \mathrm{s}$, two $0 / P$ jacks for phone one for spk, provision for 75 ohm or long wire Ae. Complete in steel case size $13 \times 14 \times 14^{\prime \prime}$. Note these Rx req ext power supplies of 250 v DC at $100 \mathrm{Ma}, 150 \mathrm{v}$ Stab \& 6.3 v AC at 4 amps there is room to build p.u. inside case, supplied tested with circ \& 40 page handbook. $£ 115$. METER TEST SET with 2.5 Ma meter scale 0 to 25 linear, $3 \times \mathrm{Yax}$ swts as follows $2 \mathrm{p} 8 \mathrm{w}, 3 \mathrm{p} 11 \mathrm{w} \& 4 \mathrm{p} 11 \mathrm{w} 4 \mathrm{x}$ neon Ind, $3 x$ Insul term, $20 \times$ close tol res, meter rect etc in neat case size $8 \times 12 \times 4^{\prime \prime}$ contains most parts to make up 250/500/1000v AC/DC meter. £6.50.
COAX CABLE type UR57 HD 75 ohm 10 mm OSD suitable HF \& Video use new 10 Mt for $£ 3.50$ over this 25 pmt .
TRANSFORMER C Core 200/250v to $37-0-37 v$ at 15 amps DC size $6 \frac{1}{2} \times 5 \times 5^{\prime \prime}$ supplied with two 30 amp stud rect $£ 25$ we can supply step down trans to enable these tran to do nom 18-0-18v for 13.8 v stab p.u. will do 20 amps at $13 \mathrm{v} £ 7.70$ also these trans can be used in pairs with primary windings in series for 18 v at 40 Amps RADIOSONDE UNITS type M. 60 these measure Temp, Press \& R.H. these are transmitted in the form of slow morse MCW on 27 R.H. these are transmitted in the form of slow morse MCW on 27
Mc / s the signals are sent in turn by motor driven swt reqs only 3 v Mc / s the signals are sent in turn
battery to operate new $\mathbf{£ 1 2 . 5 0}$.

RADIOSONDE TYPE II. These serve the same purpose as the M. 60 but older design these use 3 valves with AF Osc, Mod \& RF Osc on $27 \mathrm{Mc} / \mathrm{s}$ (req 90 v HT \& 2 v LT) in these the Temp etc is sent as a AF signal in the range 600 to $1000 \mathrm{c} / \mathrm{s}$ this signal is generated by a var inductance osc, there are 3 osc one for each sensor these are selected in turn by a commutator swt driven by a small windmill supplied new boxed with cal chart \& circ. £6.50.

BATTERIES SILVER ZINC TYPE Rechargable nom 15.5 v 4 A / Hr size $5 \frac{1}{2} \times 1 \frac{1}{4} \times 3 \frac{1}{4} \mathrm{~h}$ weight 24 Oz 10 cells these are intended for high current applications $\max 15 \mathrm{amps}$ for 12 min i.e. elec motors, model boats, underwater lighting etc (not suitable for standby or trickle charge use) should be used on total charge discharge cycle, new with electrolyte \& inst. $£ 12.50$.

RECEIVER UNIT part of 128 Set covers 2 to $8 \mathrm{Mc} / \mathrm{s}$ in two bands 4 valve superhet plus BFO in case size $8 \times 5 \times 4^{\prime \prime}$ reqs 135 v HT 1.5 v LT \& HR phones to work new cond with circ. $£ 15$ batteries $£ 4.50$ ea or two for $£ 8$.
VIDEO RECORDERS Philips type reel to reel vid in \& out plus sound standard mains with min of two tapes copy of service handbook un tested good cond few only left to clear at $£ 95$.
PHILIPS PM. 1001 CCTV CAMERAS these are less outer case \& lens but complete with Vidicon \& 220 v power unit no gen on these but thought to be self contained except for control box, video out. Ext size $12 \times 10 \times 14^{\prime \prime} £ 35$. Outer case \& lens cover £8.50. Would be pleased to hear from anyone with info on these cameras. RECORDING TAPE Ampex Mil Spec New $3600 \mathrm{ft} \frac{1}{4}^{\prime \prime}$ on $10 \frac{1}{2}{ }^{\prime \prime}$ spools Audio type new unused $£ 7.50$ each or $\mathbf{2}$ for $\mathbf{£ 1 3}$.
RACK CASES $19^{\prime \prime}$ ext size $29^{\prime \prime}$ high $22^{\prime \prime}$ deep neat case by Racal $\mathbf{£} 30$ or with int fittings meters, blower etc $\mathbf{£ 5 5}$.
METER panel mounting 1 Ma FSD scaled in cycles non lin size $6 \times 5^{\prime \prime}$ mirror scale $£ 4.50$. R.F. Ass part of power sig gen comprises VFO \& P.A. stage of $T x$ covering 1.5 to $12 \mathrm{Mc} / \mathrm{s}$ with 6F17 \& $5 B 257$ valves nom o/P 20 watts with tuning dial ass, band swt, $2 x$ meters, $3 \times$ P.A. toroid coils, for 75 ohm O/P new cond with cir note sub ass on chassis no outer covers meters not mounted. £21. VALVES small stock of CV26/813 type valves new at $£ 13.50$ ea also type 866 at $£ 4.50$.
HEADPHONES type DLR. 5 nom 100 ohm balanced armature type will make sound powered intercom new $\mathbf{£ 4 . 5 0}$ or $\mathbf{£ 3 . 5 0}$ S/Hand.
HELIPOT DIALS standard 10 Tr type $\mathbf{£ 1 . 5 0}$ or $15 \mathrm{Tr} \mathbf{£ 2 . 5 0}$.
COAX RELAYS. Small type 50 ohm $1 \mathrm{p} \mathrm{c/o}$ plus $1 \mathrm{p} \mathrm{c} / \mathrm{o}$ aux con tacts coil 24 v DC 500 ohm will work on 14 v supplied with connectors ex new equip. $\mathbf{f} 5$.
MAINS TRANS small type 240 v pria available in $9+9$ or $15+15$ or $20+20 \mathrm{v}$ all windings 3 Va ea size $1 \frac{3}{4} \times 1 \frac{1}{2} \times 1 \frac{1}{2}^{\prime \prime}$ price any voltage £2.40.

TRANSMITTERS we have two Navy M. 8 (RCA ET4436) units 1.5 to $20 \mathrm{Mc} / \mathrm{s}$ AM/CW $250 / 350$ watt with ext fittings 230 v mains Xtal or VFO at $\mathbf{£ 2 5 0}$ nett \& One Racal TA. $1842 / 30 \mathrm{Mc} / \mathrm{s}$ $7 / 10 \mathrm{Kw} 3$ phase supply with dummy load (reqs ext RF drive) at $\mathbf{f 6 5 0}$ nett.

Above prices include Carr/Postage \& VAT. Goods ex equipment unless stated new. SAE with enquiry or $2 \times 14 p$ stamps for list 26.

T. POWELL

IONISER KIT

This negative ion generator gives you the power to saturate your home or office with millions of refreshing ions. Without fans or moving parts it puts out a pleasant breeze. A pure flow of ions pours out like water from a fountain, filling your room. The result? Your air feels fresh, pure, crisp and wonderfully refreshing.
All parts, PCB and full instructions $\mathbf{£ 1 2 . 5 0}$
A suitable case, including front panel, neon switch etc£10.50
P.W. KITS

PW NIMBUS - Complete kit still available£80.00 (without xtals)
Add-on base unit . £38.00
Wideband RF Pre-Amp ... 50
AF Speech Processor .. 88.00
Beginners 2 meter Convertor .. $\mathbf{£ 1 5 . 0 0}$
Model Railway Controller .. $\mathbf{2 1 . 5 0}$
VHF/UHF Repeater Station Timer (Main board only)£22.50
Active receiving Antenna .. $\mathbf{£ 9 . 0 0}$
6 V to 12 V Regulated Convertor .. $\mathbf{£ 1 4 . 9 5}$
Tape Slide Synchroniser .. $\mathbf{£ 4 1 . 4 0}$
Boat Engine Hours Counter ... £26.75
Ultra Fast Stereo Peak Indicator.. $\mathbf{5 0}$
SPECIAL OFFERS
TOSHIBA TA 7205 .. $\mathbf{2 0}$
PHILIPS SCOPE TUBES - $5^{\prime \prime}$ CV 2191/DG 132 $\mathbf{8 2}$
MULLARD COMPUTER ELECTROLYTICS 21,000/40V $\mathbf{£ 4 . 5 0}$ All prices include VAT and postage \& packing
Callers: Please ring to check availability of kits before calling.
PLEASE NOTE OUR NEW ADDRESS:
Advance Works, 44 Wallace Rd., London N1.
Our 'Phone number is still: 2261489

MODULAR ELECTRONICS
95 HIGH STREET SELSEY. Nt CHICHESTER, SUSSEX TEL: SELSEY (024361) 291 Distributon for solid state mchowave (ITOMPSON CSf) Rf PRoouctis
 HP 5082.2800 Hot Cat Diodes
HP 50822835 Hot Cat Diofes HP 50822835 Hot Car Doodes

HP $5082 \cdot 3080$ Pin Switch Diodes | HP 5082.3080 Pin Switch Diodes | f 1.12 |
| :--- | :--- |
| $\mathrm{f0.98}$ | | Motorola MC12013L + 10 Prescaler ic 60.98

 ${ }_{8 B 103}$ Vaticap Diodes
 2N5179 £0.82: BFY90 f1.15; ST2110-BS $\times 20 / 2 \mathrm{~N} 2369_{2}$ £0.30.
trimmers
Teiter PTFE 110 pF 33 p . 7 mm or Strnpline OAU PTFE Film 19 pf of 1518 pF 28p. Supplus 25.25 pF 10 mm 15 p . SPRAGUE (Grada 1) Mica Trimmera (500v) tor RF. Amps 2.5.7pf 81p. 4-20pF 86p. 7-40pF 86p. 16-100pf 98_{p} $25-150$ of $\mathrm{f} 1.09 .40-200$ p f f 1.15 . HEATSINKS single sided ideal tor RF amps. Redpoint 6M1 $2.6 \mathrm{deg} / \mathrm{w}$ Radiospates $40 \mathrm{Deg} / \mathrm{w} 100 \mathrm{~mm}$ long Redpoint
$\mathbf{6 1 . 9 0}$
$\mathbf{6 1 . 0 0}$
Ex Equip $2 N 5070230 \mathrm{MH}$ 25wPEP
 $21881 Y$ Mul Studess 8 BY 382 w 470 wHz Finished made up and tested equipment PA2 Preamplifier for 2 meters. using the latest UHF stupline MOSFET the BF900 1 ;" square for fiting in the tig 50 Q infout ump Only 88.05 with instructions. PAU2 432 MHz Preamp, striphne using the BFR34a 1448 $\operatorname{gain} N F<2 d 868.63$.
Five data she
dircults etc
Low noise small signal semiconductors.
LOW NOISE SMALL SIGNAL SEMICONDUCTOAS.
BFR90 Mul TPack 250 NF
Brat
Brgat

SO306 $\quad 0 \mathrm{O}$ MOS MOSFET
40673 RCA MOSFET
LINEAR AMPUFIER MODULES, without CNVier Sute $55 \times 92 \mathrm{~mm}$ with thermal mtertace 50Ω PM2 100.4 w in 10 w out 13.8 v PM2 $15 \quad 15 \mathrm{w}$ in 15 w out 138 w PM2 254 w in 25 ww out 138 v
CPM UNEAR AMPS CPM UNEAR AMPS with full RF $82 \times 102 \mathrm{~mm}$ preamp can be fitued in RX
SPEC AS SPEC AS FOR PM Series Specity CPM type and add $£ 7.48$ to PM senes prices
UNELCO Cased RF Mica Caps. Following PFs
10/20 30/40/50:60/70/80 pf $\mathrm{f1}, 61: 100 / 150 / 180 / 250 \mathrm{pF}$ f1.73: 1000 pf f1.84.
PTFF Sheet 025 mmm 300 mm Square
PYE 951
S2.30
 Siver Plated RG43 Type

PRESCALER BOARD $\div 10$ Sire $55 \times 93 \mathrm{~mm}$ with mput amplthe $12 \times$ EFR34a) sens 40 mV 432 mc uses Mor MC120121 IC. 5000 MHe tye 600 MHL . Only $\mathbf{£ 2 3 . 0 0 . 5 v}$ seg Esuppiy

Barclaycard, or Access on orders above flo
POST and PACKING ADD 50p TO ALL ORDERS.
Orders sent 1st Class Post whete weight permits. SAME DAY DISPATCH ON ALL IN STOCK ITEMS. Minimum involced order to approved customers f 1500 .
AlL PRICES NOW INCLUDE

All PRICES NOW WCLUDE VAT AT 15%

FEATURES

* Complete self contained speaking morse tutor
* Latest state of the art microprocessor speech synthesis sytem
* Suitable for beginners \& proficient operators alike
\star Wide speed range : 2-20 WPM
\star High speed option: 12-48 WPM
\star Variable group length \& single character facility

DESCRIPTION

This unique product is a self-contained and SPEAKING MORSE TUTOR and, unlike a random morse generator, the MMS1 incorporates a microprocessor speech synthesis system which provides talk back of the morse after transmission, giving the pupil the opportunity of checking his proficiency. This unit represents a truly cost-effective means of obtaining a full class A amateur licence, without having to rely on a third party for instruction.
The unit requires only a DC power supply, 9 to 13.8 volts, to enable operation and this should be connected to the power socket located on the rear panel via the supplied plug.
To give this product appeal not only to the beginner but also to the proficient operator we have incorporated six learning levels'. In this way it is a simple matter to become more and more proficient, even after passing the Morse Test.

LETTERS ONLY	$:$ A-F, A-M, A-U, A-Z.
NUMBERS ONLY	$: 0-9$
LETTERS \& NUMBERS	$: 0-Z$

Also for each of the above ranges the user can select:-

1) One letter
2) Five letters (One word)

BEFORETALKBACK
3) Fifty letters (Ten words)

In addition a useful facility is provided in that continuous morse can be sent. (No talkback facility in this mode).
Morse can be sent in the range 2-20 words per minute (w.p.m.) in 2 w.p.m. increments. Speed selection is made by depressing the front panel mounted switch marked 'SPEED SELECT'. However, at speeds of 12 w.p.m. or less, characters are sent at $12 \mathrm{w} . \mathrm{p} . \mathrm{m}$. but the spacing is adjusted for the selected speed. In this way morse rhythm will be instilled, since this is the essence of good morse rather than the 'dots and dashes' approach. The incorporation of a crystalcontrolled reference ensures totally accurate character and space, lengths and intervals thereby producing a perfect rhythm.
The MMS1 contains an internal loudspeaker which may be supplemented by either headphones or an external loudspeaker, by connection to the socket marked 'EXTERNAL SPEAKER' located on the rear panel. The available audio output level at this socket is 250 mW . In addition a tape recorder socket is also located on the rear panel, so that recordings may be made at any time, without disabling the internal loudspeaker.
It is also possible to use the internal sidetone oscillator for sending practice and this may be achieved by connecting a suitable morse key to the socket marked 'KEY'. (N.B. - This facility does not provide talkback).
The MMS1 utilises 2 microprocessors, 2 memory I.C.'s and various other integrated circuits and semiconductors. All circuitry is constructed on high quality glass-fibre printed circuit board, and the unit is housed in a highly durable black diecast enclosure.

Price: $£ \mathbf{9 9}$ inc. VAT.

HIGH SPEED OPTION

As an optional extra an alternative higher speed EPROM memory I.C. can be purchased providing a 12-48 w.p.m. speed range in 4 w. p.m. increments. Also supplied with this EPROM is an easily attachable label to ammend the indicated speed range on the front panel.

WELCOME

HOURS:

THIS MONTH'S LAR SPECIAL - Trio CO1303G 5MHz monitor-scope with two-tone oscillator $£ 140.00$ inc VAT.

TRIO EQUIPMENT
NEW!
R1000
Trio 9000 multi-mode
Price inc. VAT
200kHz to 30MHz PLL R
R820
200 kHz to 30 MHz PLL Receiver with digital readout 285.00

TS830S
VFO230
AT230
SP230
DFC230
YK88C
YK88CN
SM220
BS8
TL922
SP520
YG3395C
TS 120 V
TS130S
TS 130 V
SP40
TL120
PS20
MB100
YK88C
SP120
VFO 120
AT130
PS30
TS770E
SP70
TR7600
TR7800
PS8 TR2300 VB2300 MB2 RA1 TS180S

VFO180
SP180
AT180
PB10
TR2300
LAR'PS 1200

SRX30

HS5
HS4

16010 M transceiver with the new bands. Successor to the TS820 \qquad
Digital VFO with memories and digital readout... All band ATY and power meter. Matches TS830S..
External speaker unit with switched filters.
Digital frequency remote controller. Four memories etc... 500 Hz CW Filter.
270 Hz CW Filter.
Monitor scope.

TS820 scan board for SM220.
HF linear amplifier $160-10 \mathrm{~m} / 2 \mathrm{~kW}$ P.E.P.
Speaker.
CW filter..
80-10m mobile transceiver 2OW P.E.P.
8 band 200W pep mobile transceiver
8 band 20W pep mobile transceiver...
New mobile speaker unit.
80-10m 200W P.E.P. linear
AC power supply for TS 120 V
Mobile mounting bracket...
CW filter.
Matching speaker..
Remote VFO.
Antenna tuner (100W)
AC PSU for TS120S, TS 130 \& TS180S..
2 m 70 cm all mode dual bander... Matching speaker... \qquad

2 m synthesised mobile FM 10 Watt... \qquad
2 m synthesised mobile FM 25 Watt
PSU for TR7625 only...
2 m FM portable transceiver.
10W booster \qquad
Mobile mount..
er antenna

Helical rubber antenna ...
16010 m Solida State Transceiver. Digital memory system. 200W pep. External VFO
Speaker.
1.830 MHz antenna tuner

Pack of 10 ni-cad batteries.
Spare power lead...
Power supply unit and ni-cad charger for TR2200GX TR2300/TR3200 and ICOM portables. You can charge and operate at the same time
Communications Receiver ...
Communications headphones, tailored response

MC50 MC35S MC30S
LF30A LAR

De luxe desk microphone dual impedance

VHF AMATEUR RECEIVERS

SR9

Tuneable/crystal 2 m FM receiver 144146 MHz

46.00

HF MOBILE ANTENNAS

G' whip tribander helical 20/15/10.. 24.72
'G' whip multimobile 20/15/10... 24.72
$\begin{array}{ll}\text { L.F. coils for the above whips (specify whether tribander or multi-mobile)....... } & \mathbf{6 . 5 6}\end{array}$
Telescopic whips for the above.. 3.34
Base mounts for all ' G ' whips...

VHF/UHF 'J' BEAM S. All 'J' Beam products available
Famous Ringo Ranger 2m co-linear .. 27.60
Slim Jim 2m vertical... 21.00

ROTATORS

Sky King SU4000 .. $8 \mathbf{8 6 . 2 5}$

Will take 3 element tribander..	107.98

DR7600X Will take a 2 element 40 metre beam ... 13.10 .13

VHF MOBILE WHIPS A.S.P. (Telecoms Accessories)
All ASP mobile antennas and accessories available

NEW HF VERTICAL ANTENNA
HF5 8010 m vertical
HF5R Operational radial kit for roof mountin.
ICOM PRODUCTS
IC24G PRODUCTS
$\begin{array}{ll}\text { IC24G } & \text { FM mobile synthesised transceiver } 2 \mathrm{~m} . ~ \\ \text { IC202S } & \text { SSB } \\ 199.00\end{array}$

| IC211E All mode 2 m transceiver ... | 169.00 |
| :--- | :--- | :--- | :--- |
| 150.00 | |

IC2E
IC260E
C260E
IC251E
29.50
$£ 158.00$
21.85
10.35

IC255E $\quad 25$ watt FM 2 m mobile with memory and scanner $\quad 4$.
watt FM 2 m mobile with memory and scanner 255.00

2 m FM hand portable
159.00
159.00
339.00
$\begin{array}{ll}\text { All mode transceiver ... } & \mathbf{4 7 9 . 0 0}\end{array}$
$\begin{array}{lll}\text { All mode transceiver.. } & \mathbf{7 9 5 . 0 0}\end{array}$

HOW TO BUY!

OFF THE PAGE - Simply choose the product and then complete the coupon and enclose cheque.
*Open Mon-Fri 9.15-6.00pm Saturday $9.15-5.30 \mathrm{pm}$
*H.P. Terms on request

CITY LIBRARY	No.		
THE HEADROW			

FROM THE SHOP - We're close to the station and car parks. Do call in and discuss your requirements.

Authorised Distributor for TRIO \& ICOM. JAY BEAM, ANTENNA SPECIALISTS, HILOMAST and MICROWAVE MODULES PRODUCTS, PLUS ASCOT

LEEDS AMATEUR RADIO

27 Cookridge Street, Leeds 2 Telephone: Leeds 452657

Plus 50p for Brochure* * deietert
nor apolicable

Post to: Leeds \bar{A} mateur Radio, $2 \overline{7}$ Cookridge Street, Leeds 2 . TO BARCLAYCARD/ACCESS lauthorise you to debit my Barclaycard/Access Account with the amount of ε with the amount of $£ \quad$ My No. is

Signature \qquad

THIS MONTH, we begin "Passport to Amateur Radio", a revised and updated version of our very popular "So You Want to Pass the RAE?", and written by one of the co-authors of that series. Alongside the "Passport" will appear several articles dealing with other aspects of amateur radio.

The licensed amateur holds a unique position, with more freedom than enjoyed by most research and development labs. By passing a fairly elementary examination showing that he has an interest in radio techniques, and a basic knowledge of radio interference and how to avoid causing it, he is allowed to experiment with a wide range of communication methods on several frequency bands set aside for him, and with a minimum of official control.

Citizens Band, on the other hand, is a service intended for use by people with no knowledge or interest in the techniques of radio, but who want to talk to others within a fairly limited range. Because the service is going to be used by large numbers of unskilled operators, the transceivers must be "fool-proof" in operation, and meet a tight technical specification. It is surprising that the draft UK CB specifications do not lay down that samples of any transceiver must undergo Government Type Approval tests before it is put on sale, as is the case for every other service (taxis, ambulances, radiophones, etc.) where non-technical users are involved.

It appears that "home construction" of a CB transceiver will not be specifically prohibited, but a "manufacturer or assembler" will be responsible for ensuring that the equipment he produces conforms to the specification. In a factory, the test and quality control departments will take care of that, but how is a home constructor to make the necessary measurements? He would need access to many thousands of pounds-worth of instruments, or have to pay a considerable fee to a suitably-equipped laboratory to check his rig for him. And since he is testing only one sample, the specification says that all limits have to be bettered by a margin of 2 dB

Several magazines have proudly announced that they will be publishing CB transceiver designs for the home constructor, but it seems to me that they are badly misleading their readers by suggesting that this will be practicable, even if it is legally allowed.

Pi lservices

CONSTRUCTION RATING

Each constructional project will in future be given a rating, to guide readers as to its complexity:

Beginner

A project that can be tackled by a beginner who is able to identify components and handle a soldering iron fairly competently. Generally this category will be used for simple projects, but sometimes for more complicated ones of wide appeal. In this case, construction and wiring will be dealt with in some detail.

Intermediate

A project likely to appeal to a wide range of constructors, and requiring only basic test equipment to complete any tests and adjustments. A fair degree of experience in building electronic or radio projects is assumed.

Advanced *

A project likely to appeal to an experienced constructor, and often requiring access to workshop facilities and test equipment for construction, testing and alignment. Constructional information will generally be limited to the more critical aspects of the project. Definitely not recommended for a beginner to tackle on his own.

SUBSCRIPTIONS

Subscriptions are available to both home and overseas addresses at $£ 11.80$ per annum, from "Practical Wireless" Subscription Department, Room 2613, King's Reach Tower, Stamford Street, London SE1 9LS. Airmail rates for overseas subscriptions can be quoted on request.

BACK NUMBERS AND BINDERS

Limited stocks of some recent issues of PW are available at 95 p each, including post and packing to addresses at home and overseas.

Binders are available (Price $£ 4.30$ to UK addresses and overseas, including post and packing) each accommodating one volume of PW. Please state the year and volume number for which the binder is required.

Send your orders to Post Sales Departmont, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF. All prices include VAT where appropriate.

Please make cheques, postal orders, etc., payable to IPC Magazines Limited.

The approximate cost quoted in each constructional article includes the box or case used for the prototype. For some projects the type of case may be critical; if so this will be mentioned in the Buying Guide.

QUERIES

While we will always try to assist readers in difficulties with a Practical Wireless project, we cannot offer advice on modifications to our designs, nor on commercial radio, TV or electronic equipment. Please address your letters to the Editor, "Practical Wireless", Westover House, West Quay Road, Poole, Dorset BH15 1JG, giving a clear description of the problem and enclosing a stamped self-addressed envelope. Only one project per letter please.

Components for our projects are usually available from advertisers. For more difficult items, a source will be suggested in the "Buying Guide" box included in each constructional article.

Communication by radio is now very commonplace and we are no longer amazed by the policeman or woman talking to HQ over a hand-held radiophone. Mobile radios are standard equipment for taxis, public service vehicles and many others. All these users are licensed to operate commercially made communication equipment which is of a type tested and approved by the licensing authority, the Home Office. The user does not need to have any technical knowledge.

In contrast, the radio amateur is licensed to "use his Station for the purpose of sending to and receiving from, other licensed amateur stations, as part of the self-training of the Licensee in communication by wireless telegraphy/telephony".

Although the Licence infers that amateur radio is a strictly male preserve, there are in fact many YL operators too, some sharing their husband's equipment, some having their own.

As the amateur's equipment may be home built and experimental, it is essential that he (or she) has an understanding of how it works.

Before the Home Office will issue an Amateur Licence, one of the conditions to be satisfied is proof of the wouldbe amateur's technical competence and knowledge of the licensing conditions, in short, a "pass" in the Radio Amateur's Examination (RAE).

The Old

There have been wireless (radio) amateurs since the very beginning of wireless communication, but it was in 1905 that the first printed "licence to use Wireless Telegraphy for Experimental Purposes" was issued to a wireless amateur in this country.
It is interesting to note that one of the first licensees was

[^1]Professor J. A. Fleming, the inventor of the thermionic diode which was used extensively in the very first valved radio receivers.

In 1910 the Post-Master General decided that all holders of experimental licences should be given a distinctive call sign (consisting of 3 letters, one of which was always an X) and that this should be sent at the end of each transmission.
The London Wireless Club (the forerunner to the Radio Society of Great Britain) was formed in 1913 and by 1914, the start of the First World War, there were about 2150 wireless licences in force, approximately 1600 of these being for experimental transmitting stations.

The period between the wars was a very exciting time for radio amateurs, pioneering as they did, the spanning of the Atlantic on the so-called "useless short waves", below 200 metres.

In 1922 the London Wireless Society (formerly Club) became the Radio Society of Great Britain (RSGB) which today is still our national society, representing and protecting the interests of the British radio amateur on the national and international scene.
The year 1929 saw the first six internationally agreed short-wave bands allocated specifically for amateur radio use. Five of these bands have remained substantially unchanged to the present day.

The Oxford Dictionary states that an amateur is "one who cultivates a thing as a pastime", but it was at the International Telecommunications Convention, in the USA in 1947, that amateur radio was defined as "A series of self-training, intercommunication and technical investigations, carried on by duly authorised persons, interested in radio technique solely with a personal aim and without pecuniary interest". Although it is a bit of a mouthful, I think you will agree that amateur radio must surely be the only hobby ever, to have been defined by an international treaty, drawn up by 90 nations.

And the New . . .

Let us now move to the present day and look at the 14 frequency bands available to the British radio amateur.

Fig. 1
It is in these bands that the radio amateur is able to communicate with fellow amateurs in the UK and all over the world.

You may think that a radio amateur must be a professional technician or engineer; not at all, radio amateurs have all kinds of jobs and backgrounds, but they do have something in common in that they are interested in one or more aspects of amateur radio communication or experimentation.

WAD913
Fig. 2
The prospective radio amateur is probably keen on a practical hobby, interested in hi-fi or electronics, he may be in electronics professionally, a keen short wave listener or CB enthusiast. At this point the amateur radio bug usually bites, which means that the enthusiast must study for, sit and pass the RAE in order to obtain his licence.
After passing the RAE he can immediately apply for the Amateur Class B licence, which allows him to transmit on amateur bands above 100 MHz . Alternatively, he may wait and pass the Morse test and then apply for the full Amateur Class A licence.

Many radio amateurs obtain their Class B licence first and then, after gaining some operating experience, pass the Morse Test and re-apply for a Class A licence in place of their Class B licence.

Often radio amateurs have first spent some time as a short wave listener (s.w.l.) or, if they have joined the RSGB (as I hope you will be doing), as a British Receiving Station (BRS).

You will learn a lot about short wave conditions and amateur radio operating by listening on the amateur bands, but to do this you will, of course, need a receiver.

You can purchase a new communications receiver for $£ 100-£ 200$. For example the Lowe SRX-30 (reviewed in PW August 1980) or the Yaesu FRG-7 (reviewed in PW July 1980).

The main features of a suitable receiver are shown in Fig. 3.

The portable multiband receivers sold by hi-fi shops are not usually suitable for serious listening on the amateur bands, mainly because they do not have a beat frequency oscillator (b.f.o.) and the dial accuracy and frequency stability are inadequate.

You can sometimes find an old wartime h.f. communications receiver such as the British CR100 or American AR88 or BC348 etc., for $£ 10-£ 30$, or one of the Eddystone range of receivers such as the 640 (1947 vintage) up to the 880 (1956) at $£ 15-£ 50$.

These receivers usually cover several of the amateur bands in the range 1.8 to 30 MHz (160 to 10 metres). If you are interested in listening on the v.h.f. or u.h.f. bands, then a frequency converter (usually just called a "converter") can be used in conjunction with your h.f. receiver to tune the band required. A separate converter is required for each band.

For example, a converter-receiver arrangement for the 2 metre band $144-146 \mathrm{MHz}$, is shown in Fig. 4.

Fig. 4
If you decide to build a 2 metre converter then designs and printed circuit boards are available (2 m MOSFET converter $P W$ October 1978) or there is plenty of choice at around $£ 20$ if you wish to purchase one.

Amateur radio transmissions can use different types of modulation to convey the information, some of the types you may come across are shown in Fig. 5.

WAD916 *				Receiver demodulation	
Emission class	Modulation	Description	Popular terms	Beatfrequency oscillator	Discriminator
A1-A1A	Telegraphy	On-off keying	Morse c.w.	Yes	No
A3J-J3E	Telephony	Amplitude modulation single sideband suppressed carrier	Phone s.s.b.	Yes	No
F3-F3E	Telephony	Frequency(or phase) modulation	$\underset{\text { n.b.f.m. }}{\text { f.m. }}$	No	Yes

Fig. 5
Amateur radio is a hobby which is pursued mainly at home and naturally it affects the rest of the family. On a more personal note now, I obtained my licence in 1953. I was single and living with my parents at the time and my radio "shack" was a corner of my bedroom.

I think it is very important to encourage your young lady (YL) or wife (XYL) to take part in your amateur radio hobby and not exclude her from it. She may become sufficiently interested to pass the RAE and obtain a licence herself.

My XYL and I married in 1954 and for the first three years my shack was in the second bedroom, it was warm and comfortable and I could work late into the night with the minimum of disturbance.

EXE

Dick GANDERTON G8VFH \& John M.FELL G8MCP

The mechanical engineering involved in the $P W$ Exe project should now be complete and we can turn to the more conventional electronic engineering. However we will be giving details of simple modifications for other types of doppler burglar alarm heads later in the series.

The various circuits comprising the i.f. strip and audio processing sections were described in the first part of the series and the majority of this circuitry is built on one p.c.b. The remaining part of the i.f. is an Ambit EF5803 module which is used as purchased. This module is, in effect, a very high performance v.h.f. Band II tunerhead covering the frequency range 88 to 108 MHz .

The p.c.b. carrying the components for the 10.7 MHz i.f. section together with the audio processing, modulator and 9 V stabilised supply should present little difficulty to the constructor. It may be necessary to open up the holes to accept the two tags of the quadrature coil L2. Integrated circuit holders can be used if the constructor is averse to applying heat to the pins of his i.c.s.

Veropins are inserted in the holes shown in Fig. 10 to allow the leads to the various controls to be easily attached to the p.c.b.

One or two components were omitted from the circuit diagram (Fig. 4). C32, $0.1 \mu \mathrm{~F}$ is fitted between the microphone socket and R51; C33,22nF provides a means of removing ringing on the microphone amplifier and C9 has been reduced in value to $0 \cdot 1 \mu \mathrm{~F}$. S2 and S3 can be combined into a s.p.d.t. switch with a centre off position.

It is suggested that the resistors and diodes are inserted into the appropriate holes first followed by the i.c. sockets, Veropins and presets. The last components to be fitted should be the electrolytic capacitors. Do not forget the two wire links.

The diecast box was described last month and the controls, meter and sockets should now be fitted into place. The EF5803 module is held in position on edge at the front of the box by its edge connector and a clip at the other end. The edge connector is bolted to the end of the box using two brackets which fit into the connector moulding. Full details of the connections to the EF5803 are given in the instruction provided with each module.

Earthing arrangements are very important if the full potential of this tunerhead is to be realised and to achieve this a 16 s.w.g. tinned copper wire earthing bar is soldered alongside the edge connector. All earths to the module are made to this bar.

To cut down on pick-up problems all the internal wiring is made using a small size screened lead. For some of the leads the screened twin version can be used.

> The specially designed parabolic dish used in the PW Exe is available by post from the Editorial Offices as detailed in last month's issue. M \& B Radio (Leeds), 86 Bishopgate Street, Leeds LS1 4BB will be selling these dishes at their shop and also at rallies.

Fig. 9: (Top) the p.c.b. copper track pattern shown full size. Fig. 10: (Above) the component placement drawing for the PW Exe. Note that most of the leads from this board are in screened cable
(Left) The completed p.c.b. before attaching the flying leads

These two pictures show the relative positioning of the controls on the front and end of the diecast box. Used in conjunction with the dimensioned drawing Fig. 8 the controls can be correctly placed. The tune control (R14) is positioned in the end of the box below the micrometer head

components

Readers who intend to operate the $P W$ Exe should be in possession of the appropriate licence issued by the Home Office to those who have passed the City and Guilds Radio Amateurs' Examination. Details may be obtained from: The Home Office, Radio Regulatory Department, Amateur Licensing Section, Waterloo Bridge House, Waterloo Road, London SE1 8UA.

- Mind

Resistors
$\frac{1}{4} W$ carbon film 5%

$2 \cdot 7 \Omega$	1	$R 29$
10Ω	1	$R 36$
56Ω	1	$R 38$
100Ω	2	$R 37,40$
330Ω	3	$R 34,39,49$
470Ω	2	$R 11,47$
$1 \mathrm{k} \Omega$	3	$R 1,3,35$
$1 \cdot 2 \mathrm{k} \Omega$	1	$R 8$
$1.5 \mathrm{k} \Omega$	1	$R 52$
$1 \cdot 8 \mathrm{k} \Omega$	2	$R 25,50$
$2 \cdot 2 \mathrm{k} \Omega$	1	$R 46$
$3 \cdot 3 \mathrm{k} \Omega$	1	$R 45$
$3 \cdot 9 \mathrm{k} \Omega$	2	$R 15,53$
$4.7 \mathrm{k} \Omega$	4	$R 17,18,30,51$
$5.6 \mathrm{k} \Omega$	1	$R 6$
$8.2 \mathrm{k} \Omega$	2	$R 13,26$
$10 \mathrm{k} \Omega$	10	$R 2,4,7,10,16,22,27,41,42,43$
$33 \mathrm{k} \Omega$	1	$R 48$
$47 \mathrm{k} \Omega$	1	$R 19$
$56 \mathrm{k} \Omega$	1	$R 9$
$100 \mathrm{k} \Omega$	3	$R 20,21,24$

Semiconductors Diodes		
1N5401	1	D2
Red I.e.d.	1	D3
BZY88C3V3	1	D1

Transistors

BC108	1	Tr1
BD135	1	Tr2
BF224	2	Tr3,

Integrated circuits
$741 \quad 4$
LM380 1 IC5
CA3089 1 IC6

Potentiometers
$\begin{array}{lll}\text { Min. horizontal trimmers } \\ 1 \mathrm{k} \Omega & 2 & \mathrm{R} 5,23 \\ 22 \mathrm{k} \Omega & 1 & \mathrm{R} 32 \\ 500 \mathrm{k} \Omega & 1 & \mathrm{R} 12\end{array}$

Carbòn track		
$10 \mathrm{k} \Omega$ log.	1	R31
$10 \mathrm{k} \Omega$	1	R 14
$100 \mathrm{k} \Omega$	1	R 33
$1 \mathrm{M} \Omega$	1	R 28

Capacitors
Ceramic disc

10 nF	7	$\mathrm{C} 6,18,21,22,24,26,31$
22 nF	1	C 23
$0.1 \mu \mathrm{~F}$	11	$\mathrm{C} 1,3,4,5,7,8,9,12,14,30,32$

Ceramic plate
$47 \mathrm{pF} \quad 1 \quad \mathrm{C} 28$

220pF 1 C20
Electrolytic, p.c.b. mounting

$1 \mu \mathrm{~F} 63 \mathrm{~V}$	1	C 27
$4 \cdot 7 \mu \mathrm{~F} 50 \mathrm{~V}$	2	$\mathrm{C} 25,29$
$10 \mu \mathrm{~F} 16 \mathrm{~V}$	3	$\mathrm{C} 2,11,19$
$22 \mu \mathrm{~F} 16 \mathrm{~V}$	1	C 17
$100 \mu \mathrm{~F} 16 \mathrm{~V}$	2	$\mathrm{C} 10,16$
$470 \mu \mathrm{~F} 16 \mathrm{~V}$	1	C 13
$1000 \mu \mathrm{~F} 16 \mathrm{~V}$	1	C 15

Miscellaneous

Ambit EF5803 tunerhead module; $100 \mu \mathrm{~A}$ edge meter; 5×3 inch speaker 8Ω; p.c.b.; $10 \mu \mathrm{H}$ choke; Toko KACSK586HM; Toko 7BA144LY220, $22 \mu \mathrm{H}$ choke; Toko CFS/SFE filters (2); s.p.s.t. min. toggle switch, d.p.d.t. \min. toggle switch; s.p.d.t. centre off min. toggle switch; Veropins; Screened cable; Knobs; 3.5 mm jack; Min. 3p. non-reversible connector; 1.6A fuse and holder.

The screens are soldered at one end only, to the appropriate Veropin on the p.c.b., keeping the unscreened part of the lead as short as is possible.

The wiring from the power supply socket to the fuse holder switch should be made in heavy gauge insulated wire to minimise voltage drop problems. Screening these wires is not necessary. Note that the audio amplifier has its own separate 12 V and 0 V feeds taken directly from the ON-OFF switch. D2 is connected from the fuse holder to the 0 V side of S 1 b . R52 and D3 are mounted on the front panel of the diecast box and connected to the nearest source of +12 V . The prototype used S 4 for this.

Two b.n.c. sockets are fitted to the side of the box together with a d.p.d.t. switch to enable the electronics to be used with an external microwave head. The switch is connected so as to change the i.f. input and modulator outputs between either the internal head or the sockets. A separate earthing tag must be used at each b.n.c. socket.

The modulator output is wired up using screened lead throughout with the r.f.c. (L3) soldered directly onto the Gunn diode post. Wiring for the Schottky mixer diode is carried out in a good quality 50Ω coaxial cable of as small a diameter as possible. Remember the warning given in Part 2 about the earthing strap across the Schottky.

When the p.c.b. has been completed and all the leads fitted the board can be fastened to the floor of the box using either suitable p.c.b. mounting pillars or Sticky Fixers.

Setting Up

The p.c.b. can be checked out before mounting in the box and the 9 V regulated output set to between 9 and 9.5 V using R5. The actual voltage is not critical but the EF5803 module requires up to $9 \cdot 5 \mathrm{~V}$ to enable it to tune up to 108 MHz .

The Gunn voltage should be capable of being varied using the FINE TUNE control R14 and should be set initially at about +7.5 V with a.f.c. switched out.

With a meter set to read about 3 V connected across R43 adjust the core of L2 for zero volts on the meter.

It should be possible to tune in several v.h.f. radio stations using R33 so select a weak signal and carefully adjust the final i.f. transformer for maximum output. Note the instructions given with the module as to carrying out this operation.

The meter reading can be adjusted with R32 to give a suitable deflection with a really strong input signal.

If an oscilloscope is available then the modulator can be set together with the microphone amplifier output and tone generator output. Measured at the Gunn diode the modulation level should be 200 mV . If a scope is not available then the modulation will have to be set up in conjunction with another working system. In this case R23 must be set to give minimum tone output and R28 set for minimum gain (zero resistance) to start with.

When you are satisfied that the system is working properly you can try out the a.f.c loop. The gain of the loop is set by R12 which also sets the modulator gain. With a.f.c. switched in and set to either position there should be no change in Gunn diode voltage. If there is, then the quadrature coil L2 will have to be re-adjusted. The modulator gain is set by R12 and should be adjusted to give the desired a.f.c. action.

Next Part

Final setting up of such things as modulator gain and i.f. tuning will be covered in the next part along with a general guide to operation on the 10 GHz band.

Aerials and aerial accessories are very definitely among the most popular topics covered in Practical Wireless. In response to requests from readers, we've reprinted a selection of articles from the past three years, plus two new features-one by Ron Ham on v.h.f. propagation, the other describing the "Ultra-Slim Jim", a new version of that most popular 2-metre aerial design by Fred Judd.

Out of Thin Air has 80 pages, $295 \times 216 \mathrm{~mm}$, and is available from Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF, price $£ 1.50$ including postage and packing to UK addresses, or $£ 1.80$ by surface mail overseas. Please ensure that your name and address are clearly legible.

OUT OF THIN AIR

> Please send your order and remittance to:
> IPC Magazines Ltd., Post Sales Department, Lavington House, 25 Lavington Street, London SE1 OPF

Please send me........copies at $£ 1.50$ each to include postage and packing ($£ 1.80$ surface mail overseas)
I enclose P.O./Cheque No.
Value
UK remittances must be by crossed postal order or cheque (name and address on back please) and made payable to IPC MAGAZINES LTD

NAME
(BLOCK LETTERS)
ADDRESS
(BLOCK LETTERS)

Remittances with overseas orders must be sufficient to cover despatch by sea or air mail as required. Payable by International Money Order only

Company registered in England. Regd. No. 53626
A subsidiary of Reed International Limited

Although the most talked-about changes resulting from the deliberations of the 1979 World Administrative Radio Conference in Geneva (WARC '79) are in frequency allocations, there are others which will have some effect on radio amateurs and those studying for the RAE. Among these is a new set of codes for specifying radio emissions, which will come into use officially on 1 January 1982.

Most amateurs talk about emission types using abbreviations such as c.w. (continuous wave) for Morse code signals; s.s.b. for single-sideband, suppressed-carrier signals; and f.m. for narrow-band frequency-modulated (or phase-modulated) signals. The licence, however, uses the codes A1, A3J and F3 respectively to refer to these, and lists several other emission modes available for amateur use as well. Now, all these codes are to be changed, presumably on the grounds that they were not detailed enough to describe the many new types and variations of modulation which have come into use. Under the new codes, A1 becomes A1A (assuming it is to be received by human (non-automatic) means), A3J becomes J3E, and F3 becomes F3E for frequency-modulated telephony, or G3E if it's phase modulated.

The complete table of codes, extracted in slightly modified form from the new Radio Regulations, is shown in Table 1. A conversion table for the codes mentioned in the UK Amateur Licence will be published in a future issue of $P W$.

Bandwidth
Associated with the emission code is another code which designates the r.f. bandwidth of the emission. In the amateur service, the licence merely says that the radiated energy shall be kept within the narrowest possible frequency band, having regard to the class of emission in use, although certain standards have come to be accepted to ensure that transmitters and receivers are broadly compatible. It is very important to keep bandwidth in mind when operating near the band edges. For example, an upper-sideband telephony signal based on a carrier frequency of 29.699 MHz would go well beyond the upper
limit of the 10 m amateur band at 29.700 MHz , and could invite the attention of one of the international frequency monitoring stations.

In all types of professional radio communications the bandwidth allowed to be used is closely defined in the relevant equipment specification issued by the Home Office. For the benefit of readers involved in such communications, the new bandwidth code is as follows:

The necessary bandwidth shall be expressed by three numerals and one letter. The letter occupies the position of the decimal point and represents the unit of bandwidth. The first character shall be neither zero nor K, M or G .
Necessary bandwidths:
between 0.001 and 999 Hz shall be expressed in Hz (letter H);
between 1.00 and 999 kHz shall be expressed in kHz (letter K);
between 1.00 and 999 MHz shall be expressed in MHz (letter M);
between 1.00 and 999 GHz shall be expressed in GHz (letter G).
Examples:

$$
\begin{array}{ll|l|l}
0 \cdot 1 \mathrm{~Hz} & =\mathrm{H} 100 & 2 \cdot 4 \mathrm{kHz} & =2 \mathrm{~K} 40 \\
180 \cdot 7 \mathrm{kHz}=181 \mathrm{~K} \\
25 \cdot 3 \mathrm{~Hz}=25 \mathrm{H} 3 & 6 \mathrm{kHz} & =6 \mathrm{~K} 00 & 4 \cdot 5 \mathrm{MHz}=4 \mathrm{M} 50 \\
100 \mathrm{~Hz}=100 \mathrm{H} & 180 \cdot 4 \mathrm{kHz}=180 \mathrm{~K} & 5 \cdot 65 \mathrm{GHz}=5 \mathrm{G} 65
\end{array}
$$

Breaking You In Gently

To get everyone used to the new emission codes, the Home Office has asked the technical press to use the existing and new codes in parallel during the remainder of 1981, so that the examples given at the beginning of this article become:
$\mathrm{A} 1-\mathrm{A} 1 \mathrm{~A}$
$\mathrm{~A} 3 \mathrm{~J}-\mathrm{J} 3 \mathrm{E}$
$\mathrm{F} 3-\mathrm{F} 3 \mathrm{E}$ or $\mathrm{F} 3-\mathrm{G} 3 \mathrm{E}$ as appropriate.

A1-A1A
F3 - F3E or F3 - G3E as appropriate.

 USER REPORTS ON SETS AND SUNDRIES

SOAR FC-841 Frequency Counter

It's not so many years ago that digital frequency meters came in 19 in benchtop rack cabinets and, if you were so unwise as to think of doing so, required two strong men to move them. They weren't very easy to use, either. Then they started to benefit from space technology, and you could buy a very good 50 MHz counter/timer for around a thousand pounds (mid-1960's pounds, that is), that could be carried by one man, providing it wasn't too far. I could go well over a hundred yards without changing hands!

Since then, as with most electronic units, they've got even smaller, and are just about at the limit that the space needed for the display and controls will allow. They've got cheaper, too, and counters with a very creditable performance are now within range of the enthusiast's pocket. The latest to come our way, and one which I must admit appeals to me personally, is the FC841 by the Soar Corporation of Japan.

The FC-841 is a real "pocket-size" instrument, measuring $32 \times 100 \times$ 120 mm , excluding protrusions like feet, tilt stand and input socket, and weighs around 550 g . Tests carried out by the importers, Holdings of Blackburn Ltd., produced the following performance figures: Frequency range: $10 \mathrm{~Hz}-65 \mathrm{MHz}(45 \mathrm{MHz}$ on internal batteries). Sensitivity: better than 30 mV over most of range $(60 \mathrm{mV}$ on internal batteries). Time base accuracy: not worse than ± 0.3 p.p.m. (0.0003%), or 1.5 p.p.m. (0.0015%) on internal batteries. Time base drift: less than
0.3p.p.m. from 1 minute to 1 hour after switch-on. The checks which we carried out certainly showed the frequency accuracy and drift to be very good indeed, when checked against standard frequency station WWV by the transfer oscillator method. Holdings are prepared to guarantee an accuracy of $\pm 0.0002 \% \pm 1$ digit, and a sensitivity of 60 mV at room temperature, on all units sold.

The display is a 4 -digit, red l.e.d. type, with digits 10 mm high. Here, I must voice my only criticism of the unit, and that is that the display is dim-no good putting it next to the window in sunlight, or under a bright desk-lamp. Apart from the ON/OFF switch, the only external control is a GATE switch, which controls the length of time that the counter gate is open, and hence the frequency range displayed. In the " kHz " position of the switch, the display indicates tens of kilohertz, with a resolution of 10 Hz , and in the " MHz^{\prime} position, it indicates tens of megahertz, with a resolution of 10 kHz -the decimal point stays between the second and third digits. To measure a high frequency, say 28.325 MHz , you would set the switch

first to " MHz ", when the display would read 28.32 or 28.33 (the last digit of a counter is always subject to a possible error of ± 1 digit). Switching then to the " kHz " range, the display should read 25.00 if the measured frequency is accurate, though again, there is a possible ± 1 error in the final digit which indicates tens of hertz.

This procedure does take a little getting used to, and you have to be specially careful when the final digit of the " MHz " reading is around the zero area, but it causes no problems with a little practice. If you have a real 8-digit counter, you tend to ignore the most significant digits when you are trying to read a frequency accurately. In the FC841, the display does the ignoring for you!

The input impedance is $1 \mathrm{M} \Omega$ plus stray capacity, and the input connector is a BNC socket. The power supply can be internal, using four AA-size (Penlight) cells which fit into a battery compartment under the unit, or external in the range $8-11 \mathrm{~V}$ d.c., or 14 V via a 15Ω resistor.

All the circuitry of the unit is housed on two p.c.b.s, one for the display, controls and input connector, the other the "works", which include 11 i.c.s and five transistors. All components are identified on the p.c.b., and the whole is very neatly assembled. The manufacturer's Operator's Manual is a bit sketchy, and written in the usual Oriental English, but Holdings provide a very useful leaflet with a translation and some additional information. No servicing data is given.

The Soar FC-841 costs $£ 45.00$ including VAT, which buys you the basic unit less batteries, leads, etc. The recommended power unit for a.c. mains operation is $£ 7$, and a pre-scaler to extend the frequency range to 500 MHz is available at $£ 23$. A charge of $£ 1$ is made to cover post and packing. For further details contact Holdings Photo Audio Centre, 39/41 Mincing Lane, Blackburn BB2 2AF, telephone: Blackburn (0254) 59595/6, to whom we offer our thanks for the loan of the review sample.
G. C. Arnold G3GSR

REMEMBER: When you deal with SMC you get:
The SMC 2-year guarantee on Yaesu. The speedy free Securicor service. The security of dealing direct with the largest authorised importer. The spacious, very well equipped, ably staffed test and service facility. The knowledge that we carry tens of thousands of pounds of spare parts. Our discreet "instant" H.P. Our personal export documentation scheme. Our in-person, or over the 'phone, time saving credit card acceptance. Our honest advice and evaluation of part exchange equipments' worth. Our deep interest and knowledge in most facets of our common hobby. AND DO NOT FORGET THE FREE FINANCE SCHEME Give us a ring for full details (subject to clearance and a minimum of $£ 100$ invoice) we will help you to enjoy new regular priced Yaesu, KDK, Gem Quad, Ascot, SMCHS, CDE, Hy Gain, Stolle, Channel Master, SMC, Hansen, MFJ, KLM, Mirage, and Hi-Mound - Tomorrow! (You pay only The Cash Price!!!).

POWER UNI ${ }^{-2}$ RU120406 $£ 15$
4 amps const. 6 amps surge $=13.8 \mathrm{~V}$. Low ripple.

RS120810 £30

8 amps const. $10 / 11$ surge $=13.8 \mathrm{~V}$. Full foldback etc.

SS122535 £99

25 amps const. 35 surge $-13 \cdot 8 \mathrm{~V}$.
Foldback, short circuit proof etc.

FRG7 £199
$0^{\circ} 530 \mathrm{MHz}$ General Coverage Receiver. 230 V ac. 12 V dc . + Battery pack. AM/SSB

* PRICES INCLUDE VAT $\mathbb{1 5}$ \%

FT480R £359
2 m . Synthesized. 25, $12 \frac{1}{2} .1 \mathrm{kHz}$ steps FM $1 \mathrm{kHz}, 100,10 \mathrm{~Hz}$,steps SSB, 10 W PEP.

\star FREE SECURICOR DELIVERY

$\star 2$ YEAR IMPORTER WARRANTY

SOUTH MIDLANDS COMMUNICATIONS LIMITED

S. M. HOUSE, OSBORNE ROAD, TOTTON, SOUTHAMPTON, SO4 4DN, ENGLAND Tel: Totton (0703) 867333, Telex: 477351 SMCOMM G, Telegram: "Aerial" Southampton
S.M.C. Agents

G3ZUL Stourbridge (03843) 5917 GM8GEC Edinburgh (031665) 2420 G13WWY Tandragee (0762) 840656 GW3TMP Pontybodkin (035287) 846/32 GW8EBB Swansea (0792) 872525 GJ4ICD Jersey (0534) 26788
S.M.C. (Leeds) BRANCH LEEDS
257 Thomas, G3PSM 257 Otley Road, Leeds 16, Yorkshire.
Leeds (0532) 782326 9-5.30 Monday-Saturday
$\stackrel{*}{N}$ N N

E

W New Whittington, Chesterfield.
W Chesterfield (0246) 453344
$\star \quad 9-5$ Tuesday-Saturday
S.M.C. (Jack Tweedy) LTD
*
N
E Jack Tweedy, G3Ž
W Worncastle Road.
W Woodhall Spa. Lincoinshire
$\star \quad 9-5$: Tues-Sat (+ appointments)

GAREX

RESISTOR KITS a top-selling line for many years. E12 series, 5\% carbon film, 10Ω to $1 \mathrm{M}, 61$ values, general purpose ratings $\frac{1}{4} \mathrm{~W}$ or $\frac{1}{2} \mathrm{~W}$ (state which)
Starter pack 5 each value ($\mathbf{3 0 5}$ pieces) $\mathbf{£ 3 . 1 0}$
Standard pack 10 each value (610 pieces) $£ 5.55$
Mixed pack, 5 each $\frac{1}{4} W+\frac{1}{2} W(610$ pieces) $\mathbf{£ 5 . 5 5}$
Giant pack, 25 each value (1525 pieces) $£ 13.60$
NICAD RECHARGEABLES physically as dry cell: AA(U7) $£ 1.30$; C(U11) £3.35; PP3 £5.55. Any $5+$: less 10%, any $10+$: less 20%.
AMPLIFIER MODULE new, fully assembled 6W IC unit, 12V DC. Low impedance (4-8 $)$ input and output for extn. speaker amplification, with circuit $\mathbf{£ 2 . 7 5}$
CRYSTALS FOR 28.5 MHz 3 rd. overtone, suit most 'CB' rigs. 28.5 MHz Tx and 28.045 MHz Rx. HC18U $£ 4.60$ per pair

CRYSTAL FILTER $10.7 \mathrm{MHz}, 12 \frac{1}{2} \mathrm{kHz}$ channel spacing, ITT type 901C $£ 6.90$
CO-AXIAL CONNECTORS \& ADAPTORS sae full list.
PL259 UHF plug with reducer 75p; SO239 UHF socket, panel mtd. $\mathbf{6 0 p} ; \mathbf{2} \times \mathbf{S O 2 3 9}$ inline coupler $\mathbf{£ 1 ; 2 \times P L 2 5 9}$ inline coupler $\mathbf{£ 1}$. Any 5+ connectors: less 10\%
HT TRANSFORMER multi-tap pri.; 5 secs.: $35 \mathrm{v} 200 \mathrm{~mA}, 115 \mathrm{v}$ $150 \mathrm{~mA}, 50 \mathrm{v} 500 \mathrm{~mA}, 150 \mathrm{v} 300 \mathrm{~mA}, 220 \mathrm{v} 300 \mathrm{~mA} £ 5$
HT CHOKE top grade type, $9 \mathrm{H} 240 \mathrm{~mA} £ 3.50$
PYE CAMBRIDGE SPARES (our speciality, sae full list). Ex. equip. fully guaranteed. Rx RF board $68-88 \mathrm{MHz} £ 5.95 .10 .7 \mathrm{MHz}$ I.F. $£ \mathbf{£} .65$. 2nd mixer 10.7 MHz to $455 \mathrm{kHz} £ \mathbf{£} .455 \mathrm{kHz}$ block filter $12 \frac{1}{2} \mathrm{kHz} £ 9.40$, ditto $25 \mathrm{kHz} £ 3.455 \mathrm{kHz}$ AM I.F. $£ \mathbf{£ 3 5}$. Audio bd. $£ 1.95$, and many more. Vanguard \& Westminster spares also.

MONITOR RECEIVERS
SX-200 VHF-UHF AM-FM SCANNER
Covers $26-88 \mathrm{MHz}, 108-180 \mathrm{MHz}$ and $380-514 \mathrm{MHz}, A M+F M$, it scans, seeks, memorises and beats all the others. Sae full details.
HF-12 POCKET SIZE FM 12 channel xtal controlled. 4 MHz bandwidth in range $130-174 \mathrm{MHz}$. With nicad and charger $£ 57.95$ X tals extra, see below.
SOUNDAIR 008 PORTABLE FM SCANNER 8 channel x tal controlled $140-170 \mathrm{MHz}$. With nicad and charger. $\mathbf{£ 5 9}$ Xtals extra.
SR-9 top-selling monitor: 2 m FM with $144-146 \mathrm{MHz}$ full coverage VFO $+11 \times$ tal controlled channels; ideal for fixed, $/ \mathrm{M}, / \mathrm{P}$ use. 12 V DC operation $£ 47.50$
Marine band SR-9, $156-162 \mathrm{MHz}$, same spec. and price.
CRYSTALS FOR NR-56, SR-9, SR-11, HF-12, TM-56B All $2 m$ channels from $O(145.00)$ to $32(145.80)$ incl. at $£ \mathbf{2 . 4 6}(+\mathbf{1 5 p}$ post per order). Over 40 popular marine channels at $\mathbf{£ 2 . 8 5}$ ($+\mathbf{1 5 p}$ post). Nonstock xtals made-to-order in 3 weeks at $£ 4.30$ each. Sae list.
'SCAN-X' VHF/UHF BROADBAND FIXED STATION AERIAL £19.90 Ideal for SX-200 and other VHF/UHF receivers.
We also stock the:
KDK $2025 \mathbf{2 m}$ SYNTHESISED TRANSCEIVER Full band coverage 25 or $12 \frac{1}{2} \mathrm{kHz}$ steps/ 10 channel memory/scans memories or selected band portion/3W or 25 W Tx/all the features you need at $£ \mathbf{£ 2 5}$
YAESU FRG 7700 GENERAL COVERAGE RECEIVER 150 kHz $30 \mathrm{MHz} \mathrm{AM} / \mathrm{USB} / \mathrm{LSB} / \mathrm{CW}$ and FM $£ 309$
MAINS PSU British made by GAREX 12 volt 1 Amp regulated, adjustable $10-16 \mathrm{v} \mathbf{£ 1 5 . 9 5}$
MAIN DISTRIBUTOR OF REVCO AERIALS \& SPECIAL PRODUCTS (trade enquiries welcome)

ROBOT '400' SSTV

State of the art, full brightness, non fading pictures on a normal TV monitor. From the worlds leading SSTV manufacturer. ONLY £666 incl. VAT \& delivery. Send 14 np stamp for full details
There are approx 14000 SSTV stations transmitting from 130 countries.
AERO \& GENERAL SUPPLIES (SSTV)
Building 33, East Midlands Airport, Castle Donington, Derby DE7 2SA.
Tel: (0332) 812446. Telex: 37522.

Spun Parabolic Alloy Dishes for: RADAR, SATELITE, TV AND TRANSCEIVERS

Also custom made units Prices upon request.
Contact:

N. J. Cousins,

Metspin Ltd, 94b New Brighton Road, Emsworth, Hampshire P010 $70 S$ Telephone Emsworth (02434) 3712.

IMPORTANT-The ideas presented here are suggestions only, and as they are untried by this magazine, we cannot accept responsibility for any resultant damage, however caused. Before alterations are attempted, care should be taken to ensure that any guarantee is not invalidated, and it should also be borne in mind that modifications usually have an adverse effect on resale prices. In cases where specialist skills or equipment are needed, most dealers will undertake the work for a reasonable fee.

Roger Hall G8TNT(Sam)

No. 8

Rob, G80ZP, has written from Burton-upon-Trent with a very nice a.g.c. mod for the Trio R-1000. Remove the top cover and locate the two-pin plug 13 which is in the rear left hand corner of the set and which has a white/orange and a white/blue wire running to it. If this plug is removed the a.g.c. action is speeded up considerably and if switchable fast/slow a.g.c. is required, Rob points out that it is a simple matter to remove the existing wiring from the front panel dimmer switch and to re-route the two wires that run to plug 13 through this switch. Thanks for passing on the idea Rob.

Next a very simple mod for the Trio TR-9000 from Steve, G8VEF, of Lowe Electronics. In its original form the HIGH/LOW power switch on the front panel of this set gives 1W on low power and 10W on high power, but only on f.m.; on s.s.b. the output is 10 W regardless of the position of the switch. To make the switch work on s.s.b. as well as f.m. simply remove the lid of the set and cut the orange wire that is attached to the rear of the HIGH/LOW power switch. That's all there is to it. Thanks Steve.

The last tip this month is for owners of the Yaesu FT480R. Several people have said that these rigs appear to have a mind of their own and they have a tendency to zoom off frequency all by themselves, which can be quite disconcerting. Mike, G8EWU, has worked extensively with these sets and he has found that this problem usually occurs because the user has forgotten to release his auto-clarifier button. If everyone remembers not to operate on f.m. with the button depressed then the problem should disappear.

Wanted

I would like to use the rest of this month's page to publish a selection from the many requests for help that I have received. I had originally intended to publish a few each month but as space has been limited for the last few months I now have quite a backlog to get through.

Mr. D. E. Williams carried out the FT-480R listen-input mod that I published in the December column and he has written in because he would like to know if anyone has come up with a full reverse repeater mod as he would like to do that one next.

David, G8XYJ, wrote in from Welwyn Garden City because he would like an auto-toneburst mod for the Icom IC-255-IC-260 rangé of 2 metre transceivers.

Mr. E. S. Saunders of Nottingham wrote in to say that he has carried out the Trio TR-2300 reverse repeater mod that appeared in the May mods column but he does not want to use the other suggestion i.e. to use the l.e.d. to show that the toneburst has been switched on. He would prefer to use the diode to indicate that duplex has been selected and he wonders if anyone knows how to do this.

Mr. M. E. Lee also read the May mods page and he wonders if anyone has details for the same sort of mods that appeared there, reverse repeater etc., but this time for the sister rig to the TR-2300, the TR-3200. He would also like any mods for the Yaesu FR-101DD receiver.

Mr. D. W. Howarth, G4IFT, wrote in with a very interesting mod that I hope to be able to use in a future issue but for now here are his requests for mods. He would like information on the Yaesu FT-221R i.e. switchable High/Low power, front end mods etc. and he would also like to know if it is possible to modify the TR-2300 to give a low power output.

Mr. R. D. Woodard of Sheppey in Kent has bought himself a Trio 9R59DS and he wrote to me because he would like to know of any mods that anyone has carried out. He has not specified which mods and so I gather that any information would be welcomed.

Mr. A. D. Rock, G8PR, wrote in from Stow Bridge asking for two mods. The first is to extend the frequency range of the Yaesu FT-227R up to 148 MHz , and the second is to enable the Yaesu FT-101E to transmit on 10 MHz . He has seen such a mod for the FT-101 but it does not work with the FT-101E.

Vic, G3UB, wrote in asking for any information that would enable him to modify his FT-DX500 to operate on 160 metres. He wonders if the required crystal would be 7520 kHz and he adds that he would prefer an outboard p.a.

Mr. D. R. Pellegrini has an SX200 and he wonders why there are two gaps in its coverage. The set does not cover between $88 \mathrm{MHz}-108 \mathrm{MHz}$ and $180 \mathrm{MHz}-380 \mathrm{MHz}$ and he would like to know of a mod that would allow these bands to be covered.

David, GI4FUM/EI4DJ, has an FDK Multi 750E and he would like to extend its frequency range, add a pip-tone on s.s.b. and also to make the set scan.

Can anyone help with any of these mods? If you can, or if you have a request for a mod or if you have a mod that you would like to have published, please write to: R. S. Hall, Practical Wireless, King's Reach Tower (Hatfield House), Stamford Street, London SE1 9LS.

73's
Sam G8TNT

"Is my signal any better now? I have switched in my Noise Blanker."

Brighton \& District RS Newsletter

Have you heard any (printable) comments, funny peculiar or funny ha-ha? If so, why not send them in to our Editorial offices at Poole. We will pay for every one published.

There has recently been an upsurge of interest in vintage wireless sets, and details of a reproduction set in the May and June 1980 issues of Practical Wireless are an indication of this. As mentioned in the first article dealing with that set, many of the components are no longer available, or are very rare. This comment applies to the coils used in sets of this era, but many constructors were happy to wind their own coils, as well as make up their own variable "condensers" from the various plates and components sold by dealers.

Plug-in Coils

For a long time, the most popular coils were the 2 -pin, plug-in type, in various sizes, from two or three turns of 18 s.w.g. tinned copper wire for short waves to the multi-turn coils to cover the long wave reception of Daventry and Radio Paris. The coils, with one male and one female connector, were plugged into standard baseboard mounting type bases (Fig. 2), and there was also provision for a swinging holder for reaction circuits. If variable coupling between three coils was required, you could obtain a holder in which the centre coil was fixed and each of the outside two coils could be swung to vary the coupling between each of the outside coils and the centre coil independently. Where the circuit required a tapping on the coil, usually to tap the antenna on to the grid coil, this was provided by means of a connection to a terminal on a 4BA bolt at the top of the coil.

Fig. 1: Above, Former construction for a honeycomb coil. Fig. 2: Right, Plug-in coil former

Honeycomb Coils

Simple kits for winding these coils were obtainable from dealers and consisted of a small, ready-drilled, wooden core, and a number of steel pins which were inserted into the holes in the fashion of the spokes of a wheel. 2-pin bases were also available from the same source. These kits are now very probably non-existent outside museums, but can easily be constructed.

The wooden cylindrical former should be about 50 or 60 mm in diameter and the pins about 50 mm long. These can be long panel pins or round nails. For ease of winding, panel pins with their small heads are more convenient. If these are not available, the heads of ordinary round nails should be removed.

Holes are drilled into which the nails are lightly hammered. The number of holes on each edge of the cylinder is not critical, but they should be about 10 mm apart, and the number on each edge should not be a multiple of 2 or 3 , in order that the winding may form a regular honeycomb pattern. A simple way of working out the spacing is to wind a single turn of paper about 10 mm wide round the former, remove it and, laying the strip of paper flat, measure the length of one complete turn, i.e. the circumference of the former. The length should then be divided by a suitable number and the appropriate positions for the pins marked on the paper. These marks are then transferred to the circumference of the former and small

Fig. 3: Stages in the winding of a honeycomb coil

Fig. 4: Stages in the winding of a basketweave coil

Fig. 5: Winding a basket type coil
holes made to receive the pins. The pins are then lightly hammered into the former (Fig. 1).

Using 28 or 30 s.w.g. wire, winding can commence. As with most coil winding, it is a good idea to stretch the wire slightly to stiffen it, and also to remove any kinks from the wire. This stretching also makes the wire easier to handle, and the finished job is somewhat neater. Anchor the free end of the wire round a pin, leaving about 100 mm free for eventual connection to the plug base. Wind the wire across the former to the next pin on the opposite edge of the former, and continue in this fashion, taking the wire outside alternate pins, zig-zag style (Fig. 3). As there are an odd number of pins, the second layer will utilise the pins not used for the first layer, and so a honeycomb pattern will build up. About fifty turns will tune the medium wave band with a 500 pF variable capacitor.

As the winding proceeds, keep the turns well pressed down, as if you were weaving a cloth, so that a compact coil is formed. When the requisite number of turns has been wound, the free end is anchored round a pin and left with about 100 mm of wire to make the other connection to the base. The coil should be bound in about six places with thread, the best places being between two adjacent pins. The nails are removed and the coil is treated with a fixative to keep the turns in place. The coil is then mounted on its base and a strip of thin, stiff plastic wrapped around the coil and fixed at each end to the sides of the base with a small, metal retaining plate (Fig. 3).

Basketweave Coils

An alternative form of coil construction is the basketweave pattern. This type of coil is also mounted on a standard plug base. The pins are fixed onto the face of the cylinder, or in a circle on a flat block of wood (Fig. 4). Again, the number of pins should not be a multiple of 2 or 3. The start of the winding is as for the honeycomb coils, but the winding pattern is different. Starting from Pin 1, take the wire outside Pin 1 to the inside of Pin 2, then outside Pin 3, and continue alternately inside and outside each successive pin. With an odd number of pins, the second layer will be "out of step" with the first, the third layer will follow the first, and so on. After about 10 turns, the pattern will be evident.

When the required number of turns has been wound, the coil is finished in the same manner as the honeycomb type. A neater coil can be made by using an alternative winding pattern. Starting from Pin 1, take the wire outside Pins 2 and 3, outside Pin 4, inside Pins 5 and 6, and so on.

Basket Type

The third type of coil used is the basket type. These are mounted flat on the panel of the set. If variable coupling is required, e.g. for reaction, the moving coil is mounted on a short, wooden arm and arranged so that it can be moved closer to the fixed coil, the greatest degree of coupling being attained when the moving coil is directly above, and in the same plane as, the fixed coil.

The basket coil is wound on a circular piece of stiff cardboard, about 150 mm diameter. A number of slots are cut from the circumference towards the centre of the circle. Again, the number of slots should be an odd number. Winding starts from the centre, the wire going over and under alternate segments of the card (Fig. 5). As the coil is not self-supporting, there is no need to fix the windings with a fixative.

Vintage battery radios were powered by a 2 V accumulator and 120 V dry battery. Later models, not quite so vintage, used 1.5 V and 90 V batteries. Renovating this kind of wireless has the advantage that, unlike elderly mains equipment, there is little risk of serious fire hazard, or personal injury, from deteriorated mains and high tension components. However, even if suitable batteries were readily obtainable their cost and inconvenience would not be acceptable to-day. There is an obvious requirement, therefore, for a battery eliminator.

Modern components mounted on a chassis and screwed to the inside of the cabinet would be functional, but incongruous. Ideally, the unit should be contained in a mahogany and ebonite box with nickel plated brass connectors, but a reasonable compromise can be achieved with mahogany veneered chipboard and black or brown painted aluminium. The size should be such that it will readily fit into most battery compartments.

Because battery valves have directly heated filaments of small cross-sectional area the low tension supply must be exceptionally well smoothed, and close to the specified filament voltage. Ripple will appear as amplified hum at the output, while over or under running the filaments will shorten the life of the valves.

The high tension supply is not so critical, but it should be constant and reasonably well smoothed. The high tension current drawn by a battery wireless is typically about ten, and rarely more than fifteen, milliamps. It is therefore practical to limit the supply to twenty milliamps, which will protect the filaments in the event that they inadvertently come into contact with the high tension supply. Because of the vulnerability of the 'flying' battery leads both supplies should be short-circuit protected.

The power supply described has been designed with the foregoing in mind. Alternative supplies of 2 and 120 volts, or 1.5 and 90 volts, may be selected by S1, which has its spindle shortened and slotted for screwdriver adjustment. At the same time, a green l.e.d. lights for the lower voltages, or an amber one for the higher.

The Circuit

The mains input transformer has two 6 V secondary windings, one of which is used for the l.t. supply. After rectification there is 6 V d.c. available at the input terminal of the voltage regulator, which is about the minimum certain to overcome the dropout voltage. The low input voltage, and consequent low dissipation, ensure that heat-sinking is not a problem. The 'T' version of the LM317 regulator, which has a plastic T0220 case, is cheapest and easiest to mount. However, the T03 ' K ' version is equally suitable. Whichever is used it must be insulated from chassis with

the appropriate mounting kit. The 1.4 V output is set by R 3 , and the 2 V output by R2 and R3 in series. These resistors should be 5 per cent or better. The LM317 is protected against almost everything, but D1 is necessary to remove the voltage on C3 from the adjustment pin of the regulator in the event of a shorted output. The short circuit current from the LM317 is over 2A which the rectifier and transformer could not sustain over a period: the fuse is therefore included to limit the current to 800 mA .

Fig. 1: Circuit diagram of the power supply. R2 is made up from two resistors R2a and R2b in parallel

The construction techniques used for this project are reminiscent of
 the fifties and early sixties. Tagstrips are used to mount the various discrete components

The second 6 V winding of the mains transformer is fed into the 9 V winding of T 2 , and the high tension supply extracted from the 240 V winding. The rectified output, with no load, is about 200 V .

Incidentally, the reasons for using these two transformers, instead of a single standard valve mains transformer, are (1) this arrangement is several pounds cheaper, (2) the final physical shape of the unit is better and (3) there is less heat dissipated in the dropping resistor.
The d.c. is fed to the collector of the series pass transistor, Tr1. through R4. The output voltage is set by the Zener diodes-D4, a nominal 90 V , or D5, a nominal 120 V .100 and 130 volt Zeners are used, although 90 and 120 volt are available and may be preferred, to allow for up to ten volts drop in the automatic bias circuit. $\operatorname{Tr} 2$ is cut
off until the h.t. current reaches twenty milliamps: it then draws current from $\operatorname{Tr} 1$ base, holding the supply at twenty milliamps. Further reductions in the load impedance result in the output voltage tending to zero. $\operatorname{Tr} 1$ is heat-sinked to chassis, but must be insulated from it. Tr2 does not need a heat-sink. Note that HT- is not connected to chassis: if it were, a separate grid bias supply might be necessary. As it is, if HT- is connected to the radio chassis through a suitable resistor(s) negative grid bias will be available at the HT- end(s). (See Fig. 2). Of course, many later battery radios already have this kind of bias, and the foregoing applies only to those which were designed for a separate grid bias battery.
continued on page 49

components

Radio frequency interference (r.f.i.) is a common occurrence when thyristors and triacs are in use, it is also a great vexation to people listening (or trying to listen) to radios, televisions, and audio systems and can ruin hours of work in a recording studio.

The radio frequencies generated by thyristors and triacs, or any switching device, result from a sudden change of current in a circuit, rather like a squarewave. The step function generated by suddenly switching a current on and off has in theory an infinite number of harmonics, and though the amplitude of these falls rapidly with increasing frequency, there is usually sufficient energy to cause severe interference up to the bottom of the medium wave band.
Thyristor invertors can extend the range of the r.f.i. up to v.h.f. frequencies because of their fast switching rate. The key to r.f.i. suppression is to limit the rate of change of current ($\mathrm{di} / \mathrm{dt}$) in the circuit.

For instance, limiting the di/dt to around $0.5 \mathrm{~A} / \mu \mathrm{s}$ has been found to render r.f.i. insignificant on a.m. radio receivers. The di/dt limitation is achieved by placing chokes in series and capacitors in parallel with the thyristor or triac.

RFI can be propagated to other equipment by conduction or radiation, or a combination of both. Direct radiation is rarely a serious problem, because the wires inside a control unit are usually far too short to act as useful antennas at the frequencies where r.f.i. is most troublesome. However, interference is often picked up in proximate equipment and screening is essential where sensitive audio equipment is nearby, for example, when lighting control desks are used by discothèques and at rock concerts. Both steel and aluminium cases provide adequate r.f.i. screening. Copper screening is more expensive but provides excellent screening at high frequencies, and is most useful for invertors, which can produce high levels of r.f.i. at s.w. and v.h.f. frequencies. At these frequencies, control wires make good antennas and therefore radiated r.f.i. can be quite a nuisance.

In the majority of cases of thyristor generated interference, conducted r.f.i. predominates. A persistent exam-
ple is the interference caused to mains powered radios by domestic dimmers and drill speed controllers; here the interference simply travels down the mains supply. Less common is re-radiated r.f.i. Here, the interference travels along the mains cables and is then re-radiated, to be received by portable radios. Once again, proximity is significant and a portable radio which is placed too close to mains wiring will be prone to re-radiated r.f.i. The interference in these cases can be strong because a length of mains wiring approaches the length of a $\lambda / 4$ or $\lambda / 2$ antenna at the frequencies of interest. Conducted r.f.i. is most troublesome when the supply impedance is high and the impedance between the noisy unit and the receiver suffering interference is low.

This condition is illustrated in Fig. 19, where a lighting dimmer interferes with a radio powered from an adjacent socket. If a separate mains cable is run to the dimmer, the conducted r.f.i. will be greatly reduced, because the r.f.i. will be attenuated by two lengths of mains cable acting as a T-pad attenuator in conjunction with the supply impedance, before it reaches the radio. To prevent reradiated r.f.i. by-passing the supply cable impedance, the two mains cables should be separated by at least 2 m and the units should be kept as far apart as possible.

The above method attenuates the r.f.i. received, but the most effective way of obliterating interference is to suppress it at source by limiting the rate of change of current (di/dt). The simplest means of doing this is by means of a series choke (Fig. 20). Note that this is placed on the neutral side of the mains, so that stray capacitances to earth do not hinder its effectiveness. Likewise, the value of the choke must be greatly increased at higher currents bearing in mind that the supply impedance will be lower. Fig. 21 depicts a low pass filter which provides a $-18 \mathrm{~dB} /$ octave slope below the turnover frequency which is around 50 kHz using the stated values of L, C and load current. (The filter slope is really -12 dB /octave, but in conjunction with the natural $-6 \mathrm{~dB} /$ octave decay of thyristor r.f.i. with increasing frequency, the slope is $-18 \mathrm{~dB} /$ octave). Suppression at 200 kHz (the frequency of BBC Radio 4) is thus around -40 dB .

Fig. 19 (left): The effect of cable length on r.f.i. from a dimmer

Fig. 20 (left below): The use of a series choke Fig. 21 (below): A low pass filter giving $-18 \mathrm{~dB} /$ octave of suppression

$L=100 \mu \mathrm{H}$
$C=100 \mathrm{n} 1000 \mathrm{~V} \mathrm{d.c}$.
$\mathrm{ft}=50 \mathrm{kHz}$
(load limited to 1-8Amps for stated value of ft)

Fig. 22 (above): The load resistance in this circuit provides the damping necessary to prevent ringing
Fig. 23 (above right): A damped r.f.i. filter circuit
Fig. 24 (right): The attenuation characteristics of various filters compared with r.f.i. and noise from various sources

For maximum effect, the turnover frequencies of the $L R C$ and $L C$ combinations should be equal. Thus to the following equation must be satisfied when it is desired to find the value of L and C for other load currents and turnover frequencies (f_{t}):
$R_{L}=1 /\left(2 \pi f_{\mathrm{L}} \mathrm{C}\right)=2 \pi \mathrm{f}_{\mathrm{L}} \mathrm{L}$, where R_{L} is the load impedance.
For simplicity, this is assumed to be purely resistive. Assume an f_{t} of 100 kHz is required with a 4 A load. Then $\mathrm{R}_{\mathrm{L}}=240 / 4=60 \Omega$.
L is found first:
$\mathrm{L}=\mathrm{R}_{\mathrm{L}} /(2 \pi \mathrm{f})=60 /(6.3 \times 100000)=95 \mu \mathrm{H}$
and $\mathrm{C}=1 /\left(2 \pi \mathrm{f}_{\mathrm{t}} \mathrm{R}\right)=1 /(6.3 \times 50 \times 100000)=26 \mathrm{nF}$
Fig. 24 compares the attenuation characteristics of the filters shown in Figs. 20 and 21 with the natural noise spectrum of a thyristor or triac and other common sources of r.f.i. Fig. 22 shows a twin choke (balanced) filter which can be particularly effective when the load is in the live side of the mains, or when the interference is common mode. The design of balanced chokes can be quite difficult and it is often cheaper and easier to use a standard component.

As in the case of the snubber discussed earlier, the $L C$ arrangements shown in Figs. 21 and 22 are susceptible to ringing and depend on the load resistance for damping.

The poor transient response of the filter shown in Fig. 21 can be seen from the slight peakiness it exhibits at its turnover point in Fig. 24. If the load is very small, say less than 100 W , then severe ringing can occur, possibly causing a triac to trigger or turn off spuriously. If the addition of an r.f.i. filter to a circuit previously known to work causes bizarre effects, this indicates ringing and can be confirmed and/or eliminated by raising the load current.

If it is not possible to raise the load current to stop the ringing, the $L C$ network must be damped. This is achieved by adding a capacitor and resistor to vigorously damp the oscillations. The arrangement usually takes the form of the circuit shown in Fig. 23.

Filter components require careful selection if they are to be effective at high frequencies, where inductors have significant capacitance and vice versa. The capacitance of a choke can be lowered by adding a few layers of pvc tape over each winding.

Both the chokes and the capacitors should be wired as close to the triac or thyristor as possible, preferably within a few inches. Ferrite beads added to the lead between the choke and the triac will greatly improve the effectiveness of the suppression. When the ferrite core of a choke becomes saturated, the choke acts as if it has an air core and its impedance drops drastically. This is most likely to occur when high load currents are passed; these will require the use of chokes with beefy ferrite cores to avoid saturation. L in Fig. 20 should ideally use a much larger core at the higher ($>10 \mathrm{~A}$) load currents specified for this reason.

Zero Voltage Switching

In the past zero voltage switching has been acclaimed as the panacea of all r.f.i. problems. This is quite untrue. First, zero voltage switching is mainly limited to heating control and applications where pulsed signals are inherent, such as in random or sequential lighting displays. Second, zero voltage switching relies on the optimistic assumption that the triac or thyristor can be turned on when the mains passes through zero; the di/dt is then very high, but as there is no voltage for an infinitesimal period of time, there can be no interference.

Unfortunately, the holding current characteristics of a triac often makes true zero point switching impossible. A

Mullard BTX36 thyristor (left) and BTX38 have controlled avalanche characteristics. The maximum crest working voltage for both is 800 V and the avalanche voltage is 1320 V . Maximum forward currents are 16A and 70A
typical device which needs a 50 mA current to pass before it will hold on without a gate signal will be turned on slightly after the zero point, when sufficient voltage is available to drive this current through the triac. This voltage is typically $2-6 \mathrm{~V}$ and as the di/dt of the mains is at its highest about the zero point, the r.f.i. produced is by no means negligible.

Zero voltage switching is most effective at high load currents and when triacs are fired by a d.c. gate signal, which can ensure the earliest possible turn-on time after the zero point, without synchronisation problems. When zero voltage switching and $L C$ filters are used together, the result is exceptional freedom from r.f.i.

Interactive Effects

Related to r.f.i. are interactive effects between groups of triacs or thyristors controlling different loads but connected to the same supply lines and in mutual proximity. This arrangement typically occurs in stage lighting control units.

Fortunately, the trigger circuitry is usually remote in elaborate systems, but the triacs are often mounted alongside the trigger circuits in low cost dimmer units. This is quite acceptable provided the power cables and trigger circuit wires are well separated. If the supply impedance is high, switching several lamps on simultaneously will cause the supply voltage to drop momentarily. It is a good idea to feed trigger circuits from a regulated supply for this reason.
Triacs can also interact directly, but this is unlikely if they each have a series choke for r.f.i. suppression. Poorly damped snubbers however can aggravate interactive effects. Chokes should be mounted well away from each other or orientated for minimum interaction. In exceptionally difficult circumstances, it may be necessary to use screened trigger wires or even to screen the power cables and connections. Careful cable routing will usually be all that is needed however.
The techniques described will extirpate the vast majority of "mysterious" triac failures and interference problems and allow the quiet efficiency and longevity of these elegant semiconductors to be appreciated.

H. LEXTON LIMITED
 191 FRANCIS ROAD LEYTON E. 10
 TEL 01-558 0854 TELEX 8953609 LEXTON G

RADIO \& ELECTRONIC ENGINEERS ENGINEERS ALWAYS AVAILABLE ON THE PREMISES

 MAIN (UK) SERVICE CONTRACTOR TO HITACHI SALES (UK) LTD
EXCLUSIVE TO US IN THE UK. 1kW input 600W ssb 350FM 2MTR LINEAR!!

BUILT-IN POWER SUPPLY, ELECTRONIC WARM UP, VARIABLE INPUT ATTENUATOR. ADAPTS EXCITERS FROM 2W-25W. RADIAL blower. Led's for ready, tx, overload, ptt \& rf Vox with variable delay choice of eimac tubes. $4 \times 150 A$ OR $4 \mathrm{C} \times 250 \mathrm{~B}$ OR $4 \mathrm{C} \times 250$. ELECTRONIC PLATE CURRENT FUSE - NO THERMAL DAMAGE OF P.A. TUBE POSSIBLE. SIZE: H88mm.

ICOM MULTIMODES

IC 251 2MTR.
$£ 479$
IC 451 70cms.
£579
IC 260 2MTR.

ICOM FM MOBILES

IC 24G

$$
\text { IC } 255
$$

ICOM 720A G/C

ICOM ACCESSORIES

BP5 11V Battery Pack $\quad \mathbf{£ 3 0 . 5 0}$ BP4 Empty Case for $6 \times$ AA Cells $£ 5$ BP3 Standard Pack
BP2 6 V Battery Pack
BC30 Base Charger
DC1 12 V Adaptor
WM9 Mic/Speaker
CP1 Mobile Charging Lead
LC1/2/3 Cases
$\mathbf{f} 15.50$
$\mathbf{f 2 2}$
£22
£34
$\mathbf{£ 7 . 5 0}$
$\begin{array}{r}\text { £7.50 } \\ \mathbf{~} 9 \\ \hline\end{array}$
£2.75
£3

RECEIVERS

R 1000 Kenwood
FRG 7700 Yaesu
FRG 7700 with
memory
These are all
IC 2001L Sony on special offer.
Search 11 2MTR P.O.A.

YAESU/SOMMERKAMP

TRIO/KENWOOD

TS830S HF Transceiver £625 TS130S HF Transceiver $£ 490$ TR9500 UHF Multimode (New) TBA TR7840 High power FM 2MTR (New)
TR8400 UHF mobile $£ 275$ TR7800 VHF mobile $£ 265$
AT130
AS30 £ $\mathbf{6} 72$ £85
R1000 general coverage receiver

- Many accessories
£285

HF A3 20/15/10 3 ele beam 8 dB
£147
ATV3 20.15.10 Trapped vertical $£ 34$ ATV4 10.15.20.40 Trapped
ATV5 10.15.20.40.80 Trapped vertical
£74
VHF A3219 19 ele boomer
16.2 dB

214B 14 ele boomer $15.2 \mathrm{~dB} \quad \mathbf{£ 4 9 . 5 0}$

AR× 2 Ringo Ranger 6dB Vertical CS100 Communication Speaker A144.4 4 ele Yagi A144.77 ele Yagi A144.11 11 ele Yagi DX120 20 ele Yagi AR $\times 2 \mathrm{~B}$ Ringo MkII ARB2K Conversion kit

MICROWAVE MODULES

MMA 144V 2MTR Pre-Amp $\quad \mathbf{£ 3 4 . 9 0}$
MML 144/25 RF Amp $\quad \mathbf{E 5 9}$
MML 144/40 £77
MML 144/100S (New, with
Pre-Amp)
£129.95
MMT 432/144 2-70 Transverter £184 MMT 28/144 £99 MM 4000 RTTY (See it working in our shop)
£269

STANDARD

C8800 2MTR Mobile
$£ 250$
C7800 70 cms . Mobile
£270
C78 70cms. Portable CMB8 Mobile mount CDB 78 Power Amp. $\quad \mathbf{~} 178.95$ CL 8 Carry Case $\mathbf{f 6 5}$
$\mathbf{f 6 . 9 5}$
A new standard 2 mtr portable is due in soon.

ROTATORS AND ACCESSORIES

DAIWA
DR 7600X £135
DR 7600R £144
DR 7500X $£ 95$
DR 7500R £105
KENPRO
KR 400
POA
HAMIV
£145
CHANNELMASTER
CN 620
$1.8-150 \mathrm{MHz}$, $\mathrm{PWR} / \mathrm{SWR} \mathbf{£ 5 2}$
CN 2002 2.5kW Auto ATU $\quad \mathbf{1 9 0}$
SWAN/CUBIC
100M× 235W
£375
$102 \mathrm{~B} \times 235 \mathrm{~W}+\mathrm{PS} 5$
103BX WARC 235W
PS6 Power Supply
150M \times Digital
15002 Linear
ST2A ATU
ST3A ATU
HF Mobile ant

RINGO MkI to Ringo MkII
Now available - Crossed Yagi with
phasing harness $17^{\prime \prime}$ long, weight
$3.5 \mathrm{lb}, 10.5 \mathrm{dBd}$ gain $£ 38$ Also available Ringo Ranger MkII,

7dB gain £28.75
FULL RANGE IN STOCK
CATALOGUE AVAILABLE SAE PLEASE

S.E.M.

BOX 6, CASTLETOWN, ISLE OF MAN. TEL: MAROWN (0624) 851277

Three GREAT Q.R.M. FIGHTERS

1. S.E.M. Active C.W. Filter

A 150 Hz wide needle centred on 750 Hz . Not only does the signal stand out but the background noise drops away. If you use C.W. you need one.
2. S.E.M. Active Notch Filter

A wide notch for more effect on chirpy C.W. and funny noises. Wide range 100 Hz to 10 KHz .
3. S.E.M. MULTI FILTER

Adjustable selectivity and frequency. Hi pass, Lo pass. Bandpass + notch positions. The ultimate "signal sorter" on any mode. Plus a further wide notch same as 2 above. $£ 57.50$ All connect in series with the loudspeaker and require 12 V .

S.E.M. TRAN Z MATCH

The most VERSATILE transmatching system. Will match from 15 to 5000 Ohms BALANCED or UNBALANCED at up to 1 kW . Link coupled balun means no connection to the equipment which can cure TVI both ways. SO239 and 4 mm connections for co-ax or wire feed. 160-10M TRAN Z MATCH $\mathbf{£ 5 7 . 0 0}$. 80-10M $\mathbf{£ 5 0 . 0 0}$.
EZITUNE built in for $\mathbf{£ 1 9 . 5 0}$ extra.

S.E.M. EZITUNE

A new concept in "tuning up". 50 Ohm bridge, noise generator and r.f. switch allows you to match your aerial without transmitting. Save P.As. Stop QRM for $£ \mathbf{2 5}^{\circ}$ Ex stock.
S.E.M. IAMBIC KEYER

Without doubt the best keyer circuit. Uses the custom CMOS L51 Curtis Chip. $\mathbf{£ 3 0}$. CMOS touch key $\mathbf{£ 1 1 . 5 0}$.
THE SENTINEL AUTO Mk II 2 METRE PRE-AMPLIFIER
These include NEW PROTECTION circuit to give MAXIMUM LEGAL through power rating. Completely new third generation DUAL GATE MOSFET pre-amp giving 1 db N.F. and 20 dB gain with GAIN CONTROL and OFF switch (straight through when OFF). The High Q tuned circuits for high selectivity. 12 V 25 mA .
Size: $1 \frac{1}{2}^{\prime \prime} \times 2 \frac{1}{4}^{\prime \prime} \times \mathbf{4}^{\prime \prime} £ \mathbf{2 5 . 0 0 ^ { * }}, 70 \mathrm{~cm}$ version $£ \mathbf{2 8 . 0 0 ^ { * }}$. All ex stock.
SENTINEL 2 METRE LINEAR POWER AMPLIFIER/PREAMPLIFIER
The units use the latest techniques and transistors for highest reliability and performance. Infinite SWR PROTECTED devices. ULTRA LINEAR, all modes. R.F. switched. Same POWER GAIN at lower drive powers. Supply 13.8 V nominal. Three models.

1. SENTINEL 35

Twelve times Power gain. 3W IN 35W OUT. Max. drive 5W 4 amps. $6^{\prime \prime} \times 2 \frac{1}{4}{ }^{\prime \prime}$ front panel, $4 \frac{1}{2}^{\prime \prime}$ deep. $£ 57.50$ ex stock
2. SENTINEL 50

Five times power gain. 10W IN 50W OUT. Max. drive 16W 6 amps. Same size as Sentinel 35. £69.50 ex stock.
3. SENTINEL 100

Ten times power gain. 10W IN 100W OUT. Max. drive 16W. Size $6 \frac{1}{2}^{\prime \prime} \times 4^{\prime \prime}$ front panel, $3 \frac{1}{2}^{\prime \prime}$ deep. 12 amps. Price $£ 126.50$ ex stock. All available less pre-amp for $£ 8.00$ less.

SENTINEL H.F. WIDEBAND PRE-AMPLIFIERS

$2-40 \mathrm{MHz} 15 \mathrm{~dB}$ gain. Ideal for 15 and 10 metres and OSCAR or an ACTIVE AERIAL. 9-12V. Size: $2 \frac{1_{4}^{\prime \prime}}{4} \times 1 \frac{1}{2}^{\prime \prime} \times 3^{\prime \prime}$. Two versions.

1. SENTINEL STANDARD H.F. PRE-AMPLIFIERS Performance as above $\mathbf{£ 1 0 . 0 0 ^ { * }}$ ex stock.
2. SENTINEL AUTO H.F. PRE-AMPLIFIERS

Same performance as above with a change over relay r.f. operated by your transceiver for direct connection in your aerial co-ax. $£ 16.93^{\circ}$ Ex stock.

FREQUENCY CONVERTERS

SENTINEL DUAL GATE MOSFET 2 metre or 4 metre CONVERTERS. N.F. 2 dB . Gain 30dB.
I.F.s 2 metres: $2-4 \mathrm{MHz}, 4-6 \mathrm{MHz}$, or $28-30 \mathrm{MHz}, 4$ metre: $28-$ $28.7 \mathrm{MHz} .9-12 \mathrm{~V} 15 \mathrm{~mA}$. $£ 24.73$ Ex stock.
SENTINEL X 2 METRE CONVERTER
Same as above plus mains power supply. $\mathbf{£ 2 8 . 8 0}$ Ex stock.
SENTINEL L.F. CONVERTER
$10 \mathrm{KHz}-2 \mathrm{MHz}$ IN. $28-30 \mathrm{MHz}$ OUT. $9-12 \mathrm{~V} 5 \mathrm{~mA}$. $£ 20.80$ Ex stock. SENTINELTOP BAND CONVERTER
$1.8-2.3 \mathrm{MHz}$ IN. $14-14.5 \mathrm{MHz}$ OUT. $9-12 \mathrm{~V} 5 \mathrm{~mA} . £ 20.80$ Ex stock. 12 MONTHS COMPLETE GUARANTEE
Prices include VAT and delivery. C.W.O. or phone credit card number for same day service.

- means Belling Lee sockets, add $£ 1.90$ for SO239s or BNC. Ring or write for more information.

READ THE REVIEW IN THIS ISSUE AND THEN COME AND TRY THE

TRIO TS 830S

AT
M.R.S.

COMMUNICATIONS LTD.

76 Park Road, Whitchurch,
CARDIFF
Tel: Cardiff (0222) 616936

OPEN
9 am to 5 pm
6 Days

YOUR

 SOMMERKAMP IMPORTER1 Railway Road,
Blackburn, Lancs. Telephone: 51842.
(Telephone Evenings: Bolton 592929 G4GHE)

SOMMERKAMP FT767DX

- Same as the FT707 reviewed this month, but includes CW Filter and a YM35 microphone. Full coverage from 80-10 meters, plus of course, the new WRAC bands.
£559 inc. VAT.
MKIII OTHER SOMMERKAMP H.F. RIGS
FT277ZD. 80-10 metres, AM, SSB and CW. Inc. mic. CW filter, cooling fan, DC converter.
£599 AM. £649 FM FT7B. 80-10 metres, complete coverage, inc. mic and mobile bracket. £399
FT902DM. 160-10 metres, AM, FM, SSB, CW and FSK. Inc. mic,
filters, DC converter and cooling fan.
$£ 959$

SOMMERKAMP 2m TRANSCEIVERS

TS280. 80 channel synthesised mobile rig, complete with mic and fixing brackets.

50W O/P version.

£159
10W O/P version.
£129
FT480R. Multimode mobile, complete with scanning microphone
and slip-in bracket.
£349
We stock genuine Sommerkamp accessories - power units, SWR meters, aerials, etc.

ACCESS and BARCLAYCARD. Send SAE for further details of the Sommerkamp range.

A monthly look at some aspect of the radio/electronics hobby that seems to bug the beginner, or occasionally a more advanced topic seen from an unusual angle.

ATTENUATORS-1

In the space of a couple of articles like this, I cannot hope to cover everything there is to know about attenuators. I just want to explain the principles involved, so that you can perhaps read reference and text-books with a little more understanding.

Going back to Mr Thevenin again, remember that we can consider a voltage source to be made up of a perfect generator in series with an impedance or resistance which represents all the losses in the source. Attenuators are circuits made up from a number of resistors, used to attenuate (literally "to make smaller") an audio- or radio-frequency signal. For the sake of simplicity, I shall talk about audiofrequency circuits, so our source will be an a.f. oscillator. The frequency is unimportant.

For a start, let's assume that the source impedance is fairly low, say 120Ω. Its open-circuit voltage (e.m.f.) is 2 V , so when connected to a load of 120Ω, the terminal voltage will be 1 V . For loads with impedance greater than 120Ω, the terminal voltage will be somewhere between 1 V and 2 V .

Now, supposing we want to do some tests on an amplifier with an input impedance of 600Ω (typical in an audio system), and which needs the source connected to it to have an impedance of 600Ω for correct operation. In other words, it must operate in a matched system. This is easy to achieve with our oscillator, simply by connecting a resistor of 480Ω in series with it (Fig. 1). We have effectively produced a new source, with a different internal impedance (Fig. 2). The e.m.f. remains at 2 V , and the p.d. when the "new" terminals ($0 / \mathrm{P}$ " S ") are loaded with 600Ω is still 1 V .

If our amplifier needed an input signal level of 500 mV (half a volt), how could we achieve it and still have a source impedance of 600Ω ? The answer is that we put an attenuator between the generator and the load, and there are basically two rules that must be obeyed:

1. When you consider the view seen by the source looking out at the attenuator and load in series, it must "see" its designed load impedance (in our example, 600Ω). This also means that we know that the voltage across the input to the
attenuator is equal to half the source e.m.f., and makes the subsequent calculations a lot simpler.
2. When you consider the view seen by the load (our amplifier) looking back into the attenuator and source in series, it must "see" its designed source impedance (again, 600 ${ }^{\text {) }}$). Note that the source and load impedances don't have to be the same. You can design attenuators to work between unequal impedances too, so that each end of the circuit "sees" what it ought to see, and the load receives the right amount of signal.

If we take the circuit of Fig. 3, we could choose resistors R1 and R2 so that they presented a load of 600Ω to the source ($R 1+R 2=600 \Omega$), whilst their ratio would produce an output at the O / P " A " terminals of $500 \mathrm{mV}(R 2=(R 1+$ R2) $\div 2$). Making R1 and R2 both 300Ω would do the trick. All very simple, you say! But we've forgotten something. The input impedance of our amplifier is 600Ω, so that the circuit will really look like Fig. 4, with an extra resistance of 600Ω in parallel with R2, producing an effective value for R2 of (300 $\times 600) \div(300+600)=200 \Omega$.
This has several disastrous effects:

1. The source now sees a load of $300^{\circ}+200=500 \Omega$ instead of the designed 600Ω, so the voltage at its output terminals will be less than 1 V .
2. The division ratio of R1 and R2 is now wrong, and the attenuation will be greater than wanted.
These first two points mean you'll get less out of the attenuator than you expected, basically because of the loading effect of the load!
continued on page $61 \ggg$

WRM389

Radio Amateur Saves Life

A young Chelmsford radio amateur was recently instrumental in saving the life of a Jugoslavian youth.

25 year-old Chris Baker G4LDS, a test technician with Marconi Communication Systems Ltd., was monitoring 15 m on the evening of 12 May 1981, when he heard, on $21 \cdot 16 \mathrm{MHz}$, a Jugoslavian amateur YU1PDP, calling "CQ, CQ, Italy, Germany, France, Emergency."

When nobody answered, Chris responded by offering to help. Apparently a youth of 17 was dying in a Belgrade hospital and only the drug Calciprin, manufactured in France and not available in Belgrade, could save him, provided it was administered within 15 hours.

Chris immediately rang Chelmsford Police HQ and soon a squad-car arrived at his house. YU1PDP passed further details of their requirements resulting in a relay between the squad car and Chelsmford Police HQ who used the Interpol link to check with Jugoslavia and trace a supply of the drug.

Within the hour, 5 boxes of the drug

were despatched via London's Heathrow Airport. Two days later, Chris heard, by telex, that the youth's life had been saved.

Chris has been a radio amateur since 1974 and currently operates a Yaesu FT101 with 100 watts output through a 3 -element Tribander antenna TA 33 junior.

Practical Wireless would like to congratulate both Chris G4LDS and YU1PDP on their prompt and efficient action which illustrates the finest traditions of amateur radio.

Special Event Stations

Bromsgrove and District Amateur Radio Club (G3VGG) have organised, for the 29 July, a Special Event Station for the Royal Wedding, operating from Sanders Park, Bromsgrove. Callsign GB2WED.

There will be an award connected with this operation, details of which are available from: Awards Manager, John Harvey G4IVJ, QTHR.

Yeovil Amateur Radio Club (G3CMH \& G8YEO) will be running special event stations at the following venues:-

International Air Day on Saturday, 1 August at HMS Heron, Yeovilton, Nr. Yeovil, Somerset. Callsign GB2FAA.

Mid-Somerset Show on Saturday, 15 August at Shepton Mallet, Somerset. Callsign GB2MSS.

Dillington House Open Day on Monday, 31 August at Dillington House College, Ilminster, Somerset. Callsigns G3CMH and G8YEO.

Further details of all these events may be obtained from: D. L. McLean G3NOF, 9 Cedar Grove, Yeovil BA21 3JR. Tel: (0935) 24956.

On Thursday, 30 July, Friday 31 and Saturday, 1 August, the St. Helens and District Amateur Radio Club will be operating GB2STH from the Annual St. Helens Show at the showground site, Sherdley Park, Marshalls Cross Road, St. Helens, Merseyside.

Further details from: The Club Secretary, P. Gaskell G8PQD. Tel: St. Helens (0744) 25472.

Catalogues

Hot off the press and available for immediate delivery is the new comprehensive Spring catalogue from West Hyde Developments Ltd., the Aylesbury based company with over 1000 different instrument cases and something like 250000 case parts currently in stock.

The catalogue includes many important additions to their product range and is obtainable free on application to: West Hyde Developments Ltd., Unit 9, Park Street Industrial Estate, Aylesbury, Bucks. HP2O 1ET. Tel: (O296) 20441.

Verospeed Ltd. inform me that their latest 136 page catalogue is now available. The company, which boasts a really fast turnround of orders, have increased the size of the catalogue to include many new entries.

This free catalogue is available from: Verospeed Ltd., Stansted Road, Boyatt Wood, Eastleigh, Hants SO5 4ZY. Tel: (O703) 618525.

T \& J Electronic Components, the Chigwell based radio/electronic component suppliers, have their latest catalogue available.

Costing 45 p the 50 -page catalogue is available from: $T \& J$ Electronic Components, 98 Burrow Road, Chigwell, Essex IG7 4HB. Tel: 01-500 7073/9705.

Last, but by no means least, Rapid Electronics have their latest catalogue available. The 24 -page catalogue covers many items of interest to the electronics enthusiast and will be sent out on receipt of $2 \times 14 p$ stamps by: Rapid Electronics Ltd., Hillcroft House, Station Road, Eynsford, Kent. Tel: Farningham (0322) 863494.

IARU

Two very sad events cast a pall over the International Amateur Radio Union Region 1 Conference at Brighton. Delegates were shattered to learn of the death on 30 April of Peter Ballestrini G3BPT, immediate past president of the RSGB and also the society's current Emergency Communications Manager and a member of Council. His contribution to the organisation of RAYNET will be sadly missed.

Earlier in the week an observer with the VERON delegation from the Netherlands, Mr A. H. Kokee PAOKOK, passed away.

A full report on the conference will appear soon in an issue of Practical Wireless.

More on page $57 \gg$

M.J.AXSON BA G8WHG

The ability to transmit and receive pictures adds a whole new aspect to amateur radio. It can be quite fascinating to see pictures of someone to whom you have spoken many times, but never met. Circuit diagrams can be exchanged as can pictures of the shack and its equipment. The scope is enormous.

It has long been possible to transmit conventional fastscan television, but the cost and complexity of the video equipment has made it very much a minority interest. It was with this in mind that slow-scan television was developed, initially in the USA by WA2BCW, who published his first article on the subject in August 1958. Interest was soon aroused in other countries, G3AST and G3LEE being early in the field in Britain, and now SSTV

Table 1

Band (MHz)	IARU Recommended frequency (MHz)	Most popular frequency (MHz)
$3 \cdot 5$	3.735	3.730
7	7.040	7.040
14	14.230	14.230
21	21.340	21.340
28	28.680	28.680
144	144.500	144.230
432	432.500	-
Line Speed	$\mathbf{6 0 H z}$ Mains 15 Hz	50Hz Mains $16 \frac{2}{3} \mathrm{~Hz}$
No. of Lines	120	120
Frame Speed	8 secs	$7 \cdot 2$ secs
Aspect Ratio	1:1	1:1
Scanning direction	left to right top to bottom	left to right top to bottom
Sync pulse length		
Horizontal	5 ms	5 ms
Vertical	30 ms	30 ms
Subcarrier frequency		
Sync	1.2 kHz	1.2 kHz
Black	1.5 kHz	1.5 kHz
White	2.3 kHz	2.3 kHz

Fig. 1
enthusiasts are to be found in all parts of the world on the h.f. and v.h.f. amateur bands (Table 1).

The basic SSTV system is simplicity itself (Fig. 1). For reception an SSTV monitor is attached to the audio output of a conventional receiver, and for transmission an SSTV camera (or even more simply, a flying-spot scanner) provides the video signals to the audio input of the transmitter. No modifications are required to either RX or TX and the mode of transmission may be either s.s.b. or f.m.

Fig. 2: Two lines of SSTV picture

Fig. 3: Frequency spectrum of SSTV signal

In order to transmit video information within the normal audio bandwidth, we must slow down the rate at which the information is sent. This is made possible by sacrificing the ability to send moving pictures, which is no great loss in the context of amateur radio. A lower standard of definition is also used, but since the SSTV monitor is usually placed near to the receiver and operator, a small screen is used and acceptable pictures result.

The standard adopted was for a square picture made up of 120 lines. In addition to the video information forming the picture, synchronising pulses must also be sent at the start of each line and frame so as to keep the monitor in step with the camera. The a.c. mains frequency is ideal for derivation of the sync pulses and line speeds are locked to the 50 Hz and 60 Hz supplies used in different parts of the world. The ratios used are $\frac{60}{4}=15 \mathrm{~Hz}$ and $\frac{50}{3}=16 \frac{2}{3} \mathrm{~Hz}$,
which are close enough for the same monitor to be used for both standards. It will be seen that the transmission time for a complete frame is $\frac{120}{15}=8$ secs or $120 \div 16 \frac{2}{3}=$ 7.2 secs.

The video information is presented as a range of audio tones starting with the black level at 1.5 kHz and going through varying shades of grey to the white level at 2.3 kHz . The sync pulses are sent at 1.2 kHz which is far enough away to allow them to be separated easily. Since figuratively speaking they are 'blacker than black' the retrace does not appear in the picture.
Sub-carrier frequency modulation is used which moves the transmitted carrier frequency according to the audio tone to be sent. This is a similar process to that employed in a.f.s.k. for RTTY, but in this case a range of tones between 1.2 and 2.3 kHz is transmitted rather than only the mark and space tones. When heard on the air SSTV signals sound similar to RTTY signals but they have a more musical quality and there is a noticeable bleep when the frame sync pulse is transmitted.

Equipment Requirements

Since we are dealing with audio frequencies below 2.3 kHz only simple and inexpensive audio circuits are needed so making SSTV an ideal subject for home construction. Ordinary domestic cassette tape recorders may be used to store pictures, the prime requirement being good speed regulation, since any speed variations will cause line to line jitter in the picture. Careful attention to the tape drive and the use of high quality cassettes will usually give good results. A simple check can be made by recording a steady tone and playing it back, when if all is well, there should be no noticeable variation in the frequency.

Many amateurs begin by building a monitor and enter transmitting by having programs pre-recorded by an established SSTV operator who has a camera or flying-spot scanner available. This is a quick and inexpensive way of getting started.

Fig. 4

A block diagram of a simple monitor is shown in Fig. 4. The incoming SSTV signal is fed from the receiver speaker terminals into a conventional limiter/amplifier where amplitude variations caused by QRM and QRN are reduced by the limiter and the signal is boosted by the amplifier before passing to the video and sync discriminators. These are frequency sensitive circuits which separate the video and sync information. The sync discriminator is sharply tuned to 1.2 kHz whilst the video discriminator is tuned to pass only 1.5 to 2.3 kHz .

After amplification and detection, the frame sync pulses are separated from the line sync pulses and both trigger their respective timebases so causing the raster to be drawn on the screen. Simultaneously the video frequencies are amplified and slope detected producing low output for 2.3 kHz (white level) and high output for 1.5 kHz (black level). The resulting voltage is then applied to the grid of the c.r.t. to provide intensity modulation of the electron beam. Thus light and dark variations are placed at appropriate points on the screen so reproducing the SSTV picture. Since a single frame takes $7 \cdot 2$ secs to receive, it is essential that the c.r.t. has a long persistence (P7) phosphor.

Fig. 5

Flying-spot Scanner

Slow-scan cameras present more of a problem, mainly due to the difficulty and cost of obtaining suitable Vidicon tubes. These were developed in the late 50's and early 60 's for various space probes, notably the Mariner missions to Mars, but the average amateur cannot afford NASA prices! Hence the popularity of the flying-spot scanner (Fig. 5).
A light-tight box houses a c.r.t. and a photomultiplier tube. A transparency is placed in front of the c.r.t. (which has short persistence phosphor, P1). Horizontal and vertical slow scan sweep is applied to the c.r.t. and since no video modulation is applied, the resulting raster is completely white. The light from this raster is modulated by the transparency and focussed by the lens system on to the photomultiplier producing a small video output voltage. This is then amplified and applied to the SSTV master oscillator which produces a $1.5-2.3 \mathrm{kHz}$ audio signal. The sync generator causes the SSTV oscillator to produce $1 \cdot 2 \mathrm{kHz}$ sync pulses at the appropriate times.

Sampling Camera

Satisfactory though this was in many ways, the wish to transmit live pictures rather than photographs remained, and for this purpose a camera was essential. An ingenious solution was arrived at in the form of a sampling camera. The principle is shown in Fig. 6, and a block diagram in Fig. 7. A fast-scan camera signal is sampled and converted to a slow-scan signal. The normal British standards for fast scan are a line speed 15.625 kHz and a frame speed of 50 Hz . If the camera is turned on to its right side the 50 Hz scan now becomes horizontal and if divided by 3 it is at the correct slow scan speed. Division can be achieved by replacing the original frame sync pulse by a slow-scan sync pulse and adding a capacitor in the camera to slow down the frame timebase. The original 15.625 kHz line speed now running along the vertical axis is sampled over a period of 7.2 secs and the output is slow-scan video
which is fed to the SSTV master oscillator. Such was the state of the art in the mid 1970's and then along came the microprocessor which was to provide a revolutionary approach to SSTV.

Fig. 7: Sampling Camera system block diagram

Scan Conversion

Since the beginning, the idea of converting fast-scan to slow-scan and vice versa had been in the minds of the pioneers, but the practical difficulties had been too great, until the advent of digital electronic techniques, which made scan conversion a practical possibility. Briefly, the system consists of a fast-scan camera whose output is fed into a 'black box' which converts the video signal to slowscan standards for normal transmission. At the receiving end, another black box is placed between the receiver and a conventional fast-scan TV receiver. No modifications are required to the TV on which the incoming SSTV pictures are displayed in bright long-lasting form. Although rather expensive at first, the continuing fall in the cost of c.m.o.s. has brought scan conversion within the reach of most amateurs.

We will investigate the contents of the 'black boxes' in Part 2 of this series.

Having completed the full constructional details of Boards 1-5, we continue this month with circuit diagrams and descriptions of Boards 6, 7, 8 and 9

Board 6-Receiver RF Amplifier

Having built two rather mediocre front ends using dual gate f.e.t. devices, a circuit was found using two bipolar transistors in a push-pull arrangement which looked very much "stronger".

As the circuit was a broad-band arrangement a filter was used ahead of the amplifier with broad-band transformers at the input and output to obtain a 50Ω match.

The use of relatively high power transmitting type r.f. transistors in an r.f. amplifier of this type may at first seem a bit of an "overkill". However by the use of such devices, run with heavy voltage and current feedback, together with a high d.c. standing current, a very linear front end can be constructed. This results in an amplifier possessing low distortion products and good dynamic range.

It was decided that although the rest of the transceiver would have no variable tuning arrangements a tunable front end filter at 2 MHz would be adopted to provide a fairly high degree of selectivity. The pre-selector tuning should be fairly sharp with no double peaks occurring. If such peaks are encountered then the top coupling capacitor, 6 C 3 , should be reduced in value.

No heatsinking was required on the transistors and although they run fairly warm they are kept well within their ratings.

An attenuator before this amplifier was not found to be necessary and the receiver seems to cope with all on the air signals without any signs of cross-modulation or overload.

Constructional Details

The board is constructed on double-sided glass fibre p.c.b. with Veropins used for all the external connections. The variable capacitor 6 Cl was made by pruning the vanes from a two gang 300 pF device until the tuning of this component was not unduly sharp, whilst still covering all of the 160 m band. In the finished transceiver the variable capacitor, was mounted above the chassis with the p.c.b. located immediately beneath it. This method of
construction was decided on by the ease of physical layout only, and it could be mounted on the same side as the board provided the leads between the variable capacitor and the board are kept fairly short.

The toroids must be mounted with the correct sensing as shown in the diagram and different toroids of greatly varying μ were used in two prototypes; certainly at the frequency in use there was no noticeable difference. The broad-band transformers 6L3 and 6L6 consist of 7 turns of 32 s.w.g. wire trifilar wound; 6L4 and 6L5 consist of 6 turns of 32 s.w.g. wire bifilar wound. Neosid toroids ($28-$ 002-27) were used in all cases. No problems were encountered with the stability of this amplifier and the unit worked perfectly from "switch-on". The only alignment necessary being to peak the cores of the pre-selector coils.

Transistors 6 Tr 1 and 6 Tr 2 should be mounted very close to the ground plane without touching it (the cases of the 2N5913 devices are connected to the collectors); a distance of 1 mm maximum should be aimed for. Solder as many of the earthed connections to both top and bottom ground planes as possible.

Inductors 6 L 1 and 6 L 2 , which are resonant at 2 MHz , in conjunction with $6 \mathrm{C} 1,6 \mathrm{C} 2$ and 6 C 4 , were wound on Neosid HA2 miniature screened inductance assemblies. Winding a couple of test coils and checking with a g.d.o. will soon give the correct number of turns to resonate at 2 MHz with the 100 pF resonating capacitor. (50 turns, were used with the pot cores used).

It might have been possible to use this unit as the first 2 MHz transmit amplifier but it was felt that a much simpler amplifier would suffice. With this in mind it was not thought worthwhile to arrange all the necessary switching involved to save on one amplifier in the transmitter chain.

Readers who intend to operate the Stour should be in possession of the appropriate licence issued by the Home Office to those who have passed the City and Guilds Radio Amateurs' Examination. Details may be obtained from: The Home Office, Radio Regulatory Department, Amateur Licensing Section, Waterloo Bridge House, Waterloo Road, London SE1 8UA.

Fig. 26: Circuit diagram of the receiver r.f. amplifier

components

RF Amplifier Board Connections

(1) Y in connects from the antenna change over relay, RLB.
(2) Y out connects to Y in on the mixer board 4.
(3) +12 V connects to +12 V rail on receive and transmit.

Board 7-Microphone Amplifier and Balanced Modulator Board

This board contains the following circuitry.
(1) A 741 operational amplifier 7IC1, which is used as the microphone amplifier.
(2) An MC1496 (14 pin d.i.l. type) 7IC2, used as a balanced modulator.

Circuit Description

The 741 op.amp. 7IC1 is used as an audio amplifier with the voltage gain set by 7R5 divided by 7R2; increasing 7R2 decreases the gain. The circuit as shown is suitable for a high impedance microphone and worked very well with the author's microphone from the Yaesu FT101. If a low impedance microphone is to be used then a matching stage will be required ahead of the 741.

The 12 V switching to the mic. amp. was originally intended to be switched on only during transmit. However this method proved unsuitable due to carrier breaking through at the moment of switch on. The audio amplifier appeared to unbalance the balanced modulator for a short period. To avoid this problem the 12 V supply was left permanently connected and, to avoid any feedback during receive, the mic. input was shorted to ground via a relay contact. The mic. gain is controlled by a $1 \mathrm{M} \Omega$ potentiometer, 7 R 1 , at the input to the 741 .
The balanced modulator, which is nothing but a balanced mixer, uses an MC1496. This is used in a fairly standard circuit and is capable of good performance provided that it is not overdriven.

The carrier balance is achieved by adjusting 7R10, a $50 \mathrm{k} \Omega$ potentiometer, and adequate balance is obtained without extra balancing at the output.
True c.w. operation may be accomplished by unbalancing the modulator. Care must be taken not to overdrive the following stages and of course 10 W input power to the p.a. is the legal maximum for $\mathbf{1 6 0} \mathbf{m}$. Resistor 7R 17 has been set to $10 \mathrm{k} \Omega$ and is grounded via the key for c.w. operation.

Fig. 27: Circuit diagram of the microphone amplifier and balanced modulator

The lower the value of this resistor the more the circuit becomes out of balance, thus a potentiometer and fixed resistor at this point would enable c.w. drive level to be pre-set if required.

Another method which could easily be used with the circuit shown would be to inject d.c. into pin 1 of the MC1496. This again could be via a potentiometer and a fixed resistor as shown in Fig. 28.

components

Connections on Board 7

(1) +12 V to positive line.
(2) X out connects to X in on Filter Board 3.
(3) K is the c.w. key connection.
(4) X in connects to 9 MHz oscillator Board 2.
(5) M is the microphone input.

Constructional Details

This board is constructed on double sided p.c.b. and Veropins are used for all connections.

Fig. 28

Board 8—Automatic Gain Control and 8V Regulator Board

This board contains the following circuitry.
(1) 10 mV clipper (8 Tr 1 and 8 Tr 2)
(2) Automatic gain control generator IC1 SL621
(3) Inverting amplifier 8 Tr 3
(4) Automatic gain control regulator 8 Tr 4
(5) 8.5 V regulator 8 IC 2 , LM 723

Fig. 29: Circuit diagram of the automatic gain control and voltage regulator

Circuit Description

The a.g.c. circuit is an audio derived system with the a.f. voltage being taken after the output from the 741 audio amplifier. The actual input comes from the top of the volume control R19. The a.f. voltage is fed to the input of 8 Trl via 8 R 1 , which is used to set the level at which the a.g.c. starts to operate. It is important that the clipper consisting of 8 Tr 1 and 8 Tr 2 has a stabilised supply, therefore it is fed from the 8 V regulator circuitry which is contained on the same board. If fed from the 12 V rail any small variation in supply voltage, due to voltage drop via the supply leads etc., would cause the a.g.c. to operate.

The clipped a.f. voltage is applied to pin 1 of 8 IC 1 via 8C2. The SL621(8IC1) is a fairly complex i.c. which has been designed specifically as an a.g.c. generator with full "hang" time lag. The output of this i.c. is $0-6 \mathrm{~V}$ with 0 V corresponding to the no signal input; the 6 V is obtained when a large signal is present. The CA3028 circuits, which the a.g.c. voltage is used to control, require reverse a.g.c. An inverting amplifier, 8 Tr 3 , is therefore used to invert the output voltage from the SL621. A Zener diode, 8D1, located between the collector of 8 Tr 3 and earth, is included to prevent the collector voltage of 8 Tr 3 rising above 9 V . The maximum gain of the CA3028 occurs at this voltage.

The a.g.c. voltage is taken from the collector of 8 Tr 3 , and is fed through 8D2, a general purpose silicon diode, which is used to isolate 8 Tr 3 circuitry during transmit. During transmit a fixed voltage is used to supply the CA3028s.
The " S " meter output is taken from pin 2 of the SL621 via a 10 k potentiometer. This is a very simple " S " meter circuit but the meter was only required to give comparative signal reports and an accurate 6 dB per " S " point system was outside the scope of the author's design facilities.

A stabilised 6 V supply was required for the SL621. A separate regulator was included to fulfil this function and consists of 8Tr4, 8D3 and associated circuitry.

The operation of this particular form of a.g.c. will seem very different to those not used to "full hang" a.g.c. The i.c. contains circuitry to enable the a.g.c. voltage to be unaffected by short noise pulses. However a steady input will produce the required a.g.c. voltage. When the signal ceases the a.g.c. voltage remains at its previous level for about a second and then returns to its full output within a few milli-seconds. This type of "switching" on and off was an
odd sensation when first encountered; short pauses in speech during s.s.b. transmissions leave the receiver gain set at the correct level with, during strong signal levels, no receiver noise during such pauses.

The main voltage regulator for the transceiver is 8IC2, an LM723, which is used to supply a regulated output of approximately 8.5 V . The regulator has short circuit protection via 8R14 and its output current is limited by this resistor to a value of approximately $70-80 \mathrm{~mA}$.

Connections on Board 8

(1) " S " meter connects to relay RLB contacts feeding 1 mA meter (during receive).
(2) AGC $0 / 9 \mathrm{~V}$ (A) connects to 1 . CA3028 a.g.c. Board 3 (first i.f.).
2. CA3028 a.g.c. Board 1 (C) (second i.f.).
3. 8.5 V stabilised line via relay RLA contacts during transmit.
(3) AF in (AF) connects to top (opposite to earth end) of volume control R19 using screened cable.
(4) +12 V connects to the 12 V supply rail.
(5) 8.5 V reg. connects to 1 . v.f.o. 2. Clarifier circuitry. 3. Relay RLA contacts to a.g.c. line see (2):3, to allow 8.5 V to be connected to the CA3028's during transmit.

Fig. 30: SL621 operation, showing hang action characteristic

Constructional Details

A double sided glass fibre p.c.b. is used with Veropins for the external connections. Single sided board would probably have been perfectly adequate but as the author did not have a supply of this, the usual double sided format was adopted.

Adjustments

When used in situ with the transceiver there are two variable components on this board. Potentiometer 8R1 controls the amount of audio reaching the clipper circuitry 8 Tr 1 and 8 Tr 2 . This should be advanced far enough to ensure minimum distortion on the leading edges of received s.s.b. signals. The effect will be very noticeable on strong signals. If adjusted with the slider directly connected to 8 C 1 (ie. all audio signals applied directly to the clipper) the a.g.c. will operate on the a.f. noise present even with no antenna connected. The correct setting of this potentiometer
is not critical and a few tests listening to strong signals will soon show the correct setting.

The other adjustment on this board is 8 R 10 which controls the available current supplied to the " S " meter. This should be adjusted so that the strongest signals drive the meter to full scale.

Note that if 8 R1 is adjusted so that the centre slider is connected to earth receiver audio will be totally lost.

Board 9—Driver Board

The driver board contains the following circuitry.
(1) $9 \operatorname{Tr} 1$ a Class A broad-band stage.
(2) $9 \mathrm{Tr} 2,9 \mathrm{Tr} 3$ operating in parallel Class A , in a broadband configuration.

Circuit Description

The 2 MHz r.f. from band-pass filter F 1 is applied to the base of 9 Tr 1 via 9 C 1 . The transistor 9 Tr 1 , a 2 N 4427 , is

Fig. 31: Circuit diagram of the driver board
used in Class A with a fairly high standing current, typically 60 mA with a 13 V supply voltage. The stage has both emitter degeneration via the unbypassed 5Ω resistor, two $10 \Omega \frac{1}{4} \mathrm{~W}$ resistors in parallel, and negative feedback via 9C3, 9R3 and 9R1. The collector load is the standard bifilar wound broad-band transformer used in many situations throughout the transceiver. The output from this stage is routed to $9 \mathrm{Tr} 2,9 \mathrm{Tr} 3$ via 9 C 4 .

Transistors $9 \operatorname{Tr} 2$ and $9 \operatorname{Tr} 3$, a pair of 2 N 3866 devices, are operated in Class A and in parallel. Again emitter degeneration is used via 9R11 and 9R12. The standing current through each transistor is in the order of $120-130 \mathrm{~mA}$ and both 9 Tr 2 and 9 Tr 3 should have adequate clip-on heatsinks.

This amplifier was originally developed for use as a broad-band ($2-30 \mathrm{MHz}$) device and if it is only to be used at 2 MHz it would be worth trying cheaper transistors such as the BFY50 or BFY51 for $9 \operatorname{Tr} 1,2$ and 3 . The +12 V supply is on only during transmit.

Connections to Driver Board

(1) r.f. in connects to band-pass filter F1 output.
(2) r.f. out connects to band-pass filter F2 input.
(3) +12 V to 12 V supply via relay RLA contacts $(+12 \mathrm{~V}$ connected during transmit only).

Constructional Details

This is a very simple board to construct on the usual double-sided glass fibre p.c.b. All earth connections should be soldered top and bottom to connect the upper and lower ground plane wherever possible.

Effective heatsinks should be used especially on 9 Tr 2 and 9 Tr 3 which will, after a few minutes of transmission, become quite hot to the touch. Resistors 9R8 and 9R9 should be $\frac{1}{2} \mathrm{~W}$ devices.

Radio frequency choke 9RFC1 consists of 7 turns of 24 s.w.g. wire wound on a Neosid 28-002-27 toroid, with 9 RFC2 of identical construction but mounted on a 28 -011-27 toroid. Inductor 9L1 is formed of 7 turns bifilar wound on a 28-011-27 toroid, observing the sensing shown.

[^2]
VINTAGE RADIO POWER SUPPLY

CONSTRUGTION RATING Beginner

BUYINE GUIDE

The components used for this project should be easily obtainable from advertisers. The materials for constructing the case can be bought from any good di.i.y. shop. If a suitable piece of aluminium sheet is not available then a piece of Formica sheet could be used.

APPROXIMATE COST f12

Fig. 2: This is a means of obtaining negative grid bias voltage for those sets which do not have automatic grid bias built in

Construction

All parts are mounted on a 3 mm aluminium plate 250 $\times 100 \mathrm{~mm}$. A tag strip along each side provides convenient anchor points for the components. The layout is not at all critical, but C1 should be mounted close to the LM317, and C 7 to Tr 1 .

The sides of the box are Contiboard, the inside dimensions a clearance fit for the aluminium plate, and the depth 70 mm . The corners are mitred. A wood block, short enough to clear the transformer at each end, is glued to each long side, about 4 mm below the edge, on the inside. The plate is supported on the blocks, and screwed to them. The best finish for the box is polyurethane varnish, which strengthens the veneer: the aluminium top can be matt black, or black or brown gloss. The bottom of the box is perforated hardboard, and four small plastic feet ensure some air flow.

A mains switch on the unit would be of little value, being normally out of sight. On no account should the onOFF switch of a vintage battery radio be used to switch mains voltages: the unit should be switched at the wall socket.

3 mm insulated sockets, to accept wander plugs, are used for the h.t. connections; the insulated connectors used for l.t. will accept either spade terminals or 4 mm plugs.

Laries

 ALAN MARTIN GBZPW

 ALAN MARTIN GBZPW}

Low-cost Storage Bins

The last thing the constructor can afford is wasted time searching for components, small tools, nuts, bolts and the hundred other odd items required in the workshop. The next to last thing he can afford is costly storage equipment.

Rather than spend time making one's own bins, a firm manufacturing parts bins for industry now has a range available through many retail outlets or by mail order. These are fibreboard storage bins made by Bankers Box of Doncaster.

The bins are supplied flat and are easily folded into shape in a few seconds. No clips or staples are used as the folds are designed to provide plenty of strength, also the surface is resistant to oil and grease detoriation.

The bins come in seven sizes from 51 wide $\times 102$ high $\times 305 \mathrm{~mm}$ long up to $203 \times 102 \times 457 \mathrm{~mm}$. As an example of price, the $100 \times 100 \times 305 \mathrm{~mm}$

size, in a pack of ten, usually retails at £3.50 which includes VAT, add 99p p\&p for mail orders. Alternatively, a 50 pack costs only $£ 12.95$ plus VAT and £1.29 p\&p.

For details of other prices and availability contact: Bankers Box, Record Storage Systems, Doncaster Road, Kirk Sandall, Doncaster DN3 IHT. Tel: (O3O2) 884566.

Receive Converters

Datong Electronics Ltd. have recently introduced two new receive converters for the amateur market, they are:-

First, model DC144/28 is a 2 m down-converter which is especially designed to give improved overload and spurious signal performance compared with conventional converters. At the same time a very low noise figure is achieved. This makes the unit ideal for use in areas of high 2 m activity where weak DX signals compete with strong local signals.

Technical features include a high dynamic range which has been achieved by using balanced Schottky diode mixer fed with a high oscillator level. To further reduce spurious signals, critical tuned circuits are completely enclosed in screening cans. This also
reduces the level of local oscillator reradiation.

Priced at $£ 31.00$ plus VAT ($£ 35.65$ total), the DC144/28 is also available as a p.c.b. module (less case and connectors) at $£ 25.00$ plus VAT (£28.75 total).

Second, model PC-1 up-converts signals in the range 50 kHz to 30 MHz up to $144-145 \mathrm{MHz}$, so that they can be received on any of the popular 2 m all mode transceivers or on v.h.f. scanning receivers.

In effect the $2 m$ receiver then becomes a high performance general coverage communications receiver

SR-9 Monitor Receiver
Our apologies to Catronics Ltd. and any of our readers who may have been misled by an unfortunate misprint in the Catronics advertisement on page 60 of our June 1981 issue.
The mistake occurred in the price of their Search SR-9, a v.h.f. f.m. monitor receiver which gives fully tunable coverage of the 2 m band from 144 to 146 MHz and incorporates a facility for installing optional crystals which will provide up to eleven fixed channels for the most popular frequencies. The VAT inclusive price (carriage add $£ 1.50$) for the Search SR-9 should have been $\mathbf{£ 4 6 . 0 0}$ not $£ 78.00$.

A marine band version is also available and both are obtainable from: Catronics Ltd., Communications House (Dept. 186), 20 Wallington Square, Wallington, Surrey SM6 8RG. Tel: 016696700.

More on page $57 \gg$

with a performance that is generally far superior to that of low to medium cost general coverage receivers.
Technically model PC-1 is notable for its use of a parametric mixer as the frequency converter. Such mixers, previously used only in military-type equipment, feature very low noise levels plus very good strong signal handling ability. When converting up in frequency (as in this case) they also exhibit gain instead of loss and the result is that no other active elements are required in the signal path.

Frequency selection is by two digital switches reading directly in MHz and the correct bandpass filters are automatically connected to the input by internal logic.

The PC-1 costs $£ 105.00$ plus VAT ($£ 120.75$ total).

Total prices quoted include p\&p and both units are available from: Datong Electronics Ltd., Spence Mills, Mill Lane, Bramley, Leeds LS13 3HE. Tel: (0532) 552461.

INTRODUCING THE MICROCOMPUTER-3

by Mervyn J. Axson BA G8WHG

Once we know the latitude and longitude of the QTH locator we can work out the approximate distance from our own location. It can only be approximate because the QTH locator does not give the precise position of a station, but only the latitude and longitude of the midpoint of a "square" measuring $4^{\prime} \times 2^{\prime}$ (or roughly 4 miles by 2.5 miles), in which the station is located, so the distance calculated could have a maximum error of ± 2 miles approx. For this reason, rather than compounding the error, it is better to look up your own parameters on an Ordnance Survey map and to insert these in the program rather than letting the program calculate them from your QTH locator.

The distance can be calculated by spherical geometry or more correctly trigonometry (Fig. 1). If we know the two sides, b and c, and the included angle of the spherical triangle the third side, which is the great circle distance between B and C (Norwich and Hamburg in the example) is given by the formula:
$\cos a=\cos b \cos c+\sin b \sin c \cos A$
The latitude of Norwich is $52^{\circ} 38^{\prime} \mathrm{N}$ of the equator and therefore $37^{\circ} 22^{\prime}$ from the North Pole. Similarly, Hamburg at $51^{\circ} 32^{\prime} \mathrm{N}$ is $38^{\circ} 28^{\prime}$ from the pole. Angle A is the difference in longitudes of Hamburg, $6^{\circ} 44^{\prime} \mathrm{E}$ and Norwich, $1^{\circ} 17^{\prime} \mathrm{E}=5^{\circ} 27^{\prime}$:
$\cos \mathrm{a}=\cos 37^{\circ} 22^{\prime} \cos 38^{\circ} 28^{\prime}+\sin 37^{\circ} 22^{\prime} \sin 38^{\circ} 28^{\prime}$ $\cos 5^{\circ} 27^{\prime}$ In fact, we do not need to do the subtraction of the latitudes B and C from 90 to obtain the distances from the pole ($90-$ lat $)$, since $\sin (90-\mathrm{x})=\cos \mathrm{x}$ and $\cos (90-$ $\mathrm{x})=\sin \mathrm{x}$, the formula can be rewritten:
$\cos ($ dist $)=\sin$ lat $1 \sin$ lat $2+\cos$ lat $1 \cos$ lat $2 \cos$ (long 1 - long 2)

Fig. 1: Calculating the Great Circle distance between two points on the Earth's surface

We have assumed that both locations are on the same side of the Greenwich meridian i.e. both East or both West longitudes. If one is East and the other West then the angle A is the sum of the two, and cos (long 1 - long 2) should be replaced by \cos (long $1+$ long 2). You will see a simple way to carry this out when we come to code the program in BASIC but before we do there are two further points to mention.

BASIC does offer the functions $\operatorname{SIN}(\mathrm{X})$ and $\operatorname{COS}(\mathrm{X})$ so the conversion of the latitudes and longitudes to their sines and cosines presents no problem. What BASIC does not do directly is to give a function for the inverse of a cosine (ARCCOS), or in simplier terms, convert the cosine back to decimal degrees. It does however give the Arctangent (ATN (X)) and the BASIC handbook tells us that Arccos may be derived from this. ARCCOS $(X)=$ $-\operatorname{ATN}\left(\mathrm{X} / \operatorname{SQR}\left(-\mathrm{X}^{*} \mathrm{X}+1\right)\right)+1 \cdot 5708$. The other point is that BASIC works in radians rather than the decimal degrees that we have been using. To convert from decimal degrees to radians we multiply by $2 \pi / 360$. In order to save typing these into the program each time that they are to be used, BASIC allows us to define our own functions in the form DEF FNX $(V)=$ ' $x x x x x x x x x$ '. Then whatever function is defined by this statement will be applied to the variable that we put in the brackets.

```
1430 DEF FNA (V)=-ATN (V/SQR (-V*V +1) +1.5708
1440 DEF FNB (V)=V*}2\pi/36
```

We already have the latitude and longitude of the QTH locator in variables L2 and L4 respectively, so let us put our own in variables L6 and L8. The QTH of G8WHG is latitude $53^{\circ} 9^{\prime} \mathrm{N}$ and longitude $2^{\circ} 11^{\prime} \mathrm{W}$ so remembering to convert to decimal degrees:

$$
\begin{aligned}
& 1450 \text { LET L6 }=53.15 \\
& 1460 \text { LET L } 8=2.183
\end{aligned}
$$

Since the location is longitude W we want to change cos (long 1-long 2) to cos (long $1+$ long 2) if the QTH locator is longitude E. Since $2-(-2)$ is the same as $2+2$ we simply make L4 negative if required:

1470 IF BS ="EAST" THEN L4=-4
Obviously if your own location is longitude E then you would change line 1470 to IF $\mathrm{BS}=$ "WEST" THEN L4 $=-$ L4. We can now use FNB to convert to radians and then do the sums to extract the distance.

```
1480 L2=FNB(L2) : L4=FNB(L4) : L6=FNB(L6) : L8=FNB(L8)
1490 E=(SIN(L6)*SIN(L2))+(COS(L6)*COS(L2)*COS(L8-L4))
1500 LET E=FNA(E)
1510 LET E=E*360(2*\pi)
```

Variable E now contains the distance between the two points in the form of the length of the arc of the great circle joining them in decimal degrees. One degree of a great circle equals 60 nautical miles and 33 nautical miles equals

220 L2 $=12-.083$
1230 LET $A=1 N T(L 2)$
1240 LET $B=(L 2-A) * 60$
（1－64）－1：Bs＝＂EAST＂：60T01270
1270 LET H2 $2=$ H2－
1280 IF $\mathrm{H}_{2}=-1$ THEN $\mathrm{N}_{2}=9$
1290 IFBS＝＂UEST＂GOTO 1350
L4－－58＋（ $22+12$ ）
1320 IF L3＞65 AND L3＜69 THEN L4＝L4＋8 ：G0TO 1390
$1330 \quad L 4=L 4+4$
1340 GOTO 1390
$14=58-(122+12)$
IF L3＞69 AND L3＜73 G010 1390
$1380 \quad L 4=L 4-4$
300
1410 LET C＝INT（L．4
1420 LET $\mathrm{D}=(\mathrm{L} 4-\mathrm{C}) * 60$
$1430 \operatorname{DEF} \operatorname{FNA}(V)=-\operatorname{ATN}(V / \operatorname{SQR}(-V * V+1))+1.5708$
左
－
1470 IF $85=$＂EAST＂THEN $L 4=-L 4$
$1480 L 2=F N B(L 2): L 4=F N B(L .4): L 6=F N B(L 6): L 8=F N B(L 8)$
（LSO $E=(S 1 N(L 6) *$ SIN $(L 2))+(\operatorname{COS}(L 6) * \operatorname{COS}(L 2) * \operatorname{COS}(L 8-L 4))$
500 LET E＝FNA（E）
$510 \mathrm{E}=\mathrm{E} * 360 /(2 *)$
$530 \mathrm{E}=1 \mathrm{HT}(\mathrm{E}+.5$ ）
5000 PRINT
5010 PRINT
5020 PRINT＂LONGITUDE＝＂；C；＂DEGREES＂；INT（D）；＂MIHUTES＂；Bs
5030 PRINT
群

5075 E18 STRは（E1）

5080 PRIMT＂OR APPROX＂；E1；＂KILOMETRES＂
$5090 \mathrm{P}=1 \mathrm{NT}(E 1 / 50)+($ INT $(E 1 / 50)+1)$
5110 PRINT
10000 GOTO 120
READY．

SAMPLE RUN OF LOGBOOK－10．03．81．M．J．AXSON．

Fig．2：Complete program and sample run of contest logbook

38 statute miles so we can obtain the answer in statute miles and display it on the screen：

```
1520 E=E*60*38/33
5 0 5 0 \text { PRINT}
5060 PRINT AS: "IS APPROX";E:"MILES FROM G8WHG"
```

E will very probably have ended up as a whole number with a string of numbers after the decimal point，which gives a misleading sense of accuracy，so we will add one more line to convert it to the nearest whole number before printing：

$5030 \mathrm{E}=\mathrm{INT}(\mathrm{E}+.5)$

Having got the program to work so far，we can now ex tend it to keep the station log for a contest．When you hear a station calling，you want to know rapidly whether or not you have already worked it in the contest，so first let us keep a list of the callsigns worked in the computer＇s inter－ nal memory．We can do this by＂setting up an array using a single subscripted variable＂！All this means is that we store the callsigns in a variable，say C\＄，followed by a number in brackets which can range from \emptyset to 255 ，so the callsign of the first station to be worked is stored in $\mathrm{C} \$(\emptyset)$ ， the second in $\mathrm{C} \$(1)$ and so on，until the 256 th to be worked is stored in $\mathrm{C} \$(255)$ ．（If we want to cover more
than 256 stations, we can set up another array, say C1\$, which will bring us up to 512 . If this is not enough we can have $C 2 \$$ and so on up to the limit of the computer's memory). We then want to be able to input a callsign to the computer and tell it to search its memory to see whether or not it has been worked and give the appropriate answer:

```
100 Z=0
110 DIM CS(255)
120 INPUT"CALLSIGN":DS
130 FORI = O TOZ
140 IF DS = CS(I) GOTO 500
150 NEXT
160 PRINT "NOT WORKED"
170 PRINT "GOING TO WORK?"
180 INPUT "TYPE Y IF YES, N IF NO":ES
190 IF ES = "N" GOTO 120
200 CS(Z) = DS
210 Z=Z+1
270 GOTO 1000
500 PRINT "WORKED-CONTACT": 1+1
510 GOTO 120
```

Line 100 sets a counter " Z " to \emptyset so that the first callsign will be stored in $\mathrm{C} \$(\emptyset)$ by line 200. Line 110 tells the computer the size of the array and line 120 asks us to input the callsign. Lines 130 to 140 are a FOR -...- NEXT loop, which is a very valuable BASIC statement for repeating an operation. In this case the FOR statement tells the computer that I should successively have the value from \emptyset to whatever value "Z" has reached i.e. the subscript of CS for the last callsign stored in the memory. Line 130 then tells the computer to look in the memory and compare the callsign stored with the new one. If they are the same, the operation is transferred to line 500 which tells us that the station has been worked as contact No. X and then 510 puts the program back to 120 to ask for the next callsign. If $\mathrm{D} \$$ is not the same as $\mathrm{C} \$(\emptyset)$ line 150 returns to 130 where I set to 1 and the operation repeated. If the callsign DS is not found in the memory then line 160 will be reached. We can now try to make contact with the calling station and if successful answer the question in line 170 with a "Y", when line 200 will now store the callsign in $\mathrm{C}(\mathrm{Z})$ and 210 will increment Z by one ready for the next callsign to be worked. The other logkeeping operations can then be carried out as we will see shortly. However if contact is not established, we respond to line 170 with " N " and the program will be returned to line 120 by line 190.

Obviously, if we want to keep a written record a printer must be attached to the computer and we must arrange for the required details to be sent to the printer rather than to the v.d.u. screen. Output peripherals are given numbers and in the case of the PET microcomputer, the printer is coded as device No. 4. so we give an open statement:

60 OPEN 1.4
Now any statement started with PRINT 1 will be sent to the printer. It is useful to have a note of the time automatically printed in the log for each contact and most microcomputers do have an inbuilt clock function. In the case of the PET this is stored in the variable TIS and is in the form of "HHMMSS" for hours, minutes and seconds since power up. You can however set TIS to read actual clock time:

70 INPUT"TIME IN FORM HHMMSS"; TIS
We now want to print column headings on the log sheet:
80 PRINT\#1,"TIME"; TAB(12):"NO"; TAB(10): "CALL-SIGN"; TAB(8): "RS IN":

90 PRINT\#1. TAB(10); "RS OUT"; TAB(10);"LOCATOR": TAB(8): "DISTANCE"; TAB(8):"POINTS"

95 PRINT\#1

The $\operatorname{TAB}(\mathrm{X})$ is to format the output to the printer e.g. 12 spaces will be left between TIME and NO. As you will see we use the TAB function again to print out the data for each station, but in a slightly different form, since the actual length of data items will vary, so we must take this into account so as to line them up under each other in the log. e.g. callsigns may vary between 4 data items (G2XX) and 8 data items (GM8XXX/P). There is a function $\operatorname{LEN}(\mathrm{X} \$$) which will count the number of data items in the string and we can then deduct this number from the TAB to give the correct spacing, e.g. $\mathrm{Q}=\mathrm{LEN}(\mathrm{D} \$)$ and then PRINT\#1, TAB(20-Q) ensures correct lining up. BASIC will not find the length of a number by this method so we have to play a trick on it. STR $\$(\mathrm{~N})$ converts a number to a string i.e. 300 becomes " 300 ", so we can then find out the length as before.

There are just two more points to be considered before the program is complete. We have got our distance in miles but for contest work we use kilometres so:
$5070 \mathrm{E} 1=\operatorname{INT}\left(\mathrm{E}^{*} 1.609+0.5\right)$
This gives an alternative answer in kilometres approximately. We can now get the computer to work out the points scored for each contact according to the distance. The usual RSGB scoring for v.h.f. contests is 1 point for up to $50 \mathrm{~km}, 3$ points for 50 to 100 km , 5 points for 100 to 150 km and so on. A statement in the following form will calculate the point score:
$5090 \mathrm{P}=\operatorname{INT}(E 1 / 50)+(\operatorname{INT})(E 1 / 50)+1)$
If $\mathrm{E} 1=47$ the sum is $0+0+1=1$, and for $\mathrm{E} 1=147$ it is $2+2+1=5$.
The whole program is shown in Fig. 2. and it does look quite complicated, but by taking it a stage at a time and making each part work, then expanding to do sc.nething else as well, the process has been relatively painless. This is the secret of successful programming, start simply, get it working and then expand. And, if it works, leave it alone!

Kinluniel

Active Receiving Antenna March 1981
The ferrite toroid to form T1 should be a Neosid 28-511-28 (12 o.d. $\times 6$ i.d. $\times 3 \mathrm{~mm}$ enamel coated).

"Right, I've got that all OK. To avoid timing out, I must wait for the " K ". $\mathrm{Er} \ldots \mathrm{Er}$. . . is that the long burst of Morse, or the short bit?'

Brighton \& District RS Newsletter
"This car I've borrowed is most peculiar. If you put the right-hand indicators on and then turn left, they cancel."
. . . heard by G3GSR

WORLD BEATER!

 TR-7Some interesting facts on the DRAKE TR-7

transceiver

\star No other amateur transceiver has such a rugged broad banded, no tune up solid state p.a. capable of giving so high an output power over so long a period.
\star Only one other transceiver has receiver specifications that can equal the TR-7 and that one costs a great deal more money.
\star Built in general coverage receive and the capability to transceive on any future amateur bands between 1.8 and 30 MHz .
\star Built in 150 MHz frequency counter.
\star Optional Noise Blanker that can deal with the Russian Woodpecker.

R. L. DRAKE PRICE LIST

Model	Description	Inc. VAT	Carr.	Model	Description	Inc. VAT	Carr.
TR-7/DR-7	Transceiver/Gen. Cov. Receiver Digital	1035.00	5.00	SP-75	Speech Processor	79.35	2.00
PS-7	Power Supply 120/240v for TR-7	207.00	5.00	cW-75	Electronic Keyer	59.80	2.00
PS-75	Sideband Duty P.S.U. for TR-7			P-75	Phonepatch	59.80	2.0
	120/240v	138.00	5.00	7804	Service Manual for TR-7	18.50	2.00
RV-7	Remote V.F.O. for TR-7	132.25	2.00	7805	Service Manual for R-7	18.50	00
S-7	Matching Speaker for TR-7 and R-7 ...	29.90	2.00	7037	TR-7 Service K	37.9	1.00
R-7/DR-7	Digital Receiver 0-30 MHz	989.00	5.00	L-7E	Linear Amp. 2 kw . $10 \mathrm{~m}-160 \mathrm{~m}$ with		
SL-300	CW Filter for TR-7 and R-7 $(300 \mathrm{~Hz}) \ldots$	39.10	0.50		tubes (2)	897.00	10.00
SL-500	CW Filter for TR-7 and R-7 (500 Hz) ...	39.10	0.50	3-5002	Tube for L-7E and L-75E.	69.00	2.00
SL-1800	SSB/RTTY Filter for TR-7/R-7 $(1800 \mathrm{~Hz})$ $\ldots \ldots . ~$	0	0.50	L-75E	Linear Amp. 1 kw 10-160m with tube (1) \qquad	598.00	5.00
SL-4000	AM Filter for R-7 Receiver (4000 Hz)..	39.10	0.50				1.00
SL-6000	AM Filter for TR-7 and R-7 $(6000 \mathrm{~Hz})$	39.10	0.50	TV-3300LP	Low Pass Filter 2kw..		1.50
AUX-7	Range. Prog, board and 1 Receive module. \qquad	32.20	1.00	7073	Hand Microphone for TR-7	18.40	. 50
RRM-7	Range receive modules for Aux-7 (500 KHz)	5.75	0.50	7077 DL-300	Desk Microphone for TR-7	29.90 20.70	2.00
RTM-7	Range tcve. modules for Aux-7 (500 KHz) \qquad	5.75	0.50	DL-1000 CS-7	Dummy Load 1000 w Remote control ant. switch 5 way	37.95	2.00
NB-7	Noise Blankerfor TR-7	66.24	1.00		(7 line)	115.00	5.00
NB-7A	Noise Blanker for R-7 Receiver	66.24	1.00	B-1000	Balun for MN-7 and MN-2700 4:1 .	20.70	1.00
FA-7	Fan for TR-7 and PS-7.	20.70	2.00	Manuals	Spare Operating Manuals...	6.00	1.00
ММК-7	Mobile mounting kit for TR-7 ..	34.50	2.00	Interface	R-7/TR-7 connecting cable..............	20.70	1.00
MN-7	ATU/RF Wattmeter. 160-10 m (250w)	124.20	5.00	AK-75	Multiband Antenna	23.00	2.0
MN-2700	ATU/RF Wattmeter 160-10m (2kw)..	207.00	5.00	AA-75	Antenna Insulator Kit	2.30	0.50
WH-7	RF Wattmeter/VSWR Bridge (HF)	59.80	2.00	HS-75	Headset	9.95	1.0

Importers \& Distributors for Hy-Gain, CDE, Rockwell-Collins, Macrotronics Bencher, R. L. Drake, Ten-Tec, A E A, Bearcat, stockists of all Amateur \& Computer Products

LONDON'S AMATEUR RADIO STOCKIST
... just around the corner from West Hampstead Station (Jubilee Line)

MMת QUALITY QUARTŻ CRYSTALS QUICKLY $0 \mathrm{kHz} \quad 50 \mathrm{kHz} \quad 100 \mathrm{kHz} \quad 500 \mathrm{kHz} \quad 1 \mathrm{MHz} \quad 100 \mathrm{MHz} \quad 250 \mathrm{MHz} \quad 270 \mathrm{MHz}$ Ventan Crystal Filters $9.0 \mathrm{MHz} \quad 10.7 \mathrm{MHz} \quad 21.4 \mathrm{MHz}$

ALAN MARTIN GBZPW Low-cost d.f.m.

The Thurlby FM77T is a complete digital frequency meter built into a module less than 12 mm thick and costing under $£ 20.00$.

With no additional components the FM77T will directly measure and display frequencies up to 3999.9 kHz . With external pre-scaling, this can be extended to 39.999 MHz or 399.99 MHz .

Stability is better than ± 25 p.p.m. over a $10^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$ temperature range and is defined by a built-in crystal timebase. The display is a high contrast reflective I.c.d. with 9 mm high characters, user selectable decimal points and $\mathrm{kHz} / \mathrm{MHz}$ indicators.

For radio receiver applications, the user can select any one of 23 pre-programmed standard i.f. offset frequencies, enabling a reception frequency to be displayed by measurement of the local oscillator.

The FM77T operates from a single power source of between 4.5 V and 7 V and consumes only 1 mA . Overall size is $70 \times 38 \times 11 \mathrm{~mm}$ and the display is

New Clubs

Skegness and District Radio Society was founded in February this year and meets on the first and third Tuesday every month at the White Swan, Burgh-le-Marsh, at 2000hrs.

RAE classes and Morse instruction have been started along with a wide range of activities and club constructional projects.

New members and visitors are welcome and can obtain further details from: Jack Joslin G3NPY, 150 Roman Bank, Skegness, Lincolnshire PE25 1 SE.
Watford Radio Club has just been formed, and although the membership at present is small, the organisers hope to attract local amateurs and s.w.l.s.

Further information can be obtained from either: Ken G6BKZ on Garston (092 73) 79022 or Mr A. C. Thompson, 2 Fairfolds, Watford, Herts. WO2 4TW.

mounted behind a textured bezel.
Priced at $£ 19.95$ plus VAT and no charge for carriage, the FM77T is obtainable from: Thurlby Electronics Ltd., Office Suite 1, Coach Mews, The Broadway, Huntingdon, Cambs. PE17 4BN. Tel: (0480) 63570.

Miniature Handtools

Tele-Production Tools Ltd., the Westcliff based manufacturer of Handtools and Production aids, recently introduced a set of three new "EasiGrip" miniature handtools designed principally for the electronics engineer.

This "Easi-Grip" set consists of miniature carbon steel side cutters, fine nosed stainless tweezer-pliers and a serrated stainless steel scissor/shear for cutting fine wires, boards, foil etc.

The average tool weight is only 40 g and costs $£ 3.75$ each which includes VAT and p\&p, or $£ 10.00$ for the set.

Tele-Production Tools Ltd., Stiron House, Electric Avenue, Westcliff-onSea, Essex SSO 9NW. Tel: Southend (0702) 352719.

Queen's A ward for Plessey

Plessey Semiconductors has won the Queen's Award for Export Achievement.

The award, given for outstanding export performance over three consecutive years, demonstrates the success with which the company has penetrated world-wide markets.

The company currently exports over 70% of production and its successes include selling integrated circuits for Japanese television receivers and military circuits to the USA.

HAP-UK Tapes Catalogue

The Handicapped Aid Programme, the international organisation which promotes s.w. radio amongst handicapped people and offers them practical assistance, has just published a catalogue containing full and detailed information on the tapes produced by the Programme.

Currently available is a six tape series devoted to the fascinating world of radio, as well as a Foreign Language Recognition Course. There is also an

Identification Signals Tape, a recording from Radio Netherland's DX Juke Box programme called "New Year Nonsense from the Netherlands" and an album entitled "Long Live Shortwave!"

The HAP Tapes Catalogue gives a detailed description of each of the recordings as well as prices and is available from HAP offices in the UK and Canada free of charge, although return postage is required.

HAP-UK, PO Box 4, St. Ives, Huntingdon, Cambs. PE1 7 4FE.

Radiothon

The Sankey and Penketh Amateur Radio Club ("SPARKS" to their friends) will be running a Radiothon from 10am on Saturday 8 August until 10pm on Sunday 9 August at Sankey Valley Park, about a mile west of Warrington on the A57. The aim is to raise money for local charities. Special station GB3SVP will be looking for contacts on all h.f. bands and 2 m , and there will be talk-in on S9.

Added attractions are a bring-andbuy stall, and on the Sunday, the Sankey Valley Dry Land Boat Regatta. Further information from G3VZU or G4HYC, both QTHR.

SPECIAL PRODUCT REPORT

OTRIO TS-830S

A new h.f. transceiver, the TS-830S, emerged from the Trio stable at last year's Leicester Show following on the popular TS-520SE and TS-820 series. After trying the Yaesu FT101ZD and the Trio TS-830S the author decided to purchase the latter having used Trio equipment for the past 15 years with consistently good results both on transmit and receive. This report is based on an extensive operational evaluation.

The most important feature of the TS-830S is that the new 10,18 and 24 MHz amateur bands are fitted as standard in readiness for their licensed availability.

As supplied the transceiver is ready for reception only on these new frequencies and to prevent inadvertent transmissions diodes are fitted across the crystals. Simple instructions are contained in the manual detailing the procedure for the removal of these and so making the rig ready for normal transceive operation on these three bands when they become available.

The receive side of the transceiver features a conventional double conversion system with the first i.f. on 8.830 MHz and the second at 455 kHz .

Incoming signals from the antenna are routed via a switchable 20 dB r.f. attenuator to the r.f. amplifier and then through a buffer amplifier stage to the first mixer. Signal amplification takes place at the first i.f. before passing through the noise blanker "gate" from which a portion is taken to the adjustable noise blanker circuit and into the second r.f. mixer.

Further i.f. amplification is provided before the Q multiplier, notch filter, buffer, final i.f. amplifier and product detector. An r.f. gain control is provided to adjust the automatic gain control, a.g.c., and threshold voltage. Two stages of audio amplification complete the receiver line up.

The v.f.o. which tunes between 5.5 and 6 MHz feeds into the phase lock loop unit, which in turn drives the digital frequency counter and display and also provides the v.c.o. and carrier voltages.

Many new features have been incorporated in the TS830S, enabling a reduction or removal of the ever present QRM found on the amateur bands. Several methods of reducing adjacent channel QRM are employed, one being the v.b.t. or variable bandwidth tuning system; see Fig. 1. This has the effect of varying the bandwidth of the i.f. and is most effective by being able to cut down any excessive "splatter" from other amateur signals. It does of course degrade the incoming signal, as one would expect. Whilst
the specifications indicate a possible $1 \cdot 2 \mathrm{kHz}$ shift of the signal, it was found that a 1 kHz shift was possible by adjustment of the i.f. shift control.

By using the i.f. shift and the variable bandwidth tuning control it is possible to eliminate quite a fair percentage of QRM unless of course the unwanted signal is on the exact frequency you are listening on. Not having these facilities on the Trio-520S resulted in quite a lot of QSOs being lost, even when the QRM was only 1.0 kHz offset.

The i.f. shift moves the crystal passband frequency by 1.1 kHz , this being achieved by using a phase locked loop, in the local oscillator circuit and the v.b.t. altering the passband width of the i.f.

Several dual concentric controls are used in the 830S; incorporated with the i.f. shift is the notch control. Quite a lot of information on the use of this method of filtering has appeared in magazines over the course of years and this one is most useful on c.w. Notch filtering is also very useful when copying sideband signals because with careful adjustment it is possible to eliminate an interfering c.w. signal at around 1 kHz from the received frequency. Measurements taken using this control appear in Fig. 2 and match those given by the manufacturer.

The band switch is a 10 position step control, covering the amateur bands from 1.8 MHz to 29.7 MHz , with a spare location corresponding to the fully clockwise position 7 of the switch.

Also provided is a WWV/JJY position on the band switch allowing the reception of standard frequency signals on 10 MHz .

The r.f. and audio gain controls are also of the dual concentric pattern which is common practice in Trio equipment. To obtain correct " S " meter readings it is essential to have the r.f. gain fully clockwise. Using a calibrated signal generator and injecting 40 dB of signal on the 14 MHz band yields a reading of S 9 ; in comparison with other receivers the " S " meter is not over generous.

The transceiver has both r.i.t. and transmitter incremental tuning, x.i.t., the latter not being a feature of some of the other Trio transceivers. This control is operated by two press bar switches and the r.i.t. is extremely useful on a net where some of the older models of the KW-2000 range seem to be unable to radiate a signal on the frequency they are listening on. Also, when working DX, some stations listen above or below their transmit frequency and it is possible to get a 2 kHz shift either up or down without having the expense of a separate v.f.o. Two l.e.d.s are used to indicate which mode is being used.

The drive control also acts as a sensitivity control on receive; adjusting this for maximum " S " meter reading coincides with maximum drive to the p.a.

A variable, front panel, noise blanker control is fitted to adjust the threshold level of the noise amplifier, enhancing the circuit effectiveness under varying noise and signal levels.

As with previous Trio transceivers a switch is fitted to remove the supply to the heaters of the driver and p.a. valves. This effects quite a considerable saving in both electricity and valve wear as the transceiver uses only 32 W on receive.

A display hold switch is fitted adjacent to the digital display enabling the frequency shown on the display to be held whilst tuning the transceiver, using the rotary dial to show the frequency shift. The display is a six-digit fluorescent type with a read-out resolution to 100 Hz , giving a very accurate
frequency reading during transmit and receive. Checked against a standard frequency, based on the BBC 200 kHz Droitwich transmissions, the reading was only 200 Hz high on the 14 MHz band.

An automatic gain control switch is fitted giving a choice of slow, FASt and off. The slow position is used to copy s.s.b. and the FAST for c.w. On a very weak signal the off position is used as this prevents the a.g.c. circuit bringing up the inherent receiver noise.

A monitor switch is also provided on the front panel which samples the i.f. section during transmission and feeds a small portion of the recovered audio to the headphone jack socket.

Items found on the rear panel include the antenna connector, which is an SO239 socket and an output from the wide-band low level i.f. signal for use with a compatible panoramic display. The Trio SM-220 is the matching monitor
specifications

Frequency range:
\section*{GENERAL}
160 m band $1.8-2.0 \mathrm{MHz}$
80 m band $3.5-4.0 \mathrm{MHz}$
40 m band $7.0-7.3 \mathrm{MHz}$
* 30 m band $10 \cdot 1-10.15 \mathrm{MHz}$
(10.0MHz WWV)
20 m band $14.0-14.35 \mathrm{MHz}$
* 17 m band $18.068-18.168 \mathrm{MHz}$
15 m band $21.0-21.45 \mathrm{MHz}$
* 12 m band $24.89-24.99 \mathrm{MHz}$
10 m band $28 \cdot 0-29.7 \mathrm{MHz}$
*Transmission capability internally disabled
Modes:
Power supply: \(\quad \begin{aligned} \& c. w .-A 1-A 1 A
\& \end{aligned}\)
Power
consumption: receive 32 W (heaters off)
Dimensions: $\quad 333 \times 133 \times 333 \mathrm{~mm}$
Weight: $\quad 13.5 \mathrm{~kg}$
\section*{TRANSMITTER}
Final power input:
\section*{Frequency}
stability:
220W p.e.p. (s.s.b.) (Using twotone oscillator 215 W p.e.p. into 50Ω load)
180 W d.c. (c.w.) (160W d.c.)
Within 1 kHz during first hour after one minute warm-up $11-2 \mathrm{kHz}$ during first hour)
Within 100 Hz during any 30 minute period after warm-up 1120 Hz during 30 minute period after ten minute warm-up)
\section*{Carrier}
suppression: Better than $40 \mathrm{~dB}(42 \mathrm{~dB})$
Sideband suppression:
Spurious radiation:
Harmonic radiation: Better than $40 \mathrm{~dB}(40 \mathrm{~dB})$
Audio frequency response: 400 Hz to 2.6 kHz within -6 dB
\section*{RECEIVER}
Receiver sensitivity:
Image ratio:
IF rejection:
Receiver selectivity:
0.25 V at $10 \mathrm{~dB} \mathrm{~S}+\mathrm{N} / \mathrm{N} 10.25 \mathrm{~V}$ at $10 d B S+N / N)$
Better than $60 \mathrm{~dB}(55 \mathrm{~dB})$
Better than $80 \mathrm{~dB}(80 \mathrm{~dB})$
s.s.b./c.w. wide $2.4 \mathrm{kHz}(-6 \mathrm{~dB})$
$3.6 \mathrm{kHz}(-60 \mathrm{~dB})$
c.w. narrow with YK-88C filter (option) $500 \mathrm{~Hz}(-6 \mathrm{~dB}$)
(s.s.b./c.w. wide $2.4 \mathrm{kHz}(-6 d B$))
(c.w. narrow with YK-88C filter $500 \mathrm{~Hz}(-5 d B))$
\section*{Audio output:}
1.5 W
(1.4W into 8Ω /oad)

unit for the TS-830S, which apart from displaying the output and input waveforms has a built-in two-tone oscillator and also serves as a high sensitivity 10 MHz oscilloscope.

Other available options on the receive side are reduced bandwidth filters for c.w. reception. The mode switch has two positions for c.w. reception, c.w.-w and c.w.-N. In the latter it switches the signal through the crystal filter, the bandwidth depending on which filter is fitted. Alternative filters are available to provide -6 dB bandwidths of 270 Hz , 500 Hz and 250 Hz with corresponding -60 dB figures of $1.1 \mathrm{kHz}, 820 \mathrm{~Hz}$ and 500 Hz . In the s.s.b./c.w. wide position a filter is used giving a bandwidth of 2.4 kHz at -6 dB and 3.6 kHz at -60 dB .

To complete the review of the receive side two DIN sockets are fitted on the rear panel, one for connection of the separate matching v.f.o. (v.f.o. -230) and the other provides a low audio output for feeding a tape recorder.

On the transmitter side the drive to the p.a. valves is supplied by the only other thermionic valve used, a 12BY7A. The TS-830S does not use one of the special manufacturer's type required in some transceivers to obtain sufficient drive on the 10 m band. The p.a. valves consist of a pair of 6146 Bs which have been featured by Trio in several of their h.f. transceivers, pointing to their ruggedness and subsequent dependability.

Tuning of the p.a. valves is accomplished by means of the load control, using the American term pLATE control. The output circuit is of the familiar π type configuration with the 6146Bs operated in parallel; r.f. negative feedback and limiting by means of amplified a.l.c. voltage ensures optimum i.m.d. characteristic. The p.a. tuning is fairly broadband and is flat for about 50 kHz either side of the selected frequency, the same applying for the drive control. In fact on some bands it has been found that retuning of this control is not required.

An effective r.f. speech processor is fitted, selectable by means of a push-bar switch on the front panel. The amount of processing is adjustable by a variable control with a reference scale fitted on the meter to indicate the amount of audio compression. During tests on the h.f. bands this has enabled signals to get through some of the QRM present, producing favourable reports from semi-DX stations.

Microphone input is by means of the standard 4 pin plug and a microphone impedance of 500Ω to $50 \mathrm{k} \Omega$ can be used, but if a higher impedance is used one does not get such a "tailored" response and reports of "boominess" are given.

For c.w. transmission it is possible to operate break-in by

Fig. 1

Fig. 2
turning the vox control on and the mode switch to c.w. FINE. When using c.w. the carrier level control knob must be advanced; the manual recommends drawing 240 mA of anode current but in practice 200 mA seems to be sufficient to get the full 160 W of d.c. output.
To sum up, the TS-830S transceiver is a very good piece of equipment backed up by a comprehensive manual. The receiver is of advanced design on previous Trio transceivers and consistently good reports on speech quality have been received in months of use on all the amateur h.f. bands; it fully lives up to "the state of the art" in both design and operation.
3. The load will not "see" anything like 600Ω as a source impedance. What it will see is R2 in parallel with another impedance made up of R1 in series with the source impedance R_{s}. This works out at 225Ω. In case you're worried about where the generator comes in this calculation, the answer is that as far as source impedance is concerned you can ignore it. If you remember, Thevenin's Theorem says the generator is "perfect" with zero internal impedance, i.e. a short-circuit. I know it's not easy to imagine that a short-circuit can generate a voltage, but that's the way to think about it.

The solution to our problem is to add a third resistor to the attenuator (R3 in Fig. 5), to increase its output impedance. Yes! You're right-we've been here before-that's just what we did with the 480Ω resistor back in Fig. 1. But now comes yet another complication. Because R3 makes the attenuator output impedance up to 600Ω, and the load impedance is 600Ω, the voltage at the $0 / P$ " A " terminals will be only half the voltage across R2. So, the ratio of R1 and R2 must be changed accordingly. In an attenuator with equal input and output impedances, R1 and R3 have equal values. If you're thinking that this is a sure recipe for going round and round in ever-decreasing circles in trying to work out the values of the attenuator resistors, you're right. Luckily, though, there are tables and a simple formula that have been devised to do it all for you-all you have to do is feed in the impedance and the attenuation ratio in decibels. I'll talk about the tables and formula, and tidy up some other points next month. Then I suppose I'd better think about a future article on decibels-wish I'd never mentioned the things!

PASSPORT TO AMATEUR RADIO-1

\mapsto continued from page 19

Conditions on the amateur bands vary with the time of day and season of the year and it is often desirable to operate early in the morning or late at night.

Then our first Junior Operator was born and I moved gracefully to the spare bedroom. Not bad, but I had to operate very quietly, (no drilling, filing or chassis bashing after 6.30p.m.).

A few years later, our second Junior Operator arrived and I moved even more gracefully, into our carless garage, with its cold concrete floor and collection of gardening implements, (a constant reminder of what else I should be doing!).

Then we got around to buying our first car and we agreed that I needed a more permanent "shack", so I bought a $4 \times 2.5 \mathrm{~m}$ sectional cedarwood shed, the best I could afford at the time. I lined it with hardboard, painted it, carpeted it and fitted it with benches, shelves, mains sockets, a heater and a 'phone to the house, ("is it coffee time yet?").

When we moved house a few years ago, I dismantled it and re-assembled it at the new address (QTH) and everything fitted back again as though it had never been moved. A point worth remembering.

Every radio shack is going to have an antenna (aerial) system connected to it and the relative positions should be carefully considered, to keep antenna feeder cables as short as possible.

Unless you are lucky enough to live way out in the country, the size and appearance of your antenna system
may upset your neighbours or contravene the local planning regulations, so be careful and considerate before ordering a 20 m crank-up tower.

Amateur radio is not just confined to talking to other amateurs from your shack. If you are interested in mobile operation you may have regular chats to others on your way to and from work, vehicle to vehicle or through your local repeater station. Mobile Rallies are held up and down the country during the summer months and entertainment is usually provided for all the family.

You may be keen on Contest operating and this might be with portable equipment from a hilltop or under canvas, as in the RSGB National Field Day, which is a regular June event for many Radio Clubs.

Even if you are interested in some specialised technical aspect, whether it be satellite communication, amateur television or any other, it is very likely that you will meet another amateur with similar interests who will be keen to assist, collaborate or advise.

If you wish to help others in the community you may like to join your local RAYNET (Radio Amateur Emergency Network) and take part in Civil Defence exercises. You could help your local Scout Group, by offering to provide a station so that they can take part in JOTA (Jamboree on the Air), an international two-day event which is held in October, each year.

As you can see, there are many facets to Amateur Radio, perhaps one of them will be the bug that bites you and sets you on course to becoming a licensed radio amateur.

NEXT MONTH: THE AMATEUR LICENCE AND STUDYING FOR THE RAE

by Eric Dowdeswell G4AR

Reports to: Eric Dowdeswell G4AR
Silver Firs, Leatherhead Road, Ashtead, Surrey KT21 2TW.
Logs by bands in alphabetical order.

Readers will probably have seen already the Home Office specifications that will govern the equipment to be used on the new 27 MHz CB f.m. band which ranges from 27.60125 MHz to 27.99125 MHz , and realised that this abuts the bottom end of our 10 m band. But a word of warning to those who may consider buying some of the new gear coming on to the market which covers the new CB f.m. band and part or all of the 28 MHz amateur band.

It will be illegal to use such equipment on the CB f.m. band even if a CB licence is obtained. The new regs specifically state that no CB equipment will be approved if it is capable of using frequencies other than the new CB ones, or a mode other than f.m. The gear would probably offend in other ways too, such as power output level, and frequency deviation.

But enough of CB, I'm sure the new regs will have been pretty well covered in all the journals by the time this appears in print.

My comments on several occasions about the necessity of having tunable r.f. circuits in the front ends of receivers, to reduce or eliminate intermodulation of signals, seem to have helped some readers to recognise this problem in their own sets, instead of complaining about the broadcast stations in the amateur bands which is one manifestation of intermodulation.

Unfortunately, in an effort to make the life of the listener that much easier the latest communications receivers have often got fixed wideband filters in the r.f. stages, which pass these often very powerful BC signals which then appear as images on amateur bands, and elsewhere. The fact that this is more economical for the set manufacturer is quite beside the point however! The listener is the last person to be considered when the spec of a new receiver is drawn up.

One reader had this trouble on a new set, particularly on the 10 m band, and returned the set to the retailer but of course he was not able to do anything to cure the trouble since it is inherent in the design. I'm quite sure that there are many more readers who are blaming the BC stations but hopefully this homily may help them to see where the trouble lies. It may seem ridiculous after spending a tidy sum on such a receiver but my advice is to use an antenna tuning unit between the antenna and the receiver, and to resonate it to the band in use. This will be
very effective against image signals generally. This remedy also applies to many other and less sophisticated receivers of course.

If the CBers can get away with obtaining almost all they want from the Government from sheer weight of their lobbying then perhaps we amateurs ought to start a lobby against the set manufacturers with a "we want tunable front ends" campaign!

Clubland

More and more clubs are reporting an influx of CBers who have become a little disillusioned with the mode and want something a bit more intriguing than a mere radio telephone. Clubs can do a lot in this area to clear away the CB a.m. users and gain members in the process.

Clubs affiliated to the RSGB should remember that lastminute changes of club programmes can be disseminated via GB2RS on Sunday mornings. See Radcom for details.

Wirral \& District ARC. Alternate Weds, 8pm, in the dining room of the Concourse Sports Centre at West Kirby, with July 8 the starting date, when a DF hunt is scheduled. Don't leave the XYL at home, there are six OM/XYL teams in the club with a total of eight licensed ladies. More from Ian Brooks, 28 Paignton Road, Wallasey L45 6TT.

Wakefield \& District RS. Alternate Tues in Room 2, Holmfield House, Denby Dale Road, Wakefield, with July 14 having G3WWF chatting on propagation and a car treasure hunt on the 28th. Rick G4BLT, 1 Wavell Garth, Sandal Magna, Wakefield is your contact, or Wakefield 255515.

Crawley ARC. Modern transceiver testing by G4GHO and G3GRO ought to draw the crowds on July 22 at the Trinity United Reformed Church, Ifield, but contact David Hill G4IQM on Crawley 26316 for more info.

Norfolk ARC. Meetings Weds, 7.45 pm at Crome Community Centre, Telegraph Lane East, Norwich with any amendments published in Eastern Evening News. July 8 is computer demo night courtesy Anglia Computer Centre, while 22nd has a quiz, intermediate dates being informal, with c.w. classes. You'll be too late to book for the visit to a Jaguar flight simulator at a RAF QTH but it gives some idea of what the club gets up to! Try Paul Gunther G8XBT, 6 Malvern Rd, Norwich or 610247.
Merion ARS. The society will be running a stand at the Dolgellau Sports and Hobbies Exhibition during Carnival Week August 3 to 8 with active h.f. station and 2 m talk-in on Ch. 22 . More from D. Morgan GW8PKA, Penybont, Gellilydan, Blaenau Ffestiniog, Gwynedd.

Verulam ARC. Fourth Tuesday at Charles Morris Memorial Hall, Tyttenhanger Green near St Albans at 7.45. July 28 is v.h.f. propagation night with a reminder of Bring \& Buy on August 25. Informal meetings on second Tues at RAFA HQ, Victoria Street, St Albans. Hilary Claytonsmith G4JKS, 115 Marshalswick Lane, St. Albans, Herts can tell you more.

North Bristol ARC. Club night every Friday at 7.30 at SHE7, Braemar Crescent, Northville, Bristol 7 with 100 members waiting to welcome you with RAE and code classes and, of
course, the shack is operational as G4GTC. Current club project is a QRP 80 m transceiver which can be copied by any member. Let Ted Bidmead G4EUV, 4 Pine Grove, Northville, Bristol BS7 OSL tell you all about it, or Bristol 691685.

White Rose RS. Recent rally was highly successful with a new committee in now to spend the profits! Every Wed at Moortown RUFC, Moss Valley, King Lane, Leeds with 150 members, but, hopefully, not all at once. Note also White Rose Award net around 3.775 MHz Thursdays 8 pm . It's Dave G8UYZ, PO Box 73, Leeds LS1 5AR. Oh, yes, club calls are G3XEP and G8LVQ.

Sutton \& Cheam RS. A v.h.f. transceiver won the club's constructional contest for Jim Baldwin G4KGE, with the annual dinner/dance catering for the social side of things. Meetings at alternative QTHs Sutton College of Liberal Arts and Banstead Institute, High St, Banstead but Sec G. Brind G4CMU, 26 Grange Meadow, Banstead, will fill you in, on events that is.

West Kent ARS. Newsletter QLF informs that July 17 has County Emergency Planning Officer discussing role of the amateur in an emergency, with DF hunt on the 31st. Those dates are Fridays but on each following Tuesday an informal meeting is held at the Drill Hall in Victoria Rd, Tunbridge Wells. WKARS net is on 28.7 MHz Sundays 1100GMT. QLF also has excellent design for a 2 m s.w.r. and power meter. Ah, yes, main meetings are at Adult Education Centre, Monson Rd, Tunbridge Wells, but ring Bryan Castle G4DYF on Sevenoaks 56708 for the latest gen.

Dartford Heath DF Club. Latest mag Compass Points has massive article on a Doppler shift DF system which looks like a new approach to an old art. No fixed meetings but at least one DF hunt a month. Let Margaret Burchmore G8LXK fill in the gaps from 49 School Lane, Horton Kirby, Dartford, Kent. Should mention that Steve Carey G8UVD will be demonstrating the above mentioned DF system at the Cray Valley club on August 6.

Barking R \& ES. Carrier, the club mag, has been taken over by two of the club's YLs and a nice job they seem to have made of it. And why not! Big event to come is a two-day show July 18/19 at Central Park, Dagenham, running h.f. and v.h.f. stations with exhibits of old and new equipment, plus a CCTV section, and a selection of TV games. Regular meetings from 7 to 10 pm Mondays (constructional), Tuesdays (code classes), Wednesdays (operating on G3XBF/G8XBF) and social time on Thursdays. Secretary A. Sammons on 01-594 2471 will be glad to enlarge on the meetings held at Westbury Recreation Centre, Westbury School, Ripple Road, Barking, Essex.

Cheltenham ARA. First Thursday and third Friday monthly at the Old Bakery, Chester Walk, Clarence St, C'ham, with Dave Butler G4ASR relating the 1980 transatlantic meteor scatter tests on July 2 and natter night on the 17th. Old friend and long time member of CARA Edgar Janes G2FWA passed away in May. General info in the club from Grant G4ILI on 43891.

Edgware \& District RS. Yours truly had a pleasant meeting with members on the club net on 160 m recently including publicity officer Howard Drury G4HMD, 38 Wemborough Road, Stanmore, Middx (or 01-952 6462). Second and fourth Thursdays 8 pm at Watling Community Centre, 145 Orange Hill Road, Burnt Oak, Edgware with a film show on July 9. Much activity now with preparations for the various field days to come.

Braintree ARS. Operates G4JXG and G6BRH. Zoofari on August 15 at Whipsnade looks like a good day out for one and all. An appropriate time for newcomers to go along is July 17 for the social evening, with a lecture on UFOs on the 20th. Otherwise meetings on first and third Mondays at the Braintree Community Centre, Victoria Street, B'tree, next to the bus station. Yet another young lady to explain the affairs of the club, Janet Storey, 33 Redwood Close, Witham, Essex or 513482.

Bournemouth RS. Now settled down in its new QTH, the conference room of the Coach House Motel, Tricketts Cross, Ferndown, at 7.30 pm first and third Fridays, altogether a vast improvement on the previous place, according to the BRS newsletter. This excellent 14 -page mag covers a wide variety of club interests from field days to operation on 3 cm . Ring G. T. Lloyd G8GTB on Poole 83093 or write to 49 Kingston Road, Poole, Dorset for details of forthcoming events.

Cheshunt \& District RC. Advance news of an RAE course starting in September next at the East Herts College at

Turnford, calculated to lead up to the May 1982 exam. Course most likely to be on Monday evenings but more and later info from club Chairman Jim Sleight G3OJI, 18 Coltsfoot Road, Ware, Herts or (0920) 4316. He will also be glad to give you details of the club which meets every Wednesday 8 pm in the Church Rooms, Church Lane, Wormley, near Cheshunt, Herts. For July it's a 2 m set-up on Broxbourne Common on the 8th, natter-night and code practice on the 15 th, computers and amateur radio from Bob G8KHI on the 22nd.

Radio Amateur Invalid and Blind Club. Supporters of the club should feel delighted at their teaching efforts which resulted in 15 new licences following the December RAE. A very rewarding job, one which many more amateurs could very well emulate. The club pienic takes place on July 5 at the Fairground, Broadlands Estate, Romsey, Hants and they will also be present at the Sussex mobile rally at Brighton racecourse on the 19th. Big event Aug 1/3 is the IYDP Weekend-on-the-Air at St. Loyes College, Exeter. More from G. Draper, I Carlyon Close, Exeter EXI 3 AZ on this event, otherwise RAIBC info from Frances Woolley G3LWY, who lives at 9 Rannoch Court, Adelaide Road, Surbiton, Surrey KT6 4TE.

On the Bands

Newcomer to the column 16-year-old Paul Willmott of Marlow in Bucks is also BRS46723. He has been listening around since November on an 1155 receiver that needed a bit of work doing on it before it functioned, including the construction of a suitable power unit. The RAE in December is the next target and a G4 ticket, following code practice from friend G4JRR. Present short bit of wire for an antenna hasn't brought in much DX, just Europeans and the odd W station, but a proper dipole ought to be in the air now.

From Seaton in Devon a note from Stephen Littley, also for the first time, also 16 years old, who passed his RAE last December but, I'm glad to report, practising the code like mad to go straight for his G4. Listening so far has been on a simple t.r.f. receiver and a 20 metre-long wire without an a.t.u. Naughty boy! Obviously he had the set tamed as he copied things like C6ADV, J3AH, TYA11 and ZL4AV on the 80 m band, and HP1XFG, TN8AJ, VP2VEZ, VK2WC and 8R1W on 20 m . Goodness knows what he'll hear with a proper receiver.

Anne Edmondson (Edinburgh) found a rare one in SV0BL on Rhodes who said QSL to K9QXY. She has been running around getting permission for a couple of poles to improve her present 10 metre-long wire feeding the Realistic DX200 receiver. But she has a potential problem when she gets her ticket, in the nearby Scottish TV studios and all the electronic gear there! Anne gets along to the Edinburgh ARS meetings so she will not lack for teachers in the art of amateur radio!

From Hull Colin Frankland BRS45342 confirms that TYA11 is legit and is N 4 HX in disguise, expecting to be there until mid1982. Rather naughty to use a callsign group allocated to another service! Phil Charlesworth G8SNG hasn't yet deserted this column for the v.h.f. one, although he is mainly active on 2 m . He still listens around on his SRX-30 in Cranwell, Lincs, with an indoor wire but found FK8DR on 20 m and AG1J on Wake Is, he says, but I'd be careful OM, this could be in the good old US of A!

In Earl Shilton, Leics, Dennis Sheppard ploughs his lonely RTTY furrow but says there has not been much activity in this mode on 10 m of late, only ZS6AKO being noteworthy. On 15 m he copied CE3CBG, JR6RIU, YB2BLI, DU1EM, PP7GV and 8J3XPO, with AH6AC/KH2, VK5XO, 4X6CV and LU9DER around on 20 m . Catches on 80 m included TYA11 and 7X2RM plus ZLIBHE on 20, and VS5PP and VK6WC on 15 and 10 m respectively, all s.s.b. Gale force winds laid low Dennis's antennas, the 2 m beam being a write-off. He has his 18AVT up again, about 3.5 metres above ground.

Basil Woodcock BRS44266 is not in Leeds at the moment but gallivanting with relations in VE and W-land for a month. Before departing Basil copied H44JE, 9L1MP, TYA11, VK9NL and VE7AAZ/4U on 28 MHz band, with HSIAMY and ZD7BW on 21 and JT1AN (congrats, OM), VK9NS, VP8QI, and 9M2GA on 14 MHz , all s.s.b. He says that WA4VDR/MM is on an icefloe in the Arctic and QSOs Miami University. Could it be a new country, I ask myself! Brief, brief note from David Cox, Highbury Park, London N5, who with his Trio R-1000 got

KG6RN, HP1XCM, HH2MC, TG9EP and VU2IF (QSL to N7AGC) on 20 m plus VS6CT, VS5PP and DU7RLC on the Negros Is, all on 15 m . If you would let me have your complete QTH OM I'd be glad to answer your letter!

The bandswitch on the 9R59DS of David Warr (Weymouth) has been working overtime covering 10 to 80 m in his log. That and G5RV and ZL Special antennas brought him A4XIH and TYA11 on $10 \mathrm{~m}, \mathrm{~N} 6 \mathrm{DPH} / \mathrm{DU} 2$, TYA11, YC2BJS and 6T1YP for 15 m , FR7CE, FY7AN, KJ6BZ, ZD8RH, VK9NL, 5N8AFE, 6O1TI, and VP8AEN (QSL GM3ITN) on 20 m , while 40 m gave up FY7AN, TYA11 (doesn't he ever QRT??), and 6 W 8 AR . Of note on 80 m was TI2DB. David has tried out the $1 \mathrm{k} \Omega$ carbon pot idea across the antenna and earth terminals of his set and reckons it has enabled him to copy DX he otherwise would have lost. Good!

In Hull, the aforementioned Colin Frankland and his 9R59DS plus PR30 preselector and 23 metre-long dipole (strange length, that) produced 5B4ES and 9GIWA on 10 m ; J3AE, TG9RQ, TYA11 (QSL K4YT), W3IVP/5N1 and 9 HIEL on 15 m ; HP2SXG and XE2QQ both on 20 m . Could that antenna be some kind of magic multi-band design?? Colin is BRS 45342 by the way. Bob Gibson in Wadhurst, East Sussex, seemed surprised to get an answer to his letter to me, and told me of some of his experiments with antennas both vertical and horizontal wires, finishing up with a fan dipole for three bands, 10,15 , and 20 m . That's three dipoles cut to appropriate length connected at their centres to a common coaxial feeder. In my view the best compromise of all multi-band designs since the polar pattern does not change from band to band. The FRG-7 of Bob located 7P8AC, DU1FLA, HC1BP, KA6CMD/KH2 and P29NLS on 10 m , the / KH2 reputedly being on Guam. On 15 m $7 \mathrm{X} 2 \mathrm{KRC}, 9 \mathrm{M} 2 \mathrm{CW}, \mathrm{KH} 6 \mathrm{BOG}$, and VK8DU (that's a rare one) were logged, with unusual 5 A 2 KJ, VP8AGX on Adelaide Is, and VU2TN for 20 m .

In Chadderton, near Oldham, Mike Howard BRS44755 seems to have had his own private line to a lot of fabulous DX on Top Band but then he has two large 8 -turn loops, fed out of phase, located at the ends of an 8 metre-long rotatable boom, turned by the renowned Armstrong method! His country total on 1.8 MHz is a remarkable 64 and all continents, recent treasured QSL being from VK6HD. This is on c.w. of course with the odd one on s.s.b. So on Top Band, between about 1.8 MHz and 1.890 MHz it is EA8OK, EL2FY, IOTON, JA3ONB on 1.960 MHz , LA9SC, LU8DQ and LU9ELF, OJ0MA, OY7ML, PY1ZAE, UD6DMR, UF6FOW, UI8LAG, UJ8JAS, UM8MAZ and the redoubtable VK6HD, phew! Oh, yes, I forgot VS5RP, VS6DO, 3A2EE and 4X4NJ. I'm just checking . . yes, it's all on TOP BAND! Well done, OM.

Another reader who uses his receiver, an FRG-7700, to good advantage on all bands is David Coggins in Knutsford, Cheshire, who, with a 12 metre-long inverted-L antenna plus 2element quad on 10 m and a.t.u. rustled up FH8OM, J73LC, VS5PP, YJ8NPS, 8R1J and 9M2OK on the 28 MHz band; KH6FKG, VK9NS, VR6TC on 14; DU1EFZ, FG7BP, HS1AMM, YB2BJM and VR6TC again, on the 21MH band. Two goodies on 7MHz were VK3XI and ZL4BC, while a watch on the c.w. end of 1.8 MHz produced an OK 1 and a UT5.

In Berkhamsted, Herts, Jon Kempster BRS45205 has been hard at it on 10, 15 and 20 m with his FRG-7, 20 m dipole and 20 metre-long wire and a.t.u. finding 8P6WDT/MM and 9X5AB on $20 \mathrm{~m} ; \mathrm{AO} 2 \mathrm{HAM}$ said to be a DXpedition in the Bay of Biscay, YC2BJS, HV3SJ, 3B8AE/3B9 and HS1AMY all on 15 m , with 10 m producing HM0U (QSL JA6HNK), VP2ARS (QSL OE2DYL), S79RD, ST2FF (QSL YU2DX), TYA11 and 9GIWA. Jon has spent some time at the shack of G3VRY seeing how it all works, no doubt spurring Jon on to get his RAE! It never fails!

In a general DX vein, a note from Ean Retief ZS6UD points out that the call ZD9GM reported by Mike Howard in March column has not been issued yet, ZD9GI being the latest. Ean's own call ZD9GG is also being pirated. Only active stations this year have been ZD9GH and ZD9BU/MM but ZD7HH and others could be on a two-day DXpedition there just as this comes out, in early July. Ean mentions also 600DX who has I2YAE for QSL manager.

Top Band addicts may like to know that LAIEKO on a North Sea rig will be active between 1.810 and 1.840 MHz on July 11 from 2200GMT on c.w., thought to be the first Top

Band effort from such a QTH. Power will be 10 W into a short vertical antenna. LA1EKO also operates on 2 m in various modes with 15 W . QSLs for LAIEKO to the op, Mike Theiss LA5SAA, N-4120, Tau, Norway.

A very picturesque card from Vic Rivera tells of operations from 5 W 1, ZK ICG and, with his own call KA7HRK/KH8, but it will be over by the time this appears in print. If anyone has copied Vic then QSLs to PO Box 38, Raratonga, Cook Islands, South Pacific.
By the time I get down to the next lot of copy for the column I shall have spent a couple of weeks on Corfu with birdwatching in mind, far from the world of amateur radio. May I wish all those going on holiday a pleasant time, with the weather to go with it.

Logs, letters etc by the 15 th of the month as usual and another plea to club newsletter editors. PLEASE ensure the club sec or other official's full QTH is on page one together with details of meeting place and day/s of the month. "Alternate Tuesdays" still occurs and is meaningless if no other dates are given. Ta!

As the season advances it is worth having a last look at summertime DXing on the medium waves. The area roughly to the south of the UK is a good one at this time of year. Sunset, which is a good time for DXing, occurs at approximately the same hour at all places and there is a lot less interference than at the same time in winter.

Azores

This group of islands is part of Portugal and lies to the west of that country, well out in the Atlantic. At one time it was rather difficult to log the Azores but Emissora do Club Asas do Atlantico is now a regular signal on 1570 kHz right at the top edge of the band. This station will QSL to a report in English. Its address is Aeroporto de Santa Marta, Azores, and do not forget to enclose an International Reply Coupon (IRC). Programming is in Portuguese and the callsign, which follows the Portuguese series, is CSB81. The Azores is a separate DX country within Europe and local time is GMT minus one hour.

Canary Islands

The Canaries are to be found off the west coast of Africa near to Morocco. They belong to Spain, so the Spanish language and callsigns are in use. The time zone is GMT and they make up a separate DX country in the African continent.

Radio Las Palmas on 1008 kHz is a consistent signal behind the Dutch station on this channel, but a loop or the ferrite rod antenna in a portable receiver should help to reduce this QRM at most locations in the UK. The callsign of R. Las Palmas is EAJ50 and the address for a QSL is Avenida Rafael Cabrera 10, Las Palmas de Gran Canaria, Canary Islands.

ALL PRICES INCLUDE V.A.T.

Amateur Electronics UK
508-516 Alum Rock Road-Birmingham8 Telephone: 021-327 1497 or 021-327 6313

9.30-5.30 Tues. to Sat.continuous and cLoSED all day Monday

AGENTS

NORTH WEST - THANET ELECTRONICS LTD. GORDON, G3LEQ.
KNUTSFORD (O568) 4040.
WALES \& WEST - ROSS CLARE GWONWS
IES G GWENT (0633) 880146.
EAST ANGLIA - AMATEUR ELECTRONICS UK-EAST ANGLIA. DR T THIRST ITIMI G4CTT. NORWICH 06925855
NORTH EAST - NORTH EAST AMATEUR RADIO. DARLINGTON 032556969
SOUTH EAST - AMATEUR ELECTRONICS, UK - COASTAL, CLIFTONVILLE, KEN)
KEN McINNES. G3FTE. THANET (0843) $291297.9 \mathrm{gm} .10 .30 \mathrm{p} . \mathrm{m}$

RSGB Publications

A Guide to Amateur Radio (18th edn, paperback)£3.07 A Guide to Amateur Radio (18th edn, hardback). ع3. ع6.32
Amateur Radio Awards (2nd edn)... £3.41
Amateur Radio Techniques (7th edn) £6.16
OSCAR - Amateur Radio Satellites. £4.50
Radio Amateurs' Examination Manual (8th edn) (1979-81 syllabus)... £2.73
Radio Amateurs' Examination Manual (8th edn)................£2.73
Radio Communication Handbook (5 th edn) Vol 1 $£ 10.20$
Radio Data Reference Book (4th edn) $£ 5.02$
Test Equipment for the Radio Amateur (2nd edn)55.86
Television Interference Manual (2nd edn). £1.95
VHF/UHF Manual (3rd edn) £8.70
World at their Fingertips 8.

Logbooks
Amateur Radio Logbook ...26
Mobile Logbook..
Receiving Station Logbook..

Wall maps

Great Circle DX Map. $\quad \mathbf{£ 2 . 1 2}$
IARU QTH Locator Map of Europe...

World Prefix Map in full colour_... $£ 2.23$
Morse instruction
Morse Code Cassette Stage 1 (5wpm) $£ \mathbf{8 . 8 5}$

Other Publications

A Course in Radio Fundamentals (ARRL)£3.24
Active Filter Cookbook (Sams) .. £12.69
All About Cubical Quad Antennas (RPI)£2.92
Amateur Television Handbook (BATC) $\mathbf{£ 2 . 3 9}$
Antenna Anthology (ARRL) ..
ARRL Electronics Data Book £3.58
Beam Antenna Handbook (RPI) £4.22
Beginner's Handbook of Amateur Radio (Sams) $\mathbf{£ 8 . 2 6}$
Better Short Wave Reception (RPI) $\mathbf{£ 3 . 6 5}$
Care \& Feeding of Power Grid Tubes (Varian) $\mathbf{£ 2 . 9 8}$ CMOS Cookbook (Sams)... £9.59
FM \& Repeaters for the Radio Amateur (ARRL) 4.08
Hints and Kinks for the Radio Amateur (ARRL) $\mathbf{£ 3 . 3 2}$
Practical Antennas for the Radio Amateur (SCELBI).....£8.02
Radio Frequency Interference (ARRL) $£ 3.09$
RTTY the Easy Way (BARTG)... £1.14
Shortwave Listeners Guide (Sams)......................................£4.44
Simple Low-cost Wire Antennas (RPI)......................................£3.16
Single Sideband for the Radio Amateur (ARRL)
Solid-state Basics (ARRL)... $\mathbf{£ 4 . 8 5}$

The ARRL Antenna Book .. $\mathbf{£ 4 . 3 0}$
The Complete Handbook of Slow Scan TV (Tab)................£5.76
The Radio Amateur's Handbook, 1981 (ARRL)................ £8.56
The Radio Amateurs VHF Manual (ARRL) $£ 4.15$
Understanding Amateur Radio (ARRL) $£ 4.32$
World Atlas (RACI). £1.91
 80m DXing (CTI) ... $£ 3.03$ 99 Ways to Improve Your Short-wave Listening (Sams) $£ 4.44$

Prices include postage, packing and VAT where applicable. Postal terms: cheques/POs with order (not stamps or book tokens). Goods are obtainable (less P \& P) at RSGB HQ, 9.30-5pm, Monday - Friday.

The RSGB is the national society representing all UK radio amateurs and membership is open to all interested in the hobby, including listeners. The Society also publishes a complete range of books, log books and maps for the radio amateur. Contact the membership services section for more information about amateur radio, the RSGB and its publications.

WOOD \& DOUGLAS

With the winter evenings approaching, the constructional season for radio amateurs is about to begin. If you are undecided on your winter project perhaps you can find something in our range of over 30 kits and modules to suit you.
70FM05TR In case you missed October's review of this single channel FM transceiver for 70 cms here are a few details. The receiver sensitivity is typically $0.4 \mu \mathrm{~V}$ and uses dual gate MOSFETS and a high quality crystal filter. The audio output drives an 8Ω speaker. The transmitter gives 500 mW of RF and has a modulator on the pcb. Both boards use readily available crystals and measure a very compact $6^{\prime \prime}$ by less than $1 \frac{1}{4}{ }^{\prime \prime}$
Kit RX $£ 38.50$
Assembled RX£47.25
TX $£ 17.80$
70MC06TR When one channel is not enough then by adding this two pcb set you will have 6 channels on $t x / r x$. This includes a toneburst for repeaters and a scanner to ease monitoring.
Kit RX $£ 18.60$
Assembled RX£26.05 TX £11.30

TX £18.10
144SY25B An FM synthesiser for 25 KHz steps at 144146 MHz . The output frequencies are $5 \cdot 5,11,22$ or 45 MHz on receive and 6,12 or 24 MHz on transmit. This will feed most commercial radio telephones and also the PW NIMBUS. So for the cost of ten crystal channels you get full band coverage, crystal controlled toneburst, repeater $\pm 600 \mathrm{KHz}$ offset, out of lock inhibit and channel selection by channel number.
Kit £50.95
Assembled $\mathbf{£ 6 9 . 7 0}$
INTERESTED? If you would like further details of these and our many other products then send a large SAE (please!) for the latest lists. The above prices include VAT at the current rate but please add 60 p p\&p on the total order. The prices include all items to make a working pcb module. We do not supply external hardware such as boxes or switches etc. This leaves you free to use the modules in whatever configuration you wish and yet have confidence that the electronics will perform well. We will gladly service any of our products providing it has been built as directed. We make a small charge for this facility depending on complexity. Kits when in stock are return of post otherwise 10-14 days. Assembled items 10-20 days.
9 HILLCREST, TADLEY BASINGSTOKE, HANTS RG26 6JB

LISTEN TO THE WORLD
 WITH A
 RECEIVER
 Catronics
 Eest Selection
 FROM
 LOWEST
 PRICES

MEDIUM WAVE/SHORT WAVE

Trio R-1000 is a high class general coverage receiver covering 30 bands between 200 kHz and 30 MHz with a PLL synthesiser. Both digital display readout (1 kHz resolution) and analog display (10 kHz resolution) are provided for easy and accurate tuning. The R-1000 also includes a
quartz digital clock with timer, three IF filters. RF ATT and tone control, etc. to ensure the best quartz digital clock with timer, three IF filters. RF ATT and tone control, etc. to ensure the best
receiving conditions for each mode 240 V AC/12VDC supply. £285.

AIRBAND (VHF)

Signal R517 portable, fully tuneable 118 to 143 MHz with provision for 3 crystals (extra) $1.8 \mu \mathrm{~V}$ sensitivity. Fine Tuning control,
Telescopic aerial. $\mathbf{£ 4 9}$

Lowe AP12 portable 12 crystal controlled channels, rechargeable batteries \& charger included. Micro-computer tuning. $0.5 \mu \mathrm{~V}$ sen-
sitivity $\mathbf{£ 8 9}+$ crystals $£ 2.80$ ea.

MARINE/AMATEUR (VHF)

Search SR9 - fully tuneable coverage - provision for 11 crystals. Fine tuning and Squelch EXCELIENTVALUE
EXCELLENT VALUE at only $£ 46$

Belcom AMR217B - automatically scans up to 7 crystal controlled channels with provision for 10 additional fixed channels. $240 \mathrm{Vac} / 12 \mathrm{Vdc}$ supply. Inct 8 channels. $\mathbf{£ 1 2 0}$

DAIWA SR11 - fully tuneable coverage plus 6 channel scanning facility giving Uune/scan/manual modes of operation. + crystals $£ \mathbf{2} .80$ ea.
Lowe FS10 portable. 10 crystal controlled channels automatically scanned.
Rechargeable batteries \& charger included. Telescopic aerial. $\mathbf{£ 8 2}+$ crystals $£ 2.80$ oa.

SYNTHESISED SCAN - AIR/MARINE ETC
S×200N - The ultimate scanner for 32,000 channels covering $26-88$, 108-180. $380-514 \mathrm{MHz}$ AM and FM, 16 memory channels, 2 speed scan, 3 squelch modes + Digital Clock displace. Lisen to $10 \mathrm{~m}-70 \mathrm{~cm}$ Amateur. Aircraft, and Marine Bands 240 V a.c. $/ 12 \mathrm{~V}$ d.c. supply.

NEW AND IMPROVED MODELALL FOR ONLY £264.00

Bearcat 220FB - fully synthesised Scanner covering $66.88,144 \cdot 174,420-512 \mathrm{MHz}$ FM plus 118.136 MHz airband $240 \mathrm{Vac} / 12 \mathrm{Vdc}$
supply. Catronics Price $£ \mathbf{2 5 8}$

Regency K100 - fully synthesised to search $30-50,144-174,440 \cdot 512 \mathrm{MHz}+10$ selectable scan channels 240 V ac/12V dc.
SPECIAL OFFER: ONLY £170

Additional crystals for above receivers: Airband \& Marine, $\mathbb{\text { E2.80; Amateur, }} \mathbf{£ 2} .40$ All prices include VAT but add carriage: S.W. \& Regency receivers, f 5.50 : others f 1.50 EASY TERMS available. Access and Barclaycards welcome

tronics LTD. COMMUNICATIONS HOUSE, (Dept. 188) 20 WALLINGTON SQUARE, WALLINGTON. SURREY. SM6 8RG. 01-669 6700 (9 a.m. to 5.30 p.m. Sat 1 p.m.) Closed lunch 12.45-1 45	

The government-owned Radio Nacional de España outlet in Tenerife is on 621 kHz , a frequency it shares with Belgium and with Batra in Egypt. The Belgian signs off at 2145 in summer and a loop should easily suppress Batra. The address of RNE Tenerife, which like government stations in Spain, does not have a callsign, is San Martin 1, Santa Cruz de Tenerife.

A OSL card from the Canary Islands

West Africa

Radio Senegal at Dakar is conspicuous on 765 kHz after the French-speaking Swiss station on this channel goes off at 2300. Programming is in French as well as local languages. The station is on the air until 0100GMT and reports should go to Radiodiffusion du Senegal, B.P. 1765, Dakar, Senegal.

Conakry in the Republic of Guinea, which is nominally on 1404 kHz , broadcasts all night and is usually located quite easily after France on the same frequency signs off. The station has drifted or moved recently and now appears to be on approximately 1395 kHz where it creates a heterodyne with Albania. Conakry announces as "La Voix de la Revolution" and programming is in French. Nearby Guinea-Bissau is on 1071 kHz along with QRM from Czechoslovakia and France. The language is Portuguese but the station did QSL to an English report from me before independence. Write to Radiodifusão Nacional, Caixa Postal 191, Bissau, Republic of Guinea-Bissau.

Ougadougou in Upper Volta is never strong, but I did pick it up last year on my Vega 204 portable using the internal antenna. This broadcaster styles itself La Voix de la Renouveau, it is on the air until midnight GMT and it does QSL. Write to Radiodiffusion Television Voltaique, B.P. 7029, Ougadougou, Upper Volta.

Morocco

The Atlantic coast of Morocco has a number of medium wave stations. Some of the programmes are in Berber as well as Arabic which adds interest for the listener. Berber music has a decided African flavour. Listen for Agadir on 936 kHz , Rabat on 819 kHz and you might be lucky enough to pick up Laayoune on 657 kHz which is on the coast near the Canary Islands. Reception reports should go to Radiodiffusion Television Marocaine, 1 Rue el Brihi, BP1042, Rabat, Morocco.

Language Identification Aids

Reader Martin Whittington (Dartford) asks if there is a cassette tape available with pre-recorded languages as a guide to station identification. Radio Canada International produced such a tape several years ago which had examples of 55 different languages with a commentary which pointed out key words and sounds to look for. Language identification is important on the medium waves, as the DXer is listening to domestic services which seldom use other than their own language over the air.

This tape is still available from the Handicapped Aid Programme who have a selection of tapes of interest to the

DXer, including one with interval signals. Send a s.a.e. with enquiries to HAP (UK), PO Box 4, St Ives, Huntingdon, Cambs, PE17 4FE.

Readers' Letters

"I don't know if you print foreign reports but I thought you might like to know what m.w. DXing is like down here," writes Tim Dodsworth from Ingham NQ in Australia. The receiver is a DX302 used with a 100 metre-long wire. Tim reports hearing American Samoa on 1120 kHz at 2130 EAT , and occasionally Papeete in the Society Islands on 738 kHz around 1930. Glad to hear from you Tim, hope you soon log your first North American.

Rhys Thomas (Bridgend) reports completion of his differential matching amplifier (d.m.a.) which to his surprise, worked first time. He tried some local radio DXing where the increased signal strength (about 20 dB) and deeper, sharper null allowed better use of the loop. The following were logged between 2300 and 0200 using a Trio R-1000 receiver, loop and d.m.a.: Radio Clyde, BRMB Birmingham, London Broadcasting and Plymouth Sound, all on 1152 kHz ; Devonair Radio (Exeter) on 666 kHz and Manx Radio in the Isle of Man on 1368 kHz , the last one being a regular, good enough for easy listening after sunset. Rhys wonders if any reader could tell him where to get hold of a plan for an Audio Notch Filter, tuneable if possible, to get rid of that 5 kHz heterodyne (on short-waves) which is annoying when all other aspects of reception are excellent. Replies direct to Rhys Thomas at 46 Litchard Cross, Bridgend, MidGlamorgan, CF31 1NX.

EMISSORA DA GEINE PORTUGUESA a. S. L.

CONFIBMAÇAO OFICIAL, DE RECEPCKO VERIFICATION OFFICIELLLE DE RECEPTION OFFICIAL VERIFICATION OF RECEPTION

Ao Exmo. Sr.
To Mr.

My OSL from Bissau

Reader J. Cardow (Stockport) thinks that many DXers will not be able to use the standard " 40 inch" loop because of space restrictions and he refers to the article An Active Rotating Aerial Tuning $550-2600 \mathrm{kHz}$ which appeared in the September 1976 edition of Practical Wireless. Ferrite rod antennas have a lot less pick-up than a standard loop, but if used with a d.m.a. or amplifier to make up an active antenna, can be a useful tool for the DXer. Our reader also mentions that Ambit supply a lightning arrester which is listed under Plugs and Sockets as item SE567 in their catalogue.

Overloading is an all too common problem these days. Lee Roberts (Walsall) complains that it is impossible to DX on the
medium waves from his QTH using his Realistic DX300 because of severe overloading from BBC Radio 1 on 1053 kHz and 1089 kHz , Radio 3 on 1215 kHz and Radio Birmingham on 1459 kHz .

This receiver has an internal ferrite rod antenna for use on the medium waves, so if you rotate the whole receiver you may be able to reduce the strength of the offending signal by pointing the null of the internal antenna towards it. In spite of the problems, Lee managed to pick up Two Counties Radio in Bournemouth on 828 kHz and he says that if you ring this station on (0202) 294881 "you will be greeted by a nice young lady".

Everyone knows that broadcasting stations emit radio waves but what is the system used to identify and separate them? The markings printed on short-wave receiver tuning scales are often confusing to the newcomer to short-wave listening. What do they represent?

Frequency and Wavelength

The number of waves or cycles sent out in one second is called the frequency, while the distance between two successive waves is called the wavelength. It is by using wavelength and frequency that we can locate a radio signal.

Frequency is measured in hertz (Hz) where one Hz equals one wave per second. The hertz is far too small to use on the short-waves so the megahertz is used instead. One megahertz equals one million hertz and is abbreviated to MHz . It is the frequency in megahertz that is displayed on the scale of most shortwave receivers, the international s.w. bands being located in the range 6 MHz to 26 MHz .

Wavelength, which is measured in metres. is the distance between the peaks of two successive waves. Broadcasting on the short-waves is grouped into bands, it being customary to use wavelength to identify them. The 49 metre band will be found near 6 MHz and is often denoted by a short thick line on the tuning scale with 49 m printed above it. The 41 m band is located near 7 MHz , the 31 m band near 9 MHz , the 25 m band near 12 MHz , the 19 m band just above 15 MHz , the 16 m band near 18 MHz , the 13 m band near 21 MHz and the 11 m band near 26 MHz .

Can we convert MHz to metres easily? Yes, $300 \div \mathrm{MHz}$ equals metres and $300 \div$ metres equals MHz . For the mathematically minded. MHz times metres equals 300 , which means that if one increases the other decreases. If we tune "up the band" in frequency we are going "down the band" in wavelength.

Kilohertz (kHz)

This term confuses many listeners. There are 1000 kHz in 1 MHz . Although it is not convenient for space reasons to print
the frequency in kHz on a tuning scale, it is kHz that is displayed on a digital readout and many stations announce their frequency in kHz . Radio Canada International on the 19 m band is on 15.325 MHz , which is the same as 15325 kHz and is announced over the air as "fifteen three two five". Frequency lists and station schedules are printed in kHz , although the International Radio Regulations lay down that MHz should be used on these bands. Short-wave tuning scales are usually, for space reasons, printed in MHz .

Choosing a Receiver

A short-wave set is a rather personal piece of property. When readers write and ask me to recommend a particular model they do not realise that I have no means of telling what will be pleasing to them. If you don't like a particular set then you will never be happy with it, no matter how well it performs, a point illustrated by a considerable trade in good quality second-hand gear. There are a few pointers though that should help the prospective buyer, starting with one generalism. By and large you will get what you pay for. A receiver costing $£ 300$ will be a lot better than one at $£ 30$.

Do you want a communications receiver, such as the FRG-7 or one of the better class portables such as the Grundig Satellit 1400? There is little point having an FRG-7 if your antenna is going to be a few feet of wire hanging from the back. Portables are designed to work with their own whip antenna and they can give excellent results, picking up broadcasts from all over the world. This type of receiver could be the answer to anyone who is unable to put up a good antenna. It can also be used away from home, on holiday, in a boat or caravan.

Get a demonstration of any prospective purchase. Is the receiver easy to operate? Is the layout of the controls convenient for you? You will spend hours at the receiver so you want to be comfortable and at ease. Above all, do you like the set? Performance is important but it is not everything.

The current QSL from Radio Canada

Receiver Shopping List

The fourth edition of this guide to short-wave receivers is due out about now. The list, which is in price order, based on retail prices in the Netherlands, covers cheap portable sets, serious short-wave listening, semi-professional DX-s.w.l., DX professional class. There is also a section giving general hints on choosing a receiver including surplus receivers. The Receiver Shopping List is available free of charge from Media Network, English Section, Radio Netherlands, PO Box 222, 1200JG Hilversum, Holland.

UTC/GMT

Greenwich Mean Time (GMT) is in general use by shortwave broadcasters as a universal time, even in countries located

AND NOW FOR
SOMETHING REALLY NEW!

-12V DC earth $144-146 \mathrm{MHz}$ or VHF Marine.
$15 \times 19 \times 5 \mathrm{cms}$. Mobile bracket + Int speaker inc.

A VHF monitor receiver with VFO plus 12 optional scanning channels for $\mathbf{£ 4 6 . 0 0} \mathbf{i n c}$. VAT. Crystals $£ \mathbf{2} .25$ each. Carriage free.

NORCONE 512 (66-512 MHz) It's here! A no compromise, precision made full 16 element discone antenna made in Britain. Standard SO239 connector, with cover. Supplied with 1 diameter, $30^{\prime \prime}$ mounting support mast and complete instructions.
An ideal partner for the SX200N "Bearcat" and other scanning receivers. It may also be used for transmission and in particular where antenna space is limited.
Full coverage of 70.144 .432 MHz Amateur bands plus Aircraft, Marine and Commercial bands.
$\mathbf{£ 2 5 . 9 5}$ р.p. £1.75
MK-1. In line vertical mounting kit for $1^{\prime \prime}$ to $2^{\prime \prime}$ mast £2.45 р.p. $£ 0.75$
MK-2.
Chimney lashing kit, including hardware and lashing wire. $£ 2.95$ p.p. £1.00 CK-1. Low loss coaxial cable kit, 10 metres, with connectors and fixing clips. £3.75 р.p.f0. 75

ZL-12 COMPACT YAGI

13db gain, compact 2 metre Yagi. $10^{\prime} 6^{\prime \prime}$ boom, lightweight rugged design. Hundreds of this award winning antenna already in use. Send for details.
$\mathbf{£ 2 8 . 7 5}$ p.p. £1.75

ZL-8 SUPER COMPACT YAGI

9 db gain, super compact 2 metre Yagi. $6^{\prime} 0^{\prime \prime}$ boom, lightweight rugged design. Ideal for limited spaces and portable operation. Send for details.
$\mathbf{£ 1 7 . 9 5}{ }_{\text {fin }}^{\text {p.p. }} 75$

SX200N HOT NEWS!

Scanning Receiver NEW MODEL!
New model of this superb unit now with
Plug in modules - for easy service.
Increased AF Output - for better reception
Improved Image Rejection - to cut out unwanted signals.
Increased Selectivity - to cut out adjacent channels.
Plus many more interesting features.
£264.00 Inc. VAT Carriage $£ 1.50$
SPECIAL OFFER!
SX200N + Norcone 512. Complete inc. VAT. and delivery.
£285.00

YAESU FT707 TRANSCEIVER

This most popular of compact HF rigs is currently the number one selling station amongst our extensive range of amateur radio equipment which includes such amongst our extensive range of amateur radio equipment which includes such MICROWAVE MODULES, NAG, SEM and many more.
Dont just take our word for it come and try the FT707 or better still order yours now!
FT707 100W \quad £529.00
FP707 PSU
FC707 ATU
FV707 VFO
£109.00
FV707 VFO
$£ 186.30$

STANDARD C78 UHF PORTABLE

Amazing new 70 cms Transceiver. Send for details. £209.00 Prices include VAT @ 15%
299-303, Claremount Road, Halifax HX3 6AW, West Yorkshire. G3UGF. Tues-Sat. $9.45 \mathrm{am}-5.30 \mathrm{pm}$. Telephone (0422) 40792. 24 hour Ansafone Service.

MORSE TUTOR

The uniquely effective method of improving and maintaining Morse Code proficiency. Effectiveness proven by thousands of users
world-wide.
\star Practise anywhere, anytime at

your convenience

* Generates a random stream of perfect Morse in five character groups.
* D70's unique "DELAY" control allows you to learn each character with its correct high speed sound. Start with a long delay between each character and as you improve reduce the delay. The speed within each character always remains as set on the independent "SPEED" control.
* Features: long life battery operation, compact size, built-in loudspeaker plus personal earpiece.

ACTIVE RECEIVING

ANTENNAS

Datong active antennas are ideal for modern broadband communications receivers - especially where space is
limited.
\star highly sensitive (comparable to fullsize dipoles).
Broadband coverage (below 200 kHz to over 30 MHz)
needs no tuning, matching or other adjustments.
two versions AD270 for indoor mounting or AD370 (illustrated) for outdoor use.
\star professionact, only 3 metres overall length.
\star professional performance standards.
Prices: Model AD270 (indoor use only) £42.55 Model AD370 (for outdoor use) $£ 56.35$ Both prices include mains power unit

VERY LOW FREQUENCY CONVERTER

If your communications receiver gives poor results below 500 kHz Model VLF is the answer.

* Connects between antenna and receiver input.

Converts signals between DC and 500 kHz to the range 28 to 28.5 MHz with low noise and high sensitivity.

* Crystal controlled for high stability.

Quality construction in diecast aluminium box (size $112 \times 62 \times 31 \mathrm{~mm}$). SO239
connectors, LED indicator, in/out switch.

* Operates from internal 9 volt battery or external supply (5-15 volts DC). Price: only $£ 25.30$
Our full catalogue plus further details of any product are available free on request. All prices include VAT and postage and packing.

DATONE
Spence Mills. Mill Lane Bramley. Leeds LS133HE England.
Tel: (0532) 552461

on the far side of the globe from the Greenwich meridian. This practice is gradually changing. Co-ordinated Universal Time (UTC) is now coming into use by international agreement so that in a couple of years it will have replaced GMT completely.

Although there is a slight difference between the two time scales - GMT is related to the rotation of the earth while UTC is based on the transition frequency of the element caesium for practical purposes the two are the same. Why then the change? There appears to be a desire by international broadcasters to have a universal time scale that is independent of any geographical location. A few broadcasters, such as Radio Canada International, have already adopted UTC which may puzzle short-wave listeners until the new scale is in more general use.

Readers' Letters

"Having just read your section of On the Air I detected, I think, a feeling of sympathy towards the beginner" writes reader Stephen Blanchard, who lives at Spilsby in Lincolnshire. He goes on to say that he is interested in short-wave listening/DXing but has not a clue where to start.

Fortunately this is a hobby that has few rules. Tune round the band and stop when you hear something that interests you. This can be done with the simplest of receivers and will give you the feel of the short-waves and what can be heard there. There is also a booklet called This is DXing which is obtainable free of charge from Radio Netherlands at the address mentioned earlier. This column does indeed have an interest in beginners, who are invited to write about their problems, interests and successes.

Does anyone know what has happened to Radio Uganda on 5.027 MHz in the 60 m band? asks Peter Walker (G6BWL). The blue network of the home service is normally on this frequency with a power of 250 kW , but it has not been heard recently and there have been rumours of an explosion near a broadcasting station in Uganda. The international service on 9.685 MHz in the 31 m band, which is usually heard in English in the evenings, is absent as well.

A Listener card from the BBC

Stations Heard

Dubai Radio has been heard on 21.655 MHz in the 13 m band at 1630 by twelve-year-old Lee Roberts of Walsall, who has a Realistic DX300 receiver. John Bowlzer (13) has a Grundig Melody Boy 1000 which he uses with a 30 metre-long wire. DX heard includes Radio Dominica on the 49 m band $(5.965 \mathrm{MHz})$ at 0200. Roy Patrick (Derby) reports hearing Cairo on out-ofband frequency 6.225 MHz in Turkish at 1800 .
Some interesting broadcasts from Latin America were logged by Paul McKee of Belfast who reports hearing Radio Colosal in Colombia on $4.945 \mathrm{MHz}(60 \mathrm{~m})$ at 0123 , Radio Nacional Ascuncion in Paraguay on $11.920 \mathrm{MHz}(25 \mathrm{~m})$ at 2147 , the

Voice of Nicaragua on $5 \cdot 590 \mathrm{MHz}(49 \mathrm{~m})$ at 0530 and Radio Reloj in Costa Rica on 4.832 MHz at 0430 .

A National Panasonic DR28 with telescopic antenna used on the kitchen table pulled in Canada on 15.325 MHz (19m) at 1905, Kuwait on $11.655(25 \mathrm{~m})$ at 1910 . India on 11.620 at 1940 and Australia on $21 \cdot 630(13 \mathrm{~m})$ at 1830 . for W.B. Stewart of Lossiemouth - a nice round the world tour. A Vega 206 with 30 metre-long wire are in use in Swansea by Philip Morris who reports hearing DX Party Line from HCJB in Ecuador on $21.480 \mathrm{MHz}(13 \mathrm{~m})$ at 2130 , Radio Nacional Brasil on $15 \cdot 280$ (19m) signing off in English at 2159, the Voice of Nigeria on $15 \cdot 120$ at 2145 and Radio Korea on $15 \cdot 575$ at 2200.

Late April and early May will be remembered by many radio enthusiasts for a massive radio blackout, the world's first 23 cm repeater with 6 MHz spacing, a large number of stations worked from the IARU conference and the start of the 1981 Sporadic-E season.

Solar

Although the sun was active in the X-ray part of the spectrum between April 20 and May 17, there was relatively little recorded at the longer radio wavelengths, in fact the only events I recorded, at 143 MHz , were two strong bursts at midday on May 6, one each on the 8th and 15th, and a slight noise storm during the early afternoon of the 16th. Cmdr Henry Hatfield, Sevenoaks, recorded a mild noise storm at 136 and 198 MHz during the afternoon of April 26, and I heard solar noise around 28 MHz at 0915 on the 27th. According to the report Henry had from the Boulder observatory, a very powerful X-ray burst occurred earlier at 0720 and was no doubt responsible for the sudden blackout on the h.f. bands which lasted, in varying degrees, for about five hours.

Down in Bristol, Ted Waring, who projects the sun's image through his optical telescope, counted 36 sunspots on April 20. 21 on the 27th, 42,60 and 40 on May 2, 3 and 4 respectively, 66 on the 8th and 70 on the 13th. Between 0845 and 0915 on May 14. Henry recorded a large burst at both 136 and 198 MHz and later, using his spectrohelioscope, saw a large formation of sunspots on the north-east limb, which no doubt was the cause of the strong solar noise I heard in the 10 m band at 0930 on the 16th. During the BBC World Service programme Waveguide on May 15, it was reported that there were some 16 short-wave fade-outs during April, the worst of this sunspot cycle, due to a lot of X-ray radiation from the sun.

The 10 m Band

"Something happened around 0800 on April 27. everything dropped out," said Ron Munn G2ALO, a near neighbour of mine. Ron was involved in his regular sked on 20 m with Dave Oates, ZL3MF, who was a colossal signal before he suddenly faded out. The following week. Dave told Ron that when the Europeans faded out, signals from stations in Japan and the Pacific islands became extra strong and later that evening, Dave saw traces of the aurora australis. I did my routine check on 10 m around this time and apart from solar noise, it was completely dead. A further check at midday revealed only a 539 signal from the Cyprus beacon and an OZ calling CQ. I tried again at 1651 and heard ZS6AUV working a G, and later I
heard many amateurs discussing the event during their QSOs through the v.h.f. repeaters.

The only signals I heard on 20 m early in the morning were two G stations talking about the poor conditions. This must have been a massive event because the solar burst and the resulting world-wide short-wave fade outs were reported in the news bulletins on BBC Radios 1 and 2 and on April 30 in the World Service programme Waveguide. Although the band was generally quiet from April 20 to 30, the DX did pick up in early May when I heard signals from VK around 0800 on days 1 and 4. JA on $1,2,3,4,5$ and 8 and ZL on 8 . "Conditions on 28 MHz have been variable," writes Harold Brodribb from St Leonards-on-Sea, Sussex, who heard South African and South American stations on April 25, Nigerian on the 28th and from Canada and the USA on May 4.

During the 28 -day period from April 20 to May 17, I received signals, at some time during the day, from the International Beacon Project stations in Bahrain A9XC on 17 days, Bermuda VP9BA 2 days, Cyprus 5B4CY 19 days, Caracas YV5AYV 5 days, Germany DL0IGI 15 days, Mauritius 3B8MS 6 days, New Zealand ZL2MHF 2 days, South Africa ZS6PW 7 days and Norway LA5TEN, once at 0935 on May 17 during a Sporadic-E disturbance. I first heard YV5AYV at 0855 on April 28 at 569 , the only signal on the 10 m band. Throughout the period, DLOIGI averaged about 529 unless there was a Sporadic-E then it peaked around 589. Ted Waring also noted this periodic perk-up in strength from the DL beacon, especially as it had been weak or missing with him over the previous couple of months. Ted's IBP observations are about the same as mine but with the addition of ZS6DN on 13 days and LA5TEN during the late afternoons of April 20 and May 6 and 11.

```
BRITISH FORCES BROADCASTING SERVICE
GERMANY B.F.P.O. 19
```

Thank you for your reception report concerning our transmission attangenhenta.
on............................MHz dated...................................
We are pleased to confirm the details supplied and wish you good huch and happy listening.

Transmitters in:
Berlin, Bonn, Drachenberg
Herford, Langenberg, Visselhovede
Werl, Hameln, Hoensbroek, Maastricht

Fig. 1: QSL card from BFPO on $\mathbf{9 6 . 5} \mathbf{M H z}$ received by Simon Hamer

Sporadic-E

The first sign that the east-European broadcast band, approximately $66-73 \mathrm{MHz}$, was being influenced by the 1981 SporadicE season came at 0830 on May 1 when I logged four f.m. stations between 66 and 68 MHz , two more at 0900 on the 5 th. eight around 1300 on the 6th and six at 1804 on the 14th.

RTTY

On April 18/19, Phil Hodson G8RBY was among the operators at his club station, the Melton Mowbray Amateur Radio Society, using the call-sign G4FOX for the RTTY contest on 2 m and 70 cm . During the weekend they made 38 contacts on 2 m and 14 on 70 cm with a best DX of 393 km with ONIGL. Phil is still looking for a complete 2 m RTTY contact with GM if anyone would like to arrange a sked. His best so far is about five seconds of good copy from GM3KJF in Ayr.

During the period April 20 to May 17, I logged 63 RTTY stations around 14.090 MHz spread over 13 countries, DJ, EA, F, HA, HB, I. OE, OK, ON, OZ, UA, Y2 and W5. Many of those I received were calling CQ but I also read two-way QSOs between OZ and EA at 1307 on April 24. F6 and ON at 0830 on the 25 th. a local contact between two EAs at 0850 on the 30th,

Fig. 2: Historic QSL card for G4EFO/M confirming his contact with the first 23 cm repeater with 6 MHz spacing
OK and Y2 at 1010 on May 3, OE and ON at 1304 on the 8th and I and OK around 1400 on the 12th. Just to prove that RTTY can be full of interest, I logged 13 stations in 6 countries, EA, HA, 1, OK, SM and Y2, many calling CQ contest on 20 m , between 1005 and 1025 on May 3, and around 1000 on the 10th I copied "I5EPM/P CQ 0909 EMERGENZA SIMULATAC PRATO" which I assume was some form of exercise similar to our Raynet.
"It may interest licensed amateurs and patient s.w.l.s, interested in RTTY and OSCAR, to know that orbital data can be obtained, on a daily basis, by using the DLIWX RTTY AutoLog," writes Alexander Shearer GM3SWK from the Isle of Lewis. This is a computer-controlled system built by DLIWX, and OSCAR orbits are among the many data messages stored in its memory. Alex sent me a print-out from his teleprinter, and one of the signals he received having called the German station reads: "I hope you will enjoy using the first computer QTC-QSP service installation with an electronic-log. Here is +Jupp ${ }^{+}$ DLIWX in Langenfeld standing by for you". The system is operating between 1600 and 2000GMT on Tuesdays and Thursdays and between 0800 and 1200 on Saturdays and Sundays on 14.098 MHz , and on Mondays, Wednesdays and Fridays between 1600 and 1800 on 21.090 MHz . "All that is necessary is to access the appropriate memory by transmitting a set format and the 'machine' replies with the data addressed to the callsign of the enquiring station," says Alex. It seems that DLIWX periodically calls CQ, and from Alexander's print-out I read: "If you want info over this computer system then type:RYRYRYRYRY . . . DLIWX QST INFO? NNNN" and from the comprehensive list of instructions sent to Alex by the "machine" I see the access code for OSCAR predictions is: DLIWX QST For OSCAR? NNNN. Unfortunately, s.w.l.s must wait for someone to ask the "machine" before they can get the gen.

Tropospheric

Despite the generally poor v.h.f. conditions, Simon Hamer, Presteigne, Wales, kept up his Band II DXing. When a heavy snow storm on April 25 cut off his mains supply, he used the
batteries in his Grundig Satellit 1400. Well done Simon and congratulations on getting a QSL card for the reception on $96 \cdot 5 \mathrm{MHz}$ on the BFBS station at Langenberg (Fig. 1). During the period April 20 to May 12 Simon, operating mainly between 1400 and 2100 , listened to a variety of programmes from stations in Belgium and France, and from the UK, BBC Radios London and Solent and the ILR stations LBC and Thames Valley.

News Items

Congratulations to the Sussex Repeater Group who built and installed the world's first 23 cm repeater, GB3WX RM9, with 6 MHz input/output spacing to coincide with the IARU Conference in Brighton. A special licence was issued by the Home Office, arranged by RSGB, allowing the repeater to be operated from April 30 to May 3 and the results impressed many of the delegates. "Contrary to popular opinion it was perfectly usable in built-up areas," said Mick Senior G4EFO, who made the first mobile contact through the repeater to the conference station GBIIARU (Fig. 2). Mick was among the many amateurs in the Brighton/Worthing areas that worked and heard signals through GB3WX from both fixed and mobile locations.

This report should be of particular interest to John Tye G4BYV, Dereham, Norfolk, who said that OZ stations were working into southern G on 23 cm during a tropospheric lift on April 14. Among the team of wireless operators at the Brighton Conference station was Stan Williams G3LQI, who analysed the log and said that from a total of 3627 stations worked, 78 were on $70 \mathrm{~cm}, 9$ on $4 \mathrm{~m}, 219$ on 10 m , and from his analysis of the 568 stations in the $2 \mathrm{~m} \log , 289$ were on f.m., 273 on s.s.b., 4 c.w. and 2 RTTY spread through 14 countries.

One of our Lancashire readers, Norman Wright G4IYI, who visited the Chalk Pits Museum on May 4, uses a home-brew f.m. rig with two QQV03-10 valves and a Slim Jim aerial on 2m, and is often heard working through his local repeater, GB3MP R6. Norman also has a Heathkit HW 100 and a 5RV aerial for the h.f. bands, and over the years has built several pieces of equipment from $P W$ designs.

Congratulations to George Grzebieniak RS 41733, London, who has earned the RSGB's 4m Listener Award No. 6. The much-needed QSL card to complete the qualifying score arrived from a GM who George heard during an auroral opening.

At approximately 2000GMT on May 3, Phil Hodson heard a strange signal, best described as a "whistler" on $144 \cdot 615 \mathrm{MHz}$ at a beam heading of 035°. Phil monitored this and noted a downshift in frequency of 335 kHz in 1 hr and 25 mins and at 2125 it suddenly vanished. Any suggestions? QTHR.

Lance Adamson passed the RAE at Marle Place, Burgess Hill, having completed the course under the tutorship of Richard Canning G6YJ. At present Lance is listening on an Eddystone EA12 with an 18AVT Hygain aerial, and is getting his Morse up to speed so that he can get a G4 ticket and work on the h.f. bands.

'Would the mobiles move off the repeater and let the DXin!"
heard by G4BYV

Have you heard any (printable) comments, funny peculiar or funny ha-ha? If so, why not send them in to our Editorial offices at Poole. We will pay for every one published.

When a Band I signal, in early May, was so strong that Harold Brodribb could see the jewellery and watch worn by a YL speaker at a meeting in Poland, then we know that the SporadicE season has begun and that such events are likely to occur at any time, during daylight hours, up until the middle of August.

Sporadic-E

On most days between April 20 and May 17, I heard television sync pulses on Channel R1 49.75 MHz , and although there were frequent strong bursts of signal showing test cards, mainly from Austria, Poland and Russia, conditions were not often good enough for a consistent picture. Recently I installed an Antiference XS3 wideband amplifier to give me equal distribution of signals between my antenna and R216 communications receiver and JVC 3060 monochrome and CX-610GB colour television receivers, which can all tune through Band I.

At 0955 on April 20, a long burst of signal on R1 revealed what looked like a film about children on bicycles, and at 1630 on April 29, Sam Faulkner, Burton-on-Trent, saw a children's programme on Ch. E3 $55 \cdot 25 \mathrm{MHz}$ and a YL announcer introduce a sports feature which included basket-ball with the name "Real Madrid" on some of the players' shirts. Sam also saw pictures of the same game on Ch. E2 48.25 MHz and is sure they were coming from RTVE, Spain. Both Sam and I were among those who witnessed the Sporadic-E disturbance at midday on May 6 when, at 1200, Sam received pictures from RAI Italy on Ch. 1A 53.75 MHz , of a YL presenter introducing a film. At 1215 he saw a photographic programme on R1 being interfered with by a test card from Czechoslovakia.

Around this time I watched pictures of a chess game on RI and at 1235 GMT , I received a strong steady picture announcing a forthcoming programme which read "PRZERWA W. OBRADACH, SEJMU PRL, do GODZ 1500." Just before 1300GMT a clock appeared with "TP" on its face and showing 1500, followed on the hour by a caption "TV POLSKA PROGRAM 1". Then came the very strong sound and picture from what looked like their parliament or delegates at a large conference. The reception was so clear that Harold Brodribb had time to study the decor of the room and noticed a large eagle on the wall with spread wings, "as on the old Polish postage stamps" writes Harold. At this time I was also hearing Italian sound on Ch. 1A with Ch. R2 sync riding up on the same shared frequency 59.25 MHz .

Around 1013 on April 20, Nicholas Brown, Rugby, received a weak, unidentifiable picture on E2 but at 1340 he saw, for the first time, the test card from Iceland strong enough to read the "RUU ISLAND" scribed on it. However, I bet there were some curses, for by the time Nick had got his camera this DX signal had gone. I know the feeling Nicholas. At 0836GMT on May 14 the caption "PRZERWA" appeared on R1 followed by a clock showing 1036. DX conditions ebbed and flowed all day and between 1800 and 1830 there were strong pictures on E2 of a circus complete with a triple high-wire act, and horses with YL riders standing on their backs. At one time, typical of SporadicE, the circus faded out and a strong test card from Portuga RTP-1 replaced it for a minute or two. Periodically the E2 sound 53.75 MHz was very strong as was the Russian news, with a YL reader and the BPEMR caption behind her.

Pictures and sound from Russia were exceptionally strong on R1 between 0630 and 1000GMT on May 17, in fact there was a general opening toward the USSR as Gerry and Richard Brownlow found on 10 m later in the day, when they operated G3WMU/P from the Chalk Pits Museum at Amberley, Sussex.

Fig. 1 (top left): Test card from Germany received by Steve Spiller

Fig. 2 (bottom left): Test card from Holland received by Steve Spiller

Figs. 3 \& 4: SSTV callsign graphics from Canada and Japan received by Sam Faulkner on 10 m during early April

First I saw a film about sport and travel. then at 0659 a YL announcer appeared with a digital clock showing 1059. The announcer and the clock were seen again, between programmes about children and travel at 0745 and 0815 , showing 1145 and 1215 respectively.

Tropospheric

Despite the poor weather and the atmospheric pressure being around or below 30.0 in (1015 mb) for most of the period, a short-lived tropospheric opening did occur on April 22 while the pressure was falling from a peak of 30.3 in (1026 mb) which it had reached at midday on the 21 st. During the event I received strong test cards in Band III from Belgium RTBF-I on Ch. E8 and BRT UTU-1 on E10. Although Steve Spiller, one of our u.h.f. TV DXers from Sutton. Surrey, made the unfortunate mistake of using a camera shutter speed of $1 / 60 \mathrm{~s}$ instead of $1 / 30$ s. his photographs of Dutch and German TV (Figs. 1 and 2) do show the strength of these signals during a tropospheric opening. Steve hopes to install equipment for v.h.f. TV in due course and I will be looking forward to receiving his reports.

SSTV
"The past few weeks have been very enjoyable, with really excellent SSTV coming through from Japan. South Africa and South America," wrote Sam Faulkner on May 10. Sam also tells me that Gerald ZS6BTD. Johannesburg, is one of our regular readers and that he has purchased a JVC CX-610GB and intends to modify it for SSTV colour. Sam also received pictures on 10 m , when the band was good, from stations in EA8. HK, KP4. LU. VE3, VP9 and Ws 3.4 and 9. Among the memorable QSOs in Sam's log were the keyboard graphics and portrait of VP91H, a new and welcome station, working into G at 1630 on April 24. HK3DBQ and WISGA at 1815 on May 3, and consistent signal after 1630 from LU5AN on April 19 and 26 and May 2 to 5. and LU4DDR between 1700 and 2000 on May 3 to 6 .
"Conditions to ZS were excellent during early May." said Sam, who saw ZS6BTD working KP4YD at 1300 on May 2. At 1630 he had "closed-circuit copy" from ZS6BQT, who was showing views of Johannesburg, and at 1640 a very strong picture from ZS6BTD on $29 \cdot 180 \mathrm{MHz}$ with a colour video replay for G3NOX. Between 0740 and 1000 on May 4. Sam received
pictures from JAIDEQ. JAIHHL, JAIPGH and JAIXGI on the 10 m calling channel 28.610 MHz , the most interesting of these being the excellent graphics and self portrait from JAIDEQ. From 1610 to 1635 on May 8, Sam received fine pictures of the shack and very impressive equipment from ZS6BTD who he logged again at 1600 on May 10 when he was in QSO with G3NOX.
"The technical side of colour SSTV is rather complicated," writes Sam. who was delighted to witness, in mono, a colour experiment between G3NOX and ZS6BTD and writes, "with projects of this kind amateur radio is always assured of being in the forefront of technology".

News Items

Dave Oxnard writes from Sweden saying that he has installed DXTV gear with a dipole antenna for Band I, a 16-element Yagi for Band III, and a 91 -element array for u.h.f., all rotatable and mounted 12 metres above the ground. So far Dave has received pictures from Poland and Russia and I will be looking forward to having more reports.

Andrew Emmerson G8PTH, who writes TV on The Air in the British Amateur Television Club journal CQ-TV, is a collector of vintage TV broadcasting equipment and already has a number of old monitors, two early monoscope cameras used for producing test card "C". and is looking for a special monoscope tube. type C912 or 2 F 21 . If anyone can help, Andy, QTHR, will be pleased to hear from you.

> PLEASE MENTION PRACTICAL WIRELESS WHEN REPLYING TO ADVERTISEMENTS

WATERS \& STANTON ELECTRONICS

18/20 MAIN ROAD, HOCKLEY ESSEX. TEL (0702) 206835

4,000 SQ FT DEVOTED TO RADIO COMMUNICATION

24 HOUR TURN ROUND ON ALL ORDERS!

'SUCH NICE PEOPLE"

5 miles from Southend-on-Sea Why not bring the whole family for a day out?

PS134 4 AMP 13.8 v POWER SUPPLY. STABILISED \& SHORT CIRCUIT PROOF £23 plus $£ 1.50$ p\&p

This is the power supply that we've been advertising and selling for several months. It really is a robust little unit with a transformer 50\% larger than its competitors. Some cheap power supplies get hot, hum and even go bang fully protectd silent and keeps on working. It is and is capable of delivering 4 amps continually at 13.8 v DC. Ideal for transceivers.

PROFESSIONAL AIRCRAFT MONITOR R517
£49.50
(as supplied to pilots, ground crew etc.)
The R517 is a professional aircraft monitor receiver, having superb sensitivity and capable of tuning across 143 mHz . For easy tuning there is both a coarse and fine tuning control. In addition there is a 3 position switch for selecting xtal controlled channels (xtals £3.00 extra) for your local airport. The unit is completely portable running off self-contained portable

GLOBAL SHORT WAVE AERIALS

The new Global short wave aerials mean better reception for short wave listeners. These fully comprehensive kits provide all the materials you need to erect a really efficient, long lasting aerial. All wire
is special light weight alloy and all fittings are nonis special lig
corrosive.
corrosive.
INVERTED

- This covers $3-30 \mathrm{mHz}$ and requires a
$£$
BROAD BAND DIPOLE This covers a $3-30 \mathrm{mHz}$ and requires a garden length of 65 ft . Also included in 50ft. of special low loss coax cable. £29.00
For further details send S.A.E.

TRIO R1000
COMMUNICATIONS RECEIVER OUR PRICE $£ 285$ ($\begin{gathered}\text { Free Securicor } \\ \text { Delivery }\end{gathered}$)

The R1000 has really caused a stir in the receiver market! Its performance matches professional receivers costing many times more and with our new competitive price of $£ 285$ it must be the best value on the market today. Full digital readout from 200 kHz (actually it operates right down to 20 kHz but with reduced sensitivity) means accurate tuning and the 30 position band selector switch means really good bandspread for easy operation. Other features include noise blanker (a really good one!) built-in speaker, digital clock/timer and both 230 v AC/12vDC operation. (Yes we include the 12vDC kit free!) Each model is fully checked and delivered anywhere in the U.K. within 24 hours of receipt of checked
payment!

SWR/POWER/FIELD STRENGTH MEASURING METER SPECIAL
OFFER £11.95 +60p p\&p As used by CB and Amateur radio operators.

The YW3 is used by amateur radio and CB operators around the World. It's offered to you at a really low price because we import them direct from Japan. It tells you the VSWR, power output and field strength and covers 3.5 to 150 mHz . If you want the strongest signal in town - you'll find the YW3 the sure answer.

The ultimate in ATU's, specially designed to enhance the performance of all short wave
receivers - no other model can approach its performance.

performance.

NO MORE TV INTERFERENCE FROM CB OR AMATEUR! GLOBAL HP4A $£ 4.95$
If you're suffering T.V. interference, here's a brand new device specially designed and made for us in Japan. The HP4A now offers about 100\% cure against TV interference because of its advanced design, yet it has no effect on the picture. Be pre-
pared, keep one handy! pared, keep one handy!
 This highly compact monitor can be supplied either for the 2 metre amateur band or the marine band. It
has the capability of scanning up to 16 channels has the capability of scanning up to 16 channels and hunting out and locking on to any signal that ternal $12 v$ DC supply is required but unit has builtin speaker, mobile mounting brackets, etc. The receiver comes with the national calling channel Additional crystals for channels are $£ 3$ each.

SPECIAL OFFER

2 METRE FM

 MONITOR 8 CHANNEL SCANNING
£55!

Weive managed to purchase a large quantity of this amazing little monitor at an even more amazing price! Full 8 channel scanning of the 2 metre amateur band is available with optional plug in xtals (one supplied for international calling channel). Each receiver is complete with ni-cads, AC mains charger, telescopic whip, etc. Controls include volume squelch, manual override, channel lock out, LED indicators, low battery voltage warning. Ideal for the summer - get yours now!

DUAL BAND

ALL MODES

$144-146 \mathrm{mHz} \& 430-440 \mathrm{mHz}$

$\mathbf{£}^{\mathbf{4}} \mathbf{6 8}$ inc. Vat.

AN UNBEATABLE PRICE!

Yes, that's all you have to pay for all-modes on both 2 metres and 70 cms when you use the new FDK Expander in conjunction with the M .750 E transceiver. Full coverage $144-$ 146 mHz and $430-440 \mathrm{mHz}$ all controiled from
the M .750 E . The cost of the expander alone is $£ 169$ for existing owners of M.750E.

STOP PRESS:- SEND 14p STAMP FOR NEW 1981 CATALOGUE ON RADIO COMMUNICATIONS
MAIL ORDER SLIP to: Waters \& Stanton Electronics, Warren House, Main Road, Hockley, Essex.
Name. \qquad Goods required
Address
\qquad
Please rush me the above. Cheque enclosed for $£$.
/Please charge to credit card No

New! Sinclair ZX81

 Personal Computer. Kit: £49. ${ }^{\text {cs compele }}$
Reach advanced computer comprehension in a few absorbing hours

1980 saw a genuine breakthrough-the Sinclair ZX80, world's first complete personal computer for under $£ 100$. At $£ 99.95$, the ZX80 offered a specification unchallenged at the price.

Over 50,000 were sold, and the ZX80 won virtually universal praise from computer professionals.

Now the Sinclair lead is increased: for just £69.95, the new Sinclair ZX81 offers even more advanced computer facilities at an even lower price. And the ZX81 kit means an even bigger saving. At £ 49.95 it costs almost 40% less than the ZX80 kit!

Lower price: higher capability

 With the ZX81, it's just as simple to teach yourself computing, but the ZX81 packs even greater working capability than the ZX80.It uses the same micro-processor, but incorporates a new, more powerful 8KBASICROM-the 'trained intelligence' of the computer. This chip works in decimals, handles logs and trig, allows you to plot graphs, and builds up animated displays.

And the ZX81 incorporates other operation refinements-the facility to load and save named programs on cassette, for example, or to select a program off a cassette through the keyboard.

Higher specification, lower pricehow's it done?
Quite simply, by design. The ZX80 reduced the chips in a working computer from 40 or so, to 21 . The $Z X 81$ reduces the 21 to 4 !

The secret lies in a totally new master chip. Designed by Sinclair and custom-built in Britain, this unique chip replaces 18 chips from the ZX80!

: 7 百 £69.5

complete

Kit or built it's up to you!
The picture shows dramatically how easy the ZX81 kit is to build: just four chips to assemble (plus, of course the other discrete components) - a few hours' work with a fine-tipped soldering iron. And you may already have a suitable mains adaptor -600 mA at 9 V DC nominal unregulated (supplied with built version).

Kit and built versions come complete with all leads to connect to your TV (colour or black and white) and cassette recorder.

New

Sinclair teach-yourself BASIC manual
Every ZX81 comes with a comprehensive, speciallywritten manual-a complete course in BASIC program-
 ming, from first principles to complex programs. You need no prior knowledge - children from 12 upwards soon become familiar with computer operation.

```
SNIIR I=N THEN GO TロG
```

$x=1 \quad$ Tロ N
$B(X)=1 \mid f X$
$\mathrm{X}=0$
$J=J+1$
$\geq N$ DR $\quad J=N \quad$ THEN GD Tロ 48
$T=J+1$
$\square T$ ロ $(J)>$ AI T) THEN CD Tロ
$\mathrm{P}=\mathrm{A}(\mathrm{J})$
$G(J)=A(T)$
$\mathrm{Q}(T)=P$
$K=J-1$
C1 THEN Gロ Tロ1E

New，improved specification

 －Z80A micro－processor－new faster version of the famous $\mathrm{Z80}$ chip，widely recognised as the best ever made．－Unique＇one－touch＇ key word entry： the ZX81 eliminates a great deal of tiresome typing．Key words （RUN，LIST，PRINT， etc．）have their own single－key entry．
－Unique syntax－ check and report codes identify programming errors immediately．
－Full range of mathematical and scientific functions accurate to eight decimal places．
－Graph－drawing and animated－ display facilities．
－Multi－dimensional string and numerical arrays．
－Up to 26 FOR／NEXT loops．
－Randomise function－useful for games as well as serious applications．
－Cassette LOAD and SAVE with named programs．
－1K－byte RAM expandable to 16 K bytes with Sinclair RAM pack．
－Able to drive the new Sinclair printer （not available yet－but coming soon！）
－Advanced 4－chip design：micro－ processor，ROM，RAM，plus master chip －unique，custom－built chip replacing 18 ZX80 chips．

ZX8

Sinclair Research Ltd，
6 Kings Parade，Cambridge，Cambs．， CB2 1SN．Tel： 027666104.

If you own a Sinclair ZX80．．．

The new 8K BASIC ROM used in the Sinclair ZX81 is available to ZX80 owners as a drop－in replacement chip． （Complete with new keyboard template and operating manual．）

With the exception of animated graphics，all the advanced features of the ZX81 are now available on your ZX80－including the ability to drive the Sinclair ZX Printer．

Coming soon－ the IX Printer．

Designed exclusively for use with the ZX81（and ZX80 with 8K BASIC ROM）， the printer offers full alphanumerics across 32 columns，and highly sophisti－ cated graphics．Special features include COPY，which prints out exactly what is on the whole TV screen without the need for further instructions．The ZX Printer will be available in Summer 1981， at around £ 50 －watch this space！

16K－BYTE RAM pack for massive add－on memory．

Designed as a complete module to fit your Sinclair ZX80 or ZX81，the RAM pack simply plugs into the existing expansion port at the rear of the com－ puter to multiply your data／program storage by 16 ！

Use it for long and complex pro－ grams or as a personal database．Yet it costs as little as half the price of com－ petitive additional memory．

How to order your ZX81

BYPHONE－Access or Barclaycard holders can call 01－200 0200 for personal attention 24 hours a day，every day． BY FREEPOST－use the no－stamp－ needed coupon below．You can pay by cheque，postal order，Access or Barclaycard．
EITHER WAY－please allow up to 28 days for delivery．And there＇s a 14－day money－back option，of course．We want you to be satisfied beyond doubt－and we have no doubt that you will be．
$\left.\begin{array}{l}\text { To：Sinclair Research Ltd，FREEPOST 7，Cambridge，CR2 1YY．} \\ \text { Qty } \mid \text { Item } \\ \hline \\ \hline\end{array} \begin{array}{l}\text { Sinclair ZX81 Personal Computer kit（s）．Price includes } \\ \text { ZX81 BASIC manual，excludes mains adaptor．}\end{array}\right)$

Conquer the chip.

 will revolutionise every human activity over the next ten years.Knowledge of its operation and its use is vital. Knowledge you can attain, through us, in simple, easy to understand stages.

Learn the technology of the future today in your own home.

MASTERELEGTRONICS Learn the practical way
 - Building an oscilloscope. Recognition of components.

- Understanding circuit diagrams. - Handling all types Solid State 'Chips'.
- Carry out over 40 experiments on basic circuits and on digital electronics.
- Testing and servicing of Radio, T.V., Hi-Fi and all types of modern computerised equipment.

MASTER COMPUTERS

LEARN HOW TO REALLY UNDERSTAND COMPUTERS, HOW THEY WORK - THEIR 'LANGUAGE' AND HOW TO DO PROGRAMS.

- Complete Home Study library. - Special educational Mini-

Computer supplied ready for use. - Self Test program exercise

- Services of skilled tutor available.

MASTER THE REST

- Radio Amateurs Licence. Logic/Digital techniques.
- Examination courses (City \& Guilds etc.) in electronics.
- Semi-conductor technology.
- Kits for Signal Generators - Digital Meters etc.

\qquad I am interested in PRACTICAL ELECTRONICS COMPUTER TECHNOLOGY OTHER SUBJECTS(please state your interests).
(Block Caps please)
PW/8/813 BRITISH NATIONAL RADIO \& ELECTRONICS SCHOOL, 4 CLEVELAND ROAD, JERSEY, CHANNEL ISLANDS.

	£p	EM87	1.50	PY81 0.84	6AN5	4.74	607	2.20
AZ31 CL3	1.10	EN91	3.50	$\begin{array}{ll}\text { PY822 } & 0.80 \\ \text { PY83 } & \mathbf{0 . 7 0}\end{array}$	6AN8	3.45 0.96	6SA7	1.45 1.50
	2.00 0.84	EY51	1.75	PY88 0.88		1.98	6 S 17	
	0.84	EY86	1.75	$\begin{array}{ll}\text { PY500A } & \mathbf{1 . 8 0}\end{array}$	6AS6	4.98	6SK7	1.30
80	0.84	EY88	1.75	PY8004 1.80		4.75		
E88CC	3.36	EY500A	1.94	PY800 0.84	6AS7GA	6.75	6SL7GT	2.68
E180F	8.40	EZ80	0.84	PY801 0	6AT6	0.85	6SN7GT	1.60
E810F	14.47	EZ81	0.84	QQVO2-6 12-56	6AU5GT	4.32	6SS7	1.80
EABC80	1.20	GY501	2.75	Qavo3-10	6 AU6	1.08	6SG7M	2.50
E891	0.82	GZ32	1.25	5.80	6AW8A	3.39	608	0.80
EBF80	0.50	GZ33	4.00	QQV03-20A	687	1.50	6V6GT	1.60
EBF89	0.85	GZ34	2.50	17.50	688	1.75	6×4	1.20
EC91	7.56	GZ37	4.00	QQV06-40A	68A6	1.00	$6 \times 5 \mathrm{GT}$	0.85
ECC33	3.50	KT61	3.50	36.34	6BA7	5.12	7 C 5	2.95
ECC35	3.50	KT66	10.00	QV03-12 4.46	6BE6	1.08	7C6	2.25
ECC81	0.88	KT77	8.00	R18 4.25	68H6	1.52	7 S 7	2.25
ECC82	0.72	KT88	12.00	$\begin{array}{ll}\text { R19 } & \mathbf{1 - 2 0}\end{array}$	6BJ6	1.08	12AT6	1.20
ECC83	0.88	N78	9.00	SP41 $\quad 6.00$	6BN6	1.65	12 AT7	0.88
ECC85	1.20	OA2	1.60	SP61 $\quad 2.00$	6Ba7a	3.72	12 AU 7	0.72
ECC88	1.90	O82	2.55	U19 13.75	6BR7	4.00	$12 \mathrm{AX7}$	0.88
ECC91	8.93	OC3	1.92	U25 1.16	6BR8	1.75	12BA6	2.19
ECF80	1.08	OD3	1.92	U26 $\quad 1.44$	6BS7	4.00	$12 \mathrm{BE6}$	2.43
ECH35	2.00	PC86	1.40	$\mathrm{U37} \quad 9.00$	68W6	4.00	$128 Y 7$	2.70
ECH42	1.15	PC88	1.40	UABC80 1.25	68W7	1.52	128Y7A	2.70
ECH81	1.20	PC92	1.28	UBF89 $\quad 1.20$	68Z6	2.37	$12 \mathrm{HG7}$	4.17
ECL80	1.00	PC97	1.20	$\begin{array}{ll}\text { UCH42 } & 1.20\end{array}$	6 C 4	0.88	30FL1/2	1.12
ECL82	1.00	PC900	1.20	UCH81	6C6	1.75	30 P 4	1.20
ECL83	1.50	PCF80	1.00	UCL82 1.04	6CB6A	2.49	30 P 19	1.20
ECL86	1.20	PCF82	1.00	UCL83 1.44	6CD6GA	5.07	30 PL 13	1.80
EF37A	3.50	PCF86	1.60	UF89 $\quad 1.44$	6 CH 6	8.50	30 PL 14	1.68
EF39	2.75	PCF801	1.60	UL41 2.50	6CL6	3.72	75 Cl 1	2.35
EF41	2.00	PCF802	1.90	UL84 1.20	6CW4	7.68	85A2	2.39
EF42	2.00	PCF805	1.60	$\begin{array}{ll}\text { UY41 } & 1.25\end{array}$	$6 \mathrm{D6}$	1.75	90 Cl	2.44
EF50	1.50	PCF808	1.60	UY85 1.04	6005	5.94	15082	3.02
EF54	5.00	PCH200	1.60	VR105/30 1.92	$6 E A 8$	2.94	150 C 2	1.92
EF55	2.50	PCL82	1.00	VR150/30 1.92	6 EH5	1.85	$150 \mathrm{C4}$	2.39
EF80	0.80	PCL83	2.00	275916.80	6 F 6	1.75	572 B	27.50
EF86	1.52	PCL84	1.00	$2803 \mathrm{U} \quad 7.90$	6Gk6	2.67	805	20.00
EF91	1.80	PCL85	1.08	$2021 \quad 3.50$	6H6	1.50	807	3.75
EF92	5.81	PCL86	1.08	3828 16.80	6HS6	3.77	811A	15.93
EF183	0.80	PCL805	1.08	4 CX 250 B	6 J 5	2.50	812 A	15.88
EF184	0.84	PD500	3.60	27.50	6 J 6	3.50	813	74.67
EH90	1.40	PFL200	1.80	5R4GY 2.00	6.37	2.50	866A	8.85
EL32	1.50	PL36	1.20	5U4G 1.52	6JB6A	4.56		
EL33	3.50	PL81	1.20	$\begin{array}{ll}5 \mathrm{~V} 4 \mathrm{G} & 1.52 \\ 5 \mathrm{Y} 3 \mathrm{GT} & 0.85\end{array}$	6JJ6C	5.58	931 A	14.76 6.96
EL34	2.20	PL82	1.20	5 F 3 GT 00.85	6 K 4 N	1.25	2050 5763	6.96 3.75
EL36	1.60	PL83	2.22	$\begin{array}{ll}523 & 1.50 \\ 574 \mathrm{GT} & 1.50\end{array}$	${ }_{6 K 6 \mathrm{GT}}$	1.30 1.50		
EL81	2.50	PL84	1.08	$\begin{array}{ll}524 \mathrm{GT} & 1.50\end{array}$	$6 \mathrm{6K7}$	1.50	5814A	3.72 12.09
EL84	1.00	PL504	1.40	$6 / 3 \mathrm{DL2} 21.56$	${ }_{6}^{6 K 8}$	1.75	5842	
EL86	2.50	PL508	1.80	6 6AB7 1.50	$6 \mathrm{KD6}$	6.36	6080 $6146 A$	6.85 8.96
EL91	7.14	PL509	3.20	6AH6	${ }^{6 L 6 G}$	2.50		
EL95	1.32	PL519	3.20	$\begin{array}{ll}\text { 6AK5 } & \mathbf{3 . 6 0} \\ 6 A 15 & \mathbf{0 . 8 2}\end{array}$	$6 \mathrm{LGG}$	2.50 2.00	61468 6883 B	7.06 11.19
EL360	8.50	PL802	2.96	$\begin{array}{ll}\text { 6AL5 } & 0.82 \\ \text { GAM6 } & 1.80\end{array}$	$6 L 7$	2.00 6.72	68838 6973	11.19 3.87
EM81	1.00	PY33	1.10	6AM6 1.80	6LO6	6.72	7973	87
Prices excluding VAT add 15\%		Open daily to callers: Mon-Fri 9 a.m. -5 p.m. Valves, Tubes and Transistors - Closed Saturday Terms C.W.O. only Tel. 01-677 2424-7. Quotations for any types not listed S.A.E. Post and packing 35p per order					$\begin{array}{r} 7586 \\ 7587 \\ \hline \end{array}$	$\begin{array}{r} 10.14 \\ 17.49 \\ \hline \end{array}$
		$\begin{array}{r} \text { Telox } \\ 946708 \end{array}$	Prices when to p	correct going ess				

CYLINDRICAL NICADS HP7 Size (500 mAh$) £ 1.00$; HP11 (1800 mAh$) £ 2 \cdot 35$: HP2 (4000mAh) £3.20; PP3 £4.00; PP3 Charger $£ 5.00 ; 1$ to 4 HP 7 nicads charger $£ 7.45$.
CONSTANT CURRENT CHARGER - Switched $9 \mathrm{~mA} / 25 \mathrm{~mA} / 50 \mathrm{~mA}$ $120 \mathrm{~mA} / 200 \mathrm{~mA} / 400 \mathrm{~mA}$ output - charges 1 to 12 nicads - £14.95.

V \& F SMALLCRAFT (POPLAR) LTD 38, STONELEIGH ROAD, CLAYHALL, ILFORD, ESSEX IG5 OJD Tel: 01-550-6642
LIMITED TRADE DISCOUNTS POSSIBLE ON DEACs.

TOROIDAL

IN A RANGE OF 76 30VA TO 500VA A OF THR				
				PRICE
$\underset{\substack{70 \times 3 \mathrm{Va} \\ \text { } \\ \hline 0.45 \mathrm{Kg} \mathrm{Kg}}}{ }$			2.50 1.66 1.1 .05 0.83 0.88 0.60 0.50	
$\underset{\substack{50,35 \mathrm{mam} \\ 0.9 \mathrm{Kg}}}{ }$			4.16 2.178 2.1 .68 1.13 1.10 0.08 0.45 0.42 0.20 0.20	
$\underset{\substack{90 \times 40 \mathrm{OI} \\ 1.2 \mathrm{Kg}}}{120}$				

GOODS DESPATCHED WITHIN 7 DAYS OF
 RECEIPT OF ORDER -

FOR SINGLE AND SMALL QUANTITY ORDERS

* CUSTOMER DESIGN ENQUIRIES INVITED. QUANTITY PRICE LIST AVAILABLE.
* FREEPPOST FACILITY (U.K. only). Simply send your order in envelope to FREEPOST to address below. NO STAMP REQUIRED.
* TO ORDER Enclose cheque/Postal Order/Money Order payable to I.L.P. Electronics Ltd or quote your ACCESS or BARCLAYCARD account No. To pay C.O.D. add £1 extra to TOTAL value of order.
* Also available from ELECTROVALUE and MARSHALLS. $\begin{array}{lllll}\text { CANTERBURY CT2 7EP. } & \text { Phone (0227) 54778 } & \text { Technical (0227) } 64723 & \text { Telex } 965780\end{array}$

3 va			
6va			
12va			

ABOUT THE NEW LAMINATES

L.L.P. LAMINATED
I.L.P. printed-circuit mounted mains transformers have two independent primary windings which can be connected in series for 240 V or parallel for 120 V operation. The two independent secondaries can also be connected in series or
parallel to give a wide range of output voltage/current parallel to give a wide range of output voltage/current need for a inter-winding screen. Breakdown tested to 2000 need for a inter-wind Regulation - 3VA typically 21%; 6VA typically 15%; 12VA typically 10%

To: I.L.P. ELECTRONICS LTD. CANTERBURY CT2 7EP
Please supply Transformer(s).
).
Total
Ienclose Cheque \square Postal Orders \square International Money Order \square Debit my Access/Barclaycard Account No...

NAME.
ADDRESS

Signature

PROGRESSIVE RADIO
 ALL ORDERS DESPATCHED BY RETURN POST

NICADS. 'AA' size 95p, 'C' $2 A H \mathbf{£ 2 . 6 0}$ p, 'D' $1.2 A H$ £2.40p, 'D' $4 A H \mathbf{£ 3 . 6 0 p}$. BEREC UNIVERSAL NICAD CHARGER, charges 'AA', C or D cells, up to 4 of each type £9.25p.
SWITCHES. Min. toggles, SPST $8 \times 5 \times 7 \mathrm{~mm} 42 \mathrm{p}$. DPDT $8 \times 7 \times 7 \mathrm{~mm} 55 \mathrm{p}$. DPDT c/oft $12 \times 11 \times 9 \mathrm{~mm} 77 \mathrm{p}$. HEAVY DUTY-DPDT 240VAC 10 Amp 35 p . PUSH TYPE, push on $16 \times 6 \mathrm{~mm}$ 15p, push to break version 17p, MERCURY (TILT) SWITCH, $1^{\prime \prime} \times \mathbf{i}^{\prime \prime}$ 35p
NSA1198 $8 \frac{1}{2}$ digit multiplexed displays, com. cath. with data sheet $£ 1.45$ p.
SPECIAL OFFER TIL209 Red LED's 10 for 75p. 0.2" LEDS, red, yellow, green 10p each.
MICROPHONE OFFERS: P.A/C.B. hand held mikes with thumb switch + curly lead, 1. 600 Q dynamic $\mathbf{£ 3 . 9 5 p}$, 2. 600 Q noise cancelling type $\mathbf{£ 7 . 2 5 p}$, 3. CB power type with volume control $£ 7.95$ p. EM103 Electret Condenser Mike, 600Ω. Omni, $50-1600 \mathrm{~Hz}$, aluminium case $172 \times 22 \mathrm{~mm}$ with battery $\mathbf{£ 7 . 2 5 p}$.
ANTEX SOLDERING IRONS: Models C15. CX17 and X25 all $\mathbf{£ 4 . 4 5}$ each
JACKSONS C804 50pf var. capacitors 50p each.
STABILISED POWER SUPPLY, 240 vac input 13.8 volts at $3 / 5 \mathrm{Amps}$ DC output. $\mathbf{~} 14.75 \mathrm{p}$. JUMPER TEST LEAD SETS. 10 pairs of leads with insulated crocs each end 90p. 40KHZ TRANSDUCERS, RX/TX $£ 3.50$ pair,
STC BREAK GLASS FIRE ALARM UNITS, new with mounting box $\mathbf{£ 1 . 5 0} \mathrm{p}$.
MINIATURE SOLID STATE BUZZERS. 2 voltages available, 6 or 12VDC 75p each, Loud 12 volt buzzers 65p.
Cash with order please, official orders welcome from schools etc., please add 30 p postage and packing. VAT inclusive. SAE for latest illustrated stock list.

31, CHEAPSIDE, LIVERPOOL L2 2DY

TTLs BY TEXAS				74221	${ }^{160} \mathrm{p}$	74LS192	140p	${ }^{74} \mathrm{C} 157$	$7^{250 \mathrm{p}}$	$\left\|\begin{array}{c}\text { LINEAR } 1 . C .5 \\ \text { AY } 1-0212 \\ \text { A } \\ \text { C00p }\end{array}\right\|$ MC1496 $\quad 100 \mathrm{p}$				TRANSISTORS				TIP41C TIP42A	$\begin{aligned} & 78 \mathrm{p} \\ & 70 \mathrm{p} \end{aligned}$	$\begin{aligned} & \text { 2N3866 } \\ & \text { 2N3903/4 } \\ & \text { 2N } 3905 / 6 \end{aligned}$	90p$18 p$	$\left.\right\|_{\text {BYI27 }} ^{\text {DIODES }}$
7400	11p		150p	74251	140 p	74LS193	140 p	74 C 160	155p													
7401	12p	74100	130 p	74259	250 p	74LS195	140 p	74 C 161	$1{ }^{155} \mathrm{p}$	AY1-1313	${ }^{665}$	MC3340	120 p	AD149	70p	BFY56	33 p	TIP42C	82 p			
7402	14p	74104	65 p	74265		74LS196	120p	74 C 162	2155 p	A Y 1-5050	212p	MC3360	1200	AD161/2	45p	BFY90	90p	TIP2955	78 p	2 N 4036	${ }^{65 p}$	OA81 15p
7403	14p	74105	65p	74278	290p	74LS221	100p	${ }^{74 \mathrm{C} 163}$	155p	AY5-1224A	225p	MK50398	750p	BC107/8	11p	BRY39	45p	TIP3055	70p	2N4058/9	12p	OA85 15p
7404	14 p	74107	34p	74279	140 p	74LS240	175p	74 C 164	120p	AY5-1315	600p	NF.531		${ }^{\text {BC109 }}$	11p	BSX19/20	20p	TIS43	34 p	2N4060	12p	OA90 9p
7405	18p	74109	55p	74283 74284	190	74LS241	175p	74 C 173	120p	AY5.1317	7800	NE543K	${ }^{225}$	BC147/8	9 p	BU105	190p	TIS93	30p	2N4061/2	18 p	OA91 9p
7406	32p	74110	55 p	74285	400 p	74LS243	175p	74C174	160p	AY5-1320	320p	NE555	25p	BC149	10p	BU108	250p	2TX108	12 p	2N4123/4	4 22p	OA95 ${ }^{\text {OA200 }}$ 9p
7407	32p	74111	70p	74290	150 p			74 C 192	150p	CASO19			725	BC157/8	10p	BU205	220 p	ZTX500	15 p	${ }^{2} \mathrm{~N} 4289$	20 p	OA200 9p
7408	19p	74116	200p	74293	150p	74LS244	1980	74 C 193	$3 \begin{aligned} & \text { 150p } \\ & \text { 150 }\end{aligned}$	CA3046 CA3048	709 2250	NE5618 NE562B	425 p	BC159	11p	BU208	240p	ZTX502	18p	2N4401/3	3 27p	1N914
7409	19p	74118	130p	74294	200p	1945201	zupp	74 C 194	220p	CA ${ }^{\text {CA3080E }}$	225p 72 p	${ }^{\text {NE5 }}$ N65 ${ }^{\text {a }}$	${ }^{4250}$	BC169C	12p	BU406	145p	ZTX504	30p	2N4427	90 p	1N916 7p
7410	15p	74119	210p	74298	200p	74LS257	120p	74C195	110p	CA3089E	225p		155	BC172	12p	M 32501	225p	2N457A	250p	2N4871	60p	1N4148 4p
7411	24 p	74120	110p	74365	150p	74LS259	175p	74 C 221	175p	CA ${ }^{\text {CA3090 }}$ A ${ }^{\text {a }}$	Q375p	NE566	175 p	BC177/8	17p	M 22955	100p	2N696	${ }_{\text {25p }}^{\text {25p }}$	2N5087	27p	1N4001/2 Sp
7413	30 p	74122	48 p	74366	150 p	74 LS 298	249p	4000 S	SERIES	CA3130E	100p	RC4151	400p	${ }_{\text {BC182/3 }}$	${ }^{88}$	M J3001	225p	2N697	25 p	2 N 5089	27p	1N4003/4 6p
7414	60p	74123	48 p	4367	150 p	74LS373	p	4000	15p	CA3140E	70p	SP8515	750 p	${ }_{\text {BC184 }}$	11p	MJE340	65p	2N697	45 p	2N5172	27 p	1 N 4005 6p
7416	27p	74125	55p	74368	150 p	74LS374	195p	4001	25p	CA3160E	75p	TBA641B1		$\mathrm{BC1}^{87}$	30 p	MJE2955	100p	2N706A	20p	2N5179	27p	1N4006/7 7p
7417	27p	74126	60p	74390	200p	81LS95	140p	4002	20p	FX209	750p		225p			MJE3055	70p	2N708A	20p	2N5191	83 p	1N5401/3 14p
7420	17p	74128	75p	4393	200 p			4006	95 p	ICL7106	925 p	TBA800	${ }^{20 p}$	$\mathrm{BC}^{\text {BC212/3 }}$	11 p	MPF102	45p	2N918	30p	2N5194	90 p	1N5404/7 ${ }^{\text {19p }}$
7421	40p	74132	75p	74490	225p	81 LS97	140 p	4007	25p	ICL8038	340p	TBA810	100p	${ }^{\text {BC461 }}$	12 p 36 p	MPF103/4	440p	2N930	18 p	2 N 5245	40p	ZENERS
7422	22p	74136	60 p	74 LS		${ }^{81} 1598$	140 p	4008	${ }^{80}$	LM301A	36p	TBA820	90p	BC477/8		MPF105/6	640p	2N1131/2	20p	${ }_{2}^{2 N 5296}$	55 p	
7423	34 p	74141	70p	SERIES		${ }^{8128}$		4009	40 p	LM311	190p	TCA940	175p	BC477/8 ${ }^{\text {BC516/7 }}$	30 p 50 p	MPSA06	30p	${ }_{2} \mathbf{N} 1613$	25 p	2N5401	50p	400 mW 9 p
7425	30 p	74142	200p	74LS00	14p	9301		4010	50p	LM318	200p	TDA4500	280p	BC5478	16p	MPSA12	2 50p	2N1711	25 p	2N5457/8	40p	1 W 15p
7426	40p	74145	90p	74LS02	18 p	${ }_{9308}^{9302}$	175 p	4011	25p	LM324	70p	tDA1004	328p	BC549C	18 p	MPSA56	32p	2 N 2102	60p	2N5459	40p	SPECIAL
7427	34 p	74147	190p	74LS04	14p	${ }_{9310}$	176 p 275 p 270	4012	18 p	LM339	90 p	TDA1008	300p	BC5s78	16 p	MPSU06	78p	2N2160	${ }^{120 p}$	2N5460	40p	OFFERS
7428	36p	74148	150p	74LS08	22p	${ }_{9311}$	275p	4013	50 p	LM348	95 p	TDA1022	800p	BC559C	18 p	MPSU56		2N2219A	30 p	2 N 5485	44 p	$100+741$
7430	17p	74150	100p	74LS10	20p	${ }_{9312}^{9311}$	270p	4014	84 p	LM377	175p	XR2206	400p	ВСY70	18 p	OC28	130p	2N2222A	20p	2 N 6027	48 p	18
7432	30 p	74151A	70p	74LS13	38 p	9314	165p	4015	84 p	LM380	75p	XR2207	409p	BCY71/2	22p	OC35	130 p	${ }^{2 N} 2 \mathrm{~N} 23694 \mathrm{~A}$	30 p 30 p	2N6247 2N6254	190p	$100+555$
7433 7437	40 p	7453	70p	${ }^{744 \mathrm{LS} 14}$	78 p 220	9316	225p	4016	45p	LM381AN	150p	XR2216	675p	BD131/2	50p	R20088		2N2646	50 p	2N6290	${ }^{130} 5$	
7438	35p	74155	90 p	74LS22	28 p	9322	150p	4018	p	M38	140 p	XR:240	400 p	BDY56	200 p	R200		2N2904/5A	30 p	2N6292	65 p	RCA 2 N3055
7440	17p	74156	90 p	74LS27	38 p	9368	200 p	4019	45 p		36p	424 E		BF200	32p			2N2906A	24p	2N128	120p	$\underline{56}$
7441	70p	74157	70p	74LS30	22p	9370	200p	4020	100p	LM710	50p	ZN424E	135 p	BF244B	35p	TIP29A	40p	2N2907A	30p	3N140	100p	BRIDGE
7442A	60p	74159	190p	74LS47	90 p	374	200p	4021	110p	LM733	100p	N425E.	400p	BF2568	70p	TIP29C	55p	2N2926	9p	3N201	110 p	RECTIFIERS
7443	12p	74160	100p	74LS55	30 p	${ }_{9602}^{9601}$	1000	4022	100p	LM741	29p	ZN1034E	${ }_{800 \mathrm{p}}$	${ }_{\text {BF259 }}{ }^{\text {BF }}$	${ }^{32 \mathrm{p}}$	TIP30A	48p	2 N 3053	30 p	3N204	100p	1 A 50 V 21p
7444	12p	74161	100p	74LS73	50p	9602		4023	22p	LM747	70 p		800 p	BF259	${ }^{36}$	TIP30C	${ }^{60} \mathrm{p}$	2N3054	65 p	40290	250p	1A 100V 22p
7445	100p	74162	100p	74LS74	40p	INTER		4024	50p	LM3900	$3{ }^{3}$			BFR39	${ }^{27} 9$	TIP31A	${ }^{58} \mathrm{p}$	2 N 3055	48 p	40360	40p	1 A 400 V 30 p
7446A	93p	74163	1000	74LS75	50p	I.C.		4025	20p	LM3911	130 p			BFR40	27p	TIP31C	${ }^{62} \mathrm{p}$	2 N 3442	140p	40361/2	45p	$2 \mathrm{~A} 50 \mathrm{~V}{ }^{30 \mathrm{p}}$
7447A	70p	74164	100p	74LS83	110p	MC1488	100p	4026	130p	LM3911	130p			BFR4	${ }^{27}{ }^{\text {p }}$	TIP32A	68 p	2 N 3553	240 p	40364	120p	2A 100V 35p
7448	80 p	74165	130p	74LS85	100p	MC1489	100p	4027	50p	LM4136	120p			BFR79	${ }^{27 p}$	T1P32C	82 p	2N3565	30p	40408	70p	2A 400V 45p
7450	17p	74166	100p	74LS86	40p	75107	160p	4028	84p	MC1310P	150p			BFR8O	$27{ }^{\circ} \mathrm{p}$ 270	TIP33A	90p	2N3643/4		40409	65p	3 A 200 V 60 p
7451	17p	74167	200p	74LS90	60p	75182	${ }^{230}$ p	4029	100p	MC1458	48p				${ }^{27 p}$	TIP33C	14p	2N3702/3		40410	65p	3A 600V 72p
7453	17p	74170	240p	74LS93	60 p	75450	120p	4030	55p	MC1495	4000			BFX29	30 p	TIP34A	115p	2N3704/5		40411	300p	4A 100V 95p
7454	17 p	74172	720p	74LS107	45p	75451/2	72p	4031	200 p					BFX30	34 p	TIP34C	150p	2 N3706/7	12p	40594	97p	4A 400V 100p
7460	17p	74173	120p	74LS112	100p	75491/2	98p	4033	180p	VOLTAG	REG	LATORS		BFX84/5	30p	TIP35A	225p	2N3708/9	12p	40595	105p	6A 50V 90p
7470	36p	74174	93p	74LS123	75p	C-MOS	C. 5	4034	200p	Fixed Pla	tic TO	. 220		BFX86/7	30 p	TIP35C	290p	2N3773	300p	40673	75p	6A 100V 100p
7472	30p	74175	85 p	74LS132	900p	74.00	25p	4035	110 p	$1 \mathrm{~A}+\mathrm{ve}$		1 A -ve		BFX38	30 p	TIP36A	270p	2 N 3819	${ }^{25} \mathrm{p}$	40841	90p	6A 400V 120p
7473	34 p	74176	90 p	74LS133	60p	$74 \mathrm{CO2}$	25p	4040	100p	5 V 7803	60p	5V 7905	70p	BFW10	92p	TIP36C	${ }^{340 p}$	2N38820	50p	40871/2	00	10A 400V 200p
7474	30p	74177	90 p	74LS138	60 p	$74 \mathrm{C04}$	27p	4041	${ }^{80 p}$	12 V 7812	60p	12V 7912	70p	BF	22			2N3				5A 400V 400p
747	300	74178	160p	74LS139	${ }^{60} \mathrm{p}$	$74 \mathrm{C08}$	27p	4042	80 p	15 V 7815	60 p	15V 7915	90 p									
7476	35 p	74180	${ }_{200 \mathrm{p}}^{90}$	744S151	100 p	74 C 10	27p	4043	90 p	18V 7818	90 p	18V 7918	${ }^{90} \mathrm{p}$	RED					析	,	sen	A.E. or see
7482	84 p	74184A	150p	74LS158	120 p	74 C 30	27p	4047	100p	$100 \mathrm{~mA} 78 \mathrm{~L} \mathrm{~T}^{5}$		100 mA T ${ }^{\text {T }}$	T0.92						.. Wi	ess Wo		
7483A	90p	74185	150D	74LS160	100p	74 C 32	36p	4048	55p	12 V 78 L 12	35 p	12V 79L12										
7484	100p	74186	800p	74LS161	100p	$74 \mathrm{C42}$	110p	4049	400	15 V 78L15	35p	15 V 79 L 15	80 p	Pleas	dd	30p						
7489	178p	84192	100p	74LS164	120p	74 C 74	70 p	4052	80 p	LM309K	135p	TBA625B	120p									
74904	300	74193	100p	74LS165	30p	74 C 85	200p	4053	80p	LM317T	200p	TL430	65p	Govt.	0	es, et						
7491	36p	74194	100p	74LS173	110p	74 C 86	65p	4055	125p	LM323K	${ }^{625}$ p	78 HO 5 KC	${ }^{6789}$			d.		7 BU	N	Y ROA		
7492A	460	74195	95p	74LS174	110p	74 C 90	95p	4056	135p	LM723	37p	78MGT2C	140p									
7493A	36 p	74196	95 p	74 LS 175	110p	$74 \mathrm{C95}$	130p	4059	600 p					Cal	We			LONDO				
7494	36p	74197	${ }^{80 p}$	74 LS 181	320p 100p	74 C 107 74 C 150	125p 250p	4060 4063	115 p	OPTO-EL	ECTR	NICS										
7495A	70p	74198 74199	150p 150 p	74LS190 74 LS 191	100p 100 p	74 C 150 $74 \mathrm{C151}$	250p 260p	4063	120 p 5 55 p	$\begin{aligned} & \text { 2N5777 } 45 \\ & \text { OCP71 } 130 \end{aligned}$	p ORP	290p ORP61	190p	MON-FR SATURD	VAY	$\begin{gathered} 30-5.30 \\ 10.30-4.30 \end{gathered}$		Tel: (0)	1) 4	1500		: 922800

COMMUNICATION CENTRE OFTHENORTH

The largest range of communications equipment available in the North. Full range of receivers, transceivers, antennas, power supplies, meters etc.

We are the only official trio stockists in the North West. Full range of equipment on display. Guaranteed after sales service.
We can offer a full range of receiver from the SRG $2 m$ $\mathbf{£ 4 6 . 0 0}$ to the Drake R7 at $£ \mathbf{9 8 9}$.
We shall be stocking a range of top quality $C B$ equipment when available.

MK II MULTITUNER. In 1977 we introduced our latest design in antenna tuners. This has now been exported to over 75 countries and recommended on Overseas World Broadcasts including HCJB. Will match practically any antenna to most receivers.

$\mathbf{£ 3 5 . 0 0}$ inc. VAT \& POST

Part Exchanges welcome. Second hand lists daily. Send S.A.E. for details of any equipment. HP terms. Access/Barclaycard facilities.
Open 6 days a week. 24 Hour Mail Order Service. Phone 0942-676790.

Stephens James Ltd.

47 WARRINGTON ROAD, LEIGH, LANCS. WN7 3EA.

CUBE MANIA - FREE OF CHARGE

With purchases over $£ 18$. (Only on request.
at time of ordering). Offer closes $31 / 8 / 81$ and is subject to availability. Solution included.

BECOME AN INSTANT MUSICIAN!
Casio's revolutionary VL-TONE. As featured on "Tomorrow's World".

CASIO VL-TONE (VL-1)
(RRP £39.95) ONLY £35.95
Unique ONE KEY PLAY system. 100 note memory with AUTO PLAY. 10 Auto Rhythms. Tempo control. 5 instrument sounds and ADSR, with 80 million variations.

NEW CASIOTONE

CT-202
(RRP £325) ONLY £275
Polyphonic. 49 instrument voices, over 4 octaves. 3 vibrato settings and sustain. Pitch control. Built-in amp/speaker. Output jack. AC only. Weight 7.15 kgs .

Time and calendar display, calculator, alarm, hourly chimes, professional stopwatch, dual time, digital space invader game with sound effects and scoring.

Send 20p for our catalogue of selected CASIO and SEIKO products

ㄷN

 THE CQ CENTRE

 THE CQ CENTRE 10 Merton Park Parade, SW19. 01-543 5150

LONDON'S NEWEST \& BRIGHTEST EMPORIUM

Welcome to all Amateurs and Short Wave Listeners.

We can now offer a wide range of new and secondhand equipment including Yaesu, Trio, Standard, FDK etc. at realistic prices.
We do of course provide a full after sales service and we will be happy to advise you on any problem you may have.
We are urgently seeking secondhand equipment and we will purchase or part exchange working or non-working items at very keen prices. We will also dispose of your equipment on a sale-or-return basis for a nominal charge. Many of our customers have already found this to be a most satisfactory arrangement.
There are now many VHF stations using the HB-9CV antenna because this 2 element beam is very well made, compact and efficient, giving over 4db of forward gain. The retail price is $£ 7.50$ and post and packing is $£ 2.50$. This antenna is ideal for portable use, DF and in confined spaces etc.
WE ARE THE SOLE LONDON AGENTS FOR THE HB-9CV ANTENNA TRADE ENQUIRIES WELCOME
We are also agents for G.M.T.C. range of telephone answering equipment e.g. the XK-2100 P.O. approved telephone answering machine, (with remote bleeper for playback from any telephone) £123+VAT Please phone for further details.
As a goodwill gesture we are offering a free delivery service in the London postal area.
Please note: We are open until 8 pm on Wednesdays and Fridays.
We can now offer a full range of antenna lashing equipment. Poles, Towers etc.
If you are passing, call in for a coffee-we are ready to discuss your needs and give helpful advice.
73's from Bob, lan and Paul.
STOP PRESS. 2 metre Slim Jim, fully enclosed in plastic tubing - inc.
4 metres of co-ax $\mathbf{£ 6 . 5 0}$.

AH ELECTRONICS
 20 вавву Lane нilmorton,

 TEL: 76473 EVE 71066.Mail Order Only or callers by appointment. All prices include VAT but add 50p post \& packing. VHF RF. POWER TRANSISTORS:-

Type	Gain (db)	Output (watts)	Volts	Freq.	Price
2N6083	5.7	30w.	12	175 MHz	£6.50
BLY87A	9	8	12	175	£4.00
SD1212-6	8.2	3	12	175	£2.50
BLW16A	10	$\frac{3}{4}$	12	175	£0.75
PT4236A	10	1 min .	12	175	£0.75
PT4555	8	25	12	80	£3.50
PT4556C	7	40	12	80	£4.50
2N5070	13	25(pep)	24	30	£5.00

MDA800 8 amp 50 volt bridge rectifier OK for $12 v$ PSU etc. 65p. 2 for $\mathbf{£ 1 . 1 5}$. DUAL-GATE MOSFETS 3SK51 (40673) 80p, BFR84 75p.
DUAL-GATE MOSFETS 3SK51 (40673) 80p, BFR84 75p.
FETs E5565 (2N3819) 30p, TIS88A 40p, BF256C 40p, 2 N4381 40p.
FETs E5565 (2N3819) 30p, TIS88A 40p, BF256C 40p, 2N4381 40p.
BIPOLARS:- BF576, pnp VHF RF amp. FT1200 MHz 20p, 2 N4957 pn BIPOLARS:- BF576, pnp VHF RF amp. FT1200 MHz 20p, 2 N 4957 pnp
VHF/UHF RF amp nf only $3 \frac{1}{2} \mathrm{db}+1 \mathrm{GHz} 30 \mathrm{p}$, BF180 30p, BF166 VHF RF amp VHF/UHF RF amp nf only $3 \frac{1}{2} \mathrm{db}$ + $1 \mathrm{GHz} \mathbf{3 0 p}$, BF180 30p, BF166 VHF RF amp 25p, BFY90 UHF RF amp 95p, BF152 VHF mix/osc. 15p.
SILICON PIN DIODES for switching oscillators etc. up to $1000 \mathrm{MHz}-$ BA2 243 (VHF) 20p, BA2 44 (UHF) 25p.
AUDIO AMP IC. TDA1010 6 watt output adjustable to 9 watt, a 14 volt single-in-line type \& ideal for transceivers, receivers, record players, cassette players etc. BARGAIN OFFER ONLY $£ 1.35$ two for $\mathbf{£ 2 . 4 0}$. Supplied with data sheet showing construction of stereo amp. full data sheet (19 pages) 20p.
performance RECEIVER PRE-AMP. Have you a tired or old receiver with poor performance above 25 MHz then one of our super pre-amps is what you want:- 50 ohm imp. in \& out 25 db gain with better than 1 db nf. ready built on PCB 60 mmx $\mathbf{0 m m}$, adjustable gain control, only $\mathbf{£ 8 . 0 0}$ or built into grey hammer finish die
$\mathbf{1 0 . 7} \mathbf{~ M H z ~ S S B ~ C R Y S T A L ~ F I L T E R S ~ C a t h o d e o n ~ t y p e ~ B P 4 ~} 133$ lower sideband only, new \& unused small size $38 \mathrm{~mm} \times 18 \mathrm{~mm} \times 15 \mathrm{~mm} 200$ ohm imp. give away PRICE ONLY $£ 4.00$ each two for $£ 7.00$.
$10.7 \mathbf{M H z}$ CRYSTAL FILTER for AM/FM $12 \frac{1}{2} \mathrm{KHz}$ channel spacing $+3 \frac{1}{2} \mathrm{KHz}=$ 3db ITT type 024DE/923L. £7.00 ea.
MOTOROLA CAR RADIO PCBs complete less vol. cont. tuner etc. with circuit
$\mathbf{8 0 p}$ ea. four for $£ 3.00$.
CAR RADIO 470 KHz IF AMPS with stereo pre-amp IC. with circuit 65p. CAR RADIO/CASSETTE PLAYER stereo amps 5 watt/chan. with multigang pot. matching amp to above IF amp board. Contains 2 TA7205P ICs, with circuit £2.75.
BAG MIXED ELECTROLYTIC CAPACITORS 2.2 mf - $1000 \mathrm{MFd} 100 \mathbf{£ 1 . 6 0}$. BAG OF MIXED RESISTORS $\frac{1}{4}$ watt carbon film pre-formed type all with long leads plus some $\frac{1}{6}$ watt std types 250 for $\mathbf{£ 1 . 6 0}$.
FEEDTHROUGH CAPACITORS 1000pf 500 v solder in type $\frac{1}{\text { ® }} "$ dia. 10 tor 28p. FERRITE RINGS 12 mm dia 10p ea. FERRITE BEADS FX 111510 for $\mathbf{2 0 p}$. PRICE LIST 15p STAMP - FREE WITH ORDER.

Technical Training in Radio, Television and Electronics

ICS have helped thousands of ambitious people to move up into higher paid, more secure jobs in the field of electronicsnow it can be your turn. Whether you are a newcomer to the field or are already working in the industry, ICS can provide you with the specialised training so essential to success.

Personal Tuition and Guaranteed Success

The expert and personal guidance by fully qualified tutors, backed by the ICS guarantee of tuition until successful is the key to our outstanding record in the technical training field. You study at the time and pace that suits you best and in your own home. In the words of one of our many
successful students: "Since starting my course, my salary has trebled and I am expecting a further increase when my course is completed."

City and Guilds Certificates
Excellent job prospects await those who hold one of these recognised certificates. ICS can coach you for:
Telecommunications Technicians
Radio, TV Electronics Technicians
Technical Communications
Radio Servicing Theory
Radio Amateurs
Electrical Installation Work
Also MPT Radio Communications Certificate

Diploma Courses

Colour TV Servicing
Electronic Engineering and Maintenance
Computer Engineering and Programming
Radio, TV and Audio, Engineering and Servicing
Electrical Engineering, Installations and Contracting
Qualify for a New Career
Home study courses for leading professional examinations and diploma courses for business and technical subjects:G.C.E. Engineering Purchasing 60 subjects

Farming
Heating
Industrial
Sales
Storekeeping
at "O" \&
"A" levels
Management
Accountancy
Air
Conditioning
Building

POST OR PHONE TODAY FOR FREE BOOKLET.

When replying to Classified Advertisements please ensure:
(A) That you have clearly stated your requirements.
(B) That you have enclosed the right remittance.
(C) That your name and address is written in block capitals, and
(D) That your letter is correctly addressed to the advertiser.
This will assist advertisers in processing and despatching orders with the minimum of delay.

Receivers and Components

BALLARD'S OF TUNBRIDGE WELLS have moved to 54 Grosvenor Road, no lists. S.A.E. all enquiries phone Tunbridge Wells 31803 .

BRAND NEW COMPONENTS BY RETURN

TANTALUM BEAD SUBMINIATURE ELECTROLYTICS.
$0.1,0.22, ~ 0.47,1.0, ~ 2.2,35 V ~ \& ~$

$4.7 / 16 \mathrm{~V}$ \& $25 \mathrm{~V}-15 \mathrm{p}, 10 / 16 \& 22 / 6-20 \mathrm{p} .10 / 25-29 \mathrm{p}$ $10 / 35 \mathrm{~V}, 22 / 16 \mathrm{~V} / 147 / 6.3 \mathrm{~V}, 68 / 3 \mathrm{~V}$ \& $8100 / 3 \mathrm{~V}-30 \mathrm{p}$
$15 / 25.22 / 25,47 / 10-35 \mathrm{p} .47 / 16-80 \mathrm{p} .220 / 16-\mathbf{1} .20$ Polystyrene 63 V Wkg. E12 Series Long Axial Wires.
10 pf. to 820 pf.- $\mathbf{3 p}$. 1000 pf. to 10.000 pf.-4p TRANSISTORS.

8C107/8/9 10p	BC182L	8 p	BF197	p							
BC147/8/9 10p	BC184L	8 p	BFY50/51/52	18p							
BC157/8/9 10p	BC212L	8 p	BFX88	25p							
BC547C/8C/9C7p	BCY70	15p	2N2926	7 p							
BC557C/8C/9C7p	BF194	10p	2N3055	50p		$\begin{array}{llll}\text { BC547C/8C/9C7p } & \text { BF } 194 & 10 p & 2 N 3055\end{array} \quad 50 \mathrm{p}$					
:---	:---	:---	:---	:---	:---						
BC557											
8	Pin	D.I.L	i.c's	741	Op/amp.	8 Pin D.I.L. i.c's $741 \mathrm{Op} / \mathrm{amp}$.-18p. 555 Timer-24p					

Holders 8 pin-9p. 14 Pin-12p. 16 Pin-14p. 28 Pin-25p 40 Pin- 30 p .

DIODES (p.i.v./amps). ${ }_{\text {/ }}$											
$75 / 25 \mathrm{~mA}$	1N4148	2p	1250/1A								
100/1A	1N4002	4p	400/3A	IN5404							
800/1A	1N4006	6p	60/1.5A	S1M1	5p						
1000/1A	1N4007	7 p	30/150mA	Y 32	12p						
E24 Series 3V3											
					L.E.D. ${ }^{\text {a }}$, mm . \& 5 mm . Red- 10 p . Green, Yellow- 14 p						
GUSES. 20 mm . Glass. 100 mA to 5 SA. Q.B.- 3 p. ASS.- 5 p											
VOLTAGE REGULATORS $+, 5 \mathrm{~V}, 8 \mathrm{~V}, 12 \mathrm{~V}, 15 \mathrm{~V}, 100 \mathrm{~mA}$,											
5 F . 8V, 120 TENTIOMETERS											
50mW \& 1 W 100 R to 1 MO - 7 p .											

THE C. R. SUPPLY CO.

127, Chesterfield Road, Sheffield S8 ORN.
V.A.T. Inclusive Prices, Postage 15p (FREE over £5.00)

SMALL ADS

The prepaid rate for classified advertisements is 28 pence per word (minimum 12 words), box number 60p extra. Semi-display setting $£ 9.50$ per single column centimetre (minimum 2.5 cms). All cheques, postal orders etc., to be made payable to Practical Wireless and crossed "Lloyds Bank Ltd". Treasury notes should always be sent registered post. Advertisements, together with remittance should be sent to the Classified Advertisement Manager, Practical Wireless, Room 2337, IPC Magazines Limited, King's Reach Tower, Stamford St., London, SE1 9LS. (Telephone 01-261 5846).

NOTICE TO READERS

Whilst prices of goods shown in classified advertisements are correct at the time of closing for press, readers are advised to check with the advertiser both prices and availability of goods before ordering from non-current issues of the magazine.

CRYSTALS MADE TO ORDER within 6 weeks. 4.105 MHz , wire or pins. $£ 3.90$ each inclusive. HARTLEY CRYSTALS. Green Lane. Milford, Godalming. Surrey GU8 5BG.
$\mathbf{2 4} 4^{\prime \prime} / \mathbf{2 0}{ }^{\prime \prime}$ MONO S/S TELEVISIONS (Bush A774 chassis) $£ 10$ each working. Minimum order ten. Delivery anywhere. Tel: (0706) 623404.

BOURNEMOUTH/BOSCOMBE. Electronic components specialists for 33 years. Forresters (National Radio Supplies) late Holdenhurst Rd. now at 36. Ashley Rd.. Boscombe. Tel. 302204. Closed Weds.
T.V.I. FILTERS Type 1 for channels 23 upwards, type 2 for areas where Channel 21 and 22 are used $£ 5.60$ each. Filtered mains lead suits T.V. Stereo etc. $£ 4.94$ each. Stereo speaker filter accepts 2 speakers up to $100 \mathrm{w} £ 4.95$ each. 24 v to 12 v VOLTAGE REDUCERS. IA version will run Radios/Cassettes/T.V.s $£ 10.45$ each. 3A version $£ 18.95$. 5 A version (7 A surge) for that really big job $£ 24.45$ each. Prices include VAT. Postage 45 p. Orders over $£ 50$ post free. Trade enquiries invited. APEX ENTERPRISES, 329 Welford Road, Leicester. Telephone 0533704284.

VHF TUNERS.

$140-150 \mathrm{MHz}, 10.7 \mathrm{MHz}$ IF mechanically tuned (inc s / m drive) Mosfet RF amplifier section $£ 8.75 \mathrm{inc} \mathrm{pp}$. Identical $65-75 \mathrm{MHz}$ versions ideal $4 \mathrm{M} / \mathrm{E}$. Europe Fm band and airband models available. 10.7 MHz Wideband FM IF module $£ 4.00$.
TVDX equipment, VHF/UHF convertor $\mathbf{£ 1 0 . 5 0}$. SAE Data, Lists.
H. Cocks, Cripps Corner, Robertsbridge, Sussex.
Tel. 058083317.

WE REPAIR/RESTORE valve type communication receivers with a one year guarantec. For a free quote telephone Corby 61697, Vintage British Radio Components Co., 22 Thurso Walk, Corby, Northants.

WINTON TUNER. COMPLETE designer approved kits for this fabulous project will be available mid-August. Send for your free list now. Hart Electronic Kits Lid., Penylan Mill. Oswestry. Shropshire. Tel. Oswestry (0691) 2894.

Prewar onward valves, wireless. SaE. Sole Electronics, 37 Stanley Street, Ormskirk, Lancs.

Books and Publications

STATION LOGBOOKS with invaluable reference information $£ 2.25$. Mobile Minilogs $\mathbf{8 0}$ p. Callsign Window Stickers $\mathbf{£ 1 . 5 0}$. Beauprint. Meltham Road, Honley, Huddersfield. Trade/Club enquiries welcome. Tel. 0484 662824.

OUT OF PRINT BOOK SERVICE. 17 Fairwater Grove (E), Cardiff. Send S.a.e. for details.

Bоокs, воокs, воокs. Large range of radio and electronics books in stock. Send s.a.e. for lists. Servio Radio. Dept. PW8 $156-158$ Merton Road. Wimbledon. London SW 19 IEG.

Aerials

COPPER AERIAL WIRE 14 swg hard drawn $70^{\prime} £ 5.34$. $140^{\prime} £ 8.84$ inc. VAT. Postage $£ 1.75$ T.M.P. Electronics Supplies, Britannia Stores, Leeswood, Nr. Mold, N. Wales.

ANTI-TVI TRAP DIPOLES

1981 Range: Shortwave Listener Aerials
Indoor models $£ 14.50$ \& $£ 27.50$
Outdoor models $£ 30.00$ \& $£ 36.00$
Lists 10×8 in 17p SAE, Aerial Guide 50p Indoor and Invisible Aerials $£ 3.50$
Callers Welcome
Tel: 03986-215
G2DYM, Uplowman, Tiverton, Devon.

Record Accessories

STYLE, Cartridges for Music Centres, etc., Free list no. 30 for S.A.E. includes Leads. Mikes, Phones etc. Felstead Electronics, Longley Lane. Gatley, Cheadle Ches., SK8 4 EE .

Educational

CAREERS in Marine Electronics, Courses commencing September and January. Further details, The Nautical College, Fleetwood FY7 8JS. Tel. 0391779123.

TECHNICAL TRAINING

Get the training you need to move up into a higher paid job. Take the first step now-write or phone ICS for details of ICS specialist homestudy courses on Radio, TV, Audio Eng. and Servicing, Electronics, Computers, also self-build radio kits. Full details from:

ICS SCHOOL OF ELECTRONICS
 Dept. 277K Intertext House, London SW8 4 UJ

Tel. 01-622 9911 (all hours)
State if under 18

Abstract

COLOUR TV SERVICING Learn the techniques of servicing Colour TV sets through new homestudy course approved by leading manufacturers. Covers principles, practice and alignment with numerous illustrations and diagrams. Other courses for radio and audio servicing. Full details from:

ICS SCHOOL OF ELECTRONICS
Dept. 277K Intertext House, London SW8 4UJ Tel. 01-622 9911 (all hours)

State if under 18

CITY \& GUILDS EXAMS

Study for success with ICS. An ICS homestudy course will ensure that you pass your C. \& G. exams. Special courses for: Telecoms, Technicians, Electrical Installations, Radio, TV \& Electronics Technicians, Radio Amateurs, Full details from:

ICS SCHOOL OF ELECTRONICS
Dept. 277K Intertext House, London SW8 4UJ
Tel. 01-622 9911 (ail hours)
State if under 18

TELEVISION COMPUTER COMMUNICATION \& RADAR SERVICING

TWO YEAR full-time Modular Diploma course to include a high percentage of practical work.

- ELECTRONIC PRINCIPLES
- MONO TV \& CCTV
- colour TV \& VCR
- MICROELECTRONICS \& DIGITAL TECHNIQUES
- MICROPROCESSORS \& COMPUTERS
- COMMUNICATIONS \& RADAR
Each of the above Modules are 13 weeks in duration. Individual Modules can be arranged for applicants with suitable electronics background.
Tuition fees (UK \& Overseas) £1500 per year (i.e. $£ 500$ per Module).
Next session starts September 14th

Prospectus from:

LONDON ELECTRONICS

 COLLEGEDept: PP; 20 Penywern Road, London SW5 9SU. Tel: 01-373 8721.

Courses

COURSES - RADIO AMATEURS EXAMINATION. City \& Guilds. Pass this important examination and obtain your G8 licence, with an RRC Home Study Course. For details of this and other courses (GCE, professional examinations etc) write or phone - THE RAPID RESULTS COLLEGE, DEPT. JXI. Tuition House, London SW 19 4DS. Tel: 01-947 7272 (Careers Advisory Service) or for prospectus requests ring 01-946 1102 (24 hr Recordacall).

Service Sheets

(TECHNICALINFORMATION SERVICE 76 CHURCH ST., LARKHALL, LANARKS.

Any full size service sheet - still only $\mathbf{£ 1}+$ s.a.e.

Thousands of different sheets \& manuals in stock (many of these only obtainable from us) Repair data your named T.V. $£ 6$ (with circuits $\mathbf{£ 8}$)
Domestic Equipment Manual Vol. $1 £ 13.50$ (updatings free for 1 year) S.A.E. for free newsletter, price lists, any quotation, bargain offers, unique T.V. publications. 2 big catalogues listing thousands of service sheets and manuals with $£ 4$ worth of vouchers special offer $£ 2+$ large s.a.e.
Phone: 0698883334 anytime. Callers 4-6 pm weekdays, Sat. after 10.

SERVICE SHEETS, Radio, TV etc., 10,000 models. Catalogue 25 p. plus S.A.E. with orders, enquiries, TELRAY, 5 Henderson Street, Preston PR1 7XP.
bell's television services for Service Sheets on Radio. TV etc.. $£ 1.00$ plus S.A.E. Colour TV Service Manuals on request. S.A.E. with enquiries to B.T.S., 190 Kings Road. Harrogate. W. Yorkshire. Tel. (0423) 55885.

SERVICE SHEETS from 50 p and S.A.E. Catalogue 25 F and S.A.E. Hamilton Radio, 47 Bohemia Road, St. Leonards, Sussex.

Personal

CHRISTIAN SINGLES HOLIDAYS. Weekend houseparties, friendship, contacts nationwide. C.F.F. Dept/B89, Edenthorpe, Doncaster.

Forthcoming Events

RADIOTHON North Western Bring and Buy Sale and Marathon Radio Operation Station for Charity. Boat regatta and other family entertainment, in the pleasant surrounds of Sankey Valley Linear Park near Warrington, Cheshire. Sunday August 9th.

Wanted

ELECTRONIC COMPONENTS PURCHASED. All types considered - Must be new. Send detailed list - Offer by return - WALTONS, 55A Woreester Street, Wolverhampton.
PRE-1936 WIRELESS COMPLETE. Prefer American Pilot. View Sussex. Box No. 153.

WE BUY SURPLUS ELECTRONIC COMPONENTS, PCB's etc. for cash. Tel: (0703) 785862.

30,000 SERVICE SHEETS IN STOCK
 COLOUR MANUALS ALSO AVAILABLE

TV Monos, Radios $\mathbf{£ 1 . 2 5}$ - Tuners $\mathbf{£ 1 . 2 5}$ - Tape Recorders, Record Players, Transistors from $£ 1.25$ - Car Radios, Record Players, Transistors
Stereograms, Radiograms from $£ 1.25$ - Except Colour TV Circuits from $£ 2$. - State, if circuit will do, if sheets are not in stock. All TV sheets are full length $24 \times 12^{\prime \prime}$. not in Bits \& Pieces. All other Data full lengths. Free Fault Finding Chart
or TV Catalogue with order. Crossed P.O.s returned, if sheets not in stock. S.A.E. please.
C. CARANNA

71, Beaufort Park, London NW11 6BX
$01-4584882$ (Mail Ordor)

For Sale

TRIO 9000 as new boxed manual etc. Leatherhead 74298 after 6 p.m.

COLLINS RECEIVER FOR SALE. 388/URR Military Version of $51 J 3$. $£ 200.00$ on.o. Phone (0257) 481-617 weekends.

PURBECK OSCILLOSCOPE complete and working, Watford case £60. Phone 0619806594.
emigrating. For sale. TS520SE with CW filter; £350.00 o.n.o. GsUUR, Bath 833433 .
P.W. 1966-1967; P.E. 1965-1967, Foxon. 031-556-2361.
$300+$ MIXED PW, E.E. E.T.I. Mags. Most mint condition 1960-1981. Buyer collects. f 75 . Thanet 51061.

NEW BACK ISSUES of "Practical Wireless" available 90p each post free. Cheque or uncrossed P/O returned if not in stock. Bell's Television Service. 190 Kings Road, Harrogate. N. Yorks. Tel: (0423) 55885.

BEARCAT 220FB, 2 mths old, still boxed, perfect 6 mths guarantee, £210, or straight swap for SX200 receiver. Southend 615249.

ORDER FORM PLEASE WRITE IN BLOCK CAPITALS

Please insert the advertisement below in the next available issue of Practical Wireless for \qquad insertions I enclose Cheque/P.O. for $£$.
(Cheques and Postal Orders should be crossed Lloyds Bank Ltd. and made payable to Practical Wireless).

NAME.
Send to: Classified Advertisement Manager
ADDRESS
PRACTICAL WIRELESS,
\qquad

GMG, Classified Advertisemont Dept., Rm. 2337,
King's Reach Tower, Stamford Street,
London SE1 9LS Telephone 01-261 5846
Rate
28p per word, minimum 12 words. Box No. 60p extra.

Miscellaneous

CRYSTALS Brand new high-precision. You benefit from very large stocks held for industrial supplies. All normal freq
standards, baud rates. MPU, and all magazine projects inc: $\mathrm{HC33} / \mathrm{U}: 1.0, £ 3.75,2.5625 \mathrm{MHz} £ 3.50 . \mathrm{HC18} / \mathrm{U}: 4.0$, $5.0,6 \cdot 0,7.0,8.0,9.0,10.0 .10 \cdot 7.12 .0,15 \cdot 0,16.0,18.0$,
$20.0,38.6667 \mathrm{MHz} £ 3.35$, Selected freas stocked in 20.0. 38.6667 MHz £3.35. Selected freqs stocked in
Glider, Marine and 27 MHz bands. Any freq made to order in 8 weeks from $£ 4.10 .2-3$ week service available. FILTERS Your best source for 6 and 8 pole and monolithics for AM. CW, SSB, FM, on $455 \mathrm{kHz} .1 \cdot 6.9 \cdot 0.10 \cdot 7.21 .4$ MHz , etc.

VAT and UK post. SAE lists
P. R. GOLLEDGE ELECTRONICS

G3EDW, Merriott, Somersot, TA16 5NS.
Tal: 046073718

UK AIRCRAFT FREQUENCIES List including spot frequencies of airports, air traffic control services, weather reports, navigation beacons, etc. £1. UK MARINE FREQUENCIES LIST including spot frequencies of coast stations, (plus broadcast times), port operations, navigation beacons, etc. £1. INTERNATIONAL DISTRESS FREQUENCIES CHART 75p. Prices include postage. same day despatch. PLH Electronics. 20 Vallis Road. Frome. Somerset BAll 3EH.

THE SCIENTIFIC WIRE COMPANY PO Box 30, London E. 4 Telephone 015311568				
ENAMELLED COPPER WIRE				
SWG	1 lb	8 oz	4 oz	2 oz
8 to 29	2.76	1.50	0.80	0.60
30 to 34	3.20	1.80	0.90	0.70
35 to 39	3.40	2.00	1.10	0.80
40 to 43	4.75	2.60	2.00	1.42
44 to 47	5.90	3.40	2.39	2.00
48 to 49	15.96	9.58	6.38	3.69
SILVER PLATED COPPER WIRE				
14 to 30	6.50	3.75	2.20	1.40
TINNED COPPER WIRE				
14 to 30	3.85	2.36	1.34	0.90
Prices incl. P\&P and VAT. Orders under $£ 2$ add 20 p. SAE for list of Copper/Resistance Wire. Dealer enquiries welcome. Reg. Office 22, Coningsby Gardens.				

TIME WRONG?

MSF CLOCK is ALWAYS CORRECT - never gains or loses, SELF SETTING at switch-on, 8 digits show Date, Hours, Minutes and Seconds, auto GMT/BST and leap year, also parallel BCD output, receives Rugby 60 KHz atomic time signals, built-in antenna. 1000 Km range, GET the RIGHT TIME, £62.80.
LOSING DX UNDER QRM? DIG it OUT with a Tunable Audio Notch Filter, between your receiver and speaker, BOOST your DX/QRM ratio, 40 dB notch, hear WEAK DX, $£ 13.80$.
CAN'T FIND DX? Get SPOT-ON with a Crystal Calibrator, between your antenna and receiver. $1 \mathrm{MHz}, 100,25 \mathrm{KHz}$ MARKERS, $£ 23.80$.
Each fun-to-build kit includes all parts, printed circuit, case, instructions, postage etc, money back assurance so GET your NOW.

CAMBRIDGE KITS
45 (PV) Old School Lane, Milton, Cambridge.

PRINTED CIRCUITS. Make your own simply, cheaply and quickly! Golden Fotolak Light Sensitive Lacquer now greatly improved and very much faster. Aerosol cans with full instructions $£ 2.25$. Developer 35 p. Ferric Chloride 55 p . Clear Acetate sheet for master 14 p . Copper-clad Fibreglass. Board approx. 1 mm thick $£ 1.70$ sq. ft. Post/Packing 75p. WHITE HOUSE ELECTRONICS. P.O. BOX 19. Castle Drive, Penzance, Cornwall.

RECHARGEABLE BATTERIES
 PRIVATE \& TRADE ENOUIRIES WELCOME

FULL RANGE AVAILABLE. SAE FOR LISTS. $£ 1.45$ for
Booklet "Nickel Cadmium Power plus Catalogue. Write or Booklet "Nickel Cadmium Power" plus Catalogue. Write or
call. Sandwell Plant Ltd, 2 Union Drive, BOLDMERE call. Sandwell Plant Ltd, 2 Union Drive, BOLDMERE,
SUTJON COLDFIELD. WEST MIDLANDS. 213549764

DX SHORTWAVE Maritime Radio Station Guide, worldwide. over 100 stations, over 900 frequencies, maps, $£ 1.75$. B. J. Phillipson (PW), 20 Church Meadow, Rhydymwyn. Clwyd.
C.W.A.S. ALARM. Send now for the latest discount catalogue of Professional Burglar Alarm Equipment. C.W.A.S. Alarm, 11 Denbrook Walk, Bradford BD4 0QS, W. Yorks. Phone 0274682674.

WAVEGUIDE, FLANGES \& DISHES. All standard sizes \& alloy stock. Special sizes to order. Call EARTH STATIONS, 01-228-7876. 22 Howie Street, London SW11 4AR.

	Southern Valve Co., 2nd Floor, 6 Potters Road, New Barnet, Horts.
	Tel: 01-440 8641 for current prices \& availability, aly popular 'valves stocked. SAE Lists. Cash with order. Same Day Postal Despatch. Telephone afternoons preferred. Not Thursday.
	Valves. Tubes. Aerials etc by LEADING-MAKERS. Send SAE Lists or Phone for current prices. Counter or MAIL ORDER. NO COD. Speedy Despatch assured. No order under £1. Philip Bearman, 6 Potters Road, New Barnet, Herts. Tel: 01-449 1934/5 (1934 Recording Machine). Closed Thursday. Telephone for Shop Hours.

SUPERB INSTRUMENT CASES by Bazelli, manufactured from P.V.C. Faced steel. Hundreds of people and industrial users are choosing the cases they require from our vast range. Competitive prices start at a low £1.05. Chassis punching facilities at very competitive prices. 400 models to choose from. Suppliers only to Industry and the Trade. BAZELLI. (Dept No. 25). St. Wilfrid's. Foundry Lanc. Halton, Lancaster LA1 6LT.
PSYCHOTRONIC GENERATORS, gravity lazers. electrokinesis. electrophotography, skinvision. S.A.E. $4^{\prime \prime} \times 9^{\prime \prime}$. Paralab. Downton. Wilts.

FREE FREE FREE

Parking for 4000 cars at the SUSSEX MOBILE RALLY Brighton Raceground
19th JULY 1981. 10.30 to 6 pm.
All the usual traders exhibiting. Many attractions for all the family.

PLEASE MENTION PRACTICAL WIRELESS WHEN REPLYING TO ADVERTISEMENTS

PLYMOUTH TELECOM SERVICES

(Formerly Radiofon)
Larger range of antennas \& accessories for the

CB : AMATEUR : MARINE : BUSINESS

 MOBILE RADIO USER+ comprehensive range of components, books etc. available from our

$=$ CONSTRUCTORS CORNER =

Larger shop - better value than ever

96 UNION STREET PLYMOUTH PL1 3EZ

Tel. (0752) 21581 (Opp. Palace Theatre)
OPEN 9 a.m.-5.30 p.m. MON-SAT INC.

MIGHTY NINETY PACKS ALL 90p ${ }_{\text {Ea. Inc. VAT. }}$
BUY SIX PACKS AND GET A SEVENTH PACK FREE!
POSTAGE UP TO 4 PACKS 15p PER PACK. 5 PACKS OR MORE POST FREE.

MN1	$300 \frac{1}{2}$ watt pre-formed resistors.	MN31	15
MN2		MN32	1530 pF beehive trimmers
MN3	1001 and 2 watt resistors.	MN34	25 min . glass reed switch.
MN4	50 wire wound resistors.	MN40	
MN5	100 metal oxide resistors.	MN4	
MN6	12 assorted potentiometers.	MN42 MN43	10 BC 107 transistors. 10 BC 108 transistors.
MN7 MN8	25 assorted pre-set resistors. 50 assorted electrolytic caps.	MN44	10 slide switches sp/co.
MN9	100 assorted ceramic caps.	MN51	$10 \cdot 2^{\prime \prime}$ red led.
MN10	100 mixed caps, poly, ceramic. elect, mica, etc.	M N52 M 53	$10 \cdot 125^{\prime \prime}$ red led. 200.1 mfd 25 V ceramic disc.
MN13	20 assorted transistors.	MN54 MN58	200.01 mfd 25 V ceramic disc
MN14	40 1N4148 diodes.	MN58	$2 \times$ CA723 voltage reg. $3 \times$ TIP32 transistor.
MN22	$8 \cdot 2^{\prime \prime}$ LED's with clips 4 red. 2 yellow, 2 green).	MN62 MN63	$3 \times$ TIP31 transistor.
MN23	1 lb nuts, screws, washers, etc.		C280. Siemens, etc.

Microwave Modules as described in Practical Wireless "Exe" (Wessex Alarms). Project Microwave Modules as described on Prae.
complete with horn. $\mathbf{£ 8 . 0 0}+50$ p postage.

CHORDGATE LTD (Dept C)
75 Faringdon Road, Swindon, Wilts. Tel. (0793) 33877
Retail premises at above address.

RADIO/TAPES BARGAINS

LW/MW/Mains/Battery Radios $£ 9.00$ each ($P \& P £ 1.00$) LW/MW Car Radios with speaker $£ 9.00$ each ($P \& P £ 1.00$) Small VHF/MW Battery Radios $\mathbf{£ 7 . 0 0}$ each (P \& P 50p) 8-C60 High gain Cassettes £2.00 (P\&P 50p)
5-C90 High gain Cassettes £2.00 (P\&P 50p)
Stereo Headphones with lead and Jack Plug $£ 4.50$ (P\&P 50p) Maximum Postage Charge $£ 1.00$. Money refunded if not satisfied.

AERIAL AMPLIFIERS

Aerial amplifiers can produce remarkable improvement on the picture and sound in fringe or difficult areas.
B45 - For Mono or Colour this is tunable over complete UHF television band.
B11 - For stereo or standard VHF/FM radio.
B12 - for VHF television band 1 \& 3. All amplifiers are complete and ready to use Battery type PP3 or 8 V to 18 V DC next to the set type fitting. PRICES $\mathbf{8 6} \mathbf{7 0}$ each.
Signal Injectors with (pre-set) variable AF, which emits RF harmonics into the UHF band. Protected up to 300 volts DC. Complete with leads $£ 5.70$ each.

All Prices Include VAT at 15\%. P \& P per Order 30p. S.A.E. for Leaflets. Access Cards.
ELECTRONIC MAILORDER LTD
62 Bridge St, Ramsbottom, via Bury, Lancs. BLO 9AGW. Tel Rams (070 682) 3036.

Photo Acoustics Ltd MICRO COMMUNICATIONS DIVISION Number ONE for:-

 TR9000
 SOUND ADVICE!
 Talk to our experienced
 Staff-
 G3TGE - DEREK
 G3TLE - ROY
 G8PWS - STEVE
 G8BNR - DICK

 TS830S
 58 HIGH ST., NEWPORT PAGNELL BUCKS. TEL: (0908) 610625
 255a ST. ALBANS RD., WATFORD. TEL: 32006

The ALUMAST is a 15 in (375 mm) wide triangular cross section lattice sectional aluminium mast based on a $10 \mathrm{ft}(3.05 \mathrm{~m})$ section length. It is supplied "knocked-down" in a tubular carton for ease of transport, but can easily be assembled needing no special tools or skills. The system includes top plate with bearing sleeve, rotor plate and a choice of a fixed base frame (FB-1) or one with hinge joints (HB-1) to enable the mast to be pivoted at ground level. Guy brackets are available for use at heights above 30 ft .

- Made from high strength corrosion resistant alloy using WESTERN'S EXCLUSIVE ' W ' section leg extrusions.
* Easy assembly using bolts and "Nyloc" locking nuts for security.
- Free-standing to $30 \mathrm{ft}(9.15 \mathrm{~m})$ with a typical tri-bander plus VHF/UHF antennas.
- Heights to $200 \mathrm{ft}(61 \mathrm{~m}$) with appropriate guy configurations (ask us for quotes).
- Lightweight - only 251 b (11 kg) per $10 \mathrm{ft}(3.05 \mathrm{~m})$ section.
- $30 \mathrm{ft}(9.15 \mathrm{~m})$ mast is delivered in a tube only $10 \mathrm{ft} 6 \mathrm{in}(3.2 \mathrm{~m})$ long. $6 \mathrm{in}(0.126 \mathrm{~m})$ dia.

A COMPLETE 30 ft (9.15 m)
MAST for
375/PSS/3; HB-1; RMP-1; TP-1

FULL PRICE LIST

375/PSS/3	3Oft mast (3 sections)	$£ 184.00$
375/PSS/1	Additional 10ft section	$£ 62.68$
HB-1	Hinged base unit	$£ 31.05$
FB-1	Fixed base unit	$£ 21.85$
RMP-1	Rotor mounting plate	$£ 12.08$
TP-1	Top plate with sleeve	$£ 13.23$
GB-1	Guy brackets (set of 3)	$£ 11.50$

GB-1 Guy brackets (set of 3)
£240.35

30ft mast (3 sections)
£184.00 £62.68 £21.85
£13.23
£11.50
All prices include carriage and VAT at 15\%
For Scotland - add $£ 10$ extra carriage

Western Electronics (UK) Itd

FAIRFIELD ESTATE, LOUTH, LINCS LN11 0JH
Tel: Louth (0507) 604955 Telex: 56121 WEST G

WATFORD EEEGRONIES
 33／35，CARDIFF ROAD，WATFORD，HERTS，ENGLAND
 TEL．WATFORD（0923）40588．TELEX 8956095

ALL DEVICES BRAND NEW．FULL SPEC．AND FULLY GUARANTEED．ORDERS
DESPATCHED BY RETURN OF POST．TERMS OF BUSINESS： CASH／CHEQUE／P．O．S OR BANKERS DRAFT WITH ORDER．GOVERNMENTAND EDUCATIONAL INSTITUTIONS OFFICIAL ORDERS ACCEPTED（TELEPHONE VAT

Export orders no VAT．Applicable to U．K．Customors only．Unless
stated otherwise，all prices are exclusive of VAT．Ploase add 15\％to the We stock many more items．It pays to visit us．We are situated behind Watford
Football Ground．Nearest Underground／Br．Rail Station：Watford High Street．Open
Monday to Saturday 9 a．m．-6 p．m．Ample Free Car Parking space available． Monday to Saturday POLYESTER RADIAL LEAD CAPACITORS：250V； $10 \mathrm{n}, 15 \mathrm{~L}$
$330 \mathrm{n}, 47 \mathrm{On} 13 \mathrm{p} ; 680 \mathrm{n} 19 \mathrm{p}: 1 \mu 23 \mathrm{p}: 1 \mu 540 \mathrm{p} ; 2 \mu 246 \mathrm{p}$ ． ULTRASONIC
TRANSDUCERS
395p ELECTROLYTIC CAPACITORS（Values in $\mu \mathrm{FF}$ ），500V： 10 52p； 47 78p；63V：0．47， 1.0
 22p；470 25p；680， 1000 34p； 2200 50p；3300 76p；4700 92p；16V：40，47 1000 9p；
125 12p；220 13p； 470 20p； 680 34p； 1000 27p； 1500 31p；2200 36p；3300 74p；
TAG－END TYPE：450V： $100 \mu \mathrm{~F}$ 65p；70V： 4700 245p；64V： 3300 198p； 2200 139p；
S0V： 3300 154p；2200 110p；40V： 4700 160p；25V： 10.000 320p；15．000 345p．
TANTALUM BEAD CAPACITORS

10.15 16p；2 2，3．3 18p； 47,68 40p； 100 75p；10V： 15,22 26p；33， 47 35p； 100 55p．

POLYESTER（MYLAR）CAPACITORS：
100V： $1 \mathrm{nF}, 2 \mathrm{n}, 4 \mathrm{n}, 4 \mathrm{n} 7,10 \mathrm{n} 6 \mathrm{p} ; 15 \mathrm{nF}$ $22 \mathrm{n}, 30 \mathrm{n}, 40,47 \mathrm{7p} ; 56,100 \mathrm{n}, 2009 \mathrm{p}$ ；
$50 \mathrm{~V}: 470 \mathrm{nF}$ 12p． 50V： 470 nF 12p

POTENTIOMETERS：Carbon Track $025 \mathrm{~W} \log \&$ Linear Valves． 470 ， $68001 \mathrm{~K}, 2 \mathrm{~K}$（Lin only）Single $5 \mathrm{~K} \Omega$ to 2 M ด Single gang $5 \mathrm{~K} \Omega$ to $2 \mathrm{M} \Omega$ Single with D / P switch $5 \mathrm{~K} \Omega$ to $2 \mathrm{M} \Omega$ Dual gang IW Wirewound 50贝－20K		29p 29p $78 p$ $88 p$ $115 p$
SLIDER POTENTIOMETERS 025 W log and linear values 60 mm track $5 \mathrm{~K} \Omega 500 \mathrm{~K} \Omega$ Single gang $10 \mathrm{~K} \Omega 500 \mathrm{~K} \Omega$ Dual gang Self－Stick graduated Alum．Bezels		$\begin{array}{r} 70 \mathrm{p} \\ 110 \mathrm{p} \\ 36 \mathrm{p} \end{array}$
PRESET POTENTIOMETERS $01 \mathrm{~W} 50 \Omega-22 \mathrm{M}$ M．nl．Vert．\＆Horiz． 		7p 10p 10p
OPTO ELECTRONICS		
LEDs plus clip	31 Di	9
TIL209 Red 13	4 Digit	750
TIL211Grn 18	OCP71	120
TIL212 Yel 18	ORP12	86
2＂Red 14	2N5777	45
2＂Green or Yellow 18 IInfra Red		
Rectangular LED＇s	LD271	46
Red，Green，Yellow	TIL32	5
With bezel 7 d 29	Detector	
7 Seg．Displays Red	SFH2O5	1
$\begin{array}{ll}3^{\prime \prime} \text { C C Cath } & 99 \\ 3^{\prime \prime} \mathrm{C} \text { Anod } & 99\end{array}$	TIL	
$3^{\prime \prime}+1$ Red or Grn 150	CRYSTALS	
$5^{\prime \prime}$ C Cath 115	100 KH	300
$5^{\circ} \mathrm{C}$ Anod 115	455 KH	370
$6^{\circ} \mathrm{C}$ Cath 180	1 MH	295
8＂Orange 275	1.008 M	295
Burgraph 10 seg． 225	16 M	395

Range： 0.5 pf to 10 nf
$15 \mathrm{nF}, 22 \mathrm{nF}, 33 \mathrm{nF}, 47 \mathrm{nF}$ 5p $\quad 100 \mathrm{nF} \mathbf{7 p} \mathbf{7 p}$
POLYSTYREN
10pF to $1 \mathrm{nF}, 8 \mathrm{p}$

RESISTORS－5\％carbon． Miniature，Low Noise．		High	Sta
Range	Val．	1.99	100＋
$0.25 \mathrm{~W} 2 \mathrm{M2-4M7}$	E24	2p	1p
0．5W 202－5M1	E12	2p	1p
1W 2n2－10M	E12	5p	3p
2\％Metal Film $10 \mathrm{~N} \cdot 1 \mathrm{M}$	E24	6 p	4 p
1\％0．5W 51＠－1M	E24	10p	8p
100＋price			ors of

VEROBOARDS： $0.1^{\prime \prime} \quad$ VQ＇Board 150p

	Clad	Plain	＇DIP＇Board 330p		CRYSTA 100 KHz	300
－5		52p	p	$5^{\circ} \mathrm{C}$ Anod 115	455 KHz	370
3）$\times 3$	83p	－	PRO	6° C Cath 180	1 MHz	295
3）$\times 5^{9}$	95p	79p	Veroblock 375p	$8^{\text {－}}$ Orange 275	1.008 M	295
$3 \frac{1}{1} \times 17^{*}$	326p	211p	S－DeC 350p	Burgraph 10 seg． 225	16 MHz	395
4 $\frac{1}{2} \times 17$	426 p	21p	oard			

\＃OONजै					ш＂ जん － NOM				
 以NळW TVT VN 									
 					Аg＇if tio i 				
 \＆									
NGUAWNNO 					今BANWNNNN 				
 － 					 				
 					NGODAA A MVN				
			－						

B. BAMBER ELECTRONICS

COMMUNICATIONS HOUSE, 5 STATION ROAD, LITTLEPORT, CAMBS. TEL: ELY (0353) 860185

RADIO TELEPHONES

Pye Westminster W15AM high band \& low band Pye
available. Sets complete and in good condition but are less speakers, mikes, cradles and LT leads. (Sets only) f80 each.
Pye Westminster W15AM Mid Band crystaled and cogverted to $129.9 \mathrm{MHz}, 130^{\circ} .^{\circ} \mathrm{MHz} \& 130.4 \mathrm{MHz}$. Very good condition. $£ 140.00$ each.
Pye Westminster W15AMB (Boot Mount) low band complete with control gear and accessories. Good condition. $£ 92.00$ each
Pye Westminster W30AM low band, sets only, no control gear, complete and in good condition. $\mathbf{£ 5 5 . 0 0}$
each. without remote \& T / T. Prices from $\mathbf{£ 2 2 0 . 0 0}$.
Pye RTC Controller Units, for remotely controlling a VHF or UHF fixed station radiotelephones over landlines, $\mathbf{£ 3 5 . 0 0}$ each.
Pye PC1 Controller Unit
Pye PCI Cone modern. £100.00 each.
Pye Olympic M201 Multi Channel AM sets complete but less mike, speaker and cradle. $£ 120.00$ each.
Pye Reporter MF6AM High band mobile, very good
Pye Motophones MF5AM High Band \& Low Band available. Sets complete and in good condition. £55.00.
Pye Cambridge AM10D Dash Mount sets complete and in good condition but untested. $\mathbf{£ 4 0 . 0 0}$ each.
Pye Cambridge AM10B Boot Mount sets, High Band 12.5 kHZ . sets only, no control gear, good condition. 125.00 each.

Please Note all sets are sold less crystals unless otherwise stated. Sets can be crystaled on your frequency at $\mathbf{£ 2 0}$ per channel extra.

AMATEUR RADIO

Yaesu FRG7700 $0.15-30 \mathrm{mHz}$ general coverage receiver
AM/FM/SSB/CW. £309.00.
Yaesu FRG7 $0.5-30 \mathrm{mHz}$ general coverage receiver $A M / S S B$
Yeesu FT707 $10-80 \mathrm{~m}, 100 \mathrm{w}$ PEP, SSB, AM, CW, variable. IF Yaesu FT902DM 10.160 m , SSB/CW/AM/FM, deluxe digital
Yandwidt digiter keyer, fan, variable bandwidth. $\mathbf{£ 7 9 9 . 0 0}$.
Yaesu FT1012DFM $10-160 \mathrm{~m}$, SSB/CW, variable. If bandwidth, FM or AM. £599.00.
Yaesu FT480R 2 m synthesized $25,12.5$, or 1 kHz steps FM

Yaesu FT780R 70 cm synthesized 100,25 or 1 kHz steps FM
1 kHz 100 or 10 Hz steps SSB 10 w PEP. 409.00 .
Yaesu FT207R 2 ra synthesized handheld 12.5 kHz 3 w
£195.00.
Yaesu FT708R 70 cm synthesized $25 \mathrm{kHz} 1 \mathrm{w} . \mathbf{£ 1 9 9 . 0 0}$
Scanning Receiver SN200N new model, plug in modules, increased at output, improved image rejection, increased selec-
tivity. Covers $26-88 \mathrm{mHz}, 108-180 \mathrm{mHz}, 380-514 \mathrm{mHz}, A M+F M$ with scanning \& memories. £264.00.

Hameg Oscilloscope HN307 bandwidth DC to 10 mHz with component tester, 7 cm dia. CRT, an ideal service instrument Standard C8800 2 m Fm mobile, digital readout, two speed scan rate for memories in 5 or 25 kHz steps, 10 w RF output. £250.00.
Standard $\mathbf{C 7 8} 70 \mathrm{~cm}$ Synthesized transportable, $430-440 \mathrm{mHz}$ digital readout, can be used from dry cells or rechargeable digiteries. $\mathbf{£ 2 0 9 . 5 0}$.

CB ACCESSORIES

MOBILE ANTENNAS

Avanti 6' Moonraker (Mag.) £31.00
Avanti 4^{\prime} Moonraker (Mag.) £28.56Avanti 6' Moonraker (Std.)Avanti 4^{\prime} Moonraker (Std.).f 44.92
f 12.24Valor $5205^{\text {' }}$ 'Half Breed (Whip)
Valor 301 Ant. Magnetic Base. £13.70
Valor 401 Ant. Magnetic Base................BASE STATION ANTENNAS
£24.95 Avanti Sigma 11 f 62.00$£ 69.95$
POWER SUPPLIES£14.24
Bremi $3 / 5 \mathrm{amp}$ De-Lux
Bremi $5 / 7 \mathrm{amp} 13.8 \mathrm{v}$ £17.70
Bremi $/ 7 \mathrm{amp} 13.8 \mathrm{v}$
Bremi 10amp 13.8 v £ 19.90
f 47.60
Skipmaster 100w AM 180 w SSB £118.90Skipmaster 150w AM 190w SSB£137.00ACCESSORIES
PA Horns (Large)
£ 12.50
PA Horns (Medium) ...
£16.45 TRANSISTORS

S495...................... £1.10	BA
2SC496........................1.31	LA4031P.................. £3.21
2SC1096......................1.72	LC7120....................... $£ 5.87$
2SC1173.....................1.69	LC7130..................... $£ 5.93$
2SC1306................... $£ 2.73$	M83712 44.71
2SC1449................... £1.67	MC1496P
2SC1678................... $£ 2.67$	TA7205...-.................... $£ .72$
2SC1923 $£ 0.43$	TA7222........................ $\mathbf{4 . 0 7}$
2SC2029..................... $£ 2.60$	TA7310........................ $£ 2.78$
2SC2166 $£ 2.73$	TC9100

INDEX TO ADVERTISERS

Eldon Electronics78
Electronics Design Associates 10
Electrovalue 10
Electro-Tech Components Ltd. 12
Electronic Mail Order. 84
Garex Electronics 28
Gemini Electronic Components 8
Gemini Communications
Gemini Communications 38 38
Golledge Electronics, P.R 84
G.T. Technical Information Service 82
H.A.C. Shortwave 88
Henry's Radio8
79
81, 82
I.C.S. Intertext 79
Jaycee 56
Lee Electronics 51
Leeds Amateur Radio 16
Lexton, Harvey 37
London Electronics College 2,3
M.R.S. Communications 38
Maplin Electronic Supplies Ltd. Cover IV
Metspin 70
Modular Electronics 14
Northern Communications 70
Osmabet 88
P.M. Components 88
Photo Accoustics Ltd 85
Plymouth Telecom (RadioFon) 84
Powell, T. 14
Progressive Radio 79
Radio Society of Great Britain 66
R.S.T. Valve Mail Order 78
Radio Components Specialists 88
Radio Shack 55
Ramdam Electronics 82
S.E.M. 38
Sandwell Plant 84
Science of Cambridge 76, 77
Scientific Wire Company 84
South Midlands Communications 27
Southern Valve 84
Stephen-James Ltd. 80
Technomatic Ltd. 80
Tempus 80
Thanet Electronics $4,5,6,7,28$
V \& F Smalicraft 78
Waters \& Stanton Electronics 75
Watford Electronics 86
Webster Electronics 56
Western Electronic 85
Wilmslow Audio9
66

FAMOUS LOUDSPEAKERS					Post ¢2
MAKE	model	size	watts	ohms	pris
Seas	Tweeter	4 in	50	8	£7.50
Goodmans	Twee	31/in	25	8	£4.00
Audax	Tweeter	$3 \frac{1}{4}$ in	60	8	£10.50
Seas	Mid-Range	4 in	50	8	£7.50
Seas	Mid-Range	5 in	80	8	£12.00
Seas	Mid-Range	$4 \frac{1}{2}$ in	100	8	£12.50
Goodmans	Full-Range	$5 \frac{1}{2}$ in	15	8	£6.50
Goodmans	Full-Range	8 in	30	8	c1
Seas	Woofer	8 in	30	8	£14.00
Rigonda	Full-Rang	10 in	15	8	£5.50
Goodmans	Audiom	12PG	60	8	£20.00
Goodmans	Di12	12 in	90	8/15	£27.50
Goodmans	Audiom	12P	50	8/15	£20.00
BATTERY ELIMINATOR MAINS to 9 VOLT DC					
Stabilised output, 9 volt 400 m.a. UK made with terminals. Overload cut out. $5 \times 3 \frac{1}{4} \times 2 \frac{1}{3} \mathrm{in}$. Transformer Rectifier Unit. Suitable Radios. Cassettes, £4.50.					
E.M.I. $13 \frac{1}{2}$					
10W. State 3 or 8 ohm. \quad ¢9.95					
Illustrated					
GOODMANS 20 Watt					
Size 8 in: 4 ohms.					
MATCHING TWEETER					
4in. square 4 ohm $£ 3.25$					
EMI MINI MODULE KIT 3-way					
Loudspeaker System, EMI 5in					
Bass, 5in Middle, 3in Tweeter,					
with 3 -way Crossover and Ready					
Cut Baffle. $15 \times 8 \frac{1}{4} \mathrm{in}$.					
Full assembly instructions.					
Response $=60$ to $20,000 \mathrm{cps}$					
12 watt RMS. 8 ohm. $£ 10$ ea.					
f 18.50 pair. Postage f1 50 .					

R.C.S.LOUDSPEAKER BARGAINS

$15 \mathrm{ohm} .3 \mathrm{iin} .5 \times 3 \mathrm{in} .6 \times 4 \mathrm{in} .7 \times 4 \mathrm{in} .51 .50$.
-

LOW VOLTAGE ELECTROLYTICS $1,2,4,5,8,16,25,30,50,100,200 \mathrm{mF} 15 \mathrm{~V} 10 \mathrm{p}$.
500 mF
12 V
$15 \mathrm{p}: 25 V$
20
$1000 \mathrm{mF} 12 \mathrm{~V} 20 \mathrm{p} ; 25 \mathrm{~V} 35 \mathrm{p} ; 500 \mathrm{D} 50 \mathrm{p} ; 1200 \mathrm{mF} / 76 \mathrm{~V} 80 \mathrm{p}$.
1020
$2200 \mathrm{mF} 6 \mathrm{~V} 25 \mathrm{p} ; 25 \mathrm{~V} 42 \mathrm{p} ; 40 \mathrm{~V} 60$; $2000 \mathrm{mF} / 100 \mathrm{~V} \mathrm{E} 1.20$.
$2500 \mathrm{mF} 50 \mathrm{~V} 70 \mathrm{p} ; 3000 \mathrm{mF} 25 \mathrm{~V} 50 \mathrm{p} ; 50 \mathrm{~V} 65 \mathrm{p}$ $2500 \mathrm{mF} 50 \mathrm{~V} 70 \mathrm{p} ; 3000 \mathrm{mF} 25 \mathrm{~V} 50 \mathrm{p} ; 50 \mathrm{~V} 65 \mathrm{p}$.

HIGH VOLTAGE ELECTROLYTICS

MANY OTHER ELECTROLYTICS IN STOCK
TRIMMERS $10 \mathrm{pF}, 30 \mathrm{pF}, 50 \mathrm{pF}, 5 \mathrm{p} .100 \mathrm{pF}, 150 \mathrm{pF}, 15 \mathrm{p}$. CANDENSERS VARIOUS, 1 PF to 0.01 mF . 3 p . $400 \mathrm{~V}-0.001$ to 0.05 5p; $0.115 \mathrm{sp} ; 0.2525 \mathrm{p} ; 0.4735 \mathrm{p}$. MICRO SWITCH SINGLE POLE CHANGEOVER 30p.
SUB-MIN MICRO SWITCH. 30 . Single pole change over. SUB-MIN MICRO SWITCH, 30p. Single Dole change ove GEAREDTWIN GANGS $25 \mathrm{FP} 95 \mathrm{p} ; 365 \mathrm{pF} \mathrm{E1}$; NEON PANELINDICATORS 250 V . Red $1 \frac{1}{2} \times i 45 \mathrm{p}$. ILLUMINATED ROCKER SWITCH. Single pole. Red 65p.
RESISTORS. 100 to 10 M . $W \mathrm{~W}$, $1 \mathrm{~W}, 20 \% ~ 2 \mathrm{p}$; 2 W , 10p. RESISTORS. 10 N to 10 M . $\ddagger \mathrm{W}$. 1 W . 20\% 2p; $2 \mathrm{~W}, 10 \mathrm{p}$. HIGH STABILITY. ${ }^{2} \mathrm{~W} 2 \%$ 2 10 ohms to 1 meg., 8 p.
Ditto 5%. Preferred values 10 ohms to 10 meg., 3 p. WIRE-WOUND RESISTORS 5 watt, 10 watt, 15 watt 20p. CASSETTE MOTOR. 6 volt $\mathrm{E1} \cdot 00$.
CASSETTE MECHANISM, 6 vor $12 v$ Stereo Head EL 5. ALUMINIUM CHASSIS 18 a.w.g. Undrilled, 4 sides. riveted
 -E2.70. ANGLE BRACKET $6 \times \geqslant \times 2$ in- 25 p.
 $9 \mathrm{in}-\mathrm{f1}-20 ; 6 \times 4 \mathrm{in},-36 \mathrm{p} ; 12 \times 8 \mathrm{in} .-90 \mathrm{p} ; 10 \times 7 \mathrm{in},-80 \mathrm{p}$;
$8 \times 6 \mathrm{in} .60 \mathrm{p} ; 14 \times 3 \mathrm{in} .-60 \mathrm{p} ; 12 \times 5 \mathrm{in},-60 \mathrm{p} ; 16 \times 10 \mathrm{in}$ 8×6 in. $-60 \mathrm{p} ; 14 \times 3$ in.
$\mathrm{f} 1.40 ; 16 \times 6$ 6in. -90 p.
BLACK PLASTIC construction box with brushed aluminium BLACK PLAST
facia size $6 \frac{1}{4} \times 4 \frac{2}{2} \times 2^{\text {tr }} £ 1.50$. Many other sizes. BRIDGE RECTIFIER 200 V PIV \ddagger amp $50 \mathrm{p} .2 \mathrm{amp} £ 1.00$. $4 \mathrm{amp} £ 1.50 .8 \mathrm{amp} \mathrm{E} 2.50$.
TOGGLE SWITCHES SP 30p. DPST 40p. DPDT 50p.

MANY OTHER TOGGLES IN STOCK. Please enquir	BSR 172 BUDGET SINGLE PLAYER ideal for disco or
small three-speed Hi-Fi system with stereo cartridge	smalt three-speed Hi-Fi system with stereo cartridge

cueing device and bias compensator. Post $\mathbf{£ 2} \mathbf{~} 20$
BSR STEREO CARTRIDGES SC7 £2. Sonotone 9TA-HC
$£ 2.50$. V. 100 Magnetic $£$.
MAINS TRANSFORMERS

		Post
6 V .500 mA .	80p 6-0.6V 100mA.... 81.80	
$12 \mathrm{~V}, 750 \mathrm{AA}$.-........ 11.75		1
10-0.10V 2 a $\mathbf{¢ 3 . 0 0}$	${ }_{51} 110 \mathrm{~V} .30 \mathrm{~V} .40 \mathrm{~V}, 2 \mathrm{a} \ldots \mathrm{E3} .50$	¢2
		1
-0-17V. 2 a...... $\mathbf{4 . 0 0}$	50	ع1
0.5.8.10.16V, $\frac{1}{2} \ldots \ldots 2.50$	£12 of 18 V . 6 a $\ldots \ldots . . .111 .00$. 50
	E1 12-0.12V. 2 a...... $\mathbf{8 1} 5150$	
$15.0-15 \mathrm{~V} 2 \mathrm{a}$......e $\mathbf{¢ 3 . 0 0}$		p
E3.50		¢2.50
.400. 60 V , 1a.... 54.00		1

[^3]
H.A.C short-wave

 KITS
WORLD-WIDE RECEPTION

BATTERY ELIMINATOR KIT

90v H.T. 3v 2v \& $1 \frac{1}{2} v$ L.T.

We can now offer you a battery eliminator kit for use with our valve receivers.
H.T. batteries are now unobtainable, but our new power pack will give you a lifetime of service.

We are offering this at

$£ 9.60$

for the complete kit.
All orders despatched within 7 days. Send stamped and addressed envelope now for free descriptive catalogue of kits and accessories.
SORRY, NO CATALOGUES WITHOUT S.A.E.

"H.A.C."

SHORT-WAVE PRODUCTS
P.O. Box No. 16, 10 Windmill Lane Lewes Road, East Grinstead, West Sussex RH19 3SZ.

OSMABET LTD
We make transformers amongst other things.
TRANSFORMERS TO ORDER
We have capacity for the supply of transformers to specifica-
tion, either one off, or production runs, your enquiries please LOW VOLTAGE TRANSFORMERS: Prim 240V ac
 1.5A CT £7.90; 24V 1.5A CT £7.90:3A CT £9.75; 5A CT
£1800; 8 CT £ $£ 2925 ; 12 \mathrm{CT} £ 3750$. MIDGET RECTIFIER TRANSFORM
MIDGET RECTIFIER TRANSFORMERS: Prim 240 V ac .
$6-0-6 \mathrm{~V} 1.5 \mathrm{~A}$ or $9-0-9 \mathrm{~V}$ 1A $£ 3.40$ each; $12-0.12 \mathrm{~V}$ iA or $20-0-20 \mathrm{~V} 0.75 \mathrm{~A}$ f4.15 each: $9-0-9 \mathrm{~V} 0.3 \mathrm{~A}$ or $12 \mathrm{~V}-0-12 \mathrm{~V}$ O. $25 A$ or $20 V-0-20 V 0.15 A £ 3.00$ each.
-10-12-14-16-18V 2A £7.50; 4A £9.40; 0-12-15.20-
 2A £12.00;0-40-50-60-80-100-110V 1 A 12.00 . 30 to 4000 watts, many types ex stock, Lists.
MAINS TRANSFORMERS. SPECIAL OFFER. Prim
240 V ac. $300-0-300 \mathrm{~V} 80 \mathrm{Ma}: 6.3 \mathrm{~V}$ 1A CT; 6.3 V iA $£ 5.50$;
 LOUDSPEAKERS
 peaker 80 for 25 W . 75^{2} each; Goodman mid range $5^{\prime \prime}$ HI FI
 10 W .8 8 £ 3.50 ; 5° do $25 \mathrm{~W} 8 \Omega$ £5.00.
"INSTANT" BULK CASSETTE/TAPE ERASER
Instant erasure of cassettes, and any diameter of tape spools,
demagnetises tape heads, $200 / 240 \mathrm{~V}$ ac. leaflet $£ 8.00$ demagnetises tape heads, $200 / 240 \mathrm{~V}$ ac. leaflet $£ 8.00$. Cassette/Tape Head Demagnetiser, $\mathbf{£ 3 . 5 0}$.
EDGWISE LEVEL METER
Size $19 \times 18 \times 20 \mathrm{~mm} 800$ \& 1.50 , 200/ $\mu \mathrm{A}$
CHARGING METERS $1 \frac{1}{2}$ in diameter
2A or $3 A £ 1.25$ each: $5 A$ or $10 A £ 1.50$ each.
MINI FLEX CABLE
ctc, white pvc, 10 metreshone, burglar alarm extensions, POWER SUPPLY, TWIN OUTPUT Prim $\mathbf{2 4 0 V}$. New, British manufacturer, smoothed d.c. output $20 \mathrm{~V}, 1.5 \mathrm{~A}$.
plus STABILISED output of 15 V 100 Ma , plus further 12 V ac 0.5 A , complete with diagram, $\mathbf{£ 4 . 0 0}$.
O/P TRANSFORMERS FOR VALVE AMPLIFIERS
P.P. sec tapped $3-8-15 \Omega$ A-A $6 \mathrm{~K} \Omega$, 30W £17.50; A-A $3 \mathrm{~K} \Omega$
$50 \mathrm{~W} £ 26.00 ; 100 \mathrm{~W}$ (EL $31 \mathrm{KT88}$ etc) $£ 35.00$.

Covers valve amplifiers 30W to 400 W £1.25.
MULTIWAY SCREENED CABLE, PVC COVERED 36 wav £1, 25/75p; 14/50p; 6/25p; 4/20p.
CONDENSERS AC $50 \mathrm{~Hz}, 4.33 / 250 \mathrm{v}$; $6 / 330 \mathrm{v}$, £1.50. Electrolytic $400 \mathrm{mfd} 400 \mathrm{~V} 75 \mathrm{p} ; 2000 / 30 \mathrm{~V} 30 \mathrm{p} ; 2200 / 40 \mathrm{~V}$
40p; Paper tubular. W/E, $4 / 160 \mathrm{~V} ; 6 / 160 \mathrm{~V} 30 \mathrm{p}$ each. CARRIAGE EXTRA ON ALL ORDERS ALL PRICES INCLUDE V.A.T.

Callers by appointment only. S.A.E. Enquiries, Lists.
46, Kenilworth Road, Edgware, Middsx. HA8 8YG. Tel: 01-958 9314

For every one you send for processing by the Practical Wireless Colour

 Print Service.Fast, efficient, high quality film processing is now as close to you as your nearest post box. Hundreds of thousands of magazine readers are delighted with this reliable Colour Print Film Service-and the replacement film that comes free every time they use it! So why don't you give it a try?

Here's what you do. Send any make of colour print film inside the envelope enclosed in this issue. Or fill in the coupon below and send it with your colour film in a strong envelope to:
Practical Wireless Colour Print Service, Freepost, Teddington, Middlesex TW11 8BR. No stamp is required.

SEND NO MONEY

We are so confident in the reliability of the service and the quality of our prints, (each one is date stamped with the month and year of developing) that you don't pay until you have received them!

LUXURY COLOUR PRINTS

You will be amazed at the beautiful colours and hi-definition

In the event of any query, please write to Customer Relations Dept., Colour Print Express Ltd., 19-21 Lower Square, Isleworth. Middlesex. or phone 01-5686565.
sheen finish of the prints we supply . . . with elegant rounded corners and borderless to give you maximum picture area. And now with the new Giant Superprints you get 30% more picture area than the standard enprints at no extra cost.

UNBEATABLE VALUE

The new Giant Superprints cost you only 17 p each and a further charge of $£ 1$ is made towards postage and packing. That's all you pay and, when we send your prints, a replacement film, of the size you use, is included absolutely free. That's a saving of up to $£ 2.19$.

The offer is limited to the U.K. For Eire, C.I. and B.F.P.O., a handling surcharge will be made.

FREE ALBUM SHEETS
One album voucher is sent with each film we process. Collect 3 vouchers and we send you a set of FREE album sheets to fit into our specially designed album to show off both superprints and standardprints.

MORE BENEFITS TO YOU

You benefit in two additional ways. Firstly, you enjoy a personal service with every care taken over each individual order. And secondly, you pay only for what you get-with no credit vouchers as with many other companies. An invoice comes with your prints, so it is a straight business transaction.

Your prints will normally be despatched within five working days of receipt, but please allow for postal times and possible delays.

Offerexc. Minolta \& Sub-miniature film. Roll film 20p surcharge, 400 A SA 20 p surcharge. Superprints can only be produced from Kodacolour II, C41 and Agfa CNS cassette and cartridge film not half frame. Prices correct at time of going to press.

Use this label if you
 have no envelope.
 or pass it to a friend.
 It is used to send
 your prints and
 FREE film.

For personal service visit one of our stores.
Our new store at Hammersmith is conveniently situated near the end of the M4 and the North and South Circular Roads.
There is excellent street parking on meters a few steps away and Hammersmith Underground Station is nearby. Call in and see us soon.

[^0]: Wales
 Tony GW3FKO (0874 2772)
 Midlands Tony G8AVH (021-329-2305)

[^1]: Our thanks to Mike Joy G8HBQ, for the use of his amateur station in our cover photograph.

[^2]: Part 5 will cover the v.f.o. and Filter Boards together with functional layouts of Boards $6,7,8$ and 9

[^3]: Radio Component Specialists 337, WHITEHORSE ROAD
 CROYDON, SURREY, U.K. TEL: 01-684 1665 Post 65 M Minimum. Calliors Wolcomo. Closed Wod.
 Phone orders with Access-Barclay-Visa. Uists 30p.

